|
1 | 1 | # Tensorflow implementations |
2 | 2 |
|
3 | | -### Very simple TensorFlow Examples |
| 3 | +#### Very simple TensorFlow examples |
4 | 4 | * Code: https://github.com/nlintz/TensorFlow-Tutorials |
5 | 5 |
|
6 | | -### Sequence to Sequence -- Video to Text |
| 6 | +#### Sequence to Sequence -- Video to Text |
7 | 7 | * Subhashini Venugopalan, Marcus Rohrbach, Jeff Donahue, Raymond Mooney, Trevor Darrell, Kate Saenko, arxiv, 2015 |
8 | 8 | * [[code](https://github.com/jazzsaxmafia/video_to_sequence)] |
9 | 9 | * [[paper](http://arxiv.org/pdf/1505.00487v3.pdf)] |
10 | 10 |
|
11 | | -### Sequence to Sequence -- chatbot |
| 11 | +#### Sequence to Sequence -- chatbot |
12 | 12 | * Oriol Vinyals, Quoc V. Le, arxiv, 2015 |
13 | 13 | * [[code](https://github.com/nicolas-ivanov/tf_seq2seq_chatbot)] |
14 | 14 | * [[paper](http://arxiv.org/pdf/1506.05869v1.pdf)] |
15 | 15 |
|
16 | | -### Show and Tell: A Neural Image Caption Generator |
| 16 | +#### Show and Tell: A Neural Image Caption Generator |
17 | 17 | * Oriol Vinyals, Alexander Toshev, Samy Bengio, Dumitru Erhan, arxiv, 2015 |
18 | 18 | * [[code](https://github.com/jazzsaxmafia/show_and_tell.tensorflow)] |
19 | 19 | * [[paper](http://arxiv.org/pdf/1411.4555v2.pdf)] |
20 | 20 |
|
21 | | -### Show, Attend and Tell: Neural Image Caption Generation with Visual Attention |
| 21 | +#### Show, Attend and Tell: Neural Image Caption Generation with Visual Attention |
22 | 22 | * Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard Zemel, Yoshua Bengio, ICLR, 2014 |
23 | 23 | * [[code](https://github.com/jazzsaxmafia/show_attend_and_tell.tensorflow)] |
24 | 24 | * [[paper](http://arxiv.org/pdf/1502.03044.pdf)] |
25 | 25 |
|
26 | | -### Learning Deep Features for Discriminative Localization |
| 26 | +#### Learning Deep Features for Discriminative Localization |
27 | 27 | * Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba, CVPR, 2016 |
28 | 28 | * [[code](https://github.com/jazzsaxmafia/Weakly_detector)] |
29 | 29 | * [[paper](http://arxiv.org/pdf/1512.04150v1.pdf)] |
30 | 30 |
|
31 | | -### Deep Visual Analogy-Making |
| 31 | +#### Deep Visual Analogy-Making |
32 | 32 | * Scott Reed, Yi Zhang, Yuting Zhang, Honglak Lee, NIPS, 2015 |
33 | 33 | * [[code](https://github.com/carpedm20/visual-analogy-tensorflow)] |
34 | 34 | * [[paper](http://www-personal.umich.edu/~reedscot/nips2015.pdf)] |
35 | 35 |
|
36 | | -### Deep Convolutional Generative Adversarial Networks |
| 36 | +#### Deep Convolutional Generative Adversarial Networks |
37 | 37 | * Alec Radford, Luke Metz, Soumith Chintala, arxiv, 2015 |
38 | 38 | * [[code](https://github.com/carpedm20/DCGAN-tensorflow)] |
39 | 39 | * [[paper](http://arxiv.org/pdf/1511.06434v2.pdf)] |
40 | 40 |
|
41 | | -### End-To-End Memory Networks |
| 41 | +#### End-To-End Memory Networks |
42 | 42 | * Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, Rob Fergus, NIPS, 2015 |
43 | 43 | * [[code](https://github.com/carpedm20/MemN2N-tensorflow)] |
44 | 44 | * [[paper](http://arxiv.org/pdf/1503.08895v4.pdf)] |
45 | 45 |
|
46 | | -### Character-Aware Neural Language Models |
| 46 | +#### Character-Aware Neural Language Models |
47 | 47 | * Yoon Kim, Yacine Jernite, David Sontag, Alexander M. Rush, AAAI, 2016 |
48 | 48 | * [[code](https://github.com/carpedm20/lstm-char-cnn-tensorflow)] |
49 | 49 | * [[paper](http://arxiv.org/pdf/1508.06615v4.pdf)] |
50 | 50 |
|
51 | | -### Deep Reinforcement Learning |
| 51 | +#### Deep Reinforcement Learning |
52 | 52 | * Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, Martin Riedmiller, NIPS, 2013 |
53 | 53 | * [[code](https://github.com/nivwusquorum/tensorflow-deepq)] |
54 | 54 | * [[paper](http://arxiv.org/abs/1312.5602)] |
55 | 55 |
|
56 | | -### Using Deep Q-Network to Learn How To Play Flappy Bird |
| 56 | +#### Using Deep Q-Network to Learn How To Play Flappy Bird |
57 | 57 | * Kevin Chen, Deep Reinforcement Learning for Flappy Bird, Report from http://cs229.stanford.edu/ 2015 project |
58 | 58 | * [[code](https://github.com/DeepLearningProjects/DeepLearningFlappyBird)] |
59 | 59 | * [[report](http://cs229.stanford.edu/proj2015/362_report.pdf)] |
60 | 60 |
|
61 | | -### Semi-Supervised Learning with Ladder Network |
| 61 | +#### Semi-Supervised Learning with Ladder Network |
62 | 62 | * A Rasmus, H Valpola, M Honkala, M Berglund, and T Raiko, NIPS, 2015 |
63 | 63 | * [[code](https://github.com/rinuboney/ladder)] |
64 | 64 | * [[paper](https://papers.nips.cc/paper/5947-semi-supervised-learning-with-ladder-networks.pdf)] |
65 | 65 | * [[Additional Material](http://rinuboney.github.io/2016/01/19/ladder-network.html)] |
| 66 | + |
| 67 | +## Contribution |
| 68 | +Did you find new TensorFlow implementations? Pull requests are always welcome. |
0 commit comments