|
| 1 | +from torch import nn |
| 2 | + |
| 3 | + |
| 4 | +class VGG(nn.Module): |
| 5 | + def __init__(self, num_classes): |
| 6 | + super(VGG, self).__init__() |
| 7 | + self.features = nn.Sequential( |
| 8 | + nn.Conv2d(3, 64, kernel_size=3, padding=1), |
| 9 | + nn.ReLU(True), |
| 10 | + nn.Conv2d(64, 64, kernel_size=3, padding=1), |
| 11 | + nn.ReLU(True), |
| 12 | + nn.MaxPool2d(kernel_size=2, stride=2), |
| 13 | + nn.Conv2d(64, 128, kernel_size=3, padding=1), |
| 14 | + nn.ReLU(True), |
| 15 | + nn.Conv2d(128, 128, kernel_size=3, padding=1), |
| 16 | + nn.ReLU(True), |
| 17 | + nn.MaxPool2d(kernel_size=2, stride=2), |
| 18 | + nn.Conv2d(128, 256, kernel_size=3, padding=1), |
| 19 | + nn.ReLU(True), |
| 20 | + nn.Conv2d(256, 256, kernel_size=3, padding=1), |
| 21 | + nn.ReLU(True), |
| 22 | + nn.Conv2d(256, 256, kernel_size=3, padding=1), |
| 23 | + nn.ReLU(True), |
| 24 | + nn.MaxPool2d(kernel_size=2, stride=2), |
| 25 | + nn.Conv2d(256, 512, kernel_size=3, padding=1), |
| 26 | + nn.ReLU(True), |
| 27 | + nn.Conv2d(512, 512, kernel_size=3, padding=1), |
| 28 | + nn.ReLU(True), |
| 29 | + nn.Conv2d(512, 512, kernel_size=3, padding=1), |
| 30 | + nn.ReLU(True), |
| 31 | + nn.MaxPool2d(kernel_size=2, stride=2), |
| 32 | + nn.Conv2d(512, 512, kernel_size=3, padding=1), |
| 33 | + nn.ReLU(True), |
| 34 | + nn.Conv2d(512, 512, kernel_size=3, padding=1), |
| 35 | + nn.ReLU(True), |
| 36 | + nn.Conv2d(512, 512, kernel_size=3, padding=1), |
| 37 | + nn.ReLU(True), |
| 38 | + nn.MaxPool2d(kernel_size=2, stride=2), ) |
| 39 | + self.classifier = nn.Sequential( |
| 40 | + nn.Linear(512 * 7 * 7, 4096), |
| 41 | + nn.ReLU(True), |
| 42 | + nn.Dropout(), |
| 43 | + nn.Linear(4096, 4096), |
| 44 | + nn.ReLU(True), |
| 45 | + nn.Dropout(), |
| 46 | + nn.Linear(4096, num_classes), ) |
| 47 | + self._initialize_weights() |
| 48 | + |
| 49 | + def forward(self, x): |
| 50 | + x = self.features(x) |
| 51 | + x = x.view(x.size(0), -1) |
| 52 | + x = self.classifier(x) |
0 commit comments