|
| 1 | +/** |
| 2 | + * Cracking the coding interview edition 6 |
| 3 | + * Implement a function to check if a list is a palindrome. |
| 4 | + * |
| 5 | + * Approach 1: Reverse the half the list and compare with other half. |
| 6 | + * Approach 2: Iterative Approach |
| 7 | + * - Push half the list in stack, |
| 8 | + * - Compare the rest of the list by popping off from the stack |
| 9 | + * Approach 3: Recursive Approach |
| 10 | + */ |
| 11 | + |
| 12 | +#include <iostream> |
| 13 | +#include <stack> |
| 14 | + |
| 15 | +struct Node |
| 16 | +{ |
| 17 | + char data; |
| 18 | + Node *next; |
| 19 | + Node(char c) : data{c}, next{nullptr} {} |
| 20 | +}; |
| 21 | + |
| 22 | +/** |
| 23 | + * [insert helper routine to insert new node at head] |
| 24 | + * @param head [current head of the list] |
| 25 | + * @param c [new node's data] |
| 26 | + */ |
| 27 | +void insert(Node *&head, char c) |
| 28 | +{ |
| 29 | + Node *newNode = new Node(c); |
| 30 | + newNode->next = head; |
| 31 | + head = newNode; |
| 32 | +} |
| 33 | + |
| 34 | +/** |
| 35 | + * [printList = helper routine to print the list] |
| 36 | + * @param head [head of the list] |
| 37 | + */ |
| 38 | +void printList(Node *head) |
| 39 | +{ |
| 40 | + while (head) |
| 41 | + { |
| 42 | + std::cout << head->data << "-->"; |
| 43 | + head = head->next; |
| 44 | + } |
| 45 | + std::cout << "nullptr" << std::endl; |
| 46 | +} |
| 47 | + |
| 48 | +/** |
| 49 | + * [reversedList helper routine to reverse a list] |
| 50 | + * @param head [head of current list] |
| 51 | + * @return [reversed list's head] |
| 52 | + */ |
| 53 | +void reverse(Node *&head) |
| 54 | +{ |
| 55 | + if (head == nullptr || (head && (head->next == nullptr))) |
| 56 | + { |
| 57 | + return; |
| 58 | + } |
| 59 | + Node *newHead = nullptr; |
| 60 | + Node *nextNode = nullptr; |
| 61 | + while (head) |
| 62 | + { |
| 63 | + nextNode = head->next; |
| 64 | + head->next = newHead; |
| 65 | + newHead = head; |
| 66 | + head = nextNode; |
| 67 | + } |
| 68 | + head = newHead; |
| 69 | +} |
| 70 | + |
| 71 | +/** |
| 72 | + * [isPallindromeIter1 - Iteratively determine if list is palindrome using reversing the list] |
| 73 | + * @param head [Head node of the list] |
| 74 | + * @return [True if list is palindrome, false if not] |
| 75 | + */ |
| 76 | +bool isPalindromeIter1(Node *head) |
| 77 | +{ |
| 78 | + |
| 79 | + // if list is empty or just contains one node. |
| 80 | + if (head == nullptr || head->next == nullptr) |
| 81 | + { |
| 82 | + return true; |
| 83 | + } |
| 84 | + |
| 85 | + // step1 figure out middle node. |
| 86 | + Node *ptr1 = head; |
| 87 | + Node *ptr2 = head; |
| 88 | + Node *middleNode = nullptr; |
| 89 | + |
| 90 | + while (ptr2 && ptr1 && ptr1->next) |
| 91 | + { |
| 92 | + ptr1 = ptr1->next->next; |
| 93 | + ptr2 = ptr2->next; |
| 94 | + } |
| 95 | + |
| 96 | + // in case of odd number of nodes, skip the middle one |
| 97 | + if (ptr1 && ptr1->next == nullptr) |
| 98 | + { |
| 99 | + ptr2 = ptr2->next; |
| 100 | + } |
| 101 | + |
| 102 | + // reverse the second half of the list |
| 103 | + reverse(ptr2); |
| 104 | + |
| 105 | + middleNode = ptr2; |
| 106 | + // now compare the two halves |
| 107 | + ptr1 = head; |
| 108 | + |
| 109 | + while (ptr1 && ptr2 && ptr1->data == ptr2->data) |
| 110 | + { |
| 111 | + ptr1 = ptr1->next; |
| 112 | + ptr2 = ptr2->next; |
| 113 | + } |
| 114 | + |
| 115 | + // reverse the list again. |
| 116 | + reverse(middleNode); |
| 117 | + |
| 118 | + if (ptr2 == nullptr) |
| 119 | + { |
| 120 | + return true; |
| 121 | + } |
| 122 | + else |
| 123 | + { |
| 124 | + return false; |
| 125 | + } |
| 126 | +} |
| 127 | + |
| 128 | +/** |
| 129 | + * [isPalindromeIter2 - Iteratively determine if list is palindrome using a stack] |
| 130 | + * @param head [Head node of the list] |
| 131 | + * @return [True if list is palindrome, false if not] |
| 132 | + */ |
| 133 | +bool isPalindromeIter2(Node *head) |
| 134 | +{ |
| 135 | + // if list is empty or just contains one node. |
| 136 | + if (head == nullptr || head->next == nullptr) |
| 137 | + { |
| 138 | + return true; |
| 139 | + } |
| 140 | + |
| 141 | + Node *ptr1 = head; |
| 142 | + Node *ptr2 = head; |
| 143 | + |
| 144 | + // pushing the first half of list to stack. |
| 145 | + std::stack<Node *> nodeStack; |
| 146 | + |
| 147 | + while (ptr2 && ptr1 && ptr1->next) |
| 148 | + { |
| 149 | + ptr1 = ptr1->next->next; |
| 150 | + nodeStack.push(ptr2); |
| 151 | + ptr2 = ptr2->next; |
| 152 | + } |
| 153 | + |
| 154 | + // in case of odd number of nodes, skip the middle one |
| 155 | + if (ptr1 && ptr1->next == nullptr) |
| 156 | + { |
| 157 | + ptr2 = ptr2->next; |
| 158 | + } |
| 159 | + |
| 160 | + // Now compare the other half of the list with nodes |
| 161 | + // we just pushed in stack |
| 162 | + |
| 163 | + while (!nodeStack.empty() && ptr2) |
| 164 | + { |
| 165 | + Node *curr = nodeStack.top(); |
| 166 | + nodeStack.pop(); |
| 167 | + if (curr->data != ptr2->data) |
| 168 | + { |
| 169 | + return false; |
| 170 | + } |
| 171 | + ptr2 = ptr2->next; |
| 172 | + } |
| 173 | + |
| 174 | + return true; |
| 175 | +} |
| 176 | + |
| 177 | +bool myIsPalindromeIterStack(Node *head) |
| 178 | +{ |
| 179 | + // if list is empty or just contains one node. |
| 180 | + if (head == nullptr || head->next == nullptr) |
| 181 | + return true; |
| 182 | + |
| 183 | + // jesli list zawiera tylko 2 elementy |
| 184 | + if (head->next->next == nullptr) |
| 185 | + return false; |
| 186 | + |
| 187 | + Node *curent = head; |
| 188 | + Node *next = head->next->next; |
| 189 | + |
| 190 | + std::stack<char> charStack; |
| 191 | + |
| 192 | + while (next) |
| 193 | + { |
| 194 | + if (curent->data != next->data) |
| 195 | + { |
| 196 | + charStack.push(curent->data); |
| 197 | + curent = curent->next; |
| 198 | + next = next->next; |
| 199 | + } |
| 200 | + else |
| 201 | + { |
| 202 | + charStack.push(curent->data); |
| 203 | + next = curent->next->next; |
| 204 | + break; |
| 205 | + } |
| 206 | + } |
| 207 | + |
| 208 | + while (next) |
| 209 | + { |
| 210 | + if (charStack.empty()) |
| 211 | + return false; |
| 212 | + |
| 213 | + if (charStack.top() == next->data) |
| 214 | + { |
| 215 | + charStack.pop(); |
| 216 | + next = next->next; |
| 217 | + } |
| 218 | + else |
| 219 | + return false; |
| 220 | + } |
| 221 | + |
| 222 | + return charStack.empty(); |
| 223 | +} |
| 224 | + |
| 225 | +/** |
| 226 | + * [isPalindromeRecurHelper - Recursive approach to determine if list is palindrome] |
| 227 | + * Idea is to use two pointers left and right, we move left and right to reduce |
| 228 | + * problem size in each recursive call, for a list to be palindrome, we need these two |
| 229 | + * conditions to be true in each recursive call. |
| 230 | + * a. Data of left and right should match. |
| 231 | + * b. Remaining Sub-list is palindrome. |
| 232 | + * We are using function call stack for right to reach at last node and then compare |
| 233 | + * it with first node (which is left). |
| 234 | + * @param left [left pointer of sublist] |
| 235 | + * @param right [right pointer of sublist] |
| 236 | + * @return [true if sublist is palindrome, false if not] |
| 237 | + */ |
| 238 | +bool isPalindromeRecurHelper(Node *&left, Node *right) |
| 239 | +{ |
| 240 | + // base case Stop when right becomes nullptr |
| 241 | + if (right == nullptr) |
| 242 | + { |
| 243 | + return true; |
| 244 | + } |
| 245 | + |
| 246 | + // rest of the list should be palindrome |
| 247 | + bool isPalindrome = isPalindromeRecurHelper(left, right->next); |
| 248 | + if (!isPalindrome) |
| 249 | + { |
| 250 | + return false; |
| 251 | + } |
| 252 | + |
| 253 | + // check values at current node. |
| 254 | + isPalindrome = (left->data == right->data); |
| 255 | + |
| 256 | + // move left to next for next call. |
| 257 | + left = left->next; |
| 258 | + |
| 259 | + return isPalindrome; |
| 260 | +} |
| 261 | + |
| 262 | +bool isPalindromeRecur(Node *head) |
| 263 | +{ |
| 264 | + return isPalindromeRecurHelper(head, head); |
| 265 | +} |
| 266 | + |
| 267 | +int main() |
| 268 | +{ |
| 269 | + Node *head1 = nullptr; |
| 270 | + insert(head1, 'a'); |
| 271 | + insert(head1, 'b'); |
| 272 | + insert(head1, 'a'); |
| 273 | + insert(head1, 'c'); |
| 274 | + insert(head1, 'b'); |
| 275 | + insert(head1, 'a'); |
| 276 | + std::cout << "List 1: "; |
| 277 | + printList(head1); |
| 278 | + if (myIsPalindromeIterStack(head1)) |
| 279 | + { |
| 280 | + std::cout << "List 1 is pallindrome list\n"; |
| 281 | + } |
| 282 | + else |
| 283 | + { |
| 284 | + std::cout << "List 1 is not a pallindrome list\n"; |
| 285 | + } |
| 286 | + |
| 287 | + Node *head2 = nullptr; |
| 288 | + insert(head2, 'r'); |
| 289 | + insert(head2, 'a'); |
| 290 | + insert(head2, 'd'); |
| 291 | + insert(head2, 'a'); |
| 292 | + insert(head2, 'r'); |
| 293 | + std::cout << "List 2: "; |
| 294 | + printList(head2); |
| 295 | + |
| 296 | + if (myIsPalindromeIterStack(head2)) |
| 297 | + { |
| 298 | + std::cout << "List 2 is pallindrome list\n"; |
| 299 | + } |
| 300 | + else |
| 301 | + { |
| 302 | + std::cout << "List 2 is not a pallindrome list\n"; |
| 303 | + } |
| 304 | + |
| 305 | + Node *head = nullptr; |
| 306 | + insert(head, 'a'); |
| 307 | + insert(head, 'b'); |
| 308 | + insert(head, 'c'); |
| 309 | + insert(head, 'b'); |
| 310 | + insert(head, 'd'); |
| 311 | + std::cout << "List 3: "; |
| 312 | + printList(head); |
| 313 | + |
| 314 | + if (myIsPalindromeIterStack(head)) |
| 315 | + { |
| 316 | + std::cout << "List 3 is pallindrome list\n"; |
| 317 | + } |
| 318 | + else |
| 319 | + { |
| 320 | + std::cout << "List 3 is not a pallindrome list\n"; |
| 321 | + } |
| 322 | + return 0; |
| 323 | +} |
0 commit comments