| 
 | 1 | +package com.thealgorithms.maths;  | 
 | 2 | + | 
 | 3 | +/**  | 
 | 4 | + * This class provides a method to compute the rank of a matrix.  | 
 | 5 | + * In linear algebra, the rank of a matrix is the maximum number of linearly independent rows or columns in the matrix.  | 
 | 6 | + * For example, consider the following 3x3 matrix:  | 
 | 7 | + * 1 2 3  | 
 | 8 | + * 2 4 6  | 
 | 9 | + * 3 6 9  | 
 | 10 | + * Despite having 3 rows and 3 columns, this matrix only has a rank of 1 because all rows (and columns) are multiples of each other.  | 
 | 11 | + * It's a fundamental concept that gives key insights into the structure of the matrix.  | 
 | 12 | + * It's important to note that the rank is not only defined for square matrices but for any m x n matrix.  | 
 | 13 | + *  | 
 | 14 | + * @author Anup Omkar  | 
 | 15 | + */  | 
 | 16 | +public final class MatrixRank {  | 
 | 17 | + | 
 | 18 | +    private MatrixRank() {  | 
 | 19 | +    }  | 
 | 20 | + | 
 | 21 | +    private static final double EPSILON = 1e-10;  | 
 | 22 | + | 
 | 23 | +    /**  | 
 | 24 | +     * @brief Computes the rank of the input matrix  | 
 | 25 | +     *  | 
 | 26 | +     * @param matrix The input matrix  | 
 | 27 | +     * @return The rank of the input matrix  | 
 | 28 | +     */  | 
 | 29 | +    public static int computeRank(double[][] matrix) {  | 
 | 30 | +        validateInputMatrix(matrix);  | 
 | 31 | + | 
 | 32 | +        int numRows = matrix.length;  | 
 | 33 | +        int numColumns = matrix[0].length;  | 
 | 34 | +        int rank = 0;  | 
 | 35 | + | 
 | 36 | +        boolean[] rowMarked = new boolean[numRows];  | 
 | 37 | + | 
 | 38 | +        double[][] matrixCopy = deepCopy(matrix);  | 
 | 39 | + | 
 | 40 | +        for (int colIndex = 0; colIndex < numColumns; ++colIndex) {  | 
 | 41 | +            int pivotRow = findPivotRow(matrixCopy, rowMarked, colIndex);  | 
 | 42 | +            if (pivotRow != numRows) {  | 
 | 43 | +                ++rank;  | 
 | 44 | +                rowMarked[pivotRow] = true;  | 
 | 45 | +                normalizePivotRow(matrixCopy, pivotRow, colIndex);  | 
 | 46 | +                eliminateRows(matrixCopy, pivotRow, colIndex);  | 
 | 47 | +            }  | 
 | 48 | +        }  | 
 | 49 | +        return rank;  | 
 | 50 | +    }  | 
 | 51 | + | 
 | 52 | +    private static boolean isZero(double value) {  | 
 | 53 | +        return Math.abs(value) < EPSILON;  | 
 | 54 | +    }  | 
 | 55 | + | 
 | 56 | +    private static double[][] deepCopy(double[][] matrix) {  | 
 | 57 | +        int numRows = matrix.length;  | 
 | 58 | +        int numColumns = matrix[0].length;  | 
 | 59 | +        double[][] matrixCopy = new double[numRows][numColumns];  | 
 | 60 | +        for (int rowIndex = 0; rowIndex < numRows; ++rowIndex) {  | 
 | 61 | +            System.arraycopy(matrix[rowIndex], 0, matrixCopy[rowIndex], 0, numColumns);  | 
 | 62 | +        }  | 
 | 63 | +        return matrixCopy;  | 
 | 64 | +    }  | 
 | 65 | + | 
 | 66 | +    private static void validateInputMatrix(double[][] matrix) {  | 
 | 67 | +        if (matrix == null) {  | 
 | 68 | +            throw new IllegalArgumentException("The input matrix cannot be null");  | 
 | 69 | +        }  | 
 | 70 | +        if (matrix.length == 0) {  | 
 | 71 | +            throw new IllegalArgumentException("The input matrix cannot be empty");  | 
 | 72 | +        }  | 
 | 73 | +        if (!hasValidRows(matrix)) {  | 
 | 74 | +            throw new IllegalArgumentException("The input matrix cannot have null or empty rows");  | 
 | 75 | +        }  | 
 | 76 | +        if (isJaggedMatrix(matrix)) {  | 
 | 77 | +            throw new IllegalArgumentException("The input matrix cannot be jagged");  | 
 | 78 | +        }  | 
 | 79 | +    }  | 
 | 80 | + | 
 | 81 | +    private static boolean hasValidRows(double[][] matrix) {  | 
 | 82 | +        for (double[] row : matrix) {  | 
 | 83 | +            if (row == null || row.length == 0) {  | 
 | 84 | +                return false;  | 
 | 85 | +            }  | 
 | 86 | +        }  | 
 | 87 | +        return true;  | 
 | 88 | +    }  | 
 | 89 | + | 
 | 90 | +    /**  | 
 | 91 | +     * @brief Checks if the input matrix is a jagged matrix.  | 
 | 92 | +     * Jagged matrix is a matrix where the number of columns in each row is not the same.  | 
 | 93 | +     *  | 
 | 94 | +     * @param matrix The input matrix  | 
 | 95 | +     * @return True if the input matrix is a jagged matrix, false otherwise  | 
 | 96 | +     */  | 
 | 97 | +    private static boolean isJaggedMatrix(double[][] matrix) {  | 
 | 98 | +        int numColumns = matrix[0].length;  | 
 | 99 | +        for (double[] row : matrix) {  | 
 | 100 | +            if (row.length != numColumns) {  | 
 | 101 | +                return true;  | 
 | 102 | +            }  | 
 | 103 | +        }  | 
 | 104 | +        return false;  | 
 | 105 | +    }  | 
 | 106 | + | 
 | 107 | +    /**  | 
 | 108 | +     * @brief The pivot row is the row in the matrix that is used to eliminate other rows and reduce the matrix to its row echelon form.  | 
 | 109 | +     * The pivot row is selected as the first row (from top to bottom) where the value in the current column (the pivot column) is not zero.  | 
 | 110 | +     * This row is then used to "eliminate" other rows, by subtracting multiples of the pivot row from them, so that all other entries in the pivot column become zero.  | 
 | 111 | +     * This process is repeated for each column, each time selecting a new pivot row, until the matrix is in row echelon form.  | 
 | 112 | +     * The number of pivot rows (rows with a leading entry, or pivot) then gives the rank of the matrix.  | 
 | 113 | +     *  | 
 | 114 | +     * @param matrix The input matrix  | 
 | 115 | +     * @param rowMarked An array indicating which rows have been marked  | 
 | 116 | +     * @param colIndex The column index  | 
 | 117 | +     * @return The pivot row index, or the number of rows if no suitable pivot row was found  | 
 | 118 | +     */  | 
 | 119 | +    private static int findPivotRow(double[][] matrix, boolean[] rowMarked, int colIndex) {  | 
 | 120 | +        int numRows = matrix.length;  | 
 | 121 | +        for (int pivotRow = 0; pivotRow < numRows; ++pivotRow) {  | 
 | 122 | +            if (!rowMarked[pivotRow] && !isZero(matrix[pivotRow][colIndex])) {  | 
 | 123 | +                return pivotRow;  | 
 | 124 | +            }  | 
 | 125 | +        }  | 
 | 126 | +        return numRows;  | 
 | 127 | +    }  | 
 | 128 | + | 
 | 129 | +    /**  | 
 | 130 | +     * @brief This method divides all values in the pivot row by the value in the given column.  | 
 | 131 | +     * This ensures that the pivot value itself will be 1, which simplifies further calculations.  | 
 | 132 | +     *  | 
 | 133 | +     * @param matrix The input matrix  | 
 | 134 | +     * @param pivotRow The pivot row index  | 
 | 135 | +     * @param colIndex The column index  | 
 | 136 | +     */  | 
 | 137 | +    private static void normalizePivotRow(double[][] matrix, int pivotRow, int colIndex) {  | 
 | 138 | +        int numColumns = matrix[0].length;  | 
 | 139 | +        for (int nextCol = colIndex + 1; nextCol < numColumns; ++nextCol) {  | 
 | 140 | +            matrix[pivotRow][nextCol] /= matrix[pivotRow][colIndex];  | 
 | 141 | +        }  | 
 | 142 | +    }  | 
 | 143 | + | 
 | 144 | +    /**  | 
 | 145 | +     * @brief This method subtracts multiples of the pivot row from all other rows,  | 
 | 146 | +     * so that all values in the given column of other rows will be zero.  | 
 | 147 | +     * This is a key step in reducing the matrix to row echelon form.  | 
 | 148 | +     *  | 
 | 149 | +     * @param matrix The input matrix  | 
 | 150 | +     * @param pivotRow The pivot row index  | 
 | 151 | +     * @param colIndex The column index  | 
 | 152 | +     */  | 
 | 153 | +    private static void eliminateRows(double[][] matrix, int pivotRow, int colIndex) {  | 
 | 154 | +        int numRows = matrix.length;  | 
 | 155 | +        int numColumns = matrix[0].length;  | 
 | 156 | +        for (int otherRow = 0; otherRow < numRows; ++otherRow) {  | 
 | 157 | +            if (otherRow != pivotRow && !isZero(matrix[otherRow][colIndex])) {  | 
 | 158 | +                for (int col2 = colIndex + 1; col2 < numColumns; ++col2) {  | 
 | 159 | +                    matrix[otherRow][col2] -= matrix[pivotRow][col2] * matrix[otherRow][colIndex];  | 
 | 160 | +                }  | 
 | 161 | +            }  | 
 | 162 | +        }  | 
 | 163 | +    }  | 
 | 164 | +}  | 
0 commit comments