@@ -130,55 +130,6 @@ def buildFCN8(nb_in_channels, input_var,
130130 nonlinearity = softmax )
131131 # end-snippet-1
132132
133- # Load weights
134- if load_weights :
135- if pascal :
136- path_weights = '/data/lisatmp4/erraqabi/data/att-segm/' + \
137- 'pre_trained_weights/pascal-fcn8s-tvg-dag.mat'
138- if 'tvg' in path_weights :
139- str_filter = 'f'
140- str_bias = 'b'
141- else :
142- str_filter = '_filter'
143- str_bias = '_bias'
144-
145- W = sio .loadmat (path_weights )
146-
147- # Load the parameter values into the net
148- num_params = W .get ('params' ).shape [1 ]
149- for i in range (num_params ):
150- # Get layer name from the saved model
151- name = str (W .get ('params' )[0 ][i ][0 ])[3 :- 2 ]
152- # Get parameter value
153- param_value = W .get ('params' )[0 ][i ][1 ]
154-
155- # Load weights
156- if name .endswith (str_filter ):
157- raw_name = name [:- len (str_filter )]
158- if 'score' not in raw_name and \
159- 'upsample' not in raw_name and \
160- 'final' not in raw_name and \
161- 'probs' not in raw_name :
162-
163- # print 'Initializing layer ' + raw_name
164- param_value = param_value .T
165- param_value = np .swapaxes (param_value , 2 , 3 )
166- net [raw_name ].W .set_value (param_value )
167-
168- # Load bias terms
169- if name .endswith (str_bias ):
170- raw_name = name [:- len (str_bias )]
171- if 'score' not in raw_name and \
172- 'upsample' not in raw_name and \
173- 'final' not in raw_name and \
174- 'probs' not in raw_name :
175-
176- param_value = np .squeeze (param_value )
177- net [raw_name ].b .set_value (param_value )
178- else :
179- with np .load (path_weights ) as f :
180- param_values = [f ['arr_%d' % i ] for i in range (len (f .files ))]
181- lasagne .layers .set_all_param_values (net ['probs' ], param_values )
182133
183134 # Do not train
184135 if not trainable :
0 commit comments