Skip to content

Commit 300df23

Browse files
ppwwyyxxfacebook-github-bot
authored andcommitted
update docs
Summary: Pull Request resolved: facebookresearch#31 Differential Revision: D17895179 Pulled By: ppwwyyxx fbshipit-source-id: 9aa9d85cfe8e9901aaba5f56cda74224b1e2a51f
1 parent e67f881 commit 300df23

File tree

3 files changed

+17
-18
lines changed

3 files changed

+17
-18
lines changed

projects/DensePose/README.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -25,15 +25,15 @@ python /path/to/detectron2/projects/DensePose/train_net.py --config-file <config
2525
For example, to launch end-to-end DensePose-RCNN training with ResNet-50 FPN backbone on a single GPU,
2626
one should execute:
2727
```bash
28-
python /path/to/detectron2/projects/DensePose/train_net.py --config-file /path/to/detectron2/projects/DensePose/configs/densepose_R_50_FPN_s1x.yaml
28+
python /path/to/detectron2/projects/DensePose/train_net.py --config-file configs/densepose_R_50_FPN_s1x.yaml
2929
```
3030

31-
## Testing
31+
## Evaluation
3232

33-
Model testing can be done in the same way as training, except for an additional flag `--eval-only` and
34-
model location specification through `MODEL.WEIGHT model.pth` in the command line
33+
Model evaluation can be done in the same way as training, except for an additional flag `--eval-only` and
34+
model location specification through `MODEL.WEIGHTS model.pth` in the command line
3535
```bash
36-
python /path/to/detectron2/projects/DensePose/train_net.py --config-file /path/to/detectron2/projects/DensePose/configs/densepose_R_50_FPN_s1x.yaml --eval-only MODEL.WEIGHT model.pth
36+
python /path/to/detectron2/projects/DensePose/train_net.py --config-file configs/densepose_R_50_FPN_s1x.yaml --eval-only MODEL.WEIGHTS model.pth
3737
```
3838

3939
## Tools
@@ -44,10 +44,10 @@ We provide tools which allow one to:
4444
- visualize DensePose model results;
4545

4646
`query_db` is a tool to print or visualize DensePose data in a dataset.
47-
Details on this tool can be found in [`TOOL_QUERY_DB.md`](doc/TOOL_QUERY_DB.md)
47+
Details on this tool can be found in [`TOOL_QUERY_DB.md`](doc/TOOL_QUERY_DB.md)
4848

4949
`apply_net` is a tool to print or visualize DensePose results.
50-
Details on this tool can be found in [`TOOL_APPLY_NET.md`](doc/TOOL_APPLY_NET.md)
50+
Details on this tool can be found in [`TOOL_APPLY_NET.md`](doc/TOOL_APPLY_NET.md)
5151

5252
## <a name="CitingDensePose"></a>Citing DensePose
5353

projects/DensePose/doc/TOOL_APPLY_NET.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@ python apply_net.py dump [-h] [-v] [--output <dump_file>] <config> <model> <inpu
1414

1515
There are three mandatory arguments:
1616
- `<config>`, configuration file for a given model;
17-
- `<model>`, model file with trained parameters
17+
- `<model>`, model file with trained parameters
1818
- `<input>`, input image file name, pattern or folder
1919

2020
One can additionally provide `--output` argument to define the output file name,
@@ -45,7 +45,7 @@ python apply_net.py show [-h] [-v] [--min_score <score>] [--nms_thresh <threshol
4545

4646
There are four mandatory arguments:
4747
- `<config>`, configuration file for a given model;
48-
- `<model>`, model file with trained parameters
48+
- `<model>`, model file with trained parameters
4949
- `<input>`, input image file name, pattern or folder
5050
- `<visualizations>`, visualizations specifier; currently available visualizations are:
5151
* `bbox` - bounding boxes of detected persons;
@@ -72,22 +72,22 @@ with ResNet-50 FPN backbone using different visualizations for image `image.jpg`
7272
```bash
7373
python apply_net.py show configs/densepose_R_50_FPN_s1x.yaml DensePose_ResNet50_FPN_s1x-e2e.pkl image.jpg bbox,dp_segm -v
7474
```
75-
![Bounding Box + Segmentation Visualization](images/res_bbox_dp_segm.png)
75+
![Bounding Box + Segmentation Visualization](images/res_bbox_dp_segm.jpg)
7676

7777
2. Show bounding box and estimated U coordinates for body parts:
7878
```bash
7979
python apply_net.py show configs/densepose_R_50_FPN_s1x.yaml DensePose_ResNet50_FPN_s1x-e2e.pkl image.jpg bbox,dp_u -v
8080
```
81-
![Bounding Box + U Coordinate Visualization](images/res_bbox_dp_u.png)
81+
![Bounding Box + U Coordinate Visualization](images/res_bbox_dp_u.jpg)
8282

8383
3. Show bounding box and estimated V coordinates for body parts:
8484
```bash
8585
python apply_net.py show configs/densepose_R_50_FPN_s1x.yaml DensePose_ResNet50_FPN_s1x-e2e.pkl image.jpg bbox,dp_v -v
8686
```
87-
![Bounding Box + V Coordinate Visualization](images/res_bbox_dp_v.png)
87+
![Bounding Box + V Coordinate Visualization](images/res_bbox_dp_v.jpg)
8888

8989
4. Show bounding box and estimated U and V coordinates via contour plots:
9090
```bash
9191
python apply_net.py show configs/densepose_R_50_FPN_s1x.yaml DensePose_ResNet50_FPN_s1x-e2e.pkl image.jpg dp_contour,bbox -v
9292
```
93-
![Bounding Box + Contour Visualization](images/res_bbox_dp_contour.png)
93+
![Bounding Box + Contour Visualization](images/res_bbox_dp_contour.jpg)

projects/TridentNet/README.md

Lines changed: 4 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -23,15 +23,14 @@ python /path/to/detectron2/projects/TridentNet/train_net.py --config-file <confi
2323
For example, to launch end-to-end TridentNet training with ResNet-50 backbone on 8 GPUs,
2424
one should execute:
2525
```bash
26-
python /path/to/detectron2/projects/TridentNet/train_net.py --config-file /path/to/detectron2/projects/TridentNet/configs/tridentnet_fast_R_50_C4_1x.yaml --num_gpus 8
26+
python /path/to/detectron2/projects/TridentNet/train_net.py --config-file configs/tridentnet_fast_R_50_C4_1x.yaml --num_gpus 8
2727
```
2828

29-
## Testing
29+
## Evaluation
3030

31-
Model testing can be done in the same way as training, except for an additional flag `--eval-only` and
32-
model location specification through `MODEL.WEIGHT model.pth` in the command line
31+
Model evaluationcan be done similarly:
3332
```bash
34-
python /path/to/detectron2/projects/TridentNet/train_net.py --config-file /path/to/detectron2/projects/TridentNet/configs/tridentnet_fast_R_50_C4_1x.yaml --eval-only MODEL.WEIGHT model.pth
33+
python /path/to/detectron2/projects/TridentNet/train_net.py --config-file configs/tridentnet_fast_R_50_C4_1x.yaml --eval-only MODEL.WEIGHTS model.pth
3534
```
3635

3736
## Results on MS-COCO in Detectron2

0 commit comments

Comments
 (0)