Skip to content

Commit e4e13da

Browse files
authored
Update Readme.md
1 parent 10bac11 commit e4e13da

File tree

1 file changed

+10
-10
lines changed

1 file changed

+10
-10
lines changed

README.md

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -14,20 +14,20 @@
1414
* Image Analysis (CNN for Image Classification)
1515
* How to use **canned estimators** to train ML models.
1616

17-
* How to implement **custom estimators** (model_fn & EstimatorSpec).
17+
* How to implement **custom estimators** (model_fn & EstimatorSpec).
1818

19-
* A standard **metadata-driven** approach to build the model **feature_column**(s) (including numeric features as well as categorical features with 1) vocabulary, 2) hash bucket, and 3) identity.
19+
* A standard **metadata-driven** approach to build the model **feature_column**(s) (including numeric features as well as categorical features with 1) vocabulary, 2) hash bucket, and 3) identity.
2020

21-
* Data **input pipelines** (input_fn) using:
22-
* tf.estimator.inputs.**pandas_input_fn**,
23-
* tf.train.**string_input_producer**, and
24-
* tf.data.**Dataset** APIs to read both **.csv** and **.tfrecords** (tf.example) data files
25-
* tf.contrib.timeseries.**RandomWindowInputFn** and **WholeDatasetInputFn** for time-series data
26-
* Feature **preprocessing** and **creation** as part of reading data (input_fn), for example, sin, sqrt, square, log, boolean comparisons, euclidean distance, etc.
21+
* Data **input pipelines** (input_fn) using:
22+
* tf.estimator.inputs.**pandas_input_fn**,
23+
* tf.train.**string_input_producer**, and
24+
* tf.data.**Dataset** APIs to read both **.csv** and **.tfrecords** (tf.example) data files
25+
* tf.contrib.timeseries.**RandomWindowInputFn** and **WholeDatasetInputFn** for time-series data
26+
* Feature **preprocessing** and **creation** as part of reading data (input_fn), for example, sin, sqrt, square, log, boolean comparisons, euclidean distance, etc.
2727

28-
* A standard approach to prepare **wide** (sparse) and **deep** (dense) feature_column(s) for Wide and Deep **DNN Liner Combined Models**
28+
* A standard approach to prepare **wide** (sparse) and **deep** (dense) feature_column(s) for Wide and Deep **DNN Liner Combined Models**
2929

30-
* The use of **normalizer_fn** in numeric_column() to **scale** the numeric features using pre-computed statistics (for Min-Max or Standard scaling)
30+
* The use of **normalizer_fn** in numeric_column() to **scale** the numeric features using pre-computed statistics (for Min-Max or Standard scaling)
3131

3232
* The use of **weight_column** in the canned estimators
3333

0 commit comments

Comments
 (0)