@@ -296,7 +296,7 @@ Query for k-nearest neighbors
296296    >>> np.random.seed(0) 
297297    >>> X = np.random.random((10, 3))  # 10 points in 3 dimensions 
298298    >>> tree = {BinaryTree}(X, leaf_size=2)              # doctest: +SKIP 
299-     >>> dist, ind = tree.query([X[0] ], k=3)                # doctest: +SKIP 
299+     >>> dist, ind = tree.query(X[:1 ], k=3)                # doctest: +SKIP 
300300    >>> print(ind)  # indices of 3 closest neighbors 
301301    [0 3 1] 
302302    >>> print(dist)  # distances to 3 closest neighbors 
@@ -312,7 +312,7 @@ pickle operation: the tree needs not be rebuilt upon unpickling.
312312    >>> tree = {BinaryTree}(X, leaf_size=2)        # doctest: +SKIP 
313313    >>> s = pickle.dumps(tree)                     # doctest: +SKIP 
314314    >>> tree_copy = pickle.loads(s)                # doctest: +SKIP 
315-     >>> dist, ind = tree_copy.query(X[0 ], k=3)     # doctest: +SKIP 
315+     >>> dist, ind = tree_copy.query(X[:1 ], k=3)     # doctest: +SKIP 
316316    >>> print(ind)  # indices of 3 closest neighbors 
317317    [0 3 1] 
318318    >>> print(dist)  # distances to 3 closest neighbors 
@@ -324,9 +324,9 @@ Query for neighbors within a given radius
324324    >>> np.random.seed(0) 
325325    >>> X = np.random.random((10, 3))  # 10 points in 3 dimensions 
326326    >>> tree = {BinaryTree}(X, leaf_size=2)     # doctest: +SKIP 
327-     >>> print(tree.query_radius(X[0 ], r=0.3, count_only=True)) 
327+     >>> print(tree.query_radius(X[:1 ], r=0.3, count_only=True)) 
328328    3 
329-     >>> ind = tree.query_radius(X[0 ], r=0.3)  # doctest: +SKIP 
329+     >>> ind = tree.query_radius(X[:1 ], r=0.3)  # doctest: +SKIP 
330330    >>> print(ind)  # indices of neighbors within distance 0.3 
331331    [3 0 1] 
332332
@@ -1240,7 +1240,7 @@ cdef class BinaryTree:
12401240
12411241        Parameters 
12421242        ---------- 
1243-         X : array-like, last dimension self.dim  
1243+         X : array-like, shape = [n_samples, n_features]  
12441244            An array of points to query 
12451245        k : integer  (default = 1) 
12461246            The number of nearest neighbors to return 
@@ -1272,20 +1272,6 @@ cdef class BinaryTree:
12721272        i : array of integers - shape: x.shape[:-1] + (k,) 
12731273            each entry gives the list of indices of 
12741274            neighbors of the corresponding point 
1275- 
1276-         Examples 
1277-         -------- 
1278-         Query for k-nearest neighbors 
1279- 
1280-             >>> import numpy as np 
1281-             >>> np.random.seed(0) 
1282-             >>> X = np.random.random((10, 3))  # 10 points in 3 dimensions 
1283-             >>> tree = BinaryTree(X, leaf_size=2)    # doctest: +SKIP 
1284-             >>> dist, ind = tree.query(X[0], k=3)    # doctest: +SKIP 
1285-             >>> print(ind)  # indices of 3 closest neighbors 
1286-             [0 3 1] 
1287-             >>> print(dist)  # distances to 3 closest neighbors 
1288-             [ 0.          0.19662693  0.29473397] 
12891275        """ 
12901276        # XXX: we should allow X to be a pre-built tree. 
12911277        X  =  check_array (X , dtype = DTYPE , order = 'C' )
@@ -1364,7 +1350,7 @@ cdef class BinaryTree:
13641350
13651351        Parameters 
13661352        ---------- 
1367-         X : array-like, last dimension self.dim  
1353+         X : array-like, shape = [n_samples, n_features]  
13681354            An array of points to query 
13691355        r : distance within which neighbors are returned 
13701356            r can be a single value, or an array of values of shape 
@@ -1406,20 +1392,6 @@ cdef class BinaryTree:
14061392        dist : array of objects, shape = X.shape[:-1] 
14071393            each element is a numpy double array 
14081394            listing the distances corresponding to indices in i. 
1409- 
1410-         Examples 
1411-         -------- 
1412-         Query for neighbors in a given radius 
1413- 
1414-         >>> import numpy as np 
1415-         >>> np.random.seed(0) 
1416-         >>> X = np.random.random((10, 3))  # 10 points in 3 dimensions 
1417-         >>> tree = BinaryTree(X, leaf_size=2)     # doctest: +SKIP 
1418-         >>> print(tree.query_radius(X[0], r=0.3, count_only=True)) 
1419-         3 
1420-         >>> ind = tree.query_radius(X[0], r=0.3)  # doctest: +SKIP 
1421-         >>> print(ind)  # indices of neighbors within distance 0.3 
1422-         [3 0 1] 
14231395        """ 
14241396        if  count_only  and  return_distance :
14251397            raise  ValueError ("count_only and return_distance " 
@@ -1513,7 +1485,7 @@ cdef class BinaryTree:
15131485
15141486        Parameters 
15151487        ---------- 
1516-         X : array_like  
1488+         X : array-like, shape = [n_samples, n_features]  
15171489            An array of points to query.  Last dimension should match dimension 
15181490            of training data. 
15191491        h : float 
@@ -1544,17 +1516,6 @@ cdef class BinaryTree:
15441516        ------- 
15451517        density : ndarray 
15461518            The array of (log)-density evaluations, shape = X.shape[:-1] 
1547- 
1548-         Examples 
1549-         -------- 
1550-         Compute a gaussian kernel density estimate: 
1551- 
1552-         >>> import numpy as np 
1553-         >>> np.random.seed(1) 
1554-         >>> X = np.random.random((100, 3)) 
1555-         >>> tree = BinaryTree(X)           # doctest: +SKIP 
1556-         >>> tree.kernel_density(X[:3], h=0.1, kernel='gaussian') 
1557-         array([ 6.94114649,  7.83281226,  7.2071716 ]) 
15581519        """ 
15591520        cdef  DTYPE_t  h_c  =  h 
15601521        cdef  DTYPE_t  log_atol  =  log (atol )
@@ -1657,7 +1618,7 @@ cdef class BinaryTree:
16571618
16581619        Parameters 
16591620        ---------- 
1660-         X : array_like  
1621+         X : array-like, shape = [n_samples, n_features]  
16611622            An array of points to query.  Last dimension should match dimension 
16621623            of training data. 
16631624        r : array_like 
@@ -1672,18 +1633,6 @@ cdef class BinaryTree:
16721633        counts : ndarray 
16731634            counts[i] contains the number of pairs of points with distance 
16741635            less than or equal to r[i] 
1675- 
1676-         Examples 
1677-         -------- 
1678-         Compute the two-point autocorrelation function of X: 
1679- 
1680-         >>> import numpy as np 
1681-         >>> np.random.seed(0) 
1682-         >>> X = np.random.random((30, 3)) 
1683-         >>> r = np.linspace(0, 1, 5) 
1684-         >>> tree = BinaryTree(X)     # doctest: +SKIP 
1685-         >>> tree.two_point_correlation(X, r) 
1686-         array([ 30,  62, 278, 580, 820]) 
16871636        """ 
16881637        cdef  ITYPE_t  n_features  =  self .data .shape [1 ]
16891638        cdef  ITYPE_t  i 
0 commit comments