@@ -94,61 +94,57 @@ ODE is
94
94
95
95
where
96
96
97
- .. math ::
98
-
99
- \begin {equation*}
100
- A' =
101
- \begin {bmatrix}
102
- \frac {\partial }{\partial x}vcos(\phi ) &
103
- \frac {\partial }{\partial y}vcos(\phi ) &
104
- \frac {\partial }{\partial v}vcos(\phi ) &
105
- \frac {\partial }{\partial \phi }vcos(\phi )\\
106
- \frac {\partial }{\partial x}vsin(\phi ) &
107
- \frac {\partial }{\partial y}vsin(\phi ) &
108
- \frac {\partial }{\partial v}vsin(\phi ) &
109
- \frac {\partial }{\partial \phi }vsin(\phi )\\
110
- \frac {\partial }{\partial x}a&
111
- \frac {\partial }{\partial y}a&
112
- \frac {\partial }{\partial v}a&
113
- \frac {\partial }{\partial \phi }a\\
114
- \frac {\partial }{\partial x}\frac {vtan(\delta )}{L}&
115
- \frac {\partial }{\partial y}\frac {vtan(\delta )}{L}&
116
- \frac {\partial }{\partial v}\frac {vtan(\delta )}{L}&
117
- \frac {\partial }{\partial \phi }\frac {vtan(\delta )}{L}\\
118
- \end {bmatrix}
119
- \\
120
- =
121
- \begin {bmatrix}
122
- 0 & 0 & cos(\bar {\phi }) & -\bar {v}sin(\bar {\phi })\\
123
- 0 & 0 & sin(\bar {\phi }) & \bar {v}cos(\bar {\phi }) \\
124
- 0 & 0 & 0 & 0 \\
125
- 0 & 0 &\frac {tan(\bar {\delta })}{L} & 0 \\
126
- \end {bmatrix}
127
- \end {equation*}
128
-
129
- .. math ::
130
-
131
- \begin {equation*}
132
- B' =
133
- \begin {bmatrix}
134
- \frac {\partial }{\partial a}vcos(\phi ) &
135
- \frac {\partial }{\partial \delta }vcos(\phi )\\
136
- \frac {\partial }{\partial a}vsin(\phi ) &
137
- \frac {\partial }{\partial \delta }vsin(\phi )\\
138
- \frac {\partial }{\partial a}a &
139
- \frac {\partial }{\partial \delta }a\\
140
- \frac {\partial }{\partial a}\frac {vtan(\delta )}{L} &
141
- \frac {\partial }{\partial \delta }\frac {vtan(\delta )}{L}\\
142
- \end {bmatrix}
143
- \\
144
- =
145
- \begin {bmatrix}
146
- 0 & 0 \\
147
- 0 & 0 \\
148
- 1 & 0 \\
149
- 0 & \frac {\bar {v}}{Lcos^2 (\bar {\delta })} \\
150
- \end {bmatrix}
151
- \end {equation*}
97
+ :raw-latex: `\b egin{equation*}
98
+ A' =
99
+ \b egin{bmatrix}
100
+ \f rac{\p artial }{\p artial x}vcos(\p hi) &
101
+ \f rac{\p artial }{\p artial y}vcos(\p hi) &
102
+ \f rac{\p artial }{\p artial v}vcos(\p hi) &
103
+ \f rac{\p artial }{\p artial \p hi}vcos(\p hi)\\
104
+ \f rac{\p artial }{\p artial x}vsin(\p hi) &
105
+ \f rac{\p artial }{\p artial y}vsin(\p hi) &
106
+ \f rac{\p artial }{\p artial v}vsin(\p hi) &
107
+ \f rac{\p artial }{\p artial \p hi}vsin(\p hi)\\
108
+ \f rac{\p artial }{\p artial x}a&
109
+ \f rac{\p artial }{\p artial y}a&
110
+ \f rac{\p artial }{\p artial v}a&
111
+ \f rac{\p artial }{\p artial \p hi}a\\
112
+ \f rac{\p artial }{\p artial x}\f rac{vtan(\d elta)}{L}&
113
+ \f rac{\p artial }{\p artial y}\f rac{vtan(\d elta)}{L}&
114
+ \f rac{\p artial }{\p artial v}\f rac{vtan(\d elta)}{L}&
115
+ \f rac{\p artial }{\p artial \p hi}\f rac{vtan(\d elta)}{L}\\
116
+ \e nd{bmatrix}
117
+ \\
118
+ =
119
+ \b egin{bmatrix}
120
+ 0 & 0 & cos(\b ar{\p hi}) & -\b ar{v}sin(\b ar{\p hi})\\
121
+ 0 & 0 & sin(\b ar{\p hi}) & \b ar{v}cos(\b ar{\p hi}) \\
122
+ 0 & 0 & 0 & 0 \\
123
+ 0 & 0 &\f rac{tan(\b ar{\d elta})}{L} & 0 \\
124
+ \e nd{bmatrix}
125
+ \e nd{equation*} `
126
+
127
+ :raw-latex: `\b egin{equation*}
128
+ B' =
129
+ \b egin{bmatrix}
130
+ \f rac{\p artial }{\p artial a}vcos(\p hi) &
131
+ \f rac{\p artial }{\p artial \d elta}vcos(\p hi)\\
132
+ \f rac{\p artial }{\p artial a}vsin(\p hi) &
133
+ \f rac{\p artial }{\p artial \d elta}vsin(\p hi)\\
134
+ \f rac{\p artial }{\p artial a}a &
135
+ \f rac{\p artial }{\p artial \d elta}a\\
136
+ \f rac{\p artial }{\p artial a}\f rac{vtan(\d elta)}{L} &
137
+ \f rac{\p artial }{\p artial \d elta}\f rac{vtan(\d elta)}{L}\\
138
+ \e nd{bmatrix}
139
+ \\
140
+ =
141
+ \b egin{bmatrix}
142
+ 0 & 0 \\
143
+ 0 & 0 \\
144
+ 1 & 0 \\
145
+ 0 & \f rac{\b ar{v}}{Lcos^2(\b ar{\d elta})} \\
146
+ \e nd{bmatrix}
147
+ \e nd{equation*} `
152
148
153
149
You can get a discrete-time mode with Forward Euler Discretization with
154
150
sampling time dt.
@@ -167,66 +163,60 @@ So,
167
163
168
164
where,
169
165
170
- .. math ::
171
-
172
- \begin {equation*}
173
- A = (I + dtA')\\
174
- =
175
- \begin {bmatrix}
176
- 1 & 0 & cos(\bar {\phi })dt & -\bar {v}sin(\bar {\phi })dt\\
177
- 0 & 1 & sin(\bar {\phi })dt & \bar {v}cos(\bar {\phi })dt \\
178
- 0 & 0 & 1 & 0 \\
179
- 0 & 0 &\frac {tan(\bar {\delta })}{L}dt & 1 \\
180
- \end {bmatrix}
181
- \end {equation*}
182
-
183
- .. math ::
184
-
185
- \begin {equation*}
186
- B = dtB'\\
187
- =
188
- \begin {bmatrix}
189
- 0 & 0 \\
190
- 0 & 0 \\
191
- dt & 0 \\
192
- 0 & \frac {\bar {v}}{Lcos^2 (\bar {\delta })}dt \\
193
- \end {bmatrix}
194
- \end {equation*}
195
-
196
- .. math ::
197
-
198
- \begin {equation*}
199
- C = (f(\bar {z},\bar {u})-A'\bar {z}-B'\bar {u})dt\\
200
- = dt(
201
- \begin {bmatrix}
202
- \bar {v}cos(\bar {\phi })\\
203
- \bar {v}sin(\bar {\phi }) \\
204
- \bar {a}\\
205
- \frac {\bar {v}tan(\bar {\delta })}{L}\\
206
- \end {bmatrix}
207
- -
208
- \begin {bmatrix}
209
- \bar {v}cos(\bar {\phi })-\bar {v}sin(\bar {\phi })\bar {\phi }\\
210
- \bar {v}sin(\bar {\phi })+\bar {v}cos(\bar {\phi })\bar {\phi }\\
211
- 0 \\
212
- \frac {\bar {v}tan(\bar {\delta })}{L}\\
213
- \end {bmatrix}
214
- -
215
- \begin {bmatrix}
216
- 0 \\
217
- 0 \\
218
- \bar {a}\\
219
- \frac {\bar {v}\bar {\delta }}{Lcos^2 (\bar {\delta })}\\
220
- \end {bmatrix}
221
- )\\
222
- =
223
- \begin {bmatrix}
224
- \bar {v}sin(\bar {\phi })\bar {\phi }dt\\
225
- -\bar {v}cos(\bar {\phi })\bar {\phi }dt\\
226
- 0 \\
227
- -\frac {\bar {v}\bar {\delta }}{Lcos^2 (\bar {\delta })}dt\\
228
- \end {bmatrix}
229
- \end {equation*}
166
+ :raw-latex: `\b egin{equation*}
167
+ A = (I + dtA')\\
168
+ =
169
+ \b egin{bmatrix}
170
+ 1 & 0 & cos(\b ar{\p hi})dt & -\b ar{v}sin(\b ar{\p hi})dt\\
171
+ 0 & 1 & sin(\b ar{\p hi})dt & \b ar{v}cos(\b ar{\p hi})dt \\
172
+ 0 & 0 & 1 & 0 \\
173
+ 0 & 0 &\f rac{tan(\b ar{\d elta})}{L}dt & 1 \\
174
+ \e nd{bmatrix}
175
+ \e nd{equation*} `
176
+
177
+ :raw-latex: `\b egin{equation*}
178
+ B = dtB'\\
179
+ =
180
+ \b egin{bmatrix}
181
+ 0 & 0 \\
182
+ 0 & 0 \\
183
+ dt & 0 \\
184
+ 0 & \f rac{\b ar{v}}{Lcos^2(\b ar{\d elta})}dt \\
185
+ \e nd{bmatrix}
186
+ \e nd{equation*} `
187
+
188
+ :raw-latex: `\b egin{equation*}
189
+ C = (f(\b ar{z},\b ar{u})-A'\b ar{z}-B'\b ar{u})dt\\
190
+ = dt(
191
+ \b egin{bmatrix}
192
+ \b ar{v}cos(\b ar{\p hi})\\
193
+ \b ar{v}sin(\b ar{\p hi}) \\
194
+ \b ar{a}\\
195
+ \f rac{\b ar{v}tan(\b ar{\d elta})}{L}\\
196
+ \e nd{bmatrix}
197
+ -
198
+ \b egin{bmatrix}
199
+ \b ar{v}cos(\b ar{\p hi})-\b ar{v}sin(\b ar{\p hi})\b ar{\p hi}\\
200
+ \b ar{v}sin(\b ar{\p hi})+\b ar{v}cos(\b ar{\p hi})\b ar{\p hi}\\
201
+ 0\\
202
+ \f rac{\b ar{v}tan(\b ar{\d elta})}{L}\\
203
+ \e nd{bmatrix}
204
+ -
205
+ \b egin{bmatrix}
206
+ 0\\
207
+ 0 \\
208
+ \b ar{a}\\
209
+ \f rac{\b ar{v}\b ar{\d elta}}{Lcos^2(\b ar{\d elta})}\\
210
+ \e nd{bmatrix}
211
+ )\\
212
+ =
213
+ \b egin{bmatrix}
214
+ \b ar{v}sin(\b ar{\p hi})\b ar{\p hi}dt\\
215
+ -\b ar{v}cos(\b ar{\p hi})\b ar{\p hi}dt\\
216
+ 0\\
217
+ -\f rac{\b ar{v}\b ar{\d elta}}{Lcos^2(\b ar{\d elta})}dt\\
218
+ \e nd{bmatrix}
219
+ \e nd{equation*} `
230
220
231
221
This equation is implemented at
232
222
0 commit comments