|
| 1 | +from __future__ import absolute_import |
| 2 | +from __future__ import division |
| 3 | +from __future__ import print_function |
| 4 | + |
| 5 | +import argparse |
| 6 | +import csv |
| 7 | +import os |
| 8 | +import shutil |
| 9 | + |
| 10 | +from PIL import Image |
| 11 | +import torch |
| 12 | +import torch.nn.parallel |
| 13 | +import torch.backends.cudnn as cudnn |
| 14 | +import torch.optim |
| 15 | +import torch.utils.data |
| 16 | +import torch.utils.data.distributed |
| 17 | +import torchvision.transforms as transforms |
| 18 | +import torchvision |
| 19 | +import cv2 |
| 20 | +import numpy as np |
| 21 | +import time |
| 22 | + |
| 23 | + |
| 24 | +import _init_paths |
| 25 | +import models |
| 26 | +from config import cfg |
| 27 | +from config import update_config |
| 28 | +from core.function import get_final_preds |
| 29 | +from utils.transforms import get_affine_transform |
| 30 | + |
| 31 | +COCO_KEYPOINT_INDEXES = { |
| 32 | + 0: 'nose', |
| 33 | + 1: 'left_eye', |
| 34 | + 2: 'right_eye', |
| 35 | + 3: 'left_ear', |
| 36 | + 4: 'right_ear', |
| 37 | + 5: 'left_shoulder', |
| 38 | + 6: 'right_shoulder', |
| 39 | + 7: 'left_elbow', |
| 40 | + 8: 'right_elbow', |
| 41 | + 9: 'left_wrist', |
| 42 | + 10: 'right_wrist', |
| 43 | + 11: 'left_hip', |
| 44 | + 12: 'right_hip', |
| 45 | + 13: 'left_knee', |
| 46 | + 14: 'right_knee', |
| 47 | + 15: 'left_ankle', |
| 48 | + 16: 'right_ankle' |
| 49 | +} |
| 50 | + |
| 51 | +COCO_INSTANCE_CATEGORY_NAMES = [ |
| 52 | + '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', |
| 53 | + 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign', |
| 54 | + 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', |
| 55 | + 'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A', |
| 56 | + 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', |
| 57 | + 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', |
| 58 | + 'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', |
| 59 | + 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', |
| 60 | + 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table', |
| 61 | + 'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', |
| 62 | + 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book', |
| 63 | + 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush' |
| 64 | +] |
| 65 | + |
| 66 | +SKELETON = [ |
| 67 | + [1,3],[1,0],[2,4],[2,0],[0,5],[0,6],[5,7],[7,9],[6,8],[8,10],[5,11],[6,12],[11,12],[11,13],[13,15],[12,14],[14,16] |
| 68 | +] |
| 69 | + |
| 70 | +CocoColors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], |
| 71 | + [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], |
| 72 | + [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]] |
| 73 | + |
| 74 | +NUM_KPTS = 17 |
| 75 | + |
| 76 | +CTX = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') |
| 77 | + |
| 78 | + |
| 79 | +def box_to_center_scale(box, model_image_width, model_image_height): |
| 80 | + """convert a box to center,scale information required for pose transformation |
| 81 | + Parameters |
| 82 | + ---------- |
| 83 | + box : list of tuple |
| 84 | + list of length 2 with two tuples of floats representing |
| 85 | + bottom left and top right corner of a box |
| 86 | + model_image_width : int |
| 87 | + model_image_height : int |
| 88 | +
|
| 89 | + Returns |
| 90 | + ------- |
| 91 | + (numpy array, numpy array) |
| 92 | + Two numpy arrays, coordinates for the center of the box and the scale of the box |
| 93 | + """ |
| 94 | + center = np.zeros((2), dtype=np.float32) |
| 95 | + |
| 96 | + bottom_left_corner = box[0] |
| 97 | + top_right_corner = box[1] |
| 98 | + box_width = top_right_corner[0]-bottom_left_corner[0] |
| 99 | + box_height = top_right_corner[1]-bottom_left_corner[1] |
| 100 | + bottom_left_x = bottom_left_corner[0] |
| 101 | + bottom_left_y = bottom_left_corner[1] |
| 102 | + center[0] = bottom_left_x + box_width * 0.5 |
| 103 | + center[1] = bottom_left_y + box_height * 0.5 |
| 104 | + |
| 105 | + aspect_ratio = model_image_width * 1.0 / model_image_height |
| 106 | + pixel_std = 200 |
| 107 | + |
| 108 | + if box_width > aspect_ratio * box_height: |
| 109 | + box_height = box_width * 1.0 / aspect_ratio |
| 110 | + elif box_width < aspect_ratio * box_height: |
| 111 | + box_width = box_height * aspect_ratio |
| 112 | + scale = np.array( |
| 113 | + [box_width * 1.0 / pixel_std, box_height * 1.0 / pixel_std], |
| 114 | + dtype=np.float32) |
| 115 | + if center[0] != -1: |
| 116 | + scale = scale * 1.25 |
| 117 | + |
| 118 | + return center, scale |
| 119 | + |
| 120 | + |
| 121 | +def get_pose_estimation_prediction(pose_model, image, center, scale): |
| 122 | + rotation = 0 |
| 123 | + |
| 124 | + # pose estimation transformation |
| 125 | + trans = get_affine_transform(center, scale, rotation, cfg.MODEL.IMAGE_SIZE) |
| 126 | + model_input = cv2.warpAffine( |
| 127 | + image, |
| 128 | + trans, |
| 129 | + (int(cfg.MODEL.IMAGE_SIZE[0]), int(cfg.MODEL.IMAGE_SIZE[1])), |
| 130 | + flags=cv2.INTER_LINEAR) |
| 131 | + transform = transforms.Compose([ |
| 132 | + transforms.ToTensor(), |
| 133 | + transforms.Normalize(mean=[0.485, 0.456, 0.406], |
| 134 | + std=[0.229, 0.224, 0.225]), |
| 135 | + ]) |
| 136 | + |
| 137 | + # pose estimation inference |
| 138 | + model_input = transform(model_input).unsqueeze(0) |
| 139 | + # switch to evaluate mode |
| 140 | + pose_model.eval() |
| 141 | + with torch.no_grad(): |
| 142 | + # compute output heatmap |
| 143 | + output = pose_model(model_input) |
| 144 | + preds, _ = get_final_preds( |
| 145 | + cfg, |
| 146 | + output.clone().cpu().numpy(), |
| 147 | + np.asarray([center]), |
| 148 | + np.asarray([scale])) |
| 149 | + return preds |
| 150 | + |
| 151 | + |
| 152 | +def get_model(args): |
| 153 | + update_config(cfg, args) |
| 154 | + pose_model = eval('models.'+cfg.MODEL.NAME+'.get_pose_net')(cfg, is_train=False) |
| 155 | + |
| 156 | + if cfg.TEST.MODEL_FILE: |
| 157 | + print('=> loading model from {}'.format(cfg.TEST.MODEL_FILE)) |
| 158 | + pose_model.load_state_dict(torch.load(cfg.TEST.MODEL_FILE), strict=False) |
| 159 | + else: |
| 160 | + print('expected model defined in config at TEST.MODEL_FILE') |
| 161 | + |
| 162 | + pose_model = torch.nn.DataParallel(pose_model, device_ids=cfg.GPUS) |
| 163 | + pose_model.to(CTX) |
| 164 | + pose_model.eval() |
| 165 | + return pose_model |
| 166 | + |
| 167 | + |
| 168 | +def draw_pose(keypoints,img): |
| 169 | + """draw the keypoints and the skeletons. |
| 170 | + :params keypoints: the shape should be equal to [17,2] |
| 171 | + :params img: |
| 172 | + """ |
| 173 | + assert keypoints.shape == (NUM_KPTS,2) |
| 174 | + for i in range(len(SKELETON)): |
| 175 | + kpt_a, kpt_b = SKELETON[i][0], SKELETON[i][1] |
| 176 | + x_a, y_a = keypoints[kpt_a][0],keypoints[kpt_a][1] |
| 177 | + x_b, y_b = keypoints[kpt_b][0],keypoints[kpt_b][1] |
| 178 | + cv2.circle(img, (int(x_a), int(y_a)), 6, CocoColors[i], -1) |
| 179 | + cv2.circle(img, (int(x_b), int(y_b)), 6, CocoColors[i], -1) |
| 180 | + cv2.line(img, (int(x_a), int(y_a)), (int(x_b), int(y_b)), CocoColors[i], 2) |
| 181 | + |
| 182 | + |
| 183 | + |
| 184 | +def inference(model, image): |
| 185 | + image_permuted = image[:, :, [2, 1, 0]] |
| 186 | + h, w, _ = image_permuted.shape |
| 187 | + box = [[0, 0], |
| 188 | + [w, h]] |
| 189 | + |
| 190 | + center, scale = box_to_center_scale(box, cfg.MODEL.IMAGE_SIZE[0], cfg.MODEL.IMAGE_SIZE[1]) |
| 191 | + keypoints = get_pose_estimation_prediction(model, image_permuted, center, scale) |
| 192 | + return keypoints |
| 193 | + |
| 194 | + |
| 195 | +def parse_args(): |
| 196 | + parser = argparse.ArgumentParser(description='Without Detection Demo') |
| 197 | + parser.add_argument('--image', type=str, default='sunglassman.jpg') |
| 198 | + parser.add_argument('--cfg', type=str, default='demo/inference-config.yaml') |
| 199 | + parser.add_argument('opts', |
| 200 | + help='Modify config options using the command-line', |
| 201 | + default=None, |
| 202 | + nargs=argparse.REMAINDER) |
| 203 | + args = parser.parse_args() |
| 204 | + args.modelDir = '' |
| 205 | + args.logDir = '' |
| 206 | + args.dataDir = '' |
| 207 | + args.prevModelDir = '' |
| 208 | + return args |
| 209 | + |
| 210 | + |
| 211 | +if __name__ == '__main__': |
| 212 | + cudnn.benchmark = cfg.CUDNN.BENCHMARK |
| 213 | + torch.backends.cudnn.deterministic = cfg.CUDNN.DETERMINISTIC |
| 214 | + torch.backends.cudnn.enabled = cfg.CUDNN.ENABLED |
| 215 | + |
| 216 | + args = parse_args() |
| 217 | + model_ = get_model(args) |
| 218 | + |
| 219 | + image_ = cv2.imread(args.image) |
| 220 | + keypoints = inference(model_, image_) |
| 221 | + |
| 222 | + if len(keypoints)>=1: |
| 223 | + for kpt in keypoints: |
| 224 | + draw_pose(kpt, image_) |
| 225 | + |
| 226 | + cv2.imshow('demo', image_) |
| 227 | + cv2.waitKey(0) |
0 commit comments