Skip to content

Commit ca007cb

Browse files
Merge pull request planetlabs#260 from planetlabs/add_output_coastal_erosion
Add outputs to coastal erosion workshop and a note about Matplotlib's low resolution bug.
2 parents 3f0ae8c + 7b197ff commit ca007cb

File tree

6 files changed

+588
-136
lines changed

6 files changed

+588
-136
lines changed

jupyter-notebooks/coastal-erosion-example/1_rasterio_firstlook.ipynb

Lines changed: 55 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -93,7 +93,7 @@
9393
},
9494
{
9595
"cell_type": "code",
96-
"execution_count": null,
96+
"execution_count": 1,
9797
"metadata": {},
9898
"outputs": [],
9999
"source": [
@@ -103,7 +103,7 @@
103103
},
104104
{
105105
"cell_type": "code",
106-
"execution_count": null,
106+
"execution_count": 2,
107107
"metadata": {},
108108
"outputs": [],
109109
"source": [
@@ -113,9 +113,17 @@
113113
},
114114
{
115115
"cell_type": "code",
116-
"execution_count": null,
116+
"execution_count": 3,
117117
"metadata": {},
118-
"outputs": [],
118+
"outputs": [
119+
{
120+
"name": "stdout",
121+
"output_type": "stream",
122+
"text": [
123+
"<open DatasetReader name='20170831_172754_101c_3b_Visual.tif' mode='r'>\n"
124+
]
125+
}
126+
],
119127
"source": [
120128
"# Open our image\n",
121129
"satdat = rasterio.open(image_file)\n",
@@ -126,9 +134,18 @@
126134
},
127135
{
128136
"cell_type": "code",
129-
"execution_count": null,
137+
"execution_count": 4,
130138
"metadata": {},
131-
"outputs": [],
139+
"outputs": [
140+
{
141+
"name": "stdout",
142+
"output_type": "stream",
143+
"text": [
144+
"20170831_172754_101c_3b_Visual.tif\n",
145+
"3\n"
146+
]
147+
}
148+
],
132149
"source": [
133150
"# let's look at some basic information about this geoTIFF:\n",
134151
"\n",
@@ -148,9 +165,17 @@
148165
},
149166
{
150167
"cell_type": "code",
151-
"execution_count": null,
168+
"execution_count": 5,
152169
"metadata": {},
153-
"outputs": [],
170+
"outputs": [
171+
{
172+
"name": "stdout",
173+
"output_type": "stream",
174+
"text": [
175+
"(1, 2, 3)\n"
176+
]
177+
}
178+
],
154179
"source": [
155180
"# And provides a sequence of band indexes. These are one indexing, not zero indexing like Numpy arrays.\n",
156181
"print(satdat.indexes)"
@@ -165,7 +190,7 @@
165190
},
166191
{
167192
"cell_type": "code",
168-
"execution_count": null,
193+
"execution_count": 6,
169194
"metadata": {},
170195
"outputs": [],
171196
"source": [
@@ -188,19 +213,35 @@
188213
},
189214
{
190215
"cell_type": "code",
191-
"execution_count": null,
216+
"execution_count": 7,
192217
"metadata": {},
193-
"outputs": [],
218+
"outputs": [
219+
{
220+
"name": "stdout",
221+
"output_type": "stream",
222+
"text": [
223+
"uint8\n"
224+
]
225+
}
226+
],
194227
"source": [
195228
"# each band is stored as a numpy array, and its values are a numpy data type\n",
196229
"print(blue.dtype)"
197230
]
198231
},
199232
{
200233
"cell_type": "code",
201-
"execution_count": null,
234+
"execution_count": 8,
202235
"metadata": {},
203-
"outputs": [],
236+
"outputs": [
237+
{
238+
"name": "stdout",
239+
"output_type": "stream",
240+
"text": [
241+
"width: 8337, height: 3922\n"
242+
]
243+
}
244+
],
204245
"source": [
205246
"# using the blue band as an example, examine the width & height of the image (in pixels)\n",
206247
"\n",
@@ -227,7 +268,7 @@
227268
"name": "python",
228269
"nbconvert_exporter": "python",
229270
"pygments_lexer": "ipython3",
230-
"version": "3.8.13"
271+
"version": "3.9.6"
231272
}
232273
},
233274
"nbformat": 4,

jupyter-notebooks/coastal-erosion-example/2_rasterbands.ipynb

Lines changed: 116 additions & 24 deletions
Large diffs are not rendered by default.

jupyter-notebooks/coastal-erosion-example/3_compute_NDWI.ipynb

Lines changed: 34 additions & 10 deletions
Large diffs are not rendered by default.

jupyter-notebooks/coastal-erosion-example/4_masks_and_filters.ipynb

Lines changed: 57 additions & 17 deletions
Large diffs are not rendered by default.

jupyter-notebooks/coastal-erosion-example/5_plotting_a_histogram.ipynb

Lines changed: 18 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -71,7 +71,7 @@
7171
},
7272
{
7373
"cell_type": "code",
74-
"execution_count": null,
74+
"execution_count": 1,
7575
"id": "1f17f977",
7676
"metadata": {},
7777
"outputs": [],
@@ -89,7 +89,7 @@
8989
},
9090
{
9191
"cell_type": "code",
92-
"execution_count": null,
92+
"execution_count": 2,
9393
"id": "6963b7d3",
9494
"metadata": {},
9595
"outputs": [],
@@ -104,10 +104,23 @@
104104
},
105105
{
106106
"cell_type": "code",
107-
"execution_count": null,
107+
"execution_count": 3,
108108
"id": "86a94b70",
109109
"metadata": {},
110-
"outputs": [],
110+
"outputs": [
111+
{
112+
"data": {
113+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEeCAYAAACQfIJ4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAjsElEQVR4nO3dd9hcVbn+8e8tVZq0HH+IYCICiqCIUZESAjaagogKxwIixgZWRBCPxF4oB/EgEjpSFRGxUoQYkJogBAgtkKChhhJ6aHl+f6w1sDPZM++eZNo7uT/XNde7Z+01ez9r9jvzzFq7KSIwMzOr97JeB2BmZv3JCcLMzEo5QZiZWSknCDMzK+UEYWZmpZwgzMyslBNEl0jaU1Lkx8Rex2PWKZJmFv7Xx/Y6nqFIOqkQ7/hex9NPlux1AMORpD2BE0tmPQfMBq4CjoyIiV0Mq60kfQVYOT89KSJmltRZEzgQeC+wVi5+GLgHmAr8PiL+1OlYF3f5S3hsfnpdRJzbq1hssDhBtNdSwKuADwIflPSliPhFj2NaWF8BXpOnJwIzizMlvRa4EhhR97pX5cdoYBnACaLzxgIH5+mTgXN7FokNFCeI9tgy/10LGA+sl58fIumsiHigJ1F11nd4KTlMBQ4FZgErAhuTkuRif5q+pBUi4olex9Eukl4GLBMRT/c6FuuCiPCjxQewJ+nLL9JbON+8rYvzgJ1LXjOxUH814FekYal7gbnA08B04FjgtXXLH1tYzkxgbeDXwEP5dZcCo0tiXg7YH7gaeAx4BrgdOBwYUag3vi7++sf4XG9aoewDDd6nFUvKXgF8G7gGeDTH8W/gbGD9urpjgN+RhqyeBR7J7dsbeFld3YmFePbMdabm93MW8FNg2ZJ43gAcB9yZ6z4G/DMvQwvx/zAReBtwYV7WI7nOaOBU4AbSMORzwOPAdcB3gRXqlrkyKenekrfrM/l9+AdwSN6eI4fYVjPrlvlR4ALgwfx+3gucAbyppE3F5bwJ+DlwN/AC+X+6yfsxs/DabYCvArfmNtwBfLNk+40H/p7/F57I8d0D/B4YO0R8GwA/BO7K67gF+HjJa0YAx+f2P5m31TuBk6j7/666DXr9XdTpR88DGI4PmieIt9T9836k5DUTC/VfP8SH/GEKSYL5E8SjwP0lr5lN4csZWJ30xdRoHbOAUbnu+CHiGZ/rXVEouxJ4P7DKEO/bKGBGk2XvXKi7HzCvSd0/A0sW6k8szLupwWv+SuFLH9g5f/AbreNUKiSJum07C3iq8HxOrvO5Id7XyXXt+ccQ9f8fFRME6WCU05rUmwu8v65Nxfm3NdpODd6PmYW61zZY5zF1r7mvSXzzgF1aiK/2eGeh/vIN/i/m1pWPb2Ub9Pq7qOPfdb0OYDg+aJAggFcDf6z7J1qv5DUTC695JfA/wEeA9wFbATuSegW1+kcV6o+tW/6dwO55+XMK5Z8tvOasQvm/gN2AbUm/2mvlk3LdtYEtSL8ua/P2zWVbAGvnet9u8KG5AziB8l99lxfqPZaX8T7g48BvyF9SwJuZPzmcAmxP+uX5TKH8G4VlTyyUzyP1GLYDDquL72O5/gjSL/ha+dGFWGYWyvdq9f+BlCT2Bt4DfCnX2Qz4GikpvStvx11JPbra6z6c665eKPs36Zf/NsDHgJ+Qkv0rSft4tsjvd63+XwrbanRe3ucL82cDXwDeDXy/8D7PoZDg69rzAumX9Lb5/dloiPej+P49QzqQYTvm/6UewOaF1xwAfDJv561IBz4cWKh7U906ist5ktRL+QDz/xA6o1D/4LqYvgnswPyfgRcTRNVt0Ovvoo5/1/U6gOH4KPlCaPQ4qcFrJtYtbwfSztx7SUMP9cuZUqg7tm7e2wrzji6UH5bLVgaeL5TvzktfIGNJXfnavPULyyp+yMeWvAdLk4Z/mrX/yEL9N9bNKx2WynUPL9SbWjfvkLIvDeZPEL+pe00xaf8hl+1TKLuh8J5sAfygMO+KFv8f5lE+ZLNkXudlpF7hCyXvV22bLVvYZlOBTSgZHisse3xhGSeVzJ9cmP+zurYWf+EXf1QsEFcLn4/i/87P6uZNLcz7eaF8A9IO9tpQX9n/04oN4iv+UPhoobz4uSkmjsML5UuREnp9gmhpGwzqwzupO2M2cBTwo6EqStqLNC7azCoNyh+PiGsKzx8qTK+a/64HLFEoP73JejYkjRUPKSKeBT4k6a3ALsDmpLH35QrV9pV0ekRcSfoCqHmGNETUyOsL05fVzbuMNPwEsJ4kRf5ED/GaHfP0uvlvMZ4NSfs2ymzYJM4y0yNiakn5CcAnhnjtKgARMVfSycBewEbAFGCepH+T9lWdGBHntxBTsa3fyI8yjdr6uxbWVa9+W/yT1CbI20LSRqQhy+WHWNYqpF5fvb8Xpss+AwCvK0xfUZuIiOckXU06qIJCebu3wbDU9yfKSTpB0gOSbqxY/yOSpkm6SVKzL8N22jI/NgXWIXU9vxsRz1V47QGF6b+RuslbkrrMNY2208N1z58vTKvCuuut0OoLImJKRBwUEWNJH8jdSb2SmncsRBz9pNX35N76gny+SDE5HEEaQtmSNHxWU9zO40jDOWcCN5Le05GkX8h/k7RTi3FV0aitC7SpzfblpeRwO2kYZwwvndtRU+VzsKifgaJebIO+0vcJgjRuuW2VipLWJY1bbh4RbyQdy99xEXFZflwVEXeW/KJtZu3C9Dci4o8RcRkL8WXdwG2k4Yya9SNC9Q/SUTQnF+rNK0wv8H8iaVtJxd4CEfFMRJxJGiaof+20QtkypLHm+mXWPtC3FIo3r6tWfH5bg/e62Wum5783F8ouL3tPau9LyfKbKYtnrcL0QxHx1Yi4MG/nNRssZ15EnBYRu0fERqQv0OIv/92LdQvTZZ/pYls/26Cdy5C+EKu2qar6bbFZYbq2LYqfgSMj4vSIuJT5/28X1R2F6U1rE5KWJPV8y7SyDQZS3w8xRcQkSSOLZZLWIQ3hjCAdMfKZiLgF+Axph+4j+bXD4fyDO0mHWgJ8W9LxwFuBg9qx8IiYI+kc4MO56C+SDiF9OFcmnQw3hjSsUxzaeYh01BHAHpLmkX6dTY2I2g7mDSWdSxqeuYv0/7RD3XKuyHHcJOlKXvpwnirpp6Su+2qkIaAzSPsLTiEldwFvknQiaSf2hsCXCss+qUGzd5X0Y9JRKNvw0vASeTmQdtz/iJQANpN0Nmn47VHSl/b6pCR2Lukw1EVRTJirSTqItF9gV9IO6zLTJf2F9P7cQxomHFOYv2xhujissqWkHUjtuC8ippOGMDfJ8w+TNIJ0mPHSpOQ1mtRzfRt1J0S2wZclPUwax/8w6ZDZmtq2KL4/e0uaSeqN/qCNcZxN2g8G8EVJ95GOXtqTdHBJmVa2wWDq9U6QKg9St+7GwvO/A+vm6XcAF+fpc0k74f5JOvRy2w7FsyeFnWQL8ZqJhfLPQukOuUsK0zML9ceWled54wvzTiqUj6D5Ya5ly/pRg3pb5PmXDbG8AE6rW+ZrSUeENKq/c6FulcNclyrUn1iY1+jQygsoHH9PGndudpjrizstF2bb1tU5o2TZzwOTGmyzRjtqa49dCnXfQPlO7+Py/JeRkt9Q22tkYZml5RX/12cWXntzg3UdV6i/EfMfLFH2GagUHw0+H6QfAmWxPE/6sbTA9m5lGwzqYzgMMc1H0gqkbupvJV0HHAOskWcvSdrxNZbU/TtW0srdj7K6iDiGdBjiLaR/yNtJv56/18Z1zAbeTvrSvZL06/I50q+iK0knGX2o7mU/IL23D0DpEMMXSPtP/koaxppD+pJ6iPTB/jR1O2Uj4k7SL8iDSV/itROi/kPaEXpzoe6hpJMOzyEdI/98jvufpKT6/mi8j+dIYA/Sr9bayU2HAjtFxIvDMRHxe9J5KxNIXxJzSYdMTicdVfY54JcN1tGqvUn7HmaRktJVpB7KxQ3qHwicR/qyfYL03s4m7afaPiLOKbTjZtIhojeRtut8ImJeRPw36VDqv+XlPE86YWwq6UTN7Unbod32JfWG7yBt6xnAt0jbsBbfDaRDgq8gvf/3Af9HOremLSKdzb4Vqdf5MGkbXEEavq7fkV5TeRsMKuVM2dfyENOfImJDSSsBt0bEGiX1fgVcFREn5ud/Bw6I+Y/0sQGUr5C7VX76qYg4qXfRmA2GYdeDiDT+PUPShyHt2JT05jz7XPKRD5JWJx3ieWfJYszMbAh9nyAknUHqCq4vaZakT5MOg/u0pOtJ3eqdcvXzgYckTSMNc3wjIh4qW66ZmTU3LIaYzIbiISaz9nOCMDOzUn19HsTqq68eI0eO7HUYZmbDxpQpUx6MiPobeS2Uvk4QI0eOZPLkyb0Ow8xs2JB0V7uW1fc7qc3MrDecIMzMrJQThJmZlXKCMDOzUk4QZmZWygnCzMxKOUGYmVkpJwgzMyvlBGFmZqX6+kzqQTRhQnn5uEZ3AzYz6xH3IMzMrJQThJmZlXKCMDOzUk4QZmZWygnCzMxKOUGYmVkpJwgzMyvlBGFmZqWcIMzMrJQThJmZlepqgpD0VUk3SbpR0hmSlu3m+s3MrLquJQhJawJfAkZHxIbAEsBu3Vq/mZm1pttDTEsCL5e0JLAccE+X129mZhV1LUFExN3AocC/gXuBRyPigm6t38zMWtPNIaZVgJ2AUcCrgOUlfbyk3jhJkyVNnj17drfCMzOzOt0cYno3MCMiZkfEc8A5wGb1lSJiQkSMjojRI0aM6GJ4ZmZW1M0E8W9gU0nLSRLwLuDmLq7fzMxa0M19EFcBZwPXAjfkdTe4v5qZmfVaV285GhEHAwd3c51mZrZwfCa1mZmVcoIwM7NSThBmZlbKCcLMzEo5QZiZWSknCDMzK+UEYWZmpZwgzMyslBOEmZmVcoIwM7NSThBmZlbKCcLMzEo5QZiZWamuXs11cTBhyoJXMB/31nE9iMTMbNG4B2FmZqWcIMzMrJQThJmZlXKCMDOzUk4QZmZWygnCzMxKOUGYmVmpSglC0kckvbfw/DuSZkk6X9IanQvPzMx6pWoPYnxtQtImwLeAI4GlgMPaH5aZmfVa1TOpXwPcmqc/CJwbET+TdAFwfkciMzOznqrag5gLrJin3wVclKcfLZSbmdkAqdqDuBQ4TNJlwGhg11y+HvCfTgRmZma9VbUHsQ/wLCkxfC4i7snl2+EhJjOzgVSpBxERs4D3l5R/pd0BmZlZf/B5EGZmVqphD0LS40BUWUhErNS2iMzMrC80G2Lap2tRmJlZ32mYICLi5G4GYmZm/aXyPghJy0raVdI3Ja2cy9aRtGrHojMzs56pdBSTpNeRTo5bAVgZ+C0wB/h8fr53R6IzM7OeqXqi3BHABaSEMKdQfh5wYntD6hMTJixYNm5c9+MwM+uRqgliM2DTiHhBUrH838Cr2h6VmZn1XCvnQSxVUrY26XpMZmY2YKomiAuArxWeh6SVgO8Cf257VGZm1nNVh5i+Blwi6VZgWeAs4HXA/cBHOhSbmZn1UNVrMd0jaWNgd2ATUs9jAnBaRDxddWX58NjjgA1JZ2nvFRFXtBizmZl1QdXDXEdGxEzghPwoztssIi6vuL6fA3+LiF0lLQ0s10qwZmbWPVX3QVwv6ePFAkkvk/Q94JIqC5D0CmAMcDxARDwbEXNaiNXMzLqoaoLYH/iVpNMlrSRpHeByYC9gh4rLGAXMBk6U9C9Jx0lavvWQzcysGyoliIg4hnQnufWBG4F/AXcDb4qIi5q9tmBJ0v6LoyPiLcCTwAH1lSSNkzRZ0uTZs2dXXLSZmbVbK+dB3AvMBF4JvJy0L+HhFl4/C5gVEVfl52eTEsZ8ImJCRIyOiNEjRoxoYfFmZtZOlRKEpDHADcCrgTeShpYOkfR7SatVWUZE3Af8R9L6uehdwLTWQzYzs26o2oO4CDgF2DwipkfEr4G3ACNIiaOqfYHTJE0FNgZ+1MJrzcysi6qeKPfuiJhULIiIGbln8a2qK4uI60j7MszMrM9VPVFuUoPyecAP2hqRmZn1hWb3pP4a8MuImJunG4mI+N/2h2ZmZr3UrAexL3AyMDdPNxKAE4SZ2YBpdk/qUWXTZma2eGjlPAgzM1uMVE4QknaWNEnSg/lxqaQPdjI4MzPrnaonyn2ddA+IW0nXZdofuAU4XdJ+nQvPzMx6pep5EPsB+0TEsYWyEyRdDXwPOLTtkZmZWU9VHWJagfLLel+S55mZ2YCpmiDOBXYtKf8QcF7bojEzs75RdYhpOnCApK2B2i1CN82Pw4sn0kXE4e0N0czMeqFqgtgTeARYLz9qHgE+VXgegBOEmdkAqHotJp8oZ2a2mPGJcmZmVsoJwszMSjlBmJlZKScIMzMr1TBBSDpB0op5eoykqkc8mZnZAGjWg/g4sHyevgRYtfPhmJlZv2jWK5gJ7CvpAkDAOyU9Ulax0S1Jzcxs+GqWIL4BHAccSDoB7vcN6gWwRJvjMjOzHmt2R7k/AH+QtDLwMPBG4IEuxWVmZj025I7niJiTr8F0e0Q834WYBsakS/PElJ6GYWa2UKpeauMfkpaR9ElgA9Kw0jTg9Ih4ppMBmplZb1S9o9wGwG2kC/G9g3QV1/8FbpP0hs6FZ2ZmvVL1RLmfA9cBa0fElhGxJbA2cD1wRGdCMzOzXqp68tvmwNsi4rFaQUQ8Jukg4MqORGZmZj1VtQcxF1i5pPwVeZ6ZmQ2Yqgnij8CxkjaXtER+bAEcg285amY2kKomiC8DtwOXknoMc4F/kHZcf6UjkZmZWU9VPcx1DrCTpNcBtaOWbo6I6Z0KrGsmTOh1BGZmfamlK7TmhDD8k4KZmQ3J94MwM7NSThBmZlbKCcLMzEoNmSAkLSnpC5Je1Y2AzMysPwyZIPIVXA8Blup8OGZm1i+qDjFdCWzSyUDMzKy/VD3M9VjgMEmvId3d4MnizIi4tt2BmZlZb1VNEKfnv4eXzGvplqOSlgAmA3dHxI5VX2dmZt1VNUGMauM6vwzcDKzUxmWamVmbVb3Uxl3tWJmkVwM7AD8EvtaOZZqZWWdUPg9C0naS/iRpmqS1ctnekt7VwvqOAPYH5rUWppmZdVvVW45+DPgN6Yquo3jpkNclSF/4VZaxI/BAREwZot44SZMlTZ49e3aVRZuZWQdU7UHsD3wmIr4KPF8ovxLYuOIyNgc+IGkmcCawjaRT6ytFxISIGB0Ro0eMGFFx0WZm1m5VE8S6wBUl5U9QcWdzRBwYEa+OiJHAbsDFEfHxius3M7Muq5og7gHWKykfA9zRvnDMzKxfVE0QE4AjJW2en68laQ/gZ8DRra40Iib6HAgzs/5W9TDXn0l6BXAhsCxwCfAMcGhEHNXB+MzMrEcq31EuIg6S9ENgA1LPY1pEPNGxyMzMrKdauuUo6bIac/P0C22OZViaMMX3tDazwVQpQUhaBvgp8FlgaUDAM5ImAN+MiLnNXr+4m/TUgklkzHLjehCJmVl1VXsQRwPvBfbmpcNd3wn8GFgR2Kv9oZmZWS9VTRAfBnaJiAsLZXdKegD4HU4QZmYDp+phrk8Cd5eU3w083b5wzMysX1RNEL8ADpb08lpBnv6fPM/MzAZMwyEmSefVFY0F7pY0NT/fKL9++c6EZmZmvdRsH8RDdc9/V/d8RptjMTOzPtIwQUTEp7oZiJmZ9ZfKNwwyM7PFS9UT5VYBxgNbA/9FXWKJiP9qe2RmZtZTVc+DOAV4I3AycD/pkhtmZjbAqiaIscBWEXFtB2MxM7M+UnUfxB0t1DUzswFQ9Uv/y8CPJb1Z0hKdDMjMzPpD1SGm6cDLgWsBJM03MyIWj6QxoeTS3m/t3KIBxvmir2bWI1UTxBnAK4Av4Z3UZmaLhaoJYjTw9oi4sZPBmJlZ/6i6D2IasFInAzEzs/5SNUF8Gzhc0rslvVLSqsVHJwM0M7PeqDrE9Jf89wLm3/+g/Hzx2EltZrYYqZogtu5oFGZm1ncqJYiI+EenAzEzs/5S9WJ9mzSb70twmJkNnqpDTJNJ+xqKZ8gV90V4H4SZ2YCpmiBG1T1fCngLcBBwYFsjMjOzvlB1H8RdJcXTJT0KHAz8ta1RmZlZzy3qFVpnABu3IQ4zM+szVXdS158MJ2AN0l3mbm1zTGZm1geq7oN4kAUv0CfgP8BH2xqRmZn1hYU9UW4eMBuYHhHPtzckMzPrBz5RzszMSjVNEFUvxBcRD7cnHDMz6xdD9SDK9j3UiwrLMTOzYWaoL/ZmF+nblnSvau+DMDMbQE0TRNm+B0lvAQ4BtgSOAb7fmdDMzKyXKp8oJ2mUpNOBq4GHgA0i4ksRMbtj0ZmZWc8Mue9A0mrAd4DPAf8ENouIazodmCUTJixYNm5c9+Mws8VP0x6EpIOAO4CtgJ0iYpuFTQ6S1pJ0iaRpkm6S9OWFWY6ZmXXHUD2I7wNPA7OAL0j6QlmliPhAhXU9D3w9Iq6VtCIwRdKFETGtpYjNzKwrhkoQpzD0Ya6VRMS9wL15+nFJNwNrAk4QZmZ9aKijmPbsxEoljSTdT+KqknnjgHEAa6+9didWb2ZmFSzq5b5bJmkF4HfAVyLisfr5ETEhIkZHxOgRI0Z0OzwzM8u6miAkLUVKDqdFxDndXLeZmbWmawlCkoDjgZsj4vBurdfMzBZON3sQmwOfALaRdF1+bN/F9ZuZWQu6dpG9iLiMdJMhMzMbBrq+k9rMzIaHxesy3WXXrTAzs1LuQZiZWSknCDMzK+UEYWZmpZwgzMyslBOEmZmVcoIwM7NSThBmZlZq8ToPoo9Memr+czLGLOf7iJpZf3EPwszMSjlBmJlZKQ8xtWDSXZMWKHv9XeV1b9llTIejMTPrLCeIPlG/TwK8X8LMestDTGZmVso9iD619eWTWHfp+ctuGeMehZl1jxNEH7v92fn3eUx6ysNOZtY9HmIyM7NSThBmZlbKCcLMzEo5QZiZWSknCDMzK+UEYWZmpZwgzMyslBOEmZmV8olyHfL6cyaxxO3zl12ymS/gZ2bDh3sQZmZWyj2IHtv68gUvIW5m1g/cgzAzs1LuQXRRu3oLExa8dQQA43wdPzNrI/cgzMyslBOEmZmVcoIwM7NSThBmZlbKO6nb4Pbbh65jZjbcuAdhZmal3IMYZiY9teAxrrX7VJcd/upDX81sYTlBDCNl51H4+k5m1ilOEAOgrFfx4rwj0t9aL6MZ9zbMrEgR0b2VSdsCPweWAI6LiJ80qz969OiYPHnywq2s0enGFU26q/pZz/24k7pKz6JK0gAnDrPhRNKUiBjdjmV1rQchaQngKOA9wCzgGknnRcS0bsWwOKl2WY9JQyaSMcuNaynXOpmYDY5uDjG9HZgeEXcCSDoT2AlwguihoRNJa9ePOv6ihY+l01rZX1O1d9VIOxLlhCnzZ+Zxb11wofV1GtVr1+ts8dK1ISZJuwLbRsTe+fkngHdExD519cYBtf/U9YFbuxJge6wOPNjrIDpscWgjLB7tdBsHR7Gdr4mIEe1YaN/tpI6ICcCi7UDoEUmT2zX2168WhzbC4tFOt3FwdKqd3TxR7m5grcLzV+cyMzPrQ91MENcA60oaJWlpYDfgvC6u38zMWtC1IaaIeF7SPsD5pMNcT4iIm7q1/i4ZlkNjLVoc2giLRzvdxsHRkXZ29TwIMzMbPnyxPjMzK+UEYWZmpZwghiBppqQbJF0naXIuW1XShZJuz39XyeWSdKSk6ZKmStqksJw9cv3bJe3Rq/bkWE6Q9ICkGwtlbWuTpLfm92x6fq2628IX4yhr53hJd+fteZ2k7QvzDswx3yrpfYXybXPZdEkHFMpHSboql5+VD77oKklrSbpE0jRJN0n6ci4fmO3ZpI2Dti2XlXS1pOtzO7/bLDZJy+Tn0/P8kYVltdT+hiLCjyYPYCawel3Zz4AD8vQBwE/z9PbAXwEBmwJX5fJVgTvz31Xy9Co9bNMYYBPgxk60Cbg611V+7XZ91M7xwH4ldTcArgeWAUYBd5AOplgiT78WWDrX2SC/5jfAbnn6V8Dne9DGNYBN8vSKwG25LQOzPZu0cdC2pYAV8vRSwFX5fS+NDfgC8Ks8vRtw1sK2v9HDPYiFsxNwcp4+Gdi5UH5KJFcCK0taA3gfcGFEPBwRjwAXAtt2OeYXRcQk4OG64ra0Kc9bKSKujPTfekphWV3VoJ2N7AScGRHPRMQMYDrp8jAvXiImIp4FzgR2yr+itwHOzq8vvmddExH3RsS1efpx4GZgTQZoezZpYyPDdVtGRDyRny6VH9EktuI2Pht4V25LS+1vFpMTxNACuEDSFKXLgAC8MiLuzdP3Aa/M02sC/ym8dlYua1TeT9rVpjXzdH15P9knD6+cUBt6ofV2rgbMiYjn68p7Jg8xvIX0y3Mgt2ddG2HAtqWkJSRdBzxAStJ3NIntxfbk+Y+S2tK27yEniKFtERGbANsBX5Q03xXf8q+qgTpWeBDbVHA0sA6wMXAvcFhPo2kTSSsAvwO+EhGPFecNyvYsaePAbcuIeCEiNiZdaeLtwOt7GY8TxBAi4u789wHg96SNdn/uepP/PpCrN7qcyHC4zEi72nR3nq4v7wsRcX/+EM4DjiVtT2i9nQ+RhmeWrCvvOklLkb44T4uIc3LxQG3PsjYO4rasiYg5wCXAO2kc24vtyfNfQWpL276HnCCakLS8pBVr08B7gRtJlwipHeWxB/CHPH0e8Ml8pMimwKO5m38+8F5Jq+Ru8HtzWT9pS5vyvMckbZrHQz9ZWFbP1b40sw+Stiekdu6WjwwZBaxL2jlbeomY/Kv8EmDX/Prie9Y1+T0+Hrg5Ig4vzBqY7dmojQO4LUdIWjlPv5x075ybm8RW3Ma7AhfntrTU/qZBdWqP/CA8SHv7r8+Pm4CDcvlqwN+B24GLgFXjpaMQjiKNG94AjC4say/SzqLpwKd63K4zSF3y50jjkJ9uZ5uA0aQP6x3A/5HP2O+Tdv46t2Nq/nCsUah/UI75VgpH6pCO/Lktzzuo7v/j6tz+3wLL9KCNW5CGj6YC1+XH9oO0PZu0cdC25ZuAf+X23Ah8p1lswLL5+fQ8/7UL2/5GD19qw8zMSnmIyczMSjlBmJlZKScIMzMr5QRhZmalnCDMzKyUE4QNO5L2lPTE0DVbWuZMSfu1c5kl6xivwpVlzfqdE4T1HUknSYr8eE7SnZIOzScrApxFOjbczDqoa/ekNmvRRcAnSFe03BI4DliedKnjp4Gnexib2WLBPQjrV89ExH0R8Z+IOB04jXyZ4+IQU75kxIWSLsqXZEDSCko3vTmqtjBJn1K64cxcSbdJ+qqkSv//ktbLvZmN6srHSXpQ0lL5KpzHS5oh6em8/v2brSP3lP5UV7bAMNRQsUv6bC6fm+M5v3DtHrOF5n8iGy6eJvUm5hMRoXT3s6nAfsAhwJHAs/k5kj4DfA/YF5gCbEi6uNtzpEtHNBURt0m6BvgY6eY7NR8DfhMRzyldTO5u4CPAbNKF4yaQLp52/EK0lyqxSxpNunTGHsBlwMqk+weYLTInCOt7kt4O/Dfp2kILiIh7JO0NnCVpJdIX99vzUBTA/wD7R0TtpiszJP2EdEeuIRNEdirwdUkH5qS0Nmno68Acw3PAdwr1ZyrdznN3FiFBVIh9beBJ0kXnHgfuIl07zGyROUFYv9o2DyMtSeo5/IH0K7pURJwr6XTg26Qv1OshXSGTdInjYyQdXXjJkqQL11V1Jul+A1sCk0hf/DMi4vJaBUmfA/YGXgO8PMd9VwvrmE/F2C/M65gh6XzgAuCcnCzMFokThPWrScA40lDKPfkXekOSlgXeBrwAvK4wqzZW/zng8vrXVRURD0i6kNQ7mZT/nlZY/0eBI0jDWpcDjwFfJF2GupF5LJikisNoQ8YeEY/nnsoY0uWhDwR+JOltEXFPpcaZNeAEYf3qqYiY3kL9Q0g3aX8PcL6kP0fEeRFxv6R7gHUi4pRFjOlU0rj/BGAjXrpGP6RLUl8VES8OWUlaZ4jlzSbdDa3oxedVY490u8mLgYslHUy6OdCOpH0gZgvNCcKGPUnbAZ8FtoyIqySNB46T9KaIuA84GPiFpDnAX0i/0jcB1oyIH7ewqnOBY0j7FK6JiNsK824D9syxTCfdjGUr4JEmy7sY2F/SXqReyS7A5sx/D+imsUvakXTbzUnAw8DWwIqkG82YLRIf5mrDWh6nPxH4QUTUbmT/E9IX5ImSFBHHkW6G8wnSDtxLScNXM1pZV0Q8Rbrt7JtJvYmiY4DfAKeT7tw1kiHukRwR5wPfBX5IOkJpJPDLujpDxT6HdPjvRcAtpCGuvSPi0lbaZlbGNwwyM7NS7kGYmVkpJwgzMyvlBGFmZqWcIMzMrJQThJmZlXKCMDOzUk4QZmZWygnCzMxK/X9Z+5h/M4McaAAAAABJRU5ErkJggg==",
114+
"text/plain": [
115+
"<Figure size 432x288 with 1 Axes>"
116+
]
117+
},
118+
"metadata": {
119+
"needs_background": "light"
120+
},
121+
"output_type": "display_data"
122+
}
123+
],
111124
"source": [
112125
"# Define a new figure\n",
113126
"fig = plt.figure()\n",
@@ -168,7 +181,7 @@
168181
"name": "python",
169182
"nbconvert_exporter": "python",
170183
"pygments_lexer": "ipython3",
171-
"version": "3.8.13"
184+
"version": "3.9.6"
172185
}
173186
},
174187
"nbformat": 4,

jupyter-notebooks/coastal-erosion-example/coastline_analysis.ipynb

Lines changed: 308 additions & 66 deletions
Large diffs are not rendered by default.

0 commit comments

Comments
 (0)