Skip to content

Commit aba8aef

Browse files
authored
development_setup.md update (microsoft#349)
* development_setup.md update development_setup.md updated to use install_requirements.sh. See microsoft#158: > Use conda rather than pip packages when possible (as recommended in AML docs). > Dev environment is hence also constrained to conda (no more pip install -r requirements.txt). * Content of install_requirements.sh deleted * build_train_pipeline.py filename fixed * build_train_pipeline.py filename fixed
1 parent 31512d3 commit aba8aef

File tree

1 file changed

+5
-12
lines changed

1 file changed

+5
-12
lines changed

docs/development_setup.md

Lines changed: 5 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -10,31 +10,24 @@ In order to configure the project locally, create a copy of `.env.example` in th
1010

1111
[Install the Azure CLI](https://docs.microsoft.com/en-us/cli/azure/install-azure-cli). The Azure CLI will be used to log you in interactively.
1212

13-
Create a virtual environment using [venv](https://docs.python.org/3/library/venv.html), [conda](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html) or [pyenv-virtualenv](https://github.com/pyenv/pyenv-virtualenv).
13+
Install [conda](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html).
1414

15-
Here is an example for setting up and activating a `venv` environment with Python 3:
15+
Install the required Python modules. [`install_requirements.sh`](https://github.com/microsoft/MLOpsPython/blob/master/environment_setup/install_requirements.sh) creates and activates a new conda environment with required Python modules.
1616

1717
```
18-
python3 -mvenv .venv
19-
source .venv/bin/activate
20-
```
21-
22-
Install the required Python modules in your virtual environment.
23-
24-
```
25-
pip install -r environment_setup/requirements.txt
18+
. environment_setup/install_requirements.sh
2619
```
2720

2821
### Running local code
2922

3023
To run your local ML pipeline code on Azure ML, run a command such as the following (in bash, all on one line):
3124

3225
```
33-
export BUILD_BUILDID=$(uuidgen); python ml_service/pipelines/build_train_pipeline.py && python ml_service/pipelines/run_train_pipeline.py
26+
export BUILD_BUILDID=$(uuidgen); python ml_service/pipelines/diabetes_regression_build_train_pipeline.py && python ml_service/pipelines/run_train_pipeline.py
3427
```
3528

3629
BUILD_BUILDID is a variable used to uniquely identify the ML pipeline between the
37-
`build_train_pipeline.py` and `run_train_pipeline.py` scripts. In Azure DevOps it is
30+
`diabetes_regression_build_train_pipeline.py` and `run_train_pipeline.py` scripts. In Azure DevOps it is
3831
set to the current build number. In a local environment, we can use a command such as
3932
`uuidgen` so set a different random identifier on each run, ensuring there are
4033
no collisions.

0 commit comments

Comments
 (0)