@@ -191,36 +191,22 @@ The following code illustrates how to load a sample dataset and use logistic reg
191191
192192{% highlight scala %}
193193
194- import scala.collection.mutable
195- import scala.language.reflectiveCalls
196-
197- import org.apache.spark.{SparkConf, SparkContext}
198- import org.apache.spark.ml.{Pipeline, PipelineStage}
199- import org.apache.spark.ml.classification.{LogisticRegression, LogisticRegressionModel}
200- import org.apache.spark.ml.feature.StringIndexer
194+ import org.apache.spark.ml.classification.LogisticRegression
201195import org.apache.spark.mllib.util.MLUtils
202- import org.apache.spark.sql.DataFrame
203-
204- val regParam = 0.3
205- val elasticNetParam = 0.8
206- val tol = 1E-6
207- val dataPath = "data/mllib/sample_libsvm_data.txt"
208-
209- println(s"LogisticRegressionExample with regParam $regParam and elasticNetParam $elasticNetParam")
210196
211197// Load training and test data and cache it.
212- val training = MLUtils.loadLibSVMFile(sc, dataPath ).toDF()
198+ val training = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt" ).toDF()
213199
214200val lor = new LogisticRegression()
215- .setRegParam(regParam )
216- .setElasticNetParam(elasticNetParam )
217- .setTol(tol )
201+ .setRegParam(0.3 )
202+ .setElasticNetParam(0.8 )
203+ .setTol(1e-6 )
218204
219205// Fit the model
220- val lirModel = lor.fit(training)
206+ val lorModel = lor.fit(training)
221207
222208// Print the weights and intercept for logistic regression.
223- println(s"Weights: ${lirModel .weights} Intercept: ${lirModel .intercept}")
209+ println(s"Weights: ${lorModel .weights} Intercept: ${lorModel .intercept}")
224210
225211{% endhighlight %}
226212
0 commit comments