@@ -27,20 +27,6 @@ def get_paper_ids(self):
2727 self .papers .append (paper )
2828 self .papers .sort ()
2929
30- def recommendations ():
31- allrecommendations = {}
32- for person in self .persons :
33- minimum = len (self .papers )* 25 + 1
34- for otherperson in self .persons .remove (person ):
35- closest = otherperson
36- tmp = compare_ratings (person , otherperson )
37- if tmp < minimum :
38- closest = otherperson
39- minimum = tmp
40- notread = np .where (np .array (self .myratings [person ] == 0 ))
41- maxindex = np .where (self .myratings [otherperson ][notread ] == self .myratings [otherperson ][notread ].max ())
42- allrecommendations [person ] = self ._data [otherperson ][maxindex ]
43- return allrecommendations
4430
4531 def compare_ratings (person1 , person2 ):
4632 # only check non-zero ratings
@@ -50,6 +36,22 @@ def compare_ratings(person1, person2):
5036 cmp2 = self .myratings [person2 ][indices ]
5137 return np .linalg .norm (self .myratings [cmp1 ] - self .myratings [cmp2 ])
5238
39+ def recommendations ():
40+ return None
41+ #import pdb; pdb.set_trace()
42+ #allrecommendations = {}
43+ #for person in self.persons:
44+ # minimum = len(self.papers)*25+1
45+ # for otherperson in self.persons.remove(person):
46+ # tmp = compare_ratings(person, otherperson)
47+ # if tmp < minimum:
48+ # closest = otherperson
49+ # minimum = tmp
50+ # notread = np.where(np.array(self.myratings[person] == 0))
51+ # maxindex = np.where(self.myratings[otherperson][notread] == self.myratings[otherperson][notread].max())
52+ # allrecommendations[person] = self._data[otherperson][maxindex]
53+ #return allrecommendations
54+
5355# Alternative distances:
5456# pearson
5557# tanimoto scipy.spatial.distance.rogerstanimoto
0 commit comments