|
14 | 14 | * Image Analysis (CNN for Image Classification) |
15 | 15 | * How to use **canned estimators** to train ML models. |
16 | 16 |
|
17 | | -* How to implement **custom estimators** (model_fn & EstimatorSpec). |
| 17 | +* How to implement **custom estimators** (model_fn & EstimatorSpec). |
18 | 18 |
|
19 | | -* A standard **metadata-driven** approach to build the model **feature_column**(s) (including numeric features as well as categorical features with 1) vocabulary, 2) hash bucket, and 3) identity. |
| 19 | +* A standard **metadata-driven** approach to build the model **feature_column**(s) (including numeric features as well as categorical features with 1) vocabulary, 2) hash bucket, and 3) identity. |
20 | 20 |
|
21 | | -* Data **input pipelines** (input_fn) using: |
22 | | - * tf.estimator.inputs.**pandas_input_fn**, |
23 | | - * tf.train.**string_input_producer**, and |
24 | | - * tf.data.**Dataset** APIs to read both **.csv** and **.tfrecords** (tf.example) data files |
25 | | - * tf.contrib.timeseries.**RandomWindowInputFn** and **WholeDatasetInputFn** for time-series data |
26 | | - * Feature **preprocessing** and **creation** as part of reading data (input_fn), for example, sin, sqrt, square, log, boolean comparisons, euclidean distance, etc. |
| 21 | +* Data **input pipelines** (input_fn) using: |
| 22 | + * tf.estimator.inputs.**pandas_input_fn**, |
| 23 | + * tf.train.**string_input_producer**, and |
| 24 | + * tf.data.**Dataset** APIs to read both **.csv** and **.tfrecords** (tf.example) data files |
| 25 | + * tf.contrib.timeseries.**RandomWindowInputFn** and **WholeDatasetInputFn** for time-series data |
| 26 | + * Feature **preprocessing** and **creation** as part of reading data (input_fn), for example, sin, sqrt, square, log, boolean comparisons, euclidean distance, etc. |
27 | 27 |
|
28 | | -* A standard approach to prepare **wide** (sparse) and **deep** (dense) feature_column(s) for Wide and Deep **DNN Liner Combined Models** |
| 28 | +* A standard approach to prepare **wide** (sparse) and **deep** (dense) feature_column(s) for Wide and Deep **DNN Liner Combined Models** |
29 | 29 |
|
30 | | -* The use of **normalizer_fn** in numeric_column() to **scale** the numeric features using pre-computed statistics (for Min-Max or Standard scaling) |
| 30 | +* The use of **normalizer_fn** in numeric_column() to **scale** the numeric features using pre-computed statistics (for Min-Max or Standard scaling) |
31 | 31 |
|
32 | 32 | * The use of **weight_column** in the canned estimators |
33 | 33 |
|
|
0 commit comments