-
Notifications
You must be signed in to change notification settings - Fork 171
cuda and tensorflow 1.15 are not compatible #89
Description
Please make sure that this is a build/installation issue. As per our GitHub Policy, we only address code/doc bugs, performance issues, feature requests and build/installation issues on GitHub. tag:build_template
System information
- OS Platform and Distribution (e.g., Linux Ubuntu 16.04):20.04
- Mobile device (e.g. iPhone 8, Pixel 2, Samsung Galaxy) if the issue happens on mobile device:
- TensorFlow installed from (source or binary):pip install nvidia-tensorflow[1.15]
- TensorFlow version:1.15
- Python version:3.8
- Installed using virtualenv? pip? conda?:conda
- Bazel version (if compiling from source):No root access, can't install
- GCC/Compiler version (if compiling from source):
- CUDA/cuDNN version:11.4
- GPU model and memory:/7.79GB
Describe the problem
cudaGetDevice() failed. Status: CUDA driver version is insufficient for CUDA runtime version
I did install tensorflow 1.15 in the way I installed it, and the version shown is 1.15, but I get this problem after running it.
Provide the exact sequence of commands / steps that you executed before running into the problem
python xxx.py,This problem occurs when I run the code.
Any other info / logs
2023-06-19 12:37:39.983469: I tensorflow/stream_executor/platform/default/dso_loader.cc:50] Successfully opened dynamic library libcudart.so.12
Traceback (most recent call last):
File "CsiNet_train.py", line 60, in
network_output = residual_network(image_tensor, residual_num, encoded_dim)
File "CsiNet_train.py", line 43, in residual_network
x = Conv2D(2, (3, 3), padding='same', data_format="channels_first")(x)
File "/home/cencen/shared/.conda/envs/cc-tf1.15_py3.8/lib/python3.8/site-packages/keras/engine/topology.py", line 603, in call
output = self.call(inputs, **kwargs)
File "/home/cencen/shared/.conda/envs/cc-tf1.15_py3.8/lib/python3.8/site-packages/keras/layers/convolutional.py", line 158, in call
outputs = K.conv2d(
File "/home/cencen/shared/.conda/envs/cc-tf1.15_py3.8/lib/python3.8/site-packages/keras/backend/tensorflow_backend.py", line 3180, in conv2d
x, tf_data_format = _preprocess_conv2d_input(x, data_format)
File "/home/cencen/shared/.conda/envs/cc-tf1.15_py3.8/lib/python3.8/site-packages/keras/backend/tensorflow_backend.py", line 3062, in _preprocess_conv2d_input
if not _has_nchw_support():
File "/home/cencen/shared/.conda/envs/cc-tf1.15_py3.8/lib/python3.8/site-packages/keras/backend/tensorflow_backend.py", line 270, in _has_nchw_support
gpus_available = len(_get_available_gpus()) > 0
File "/home/cencen/shared/.conda/envs/cc-tf1.15_py3.8/lib/python3.8/site-packages/keras/backend/tensorflow_backend.py", line 256, in _get_available_gpus
_LOCAL_DEVICES = get_session().list_devices()
File "/home/cencen/shared/.conda/envs/cc-tf1.15_py3.8/lib/python3.8/site-packages/keras/backend/tensorflow_backend.py", line 168, in get_session
_SESSION = tf.Session(config=config)
File "/home/cencen/.local/lib/python3.8/site-packages/tensorflow_core/python/client/session.py", line 1585, in init
super(Session, self).init(target, graph, config=config)
File "/home/cencen/.local/lib/python3.8/site-packages/tensorflow_core/python/client/session.py", line 699, in init
self._session = tf_session.TF_NewSessionRef(self._graph._c_graph, opts)
tensorflow.python.framework.errors_impl.InternalError: cudaGetDevice() failed. Status: CUDA driver version is insufficient for CUDA runtime version