@@ -7,7 +7,7 @@ Convolutional Neural Networks (LeNet)
77 This section assumes the reader has already read through :doc:`logreg` and
88 :doc:`mlp`. Additionally, it uses the following new Theano functions and concepts:
99 `T.tanh`_, `shared variables`_, `basic arithmetic ops`_, `T.grad`_,
10- `floatX`_, `downsample `_ , `conv2d`_, `dimshuffle`_. If you intend to run the
10+ `floatX`_, `pool `_ , `conv2d`_, `dimshuffle`_. If you intend to run the
1111 code on GPU also read `GPU`_.
1212
1313 To run this example on a GPU, you need a good GPU. It needs
@@ -35,7 +35,7 @@ Convolutional Neural Networks (LeNet)
3535
3636.. _GPU: http://deeplearning.net/software/theano/tutorial/using_gpu.html
3737
38- .. _downsample : http://deeplearning.net/software/theano/library/tensor/signal/downsample .html
38+ .. _pool : http://deeplearning.net/software/theano/library/tensor/signal/pool .html
3939
4040.. _conv2d: http://deeplearning.net/software/theano/library/tensor/signal/conv.html#module-conv
4141
@@ -320,27 +320,27 @@ Max-pooling is useful in vision for two reasons:
320320 "smart" way of reducing the dimensionality of intermediate representations.
321321
322322Max-pooling is done in Theano by way of
323- ``theano.tensor.signal.downsample.max_pool_2d ``. This function takes as input
323+ ``theano.tensor.signal.pool.pool_2d ``. This function takes as input
324324an N dimensional tensor (where N >= 2) and a downscaling factor and performs
325325max-pooling over the 2 trailing dimensions of the tensor.
326326
327327An example is worth a thousand words:
328328
329329.. code-block:: python
330330
331- from theano.tensor.signal import downsample
331+ from theano.tensor.signal import pool
332332
333333 input = T.dtensor4('input')
334334 maxpool_shape = (2, 2)
335- pool_out = downsample.max_pool_2d (input, maxpool_shape, ignore_border=True)
335+ pool_out = pool.pool_2d (input, maxpool_shape, ignore_border=True)
336336 f = theano.function([input],pool_out)
337337
338338 invals = numpy.random.RandomState(1).rand(3, 2, 5, 5)
339339 print 'With ignore_border set to True:'
340340 print 'invals[0, 0, :, :] =\n', invals[0, 0, :, :]
341341 print 'output[0, 0, :, :] =\n', f(invals)[0, 0, :, :]
342342
343- pool_out = downsample.max_pool_2d (input, maxpool_shape, ignore_border=False)
343+ pool_out = pool.pool_2d (input, maxpool_shape, ignore_border=False)
344344 f = theano.function([input],pool_out)
345345 print 'With ignore_border set to False:'
346346 print 'invals[1, 0, :, :] =\n ', invals[1, 0, :, :]
0 commit comments