diff --git a/src/backend/base/langflow/initial_setup/starter_projects/Document Q&A.json b/src/backend/base/langflow/initial_setup/starter_projects/Document Q&A.json index aa1f260c1843..62f98ce2fa8e 100644 --- a/src/backend/base/langflow/initial_setup/starter_projects/Document Q&A.json +++ b/src/backend/base/langflow/initial_setup/starter_projects/Document Q&A.json @@ -1207,7 +1207,7 @@ "legacy": false, "lf_version": "1.4.3", "metadata": { - "code_hash": "9cad30eb26b9", + "code_hash": "1d81b3a4d764", "dependencies": { "dependencies": [ { @@ -1283,7 +1283,7 @@ "show": true, "title_case": false, "type": "code", - "value": "\"\"\"Enhanced file component with Docling support and process isolation.\n\nNotes:\n-----\n- ALL Docling parsing/export runs in a separate OS process to prevent memory\n growth and native library state from impacting the main Langflow process.\n- Standard text/structured parsing continues to use existing BaseFileComponent\n utilities (and optional threading via `parallel_load_data`).\n\"\"\"\n\nfrom __future__ import annotations\n\nimport contextlib\nimport json\nimport subprocess\nimport sys\nimport textwrap\nfrom copy import deepcopy\nfrom pathlib import Path\nfrom tempfile import NamedTemporaryFile\nfrom typing import Any\n\nfrom lfx.base.data.base_file import BaseFileComponent\nfrom lfx.base.data.storage_utils import parse_storage_path, read_file_bytes, validate_image_content_type\nfrom lfx.base.data.utils import TEXT_FILE_TYPES, parallel_load_data, parse_text_file_to_data\nfrom lfx.inputs.inputs import DropdownInput, MessageTextInput, StrInput\nfrom lfx.io import BoolInput, FileInput, IntInput, Output\nfrom lfx.schema.data import Data\nfrom lfx.schema.dataframe import DataFrame # noqa: TC001\nfrom lfx.schema.message import Message\nfrom lfx.services.deps import get_settings_service, get_storage_service\nfrom lfx.utils.async_helpers import run_until_complete\n\n\nclass FileComponent(BaseFileComponent):\n \"\"\"File component with optional Docling processing (isolated in a subprocess).\"\"\"\n\n display_name = \"Read File\"\n # description is now a dynamic property - see get_tool_description()\n _base_description = \"Loads content from one or more files.\"\n documentation: str = \"https://docs.langflow.org/read-file\"\n icon = \"file-text\"\n name = \"File\"\n add_tool_output = True # Enable tool mode toggle without requiring tool_mode inputs\n\n # Extensions that can be processed without Docling (using standard text parsing)\n TEXT_EXTENSIONS = TEXT_FILE_TYPES\n\n # Extensions that require Docling for processing (images, advanced office formats, etc.)\n DOCLING_ONLY_EXTENSIONS = [\n \"adoc\",\n \"asciidoc\",\n \"asc\",\n \"bmp\",\n \"dotx\",\n \"dotm\",\n \"docm\",\n \"jpg\",\n \"jpeg\",\n \"png\",\n \"potx\",\n \"ppsx\",\n \"pptm\",\n \"potm\",\n \"ppsm\",\n \"pptx\",\n \"tiff\",\n \"xls\",\n \"xlsx\",\n \"xhtml\",\n \"webp\",\n ]\n\n # Docling-supported/compatible extensions; TEXT_FILE_TYPES are supported by the base loader.\n VALID_EXTENSIONS = [\n *TEXT_EXTENSIONS,\n *DOCLING_ONLY_EXTENSIONS,\n ]\n\n # Fixed export settings used when markdown export is requested.\n EXPORT_FORMAT = \"Markdown\"\n IMAGE_MODE = \"placeholder\"\n\n _base_inputs = deepcopy(BaseFileComponent.get_base_inputs())\n\n for input_item in _base_inputs:\n if isinstance(input_item, FileInput) and input_item.name == \"path\":\n input_item.real_time_refresh = True\n input_item.tool_mode = False # Disable tool mode for file upload input\n input_item.required = False # Make it optional so it doesn't error in tool mode\n break\n\n inputs = [\n *_base_inputs,\n StrInput(\n name=\"file_path_str\",\n display_name=\"File Path\",\n info=(\n \"Path to the file to read. Used when component is called as a tool. \"\n \"If not provided, will use the uploaded file from 'path' input.\"\n ),\n show=False,\n advanced=True,\n tool_mode=True, # Required for Toolset toggle, but _get_tools() ignores this parameter\n required=False,\n ),\n BoolInput(\n name=\"advanced_mode\",\n display_name=\"Advanced Parser\",\n value=False,\n real_time_refresh=True,\n info=(\n \"Enable advanced document processing and export with Docling for PDFs, images, and office documents. \"\n \"Note that advanced document processing can consume significant resources.\"\n ),\n show=True,\n ),\n DropdownInput(\n name=\"pipeline\",\n display_name=\"Pipeline\",\n info=\"Docling pipeline to use\",\n options=[\"standard\", \"vlm\"],\n value=\"standard\",\n advanced=True,\n real_time_refresh=True,\n ),\n DropdownInput(\n name=\"ocr_engine\",\n display_name=\"OCR Engine\",\n info=\"OCR engine to use. Only available when pipeline is set to 'standard'.\",\n options=[\"None\", \"easyocr\"],\n value=\"easyocr\",\n show=False,\n advanced=True,\n ),\n StrInput(\n name=\"md_image_placeholder\",\n display_name=\"Image placeholder\",\n info=\"Specify the image placeholder for markdown exports.\",\n value=\"\",\n advanced=True,\n show=False,\n ),\n StrInput(\n name=\"md_page_break_placeholder\",\n display_name=\"Page break placeholder\",\n info=\"Add this placeholder between pages in the markdown output.\",\n value=\"\",\n advanced=True,\n show=False,\n ),\n MessageTextInput(\n name=\"doc_key\",\n display_name=\"Doc Key\",\n info=\"The key to use for the DoclingDocument column.\",\n value=\"doc\",\n advanced=True,\n show=False,\n ),\n # Deprecated input retained for backward-compatibility.\n BoolInput(\n name=\"use_multithreading\",\n display_name=\"[Deprecated] Use Multithreading\",\n advanced=True,\n value=True,\n info=\"Set 'Processing Concurrency' greater than 1 to enable multithreading.\",\n ),\n IntInput(\n name=\"concurrency_multithreading\",\n display_name=\"Processing Concurrency\",\n advanced=True,\n info=\"When multiple files are being processed, the number of files to process concurrently.\",\n value=1,\n ),\n BoolInput(\n name=\"markdown\",\n display_name=\"Markdown Export\",\n info=\"Export processed documents to Markdown format. Only available when advanced mode is enabled.\",\n value=False,\n show=False,\n ),\n ]\n\n outputs = [\n Output(display_name=\"Raw Content\", name=\"message\", method=\"load_files_message\", tool_mode=True),\n ]\n\n # ------------------------------ Tool description with file names --------------\n\n def get_tool_description(self) -> str:\n \"\"\"Return a dynamic description that includes the names of uploaded files.\n\n This helps the Agent understand which files are available to read.\n \"\"\"\n base_description = \"Loads and returns the content from uploaded files.\"\n\n # Get the list of uploaded file paths\n file_paths = getattr(self, \"path\", None)\n if not file_paths:\n return base_description\n\n # Ensure it's a list\n if not isinstance(file_paths, list):\n file_paths = [file_paths]\n\n # Extract just the file names from the paths\n file_names = []\n for fp in file_paths:\n if fp:\n name = Path(fp).name\n file_names.append(name)\n\n if file_names:\n files_str = \", \".join(file_names)\n return f\"{base_description} Available files: {files_str}. Call this tool to read these files.\"\n\n return base_description\n\n @property\n def description(self) -> str:\n \"\"\"Dynamic description property that includes uploaded file names.\"\"\"\n return self.get_tool_description()\n\n async def _get_tools(self) -> list:\n \"\"\"Override to create a tool without parameters.\n\n The Read File component should use the files already uploaded via UI,\n not accept file paths from the Agent (which wouldn't know the internal paths).\n \"\"\"\n from langchain_core.tools import StructuredTool\n from pydantic import BaseModel\n\n # Empty schema - no parameters needed\n class EmptySchema(BaseModel):\n \"\"\"No parameters required - uses pre-uploaded files.\"\"\"\n\n async def read_files_tool() -> str:\n \"\"\"Read the content of uploaded files.\"\"\"\n try:\n result = self.load_files_message()\n if hasattr(result, \"get_text\"):\n return result.get_text()\n if hasattr(result, \"text\"):\n return result.text\n return str(result)\n except (FileNotFoundError, ValueError, OSError, RuntimeError) as e:\n return f\"Error reading files: {e}\"\n\n description = self.get_tool_description()\n\n tool = StructuredTool(\n name=\"load_files_message\",\n description=description,\n coroutine=read_files_tool,\n args_schema=EmptySchema,\n handle_tool_error=True,\n tags=[\"load_files_message\"],\n metadata={\n \"display_name\": \"Read File\",\n \"display_description\": description,\n },\n )\n\n return [tool]\n\n # ------------------------------ UI helpers --------------------------------------\n\n def _path_value(self, template: dict) -> list[str]:\n \"\"\"Return the list of currently selected file paths from the template.\"\"\"\n return template.get(\"path\", {}).get(\"file_path\", [])\n\n def update_build_config(\n self,\n build_config: dict[str, Any],\n field_value: Any,\n field_name: str | None = None,\n ) -> dict[str, Any]:\n \"\"\"Show/hide Advanced Parser and related fields based on selection context.\"\"\"\n if field_name == \"path\":\n paths = self._path_value(build_config)\n\n # If all files can be processed by docling, do so\n allow_advanced = all(not file_path.endswith((\".csv\", \".xlsx\", \".parquet\")) for file_path in paths)\n build_config[\"advanced_mode\"][\"show\"] = allow_advanced\n if not allow_advanced:\n build_config[\"advanced_mode\"][\"value\"] = False\n for f in (\"pipeline\", \"ocr_engine\", \"doc_key\", \"md_image_placeholder\", \"md_page_break_placeholder\"):\n if f in build_config:\n build_config[f][\"show\"] = False\n\n # Docling Processing\n elif field_name == \"advanced_mode\":\n for f in (\"pipeline\", \"ocr_engine\", \"doc_key\", \"md_image_placeholder\", \"md_page_break_placeholder\"):\n if f in build_config:\n build_config[f][\"show\"] = bool(field_value)\n if f == \"pipeline\":\n build_config[f][\"advanced\"] = not bool(field_value)\n\n elif field_name == \"pipeline\":\n if field_value == \"standard\":\n build_config[\"ocr_engine\"][\"show\"] = True\n build_config[\"ocr_engine\"][\"value\"] = \"easyocr\"\n else:\n build_config[\"ocr_engine\"][\"show\"] = False\n build_config[\"ocr_engine\"][\"value\"] = \"None\"\n\n return build_config\n\n def update_outputs(self, frontend_node: dict[str, Any], field_name: str, field_value: Any) -> dict[str, Any]: # noqa: ARG002\n \"\"\"Dynamically show outputs based on file count/type and advanced mode.\"\"\"\n if field_name not in [\"path\", \"advanced_mode\", \"pipeline\"]:\n return frontend_node\n\n template = frontend_node.get(\"template\", {})\n paths = self._path_value(template)\n if not paths:\n return frontend_node\n\n frontend_node[\"outputs\"] = []\n if len(paths) == 1:\n file_path = paths[0] if field_name == \"path\" else frontend_node[\"template\"][\"path\"][\"file_path\"][0]\n if file_path.endswith((\".csv\", \".xlsx\", \".parquet\")):\n frontend_node[\"outputs\"].append(\n Output(\n display_name=\"Structured Content\",\n name=\"dataframe\",\n method=\"load_files_structured\",\n tool_mode=True,\n ),\n )\n elif file_path.endswith(\".json\"):\n frontend_node[\"outputs\"].append(\n Output(display_name=\"Structured Content\", name=\"json\", method=\"load_files_json\", tool_mode=True),\n )\n\n advanced_mode = frontend_node.get(\"template\", {}).get(\"advanced_mode\", {}).get(\"value\", False)\n if advanced_mode:\n frontend_node[\"outputs\"].append(\n Output(\n display_name=\"Structured Output\",\n name=\"advanced_dataframe\",\n method=\"load_files_dataframe\",\n tool_mode=True,\n ),\n )\n frontend_node[\"outputs\"].append(\n Output(\n display_name=\"Markdown\", name=\"advanced_markdown\", method=\"load_files_markdown\", tool_mode=True\n ),\n )\n frontend_node[\"outputs\"].append(\n Output(display_name=\"File Path\", name=\"path\", method=\"load_files_path\", tool_mode=True),\n )\n else:\n frontend_node[\"outputs\"].append(\n Output(display_name=\"Raw Content\", name=\"message\", method=\"load_files_message\", tool_mode=True),\n )\n frontend_node[\"outputs\"].append(\n Output(display_name=\"File Path\", name=\"path\", method=\"load_files_path\", tool_mode=True),\n )\n else:\n # Multiple files => DataFrame output; advanced parser disabled\n frontend_node[\"outputs\"].append(\n Output(display_name=\"Files\", name=\"dataframe\", method=\"load_files\", tool_mode=True)\n )\n\n return frontend_node\n\n # ------------------------------ Core processing ----------------------------------\n\n def _validate_and_resolve_paths(self) -> list[BaseFileComponent.BaseFile]:\n \"\"\"Override to handle file_path_str input from tool mode.\n\n When called as a tool, the file_path_str parameter can be set.\n If not provided, it will fall back to using the path FileInput (uploaded file).\n Priority:\n 1. file_path_str (if provided by the tool call)\n 2. path (uploaded file from UI)\n \"\"\"\n # Check if file_path_str is provided (from tool mode)\n file_path_str = getattr(self, \"file_path_str\", None)\n if file_path_str:\n # Use the string path from tool mode\n from pathlib import Path\n\n from lfx.schema.data import Data\n\n resolved_path = Path(self.resolve_path(file_path_str))\n if not resolved_path.exists():\n msg = f\"File or directory not found: {file_path_str}\"\n self.log(msg)\n if not self.silent_errors:\n raise ValueError(msg)\n return []\n\n data_obj = Data(data={self.SERVER_FILE_PATH_FIELDNAME: str(resolved_path)})\n return [BaseFileComponent.BaseFile(data_obj, resolved_path, delete_after_processing=False)]\n\n # Otherwise use the default implementation (uses path FileInput)\n return super()._validate_and_resolve_paths()\n\n def _is_docling_compatible(self, file_path: str) -> bool:\n \"\"\"Lightweight extension gate for Docling-compatible types.\"\"\"\n docling_exts = (\n \".adoc\",\n \".asciidoc\",\n \".asc\",\n \".bmp\",\n \".csv\",\n \".dotx\",\n \".dotm\",\n \".docm\",\n \".docx\",\n \".htm\",\n \".html\",\n \".jpg\",\n \".jpeg\",\n \".json\",\n \".md\",\n \".pdf\",\n \".png\",\n \".potx\",\n \".ppsx\",\n \".pptm\",\n \".potm\",\n \".ppsm\",\n \".pptx\",\n \".tiff\",\n \".txt\",\n \".xls\",\n \".xlsx\",\n \".xhtml\",\n \".xml\",\n \".webp\",\n )\n return file_path.lower().endswith(docling_exts)\n\n async def _get_local_file_for_docling(self, file_path: str) -> tuple[str, bool]:\n \"\"\"Get a local file path for Docling processing, downloading from S3 if needed.\n\n Args:\n file_path: Either a local path or S3 key (format \"flow_id/filename\")\n\n Returns:\n tuple[str, bool]: (local_path, should_delete) where should_delete indicates\n if this is a temporary file that should be cleaned up\n \"\"\"\n settings = get_settings_service().settings\n if settings.storage_type == \"local\":\n return file_path, False\n\n # S3 storage - download to temp file\n parsed = parse_storage_path(file_path)\n if not parsed:\n msg = f\"Invalid S3 path format: {file_path}. Expected 'flow_id/filename'\"\n raise ValueError(msg)\n\n storage_service = get_storage_service()\n flow_id, filename = parsed\n\n # Get file content from S3\n content = await storage_service.get_file(flow_id, filename)\n\n suffix = Path(filename).suffix\n with NamedTemporaryFile(mode=\"wb\", suffix=suffix, delete=False) as tmp_file:\n tmp_file.write(content)\n temp_path = tmp_file.name\n\n return temp_path, True\n\n def _process_docling_in_subprocess(self, file_path: str) -> Data | None:\n \"\"\"Run Docling in a separate OS process and map the result to a Data object.\n\n We avoid multiprocessing pickling by launching `python -c \"