|
| 1 | +""" |
| 2 | +
|
| 3 | +Object shape recognition with circle fitting |
| 4 | +
|
| 5 | +author: Atsushi Sakai (@Atsushi_twi) |
| 6 | +
|
| 7 | +""" |
| 8 | + |
| 9 | + |
| 10 | +import matplotlib.pyplot as plt |
| 11 | +import math |
| 12 | +import random |
| 13 | +import numpy as np |
| 14 | + |
| 15 | + |
| 16 | +def circle_fitting(x, y): |
| 17 | + """ |
| 18 | + Circle Fitting with least squared |
| 19 | + input: point x-y positions |
| 20 | + output cxe x center position |
| 21 | + cye y center position |
| 22 | + re radius of circle |
| 23 | + error: prediction error |
| 24 | + """ |
| 25 | + |
| 26 | + sumx = sum(x) |
| 27 | + sumy = sum(y) |
| 28 | + sumx2 = sum([ix ** 2 for ix in x]) |
| 29 | + sumy2 = sum([iy ** 2 for iy in y]) |
| 30 | + sumxy = sum([ix * iy for (ix, iy) in zip(x, y)]) |
| 31 | + |
| 32 | + F = np.array([[sumx2, sumxy, sumx], |
| 33 | + [sumxy, sumy2, sumy], |
| 34 | + [sumx, sumy, len(x)]]) |
| 35 | + |
| 36 | + G = np.array([[-sum([ix ** 3 + ix * iy ** 2 for (ix, iy) in zip(x, y)])], |
| 37 | + [-sum([ix ** 2 * iy + iy ** 3 for (ix, iy) in zip(x, y)])], |
| 38 | + [-sum([ix ** 2 + iy ** 2 for (ix, iy) in zip(x, y)])]]) |
| 39 | + |
| 40 | + # try: |
| 41 | + T = np.linalg.inv(F).dot(G) |
| 42 | + # except: |
| 43 | + # return (0, 0, float("inf")) |
| 44 | + |
| 45 | + cxe = float(T[0] / -2) |
| 46 | + cye = float(T[1] / -2) |
| 47 | + # print (cxe,cye,T) |
| 48 | + # try: |
| 49 | + re = math.sqrt(cxe**2 + cye**2 - T[2]) |
| 50 | + # except: |
| 51 | + # return (cxe, cye, float("inf")) |
| 52 | + |
| 53 | + error = sum([np.hypot(cxe - ix, cye - iy) - re for (ix, iy) in zip(x, y)]) |
| 54 | + # print(error) |
| 55 | + |
| 56 | + return (cxe, cye, re, error) |
| 57 | + |
| 58 | + |
| 59 | +def get_sample_points(cx, cy, r, angle_reso): |
| 60 | + x, y, angle, ran = [], [], [], [] |
| 61 | + |
| 62 | + for theta in np.arange(0.0, 2.0 * math.pi, angle_reso): |
| 63 | + rn = r * random.uniform(1.0, 1.0) |
| 64 | + nx = cx + rn * math.cos(theta) |
| 65 | + ny = cy + rn * math.sin(theta) |
| 66 | + nangle = math.atan2(ny, nx) |
| 67 | + nr = math.hypot(nx, ny) |
| 68 | + |
| 69 | + occluded = False |
| 70 | + for i in range(len(angle)): |
| 71 | + if abs(angle[i] - nangle) <= angle_reso: |
| 72 | + if nr >= ran[i]: |
| 73 | + occluded = True |
| 74 | + break |
| 75 | + |
| 76 | + if not occluded: |
| 77 | + x.append(nx) |
| 78 | + y.append(ny) |
| 79 | + angle.append(nangle) |
| 80 | + ran.append(nr) |
| 81 | + |
| 82 | + return x, y |
| 83 | + |
| 84 | + |
| 85 | +def plot_circle(x, y, size, color="-b"): |
| 86 | + deg = list(range(0, 360, 5)) |
| 87 | + deg.append(0) |
| 88 | + xl = [x + size * math.cos(math.radians(d)) for d in deg] |
| 89 | + yl = [y + size * math.sin(math.radians(d)) for d in deg] |
| 90 | + plt.plot(xl, yl, color) |
| 91 | + |
| 92 | + |
| 93 | +def main1(): |
| 94 | + print(__file__ + " start!!") |
| 95 | + |
| 96 | + tcx = 1.0 |
| 97 | + tcy = 2.0 |
| 98 | + tr = 3.0 |
| 99 | + np = 10 |
| 100 | + |
| 101 | + x, y = get_sample_points(tcx, tcy, tr, np) |
| 102 | + |
| 103 | + cx, cy, r, error = circle_fitting(x, y) |
| 104 | + print("Error:", error) |
| 105 | + |
| 106 | + plot_circle(tcx, tcy, tr) |
| 107 | + plot_circle(cx, cy, r, color="-xr") |
| 108 | + plt.plot(x, y, "gx") |
| 109 | + |
| 110 | + plt.axis("equal") |
| 111 | + plt.show() |
| 112 | + |
| 113 | + |
| 114 | +def main(): |
| 115 | + |
| 116 | + time = 0.0 |
| 117 | + simtime = 10.0 |
| 118 | + dt = 1.0 |
| 119 | + |
| 120 | + cx = -3.0 |
| 121 | + cy = -5.0 |
| 122 | + theta = math.radians(30.0) |
| 123 | + |
| 124 | + cr = 1.0 |
| 125 | + angle_reso = math.radians(30.0) |
| 126 | + |
| 127 | + while time <= simtime: |
| 128 | + time += dt |
| 129 | + |
| 130 | + cx += math.cos(theta) |
| 131 | + cy += math.cos(theta) |
| 132 | + |
| 133 | + x, y = get_sample_points(cx, cy, cr, angle_reso) |
| 134 | + |
| 135 | + ex, ey, er, error = circle_fitting(x, y) |
| 136 | + print("Error:", error) |
| 137 | + |
| 138 | + plt.cla() |
| 139 | + plt.axis("equal") |
| 140 | + plt.plot(0.0, 0.0, "*r") |
| 141 | + plot_circle(cx, cy, cr) |
| 142 | + plt.plot(x, y, "xr") |
| 143 | + plot_circle(ex, ey, er, "-r") |
| 144 | + plt.pause(dt) |
| 145 | + |
| 146 | + |
| 147 | +if __name__ == '__main__': |
| 148 | + # main1() |
| 149 | + main() |
0 commit comments