|
2 | 2 | "cells": [ |
3 | 3 | { |
4 | 4 | "cell_type": "code", |
5 | | - "execution_count": 1, |
| 5 | + "execution_count": 18, |
6 | 6 | "metadata": { |
7 | | - "collapsed": true |
| 7 | + "collapsed": false |
8 | 8 | }, |
9 | | - "outputs": [], |
| 9 | + "outputs": [ |
| 10 | + { |
| 11 | + "data": { |
| 12 | + "text/plain": [ |
| 13 | + "'%.3f'" |
| 14 | + ] |
| 15 | + }, |
| 16 | + "execution_count": 18, |
| 17 | + "metadata": {}, |
| 18 | + "output_type": "execute_result" |
| 19 | + } |
| 20 | + ], |
10 | 21 | "source": [ |
11 | 22 | "%matplotlib inline\n", |
12 | 23 | "\n", |
|
19 | 30 | "\n", |
20 | 31 | "from sklearn.model_selection import train_test_split\n", |
21 | 32 | "from sklearn import tree\n", |
22 | | - "from IPython.display import Image" |
| 33 | + "from IPython.display import Image\n", |
| 34 | + "\n", |
| 35 | + "#np.set_printoptions(precision=3)\n", |
| 36 | + "\n", |
| 37 | + "%precision 3" |
23 | 38 | ] |
24 | 39 | }, |
25 | 40 | { |
26 | 41 | "cell_type": "code", |
27 | | - "execution_count": 2, |
| 42 | + "execution_count": 19, |
28 | 43 | "metadata": { |
29 | 44 | "collapsed": true |
30 | 45 | }, |
|
73 | 88 | "cell_type": "markdown", |
74 | 89 | "metadata": {}, |
75 | 90 | "source": [ |
76 | | - "$$IG(D_P,f)=I(D_p) - \\sum_{j=1}^{m}\\frac{N_j}{N}I(D_j)$$" |
| 91 | + "$$\\huge D_p$$" |
| 92 | + ] |
| 93 | + }, |
| 94 | + { |
| 95 | + "cell_type": "markdown", |
| 96 | + "metadata": {}, |
| 97 | + "source": [ |
| 98 | + "$$\\huge IG(D_p,f)=I(D_p) - \\sum_{j=1}^{m}\\frac{N_j}{N}I(D_j)$$" |
77 | 99 | ] |
78 | 100 | }, |
79 | 101 | { |
|
94 | 116 | "cell_type": "markdown", |
95 | 117 | "metadata": {}, |
96 | 118 | "source": [ |
97 | | - "$$IG(D_P,\\alpha)=I(D_p) - \\frac{N_{left}}{N}I(D_{left})- \\frac{N_{right}}{N}I(D_{right})$$" |
| 119 | + "$$\\huge IG(D_p,f)=I(D_p) - \\frac{N_{left}}{N}I(D_{left})- \\frac{N_{right}}{N}I(D_{right})$$" |
98 | 120 | ] |
99 | 121 | }, |
100 | 122 | { |
|
130 | 152 | }, |
131 | 153 | { |
132 | 154 | "cell_type": "code", |
133 | | - "execution_count": 3, |
| 155 | + "execution_count": 20, |
134 | 156 | "metadata": { |
135 | 157 | "collapsed": false |
136 | 158 | }, |
|
142 | 164 | "<IPython.core.display.Image object>" |
143 | 165 | ] |
144 | 166 | }, |
145 | | - "execution_count": 3, |
| 167 | + "execution_count": 20, |
146 | 168 | "metadata": {}, |
147 | 169 | "output_type": "execute_result" |
148 | 170 | } |
|
170 | 192 | "cell_type": "markdown", |
171 | 193 | "metadata": {}, |
172 | 194 | "source": [ |
173 | | - "#### Information for Parent Dataset" |
| 195 | + "#### Information for Parent" |
174 | 196 | ] |
175 | 197 | }, |
176 | 198 | { |
177 | 199 | "cell_type": "code", |
178 | | - "execution_count": 13, |
| 200 | + "execution_count": 21, |
179 | 201 | "metadata": { |
180 | 202 | "collapsed": false |
181 | 203 | }, |
182 | 204 | "outputs": [ |
183 | 205 | { |
184 | 206 | "data": { |
185 | 207 | "text/plain": [ |
186 | | - "0.6651785714285714" |
| 208 | + "0.665" |
187 | 209 | ] |
188 | 210 | }, |
189 | | - "execution_count": 13, |
| 211 | + "execution_count": 21, |
190 | 212 | "metadata": {}, |
191 | 213 | "output_type": "execute_result" |
192 | 214 | } |
|
202 | 224 | "#### Information for Child Node (left)" |
203 | 225 | ] |
204 | 226 | }, |
205 | | - { |
206 | | - "cell_type": "markdown", |
207 | | - "metadata": {}, |
208 | | - "source": [ |
209 | | - "Pure node so no calculation needed" |
210 | | - ] |
211 | | - }, |
212 | 227 | { |
213 | 228 | "cell_type": "code", |
214 | | - "execution_count": 15, |
| 229 | + "execution_count": 22, |
215 | 230 | "metadata": { |
216 | 231 | "collapsed": false |
217 | 232 | }, |
218 | 233 | "outputs": [ |
219 | 234 | { |
220 | 235 | "data": { |
221 | 236 | "text/plain": [ |
222 | | - "0.0" |
| 237 | + "0.000" |
223 | 238 | ] |
224 | 239 | }, |
225 | | - "execution_count": 15, |
| 240 | + "execution_count": 22, |
226 | 241 | "metadata": {}, |
227 | 242 | "output_type": "execute_result" |
228 | 243 | } |
|
240 | 255 | }, |
241 | 256 | { |
242 | 257 | "cell_type": "code", |
243 | | - "execution_count": 16, |
| 258 | + "execution_count": 23, |
244 | 259 | "metadata": { |
245 | 260 | "collapsed": false |
246 | 261 | }, |
247 | 262 | "outputs": [ |
248 | 263 | { |
249 | 264 | "data": { |
250 | 265 | "text/plain": [ |
251 | | - "0.4967129291453616" |
| 266 | + "0.497" |
252 | 267 | ] |
253 | 268 | }, |
254 | | - "execution_count": 16, |
| 269 | + "execution_count": 23, |
255 | 270 | "metadata": {}, |
256 | 271 | "output_type": "execute_result" |
257 | 272 | } |
|
298 | 313 | "Image(filename = PATH[0] + \"/Graphviz_Dot_Examples/iris_depth1_entropy_decisionTree.png\")" |
299 | 314 | ] |
300 | 315 | }, |
| 316 | + { |
| 317 | + "cell_type": "code", |
| 318 | + "execution_count": null, |
| 319 | + "metadata": { |
| 320 | + "collapsed": true |
| 321 | + }, |
| 322 | + "outputs": [], |
| 323 | + "source": [ |
| 324 | + " np.set_printoptions(precision=3)" |
| 325 | + ] |
| 326 | + }, |
| 327 | + { |
| 328 | + "cell_type": "code", |
| 329 | + "execution_count": null, |
| 330 | + "metadata": { |
| 331 | + "collapsed": true |
| 332 | + }, |
| 333 | + "outputs": [], |
| 334 | + "source": [] |
| 335 | + }, |
301 | 336 | { |
302 | 337 | "cell_type": "markdown", |
303 | 338 | "metadata": {}, |
|
316 | 351 | "cell_type": "markdown", |
317 | 352 | "metadata": {}, |
318 | 353 | "source": [ |
319 | | - "#### Information for Parent Dataset" |
| 354 | + "#### Information for Parent" |
320 | 355 | ] |
321 | 356 | }, |
322 | 357 | { |
|
338 | 373 | } |
339 | 374 | ], |
340 | 375 | "source": [ |
341 | | - "-1 * ( ((38.0 / 112)* np.log2(38.0/112)) + ((40.0 / 112)* np.log2(40.0/112)) + ((34.0 / 112)* np.log2(34.0/112)))" |
| 376 | + "-1*( ((38.0 / 112)* np.log2(38.0/112)) + ((40.0 / 112)* np.log2(40.0/112)) + ((34.0 / 112)* np.log2(34.0/112)) )" |
342 | 377 | ] |
343 | 378 | }, |
344 | 379 | { |
|
367 | 402 | } |
368 | 403 | ], |
369 | 404 | "source": [ |
370 | | - "-1 * ( ((38.0 / 38.0)* np.log2(38.0/38.0)) )" |
| 405 | + "-1*(((38.0 / 38.0)* np.log2(38.0/38.0)))" |
371 | 406 | ] |
372 | 407 | }, |
373 | 408 | { |
|
396 | 431 | } |
397 | 432 | ], |
398 | 433 | "source": [ |
399 | | - "-1 * ( ((40.0 / 74.0)* np.log2(40.0/74.0)) + ((34.0 / 74.0)* np.log2(34.0/74.0)) )" |
| 434 | + "-1*( ((40.0 / 74.0)* np.log2(40.0/74.0)) + ((34.0 / 74.0)* np.log2(34.0/74.0)) )" |
400 | 435 | ] |
401 | 436 | } |
402 | 437 | ], |
|
0 commit comments