Skip to content

Commit a944924

Browse files
committed
added notebook for azure stack edge gpu
1 parent d71c482 commit a944924

File tree

6 files changed

+598
-0
lines changed

6 files changed

+598
-0
lines changed
Lines changed: 13 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,13 @@
1+
# Model Deployment with Azure ML service to Azure stack edge using Iot edge
2+
You can use Azure Machine Learning to package, debug, validate and deploy inference containers to a variety of compute targets. This process is known as "MLOps" (ML operationalization). Here we will show you how you can deploy a model from cloud to Azure stack edge device using IoT Edge.
3+
For more information please check out this article: https://docs.microsoft.com/en-us/azure/iot-edge/tutorial-machine-learning-edge-04-train-model
4+
5+
## Get Started
6+
To begin, you will need an ML workspace.
7+
For more information please check out this article: https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-workspace
8+
you also need to get you Azure stacck edge setup and run a sample a gpu sample as : https://docs.microsoft.com/en-us/azure/databox-online/azure-stack-edge-gpu-deploy-sample-module-marketplace
9+
10+
11+
## Deploy to the Azure stack edge
12+
You can deploy to the Azure stack edge as
13+
- Notebook example: [model-register-and-deploy](./production-deploy-to-ase-gpu.ipynb).
37.6 KB
Loading
93.4 KB
Loading
Lines changed: 157 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,157 @@
1+
{
2+
3+
"modulesContent": {
4+
5+
"$edgeAgent": {
6+
7+
"properties.desired": {
8+
9+
"schemaVersion": "1.0",
10+
11+
"runtime": {
12+
13+
"type": "docker",
14+
15+
"settings": {
16+
17+
"minDockerVersion": "v1.25",
18+
19+
"loggingOptions": "",
20+
21+
"registryCredentials": {
22+
23+
"__REGISTRY_NAME": {
24+
25+
"username": "__REGISTRY_USER_NAME",
26+
27+
"password":"__REGISTRY_PASSWORD",
28+
29+
"address":"__REGISTRY_NAME.azurecr.io"
30+
31+
}
32+
33+
}
34+
35+
}
36+
37+
},
38+
39+
"systemModules": {
40+
41+
"edgeAgent": {
42+
43+
"type": "docker",
44+
45+
"settings": {
46+
47+
"image": "mcr.microsoft.com/azureiotedge-agent:1.0",
48+
49+
"createOptions": "{}",
50+
51+
"env": {
52+
53+
"UpstreamProtocol": {
54+
55+
"value": "MQTT"
56+
57+
}
58+
59+
}
60+
61+
}
62+
63+
},
64+
65+
"edgeHub": {
66+
67+
"type": "docker",
68+
69+
"status": "running",
70+
71+
"restartPolicy": "always",
72+
73+
"settings": {
74+
75+
"image": "mcr.microsoft.com/azureiotedge-hub:1.0",
76+
77+
"createOptions": "{\"User\":\"root\",\"HostConfig\":{\"PortBindings\":{\"5671/tcp\":[{\"HostPort\":\"5671\"}], \"8883/tcp\":[{\"HostPort\":\"8883\"}],\"443/tcp\":[{\"HostPort\":\"443\"}]}}}",
78+
79+
"env": {
80+
81+
"UpstreamProtocol": {
82+
83+
"value": "MQTT "
84+
85+
}
86+
87+
}
88+
89+
}
90+
91+
}
92+
93+
},
94+
95+
"modules": {
96+
97+
98+
"__MODULE_NAME": {
99+
100+
"version": "1.0",
101+
102+
"type": "docker",
103+
104+
"status": "running",
105+
106+
"restartPolicy": "always",
107+
108+
"settings": {
109+
110+
"image": "__REGISTRY_IMAGE_LOCATION",
111+
112+
"createOptions": "{\"HostConfig\":{\"PortBindings\":{\"5001/tcp\":[{\"HostPort\":\"5001\"}], \"8883/tcp\":[{\"HostPort\":\"5002\"}],},\"runtime\":\"nvidia\"},\"WorkingDir\":\"/var/azureml-app\"}"
113+
114+
115+
}
116+
117+
}
118+
119+
}
120+
121+
}
122+
123+
},
124+
125+
"$edgeHub": {
126+
127+
"properties.desired": {
128+
129+
"schemaVersion": "1.0",
130+
131+
"routes": {
132+
133+
134+
"machineLearningToIoTHub": "FROM /messages/modules/__MODULE_NAME/outputs/amlOutput INTO $upstream"
135+
136+
},
137+
138+
"storeAndForwardConfiguration": {
139+
140+
"timeToLiveSecs": 7200
141+
142+
}
143+
144+
}
145+
146+
},
147+
148+
149+
"__MODULE_NAME": {
150+
151+
"properties.desired": {}
152+
153+
}
154+
155+
}
156+
157+
}

0 commit comments

Comments
 (0)