|
| 1 | +# beam search implementation in PyTorch.""" |
| 2 | +# |
| 3 | +# |
| 4 | +# hyp1#-hyp1---hyp1 -hyp1 |
| 5 | +# \ / |
| 6 | +# hyp2 \-hyp2 /-hyp2#hyp2 |
| 7 | +# / \ |
| 8 | +# hyp3#-hyp3---hyp3 -hyp3 |
| 9 | +# ======================== |
| 10 | +# |
| 11 | +# Takes care of beams, back pointers, and scores. |
| 12 | + |
| 13 | +# Code borrowed from https://github.com/MaximumEntropy/Seq2Seq-PyTorch/blob/master/beam_search.py, |
| 14 | +# who borrowed it from PyTorch OpenNMT example |
| 15 | +# https://github.com/pytorch/examples/blob/master/OpenNMT/onmt/Beam.py |
| 16 | +# :-) |
| 17 | + |
| 18 | +import torch |
| 19 | + |
| 20 | + |
| 21 | +class Beam(object): |
| 22 | + """Ordered beam of candidate outputs. Fixed length.""" |
| 23 | + |
| 24 | + def __init__(self, size, steps, cuda=False): |
| 25 | + """Initialize params.""" |
| 26 | + self.size = size |
| 27 | + self.done = False |
| 28 | + self.pad = -1 |
| 29 | + self.steps = steps |
| 30 | + self.current_step = 0 |
| 31 | + self.tt = torch.cuda if cuda else torch |
| 32 | + |
| 33 | + # The score for each translation on the beam. |
| 34 | + self.scores = self.tt.FloatTensor(size).zero_() |
| 35 | + |
| 36 | + # The backpointers at each time-step. |
| 37 | + self.prevKs = [] |
| 38 | + |
| 39 | + # The outputs at each time-step. |
| 40 | + self.nextYs = [self.tt.LongTensor(size).fill_(self.pad)] |
| 41 | + |
| 42 | + # The attentions (matrix) for each time. |
| 43 | + self.attn = [] |
| 44 | + |
| 45 | + # Get the outputs for the current timestep. |
| 46 | + def get_current_state(self): |
| 47 | + """Get state of beam.""" |
| 48 | + return self.nextYs[-1] |
| 49 | + |
| 50 | + # Get the backpointers for the current timestep. |
| 51 | + def get_current_origin(self): |
| 52 | + """Get the backpointer to the beam at this step.""" |
| 53 | + return self.prevKs[-1] |
| 54 | + |
| 55 | + # Given prob over words for every last beam `wordLk` and attention |
| 56 | + # `attnOut`: Compute and update the beam search. |
| 57 | + # |
| 58 | + # Parameters: |
| 59 | + # |
| 60 | + # * `wordLk`- probs of advancing from the last step (K x words) |
| 61 | + # * `attnOut`- attention at the last step |
| 62 | + # |
| 63 | + # Returns: True if beam search is complete. |
| 64 | + |
| 65 | + def advance(self, workd_lk): |
| 66 | + """Advance the beam.""" |
| 67 | + num_words = workd_lk.size(1) |
| 68 | + |
| 69 | + # Sum the previous scores. |
| 70 | + if len(self.prevKs) > 0: |
| 71 | + beam_lk = workd_lk + self.scores.unsqueeze(1).expand_as(workd_lk) |
| 72 | + else: |
| 73 | + beam_lk = workd_lk[0] |
| 74 | + |
| 75 | + flat_beam_lk = beam_lk.view(-1) |
| 76 | + |
| 77 | + bestScores, bestScoresId = flat_beam_lk.topk(self.size, 0, True, True) |
| 78 | + self.scores = bestScores |
| 79 | + |
| 80 | + # bestScoresId is flattened beam x word array, so calculate which |
| 81 | + # word and beam each score came from |
| 82 | + prev_k = bestScoresId / num_words |
| 83 | + self.prevKs.append(prev_k) |
| 84 | + self.nextYs.append(bestScoresId - prev_k * num_words) |
| 85 | + |
| 86 | + self.current_step += 1 |
| 87 | + # End condition is when top-of-beam is EOS. |
| 88 | + if self.current_step == self.steps: |
| 89 | + self.done = True |
| 90 | + |
| 91 | + return self.done |
| 92 | + |
| 93 | + def sort_best(self): |
| 94 | + """Sort the beam.""" |
| 95 | + return torch.sort(self.scores, 0, True) |
| 96 | + |
| 97 | + # Get the score of the best in the beam. |
| 98 | + def get_best(self): |
| 99 | + """Get the most likely candidate.""" |
| 100 | + scores, ids = self.sort_best() |
| 101 | + return scores[1], ids[1] |
| 102 | + |
| 103 | + # Walk back to construct the full hypothesis. |
| 104 | + # |
| 105 | + # Parameters. |
| 106 | + # |
| 107 | + # * `k` - the position in the beam to construct. |
| 108 | + # |
| 109 | + # Returns. |
| 110 | + # |
| 111 | + # 1. The hypothesis |
| 112 | + # 2. The attention at each time step. |
| 113 | + def get_hyp(self, k): |
| 114 | + """Get hypotheses.""" |
| 115 | + hyp = [] |
| 116 | + # print(len(self.prevKs), len(self.nextYs), len(self.attn)) |
| 117 | + for j in range(len(self.prevKs) - 1, -1, -1): |
| 118 | + hyp.append(self.nextYs[j + 1][k]) |
| 119 | + k = self.prevKs[j][k] |
| 120 | + |
| 121 | + return hyp[::-1] |
0 commit comments