|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "## Working with custom layers" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "markdown", |
| 12 | + "metadata": {}, |
| 13 | + "source": [ |
| 14 | + "In this activity, we will take a look at how to create custom layers that allow you to not only display geo-spatial data but also animate your datapoints over time. \n", |
| 15 | + "We'll get a deeper understanding of how geoplotlib works and how layers are created and drawn.\n", |
| 16 | + "\n", |
| 17 | + "Our dataset does not only contain spatial but also temporal information which enables us to plot flights over time on our map. \n", |
| 18 | + "There is an example on how to do this with taxis in the examples folder of geoplotlib. \n", |
| 19 | + "https://github.com/andrea-cuttone/geoplotlib/blob/master/examples/taxi.py\n", |
| 20 | + "\n", |
| 21 | + "**Note:** \n", |
| 22 | + "The dataset can be found here: \n", |
| 23 | + "https://datamillnorth.org/dataset/flight-tracking" |
| 24 | + ] |
| 25 | + }, |
| 26 | + { |
| 27 | + "cell_type": "markdown", |
| 28 | + "metadata": {}, |
| 29 | + "source": [ |
| 30 | + "#### Loading the dataset" |
| 31 | + ] |
| 32 | + }, |
| 33 | + { |
| 34 | + "cell_type": "markdown", |
| 35 | + "metadata": {}, |
| 36 | + "source": [ |
| 37 | + "This time our dataset contains flight data recorded from different machines. \n", |
| 38 | + "Each entry is assigned to a unique plane through a `hex_ident`. \n", |
| 39 | + "Each location is related to a specific timestamp that consists of a `date` and a `time`." |
| 40 | + ] |
| 41 | + }, |
| 42 | + { |
| 43 | + "cell_type": "code", |
| 44 | + "execution_count": 1, |
| 45 | + "metadata": {}, |
| 46 | + "outputs": [], |
| 47 | + "source": [ |
| 48 | + "# importing the necessary dependencies\n", |
| 49 | + "import pandas as pd" |
| 50 | + ] |
| 51 | + }, |
| 52 | + { |
| 53 | + "cell_type": "code", |
| 54 | + "execution_count": 2, |
| 55 | + "metadata": {}, |
| 56 | + "outputs": [], |
| 57 | + "source": [ |
| 58 | + "# loading the dataset from the csv file\n" |
| 59 | + ] |
| 60 | + }, |
| 61 | + { |
| 62 | + "cell_type": "code", |
| 63 | + "execution_count": 3, |
| 64 | + "metadata": {}, |
| 65 | + "outputs": [], |
| 66 | + "source": [ |
| 67 | + "# displaying the first 5 rows of the dataset\n" |
| 68 | + ] |
| 69 | + }, |
| 70 | + { |
| 71 | + "cell_type": "code", |
| 72 | + "execution_count": 4, |
| 73 | + "metadata": {}, |
| 74 | + "outputs": [], |
| 75 | + "source": [ |
| 76 | + "# renaming columns latitude to lat and longitude to lon\n" |
| 77 | + ] |
| 78 | + }, |
| 79 | + { |
| 80 | + "cell_type": "markdown", |
| 81 | + "metadata": {}, |
| 82 | + "source": [ |
| 83 | + "**Note:** \n", |
| 84 | + "Remember that geoplotlib needs columns that are named `lat` and `lon`. You will encounter an error if that is not the case." |
| 85 | + ] |
| 86 | + }, |
| 87 | + { |
| 88 | + "cell_type": "code", |
| 89 | + "execution_count": 5, |
| 90 | + "metadata": {}, |
| 91 | + "outputs": [], |
| 92 | + "source": [ |
| 93 | + "# displaying the first 5 rows of the dataset\n" |
| 94 | + ] |
| 95 | + }, |
| 96 | + { |
| 97 | + "cell_type": "markdown", |
| 98 | + "metadata": {}, |
| 99 | + "source": [ |
| 100 | + "---" |
| 101 | + ] |
| 102 | + }, |
| 103 | + { |
| 104 | + "cell_type": "markdown", |
| 105 | + "metadata": {}, |
| 106 | + "source": [ |
| 107 | + "#### Adding an unix timestamp" |
| 108 | + ] |
| 109 | + }, |
| 110 | + { |
| 111 | + "cell_type": "markdown", |
| 112 | + "metadata": {}, |
| 113 | + "source": [ |
| 114 | + "The easiest way to work with and handle time is to use a unix timestamp. \n", |
| 115 | + "In previous activities, we've already seen how to create a new column in our dataset by applying a function to it. \n", |
| 116 | + "We are using the datatime library to parse the date and time columns of our dataset and use it to create a unix timestamp." |
| 117 | + ] |
| 118 | + }, |
| 119 | + { |
| 120 | + "cell_type": "code", |
| 121 | + "execution_count": 6, |
| 122 | + "metadata": {}, |
| 123 | + "outputs": [], |
| 124 | + "source": [ |
| 125 | + "# method to convert date and time to an unix timestamp\n", |
| 126 | + "from datetime import datetime\n", |
| 127 | + "\n", |
| 128 | + "def to_epoch(date, time):\n", |
| 129 | + " try:\n", |
| 130 | + " timestamp = round(datetime.strptime('{} {}'.format(date, time), '%Y/%m/%d %H:%M:%S.%f').timestamp())\n", |
| 131 | + " return timestamp\n", |
| 132 | + " except ValueError:\n", |
| 133 | + " return round(datetime.strptime('2017/09/11 17:02:06.418', '%Y/%m/%d %H:%M:%S.%f').timestamp())" |
| 134 | + ] |
| 135 | + }, |
| 136 | + { |
| 137 | + "cell_type": "code", |
| 138 | + "execution_count": 6, |
| 139 | + "metadata": {}, |
| 140 | + "outputs": [], |
| 141 | + "source": [ |
| 142 | + "# creating a new column called timestamp with the to_epoch method applied\n" |
| 143 | + ] |
| 144 | + }, |
| 145 | + { |
| 146 | + "cell_type": "code", |
| 147 | + "execution_count": 7, |
| 148 | + "metadata": {}, |
| 149 | + "outputs": [], |
| 150 | + "source": [ |
| 151 | + "# displaying the first 5 rows of the dataset\n" |
| 152 | + ] |
| 153 | + }, |
| 154 | + { |
| 155 | + "cell_type": "markdown", |
| 156 | + "metadata": {}, |
| 157 | + "source": [ |
| 158 | + "**Note:** \n", |
| 159 | + "We round up the miliseconds in our `to_epoch` method since epoch is the number of seconds (not miliseconds) that have passes since January 1st 1970. \n", |
| 160 | + "Of course we loose some precision here, but we want to focus on creating our own custom layer instead of wasting a lot of time with our dataset." |
| 161 | + ] |
| 162 | + }, |
| 163 | + { |
| 164 | + "cell_type": "markdown", |
| 165 | + "metadata": {}, |
| 166 | + "source": [ |
| 167 | + "---" |
| 168 | + ] |
| 169 | + }, |
| 170 | + { |
| 171 | + "cell_type": "markdown", |
| 172 | + "metadata": {}, |
| 173 | + "source": [ |
| 174 | + "#### Writing our custom layer" |
| 175 | + ] |
| 176 | + }, |
| 177 | + { |
| 178 | + "cell_type": "markdown", |
| 179 | + "metadata": {}, |
| 180 | + "source": [ |
| 181 | + "After preparing our dataset, we can now start writing our custom layer. \n", |
| 182 | + "As mentioned at the beginning of this activity, it will be based on the taxi example of geoplotlib. \n", |
| 183 | + "\n", |
| 184 | + "We want to have a layer `TrackLayer` that takes an argument dataset which contains `lat` and `lon` data in combination with a `timestamp`. \n", |
| 185 | + "Given this data, we want to plot each point for each timestamp on the map, creating a tail behind the newest position of the plane.\n", |
| 186 | + "The geoplotlib colorbrewer is used to give each plane a color based on their unique `hex_ident`. \n", |
| 187 | + "The view (bounding box) of our visualization will be set to the city Leeds and a text information with the current timestamp is displayed in the upper right corner." |
| 188 | + ] |
| 189 | + }, |
| 190 | + { |
| 191 | + "cell_type": "code", |
| 192 | + "execution_count": 10, |
| 193 | + "metadata": {}, |
| 194 | + "outputs": [], |
| 195 | + "source": [ |
| 196 | + "# custom layer creation\n", |
| 197 | + "import geoplotlib\n", |
| 198 | + "from geoplotlib.layers import BaseLayer\n", |
| 199 | + "from geoplotlib.core import BatchPainter\n", |
| 200 | + "from geoplotlib.colors import colorbrewer\n", |
| 201 | + "from geoplotlib.utils import epoch_to_str, BoundingBox\n", |
| 202 | + "\n", |
| 203 | + "class TrackLayer(BaseLayer):\n", |
| 204 | + "\n", |
| 205 | + " # initialize class variables\n", |
| 206 | + " def __init__(self, dataset, bbox=BoundingBox.WORLD):\n", |
| 207 | + " self.view = bbox\n", |
| 208 | + " pass\n", |
| 209 | + "\n", |
| 210 | + " # implement draw routine\n", |
| 211 | + " def draw(self, proj, mouse_x, mouse_y, ui_manager):\n", |
| 212 | + " pass\n", |
| 213 | + " \n", |
| 214 | + " # bounding box that gets used when layer is created\n", |
| 215 | + " def bbox(self):\n", |
| 216 | + " return self.view" |
| 217 | + ] |
| 218 | + }, |
| 219 | + { |
| 220 | + "cell_type": "markdown", |
| 221 | + "metadata": {}, |
| 222 | + "source": [ |
| 223 | + "---" |
| 224 | + ] |
| 225 | + }, |
| 226 | + { |
| 227 | + "cell_type": "markdown", |
| 228 | + "metadata": {}, |
| 229 | + "source": [ |
| 230 | + "#### Visualization with of the custom layer" |
| 231 | + ] |
| 232 | + }, |
| 233 | + { |
| 234 | + "cell_type": "markdown", |
| 235 | + "metadata": {}, |
| 236 | + "source": [ |
| 237 | + "After creating the custom layer, using it is as simple as using any other layer in geoplotlib. \n", |
| 238 | + "We can use the `add_layer` method and pass in our custom layer class with the parameters needed." |
| 239 | + ] |
| 240 | + }, |
| 241 | + { |
| 242 | + "cell_type": "markdown", |
| 243 | + "metadata": {}, |
| 244 | + "source": [ |
| 245 | + "Our data is focused on the UK and specifically Leeds. \n", |
| 246 | + "So we want to adjust our bounding box to exactly this area." |
| 247 | + ] |
| 248 | + }, |
| 249 | + { |
| 250 | + "cell_type": "code", |
| 251 | + "execution_count": 10, |
| 252 | + "metadata": {}, |
| 253 | + "outputs": [], |
| 254 | + "source": [ |
| 255 | + "# bounding box for our view on leeds\n", |
| 256 | + "from geoplotlib.utils import BoundingBox\n", |
| 257 | + "\n", |
| 258 | + "leeds_bbox = BoundingBox(north=53.8074, west=-3, south=53.7074 , east=0)" |
| 259 | + ] |
| 260 | + }, |
| 261 | + { |
| 262 | + "cell_type": "code", |
| 263 | + "execution_count": 11, |
| 264 | + "metadata": {}, |
| 265 | + "outputs": [], |
| 266 | + "source": [ |
| 267 | + "# displaying our custom layer using add_layer\n", |
| 268 | + "from geoplotlib.utils import DataAccessObject\n" |
| 269 | + ] |
| 270 | + }, |
| 271 | + { |
| 272 | + "cell_type": "markdown", |
| 273 | + "metadata": {}, |
| 274 | + "source": [ |
| 275 | + "**Note:** \n", |
| 276 | + "In order to avoid any errors associated with the library, we have to convert our pandas dataframe to a geoplotlib DataAccessObject. \n", |
| 277 | + "The creator of geoplotlib provides a handy interface for this conversion." |
| 278 | + ] |
| 279 | + }, |
| 280 | + { |
| 281 | + "cell_type": "markdown", |
| 282 | + "metadata": {}, |
| 283 | + "source": [ |
| 284 | + "When looking at the upper right hand corner, we can clearly see the temporal aspect of this visualization. \n", |
| 285 | + "The first observation we make is that our data is really sparse, we sometimes only have a single data point for a plane, seldomly a whole path is drawn. \n", |
| 286 | + "\n", |
| 287 | + "Even though it is so sparse, we can already get a feeling about where the planes are flying most.\n", |
| 288 | + "\n", |
| 289 | + "**Note:** \n", |
| 290 | + "If you're interested in what else can be achieved with this custom layer approach, there are more examples in the geoplotlib repository. \n", |
| 291 | + "- https://github.com/andrea-cuttone/geoplotlib/blob/master/examples/follow_camera.py\n", |
| 292 | + "- https://github.com/andrea-cuttone/geoplotlib/blob/master/examples/quadtree.py\n", |
| 293 | + "- https://github.com/andrea-cuttone/geoplotlib/blob/master/examples/kmeans.py" |
| 294 | + ] |
| 295 | + } |
| 296 | + ], |
| 297 | + "metadata": { |
| 298 | + "kernelspec": { |
| 299 | + "display_name": "Python 3", |
| 300 | + "language": "python", |
| 301 | + "name": "python3" |
| 302 | + }, |
| 303 | + "language_info": { |
| 304 | + "codemirror_mode": { |
| 305 | + "name": "ipython", |
| 306 | + "version": 3 |
| 307 | + }, |
| 308 | + "file_extension": ".py", |
| 309 | + "mimetype": "text/x-python", |
| 310 | + "name": "python", |
| 311 | + "nbconvert_exporter": "python", |
| 312 | + "pygments_lexer": "ipython3", |
| 313 | + "version": "3.7.0" |
| 314 | + } |
| 315 | + }, |
| 316 | + "nbformat": 4, |
| 317 | + "nbformat_minor": 2 |
| 318 | +} |
0 commit comments