Skip to content

Commit f18a0df

Browse files
authored
Merge pull request Azure#1825 from Azure/release_update/Release-163
update samples from Release-163 as a part of SDK release
2 parents acf4610 + badb620 commit f18a0df

File tree

13 files changed

+124
-41
lines changed

13 files changed

+124
-41
lines changed

how-to-use-azureml/automated-machine-learning/automl_env.yml

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -18,6 +18,7 @@ dependencies:
1818
- pywin32==227
1919
- PySocks==1.7.1
2020
- conda-forge::pyqt==5.12.3
21+
- jsonschema==4.15.0
2122
- jinja2<=2.11.2
2223
- markupsafe<2.1.0
2324
- tqdm==4.64.0

how-to-use-azureml/automated-machine-learning/forecasting-backtest-many-models/auto-ml-forecasting-backtest-many-models.ipynb

Lines changed: 10 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -324,7 +324,8 @@
324324
"| **experiment_timeout_hours** | Maximum amount of time in hours that the experiment can take before it terminates. This is optional but provides customers with greater control on exit criteria. |\n",
325325
"| **label_column_name** | The name of the label column. |\n",
326326
"| **forecast_horizon** | The forecast horizon is how many periods forward you would like to forecast. This integer horizon is in units of the timeseries frequency (e.g. daily, weekly). Periods are inferred from your data. |\n",
327-
"| **n_cross_validations** | Number of cross validation splits. Rolling Origin Validation is used to split time-series in a temporally consistent way. |\n",
327+
"| **n_cross_validations** | Number of cross validation splits. The default value is \"auto\", in which case AutoMl determines the number of cross-validations automatically, if a validation set is not provided. Or users could specify an integer value. Rolling Origin Validation is used to split time-series in a temporally consistent way. |\n",
328+
"|**cv_step_size**|Number of periods between two consecutive cross-validation folds. The default value is \"auto\", in which case AutoMl determines the cross-validation step size automatically, if a validation set is not provided. Or users could specify an integer value.\n",
328329
"| **time_column_name** | The name of your time column. |\n",
329330
"| **time_series_id_column_names** | The column names used to uniquely identify timeseries in data that has multiple rows with the same timestamp. |\n",
330331
"| **track_child_runs** | Flag to disable tracking of child runs. Only best run is tracked if the flag is set to False (this includes the model and metrics of the run). |\n",
@@ -353,7 +354,8 @@
353354
" \"iterations\": 15,\n",
354355
" \"experiment_timeout_hours\": 0.25, # This also needs to be changed based on the dataset. For larger data set this number needs to be bigger.\n",
355356
" \"label_column_name\": TARGET_COLNAME,\n",
356-
" \"n_cross_validations\": 3,\n",
357+
" \"n_cross_validations\": \"auto\", # Feel free to set to a small integer (>=2) if runtime is an issue.\n",
358+
" \"cv_step_size\": \"auto\",\n",
357359
" \"time_column_name\": TIME_COLNAME,\n",
358360
" \"forecast_horizon\": 6,\n",
359361
" \"time_series_id_column_names\": partition_column_names,\n",
@@ -718,7 +720,12 @@
718720
"name": "python",
719721
"nbconvert_exporter": "python",
720722
"pygments_lexer": "ipython3",
721-
"version": "3.6.9"
723+
"version": "3.8.5"
724+
},
725+
"vscode": {
726+
"interpreter": {
727+
"hash": "6bd77c88278e012ef31757c15997a7bea8c943977c43d6909403c00ae11d43ca"
728+
}
722729
}
723730
},
724731
"nbformat": 4,

how-to-use-azureml/automated-machine-learning/forecasting-backtest-single-model/auto-ml-forecasting-backtest-single-model.ipynb

Lines changed: 10 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -283,7 +283,8 @@
283283
"| **experiment_timeout_hours** | Maximum amount of time in hours that the experiment can take before it terminates. This is optional but provides customers with greater control on exit criteria. |\n",
284284
"| **label_column_name** | The name of the label column. |\n",
285285
"| **max_horizon** | The forecast horizon is how many periods forward you would like to forecast. This integer horizon is in units of the timeseries frequency (e.g. daily, weekly). Periods are inferred from your data. |\n",
286-
"| **n_cross_validations** | Number of cross validation splits. Rolling Origin Validation is used to split time-series in a temporally consistent way. |\n",
286+
"| **n_cross_validations** | Number of cross validation splits. The default value is \"auto\", in which case AutoMl determines the number of cross-validations automatically, if a validation set is not provided. Or users could specify an integer value. Rolling Origin Validation is used to split time-series in a temporally consistent way. |\n",
287+
"|**cv_step_size**|Number of periods between two consecutive cross-validation folds. The default value is \"auto\", in which case AutoMl determines the cross-validation step size automatically, if a validation set is not provided. Or users could specify an integer value.\n",
287288
"| **time_column_name** | The name of your time column. |\n",
288289
"| **grain_column_names** | The column names used to uniquely identify timeseries in data that has multiple rows with the same timestamp. |"
289290
]
@@ -301,7 +302,8 @@
301302
" \"iterations\": 15,\n",
302303
" \"experiment_timeout_hours\": 1, # This also needs to be changed based on the dataset. For larger data set this number needs to be bigger.\n",
303304
" \"label_column_name\": LABEL_COLUMN_NAME,\n",
304-
" \"n_cross_validations\": 3,\n",
305+
" \"n_cross_validations\": \"auto\", # Feel free to set to a small integer (>=2) if runtime is an issue.\n",
306+
" \"cv_step_size\": \"auto\",\n",
305307
" \"time_column_name\": TIME_COLUMN_NAME,\n",
306308
" \"max_horizon\": FORECAST_HORIZON,\n",
307309
" \"track_child_runs\": False,\n",
@@ -712,7 +714,12 @@
712714
"name": "python",
713715
"nbconvert_exporter": "python",
714716
"pygments_lexer": "ipython3",
715-
"version": "3.6.9"
717+
"version": "3.8.5"
718+
},
719+
"vscode": {
720+
"interpreter": {
721+
"hash": "6bd77c88278e012ef31757c15997a7bea8c943977c43d6909403c00ae11d43ca"
722+
}
716723
}
717724
},
718725
"nbformat": 4,

how-to-use-azureml/automated-machine-learning/forecasting-bike-share/auto-ml-forecasting-bike-share.ipynb

Lines changed: 12 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -265,7 +265,8 @@
265265
"|**forecast_horizon**|The forecast horizon is how many periods forward you would like to forecast. This integer horizon is in units of the timeseries frequency (e.g. daily, weekly).|\n",
266266
"|**country_or_region_for_holidays**|The country/region used to generate holiday features. These should be ISO 3166 two-letter country/region codes (i.e. 'US', 'GB').|\n",
267267
"|**target_lags**|The target_lags specifies how far back we will construct the lags of the target variable.|\n",
268-
"|**freq**|Forecast frequency. This optional parameter represents the period with which the forecast is desired, for example, daily, weekly, yearly, etc. Use this parameter for the correction of time series containing irregular data points or for padding of short time series. The frequency needs to be a pandas offset alias. Please refer to [pandas documentation](https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#dateoffset-objects) for more information."
268+
"|**freq**|Forecast frequency. This optional parameter represents the period with which the forecast is desired, for example, daily, weekly, yearly, etc. Use this parameter for the correction of time series containing irregular data points or for padding of short time series. The frequency needs to be a pandas offset alias. Please refer to [pandas documentation](https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#dateoffset-objects) for more information.\n",
269+
"|**cv_step_size**|Number of periods between two consecutive cross-validation folds. The default value is \"auto\", in which case AutoMl determines the cross-validation step size automatically, if a validation set is not provided. Or users could specify an integer value."
269270
]
270271
},
271272
{
@@ -285,7 +286,7 @@
285286
"|**training_data**|Input dataset, containing both features and label column.|\n",
286287
"|**label_column_name**|The name of the label column.|\n",
287288
"|**compute_target**|The remote compute for training.|\n",
288-
"|**n_cross_validations**|Number of cross validation splits.|\n",
289+
"|**n_cross_validations**|Number of cross-validation folds to use for model/pipeline selection. The default value is \"auto\", in which case AutoMl determines the number of cross-validations automatically, if a validation set is not provided. Or users could specify an integer value.\n",
289290
"|**enable_early_stopping**|If early stopping is on, training will stop when the primary metric is no longer improving.|\n",
290291
"|**forecasting_parameters**|A class that holds all the forecasting related parameters.|\n",
291292
"\n",
@@ -350,6 +351,7 @@
350351
" country_or_region_for_holidays=\"US\", # set country_or_region will trigger holiday featurizer\n",
351352
" target_lags=\"auto\", # use heuristic based lag setting\n",
352353
" freq=\"D\", # Set the forecast frequency to be daily\n",
354+
" cv_step_size=\"auto\",\n",
353355
")\n",
354356
"\n",
355357
"automl_config = AutoMLConfig(\n",
@@ -362,7 +364,7 @@
362364
" label_column_name=target_column_name,\n",
363365
" compute_target=compute_target,\n",
364366
" enable_early_stopping=True,\n",
365-
" n_cross_validations=3,\n",
367+
" n_cross_validations=\"auto\", # Feel free to set to a small integer (>=2) if runtime is an issue.\n",
366368
" max_concurrent_iterations=4,\n",
367369
" max_cores_per_iteration=-1,\n",
368370
" verbosity=logging.INFO,\n",
@@ -709,7 +711,7 @@
709711
"name": "python",
710712
"nbconvert_exporter": "python",
711713
"pygments_lexer": "ipython3",
712-
"version": "3.6.7"
714+
"version": "3.8.5"
713715
},
714716
"mimetype": "text/x-python",
715717
"name": "python",
@@ -719,7 +721,12 @@
719721
"Forecasting"
720722
],
721723
"task": "Forecasting",
722-
"version": 3
724+
"version": 3,
725+
"vscode": {
726+
"interpreter": {
727+
"hash": "6bd77c88278e012ef31757c15997a7bea8c943977c43d6909403c00ae11d43ca"
728+
}
729+
}
723730
},
724731
"nbformat": 4,
725732
"nbformat_minor": 4

how-to-use-azureml/automated-machine-learning/forecasting-energy-demand/auto-ml-forecasting-energy-demand.ipynb

Lines changed: 13 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -308,7 +308,8 @@
308308
"|-|-|\n",
309309
"|**time_column_name**|The name of your time column.|\n",
310310
"|**forecast_horizon**|The forecast horizon is how many periods forward you would like to forecast. This integer horizon is in units of the timeseries frequency (e.g. daily, weekly).|\n",
311-
"|**freq**|Forecast frequency. This optional parameter represents the period with which the forecast is desired, for example, daily, weekly, yearly, etc. Use this parameter for the correction of time series containing irregular data points or for padding of short time series. The frequency needs to be a pandas offset alias. Please refer to [pandas documentation](https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#dateoffset-objects) for more information."
311+
"|**freq**|Forecast frequency. This optional parameter represents the period with which the forecast is desired, for example, daily, weekly, yearly, etc. Use this parameter for the correction of time series containing irregular data points or for padding of short time series. The frequency needs to be a pandas offset alias. Please refer to [pandas documentation](https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#dateoffset-objects) for more information.\n",
312+
"|**cv_step_size**|Number of periods between two consecutive cross-validation folds. The default value is \"auto\", in which case AutoMl determines the cross-validation step size automatically, if a validation set is not provided. Or users could specify an integer value."
312313
]
313314
},
314315
{
@@ -328,7 +329,7 @@
328329
"|**training_data**|The training data to be used within the experiment.|\n",
329330
"|**label_column_name**|The name of the label column.|\n",
330331
"|**compute_target**|The remote compute for training.|\n",
331-
"|**n_cross_validations**|Number of cross validation splits. Rolling Origin Validation is used to split time-series in a temporally consistent way.|\n",
332+
"|**n_cross_validations**|Number of cross-validation folds to use for model/pipeline selection. The default value is \"auto\", in which case AutoMl determines the number of cross-validations automatically, if a validation set is not provided. Or users could specify an integer value.\n",
332333
"|**enable_early_stopping**|Flag to enble early termination if the score is not improving in the short term.|\n",
333334
"|**forecasting_parameters**|A class holds all the forecasting related parameters.|\n"
334335
]
@@ -352,6 +353,7 @@
352353
" time_column_name=time_column_name,\n",
353354
" forecast_horizon=forecast_horizon,\n",
354355
" freq=\"H\", # Set the forecast frequency to be hourly\n",
356+
" cv_step_size=\"auto\",\n",
355357
")\n",
356358
"\n",
357359
"automl_config = AutoMLConfig(\n",
@@ -363,7 +365,7 @@
363365
" label_column_name=target_column_name,\n",
364366
" compute_target=compute_target,\n",
365367
" enable_early_stopping=True,\n",
366-
" n_cross_validations=3,\n",
368+
" n_cross_validations=\"auto\", # Feel free to set to a small integer (>=2) if runtime is an issue.\n",
367369
" verbosity=logging.INFO,\n",
368370
" forecasting_parameters=forecasting_parameters,\n",
369371
")"
@@ -609,6 +611,7 @@
609611
" forecast_horizon=forecast_horizon,\n",
610612
" target_lags=12,\n",
611613
" target_rolling_window_size=4,\n",
614+
" cv_step_size=\"auto\",\n",
612615
")\n",
613616
"\n",
614617
"automl_config = AutoMLConfig(\n",
@@ -628,7 +631,7 @@
628631
" label_column_name=target_column_name,\n",
629632
" compute_target=compute_target,\n",
630633
" enable_early_stopping=True,\n",
631-
" n_cross_validations=3,\n",
634+
" n_cross_validations=\"auto\", # Feel free to set to a small integer (>=2) if runtime is an issue.\n",
632635
" verbosity=logging.INFO,\n",
633636
" forecasting_parameters=advanced_forecasting_parameters,\n",
634637
")"
@@ -778,7 +781,12 @@
778781
"name": "python",
779782
"nbconvert_exporter": "python",
780783
"pygments_lexer": "ipython3",
781-
"version": "3.6.9"
784+
"version": "3.8.5"
785+
},
786+
"vscode": {
787+
"interpreter": {
788+
"hash": "6bd77c88278e012ef31757c15997a7bea8c943977c43d6909403c00ae11d43ca"
789+
}
782790
}
783791
},
784792
"nbformat": 4,

how-to-use-azureml/automated-machine-learning/forecasting-forecast-function/auto-ml-forecasting-function.ipynb

Lines changed: 10 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -335,7 +335,8 @@
335335
" forecast_horizon=forecast_horizon,\n",
336336
" time_series_id_column_names=[TIME_SERIES_ID_COLUMN_NAME],\n",
337337
" target_lags=lags,\n",
338-
" freq=\"H\", # Set the forecast frequency to be hourly\n",
338+
" freq=\"H\", # Set the forecast frequency to be hourly,\n",
339+
" cv_step_size=\"auto\",\n",
339340
")"
340341
]
341342
},
@@ -365,7 +366,7 @@
365366
" enable_early_stopping=True,\n",
366367
" training_data=train_data,\n",
367368
" compute_target=compute_target,\n",
368-
" n_cross_validations=3,\n",
369+
" n_cross_validations=\"auto\", # Feel free to set to a small integer (>=2) if runtime is an issue.\n",
369370
" verbosity=logging.INFO,\n",
370371
" max_concurrent_iterations=4,\n",
371372
" max_cores_per_iteration=-1,\n",
@@ -879,13 +880,18 @@
879880
"name": "python",
880881
"nbconvert_exporter": "python",
881882
"pygments_lexer": "ipython3",
882-
"version": "3.6.8"
883+
"version": "3.8.5"
883884
},
884885
"tags": [
885886
"Forecasting",
886887
"Confidence Intervals"
887888
],
888-
"task": "Forecasting"
889+
"task": "Forecasting",
890+
"vscode": {
891+
"interpreter": {
892+
"hash": "6bd77c88278e012ef31757c15997a7bea8c943977c43d6909403c00ae11d43ca"
893+
}
894+
}
889895
},
890896
"nbformat": 4,
891897
"nbformat_minor": 2

how-to-use-azureml/automated-machine-learning/forecasting-hierarchical-timeseries/auto-ml-forecasting-hierarchical-timeseries.ipynb

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -263,7 +263,8 @@
263263
"| **experiment_timeout_hours** | Maximum amount of time in hours that the experiment can take before it terminates. This is optional but provides customers with greater control on exit criteria. |\n",
264264
"| **label_column_name** | The name of the label column. |\n",
265265
"| **forecast_horizon** | The forecast horizon is how many periods forward you would like to forecast. This integer horizon is in units of the timeseries frequency (e.g. daily, weekly). Periods are inferred from your data. |\n",
266-
"| **n_cross_validations** | Number of cross validation splits. Rolling Origin Validation is used to split time-series in a temporally consistent way. |\n",
266+
"|**n_cross_validations**|Number of cross-validation folds to use for model/pipeline selection. The default value is \"auto\", in which case AutoMl determines the number of cross-validations automatically, if a validation set is not provided. Or users could specify an integer value.\n",
267+
"|**cv_step_size**|Number of periods between two consecutive cross-validation folds. The default value is \"auto\", in which case AutoMl determines the cross-validation step size automatically, if a validation set is not provided. Or users could specify an integer value.\n",
267268
"| **enable_early_stopping** | Flag to enable early termination if the score is not improving in the short term. |\n",
268269
"| **time_column_name** | The name of your time column. |\n",
269270
"| **hierarchy_column_names** | The names of columns that define the hierarchical structure of the data from highest level to most granular. |\n",
@@ -311,10 +312,11 @@
311312
" \"track_child_runs\": False,\n",
312313
" \"pipeline_fetch_max_batch_size\": 15,\n",
313314
" \"model_explainability\": model_explainability,\n",
315+
" \"n_cross_validations\": \"auto\", # Feel free to set to a small integer (>=2) if runtime is an issue.\n",
316+
" \"cv_step_size\": \"auto\",\n",
314317
" # The following settings are specific to this sample and should be adjusted according to your own needs.\n",
315318
" \"iteration_timeout_minutes\": 10,\n",
316319
" \"iterations\": 10,\n",
317-
" \"n_cross_validations\": 2,\n",
318320
"}\n",
319321
"\n",
320322
"hts_parameters = HTSTrainParameters(\n",

0 commit comments

Comments
 (0)