| 
 | 1 | +"""  | 
 | 2 | +Author: Pablo Winant  | 
 | 3 | +Filename: test_cartesian.py  | 
 | 4 | +
  | 
 | 5 | +Tests for cartesian.py file  | 
 | 6 | +
  | 
 | 7 | +"""  | 
 | 8 | + | 
 | 9 | +from quantecon.cartesian import cartesian, _repeat_1d  | 
 | 10 | + | 
 | 11 | +def test_cartesian_C_order():  | 
 | 12 | + | 
 | 13 | +    from numpy import linspace  | 
 | 14 | +    x = linspace(0,9,10)  | 
 | 15 | + | 
 | 16 | +    prod = cartesian([x,x,x])  | 
 | 17 | + | 
 | 18 | +    correct = True  | 
 | 19 | +    for i in range(999):  | 
 | 20 | +        n = prod[i,0]*100+prod[i,1]*10+prod[i,2]  | 
 | 21 | +        correct *= (i == n)  | 
 | 22 | + | 
 | 23 | +    assert(correct)  | 
 | 24 | + | 
 | 25 | +def test_cartesian_F_order():  | 
 | 26 | + | 
 | 27 | +    from numpy import linspace  | 
 | 28 | +    x = linspace(0,9,10)  | 
 | 29 | + | 
 | 30 | +    prod = cartesian([x,x,x], order='F')  | 
 | 31 | + | 
 | 32 | +    correct = True  | 
 | 33 | +    for i in range(999):  | 
 | 34 | +        n = prod[i,2]*100+prod[i,1]*10+prod[i,0]  | 
 | 35 | +        correct *= (i == n)  | 
 | 36 | + | 
 | 37 | +    assert(correct)  | 
 | 38 | + | 
 | 39 | +def test_performance_C():  | 
 | 40 | + | 
 | 41 | +    from numpy import linspace, column_stack, repeat, tile  | 
 | 42 | +    import time  | 
 | 43 | + | 
 | 44 | +    N_x = 1000  | 
 | 45 | +    N_y = 7777  | 
 | 46 | +    x = linspace(1,N_x,N_x)  | 
 | 47 | +    y = linspace(1,N_y,N_y)  | 
 | 48 | + | 
 | 49 | +    cartesian([x[:10],y[:10]]) # warmup  | 
 | 50 | + | 
 | 51 | +    t1 = time.time()  | 
 | 52 | +    for i in range(100):  | 
 | 53 | +        prod = cartesian([x,y])  | 
 | 54 | +    t2 = time.time()  | 
 | 55 | +    # print(prod.shape)  | 
 | 56 | + | 
 | 57 | +    # compute the same produce using numpy:  | 
 | 58 | +    import numpy  | 
 | 59 | + | 
 | 60 | +    t3 = time.time()  | 
 | 61 | +    for i in range(100):  | 
 | 62 | +        prod_numpy = column_stack([  | 
 | 63 | +            repeat(x,N_y),  | 
 | 64 | +            tile(y,N_x)  | 
 | 65 | +        ])  | 
 | 66 | +    t4 = time.time()  | 
 | 67 | + | 
 | 68 | +    print("Timings for 'cartesian' (C order)")  | 
 | 69 | +    print("Cartesian: {}".format(t2-t1))  | 
 | 70 | +    print("Numpy:     {}".format(t4-t3))  | 
 | 71 | +    assert(abs(prod-prod_numpy).max()==0)  | 
 | 72 | + | 
 | 73 | +def test_performance_F():  | 
 | 74 | + | 
 | 75 | +    from numpy import linspace, column_stack, repeat, tile  | 
 | 76 | +    import time  | 
 | 77 | + | 
 | 78 | +    N_x = 1000  | 
 | 79 | +    N_y = 7777  | 
 | 80 | +    x = linspace(1,N_x,N_x)  | 
 | 81 | +    y = linspace(1,N_y,N_y)  | 
 | 82 | + | 
 | 83 | +    cartesian([x[:10],y[:10]]) # warmup  | 
 | 84 | + | 
 | 85 | +    t1 = time.time()  | 
 | 86 | +    for i in range(100):  | 
 | 87 | +        prod = cartesian([x,y], order='F')  | 
 | 88 | +    t2 = time.time()  | 
 | 89 | +    # print(prod.shape)  | 
 | 90 | + | 
 | 91 | +    # compute the same produce using numpy:  | 
 | 92 | +    import numpy  | 
 | 93 | + | 
 | 94 | +    t3 = time.time()  | 
 | 95 | +    for i in range(100):  | 
 | 96 | +        prod_numpy = column_stack([  | 
 | 97 | +            tile(x,N_y),  | 
 | 98 | +            repeat(y,N_x)  | 
 | 99 | +        ])  | 
 | 100 | +    t4 = time.time()  | 
 | 101 | + | 
 | 102 | +    print("Timings for 'cartesian'(Fortran order)")  | 
 | 103 | +    print("Cartesian: {}".format(t2-t1))  | 
 | 104 | +    print("Numpy:     {}".format(t4-t3))  | 
 | 105 | +    assert(abs(prod-prod_numpy).max()==0)  | 
 | 106 | + | 
 | 107 | +def test_mlinsplace():  | 
 | 108 | + | 
 | 109 | +    from numpy import linspace  | 
 | 110 | +    from quantecon.cartesian import mlinspace  | 
 | 111 | + | 
 | 112 | +    grid1 = mlinspace([-1,-1],[2,3],[30,50])  | 
 | 113 | +    grid2 = cartesian([linspace(-1,2,30), linspace(-1,3,50)])  | 
 | 114 | + | 
 | 115 | +def test_tile():  | 
 | 116 | + | 
 | 117 | +    from numpy import linspace, tile, zeros  | 
 | 118 | +    x = linspace(1,100, 100)  | 
 | 119 | + | 
 | 120 | +    import time  | 
 | 121 | +    t1 = time.time()  | 
 | 122 | +    t_repeat = zeros(100*1000)  | 
 | 123 | +    _repeat_1d(x,1,t_repeat)  | 
 | 124 | +    t2 = time.time()  | 
 | 125 | + | 
 | 126 | +    t3 = time.time()  | 
 | 127 | +    t_numpy = tile(x, 1000)  | 
 | 128 | +    t4 = time.time()  | 
 | 129 | + | 
 | 130 | +    print("Timings for 'tile' operation")  | 
 | 131 | +    print("Repeat_1d: {}".format(t2-t1))  | 
 | 132 | +    print("Numpy:     {}".format(t4-t3))  | 
 | 133 | + | 
 | 134 | +    assert( abs(t_numpy-t_repeat).max())  | 
 | 135 | + | 
 | 136 | +def test_repeat():  | 
 | 137 | + | 
 | 138 | +    from numpy import linspace, repeat, zeros  | 
 | 139 | +    x = linspace(1,100  , 100)  | 
 | 140 | + | 
 | 141 | +    import time  | 
 | 142 | +    t1 = time.time()  | 
 | 143 | +    t_repeat = zeros(100*1000)  | 
 | 144 | +    _repeat_1d(x,1000,t_repeat)  | 
 | 145 | +    t2 = time.time()  | 
 | 146 | + | 
 | 147 | +    t3 = time.time()  | 
 | 148 | +    t_numpy = repeat(x, 1000)  | 
 | 149 | +    t4 = time.time()  | 
 | 150 | + | 
 | 151 | +    print("Timings for 'repeat' operation")  | 
 | 152 | +    print("Repeat_1d: {}".format(t2-t1))  | 
 | 153 | +    print("Numpy:     {}".format(t4-t3))  | 
 | 154 | + | 
 | 155 | +    assert( abs(t_numpy-t_repeat).max())  | 
 | 156 | + | 
 | 157 | + | 
 | 158 | + | 
 | 159 | + | 
 | 160 | +if __name__ == '__main__':  | 
 | 161 | +    test_cartesian_C_order()  | 
 | 162 | +    test_cartesian_F_order()  | 
 | 163 | +    test_performance_C()  | 
 | 164 | +    test_performance_F()  | 
 | 165 | +    test_tile()  | 
 | 166 | +    test_repeat()  | 
0 commit comments