|
| 1 | +/** |
| 2 | + * @param {number[]} nums |
| 3 | + * @param {number} k |
| 4 | + * @return {number} |
| 5 | + */ |
| 6 | +var maximumScore = function (nums, k) { |
| 7 | + const n = nums.length |
| 8 | + const factors = Array(n).fill(0) // To store prime factors count for each number |
| 9 | + const count = Array(n).fill(0) // To store the count of reachable elements for each element |
| 10 | + |
| 11 | + // Calculate prime factors count for each number |
| 12 | + for (let i = 0; i < n; i++) { |
| 13 | + factors[i] = primeFactors(nums[i]) |
| 14 | + } |
| 15 | + |
| 16 | + const stack = [-1] // Monotonic stack to keep track of elements in decreasing order of factors |
| 17 | + let curr = 0 |
| 18 | + |
| 19 | + // Calculate the count of reachable elements for each element |
| 20 | + for (let i = 0; i < n; i++) { |
| 21 | + while ( |
| 22 | + stack[stack.length - 1] !== -1 && |
| 23 | + factors[stack[stack.length - 1]] < factors[i] |
| 24 | + ) { |
| 25 | + curr = stack.pop() |
| 26 | + count[curr] = (curr - stack[stack.length - 1]) * (i - curr) |
| 27 | + } |
| 28 | + stack.push(i) |
| 29 | + } |
| 30 | + |
| 31 | + // Process any remaining elements in the stack |
| 32 | + while (stack[stack.length - 1] !== -1) { |
| 33 | + curr = stack.pop() |
| 34 | + count[curr] = (curr - stack[stack.length - 1]) * (n - curr) |
| 35 | + } |
| 36 | + |
| 37 | + // Create an array of pairs containing elements and their corresponding reachable count |
| 38 | + const pairs = Array(n) |
| 39 | + for (let i = 0; i < n; i++) { |
| 40 | + pairs[i] = [nums[i], count[i]] |
| 41 | + } |
| 42 | + |
| 43 | + // Sort the pairs in descending order of elements |
| 44 | + pairs.sort((a, b) => b[0] - a[0]) |
| 45 | + |
| 46 | + let res = BigInt(1) |
| 47 | + const mod = BigInt(1e9 + 7) |
| 48 | + |
| 49 | + // Calculate the maximum score using modPow and available moves |
| 50 | + for (let i = 0; i < pairs.length && k > 0; i++) { |
| 51 | + const curr = Math.min(pairs[i][1], k) |
| 52 | + res = (res * modPow(BigInt(pairs[i][0]), BigInt(curr), mod)) % mod |
| 53 | + k -= curr |
| 54 | + } |
| 55 | + |
| 56 | + return Number(res) // Convert the result to a regular number before returning |
| 57 | +} |
| 58 | + |
| 59 | +/** |
| 60 | + * Function to calculate modular exponentiation. |
| 61 | + * @param {bigint} x - Base. |
| 62 | + * @param {bigint} y - Exponent. |
| 63 | + * @param {bigint} m - Modulus. |
| 64 | + * @return {bigint} - Result of modular exponentiation. |
| 65 | + */ |
| 66 | +function modPow(x, y, m) { |
| 67 | + if (y === 0n) { |
| 68 | + return 1n |
| 69 | + } |
| 70 | + let p = modPow(x, y / 2n, m) % m |
| 71 | + p = (p * p) % m |
| 72 | + if (y % 2n === 0n) { |
| 73 | + return p |
| 74 | + } |
| 75 | + return (p * x) % m |
| 76 | +} |
| 77 | + |
| 78 | +/** |
| 79 | + * Function to calculate the count of prime factors for a number. |
| 80 | + * @param {number} num - Input number. |
| 81 | + * @return {number} - Count of prime factors for the input number. |
| 82 | + */ |
| 83 | +function primeFactors(num) { |
| 84 | + let count = 0 |
| 85 | + let factor = 2 |
| 86 | + const end = Math.sqrt(num) |
| 87 | + |
| 88 | + while (num > 1 && factor <= end) { |
| 89 | + let inc = false |
| 90 | + while (num % factor === 0) { |
| 91 | + if (!inc) { |
| 92 | + count++ |
| 93 | + inc = true |
| 94 | + } |
| 95 | + num /= factor |
| 96 | + } |
| 97 | + factor++ |
| 98 | + } |
| 99 | + |
| 100 | + if (num > 1) { |
| 101 | + count++ |
| 102 | + } |
| 103 | + |
| 104 | + return count |
| 105 | +} |
0 commit comments