A collection of popular articles and papers on Ad ranking recommender systems
Industry Implementations:
Twitter:
Ad Candidate Rankinghttps://blog.twitter.com/engineering/en_us/topics/infrastructure/2019/splitnet-architecture-for-ad-candidate-ranking
Snapchat:
Tencent:
-
Tencent using NVIDIA Merlin: https://medium.com/nvidia-merlin/leading-design-and-development-of-the-advertising-recommender-system-at-tencent-an-interview-with-37f1eed898a7 -
Tencent using NVIDIA Merlin HugeCTR: https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s31820/?ncid=so-medi-863304
Pinterest:
Multi tower models and AutoMLhttps://medium.com/pinterest-engineering/how-we-use-automl-multi-task-learning-and-multi-tower-models-for-pinterest-ads-db966c3dc99eCalbiration Utilityhttps://medium.com/pinterest-engineering/multi-task-learning-and-calibration-for-utility-based-home-feed-ranking-64087a7bcbadContextual Relevancehttps://medium.com/pinterest-engineering/contextual-relevance-in-ads-ranking-63c2ff215aa2
Swiggy:
Contextual Bandits for Ads RecSyshttps://bytes.swiggy.com/contextual-bandits-for-ads-recommendations-ec210775fcf
OLX:
Calibration in General:
Scale Calibration of Deep Ranking Models - Google Researchhttps://storage.googleapis.com/pub-tools-public-publication-data/pdf/149935a08dc9db00fd92d0679061df7d79e601fc.pdf
Literature Survey:
Click-Through Rate Prediction in Online Advertising: A Literature Review Yanwu Yang, Panyu Zhai: https://arxiv.org/abs/2202.10462