|
1 | | -.. image:: https://readthedocs.org/projects/machine-learning-with-python/badge/?version=latest |
2 | | - :width: 15 % |
3 | | -.. image:: https://img.shields.io/badge/License-BSD%202--Clause-orange.svg |
4 | | - :width: 22 % |
5 | | -.. image:: https://img.shields.io/github/forks/tirthajyoti/Machine-Learning-with-Python.svg |
6 | | - :width: 13 % |
7 | | -.. image:: https://img.shields.io/github/stars/tirthajyoti/Machine-Learning-with-Python.svg |
8 | | - :width: 13 % |
9 | | - |
10 | | -| |
11 | | - |
12 | | -Python Machine Learning Notebooks (Tutorial style) |
13 | | -================================================== |
14 | | - |
15 | | -Dr. Tirthajyoti Sarkar, Fremont, CA (`Please feel free to add me on |
16 | | -LinkedIn |
17 | | -here <https://www.linkedin.com/in/tirthajyoti-sarkar-2127aa7>`__) |
18 | | - |
19 | | --------------- |
20 | | - |
21 | | -Requirements |
22 | | -=============== |
23 | | - |
24 | | -- Python 3.5+ |
25 | | -- NumPy (``$ pip install numpy``) |
26 | | -- Pandas (``$ pip install pandas``) |
27 | | -- Scikit-learn (``$ pip install scikit-learn``) |
28 | | -- SciPy (``$ pip install scipy``) |
29 | | -- Statsmodels (``$ pip install statsmodels``) |
30 | | -- MatplotLib (``$ pip install matplotlib``) |
31 | | -- Seaborn (``$ pip install seaborn``) |
32 | | -- Sympy (``$ pip install sympy``) |
33 | | - |
34 | | --------------- |
35 | | - |
36 | | -You can start with this article that I wrote in Heartbeat magazine (on |
37 | | -Medium platform): |
38 | | - |
39 | | -`“Some Essential Hacks and Tricks for Machine Learning |
40 | | -with |
41 | | -Python” <https://heartbeat.fritz.ai/some-essential-hacks-and-tricks-for-machine-learning-with-python-5478bc6593f2>`__ |
42 | | - |
43 | | -.. image:: https://cookieegroup.com/wp-content/uploads/2018/10/2-1.png" |
44 | | - :width: 500px |
45 | | - :align: center |
46 | | - :height: 350px |
47 | | - :alt: alternate text |
48 | | - |
49 | | -Essential tutorial-type notebooks on Pandas and Numpy |
50 | | -======================================================= |
51 | | - |
52 | | -Jupyter notebooks covering a wide range of functions and operations on |
53 | | -the topics of NumPy, Pandans, Seaborn, matplotlib etc. |
54 | | - |
55 | | -- `Basics of Numpy |
56 | | - array <https://github.com/tirthajyoti/PythonMachineLearning/blob/master/Pandas%20and%20Numpy/Basics%20of%20Numpy%20arrays.ipynb>`__ |
57 | | - |
58 | | -- `Basics of Pandas |
59 | | - DataFrame <https://github.com/tirthajyoti/PythonMachineLearning/blob/master/Pandas%20and%20Numpy/Basics%20of%20Pandas%20DataFrame.ipynb>`__ |
60 | | - |
61 | | -- `Basics of Matplotlib and Descriptive |
62 | | - Statistics <https://github.com/tirthajyoti/PythonMachineLearning/blob/master/Pandas%20and%20Numpy/Basics%20of%20Matplotlib%20and%20Descriptive%20Statistics.ipynb>`__ |
63 | | - |
64 | | --------------- |
65 | | - |
66 | | -Regression |
67 | | -=============== |
68 | | -.. image:: https://slideplayer.com/slide/6053182/20/images/10/Simple+Linear+Regression+Model.jpg |
69 | | - :width: 400px |
70 | | - :align: center |
71 | | - :height: 300px |
72 | | - :alt: alternate text |
73 | | - |
74 | | -- Simple linear regression with t-statistic generation |
75 | | - |
76 | | -- `Multiple ways to perform linear regression in Python and their speed |
77 | | - comparison <https://github.com/tirthajyoti/Machine-Learning-with-Python/blob/master/Regression/Linear_Regression_Methods.ipynb>`__ |
78 | | - (`check the article I wrote on |
79 | | - freeCodeCamp <https://medium.freecodecamp.org/data-science-with-python-8-ways-to-do-linear-regression-and-measure-their-speed-b5577d75f8b>`__) |
80 | | - |
81 | | -- `Multi-variate regression with |
82 | | - regularization <https://github.com/tirthajyoti/Machine-Learning-with-Python/blob/master/Regression/Multi-variate%20LASSO%20regression%20with%20CV.ipynb>`__ |
83 | | - |
84 | | -- Polynomial regression using ***scikit-learn pipeline feature*** |
85 | | - (`check the article I wrote on *Towards Data |
86 | | - Science* <https://towardsdatascience.com/machine-learning-with-python-easy-and-robust-method-to-fit-nonlinear-data-19e8a1ddbd49>`__) |
87 | | -- Decision trees and Random Forest regression (showing how the Random |
88 | | - Forest works as a robust/regularized meta-estimator rejecting |
89 | | - overfitting) |
90 | | - |
91 | | -- `Detailed visual analytics and goodness-of-fit diagnostic tests for a |
92 | | - linear regression |
93 | | - problem <https://github.com/tirthajyoti/Machine-Learning-with-Python/blob/master/Regression/Regression_Diagnostics.ipynb>`__ |
94 | | - |
95 | | --------------- |
96 | | - |
97 | | -Classification |
98 | | -=============== |
99 | | - |
100 | | -.. image:: https://qph.fs.quoracdn.net/main-qimg-914b29e777e78b44b67246b66a4d6d71 |
101 | | - :width: 500px |
102 | | - :align: center |
103 | | - :height: 350px |
104 | | - :alt: alternate text |
105 | | - |
106 | | -- Logistic regression/classification |
107 | | - |
108 | | -- *k*-nearest neighbor classification |
109 | | -- Decision trees and Random Forest Classification |
110 | | -- Support vector machine classification (`check the article I wrote |
111 | | - in Towards Data Science on SVM and sorting |
112 | | - algorithm <https://towardsdatascience.com/how-the-good-old-sorting-algorithm-helps-a-great-machine-learning-technique-9e744020254b>`__) |
113 | | - |
114 | | -- Naive Bayes classification |
115 | | - |
116 | | --------------- |
117 | | - |
118 | | -Clustering |
119 | | -=============== |
120 | | - |
121 | | -.. image:: https://i.ytimg.com/vi/IJt62uaZR-M/maxresdefault.jpg |
122 | | - :width: 500px |
123 | | - :align: center |
124 | | - :height: 350px |
125 | | - :alt: alternate text |
126 | | - |
127 | | -- *K*-means clustering |
128 | | -- Affinity propagation (showing its time complexity and the effect of |
129 | | - damping factor) |
130 | | -- Mean-shift technique (showing its time complexity and the effect of |
131 | | - noise on cluster discovery) |
132 | | -- DBSCAN (showing how it can generically detect areas of high density |
133 | | - irrespective of cluster shapes, which the k-means fails to do) |
134 | | -- Hierarchical clustering with Dendograms showing how to choose optimal |
135 | | - number of clusters |
136 | | - |
137 | | --------------- |
138 | | - |
139 | | -Dimensionality reduction |
140 | | -=========================== |
141 | | - |
142 | | -.. image:: https://i.ytimg.com/vi/QP43Iy-QQWY/maxresdefault.jpg |
143 | | - :width: 500px |
144 | | - :align: center |
145 | | - :height: 350px |
146 | | - :alt: alternate text |
147 | | - |
148 | | -- Principal component analysis |
149 | | - |
150 | | --------------- |
151 | | - |
152 | | -Deep Learning/Neural Network |
153 | | -============================== |
154 | | - |
155 | | -- `Demo notebook to illustrate the superiority of deep neural network |
156 | | - for complex nonlinear function approximation |
157 | | - task <https://github.com/tirthajyoti/Machine-Learning-with-Python/blob/master/Function%20Approximation%20by%20Neural%20Network/Polynomial%20regression%20-%20linear%20and%20neural%20network.ipynb>`__ |
158 | | -- Step-by-step building of 1-hidden-layer and 2-hidden-layer dense |
159 | | - network using basic TensorFlow methods |
160 | | - |
161 | | --------------- |
162 | | - |
163 | | -Random data generation using symbolic expressions |
164 | | -====================================================== |
165 | | - |
166 | | -- How to use `Sympy package <https://www.sympy.org/en/index.html>`__ to |
167 | | - generate random datasets using symbolic mathematical expressions. |
168 | | - |
169 | | -- Here is my article on Medium on this topic: `Random regression and |
170 | | - classification problem generation with symbolic |
171 | | - expression <https://towardsdatascience.com/random-regression-and-classification-problem-generation-with-symbolic-expression-a4e190e37b8d>`__ |
172 | | - |
173 | | --------------- |
174 | | - |
175 | | -Simple deployment examples (serving ML models on web API) |
176 | | -============================================================ |
177 | | - |
178 | | -- `Serving a linear regression model through a simple HTTP server |
179 | | - interface <https://github.com/tirthajyoti/Machine-Learning-with-Python/tree/master/Deployment/Linear_regression>`__. |
180 | | - User needs to request predictions by executing a Python script. Uses |
181 | | - ``Flask`` and ``Gunicorn``. |
182 | | - |
183 | | -- `Serving a recurrent neural network (RNN) through a HTTP |
184 | | - webpage <https://github.com/tirthajyoti/Machine-Learning-with-Python/tree/master/Deployment/rnn_app>`__, |
185 | | - complete with a web form, where users can input parameters and click |
186 | | - a button to generate text based on the pre-trained RNN model. Uses |
187 | | - ``Flask``, ``Jinja``, ``Keras``/``TensorFlow``, ``WTForms``. |
188 | | - |
189 | | --------------- |
190 | | - |
191 | | -Object-oriented programming with machine learning |
192 | | -====================================================== |
193 | | - |
194 | | -Implementing some of the core OOP principles in a machine learning |
195 | | -context by `building your own Scikit-learn-like estimator, and making it |
196 | | -better <https://github.com/tirthajyoti/Machine-Learning-with-Python/blob/master/OOP_in_ML/Class_MyLinearRegression.ipynb>`__. |
197 | | - |
198 | | -See my articles on Medium on this topic. |
199 | | - |
200 | | -- `Object-oriented programming for data scientists: Build your ML |
201 | | - estimator <https://towardsdatascience.com/object-oriented-programming-for-data-scientists-build-your-ml-estimator-7da416751f64>`__ |
202 | | -- `How a simple mix of object-oriented programming can sharpen your |
203 | | - deep learning |
204 | | - prototype <https://towardsdatascience.com/how-a-simple-mix-of-object-oriented-programming-can-sharpen-your-deep-learning-prototype-19893bd969bd>`__ |
205 | | - |
206 | | -.. |License| image:: https://img.shields.io/badge/License-BSD%202--Clause-orange.svg |
207 | | - :target: https://opensource.org/licenses/BSD-2-Clause |
208 | | -.. |GitHub forks| image:: https://img.shields.io/github/forks/tirthajyoti/Machine-Learning-with-Python.svg |
209 | | - :target: https://github.com/tirthajyoti/Machine-Learning-with-Python/network |
210 | | -.. |GitHub stars| image:: https://img.shields.io/github/stars/tirthajyoti/Machine-Learning-with-Python.svg |
211 | | - :target: https://github.com/tirthajyoti/Machine-Learning-with-Python/stargazers |
| 1 | +|License| |GitHub forks| |GitHub stars| |
| 2 | + |
| 3 | +Python Machine Learning Notebooks (Tutorial style) |
| 4 | +================================================== |
| 5 | + |
| 6 | +### Dr. Tirthajyoti Sarkar, Fremont, CA (`Please feel free to add me on LinkedIn here <https://www.linkedin.com/in/tirthajyoti-sarkar-2127aa7>`__) |
| 7 | +-------------------------------------------------------------------------------------------------------------------------------------------------- |
| 8 | + |
| 9 | +Requirements |
| 10 | +~~~~~~~~~~~~ |
| 11 | + |
| 12 | +- **Python 3.5+** |
| 13 | +- **NumPy (``$ pip install numpy``)** |
| 14 | +- **Pandas (``$ pip install pandas``)** |
| 15 | +- **Scikit-learn (``$ pip install scikit-learn``)** |
| 16 | +- **SciPy (``$ pip install scipy``)** |
| 17 | +- **Statsmodels (``$ pip install statsmodels``)** |
| 18 | +- **MatplotLib (``$ pip install matplotlib``)** |
| 19 | +- **Seaborn (``$ pip install seaborn``)** |
| 20 | +- .. rubric:: **Sympy (``$ pip install sympy``)** |
| 21 | + :name: sympy-pip-install-sympy |
| 22 | + |
| 23 | +You can start with this article that I wrote in Heartbeat magazine (on |
| 24 | +Medium platform): ### `“Some Essential Hacks and Tricks for Machine |
| 25 | +Learning with |
| 26 | +Python” <https://heartbeat.fritz.ai/some-essential-hacks-and-tricks-for-machine-learning-with-python-5478bc6593f2>`__ |
| 27 | + |
| 28 | +Essential tutorial-type notebooks on Pandas and Numpy |
| 29 | +----------------------------------------------------- |
| 30 | + |
| 31 | +Jupyter notebooks covering a wide range of functions and operations on |
| 32 | +the topics of NumPy, Pandans, Seaborn, matplotlib etc. |
| 33 | + |
| 34 | +`Basic Numpy operations <https://github.com/tirthajyoti/Machine-Learning-with-Python/blob/master/Pandas%20and%20Numpy/Basics%20of%20Numpy%20arrays.ipynb>`__ |
| 35 | +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 36 | + |
| 37 | +`Basic Pandas operations <https://github.com/tirthajyoti/Machine-Learning-with-Python/blob/master/Pandas%20and%20Numpy/Basics%20of%20Pandas%20DataFrame.ipynb>`__ |
| 38 | +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 39 | + |
| 40 | +`Basics of visualization with Matplotlib and descriptive stats <https://github.com/tirthajyoti/Machine-Learning-with-Python/blob/master/Pandas%20and%20Numpy/Basics%20of%20Matplotlib%20and%20Descriptive%20Statistics.ipynb>`__ |
| 41 | +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 42 | + |
| 43 | +`Advanced Pandas operations <https://github.com/tirthajyoti/Machine-Learning-with-Python/blob/master/Pandas%20and%20Numpy/Advanced%20Pandas%20Operations.ipynb>`__ |
| 44 | +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 45 | + |
| 46 | +`How to read various data sources <https://github.com/tirthajyoti/Machine-Learning-with-Python/blob/master/Pandas%20and%20Numpy/Read_data_various_sources/How%20to%20read%20various%20sources%20in%20a%20DataFrame.ipynb>`__ |
| 47 | +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 48 | + |
| 49 | +`PDF reading and table processing demo <https://github.com/tirthajyoti/Machine-Learning-with-Python/blob/master/Pandas%20and%20Numpy/Read_data_various_sources/PDF%20table%20reading%20and%20processing%20demo.ipynb>`__ |
| 50 | +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 51 | + |
| 52 | +`How fast are Numpy operations compared to pure Python code? <https://github.com/tirthajyoti/Machine-Learning-with-Python/blob/master/Pandas%20and%20Numpy/How%20fast%20are%20NumPy%20ops.ipynb>`__ (Read my `article <https://towardsdatascience.com/why-you-should-forget-for-loop-for-data-science-code-and-embrace-vectorization-696632622d5f>`__ on Medium related to this topic) |
| 53 | +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 54 | + |
| 55 | +`Fast reading from Numpy using .npy file format <https://github.com/tirthajyoti/Machine-Learning-with-Python/blob/master/Pandas%20and%20Numpy/Numpy_Reading.ipynb>`__ (Read my `article <https://towardsdatascience.com/why-you-should-start-using-npy-file-more-often-df2a13cc0161>`__ on Medium on this topic) |
| 56 | +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 57 | + |
| 58 | +Tutorial-type notebooks covering regression, classification, clustering, dimensionality reduction, and some basic neural network algorithms |
| 59 | +------------------------------------------------------------------------------------------------------------------------------------------- |
| 60 | + |
| 61 | +Regression |
| 62 | +~~~~~~~~~~ |
| 63 | + |
| 64 | +- Simple linear regression with t-statistic generation |
| 65 | + |
| 66 | +- `Multiple ways to perform linear regression in Python and their speed |
| 67 | + comparison <https://github.com/tirthajyoti/Machine-Learning-with-Python/blob/master/Regression/Linear_Regression_Methods.ipynb>`__ |
| 68 | + (`check the article I wrote on |
| 69 | + freeCodeCamp <https://medium.freecodecamp.org/data-science-with-python-8-ways-to-do-linear-regression-and-measure-their-speed-b5577d75f8b>`__) |
| 70 | + |
| 71 | +- `Multi-variate regression with |
| 72 | + regularization <https://github.com/tirthajyoti/Machine-Learning-with-Python/blob/master/Regression/Multi-variate%20LASSO%20regression%20with%20CV.ipynb>`__ |
| 73 | + |
| 74 | +- Polynomial regression using **scikit-learn pipeline feature** (`check |
| 75 | + the article I wrote on Towards Data |
| 76 | + Science <https://towardsdatascience.com/machine-learning-with-python-easy-and-robust-method-to-fit-nonlinear-data-19e8a1ddbd49>`__) |
| 77 | + |
| 78 | +- Decision trees and Random Forest regression (showing how the Random |
| 79 | + Forest works as a robust/regularized meta-estimator rejecting |
| 80 | + overfitting) |
| 81 | + |
| 82 | +- `Detailed visual analytics and goodness-of-fit diagnostic tests for a |
| 83 | + linear regression |
| 84 | + problem <https://github.com/tirthajyoti/Machine-Learning-with-Python/blob/master/Regression/Regression_Diagnostics.ipynb>`__ |
| 85 | + |
| 86 | +-------------- |
| 87 | + |
| 88 | +Classification |
| 89 | +~~~~~~~~~~~~~~ |
| 90 | + |
| 91 | +- Logistic regression/classification |
| 92 | + |
| 93 | +- *k*-nearest neighbor classification |
| 94 | + |
| 95 | +- Decision trees and Random Forest Classification |
| 96 | + |
| 97 | +- Support vector machine classification (`check the article I wrote in |
| 98 | + Towards Data Science on SVM and sorting |
| 99 | + algorithm <https://towardsdatascience.com/how-the-good-old-sorting-algorithm-helps-a-great-machine-learning-technique-9e744020254b>`__\ **)** |
| 100 | + |
| 101 | +- Naive Bayes classification |
| 102 | + |
| 103 | +-------------- |
| 104 | + |
| 105 | +Clustering |
| 106 | +~~~~~~~~~~ |
| 107 | + |
| 108 | +- *K*-means clustering |
| 109 | +- Affinity propagation (showing its time complexity and the effect of |
| 110 | + damping factor) |
| 111 | +- Mean-shift technique (showing its time complexity and the effect of |
| 112 | + noise on cluster discovery) |
| 113 | +- DBSCAN (showing how it can generically detect areas of high density |
| 114 | + irrespective of cluster shapes, which the k-means fails to do) |
| 115 | +- Hierarchical clustering with Dendograms showing how to choose optimal |
| 116 | + number of clusters |
| 117 | + |
| 118 | +-------------- |
| 119 | + |
| 120 | +Dimensionality reduction |
| 121 | +~~~~~~~~~~~~~~~~~~~~~~~~ |
| 122 | + |
| 123 | +- Principal component analysis |
| 124 | + |
| 125 | +-------------- |
| 126 | + |
| 127 | +Deep Learning/Neural Network |
| 128 | +~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 129 | + |
| 130 | +- `Demo notebook to illustrate the superiority of deep neural network |
| 131 | + for complex nonlinear function approximation |
| 132 | + task <https://github.com/tirthajyoti/Machine-Learning-with-Python/blob/master/Function%20Approximation%20by%20Neural%20Network/Polynomial%20regression%20-%20linear%20and%20neural%20network.ipynb>`__ |
| 133 | +- Step-by-step building of 1-hidden-layer and 2-hidden-layer dense |
| 134 | + network using basic TensorFlow methods |
| 135 | + |
| 136 | +-------------- |
| 137 | + |
| 138 | +Random data generation using symbolic expressions |
| 139 | +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 140 | + |
| 141 | +- How to use `Sympy package <https://www.sympy.org/en/index.html>`__ to |
| 142 | + generate random datasets using symbolic mathematical expressions. |
| 143 | + |
| 144 | +- .. rubric:: Here is my article on Medium on this topic: `Random |
| 145 | + regression and classification problem generation with symbolic |
| 146 | + expression <https://towardsdatascience.com/random-regression-and-classification-problem-generation-with-symbolic-expression-a4e190e37b8d>`__ |
| 147 | + :name: here-is-my-article-on-medium-on-this-topic-random-regression-and-classification-problem-generation-with-symbolic-expression |
| 148 | + |
| 149 | +Simple deployment examples (serving ML models on web API) |
| 150 | +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 151 | + |
| 152 | +- `Serving a linear regression model through a simple HTTP server |
| 153 | + interface <https://github.com/tirthajyoti/Machine-Learning-with-Python/tree/master/Deployment/Linear_regression>`__. |
| 154 | + User needs to request predictions by executing a Python script. Uses |
| 155 | + ``Flask`` and ``Gunicorn``. |
| 156 | + |
| 157 | +- `Serving a recurrent neural network (RNN) through a HTTP |
| 158 | + webpage <https://github.com/tirthajyoti/Machine-Learning-with-Python/tree/master/Deployment/rnn_app>`__, |
| 159 | + complete with a web form, where users can input parameters and click |
| 160 | + a button to generate text based on the pre-trained RNN model. Uses |
| 161 | + ``Flask``, ``Jinja``, ``Keras``/``TensorFlow``, ``WTForms``. |
| 162 | + |
| 163 | +-------------- |
| 164 | + |
| 165 | +Object-oriented programming with machine learning |
| 166 | +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 167 | + |
| 168 | +Implementing some of the core OOP principles in a machine learning |
| 169 | +context by `building your own Scikit-learn-like estimator, and making it |
| 170 | +better <https://github.com/tirthajyoti/Machine-Learning-with-Python/blob/master/OOP_in_ML/Class_MyLinearRegression.ipynb>`__. |
| 171 | + |
| 172 | +See my articles on Medium on this topic. |
| 173 | + |
| 174 | +- `Object-oriented programming for data scientists: Build your ML |
| 175 | + estimator <https://towardsdatascience.com/object-oriented-programming-for-data-scientists-build-your-ml-estimator-7da416751f64>`__ |
| 176 | +- `How a simple mix of object-oriented programming can sharpen your |
| 177 | + deep learning |
| 178 | + prototype <https://towardsdatascience.com/how-a-simple-mix-of-object-oriented-programming-can-sharpen-your-deep-learning-prototype-19893bd969bd>`__ |
| 179 | + |
| 180 | +.. |License| image:: https://img.shields.io/badge/License-BSD%202--Clause-orange.svg |
| 181 | + :target: https://opensource.org/licenses/BSD-2-Clause |
| 182 | +.. |GitHub forks| image:: https://img.shields.io/github/forks/tirthajyoti/Machine-Learning-with-Python.svg |
| 183 | + :target: https://github.com/tirthajyoti/Machine-Learning-with-Python/network |
| 184 | +.. |GitHub stars| image:: https://img.shields.io/github/stars/tirthajyoti/Machine-Learning-with-Python.svg |
| 185 | + :target: https://github.com/tirthajyoti/Machine-Learning-with-Python/stargazers |
0 commit comments