|
| 1 | +import torch |
| 2 | +import torchvision.datasets as dsets |
| 3 | +import torchvision.transforms as transforms |
| 4 | +from torch import nn, optim |
| 5 | +from torch.autograd import Variable |
| 6 | +from torch.utils.data import DataLoader |
| 7 | + |
| 8 | +# Image Preprocessing |
| 9 | +train_transform = transforms.Compose([ |
| 10 | + transforms.Scale(40), |
| 11 | + transforms.RandomHorizontalFlip(), |
| 12 | + transforms.RandomCrop(32), |
| 13 | + transforms.ToTensor(), |
| 14 | + transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) |
| 15 | +]) |
| 16 | + |
| 17 | +test_transform = transforms.Compose([ |
| 18 | + transforms.ToTensor(), |
| 19 | + transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) |
| 20 | +]) |
| 21 | +# CIFAR-10 Dataset |
| 22 | +train_dataset = dsets.CIFAR10( |
| 23 | + root='./data', train=True, transform=train_transform, download=True) |
| 24 | + |
| 25 | +test_dataset = dsets.CIFAR10( |
| 26 | + root='./data', train=False, transform=test_transform) |
| 27 | + |
| 28 | +# Data Loader (Input Pipeline) |
| 29 | +train_loader = DataLoader(dataset=train_dataset, batch_size=128, shuffle=True) |
| 30 | + |
| 31 | +test_loader = DataLoader(dataset=test_dataset, batch_size=128, shuffle=False) |
| 32 | + |
| 33 | + |
| 34 | +# 3x3 Convolution |
| 35 | +def conv3x3(in_channels, out_channels, stride=1): |
| 36 | + return nn.Conv2d( |
| 37 | + in_channels, |
| 38 | + out_channels, |
| 39 | + kernel_size=3, |
| 40 | + stride=stride, |
| 41 | + padding=1, |
| 42 | + bias=False) |
| 43 | + |
| 44 | + |
| 45 | +# Residual Block |
| 46 | +class ResidualBlock(nn.Module): |
| 47 | + def __init__(self, in_channels, out_channels, stride=1, downsample=None): |
| 48 | + super(ResidualBlock, self).__init__() |
| 49 | + self.conv1 = conv3x3(in_channels, out_channels, stride) |
| 50 | + self.bn1 = nn.BatchNorm2d(out_channels) |
| 51 | + self.relu = nn.ReLU(inplace=True) |
| 52 | + self.conv2 = conv3x3(out_channels, out_channels) |
| 53 | + self.bn2 = nn.BatchNorm2d(out_channels) |
| 54 | + self.downsample = downsample |
| 55 | + |
| 56 | + def forward(self, x): |
| 57 | + residual = x |
| 58 | + out = self.conv1(x) |
| 59 | + out = self.bn1(out) |
| 60 | + out = self.relu(out) |
| 61 | + out = self.conv2(out) |
| 62 | + out = self.bn2(out) |
| 63 | + if self.downsample: |
| 64 | + residual = self.downsample(x) |
| 65 | + out += residual |
| 66 | + out = self.relu(out) |
| 67 | + return out |
| 68 | + |
| 69 | + |
| 70 | +# ResNet Module |
| 71 | +class ResNet(nn.Module): |
| 72 | + def __init__(self, block, layers, num_classes=10): |
| 73 | + super(ResNet, self).__init__() |
| 74 | + self.in_channels = 16 |
| 75 | + self.conv = conv3x3(3, 16) |
| 76 | + self.bn = nn.BatchNorm2d(16) |
| 77 | + self.relu = nn.ReLU(inplace=True) |
| 78 | + self.layer1 = self.make_layer(block, 16, layers[0]) |
| 79 | + self.layer2 = self.make_layer(block, 32, layers[0], 2) |
| 80 | + self.layer3 = self.make_layer(block, 64, layers[1], 2) |
| 81 | + self.avg_pool = nn.AvgPool2d(8) |
| 82 | + self.fc = nn.Linear(64, num_classes) |
| 83 | + |
| 84 | + def make_layer(self, block, out_channels, blocks, stride=1): |
| 85 | + downsample = None |
| 86 | + if (stride != 1) or (self.in_channels != out_channels): |
| 87 | + downsample = nn.Sequential( |
| 88 | + conv3x3(self.in_channels, out_channels, stride=stride), |
| 89 | + nn.BatchNorm2d(out_channels)) |
| 90 | + layers = [] |
| 91 | + layers.append( |
| 92 | + block(self.in_channels, out_channels, stride, downsample)) |
| 93 | + self.in_channels = out_channels |
| 94 | + for i in range(1, blocks): |
| 95 | + layers.append(block(out_channels, out_channels)) |
| 96 | + return nn.Sequential(*layers) |
| 97 | + |
| 98 | + def forward(self, x): |
| 99 | + out = self.conv(x) |
| 100 | + out = self.bn(out) |
| 101 | + out = self.relu(out) |
| 102 | + out = self.layer1(out) |
| 103 | + out = self.layer2(out) |
| 104 | + out = self.layer3(out) |
| 105 | + out = self.avg_pool(out) |
| 106 | + out = out.view(out.size(0), -1) |
| 107 | + out = self.fc(out) |
| 108 | + return out |
| 109 | + |
| 110 | + |
| 111 | +resnet = ResNet(ResidualBlock, [3, 3, 3]) |
| 112 | +resnet.cuda() |
| 113 | + |
| 114 | +# Loss and Optimizer |
| 115 | +criterion = nn.CrossEntropyLoss() |
| 116 | +lr = 0.001 |
| 117 | +optimizer = torch.optim.Adam(resnet.parameters(), lr=lr) |
| 118 | + |
| 119 | +# Training |
| 120 | +total_epoch = 50 |
| 121 | +for epoch in range(total_epoch): |
| 122 | + running_loss = 0 |
| 123 | + running_acc = 0 |
| 124 | + running_num = 0 |
| 125 | + for i, (images, labels) in enumerate(train_loader): |
| 126 | + if torch.cuda.is_available(): |
| 127 | + images = Variable(images.cuda()) |
| 128 | + labels = Variable(labels.cuda()) |
| 129 | + else: |
| 130 | + images = Variable(images) |
| 131 | + labels = Variable(labels) |
| 132 | + # Forward + Backward + Optimize |
| 133 | + optimizer.zero_grad() |
| 134 | + outputs = resnet(images) |
| 135 | + loss = criterion(outputs, labels) |
| 136 | + loss.backward() |
| 137 | + optimizer.step() |
| 138 | + |
| 139 | + # =====================log===================== |
| 140 | + running_num += labels.size(0) |
| 141 | + running_loss += loss.data[0] * labels.size(0) |
| 142 | + _, correct_label = torch.max(outputs, 1) |
| 143 | + correct_num = (correct_label == labels).sum() |
| 144 | + running_acc += correct_num.data[0] |
| 145 | + if (i + 1) % 100 == 0: |
| 146 | + print_loss = running_loss / running_num |
| 147 | + print_acc = running_acc / running_num |
| 148 | + print("Epoch [{}/{}], Iter [{}/{}] Loss: {:.6f} Acc: {:.6f}". |
| 149 | + format(epoch + 1, total_epoch, i + 1, |
| 150 | + len(train_loader), print_loss, print_acc)) |
| 151 | + |
| 152 | + # Decaying Learning Rate |
| 153 | + if (epoch + 1) % 20 == 0: |
| 154 | + lr /= 3 |
| 155 | + optimizer = torch.optim.Adam(resnet.parameters(), lr=lr) |
| 156 | + |
| 157 | +# Test |
| 158 | +correct = 0 |
| 159 | +total = 0 |
| 160 | +for images, labels in test_loader: |
| 161 | + if torch.cuda.is_available: |
| 162 | + images = Variable(images.cuda()) |
| 163 | + else: |
| 164 | + images = Variable(images) |
| 165 | + outputs = resnet(images) |
| 166 | + _, predicted = torch.max(outputs.data, 1) |
| 167 | + total += labels.size(0) |
| 168 | + correct += (predicted.cpu() == labels).sum() |
| 169 | + |
| 170 | +print('Accuracy of the model on the test images: {:.2f} %%'.format( |
| 171 | + 100 * correct / total)) |
| 172 | + |
| 173 | +# Save the Model |
| 174 | +torch.save(resnet.state_dict(), 'resnet.pth') |
0 commit comments