|
1 | 1 | import inspect
|
2 | 2 | import warnings
|
| 3 | +import random |
3 | 4 | from typing import List, Optional, Union
|
4 | 5 |
|
5 | 6 | import torch
|
@@ -163,3 +164,126 @@ def __call__(
|
163 | 164 | image = self.numpy_to_pil(image)
|
164 | 165 |
|
165 | 166 | return {"sample": image, "nsfw_content_detected": has_nsfw_concept}
|
| 167 | + |
| 168 | + def get_text_latent_space(self, prompt): |
| 169 | + |
| 170 | + # get prompt text embeddings |
| 171 | + text_input = self.tokenizer( |
| 172 | + prompt, |
| 173 | + padding="max_length", |
| 174 | + max_length=self.tokenizer.model_max_length, |
| 175 | + truncation=True, |
| 176 | + return_tensors="pt", |
| 177 | + ) |
| 178 | + text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0] |
| 179 | + return text_embeddings |
| 180 | + |
| 181 | + def lerp_between_prompts(self, first_prompt, second_prompt, seed = None, length = 10, save=False, **kwargs): |
| 182 | + first_embedding = self.get_text_latent_space(first_prompt) |
| 183 | + second_embedding = self.get_text_latent_space(second_prompt) |
| 184 | + if not seed: |
| 185 | + seed = random.randint() |
| 186 | + generator = torch.Generator("cuda") |
| 187 | + lerp_embed_points = [] |
| 188 | + for i in range(length): |
| 189 | + weight = i / length |
| 190 | + tensor_lerp = torch.lerp(first_embedding, second_embedding, weight) |
| 191 | + lerp_embed_points.extend(tensor_lerp) |
| 192 | + images = [] |
| 193 | + for idx, latent_point in enumerate(lerp_embed_points): |
| 194 | + generator.manual_seed(seed) |
| 195 | + image = self.image_from_latent_space(latent_point, **kwargs) |
| 196 | + images.extend(image) |
| 197 | + if save: |
| 198 | + image.save(f"{first_prompt}-{second_prompt}-{idx:02d}") |
| 199 | + return images |
| 200 | + |
| 201 | + |
| 202 | + def image_from_latent_space(self, text_embeddings, |
| 203 | + height: Optional[int] = 512, |
| 204 | + width: Optional[int] = 512, |
| 205 | + num_inference_steps: Optional[int] = 50, |
| 206 | + guidance_scale: Optional[float] = 7.5, |
| 207 | + eta: Optional[float] = 0.0, |
| 208 | + generator: Optional[torch.Generator] = None, |
| 209 | + output_type: Optional[str] = "pil", |
| 210 | + **kwargs,): |
| 211 | + |
| 212 | + # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) |
| 213 | + # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` |
| 214 | + # corresponds to doing no classifier free guidance. |
| 215 | + do_classifier_free_guidance = guidance_scale > 1.0 |
| 216 | + # get unconditional embeddings for classifier free guidance |
| 217 | + if do_classifier_free_guidance: |
| 218 | + max_length = text_input.input_ids.shape[-1] |
| 219 | + uncond_input = self.tokenizer( |
| 220 | + [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt" |
| 221 | + ) |
| 222 | + uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0] |
| 223 | + |
| 224 | + # For classifier free guidance, we need to do two forward passes. |
| 225 | + # Here we concatenate the unconditional and text embeddings into a single batch |
| 226 | + # to avoid doing two forward passes |
| 227 | + text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) |
| 228 | + |
| 229 | + # get the intial random noise |
| 230 | + latents = torch.randn( |
| 231 | + (batch_size, self.unet.in_channels, height // 8, width // 8), |
| 232 | + generator=generator, |
| 233 | + device=self.device, |
| 234 | + ) |
| 235 | + |
| 236 | + # set timesteps |
| 237 | + accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys()) |
| 238 | + extra_set_kwargs = {} |
| 239 | + if accepts_offset: |
| 240 | + extra_set_kwargs["offset"] = 1 |
| 241 | + |
| 242 | + self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs) |
| 243 | + |
| 244 | + # if we use LMSDiscreteScheduler, let's make sure latents are mulitplied by sigmas |
| 245 | + if isinstance(self.scheduler, LMSDiscreteScheduler): |
| 246 | + latents = latents * self.scheduler.sigmas[0] |
| 247 | + |
| 248 | + # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature |
| 249 | + # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. |
| 250 | + # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 |
| 251 | + # and should be between [0, 1] |
| 252 | + accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
| 253 | + extra_step_kwargs = {} |
| 254 | + if accepts_eta: |
| 255 | + extra_step_kwargs["eta"] = eta |
| 256 | + |
| 257 | + for i, t in tqdm(enumerate(self.scheduler.timesteps)): |
| 258 | + # expand the latents if we are doing classifier free guidance |
| 259 | + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
| 260 | + if isinstance(self.scheduler, LMSDiscreteScheduler): |
| 261 | + sigma = self.scheduler.sigmas[i] |
| 262 | + latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5) |
| 263 | + |
| 264 | + # predict the noise residual |
| 265 | + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"] |
| 266 | + |
| 267 | + # perform guidance |
| 268 | + if do_classifier_free_guidance: |
| 269 | + noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
| 270 | + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
| 271 | + |
| 272 | + # compute the previous noisy sample x_t -> x_t-1 |
| 273 | + if isinstance(self.scheduler, LMSDiscreteScheduler): |
| 274 | + latents = self.scheduler.step(noise_pred, i, latents, **extra_step_kwargs)["prev_sample"] |
| 275 | + else: |
| 276 | + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs)["prev_sample"] |
| 277 | + |
| 278 | + # scale and decode the image latents with vae |
| 279 | + latents = 1 / 0.18215 * latents |
| 280 | + image = self.vae.decode(latents) |
| 281 | + |
| 282 | + image = (image / 2 + 0.5).clamp(0, 1) |
| 283 | + image = image.cpu().permute(0, 2, 3, 1).numpy() |
| 284 | + |
| 285 | + if output_type == "pil": |
| 286 | + image = self.numpy_to_pil(image) |
| 287 | + |
| 288 | + return image |
| 289 | + |
0 commit comments