|  | 
|  | 1 | +{ | 
|  | 2 | + "cells": [ | 
|  | 3 | +  { | 
|  | 4 | +   "cell_type": "markdown", | 
|  | 5 | +   "metadata": {}, | 
|  | 6 | +   "source": [ | 
|  | 7 | +    "Copyright (c) Microsoft Corporation. All rights reserved.\n", | 
|  | 8 | +    "\n", | 
|  | 9 | +    "Licensed under the MIT License." | 
|  | 10 | +   ] | 
|  | 11 | +  }, | 
|  | 12 | +  { | 
|  | 13 | +   "cell_type": "markdown", | 
|  | 14 | +   "metadata": {}, | 
|  | 15 | +   "source": [ | 
|  | 16 | +    "# 03. Train on Azure Container Instance (EXPERIMENTAL)\n", | 
|  | 17 | +    "\n", | 
|  | 18 | +    "* Create Workspace\n", | 
|  | 19 | +    "* Create Project\n", | 
|  | 20 | +    "* Create `train.py` in the project folder.\n", | 
|  | 21 | +    "* Configure an ACI (Azure Container Instance) run\n", | 
|  | 22 | +    "* Execute in ACI" | 
|  | 23 | +   ] | 
|  | 24 | +  }, | 
|  | 25 | +  { | 
|  | 26 | +   "cell_type": "markdown", | 
|  | 27 | +   "metadata": {}, | 
|  | 28 | +   "source": [ | 
|  | 29 | +    "## Prerequisites\n", | 
|  | 30 | +    "Make sure you go through the [00. Installation and Configuration](00.configuration.ipynb) Notebook first if you haven't." | 
|  | 31 | +   ] | 
|  | 32 | +  }, | 
|  | 33 | +  { | 
|  | 34 | +   "cell_type": "code", | 
|  | 35 | +   "execution_count": null, | 
|  | 36 | +   "metadata": {}, | 
|  | 37 | +   "outputs": [], | 
|  | 38 | +   "source": [ | 
|  | 39 | +    "# Check core SDK version number\n", | 
|  | 40 | +    "import azureml.core\n", | 
|  | 41 | +    "\n", | 
|  | 42 | +    "print(\"SDK version:\", azureml.core.VERSION)" | 
|  | 43 | +   ] | 
|  | 44 | +  }, | 
|  | 45 | +  { | 
|  | 46 | +   "cell_type": "markdown", | 
|  | 47 | +   "metadata": {}, | 
|  | 48 | +   "source": [ | 
|  | 49 | +    "## Initialize Workspace\n", | 
|  | 50 | +    "\n", | 
|  | 51 | +    "Initialize a workspace object from persisted configuration" | 
|  | 52 | +   ] | 
|  | 53 | +  }, | 
|  | 54 | +  { | 
|  | 55 | +   "cell_type": "code", | 
|  | 56 | +   "execution_count": null, | 
|  | 57 | +   "metadata": { | 
|  | 58 | +    "tags": [ | 
|  | 59 | +     "create workspace" | 
|  | 60 | +    ] | 
|  | 61 | +   }, | 
|  | 62 | +   "outputs": [], | 
|  | 63 | +   "source": [ | 
|  | 64 | +    "from azureml.core import Workspace\n", | 
|  | 65 | +    "\n", | 
|  | 66 | +    "ws = Workspace.from_config()\n", | 
|  | 67 | +    "print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')" | 
|  | 68 | +   ] | 
|  | 69 | +  }, | 
|  | 70 | +  { | 
|  | 71 | +   "cell_type": "markdown", | 
|  | 72 | +   "metadata": {}, | 
|  | 73 | +   "source": [ | 
|  | 74 | +    "## Create An Experiment\n", | 
|  | 75 | +    "\n", | 
|  | 76 | +    "**Experiment** is a logical container in an Azure ML Workspace. It hosts run records which can include run metrics and output artifacts from your experiments." | 
|  | 77 | +   ] | 
|  | 78 | +  }, | 
|  | 79 | +  { | 
|  | 80 | +   "cell_type": "code", | 
|  | 81 | +   "execution_count": null, | 
|  | 82 | +   "metadata": {}, | 
|  | 83 | +   "outputs": [], | 
|  | 84 | +   "source": [ | 
|  | 85 | +    "from azureml.core import Experiment\n", | 
|  | 86 | +    "experiment_name = 'train-on-aci'\n", | 
|  | 87 | +    "experiment = Experiment(workspace = ws, name = experiment_name)" | 
|  | 88 | +   ] | 
|  | 89 | +  }, | 
|  | 90 | +  { | 
|  | 91 | +   "cell_type": "markdown", | 
|  | 92 | +   "metadata": {}, | 
|  | 93 | +   "source": [ | 
|  | 94 | +    "Create a folder to store the training script." | 
|  | 95 | +   ] | 
|  | 96 | +  }, | 
|  | 97 | +  { | 
|  | 98 | +   "cell_type": "code", | 
|  | 99 | +   "execution_count": null, | 
|  | 100 | +   "metadata": {}, | 
|  | 101 | +   "outputs": [], | 
|  | 102 | +   "source": [ | 
|  | 103 | +    "import os\n", | 
|  | 104 | +    "script_folder = './samples/train-on-aci'\n", | 
|  | 105 | +    "os.makedirs(script_folder, exist_ok = True)" | 
|  | 106 | +   ] | 
|  | 107 | +  }, | 
|  | 108 | +  { | 
|  | 109 | +   "cell_type": "markdown", | 
|  | 110 | +   "metadata": {}, | 
|  | 111 | +   "source": [ | 
|  | 112 | +    "## Remote execution on ACI\n", | 
|  | 113 | +    "\n", | 
|  | 114 | +    "Use `%%writefile` magic to write training code to `train.py` file under the project folder." | 
|  | 115 | +   ] | 
|  | 116 | +  }, | 
|  | 117 | +  { | 
|  | 118 | +   "cell_type": "code", | 
|  | 119 | +   "execution_count": null, | 
|  | 120 | +   "metadata": {}, | 
|  | 121 | +   "outputs": [], | 
|  | 122 | +   "source": [ | 
|  | 123 | +    "%%writefile $script_folder/train.py\n", | 
|  | 124 | +    "\n", | 
|  | 125 | +    "import os\n", | 
|  | 126 | +    "from sklearn.datasets import load_diabetes\n", | 
|  | 127 | +    "from sklearn.linear_model import Ridge\n", | 
|  | 128 | +    "from sklearn.metrics import mean_squared_error\n", | 
|  | 129 | +    "from sklearn.model_selection import train_test_split\n", | 
|  | 130 | +    "from azureml.core.run import Run\n", | 
|  | 131 | +    "from sklearn.externals import joblib\n", | 
|  | 132 | +    "\n", | 
|  | 133 | +    "import numpy as np\n", | 
|  | 134 | +    "\n", | 
|  | 135 | +    "os.makedirs('./outputs', exist_ok=True)\n", | 
|  | 136 | +    "\n", | 
|  | 137 | +    "X, y = load_diabetes(return_X_y = True)\n", | 
|  | 138 | +    "\n", | 
|  | 139 | +    "run = Run.get_submitted_run()\n", | 
|  | 140 | +    "\n", | 
|  | 141 | +    "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)\n", | 
|  | 142 | +    "data = {\"train\": {\"X\": X_train, \"y\": y_train},\n", | 
|  | 143 | +    "        \"test\": {\"X\": X_test, \"y\": y_test}}\n", | 
|  | 144 | +    "\n", | 
|  | 145 | +    "# list of numbers from 0.0 to 1.0 with a 0.05 interval\n", | 
|  | 146 | +    "alphas = np.arange(0.0, 1.0, 0.05)\n", | 
|  | 147 | +    "\n", | 
|  | 148 | +    "for alpha in alphas:\n", | 
|  | 149 | +    "    # Use Ridge algorithm to create a regression model\n", | 
|  | 150 | +    "    reg = Ridge(alpha = alpha)\n", | 
|  | 151 | +    "    reg.fit(data[\"train\"][\"X\"], data[\"train\"][\"y\"])\n", | 
|  | 152 | +    "\n", | 
|  | 153 | +    "    preds = reg.predict(data[\"test\"][\"X\"])\n", | 
|  | 154 | +    "    mse = mean_squared_error(preds, data[\"test\"][\"y\"])\n", | 
|  | 155 | +    "    run.log('alpha', alpha)\n", | 
|  | 156 | +    "    run.log('mse', mse)\n", | 
|  | 157 | +    "    \n", | 
|  | 158 | +    "    model_file_name = 'ridge_{0:.2f}.pkl'.format(alpha)\n", | 
|  | 159 | +    "    with open(model_file_name, \"wb\") as file:\n", | 
|  | 160 | +    "        joblib.dump(value = reg, filename = 'outputs/' + model_file_name)\n", | 
|  | 161 | +    "\n", | 
|  | 162 | +    "    print('alpha is {0:.2f}, and mse is {1:0.2f}'.format(alpha, mse))" | 
|  | 163 | +   ] | 
|  | 164 | +  }, | 
|  | 165 | +  { | 
|  | 166 | +   "cell_type": "markdown", | 
|  | 167 | +   "metadata": {}, | 
|  | 168 | +   "source": [ | 
|  | 169 | +    "## Configure for using ACI\n", | 
|  | 170 | +    "Linux-based ACI is available in `westus`, `eastus`, `westeurope`, `northeurope`, `westus2` and `southeastasia` regions. See details [here](https://docs.microsoft.com/en-us/azure/container-instances/container-instances-quotas#region-availability)." | 
|  | 171 | +   ] | 
|  | 172 | +  }, | 
|  | 173 | +  { | 
|  | 174 | +   "cell_type": "code", | 
|  | 175 | +   "execution_count": null, | 
|  | 176 | +   "metadata": { | 
|  | 177 | +    "tags": [ | 
|  | 178 | +     "configure run" | 
|  | 179 | +    ] | 
|  | 180 | +   }, | 
|  | 181 | +   "outputs": [], | 
|  | 182 | +   "source": [ | 
|  | 183 | +    "from azureml.core.runconfig import RunConfiguration\n", | 
|  | 184 | +    "from azureml.core.conda_dependencies import CondaDependencies\n", | 
|  | 185 | +    "\n", | 
|  | 186 | +    "# create a new runconfig object\n", | 
|  | 187 | +    "run_config = RunConfiguration()\n", | 
|  | 188 | +    "\n", | 
|  | 189 | +    "# signal that you want to use ACI to execute script.\n", | 
|  | 190 | +    "run_config.target = \"containerinstance\"\n", | 
|  | 191 | +    "\n", | 
|  | 192 | +    "# ACI container group is only supported in certain regions, which can be different than the region the Workspace is in.\n", | 
|  | 193 | +    "run_config.container_instance.region = 'eastus'\n", | 
|  | 194 | +    "\n", | 
|  | 195 | +    "# set the ACI CPU and Memory \n", | 
|  | 196 | +    "run_config.container_instance.cpu_cores = 1\n", | 
|  | 197 | +    "run_config.container_instance.memory_gb = 2\n", | 
|  | 198 | +    "\n", | 
|  | 199 | +    "# enable Docker \n", | 
|  | 200 | +    "run_config.environment.docker.enabled = True\n", | 
|  | 201 | +    "\n", | 
|  | 202 | +    "# set Docker base image to the default CPU-based image\n", | 
|  | 203 | +    "run_config.environment.docker.base_image = azureml.core.runconfig.DEFAULT_CPU_IMAGE\n", | 
|  | 204 | +    "#run_config.environment.docker.base_image = 'microsoft/mmlspark:plus-0.9.9'\n", | 
|  | 205 | +    "\n", | 
|  | 206 | +    "# use conda_dependencies.yml to create a conda environment in the Docker image for execution\n", | 
|  | 207 | +    "run_config.environment.python.user_managed_dependencies = False\n", | 
|  | 208 | +    "\n", | 
|  | 209 | +    "# auto-prepare the Docker image when used for execution (if it is not already prepared)\n", | 
|  | 210 | +    "run_config.auto_prepare_environment = True\n", | 
|  | 211 | +    "\n", | 
|  | 212 | +    "# specify CondaDependencies obj\n", | 
|  | 213 | +    "run_config.environment.python.conda_dependencies = CondaDependencies.create(conda_packages=['scikit-learn'])" | 
|  | 214 | +   ] | 
|  | 215 | +  }, | 
|  | 216 | +  { | 
|  | 217 | +   "cell_type": "markdown", | 
|  | 218 | +   "metadata": {}, | 
|  | 219 | +   "source": [ | 
|  | 220 | +    "## Submit the Experiment\n", | 
|  | 221 | +    "Finally, run the training job on the ACI" | 
|  | 222 | +   ] | 
|  | 223 | +  }, | 
|  | 224 | +  { | 
|  | 225 | +   "cell_type": "code", | 
|  | 226 | +   "execution_count": null, | 
|  | 227 | +   "metadata": { | 
|  | 228 | +    "tags": [ | 
|  | 229 | +     "remote run", | 
|  | 230 | +     "aci" | 
|  | 231 | +    ] | 
|  | 232 | +   }, | 
|  | 233 | +   "outputs": [], | 
|  | 234 | +   "source": [ | 
|  | 235 | +    "%%time \n", | 
|  | 236 | +    "from azureml.core.script_run_config import ScriptRunConfig\n", | 
|  | 237 | +    "\n", | 
|  | 238 | +    "script_run_config = ScriptRunConfig(source_directory = script_folder,\n", | 
|  | 239 | +    "                                    script= 'train.py',\n", | 
|  | 240 | +    "                                    run_config = run_config)\n", | 
|  | 241 | +    "\n", | 
|  | 242 | +    "run = experiment.submit(script_run_config)\n" | 
|  | 243 | +   ] | 
|  | 244 | +  }, | 
|  | 245 | +  { | 
|  | 246 | +   "cell_type": "code", | 
|  | 247 | +   "execution_count": null, | 
|  | 248 | +   "metadata": { | 
|  | 249 | +    "tags": [ | 
|  | 250 | +     "remote run", | 
|  | 251 | +     "aci" | 
|  | 252 | +    ] | 
|  | 253 | +   }, | 
|  | 254 | +   "outputs": [], | 
|  | 255 | +   "source": [ | 
|  | 256 | +    "%%time\n", | 
|  | 257 | +    "# Shows output of the run on stdout.\n", | 
|  | 258 | +    "run.wait_for_completion(show_output = True)" | 
|  | 259 | +   ] | 
|  | 260 | +  }, | 
|  | 261 | +  { | 
|  | 262 | +   "cell_type": "code", | 
|  | 263 | +   "execution_count": null, | 
|  | 264 | +   "metadata": { | 
|  | 265 | +    "tags": [ | 
|  | 266 | +     "query history" | 
|  | 267 | +    ] | 
|  | 268 | +   }, | 
|  | 269 | +   "outputs": [], | 
|  | 270 | +   "source": [ | 
|  | 271 | +    "# Show run details\n", | 
|  | 272 | +    "run" | 
|  | 273 | +   ] | 
|  | 274 | +  }, | 
|  | 275 | +  { | 
|  | 276 | +   "cell_type": "code", | 
|  | 277 | +   "execution_count": null, | 
|  | 278 | +   "metadata": { | 
|  | 279 | +    "tags": [ | 
|  | 280 | +     "get metrics" | 
|  | 281 | +    ] | 
|  | 282 | +   }, | 
|  | 283 | +   "outputs": [], | 
|  | 284 | +   "source": [ | 
|  | 285 | +    "# get all metris logged in the run\n", | 
|  | 286 | +    "run.get_metrics()\n", | 
|  | 287 | +    "metrics = run.get_metrics()" | 
|  | 288 | +   ] | 
|  | 289 | +  }, | 
|  | 290 | +  { | 
|  | 291 | +   "cell_type": "code", | 
|  | 292 | +   "execution_count": null, | 
|  | 293 | +   "metadata": {}, | 
|  | 294 | +   "outputs": [], | 
|  | 295 | +   "source": [ | 
|  | 296 | +    "import numpy as np\n", | 
|  | 297 | +    "print('When alpha is {1:0.2f}, we have min MSE {0:0.2f}.'.format(\n", | 
|  | 298 | +    "    min(metrics['mse']), \n", | 
|  | 299 | +    "    metrics['alpha'][np.argmin(metrics['mse'])]\n", | 
|  | 300 | +    "))" | 
|  | 301 | +   ] | 
|  | 302 | +  } | 
|  | 303 | + ], | 
|  | 304 | + "metadata": { | 
|  | 305 | +  "kernelspec": { | 
|  | 306 | +   "display_name": "Python 3", | 
|  | 307 | +   "language": "python", | 
|  | 308 | +   "name": "python3" | 
|  | 309 | +  }, | 
|  | 310 | +  "language_info": { | 
|  | 311 | +   "codemirror_mode": { | 
|  | 312 | +    "name": "ipython", | 
|  | 313 | +    "version": 3 | 
|  | 314 | +   }, | 
|  | 315 | +   "file_extension": ".py", | 
|  | 316 | +   "mimetype": "text/x-python", | 
|  | 317 | +   "name": "python", | 
|  | 318 | +   "nbconvert_exporter": "python", | 
|  | 319 | +   "pygments_lexer": "ipython3", | 
|  | 320 | +   "version": "3.6.5" | 
|  | 321 | +  } | 
|  | 322 | + }, | 
|  | 323 | + "nbformat": 4, | 
|  | 324 | + "nbformat_minor": 2 | 
|  | 325 | +} | 
0 commit comments