|
| 1 | +""" |
| 2 | +面试题6:重建二叉树 |
| 3 | +题目:输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。 |
| 4 | +例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建出图2.6所示的二叉树并输出它的头结点。二叉树结点的定义如下:<Paste> |
| 5 | +""" |
| 6 | + |
| 7 | + |
| 8 | +class Node: |
| 9 | + def __init__(self, val, left=None, right=None): |
| 10 | + self.val, self.left, self.right = val, left, right |
| 11 | + |
| 12 | + |
| 13 | +class Solution: |
| 14 | + def __init__(self): |
| 15 | + self.pres = [] |
| 16 | + self.inorders = [] |
| 17 | + |
| 18 | + def solve(self, prevals, invals): |
| 19 | + """ |
| 20 | + 思路:先序找到根,然后可以找到中序遍历根的位置确定左子树和右子树,递归处理 |
| 21 | + """ |
| 22 | + if not prevals or not invals: |
| 23 | + return None |
| 24 | + root_val = prevals[0] |
| 25 | + root = Node(root_val) |
| 26 | + inorder_root_idx = invals.index(root_val) |
| 27 | + left_length = inorder_root_idx |
| 28 | + right_length = len(invals) - inorder_root_idx - 1 |
| 29 | + |
| 30 | + if left_length: |
| 31 | + root.left = self.solve(prevals[1:1 + left_length], invals[:inorder_root_idx]) |
| 32 | + |
| 33 | + if right_length: |
| 34 | + root.right = self.solve(prevals[left_length + 1:], invals[inorder_root_idx + 1:]) |
| 35 | + return root |
| 36 | + |
| 37 | + def inorder(self, subtree): |
| 38 | + if subtree: |
| 39 | + self.inorder(subtree.left) |
| 40 | + self.inorders.append(subtree.val) |
| 41 | + self.inorder(subtree.right) |
| 42 | + |
| 43 | + def preorder(self, subtree): |
| 44 | + if subtree: |
| 45 | + self.pres.append(subtree.val) |
| 46 | + self.preorder(subtree.left) |
| 47 | + self.preorder(subtree.right) |
| 48 | + |
| 49 | + |
| 50 | +def test(): |
| 51 | + s = Solution() |
| 52 | + prevals = [1, 2, 4, 7, 3, 5, 6, 8] |
| 53 | + invals = [4, 7, 2, 1, 5, 3, 8, 6] |
| 54 | + root = s.solve(prevals, invals) |
| 55 | + s.inorder(root) |
| 56 | + assert s.inorders == invals |
| 57 | + |
| 58 | + s.preorder(root) |
| 59 | + assert s.pres == prevals |
| 60 | + |
| 61 | + |
| 62 | +if __name__ == '__main__': |
| 63 | + test() |
0 commit comments