Skip to content

Commit ec2c3b3

Browse files
committed
Add contribution section
Made ####, since ### stands out too much.
1 parent 262ddf4 commit ec2c3b3

File tree

1 file changed

+16
-13
lines changed

1 file changed

+16
-13
lines changed

README.md

Lines changed: 16 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -1,65 +1,68 @@
11
# Tensorflow implementations
22

3-
### Very simple TensorFlow Examples
3+
#### Very simple TensorFlow examples
44
* Code: https://github.com/nlintz/TensorFlow-Tutorials
55

6-
### Sequence to Sequence -- Video to Text
6+
#### Sequence to Sequence -- Video to Text
77
* Subhashini Venugopalan, Marcus Rohrbach, Jeff Donahue, Raymond Mooney, Trevor Darrell, Kate Saenko, arxiv, 2015
88
* [[code](https://github.com/jazzsaxmafia/video_to_sequence)]
99
* [[paper](http://arxiv.org/pdf/1505.00487v3.pdf)]
1010

11-
### Sequence to Sequence -- chatbot
11+
#### Sequence to Sequence -- chatbot
1212
* Oriol Vinyals, Quoc V. Le, arxiv, 2015
1313
* [[code](https://github.com/nicolas-ivanov/tf_seq2seq_chatbot)]
1414
* [[paper](http://arxiv.org/pdf/1506.05869v1.pdf)]
1515

16-
### Show and Tell: A Neural Image Caption Generator
16+
#### Show and Tell: A Neural Image Caption Generator
1717
* Oriol Vinyals, Alexander Toshev, Samy Bengio, Dumitru Erhan, arxiv, 2015
1818
* [[code](https://github.com/jazzsaxmafia/show_and_tell.tensorflow)]
1919
* [[paper](http://arxiv.org/pdf/1411.4555v2.pdf)]
2020

21-
### Show, Attend and Tell: Neural Image Caption Generation with Visual Attention
21+
#### Show, Attend and Tell: Neural Image Caption Generation with Visual Attention
2222
* Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard Zemel, Yoshua Bengio, ICLR, 2014
2323
* [[code](https://github.com/jazzsaxmafia/show_attend_and_tell.tensorflow)]
2424
* [[paper](http://arxiv.org/pdf/1502.03044.pdf)]
2525

26-
### Learning Deep Features for Discriminative Localization
26+
#### Learning Deep Features for Discriminative Localization
2727
* Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba, CVPR, 2016
2828
* [[code](https://github.com/jazzsaxmafia/Weakly_detector)]
2929
* [[paper](http://arxiv.org/pdf/1512.04150v1.pdf)]
3030

31-
### Deep Visual Analogy-Making
31+
#### Deep Visual Analogy-Making
3232
* Scott Reed, Yi Zhang, Yuting Zhang, Honglak Lee, NIPS, 2015
3333
* [[code](https://github.com/carpedm20/visual-analogy-tensorflow)]
3434
* [[paper](http://www-personal.umich.edu/~reedscot/nips2015.pdf)]
3535

36-
### Deep Convolutional Generative Adversarial Networks
36+
#### Deep Convolutional Generative Adversarial Networks
3737
* Alec Radford, Luke Metz, Soumith Chintala, arxiv, 2015
3838
* [[code](https://github.com/carpedm20/DCGAN-tensorflow)]
3939
* [[paper](http://arxiv.org/pdf/1511.06434v2.pdf)]
4040

41-
### End-To-End Memory Networks
41+
#### End-To-End Memory Networks
4242
* Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, Rob Fergus, NIPS, 2015
4343
* [[code](https://github.com/carpedm20/MemN2N-tensorflow)]
4444
* [[paper](http://arxiv.org/pdf/1503.08895v4.pdf)]
4545

46-
### Character-Aware Neural Language Models
46+
#### Character-Aware Neural Language Models
4747
* Yoon Kim, Yacine Jernite, David Sontag, Alexander M. Rush, AAAI, 2016
4848
* [[code](https://github.com/carpedm20/lstm-char-cnn-tensorflow)]
4949
* [[paper](http://arxiv.org/pdf/1508.06615v4.pdf)]
5050

51-
### Deep Reinforcement Learning
51+
#### Deep Reinforcement Learning
5252
* Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, Martin Riedmiller, NIPS, 2013
5353
* [[code](https://github.com/nivwusquorum/tensorflow-deepq)]
5454
* [[paper](http://arxiv.org/abs/1312.5602)]
5555

56-
### Using Deep Q-Network to Learn How To Play Flappy Bird
56+
#### Using Deep Q-Network to Learn How To Play Flappy Bird
5757
* Kevin Chen, Deep Reinforcement Learning for Flappy Bird, Report from http://cs229.stanford.edu/ 2015 project
5858
* [[code](https://github.com/DeepLearningProjects/DeepLearningFlappyBird)]
5959
* [[report](http://cs229.stanford.edu/proj2015/362_report.pdf)]
6060

61-
### Semi-Supervised Learning with Ladder Network
61+
#### Semi-Supervised Learning with Ladder Network
6262
* A Rasmus, H Valpola, M Honkala, M Berglund, and T Raiko, NIPS, 2015
6363
* [[code](https://github.com/rinuboney/ladder)]
6464
* [[paper](https://papers.nips.cc/paper/5947-semi-supervised-learning-with-ladder-networks.pdf)]
6565
* [[Additional Material](http://rinuboney.github.io/2016/01/19/ladder-network.html)]
66+
67+
## Contribution
68+
Did you find new TensorFlow implementations? Pull requests are always welcome.

0 commit comments

Comments
 (0)