|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "<h1 align=\"center\"> Linear Regression </h1>" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "code", |
| 12 | + "execution_count": 2, |
| 13 | + "metadata": { |
| 14 | + "collapsed": false |
| 15 | + }, |
| 16 | + "outputs": [], |
| 17 | + "source": [ |
| 18 | + "import numpy as np \n", |
| 19 | + "import matplotlib.pyplot as plt\n", |
| 20 | + "from mpl_toolkits.mplot3d import Axes3D\n", |
| 21 | + "from matplotlib import cm\n", |
| 22 | + "# import warmUpExercise as wue\n", |
| 23 | + "#import computeCost as cc\n", |
| 24 | + "#import gradientDescent as gd" |
| 25 | + ] |
| 26 | + }, |
| 27 | + { |
| 28 | + "cell_type": "code", |
| 29 | + "execution_count": 14, |
| 30 | + "metadata": { |
| 31 | + "collapsed": true |
| 32 | + }, |
| 33 | + "outputs": [], |
| 34 | + "source": [ |
| 35 | + "data = np.loadtxt('ex1data1.txt', delimiter=\",\")\n", |
| 36 | + "X = data[:,0]\n", |
| 37 | + "y = data[:,1]\n", |
| 38 | + "m = len(y) # number of training examples" |
| 39 | + ] |
| 40 | + }, |
| 41 | + { |
| 42 | + "cell_type": "code", |
| 43 | + "execution_count": 15, |
| 44 | + "metadata": { |
| 45 | + "collapsed": false |
| 46 | + }, |
| 47 | + "outputs": [ |
| 48 | + { |
| 49 | + "data": { |
| 50 | + "text/plain": [ |
| 51 | + "(97L,)" |
| 52 | + ] |
| 53 | + }, |
| 54 | + "execution_count": 15, |
| 55 | + "metadata": {}, |
| 56 | + "output_type": "execute_result" |
| 57 | + } |
| 58 | + ], |
| 59 | + "source": [ |
| 60 | + "X.shape" |
| 61 | + ] |
| 62 | + }, |
| 63 | + { |
| 64 | + "cell_type": "code", |
| 65 | + "execution_count": 16, |
| 66 | + "metadata": { |
| 67 | + "collapsed": false |
| 68 | + }, |
| 69 | + "outputs": [ |
| 70 | + { |
| 71 | + "data": { |
| 72 | + "text/plain": [ |
| 73 | + "(97L, 2L)" |
| 74 | + ] |
| 75 | + }, |
| 76 | + "execution_count": 16, |
| 77 | + "metadata": {}, |
| 78 | + "output_type": "execute_result" |
| 79 | + } |
| 80 | + ], |
| 81 | + "source": [ |
| 82 | + "np.column_stack((np.ones((m,1)), X)).shape" |
| 83 | + ] |
| 84 | + }, |
| 85 | + { |
| 86 | + "cell_type": "markdown", |
| 87 | + "metadata": {}, |
| 88 | + "source": [ |
| 89 | + "Add a column of ones to x (theta<sub>0</sub>)" |
| 90 | + ] |
| 91 | + }, |
| 92 | + { |
| 93 | + "cell_type": "code", |
| 94 | + "execution_count": 17, |
| 95 | + "metadata": { |
| 96 | + "collapsed": false |
| 97 | + }, |
| 98 | + "outputs": [], |
| 99 | + "source": [ |
| 100 | + "X_padded = np.column_stack((np.ones((m,1)), X)) \n", |
| 101 | + "\n", |
| 102 | + "theta = np.zeros((2, 1)) # initialize fitting parameters" |
| 103 | + ] |
| 104 | + }, |
| 105 | + { |
| 106 | + "cell_type": "code", |
| 107 | + "execution_count": 26, |
| 108 | + "metadata": { |
| 109 | + "collapsed": false |
| 110 | + }, |
| 111 | + "outputs": [ |
| 112 | + { |
| 113 | + "data": { |
| 114 | + "text/plain": [ |
| 115 | + "(97L,)" |
| 116 | + ] |
| 117 | + }, |
| 118 | + "execution_count": 26, |
| 119 | + "metadata": {}, |
| 120 | + "output_type": "execute_result" |
| 121 | + } |
| 122 | + ], |
| 123 | + "source": [ |
| 124 | + "np.transpose(y).shape" |
| 125 | + ] |
| 126 | + }, |
| 127 | + { |
| 128 | + "cell_type": "code", |
| 129 | + "execution_count": 36, |
| 130 | + "metadata": { |
| 131 | + "collapsed": false |
| 132 | + }, |
| 133 | + "outputs": [ |
| 134 | + { |
| 135 | + "data": { |
| 136 | + "text/plain": [ |
| 137 | + "(97L, 1L)" |
| 138 | + ] |
| 139 | + }, |
| 140 | + "execution_count": 36, |
| 141 | + "metadata": {}, |
| 142 | + "output_type": "execute_result" |
| 143 | + } |
| 144 | + ], |
| 145 | + "source": [ |
| 146 | + "# (97L, 1L)\n", |
| 147 | + "np.power(( X_padded.dot(theta) - np.transpose([y]) ), 2)" |
| 148 | + ] |
| 149 | + }, |
| 150 | + { |
| 151 | + "cell_type": "code", |
| 152 | + "execution_count": 37, |
| 153 | + "metadata": { |
| 154 | + "collapsed": true |
| 155 | + }, |
| 156 | + "outputs": [], |
| 157 | + "source": [ |
| 158 | + "?np.sum()" |
| 159 | + ] |
| 160 | + }, |
| 161 | + { |
| 162 | + "cell_type": "code", |
| 163 | + "execution_count": null, |
| 164 | + "metadata": { |
| 165 | + "collapsed": true |
| 166 | + }, |
| 167 | + "outputs": [], |
| 168 | + "source": [ |
| 169 | + "def computeCost(X, y, theta):\n", |
| 170 | + "\n", |
| 171 | + " #COMPUTECOST Compute cost for linear regression\n", |
| 172 | + " # J = COMPUTECOST(X, y, theta) computes the cost of using theta as the\n", |
| 173 | + " # parameter for linear regression to fit the data points in X and y\n", |
| 174 | + "\n", |
| 175 | + " # Initialize some useful values\n", |
| 176 | + "\n", |
| 177 | + " m = len(y) # number of training examples\n", |
| 178 | + "\n", |
| 179 | + " # You need to return the following variables correctly \n", |
| 180 | + " J = 0\n", |
| 181 | + "\n", |
| 182 | + " # note that \n", |
| 183 | + "\n", |
| 184 | + " # theta is an (n+1)-dimensional vector \n", |
| 185 | + "\n", |
| 186 | + " # X is an m x (n+1)-dimensional matrix\n", |
| 187 | + "\n", |
| 188 | + " # y is an m-dimensional vector\n", |
| 189 | + "\n", |
| 190 | + " s = np.power(( X.dot(theta) - np.transpose([y]) ), 2)\n", |
| 191 | + "\n", |
| 192 | + " J = (1.0/(2*m)) * s.sum( axis = 0 )\n", |
| 193 | + "\n", |
| 194 | + " return J" |
| 195 | + ] |
| 196 | + }, |
| 197 | + { |
| 198 | + "cell_type": "code", |
| 199 | + "execution_count": null, |
| 200 | + "metadata": { |
| 201 | + "collapsed": true |
| 202 | + }, |
| 203 | + "outputs": [], |
| 204 | + "source": [ |
| 205 | + "def gradientDescent(X, y, theta, alpha, num_iters):\n", |
| 206 | + "\n", |
| 207 | + " # GRADIENTDESCENT Performs gradient descent to learn theta\n", |
| 208 | + "\n", |
| 209 | + " # theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta by \n", |
| 210 | + "\n", |
| 211 | + " # taking num_iters gradient steps with learning rate alpha\n", |
| 212 | + "\n", |
| 213 | + "\n", |
| 214 | + "\n", |
| 215 | + " # Initialize some useful values\n", |
| 216 | + "\n", |
| 217 | + " m = len(y) # number of training examples\n", |
| 218 | + "\n", |
| 219 | + " J_history = np.zeros((num_iters, 1))\n", |
| 220 | + "\n", |
| 221 | + "\n", |
| 222 | + "\n", |
| 223 | + " for i in xrange(num_iters):\n", |
| 224 | + "\n", |
| 225 | + "\n", |
| 226 | + "\n", |
| 227 | + " # ====================== YOUR CODE HERE ======================\n", |
| 228 | + "\n", |
| 229 | + " # Instructions: Perform a single gradient step on the parameter vector\n", |
| 230 | + "\n", |
| 231 | + " # theta. \n", |
| 232 | + "\n", |
| 233 | + " #\n", |
| 234 | + "\n", |
| 235 | + " # Hint: While debugging, it can be useful to print out the values\n", |
| 236 | + "\n", |
| 237 | + " # of the cost function (computeCost) and gradient here.\n", |
| 238 | + "\n", |
| 239 | + " #\n", |
| 240 | + "\n", |
| 241 | + " theta = theta - alpha*(1.0/m) * np.transpose(X).dot(X.dot(theta) - np.transpose([y]))\n", |
| 242 | + "\n", |
| 243 | + " # Save the cost J in every iteration \n", |
| 244 | + "\n", |
| 245 | + " import computeCost as cc\n", |
| 246 | + "\n", |
| 247 | + " J_history[i] = cc.computeCost(X, y, theta)\n", |
| 248 | + "\n", |
| 249 | + " return theta, J_history" |
| 250 | + ] |
| 251 | + } |
| 252 | + ], |
| 253 | + "metadata": { |
| 254 | + "anaconda-cloud": {}, |
| 255 | + "kernelspec": { |
| 256 | + "display_name": "Python [conda root]", |
| 257 | + "language": "python", |
| 258 | + "name": "conda-root-py" |
| 259 | + }, |
| 260 | + "language_info": { |
| 261 | + "codemirror_mode": { |
| 262 | + "name": "ipython", |
| 263 | + "version": 2 |
| 264 | + }, |
| 265 | + "file_extension": ".py", |
| 266 | + "mimetype": "text/x-python", |
| 267 | + "name": "python", |
| 268 | + "nbconvert_exporter": "python", |
| 269 | + "pygments_lexer": "ipython2", |
| 270 | + "version": "2.7.12" |
| 271 | + } |
| 272 | + }, |
| 273 | + "nbformat": 4, |
| 274 | + "nbformat_minor": 1 |
| 275 | +} |
0 commit comments