diff --git a/matminer/datasets/dataset_metadata.json b/matminer/datasets/dataset_metadata.json index 107ccd06e..ddda48dfe 100644 --- a/matminer/datasets/dataset_metadata.json +++ b/matminer/datasets/dataset_metadata.json @@ -935,5 +935,21 @@ "reference": "https://doi.org/10.1038/s41524-018-0085-8", "url": "https://figshare.com/ndownloader/files/31614956", "hash": "03976fc80f39b3d9c7bf2c12f4d045513cdad17a3a2e559f6290fc7245154418" + }, + "zhang_brgoch_load_vickers_hardness": { + "bibtex_refs": [ + "@article{Zhang2020,\n doi = {10.1002/adma.202005112},\n url = {https://doi.org/10.1002/adma.202005112},\n year = {2020},\n month = dec,\n publisher = {Wiley},\n volume = {33},\n number = {5},\n pages = {2005112},\n author = {Ziyan Zhang and Aria Mansouri Tehrani and Anton O. Oliynyk and Blake Day and Jakoah Brgoch},\n title = {Finding the Next Superhard Material through Ensemble Learning},\n journal = {Advanced Materials}\n}", + ], + "columns":{ + "composition": "Chemical formula. One chemical formula may correspond to multiple separate measurements.", + "hardness": "Vicker's load-dependent hardness, in GPa.", + "load": "Applied load, in N." + }, + "description": "Dataset of 1061 experimentally measured load-dependent Vicker's hardness measurements. Multiple measurements may correspond to one composition. Collated by Zhang et al.", + "file_type": "json.gz", + "num_entries": 1061, + "reference": "https://doi.org/10.1002/adma.202005112", + "url": null, + "hash": null } } diff --git a/matminer/featurizers/composition/tests/test_thermo.py b/matminer/featurizers/composition/tests/test_thermo.py index 4c11a611f..c8fca8bef 100644 --- a/matminer/featurizers/composition/tests/test_thermo.py +++ b/matminer/featurizers/composition/tests/test_thermo.py @@ -8,6 +8,7 @@ class ThermoFeaturesTest(CompositionFeaturesTest): + def test_cohesive_energy(self): mpr = MPRester() if not mpr.api_key: @@ -19,7 +20,9 @@ def test_cohesive_energy_mp(self): mpr = MPRester() if not mpr.api_key: raise SkipTest("Materials Project API key not set; Skipping cohesive energy test") - df_cohesive_energy = CohesiveEnergyMP().featurize_dataframe(self.df, col_id="composition") + ce = CohesiveEnergyMP() + ce.set_n_jobs(1) + df_cohesive_energy = ce.featurize_dataframe(self.df, col_id="composition") self.assertAlmostEqual(df_cohesive_energy["cohesive energy (MP)"][0], 5.778053364, 2)