|
| 1 | +import equinox as eqx |
| 2 | +import inspect |
| 3 | +from jax.scipy.special import gammaln |
| 4 | +import jax.numpy as jnp |
| 5 | +import tensorflow_probability.substrates.jax.distributions as tfd |
| 6 | + |
| 7 | +from .cdnlssm_utils import ( |
| 8 | + ParamsCDNLSSM, |
| 9 | + ParamsCDNLSSMEmissions, |
| 10 | + ParamsCDNLSSMInitial, |
| 11 | + ParamsCDNLSSMDynamics, |
| 12 | +) |
| 13 | + |
| 14 | +from ..continuous_discrete_nonlinear_gaussian_ssm.builders import ( |
| 15 | + wrap_function_or_constant, |
| 16 | + _default, |
| 17 | +) |
| 18 | + |
| 19 | + |
| 20 | +# ------------------------- |
| 21 | +# Distribution wrappers |
| 22 | +# ------------------------- |
| 23 | +class StaticDistribution(eqx.Module): |
| 24 | + distribution: tfd.Distribution |
| 25 | + |
| 26 | + def log_prob(self, y, x=None, u=None, t=None): |
| 27 | + return self.distribution.log_prob(y) |
| 28 | + |
| 29 | + def sample(self, *args, **kwargs): |
| 30 | + return self.distribution.sample(*args, **kwargs) |
| 31 | + |
| 32 | + |
| 33 | +class ConditionalDistribution(eqx.Module): |
| 34 | + distribution_fn: callable |
| 35 | + |
| 36 | + def _dist(self, x=None, u=None, t=None): |
| 37 | + sig = inspect.signature(self.distribution_fn) |
| 38 | + kwargs = {} |
| 39 | + if "x" in sig.parameters: |
| 40 | + kwargs["x"] = x |
| 41 | + if "u" in sig.parameters: |
| 42 | + kwargs["u"] = u |
| 43 | + if "t" in sig.parameters: |
| 44 | + kwargs["t"] = t |
| 45 | + return self.distribution_fn(**kwargs) |
| 46 | + |
| 47 | + def log_prob(self, y, x=None, u=None, t=None): |
| 48 | + return self._dist(x, u, t).log_prob(y) |
| 49 | + |
| 50 | + def sample(self, x=None, u=None, t=None, *args, **kwargs): |
| 51 | + return self._dist(x, u, t).sample(*args, **kwargs) |
| 52 | + |
| 53 | + |
| 54 | +class GaussianEmission(eqx.Module): |
| 55 | + emission_function: eqx.Module |
| 56 | + emission_cov: eqx.Module |
| 57 | + |
| 58 | + def log_prob(self, y, x=None, u=None, t=None): |
| 59 | + mean = self.emission_function.f(x, u, t) |
| 60 | + cov = self.emission_cov.f(x, u, t) |
| 61 | + return tfd.MultivariateNormalFullCovariance(mean, cov).log_prob(y) |
| 62 | + |
| 63 | + def sample(self, x=None, u=None, t=None, *args, **kwargs): |
| 64 | + mean = self.emission_function.f(x, u, t) |
| 65 | + cov = self.emission_cov.f(x, u, t) |
| 66 | + return tfd.MultivariateNormalFullCovariance(mean, cov).sample(*args, **kwargs) |
| 67 | + |
| 68 | + |
| 69 | +class PoissonEmission(eqx.Module): |
| 70 | + dt: float = eqx.field(static=True) |
| 71 | + bias: jnp.ndarray |
| 72 | + |
| 73 | + def log_prob(self, y, x=None, u=None, t=None): |
| 74 | + log_rate = x[..., 0] + self.bias + jnp.log(self.dt) |
| 75 | + y0 = jnp.squeeze(jnp.asarray(y, dtype=log_rate.dtype)) |
| 76 | + return y0 * log_rate - jnp.exp(log_rate) - gammaln(y0 + 1.0) |
| 77 | + |
| 78 | + def sample(self, x=None, u=None, t=None, *args, **kwargs): |
| 79 | + log_rate = x[..., 0] + self.bias + jnp.log(self.dt) |
| 80 | + return tfd.Poisson(log_rate=log_rate).sample(*args, **kwargs) |
| 81 | + |
| 82 | + |
| 83 | +class TransformedDistribution(eqx.Module): |
| 84 | + base_distribution: eqx.Module |
| 85 | + transform: eqx.Module |
| 86 | + |
| 87 | + def log_prob(self, y, x=None, u=None, t=None): |
| 88 | + return self.base_distribution.log_prob(self.transform.f(y, u, t), x, u, t) |
| 89 | + |
| 90 | + def sample(self, x=None, u=None, t=None, *args, **kwargs): |
| 91 | + base_sample = self.base_distribution.sample(x, u, t) |
| 92 | + return self.transform.f(base_sample, u, t, *args, **kwargs) |
| 93 | + |
| 94 | + |
| 95 | +# ------------------------- |
| 96 | +# Param construction |
| 97 | +# ------------------------- |
| 98 | +def _build_initial_distribution( |
| 99 | + state_dim, initial_distribution, initial_mean, initial_cov |
| 100 | +): |
| 101 | + if initial_distribution is not None: |
| 102 | + if hasattr(initial_distribution, "distribution"): |
| 103 | + return initial_distribution |
| 104 | + if callable(initial_distribution): |
| 105 | + return StaticDistribution(distribution=initial_distribution()) |
| 106 | + return StaticDistribution(distribution=initial_distribution) |
| 107 | + |
| 108 | + # Default to a Gaussian if initial_distribution is None |
| 109 | + mean = wrap_function_or_constant( |
| 110 | + _default(initial_mean, jnp.zeros(state_dim)), expected_shape=(state_dim,) |
| 111 | + ).f() |
| 112 | + cov = wrap_function_or_constant( |
| 113 | + _default(initial_cov, jnp.eye(state_dim)), expected_shape=(state_dim, state_dim) |
| 114 | + ).f() |
| 115 | + return StaticDistribution( |
| 116 | + distribution=tfd.MultivariateNormalFullCovariance(mean, cov) |
| 117 | + ) |
| 118 | + |
| 119 | + |
| 120 | +def _build_emission_distribution( |
| 121 | + emission_dim, emission_distribution, emission_function, emission_cov |
| 122 | +): |
| 123 | + if emission_distribution is not None: |
| 124 | + if isinstance(emission_distribution, tfd.Distribution): |
| 125 | + return StaticDistribution(distribution=emission_distribution) |
| 126 | + if hasattr(emission_distribution, "log_prob"): |
| 127 | + return emission_distribution |
| 128 | + return ConditionalDistribution(distribution_fn=emission_distribution) |
| 129 | + |
| 130 | + emission_fn = wrap_function_or_constant( |
| 131 | + _default(emission_function, lambda x, u=None, t=None: x[..., :emission_dim]) |
| 132 | + ) |
| 133 | + emission_cov_fn = wrap_function_or_constant( |
| 134 | + _default(emission_cov, jnp.eye(emission_dim)), |
| 135 | + expected_shape=(emission_dim, emission_dim), |
| 136 | + ) |
| 137 | + return GaussianEmission( |
| 138 | + emission_function=emission_fn, |
| 139 | + emission_cov=emission_cov_fn, |
| 140 | + ) |
| 141 | + |
| 142 | + |
| 143 | +def build_params( |
| 144 | + state_dim, |
| 145 | + emission_dim, |
| 146 | + drift, |
| 147 | + initial_mean=None, |
| 148 | + initial_cov=None, |
| 149 | + emission_function=None, |
| 150 | + emission_cov=None, |
| 151 | + initial_distribution=None, |
| 152 | + emission_distribution=None, |
| 153 | + diffusion_coeff=None, |
| 154 | + diffusion_cov=None, |
| 155 | + approx_order: float = 1.0, |
| 156 | +): |
| 157 | + """ |
| 158 | + Build parameters for a CDNLSSM model mirroring the CDNLGSSM interface. |
| 159 | + Callable parameters should accept only (x, u, t) or a subset of these. |
| 160 | + """ |
| 161 | + return ParamsCDNLSSM( |
| 162 | + initial=ParamsCDNLSSMInitial( |
| 163 | + initial_distribution=_build_initial_distribution( |
| 164 | + state_dim, initial_distribution, initial_mean, initial_cov |
| 165 | + ) |
| 166 | + ), |
| 167 | + dynamics=ParamsCDNLSSMDynamics( |
| 168 | + drift=wrap_function_or_constant(drift), |
| 169 | + diffusion_coefficient=wrap_function_or_constant( |
| 170 | + _default(diffusion_coeff, jnp.eye(state_dim)), |
| 171 | + expected_shape=(state_dim, state_dim), |
| 172 | + ), |
| 173 | + diffusion_cov=wrap_function_or_constant( |
| 174 | + _default(diffusion_cov, jnp.eye(state_dim)), |
| 175 | + expected_shape=(state_dim, state_dim), |
| 176 | + ), |
| 177 | + approx_order=approx_order, |
| 178 | + ), |
| 179 | + emissions=ParamsCDNLSSMEmissions( |
| 180 | + emission_distribution=_build_emission_distribution( |
| 181 | + emission_dim, emission_distribution, emission_function, emission_cov |
| 182 | + ), |
| 183 | + ), |
| 184 | + ) |
0 commit comments