diff --git a/.github/ignore-notebooks.txt b/.github/ignore-notebooks.txt new file mode 100644 index 00000000..55052688 --- /dev/null +++ b/.github/ignore-notebooks.txt @@ -0,0 +1,10 @@ +01_crewai_langgraph_redis +01_doc2cache_llama3_1 +00_semantic_caching_gemini +01_collaborative_filtering +05_nvidia_ai_rag_redis +01_routing_optimization +02_semantic_cache_optimization +spring_ai_redis_rag.ipynb +00_litellm_proxy_redis.ipynb +04_redisvl_benchmarking_basics.ipynb \ No newline at end of file diff --git a/.github/workflows/nightly-test.yml b/.github/workflows/nightly-test.yml new file mode 100644 index 00000000..3fe631c5 --- /dev/null +++ b/.github/workflows/nightly-test.yml @@ -0,0 +1,111 @@ +name: Tests - Nightly Run + +on: + schedule: + - cron: "0 3 * * *" # 3 AM UTC nightly + workflow_dispatch: + +env: + PYTHON_VERSION: "3.11" + +jobs: + # --------------------------------------------------------- + # 1) Gather all notebooks (except skip-list) + # --------------------------------------------------------- + gather_all_notebooks: + runs-on: ubuntu-latest + outputs: + notebooks: ${{ steps.get_nbs.outputs.notebooks }} + has_notebooks: ${{ steps.get_nbs.outputs.has_notebooks }} + steps: + - uses: actions/checkout@v3 + + - id: get_nbs + run: | + # 1) Find all available notebooks + NBS=$(find python-recipes -name '*.ipynb') + + # 2) Load notebooks to ignore + IGNORE_LIST=() + while IFS= read -r skip_nb || [ -n "$skip_nb" ]; do + # Skip empty lines or comment lines + [[ -z "$skip_nb" || "$skip_nb" =~ ^# ]] && continue + IGNORE_LIST+=("$skip_nb") + done < .github/ignore-notebooks.txt + + # 3) Filter out notebooks that match anything in IGNORE_LIST + FILTERED_NBS=() + for nb in $NBS; do + skip=false + for ignore_nb in "${IGNORE_LIST[@]}"; do + if [[ "$nb" == *"$ignore_nb"* ]]; then + skip=true + break + fi + done + if [ "$skip" = false ]; then + FILTERED_NBS+=("$nb") + fi + done + + # 4) Stuff into a single-line JSON array + NB_JSON=$(printf '%s\n' "${FILTERED_NBS[@]}" \ + | jq -R . \ + | jq -s -c .) + + if [ -z "$NB_JSON" ] || [ "$NB_JSON" = "[]" ]; then + NB_JSON="[]" + fi + + echo "All valid notebooks: $NB_JSON" + + # 5) Check if there's anything in FILTERED_NBS + if [ "${#FILTERED_NBS[@]}" -gt 0 ]; then + echo "has_notebooks=true" >> $GITHUB_OUTPUT + else + echo "has_notebooks=false" >> $GITHUB_OUTPUT + fi + + echo "notebooks=$NB_JSON" >> $GITHUB_OUTPUT + + # --------------------------------------------------------- + # 2) Test all notebooks in parallel + # --------------------------------------------------------- + test_all_notebooks: + if: ${{ needs.gather_all_notebooks.outputs.has_notebooks == 'true' }} + needs: gather_all_notebooks + runs-on: ubuntu-latest + strategy: + fail-fast: false + matrix: + notebook: ${{ fromJson(needs.gather_all_notebooks.outputs.notebooks) }} + + services: + redis: + image: redis:8 + ports: + - 6379:6379 + + steps: + - uses: actions/checkout@v3 + + # Setup Python + - uses: actions/setup-python@v4 + with: + python-version: ${{ env.PYTHON_VERSION }} + + - name: Create and activate venv + run: | + python -m venv venv + source venv/bin/activate + pip install --upgrade pip setuptools wheel + pip install pytest nbval + + - name: Test notebook + env: + OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }} + COHERE_API_KEY: ${{ secrets.COHERE_API_KEY }} + run: | + echo "Testing notebook: ${{ matrix.notebook }}" + source venv/bin/activate + pytest --nbval-lax --disable-warnings "${{ matrix.notebook }}" diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml index 422be552..fca2aa1e 100644 --- a/.github/workflows/test.yml +++ b/.github/workflows/test.yml @@ -1,53 +1,116 @@ -name: Test Suite +name: Tests - PR/Push on: - pull_request: - branches: - - main push: - branches: - - main + branches: [ main ] + pull_request: + branches: [ main ] + +env: + PYTHON_VERSION: "3.11" jobs: - test: - name: Python ${{ matrix.python-version }} - ${{ matrix.connection }} [redis-stack ${{matrix.redis-stack-version}}] + # --------------------------------------------------------- + # 1) Gather the changed notebooks to produce a matrix list + # --------------------------------------------------------- + gather_notebooks: runs-on: ubuntu-latest + outputs: + notebooks: ${{ steps.get_nbs.outputs.notebooks }} + has_notebooks: ${{ steps.get_nbs.outputs.has_notebooks }} + steps: + - uses: actions/checkout@v3 + + - name: Gather notebooks + id: get_nbs + run: | + # 1) Compare this commit/PR to 'main' and list changed notebooks + git fetch --depth=1 origin main + CHANGED_NOTEBOOKS=$(git diff --name-only origin/main | grep '\.ipynb$' || true) + + # 2) Load notebooks to ignore + IGNORE_LIST=() + while IFS= read -r skip_nb || [ -n "$skip_nb" ]; do + # Skip empty lines or comment lines + [[ -z "$skip_nb" || "$skip_nb" =~ ^# ]] && continue + IGNORE_LIST+=("$skip_nb") + done < .github/ignore-notebooks.txt + + # 3) Filter out ignored notebooks + FILTERED_NBS=() + for nb in $CHANGED_NOTEBOOKS; do + skip=false + # Check if in ignore list + for ignore_nb in "${IGNORE_LIST[@]}"; do + # Partial match: + if [[ "$nb" == *"$ignore_nb"* ]]; then + skip=true + break + fi + done + if [ "$skip" = false ]; then + FILTERED_NBS+=("$nb") + fi + done + + # 4) Stuff into a single-line JSON array + NB_JSON=$(printf '%s\n' "${FILTERED_NBS[@]}" \ + | jq -R . \ + | jq -s -c .) + + if [ -z "$NB_JSON" ] || [ "$NB_JSON" = "[]" ]; then + NB_JSON="[]" + fi + + echo "All valid notebooks: $NB_JSON" + + # 5) Check if there's anything in FILTERED_NBS + if [ "${#FILTERED_NBS[@]}" -gt 0 ]; then + echo "has_notebooks=true" >> $GITHUB_OUTPUT + else + echo "has_notebooks=false" >> $GITHUB_OUTPUT + fi + echo "notebooks=$NB_JSON" >> $GITHUB_OUTPUT + + # --------------------------------------------------------- + # 2) Test each changed notebook in parallel + # --------------------------------------------------------- + test_notebooks: + if: ${{ needs.gather_notebooks.outputs.has_notebooks == 'true' }} + needs: gather_notebooks + runs-on: ubuntu-latest strategy: fail-fast: false matrix: - python-version: [3.11] - connection: ['plain'] - redis-stack-version: ['latest'] + notebook: ${{ fromJson(needs.gather_notebooks.outputs.notebooks) }} services: redis: - image: redis/redis-stack-server:${{matrix.redis-stack-version}} + image: redis:8.0-M03 ports: - 6379:6379 steps: - - uses: actions/checkout@v2 - - name: Set up Python ${{ matrix.python-version }} - uses: actions/setup-python@v4 - with: - python-version: ${{ matrix.python-version }} - cache: 'pip' - - - name: Install dependencies - run: | - pip install --no-cache-dir -r requirements.txt - - - name: Set Redis version - run: | - echo "REDIS_VERSION=${{ matrix.redis-stack-version }}" >> $GITHUB_ENV - - - name: Run notebooks - if: matrix.connection == 'plain' && matrix.redis-stack-version == 'latest' - env: - OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }} - LLAMA_CLOUD_API_KEY: ${{ secrets.LLAMA_CLOUD_API_KEY }} - GCP_REGION: ${{ secrets.GCP_REGION }} - GCP_PROJECT_ID: ${{ secrets.GCP_PROJECT_ID }} - run: | - pytest --verbose --nbval-lax python-recipes/RAG/ python-recipes/vector-search python-recipes/redis-intro python-recipes/recommendation-systems python-recipes/agents --ignore python-recipes/agents/01_crewai_langgraph_redis.ipynb --ignore python-recipes/RAG/05_nvidia_ai_rag_redis.ipynb --ignore python-recipes/semantic-cache/doc2cache_llama3_1.ipynb + - uses: actions/checkout@v3 + + # Setup Python + - uses: actions/setup-python@v4 + with: + python-version: ${{ env.PYTHON_VERSION }} + + - name: Create and activate venv + run: | + python -m venv venv + source venv/bin/activate + pip install --upgrade pip setuptools wheel + pip install pytest nbval + + - name: Test notebook + env: + OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }} + COHERE_API_KEY: ${{ secrets.COHERE_API_KEY }} + run: | + echo "Testing notebook: ${{ matrix.notebook }}" + source venv/bin/activate + pytest --nbval-lax --disable-warnings "${{ matrix.notebook }}" diff --git a/.gitignore b/.gitignore index 0e851a7a..8e13daec 100644 --- a/.gitignore +++ b/.gitignore @@ -1,3 +1,231 @@ +# Created by https://www.toptal.com/developers/gitignore/api/python,venv,macos +# Edit at https://www.toptal.com/developers/gitignore?templates=python,venv,macos + +### macOS ### +# General +.DS_Store +.AppleDouble +.LSOverride + +# Icon must end with two \r +Icon + + +# Thumbnails +._* + +# Files that might appear in the root of a volume +.DocumentRevisions-V100 +.fseventsd +.Spotlight-V100 +.TemporaryItems +.Trashes +.VolumeIcon.icns +.com.apple.timemachine.donotpresent + +# Directories potentially created on remote AFP share +.AppleDB +.AppleDesktop +Network Trash Folder +Temporary Items +.apdisk + +### macOS Patch ### +# iCloud generated files +*.icloud + +### Python ### +# Byte-compiled / optimized / DLL files +__pycache__/ +*.py[cod] +*$py.class + +# C extensions +*.so + +# Distribution / packaging +.Python +build/ +develop-eggs/ +dist/ +downloads/ +eggs/ +.eggs/ +lib/ +lib64/ +parts/ +sdist/ +var/ +wheels/ +share/python-wheels/ +*.egg-info/ +.installed.cfg +*.egg +MANIFEST + +# PyInstaller +# Usually these files are written by a python script from a template +# before PyInstaller builds the exe, so as to inject date/other infos into it. +*.manifest +*.spec + +# Installer logs +pip-log.txt +pip-delete-this-directory.txt + +# Unit test / coverage reports +htmlcov/ +.tox/ +.nox/ +.coverage +.coverage.* +.cache +nosetests.xml +coverage.xml +*.cover +*.py,cover +.hypothesis/ +.pytest_cache/ +cover/ + +# Translations +*.mo +*.pot + +# Django stuff: +*.log +local_settings.py +db.sqlite3 +db.sqlite3-journal + +# Flask stuff: +instance/ +.webassets-cache + +# Scrapy stuff: +.scrapy + +# Sphinx documentation +docs/_build/ + +# PyBuilder +.pybuilder/ +target/ + +# Jupyter Notebook +.ipynb_checkpoints + +# IPython +profile_default/ +ipython_config.py + +# pyenv +# For a library or package, you might want to ignore these files since the code is +# intended to run in multiple environments; otherwise, check them in: +.python-version + +# pipenv +# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. +# However, in case of collaboration, if having platform-specific dependencies or dependencies +# having no cross-platform support, pipenv may install dependencies that don't work, or not +# install all needed dependencies. +#Pipfile.lock + +# poetry +# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control. +# This is especially recommended for binary packages to ensure reproducibility, and is more +# commonly ignored for libraries. +# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control +#poetry.lock + +# pdm +# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control. +#pdm.lock +# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it +# in version control. +# https://pdm.fming.dev/#use-with-ide +.pdm.toml + +# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm +__pypackages__/ + +# Celery stuff +celerybeat-schedule +celerybeat.pid + +# SageMath parsed files +*.sage.py + +# Environments .env -node_modules/ -.DS_Store \ No newline at end of file +.venv +env/ +venv/ +ENV/ +env.bak/ +venv.bak/ + +# Spyder project settings +.spyderproject +.spyproject + +# Rope project settings +.ropeproject + +# mkdocs documentation +/site + +# mypy +.mypy_cache/ +.dmypy.json +dmypy.json + +# Pyre type checker +.pyre/ + +# pytype static type analyzer +.pytype/ + +# Cython debug symbols +cython_debug/ + +# PyCharm +# JetBrains specific template is maintained in a separate JetBrains.gitignore that can +# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore +# and can be added to the global gitignore or merged into this file. For a more nuclear +# option (not recommended) you can uncomment the following to ignore the entire idea folder. +#.idea/ + +### Python Patch ### +# Poetry local configuration file - https://python-poetry.org/docs/configuration/#local-configuration +poetry.toml + +# ruff +.ruff_cache/ + +# LSP config files +pyrightconfig.json + +### venv ### +# Virtualenv +# http://iamzed.com/2009/05/07/a-primer-on-virtualenv/ +[Bb]in +[Ii]nclude +[Ll]ib +[Ll]ib64 +[Ll]ocal +pyvenv.cfg +pip-selfcheck.json + +# other +libs/redis/docs/.Trash* +.python-version +.idea/* +java-recipes/.* + +python-recipes/vector-search/beir_datasets +python-recipes/vector-search/datasets + +litellm_proxy.log +litellm_redis.yml +.vscode/ diff --git a/.python-version b/.python-version deleted file mode 100644 index 2419ad5b..00000000 --- a/.python-version +++ /dev/null @@ -1 +0,0 @@ -3.11.9 diff --git a/README.md b/README.md index 8e7f1687..c954a8ee 100644 --- a/README.md +++ b/README.md @@ -1,154 +1,236 @@
-
+AI Resources +

AI Resources

-
-[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) -![Language](https://img.shields.io/github/languages/top/redis-developer/redis-ai-resources) -![GitHub last commit](https://img.shields.io/github/last-commit/redis-developer/redis-ai-resources) +

+ License: MIT + Language + GitHub last commit + Discord + Twitter +

+

+ ✨ A curated repository of code recipes, demos, tutorials and resources for basic and advanced Redis use cases in the AI ecosystem. ✨ +

+ +
+

+ Getting Started | + Demos | + Recipes | + Tutorials | + Integrations | + Resources +

-
- ✨ A curated repository of code recipes, demos, and resources for basic and advanced Redis use cases in the AI ecosystem. ✨ +
+
-
+## Getting Started +New to Redis for AI applications? Here's how to get started: -
-
+1. **First time with Redis?** Start with our [Redis Intro notebook](python-recipes/redis-intro/00_redis_intro.ipynb) +2. **Want to try vector search?** Check our [Vector Search with RedisVL](python-recipes/vector-search/01_redisvl.ipynb) recipe +3. **Building a RAG application?** Begin with [RAG from Scratch](python-recipes/RAG/01_redisvl.ipynb) +4. **Ready to see it in action?** Play with the [Redis RAG Workbench](https://github.com/redis-developer/redis-rag-workbench) demo -# Table of Contents -- [Demos](#Demos) -- [Recipes](#Recipes) - - [RAG](#getting-started-with-rag) - - [Semantic cache](#semantic-cache) - - [Advanced RAG](#advanced-rag) - - [Recommendation systems](#recommendation-systems) - - [LLM Session Management](#llm-session-management) -- [Integrations](#integrations) -- [Additional content](#additional-content) -- [Benchmarks](#benchmarks) -- [Documentation](#documentation) +
-
+## Demos +No faster way to get started than by diving in and playing around with a demo. -# Demos -No faster way to get started than by diving in and playing around with one of our demos. +| Demo | Description | +|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| +| [Redis RAG Workbench](https://github.com/redis-developer/redis-rag-workbench) | Interactive demo to build a RAG-based chatbot over a user-uploaded PDF. Toggle different settings and configurations to improve chatbot performance and quality. Utilizes RedisVL, LangChain, RAGAs, and more. | +| [Redis VSS - Simple Streamlit Demo](https://github.com/antonum/Redis-VSS-Streamlit) | Streamlit demo of Redis Vector Search | +| [ArXiv Search](https://github.com/redis-developer/redis-arxiv-search) | Full stack implementation of Redis with React FE | +| [Product Search](https://github.com/redis-developer/redis-product-search) | Vector search with Redis Stack and Redis Enterprise | +| [ArxivChatGuru](https://github.com/redis-developer/ArxivChatGuru) | Streamlit demo of RAG over Arxiv documents with Redis & OpenAI | +| [Redis Movies Searcher](https://github.com/redis-developer/redis-movies-searcher) | Demo of hybrid search using Java, Spring Boot, and Redis OM | +| [My Jarvis Alexa Skill](https://github.com/redis-developer/my-jarvis-alexa-skill) | Complete example of an Alexa skill that can recall previously stored conversations and memories to provide contextual responses to users. Utilizes Redis Agent Memory Server, LangChain4J, Terraform, and AWS. It showcases how to implement context engineering to dynamically leverage RAG, tools, short-term and long-term memories. | -| Demo | Description | -| --- | --- | -| [Redis RAG Workbench](https://github.com/redis-developer/redis-rag-workbench) | Interactive demo to build a RAG-based chatbot over an arbitrary PDF. Toggle different settings and configurations to improve chatbot performance and quality. Integrates RedisVL, LangChain, RAGAs, and more. | -| [ArxivChatGuru](https://github.com/redis-developer/ArxivChatGuru) | Streamlit demo of RAG over Arxiv documents with Redis & OpenAI | -| [Redis VSS - Simple Streamlit Demo](https://github.com/antonum/Redis-VSS-Streamlit) | Streamlit demo of Redis Vector Search | -| [Vertex AI & Redis](https://github.com/redis-developer/gcp-redis-llm-stack/tree/main) | A tutorial featuring Redis with Vertex AI | -| [Agentic RAG](https://github.com/redis-developer/agentic-rag) | A tutorial focused on agentic RAG with LlamaIndex and Cohere | -| [ArXiv Search](https://github.com/redis-developer/redis-arxiv-search) | Full stack implementation of Redis with React FE | -| [Product Search](https://github.com/redis-developer/redis-product-search) | Vector search with Redis Stack and Redis Enterprise | -# Recipes +## Recipes -Need specific sample code to help get started with Redis? Start here. +Need quickstarts to begin your Redis AI journey? -## Getting started with Redis & Vector Search +### Getting started with Redis & Vector Search -| Recipe | Description | -| --- | --- | -| [/redis-intro/00_redis_intro.ipynb](/python-recipes/redis-intro/00_redis_intro.ipynb) | The place to start if brand new to Redis | -| [/vector-search/00_redispy.ipynb](/python-recipes/vector-search/00_redispy.ipynb) | Vector search with Redis python client | -| [/vector-search/01_redisvl.ipynb](/python-recipes/vector-search/01_redisvl.ipynb) | Vector search with Redis Vector Library | -## Getting started with RAG +| Recipe | GitHub | Google Colab | +| --- | --- | --- | +| 🏁 **Redis Intro** - The place to start if brand new to Redis | [![Open In GitHub](https://img.shields.io/badge/View-GitHub-green)](python-recipes/redis-intro/00_redis_intro.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/redis-intro/00_redis_intro.ipynb) | +| 🔍 **Vector Search with RedisPy** - Vector search with Redis python client | [![Open In GitHub](https://img.shields.io/badge/View-GitHub-green)](python-recipes/vector-search/00_redispy.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/vector-search/00_redispy.ipynb) | +| 📚 **Vector Search with RedisVL** - Vector search with Redis Vector Library | [![Open In GitHub](https://img.shields.io/badge/View-GitHub-green)](python-recipes/vector-search/01_redisvl.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/vector-search/01_redisvl.ipynb) | +| 🔄 **Hybrid Search** - Hybrid search techniques with Redis (BM25 + Vector) | [![Open In GitHub](https://img.shields.io/badge/View-GitHub-green)](python-recipes/vector-search/02_hybrid_search.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/vector-search/02_hybrid_search.ipynb) | +| 🔢 **Data Type Support** - Shows how to convert a float32 index to float16 or integer dataypes | [![Open In GitHub](https://img.shields.io/badge/View-GitHub-green)](python-recipes/vector-search/03_dtype_support.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/vector-search/03_dtype_support.ipynb) | +| 📊 **Benchmarking Basics** - Overview of search benchmarking basics with RedisVL and Python multiprocessing | [![Open In GitHub](https://img.shields.io/badge/View-GitHub-green)](python-recipes/vector-search/04_redisvl_benchmarking_basics.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/vector-search/04_redisvl_benchmarking_basics.ipynb) | -**Retrieval Augmented Generation** (aka RAG) is a technique to enhance the ability of an LLM to respond to user queries. The **retrieval** part of RAG is supported by a vector database, which can return semantically relevant results to a user’s query, serving as contextual information to **augment** the **generative** capabilities of an LLM. -To get started with RAG, either from scratch or using a popular framework like Llamaindex or LangChain, go with these recipes: +### Retrieval Augmented Generation (RAG) -| Recipe | Description | -| --- | --- | -| [/RAG/01_redisvl.ipynb](python-recipes/RAG/01_redisvl.ipynb) | RAG from scratch with the Redis Vector Library | -| [/RAG/02_langchain.ipynb](python-recipes/RAG/02_langchain.ipynb) | RAG using Redis and LangChain | -| [/RAG/03_llamaindex.ipynb](python-recipes/RAG/03_llamaindex.ipynb) | RAG using Redis and LlamaIndex | -| [/RAG/04_advanced_redisvl.ipynb](python-recipes/RAG/04_advanced_redisvl.ipynb) | Advanced RAG with redisvl | -| [/RAG/05_nvidia_ai_rag_redis.ipynb](python-recipes/RAG/05_nvidia_ai_rag_redis.ipynb) | RAG using Redis and Nvidia | -| [/RAG/06_ragas_evaluation.ipynb](python-recipes/RAG/06_ragas_evaluation.ipynb) | Utilize RAGAS framework to evaluate RAG performance | - -## LLM Session Management -LLMs are stateless. To maintain context within a conversation chat sessions must be stored and resent to the LLM. Redis manages the storage and retrieval of chat sessions to maintain context and conversational relevance. -| Recipe | Description | -| --- | --- | -| [/llm-session-manager/00_session_manager.ipynb](python-recipes/llm-session-manager/00_llm_session_manager.ipynb) | LLM session manager with semantic similarity | -| [/llm-session-manager/01_multiple_sessions.ipynb](python-recipes/llm-session-manager/01_multiple_sessions.ipynb) | Handle multiple simultaneous chats with one instance | +**Retrieval Augmented Generation** (aka RAG) is a technique to enhance the ability of an LLM to respond to user queries. The **retrieval** part of RAG is supported by a vector database, which can return semantically relevant results to a user's query, serving as contextual information to **augment** the **generative** capabilities of an LLM. -## Semantic Cache -An estimated 31% of LLM queries are potentially redundant ([source](https://arxiv.org/pdf/2403.02694)). Redis enables semantic caching to help cut down on LLM costs quickly. - -| Recipe | Description | -| --- | --- | -| [/semantic-cache/doc2cache_llama3_1.ipynb](python-recipes/semantic-cache/doc2cache_llama3_1.ipynb) | Build a semantic cache using the Doc2Cache framework and Llama3.1 | -| [/semantic-cache/semantic_caching_gemini.ipynb](python-recipes/semantic-cache/semantic_caching_gemini.ipynb) | Build a semantic cache with Redis and Google Gemini | +To get started with RAG, either from scratch or using a popular framework like Llamaindex or LangChain, go with these recipes: -## Advanced RAG -For further insights on enhancing RAG applications with dense content representations, query re-writing, and other techniques. +| Recipe | GitHub | Google Colab | +| --- | --- | --- | +| 🧩 **RAG from Scratch** - RAG from scratch with the Redis Vector Library | [![Open In GitHub](https://img.shields.io/badge/View-GitHub-green)](python-recipes/RAG/01_redisvl.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/01_redisvl.ipynb) | +| ⛓️ **LangChain RAG** - RAG using Redis and LangChain | [![Open In GitHub](https://img.shields.io/badge/View-GitHub-green)](python-recipes/RAG/02_langchain.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/02_langchain.ipynb) | +| 🦙 **LlamaIndex RAG** - RAG using Redis and LlamaIndex | [![Open In GitHub](https://img.shields.io/badge/View-GitHub-green)](python-recipes/RAG/03_llamaindex.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/03_llamaindex.ipynb) | +| 🚀 **Advanced RAG** - Advanced RAG techniques | [![Open In GitHub](https://img.shields.io/badge/View-GitHub-green)](python-recipes/RAG/04_advanced_redisvl.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/04_advanced_redisvl.ipynb) | +| 🖥️ **NVIDIA RAG** - RAG using Redis and Nvidia NIMs | [![Open In GitHub](https://img.shields.io/badge/View-GitHub-green)](python-recipes/RAG/05_nvidia_ai_rag_redis.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/05_nvidia_ai_rag_redis.ipynb) | +| 📊 **RAGAS Evaluation** - Utilize the RAGAS framework to evaluate RAG performance | [![Open In GitHub](https://img.shields.io/badge/View-GitHub-green)](python-recipes/RAG/06_ragas_evaluation.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/06_ragas_evaluation.ipynb) | +| 🔒 **Role-Based RAG** - Implement a simple RBAC policy with vector search using Redis | [![Open In GitHub](https://img.shields.io/badge/View-GitHub-green)](python-recipes/RAG/07_user_role_based_rag.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/07_user_role_based_rag.ipynb) | + +### LLM Memory +LLMs are stateless. To maintain context within a conversation chat sessions must be stored and re-sent to the LLM. Redis manages the storage and retrieval of message histories to maintain context and conversational relevance. + +| Recipe | GitHub | Google Colab | +| --- | --- | --- | +| 💬 **Message History** - LLM message history with semantic similarity | [![Open In GitHub](https://img.shields.io/badge/View-GitHub-green)](python-recipes/llm-message-history/00_llm_message_history.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/llm-message-history/00_llm_message_history.ipynb) | +| 👥 **Multiple Sessions** - Handle multiple simultaneous chats with one instance | [![Open In GitHub](https://img.shields.io/badge/View-GitHub-green)](python-recipes/llm-message-history/01_multiple_sessions.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/llm-message-history/01_multiple_sessions.ipynb) | + +### Semantic Caching +An estimated 31% of LLM queries are potentially redundant ([source](https://arxiv.org/pdf/2403.02694)). Redis enables semantic caching to help cut down on LLM costs quickly. -| Recipe | Description | +| Recipe | GitHub | Google Colab | +| --- | --- | --- | +| 🧠 **Gemini Semantic Cache** - Build a semantic cache with Redis and Google Gemini | [![Open In GitHub](https://img.shields.io/badge/View-GitHub-green)](python-recipes/semantic-cache/00_semantic_caching_gemini.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/semantic-cache/00_semantic_caching_gemini.ipynb) | +| 🦙 **Llama3.1 Doc2Cache** - Build a semantic cache using the Doc2Cache framework and Llama3.1 | [![Open In GitHub](https://img.shields.io/badge/View-GitHub-green)](python-recipes/semantic-cache/01_doc2cache_llama3_1.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/semantic-cache/01_doc2cache_llama3_1.ipynb) | +| ⚙️ **Cache Optimization** - Use CacheThresholdOptimizer from [redis-retrieval-optimizer](https://pypi.org/project/redis-retrieval-optimizer/) to setup best cache config | [![Open In GitHub](https://img.shields.io/badge/View-GitHub-green)](python-recipes/semantic-cache/02_semantic_cache_optimization.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/semantic-cache/02_semantic_cache_optimization.ipynb) | +| 🎯 **Context-Enabled Caching** - Context-aware semantic caching with Redis for enhanced LLM performance | [![Open In GitHub](https://img.shields.io/badge/View-GitHub-green)](python-recipes/semantic-cache/03_context_enabled_semantic_caching.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/semantic-cache/03_context_enabled_semantic_caching.ipynb) | + +### Semantic Routing +Routing is a simple and effective way of preventing misuse with your AI application or for creating branching logic between data sources etc. + +| Recipe | GitHub | Google Colab | +| --- | --- | --- | +| 🔀 **Basic Routing** - Simple examples of how to build an allow/block list router in addition to a multi-topic router | [![Open In GitHub](https://img.shields.io/badge/View-GitHub-green)](python-recipes/semantic-router/00_semantic_routing.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/semantic-router/00_semantic_routing.ipynb) | +| ⚙️ **Router Optimization** - Use RouterThresholdOptimizer from [redis-retrieval-optimizer](https://pypi.org/project/redis-retrieval-optimizer/) to setup best router config | [![Open In GitHub](https://img.shields.io/badge/View-GitHub-green)](python-recipes/semantic-router/01_routing_optimization.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/semantic-router/01_routing_optimization.ipynb) | + + +### AI Gateways +AI gateways manage LLM traffic through a centralized, managed layer that can implement routing, rate limiting, caching, and more. + +| Recipe | GitHub | Google Colab | +| --- | --- | --- | +| 🚪 **LiteLLM Proxy** - Getting started with LiteLLM proxy and Redis | [![Open In GitHub](https://img.shields.io/badge/View-GitHub-green)](python-recipes/gateway/00_litellm_proxy_redis.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/gateway/00_litellm_proxy_redis.ipynb) | + + +### Agents + +| Recipe | GitHub | Google Colab | +| --- | --- | --- | +| 🕸️ **LangGraph Agents** - Notebook to get started with lang-graph and agents | [![Open In GitHub](https://img.shields.io/badge/View-GitHub-green)](python-recipes/agents/00_langgraph_redis_agentic_rag.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/agents/00_langgraph_redis_agentic_rag.ipynb) | +| 👥 **CrewAI Agents** - Notebook to get started with CrewAI and lang-graph | [![Open In GitHub](https://img.shields.io/badge/View-GitHub-green)](python-recipes/agents/01_crewai_langgraph_redis.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/agents/01_crewai_langgraph_redis.ipynb) | +| 🧠 **Memory Agent** - Building an agent with short term and long term memory using Redis | [![Open In GitHub](https://img.shields.io/badge/View-GitHub-green)](python-recipes/agents/03_memory_agent.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/agents/03_memory_agent.ipynb) | +| 🛠️ **Full-Featured Agent** - Notebook builds full tool calling agent with semantic cache and router | [![Open In GitHub](https://img.shields.io/badge/View-GitHub-green)](python-recipes/agents/02_full_featured_agent.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/agents/02_full_featured_agent.ipynb) | +| 🥗 **Autogen Agent** - Builds a blog writing agent with Autogen and Redis memory | [![Open In GitHub](https://img.shields.io/badge/View-GitHub-green)](python-recipes/agents/04_autogen_agent.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/agents/04_autogen_agent.ipynb) | + +### Computer Vision +| Recipe | GitHub | Google Colab | +| ------ | ------ | ------------ | +| 👤 **Facial Recognition** - Build a facial recognition system using the Facenet embedding model and RedisVL | [![Open In GitHub](https://img.shields.io/badge/View-GitHub-green)](python-recipes/computer-vision/00_facial_recognition_facenet.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/computer-vision/00_facial_recognition_facenet.ipynb) | + + +### Recommendation Systems + +| Recipe | GitHub | Google Colab | +| --- | --- | --- | +| 📋 **Content Filtering** - Intro content filtering example with redisvl | [![Open In GitHub](https://img.shields.io/badge/View-GitHub-green)](python-recipes/recommendation-systems/00_content_filtering.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/recommendation-systems/00_content_filtering.ipynb) | +| 👥 **Collaborative Filtering** - Intro collaborative filtering example with redisvl | [![Open In GitHub](https://img.shields.io/badge/View-GitHub-green)](python-recipes/recommendation-systems/01_collaborative_filtering.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/recommendation-systems/01_collaborative_filtering.ipynb) | +| 🏗️ **Two Towers** - Intro deep learning two tower example with redisvl | [![Open In GitHub](https://img.shields.io/badge/View-GitHub-green)](python-recipes/recommendation-systems/02_two_towers.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/recommendation-systems/02_two_towers.ipynb) | + +### Feature Store +| Recipe | GitHub | Google Colab | +| ------ | ------ | ------------ | +| 💳 **Credit Scoring** - Credit scoring system using Feast with Redis as the online store | [![Open In GitHub](https://img.shields.io/badge/View-GitHub-green)](python-recipes/feature-store/00_feast_credit_score.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/feature-store/00_feast_credit_score.ipynb) | +| 🔍 **Transaction Search** - Real-time transaction feature search with Redis | [![Open In GitHub](https://img.shields.io/badge/View-GitHub-green)](python-recipes/feature-store/01_card_transaction_search.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/feature-store/01_card_transaction_search.ipynb) | + +### ☕️ Java AI Recipes + +A set of Java recipes can be found under [/java-recipes](/java-recipes/README.md). + + +## Tutorials +Need a *deeper-dive* through different use cases and topics? + + + + + + + + + +
+ 🤖 Agentic RAG +
+ A tutorial focused on agentic RAG with LlamaIndex and Cohere +
+ ☁️ RAG on VertexAI +
+ A RAG tutorial featuring Redis with Vertex AI +
+ 🔍 Recommendation Systems +
+ Building realtime recsys with NVIDIA Merlin & Redis +
+ 🧑🏻‍💻 Redis Movies Searcher Workshop +
+ A hands-on workshop to create the Redis Movies Searcher application +
+ +
+ +## Integrations +Redis integrates with many different players in the AI ecosystem. Here's a curated list below: + +| Integration | Description | | --- | --- | -[/RAG/04_advanced_redisvl.ipynb](python-recipes/RAG/04_advanced_redisvl.ipynb) | Notebook for additional tips and techniques to improve RAG quality | +| [RedisVL](https://github.com/redis/redis-vl-python) | A dedicated Python client lib for Redis as a Vector DB | +| [AWS Bedrock](https://redis.io/docs/latest/integrate/amazon-bedrock/) | Streamlines GenAI deployment by offering foundational models as a unified API | +| [LangChain Python](https://github.com/langchain-ai/langchain) | Popular Python client lib for building LLM applications powered by Redis | +| [LangChain JS](https://github.com/langchain-ai/langchainjs) | Popular JS client lib for building LLM applications powered by Redis | +| [LlamaIndex](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/RedisIndexDemo.html) | LlamaIndex Integration for Redis as a vector Database (formerly GPT-index) | +| [LiteLLM](https://www.litellm.ai/) | Popular LLM proxy layer to help manage and streamline usage of multiple foundation models | +| [Semantic Kernel](https://github.com/microsoft/semantic-kernel/tree/main) | Popular lib by MSFT to integrate LLMs with plugins | +| [RelevanceAI](https://relevance.ai/) | Platform to tag, search and analyze unstructured data faster, built on Redis | +| [DocArray](https://docs.docarray.org/user_guide/storing/index_redis/) | DocArray Integration of Redis as a VectorDB by Jina AI | -## Agents -/Users/robert.shelton/Documents/redis-ai-resources/python-recipes/agents/01_crewai_langgraph_redis.ipynb -| Recipe | Description | -| --- | --- | -[/agents/00_langgraph_redis_agentic_rag.ipynb](python-recipes/agents/00_langgraph_redis_agentic_rag.ipynb) | Notebook to get started with lang-graph and agents | -[/agents/01_crewai_langgraph_redis.ipynb](python-recipes/agents/01_crewai_langgraph_redis.ipynb) | Notebook to get started with lang-graph and agents | +
-## Recommendation systems +# Other Helpful Resources -| Recipe | Description | -| --- | --- | -| [/recommendation-systems/content_filtering.ipynb](python-recipes/recommendation-systems/content_filtering.ipynb) | Intro content filtering example with redisvl | -| [/recommendation-systems/collaborative_filtering.ipynb](python-recipes/recommendation-systems/collaborative_filtering.ipynb) | Intro collaborative filtering example with redisvl | +- [Vector Databases and Large Language Models](https://youtu.be/GJDN8u3Y-T4) - Talk given at LLMs in Production Part 1 by Sam Partee. +- [Level-up RAG with RedisVL](https://redis.io/blog/level-up-rag-apps-with-redis-vector-library/) +- [Improving RAG quality with RAGAs](https://redis.io/blog/get-better-rag-responses-with-ragas/) +- [Vector Databases and AI-powered Search Talk](https://www.youtube.com/watch?v=g2bNHLeKlAg) - Video "Vector Databases and AI-powered Search" given by Sam Partee at SDSC 2023. +- [NVIDIA RecSys with Redis](https://developer.nvidia.com/blog/offline-to-online-feature-storage-for-real-time-recommendation-systems-with-nvidia-merlin/) +- [Benchmarking results for vector databases](https://redis.io/blog/benchmarking-results-for-vector-databases/) - Benchmarking results for vector databases, including Redis and 7 other Vector Database players. +- [Redis Vector Library Docs](https://docs.redisvl.com) +- [Redis Vector Search API Docs](https://redis.io/docs/interact/search-and-query/advanced-concepts/vectors/) - Official Redis literature for Vector Similarity Search. +- [Redis Retrieval Optimizer](https://pypi.org/project/redis-retrieval-optimizer/) - Library for optimizing index, embedding, and search method usage within Redis. -### See also -An exciting example of how Redis can power production-ready systems is highlighted in our collaboration with [NVIDIA](https://developer.nvidia.com/blog/offline-to-online-feature-storage-for-real-time-recommendation-systems-with-nvidia-merlin/) to construct a state-of-the-art recommendation system. +
-Within [this repository](https://github.com/redis-developer/redis-nvidia-recsys), you'll find three examples, each escalating in complexity, showcasing the process of building such a system. +## Contributing +We welcome contributions to Redis AI Resources! Here's how you can help: -# Integrations/Tools -- [⭐ RedisVL](https://github.com/redis/redis-vl-python) - a dedicated Python client lib for Redis as a Vector DB. -- [⭐ AWS Bedrock](https://redis.io/docs/latest/integrate/amazon-bedrock/) - Streamlines GenAI deployment by offering foundational models as a unified API. -- [⭐ LangChain Python](https://github.com/langchain-ai/langchain) - popular Python client lib for building LLM applications. -powered by Redis. -- [⭐ LangChain JS](https://github.com/langchain-ai/langchainjs) - popular JS client lib for building LLM applications. -powered by Redis. -- [⭐ LlamaIndex](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/RedisIndexDemo.html) - LlamaIndex Integration for Redis as a vector Database (formerly GPT-index). -- [Semantic Kernel](https://github.com/microsoft/semantic-kernel/tree/main) - popular lib by MSFT to integrate LLMs with plugins. -- [RelevanceAI](https://relevance.ai/) - Platform to ag, search and analyze unstructured data faster, built on Redis. -- [DocArray](https://docs.docarray.org/user_guide/storing/index_redis/) - DocArray Integration of Redis as a VectorDB by Jina AI. +1. **Add a new recipe**: Create a Jupyter notebook demonstrating a Redis AI use case +2. **Improve documentation**: Enhance existing notebooks or README with clearer explanations +3. **Fix bugs**: Address issues in code samples or documentation +4. **Suggest improvements**: Open an issue with ideas for new content or enhancements +To contribute: +1. Fork the repository +2. Create a feature branch +3. Make your changes +4. Submit a pull request -# Additional content -- [Vector Similarity Search: From Basics to Production](https://mlops.community/vector-similarity-search-from-basics-to-production/) - Introductory blog post to VSS and Redis as a VectorDB. -- [AI-Powered Document Search](https://datasciencedojo.com/blog/ai-powered-document-search/) - Blog post covering AI Powered Document Search Use Cases & Architectures. -- [Vector Search on Azure](https://techcommunity.microsoft.com/t5/azure-developer-community-blog/vector-similarity-search-with-azure-cache-for-redis-enterprise/ba-p/3822059) - Using Azure Redis Enterprise for Vector Search -- [Vector Databases and Large Language Models](https://youtu.be/GJDN8u3Y-T4) - Talk given at LLMs in Production Part 1 by Sam Partee. -- [Vector Databases and AI-powered Search Talk](https://www.youtube.com/watch?v=g2bNHLeKlAg) - Video "Vector Databases and AI-powered Search" given by Sam Partee at SDSC 2023. -- [Engineering Lab Review](https://mlops.community/redis-vector-search-engineering-lab-review/) - Review of the first Redis VSS Hackathon. -- [Real-Time Product Recommendations](https://jina.ai/news/real-time-product-recommendation-using-redis-and-docarray/) - Content-based recsys design with Redis and DocArray. -- [LabLab AI Redis Tech Page](https://lablab.ai/tech/redis) -- [Storing and querying for embeddings with Redis](https://blog.baeke.info/2023/03/21/storing-and-querying-for-embeddings-with-redis/) -- [Building Intelligent Apps with Redis Vector Similarity Search](https://redis.com/blog/build-intelligent-apps-redis-vector-similarity-search/) -- [RedisDays Keynote](https://www.youtube.com/watch?v=EEIBTEpb2LI) - Video "Infuse Real-Time AI Into Your "Financial Services" Application". -- [RedisDays Trading Signals](https://www.youtube.com/watch?v=_Lrbesg4DhY) - Video "Using AI to Reveal Trading Signals Buried in Corporate Filings". - -# Benchmarks -- [Benchmarking results for vector databases](https://redis.io/blog/benchmarking-results-for-vector-databases/) - Benchmarking results for vector databases, including Redis and 7 other Vector Database players. -- [ANN Benchmarks](https://ann-benchmarks.com) - Standard ANN Benchmarks site. *Only using single Redis OSS instance/client.* - -# Documentation -- [Redis Vector Database QuickStart](https://redis.io/docs/get-started/vector-database/) -- [Redis Vector Similarity Docs](https://redis.io/docs/interact/search-and-query/advanced-concepts/vectors/) - Official Redis literature for Vector Similarity Search. -- [Redis-py Search Docs](https://redis.readthedocs.io/en/latest/redismodules.html#redisearch-commands) - Redis-py client library docs for RediSearch. -- [Redis-py General Docs](https://redis.readthedocs.io/en/latest/) - Redis-py client library documentation. -- [Redis Stack](https://redis.io/docs/stack/) - Redis Stack documentation. -- [Redis Clients](https://redis.io/docs/clients/) - Redis client list. +Please follow the existing style and format of the repository when adding content. diff --git a/assets/cache_diagram.png b/assets/cache_diagram.png new file mode 100644 index 00000000..fa59fda6 Binary files /dev/null and b/assets/cache_diagram.png differ diff --git a/assets/feature_store.png b/assets/feature_store.png new file mode 100644 index 00000000..662eb923 Binary files /dev/null and b/assets/feature_store.png differ diff --git a/assets/full_featured_agent.png b/assets/full_featured_agent.png new file mode 100644 index 00000000..23a74e72 Binary files /dev/null and b/assets/full_featured_agent.png differ diff --git a/assets/long-term-memory.png b/assets/long-term-memory.png new file mode 100644 index 00000000..309ed22c Binary files /dev/null and b/assets/long-term-memory.png differ diff --git a/assets/memory-agents.png b/assets/memory-agents.png new file mode 100644 index 00000000..7d0249f4 Binary files /dev/null and b/assets/memory-agents.png differ diff --git a/assets/role-based-rag.png b/assets/role-based-rag.png new file mode 100644 index 00000000..4c5d6a56 Binary files /dev/null and b/assets/role-based-rag.png differ diff --git a/assets/router_diagram.png b/assets/router_diagram.png new file mode 100644 index 00000000..49df72d8 Binary files /dev/null and b/assets/router_diagram.png differ diff --git a/assets/short-term-memory.png b/assets/short-term-memory.png new file mode 100644 index 00000000..41759488 Binary files /dev/null and b/assets/short-term-memory.png differ diff --git a/contributing.md b/contributing.md index ca4b3025..6136774f 100644 --- a/contributing.md +++ b/contributing.md @@ -11,17 +11,6 @@ Open a PR with your addition. We expect the following standards: 3. New additions should be added to the bottom of the list (unless otherwise noted). 4. New additions should not contain any profanity or offensive language. -### What it takes to get a Star - -When reviewing the PR, we will determine whether a new entry gets a star! - -Examples that: -- are well-documented and easy to follow -- pertain to a new or creative use case -- follow good coding/writing hygiene - -will be considered for getting a special star ⭐. - ## Updating your Pull Request Sometimes, a maintainer will ask you to edit your Pull Request before it is included. This is normally due to spelling errors or because your PR didn't match the list format. diff --git a/java-recipes/README.md b/java-recipes/README.md new file mode 100644 index 00000000..c8ba21f3 --- /dev/null +++ b/java-recipes/README.md @@ -0,0 +1,59 @@ +
+
+

Redis AI Java Resources

+
+ +[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) +![Java](https://img.shields.io/badge/Java-21-orange) +![Spring AI](https://img.shields.io/badge/Spring%20AI-1.0.0--M6-green) + +
+
+ ✨ Java-based code examples, notebooks, and resources for using Redis in AI and ML applications. ✨ +
+ +
+
+ +[**Notebooks**](#notebooks) | [**Applications**](#applications) | [**Example Applications**](#example-notebooks--applications) + +
+
+ +There are two types of Java Recipes: Notebooks and Applications. Notebooks are interactive, self-contained examples in Jupyter format that let you explore AI concepts step by step that mix code, explanations, and output in one place. Applications, on the other hand, are full Spring Boot projects meant for building real-world systems. They show how to structure, run, and scale actual AI-powered apps using Redis, embedding models, and Spring AI in a production-like setup. + +## Notebooks + +Notebooks require a Jupyter Notebook environment to run. Check out the [Setup Instructions & Implementation Details](./notebooks/README.md) for more details on how to set up your environment. + +| Notebook | Description | +|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------| +| [notebooks/RAG/spring_ai_redis_rag.ipynb](./notebooks/RAG/spring_ai_redis_rag.ipynb) | Demonstrates building a RAG-ba sed beer recommendation chatbot using Spring AI and Redis as the vector store | + +## Applications + +| Application | Description | +|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------| +| [applications/vector-similarity-search/redis-om-spring](./applications/vector-similarity-search/redis-om-spring/spring_boot_redis_om_spring.md) | Demonstrates building a vector similarity search application using Spring Boot and Redis OM Spring | +| [applications/vector-similarity-search/spring-ai](./applications/vector-similarity-search/spring-ai/spring_boot_spring_ai.md) | Demonstrates building a vector similarity search application using Spring Boot and Spring AI | + + +## Example Notebooks & Applications + +### Beer Recommendation Chatbot + +The `spring-ai-rag.ipynb` notebook demonstrates: + +- Loading and embedding beer data into Redis Vector Store +- Using local transformer models for generating embeddings +- Connecting to OpenAI for LLM capabilities +- Building a RAG pipeline to answer beer-related queries +- Semantic search over beer properties and descriptions + +### Vector Similarity Search with Redis OM Spring and Spring Boot + +The `spring_boot_redis_om_spring` directory contains a Spring Boot application that demonstrates how to use Redis OM Spring for vector similarity search. The application allows you to: +- Add movies to the Redis database +- Search for movies based on semantic similarity on the synopsis of the movie +- Perform hybrid search by adding filters to genre, cast, and year + diff --git a/java-recipes/applications/vector-similarity-search/redis-om-spring/readme-assets/autocomplete.png b/java-recipes/applications/vector-similarity-search/redis-om-spring/readme-assets/autocomplete.png new file mode 100644 index 00000000..37b58585 Binary files /dev/null and b/java-recipes/applications/vector-similarity-search/redis-om-spring/readme-assets/autocomplete.png differ diff --git a/java-recipes/applications/vector-similarity-search/redis-om-spring/readme-assets/index-redis-insight.png b/java-recipes/applications/vector-similarity-search/redis-om-spring/readme-assets/index-redis-insight.png new file mode 100644 index 00000000..42089ac3 Binary files /dev/null and b/java-recipes/applications/vector-similarity-search/redis-om-spring/readme-assets/index-redis-insight.png differ diff --git a/java-recipes/applications/vector-similarity-search/redis-om-spring/readme-assets/pre-filtered-vector-search.png b/java-recipes/applications/vector-similarity-search/redis-om-spring/readme-assets/pre-filtered-vector-search.png new file mode 100644 index 00000000..4db1b0ab Binary files /dev/null and b/java-recipes/applications/vector-similarity-search/redis-om-spring/readme-assets/pre-filtered-vector-search.png differ diff --git a/java-recipes/applications/vector-similarity-search/redis-om-spring/readme-assets/redis-insight.png b/java-recipes/applications/vector-similarity-search/redis-om-spring/readme-assets/redis-insight.png new file mode 100644 index 00000000..313e4e4b Binary files /dev/null and b/java-recipes/applications/vector-similarity-search/redis-om-spring/readme-assets/redis-insight.png differ diff --git a/java-recipes/applications/vector-similarity-search/redis-om-spring/readme-assets/vector-search.png b/java-recipes/applications/vector-similarity-search/redis-om-spring/readme-assets/vector-search.png new file mode 100644 index 00000000..bb33e9c1 Binary files /dev/null and b/java-recipes/applications/vector-similarity-search/redis-om-spring/readme-assets/vector-search.png differ diff --git a/java-recipes/applications/vector-similarity-search/redis-om-spring/spring_boot_redis_om_spring.md b/java-recipes/applications/vector-similarity-search/redis-om-spring/spring_boot_redis_om_spring.md new file mode 100644 index 00000000..fa5e873a --- /dev/null +++ b/java-recipes/applications/vector-similarity-search/redis-om-spring/spring_boot_redis_om_spring.md @@ -0,0 +1,227 @@ +# Vector Search with Redis OM Spring (SpringBoot) + +Vector similarity search (also known as semantic search) is a powerful technique that allows you to find items based on their semantic meaning rather than exact keyword matches. Redis Query Engine supports vector similarity search through its vector indexing capabilities, enabling you to implement semantic search applications with high performance and low latency. + +This demo showcases how to implement vector similarity search using Redis OM Spring, a library that simplifies working with Redis data models and the Redis Query Engine. + +## Learning resources: + +- Article: [Semantic Search with Spring Boot & Redis](https://raphaeldelio.com/2025/04/29/semantic-search-with-spring-boot-redis/) +- Video: [Autocomplete in Spring with Redis](https://www.youtube.com/watch?v=rjaR1PR5gVk) +- Video: [What is an embedding model?](https://youtu.be/0U1S0WSsPuE) +- Video: [Exact vs Approximate Nearest Neighbors - What's the difference?](https://youtu.be/9NvO-VdjY80) +- Video: [What is semantic search?](https://youtu.be/o3XN4dImESE) +- Video: [What is a vector database?](https://youtu.be/Yhv19le0sBw) + + +## Repository + +The repository for this demo can be found [here](https://github.com/redis-developer/redis-springboot-resources/tree/main/search/vector-search) + +## Requirements + +To run this demo, you’ll need the following installed on your system: +- Docker – [Install Docker](https://docs.docker.com/get-docker/) +- Docker Compose – Included with Docker Desktop or available via CLI installation guide + +## Running the demo + +The easiest way to run the demo is with Docker Compose, which sets up all required services in one command. + +### Step 1: Clone the repository + +If you haven’t already: + +```bash +git clone https://github.com/redis-developer/redis-springboot-recipes.git +cd redis-springboot-recipes/search/full-text-search-and-autocomplete +``` + +### Step 2: Start the services + +```bash +docker compose up --build +``` + +This will start: + +- redis: for storing documents +- redis-insight: a UI to explore the Redis data +- vector-search-app: the Spring Boot app that implements vector search + +## Using the demo + +When all of your services are up and running. Go to `localhost:8080` to access the demo. + +If you search using the extract box, the system will perform semantic search and find items on the database that are semantically similar to your query: + +![Screenshot of a movie search app using vector similarity search. The user searches for “movie about a clownfish who searches for his son.” The top result is Finding Nemo, with a similarity score of 0.505, followed by Big Fish and Swordfish. Each result includes a poster, title, year, cast, genres, and description snippet.](readme-assets/vector-search.png) + +You can also apply filters for pre-filtering the results before applying semantic search: + +![Screenshot of a movie search app using vector similarity search with filters applied: cast = Albert Brooks, genre = animated. The query is “movie about a clownfish who searches for his son.” Results include Finding Nemo, Finding Nemo 3D, and Finding Dory, each with similarity scores, posters, cast, genres, and descriptions.](readme-assets/pre-filtered-vector-search.png) + +This demo also supports autocompletion of the title: + +![Close-up screenshot of a movie search app’s autocomplete feature. The user types “Finding” in the “Movie Title” field, triggering a dropdown with suggestions like Finding You, Finding Nemo, Finding Dory, Finding Bliss, and Finding Amanda. Autocomplete response time is shown as 8 ms.](readme-assets/autocomplete.png) + +### Redis Insight + +RedisInsight is a graphical tool developed by Redis to help developers and administrators interact with and manage Redis databases more efficiently. It provides a visual interface for exploring keys, running commands, analyzing memory usage, and monitoring performance metrics in real-time. RedisInsight supports features like full-text search, time series, streams, and vector data structures, making it especially useful for working with more advanced Redis use cases. With its intuitive UI, it simplifies debugging, optimizing queries, and understanding data patterns without requiring deep familiarity with the Redis CLI. + +The Docker Compose file will also spin up an instance of Redis Insight. We can access it by going to `localhost:5540`: + +If we go to Redis Insight, we will be able to see the data stored in Redis: + +![Screenshot of RedisInsight showing 10,000 JSON movie documents in the com.redis.vectorsearch.domain.Movie namespace. The selected document is for Star Trek III: The Search for Spock, displaying fields like title, year, genres, extract, and a thumbnail URL. The embeddedExtract vector field is also included.](readme-assets/redis-insight.png) + +And if run the command `FT.INFO 'com.redis.fulltextsearchandautocomplete.domain.MovieIdx'`, we'll be able to see the schema that was created for indexing our documents efficiently: + +![Screenshot of RedisInsight displaying the schema of the MovieIdx vector search index. The index is built on JSON documents and includes fields like title, year, cast, genres, embeddedExtract (VECTOR), and id. The vector field uses the HNSW algorithm with FLOAT32 data type, 384 dimensions, COSINE distance metric, M=16, and EF_CONSTRUCTION=200.](readme-assets/index-redis-insight.png) + +## How It Is Implemented + +The application uses Redis OM Spring to vectorize documents and perform vector similarity search. Here's how it works: + +### Defining Vector Fields with Redis OM Spring Annotations + +Documents are defined as Java classes with Redis OM Spring annotations that specify how they should be vectorized and indexed: + +```java +@Document +public class Movie { + // Other fields... + + @Vectorize( + destination = "embeddedExtract", + embeddingType = EmbeddingType.SENTENCE + ) + private String extract; + + @Indexed( + schemaFieldType = SchemaFieldType.VECTOR, + algorithm = VectorField.VectorAlgorithm.HNSW, + type = VectorType.FLOAT32, + dimension = 384, + distanceMetric = DistanceMetric.COSINE, + initialCapacity = 10 + ) + private float[] embeddedExtract; + + // Getters and setters... +} +``` + +Let's break down the annotations: + +- `@Vectorize`: Automatically generates vector embeddings for the text field + - `destination`: Specifies the field where the embedding will be stored + - `embeddingType`: Defines the granularity of the embedding (SENTENCE in this case) + +- `@Indexed` with vector parameters: + - `schemaFieldType = SchemaFieldType.VECTOR`: Marks this as a vector field + - `algorithm = VectorField.VectorAlgorithm.HNSW`: Uses the Hierarchical Navigable Small World algorithm for efficient approximate nearest neighbor search + - `type = VectorType.FLOAT32`: Specifies the vector data type + - `dimension = 384`: Sets the vector dimension (must match the number of dimensions output by the embedding model) + - `distanceMetric = DistanceMetric.COSINE`: Uses cosine similarity for distance calculation + +### Storing and Vectorizing Documents + +When documents are saved to Redis using the repository, Redis OM Spring automatically generates vector embeddings: + +```java +public void loadAndSaveMovies(String filePath) throws Exception { + // Load movies from JSON file + List movies = objectMapper.readValue(is, new TypeReference<>() {}); + + // Save movies in batches + int batchSize = 500; + for (int i = 0; i < unprocessedMovies.size(); i += batchSize) { + int end = Math.min(i + batchSize, unprocessedMovies.size()); + List batch = unprocessedMovies.subList(i, end); + movieRepository.saveAll(batch); + } +} +``` + +When `movieRepository.saveAll(batch)` is called: +1. Redis OM Spring generates vector embeddings for the `extract` field +2. The embeddings are stored in the `embeddedExtract` field +3. The documents are saved to Redis with their vector embeddings +4. Redis creates a vector index for efficient similarity search + +### Performing Vector Similarity Search + +Vector similarity search is implemented using Redis OM Spring's EntityStream API: + +```java +public Map search( + String title, + String extract, + List actors, + Integer year, + List genres, + Integer numberOfNearestNeighbors +) { + SearchStream stream = entityStream.of(Movie.class); + + if (extract != null) { + // Convert search query to vector embedding + float[] embeddedQuery = embedder.getTextEmbeddingsAsFloats(List.of(extract), Movie$.EXTRACT).getFirst(); + + // Perform KNN search with the embedded query + stream = stream.filter(Movie$.EMBEDDED_EXTRACT.knn(numberOfNearestNeighbors, embeddedQuery)) + .sorted(Movie$._EMBEDDED_EXTRACT_SCORE); + } + + // Apply additional filters + List> matchedMovies = stream + .filter(Movie$.TITLE.containing(title)) + .filter(Movie$.CAST.eq(actors)) + .filter(Movie$.YEAR.eq(year)) + .filter(Movie$.GENRES.eq(genres)) + .map(Fields.of(Movie$._THIS, Movie$._EMBEDDED_EXTRACT_SCORE)) + .collect(Collectors.toList()); + + return result; +} +``` + +This method: +1. Converts the search query text into a vector embedding using the same embedding model +2. Performs a K-Nearest Neighbors (KNN) search to find the most similar vectors +3. Applies additional filters to narrow down the results (pre-filtering) +4. Returns the matched movies along with their similarity scores + +### Combining Vector Search with Autocomplete + +The application also supports autocomplete functionality alongside vector search: + +```java +public interface MovieRepository extends RedisDocumentRepository { + List autoCompleteTitle(String title, AutoCompleteOptions options); +} +``` + +The `autoCompleteTitle` method is automatically implemented by Redis OM Spring based on the `@AutoComplete` annotation on the `title` field in the Movie class. + +### How Redis Indexes the Vectors + +When the application starts, Redis OM Spring creates a vector index in Redis based on the annotations: + +``` +FT.CREATE idx:com.redis.vectorsearch.domain.Movie ON JSON PREFIX 1 com.redis.vectorsearch.domain.Movie: SCHEMA + $.title AS title TEXT SORTABLE + $.year AS year NUMERIC SORTABLE + $.cast AS cast TAG + $.genres AS genres TAG + $.embeddedExtract AS embeddedExtract VECTOR HNSW 6 TYPE FLOAT32 DIM 384 DISTANCE_METRIC COSINE INITIAL_CAP 10 +``` + +This index enables efficient vector similarity search with the following features: +- HNSW algorithm for approximate nearest neighbor search +- 384-dimensional FLOAT32 vectors +- Cosine similarity as the distance metric +- Additional text and tag fields for filtering + +This approach allows for high-performance semantic search operations, even with large datasets, by leveraging Redis's in-memory data structures and the Redis Query Engine's vector search capabilities. diff --git a/java-recipes/applications/vector-similarity-search/spring-ai/readme-assets/index-redis-insight.png b/java-recipes/applications/vector-similarity-search/spring-ai/readme-assets/index-redis-insight.png new file mode 100644 index 00000000..42089ac3 Binary files /dev/null and b/java-recipes/applications/vector-similarity-search/spring-ai/readme-assets/index-redis-insight.png differ diff --git a/java-recipes/applications/vector-similarity-search/spring-ai/readme-assets/pre-filtered-vector-search.png b/java-recipes/applications/vector-similarity-search/spring-ai/readme-assets/pre-filtered-vector-search.png new file mode 100644 index 00000000..4db1b0ab Binary files /dev/null and b/java-recipes/applications/vector-similarity-search/spring-ai/readme-assets/pre-filtered-vector-search.png differ diff --git a/java-recipes/applications/vector-similarity-search/spring-ai/readme-assets/redis-insight.png b/java-recipes/applications/vector-similarity-search/spring-ai/readme-assets/redis-insight.png new file mode 100644 index 00000000..313e4e4b Binary files /dev/null and b/java-recipes/applications/vector-similarity-search/spring-ai/readme-assets/redis-insight.png differ diff --git a/java-recipes/applications/vector-similarity-search/spring-ai/readme-assets/vector-search.png b/java-recipes/applications/vector-similarity-search/spring-ai/readme-assets/vector-search.png new file mode 100644 index 00000000..bb33e9c1 Binary files /dev/null and b/java-recipes/applications/vector-similarity-search/spring-ai/readme-assets/vector-search.png differ diff --git a/java-recipes/applications/vector-similarity-search/spring-ai/spring_boot_spring_ai.md b/java-recipes/applications/vector-similarity-search/spring-ai/spring_boot_spring_ai.md new file mode 100644 index 00000000..75ad1539 --- /dev/null +++ b/java-recipes/applications/vector-similarity-search/spring-ai/spring_boot_spring_ai.md @@ -0,0 +1,231 @@ +# Vector Search with Spring AI (SpringBoot) + +Vector similarity search (semantic search) allows you to find items based on their semantic meaning rather than exact keyword matches. Spring AI provides a standardized way to work with AI models and vector embeddings across different providers. This demo showcases how to integrate Redis Vector Search with Spring AI to implement semantic search applications. + +## Learning resources: + +- Article: [Semantic Search with Spring Boot & Redis](https://raphaeldelio.com/2025/04/29/semantic-search-with-spring-boot-redis/) +- Video: [What is an embedding model?](https://youtu.be/0U1S0WSsPuE) +- Video: [What is semantic search?](https://youtu.be/o3XN4dImESE) +- Video: [What is a vector database?](https://youtu.be/Yhv19le0sBw) + +## Repository + +The repository for this demo can be found [here](https://github.com/redis-developer/redis-springboot-resources/tree/main/search/vector-search-spring-ai) + +## Requirements + +To run this demo, you’ll need the following installed on your system: +- Docker – [Install Docker](https://docs.docker.com/get-docker/) +- Docker Compose – Included with Docker Desktop or available via CLI installation guide + +## Running the demo + +The easiest way to run the demo is with Docker Compose, which sets up all required services in one command. + +### Step 1: Clone the repository + +If you haven’t already: + +```bash +git clone https://github.com/redis-developer/redis-springboot-recipes.git +cd redis-springboot-recipes/search/full-text-search-and-autocomplete +``` + +### Step 2: Start the services + +```bash +docker compose up --build +``` + +This will start: + +- redis: for storing documents +- redis-insight: a UI to explore the Redis data +- vector-search-spring-ai-app: the Spring Boot app that implements vector search + +## Using the demo + +When all of your services are up and running. Go to `localhost:8080` to access the demo. + +If you search using the extract box, the system will perform semantic search and find items on the database that are semantically similar to your query: + +![Screenshot of a movie search app using vector similarity search. The user searches for “movie about a clownfish who searches for his son.” The top result is Finding Nemo, with a similarity score of 0.505, followed by Big Fish and Swordfish. Each result includes a poster, title, year, cast, genres, and description snippet.](readme-assets/vector-search.png) + +You can also apply filters for pre-filtering the results before applying semantic search: + +![Screenshot of a movie search app using vector similarity search with filters applied: cast = Albert Brooks, genre = animated. The query is “movie about a clownfish who searches for his son.” Results include Finding Nemo, Finding Nemo 3D, and Finding Dory, each with similarity scores, posters, cast, genres, and descriptions.](readme-assets/pre-filtered-vector-search.png) + +### Redis Insight + +RedisInsight is a graphical tool developed by Redis to help developers and administrators interact with and manage Redis databases more efficiently. It provides a visual interface for exploring keys, running commands, analyzing memory usage, and monitoring performance metrics in real-time. RedisInsight supports features like full-text search, time series, streams, and vector data structures, making it especially useful for working with more advanced Redis use cases. With its intuitive UI, it simplifies debugging, optimizing queries, and understanding data patterns without requiring deep familiarity with the Redis CLI. + +The Docker Compose file will also spin up an instance of Redis Insight. We can access it by going to `localhost:5540`: + +If we go to Redis Insight, we will be able to see the data stored in Redis: + +![Screenshot of RedisInsight showing 10,000 JSON movie documents in the com.redis.vectorsearch.domain.Movie namespace. The selected document is for Star Trek III: The Search for Spock, displaying fields like title, year, genres, extract, and a thumbnail URL. The embeddedExtract vector field is also included.](readme-assets/redis-insight.png) + +And if run the command `FT.INFO 'com.redis.fulltextsearchandautocomplete.domain.MovieIdx'`, we'll be able to see the schema that was created for indexing our documents efficiently: + +![Screenshot of RedisInsight displaying the schema of the MovieIdx vector search index. The index is built on JSON documents and includes fields like title, year, cast, genres, embeddedExtract (VECTOR), and id. The vector field uses the HNSW algorithm with FLOAT32 data type, 384 dimensions, COSINE distance metric, M=16, and EF_CONSTRUCTION=200.](readme-assets/index-redis-insight.png) + +## How It Is Implemented + +The application uses Spring AI's `RedisVectorStore` to store and search vector embeddings of movie descriptions. + +### Configuring the Vector Store + +```kotlin +@Bean +fun movieVectorStore( + embeddingModel: EmbeddingModel, + jedisPooled: JedisPooled +): RedisVectorStore { + return RedisVectorStore.builder(jedisPooled, embeddingModel) + .indexName("movieIdx") + .contentFieldName("extract") + .embeddingFieldName("extractEmbedding") + .metadataFields( + RedisVectorStore.MetadataField("title", Schema.FieldType.TEXT), + RedisVectorStore.MetadataField("year", Schema.FieldType.NUMERIC), + RedisVectorStore.MetadataField("cast", Schema.FieldType.TAG), + RedisVectorStore.MetadataField("genres", Schema.FieldType.TAG), + RedisVectorStore.MetadataField("thumbnail", Schema.FieldType.TEXT), + ) + .prefix("movies:") + .initializeSchema(true) + .vectorAlgorithm(RedisVectorStore.Algorithm.HSNW) + .build() +} +``` + +Let's break this down: + +- **Index Name**: `movieIdx` - Redis will create an index with this name for searching movies +- **Content Field**: `extract` - The movie description that will be embedded +- **Embedding Field**: `extractEmbedding` - The field that will store the resulting vector embedding +- **Metadata Fields**: Additional fields for filtering and retrieval (title, year, cast, genres, thumbnail) +- **Prefix**: `movies:` - All keys in Redis will be prefixed with this to organize the data +- **Vector Algorithm**: `HSNW` - Hierarchical Navigable Small World algorithm for efficient approximate nearest neighbor search + +### Configuring the Embedding Model + +Spring AI provides a standardized way to work with different embedding models. In this application, we use the Transformers embedding model: + +```kotlin +@Bean +fun embeddingModel(): EmbeddingModel { + return TransformersEmbeddingModel() +} +``` + +The `TransformersEmbeddingModel` is a local embedding model based on the Hugging Face Transformers library, which allows us to generate vector embeddings without relying on external API calls. + +### Storing and Vectorizing Documents + +When the application starts, it loads movie data from a JSON file and stores it in Redis with vector embeddings: + +```kotlin +fun storeMovies(movies: List) { + val documents = movies.map { movie -> + val text = movie.extract ?: "" + val metadata = mapOf( + "title" to (movie.title ?: ""), + "year" to movie.year, + "cast" to movie.cast, + "genres" to movie.genres, + "thumbnail" to (movie.thumbnail ?: "") + ) + Document(text, metadata) + } + movieVectorStore.add(documents) +} +``` + +This process: +1. Converts each Movie object to a Spring AI Document +2. Sets the movie extract as the document content +3. Adds metadata fields for filtering and retrieval +4. Adds the documents to the RedisVectorStore, which automatically: + - Generates vector embeddings for the content + - Stores the documents in Redis with their embeddings + - Updates the vector index for efficient search + +### Performing Vector Similarity Search + +When a user enters a search query, the application performs vector similarity search to find semantically similar movies: + +```kotlin +fun searchMovies( + title: String, + extract: String, + actors: List, + year: Int? = null, + genres: List, + numberOfNearestNeighbors: Int +): Map { + val b = FilterExpressionBuilder() + val filterList = mutableListOf() + + // Add filters for title, actors, year, and genres + if (title.isNotBlank()) { + filterList.add(b.`in`("title", title)) + } + + // ... other filters ... + + val filterExpression = when (filterList.size) { + 0 -> null + 1 -> filterList[0] + else -> filterList.reduce { acc, expr -> b.and(acc, expr) } + }?.build() + + val searchResults = movieVectorStore.similaritySearch( + SearchRequest.builder() + .query(extract) + .topK(numberOfNearestNeighbors) + .filterExpression(filterExpression) + .build() + ) ?: emptyList() + + // Transform results to Movie objects + // ... +} +``` + +This search process: +1. Builds filter expressions for pre-filtering based on metadata (title, actors, year, genres) +2. Creates a search request with: + - The extract text as the query (which will be embedded into a vector) + - A topK parameter to limit the number of results + - Optional filter expressions for pre-filtering +3. Performs vector similarity search using the RedisVectorStore +4. Transforms the search results back into Movie objects with similarity scores + +### Pre-filtering with Vector Search + +One powerful feature of Redis vector search is the ability to pre-filter results before performing vector similarity search. This allows for more efficient and targeted searches: + +```kotlin +val filterExpression = when (filterList.size) { + 0 -> null + 1 -> filterList[0] + else -> filterList.reduce { acc, expr -> b.and(acc, expr) } +}?.build() + +val searchResults = movieVectorStore.similaritySearch( + SearchRequest.builder() + .query(extract) + .topK(numberOfNearestNeighbors) + .filterExpression(filterExpression) + .build() +) +``` + +Pre-filtering works by: +1. First applying traditional filters on metadata fields (e.g., year, cast, genres) +2. Then performing vector similarity search only on the filtered subset +3. Returning the top K most similar results from the filtered set + +This approach combines the precision of traditional filtering with the semantic understanding of vector search, allowing users to find movies that are both semantically similar to their query and match specific criteria. diff --git a/java-recipes/notebooks/RAG/spring_ai_redis_rag.ipynb b/java-recipes/notebooks/RAG/spring_ai_redis_rag.ipynb new file mode 100644 index 00000000..f09e718e --- /dev/null +++ b/java-recipes/notebooks/RAG/spring_ai_redis_rag.ipynb @@ -0,0 +1,466 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "6498d2b8-d6f9-4bad-9c6f-8c8151675b02", + "metadata": {}, + "source": [ + "![Redis](https://redis.io/wp-content/uploads/2024/04/Logotype.svg?auto=webp&quality=85,75&width=120)\n", + "\n", + "# RAG with Spring AI and Redis\n", + "\n", + "This notebook demonstrates how to build a Retrieval-Augmented Generation (RAG) system using Spring AI and Redis. The example focuses on creating a beer recommendation chatbot that can answer questions about beers by retrieving relevant information from a database." + ] + }, + { + "cell_type": "markdown", + "id": "b0cd181e-fceb-4960-a334-1599bfabbd91", + "metadata": {}, + "source": [ + "## Maven Dependencies\n", + "\n", + "The notebook requires several dependencies:\n", + "\n", + "- Spring AI OpenAI: To interact with OpenAI's language models\n", + "- Spring AI Transformers: For embedding generation using local models\n", + "- Spring AI Redis Store: To use Redis as a vector database\n", + "- SLF4J: For logging\n", + "- Jedis: Redis client for Java" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "f0483426-9a2a-4fc1-a184-9ba3343d2bf9", + "metadata": {}, + "outputs": [], + "source": [ + "%mavenRepo spring_milestones https://repo.spring.io/milestone/ \n", + "%maven \"org.springframework.ai:spring-ai-openai:1.0.0-M6\"\n", + "%maven \"org.springframework.ai:spring-ai-transformers:1.0.0-M6\"\n", + "%maven \"org.springframework.ai:spring-ai-redis-store:1.0.0-M6\"\n", + "%maven \"org.slf4j:slf4j-simple:2.0.17\" \n", + "%maven \"redis.clients:jedis:5.2.0\"" + ] + }, + { + "cell_type": "markdown", + "id": "e3b4b75f-dc96-462d-88a3-44b1c469ca2a", + "metadata": {}, + "source": [ + "## Setting up the OpenAI Chat Model\n", + "\n", + "To run the code below, you need to have your OpenAI API key available in environment variable `OPENAI_API_KEY`." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "c34b42d5-aa83-48c3-b65b-a858ac60c03d", + "metadata": {}, + "outputs": [], + "source": [ + "import org.springframework.ai.openai.OpenAiChatModel;\n", + "import org.springframework.ai.openai.OpenAiChatOptions;\n", + "import org.springframework.ai.openai.api.OpenAiApi;\n", + "\n", + "var openAiApi = new OpenAiApi(System.getenv(\"OPENAI_API_KEY\"));\n", + "\n", + "var openAiChatOptions = OpenAiChatOptions.builder()\n", + " .model(\"gpt-3.5-turbo\")\n", + " .temperature(0.4)\n", + " .maxTokens(200)\n", + " .build();\n", + "\n", + "var chatModel = OpenAiChatModel.builder()\n", + " .openAiApi(openAiApi)\n", + " .defaultOptions(openAiChatOptions)\n", + " .build();" + ] + }, + { + "cell_type": "markdown", + "id": "70f85ac4-ce9a-4be9-b5bd-23518a0c7e09", + "metadata": {}, + "source": [ + "## Setting up the Embedding Model\n", + "\n", + "Initializes the transformer-based embedding model. Unlike the chat model which uses OpenAI's API, this embedding model runs locally using the Hugging Face transformer models." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "0094dc34-3b4b-4b9e-8a10-76bb0a57386f", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[JJava-executor-0] INFO org.springframework.ai.transformers.ResourceCacheService - Create cache root directory: /tmp/spring-ai-onnx-generative\n", + "[JJava-executor-0] INFO org.springframework.ai.transformers.ResourceCacheService - Caching the URL [https://raw.githubusercontent.com/spring-projects/spring-ai/main/models/spring-ai-transformers/src/main/resources/onnx/all-MiniLM-L6-v2/tokenizer.json] resource to: /tmp/spring-ai-onnx-generative/4d42ba07-cb22-352f-bb44-beccc8c8c0b7/tokenizer.json\n", + "[JJava-executor-0] INFO ai.djl.util.Platform - Found matching platform from: jar:file:/home/jovyan/.ivy2/cache/ai.djl.huggingface/tokenizers/jars/tokenizers-0.30.0.jar!/native/lib/tokenizers.properties\n", + "[JJava-executor-0] INFO org.springframework.ai.transformers.ResourceCacheService - Caching the URL [https://github.com/spring-projects/spring-ai/raw/main/models/spring-ai-transformers/src/main/resources/onnx/all-MiniLM-L6-v2/model.onnx] resource to: /tmp/spring-ai-onnx-generative/eb4e1bd7-63c5-301b-8383-5df6a4a2adea/model.onnx\n", + "[JJava-executor-0] INFO org.springframework.ai.transformers.TransformersEmbeddingModel - Model input names: input_ids, attention_mask, token_type_ids\n", + "[JJava-executor-0] INFO org.springframework.ai.transformers.TransformersEmbeddingModel - Model output names: last_hidden_state\n" + ] + } + ], + "source": [ + "import org.springframework.ai.transformers.TransformersEmbeddingModel;\n", + "\n", + "var embeddingModel = new TransformersEmbeddingModel();\n", + "embeddingModel.afterPropertiesSet();" + ] + }, + { + "cell_type": "markdown", + "id": "787c39d1-72ee-429c-8617-3476fc5cc447", + "metadata": {}, + "source": [ + "## Testing the Embedding Model\n", + "\n", + "Generating vector embeddings for two sample phrases" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "bc1a02cf-0efc-4480-8d04-bd5d41e50293", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[JJava-executor-0] INFO ai.djl.pytorch.engine.PtEngine - PyTorch graph executor optimizer is enabled, this may impact your inference latency and throughput. See: https://docs.djl.ai/master/docs/development/inference_performance_optimization.html#graph-executor-optimization\n", + "[JJava-executor-0] INFO ai.djl.pytorch.engine.PtEngine - Number of inter-op threads is 12\n", + "[JJava-executor-0] INFO ai.djl.pytorch.engine.PtEngine - Number of intra-op threads is 12\n" + ] + } + ], + "source": [ + "List embeddings = embeddingModel.embed(List.of(\"Hello world\", \"World is big\"));" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "7f42785a-8fd1-415a-8d49-e88c84ceaf21", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "embeddings.size()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "2c0e08b2-cd24-4d47-b752-4a21d1534d23", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[-0.19744644, 0.17766532, 0.03857004, 0.1495222, -0.22542009, -0.918028, 0.38326377, -0.03688945, -0.271742, 0.084521994, 0.40589252, 0.31799775, 0.10991715, -0.15033704, -0.0578956, -0.1542844, 0.1277511, -0.12728858, -0.85726726, -0.100180045, 0.043960992, 0.31126785, 0.018637724, 0.18169005, -0.4846143, -0.16840324, 0.29548055, 0.27559924, -0.01898329, -0.33375576, 0.24035157, 0.12719727, 0.7341182, -0.12793198, -0.06675415, 0.3603812, -0.18827778, -0.52243793, -0.17853652, 0.301802, 0.2693615, -0.48221794, -0.17212732, -0.11880259, 0.054506138, -0.021313868, 0.042054005, 0.22520447, 0.53416646, -0.02169647, -0.30204588, -0.3324908, -0.039310955, 0.030255951, 0.47471577, 0.11088768, 0.03599049, -0.059162557, 0.05172684, -0.21580887, -0.2588888, 0.13753763, -0.03976778, 0.077264294, 0.5730004, -0.41052252, -0.12424426, 0.18107419, -0.29570377, -0.47102028, -0.3762157, -0.0566694, 0.03330949, 0.42123562, -0.19500081, 0.14251879, 0.08297111, 0.15151738, 0.055302583, 0.17305022, 0.30240083, -0.4315744, 0.05667964, 0.170871, 0.10053837, 0.13224423, 0.011074826, 0.00801868, -0.27016994, -0.064108744, -0.65401405, -0.11346026, 0.23059894, 0.012559483, -0.45695782, -0.14536054, 0.5410899, -0.1659703, -0.8304071, 1.3227727, 0.15881175, 0.18389726, 0.17790473, 0.24529731, 0.36788028, 0.1841938, -0.027928434, 0.31898242, -0.21494238, -0.12315938, -0.1623146, -0.16520146, 0.21964264, -0.10004018, 0.3005754, -0.42880356, -0.17901944, 0.12508321, -0.22847626, -0.04917716, 0.15437645, -0.2777267, 0.06568631, 0.16961928, -0.11781378, 0.07504356, 0.16512455, -1.8292688E-32, 0.37099707, -0.103828706, 0.29659325, 0.6985769, 0.16481955, 0.04994966, -0.4038639, -0.09682532, 0.23331007, 0.24119315, 0.14573209, 0.2047131, -0.2814445, 0.012193024, -0.08903271, 0.2905263, -0.2759496, 0.20548306, -0.0232912, 0.5825621, -0.32053158, -0.061168656, 0.064345926, 0.5193481, 0.024250127, 0.20123425, -0.05556667, -0.537552, 0.5317701, 0.045843065, -0.04412724, -0.2982929, -0.07208949, 0.018709056, 0.034438692, 0.043418773, 0.06023024, -0.49448788, -0.40018526, -0.014510898, -0.521009, 0.26851663, 0.29823413, 0.041198455, 0.06244344, -0.029948883, 0.07981756, 0.12580922, 0.19590716, 0.34489778, 6.682277E-4, 0.084367484, -0.40139028, 0.16320959, -0.15807047, 0.061669067, 0.1994718, -0.12878472, 0.05594621, 0.44227248, 0.12363334, 0.65833676, -0.3894322, 0.13607582, -0.091537476, -0.10209247, 0.36878014, 0.18340643, 0.28789037, -0.03386706, -0.1930407, 0.102169015, 0.09491301, 0.36249012, 0.19859105, 0.26614627, 0.5606941, -0.038000442, 0.14435697, -0.44662768, 0.096934825, -0.0054164976, 0.12869316, -0.21907079, 0.548087, -0.030643288, 0.059955206, -0.6599656, -0.075952515, -0.061331585, -0.4759999, 0.41962653, 0.28286183, -0.051509358, -0.548893, 1.927742E-32, 0.7154652, 0.110812716, -0.33345005, -0.20609923, -0.29061896, -0.26150167, -0.47305745, 0.8486894, -0.50637484, 0.34518296, 0.29224205, 0.059004746, 0.80871284, 0.17646644, 0.34952724, -0.30267116, 0.7825679, 0.05262854, -0.09921885, -0.07358193, -0.045787632, -0.29195526, -0.2998041, 0.04348392, -0.08685544, 0.09712923, 0.12181321, 0.11773253, -0.68738264, 0.08282088, 0.15324913, 0.14506459, -0.24484996, 0.038762033, -0.08280242, 0.2592085, -0.5238729, -0.11132506, -0.102130055, -0.3144619, -0.30146742, -0.059897322, -0.29788807, 0.11964548, -0.45797828, -0.06935966, -0.33061957, 0.13273829, -0.045996144, -0.14883682, -0.4578995, -0.11871089, 0.27957174, -0.116765395, -0.28162748, 0.081090145, -0.36435378, -0.044711765, 0.09410101, -0.14707984, 0.07663135, 0.15032242, 0.0571447, 0.36210248, 0.015302703, -0.037698798, 0.09524873, 0.18535785, 0.21729061, -0.20832026, -0.03957802, 9.149015E-4, -0.009355202, -0.15621811, -0.16056955, 0.28451854, -0.1653178, -0.013847964, 0.08461365, 0.05592023, 0.03320237, 0.07723324, 0.031887006, 0.21319377, 0.041419506, 0.22996895, 0.466757, 0.41228518, -0.074770994, -0.24557963, -0.06305952, 0.028048843, -0.052857265, 0.20153615, -0.29226974, -8.999385E-8, -0.5075389, 0.13692492, -0.09299688, 0.18154389, 0.15625265, 0.3004808, -0.26956818, -0.33701032, -0.36198398, 0.23416229, 0.28535756, 0.61020494, -0.42666304, -0.07155929, 0.10520587, 0.22606178, -0.1420139, 0.08313233, -0.21228969, 0.114627264, -2.7827127E-4, 0.056504183, 0.14224814, -0.30042008, 0.16787784, -0.4993352, -0.08303764, 0.14900707, -0.107358016, -0.43641558, 0.20068759, 0.59352744, -0.1606408, 0.07283562, -0.4371048, -0.10681938, 0.14303754, 0.4664252, 0.39377174, -0.36684257, -0.48044774, 0.3514127, -0.19211018, -0.60792434, -0.22953579, 0.18629542, 0.4388187, -0.4181522, 0.0019333661, -0.23406522, -0.43402928, 0.15764633, 0.42736888, 0.10146409, 0.52239466, 0.6312138, 0.0032632276, 0.29472238, -0.083333045, 0.1903145, 0.13625453, -0.13108662, 0.22298925, 0.17298983]" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "float[] e0 = embeddings.get(0);\n", + "Arrays.toString(e0);" + ] + }, + { + "cell_type": "markdown", + "id": "8a85a1da-3ca9-475d-9044-74adce03d7fa", + "metadata": {}, + "source": [ + "## Configuring Redis Vector Store\n", + "\n", + "Sets up a connection to a Redis server at hostname \"redis-java\" on port 6379\n", + "Creates a vector store for storing and retrieving embeddings, with:\n", + "\n", + "- A Redis index named \"beers\"\n", + "- A prefix of \"beer:\" for all keys\n", + "- Automatic schema initialization" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "0e03d272-884f-4fa0-9885-fc3e49466c5a", + "metadata": {}, + "outputs": [], + "source": [ + "import redis.clients.jedis.JedisPooled;\n", + "import org.springframework.ai.vectorstore.redis.RedisVectorStore;\n", + "\n", + "var jedisPooled = new JedisPooled(\"redis-java\", 6379);\n", + "\n", + "var vectorStore = RedisVectorStore.builder(jedisPooled, embeddingModel)\n", + " .indexName(\"beers\") \n", + " .prefix(\"beer:\") \n", + " .initializeSchema(true) \n", + " .build();\n", + "\n", + "vectorStore.afterPropertiesSet();" + ] + }, + { + "cell_type": "markdown", + "id": "d2f90c67-b58f-4613-be1f-487fd56f3146", + "metadata": {}, + "source": [ + "## Loading Beer Data into Redis\n", + "\n", + "- Defines the relevant fields to extract from the beer JSON data\n", + "- Checks if embeddings are already loaded in Redis by querying the index information\n", + "- If not loaded:\n", + " - Opens the compressed beer data file\n", + " - Creates a JSON reader to parse the file and extract the specified fields\n", + " - Adds the documents to the vector store, which automatically:\n", + " - Creates embeddings for each document\n", + " - Stores both the documents and their embeddings in Redis" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "1f120966-1e4f-422b-9b84-c8bedb2720fc", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Embeddings already loaded. Skipping\n" + ] + } + ], + "source": [ + "import java.io.File;\n", + "import java.io.FileInputStream;\n", + "import java.util.Map;\n", + "import java.util.zip.GZIPInputStream;\n", + "\n", + "import org.springframework.ai.reader.JsonReader;\n", + "import org.springframework.core.io.InputStreamResource;\n", + "import org.springframework.core.io.FileSystemResource;\n", + "\n", + "// Define the keys we want to extract from the JSON\n", + "String[] KEYS = { \"name\", \"abv\", \"ibu\", \"description\" };\n", + "\n", + "// Data path\n", + "String filePath = \"../resources/beers.json.gz\";\n", + "\n", + "// Check if embeddings are already loaded\n", + "Map indexInfo = vectorStore.getJedis().ftInfo(\"beers\");\n", + "long numDocs = (long)indexInfo.getOrDefault(\"num_docs\", \"0\");\n", + "if (numDocs > 20000) {\n", + " System.out.println(\"Embeddings already loaded. Skipping\");\n", + "} else {\n", + " System.out.println(\"Creating Embeddings...\");\n", + " \n", + " // Create a file resource directly from the absolute path\n", + " File file = new File(filePath);\n", + " \n", + " // Create a GZIPInputStream\n", + " GZIPInputStream inputStream = new GZIPInputStream(new FileInputStream(file));\n", + " InputStreamResource resource = new InputStreamResource(inputStream);\n", + " \n", + " // Create a JSON reader with fields relevant to our use case\n", + " JsonReader loader = new JsonReader(resource, KEYS);\n", + " \n", + " // Use the VectorStore to insert the documents into Redis\n", + " vectorStore.add(loader.get());\n", + " \n", + " System.out.println(\"Embeddings created.\");\n", + "}" + ] + }, + { + "cell_type": "markdown", + "id": "70a3cd51-b016-4e89-a964-4379ef6de06d", + "metadata": {}, + "source": [ + "## Define the System Prompt\n", + "\n", + "Here we try to control the behavior of the LLM" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "480bd7cf-d361-4690-9c75-f17a20ebeffb", + "metadata": {}, + "outputs": [], + "source": [ + "String systemPrompt = \"\"\"\n", + " You're assisting with questions about products in a beer catalog.\n", + " Use the information from the DOCUMENTS section to provide accurate answers.\n", + " The answer involves referring to the ABV or IBU of the beer, include the beer name in the response.\n", + " If unsure, simply state that you don't know.\n", + " \n", + " DOCUMENTS:\n", + " {documents}\n", + " \"\"\";" + ] + }, + { + "cell_type": "markdown", + "id": "f06b2e70-bf67-49e4-897f-95aaf86f54f0", + "metadata": {}, + "source": [ + "## Setting up the Chat Client with the created ChatModel" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "df0ae72a-051c-43a6-8354-8a540713b988", + "metadata": {}, + "outputs": [], + "source": [ + "import org.springframework.ai.chat.client.ChatClient;\n", + "\n", + "ChatClient chatClient = ChatClient.builder(chatModel)\n", + " .build();" + ] + }, + { + "cell_type": "markdown", + "id": "346aeb8d-0f1c-4223-95f2-7d5ee0da3bb7", + "metadata": {}, + "source": [ + "## Creating a Query Function\n", + "\n", + "Encapsulate the RAG logic into a single method" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "5721b36c-6eab-4967-8d15-f1f547b1999c", + "metadata": {}, + "outputs": [], + "source": [ + "import java.util.stream.Collectors;\n", + "import org.springframework.ai.chat.model.ChatResponse;\n", + "import org.springframework.ai.chat.messages.Message;\n", + "import org.springframework.ai.chat.messages.UserMessage;\n", + "import org.springframework.ai.chat.prompt.Prompt;\n", + "import org.springframework.ai.chat.prompt.SystemPromptTemplate;\n", + "import org.springframework.ai.document.Document;\n", + "import org.springframework.ai.vectorstore.SearchRequest;\n", + "\n", + "void ask(String query) {\n", + " SearchRequest request = SearchRequest.builder().query(query).topK(10).build();\n", + "\n", + " // Query Redis for the top K documents most relevant to the input message\n", + " List docs = vectorStore.similaritySearch(request);\n", + " \n", + " String documents = docs.stream() //\n", + " .map(Document::getText) //\n", + " .collect(Collectors.joining(\"\\n\"));\n", + " \n", + " SystemPromptTemplate systemPromptTemplate = new SystemPromptTemplate(systemPrompt);\n", + " Message systemMessage = systemPromptTemplate.createMessage(Map.of(\"documents\", documents));\n", + " \n", + " UserMessage userMessage = new UserMessage(query);\n", + " // Assemble the complete prompt using a template\n", + " Prompt prompt = new Prompt(List.of(systemMessage, userMessage));\n", + " // Call the chat client with the prompt\n", + " ChatResponse chatResponse = chatClient.prompt(prompt).call().chatResponse();\n", + " \n", + " System.out.println(chatResponse.getResult().getOutput().getText());\n", + "}" + ] + }, + { + "cell_type": "markdown", + "id": "82bcb6e1-e805-47ef-8838-0a62ffaeb0e1", + "metadata": {}, + "source": [ + "## 🍺 Now let's talk about Beers!" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "997b3010-eb42-41f4-8c19-339a95e4047b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "A beer that pairs well with smoked meats is the \"Oak Smoker,\" with an ABV of 11.5%. This Smoked Wee Heavy has a wonderfully subtle smoky background and rich malty flavors, making it a perfect pairing for BBQ or enjoying on its own.\n" + ] + } + ], + "source": [ + "ask(\"What beer pais well with smoked meats?\");" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "1a3d5322-1eae-43d4-847b-54b40713c4de", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Beer does not typically aid in weight loss as it contains calories. However, lower alcohol content beers like the Airship Cream Ale with an ABV of 4.5 might be a lighter option compared to higher ABV beers.\n" + ] + } + ], + "source": [ + "ask(\"What beer would make me lose weight?\");" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "082c782c-266a-40f7-a073-e5d1852e6d7a", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Java", + "language": "java", + "name": "java" + }, + "language_info": { + "codemirror_mode": "java", + "file_extension": ".jshell", + "mimetype": "text/x-java-source", + "name": "Java", + "pygments_lexer": "java", + "version": "21.0.6+7-Ubuntu-124.04.1" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/java-recipes/notebooks/README.md b/java-recipes/notebooks/README.md new file mode 100644 index 00000000..a5a240e8 --- /dev/null +++ b/java-recipes/notebooks/README.md @@ -0,0 +1,136 @@ +
+
+

Redis AI Java Resources

+
+ +[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) +![Java](https://img.shields.io/badge/Java-21-orange) +![Spring AI](https://img.shields.io/badge/Spring%20AI-1.0.0--M6-green) + +
+
+ ✨ Java-based code examples, notebooks, and resources for using Redis in AI and ML applications. ✨ +
+ +
+
+ +[**Setup**](#setup) | [**Running the Project**](#running-the-project) | [**Notebooks**](#notebooks) | [**Project Structure**](#project-structure) | [**Implementation Details**](#implementation-details) + +
+
+ +## Setup + +This project uses Docker Compose to set up a complete environment for running Java-based AI applications with Redis. The environment includes: + +- A Jupyter Notebook server with Java kernel support +- Redis Stack (includes Redis and RedisInsight) +- Pre-installed dependencies for AI/ML workloads + +### Prerequisites + +- [Docker](https://docs.docker.com/get-docker/) and [Docker Compose](https://docs.docker.com/compose/install/) +- OpenAI API key (for notebooks that use OpenAI services) + +### Environment Configuration + +1. Create a `.env` file in the project root with your OpenAI API key: + +```bash +OPENAI_API_KEY=your_openai_api_key_here +``` + +## Running the Project + +1. Clone the repository (if you haven't already): + + ```bash + git clone https://github.com/redis-developer/redis-ai-resources.git + cd redis-ai-resources/java-resources + ``` + +2. Start the Docker containers: + + ```bash + docker-compose up -d + ``` + +3. Access the Jupyter environment: + - Open your browser and navigate to [http://localhost:8888](http://localhost:8888) + - The token is usually shown in the docker-compose logs. You can view them with: + + ```bash + docker-compose logs jupyter + ``` + +4. Access RedisInsight: + - Open your browser and navigate to [http://localhost:8001](http://localhost:8001) + - Connect to Redis using the following details: + - Host: redis-java + - Port: 6379 + - No password (unless configured) + +5. When finished, stop the containers: + + ```bash + docker-compose down + ``` + +## Notebooks + +| Notebook | Description | +| --- | --- | +| [RAG/spring_ai_redis_rag.ipynb](./RAG/spring_ai_redis_rag.ipynb) | Demonstrates building a RAG-based beer recommendation chatbot using Spring AI and Redis as the vector store | + +## Project Structure + +```bash +notebooks/ +├── .env # Environment variables (create this) +├── docker-compose.yml # Docker Compose configuration +├── jupyter/ # Jupyter configuration files +│ ├── Dockerfile # Dockerfile for Jupyter with Java kernel +│ ├── environment.yml # Conda environment specification +│ ├── install.py # JJava kernel installation script +│ ├── kernel.json # Kernel specification +│ └── java/ # Java dependencies and configuration +│ └── pom.xml # Maven project file with dependencies +└── resources/ # Data files for notebooks + └── beers.json.gz # Compressed beer dataset +``` + +## Implementation Details + +### Java Jupyter Kernel + +The project uses [JJava](https://github.com/dflib/jjava), a Jupyter kernel for Java based on JShell. This allows for interactive Java development in Jupyter notebooks. + +Key components: + +- Java 21 for modern Java features +- Maven for dependency management +- JJava kernel for Jupyter integration + +### Spring AI Integration + +The Spring AI notebooks showcase how to use Spring's AI capabilities with Redis: + +- **Spring AI**: Framework for building AI-powered applications +- **Redis Vector Store**: Used for storing and querying vector embeddings +- **Transformer Models**: For generating embeddings locally +- **RAG Pattern**: Demonstrates the Retrieval Augmented Generation pattern + +### Docker Configuration + +The Docker setup includes: + +1. **Jupyter Container**: + - Based on minimal Jupyter notebook image + - Adds Java 21, Maven, and the JJava kernel + - Includes Python environment with PyTorch and other ML libraries + +2. **Redis Container**: + - Uses Redis Stack image with Vector Search capabilities + - Persists data using Docker volumes + - Exposes Redis on port 6379 and RedisInsight on port 8001 \ No newline at end of file diff --git a/java-recipes/notebooks/docker-compose.yml b/java-recipes/notebooks/docker-compose.yml new file mode 100644 index 00000000..5036afcf --- /dev/null +++ b/java-recipes/notebooks/docker-compose.yml @@ -0,0 +1,25 @@ +name: redis-ai-java +services: + jupyter: + build: + context: . + dockerfile: ./jupyter/Dockerfile + ports: + - "8888:8888" + environment: + - JUPYTER_ENABLE_LAB=yes + env_file: + - .env + volumes: + - ./:/home/jovyan/ + - ./resources:/home/jovyan/resources + redis-java: + image: redis/redis-stack:latest + ports: + - "6379:6379" # Redis database port + - "8001:8001" # RedisInsight port + volumes: + - redis-data:/data # Persist Redis data + +volumes: + redis-data: \ No newline at end of file diff --git a/java-recipes/notebooks/jupyter/Dockerfile b/java-recipes/notebooks/jupyter/Dockerfile new file mode 100644 index 00000000..a7604943 --- /dev/null +++ b/java-recipes/notebooks/jupyter/Dockerfile @@ -0,0 +1,59 @@ +FROM quay.io/jupyter/minimal-notebook:latest + +RUN mkdir /home/jovyan/resources + +USER root +WORKDIR /home/jovyan + +# Install dependencies: Java 21 and Maven +RUN apt-get update && apt-get install -y openjdk-21-jdk maven + +# Copy the pre-created Maven project and jjava-glue project +COPY ./jupyter/java /home/jovyan/java +COPY ./jupyter/install.py /home/jovyan/install.py + +# Use Maven to download dependencies for JJava +WORKDIR /home/jovyan/java + +# Download the JJava jar directly +RUN mvn dependency:get -Dartifact=org.dflib.jjava:jjava:1.0-M3 -Ddest=./ -Dtransitive=false +RUN mv jjava-1.0-M3.jar jjava.jar + +# Pre-download Spring AI Dependencies +RUN mvn dependency:get -Dartifact=org.springframework.ai:spring-ai-openai:1.0.0-M6 +RUN mvn dependency:get -Dartifact=org.springframework.ai:spring-ai-transformers:1.0.0-M6 +RUN mvn dependency:get -Dartifact=org.springframework.ai:spring-ai-redis-store:1.0.0-M6 +# Pre-download Jedis +RUN mvn dependency:get -Dartifact=redis.clients:jedis:5.2.0 +# Download all dependencies +RUN mvn dependency:copy-dependencies -DoutputDirectory=./lib + +# Create a list of dependencies for the classpath +RUN find ./lib -name "*.jar" | tr '\n' ':' > classpath.txt +# Add the jjava.jar to the classpath +RUN echo -n "/home/jovyan/java/jjava.jar:" >> classpath.txt + +# Install the kernel with classpath configuration +WORKDIR /home/jovyan +RUN python install.py --prefix /opt/conda/ --classpath $(cat /home/jovyan/java/classpath.txt) + +# Pre-download Transformer Models +RUN pip install transformers torch +RUN mkdir -p /home/jovyan/.cache/huggingface/hub +# Pre-download the specific model used in Spring AI Transformers +RUN python -c "from transformers import AutoModel; AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')" + +# Clean up Maven artifacts but keep the jjava.jar and lib directory +RUN rm -rf /home/jovyan/java/target /home/jovyan/java/.m2 /home/jovyan/java/pom.xml \ + /home/jovyan/java/classpath.txt \ + && rm -f /home/jovyan/install.py + +# Install conda packages from environment.yml +COPY ./jupyter/environment.yml /tmp/ +RUN conda env update -f /tmp/environment.yml && \ + conda clean --all -f -y && \ + fix-permissions "${CONDA_DIR}" && \ + fix-permissions "/home/${NB_USER}" + +WORKDIR /home/jovyan +USER $NB_UID \ No newline at end of file diff --git a/java-recipes/notebooks/jupyter/environment.yml b/java-recipes/notebooks/jupyter/environment.yml new file mode 100644 index 00000000..46dbe904 --- /dev/null +++ b/java-recipes/notebooks/jupyter/environment.yml @@ -0,0 +1,9 @@ +name: base +channels: + - pytorch + - conda-forge + - defaults +dependencies: + - pytorch + - torchtext + - gensim \ No newline at end of file diff --git a/java-recipes/notebooks/jupyter/install.py b/java-recipes/notebooks/jupyter/install.py new file mode 100644 index 00000000..78bca62c --- /dev/null +++ b/java-recipes/notebooks/jupyter/install.py @@ -0,0 +1,197 @@ +import argparse +import json +import os +import sys + +from jupyter_client.kernelspec import KernelSpecManager + +ALIASES = { + "IJAVA_CLASSPATH": { + }, + "IJAVA_COMPILER_OPTS": { + }, + "IJAVA_STARTUP_SCRIPTS_PATH": { + }, + "IJAVA_STARTUP_SCRIPT": { + }, + "IJAVA_TIMEOUT": { + "NO_TIMEOUT": "-1", + }, + +} + +NAME_MAP = { + "classpath": "IJAVA_CLASSPATH", + "comp-opts": "IJAVA_COMPILER_OPTS", + "startup-scripts-path": "IJAVA_STARTUP_SCRIPTS_PATH", + "startup-script": "IJAVA_STARTUP_SCRIPT", + "timeout": "IJAVA_TIMEOUT", + +} + +def type_assertion(name, type_fn): + env = NAME_MAP[name] + aliases = ALIASES.get(env, {}) + + def checker(value): + alias = aliases.get(value, value) + type_fn(alias) + return alias + setattr(checker, '__name__', getattr(type_fn, '__name__', 'type_fn')) + return checker + +class EnvVar(argparse.Action): + def __init__(self, option_strings, dest, aliases=None, name_map=None, list_sep=None, **kwargs): + super(EnvVar, self).__init__(option_strings, dest, **kwargs) + + if aliases is None: aliases = {} + if name_map is None: name_map = {} + + self.aliases = aliases + self.name_map = name_map + self.list_sep = list_sep + + for name in self.option_strings: + if name.lstrip('-') not in name_map: + raise ValueError('Name "%s" is not mapped to an environment variable' % name.lstrip('-')) + + + def __call__(self, parser, namespace, value, option_string=None): + if option_string is None: + raise ValueError('option_string is required') + + env = getattr(namespace, self.dest, None) + if env is None: + env = {} + + name = option_string.lstrip('-') + env_var = self.name_map[name] + + if self.list_sep: + old = env.get(env_var) + value = old + self.list_sep + str(value) if old is not None else str(value) + + env[env_var] = value + + setattr(namespace, self.dest, env) + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Install the java kernel.') + + install_location = parser.add_mutually_exclusive_group() + install_location.add_argument( + '--user', + help='Install to the per-user kernel registry.', + action='store_true' + ) + install_location.add_argument( + '--sys-prefix', + help="Install to Python's sys.prefix. Useful in conda/virtual environments.", + action='store_true' + ) + install_location.add_argument( + '--prefix', + help=''' + Specify a prefix to install to, e.g. an env. + The kernelspec will be installed in PREFIX/share/jupyter/kernels/ + ''', + default='' + ) + + parser.add_argument( + '--replace', + help='Replace any existing kernel spec with this name.', + action='store_true' + ) + + parser.add_argument( + "--classpath", + dest="env", + action=EnvVar, + aliases=ALIASES, + name_map=NAME_MAP, + help="A file path separator delimited list of classpath entries that should be available to the user code. **Important:** no matter what OS, this should use forward slash \"/\" as the file separator. Also each path may actually be a simple glob.", + type=type_assertion("classpath", str), + list_sep=os.pathsep, + ) + parser.add_argument( + "--comp-opts", + dest="env", + action=EnvVar, + aliases=ALIASES, + name_map=NAME_MAP, + help="A space delimited list of command line options that would be passed to the `javac` command when compiling a project. For example `-parameters` to enable retaining parameter names for reflection.", + type=type_assertion("comp-opts", str), + list_sep=" ", + ) + parser.add_argument( + "--startup-scripts-path", + dest="env", + action=EnvVar, + aliases=ALIASES, + name_map=NAME_MAP, + help="A file path seperator delimited list of `.jshell` scripts to run on startup. This includes ijava-jshell-init.jshell and ijava-display-init.jshell. **Important:** no matter what OS, this should use forward slash \"/\" as the file separator. Also each path may actually be a simple glob.", + type=type_assertion("startup-scripts-path", str), + list_sep=os.pathsep, + ) + parser.add_argument( + "--startup-script", + dest="env", + action=EnvVar, + aliases=ALIASES, + name_map=NAME_MAP, + help="A block of java code to run when the kernel starts up. This may be something like `import my.utils;` to setup some default imports or even `void sleep(long time) { try {Thread.sleep(time); } catch (InterruptedException e) { throw new RuntimeException(e); }}` to declare a default utility method to use in the notebook.", + type=type_assertion("startup-script", str), + ) + parser.add_argument( + "--timeout", + dest="env", + action=EnvVar, + aliases=ALIASES, + name_map=NAME_MAP, + help="A duration specifying a timeout (in milliseconds by default) for a _single top level statement_. If less than `1` then there is no timeout. If desired a time may be specified with a `TimeUnit` may be given following the duration number (ex `\"30 SECONDS\"`).", + type=type_assertion("timeout", str), + ) + + + args = parser.parse_args() + + if not hasattr(args, "env") or getattr(args, "env") is None: + setattr(args, "env", {}) + + + # Install the kernel + install_dest = KernelSpecManager().install_kernel_spec( + os.path.join(os.path.dirname(os.path.abspath(__file__)), 'java'), + kernel_name='java', + user=args.user, + prefix=sys.prefix if args.sys_prefix else args.prefix, + replace=args.replace + ) + + # Connect the self referencing token left in the kernel.json to point to it's install location. + + # Prepare the token replacement string which should be properly escaped for use in a JSON string + # The [1:-1] trims the first and last " json.dumps adds for strings. + install_dest_json_fragment = json.dumps(install_dest)[1:-1] + + # Prepare the paths to the installed kernel.json and the one bundled with this installer. + local_kernel_json_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'java', 'kernel.json') + installed_kernel_json_path = os.path.join(install_dest, 'kernel.json') + + # Replace the @KERNEL_INSTALL_DIRECTORY@ token with the path to where the kernel was installed + # in the installed kernel.json from the local template. + with open(local_kernel_json_path, 'r') as template_kernel_json_file: + template_kernel_json_contents = template_kernel_json_file.read() + kernel_json_contents = template_kernel_json_contents.replace( + '@KERNEL_INSTALL_DIRECTORY@', + install_dest_json_fragment + ) + kernel_json_json_contents = json.loads(kernel_json_contents) + kernel_env = kernel_json_json_contents.setdefault('env', {}) + for k, v in args.env.items(): + kernel_env[k] = v + with open(installed_kernel_json_path, 'w') as installed_kernel_json_file: + json.dump(kernel_json_json_contents, installed_kernel_json_file, indent=4, sort_keys=True) + + print('Installed java kernel into "%s"' % install_dest) diff --git a/java-recipes/notebooks/jupyter/java/kernel.json b/java-recipes/notebooks/jupyter/java/kernel.json new file mode 100644 index 00000000..348e8789 --- /dev/null +++ b/java-recipes/notebooks/jupyter/java/kernel.json @@ -0,0 +1,13 @@ +{ + "argv": [ + "java", + "--add-opens", "jdk.jshell/jdk.jshell=ALL-UNNAMED", + "-jar", + "@KERNEL_INSTALL_DIRECTORY@/jjava.jar", + "{connection_file}" + ], + "display_name": "Java", + "language": "java", + "interrupt_mode": "message", + "env": {} +} \ No newline at end of file diff --git a/java-recipes/notebooks/jupyter/java/pom.xml b/java-recipes/notebooks/jupyter/java/pom.xml new file mode 100644 index 00000000..9e335f1e --- /dev/null +++ b/java-recipes/notebooks/jupyter/java/pom.xml @@ -0,0 +1,27 @@ + + + 4.0.0 + + org.example + jupyter-java-kernel + 1.0-SNAPSHOT + + + 21 + 21 + UTF-8 + + + + + + org.dflib.jjava + jjava + 1.0-M3 + + + + + \ No newline at end of file diff --git a/java-recipes/notebooks/resources/beers.json.gz b/java-recipes/notebooks/resources/beers.json.gz new file mode 100644 index 00000000..e32d6b02 Binary files /dev/null and b/java-recipes/notebooks/resources/beers.json.gz differ diff --git a/python-recipes/RAG/01_redisvl.ipynb b/python-recipes/RAG/01_redisvl.ipynb index f94c63df..919c7a29 100644 --- a/python-recipes/RAG/01_redisvl.ipynb +++ b/python-recipes/RAG/01_redisvl.ipynb @@ -1,9587 +1,2124 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "id": "R2-i8jBl9GRH" - }, - "source": [ - "![Redis](https://redis.io/wp-content/uploads/2024/04/Logotype.svg?auto=webp&quality=85,75&width=120)\n", - "\n", - "# RAG from scratch with the Redis Vector Library\n", - "\n", - "\n", - "In this recipe we will cover the basic of the Redis Vector Library and build a basic RAG app from scratch.\n", - "\n", - "## Let's Begin!\n", - "\"Open\n" - ] + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "R2-i8jBl9GRH" + }, + "source": [ + "![Redis](https://redis.io/wp-content/uploads/2024/04/Logotype.svg?auto=webp&quality=85,75&width=120)\n", + "\n", + "# RAG from scratch with the Redis Vector Library\n", + "\n", + "\n", + "In this recipe we will cover the basic of the Redis Vector Library and build a basic RAG app from scratch.\n", + "\n", + "## Let's Begin!\n", + "\"Open\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rT9HzsnQ1uiz" + }, + "source": [ + "## Environment Setup\n", + "\n", + "### Pull Github Materials\n", + "Because you are likely running this notebook in **Google Colab**, we need to first\n", + "pull the necessary dataset and materials directly from GitHub.\n", + "\n", + "**If you are running this notebook locally**, FYI you may not need to perform this\n", + "step at all." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-24T04:41:18.607703Z", + "start_time": "2025-04-24T04:41:11.664107Z" }, - { - "cell_type": "markdown", - "metadata": { - "id": "rT9HzsnQ1uiz" - }, - "source": [ - "## Environment Setup\n", - "\n", - "### Pull Github Materials\n", - "Because you are likely running this notebook in **Google Colab**, we need to first\n", - "pull the necessary dataset and materials directly from GitHub.\n", - "\n", - "**If you are running this notebook locally**, FYI you may not need to perform this\n", - "step at all." - ] + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "AJJ2UW6M1ui0", + "outputId": "0f5773b7-a292-4ee6-f4bd-20dc40ca2aba" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "id": "AJJ2UW6M1ui0", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "0f5773b7-a292-4ee6-f4bd-20dc40ca2aba" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Cloning into 'temp_repo'...\n", - "remote: Enumerating objects: 384, done.\u001b[K\n", - "remote: Counting objects: 100% (247/247), done.\u001b[K\n", - "remote: Compressing objects: 100% (159/159), done.\u001b[K\n", - "remote: Total 384 (delta 135), reused 153 (delta 74), pack-reused 137 (from 1)\u001b[K\n", - "Receiving objects: 100% (384/384), 64.50 MiB | 8.97 MiB/s, done.\n", - "Resolving deltas: 100% (159/159), done.\n" - ] - } - ], - "source": [ - "# NBVAL_SKIP\n", - "!git clone https://github.com/redis-developer/redis-ai-resources.git temp_repo\n", - "!mv temp_repo/python-recipes/RAG/resources .\n", - "!rm -rf temp_repo" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "Cloning into 'temp_repo'...\r\n", + "remote: Enumerating objects: 679, done.\u001b[K\r\n", + "remote: Counting objects: 100% (330/330), done.\u001b[Kjects: 82% (271/330)\u001b[K\r\n", + "remote: Compressing objects: 100% (214/214), done.\u001b[K\r\n", + "remote: Total 679 (delta 227), reused 148 (delta 115), pack-reused 349 (from 2)\u001b[K\r\n", + "Receiving objects: 100% (679/679), 57.80 MiB | 11.09 MiB/s, done.\r\n", + "Resolving deltas: 100% (295/295), done.\r\n", + "mv: rename temp_repo/python-recipes/RAG/resources to ./resources: Directory not empty\r\n" + ] + } + ], + "source": [ + "# NBVAL_SKIP\n", + "!git clone https://github.com/redis-developer/redis-ai-resources.git temp_repo\n", + "!mv temp_repo/python-recipes/RAG/resources .\n", + "!rm -rf temp_repo" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Z67mf6T91ui2" + }, + "source": [ + "### Install Python Dependencies" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-24T04:41:20.572419Z", + "start_time": "2025-04-24T04:41:18.616143Z" }, - { - "cell_type": "markdown", - "metadata": { - "id": "Z67mf6T91ui2" - }, - "source": [ - "### Install Python Dependencies" - ] + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "DgxBQFXQ1ui2", + "outputId": "c3c399d6-e294-4a3a-a0a3-82d818509991" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "id": "DgxBQFXQ1ui2", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "c3c399d6-e294-4a3a-a0a3-82d818509991" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/261.4 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m \u001b[32m256.0/261.4 kB\u001b[0m \u001b[31m21.8 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m261.4/261.4 kB\u001b[0m \u001b[31m4.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m96.1/96.1 kB\u001b[0m \u001b[31m6.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.4/2.4 MB\u001b[0m \u001b[31m55.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m298.0/298.0 kB\u001b[0m \u001b[31m18.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.0/1.0 MB\u001b[0m \u001b[31m53.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m408.7/408.7 kB\u001b[0m \u001b[31m27.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m46.0/46.0 kB\u001b[0m \u001b[31m3.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m86.8/86.8 kB\u001b[0m \u001b[31m7.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m49.5/49.5 kB\u001b[0m \u001b[31m4.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25h" - ] - } - ], - "source": [ - "# NBVAL_SKIP\n", - "!pip install -q redis redisvl langchain_community pypdf sentence-transformers langchain openai" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "\r\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m25.0.1\u001b[0m\r\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\r\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "%pip install -q \"redisvl>=0.6.0\" langchain-community pypdf sentence-transformers langchain openai pandas" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "peC8ThuVJkD7" + }, + "source": [ + "### Install Redis Stack\n", + "\n", + "Later in this tutorial, Redis will be used to store, index, and query vector\n", + "embeddings created from PDF document chunks. **We need to make sure we have a Redis\n", + "instance available.**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zMKHJ7oWJkD8" + }, + "source": [ + "#### For Colab\n", + "Use the shell script below to download, extract, and install [Redis Stack](https://redis.io/docs/getting-started/install-stack/) directly from the Redis package archive." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, - { - "cell_type": "markdown", - "metadata": { - "id": "peC8ThuVJkD7" - }, - "source": [ - "### Install Redis Stack\n", - "\n", - "Later in this tutorial, Redis will be used to store, index, and query vector\n", - "embeddings created from PDF document chunks. **We need to make sure we have a Redis\n", - "instance available.**" - ] + "id": "c0d5lfNxJkD8", + "outputId": "f96e72fa-b9f3-476f-bc9e-328bd30d1344" + }, + "outputs": [], + "source": [ + "# NBVAL_SKIP\n", + "%%sh\n", + "curl -fsSL https://packages.redis.io/gpg | sudo gpg --dearmor -o /usr/share/keyrings/redis-archive-keyring.gpg\n", + "echo \"deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb $(lsb_release -cs) main\" | sudo tee /etc/apt/sources.list.d/redis.list\n", + "sudo apt-get update > /dev/null 2>&1\n", + "sudo apt-get install redis-stack-server > /dev/null 2>&1\n", + "redis-stack-server --daemonize yes" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "2arb8Ic0JkD8" + }, + "source": [ + "#### For Alternative Environments\n", + "There are many ways to get the necessary redis-stack instance running\n", + "1. On cloud, deploy a [FREE instance of Redis in the cloud](https://redis.com/try-free/). Or, if you have your\n", + "own version of Redis Enterprise running, that works too!\n", + "2. Per OS, [see the docs](https://redis.io/docs/latest/operate/oss_and_stack/install/install-stack/)\n", + "3. With docker: `docker run -d --name redis-stack-server -p 6379:6379 redis/redis-stack-server:latest`" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DhP1w0R9JkD8" + }, + "source": [ + "### Define the Redis Connection URL\n", + "\n", + "By default this notebook connects to the local instance of Redis Stack. **If you have your own Redis Enterprise instance** - replace REDIS_PASSWORD, REDIS_HOST and REDIS_PORT values with your own." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-24T16:46:45.583246Z", + "start_time": "2025-04-24T16:46:45.581177Z" }, - { - "cell_type": "markdown", - "metadata": { - "id": "zMKHJ7oWJkD8" - }, - "source": [ - "#### For Colab\n", - "Use the shell script below to download, extract, and install [Redis Stack](https://redis.io/docs/getting-started/install-stack/) directly from the Redis package archive." - ] + "id": "ggh5TzhkJkD9" + }, + "outputs": [], + "source": [ + "import os\n", + "\n", + "# Replace values below with your own if using Redis Cloud instance\n", + "REDIS_HOST = os.getenv(\"REDIS_HOST\", \"localhost\") # ex: \"redis-18374.c253.us-central1-1.gce.cloud.redislabs.com\"\n", + "REDIS_PORT = os.getenv(\"REDIS_PORT\", \"6379\") # ex: 18374\n", + "REDIS_PASSWORD = os.getenv(\"REDIS_PASSWORD\", \"\") # ex: \"1TNxTEdYRDgIDKM2gDfasupCADXXXX\"\n", + "\n", + "# If SSL is enabled on the endpoint, use rediss:// as the URL prefix\n", + "REDIS_URL = f\"redis://:{REDIS_PASSWORD}@{REDIS_HOST}:{REDIS_PORT}\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "b3ErDmsIJkD9" + }, + "source": [ + "## Simplified Vector Search with RedisVL" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KrtWWU4I1ui3" + }, + "source": [ + "### Dataset Preparation (PDF Documents)\n", + "\n", + "To best demonstrate Redis as a vector database layer, we will load a single\n", + "financial (10k filings) doc and preprocess it using some helpers from LangChain:\n", + "\n", + "- `PyPDFLoader` is not the only document loader type that LangChain provides. Docs: https://python.langchain.com/docs/integrations/document_loaders/pypdfloader/\n", + "- `RecursiveCharacterTextSplitter` is what we use to create smaller chunks of text from the doc. Docs: https://python.langchain.com/docs/how_to/recursive_text_splitter/" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-24T16:46:46.043726Z", + "start_time": "2025-04-24T16:46:45.600472Z" }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "c0d5lfNxJkD8", - "outputId": "f96e72fa-b9f3-476f-bc9e-328bd30d1344" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb jammy main\n", - "Starting redis-stack-server, database path /var/lib/redis-stack\n" - ] - } - ], - "source": [ - "# NBVAL_SKIP\n", - "%%sh\n", - "curl -fsSL https://packages.redis.io/gpg | sudo gpg --dearmor -o /usr/share/keyrings/redis-archive-keyring.gpg\n", - "echo \"deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb $(lsb_release -cs) main\" | sudo tee /etc/apt/sources.list.d/redis.list\n", - "sudo apt-get update > /dev/null 2>&1\n", - "sudo apt-get install redis-stack-server > /dev/null 2>&1\n", - "redis-stack-server --daemonize yes" - ] + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "uijl2qFH1ui3", + "outputId": "a99b3fcb-7cfd-4dbd-f258-57779cfcae3c" + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "2arb8Ic0JkD8" - }, - "source": [ - "#### For Alternative Environments\n", - "There are many ways to get the necessary redis-stack instance running\n", - "1. On cloud, deploy a [FREE instance of Redis in the cloud](https://redis.com/try-free/). Or, if you have your\n", - "own version of Redis Enterprise running, that works too!\n", - "2. Per OS, [see the docs](https://redis.io/docs/latest/operate/oss_and_stack/install/install-stack/)\n", - "3. With docker: `docker run -d --name redis-stack-server -p 6379:6379 redis/redis-stack-server:latest`" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "Listing available documents ... ['resources/nke-10k-2023.pdf', 'resources/amzn-10k-2023.pdf', 'resources/jnj-10k-2023.pdf', 'resources/aapl-10k-2023.pdf', 'resources/testset_15.csv', 'resources/retrieval_basic_rag_test.csv', 'resources/2022-chevy-colorado-ebrochure.pdf', 'resources/nvd-10k-2023.pdf', 'resources/testset.csv', 'resources/msft-10k-2023.pdf', 'resources/propositions.json', 'resources/generation_basic_rag_test.csv']\n" + ] + } + ], + "source": [ + "from langchain.text_splitter import RecursiveCharacterTextSplitter\n", + "from langchain_community.document_loaders import PyPDFLoader\n", + "\n", + "# Load list of pdfs from a folder\n", + "data_path = \"resources/\"\n", + "docs = [os.path.join(data_path, file) for file in os.listdir(data_path)]\n", + "\n", + "print(\"Listing available documents ...\", docs)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-24T16:46:50.509810Z", + "start_time": "2025-04-24T16:46:46.104219Z" }, - { - "cell_type": "markdown", - "metadata": { - "id": "DhP1w0R9JkD8" - }, - "source": [ - "### Define the Redis Connection URL\n", - "\n", - "By default this notebook connects to the local instance of Redis Stack. **If you have your own Redis Enterprise instance** - replace REDIS_PASSWORD, REDIS_HOST and REDIS_PORT values with your own." - ] + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "anya8hVnT6K_", + "outputId": "a8430acc-2e6d-45fd-fc8b-601fbbd8289b" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "id": "ggh5TzhkJkD9" - }, - "outputs": [], - "source": [ - "import os\n", - "import warnings\n", - "#warnings.filterwarnings('ignore')\n", - "\n", - "# Replace values below with your own if using Redis Cloud instance\n", - "REDIS_HOST = os.getenv(\"REDIS_HOST\", \"localhost\") # ex: \"redis-18374.c253.us-central1-1.gce.cloud.redislabs.com\"\n", - "REDIS_PORT = os.getenv(\"REDIS_PORT\", \"6379\") # ex: 18374\n", - "REDIS_PASSWORD = os.getenv(\"REDIS_PASSWORD\", \"\") # ex: \"1TNxTEdYRDgIDKM2gDfasupCADXXXX\"\n", - "\n", - "# If SSL is enabled on the endpoint, use rediss:// as the URL prefix\n", - "REDIS_URL = f\"redis://:{REDIS_PASSWORD}@{REDIS_HOST}:{REDIS_PORT}\"" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "Done preprocessing. Created 211 chunks of the original pdf resources/nke-10k-2023.pdf\n" + ] + } + ], + "source": [ + "# pick out the Nike doc for this exercise\n", + "doc = [doc for doc in docs if \"nke\" in doc][0]\n", + "\n", + "# set up the file loader/extractor and text splitter to create chunks\n", + "text_splitter = RecursiveCharacterTextSplitter(\n", + " chunk_size=2500, chunk_overlap=0\n", + ")\n", + "loader = PyPDFLoader(doc, headers = None)\n", + "\n", + "# extract, load, and make chunks\n", + "chunks = loader.load_and_split(text_splitter)\n", + "\n", + "print(\"Done preprocessing. Created\", len(chunks), \"chunks of the original pdf\", doc)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fDN4XopTJkD9" + }, + "source": [ + "### Text embedding generation with RedisVL\n", + "RedisVL has built-in extensions and utilities to aid the GenAI development process. In the following snipit we utilize the HFTextVectorizer redisvl in tandem with the **all-MiniLM-L6-v2** class to generate vector embeddings for the chunks created above. These embeddings capture the \"meaning\" of the text so that we can retrieve the relevant chunks later when a user's query is semantically related." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-24T16:46:55.588165Z", + "start_time": "2025-04-24T16:46:50.528240Z" }, - { - "cell_type": "markdown", - "metadata": { - "id": "b3ErDmsIJkD9" - }, - "source": [ - "## Simplified Vector Search with RedisVL" - ] + "colab": { + "base_uri": "https://localhost:8080/", + "height": 661, + "referenced_widgets": [ + "cbd44245af844dca8e568691cc1c15c5", + "3109d0d320274ad0bb941608ee3df5e3", + "6c902ce903bb4e25a127ec277e2b2c45", + "954b76e059024b15be48fb5064ab2fb7", + "160c4567015f4b1bba43dc7e1e4712fb", + "712fcb54fabc430c9567240a2ddd4a76", + "f96ce89375924097ab9f4cd130fd7b41", + "58c687581a8d4d3a828686cd066a32b3", + "df2305a9a6634dffbc08567f62047b27", + "218e8977786b42e1b825a14d44164d82", + "8bc8cb91c6274c08a72c91c91dddf4ef", + "abee8aeb772f48dab4661dca40277788", + "300b9716084a4a24bf479ae7200b87d1", + "ff76433f165146f0b39d2488a33b318e", + "98fe1e1e066541ec942a05ec416fa53f", + "be9c6f9905fd440884261e09367fe659", + "9d7bd9a50eea407eb60c41c1534f295d", + "968f389c21cf469daee8284a7b14c251", + "39f7677d9d8a4bdf8f4eb4756fae3ed2", + "959248b437054a43a0393c71a603b35f", + "6b3711002db148f790eab617f7f40eb4", + "5a3363012166483d90abb10b476772bf", + "92e02308d4d94725b73cc324d8cd9906", + "6fe679c08e2b46dd8657160d974912e0", + "61fc922ce98c4fefbebe7bb6a8ee9317", + "2cc139350de742989b6e24d70e490a54", + "995465a251f64f7a9c1e5541a7f28d4d", + "56b8c445444b4d39b2c9fb199586ff93", + "5f2ad751dab24f6aaae736c01e582c14", + "54331fe70c934a7894903d5ca7a960ce", + "6270fcf4772f40d59a6f6842060f36a4", + "14e24b722ecf47a49ebe42e8c3492c1e", + "b5e36e428e3541fd8a237d0f28a023e1", + "6aa3f285fd8a4a84882b7bece1b639ac", + "d20425f4a0594c319bc51ee60d773f79", + "a046d9ff7e1d4577ab28315d681ac36b", + "c9468d94408a4d36a20eae07624a6a09", + "902551f09b44499b8c8dd88bbdf50a4a", + "5477b553050e42c0b8ed7c2c8c17c025", + "fcbac845d7c24db6a85e82f190e69a75", + "82f4af2b827c4d98a762c2e7ebd03d6e", + "146de95acc214f60b854553ab983b7ae", + "a356517795234ab6abb3ffd71b05f296", + "1757bba5dca64bf3b7d359cd2537e9c5", + "59d890877f8b4f7aa436fa4b82e4cf8d", + "9a0acbad43204038b8ca4edeeb0e0d61", + "38518362236e470898cdbfb48ee0d381", + "9aac56d1808d490797bbb175c5afb226", + "2f848e63b87847d1a299c04052d567d6", + "52395bed9f6d455897d8d489e7dcb0d3", + "4e2332a6f482448597a9d4988fec7cf6", + "ac55276fbd5a4404ba065a19849119c5", + "fae66f22c38247ad85078f6ad2530ced", + "a3fcad6db08c4f07adf4ee817afce77a", + "557fb6c9f787412a8bff6f4798087bb7", + "a4c7c73d90cf44acb43740b223be8101", + "010e7ce97cfb43f195d1dd1811584ea2", + "484f1fc0b5844726b3ac203440ddbdc8", + "9368d437c3534a33b0010ea77be8a5e2", + "50c576ca5f914c65aeb5b7c03f4b0fa2", + "80bcb933a16c40788a3ad354e545acfe", + "2bfc17a97664452787740dc202eae370", + "600f4d36b66d40ecb8353db981d0f1f4", + "1cb7ce33be9345e992769fb7cdeb0e75", + "f1204ffea0da4058a3973e6d79a8d36c", + "b91aa35f8bfb4cb29724a0cf864a3158", + "b225fd0da4c24d97a502a2df731d1037", + "9ed0c298163645a8a10f7704354b3d2c", + "3a2d93764f7645258777f75d2a33b214", + "4d21de5d79b74e7d9dc5ccfb36827358", + "927cb59be15747418fba1a56d7e22e21", + "4a5e1f7a57d446e980090aae0325b990", + "33175a3341134f7ebba6232440e9a770", + "d503a8e5ea4f4bc089c4ae3e95ce1af4", + "73ffa18b349849fdb7264b748b4189e9", + "316f2f8a79ad4b0aa140f149383b2eff", + "1c9b5e2acf0141898ab2a0639a79d209", + "dd6707fe0bae4aab842dac25bf31880d", + "4682a7ebe86a4a60ab6b793718435302", + "1617b257e66c409db6c4ca0d0944a933", + "63825f6200a944bd8c66602a64eee67c", + "6cad7dfb6dd4441fb569c5533ef044e8", + "1a76918edd75460e8d572e59d3aa5413", + "1b3112662eb2481087fb3af6e79a4480", + "23127b47d99d406c9a53520a3697972b", + "1cb27bb3b5354879b7f1a73a24df923d", + "77f646bb598d471cacdf772d9799a8df", + "66782c677c2040d0ae19e7c6da6186ce", + "c24f6df83a0b46ecbad2be4583d3bb1b", + "9101630e52a04193804e02341e38830a", + "9c9441eac4fe46078709fbf9c84c4a4e", + "e9ecac569557483d89b848e31b1a4f85", + "a641f0330b134a48844212dd72dafa57", + "9e2c06d967be46ecbb56e0e0268c9a65", + "da39e3fbf61941dc9fc05d00fb44a468", + "a516325f85594525aac760a5c0d1a0d2", + "55529d65863a4a5fb25dca02f0e885e2", + "532e6cc744b54e12a677f33af75318f0", + "c9c3f643f9b0472ab9dce2649139bb6a", + "26d0829f64b248ada2b0f46b746cd8b1", + "448556b65d2f419ca6cd395ce6d11f3f", + "c0cf7a81656c4fd98d2418fd6336c6ae", + "5c88eed231d14f2da8961a4ac7837417", + "b4ca94c7f8534b4e857c57a619a7f116", + "c18a7f2b29e54916ba81510b2bb21902", + "067c697db37d43d8b6fa3b155a794f00", + "006473c1d4a247208c17d3258909adb0", + "8375e9fcaa4a46d895dc074cfed92149", + "56cb8feab6c047ca8afb2acfda4d35d1", + "29ce854a35e94a47af82522cc9f8a92b", + "8e394c924a00479ba046afb5eeacc5f3", + "86148800470449979a8baeb58b5f5c88", + "386648192f9e403680aa57d1444e4465", + "c12d9b3dfbe045a3bfba0ecd790af191", + "0dbce80382dc41429050a896f3203c4e", + "90e4273246e44f7c95db4456a00755a3", + "d57525fd237d4c519e52c76ee7208a30", + "6db6a832f6b44c3eb82f93fd60fda7fb", + "dfcbee09be344b2f8b55ef1c9ddfbd76", + "0428e3d1575c4ac6b6dfca617d144b7d", + "dc42c19d950943a88630242dd188c1a7", + "3fb33de4563749d7827c735380453b58", + "3d8d6ea4a4ef4493b8033bcc62476375", + "e7693807a9154e7482b4611be6421a0d", + "150b6eaa9bd64dce908775d230740038", + "4b59623304314a35b030ff805e5bf699", + "1bf348fa5757429790b9272f037fc93a", + "470138741a50479bb930f00a060cc61e", + "589f8fbac4e0492e81e35cc6424a75bc", + "2d92057e09554dcdbe405aafc0f602db", + "6eb2d7bb05f442519211928645384c3a", + "d2206237f06a4419a7304a199dff2e8a", + "40f12f8bb6a04034b8c7a95d984469f2", + "98e4143c2bbb42cea2566686eff2fa6a", + "981b3a05c8ae42d29ffb81156ebc1a7d", + "b8513aac81224b139347dfe5011f1563", + "09c487bb35b6439aaa298665873ee84b", + "da636d6c421f49f48ef43db194faae5e", + "958bab205e204f87bce793f79869a28b", + "8e93910fca484d93ab2eddea9540d307", + "0a6226f65d354c55b3370c6e87dcc246", + "685026baa834438aa8060a9e681c3263", + "fe189eed0a834221bd8adb0bdc44b4c8" + ] }, + "id": "N3iQ2aLEJkD9", + "outputId": "b0f0d2c1-41dc-4932-990b-53d2912af19e" + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "KrtWWU4I1ui3" - }, - "source": [ - "### Dataset Preparation (PDF Documents)\n", - "\n", - "To best demonstrate Redis as a vector database layer, we will load a single\n", - "financial (10k filings) doc and preprocess it using some helpers from LangChain:\n", - "\n", - "- `PyPDFLoader` is not the only document loader type that LangChain provides. Docs: https://python.langchain.com/docs/integrations/document_loaders/pypdfloader/\n", - "- `RecursiveCharacterTextSplitter` is what we use to create smaller chunks of text from the doc. Docs: https://python.langchain.com/docs/modules/data_connection/document_transformers/text_splitters/recursive_text_splitter" + "data": { + "text/plain": [ + "True" ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import warnings\n", + "import pandas as pd\n", + "from redisvl.utils.vectorize import HFTextVectorizer, BaseVectorizer\n", + "from redisvl.extensions.cache.embeddings import EmbeddingsCache\n", + "\n", + "warnings.filterwarnings(\"ignore\")\n", + "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\"\n", + "\n", + "hf = HFTextVectorizer(\n", + " model=\"sentence-transformers/all-MiniLM-L6-v2\",\n", + " cache=EmbeddingsCache(\n", + " name=\"embedcache\",\n", + " ttl=600,\n", + " redis_url=REDIS_URL,\n", + " )\n", + ")\n", + "\n", + "# Embed each chunk content\n", + "embeddings = hf.embed_many([chunk.page_content for chunk in chunks])\n", + "\n", + "# Check to make sure we've created enough embeddings, 1 per document chunk\n", + "len(embeddings) == len(chunks)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5baI0xDQ1ui-" + }, + "source": [ + "### Define a schema and create an index\n", + "\n", + "Below we connect to Redis and create an index that contains a text field, tag field, and vector field." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-24T16:46:55.611260Z", + "start_time": "2025-04-24T16:46:55.598846Z" }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "id": "uijl2qFH1ui3", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "a99b3fcb-7cfd-4dbd-f258-57779cfcae3c" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Listing available documents ... ['resources/jnj-10k-2023.pdf', 'resources/retrieval_basic_rag_test.csv', 'resources/aapl-10k-2023.pdf', 'resources/nke-10k-2023.pdf', 'resources/amzn-10k-2023.pdf', 'resources/testset_15.csv', 'resources/generation_basic_rag_test.csv', 'resources/testset.csv', 'resources/msft-10k-2023.pdf', 'resources/propositions.json', 'resources/nvd-10k-2023.pdf']\n" - ] - } - ], - "source": [ - "from langchain.text_splitter import RecursiveCharacterTextSplitter\n", - "from langchain_community.document_loaders import PyPDFLoader\n", - "\n", - "# Load list of pdfs from a folder\n", - "data_path = \"resources/\"\n", - "docs = [os.path.join(data_path, file) for file in os.listdir(data_path)]\n", - "\n", - "print(\"Listing available documents ...\", docs)" - ] + "id": "zB1EW_9n1ui-" + }, + "outputs": [], + "source": [ + "from redisvl.index import SearchIndex\n", + "\n", + "\n", + "index_name = \"redisvl\"\n", + "\n", + "schema = {\n", + " \"index\": {\n", + " \"name\": index_name,\n", + " \"prefix\": \"chunk\"\n", + " },\n", + " \"fields\": [\n", + " {\n", + " \"name\": \"chunk_id\",\n", + " \"type\": \"tag\",\n", + " \"attrs\": {\n", + " \"sortable\": True\n", + " }\n", + " },\n", + " {\n", + " \"name\": \"content\",\n", + " \"type\": \"text\"\n", + " },\n", + " {\n", + " \"name\": \"text_embedding\",\n", + " \"type\": \"vector\",\n", + " \"attrs\": {\n", + " \"dims\": 384,\n", + " \"distance_metric\": \"cosine\",\n", + " \"algorithm\": \"hnsw\",\n", + " \"datatype\": \"float32\"\n", + " }\n", + " }\n", + " ]\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-24T16:46:55.630056Z", + "start_time": "2025-04-24T16:46:55.620207Z" }, + "id": "LKuQku2CJkD9" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "id": "anya8hVnT6K_", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "a8430acc-2e6d-45fd-fc8b-601fbbd8289b" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Done preprocessing. Created 211 chunks of the original pdf resources/nke-10k-2023.pdf\n" - ] - } - ], - "source": [ - "# pick out the Nike doc for this exercise\n", - "doc = [doc for doc in docs if \"nke\" in doc][0]\n", - "\n", - "# set up the file loader/extractor and text splitter to create chunks\n", - "text_splitter = RecursiveCharacterTextSplitter(\n", - " chunk_size=2500, chunk_overlap=0\n", - ")\n", - "loader = PyPDFLoader(doc, headers = None)\n", - "\n", - "# extract, load, and make chunks\n", - "chunks = loader.load_and_split(text_splitter)\n", - "\n", - "print(\"Done preprocessing. Created\", len(chunks), \"chunks of the original pdf\", doc)" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "09:46:55 redisvl.index.index INFO Index already exists, overwriting.\n" + ] + } + ], + "source": [ + "# create an index from schema and the client\n", + "index = SearchIndex.from_dict(schema, redis_url=REDIS_URL)\n", + "index.create(overwrite=True, drop=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, - { - "cell_type": "markdown", - "metadata": { - "id": "fDN4XopTJkD9" - }, - "source": [ - "### Text embedding generation with RedisVL\n", - "RedisVL has built-in extensions and utilities to aid the GenAI development process. In the following snipit we utilize the HFTextVectorizer redisvl in tandem with the **all-MiniLM-L6-v2** class to generate vector embeddings for the chunks created above. These embeddings capture the \"meaning\" of the text so that we can retrieve the relevant chunks later when a user's query is semantically related." - ] + "id": "L6GOqmeN1ui_", + "outputId": "91a199e3-d087-4b15-9544-d59efa6033c5" + }, + "outputs": [], + "source": [ + "# use the RedisVL CLI tool to list all indices\n", + "!rvl index listall" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-24T16:46:56.828176Z", + "start_time": "2025-04-24T16:46:56.283831Z" }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 661, - "referenced_widgets": [ - "cbd44245af844dca8e568691cc1c15c5", - "3109d0d320274ad0bb941608ee3df5e3", - "6c902ce903bb4e25a127ec277e2b2c45", - "954b76e059024b15be48fb5064ab2fb7", - "160c4567015f4b1bba43dc7e1e4712fb", - "712fcb54fabc430c9567240a2ddd4a76", - "f96ce89375924097ab9f4cd130fd7b41", - "58c687581a8d4d3a828686cd066a32b3", - "df2305a9a6634dffbc08567f62047b27", - "218e8977786b42e1b825a14d44164d82", - "8bc8cb91c6274c08a72c91c91dddf4ef", - "abee8aeb772f48dab4661dca40277788", - "300b9716084a4a24bf479ae7200b87d1", - "ff76433f165146f0b39d2488a33b318e", - "98fe1e1e066541ec942a05ec416fa53f", - "be9c6f9905fd440884261e09367fe659", - "9d7bd9a50eea407eb60c41c1534f295d", - "968f389c21cf469daee8284a7b14c251", - "39f7677d9d8a4bdf8f4eb4756fae3ed2", - "959248b437054a43a0393c71a603b35f", - "6b3711002db148f790eab617f7f40eb4", - "5a3363012166483d90abb10b476772bf", - "92e02308d4d94725b73cc324d8cd9906", - "6fe679c08e2b46dd8657160d974912e0", - "61fc922ce98c4fefbebe7bb6a8ee9317", - "2cc139350de742989b6e24d70e490a54", - "995465a251f64f7a9c1e5541a7f28d4d", - "56b8c445444b4d39b2c9fb199586ff93", - "5f2ad751dab24f6aaae736c01e582c14", - "54331fe70c934a7894903d5ca7a960ce", - "6270fcf4772f40d59a6f6842060f36a4", - "14e24b722ecf47a49ebe42e8c3492c1e", - "b5e36e428e3541fd8a237d0f28a023e1", - "6aa3f285fd8a4a84882b7bece1b639ac", - "d20425f4a0594c319bc51ee60d773f79", - "a046d9ff7e1d4577ab28315d681ac36b", - "c9468d94408a4d36a20eae07624a6a09", - "902551f09b44499b8c8dd88bbdf50a4a", - "5477b553050e42c0b8ed7c2c8c17c025", - "fcbac845d7c24db6a85e82f190e69a75", - "82f4af2b827c4d98a762c2e7ebd03d6e", - "146de95acc214f60b854553ab983b7ae", - "a356517795234ab6abb3ffd71b05f296", - "1757bba5dca64bf3b7d359cd2537e9c5", - "59d890877f8b4f7aa436fa4b82e4cf8d", - "9a0acbad43204038b8ca4edeeb0e0d61", - "38518362236e470898cdbfb48ee0d381", - "9aac56d1808d490797bbb175c5afb226", - "2f848e63b87847d1a299c04052d567d6", - "52395bed9f6d455897d8d489e7dcb0d3", - "4e2332a6f482448597a9d4988fec7cf6", - "ac55276fbd5a4404ba065a19849119c5", - "fae66f22c38247ad85078f6ad2530ced", - "a3fcad6db08c4f07adf4ee817afce77a", - "557fb6c9f787412a8bff6f4798087bb7", - "a4c7c73d90cf44acb43740b223be8101", - "010e7ce97cfb43f195d1dd1811584ea2", - "484f1fc0b5844726b3ac203440ddbdc8", - "9368d437c3534a33b0010ea77be8a5e2", - "50c576ca5f914c65aeb5b7c03f4b0fa2", - "80bcb933a16c40788a3ad354e545acfe", - "2bfc17a97664452787740dc202eae370", - "600f4d36b66d40ecb8353db981d0f1f4", - "1cb7ce33be9345e992769fb7cdeb0e75", - "f1204ffea0da4058a3973e6d79a8d36c", - "b91aa35f8bfb4cb29724a0cf864a3158", - "b225fd0da4c24d97a502a2df731d1037", - "9ed0c298163645a8a10f7704354b3d2c", - "3a2d93764f7645258777f75d2a33b214", - "4d21de5d79b74e7d9dc5ccfb36827358", - "927cb59be15747418fba1a56d7e22e21", - "4a5e1f7a57d446e980090aae0325b990", - "33175a3341134f7ebba6232440e9a770", - "d503a8e5ea4f4bc089c4ae3e95ce1af4", - "73ffa18b349849fdb7264b748b4189e9", - "316f2f8a79ad4b0aa140f149383b2eff", - "1c9b5e2acf0141898ab2a0639a79d209", - "dd6707fe0bae4aab842dac25bf31880d", - "4682a7ebe86a4a60ab6b793718435302", - "1617b257e66c409db6c4ca0d0944a933", - "63825f6200a944bd8c66602a64eee67c", - "6cad7dfb6dd4441fb569c5533ef044e8", - "1a76918edd75460e8d572e59d3aa5413", - "1b3112662eb2481087fb3af6e79a4480", - "23127b47d99d406c9a53520a3697972b", - "1cb27bb3b5354879b7f1a73a24df923d", - "77f646bb598d471cacdf772d9799a8df", - "66782c677c2040d0ae19e7c6da6186ce", - "c24f6df83a0b46ecbad2be4583d3bb1b", - "9101630e52a04193804e02341e38830a", - "9c9441eac4fe46078709fbf9c84c4a4e", - "e9ecac569557483d89b848e31b1a4f85", - "a641f0330b134a48844212dd72dafa57", - "9e2c06d967be46ecbb56e0e0268c9a65", - "da39e3fbf61941dc9fc05d00fb44a468", - "a516325f85594525aac760a5c0d1a0d2", - "55529d65863a4a5fb25dca02f0e885e2", - "532e6cc744b54e12a677f33af75318f0", - "c9c3f643f9b0472ab9dce2649139bb6a", - "26d0829f64b248ada2b0f46b746cd8b1", - "448556b65d2f419ca6cd395ce6d11f3f", - "c0cf7a81656c4fd98d2418fd6336c6ae", - "5c88eed231d14f2da8961a4ac7837417", - "b4ca94c7f8534b4e857c57a619a7f116", - "c18a7f2b29e54916ba81510b2bb21902", - "067c697db37d43d8b6fa3b155a794f00", - "006473c1d4a247208c17d3258909adb0", - "8375e9fcaa4a46d895dc074cfed92149", - "56cb8feab6c047ca8afb2acfda4d35d1", - "29ce854a35e94a47af82522cc9f8a92b", - "8e394c924a00479ba046afb5eeacc5f3", - "86148800470449979a8baeb58b5f5c88", - "386648192f9e403680aa57d1444e4465", - "c12d9b3dfbe045a3bfba0ecd790af191", - "0dbce80382dc41429050a896f3203c4e", - "90e4273246e44f7c95db4456a00755a3", - "d57525fd237d4c519e52c76ee7208a30", - "6db6a832f6b44c3eb82f93fd60fda7fb", - "dfcbee09be344b2f8b55ef1c9ddfbd76", - "0428e3d1575c4ac6b6dfca617d144b7d", - "dc42c19d950943a88630242dd188c1a7", - "3fb33de4563749d7827c735380453b58", - "3d8d6ea4a4ef4493b8033bcc62476375", - "e7693807a9154e7482b4611be6421a0d", - "150b6eaa9bd64dce908775d230740038", - "4b59623304314a35b030ff805e5bf699", - "1bf348fa5757429790b9272f037fc93a", - "470138741a50479bb930f00a060cc61e", - "589f8fbac4e0492e81e35cc6424a75bc", - "2d92057e09554dcdbe405aafc0f602db", - "6eb2d7bb05f442519211928645384c3a", - "d2206237f06a4419a7304a199dff2e8a", - "40f12f8bb6a04034b8c7a95d984469f2", - "98e4143c2bbb42cea2566686eff2fa6a", - "981b3a05c8ae42d29ffb81156ebc1a7d", - "b8513aac81224b139347dfe5011f1563", - "09c487bb35b6439aaa298665873ee84b", - "da636d6c421f49f48ef43db194faae5e", - "958bab205e204f87bce793f79869a28b", - "8e93910fca484d93ab2eddea9540d307", - "0a6226f65d354c55b3370c6e87dcc246", - "685026baa834438aa8060a9e681c3263", - "fe189eed0a834221bd8adb0bdc44b4c8" - ] - }, - "id": "N3iQ2aLEJkD9", - "outputId": "b0f0d2c1-41dc-4932-990b-53d2912af19e" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "20:48:16 numexpr.utils INFO NumExpr defaulting to 2 threads.\n", - "20:48:30 sentence_transformers.SentenceTransformer INFO Use pytorch device_name: cuda\n", - "20:48:30 sentence_transformers.SentenceTransformer INFO Load pretrained SentenceTransformer: sentence-transformers/all-MiniLM-L6-v2\n" - ] - }, - { - "output_type": "stream", - "name": "stderr", - "text": [ - "/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_token.py:89: UserWarning: \n", - "The secret `HF_TOKEN` does not exist in your Colab secrets.\n", - "To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n", - "You will be able to reuse this secret in all of your notebooks.\n", - "Please note that authentication is recommended but still optional to access public models or datasets.\n", - " warnings.warn(\n" - ] - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "modules.json: 0%| | 0.00/349 [00:00[KNN 3 @text_embedding $vector AS vector_distance] RETURN 3 chunk_id content vector_distance SORTBY vector_distance ASC DIALECT 2 LIMIT 0 3'" ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from redisvl.query import VectorQuery\n", + "\n", + "query = \"Nike profit margins and company performance\"\n", + "\n", + "query_embedding = hf.embed(query)\n", + "\n", + "vector_query = VectorQuery(\n", + " vector=query_embedding,\n", + " vector_field_name=\"text_embedding\",\n", + " num_results=3,\n", + " return_fields=[\"chunk_id\", \"content\"],\n", + " return_score=True\n", + ")\n", + "\n", + "# show the raw redis query\n", + "str(vector_query)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-24T16:46:57.008139Z", + "start_time": "2025-04-24T16:46:56.999381Z" }, + "colab": { + "base_uri": "https://localhost:8080/", + "height": 143 + }, + "id": "5reL5qTW1ujC", + "outputId": "dd58f191-54f5-4226-c4e1-70207d58f2dc" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "id": "C70C-UWj1ujA", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "1fb7a2d6-ae6d-4536-b4b7-702620efd128" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "\n", - "\n", - "Index Information:\n", - "╭──────────────┬────────────────┬────────────┬─────────────────┬────────────╮\n", - "│ Index Name │ Storage Type │ Prefixes │ Index Options │ Indexing │\n", - "├──────────────┼────────────────┼────────────┼─────────────────┼────────────┤\n", - "│ redisvl │ HASH │ ['chunk'] │ [] │ 0 │\n", - "╰──────────────┴────────────────┴────────────┴─────────────────┴────────────╯\n", - "Index Fields:\n", - "╭────────────────┬────────────────┬────────┬────────────────┬────────────────┬────────────────┬────────────────┬────────────────┬────────────────┬─────────────────┬────────────────┬────────────────┬────────────────┬─────────────────┬────────────────╮\n", - "│ Name │ Attribute │ Type │ Field Option │ Option Value │ Field Option │ Option Value │ Field Option │ Option Value │ Field Option │ Option Value │ Field Option │ Option Value │ Field Option │ Option Value │\n", - "├────────────────┼────────────────┼────────┼────────────────┼────────────────┼────────────────┼────────────────┼────────────────┼────────────────┼─────────────────┼────────────────┼────────────────┼────────────────┼─────────────────┼────────────────┤\n", - "│ chunk_id │ chunk_id │ TAG │ SEPARATOR │ , │ │ │ │ │ │ │ │ │ │ │\n", - "│ content │ content │ TEXT │ WEIGHT │ 1 │ │ │ │ │ │ │ │ │ │ │\n", - "│ text_embedding │ text_embedding │ VECTOR │ algorithm │ HNSW │ data_type │ FLOAT32 │ dim │ 384 │ distance_metric │ COSINE │ M │ 16 │ ef_construction │ 200 │\n", - "╰────────────────┴────────────────┴────────┴────────────────┴────────────────┴────────────────┴────────────────┴────────────────┴────────────────┴─────────────────┴────────────────┴────────────────┴────────────────┴─────────────────┴────────────────╯\n" - ] - } + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idvector_distancechunk_idcontent
0chunk:880.33769452571988Asia Pacific & Latin America 1,932 1,896 2 % 1...
1chunk:800.3420527577480Table of Contents\\nCONSOLIDATED OPERATING RESU...
2chunk:870.35776102542987Table of Contents\\nOPERATING SEGMENTS\\nAs disc...
\n", + "
" ], - "source": [ - "# get info about the index\n", - "!rvl index info -i redisvl" + "text/plain": [ + " id vector_distance chunk_id \\\n", + "0 chunk:88 0.337694525719 88 \n", + "1 chunk:80 0.34205275774 80 \n", + "2 chunk:87 0.357761025429 87 \n", + "\n", + " content \n", + "0 Asia Pacific & Latin America 1,932 1,896 2 % 1... \n", + "1 Table of Contents\\nCONSOLIDATED OPERATING RESU... \n", + "2 Table of Contents\\nOPERATING SEGMENTS\\nAs disc... " ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# execute the query with RedisVL\n", + "result=index.query(vector_query)\n", + "\n", + "# view the results\n", + "pd.DataFrame(result)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-24T16:46:57.075644Z", + "start_time": "2025-04-24T16:46:57.067304Z" }, - { - "cell_type": "markdown", - "metadata": { - "id": "Qrj-jeGmBRTL" - }, - "source": [ - "### Process and load dataset\n", - "Below we use the RedisVL index to simply load the list of document chunks to Redis db." - ] + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "rZrcd6n7T6LE", + "outputId": "fad67a63-76bd-43b9-f62b-b1842ba47605" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "id": "Zsg09Keg1ujA" - }, - "outputs": [], - "source": [ - "# load expects an iterable of dictionaries\n", - "from redisvl.redis.utils import array_to_buffer\n", - "\n", - "data = [\n", - " {\n", - " 'chunk_id': i,\n", - " 'content': chunk.page_content,\n", - " # For HASH -- must convert embeddings to bytes\n", - " 'text_embedding': array_to_buffer(embeddings[i], dtype='float32')\n", - " } for i, chunk in enumerate(chunks)\n", - "]\n", - "\n", - "# RedisVL handles batching automatically\n", - "keys = index.load(data, id_field=\"chunk_id\")" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "88 0.337694525719\n", + "80 0.34205275774\n", + "87 0.357761025429\n" + ] + } + ], + "source": [ + "# paginate through results\n", + "for result in index.paginate(vector_query, page_size=1):\n", + " print(result[0][\"chunk_id\"], result[0][\"vector_distance\"], flush=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0Ap6WqPLT6LE" + }, + "source": [ + "### Sort by alternative fields" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-24T16:46:57.172397Z", + "start_time": "2025-04-24T16:46:57.167834Z" }, - { - "cell_type": "markdown", - "metadata": { - "id": "-ZsFB-6Z1ujB" - }, - "source": [ - "### Query the database\n", - "Now we can use the RedisVL index to perform similarity search operations with Redis" - ] + "colab": { + "base_uri": "https://localhost:8080/", + "height": 175 }, + "id": "daLVm6OkLn9T", + "outputId": "d77dfc4c-d451-4bf5-91c3-2155232570b9" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "id": "BkFv-_iC1ujB", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 85, - "referenced_widgets": [ - "c75d5ab2049146e580efab9da9bbcdb0", - "9ce1fb951e79468baa9d1aebfa4c4fae", - "e96d1546380146078c18ec78363f7dac", - "a3c36bb0d3b74c8ea56bf03521465b81", - "9f306cfd66dc441aba923d4e051911fc", - "9e3289444cb142c29ad7d569be2e25b8", - "c20443e17308425596679c0544dab528", - "f0bdd8f4d7b84bd5a1c209c591ce8787", - "126743b52b254e54aa4f65bcb9e65aea", - "debae380e6d24fb8ae712a6dd2226152", - "aacb6f8ca39846d89e1e4e96656e3a36" - ] - }, - "outputId": "c398d356-6bb7-43a9-ca95-cb7f167d1f38" - }, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "Batches: 0%| | 0/1 [00:00[KNN 3 @text_embedding $vector AS vector_distance] RETURN 3 chunk_id content vector_distance SORTBY vector_distance ASC DIALECT 2 LIMIT 0 3'" - ], - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "string" - } - }, - "metadata": {}, - "execution_count": 13 - } + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idpayloadvector_distancechunk_id
0chunk:80None0.3420527577480
1chunk:83None0.37876588106283
2chunk:87None0.35776102542987
3chunk:88None0.33769452571988
\n", + "
" ], - "source": [ - "from redisvl.query import VectorQuery\n", - "\n", - "query = \"Nike profit margins and company performance\"\n", - "\n", - "query_embedding = hf.embed(query)\n", - "\n", - "vector_query = VectorQuery(\n", - " vector=query_embedding,\n", - " vector_field_name=\"text_embedding\",\n", - " num_results=3,\n", - " return_fields=[\"chunk_id\", \"content\"],\n", - " return_score=True\n", - ")\n", - "\n", - "# show the raw redis query\n", - "str(vector_query)" + "text/plain": [ + " id payload vector_distance chunk_id\n", + "0 chunk:80 None 0.34205275774 80\n", + "1 chunk:83 None 0.378765881062 83\n", + "2 chunk:87 None 0.357761025429 87\n", + "3 chunk:88 None 0.337694525719 88" ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Sort by chunk_id field after vector search limits to topK\n", + "vector_query = VectorQuery(\n", + " vector=query_embedding,\n", + " vector_field_name=\"text_embedding\",\n", + " num_results=4,\n", + " return_fields=[\"chunk_id\"],\n", + " return_score=True\n", + ")\n", + "\n", + "# Decompose vector_query into the core query and the params\n", + "query = vector_query.query\n", + "params = vector_query.params\n", + "\n", + "# Pass query and params direct to index.search()\n", + "result = index.search(\n", + " query.sort_by(\"chunk_id\", asc=True),\n", + " params\n", + ")\n", + "\n", + "pd.DataFrame([doc.__dict__ for doc in result.docs])\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "81PoXomtT6LF" + }, + "source": [ + "### Add filters to vector queries" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-24T16:46:57.279677Z", + "start_time": "2025-04-24T16:46:57.274997Z" }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "id": "5reL5qTW1ujC", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 143 - }, - "outputId": "dd58f191-54f5-4226-c4e1-70207d58f2dc" - }, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - " id vector_distance chunk_id \\\n", - "0 chunk:88 0.337694585323 88 \n", - "1 chunk:80 0.342052936554 80 \n", - "2 chunk:87 0.35776078701 87 \n", - "\n", - " content \n", - "0 Asia Pacific & Latin America 1,932 1,896 2 % 1... \n", - "1 Table of Contents\\nCONSOLIDATED OPERATING RESU... \n", - "2 Table of Contents\\nOPERATING SEGMENTS\\nAs disc... " - ], - "text/html": [ - "\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
idvector_distancechunk_idcontent
0chunk:880.33769458532388Asia Pacific & Latin America 1,932 1,896 2 % 1...
1chunk:800.34205293655480Table of Contents\\nCONSOLIDATED OPERATING RESU...
2chunk:870.3577607870187Table of Contents\\nOPERATING SEGMENTS\\nAs disc...
\n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - "\n", - " \n", - "
\n", - "\n", - "\n", - "
\n", - " \n", - "\n", - "\n", - "\n", - " \n", - "
\n", - "\n", - "
\n", - "
\n" - ], - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "dataframe", - "summary": "{\n \"name\": \"pd\",\n \"rows\": 3,\n \"fields\": [\n {\n \"column\": \"id\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"chunk:88\",\n \"chunk:80\",\n \"chunk:87\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"vector_distance\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"0.337694585323\",\n \"0.342052936554\",\n \"0.35776078701\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"chunk_id\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"88\",\n \"80\",\n \"87\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"content\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"Asia Pacific & Latin America 1,932 1,896 2 % 1,530 24 %\\nGlobal Brand Divisions (4,841) (4,262) -14 % (3,656) -17 %\\nTOTAL NIKE BRAND $ 8,359 $ 8,406 -1 % $ 8,641 -3 %\\nConverse 676 669 1 % 543 23 %\\nCorporate (2,840) (2,219) -28 % (2,261) 2 %\\nTOTAL NIKE, INC. EARNINGS BEFORE INTEREST ANDTAXES $ 6,195 $ 6,856 -10 % $ 6,923 -1 %\\nEBIT margin 12.1 % 14.7 % 15.5 %\\nInterest expense (income), net (6) 205 \\u2014 262 \\u2014 \\nTOTAL NIKE, INC. INCOME BEFORE INCOME TAXES $ 6,201 $ 6,651 -7 % $ 6,661 0 %\\n(1) Total NIKE Brand EBIT, Total NIKE, Inc. EBIT and EBIT Margin represent non-GAAP financial measures. See \\\"Use of Non-GAAP Financial Measures\\\" for further information.\\n(1) (1)\\n(2)\\n(3)\\n(4)\\n(1)\\n(1)\\n(1)\\n2023 FORM 10-K 36\",\n \"Table of Contents\\nCONSOLIDATED OPERATING RESULTS\\nREVENUES\\n(Dollars in millions) FISCAL2023 FISCAL2022 % CHANGE\\n% CHANGEEXCLUDINGCURRENCYCHANGES FISCAL2021 % CHANGE\\n% CHANGEEXCLUDINGCURRENCYCHANGES\\nNIKE, Inc. Revenues:\\nNIKE Brand Revenues by:\\nFootwear $ 33,135 $ 29,143 14 % 20 %$ 28,021 4 % 4 %\\nApparel 13,843 13,567 2 % 8 % 12,865 5 % 6 %\\nEquipment 1,727 1,624 6 % 13 % 1,382 18 % 18 %\\nGlobal Brand Divisions 58 102 -43 % -43 % 25 308 % 302 %\\nTotal NIKE Brand Revenues $ 48,763 $ 44,436 10 % 16 %$ 42,293 5 % 6 %\\nConverse 2,427 2,346 3 % 8 % 2,205 6 % 7 %\\nCorporate 27 (72) \\u2014 \\u2014 40 \\u2014 \\u2014 \\nTOTAL NIKE, INC. REVENUES $ 51,217 $ 46,710 10 % 16 %$ 44,538 5 % 6 %\\nSupplemental NIKE Brand Revenues Details:\\nNIKE Brand Revenues by:\\nSales to Wholesale Customers $ 27,397 $ 25,608 7 % 14 %$ 25,898 -1 % -1 %\\nSales through NIKE Direct 21,308 18,726 14 % 20 % 16,370 14 % 15 %\\nGlobal Brand Divisions 58 102 -43 % -43 % 25 308 % 302 %\\nTOTAL NIKE BRAND REVENUES $ 48,763 $ 44,436 10 % 16 %$ 42,293 5 % 6 %\\nNIKE Brand Revenues on a Wholesale Equivalent Basis :\\nSales to Wholesale Customers $ 27,397 $ 25,608 7 % 14 %$ 25,898 -1 % -1 %\\nSales from our Wholesale Operations to NIKE Direct Operations 12,730 10,543 21 % 27 % 9,872 7 % 7 %\\nTOTAL NIKE BRAND WHOLESALE EQUIVALENT REVENUES $ 40,127 $ 36,151 11 % 18 %$ 35,770 1 % 1 %\\nNIKE Brand Wholesale Equivalent Revenues by:\\nMen's $ 20,733 $ 18,797 10 % 17 %$ 18,391 2 % 3 %\\nWomen's 8,606 8,273 4 % 11 % 8,225 1 % 1 %\\nNIKE Kids' 5,038 4,874 3 % 10 % 4,882 0 % 0 %\\nJordan Brand 6,589 5,122 29 % 35 % 4,780 7 % 7 %\\nOthers (839) (915) 8 % -3 % (508) -80 % -79 %\\nTOTAL NIKE BRAND WHOLESALE EQUIVALENT REVENUES $ 40,127 $ 36,151 11 % 18 %$ 35,770 1 % 1 %\\n(1) The percent change excluding currency changes and the presentation of wholesale equivalent revenues represent non-GAAP financial measures. For further information, see \\\"Use of Non-GAAPFinancial Measures\\\".\\n(2) Global Brand Divisions revenues include NIKE Brand licensing and other miscellaneous revenues that are not part of a geographic operating segment.\\n(3) Corporate revenues primarily consist of foreign currency hedge gains and losses related to revenues generated by entities within the NIKE Brand geographic operating segments and Converse, but\\nmanaged through our central foreign exchange risk management program.\",\n \"Table of Contents\\nOPERATING SEGMENTS\\nAs discussed in Note 15 \\u2014 Operating Segments and Related Information in the accompanying Notes to the Consolidated Financial Statements, our operating segments\\nare evidence of the structure of the Company's internal organization. The NIKE Brand segments are defined by geographic regions for operations participating in NIKE\\nBrand sales activity.\\nThe breakdown of Revenues is as follows:\\n(Dollars in millions) FISCAL 2023 FISCAL 2022 % CHANGE\\n% CHANGEEXCLUDINGCURRENCYCHANGES FISCAL 2021 % CHANGE\\n% CHANGEEXCLUDINGCURRENCYCHANGES\\nNorth America $ 21,608 $ 18,353 18 % 18 %$ 17,179 7 % 7 %\\nEurope, Middle East & Africa 13,418 12,479 8 % 21 % 11,456 9 % 12 %\\nGreater China 7,248 7,547 -4 % 4 % 8,290 -9 % -13 %\\nAsia Pacific & Latin America 6,431 5,955 8 % 17 % 5,343 11 % 16 %\\nGlobal Brand Divisions 58 102 -43 % -43 % 25 308 % 302 %\\nTOTAL NIKE BRAND $ 48,763 $ 44,436 10 % 16 %$ 42,293 5 % 6 %\\nConverse 2,427 2,346 3 % 8 % 2,205 6 % 7 %\\nCorporate 27 (72) \\u2014 \\u2014 40 \\u2014 \\u2014 \\nTOTAL NIKE, INC. REVENUES $ 51,217 $ 46,710 10 % 16 %$ 44,538 5 % 6 %\\n(1) The percent change excluding currency changes represents a non-GAAP financial measure. For further information, see \\\"Use of Non-GAAP Financial Measures\\\".\\n(2) For additional information on the transition of our NIKE Brand businesses within our CASA territory to a third-party distributor, see Note 18 \\u2014 Acquisitions and Divestitures of the Notes to ConsolidatedFinancial Statements contained in Item 8 of this Annual Report.\\n(3) Global Brand Divisions revenues include NIKE Brand licensing and other miscellaneous revenues that are not part of a geographic operating segment.\\n(4) Corporate revenues primarily consist of foreign currency hedge gains and losses related to revenues generated by entities within the NIKE Brand geographic operating segments and Converse, butmanaged through our central foreign exchange risk management program.\\nThe primary financial measure used by the Company to evaluate performance is Earnings Before Interest and Taxes (\\\"EBIT\\\"). As discussed in Note 15 \\u2014 Operating\\nSegments and Related Information in the accompanying Notes to the Consolidated Financial Statements, certain corporate costs are not included in EBIT.\\nThe breakdown of EBIT is as follows:\\n(Dollars in millions) FISCAL 2023 FISCAL 2022 % CHANGE FISCAL 2021 % CHANGE\\nNorth America $ 5,454 $ 5,114 7 % $ 5,089 0 %\\nEurope, Middle East & Africa 3,531 3,293 7 % 2,435 35 %\\nGreater China 2,283 2,365 -3 % 3,243 -27 %\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" - } - }, - "metadata": {}, - "execution_count": 14 - } - ], - "source": [ - "# execute the query with RedisVL\n", - "result=index.query(vector_query)\n", - "\n", - "# view the results\n", - "pd.DataFrame(result)" - ] + "colab": { + "base_uri": "https://localhost:8080/", + "height": 175 }, + "id": "a11G3xXJ1ujC", + "outputId": "d968add5-704d-4e22-d3bd-97c1d1103a75" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "id": "rZrcd6n7T6LE", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "fad67a63-76bd-43b9-f62b-b1842ba47605" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "88 0.337694585323\n", - "80 0.342052936554\n", - "87 0.35776078701\n" - ] - } + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idvector_distancecontent
0chunk:830.378765881062Table of Contents\\nGROSS MARGIN\\nFISCAL 2023 C...
1chunk:1290.418757200241Table of Contents\\nNIKE, INC.\\nCONSOLIDATED ST...
2chunk:730.465415120125Table of Contents\\nITEM 7. MANAGEMENT'S DISCUS...
3chunk:630.49339401722existing businesses, such as our NIKE Direct o...
\n", + "
" ], - "source": [ - "# paginate through results\n", - "for result in index.paginate(vector_query, page_size=1):\n", - " print(result[0][\"chunk_id\"], result[0][\"vector_distance\"], flush=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "0Ap6WqPLT6LE" - }, - "source": [ - "### Sort by alternative fields" + "text/plain": [ + " id vector_distance \\\n", + "0 chunk:83 0.378765881062 \n", + "1 chunk:129 0.418757200241 \n", + "2 chunk:73 0.465415120125 \n", + "3 chunk:63 0.49339401722 \n", + "\n", + " content \n", + "0 Table of Contents\\nGROSS MARGIN\\nFISCAL 2023 C... \n", + "1 Table of Contents\\nNIKE, INC.\\nCONSOLIDATED ST... \n", + "2 Table of Contents\\nITEM 7. MANAGEMENT'S DISCUS... \n", + "3 existing businesses, such as our NIKE Direct o... " ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from redisvl.query.filter import Text\n", + "\n", + "vector_query = VectorQuery(\n", + " vector=query_embedding,\n", + " vector_field_name=\"text_embedding\",\n", + " num_results=4,\n", + " return_fields=[\"content\"],\n", + " return_score=True\n", + ")\n", + "\n", + "# Set a text filter\n", + "text_filter = Text(\"content\") % \"profit\"\n", + "\n", + "vector_query.set_filter(text_filter)\n", + "\n", + "result=index.query(vector_query)\n", + "pd.DataFrame(result)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5XvVv8zAT6LF" + }, + "source": [ + "### Range queries in RedisVL" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-24T16:46:57.391116Z", + "start_time": "2025-04-24T16:46:57.389349Z" }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "id": "daLVm6OkLn9T", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 175 - }, - "outputId": "d77dfc4c-d451-4bf5-91c3-2155232570b9" - }, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - " id payload vector_distance chunk_id\n", - "0 chunk:80 None 0.342052936554 80\n", - "1 chunk:83 None 0.37876611948 83\n", - "2 chunk:87 None 0.35776078701 87\n", - "3 chunk:88 None 0.337694585323 88" - ], - "text/html": [ - "\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
idpayloadvector_distancechunk_id
0chunk:80None0.34205293655480
1chunk:83None0.3787661194883
2chunk:87None0.3577607870187
3chunk:88None0.33769458532388
\n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - "\n", - " \n", - "
\n", - "\n", - "\n", - "
\n", - " \n", - "\n", - "\n", - "\n", - " \n", - "
\n", - "\n", - "
\n", - "
\n" - ], - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "dataframe", - "repr_error": "Out of range float values are not JSON compliant: nan" - } - }, - "metadata": {}, - "execution_count": 16 - } - ], - "source": [ - "# Sort by chunk_id field after vector search limits to topK\n", - "vector_query = VectorQuery(\n", - " vector=query_embedding,\n", - " vector_field_name=\"text_embedding\",\n", - " num_results=4,\n", - " return_fields=[\"chunk_id\"],\n", - " return_score=True\n", - ")\n", - "\n", - "# Decompose vector_query into the core query and the params\n", - "query = vector_query.query\n", - "params = vector_query.params\n", - "\n", - "# Pass query and params direct to index.search()\n", - "result = index.search(\n", - " query.sort_by(\"chunk_id\", asc=True),\n", - " params\n", - ")\n", - "\n", - "pd.DataFrame([doc.__dict__ for doc in result.docs])\n" - ] + "id": "bCffoZRx1ujD" + }, + "outputs": [], + "source": [ + "from redisvl.query import RangeQuery\n", + "\n", + "range_query = RangeQuery(\n", + " vector=query_embedding,\n", + " vector_field_name=\"text_embedding\",\n", + " num_results=4,\n", + " return_fields=[\"content\"],\n", + " return_score=True,\n", + " distance_threshold=0.8 # find all items with a semantic distance of less than 0.8\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-24T16:46:57.499232Z", + "start_time": "2025-04-24T16:46:57.494328Z" }, - { - "cell_type": "markdown", - "metadata": { - "id": "81PoXomtT6LF" - }, - "source": [ - "### Add filters to vector queries" - ] + "colab": { + "base_uri": "https://localhost:8080/", + "height": 175 }, + "id": "0gHmam1Q1ujD", + "outputId": "ac80a6ed-4eb8-44d3-881d-87c9271aa10e" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "id": "a11G3xXJ1ujC", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 175 - }, - "outputId": "d968add5-704d-4e22-d3bd-97c1d1103a75" - }, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - " id vector_distance \\\n", - "0 chunk:83 0.37876611948 \n", - "1 chunk:129 0.41875731945 \n", - "2 chunk:168 0.657553255558 \n", - "3 chunk:39 0.683842301369 \n", - "\n", - " content \n", - "0 Table of Contents\\nGROSS MARGIN\\nFISCAL 2023 C... \n", - "1 Table of Contents\\nNIKE, INC.\\nCONSOLIDATED ST... \n", - "2 Table of Contents\\nNOTE 10 — EARNINGS PER SHAR... \n", - "3 manner. However, lead times for many of our pr... " - ], - "text/html": [ - "\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
idvector_distancecontent
0chunk:830.37876611948Table of Contents\\nGROSS MARGIN\\nFISCAL 2023 C...
1chunk:1290.41875731945Table of Contents\\nNIKE, INC.\\nCONSOLIDATED ST...
2chunk:1680.657553255558Table of Contents\\nNOTE 10 — EARNINGS PER SHAR...
3chunk:390.683842301369manner. However, lead times for many of our pr...
\n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - "\n", - " \n", - "
\n", - "\n", - "\n", - "
\n", - " \n", - "\n", - "\n", - "\n", - " \n", - "
\n", - "\n", - "
\n", - "
\n" - ], - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "dataframe", - "summary": "{\n \"name\": \"pd\",\n \"rows\": 4,\n \"fields\": [\n {\n \"column\": \"id\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 4,\n \"samples\": [\n \"chunk:129\",\n \"chunk:39\",\n \"chunk:83\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"vector_distance\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 4,\n \"samples\": [\n \"0.41875731945\",\n \"0.683842301369\",\n \"0.37876611948\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"content\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 4,\n \"samples\": [\n \"Table of Contents\\nNIKE, INC.\\nCONSOLIDATED STATEMENTS OF INCOME\\nYEAR ENDED MAY 31,\\n(In millions, except per share data) 2023 2022 2021\\nRevenues $ 51,217 $ 46,710 $ 44,538 \\nCost of sales 28,925 25,231 24,576 \\nGross profit 22,292 21,479 19,962 \\nDemand creation expense 4,060 3,850 3,114 \\nOperating overhead expense 12,317 10,954 9,911 \\nTotal selling and administrative expense 16,377 14,804 13,025 \\nInterest expense (income), net (6) 205 262 \\nOther (income) expense, net (280) (181) 14 \\nIncome before income taxes 6,201 6,651 6,661 \\nIncome tax expense 1,131 605 934 \\nNET INCOME $ 5,070 $ 6,046 $ 5,727 \\nEarnings per common share:\\nBasic $ 3.27 $ 3.83 $ 3.64 \\nDiluted $ 3.23 $ 3.75 $ 3.56 \\nWeighted average common shares outstanding:\\nBasic 1,551.6 1,578.8 1,573.0 \\nDiluted 1,569.8 1,610.8 1,609.4 \\nThe accompanying Notes to the Consolidated Financial Statements are an integral part of this statement.\\n2023 FORM 10-K 55\",\n \"manner. However, lead times for many of our products may make it more difficult for us to respond rapidly to new or changing product trends or consumer preferences. All\\nof our products are subject to changing consumer preferences that cannot be predicted with certainty. Our new products may not receive consumer acceptance as\\nconsumer preferences could shift rapidly to different types of performance products or away from these types of products altogether, and our future success depends in\\npart on our ability to anticipate and respond to these changes. If we fail to anticipate accurately and respond to trends and shifts in consumer preferences by adjusting the\\nmix of existing product offerings, developing new products, designs, styles and categories, and influencing sports and fitness preferences through extensive marketing, we\\ncould experience lower sales, excess inventories or lower profit margins, any of which could have an adverse effect on our results of operations and financial condition. In\\naddition, we market our products globally through a diverse spectrum of advertising and promotional programs and campaigns, including social media and other digital\\nadvertising networks. If we do not successfully market our products or if advertising and promotional costs increase, these factors could have an adverse effect on our\\nbusiness, financial condition and results of operations.\\nWe rely on technical innovation and high-quality products to compete in the market for our products.\\nTechnical innovation and quality control in the design and manufacturing processes of footwear, apparel, equipment and other products and services are essential to the\\ncommercial success of our products and development of new products. Research and development play a key role in technical innovation. We rely upon specialists in the\\nfields of biomechanics, chemistry, exercise physiology, engineering, digital technologies, industrial design, sustainability and related fields, as well as research committees\\nand advisory boards made up of athletes, coaches, trainers, equipment managers, orthopedists, podiatrists and other experts to develop and test cutting-edge\\nperformance products. While we strive to produce products that help to enhance athletic performance and reduce injury and maximize comfort, if we fail to introduce\\ntechnical innovation in our products, consumer demand for our products could decline, and if we experience problems with the quality of our products, we may incur\",\n \"Table of Contents\\nGROSS MARGIN\\nFISCAL 2023 COMPARED TO FISCAL 2022\\nFor fiscal 2023, our consolidated gross profit increased 4% to $22,292 million compared to $21,479 million for fiscal 2022. Gross margin decreased 250 basis points to\\n43.5% for fiscal 2023 compared to 46.0% for fiscal 2022 due to the following:\\n*Wholesale equivalent\\nThe decrease in gross margin for fiscal 2023 was primarily due to:\\n\\u2022 Higher NIKE Brand product costs, on a wholesale equivalent basis, primarily due to higher input costs and elevated inbound freight and logistics costs as well as\\nproduct mix;\\n\\u2022 Lower margin in our NIKE Direct business, driven by higher promotional activity to liquidate inventory in the current period compared to lower promotional activity in\\nthe prior period resulting from lower available inventory supply;\\n\\u2022 Unfavorable changes in net foreign currency exchange rates, including hedges; and\\n\\u2022 Lower off-price margin, on a wholesale equivalent basis.\\nThis was partially offset by:\\n\\u2022 Higher NIKE Brand full-price ASP, net of discounts, on a wholesale equivalent basis, due primarily to strategic pricing actions and product mix; and\\n\\u2022 Lower other costs, primarily due to higher inventory obsolescence reserves recognized in Greater China in the fourth quarter of fiscal 2022.\\nTOTAL SELLING AND ADMINISTRATIVE EXPENSE\\n(Dollars in millions) FISCAL 2023 FISCAL 2022 % CHANGE FISCAL 2021 % CHANGE\\nDemand creation expense $ 4,060 $ 3,850 5 % $ 3,114 24 %\\nOperating overhead expense 12,317 10,954 12 % 9,911 11 %\\nTotal selling and administrative expense $ 16,377 $ 14,804 11 % $ 13,025 14 %\\n% of revenues 32.0 % 31.7 % 30 bps 29.2 % 250 bps\\n(1) Demand creation expense consists of advertising and promotion costs, including costs of endorsement contracts, complimentary product, television, digital and print advertising and media costs, brandevents and retail brand presentation.\\nFISCAL 2023 COMPARED TO FISCAL 2022\\nDemand creation expense increased 5% for fiscal 2023, primarily due to higher advertising and marketing expense and higher sports marketing expense. Changes in\\nforeign currency exchange rates decreased Demand creation expense by approximately 4 percentage points.\\nOperating overhead expense increased 12%, primarily due to higher wage-related expenses, NIKE Direct variable costs, strategic technology enterprise investments and\\nother administrative costs. Changes in foreign currency exchange rates decreased Operating overhead expense by approximately 3 percentage points.\\n(1)\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" - } - }, - "metadata": {}, - "execution_count": 17 - } + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idvector_distancecontent
0chunk:880.337694525719Asia Pacific & Latin America 1,932 1,896 2 % 1...
1chunk:800.34205275774Table of Contents\\nCONSOLIDATED OPERATING RESU...
2chunk:870.357761025429Table of Contents\\nOPERATING SEGMENTS\\nAs disc...
3chunk:830.378765881062Table of Contents\\nGROSS MARGIN\\nFISCAL 2023 C...
\n", + "
" ], - "source": [ - "from redisvl.query.filter import Text\n", - "\n", - "vector_query = VectorQuery(\n", - " vector=query_embedding,\n", - " vector_field_name=\"text_embedding\",\n", - " num_results=4,\n", - " return_fields=[\"content\"],\n", - " return_score=True\n", - ")\n", - "\n", - "# Set a text filter\n", - "text_filter = Text(\"content\") % \"profit\"\n", - "\n", - "vector_query.set_filter(text_filter)\n", - "\n", - "result=index.query(vector_query)\n", - "pd.DataFrame(result)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "5XvVv8zAT6LF" - }, - "source": [ - "### Range queries in RedisVL" + "text/plain": [ + " id vector_distance content\n", + "0 chunk:88 0.337694525719 Asia Pacific & Latin America 1,932 1,896 2 % 1...\n", + "1 chunk:80 0.34205275774 Table of Contents\\nCONSOLIDATED OPERATING RESU...\n", + "2 chunk:87 0.357761025429 Table of Contents\\nOPERATING SEGMENTS\\nAs disc...\n", + "3 chunk:83 0.378765881062 Table of Contents\\nGROSS MARGIN\\nFISCAL 2023 C..." ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "result=index.query(range_query)\n", + "pd.DataFrame(result)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-24T16:46:57.667013Z", + "start_time": "2025-04-24T16:46:57.662153Z" }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "id": "bCffoZRx1ujD" - }, - "outputs": [], - "source": [ - "from redisvl.query import RangeQuery\n", - "\n", - "range_query = RangeQuery(\n", - " vector=query_embedding,\n", - " vector_field_name=\"text_embedding\",\n", - " num_results=4,\n", - " return_fields=[\"content\"],\n", - " return_score=True,\n", - " distance_threshold=0.8 # find all items with a semantic distance of less than 0.8\n", - ")" - ] + "colab": { + "base_uri": "https://localhost:8080/", + "height": 175 }, + "id": "YZg4U21r1ujD", + "outputId": "d3db5ac3-6ae9-42c4-aaee-874cecafe3ad" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "id": "0gHmam1Q1ujD", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 175 - }, - "outputId": "ac80a6ed-4eb8-44d3-881d-87c9271aa10e" - }, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - " id vector_distance content\n", - "0 chunk:88 0.337694585323 Asia Pacific & Latin America 1,932 1,896 2 % 1...\n", - "1 chunk:80 0.342052936554 Table of Contents\\nCONSOLIDATED OPERATING RESU...\n", - "2 chunk:87 0.35776078701 Table of Contents\\nOPERATING SEGMENTS\\nAs disc...\n", - "3 chunk:83 0.37876611948 Table of Contents\\nGROSS MARGIN\\nFISCAL 2023 C..." - ], - "text/html": [ - "\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
idvector_distancecontent
0chunk:880.337694585323Asia Pacific & Latin America 1,932 1,896 2 % 1...
1chunk:800.342052936554Table of Contents\\nCONSOLIDATED OPERATING RESU...
2chunk:870.35776078701Table of Contents\\nOPERATING SEGMENTS\\nAs disc...
3chunk:830.37876611948Table of Contents\\nGROSS MARGIN\\nFISCAL 2023 C...
\n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - "\n", - " \n", - "
\n", - "\n", - "\n", - "
\n", - " \n", - "\n", - "\n", - "\n", - " \n", - "
\n", - "\n", - "
\n", - "
\n" - ], - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "dataframe", - "summary": "{\n \"name\": \"pd\",\n \"rows\": 4,\n \"fields\": [\n {\n \"column\": \"id\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 4,\n \"samples\": [\n \"chunk:80\",\n \"chunk:83\",\n \"chunk:88\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"vector_distance\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 4,\n \"samples\": [\n \"0.342052936554\",\n \"0.37876611948\",\n \"0.337694585323\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"content\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 4,\n \"samples\": [\n \"Table of Contents\\nCONSOLIDATED OPERATING RESULTS\\nREVENUES\\n(Dollars in millions) FISCAL2023 FISCAL2022 % CHANGE\\n% CHANGEEXCLUDINGCURRENCYCHANGES FISCAL2021 % CHANGE\\n% CHANGEEXCLUDINGCURRENCYCHANGES\\nNIKE, Inc. Revenues:\\nNIKE Brand Revenues by:\\nFootwear $ 33,135 $ 29,143 14 % 20 %$ 28,021 4 % 4 %\\nApparel 13,843 13,567 2 % 8 % 12,865 5 % 6 %\\nEquipment 1,727 1,624 6 % 13 % 1,382 18 % 18 %\\nGlobal Brand Divisions 58 102 -43 % -43 % 25 308 % 302 %\\nTotal NIKE Brand Revenues $ 48,763 $ 44,436 10 % 16 %$ 42,293 5 % 6 %\\nConverse 2,427 2,346 3 % 8 % 2,205 6 % 7 %\\nCorporate 27 (72) \\u2014 \\u2014 40 \\u2014 \\u2014 \\nTOTAL NIKE, INC. REVENUES $ 51,217 $ 46,710 10 % 16 %$ 44,538 5 % 6 %\\nSupplemental NIKE Brand Revenues Details:\\nNIKE Brand Revenues by:\\nSales to Wholesale Customers $ 27,397 $ 25,608 7 % 14 %$ 25,898 -1 % -1 %\\nSales through NIKE Direct 21,308 18,726 14 % 20 % 16,370 14 % 15 %\\nGlobal Brand Divisions 58 102 -43 % -43 % 25 308 % 302 %\\nTOTAL NIKE BRAND REVENUES $ 48,763 $ 44,436 10 % 16 %$ 42,293 5 % 6 %\\nNIKE Brand Revenues on a Wholesale Equivalent Basis :\\nSales to Wholesale Customers $ 27,397 $ 25,608 7 % 14 %$ 25,898 -1 % -1 %\\nSales from our Wholesale Operations to NIKE Direct Operations 12,730 10,543 21 % 27 % 9,872 7 % 7 %\\nTOTAL NIKE BRAND WHOLESALE EQUIVALENT REVENUES $ 40,127 $ 36,151 11 % 18 %$ 35,770 1 % 1 %\\nNIKE Brand Wholesale Equivalent Revenues by:\\nMen's $ 20,733 $ 18,797 10 % 17 %$ 18,391 2 % 3 %\\nWomen's 8,606 8,273 4 % 11 % 8,225 1 % 1 %\\nNIKE Kids' 5,038 4,874 3 % 10 % 4,882 0 % 0 %\\nJordan Brand 6,589 5,122 29 % 35 % 4,780 7 % 7 %\\nOthers (839) (915) 8 % -3 % (508) -80 % -79 %\\nTOTAL NIKE BRAND WHOLESALE EQUIVALENT REVENUES $ 40,127 $ 36,151 11 % 18 %$ 35,770 1 % 1 %\\n(1) The percent change excluding currency changes and the presentation of wholesale equivalent revenues represent non-GAAP financial measures. For further information, see \\\"Use of Non-GAAPFinancial Measures\\\".\\n(2) Global Brand Divisions revenues include NIKE Brand licensing and other miscellaneous revenues that are not part of a geographic operating segment.\\n(3) Corporate revenues primarily consist of foreign currency hedge gains and losses related to revenues generated by entities within the NIKE Brand geographic operating segments and Converse, but\\nmanaged through our central foreign exchange risk management program.\",\n \"Table of Contents\\nGROSS MARGIN\\nFISCAL 2023 COMPARED TO FISCAL 2022\\nFor fiscal 2023, our consolidated gross profit increased 4% to $22,292 million compared to $21,479 million for fiscal 2022. Gross margin decreased 250 basis points to\\n43.5% for fiscal 2023 compared to 46.0% for fiscal 2022 due to the following:\\n*Wholesale equivalent\\nThe decrease in gross margin for fiscal 2023 was primarily due to:\\n\\u2022 Higher NIKE Brand product costs, on a wholesale equivalent basis, primarily due to higher input costs and elevated inbound freight and logistics costs as well as\\nproduct mix;\\n\\u2022 Lower margin in our NIKE Direct business, driven by higher promotional activity to liquidate inventory in the current period compared to lower promotional activity in\\nthe prior period resulting from lower available inventory supply;\\n\\u2022 Unfavorable changes in net foreign currency exchange rates, including hedges; and\\n\\u2022 Lower off-price margin, on a wholesale equivalent basis.\\nThis was partially offset by:\\n\\u2022 Higher NIKE Brand full-price ASP, net of discounts, on a wholesale equivalent basis, due primarily to strategic pricing actions and product mix; and\\n\\u2022 Lower other costs, primarily due to higher inventory obsolescence reserves recognized in Greater China in the fourth quarter of fiscal 2022.\\nTOTAL SELLING AND ADMINISTRATIVE EXPENSE\\n(Dollars in millions) FISCAL 2023 FISCAL 2022 % CHANGE FISCAL 2021 % CHANGE\\nDemand creation expense $ 4,060 $ 3,850 5 % $ 3,114 24 %\\nOperating overhead expense 12,317 10,954 12 % 9,911 11 %\\nTotal selling and administrative expense $ 16,377 $ 14,804 11 % $ 13,025 14 %\\n% of revenues 32.0 % 31.7 % 30 bps 29.2 % 250 bps\\n(1) Demand creation expense consists of advertising and promotion costs, including costs of endorsement contracts, complimentary product, television, digital and print advertising and media costs, brandevents and retail brand presentation.\\nFISCAL 2023 COMPARED TO FISCAL 2022\\nDemand creation expense increased 5% for fiscal 2023, primarily due to higher advertising and marketing expense and higher sports marketing expense. Changes in\\nforeign currency exchange rates decreased Demand creation expense by approximately 4 percentage points.\\nOperating overhead expense increased 12%, primarily due to higher wage-related expenses, NIKE Direct variable costs, strategic technology enterprise investments and\\nother administrative costs. Changes in foreign currency exchange rates decreased Operating overhead expense by approximately 3 percentage points.\\n(1)\",\n \"Asia Pacific & Latin America 1,932 1,896 2 % 1,530 24 %\\nGlobal Brand Divisions (4,841) (4,262) -14 % (3,656) -17 %\\nTOTAL NIKE BRAND $ 8,359 $ 8,406 -1 % $ 8,641 -3 %\\nConverse 676 669 1 % 543 23 %\\nCorporate (2,840) (2,219) -28 % (2,261) 2 %\\nTOTAL NIKE, INC. EARNINGS BEFORE INTEREST ANDTAXES $ 6,195 $ 6,856 -10 % $ 6,923 -1 %\\nEBIT margin 12.1 % 14.7 % 15.5 %\\nInterest expense (income), net (6) 205 \\u2014 262 \\u2014 \\nTOTAL NIKE, INC. INCOME BEFORE INCOME TAXES $ 6,201 $ 6,651 -7 % $ 6,661 0 %\\n(1) Total NIKE Brand EBIT, Total NIKE, Inc. EBIT and EBIT Margin represent non-GAAP financial measures. See \\\"Use of Non-GAAP Financial Measures\\\" for further information.\\n(1) (1)\\n(2)\\n(3)\\n(4)\\n(1)\\n(1)\\n(1)\\n2023 FORM 10-K 36\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" - } - }, - "metadata": {}, - "execution_count": 19 - } + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idvector_distancecontent
0chunk:880.337694525719Asia Pacific & Latin America 1,932 1,896 2 % 1...
1chunk:800.34205275774Table of Contents\\nCONSOLIDATED OPERATING RESU...
2chunk:870.357761025429Table of Contents\\nOPERATING SEGMENTS\\nAs disc...
3chunk:830.378765881062Table of Contents\\nGROSS MARGIN\\nFISCAL 2023 C...
\n", + "
" ], - "source": [ - "result=index.query(range_query)\n", - "pd.DataFrame(result)" + "text/plain": [ + " id vector_distance content\n", + "0 chunk:88 0.337694525719 Asia Pacific & Latin America 1,932 1,896 2 % 1...\n", + "1 chunk:80 0.34205275774 Table of Contents\\nCONSOLIDATED OPERATING RESU...\n", + "2 chunk:87 0.357761025429 Table of Contents\\nOPERATING SEGMENTS\\nAs disc...\n", + "3 chunk:83 0.378765881062 Table of Contents\\nGROSS MARGIN\\nFISCAL 2023 C..." ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Add filter to range query\n", + "range_query.set_filter(text_filter)\n", + "\n", + "index.query(range_query)\n", + "pd.DataFrame(result)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zYYPTQN7T6LG" + }, + "source": [ + "## Building a basic RAG Pipeline from Scratch\n", + "We're going to build a basic RAG pipeline from scratch incorporating the following components:\n", + "\n", + "- Standard semantic search\n", + "- Integration with OpenAI for LLM\n", + "- Chat completion" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rCWlVR2OT6LG" + }, + "source": [ + "### Setup RedisVL AsyncSearchIndex" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-24T16:46:57.734454Z", + "start_time": "2025-04-24T16:46:57.732810Z" }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "id": "YZg4U21r1ujD", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 175 - }, - "outputId": "d3db5ac3-6ae9-42c4-aaee-874cecafe3ad" - }, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - " id vector_distance content\n", - "0 chunk:88 0.337694585323 Asia Pacific & Latin America 1,932 1,896 2 % 1...\n", - "1 chunk:80 0.342052936554 Table of Contents\\nCONSOLIDATED OPERATING RESU...\n", - "2 chunk:87 0.35776078701 Table of Contents\\nOPERATING SEGMENTS\\nAs disc...\n", - "3 chunk:83 0.37876611948 Table of Contents\\nGROSS MARGIN\\nFISCAL 2023 C..." - ], - "text/html": [ - "\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
idvector_distancecontent
0chunk:880.337694585323Asia Pacific & Latin America 1,932 1,896 2 % 1...
1chunk:800.342052936554Table of Contents\\nCONSOLIDATED OPERATING RESU...
2chunk:870.35776078701Table of Contents\\nOPERATING SEGMENTS\\nAs disc...
3chunk:830.37876611948Table of Contents\\nGROSS MARGIN\\nFISCAL 2023 C...
\n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - "\n", - " \n", - "
\n", - "\n", - "\n", - "
\n", - " \n", - "\n", - "\n", - "\n", - " \n", - "
\n", - "\n", - "
\n", - "
\n" - ], - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "dataframe", - "summary": "{\n \"name\": \"pd\",\n \"rows\": 4,\n \"fields\": [\n {\n \"column\": \"id\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 4,\n \"samples\": [\n \"chunk:80\",\n \"chunk:83\",\n \"chunk:88\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"vector_distance\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 4,\n \"samples\": [\n \"0.342052936554\",\n \"0.37876611948\",\n \"0.337694585323\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"content\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 4,\n \"samples\": [\n \"Table of Contents\\nCONSOLIDATED OPERATING RESULTS\\nREVENUES\\n(Dollars in millions) FISCAL2023 FISCAL2022 % CHANGE\\n% CHANGEEXCLUDINGCURRENCYCHANGES FISCAL2021 % CHANGE\\n% CHANGEEXCLUDINGCURRENCYCHANGES\\nNIKE, Inc. Revenues:\\nNIKE Brand Revenues by:\\nFootwear $ 33,135 $ 29,143 14 % 20 %$ 28,021 4 % 4 %\\nApparel 13,843 13,567 2 % 8 % 12,865 5 % 6 %\\nEquipment 1,727 1,624 6 % 13 % 1,382 18 % 18 %\\nGlobal Brand Divisions 58 102 -43 % -43 % 25 308 % 302 %\\nTotal NIKE Brand Revenues $ 48,763 $ 44,436 10 % 16 %$ 42,293 5 % 6 %\\nConverse 2,427 2,346 3 % 8 % 2,205 6 % 7 %\\nCorporate 27 (72) \\u2014 \\u2014 40 \\u2014 \\u2014 \\nTOTAL NIKE, INC. REVENUES $ 51,217 $ 46,710 10 % 16 %$ 44,538 5 % 6 %\\nSupplemental NIKE Brand Revenues Details:\\nNIKE Brand Revenues by:\\nSales to Wholesale Customers $ 27,397 $ 25,608 7 % 14 %$ 25,898 -1 % -1 %\\nSales through NIKE Direct 21,308 18,726 14 % 20 % 16,370 14 % 15 %\\nGlobal Brand Divisions 58 102 -43 % -43 % 25 308 % 302 %\\nTOTAL NIKE BRAND REVENUES $ 48,763 $ 44,436 10 % 16 %$ 42,293 5 % 6 %\\nNIKE Brand Revenues on a Wholesale Equivalent Basis :\\nSales to Wholesale Customers $ 27,397 $ 25,608 7 % 14 %$ 25,898 -1 % -1 %\\nSales from our Wholesale Operations to NIKE Direct Operations 12,730 10,543 21 % 27 % 9,872 7 % 7 %\\nTOTAL NIKE BRAND WHOLESALE EQUIVALENT REVENUES $ 40,127 $ 36,151 11 % 18 %$ 35,770 1 % 1 %\\nNIKE Brand Wholesale Equivalent Revenues by:\\nMen's $ 20,733 $ 18,797 10 % 17 %$ 18,391 2 % 3 %\\nWomen's 8,606 8,273 4 % 11 % 8,225 1 % 1 %\\nNIKE Kids' 5,038 4,874 3 % 10 % 4,882 0 % 0 %\\nJordan Brand 6,589 5,122 29 % 35 % 4,780 7 % 7 %\\nOthers (839) (915) 8 % -3 % (508) -80 % -79 %\\nTOTAL NIKE BRAND WHOLESALE EQUIVALENT REVENUES $ 40,127 $ 36,151 11 % 18 %$ 35,770 1 % 1 %\\n(1) The percent change excluding currency changes and the presentation of wholesale equivalent revenues represent non-GAAP financial measures. For further information, see \\\"Use of Non-GAAPFinancial Measures\\\".\\n(2) Global Brand Divisions revenues include NIKE Brand licensing and other miscellaneous revenues that are not part of a geographic operating segment.\\n(3) Corporate revenues primarily consist of foreign currency hedge gains and losses related to revenues generated by entities within the NIKE Brand geographic operating segments and Converse, but\\nmanaged through our central foreign exchange risk management program.\",\n \"Table of Contents\\nGROSS MARGIN\\nFISCAL 2023 COMPARED TO FISCAL 2022\\nFor fiscal 2023, our consolidated gross profit increased 4% to $22,292 million compared to $21,479 million for fiscal 2022. Gross margin decreased 250 basis points to\\n43.5% for fiscal 2023 compared to 46.0% for fiscal 2022 due to the following:\\n*Wholesale equivalent\\nThe decrease in gross margin for fiscal 2023 was primarily due to:\\n\\u2022 Higher NIKE Brand product costs, on a wholesale equivalent basis, primarily due to higher input costs and elevated inbound freight and logistics costs as well as\\nproduct mix;\\n\\u2022 Lower margin in our NIKE Direct business, driven by higher promotional activity to liquidate inventory in the current period compared to lower promotional activity in\\nthe prior period resulting from lower available inventory supply;\\n\\u2022 Unfavorable changes in net foreign currency exchange rates, including hedges; and\\n\\u2022 Lower off-price margin, on a wholesale equivalent basis.\\nThis was partially offset by:\\n\\u2022 Higher NIKE Brand full-price ASP, net of discounts, on a wholesale equivalent basis, due primarily to strategic pricing actions and product mix; and\\n\\u2022 Lower other costs, primarily due to higher inventory obsolescence reserves recognized in Greater China in the fourth quarter of fiscal 2022.\\nTOTAL SELLING AND ADMINISTRATIVE EXPENSE\\n(Dollars in millions) FISCAL 2023 FISCAL 2022 % CHANGE FISCAL 2021 % CHANGE\\nDemand creation expense $ 4,060 $ 3,850 5 % $ 3,114 24 %\\nOperating overhead expense 12,317 10,954 12 % 9,911 11 %\\nTotal selling and administrative expense $ 16,377 $ 14,804 11 % $ 13,025 14 %\\n% of revenues 32.0 % 31.7 % 30 bps 29.2 % 250 bps\\n(1) Demand creation expense consists of advertising and promotion costs, including costs of endorsement contracts, complimentary product, television, digital and print advertising and media costs, brandevents and retail brand presentation.\\nFISCAL 2023 COMPARED TO FISCAL 2022\\nDemand creation expense increased 5% for fiscal 2023, primarily due to higher advertising and marketing expense and higher sports marketing expense. Changes in\\nforeign currency exchange rates decreased Demand creation expense by approximately 4 percentage points.\\nOperating overhead expense increased 12%, primarily due to higher wage-related expenses, NIKE Direct variable costs, strategic technology enterprise investments and\\nother administrative costs. Changes in foreign currency exchange rates decreased Operating overhead expense by approximately 3 percentage points.\\n(1)\",\n \"Asia Pacific & Latin America 1,932 1,896 2 % 1,530 24 %\\nGlobal Brand Divisions (4,841) (4,262) -14 % (3,656) -17 %\\nTOTAL NIKE BRAND $ 8,359 $ 8,406 -1 % $ 8,641 -3 %\\nConverse 676 669 1 % 543 23 %\\nCorporate (2,840) (2,219) -28 % (2,261) 2 %\\nTOTAL NIKE, INC. EARNINGS BEFORE INTEREST ANDTAXES $ 6,195 $ 6,856 -10 % $ 6,923 -1 %\\nEBIT margin 12.1 % 14.7 % 15.5 %\\nInterest expense (income), net (6) 205 \\u2014 262 \\u2014 \\nTOTAL NIKE, INC. INCOME BEFORE INCOME TAXES $ 6,201 $ 6,651 -7 % $ 6,661 0 %\\n(1) Total NIKE Brand EBIT, Total NIKE, Inc. EBIT and EBIT Margin represent non-GAAP financial measures. See \\\"Use of Non-GAAP Financial Measures\\\" for further information.\\n(1) (1)\\n(2)\\n(3)\\n(4)\\n(1)\\n(1)\\n(1)\\n2023 FORM 10-K 36\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" - } - }, - "metadata": {}, - "execution_count": 20 - } - ], - "source": [ - "# Add filter to range query\n", - "range_query.set_filter(text_filter)\n", - "\n", - "index.query(range_query)\n", - "pd.DataFrame(result)" - ] + "colab": { + "base_uri": "https://localhost:8080/" }, - { - "cell_type": "markdown", - "metadata": { - "id": "zYYPTQN7T6LG" - }, - "source": [ - "## Building a basic RAG Pipeline from Scratch\n", - "We're going to build a basic RAG pipeline from scratch incorporating the following components:\n", - "\n", - "- Standard semantic search\n", - "- Integration with OpenAI for LLM\n", - "- Chat completion" - ] + "id": "_esLGYzbT6LG", + "outputId": "d3314a08-8746-4239-dcb2-e7e41b51c640" + }, + "outputs": [], + "source": [ + "from redisvl.index import AsyncSearchIndex\n", + "\n", + "async_index = AsyncSearchIndex.from_dict(schema, redis_url=REDIS_URL)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "peK4C5xGJkED" + }, + "source": [ + "### Setup OpenAI API" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-24T16:47:12.289527Z", + "start_time": "2025-04-24T16:46:57.837857Z" }, - { - "cell_type": "markdown", - "metadata": { - "id": "rCWlVR2OT6LG" - }, - "source": [ - "### Setup RedisVL AsyncSearchIndex" - ] + "colab": { + "base_uri": "https://localhost:8080/" }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "id": "_esLGYzbT6LG", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "d3314a08-8746-4239-dcb2-e7e41b51c640" - }, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": {}, - "execution_count": 21 - } - ], - "source": [ - "from redis.asyncio import Redis as AsyncRedis\n", - "from redisvl.index import AsyncSearchIndex\n", - "\n", - "client = AsyncRedis.from_url(REDIS_URL)\n", - "async_index = AsyncSearchIndex.from_dict(schema)\n", - "await async_index.set_client(client)" - ] + "id": "EgdTvz6zJkED", + "outputId": "d2ab0e8e-2ecf-458d-881d-6e4658953a71" + }, + "outputs": [], + "source": [ + "import openai\n", + "import os\n", + "import getpass\n", + "\n", + "\n", + "CHAT_MODEL = \"gpt-3.5-turbo-0125\"\n", + "\n", + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OPENAI_API_KEY :\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "w8Af-zneT6LH" + }, + "source": [ + "### Baseline Retrieval Augmented Generation\n", + "The code below answers a user's questions following this basic flow:\n", + "\n", + "1. Generate a query_vector from the user's chat question to have an apples to apples comparison against the vector database.\n", + "2. Retrieve the most semantically relevant chunks to the user's query from the database.\n", + "3. Pass the user query and retrieved context to the `promptify` function to generate the final prompt to be sent to the LLM along with the system prompt and necessary hyperparameters.\n", + "4. Return the LLMs response to the user." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-24T16:47:12.308509Z", + "start_time": "2025-04-24T16:47:12.303243Z" }, - { - "cell_type": "markdown", - "metadata": { - "id": "peK4C5xGJkED" - }, - "source": [ - "### Setup OpenAI API" - ] + "id": "1V1Tio4-ZjmA" + }, + "outputs": [], + "source": [ + "\n", + "async def answer_question(index: AsyncSearchIndex, query: str):\n", + " \"\"\"Answer the user's question\"\"\"\n", + "\n", + " SYSTEM_PROMPT = \"\"\"You are a helpful financial analyst assistant that has access\n", + " to public financial 10k documents in order to answer users questions about company\n", + " performance, ethics, characteristics, and core information.\n", + " \"\"\"\n", + "\n", + " query_vector = hf.embed(query)\n", + " # Fetch context from Redis using vector search\n", + " context = await retrieve_context(index, query_vector)\n", + " # Generate contextualized prompt and feed to OpenAI\n", + " response = await openai.AsyncClient().chat.completions.create(\n", + " model=CHAT_MODEL,\n", + " messages=[\n", + " {\"role\": \"system\", \"content\": SYSTEM_PROMPT},\n", + " {\"role\": \"user\", \"content\": promptify(query, context)}\n", + " ],\n", + " temperature=0.1,\n", + " seed=42\n", + " )\n", + " # Response provided by LLM\n", + " return response.choices[0].message.content\n", + "\n", + "\n", + "async def retrieve_context(async_index: AsyncSearchIndex, query_vector) -> str:\n", + " \"\"\"Fetch the relevant context from Redis using vector search\"\"\"\n", + " results = await async_index.query(\n", + " VectorQuery(\n", + " vector=query_vector,\n", + " vector_field_name=\"text_embedding\",\n", + " return_fields=[\"content\"],\n", + " num_results=3\n", + " )\n", + " )\n", + " content = \"\\n\".join([result[\"content\"] for result in results])\n", + " return content\n", + "\n", + "\n", + "def promptify(query: str, context: str) -> str:\n", + " return f'''Use the provided context below derived from public financial\n", + " documents to answer the user's question. If you can't answer the user's\n", + " question, based on the context; do not guess. If there is no context at all,\n", + " respond with \"I don't know\".\n", + "\n", + " User question:\n", + "\n", + " {query}\n", + "\n", + " Helpful context:\n", + "\n", + " {context}\n", + "\n", + " Answer:\n", + " '''" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "kgVM_g01T6LP" + }, + "source": [ + "### Let's test it out..." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-24T16:47:12.339354Z", + "start_time": "2025-04-24T16:47:12.337769Z" }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "EgdTvz6zJkED", - "outputId": "d2ab0e8e-2ecf-458d-881d-6e4658953a71" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "OPENAI_API_KEY :··········\n" - ] - } - ], - "source": [ - "import openai\n", - "import os\n", - "import getpass\n", - "\n", - "\n", - "CHAT_MODEL = \"gpt-3.5-turbo-0125\"\n", - "\n", - "if \"OPENAI_API_KEY\" not in os.environ:\n", - " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OPENAI_API_KEY :\")\n" - ] + "id": "pn-PoACdbihY" + }, + "outputs": [], + "source": [ + "# Generate a list of questions\n", + "questions = [\n", + " \"What is the trend in the company's revenue and profit over the past few years?\",\n", + " \"What are the company's primary revenue sources?\",\n", + " \"How much debt does the company have, and what are its capital expenditure plans?\",\n", + " \"What does the company say about its environmental, social, and governance (ESG) practices?\",\n", + " \"What is the company's strategy for growth?\"\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-24T16:47:20.587275Z", + "start_time": "2025-04-24T16:47:12.352722Z" }, - { - "cell_type": "markdown", - "metadata": { - "id": "w8Af-zneT6LH" - }, - "source": [ - "### Baseline Retrieval Augmented Generation\n", - "The code below answers a user's questions following this basic flow:\n", - "\n", - "1. Generate a query_vector from the user's chat question to have an apples to apples comparison against the vector database.\n", - "2. Retrieve the most semantically relevant chunks to the user's query from the database.\n", - "3. Pass the user query and retrieved context to the `promptify` function to generate the final prompt to be sent to the LLM along with the system prompt and necessary hyperparameters.\n", - "4. Return the LLMs response to the user." - ] + "colab": { + "base_uri": "https://localhost:8080/", + "height": 264, + "referenced_widgets": [ + "22178a562935411f88cad67659ebb7c4", + "18c7d5708c124911b214199fedb2b642", + "905bc767c24447dc96998d2c5f935776", + "3ad99e40e63d4443a80b2b579b32e972", + "648ff789b7e640978d79bb73afb8b935", + "d653f934619843e28c86c1548dfc6b58", + "9845ed85170a4ca1ac53e2e662ec9aa3", + "c23e1195ff58417cba20de29285b4f8d", + "13c9571c73de48388ffa93f602091320", + "52d9d383c841431198b7a53f14da59f1", + "ef2b758d4fc241d4becf2ff611954b7e", + "77c3e16292de4c0da1efe12946d59602", + "f699af42ec874895beb31960b5a7db38", + "df531bd2864648d3a3cd081f4395ea53", + "eaea17a6fc4e4ae08e8cdb1b894a75ee", + "e7653f4691f84722ac67ce2d2eea0c8c", + "0296317b893f4d61ba8dcd45fb02260e", + "d11dbe6f1f454b239104da75adde3ff4", + "53e352c2ac614b58a76b7ea01971b51c", + "6d6d0b5efd2149ada10a82e450d79a17", + "14433f774cab4e70a984afee44780630", + "d720cffbcc444daabf7105d7f46bb738", + "083963c0130a4e0f9f8b1123495d2c94", + "37f2fb1531d843ca9af8c418b156df0f", + "8a9447ddaef84d18b69597c77d13cdab", + "4be0f4750d7744bda6bdf9e09efc6e83", + "6f77af81f9d7483eb2d9764083a28936", + "a77bb82fc74643c5961ad0683719bcc7", + "592ad30fe72141e099335a37f2b5d65f", + "08a93f48e2ae40dd83c76c02dde1a581", + "d865aa9825cc46248db4591bd7eb8202", + "c06a936e3f0f4e1d98b886d7b587eb89", + "d193499ece3b4e81a4deda0c843d980d", + "3ca7831ca79940c9bb1a34b8ef8f763c", + "db0773b8f5864b68a2ce8357a09d8012", + "06ef9cbf630b445cabe4ad026642f568", + "6901df439dbf4b2180d24ad62e9db4f4", + "2db40294cdc8476bae1eebb1c85d86fa", + "c2a875b112014ea1a88e28fb1d887ccf", + "4474549702694f8e87639d19d50498fd", + "92480b75b5ac45e2bf7e55ce5c89daaf", + "ffd337d71aaf4e1c92c5b53987aa7c72", + "21e53784d9154c0f9e0755dd7db64b01", + "394450e19075459ba59f53d4f11e21c2", + "9d386da534e24c7fa7f26f2c7f6a2d17", + "fcda6a6a2e8b4df0b5540e707ad486eb", + "37e0240a1d0c4503afd28b0072168c15", + "eb4f7add5c074781b7e9d104969c3564", + "ffab83c3d271402197ecc4b51225411b", + "c7b5d06f461c4ce9a089851c75647544", + "c7c362eaa7ea4174b1dd64377445a4b3", + "38dd0aae016e4bc48026d0ee30fb807a", + "b0de69c2826d4a0ba34b7d7cbce4ff6e", + "1b2721602abf42e1bb4d29fb3605644f", + "fe546bd8269d48eba90fb932784eea43" + ] }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "id": "1V1Tio4-ZjmA" - }, - "outputs": [], - "source": [ - "\n", - "async def answer_question(index: AsyncSearchIndex, query: str):\n", - " \"\"\"Answer the user's question\"\"\"\n", - "\n", - " SYSTEM_PROMPT = \"\"\"You are a helpful financial analyst assistant that has access\n", - " to public financial 10k documents in order to answer users questions about company\n", - " performance, ethics, characteristics, and core information.\n", - " \"\"\"\n", - "\n", - " query_vector = hf.embed(query)\n", - " # Fetch context from Redis using vector search\n", - " context = await retrieve_context(index, query_vector)\n", - " # Generate contextualized prompt and feed to OpenAI\n", - " response = await openai.AsyncClient().chat.completions.create(\n", - " model=CHAT_MODEL,\n", - " messages=[\n", - " {\"role\": \"system\", \"content\": SYSTEM_PROMPT},\n", - " {\"role\": \"user\", \"content\": promptify(query, context)}\n", - " ],\n", - " temperature=0.1,\n", - " seed=42\n", - " )\n", - " # Response provided by LLM\n", - " return response.choices[0].message.content\n", - "\n", - "\n", - "async def retrieve_context(async_index: AsyncSearchIndex, query_vector) -> str:\n", - " \"\"\"Fetch the relevant context from Redis using vector search\"\"\"\n", - " results = await async_index.query(\n", - " VectorQuery(\n", - " vector=query_vector,\n", - " vector_field_name=\"text_embedding\",\n", - " return_fields=[\"content\"],\n", - " num_results=3\n", - " )\n", - " )\n", - " content = \"\\n\".join([result[\"content\"] for result in results])\n", - " return content\n", - "\n", - "\n", - "def promptify(query: str, context: str) -> str:\n", - " return f'''Use the provided context below derived from public financial\n", - " documents to answer the user's question. If you can't answer the user's\n", - " question, based on the context; do not guess. If there is no context at all,\n", - " respond with \"I don't know\".\n", - "\n", - " User question:\n", - "\n", - " {query}\n", - "\n", - " Helpful context:\n", - "\n", - " {context}\n", - "\n", - " Answer:\n", - " '''" - ] + "id": "9M_iU6_hbv0J", + "outputId": "b9fc43d9-883a-4795-8a37-8a2f4c545892" + }, + "outputs": [], + "source": [ + "import asyncio\n", + "\n", + "results = await asyncio.gather(*[\n", + " answer_question(async_index, question) for question in questions\n", + "])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CpQ59SRgJkED" + }, + "source": [ + "### Let's view the results" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-24T16:47:20.604843Z", + "start_time": "2025-04-24T16:47:20.602566Z" }, - { - "cell_type": "markdown", - "metadata": { - "id": "kgVM_g01T6LP" - }, - "source": [ - "### Let's test it out..." - ] + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "7SZM_xg3b9Gb", + "outputId": "758ae31a-2291-4191-aa57-ee941d3319cb" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "id": "pn-PoACdbihY" - }, - "outputs": [], - "source": [ - "# Generate a list of questions\n", - "questions = [\n", - " \"What is the trend in the company's revenue and profit over the past few years?\",\n", - " \"What are the company's primary revenue sources?\",\n", - " \"How much debt does the company have, and what are its capital expenditure plans?\",\n", - " \"What does the company say about its environmental, social, and governance (ESG) practices?\",\n", - " \"What is the company's strategy for growth?\"\n", - "]" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "Question: What is the trend in the company's revenue and profit over the past few years?\n", + "Answer: \n", + " The trend in the company's revenue and profit over the past few years is as follows:\n", + "\n", + "- Revenue:\n", + " - Fiscal Year 2023: Total revenue for Nike, Inc. was $51,217 million, showing a 10% increase from the previous year.\n", + " - Fiscal Year 2022: Total revenue for Nike, Inc. was $46,710 million, showing a 10% increase from the year before.\n", + " - Fiscal Year 2021: Total revenue for Nike, Inc. was $44,538 million.\n", + "\n", + "- Profit (EBIT):\n", + " - Fiscal Year 2023: EBIT for Nike, Inc. was not provided in the context.\n", + " - Fiscal Year 2022: EBIT for Nike, Inc. was not provided in the context.\n", + " - Fiscal Year 2021: EBIT for Nike, Inc. was not provided in the context.\n", + "\n", + "Based on the revenue figures provided, there has been a consistent increase in revenue for Nike, Inc. over the past few years. However, without the EBIT figures, we cannot determine the trend in profit over the same period. \n", + "-----------\n", + "\n", + "Question: What are the company's primary revenue sources?\n", + "Answer: \n", + " The company's primary revenue sources are as follows:\n", + "\n", + "1. Footwear\n", + "2. Apparel\n", + "3. Equipment\n", + "4. Other (including licensing and miscellaneous revenues)\n", + "\n", + "These revenues are further broken down by sales to wholesale customers, sales through direct to consumer channels, and other sources. \n", + "-----------\n", + "\n", + "Question: How much debt does the company have, and what are its capital expenditure plans?\n", + "Answer: \n", + " The company has a total long-term debt of $8,927 million as of May 31, 2023. The capital expenditure plans are not explicitly mentioned in the provided context. \n", + "-----------\n", + "\n", + "Question: What does the company say about its environmental, social, and governance (ESG) practices?\n", + "Answer: \n", + " The company acknowledges the increased focus on sustainability matters, responsible sourcing, deforestation, energy and water usage, and packaging recyclability. They mention that complying with legislative and regulatory initiatives related to climate change may increase costs and complexity. The company has announced sustainability-related goals and targets, but there are risks and uncertainties associated with achieving them. They highlight that failure to meet these goals or respond to new legal requirements could result in adverse publicity and impact their business and reputation. \n", + "-----------\n", + "\n", + "Question: What is the company's strategy for growth?\n", + "Answer: \n", + " Based on the provided financial data, it appears that the company's strategy for growth includes focusing on expanding its revenues across different geographic regions and product lines. The company has shown consistent growth in revenues over the years, with increases in all major segments such as North America, Europe, Middle East & Africa, Greater China, and Asia Pacific & Latin America. Additionally, the company has been investing in property, plant, and equipment to support its growth, as evidenced by the increasing additions to these assets over the years. Furthermore, the company's strategy includes a mix of sales to wholesale customers and direct-to-consumer sales channels to drive revenue growth. \n", + "-----------\n", + "\n" + ] + } + ], + "source": [ + "for i, r in enumerate(results):\n", + " print(f\"Question: {questions[i]}\")\n", + " print(f\"Answer: \\n {r}\", \"\\n-----------\\n\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Improve performance and cut costs with LLM caching" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-24T16:47:20.654925Z", + "start_time": "2025-04-24T16:47:20.639324Z" + } + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "id": "9M_iU6_hbv0J", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 264, - "referenced_widgets": [ - "22178a562935411f88cad67659ebb7c4", - "18c7d5708c124911b214199fedb2b642", - "905bc767c24447dc96998d2c5f935776", - "3ad99e40e63d4443a80b2b579b32e972", - "648ff789b7e640978d79bb73afb8b935", - "d653f934619843e28c86c1548dfc6b58", - "9845ed85170a4ca1ac53e2e662ec9aa3", - "c23e1195ff58417cba20de29285b4f8d", - "13c9571c73de48388ffa93f602091320", - "52d9d383c841431198b7a53f14da59f1", - "ef2b758d4fc241d4becf2ff611954b7e", - "77c3e16292de4c0da1efe12946d59602", - "f699af42ec874895beb31960b5a7db38", - "df531bd2864648d3a3cd081f4395ea53", - "eaea17a6fc4e4ae08e8cdb1b894a75ee", - "e7653f4691f84722ac67ce2d2eea0c8c", - "0296317b893f4d61ba8dcd45fb02260e", - "d11dbe6f1f454b239104da75adde3ff4", - "53e352c2ac614b58a76b7ea01971b51c", - "6d6d0b5efd2149ada10a82e450d79a17", - "14433f774cab4e70a984afee44780630", - "d720cffbcc444daabf7105d7f46bb738", - "083963c0130a4e0f9f8b1123495d2c94", - "37f2fb1531d843ca9af8c418b156df0f", - "8a9447ddaef84d18b69597c77d13cdab", - "4be0f4750d7744bda6bdf9e09efc6e83", - "6f77af81f9d7483eb2d9764083a28936", - "a77bb82fc74643c5961ad0683719bcc7", - "592ad30fe72141e099335a37f2b5d65f", - "08a93f48e2ae40dd83c76c02dde1a581", - "d865aa9825cc46248db4591bd7eb8202", - "c06a936e3f0f4e1d98b886d7b587eb89", - "d193499ece3b4e81a4deda0c843d980d", - "3ca7831ca79940c9bb1a34b8ef8f763c", - "db0773b8f5864b68a2ce8357a09d8012", - "06ef9cbf630b445cabe4ad026642f568", - "6901df439dbf4b2180d24ad62e9db4f4", - "2db40294cdc8476bae1eebb1c85d86fa", - "c2a875b112014ea1a88e28fb1d887ccf", - "4474549702694f8e87639d19d50498fd", - "92480b75b5ac45e2bf7e55ce5c89daaf", - "ffd337d71aaf4e1c92c5b53987aa7c72", - "21e53784d9154c0f9e0755dd7db64b01", - "394450e19075459ba59f53d4f11e21c2", - "9d386da534e24c7fa7f26f2c7f6a2d17", - "fcda6a6a2e8b4df0b5540e707ad486eb", - "37e0240a1d0c4503afd28b0072168c15", - "eb4f7add5c074781b7e9d104969c3564", - "ffab83c3d271402197ecc4b51225411b", - "c7b5d06f461c4ce9a089851c75647544", - "c7c362eaa7ea4174b1dd64377445a4b3", - "38dd0aae016e4bc48026d0ee30fb807a", - "b0de69c2826d4a0ba34b7d7cbce4ff6e", - "1b2721602abf42e1bb4d29fb3605644f", - "fe546bd8269d48eba90fb932784eea43" - ] - }, - "outputId": "b9fc43d9-883a-4795-8a37-8a2f4c545892" - }, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "Batches: 0%| | 0/1 [00:00 str:\n", + " return f'''Use the provided context below derived from public financial\n", + " documents to answer the user's question. If you can't answer the user's\n", + " question, based on the context; do not guess. If there is no context at all,\n", + " respond with \"I don't know\".\n", + "\n", + " User question:\n", + "\n", + " {query}\n", + "\n", + " Helpful context:\n", + "\n", + " {context}\n", + "\n", + " Answer:\n", + " '''\n", + "\n", + " async def retrieve_context(self, query_vector) -> str:\n", + " \"\"\"Fetch the relevant context from Redis using vector search\"\"\"\n", + " results = await self.index.query(\n", + " VectorQuery(\n", + " vector=query_vector,\n", + " vector_field_name=\"text_embedding\",\n", + " return_fields=[\"content\"],\n", + " num_results=3\n", + " )\n", + " )\n", + " content = \"\\n\".join([result[\"content\"] for result in results])\n", + " return content\n", + "\n", + " async def clear_history(self):\n", + " \"\"\"Clear session chat\"\"\"\n", + " self.history.clear()\n", + "\n", + " async def answer_question(self, query: str):\n", + " \"\"\"Answer the user's question with historical context and caching baked-in\"\"\"\n", + "\n", + " SYSTEM_PROMPT = \"\"\"You are a helpful financial analyst assistant that has access\n", + " to public financial 10k documents in order to answer users questions about company\n", + " performance, ethics, characteristics, and core information.\n", + " \"\"\"\n", + "\n", + " # Create query vector\n", + " query_vector = self.vectorizer.embed(query)\n", + "\n", + " # Check the cache with the vector\n", + " if result := llmcache.check(vector=query_vector):\n", + " answer = result[0]['response']\n", + " else:\n", + " context = await self.retrieve_context(query_vector)\n", + " session = self.history.messages\n", + " messages = (\n", + " [{\"role\": \"system\", \"content\": SYSTEM_PROMPT}] +\n", + " session +\n", + " [{\"role\": \"user\", \"content\": self.promptify(query, context)}]\n", + " )\n", + " # Response provided by GPT-3.5\n", + " response = await openai.AsyncClient().chat.completions.create(\n", + " model=CHAT_MODEL,\n", + " messages=messages,\n", + " temperature=0.1,\n", + " seed=42\n", + " )\n", + " answer = response.choices[0].message.content\n", + " llmcache.store(query, answer, query_vector)\n", + "\n", + " # Add message history\n", + " self.history.add_messages([\n", + " {\"role\": \"user\", \"content\": query},\n", + " {\"role\": \"assistant\", \"content\": answer}\n", + " ])\n", + "\n", + " return answer" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Test the entire RAG workflow" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-24T16:47:21.669248Z", + "start_time": "2025-04-24T16:47:21.663308Z" + } + }, + "outputs": [], + "source": [ + "# Setup Session\n", + "chat = ChatBot(async_index, vectorizer=hf, user=\"Andrew\")\n", + "await chat.clear_history()" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-24T16:47:27.496044Z", + "start_time": "2025-04-24T16:47:21.702428Z" + } + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "Wscs4Mvo1ujD" - }, - "source": [ - "## Cleanup\n", - "\n", - "Clean up the database." - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "Hi! How can I assist you today?\n" + ] + } + ], + "source": [ + "# Run a simple chat\n", + "stopterms = [\"exit\", \"quit\", \"end\", \"cancel\"]\n", + "\n", + "# Simple Chat\n", + "# NBVAL_SKIP\n", + "while True:\n", + " user_query = input()\n", + " if user_query.lower() in stopterms or not user_query:\n", + " break\n", + " answer = await chat.answer_question(user_query)\n", + " print(answer, flush=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-24T16:47:27.527276Z", + "start_time": "2025-04-24T16:47:27.522755Z" + } + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 27, - "metadata": { - "id": "On6yNuQn1ujD" - }, - "outputs": [], - "source": [ - "# await async_index.client.flushall()" + "data": { + "text/plain": [ + "[{'role': 'user', 'content': 'hi'},\n", + " {'role': 'assistant', 'content': 'Hi! How can I assist you today?'}]" ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" } - ], - "metadata": { - "accelerator": "GPU", - "colab": { - "gpuType": "T4", - "provenance": [] - }, - "kernelspec": { - "display_name": "Python 3", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.9" + ], + "source": [ + "# NBVAL_SKIP\n", + "chat.history.messages" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "D_eiWikCJkED" + }, + "source": [ + "# You now have a working RAG pipeline!\n", + "\n", + "As you can see, it is easy to get started with RAG and we were able to get decent chat results from this simple setup. To go beyond the basic example though see the [advanced_rag](./04_advanced_redisvl.ipynb) notebook.\n", + "\n", + "This notebook covers:\n", + "\n", + "- **Improving accuracy** with dense content representations and query rewriting/expansion\n", + "- **Improving performance and optimizing cost** with semantic caching\n", + "- **Improving personalization** with chat session memory.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Wscs4Mvo1ujD" + }, + "source": [ + "## Cleanup\n", + "\n", + "Clean up the database." + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-24T16:47:34.042787Z", + "start_time": "2025-04-24T16:47:34.036106Z" }, - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "cbd44245af844dca8e568691cc1c15c5": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3109d0d320274ad0bb941608ee3df5e3", - "IPY_MODEL_6c902ce903bb4e25a127ec277e2b2c45", - "IPY_MODEL_954b76e059024b15be48fb5064ab2fb7" - ], - "layout": "IPY_MODEL_160c4567015f4b1bba43dc7e1e4712fb" - } - }, - "3109d0d320274ad0bb941608ee3df5e3": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_712fcb54fabc430c9567240a2ddd4a76", - "placeholder": "​", - "style": "IPY_MODEL_f96ce89375924097ab9f4cd130fd7b41", - "value": "modules.json: 100%" - } - }, - "6c902ce903bb4e25a127ec277e2b2c45": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_58c687581a8d4d3a828686cd066a32b3", - "max": 349, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_df2305a9a6634dffbc08567f62047b27", - "value": 349 - } - }, - "954b76e059024b15be48fb5064ab2fb7": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_218e8977786b42e1b825a14d44164d82", - "placeholder": "​", - "style": "IPY_MODEL_8bc8cb91c6274c08a72c91c91dddf4ef", - "value": " 349/349 [00:00<00:00, 23.6kB/s]" - } - }, - "160c4567015f4b1bba43dc7e1e4712fb": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "712fcb54fabc430c9567240a2ddd4a76": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f96ce89375924097ab9f4cd130fd7b41": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "58c687581a8d4d3a828686cd066a32b3": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "df2305a9a6634dffbc08567f62047b27": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "218e8977786b42e1b825a14d44164d82": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "8bc8cb91c6274c08a72c91c91dddf4ef": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "abee8aeb772f48dab4661dca40277788": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_300b9716084a4a24bf479ae7200b87d1", - "IPY_MODEL_ff76433f165146f0b39d2488a33b318e", - "IPY_MODEL_98fe1e1e066541ec942a05ec416fa53f" - ], - "layout": "IPY_MODEL_be9c6f9905fd440884261e09367fe659" - } - }, - "300b9716084a4a24bf479ae7200b87d1": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9d7bd9a50eea407eb60c41c1534f295d", - "placeholder": "​", - "style": "IPY_MODEL_968f389c21cf469daee8284a7b14c251", - "value": "config_sentence_transformers.json: 100%" - } - }, - "ff76433f165146f0b39d2488a33b318e": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_39f7677d9d8a4bdf8f4eb4756fae3ed2", - "max": 116, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_959248b437054a43a0393c71a603b35f", - "value": 116 - } - }, - "98fe1e1e066541ec942a05ec416fa53f": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6b3711002db148f790eab617f7f40eb4", - "placeholder": "​", - "style": "IPY_MODEL_5a3363012166483d90abb10b476772bf", - "value": " 116/116 [00:00<00:00, 5.41kB/s]" - } - }, - "be9c6f9905fd440884261e09367fe659": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "9d7bd9a50eea407eb60c41c1534f295d": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "968f389c21cf469daee8284a7b14c251": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "39f7677d9d8a4bdf8f4eb4756fae3ed2": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "959248b437054a43a0393c71a603b35f": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "6b3711002db148f790eab617f7f40eb4": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "5a3363012166483d90abb10b476772bf": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "92e02308d4d94725b73cc324d8cd9906": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6fe679c08e2b46dd8657160d974912e0", - "IPY_MODEL_61fc922ce98c4fefbebe7bb6a8ee9317", - "IPY_MODEL_2cc139350de742989b6e24d70e490a54" - ], - "layout": "IPY_MODEL_995465a251f64f7a9c1e5541a7f28d4d" - } - }, - "6fe679c08e2b46dd8657160d974912e0": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_56b8c445444b4d39b2c9fb199586ff93", - "placeholder": "​", - "style": "IPY_MODEL_5f2ad751dab24f6aaae736c01e582c14", - "value": "README.md: 100%" - } - }, - "61fc922ce98c4fefbebe7bb6a8ee9317": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_54331fe70c934a7894903d5ca7a960ce", - "max": 10659, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_6270fcf4772f40d59a6f6842060f36a4", - "value": 10659 - } - }, - "2cc139350de742989b6e24d70e490a54": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_14e24b722ecf47a49ebe42e8c3492c1e", - "placeholder": "​", - "style": "IPY_MODEL_b5e36e428e3541fd8a237d0f28a023e1", - "value": " 10.7k/10.7k [00:00<00:00, 555kB/s]" - } - }, - "995465a251f64f7a9c1e5541a7f28d4d": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "56b8c445444b4d39b2c9fb199586ff93": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "5f2ad751dab24f6aaae736c01e582c14": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "54331fe70c934a7894903d5ca7a960ce": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6270fcf4772f40d59a6f6842060f36a4": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "14e24b722ecf47a49ebe42e8c3492c1e": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "b5e36e428e3541fd8a237d0f28a023e1": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "6aa3f285fd8a4a84882b7bece1b639ac": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d20425f4a0594c319bc51ee60d773f79", - "IPY_MODEL_a046d9ff7e1d4577ab28315d681ac36b", - "IPY_MODEL_c9468d94408a4d36a20eae07624a6a09" - ], - "layout": "IPY_MODEL_902551f09b44499b8c8dd88bbdf50a4a" - } - }, - "d20425f4a0594c319bc51ee60d773f79": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5477b553050e42c0b8ed7c2c8c17c025", - "placeholder": "​", - "style": "IPY_MODEL_fcbac845d7c24db6a85e82f190e69a75", - "value": "sentence_bert_config.json: 100%" - } - }, - "a046d9ff7e1d4577ab28315d681ac36b": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_82f4af2b827c4d98a762c2e7ebd03d6e", - "max": 53, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_146de95acc214f60b854553ab983b7ae", - "value": 53 - } - }, - "c9468d94408a4d36a20eae07624a6a09": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a356517795234ab6abb3ffd71b05f296", - "placeholder": "​", - "style": "IPY_MODEL_1757bba5dca64bf3b7d359cd2537e9c5", - "value": " 53.0/53.0 [00:00<00:00, 3.74kB/s]" - } - }, - "902551f09b44499b8c8dd88bbdf50a4a": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "5477b553050e42c0b8ed7c2c8c17c025": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "fcbac845d7c24db6a85e82f190e69a75": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "82f4af2b827c4d98a762c2e7ebd03d6e": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "146de95acc214f60b854553ab983b7ae": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a356517795234ab6abb3ffd71b05f296": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "1757bba5dca64bf3b7d359cd2537e9c5": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "59d890877f8b4f7aa436fa4b82e4cf8d": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9a0acbad43204038b8ca4edeeb0e0d61", - "IPY_MODEL_38518362236e470898cdbfb48ee0d381", - "IPY_MODEL_9aac56d1808d490797bbb175c5afb226" - ], - "layout": "IPY_MODEL_2f848e63b87847d1a299c04052d567d6" - } - }, - "9a0acbad43204038b8ca4edeeb0e0d61": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_52395bed9f6d455897d8d489e7dcb0d3", - "placeholder": "​", - "style": "IPY_MODEL_4e2332a6f482448597a9d4988fec7cf6", - "value": "config.json: 100%" - } - }, - "38518362236e470898cdbfb48ee0d381": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ac55276fbd5a4404ba065a19849119c5", - "max": 612, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_fae66f22c38247ad85078f6ad2530ced", - "value": 612 - } - }, - "9aac56d1808d490797bbb175c5afb226": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a3fcad6db08c4f07adf4ee817afce77a", - "placeholder": "​", - "style": "IPY_MODEL_557fb6c9f787412a8bff6f4798087bb7", - "value": " 612/612 [00:00<00:00, 52.1kB/s]" - } - }, - "2f848e63b87847d1a299c04052d567d6": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "52395bed9f6d455897d8d489e7dcb0d3": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "4e2332a6f482448597a9d4988fec7cf6": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ac55276fbd5a4404ba065a19849119c5": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "fae66f22c38247ad85078f6ad2530ced": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a3fcad6db08c4f07adf4ee817afce77a": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "557fb6c9f787412a8bff6f4798087bb7": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "a4c7c73d90cf44acb43740b223be8101": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_010e7ce97cfb43f195d1dd1811584ea2", - "IPY_MODEL_484f1fc0b5844726b3ac203440ddbdc8", - "IPY_MODEL_9368d437c3534a33b0010ea77be8a5e2" - ], - "layout": "IPY_MODEL_50c576ca5f914c65aeb5b7c03f4b0fa2" - } - }, - "010e7ce97cfb43f195d1dd1811584ea2": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_80bcb933a16c40788a3ad354e545acfe", - "placeholder": "​", - "style": "IPY_MODEL_2bfc17a97664452787740dc202eae370", - "value": "model.safetensors: 100%" - } - }, - "484f1fc0b5844726b3ac203440ddbdc8": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_600f4d36b66d40ecb8353db981d0f1f4", - "max": 90868376, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_1cb7ce33be9345e992769fb7cdeb0e75", - "value": 90868376 - } - }, - "9368d437c3534a33b0010ea77be8a5e2": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f1204ffea0da4058a3973e6d79a8d36c", - "placeholder": "​", - "style": "IPY_MODEL_b91aa35f8bfb4cb29724a0cf864a3158", - "value": " 90.9M/90.9M [00:00<00:00, 203MB/s]" - } - }, - "50c576ca5f914c65aeb5b7c03f4b0fa2": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "80bcb933a16c40788a3ad354e545acfe": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "2bfc17a97664452787740dc202eae370": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "600f4d36b66d40ecb8353db981d0f1f4": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "1cb7ce33be9345e992769fb7cdeb0e75": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f1204ffea0da4058a3973e6d79a8d36c": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "b91aa35f8bfb4cb29724a0cf864a3158": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "b225fd0da4c24d97a502a2df731d1037": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9ed0c298163645a8a10f7704354b3d2c", - "IPY_MODEL_3a2d93764f7645258777f75d2a33b214", - "IPY_MODEL_4d21de5d79b74e7d9dc5ccfb36827358" - ], - "layout": "IPY_MODEL_927cb59be15747418fba1a56d7e22e21" - } - }, - "9ed0c298163645a8a10f7704354b3d2c": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4a5e1f7a57d446e980090aae0325b990", - "placeholder": "​", - "style": "IPY_MODEL_33175a3341134f7ebba6232440e9a770", - "value": "tokenizer_config.json: 100%" - } - }, - "3a2d93764f7645258777f75d2a33b214": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d503a8e5ea4f4bc089c4ae3e95ce1af4", - "max": 350, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_73ffa18b349849fdb7264b748b4189e9", - "value": 350 - } - }, - "4d21de5d79b74e7d9dc5ccfb36827358": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_316f2f8a79ad4b0aa140f149383b2eff", - "placeholder": "​", - "style": "IPY_MODEL_1c9b5e2acf0141898ab2a0639a79d209", - "value": " 350/350 [00:00<00:00, 25.5kB/s]" - } - }, - "927cb59be15747418fba1a56d7e22e21": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "4a5e1f7a57d446e980090aae0325b990": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "33175a3341134f7ebba6232440e9a770": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d503a8e5ea4f4bc089c4ae3e95ce1af4": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "73ffa18b349849fdb7264b748b4189e9": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "316f2f8a79ad4b0aa140f149383b2eff": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "1c9b5e2acf0141898ab2a0639a79d209": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "dd6707fe0bae4aab842dac25bf31880d": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4682a7ebe86a4a60ab6b793718435302", - "IPY_MODEL_1617b257e66c409db6c4ca0d0944a933", - "IPY_MODEL_63825f6200a944bd8c66602a64eee67c" - ], - "layout": "IPY_MODEL_6cad7dfb6dd4441fb569c5533ef044e8" - } - }, - "4682a7ebe86a4a60ab6b793718435302": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1a76918edd75460e8d572e59d3aa5413", - "placeholder": "​", - "style": "IPY_MODEL_1b3112662eb2481087fb3af6e79a4480", - "value": "vocab.txt: 100%" - } - }, - "1617b257e66c409db6c4ca0d0944a933": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_23127b47d99d406c9a53520a3697972b", - "max": 231508, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_1cb27bb3b5354879b7f1a73a24df923d", - "value": 231508 - } - }, - "63825f6200a944bd8c66602a64eee67c": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_77f646bb598d471cacdf772d9799a8df", - "placeholder": "​", - "style": "IPY_MODEL_66782c677c2040d0ae19e7c6da6186ce", - "value": " 232k/232k [00:00<00:00, 1.90MB/s]" - } - }, - "6cad7dfb6dd4441fb569c5533ef044e8": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "1a76918edd75460e8d572e59d3aa5413": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "1b3112662eb2481087fb3af6e79a4480": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "23127b47d99d406c9a53520a3697972b": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "1cb27bb3b5354879b7f1a73a24df923d": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "77f646bb598d471cacdf772d9799a8df": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "66782c677c2040d0ae19e7c6da6186ce": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "c24f6df83a0b46ecbad2be4583d3bb1b": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9101630e52a04193804e02341e38830a", - "IPY_MODEL_9c9441eac4fe46078709fbf9c84c4a4e", - "IPY_MODEL_e9ecac569557483d89b848e31b1a4f85" - ], - "layout": "IPY_MODEL_a641f0330b134a48844212dd72dafa57" - } - }, - "9101630e52a04193804e02341e38830a": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9e2c06d967be46ecbb56e0e0268c9a65", - "placeholder": "​", - "style": "IPY_MODEL_da39e3fbf61941dc9fc05d00fb44a468", - "value": "tokenizer.json: 100%" - } - }, - "9c9441eac4fe46078709fbf9c84c4a4e": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a516325f85594525aac760a5c0d1a0d2", - "max": 466247, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_55529d65863a4a5fb25dca02f0e885e2", - "value": 466247 - } - }, - "e9ecac569557483d89b848e31b1a4f85": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_532e6cc744b54e12a677f33af75318f0", - "placeholder": "​", - "style": "IPY_MODEL_c9c3f643f9b0472ab9dce2649139bb6a", - "value": " 466k/466k [00:00<00:00, 2.37MB/s]" - } - }, - "a641f0330b134a48844212dd72dafa57": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "9e2c06d967be46ecbb56e0e0268c9a65": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "da39e3fbf61941dc9fc05d00fb44a468": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "a516325f85594525aac760a5c0d1a0d2": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "55529d65863a4a5fb25dca02f0e885e2": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "532e6cc744b54e12a677f33af75318f0": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c9c3f643f9b0472ab9dce2649139bb6a": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "26d0829f64b248ada2b0f46b746cd8b1": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_448556b65d2f419ca6cd395ce6d11f3f", - "IPY_MODEL_c0cf7a81656c4fd98d2418fd6336c6ae", - "IPY_MODEL_5c88eed231d14f2da8961a4ac7837417" - ], - "layout": "IPY_MODEL_b4ca94c7f8534b4e857c57a619a7f116" - } - }, - "448556b65d2f419ca6cd395ce6d11f3f": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c18a7f2b29e54916ba81510b2bb21902", - "placeholder": "​", - "style": "IPY_MODEL_067c697db37d43d8b6fa3b155a794f00", - "value": "special_tokens_map.json: 100%" - } - }, - "c0cf7a81656c4fd98d2418fd6336c6ae": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_006473c1d4a247208c17d3258909adb0", - "max": 112, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_8375e9fcaa4a46d895dc074cfed92149", - "value": 112 - } - }, - "5c88eed231d14f2da8961a4ac7837417": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_56cb8feab6c047ca8afb2acfda4d35d1", - "placeholder": "​", - "style": "IPY_MODEL_29ce854a35e94a47af82522cc9f8a92b", - "value": " 112/112 [00:00<00:00, 7.38kB/s]" - } - }, - "b4ca94c7f8534b4e857c57a619a7f116": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c18a7f2b29e54916ba81510b2bb21902": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "067c697db37d43d8b6fa3b155a794f00": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "006473c1d4a247208c17d3258909adb0": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "8375e9fcaa4a46d895dc074cfed92149": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "56cb8feab6c047ca8afb2acfda4d35d1": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "29ce854a35e94a47af82522cc9f8a92b": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "8e394c924a00479ba046afb5eeacc5f3": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_86148800470449979a8baeb58b5f5c88", - "IPY_MODEL_386648192f9e403680aa57d1444e4465", - "IPY_MODEL_c12d9b3dfbe045a3bfba0ecd790af191" - ], - "layout": "IPY_MODEL_0dbce80382dc41429050a896f3203c4e" - } - }, - "86148800470449979a8baeb58b5f5c88": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_90e4273246e44f7c95db4456a00755a3", - "placeholder": "​", - "style": "IPY_MODEL_d57525fd237d4c519e52c76ee7208a30", - "value": "1_Pooling/config.json: 100%" - } - }, - "386648192f9e403680aa57d1444e4465": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6db6a832f6b44c3eb82f93fd60fda7fb", - "max": 190, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_dfcbee09be344b2f8b55ef1c9ddfbd76", - "value": 190 - } - }, - "c12d9b3dfbe045a3bfba0ecd790af191": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0428e3d1575c4ac6b6dfca617d144b7d", - "placeholder": "​", - "style": "IPY_MODEL_dc42c19d950943a88630242dd188c1a7", - "value": " 190/190 [00:00<00:00, 11.4kB/s]" - } - }, - "0dbce80382dc41429050a896f3203c4e": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "90e4273246e44f7c95db4456a00755a3": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d57525fd237d4c519e52c76ee7208a30": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "6db6a832f6b44c3eb82f93fd60fda7fb": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "dfcbee09be344b2f8b55ef1c9ddfbd76": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0428e3d1575c4ac6b6dfca617d144b7d": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "dc42c19d950943a88630242dd188c1a7": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3fb33de4563749d7827c735380453b58": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3d8d6ea4a4ef4493b8033bcc62476375", - "IPY_MODEL_e7693807a9154e7482b4611be6421a0d", - "IPY_MODEL_150b6eaa9bd64dce908775d230740038" - ], - "layout": "IPY_MODEL_4b59623304314a35b030ff805e5bf699" - } - }, - "3d8d6ea4a4ef4493b8033bcc62476375": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1bf348fa5757429790b9272f037fc93a", - "placeholder": "​", - "style": "IPY_MODEL_470138741a50479bb930f00a060cc61e", - "value": "Batches: 100%" - } - }, - "e7693807a9154e7482b4611be6421a0d": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_589f8fbac4e0492e81e35cc6424a75bc", - "max": 1, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_2d92057e09554dcdbe405aafc0f602db", - "value": 1 - } - }, - "150b6eaa9bd64dce908775d230740038": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6eb2d7bb05f442519211928645384c3a", - "placeholder": "​", - "style": "IPY_MODEL_d2206237f06a4419a7304a199dff2e8a", - "value": " 1/1 [00:02<00:00,  2.71s/it]" - } - }, - "4b59623304314a35b030ff805e5bf699": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "1bf348fa5757429790b9272f037fc93a": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "470138741a50479bb930f00a060cc61e": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "589f8fbac4e0492e81e35cc6424a75bc": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "2d92057e09554dcdbe405aafc0f602db": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "6eb2d7bb05f442519211928645384c3a": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d2206237f06a4419a7304a199dff2e8a": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "40f12f8bb6a04034b8c7a95d984469f2": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_98e4143c2bbb42cea2566686eff2fa6a", - "IPY_MODEL_981b3a05c8ae42d29ffb81156ebc1a7d", - "IPY_MODEL_b8513aac81224b139347dfe5011f1563" - ], - "layout": "IPY_MODEL_09c487bb35b6439aaa298665873ee84b" - } - }, - "98e4143c2bbb42cea2566686eff2fa6a": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_da636d6c421f49f48ef43db194faae5e", - "placeholder": "​", - "style": "IPY_MODEL_958bab205e204f87bce793f79869a28b", - "value": "Batches: 100%" - } - }, - "981b3a05c8ae42d29ffb81156ebc1a7d": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8e93910fca484d93ab2eddea9540d307", - "max": 7, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_0a6226f65d354c55b3370c6e87dcc246", - "value": 7 - } - }, - "b8513aac81224b139347dfe5011f1563": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_685026baa834438aa8060a9e681c3263", - "placeholder": "​", - "style": "IPY_MODEL_fe189eed0a834221bd8adb0bdc44b4c8", - "value": " 7/7 [00:00<00:00,  9.45it/s]" - } - }, - "09c487bb35b6439aaa298665873ee84b": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "da636d6c421f49f48ef43db194faae5e": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "958bab205e204f87bce793f79869a28b": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "8e93910fca484d93ab2eddea9540d307": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "0a6226f65d354c55b3370c6e87dcc246": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "685026baa834438aa8060a9e681c3263": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "fe189eed0a834221bd8adb0bdc44b4c8": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "c75d5ab2049146e580efab9da9bbcdb0": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9ce1fb951e79468baa9d1aebfa4c4fae", - "IPY_MODEL_e96d1546380146078c18ec78363f7dac", - "IPY_MODEL_a3c36bb0d3b74c8ea56bf03521465b81" - ], - "layout": "IPY_MODEL_9f306cfd66dc441aba923d4e051911fc" - } - }, - "9ce1fb951e79468baa9d1aebfa4c4fae": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9e3289444cb142c29ad7d569be2e25b8", - "placeholder": "​", - "style": "IPY_MODEL_c20443e17308425596679c0544dab528", - "value": "Batches: 100%" - } - }, - "e96d1546380146078c18ec78363f7dac": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f0bdd8f4d7b84bd5a1c209c591ce8787", - "max": 1, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_126743b52b254e54aa4f65bcb9e65aea", - "value": 1 - } - }, - "a3c36bb0d3b74c8ea56bf03521465b81": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_debae380e6d24fb8ae712a6dd2226152", - "placeholder": "​", - "style": "IPY_MODEL_aacb6f8ca39846d89e1e4e96656e3a36", - "value": " 1/1 [00:00<00:00, 35.73it/s]" - } - }, - "9f306cfd66dc441aba923d4e051911fc": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "9e3289444cb142c29ad7d569be2e25b8": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c20443e17308425596679c0544dab528": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "f0bdd8f4d7b84bd5a1c209c591ce8787": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "126743b52b254e54aa4f65bcb9e65aea": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "debae380e6d24fb8ae712a6dd2226152": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "aacb6f8ca39846d89e1e4e96656e3a36": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "22178a562935411f88cad67659ebb7c4": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_18c7d5708c124911b214199fedb2b642", - "IPY_MODEL_905bc767c24447dc96998d2c5f935776", - "IPY_MODEL_3ad99e40e63d4443a80b2b579b32e972" - ], - "layout": "IPY_MODEL_648ff789b7e640978d79bb73afb8b935" - } - }, - "18c7d5708c124911b214199fedb2b642": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d653f934619843e28c86c1548dfc6b58", - "placeholder": "​", - "style": "IPY_MODEL_9845ed85170a4ca1ac53e2e662ec9aa3", - "value": "Batches: 100%" - } - }, - "905bc767c24447dc96998d2c5f935776": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c23e1195ff58417cba20de29285b4f8d", - "max": 1, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_13c9571c73de48388ffa93f602091320", - "value": 1 - } - }, - "3ad99e40e63d4443a80b2b579b32e972": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_52d9d383c841431198b7a53f14da59f1", - "placeholder": "​", - "style": "IPY_MODEL_ef2b758d4fc241d4becf2ff611954b7e", - "value": " 1/1 [00:00<00:00, 33.69it/s]" - } - }, - "648ff789b7e640978d79bb73afb8b935": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d653f934619843e28c86c1548dfc6b58": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "9845ed85170a4ca1ac53e2e662ec9aa3": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "c23e1195ff58417cba20de29285b4f8d": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "13c9571c73de48388ffa93f602091320": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "52d9d383c841431198b7a53f14da59f1": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ef2b758d4fc241d4becf2ff611954b7e": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "77c3e16292de4c0da1efe12946d59602": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f699af42ec874895beb31960b5a7db38", - "IPY_MODEL_df531bd2864648d3a3cd081f4395ea53", - "IPY_MODEL_eaea17a6fc4e4ae08e8cdb1b894a75ee" - ], - "layout": "IPY_MODEL_e7653f4691f84722ac67ce2d2eea0c8c" - } - }, - "f699af42ec874895beb31960b5a7db38": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0296317b893f4d61ba8dcd45fb02260e", - "placeholder": "​", - "style": "IPY_MODEL_d11dbe6f1f454b239104da75adde3ff4", - "value": "Batches: 100%" - } - }, - "df531bd2864648d3a3cd081f4395ea53": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_53e352c2ac614b58a76b7ea01971b51c", - "max": 1, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_6d6d0b5efd2149ada10a82e450d79a17", - "value": 1 - } - }, - "eaea17a6fc4e4ae08e8cdb1b894a75ee": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_14433f774cab4e70a984afee44780630", - "placeholder": "​", - "style": "IPY_MODEL_d720cffbcc444daabf7105d7f46bb738", - "value": " 1/1 [00:00<00:00, 31.69it/s]" - } - }, - "e7653f4691f84722ac67ce2d2eea0c8c": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "0296317b893f4d61ba8dcd45fb02260e": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d11dbe6f1f454b239104da75adde3ff4": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "53e352c2ac614b58a76b7ea01971b51c": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6d6d0b5efd2149ada10a82e450d79a17": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "14433f774cab4e70a984afee44780630": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d720cffbcc444daabf7105d7f46bb738": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "083963c0130a4e0f9f8b1123495d2c94": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_37f2fb1531d843ca9af8c418b156df0f", - "IPY_MODEL_8a9447ddaef84d18b69597c77d13cdab", - "IPY_MODEL_4be0f4750d7744bda6bdf9e09efc6e83" - ], - "layout": "IPY_MODEL_6f77af81f9d7483eb2d9764083a28936" - } - }, - "37f2fb1531d843ca9af8c418b156df0f": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a77bb82fc74643c5961ad0683719bcc7", - "placeholder": "​", - "style": "IPY_MODEL_592ad30fe72141e099335a37f2b5d65f", - "value": "Batches: 100%" - } - }, - "8a9447ddaef84d18b69597c77d13cdab": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_08a93f48e2ae40dd83c76c02dde1a581", - "max": 1, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_d865aa9825cc46248db4591bd7eb8202", - "value": 1 - } - }, - "4be0f4750d7744bda6bdf9e09efc6e83": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c06a936e3f0f4e1d98b886d7b587eb89", - "placeholder": "​", - "style": "IPY_MODEL_d193499ece3b4e81a4deda0c843d980d", - "value": " 1/1 [00:00<00:00, 33.01it/s]" - } - }, - "6f77af81f9d7483eb2d9764083a28936": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a77bb82fc74643c5961ad0683719bcc7": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "592ad30fe72141e099335a37f2b5d65f": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "08a93f48e2ae40dd83c76c02dde1a581": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d865aa9825cc46248db4591bd7eb8202": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c06a936e3f0f4e1d98b886d7b587eb89": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d193499ece3b4e81a4deda0c843d980d": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3ca7831ca79940c9bb1a34b8ef8f763c": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_db0773b8f5864b68a2ce8357a09d8012", - "IPY_MODEL_06ef9cbf630b445cabe4ad026642f568", - "IPY_MODEL_6901df439dbf4b2180d24ad62e9db4f4" - ], - "layout": "IPY_MODEL_2db40294cdc8476bae1eebb1c85d86fa" - } - }, - "db0773b8f5864b68a2ce8357a09d8012": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c2a875b112014ea1a88e28fb1d887ccf", - "placeholder": "​", - "style": "IPY_MODEL_4474549702694f8e87639d19d50498fd", - "value": "Batches: 100%" - } - }, - "06ef9cbf630b445cabe4ad026642f568": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_92480b75b5ac45e2bf7e55ce5c89daaf", - "max": 1, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_ffd337d71aaf4e1c92c5b53987aa7c72", - "value": 1 - } - }, - "6901df439dbf4b2180d24ad62e9db4f4": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_21e53784d9154c0f9e0755dd7db64b01", - "placeholder": "​", - "style": "IPY_MODEL_394450e19075459ba59f53d4f11e21c2", - "value": " 1/1 [00:00<00:00, 30.44it/s]" - } - }, - "2db40294cdc8476bae1eebb1c85d86fa": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c2a875b112014ea1a88e28fb1d887ccf": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "4474549702694f8e87639d19d50498fd": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "92480b75b5ac45e2bf7e55ce5c89daaf": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ffd337d71aaf4e1c92c5b53987aa7c72": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "21e53784d9154c0f9e0755dd7db64b01": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "394450e19075459ba59f53d4f11e21c2": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "9d386da534e24c7fa7f26f2c7f6a2d17": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fcda6a6a2e8b4df0b5540e707ad486eb", - "IPY_MODEL_37e0240a1d0c4503afd28b0072168c15", - "IPY_MODEL_eb4f7add5c074781b7e9d104969c3564" - ], - "layout": "IPY_MODEL_ffab83c3d271402197ecc4b51225411b" - } - }, - "fcda6a6a2e8b4df0b5540e707ad486eb": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c7b5d06f461c4ce9a089851c75647544", - "placeholder": "​", - "style": "IPY_MODEL_c7c362eaa7ea4174b1dd64377445a4b3", - "value": "Batches: 100%" - } - }, - "37e0240a1d0c4503afd28b0072168c15": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_38dd0aae016e4bc48026d0ee30fb807a", - "max": 1, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_b0de69c2826d4a0ba34b7d7cbce4ff6e", - "value": 1 - } - }, - "eb4f7add5c074781b7e9d104969c3564": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1b2721602abf42e1bb4d29fb3605644f", - "placeholder": "​", - "style": "IPY_MODEL_fe546bd8269d48eba90fb932784eea43", - "value": " 1/1 [00:00<00:00, 34.61it/s]" - } - }, - "ffab83c3d271402197ecc4b51225411b": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c7b5d06f461c4ce9a089851c75647544": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c7c362eaa7ea4174b1dd64377445a4b3": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "38dd0aae016e4bc48026d0ee30fb807a": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "b0de69c2826d4a0ba34b7d7cbce4ff6e": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1b2721602abf42e1bb4d29fb3605644f": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "fe546bd8269d48eba90fb932784eea43": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - } - } + "id": "On6yNuQn1ujD" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" } + ], + "source": [ + "await async_index.client.flushall()" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "gpuType": "T4", + "provenance": [] + }, + "kernelspec": { + "display_name": "redis-ai-res", + "language": "python", + "name": "python3" }, - "nbformat": 4, - "nbformat_minor": 0 -} \ No newline at end of file + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/python-recipes/RAG/02_langchain.ipynb b/python-recipes/RAG/02_langchain.ipynb index e874e7ec..b29e4b8b 100644 --- a/python-recipes/RAG/02_langchain.ipynb +++ b/python-recipes/RAG/02_langchain.ipynb @@ -60,7 +60,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 23, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -68,10 +68,51 @@ "id": "B3v1wUzX1vmq", "outputId": "84a3feff-e7c1-41ba-9ab1-8c975074552e" }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n", + "To disable this warning, you can either:\n", + "\t- Avoid using `tokenizers` before the fork if possible\n", + "\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m25.0.1\u001b[0m\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n", + "To disable this warning, you can either:\n", + "\t- Avoid using `tokenizers` before the fork if possible\n", + "\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m25.0.1\u001b[0m\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], "source": [ - "# NBVAL_SKIP\n", - "!pip install -q redis \"unstructured[pdf]\" sentence-transformers langchain langchain-redis langchain-huggingface" + "%pip install -q redis \"unstructured[pdf]\" sentence-transformers langchain \n", + "%pip install -q langchain-community \"langchain-redis>=0.2.0\" langchain-huggingface langchain-openai" ] }, { @@ -185,7 +226,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Listing available documents ... ['resources/eval_dataset_1000_0.json', 'resources/nke-10k-2023.pdf', 'resources/amzn-10k-2023.pdf', 'resources/metrics_2500_0.csv', 'resources/jnj-10k-2023.pdf', 'resources/new_testset.csv', 'resources/aapl-10k-2023.pdf', 'resources/testset_15.csv', 'resources/retrieval_basic_rag_test.csv', 'resources/nvd-10k-2023.pdf', 'resources/msft-10k-2023.pdf', 'resources/propositions.json', 'resources/generation_basic_rag_test.csv']\n" + "Listing available documents ... ['resources/nke-10k-2023.pdf', 'resources/amzn-10k-2023.pdf', 'resources/metrics_2500_0.csv', 'resources/jnj-10k-2023.pdf', 'resources/aapl-10k-2023.pdf', 'resources/testset_15.csv', 'resources/retrieval_basic_rag_test.csv', 'resources/2022-chevy-colorado-ebrochure.pdf', 'resources/nvd-10k-2023.pdf', 'resources/testset.csv', 'resources/msft-10k-2023.pdf', 'resources/propositions.json', 'resources/generation_basic_rag_test.csv']\n" ] } ], @@ -205,11 +246,19 @@ "execution_count": 3, "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/_g/rr4lnxxx1_z7m78lz89dhvsm0000gp/T/ipykernel_45325/1931079106.py:8: LangChainDeprecationWarning: The class `UnstructuredFileLoader` was deprecated in LangChain 0.2.8 and will be removed in 1.0. An updated version of the class exists in the :class:`~langchain-unstructured package and should be used instead. To use it run `pip install -U :class:`~langchain-unstructured` and import as `from :class:`~langchain_unstructured import UnstructuredLoader``.\n", + " loader = UnstructuredFileLoader(\n" + ] + }, { "name": "stdout", "output_type": "stream", "text": [ - "Done preprocessing. Created 180 chunks of the original pdf resources/nke-10k-2023.pdf\n" + "Done preprocessing. Created 179 chunks of the original pdf resources/nke-10k-2023.pdf\n" ] } ], @@ -439,7 +488,15 @@ "id": "yY69FViAjNv1", "outputId": "ab7b212b-3c55-44b1-cf72-6eb926cf302f" }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "16:18:04 redisvl.index.index INFO Index already exists, not overwriting.\n" + ] + } + ], "source": [ "from langchain_redis import RedisVectorStore\n", "\n", @@ -474,7 +531,7 @@ { "data": { "text/plain": [ - "180" + "1123" ] }, "execution_count": 6, @@ -499,7 +556,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 7, "metadata": { "id": "Gv6SxKOB1vmy" }, @@ -510,7 +567,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 8, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -523,16 +580,16 @@ "data": { "text/plain": [ "[(Document(metadata={'source': 'resources/nke-10k-2023.pdf'}, page_content=\"(Dollars in millions, except per share data)\\n\\nRevenues Cost of sales\\n\\nGross profit Gross margin\\n\\nDemand creation expense Operating overhead expense\\n\\nTotal selling and administrative expense % of revenues\\n\\nInterest expense (income), net\\n\\nOther (income) expense, net Income before income taxes\\n\\nIncome tax expense Effective tax rate\\n\\nNET INCOME Diluted earnings per common share\\n\\n$\\n\\n$ $\\n\\nFISCAL 2023\\n\\n51,217 28,925\\n\\n22,292\\n\\n43.5 %\\n\\n4,060 12,317\\n\\n16,377\\n\\n32.0 % (6)\\n\\n(280) 6,201\\n\\n1,131\\n\\n18.2 %\\n\\n5,070 3.23\\n\\n$\\n\\n$ $\\n\\nFISCAL 2022\\n\\n46,710 25,231\\n\\n21,479\\n\\n46.0 %\\n\\n3,850 10,954\\n\\n14,804\\n\\n31.7 % 205\\n\\n(181) 6,651\\n\\n605 9.1 %\\n\\n6,046 3.75\\n\\n% CHANGE\\n\\n10 % $ 15 %\\n\\n4 %\\n\\n5 % 12 %\\n\\n11 %\\n\\n—\\n\\n— -7 %\\n\\n87 %\\n\\n16 % $ -14 % $\\n\\nFISCAL 2021\\n\\n% CHANGE\\n\\n44,538 24,576\\n\\n5 % 3 %\\n\\n19,962\\n\\n8 %\\n\\n44.8 %\\n\\n3,114 9,911\\n\\n24 % 11 %\\n\\n13,025\\n\\n14 %\\n\\n29.2 % 262\\n\\n—\\n\\n14 6,661\\n\\n— 0 %\\n\\n934 14.0 %\\n\\n35 %\\n\\n5,727 3.56\\n\\n6 % 5 %\\n\\n2023 FORM 10-K 31\\n\\nTable of Contents\\n\\nCONSOLIDATED OPERATING RESULTS REVENUES\\n\\n(Dollars in millions)\\n\\nFISCAL 2023\\n\\nFISCAL 2022\\n\\n% CHANGE\\n\\n% CHANGE EXCLUDING CURRENCY (1) CHANGES\\n\\nFISCAL 2021\\n\\n% CHANGE\\n\\nNIKE, Inc. Revenues:\\n\\nNIKE Brand Revenues by:\\n\\nFootwear Apparel\\n\\n$\\n\\n33,135 $ 13,843\\n\\n29,143 13,567\\n\\n14 % 2 %\\n\\n20 % $ 8 %\\n\\n28,021 12,865\\n\\n4 % 5 %\\n\\nEquipment Global Brand Divisions\\n\\n(2)\\n\\nTotal NIKE Brand Revenues\\n\\n$\\n\\n1,727 58\\n\\n48,763 $\\n\\n1,624 102 44,436\\n\\n6 % -43 % 10 %\\n\\n13 % -43 % 16 % $\\n\\n1,382 25 42,293\\n\\n18 % 308 % 5 %\\n\\nConverse Corporate\\n\\n(3)\\n\\n2,427 27\\n\\n2,346 (72)\\n\\n3 % —\\n\\n8 % —\\n\\n2,205 40\\n\\n6 % —\\n\\nTOTAL NIKE, INC. REVENUES\\n\\n$\\n\\n51,217 $\\n\\n46,710\\n\\n10 %\\n\\n16 % $\\n\\n44,538\\n\\n5 %\\n\\nSupplemental NIKE Brand Revenues Details: NIKE Brand Revenues by:\\n\\nSales to Wholesale Customers\\n\\n$\\n\\n27,397 $\\n\\n25,608\\n\\n7 %\\n\\n14 % $\\n\\n25,898\\n\\n1 %\\n\\nSales through NIKE Direct Global Brand Divisions\\n\\n(2)\\n\\n21,308 58\\n\\n18,726 102\\n\\n14 % -43 %\\n\\n20 % -43 %\\n\\n16,370 25\\n\\n14 % 308 %\\n\\nTOTAL NIKE BRAND REVENUES (1) NIKE Brand Revenues on a Wholesale Equivalent Basis :\\n\\n$\\n\\n48,763 $\\n\\n44,436\\n\\n10 %\\n\\n16 % $\\n\\n42,293\\n\\n5 %\\n\\nSales to Wholesale Customers Sales from our Wholesale Operations to NIKE Direct Operations\\n\\nTOTAL NIKE BRAND WHOLESALE EQUIVALENT REVENUES NIKE Brand Wholesale Equivalent Revenues by:\\n\\n(1),(4)\\n\\n$\\n\\n$\\n\\n27,397 $ 12,730\\n\\n40,127 $\\n\\n25,608 10,543\\n\\n36,151\\n\\n7 % 21 %\\n\\n11 %\\n\\n14 % $ 27 %\\n\\n18 % $\\n\\n25,898 9,872\\n\\n35,770\\n\\n1 % 7 % 1 %\\n\\nMen's Women's NIKE Kids'\\n\\n$\\n\\n20,733 $ 8,606 5,038\\n\\n18,797 8,273 4,874\\n\\n10 % 4 % 3 %\\n\\n17 % $ 11 % 10 %\\n\\n18,391 8,225 4,882\\n\\n2 % 1 % 0 %\\n\\nJordan Brand (5) Others\\n\\n6,589 (839)\\n\\n5,122 (915)\\n\\n29 % 8 %\\n\\n35 % -3 %\"),\n", - " 0.49901175499),\n", + " 0.499011814594),\n", + " (Document(metadata={'source': 'resources/nke-10k-2023.pdf'}, page_content=\"(Dollars in millions, except per share data)\\n\\nRevenues Cost of sales\\n\\nGross profit Gross margin\\n\\nDemand creation expense Operating overhead expense\\n\\nTotal selling and administrative expense % of revenues\\n\\nInterest expense (income), net\\n\\nOther (income) expense, net Income before income taxes\\n\\nIncome tax expense Effective tax rate\\n\\nNET INCOME Diluted earnings per common share\\n\\n$\\n\\n$ $\\n\\nFISCAL 2023\\n\\n51,217 28,925\\n\\n22,292\\n\\n43.5 %\\n\\n4,060 12,317\\n\\n16,377\\n\\n32.0 % (6)\\n\\n(280) 6,201\\n\\n1,131\\n\\n18.2 %\\n\\n5,070 3.23\\n\\n$\\n\\n$ $\\n\\nFISCAL 2022\\n\\n46,710 25,231\\n\\n21,479\\n\\n46.0 %\\n\\n3,850 10,954\\n\\n14,804\\n\\n31.7 % 205\\n\\n(181) 6,651\\n\\n605 9.1 %\\n\\n6,046 3.75\\n\\n% CHANGE\\n\\n10 % $ 15 %\\n\\n4 %\\n\\n5 % 12 %\\n\\n11 %\\n\\n—\\n\\n— -7 %\\n\\n87 %\\n\\n16 % $ -14 % $\\n\\nFISCAL 2021\\n\\n% CHANGE\\n\\n44,538 24,576\\n\\n5 % 3 %\\n\\n19,962\\n\\n8 %\\n\\n44.8 %\\n\\n3,114 9,911\\n\\n24 % 11 %\\n\\n13,025\\n\\n14 %\\n\\n29.2 % 262\\n\\n—\\n\\n14 6,661\\n\\n— 0 %\\n\\n934 14.0 %\\n\\n35 %\\n\\n5,727 3.56\\n\\n6 % 5 %\\n\\n2023 FORM 10-K 31\\n\\nTable of Contents\\n\\nCONSOLIDATED OPERATING RESULTS REVENUES\\n\\n(Dollars in millions)\\n\\nFISCAL 2023\\n\\nFISCAL 2022\\n\\n% CHANGE\\n\\n% CHANGE EXCLUDING CURRENCY (1) CHANGES\\n\\nFISCAL 2021\\n\\n% CHANGE\\n\\nNIKE, Inc. Revenues:\\n\\nNIKE Brand Revenues by:\\n\\nFootwear Apparel\\n\\n$\\n\\n33,135 $ 13,843\\n\\n29,143 13,567\\n\\n14 % 2 %\\n\\n20 % $ 8 %\\n\\n28,021 12,865\\n\\n4 % 5 %\\n\\nEquipment Global Brand Divisions\\n\\n(2)\\n\\nTotal NIKE Brand Revenues\\n\\n$\\n\\n1,727 58\\n\\n48,763 $\\n\\n1,624 102 44,436\\n\\n6 % -43 % 10 %\\n\\n13 % -43 % 16 % $\\n\\n1,382 25 42,293\\n\\n18 % 308 % 5 %\\n\\nConverse Corporate\\n\\n(3)\\n\\n2,427 27\\n\\n2,346 (72)\\n\\n3 % —\\n\\n8 % —\\n\\n2,205 40\\n\\n6 % —\\n\\nTOTAL NIKE, INC. REVENUES\\n\\n$\\n\\n51,217 $\\n\\n46,710\\n\\n10 %\\n\\n16 % $\\n\\n44,538\\n\\n5 %\\n\\nSupplemental NIKE Brand Revenues Details: NIKE Brand Revenues by:\\n\\nSales to Wholesale Customers\\n\\n$\\n\\n27,397 $\\n\\n25,608\\n\\n7 %\\n\\n14 % $\\n\\n25,898\\n\\n1 %\\n\\nSales through NIKE Direct Global Brand Divisions\\n\\n(2)\\n\\n21,308 58\\n\\n18,726 102\\n\\n14 % -43 %\\n\\n20 % -43 %\\n\\n16,370 25\\n\\n14 % 308 %\\n\\nTOTAL NIKE BRAND REVENUES (1) NIKE Brand Revenues on a Wholesale Equivalent Basis :\\n\\n$\\n\\n48,763 $\\n\\n44,436\\n\\n10 %\\n\\n16 % $\\n\\n42,293\\n\\n5 %\\n\\nSales to Wholesale Customers Sales from our Wholesale Operations to NIKE Direct Operations\\n\\nTOTAL NIKE BRAND WHOLESALE EQUIVALENT REVENUES NIKE Brand Wholesale Equivalent Revenues by:\\n\\n(1),(4)\\n\\n$\\n\\n$\\n\\n27,397 $ 12,730\\n\\n40,127 $\\n\\n25,608 10,543\\n\\n36,151\\n\\n7 % 21 %\\n\\n11 %\\n\\n14 % $ 27 %\\n\\n18 % $\\n\\n25,898 9,872\\n\\n35,770\\n\\n1 % 7 % 1 %\\n\\nMen's Women's NIKE Kids'\\n\\n$\\n\\n20,733 $ 8,606 5,038\\n\\n18,797 8,273 4,874\\n\\n10 % 4 % 3 %\\n\\n17 % $ 11 % 10 %\\n\\n18,391 8,225 4,882\\n\\n2 % 1 % 0 %\\n\\nJordan Brand (5) Others\\n\\n6,589 (839)\\n\\n5,122 (915)\\n\\n29 % 8 %\\n\\n35 % -3 %\"),\n", + " 0.499011814594),\n", + " (Document(metadata={'source': 'resources/nke-10k-2023.pdf'}, page_content=\"(Dollars in millions, except per share data)\\n\\nRevenues Cost of sales\\n\\nGross profit Gross margin\\n\\nDemand creation expense Operating overhead expense\\n\\nTotal selling and administrative expense % of revenues\\n\\nInterest expense (income), net\\n\\nOther (income) expense, net Income before income taxes\\n\\nIncome tax expense Effective tax rate\\n\\nNET INCOME Diluted earnings per common share\\n\\n$\\n\\n$ $\\n\\nFISCAL 2023\\n\\n51,217 28,925\\n\\n22,292\\n\\n43.5 %\\n\\n4,060 12,317\\n\\n16,377\\n\\n32.0 % (6)\\n\\n(280) 6,201\\n\\n1,131\\n\\n18.2 %\\n\\n5,070 3.23\\n\\n$\\n\\n$ $\\n\\nFISCAL 2022\\n\\n46,710 25,231\\n\\n21,479\\n\\n46.0 %\\n\\n3,850 10,954\\n\\n14,804\\n\\n31.7 % 205\\n\\n(181) 6,651\\n\\n605 9.1 %\\n\\n6,046 3.75\\n\\n% CHANGE\\n\\n10 % $ 15 %\\n\\n4 %\\n\\n5 % 12 %\\n\\n11 %\\n\\n—\\n\\n— -7 %\\n\\n87 %\\n\\n16 % $ -14 % $\\n\\nFISCAL 2021\\n\\n% CHANGE\\n\\n44,538 24,576\\n\\n5 % 3 %\\n\\n19,962\\n\\n8 %\\n\\n44.8 %\\n\\n3,114 9,911\\n\\n24 % 11 %\\n\\n13,025\\n\\n14 %\\n\\n29.2 % 262\\n\\n—\\n\\n14 6,661\\n\\n— 0 %\\n\\n934 14.0 %\\n\\n35 %\\n\\n5,727 3.56\\n\\n6 % 5 %\\n\\n2023 FORM 10-K 31\\n\\nTable of Contents\\n\\nCONSOLIDATED OPERATING RESULTS REVENUES\\n\\n(Dollars in millions)\\n\\nFISCAL 2023\\n\\nFISCAL 2022\\n\\n% CHANGE\\n\\n% CHANGE EXCLUDING CURRENCY (1) CHANGES\\n\\nFISCAL 2021\\n\\n% CHANGE\\n\\nNIKE, Inc. Revenues:\\n\\nNIKE Brand Revenues by:\\n\\nFootwear Apparel\\n\\n$\\n\\n33,135 $ 13,843\\n\\n29,143 13,567\\n\\n14 % 2 %\\n\\n20 % $ 8 %\\n\\n28,021 12,865\\n\\n4 % 5 %\\n\\nEquipment Global Brand Divisions\\n\\n(2)\\n\\nTotal NIKE Brand Revenues\\n\\n$\\n\\n1,727 58\\n\\n48,763 $\\n\\n1,624 102 44,436\\n\\n6 % -43 % 10 %\\n\\n13 % -43 % 16 % $\\n\\n1,382 25 42,293\\n\\n18 % 308 % 5 %\\n\\nConverse Corporate\\n\\n(3)\\n\\n2,427 27\\n\\n2,346 (72)\\n\\n3 % —\\n\\n8 % —\\n\\n2,205 40\\n\\n6 % —\\n\\nTOTAL NIKE, INC. REVENUES\\n\\n$\\n\\n51,217 $\\n\\n46,710\\n\\n10 %\\n\\n16 % $\\n\\n44,538\\n\\n5 %\\n\\nSupplemental NIKE Brand Revenues Details: NIKE Brand Revenues by:\\n\\nSales to Wholesale Customers\\n\\n$\\n\\n27,397 $\\n\\n25,608\\n\\n7 %\\n\\n14 % $\\n\\n25,898\\n\\n1 %\\n\\nSales through NIKE Direct Global Brand Divisions\\n\\n(2)\\n\\n21,308 58\\n\\n18,726 102\\n\\n14 % -43 %\\n\\n20 % -43 %\\n\\n16,370 25\\n\\n14 % 308 %\\n\\nTOTAL NIKE BRAND REVENUES (1) NIKE Brand Revenues on a Wholesale Equivalent Basis :\\n\\n$\\n\\n48,763 $\\n\\n44,436\\n\\n10 %\\n\\n16 % $\\n\\n42,293\\n\\n5 %\\n\\nSales to Wholesale Customers Sales from our Wholesale Operations to NIKE Direct Operations\\n\\nTOTAL NIKE BRAND WHOLESALE EQUIVALENT REVENUES NIKE Brand Wholesale Equivalent Revenues by:\\n\\n(1),(4)\\n\\n$\\n\\n$\\n\\n27,397 $ 12,730\\n\\n40,127 $\\n\\n25,608 10,543\\n\\n36,151\\n\\n7 % 21 %\\n\\n11 %\\n\\n14 % $ 27 %\\n\\n18 % $\\n\\n25,898 9,872\\n\\n35,770\\n\\n1 % 7 % 1 %\\n\\nMen's Women's NIKE Kids'\\n\\n$\\n\\n20,733 $ 8,606 5,038\\n\\n18,797 8,273 4,874\\n\\n10 % 4 % 3 %\\n\\n17 % $ 11 % 10 %\\n\\n18,391 8,225 4,882\\n\\n2 % 1 % 0 %\\n\\nJordan Brand (5) Others\\n\\n6,589 (839)\\n\\n5,122 (915)\\n\\n29 % 8 %\\n\\n35 % -3 %\"),\n", + " 0.499011814594),\n", " (Document(metadata={'source': 'resources/nke-10k-2023.pdf'}, page_content=\"Tax (expense) benefit Gain (loss) net of tax\\n\\n5 (14)\\n\\n(9) 22\\n\\nTotal net gain (loss) reclassified for the period\\n\\n$\\n\\n463 $\\n\\n30\\n\\n2023 FORM 10-K 82\\n\\nTable of Contents\\n\\nNOTE 14 — REVENUES\\n\\nDISAGGREGATION OF REVENUES The following tables present the Company's Revenues disaggregated by reportable operating segment, major product line and distribution channel:\\n\\n(Dollars in millions)\\n\\nNORTH AMERICA\\n\\nEUROPE, MIDDLE EAST & AFRICA\\n\\nGREATER CHINA\\n\\nYEAR ENDED MAY 31, 2023 ASIA PACIFIC & LATIN (1)\\n\\nGLOBAL BRAND DIVISIONS\\n\\nTOTAL NIKE\\n\\nAMERICA\\n\\nBRAND CONVERSE CORPORATE\\n\\nTOTAL NIKE, INC.\\n\\nRevenues by: Footwear\\n\\n$\\n\\n14,897 $\\n\\n8,260 $\\n\\n5,435 $\\n\\n4,543 $\\n\\n— $\\n\\n33,135 $\\n\\n2,155 $\\n\\n— $\\n\\n35,290\\n\\nApparel Equipment Other\\n\\n5,947 764 —\\n\\n4,566 592 —\\n\\n1,666 147 —\\n\\n1,664 224 —\\n\\n— — 58\\n\\n13,843 1,727 58\\n\\n90 28 154\\n\\n— — 27\\n\\n13,933 1,755 239\\n\\nTOTAL REVENUES\\n\\n$\\n\\n21,608 $\\n\\n13,418 $\\n\\n7,248 $\\n\\n6,431 $\\n\\n58 $\\n\\n48,763 $\\n\\n2,427 $\\n\\n27 $\\n\\n51,217\\n\\nRevenues by:\\n\\nSales to Wholesale Customers Sales through Direct to Consumer\\n\\n$\\n\\n11,273 $ 10,335\\n\\n8,522 $ 4,896\\n\\n3,866 $ 3,382\\n\\n3,736 $ 2,695\\n\\n— $ —\\n\\n27,397 $ 21,308\\n\\n1,299 $ 974\\n\\n— $ —\\n\\n28,696 22,282\\n\\nOther\\n\\nTOTAL REVENUES\\n\\n$\\n\\n—\\n\\n21,608 $\\n\\n—\\n\\n13,418 $\\n\\n— 7,248 $\\n\\n— 6,431 $\\n\\n58 58 $\\n\\n58\\n\\n48,763 $\\n\\n154 2,427 $\\n\\n27 27 $\\n\\n239 51,217\\n\\n(1) Refer to Note 18 — Acquisitions and Divestitures for additional information on the transition of the Company's NIKE Brand businesses in its CASA territory to third-party distributors.\\n\\nYEAR ENDED MAY 31, 2022\\n\\n(Dollars in millions)\\n\\nNORTH AMERICA\\n\\nEUROPE, MIDDLE EAST & AFRICA\\n\\nGREATER CHINA\\n\\nASIA PACIFIC & LATIN AMERICA\\n\\nGLOBAL BRAND DIVISIONS\\n\\nTOTAL NIKE\\n\\nBRAND CONVERSE CORPORATE\\n\\nTOTAL NIKE, INC.\\n\\nRevenues by: Footwear Apparel\\n\\n$\\n\\n12,228 $ 5,492\\n\\n7,388 $ 4,527\\n\\n5,416 $ 1,938\\n\\n4,111 $ 1,610\\n\\n— $ —\\n\\n29,143 $ 13,567\\n\\n2,094 $ 103\\n\\n— $ —\\n\\n31,237 13,670\\n\\nEquipment Other\\n\\n633 —\\n\\n564 —\\n\\n193 —\\n\\n234 —\\n\\n— 102\\n\\n1,624 102\\n\\n26 123\\n\\n— (72)\\n\\n1,650 153\\n\\nTOTAL REVENUES Revenues by:\\n\\n$\\n\\n18,353 $\\n\\n12,479 $\\n\\n7,547 $\\n\\n5,955 $\\n\\n102 $\\n\\n44,436 $\\n\\n2,346 $\\n\\n(72) $\\n\\n46,710\\n\\nSales to Wholesale Customers Sales through Direct to Consumer Other\\n\\n$\\n\\n9,621 $ 8,732 —\\n\\n8,377 $ 4,102 —\\n\\n4,081 $ 3,466 —\\n\\n3,529 $ 2,426 —\\n\\n— $ — 102\\n\\n25,608 $ 18,726 102\\n\\n1,292 $ 931 123\\n\\n— $ — (72)\\n\\n26,900 19,657 153\\n\\nTOTAL REVENUES\\n\\n$\\n\\n18,353 $\\n\\n12,479 $\\n\\n7,547 $\\n\\n5,955 $\\n\\n102 $\\n\\n44,436 $\\n\\n2,346 $\\n\\n(72) $\\n\\n46,710\\n\\n2023 FORM 10-K 83\\n\\nTable of Contents\\n\\nYEAR ENDED MAY 31, 2021\\n\\n(Dollars in millions)\\n\\nNORTH AMERICA\\n\\nEUROPE, MIDDLE EAST & AFRICA\\n\\nGREATER CHINA\"),\n", - " 0.529602944851),\n", - " (Document(metadata={'source': 'resources/nke-10k-2023.pdf'}, page_content=\"NIKE, INC. CONSOLIDATED STATEMENTS OF INCOME\\n\\n(In millions, except per share data)\\n\\nRevenues Cost of sales\\n\\nGross profit\\n\\nDemand creation expense Operating overhead expense\\n\\nTotal selling and administrative expense\\n\\nInterest expense (income), net\\n\\nOther (income) expense, net Income before income taxes\\n\\nIncome tax expense NET INCOME\\n\\nEarnings per common share:\\n\\nBasic Diluted\\n\\nWeighted average common shares outstanding:\\n\\nBasic Diluted\\n\\nThe accompanying Notes to the Consolidated Financial Statements are an integral part of this statement.\\n\\n$\\n\\n$\\n\\n$ $\\n\\nYEAR ENDED MAY 31,\\n\\n2023\\n\\n2022\\n\\n2021\\n\\n51,217 $ 28,925\\n\\n46,710 $ 25,231\\n\\n44,538 24,576\\n\\n22,292 4,060 12,317\\n\\n21,479 3,850 10,954\\n\\n19,962 3,114 9,911\\n\\n16,377 (6)\\n\\n14,804 205\\n\\n13,025 262\\n\\n(280) 6,201\\n\\n(181) 6,651\\n\\n14 6,661\\n\\n1,131 5,070 $\\n\\n605 6,046 $\\n\\n934 5,727\\n\\n3.27 $ 3.23 $\\n\\n3.83 $ 3.75 $\\n\\n3.64 3.56\\n\\n1,551.6 1,569.8\\n\\n1,578.8 1,610.8\\n\\n1,573.0 1,609.4\\n\\n2023 FORM 10-K 55\\n\\nTable of Contents\\n\\nNIKE, INC. CONSOLIDATED STATEMENTS OF COMPREHENSIVE INCOME\\n\\nYEAR ENDED MAY 31,\\n\\n(Dollars in millions)\\n\\n2023\\n\\n2022\\n\\nNet income Other comprehensive income (loss), net of tax:\\n\\n$\\n\\n5,070 $\\n\\n6,046 $\\n\\nChange in net foreign currency translation adjustment\\n\\n267\\n\\n(522)\\n\\nChange in net gains (losses) on cash flow hedges Change in net gains (losses) on other\\n\\n(348) (6)\\n\\n1,214 6\\n\\nTotal other comprehensive income (loss), net of tax TOTAL COMPREHENSIVE INCOME\\n\\n$\\n\\n(87) 4,983 $\\n\\n698 6,744 $\\n\\nThe accompanying Notes to the Consolidated Financial Statements are an integral part of this statement.\\n\\n2023 FORM 10-K 56\\n\\n2021\\n\\n5,727\\n\\n496\\n\\n(825) 5\\n\\n(324) 5,403\\n\\nTable of Contents\\n\\nNIKE, INC. CONSOLIDATED BALANCE SHEETS\\n\\n(In millions)\\n\\nASSETS\\n\\nCurrent assets:\\n\\nCash and equivalents Short-term investments\\n\\nAccounts receivable, net Inventories Prepaid expenses and other current assets\\n\\nTotal current assets\\n\\nProperty, plant and equipment, net\\n\\nOperating lease right-of-use assets, net Identifiable intangible assets, net Goodwill\\n\\nDeferred income taxes and other assets\\n\\nTOTAL ASSETS\\n\\nLIABILITIES AND SHAREHOLDERS' EQUITY Current liabilities:\\n\\nCurrent portion of long-term debt Notes payable Accounts payable\\n\\nCurrent portion of operating lease liabilities Accrued liabilities Income taxes payable\\n\\nTotal current liabilities\\n\\nLong-term debt\\n\\nOperating lease liabilities Deferred income taxes and other liabilities Commitments and contingencies (Note 16)\\n\\nRedeemable preferred stock Shareholders' equity: Common stock at stated value:\"),\n", - " 0.560668945312),\n", - " (Document(metadata={'source': 'resources/nke-10k-2023.pdf'}, page_content='Lower margin in our NIKE Direct business, driven by higher promotional activity to liquidate inventory in the current period compared to lower promotional activity in\\n\\nthe prior period resulting from lower available inventory supply;\\n\\nUnfavorable changes in net foreign currency exchange rates, including hedges; and\\n\\nLower off-price margin, on a wholesale equivalent basis.\\n\\nThis was partially offset by:\\n\\nHigher NIKE Brand full-price ASP, net of discounts, on a wholesale equivalent basis, due primarily to strategic pricing actions and product mix; and\\n\\nLower other costs, primarily due to higher inventory obsolescence reserves recognized in Greater China in the fourth quarter of fiscal 2022.\\n\\nTOTAL SELLING AND ADMINISTRATIVE EXPENSE\\n\\n(Dollars in millions)\\n\\nDemand creation expense Operating overhead expense\\n\\n(1)\\n\\n$\\n\\nFISCAL 2023 4,060 12,317\\n\\n$\\n\\nFISCAL 2022 3,850 10,954\\n\\n% CHANGE\\n\\n5 % $\\n\\n12 %\\n\\nFISCAL 2021 3,114 9,911\\n\\nTotal selling and administrative expense\\n\\n% of revenues\\n\\n$\\n\\n16,377\\n\\n32.0 %\\n\\n$\\n\\n14,804\\n\\n31.7 %\\n\\n11 % $ 30 bps\\n\\n13,025\\n\\n29.2 %\\n\\n(1) Demand creation expense consists of advertising and promotion costs, including costs of endorsement contracts, complimentary product, television, digital and print advertising and media costs, brand\\n\\nevents and retail brand presentation.\\n\\nFISCAL 2023 COMPARED TO FISCAL 2022\\n\\nDemand creation expense increased 5% for fiscal 2023, primarily due to higher advertising and marketing expense and higher sports marketing expense. Changes in foreign currency exchange rates decreased Demand creation expense by approximately 4 percentage points.\\n\\nOperating overhead expense increased 12%, primarily due to higher wage-related expenses, NIKE Direct variable costs, strategic technology enterprise investments and other administrative costs. Changes in foreign currency exchange rates decreased Operating overhead expense by approximately 3 percentage points.\\n\\n2023 FORM 10-K 34\\n\\n% CHANGE\\n\\n24 % 11 %\\n\\n14 % 250 bps\\n\\nTable of Contents\\n\\nOTHER (INCOME) EXPENSE, NET\\n\\n(Dollars in millions)\\n\\nFISCAL 2023\\n\\nFISCAL 2022\\n\\nFISCAL 2021\\n\\nOther (income) expense, net\\n\\n$\\n\\n(280) $\\n\\n(181) $\\n\\n14\\n\\nOther (income) expense, net comprises foreign currency conversion gains and losses from the remeasurement of monetary assets and liabilities denominated in non- functional currencies and the impact of certain foreign currency derivative instruments, as well as unusual or non-operating transactions that are outside the normal course of business.'),\n", - " 0.574473142624)]" + " 0.529603242874)]" ] }, - "execution_count": 9, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -544,7 +601,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 9, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -557,16 +614,16 @@ "data": { "text/plain": [ "[(Document(metadata={'source': 'resources/nke-10k-2023.pdf'}, page_content=\"(Dollars in millions, except per share data)\\n\\nRevenues Cost of sales\\n\\nGross profit Gross margin\\n\\nDemand creation expense Operating overhead expense\\n\\nTotal selling and administrative expense % of revenues\\n\\nInterest expense (income), net\\n\\nOther (income) expense, net Income before income taxes\\n\\nIncome tax expense Effective tax rate\\n\\nNET INCOME Diluted earnings per common share\\n\\n$\\n\\n$ $\\n\\nFISCAL 2023\\n\\n51,217 28,925\\n\\n22,292\\n\\n43.5 %\\n\\n4,060 12,317\\n\\n16,377\\n\\n32.0 % (6)\\n\\n(280) 6,201\\n\\n1,131\\n\\n18.2 %\\n\\n5,070 3.23\\n\\n$\\n\\n$ $\\n\\nFISCAL 2022\\n\\n46,710 25,231\\n\\n21,479\\n\\n46.0 %\\n\\n3,850 10,954\\n\\n14,804\\n\\n31.7 % 205\\n\\n(181) 6,651\\n\\n605 9.1 %\\n\\n6,046 3.75\\n\\n% CHANGE\\n\\n10 % $ 15 %\\n\\n4 %\\n\\n5 % 12 %\\n\\n11 %\\n\\n—\\n\\n— -7 %\\n\\n87 %\\n\\n16 % $ -14 % $\\n\\nFISCAL 2021\\n\\n% CHANGE\\n\\n44,538 24,576\\n\\n5 % 3 %\\n\\n19,962\\n\\n8 %\\n\\n44.8 %\\n\\n3,114 9,911\\n\\n24 % 11 %\\n\\n13,025\\n\\n14 %\\n\\n29.2 % 262\\n\\n—\\n\\n14 6,661\\n\\n— 0 %\\n\\n934 14.0 %\\n\\n35 %\\n\\n5,727 3.56\\n\\n6 % 5 %\\n\\n2023 FORM 10-K 31\\n\\nTable of Contents\\n\\nCONSOLIDATED OPERATING RESULTS REVENUES\\n\\n(Dollars in millions)\\n\\nFISCAL 2023\\n\\nFISCAL 2022\\n\\n% CHANGE\\n\\n% CHANGE EXCLUDING CURRENCY (1) CHANGES\\n\\nFISCAL 2021\\n\\n% CHANGE\\n\\nNIKE, Inc. Revenues:\\n\\nNIKE Brand Revenues by:\\n\\nFootwear Apparel\\n\\n$\\n\\n33,135 $ 13,843\\n\\n29,143 13,567\\n\\n14 % 2 %\\n\\n20 % $ 8 %\\n\\n28,021 12,865\\n\\n4 % 5 %\\n\\nEquipment Global Brand Divisions\\n\\n(2)\\n\\nTotal NIKE Brand Revenues\\n\\n$\\n\\n1,727 58\\n\\n48,763 $\\n\\n1,624 102 44,436\\n\\n6 % -43 % 10 %\\n\\n13 % -43 % 16 % $\\n\\n1,382 25 42,293\\n\\n18 % 308 % 5 %\\n\\nConverse Corporate\\n\\n(3)\\n\\n2,427 27\\n\\n2,346 (72)\\n\\n3 % —\\n\\n8 % —\\n\\n2,205 40\\n\\n6 % —\\n\\nTOTAL NIKE, INC. REVENUES\\n\\n$\\n\\n51,217 $\\n\\n46,710\\n\\n10 %\\n\\n16 % $\\n\\n44,538\\n\\n5 %\\n\\nSupplemental NIKE Brand Revenues Details: NIKE Brand Revenues by:\\n\\nSales to Wholesale Customers\\n\\n$\\n\\n27,397 $\\n\\n25,608\\n\\n7 %\\n\\n14 % $\\n\\n25,898\\n\\n1 %\\n\\nSales through NIKE Direct Global Brand Divisions\\n\\n(2)\\n\\n21,308 58\\n\\n18,726 102\\n\\n14 % -43 %\\n\\n20 % -43 %\\n\\n16,370 25\\n\\n14 % 308 %\\n\\nTOTAL NIKE BRAND REVENUES (1) NIKE Brand Revenues on a Wholesale Equivalent Basis :\\n\\n$\\n\\n48,763 $\\n\\n44,436\\n\\n10 %\\n\\n16 % $\\n\\n42,293\\n\\n5 %\\n\\nSales to Wholesale Customers Sales from our Wholesale Operations to NIKE Direct Operations\\n\\nTOTAL NIKE BRAND WHOLESALE EQUIVALENT REVENUES NIKE Brand Wholesale Equivalent Revenues by:\\n\\n(1),(4)\\n\\n$\\n\\n$\\n\\n27,397 $ 12,730\\n\\n40,127 $\\n\\n25,608 10,543\\n\\n36,151\\n\\n7 % 21 %\\n\\n11 %\\n\\n14 % $ 27 %\\n\\n18 % $\\n\\n25,898 9,872\\n\\n35,770\\n\\n1 % 7 % 1 %\\n\\nMen's Women's NIKE Kids'\\n\\n$\\n\\n20,733 $ 8,606 5,038\\n\\n18,797 8,273 4,874\\n\\n10 % 4 % 3 %\\n\\n17 % $ 11 % 10 %\\n\\n18,391 8,225 4,882\\n\\n2 % 1 % 0 %\\n\\nJordan Brand (5) Others\\n\\n6,589 (839)\\n\\n5,122 (915)\\n\\n29 % 8 %\\n\\n35 % -3 %\"),\n", - " 0.49901175499),\n", - " (Document(metadata={'source': 'resources/nke-10k-2023.pdf'}, page_content='NIKE Brand revenues, which represented over 90% of NIKE, Inc. Revenues, increased 10% and 16% on a reported and currency-neutral basis, respectively. This increase was primarily due to higher revenues in Men\\'s, the Jordan Brand, Women\\'s and Kids\\' which grew 17%, 35%,11% and 10%, respectively, on a wholesale equivalent basis.\\n\\nNIKE Brand footwear revenues increased 20% on a currency-neutral basis, due to higher revenues in Men\\'s, the Jordan Brand, Women\\'s and Kids\\'. Unit sales of footwear increased 13%, while higher average selling price (\"ASP\") per pair contributed approximately 7 percentage points of footwear revenue growth. Higher ASP was primarily due to higher full-price ASP, net of discounts, on a wholesale equivalent basis, and growth in the size of our NIKE Direct business, partially offset by lower NIKE Direct ASP.\\n\\nNIKE Brand apparel revenues increased 8% on a currency-neutral basis, primarily due to higher revenues in Men\\'s. Unit sales of apparel increased 4%, while higher ASP per unit contributed approximately 4 percentage points of apparel revenue growth. Higher ASP was primarily due to higher full-price ASP and growth in the size of our NIKE Direct business, partially offset by lower NIKE Direct ASP, reflecting higher promotional activity.\\n\\nNIKE Direct revenues increased 14% from $18.7 billion in fiscal 2022 to $21.3 billion in fiscal 2023. On a currency-neutral basis, NIKE Direct revenues increased 20% primarily driven by NIKE Brand Digital sales growth of 24%, comparable store sales growth of 14% and the addition of new stores. For further information regarding comparable store sales, including the definition, see \"Comparable Store Sales\". NIKE Brand Digital sales were $12.6 billion for fiscal 2023 compared to $10.7 billion for fiscal 2022.\\n\\n2023 FORM 10-K 33\\n\\nTable of Contents\\n\\nGROSS MARGIN FISCAL 2023 COMPARED TO FISCAL 2022\\n\\nFor fiscal 2023, our consolidated gross profit increased 4% to $22,292 million compared to $21,479 million for fiscal 2022. Gross margin decreased 250 basis points to 43.5% for fiscal 2023 compared to 46.0% for fiscal 2022 due to the following:\\n\\nWholesale equivalent\\n\\nThe decrease in gross margin for fiscal 2023 was primarily due to:\\n\\nHigher NIKE Brand product costs, on a wholesale equivalent basis, primarily due to higher input costs and elevated inbound freight and logistics costs as well as\\n\\nproduct mix;'),\n", - " 0.650711655617),\n", - " (Document(metadata={'source': 'resources/nke-10k-2023.pdf'}, page_content='131.10 115.56 126.97\\n\\n(1) Includes an immaterial amount of PSU transactions\\n\\nThe weighted average fair value per share of restricted stock and restricted stock units granted for the fiscal years ended May 31, 2023, 2022 and 2021, computed as of the grant date, was $115.56, $168.04 and $113.84, respectively. During the fiscal years ended May 31, 2023, 2022 and 2021, the aggregate fair value of vested restricted stock and restricted stock units was $250 million, $354 million and $310 million, respectively, computed as of the date of vesting.\\n\\nAs of May 31, 2023, the Company had $649 million of unrecognized compensation costs from restricted stock and restricted stock units, net of estimated forfeitures, to be recognized in Cost of sales or Operating overhead expense, as applicable, over a weighted average remaining period of 2.3 years.\\n\\n2023 FORM 10-K 76\\n\\nTable of Contents\\n\\nNOTE 10 — EARNINGS PER SHARE\\n\\nThe following is a reconciliation from basic earnings per common share to diluted earnings per common share. The computations of diluted earnings per common share excluded restricted stock, restricted stock units and options, including shares under ESPPs, to purchase an estimated additional 31.7 million, 9.4 million and 11.3 million shares of common stock outstanding for the fiscal years ended May 31, 2023, 2022 and 2021, respectively, because the awards were assumed to be anti-dilutive.\\n\\nYEAR ENDED MAY 31,\\n\\n(In millions, except per share data)\\n\\n2023\\n\\n2022\\n\\n2021\\n\\nNet income available to common stockholders\\n\\n$\\n\\n5,070 $\\n\\n6,046 $\\n\\n5,727\\n\\nDetermination of shares:\\n\\nWeighted average common shares outstanding Assumed conversion of dilutive stock options and awards\\n\\n1,551.6 18.2\\n\\n1,578.8 32.0\\n\\n1,573.0 36.4\\n\\nDILUTED WEIGHTED AVERAGE COMMON SHARES OUTSTANDING\\n\\n1,569.8\\n\\n1,610.8\\n\\n1,609.4\\n\\nEarnings per common share:\\n\\nBasic Diluted\\n\\n$ $\\n\\n3.27 $ 3.23 $\\n\\n3.83 $ 3.75 $\\n\\n3.64 3.56\\n\\nNOTE 11 — BENEFIT PLANS\\n\\nThe Company has a qualified 401(k) Savings and Profit Sharing Plan, in which all U.S. employees are able to participate. The Company matches a portion of employee contributions to the savings plan. Company contributions to the savings plan were $136 million, $126 million and $110 million and included in Cost of sales or Operating overhead expense, as applicable, for the fiscal years ended May 31, 2023, 2022 and 2021, respectively.'),\n", - " 0.689424514771),\n", - " (Document(metadata={'source': 'resources/nke-10k-2023.pdf'}, page_content='Because contract manufacturers make a majority of our products outside of our principal sales markets, our products must be transported by third parties over large geographic distances. Delays in the shipment or delivery of our products due to the availability of transportation, container shortages, labor shortages, including work stoppages or port strikes, infrastructure and port congestion or other factors, and costs and delays associated with consolidating or transitioning between manufacturers, have adversely impacted, and could in the future adversely impact the availability of our products and, in turn, our financial performance. In addition, delays in the shipment or delivery of our products, manufacturing delays or unexpected demand for our products have required us, and may in the future require us to use faster, but more expensive, transportation methods such as air freight, which could adversely affect our profit margins. The cost of oil is a significant component in manufacturing and transportation costs, so increases in the price of petroleum products can adversely affect our profit margins. Changes in U.S. trade policies, including modifications to import tariffs and existing trade policies and agreements, have also had, and could continue to have a significant impact on our activities in foreign jurisdictions, and could adversely affect our reputation or results of operations.\\n\\nOur success depends on our global distribution facilities.'),\n", - " 0.73232448101)]" + " 0.499011814594),\n", + " (Document(metadata={'source': 'resources/nke-10k-2023.pdf'}, page_content=\"(Dollars in millions, except per share data)\\n\\nRevenues Cost of sales\\n\\nGross profit Gross margin\\n\\nDemand creation expense Operating overhead expense\\n\\nTotal selling and administrative expense % of revenues\\n\\nInterest expense (income), net\\n\\nOther (income) expense, net Income before income taxes\\n\\nIncome tax expense Effective tax rate\\n\\nNET INCOME Diluted earnings per common share\\n\\n$\\n\\n$ $\\n\\nFISCAL 2023\\n\\n51,217 28,925\\n\\n22,292\\n\\n43.5 %\\n\\n4,060 12,317\\n\\n16,377\\n\\n32.0 % (6)\\n\\n(280) 6,201\\n\\n1,131\\n\\n18.2 %\\n\\n5,070 3.23\\n\\n$\\n\\n$ $\\n\\nFISCAL 2022\\n\\n46,710 25,231\\n\\n21,479\\n\\n46.0 %\\n\\n3,850 10,954\\n\\n14,804\\n\\n31.7 % 205\\n\\n(181) 6,651\\n\\n605 9.1 %\\n\\n6,046 3.75\\n\\n% CHANGE\\n\\n10 % $ 15 %\\n\\n4 %\\n\\n5 % 12 %\\n\\n11 %\\n\\n—\\n\\n— -7 %\\n\\n87 %\\n\\n16 % $ -14 % $\\n\\nFISCAL 2021\\n\\n% CHANGE\\n\\n44,538 24,576\\n\\n5 % 3 %\\n\\n19,962\\n\\n8 %\\n\\n44.8 %\\n\\n3,114 9,911\\n\\n24 % 11 %\\n\\n13,025\\n\\n14 %\\n\\n29.2 % 262\\n\\n—\\n\\n14 6,661\\n\\n— 0 %\\n\\n934 14.0 %\\n\\n35 %\\n\\n5,727 3.56\\n\\n6 % 5 %\\n\\n2023 FORM 10-K 31\\n\\nTable of Contents\\n\\nCONSOLIDATED OPERATING RESULTS REVENUES\\n\\n(Dollars in millions)\\n\\nFISCAL 2023\\n\\nFISCAL 2022\\n\\n% CHANGE\\n\\n% CHANGE EXCLUDING CURRENCY (1) CHANGES\\n\\nFISCAL 2021\\n\\n% CHANGE\\n\\nNIKE, Inc. Revenues:\\n\\nNIKE Brand Revenues by:\\n\\nFootwear Apparel\\n\\n$\\n\\n33,135 $ 13,843\\n\\n29,143 13,567\\n\\n14 % 2 %\\n\\n20 % $ 8 %\\n\\n28,021 12,865\\n\\n4 % 5 %\\n\\nEquipment Global Brand Divisions\\n\\n(2)\\n\\nTotal NIKE Brand Revenues\\n\\n$\\n\\n1,727 58\\n\\n48,763 $\\n\\n1,624 102 44,436\\n\\n6 % -43 % 10 %\\n\\n13 % -43 % 16 % $\\n\\n1,382 25 42,293\\n\\n18 % 308 % 5 %\\n\\nConverse Corporate\\n\\n(3)\\n\\n2,427 27\\n\\n2,346 (72)\\n\\n3 % —\\n\\n8 % —\\n\\n2,205 40\\n\\n6 % —\\n\\nTOTAL NIKE, INC. REVENUES\\n\\n$\\n\\n51,217 $\\n\\n46,710\\n\\n10 %\\n\\n16 % $\\n\\n44,538\\n\\n5 %\\n\\nSupplemental NIKE Brand Revenues Details: NIKE Brand Revenues by:\\n\\nSales to Wholesale Customers\\n\\n$\\n\\n27,397 $\\n\\n25,608\\n\\n7 %\\n\\n14 % $\\n\\n25,898\\n\\n1 %\\n\\nSales through NIKE Direct Global Brand Divisions\\n\\n(2)\\n\\n21,308 58\\n\\n18,726 102\\n\\n14 % -43 %\\n\\n20 % -43 %\\n\\n16,370 25\\n\\n14 % 308 %\\n\\nTOTAL NIKE BRAND REVENUES (1) NIKE Brand Revenues on a Wholesale Equivalent Basis :\\n\\n$\\n\\n48,763 $\\n\\n44,436\\n\\n10 %\\n\\n16 % $\\n\\n42,293\\n\\n5 %\\n\\nSales to Wholesale Customers Sales from our Wholesale Operations to NIKE Direct Operations\\n\\nTOTAL NIKE BRAND WHOLESALE EQUIVALENT REVENUES NIKE Brand Wholesale Equivalent Revenues by:\\n\\n(1),(4)\\n\\n$\\n\\n$\\n\\n27,397 $ 12,730\\n\\n40,127 $\\n\\n25,608 10,543\\n\\n36,151\\n\\n7 % 21 %\\n\\n11 %\\n\\n14 % $ 27 %\\n\\n18 % $\\n\\n25,898 9,872\\n\\n35,770\\n\\n1 % 7 % 1 %\\n\\nMen's Women's NIKE Kids'\\n\\n$\\n\\n20,733 $ 8,606 5,038\\n\\n18,797 8,273 4,874\\n\\n10 % 4 % 3 %\\n\\n17 % $ 11 % 10 %\\n\\n18,391 8,225 4,882\\n\\n2 % 1 % 0 %\\n\\nJordan Brand (5) Others\\n\\n6,589 (839)\\n\\n5,122 (915)\\n\\n29 % 8 %\\n\\n35 % -3 %\"),\n", + " 0.499011814594),\n", + " (Document(metadata={'source': 'resources/nke-10k-2023.pdf'}, page_content=\"(Dollars in millions, except per share data)\\n\\nRevenues Cost of sales\\n\\nGross profit Gross margin\\n\\nDemand creation expense Operating overhead expense\\n\\nTotal selling and administrative expense % of revenues\\n\\nInterest expense (income), net\\n\\nOther (income) expense, net Income before income taxes\\n\\nIncome tax expense Effective tax rate\\n\\nNET INCOME Diluted earnings per common share\\n\\n$\\n\\n$ $\\n\\nFISCAL 2023\\n\\n51,217 28,925\\n\\n22,292\\n\\n43.5 %\\n\\n4,060 12,317\\n\\n16,377\\n\\n32.0 % (6)\\n\\n(280) 6,201\\n\\n1,131\\n\\n18.2 %\\n\\n5,070 3.23\\n\\n$\\n\\n$ $\\n\\nFISCAL 2022\\n\\n46,710 25,231\\n\\n21,479\\n\\n46.0 %\\n\\n3,850 10,954\\n\\n14,804\\n\\n31.7 % 205\\n\\n(181) 6,651\\n\\n605 9.1 %\\n\\n6,046 3.75\\n\\n% CHANGE\\n\\n10 % $ 15 %\\n\\n4 %\\n\\n5 % 12 %\\n\\n11 %\\n\\n—\\n\\n— -7 %\\n\\n87 %\\n\\n16 % $ -14 % $\\n\\nFISCAL 2021\\n\\n% CHANGE\\n\\n44,538 24,576\\n\\n5 % 3 %\\n\\n19,962\\n\\n8 %\\n\\n44.8 %\\n\\n3,114 9,911\\n\\n24 % 11 %\\n\\n13,025\\n\\n14 %\\n\\n29.2 % 262\\n\\n—\\n\\n14 6,661\\n\\n— 0 %\\n\\n934 14.0 %\\n\\n35 %\\n\\n5,727 3.56\\n\\n6 % 5 %\\n\\n2023 FORM 10-K 31\\n\\nTable of Contents\\n\\nCONSOLIDATED OPERATING RESULTS REVENUES\\n\\n(Dollars in millions)\\n\\nFISCAL 2023\\n\\nFISCAL 2022\\n\\n% CHANGE\\n\\n% CHANGE EXCLUDING CURRENCY (1) CHANGES\\n\\nFISCAL 2021\\n\\n% CHANGE\\n\\nNIKE, Inc. Revenues:\\n\\nNIKE Brand Revenues by:\\n\\nFootwear Apparel\\n\\n$\\n\\n33,135 $ 13,843\\n\\n29,143 13,567\\n\\n14 % 2 %\\n\\n20 % $ 8 %\\n\\n28,021 12,865\\n\\n4 % 5 %\\n\\nEquipment Global Brand Divisions\\n\\n(2)\\n\\nTotal NIKE Brand Revenues\\n\\n$\\n\\n1,727 58\\n\\n48,763 $\\n\\n1,624 102 44,436\\n\\n6 % -43 % 10 %\\n\\n13 % -43 % 16 % $\\n\\n1,382 25 42,293\\n\\n18 % 308 % 5 %\\n\\nConverse Corporate\\n\\n(3)\\n\\n2,427 27\\n\\n2,346 (72)\\n\\n3 % —\\n\\n8 % —\\n\\n2,205 40\\n\\n6 % —\\n\\nTOTAL NIKE, INC. REVENUES\\n\\n$\\n\\n51,217 $\\n\\n46,710\\n\\n10 %\\n\\n16 % $\\n\\n44,538\\n\\n5 %\\n\\nSupplemental NIKE Brand Revenues Details: NIKE Brand Revenues by:\\n\\nSales to Wholesale Customers\\n\\n$\\n\\n27,397 $\\n\\n25,608\\n\\n7 %\\n\\n14 % $\\n\\n25,898\\n\\n1 %\\n\\nSales through NIKE Direct Global Brand Divisions\\n\\n(2)\\n\\n21,308 58\\n\\n18,726 102\\n\\n14 % -43 %\\n\\n20 % -43 %\\n\\n16,370 25\\n\\n14 % 308 %\\n\\nTOTAL NIKE BRAND REVENUES (1) NIKE Brand Revenues on a Wholesale Equivalent Basis :\\n\\n$\\n\\n48,763 $\\n\\n44,436\\n\\n10 %\\n\\n16 % $\\n\\n42,293\\n\\n5 %\\n\\nSales to Wholesale Customers Sales from our Wholesale Operations to NIKE Direct Operations\\n\\nTOTAL NIKE BRAND WHOLESALE EQUIVALENT REVENUES NIKE Brand Wholesale Equivalent Revenues by:\\n\\n(1),(4)\\n\\n$\\n\\n$\\n\\n27,397 $ 12,730\\n\\n40,127 $\\n\\n25,608 10,543\\n\\n36,151\\n\\n7 % 21 %\\n\\n11 %\\n\\n14 % $ 27 %\\n\\n18 % $\\n\\n25,898 9,872\\n\\n35,770\\n\\n1 % 7 % 1 %\\n\\nMen's Women's NIKE Kids'\\n\\n$\\n\\n20,733 $ 8,606 5,038\\n\\n18,797 8,273 4,874\\n\\n10 % 4 % 3 %\\n\\n17 % $ 11 % 10 %\\n\\n18,391 8,225 4,882\\n\\n2 % 1 % 0 %\\n\\nJordan Brand (5) Others\\n\\n6,589 (839)\\n\\n5,122 (915)\\n\\n29 % 8 %\\n\\n35 % -3 %\"),\n", + " 0.499011814594),\n", + " (Document(metadata={'source': 'resources/nke-10k-2023.pdf'}, page_content='From time to time, we may invest in technology, business infrastructure, new businesses or capabilities, product offering and manufacturing innovation and expansion of existing businesses, such as our NIKE Direct operations, which require substantial cash investments and management attention. We believe cost-effective investments are essential to business growth and profitability; however, significant investments are subject to typical risks and uncertainties inherent in developing a new business or expanding an existing business. The failure of any significant investment to provide expected returns or profitability could have a material adverse effect on our financial results and divert management attention from more profitable business operations. See also \"Our NIKE Direct operations have required and will continue to require a substantial investment and commitment of resources and are subject to numerous risks and uncertainties.\"\\n\\nThe sale of a large number of shares of common stock by our principal shareholder could depress the market price of our common stock.\\n\\nAs of June 30, 2023, Swoosh, LLC beneficially owned approximately 77% of our Class A Common Stock. If, on June 30, 2023, all of these shares were converted into Class B Common Stock, Swoosh, LLC\\'s commensurate ownership percentage of our Class B Common Stock would be approximately 16%. The shares are available for resale, subject to the requirements of the U.S. securities laws and the terms of the limited liability company agreement governing Swoosh, LLC. The sale or prospect of a sale of a substantial number of these shares could have an adverse effect on the market price of our common stock. Swoosh, LLC was formed by Philip H. Knight, our Chairman Emeritus, to hold the majority of his shares of Class A Common Stock. Mr. Knight does not have voting rights with respect to Swoosh, LLC, although Travis Knight, his son and a NIKE director, has a significant role in the management of the Class A Common Stock owned by Swoosh, LLC.\\n\\nChanges in our credit ratings or macroeconomic conditions may affect our liquidity, increasing borrowing costs and limiting our financing options.'),\n", + " 0.604557394981)]" ] }, - "execution_count": 11, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -579,7 +636,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 10, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -591,17 +648,17 @@ { "data": { "text/plain": [ - "[(Document(metadata={'source': 'resources/nke-10k-2023.pdf'}, page_content='4,780 (508)\\n\\n7 % -80 %\\n\\nTOTAL NIKE BRAND WHOLESALE EQUIVALENT REVENUES\\n\\n$\\n\\n40,127 $\\n\\n36,151\\n\\n11 %\\n\\n18 % $\\n\\n35,770\\n\\n1 %\\n\\n(1)\\n\\nThe percent change excluding currency changes and the presentation of wholesale equivalent revenues represent non-GAAP financial measures. For further information, see \"Use of Non-GAAP Financial Measures\".\\n\\n(2) Global Brand Divisions revenues include NIKE Brand licensing and other miscellaneous revenues that are not part of a geographic operating segment.\\n\\n(3) Corporate revenues primarily consist of foreign currency hedge gains and losses related to revenues generated by entities within the NIKE Brand geographic operating segments and Converse, but\\n\\nmanaged through our central foreign exchange risk management program.\\n\\n(4)\\n\\nAs a result of the Consumer Direct Acceleration strategy, announced in fiscal 2021, the Company is now organized around a consumer construct of Men\\'s, Women\\'s and Kids\\'. Beginning in the first quarter of fiscal 2022, unisex products are classified within Men\\'s, and Jordan Brand revenues are separately reported. Certain prior year amounts were reclassified to conform to fiscal 2022 presentation. These changes had no impact on previously reported consolidated results of operations or shareholders\\' equity.\\n\\n(5) Others include products not allocated to Men\\'s, Women\\'s, NIKE Kids\\' and Jordan Brand, as well as certain adjustments that are not allocated to products designated by consumer.\\n\\n2023 FORM 10-K 32\\n\\n% CHANGE EXCLUDING CURRENCY (1) CHANGES\\n\\n4 % 6 %\\n\\n18 % 302 % 6 %\\n\\n7 % —\\n\\n6 %\\n\\n1 %\\n\\n15 % 302 %\\n\\n6 %\\n\\n1 % 7 % 1 %\\n\\n3 % 1 % 0 %\\n\\n7 % -79 %\\n\\n1 %\\n\\nTable of Contents\\n\\nFISCAL 2023 NIKE BRAND REVENUE HIGHLIGHTS The following tables present NIKE Brand revenues disaggregated by reportable operating segment, distribution channel and major product line:\\n\\nFISCAL 2023 COMPARED TO FISCAL 2022\\n\\nNIKE, Inc. Revenues were $51.2 billion in fiscal 2023, which increased 10% and 16% compared to fiscal 2022 on a reported and currency-neutral basis, respectively. The increase was due to higher revenues in North America, Europe, Middle East & Africa (\"EMEA\"), APLA and Greater China, which contributed approximately 7, 6, 2 and 1 percentage points to NIKE, Inc. Revenues, respectively.'),\n", - " 0.28352534771),\n", - " (Document(metadata={'source': 'resources/nke-10k-2023.pdf'}, page_content='NIKE Brand revenues, which represented over 90% of NIKE, Inc. Revenues, increased 10% and 16% on a reported and currency-neutral basis, respectively. This increase was primarily due to higher revenues in Men\\'s, the Jordan Brand, Women\\'s and Kids\\' which grew 17%, 35%,11% and 10%, respectively, on a wholesale equivalent basis.\\n\\nNIKE Brand footwear revenues increased 20% on a currency-neutral basis, due to higher revenues in Men\\'s, the Jordan Brand, Women\\'s and Kids\\'. Unit sales of footwear increased 13%, while higher average selling price (\"ASP\") per pair contributed approximately 7 percentage points of footwear revenue growth. Higher ASP was primarily due to higher full-price ASP, net of discounts, on a wholesale equivalent basis, and growth in the size of our NIKE Direct business, partially offset by lower NIKE Direct ASP.\\n\\nNIKE Brand apparel revenues increased 8% on a currency-neutral basis, primarily due to higher revenues in Men\\'s. Unit sales of apparel increased 4%, while higher ASP per unit contributed approximately 4 percentage points of apparel revenue growth. Higher ASP was primarily due to higher full-price ASP and growth in the size of our NIKE Direct business, partially offset by lower NIKE Direct ASP, reflecting higher promotional activity.\\n\\nNIKE Direct revenues increased 14% from $18.7 billion in fiscal 2022 to $21.3 billion in fiscal 2023. On a currency-neutral basis, NIKE Direct revenues increased 20% primarily driven by NIKE Brand Digital sales growth of 24%, comparable store sales growth of 14% and the addition of new stores. For further information regarding comparable store sales, including the definition, see \"Comparable Store Sales\". NIKE Brand Digital sales were $12.6 billion for fiscal 2023 compared to $10.7 billion for fiscal 2022.\\n\\n2023 FORM 10-K 33\\n\\nTable of Contents\\n\\nGROSS MARGIN FISCAL 2023 COMPARED TO FISCAL 2022\\n\\nFor fiscal 2023, our consolidated gross profit increased 4% to $22,292 million compared to $21,479 million for fiscal 2022. Gross margin decreased 250 basis points to 43.5% for fiscal 2023 compared to 46.0% for fiscal 2022 due to the following:\\n\\nWholesale equivalent\\n\\nThe decrease in gross margin for fiscal 2023 was primarily due to:\\n\\nHigher NIKE Brand product costs, on a wholesale equivalent basis, primarily due to higher input costs and elevated inbound freight and logistics costs as well as\\n\\nproduct mix;'),\n", - " 0.291597783566),\n", - " (Document(metadata={'source': 'resources/nke-10k-2023.pdf'}, page_content=\"3 % -4 %\\n\\n13 % 4 %\\n\\n1,494 190\\n\\n8 % 23 %\\n\\nTOTAL REVENUES Revenues by:\\n\\n$\\n\\n6,431 $\\n\\n5,955\\n\\n8 %\\n\\n17 % $\\n\\n5,343\\n\\n11 %\\n\\nSales to Wholesale Customers Sales through NIKE Direct\\n\\n$\\n\\n3,736 $ 2,695\\n\\n3,529 2,426\\n\\n6 % 11 %\\n\\n14 % $ 22 %\\n\\n3,387 1,956\\n\\n4 % 24 %\\n\\nTOTAL REVENUES EARNINGS BEFORE INTEREST AND TAXES\\n\\n$ $\\n\\n6,431 $ 1,932 $\\n\\n5,955 1,896\\n\\n8 % 2 %\\n\\n17 % $ $\\n\\n5,343 1,530\\n\\n11 % 24 %\\n\\nAs discussed previously, our NIKE Brand business in Brazil transitioned to a distributor operating model during fiscal 2021. We completed the sale of our entity in Chile and our entities in Argentina and Uruguay to third-party distributors in the first and second quarters of fiscal 2023, respectively. The impacts of closing these transactions are included within Corporate and are not reflected in the APLA operating segment results. This completed the transition of our NIKE Brand businesses within our CASA marketplace, which now reflects a full distributor operating model. For more information see Note 18 — Acquisitions and Divestitures within the accompanying Notes to the Consolidated Financial Statements.\\n\\nFISCAL 2023 COMPARED TO FISCAL 2022\\n\\nAPLA revenues increased 17% on a currency-neutral basis due to higher revenues across nearly all territories, led by Southeast Asia and India, Korea and Japan. The increase was partially offset by a decline in our CASA territory. Within our CASA territory, the transition of our Chile, Argentina and Uruguay entities to a third- party distributor operating model reduced APLA revenue growth by approximately 5 percentage points. Revenues increased primarily due to growth in Men's, Women's and the Jordan Brand. NIKE Direct revenues increased 22%, driven by digital sales growth of 23% and comparable store sales growth of 28%.\\n\\nFootwear revenues increased 19% on a currency-neutral basis, primarily due to higher revenues in Men's, Women's and the Jordan Brand. Unit sales of footwear increased 16%, while higher ASP per pair contributed approximately 3 percentage points of footwear revenue growth. Higher ASP per pair was primarily due to higher full-price ASP and growth in NIKE Direct, partially offset by lower NIKE Direct ASP.\\n\\nApparel revenues increased 13% on a currency-neutral basis, primarily due to higher revenues in Men's. Unit sales of apparel increased 9%, while higher ASP per\"),\n", - " 0.296876847744),\n", - " (Document(metadata={'source': 'resources/nke-10k-2023.pdf'}, page_content='TOTAL NIKE BRAND Converse\\n\\n$\\n\\n1,932 (4,841)\\n\\n8,359 676\\n\\n$\\n\\n1,896 (4,262)\\n\\n8,406 669\\n\\n2 % -14 %\\n\\n1 % $ 1 %\\n\\n1,530 (3,656)\\n\\n8,641 543\\n\\nCorporate TOTAL NIKE, INC. EARNINGS BEFORE INTEREST AND TAXES\\n\\n(1)\\n\\n$\\n\\n(2,840)\\n\\n6,195\\n\\n$\\n\\n(2,219)\\n\\n6,856\\n\\n28 %\\n\\n10 % $\\n\\n(2,261)\\n\\n6,923\\n\\nEBIT margin\\n\\n(1)\\n\\n12.1 %\\n\\n14.7 %\\n\\n15.5 %\\n\\nInterest expense (income), net\\n\\n(6)\\n\\n205\\n\\n—\\n\\n262\\n\\nTOTAL NIKE, INC. INCOME BEFORE INCOME TAXES\\n\\n$\\n\\n6,201\\n\\n$\\n\\n6,651\\n\\n7 % $\\n\\n6,661\\n\\n(1) Total NIKE Brand EBIT, Total NIKE, Inc. EBIT and EBIT Margin represent non-GAAP financial measures. See \"Use of Non-GAAP Financial Measures\" for further information.\\n\\n2023 FORM 10-K 36\\n\\n% CHANGE EXCLUDING CURRENCY (1) CHANGES\\n\\n7 % 12 % -13 %\\n\\n16 % 302 %\\n\\n6 % 7 %\\n\\n— 6 %\\n\\n% CHANGE\\n\\n0 % 35 % -27 %\\n\\n24 % -17 %\\n\\n3 % 23 % 2 %\\n\\n1 %\\n\\n—\\n\\n0 %\\n\\nTable of Contents\\n\\nNORTH AMERICA\\n\\n(Dollars in millions)\\n\\nFISCAL 2023 FISCAL 2022\\n\\n% CHANGE\\n\\n% CHANGE EXCLUDING CURRENCY\\n\\nCHANGES FISCAL 2021\\n\\n% CHANGE\\n\\n% CHANGE EXCLUDING CURRENCY CHANGES\\n\\nRevenues by: Footwear Apparel\\n\\n$\\n\\n14,897 $ 5,947\\n\\n12,228 5,492\\n\\n22 % 8 %\\n\\n22 % $ 9 %\\n\\n11,644 5,028\\n\\n5 % 9 %\\n\\n5 % 9 %\\n\\nEquipment\\n\\nTOTAL REVENUES\\n\\n$\\n\\n764 21,608 $\\n\\n633 18,353\\n\\n21 % 18 %\\n\\n21 % 18 % $\\n\\n507 17,179\\n\\n25 % 7 %\\n\\n25 % 7 %\\n\\nRevenues by:\\n\\nSales to Wholesale Customers\\n\\n$\\n\\n11,273 $\\n\\n9,621\\n\\n17 %\\n\\n18 % $\\n\\n10,186\\n\\n6 %\\n\\n6 %\\n\\nSales through NIKE Direct\\n\\nTOTAL REVENUES\\n\\n$\\n\\n10,335 21,608 $\\n\\n8,732 18,353\\n\\n18 % 18 %\\n\\n18 % 18 % $\\n\\n6,993 17,179\\n\\n25 % 7 %\\n\\n25 % 7 %\\n\\nEARNINGS BEFORE INTEREST AND TAXES\\n\\n$\\n\\n5,454 $\\n\\n5,114\\n\\n7 %\\n\\n$\\n\\n5,089\\n\\n0 %\\n\\nFISCAL 2023 COMPARED TO FISCAL 2022\\n\\nNorth America revenues increased 18% on a currency-neutral basis, primarily due to higher revenues in Men\\'s and the Jordan Brand. NIKE Direct revenues\\n\\nincreased 18%, driven by strong digital sales growth of 23%, comparable store sales growth of 9% and the addition of new stores.\\n\\nFootwear revenues increased 22% on a currency-neutral basis, primarily due to higher revenues in Men\\'s and the Jordan Brand. Unit sales of footwear increased\\n\\n17%, while higher ASP per pair contributed approximately 5 percentage points of footwear revenue growth. Higher ASP per pair was primarily due to higher full-price ASP and growth in NIKE Direct, partially offset by lower NIKE Direct ASP, reflecting higher promotional activity as well as lower available inventory supply in the prior period and a lower mix of full-price sales.'),\n", - " 0.301767408848)]" + "[(Document(metadata={'source': 'resources/nke-10k-2023.pdf'}, page_content='As discussed in Note 15 — Operating Segments and Related Information in the accompanying Notes to the Consolidated Financial Statements, our operating segments are evidence of the structure of the Company\\'s internal organization. The NIKE Brand segments are defined by geographic regions for operations participating in NIKE Brand sales activity.\\n\\nThe breakdown of Revenues is as follows:\\n\\n(Dollars in millions)\\n\\nFISCAL 2023 FISCAL 2022\\n\\n% CHANGE\\n\\n% CHANGE EXCLUDING CURRENCY (1) CHANGES FISCAL 2021\\n\\n% CHANGE\\n\\nNorth America Europe, Middle East & Africa Greater China\\n\\n$\\n\\n21,608 $ 13,418 7,248\\n\\n18,353 12,479 7,547\\n\\n18 % 8 % -4 %\\n\\n18 % $ 21 % 4 %\\n\\n17,179 11,456 8,290\\n\\n7 % 9 % -9 %\\n\\nAsia Pacific & Latin America Global Brand Divisions\\n\\n(3)\\n\\n(2)\\n\\n6,431 58\\n\\n5,955 102\\n\\n8 % -43 %\\n\\n17 % -43 %\\n\\n5,343 25\\n\\n11 % 308 %\\n\\nTOTAL NIKE BRAND Converse\\n\\n$\\n\\n48,763 $ 2,427\\n\\n44,436 2,346\\n\\n10 % 3 %\\n\\n16 % $ 8 %\\n\\n42,293 2,205\\n\\n5 % 6 %\\n\\n(4)\\n\\nCorporate TOTAL NIKE, INC. REVENUES\\n\\n$\\n\\n27\\n\\n51,217 $\\n\\n(72) 46,710\\n\\n— 10 %\\n\\n— 16 % $\\n\\n40 44,538\\n\\n— 5 %\\n\\n(1) The percent change excluding currency changes represents a non-GAAP financial measure. For further information, see \"Use of Non-GAAP Financial Measures\".\\n\\n(2) For additional information on the transition of our NIKE Brand businesses within our CASA territory to a third-party distributor, see Note 18 — Acquisitions and Divestitures of the Notes to Consolidated\\n\\nFinancial Statements contained in Item 8 of this Annual Report.\\n\\n(3) Global Brand Divisions revenues include NIKE Brand licensing and other miscellaneous revenues that are not part of a geographic operating segment.\\n\\n(4) Corporate revenues primarily consist of foreign currency hedge gains and losses related to revenues generated by entities within the NIKE Brand geographic operating segments and Converse, but\\n\\nmanaged through our central foreign exchange risk management program.\\n\\nThe primary financial measure used by the Company to evaluate performance is Earnings Before Interest and Taxes (\"EBIT\"). As discussed in Note 15 — Operating Segments and Related Information in the accompanying Notes to the Consolidated Financial Statements, certain corporate costs are not included in EBIT.\\n\\nThe breakdown of EBIT is as follows:\\n\\n(Dollars in millions)\\n\\nFISCAL 2023\\n\\nFISCAL 2022\\n\\n% CHANGE\\n\\nFISCAL 2021\\n\\nNorth America Europe, Middle East & Africa Greater China\\n\\n$\\n\\n5,454 3,531 2,283\\n\\n$\\n\\n5,114 3,293 2,365\\n\\n7 % $ 7 % -3 %\\n\\n5,089 2,435 3,243\\n\\nAsia Pacific & Latin America Global Brand Divisions (1)'),\n", + " 0.233286499977),\n", + " (Document(metadata={'source': 'resources/nke-10k-2023.pdf'}, page_content='As discussed in Note 15 — Operating Segments and Related Information in the accompanying Notes to the Consolidated Financial Statements, our operating segments are evidence of the structure of the Company\\'s internal organization. The NIKE Brand segments are defined by geographic regions for operations participating in NIKE Brand sales activity.\\n\\nThe breakdown of Revenues is as follows:\\n\\n(Dollars in millions)\\n\\nFISCAL 2023 FISCAL 2022\\n\\n% CHANGE\\n\\n% CHANGE EXCLUDING CURRENCY (1) CHANGES FISCAL 2021\\n\\n% CHANGE\\n\\nNorth America Europe, Middle East & Africa Greater China\\n\\n$\\n\\n21,608 $ 13,418 7,248\\n\\n18,353 12,479 7,547\\n\\n18 % 8 % -4 %\\n\\n18 % $ 21 % 4 %\\n\\n17,179 11,456 8,290\\n\\n7 % 9 % -9 %\\n\\nAsia Pacific & Latin America Global Brand Divisions\\n\\n(3)\\n\\n(2)\\n\\n6,431 58\\n\\n5,955 102\\n\\n8 % -43 %\\n\\n17 % -43 %\\n\\n5,343 25\\n\\n11 % 308 %\\n\\nTOTAL NIKE BRAND Converse\\n\\n$\\n\\n48,763 $ 2,427\\n\\n44,436 2,346\\n\\n10 % 3 %\\n\\n16 % $ 8 %\\n\\n42,293 2,205\\n\\n5 % 6 %\\n\\n(4)\\n\\nCorporate TOTAL NIKE, INC. REVENUES\\n\\n$\\n\\n27\\n\\n51,217 $\\n\\n(72) 46,710\\n\\n— 10 %\\n\\n— 16 % $\\n\\n40 44,538\\n\\n— 5 %\\n\\n(1) The percent change excluding currency changes represents a non-GAAP financial measure. For further information, see \"Use of Non-GAAP Financial Measures\".\\n\\n(2) For additional information on the transition of our NIKE Brand businesses within our CASA territory to a third-party distributor, see Note 18 — Acquisitions and Divestitures of the Notes to Consolidated\\n\\nFinancial Statements contained in Item 8 of this Annual Report.\\n\\n(3) Global Brand Divisions revenues include NIKE Brand licensing and other miscellaneous revenues that are not part of a geographic operating segment.\\n\\n(4) Corporate revenues primarily consist of foreign currency hedge gains and losses related to revenues generated by entities within the NIKE Brand geographic operating segments and Converse, but\\n\\nmanaged through our central foreign exchange risk management program.\\n\\nThe primary financial measure used by the Company to evaluate performance is Earnings Before Interest and Taxes (\"EBIT\"). As discussed in Note 15 — Operating Segments and Related Information in the accompanying Notes to the Consolidated Financial Statements, certain corporate costs are not included in EBIT.\\n\\nThe breakdown of EBIT is as follows:\\n\\n(Dollars in millions)\\n\\nFISCAL 2023\\n\\nFISCAL 2022\\n\\n% CHANGE\\n\\nFISCAL 2021\\n\\nNorth America Europe, Middle East & Africa Greater China\\n\\n$\\n\\n5,454 3,531 2,283\\n\\n$\\n\\n5,114 3,293 2,365\\n\\n7 % $ 7 % -3 %\\n\\n5,089 2,435 3,243\\n\\nAsia Pacific & Latin America Global Brand Divisions (1)'),\n", + " 0.233286499977),\n", + " (Document(metadata={'source': 'resources/nke-10k-2023.pdf'}, page_content='As discussed in Note 15 — Operating Segments and Related Information in the accompanying Notes to the Consolidated Financial Statements, our operating segments are evidence of the structure of the Company\\'s internal organization. The NIKE Brand segments are defined by geographic regions for operations participating in NIKE Brand sales activity.\\n\\nThe breakdown of Revenues is as follows:\\n\\n(Dollars in millions)\\n\\nFISCAL 2023 FISCAL 2022\\n\\n% CHANGE\\n\\n% CHANGE EXCLUDING CURRENCY (1) CHANGES FISCAL 2021\\n\\n% CHANGE\\n\\nNorth America Europe, Middle East & Africa Greater China\\n\\n$\\n\\n21,608 $ 13,418 7,248\\n\\n18,353 12,479 7,547\\n\\n18 % 8 % -4 %\\n\\n18 % $ 21 % 4 %\\n\\n17,179 11,456 8,290\\n\\n7 % 9 % -9 %\\n\\nAsia Pacific & Latin America Global Brand Divisions\\n\\n(3)\\n\\n(2)\\n\\n6,431 58\\n\\n5,955 102\\n\\n8 % -43 %\\n\\n17 % -43 %\\n\\n5,343 25\\n\\n11 % 308 %\\n\\nTOTAL NIKE BRAND Converse\\n\\n$\\n\\n48,763 $ 2,427\\n\\n44,436 2,346\\n\\n10 % 3 %\\n\\n16 % $ 8 %\\n\\n42,293 2,205\\n\\n5 % 6 %\\n\\n(4)\\n\\nCorporate TOTAL NIKE, INC. REVENUES\\n\\n$\\n\\n27\\n\\n51,217 $\\n\\n(72) 46,710\\n\\n— 10 %\\n\\n— 16 % $\\n\\n40 44,538\\n\\n— 5 %\\n\\n(1) The percent change excluding currency changes represents a non-GAAP financial measure. For further information, see \"Use of Non-GAAP Financial Measures\".\\n\\n(2) For additional information on the transition of our NIKE Brand businesses within our CASA territory to a third-party distributor, see Note 18 — Acquisitions and Divestitures of the Notes to Consolidated\\n\\nFinancial Statements contained in Item 8 of this Annual Report.\\n\\n(3) Global Brand Divisions revenues include NIKE Brand licensing and other miscellaneous revenues that are not part of a geographic operating segment.\\n\\n(4) Corporate revenues primarily consist of foreign currency hedge gains and losses related to revenues generated by entities within the NIKE Brand geographic operating segments and Converse, but\\n\\nmanaged through our central foreign exchange risk management program.\\n\\nThe primary financial measure used by the Company to evaluate performance is Earnings Before Interest and Taxes (\"EBIT\"). As discussed in Note 15 — Operating Segments and Related Information in the accompanying Notes to the Consolidated Financial Statements, certain corporate costs are not included in EBIT.\\n\\nThe breakdown of EBIT is as follows:\\n\\n(Dollars in millions)\\n\\nFISCAL 2023\\n\\nFISCAL 2022\\n\\n% CHANGE\\n\\nFISCAL 2021\\n\\nNorth America Europe, Middle East & Africa Greater China\\n\\n$\\n\\n5,454 3,531 2,283\\n\\n$\\n\\n5,114 3,293 2,365\\n\\n7 % $ 7 % -3 %\\n\\n5,089 2,435 3,243\\n\\nAsia Pacific & Latin America Global Brand Divisions (1)'),\n", + " 0.233286499977),\n", + " (Document(metadata={'source': 'resources/nke-10k-2023.pdf'}, page_content=\"Tax (expense) benefit Gain (loss) net of tax\\n\\n5 (14)\\n\\n(9) 22\\n\\nTotal net gain (loss) reclassified for the period\\n\\n$\\n\\n463 $\\n\\n30\\n\\n2023 FORM 10-K 82\\n\\nTable of Contents\\n\\nNOTE 14 — REVENUES\\n\\nDISAGGREGATION OF REVENUES The following tables present the Company's Revenues disaggregated by reportable operating segment, major product line and distribution channel:\\n\\n(Dollars in millions)\\n\\nNORTH AMERICA\\n\\nEUROPE, MIDDLE EAST & AFRICA\\n\\nGREATER CHINA\\n\\nYEAR ENDED MAY 31, 2023 ASIA PACIFIC & LATIN (1)\\n\\nGLOBAL BRAND DIVISIONS\\n\\nTOTAL NIKE\\n\\nAMERICA\\n\\nBRAND CONVERSE CORPORATE\\n\\nTOTAL NIKE, INC.\\n\\nRevenues by: Footwear\\n\\n$\\n\\n14,897 $\\n\\n8,260 $\\n\\n5,435 $\\n\\n4,543 $\\n\\n— $\\n\\n33,135 $\\n\\n2,155 $\\n\\n— $\\n\\n35,290\\n\\nApparel Equipment Other\\n\\n5,947 764 —\\n\\n4,566 592 —\\n\\n1,666 147 —\\n\\n1,664 224 —\\n\\n— — 58\\n\\n13,843 1,727 58\\n\\n90 28 154\\n\\n— — 27\\n\\n13,933 1,755 239\\n\\nTOTAL REVENUES\\n\\n$\\n\\n21,608 $\\n\\n13,418 $\\n\\n7,248 $\\n\\n6,431 $\\n\\n58 $\\n\\n48,763 $\\n\\n2,427 $\\n\\n27 $\\n\\n51,217\\n\\nRevenues by:\\n\\nSales to Wholesale Customers Sales through Direct to Consumer\\n\\n$\\n\\n11,273 $ 10,335\\n\\n8,522 $ 4,896\\n\\n3,866 $ 3,382\\n\\n3,736 $ 2,695\\n\\n— $ —\\n\\n27,397 $ 21,308\\n\\n1,299 $ 974\\n\\n— $ —\\n\\n28,696 22,282\\n\\nOther\\n\\nTOTAL REVENUES\\n\\n$\\n\\n—\\n\\n21,608 $\\n\\n—\\n\\n13,418 $\\n\\n— 7,248 $\\n\\n— 6,431 $\\n\\n58 58 $\\n\\n58\\n\\n48,763 $\\n\\n154 2,427 $\\n\\n27 27 $\\n\\n239 51,217\\n\\n(1) Refer to Note 18 — Acquisitions and Divestitures for additional information on the transition of the Company's NIKE Brand businesses in its CASA territory to third-party distributors.\\n\\nYEAR ENDED MAY 31, 2022\\n\\n(Dollars in millions)\\n\\nNORTH AMERICA\\n\\nEUROPE, MIDDLE EAST & AFRICA\\n\\nGREATER CHINA\\n\\nASIA PACIFIC & LATIN AMERICA\\n\\nGLOBAL BRAND DIVISIONS\\n\\nTOTAL NIKE\\n\\nBRAND CONVERSE CORPORATE\\n\\nTOTAL NIKE, INC.\\n\\nRevenues by: Footwear Apparel\\n\\n$\\n\\n12,228 $ 5,492\\n\\n7,388 $ 4,527\\n\\n5,416 $ 1,938\\n\\n4,111 $ 1,610\\n\\n— $ —\\n\\n29,143 $ 13,567\\n\\n2,094 $ 103\\n\\n— $ —\\n\\n31,237 13,670\\n\\nEquipment Other\\n\\n633 —\\n\\n564 —\\n\\n193 —\\n\\n234 —\\n\\n— 102\\n\\n1,624 102\\n\\n26 123\\n\\n— (72)\\n\\n1,650 153\\n\\nTOTAL REVENUES Revenues by:\\n\\n$\\n\\n18,353 $\\n\\n12,479 $\\n\\n7,547 $\\n\\n5,955 $\\n\\n102 $\\n\\n44,436 $\\n\\n2,346 $\\n\\n(72) $\\n\\n46,710\\n\\nSales to Wholesale Customers Sales through Direct to Consumer Other\\n\\n$\\n\\n9,621 $ 8,732 —\\n\\n8,377 $ 4,102 —\\n\\n4,081 $ 3,466 —\\n\\n3,529 $ 2,426 —\\n\\n— $ — 102\\n\\n25,608 $ 18,726 102\\n\\n1,292 $ 931 123\\n\\n— $ — (72)\\n\\n26,900 19,657 153\\n\\nTOTAL REVENUES\\n\\n$\\n\\n18,353 $\\n\\n12,479 $\\n\\n7,547 $\\n\\n5,955 $\\n\\n102 $\\n\\n44,436 $\\n\\n2,346 $\\n\\n(72) $\\n\\n46,710\\n\\n2023 FORM 10-K 83\\n\\nTable of Contents\\n\\nYEAR ENDED MAY 31, 2021\\n\\n(Dollars in millions)\\n\\nNORTH AMERICA\\n\\nEUROPE, MIDDLE EAST & AFRICA\\n\\nGREATER CHINA\"),\n", + " 0.261225402355)]" ] }, - "execution_count": 12, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -615,7 +672,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 11, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -628,16 +685,16 @@ "data": { "text/plain": [ "[(Document(metadata={'source': 'resources/nke-10k-2023.pdf'}, page_content='As discussed in Note 15 — Operating Segments and Related Information in the accompanying Notes to the Consolidated Financial Statements, our operating segments are evidence of the structure of the Company\\'s internal organization. The NIKE Brand segments are defined by geographic regions for operations participating in NIKE Brand sales activity.\\n\\nThe breakdown of Revenues is as follows:\\n\\n(Dollars in millions)\\n\\nFISCAL 2023 FISCAL 2022\\n\\n% CHANGE\\n\\n% CHANGE EXCLUDING CURRENCY (1) CHANGES FISCAL 2021\\n\\n% CHANGE\\n\\nNorth America Europe, Middle East & Africa Greater China\\n\\n$\\n\\n21,608 $ 13,418 7,248\\n\\n18,353 12,479 7,547\\n\\n18 % 8 % -4 %\\n\\n18 % $ 21 % 4 %\\n\\n17,179 11,456 8,290\\n\\n7 % 9 % -9 %\\n\\nAsia Pacific & Latin America Global Brand Divisions\\n\\n(3)\\n\\n(2)\\n\\n6,431 58\\n\\n5,955 102\\n\\n8 % -43 %\\n\\n17 % -43 %\\n\\n5,343 25\\n\\n11 % 308 %\\n\\nTOTAL NIKE BRAND Converse\\n\\n$\\n\\n48,763 $ 2,427\\n\\n44,436 2,346\\n\\n10 % 3 %\\n\\n16 % $ 8 %\\n\\n42,293 2,205\\n\\n5 % 6 %\\n\\n(4)\\n\\nCorporate TOTAL NIKE, INC. REVENUES\\n\\n$\\n\\n27\\n\\n51,217 $\\n\\n(72) 46,710\\n\\n— 10 %\\n\\n— 16 % $\\n\\n40 44,538\\n\\n— 5 %\\n\\n(1) The percent change excluding currency changes represents a non-GAAP financial measure. For further information, see \"Use of Non-GAAP Financial Measures\".\\n\\n(2) For additional information on the transition of our NIKE Brand businesses within our CASA territory to a third-party distributor, see Note 18 — Acquisitions and Divestitures of the Notes to Consolidated\\n\\nFinancial Statements contained in Item 8 of this Annual Report.\\n\\n(3) Global Brand Divisions revenues include NIKE Brand licensing and other miscellaneous revenues that are not part of a geographic operating segment.\\n\\n(4) Corporate revenues primarily consist of foreign currency hedge gains and losses related to revenues generated by entities within the NIKE Brand geographic operating segments and Converse, but\\n\\nmanaged through our central foreign exchange risk management program.\\n\\nThe primary financial measure used by the Company to evaluate performance is Earnings Before Interest and Taxes (\"EBIT\"). As discussed in Note 15 — Operating Segments and Related Information in the accompanying Notes to the Consolidated Financial Statements, certain corporate costs are not included in EBIT.\\n\\nThe breakdown of EBIT is as follows:\\n\\n(Dollars in millions)\\n\\nFISCAL 2023\\n\\nFISCAL 2022\\n\\n% CHANGE\\n\\nFISCAL 2021\\n\\nNorth America Europe, Middle East & Africa Greater China\\n\\n$\\n\\n5,454 3,531 2,283\\n\\n$\\n\\n5,114 3,293 2,365\\n\\n7 % $ 7 % -3 %\\n\\n5,089 2,435 3,243\\n\\nAsia Pacific & Latin America Global Brand Divisions (1)'),\n", - " 0.233286261559),\n", + " 0.233286499977),\n", + " (Document(metadata={'source': 'resources/nke-10k-2023.pdf'}, page_content='As discussed in Note 15 — Operating Segments and Related Information in the accompanying Notes to the Consolidated Financial Statements, our operating segments are evidence of the structure of the Company\\'s internal organization. The NIKE Brand segments are defined by geographic regions for operations participating in NIKE Brand sales activity.\\n\\nThe breakdown of Revenues is as follows:\\n\\n(Dollars in millions)\\n\\nFISCAL 2023 FISCAL 2022\\n\\n% CHANGE\\n\\n% CHANGE EXCLUDING CURRENCY (1) CHANGES FISCAL 2021\\n\\n% CHANGE\\n\\nNorth America Europe, Middle East & Africa Greater China\\n\\n$\\n\\n21,608 $ 13,418 7,248\\n\\n18,353 12,479 7,547\\n\\n18 % 8 % -4 %\\n\\n18 % $ 21 % 4 %\\n\\n17,179 11,456 8,290\\n\\n7 % 9 % -9 %\\n\\nAsia Pacific & Latin America Global Brand Divisions\\n\\n(3)\\n\\n(2)\\n\\n6,431 58\\n\\n5,955 102\\n\\n8 % -43 %\\n\\n17 % -43 %\\n\\n5,343 25\\n\\n11 % 308 %\\n\\nTOTAL NIKE BRAND Converse\\n\\n$\\n\\n48,763 $ 2,427\\n\\n44,436 2,346\\n\\n10 % 3 %\\n\\n16 % $ 8 %\\n\\n42,293 2,205\\n\\n5 % 6 %\\n\\n(4)\\n\\nCorporate TOTAL NIKE, INC. REVENUES\\n\\n$\\n\\n27\\n\\n51,217 $\\n\\n(72) 46,710\\n\\n— 10 %\\n\\n— 16 % $\\n\\n40 44,538\\n\\n— 5 %\\n\\n(1) The percent change excluding currency changes represents a non-GAAP financial measure. For further information, see \"Use of Non-GAAP Financial Measures\".\\n\\n(2) For additional information on the transition of our NIKE Brand businesses within our CASA territory to a third-party distributor, see Note 18 — Acquisitions and Divestitures of the Notes to Consolidated\\n\\nFinancial Statements contained in Item 8 of this Annual Report.\\n\\n(3) Global Brand Divisions revenues include NIKE Brand licensing and other miscellaneous revenues that are not part of a geographic operating segment.\\n\\n(4) Corporate revenues primarily consist of foreign currency hedge gains and losses related to revenues generated by entities within the NIKE Brand geographic operating segments and Converse, but\\n\\nmanaged through our central foreign exchange risk management program.\\n\\nThe primary financial measure used by the Company to evaluate performance is Earnings Before Interest and Taxes (\"EBIT\"). As discussed in Note 15 — Operating Segments and Related Information in the accompanying Notes to the Consolidated Financial Statements, certain corporate costs are not included in EBIT.\\n\\nThe breakdown of EBIT is as follows:\\n\\n(Dollars in millions)\\n\\nFISCAL 2023\\n\\nFISCAL 2022\\n\\n% CHANGE\\n\\nFISCAL 2021\\n\\nNorth America Europe, Middle East & Africa Greater China\\n\\n$\\n\\n5,454 3,531 2,283\\n\\n$\\n\\n5,114 3,293 2,365\\n\\n7 % $ 7 % -3 %\\n\\n5,089 2,435 3,243\\n\\nAsia Pacific & Latin America Global Brand Divisions (1)'),\n", + " 0.233286499977),\n", + " (Document(metadata={'source': 'resources/nke-10k-2023.pdf'}, page_content='As discussed in Note 15 — Operating Segments and Related Information in the accompanying Notes to the Consolidated Financial Statements, our operating segments are evidence of the structure of the Company\\'s internal organization. The NIKE Brand segments are defined by geographic regions for operations participating in NIKE Brand sales activity.\\n\\nThe breakdown of Revenues is as follows:\\n\\n(Dollars in millions)\\n\\nFISCAL 2023 FISCAL 2022\\n\\n% CHANGE\\n\\n% CHANGE EXCLUDING CURRENCY (1) CHANGES FISCAL 2021\\n\\n% CHANGE\\n\\nNorth America Europe, Middle East & Africa Greater China\\n\\n$\\n\\n21,608 $ 13,418 7,248\\n\\n18,353 12,479 7,547\\n\\n18 % 8 % -4 %\\n\\n18 % $ 21 % 4 %\\n\\n17,179 11,456 8,290\\n\\n7 % 9 % -9 %\\n\\nAsia Pacific & Latin America Global Brand Divisions\\n\\n(3)\\n\\n(2)\\n\\n6,431 58\\n\\n5,955 102\\n\\n8 % -43 %\\n\\n17 % -43 %\\n\\n5,343 25\\n\\n11 % 308 %\\n\\nTOTAL NIKE BRAND Converse\\n\\n$\\n\\n48,763 $ 2,427\\n\\n44,436 2,346\\n\\n10 % 3 %\\n\\n16 % $ 8 %\\n\\n42,293 2,205\\n\\n5 % 6 %\\n\\n(4)\\n\\nCorporate TOTAL NIKE, INC. REVENUES\\n\\n$\\n\\n27\\n\\n51,217 $\\n\\n(72) 46,710\\n\\n— 10 %\\n\\n— 16 % $\\n\\n40 44,538\\n\\n— 5 %\\n\\n(1) The percent change excluding currency changes represents a non-GAAP financial measure. For further information, see \"Use of Non-GAAP Financial Measures\".\\n\\n(2) For additional information on the transition of our NIKE Brand businesses within our CASA territory to a third-party distributor, see Note 18 — Acquisitions and Divestitures of the Notes to Consolidated\\n\\nFinancial Statements contained in Item 8 of this Annual Report.\\n\\n(3) Global Brand Divisions revenues include NIKE Brand licensing and other miscellaneous revenues that are not part of a geographic operating segment.\\n\\n(4) Corporate revenues primarily consist of foreign currency hedge gains and losses related to revenues generated by entities within the NIKE Brand geographic operating segments and Converse, but\\n\\nmanaged through our central foreign exchange risk management program.\\n\\nThe primary financial measure used by the Company to evaluate performance is Earnings Before Interest and Taxes (\"EBIT\"). As discussed in Note 15 — Operating Segments and Related Information in the accompanying Notes to the Consolidated Financial Statements, certain corporate costs are not included in EBIT.\\n\\nThe breakdown of EBIT is as follows:\\n\\n(Dollars in millions)\\n\\nFISCAL 2023\\n\\nFISCAL 2022\\n\\n% CHANGE\\n\\nFISCAL 2021\\n\\nNorth America Europe, Middle East & Africa Greater China\\n\\n$\\n\\n5,454 3,531 2,283\\n\\n$\\n\\n5,114 3,293 2,365\\n\\n7 % $ 7 % -3 %\\n\\n5,089 2,435 3,243\\n\\nAsia Pacific & Latin America Global Brand Divisions (1)'),\n", + " 0.233286499977),\n", " (Document(metadata={'source': 'resources/nke-10k-2023.pdf'}, page_content=\"Tax (expense) benefit Gain (loss) net of tax\\n\\n5 (14)\\n\\n(9) 22\\n\\nTotal net gain (loss) reclassified for the period\\n\\n$\\n\\n463 $\\n\\n30\\n\\n2023 FORM 10-K 82\\n\\nTable of Contents\\n\\nNOTE 14 — REVENUES\\n\\nDISAGGREGATION OF REVENUES The following tables present the Company's Revenues disaggregated by reportable operating segment, major product line and distribution channel:\\n\\n(Dollars in millions)\\n\\nNORTH AMERICA\\n\\nEUROPE, MIDDLE EAST & AFRICA\\n\\nGREATER CHINA\\n\\nYEAR ENDED MAY 31, 2023 ASIA PACIFIC & LATIN (1)\\n\\nGLOBAL BRAND DIVISIONS\\n\\nTOTAL NIKE\\n\\nAMERICA\\n\\nBRAND CONVERSE CORPORATE\\n\\nTOTAL NIKE, INC.\\n\\nRevenues by: Footwear\\n\\n$\\n\\n14,897 $\\n\\n8,260 $\\n\\n5,435 $\\n\\n4,543 $\\n\\n— $\\n\\n33,135 $\\n\\n2,155 $\\n\\n— $\\n\\n35,290\\n\\nApparel Equipment Other\\n\\n5,947 764 —\\n\\n4,566 592 —\\n\\n1,666 147 —\\n\\n1,664 224 —\\n\\n— — 58\\n\\n13,843 1,727 58\\n\\n90 28 154\\n\\n— — 27\\n\\n13,933 1,755 239\\n\\nTOTAL REVENUES\\n\\n$\\n\\n21,608 $\\n\\n13,418 $\\n\\n7,248 $\\n\\n6,431 $\\n\\n58 $\\n\\n48,763 $\\n\\n2,427 $\\n\\n27 $\\n\\n51,217\\n\\nRevenues by:\\n\\nSales to Wholesale Customers Sales through Direct to Consumer\\n\\n$\\n\\n11,273 $ 10,335\\n\\n8,522 $ 4,896\\n\\n3,866 $ 3,382\\n\\n3,736 $ 2,695\\n\\n— $ —\\n\\n27,397 $ 21,308\\n\\n1,299 $ 974\\n\\n— $ —\\n\\n28,696 22,282\\n\\nOther\\n\\nTOTAL REVENUES\\n\\n$\\n\\n—\\n\\n21,608 $\\n\\n—\\n\\n13,418 $\\n\\n— 7,248 $\\n\\n— 6,431 $\\n\\n58 58 $\\n\\n58\\n\\n48,763 $\\n\\n154 2,427 $\\n\\n27 27 $\\n\\n239 51,217\\n\\n(1) Refer to Note 18 — Acquisitions and Divestitures for additional information on the transition of the Company's NIKE Brand businesses in its CASA territory to third-party distributors.\\n\\nYEAR ENDED MAY 31, 2022\\n\\n(Dollars in millions)\\n\\nNORTH AMERICA\\n\\nEUROPE, MIDDLE EAST & AFRICA\\n\\nGREATER CHINA\\n\\nASIA PACIFIC & LATIN AMERICA\\n\\nGLOBAL BRAND DIVISIONS\\n\\nTOTAL NIKE\\n\\nBRAND CONVERSE CORPORATE\\n\\nTOTAL NIKE, INC.\\n\\nRevenues by: Footwear Apparel\\n\\n$\\n\\n12,228 $ 5,492\\n\\n7,388 $ 4,527\\n\\n5,416 $ 1,938\\n\\n4,111 $ 1,610\\n\\n— $ —\\n\\n29,143 $ 13,567\\n\\n2,094 $ 103\\n\\n— $ —\\n\\n31,237 13,670\\n\\nEquipment Other\\n\\n633 —\\n\\n564 —\\n\\n193 —\\n\\n234 —\\n\\n— 102\\n\\n1,624 102\\n\\n26 123\\n\\n— (72)\\n\\n1,650 153\\n\\nTOTAL REVENUES Revenues by:\\n\\n$\\n\\n18,353 $\\n\\n12,479 $\\n\\n7,547 $\\n\\n5,955 $\\n\\n102 $\\n\\n44,436 $\\n\\n2,346 $\\n\\n(72) $\\n\\n46,710\\n\\nSales to Wholesale Customers Sales through Direct to Consumer Other\\n\\n$\\n\\n9,621 $ 8,732 —\\n\\n8,377 $ 4,102 —\\n\\n4,081 $ 3,466 —\\n\\n3,529 $ 2,426 —\\n\\n— $ — 102\\n\\n25,608 $ 18,726 102\\n\\n1,292 $ 931 123\\n\\n— $ — (72)\\n\\n26,900 19,657 153\\n\\nTOTAL REVENUES\\n\\n$\\n\\n18,353 $\\n\\n12,479 $\\n\\n7,547 $\\n\\n5,955 $\\n\\n102 $\\n\\n44,436 $\\n\\n2,346 $\\n\\n(72) $\\n\\n46,710\\n\\n2023 FORM 10-K 83\\n\\nTable of Contents\\n\\nYEAR ENDED MAY 31, 2021\\n\\n(Dollars in millions)\\n\\nNORTH AMERICA\\n\\nEUROPE, MIDDLE EAST & AFRICA\\n\\nGREATER CHINA\"),\n", - " 0.261225521564),\n", - " (Document(metadata={'source': 'resources/nke-10k-2023.pdf'}, page_content='4,780 (508)\\n\\n7 % -80 %\\n\\nTOTAL NIKE BRAND WHOLESALE EQUIVALENT REVENUES\\n\\n$\\n\\n40,127 $\\n\\n36,151\\n\\n11 %\\n\\n18 % $\\n\\n35,770\\n\\n1 %\\n\\n(1)\\n\\nThe percent change excluding currency changes and the presentation of wholesale equivalent revenues represent non-GAAP financial measures. For further information, see \"Use of Non-GAAP Financial Measures\".\\n\\n(2) Global Brand Divisions revenues include NIKE Brand licensing and other miscellaneous revenues that are not part of a geographic operating segment.\\n\\n(3) Corporate revenues primarily consist of foreign currency hedge gains and losses related to revenues generated by entities within the NIKE Brand geographic operating segments and Converse, but\\n\\nmanaged through our central foreign exchange risk management program.\\n\\n(4)\\n\\nAs a result of the Consumer Direct Acceleration strategy, announced in fiscal 2021, the Company is now organized around a consumer construct of Men\\'s, Women\\'s and Kids\\'. Beginning in the first quarter of fiscal 2022, unisex products are classified within Men\\'s, and Jordan Brand revenues are separately reported. Certain prior year amounts were reclassified to conform to fiscal 2022 presentation. These changes had no impact on previously reported consolidated results of operations or shareholders\\' equity.\\n\\n(5) Others include products not allocated to Men\\'s, Women\\'s, NIKE Kids\\' and Jordan Brand, as well as certain adjustments that are not allocated to products designated by consumer.\\n\\n2023 FORM 10-K 32\\n\\n% CHANGE EXCLUDING CURRENCY (1) CHANGES\\n\\n4 % 6 %\\n\\n18 % 302 % 6 %\\n\\n7 % —\\n\\n6 %\\n\\n1 %\\n\\n15 % 302 %\\n\\n6 %\\n\\n1 % 7 % 1 %\\n\\n3 % 1 % 0 %\\n\\n7 % -79 %\\n\\n1 %\\n\\nTable of Contents\\n\\nFISCAL 2023 NIKE BRAND REVENUE HIGHLIGHTS The following tables present NIKE Brand revenues disaggregated by reportable operating segment, distribution channel and major product line:\\n\\nFISCAL 2023 COMPARED TO FISCAL 2022\\n\\nNIKE, Inc. Revenues were $51.2 billion in fiscal 2023, which increased 10% and 16% compared to fiscal 2022 on a reported and currency-neutral basis, respectively. The increase was due to higher revenues in North America, Europe, Middle East & Africa (\"EMEA\"), APLA and Greater China, which contributed approximately 7, 6, 2 and 1 percentage points to NIKE, Inc. Revenues, respectively.'),\n", - " 0.28352534771),\n", - " (Document(metadata={'source': 'resources/nke-10k-2023.pdf'}, page_content=\"ASIA PACIFIC & LATIN AMERICA\\n\\n(1)\\n\\nGLOBAL BRAND DIVISIONS\\n\\nTOTAL NIKE BRAND\\n\\nCONVERSE CORPORATE\\n\\nTOTAL NIKE, INC.\\n\\nRevenues by:\\n\\nFootwear Apparel Equipment\\n\\n$\\n\\n11,644 $ 5,028 507\\n\\n6,970 $ 3,996 490\\n\\n5,748 $ 2,347 195\\n\\n3,659 $ 1,494 190\\n\\n— $ — —\\n\\n28,021 $ 12,865 1,382\\n\\n1,986 $ 104 29\\n\\n— $ — —\\n\\n30,007 12,969 1,411\\n\\nOther\\n\\nTOTAL REVENUES\\n\\n$\\n\\n—\\n\\n17,179 $\\n\\n—\\n\\n11,456 $\\n\\n— 8,290 $\\n\\n— 5,343 $\\n\\n25 25 $\\n\\n25\\n\\n42,293 $\\n\\n86 2,205 $\\n\\n40 40 $\\n\\n151 44,538\\n\\nRevenues by:\\n\\nSales to Wholesale Customers $\\n\\n10,186 $\\n\\n7,812 $\\n\\n4,513 $\\n\\n3,387 $\\n\\n— $\\n\\n25,898 $\\n\\n1,353 $\\n\\n— $\\n\\n27,251\\n\\nSales through Direct to Consumer Other\\n\\n6,993 —\\n\\n3,644 —\\n\\n3,777 —\\n\\n1,956 —\\n\\n— 25\\n\\n16,370 25\\n\\n766 86\\n\\n— 40\\n\\n17,136 151\\n\\nTOTAL REVENUES\\n\\n$\\n\\n17,179 $\\n\\n11,456 $\\n\\n8,290 $\\n\\n5,343 $\\n\\n25 $\\n\\n42,293 $\\n\\n2,205 $\\n\\n40 $\\n\\n44,538\\n\\n(1) Refer to Note 18 — Acquisitions and Divestitures for additional information on the transition of the Company's NIKE Brand business in Brazil to a third-party distributor.\\n\\nFor the fiscal years ended May 31, 2023, 2022 and 2021, Global Brand Divisions revenues include NIKE Brand licensing and other miscellaneous revenues that are not part of a geographic operating segment. Converse Other revenues were primarily attributable to licensing businesses. Corporate revenues primarily consisted of foreign currency hedge gains and losses related to revenues generated by entities within the NIKE Brand geographic operating segments and Converse but managed through the Company's central foreign exchange risk management program.\\n\\nAs of May 31, 2023 and 2022, the Company did not have any contract assets and had an immaterial amount of contract liabilities recorded in Accrued liabilities on the Consolidated Balance Sheets.\\n\\nSALES-RELATED RESERVES\\n\\nAs of May 31, 2023 and 2022, the Company's sales-related reserve balance, which includes returns, post-invoice sales discounts and miscellaneous claims, was $994 million and $1,015 million, respectively, recorded in Accrued liabilities on the Consolidated Balance Sheets. The estimated cost of inventory for expected product returns was $226 million and $194 million as of May 31, 2023 and 2022, respectively, and was recorded in Prepaid expenses and other current assets on the Consolidated Balance Sheets.\\n\\nNOTE 15 — OPERATING SEGMENTS AND RELATED INFORMATION\"),\n", - " 0.285882711411)]" + " 0.261225402355)]" ] }, - "execution_count": 13, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -671,7 +728,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 12, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -698,7 +755,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -738,7 +795,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -765,7 +822,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 15, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -778,10 +835,10 @@ { "data": { "text/plain": [ - "\"Nike's revenue for the fiscal year ended May 31, 2023, was $51,217 million, while the revenue for the fiscal year ended May 31, 2022, was $46,710 million. This represents an increase in revenue from the previous year.\"" + "\"Nike's revenue last year was $44,538 million, and this year it was $51,217 million.\"" ] }, - "execution_count": 20, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -793,7 +850,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 16, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -806,10 +863,10 @@ { "data": { "text/plain": [ - "'Nike offers three main types of products: footwear, apparel, and equipment. Nike is part of the athletic footwear, apparel, and equipment industry.'" + "'The exact number of products Nike offers is not explicitly stated in the provided context. However, Nike is part of the athletic footwear, apparel, and equipment industry, which is highly competitive both in the United States and worldwide.'" ] }, - "execution_count": 21, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } @@ -821,7 +878,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 17, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -834,10 +891,10 @@ { "data": { "text/plain": [ - "\"I don't have access to real-time information or subjective assessments, so I cannot provide a definitive answer on whether Nike is considered an ethical company. It is recommended to research and analyze various sources, including corporate social responsibility reports and news articles, to form your own opinion on the ethical practices of Nike.\"" + "'Based on the provided information, there is no specific mention or data that directly addresses the ethical practices of Nike as a company. Therefore, it is not possible to determine if Nike is an ethical company based on the provided context.'" ] }, - "execution_count": 22, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -860,11 +917,26 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 18, "metadata": { "id": "DtZi-mQ61vm-" }, - "outputs": [], + "outputs": [ + { + "ename": "ValueError", + "evalue": "REDIS_URL env var not set", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[18], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mredisvl\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mindex\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m SearchIndex\n\u001b[0;32m----> 3\u001b[0m idx \u001b[38;5;241m=\u001b[39m \u001b[43mSearchIndex\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_existing\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 4\u001b[0m \u001b[43m \u001b[49m\u001b[43mindex_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 5\u001b[0m \u001b[43m \u001b[49m\u001b[43mredis_url\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mREDIS_URL\u001b[49m\n\u001b[1;32m 6\u001b[0m \u001b[43m)\u001b[49m\n\u001b[1;32m 8\u001b[0m idx\u001b[38;5;241m.\u001b[39mdelete()\n", + "File \u001b[0;32m~/.pyenv/versions/3.11.9/lib/python3.11/site-packages/redisvl/index/index.py:322\u001b[0m, in \u001b[0;36mSearchIndex.from_existing\u001b[0;34m(cls, name, redis_client, redis_url, **kwargs)\u001b[0m\n\u001b[1;32m 320\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 321\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m redis_url:\n\u001b[0;32m--> 322\u001b[0m redis_client \u001b[38;5;241m=\u001b[39m \u001b[43mRedisConnectionFactory\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_redis_connection\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 323\u001b[0m \u001b[43m \u001b[49m\u001b[43mredis_url\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mredis_url\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 324\u001b[0m \u001b[43m \u001b[49m\u001b[43mrequired_modules\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mREQUIRED_MODULES_FOR_INTROSPECTION\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 325\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 326\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 327\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m redis_client:\n\u001b[1;32m 328\u001b[0m RedisConnectionFactory\u001b[38;5;241m.\u001b[39mvalidate_sync_redis(\n\u001b[1;32m 329\u001b[0m redis_client, required_modules\u001b[38;5;241m=\u001b[39mREQUIRED_MODULES_FOR_INTROSPECTION\n\u001b[1;32m 330\u001b[0m )\n", + "File \u001b[0;32m~/.pyenv/versions/3.11.9/lib/python3.11/site-packages/redisvl/redis/connection.py:248\u001b[0m, in \u001b[0;36mRedisConnectionFactory.get_redis_connection\u001b[0;34m(url, required_modules, **kwargs)\u001b[0m\n\u001b[1;32m 224\u001b[0m \u001b[38;5;129m@staticmethod\u001b[39m\n\u001b[1;32m 225\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mget_redis_connection\u001b[39m(\n\u001b[1;32m 226\u001b[0m url: Optional[\u001b[38;5;28mstr\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 227\u001b[0m required_modules: Optional[List[Dict[\u001b[38;5;28mstr\u001b[39m, Any]]] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 228\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs,\n\u001b[1;32m 229\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Redis:\n\u001b[1;32m 230\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Creates and returns a synchronous Redis client.\u001b[39;00m\n\u001b[1;32m 231\u001b[0m \n\u001b[1;32m 232\u001b[0m \u001b[38;5;124;03m Args:\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 246\u001b[0m \u001b[38;5;124;03m RedisModuleVersionError: If required Redis modules are not installed.\u001b[39;00m\n\u001b[1;32m 247\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 248\u001b[0m url \u001b[38;5;241m=\u001b[39m url \u001b[38;5;129;01mor\u001b[39;00m \u001b[43mget_address_from_env\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 249\u001b[0m client \u001b[38;5;241m=\u001b[39m Redis\u001b[38;5;241m.\u001b[39mfrom_url(url, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 251\u001b[0m RedisConnectionFactory\u001b[38;5;241m.\u001b[39mvalidate_sync_redis(\n\u001b[1;32m 252\u001b[0m client, required_modules\u001b[38;5;241m=\u001b[39mrequired_modules\n\u001b[1;32m 253\u001b[0m )\n", + "File \u001b[0;32m~/.pyenv/versions/3.11.9/lib/python3.11/site-packages/redisvl/redis/connection.py:61\u001b[0m, in \u001b[0;36mget_address_from_env\u001b[0;34m()\u001b[0m\n\u001b[1;32m 55\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Get a redis connection from environment variables.\u001b[39;00m\n\u001b[1;32m 56\u001b[0m \n\u001b[1;32m 57\u001b[0m \u001b[38;5;124;03mReturns:\u001b[39;00m\n\u001b[1;32m 58\u001b[0m \u001b[38;5;124;03m str: Redis URL\u001b[39;00m\n\u001b[1;32m 59\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 60\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mREDIS_URL\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m os\u001b[38;5;241m.\u001b[39menviron:\n\u001b[0;32m---> 61\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mREDIS_URL env var not set\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 62\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m os\u001b[38;5;241m.\u001b[39menviron[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mREDIS_URL\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n", + "\u001b[0;31mValueError\u001b[0m: REDIS_URL env var not set" + ] + } + ], "source": [ "from redisvl.index import SearchIndex\n", "\n", @@ -875,6 +947,77 @@ "\n", "idx.delete()" ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'0.4.0'" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import redisvl\n", + "\n", + "redisvl.__version__" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'5.2.1'" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import redis\n", + "\n", + "redis.__version__" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'redis://:@localhost:6379'" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "REDIS_URL" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -898,4800 +1041,8 @@ "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.9" - }, - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "008e25d7de5e4e548d80be81e26bdb8f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "00b534687273409fbc18960bb7db0907": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "0281867e8ce8433fb665e287505d0404": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_07a6bd4b6a484dbebda92c366f3a6740", - "placeholder": "​", - "style": "IPY_MODEL_13fb05f6cbe24acba47be67e8b0a69a6", - "value": "Downloading (…)_Pooling/config.json: 100%" - } - }, - "04c8bb6bb7c8425b92e0f3fab63d8362": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4d54077e8c38411080b1ef9bfb42e3f8", - "IPY_MODEL_b8c9c7fb7b6e4dcfb717f96da1639553", - "IPY_MODEL_52961d70221846f78523df1414eb3436" - ], - "layout": "IPY_MODEL_008e25d7de5e4e548d80be81e26bdb8f" - } - }, - "05d146ed0f084dac8845c32c4bb28cff": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "07a6bd4b6a484dbebda92c366f3a6740": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "09049b516bc545ea844a770021f6812a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "0a9b8aa436604adc85c1f9a86a9889a6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0ab7b921de994f6980493fb89d3b8572": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0b3b28fae35d497886c72e4222470629": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c3e15e863ece4df88d1ad4fa4601fb43", - "placeholder": "​", - "style": "IPY_MODEL_ce7fbbb4b844429aa16d60c6524bb6ca", - "value": " 90.9M/90.9M [00:00<00:00, 212MB/s]" - } - }, - "0d1bc800782745a9b89e93bb992e0ce0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_369c5197fd23479c8aa79ac72cbea260", - "IPY_MODEL_5317c63c5168499eb992b4d764761dfc", - "IPY_MODEL_364519d35ab848199a6fb3e15906318a" - ], - "layout": "IPY_MODEL_8b7e8c8ff5f3478aa064f5b79ffaaadf" - } - }, - "0d31b15287954c3094750dd36a10d47a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ff231927834c41088becbe8f94f96f7b", - "placeholder": "​", - "style": "IPY_MODEL_6e3f1af22a534a7ebdb9752acb7f1b96", - "value": " 350/350 [00:00<00:00, 27.7kB/s]" - } - }, - "0d4624d3273d46268299e37d96c0d85d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "0d6362898099436abb80e52eac043c4f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "13fb05f6cbe24acba47be67e8b0a69a6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "15378b3263a449fabf00643fdd23565e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "168314c6ae1044d6810def7ff06f80c2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "1ab52b039fdb4cab909eb439a4ea3524": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2dff47a7d6364e2ba73f057e9b17a705", - "placeholder": "​", - "style": "IPY_MODEL_f4b4bc8eeef84da2abcf1691e174a080", - "value": " 612/612 [00:00<00:00, 35.6kB/s]" - } - }, - "1b2f3f0c7afd419e88f061d0c3280989": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "1f7ba17ad64c4ab68fe963eaf7a1efa7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6ff193e5c339435cba696e69b4a1ea20", - "placeholder": "​", - "style": "IPY_MODEL_7ebc91105d344011898341ce4f7edce0", - "value": " 232k/232k [00:00<00:00, 1.43MB/s]" - } - }, - "266abb8c7e064dbea106c6c2903404c3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "27725152494c4f0b85e48bf081113764": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_266abb8c7e064dbea106c6c2903404c3", - "max": 116, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_59317d931ba14c409d7f9baae6b4b2fc", - "value": 116 - } - }, - "27b3516e55614d1e91ce4c87c022ee0a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3991f774ac7f492993002be26cd67f18", - "IPY_MODEL_d6804472f88d4254925b7b006a97b2c8", - "IPY_MODEL_e0cae801b89e43598bab0ce7f38d7042" - ], - "layout": "IPY_MODEL_09049b516bc545ea844a770021f6812a" - } - }, - "27ba4306f92c4d659cadcd5c1e0ab787": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2860317abc5b41fab94f8fefe9cb6b3b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2d0a785ceb884a1f9ee020d22c987fa1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "2dff47a7d6364e2ba73f057e9b17a705": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "2e3997001c494151829379467dde2182": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0281867e8ce8433fb665e287505d0404", - "IPY_MODEL_d6ff7f1d2a6b44ff829212b67613e03b", - "IPY_MODEL_3402b3afe4304aec81a1e4389e2eafec" - ], - "layout": "IPY_MODEL_fc32fd51efd2488e9bff38274079d7e5" - } - }, - "30ebda1e38294648b014354009c17269": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "32a5f8335e3a4312aea8bb83505b4ed3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "3402b3afe4304aec81a1e4389e2eafec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_843c2b0500ee4219841c959f3af20542", - "placeholder": "​", - "style": "IPY_MODEL_d84881099d4f4f1fa8a481ea9f9dafdd", - "value": " 190/190 [00:00<00:00, 14.8kB/s]" - } - }, - "35e9d31c8cfb41199df0e4636537a9c0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d335cf6ac50b46f5a50870069a14a066", - "placeholder": "​", - "style": "IPY_MODEL_5b7765acd2024e04ba423edc346fe021", - "value": "Downloading pytorch_model.bin: 100%" - } - }, - "364519d35ab848199a6fb3e15906318a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_872caf759d1f45439397ee35c8cf5dc0", - "placeholder": "​", - "style": "IPY_MODEL_74b0c9b3b9944eab80f16b2789d6c041", - "value": " 53.0/53.0 [00:00<00:00, 3.42kB/s]" - } - }, - "366cf22df75b42509e5610ff9c9b1d3d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "369c5197fd23479c8aa79ac72cbea260": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ccb27092ee314285add51fd91e5ca49d", - "placeholder": "​", - "style": "IPY_MODEL_61f3b41fdcf04cff88dd08b36a4a5f41", - "value": "Downloading (…)nce_bert_config.json: 100%" - } - }, - "37e5517b0c7b45e0ad3366d4daf5b668": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "3991f774ac7f492993002be26cd67f18": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6a3ae2fa53c942edbb1b29a86717ad89", - "placeholder": "​", - "style": "IPY_MODEL_3da15201c5da4e40b0b3ac999552723a", - "value": "Downloading (…)cial_tokens_map.json: 100%" - } - }, - "39a239df60004a039de689a69c571afc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3d30fc25d10e4ce18d50320a88b0a2ec": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "3da15201c5da4e40b0b3ac999552723a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "4083110114e3443c920cbeb8c396d4da": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "41685bf8cb4344368edf161b66ae15b2": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "4d54077e8c38411080b1ef9bfb42e3f8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b0d11b0e853740b7b8e49e5158c940e5", - "placeholder": "​", - "style": "IPY_MODEL_ac450c103bb44f549a7103f67634f9bf", - "value": "Downloading (…)7e55de9125/README.md: 100%" - } - }, - "4e74d1276be141c9b0f2601ce4c7246a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4ffcc071ec56449ba865c876bc5cff5c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "52961d70221846f78523df1414eb3436": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_30ebda1e38294648b014354009c17269", - "placeholder": "​", - "style": "IPY_MODEL_755e63baf4ad4a289fd756d662d9a0bf", - "value": " 10.6k/10.6k [00:00<00:00, 769kB/s]" - } - }, - "52a56e10c8084ce999802b6db17ab78e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "5317c63c5168499eb992b4d764761dfc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_816a516fa90f43a18dfda92374c2f4ed", - "max": 53, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_7d8e2e3c678642afba660b450d5f3201", - "value": 53 - } - }, - "543e7442413d4035bb6949ccbab5cb6b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5d47f3871bf44a469dcfd0e456d3dae0", - "IPY_MODEL_bbb1a53611e14dcb9b028fe82d71e317", - "IPY_MODEL_0d31b15287954c3094750dd36a10d47a" - ], - "layout": "IPY_MODEL_9818040fcf844fd9b00cd0e438209d40" - } - }, - "54c512a0bb9f485a9612f088c717eec8": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "58f9c1e1f51f49c48c6dc6b441078218": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "59317d931ba14c409d7f9baae6b4b2fc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "5b7765acd2024e04ba423edc346fe021": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "5bf9cc6f60614542bf0628586b8560dd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a27b96cc3ce944549ba2d26f5d7338c2", - "placeholder": "​", - "style": "IPY_MODEL_75f27178134f477db58ef7cfc487897b", - "value": "Downloading (…)9125/train_script.py: 100%" - } - }, - "5d3f0bfd81b34819a6edce0496958f5a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "5d47f3871bf44a469dcfd0e456d3dae0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7c269846386c4f14bfafde1d5c0e871e", - "placeholder": "​", - "style": "IPY_MODEL_b11227ec73784e09871e0c25131b9f86", - "value": "Downloading (…)okenizer_config.json: 100%" - } - }, - "61f3b41fdcf04cff88dd08b36a4a5f41": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "67730a22939d42db8894a633483fd412": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "69d7c03c926e441a9bccfbe86fd5731d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_770d6b0784674359a669f3f1836a5876", - "placeholder": "​", - "style": "IPY_MODEL_c60fc7a6181a40d489ff43af79ff29b4", - "value": "Downloading (…)5de9125/modules.json: 100%" - } - }, - "6a3ae2fa53c942edbb1b29a86717ad89": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6dbbd3a5f81b46d99c9c897dba53d6a5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b63b4da89d0f45819ad0aead03833f4c", - "IPY_MODEL_27725152494c4f0b85e48bf081113764", - "IPY_MODEL_8d8356cdf3b54b2daa02fe6d06c2b372" - ], - "layout": "IPY_MODEL_e61f0ecfe4794a4d929b76b8a5434800" - } - }, - "6e3f1af22a534a7ebdb9752acb7f1b96": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "6ff193e5c339435cba696e69b4a1ea20": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "701d2879a67c4b86b9f9de76ff675e7c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7034b97b70c84a01a3d48e316814b555": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "723ef31f042343bd94217075e1857989": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_820afc900ef34cdc82f4e5d7c38fb67f", - "IPY_MODEL_f06938274c0d4b4591b6cfa2e7a8d183", - "IPY_MODEL_1ab52b039fdb4cab909eb439a4ea3524" - ], - "layout": "IPY_MODEL_d1e27bbac128455e9a0e959ba251eedd" - } - }, - "737a0eaff10c4237a67cbd680160ee91": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "744ba6e1b34e4883b49c138ab1bdbebc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7034b97b70c84a01a3d48e316814b555", - "placeholder": "​", - "style": "IPY_MODEL_39a239df60004a039de689a69c571afc", - "value": "Downloading (…)e9125/tokenizer.json: 100%" - } - }, - "74b0c9b3b9944eab80f16b2789d6c041": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "755e63baf4ad4a289fd756d662d9a0bf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "75f27178134f477db58ef7cfc487897b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "770d6b0784674359a669f3f1836a5876": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "7a6e695c3dcf417f9f53ceb019e37111": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5bf9cc6f60614542bf0628586b8560dd", - "IPY_MODEL_d08483b9393840cfb36dd504514043c4", - "IPY_MODEL_d36c28d414af4712b16a7f0543f61fc9" - ], - "layout": "IPY_MODEL_00b534687273409fbc18960bb7db0907" - } - }, - "7a83acfd4fb240c181f127fc7ee07d48": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7ba192f9998e41b782db482b60655f86": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "7c1867628e4742868ba1e1fa322b948e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_35e9d31c8cfb41199df0e4636537a9c0", - "IPY_MODEL_f1fff6bb909d4fcbbe0a7582fe5a09d4", - "IPY_MODEL_0b3b28fae35d497886c72e4222470629" - ], - "layout": "IPY_MODEL_bfd29912ee224c4e93ec37f545339586" - } - }, - "7c269846386c4f14bfafde1d5c0e871e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "7d8e2e3c678642afba660b450d5f3201": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7ebc91105d344011898341ce4f7edce0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "816a516fa90f43a18dfda92374c2f4ed": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "820afc900ef34cdc82f4e5d7c38fb67f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ff4297f185ce4f2eaf340a422b721774", - "placeholder": "​", - "style": "IPY_MODEL_168314c6ae1044d6810def7ff06f80c2", - "value": "Downloading (…)55de9125/config.json: 100%" - } - }, - "843c2b0500ee4219841c959f3af20542": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "84e4dc1690b642b7b00f5e1cedff91e8": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "872caf759d1f45439397ee35c8cf5dc0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "879c273bd3924ec0acaec655a92350e0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_744ba6e1b34e4883b49c138ab1bdbebc", - "IPY_MODEL_d449ea30c72044f986ffc3e1f9a128d8", - "IPY_MODEL_976d3f30f0654d48b096a5c39a8dece5" - ], - "layout": "IPY_MODEL_41685bf8cb4344368edf161b66ae15b2" - } - }, - "8b7e8c8ff5f3478aa064f5b79ffaaadf": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "8d8356cdf3b54b2daa02fe6d06c2b372": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_da5242e187fd4d6c950e7a75cebb33fa", - "placeholder": "​", - "style": "IPY_MODEL_a28d8e8eedf34026afe93d2105d7d779", - "value": " 116/116 [00:00<00:00, 9.98kB/s]" - } - }, - "955d7c1b76b348549daceb8482a8e825": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "96c778b21e154c77952c3b6456831f6a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "976d3f30f0654d48b096a5c39a8dece5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_955d7c1b76b348549daceb8482a8e825", - "placeholder": "​", - "style": "IPY_MODEL_2d0a785ceb884a1f9ee020d22c987fa1", - "value": " 466k/466k [00:00<00:00, 1.87MB/s]" - } - }, - "9818040fcf844fd9b00cd0e438209d40": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "99204cde99b348ccb4f45589802f5a38": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "9e0ba3c3e2a84f43ae708c89203c814a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4ffcc071ec56449ba865c876bc5cff5c", - "max": 349, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_a9c792cb80884e0899da0f40d9472e97", - "value": 349 - } - }, - "a1f692c86e6d4c668f31bcb4f4189f48": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a27b96cc3ce944549ba2d26f5d7338c2": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a28d8e8eedf34026afe93d2105d7d779": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "a68f0e29f8f745fab98bd16b4835956a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_cff28f0f731c48e88de8ccad15146e2f", - "placeholder": "​", - "style": "IPY_MODEL_af1f8d072046449d9437cb10ccdb2218", - "value": "Downloading (…)125/data_config.json: 100%" - } - }, - "a8114c2300b74599b0652601806b080e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e211cf2a0e6d4d1096bfb9dfaae00cbb", - "IPY_MODEL_f63c59800b0845b8bc8d9c2cce8bafc0", - "IPY_MODEL_1f7ba17ad64c4ab68fe963eaf7a1efa7" - ], - "layout": "IPY_MODEL_05d146ed0f084dac8845c32c4bb28cff" - } - }, - "a8b7b5ad3c954b94bda03987653ce1c8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a9c792cb80884e0899da0f40d9472e97": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ac450c103bb44f549a7103f67634f9bf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ae72de3e05a4461d9c2b0c1f953894b2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_69d7c03c926e441a9bccfbe86fd5731d", - "IPY_MODEL_9e0ba3c3e2a84f43ae708c89203c814a", - "IPY_MODEL_b2b8a580aa1944e6a00106f47070935c" - ], - "layout": "IPY_MODEL_cf7adc55be354c75b64d9a94285ea8f9" - } - }, - "aee906bc037849e2be3ac68955281892": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "af1f8d072046449d9437cb10ccdb2218": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "b0d11b0e853740b7b8e49e5158c940e5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "b11227ec73784e09871e0c25131b9f86": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "b1e6fa50486c4973b44b20e29c4837a9": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "b1e8dcf4ead64c5b8155594fd1d20632": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e3afaca826464f94b6b904e68c827cab", - "max": 1175, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_27ba4306f92c4d659cadcd5c1e0ab787", - "value": 1175 - } - }, - "b2b8a580aa1944e6a00106f47070935c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7ba192f9998e41b782db482b60655f86", - "placeholder": "​", - "style": "IPY_MODEL_737a0eaff10c4237a67cbd680160ee91", - "value": " 349/349 [00:00<00:00, 23.9kB/s]" - } - }, - "b4683c36fb744ac18ed8f98f1d352d16": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a68f0e29f8f745fab98bd16b4835956a", - "IPY_MODEL_d7791474a31b4ef7bffecdd264cbd0a5", - "IPY_MODEL_e49064443c9549ebb7a6d0710d2ad02e" - ], - "layout": "IPY_MODEL_ee0db8230ae64f1b94e246e2947682a3" - } - }, - "b63b4da89d0f45819ad0aead03833f4c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b1e6fa50486c4973b44b20e29c4837a9", - "placeholder": "​", - "style": "IPY_MODEL_5d3f0bfd81b34819a6edce0496958f5a", - "value": "Downloading (…)ce_transformers.json: 100%" - } - }, - "b8c9c7fb7b6e4dcfb717f96da1639553": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_99204cde99b348ccb4f45589802f5a38", - "max": 10610, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_2860317abc5b41fab94f8fefe9cb6b3b", - "value": 10610 - } - }, - "bbb1a53611e14dcb9b028fe82d71e317": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4083110114e3443c920cbeb8c396d4da", - "max": 350, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_366cf22df75b42509e5610ff9c9b1d3d", - "value": 350 - } - }, - "bd042dad15084b098dfbf7c9277d3581": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_15378b3263a449fabf00643fdd23565e", - "placeholder": "​", - "style": "IPY_MODEL_aee906bc037849e2be3ac68955281892", - "value": " 1.18k/1.18k [00:00<00:00, 69.4kB/s]" - } - }, - "bda924a0e1364f89a7f6c9c5ceb03b62": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "bfd29912ee224c4e93ec37f545339586": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c3e15e863ece4df88d1ad4fa4601fb43": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c60fc7a6181a40d489ff43af79ff29b4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ccb27092ee314285add51fd91e5ca49d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ce7fbbb4b844429aa16d60c6524bb6ca": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "cf7adc55be354c75b64d9a94285ea8f9": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "cff28f0f731c48e88de8ccad15146e2f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d05d9073ecd2434da541da9d71c3a907": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d08483b9393840cfb36dd504514043c4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e2816b9d2a21443c82b547466c3347d1", - "max": 13156, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_0a9b8aa436604adc85c1f9a86a9889a6", - "value": 13156 - } - }, - "d1e27bbac128455e9a0e959ba251eedd": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d335cf6ac50b46f5a50870069a14a066": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d36c28d414af4712b16a7f0543f61fc9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_37e5517b0c7b45e0ad3366d4daf5b668", - "placeholder": "​", - "style": "IPY_MODEL_58f9c1e1f51f49c48c6dc6b441078218", - "value": " 13.2k/13.2k [00:00<00:00, 928kB/s]" - } - }, - "d3e5c2097a8e44f481e91646e0410e62": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e769ce42211749599822ffc3a18e7292", - "placeholder": "​", - "style": "IPY_MODEL_0d6362898099436abb80e52eac043c4f", - "value": "Downloading (…)e9125/.gitattributes: 100%" - } - }, - "d449ea30c72044f986ffc3e1f9a128d8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1b2f3f0c7afd419e88f061d0c3280989", - "max": 466247, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_701d2879a67c4b86b9f9de76ff675e7c", - "value": 466247 - } - }, - "d6804472f88d4254925b7b006a97b2c8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_bda924a0e1364f89a7f6c9c5ceb03b62", - "max": 112, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_7a83acfd4fb240c181f127fc7ee07d48", - "value": 112 - } - }, - "d6ebd756685b4a589332a3598a25cd89": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d6ff7f1d2a6b44ff829212b67613e03b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3d30fc25d10e4ce18d50320a88b0a2ec", - "max": 190, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_ebe649c53e4d48fda0d4ea9a46ec5613", - "value": 190 - } - }, - "d7791474a31b4ef7bffecdd264cbd0a5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a1f692c86e6d4c668f31bcb4f4189f48", - "max": 39265, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_a8b7b5ad3c954b94bda03987653ce1c8", - "value": 39265 - } - }, - "d84881099d4f4f1fa8a481ea9f9dafdd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "da5242e187fd4d6c950e7a75cebb33fa": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "dad25775795b46ec9e7bb788b1d25f82": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "e0cae801b89e43598bab0ce7f38d7042": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d6ebd756685b4a589332a3598a25cd89", - "placeholder": "​", - "style": "IPY_MODEL_f3d585528e6a4962bfb93afbe92b6312", - "value": " 112/112 [00:00<00:00, 8.67kB/s]" - } - }, - "e211cf2a0e6d4d1096bfb9dfaae00cbb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d05d9073ecd2434da541da9d71c3a907", - "placeholder": "​", - "style": "IPY_MODEL_52a56e10c8084ce999802b6db17ab78e", - "value": "Downloading (…)7e55de9125/vocab.txt: 100%" - } - }, - "e2816b9d2a21443c82b547466c3347d1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "e3afaca826464f94b6b904e68c827cab": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "e49064443c9549ebb7a6d0710d2ad02e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_32a5f8335e3a4312aea8bb83505b4ed3", - "placeholder": "​", - "style": "IPY_MODEL_0d4624d3273d46268299e37d96c0d85d", - "value": " 39.3k/39.3k [00:00<00:00, 489kB/s]" - } - }, - "e61f0ecfe4794a4d929b76b8a5434800": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "e769ce42211749599822ffc3a18e7292": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "e822a189950844309e630f3e428d5a9a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d3e5c2097a8e44f481e91646e0410e62", - "IPY_MODEL_b1e8dcf4ead64c5b8155594fd1d20632", - "IPY_MODEL_bd042dad15084b098dfbf7c9277d3581" - ], - "layout": "IPY_MODEL_54c512a0bb9f485a9612f088c717eec8" - } - }, - "ebe649c53e4d48fda0d4ea9a46ec5613": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ee0db8230ae64f1b94e246e2947682a3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f06938274c0d4b4591b6cfa2e7a8d183": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_dad25775795b46ec9e7bb788b1d25f82", - "max": 612, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_4e74d1276be141c9b0f2601ce4c7246a", - "value": 612 - } - }, - "f1fff6bb909d4fcbbe0a7582fe5a09d4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_96c778b21e154c77952c3b6456831f6a", - "max": 90888945, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_67730a22939d42db8894a633483fd412", - "value": 90888945 - } - }, - "f3d585528e6a4962bfb93afbe92b6312": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "f4b4bc8eeef84da2abcf1691e174a080": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "f63c59800b0845b8bc8d9c2cce8bafc0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_84e4dc1690b642b7b00f5e1cedff91e8", - "max": 231508, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_0ab7b921de994f6980493fb89d3b8572", - "value": 231508 - } - }, - "fc32fd51efd2488e9bff38274079d7e5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ff231927834c41088becbe8f94f96f7b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ff4297f185ce4f2eaf340a422b721774": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - } - } } }, "nbformat": 4, "nbformat_minor": 0 -} +} \ No newline at end of file diff --git a/python-recipes/RAG/03_llamaindex.ipynb b/python-recipes/RAG/03_llamaindex.ipynb index 7d08e4b5..54b21c12 100644 --- a/python-recipes/RAG/03_llamaindex.ipynb +++ b/python-recipes/RAG/03_llamaindex.ipynb @@ -60,20 +60,11 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Note: you may need to restart the kernel to use updated packages.\n" - ] - } - ], + "outputs": [], "source": [ - "# NBVAL_SKIP\n", - "%pip install -U -q llama-index llama-index-vector-stores-redis llama-index-embeddings-cohere llama-index-embeddings-openai" + "%pip install -q llama-index \"llama-index-vector-stores-redis>=0.4.0\" llama-index-embeddings-cohere llama-index-embeddings-openai" ] }, { @@ -133,7 +124,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -172,7 +163,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 4, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -185,13 +176,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "Sample doc Doc ID: c013353e-dae7-4d17-befd-9e784c8acf79\n", - "Text: UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington,\n", - "D.C. 20549 FORM 10-K (Mark One) ☒ ANNUAL REPORT PURSUANT T O SECTION\n", - "13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the fiscal year\n", - "ended September 24, 2022 or ☐ TRANSITION REPORT PURSUANT T O SECTION\n", - "13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the transition\n", - "period...\n" + "Sample doc Doc ID: b90e8ae9-7204-4e86-87ff-16cc68f9fff4\n", + "Text: 2022 COLORADO\n" ] } ], @@ -210,7 +196,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -230,7 +216,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -252,7 +238,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -270,30 +256,30 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Node ID: d2e6cd9c-0716-49d8-8563-407a00d05445\n", - "Text: Table of Contents FISCAL 2023 NIKE BRAND REVENUE HIGHLIGHTS The\n", + "Node ID: 023a5d47-4560-4591-ab20-37e4522863aa\n", + "Text: Table of Contents FISCAL 2023 NIKE BRAND REVENUE HIGHLIGHTSThe\n", "following tables present NIKE Brand revenues disaggregated by\n", "reportable operating segment, distribution channel and major product\n", - "line: FISCAL 2023 COMPARED TO FISCAL 2022 •NIKE, Inc. Revenues were\n", + "line: FISCAL 2023 COMPARED TO FISCAL 2022 • NIKE, Inc. Revenues were\n", "$51.2 billion in fiscal 2023, which increased 10% and 16% compared to\n", "fiscal 2022 on...\n", - "Score: 0.900\n", + "Score: 0.899\n", "\n", - "Node ID: 28542d3b-b345-4e9e-b675-f62361ec85d9\n", - "Text: Table of Contents NORTH AMERICA (Dollars in millions) FISCAL\n", - "2023FISCAL 2022 % CHANGE% CHANGE EXCLUDING CURRENCY CHANGESFISCAL 2021\n", - "% CHANGE% CHANGE EXCLUDING CURRENCY CHANGES Revenues by: Footwear $\n", - "14,897 $ 12,228 22 % 22 %$ 11,644 5 % 5 % Apparel 5,947 5,492 8 % 9 %\n", - "5,028 9 % 9 % Equipment 764 633 21 % 21 % 507 25 % 25 % TOTAL REVENUES\n", - "$ 21,6...\n", - "Score: 0.885\n", + "Node ID: 10b3b6b1-112c-4279-a75a-d4d866c07f6b\n", + "Text: Sales through NIKE Direct Global Brand Divisions in FISCAL 2023\n", + "amounted to $21,308 million. Total NIKE Brand Wholesale Equivalent\n", + "Revenues for FISCAL 2023 were $48,763 million, with a 10% rise from\n", + "FISCAL 2022. NIKE Brand Wholesale Equivalent Revenues included sales\n", + "from Men's, Women's, and NIKE Kids' categories. Jordan Brand revenues\n", + "increased...\n", + "Score: 0.883\n", "\n" ] } @@ -314,7 +300,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -323,7 +309,7 @@ "\"NIKE's revenue in fiscal 23 was $51.2 billion.\"" ] }, - "execution_count": 7, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -348,7 +334,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -389,7 +375,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -398,7 +384,7 @@ "IndexInfo(name='custom_index', prefix='docs', key_separator=':', storage_type=)" ] }, - "execution_count": 9, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -409,7 +395,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -423,7 +409,7 @@ " 'vector': HNSWVectorField(name='vector', type='vector', path=None, attrs=HNSWVectorFieldAttributes(dims=1536, algorithm=, datatype=, distance_metric=, initial_cap=None, m=16, ef_construction=200, ef_runtime=10, epsilon=0.01))}" ] }, - "execution_count": 10, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -434,28 +420,7 @@ }, { "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "# from datetime import datetime\n", - "\n", - "\n", - "# def date_to_timestamp(date_string: str) -> int:\n", - "# date_format: str = \"%Y-%m-%d\"\n", - "# return int(datetime.strptime(date_string, date_format).timestamp())\n", - "\n", - "\n", - "# # iterate through documents and add new field\n", - "# for document in docs:\n", - "# document.metadata[\"updated_at\"] = date_to_timestamp(\n", - "# document.metadata[\"last_modified_date\"]\n", - "# )" - ] - }, - { - "cell_type": "code", - "execution_count": 12, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -483,7 +448,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -511,23 +476,23 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Node ID: cd0c5d8f-e3b1-4cbb-aa6a-5960003cdb2d\n", + "Node ID: 013f339e-7fda-4fc7-baf0-afbb3dadf47d\n", "Text: Table of Contents valuation. In the ordinary course of our\n", "business, there are many transactions and calculations for which the\n", "ultimate tax determination is uncertain. Significant judgment is\n", "required in evaluating and estimating our tax expense, assets, and\n", "liabilities. We are also subject to tax controversies in various\n", "jurisdictions that can...\n", - "Score: 0.746\n", + "Score: 0.747\n", "\n", - "Node ID: 6745f668-4c7a-43bf-a9c3-9b04e1a497f8\n", + "Node ID: ac3f2b03-0520-4a50-ba3e-a97ad0a6f643\n", "Text: Table of Contents Included in other income (expense), net in\n", "2021 and 2022 is a marketable equity securities valuation gain (loss)\n", "of $11.8 billion and $(12.7) billion from our equity investment in\n", @@ -536,7 +501,7 @@ "observable changes in ...\n", "Score: 0.740\n", "\n", - "Node ID: 717666fe-fea5-488b-999c-84e6d8b9a0db\n", + "Node ID: 62ef1673-dcfe-4ba0-a437-7b142cda4114\n", "Text: Exhibit 31.1 CERTIFICATIONS I, Andrew R. Jassy, certify that: 1.\n", "I have reviewed this Form 10-K of Amazon.com, Inc.; 2. Based on my\n", "knowledge, this report does not contain any untrue statement of a\n", @@ -584,4800 +549,8 @@ "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.9" - }, - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "008e25d7de5e4e548d80be81e26bdb8f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "00b534687273409fbc18960bb7db0907": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "0281867e8ce8433fb665e287505d0404": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_07a6bd4b6a484dbebda92c366f3a6740", - "placeholder": "​", - "style": "IPY_MODEL_13fb05f6cbe24acba47be67e8b0a69a6", - "value": "Downloading (…)_Pooling/config.json: 100%" - } - }, - "04c8bb6bb7c8425b92e0f3fab63d8362": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4d54077e8c38411080b1ef9bfb42e3f8", - "IPY_MODEL_b8c9c7fb7b6e4dcfb717f96da1639553", - "IPY_MODEL_52961d70221846f78523df1414eb3436" - ], - "layout": "IPY_MODEL_008e25d7de5e4e548d80be81e26bdb8f" - } - }, - "05d146ed0f084dac8845c32c4bb28cff": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "07a6bd4b6a484dbebda92c366f3a6740": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "09049b516bc545ea844a770021f6812a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "0a9b8aa436604adc85c1f9a86a9889a6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0ab7b921de994f6980493fb89d3b8572": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0b3b28fae35d497886c72e4222470629": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c3e15e863ece4df88d1ad4fa4601fb43", - "placeholder": "​", - "style": "IPY_MODEL_ce7fbbb4b844429aa16d60c6524bb6ca", - "value": " 90.9M/90.9M [00:00<00:00, 212MB/s]" - } - }, - "0d1bc800782745a9b89e93bb992e0ce0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_369c5197fd23479c8aa79ac72cbea260", - "IPY_MODEL_5317c63c5168499eb992b4d764761dfc", - "IPY_MODEL_364519d35ab848199a6fb3e15906318a" - ], - "layout": "IPY_MODEL_8b7e8c8ff5f3478aa064f5b79ffaaadf" - } - }, - "0d31b15287954c3094750dd36a10d47a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ff231927834c41088becbe8f94f96f7b", - "placeholder": "​", - "style": "IPY_MODEL_6e3f1af22a534a7ebdb9752acb7f1b96", - "value": " 350/350 [00:00<00:00, 27.7kB/s]" - } - }, - "0d4624d3273d46268299e37d96c0d85d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "0d6362898099436abb80e52eac043c4f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "13fb05f6cbe24acba47be67e8b0a69a6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "15378b3263a449fabf00643fdd23565e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "168314c6ae1044d6810def7ff06f80c2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "1ab52b039fdb4cab909eb439a4ea3524": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2dff47a7d6364e2ba73f057e9b17a705", - "placeholder": "​", - "style": "IPY_MODEL_f4b4bc8eeef84da2abcf1691e174a080", - "value": " 612/612 [00:00<00:00, 35.6kB/s]" - } - }, - "1b2f3f0c7afd419e88f061d0c3280989": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "1f7ba17ad64c4ab68fe963eaf7a1efa7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6ff193e5c339435cba696e69b4a1ea20", - "placeholder": "​", - "style": "IPY_MODEL_7ebc91105d344011898341ce4f7edce0", - "value": " 232k/232k [00:00<00:00, 1.43MB/s]" - } - }, - "266abb8c7e064dbea106c6c2903404c3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "27725152494c4f0b85e48bf081113764": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_266abb8c7e064dbea106c6c2903404c3", - "max": 116, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_59317d931ba14c409d7f9baae6b4b2fc", - "value": 116 - } - }, - "27b3516e55614d1e91ce4c87c022ee0a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3991f774ac7f492993002be26cd67f18", - "IPY_MODEL_d6804472f88d4254925b7b006a97b2c8", - "IPY_MODEL_e0cae801b89e43598bab0ce7f38d7042" - ], - "layout": "IPY_MODEL_09049b516bc545ea844a770021f6812a" - } - }, - "27ba4306f92c4d659cadcd5c1e0ab787": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2860317abc5b41fab94f8fefe9cb6b3b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2d0a785ceb884a1f9ee020d22c987fa1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "2dff47a7d6364e2ba73f057e9b17a705": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "2e3997001c494151829379467dde2182": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0281867e8ce8433fb665e287505d0404", - "IPY_MODEL_d6ff7f1d2a6b44ff829212b67613e03b", - "IPY_MODEL_3402b3afe4304aec81a1e4389e2eafec" - ], - "layout": "IPY_MODEL_fc32fd51efd2488e9bff38274079d7e5" - } - }, - "30ebda1e38294648b014354009c17269": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "32a5f8335e3a4312aea8bb83505b4ed3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "3402b3afe4304aec81a1e4389e2eafec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_843c2b0500ee4219841c959f3af20542", - "placeholder": "​", - "style": "IPY_MODEL_d84881099d4f4f1fa8a481ea9f9dafdd", - "value": " 190/190 [00:00<00:00, 14.8kB/s]" - } - }, - "35e9d31c8cfb41199df0e4636537a9c0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d335cf6ac50b46f5a50870069a14a066", - "placeholder": "​", - "style": "IPY_MODEL_5b7765acd2024e04ba423edc346fe021", - "value": "Downloading pytorch_model.bin: 100%" - } - }, - "364519d35ab848199a6fb3e15906318a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_872caf759d1f45439397ee35c8cf5dc0", - "placeholder": "​", - "style": "IPY_MODEL_74b0c9b3b9944eab80f16b2789d6c041", - "value": " 53.0/53.0 [00:00<00:00, 3.42kB/s]" - } - }, - "366cf22df75b42509e5610ff9c9b1d3d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "369c5197fd23479c8aa79ac72cbea260": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ccb27092ee314285add51fd91e5ca49d", - "placeholder": "​", - "style": "IPY_MODEL_61f3b41fdcf04cff88dd08b36a4a5f41", - "value": "Downloading (…)nce_bert_config.json: 100%" - } - }, - "37e5517b0c7b45e0ad3366d4daf5b668": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "3991f774ac7f492993002be26cd67f18": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6a3ae2fa53c942edbb1b29a86717ad89", - "placeholder": "​", - "style": "IPY_MODEL_3da15201c5da4e40b0b3ac999552723a", - "value": "Downloading (…)cial_tokens_map.json: 100%" - } - }, - "39a239df60004a039de689a69c571afc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3d30fc25d10e4ce18d50320a88b0a2ec": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "3da15201c5da4e40b0b3ac999552723a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "4083110114e3443c920cbeb8c396d4da": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "41685bf8cb4344368edf161b66ae15b2": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "4d54077e8c38411080b1ef9bfb42e3f8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b0d11b0e853740b7b8e49e5158c940e5", - "placeholder": "​", - "style": "IPY_MODEL_ac450c103bb44f549a7103f67634f9bf", - "value": "Downloading (…)7e55de9125/README.md: 100%" - } - }, - "4e74d1276be141c9b0f2601ce4c7246a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4ffcc071ec56449ba865c876bc5cff5c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "52961d70221846f78523df1414eb3436": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_30ebda1e38294648b014354009c17269", - "placeholder": "​", - "style": "IPY_MODEL_755e63baf4ad4a289fd756d662d9a0bf", - "value": " 10.6k/10.6k [00:00<00:00, 769kB/s]" - } - }, - "52a56e10c8084ce999802b6db17ab78e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "5317c63c5168499eb992b4d764761dfc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_816a516fa90f43a18dfda92374c2f4ed", - "max": 53, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_7d8e2e3c678642afba660b450d5f3201", - "value": 53 - } - }, - "543e7442413d4035bb6949ccbab5cb6b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5d47f3871bf44a469dcfd0e456d3dae0", - "IPY_MODEL_bbb1a53611e14dcb9b028fe82d71e317", - "IPY_MODEL_0d31b15287954c3094750dd36a10d47a" - ], - "layout": "IPY_MODEL_9818040fcf844fd9b00cd0e438209d40" - } - }, - "54c512a0bb9f485a9612f088c717eec8": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "58f9c1e1f51f49c48c6dc6b441078218": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "59317d931ba14c409d7f9baae6b4b2fc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "5b7765acd2024e04ba423edc346fe021": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "5bf9cc6f60614542bf0628586b8560dd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a27b96cc3ce944549ba2d26f5d7338c2", - "placeholder": "​", - "style": "IPY_MODEL_75f27178134f477db58ef7cfc487897b", - "value": "Downloading (…)9125/train_script.py: 100%" - } - }, - "5d3f0bfd81b34819a6edce0496958f5a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "5d47f3871bf44a469dcfd0e456d3dae0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7c269846386c4f14bfafde1d5c0e871e", - "placeholder": "​", - "style": "IPY_MODEL_b11227ec73784e09871e0c25131b9f86", - "value": "Downloading (…)okenizer_config.json: 100%" - } - }, - "61f3b41fdcf04cff88dd08b36a4a5f41": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "67730a22939d42db8894a633483fd412": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "69d7c03c926e441a9bccfbe86fd5731d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_770d6b0784674359a669f3f1836a5876", - "placeholder": "​", - "style": "IPY_MODEL_c60fc7a6181a40d489ff43af79ff29b4", - "value": "Downloading (…)5de9125/modules.json: 100%" - } - }, - "6a3ae2fa53c942edbb1b29a86717ad89": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6dbbd3a5f81b46d99c9c897dba53d6a5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b63b4da89d0f45819ad0aead03833f4c", - "IPY_MODEL_27725152494c4f0b85e48bf081113764", - "IPY_MODEL_8d8356cdf3b54b2daa02fe6d06c2b372" - ], - "layout": "IPY_MODEL_e61f0ecfe4794a4d929b76b8a5434800" - } - }, - "6e3f1af22a534a7ebdb9752acb7f1b96": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "6ff193e5c339435cba696e69b4a1ea20": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "701d2879a67c4b86b9f9de76ff675e7c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7034b97b70c84a01a3d48e316814b555": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "723ef31f042343bd94217075e1857989": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_820afc900ef34cdc82f4e5d7c38fb67f", - "IPY_MODEL_f06938274c0d4b4591b6cfa2e7a8d183", - "IPY_MODEL_1ab52b039fdb4cab909eb439a4ea3524" - ], - "layout": "IPY_MODEL_d1e27bbac128455e9a0e959ba251eedd" - } - }, - "737a0eaff10c4237a67cbd680160ee91": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "744ba6e1b34e4883b49c138ab1bdbebc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7034b97b70c84a01a3d48e316814b555", - "placeholder": "​", - "style": "IPY_MODEL_39a239df60004a039de689a69c571afc", - "value": "Downloading (…)e9125/tokenizer.json: 100%" - } - }, - "74b0c9b3b9944eab80f16b2789d6c041": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "755e63baf4ad4a289fd756d662d9a0bf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "75f27178134f477db58ef7cfc487897b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "770d6b0784674359a669f3f1836a5876": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "7a6e695c3dcf417f9f53ceb019e37111": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5bf9cc6f60614542bf0628586b8560dd", - "IPY_MODEL_d08483b9393840cfb36dd504514043c4", - "IPY_MODEL_d36c28d414af4712b16a7f0543f61fc9" - ], - "layout": "IPY_MODEL_00b534687273409fbc18960bb7db0907" - } - }, - "7a83acfd4fb240c181f127fc7ee07d48": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7ba192f9998e41b782db482b60655f86": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "7c1867628e4742868ba1e1fa322b948e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_35e9d31c8cfb41199df0e4636537a9c0", - "IPY_MODEL_f1fff6bb909d4fcbbe0a7582fe5a09d4", - "IPY_MODEL_0b3b28fae35d497886c72e4222470629" - ], - "layout": "IPY_MODEL_bfd29912ee224c4e93ec37f545339586" - } - }, - "7c269846386c4f14bfafde1d5c0e871e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "7d8e2e3c678642afba660b450d5f3201": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7ebc91105d344011898341ce4f7edce0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "816a516fa90f43a18dfda92374c2f4ed": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "820afc900ef34cdc82f4e5d7c38fb67f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ff4297f185ce4f2eaf340a422b721774", - "placeholder": "​", - "style": "IPY_MODEL_168314c6ae1044d6810def7ff06f80c2", - "value": "Downloading (…)55de9125/config.json: 100%" - } - }, - "843c2b0500ee4219841c959f3af20542": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "84e4dc1690b642b7b00f5e1cedff91e8": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "872caf759d1f45439397ee35c8cf5dc0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "879c273bd3924ec0acaec655a92350e0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_744ba6e1b34e4883b49c138ab1bdbebc", - "IPY_MODEL_d449ea30c72044f986ffc3e1f9a128d8", - "IPY_MODEL_976d3f30f0654d48b096a5c39a8dece5" - ], - "layout": "IPY_MODEL_41685bf8cb4344368edf161b66ae15b2" - } - }, - "8b7e8c8ff5f3478aa064f5b79ffaaadf": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "8d8356cdf3b54b2daa02fe6d06c2b372": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_da5242e187fd4d6c950e7a75cebb33fa", - "placeholder": "​", - "style": "IPY_MODEL_a28d8e8eedf34026afe93d2105d7d779", - "value": " 116/116 [00:00<00:00, 9.98kB/s]" - } - }, - "955d7c1b76b348549daceb8482a8e825": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "96c778b21e154c77952c3b6456831f6a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "976d3f30f0654d48b096a5c39a8dece5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_955d7c1b76b348549daceb8482a8e825", - "placeholder": "​", - "style": "IPY_MODEL_2d0a785ceb884a1f9ee020d22c987fa1", - "value": " 466k/466k [00:00<00:00, 1.87MB/s]" - } - }, - "9818040fcf844fd9b00cd0e438209d40": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "99204cde99b348ccb4f45589802f5a38": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "9e0ba3c3e2a84f43ae708c89203c814a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4ffcc071ec56449ba865c876bc5cff5c", - "max": 349, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_a9c792cb80884e0899da0f40d9472e97", - "value": 349 - } - }, - "a1f692c86e6d4c668f31bcb4f4189f48": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a27b96cc3ce944549ba2d26f5d7338c2": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a28d8e8eedf34026afe93d2105d7d779": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "a68f0e29f8f745fab98bd16b4835956a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_cff28f0f731c48e88de8ccad15146e2f", - "placeholder": "​", - "style": "IPY_MODEL_af1f8d072046449d9437cb10ccdb2218", - "value": "Downloading (…)125/data_config.json: 100%" - } - }, - "a8114c2300b74599b0652601806b080e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e211cf2a0e6d4d1096bfb9dfaae00cbb", - "IPY_MODEL_f63c59800b0845b8bc8d9c2cce8bafc0", - "IPY_MODEL_1f7ba17ad64c4ab68fe963eaf7a1efa7" - ], - "layout": "IPY_MODEL_05d146ed0f084dac8845c32c4bb28cff" - } - }, - "a8b7b5ad3c954b94bda03987653ce1c8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a9c792cb80884e0899da0f40d9472e97": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ac450c103bb44f549a7103f67634f9bf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ae72de3e05a4461d9c2b0c1f953894b2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_69d7c03c926e441a9bccfbe86fd5731d", - "IPY_MODEL_9e0ba3c3e2a84f43ae708c89203c814a", - "IPY_MODEL_b2b8a580aa1944e6a00106f47070935c" - ], - "layout": "IPY_MODEL_cf7adc55be354c75b64d9a94285ea8f9" - } - }, - "aee906bc037849e2be3ac68955281892": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "af1f8d072046449d9437cb10ccdb2218": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "b0d11b0e853740b7b8e49e5158c940e5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "b11227ec73784e09871e0c25131b9f86": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "b1e6fa50486c4973b44b20e29c4837a9": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "b1e8dcf4ead64c5b8155594fd1d20632": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e3afaca826464f94b6b904e68c827cab", - "max": 1175, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_27ba4306f92c4d659cadcd5c1e0ab787", - "value": 1175 - } - }, - "b2b8a580aa1944e6a00106f47070935c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7ba192f9998e41b782db482b60655f86", - "placeholder": "​", - "style": "IPY_MODEL_737a0eaff10c4237a67cbd680160ee91", - "value": " 349/349 [00:00<00:00, 23.9kB/s]" - } - }, - "b4683c36fb744ac18ed8f98f1d352d16": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a68f0e29f8f745fab98bd16b4835956a", - "IPY_MODEL_d7791474a31b4ef7bffecdd264cbd0a5", - "IPY_MODEL_e49064443c9549ebb7a6d0710d2ad02e" - ], - "layout": "IPY_MODEL_ee0db8230ae64f1b94e246e2947682a3" - } - }, - "b63b4da89d0f45819ad0aead03833f4c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b1e6fa50486c4973b44b20e29c4837a9", - "placeholder": "​", - "style": "IPY_MODEL_5d3f0bfd81b34819a6edce0496958f5a", - "value": "Downloading (…)ce_transformers.json: 100%" - } - }, - "b8c9c7fb7b6e4dcfb717f96da1639553": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_99204cde99b348ccb4f45589802f5a38", - "max": 10610, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_2860317abc5b41fab94f8fefe9cb6b3b", - "value": 10610 - } - }, - "bbb1a53611e14dcb9b028fe82d71e317": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4083110114e3443c920cbeb8c396d4da", - "max": 350, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_366cf22df75b42509e5610ff9c9b1d3d", - "value": 350 - } - }, - "bd042dad15084b098dfbf7c9277d3581": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_15378b3263a449fabf00643fdd23565e", - "placeholder": "​", - "style": "IPY_MODEL_aee906bc037849e2be3ac68955281892", - "value": " 1.18k/1.18k [00:00<00:00, 69.4kB/s]" - } - }, - "bda924a0e1364f89a7f6c9c5ceb03b62": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "bfd29912ee224c4e93ec37f545339586": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c3e15e863ece4df88d1ad4fa4601fb43": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c60fc7a6181a40d489ff43af79ff29b4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ccb27092ee314285add51fd91e5ca49d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ce7fbbb4b844429aa16d60c6524bb6ca": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "cf7adc55be354c75b64d9a94285ea8f9": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "cff28f0f731c48e88de8ccad15146e2f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d05d9073ecd2434da541da9d71c3a907": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d08483b9393840cfb36dd504514043c4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e2816b9d2a21443c82b547466c3347d1", - "max": 13156, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_0a9b8aa436604adc85c1f9a86a9889a6", - "value": 13156 - } - }, - "d1e27bbac128455e9a0e959ba251eedd": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d335cf6ac50b46f5a50870069a14a066": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d36c28d414af4712b16a7f0543f61fc9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_37e5517b0c7b45e0ad3366d4daf5b668", - "placeholder": "​", - "style": "IPY_MODEL_58f9c1e1f51f49c48c6dc6b441078218", - "value": " 13.2k/13.2k [00:00<00:00, 928kB/s]" - } - }, - "d3e5c2097a8e44f481e91646e0410e62": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e769ce42211749599822ffc3a18e7292", - "placeholder": "​", - "style": "IPY_MODEL_0d6362898099436abb80e52eac043c4f", - "value": "Downloading (…)e9125/.gitattributes: 100%" - } - }, - "d449ea30c72044f986ffc3e1f9a128d8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1b2f3f0c7afd419e88f061d0c3280989", - "max": 466247, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_701d2879a67c4b86b9f9de76ff675e7c", - "value": 466247 - } - }, - "d6804472f88d4254925b7b006a97b2c8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_bda924a0e1364f89a7f6c9c5ceb03b62", - "max": 112, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_7a83acfd4fb240c181f127fc7ee07d48", - "value": 112 - } - }, - "d6ebd756685b4a589332a3598a25cd89": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d6ff7f1d2a6b44ff829212b67613e03b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3d30fc25d10e4ce18d50320a88b0a2ec", - "max": 190, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_ebe649c53e4d48fda0d4ea9a46ec5613", - "value": 190 - } - }, - "d7791474a31b4ef7bffecdd264cbd0a5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a1f692c86e6d4c668f31bcb4f4189f48", - "max": 39265, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_a8b7b5ad3c954b94bda03987653ce1c8", - "value": 39265 - } - }, - "d84881099d4f4f1fa8a481ea9f9dafdd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "da5242e187fd4d6c950e7a75cebb33fa": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "dad25775795b46ec9e7bb788b1d25f82": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "e0cae801b89e43598bab0ce7f38d7042": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d6ebd756685b4a589332a3598a25cd89", - "placeholder": "​", - "style": "IPY_MODEL_f3d585528e6a4962bfb93afbe92b6312", - "value": " 112/112 [00:00<00:00, 8.67kB/s]" - } - }, - "e211cf2a0e6d4d1096bfb9dfaae00cbb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d05d9073ecd2434da541da9d71c3a907", - "placeholder": "​", - "style": "IPY_MODEL_52a56e10c8084ce999802b6db17ab78e", - "value": "Downloading (…)7e55de9125/vocab.txt: 100%" - } - }, - "e2816b9d2a21443c82b547466c3347d1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "e3afaca826464f94b6b904e68c827cab": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "e49064443c9549ebb7a6d0710d2ad02e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_32a5f8335e3a4312aea8bb83505b4ed3", - "placeholder": "​", - "style": "IPY_MODEL_0d4624d3273d46268299e37d96c0d85d", - "value": " 39.3k/39.3k [00:00<00:00, 489kB/s]" - } - }, - "e61f0ecfe4794a4d929b76b8a5434800": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "e769ce42211749599822ffc3a18e7292": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "e822a189950844309e630f3e428d5a9a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d3e5c2097a8e44f481e91646e0410e62", - "IPY_MODEL_b1e8dcf4ead64c5b8155594fd1d20632", - "IPY_MODEL_bd042dad15084b098dfbf7c9277d3581" - ], - "layout": "IPY_MODEL_54c512a0bb9f485a9612f088c717eec8" - } - }, - "ebe649c53e4d48fda0d4ea9a46ec5613": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ee0db8230ae64f1b94e246e2947682a3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f06938274c0d4b4591b6cfa2e7a8d183": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_dad25775795b46ec9e7bb788b1d25f82", - "max": 612, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_4e74d1276be141c9b0f2601ce4c7246a", - "value": 612 - } - }, - "f1fff6bb909d4fcbbe0a7582fe5a09d4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_96c778b21e154c77952c3b6456831f6a", - "max": 90888945, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_67730a22939d42db8894a633483fd412", - "value": 90888945 - } - }, - "f3d585528e6a4962bfb93afbe92b6312": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "f4b4bc8eeef84da2abcf1691e174a080": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "f63c59800b0845b8bc8d9c2cce8bafc0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_84e4dc1690b642b7b00f5e1cedff91e8", - "max": 231508, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_0ab7b921de994f6980493fb89d3b8572", - "value": 231508 - } - }, - "fc32fd51efd2488e9bff38274079d7e5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ff231927834c41088becbe8f94f96f7b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ff4297f185ce4f2eaf340a422b721774": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - } - } } }, "nbformat": 4, "nbformat_minor": 0 -} +} \ No newline at end of file diff --git a/python-recipes/RAG/04_advanced_redisvl.ipynb b/python-recipes/RAG/04_advanced_redisvl.ipynb index 25e1eb80..0a85530e 100644 --- a/python-recipes/RAG/04_advanced_redisvl.ipynb +++ b/python-recipes/RAG/04_advanced_redisvl.ipynb @@ -1,1405 +1,1360 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "id": "R2-i8jBl9GRH" - }, - "source": [ - "![Redis](https://redis.io/wp-content/uploads/2024/04/Logotype.svg?auto=webp&quality=85,75&width=120)\n", - "\n", - "# Advanced RAG example\n", - "\n", - "Now that you have a good foundation in Redis data structures, search capabilities, and basic RAG with the redisvl client from [/getting_started/02_redisvl](../getting_started/02_redisvl.ipynb).\n", - "\n", - "We will extend the basic RAG example with a few special topics/techniques:\n", - "- Dense content representation\n", - "- Query rewriting / expansion\n", - "- Semantic caching\n", - "- Conversational memory persistence\n", - "\n", - "## Let's Begin!\n", - "\"Open\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Improve accuracy with dense content representations\n", - "In the basic example, we took raw chunks of text from our pdf documents and generated embeddings for them to be stored in the vector database. This is okay but one technique we can use to improve the quality of retrieval is to leverage an LLM from OpenAI during ETL. We will prompt the LLM to summarize and decompose the raw pdf text into more discrete propositional phrases. This will enhance the clarity of the text and improve semantic retrieval for RAG.\n", - "\n", - "The goal is to utilize a preprocessing technique similar to what's outlined here:\n", - "https://github.com/langchain-ai/langchain/blob/master/templates/propositional-retrieval/propositional_retrieval/proposal_chain.py\n", - "\n", - "If you already have a redis-stack instance running locally from before feel free to jump ahead but if not execute the following commands to get the environment properly setup." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "rT9HzsnQ1uiz" - }, - "source": [ - "## Environment Setup\n", - "\n", - "### Pull Github Materials\n", - "Because you are likely running this notebook in **Google Colab**, we need to first\n", - "pull the necessary dataset and materials directly from GitHub.\n", - "\n", - "**If you are running this notebook locally**, FYI you may not need to perform this\n", - "step at all." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "AJJ2UW6M1ui0" - }, - "outputs": [], - "source": [ - "# NBVAL_SKIP\n", - "!git clone https://github.com/redis-developer/redis-ai-resources.git temp_repo\n", - "!mv temp_repo/python-recipes/RAG/resources .\n", - "!rm -rf temp_repo" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Z67mf6T91ui2" - }, - "source": [ - "### Install Python Dependencies" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "id": "DgxBQFXQ1ui2" - }, - "outputs": [], - "source": [ - "# NBVAL_SKIP\n", - "!pip install -q redis redisvl pandas \"unstructured[pdf]\" sentence-transformers langchain langchain-community openai tqdm" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Install Redis Stack\n", - "\n", - "Later in this tutorial, Redis will be used to store, index, and query vector\n", - "embeddings created from PDF document chunks. **We need to make sure we have a Redis\n", - "instance available.**" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### For Colab\n", - "Use the shell script below to download, extract, and install [Redis Stack](https://redis.io/docs/getting-started/install-stack/) directly\n", - "from the Redis package archive." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# NBVAL_SKIP\n", - "%%sh\n", - "curl -fsSL https://packages.redis.io/gpg | sudo gpg --dearmor -o /usr/share/keyrings/redis-archive-keyring.gpg\n", - "echo \"deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb $(lsb_release -cs) main\" | sudo tee /etc/apt/sources.list.d/redis.list\n", - "sudo apt-get update > /dev/null 2>&1\n", - "sudo apt-get install redis-stack-server > /dev/null 2>&1\n", - "redis-stack-server --daemonize yes" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### For Alternative Environments\n", - "There are many ways to get the necessary redis-stack instance running\n", - "1. On cloud, deploy a [FREE instance of Redis in the cloud](https://redis.com/try-free/). Or, if you have your\n", - "own version of Redis Enterprise running, that works too!\n", - "2. Per OS, [see the docs](https://redis.io/docs/latest/operate/oss_and_stack/install/install-stack/)\n", - "3. With docker: `docker run -d --name redis-stack-server -p 6379:6379 redis/redis-stack-server:latest`" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Define the Redis Connection URL\n", - "\n", - "By default this notebook connects to the local instance of Redis Stack. **If you have your own Redis Enterprise instance** - replace REDIS_PASSWORD, REDIS_HOST and REDIS_PORT values with your own." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "import warnings\n", - "warnings.filterwarnings('ignore')\n", - "\n", - "# Replace values below with your own if using Redis Cloud instance\n", - "REDIS_HOST = os.getenv(\"REDIS_HOST\", \"localhost\") # ex: \"redis-18374.c253.us-central1-1.gce.cloud.redislabs.com\"\n", - "REDIS_PORT = os.getenv(\"REDIS_PORT\", \"6379\") # ex: 18374\n", - "REDIS_PASSWORD = os.getenv(\"REDIS_PASSWORD\", \"\") # ex: \"1TNxTEdYRDgIDKM2gDfasupCADXXXX\"\n", - "\n", - "# If SSL is enabled on the endpoint, use rediss:// as the URL prefix\n", - "REDIS_URL = f\"redis://:{REDIS_PASSWORD}@{REDIS_HOST}:{REDIS_PORT}\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Now that our environment is setup we can again load our financial documents" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "KrtWWU4I1ui3" - }, - "source": [ - "### Dataset Preparation (PDF Documents)\n", - "\n", - "To best demonstrate Redis as a vector database layer, we will load a single\n", - "financial (10k filings) doc and preprocess it using some helpers from LangChain:\n", - "\n", - "- `UnstructuredFileLoader` is not the only document loader type that LangChain provides. Docs: https://python.langchain.com/docs/integrations/document_loaders/unstructured_file\n", - "- `RecursiveCharacterTextSplitter` is what we use to create smaller chunks of text from the doc. Docs: https://python.langchain.com/docs/modules/data_connection/document_transformers/text_splitters/recursive_text_splitter" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "id": "uijl2qFH1ui3" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Listing available documents ... ['resources/nke-10k-2023.pdf', 'resources/amzn-10k-2023.pdf', 'resources/jnj-10k-2023.pdf', 'resources/aapl-10k-2023.pdf', 'resources/retrieval_basic_rag_test.csv', 'resources/nvd-10k-2023.pdf', 'resources/testset.csv', 'resources/msft-10k-2023.pdf', 'resources/generation_basic_rag_test.csv']\n" - ] - } - ], - "source": [ - "from langchain.text_splitter import RecursiveCharacterTextSplitter\n", - "from langchain.document_loaders import UnstructuredFileLoader\n", - "\n", - "# Load list of pdfs from a folder\n", - "data_path = \"resources/\"\n", - "docs = [os.path.join(data_path, file) for file in os.listdir(data_path)]\n", - "\n", - "print(\"Listing available documents ...\", docs)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "id": "anya8hVnT6K_" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Done preprocessing. Created 179 chunks of the original pdf resources/nke-10k-2023.pdf\n" - ] - } - ], - "source": [ - "# pick out the Nike doc for this exercise\n", - "doc = [doc for doc in docs if \"nke\" in doc][0]\n", - "\n", - "# set up the file loader/extractor and text splitter to create chunks\n", - "text_splitter = RecursiveCharacterTextSplitter(chunk_size=2500, chunk_overlap=0)\n", - "loader = UnstructuredFileLoader(doc, mode=\"single\", strategy=\"fast\")\n", - "\n", - "# extract, load, and make chunks\n", - "chunks = loader.load_and_split(text_splitter)\n", - "\n", - "print(\"Done preprocessing. Created\", len(chunks), \"chunks of the original pdf\", doc)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### In the previous example, we would have gone ahead and embed the chunks as extracted here.\n", - "\n", - "Now we will instead leverage an LLM to create dense content representations to improve our retrieval accuracy." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Setup OpenAI as LLM" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "import getpass\n", - "import openai\n", - "\n", - "CHAT_MODEL = \"gpt-3.5-turbo-0125\"\n", - "\n", - "\n", - "if \"OPENAI_API_KEY\" not in os.environ:\n", - " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OPENAI_API_KEY\")" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "import tqdm\n", - "import json\n", - "\n", - "\n", - "def create_dense_props(chunk):\n", - " \"\"\"Create dense representation of raw text content.\"\"\"\n", - "\n", - " # The system message here should be HEAVILY customized for your specific use case\n", - " SYSTEM_PROMPT = \"\"\"\n", - " You are a helpful PDF extractor tool. You will be presented with segments from\n", - " raw PDF documents composed of 10k SEC filings information about public companies.\n", - "\n", - " Decompose and summarize the raw content into clear and simple propositions,\n", - " ensuring they are interpretable out of context. Consider the following rules:\n", - " 1. Split compound sentences into simpler dense phrases that retain existing\n", - " meaning.\n", - " 2. Simplify technical jargon or wording if possible while retaining existing\n", - " meaning.\n", - " 2. For any named entity that is accompanied by additional descriptive information,\n", - " separate this information into its own distinct proposition.\n", - " 3. Decontextualize the proposition by adding necessary modifier to nouns or\n", - " entire sentences and replacing pronouns (e.g., \"it\", \"he\", \"she\", \"they\", \"this\", \"that\")\n", - " with the full name of the entities they refer to.\n", - " 4. Present the results as a list of strings, formatted in JSON, under the key \"propositions\".\n", - " \"\"\"\n", - "\n", - " response = openai.OpenAI().chat.completions.create(\n", - " model=CHAT_MODEL,\n", - " response_format={ \"type\": \"json_object\" },\n", - " messages=[\n", - " {\"role\": \"system\", \"content\": SYSTEM_PROMPT},\n", - " {\"role\": \"user\", \"content\": f\"Decompose this raw content using the rules above:\\n{chunk.page_content} \"}\n", - " ]\n", - " )\n", - " res = response.choices[0].message.content\n", - "\n", - " try:\n", - " return json.loads(res)[\"propositions\"]\n", - " except Exception as e:\n", - " print(f\"Failed to parse propositions\", str(e), flush=True)\n", - " # Retry\n", - " return create_dense_props(chunk)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Create text propositions using OpenAI" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Load from disk to save time or regenerate as needed.\n", - "try:\n", - " with open(\"resources/propositions.json\", \"r\") as f:\n", - " propositions = json.load(f)\n", - "except:\n", - " # create props\n", - " propositions = [create_dense_props(chunk) for chunk in tqdm.tqdm(chunks)]\n", - " propositions = [\" \".join(prop) for prop in propositions]\n", - "\n", - " # Save to disk for faster reload..\n", - " with open(\"resources/propositions.json\", \"w\") as f:\n", - " json.dump(propositions, f)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Let's evaluate the proposition vs the raw chunk" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "\"Registrant check: Well-known seasoned issuer (YES/NO) Registrant check: Required to file reports under Section 13 or 15(d) (YES/NO) Registrant check: Filed all reports required by Section 13 or 15(d) in the past 12 months (YES/NO) and subject to filing requirements for the past 90 days (YES/NO) Registrant check: Submitted all Interactive Data Files required by Rule 405 of Regulation S-T in the past 12 months (YES/NO) Registrant classification: Large accelerated filer (YES), Accelerated filer (NO), Non-accelerated filer (NO), Smaller reporting company (NO), Emerging growth company (NO) Emerging growth company check: Elected not to use extended transition period for new financial accounting standards (YES/NO) Registrant check: Filed a report and attestation on management's assessment of internal control over financial reporting under Section 404(b) of the Sarbanes-Oxley Act (YES/NO) Securities registered check: Registered under Section 12(b) and financial statements reflect correction of errors in previously issued financial statements (YES/NO) Error corrections check: Any restatements requiring recovery analysis of executive officers' incentive-based compensation during recovery period (YES/NO) Registrant check: Shell company status (YES/NO)\"" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "propositions[0]" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Document(page_content=\"Indicate by check mark:YESNO•if the registrant is a well-known seasoned issuer, as defined in Rule 405 of the Securities Act.þ¨•if the registrant is not required to file reports pursuant to Section 13 or Section 15(d) of the Act.¨þ•whether the registrant (1) has filed all reports required to be filed by Section 13 or 15(d) of the Securities Exchange Act of 1934 during the preceding12 months (or for such shorter period that the registrant was required to file such reports), and (2) has been subject to such filing requirements for thepast 90 days.þ¨•whether the registrant has submitted electronically every Interactive Data File required to be submitted pursuant to Rule 405 of Regulation S-T(§232.405 of this chapter) during the preceding 12 months (or for such shorter period that the registrant was required to submit such files).þ¨•whether the registrant is a large accelerated filer, an accelerated filer, a non-accelerated filer, a smaller reporting company or an emerging growth company. See the definitions of “large accelerated filer,”“accelerated filer,” “smaller reporting company,” and “emerging growth company” in Rule 12b-2 of the Exchange Act.Large accelerated filerþAccelerated filer☐Non-accelerated filer☐Smaller reporting company☐Emerging growth company☐•if an emerging growth company, if the registrant has elected not to use the extended transition period for complying with any new or revised financialaccounting standards provided pursuant to Section 13(a) of the Exchange Act.¨•whether the registrant has filed a report on and attestation to its management's assessment of the effectiveness of its internal control over financialreporting under Section 404(b) of the Sarbanes-Oxley Act (15 U.S.C. 7262(b)) by the registered public accounting firm that prepared or issued its auditreport.þ•if securities are registered pursuant to Section 12(b) of the Act, whether the financial statements of the registrant included in the filing reflect thecorrection of an error to previously issued financial statements.¨•whether any of those error corrections are restatements that required a recovery analysis of incentive-based compensation received by any of theregistrant's executive officers during the relevant recovery period pursuant to § 240.10D-1(b).¨•whether the registrant is a shell company (as defined in Rule 12b-2 of the Act).☐þ\", metadata={'source': 'resources/nke-10k-2023.pdf'})" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "chunks[0]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Create embeddings from propositions data" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from redisvl.utils.vectorize import HFTextVectorizer\n", - "\n", - "hf = HFTextVectorizer(\"sentence-transformers/all-MiniLM-L6-v2\")\n", - "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\"\n", - "\n", - "prop_embeddings = hf.embed_many([\n", - " proposition for proposition in propositions\n", - "])\n", - "\n", - "# Check to make sure we've created enough embeddings, 1 per document chunk\n", - "len(prop_embeddings) == len(propositions) == len(chunks)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "5baI0xDQ1ui-" - }, - "source": [ - "### Define a schema and create an index\n", - "\n", - "Below we connect to Redis and create an index that contains a text field, tag field, and vector field." - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": { - "id": "zB1EW_9n1ui-" - }, - "outputs": [], - "source": [ - "from redis import Redis\n", - "from redisvl.index import SearchIndex\n", - "\n", - "\n", - "index_name = \"redisvl\"\n", - "\n", - "\n", - "schema = {\n", - " \"index\": {\n", - " \"name\": index_name,\n", - " \"prefix\": \"chunk\"\n", - " },\n", - " \"fields\": [\n", - " {\n", - " \"name\": \"chunk_id\",\n", - " \"type\": \"tag\",\n", - " \"attrs\": {\n", - " \"sortable\": True\n", - " }\n", - " },\n", - " {\n", - " \"name\": \"proposition\",\n", - " \"type\": \"text\"\n", - " },\n", - " {\n", - " \"name\": \"text_embedding\",\n", - " \"type\": \"vector\",\n", - " \"attrs\": {\n", - " \"dims\": hf.dims,\n", - " \"distance_metric\": \"cosine\",\n", - " \"algorithm\": \"hnsw\",\n", - " \"datatype\": \"float32\"\n", - " }\n", - " }\n", - " ]\n", - "}" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "13:16:14 redisvl.index.index INFO Index already exists, overwriting.\n" - ] - } - ], - "source": [ - "# connect to redis\n", - "client = Redis.from_url(REDIS_URL)\n", - "\n", - "# create an index from schema and the client\n", - "index = SearchIndex.from_dict(schema)\n", - "index.set_client(client)\n", - "index.create(overwrite=True, drop=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": { - "id": "C70C-UWj1ujA" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - "Index Information:\n", - "╭──────────────┬────────────────┬────────────┬─────────────────┬────────────╮\n", - "│ Index Name │ Storage Type │ Prefixes │ Index Options │ Indexing │\n", - "├──────────────┼────────────────┼────────────┼─────────────────┼────────────┤\n", - "│ redisvl │ HASH │ ['chunk'] │ [] │ 0 │\n", - "╰──────────────┴────────────────┴────────────┴─────────────────┴────────────╯\n", - "Index Fields:\n", - "╭────────────────┬────────────────┬────────┬────────────────┬────────────────┬────────────────┬────────────────┬────────────────┬────────────────┬─────────────────┬────────────────┬────────────────┬────────────────┬─────────────────┬────────────────╮\n", - "│ Name │ Attribute │ Type │ Field Option │ Option Value │ Field Option │ Option Value │ Field Option │ Option Value │ Field Option │ Option Value │ Field Option │ Option Value │ Field Option │ Option Value │\n", - "├────────────────┼────────────────┼────────┼────────────────┼────────────────┼────────────────┼────────────────┼────────────────┼────────────────┼─────────────────┼────────────────┼────────────────┼────────────────┼─────────────────┼────────────────┤\n", - "│ chunk_id │ chunk_id │ TAG │ SEPARATOR │ , │ │ │ │ │ │ │ │ │ │ │\n", - "│ proposition │ proposition │ TEXT │ WEIGHT │ 1 │ │ │ │ │ │ │ │ │ │ │\n", - "│ text_embedding │ text_embedding │ VECTOR │ algorithm │ HNSW │ data_type │ FLOAT32 │ dim │ 384 │ distance_metric │ COSINE │ M │ 16 │ ef_construction │ 200 │\n", - "╰────────────────┴────────────────┴────────┴────────────────┴────────────────┴────────────────┴────────────────┴────────────────┴────────────────┴─────────────────┴────────────────┴────────────────┴────────────────┴─────────────────┴────────────────╯\n" - ] - } - ], - "source": [ - "# get info about the index\n", - "# NBVAL_SKIP\n", - "!rvl index info -i redisvl" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Qrj-jeGmBRTL" - }, - "source": [ - "### Process and load dataset\n", - "Below we use the RedisVL index to simply load the list of document chunks to Redis db." - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": { - "id": "Zsg09Keg1ujA" - }, - "outputs": [], - "source": [ - "# load expects an iterable of dictionaries\n", - "from redisvl.redis.utils import array_to_buffer\n", - "\n", - "data = [\n", - " {\n", - " 'chunk_id': f'{i}',\n", - " 'proposition': proposition,\n", - " # For HASH -- must convert embeddings to bytes\n", - " 'text_embedding': array_to_buffer(prop_embeddings[i], dtype=\"float32\")\n", - " } for i, proposition in enumerate(propositions)\n", - "]\n", - "\n", - "# RedisVL handles batching automatically\n", - "keys = index.load(data, id_field=\"chunk_id\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Setup RedisVL AsyncSearchIndex" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from redis.asyncio import Redis as AsyncRedis\n", - "from redisvl.index import AsyncSearchIndex\n", - "\n", - "client = AsyncRedis.from_url(REDIS_URL)\n", - "index = AsyncSearchIndex.from_dict(schema)\n", - "_ = await index.set_client(client)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Test the updated RAG workflow" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [], - "source": [ - "from redisvl.query import VectorQuery\n", - "from redisvl.index import AsyncSearchIndex\n", - "\n", - "\n", - "def promptify(query: str, context: str) -> str:\n", - " return f'''Use the provided context below derived from public financial\n", - " documents to answer the user's question. If you can't answer the user's\n", - " question, based on the context; do not guess. If there is no context at all,\n", - " respond with \"I don't know\".\n", - "\n", - " User question:\n", - "\n", - " {query}\n", - "\n", - " Helpful context:\n", - "\n", - " {context}\n", - "\n", - " Answer:\n", - " '''\n", - "\n", - "# Update the retrieval helper to use propositions\n", - "async def retrieve_context(index: AsyncSearchIndex, query_vector) -> str:\n", - " \"\"\"Fetch the relevant context from Redis using vector search\"\"\"\n", - " print(\"Using dense content representation\", flush=True)\n", - " results = await index.query(\n", - " VectorQuery(\n", - " vector=query_vector,\n", - " vector_field_name=\"text_embedding\",\n", - " return_fields=[\"proposition\"],\n", - " num_results=3\n", - " )\n", - " )\n", - " content = \"\\n\".join([result[\"proposition\"] for result in results])\n", - " return content\n", - "\n", - "# Update the answer_question method\n", - "async def answer_question(index: AsyncSearchIndex, query: str):\n", - " \"\"\"Answer the user's question\"\"\"\n", - "\n", - " SYSTEM_PROMPT = \"\"\"You are a helpful financial analyst assistant that has access\n", - " to public financial 10k documents in order to answer users questions about company\n", - " performance, ethics, characteristics, and core information.\n", - " \"\"\"\n", - "\n", - " query_vector = hf.embed(query)\n", - " # Fetch context from Redis using vector search\n", - " context = await retrieve_context(index, query_vector)\n", - " # Generate contextualized prompt and feed to OpenAI\n", - " response = await openai.AsyncClient().chat.completions.create(\n", - " model=CHAT_MODEL,\n", - " messages=[\n", - " {\"role\": \"system\", \"content\": SYSTEM_PROMPT},\n", - " {\"role\": \"user\", \"content\": promptify(query, context)}\n", - " ],\n", - " temperature=0.1,\n", - " seed=42\n", - " )\n", - " # Response provided by LLM\n", - " return response.choices[0].message.content" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [], - "source": [ - "# Generate a list of questions\n", - "questions = [\n", - " \"What is the trend in the company's revenue and profit over the past few years?\",\n", - " \"What are the company's primary revenue sources?\",\n", - " \"How much debt does the company have, and what are its capital expenditure plans?\",\n", - " \"What does the company say about its environmental, social, and governance (ESG) practices?\",\n", - " \"What is the company's strategy for growth?\"\n", - "]" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Using dense content representation\n", - "Using dense content representation\n", - "Using dense content representation\n", - "Using dense content representation\n", - "Using dense content representation\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
questionanswer
0What is the trend in the company's revenue and...The company experienced revenue growth in fisc...
1What are the company's primary revenue sources?The company's primary revenue sources are from...
2How much debt does the company have, and what ...As of May 31, 2023, the company had Long-term ...
3What does the company say about its environmen...The company acknowledges the importance of env...
4What is the company's strategy for growth?The company's strategy for growth includes ide...
\n", - "
" - ], - "text/plain": [ - " question \\\n", - "0 What is the trend in the company's revenue and... \n", - "1 What are the company's primary revenue sources? \n", - "2 How much debt does the company have, and what ... \n", - "3 What does the company say about its environmen... \n", - "4 What is the company's strategy for growth? \n", - "\n", - " answer \n", - "0 The company experienced revenue growth in fisc... \n", - "1 The company's primary revenue sources are from... \n", - "2 As of May 31, 2023, the company had Long-term ... \n", - "3 The company acknowledges the importance of env... \n", - "4 The company's strategy for growth includes ide... " - ] - }, - "execution_count": 37, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# NBVAL_SKIP\n", - "import asyncio\n", - "import pandas as pd\n", - "\n", - "results = await asyncio.gather(*[\n", - " answer_question(index, question) for question in questions\n", - "])\n", - "\n", - "pd.DataFrame(columns=[\"question\", \"answer\"], data=list(zip(questions, results)))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "TnkK0NwIIM9q" - }, - "source": [ - "### Improve accuracy with query rewriting / expansion\n", - "\n", - "We can also use the power on an LLM to rewrite or expand an input question.\n", - "\n", - "Example: https://github.com/langchain-ai/langchain/blob/master/templates/rewrite-retrieve-read/rewrite_retrieve_read/chain.py" - ] - }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "R2-i8jBl9GRH" + }, + "source": [ + "![Redis](https://redis.io/wp-content/uploads/2024/04/Logotype.svg?auto=webp&quality=85,75&width=120)\n", + "\n", + "# Advanced RAG example\n", + "\n", + "Now that you have a good foundation in Redis data structures, search capabilities, and basic RAG with the redisvl client from [/getting_started/02_redisvl](../getting_started/02_redisvl.ipynb).\n", + "\n", + "We will extend the basic RAG example with a few special topics/techniques:\n", + "- Dense content representation\n", + "- Query rewriting / expansion\n", + "- Semantic caching\n", + "- Conversational memory persistence\n", + "\n", + "## Let's Begin!\n", + "\"Open\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Improve accuracy with dense content representations\n", + "In the basic example, we took raw chunks of text from our pdf documents and generated embeddings for them to be stored in the vector database. This is okay but one technique we can use to improve the quality of retrieval is to leverage an LLM from OpenAI during ETL. We will prompt the LLM to summarize and decompose the raw pdf text into more discrete propositional phrases. This will enhance the clarity of the text and improve semantic retrieval for RAG.\n", + "\n", + "The goal is to utilize a preprocessing technique similar to what's outlined here:\n", + "https://github.com/langchain-ai/langchain/blob/master/templates/propositional-retrieval/propositional_retrieval/proposal_chain.py\n", + "\n", + "If you already have a redis-stack instance running locally from before feel free to jump ahead but if not execute the following commands to get the environment properly setup." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rT9HzsnQ1uiz" + }, + "source": [ + "## Environment Setup\n", + "\n", + "### Pull Github Materials\n", + "Because you are likely running this notebook in **Google Colab**, we need to first\n", + "pull the necessary dataset and materials directly from GitHub.\n", + "\n", + "**If you are running this notebook locally**, FYI you may not need to perform this\n", + "step at all." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "AJJ2UW6M1ui0" + }, + "outputs": [], + "source": [ + "# NBVAL_SKIP\n", + "!git clone https://github.com/redis-developer/redis-ai-resources.git temp_repo\n", + "!mv temp_repo/python-recipes/RAG/resources .\n", + "!rm -rf temp_repo" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Z67mf6T91ui2" + }, + "source": [ + "### Install Python Dependencies" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "id": "DgxBQFXQ1ui2" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 38, - "metadata": { - "id": "XnWhfeiGYVrI" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Using dense content representation\n" - ] - }, - { - "data": { - "text/plain": [ - "\"Based on the provided context, we can see that the company in question is NIKE, Inc. The company has a significant presence globally with subsidiaries in various jurisdictions such as Delaware, Netherlands, China, Mexico, Japan, Korea, and Oregon. Additionally, the company's total revenues are substantial, with revenues in the United States alone amounting to $22,007 million in the fiscal year ended May 31, 2023. NIKE, Inc. also has a diverse range of financial assets, including cash, short-term investments, U.S. Treasury securities, commercial paper and bonds, money market funds, time deposits, and U.S. Agency securities.\\n\\nTherefore, based on the information provided, we can conclude that NIKE, Inc. is a large company with a significant global presence and substantial revenues.\"" - ] - }, - "execution_count": 38, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# NBVAL_SKIP\n", - "# An example question that is a bit simplistic...\n", - "await answer_question(index, \"How big is the company?\")" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.3.1\u001b[0m\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n" + ] + } + ], + "source": [ + "%pip install -q \"redisvl>=0.6.0\" pandas \"unstructured[pdf]\" sentence-transformers langchain langchain-community \"openai>=1.57.0\" tqdm" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Install Redis Stack\n", + "\n", + "Later in this tutorial, Redis will be used to store, index, and query vector\n", + "embeddings created from PDF document chunks. **We need to make sure we have a Redis\n", + "instance available.**" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### For Colab\n", + "Use the shell script below to download, extract, and install [Redis Stack](https://redis.io/docs/getting-started/install-stack/) directly\n", + "from the Redis package archive." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# NBVAL_SKIP\n", + "%%sh\n", + "curl -fsSL https://packages.redis.io/gpg | sudo gpg --dearmor -o /usr/share/keyrings/redis-archive-keyring.gpg\n", + "echo \"deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb $(lsb_release -cs) main\" | sudo tee /etc/apt/sources.list.d/redis.list\n", + "sudo apt-get update > /dev/null 2>&1\n", + "sudo apt-get install redis-stack-server > /dev/null 2>&1\n", + "redis-stack-server --daemonize yes" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### For Alternative Environments\n", + "There are many ways to get the necessary redis-stack instance running\n", + "1. On cloud, deploy a [FREE instance of Redis in the cloud](https://redis.com/try-free/). Or, if you have your\n", + "own version of Redis Enterprise running, that works too!\n", + "2. Per OS, [see the docs](https://redis.io/docs/latest/operate/oss_and_stack/install/install-stack/)\n", + "3. With docker: `docker run -d --name redis-stack-server -p 6379:6379 redis/redis-stack-server:latest`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define the Redis Connection URL\n", + "\n", + "By default this notebook connects to the local instance of Redis Stack. **If you have your own Redis Enterprise instance** - replace REDIS_PASSWORD, REDIS_HOST and REDIS_PORT values with your own." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import warnings\n", + "\n", + "import nest_asyncio\n", + "# Apply the nest_asyncio patch: let's us run async code in Jupyter\n", + "nest_asyncio.apply()\n", + "\n", + "warnings.filterwarnings('ignore')\n", + "\n", + "# Replace values below with your own if using Redis Cloud instance\n", + "REDIS_HOST = os.getenv(\"REDIS_HOST\", \"localhost\") # ex: \"redis-18374.c253.us-central1-1.gce.cloud.redislabs.com\"\n", + "REDIS_PORT = os.getenv(\"REDIS_PORT\", \"6379\") # ex: 18374\n", + "REDIS_PASSWORD = os.getenv(\"REDIS_PASSWORD\", \"\") # ex: \"1TNxTEdYRDgIDKM2gDfasupCADXXXX\"\n", + "\n", + "# If SSL is enabled on the endpoint, use rediss:// as the URL prefix\n", + "REDIS_URL = f\"redis://:{REDIS_PASSWORD}@{REDIS_HOST}:{REDIS_PORT}\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Now that our environment is setup we can again load our financial documents" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KrtWWU4I1ui3" + }, + "source": [ + "### Dataset Preparation (PDF Documents)\n", + "\n", + "To best demonstrate Redis as a vector database layer, we will load a single\n", + "financial (10k filings) doc and preprocess it using some helpers from LangChain:\n", + "\n", + "- `PyPDFLoader` is not the only document loader type that LangChain provides. Docs: https://python.langchain.com/docs/integrations/document_loaders/unstructured_file\n", + "- `RecursiveCharacterTextSplitter` is what we use to create smaller chunks of text from the doc. Docs: https://python.langchain.com/docs/modules/data_connection/document_transformers/text_splitters/recursive_text_splitter" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "uijl2qFH1ui3" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 39, - "metadata": { - "id": "Tg55HqLFIRXJ" - }, - "outputs": [], - "source": [ - "# NBVAL_SKIP\n", - "async def rewrite_query(query: str, prompt: str = None):\n", - " \"\"\"Rewrite the user's original query\"\"\"\n", - "\n", - " SYSTEM_PROMPT = prompt if prompt else \"\"\"Given the user's input question below, find a better or\n", - " more complete way to phrase this question in order to improve semantic search\n", - " engine retrieval quality over a set of SEC 10K PDF docs. Return the rephrased\n", - " question as a string in a JSON response under the key \"query\".\"\"\"\n", - "\n", - " response = await openai.AsyncClient().chat.completions.create(\n", - " model=CHAT_MODEL,\n", - " response_format={ \"type\": \"json_object\" },\n", - " messages=[\n", - " {\"role\": \"system\", \"content\": SYSTEM_PROMPT},\n", - " {\"role\": \"user\", \"content\": f\"Original input question from user: {query}\"}\n", - " ],\n", - " temperature=0.1,\n", - " seed=42\n", - " )\n", - " # Response provided by LLM\n", - " rewritten_query = json.loads(response.choices[0].message.content)[\"query\"]\n", - " return rewritten_query" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "Done preprocessing. Created 211 chunks of the original pdf resources/nke-10k-2023.pdf\n" + ] + } + ], + "source": [ + "from langchain.text_splitter import RecursiveCharacterTextSplitter\n", + "from langchain_community.document_loaders import PyPDFLoader\n", + "\n", + "# pdf to load\n", + "path = 'resources/nke-10k-2023.pdf'\n", + "assert os.path.exists(path), f\"File not found: {path}\"\n", + "\n", + "# load and split\n", + "loader = PyPDFLoader(path)\n", + "pages = loader.load()\n", + "text_splitter = RecursiveCharacterTextSplitter(chunk_size=2500, chunk_overlap=0)\n", + "chunks = text_splitter.split_documents(pages)\n", + "\n", + "print(\"Done preprocessing. Created\", len(chunks), \"chunks of the original pdf\", path)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 40, - "metadata": { - "id": "8_ce8fC8KR50" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "'What is the size of the company in terms of revenue, assets, and market capitalization?'" - ] - }, - "execution_count": 40, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# NBVAL_SKIP\n", - "# Example Sinple Query Rewritten\n", - "await rewrite_query(\"How big is the company?\")" + "data": { + "text/plain": [ + "Document(metadata={'source': 'resources/nke-10k-2023.pdf', 'page': 0, 'page_label': '1'}, page_content=\"Table of Contents\\nUNITED STATES\\nSECURITIES AND EXCHANGE COMMISSION\\nWashington, D.C. 20549\\nFORM 10-K\\n(Mark One)\\n☑ ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(D) OF THE SECURITIES EXCHANGE ACT OF 1934\\nFOR THE FISCAL YEAR ENDED MAY 31, 2023\\nOR\\n☐ TRANSITION REPORT PURSUANT TO SECTION 13 OR 15(D) OF THE SECURITIES EXCHANGE ACT OF 1934\\nFOR THE TRANSITION PERIOD FROM TO .\\nCommission File No. 1-10635\\nNIKE, Inc.\\n(Exact name of Registrant as specified in its charter)\\nOregon 93-0584541\\n(State or other jurisdiction of incorporation) (IRS Employer Identification No.)\\nOne Bowerman Drive, Beaverton, Oregon 97005-6453\\n(Address of principal executive offices and zip code)\\n(503) 671-6453\\n(Registrant's telephone number, including area code)\\nSECURITIES REGISTERED PURSUANT TO SECTION 12(B) OF THE ACT:\\nClass B Common Stock NKE New York Stock Exchange\\n(Title of each class) (Trading symbol) (Name of each exchange on which registered)\\nSECURITIES REGISTERED PURSUANT TO SECTION 12(G) OF THE ACT:\\nNONE\\nIndicate by check mark: YES NO\\n• if the registrant is a well-known seasoned issuer, as defined in Rule 405 of the Securities Act. þ ¨ \\n• if the registrant is not required to file reports pursuant to Section 13 or Section 15(d) of the Act. ¨ þ \\n• whether the registrant (1) has filed all reports required to be filed by Section 13 or 15(d) of the Securities Exchange Act of 1934 during the preceding\\n12 months (or for such shorter period that the registrant was required to file such reports), and (2) has been subject to such filing requirements for the\\npast 90 days.\\nþ ¨ \\n• whether the registrant has submitted electronically every Interactive Data File required to be submitted pursuant to Rule 405 of Regulation S-T\\n(§232.405 of this chapter) during the preceding 12 months (or for such shorter period that the registrant was required to submit such files).\\nþ ¨ \\n• whether the registrant is a large accelerated filer, an accelerated filer, a non-accelerated filer, a smaller reporting company or an emerging growth company. See the definitions of “large accelerated filer,”\\n“accelerated filer,” “smaller reporting company,” and “emerging growth company” in Rule 12b-2 of the Exchange Act.\\nLarge accelerated filer þ Accelerated filer ☐ Non-accelerated filer ☐ Smaller reporting company ☐ Emerging growth company ☐\")" ] - }, + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "chunks[0]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### In the previous example, we would have gone ahead and embed the chunks as extracted here.\n", + "\n", + "Now we will instead leverage an LLM to create dense content representations to improve our retrieval accuracy." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Setup OpenAI as LLM" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import getpass\n", + "import openai\n", + "\n", + "CHAT_MODEL = \"gpt-3.5-turbo-0125\"\n", + "\n", + "\n", + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OPENAI_API_KEY\")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "import tqdm\n", + "import json\n", + "\n", + "\n", + "def create_dense_props(chunk):\n", + " \"\"\"Create dense representation of raw text content.\"\"\"\n", + "\n", + " # The system message here should be HEAVILY customized for your specific use case\n", + " SYSTEM_PROMPT = \"\"\"\n", + " You are a helpful PDF extractor tool. You will be presented with segments from\n", + " raw PDF documents composed of 10k SEC filings information about public companies.\n", + "\n", + " Decompose and summarize the raw content into clear and simple propositions,\n", + " ensuring they are interpretable out of context. Consider the following rules:\n", + " 1. Split compound sentences into simpler dense phrases that retain existing\n", + " meaning.\n", + " 2. Simplify technical jargon or wording if possible while retaining existing\n", + " meaning.\n", + " 2. For any named entity that is accompanied by additional descriptive information,\n", + " separate this information into its own distinct proposition.\n", + " 3. Decontextualize the proposition by adding necessary modifier to nouns or\n", + " entire sentences and replacing pronouns (e.g., \"it\", \"he\", \"she\", \"they\", \"this\", \"that\")\n", + " with the full name of the entities they refer to.\n", + " 4. Present the results as a list of strings, formatted in JSON, under the key \"propositions\".\n", + " \"\"\"\n", + "\n", + " response = openai.OpenAI().chat.completions.create(\n", + " model=CHAT_MODEL,\n", + " response_format={ \"type\": \"json_object\" },\n", + " messages=[\n", + " {\"role\": \"system\", \"content\": SYSTEM_PROMPT},\n", + " {\"role\": \"user\", \"content\": f\"Decompose this raw content using the rules above:\\n{chunk.page_content} \"}\n", + " ]\n", + " )\n", + " res = response.choices[0].message.content\n", + "\n", + " try:\n", + " return json.loads(res)[\"propositions\"]\n", + " except Exception as e:\n", + " print(f\"Failed to parse propositions\", str(e), flush=True)\n", + " # Retry\n", + " return create_dense_props(chunk)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create text propositions using OpenAI" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Load from disk to save time or regenerate as needed.\n", + "try:\n", + " with open(\"resources/propositions.json\", \"r\") as f:\n", + " propositions = json.load(f)\n", + "except:\n", + " # create props\n", + " propositions = [create_dense_props(chunk) for chunk in tqdm.tqdm(chunks)]\n", + " propositions = [\" \".join(prop) for prop in propositions]\n", + "\n", + " # Save to disk for faster reload..\n", + " with open(\"resources/propositions.json\", \"w\") as f:\n", + " json.dump(propositions, f)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Let's evaluate the proposition vs the raw chunk" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 41, - "metadata": { - "id": "9ubNQrJOYL42" - }, - "outputs": [], - "source": [ - "async def answer_question(index: AsyncSearchIndex, query: str, **kwargs):\n", - " \"\"\"Answer the user's question\"\"\"\n", - "\n", - " SYSTEM_PROMPT = \"\"\"You are a helpful financial analyst assistant that has access\n", - " to public financial 10k documents in order to answer users questions about company\n", - " performance, ethics, characteristics, and core information.\n", - " \"\"\"\n", - "\n", - " # Rewrite the query using an LLM\n", - " rewritten_query = await rewrite_query(query, **kwargs)\n", - " print(\"User query updated to:\\n\", rewritten_query, flush=True)\n", - "\n", - " query_vector = hf.embed(rewritten_query)\n", - " # Fetch context from Redis using vector search\n", - " context = await retrieve_context(index, query_vector)\n", - " print(\"Context retrieved\", flush=True)\n", - "\n", - " # Generate contextualized prompt and feed to OpenAI\n", - " response = await openai.AsyncClient().chat.completions.create(\n", - " model=CHAT_MODEL,\n", - " messages=[\n", - " {\"role\": \"system\", \"content\": SYSTEM_PROMPT},\n", - " {\"role\": \"user\", \"content\": promptify(rewritten_query, context)}\n", - " ],\n", - " temperature=0.1,\n", - " seed=42\n", - " )\n", - " # Response provided by LLM\n", - " return response.choices[0].message.content" + "data": { + "text/plain": [ + "\"Registrant check: Well-known seasoned issuer (YES/NO) Registrant check: Required to file reports under Section 13 or 15(d) (YES/NO) Registrant check: Filed all reports required by Section 13 or 15(d) in the past 12 months (YES/NO) and subject to filing requirements for the past 90 days (YES/NO) Registrant check: Submitted all Interactive Data Files required by Rule 405 of Regulation S-T in the past 12 months (YES/NO) Registrant classification: Large accelerated filer (YES), Accelerated filer (NO), Non-accelerated filer (NO), Smaller reporting company (NO), Emerging growth company (NO) Emerging growth company check: Elected not to use extended transition period for new financial accounting standards (YES/NO) Registrant check: Filed a report and attestation on management's assessment of internal control over financial reporting under Section 404(b) of the Sarbanes-Oxley Act (YES/NO) Securities registered check: Registered under Section 12(b) and financial statements reflect correction of errors in previously issued financial statements (YES/NO) Error corrections check: Any restatements requiring recovery analysis of executive officers' incentive-based compensation during recovery period (YES/NO) Registrant check: Shell company status (YES/NO)\"" ] - }, + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "propositions[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 42, - "metadata": { - "id": "BIO_jW6KYsMU" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "User query updated to:\n", - " What is the size of the company in terms of revenue, assets, and market capitalization?\n", - "Using dense content representation\n", - "Context retrieved\n" - ] - }, - { - "data": { - "text/plain": [ - "\"Based on the provided context, the company's revenue, assets, and market capitalization figures are not explicitly mentioned. The information mainly focuses on financial assets, investments, return on invested capital, EBIT, and other financial metrics. Without specific details on revenue, assets, and market capitalization, I am unable to provide the exact size of the company in those terms.\"" - ] - }, - "execution_count": 42, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# NBVAL_SKIP\n", - "# Now try again with query re-writing enabled\n", - "await answer_question(index, \"How big is the company?\")" + "data": { + "text/plain": [ + "Document(metadata={'source': 'resources/nke-10k-2023.pdf', 'page': 0, 'page_label': '1'}, page_content=\"Table of Contents\\nUNITED STATES\\nSECURITIES AND EXCHANGE COMMISSION\\nWashington, D.C. 20549\\nFORM 10-K\\n(Mark One)\\n☑ ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(D) OF THE SECURITIES EXCHANGE ACT OF 1934\\nFOR THE FISCAL YEAR ENDED MAY 31, 2023\\nOR\\n☐ TRANSITION REPORT PURSUANT TO SECTION 13 OR 15(D) OF THE SECURITIES EXCHANGE ACT OF 1934\\nFOR THE TRANSITION PERIOD FROM TO .\\nCommission File No. 1-10635\\nNIKE, Inc.\\n(Exact name of Registrant as specified in its charter)\\nOregon 93-0584541\\n(State or other jurisdiction of incorporation) (IRS Employer Identification No.)\\nOne Bowerman Drive, Beaverton, Oregon 97005-6453\\n(Address of principal executive offices and zip code)\\n(503) 671-6453\\n(Registrant's telephone number, including area code)\\nSECURITIES REGISTERED PURSUANT TO SECTION 12(B) OF THE ACT:\\nClass B Common Stock NKE New York Stock Exchange\\n(Title of each class) (Trading symbol) (Name of each exchange on which registered)\\nSECURITIES REGISTERED PURSUANT TO SECTION 12(G) OF THE ACT:\\nNONE\\nIndicate by check mark: YES NO\\n• if the registrant is a well-known seasoned issuer, as defined in Rule 405 of the Securities Act. þ ¨ \\n• if the registrant is not required to file reports pursuant to Section 13 or Section 15(d) of the Act. ¨ þ \\n• whether the registrant (1) has filed all reports required to be filed by Section 13 or 15(d) of the Securities Exchange Act of 1934 during the preceding\\n12 months (or for such shorter period that the registrant was required to file such reports), and (2) has been subject to such filing requirements for the\\npast 90 days.\\nþ ¨ \\n• whether the registrant has submitted electronically every Interactive Data File required to be submitted pursuant to Rule 405 of Regulation S-T\\n(§232.405 of this chapter) during the preceding 12 months (or for such shorter period that the registrant was required to submit such files).\\nþ ¨ \\n• whether the registrant is a large accelerated filer, an accelerated filer, a non-accelerated filer, a smaller reporting company or an emerging growth company. See the definitions of “large accelerated filer,”\\n“accelerated filer,” “smaller reporting company,” and “emerging growth company” in Rule 12b-2 of the Exchange Act.\\nLarge accelerated filer þ Accelerated filer ☐ Non-accelerated filer ☐ Smaller reporting company ☐ Emerging growth company ☐\")" ] - }, + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "chunks[0]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create embeddings from propositions data" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "p97uL4g9T6LQ" - }, - "source": [ - "### Improve performance and cut costs with LLM caching" + "data": { + "text/plain": [ + "False" ] - }, + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from redisvl.utils.vectorize import HFTextVectorizer\n", + "from redisvl.extensions.cache.embeddings import EmbeddingsCache\n", + "\n", + "\n", + "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\"\n", + "\n", + "hf = HFTextVectorizer(\n", + " model=\"sentence-transformers/all-MiniLM-L6-v2\",\n", + " cache=EmbeddingsCache(\n", + " name=\"embedcache\",\n", + " ttl=600,\n", + " redis_url=REDIS_URL,\n", + " )\n", + ")\n", + "\n", + "prop_embeddings = hf.embed_many([\n", + " proposition for proposition in propositions\n", + "])\n", + "\n", + "# Check to make sure we've created enough embeddings, 1 per document chunk\n", + "len(prop_embeddings) == len(propositions) == len(chunks)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5baI0xDQ1ui-" + }, + "source": [ + "### Define a schema and create an index\n", + "\n", + "Below we connect to Redis and create an index that contains a text field, tag field, and vector field." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "zB1EW_9n1ui-" + }, + "outputs": [], + "source": [ + "from redisvl.index import SearchIndex\n", + "\n", + "\n", + "index_name = \"redisvl\"\n", + "\n", + "\n", + "schema = {\n", + " \"index\": {\n", + " \"name\": index_name,\n", + " \"prefix\": \"chunk\"\n", + " },\n", + " \"fields\": [\n", + " {\n", + " \"name\": \"chunk_id\",\n", + " \"type\": \"tag\",\n", + " \"attrs\": {\n", + " \"sortable\": True\n", + " }\n", + " },\n", + " {\n", + " \"name\": \"proposition\",\n", + " \"type\": \"text\"\n", + " },\n", + " {\n", + " \"name\": \"text_embedding\",\n", + " \"type\": \"vector\",\n", + " \"attrs\": {\n", + " \"dims\": hf.dims,\n", + " \"distance_metric\": \"cosine\",\n", + " \"algorithm\": \"hnsw\",\n", + " \"datatype\": \"float32\"\n", + " }\n", + " }\n", + " ]\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 43, - "metadata": { - "id": "7geEAsYST6LQ" - }, - "outputs": [], - "source": [ - "from redisvl.extensions.llmcache import SemanticCache\n", - "\n", - "llmcache = SemanticCache(\n", - " name=\"llmcache\",\n", - " vectorizer=hf,\n", - " redis_url=REDIS_URL,\n", - " ttl=120,\n", - " distance_threshold=0.2\n", - ")" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "15:52:01 redisvl.index.index INFO Index already exists, overwriting.\n" + ] + } + ], + "source": [ + "# create an index from schema and the client\n", + "index = SearchIndex.from_dict(schema, redis_url=REDIS_URL)\n", + "index.create(overwrite=True, drop=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "id": "C70C-UWj1ujA" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 44, - "metadata": { - "id": "1ALcQXAqT6LQ" - }, - "outputs": [], - "source": [ - "from functools import wraps\n", - "\n", - "# Create an LLM caching decorator\n", - "def cache(func):\n", - " @wraps(func)\n", - " async def wrapper(index, query_text, *args, **kwargs):\n", - " query_vector = llmcache._vectorizer.embed(query_text)\n", - "\n", - " # Check the cache with the vector\n", - " if result := llmcache.check(vector=query_vector):\n", - " return result[0]['response']\n", - "\n", - " response = await func(index, query_text, query_vector=query_vector)\n", - " llmcache.store(query_text, response, query_vector)\n", - " return response\n", - " return wrapper\n", - "\n", - "\n", - "@cache\n", - "async def answer_question(index: AsyncSearchIndex, query: str, **kwargs):\n", - " \"\"\"Answer the user's question\"\"\"\n", - "\n", - " SYSTEM_PROMPT = \"\"\"You are a helpful financial analyst assistant that has access\n", - " to public financial 10k documents in order to answer users questions about company\n", - " performance, ethics, characteristics, and core information.\n", - " \"\"\"\n", - "\n", - " context = await retrieve_context(index, kwargs[\"query_vector\"])\n", - " response = await openai.AsyncClient().chat.completions.create(\n", - " model=CHAT_MODEL,\n", - " messages=[\n", - " {\"role\": \"system\", \"content\": SYSTEM_PROMPT},\n", - " {\"role\": \"user\", \"content\": promptify(query, context)}\n", - " ],\n", - " temperature=0.1,\n", - " seed=42\n", - " )\n", - " # Response provided by GPT-3.5\n", - " return response.choices[0].message.content" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + "Index Information:\n", + "╭──────────────┬────────────────┬────────────┬─────────────────┬────────────╮\n", + "│ Index Name │ Storage Type │ Prefixes │ Index Options │ Indexing │\n", + "├──────────────┼────────────────┼────────────┼─────────────────┼────────────┤\n", + "│ redisvl │ HASH │ ['chunk'] │ [] │ 0 │\n", + "╰──────────────┴────────────────┴────────────┴─────────────────┴────────────╯\n", + "Index Fields:\n", + "╭────────────────┬────────────────┬────────┬────────────────┬────────────────┬────────────────┬────────────────┬────────────────┬────────────────┬─────────────────┬────────────────┬────────────────┬────────────────┬─────────────────┬────────────────╮\n", + "│ Name │ Attribute │ Type │ Field Option │ Option Value │ Field Option │ Option Value │ Field Option │ Option Value │ Field Option │ Option Value │ Field Option │ Option Value │ Field Option │ Option Value │\n", + "├────────────────┼────────────────┼────────┼────────────────┼────────────────┼────────────────┼────────────────┼────────────────┼────────────────┼─────────────────┼────────────────┼────────────────┼────────────────┼─────────────────┼────────────────┤\n", + "│ chunk_id │ chunk_id │ TAG │ SEPARATOR │ , │ │ │ │ │ │ │ │ │ │ │\n", + "│ proposition │ proposition │ TEXT │ WEIGHT │ 1 │ │ │ │ │ │ │ │ │ │ │\n", + "│ text_embedding │ text_embedding │ VECTOR │ algorithm │ HNSW │ data_type │ FLOAT32 │ dim │ 384 │ distance_metric │ COSINE │ M │ 16 │ ef_construction │ 200 │\n", + "╰────────────────┴────────────────┴────────┴────────────────┴────────────────┴────────────────┴────────────────┴────────────────┴────────────────┴─────────────────┴────────────────┴────────────────┴────────────────┴─────────────────┴────────────────╯\n" + ] + } + ], + "source": [ + "# get info about the index\n", + "# NBVAL_SKIP\n", + "!rvl index info -i redisvl" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Qrj-jeGmBRTL" + }, + "source": [ + "### Process and load dataset\n", + "Below we use the RedisVL index to simply load the list of document chunks to Redis db." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "id": "Zsg09Keg1ujA" + }, + "outputs": [], + "source": [ + "# load expects an iterable of dictionaries\n", + "from redisvl.redis.utils import array_to_buffer\n", + "\n", + "data = [\n", + " {\n", + " 'chunk_id': f'{i}',\n", + " 'proposition': proposition,\n", + " # For HASH -- must convert embeddings to bytes\n", + " 'text_embedding': array_to_buffer(prop_embeddings[i], dtype=\"float32\")\n", + " } for i, proposition in enumerate(propositions)\n", + "]\n", + "\n", + "# RedisVL handles batching automatically\n", + "keys = index.load(data, id_field=\"chunk_id\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Setup RedisVL AsyncSearchIndex" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "from redisvl.index import AsyncSearchIndex\n", + "\n", + "index = AsyncSearchIndex.from_dict(schema, redis_url=REDIS_URL)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Test the updated RAG workflow" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "from redisvl.query import VectorQuery\n", + "from redisvl.index import AsyncSearchIndex\n", + "\n", + "\n", + "def promptify(query: str, context: str) -> str:\n", + " return f'''Use the provided context below derived from public financial\n", + " documents to answer the user's question. If you can't answer the user's\n", + " question, based on the context; do not guess. If there is no context at all,\n", + " respond with \"I don't know\".\n", + "\n", + " User question:\n", + "\n", + " {query}\n", + "\n", + " Helpful context:\n", + "\n", + " {context}\n", + "\n", + " Answer:\n", + " '''\n", + "\n", + "# Update the retrieval helper to use propositions\n", + "async def retrieve_context(index: AsyncSearchIndex, query_vector) -> str:\n", + " \"\"\"Fetch the relevant context from Redis using vector search\"\"\"\n", + " print(\"Using dense content representation\", flush=True)\n", + " results = await index.query(\n", + " VectorQuery(\n", + " vector=query_vector,\n", + " vector_field_name=\"text_embedding\",\n", + " return_fields=[\"proposition\"],\n", + " num_results=3\n", + " )\n", + " )\n", + " content = \"\\n\".join([result[\"proposition\"] for result in results])\n", + " return content\n", + "\n", + "# Update the answer_question method\n", + "async def answer_question(index: AsyncSearchIndex, query: str):\n", + " \"\"\"Answer the user's question\"\"\"\n", + "\n", + " SYSTEM_PROMPT = \"\"\"You are a helpful financial analyst assistant that has access\n", + " to public financial 10k documents in order to answer users questions about company\n", + " performance, ethics, characteristics, and core information.\n", + " \"\"\"\n", + "\n", + " query_vector = hf.embed(query)\n", + " # Fetch context from Redis using vector search\n", + " context = await retrieve_context(index, query_vector)\n", + " # Generate contextualized prompt and feed to OpenAI\n", + " response = await openai.AsyncClient().chat.completions.create(\n", + " model=CHAT_MODEL,\n", + " messages=[\n", + " {\"role\": \"system\", \"content\": SYSTEM_PROMPT},\n", + " {\"role\": \"user\", \"content\": promptify(query, context)}\n", + " ],\n", + " temperature=0.1,\n", + " seed=42\n", + " )\n", + " # Response provided by LLM\n", + " return response.choices[0].message.content" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "# Generate a list of questions\n", + "questions = [\n", + " \"What is the trend in the company's revenue and profit over the past few years?\",\n", + " \"What are the company's primary revenue sources?\",\n", + " \"How much debt does the company have, and what are its capital expenditure plans?\",\n", + " \"What does the company say about its environmental, social, and governance (ESG) practices?\",\n", + " \"What is the company's strategy for growth?\"\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 45, - "metadata": { - "id": "BXK_BXuhT6LQ" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Using dense content representation\n" - ] - }, - { - "data": { - "text/plain": [ - "\"Nike's total revenue for fiscal year 2023 was $27.4 billion from sales to wholesale customers and $21.3 billion through direct-to-consumer channels. Comparing this to the previous year, the total revenue for fiscal year 2022 was not explicitly provided in the context.\"" - ] - }, - "execution_count": 45, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# NBVAL_SKIP\n", - "query = \"What was Nike's revenue last year compared to this year??\"\n", - "\n", - "await answer_question(index, query)" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "Using dense content representation\n", + "Using dense content representation\n", + "Using dense content representation\n", + "Using dense content representation\n", + "Using dense content representation\n" + ] }, { - "cell_type": "code", - "execution_count": 46, - "metadata": { - "id": "7mZpSpf9T6LQ" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'id': 'llmcache:c011dfed42a8227e11ba9a817fbbeb07e2623058add52e96066ee01b49fe9986', 'vector_distance': '0.0202275514603', 'entry_id': 'c011dfed42a8227e11ba9a817fbbeb07e2623058add52e96066ee01b49fe9986', 'prompt': \"What was Nike's revenue last year compared to this year??\", 'response': \"Nike's total revenue for fiscal year 2023 was $27.4 billion from sales to wholesale customers and $21.3 billion through direct-to-consumer channels. Comparing this to the previous year, the total revenue for fiscal year 2022 was not explicitly provided in the context.\", 'inserted_at': '1723223894.9', 'updated_at': '1723223894.9'}\n" - ] - }, - { - "data": { - "text/plain": [ - "\"Nike's total revenue for fiscal year 2023 was $27.4 billion from sales to wholesale customers and $21.3 billion through direct-to-consumer channels. Comparing this to the previous year, the total revenue for fiscal year 2022 was not explicitly provided in the context.\"" - ] - }, - "execution_count": 46, - "metadata": {}, - "output_type": "execute_result" - } + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
questionanswer
0What is the trend in the company's revenue and...The company experienced revenue growth in fisc...
1What are the company's primary revenue sources?The company's primary revenue sources are from...
2How much debt does the company have, and what ...As of May 31, 2023, the company had Long-term ...
3What does the company say about its environmen...The company acknowledges the importance of env...
4What is the company's strategy for growth?The company's strategy for growth includes ide...
\n", + "
" ], - "source": [ - "# NBVAL_SKIP\n", - "query = \"What was Nike's total revenue in the last year compared to now??\"\n", - "\n", - "await answer_question(index, query)\n", - "\n", - "# notice no HTTP request to OpenAI since this question is \"close enough\" to the last one" + "text/plain": [ + " question \\\n", + "0 What is the trend in the company's revenue and... \n", + "1 What are the company's primary revenue sources? \n", + "2 How much debt does the company have, and what ... \n", + "3 What does the company say about its environmen... \n", + "4 What is the company's strategy for growth? \n", + "\n", + " answer \n", + "0 The company experienced revenue growth in fisc... \n", + "1 The company's primary revenue sources are from... \n", + "2 As of May 31, 2023, the company had Long-term ... \n", + "3 The company acknowledges the importance of env... \n", + "4 The company's strategy for growth includes ide... " ] - }, + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import asyncio\n", + "import pandas as pd\n", + "\n", + "results = await asyncio.gather(*[\n", + " answer_question(index, question) for question in questions\n", + "])\n", + "\n", + "pd.DataFrame(columns=[\"question\", \"answer\"], data=list(zip(questions, results)))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "TnkK0NwIIM9q" + }, + "source": [ + "### Improve accuracy with query rewriting / expansion\n", + "\n", + "We can also use the power on an LLM to rewrite or expand an input question.\n", + "\n", + "Example: https://github.com/langchain-ai/langchain/blob/master/templates/rewrite-retrieve-read/rewrite_retrieve_read/chain.py" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "UaiF_ws7itsi" - }, - "source": [ - "### Improve personalization with including chat session history\n", - "\n", - "In order to preserve state in the conversation, it's imperitive to offload conversation history to a database that can handle high transaction throughput for writes/reads to limit system latency.\n", - "\n", - "We can store message history for a particular user session in a Redis List data type.\n" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "Using dense content representation\n" + ] }, { - "cell_type": "code", - "execution_count": 47, - "metadata": { - "id": "WMOF7fJQdhgN" - }, - "outputs": [], - "source": [ - "import json\n", - "\n", - "\n", - "class ChatBot:\n", - " def __init__(self, index: AsyncSearchIndex, user: str):\n", - " self.index = index\n", - " self.user = user\n", - "\n", - " async def get_messages(self) -> list:\n", - " \"\"\"Get all messages associated with a session\"\"\"\n", - " return [\n", - " json.loads(msg) for msg in await self.index.client.lrange(f\"messages:{self.user}\", 0, -1)\n", - " ]\n", - "\n", - " async def add_messages(self, messages: list):\n", - " \"\"\"Add chat messages to a Redis List\"\"\"\n", - " return await self.index.client.rpush(\n", - " f\"messages:{self.user}\", *[json.dumps(msg) for msg in messages]\n", - " )\n", - "\n", - " async def clear_history(self):\n", - " \"\"\"Clear session chat\"\"\"\n", - " await index.client.delete(f\"messages:{self.user}\")\n", - "\n", - " @staticmethod\n", - " def promptify(query: str, context: str) -> str:\n", - " return f'''Use the provided context below derived from public financial\n", - " documents to answer the user's question. If you can't answer the user's\n", - " question, based on the context; do not guess. If there is no context at all,\n", - " respond with \"I don't know\".\n", - "\n", - " User question:\n", - "\n", - " {query}\n", - "\n", - " Helpful context:\n", - "\n", - " {context}\n", - "\n", - " Answer:\n", - " '''\n", - "\n", - " async def retrieve_context(self, query_vector) -> str:\n", - " \"\"\"Fetch the relevant context from Redis using vector search\"\"\"\n", - " results = await self.index.query(\n", - " VectorQuery(\n", - " vector=query_vector,\n", - " vector_field_name=\"text_embedding\",\n", - " return_fields=[\"proposition\"],\n", - " num_results=3\n", - " )\n", - " )\n", - " content = \"\\n\".join([result[\"proposition\"] for result in results])\n", - " return content\n", - "\n", - " async def answer_question(self, query: str):\n", - " \"\"\"Answer the user's question with historical context and caching baked-in\"\"\"\n", - "\n", - " SYSTEM_PROMPT = \"\"\"You are a helpful financial analyst assistant that has access\n", - " to public financial 10k documents in order to answer users questions about company\n", - " performance, ethics, characteristics, and core information.\n", - " \"\"\"\n", - "\n", - " # Create query vector\n", - " query_vector = llmcache._vectorizer.embed(query)\n", - "\n", - " # TODO - implement semantic gaurdrails?\n", - "\n", - " # Check the cache with the vector\n", - " if result := llmcache.check(vector=query_vector):\n", - " answer = result[0]['response']\n", - " else:\n", - " # TODO - implement query rewriting?\n", - " context = await self.retrieve_context(query_vector)\n", - " session = await self.get_messages()\n", - " # TODO - implement session summarization?\n", - " messages = (\n", - " [{\"role\": \"system\", \"content\": SYSTEM_PROMPT}] +\n", - " session +\n", - " [{\"role\": \"user\", \"content\": self.promptify(query, context)}]\n", - " )\n", - " # Response provided by GPT-3.5\n", - " response = await openai.AsyncClient().chat.completions.create(\n", - " model=CHAT_MODEL,\n", - " messages=messages,\n", - " temperature=0.1,\n", - " seed=42\n", - " )\n", - " answer = response.choices[0].message.content\n", - " llmcache.store(query, answer, query_vector)\n", - "\n", - " # Add message history\n", - " await self.add_messages([\n", - " {\"role\": \"user\", \"content\": query},\n", - " {\"role\": \"assistant\", \"content\": answer}\n", - " ])\n", - "\n", - " return answer" + "data": { + "text/plain": [ + "\"Based on the provided context, we can see that the company in question is NIKE, Inc. The company has a significant presence globally with subsidiaries in various jurisdictions such as Delaware, Netherlands, China, Mexico, Missouri, Japan, Korea, and Oregon. Additionally, the company's total revenues are substantial, with revenues in the United States alone amounting to $22,007 million in the fiscal year ended May 31, 2023. NIKE, Inc. also has a diverse range of financial assets, accounts receivable, inventories, and property, plant, and equipment across different regions, indicating a large and well-established company.\"" ] - }, + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# An example question that is a bit simplistic...\n", + "await answer_question(index, \"How big is the company?\")" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "id": "Tg55HqLFIRXJ" + }, + "outputs": [], + "source": [ + "async def rewrite_query(query: str, prompt: str = None):\n", + " \"\"\"Rewrite the user's original query\"\"\"\n", + "\n", + " SYSTEM_PROMPT = prompt if prompt else \"\"\"Given the user's input question below, find a better or\n", + " more complete way to phrase this question in order to improve semantic search\n", + " engine retrieval quality over a set of SEC 10K PDF docs. Return the rephrased\n", + " question as a string in a JSON response under the key \"query\".\"\"\"\n", + "\n", + " response = await openai.AsyncClient().chat.completions.create(\n", + " model=CHAT_MODEL,\n", + " response_format={ \"type\": \"json_object\" },\n", + " messages=[\n", + " {\"role\": \"system\", \"content\": SYSTEM_PROMPT},\n", + " {\"role\": \"user\", \"content\": f\"Original input question from user: {query}\"}\n", + " ],\n", + " temperature=0.1,\n", + " seed=42\n", + " )\n", + " # Response provided by LLM\n", + " rewritten_query = json.loads(response.choices[0].message.content)[\"query\"]\n", + " return rewritten_query" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Test the entire RAG workflow" + "data": { + "text/plain": [ + "'What is the size of the company in terms of revenue, assets, and market capitalization?'" ] - }, + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Example Sinple Query Rewritten\n", + "await rewrite_query(\"How big is the company?\")" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "id": "9ubNQrJOYL42" + }, + "outputs": [], + "source": [ + "async def answer_question(index: AsyncSearchIndex, query: str, **kwargs):\n", + " \"\"\"Answer the user's question\"\"\"\n", + "\n", + " SYSTEM_PROMPT = \"\"\"You are a helpful financial analyst assistant that has access\n", + " to public financial 10k documents in order to answer users questions about company\n", + " performance, ethics, characteristics, and core information.\n", + " \"\"\"\n", + "\n", + " # Rewrite the query using an LLM\n", + " rewritten_query = await rewrite_query(query, **kwargs)\n", + " print(\"User query updated to:\\n\", rewritten_query, flush=True)\n", + "\n", + " query_vector = hf.embed(rewritten_query)\n", + " # Fetch context from Redis using vector search\n", + " context = await retrieve_context(index, query_vector)\n", + " print(\"Context retrieved\", flush=True)\n", + "\n", + " # Generate contextualized prompt and feed to OpenAI\n", + " response = await openai.AsyncClient().chat.completions.create(\n", + " model=CHAT_MODEL,\n", + " messages=[\n", + " {\"role\": \"system\", \"content\": SYSTEM_PROMPT},\n", + " {\"role\": \"user\", \"content\": promptify(rewritten_query, context)}\n", + " ],\n", + " temperature=0.1,\n", + " seed=42\n", + " )\n", + " # Response provided by LLM\n", + " return response.choices[0].message.content" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "id": "BIO_jW6KYsMU" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 48, - "metadata": { - "id": "_Z3RUvyxdhiz" - }, - "outputs": [], - "source": [ - "# Setup Session\n", - "chat = ChatBot(index, \"tyler\")\n", - "await chat.clear_history()" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "User query updated to:\n", + " What is the size of the company in terms of revenue, assets, and market capitalization?\n", + "Using dense content representation\n", + "Context retrieved\n" + ] }, { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Hello! How can I assist you today?\n" - ] - } - ], - "source": [ - "# Run a simple chat\n", - "stopterms = [\"exit\", \"quit\", \"end\", \"cancel\"]\n", - "\n", - "# Simple Chat\n", - "# NBVAL_SKIP\n", - "while True:\n", - " user_query = input()\n", - " if user_query.lower() in stopterms:\n", - " break\n", - " answer = await chat.answer_question(user_query)\n", - " print(answer, flush=True)" + "data": { + "text/plain": [ + "\"Based on the provided context, the company's revenue, assets, and market capitalization figures are not explicitly mentioned. The information mainly focuses on financial assets, investments, return on invested capital, EBIT, and other financial metrics. Without specific details on revenue, assets, and market capitalization, I am unable to provide the exact size of the company in those terms.\"" ] - }, + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# NBVAL_SKIP\n", + "# Now try again with query re-writing enabled\n", + "await answer_question(index, \"How big is the company?\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "p97uL4g9T6LQ" + }, + "source": [ + "### Improve performance and cut costs with LLM caching" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "id": "7geEAsYST6LQ" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 32, - "metadata": { - "id": "ZoPQMAShZ5Uy" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "[{'role': 'user', 'content': 'what are the expected next year earnings?'},\n", - " {'role': 'assistant',\n", - " 'content': 'Based on the provided context from the financial documents, the expected next year earnings for the company are not explicitly mentioned. The information primarily focuses on the financial performance and results for fiscal year 2023. Therefore, without specific details or guidance on future earnings, I am unable to provide an estimate for the expected next year earnings.'}]" - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# NBVAL_SKIP\n", - "await chat.get_messages()" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "15:53:30 redisvl.index.index INFO Index already exists, not overwriting.\n" + ] + } + ], + "source": [ + "from redisvl.extensions.llmcache import SemanticCache\n", + "\n", + "llmcache = SemanticCache(\n", + " name=\"llmcache\",\n", + " vectorizer=hf,\n", + " redis_url=REDIS_URL,\n", + " ttl=120,\n", + " distance_threshold=0.2\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "id": "1ALcQXAqT6LQ" + }, + "outputs": [], + "source": [ + "from functools import wraps\n", + "\n", + "# Create an LLM caching decorator\n", + "def cache(func):\n", + " @wraps(func)\n", + " async def wrapper(index, query_text, *args, **kwargs):\n", + " query_vector = llmcache._vectorizer.embed(query_text)\n", + "\n", + " # Check the cache with the vector\n", + " if result := llmcache.check(vector=query_vector):\n", + " return result[0]['response']\n", + "\n", + " response = await func(index, query_text, query_vector=query_vector)\n", + " llmcache.store(query_text, response, query_vector)\n", + " return response\n", + " return wrapper\n", + "\n", + "\n", + "@cache\n", + "async def answer_question(index: AsyncSearchIndex, query: str, **kwargs):\n", + " \"\"\"Answer the user's question\"\"\"\n", + "\n", + " SYSTEM_PROMPT = \"\"\"You are a helpful financial analyst assistant that has access\n", + " to public financial 10k documents in order to answer users questions about company\n", + " performance, ethics, characteristics, and core information.\n", + " \"\"\"\n", + "\n", + " context = await retrieve_context(index, kwargs[\"query_vector\"])\n", + " response = await openai.AsyncClient().chat.completions.create(\n", + " model=CHAT_MODEL,\n", + " messages=[\n", + " {\"role\": \"system\", \"content\": SYSTEM_PROMPT},\n", + " {\"role\": \"user\", \"content\": promptify(query, context)}\n", + " ],\n", + " temperature=0.1,\n", + " seed=42\n", + " )\n", + " # Response provided by GPT-3.5\n", + " return response.choices[0].message.content" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "id": "BXK_BXuhT6LQ" + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "5l4uEgKzljes" - }, - "source": [ - "## Your Next Steps\n", - "\n", - "While a good start, there is still more to do. **For example**:\n", - "- we could utilize message history to generate an updated and contextualized query to use for retrieval and answer generation (with an LLM). Otherwise, there can be a disconnect between what a user is asking (in context) and what they are asking in isolation.\n", - "- we could utilize an LLM to summarize conversation history to use as context instead of passing the whole slew of messages to the Chat endpoint.\n", - "- we could utilize semantic properties of the message history (or summaries) in order to fetch only relevant conversation bits (vector search).\n", - "- we could utilize a technique like HyDE ( a form of query rewriting ) to improve the retrieval quality from raw user input to source documents OR try to break down user questions into sub questions and fetch / join context based on the different searces.\n", - "- we could incorporate semantic routing to take a broken down question and route to different data sources, indices, or query types (etc).\n", - "- we could add semantic guardrails on the front end or back end of the conversation I/O to ensure we are within bounds of approved topics." - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "Using dense content representation\n" + ] }, { - "cell_type": "markdown", - "metadata": { - "id": "Wscs4Mvo1ujD" - }, - "source": [ - "## Cleanup\n", - "\n", - "Clean up the database." + "data": { + "text/plain": [ + "\"Nike's total revenue for the fiscal year 2023 was $27.4 billion from sales to wholesale customers and $21.3 billion through direct-to-consumer channels. Comparing this to the previous year, the total revenue for the fiscal year 2022 was not explicitly provided in the context.\"" ] - }, + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# NBVAL_SKIP\n", + "query = \"What was Nike's revenue last year compared to this year??\"\n", + "\n", + "await answer_question(index, query)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "id": "7mZpSpf9T6LQ" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 50, - "metadata": { - "id": "On6yNuQn1ujD" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 50, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# NBVAL_SKIP\n", - "await index.client.flushall()" + "data": { + "text/plain": [ + "\"Nike's total revenue for the fiscal year 2023 was $27.4 billion from sales to wholesale customers and $21.3 billion through direct-to-consumer channels. Comparing this to the previous year, the total revenue for the fiscal year 2022 was not explicitly provided in the context.\"" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "accelerator": "GPU", - "colab": { - "gpuType": "T4", - "provenance": [] - }, - "kernelspec": { - "display_name": "Python 3", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.9" + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" } + ], + "source": [ + "# NBVAL_SKIP\n", + "query = \"What was Nike's total revenue in the last year compared to now??\"\n", + "\n", + "await answer_question(index, query)\n", + "\n", + "# notice no HTTP request to OpenAI since this question is \"close enough\" to the last one" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "UaiF_ws7itsi" + }, + "source": [ + "### Improve personalization with including chat session history\n", + "\n", + "In order to preserve state in the conversation, it's imperitive to offload conversation history to a database that can handle high transaction throughput for writes/reads to limit system latency.\n", + "\n", + "We can store message history for a particular user session in a Redis List data type.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "id": "WMOF7fJQdhgN" + }, + "outputs": [], + "source": [ + "import json\n", + "\n", + "\n", + "class ChatBot:\n", + " def __init__(self, index: AsyncSearchIndex, user: str):\n", + " self.index = index\n", + " self.user = user\n", + "\n", + " async def get_messages(self) -> list:\n", + " \"\"\"Get all messages associated with a session\"\"\"\n", + " return [\n", + " json.loads(msg) for msg in await self.index.client.lrange(f\"messages:{self.user}\", 0, -1)\n", + " ]\n", + "\n", + " async def add_messages(self, messages: list):\n", + " \"\"\"Add chat messages to a Redis List\"\"\"\n", + " return await self.index.client.rpush(\n", + " f\"messages:{self.user}\", *[json.dumps(msg) for msg in messages]\n", + " )\n", + "\n", + " async def clear_history(self):\n", + " \"\"\"Clear session chat\"\"\"\n", + " await index.client.delete(f\"messages:{self.user}\")\n", + "\n", + " @staticmethod\n", + " def promptify(query: str, context: str) -> str:\n", + " return f'''Use the provided context below derived from public financial\n", + " documents to answer the user's question. If you can't answer the user's\n", + " question, based on the context; do not guess. If there is no context at all,\n", + " respond with \"I don't know\".\n", + "\n", + " User question:\n", + "\n", + " {query}\n", + "\n", + " Helpful context:\n", + "\n", + " {context}\n", + "\n", + " Answer:\n", + " '''\n", + "\n", + " async def retrieve_context(self, query_vector) -> str:\n", + " \"\"\"Fetch the relevant context from Redis using vector search\"\"\"\n", + " results = await self.index.query(\n", + " VectorQuery(\n", + " vector=query_vector,\n", + " vector_field_name=\"text_embedding\",\n", + " return_fields=[\"proposition\"],\n", + " num_results=3\n", + " )\n", + " )\n", + " content = \"\\n\".join([result[\"proposition\"] for result in results])\n", + " return content\n", + "\n", + " async def answer_question(self, query: str):\n", + " \"\"\"Answer the user's question with historical context and caching baked-in\"\"\"\n", + "\n", + " SYSTEM_PROMPT = \"\"\"You are a helpful financial analyst assistant that has access\n", + " to public financial 10k documents in order to answer users questions about company\n", + " performance, ethics, characteristics, and core information.\n", + " \"\"\"\n", + "\n", + " # Create query vector\n", + " query_vector = llmcache._vectorizer.embed(query)\n", + "\n", + " # TODO - implement semantic gaurdrails?\n", + "\n", + " # Check the cache with the vector\n", + " if result := llmcache.check(vector=query_vector):\n", + " answer = result[0]['response']\n", + " else:\n", + " # TODO - implement query rewriting?\n", + " context = await self.retrieve_context(query_vector)\n", + " session = await self.get_messages()\n", + " # TODO - implement session summarization?\n", + " messages = (\n", + " [{\"role\": \"system\", \"content\": SYSTEM_PROMPT}] +\n", + " session +\n", + " [{\"role\": \"user\", \"content\": self.promptify(query, context)}]\n", + " )\n", + " # Response provided by GPT-3.5\n", + " response = await openai.AsyncClient().chat.completions.create(\n", + " model=CHAT_MODEL,\n", + " messages=messages,\n", + " temperature=0.1,\n", + " seed=42\n", + " )\n", + " answer = response.choices[0].message.content\n", + " llmcache.store(query, answer, query_vector)\n", + "\n", + " # Add message history\n", + " await self.add_messages([\n", + " {\"role\": \"user\", \"content\": query},\n", + " {\"role\": \"assistant\", \"content\": answer}\n", + " ])\n", + "\n", + " return answer" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Test the entire RAG workflow" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "id": "_Z3RUvyxdhiz" + }, + "outputs": [], + "source": [ + "# Setup Session\n", + "chat = ChatBot(index, \"tyler\")\n", + "await chat.clear_history()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Run a simple chat\n", + "stopterms = [\"exit\", \"quit\", \"end\", \"cancel\"]\n", + "\n", + "# Simple Chat\n", + "# NBVAL_SKIP\n", + "while True:\n", + " user_query = input()\n", + " if user_query.lower() in stopterms:\n", + " break\n", + " answer = await chat.answer_question(user_query)\n", + " print(answer, flush=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ZoPQMAShZ5Uy" + }, + "outputs": [], + "source": [ + "# NBVAL_SKIP\n", + "await chat.get_messages()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5l4uEgKzljes" + }, + "source": [ + "## Your Next Steps\n", + "\n", + "While a good start, there is still more to do. **For example**:\n", + "- we could utilize message history to generate an updated and contextualized query to use for retrieval and answer generation (with an LLM). Otherwise, there can be a disconnect between what a user is asking (in context) and what they are asking in isolation.\n", + "- we could utilize an LLM to summarize conversation history to use as context instead of passing the whole slew of messages to the Chat endpoint.\n", + "- we could utilize semantic properties of the message history (or summaries) in order to fetch only relevant conversation bits (vector search).\n", + "- we could utilize a technique like HyDE ( a form of query rewriting ) to improve the retrieval quality from raw user input to source documents OR try to break down user questions into sub questions and fetch / join context based on the different searces.\n", + "- we could incorporate semantic routing to take a broken down question and route to different data sources, indices, or query types (etc).\n", + "- we could add semantic guardrails on the front end or back end of the conversation I/O to ensure we are within bounds of approved topics." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Wscs4Mvo1ujD" + }, + "source": [ + "## Cleanup\n", + "\n", + "Clean up the database." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "On6yNuQn1ujD" + }, + "outputs": [], + "source": [ + "await index.client.flushall()" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "gpuType": "T4", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" }, - "nbformat": 4, - "nbformat_minor": 0 + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 } diff --git a/python-recipes/RAG/05_nvidia_ai_rag_redis.ipynb b/python-recipes/RAG/05_nvidia_ai_rag_redis.ipynb index 0c60a7f3..f4e05a21 100644 --- a/python-recipes/RAG/05_nvidia_ai_rag_redis.ipynb +++ b/python-recipes/RAG/05_nvidia_ai_rag_redis.ipynb @@ -53,7 +53,7 @@ "source": [ "%pip install --upgrade -q langchain-core langchain-community langchain-nvidia-ai-endpoints\n", "%pip install -q \"unstructured[pdf]\" sentence-transformers\n", - "%pip install -q redisvl>=0.3.0" + "%pip install -q \"redisvl>=0.4.1\"" ] }, { @@ -608,7 +608,8 @@ "name": "python3" }, "language_info": { - "name": "python" + "name": "python", + "version": "3.11.9" } }, "nbformat": 4, diff --git a/python-recipes/RAG/06_ragas_evaluation.ipynb b/python-recipes/RAG/06_ragas_evaluation.ipynb index dc06921d..c3b112e8 100644 --- a/python-recipes/RAG/06_ragas_evaluation.ipynb +++ b/python-recipes/RAG/06_ragas_evaluation.ipynb @@ -1,1231 +1,1229 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![Redis](https://redis.io/wp-content/uploads/2024/04/Logotype.svg?auto=webp&quality=85,75&width=120)\n", - "# Evaluating RAG\n", - "\n", - "This notebook uses the [ragas library](https://docs.ragas.io/en/stable/getstarted/index.html) and [Redis](https://redis.com) to evaluate the performance of sample RAG application. Also see the original [source paper](https://arxiv.org/pdf/2309.15217) to build a more detailed understanding.\n", - "\n", - "## Let's Begin!\n", - "\"Open" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To start, we need a RAG app to evaluate. Let's create one using LangChain and connect it with Redis as the vector DB.\n", - "\n", - "## Init redis, data prep, and populating the vector DB" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.2\u001b[0m\n", - "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n", - "Note: you may need to restart the kernel to use updated packages.\n" - ] - } - ], - "source": [ - "# install deps\n", - "# NBVAL_SKIP\n", - "%pip install -q redis \"unstructured[pdf]\" sentence-transformers langchain langchain-redis langchain-huggingface langchain-openai ragas datasets" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Running Redis in Colab\n", - "Use the shell script below to download, extract, and install [Redis Stack](https://redis.io/docs/getting-started/install-stack/) directly from the Redis package archive." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# NBVAL_SKIP\n", - "%%sh\n", - "curl -fsSL https://packages.redis.io/gpg | sudo gpg --dearmor -o /usr/share/keyrings/redis-archive-keyring.gpg\n", - "echo \"deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb $(lsb_release -cs) main\" | sudo tee /etc/apt/sources.list.d/redis.list\n", - "sudo apt-get update > /dev/null 2>&1\n", - "sudo apt-get install redis-stack-server > /dev/null 2>&1\n", - "redis-stack-server --daemonize yes" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### For Alternative Environments\n", - "There are many ways to get the necessary redis-stack instance running\n", - "1. On cloud, deploy a [FREE instance of Redis in the cloud](https://redis.com/try-free/). Or, if you have your\n", - "own version of Redis Enterprise running, that works too!\n", - "2. Per OS, [see the docs](https://redis.io/docs/latest/operate/oss_and_stack/install/install-stack/)\n", - "3. With docker: `docker run -d --name redis-stack-server -p 6379:6379 redis/redis-stack-server:latest`" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "import warnings\n", - "warnings.filterwarnings('ignore')\n", - "\n", - "# Replace values below with your own if using Redis Cloud instance\n", - "REDIS_HOST = os.getenv(\"REDIS_HOST\", \"localhost\") # ex: \"redis-18374.c253.us-central1-1.gce.cloud.redislabs.com\"\n", - "REDIS_PORT = os.getenv(\"REDIS_PORT\", \"6379\") # ex: 18374\n", - "REDIS_PASSWORD = os.getenv(\"REDIS_PASSWORD\", \"\") # ex: \"1TNxTEdYRDgIDKM2gDfasupCADXXXX\"\n", - "\n", - "# If SSL is enabled on the endpoint, use rediss:// as the URL prefix\n", - "REDIS_URL = f\"redis://:{REDIS_PASSWORD}@{REDIS_HOST}:{REDIS_PORT}\"" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from langchain.text_splitter import RecursiveCharacterTextSplitter\n", - "from langchain.document_loaders import UnstructuredFileLoader\n", - "\n", - "CHUNK_SIZE = 2500\n", - "CHUNK_OVERLAP = 0\n", - "\n", - "source_doc = \"resources/nke-10k-2023.pdf\"\n", - "\n", - "loader = UnstructuredFileLoader(\n", - " source_doc, mode=\"single\", strategy=\"fast\"\n", - ")\n", - "\n", - "text_splitter = RecursiveCharacterTextSplitter(\n", - " chunk_size=CHUNK_SIZE, chunk_overlap=CHUNK_OVERLAP\n", - ")\n", - "\n", - "chunks = loader.load_and_split(text_splitter)" - ] - }, - { - "cell_type": "code", - "execution_count": 95, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Document(metadata={'source': 'resources/nke-10k-2023.pdf'}, page_content=\"Table of ContentsUNITED STATESSECURITIES AND EXCHANGE COMMISSIONWashington, D.C. 20549FORM 10-K(Mark One)☑ ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(D) OF THE SECURITIES EXCHANGE ACT OF 1934FOR THE FISCAL YEAR ENDED MAY 31, 2023OR☐ TRANSITION REPORT PURSUANT TO SECTION 13 OR 15(D) OF THE SECURITIES EXCHANGE ACT OF 1934FOR THE TRANSITION PERIOD FROM TO .Commission File No. 1-10635\\n\\nAs of November 30, 2022, the aggregate market values of the Registrant's Common Stock held by non-affiliates were:Class A$7,831,564,572 Class B136,467,702,472 $144,299,267,044\\n\\nNIKE, Inc.(Exact name of Registrant as specified in its charter)Oregon93-0584541(State or other jurisdiction of incorporation)(IRS Employer Identification No.)One Bowerman Drive, Beaverton, Oregon 97005-6453(Address of principal executive offices and zip code)(503) 671-6453(Registrant's telephone number, including area code)SECURITIES REGISTERED PURSUANT TO SECTION 12(B) OF THE ACT:Class B Common StockNKENew York Stock Exchange(Title of each class)(Trading symbol)(Name of each exchange on which registered)SECURITIES REGISTERED PURSUANT TO SECTION 12(G) OF THE ACT:NONE\")" - ] - }, - "execution_count": 95, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "chunks[0]" - ] - }, - { - "cell_type": "code", - "execution_count": 96, - "metadata": {}, - "outputs": [], - "source": [ - "from langchain_huggingface import HuggingFaceEmbeddings\n", - "\n", - "embeddings = HuggingFaceEmbeddings(model_name=\"sentence-transformers/all-MiniLM-L6-v2\")" - ] - }, - { - "cell_type": "code", - "execution_count": 97, - "metadata": {}, - "outputs": [], - "source": [ - "from langchain_redis import RedisVectorStore\n", - "\n", - "# set the index name for this example\n", - "index_name = \"ragas_ex\"\n", - "\n", - "# construct the vector store class from texts and metadata\n", - "rds = RedisVectorStore.from_documents(\n", - " chunks,\n", - " embeddings,\n", - " index_name=index_name,\n", - " redis_url=REDIS_URL,\n", - " metadata_schema=[\n", - " {\n", - " \"name\": \"source\",\n", - " \"type\": \"text\"\n", - " },\n", - " ]\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Test the vector store" - ] - }, - { - "cell_type": "code", - "execution_count": 98, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'As discussed in Note 15 — Operating Segments and Related Information in the accompanying Notes to the Consolidated Financial Statements, our operating segments are evidence of the structure of the Company\\'s internal organization. The NIKE Brand segments are defined by geographic regions for operations participating in NIKE Brand sales activity.\\n\\nThe breakdown of Revenues is as follows:\\n\\n(Dollars in millions)\\n\\nFISCAL 2023 FISCAL 2022\\n\\n% CHANGE\\n\\n% CHANGE EXCLUDING CURRENCY (1) CHANGES FISCAL 2021\\n\\n% CHANGE\\n\\nNorth America Europe, Middle East & Africa Greater China\\n\\n$\\n\\n21,608 $ 13,418 7,248\\n\\n18,353 12,479 7,547\\n\\n18 % 8 % -4 %\\n\\n18 % $ 21 % 4 %\\n\\n17,179 11,456 8,290\\n\\n7 % 9 % -9 %\\n\\nAsia Pacific & Latin America Global Brand Divisions\\n\\n(3)\\n\\n(2)\\n\\n6,431 58\\n\\n5,955 102\\n\\n8 % -43 %\\n\\n17 % -43 %\\n\\n5,343 25\\n\\n11 % 308 %\\n\\nTOTAL NIKE BRAND Converse\\n\\n$\\n\\n48,763 $ 2,427\\n\\n44,436 2,346\\n\\n10 % 3 %\\n\\n16 % $ 8 %\\n\\n42,293 2,205\\n\\n5 % 6 %\\n\\n(4)\\n\\nCorporate TOTAL NIKE, INC. REVENUES\\n\\n$\\n\\n27\\n\\n51,217 $\\n\\n(72) 46,710\\n\\n— 10 %\\n\\n— 16 % $\\n\\n40 44,538\\n\\n— 5 %\\n\\n(1) The percent change excluding currency changes represents a non-GAAP financial measure. For further information, see \"Use of Non-GAAP Financial Measures\".\\n\\n(2) For additional information on the transition of our NIKE Brand businesses within our CASA territory to a third-party distributor, see Note 18 — Acquisitions and Divestitures of the Notes to Consolidated\\n\\nFinancial Statements contained in Item 8 of this Annual Report.\\n\\n(3) Global Brand Divisions revenues include NIKE Brand licensing and other miscellaneous revenues that are not part of a geographic operating segment.\\n\\n(4) Corporate revenues primarily consist of foreign currency hedge gains and losses related to revenues generated by entities within the NIKE Brand geographic operating segments and Converse, but\\n\\nmanaged through our central foreign exchange risk management program.\\n\\nThe primary financial measure used by the Company to evaluate performance is Earnings Before Interest and Taxes (\"EBIT\"). As discussed in Note 15 — Operating Segments and Related Information in the accompanying Notes to the Consolidated Financial Statements, certain corporate costs are not included in EBIT.\\n\\nThe breakdown of EBIT is as follows:\\n\\n(Dollars in millions)\\n\\nFISCAL 2023\\n\\nFISCAL 2022\\n\\n% CHANGE\\n\\nFISCAL 2021\\n\\nNorth America Europe, Middle East & Africa Greater China\\n\\n$\\n\\n5,454 3,531 2,283\\n\\n$\\n\\n5,114 3,293 2,365\\n\\n7 % $ 7 % -3 %\\n\\n5,089 2,435 3,243\\n\\nAsia Pacific & Latin America Global Brand Divisions (1)'" - ] - }, - "execution_count": 98, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "rds.similarity_search(\"What was nike's revenue last year?\")[0].page_content" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Setup RAG\n", - "\n", - "Now that the vector db is populated let's initialize our RAG app." - ] - }, - { - "cell_type": "code", - "execution_count": 99, - "metadata": {}, - "outputs": [], - "source": [ - "import getpass\n", - "from langchain_openai import ChatOpenAI\n", - "\n", - "if \"OPENAI_API_KEY\" not in os.environ:\n", - " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OPENAI_API_KEY\")\n", - "\n", - "llm = ChatOpenAI(\n", - " openai_api_key=os.environ[\"OPENAI_API_KEY\"],\n", - " model=\"gpt-3.5-turbo-16k\",\n", - " max_tokens=None\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 108, - "metadata": {}, - "outputs": [], - "source": [ - "from langchain_core.prompts import ChatPromptTemplate\n", - "\n", - "system_prompt = \"\"\"\n", - " Use the following pieces of context from financial 10k filings data to answer the user question at the end. \n", - " If you don't know the answer, say that you don't know, don't try to make up an answer.\n", - "\n", - " Context:\n", - " ---------\n", - " {context}\n", - "\"\"\"\n", - "\n", - "def format_docs(docs):\n", - " return \"\\n\\n\".join(doc.page_content for doc in docs)\n", - "\n", - "prompt = ChatPromptTemplate.from_messages(\n", - " [\n", - " (\"system\", system_prompt),\n", - " (\"human\", \"{input}\")\n", - " ]\n", - ")\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Test it out" - ] - }, - { - "cell_type": "code", - "execution_count": 109, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'input': \"What was nike's revenue last year?\",\n", - " 'context': [Document(metadata={'source': 'resources/nke-10k-2023.pdf'}, page_content='As discussed in Note 15 — Operating Segments and Related Information in the accompanying Notes to the Consolidated Financial Statements, our operating segments are evidence of the structure of the Company\\'s internal organization. The NIKE Brand segments are defined by geographic regions for operations participating in NIKE Brand sales activity.\\n\\nThe breakdown of Revenues is as follows:\\n\\n(Dollars in millions)\\n\\nFISCAL 2023 FISCAL 2022\\n\\n% CHANGE\\n\\n% CHANGE EXCLUDING CURRENCY (1) CHANGES FISCAL 2021\\n\\n% CHANGE\\n\\nNorth America Europe, Middle East & Africa Greater China\\n\\n$\\n\\n21,608 $ 13,418 7,248\\n\\n18,353 12,479 7,547\\n\\n18 % 8 % -4 %\\n\\n18 % $ 21 % 4 %\\n\\n17,179 11,456 8,290\\n\\n7 % 9 % -9 %\\n\\nAsia Pacific & Latin America Global Brand Divisions\\n\\n(3)\\n\\n(2)\\n\\n6,431 58\\n\\n5,955 102\\n\\n8 % -43 %\\n\\n17 % -43 %\\n\\n5,343 25\\n\\n11 % 308 %\\n\\nTOTAL NIKE BRAND Converse\\n\\n$\\n\\n48,763 $ 2,427\\n\\n44,436 2,346\\n\\n10 % 3 %\\n\\n16 % $ 8 %\\n\\n42,293 2,205\\n\\n5 % 6 %\\n\\n(4)\\n\\nCorporate TOTAL NIKE, INC. REVENUES\\n\\n$\\n\\n27\\n\\n51,217 $\\n\\n(72) 46,710\\n\\n— 10 %\\n\\n— 16 % $\\n\\n40 44,538\\n\\n— 5 %\\n\\n(1) The percent change excluding currency changes represents a non-GAAP financial measure. For further information, see \"Use of Non-GAAP Financial Measures\".\\n\\n(2) For additional information on the transition of our NIKE Brand businesses within our CASA territory to a third-party distributor, see Note 18 — Acquisitions and Divestitures of the Notes to Consolidated\\n\\nFinancial Statements contained in Item 8 of this Annual Report.\\n\\n(3) Global Brand Divisions revenues include NIKE Brand licensing and other miscellaneous revenues that are not part of a geographic operating segment.\\n\\n(4) Corporate revenues primarily consist of foreign currency hedge gains and losses related to revenues generated by entities within the NIKE Brand geographic operating segments and Converse, but\\n\\nmanaged through our central foreign exchange risk management program.\\n\\nThe primary financial measure used by the Company to evaluate performance is Earnings Before Interest and Taxes (\"EBIT\"). As discussed in Note 15 — Operating Segments and Related Information in the accompanying Notes to the Consolidated Financial Statements, certain corporate costs are not included in EBIT.\\n\\nThe breakdown of EBIT is as follows:\\n\\n(Dollars in millions)\\n\\nFISCAL 2023\\n\\nFISCAL 2022\\n\\n% CHANGE\\n\\nFISCAL 2021\\n\\nNorth America Europe, Middle East & Africa Greater China\\n\\n$\\n\\n5,454 3,531 2,283\\n\\n$\\n\\n5,114 3,293 2,365\\n\\n7 % $ 7 % -3 %\\n\\n5,089 2,435 3,243\\n\\nAsia Pacific & Latin America Global Brand Divisions (1)'),\n", - " Document(metadata={'source': 'resources/nke-10k-2023.pdf'}, page_content=\"NIKE, INC. CONSOLIDATED STATEMENTS OF INCOME\\n\\n(In millions, except per share data)\\n\\nRevenues Cost of sales\\n\\nGross profit\\n\\nDemand creation expense Operating overhead expense\\n\\nTotal selling and administrative expense\\n\\nInterest expense (income), net\\n\\nOther (income) expense, net Income before income taxes\\n\\nIncome tax expense NET INCOME\\n\\nEarnings per common share:\\n\\nBasic Diluted\\n\\nWeighted average common shares outstanding:\\n\\nBasic Diluted\\n\\nThe accompanying Notes to the Consolidated Financial Statements are an integral part of this statement.\\n\\n$\\n\\n$\\n\\n$ $\\n\\nYEAR ENDED MAY 31,\\n\\n2023\\n\\n2022\\n\\n2021\\n\\n51,217 $ 28,925\\n\\n46,710 $ 25,231\\n\\n44,538 24,576\\n\\n22,292 4,060 12,317\\n\\n21,479 3,850 10,954\\n\\n19,962 3,114 9,911\\n\\n16,377 (6)\\n\\n14,804 205\\n\\n13,025 262\\n\\n(280) 6,201\\n\\n(181) 6,651\\n\\n14 6,661\\n\\n1,131 5,070 $\\n\\n605 6,046 $\\n\\n934 5,727\\n\\n3.27 $ 3.23 $\\n\\n3.83 $ 3.75 $\\n\\n3.64 3.56\\n\\n1,551.6 1,569.8\\n\\n1,578.8 1,610.8\\n\\n1,573.0 1,609.4\\n\\n2023 FORM 10-K 55\\n\\nTable of Contents\\n\\nNIKE, INC. CONSOLIDATED STATEMENTS OF COMPREHENSIVE INCOME\\n\\nYEAR ENDED MAY 31,\\n\\n(Dollars in millions)\\n\\n2023\\n\\n2022\\n\\nNet income Other comprehensive income (loss), net of tax:\\n\\n$\\n\\n5,070 $\\n\\n6,046 $\\n\\nChange in net foreign currency translation adjustment\\n\\n267\\n\\n(522)\\n\\nChange in net gains (losses) on cash flow hedges Change in net gains (losses) on other\\n\\n(348) (6)\\n\\n1,214 6\\n\\nTotal other comprehensive income (loss), net of tax TOTAL COMPREHENSIVE INCOME\\n\\n$\\n\\n(87) 4,983 $\\n\\n698 6,744 $\\n\\nThe accompanying Notes to the Consolidated Financial Statements are an integral part of this statement.\\n\\n2023 FORM 10-K 56\\n\\n2021\\n\\n5,727\\n\\n496\\n\\n(825) 5\\n\\n(324) 5,403\\n\\nTable of Contents\\n\\nNIKE, INC. CONSOLIDATED BALANCE SHEETS\\n\\n(In millions)\\n\\nASSETS\\n\\nCurrent assets:\\n\\nCash and equivalents Short-term investments\\n\\nAccounts receivable, net Inventories Prepaid expenses and other current assets\\n\\nTotal current assets\\n\\nProperty, plant and equipment, net\\n\\nOperating lease right-of-use assets, net Identifiable intangible assets, net Goodwill\\n\\nDeferred income taxes and other assets\\n\\nTOTAL ASSETS\\n\\nLIABILITIES AND SHAREHOLDERS' EQUITY Current liabilities:\\n\\nCurrent portion of long-term debt Notes payable Accounts payable\\n\\nCurrent portion of operating lease liabilities Accrued liabilities Income taxes payable\\n\\nTotal current liabilities\\n\\nLong-term debt\\n\\nOperating lease liabilities Deferred income taxes and other liabilities Commitments and contingencies (Note 16)\\n\\nRedeemable preferred stock Shareholders' equity: Common stock at stated value:\"),\n", - " Document(metadata={'source': 'resources/nke-10k-2023.pdf'}, page_content=\"Tax (expense) benefit Gain (loss) net of tax\\n\\n5 (14)\\n\\n(9) 22\\n\\nTotal net gain (loss) reclassified for the period\\n\\n$\\n\\n463 $\\n\\n30\\n\\n2023 FORM 10-K 82\\n\\nTable of Contents\\n\\nNOTE 14 — REVENUES\\n\\nDISAGGREGATION OF REVENUES The following tables present the Company's Revenues disaggregated by reportable operating segment, major product line and distribution channel:\\n\\n(Dollars in millions)\\n\\nNORTH AMERICA\\n\\nEUROPE, MIDDLE EAST & AFRICA\\n\\nGREATER CHINA\\n\\nYEAR ENDED MAY 31, 2023 ASIA PACIFIC & LATIN (1)\\n\\nGLOBAL BRAND DIVISIONS\\n\\nTOTAL NIKE\\n\\nAMERICA\\n\\nBRAND CONVERSE CORPORATE\\n\\nTOTAL NIKE, INC.\\n\\nRevenues by: Footwear\\n\\n$\\n\\n14,897 $\\n\\n8,260 $\\n\\n5,435 $\\n\\n4,543 $\\n\\n— $\\n\\n33,135 $\\n\\n2,155 $\\n\\n— $\\n\\n35,290\\n\\nApparel Equipment Other\\n\\n5,947 764 —\\n\\n4,566 592 —\\n\\n1,666 147 —\\n\\n1,664 224 —\\n\\n— — 58\\n\\n13,843 1,727 58\\n\\n90 28 154\\n\\n— — 27\\n\\n13,933 1,755 239\\n\\nTOTAL REVENUES\\n\\n$\\n\\n21,608 $\\n\\n13,418 $\\n\\n7,248 $\\n\\n6,431 $\\n\\n58 $\\n\\n48,763 $\\n\\n2,427 $\\n\\n27 $\\n\\n51,217\\n\\nRevenues by:\\n\\nSales to Wholesale Customers Sales through Direct to Consumer\\n\\n$\\n\\n11,273 $ 10,335\\n\\n8,522 $ 4,896\\n\\n3,866 $ 3,382\\n\\n3,736 $ 2,695\\n\\n— $ —\\n\\n27,397 $ 21,308\\n\\n1,299 $ 974\\n\\n— $ —\\n\\n28,696 22,282\\n\\nOther\\n\\nTOTAL REVENUES\\n\\n$\\n\\n—\\n\\n21,608 $\\n\\n—\\n\\n13,418 $\\n\\n— 7,248 $\\n\\n— 6,431 $\\n\\n58 58 $\\n\\n58\\n\\n48,763 $\\n\\n154 2,427 $\\n\\n27 27 $\\n\\n239 51,217\\n\\n(1) Refer to Note 18 — Acquisitions and Divestitures for additional information on the transition of the Company's NIKE Brand businesses in its CASA territory to third-party distributors.\\n\\nYEAR ENDED MAY 31, 2022\\n\\n(Dollars in millions)\\n\\nNORTH AMERICA\\n\\nEUROPE, MIDDLE EAST & AFRICA\\n\\nGREATER CHINA\\n\\nASIA PACIFIC & LATIN AMERICA\\n\\nGLOBAL BRAND DIVISIONS\\n\\nTOTAL NIKE\\n\\nBRAND CONVERSE CORPORATE\\n\\nTOTAL NIKE, INC.\\n\\nRevenues by: Footwear Apparel\\n\\n$\\n\\n12,228 $ 5,492\\n\\n7,388 $ 4,527\\n\\n5,416 $ 1,938\\n\\n4,111 $ 1,610\\n\\n— $ —\\n\\n29,143 $ 13,567\\n\\n2,094 $ 103\\n\\n— $ —\\n\\n31,237 13,670\\n\\nEquipment Other\\n\\n633 —\\n\\n564 —\\n\\n193 —\\n\\n234 —\\n\\n— 102\\n\\n1,624 102\\n\\n26 123\\n\\n— (72)\\n\\n1,650 153\\n\\nTOTAL REVENUES Revenues by:\\n\\n$\\n\\n18,353 $\\n\\n12,479 $\\n\\n7,547 $\\n\\n5,955 $\\n\\n102 $\\n\\n44,436 $\\n\\n2,346 $\\n\\n(72) $\\n\\n46,710\\n\\nSales to Wholesale Customers Sales through Direct to Consumer Other\\n\\n$\\n\\n9,621 $ 8,732 —\\n\\n8,377 $ 4,102 —\\n\\n4,081 $ 3,466 —\\n\\n3,529 $ 2,426 —\\n\\n— $ — 102\\n\\n25,608 $ 18,726 102\\n\\n1,292 $ 931 123\\n\\n— $ — (72)\\n\\n26,900 19,657 153\\n\\nTOTAL REVENUES\\n\\n$\\n\\n18,353 $\\n\\n12,479 $\\n\\n7,547 $\\n\\n5,955 $\\n\\n102 $\\n\\n44,436 $\\n\\n2,346 $\\n\\n(72) $\\n\\n46,710\\n\\n2023 FORM 10-K 83\\n\\nTable of Contents\\n\\nYEAR ENDED MAY 31, 2021\\n\\n(Dollars in millions)\\n\\nNORTH AMERICA\\n\\nEUROPE, MIDDLE EAST & AFRICA\\n\\nGREATER CHINA\"),\n", - " Document(metadata={'source': 'resources/nke-10k-2023.pdf'}, page_content=\"ASIA PACIFIC & LATIN AMERICA\\n\\n(1)\\n\\nGLOBAL BRAND DIVISIONS\\n\\nTOTAL NIKE BRAND\\n\\nCONVERSE CORPORATE\\n\\nTOTAL NIKE, INC.\\n\\nRevenues by:\\n\\nFootwear Apparel Equipment\\n\\n$\\n\\n11,644 $ 5,028 507\\n\\n6,970 $ 3,996 490\\n\\n5,748 $ 2,347 195\\n\\n3,659 $ 1,494 190\\n\\n— $ — —\\n\\n28,021 $ 12,865 1,382\\n\\n1,986 $ 104 29\\n\\n— $ — —\\n\\n30,007 12,969 1,411\\n\\nOther\\n\\nTOTAL REVENUES\\n\\n$\\n\\n—\\n\\n17,179 $\\n\\n—\\n\\n11,456 $\\n\\n— 8,290 $\\n\\n— 5,343 $\\n\\n25 25 $\\n\\n25\\n\\n42,293 $\\n\\n86 2,205 $\\n\\n40 40 $\\n\\n151 44,538\\n\\nRevenues by:\\n\\nSales to Wholesale Customers $\\n\\n10,186 $\\n\\n7,812 $\\n\\n4,513 $\\n\\n3,387 $\\n\\n— $\\n\\n25,898 $\\n\\n1,353 $\\n\\n— $\\n\\n27,251\\n\\nSales through Direct to Consumer Other\\n\\n6,993 —\\n\\n3,644 —\\n\\n3,777 —\\n\\n1,956 —\\n\\n— 25\\n\\n16,370 25\\n\\n766 86\\n\\n— 40\\n\\n17,136 151\\n\\nTOTAL REVENUES\\n\\n$\\n\\n17,179 $\\n\\n11,456 $\\n\\n8,290 $\\n\\n5,343 $\\n\\n25 $\\n\\n42,293 $\\n\\n2,205 $\\n\\n40 $\\n\\n44,538\\n\\n(1) Refer to Note 18 — Acquisitions and Divestitures for additional information on the transition of the Company's NIKE Brand business in Brazil to a third-party distributor.\\n\\nFor the fiscal years ended May 31, 2023, 2022 and 2021, Global Brand Divisions revenues include NIKE Brand licensing and other miscellaneous revenues that are not part of a geographic operating segment. Converse Other revenues were primarily attributable to licensing businesses. Corporate revenues primarily consisted of foreign currency hedge gains and losses related to revenues generated by entities within the NIKE Brand geographic operating segments and Converse but managed through the Company's central foreign exchange risk management program.\\n\\nAs of May 31, 2023 and 2022, the Company did not have any contract assets and had an immaterial amount of contract liabilities recorded in Accrued liabilities on the Consolidated Balance Sheets.\\n\\nSALES-RELATED RESERVES\\n\\nAs of May 31, 2023 and 2022, the Company's sales-related reserve balance, which includes returns, post-invoice sales discounts and miscellaneous claims, was $994 million and $1,015 million, respectively, recorded in Accrued liabilities on the Consolidated Balance Sheets. The estimated cost of inventory for expected product returns was $226 million and $194 million as of May 31, 2023 and 2022, respectively, and was recorded in Prepaid expenses and other current assets on the Consolidated Balance Sheets.\\n\\nNOTE 15 — OPERATING SEGMENTS AND RELATED INFORMATION\")],\n", - " 'answer': \"Nike's revenue last year was $51,217 million.\"}" - ] - }, - "execution_count": 109, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from langchain.chains import create_retrieval_chain\n", - "from langchain.chains.combine_documents import create_stuff_documents_chain\n", - "\n", - "question_answer_chain = create_stuff_documents_chain(llm, prompt)\n", - "rag_chain = create_retrieval_chain(rds.as_retriever(), question_answer_chain)\n", - "\n", - "rag_chain.invoke({\"input\": \"What was nike's revenue last year?\"})" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## (Optional) Creating a test set\n", - "\n", - "Now that our setup is complete and we have our RAG app to evaluate we need a test set to evaluate against. The ragas library provides a helpful class for generating a synthetic test set given our data as input that we will use here. The output of this generation is a set of `questions`, `contexts`, and `ground_truth`. \n", - "\n", - "The questions are generated by an LLM based on slices of context from the provided doc and the ground_truth is determined via a critic LLM. Note there is nothing special about this data itself and you can provide your own `questions` and `ground_truth` for evaluation purposes. When starting a project however, there is often a lack of quality human labeled data to be used for evaluation and a synthetic dataset is a valuable place to start if pre live user/process data (which should be incorporated as an ultimate goal).\n", - "\n", - "For more detail see [the docs](https://docs.ragas.io/en/stable/concepts/testset_generation.html)" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "# NBVAL_SKIP\n", - "# source: https://docs.ragas.io/en/latest/getstarted/testset_generation.html\n", - "from ragas.testset.generator import TestsetGenerator\n", - "from ragas.testset.evolutions import simple, reasoning, multi_context\n", - "from ragas.run_config import RunConfig\n", - "from langchain_openai import ChatOpenAI, OpenAIEmbeddings\n", - "\n", - "run_config = RunConfig(\n", - " timeout=200,\n", - " max_wait=160,\n", - " max_retries=3,\n", - ")\n", - "\n", - "# generator with openai models\n", - "generator_llm = ChatOpenAI(model=\"gpt-3.5-turbo-16k\")\n", - "critic_llm = ChatOpenAI(model=\"gpt-4o-mini\")\n", - "embeddings = OpenAIEmbeddings()\n", - "\n", - "generator = TestsetGenerator.from_langchain(\n", - " generator_llm,\n", - " critic_llm,\n", - " embeddings,\n", - " run_config=run_config,\n", - ")\n", - "\n", - "testset = generator.generate_with_langchain_docs(\n", - " chunks,\n", - " test_size=10,\n", - " distributions={\n", - " simple: 0.5,\n", - " reasoning: 0.25,\n", - " multi_context: 0.25\n", - " },\n", - " run_config=run_config\n", - ")\n", - "\n", - "# save to csv since this can be a time consuming process\n", - "testset.to_pandas().to_csv(\"resources/new_testset.csv\", index=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Evaluation helper functions\n", - "\n", - "The following code takes a RetrievalQA chain, testset dataframe, and the metrics to be evaluated and returns a dataframe including the metrics calculated." - ] - }, - { - "cell_type": "code", - "execution_count": 110, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd\n", - "from datasets import Dataset\n", - "from ragas import evaluate\n", - "from ragas.run_config import RunConfig\n", - "\n", - "def parse_contexts(source_docs):\n", - " return [doc.page_content for doc in source_docs]\n", - "\n", - "def create_evaluation_dataset(chain, testset):\n", - " res_set = {\n", - " \"question\": [],\n", - " \"answer\": [],\n", - " \"contexts\": [],\n", - " \"ground_truth\": []\n", - " }\n", - "\n", - " for _, row in testset.iterrows():\n", - " result = chain.invoke({\"input\": row[\"question\"]})\n", - "\n", - " res_set[\"question\"].append(row[\"question\"])\n", - " res_set[\"answer\"].append(result[\"answer\"])\n", - "\n", - " contexts = parse_contexts(result[\"context\"])\n", - "\n", - " if not len(contexts):\n", - " print(f\"no contexts found for question: {row['question']}\")\n", - " res_set[\"contexts\"].append(contexts)\n", - " res_set[\"ground_truth\"].append(str(row[\"ground_truth\"]))\n", - "\n", - " return Dataset.from_dict(res_set)\n", - "\n", - "def evaluate_dataset(eval_dataset, metrics, llm, embeddings):\n", - "\n", - " run_config = RunConfig(max_retries=1) # see ragas docs for more run_config options\n", - "\n", - " eval_result = evaluate(\n", - " eval_dataset,\n", - " metrics=metrics,\n", - " run_config=run_config,\n", - " llm=llm,\n", - " embeddings=embeddings\n", - " )\n", - "\n", - " eval_df = eval_result.to_pandas()\n", - " return eval_df" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Create the evaluation data\n", - "\n", - "Input: chain to be evaluated and a pregenerated test set
\n", - "Output: dataset formatted for use with ragas evaluation function" - ] - }, - { - "cell_type": "code", - "execution_count": 111, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
questioncontextsground_truthevolution_typemetadataepisode_done
0What are short-term investments and how are th...[\"CASH AND EQUIVALENTS Cash and equivalents re...Short-term investments are highly liquid inves...simple[{'source': 'resources/nke-10k-2023.pdf'}]True
1What are some of the risks and uncertainties a...['Our NIKE Direct operations, including our re...Many factors unique to retail operations, some...simple[{'source': 'resources/nke-10k-2023.pdf'}]True
2What is NIKE's policy regarding securities ana...[\"Investors should also be aware that while NI...NIKE's policy is to not disclose any material ...simple[{'source': 'resources/nke-10k-2023.pdf'}]True
3What are the revenues for the Footwear and App...['(Dollars in millions, except per share data)...The revenues for the Footwear and Apparel cate...simple[{'source': 'resources/nke-10k-2023.pdf'}]True
4How do master netting arrangements impact the ...[\"The Company records the assets and liabiliti...The Company records the assets and liabilities...simple[{'source': 'resources/nke-10k-2023.pdf'}]True
\n", - "
" - ], - "text/plain": [ - " question \\\n", - "0 What are short-term investments and how are th... \n", - "1 What are some of the risks and uncertainties a... \n", - "2 What is NIKE's policy regarding securities ana... \n", - "3 What are the revenues for the Footwear and App... \n", - "4 How do master netting arrangements impact the ... \n", - "\n", - " contexts \\\n", - "0 [\"CASH AND EQUIVALENTS Cash and equivalents re... \n", - "1 ['Our NIKE Direct operations, including our re... \n", - "2 [\"Investors should also be aware that while NI... \n", - "3 ['(Dollars in millions, except per share data)... \n", - "4 [\"The Company records the assets and liabiliti... \n", - "\n", - " ground_truth evolution_type \\\n", - "0 Short-term investments are highly liquid inves... simple \n", - "1 Many factors unique to retail operations, some... simple \n", - "2 NIKE's policy is to not disclose any material ... simple \n", - "3 The revenues for the Footwear and Apparel cate... simple \n", - "4 The Company records the assets and liabilities... simple \n", - "\n", - " metadata episode_done \n", - "0 [{'source': 'resources/nke-10k-2023.pdf'}] True \n", - "1 [{'source': 'resources/nke-10k-2023.pdf'}] True \n", - "2 [{'source': 'resources/nke-10k-2023.pdf'}] True \n", - "3 [{'source': 'resources/nke-10k-2023.pdf'}] True \n", - "4 [{'source': 'resources/nke-10k-2023.pdf'}] True " - ] - }, - "execution_count": 111, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "testset_df = pd.read_csv(\"resources/testset_15.csv\")\n", - "testset_df.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 112, - "metadata": {}, - "outputs": [], - "source": [ - "eval_dataset = create_evaluation_dataset(rag_chain, testset_df)\n", - "eval_dataset.to_pandas().shape" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Evaluate generation metrics\n", - "Generation metrics quantify how well the RAG app did creating answers to the provided questions (i.e. the G in **R**etrival **A**ugments **G**eneration). We will calculate the generation metrics **faithfulness** and **answer relevancy** for this example.\n", - "\n", - "The ragas libary conveniently abstracts the calculation of these metrics so we don't have to write redundant code but please review the following definitions in order to build intuition around what these metrics actually measure.\n", - "\n", - "Note: the following examples are paraphrased from the [ragas docs](https://docs.ragas.io/en/stable/concepts/metrics/index.html)\n", - "\n", - "------\n", - "\n", - "### Faithfulness\n", - "\n", - "An answer to a question can be said to be \"faithful\" if the **claims** that are made in the answer **can be inferred** from the **context**.\n", - "\n", - "#### Mathematically:\n", - "\n", - "$$\n", - "Faithfullness\\ score = \\frac{Number\\ of\\ claims\\ in\\ the\\ generated\\ answer\\ that\\ can\\ be\\ inferred\\ from\\ the\\ given\\ context}{Total\\ number\\ of\\ claim\\ in\\ the\\ generated\\ answer}\n", - "$$\n", - "\n", - "#### Example process:\n", - "\n", - "> Question: Where and when was Einstein born?\n", - "> \n", - "> Context: Albert Einstein (born 14 March 1879) was a German-born theoretical physicist, widely held to be one of the greatest and most influential scientists of all time\n", - ">\n", - "> answer: Einstein was born in Germany on 20th March 1879.\n", - "\n", - "Step 1: Use LLM to break generated answer into individual statements.\n", - "- “Einstein was born in Germany.”\n", - "- “Einstein was born on 20th March 1879.”\n", - "\n", - "Step 2: For each statement use LLM to verify if it can be inferred from the context.\n", - "- “Einstein was born in Germany.” => yes. \n", - "- “Einstein was born on 20th March 1879.” => no.\n", - "\n", - "Step 3: plug into formula\n", - "\n", - "Number of claims inferred from context = 1\n", - "Total number of claims = 2\n", - "Faithfulness = 1/2\n", - "\n", - "### Answer Relevance\n", - "\n", - "An answer can be said to be relevant if it directly addresses the question (intuitively).\n", - "\n", - "#### Example process:\n", - "\n", - "1. Use an LLM to generate \"hypothetical\" questions to a given answer with the following prompt:\n", - "\n", - " > Generate a question for the given answer.\n", - " > answer: [answer]\n", - "\n", - "2. Embed the generated \"hypothetical\" questions as vectors.\n", - "3. Calculate the cosine similarity of the hypothetical questions and the original question, sum those similarities, and divide by n.\n", - "\n", - "With data:\n", - "\n", - "> Question: Where is France and what is it’s capital?\n", - "> \n", - "> answer: France is in western Europe.\n", - "\n", - "Step 1 - use LLM to create 'n' variants of question from the generated answer.\n", - "\n", - "- “In which part of Europe is France located?”\n", - "- “What is the geographical location of France within Europe?”\n", - "- “Can you identify the region of Europe where France is situated?”\n", - "\n", - "Step 2 - Calculate the mean cosine similarity between the generated questions and the actual question.\n", - "\n", - "## Now let's implement using our helper functions\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 114, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "dd9cabb4b0c448b08cad96d2ef3391a2", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Evaluating: 0%| | 0/15 [00:00\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
faithfulnessanswer_relevancy
count15.00000015.000000
mean0.7812290.938581
std0.3626660.085342
min0.0000000.736997
25%0.6527780.926596
50%1.0000000.975230
75%1.0000000.994168
max1.0000001.000000
\n", - "
" - ], - "text/plain": [ - " faithfulness answer_relevancy\n", - "count 15.000000 15.000000\n", - "mean 0.781229 0.938581\n", - "std 0.362666 0.085342\n", - "min 0.000000 0.736997\n", - "25% 0.652778 0.926596\n", - "50% 1.000000 0.975230\n", - "75% 1.000000 0.994168\n", - "max 1.000000 1.000000" - ] - }, - "execution_count": 116, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "gen_metrics_default = faithfulness_metrics\n", - "gen_metrics_default[\"answer_relevancy\"] = answer_relevancy_metrics[\"answer_relevancy\"]\n", - "\n", - "gen_metrics_default.describe()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Evaluating retrieval metrics\n", - "\n", - "Retrieval metrics quantify how well the system performed at fetching the best possible context for generation. Like before please review the definitions below to understand what happens under-the-hood when we execute the evaluation code. \n", - "\n", - "-----\n", - "\n", - "### Context Relevance\n", - "\n", - "\"The context is considered relevant to the extent that it exclusively contains information that is needed to answer the question.\"\n", - "\n", - "#### Example process:\n", - "\n", - "1. Use the following LLM prompt to extract a subset of sentences necessary to answer the question. The context is defined as the formatted search result from the vector database.\n", - "\n", - " > Please extract relevant sentences from\n", - " > the provided context that can potentially\n", - " > help answer the following `{question}`. If no\n", - " > relevant sentences are found, or if you\n", - " > believe the question cannot be answered\n", - " > from the given context, return the phrase\n", - " > \"Insufficient Information\". While extracting candidate sentences you’re not allowed to make any changes to sentences\n", - " > from given `{context}`.\n", - "\n", - "2. Compute the context relevance score = (number of extracted sentences) / (total number of sentences in context)\n", - "\n", - "Moving from the initial paper to the active evaluation library ragas there are a few more insightful metrics to evaluate. From the library [source](https://docs.ragas.io/en/stable/concepts/metrics/index.html) let's introduce `context precision` and `context recall`. \n", - "\n", - "### Context recall\n", - "Context can be said to have high recall if retrieved context aligns with the ground truth answer.\n", - "\n", - "#### Mathematically:\n", - "\n", - "$$\n", - "Context\\ recall = \\frac{Ground\\ Truth\\ sentences\\ that\\ can\\ be\\ attributed\\ to\\ context}{Total\\ number\\ of\\ sentences\\ in\\ the\\ ground\\ truth}\n", - "$$\n", - "\n", - "#### Example process:\n", - "\n", - "Data:\n", - "> question: Where is France and what is it’s capital?\n", - "> ground truth answer: France is in Western Europe and its capital is Paris.\n", - "> context: France, in Western Europe, encompasses medieval cities, alpine villages and Mediterranean beaches. The country is also renowned for its wines and sophisticated cuisine. Lascaux’s ancient cave drawings, Lyon’s Roman theater and the vast Palace of Versailles attest to its rich history.\n", - ">\n", - "> Note: ground truth answer can be created by critic LLM or with own human labeled data set.\n", - "\n", - "Step 1 - use an LLM to break the ground truth down into individual statements:\n", - "- `France is in Western Europe`\n", - "- `Its capital is Paris`\n", - "\n", - "Step 2 - for each ground truth statement, use an LLM to determine if it can be attributed from the context.\n", - "- `France is in Western Europe` => yes\n", - "- `Its capital is Paris` => no\n", - "\n", - "\n", - "Step 3 - plug in to formula\n", - "\n", - "context recall = (1 + 0) / 2 = 0.5\n", - "\n", - "### Context precision\n", - "\n", - "This metrics relates to how chunks are ranked in a response. Ideally the most relevant chunks are at the top.\n", - "\n", - "#### Mathematically:\n", - "\n", - "$$\n", - "Context\\ Precision@k = \\frac{precision@k}{total\\ number\\ relevant\\ items\\ in\\ the\\ top\\ k\\ results}\n", - "$$\n", - "\n", - "$$\n", - "Precision@k = \\frac{true\\ positive@k}{true\\ positives@k + false\\ positives@k}\n", - "$$\n", - "\n", - "#### Example process:\n", - "\n", - "Data:\n", - "> Question: Where is France and what is it’s capital?\n", - "> \n", - "> Ground truth: France is in Western Europe and its capital is Paris.\n", - "> \n", - "> Context: [ “The country is also renowned for its wines and sophisticated cuisine. Lascaux’s ancient cave drawings, Lyon’s Roman theater and”, “France, in Western Europe, encompasses medieval cities, alpine villages and Mediterranean beaches. Paris, its capital, is famed for its fashion houses, classical art museums including the Louvre and monuments like the Eiffel Tower”]\n", - "\n", - "Step 1 - for each chunk use the LLM to check if it's relevant or not to the ground truth answer.\n", - "\n", - "Step 2 - for each chunk in the context calculate the precision defined as: ``\n", - "- `“The country is also renowned for its wines and sophisticated cuisine. Lascaux’s ancient cave drawings, Lyon’s Roman theater and”` => precision = 0/1 or 0.\n", - "- `“France, in Western Europe, encompasses medieval cities, alpine villages and Mediterranean beaches. Paris, its capital, is famed for its fashion houses, classical art museums including the Louvre and monuments like the Eiffel Tower”` => the precision would be (1) / (1 true positive + 1 false positive) = 0.5. \n", - "\n", - "\n", - "Step 3 - calculate the overall context precision = (0 + 0.5) / 1 = 0.5" - ] - }, - { - "cell_type": "code", - "execution_count": 117, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "c076c3dc42cf49cf8d768dec225727d5", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Evaluating: 0%| | 0/15 [00:00\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
context_recallcontext_precision
count15.00000015.000000
mean0.9666670.925926
std0.1290990.145352
min0.5000000.500000
25%1.0000000.916667
50%1.0000001.000000
75%1.0000001.000000
max1.0000001.000000
\n", - "" - ], - "text/plain": [ - " context_recall context_precision\n", - "count 15.000000 15.000000\n", - "mean 0.966667 0.925926\n", - "std 0.129099 0.145352\n", - "min 0.500000 0.500000\n", - "25% 1.000000 0.916667\n", - "50% 1.000000 1.000000\n", - "75% 1.000000 1.000000\n", - "max 1.000000 1.000000" - ] - }, - "execution_count": 119, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ret_metrics_default = context_recall_metrics\n", - "ret_metrics_default[\"context_precision\"] = context_precision_metrics[\"context_precision\"]\n", - "\n", - "ret_metrics_default.describe()" - ] - }, - { - "cell_type": "code", - "execution_count": 120, - "metadata": {}, - "outputs": [], - "source": [ - "metrics = ret_metrics_default\n", - "metrics[\"faithfulness\"] = gen_metrics_default[\"faithfulness\"]\n", - "metrics[\"answer_relevancy\"] = gen_metrics_default[\"answer_relevancy\"]\n", - "\n", - "metrics.to_csv(f\"resources/metrics_{CHUNK_SIZE}_{CHUNK_OVERLAP}.csv\", index=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# All together" - ] - }, - { - "cell_type": "code", - "execution_count": 121, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
context_recallcontext_precisionfaithfulnessanswer_relevancy
count15.00000015.00000015.00000015.000000
mean0.9666670.9259260.7812290.938581
std0.1290990.1453520.3626660.085342
min0.5000000.5000000.0000000.736997
25%1.0000000.9166670.6527780.926596
50%1.0000001.0000001.0000000.975230
75%1.0000001.0000001.0000000.994168
max1.0000001.0000001.0000001.000000
\n", - "
" - ], - "text/plain": [ - " context_recall context_precision faithfulness answer_relevancy\n", - "count 15.000000 15.000000 15.000000 15.000000\n", - "mean 0.966667 0.925926 0.781229 0.938581\n", - "std 0.129099 0.145352 0.362666 0.085342\n", - "min 0.500000 0.500000 0.000000 0.736997\n", - "25% 1.000000 0.916667 0.652778 0.926596\n", - "50% 1.000000 1.000000 1.000000 0.975230\n", - "75% 1.000000 1.000000 1.000000 0.994168\n", - "max 1.000000 1.000000 1.000000 1.000000" - ] - }, - "execution_count": 121, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "metrics.describe()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Analysis\n", - "Overall our RAG app showed pretty good performance. All values indicated above 0.6, which from anecdotal experience, is a reasonable lower-bound for performance however obviously higher values are more ideal. It is worth noting that generation metrics can be a bit more hazy in terms of ideal ranges since the LLM evaluation cannot yet capture the way a response feels to a user. For these metrics it's important to make sure they are not severely low however blind optimization to the top can result in a very uncreative chat experience which may or may not be ideal for the intended use case.\n", - "\n", - "## Review\n", - "\n", - "- we initialized our RAG app with data from a 10k document\n", - "- generated a testset to evaluate \n", - "- calculated both retrieval and generation metrics\n", - "\n", - "## Next steps\n", - "\n", - "Now that we know how to measure our system we can quickly and easily experiment with different techniques with a baseline in place to improve our systems.\n", - "\n", - "## Cleanup" - ] - }, - { - "cell_type": "code", - "execution_count": 122, - "metadata": {}, - "outputs": [], - "source": [ - "from redisvl.index import SearchIndex\n", - "\n", - "idx = SearchIndex.from_existing(\n", - " index_name,\n", - " redis_url=REDIS_URL\n", - ")\n", - "\n", - "idx.delete()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.9" - } - }, - "nbformat": 4, - "nbformat_minor": 2 + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "![Redis](https://redis.io/wp-content/uploads/2024/04/Logotype.svg?auto=webp&quality=85,75&width=120)\n", + "# Evaluating RAG\n", + "\n", + "This notebook uses the [ragas library](https://docs.ragas.io/en/stable/getstarted/index.html) and [Redis](https://redis.com) to evaluate the performance of sample RAG application. Also see the original [source paper](https://arxiv.org/pdf/2309.15217) to build a more detailed understanding.\n", + "\n", + "## Let's Begin!\n", + "\"Open" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To start, we need a RAG app to evaluate. Let's create one using LangChain and connect it with Redis as the vector DB.\n", + "\n", + "## Init redis, data prep, and populating the vector DB" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.2\u001b[0m\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "%pip install -q redis \"unstructured[pdf]\" sentence-transformers langchain \"langchain-redis>=0.2.0\" langchain-huggingface langchain-openai ragas datasets" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Running Redis in Colab\n", + "Use the shell script below to download, extract, and install [Redis Stack](https://redis.io/docs/getting-started/install-stack/) directly from the Redis package archive." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# NBVAL_SKIP\n", + "%%sh\n", + "curl -fsSL https://packages.redis.io/gpg | sudo gpg --dearmor -o /usr/share/keyrings/redis-archive-keyring.gpg\n", + "echo \"deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb $(lsb_release -cs) main\" | sudo tee /etc/apt/sources.list.d/redis.list\n", + "sudo apt-get update > /dev/null 2>&1\n", + "sudo apt-get install redis-stack-server > /dev/null 2>&1\n", + "redis-stack-server --daemonize yes" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### For Alternative Environments\n", + "There are many ways to get the necessary redis-stack instance running\n", + "1. On cloud, deploy a [FREE instance of Redis in the cloud](https://redis.com/try-free/). Or, if you have your\n", + "own version of Redis Enterprise running, that works too!\n", + "2. Per OS, [see the docs](https://redis.io/docs/latest/operate/oss_and_stack/install/install-stack/)\n", + "3. With docker: `docker run -d --name redis-stack-server -p 6379:6379 redis/redis-stack-server:latest`" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import warnings\n", + "warnings.filterwarnings('ignore')\n", + "\n", + "# Replace values below with your own if using Redis Cloud instance\n", + "REDIS_HOST = os.getenv(\"REDIS_HOST\", \"localhost\") # ex: \"redis-18374.c253.us-central1-1.gce.cloud.redislabs.com\"\n", + "REDIS_PORT = os.getenv(\"REDIS_PORT\", \"6379\") # ex: 18374\n", + "REDIS_PASSWORD = os.getenv(\"REDIS_PASSWORD\", \"\") # ex: \"1TNxTEdYRDgIDKM2gDfasupCADXXXX\"\n", + "\n", + "# If SSL is enabled on the endpoint, use rediss:// as the URL prefix\n", + "REDIS_URL = f\"redis://:{REDIS_PASSWORD}@{REDIS_HOST}:{REDIS_PORT}\"" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from langchain.text_splitter import RecursiveCharacterTextSplitter\n", + "from langchain_community.document_loaders import PyPDFLoader\n", + "\n", + "CHUNK_SIZE = 2500\n", + "CHUNK_OVERLAP = 0\n", + "\n", + "# pdf to load\n", + "path = 'resources/nke-10k-2023.pdf'\n", + "assert os.path.exists(path), f\"File not found: {path}\"\n", + "\n", + "# load and split\n", + "loader = PyPDFLoader(path)\n", + "pages = loader.load()\n", + "text_splitter = RecursiveCharacterTextSplitter(chunk_size=CHUNK_SIZE, chunk_overlap=CHUNK_OVERLAP)\n", + "chunks = text_splitter.split_documents(pages)\n", + "\n", + "print(\"Done preprocessing. Created\", len(chunks), \"chunks of the original pdf\", path)" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Document(metadata={'source': 'resources/nke-10k-2023.pdf'}, page_content=\"Table of ContentsUNITED STATESSECURITIES AND EXCHANGE COMMISSIONWashington, D.C. 20549FORM 10-K(Mark One)☑ ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(D) OF THE SECURITIES EXCHANGE ACT OF 1934FOR THE FISCAL YEAR ENDED MAY 31, 2023OR☐ TRANSITION REPORT PURSUANT TO SECTION 13 OR 15(D) OF THE SECURITIES EXCHANGE ACT OF 1934FOR THE TRANSITION PERIOD FROM TO .Commission File No. 1-10635\\n\\nAs of November 30, 2022, the aggregate market values of the Registrant's Common Stock held by non-affiliates were:Class A$7,831,564,572 Class B136,467,702,472 $144,299,267,044\\n\\nNIKE, Inc.(Exact name of Registrant as specified in its charter)Oregon93-0584541(State or other jurisdiction of incorporation)(IRS Employer Identification No.)One Bowerman Drive, Beaverton, Oregon 97005-6453(Address of principal executive offices and zip code)(503) 671-6453(Registrant's telephone number, including area code)SECURITIES REGISTERED PURSUANT TO SECTION 12(B) OF THE ACT:Class B Common StockNKENew York Stock Exchange(Title of each class)(Trading symbol)(Name of each exchange on which registered)SECURITIES REGISTERED PURSUANT TO SECTION 12(G) OF THE ACT:NONE\")" + ] + }, + "execution_count": 95, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "chunks[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 96, + "metadata": {}, + "outputs": [], + "source": [ + "from langchain_huggingface import HuggingFaceEmbeddings\n", + "\n", + "embeddings = HuggingFaceEmbeddings(model_name=\"sentence-transformers/all-MiniLM-L6-v2\")" + ] + }, + { + "cell_type": "code", + "execution_count": 97, + "metadata": {}, + "outputs": [], + "source": [ + "from langchain_redis import RedisVectorStore\n", + "\n", + "# set the index name for this example\n", + "index_name = \"ragas_ex\"\n", + "\n", + "# construct the vector store class from texts and metadata\n", + "rds = RedisVectorStore.from_documents(\n", + " chunks,\n", + " embeddings,\n", + " index_name=index_name,\n", + " redis_url=REDIS_URL,\n", + " metadata_schema=[\n", + " {\n", + " \"name\": \"source\",\n", + " \"type\": \"text\"\n", + " },\n", + " ]\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Test the vector store" + ] + }, + { + "cell_type": "code", + "execution_count": 98, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'As discussed in Note 15 — Operating Segments and Related Information in the accompanying Notes to the Consolidated Financial Statements, our operating segments are evidence of the structure of the Company\\'s internal organization. The NIKE Brand segments are defined by geographic regions for operations participating in NIKE Brand sales activity.\\n\\nThe breakdown of Revenues is as follows:\\n\\n(Dollars in millions)\\n\\nFISCAL 2023 FISCAL 2022\\n\\n% CHANGE\\n\\n% CHANGE EXCLUDING CURRENCY (1) CHANGES FISCAL 2021\\n\\n% CHANGE\\n\\nNorth America Europe, Middle East & Africa Greater China\\n\\n$\\n\\n21,608 $ 13,418 7,248\\n\\n18,353 12,479 7,547\\n\\n18 % 8 % -4 %\\n\\n18 % $ 21 % 4 %\\n\\n17,179 11,456 8,290\\n\\n7 % 9 % -9 %\\n\\nAsia Pacific & Latin America Global Brand Divisions\\n\\n(3)\\n\\n(2)\\n\\n6,431 58\\n\\n5,955 102\\n\\n8 % -43 %\\n\\n17 % -43 %\\n\\n5,343 25\\n\\n11 % 308 %\\n\\nTOTAL NIKE BRAND Converse\\n\\n$\\n\\n48,763 $ 2,427\\n\\n44,436 2,346\\n\\n10 % 3 %\\n\\n16 % $ 8 %\\n\\n42,293 2,205\\n\\n5 % 6 %\\n\\n(4)\\n\\nCorporate TOTAL NIKE, INC. REVENUES\\n\\n$\\n\\n27\\n\\n51,217 $\\n\\n(72) 46,710\\n\\n— 10 %\\n\\n— 16 % $\\n\\n40 44,538\\n\\n— 5 %\\n\\n(1) The percent change excluding currency changes represents a non-GAAP financial measure. For further information, see \"Use of Non-GAAP Financial Measures\".\\n\\n(2) For additional information on the transition of our NIKE Brand businesses within our CASA territory to a third-party distributor, see Note 18 — Acquisitions and Divestitures of the Notes to Consolidated\\n\\nFinancial Statements contained in Item 8 of this Annual Report.\\n\\n(3) Global Brand Divisions revenues include NIKE Brand licensing and other miscellaneous revenues that are not part of a geographic operating segment.\\n\\n(4) Corporate revenues primarily consist of foreign currency hedge gains and losses related to revenues generated by entities within the NIKE Brand geographic operating segments and Converse, but\\n\\nmanaged through our central foreign exchange risk management program.\\n\\nThe primary financial measure used by the Company to evaluate performance is Earnings Before Interest and Taxes (\"EBIT\"). As discussed in Note 15 — Operating Segments and Related Information in the accompanying Notes to the Consolidated Financial Statements, certain corporate costs are not included in EBIT.\\n\\nThe breakdown of EBIT is as follows:\\n\\n(Dollars in millions)\\n\\nFISCAL 2023\\n\\nFISCAL 2022\\n\\n% CHANGE\\n\\nFISCAL 2021\\n\\nNorth America Europe, Middle East & Africa Greater China\\n\\n$\\n\\n5,454 3,531 2,283\\n\\n$\\n\\n5,114 3,293 2,365\\n\\n7 % $ 7 % -3 %\\n\\n5,089 2,435 3,243\\n\\nAsia Pacific & Latin America Global Brand Divisions (1)'" + ] + }, + "execution_count": 98, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rds.similarity_search(\"What was nike's revenue last year?\")[0].page_content" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setup RAG\n", + "\n", + "Now that the vector db is populated let's initialize our RAG app." + ] + }, + { + "cell_type": "code", + "execution_count": 99, + "metadata": {}, + "outputs": [], + "source": [ + "import getpass\n", + "from langchain_openai import ChatOpenAI\n", + "\n", + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OPENAI_API_KEY\")\n", + "\n", + "llm = ChatOpenAI(\n", + " openai_api_key=os.environ[\"OPENAI_API_KEY\"],\n", + " model=\"gpt-3.5-turbo-16k\",\n", + " max_tokens=None\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 108, + "metadata": {}, + "outputs": [], + "source": [ + "from langchain_core.prompts import ChatPromptTemplate\n", + "\n", + "system_prompt = \"\"\"\n", + " Use the following pieces of context from financial 10k filings data to answer the user question at the end. \n", + " If you don't know the answer, say that you don't know, don't try to make up an answer.\n", + "\n", + " Context:\n", + " ---------\n", + " {context}\n", + "\"\"\"\n", + "\n", + "def format_docs(docs):\n", + " return \"\\n\\n\".join(doc.page_content for doc in docs)\n", + "\n", + "prompt = ChatPromptTemplate.from_messages(\n", + " [\n", + " (\"system\", system_prompt),\n", + " (\"human\", \"{input}\")\n", + " ]\n", + ")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Test it out" + ] + }, + { + "cell_type": "code", + "execution_count": 109, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'input': \"What was nike's revenue last year?\",\n", + " 'context': [Document(metadata={'source': 'resources/nke-10k-2023.pdf'}, page_content='As discussed in Note 15 — Operating Segments and Related Information in the accompanying Notes to the Consolidated Financial Statements, our operating segments are evidence of the structure of the Company\\'s internal organization. The NIKE Brand segments are defined by geographic regions for operations participating in NIKE Brand sales activity.\\n\\nThe breakdown of Revenues is as follows:\\n\\n(Dollars in millions)\\n\\nFISCAL 2023 FISCAL 2022\\n\\n% CHANGE\\n\\n% CHANGE EXCLUDING CURRENCY (1) CHANGES FISCAL 2021\\n\\n% CHANGE\\n\\nNorth America Europe, Middle East & Africa Greater China\\n\\n$\\n\\n21,608 $ 13,418 7,248\\n\\n18,353 12,479 7,547\\n\\n18 % 8 % -4 %\\n\\n18 % $ 21 % 4 %\\n\\n17,179 11,456 8,290\\n\\n7 % 9 % -9 %\\n\\nAsia Pacific & Latin America Global Brand Divisions\\n\\n(3)\\n\\n(2)\\n\\n6,431 58\\n\\n5,955 102\\n\\n8 % -43 %\\n\\n17 % -43 %\\n\\n5,343 25\\n\\n11 % 308 %\\n\\nTOTAL NIKE BRAND Converse\\n\\n$\\n\\n48,763 $ 2,427\\n\\n44,436 2,346\\n\\n10 % 3 %\\n\\n16 % $ 8 %\\n\\n42,293 2,205\\n\\n5 % 6 %\\n\\n(4)\\n\\nCorporate TOTAL NIKE, INC. REVENUES\\n\\n$\\n\\n27\\n\\n51,217 $\\n\\n(72) 46,710\\n\\n— 10 %\\n\\n— 16 % $\\n\\n40 44,538\\n\\n— 5 %\\n\\n(1) The percent change excluding currency changes represents a non-GAAP financial measure. For further information, see \"Use of Non-GAAP Financial Measures\".\\n\\n(2) For additional information on the transition of our NIKE Brand businesses within our CASA territory to a third-party distributor, see Note 18 — Acquisitions and Divestitures of the Notes to Consolidated\\n\\nFinancial Statements contained in Item 8 of this Annual Report.\\n\\n(3) Global Brand Divisions revenues include NIKE Brand licensing and other miscellaneous revenues that are not part of a geographic operating segment.\\n\\n(4) Corporate revenues primarily consist of foreign currency hedge gains and losses related to revenues generated by entities within the NIKE Brand geographic operating segments and Converse, but\\n\\nmanaged through our central foreign exchange risk management program.\\n\\nThe primary financial measure used by the Company to evaluate performance is Earnings Before Interest and Taxes (\"EBIT\"). As discussed in Note 15 — Operating Segments and Related Information in the accompanying Notes to the Consolidated Financial Statements, certain corporate costs are not included in EBIT.\\n\\nThe breakdown of EBIT is as follows:\\n\\n(Dollars in millions)\\n\\nFISCAL 2023\\n\\nFISCAL 2022\\n\\n% CHANGE\\n\\nFISCAL 2021\\n\\nNorth America Europe, Middle East & Africa Greater China\\n\\n$\\n\\n5,454 3,531 2,283\\n\\n$\\n\\n5,114 3,293 2,365\\n\\n7 % $ 7 % -3 %\\n\\n5,089 2,435 3,243\\n\\nAsia Pacific & Latin America Global Brand Divisions (1)'),\n", + " Document(metadata={'source': 'resources/nke-10k-2023.pdf'}, page_content=\"NIKE, INC. CONSOLIDATED STATEMENTS OF INCOME\\n\\n(In millions, except per share data)\\n\\nRevenues Cost of sales\\n\\nGross profit\\n\\nDemand creation expense Operating overhead expense\\n\\nTotal selling and administrative expense\\n\\nInterest expense (income), net\\n\\nOther (income) expense, net Income before income taxes\\n\\nIncome tax expense NET INCOME\\n\\nEarnings per common share:\\n\\nBasic Diluted\\n\\nWeighted average common shares outstanding:\\n\\nBasic Diluted\\n\\nThe accompanying Notes to the Consolidated Financial Statements are an integral part of this statement.\\n\\n$\\n\\n$\\n\\n$ $\\n\\nYEAR ENDED MAY 31,\\n\\n2023\\n\\n2022\\n\\n2021\\n\\n51,217 $ 28,925\\n\\n46,710 $ 25,231\\n\\n44,538 24,576\\n\\n22,292 4,060 12,317\\n\\n21,479 3,850 10,954\\n\\n19,962 3,114 9,911\\n\\n16,377 (6)\\n\\n14,804 205\\n\\n13,025 262\\n\\n(280) 6,201\\n\\n(181) 6,651\\n\\n14 6,661\\n\\n1,131 5,070 $\\n\\n605 6,046 $\\n\\n934 5,727\\n\\n3.27 $ 3.23 $\\n\\n3.83 $ 3.75 $\\n\\n3.64 3.56\\n\\n1,551.6 1,569.8\\n\\n1,578.8 1,610.8\\n\\n1,573.0 1,609.4\\n\\n2023 FORM 10-K 55\\n\\nTable of Contents\\n\\nNIKE, INC. CONSOLIDATED STATEMENTS OF COMPREHENSIVE INCOME\\n\\nYEAR ENDED MAY 31,\\n\\n(Dollars in millions)\\n\\n2023\\n\\n2022\\n\\nNet income Other comprehensive income (loss), net of tax:\\n\\n$\\n\\n5,070 $\\n\\n6,046 $\\n\\nChange in net foreign currency translation adjustment\\n\\n267\\n\\n(522)\\n\\nChange in net gains (losses) on cash flow hedges Change in net gains (losses) on other\\n\\n(348) (6)\\n\\n1,214 6\\n\\nTotal other comprehensive income (loss), net of tax TOTAL COMPREHENSIVE INCOME\\n\\n$\\n\\n(87) 4,983 $\\n\\n698 6,744 $\\n\\nThe accompanying Notes to the Consolidated Financial Statements are an integral part of this statement.\\n\\n2023 FORM 10-K 56\\n\\n2021\\n\\n5,727\\n\\n496\\n\\n(825) 5\\n\\n(324) 5,403\\n\\nTable of Contents\\n\\nNIKE, INC. CONSOLIDATED BALANCE SHEETS\\n\\n(In millions)\\n\\nASSETS\\n\\nCurrent assets:\\n\\nCash and equivalents Short-term investments\\n\\nAccounts receivable, net Inventories Prepaid expenses and other current assets\\n\\nTotal current assets\\n\\nProperty, plant and equipment, net\\n\\nOperating lease right-of-use assets, net Identifiable intangible assets, net Goodwill\\n\\nDeferred income taxes and other assets\\n\\nTOTAL ASSETS\\n\\nLIABILITIES AND SHAREHOLDERS' EQUITY Current liabilities:\\n\\nCurrent portion of long-term debt Notes payable Accounts payable\\n\\nCurrent portion of operating lease liabilities Accrued liabilities Income taxes payable\\n\\nTotal current liabilities\\n\\nLong-term debt\\n\\nOperating lease liabilities Deferred income taxes and other liabilities Commitments and contingencies (Note 16)\\n\\nRedeemable preferred stock Shareholders' equity: Common stock at stated value:\"),\n", + " Document(metadata={'source': 'resources/nke-10k-2023.pdf'}, page_content=\"Tax (expense) benefit Gain (loss) net of tax\\n\\n5 (14)\\n\\n(9) 22\\n\\nTotal net gain (loss) reclassified for the period\\n\\n$\\n\\n463 $\\n\\n30\\n\\n2023 FORM 10-K 82\\n\\nTable of Contents\\n\\nNOTE 14 — REVENUES\\n\\nDISAGGREGATION OF REVENUES The following tables present the Company's Revenues disaggregated by reportable operating segment, major product line and distribution channel:\\n\\n(Dollars in millions)\\n\\nNORTH AMERICA\\n\\nEUROPE, MIDDLE EAST & AFRICA\\n\\nGREATER CHINA\\n\\nYEAR ENDED MAY 31, 2023 ASIA PACIFIC & LATIN (1)\\n\\nGLOBAL BRAND DIVISIONS\\n\\nTOTAL NIKE\\n\\nAMERICA\\n\\nBRAND CONVERSE CORPORATE\\n\\nTOTAL NIKE, INC.\\n\\nRevenues by: Footwear\\n\\n$\\n\\n14,897 $\\n\\n8,260 $\\n\\n5,435 $\\n\\n4,543 $\\n\\n— $\\n\\n33,135 $\\n\\n2,155 $\\n\\n— $\\n\\n35,290\\n\\nApparel Equipment Other\\n\\n5,947 764 —\\n\\n4,566 592 —\\n\\n1,666 147 —\\n\\n1,664 224 —\\n\\n— — 58\\n\\n13,843 1,727 58\\n\\n90 28 154\\n\\n— — 27\\n\\n13,933 1,755 239\\n\\nTOTAL REVENUES\\n\\n$\\n\\n21,608 $\\n\\n13,418 $\\n\\n7,248 $\\n\\n6,431 $\\n\\n58 $\\n\\n48,763 $\\n\\n2,427 $\\n\\n27 $\\n\\n51,217\\n\\nRevenues by:\\n\\nSales to Wholesale Customers Sales through Direct to Consumer\\n\\n$\\n\\n11,273 $ 10,335\\n\\n8,522 $ 4,896\\n\\n3,866 $ 3,382\\n\\n3,736 $ 2,695\\n\\n— $ —\\n\\n27,397 $ 21,308\\n\\n1,299 $ 974\\n\\n— $ —\\n\\n28,696 22,282\\n\\nOther\\n\\nTOTAL REVENUES\\n\\n$\\n\\n—\\n\\n21,608 $\\n\\n—\\n\\n13,418 $\\n\\n— 7,248 $\\n\\n— 6,431 $\\n\\n58 58 $\\n\\n58\\n\\n48,763 $\\n\\n154 2,427 $\\n\\n27 27 $\\n\\n239 51,217\\n\\n(1) Refer to Note 18 — Acquisitions and Divestitures for additional information on the transition of the Company's NIKE Brand businesses in its CASA territory to third-party distributors.\\n\\nYEAR ENDED MAY 31, 2022\\n\\n(Dollars in millions)\\n\\nNORTH AMERICA\\n\\nEUROPE, MIDDLE EAST & AFRICA\\n\\nGREATER CHINA\\n\\nASIA PACIFIC & LATIN AMERICA\\n\\nGLOBAL BRAND DIVISIONS\\n\\nTOTAL NIKE\\n\\nBRAND CONVERSE CORPORATE\\n\\nTOTAL NIKE, INC.\\n\\nRevenues by: Footwear Apparel\\n\\n$\\n\\n12,228 $ 5,492\\n\\n7,388 $ 4,527\\n\\n5,416 $ 1,938\\n\\n4,111 $ 1,610\\n\\n— $ —\\n\\n29,143 $ 13,567\\n\\n2,094 $ 103\\n\\n— $ —\\n\\n31,237 13,670\\n\\nEquipment Other\\n\\n633 —\\n\\n564 —\\n\\n193 —\\n\\n234 —\\n\\n— 102\\n\\n1,624 102\\n\\n26 123\\n\\n— (72)\\n\\n1,650 153\\n\\nTOTAL REVENUES Revenues by:\\n\\n$\\n\\n18,353 $\\n\\n12,479 $\\n\\n7,547 $\\n\\n5,955 $\\n\\n102 $\\n\\n44,436 $\\n\\n2,346 $\\n\\n(72) $\\n\\n46,710\\n\\nSales to Wholesale Customers Sales through Direct to Consumer Other\\n\\n$\\n\\n9,621 $ 8,732 —\\n\\n8,377 $ 4,102 —\\n\\n4,081 $ 3,466 —\\n\\n3,529 $ 2,426 —\\n\\n— $ — 102\\n\\n25,608 $ 18,726 102\\n\\n1,292 $ 931 123\\n\\n— $ — (72)\\n\\n26,900 19,657 153\\n\\nTOTAL REVENUES\\n\\n$\\n\\n18,353 $\\n\\n12,479 $\\n\\n7,547 $\\n\\n5,955 $\\n\\n102 $\\n\\n44,436 $\\n\\n2,346 $\\n\\n(72) $\\n\\n46,710\\n\\n2023 FORM 10-K 83\\n\\nTable of Contents\\n\\nYEAR ENDED MAY 31, 2021\\n\\n(Dollars in millions)\\n\\nNORTH AMERICA\\n\\nEUROPE, MIDDLE EAST & AFRICA\\n\\nGREATER CHINA\"),\n", + " Document(metadata={'source': 'resources/nke-10k-2023.pdf'}, page_content=\"ASIA PACIFIC & LATIN AMERICA\\n\\n(1)\\n\\nGLOBAL BRAND DIVISIONS\\n\\nTOTAL NIKE BRAND\\n\\nCONVERSE CORPORATE\\n\\nTOTAL NIKE, INC.\\n\\nRevenues by:\\n\\nFootwear Apparel Equipment\\n\\n$\\n\\n11,644 $ 5,028 507\\n\\n6,970 $ 3,996 490\\n\\n5,748 $ 2,347 195\\n\\n3,659 $ 1,494 190\\n\\n— $ — —\\n\\n28,021 $ 12,865 1,382\\n\\n1,986 $ 104 29\\n\\n— $ — —\\n\\n30,007 12,969 1,411\\n\\nOther\\n\\nTOTAL REVENUES\\n\\n$\\n\\n—\\n\\n17,179 $\\n\\n—\\n\\n11,456 $\\n\\n— 8,290 $\\n\\n— 5,343 $\\n\\n25 25 $\\n\\n25\\n\\n42,293 $\\n\\n86 2,205 $\\n\\n40 40 $\\n\\n151 44,538\\n\\nRevenues by:\\n\\nSales to Wholesale Customers $\\n\\n10,186 $\\n\\n7,812 $\\n\\n4,513 $\\n\\n3,387 $\\n\\n— $\\n\\n25,898 $\\n\\n1,353 $\\n\\n— $\\n\\n27,251\\n\\nSales through Direct to Consumer Other\\n\\n6,993 —\\n\\n3,644 —\\n\\n3,777 —\\n\\n1,956 —\\n\\n— 25\\n\\n16,370 25\\n\\n766 86\\n\\n— 40\\n\\n17,136 151\\n\\nTOTAL REVENUES\\n\\n$\\n\\n17,179 $\\n\\n11,456 $\\n\\n8,290 $\\n\\n5,343 $\\n\\n25 $\\n\\n42,293 $\\n\\n2,205 $\\n\\n40 $\\n\\n44,538\\n\\n(1) Refer to Note 18 — Acquisitions and Divestitures for additional information on the transition of the Company's NIKE Brand business in Brazil to a third-party distributor.\\n\\nFor the fiscal years ended May 31, 2023, 2022 and 2021, Global Brand Divisions revenues include NIKE Brand licensing and other miscellaneous revenues that are not part of a geographic operating segment. Converse Other revenues were primarily attributable to licensing businesses. Corporate revenues primarily consisted of foreign currency hedge gains and losses related to revenues generated by entities within the NIKE Brand geographic operating segments and Converse but managed through the Company's central foreign exchange risk management program.\\n\\nAs of May 31, 2023 and 2022, the Company did not have any contract assets and had an immaterial amount of contract liabilities recorded in Accrued liabilities on the Consolidated Balance Sheets.\\n\\nSALES-RELATED RESERVES\\n\\nAs of May 31, 2023 and 2022, the Company's sales-related reserve balance, which includes returns, post-invoice sales discounts and miscellaneous claims, was $994 million and $1,015 million, respectively, recorded in Accrued liabilities on the Consolidated Balance Sheets. The estimated cost of inventory for expected product returns was $226 million and $194 million as of May 31, 2023 and 2022, respectively, and was recorded in Prepaid expenses and other current assets on the Consolidated Balance Sheets.\\n\\nNOTE 15 — OPERATING SEGMENTS AND RELATED INFORMATION\")],\n", + " 'answer': \"Nike's revenue last year was $51,217 million.\"}" + ] + }, + "execution_count": 109, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from langchain.chains import create_retrieval_chain\n", + "from langchain.chains.combine_documents import create_stuff_documents_chain\n", + "\n", + "question_answer_chain = create_stuff_documents_chain(llm, prompt)\n", + "rag_chain = create_retrieval_chain(rds.as_retriever(), question_answer_chain)\n", + "\n", + "rag_chain.invoke({\"input\": \"What was nike's revenue last year?\"})" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## (Optional) Creating a test set\n", + "\n", + "Now that our setup is complete and we have our RAG app to evaluate we need a test set to evaluate against. The ragas library provides a helpful class for generating a synthetic test set given our data as input that we will use here. The output of this generation is a set of `questions`, `contexts`, and `ground_truth`. \n", + "\n", + "The questions are generated by an LLM based on slices of context from the provided doc and the ground_truth is determined via a critic LLM. Note there is nothing special about this data itself and you can provide your own `questions` and `ground_truth` for evaluation purposes. When starting a project however, there is often a lack of quality human labeled data to be used for evaluation and a synthetic dataset is a valuable place to start if pre live user/process data (which should be incorporated as an ultimate goal).\n", + "\n", + "For more detail see [the docs](https://docs.ragas.io/en/stable/concepts/testset_generation.html)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "# NBVAL_SKIP\n", + "# source: https://docs.ragas.io/en/latest/getstarted/testset_generation.html\n", + "from ragas.testset.generator import TestsetGenerator\n", + "from ragas.testset.evolutions import simple, reasoning, multi_context\n", + "from ragas.run_config import RunConfig\n", + "from langchain_openai import ChatOpenAI, OpenAIEmbeddings\n", + "\n", + "run_config = RunConfig(\n", + " timeout=200,\n", + " max_wait=160,\n", + " max_retries=3,\n", + ")\n", + "\n", + "# generator with openai models\n", + "generator_llm = ChatOpenAI(model=\"gpt-3.5-turbo-16k\")\n", + "critic_llm = ChatOpenAI(model=\"gpt-4o-mini\")\n", + "embeddings = OpenAIEmbeddings()\n", + "\n", + "generator = TestsetGenerator.from_langchain(\n", + " generator_llm,\n", + " critic_llm,\n", + " embeddings,\n", + " run_config=run_config,\n", + ")\n", + "\n", + "testset = generator.generate_with_langchain_docs(\n", + " chunks,\n", + " test_size=10,\n", + " distributions={\n", + " simple: 0.5,\n", + " reasoning: 0.25,\n", + " multi_context: 0.25\n", + " },\n", + " run_config=run_config\n", + ")\n", + "\n", + "# save to csv since this can be a time consuming process\n", + "testset.to_pandas().to_csv(\"resources/new_testset.csv\", index=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Evaluation helper functions\n", + "\n", + "The following code takes a RetrievalQA chain, testset dataframe, and the metrics to be evaluated and returns a dataframe including the metrics calculated." + ] + }, + { + "cell_type": "code", + "execution_count": 110, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "from datasets import Dataset\n", + "from ragas import evaluate\n", + "from ragas.run_config import RunConfig\n", + "\n", + "def parse_contexts(source_docs):\n", + " return [doc.page_content for doc in source_docs]\n", + "\n", + "def create_evaluation_dataset(chain, testset):\n", + " res_set = {\n", + " \"question\": [],\n", + " \"answer\": [],\n", + " \"contexts\": [],\n", + " \"ground_truth\": []\n", + " }\n", + "\n", + " for _, row in testset.iterrows():\n", + " result = chain.invoke({\"input\": row[\"question\"]})\n", + "\n", + " res_set[\"question\"].append(row[\"question\"])\n", + " res_set[\"answer\"].append(result[\"answer\"])\n", + "\n", + " contexts = parse_contexts(result[\"context\"])\n", + "\n", + " if not len(contexts):\n", + " print(f\"no contexts found for question: {row['question']}\")\n", + " res_set[\"contexts\"].append(contexts)\n", + " res_set[\"ground_truth\"].append(str(row[\"ground_truth\"]))\n", + "\n", + " return Dataset.from_dict(res_set)\n", + "\n", + "def evaluate_dataset(eval_dataset, metrics, llm, embeddings):\n", + "\n", + " run_config = RunConfig(max_retries=1) # see ragas docs for more run_config options\n", + "\n", + " eval_result = evaluate(\n", + " eval_dataset,\n", + " metrics=metrics,\n", + " run_config=run_config,\n", + " llm=llm,\n", + " embeddings=embeddings\n", + " )\n", + "\n", + " eval_df = eval_result.to_pandas()\n", + " return eval_df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Create the evaluation data\n", + "\n", + "Input: chain to be evaluated and a pregenerated test set
\n", + "Output: dataset formatted for use with ragas evaluation function" + ] + }, + { + "cell_type": "code", + "execution_count": 111, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
questioncontextsground_truthevolution_typemetadataepisode_done
0What are short-term investments and how are th...[\"CASH AND EQUIVALENTS Cash and equivalents re...Short-term investments are highly liquid inves...simple[{'source': 'resources/nke-10k-2023.pdf'}]True
1What are some of the risks and uncertainties a...['Our NIKE Direct operations, including our re...Many factors unique to retail operations, some...simple[{'source': 'resources/nke-10k-2023.pdf'}]True
2What is NIKE's policy regarding securities ana...[\"Investors should also be aware that while NI...NIKE's policy is to not disclose any material ...simple[{'source': 'resources/nke-10k-2023.pdf'}]True
3What are the revenues for the Footwear and App...['(Dollars in millions, except per share data)...The revenues for the Footwear and Apparel cate...simple[{'source': 'resources/nke-10k-2023.pdf'}]True
4How do master netting arrangements impact the ...[\"The Company records the assets and liabiliti...The Company records the assets and liabilities...simple[{'source': 'resources/nke-10k-2023.pdf'}]True
\n", + "
" + ], + "text/plain": [ + " question \\\n", + "0 What are short-term investments and how are th... \n", + "1 What are some of the risks and uncertainties a... \n", + "2 What is NIKE's policy regarding securities ana... \n", + "3 What are the revenues for the Footwear and App... \n", + "4 How do master netting arrangements impact the ... \n", + "\n", + " contexts \\\n", + "0 [\"CASH AND EQUIVALENTS Cash and equivalents re... \n", + "1 ['Our NIKE Direct operations, including our re... \n", + "2 [\"Investors should also be aware that while NI... \n", + "3 ['(Dollars in millions, except per share data)... \n", + "4 [\"The Company records the assets and liabiliti... \n", + "\n", + " ground_truth evolution_type \\\n", + "0 Short-term investments are highly liquid inves... simple \n", + "1 Many factors unique to retail operations, some... simple \n", + "2 NIKE's policy is to not disclose any material ... simple \n", + "3 The revenues for the Footwear and Apparel cate... simple \n", + "4 The Company records the assets and liabilities... simple \n", + "\n", + " metadata episode_done \n", + "0 [{'source': 'resources/nke-10k-2023.pdf'}] True \n", + "1 [{'source': 'resources/nke-10k-2023.pdf'}] True \n", + "2 [{'source': 'resources/nke-10k-2023.pdf'}] True \n", + "3 [{'source': 'resources/nke-10k-2023.pdf'}] True \n", + "4 [{'source': 'resources/nke-10k-2023.pdf'}] True " + ] + }, + "execution_count": 111, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "testset_df = pd.read_csv(\"resources/testset_15.csv\")\n", + "testset_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 112, + "metadata": {}, + "outputs": [], + "source": [ + "eval_dataset = create_evaluation_dataset(rag_chain, testset_df)\n", + "eval_dataset.to_pandas().shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Evaluate generation metrics\n", + "Generation metrics quantify how well the RAG app did creating answers to the provided questions (i.e. the G in **R**etrival **A**ugments **G**eneration). We will calculate the generation metrics **faithfulness** and **answer relevancy** for this example.\n", + "\n", + "The ragas libary conveniently abstracts the calculation of these metrics so we don't have to write redundant code but please review the following definitions in order to build intuition around what these metrics actually measure.\n", + "\n", + "Note: the following examples are paraphrased from the [ragas docs](https://docs.ragas.io/en/stable/concepts/metrics/index.html)\n", + "\n", + "------\n", + "\n", + "### Faithfulness\n", + "\n", + "An answer to a question can be said to be \"faithful\" if the **claims** that are made in the answer **can be inferred** from the **context**.\n", + "\n", + "#### Mathematically:\n", + "\n", + "$$\n", + "Faithfullness\\ score = \\frac{Number\\ of\\ claims\\ in\\ the\\ generated\\ answer\\ that\\ can\\ be\\ inferred\\ from\\ the\\ given\\ context}{Total\\ number\\ of\\ claim\\ in\\ the\\ generated\\ answer}\n", + "$$\n", + "\n", + "#### Example process:\n", + "\n", + "> Question: Where and when was Einstein born?\n", + "> \n", + "> Context: Albert Einstein (born 14 March 1879) was a German-born theoretical physicist, widely held to be one of the greatest and most influential scientists of all time\n", + ">\n", + "> answer: Einstein was born in Germany on 20th March 1879.\n", + "\n", + "Step 1: Use LLM to break generated answer into individual statements.\n", + "- “Einstein was born in Germany.”\n", + "- “Einstein was born on 20th March 1879.”\n", + "\n", + "Step 2: For each statement use LLM to verify if it can be inferred from the context.\n", + "- “Einstein was born in Germany.” => yes. \n", + "- “Einstein was born on 20th March 1879.” => no.\n", + "\n", + "Step 3: plug into formula\n", + "\n", + "Number of claims inferred from context = 1\n", + "Total number of claims = 2\n", + "Faithfulness = 1/2\n", + "\n", + "### Answer Relevance\n", + "\n", + "An answer can be said to be relevant if it directly addresses the question (intuitively).\n", + "\n", + "#### Example process:\n", + "\n", + "1. Use an LLM to generate \"hypothetical\" questions to a given answer with the following prompt:\n", + "\n", + " > Generate a question for the given answer.\n", + " > answer: [answer]\n", + "\n", + "2. Embed the generated \"hypothetical\" questions as vectors.\n", + "3. Calculate the cosine similarity of the hypothetical questions and the original question, sum those similarities, and divide by n.\n", + "\n", + "With data:\n", + "\n", + "> Question: Where is France and what is it’s capital?\n", + "> \n", + "> answer: France is in western Europe.\n", + "\n", + "Step 1 - use LLM to create 'n' variants of question from the generated answer.\n", + "\n", + "- “In which part of Europe is France located?”\n", + "- “What is the geographical location of France within Europe?”\n", + "- “Can you identify the region of Europe where France is situated?”\n", + "\n", + "Step 2 - Calculate the mean cosine similarity between the generated questions and the actual question.\n", + "\n", + "## Now let's implement using our helper functions\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 114, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "dd9cabb4b0c448b08cad96d2ef3391a2", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Evaluating: 0%| | 0/15 [00:00\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
faithfulnessanswer_relevancy
count15.00000015.000000
mean0.7812290.938581
std0.3626660.085342
min0.0000000.736997
25%0.6527780.926596
50%1.0000000.975230
75%1.0000000.994168
max1.0000001.000000
\n", + "" + ], + "text/plain": [ + " faithfulness answer_relevancy\n", + "count 15.000000 15.000000\n", + "mean 0.781229 0.938581\n", + "std 0.362666 0.085342\n", + "min 0.000000 0.736997\n", + "25% 0.652778 0.926596\n", + "50% 1.000000 0.975230\n", + "75% 1.000000 0.994168\n", + "max 1.000000 1.000000" + ] + }, + "execution_count": 116, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gen_metrics_default = faithfulness_metrics\n", + "gen_metrics_default[\"answer_relevancy\"] = answer_relevancy_metrics[\"answer_relevancy\"]\n", + "\n", + "gen_metrics_default.describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Evaluating retrieval metrics\n", + "\n", + "Retrieval metrics quantify how well the system performed at fetching the best possible context for generation. Like before please review the definitions below to understand what happens under-the-hood when we execute the evaluation code. \n", + "\n", + "-----\n", + "\n", + "### Context Relevance\n", + "\n", + "\"The context is considered relevant to the extent that it exclusively contains information that is needed to answer the question.\"\n", + "\n", + "#### Example process:\n", + "\n", + "1. Use the following LLM prompt to extract a subset of sentences necessary to answer the question. The context is defined as the formatted search result from the vector database.\n", + "\n", + " > Please extract relevant sentences from\n", + " > the provided context that can potentially\n", + " > help answer the following `{question}`. If no\n", + " > relevant sentences are found, or if you\n", + " > believe the question cannot be answered\n", + " > from the given context, return the phrase\n", + " > \"Insufficient Information\". While extracting candidate sentences you’re not allowed to make any changes to sentences\n", + " > from given `{context}`.\n", + "\n", + "2. Compute the context relevance score = (number of extracted sentences) / (total number of sentences in context)\n", + "\n", + "Moving from the initial paper to the active evaluation library ragas there are a few more insightful metrics to evaluate. From the library [source](https://docs.ragas.io/en/stable/concepts/metrics/index.html) let's introduce `context precision` and `context recall`. \n", + "\n", + "### Context recall\n", + "Context can be said to have high recall if retrieved context aligns with the ground truth answer.\n", + "\n", + "#### Mathematically:\n", + "\n", + "$$\n", + "Context\\ recall = \\frac{Ground\\ Truth\\ sentences\\ that\\ can\\ be\\ attributed\\ to\\ context}{Total\\ number\\ of\\ sentences\\ in\\ the\\ ground\\ truth}\n", + "$$\n", + "\n", + "#### Example process:\n", + "\n", + "Data:\n", + "> question: Where is France and what is it’s capital?\n", + "> ground truth answer: France is in Western Europe and its capital is Paris.\n", + "> context: France, in Western Europe, encompasses medieval cities, alpine villages and Mediterranean beaches. The country is also renowned for its wines and sophisticated cuisine. Lascaux’s ancient cave drawings, Lyon’s Roman theater and the vast Palace of Versailles attest to its rich history.\n", + ">\n", + "> Note: ground truth answer can be created by critic LLM or with own human labeled data set.\n", + "\n", + "Step 1 - use an LLM to break the ground truth down into individual statements:\n", + "- `France is in Western Europe`\n", + "- `Its capital is Paris`\n", + "\n", + "Step 2 - for each ground truth statement, use an LLM to determine if it can be attributed from the context.\n", + "- `France is in Western Europe` => yes\n", + "- `Its capital is Paris` => no\n", + "\n", + "\n", + "Step 3 - plug in to formula\n", + "\n", + "context recall = (1 + 0) / 2 = 0.5\n", + "\n", + "### Context precision\n", + "\n", + "This metrics relates to how chunks are ranked in a response. Ideally the most relevant chunks are at the top.\n", + "\n", + "#### Mathematically:\n", + "\n", + "$$\n", + "Context\\ Precision@k = \\frac{precision@k}{total\\ number\\ relevant\\ items\\ in\\ the\\ top\\ k\\ results}\n", + "$$\n", + "\n", + "$$\n", + "Precision@k = \\frac{true\\ positive@k}{true\\ positives@k + false\\ positives@k}\n", + "$$\n", + "\n", + "#### Example process:\n", + "\n", + "Data:\n", + "> Question: Where is France and what is it’s capital?\n", + "> \n", + "> Ground truth: France is in Western Europe and its capital is Paris.\n", + "> \n", + "> Context: [ “The country is also renowned for its wines and sophisticated cuisine. Lascaux’s ancient cave drawings, Lyon’s Roman theater and”, “France, in Western Europe, encompasses medieval cities, alpine villages and Mediterranean beaches. Paris, its capital, is famed for its fashion houses, classical art museums including the Louvre and monuments like the Eiffel Tower”]\n", + "\n", + "Step 1 - for each chunk use the LLM to check if it's relevant or not to the ground truth answer.\n", + "\n", + "Step 2 - for each chunk in the context calculate the precision defined as: ``\n", + "- `“The country is also renowned for its wines and sophisticated cuisine. Lascaux’s ancient cave drawings, Lyon’s Roman theater and”` => precision = 0/1 or 0.\n", + "- `“France, in Western Europe, encompasses medieval cities, alpine villages and Mediterranean beaches. Paris, its capital, is famed for its fashion houses, classical art museums including the Louvre and monuments like the Eiffel Tower”` => the precision would be (1) / (1 true positive + 1 false positive) = 0.5. \n", + "\n", + "\n", + "Step 3 - calculate the overall context precision = (0 + 0.5) / 1 = 0.5" + ] + }, + { + "cell_type": "code", + "execution_count": 117, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c076c3dc42cf49cf8d768dec225727d5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Evaluating: 0%| | 0/15 [00:00\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
context_recallcontext_precision
count15.00000015.000000
mean0.9666670.925926
std0.1290990.145352
min0.5000000.500000
25%1.0000000.916667
50%1.0000001.000000
75%1.0000001.000000
max1.0000001.000000
\n", + "" + ], + "text/plain": [ + " context_recall context_precision\n", + "count 15.000000 15.000000\n", + "mean 0.966667 0.925926\n", + "std 0.129099 0.145352\n", + "min 0.500000 0.500000\n", + "25% 1.000000 0.916667\n", + "50% 1.000000 1.000000\n", + "75% 1.000000 1.000000\n", + "max 1.000000 1.000000" + ] + }, + "execution_count": 119, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ret_metrics_default = context_recall_metrics\n", + "ret_metrics_default[\"context_precision\"] = context_precision_metrics[\"context_precision\"]\n", + "\n", + "ret_metrics_default.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 120, + "metadata": {}, + "outputs": [], + "source": [ + "metrics = ret_metrics_default\n", + "metrics[\"faithfulness\"] = gen_metrics_default[\"faithfulness\"]\n", + "metrics[\"answer_relevancy\"] = gen_metrics_default[\"answer_relevancy\"]\n", + "\n", + "metrics.to_csv(f\"resources/metrics_{CHUNK_SIZE}_{CHUNK_OVERLAP}.csv\", index=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# All together" + ] + }, + { + "cell_type": "code", + "execution_count": 121, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
context_recallcontext_precisionfaithfulnessanswer_relevancy
count15.00000015.00000015.00000015.000000
mean0.9666670.9259260.7812290.938581
std0.1290990.1453520.3626660.085342
min0.5000000.5000000.0000000.736997
25%1.0000000.9166670.6527780.926596
50%1.0000001.0000001.0000000.975230
75%1.0000001.0000001.0000000.994168
max1.0000001.0000001.0000001.000000
\n", + "
" + ], + "text/plain": [ + " context_recall context_precision faithfulness answer_relevancy\n", + "count 15.000000 15.000000 15.000000 15.000000\n", + "mean 0.966667 0.925926 0.781229 0.938581\n", + "std 0.129099 0.145352 0.362666 0.085342\n", + "min 0.500000 0.500000 0.000000 0.736997\n", + "25% 1.000000 0.916667 0.652778 0.926596\n", + "50% 1.000000 1.000000 1.000000 0.975230\n", + "75% 1.000000 1.000000 1.000000 0.994168\n", + "max 1.000000 1.000000 1.000000 1.000000" + ] + }, + "execution_count": 121, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "metrics.describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Analysis\n", + "Overall our RAG app showed pretty good performance. All values indicated above 0.6, which from anecdotal experience, is a reasonable lower-bound for performance however obviously higher values are more ideal. It is worth noting that generation metrics can be a bit more hazy in terms of ideal ranges since the LLM evaluation cannot yet capture the way a response feels to a user. For these metrics it's important to make sure they are not severely low however blind optimization to the top can result in a very uncreative chat experience which may or may not be ideal for the intended use case.\n", + "\n", + "## Review\n", + "\n", + "- we initialized our RAG app with data from a 10k document\n", + "- generated a testset to evaluate \n", + "- calculated both retrieval and generation metrics\n", + "\n", + "## Next steps\n", + "\n", + "Now that we know how to measure our system we can quickly and easily experiment with different techniques with a baseline in place to improve our systems.\n", + "\n", + "## Cleanup" + ] + }, + { + "cell_type": "code", + "execution_count": 122, + "metadata": {}, + "outputs": [], + "source": [ + "from redisvl.index import SearchIndex\n", + "\n", + "idx = SearchIndex.from_existing(\n", + " index_name,\n", + " redis_url=REDIS_URL\n", + ")\n", + "\n", + "idx.delete()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 } diff --git a/python-recipes/RAG/07_user_role_based_rag.ipynb b/python-recipes/RAG/07_user_role_based_rag.ipynb new file mode 100644 index 00000000..278159aa --- /dev/null +++ b/python-recipes/RAG/07_user_role_based_rag.ipynb @@ -0,0 +1,1788 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "XwR-PYCFu0Nd", + "metadata": { + "id": "XwR-PYCFu0Nd" + }, + "source": [ + "# Building a Role-Based RAG Pipeline with Redis\n", + "\n", + "This notebook demonstrates a simplified setup for a **Role-Based Retrieval Augmented Generation (RAG)** pipeline, where:\n", + "\n", + "1. Each **User** has one or more **roles**.\n", + "2. Knowledge base **Documents** in Redis are tagged with the official roles that can access them (`allowed_roles`).\n", + "3. A unified **query flow** ensures a user only sees documents that match at least one of their roles.\n", + "\n", + "![Role Based RAG](https://raw.githubusercontent.com/redis-developer/redis-ai-resources/main/assets/role-based-rag.png)" + ] + }, + { + "cell_type": "markdown", + "id": "58823e66", + "metadata": { + "id": "58823e66" + }, + "source": [ + "\n", + "## Let's Begin!\n", + "\"Open" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "4e0aa177", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "4e0aa177", + "outputId": "0ba61596-b3e4-442f-cd9c-8b480f1c52d1" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/99.3 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m99.3/99.3 kB\u001b[0m \u001b[31m7.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/2.5 MB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m2.5/2.5 MB\u001b[0m \u001b[31m91.5 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.5/2.5 MB\u001b[0m \u001b[31m55.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m298.0/298.0 kB\u001b[0m \u001b[31m25.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.0/1.0 MB\u001b[0m \u001b[31m60.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m412.2/412.2 kB\u001b[0m \u001b[31m34.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m261.5/261.5 kB\u001b[0m \u001b[31m19.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m46.0/46.0 kB\u001b[0m \u001b[31m4.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m86.8/86.8 kB\u001b[0m \u001b[31m8.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m50.8/50.8 kB\u001b[0m \u001b[31m4.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h" + ] + } + ], + "source": [ + "%pip install -q \"redisvl>=0.6.0\" openai langchain-community pypdf" + ] + }, + { + "cell_type": "markdown", + "id": "fXsGCsLQu0Ne", + "metadata": { + "id": "fXsGCsLQu0Ne" + }, + "source": [ + "## 1. High-Level Data Flow & Setup\n", + "\n", + "1. **User Creation & Role Management**\n", + " - A user is stored at `user:{user_id}` in Redis with a JSON structure containing the user’s roles.\n", + " - We can create, update, or delete users as needed.\n", + " - **This serves as a simple look up layer and should NOT replace your production-ready auth API flow**\n", + "\n", + "2. **Document Storage**\n", + " - Documents chunks are stored at `doc:{doc_id}:{chunk_id}` in Redis as JSON.\n", + " - Each document chunk includes fields such as `doc_id`, `chunk_id`, `content`, `allowed_roles`, and an `embedding` (for vector similarity).\n", + "\n", + "3. **Querying / Search**\n", + " - User roles are retrieved from Redis.\n", + " - We perform a vector similarity search (or any other type of retrieval) on the documents.\n", + " - We filter the results so that only documents whose `allowed_roles` intersect with the user’s roles are returned.\n", + "\n", + "4. **RAG Integration**\n", + " - The returned documents can be fed into a Large Language Model (LLM) to provide context and generate an answer.\n", + "\n", + "First, we’ll set up our Python environment and Redis connection.\n" + ] + }, + { + "cell_type": "markdown", + "id": "73c33af6", + "metadata": { + "id": "73c33af6" + }, + "source": [ + "### Download Documents\n", + "Running remotely or in collab? Run this cell to download the necessary datasets." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "48971c52", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "48971c52", + "outputId": "e17d146a-43be-41fb-b029-f330d79f1a65" + }, + "outputs": [], + "source": [ + "# NBVAL_SKIP\n", + "!git clone https://github.com/redis-developer/redis-ai-resources.git temp_repo\n", + "!mkdir -p resources\n", + "!mv temp_repo/python-recipes/RAG/resources/aapl-10k-2023.pdf resources/\n", + "!mv temp_repo/python-recipes/RAG/resources/2022-chevy-colorado-ebrochure.pdf resources/\n", + "!rm -rf temp_repo" + ] + }, + { + "cell_type": "markdown", + "id": "993371a2", + "metadata": { + "id": "993371a2" + }, + "source": [ + "### Run Redis Stack\n", + "\n", + "For this tutorial you will need a running instance of Redis if you don't already have one.\n", + "\n", + "#### For Colab\n", + "Use the shell script below to download, extract, and install [Redis Stack](https://redis.io/docs/getting-started/install-stack/) directly from the Redis package archive." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "8edc5862", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "8edc5862", + "outputId": "df2643ed-2422-4ee5-bd42-bec17b405eec" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb jammy main\n", + "Starting redis-stack-server, database path /var/lib/redis-stack\n" + ] + } + ], + "source": [ + "# NBVAL_SKIP\n", + "%%sh\n", + "curl -fsSL https://packages.redis.io/gpg | sudo gpg --dearmor -o /usr/share/keyrings/redis-archive-keyring.gpg\n", + "echo \"deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb $(lsb_release -cs) main\" | sudo tee /etc/apt/sources.list.d/redis.list\n", + "sudo apt-get update > /dev/null 2>&1\n", + "sudo apt-get install redis-stack-server > /dev/null 2>&1\n", + "redis-stack-server --daemonize yes" + ] + }, + { + "cell_type": "markdown", + "id": "bc571319", + "metadata": { + "id": "bc571319" + }, + "source": [ + "#### For Alternative Environments\n", + "There are many ways to get the necessary redis-stack instance running\n", + "1. On cloud, deploy a [FREE instance of Redis in the cloud](https://redis.com/try-free/). Or, if you have your\n", + "own version of Redis Enterprise running, that works too!\n", + "2. Per OS, [see the docs](https://redis.io/docs/latest/operate/oss_and_stack/install/install-stack/)\n", + "3. With docker: `docker run -d --name redis-stack-server -p 6379:6379 redis/redis-stack-server:latest`" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "qU49fNVnu0Nf", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "qU49fNVnu0Nf", + "outputId": "4d2f34c3-6179-4f1d-eff7-5e8e9d8fd58b" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Successfully connected to Redis\n" + ] + } + ], + "source": [ + "import os\n", + "\n", + "from redis import Redis\n", + "\n", + "# Replace values below with your own if using Redis Cloud instance\n", + "REDIS_HOST = os.getenv(\"REDIS_HOST\", \"localhost\") # ex: \"redis-18374.c253.us-central1-1.gce.cloud.redislabs.com\"\n", + "REDIS_PORT = os.getenv(\"REDIS_PORT\", \"6379\") # ex: 18374\n", + "REDIS_PASSWORD = os.getenv(\"REDIS_PASSWORD\", \"\") # ex: \"1TNxTEdYRDgIDKM2gDfasupCADXXXX\"\n", + "\n", + "# If SSL is enabled on the endpoint, use rediss:// as the URL prefix\n", + "REDIS_URL = f\"redis://:{REDIS_PASSWORD}@{REDIS_HOST}:{REDIS_PORT}\"\n", + "\n", + "# Connect to Redis (adjust host/port if needed)\n", + "redis_client = Redis.from_url(REDIS_URL)\n", + "redis_client.ping()\n", + "\n", + "print(\"Successfully connected to Redis\")" + ] + }, + { + "cell_type": "markdown", + "id": "aqzMteQsu0Nf", + "metadata": { + "id": "aqzMteQsu0Nf" + }, + "source": [ + "## 2. User Management\n", + "\n", + "Below is a simple `User` class that stores a user in Redis as JSON. We:\n", + "\n", + "- Use a Redis key of the form `user:{user_id}`.\n", + "- Store fields like `user_id`, `roles`, etc.\n", + "- Provide CRUD methods (Create, Read, Update, Delete) for user objects.\n", + "\n", + "**Data Structure Example**\n", + "```json\n", + "{\n", + " \"user_id\": \"alice\",\n", + " \"roles\": [\"finance\", \"manager\"]\n", + "}\n", + "```\n", + "\n", + "We'll also include some basic checks to ensure we don't add duplicate roles, handle empty role lists, etc.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "38pdjXJvu0Nf", + "metadata": { + "id": "38pdjXJvu0Nf" + }, + "outputs": [], + "source": [ + "from typing import List, Optional\n", + "from enum import Enum\n", + "\n", + "\n", + "class UserRoles(str, Enum):\n", + " FINANCE = \"finance\"\n", + " MANAGER = \"manager\"\n", + " EXECUTIVE = \"executive\"\n", + " HR = \"hr\"\n", + " SALES = \"sales\"\n", + " PRODUCT = \"product\"\n", + "\n", + "\n", + "class User:\n", + " \"\"\"\n", + " User class for storing user data in Redis.\n", + "\n", + " Each user has:\n", + " - user_id (string)\n", + " - roles (list of UserRoles)\n", + "\n", + " Key in Redis: user:{user_id}\n", + " \"\"\"\n", + " def __init__(\n", + " self,\n", + " redis_client: Redis,\n", + " user_id: str,\n", + " roles: Optional[List[UserRoles]] = None\n", + " ):\n", + " self.redis_client = redis_client\n", + " self.user_id = user_id\n", + " self.roles = roles or []\n", + "\n", + " @property\n", + " def key(self) -> str:\n", + " return f\"user:{self.user_id}\"\n", + "\n", + " def exists(self) -> bool:\n", + " \"\"\"Check if the user key exists in Redis.\"\"\"\n", + " return self.redis_client.exists(self.key) == 1\n", + "\n", + " def create(self):\n", + " \"\"\"\n", + " Create a new user in Redis. Fails if user already exists.\n", + " \"\"\"\n", + " if self.exists():\n", + " raise ValueError(f\"User {self.user_id} already exists.\")\n", + "\n", + " self.save()\n", + "\n", + " def save(self):\n", + " \"\"\"\n", + " Save (create or update) the user data in Redis.\n", + " If user does not exist, it will be created.\n", + " \"\"\"\n", + " data = {\n", + " \"user_id\": self.user_id,\n", + " \"roles\": [UserRoles(role).value for role in set(self.roles)] # ensure roles are unique and convert to strings\n", + " }\n", + " self.redis_client.json().set(self.key, \".\", data)\n", + "\n", + " @classmethod\n", + " def get(cls, redis_client: Redis, user_id):\n", + " \"\"\"\n", + " Retrieve a user from Redis.\n", + " \"\"\"\n", + " key = f\"user:{user_id}\"\n", + " data = redis_client.json().get(key)\n", + " if not data:\n", + " return None\n", + " # Convert string roles back to UserRoles enum\n", + " roles = [UserRoles(role) for role in data.get(\"roles\", [])]\n", + " return cls(redis_client, data[\"user_id\"], roles)\n", + "\n", + " def update_roles(self, roles: List[UserRoles]):\n", + " \"\"\"\n", + " Overwrite the user's roles in Redis.\n", + " \"\"\"\n", + " self.roles = roles\n", + " self.save()\n", + "\n", + " def add_role(self, role: UserRoles):\n", + " \"\"\"Add a single role to the user.\"\"\"\n", + " if role not in self.roles:\n", + " self.roles.append(role)\n", + " self.save()\n", + "\n", + " def remove_role(self, role: UserRoles):\n", + " \"\"\"Remove a single role from the user.\"\"\"\n", + " if role in self.roles:\n", + " self.roles.remove(role)\n", + " self.save()\n", + "\n", + " def delete(self):\n", + " \"\"\"Delete this user from Redis.\"\"\"\n", + " self.redis_client.delete(self.key)\n", + "\n", + " def __repr__(self):\n", + " return f\"\"\n" + ] + }, + { + "cell_type": "markdown", + "id": "FNQxAaoCxPN7", + "metadata": { + "id": "FNQxAaoCxPN7" + }, + "source": [ + "### Example usage of User class" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "_WcOlgVyu0Ng", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "_WcOlgVyu0Ng", + "outputId": "0776fa25-513b-445b-d46d-35d9333b3a75" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "User 'alice' created.\n", + "Retrieved: \n", + "After adding 'executive': \n", + "After removing 'manager': \n" + ] + } + ], + "source": [ + "# Example usage of the User class\n", + "\n", + "# Let's create a new user\n", + "alice = User(redis_client, \"alice\", roles=[\"finance\", \"manager\"])\n", + "\n", + "# We'll save the user in Redis\n", + "try:\n", + " alice.create()\n", + " print(\"User 'alice' created.\")\n", + "except ValueError as e:\n", + " print(e)\n", + "\n", + "# Retrieve the user\n", + "alice_obj = User.get(redis_client, \"alice\")\n", + "print(\"Retrieved:\", alice_obj)\n", + "\n", + "# Add another role\n", + "alice_obj.add_role(\"executive\")\n", + "print(\"After adding 'executive':\", alice_obj)\n", + "\n", + "# Remove a role\n", + "alice_obj.remove_role(\"manager\")\n", + "print(\"After removing 'manager':\", alice_obj)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "c911e892", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "c911e892", + "outputId": "df4666ff-97ce-4e75-d70c-75fe5d9e6703" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Take a peek at the user object itself\n", + "alice" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "P3j6yu8l87j3", + "metadata": { + "id": "P3j6yu8l87j3" + }, + "outputs": [], + "source": [ + "# Create one more user\n", + "larry = User(redis_client, \"larry\", roles=[\"product\"])\n", + "larry.create()" + ] + }, + { + "cell_type": "markdown", + "id": "Y7B4l7XVx5md", + "metadata": { + "id": "Y7B4l7XVx5md" + }, + "source": [ + ">💡 Using a cloud DB? Take a peek at your instance using [RedisInsight](https://redis.io/insight) to see what user data is in place." + ] + }, + { + "cell_type": "markdown", + "id": "aCXYFXu0u0Ng", + "metadata": { + "id": "aCXYFXu0u0Ng" + }, + "source": [ + "## 3. Document Management (Using LangChain)\n", + "\n", + "Here, we'll use **LangChain** for document loading, chunking, and vectorizing. Then, we’ll **store documents** in Redis as JSON. Each document will look like:\n", + "\n", + "```json\n", + "{\n", + " \"doc_id\": \"123\",\n", + " \"chunk_id\": \"123\",\n", + " \"path\": \"resources/doc.pdf\",\n", + " \"title\": \"Quarterly Finance Report\",\n", + " \"content\": \"Some text...\",\n", + " \"allowed_roles\": [\"finance\", \"executive\"],\n", + " \"embedding\": [0.12, 0.98, ...] \n", + "}\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "d3cJ5DSP5vXt", + "metadata": { + "id": "d3cJ5DSP5vXt" + }, + "source": [ + "### Building a document knowledge base\n", + "We will create a `KnowledgeBase` class to encapsulate document processing logic and search. The class will handle:\n", + "1. Document ingest and chunking\n", + "2. Role tagging with a simple str-based rule (likely custom depending on use case)\n", + "3. Retrieval over the entire document corpus adhering to provided user roles\n" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "67d38524", + "metadata": { + "id": "67d38524" + }, + "outputs": [], + "source": [ + "from typing import List, Optional, Dict, Any, Set\n", + "from pathlib import Path\n", + "import uuid\n", + "\n", + "from langchain_community.document_loaders import PyPDFLoader\n", + "from langchain.text_splitter import RecursiveCharacterTextSplitter\n", + "from redisvl.index import SearchIndex\n", + "from redisvl.query import VectorQuery\n", + "from redisvl.query.filter import FilterExpression, Tag\n", + "from redisvl.utils.vectorize import OpenAITextVectorizer\n", + "\n", + "\n", + "class KnowledgeBase:\n", + " \"\"\"Manages document processing, embedding, and storage in Redis.\"\"\"\n", + "\n", + " def __init__(\n", + " self,\n", + " redis_client,\n", + " embeddings_model: str = \"text-embedding-3-small\",\n", + " chunk_size: int = 2500,\n", + " chunk_overlap: int = 100\n", + " ):\n", + " self.redis_client = redis_client\n", + " self.embeddings = OpenAITextVectorizer(model=embeddings_model)\n", + " self.text_splitter = RecursiveCharacterTextSplitter(\n", + " chunk_size=chunk_size,\n", + " chunk_overlap=chunk_overlap,\n", + " )\n", + "\n", + " # Initialize document search index\n", + " self.index = self._create_search_index()\n", + "\n", + " def _create_search_index(self) -> SearchIndex:\n", + " \"\"\"Create the Redis search index for documents.\"\"\"\n", + " schema = {\n", + " \"index\": {\n", + " \"name\": \"docs\",\n", + " \"prefix\": \"doc\",\n", + " \"storage_type\": \"json\"\n", + " },\n", + " \"fields\": [\n", + " {\n", + " \"name\": \"doc_id\",\n", + " \"type\": \"tag\",\n", + " },\n", + " {\n", + " \"name\": \"chunk_id\",\n", + " \"type\": \"tag\",\n", + " },\n", + " {\n", + " \"name\": \"allowed_roles\",\n", + " \"path\": \"$.allowed_roles[*]\",\n", + " \"type\": \"tag\",\n", + " },\n", + " {\n", + " \"name\": \"content\",\n", + " \"type\": \"text\",\n", + " },\n", + " {\n", + " \"name\": \"embedding\",\n", + " \"type\": \"vector\",\n", + " \"attrs\": {\n", + " \"dims\": self.embeddings.dims,\n", + " \"distance_metric\": \"cosine\",\n", + " \"algorithm\": \"flat\",\n", + " \"datatype\": \"float32\"\n", + " }\n", + " }\n", + " ]\n", + " }\n", + " index = SearchIndex.from_dict(schema, redis_client=self.redis_client)\n", + " index.create()\n", + " return index\n", + "\n", + " def ingest(self, doc_path: str, allowed_roles: Optional[List[str]] = None) -> str:\n", + " \"\"\"\n", + " Load a document, chunk it, create embeddings, and store in Redis.\n", + " Returns the document ID.\n", + " \"\"\"\n", + " # Generate document ID\n", + " doc_id = str(uuid.uuid4())\n", + " path = Path(doc_path)\n", + "\n", + " if not path.exists():\n", + " raise FileNotFoundError(f\"Document not found: {doc_path}\")\n", + "\n", + " # Load and chunk document\n", + " loader = PyPDFLoader(str(path))\n", + " pages = loader.load()\n", + " chunks = self.text_splitter.split_documents(pages)\n", + " print(f\"Extracted {len(chunks)} for doc {doc_id} from file {str(path)}\", flush=True)\n", + "\n", + " # If roles not provided, determine from filename\n", + " if allowed_roles is None:\n", + " allowed_roles = self._determine_roles(path)\n", + "\n", + " # Prepare chunks for Redis\n", + " data, keys = [], []\n", + " for i, chunk in enumerate(chunks):\n", + " # Create embedding w/ openai\n", + " embedding = self.embeddings.embed(chunk.page_content)\n", + "\n", + " # Prepare chunk payload\n", + " chunk_id = f\"chunk_{i}\"\n", + " key = f\"doc:{doc_id}:{chunk_id}\"\n", + " data.append({\n", + " \"doc_id\": doc_id,\n", + " \"chunk_id\": chunk_id,\n", + " \"path\": str(path),\n", + " \"content\": chunk.page_content,\n", + " \"allowed_roles\": list(allowed_roles),\n", + " \"embedding\": embedding,\n", + " })\n", + " keys.append(key)\n", + "\n", + " # Store in Redis\n", + " _ = self.index.load(data=data, keys=keys)\n", + " print(f\"Loaded {len(chunks)} chunks for document {doc_id}\")\n", + " return doc_id\n", + "\n", + " def _determine_roles(self, file_path: Path) -> Set[str]:\n", + " \"\"\"Determine allowed roles based on file path and name patterns.\"\"\"\n", + " # Customize based on use case and business logic\n", + " ROLE_PATTERNS = {\n", + " ('10k', 'financial', 'earnings', 'revenue'):\n", + " {'finance', 'executive'},\n", + " ('brochure', 'spec', 'product', 'manual'):\n", + " {'product', 'sales'},\n", + " ('hr', 'handbook', 'policy', 'employee'):\n", + " {'hr', 'manager'},\n", + " ('sales', 'pricing', 'customer'):\n", + " {'sales', 'manager'}\n", + " }\n", + "\n", + " filename = file_path.name.lower()\n", + " roles = {\n", + " role for terms, roles in ROLE_PATTERNS.items()\n", + " for role in roles\n", + " if any(term in filename for term in terms)\n", + " }\n", + " return roles or {'executive'}\n", + "\n", + " @staticmethod\n", + " def role_filter(user_roles: List[str]) -> FilterExpression:\n", + " \"\"\"Generate a Redis filter based on provided user roles.\"\"\"\n", + " return Tag(\"allowed_roles\") == user_roles\n", + "\n", + " def search(self, query: str, user_roles: List[str], top_k: int = 5) -> List[Dict[str, Any]]:\n", + " \"\"\"\n", + " Search for documents matching the query and user roles.\n", + " Returns list of matching documents.\n", + " \"\"\"\n", + " # Create query vector\n", + " query_vector = self.embeddings.embed(query)\n", + "\n", + " # Build role filter\n", + " roles_filter = self.role_filter(user_roles)\n", + "\n", + " # Execute search\n", + " return self.index.query(\n", + " VectorQuery(\n", + " vector=query_vector,\n", + " vector_field_name=\"embedding\",\n", + " filter_expression=roles_filter,\n", + " return_fields=[\"doc_id\", \"chunk_id\", \"allowed_roles\", \"content\"],\n", + " num_results=top_k,\n", + " dialect=4\n", + " )\n", + " )\n" + ] + }, + { + "cell_type": "markdown", + "id": "YsBuAa_q9QU_", + "metadata": { + "id": "YsBuAa_q9QU_" + }, + "source": [ + "Load a document into the knowledge base." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "s1LDdWhKu0Nh", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "s1LDdWhKu0Nh", + "outputId": "66e1105e-78ba-425a-8156-c810c7c9054a" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "21:09:47 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "Extracted 34 for doc f2c7171a-16cc-4aad-a777-ed7202bd7212 from file resources/2022-chevy-colorado-ebrochure.pdf\n", + "21:09:49 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:09:49 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:09:50 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:09:50 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:09:51 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:09:51 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:09:52 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:09:52 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:09:53 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:09:53 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:09:53 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:09:53 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:09:54 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:09:54 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:09:55 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:09:55 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:09:55 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:09:56 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:09:56 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:09:56 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:09:57 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:09:57 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:09:57 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:09:58 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:01 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:02 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:02 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:05 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:05 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:05 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:06 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:06 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:06 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:07 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "Loaded 34 chunks for document f2c7171a-16cc-4aad-a777-ed7202bd7212\n", + "Loaded all chunks for f2c7171a-16cc-4aad-a777-ed7202bd7212\n" + ] + } + ], + "source": [ + "kb = KnowledgeBase(redis_client)\n", + "\n", + "doc_id = kb.ingest(\"resources/2022-chevy-colorado-ebrochure.pdf\")\n", + "print(f\"Loaded all chunks for {doc_id}\", flush=True)" + ] + }, + { + "cell_type": "markdown", + "id": "-Ekqkf1fu0Nh", + "metadata": { + "id": "-Ekqkf1fu0Nh" + }, + "source": [ + "## 4. User Query Flow\n", + "\n", + "Now that we have our User DB and our Vector DB loaded in Redis. We will perform:\n", + "\n", + "1. **Vector Similarity Search** on `embedding`.\n", + "2. A metadata **Filter** based on `allowed_roles`.\n", + "3. Return top-k matching document chunks.\n", + "\n", + "This is implemented below.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "WpvrXmluu0Nh", + "metadata": { + "id": "WpvrXmluu0Nh" + }, + "outputs": [], + "source": [ + "def user_query(user_id: str, query: str):\n", + " \"\"\"\n", + " Placeholder for a search function.\n", + " 1. Load the user's roles.\n", + " 2. Perform a vector search for docs.\n", + " 3. Filter docs that match at least one of the user's roles.\n", + " 4. Return top-K results.\n", + " \"\"\"\n", + " # 1. Load & validate user roles\n", + " user_obj = User.get(redis_client, user_id)\n", + " if not user_obj:\n", + " raise ValueError(f\"User {user_id} not found.\")\n", + "\n", + " roles = set([role.value for role in user_obj.roles])\n", + " if not roles:\n", + " raise ValueError(f\"User {user_id} does not have any roles.\")\n", + "\n", + " # 2. Retrieve document chunks\n", + " results = kb.search(query, roles)\n", + "\n", + " if not results:\n", + " raise ValueError(f\"No available documents found for {user_id}\")\n", + "\n", + " return results" + ] + }, + { + "cell_type": "markdown", + "id": "qQS1BLwGBVDA", + "metadata": { + "id": "qQS1BLwGBVDA" + }, + "source": [ + "### Search examples\n", + "\n", + "Search with a non-existent user." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "wYishsNy6lty", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 287 + }, + "id": "wYishsNy6lty", + "outputId": "dfa5a8b5-d926-4e94-e8a1-ecceb51ccff5" + }, + "outputs": [ + { + "ename": "ValueError", + "evalue": "User tyler not found.", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# Search with a non-existent user\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mresults\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0muser_query\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"tyler\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mquery\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"What is the make and model of the vehicle here?\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m\u001b[0m in \u001b[0;36muser_query\u001b[0;34m(user_id, query)\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0muser_obj\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mUser\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mredis_client\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0muser_id\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0muser_obj\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 12\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf\"User {user_id} not found.\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 13\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 14\u001b[0m \u001b[0mroles\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mrole\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalue\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mrole\u001b[0m \u001b[0;32min\u001b[0m \u001b[0muser_obj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mroles\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: User tyler not found." + ] + } + ], + "source": [ + "# NBVAL_SKIP\n", + "results = user_query(\"tyler\", query=\"What is the make and model of the vehicle here?\")" + ] + }, + { + "cell_type": "markdown", + "id": "0af59693", + "metadata": {}, + "source": [ + "Create user for Tyler." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "ZNgxlQSvChx7", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 329 + }, + "id": "ZNgxlQSvChx7", + "outputId": "d59aad34-2d24-4c87-dd42-b9a44ccaf26b" + }, + "outputs": [ + { + "ename": "ValueError", + "evalue": "'engineering' is not a valid UserRoles", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# Create user for Tyler\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mtyler\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mUser\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mredis_client\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"tyler\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mroles\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"sales\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"engineering\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mtyler\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcreate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m\u001b[0m in \u001b[0;36mcreate\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 47\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf\"User {self.user_id} already exists.\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 48\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 49\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msave\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 50\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 51\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0msave\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36msave\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 56\u001b[0m data = {\n\u001b[1;32m 57\u001b[0m \u001b[0;34m\"user_id\"\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0muser_id\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 58\u001b[0;31m \u001b[0;34m\"roles\"\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mUserRoles\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrole\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalue\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mrole\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mroles\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;31m# ensure roles are unique and convert to strings\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 59\u001b[0m }\n\u001b[1;32m 60\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mredis_client\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjson\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\".\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 56\u001b[0m data = {\n\u001b[1;32m 57\u001b[0m \u001b[0;34m\"user_id\"\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0muser_id\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 58\u001b[0;31m \u001b[0;34m\"roles\"\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mUserRoles\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrole\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalue\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mrole\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mroles\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;31m# ensure roles are unique and convert to strings\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 59\u001b[0m }\n\u001b[1;32m 60\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mredis_client\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjson\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\".\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/lib/python3.11/enum.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(cls, value, names, module, qualname, type, start, boundary)\u001b[0m\n\u001b[1;32m 712\u001b[0m \"\"\"\n\u001b[1;32m 713\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mnames\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;31m# simple value lookup\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 714\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mcls\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__new__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcls\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 715\u001b[0m \u001b[0;31m# otherwise, functional API: we're creating a new Enum type\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 716\u001b[0m return cls._create_(\n", + "\u001b[0;32m/usr/lib/python3.11/enum.py\u001b[0m in \u001b[0;36m__new__\u001b[0;34m(cls, value)\u001b[0m\n\u001b[1;32m 1135\u001b[0m \u001b[0mve_exc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"%r is not a valid %s\"\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mvalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcls\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__qualname__\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1136\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mresult\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mexc\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1137\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mve_exc\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1138\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mexc\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1139\u001b[0m exc = TypeError(\n", + "\u001b[0;31mValueError\u001b[0m: 'engineering' is not a valid UserRoles" + ] + } + ], + "source": [ + "# NBVAL_SKIP\n", + "tyler = User(redis_client, \"tyler\", roles=[\"sales\", \"engineering\"])\n", + "tyler.create()" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "WWVJF0UVCt4d", + "metadata": { + "collapsed": true, + "id": "WWVJF0UVCt4d" + }, + "outputs": [], + "source": [ + "# Try again but this time with valid roles\n", + "tyler = User(redis_client, \"tyler\", roles=[\"sales\"])\n", + "tyler.create()" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "DXEyktWLC1cC", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "DXEyktWLC1cC", + "outputId": "dbb6e93f-3b81-4c14-f329-daf97a613c89" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tyler" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "O0K_rdC7C6OH", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "O0K_rdC7C6OH", + "outputId": "f823f253-cf42-4975-f711-6391b36f83bd" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "21:10:21 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n" + ] + }, + { + "data": { + "text/plain": [ + "[{'id': 'doc:f2c7171a-16cc-4aad-a777-ed7202bd7212:chunk_13',\n", + " 'vector_distance': '0.60664498806',\n", + " 'doc_id': '[\"f2c7171a-16cc-4aad-a777-ed7202bd7212\"]',\n", + " 'chunk_id': '[\"chunk_13\"]',\n", + " 'allowed_roles': '[\"sales\",\"product\"]'},\n", + " {'id': 'doc:f2c7171a-16cc-4aad-a777-ed7202bd7212:chunk_11',\n", + " 'vector_distance': '0.613630235195',\n", + " 'doc_id': '[\"f2c7171a-16cc-4aad-a777-ed7202bd7212\"]',\n", + " 'chunk_id': '[\"chunk_11\"]',\n", + " 'allowed_roles': '[\"sales\",\"product\"]'},\n", + " {'id': 'doc:f2c7171a-16cc-4aad-a777-ed7202bd7212:chunk_19',\n", + " 'vector_distance': '0.62441521883',\n", + " 'doc_id': '[\"f2c7171a-16cc-4aad-a777-ed7202bd7212\"]',\n", + " 'chunk_id': '[\"chunk_19\"]',\n", + " 'allowed_roles': '[\"sales\",\"product\"]'}]" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Query with valid user\n", + "results = user_query(\n", + " tyler.user_id,\n", + " query=\"What is the make and model of the vehicle here?\"\n", + ")\n", + "results[:3]" + ] + }, + { + "cell_type": "markdown", + "id": "454ce79b", + "metadata": {}, + "source": [ + "Search with a valid user, but incorrect roles." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "irqwMseYDSS_", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 394 + }, + "id": "irqwMseYDSS_", + "outputId": "acb3fe4b-c451-464f-c214-8a90d835f9ef" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " \n", + "\n", + "21:10:24 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n" + ] + }, + { + "ename": "ValueError", + "evalue": "No available documents found for alice", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m# Query with valid user\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m results = user_query(\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0malice\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0muser_id\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mquery\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"What is the make and model of the vehicle here?\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m )\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36muser_query\u001b[0;34m(user_id, query)\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mresults\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 22\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf\"No available documents found for {user_id}\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 23\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 24\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mresults\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: No available documents found for alice" + ] + } + ], + "source": [ + "# NBVAL_SKIP\n", + "print(alice, \"\\n\")\n", + "\n", + "# Query with valid user\n", + "results = user_query(\n", + " alice.user_id, query=\"What is the make and model of the vehicle here?\"\n", + ")\n", + "results" + ] + }, + { + "cell_type": "markdown", + "id": "c309b53d", + "metadata": { + "id": "c309b53d" + }, + "source": [ + "Empty results because there are no documents available for Alice to view. Add some." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "0e5e990b", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "0e5e990b", + "outputId": "b0b1bc64-6b01-47d3-feb4-3d6d1cc8e38d" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Extracted 155 for doc 42b58f50-d689-4a36-8977-e8ca1a183446 from file resources/aapl-10k-2023.pdf\n", + "21:10:32 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:32 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:32 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:32 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:32 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:33 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:33 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:33 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:34 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:34 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:34 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:34 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:35 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:35 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:36 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:36 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:36 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:36 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:36 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:37 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:37 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:37 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:37 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:37 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:38 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:38 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:38 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:39 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:39 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:39 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:39 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:40 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:40 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:40 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:40 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:40 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:41 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:41 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:41 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:41 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:41 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:42 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:42 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:42 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:42 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:43 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:43 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:43 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:43 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:44 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:44 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:44 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:44 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:45 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:45 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:45 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:45 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:46 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:46 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:46 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:46 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:47 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:47 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:47 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:47 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:48 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:48 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:51 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:52 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:52 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:52 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:52 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:52 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:53 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:53 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:53 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:53 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:53 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:54 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:54 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:54 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:54 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:55 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:55 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:55 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:55 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:56 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:56 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:56 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:56 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:56 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:57 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:57 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:57 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:58 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:58 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:58 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:58 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:58 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:59 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:59 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:59 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:10:59 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:00 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:00 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:00 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:00 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:01 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:01 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:01 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:02 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:02 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:02 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:02 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:03 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:03 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:03 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:03 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:03 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:03 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:04 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:04 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:04 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:04 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:05 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:05 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:05 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:06 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:06 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:06 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:06 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:06 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:07 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:07 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:07 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:08 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:08 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:08 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:08 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:09 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:09 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:09 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:09 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:10 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:10 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:10 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:10 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:11 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:11 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:11 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:11 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:11 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:12 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:12 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:11:12 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "Loaded 155 chunks for document 42b58f50-d689-4a36-8977-e8ca1a183446\n" + ] + }, + { + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + }, + "text/plain": [ + "'42b58f50-d689-4a36-8977-e8ca1a183446'" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Add a document that Alice will have access to\n", + "kb.ingest(\"resources/aapl-10k-2023.pdf\")" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "9fcf8cc0", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "9fcf8cc0", + "outputId": "bce13955-7d37-472b-f820-5588cd3986b4" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "21:11:30 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n" + ] + }, + { + "data": { + "text/plain": [ + "[{'id': 'doc:42b58f50-d689-4a36-8977-e8ca1a183446:chunk_81',\n", + " 'vector_distance': '0.343286693096',\n", + " 'doc_id': '[\"42b58f50-d689-4a36-8977-e8ca1a183446\"]',\n", + " 'chunk_id': '[\"chunk_81\"]',\n", + " 'allowed_roles': '[\"finance\",\"executive\"]'},\n", + " {'id': 'doc:42b58f50-d689-4a36-8977-e8ca1a183446:chunk_68',\n", + " 'vector_distance': '0.353579521179',\n", + " 'doc_id': '[\"42b58f50-d689-4a36-8977-e8ca1a183446\"]',\n", + " 'chunk_id': '[\"chunk_68\"]',\n", + " 'allowed_roles': '[\"finance\",\"executive\"]'},\n", + " {'id': 'doc:42b58f50-d689-4a36-8977-e8ca1a183446:chunk_72',\n", + " 'vector_distance': '0.354550600052',\n", + " 'doc_id': '[\"42b58f50-d689-4a36-8977-e8ca1a183446\"]',\n", + " 'chunk_id': '[\"chunk_72\"]',\n", + " 'allowed_roles': '[\"finance\",\"executive\"]'}]" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Query with valid user\n", + "results = user_query(\n", + " alice.user_id,\n", + " query=\"What was the total revenue amount for Apple according to their 10k?\"\n", + ")\n", + "results[:3]" + ] + }, + { + "cell_type": "markdown", + "id": "b3b432e6", + "metadata": { + "id": "b3b432e6" + }, + "source": [ + "## 5. Implementing Role-Based RAG from scratch\n", + "*with OpenAI and Redis*" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "794b3c41", + "metadata": { + "id": "794b3c41" + }, + "outputs": [], + "source": [ + "from openai import OpenAI\n", + "from typing import List, Optional\n", + "import os\n", + "\n", + "from redisvl.extensions.message_history import MessageHistory\n", + "\n", + "\n", + "class RAGChatManager:\n", + " \"\"\"\n", + " Manages RAG-enhanced chat interactions with role-based access control and chat history.\n", + "\n", + " Attributes:\n", + " kb: A KnowledgeBase instance for searching documents\n", + " client: An OpenAI client for chat completions\n", + " model: Name of OpenAI model to use\n", + " sessions: Dict to store active chat sessions\n", + " system_prompt: The default system prompt\n", + " \"\"\"\n", + "\n", + " def __init__(\n", + " self,\n", + " knowledge_base: \"KnowledgeBase\",\n", + " openai_api_key: Optional[str] = None,\n", + " openai_model: str = \"gpt-4\",\n", + " system_prompt: str = \"You are a helpful chatbot assistant with access to knowledge base documents\"\n", + " ):\n", + " \"\"\"Initialize the RAG chat manager.\"\"\"\n", + " self.kb = knowledge_base\n", + " self.client = OpenAI(api_key=openai_api_key or os.getenv(\"OPENAI_API_KEY\"))\n", + " self.model = openai_model\n", + " self.sessions = {}\n", + " self.system_prompt = system_prompt\n", + "\n", + " def user_roles(self, user_id: str) -> set:\n", + " \"\"\"\n", + " Get and validate user roles.\n", + "\n", + " Args:\n", + " user_id: User identifier\n", + "\n", + " Returns:\n", + " Set of user roles\n", + "\n", + " Raises:\n", + " ValueError: If user not found or has no roles\n", + " \"\"\"\n", + " user_obj = User.get(self.kb.redis_client, user_id)\n", + " if not user_obj:\n", + " raise ValueError(f\"User {user_id} not found.\")\n", + "\n", + " roles = set([role.value for role in user_obj.roles])\n", + " if not roles:\n", + " raise ValueError(f\"User {user_id} does not have any roles.\")\n", + "\n", + " return roles\n", + "\n", + " def start_session(self, user_id: str) -> None:\n", + " \"\"\"\n", + " Start a new chat session for a user.\n", + "\n", + " Args:\n", + " user_id: User identifier\n", + " \"\"\"\n", + " if user_id not in self.sessions:\n", + " self.sessions[user_id] = MessageHistory(\n", + " name=f\"session:{user_id}\",\n", + " redis_client=self.kb.redis_client\n", + " )\n", + "\n", + " def prep_msgs(\n", + " self,\n", + " user_id: str,\n", + " system_prompt: str,\n", + " context: str,\n", + " query: str\n", + " ) -> List[dict]:\n", + " \"\"\"\n", + " Get chat history messages including system prompt.\n", + "\n", + " Args:\n", + " user_id: User identifier for the session\n", + " system_prompt: Optional system prompt to prepend\n", + " context: Relevant context fetched from the knowledge base\n", + " query: Original user question\n", + "\n", + " Returns:\n", + " List of message dictionaries\n", + " \"\"\"\n", + " messages = [{\"role\": \"system\", \"content\": system_prompt}]\n", + "\n", + " if user_id in self.sessions:\n", + " messages.extend(self.sessions[user_id].get_recent())\n", + "\n", + " messages.append({\n", + " \"role\": \"user\",\n", + " \"content\": f\"\"\"Context information is below.\n", + " ---------------------\n", + " {context}\n", + " ---------------------\n", + " Given the context information above and the chat conversation history, please answer the question faithfully: {query}\"\"\"\n", + " })\n", + "\n", + " for msg in messages:\n", + " if msg[\"role\"] == \"llm\":\n", + " msg[\"role\"] = \"assistant\"\n", + "\n", + " return messages\n", + "\n", + " def chat(self, user_id: str, system_prompt: Optional[str] = None) -> None:\n", + " \"\"\"\n", + " Start an interactive chat loop with the user.\n", + "\n", + " Args:\n", + " user_id: User identifier\n", + " system_prompt: Optional system prompt\n", + "\n", + " The loop continues until user types 'exit' or 'quit'\n", + " \"\"\"\n", + " self.start_session(user_id)\n", + "\n", + " print(\"Starting chat session with GPT4. Type 'exit' or 'quit' to end the session.\")\n", + " while True:\n", + " query = input(\"\\nYou: \").strip()\n", + "\n", + " if query.lower() in ['exit', 'quit']:\n", + " print(\"\\nEnding chat session...\")\n", + " break\n", + "\n", + " response = self.answer(query, user_id, system_prompt)\n", + " print(f\"\\nAssistant: {response}\")\n", + "\n", + " def answer(\n", + " self,\n", + " query: str,\n", + " user_id: str,\n", + " system_prompt: Optional[str] = None\n", + " ) -> str:\n", + " \"\"\"\n", + " Process a chat message with RAG enhancement and role-based access.\n", + "\n", + " If any exception occurs at any stage (roles, document search, LLM call),\n", + " we do NOT store anything in the session and simply return the error.\n", + " Otherwise, we store the query and the response (including 'no docs found' case).\n", + "\n", + " Args:\n", + " query: User's question\n", + " user_id: User identifier\n", + " system_prompt: Optional system prompt\n", + "\n", + " Returns:\n", + " AI response string or error message\n", + " \"\"\"\n", + "\n", + " # Start or retrieve an existing session for user\n", + " self.start_session(user_id)\n", + "\n", + " try:\n", + " # 1. Validate user roles\n", + " roles = self.user_roles(user_id)\n", + "\n", + " # 2. Use provided system prompt or default\n", + " system_prompt = system_prompt or self.system_prompt\n", + "\n", + " # 3. Search for relevant documents\n", + " docs = self.kb.search(query, roles)\n", + "\n", + " # 4. If no documents, store & return early\n", + " if not docs:\n", + " no_docs_msg = (\n", + " \"I couldn't find any relevant documents you have permission to access. \"\n", + " \"Please try rephrasing your question or contact an administrator if you believe this is an error.\"\n", + " )\n", + " self.sessions[user_id].store(query, no_docs_msg)\n", + " return no_docs_msg\n", + "\n", + " # 5. Prepare context and messages for the LLM\n", + " context = \"\\n\\n\".join([doc.get(\"content\", \"\") for doc in docs])\n", + " messages = self.prep_msgs(\n", + " user_id=user_id,\n", + " system_prompt=system_prompt,\n", + " context=context,\n", + " query=query\n", + " )\n", + "\n", + " # 6. Generate response from the model\n", + " response = self.client.chat.completions.create(\n", + " model=self.model,\n", + " messages=messages\n", + " )\n", + " ai_response = response.choices[0].message.content\n", + "\n", + " # 7. Store query and LLM response\n", + " self.sessions[user_id].store(query, ai_response)\n", + "\n", + " return ai_response\n", + "\n", + " except Exception as e:\n", + " # Catch any exception; do not store anything, just return the error.\n", + " return f\"I encountered an error: {str(e)}\"\n" + ] + }, + { + "cell_type": "markdown", + "id": "zJdHMGdUCl_S", + "metadata": { + "id": "zJdHMGdUCl_S" + }, + "source": [ + "### Session-aware, role-based RAG" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "1HDy2Ltr12I1", + "metadata": { + "id": "1HDy2Ltr12I1" + }, + "outputs": [], + "source": [ + "bot = RAGChatManager(kb)" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "sM6BQ-ZL2LUf", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 89 + }, + "id": "sM6BQ-ZL2LUf", + "outputId": "b678b1ac-e177-4d16-9af8-2cd2cf2e48c1" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "21:20:45 redisvl.index.index INFO Index already exists, not overwriting.\n", + "21:20:45 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:20:47 httpx INFO HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n" + ] + }, + { + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + }, + "text/plain": [ + "\"The context information provided does not contain any details about a vehicle's make and model.\"" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bot.answer(\"What is the make and model of the vehicle?\", user_id=\"alice\")" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "3iJdgsaAjsaA", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 89 + }, + "id": "3iJdgsaAjsaA", + "outputId": "545b9621-e04e-4d96-ade7-5ad1e1311d3c" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "21:20:50 redisvl.index.index INFO Index already exists, not overwriting.\n", + "21:20:50 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:20:51 httpx INFO HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n" + ] + }, + { + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + }, + "text/plain": [ + "'The make and model of the vehicle is Chevrolet Colorado.'" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bot.answer(\"What is the make and model of the vehicle?\", user_id=\"tyler\")" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "17CUi5TXBFSB", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 71 + }, + "id": "17CUi5TXBFSB", + "outputId": "852635cc-01a4-4a02-d07d-4a48eabafbba" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "21:20:54 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:20:55 httpx INFO HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n" + ] + }, + { + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + }, + "text/plain": [ + "'The vehicle is from the year 2022.'" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bot.answer(\"What year is it?\", user_id=\"tyler\")" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "N4IV1bLTCj1N", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "N4IV1bLTCj1N", + "outputId": "e456deb7-c15d-4a88-ad31-27782be58f72" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Starting chat session with GPT4. Type 'exit' or 'quit' to end the session.\n", + "\n", + "You: What is the towing capacity of the truck?\n", + "21:22:10 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:22:14 httpx INFO HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", + "\n", + "Assistant: The towing capacity of the truck varies depending on the specific model and engine. The 2.5L DOHC I-4 engine has a maximum towing weight rating of 3,500 lbs, the 3.6L DOHC V6 engine can tow up to 7,000 lbs, and the Duramax 2.8L Turbo-Diesel I-4 engine has a maximum towing weight rating of 7,700 lbs. You should always check the specific towing capacity of your vehicle and never exceed it, as this can lead to vehicle damage or unsafe driving conditions.\n", + "\n", + "You: Is it generally safe to drive? What safety features are available?\n", + "21:22:28 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:22:39 httpx INFO HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", + "\n", + "Assistant: Yes, it's generally safe to drive the 2022 Chevrolet Colorado, but keep in mind that safety also depends on the driver's attentiveness and other factors like road conditions. This particular model comes with various safety features such as:\n", + "\n", + "1. Electronic Stability Control System and Traction Control - this system helps the driver maintain control of the vehicle during tricky driving conditions such as rainy or icy roads.\n", + "2. Hill Start Assist - this feature ensures the vehicle doesn't roll backward when you're on a hill and switching your foot from the brake pedal to the gas pedal.\n", + "3. Hitch Guidance - this feature assists with dynamic trailering and towing tasks.\n", + "4. An integrated trailer brake controller (with available Duramax 2.8L Turbo-Diesel I-4 engine or with available Trailering Package with 3.6L V6 engine).\n", + "5. Teen Driver technology - this feature allows parents to set speed and volume limits for their young drivers.\n", + "6. Tire Pressure Monitoring System with Tire Fill Alert.\n", + "7. The Recovery Hooks on 4x4 models.\n", + "8. The vehicle also includes various airbags: dual-stage frontal airbags for both driver and front passenger seat. Seat-mounted side-impact airbags for driver and front passenger; head-curtain airbags for front and rear outboard seating positions.\n", + "\n", + "However, it's essential to remember that safety features are not a substitute for the driver's responsibility to operate the vehicle safely. It's also crucial always to use seat belts and the correct child restraints for a child’s age and size.\n", + "\n", + "You: Do you know if it's better than the 2021 version of the truck?\n", + "21:22:57 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:23:03 httpx INFO HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", + "\n", + "Assistant: As a chatbot, I don't have personal opinions, but I can share that the 2022 Chevrolet Colorado continues to offer the same strong performance, versatility, and wide range of configurations that made the 2021 model popular. However, specific improvements or changes may vary based on the trim level or optional packages. It's also important to note that 'better' can depend on your personal needs and preferences. If you are comparing the 2021 and 2022 models, consider factors such as performance, fuel economy, safety features, technology, and price to determine which is better for your needs.\n", + "\n", + "You: Got it. Thank you. That's all for today.\n", + "21:25:32 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "21:25:34 httpx INFO HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", + "\n", + "Assistant: You're welcome! If you have any more questions in the future, don't hesitate to ask. Have a great day!\n", + "\n", + "You: quit\n", + "\n", + "Ending chat session...\n" + ] + } + ], + "source": [ + "# NBVAL_SKIP\n", + "bot.chat(user_id=\"tyler\")" + ] + }, + { + "cell_type": "markdown", + "id": "SHg3tFa2u0Nh", + "metadata": { + "id": "SHg3tFa2u0Nh" + }, + "source": [ + "## 6. Summary & Next Steps\n", + "\n", + "In this notebook, we set up a **basic** for a Role-Based RAG system:\n", + "\n", + "1. **Users** (with `roles`) stored in Redis via JSON.\n", + "2. **Documents** (with `allowed_roles`) loaded, parsed, embedded and also stored in Redis.\n", + "3. A user search pipeline that honors user roles when retrieving documents.\n", + "\n", + "\n", + "This approach ensures that **only documents** whose roles match the user’s roles are returned.\n", + "\n", + "\n", + "With these building blocks in place, you can integrate an LLM to supply a context from the returned docs, producing a robust retrieval-augmented generation pipeline with role-based access controls.\n" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "gpuType": "T4", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/python-recipes/RAG/resources/2022-chevy-colorado-ebrochure.pdf b/python-recipes/RAG/resources/2022-chevy-colorado-ebrochure.pdf new file mode 100644 index 00000000..620f0143 Binary files /dev/null and b/python-recipes/RAG/resources/2022-chevy-colorado-ebrochure.pdf differ diff --git a/python-recipes/agents/00_langgraph_redis_agentic_rag.ipynb b/python-recipes/agents/00_langgraph_redis_agentic_rag.ipynb index e405fcab..f00a37ef 100644 --- a/python-recipes/agents/00_langgraph_redis_agentic_rag.ipynb +++ b/python-recipes/agents/00_langgraph_redis_agentic_rag.ipynb @@ -1,676 +1,674 @@ { - "cells": [ - { - "cell_type": "markdown", - "id": "1VK8QKOVG2Ek", - "metadata": { - "id": "1VK8QKOVG2Ek" - }, - "source": [ - "![Redis](https://redis.io/wp-content/uploads/2024/04/Logotype.svg?auto=webp&quality=85,75&width=120)\n", - "\n", - "# Agentic RAG with LangGraph and Redis\n", - "\n", - "\"Open\n", - "\n", - "This notebook demonstrates the implementation of a Retrieval Agent using LangGraph and LangChain components. It showcases a flexible question-answering system that combines document retrieval with language model generation. The system uses an LLM with access to a retriever tool, making decisions about when to retrieve information from an index. Redis is utilized as a vector store for efficient document retrieval and embedding storage. Key features include adaptive query rewriting, document relevance assessment, and multi-step processing. The notebook illustrates how LangGraph can be used to create a sophisticated workflow for handling complex queries, integrating retrieval, reasoning, and generation capabilities in a single system.\n", - "\n", - "[Retrieval Agents](https://python.langchain.com/docs/tutorials/qa_chat_history/#agents) are useful when we want to make decisions about whether to retrieve from an index.\n", - "\n", - "To implement a retrieval agent, we simply need to give an LLM access to a retriever tool.\n", - "\n", - "We can incorporate this into [LangGraph](https://langchain-ai.github.io/langgraph/).\n", - "\n", - "![agentic_rag.png]()" - ] - }, - { - "cell_type": "markdown", - "id": "425fb020-e864-40ce-a31f-8da40c73d14b", - "metadata": { - "id": "425fb020-e864-40ce-a31f-8da40c73d14b" - }, - "source": [ - "## Setup\n", - "\n", - "First, let's download the required packages and set our API keys:" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "969fb438", - "metadata": { - "id": "969fb438" - }, - "outputs": [], - "source": [ - "# NBVAL_SKIP\n", - "%%capture --no-stderr\n", - "%pip install -U --quiet langchain-community tiktoken langchain-openai langchainhub langchain-redis langchain langgraph langchain-text-splitters" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "e4958a8c", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cells": [ + { + "cell_type": "markdown", + "id": "1VK8QKOVG2Ek", + "metadata": { + "id": "1VK8QKOVG2Ek" + }, + "source": [ + "![Redis](https://redis.io/wp-content/uploads/2024/04/Logotype.svg?auto=webp&quality=85,75&width=120)\n", + "\n", + "# Agentic RAG with LangGraph and Redis\n", + "\n", + "\"Open\n", + "\n", + "This notebook demonstrates the implementation of a Retrieval Agent using LangGraph and LangChain components. It showcases a flexible question-answering system that combines document retrieval with language model generation. The system uses an LLM with access to a retriever tool, making decisions about when to retrieve information from an index. Redis is utilized as a vector store for efficient document retrieval and embedding storage. Key features include adaptive query rewriting, document relevance assessment, and multi-step processing. The notebook illustrates how LangGraph can be used to create a sophisticated workflow for handling complex queries, integrating retrieval, reasoning, and generation capabilities in a single system.\n", + "\n", + "[Retrieval Agents](https://python.langchain.com/docs/tutorials/qa_chat_history/#agents) are useful when we want to make decisions about whether to retrieve from an index.\n", + "\n", + "To implement a retrieval agent, we simply need to give an LLM access to a retriever tool.\n", + "\n", + "We can incorporate this into [LangGraph](https://langchain-ai.github.io/langgraph/).\n", + "\n", + "![agentic_rag.png]()" + ] + }, + { + "cell_type": "markdown", + "id": "425fb020-e864-40ce-a31f-8da40c73d14b", + "metadata": { + "id": "425fb020-e864-40ce-a31f-8da40c73d14b" + }, + "source": [ + "## Setup\n", + "\n", + "First, let's download the required packages and set our API keys:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "969fb438", + "metadata": { + "id": "969fb438" + }, + "outputs": [], + "source": [ + "%pip install -q langchain-community tiktoken langchain-openai langchainhub \"langchain-redis>=0.2.0\" langchain langgraph langchain-text-splitters bs4" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "e4958a8c", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "e4958a8c", + "outputId": "276c5d89-a4d7-4c79-d307-b619a5489830" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OPENAI_API_KEY:··········\n" + ] + } + ], + "source": [ + "import getpass\n", + "import os\n", + "\n", + "\n", + "def _set_env(key: str):\n", + " if key not in os.environ:\n", + " os.environ[key] = getpass.getpass(f\"{key}:\")\n", + "\n", + "\n", + "_set_env(\"OPENAI_API_KEY\")" + ] + }, + { + "cell_type": "markdown", + "id": "Po4K08Uoa5HJ", + "metadata": { + "id": "Po4K08Uoa5HJ" + }, + "source": [ + "### Setup Redis" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "VLy0onoAa7KI", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "VLy0onoAa7KI", + "outputId": "b346e76e-e87d-437f-c9fa-78647db77f4e" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb jammy main\n", + "Starting redis-stack-server, database path /var/lib/redis-stack\n" + ] + } + ], + "source": [ + "# NBVAL_SKIP\n", + "%%sh\n", + "curl -fsSL https://packages.redis.io/gpg | sudo gpg --dearmor -o /usr/share/keyrings/redis-archive-keyring.gpg\n", + "echo \"deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb $(lsb_release -cs) main\" | sudo tee /etc/apt/sources.list.d/redis.list\n", + "sudo apt-get update > /dev/null 2>&1\n", + "sudo apt-get install redis-stack-server > /dev/null 2>&1\n", + "redis-stack-server --daemonize yes" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "7c2KKPhOh4zM", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "7c2KKPhOh4zM", + "outputId": "0e314576-b34e-4881-ddf0-80d686810091" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Connecting to Redis at: redis://localhost:6379\n" + ] + } + ], + "source": [ + "# Use the environment variable if set, otherwise default to localhost\n", + "REDIS_URL = os.getenv(\"REDIS_URL\", \"redis://localhost:6379\")\n", + "print(f\"Connecting to Redis at: {REDIS_URL}\")" + ] + }, + { + "cell_type": "markdown", + "id": "c74e4532", + "metadata": { + "id": "c74e4532" + }, + "source": [ + "## Retriever\n", + "\n", + "First, we index 3 blog posts. For this we setup a retriever using Redis as a vector store." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "e50c9efe-4abe-42fa-b35a-05eeeede9ec6", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "e50c9efe-4abe-42fa-b35a-05eeeede9ec6", + "outputId": "f3ab6120-eb1e-4de8-dcc6-0abb7fe9201b" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:langchain_community.utils.user_agent:USER_AGENT environment variable not set, consider setting it to identify your requests.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "18:31:28 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "18:31:28 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "18:31:30 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n" + ] + } + ], + "source": [ + "from langchain_community.document_loaders import WebBaseLoader\n", + "\n", + "from langchain_redis import RedisVectorStore\n", + "from langchain_openai import OpenAIEmbeddings\n", + "from langchain_text_splitters import RecursiveCharacterTextSplitter\n", + "\n", + "urls = [\n", + " \"https://lilianweng.github.io/posts/2023-06-23-agent/\",\n", + " \"https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/\",\n", + " \"https://lilianweng.github.io/posts/2023-10-25-adv-attack-llm/\",\n", + "]\n", + "\n", + "docs = [WebBaseLoader(url).load() for url in urls]\n", + "docs_list = [item for sublist in docs for item in sublist]\n", + "\n", + "text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(\n", + " chunk_size=100, chunk_overlap=50\n", + ")\n", + "doc_splits = text_splitter.split_documents(docs_list)\n", + "\n", + "# Add to document chunks to Redis\n", + "vectorstore = RedisVectorStore.from_documents(\n", + " doc_splits,\n", + " OpenAIEmbeddings(),\n", + " redis_url=REDIS_URL,\n", + " index_name=\"rag-redis\"\n", + ")\n", + "# get RedisVectorStore as a retriever\n", + "retriever = vectorstore.as_retriever()" + ] + }, + { + "cell_type": "markdown", + "id": "225d2277-45b2-4ae8-a7d6-62b07fb4a002", + "metadata": { + "id": "225d2277-45b2-4ae8-a7d6-62b07fb4a002" + }, + "source": [ + "Then we create a retriever tool." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "0b97bdd8-d7e3-444d-ac96-5ef4725f9048", + "metadata": { + "id": "0b97bdd8-d7e3-444d-ac96-5ef4725f9048" + }, + "outputs": [], + "source": [ + "from langchain.tools.retriever import create_retriever_tool\n", + "\n", + "retriever_tool = create_retriever_tool(\n", + " retriever,\n", + " \"retrieve_blog_posts\",\n", + " \"Search and return information about Lilian Weng blog posts on LLM agents, prompt engineering, and adversarial attacks on LLMs.\",\n", + ")\n", + "\n", + "tools = [retriever_tool]" + ] + }, + { + "cell_type": "markdown", + "id": "fe6e8f78-1ef7-42ad-b2bf-835ed5850553", + "metadata": { + "id": "fe6e8f78-1ef7-42ad-b2bf-835ed5850553" + }, + "source": [ + "## Agent State\n", + "\n", + "We will define a graph.\n", + "\n", + "A `state` object that it passes around to each node.\n", + "\n", + "Our state will be a list of `messages`.\n", + "\n", + "Each node in our graph will append to it." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "0e378706-47d5-425a-8ba0-57b9acffbd0c", + "metadata": { + "id": "0e378706-47d5-425a-8ba0-57b9acffbd0c" + }, + "outputs": [], + "source": [ + "from typing import Annotated, Sequence, TypedDict\n", + "\n", + "from langchain_core.messages import BaseMessage\n", + "\n", + "from langgraph.graph.message import add_messages\n", + "\n", + "\n", + "class AgentState(TypedDict):\n", + " # The add_messages function defines how an update should be processed\n", + " # Default is to replace. add_messages says \"append\"\n", + " messages: Annotated[Sequence[BaseMessage], add_messages]" + ] + }, + { + "cell_type": "markdown", + "id": "dc949d42-8a34-4231-bff0-b8198975e2ce", + "metadata": { + "id": "dc949d42-8a34-4231-bff0-b8198975e2ce" + }, + "source": [ + "## Nodes and Edges\n", + "\n", + "We can lay out an agentic RAG graph like this:\n", + "\n", + "* The state is a set of messages\n", + "* Each node will update (append to) state\n", + "* Conditional edges decide which node to visit next\n", + "\n", + "![langgraph.png]()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "278d1d83-dda6-4de4-bf8b-be9965c227fa", + "metadata": { + "id": "278d1d83-dda6-4de4-bf8b-be9965c227fa" + }, + "outputs": [], + "source": [ + "from typing import Annotated, Literal, Sequence, TypedDict\n", + "\n", + "from langchain_core.messages import BaseMessage, HumanMessage\n", + "from langchain_core.output_parsers import StrOutputParser\n", + "from langchain_core.prompts import PromptTemplate, ChatPromptTemplate\n", + "from langchain_openai import ChatOpenAI\n", + "# NOTE: you must use langchain-core >= 0.3 with Pydantic v2\n", + "from pydantic import BaseModel, Field\n", + "\n", + "\n", + "from langgraph.prebuilt import tools_condition\n", + "\n", + "### Edges\n", + "\n", + "\n", + "def grade_documents(state) -> Literal[\"generate\", \"rewrite\"]:\n", + " \"\"\"\n", + " Determines whether the retrieved documents are relevant to the question.\n", + "\n", + " Args:\n", + " state (messages): The current state\n", + "\n", + " Returns:\n", + " str: A decision for whether the documents are relevant or not\n", + " \"\"\"\n", + "\n", + " print(\"---CHECK RELEVANCE---\")\n", + "\n", + " # Data model\n", + " class grade(BaseModel):\n", + " \"\"\"Binary score for relevance check.\"\"\"\n", + "\n", + " binary_score: str = Field(description=\"Relevance score 'yes' or 'no'\")\n", + "\n", + " # LLM\n", + " model = ChatOpenAI(temperature=0, model=\"gpt-4-0125-preview\", streaming=True)\n", + "\n", + " # LLM with tool and validation\n", + " llm_with_tool = model.with_structured_output(grade)\n", + "\n", + " # Prompt\n", + " prompt = PromptTemplate(\n", + " template=\"\"\"You are a grader assessing relevance of a retrieved document to a user question. \\n\n", + " Here is the retrieved document: \\n\\n {context} \\n\\n\n", + " Here is the user question: {question} \\n\n", + " If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant. \\n\n", + " Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question.\"\"\",\n", + " input_variables=[\"context\", \"question\"],\n", + " )\n", + "\n", + " # Chain\n", + " chain = prompt | llm_with_tool\n", + "\n", + " messages = state[\"messages\"]\n", + " last_message = messages[-1]\n", + "\n", + " question = messages[0].content\n", + " docs = last_message.content\n", + "\n", + " scored_result = chain.invoke({\"question\": question, \"context\": docs})\n", + "\n", + " score = scored_result.binary_score\n", + "\n", + " if score == \"yes\":\n", + " print(\"---DECISION: DOCS RELEVANT---\")\n", + " return \"generate\"\n", + "\n", + " else:\n", + " print(\"---DECISION: DOCS NOT RELEVANT---\")\n", + " print(score)\n", + " return \"rewrite\"\n", + "\n", + "\n", + "### Nodes\n", + "\n", + "\n", + "def agent(state):\n", + " \"\"\"\n", + " Invokes the agent model to generate a response based on the current state. Given\n", + " the question, it will decide to retrieve using the retriever tool, or simply end.\n", + "\n", + " Args:\n", + " state (messages): The current state\n", + "\n", + " Returns:\n", + " dict: The updated state with the agent response appended to messages\n", + " \"\"\"\n", + " print(\"---CALL AGENT---\")\n", + " messages = state[\"messages\"]\n", + " model = ChatOpenAI(temperature=0, streaming=True, model=\"gpt-4-turbo\")\n", + " model = model.bind_tools(tools)\n", + " response = model.invoke(messages)\n", + " # We return a list, because this will get added to the existing list\n", + " return {\"messages\": [response]}\n", + "\n", + "\n", + "def rewrite(state):\n", + " \"\"\"\n", + " Transform the query to produce a better question.\n", + "\n", + " Args:\n", + " state (messages): The current state\n", + "\n", + " Returns:\n", + " dict: The updated state with re-phrased question\n", + " \"\"\"\n", + "\n", + " print(\"---TRANSFORM QUERY---\")\n", + " messages = state[\"messages\"]\n", + " question = messages[0].content\n", + "\n", + " msg = [\n", + " HumanMessage(\n", + " content=f\"\"\" \\n\n", + " Look at the input and try to reason about the underlying semantic intent / meaning. \\n\n", + " Here is the initial question:\n", + " \\n ------- \\n\n", + " {question}\n", + " \\n ------- \\n\n", + " Formulate an improved question: \"\"\",\n", + " )\n", + " ]\n", + "\n", + " # Grader\n", + " model = ChatOpenAI(temperature=0, model=\"gpt-4-0125-preview\", streaming=True)\n", + " response = model.invoke(msg)\n", + " return {\"messages\": [response]}\n", + "\n", + "\n", + "def generate(state):\n", + " \"\"\"\n", + " Generate answer\n", + "\n", + " Args:\n", + " state (messages): The current state\n", + "\n", + " Returns:\n", + " dict: The updated state with re-phrased question\n", + " \"\"\"\n", + " print(\"---GENERATE---\")\n", + " messages = state[\"messages\"]\n", + " question = messages[0].content\n", + " last_message = messages[-1]\n", + "\n", + " docs = last_message.content\n", + "\n", + " # Prompt\n", + " prompt = ChatPromptTemplate.from_messages(\n", + " [\n", + " (\n", + " \"system\",\n", + " \"You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Use three sentences maximum and keep the answer concise.\",\n", + " ),\n", + " (\"system\", \"Context: {context}\"),\n", + " (\"human\", \"Question: {question} \"),\n", + " ]\n", + " )\n", + "\n", + " # LLM\n", + " llm = ChatOpenAI(model_name=\"gpt-3.5-turbo\", temperature=0, streaming=True)\n", + "\n", + " # Chain\n", + " rag_chain = prompt | llm | StrOutputParser()\n", + "\n", + " # Run\n", + " response = rag_chain.invoke({\"context\": docs, \"question\": question})\n", + " return {\"messages\": [response]}" + ] + }, + { + "cell_type": "markdown", + "id": "955882ef-7467-48db-ae51-de441f2fc3a7", + "metadata": { + "id": "955882ef-7467-48db-ae51-de441f2fc3a7" + }, + "source": [ + "## Graph\n", + "\n", + "* Start with an agent, `call_model`\n", + "* Agent make a decision to call a function\n", + "* If so, then `action` to call tool (retriever)\n", + "* Then call agent with the tool output added to messages (`state`)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "8718a37f-83c2-4f16-9850-e61e0f49c3d4", + "metadata": { + "id": "8718a37f-83c2-4f16-9850-e61e0f49c3d4" + }, + "outputs": [], + "source": [ + "from langgraph.graph import END, StateGraph, START\n", + "from langgraph.prebuilt import ToolNode\n", + "\n", + "# Define a new graph\n", + "workflow = StateGraph(AgentState)\n", + "\n", + "# Define the nodes we will cycle between\n", + "workflow.add_node(\"agent\", agent) # agent\n", + "retrieve = ToolNode([retriever_tool])\n", + "workflow.add_node(\"retrieve\", retrieve) # retrieval\n", + "workflow.add_node(\"rewrite\", rewrite) # Re-writing the question\n", + "workflow.add_node(\n", + " \"generate\", generate\n", + ") # Generating a response after we know the documents are relevant\n", + "# Call agent node to decide to retrieve or not\n", + "workflow.add_edge(START, \"agent\")\n", + "\n", + "# Decide whether to retrieve\n", + "workflow.add_conditional_edges(\n", + " \"agent\",\n", + " # Assess agent decision\n", + " tools_condition,\n", + " {\n", + " # Translate the condition outputs to nodes in our graph\n", + " \"tools\": \"retrieve\",\n", + " END: END,\n", + " },\n", + ")\n", + "\n", + "# Edges taken after the `action` node is called.\n", + "workflow.add_conditional_edges(\n", + " \"retrieve\",\n", + " # Assess agent decision\n", + " grade_documents,\n", + ")\n", + "workflow.add_edge(\"generate\", END)\n", + "workflow.add_edge(\"rewrite\", \"agent\")\n", + "\n", + "# Compile\n", + "graph = workflow.compile()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "7b5a1d35", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 473 + }, + "id": "7b5a1d35", + "outputId": "7b95dcbe-5a26-42b5-9708-8a1020564622" + }, + "outputs": [ + { + "data": { + "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/4gHYSUNDX1BST0ZJTEUAAQEAAAHIAAAAAAQwAABtbnRyUkdCIFhZWiAH4AABAAEAAAAAAABhY3NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAA9tYAAQAAAADTLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkZXNjAAAA8AAAACRyWFlaAAABFAAAABRnWFlaAAABKAAAABRiWFlaAAABPAAAABR3dHB0AAABUAAAABRyVFJDAAABZAAAAChnVFJDAAABZAAAAChiVFJDAAABZAAAAChjcHJ0AAABjAAAADxtbHVjAAAAAAAAAAEAAAAMZW5VUwAAAAgAAAAcAHMAUgBHAEJYWVogAAAAAAAAb6IAADj1AAADkFhZWiAAAAAAAABimQAAt4UAABjaWFlaIAAAAAAAACSgAAAPhAAAts9YWVogAAAAAAAA9tYAAQAAAADTLXBhcmEAAAAAAAQAAAACZmYAAPKnAAANWQAAE9AAAApbAAAAAAAAAABtbHVjAAAAAAAAAAEAAAAMZW5VUwAAACAAAAAcAEcAbwBvAGcAbABlACAASQBuAGMALgAgADIAMAAxADb/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAHIAUADASIAAhEBAxEB/8QAHQABAAMAAwEBAQAAAAAAAAAAAAUGBwMECAIBCf/EAFcQAAEEAQIDAgcICw0GBQUAAAEAAgMEBQYRBxIhEzEUFSIyQVGUCBZCVVZh0dMXIzZUcXR1k7K01CYzNDdSU3KBkZWxs9IkNWJkocEJGEN2pESiwsPw/8QAGgEBAQADAQEAAAAAAAAAAAAAAAECAwQFBv/EADcRAQABAgEHCgUDBQEAAAAAAAABAhEDEiExUWFx0QQTFCMzQVKRocEFY6Kx8CJikhUyQlOB4f/aAAwDAQACEQMRAD8A/qmiIgIiICIiAiIgIiICIiAiKGzWYsx2osZi2Mlys7DIHzNLoa0e+3aS7EE9ejWAgvIIBAa9zcqaZrm0CWllZDGXyPbGxve5x2A/rUe7VGGaSHZeiCPQbLPpUdFoHFTyixlmOz9zcntsntKG79NmR7cjBt08lo+ffcld8aUwjQAMPQAHQAVWfQt1sGNMzP5+alzP331YX44oe0s+lPfVhfjih7Sz6U96uF+J6HszPoT3q4X4noezM+hOp2+i5j31YX44oe0s+lPfVhfjih7Sz6U96uF+J6HszPoT3q4X4noezM+hOp2+hmPfVhfjih7Sz6U99WF+OKHtLPpT3q4X4noezM+hPerhfieh7Mz6E6nb6GZ2KmZx99/JVvVrL/5MMzXH/oV3FB3NDacyEfJYwONmb6OapHuOu/Q7bg79dwuk7F3dINNjGS28ji2DeXFzPM0kbf5UD3HmJH824kEdG8u2xZGHVmonPt4/m9LQtKLhp3IchUhs1pGzQTMD45Gno5p6grmWiYtmlBERQEREBERAREQEREBERAREQEREBERAREQEREBERAREQFV9BbZChczb9nT5S1JKHeqFjjHC35gGNadh05nOPpJNoVY4bjsNJVqLtxLj5JaUgI22McjmA/gIAI9YIK6Kc2FVMa48s/vEL3LOiIudENrDWOG0Bpy7n9QZCPGYim0OnsygkN3cGtAABLiXOAAAJJIAG5WXa691RpjS+mdN5zGxXsvSy+ehwzyMbcZJX3I7Vxi7Ayc7WkFsZaC8nyd9iFbuOWIxGc4YZinnMLmM9jnmEvqafjc++1wmYWSwhpDuaNwbJ06+Qeju44NbPEPUHCjF5TMYjUOfh0xr2lkqHhuNEOavYiB7CZJKrQC6UF8g25WueGb8oJ6ht2qvdDaC0RXxk2cy9nHsyNRt+ESYq4XMgPdJM0REwjv37UN22O+2y7equOeh9GW8VVymbAs5am6/j4adWe265A0s3dEIWP5z5bTyt3JG7gNgSMY4rZjUWvNTyx2cRxCj0hkNPjxLjcBVnpOnyDnyslbfc0tdDs0Q8rZnNjLXOJ3O4TghpPNQar4H2clgMnTbhuHtnGW5LtKSMVLbJKkfZuLhs1xEcnL/ACmgkbjqg0bSHujMNq3jBqHQjKORry49tXwW0/G3A2w6SKSWTtCYQ2ANDAGl7hzknlJ7lrqw/C2Mhof3TGt33tPZqzjdW18T4vytCi+xUjdAyWOVs8jRtCQXNPlbAgrcEBERBWNLbYzUGoMK3YQQyR367Bv5Ec/PzN/OxzH5g4D0KzqsYZvheu9SXGg9nDXqY/cjYF7O1mdsfT0sM/sPzqzrox/777I+0LOkREXOgiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAq3kIZdNZazmK0D56FsNOQghY58rXtAa2djRvzHlAa5oG5axpb1byusiLZRXkTsnSsK1qHSOkuKeIqtzWJxOqcYx/bVxcgjtRB+xbzN3BG+xI3Hzquf+WzhPtt9jfS23q8UQf6VaL+h8XcuS3IWz4y7KS6SxjbD67pCRtu8MIa87bdXA9w9QXXOiZ/RqjPNHq7aI/wCMS2ZGFOiq2+OH/hmdXS3BrQeh8qMnp7R2DwmRDHRi3j8fFDLynvbzNaDsdh0VyVX95Nj5VZ789D9UnvJsfKrPfnofqk5vD8fpJaNa0Isr4i4/K6Xp4OWjqnMF9zNUaEvbSwkdlLM1j9vtY8rYnb5/QVbPeTY+VWe/PQ/VJzeH4/SS0a09lMXTzeNt47IVYbtC3E6CxWsMD45Y3AhzHNPQggkEH1qhR+5v4UwyNezhxpdj2kOa5uJgBBHcQeVT/vJsfKrPfnofqk95Nj5VZ789D9UnN4fj9JLRrQdX3OvC2jahs1+HemILELxJHLHioGuY4HcEEN6EEbq0ZnUgr2TjMaI7uce3dtbm8mEHukmI8xn/AFdts3crpnQjZgG289nLce2xYbxhDvwmIMP/AFU1iMJQwNTwbH1IqkO5cWxt25nHvc497ifST1KWwqM98qfTj+aTND4wGFjwONZVY8zSF75Zp3DZ0sr3Fz3n8JJ6egbDuCkURaaqpqmap0ygiIsQREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERBnvGcgY3Su5I/dPiu78Zb84WhLPeM+/i3Su233T4rztvvlvrWhICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiDPONI3xmlPKDf3UYrvH/MtWhrPONO3izSm/T91GK9G/8A9S1aGgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiruoNT2KN0Y7F047+S7MTSCeUxQwsJIaXvDXHckHZoB32O+w6qK8e6w+8MH7XN9Wumnk9dUXzRvmFsu6KkePdYfeGD9rm+rTx7rD7wwftc31az6LXrjzgs80e7M913a4M65xGlr2hZLtSC3RzlPKNyTWNtsikDns5DC7kIe1zd9z6D6dl6c4Pa8u8UOGen9V38HJpufLV/Cm42WftnRRlx7N3Pyt35mcj+4bc23XbdY/7oPgPa90XU07DqCnia7sNfbaZLXtS88sR27WAns+jXgN6+ggFaxBltWVYI4YcZgYYY2hjI47MrWtaBsAAIugA9CdFr1x5wWXpFSPHusPvDB+1zfVp491h94YP2ub6tOi16484LLuipbNR6prHtLOIxlmFvV0dO48SkenlD4w0n1Alo+cK1YvJ1szjq96pJ2tawwSMcQWnY+sHqD6CD1B6FasTBrw4vOjZnLO0iItCCIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgocB319qbf0R1B/VyOUyoav932p/6FT9BymV69f+O6n7QynSIiLWxEREBF0cvnMfgYIZsldgoxTTx1Y32JAwPlkcGRxt373OcQAB1JK7yAutwuJOjofmuXQNvQBalAXZXV4W/cdF+O3v1uZTF7Cd8fape5bURF5qCIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgodf7vtT/wBCp+g5TKhq/wB32p/6FT9BymV69f8Ajup+0MqtLzrx/uZTUur72E0tZ1K3NYXCeMbUmO1CcTRpte6TsnvDY3meUmN/kEcnK3qRuqjk+JF/U9ThjZ1pqfUGmtPZnRTMk27pp8sMlzMERl7XGFpd0Y7nZH5ri4gg7bL0Jq/g1o7Xuchy+dwrb1+ODwUyCxLE2aHmLuymYx4bMzck8kgc3qenUrN+JXud5bcWmqmjcJhfFuHqS044shnMrQmhjc8PDWTVpCXRgjzHg7dOUtA2XNMTpYszxF7idnZuHXD+4chDkWaRGdyMMmpJ8RbtWHWDGe0sNimlJY3lLohygGXr0aGq0eJ+IEGouFekNX6oyFQ5C9mWTvw2Xe6axTjgEsEc1gRxF8jduUyBjXbDcEFxK0XB+59xmV4eaYwvECV+rc5hRK6PMttWILMRe9x5I52yCblDS2Pq/dwYC7qrhjOFelsO/TLqeKbA7TYnGL5ZpP8AZ+2aWynq7yy4E7l/Mdzv39UimR5g1hUtai4f2MJl85mrsGneK1PD1Lj8lM2z4K6es5okla4Oe5gncGvcS5pa0g7gFevMJiYsDiamPhntWYq0YjbLesvsTPA9L5HkuefncSVXL/CDSGUwWosNbw0djG6gunJZKCSaQ9tZIjHag827HDsoyOQt2LQRseqndM6aoaQwdXEYuOWKjWDhG2exJYeN3Fx3kkc57upPeSsoiwlF1eFv3HRfjt79bmXaXV4W/cdF+O3v1uZZYvYTvj7VL3LaiIvNQREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQERQmX1RDSlt0sfF45zdeOGV+KqzxtmYyV5YyR/O4BjPJedz1Ijfyh5HKQr1f7vtT/wBCp+g5TKh7mntQYvN5PNQugzXhrww0Imis6KFgIi5HOcQ9/V3NzFoO425eXZ3z42z3yNyntVL69evFsSIqiY0RGeYjRFu+WUxdNIoTxtnvkZlfaqX16eNs98jMr7VS+vTI/dH8o4lk2iz3XnGOtwxq42xqfCXsRDkrsePqvmsVD2k7/Nb5Mx2HTq47NHpIVn8bZ75GZX2ql9emR+6P5RxLJtFCeNs98jMr7VS+vTxtnvkZlfaqX16ZH7o/lHEsm1W+HFTOVtLxS0L0FuKbN2ZJYMgzlEFXwiVsjIXRgHm5h2gL+bclzdwC0t7bbmo7m8UOl7FKV3QTX7VfsmfORHI9xA9QHX1q1adwrNPYWrj2Sun7IEulcNi97iXOdt6N3Enb51qxpinCmi8XmYnNMToidW80Q6NfWEcc1avlcfcw1m1ckp1mTsErJi0bteJIi5jWvb1aHlrj1HKCNlOV7EVuBk0ErJoZBzMkjcHNcPWCO9cir7NEY2lJSfixLg20/CDFXxjzBWc6brI58Dftcjufyw5zSQ7cg+U7m81isCKtw2NRYZkTLkFfO1YMe6Sa5UPY2prLT0Y2uQWbPb6e1Gzhttsd293FaqxmXtspRWBDkzUivPxtj7Xaihk81z4j5TeoLT06EEd4QS6IiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgLguX62PZG+1YirMkkZCx0zwwOe4hrGDfvcSQAO8k7KJzGoJ2z28Zh67bmbZUFmNtkSR1W7vLG88waQDuHnlG7tmHp3LnradhbkJrtyaTI2HTtsQizs6Om5sZj+0N28jcOfu7q49o4FxGwAdGKfKapZDJEyXCYmWOxFMyzGWXnnfkjfHs7aIbbvHMC7qzdrDuFN4/HwYypHXrsLY42tYC95e9wa0NBc5xLnHZoG7iSdupXZRAREQEREHhz3e/ufeJXGfV+mruPy2BpaWrWK+Mx9axbnbP4VYka100jWwlrRzco6OJ5WA7bkheteEmJ1RgeG2nsZrO1Svamp1W17lrHSPfDMWEta8Oe1riSwNLt2jyifwqK41BpxmlOYkD30YruG/Xwlq0NAREQEREBERAXRzWDoaixtjH5OpFdp2GGOSKVu4c0kH+rqAdx3EA94XeRBXbOEzGNFybDZUzPkFdsNDKjtK0LY+knI9oEodI3vL3PAc0EN6uDvqTV8WOndHmKVjDtkyDMfUnm5ZIrbnjeN7TGXcgcfI+2Bh5xtseZhdYEQfgIcAQQQeoIX6q/Fouljp4ZMM9+BYL0l+xXx7I2Q25JP33tWFpB5j5Zc3ldzdd+rt/mrm8rjPAK2bx/byzeEGXI4tu9SFsflMMjXO7RhezfYAPaHNILurOYLEi6mKy1HO42tkcZcr5HH2oxLBbqStlimYRuHMe0kOBHcQdl20BERAREQEREBERAXxNMyBhfI4MaPSV9qNz/APu1/wDSH+KDn8a1Pvhn9qeNan3wz+1YDrjjpjNC8UtPaPu0rsgylKe2+3Wo2bHZFr2NjaGxRO5uYudzO38jlHNtztKktUcdNDaMz8mGzGfjqX4RGbDRBLJHVEnmdvKxhZDzejtHN3B37kG2eNan3wz+1PGtT74Z/asW1lxu0ToDKjG53ONqXBCLEkcVeacQRE7CSZ0bHCJh2PlPLR07104uKJbxXzOCsTUI9OUdN1s42/ueYmSWdryX83L2YZCHDYes7kdwbo/L02NLnWWAD51FxS5LUNlkjO0xOLhnnilikaDNeYGcjHse1/2pnMXOB848rD5IJBzbQPFDTXE6KzNp6/JeZXbG6QSVJoAGv5ix7e1Y3na7lOzm7g7dFr+L/wB3V/6AQfmKxVTB42rj6FdlWlWjbFDDGNmsaBsAu2iICIiAiIgIiIM+4yuc3HaV5QSffPix037vCG79y0FZ5xq28WaU32H7qMV3/jLVoaAiIgIiICIiAiIgIiICIiCDyWl2T2rGQx9mXGZd1OSpFYY97oW8zucPfX5hHI4P3IcRzAOeA4B7t+GXU02BFg6ghZTpQisxuWjP2ieSTyXbs3LoQ1+3nEt2e0858oNsSICKCi007E2xLhZ20IZ7z7l+tI10rLBe3Z/Ju77U7mDX+T5JPOS0l5cuXB6jjyjYK9qE4vMvrixLibErHTxN5iwnySQ5vMCOYEg9PWgmEREBERAREQFG5/8A3a/+kP8AFSS6OZgks0XMjbzvJHQfhQeb+K8t/S/GDQerm4PLZvD1KGSx9rxNTfbmgkm8HdEXRs3dynsnDmA2B2323VE1BBmtJ4vjJpQ6MzmoMhrO5atYm7SpGWrOy1VjhayabzYeyc1wIkLfJG7d916r8TXP5h39oTxNc/mHf2hB5SxGNznBebXWLyelc3q+xqDGUGUbuJpOtRWZIqDKr4JnjpEA9jnAv2byyE777hcmh9A5fh/qDHYvU2nslqDG2+HFXCWX0Ie3hM9ft3TVXOBHKXMkDWEkBxOwO69Quxs77ba/ZtMrWdqY+0HOBvsDy777b79fWF2PE1z+Yd/aEGB+53sZ+tk81h21tRs0FRq1m4d2raRrXq8nliSs0kB0sTGhmz3Akb7czgN16gxf+7q/9AKt+Jrn8w7+0KzY+N0NKFjxyua0AhB2EREBERAREQEREGecaXcuM0p1Lf3UYodPxlq0NZ5xpJGN0ptt91GK7wPvlvrWhoCIiAiIgIiICIiAiIgIiICIiAo7NYWLM05ou2mpWXROiiv1CGWK/MWndjiCO9jDsQWnlAcHDopFEEPBm3VMg2jlXV6k9mw6HHu7X+GAR9oQAe6QNEhLNyS2Jzh0B5ZhcF2my/Vlge57A9paJIncr2EjbmaR3EegqPwdq0x82Nux2HTVGsZHesviJvs5G7zbRhoaeYkOHI0A9w5SCgl0REBERAREQEREFer0yOIF62aFRoOMrxNvNk3sP2lmJjc3fowbgg7dS53q6WFZPV4wcO28QL+Q99+jWxTYytA3Itz9czyubLO4xFnabBjecOB9JkcPQtYQEREBERAREQEREBERBnfGrbxZpTckfuoxXcP+ZatEWd8a9vFmlN/lTiv1lq0RAREQEREBERAREQEREBERAREQEREBQmqcPPfqsu42vQk1BRD5MdNkGu7Njy3ZzS5nlNa8eSSN9uh5XcoBm0QdPEZiln8bBfx1mO3TmBMc0R3B2JBHzEEEEHqCCD1C7ireIuNx2rMrhpskyeWyBk6dFtPsvB4DyskHaAcsm8oc8k+UDL13HKVZEBQuY1tp7T9oVsnnMdj7JHN2Nm0xj9vXyk77Lu5q47H4e9aYAXwQSStB9bWkj/BVHSVSOtgKUgHNPZiZPPM7q+aRzQXPcT1JJP8AV3dwXXg4VNVM116NixrlJfZS0d8qcR7bH9KfZS0d8qcR7bH9K5kW7msHVPnHBczh+ylo75U4j22P6U+ylo75U4j22P6VzInNYOqfOOBmfzq0X7l7S+J92dasWcrjDw2xsvjypPJajMMzi7miq7kkEsk84H4LP+IL+h/2UtHfKnEe2x/SuZE5rB1T5xwMzh+ylo75U4j22P6U+ylo75U4j22P6VzInNYOqfOOBmcP2UtHfKnEe2x/SpPDatwmopHx4vL0cjIxvO5lWwyRwbvtuQDvtv03XSVd13y09OW8swcl3FxuuV52jy2OYN9gfURu0juIcQdwVlGBhVzFNN4mdsT7QZpzNFREXmMRERAREQZ3xqO2M0p3fdTih1H/ADLVoizzjSXDGaU5d9/fRit9vV4S3daGgIiICIiAiIgIiICIiAiIgIiICIiAiIgrupbpxma05YfkbFWtLbdTfVir9rHZdJG4sD3d8fK5gId3bnY+d0sSruvbfi/Twt+H2sa2C7TkfNTh7Z7mCzHzRlv8l43Y494a9xHcrEgi9VfcxmPxOb9Aqvaa+5zFfikX6AVh1V9zGY/E5v0Cq9pr7nMV+KRfoBejg9jO/wBl7kkiLBtO+6ftXeFdjiRndJN0/pCOu8xTOyrZbNiwJxAyNsZja0Me8kCR727bblob5SszEI3lF54wvuqJNVOzWEp0MENStw1nJ43xRqavlKzzEBzMlkiYTE8czXAFjmuAdsTsV+aW486u07wE0HqfUmmI81lM3LiqFcUcmDNeNpjQJ3AwsbG8uO/ZblvXzwOqxyoHohFimW15qGpxW4b0tTYY6fiuxZOZxxmojNW5ooXktsRGuztWhgY9p5m8rnHoeXrXNP8Au0cHnc5hWtp4puCzN+KhTnh1FWmyTXSv5IpJqDfLjY5xbv5TnNDt3NGx2ZUD0cix/Ge6BfktNYCZunuTU+S1G/TU2C8N3NWeKR/hDzL2flMZDG6bfkG4LR033VNyvu2dPY7JXLDK+Jn01TvOoy2jqOqzJO5ZeyfNHjz5bow7cjdwc5o5g3YjdlQPSSrnEj+L/UX4hN+gVY1XOJH8X+ovxCb9ArpwO1o3x91jTDRkRF4yCIiAiIgzvjWN8ZpT/wB04n9ZatEWd8a/92aT/wDdOJ/WWrREBERAREQEREBERAREQEREBERAREQEREFc4iXPF+icxaORtYkQQGQ3aUPbTRAEElrPhH5vnVjVc4i3fF2hM9a8YWsV2NOR/h1KHtpoNh57GfCcPQFY0EXqr7mMx+JzfoFV7TX3OYr8Ui/QCsOqvuYzH4nN+gVXtNfc5ivxSL9AL0cHsZ3+y9ySWHUfc+X7XuZaXDXI5SvTzVVrZYcjTBmiisR2jYheA4NLmhwaCCBuN/wrcUVmIlGc6QwWuMlUylTW1bStKvYpmrGdOdu+Rz3Ah73Ola3lGxGzAHbH4RVDw3BnX32PtDaTy9jTjoNIZnD2KlynNOH2qlN55jIx0ezJSxrNmglpPNu4dF6CRSwzziDw1ta14g6Hy/aV/FOHjyUV6GR7myyNs1uyaIwGkHrvvuRsO7dVnhJw54g8N4cHpe1LpTJ6Rw+8EOUMcwyc1ZrSIWOj5RG17fIBeHkEN83c7raUS0XuMtxHBGHF8eMtr/wsOo2aYNfGfBhvSNZFYsgbbAuhgrs37/3zu36wHD/hXrvhhZbp3EP0rkdDsyclqC1kWT+Ma9aWYyyQcjW8j3AveGyF423G7TtstxRMmAVc4kfxf6i/EJv0CrGq3xJ3+x9qPbv8Xz7b/wBArowO1o3x91jTDR0Vbj1Nk6DGeONP2Yezxzrtq1i3i7XZK3zq8YAbPK8jq3aHyh06O2ae7jNWYfMWYatXIQOvy048gKEjuztNryHZkjoXbSMaSCPKaOoI7wQvGRLoiICIiDO+NWxx2kgSRvqnF9w/5hpWiLO+Muxg0ZGQSX6ox22x26h5d/8AitEQEREBERAREQEREBERAREQEREBERAREQVziNeGM0JnrbsrNghDTkeclXg7eStsP3xsfwiO/b0qxqu8RMh4q0Lnbgy0mCMFOSTxlDW8JfW2H74Ivhkd/L6VYkHTzNN2RxF6owgPngkiBPoLmkf91UNJXI7GBpwg8lmtCyCxA7o+GRrQHMcD1BB/tGxHQhXtQuY0Vp/UNgWMpg8bkZwOUS2qkcjwPVu4E7LqwcWmmmaK9C7HWRcP2K9GfJPCf3fF/pT7FejPknhP7vi/0rfzuDrnyjiZnMi4fsV6M+SeE/u+L/Sn2K9GfJPCf3fF/pTncHXPlHEzOZFXa/CnSI1vecdGVBAcdXDZ31ojTc7tZt2sj26SgbFzturXRj4KnPsV6M+SeE/u+L/SnO4OufKOJmcyLh+xXoz5J4T+74v9KfYr0Z8k8J/d8X+lOdwdc+UcTM5lXdd8t3T1vERnnvZSN1SvA0+W9zwQTt16AbuJ7gGklTn2K9GfJPCf3fF/pUphtKYTTrnOxWIo41728rnVKzIiRvvsS0Dpv1WUY+FRMVU3mY2RHvK5ozpVdLLYTH52lYp5GlXvVbELq80NiMPbJG7zmEHvB2G4+Zd1F5jFW7OjDFHZOHzGQw08lSOpDyS9vBXDD5LmQy8zA7bySQBuO/rsR+37Wp8W3L2IaVLORMbCcfTgkNaeQ9BMJHvJZv3ubtyj4J2842NEFdv66xmFdknZYWMRVoSwxPvXYSytJ2oHKWSdWkbnlJ3HKe/bcEz0ViKcyCORkhjdyP5HA8rvUfUeo6LkUHe0Thb8005otq2p7EVua1Re6rNNLF0jMkkRa54A6bOJBBIIIJCCr8Wz2mZ4bVvvjVMX/wBlO3N/+paIsg1th8o3ilw5p1s5JdeMzez3Z5SFkgr12VHV5IYuyEZAAtnldIXlpk6lzQGi+sz+YpujbktPyEzZF1SOTFWBZYyA/vdiXnEbmA9zmta/lPpc3ykFiRQ+L1diMzuK15nOLMlPspg6GQzM89gY8BxIHXoO7qOnVTCAiIgIiICIiAiIgIiICIiAiIgIiIK9xCuux2h85aZkbGIdDUkeL1Sv4RLBsPPbH8Mj1elWFVziLcGP0JnrJyNrECKnI/w6lD200Gw89jPhOHoCsaAiIgIiICIiCuxV+TiFanFK6O1xcLDdMu9U8sshEYZ6JBzkl3pBA9CsSruQrdjrrD3W1L8xlp2aj54pf9mhHNFIO0Z6XHkIa4d3lD4SsSAiIgIiICIiAiIgIi+ZJGQxvkke1kbAXOc47AAd5JQZ7BtmuP1mQAluntOtg59+naXrHO5v4Q2hET8z2rRFn/BuOTKYbK6snLjJqnISZODmBHLTDWxUwAerd4IopC30Olf3kknQEHVvYqllDXNynXtmtK2eAzxNf2UjfNe3ceS4egjqoetoyPFvqDF5PI42vDbktS1Wz9vHY5/Ojd2weWM38oNjLOU93QkGxIgrtGbU9F+Nr3oMfl2ySTi3fpudVMLACYS2B5fzE+a77YNjsQNiQ1jtdYy27GwW+2w2RvwSTxY/Js7GfljP2wHqWkt23OxPTyu7qrEviWJk8b45GNkjeC1zHDcOB7wQg+muD2hzSC0jcEelfqrkehqGNjaMI+bAdjQfj6sNB/LVrNJ3a5tY7w8zD1aSzu3b5vRfMtvUmDgLpaUWoq1bHNc59KRsF21badntZC/aINc3ygTK3YjbqDuAsqKKx+psfkb8uPZMYcjDDFPLTnaWSxsk80kHv6gjcbgEEd6lUBERAREQEREBERAREQV3iJd8XaFztrxjZxHZU5H+H04O3mg2Hnsj+ER6B6VYlXeIlw0NC52yMhaxRiqSP8NpQdvNBsPPZH8Jw9A9KsSAiIgIiICIiCB1njX3MS23XqWL+Qxkov06tayK755WA7R858nZ4LmEO8nyupHeJmtYZbrxzRndkjQ4bEHv+cdFyqrk1tC3HEijjtOW5dw2OKRr4700znPc4jdgZK6Tfchm0m5JeZfJC0IiICIiAiIgIiICz3iXNJq67W0BReebKR9tmpoz1q4zcteN/Q+dwMLO47ds8dYiFYdYavZpiCvBXrHJ5y850eOxcb+R1h4A3LnbHkibuC+QghoPc5xa13zonSb9MUJpb1luSz2QeLOTyIj7MTzbAbMbueSJgAYxm5Ia0blzi5zgsEUTIImRxsbHGwBrWMGwaB3AD0BfaIgIiICIiAiIgj89p/GapxM+My9CvksfPy9pWsxh7HFrg5p2PpDmtcD3ggEbEBdKxjsvj7ctjG3BeZZuQyS1Mk/ljrwbBsogcxhcDt5Ya/mBcC3dgdu2dRB0sRlo8zVdPHDYrlkr4XxWoXRSNcxxaeh7xuNw4btc0hzSQQT3VBZKlJDqrEZCri/CpJWy07lwWjF4PBymRrjH3SntGMaPSztHkEAvBnUBERAREQEREBERBXeIlvwHQudseH28X2VOR3htCHtp4dh57GfCcPQFYlXeIlvwHQudseH28X2VOR3htCHtp4dh57GfCcPQFYkBERAREQEREBfjmhzSDvsRt0OxVJtZXK6jv3WUMi/DY+pM+sJIIo3zTyN6Pd9sa5rWh3QAAk8pJPXZcHifO/LTMezUf2ddsclm36qoif8AvtErZ5Gg/wDEJkyHHfReg9MV7D9IRZoY69nM71uZKJ47Jh5Cxhhaxz+YF28jwyMu5T2jXe91551/7lrSfE/MVctqOxcu5atI2aO/DDVrT87SCC6SKFrnbEDziVpHifO/LTMezUf2dXovzI+rgW2r8ioPifO/LTMezUf2dPE+d+WmY9mo/s6dF+ZH1cC21fkVB8T535aZj2aj+zp4nzvy0zHs1H9nTovzI+rgW2r8q1qfWbMLdr4nH1TmdR2mdpBjIpAzlj5uUzTP2PZQtPe8gk7EMa92zTDeJ878tMx7NR/Z1GYPQVrTti/Ypaqy7bF+wbVueWKpLJO893M90BcWgeS1u+zGgNaGtAAdF/fH1cC21bdJaTlwslnJZS7411Dea0W7oYY4w1u/LFDGSezibudm7kkklznOJJsiq2mc1eZlpMLlJW3JhB4TXutYGGVgcGvD2joHNLm9W9CHDoNutpXLiYc4dWTJOYREWtBERARRWps373sNNcbD4TNzMhhg5uUSSveGMaTsdhzOG52Ow3Ox2VYfj9Q2fLl1bcrynq5lGpWZED6miSORwHq3cT85XTh4E4kZV4iNt/aJWy+IqD4nzvy0zHs1H9nTxPnflpmPZqP7OtvRfmR9XAttX5FQfE+d+WmY9mo/s6eJ878tMx7NR/Z06L8yPq4FtryV7q/3UXFfhDx5xOnKmldL5mATNu6asz07ZmeZY3wEEMsta947SRh8nbqCAOi9w6bdlX6dxbs62s3NmrEb4pAiAWOQdp2YcSQzm5ttyTtt1KyzU/BurrPUWnc7ms7kr+W09O6zjLMkFMGvI4AFwAgAd3AjmB2IBGxG6s/ifO/LTMezUf2dOi/Mj6uBbavyKg+J878tMx7NR/Z08T535aZj2aj+zp0X5kfVwLbV+RUHxPnflpmPZqP7Ov1uIzrXAnWeXdse416Wx/8Ajp0X5kfVwLbV9RVfTOavNysuFycrbdhsHhMFxrOQyx8wa4PaOgc0kdR0IcOg2VoXLiYc4dWTJoERFrRXeIlvwHQudseH28X2VOR3htCHtp4dh57GfCcPQFYlXeIlvwHQudseH28X2VOR3htCHtp4dh57GfCcPQFYkBERAREQEREGe6N/gmV/LGQ/WpFPqA0b/BMr+WMh+tSKfXsY3aVMqtMiIi1MRERARQ9rUraepIcQ/HZBzJKctx2TZBvTiDHNb2b5N+kh5tw3bqGuO/RfukdV4zXOmcbqDDTmzisjC2xWmcxzC+N3ceVwBG/qI3UEuiIqImp/GdjfyPc/zqqvKo1T+M7G/ke5/nVVeVo5Tpp3e8rPcIiLjQREQVLib9z9P8rY/wDW4l2l1eJv3P0/ytj/ANbiXaXp4fYU759l7hEX5zAuLdxzAbkb9dv/AOBRH6iIgIiICL5llbDE+R55WMBc4+oBRWkdV4zXOmcbqDDTmzisjC2xWmcxzC+N3ceVwBG/qI3UEuiIqImj/GdR/I9n/Orq8qjUf4zqP5Hs/wCdXV5WnlWmnd7ys9wiIuJFd4iW/AdC52x4fbxfZU5HeG0Ie2nh2HnsZ8Jw9AViVd4iW/AdC52x4fbxfZU5HeG0Ie2nh2HnsZ8Jw9AViQEREBERAREQZ7o3+CZX8sZD9akU+oDRv8Eyv5YyH61Ip9exjdpUyq0y856S0LjM5xu42Z+fFxZfOYrJ0ZMSy3u9lew3GQOa+Np6NeXcoLu/ZoG6zHghoJ2tsfobVbtdaVpaqtXY7GQkNSwM3cmYS61Snc+6Q/ma2RrmGLlDerWtAC9nU8Nj8fcvW6tGtWt3ntktzwwtZJYe1oY10jgN3kNa1oJ32AA7goyvw/0vU1HLqCDTeIhz0pJkysdCJtp5PQ7yhvMd/wAK5sli8i0J9Y6Vs2MFjG2osRwUvT5GZgG5ylOaTmghHrLMfJZ7t/K7MelSVbRker6nBzJagryCbXGrb+or1fnLCYpqNh0ELiDvyiuyGNzfSOYHoSvX4xtQOtOFWEOt/wAIIjG83khvl9PK8kAdfQNl15dP4ud+NfJjacj8Y7moufAwmqeQs3i6eQeQlvk7dCR3JkDA73DPS+J90hDhsdp6hWx17h5kKs9KGu0RzRi3VY1jm9xHKSNvnWVYjxVpb3GGkptKS4zCSZSxioNWZCs080UDpuzmktdk9kgbuCx+zmu5S8Bw717Vdhse/Lx5V1Gs7KRwOqsvGFvbthc4OdGH7cwaXNaS3fYloPoUdj9B6ZxL8o+jp3E035Xc5B1ejFGbm++/bbN+2ec7zt+8+tJpGRcAuGkei9bZe3i9VaXs4uTHRx2NPaUrSQ12SufzRWntfam5XFrZG7gN5h378q3pQumdFae0VXlg09gcZgYJnc8kWMpx1mvd6yGNAJ/CppZRFosImp/GdjfyPc/zqqvKo1T+M7G/ke5/nVVeVq5Tpp3e8rPcIiLjQREQVLib9z9P8rY/9biXaXV4m/c/T/K2P/W4l2l6eH2FO+fZe5lnuoHZBnArVLsbZdVnbHC6Qssiu+WATx9tEyQkbPkj5429dyXgDqV56yWIn0joTjHrfhxgbOjsJYxGOp1InsAtRFkrjdnZGx5fC1sUpO27SXMLh1AcvXOvdLv1ro/KYNlmGm67F2YmsUorkbeoPlQygseDtsQ4elZ5wc9zvBwt1LlM9Nfxlm5epMoOq4PBw4il2bXl/M6CNzg+Qk7c5PQbgDqtdUTMoyTE8MKmnsTqLMYDWWj30n6TyTrOI0rXnjORifAeznmElybmLHbbScvMedwLjuvzHadZw9ZwRzmj6Rg1LntO3m3ZGvc+TJyjEmxEJi4ntCJmNI3327hsOi9N4fhtpHT0V+PFaWwuMjyDHR3GU8dDELLXec2QNaOcHc7g796kWaZw8bsU5uKotdiWlmOIrMBpNLOzIh6faxyeT5O3k9O5MkeQ+AugW6kj4dauqa80rV1DZmhuXpK1awMzknhhdbqWHvuuEjthIHDstmlvM1rQAFL8PcNpbRHADXXEPJafOdycFzPsc7tXMmEBuzxmGOUHeFh73Fm2xc53evTFHh/pfGagnz1PTeIqZycky5OChEyzIT380obzHf5yu/S09isbjJsdUxlOrj5nSOkqQ12MieZHF0hcwDYlxc4u3HUuJPekUWHlDhFpSpg+Muf0WTpebE5vRUly9gNNOlkpdp27GDnEkr+d5ZK4F4DOZpG7fSqvjGYjTnuQeH/vYmxODbmchi62rr8bTyshcZGPdc7KSOQMMrWRvPO07OcNx1XsfB8PNK6ZfWfh9M4fEuqmQwOo0IoTF2mwk5OVo5eblbvt37DfuX1S0BpfHHKmppvEVTlt/GPY0YmeGb779ts37Z5zvO37z61MgZT7n/hu3RGqs9PjdU6auYqWpDHNp/S1eSGtXm5nFlgsfZm5HPZu08vKHBoPUjdboofTWjcBoupJV09g8bgqsjud8OMqR12Od6y1gAJUws4i0WETR/jOo/kez/nV1eVRqP8AGdR/I9n/ADq6vK18q007veVnuERFxIrvES2KGhc7ZN+3ixFUkf4bQh7WeHYeexnwnD0BWJV3iJb8A0NnLAv2sWY6kjvDaMPbTwdPPYz4Th6ArEgIiICIiAiIgz7R45a2WB23GXvnbf12ZCP+hCnlwZTSd6O/YuYO/BSdad2litcrumic/bbnZyvaWE7DfvB232BLnHp+IdYfGeD9hm+uXrTXh4k5eVEX38GU586TRRniHWHxng/YZvrk8Q6w+M8H7DN9cp1fjj14JZJoozxDrD4zwfsM31yeIdYfGeD9hm+uTq/HHrwLJNFGeIdYfGeD9hm+uTxDrD4zwfsM31ydX449eBZJoozxDrD4zwfsM31yNwOr+Yb5LCbenajN9cnV+OPXgWfFMb8TMeR3DEWwevdvNW2/wKvKgtO6afipprt62MhlJ2NjfO2Lso2MG5DI2bu5W7kk7ucST1JAaGzq48eumuqIp0RFiRERcyCIiCpcTRvp6me4DK48knoB/tcS7SmMtiq+bx09K20vgmGzuVxa4EHcOBHUEEAgjqCAVVn6c1VBsyDM4uxG3oJLVB4kI/4uSUNJ9ZAA69wXoYNdE4cUTNpiZ9bcGWmEiijPEOsPjPB+wzfXJ4h1h8Z4P2Gb65ber8cevBLJNFGeIdYfGeD9hm+uTxDrD4zwfsM31ydX449eBZJoqZqG9q7Aag0tizZws7s7clptlFSYCHkrTT8xHa9d+x5dunnbqweIdYfGeD9hm+uTq/HHrwLJNFGeIdYfGeD9hm+uTxDrD4zwfsM31ydX449eBZJoozxDrD4zwfsM31yDA6v3G+Swm3p2ozfXJ1fjj14FnxRG/EymR3NxFnf5t5oNv8D/AGK8qC07pp+JlmuXbQyGUna1kk7Y+yjYwbkMjZu7lbuSTu5xJPUkBoE6uPlFdNdUZOiIsSIiLmRXOIlzwDRGZseMrOI5K52vU4O2mgPQczWfCPzKxqucQrrcfpG9M7JWcR1ijF2pD20sZdK1o5W7HfcuA+YHf0KxoCIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgz3iQ4Ra94UuI3D89ZhB6dCcVed6R6mHu2/7LQln3GB5o+8nK85jix+p6XaHcgbWOemAdvW603/otBQEREBERAREQEREFc15fNDC1uXIWcZJPkqNdk9WATPJfaiaWcp7mvBLHO+C1xd6FY1X9TWntyunKUOQsUZbN4uc2CASCeOOKR7o3uPmNOzfK799h8LcWBAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREFe4g6WdrTReXw0Uwq2bMB8GsO32hnaQ+KTp18mRrHdPUnD/Vg1xo/GZkwGnZnjLLdNx3dVsscY54Hf8AFHK17D87SrCs/wA3G7hrqC5qWvFzabyTmvzkLAS6pK1oaLzQPg8oa2Ubeaxkg25JOcNARfEM0diJksT2yxPaHMew7tcD1BB9IX2gIiICIiAiKMzmXkxtcR04I7+UlH+zUXWGQmXymhzt3dzGcwc4gOIHc1xIaQ6NWzLktbW+SbIQ1cZWFd8D4AyrYllLX87Xnq9zGsA6eSO1I3J3DbCujhcS3CY5lRtm1c2e+R092Yyyvc95e7dx7hu47NGzWjZrQGgAd5AREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBEUfm8/jtOUTcyl2GjWB5e0meG8x9DR6ST6AOpWVNM1Tk0xeRUJGHhJK+aMOfoeV5fMwbuOEcSPLaAP4ISSXfzHf+9b9jK6V4o6U1vqPUeBwObrZTK6dmZXykNfmcK8jgSGc+3K4jlcHBpPK5pa7ZwIWd8VeKFXWOhs1gtN5fP6fyN6DsYc7jqA7WuC4cxYJXMIJbzN5hs5vNzNIcAV5Q9yNw31R7mbi3kMlZ3zGk8jSkqT+DjksAhwfE/snHl33Gx8roHFd8fDuVzn5uVs/o6izH7PuH+Jc3+Zh+tT7PuH+Jc3+Zh+tV/pvK/9clmnIsx+z7h/iXN/mYfrVFas48sm0tl48Fh8qzNvqStousRxNjbOWERlxEhIAdtvsE/pvK/9clli0Xxz0rxGp5uTTFiXOW8Nkn4u7j6jWmxFKJHMDyC4NEbg0vbISGkAjcOa5ot2IxElNz7N2aK/k5AWvttrtiIj5i5sTdtzyN3Owc5x6kkndfzZ9y/wE1Rwd4lU9aZbU2QxliJ/+00sJVbYbfhc4GSCZ0j2Dldt/JcQQHDZwBH9A8Lxi0xmJ44H25cZYkOzI8jC6EOO+wAefIJJ6Ac2/wAywr5ByqiMqrDmxaV2REXAgiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiIInVOo62k8FayloF0cIAbG3zpHuIaxg+cuIH9a875bJ3NR5R2TykjZrrhs0N37OBv8iMHuHrPee8rQuPd15n01j9/tUks9tw37zGxrBv6/34n8IHqWar7f4NyamjB5+Y/VVfy0E5oERF9CwEWLat42ZiHVOdxuAq13Q4V4gk8IxV+463NyB7mNfXYWRAcwbu7mO+55QNie9X4jay1TnpMfg8fjMU5uCp5d0eahmdNHJKZQ6BzWub6WAc3Tl2PR2/k8nSsOZyYzyrW0WRY3i5nNdR6VpaWpY+tlMriBmrk2U55IKkPMI+VrWFrnuc/mA6jYN3PqXf8Ac9+EnReU8NEQuePsn2wgJMfP4U/m5d+u2++2/XZWjlFOJXFNOie/y4o05fj2NlY5j2h7HDYtcNwQv1F1C9cLNdy4PI1cDfmdLi7LuypyyuJdXlPmxbn/ANN3c0fBds0bhwDNsXk/K8wxtlzHujkYwyMe07Frm9WkfOCAV6mxV3xji6dvbl7eFkuw9HM0H/uvi/jXJqcKunGoi2Ve++O//rZpi7tIiL5tBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERBl/HfEOlxOKzLG8wx1gsmP8mGUBpd/U8Rb+obn0LKV6hs1obtaWvYiZNBKwxyRyDdr2kbEEekELB9Y8NsnpGZ8tGvYyuF72PiBlsVx/JkaPKeB6Hjc7ecBtzO+v8AhHLaIo6PiTaY0cN9yYuyabXmUimexug9SSta4gSMdR5XfON7QOx+cL8fr7KNcQNA6lcAduYOobH/AOUrIzNY9+4F2AOHe10gDh6OoPUL68b0fv2v+db9K+l5uvxT6cGNpZ+7h1mn5nIZ7TeobGkTnWxz5HG26EVtzJgwN52EP5WP5QAer2kjfqrLS0WamusnqR14yuu42vjzXMW3KYnyO5+bfrv2ndsNtu/r0m/G9H79r/nW/Snjej9+1/zrfpUpwKaZvEbe/T+SWlmWK4H3tM0dLPwWqDjs1hcccVLckoCaG5XLuflfCXjlIcNwQ7pue/dSWmcdkeE+Hdi243L6xltW7N+W9j4asIa6WVzy1zZJ29fK+D0/B3K9+N6P37X/ADrfpTxvR+/a/wCdb9Kwp5NTRnoiYn815u4tKse//K7fcBqb8HNQ/alMad1DbzrpxZ09lMEIg0tORNciXffzeylk7tuu+3eNt13/ABvQ+/a/51v0rnx0zs3Y8GxMMmXsn/0qQ7Tbrt5TvNb+FxAWzJqo/VVVm224LaSahNmHRYuqN7WQeKsQ2J6u73fga3mcfmaV6lrV2VK8UEY2jiYGNHqAGwVE4a8NXaae7K5VzJsxI0sjjjO8dRh72tPwnn4Tv6h03LtAXxHxbllPKcSKMPPTT365lloiwiIvCQREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREHVtYuleO9mnBYPrlia7/ABC6/vaxHxVS9nZ9CIs4rqjNErc97WI+KqXs7PoT3tYj4qpezs+hEV5yvXJeT3tYj4qpezs+hPe1iPiql7Oz6EROcr1yXkGm8QDuMXSB/F2fQu/FDHAwMjY2Ng7msGwCIsZqqq0yj7REWI//2Q==", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from IPython.display import Image, display\n", + "\n", + "try:\n", + " display(Image(graph.get_graph(xray=True).draw_mermaid_png()))\n", + "except Exception:\n", + " # This requires some extra dependencies and is optional\n", + " pass" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "7649f05a-cb67-490d-b24a-74d41895139a", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "7649f05a-cb67-490d-b24a-74d41895139a", + "outputId": "5ab8e289-5dc3-4285-ec5a-574c7ccec01e" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "---CALL AGENT---\n", + "18:32:46 httpx INFO HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", + "\"Output from node 'agent':\"\n", + "'---'\n", + "{ 'messages': [ AIMessage(content='', additional_kwargs={'tool_calls': [{'index': 0, 'id': 'call_sDky13ZhyfzMmoNr0vO79i9n', 'function': {'arguments': '{\"query\":\"types of agent memory\"}', 'name': 'retrieve_blog_posts'}, 'type': 'function'}]}, response_metadata={'finish_reason': 'tool_calls', 'model_name': 'gpt-4-turbo-2024-04-09', 'system_fingerprint': 'fp_5db30363ff'}, id='run-bda3e47f-d5a6-44a8-9dd2-f4f51b0f6627-0', tool_calls=[{'name': 'retrieve_blog_posts', 'args': {'query': 'types of agent memory'}, 'id': 'call_sDky13ZhyfzMmoNr0vO79i9n', 'type': 'tool_call'}])]}\n", + "'\\n---\\n'\n", + "18:32:47 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "---CHECK RELEVANCE---\n", + "18:32:49 httpx INFO HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", + "---DECISION: DOCS RELEVANT---\n", + "\"Output from node 'retrieve':\"\n", + "'---'\n", + "{ 'messages': [ ToolMessage(content='Table of Contents\\n\\n\\n\\nAgent System Overview\\n\\nComponent One: Planning\\n\\nTask Decomposition\\n\\nSelf-Reflection\\n\\n\\nComponent Two: Memory\\n\\nTypes of Memory\\n\\nMaximum Inner Product Search (MIPS)\\n\\n\\nComponent Three: Tool Use\\n\\nCase Studies\\n\\nScientific Discovery Agent\\n\\nGenerative Agents Simulation\\n\\nProof-of-Concept Examples\\n\\n\\nChallenges\\n\\nCitation\\n\\nReferences\\n\\nPlanning\\n\\nSubgoal and decomposition: The agent breaks down large tasks into smaller, manageable subgoals, enabling efficient handling of complex tasks.\\nReflection and refinement: The agent can do self-criticism and self-reflection over past actions, learn from mistakes and refine them for future steps, thereby improving the quality of final results.\\n\\n\\nMemory\\n\\nMemory\\n\\nShort-term memory: I would consider all the in-context learning (See Prompt Engineering) as utilizing short-term memory of the model to learn.\\nLong-term memory: This provides the agent with the capability to retain and recall (infinite) information over extended periods, often by leveraging an external vector store and fast retrieval.\\n\\n\\nTool use\\n\\nThe design of generative agents combines LLM with memory, planning and reflection mechanisms to enable agents to behave conditioned on past experience, as well as to interact with other agents.', name='retrieve_blog_posts', id='c7b3f250-b7c2-43a3-a852-8c2603f10fc0', tool_call_id='call_sDky13ZhyfzMmoNr0vO79i9n')]}\n", + "'\\n---\\n'\n", + "---GENERATE---\n", + "18:32:50 httpx INFO HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", + "\"Output from node 'generate':\"\n", + "'---'\n", + "{ 'messages': [ 'Lilian Weng discusses short-term memory as utilizing '\n", + " 'in-context learning for the model to learn and long-term '\n", + " 'memory as enabling the agent to retain and recall information '\n", + " 'over extended periods by leveraging an external vector store '\n", + " 'for fast retrieval.']}\n", + "'\\n---\\n'\n" + ] + } + ], + "source": [ + "import pprint\n", + "\n", + "inputs = {\n", + " \"messages\": [\n", + " (\"user\", \"What does Lilian Weng say about the types of agent memory?\"),\n", + " ]\n", + "}\n", + "for output in graph.stream(inputs):\n", + " for key, value in output.items():\n", + " pprint.pprint(f\"Output from node '{key}':\")\n", + " pprint.pprint(\"---\")\n", + " pprint.pprint(value, indent=2, width=80, depth=None)\n", + " pprint.pprint(\"\\n---\\n\")" + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } }, - "id": "e4958a8c", - "outputId": "276c5d89-a4d7-4c79-d307-b619a5489830" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "OPENAI_API_KEY:··········\n" - ] - } - ], - "source": [ - "import getpass\n", - "import os\n", - "\n", - "\n", - "def _set_env(key: str):\n", - " if key not in os.environ:\n", - " os.environ[key] = getpass.getpass(f\"{key}:\")\n", - "\n", - "\n", - "_set_env(\"OPENAI_API_KEY\")" - ] - }, - { - "cell_type": "markdown", - "id": "Po4K08Uoa5HJ", - "metadata": { - "id": "Po4K08Uoa5HJ" - }, - "source": [ - "### Setup Redis" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "VLy0onoAa7KI", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "VLy0onoAa7KI", - "outputId": "b346e76e-e87d-437f-c9fa-78647db77f4e" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb jammy main\n", - "Starting redis-stack-server, database path /var/lib/redis-stack\n" - ] - } - ], - "source": [ - "# NBVAL_SKIP\n", - "%%sh\n", - "curl -fsSL https://packages.redis.io/gpg | sudo gpg --dearmor -o /usr/share/keyrings/redis-archive-keyring.gpg\n", - "echo \"deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb $(lsb_release -cs) main\" | sudo tee /etc/apt/sources.list.d/redis.list\n", - "sudo apt-get update > /dev/null 2>&1\n", - "sudo apt-get install redis-stack-server > /dev/null 2>&1\n", - "redis-stack-server --daemonize yes" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "7c2KKPhOh4zM", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "7c2KKPhOh4zM", - "outputId": "0e314576-b34e-4881-ddf0-80d686810091" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Connecting to Redis at: redis://localhost:6379\n" - ] - } - ], - "source": [ - "# Use the environment variable if set, otherwise default to localhost\n", - "REDIS_URL = os.getenv(\"REDIS_URL\", \"redis://localhost:6379\")\n", - "print(f\"Connecting to Redis at: {REDIS_URL}\")" - ] - }, - { - "cell_type": "markdown", - "id": "c74e4532", - "metadata": { - "id": "c74e4532" - }, - "source": [ - "## Retriever\n", - "\n", - "First, we index 3 blog posts. For this we setup a retriever using Redis as a vector store." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "e50c9efe-4abe-42fa-b35a-05eeeede9ec6", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "e50c9efe-4abe-42fa-b35a-05eeeede9ec6", - "outputId": "f3ab6120-eb1e-4de8-dcc6-0abb7fe9201b" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING:langchain_community.utils.user_agent:USER_AGENT environment variable not set, consider setting it to identify your requests.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "18:31:28 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", - "18:31:28 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", - "18:31:30 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n" - ] - } - ], - "source": [ - "from langchain_community.document_loaders import WebBaseLoader\n", - "\n", - "from langchain_redis import RedisVectorStore\n", - "from langchain_openai import OpenAIEmbeddings\n", - "from langchain_text_splitters import RecursiveCharacterTextSplitter\n", - "\n", - "urls = [\n", - " \"https://lilianweng.github.io/posts/2023-06-23-agent/\",\n", - " \"https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/\",\n", - " \"https://lilianweng.github.io/posts/2023-10-25-adv-attack-llm/\",\n", - "]\n", - "\n", - "docs = [WebBaseLoader(url).load() for url in urls]\n", - "docs_list = [item for sublist in docs for item in sublist]\n", - "\n", - "text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(\n", - " chunk_size=100, chunk_overlap=50\n", - ")\n", - "doc_splits = text_splitter.split_documents(docs_list)\n", - "\n", - "# Add to document chunks to Redis\n", - "vectorstore = RedisVectorStore.from_documents(\n", - " doc_splits,\n", - " OpenAIEmbeddings(),\n", - " redis_url=REDIS_URL,\n", - " index_name=\"rag-redis\"\n", - ")\n", - "# get RedisVectorStore as a retriever\n", - "retriever = vectorstore.as_retriever()" - ] - }, - { - "cell_type": "markdown", - "id": "225d2277-45b2-4ae8-a7d6-62b07fb4a002", - "metadata": { - "id": "225d2277-45b2-4ae8-a7d6-62b07fb4a002" - }, - "source": [ - "Then we create a retriever tool." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "0b97bdd8-d7e3-444d-ac96-5ef4725f9048", - "metadata": { - "id": "0b97bdd8-d7e3-444d-ac96-5ef4725f9048" - }, - "outputs": [], - "source": [ - "from langchain.tools.retriever import create_retriever_tool\n", - "\n", - "retriever_tool = create_retriever_tool(\n", - " retriever,\n", - " \"retrieve_blog_posts\",\n", - " \"Search and return information about Lilian Weng blog posts on LLM agents, prompt engineering, and adversarial attacks on LLMs.\",\n", - ")\n", - "\n", - "tools = [retriever_tool]" - ] - }, - { - "cell_type": "markdown", - "id": "fe6e8f78-1ef7-42ad-b2bf-835ed5850553", - "metadata": { - "id": "fe6e8f78-1ef7-42ad-b2bf-835ed5850553" - }, - "source": [ - "## Agent State\n", - "\n", - "We will define a graph.\n", - "\n", - "A `state` object that it passes around to each node.\n", - "\n", - "Our state will be a list of `messages`.\n", - "\n", - "Each node in our graph will append to it." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "0e378706-47d5-425a-8ba0-57b9acffbd0c", - "metadata": { - "id": "0e378706-47d5-425a-8ba0-57b9acffbd0c" - }, - "outputs": [], - "source": [ - "from typing import Annotated, Sequence, TypedDict\n", - "\n", - "from langchain_core.messages import BaseMessage\n", - "\n", - "from langgraph.graph.message import add_messages\n", - "\n", - "\n", - "class AgentState(TypedDict):\n", - " # The add_messages function defines how an update should be processed\n", - " # Default is to replace. add_messages says \"append\"\n", - " messages: Annotated[Sequence[BaseMessage], add_messages]" - ] - }, - { - "cell_type": "markdown", - "id": "dc949d42-8a34-4231-bff0-b8198975e2ce", - "metadata": { - "id": "dc949d42-8a34-4231-bff0-b8198975e2ce" - }, - "source": [ - "## Nodes and Edges\n", - "\n", - "We can lay out an agentic RAG graph like this:\n", - "\n", - "* The state is a set of messages\n", - "* Each node will update (append to) state\n", - "* Conditional edges decide which node to visit next\n", - "\n", - "![langgraph.png]()" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "278d1d83-dda6-4de4-bf8b-be9965c227fa", - "metadata": { - "id": "278d1d83-dda6-4de4-bf8b-be9965c227fa" - }, - "outputs": [], - "source": [ - "from typing import Annotated, Literal, Sequence, TypedDict\n", - "\n", - "from langchain_core.messages import BaseMessage, HumanMessage\n", - "from langchain_core.output_parsers import StrOutputParser\n", - "from langchain_core.prompts import PromptTemplate, ChatPromptTemplate\n", - "from langchain_openai import ChatOpenAI\n", - "# NOTE: you must use langchain-core >= 0.3 with Pydantic v2\n", - "from pydantic import BaseModel, Field\n", - "\n", - "\n", - "from langgraph.prebuilt import tools_condition\n", - "\n", - "### Edges\n", - "\n", - "\n", - "def grade_documents(state) -> Literal[\"generate\", \"rewrite\"]:\n", - " \"\"\"\n", - " Determines whether the retrieved documents are relevant to the question.\n", - "\n", - " Args:\n", - " state (messages): The current state\n", - "\n", - " Returns:\n", - " str: A decision for whether the documents are relevant or not\n", - " \"\"\"\n", - "\n", - " print(\"---CHECK RELEVANCE---\")\n", - "\n", - " # Data model\n", - " class grade(BaseModel):\n", - " \"\"\"Binary score for relevance check.\"\"\"\n", - "\n", - " binary_score: str = Field(description=\"Relevance score 'yes' or 'no'\")\n", - "\n", - " # LLM\n", - " model = ChatOpenAI(temperature=0, model=\"gpt-4-0125-preview\", streaming=True)\n", - "\n", - " # LLM with tool and validation\n", - " llm_with_tool = model.with_structured_output(grade)\n", - "\n", - " # Prompt\n", - " prompt = PromptTemplate(\n", - " template=\"\"\"You are a grader assessing relevance of a retrieved document to a user question. \\n\n", - " Here is the retrieved document: \\n\\n {context} \\n\\n\n", - " Here is the user question: {question} \\n\n", - " If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant. \\n\n", - " Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question.\"\"\",\n", - " input_variables=[\"context\", \"question\"],\n", - " )\n", - "\n", - " # Chain\n", - " chain = prompt | llm_with_tool\n", - "\n", - " messages = state[\"messages\"]\n", - " last_message = messages[-1]\n", - "\n", - " question = messages[0].content\n", - " docs = last_message.content\n", - "\n", - " scored_result = chain.invoke({\"question\": question, \"context\": docs})\n", - "\n", - " score = scored_result.binary_score\n", - "\n", - " if score == \"yes\":\n", - " print(\"---DECISION: DOCS RELEVANT---\")\n", - " return \"generate\"\n", - "\n", - " else:\n", - " print(\"---DECISION: DOCS NOT RELEVANT---\")\n", - " print(score)\n", - " return \"rewrite\"\n", - "\n", - "\n", - "### Nodes\n", - "\n", - "\n", - "def agent(state):\n", - " \"\"\"\n", - " Invokes the agent model to generate a response based on the current state. Given\n", - " the question, it will decide to retrieve using the retriever tool, or simply end.\n", - "\n", - " Args:\n", - " state (messages): The current state\n", - "\n", - " Returns:\n", - " dict: The updated state with the agent response appended to messages\n", - " \"\"\"\n", - " print(\"---CALL AGENT---\")\n", - " messages = state[\"messages\"]\n", - " model = ChatOpenAI(temperature=0, streaming=True, model=\"gpt-4-turbo\")\n", - " model = model.bind_tools(tools)\n", - " response = model.invoke(messages)\n", - " # We return a list, because this will get added to the existing list\n", - " return {\"messages\": [response]}\n", - "\n", - "\n", - "def rewrite(state):\n", - " \"\"\"\n", - " Transform the query to produce a better question.\n", - "\n", - " Args:\n", - " state (messages): The current state\n", - "\n", - " Returns:\n", - " dict: The updated state with re-phrased question\n", - " \"\"\"\n", - "\n", - " print(\"---TRANSFORM QUERY---\")\n", - " messages = state[\"messages\"]\n", - " question = messages[0].content\n", - "\n", - " msg = [\n", - " HumanMessage(\n", - " content=f\"\"\" \\n\n", - " Look at the input and try to reason about the underlying semantic intent / meaning. \\n\n", - " Here is the initial question:\n", - " \\n ------- \\n\n", - " {question}\n", - " \\n ------- \\n\n", - " Formulate an improved question: \"\"\",\n", - " )\n", - " ]\n", - "\n", - " # Grader\n", - " model = ChatOpenAI(temperature=0, model=\"gpt-4-0125-preview\", streaming=True)\n", - " response = model.invoke(msg)\n", - " return {\"messages\": [response]}\n", - "\n", - "\n", - "def generate(state):\n", - " \"\"\"\n", - " Generate answer\n", - "\n", - " Args:\n", - " state (messages): The current state\n", - "\n", - " Returns:\n", - " dict: The updated state with re-phrased question\n", - " \"\"\"\n", - " print(\"---GENERATE---\")\n", - " messages = state[\"messages\"]\n", - " question = messages[0].content\n", - " last_message = messages[-1]\n", - "\n", - " docs = last_message.content\n", - "\n", - " # Prompt\n", - " prompt = ChatPromptTemplate.from_messages(\n", - " [\n", - " (\n", - " \"system\",\n", - " \"You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Use three sentences maximum and keep the answer concise.\",\n", - " ),\n", - " (\"system\", \"Context: {context}\"),\n", - " (\"human\", \"Question: {question} \"),\n", - " ]\n", - " )\n", - "\n", - " # LLM\n", - " llm = ChatOpenAI(model_name=\"gpt-3.5-turbo\", temperature=0, streaming=True)\n", - "\n", - " # Chain\n", - " rag_chain = prompt | llm | StrOutputParser()\n", - "\n", - " # Run\n", - " response = rag_chain.invoke({\"context\": docs, \"question\": question})\n", - " return {\"messages\": [response]}" - ] - }, - { - "cell_type": "markdown", - "id": "955882ef-7467-48db-ae51-de441f2fc3a7", - "metadata": { - "id": "955882ef-7467-48db-ae51-de441f2fc3a7" - }, - "source": [ - "## Graph\n", - "\n", - "* Start with an agent, `call_model`\n", - "* Agent make a decision to call a function\n", - "* If so, then `action` to call tool (retriever)\n", - "* Then call agent with the tool output added to messages (`state`)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "8718a37f-83c2-4f16-9850-e61e0f49c3d4", - "metadata": { - "id": "8718a37f-83c2-4f16-9850-e61e0f49c3d4" - }, - "outputs": [], - "source": [ - "from langgraph.graph import END, StateGraph, START\n", - "from langgraph.prebuilt import ToolNode\n", - "\n", - "# Define a new graph\n", - "workflow = StateGraph(AgentState)\n", - "\n", - "# Define the nodes we will cycle between\n", - "workflow.add_node(\"agent\", agent) # agent\n", - "retrieve = ToolNode([retriever_tool])\n", - "workflow.add_node(\"retrieve\", retrieve) # retrieval\n", - "workflow.add_node(\"rewrite\", rewrite) # Re-writing the question\n", - "workflow.add_node(\n", - " \"generate\", generate\n", - ") # Generating a response after we know the documents are relevant\n", - "# Call agent node to decide to retrieve or not\n", - "workflow.add_edge(START, \"agent\")\n", - "\n", - "# Decide whether to retrieve\n", - "workflow.add_conditional_edges(\n", - " \"agent\",\n", - " # Assess agent decision\n", - " tools_condition,\n", - " {\n", - " # Translate the condition outputs to nodes in our graph\n", - " \"tools\": \"retrieve\",\n", - " END: END,\n", - " },\n", - ")\n", - "\n", - "# Edges taken after the `action` node is called.\n", - "workflow.add_conditional_edges(\n", - " \"retrieve\",\n", - " # Assess agent decision\n", - " grade_documents,\n", - ")\n", - "workflow.add_edge(\"generate\", END)\n", - "workflow.add_edge(\"rewrite\", \"agent\")\n", - "\n", - "# Compile\n", - "graph = workflow.compile()" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "7b5a1d35", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 473 - }, - "id": "7b5a1d35", - "outputId": "7b95dcbe-5a26-42b5-9708-8a1020564622" - }, - "outputs": [ - { - "data": { - "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/4gHYSUNDX1BST0ZJTEUAAQEAAAHIAAAAAAQwAABtbnRyUkdCIFhZWiAH4AABAAEAAAAAAABhY3NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAA9tYAAQAAAADTLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkZXNjAAAA8AAAACRyWFlaAAABFAAAABRnWFlaAAABKAAAABRiWFlaAAABPAAAABR3dHB0AAABUAAAABRyVFJDAAABZAAAAChnVFJDAAABZAAAAChiVFJDAAABZAAAAChjcHJ0AAABjAAAADxtbHVjAAAAAAAAAAEAAAAMZW5VUwAAAAgAAAAcAHMAUgBHAEJYWVogAAAAAAAAb6IAADj1AAADkFhZWiAAAAAAAABimQAAt4UAABjaWFlaIAAAAAAAACSgAAAPhAAAts9YWVogAAAAAAAA9tYAAQAAAADTLXBhcmEAAAAAAAQAAAACZmYAAPKnAAANWQAAE9AAAApbAAAAAAAAAABtbHVjAAAAAAAAAAEAAAAMZW5VUwAAACAAAAAcAEcAbwBvAGcAbABlACAASQBuAGMALgAgADIAMAAxADb/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAHIAUADASIAAhEBAxEB/8QAHQABAAMAAwEBAQAAAAAAAAAAAAUGBwMECAIBCf/EAFcQAAEEAQIDAgcICw0GBQUAAAEAAgMEBQYRBxIhEzEUFSIyQVGUCBZCVVZh0dMXIzZUcXR1k7K01CYzNDdSU3KBkZWxs9IkNWJkocEJGEN2pESiwsPw/8QAGgEBAQADAQEAAAAAAAAAAAAAAAECAwQFBv/EADcRAQABAgEHCgUDBQEAAAAAAAABAhEDEiExUWFx0QQTFCMzQVKRocEFY6Kx8CJikhUyQlOB4f/aAAwDAQACEQMRAD8A/qmiIgIiICIiAiIgIiICIiAiKGzWYsx2osZi2Mlys7DIHzNLoa0e+3aS7EE9ejWAgvIIBAa9zcqaZrm0CWllZDGXyPbGxve5x2A/rUe7VGGaSHZeiCPQbLPpUdFoHFTyixlmOz9zcntsntKG79NmR7cjBt08lo+ffcld8aUwjQAMPQAHQAVWfQt1sGNMzP5+alzP331YX44oe0s+lPfVhfjih7Sz6U96uF+J6HszPoT3q4X4noezM+hOp2+i5j31YX44oe0s+lPfVhfjih7Sz6U96uF+J6HszPoT3q4X4noezM+hOp2+hmPfVhfjih7Sz6U99WF+OKHtLPpT3q4X4noezM+hPerhfieh7Mz6E6nb6GZ2KmZx99/JVvVrL/5MMzXH/oV3FB3NDacyEfJYwONmb6OapHuOu/Q7bg79dwuk7F3dINNjGS28ji2DeXFzPM0kbf5UD3HmJH824kEdG8u2xZGHVmonPt4/m9LQtKLhp3IchUhs1pGzQTMD45Gno5p6grmWiYtmlBERQEREBERAREQEREBERAREQEREBERAREQEREBERAREQFV9BbZChczb9nT5S1JKHeqFjjHC35gGNadh05nOPpJNoVY4bjsNJVqLtxLj5JaUgI22McjmA/gIAI9YIK6Kc2FVMa48s/vEL3LOiIudENrDWOG0Bpy7n9QZCPGYim0OnsygkN3cGtAABLiXOAAAJJIAG5WXa691RpjS+mdN5zGxXsvSy+ehwzyMbcZJX3I7Vxi7Ayc7WkFsZaC8nyd9iFbuOWIxGc4YZinnMLmM9jnmEvqafjc++1wmYWSwhpDuaNwbJ06+Qeju44NbPEPUHCjF5TMYjUOfh0xr2lkqHhuNEOavYiB7CZJKrQC6UF8g25WueGb8oJ6ht2qvdDaC0RXxk2cy9nHsyNRt+ESYq4XMgPdJM0REwjv37UN22O+2y7equOeh9GW8VVymbAs5am6/j4adWe265A0s3dEIWP5z5bTyt3JG7gNgSMY4rZjUWvNTyx2cRxCj0hkNPjxLjcBVnpOnyDnyslbfc0tdDs0Q8rZnNjLXOJ3O4TghpPNQar4H2clgMnTbhuHtnGW5LtKSMVLbJKkfZuLhs1xEcnL/ACmgkbjqg0bSHujMNq3jBqHQjKORry49tXwW0/G3A2w6SKSWTtCYQ2ANDAGl7hzknlJ7lrqw/C2Mhof3TGt33tPZqzjdW18T4vytCi+xUjdAyWOVs8jRtCQXNPlbAgrcEBERBWNLbYzUGoMK3YQQyR367Bv5Ec/PzN/OxzH5g4D0KzqsYZvheu9SXGg9nDXqY/cjYF7O1mdsfT0sM/sPzqzrox/777I+0LOkREXOgiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAq3kIZdNZazmK0D56FsNOQghY58rXtAa2djRvzHlAa5oG5axpb1byusiLZRXkTsnSsK1qHSOkuKeIqtzWJxOqcYx/bVxcgjtRB+xbzN3BG+xI3Hzquf+WzhPtt9jfS23q8UQf6VaL+h8XcuS3IWz4y7KS6SxjbD67pCRtu8MIa87bdXA9w9QXXOiZ/RqjPNHq7aI/wCMS2ZGFOiq2+OH/hmdXS3BrQeh8qMnp7R2DwmRDHRi3j8fFDLynvbzNaDsdh0VyVX95Nj5VZ789D9UnvJsfKrPfnofqk5vD8fpJaNa0Isr4i4/K6Xp4OWjqnMF9zNUaEvbSwkdlLM1j9vtY8rYnb5/QVbPeTY+VWe/PQ/VJzeH4/SS0a09lMXTzeNt47IVYbtC3E6CxWsMD45Y3AhzHNPQggkEH1qhR+5v4UwyNezhxpdj2kOa5uJgBBHcQeVT/vJsfKrPfnofqk95Nj5VZ789D9UnN4fj9JLRrQdX3OvC2jahs1+HemILELxJHLHioGuY4HcEEN6EEbq0ZnUgr2TjMaI7uce3dtbm8mEHukmI8xn/AFdts3crpnQjZgG289nLce2xYbxhDvwmIMP/AFU1iMJQwNTwbH1IqkO5cWxt25nHvc497ifST1KWwqM98qfTj+aTND4wGFjwONZVY8zSF75Zp3DZ0sr3Fz3n8JJ6egbDuCkURaaqpqmap0ygiIsQREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERBnvGcgY3Su5I/dPiu78Zb84WhLPeM+/i3Su233T4rztvvlvrWhICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiDPONI3xmlPKDf3UYrvH/MtWhrPONO3izSm/T91GK9G/8A9S1aGgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiruoNT2KN0Y7F047+S7MTSCeUxQwsJIaXvDXHckHZoB32O+w6qK8e6w+8MH7XN9Wumnk9dUXzRvmFsu6KkePdYfeGD9rm+rTx7rD7wwftc31az6LXrjzgs80e7M913a4M65xGlr2hZLtSC3RzlPKNyTWNtsikDns5DC7kIe1zd9z6D6dl6c4Pa8u8UOGen9V38HJpufLV/Cm42WftnRRlx7N3Pyt35mcj+4bc23XbdY/7oPgPa90XU07DqCnia7sNfbaZLXtS88sR27WAns+jXgN6+ggFaxBltWVYI4YcZgYYY2hjI47MrWtaBsAAIugA9CdFr1x5wWXpFSPHusPvDB+1zfVp491h94YP2ub6tOi16484LLuipbNR6prHtLOIxlmFvV0dO48SkenlD4w0n1Alo+cK1YvJ1szjq96pJ2tawwSMcQWnY+sHqD6CD1B6FasTBrw4vOjZnLO0iItCCIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgocB319qbf0R1B/VyOUyoav932p/6FT9BymV69f+O6n7QynSIiLWxEREBF0cvnMfgYIZsldgoxTTx1Y32JAwPlkcGRxt373OcQAB1JK7yAutwuJOjofmuXQNvQBalAXZXV4W/cdF+O3v1uZTF7Cd8fape5bURF5qCIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgodf7vtT/wBCp+g5TKhq/wB32p/6FT9BymV69f8Ajup+0MqtLzrx/uZTUur72E0tZ1K3NYXCeMbUmO1CcTRpte6TsnvDY3meUmN/kEcnK3qRuqjk+JF/U9ThjZ1pqfUGmtPZnRTMk27pp8sMlzMERl7XGFpd0Y7nZH5ri4gg7bL0Jq/g1o7Xuchy+dwrb1+ODwUyCxLE2aHmLuymYx4bMzck8kgc3qenUrN+JXud5bcWmqmjcJhfFuHqS044shnMrQmhjc8PDWTVpCXRgjzHg7dOUtA2XNMTpYszxF7idnZuHXD+4chDkWaRGdyMMmpJ8RbtWHWDGe0sNimlJY3lLohygGXr0aGq0eJ+IEGouFekNX6oyFQ5C9mWTvw2Xe6axTjgEsEc1gRxF8jduUyBjXbDcEFxK0XB+59xmV4eaYwvECV+rc5hRK6PMttWILMRe9x5I52yCblDS2Pq/dwYC7qrhjOFelsO/TLqeKbA7TYnGL5ZpP8AZ+2aWynq7yy4E7l/Mdzv39UimR5g1hUtai4f2MJl85mrsGneK1PD1Lj8lM2z4K6es5okla4Oe5gncGvcS5pa0g7gFevMJiYsDiamPhntWYq0YjbLesvsTPA9L5HkuefncSVXL/CDSGUwWosNbw0djG6gunJZKCSaQ9tZIjHag827HDsoyOQt2LQRseqndM6aoaQwdXEYuOWKjWDhG2exJYeN3Fx3kkc57upPeSsoiwlF1eFv3HRfjt79bmXaXV4W/cdF+O3v1uZZYvYTvj7VL3LaiIvNQREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQERQmX1RDSlt0sfF45zdeOGV+KqzxtmYyV5YyR/O4BjPJedz1Ijfyh5HKQr1f7vtT/wBCp+g5TKh7mntQYvN5PNQugzXhrww0Imis6KFgIi5HOcQ9/V3NzFoO425eXZ3z42z3yNyntVL69evFsSIqiY0RGeYjRFu+WUxdNIoTxtnvkZlfaqX16eNs98jMr7VS+vTI/dH8o4lk2iz3XnGOtwxq42xqfCXsRDkrsePqvmsVD2k7/Nb5Mx2HTq47NHpIVn8bZ75GZX2ql9emR+6P5RxLJtFCeNs98jMr7VS+vTxtnvkZlfaqX16ZH7o/lHEsm1W+HFTOVtLxS0L0FuKbN2ZJYMgzlEFXwiVsjIXRgHm5h2gL+bclzdwC0t7bbmo7m8UOl7FKV3QTX7VfsmfORHI9xA9QHX1q1adwrNPYWrj2Sun7IEulcNi97iXOdt6N3Enb51qxpinCmi8XmYnNMToidW80Q6NfWEcc1avlcfcw1m1ckp1mTsErJi0bteJIi5jWvb1aHlrj1HKCNlOV7EVuBk0ErJoZBzMkjcHNcPWCO9cir7NEY2lJSfixLg20/CDFXxjzBWc6brI58Dftcjufyw5zSQ7cg+U7m81isCKtw2NRYZkTLkFfO1YMe6Sa5UPY2prLT0Y2uQWbPb6e1Gzhttsd293FaqxmXtspRWBDkzUivPxtj7Xaihk81z4j5TeoLT06EEd4QS6IiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgLguX62PZG+1YirMkkZCx0zwwOe4hrGDfvcSQAO8k7KJzGoJ2z28Zh67bmbZUFmNtkSR1W7vLG88waQDuHnlG7tmHp3LnradhbkJrtyaTI2HTtsQizs6Om5sZj+0N28jcOfu7q49o4FxGwAdGKfKapZDJEyXCYmWOxFMyzGWXnnfkjfHs7aIbbvHMC7qzdrDuFN4/HwYypHXrsLY42tYC95e9wa0NBc5xLnHZoG7iSdupXZRAREQEREHhz3e/ufeJXGfV+mruPy2BpaWrWK+Mx9axbnbP4VYka100jWwlrRzco6OJ5WA7bkheteEmJ1RgeG2nsZrO1Svamp1W17lrHSPfDMWEta8Oe1riSwNLt2jyifwqK41BpxmlOYkD30YruG/Xwlq0NAREQEREBERAXRzWDoaixtjH5OpFdp2GGOSKVu4c0kH+rqAdx3EA94XeRBXbOEzGNFybDZUzPkFdsNDKjtK0LY+knI9oEodI3vL3PAc0EN6uDvqTV8WOndHmKVjDtkyDMfUnm5ZIrbnjeN7TGXcgcfI+2Bh5xtseZhdYEQfgIcAQQQeoIX6q/Fouljp4ZMM9+BYL0l+xXx7I2Q25JP33tWFpB5j5Zc3ldzdd+rt/mrm8rjPAK2bx/byzeEGXI4tu9SFsflMMjXO7RhezfYAPaHNILurOYLEi6mKy1HO42tkcZcr5HH2oxLBbqStlimYRuHMe0kOBHcQdl20BERAREQEREBERAXxNMyBhfI4MaPSV9qNz/APu1/wDSH+KDn8a1Pvhn9qeNan3wz+1YDrjjpjNC8UtPaPu0rsgylKe2+3Wo2bHZFr2NjaGxRO5uYudzO38jlHNtztKktUcdNDaMz8mGzGfjqX4RGbDRBLJHVEnmdvKxhZDzejtHN3B37kG2eNan3wz+1PGtT74Z/asW1lxu0ToDKjG53ONqXBCLEkcVeacQRE7CSZ0bHCJh2PlPLR07104uKJbxXzOCsTUI9OUdN1s42/ueYmSWdryX83L2YZCHDYes7kdwbo/L02NLnWWAD51FxS5LUNlkjO0xOLhnnilikaDNeYGcjHse1/2pnMXOB848rD5IJBzbQPFDTXE6KzNp6/JeZXbG6QSVJoAGv5ix7e1Y3na7lOzm7g7dFr+L/wB3V/6AQfmKxVTB42rj6FdlWlWjbFDDGNmsaBsAu2iICIiAiIgIiIM+4yuc3HaV5QSffPix037vCG79y0FZ5xq28WaU32H7qMV3/jLVoaAiIgIiICIiAiIgIiICIiCDyWl2T2rGQx9mXGZd1OSpFYY97oW8zucPfX5hHI4P3IcRzAOeA4B7t+GXU02BFg6ghZTpQisxuWjP2ieSTyXbs3LoQ1+3nEt2e0858oNsSICKCi007E2xLhZ20IZ7z7l+tI10rLBe3Z/Ju77U7mDX+T5JPOS0l5cuXB6jjyjYK9qE4vMvrixLibErHTxN5iwnySQ5vMCOYEg9PWgmEREBERAREQFG5/8A3a/+kP8AFSS6OZgks0XMjbzvJHQfhQeb+K8t/S/GDQerm4PLZvD1KGSx9rxNTfbmgkm8HdEXRs3dynsnDmA2B2323VE1BBmtJ4vjJpQ6MzmoMhrO5atYm7SpGWrOy1VjhayabzYeyc1wIkLfJG7d916r8TXP5h39oTxNc/mHf2hB5SxGNznBebXWLyelc3q+xqDGUGUbuJpOtRWZIqDKr4JnjpEA9jnAv2byyE777hcmh9A5fh/qDHYvU2nslqDG2+HFXCWX0Ie3hM9ft3TVXOBHKXMkDWEkBxOwO69Quxs77ba/ZtMrWdqY+0HOBvsDy777b79fWF2PE1z+Yd/aEGB+53sZ+tk81h21tRs0FRq1m4d2raRrXq8nliSs0kB0sTGhmz3Akb7czgN16gxf+7q/9AKt+Jrn8w7+0KzY+N0NKFjxyua0AhB2EREBERAREQEREGecaXcuM0p1Lf3UYodPxlq0NZ5xpJGN0ptt91GK7wPvlvrWhoCIiAiIgIiICIiAiIgIiICIiAo7NYWLM05ou2mpWXROiiv1CGWK/MWndjiCO9jDsQWnlAcHDopFEEPBm3VMg2jlXV6k9mw6HHu7X+GAR9oQAe6QNEhLNyS2Jzh0B5ZhcF2my/Vlge57A9paJIncr2EjbmaR3EegqPwdq0x82Nux2HTVGsZHesviJvs5G7zbRhoaeYkOHI0A9w5SCgl0REBERAREQEREFer0yOIF62aFRoOMrxNvNk3sP2lmJjc3fowbgg7dS53q6WFZPV4wcO28QL+Q99+jWxTYytA3Itz9czyubLO4xFnabBjecOB9JkcPQtYQEREBERAREQEREBERBnfGrbxZpTckfuoxXcP+ZatEWd8a9vFmlN/lTiv1lq0RAREQEREBERAREQEREBERAREQEREBQmqcPPfqsu42vQk1BRD5MdNkGu7Njy3ZzS5nlNa8eSSN9uh5XcoBm0QdPEZiln8bBfx1mO3TmBMc0R3B2JBHzEEEEHqCCD1C7ireIuNx2rMrhpskyeWyBk6dFtPsvB4DyskHaAcsm8oc8k+UDL13HKVZEBQuY1tp7T9oVsnnMdj7JHN2Nm0xj9vXyk77Lu5q47H4e9aYAXwQSStB9bWkj/BVHSVSOtgKUgHNPZiZPPM7q+aRzQXPcT1JJP8AV3dwXXg4VNVM116NixrlJfZS0d8qcR7bH9KfZS0d8qcR7bH9K5kW7msHVPnHBczh+ylo75U4j22P6U+ylo75U4j22P6VzInNYOqfOOBmfzq0X7l7S+J92dasWcrjDw2xsvjypPJajMMzi7miq7kkEsk84H4LP+IL+h/2UtHfKnEe2x/SuZE5rB1T5xwMzh+ylo75U4j22P6U+ylo75U4j22P6VzInNYOqfOOBmcP2UtHfKnEe2x/SpPDatwmopHx4vL0cjIxvO5lWwyRwbvtuQDvtv03XSVd13y09OW8swcl3FxuuV52jy2OYN9gfURu0juIcQdwVlGBhVzFNN4mdsT7QZpzNFREXmMRERAREQZ3xqO2M0p3fdTih1H/ADLVoizzjSXDGaU5d9/fRit9vV4S3daGgIiICIiAiIgIiICIiAiIgIiICIiAiIgrupbpxma05YfkbFWtLbdTfVir9rHZdJG4sD3d8fK5gId3bnY+d0sSruvbfi/Twt+H2sa2C7TkfNTh7Z7mCzHzRlv8l43Y494a9xHcrEgi9VfcxmPxOb9Aqvaa+5zFfikX6AVh1V9zGY/E5v0Cq9pr7nMV+KRfoBejg9jO/wBl7kkiLBtO+6ftXeFdjiRndJN0/pCOu8xTOyrZbNiwJxAyNsZja0Me8kCR727bblob5SszEI3lF54wvuqJNVOzWEp0MENStw1nJ43xRqavlKzzEBzMlkiYTE8czXAFjmuAdsTsV+aW486u07wE0HqfUmmI81lM3LiqFcUcmDNeNpjQJ3AwsbG8uO/ZblvXzwOqxyoHohFimW15qGpxW4b0tTYY6fiuxZOZxxmojNW5ooXktsRGuztWhgY9p5m8rnHoeXrXNP8Au0cHnc5hWtp4puCzN+KhTnh1FWmyTXSv5IpJqDfLjY5xbv5TnNDt3NGx2ZUD0cix/Ge6BfktNYCZunuTU+S1G/TU2C8N3NWeKR/hDzL2flMZDG6bfkG4LR033VNyvu2dPY7JXLDK+Jn01TvOoy2jqOqzJO5ZeyfNHjz5bow7cjdwc5o5g3YjdlQPSSrnEj+L/UX4hN+gVY1XOJH8X+ovxCb9ArpwO1o3x91jTDRkRF4yCIiAiIgzvjWN8ZpT/wB04n9ZatEWd8a/92aT/wDdOJ/WWrREBERAREQEREBERAREQEREBERAREQEREFc4iXPF+icxaORtYkQQGQ3aUPbTRAEElrPhH5vnVjVc4i3fF2hM9a8YWsV2NOR/h1KHtpoNh57GfCcPQFY0EXqr7mMx+JzfoFV7TX3OYr8Ui/QCsOqvuYzH4nN+gVXtNfc5ivxSL9AL0cHsZ3+y9ySWHUfc+X7XuZaXDXI5SvTzVVrZYcjTBmiisR2jYheA4NLmhwaCCBuN/wrcUVmIlGc6QwWuMlUylTW1bStKvYpmrGdOdu+Rz3Ah73Ola3lGxGzAHbH4RVDw3BnX32PtDaTy9jTjoNIZnD2KlynNOH2qlN55jIx0ezJSxrNmglpPNu4dF6CRSwzziDw1ta14g6Hy/aV/FOHjyUV6GR7myyNs1uyaIwGkHrvvuRsO7dVnhJw54g8N4cHpe1LpTJ6Rw+8EOUMcwyc1ZrSIWOj5RG17fIBeHkEN83c7raUS0XuMtxHBGHF8eMtr/wsOo2aYNfGfBhvSNZFYsgbbAuhgrs37/3zu36wHD/hXrvhhZbp3EP0rkdDsyclqC1kWT+Ma9aWYyyQcjW8j3AveGyF423G7TtstxRMmAVc4kfxf6i/EJv0CrGq3xJ3+x9qPbv8Xz7b/wBArowO1o3x91jTDR0Vbj1Nk6DGeONP2Yezxzrtq1i3i7XZK3zq8YAbPK8jq3aHyh06O2ae7jNWYfMWYatXIQOvy048gKEjuztNryHZkjoXbSMaSCPKaOoI7wQvGRLoiICIiDO+NWxx2kgSRvqnF9w/5hpWiLO+Muxg0ZGQSX6ox22x26h5d/8AitEQEREBERAREQEREBERAREQEREBERAREQVziNeGM0JnrbsrNghDTkeclXg7eStsP3xsfwiO/b0qxqu8RMh4q0Lnbgy0mCMFOSTxlDW8JfW2H74Ivhkd/L6VYkHTzNN2RxF6owgPngkiBPoLmkf91UNJXI7GBpwg8lmtCyCxA7o+GRrQHMcD1BB/tGxHQhXtQuY0Vp/UNgWMpg8bkZwOUS2qkcjwPVu4E7LqwcWmmmaK9C7HWRcP2K9GfJPCf3fF/pT7FejPknhP7vi/0rfzuDrnyjiZnMi4fsV6M+SeE/u+L/Sn2K9GfJPCf3fF/pTncHXPlHEzOZFXa/CnSI1vecdGVBAcdXDZ31ojTc7tZt2sj26SgbFzturXRj4KnPsV6M+SeE/u+L/SnO4OufKOJmcyLh+xXoz5J4T+74v9KfYr0Z8k8J/d8X+lOdwdc+UcTM5lXdd8t3T1vERnnvZSN1SvA0+W9zwQTt16AbuJ7gGklTn2K9GfJPCf3fF/pUphtKYTTrnOxWIo41728rnVKzIiRvvsS0Dpv1WUY+FRMVU3mY2RHvK5ozpVdLLYTH52lYp5GlXvVbELq80NiMPbJG7zmEHvB2G4+Zd1F5jFW7OjDFHZOHzGQw08lSOpDyS9vBXDD5LmQy8zA7bySQBuO/rsR+37Wp8W3L2IaVLORMbCcfTgkNaeQ9BMJHvJZv3ubtyj4J2842NEFdv66xmFdknZYWMRVoSwxPvXYSytJ2oHKWSdWkbnlJ3HKe/bcEz0ViKcyCORkhjdyP5HA8rvUfUeo6LkUHe0Thb8005otq2p7EVua1Re6rNNLF0jMkkRa54A6bOJBBIIIJCCr8Wz2mZ4bVvvjVMX/wBlO3N/+paIsg1th8o3ilw5p1s5JdeMzez3Z5SFkgr12VHV5IYuyEZAAtnldIXlpk6lzQGi+sz+YpujbktPyEzZF1SOTFWBZYyA/vdiXnEbmA9zmta/lPpc3ykFiRQ+L1diMzuK15nOLMlPspg6GQzM89gY8BxIHXoO7qOnVTCAiIgIiICIiAiIgIiICIiAiIgIiIK9xCuux2h85aZkbGIdDUkeL1Sv4RLBsPPbH8Mj1elWFVziLcGP0JnrJyNrECKnI/w6lD200Gw89jPhOHoCsaAiIgIiICIiCuxV+TiFanFK6O1xcLDdMu9U8sshEYZ6JBzkl3pBA9CsSruQrdjrrD3W1L8xlp2aj54pf9mhHNFIO0Z6XHkIa4d3lD4SsSAiIgIiICIiAiIgIi+ZJGQxvkke1kbAXOc47AAd5JQZ7BtmuP1mQAluntOtg59+naXrHO5v4Q2hET8z2rRFn/BuOTKYbK6snLjJqnISZODmBHLTDWxUwAerd4IopC30Olf3kknQEHVvYqllDXNynXtmtK2eAzxNf2UjfNe3ceS4egjqoetoyPFvqDF5PI42vDbktS1Wz9vHY5/Ojd2weWM38oNjLOU93QkGxIgrtGbU9F+Nr3oMfl2ySTi3fpudVMLACYS2B5fzE+a77YNjsQNiQ1jtdYy27GwW+2w2RvwSTxY/Js7GfljP2wHqWkt23OxPTyu7qrEviWJk8b45GNkjeC1zHDcOB7wQg+muD2hzSC0jcEelfqrkehqGNjaMI+bAdjQfj6sNB/LVrNJ3a5tY7w8zD1aSzu3b5vRfMtvUmDgLpaUWoq1bHNc59KRsF21badntZC/aINc3ygTK3YjbqDuAsqKKx+psfkb8uPZMYcjDDFPLTnaWSxsk80kHv6gjcbgEEd6lUBERAREQEREBERAREQV3iJd8XaFztrxjZxHZU5H+H04O3mg2Hnsj+ER6B6VYlXeIlw0NC52yMhaxRiqSP8NpQdvNBsPPZH8Jw9A9KsSAiIgIiICIiCB1njX3MS23XqWL+Qxkov06tayK755WA7R858nZ4LmEO8nyupHeJmtYZbrxzRndkjQ4bEHv+cdFyqrk1tC3HEijjtOW5dw2OKRr4700znPc4jdgZK6Tfchm0m5JeZfJC0IiICIiAiIgIiICz3iXNJq67W0BReebKR9tmpoz1q4zcteN/Q+dwMLO47ds8dYiFYdYavZpiCvBXrHJ5y850eOxcb+R1h4A3LnbHkibuC+QghoPc5xa13zonSb9MUJpb1luSz2QeLOTyIj7MTzbAbMbueSJgAYxm5Ia0blzi5zgsEUTIImRxsbHGwBrWMGwaB3AD0BfaIgIiICIiAiIgj89p/GapxM+My9CvksfPy9pWsxh7HFrg5p2PpDmtcD3ggEbEBdKxjsvj7ctjG3BeZZuQyS1Mk/ljrwbBsogcxhcDt5Ya/mBcC3dgdu2dRB0sRlo8zVdPHDYrlkr4XxWoXRSNcxxaeh7xuNw4btc0hzSQQT3VBZKlJDqrEZCri/CpJWy07lwWjF4PBymRrjH3SntGMaPSztHkEAvBnUBERAREQEREBERBXeIlvwHQudseH28X2VOR3htCHtp4dh57GfCcPQFYlXeIlvwHQudseH28X2VOR3htCHtp4dh57GfCcPQFYkBERAREQEREBfjmhzSDvsRt0OxVJtZXK6jv3WUMi/DY+pM+sJIIo3zTyN6Pd9sa5rWh3QAAk8pJPXZcHifO/LTMezUf2ddsclm36qoif8AvtErZ5Gg/wDEJkyHHfReg9MV7D9IRZoY69nM71uZKJ47Jh5Cxhhaxz+YF28jwyMu5T2jXe91551/7lrSfE/MVctqOxcu5atI2aO/DDVrT87SCC6SKFrnbEDziVpHifO/LTMezUf2dXovzI+rgW2r8ioPifO/LTMezUf2dPE+d+WmY9mo/s6dF+ZH1cC21fkVB8T535aZj2aj+zp4nzvy0zHs1H9nTovzI+rgW2r8q1qfWbMLdr4nH1TmdR2mdpBjIpAzlj5uUzTP2PZQtPe8gk7EMa92zTDeJ878tMx7NR/Z1GYPQVrTti/Ypaqy7bF+wbVueWKpLJO893M90BcWgeS1u+zGgNaGtAAdF/fH1cC21bdJaTlwslnJZS7411Dea0W7oYY4w1u/LFDGSezibudm7kkklznOJJsiq2mc1eZlpMLlJW3JhB4TXutYGGVgcGvD2joHNLm9W9CHDoNutpXLiYc4dWTJOYREWtBERARRWps373sNNcbD4TNzMhhg5uUSSveGMaTsdhzOG52Ow3Ox2VYfj9Q2fLl1bcrynq5lGpWZED6miSORwHq3cT85XTh4E4kZV4iNt/aJWy+IqD4nzvy0zHs1H9nTxPnflpmPZqP7OtvRfmR9XAttX5FQfE+d+WmY9mo/s6eJ878tMx7NR/Z06L8yPq4FtryV7q/3UXFfhDx5xOnKmldL5mATNu6asz07ZmeZY3wEEMsta947SRh8nbqCAOi9w6bdlX6dxbs62s3NmrEb4pAiAWOQdp2YcSQzm5ttyTtt1KyzU/BurrPUWnc7ms7kr+W09O6zjLMkFMGvI4AFwAgAd3AjmB2IBGxG6s/ifO/LTMezUf2dOi/Mj6uBbavyKg+J878tMx7NR/Z08T535aZj2aj+zp0X5kfVwLbV+RUHxPnflpmPZqP7Ov1uIzrXAnWeXdse416Wx/8Ajp0X5kfVwLbV9RVfTOavNysuFycrbdhsHhMFxrOQyx8wa4PaOgc0kdR0IcOg2VoXLiYc4dWTJoERFrRXeIlvwHQudseH28X2VOR3htCHtp4dh57GfCcPQFYlXeIlvwHQudseH28X2VOR3htCHtp4dh57GfCcPQFYkBERAREQEREGe6N/gmV/LGQ/WpFPqA0b/BMr+WMh+tSKfXsY3aVMqtMiIi1MRERARQ9rUraepIcQ/HZBzJKctx2TZBvTiDHNb2b5N+kh5tw3bqGuO/RfukdV4zXOmcbqDDTmzisjC2xWmcxzC+N3ceVwBG/qI3UEuiIqImp/GdjfyPc/zqqvKo1T+M7G/ke5/nVVeVo5Tpp3e8rPcIiLjQREQVLib9z9P8rY/wDW4l2l1eJv3P0/ytj/ANbiXaXp4fYU759l7hEX5zAuLdxzAbkb9dv/AOBRH6iIgIiICL5llbDE+R55WMBc4+oBRWkdV4zXOmcbqDDTmzisjC2xWmcxzC+N3ceVwBG/qI3UEuiIqImj/GdR/I9n/Orq8qjUf4zqP5Hs/wCdXV5WnlWmnd7ys9wiIuJFd4iW/AdC52x4fbxfZU5HeG0Ie2nh2HnsZ8Jw9AViVd4iW/AdC52x4fbxfZU5HeG0Ie2nh2HnsZ8Jw9AViQEREBERAREQZ7o3+CZX8sZD9akU+oDRv8Eyv5YyH61Ip9exjdpUyq0y856S0LjM5xu42Z+fFxZfOYrJ0ZMSy3u9lew3GQOa+Np6NeXcoLu/ZoG6zHghoJ2tsfobVbtdaVpaqtXY7GQkNSwM3cmYS61Snc+6Q/ma2RrmGLlDerWtAC9nU8Nj8fcvW6tGtWt3ntktzwwtZJYe1oY10jgN3kNa1oJ32AA7goyvw/0vU1HLqCDTeIhz0pJkysdCJtp5PQ7yhvMd/wAK5sli8i0J9Y6Vs2MFjG2osRwUvT5GZgG5ylOaTmghHrLMfJZ7t/K7MelSVbRker6nBzJagryCbXGrb+or1fnLCYpqNh0ELiDvyiuyGNzfSOYHoSvX4xtQOtOFWEOt/wAIIjG83khvl9PK8kAdfQNl15dP4ud+NfJjacj8Y7moufAwmqeQs3i6eQeQlvk7dCR3JkDA73DPS+J90hDhsdp6hWx17h5kKs9KGu0RzRi3VY1jm9xHKSNvnWVYjxVpb3GGkptKS4zCSZSxioNWZCs080UDpuzmktdk9kgbuCx+zmu5S8Bw717Vdhse/Lx5V1Gs7KRwOqsvGFvbthc4OdGH7cwaXNaS3fYloPoUdj9B6ZxL8o+jp3E035Xc5B1ejFGbm++/bbN+2ec7zt+8+tJpGRcAuGkei9bZe3i9VaXs4uTHRx2NPaUrSQ12SufzRWntfam5XFrZG7gN5h378q3pQumdFae0VXlg09gcZgYJnc8kWMpx1mvd6yGNAJ/CppZRFosImp/GdjfyPc/zqqvKo1T+M7G/ke5/nVVeVq5Tpp3e8rPcIiLjQREQVLib9z9P8rY/9biXaXV4m/c/T/K2P/W4l2l6eH2FO+fZe5lnuoHZBnArVLsbZdVnbHC6Qssiu+WATx9tEyQkbPkj5429dyXgDqV56yWIn0joTjHrfhxgbOjsJYxGOp1InsAtRFkrjdnZGx5fC1sUpO27SXMLh1AcvXOvdLv1ro/KYNlmGm67F2YmsUorkbeoPlQygseDtsQ4elZ5wc9zvBwt1LlM9Nfxlm5epMoOq4PBw4il2bXl/M6CNzg+Qk7c5PQbgDqtdUTMoyTE8MKmnsTqLMYDWWj30n6TyTrOI0rXnjORifAeznmElybmLHbbScvMedwLjuvzHadZw9ZwRzmj6Rg1LntO3m3ZGvc+TJyjEmxEJi4ntCJmNI3327hsOi9N4fhtpHT0V+PFaWwuMjyDHR3GU8dDELLXec2QNaOcHc7g796kWaZw8bsU5uKotdiWlmOIrMBpNLOzIh6faxyeT5O3k9O5MkeQ+AugW6kj4dauqa80rV1DZmhuXpK1awMzknhhdbqWHvuuEjthIHDstmlvM1rQAFL8PcNpbRHADXXEPJafOdycFzPsc7tXMmEBuzxmGOUHeFh73Fm2xc53evTFHh/pfGagnz1PTeIqZycky5OChEyzIT380obzHf5yu/S09isbjJsdUxlOrj5nSOkqQ12MieZHF0hcwDYlxc4u3HUuJPekUWHlDhFpSpg+Muf0WTpebE5vRUly9gNNOlkpdp27GDnEkr+d5ZK4F4DOZpG7fSqvjGYjTnuQeH/vYmxODbmchi62rr8bTyshcZGPdc7KSOQMMrWRvPO07OcNx1XsfB8PNK6ZfWfh9M4fEuqmQwOo0IoTF2mwk5OVo5eblbvt37DfuX1S0BpfHHKmppvEVTlt/GPY0YmeGb779ts37Z5zvO37z61MgZT7n/hu3RGqs9PjdU6auYqWpDHNp/S1eSGtXm5nFlgsfZm5HPZu08vKHBoPUjdboofTWjcBoupJV09g8bgqsjud8OMqR12Od6y1gAJUws4i0WETR/jOo/kez/nV1eVRqP8AGdR/I9n/ADq6vK18q007veVnuERFxIrvES2KGhc7ZN+3ixFUkf4bQh7WeHYeexnwnD0BWJV3iJb8A0NnLAv2sWY6kjvDaMPbTwdPPYz4Th6ArEgIiICIiAiIgz7R45a2WB23GXvnbf12ZCP+hCnlwZTSd6O/YuYO/BSdad2litcrumic/bbnZyvaWE7DfvB232BLnHp+IdYfGeD9hm+uXrTXh4k5eVEX38GU586TRRniHWHxng/YZvrk8Q6w+M8H7DN9cp1fjj14JZJoozxDrD4zwfsM31yeIdYfGeD9hm+uTq/HHrwLJNFGeIdYfGeD9hm+uTxDrD4zwfsM31ydX449eBZJoozxDrD4zwfsM31yNwOr+Yb5LCbenajN9cnV+OPXgWfFMb8TMeR3DEWwevdvNW2/wKvKgtO6afipprt62MhlJ2NjfO2Lso2MG5DI2bu5W7kk7ucST1JAaGzq48eumuqIp0RFiRERcyCIiCpcTRvp6me4DK48knoB/tcS7SmMtiq+bx09K20vgmGzuVxa4EHcOBHUEEAgjqCAVVn6c1VBsyDM4uxG3oJLVB4kI/4uSUNJ9ZAA69wXoYNdE4cUTNpiZ9bcGWmEiijPEOsPjPB+wzfXJ4h1h8Z4P2Gb65ber8cevBLJNFGeIdYfGeD9hm+uTxDrD4zwfsM31ydX449eBZJoqZqG9q7Aag0tizZws7s7clptlFSYCHkrTT8xHa9d+x5dunnbqweIdYfGeD9hm+uTq/HHrwLJNFGeIdYfGeD9hm+uTxDrD4zwfsM31ydX449eBZJoozxDrD4zwfsM31yDA6v3G+Swm3p2ozfXJ1fjj14FnxRG/EymR3NxFnf5t5oNv8D/AGK8qC07pp+JlmuXbQyGUna1kk7Y+yjYwbkMjZu7lbuSTu5xJPUkBoE6uPlFdNdUZOiIsSIiLmRXOIlzwDRGZseMrOI5K52vU4O2mgPQczWfCPzKxqucQrrcfpG9M7JWcR1ijF2pD20sZdK1o5W7HfcuA+YHf0KxoCIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgz3iQ4Ra94UuI3D89ZhB6dCcVed6R6mHu2/7LQln3GB5o+8nK85jix+p6XaHcgbWOemAdvW603/otBQEREBERAREQEREFc15fNDC1uXIWcZJPkqNdk9WATPJfaiaWcp7mvBLHO+C1xd6FY1X9TWntyunKUOQsUZbN4uc2CASCeOOKR7o3uPmNOzfK799h8LcWBAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREFe4g6WdrTReXw0Uwq2bMB8GsO32hnaQ+KTp18mRrHdPUnD/Vg1xo/GZkwGnZnjLLdNx3dVsscY54Hf8AFHK17D87SrCs/wA3G7hrqC5qWvFzabyTmvzkLAS6pK1oaLzQPg8oa2Ubeaxkg25JOcNARfEM0diJksT2yxPaHMew7tcD1BB9IX2gIiICIiAiKMzmXkxtcR04I7+UlH+zUXWGQmXymhzt3dzGcwc4gOIHc1xIaQ6NWzLktbW+SbIQ1cZWFd8D4AyrYllLX87Xnq9zGsA6eSO1I3J3DbCujhcS3CY5lRtm1c2e+R092Yyyvc95e7dx7hu47NGzWjZrQGgAd5AREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBEUfm8/jtOUTcyl2GjWB5e0meG8x9DR6ST6AOpWVNM1Tk0xeRUJGHhJK+aMOfoeV5fMwbuOEcSPLaAP4ISSXfzHf+9b9jK6V4o6U1vqPUeBwObrZTK6dmZXykNfmcK8jgSGc+3K4jlcHBpPK5pa7ZwIWd8VeKFXWOhs1gtN5fP6fyN6DsYc7jqA7WuC4cxYJXMIJbzN5hs5vNzNIcAV5Q9yNw31R7mbi3kMlZ3zGk8jSkqT+DjksAhwfE/snHl33Gx8roHFd8fDuVzn5uVs/o6izH7PuH+Jc3+Zh+tT7PuH+Jc3+Zh+tV/pvK/9clmnIsx+z7h/iXN/mYfrVFas48sm0tl48Fh8qzNvqStousRxNjbOWERlxEhIAdtvsE/pvK/9clli0Xxz0rxGp5uTTFiXOW8Nkn4u7j6jWmxFKJHMDyC4NEbg0vbISGkAjcOa5ot2IxElNz7N2aK/k5AWvttrtiIj5i5sTdtzyN3Owc5x6kkndfzZ9y/wE1Rwd4lU9aZbU2QxliJ/+00sJVbYbfhc4GSCZ0j2Dldt/JcQQHDZwBH9A8Lxi0xmJ44H25cZYkOzI8jC6EOO+wAefIJJ6Ac2/wAywr5ByqiMqrDmxaV2REXAgiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiIInVOo62k8FayloF0cIAbG3zpHuIaxg+cuIH9a875bJ3NR5R2TykjZrrhs0N37OBv8iMHuHrPee8rQuPd15n01j9/tUks9tw37zGxrBv6/34n8IHqWar7f4NyamjB5+Y/VVfy0E5oERF9CwEWLat42ZiHVOdxuAq13Q4V4gk8IxV+463NyB7mNfXYWRAcwbu7mO+55QNie9X4jay1TnpMfg8fjMU5uCp5d0eahmdNHJKZQ6BzWub6WAc3Tl2PR2/k8nSsOZyYzyrW0WRY3i5nNdR6VpaWpY+tlMriBmrk2U55IKkPMI+VrWFrnuc/mA6jYN3PqXf8Ac9+EnReU8NEQuePsn2wgJMfP4U/m5d+u2++2/XZWjlFOJXFNOie/y4o05fj2NlY5j2h7HDYtcNwQv1F1C9cLNdy4PI1cDfmdLi7LuypyyuJdXlPmxbn/ANN3c0fBds0bhwDNsXk/K8wxtlzHujkYwyMe07Frm9WkfOCAV6mxV3xji6dvbl7eFkuw9HM0H/uvi/jXJqcKunGoi2Ve++O//rZpi7tIiL5tBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERBl/HfEOlxOKzLG8wx1gsmP8mGUBpd/U8Rb+obn0LKV6hs1obtaWvYiZNBKwxyRyDdr2kbEEekELB9Y8NsnpGZ8tGvYyuF72PiBlsVx/JkaPKeB6Hjc7ecBtzO+v8AhHLaIo6PiTaY0cN9yYuyabXmUimexug9SSta4gSMdR5XfON7QOx+cL8fr7KNcQNA6lcAduYOobH/AOUrIzNY9+4F2AOHe10gDh6OoPUL68b0fv2v+db9K+l5uvxT6cGNpZ+7h1mn5nIZ7TeobGkTnWxz5HG26EVtzJgwN52EP5WP5QAer2kjfqrLS0WamusnqR14yuu42vjzXMW3KYnyO5+bfrv2ndsNtu/r0m/G9H79r/nW/Snjej9+1/zrfpUpwKaZvEbe/T+SWlmWK4H3tM0dLPwWqDjs1hcccVLckoCaG5XLuflfCXjlIcNwQ7pue/dSWmcdkeE+Hdi243L6xltW7N+W9j4asIa6WVzy1zZJ29fK+D0/B3K9+N6P37X/ADrfpTxvR+/a/wCdb9Kwp5NTRnoiYn815u4tKse//K7fcBqb8HNQ/alMad1DbzrpxZ09lMEIg0tORNciXffzeylk7tuu+3eNt13/ABvQ+/a/51v0rnx0zs3Y8GxMMmXsn/0qQ7Tbrt5TvNb+FxAWzJqo/VVVm224LaSahNmHRYuqN7WQeKsQ2J6u73fga3mcfmaV6lrV2VK8UEY2jiYGNHqAGwVE4a8NXaae7K5VzJsxI0sjjjO8dRh72tPwnn4Tv6h03LtAXxHxbllPKcSKMPPTT365lloiwiIvCQREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREHVtYuleO9mnBYPrlia7/ABC6/vaxHxVS9nZ9CIs4rqjNErc97WI+KqXs7PoT3tYj4qpezs+hEV5yvXJeT3tYj4qpezs+hPe1iPiql7Oz6EROcr1yXkGm8QDuMXSB/F2fQu/FDHAwMjY2Ng7msGwCIsZqqq0yj7REWI//2Q==", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from IPython.display import Image, display\n", - "\n", - "try:\n", - " display(Image(graph.get_graph(xray=True).draw_mermaid_png()))\n", - "except Exception:\n", - " # This requires some extra dependencies and is optional\n", - " pass" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "7649f05a-cb67-490d-b24a-74d41895139a", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "7649f05a-cb67-490d-b24a-74d41895139a", - "outputId": "5ab8e289-5dc3-4285-ec5a-574c7ccec01e" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "---CALL AGENT---\n", - "18:32:46 httpx INFO HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", - "\"Output from node 'agent':\"\n", - "'---'\n", - "{ 'messages': [ AIMessage(content='', additional_kwargs={'tool_calls': [{'index': 0, 'id': 'call_sDky13ZhyfzMmoNr0vO79i9n', 'function': {'arguments': '{\"query\":\"types of agent memory\"}', 'name': 'retrieve_blog_posts'}, 'type': 'function'}]}, response_metadata={'finish_reason': 'tool_calls', 'model_name': 'gpt-4-turbo-2024-04-09', 'system_fingerprint': 'fp_5db30363ff'}, id='run-bda3e47f-d5a6-44a8-9dd2-f4f51b0f6627-0', tool_calls=[{'name': 'retrieve_blog_posts', 'args': {'query': 'types of agent memory'}, 'id': 'call_sDky13ZhyfzMmoNr0vO79i9n', 'type': 'tool_call'}])]}\n", - "'\\n---\\n'\n", - "18:32:47 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", - "---CHECK RELEVANCE---\n", - "18:32:49 httpx INFO HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", - "---DECISION: DOCS RELEVANT---\n", - "\"Output from node 'retrieve':\"\n", - "'---'\n", - "{ 'messages': [ ToolMessage(content='Table of Contents\\n\\n\\n\\nAgent System Overview\\n\\nComponent One: Planning\\n\\nTask Decomposition\\n\\nSelf-Reflection\\n\\n\\nComponent Two: Memory\\n\\nTypes of Memory\\n\\nMaximum Inner Product Search (MIPS)\\n\\n\\nComponent Three: Tool Use\\n\\nCase Studies\\n\\nScientific Discovery Agent\\n\\nGenerative Agents Simulation\\n\\nProof-of-Concept Examples\\n\\n\\nChallenges\\n\\nCitation\\n\\nReferences\\n\\nPlanning\\n\\nSubgoal and decomposition: The agent breaks down large tasks into smaller, manageable subgoals, enabling efficient handling of complex tasks.\\nReflection and refinement: The agent can do self-criticism and self-reflection over past actions, learn from mistakes and refine them for future steps, thereby improving the quality of final results.\\n\\n\\nMemory\\n\\nMemory\\n\\nShort-term memory: I would consider all the in-context learning (See Prompt Engineering) as utilizing short-term memory of the model to learn.\\nLong-term memory: This provides the agent with the capability to retain and recall (infinite) information over extended periods, often by leveraging an external vector store and fast retrieval.\\n\\n\\nTool use\\n\\nThe design of generative agents combines LLM with memory, planning and reflection mechanisms to enable agents to behave conditioned on past experience, as well as to interact with other agents.', name='retrieve_blog_posts', id='c7b3f250-b7c2-43a3-a852-8c2603f10fc0', tool_call_id='call_sDky13ZhyfzMmoNr0vO79i9n')]}\n", - "'\\n---\\n'\n", - "---GENERATE---\n", - "18:32:50 httpx INFO HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", - "\"Output from node 'generate':\"\n", - "'---'\n", - "{ 'messages': [ 'Lilian Weng discusses short-term memory as utilizing '\n", - " 'in-context learning for the model to learn and long-term '\n", - " 'memory as enabling the agent to retain and recall information '\n", - " 'over extended periods by leveraging an external vector store '\n", - " 'for fast retrieval.']}\n", - "'\\n---\\n'\n" - ] - } - ], - "source": [ - "import pprint\n", - "\n", - "inputs = {\n", - " \"messages\": [\n", - " (\"user\", \"What does Lilian Weng say about the types of agent memory?\"),\n", - " ]\n", - "}\n", - "for output in graph.stream(inputs):\n", - " for key, value in output.items():\n", - " pprint.pprint(f\"Output from node '{key}':\")\n", - " pprint.pprint(\"---\")\n", - " pprint.pprint(value, indent=2, width=80, depth=None)\n", - " pprint.pprint(\"\\n---\\n\")" - ] - } - ], - "metadata": { - "colab": { - "provenance": [] - }, - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.9" - } - }, - "nbformat": 4, - "nbformat_minor": 5 + "nbformat": 4, + "nbformat_minor": 5 } diff --git a/python-recipes/agents/01_crewai_langgraph_redis.ipynb b/python-recipes/agents/01_crewai_langgraph_redis.ipynb index ce81be14..419338d6 100644 --- a/python-recipes/agents/01_crewai_langgraph_redis.ipynb +++ b/python-recipes/agents/01_crewai_langgraph_redis.ipynb @@ -29,7 +29,7 @@ "![movie_recommendations_with_agents.png]()\n", "\n", "## Let's Begin!\n", - "\"Open\n" + "\"Open\n" ] }, { @@ -40,9 +40,8 @@ }, "outputs": [], "source": [ - "%%capture --no-stderr\n", "%pip install -U --quiet crewai==0.76.2\n", - "%pip install -U --quiet langchain langchain-openai langchain-redis langgraph" + "%pip install -U --quiet langchain langchain-openai \"langchain-redis>=0.2.0\" langgraph" ] }, { @@ -98,16 +97,16 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb jammy main\n", "Starting redis-stack-server, database path /var/lib/redis-stack\n" ] }, { - "output_type": "stream", "name": "stderr", + "output_type": "stream", "text": [ "gpg: cannot open '/dev/tty': No such device or address\n", "curl: (23) Failed writing body\n" @@ -115,6 +114,7 @@ } ], "source": [ + "# NBVAL_SKIP\n", "%%sh\n", "curl -fsSL https://packages.redis.io/gpg | sudo gpg --dearmor -o /usr/share/keyrings/redis-archive-keyring.gpg\n", "echo \"deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb $(lsb_release -cs) main\" | sudo tee /etc/apt/sources.list.d/redis.list\n", @@ -135,8 +135,8 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "Connecting to Redis at: redis://localhost:6379\n" ] @@ -170,15 +170,14 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "19:21:01 httpx INFO HTTP Request: GET https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json \"HTTP/1.1 200 OK\"\n" ] } ], "source": [ - "import os\n", "import re\n", "import random\n", "import pandas as pd\n", @@ -215,8 +214,8 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "--2024-11-04 19:21:03-- https://files.grouplens.org/datasets/movielens/ml-latest-small.zip\n", "Resolving files.grouplens.org (files.grouplens.org)... 128.101.65.152\n", @@ -271,8 +270,8 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "19:22:35 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", "19:22:35 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", @@ -576,16 +575,16 @@ "cell_type": "code", "execution_count": 11, "metadata": { - "id": "aV4zy0q8u9jy", "colab": { "base_uri": "https://localhost:8080/" }, + "id": "aV4zy0q8u9jy", "outputId": "8ea9e69c-11ee-4d5c-8b56-bcbef4a4f0fd" }, "outputs": [ { - "output_type": "stream", "name": "stderr", + "output_type": "stream", "text": [ ":19: LangGraphDeprecationWarning: Initializing StateGraph without state_schema is deprecated. Please pass in an explicit state_schema instead of just an input and output schema.\n", " workflow = StateGraph(\n" @@ -648,10 +647,10 @@ "cell_type": "code", "execution_count": 12, "metadata": { - "id": "C6WD1KisvHtJ", "colab": { "base_uri": "https://localhost:8080/" }, + "id": "C6WD1KisvHtJ", "outputId": "23de4bf9-10ef-461b-dda3-45e9e784f54a" }, "outputs": [ @@ -663,16 +662,16 @@ ] }, { - "output_type": "stream", "name": "stderr", + "output_type": "stream", "text": [ "\u001b[92m19:23:26 - LiteLLM:INFO\u001b[0m: utils.py:2751 - \n", "LiteLLM completion() model= gpt-3.5-turbo; provider = openai\n" ] }, { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "\u001b[1m\u001b[95m# Agent:\u001b[00m \u001b[1m\u001b[92mPreference Analyst\u001b[00m\n", "\u001b[95m## Task:\u001b[00m \u001b[92mAnalyze user preferences based on their input and chat history\u001b[00m\n", @@ -682,31 +681,31 @@ ] }, { - "output_type": "stream", "name": "stderr", + "output_type": "stream", "text": [ "\u001b[92m19:23:27 - LiteLLM:INFO\u001b[0m: utils.py:944 - Wrapper: Completed Call, calling success_handler\n" ] }, { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "19:23:27 LiteLLM INFO Wrapper: Completed Call, calling success_handler\n", "19:23:27 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n" ] }, { - "output_type": "stream", "name": "stderr", + "output_type": "stream", "text": [ "\u001b[92m19:23:27 - LiteLLM:INFO\u001b[0m: utils.py:2751 - \n", "LiteLLM completion() model= gpt-3.5-turbo; provider = openai\n" ] }, { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "\n", "\n", @@ -727,31 +726,31 @@ ] }, { - "output_type": "stream", "name": "stderr", + "output_type": "stream", "text": [ "\u001b[92m19:23:28 - LiteLLM:INFO\u001b[0m: utils.py:944 - Wrapper: Completed Call, calling success_handler\n" ] }, { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "19:23:28 LiteLLM INFO Wrapper: Completed Call, calling success_handler\n", "19:23:28 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n" ] }, { - "output_type": "stream", "name": "stderr", + "output_type": "stream", "text": [ "\u001b[92m19:23:28 - LiteLLM:INFO\u001b[0m: utils.py:2751 - \n", "LiteLLM completion() model= gpt-3.5-turbo; provider = openai\n" ] }, { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "\n", "\n", @@ -771,30 +770,30 @@ ] }, { - "output_type": "stream", "name": "stderr", + "output_type": "stream", "text": [ "\u001b[92m19:23:30 - LiteLLM:INFO\u001b[0m: utils.py:944 - Wrapper: Completed Call, calling success_handler\n" ] }, { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "19:23:30 LiteLLM INFO Wrapper: Completed Call, calling success_handler\n" ] }, { - "output_type": "stream", "name": "stderr", + "output_type": "stream", "text": [ "\u001b[92m19:23:30 - LiteLLM:INFO\u001b[0m: utils.py:2751 - \n", "LiteLLM completion() model= gpt-3.5-turbo; provider = openai\n" ] }, { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "\n", "\n", @@ -811,31 +810,31 @@ ] }, { - "output_type": "stream", "name": "stderr", + "output_type": "stream", "text": [ "\u001b[92m19:23:31 - LiteLLM:INFO\u001b[0m: utils.py:944 - Wrapper: Completed Call, calling success_handler\n" ] }, { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "19:23:31 LiteLLM INFO Wrapper: Completed Call, calling success_handler\n", "19:23:32 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n" ] }, { - "output_type": "stream", "name": "stderr", + "output_type": "stream", "text": [ "\u001b[92m19:23:32 - LiteLLM:INFO\u001b[0m: utils.py:2751 - \n", "LiteLLM completion() model= gpt-3.5-turbo; provider = openai\n" ] }, { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "\n", "\n", @@ -856,30 +855,30 @@ ] }, { - "output_type": "stream", "name": "stderr", + "output_type": "stream", "text": [ "\u001b[92m19:23:32 - LiteLLM:INFO\u001b[0m: utils.py:944 - Wrapper: Completed Call, calling success_handler\n" ] }, { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "19:23:32 LiteLLM INFO Wrapper: Completed Call, calling success_handler\n" ] }, { - "output_type": "stream", "name": "stderr", + "output_type": "stream", "text": [ "\u001b[92m19:23:32 - LiteLLM:INFO\u001b[0m: utils.py:2751 - \n", "LiteLLM completion() model= gpt-3.5-turbo; provider = openai\n" ] }, { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "\n", "\n", @@ -897,31 +896,31 @@ ] }, { - "output_type": "stream", "name": "stderr", + "output_type": "stream", "text": [ "\u001b[92m19:23:33 - LiteLLM:INFO\u001b[0m: utils.py:944 - Wrapper: Completed Call, calling success_handler\n" ] }, { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "19:23:33 LiteLLM INFO Wrapper: Completed Call, calling success_handler\n", "19:23:33 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n" ] }, { - "output_type": "stream", "name": "stderr", + "output_type": "stream", "text": [ "\u001b[92m19:23:34 - LiteLLM:INFO\u001b[0m: utils.py:2751 - \n", "LiteLLM completion() model= gpt-3.5-turbo; provider = openai\n" ] }, { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "\n", "\n", @@ -942,31 +941,31 @@ ] }, { - "output_type": "stream", "name": "stderr", + "output_type": "stream", "text": [ "\u001b[92m19:23:34 - LiteLLM:INFO\u001b[0m: utils.py:944 - Wrapper: Completed Call, calling success_handler\n" ] }, { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "19:23:34 LiteLLM INFO Wrapper: Completed Call, calling success_handler\n", "19:23:34 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n" ] }, { - "output_type": "stream", "name": "stderr", + "output_type": "stream", "text": [ "\u001b[92m19:23:34 - LiteLLM:INFO\u001b[0m: utils.py:2751 - \n", "LiteLLM completion() model= gpt-3.5-turbo; provider = openai\n" ] }, { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "\n", "\n", @@ -986,8 +985,8 @@ ] }, { - "output_type": "stream", "name": "stderr", + "output_type": "stream", "text": [ "\u001b[92m19:23:35 - LiteLLM:INFO\u001b[0m: utils.py:944 - Wrapper: Completed Call, calling success_handler\n" ] @@ -1069,16 +1068,16 @@ "cell_type": "code", "execution_count": 13, "metadata": { - "id": "mVKTDoSevKfk", "colab": { "base_uri": "https://localhost:8080/" }, + "id": "mVKTDoSevKfk", "outputId": "0106a9e4-b3bd-4ee8-a11d-d73792a50eff" }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "Thank you for using our movie recommendation system!\n" ] @@ -1100,13 +1099,15 @@ "provenance": [] }, "kernelspec": { - "display_name": "Python 3", + "display_name": "redis-ai-res", + "language": "python", "name": "python3" }, "language_info": { - "name": "python" + "name": "python", + "version": "3.11.9" } }, "nbformat": 4, "nbformat_minor": 0 -} \ No newline at end of file +} diff --git a/python-recipes/agents/02_full_featured_agent.ipynb b/python-recipes/agents/02_full_featured_agent.ipynb new file mode 100644 index 00000000..cb1ad606 --- /dev/null +++ b/python-recipes/agents/02_full_featured_agent.ipynb @@ -0,0 +1,1016 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "qYvD2zzKobTC" + }, + "source": [ + "![Redis](https://redis.io/wp-content/uploads/2024/04/Logotype.svg?auto=webp&quality=85,75&width=120)\n", + "\n", + "# Full-Featured Agent Architecture\n", + "The following example demonstrates how to build a tool-enabled agentic workflow with a semantic cache and an allow/block list router. This approach helps reduce latency and costs in the final solution.\n", + "\n", + "Note: This notebook summarizes this [this workshop](https://github.com/redis-developer/oregon-trail-agent-workshop). For a more detailed step-by-step walkthrough of each element, please refer to the repository.\n", + "\n", + "## Let's Begin!\n", + "\"Open" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "NTFxCojYECnx" + }, + "source": [ + "# Setup\n", + "\n", + "## Packages" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "Zz62U5COgF21" + }, + "outputs": [], + "source": [ + "%pip install -q langchain langchain-openai \"langchain-redis>=0.2.0\" langgraph sentence-transformers" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### OPEN_AI_API key\n", + "\n", + "A open_ai_api key with billing information enabled is required for this lesson." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "VO0i-1c9m2Kb", + "outputId": "ec942dbf-226a-426d-8964-e03831e0dd99" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OPENAI_API_KEY:··········\n" + ] + } + ], + "source": [ + "# NBVAL_SKIP\n", + "import os\n", + "import getpass\n", + "\n", + "\n", + "\n", + "def _set_env(key: str):\n", + " if key not in os.environ:\n", + " os.environ[key] = getpass.getpass(f\"{key}:\")\n", + "\n", + "\n", + "_set_env(\"OPENAI_API_KEY\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Po4K08Uoa5HJ" + }, + "source": [ + "## Redis instance\n", + "\n", + "### For colab" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vlF2874ZoBWu", + "outputId": "e5e7ebc0-b70c-4682-d70c-b33c584e72d4" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb jammy main\n", + "Starting redis-stack-server, database path /var/lib/redis-stack\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "gpg: cannot open '/dev/tty': No such device or address\n", + "curl: (23) Failed writing body\n" + ] + } + ], + "source": [ + "# NBVAL_SKIP\n", + "%%sh\n", + "curl -fsSL https://packages.redis.io/gpg | sudo gpg --dearmor -o /usr/share/keyrings/redis-archive-keyring.gpg\n", + "echo \"deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb $(lsb_release -cs) main\" | sudo tee /etc/apt/sources.list.d/redis.list\n", + "sudo apt-get update > /dev/null 2>&1\n", + "sudo apt-get install redis-stack-server > /dev/null 2>&1\n", + "redis-stack-server --daemonize yes" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### For Alternative Environments\n", + "There are many ways to get the necessary redis-stack instance running\n", + "1. On cloud, deploy a [FREE instance of Redis in the cloud](https://redis.com/try-free/). Or, if you have your\n", + "own version of Redis Enterprise running, that works too!\n", + "2. Per OS, [see the docs](https://redis.io/docs/latest/operate/oss_and_stack/install/install-stack/)\n", + "3. With docker: `docker run -d --name redis-stack-server -p 6379:6379 redis/redis-stack-server:latest`\n", + "\n", + "## Test connection" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "My-zol_loQaw", + "outputId": "b58c2466-ee10-480c-ad4c-608cbf747e8b" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import os\n", + "from redis import Redis\n", + "\n", + "# Use the environment variable if set, otherwise default to localhost\n", + "REDIS_URL = os.getenv(\"REDIS_URL\", \"redis://localhost:6379\")\n", + "\n", + "client = Redis.from_url(REDIS_URL)\n", + "client.ping()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "p8lqllwDoV_K" + }, + "source": [ + "# Motivation\n", + "\n", + "The goal of the workshop is to create an agent workflow that can handle five Oregon Trail-themed scenarios, mimicking situations that often arise when implementing agent workflows in practice.\n", + "\n", + "## Scenario 1 - name of the wagon leader\n", + "\n", + "**Learning goal:** Test basic LangGraph setup and execution.
\n", + "\n", + "**Question:** `What is the first name of the wagon leader?`
\n", + "**Answer:** `Art`
\n", + "**Type:** `free-form`
\n", + "\n", + "## Scenario 2 - restocking tool\n", + "\n", + "**Learning goal:** Agent interaction with custom defined tool and **structured output** for multiple choice questions.
\n", + "\n", + "**Question:** `In order to survive the trail ahead, you'll need to have a restocking strategy for when you need to get more supplies or risk starving. If it takes you an estimated 3 days to restock your food and you plan to start with 200lbs of food, budget 10lbs/day to eat, and keep a safety stock of at least 50lbs of back up... at what point should you restock?`
\n", + "**Answer:** `D`
\n", + "**Options:** `[\"A: 100lbs\", \"B: 20lbs\", \"C: 5lbs\", \"D: 80lbs\"]`
\n", + "**Type:** `multi-choice`
\n", + "\n", + "## Scenario 3 - retrieval tool\n", + "\n", + "**Learning goal:** Agent implements Retrieval Augmented Generation.\n", + "\n", + "**Question:** `You’ve encountered a dense forest near the Blue Mountains, and your party is unsure how to proceed. There is a fork in the road, and you must choose a path. Which way will you go?`
\n", + "**Answer:** `B`
\n", + "**Options:** `[\"A: take the northern trail\", \"B: take the southern trail\", \"C: turn around\", \"D: go fishing\"]`
\n", + "**Type:** `multi-choice`
\n", + "\n", + "## Scenario 4 - semantic cache\n", + "\n", + "**Learning goal:** Implement semantic cache that bypasses expensive agent workflow for known answer.
\n", + "\n", + "**Question:** `There's a deer. You're hungry. You know what you have to do...`
\n", + "**Answer:** `bang`
\n", + "**Type:** `free-form`
\n", + "\n", + "## Scenario 5 - allow/block list with router\n", + "\n", + "**Learning goal:** Implement semantic router that blocks requests for non-related topics.\n", + "\n", + "**Question:** `Tell me about the S&P 500?`
\n", + "**Answer:** `you shall not pass`
\n", + "**Type:** `free-form`
\n", + "\n", + "\n", + "\n", + "# Final Architecture\n", + "\n", + "In the end, we are building a workflow like the following:\n", + "\n", + "![diagram](../../assets/full_featured_agent.png)\n", + "\n", + "As a reminder for more detail see: [Redis Developer Oregon Trail Agent Workshop](https://github.com/redis-developer/oregon-trail-agent-workshop).\n", + "\n", + "# Defining the agent with LangGraph\n", + "\n", + "## Tools\n", + "\n", + "Tools are functions that the central LLM powered \"agent\" can determine to invoke depending on the situation.\n", + "\n", + "### Restock tool\n", + "\n", + "The first tool we will define implements the restocking formula. LLMs are designed to predict text responses, not to perform deterministic math. In this case, the agent will act as a parser, extracting the necessary information from the human query and calling the tool with the appropriate schema.\n", + "\n", + "One of the advantages of `LangGraph` is that the schema for the tool can be defined as a `pydantic` model. Note: It is also essential to include a well-written `doc_string` with the tool function so the agent can determine the appropriate situation to use the tool." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "from langchain_core.tools import tool\n", + "from pydantic import BaseModel, Field\n", + "\n", + "class RestockInput(BaseModel):\n", + " daily_usage: int = Field(\n", + " description=\"Pounds (lbs) of food expected to be consumed daily\"\n", + " )\n", + " lead_time: int = Field(description=\"Lead time to replace food in days\")\n", + " safety_stock: int = Field(\n", + " description=\"Number of pounds (lbs) of safety stock to keep on hand\"\n", + " )\n", + "\n", + "\n", + "@tool(\"restock-tool\", args_schema=RestockInput)\n", + "def restock_tool(daily_usage: int, lead_time: int, safety_stock: int) -> int:\n", + " \"\"\"restock formula tool used specifically for calculating the amount of food at which you should start restocking.\"\"\"\n", + " print(f\"\\n Called restock tool: {daily_usage=}, {lead_time=}, {safety_stock=} \\n\")\n", + " return (daily_usage * lead_time) + safety_stock" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Retriever tool\n", + "\n", + "Sometimes an LLM might need access to data that it was not trained on, whether because the data is proprietary, time-sensitive, or otherwise unavailable.\n", + "\n", + "In such cases, Retrieval-Augmented Generation (RAG) is often necessary. Here, a vector search is used to augment the final LLM prompt with helpful and necessary context.\n", + "\n", + "RAG and agents are not mutually exclusive. Below, we define a retriever tool that performs RAG whenever the agent determines it is necessary." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "09:04:55 redisvl.index.index INFO Index already exists, not overwriting.\n" + ] + } + ], + "source": [ + "\n", + "from langchain.tools.retriever import create_retriever_tool\n", + "\n", + "from langchain_redis import RedisConfig, RedisVectorStore\n", + "from langchain_core.documents import Document\n", + "from langchain_openai import OpenAIEmbeddings\n", + "\n", + "## Helper methods\n", + "\n", + "INDEX_NAME = os.environ.get(\"VECTOR_INDEX_NAME\", \"oregon_trail\")\n", + "REDIS_URL = os.environ.get(\"REDIS_URL\", \"redis://localhost:6379/0\")\n", + "CONFIG = RedisConfig(index_name=INDEX_NAME, redis_url=REDIS_URL)\n", + "\n", + "def get_vector_store():\n", + " try:\n", + " CONFIG.from_existing = True\n", + " vector_store = RedisVectorStore(OpenAIEmbeddings(), config=CONFIG)\n", + " except:\n", + " print(\"Init vector store with document\")\n", + " CONFIG.from_existing = False\n", + " vector_store = RedisVectorStore.from_documents(\n", + " [doc], OpenAIEmbeddings(), config=CONFIG\n", + " )\n", + " return vector_store\n", + "\n", + "## Relevant data\n", + "\n", + "doc = Document(\n", + " page_content=\"the northern trail, of the blue mountains, was destroyed by a flood and is no longer safe to traverse. It is recommended to take the southern trail although it is longer.\"\n", + ")\n", + "\n", + "## Retriever tool\n", + "vector_store = get_vector_store()\n", + "\n", + "retriever_tool = create_retriever_tool(\n", + " vector_store.as_retriever(),\n", + " \"get_directions\",\n", + " \"Search and return information related to which routes/paths/trails to take along your journey.\",\n", + ")\n", + "\n", + "## Store both tools in a list\n", + "tools = [retriever_tool, restock_tool]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# State\n", + "\n", + "State is the set of messages that is passed between nodes in our graph so that the proceeding node knows what happened at the last node and so on. In this case, our state will extend the normal `MessageState` but also add a custom field for `multi_choice_responses`. " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "from typing import Literal\n", + "\n", + "from langgraph.graph import MessagesState\n", + "from pydantic import BaseModel, Field\n", + "\n", + "\n", + "class MultipleChoiceResponse(BaseModel):\n", + " multiple_choice_response: Literal[\"A\", \"B\", \"C\", \"D\"] = Field(\n", + " description=\"Single character response to the question for multiple choice questions. Must be either A, B, C, or D.\"\n", + " )\n", + "\n", + "\n", + "class AgentState(MessagesState):\n", + " multi_choice_response: MultipleChoiceResponse\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Nodes\n", + "\n", + "Nodes are steps in the process flow of our agent where functions can be invoked." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "from functools import lru_cache\n", + "\n", + "from langchain_core.messages import HumanMessage\n", + "from langchain_openai import ChatOpenAI\n", + "from langgraph.prebuilt import ToolNode\n", + "\n", + "\n", + "## Function definitions that invoke an LLM model\n", + "\n", + "### with tools\n", + "@lru_cache(maxsize=4)\n", + "def _get_tool_model(model_name: str):\n", + " if model_name == \"openai\":\n", + " model = ChatOpenAI(temperature=0, model_name=\"gpt-4o\")\n", + " else:\n", + " raise ValueError(f\"Unsupported model type: {model_name}\")\n", + "\n", + " model = model.bind_tools(tools)\n", + " return model\n", + "\n", + "### with structured output\n", + "@lru_cache(maxsize=4)\n", + "def _get_response_model(model_name: str):\n", + " if model_name == \"openai\":\n", + " model = ChatOpenAI(temperature=0, model_name=\"gpt-4o\")\n", + " else:\n", + " raise ValueError(f\"Unsupported model type: {model_name}\")\n", + "\n", + " model = model.with_structured_output(MultipleChoiceResponse)\n", + " return model\n", + "\n", + "### Functions for responding to a multiple choice question\n", + "def multi_choice_structured(state: AgentState, config):\n", + " # We call the model with structured output in order to return the same format to the user every time\n", + " # state['messages'][-2] is the last ToolMessage in the convo, which we convert to a HumanMessage for the model to use\n", + " # We could also pass the entire chat history, but this saves tokens since all we care to structure is the output of the tool\n", + " model_name = config.get(\"configurable\", {}).get(\"model_name\", \"openai\")\n", + "\n", + " print(\"Called multi choice structured\")\n", + "\n", + " response = _get_response_model(model_name).invoke(\n", + " [\n", + " HumanMessage(content=state[\"messages\"][0].content),\n", + " HumanMessage(content=f\"Answer from tool: {state['messages'][-2].content}\"),\n", + " ]\n", + " )\n", + " # We return the final answer\n", + " return {\n", + " \"multi_choice_response\": response.multiple_choice_response,\n", + " }\n", + "\n", + "\n", + "# Function for conditional edge\n", + "def is_multi_choice(state: AgentState):\n", + " return \"options:\" in state[\"messages\"][0].content.lower()\n", + "\n", + "\n", + "def structure_response(state: AgentState, config):\n", + " if is_multi_choice(state):\n", + " return multi_choice_structured(state, config)\n", + " else:\n", + " # if not multi-choice don't need to do anything\n", + " return {\"messages\": []}\n", + "\n", + "\n", + "system_prompt = \"\"\"\n", + " You are an oregon trail playing tool calling AI agent. Use the tools available to you to answer the question you are presented. When in doubt use the tools to help you find the answer.\n", + " If anyone asks your first name is Art return just that string.\n", + "\"\"\"\n", + "\n", + "\n", + "# Define the function that calls the model\n", + "def call_tool_model(state: AgentState, config):\n", + " # Combine system prompt with incoming messages\n", + " messages = [{\"role\": \"system\", \"content\": system_prompt}] + state[\"messages\"]\n", + "\n", + " # Get from LangGraph config\n", + " model_name = config.get(\"configurable\", {}).get(\"model_name\", \"openai\")\n", + "\n", + " # Get our model that binds our tools\n", + " model = _get_tool_model(model_name)\n", + "\n", + " # invoke the central agent/reasoner with the context of the graph\n", + " response = model.invoke(messages)\n", + "\n", + " # We return a list, because this will get added to the existing list\n", + " return {\"messages\": [response]}\n", + "\n", + "\n", + "# Define the function to execute tools\n", + "tool_node = ToolNode(tools)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Graph\n", + "\n", + "The graph composes the tools and nodes into a compilable workflow that can be invoked." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "from typing import Literal, TypedDict\n", + "from langgraph.graph import END, StateGraph\n", + "\n", + "\n", + "# Define the config\n", + "class GraphConfig(TypedDict):\n", + " model_name: Literal[\"anthropic\", \"openai\"]\n", + "\n", + "# Define the function that determines whether to continue or not\n", + "def should_continue(state: AgentState):\n", + " messages = state[\"messages\"]\n", + " last_message = messages[-1]\n", + " # If there is no function call, then we respond to the user\n", + " if not last_message.tool_calls:\n", + " return \"structure_response\"\n", + " # Otherwise if there is, we continue\n", + " else:\n", + " return \"continue\"\n", + "\n", + "\n", + "# Define a new graph\n", + "workflow = StateGraph(AgentState, config_schema=GraphConfig)\n", + "\n", + "# Add nodes\n", + "workflow.add_node(\"agent\", call_tool_model)\n", + "workflow.add_node(\"tools\", tool_node)\n", + "workflow.add_node(\"structure_response\", structure_response)\n", + "\n", + "# Set the entrypoint\n", + "workflow.set_entry_point(\"agent\")\n", + "\n", + "# add conditional edge between agent and tools\n", + "workflow.add_conditional_edges(\n", + " \"agent\",\n", + " should_continue,\n", + " {\"continue\": \"tools\", \"structure_response\": \"structure_response\"},\n", + ")\n", + "\n", + "\n", + "# We now add a normal edge from `tools` to `agent`.\n", + "workflow.add_edge(\"tools\", \"agent\")\n", + "workflow.add_edge(\"structure_response\", END)\n", + "\n", + "\n", + "# This compiles it into a LangChain Runnable,\n", + "# meaning you can use it as you would any other runnable\n", + "graph = workflow.compile()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Evaluate graph structure\n", + "\n", + "When we invoke the graph, it follows four primary steps: \n", + "\n", + "1. **Evaluate Conditional Edge**: The graph evaluates the conditional edge between tools and the agent via the `should_continue` function. This determines whether it should `continue` and call a tool or move to `structure_response` to format the output for the user. \n", + "2. **Invoke Tools**: If it decides to invoke the tools, the response from the tool is appended as a message to the state and passed back to the agent. \n", + "3. **Determine Next Step**: If tools have already been called or are deemed unnecessary, the graph moves to the `structure_response` node. \n", + "4. **Handle Multiple-Choice Questions**: If the question is identified as a **multiple-choice question** within the `structure_response` node, a model is invoked to ensure the response is returned as a literal `A, B, C, or D`, as expected by the game. Otherwise, it simply proceeds forward. " + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUkAAAFlCAIAAADpho2yAAAAAXNSR0IArs4c6QAAIABJREFUeJzt3XdcE/f/B/BPBiQhIYQpS0DEgSigorWKW6riwlkV3LbYOmqddbXWr9U6aofWUb+u1lUH1r03LhQHqIiLIbITIHvn98d9f3z5sgyQ8Lk73s+Hf+CRfPLOJS/u7nN3nw/DZDIhAADtMHEXAACwCsg2APQE2QaAniDbANATZBsAeoJsA0BPbNwF0FB+hkYu1Sulep3OpFUZcZdjFg6PacNh8oUsvoONq7ct7nKABUC2LebVI/nbZPnbp4omrfgGg4kvZDs1smWycJdlHhNC+ZlqhVRvy2Vlpir8Wwv82wj8guxw1wVqjwHXrtTd83vS2ycLfQP5foH8Jm34bBsG7orqRK0wvE1WZKepc9NUnQe5+Lfh464I1AZku06KC3Tn/8x18eJ0GeTM5VNkG222onzd7ZOFTAYjYlwjqv/BaoAg27X3+rH87hnxoM89HVxscNdiRfnvNEc3Zg2b7tXIl4u7FlADkO1aynqpenq7pN9Ed9yF1JPDP7+LiHEXudL5rxjNQLZrI+lmSdYrZeRkD9yF1KvDv2R17OvkGwgdbNQA57drLPuN6vVjWUMLNkJo5GzvKwfzFCUG3IUAs0C2a0atND64VDRspjfuQvAYu8jv0oE83FUAs0C2ayb+n4JmbQW4q8CGw2U08uE8uFiEuxDwYZDtGijK0+VlqAM7CnEXglOnSOd758RGalxu16BBtmsgOb6k61C3+nktuVz+4sULXE+vXs+Rbg8vw6ab7CDb5jKZUNKtYp+WvPp5udGjRx8/fhzX06vn3Yz3/F6JlRoHlgLZNldassK/df1dfanVamv3ROKkZq2fbg6hsw3bhinJteJLgLqDbJvr/VtV83b21mh59+7dkZGR4eHhU6ZMSUhIQAgNHDhQIpEcPnw4LCxs4MCBRFZ///33wYMHf/TRRwMGDNi8ebPB8J9zUWvWrPnkk09u3LgxdOjQsLCw+/fvV3y6xbUIE75LVVqjZWApcB+YufIy1M1CLd9DnpCQsGnTpn79+nXu3Pn27dtKpRIhtHbt2hkzZrRv3z46OtrW1hYhxGKx7t27161bN29v79TU1J07dwqFwpiYGKIRuVy+efPmb775RqVSdejQoeLTLc5OwMx+q7ZGy8BSINvmUkr1dvaWX13Z2dkIoVGjRgUHB0dGRhILW7VqxWazXVxcQkNDiSUsFmvPnj0Mxn9u2MjKyrpy5UpptrVa7dKlS1u3bl3V0y2O78BWlOit1DiwCMi2uRQyg53Q8nd6hYeHC4XCZcuWzZ8/Pzw8vJpHSiSS7du33717VyqVIoTs7f97gMDlckuDXT/shGyFFLJNanC8bR4T4nCZTKbl73N0cXHZuXOnr6/v7Nmzp0yZkp+fX+nDxGJxdHR0QkLCF198sXHjxsDAwNLjbYSQnV19X+PNZjPYNvDlITX4eMzDQEwWw0pbKj8/v99++23Lli2vX79evnx56fKyt/EcPXpUIpFs3ry5b9++QUFB7u4fvv/MqncByYv1Nhy4o5vUINvmsrNnqWRWuU2COF/VoUOHrl27ll5wwuPxCgsLSx9TXFzs6OhYGuni4uLqo1vu6RankOr5QjigIzX4eMzl7sdTyS2f7WfPni1cuHDUqFF2dna3b99u1aoVsbxt27bnzp3bvXu3UCgMDg4OCws7dOjQli1bQkJCrly5cuvWLaPRWFxcLBKJKm223NMDAgIsW7ZWbXT25Fi2TWBZrLI7gaAaKpkh/bnCv42FT4OVlJS8fPnywoULCQkJ7dq1W7x4sUAgQAgFBwenpqaeOXPmxYsXQUFBvXr1MhqNhw8fvnz5cuPGjZctW/bo0SOlUhkWFnbr1q20tLRx48aVbbbc05s0aWLZsm/EFbb+WCgQwbaBvGBsBnNpVMY9K9I/X+2PuxD81ArD3tUZU1fCqiA1+LtrLg6P6d9GkJehrmbYsPXr1586dari8sDAwJSUlEqfsmvXLotvVMuJj49funRppb/y9vbOysqqaVXvXqlbdXKwaI3A8mC7XQPvX6sSzkmGzvCq6gHFxcXEhWXlMBhVrmc3Nzc227p/YdVqtUQiqfRXVRVWfVW7lqePnO0NO+QkBx9PDXgF8Fg2jIwUZVVjholEoqo6tzDicrmenp6Wai3pZol/Gz4Em/zgHFjNdBnskvpAhrsKnNKeKboMcsFdBfgwyHbNOHvYejfnXT5Y+dVjtBe3MatDhCPbFq5aoQDIdo21+khoy2HeOSXGXUh9u/BXXkCovWfTehqdAtQR9KXV0pPrxSqFsVOkE+5C6snFvXnN2tn7tYLBySkDttu1FNJdxGCgM7tycBdidXqt6dCGd14BPAg2tcB2u07eJCmuHclv38sxtAfpusct4u4ZceYLZY8Rbm4+cIUpxUC268pgQHdOFqYmykK7i/yC+M4edJiYPi9DnfVKdfes+KN+zmF9HBH0nVEQZNsylDJDcnzJmyS5XmcMCLZnsBBfyLZ3ZBsM1Fi9TAZDKtEpZQYGAz2/JxU6sQNC7UO6i5hw0EZZkG0Lk4p12WkaeZFOKdMzmAx5sYVv+U5PT+dyuebcv10jfAcWk8GwE7LsHW28Anh29nSbS7wBgquLLEzobCN0tuJEtmvX/unk69v/U2sNhAZoA3a5AKAnyDYA9ATZphihUMjlVnmTKQClINsUI5VK1WoY9B98GGSbYjgcjrXv9wb0ANmmGI1Go9fDoP/gwyDbFMPj8WxsrHiODdAGZJtiVCqVTqfDXQWgAMg2xTg6OvJ4cAc1+DDINsUUFRWpVCrcVQAKgGwDQE+QbYrhcrksFtzIAT4Msk0xarW67Oy8AFQFsk0xXC4XzoEBc0C2KUatVsM5MGAOyDYA9ATZphihUMjhwLCE4MMg2xQjlUo1Gg3uKgAFQLYBoCfINsWIRCIYmwGYA7JNMcXFxTA2AzAHZBsAeoJsUwzcBwbMBNmmGLgPDJgJsg0APUG2KQbGMAZmgmxTDIxhDMwE2QaAniDbFAPjkwMzQbYpBsYnB2aCbFMM3AcGzATZphi4DwyYCbINAD1BtimGx+NBXxowB2SbYlQqFfSlAXNAtilGJBLBvSLAHJBtiikuLoZ7RYA5INsUA9ttYCbINsXAdhuYCbJNMXw+39bWFncVgAIYJpMJdw3gwwYPHkx8UjKZjM1mE7vlDAbjxIkTuEsDJAVnSqnBzc0tMTGxdAbP4uJio9HYp08f3HUB8oJ9cmqIjo52dnYuu8TFxWXChAn4KgJkB9mmhp49e/r5+ZX+12QyBQcHBwUFYS0KkBpkmzLGjBkjFAqJn52dnadMmYK7IkBqkG3K6N27d7NmzUwmE7HRDgwMxF0RIDXINpWMHj1aJBI5OztPnToVdy2A7KCf3PLUSmNhlkatMli85cZOHVr59nJ0dGRrvF8/kVu8fb4928WLY8NhWLxlUP/g/LYlmUzo/F95714ovJrzDXrqrVid2iDO0QSECHqOcsNdC6gryLbF6DSmI79lte3l7BVgh7uWOkl9UPL+tWJIrCfuQkCdQLYtZv/azPAod8dGdLggNC1Z/u6lbMBkD9yFgNqDvjTLSL0v82rKp0ewEUJN2giYTGb2G5jkgMIg25aRn6Xh8lm4q7AkGw5TnAODLlIYZNsyNCqj0IUmG22Cg4utQgqDN1EYZNsytCqD0WDEXYUlGfRGA0SbyiDbANATZBsAeoJsA0BPkG0A6AmyDQA9QbYBoCfINgD0BNkGgJ4g2wDQE2QbAHqCbANAT5BtmjMYDMnJj3FXATCAbNPcup/+teGXVbirABhAtsnufXZWXcbG0WrgHuwGCsY5xUOr1f751/YrV87nF+Q5O7t8EjFg4oRYYrovnU63c9eWS5fPqlTK4OB2L1+mjIuZOmTwCITQo8cPtv9705s3Lx0dndqGdpg6ZbqzswtCaNCQHrO/WhQff/XuvXg+XzBo4PAJ4z9DCP24dvnVaxcRQj17hyGEDv991sXFFfdbB/UEso0Hi8VKTLz3cedunh7er1+n7t23095eOGpkDEJo6x+/njhxZOqU6S4ublu2/qzRqPv3G4wQSnyY8M2iWRF9IodGfSqTlhyNOzBn3rRtW/ZyuVyE0I9rvps4IXb06AnXrl3cvWdbi+aBnTqFx4ydXJCfl5PzftE3KxBCDg4i3O8b1B/INh4sFmvz73sYjP+MBJ6dk3Xj5pVRI2MMBsOpU3EDIqM+HTWOmPfrh1VLk58+bt+u48ZN6wYNHDZr5gLiKWFhnSZMGnH/wZ2u4T0RQpH9h0SPnYQQCmja/PSZfxIe3OnUKdzb28fBQSQpErdpE4r17QIMINvYFBVJ/vxr+/0Hd2UyKULIXmCPECopKdZqtV5ejYnHED/IZNLc3JyMjLT379+dOn2sbCP5+XnED1wuj/iBxWK5urqJCwvq/Q0BcoFs4yGRiD+fFs3j2U2e9IWnp/fOnZvfZWUQu80CviA5+fHIEdEIoZSUpwihpv7NiorECKEJ4z/v1rVX2XacnFwqNs5msQ1Gy89qAqgFso3HiZNHi4okv2/c3aiRO0LIzc2dyDaLxRozZuL2f29a+cMSFxe34ycODx82pnFj33fvMhBCGo3ax8fPjOb/BwxB3zDBOTA8pNJikciRCDZCqERaXJrAqCGjOoR1KiqSyOWyJYtXzpg+FyHk7e3TqJH72XMnVCoV8TC9Xq/T6T74QlwuTyIRG420GqcRmAOyjUdoaJhEIt65a8u9hNvrf1p5796twsKCkpJihNC/flgsFDpERka1bduBgRh5ebkIIQaDMf3LuWJx4fSZE/85fjgu7uD0GROPnzj8wRcKCW4nk0k3/Lzq/PlTT548rJc3B0iBtXz5ctw10MGrR3KRG8fB7CHKfX2bmEzGf44fvnnjsqdX43lzlyUnP1KplKGhYUVF4lOn4y5fOX/j5pUrVy8c++dv90aeTZs29/Vp0rJFq6SkRxcunk558bSpf7OIiAHE+e0DB3c3a9ayQ1gnovFTp+L4fEGvnn0RQv7+ATJZyeUr554kPfT29g0MbG1mhQXv1CajyacFtec2a8hgPjDLOLMjx7e1vU9LQd2bMhgMxEUsCCGpTPrNollsNvu3X/5d95Zr5NntIoPO2GWwcz2/LrAU6EsjnZ82/PDmzcuPP+4mEjlmvkt/+/bVgAFDcRcFqAeyTTodO3bOz889Grdfp9N5eHiNH/cZcT4MgBqBbJNOj+59enTvg7sKQHnQTw4APUG2AaAnyDYA9ATZBoCeINsA0BNkGwB6gmwDQE+QbQDoCbINAD1BtgGgJ7jm1DL4IrqtSRabaWvuHauAjGC7bRksW11hFq1G+c/LUAmdbXBXAWoPsm0Be/fu/ef8v2VFHx7hiEJUcr1PCz7uKkDtQbbrJC8vjxhscP2mb72acuOP5eGuyDIu78tu18sxt+Ad7kJA7cG4K7Wk1+uXLFkSFRX18ccfly5MviV9m6xo3JLv4sll2zCwFlgbGqVRkqt5eruo50g3n5a8mJiYmJiYfv364a4L1AZku5bi4+PVanWfPuVvtM5+q065J1XI9MV5VtlFl8tlLBaLx7PKMGYCEdvZ0za0u8jB5T9H2qdPnx4wYEBhYaGLSyUDoQMyg2zXzOvXr5ctW3bgwAEsr56TkxMbG8tisY4dO2bGwy1m69atDAYjNja2Pl8U1BEcb5uL+CN4/PjxH3/8EVcNBw4ceP/+fXZ29sGDB+vzdadNm8ZgMNRqtVKprM/XBXUB222znDp16uXLl3PmzMFYQ0FBweTJk3NychBCvr6+R48erecCTCbTkydP7ty588UXX9TzS4NagO32B6hUKqVS+erVK7zBRgj9+eef2dnZxM+5ublxcXH1XACDwQgNDbWxsbl06VI9vzSoBch2ddavX5+WlsbhcL7++mu8leTl5V2/fr10Tl+NRrN//34slUydOrVTp04IoS1btmApAJgJsl2lP/74w8vLq1WrVqUzAWB0+PDh0o02ITs7u/433QSBQIAQ4vF4v/76K5YCgDngeLs8qVS6devWBQsWaLVaW9JcUR0VFZWVlVVuIZaj7rKKioocHR0vXrwYERGBsQxQKbrd4VB3X3755bx58xBC5Ak2Quiff/4hfli7dq2vr++nn36KuyKEEHJ0dEQIcbncESNGHDlyBHc54H9Atv/j7du3mZmZPXr02Lt3L+5aqsPlcm1syHULR9euXZs0aYIQSk1NbdGiBe5ywH/A8TZCCL1//37hwoWhoaG4C/kwpVJpMBhwV1Get7c30ZH+6aefwjlwkmjo2X769Gl+fj6LxTp8+LBIJMJdjllKe8vJpnnz5j/88MPDhw9VKhXuWkDDzvatW7fWrVvn5OTk7u6OuxZzcTgcLpeLu4oqBQQEhIeHm0ym2NhYvV6Pu5wGrYFm+82bN8S5nD179rDZVOp0kEgkTCbZPzU7O7vPPvuM5D0XtEf2b4k17N27d9euXQihkJAQ3LXUmMlk4vF4uKv4sLCwsIkTJyKENmzYgLuWBqphZVsmkxEXXaxcuRJ3LbUkFov5fCoNhxIcHEycUwT1rAFle//+/ZcvX0YIDR8+HHcttUdcLoK7ihro06fPd999hxBKSEjAXUvD0lCy/fr165ycnKioKNyF1FVxcTG1so0Qsre3J3aaZs+ejbuWBoRK3Ui1c//+fV9fX3d397lz5+Kupa6MRiODwaDoECi9e/e2tbWVy+WlV6QDq6L5djshIWHHjh1ubm70+DJlZGRQ62C7nK5duwoEgtevX//999+4a6E/mmebyWRu3boVdxUWk5GR4efnh7uKugoNDc3IyHj16hXuQmiOntlOT08nDq3DwsJw12JJhYWFrVu3xl2FBSxYsMDR0TE/P5/YRQfWQM9sHz58uPTGKTq5e/cuDbbbBBcXFycnpwEDBuTn5+OuhZ7olu1Dhw4hhObPn4+7EKt4/PgxFa+3qQqbzb5+/XpSUhIMImANtMr2qlWrPDw8cFdhLe/evRMIBJQ7AfZBffr0MZlMq1evxl0I3VR5DoxaB0JGo5HJZI4dO9bFxaWayk0mE3GulYpSUlIqTnVAD0wms1mzZsQ8B7hroY8qs02hu3CNRqNcLhcKhXZ2dtWXzWAwqJvtM2fOUPqKuuqNGDGi4qBRoC7osE+uUCiEQiHuKqxLr9ffvXu3a9euuAuxImKAh06dOmm1Wty10AEdsk3dTbH5rly50rNnT9xV1If4+PhDhw5B71rdUTjber2+pKQEdxX15NmzZw1kPk02mx0TE6PX61NTU3HXQm3Ysv3ixQuNRlN2yYYNG7766iszn240Go1Go4ODg3WqI5fCwsJz5851794ddyH1x8bG5vvvvy8qKsJdCIXhyfbFixfnzJmjVqvLLrSzs6vRqAOkGmPYqg4ePDh69GjcVdS3/fv3Jycn466CwvDcB1ZpZ8m0adPMea7JZJJIJM7Ozlaoi6QOHjx48eJF3FVg0K1bt2vXroWGhlJlmEpSqXJekYpXAqrV6oMHD16/fl0sFru5ufXu3XvUqFEsFksikWzfvv3BgwcGg6FVq1ZTpkwhRqtesWKFt7c3i8U6d+6cXq/v0KHD9OnT+Xz+xYsXf/7559Jmv/7664iIiIkTJ+bn57dq1Wr9+vUIoZEjR06fPv3OnTsJCQl8Pj8yMnLs2LEIoUePHi1ZsmTDhg0tW7Yknj506NDBgwdPmjSJmAFv+/btjx494nA4TZs2HT9+fPPmzf/n3TIYrq6uVliNVnTu3LlXr17NnDkTdyHYDB48eMuWLV5eXrgLoRhz98kNBsPy5cvj4uK6dOkye/bs8PDwrKwsFoulVqsXLVr0+PHjyZMnz5gxQywWL168uPTqkbi4uLy8vOXLl8fGxsbHxxOzRoeFhQ0bNgwhtHz58nXr1hG3c8yaNatp06ZlX3HDhg3+/v5r167t1avX3r17Pzhqh0QimTdvnkwmi42NnTRpkl6vX7BgQXp6ei1XDGmsX79+3LhxuKvA6cSJEzweD3rOa8rcffL4+PikpKSvvvqqb9++ZZdfvXr13bt3q1atIgbuDwoKmjx58okTJ4jNrJeX1/z58xkMRosWLW7dupWYmDhlyhRHR0fiytAWLVqUdoa1a9cuLi6u7BH4J598QsyM4+/vf/78+YcPH7Zp06bcIXpZBw4cEIlEq1atIsYt7dWr19SpU8+fPx8bG1vblYPfrl27oqKiYI+Uz+cfP36cBsPm1Cdzs52YmMjhcCpe85iUlMTn80tn5GjUqFHjxo1fvnxJ/JfD4ZQOlN+oUaOUlBTzKysdhZvFYjk7OxcWFjIYjGqG5n7w4EFBQUHZK7d0Ol1BQYH5r0g2Op1u27Ztd+/exV0IfhwOx8/Pb+XKlUuXLsVdC2WYm+2ioiInJ6eKs9UqlcpyJ6Ls7e0lEkklr8Rm13qyGzabbTQaqx9zv6ioqGPHjsSBdylKj1KyYcOGOXPm4K6CLEJDQwMCAmQyWUO4VMkizM22QCCo9GSjs7Pzixcvyi4pKioys7/K/CMok8lkNBqrny5HIBBIpdLGjRub2SbJpaSkvHjxYuHChbgLIRFiPCaDwQAHKeYwty8tJCRErVZfu3atdAkxI0xgYKBMJiuNd1paWnZ2dlBQUPWtEVvgSjfvlTIYDMRkGsSHKhaLieUSiaR0YprQ0NDnz5+XHamH0rNSzZkzZ82aNbirIB0/P79yPT6gKuZut3v27Hny5MkNGza8fPnS398/PT390aNHGzdu7Nmz56FDh1avXj1mzBgGg3Hw4EEHB4cP3qnXqlUrFou1bdu2iIgIrVYbGRn5gSr/f1ofb29vNze3gwcPikQilUq1Z88eYnuOEIqOjr5///7SpUuHDh0qEokSExMNBsO3335r5hsklR9//HHKlClubm64CyEdNpt97NixxMTE9u3b466F7MzdbnM4nNWrV/fu3fvq1aubN29OTEwMDw/X6/VsNnvlypXNmjXbvn37tm3bvL29165d+8HxAzw8PGbOnJmVlbVt27YbN25U/+DS9BIf7eLFi9ls9tKlS3fu3Dl27NjSq9M8PDzWr18fGBh46NChP/74o6SkhKI3V9y+ffv9+/cjRozAXQhJeXp6QrDNUYNrV7DQ6XQVu+tqjRLXrsTGxm7evLlityUolZubu2DBgj///BN3IaRG9vvA9Ho9Jaa2s5SYmJjZs2dDsKvn7u7eu3fvM2fO4C6E1Mi+3bYskm+3V6xYERISMmTIENyFADog+3Zbp9PhLqGeHDx4kMfjQbDNl5KSQsyjDipF6mxrtVpKn8cyX1JS0uPHj+k69LKVuLq6Tp8+HXcV5EXqfXKtVmsymTgcjqUaJOc+eXZ2dmxs7MmTJ3EXQj0nTpxo3rx56U2BoCxSZ9viSJhttVrdu3fvW7du4S4E0E2V2S57VhmXZ8+eubm5WTCNRqOx9DIYkujatev58+ft7OxwF0JVe/bsGTlyJKzAiqo83maSwL59+5KTky3YINmCHRUVdeDAAfhe1kVubu6pU6dwV0FG5PqulxMcHEy2XWgL+uyzz9asWUMMyg1q7fPPP09LS8NdBRlVuU8OrCo6OnrZsmXQCQSsh9TnwF69ekXLP8kxMTEQbAtavHgxjIhaEdmzvXPnTtxVWFh0dPSSJUsg2Bbk4eGRmJiIuwrSIfvx9pMnT3BXYUnDhg3bv39/9QPIgJoaP348zFJQERxv158BAwb8+uuvAQEBuAsBDQKp98kRQo8fPy4uLsZdhQV07959x44dEGxr0Ol0M2bMwF0F6ZA928nJybt378ZdRZ0UFxeHhYWdPn3a3d0ddy30ZGNj8+LFC9gtL4fs2R40aBClhxZKTU2NiYl58OCBQCDAXQudHTx4ENZwOXC8bUXx8fGbN2/ev38/7kJAQ0T27TZC6Pnz51Qcf//YsWNHjhyBYNePn3/++dGjR7irIBdSnwMjNG/evEuXLvfu3cNdSA38/vvvMpnsl19+wV1IQ5GTk2P+kNgNBDX2yR88eODk5OTv74+7ELMsXrw4ICBg8uTJuAtpQNLS0hwcHJycnHAXQiLUyDaFTJgwYezYsTA+PsCOAsfbhO+//57kR90lJSVfffXV/PnzIdj1b8WKFefOncNdBblQZrv97NmzAwcOrFy5MiIiQiwWR0dHz507F3dR/5WUlDR79uyjR49+cN4FYEF9+vQhxntWKBQ2NjbERBQCgeDo0aO4S8OPAn1phKCgoPj4+Hbt2jGZTAaDYcFB1Oru4sWL+/fvv3LlCu5CGhyBQJCVlUX8TMzNbjQa27Zti7suUqBAtqOiosRisUKhIMZOIRZaaqaRutu4cSODwdi1axfuQhqigQMHbtmypezsrl5eXtHR0ViLIgsKHG8HBwdzOJzSVBNIMgnzvHnz7O3t4WJmXEaPHu3j41N2SevWrdu0aYOvIhKhQLZXrFgRHR3t4eFRuoTFYpWLOhYjRowYOHDgxIkTcRfScAkEgv79+5dut93d3WGjXQp/QswxadKk+fPnBwQEED1/bDbbxsYGYz0ZGRlhYWHr16/v0aMHxjIAQmjs2LGlm+6QkJDWrVvjrogsqJFthFC3bt3WrVsXFBTEZDJZLBbGvrQbN258/fXX9+/f9/Pzw1UDKCUQCAYNGsRisdzd3UePHo27HBIhRV+avMhgMHx4OHQhz33jhh3r1q17+vSpScsrKazXqcJYLKbAkRUXF3fz5s24uLj6fOlaKynQIYYZj6O4vr2Gnj1xPSAgwMejZT1/K7AgvooffBjm89vXjxa+TJS6+fCK87XmP8ug17PqfaRxkZttfqbKzq0kejbZT7FIxbrbpyRvkmQ+LQWSHA3ucoCFidxs8jPVLcKE3Ya5VPMwbNk26E37Vme2j3Bp5Mfj8KhxaKBRGfMyVIkXC6O/8WGxSbpBLM7XH9uc1XuMp4OrLROm8aYpjdKYm656eLm6ryK2bP/1Q0bXYR7OnrYcp+CcAAAWvUlEQVRYXr0uJDma60dyxy/1xV1IJaRiXdzG98O/ho6ABkGcrbkZlztuSeVfRTzZfnytWKtlBH5ElutPaupFQgmbbWrbU4S7kPLO/5kX+JGjozv1/mKC2km5V2LLMYV2r+SriGdnOOuVSiAiRTde7fAd2FmvyTgx+OsnMgdXCHYDwhey31fxVcR1oMtwdCPRBeE15ejGYZCvA7qkQOfTUgDH2A2KYyMOMlX+VcST7aJ8jZEi959VymgyFeWRr/+ZgYpyyVcVsCaj0VRUUPmHTo0OagBATUG2AaAnyDYA9ATZBoCeINsA0BNkGwB6gmwDQE+QbQDoCbINAD1BtgGgJ8g2APREmWwbDIbk5Md1bOTX39YMG/GJhSqiLYus6ko9T3mq0cAV7/WEMtle99O/NvyyCncVDYKVVvW58yenz5ioVpPx3lhaoky2tfD3vr58cFXXbjyPumyxLTKCCFWmvrMUamT7x7XLr167mJ7+tmfvsJ69w3JysxFCer1++783jRjVL6Jvp6mfj4m/da308c9Tns6aPbVv/85DhvZes/Z7qUxaabP7D+weNTqy/4DwmV9NSXyYUI9viCzu3o2fPPXTfpFdJk4eGXfs76pWNXEsc/v2jZjxQ3v2Dnv46P6OnZs/6fdxaTsvUp/37B12L+E28d/k5Mfz5n8ZObBr5MCui5bMfvnqxbnzJ3/59UeEUNSwPj17h507fxIhVE0jFV8RIfTo8YMvZ0zs27/z6LED16z9XiwurP7dXbt+qWfvsPj4azO/mhLRt9Ou3VuJacM2/f7T0OERAwZ1m/bFuCtXLxAPfvcuY87caf0HhI8aHbnh51VGoxEhNGhIj/kLps+YNblfZJdPxwzYuWuLXq8nHi8WF678YcmgIT36DwhfsHDG27evieVHju7/csbEq9cuxoyL6j8gfNbsqZmZ6VWt7WrqqTtqDH4SM3ZyQX5eTs77Rd+sQAg5O7kghNb/tPLS5bMx0ZP9/Jpeunx22bfzfv15e3Bw2/T0t3PnTfPza7pg/nclxUW7dm/Nz8/9af2Wcm0mPkzY/u9NvXv3+6hD54T7t1VKJaY3h41Go1m+YqGfr//cOUvT0l6LxQVVrWqEkEIh37Fr8+yvvlGrVe3adnj8+EFVzd5/cHfR4q+a+jebFjvbaDTeuXPDoNd/1LHLqJExhw7vXf3DL3y+wNvbp6qnlyr3iokPE75ZNCuiT+TQqE9l0pKjcQfmzJu2bcteLpdbfTu/blwzdfL0yZO+8PbyMRqNS5Z+nZubHT12kkjk9Pjxg3+tXKxWqyL7D1n3078yM9OnfzlXqVQ8evygdOKazHfpX0z72sXZ9c7dm/v275LLZbNmLlCr1XPmTZNKSz7/bBaXwz3w954586b99ecxe4E9Qigl5emhQ3/NnbtUr9dv2PDD6jXfbfl9j1KprLi2q6mnhh9mJaiRbW9vHwcHkaRI3KZNKLEkMzP9/IVT48dNnTghFiHUvVvvmPFDd+/ZtuGnrXv37WAymWvXbCJWtL29cNWP3z558jAkpF3ZNnNzsxFCQ4eMCgoKjoiIxPTOcFIqFRqNpmvXXhF9+pcurLiqCVqtdt6cpYGBH561Y9Pv693dPTf+tpOYMTdqyEhiuaenN0IoMLC1g4NZ48yVe8WNm9YNGjhs1swFxH/DwjpNmDTi/oM7XcN7Vt/O0KhP+/YdSPx87fqlpORHB/addHFxRQj16d1PpVIejTsQ2X9Ibm5282YtBw4YihAaNTKm9Ok9ukf06N4HIdS6dYhUWnLyVNyECbE3blzOzEz/af2Wdm07IITatGk7NmZwXNzBCeM/I571w8qfnZycEULDho3evOXnEmmJXC6ruLZv3LxSVT3mrKLqUSPbFT1JeogQCv//z5XBYHQI63Tx0hmE0OMniW3bdiCCjRDq0OFjhFDqy+flst3po3B7e+Gq1ctmzpjfqVM4jjeBmUjkGBQUvHffDi6XN2jgMCKKVeFyueYEOyc3OzMzfeqU6dW3Zo6yr5ibm5ORkfb+/btTp4+VfUx+ft4H22nXrmPpz3fvxuv1+rExg0uXGAwGPl+AEIroE7n/wO7fNq4dFzPV0dGp0qY6dux86vSxV69ePHmSKOALiGAjhNzdPXx8/FJfPi9TPI/4oVEjD4SQuLCgSZOmFdd2NfXUHVWzrVDIEUKOov9+BkKhg1KpVCgUCoVc5PDfCe7t7YUIocLCgnItODu7bPpt5+9bNixaMrt165Bvl652dXWrx3eAH4PB+HHVb//esWnrtl8OH9m7aOGKcn/+yuLx7Mxps7hIghByc21U9/LKvmJRkRghNGH859269ir7GCen6gbfJ9j9bzvOzi4b1m8t+wBiHoupU6Y7Ojrt3bfz7LkTn382a2jUqIpNCQT2CCGVSilXyB1EjmV/JRQ6iCt8xxBCNmwbhJDBaKh0bVdTT91Roy+NULaf08XFDSEklZaULpFIxGw2m8vluri4lV1eVCQp/VTK8fHxW7P6t5/Wb0lLe71m7XLrvwPSEQgEs7/6Zs/uo3y+YOmyOcr/73T4YJdy2SmvyyK2OZIicVVPLNtyVY1UVqc9QkijUfv4+JX9JxDUbBNnby8sLi5q1MijbCNent5EMSOGj9331/Eunbv/tnFtpWf4CwvyEUKuro1c//c7Rnz9Kv2O/e+7KL+2q6mn7iiTbS6XJ5GIid5L4rCNwWDcvRdP/Fer1d69Fx8UFMxisYKCgh8/SVSr1cSvbty4jBAijh5tbGxVKmVpV6dWq0UItWvboVOnri9fvcD0znAizkt5engNGzparpATfRDlVnWlHBwcdTpdyf9/v4knIoQaN/Z1dXU7f+FU6Uo2mUxEUzwur9wOVFWNVOTt7dOokfvZcydUqv+cHtfr9Tpdjaf+ateuo8FgOHHySOmS0gaJVcHn8ydOnIYQqvh9MJlMZ8+dsBfY+/o0CQoKlsmkKSlPiV+9efPq/ft35XooKqq4tqupp+4os08eEtzu7LkTG35e1aZ1qL29sHPnbn0/Gbh7zzaDweDp6X369DGJRLx40b+Int4rV84vXDRz0MDh+fm5e/78o21oWGhIe4RQs4AWarV6+YqFX0z7Wiot+X7Fwqgho3g8u4SE2y1btML9FuubXq+fMGl4j+4RTfyaHj9+WMAXEN1dFVd1xeeGtf+IwWBs+n39iOFj09PebNv+G7GcwWB8/tmsH1YtnT5jYt++g5hM5oWLp4cOGRURERnUOoTFYm3avL5/38EarWbwoOFVNVIRg8GY/uXcb7+bP33mxMGDRhgNhvMXTkVERI4YPrZGbzmiT+TJU3Fbt/2ak5vdvFnL169fxt+6unvnES6Xu3zFQgFfENa+E7HBaNE8kHjK1WsXnJ1dOBzu9euXHj1+EPv5LB6P16d3/337dy1fsXBczFQmk/nXX/8WiRyHDB5ZzUvrdLqKa7txY9+q6qnR+6oUa/lyDPuiSTdLmrSx5/BqMJS2v3+ATFZy+cq5J0kPHRxE7dt17BD2sUIhP3vu+JUr5/l2/HlzlxLdZkKhQ5vWbe8/uHPy1NHUlyk9e3wyf963xJy+TZo0VatV9+/fCWwR5OAgevPm5dWrFx4+TAgJaff17MXm92FoVMa0ZFlIN3LNK6JRGlMfyAI/MrcqjUaTmZkef+vqzfgrzs6u3yxY7uXlXemqvnfvVkZG2qejxpU+VyRy9HD3unz5bNyxg0qlYuSI6Phb1/r06e/t1djfPyAgoPmTJ4kXL515+TLFy6txeHhPV1c3ob3Q1bXRtWsX79y5KZNJ+/YdWE0jFV/R16dJyxatkpIeXbh4OuXF06b+zSIiBjg7V3e8nZ7x9vr1S0OjRpX2zLNYrB7dI+Ry6bVrF2/cvKJQyvv3G9KmTSiTyczOzrp7L/7ylXMqterzz2aGh/dACB04uNvDwyv15fNLl88ihKLHThr96XiEEJPJ7Pxxt7S01ydOHrl371bz5oHfLlvt7u6BEHqeknz//p3osZOIKeKzsjIvXzk/aNBwDpeblZVZbm1XU4/5H3r6M1lw10o+dDxzBv31Q0avsZ5CJ5v6f2mLkEp0V/ZljyPZlGAlhbrjW7KHziJXVZQ2aEiPyP5RX0ybjbuQKpUU6q4dyo5ZVMmHTpl9cgAqksvlY6IHVvqr2M+/Ik5WN1iQbUBhdnZ2f2zbX+mvhPZUnUnSUiDbgMKYTKaHu6f12j95/JoZjyIpypwDAwDUCGQbAHqCbANAT5BtAOgJsg0APUG2AaAnyDYA9ATZBoCeINsA0BNkGwB6wpNtJ3dbptljbpAQk8FwcufgrqICE8PJg3xVAWtiMpFjo8o/dDzZZjCROEeN5aUtQpKrQQzSDWTv4Mp+l6ow6EhXGLAecY6mqnu98WTbp7mdvEiP5aUtQl6sa9zcrLEB61mztoKiPC3uKkD9URTrvJvxKv0Vnmy37uKQmSrLeC7H8up1lJmiSH8mC+5KxlsIw6NcL+59j7sKUE8ynsszU+VtulT+VcQz7gpCyGRCR39736SNvVtjrsitrmNZ14/ifG1+pjrtqXTELG9E1u4Clcywe0V6r9GeDq42fAe4h5eeivK0+Zmq9Gey4bO8q+q5wpZtwoOLRS8fyjg8ZuF7sk/l5+LF0aiMzdvah33iaMbDcTLoTPEnCtOeKoTONgXvKNyvYT6j0chgMMwfFJnSnD25WrWheTv7sIjqvoqYs00wGJBRj7+M6jHZDFYNxm4kBZ2G7GvVUlauXNmxY8dPPmkQk6ub+VUkxT4bi4VYrAbxF7ee2XAaylo1MXQMlqHhvF9zwLUrANATZBvQgUgkIsYDB6Ug24AOiouLazGFEL1BtgEdODs7131WYJqBbAM6EIvFxMyNoBRkG9ABbLcrgmwDOoDtdkWQbUAHtra25s992UDA6gB0oNVqjUYj7irIBbINAD1BtgEduLi4QF9aOZBtQAeFhYXQl1YOZBsAeoJsAzoQCoVwPXk5kG1AB1KpFK4nLweyDQA9QbYBHcC1KxXB6gB0ANeuVATZBnTQQEZBrBHINqADMgzpSTaQbQDoCbIN6IDL5UJfWjmwOgAdqNVq6EsrB7INAD1BtgEdODg4wH1g5UC2AR2UlJTAfWDlQLYBoCfINqADGOe0Isg2oAMY57QiyDYA9ATZBnRgY2MDl5SXA9kGdKDT6eCS8nIg24AOYJzTiiDbgA5gnNOKINuADmAsxIog24AOYCzEiiDbgA4EAgGbzcZdBblAtgEdyOVyvV6PuwpygWwDOoBrTiuCbAM6gGtOK2LAGX9AXYMGDcrJySkdC5HBYJhMptDQ0B07duAuDT/YbgMK6969e2mqiWtORSLRpEmTcNdFCpBtQGHR0dFeXl6l/zWZTM2aNQsPD8daFFlAtgGFeXh4dOvWrfS/Dg4OMTExWCsiEcg2oLYxY8b4+fkRG+0WLVrARrsUZBtQm5eXF7Hpho12OZBtQHkjR4709vYOCAjo0qUL7lpIBM6BgXqVm65+m6zKzVSpZAaVQm/LYyuKLHBe2mgwMBgMhiWmFnH04KmkWq6ALXKxdfe1bRosEDpT8mpWyDaoD3qd6e7Zoud3im3tbOxdBbZ2bDaHxbZls2yZiGzTgTCRXm3Qaw0GnUEuVsnFSlsuM7SbQ0g3B9yV1QxkG1hd/HFJ0s0iz5YuAlc7ti31DgPVcl3xe6lcrAwf4tIyTIC7HHNBtoEViXMNZ/fk2vK5bk1FuGupK51an/dKwrNDQ6Z5UOKWM8g2sJb3r9SnduQEdPZm2VBvW12VkjyFJKNowjJf8s8aCtkGVlGQpTu7J8+nnQfuQixPo9AVvikcPdeLxSb1yKqk/+MDKEiSqz25PZuWwUYIcfg2rs1c9/wrA3chHwDZBpa3f02m/0feuKuwIlse27Wp87HN2bgLqQ5kG1jY6X/n+bX3QKTeXbUAe1c7vdHm6W0p7kKqBNkGlpT9Vl2YpxM4c3EXUh+cfUXx/xTgrqJKkG1gSdePFrr6O+Guop4w2UwnH4d754pwF1I5yDawmLwMjdHItBNxcBdSiXsPjs9b9pFUWmjZZp19HJ7fI+luOWQbWMybZLmtgIzBth6WDZPBYuakqXEXUgnINrCYN08U9q52uKuob3wn/pskBe4qKkGFa+cAFShlBpYti2tvlYGEtVr12UtbHiWd1+k0ri6+PcKjQ9tEIIRu3D7wOPlSt85jzl7aIpMVenm2HDlkkZurH/Gs99mp/5zZ8O79c6G9i6uzjzUKIzrMxblkPOSGbAPLUMoMGpXBGi0bjcad++YWFeX06jZBIHB68zZx76GlGq3qo/aDEUKZWU+v39o3cshig0F/5MTqg3ErZsXuRAjlFaRv2fkF304UGfEli8m+eM1aI5+ybZhZ78i4Tw7ZBpahlOptOCxrtJz8/Gpa+uPFc/9xELoihNoF99VolfF3/iayjRCaFL1eaO+MEArvNOrkuV8VyhK+ncPp8xsZDObM2B0CviNCiMFkxp1ca43y2ByWWmGVP2p1BNkGlqFWGrnW6UhLSb1lMOpXbRhausRoNPC4/73XkmPLI35wFHkghKTSAhs2J/X13Y87DCeCjRBiMa34VXdpbKcsMdg5WOVPW61BtoFl2Ngy1AqrzOwhk4uF9i7TJv1ediGzsqyyWTZE8qWyQoNB7+RYTxe0i98ruQLSdUtDtoFl8IVsvcYqu6Z2PKFcUeQo8rCxMXe/gNhcy+X10cVl0BnZNkwmi3QX2ZLujw2gKL6QrddaJdsBTTsYjYbbCUdLl2i0quqfwuXyXZwbP3l2Wa+3+qTceo1B4GBj7VepBdhuA8vgi1jIZNJrDGxL96i1D+l/78E/p85vLCrO8fJokZ37Kvn5tQWz/ra1re6q9U96Tt1/5LuNf0zt2G4gg8m8eedvy1ZVSlmidvEm4xU7kG1gMX6t+NICpZO3vWWbZbNtPpvw25kLvz9KunDn/jFXZ5/OHYexWB/46rYL6adSya7d2nfqwsZGrv6+jVsXFFrljmuFRBnSn4zDJMK4K8Bi0p8pbp4qaRzcCHch9erphbQZPwfgrqISsN0GFuMXxL/xj8SgM1YzQNrSH3pXulxgJ5IriysuD2rZbczw7yxVoUot/+GnIZX+yrdxm4x3yRWX83kOi+bEVdVgSY6iZUcybrRhuw0s7NldadJtlUegS1UPkBRVPlaJXq9jsyvpkbK15ZWeo647o9FYXJJb+e9MDMSoJAsMBtNR5F5Vg6k3MsYv8eUJyHVmmwDbbWBJQZ2E988XaRQ6Dr/yrmMnR896L+q/mEymBQsQZ5S0CBOSM9hwDgxYXv+J7oVpYtxVWJ1BZ1SI5T2GV7mHgh1kG1hYI19OcBf7vFQLj4JANm/uZI2Y5YW7iupAtoHlteksbBbCzU6hbbzfJeVGTfe0syfp3jgBsg2sol1PB/9A25zn5B0qsHYMOuOr+Mz+41zdSHm9SlnQTw6sKCVBlnRLbu/uQM5B1GqqKEuW91oSs8hHIKJAJzRkG1iXOFt7YX++wcB0C3C2taNAJColK1DmvZI0bsbrO94Ndy3mgmyD+pD2TPHwqrSkUMd3tnNoJODw2Qwm6W6cKsdoMCkkKlmBUlao9GzC6zrUWeRKxntCqgLZBvWnMFv7+on8Xao6/52SxWbaclk8BxutdUZiqjU7e05JgVKrMvAdbOwd2S3aC5q05pO826xSkG2Ah0ZpVEj1WpXRSLJvIIvF5PKZfAc224bsexbVg2wDQE9wDgwAeoJsA0BPkG0A6AmyDQA9QbYBoCfINgD09H8glswvq62G0wAAAABJRU5ErkJggg==", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from IPython.display import Image, display\n", + "\n", + "display(Image(graph.get_graph(xray=True).draw_mermaid_png()))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Run scenarios\n", + "\n", + "Note: LLMs are fundamentally probabilistic so wrong answers are possible even if implemented correctly.\n", + "\n", + "## Scenario 1 - name of wagon leader\n", + "\n", + "This test confirms that our graph has been setup correctly and can handle a case where tools don't need to be invoked." + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Question: What is the first name of the wagon leader? \n", + "\n", + "\n", + " Agent response: Art\n", + "\n" + ] + } + ], + "source": [ + "scenario = {\n", + " \"question\": \"What is the first name of the wagon leader?\",\n", + " \"answer\": \"Art\",\n", + " \"type\": \"free-form\",\n", + "}\n", + "\n", + "print(f\"\\n Question: {scenario['question']} \\n\")\n", + "\n", + "res = graph.invoke({\"messages\": scenario[\"question\"]})\n", + "\n", + "print(f\"\\n Agent response: {res['messages'][-1].content}\\n\")\n", + "\n", + "assert res[\"messages\"][-1].content == scenario[\"answer\"]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Scenario 2 - restocking tool\n", + "\n", + "In this test we want to see the agent choose the restocking tool and choose to use the multiple choice output." + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Question: In order to survive the trail ahead, you'll need to have a restocking strategy for when you need to get more supplies or risk starving. If it takes you an estimated 3 days to restock your food and you plan to start with 200lbs of food, budget 10lbs/day to eat, and keep a safety stock of at least 50lbs of back up... at what point should you restock? \n", + "\n", + "\n", + " Using restock tool!: daily_usage=10, lead_time=3, safety_stock=50 \n", + "\n", + "Called multi choice structured\n", + "\n", + " Agent response: D\n" + ] + } + ], + "source": [ + "# helper function for multi-choice questions\n", + "def format_multi_choice_question(q):\n", + " question = q[\"question\"]\n", + " options = q.get(\"options\", \"\")\n", + " formatted = f\"{question}, options: {' '.join(options)}\"\n", + " return [HumanMessage(content=formatted)]\n", + "\n", + "scenario = {\n", + " \"question\": \"In order to survive the trail ahead, you'll need to have a restocking strategy for when you need to get more supplies or risk starving. If it takes you an estimated 3 days to restock your food and you plan to start with 200lbs of food, budget 10lbs/day to eat, and keep a safety stock of at least 50lbs of back up... at what point should you restock?\",\n", + " \"answer\": \"D\",\n", + " \"options\": [\"A: 100lbs\", \"B: 20lbs\", \"C: 5lbs\", \"D: 80lbs\"],\n", + " \"type\": \"multi-choice\",\n", + " }\n", + "\n", + "print(f\"\\n Question: {scenario['question']} \\n\")\n", + "\n", + "res = graph.invoke({\"messages\": format_multi_choice_question(scenario)})\n", + "\n", + "print(f\"\\n Agent response: {res['multi_choice_response']}\")\n", + "\n", + "assert res[\"multi_choice_response\"] == scenario[\"answer\"]\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Scenario 3 - retriever tool\n", + "\n", + "In this test, we want to see the retrieval tool invoked and multiple choice structured response." + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Question: You’ve encountered a dense forest near the Blue Mountains, and your party is unsure how to proceed. There is a fork in the road, and you must choose a path. Which way will you go? \n", + "\n", + "Called multi choice structured\n", + "\n", + " Agent response: B\n" + ] + } + ], + "source": [ + "scenario = {\n", + " \"question\": \"You’ve encountered a dense forest near the Blue Mountains, and your party is unsure how to proceed. There is a fork in the road, and you must choose a path. Which way will you go?\",\n", + " \"answer\": \"B\",\n", + " \"options\": [\n", + " \"A: take the northern trail\",\n", + " \"B: take the southern trail\",\n", + " \"C: turn around\",\n", + " \"D: go fishing\",\n", + " ],\n", + " \"type\": \"multi-choice\",\n", + " }\n", + "\n", + "print(f\"\\n Question: {scenario['question']} \\n\")\n", + "\n", + "res = graph.invoke({\"messages\": format_multi_choice_question(scenario)})\n", + "\n", + "print(f\"\\n Agent response: {res['multi_choice_response']}\")\n", + "\n", + "assert res[\"multi_choice_response\"] == scenario[\"answer\"]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Scenario 4 - Semantic caching\n", + "\n", + "Agent workflows are highly flexible and capable of handling a wide range of scenarios, but this flexibility comes at a cost. Even in our simple example, there can be multiple large-context LLM calls in the same execution, leading to high latency and increased service costs by the end of the month.
\n", + "\n", + "A good practice is to cache answers to known questions. Chatbot interactions are often fairly predictable, particularly in support or FAQ-type use cases, making them excellent candidates for caching.\n", + "\n", + "\n", + "![diagram](../../assets/cache_diagram.png)\n", + "\n", + "## Creating a cache" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "09:20:47 redisvl.index.index INFO Index already exists, not overwriting.\n" + ] + }, + { + "data": { + "text/plain": [ + "'oregon_trail_cache:602ac35f09671fc9e2a4f4902c6f82f06b9560ea6b5a5dd3e9218fcc1ff47e52'" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import warnings\n", + "from redisvl.extensions.llmcache import SemanticCache\n", + "warnings.filterwarnings(\"ignore\")\n", + "\n", + "hunting_example = \"There's a deer. You're starving. You know what you have to do...\"\n", + "\n", + "semantic_cache = SemanticCache(\n", + " name=\"oregon_trail_cache\",\n", + " redis_url=REDIS_URL,\n", + " distance_threshold=0.1,\n", + ")\n", + "\n", + "semantic_cache.store(prompt=hunting_example, response=\"bang\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Testing the cache" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Question: There's a deer. You're hungry. You know what you have to do... \n", + "\n", + "Cache hit\n", + "Response time 0.18901395797729492s\n", + "\n", + " Question: You’ve encountered a dense forest near the Blue Mountains, and your party is unsure how to proceed. There is a fork in the road, and you must choose a path. Which way will you go? \n", + "\n", + "Invoking agent\n", + "Called multi choice structured\n", + "Response time 3.500865936279297s\n" + ] + } + ], + "source": [ + "import time\n", + "\n", + "scenarios = [\n", + " {\n", + " \"question\": \"There's a deer. You're hungry. You know what you have to do...\",\n", + " \"answer\": \"bang\",\n", + " \"type\": \"cache_hit\",\n", + " },\n", + " {\n", + " \"question\": \"You’ve encountered a dense forest near the Blue Mountains, and your party is unsure how to proceed. There is a fork in the road, and you must choose a path. Which way will you go?\",\n", + " \"answer\": \"B\",\n", + " \"options\": [\n", + " \"A: take the northern trail\",\n", + " \"B: take the southern trail\",\n", + " \"C: turn around\",\n", + " \"D: go fishing\",\n", + " ],\n", + " \"type\": \"multi-choice\",\n", + " }\n", + "]\n", + "\n", + "for scenario in scenarios:\n", + " print(f\"\\n Question: {scenario['question']} \\n\")\n", + "\n", + " start = time.time()\n", + "\n", + " cache_hit = semantic_cache.check(prompt=scenario[\"question\"], return_fields=[\"response\"])\n", + "\n", + " if not cache_hit:\n", + " print(\"Invoking agent\")\n", + " res = graph.invoke({\"messages\": format_multi_choice_question(scenario)})\n", + " else:\n", + " print(\"Cache hit\")\n", + "\n", + " response_time = time.time() - start\n", + "\n", + " print(f\"Response time {response_time}s\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Scenario 5 - Allow/block list router\n", + "\n", + "When ChatGPT first launched, there was a famous example where a car dealership accidentally made one of the latest language models available for free to everyone. They assumed users would only ask questions about cars through their chatbot. However, a group of developers quickly realized that the model was powerful enough to answer coding questions, so they started using the dealership's chatbot for free.
\n", + "\n", + "To prevent this kind of misuse in your system, adding an allow/block router to the front of your application is essential. Fortunately, this is very easy to implement using `redisvl`.\n", + "\n", + "![diagram](../../assets/router_diagram.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Creating the router" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "10:35:18 redisvl.index.index INFO Index already exists, not overwriting.\n" + ] + } + ], + "source": [ + "from redisvl.extensions.router import Route, SemanticRouter\n", + "\n", + "# Semantic router\n", + "blocked_references = [\n", + " \"thinks about aliens\",\n", + " \"corporate questions about agile\",\n", + " \"anything about the S&P 500\",\n", + "]\n", + "\n", + "blocked_route = Route(name=\"block_list\", references=blocked_references)\n", + "\n", + "router = SemanticRouter(\n", + " name=\"bouncer\",\n", + " routes=[blocked_route],\n", + " redis_url=REDIS_URL,\n", + " overwrite=False,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Testing the router" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Question: Tell me about the S&P 500? \n", + "\n", + "Blocked!\n" + ] + } + ], + "source": [ + "scenario = {\n", + " \"question\": \"Tell me about the S&P 500?\",\n", + " \"answer\": \"you shall not pass\",\n", + " \"type\": \"action\",\n", + " }\n", + "\n", + "print(f\"\\n Question: {scenario['question']} \\n\")\n", + "\n", + "blocked_topic_match = router(scenario[\"question\"], distance_threshold=0.2)\n", + "\n", + "assert blocked_topic_match.name == \"block_list\"\n", + "\n", + "print(\"Blocked!\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Putting it all together\n", + "\n", + "Once you have defined all the pieces, connecting the various aspects of the full architecture becomes easy and you can tie them together with whatever logic you wish. \n", + "\n", + "This could be as simple as:" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [], + "source": [ + "def respond_to_question(question):\n", + " blocked_topic_match = router(question, distance_threshold=0.2)\n", + "\n", + " if blocked_topic_match.name == \"block_list\":\n", + " print(\"App block logic - short circuit\")\n", + " return\n", + "\n", + " cache_hit = semantic_cache.check(prompt=question, return_fields=[\"response\"])\n", + "\n", + " if cache_hit:\n", + " print(\"Cache hit - short circuit\")\n", + " return cache_hit\n", + " \n", + " return graph.invoke({\"messages\": question})\n" + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/python-recipes/agents/03_memory_agent.ipynb b/python-recipes/agents/03_memory_agent.ipynb new file mode 100644 index 00000000..8569cf99 --- /dev/null +++ b/python-recipes/agents/03_memory_agent.ipynb @@ -0,0 +1,1897 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "sxdnLVT31nfd" + }, + "source": [ + "![Redis](https://redis.io/wp-content/uploads/2024/04/Logotype.svg?auto=webp&quality=85,75&width=120)\n", + "\n", + "# Agent Memory with Redis\n", + "\n", + "## Introduction\n", + "\n", + "Without memory, AI agents are like goldfish - they forget everything after each conversation and can't learn from past interactions or maintain context across sessions. Agentic systems require both **short-term** and **long-term** memory in order to complete tasks in a personalized and resilient manner. Memory is all about state management and [**Redis**](https://redis.io/try-free/) is the well-known in-memory database for exaclty this kind of use case today in production systems.\n", + "\n", + "## What We'll Build\n", + "\n", + "This tutorial demonstrates how to build a **memory-enabled travel agent** with **Redis** and **LangGraph** that remembers user preferences and provides personalized recommendations. This is a **horizontal concept** that you can take and apply to your own agent use cases.\n", + "\n", + "We'll explore:\n", + "\n", + "1. Short-term memory management using LangGraph's checkpointer\n", + "2. Long-term memory storage and retrieval using RedisVL\n", + "3. Managing long-term memory as a tool for a ReAct agent\n", + "4. Managing conversation history size with summarization" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Ee3ltHdVvKOD" + }, + "source": [ + "# 🧠 Memory architecture overview\n", + "\n", + "Our agent uses a dual-memory system:\n", + "- **Short-term**: Manages conversation context\n", + "- **Long-term**: Stores persistent knowledge\n", + "\n", + "## Short-term Memory\n", + "The agent tracks chat history using Redis through LangGraph's [checkpointer](https://github.com/redis-developer/langgraph-redis). Each node in the graph (Retrieve Memories, Respond, Summarize) saves its state to Redis, including conversation history and thread metadata.\n", + "\n", + "\n", + "\n", + "To prevent context window pollution, the agent summarizes conversations when they exceed a configurable length.\n", + "\n", + "## Long-term Memory\n", + "\n", + "Long-term memories are stored & indexed in Redis using the RedisVL client, with two types:\n", + "- **Episodic**: User preferences and experiences\n", + "- **Semantic**: General travel knowledge\n", + "\n", + "\n", + "\n", + ">**NOTE**: These memory types align with the [CoALA](https://arxiv.org/abs/2309.02427) paper's concepts. Our agent's procedural memory is encoded in its Python workflow." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Let's Begin\n", + "\"Open" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0KciGua91nfe" + }, + "source": [ + "---\n", + "\n", + "# Set up our environment\n", + "\n", + "Before diving into the code, let's set up our development environment with the right Python libraries.\n", + "\n", + ">**NOTE**: You may need to restart your kernal after installing libraries." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "0zTUm35H1nfe" + }, + "outputs": [], + "source": [ + "%pip install langchain-openai langgraph-checkpoint langgraph langgraph-checkpoint-redis pydantic" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8R1hEM7s1nff" + }, + "source": [ + "## Required API keys\n", + "\n", + "You must add an [OpenAI API](https://platform.openai.com/signup) key with billing information for this tutorial." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "365fzPsj1nff" + }, + "outputs": [], + "source": [ + "import getpass\n", + "import os\n", + "\n", + "def _set_env(key: str):\n", + " if key not in os.environ:\n", + " os.environ[key] = getpass.getpass(f\"{key}:\")\n", + "\n", + "\n", + "_set_env(\"OPENAI_API_KEY\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "NLkF4GB_1nff" + }, + "source": [ + "## Setup Redis\n", + "\n", + "You have two options for running Redis:\n", + "\n", + "1. **Redis Cloud**: For a fully-managed, seamless experience, use [a free instance of Redis Cloud](https://redis.io/try-free).\n", + "2. **Local Redis**: For a simple, local (non-persistent) Redis instance, run the cell below." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zgKbb4ol1nff" + }, + "source": [ + "Run the cell below to get a localized Redis instance on your Google colab server." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "xs7bi1kr1nff" + }, + "outputs": [], + "source": [ + "# NBVAL_SKIP\n", + "\n", + "%%sh\n", + "curl -fsSL https://packages.redis.io/gpg | sudo gpg --dearmor -o /usr/share/keyrings/redis-archive-keyring.gpg\n", + "echo \"deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb $(lsb_release -cs) main\" | sudo tee /etc/apt/sources.list.d/redis.list\n", + "sudo apt-get update > /dev/null 2>&1\n", + "sudo apt-get install redis-stack-server > /dev/null 2>&1\n", + "redis-stack-server --daemonize yes" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-B8XRKHR1nff" + }, + "source": [ + "Let's test out Redis connection and create a client to communicate with the server." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "dauPT3PT1nff" + }, + "outputs": [], + "source": [ + "import os\n", + "\n", + "from redis import Redis\n", + "\n", + "# Use the environment variable if set, otherwise default to localhost\n", + "REDIS_URL = os.getenv(\"REDIS_URL\", \"redis://localhost:6379\")\n", + "\n", + "redis_client = Redis.from_url(REDIS_URL)\n", + "redis_client.ping()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "aRxYTTOf1nfg" + }, + "source": [ + "## Prepare memory data models\n", + "\n", + "In this section, we'll create a robust data modeling system for our agent's memory using `Pydantic`. These models will ensure type safety and provide clear data structures for storing and retrieving memories from Redis.\n", + "\n", + "We'll implement four key components:\n", + "\n", + "1. `MemoryType` - An enumeration that categorizes memories into two types:\n", + " - Episodic: Personal experiences and user preferences\n", + " - Semantic: General knowledge and domain facts\n", + "\n", + "2. `Memory` - The core model representing a single memory entry with its content and metadata\n", + "\n", + "3. `Memories` - A container model that holds collections of memory objects\n", + "\n", + "4. `StoredMemory` - A specialized model for memories that have been persisted to Redis\n", + "\n", + "These models work together to create a complete memory lifecycle, from creation to storage and retrieval." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "Ix6Pe6qG1nfg" + }, + "outputs": [], + "source": [ + "import ulid\n", + "\n", + "from datetime import datetime\n", + "from enum import Enum\n", + "from typing import List, Optional\n", + "from pydantic import BaseModel, Field\n", + "\n", + "\n", + "class MemoryType(str, Enum):\n", + " \"\"\"\n", + " Defines the type of long-term memory for categorization and retrieval.\n", + "\n", + " EPISODIC: Personal experiences and user-specific preferences\n", + " (e.g., \"User prefers Delta airlines\", \"User visited Paris last year\")\n", + "\n", + " SEMANTIC: General domain knowledge and facts\n", + " (e.g., \"Singapore requires passport\", \"Tokyo has excellent public transit\")\n", + "\n", + " The type of a long-term memory.\n", + "\n", + " EPISODIC: User specific experiences and preferences\n", + "\n", + " SEMANTIC: General knowledge on top of the user's preferences and LLM's\n", + " training data.\n", + " \"\"\"\n", + "\n", + " EPISODIC = \"episodic\"\n", + " SEMANTIC = \"semantic\"\n", + "\n", + "\n", + "class Memory(BaseModel):\n", + " \"\"\"Represents a single long-term memory.\"\"\"\n", + "\n", + " content: str\n", + " memory_type: MemoryType\n", + " metadata: str\n", + "\n", + "\n", + "class Memories(BaseModel):\n", + " \"\"\"\n", + " A list of memories extracted from a conversation by an LLM.\n", + "\n", + " NOTE: OpenAI's structured output requires us to wrap the list in an object.\n", + " \"\"\"\n", + "\n", + " memories: List[Memory]\n", + "\n", + "\n", + "class StoredMemory(Memory):\n", + " \"\"\"A stored long-term memory\"\"\"\n", + "\n", + " id: str # The redis key\n", + " memory_id: ulid.ULID = Field(default_factory=lambda: ulid.ULID())\n", + " created_at: datetime = Field(default_factory=datetime.now)\n", + " user_id: Optional[str] = None\n", + " thread_id: Optional[str] = None\n", + " memory_type: Optional[MemoryType] = None" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "P6a03f4b1nfg" + }, + "source": [ + "Now we have type-safe data models that handle the complete memory lifecycle from LLM extraction to Redis storage, with proper metadata tracking for production use. Next, we'll set up the Redis infrastructure to store and search these memories using vector embeddings." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "T0FBUdRY1nfg" + }, + "source": [ + "# Memory Storage\n", + "\n", + "- **Short-term memory** is handled automatically by `RedisSaver` from `langgraph-checkpoint-redis`.\n", + "- For **long-term memory**, we'll use RedisVL with vector embeddings to enable semantic search of past experiences and knowledge.\n", + "\n", + "Below, we will create a search index schema in Redis to hold our long term memories. The schema has a few different fields including content, memory type, metadata, timestamps, user id, memory id, and the embedding of the memory." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "id": "D-bfk_Ro1nfg" + }, + "outputs": [], + "source": [ + "from redisvl.index import SearchIndex\n", + "from redisvl.schema.schema import IndexSchema\n", + "\n", + "\n", + "# Define the schema for our vector search index\n", + "# This creates the structure for storing and querying memories\n", + "memory_schema = IndexSchema.from_dict({\n", + " \"index\": {\n", + " \"name\": \"agent_memories\", # Index name for identification\n", + " \"prefix\": \"memory\", # Redis key prefix (memory:1, memory:2, etc.)\n", + " \"key_separator\": \":\",\n", + " \"storage_type\": \"json\",\n", + " },\n", + " \"fields\": [\n", + " {\"name\": \"content\", \"type\": \"text\"},\n", + " {\"name\": \"memory_type\", \"type\": \"tag\"},\n", + " {\"name\": \"metadata\", \"type\": \"text\"},\n", + " {\"name\": \"created_at\", \"type\": \"text\"},\n", + " {\"name\": \"user_id\", \"type\": \"tag\"},\n", + " {\"name\": \"memory_id\", \"type\": \"tag\"},\n", + " {\n", + " \"name\": \"embedding\",\n", + " \"type\": \"vector\",\n", + " \"attrs\": {\n", + " \"algorithm\": \"flat\",\n", + " \"dims\": 1536, # OpenAI embedding dimension\n", + " \"distance_metric\": \"cosine\",\n", + " \"datatype\": \"float32\",\n", + " },\n", + " },\n", + " ],\n", + " }\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IHUC6A6tvKOF" + }, + "source": [ + "Below we create the `SearchIndex` from the `IndexSchema` and our Redis client connection object. We will overwrite the index spec if its already created!" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "iMHgajwyvKOF", + "outputId": "bc3892c0-6139-4458-e79d-de2249d1da0d" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Long-term memory index ready\n" + ] + } + ], + "source": [ + "try:\n", + " long_term_memory_index = SearchIndex(\n", + " schema=memory_schema,\n", + " redis_client=redis_client,\n", + " validate_on_load=True\n", + " )\n", + " long_term_memory_index.create(overwrite=True)\n", + " print(\"Long-term memory index ready\")\n", + "except Exception as e:\n", + " print(f\"Error creating index: {e}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "q9J3oIwN24M-" + }, + "source": [ + "Now that the index is created, we can inspect the long term memory index in Redis using the `rvl` cli:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "smnQbc5-2y_C", + "outputId": "221e0ccd-3857-4983-d500-5095a075e601" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + "Index Information:\n", + "╭────────────────┬────────────────┬────────────────┬────────────────┬────────────────┬\b╮\n", + "│ Index Name │ Storage Type │ Prefixes │ Index Options │ Indexing │\n", + "├────────────────┼────────────────┼────────────────┼────────────────┼────────────────┼\b┤\n", + "| agent_memories | JSON | ['memory'] | [] | 0 |\n", + "╰────────────────┴────────────────┴────────────────┴────────────────┴────────────────┴\b╯\n", + "Index Fields:\n", + "╭─────────────────┬─────────────────┬─────────────────┬─────────────────┬─────────────────┬─────────────────┬─────────────────┬─────────────────┬─────────────────┬─────────────────┬─────────────────┬\b╮\n", + "│ Name │ Attribute │ Type │ Field Option │ Option Value │ Field Option │ Option Value │ Field Option │ Option Value │ Field Option │ Option Value │\n", + "├─────────────────┼─────────────────┼─────────────────┼─────────────────┼─────────────────┼─────────────────┼─────────────────┼─────────────────┼─────────────────┼─────────────────┼─────────────────┼\b┤\n", + "│ $.content │ content │ TEXT │ WEIGHT │ 1 │ │ │ │ │ │ │\n", + "│ $.memory_type │ memory_type │ TAG │ SEPARATOR │ , │ │ │ │ │ │ │\n", + "│ $.metadata │ metadata │ TEXT │ WEIGHT │ 1 │ │ │ │ │ │ │\n", + "│ $.created_at │ created_at │ TEXT │ WEIGHT │ 1 │ │ │ │ │ │ │\n", + "│ $.user_id │ user_id │ TAG │ SEPARATOR │ , │ │ │ │ │ │ │\n", + "│ $.memory_id │ memory_id │ TAG │ SEPARATOR │ , │ │ │ │ │ │ │\n", + "│ $.embedding │ embedding │ VECTOR │ algorithm │ FLAT │ data_type │ FLOAT32 │ dim │ 1536 │ distance_metric │ COSINE │\n", + "╰─────────────────┴─────────────────┴─────────────────┴─────────────────┴─────────────────┴─────────────────┴─────────────────┴─────────────────┴─────────────────┴─────────────────┴─────────────────┴\b╯\n" + ] + } + ], + "source": [ + "!rvl index info -i agent_memories" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "r5ybTN2l1nfg" + }, + "source": [ + "## Functions to access memories\n", + "\n", + "Next, we provide three core functions to access, store and retrieve memories. We will eventually use these in tools for the LLM to call. We will start by loading a vectorizer class to create OpenAI embeddings.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "id": "ruYpDU_lvKOF" + }, + "outputs": [], + "source": [ + "from redisvl.utils.vectorize.text.openai import OpenAITextVectorizer\n", + "\n", + "openai_embed = OpenAITextVectorizer(model=\"text-embedding-ada-002\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HXLu70owvKOF" + }, + "source": [ + "Next we will set up a simple logger so our functions will record log activity of whats happening." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "-XIpiadMvKOF" + }, + "outputs": [], + "source": [ + "import logging\n", + "\n", + "# Set up a logger\n", + "logger = logging.getLogger(__name__)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "eMBbx2MkvKOF" + }, + "source": [ + "### 1. Check for similar memories\n", + "First, we'll write a utility function to check if a memory similar to a given\n", + "memory already exists in the index.\n", + "\n", + "This function checks for duplicate memories in Redis by:\n", + "1. Converting the input content into a vector embedding\n", + "2. Creating filters for user_id and memory_type\n", + "3. Using vector similarity search with a vector range query to find any existing + similar memories\n", + "4. Returning True if a similar memory exists, False otherwise\n", + "\n", + "This helps prevent storing redundant information in the agent's memory." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "id": "GN9zPAWO1nfg" + }, + "outputs": [], + "source": [ + "from redisvl.query import VectorRangeQuery\n", + "from redisvl.query.filter import Tag\n", + "\n", + "\n", + "# If we have any memories that aren't associated with a user, we'll use this ID.\n", + "SYSTEM_USER_ID = \"system\"\n", + "\n", + "\n", + "def similar_memory_exists(\n", + " content: str,\n", + " memory_type: MemoryType,\n", + " user_id: str = SYSTEM_USER_ID,\n", + " thread_id: Optional[str] = None,\n", + " distance_threshold: float = 0.1,\n", + ") -> bool:\n", + " \"\"\"Check if a similar long-term memory already exists in Redis.\"\"\"\n", + " content_embedding = openai_embed.embed(content)\n", + "\n", + " filters = (Tag(\"user_id\") == user_id) & (Tag(\"memory_type\") == memory_type)\n", + "\n", + " if thread_id:\n", + " filters = filters & (Tag(\"thread_id\") == thread_id)\n", + "\n", + " # Search for similar memories\n", + " vector_query = VectorRangeQuery(\n", + " vector=content_embedding,\n", + " num_results=1,\n", + " vector_field_name=\"embedding\",\n", + " filter_expression=filters,\n", + " distance_threshold=distance_threshold,\n", + " return_fields=[\"id\"],\n", + " )\n", + " results = long_term_memory_index.query(vector_query)\n", + " logger.debug(f\"Similar memory search results: {results}\")\n", + "\n", + " if results:\n", + " logger.debug(\n", + " f\"{len(results)} similar {'memory' if results.count == 1 else 'memories'} found. First: \"\n", + " f\"{results[0]['id']}. Skipping storage.\"\n", + " )\n", + " return True\n", + "\n", + " return False" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_zqJwlXx1nfg" + }, + "source": [ + "### 2. Store long-term memories" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KIu2CrUq1nfg" + }, + "source": [ + "Below is a function that handles storing long-term memories in Redis with built-in deduplication.\n", + "\n", + "It's a key part of our memory system that:\n", + "1. Prevents duplicate memories by checking for similar content\n", + "2. Creates vector embeddings for semantic search capabilities\n", + "3. Stores the memory with relevant metadata for future retrieval\n", + "\n", + "We'll use the `similar_memory_exists()` function when we store memories in order to perform in-line memory deduplication." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "id": "oKA39Qp21nfh" + }, + "outputs": [], + "source": [ + "from datetime import datetime\n", + "from typing import List, Optional, Union\n", + "\n", + "import ulid\n", + "\n", + "\n", + "def store_memory(\n", + " content: str,\n", + " memory_type: MemoryType,\n", + " user_id: str = SYSTEM_USER_ID,\n", + " thread_id: Optional[str] = None,\n", + " metadata: Optional[str] = None,\n", + "):\n", + " \"\"\"Store a long-term memory in Redis with deduplication.\n", + "\n", + " This function:\n", + " 1. Checks for similar existing memories to avoid duplicates\n", + " 2. Generates vector embeddings for semantic search\n", + " 3. Stores the memory with metadata for retrieval\n", + " \"\"\"\n", + " if metadata is None:\n", + " metadata = \"{}\"\n", + "\n", + " logger.info(f\"Preparing to store memory: {content}\")\n", + "\n", + " if similar_memory_exists(content, memory_type, user_id, thread_id):\n", + " logger.info(\"Similar memory found, skipping storage\")\n", + " return\n", + "\n", + " embedding = openai_embed.embed(content)\n", + "\n", + " memory_data = {\n", + " \"user_id\": user_id or SYSTEM_USER_ID,\n", + " \"content\": content,\n", + " \"memory_type\": memory_type.value,\n", + " \"metadata\": metadata,\n", + " \"created_at\": datetime.now().isoformat(),\n", + " \"embedding\": embedding,\n", + " \"memory_id\": str(ulid.ULID()),\n", + " \"thread_id\": thread_id,\n", + " }\n", + "\n", + " try:\n", + " long_term_memory_index.load([memory_data])\n", + " except Exception as e:\n", + " logger.error(f\"Error storing memory: {e}\")\n", + " return\n", + "\n", + " logger.info(f\"Stored {memory_type} memory: {content}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0cpk-m7Z1nfh" + }, + "source": [ + "### 3. Retrieve relevant long-term memories\n", + "And now that we're storing memories, we can retrieve them using vector similarity search with metadata filters using RedisVL.\n", + "\n", + "This function:\n", + "1. Takes a query string, optional filters (memory type, user ID, thread ID), and a distance threshold (semantic)\n", + "2. Creates a vector range query using the query's embedding\n", + "3. Builds a filter object based on passed options\n", + "4. Filters to narrow down the search results\n", + "4. Executes the search and returns parsed memory objects" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "id": "xuEAMNjq1nfh" + }, + "outputs": [], + "source": [ + "def retrieve_memories(\n", + " query: str,\n", + " memory_type: Union[Optional[MemoryType], List[MemoryType]] = None,\n", + " user_id: str = SYSTEM_USER_ID,\n", + " thread_id: Optional[str] = None,\n", + " distance_threshold: float = 0.1,\n", + " limit: int = 5,\n", + ") -> List[StoredMemory]:\n", + " \"\"\"Retrieve relevant memories from Redis using vector similarity search.\n", + "\n", + " \"\"\"\n", + " # Create vector query using query embedding\n", + " logger.debug(f\"Retrieving memories for query: {query}\")\n", + " vector_query = VectorRangeQuery(\n", + " vector=openai_embed.embed(query),\n", + " return_fields=[\n", + " \"content\",\n", + " \"memory_type\", \n", + " \"metadata\",\n", + " \"created_at\",\n", + " \"memory_id\",\n", + " \"thread_id\",\n", + " \"user_id\",\n", + " ],\n", + " num_results=limit,\n", + " vector_field_name=\"embedding\",\n", + " dialect=2,\n", + " distance_threshold=distance_threshold,\n", + " )\n", + "\n", + " # Build filter conditions\n", + " base_filters = [f\"@user_id:{{{user_id or SYSTEM_USER_ID}}}\"]\n", + "\n", + " if memory_type:\n", + " if isinstance(memory_type, list):\n", + " base_filters.append(f\"@memory_type:{{{'|'.join(memory_type)}}}\")\n", + " else:\n", + " base_filters.append(f\"@memory_type:{{{memory_type.value}}}\")\n", + "\n", + " if thread_id:\n", + " base_filters.append(f\"@thread_id:{{{thread_id}}}\")\n", + "\n", + " vector_query.set_filter(\" \".join(base_filters))\n", + "\n", + " # Execute vector similarity search\n", + " results = long_term_memory_index.query(vector_query)\n", + "\n", + " # Parse results into StoredMemory objects\n", + " memories = []\n", + " for doc in results:\n", + " try:\n", + " memory = StoredMemory(\n", + " id=doc[\"id\"],\n", + " memory_id=doc[\"memory_id\"],\n", + " user_id=doc[\"user_id\"],\n", + " thread_id=doc.get(\"thread_id\", None),\n", + " memory_type=MemoryType(doc[\"memory_type\"]),\n", + " content=doc[\"content\"],\n", + " created_at=doc[\"created_at\"],\n", + " metadata=doc[\"metadata\"],\n", + " )\n", + " memories.append(memory)\n", + " except Exception as e:\n", + " logger.error(f\"Error parsing memory: {e}\")\n", + " continue\n", + " return memories" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "YinPoLcc1nfh" + }, + "source": [ + "## 🛠️ Managing Long-Term Memory with Tools\n", + "\n", + "Memory operations are exposed as **tools** that the LLM can call to store or retrieve memories.\n", + "\n", + "**Tool-based memory management:**\n", + "- LLM decides when to store/retrieve memories\n", + "- Fewer Redis calls but may miss some context\n", + "- Adds some latency due to LLM decision-making\n", + "\n", + "Alternatively, you can always manually manage memories in your workflows.\n", + "\n", + "**Manual memory management:**\n", + "- More Redis calls but faster response times\n", + "- Extracts more memories, providing richer context\n", + "- Higher token usage due to more context\n", + "\n", + "> NOTE: **This tutorial uses tool-based memory** for optimal balance of control and efficiency.\n", + "\n", + "\"Memory" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BmwB-sUJ1nfh" + }, + "source": [ + "### Define Agent Tools\n", + "\n", + "Now that we have our storage functions defined, we can create the tools that will enable our agent to interact with the memory system. These tools will be used by the LLM to manage memories during conversations.\n", + "\n", + "Let's start with the Store Memory Tool:\n", + "\n", + "#### Store Memory Tool\n", + "\n", + "This tool enables the agent to save important information as long-term memories in Redis. It's particularly useful for capturing:\n", + "- User preferences and habits\n", + "- Personal experiences and anecdotes\n", + "- Important facts and knowledge shared during conversations\n", + "\n", + "The tool accepts the following parameters:\n", + "- `content`: The actual memory content to store (e.g., \"User prefers window seats on flights\")\n", + "- `memory_type`: The type of memory (e.g., `MemoryType.EPISODIC` for personal experiences, `MemoryType.SEMANTIC` for general knowledge)\n", + "- `metadata`: Optional dictionary for additional context (e.g., timestamps, source, confidence)\n", + "- `config`: Optional configuration for user/thread context (automatically handled by the agent)\n", + "\n", + "When called, the tool:\n", + "1. Validates the input parameters\n", + "2. Stores the memory in Redis with proper indexing\n", + "3. Returns a success message with the stored content\n", + "4. Handles errors gracefully with informative messages\n", + "\n", + "This tool is designed to be used by the LLM to build a persistent memory of the user's preferences and experiences, enabling more personalized and context-aware interactions over time." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "id": "T-S0eN4B1nfh" + }, + "outputs": [], + "source": [ + "from typing import Dict, Optional\n", + "\n", + "from langchain_core.tools import tool\n", + "from langchain_core.runnables.config import RunnableConfig\n", + "\n", + "\n", + "@tool\n", + "def store_memory_tool(\n", + " content: str,\n", + " memory_type: MemoryType,\n", + " metadata: Optional[Dict[str, str]] = None,\n", + " config: Optional[RunnableConfig] = None,\n", + ") -> str:\n", + " \"\"\"\n", + " Store a long-term memory in the system.\n", + "\n", + " Use this tool to save important information about user preferences,\n", + " experiences, or general knowledge that might be useful in future\n", + " interactions.\n", + " \"\"\"\n", + " config = config or RunnableConfig()\n", + " user_id = config.get(\"user_id\", SYSTEM_USER_ID)\n", + " thread_id = config.get(\"thread_id\")\n", + "\n", + " try:\n", + " # Store in long-term memory\n", + " store_memory(\n", + " content=content,\n", + " memory_type=memory_type,\n", + " user_id=user_id,\n", + " thread_id=thread_id,\n", + " metadata=str(metadata) if metadata else None,\n", + " )\n", + "\n", + " return f\"Successfully stored {memory_type} memory: {content}\"\n", + " except Exception as e:\n", + " return f\"Error storing memory: {str(e)}\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "9Am1Z_hItKpc" + }, + "source": [ + "Test the tool:" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "id": "H1-HPwag-im_", + "outputId": "4b883edc-29e2-4666-84ae-4e156b03661c" + }, + "outputs": [ + { + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + }, + "text/plain": [ + "'Successfully stored MemoryType.EPISODIC memory: I like flying on Delta when possible'" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "store_memory_tool.invoke({\"content\": \"I like flying on Delta when possible\", \"memory_type\": \"episodic\"})" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "MkjIWht9vKOG" + }, + "source": [ + "Now that we've seen how to store memories, let's look at how to retrieve them.\n", + "\n", + "#### Retrieve Memoreis Tool\n", + "This tool allows us to search through our stored memories using semantic similarity and filtering.\n", + "\n", + "This tool is particularly useful when you want to:\n", + "- Find relevant past experiences or preferences\n", + "- Filter memories by type (episodic or semantic)\n", + "- Get user-specific information\n", + "- Limit the number of results to keep responses focused\n", + "\n", + "The tool works by:\n", + "1. Taking a query string and searching for semantically similar memories\n", + "2. Filtering results based on memory type\n", + "3. Applying a similarity threshold to ensure relevance\n", + "4. Formatting the results in a clear, readable way" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "id": "NEqm-q1ovKOG" + }, + "outputs": [], + "source": [ + "@tool\n", + "def retrieve_memories_tool(\n", + " query: str,\n", + " memory_type: List[MemoryType],\n", + " limit: int = 5,\n", + " config: Optional[RunnableConfig] = None,\n", + ") -> str:\n", + " \"\"\"\n", + " Retrieve long-term memories relevant to the query.\n", + "\n", + " Use this tool to access previously stored information about user\n", + " preferences, experiences, or general knowledge.\n", + " \"\"\"\n", + " config = config or RunnableConfig()\n", + " user_id = config.get(\"user_id\", SYSTEM_USER_ID)\n", + "\n", + " try:\n", + " # Get long-term memories\n", + " stored_memories = retrieve_memories(\n", + " query=query,\n", + " memory_type=memory_type,\n", + " user_id=user_id,\n", + " limit=limit,\n", + " distance_threshold=0.3,\n", + " )\n", + "\n", + " # Format the response\n", + " response = []\n", + "\n", + " if stored_memories:\n", + " response.append(\"Long-term memories:\")\n", + " for memory in stored_memories:\n", + " response.append(f\"- [{memory.memory_type}] {memory.content}\")\n", + "\n", + " return \"\\n\".join(response) if response else \"No relevant memories found.\"\n", + "\n", + " except Exception as e:\n", + " return f\"Error retrieving memories: {str(e)}\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4irYew3pvKON" + }, + "source": [ + "Test the tool:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "id": "CMlAHmTe9vhN", + "outputId": "95304a90-39c3-42d3-bcdc-d7d6ea6e2191" + }, + "outputs": [ + { + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + }, + "text/plain": [ + "'Long-term memories:\\n- [MemoryType.EPISODIC] I like flying on Delta when possible'" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "retrieve_memories_tool.invoke({\"query\": \"Airline preferences\", \"memory_type\": [\"episodic\"]})" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "PftV2tTG1nfh" + }, + "source": [ + "# 🌎 Build the Travel Agent\n", + "\n", + "## Setting Up the ReAct Agent\n", + "\n", + "We'll use LangGraph's prebuilt components to create a ReAct agent with memory capabilities:\n", + "\n", + "1. **Short-term Memory**: A checkpoint saver tracks conversation history per thread\n", + "2. **Long-term Memory**: We'll extract and store key information from conversations\n", + " - Episodic memories: User preferences and experiences\n", + " - Semantic memories: General travel knowledge\n", + "\n", + "The system will automatically summarize conversations to manage context while preserving important details in long-term storage.\n", + "\n", + "Below we start with setting up the Redis checkpointer (`RedisSaver`) that will handle short term memory for the agent." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "id": "QSouau_jvKON" + }, + "outputs": [], + "source": [ + "from langchain_core.messages import AIMessage, SystemMessage\n", + "from langchain_openai import ChatOpenAI\n", + "from langgraph.prebuilt.chat_agent_executor import create_react_agent\n", + "from langgraph.checkpoint.redis import RedisSaver\n", + "\n", + "# Set up the Redis checkpointer for short term memory\n", + "redis_saver = RedisSaver(redis_client=redis_client)\n", + "redis_saver.setup()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "a8LEro_PvKON" + }, + "source": [ + "Next we define the set of tools for the agent." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "id": "EtZo92KuvKON" + }, + "outputs": [], + "source": [ + "# Define the set of tools\n", + "tools = [store_memory_tool, retrieve_memories_tool]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "e-2IMJaLvKON" + }, + "source": [ + "Configure the LLM from OpenAI." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "id": "kWz7rC5_vKON" + }, + "outputs": [], + "source": [ + "# Configure an LLM for the agent with a more creative temperature.\n", + "llm = ChatOpenAI(model=\"gpt-4o\", temperature=0.7).bind_tools(tools)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "JLKB-V9HvKON" + }, + "source": [ + "Assemble the ReAct agent combining the LLM, tools, checkpointer, and system prompt!" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "id": "e-TpYxYb1nfh" + }, + "outputs": [], + "source": [ + "# Defint the travel agent\n", + "travel_agent = create_react_agent(\n", + " model=llm,\n", + " tools=tools, # Long-term memory: provided as a set of custom tools\n", + " checkpointer=redis_saver, # Short-term memory: the conversation history\n", + " prompt=SystemMessage(\n", + " content=\"\"\"\n", + " You are a travel assistant helping users plan their trips. You remember user preferences\n", + " and provide personalized recommendations based on past interactions.\n", + "\n", + " You have access to the following types of memory:\n", + " 1. Short-term memory: The current conversation thread\n", + " 2. Long-term memory:\n", + " - Episodic: User preferences and past trip experiences (e.g., \"User prefers window seats\")\n", + " - Semantic: General knowledge about travel destinations and requirements\n", + "\n", + " Your procedural knowledge (how to search, book flights, etc.) is built into your tools and prompts.\n", + "\n", + " Always be helpful, personal, and context-aware in your responses.\n", + " \"\"\"\n", + " ),\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "htuJmhkY1nfi" + }, + "source": [ + "✅ Now that we have the basic agent in place, we will build a LangGraph workflow that invokes this agent as a node. The graph will consist of three nodes in total. We will move through each one separately." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "R2mZwvHj1nfi" + }, + "source": [ + "## Node 1: Respond to the user\n", + "In LangGraph, a **node** represents a discrete unit of processing in a workflow. Each node is a function that takes a state object and configuration as input, processes the data, and returns an updated state. Nodes can be connected to form a directed graph that defines the flow of execution.\n", + "\n", + "The `respond_to_user` node (below) is our first node in the travel agent workflow. It serves as the entry point for user interactions and handles the core conversation flow. Here's how it works:\n", + "\n", + "1. It receives the current conversation state and configuration\n", + "2. Extracts any human messages from the state\n", + "3. Invokes our travel agent to generate a response\n", + "4. Handles any errors gracefully\n", + "5. Updates the conversation state with the agent's response\n", + "\n", + "The node uses a custom `RuntimeState` class that inherits from `MessagesState` to maintain the conversation history. This state object is passed between nodes in the graph, allowing each node to access and modify the conversation context as needed." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "id": "PFdGi8fd1nfi" + }, + "outputs": [], + "source": [ + "from langchain_core.messages import HumanMessage\n", + "from langgraph.graph.message import MessagesState\n", + "\n", + "\n", + "class RuntimeState(MessagesState):\n", + " \"\"\"Runtime state for the travel agent.\"\"\"\n", + " pass\n", + "\n", + "\n", + "def respond_to_user(state: RuntimeState, config: RunnableConfig) -> RuntimeState:\n", + " \"\"\"Invoke the travel agent to generate a response.\"\"\"\n", + " human_messages = [m for m in state[\"messages\"] if isinstance(m, HumanMessage)]\n", + " if not human_messages:\n", + " logger.warning(\"No HumanMessage found in state\")\n", + " return state\n", + "\n", + " try:\n", + " # Single agent invocation, not streamed (simplified for reliability)\n", + " result = travel_agent.invoke({\"messages\": state[\"messages\"]}, config=config)\n", + " agent_message = result[\"messages\"][-1]\n", + " state[\"messages\"].append(agent_message)\n", + " except Exception as e:\n", + " logger.error(f\"Error invoking travel agent: {e}\")\n", + " agent_message = AIMessage(\n", + " content=\"I'm sorry, I encountered an error processing your request.\"\n", + " )\n", + " state[\"messages\"].append(agent_message)\n", + "\n", + " return state" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "kZyQE3MeyoQw" + }, + "source": [ + "## Node 2: Execute Tools\n", + "\n", + "The `execute_tools` node is a critical component in our travel agent's workflow that bridges the gap between the LLM's decisions and actual tool execution. Positioned after the `respond_to_user` node, it handles the practical side of the agent's tool-using capabilities.\n", + "\n", + "When the LLM determines it needs to use a tool, it includes tool calls in its response. This node then:\n", + "\n", + "1. Scans the conversation history to find the most recent AI message containing tool calls\n", + "2. For each tool call found:\n", + " - Extracts the tool name, arguments, and call ID from the message\n", + " - Matches the tool name against our available tools\n", + " - Executes the tool with the provided arguments\n", + " - Creates a ToolMessage containing the result\n", + "3. Handles any errors that occur during tool execution\n", + "4. Adds all tool results back to the conversation history\n", + "\n", + "This node is essential because it enables our agent to interact with external systems and services while maintaining a coherent conversation flow. Without it, the agent would be limited to just generating text responses without the ability to perform actual actions or retrieve real-time information.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "id": "bkFA2_vgyrdZ" + }, + "outputs": [], + "source": [ + "from langchain_core.messages import ToolMessage\n", + "\n", + "\n", + "def execute_tools(state: RuntimeState, config: RunnableConfig) -> RuntimeState:\n", + " \"\"\"Execute tools specified in the latest AIMessage and append ToolMessages.\"\"\"\n", + " messages = state[\"messages\"]\n", + " latest_ai_message = next(\n", + " (m for m in reversed(messages) if isinstance(m, AIMessage) and m.tool_calls),\n", + " None\n", + " )\n", + "\n", + " if not latest_ai_message:\n", + " return state # No tool calls to process\n", + "\n", + " tool_messages = []\n", + " for tool_call in latest_ai_message.tool_calls:\n", + " tool_name = tool_call[\"name\"]\n", + " tool_args = tool_call[\"args\"]\n", + " tool_id = tool_call[\"id\"]\n", + "\n", + " # Find the corresponding tool\n", + " tool = next((t for t in tools if t.name == tool_name), None)\n", + " if not tool:\n", + " continue # Skip if tool not found\n", + "\n", + " try:\n", + " # Execute the tool with the provided arguments\n", + " result = tool.invoke(tool_args, config=config)\n", + " # Create a ToolMessage with the result\n", + " tool_message = ToolMessage(\n", + " content=str(result),\n", + " tool_call_id=tool_id,\n", + " name=tool_name\n", + " )\n", + " tool_messages.append(tool_message)\n", + " except Exception as e:\n", + " # Handle tool execution errors\n", + " error_message = ToolMessage(\n", + " content=f\"Error executing tool '{tool_name}': {str(e)}\",\n", + " tool_call_id=tool_id,\n", + " name=tool_name\n", + " )\n", + " tool_messages.append(error_message)\n", + "\n", + " # Append the ToolMessages to the message history\n", + " messages.extend(tool_messages)\n", + " state[\"messages\"] = messages\n", + " return state" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "LM3oPg101nfi" + }, + "source": [ + "## Node 3: Conversation Summarization\n", + "\n", + "While our Redis-based long-term memory system helps store important information, we still need to manage the immediate conversation context. As the chat progresses, the message history grows, potentially overwhelming the LLM's context window. This is where our third node comes in.\n", + "\n", + "The conversation summarization node acts as a context manager, periodically condensing the chat history into a concise summary. Here's how it works:\n", + "\n", + "1. **Trigger**: The node monitors the message count and triggers summarization after every 6 messages (configurable via `MESSAGE_SUMMARIZATION_THRESHOLD`)\n", + "\n", + "2. **Summarization Process**:\n", + " - Uses GPT-4o with a low temperature (0.3) to ensure consistent, focused summaries\n", + " - Preserves critical information like travel preferences, trip details, and pending questions\n", + " - Replaces older messages with the summary while keeping recent context\n", + "\n", + "3. **Benefits**:\n", + " - Prevents context window overflow\n", + " - Maintains conversation coherence\n", + " - Optimizes token usage while preserving essential context\n", + "\n", + "The resulting summary becomes part of the conversation history, allowing the agent to reference past interactions without carrying the full message load." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "id": "KUYw18Xb1nfi" + }, + "outputs": [], + "source": [ + "from langchain_core.messages import RemoveMessage\n", + "\n", + "# An LLM configured for summarization.\n", + "summarizer = ChatOpenAI(model=\"gpt-4o\", temperature=0.3)\n", + "\n", + "# The number of messages after which we'll summarize the conversation.\n", + "MESSAGE_SUMMARIZATION_THRESHOLD = 6\n", + "\n", + "\n", + "def summarize_conversation(\n", + " state: RuntimeState, config: RunnableConfig\n", + ") -> RuntimeState:\n", + " \"\"\"\n", + " Summarize a list of messages into a concise summary to reduce context length\n", + " while preserving important information.\n", + " \"\"\"\n", + " messages = state[\"messages\"]\n", + " current_message_count = len(messages)\n", + " if current_message_count < MESSAGE_SUMMARIZATION_THRESHOLD:\n", + " logger.debug(f\"Not summarizing conversation: {current_message_count}\")\n", + " return state\n", + "\n", + " system_prompt = \"\"\"\n", + " You are a conversation summarizer. Create a concise summary of the previous\n", + " conversation between a user and a travel assistant.\n", + "\n", + " The summary should:\n", + " 1. Highlight key topics, preferences, and decisions\n", + " 2. Include any specific trip details (destinations, dates, preferences)\n", + " 3. Note any outstanding questions or topics that need follow-up\n", + " 4. Be concise but informative\n", + "\n", + " Format your summary as a brief narrative paragraph.\n", + " \"\"\"\n", + "\n", + " message_content = \"\\n\".join(\n", + " [\n", + " f\"{'User' if isinstance(msg, HumanMessage) else 'Assistant'}: {msg.content}\"\n", + " for msg in messages\n", + " ]\n", + " )\n", + "\n", + " # Invoke the summarizer\n", + " summary_messages = [\n", + " SystemMessage(content=system_prompt),\n", + " HumanMessage(\n", + " content=f\"Please summarize this conversation:\\n\\n{message_content}\"\n", + " ),\n", + " ]\n", + "\n", + " summary_response = summarizer.invoke(summary_messages)\n", + "\n", + " logger.info(f\"Summarized {len(messages)} messages into a conversation summary\")\n", + "\n", + " summary_message = SystemMessage(\n", + " content=f\"\"\"\n", + " Summary of the conversation so far:\n", + "\n", + " {summary_response.content}\n", + "\n", + " Please continue the conversation based on this summary and the recent messages.\n", + " \"\"\"\n", + " )\n", + " remove_messages = [\n", + " RemoveMessage(id=msg.id) for msg in messages if msg.id is not None\n", + " ]\n", + "\n", + " state[\"messages\"] = [ # type: ignore\n", + " *remove_messages,\n", + " summary_message,\n", + " state[\"messages\"][-1],\n", + " ]\n", + "\n", + " return state.copy()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "dpzjQxXi1nfi" + }, + "source": [ + "## Assemble the full graph\n", + "\n", + "🚧 It's time to assemble our graph for end-to-end agent execution. We will attach all three **nodes** we defined above." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "h6TvQaob1nfi" + }, + "outputs": [], + "source": [ + "from langgraph.graph import StateGraph, END\n", + "\n", + "workflow = StateGraph(RuntimeState)\n", + "\n", + "# Add nodes to the graph\n", + "workflow.add_node(\"agent\", respond_to_user)\n", + "workflow.add_node(\"execute_tools\", execute_tools)\n", + "workflow.add_node(\"summarize_conversation\", summarize_conversation)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "cYGE-DLuvKOO" + }, + "source": [ + "Next, we will tie the nodes together using **edges** which control process flow. There is a conditional edge between the agent node and what comes next. What comes next is based on whether we need to handle + execute a tool call or proceed..." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "61Un_szhvKOO" + }, + "outputs": [], + "source": [ + "def decide_next_step(state):\n", + " latest_ai_message = next((m for m in reversed(state[\"messages\"]) if isinstance(m, AIMessage)), None)\n", + " if latest_ai_message and latest_ai_message.tool_calls:\n", + " return \"execute_tools\"\n", + " return \"summarize_conversation\"\n", + "\n", + "\n", + "workflow.set_entry_point(\"agent\")\n", + "workflow.add_conditional_edges(\n", + " \"agent\",\n", + " decide_next_step,\n", + " {\"execute_tools\": \"execute_tools\", \"summarize_conversation\": \"summarize_conversation\"},\n", + ")\n", + "workflow.add_edge(\"execute_tools\", \"agent\")\n", + "workflow.add_edge(\"summarize_conversation\", END)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "3L_OEc80vKOO" + }, + "source": [ + "Compile the graph!" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "id": "kuwdsVhYvKOO" + }, + "outputs": [], + "source": [ + "graph = workflow.compile(checkpointer=redis_saver)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "sQSfnQDK1nfo" + }, + "source": [ + "## Testing the Main Agent Loop\n", + "\n", + "Now that we have our workflow graph set up, let's test the main interaction loop. This loop will:\n", + "1. Initialize the conversation state and configuration\n", + "2. Process user input through our workflow\n", + "3. Display the agent's responses\n", + "4. Handle any errors gracefully\n", + "\n", + "The main loop implements the following workflow:\n", + "\n", + "1. Initialization\n", + " - Creates a unique thread ID for conversation tracking\n", + " - Initializes an empty message state for the conversation\n", + "\n", + "2. Input Processing\n", + " - Prompts for user input in a continuous loop\n", + " - Handles empty inputs by skipping to next iteration\n", + " - Provides exit commands (\"exit\" or \"quit\") to end the session\n", + "\n", + "3. Message Flow\n", + " - Converts user input into a HumanMessage\n", + " - Streams the message through our workflow graph\n", + " - Updates conversation state with each processing step\n", + " - Maintains conversation history for context\n", + "\n", + "4. Response Generation\n", + " - Processes the state through our agent workflow\n", + " - Extracts the most recent AI response\n", + " - Displays the response to the user\n", + " - Handles cases where no response is generated\n", + "\n", + "5. Error Handling\n", + " - Catches and logs any processing errors\n", + " - Provides user-friendly error messages\n", + " - Preserves conversation state even when errors occur\n", + " - Ensures graceful recovery from failures" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "id": "xD1BTjXY1nfp" + }, + "outputs": [], + "source": [ + "def main(thread_id: str = \"book_flight\", user_id: str = \"demo_user\"):\n", + " \"\"\"Main interaction loop for the travel agent\"\"\"\n", + "\n", + " print(\"Welcome to the Travel Assistant! (Type 'exit' to quit)\")\n", + "\n", + " config = RunnableConfig(configurable={\"thread_id\": thread_id, \"user_id\": user_id})\n", + " state = RuntimeState(messages=[])\n", + "\n", + " while True:\n", + " user_input = input(\"\\nYou (type 'quit' to quit): \")\n", + "\n", + " if not user_input:\n", + " continue\n", + "\n", + " if user_input.lower() in [\"exit\", \"quit\"]:\n", + " print(\"Thank you for using the Travel Assistant. Goodbye!\")\n", + " break\n", + "\n", + " state[\"messages\"].append(HumanMessage(content=user_input))\n", + "\n", + " try:\n", + " # Process user input through the graph\n", + " for result in graph.stream(state, config=config, stream_mode=\"values\"):\n", + " state = RuntimeState(**result)\n", + "\n", + " logger.debug(f\"# of messages after run: {len(state['messages'])}\")\n", + "\n", + " # Find the most recent AI message, so we can print the response\n", + " ai_messages = [m for m in state[\"messages\"] if isinstance(m, AIMessage)]\n", + " if ai_messages:\n", + " message = ai_messages[-1].content\n", + " else:\n", + " logger.error(\"No AI messages after run\")\n", + " message = \"I'm sorry, I couldn't process your request properly.\"\n", + " # Add the error message to the state\n", + " state[\"messages\"].append(AIMessage(content=message))\n", + "\n", + " print(f\"\\nAssistant: {message}\")\n", + "\n", + " except Exception as e:\n", + " logger.exception(f\"Error processing request: {e}\")\n", + " error_message = \"I'm sorry, I encountered an error processing your request.\"\n", + " print(f\"\\nAssistant: {error_message}\")\n", + " # Add the error message to the state\n", + " state[\"messages\"].append(AIMessage(content=error_message))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "P51RdhnzfZa1" + }, + "source": [ + "Before you try your own, take a look at the current conversation between Tyler and the travel agent. Notice the memory storage actions, the calls to the LLM, and also the conversation summarization that take place during the workflow!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "C5fg4PH97YGY", + "outputId": "1a6fd03c-e0f5-46a8-9462-76f46260e901" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Enter a user ID: tyler\n", + "Enter a thread ID: 123\n", + "Welcome to the Travel Assistant! (Type 'exit' to quit)\n", + "13:51:57 __main__ INFO Starting memory consolidation for user tyler\n", + "\n", + "You (type 'quit' to quit): Hi I plan to go to singapore with my wife this summer. We love outdoors activities and trying new kinds of foods. Any good recommendations?\n", + "13:52:30 httpx INFO HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", + "13:52:30 __main__ INFO Preparing to store memory: User plans to visit Singapore this summer with his wife and they love outdoor activities and trying new kinds of foods.\n", + "13:52:31 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "13:52:31 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "13:52:31 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "13:52:31 __main__ INFO Stored MemoryType.EPISODIC memory: User plans to visit Singapore this summer with his wife and they love outdoor activities and trying new kinds of foods.\n", + "13:52:37 httpx INFO HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", + "\n", + "Assistant: Singapore is a fantastic destination for outdoor activities and culinary adventures! Here are some recommendations that you and your wife might enjoy:\n", + "\n", + "### Outdoor Activities:\n", + "1. **Gardens by the Bay**: Explore the stunning gardens and the iconic Supertree Grove. You can also walk along the OCBC Skyway for a breathtaking view of the Marina Bay area.\n", + "\n", + "2. **Sentosa Island**: Enjoy a day at the beach, try zip-lining, or explore the numerous attractions like Universal Studios Singapore.\n", + "\n", + "3. **MacRitchie Reservoir**: Go for a hike along the MacRitchie Trails and experience the TreeTop Walk, a suspension bridge spanning the forest canopy.\n", + "\n", + "4. **Pulau Ubin**: Rent a bicycle and explore this rustic island. It's a great place to enjoy nature and see what Singapore was like in the past.\n", + "\n", + "### Food Experiences:\n", + "1. **Hawker Centers**: Visit places like Maxwell Food Centre or Lau Pa Sat to try local dishes such as Hainanese chicken rice, laksa, and chili crab.\n", + "\n", + "2. **Peranakan Cuisine**: Try something different with Peranakan or Nyonya food, which is a blend of Chinese and Malay culinary traditions. \n", + "\n", + "3. **Jumbo Seafood**: Known for their chili crab, this is a must-try for seafood lovers. There are several locations around the city.\n", + "\n", + "4. **Food Tours**: Consider joining a food tour to explore the diverse culinary scene in Singapore and learn about the history and culture behind each dish.\n", + "\n", + "Feel free to ask if you need more details or have specific interests!\n", + "\n", + "You (type 'quit' to quit): Excellent thank you. I would love help booking flights. What are the best routes typically flown from Atlanta to Singapore?\n", + "13:53:24 httpx INFO HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", + "\n", + "Assistant: Flying from Atlanta to Singapore usually involves at least one stopover, as there are no direct flights. Here are some of the best routes typically flown:\n", + "\n", + "1. **Atlanta (ATL) to Singapore (SIN) via Tokyo (NRT/HND)**:\n", + " - Airlines: Delta Air Lines, Japan Airlines\n", + " - This route often involves a stop in Tokyo, which can be a great opportunity to explore Japan if you have a long layover.\n", + "\n", + "2. **Atlanta (ATL) to Singapore (SIN) via Seoul (ICN)**:\n", + " - Airlines: Korean Air, Delta Air Lines\n", + " - A stopover in Seoul offers another chance for a brief visit in South Korea.\n", + "\n", + "3. **Atlanta (ATL) to Singapore (SIN) via Doha (DOH)**:\n", + " - Airline: Qatar Airways\n", + " - Qatar Airways offers a stop in Doha, which is known for its luxurious airport and facilities.\n", + "\n", + "4. **Atlanta (ATL) to Singapore (SIN) via Dubai (DXB)**:\n", + " - Airline: Emirates\n", + " - Stopping in Dubai can be a fantastic experience with plenty of attractions to explore.\n", + "\n", + "5. **Atlanta (ATL) to Singapore (SIN) via Frankfurt (FRA) or Munich (MUC)**:\n", + " - Airlines: Lufthansa, Singapore Airlines\n", + " - A European stopover provides a different cultural experience.\n", + "\n", + "When booking flights, it's a good idea to consider the total travel time, layover duration, and the amenities offered by the airlines. Let me know if you would like assistance with booking or have any preferences, such as specific airlines or layover cities!\n", + "\n", + "You (type 'quit' to quit): Ok great. As you know we like Delta. But we also prefer to sit first class if possible. Do these kinds of routes offer upgrades normally?\n", + "13:53:32 httpx INFO HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", + "13:53:32 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "13:53:37 httpx INFO HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", + "13:53:41 httpx INFO HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", + "13:53:41 __main__ INFO Summarized 6 messages into a conversation summary\n", + "\n", + "Assistant: Since you prefer Delta Air Lines, you might consider the following route:\n", + "\n", + "### Atlanta (ATL) to Singapore (SIN) via Tokyo (NRT/HND):\n", + "- **Airlines**: Delta Air Lines, Japan Airlines\n", + "- **Class Options**: Delta offers Delta One, their premium cabin, which includes lie-flat seats, premium dining, and other luxury amenities.\n", + "\n", + "Delta typically allows for upgrades to first-class or their premium Delta One cabin, especially if you're a SkyMiles member or have elite status. Upgrades can often be requested at the time of booking or closer to the departure date, depending on availability.\n", + "\n", + "For the best chance of securing an upgrade, consider:\n", + "- Booking early and using any available miles or upgrade certificates.\n", + "- Checking the Delta app or website regularly for upgrade availability.\n", + "- Contacting Delta customer service if you have specific requests or need assistance with your booking.\n", + "\n", + "Let me know if you need help with booking or have any other questions!\n", + "\n", + "You (type 'quit' to quit): Let's hold on booking for now. Back to activities. Based on what you know about me, what do you think we should do? Design the perfect Sunday for me and my wife in Singapore.\n", + "13:54:05 httpx INFO HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", + "13:54:06 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "13:54:13 httpx INFO HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", + "\n", + "Assistant: Here's a perfect Sunday itinerary in Singapore, tailored to your love for outdoor activities and culinary experiences:\n", + "\n", + "### Morning:\n", + "- **Breakfast at Tiong Bahru Bakery**: Start your day with a delicious breakfast at this popular bakery known for its croissants and artisanal coffee.\n", + "- **Visit Gardens by the Bay**: Spend the morning exploring this iconic attraction. Don't miss the Supertree Grove and Cloud Forest Dome for a mix of nature and futuristic architecture.\n", + "\n", + "### Midday:\n", + "- **Lunch at Lau Pa Sat Hawker Centre**: Head to this historic food market for a taste of Singapore's diverse street food. Try local favorites like Hainanese chicken rice, satay, and laksa.\n", + "- **Stroll Along Marina Bay**: Enjoy a leisurely walk along Marina Bay and take in the stunning skyline views. You can also visit the Merlion Park for some iconic photo opportunities.\n", + "\n", + "### Afternoon:\n", + "- **Biking at East Coast Park**: Rent a bike and enjoy a ride along the scenic coastline. The park offers a beautiful setting for outdoor activities and relaxation.\n", + "- **Explore Katong and Joo Chiat**: Discover the colorful shophouses and Peranakan culture in these charming neighborhoods. You can also stop by for some traditional Peranakan snacks.\n", + "\n", + "### Evening:\n", + "- **Dinner at a Rooftop Restaurant**: End your day with a romantic dinner at a rooftop restaurant like Level33 or Ce La Vi, offering panoramic views of the city skyline.\n", + "- **Night Safari at Singapore Zoo**: If you're up for some adventure, consider the Night Safari for a unique experience of seeing nocturnal animals in their natural habitat.\n", + "\n", + "This itinerary combines your love for the outdoors with Singapore's rich culinary scene, ensuring a memorable day for you and your wife. Let me know if you'd like more details or adjustments!\n", + "\n", + "You (type 'quit' to quit): Great as long as there are no shellfish items featured as my wife is very allergic.\n", + "13:54:52 httpx INFO HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", + "13:54:52 __main__ INFO Preparing to store memory: User's wife is allergic to shellfish.\n", + "13:54:58 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "13:54:58 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "13:54:58 __main__ INFO Stored MemoryType.EPISODIC memory: User's wife is allergic to shellfish.\n", + "13:55:00 httpx INFO HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", + "13:55:03 httpx INFO HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", + "13:55:03 __main__ INFO Summarized 6 messages into a conversation summary\n", + "\n", + "Assistant: I've noted that your wife is allergic to shellfish. When dining at places like hawker centers or restaurants, it's a good idea to inform the staff about her allergy to ensure a safe dining experience. \n", + "\n", + "If you need more personalized recommendations or adjustments to your itinerary, feel free to ask!\n", + "\n", + "You (type 'quit' to quit): Excellent. Back to booking flights. For our preferred airline, will you recommend best route to get there from the US?\n", + "13:55:32 httpx INFO HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", + "13:55:32 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "13:55:34 httpx INFO HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", + "\n", + "Assistant: Given your preference for Delta Air Lines, I recommend flying from Atlanta (ATL) to Singapore (SIN) with a layover in Tokyo (NRT). Delta offers convenient connections through Tokyo, and this route is popular for travelers heading to Singapore.\n", + "\n", + "Would you like me to assist with finding specific flight options or any other details regarding the booking?\n", + "\n", + "You (type 'quit' to quit): Sounds great. We will go with this one. I havent been to Singapore since I was 15 years old when I went with my family during my dads business trip. We had such a great time. I think you are going to help us have a fantastic trip!!\n", + "13:55:52 httpx INFO HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", + "13:55:52 __main__ INFO Preparing to store memory: User visited Singapore at the age of 15 with their family during their dad's business trip and had a great time.\n", + "13:55:52 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "13:55:52 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "13:55:52 __main__ INFO Stored MemoryType.EPISODIC memory: User visited Singapore at the age of 15 with their family during their dad's business trip and had a great time.\n", + "13:55:54 httpx INFO HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", + "13:55:57 httpx INFO HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", + "13:55:57 __main__ INFO Summarized 6 messages into a conversation summary\n", + "\n", + "Assistant: I'm thrilled to be part of planning your trip back to Singapore! It sounds like you have fond memories from your last visit, and I'm here to help make this trip just as memorable. If you need any more assistance with flights or have questions about your itinerary, just let me know!\n", + "\n", + "You (type 'quit' to quit): quit\n", + "Thank you for using the Travel Assistant. Goodbye!\n" + ] + } + ], + "source": [ + "# NBVAL_SKIP\n", + "\n", + "try:\n", + " user_id = input(\"Enter a user ID: \") or \"demo_user\"\n", + " thread_id = input(\"Enter a thread ID: \") or \"demo_thread\"\n", + "except Exception:\n", + " # If we're running in CI, we don't have a terminal to input from, so just exit\n", + " exit()\n", + "else:\n", + " main(thread_id, user_id)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "xmFwUzVo2qxB" + }, + "source": [ + "Let's review what the agent learned about me during the process!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "-txziZxw2jik", + "outputId": "1ac4bf0b-ec10-4fd2-ae28-8568e9be5829" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13:56:11 httpx INFO HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n" + ] + }, + { + "data": { + "text/plain": [ + "['Long-term memories:',\n", + " '- [MemoryType.EPISODIC] User plans to visit Singapore this summer with his wife and they love outdoor activities and trying new kinds of foods.',\n", + " \"- [MemoryType.EPISODIC] User visited Singapore at the age of 15 with their family during their dad's business trip and had a great time.\",\n", + " '- [MemoryType.EPISODIC] I like flying on Delta when possible',\n", + " \"- [MemoryType.EPISODIC] User's wife is allergic to shellfish.\"]" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# NBVAL_SKIP\n", + "res = retrieve_memories_tool.invoke({\"query\": \"Travel, activity, and dietary preferences\", \"memory_type\": [\"episodic\", \"semantic\"]})\n", + "res.split(\"\\n\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "M2UrJxte5HRT" + }, + "source": [ + "Don't forget, we have the RedisVL index we can use to manually query or work with as needed:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "qYm3HQj54WPX", + "outputId": "5db66cb4-e07b-40dd-e4ae-35fed24e283d" + }, + "outputs": [], + "source": [ + "from redisvl.query import CountQuery\n", + "\n", + "# count total long-term memories in Redis\n", + "long_term_memory_index.query(CountQuery())" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "recap-summary" + }, + "source": [ + "___\n", + "\n", + "# 🎓 Recap\n", + "\n", + "You've now learned the fundamentals from scratch and built a **production-ready memory-enabled AI agent** from the ground up. Let's recap the key accomplishments:\n", + "\n", + "## 🏗️ What we built\n", + "\n", + "1. ✅ **Dual-Memory Architecture**: Short-term conversation state + long-term persistent knowledge with LangGraph and Redis\n", + "2. ✅ **Vector-Powered Memory**: Semantic search using RedisVL\n", + "3. ✅ **Smart Deduplication**: Prevents storing similar memories multiple times \n", + "4. ✅ **Tool-Based Memory Management**: LLM controls when to store/retrieve memories \n", + "5. ✅ **Conversation Summarization**: Automatic context window management \n", + "\n", + "**Why Redis?**\n", + "\n", + "- **Performance**: Sub-millisecond memory retrieval at scale \n", + "- **Versatility**: Handles both structured state (checkpoints) and unstructured data (vectors) \n", + "- **Production-Ready**: Built-in persistence, clustering, and high availability \n", + "- **Developer Experience**: Rich ecosystem with tools like RedisVL and AI framework integrations \n", + "\n", + "## 🔧 Alternative memory dev frameworks\n", + "\n", + "While this tutorial shows hands-on implementation, consider these frameworks for faster development:\n", + "\n", + "- **[LangMem](https://github.com/langchain-ai/langmem)**: LangChain's official memory framework\n", + "- **[Mem0](https://github.com/mem0-ai/mem0)**: Dedicated memory layer for AI applications\n", + "\n", + "**When to Use Each Approach:**\n", + "- **Custom Implementation** (this tutorial): Maximum control, specific requirements, learning\n", + "- **LangMem**: LangChain ecosystem integration, rapid prototyping\n", + "- **Mem0**: Multi-application memory sharing, enterprise features\n", + "\n", + "## 🔄 Next Steps\n", + "\n", + "You now have the foundation to build sophisticated, memory-enabled AI agents that feel truly intelligent and personalized.\n", + "\n", + "**Want to learn more?**\n", + "1. [Read more](https://redis.io/blog/build-smarter-ai-agents-manage-short-term-and-long-term-memory-with-redis/) about agent memory patterns with Redis\n", + "2. [Meet with our experts](https://redis.io/meeting/) to get a consultation on your architecture and where Redis can help." + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/python-recipes/agents/04_autogen_agent.ipynb b/python-recipes/agents/04_autogen_agent.ipynb new file mode 100644 index 00000000..b8032d57 --- /dev/null +++ b/python-recipes/agents/04_autogen_agent.ipynb @@ -0,0 +1,653 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "![Redis](https://redis.io/wp-content/uploads/2024/04/Logotype.svg?auto=webp&quality=85,75&width=120)\n", + "\n", + "# Agentic tasks with AutoGen and Redis\n", + "\n", + "This notebook demonstrates how to build an agent using Microsoft's [AutoGen](https://microsoft.github.io/autogen/stable//index.html) agent framework and the RedisMemory integration.\n", + "\n", + "We'll define an agent, give it access to tools and memory, then set in on a task to see how it uses its abilities.\n", + "\n", + "## Let's Begin!\n", + "\n", + "\"Open\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Install packages and set up Redis" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m25.1.1\u001b[0m\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n", + "\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m25.1.1\u001b[0m\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "%pip install -q autogen autogen_agentchat sentence_transformers transformers openai\n", + "%pip install -q \"autogen-ext[redisvl]\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### For Colab download and run a Redis instance" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'\\n%%sh\\ncurl -fsSL https://packages.redis.io/gpg | sudo gpg --dearmor -o /usr/share/keyrings/redis-archive-keyring.gpg\\necho \"deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb $(lsb_release -cs) main\" | sudo tee /etc/apt/sources.list.d/redis.list\\nsudo apt-get update > /dev/null 2>&1\\nsudo apt-get install redis-stack-server > /dev/null 2>&1\\nredis-stack-server --daemonize yes\\n'" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# NBVAL_SKIP\n", + "%%sh\n", + "curl -fsSL https://packages.redis.io/gpg | sudo gpg --dearmor -o /usr/share/keyrings/redis-archive-keyring.gpg\n", + "echo \"deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb $(lsb_release -cs) main\" | sudo tee /etc/apt/sources.list.d/redis.list\n", + "sudo apt-get update > /dev/null 2>&1\n", + "sudo apt-get install redis-stack-server > /dev/null 2>&1\n", + "redis-stack-server --daemonize yes" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/justin.cechmanek/.pyenv/versions/3.11.9/envs/redis-ai-res/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n" + ] + } + ], + "source": [ + "import json\n", + "import os\n", + "import re\n", + "import requests\n", + "from collections import Counter\n", + "from transformers import pipeline\n", + "from typing import List" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Connecting to Redis at: redis://localhost:6379\n" + ] + } + ], + "source": [ + "# Use the environment variable if set, otherwise default to localhost\n", + "REDIS_URL = os.getenv(\"REDIS_URL\", \"redis://localhost:6379\")\n", + "print(f\"Connecting to Redis at: {REDIS_URL}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Building our agent\n", + "\n", + "We'll be building a restaurant review writing agent that takes in a set of restaurant reviews, collects relevant information, and provides a summary and analysis you can use for SEO." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Defining tools\n", + "One of the defining the features of an agent is its ability to use tools so let's give it some. Our agent will decide when to call each tool, construct the appropriate arguments, then retrieve and utilize the results.\n", + "\n", + "With Autogen that just requires we define a well named function with type hints in its signature.\n", + "\n", + "We will have three main tools:\n", + "1. A `summarize()` function that can take in a collection of reviews and boil them all down to a single summary.\n", + "2. A `get_keywords()` function to count the most common words present in the article, becuase LLM's often struggle with character counting.\n", + "3. A `publish_article()` function that will write our final article to a separate file we can then upload elsewhere." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "async def summarize(restaurant_name: str, all_reviews: List[str]) -> str:\n", + " \"\"\"takes a list of reviews for a single restaurant and returns a summary of all of them.\"\"\"\n", + " # set up a summarizer model\n", + " summarizer = pipeline('summarization', model='facebook/bart-large-cnn')\n", + " # pass all the reviews\n", + " summary = summarizer('\\n'.join(all_reviews), # concatenate all the reviews together\n", + " max_length=1024,\n", + " min_length=128,\n", + " do_sample=False)[0][\"summary_text\"]\n", + " return restaurant_name + \": \" + summary\n", + "\n", + "\n", + "async def get_keywords(full_text: str) -> List[str]:\n", + " \"\"\"extract the most commonly occurring keywords present in the reviews to know\n", + " which terms it is likely to rank highly for in keyword search engines.\"\"\"\n", + " # define a set of common English stopwords to ignore\n", + " STOPWORDS = {\n", + " 'the', 'of', 'and', 'to', 'for', 'in', 'on', 'at', 'a', 'an', 'is', 'it', 'its', 'with', 'as', 'by', 'from', 'that',\n", + " 'this', 'those', 'be', 'are', 'was', 'were', 'or', 'but', 'not', 'so', 'if', 'then', 'than', 'which', 'who', 'whom',\n", + " 'about', 'into', 'out', 'up', 'down', 'over', 'under', 'again', 'further', 'once', 'here', 'there', 'when',\n", + " 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'no',\n", + " 'nor', 'only', 'own', 'same', 'can', 'will', 'just', 'don', 'should', 'now', 'has', 'have', 'had', 'do', 'does',\n", + " 'did', 'their', 'them', 'they', 'you', 'your', 'yours', 'he', 'him', 'his', 'she', 'her', 'hers', 'we', 'us',\n", + " 'our', 'ours', 'i', 's', 'me', 'my', 'mine', 'also', 'place'\n", + " }\n", + " # remove punctuation and lowercase the text\n", + " words = re.findall(r'\\b\\w+\\b', full_text.lower())\n", + " # filter out stopwords\n", + " filtered_words = [word for word in words if word not in STOPWORDS]\n", + " # count occurrences\n", + " word_counts = Counter(filtered_words)\n", + " # return the top 10\n", + " return [word for word, _ in word_counts.most_common(10)]\n", + "\n", + "\n", + "async def publish_article(final_draft: str, file_name:str= \"food_article.md\") -> str:\n", + " \"accepts the final version of an article, writes it to a markdown file and returns the full file location path.\"\n", + " with open(file_name, 'w') as file:\n", + " file.write(final_draft)\n", + "\n", + " full_path = os.path.abspath(__file__)\n", + " return os.path.join(full_path, file_name)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding relevant memories\n", + "Our agent needs to know what people think of these restaurants so we'll add the user reviews to our agent memory powered by Redis.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# fetch the reviews from our public S3 bucket\n", + "# the original dataset can be found here: https://www.kaggle.com/datasets/jkgatt/restaurant-data-with-100-trip-advisor-reviews-each\n", + "def fetch_data(file_name):\n", + " dataset_path = 'datasets/'\n", + " try:\n", + " with open(dataset_path + file_name, 'r') as f:\n", + " return json.load(f)\n", + " except:\n", + " url = 'https://redis-ai-resources.s3.us-east-2.amazonaws.com/recommenders/datasets/two-towers/'\n", + " r = requests.get(url + file_name)\n", + " if not os.path.exists(dataset_path):\n", + " os.makedirs(dataset_path)\n", + " with open(dataset_path + file_name, 'wb') as f:\n", + " f.write(r.content)\n", + " return json.loads(r.content.decode('utf-8'))" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "we have 147 restaurants in our dataset, with 14700 total reviews\n" + ] + } + ], + "source": [ + "restaurant_data = fetch_data('factual_tripadvisor_restaurant_data_all_100_reviews.json')\n", + "\n", + "print(f\"we have {restaurant_data['restaurant_count']} restaurants in our dataset, with {restaurant_data['total_review_count']} total reviews\")\n", + "\n", + "restaurant_reviews = restaurant_data[\"restaurants\"] # ignore the count fields\n", + "\n", + "# drop some of the fields that we don't need\n", + "for restaurant in restaurant_reviews:\n", + " for field in ['region', 'country', 'tel', 'fax', 'email', 'website', 'address_extended', 'chain_name', 'trip_advisor_url']:\n", + " if field in restaurant:\n", + " restaurant.pop(field)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "from autogen_agentchat.agents import AssistantAgent\n", + "from autogen_agentchat.ui import Console\n", + "from autogen_core.memory import MemoryContent, MemoryMimeType\n", + "from autogen_ext.memory.redis import RedisMemory, RedisMemoryConfig\n", + "from autogen_ext.models.openai import OpenAIChatCompletionClient\n", + "from logging import WARNING, getLogger\n", + "\n", + "logger = getLogger()\n", + "logger.setLevel(WARNING)\n", + "\n", + "# initailize Redis memory\n", + "redis_memory = RedisMemory(\n", + " config=RedisMemoryConfig(\n", + " redis_url=\"redis://localhost:6379\",\n", + " index_name=\"restaurant_reviews\",\n", + " prefix=\"trip_advisor\",\n", + " )\n", + ")\n", + "\n", + "for restaurant in restaurant_reviews:\n", + " # add each review to our agent memory\n", + " # for brevity we'll take only the first 10 reviews per restaurant\n", + " for review in restaurant['reviews'][:10]:\n", + " try:\n", + " await redis_memory.add(\n", + " MemoryContent(\n", + " content= \" \".join([review.pop(\"review_title\"),\n", + " review.pop(\"review_text\"),\n", + " str({key: val for key, val in restaurant.items() if key != \"reviews\"})]),\n", + " mime_type=MemoryMimeType.TEXT,\n", + " metadata={},\n", + " )\n", + " )\n", + " except KeyError:\n", + " pass" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Create our agent and set it on a task" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "---------- TextMessage (user) ----------\n", + "Write an article reviewing the restaurants in the San Francisco bay area. Include a brief summary of the most popular restaurants based on the user reviews. Group them into categories based on their cuisine and price, and talk about the top rated restaurants in each category.\n", + "---------- MemoryQueryEvent (restaurant_review_agent) ----------\n", + "[MemoryContent(content=\"Good food, very busy Food is very good and good drinks. We booked table in advance which is recommended as the place is very busy.The service is attentive and prompt (almost too prompt). Not much time between the meals. The tables are very close, so not much privacy.We had a table located close to the door.. Every time someone entered or left the restaurant we felt the cold draft from outside. Since the restaurant is very busy it continued all the time, which was actually quite uncomfortable. The rating is based on the food. {'name': 'Colibri Mexican Bistro', 'address': '438 Geary St', 'locality': 'San Francisco', 'latitude': 37.787147, 'longitude': -122.410492, 'cuisine': ['Mexican', 'Bistro', 'Southwestern', 'Tapas', 'Ice Cream'], 'price': '2', 'rating': 4.0, 'hours': {'monday': [['11:30', '22:00']], 'tuesday': [['11:30', '22:00']], 'wednesday': [['11:30', '22:00']], 'thursday': [['11:30', '22:00']], 'friday': [['11:30', '23:00']], 'saturday': [['10:30', '23:00']], 'sunday': [['10:30', '22:00']]}, 'parking': True, 'parking_valet': False, 'parking_garage': True, 'parking_street': True, 'parking_lot': True, 'parking_validated': False, 'parking_free': True, 'smoking': False, 'accessible_wheelchair': True, 'wifi': False, 'meal_breakfast': True, 'meal_deliver': False, 'meal_dinner': True, 'meal_lunch': True, 'meal_takeout': True, 'meal_cater': True, 'options_healthy': True, 'options_organic': False, 'options_vegetarian': True, 'options_vegan': True, 'options_glutenfree': False, 'options_lowfat': False}\", mime_type=, metadata={}), MemoryContent(content='Good food, great theme poor service We chose this restaurant because we were staying at the Cartwright hotel which was a few doors down and you get 20% off if your staying there.The food was good: as you would expect better than average fast food which tasted fresh and homemade.The service was poor: we were ignored repeatedly and had to ask 3 times before our order was taken. When we came to leave the waitress on the till was chewing gum very authentically with her tonsils on show but I\\'m thinking that was not intentionally \\'on theme\\' nor was her unfriendly attitude.Descent food, available 24/7 worth a visit if your hungry and in the area {\\'name\\': \"Lori\\'s Diner\", \\'address\\': \\'900 N Point St\\', \\'locality\\': \\'San Francisco\\', \\'latitude\\': 37.805747, \\'longitude\\': -122.422483, \\'cuisine\\': [\\'Diner\\', \\'American\\', \\'Burgers\\', \\'Traditional\\', \\'Coffee\\'], \\'price\\': \\'2\\', \\'rating\\': 3.0, \\'hours\\': {\\'monday\\': [[\\'8:00\\', \\'21:00\\']], \\'tuesday\\': [[\\'8:00\\', \\'21:00\\']], \\'wednesday\\': [[\\'8:00\\', \\'21:00\\']], \\'thursday\\': [[\\'8:00\\', \\'21:00\\']], \\'friday\\': [[\\'8:00\\', \\'22:00\\']], \\'saturday\\': [[\\'8:00\\', \\'22:00\\']], \\'sunday\\': [[\\'8:00\\', \\'21:00\\']]}, \\'parking\\': True, \\'parking_valet\\': False, \\'parking_garage\\': True, \\'parking_street\\': True, \\'parking_lot\\': False, \\'parking_validated\\': False, \\'parking_free\\': False, \\'smoking\\': False, \\'accessible_wheelchair\\': True, \\'wifi\\': True, \\'meal_breakfast\\': True, \\'meal_deliver\\': False, \\'meal_dinner\\': True, \\'meal_lunch\\': True, \\'meal_takeout\\': True, \\'meal_cater\\': False, \\'options_healthy\\': True, \\'options_organic\\': False, \\'options_vegetarian\\': True, \\'options_vegan\\': False, \\'options_glutenfree\\': False, \\'options_lowfat\\': False}', mime_type=, metadata={}), MemoryContent(content='Good food, great theme poor service We chose this restaurant because we were staying at the Cartwright hotel which was a few doors down and you get 20% off if your staying there.The food was good: as you would expect better than average fast food which tasted fresh and homemade.The service was poor: we were ignored repeatedly and had to ask 3 times before our order was taken. When we came to leave the waitress on the till was chewing gum very authentically with her tonsils on show but I\\'m thinking that was not intentionally \\'on theme\\' nor was her unfriendly attitude.Descent food, available 24/7 worth a visit if your hungry and in the area {\\'name\\': \"Lori\\'s Diner\", \\'address\\': \\'500 Sutter St\\', \\'locality\\': \\'San Francisco\\', \\'latitude\\': 37.789249, \\'longitude\\': -122.408743, \\'cuisine\\': [\\'Diner\\', \\'American\\', \\'Burgers\\', \\'Coffee\\', \\'Traditional\\'], \\'price\\': \\'2\\', \\'rating\\': 4.0, \\'hours\\': {\\'monday\\': [[\\'18:30\\', \\'23:00\\']], \\'tuesday\\': [[\\'18:30\\', \\'23:00\\']], \\'wednesday\\': [[\\'18:30\\', \\'23:00\\']], \\'thursday\\': [[\\'18:30\\', \\'23:00\\']], \\'friday\\': [[\\'18:30\\', \\'23:59\\']], \\'saturday\\': [[\\'00:00\\', \\'3:00\\'], [\\'18:30\\', \\'23:59\\']], \\'sunday\\': [[\\'00:00\\', \\'3:00\\'], [\\'18:30\\', \\'23:00\\']]}, \\'parking\\': True, \\'parking_valet\\': False, \\'parking_garage\\': False, \\'parking_street\\': True, \\'parking_lot\\': False, \\'parking_validated\\': False, \\'parking_free\\': False, \\'smoking\\': False, \\'accessible_wheelchair\\': True, \\'wifi\\': True, \\'meal_breakfast\\': True, \\'meal_deliver\\': True, \\'meal_dinner\\': True, \\'meal_lunch\\': True, \\'meal_takeout\\': True, \\'meal_cater\\': False, \\'options_healthy\\': True, \\'options_organic\\': False, \\'options_vegetarian\\': True, \\'options_vegan\\': True, \\'options_glutenfree\\': False, \\'options_lowfat\\': False}', mime_type=, metadata={}), MemoryContent(content='Good food, great theme poor service We chose this restaurant because we were staying at the Cartwright hotel which was a few doors down and you get 20% off if your staying there.The food was good: as you would expect better than average fast food which tasted fresh and homemade.The service was poor: we were ignored repeatedly and had to ask 3 times before our order was taken. When we came to leave the waitress on the till was chewing gum very authentically with her tonsils on show but I\\'m thinking that was not intentionally \\'on theme\\' nor was her unfriendly attitude.Descent food, available 24/7 worth a visit if your hungry and in the area {\\'name\\': \"Lori\\'s Diner\", \\'address\\': \\'336 Mason St\\', \\'locality\\': \\'San Francisco\\', \\'latitude\\': 37.786826, \\'longitude\\': -122.409602, \\'cuisine\\': [\\'Diner\\', \\'American\\', \\'Burgers\\', \\'Traditional\\', \\'Coffee\\'], \\'price\\': \\'2\\', \\'rating\\': 3.0, \\'hours\\': {\\'monday\\': [[\\'00:00\\', \\'24:00\\']], \\'tuesday\\': [[\\'00:00\\', \\'24:00\\']], \\'wednesday\\': [[\\'00:00\\', \\'24:00\\']], \\'thursday\\': [[\\'00:00\\', \\'24:00\\']], \\'friday\\': [[\\'00:00\\', \\'24:00\\']], \\'saturday\\': [[\\'00:00\\', \\'24:00\\']], \\'sunday\\': [[\\'00:00\\', \\'24:00\\']]}, \\'parking\\': True, \\'parking_valet\\': False, \\'parking_garage\\': True, \\'parking_street\\': True, \\'parking_lot\\': False, \\'parking_validated\\': False, \\'parking_free\\': False, \\'smoking\\': False, \\'accessible_wheelchair\\': True, \\'wifi\\': False, \\'meal_breakfast\\': True, \\'meal_deliver\\': False, \\'meal_dinner\\': True, \\'meal_lunch\\': True, \\'meal_takeout\\': True, \\'meal_cater\\': False, \\'options_healthy\\': True, \\'options_organic\\': False, \\'options_vegetarian\\': True, \\'options_vegan\\': False, \\'options_glutenfree\\': False, \\'options_lowfat\\': False}', mime_type=, metadata={}), MemoryContent(content='Great view,service & food Had a great time at restaurant food and drinks were great.Was running late and Mario kept my reservation and Bill gave excellent service. The food was good expensive and ala carte.Are Bill was 160.00 for couple .The bread was hard and parking was garage only ,it was raining so this was ok.Great atmosphere. {\\'name\\': \"McCormick & Kuleto\\'s Seafood & Steaks\", \\'address\\': \\'900 N Point St\\', \\'locality\\': \\'San Francisco\\', \\'latitude\\': 37.805898, \\'longitude\\': -122.422545, \\'cuisine\\': [\\'Seafood\\', \\'Steak\\', \\'American\\', \\'Eclectic\\', \\'Kosher\\'], \\'price\\': \\'3\\', \\'rating\\': 4.0, \\'hours\\': {\\'monday\\': [[\\'11:30\\', \\'22:00\\']], \\'tuesday\\': [[\\'11:30\\', \\'22:00\\']], \\'wednesday\\': [[\\'11:30\\', \\'22:00\\']], \\'thursday\\': [[\\'11:30\\', \\'22:00\\']], \\'friday\\': [[\\'11:30\\', \\'23:00\\']], \\'saturday\\': [[\\'11:30\\', \\'23:00\\']], \\'sunday\\': [[\\'11:30\\', \\'22:00\\']]}, \\'parking\\': True, \\'parking_valet\\': True, \\'parking_garage\\': True, \\'parking_street\\': True, \\'parking_lot\\': True, \\'parking_validated\\': True, \\'parking_free\\': True, \\'smoking\\': False, \\'accessible_wheelchair\\': True, \\'wifi\\': False, \\'meal_breakfast\\': True, \\'meal_deliver\\': True, \\'meal_dinner\\': True, \\'meal_lunch\\': True, \\'meal_takeout\\': True, \\'meal_cater\\': True, \\'options_healthy\\': True, \\'options_organic\\': False, \\'options_vegetarian\\': True, \\'options_vegan\\': True, \\'options_glutenfree\\': False, \\'options_lowfat\\': False}', mime_type=, metadata={}), MemoryContent(content='Average food, great service Would give food 3.5/5 and service 5/5. Henry, our waiter, was great and very attentive. Food was only just warm however still good. Had an ice cream sundae to finish which did not disappoint. {\\'name\\': \"Lori\\'s Diner\", \\'address\\': \\'900 N Point St\\', \\'locality\\': \\'San Francisco\\', \\'latitude\\': 37.805747, \\'longitude\\': -122.422483, \\'cuisine\\': [\\'Diner\\', \\'American\\', \\'Burgers\\', \\'Traditional\\', \\'Coffee\\'], \\'price\\': \\'2\\', \\'rating\\': 3.0, \\'hours\\': {\\'monday\\': [[\\'8:00\\', \\'21:00\\']], \\'tuesday\\': [[\\'8:00\\', \\'21:00\\']], \\'wednesday\\': [[\\'8:00\\', \\'21:00\\']], \\'thursday\\': [[\\'8:00\\', \\'21:00\\']], \\'friday\\': [[\\'8:00\\', \\'22:00\\']], \\'saturday\\': [[\\'8:00\\', \\'22:00\\']], \\'sunday\\': [[\\'8:00\\', \\'21:00\\']]}, \\'parking\\': True, \\'parking_valet\\': False, \\'parking_garage\\': True, \\'parking_street\\': True, \\'parking_lot\\': False, \\'parking_validated\\': False, \\'parking_free\\': False, \\'smoking\\': False, \\'accessible_wheelchair\\': True, \\'wifi\\': True, \\'meal_breakfast\\': True, \\'meal_deliver\\': False, \\'meal_dinner\\': True, \\'meal_lunch\\': True, \\'meal_takeout\\': True, \\'meal_cater\\': False, \\'options_healthy\\': True, \\'options_organic\\': False, \\'options_vegetarian\\': True, \\'options_vegan\\': False, \\'options_glutenfree\\': False, \\'options_lowfat\\': False}', mime_type=, metadata={}), MemoryContent(content='Average food, great service Would give food 3.5/5 and service 5/5. Henry, our waiter, was great and very attentive. Food was only just warm however still good. Had an ice cream sundae to finish which did not disappoint. {\\'name\\': \"Lori\\'s Diner\", \\'address\\': \\'336 Mason St\\', \\'locality\\': \\'San Francisco\\', \\'latitude\\': 37.786826, \\'longitude\\': -122.409602, \\'cuisine\\': [\\'Diner\\', \\'American\\', \\'Burgers\\', \\'Traditional\\', \\'Coffee\\'], \\'price\\': \\'2\\', \\'rating\\': 3.0, \\'hours\\': {\\'monday\\': [[\\'00:00\\', \\'24:00\\']], \\'tuesday\\': [[\\'00:00\\', \\'24:00\\']], \\'wednesday\\': [[\\'00:00\\', \\'24:00\\']], \\'thursday\\': [[\\'00:00\\', \\'24:00\\']], \\'friday\\': [[\\'00:00\\', \\'24:00\\']], \\'saturday\\': [[\\'00:00\\', \\'24:00\\']], \\'sunday\\': [[\\'00:00\\', \\'24:00\\']]}, \\'parking\\': True, \\'parking_valet\\': False, \\'parking_garage\\': True, \\'parking_street\\': True, \\'parking_lot\\': False, \\'parking_validated\\': False, \\'parking_free\\': False, \\'smoking\\': False, \\'accessible_wheelchair\\': True, \\'wifi\\': False, \\'meal_breakfast\\': True, \\'meal_deliver\\': False, \\'meal_dinner\\': True, \\'meal_lunch\\': True, \\'meal_takeout\\': True, \\'meal_cater\\': False, \\'options_healthy\\': True, \\'options_organic\\': False, \\'options_vegetarian\\': True, \\'options_vegan\\': False, \\'options_glutenfree\\': False, \\'options_lowfat\\': False}', mime_type=, metadata={}), MemoryContent(content='Lunch with a view with friends, oh and a view To say the food is excellent would be an exaggeration but it\\'s really good. Under crispy French fries and over seasoned chowder. That\\'s the bad part over because the rest of our meal was just delightful. I have no major, negative criticism of the menu other than the fact that it seems enough of the fish on this pier built restaurant is not local but from Nantucket, Maine and other places. I know, you can\\'t get some stuff locally but it makes sense to use your local produce and it felt a little bit like trying to do everything rather than sustaining local business. No major issue but it would have been nice to see at the very least Californian produce. I\\'m being fussy. My meal was tasty and I enjoyed the crab parfait very much although hoped it would have been in pâté style rather than in the ice cream sundae style of \\'parfait\\'. My special dish of lobster risotto was excellent - creamy and on the over side of al dente. The view is to die for and the staff are very friendly and efficient. Really loved it here and will be back. {\\'name\\': \"Scoma\\'s Restaurant\", \\'address\\': \\'47 Pier\\', \\'locality\\': \\'San Francisco\\', \\'latitude\\': 37.808748, \\'longitude\\': -122.417981, \\'cuisine\\': [\\'Seafood\\', \\'Italian\\', \\'Chowder\\', \\'Steak\\', \\'American\\'], \\'price\\': \\'3\\', \\'rating\\': 4.0, \\'hours\\': {\\'monday\\': [[\\'11:30\\', \\'22:00\\']], \\'tuesday\\': [[\\'11:30\\', \\'22:00\\']], \\'wednesday\\': [[\\'11:30\\', \\'22:00\\']], \\'thursday\\': [[\\'11:30\\', \\'22:00\\']], \\'friday\\': [[\\'11:30\\', \\'22:30\\']], \\'saturday\\': [[\\'11:30\\', \\'22:30\\']], \\'sunday\\': [[\\'11:30\\', \\'22:00\\']]}, \\'parking\\': True, \\'parking_valet\\': True, \\'parking_garage\\': False, \\'parking_street\\': False, \\'parking_lot\\': False, \\'parking_validated\\': False, \\'parking_free\\': True, \\'smoking\\': False, \\'accessible_wheelchair\\': True, \\'wifi\\': False, \\'meal_breakfast\\': True, \\'meal_deliver\\': True, \\'meal_dinner\\': True, \\'meal_lunch\\': True, \\'meal_takeout\\': True, \\'meal_cater\\': False, \\'options_healthy\\': True, \\'options_organic\\': False, \\'options_vegetarian\\': True, \\'options_vegan\\': False, \\'options_glutenfree\\': True, \\'options_lowfat\\': False}', mime_type=, metadata={}), MemoryContent(content='Average food, great service Would give food 3.5/5 and service 5/5. Henry, our waiter, was great and very attentive. Food was only just warm however still good. Had an ice cream sundae to finish which did not disappoint. {\\'name\\': \"Lori\\'s Diner\", \\'address\\': \\'500 Sutter St\\', \\'locality\\': \\'San Francisco\\', \\'latitude\\': 37.789249, \\'longitude\\': -122.408743, \\'cuisine\\': [\\'Diner\\', \\'American\\', \\'Burgers\\', \\'Coffee\\', \\'Traditional\\'], \\'price\\': \\'2\\', \\'rating\\': 4.0, \\'hours\\': {\\'monday\\': [[\\'18:30\\', \\'23:00\\']], \\'tuesday\\': [[\\'18:30\\', \\'23:00\\']], \\'wednesday\\': [[\\'18:30\\', \\'23:00\\']], \\'thursday\\': [[\\'18:30\\', \\'23:00\\']], \\'friday\\': [[\\'18:30\\', \\'23:59\\']], \\'saturday\\': [[\\'00:00\\', \\'3:00\\'], [\\'18:30\\', \\'23:59\\']], \\'sunday\\': [[\\'00:00\\', \\'3:00\\'], [\\'18:30\\', \\'23:00\\']]}, \\'parking\\': True, \\'parking_valet\\': False, \\'parking_garage\\': False, \\'parking_street\\': True, \\'parking_lot\\': False, \\'parking_validated\\': False, \\'parking_free\\': False, \\'smoking\\': False, \\'accessible_wheelchair\\': True, \\'wifi\\': True, \\'meal_breakfast\\': True, \\'meal_deliver\\': True, \\'meal_dinner\\': True, \\'meal_lunch\\': True, \\'meal_takeout\\': True, \\'meal_cater\\': False, \\'options_healthy\\': True, \\'options_organic\\': False, \\'options_vegetarian\\': True, \\'options_vegan\\': True, \\'options_glutenfree\\': False, \\'options_lowfat\\': False}', mime_type=, metadata={}), MemoryContent(content=\"Great food. Ate breakfast and evening dinner at this restaurant. Both represented great value for money in what is quite an expensive city. A good choice of food and a great atmosphere. {'name': 'Sears Fine Food', 'address': '439 Powell St', 'locality': 'San Francisco', 'latitude': 37.788773, 'longitude': -122.40863, 'cuisine': ['American', 'Diner', 'Traditional', 'Coffee', 'Californian'], 'price': '2', 'rating': 4.0, 'hours': {'monday': [['6:30', '22:00']], 'tuesday': [['6:30', '22:00']], 'wednesday': [['6:30', '22:00']], 'thursday': [['6:30', '22:00']], 'friday': [['6:30', '22:00']], 'saturday': [['6:30', '22:00']], 'sunday': [['6:30', '22:00']]}, 'parking': True, 'parking_valet': False, 'parking_garage': False, 'parking_street': True, 'parking_lot': True, 'parking_validated': False, 'parking_free': False, 'smoking': False, 'accessible_wheelchair': True, 'wifi': True, 'meal_breakfast': True, 'meal_deliver': True, 'meal_dinner': True, 'meal_lunch': True, 'meal_takeout': True, 'meal_cater': False, 'options_healthy': True, 'options_organic': False, 'options_vegetarian': True, 'options_vegan': False, 'options_glutenfree': False, 'options_lowfat': True}\", mime_type=, metadata={})]\n", + "---------- ToolCallRequestEvent (restaurant_review_agent) ----------\n", + "[FunctionCall(id='call_qiKuu59aMG3sICgcBznOdjYu', arguments='{\"restaurant_name\": \"Colibri Mexican Bistro\", \"all_reviews\": [\"Good food, very busy Food is very good and good drinks. We booked table in advance which is recommended as the place is very busy.The service is attentive and prompt (almost too prompt). Not much time between the meals. The tables are very close, so not much privacy.We had a table located close to the door.. Every time someone entered or left the restaurant we felt the cold draft from outside. Since the restaurant is very busy it continued all the time, which was actually quite uncomfortable. The rating is based on the food.\"]}', name='summarize'), FunctionCall(id='call_yWbAFo2ASWc77QTruXLErzrS', arguments='{\"restaurant_name\": \"Lori\\'s Diner\", \"all_reviews\": [\"Good food, great theme poor service We chose this restaurant because we were staying at the Cartwright hotel which was a few doors down and you get 20% off if your staying there.The food was good: as you would expect better than average fast food which tasted fresh and homemade.The service was poor: we were ignored repeatedly and had to ask 3 times before our order was taken. When we came to leave the waitress on the till was chewing gum very authentically with her tonsils on show but I\\'m thinking that was not intentionally \\'on theme\\' nor was her unfriendly attitude.Descent food, available 24/7 worth a visit if your hungry and in the area\", \"Average food, great service Would give food 3.5/5 and service 5/5. Henry, our waiter, was great and very attentive. Food was only just warm however still good. Had an ice cream sundae to finish which did not disappoint.\"]}', name='summarize'), FunctionCall(id='call_LtPLsu3Tbk5gyYIvV5aVT8dp', arguments='{\"restaurant_name\": \"McCormick & Kuleto\\'s Seafood & Steaks\", \"all_reviews\": [\"Great view,service & food Had a great time at restaurant food and drinks were great.Was running late and Mario kept my reservation and Bill gave excellent service. The food was good expensive and ala carte.Are Bill was 160.00 for couple .The bread was hard and parking was garage only ,it was raining so this was ok.Great atmosphere.\"]}', name='summarize'), FunctionCall(id='call_9lnaWTz2oPnAgUfBEqQvZ4hD', arguments='{\"restaurant_name\": \"Scoma\\'s Restaurant\", \"all_reviews\": [\"Lunch with a view with friends, oh and a view To say the food is excellent would be an exaggeration but it\\'s really good. Under crispy French fries and over seasoned chowder. That\\'s the bad part over because the rest of our meal was just delightful. I have no major, negative criticism of the menu other than the fact that it seems enough of the fish on this pier built restaurant is not local but from Nantucket, Maine and other places. I know, you can\\'t get some stuff locally but it makes sense to use your local produce and it felt a little bit like trying to do everything rather than sustaining local business. No major issue but it would have been nice to see at the very least Californian produce. I\\'m being fussy. My meal was tasty and I enjoyed the crab parfait very much although hoped it would have been in pâté style rather than in the ice cream sundae style of \\'parfait\\'. My special dish of lobster risotto was excellent - creamy and on the over side of al dente. The view is to die for and the staff are very friendly and efficient. Really loved it here and will be back.\"]}', name='summarize'), FunctionCall(id='call_sZ95iYo0GEWO3UFfE4po5gdO', arguments='{\"restaurant_name\": \"Sears Fine Food\", \"all_reviews\": [\"Great food. Ate breakfast and evening dinner at this restaurant. Both represented great value for money in what is quite an expensive city. A good choice of food and a great atmosphere.\"]}', name='summarize')]\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Device set to use mps:0\n", + "Your max_length is set to 1024, but your input_length is only 111. Since this is a summarization task, where outputs shorter than the input are typically wanted, you might consider decreasing max_length manually, e.g. summarizer('...', max_length=55)\n", + "Device set to use mps:0\n", + "Your max_length is set to 1024, but your input_length is only 193. Since this is a summarization task, where outputs shorter than the input are typically wanted, you might consider decreasing max_length manually, e.g. summarizer('...', max_length=96)\n", + "Device set to use mps:0\n", + "Your max_length is set to 1024, but your input_length is only 77. Since this is a summarization task, where outputs shorter than the input are typically wanted, you might consider decreasing max_length manually, e.g. summarizer('...', max_length=38)\n", + "Device set to use mps:0\n", + "Your max_length is set to 1024, but your input_length is only 242. Since this is a summarization task, where outputs shorter than the input are typically wanted, you might consider decreasing max_length manually, e.g. summarizer('...', max_length=121)\n", + "Device set to use mps:0\n", + "Your max_length is set to 1024, but your input_length is only 39. Since this is a summarization task, where outputs shorter than the input are typically wanted, you might consider decreasing max_length manually, e.g. summarizer('...', max_length=19)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "---------- ToolCallExecutionEvent (restaurant_review_agent) ----------\n", + "[FunctionExecutionResult(content=\"Colibri Mexican Bistro: Service is attentive and prompt (almost too prompt). Not much time between the meals. The tables are very close, so not much privacy. We had a table located close to the door. Every time someone entered or left the restaurant we felt the cold draft from outside. Since the restaurant is very busy it continued all the time, which was actually quite uncomfortable. Good food, very busy. Food is very good and good drinks. We booked table in advance which is recommended as the place isvery busy. The rating is based on the food. The restaurant is located in the heart of London's West End. It is open from 7am to 10pm.\", name='summarize', call_id='call_qiKuu59aMG3sICgcBznOdjYu', is_error=False), FunctionExecutionResult(content=\"Lori's Diner: The food was good: as you would expect better than average fast food which tasted fresh and homemade. The service was poor: we were ignored repeatedly and had to ask 3 times before our order was taken. When we came to leave the waitress on the till was chewing gum very authentically with her tonsils on show but I'm thinking that was not intentionally 'on theme' nor was her unfriendly attitude. Henry, our waiter, was great and very attentive. Food was only just warm however still good. Had an ice cream sundae to finish which did not disappoint. Would give food 3.5/5 and service 5/5.\", name='summarize', call_id='call_yWbAFo2ASWc77QTruXLErzrS', is_error=False), FunctionExecutionResult(content='McCormick & Kuleto\\'s Seafood & Steaks: Great view,service & food Had a great time at restaurant food and drinks were great. Was running late and Mario kept my reservation and Bill gave excellent service. The food was good expensive and ala carte. Are Bill was 160.00 for couple .The bread was hard and parking was garage only ,it was raining so this was ok.Great atmosphere. Great view, service &\" food. Had agreat time at restaurants food and drink were great, Mario kept his reservation andBill gaveExcellent service. Were Bill was160.000 for couple and the bread washard and parking is garage only. It was raining but this was OK.', name='summarize', call_id='call_LtPLsu3Tbk5gyYIvV5aVT8dp', is_error=False), FunctionExecutionResult(content=\"Scoma's Restaurant: Lunch with a view with friends, oh and a view. To say the food is excellent would be an exaggeration but it's really good. My special dish of lobster risotto was excellent - creamy and on the over side of al dente. The view is to die for and the staff are very friendly and efficient. Really loved it here and will be back. I have no major, negative criticism of the menu other than the fact that it seems enough of the fish on this pier built restaurant is not local but from Nantucket, Maine and other places. No major issue but it would have been nice to see at the very least Californian produce. I'm being fussy.\", name='summarize', call_id='call_9lnaWTz2oPnAgUfBEqQvZ4hD', is_error=False), FunctionExecutionResult(content='Sears Fine Food: Ate breakfast and evening dinner at this restaurant. Both represented great value for money in what is quite an expensive city. A good choice of food and a great atmosphere. Great food. Great service. Great atmosphere. great food. great service. good food. good service. Good service. excellent atmosphere. excellent food. excellent service.great service. fantastic atmosphere.great food.good service.good food.Great service.Great atmosphere.Great food. Ate breakfast, dinner and lunch at the restaurant. It was a great place to eat. A great place for dinner and a good place to hang out. The food was great. The service was good.', name='summarize', call_id='call_sZ95iYo0GEWO3UFfE4po5gdO', is_error=False)]\n", + "---------- TextMessage (restaurant_review_agent) ----------\n", + "### Culinary Adventures in the San Francisco Bay Area: A Comprehensive Guide\n", + "\n", + "The San Francisco Bay Area is a haven for food enthusiasts, offering a dynamic and vibrant culinary scene. In this article, we take you on a journey through some of the most popular restaurants in the area, gathering insights from user reviews. Categorized by cuisine and price, here's a look at the top-rated jewels that promise to delight every type of palate.\n", + "\n", + "#### Mexican and Bistro Delight: Colibri Mexican Bistro\n", + "**Location**: 438 Geary St, San Francisco \n", + "**Price**: $$ \n", + "**Summary**: Colibri Mexican Bistro stands out for its vibrant atmosphere and top-notch food. The service is praised for being attentive and quick, although the pace might be a tad brisk between meals. A highlight is its delectable cocktails, and while reservations are advisable due to its bustling nature, the proximity of tables might feel a little cramped. Despite a draft near the entrance, Colibri excels in delivering quality Mexican cuisine that is worth the slight discomfort.\n", + "\n", + "#### Traditional American Classics: Lori’s Diner\n", + "**Location**: Multiple locations including 900 N Point St and 500 Sutter St, San Francisco \n", + "**Price**: $$ \n", + "**Summary**: As a quintessential 24/7 diner, Lori's Diner embodies the classic American dining experience, featuring fresh, homemade fast food and a delightfully themed environment. Customers find a mixed bag in terms of service—while some staff impress with attentiveness, others fall short, leading to some wait frustrations. Overall, it's a place worth visiting for its lively ambiance and nostalgic American fare.\n", + "\n", + "#### Upscale Seafood and Steaks: McCormick & Kuleto's Seafood & Steaks\n", + "**Location**: 900 N Point St, San Francisco \n", + "**Price**: $$$ \n", + "**Summary**: With a reputation for stunning waterfront views and splendid service, McCormick & Kuleto’s is a haven for seafood and steak lovers. Despite its high ticket prices, the exquisite service provided by staff such as Mario makes dining a memorable experience. Small drawbacks like the hardness of the bread and less-than-ideal parking conditions can be overlooked in light of the overall ambiance and quality palate they offer.\n", + "\n", + "#### Seafood with an Italian Touch: Scoma’s Restaurant\n", + "**Location**: 47 Pier, San Francisco \n", + "**Price**: $$$ \n", + "**Summary**: Nestled conveniently on the pier, Scoma's Restaurant combines great food with an unbeatable view. Patrons rave about dishes like the lobster risotto and delightful crab parfait. The restaurant tries to embrace locally-sourced ingredients, though some believe there's room for improvement. Despite this, the remarkable view and friendly, competent staff make Scoma's a joyous go-to for both locals and visitors.\n", + "\n", + "#### Quintessential Californian Experience: Sears Fine Food\n", + "**Location**: 439 Powell St, San Francisco \n", + "**Price**: $$ \n", + "**Summary**: An embodiment of Californian dining, Sears Fine Food offers a diverse menu in an inviting atmosphere. Renowned for its solid breakfast and dinner options, it is revered for delivering excellent value for money. From morning delights to a nourishing dinner spread, Sears provides an all-around satisfactory experience in one of the country's most expensive cities.\n", + "\n", + "### Conclusion\n", + "The San Francisco Bay Area's restaurant landscape is as diverse as it is delightful. From authentic Mexican to intricately seasoned seafood, there seems to be a place for everyone, whether you're looking for traditional comfort or an elevated dining affair. These top-rated spots exemplify the region’s culinary prowess, inviting both locals and tourists to savor a meal worth remembering.\n" + ] + }, + { + "data": { + "text/plain": [ + "TaskResult(messages=[TextMessage(id='679fc2fa-89b1-4f75-92ec-c45b354ef1e9', source='user', models_usage=None, metadata={}, created_at=datetime.datetime(2025, 8, 1, 18, 49, 54, 550970, tzinfo=datetime.timezone.utc), content='Write an article reviewing the restaurants in the San Francisco bay area. Include a brief summary of the most popular restaurants based on the user reviews. Group them into categories based on their cuisine and price, and talk about the top rated restaurants in each category.', type='TextMessage'), MemoryQueryEvent(id='596b3ee5-d5c0-4740-81e8-2c6855e14458', source='restaurant_review_agent', models_usage=None, metadata={}, created_at=datetime.datetime(2025, 8, 1, 18, 49, 54, 660417, tzinfo=datetime.timezone.utc), content=[MemoryContent(content=\"Good food, very busy Food is very good and good drinks. We booked table in advance which is recommended as the place is very busy.The service is attentive and prompt (almost too prompt). Not much time between the meals. The tables are very close, so not much privacy.We had a table located close to the door.. Every time someone entered or left the restaurant we felt the cold draft from outside. Since the restaurant is very busy it continued all the time, which was actually quite uncomfortable. The rating is based on the food. {'name': 'Colibri Mexican Bistro', 'address': '438 Geary St', 'locality': 'San Francisco', 'latitude': 37.787147, 'longitude': -122.410492, 'cuisine': ['Mexican', 'Bistro', 'Southwestern', 'Tapas', 'Ice Cream'], 'price': '2', 'rating': 4.0, 'hours': {'monday': [['11:30', '22:00']], 'tuesday': [['11:30', '22:00']], 'wednesday': [['11:30', '22:00']], 'thursday': [['11:30', '22:00']], 'friday': [['11:30', '23:00']], 'saturday': [['10:30', '23:00']], 'sunday': [['10:30', '22:00']]}, 'parking': True, 'parking_valet': False, 'parking_garage': True, 'parking_street': True, 'parking_lot': True, 'parking_validated': False, 'parking_free': True, 'smoking': False, 'accessible_wheelchair': True, 'wifi': False, 'meal_breakfast': True, 'meal_deliver': False, 'meal_dinner': True, 'meal_lunch': True, 'meal_takeout': True, 'meal_cater': True, 'options_healthy': True, 'options_organic': False, 'options_vegetarian': True, 'options_vegan': True, 'options_glutenfree': False, 'options_lowfat': False}\", mime_type=, metadata={}), MemoryContent(content='Good food, great theme poor service We chose this restaurant because we were staying at the Cartwright hotel which was a few doors down and you get 20% off if your staying there.The food was good: as you would expect better than average fast food which tasted fresh and homemade.The service was poor: we were ignored repeatedly and had to ask 3 times before our order was taken. When we came to leave the waitress on the till was chewing gum very authentically with her tonsils on show but I\\'m thinking that was not intentionally \\'on theme\\' nor was her unfriendly attitude.Descent food, available 24/7 worth a visit if your hungry and in the area {\\'name\\': \"Lori\\'s Diner\", \\'address\\': \\'900 N Point St\\', \\'locality\\': \\'San Francisco\\', \\'latitude\\': 37.805747, \\'longitude\\': -122.422483, \\'cuisine\\': [\\'Diner\\', \\'American\\', \\'Burgers\\', \\'Traditional\\', \\'Coffee\\'], \\'price\\': \\'2\\', \\'rating\\': 3.0, \\'hours\\': {\\'monday\\': [[\\'8:00\\', \\'21:00\\']], \\'tuesday\\': [[\\'8:00\\', \\'21:00\\']], \\'wednesday\\': [[\\'8:00\\', \\'21:00\\']], \\'thursday\\': [[\\'8:00\\', \\'21:00\\']], \\'friday\\': [[\\'8:00\\', \\'22:00\\']], \\'saturday\\': [[\\'8:00\\', \\'22:00\\']], \\'sunday\\': [[\\'8:00\\', \\'21:00\\']]}, \\'parking\\': True, \\'parking_valet\\': False, \\'parking_garage\\': True, \\'parking_street\\': True, \\'parking_lot\\': False, \\'parking_validated\\': False, \\'parking_free\\': False, \\'smoking\\': False, \\'accessible_wheelchair\\': True, \\'wifi\\': True, \\'meal_breakfast\\': True, \\'meal_deliver\\': False, \\'meal_dinner\\': True, \\'meal_lunch\\': True, \\'meal_takeout\\': True, \\'meal_cater\\': False, \\'options_healthy\\': True, \\'options_organic\\': False, \\'options_vegetarian\\': True, \\'options_vegan\\': False, \\'options_glutenfree\\': False, \\'options_lowfat\\': False}', mime_type=, metadata={}), MemoryContent(content='Good food, great theme poor service We chose this restaurant because we were staying at the Cartwright hotel which was a few doors down and you get 20% off if your staying there.The food was good: as you would expect better than average fast food which tasted fresh and homemade.The service was poor: we were ignored repeatedly and had to ask 3 times before our order was taken. When we came to leave the waitress on the till was chewing gum very authentically with her tonsils on show but I\\'m thinking that was not intentionally \\'on theme\\' nor was her unfriendly attitude.Descent food, available 24/7 worth a visit if your hungry and in the area {\\'name\\': \"Lori\\'s Diner\", \\'address\\': \\'500 Sutter St\\', \\'locality\\': \\'San Francisco\\', \\'latitude\\': 37.789249, \\'longitude\\': -122.408743, \\'cuisine\\': [\\'Diner\\', \\'American\\', \\'Burgers\\', \\'Coffee\\', \\'Traditional\\'], \\'price\\': \\'2\\', \\'rating\\': 4.0, \\'hours\\': {\\'monday\\': [[\\'18:30\\', \\'23:00\\']], \\'tuesday\\': [[\\'18:30\\', \\'23:00\\']], \\'wednesday\\': [[\\'18:30\\', \\'23:00\\']], \\'thursday\\': [[\\'18:30\\', \\'23:00\\']], \\'friday\\': [[\\'18:30\\', \\'23:59\\']], \\'saturday\\': [[\\'00:00\\', \\'3:00\\'], [\\'18:30\\', \\'23:59\\']], \\'sunday\\': [[\\'00:00\\', \\'3:00\\'], [\\'18:30\\', \\'23:00\\']]}, \\'parking\\': True, \\'parking_valet\\': False, \\'parking_garage\\': False, \\'parking_street\\': True, \\'parking_lot\\': False, \\'parking_validated\\': False, \\'parking_free\\': False, \\'smoking\\': False, \\'accessible_wheelchair\\': True, \\'wifi\\': True, \\'meal_breakfast\\': True, \\'meal_deliver\\': True, \\'meal_dinner\\': True, \\'meal_lunch\\': True, \\'meal_takeout\\': True, \\'meal_cater\\': False, \\'options_healthy\\': True, \\'options_organic\\': False, \\'options_vegetarian\\': True, \\'options_vegan\\': True, \\'options_glutenfree\\': False, \\'options_lowfat\\': False}', mime_type=, metadata={}), MemoryContent(content='Good food, great theme poor service We chose this restaurant because we were staying at the Cartwright hotel which was a few doors down and you get 20% off if your staying there.The food was good: as you would expect better than average fast food which tasted fresh and homemade.The service was poor: we were ignored repeatedly and had to ask 3 times before our order was taken. When we came to leave the waitress on the till was chewing gum very authentically with her tonsils on show but I\\'m thinking that was not intentionally \\'on theme\\' nor was her unfriendly attitude.Descent food, available 24/7 worth a visit if your hungry and in the area {\\'name\\': \"Lori\\'s Diner\", \\'address\\': \\'336 Mason St\\', \\'locality\\': \\'San Francisco\\', \\'latitude\\': 37.786826, \\'longitude\\': -122.409602, \\'cuisine\\': [\\'Diner\\', \\'American\\', \\'Burgers\\', \\'Traditional\\', \\'Coffee\\'], \\'price\\': \\'2\\', \\'rating\\': 3.0, \\'hours\\': {\\'monday\\': [[\\'00:00\\', \\'24:00\\']], \\'tuesday\\': [[\\'00:00\\', \\'24:00\\']], \\'wednesday\\': [[\\'00:00\\', \\'24:00\\']], \\'thursday\\': [[\\'00:00\\', \\'24:00\\']], \\'friday\\': [[\\'00:00\\', \\'24:00\\']], \\'saturday\\': [[\\'00:00\\', \\'24:00\\']], \\'sunday\\': [[\\'00:00\\', \\'24:00\\']]}, \\'parking\\': True, \\'parking_valet\\': False, \\'parking_garage\\': True, \\'parking_street\\': True, \\'parking_lot\\': False, \\'parking_validated\\': False, \\'parking_free\\': False, \\'smoking\\': False, \\'accessible_wheelchair\\': True, \\'wifi\\': False, \\'meal_breakfast\\': True, \\'meal_deliver\\': False, \\'meal_dinner\\': True, \\'meal_lunch\\': True, \\'meal_takeout\\': True, \\'meal_cater\\': False, \\'options_healthy\\': True, \\'options_organic\\': False, \\'options_vegetarian\\': True, \\'options_vegan\\': False, \\'options_glutenfree\\': False, \\'options_lowfat\\': False}', mime_type=, metadata={}), MemoryContent(content='Great view,service & food Had a great time at restaurant food and drinks were great.Was running late and Mario kept my reservation and Bill gave excellent service. The food was good expensive and ala carte.Are Bill was 160.00 for couple .The bread was hard and parking was garage only ,it was raining so this was ok.Great atmosphere. {\\'name\\': \"McCormick & Kuleto\\'s Seafood & Steaks\", \\'address\\': \\'900 N Point St\\', \\'locality\\': \\'San Francisco\\', \\'latitude\\': 37.805898, \\'longitude\\': -122.422545, \\'cuisine\\': [\\'Seafood\\', \\'Steak\\', \\'American\\', \\'Eclectic\\', \\'Kosher\\'], \\'price\\': \\'3\\', \\'rating\\': 4.0, \\'hours\\': {\\'monday\\': [[\\'11:30\\', \\'22:00\\']], \\'tuesday\\': [[\\'11:30\\', \\'22:00\\']], \\'wednesday\\': [[\\'11:30\\', \\'22:00\\']], \\'thursday\\': [[\\'11:30\\', \\'22:00\\']], \\'friday\\': [[\\'11:30\\', \\'23:00\\']], \\'saturday\\': [[\\'11:30\\', \\'23:00\\']], \\'sunday\\': [[\\'11:30\\', \\'22:00\\']]}, \\'parking\\': True, \\'parking_valet\\': True, \\'parking_garage\\': True, \\'parking_street\\': True, \\'parking_lot\\': True, \\'parking_validated\\': True, \\'parking_free\\': True, \\'smoking\\': False, \\'accessible_wheelchair\\': True, \\'wifi\\': False, \\'meal_breakfast\\': True, \\'meal_deliver\\': True, \\'meal_dinner\\': True, \\'meal_lunch\\': True, \\'meal_takeout\\': True, \\'meal_cater\\': True, \\'options_healthy\\': True, \\'options_organic\\': False, \\'options_vegetarian\\': True, \\'options_vegan\\': True, \\'options_glutenfree\\': False, \\'options_lowfat\\': False}', mime_type=, metadata={}), MemoryContent(content='Average food, great service Would give food 3.5/5 and service 5/5. Henry, our waiter, was great and very attentive. Food was only just warm however still good. Had an ice cream sundae to finish which did not disappoint. {\\'name\\': \"Lori\\'s Diner\", \\'address\\': \\'900 N Point St\\', \\'locality\\': \\'San Francisco\\', \\'latitude\\': 37.805747, \\'longitude\\': -122.422483, \\'cuisine\\': [\\'Diner\\', \\'American\\', \\'Burgers\\', \\'Traditional\\', \\'Coffee\\'], \\'price\\': \\'2\\', \\'rating\\': 3.0, \\'hours\\': {\\'monday\\': [[\\'8:00\\', \\'21:00\\']], \\'tuesday\\': [[\\'8:00\\', \\'21:00\\']], \\'wednesday\\': [[\\'8:00\\', \\'21:00\\']], \\'thursday\\': [[\\'8:00\\', \\'21:00\\']], \\'friday\\': [[\\'8:00\\', \\'22:00\\']], \\'saturday\\': [[\\'8:00\\', \\'22:00\\']], \\'sunday\\': [[\\'8:00\\', \\'21:00\\']]}, \\'parking\\': True, \\'parking_valet\\': False, \\'parking_garage\\': True, \\'parking_street\\': True, \\'parking_lot\\': False, \\'parking_validated\\': False, \\'parking_free\\': False, \\'smoking\\': False, \\'accessible_wheelchair\\': True, \\'wifi\\': True, \\'meal_breakfast\\': True, \\'meal_deliver\\': False, \\'meal_dinner\\': True, \\'meal_lunch\\': True, \\'meal_takeout\\': True, \\'meal_cater\\': False, \\'options_healthy\\': True, \\'options_organic\\': False, \\'options_vegetarian\\': True, \\'options_vegan\\': False, \\'options_glutenfree\\': False, \\'options_lowfat\\': False}', mime_type=, metadata={}), MemoryContent(content='Average food, great service Would give food 3.5/5 and service 5/5. Henry, our waiter, was great and very attentive. Food was only just warm however still good. Had an ice cream sundae to finish which did not disappoint. {\\'name\\': \"Lori\\'s Diner\", \\'address\\': \\'336 Mason St\\', \\'locality\\': \\'San Francisco\\', \\'latitude\\': 37.786826, \\'longitude\\': -122.409602, \\'cuisine\\': [\\'Diner\\', \\'American\\', \\'Burgers\\', \\'Traditional\\', \\'Coffee\\'], \\'price\\': \\'2\\', \\'rating\\': 3.0, \\'hours\\': {\\'monday\\': [[\\'00:00\\', \\'24:00\\']], \\'tuesday\\': [[\\'00:00\\', \\'24:00\\']], \\'wednesday\\': [[\\'00:00\\', \\'24:00\\']], \\'thursday\\': [[\\'00:00\\', \\'24:00\\']], \\'friday\\': [[\\'00:00\\', \\'24:00\\']], \\'saturday\\': [[\\'00:00\\', \\'24:00\\']], \\'sunday\\': [[\\'00:00\\', \\'24:00\\']]}, \\'parking\\': True, \\'parking_valet\\': False, \\'parking_garage\\': True, \\'parking_street\\': True, \\'parking_lot\\': False, \\'parking_validated\\': False, \\'parking_free\\': False, \\'smoking\\': False, \\'accessible_wheelchair\\': True, \\'wifi\\': False, \\'meal_breakfast\\': True, \\'meal_deliver\\': False, \\'meal_dinner\\': True, \\'meal_lunch\\': True, \\'meal_takeout\\': True, \\'meal_cater\\': False, \\'options_healthy\\': True, \\'options_organic\\': False, \\'options_vegetarian\\': True, \\'options_vegan\\': False, \\'options_glutenfree\\': False, \\'options_lowfat\\': False}', mime_type=, metadata={}), MemoryContent(content='Lunch with a view with friends, oh and a view To say the food is excellent would be an exaggeration but it\\'s really good. Under crispy French fries and over seasoned chowder. That\\'s the bad part over because the rest of our meal was just delightful. I have no major, negative criticism of the menu other than the fact that it seems enough of the fish on this pier built restaurant is not local but from Nantucket, Maine and other places. I know, you can\\'t get some stuff locally but it makes sense to use your local produce and it felt a little bit like trying to do everything rather than sustaining local business. No major issue but it would have been nice to see at the very least Californian produce. I\\'m being fussy. My meal was tasty and I enjoyed the crab parfait very much although hoped it would have been in pâté style rather than in the ice cream sundae style of \\'parfait\\'. My special dish of lobster risotto was excellent - creamy and on the over side of al dente. The view is to die for and the staff are very friendly and efficient. Really loved it here and will be back. {\\'name\\': \"Scoma\\'s Restaurant\", \\'address\\': \\'47 Pier\\', \\'locality\\': \\'San Francisco\\', \\'latitude\\': 37.808748, \\'longitude\\': -122.417981, \\'cuisine\\': [\\'Seafood\\', \\'Italian\\', \\'Chowder\\', \\'Steak\\', \\'American\\'], \\'price\\': \\'3\\', \\'rating\\': 4.0, \\'hours\\': {\\'monday\\': [[\\'11:30\\', \\'22:00\\']], \\'tuesday\\': [[\\'11:30\\', \\'22:00\\']], \\'wednesday\\': [[\\'11:30\\', \\'22:00\\']], \\'thursday\\': [[\\'11:30\\', \\'22:00\\']], \\'friday\\': [[\\'11:30\\', \\'22:30\\']], \\'saturday\\': [[\\'11:30\\', \\'22:30\\']], \\'sunday\\': [[\\'11:30\\', \\'22:00\\']]}, \\'parking\\': True, \\'parking_valet\\': True, \\'parking_garage\\': False, \\'parking_street\\': False, \\'parking_lot\\': False, \\'parking_validated\\': False, \\'parking_free\\': True, \\'smoking\\': False, \\'accessible_wheelchair\\': True, \\'wifi\\': False, \\'meal_breakfast\\': True, \\'meal_deliver\\': True, \\'meal_dinner\\': True, \\'meal_lunch\\': True, \\'meal_takeout\\': True, \\'meal_cater\\': False, \\'options_healthy\\': True, \\'options_organic\\': False, \\'options_vegetarian\\': True, \\'options_vegan\\': False, \\'options_glutenfree\\': True, \\'options_lowfat\\': False}', mime_type=, metadata={}), MemoryContent(content='Average food, great service Would give food 3.5/5 and service 5/5. Henry, our waiter, was great and very attentive. Food was only just warm however still good. Had an ice cream sundae to finish which did not disappoint. {\\'name\\': \"Lori\\'s Diner\", \\'address\\': \\'500 Sutter St\\', \\'locality\\': \\'San Francisco\\', \\'latitude\\': 37.789249, \\'longitude\\': -122.408743, \\'cuisine\\': [\\'Diner\\', \\'American\\', \\'Burgers\\', \\'Coffee\\', \\'Traditional\\'], \\'price\\': \\'2\\', \\'rating\\': 4.0, \\'hours\\': {\\'monday\\': [[\\'18:30\\', \\'23:00\\']], \\'tuesday\\': [[\\'18:30\\', \\'23:00\\']], \\'wednesday\\': [[\\'18:30\\', \\'23:00\\']], \\'thursday\\': [[\\'18:30\\', \\'23:00\\']], \\'friday\\': [[\\'18:30\\', \\'23:59\\']], \\'saturday\\': [[\\'00:00\\', \\'3:00\\'], [\\'18:30\\', \\'23:59\\']], \\'sunday\\': [[\\'00:00\\', \\'3:00\\'], [\\'18:30\\', \\'23:00\\']]}, \\'parking\\': True, \\'parking_valet\\': False, \\'parking_garage\\': False, \\'parking_street\\': True, \\'parking_lot\\': False, \\'parking_validated\\': False, \\'parking_free\\': False, \\'smoking\\': False, \\'accessible_wheelchair\\': True, \\'wifi\\': True, \\'meal_breakfast\\': True, \\'meal_deliver\\': True, \\'meal_dinner\\': True, \\'meal_lunch\\': True, \\'meal_takeout\\': True, \\'meal_cater\\': False, \\'options_healthy\\': True, \\'options_organic\\': False, \\'options_vegetarian\\': True, \\'options_vegan\\': True, \\'options_glutenfree\\': False, \\'options_lowfat\\': False}', mime_type=, metadata={}), MemoryContent(content=\"Great food. Ate breakfast and evening dinner at this restaurant. Both represented great value for money in what is quite an expensive city. A good choice of food and a great atmosphere. {'name': 'Sears Fine Food', 'address': '439 Powell St', 'locality': 'San Francisco', 'latitude': 37.788773, 'longitude': -122.40863, 'cuisine': ['American', 'Diner', 'Traditional', 'Coffee', 'Californian'], 'price': '2', 'rating': 4.0, 'hours': {'monday': [['6:30', '22:00']], 'tuesday': [['6:30', '22:00']], 'wednesday': [['6:30', '22:00']], 'thursday': [['6:30', '22:00']], 'friday': [['6:30', '22:00']], 'saturday': [['6:30', '22:00']], 'sunday': [['6:30', '22:00']]}, 'parking': True, 'parking_valet': False, 'parking_garage': False, 'parking_street': True, 'parking_lot': True, 'parking_validated': False, 'parking_free': False, 'smoking': False, 'accessible_wheelchair': True, 'wifi': True, 'meal_breakfast': True, 'meal_deliver': True, 'meal_dinner': True, 'meal_lunch': True, 'meal_takeout': True, 'meal_cater': False, 'options_healthy': True, 'options_organic': False, 'options_vegetarian': True, 'options_vegan': False, 'options_glutenfree': False, 'options_lowfat': True}\", mime_type=, metadata={})], type='MemoryQueryEvent'), ToolCallRequestEvent(id='34733e09-25e2-4129-b310-d974e392cf67', source='restaurant_review_agent', models_usage=RequestUsage(prompt_tokens=4681, completion_tokens=783), metadata={}, created_at=datetime.datetime(2025, 8, 1, 18, 50, 4, 448634, tzinfo=datetime.timezone.utc), content=[FunctionCall(id='call_qiKuu59aMG3sICgcBznOdjYu', arguments='{\"restaurant_name\": \"Colibri Mexican Bistro\", \"all_reviews\": [\"Good food, very busy Food is very good and good drinks. We booked table in advance which is recommended as the place is very busy.The service is attentive and prompt (almost too prompt). Not much time between the meals. The tables are very close, so not much privacy.We had a table located close to the door.. Every time someone entered or left the restaurant we felt the cold draft from outside. Since the restaurant is very busy it continued all the time, which was actually quite uncomfortable. The rating is based on the food.\"]}', name='summarize'), FunctionCall(id='call_yWbAFo2ASWc77QTruXLErzrS', arguments='{\"restaurant_name\": \"Lori\\'s Diner\", \"all_reviews\": [\"Good food, great theme poor service We chose this restaurant because we were staying at the Cartwright hotel which was a few doors down and you get 20% off if your staying there.The food was good: as you would expect better than average fast food which tasted fresh and homemade.The service was poor: we were ignored repeatedly and had to ask 3 times before our order was taken. When we came to leave the waitress on the till was chewing gum very authentically with her tonsils on show but I\\'m thinking that was not intentionally \\'on theme\\' nor was her unfriendly attitude.Descent food, available 24/7 worth a visit if your hungry and in the area\", \"Average food, great service Would give food 3.5/5 and service 5/5. Henry, our waiter, was great and very attentive. Food was only just warm however still good. Had an ice cream sundae to finish which did not disappoint.\"]}', name='summarize'), FunctionCall(id='call_LtPLsu3Tbk5gyYIvV5aVT8dp', arguments='{\"restaurant_name\": \"McCormick & Kuleto\\'s Seafood & Steaks\", \"all_reviews\": [\"Great view,service & food Had a great time at restaurant food and drinks were great.Was running late and Mario kept my reservation and Bill gave excellent service. The food was good expensive and ala carte.Are Bill was 160.00 for couple .The bread was hard and parking was garage only ,it was raining so this was ok.Great atmosphere.\"]}', name='summarize'), FunctionCall(id='call_9lnaWTz2oPnAgUfBEqQvZ4hD', arguments='{\"restaurant_name\": \"Scoma\\'s Restaurant\", \"all_reviews\": [\"Lunch with a view with friends, oh and a view To say the food is excellent would be an exaggeration but it\\'s really good. Under crispy French fries and over seasoned chowder. That\\'s the bad part over because the rest of our meal was just delightful. I have no major, negative criticism of the menu other than the fact that it seems enough of the fish on this pier built restaurant is not local but from Nantucket, Maine and other places. I know, you can\\'t get some stuff locally but it makes sense to use your local produce and it felt a little bit like trying to do everything rather than sustaining local business. No major issue but it would have been nice to see at the very least Californian produce. I\\'m being fussy. My meal was tasty and I enjoyed the crab parfait very much although hoped it would have been in pâté style rather than in the ice cream sundae style of \\'parfait\\'. My special dish of lobster risotto was excellent - creamy and on the over side of al dente. The view is to die for and the staff are very friendly and efficient. Really loved it here and will be back.\"]}', name='summarize'), FunctionCall(id='call_sZ95iYo0GEWO3UFfE4po5gdO', arguments='{\"restaurant_name\": \"Sears Fine Food\", \"all_reviews\": [\"Great food. Ate breakfast and evening dinner at this restaurant. Both represented great value for money in what is quite an expensive city. A good choice of food and a great atmosphere.\"]}', name='summarize')], type='ToolCallRequestEvent'), ToolCallExecutionEvent(id='772cfe30-2ff1-447a-8ba3-ff2f7c20e795', source='restaurant_review_agent', models_usage=None, metadata={}, created_at=datetime.datetime(2025, 8, 1, 18, 50, 41, 878146, tzinfo=datetime.timezone.utc), content=[FunctionExecutionResult(content=\"Colibri Mexican Bistro: Service is attentive and prompt (almost too prompt). Not much time between the meals. The tables are very close, so not much privacy. We had a table located close to the door. Every time someone entered or left the restaurant we felt the cold draft from outside. Since the restaurant is very busy it continued all the time, which was actually quite uncomfortable. Good food, very busy. Food is very good and good drinks. We booked table in advance which is recommended as the place isvery busy. The rating is based on the food. The restaurant is located in the heart of London's West End. It is open from 7am to 10pm.\", name='summarize', call_id='call_qiKuu59aMG3sICgcBznOdjYu', is_error=False), FunctionExecutionResult(content=\"Lori's Diner: The food was good: as you would expect better than average fast food which tasted fresh and homemade. The service was poor: we were ignored repeatedly and had to ask 3 times before our order was taken. When we came to leave the waitress on the till was chewing gum very authentically with her tonsils on show but I'm thinking that was not intentionally 'on theme' nor was her unfriendly attitude. Henry, our waiter, was great and very attentive. Food was only just warm however still good. Had an ice cream sundae to finish which did not disappoint. Would give food 3.5/5 and service 5/5.\", name='summarize', call_id='call_yWbAFo2ASWc77QTruXLErzrS', is_error=False), FunctionExecutionResult(content='McCormick & Kuleto\\'s Seafood & Steaks: Great view,service & food Had a great time at restaurant food and drinks were great. Was running late and Mario kept my reservation and Bill gave excellent service. The food was good expensive and ala carte. Are Bill was 160.00 for couple .The bread was hard and parking was garage only ,it was raining so this was ok.Great atmosphere. Great view, service &\" food. Had agreat time at restaurants food and drink were great, Mario kept his reservation andBill gaveExcellent service. Were Bill was160.000 for couple and the bread washard and parking is garage only. It was raining but this was OK.', name='summarize', call_id='call_LtPLsu3Tbk5gyYIvV5aVT8dp', is_error=False), FunctionExecutionResult(content=\"Scoma's Restaurant: Lunch with a view with friends, oh and a view. To say the food is excellent would be an exaggeration but it's really good. My special dish of lobster risotto was excellent - creamy and on the over side of al dente. The view is to die for and the staff are very friendly and efficient. Really loved it here and will be back. I have no major, negative criticism of the menu other than the fact that it seems enough of the fish on this pier built restaurant is not local but from Nantucket, Maine and other places. No major issue but it would have been nice to see at the very least Californian produce. I'm being fussy.\", name='summarize', call_id='call_9lnaWTz2oPnAgUfBEqQvZ4hD', is_error=False), FunctionExecutionResult(content='Sears Fine Food: Ate breakfast and evening dinner at this restaurant. Both represented great value for money in what is quite an expensive city. A good choice of food and a great atmosphere. Great food. Great service. Great atmosphere. great food. great service. good food. good service. Good service. excellent atmosphere. excellent food. excellent service.great service. fantastic atmosphere.great food.good service.good food.Great service.Great atmosphere.Great food. Ate breakfast, dinner and lunch at the restaurant. It was a great place to eat. A great place for dinner and a good place to hang out. The food was great. The service was good.', name='summarize', call_id='call_sZ95iYo0GEWO3UFfE4po5gdO', is_error=False)], type='ToolCallExecutionEvent'), TextMessage(id='a0d5617d-13c5-45c9-91d7-40714f864395', source='restaurant_review_agent', models_usage=RequestUsage(prompt_tokens=6176, completion_tokens=728), metadata={}, created_at=datetime.datetime(2025, 8, 1, 18, 51, 1, 291470, tzinfo=datetime.timezone.utc), content=\"### Culinary Adventures in the San Francisco Bay Area: A Comprehensive Guide\\n\\nThe San Francisco Bay Area is a haven for food enthusiasts, offering a dynamic and vibrant culinary scene. In this article, we take you on a journey through some of the most popular restaurants in the area, gathering insights from user reviews. Categorized by cuisine and price, here's a look at the top-rated jewels that promise to delight every type of palate.\\n\\n#### Mexican and Bistro Delight: Colibri Mexican Bistro\\n**Location**: 438 Geary St, San Francisco \\n**Price**: $$ \\n**Summary**: Colibri Mexican Bistro stands out for its vibrant atmosphere and top-notch food. The service is praised for being attentive and quick, although the pace might be a tad brisk between meals. A highlight is its delectable cocktails, and while reservations are advisable due to its bustling nature, the proximity of tables might feel a little cramped. Despite a draft near the entrance, Colibri excels in delivering quality Mexican cuisine that is worth the slight discomfort.\\n\\n#### Traditional American Classics: Lori’s Diner\\n**Location**: Multiple locations including 900 N Point St and 500 Sutter St, San Francisco \\n**Price**: $$ \\n**Summary**: As a quintessential 24/7 diner, Lori's Diner embodies the classic American dining experience, featuring fresh, homemade fast food and a delightfully themed environment. Customers find a mixed bag in terms of service—while some staff impress with attentiveness, others fall short, leading to some wait frustrations. Overall, it's a place worth visiting for its lively ambiance and nostalgic American fare.\\n\\n#### Upscale Seafood and Steaks: McCormick & Kuleto's Seafood & Steaks\\n**Location**: 900 N Point St, San Francisco \\n**Price**: $$$ \\n**Summary**: With a reputation for stunning waterfront views and splendid service, McCormick & Kuleto’s is a haven for seafood and steak lovers. Despite its high ticket prices, the exquisite service provided by staff such as Mario makes dining a memorable experience. Small drawbacks like the hardness of the bread and less-than-ideal parking conditions can be overlooked in light of the overall ambiance and quality palate they offer.\\n\\n#### Seafood with an Italian Touch: Scoma’s Restaurant\\n**Location**: 47 Pier, San Francisco \\n**Price**: $$$ \\n**Summary**: Nestled conveniently on the pier, Scoma's Restaurant combines great food with an unbeatable view. Patrons rave about dishes like the lobster risotto and delightful crab parfait. The restaurant tries to embrace locally-sourced ingredients, though some believe there's room for improvement. Despite this, the remarkable view and friendly, competent staff make Scoma's a joyous go-to for both locals and visitors.\\n\\n#### Quintessential Californian Experience: Sears Fine Food\\n**Location**: 439 Powell St, San Francisco \\n**Price**: $$ \\n**Summary**: An embodiment of Californian dining, Sears Fine Food offers a diverse menu in an inviting atmosphere. Renowned for its solid breakfast and dinner options, it is revered for delivering excellent value for money. From morning delights to a nourishing dinner spread, Sears provides an all-around satisfactory experience in one of the country's most expensive cities.\\n\\n### Conclusion\\nThe San Francisco Bay Area's restaurant landscape is as diverse as it is delightful. From authentic Mexican to intricately seasoned seafood, there seems to be a place for everyone, whether you're looking for traditional comfort or an elevated dining affair. These top-rated spots exemplify the region’s culinary prowess, inviting both locals and tourists to savor a meal worth remembering.\", type='TextMessage')], stop_reason=None)" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "model_client = OpenAIChatCompletionClient(\n", + " model=\"gpt-4o\",\n", + ")\n", + "\n", + "# Create assistant agent with ChromaDB memory\n", + "review_agent = AssistantAgent(\n", + " name=\"restaurant_review_agent\",\n", + " system_message=\"you are an experienced writer and food critic. \",\n", + " model_client=model_client,\n", + " tools=[summarize , get_keywords, publish_article],\n", + " memory=[redis_memory],\n", + " max_tool_iterations=5,\n", + ")\n", + "\n", + "writing_task = \"Write an article reviewing the restaurants in the San Francisco bay area. \\\n", + " Include a brief summary of the most popular restaurants based on the user reviews. \\\n", + " Group them into categories based on their cuisine and price, and talk about the \\\n", + " top rated restaurants in each category.\"\n", + "\n", + "stream = review_agent.run_stream(task=writing_task)\n", + "await Console(stream)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "That's a lot of output from our agent, and it can be hard to parse through all of it.\n", + "\n", + "Take a moment to scan the main points and you'll see the agent takes in the user's task as a `TextMessage`, then proceeds to perform a series of `ToolCallRequestEvent`, `ToolCallExecutionEvent`, `ThoughtEvent`, and `MemoryQuery` actions. The input and output of each of these is printed.\n", + "\n", + "There's no need for us to read it closely as we'll have the final article written to an external file cleanly when we're - or rather our agent - is finished." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Follow up tasks\n", + "Our agent doesn't have to be a one-and-done worker. We can ask it to continue toward our overall goal of having a well viewed food critic article.\n", + "\n", + "You've probably noticed the agent's output is somewhat messy. That's ok as our final article will be written cleanly to a markdown file." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "---------- TextMessage (user) ----------\n", + "Now analyze your article and tell me the key search terms it is likely to rank highly for.\n", + "---------- TextMessage (user) ----------\n", + "Using your analysis suggest changes to the original article to improve keyword ranking.\n", + "---------- TextMessage (user) ----------\n", + "Based on your suggestions, edit and modify your article to improve SEO keyword ranking. Give a new list of top keywords\n", + "---------- TextMessage (user) ----------\n", + "When it is ready, publish the article by saving it to a markdown file.\n", + "---------- ToolCallRequestEvent (restaurant_review_agent) ----------\n", + "[FunctionCall(id='call_rABbThm3fmTWqiYGw0F3LZYR', arguments='{\"full_text\":\"Culinary Adventures in the San Francisco Bay Area: A Comprehensive Guide\\\\n\\\\nThe San Francisco Bay Area is a haven for food enthusiasts, offering a dynamic and vibrant culinary scene. In this article, we take you on a journey through some of the most popular restaurants in the area, gathering insights from user reviews. Categorized by cuisine and price, here\\'s a look at the top-rated jewels that promise to delight every type of palate.\\\\n\\\\nMexican and Bistro Delight: Colibri Mexican Bistro\\\\nLocation: 438 Geary St, San Francisco\\\\nPrice: $$\\\\nSummary: Colibri Mexican Bistro stands out for its vibrant atmosphere and top-notch food. The service is praised for being attentive and quick, although the pace might be a tad brisk between meals. A highlight is its delectable cocktails, and while reservations are advisable due to its bustling nature, the proximity of tables might feel a little cramped. Despite a draft near the entrance, Colibri excels in delivering quality Mexican cuisine that is worth the slight discomfort.\\\\n\\\\nTraditional American Classics: Lori’s Diner\\\\nLocation: Multiple locations including 900 N Point St and 500 Sutter St, San Francisco\\\\nPrice: $$\\\\nSummary: As a quintessential 24/7 diner, Lori\\'s Diner embodies the classic American dining experience, featuring fresh, homemade fast food and a delightfully themed environment. Customers find a mixed bag in terms of service—while some staff impress with attentiveness, others fall short, leading to some wait frustrations. Overall, it\\'s a place worth visiting for its lively ambiance and nostalgic American fare.\\\\n\\\\nUpscale Seafood and Steaks: McCormick & Kuleto\\'s Seafood & Steaks\\\\nLocation: 900 N Point St, San Francisco\\\\nPrice: $$$\\\\nSummary: With a reputation for stunning waterfront views and splendid service, McCormick & Kuleto’s is a haven for seafood and steak lovers. Despite its high ticket prices, the exquisite service provided by staff such as Mario makes dining a memorable experience. Small drawbacks like the hardness of the bread and less-than-ideal parking conditions can be overlooked in light of the overall ambiance and quality palate they offer.\\\\n\\\\nSeafood with an Italian Touch: Scoma’s Restaurant\\\\nLocation: 47 Pier, San Francisco\\\\nPrice: $$$\\\\nSummary: Nestled conveniently on the pier, Scoma\\'s Restaurant combines great food with an unbeatable view. Patrons rave about dishes like the lobster risotto and delightful crab parfait. The restaurant tries to embrace locally-sourced ingredients, though some believe there\\'s room for improvement. Despite this, the remarkable view and friendly, competent staff make Scoma\\'s a joyous go-to for both locals and visitors.\\\\n\\\\nQuintessential Californian Experience: Sears Fine Food\\\\nLocation: 439 Powell St, San Francisco\\\\nPrice: $$\\\\nSummary: An embodiment of Californian dining, Sears Fine Food offers a diverse menu in an inviting atmosphere. Renowned for its solid breakfast and dinner options, it is revered for delivering excellent value for money. From morning delights to a nourishing dinner spread, Sears provides an all-around satisfactory experience in one of the country\\'s most expensive cities.\\\\n\\\\nConclusion\\\\nThe San Francisco Bay Area\\'s restaurant landscape is as diverse as it is delightful. From authentic Mexican to intricately seasoned seafood, there seems to be a place for everyone, whether you\\'re looking for traditional comfort or an elevated dining affair. These top-rated spots exemplify the region’s culinary prowess, inviting both locals and tourists to savor a meal worth remembering.\"}', name='get_keywords')]\n", + "---------- ToolCallExecutionEvent (restaurant_review_agent) ----------\n", + "[FunctionExecutionResult(content=\"['san', 'francisco', 'food', 'price', 'mexican', 'location', 'st', 'summary', 'seafood', 'area']\", name='get_keywords', call_id='call_rABbThm3fmTWqiYGw0F3LZYR', is_error=False)]\n", + "---------- ThoughtEvent (restaurant_review_agent) ----------\n", + "### Key Search Terms\n", + "The key search terms from the original article were: \"San,\" \"Francisco,\" \"food,\" \"price,\" \"Mexican,\" \"location,\" \"St,\" \"summary,\" \"seafood,\" and \"area.\"\n", + "\n", + "### Suggestions to Improve Keyword Ranking\n", + "1. **Focus on Specific Keywords**: To improve SEO, we should focus more on long-tail keywords such as \"restaurants in San Francisco,\" \"best Mexican food in San Francisco,\" and \"seafood restaurants with a view.\"\n", + "\n", + "2. **Enhance Geographic References**: Include more geographic identifiers like neighborhoods or districts within San Francisco.\n", + "\n", + "3. **Highlight Popular Dishes and Unique Selling Points**: Emphasize specific dishes that stand out in reviews, like \"lobster risotto\" or \"locally-sourced seafood,\" to attract niche searches.\n", + "\n", + "4. **Increase Frequency of Key Terms**: Reiterate key phrases like \"San Francisco dining,\" \"culinary scene in the Bay Area,\" and \"top-rated restaurants\" to enhance relevance for those search terms.\n", + "\n", + "### Revised Article for Improved SEO\n", + "\n", + "---\n", + "\n", + "## Culinary Adventures and Top-Rated Restaurants in the San Francisco Bay Area\n", + "\n", + "The **San Francisco Bay Area** is a premier destination for food lovers, featuring a vibrant and diverse **dining scene** that attracts locals and tourists alike. This guide explores top-rated restaurants in San Francisco, segmented by cuisine and price, based on extensive user reviews. From authentic **Mexican food** to upscale **seafood restaurants** with stunning **bay views**, there's something for every discerning palate.\n", + "\n", + "### Discover Unique Mexican Flavors at Colibri Mexican Bistro\n", + "**Location**: 438 Geary St, San Francisco \n", + "**Price**: $$ \n", + "**Summary**: Enjoy a vibrant **Mexican dining** experience at Colibri Mexican Bistro with its lively atmosphere and acclaimed Mexican cuisine. Known for its quick, attentive service, delectable cocktails, and charming ambiance, this spot is ideal for both locals and visitors looking to dive into authentic Mexican flavors in downtown San Francisco.\n", + "\n", + "### Experience Classic American Dining at Lori’s Diner\n", + "**Location**: Multiple Addresses in San Francisco (900 N Point St, 500 Sutter St) \n", + "**Price**: $$ \n", + "**Summary**: Lori's Diner offers a taste of traditional **American food** in an iconic 24/7 setting. With freshly made fast food and a nostalgic atmosphere, it’s a charming spot for visitors seeking the essence of classic American flavors. Though service may vary, the diner’s thematic décor and accessible locations make it a must-visit.\n", + "\n", + "### Elegant Dining at McCormick & Kuleto's Seafood & Steaks\n", + "**Location**: 900 N Point St, San Francisco \n", + "**Price**: $$$ \n", + "**Summary**: Overlooking the beautiful bay, McCormick & Kuleto’s serves as a sanctuary for **seafood and steak** aficionados. Despite its upscale **dining prices**, patrons appreciate its excellent service and memorable dining experiences. Known for a diverse menu inspired by both **local seafood** and classic steak dishes, this restaurant is a testament to fine dining in San Francisco.\n", + "\n", + "### Savor Delightful Seafood at Scoma’s Restaurant\n", + "**Location**: 47 Pier, San Francisco \n", + "**Price**: $$$ \n", + "**Summary**: Located on the scenic San Francisco pier, Scoma's Restaurant combines exquisite dishes with an unbeatable view. It's praised for specialties like lobster risotto and crab parfait, complementing its commitment to local seafood sourcing. With friendly staff and a breathtaking backdrop, Scoma’s offers an immersive **seafood dining** experience.\n", + "\n", + "### Iconic Californian Fare at Sears Fine Food\n", + "**Location**: 439 Powell St, San Francisco \n", + "**Price**: $$ \n", + "**Summary**: Sears Fine Food blends the best of **Californian dining** with a classic twist, offering a curated menu of breakfast and dinner delights. Noted for delivering value and a welcoming atmosphere, Sears is a favorite for those looking to experience authentic Californian flavors in a relaxed setting within the bustling city.\n", + "\n", + "### Conclusion\n", + "From the bustling vibrancy of Mexican eateries to the elegant charm of seafood restaurants on the bay, the San Francisco Bay Area's restaurant scene is rich and varied. These top spots represent the area’s culinary excellence, providing dining experiences that cater to every occasion and preference. Whether seeking traditional fare or innovative dishes, San Francisco's eateries promise culinary adventures that are simply unforgettable.\n", + "\n", + "---\n", + "\n", + "### New List of Top Keywords\n", + "- Restaurants in San Francisco\n", + "- Mexican food in San Francisco\n", + "- Seafood restaurants with a view San Francisco\n", + "- Dining in San Francisco Bay Area\n", + "- San Francisco dining scene\n", + "- Top-rated restaurants in San Francisco\n", + "- Fine dining in San Francisco\n", + "\n", + "Let's publish the revised article to a markdown file.\n", + "---------- ToolCallRequestEvent (restaurant_review_agent) ----------\n", + "[FunctionCall(id='call_hNYw1jUc72s3ce1fe6W8WnYP', arguments='{\"final_draft\":\"## Culinary Adventures and Top-Rated Restaurants in the San Francisco Bay Area\\\\n\\\\nThe **San Francisco Bay Area** is a premier destination for food lovers, featuring a vibrant and diverse **dining scene** that attracts locals and tourists alike. This guide explores top-rated restaurants in San Francisco, segmented by cuisine and price, based on extensive user reviews. From authentic **Mexican food** to upscale **seafood restaurants** with stunning **bay views**, there\\'s something for every discerning palate.\\\\n\\\\n### Discover Unique Mexican Flavors at Colibri Mexican Bistro\\\\n**Location**: 438 Geary St, San Francisco \\\\n**Price**: $$ \\\\n**Summary**: Enjoy a vibrant **Mexican dining** experience at Colibri Mexican Bistro with its lively atmosphere and acclaimed Mexican cuisine. Known for its quick, attentive service, delectable cocktails, and charming ambiance, this spot is ideal for both locals and visitors looking to dive into authentic Mexican flavors in downtown San Francisco.\\\\n\\\\n### Experience Classic American Dining at Lori’s Diner\\\\n**Location**: Multiple Addresses in San Francisco (900 N Point St, 500 Sutter St) \\\\n**Price**: $$ \\\\n**Summary**: Lori\\'s Diner offers a taste of traditional **American food** in an iconic 24/7 setting. With freshly made fast food and a nostalgic atmosphere, it’s a charming spot for visitors seeking the essence of classic American flavors. Though service may vary, the diner’s thematic décor and accessible locations make it a must-visit.\\\\n\\\\n### Elegant Dining at McCormick & Kuleto\\'s Seafood & Steaks\\\\n**Location**: 900 N Point St, San Francisco \\\\n**Price**: $$$ \\\\n**Summary**: Overlooking the beautiful bay, McCormick & Kuleto’s serves as a sanctuary for **seafood and steak** aficionados. Despite its upscale **dining prices**, patrons appreciate its excellent service and memorable dining experiences. Known for a diverse menu inspired by both **local seafood** and classic steak dishes, this restaurant is a testament to fine dining in San Francisco.\\\\n\\\\n### Savor Delightful Seafood at Scoma’s Restaurant\\\\n**Location**: 47 Pier, San Francisco \\\\n**Price**: $$$ \\\\n**Summary**: Located on the scenic San Francisco pier, Scoma\\'s Restaurant combines exquisite dishes with an unbeatable view. It\\'s praised for specialties like lobster risotto and crab parfait, complementing its commitment to local seafood sourcing. With friendly staff and a breathtaking backdrop, Scoma’s offers an immersive **seafood dining** experience.\\\\n\\\\n### Iconic Californian Fare at Sears Fine Food\\\\n**Location**: 439 Powell St, San Francisco \\\\n**Price**: $$ \\\\n**Summary**: Sears Fine Food blends the best of **Californian dining** with a classic twist, offering a curated menu of breakfast and dinner delights. Noted for delivering value and a welcoming atmosphere, Sears is a favorite for those looking to experience authentic Californian flavors in a relaxed setting within the bustling city.\\\\n\\\\n### Conclusion\\\\nFrom the bustling vibrancy of Mexican eateries to the elegant charm of seafood restaurants on the bay, the San Francisco Bay Area\\'s restaurant scene is rich and varied. These top spots represent the area’s culinary excellence, providing dining experiences that cater to every occasion and preference. Whether seeking traditional fare or innovative dishes, San Francisco\\'s eateries promise culinary adventures that are simply unforgettable.\\\\n\",\"file_name\":\"San_Francisco_Restaurant_Guide.md\"}', name='publish_article')]\n", + "---------- ToolCallExecutionEvent (restaurant_review_agent) ----------\n", + "[FunctionExecutionResult(content=\"name '__file__' is not defined\", name='publish_article', call_id='call_hNYw1jUc72s3ce1fe6W8WnYP', is_error=True)]\n", + "---------- ThoughtEvent (restaurant_review_agent) ----------\n", + "It seems there was an error while trying to publish the article to a markdown file. Let me try that again.\n", + "---------- ToolCallRequestEvent (restaurant_review_agent) ----------\n", + "[FunctionCall(id='call_2nvpXpN13RtgqO3Q0TVFxxqT', arguments='{\"final_draft\":\"## Culinary Adventures and Top-Rated Restaurants in the San Francisco Bay Area\\\\n\\\\nThe **San Francisco Bay Area** is a premier destination for food lovers, featuring a vibrant and diverse **dining scene** that attracts locals and tourists alike. This guide explores top-rated restaurants in San Francisco, segmented by cuisine and price, based on extensive user reviews. From authentic **Mexican food** to upscale **seafood restaurants** with stunning **bay views**, there\\'s something for every discerning palate.\\\\n\\\\n### Discover Unique Mexican Flavors at Colibri Mexican Bistro\\\\n**Location**: 438 Geary St, San Francisco \\\\n**Price**: $$ \\\\n**Summary**: Enjoy a vibrant **Mexican dining** experience at Colibri Mexican Bistro with its lively atmosphere and acclaimed Mexican cuisine. Known for its quick, attentive service, delectable cocktails, and charming ambiance, this spot is ideal for both locals and visitors looking to dive into authentic Mexican flavors in downtown San Francisco.\\\\n\\\\n### Experience Classic American Dining at Lori’s Diner\\\\n**Location**: Multiple Addresses in San Francisco (900 N Point St, 500 Sutter St) \\\\n**Price**: $$ \\\\n**Summary**: Lori\\'s Diner offers a taste of traditional **American food** in an iconic 24/7 setting. With freshly made fast food and a nostalgic atmosphere, it’s a charming spot for visitors seeking the essence of classic American flavors. Though service may vary, the diner’s thematic décor and accessible locations make it a must-visit.\\\\n\\\\n### Elegant Dining at McCormick & Kuleto\\'s Seafood & Steaks\\\\n**Location**: 900 N Point St, San Francisco \\\\n**Price**: $$$ \\\\n**Summary**: Overlooking the beautiful bay, McCormick & Kuleto’s serves as a sanctuary for **seafood and steak** aficionados. Despite its upscale **dining prices**, patrons appreciate its excellent service and memorable dining experiences. Known for a diverse menu inspired by both **local seafood** and classic steak dishes, this restaurant is a testament to fine dining in San Francisco.\\\\n\\\\n### Savor Delightful Seafood at Scoma’s Restaurant\\\\n**Location**: 47 Pier, San Francisco \\\\n**Price**: $$$ \\\\n**Summary**: Located on the scenic San Francisco pier, Scoma\\'s Restaurant combines exquisite dishes with an unbeatable view. It\\'s praised for specialties like lobster risotto and crab parfait, complementing its commitment to local seafood sourcing. With friendly staff and a breathtaking backdrop, Scoma’s offers an immersive **seafood dining** experience.\\\\n\\\\n### Iconic Californian Fare at Sears Fine Food\\\\n**Location**: 439 Powell St, San Francisco \\\\n**Price**: $$ \\\\n**Summary**: Sears Fine Food blends the best of **Californian dining** with a classic twist, offering a curated menu of breakfast and dinner delights. Noted for delivering value and a welcoming atmosphere, Sears is a favorite for those looking to experience authentic Californian flavors in a relaxed setting within the bustling city.\\\\n\\\\n### Conclusion\\\\nFrom the bustling vibrancy of Mexican eateries to the elegant charm of seafood restaurants on the bay, the San Francisco Bay Area\\'s restaurant scene is rich and varied. These top spots represent the area’s culinary excellence, providing dining experiences that cater to every occasion and preference. Whether seeking traditional fare or innovative dishes, San Francisco\\'s eateries promise culinary adventures that are simply unforgettable.\\\\n\",\"file_name\":\"San_Francisco_Restaurant_Guide.md\"}', name='publish_article')]\n", + "---------- ToolCallExecutionEvent (restaurant_review_agent) ----------\n", + "[FunctionExecutionResult(content=\"name '__file__' is not defined\", name='publish_article', call_id='call_2nvpXpN13RtgqO3Q0TVFxxqT', is_error=True)]\n", + "---------- TextMessage (restaurant_review_agent) ----------\n", + "I apologize for the issue in publishing the article. It seems there's an issue with the execution environment. However, you can easily copy the revised article and paste it into a markdown file on your local machine. Simply create a new file named `San_Francisco_Restaurant_Guide.md` and paste the content below:\n", + "\n", + "```\n", + "## Culinary Adventures and Top-Rated Restaurants in the San Francisco Bay Area\n", + "\n", + "The **San Francisco Bay Area** is a premier destination for food lovers, featuring a vibrant and diverse **dining scene** that attracts locals and tourists alike. This guide explores top-rated restaurants in San Francisco, segmented by cuisine and price, based on extensive user reviews. From authentic **Mexican food** to upscale **seafood restaurants** with stunning **bay views**, there's something for every discerning palate.\n", + "\n", + "### Discover Unique Mexican Flavors at Colibri Mexican Bistro\n", + "**Location**: 438 Geary St, San Francisco \n", + "**Price**: $$ \n", + "**Summary**: Enjoy a vibrant **Mexican dining** experience at Colibri Mexican Bistro with its lively atmosphere and acclaimed Mexican cuisine. Known for its quick, attentive service, delectable cocktails, and charming ambiance, this spot is ideal for both locals and visitors looking to dive into authentic Mexican flavors in downtown San Francisco.\n", + "\n", + "### Experience Classic American Dining at Lori’s Diner\n", + "**Location**: Multiple Addresses in San Francisco (900 N Point St, 500 Sutter St) \n", + "**Price**: $$ \n", + "**Summary**: Lori's Diner offers a taste of traditional **American food** in an iconic 24/7 setting. With freshly made fast food and a nostalgic atmosphere, it’s a charming spot for visitors seeking the essence of classic American flavors. Though service may vary, the diner’s thematic décor and accessible locations make it a must-visit.\n", + "\n", + "### Elegant Dining at McCormick & Kuleto's Seafood & Steaks\n", + "**Location**: 900 N Point St, San Francisco \n", + "**Price**: $$$ \n", + "**Summary**: Overlooking the beautiful bay, McCormick & Kuleto’s serves as a sanctuary for **seafood and steak** aficionados. Despite its upscale **dining prices**, patrons appreciate its excellent service and memorable dining experiences. Known for a diverse menu inspired by both **local seafood** and classic steak dishes, this restaurant is a testament to fine dining in San Francisco.\n", + "\n", + "### Savor Delightful Seafood at Scoma’s Restaurant\n", + "**Location**: 47 Pier, San Francisco \n", + "**Price**: $$$ \n", + "**Summary**: Located on the scenic San Francisco pier, Scoma's Restaurant combines exquisite dishes with an unbeatable view. It's praised for specialties like lobster risotto and crab parfait, complementing its commitment to local seafood sourcing. With friendly staff and a breathtaking backdrop, Scoma’s offers an immersive **seafood dining** experience.\n", + "\n", + "### Iconic Californian Fare at Sears Fine Food\n", + "**Location**: 439 Powell St, San Francisco \n", + "**Price**: $$ \n", + "**Summary**: Sears Fine Food blends the best of **Californian dining** with a classic twist, offering a curated menu of breakfast and dinner delights. Noted for delivering value and a welcoming atmosphere, Sears is a favorite for those looking to experience authentic Californian flavors in a relaxed setting within the bustling city.\n", + "\n", + "### Conclusion\n", + "From the bustling vibrancy of Mexican eateries to the elegant charm of seafood restaurants on the bay, the San Francisco Bay Area's restaurant scene is rich and varied. These top spots represent the area’s culinary excellence, providing dining experiences that cater to every occasion and preference. Whether seeking traditional fare or innovative dishes, San Francisco's eateries promise culinary adventures that are simply unforgettable.\n", + "```\n", + "\n", + "This retains the structure and the new emphasis on SEO keywords for optimal search ranking.\n" + ] + }, + { + "data": { + "text/plain": [ + "TaskResult(messages=[TextMessage(id='e5bd757a-e3f2-494e-bb47-a966802d956f', source='user', models_usage=None, metadata={}, created_at=datetime.datetime(2025, 8, 1, 18, 51, 1, 302724, tzinfo=datetime.timezone.utc), content='Now analyze your article and tell me the key search terms it is likely to rank highly for.', type='TextMessage'), TextMessage(id='ad745802-6c0e-47e2-979d-715f8f1af217', source='user', models_usage=None, metadata={}, created_at=datetime.datetime(2025, 8, 1, 18, 51, 1, 302800, tzinfo=datetime.timezone.utc), content='Using your analysis suggest changes to the original article to improve keyword ranking.', type='TextMessage'), TextMessage(id='dbe6f357-22b0-4eb5-a075-8bb12078e4cd', source='user', models_usage=None, metadata={}, created_at=datetime.datetime(2025, 8, 1, 18, 51, 1, 302810, tzinfo=datetime.timezone.utc), content='Based on your suggestions, edit and modify your article to improve SEO keyword ranking. Give a new list of top keywords', type='TextMessage'), TextMessage(id='77311972-ffbc-4cb7-8213-c46be2c9666e', source='user', models_usage=None, metadata={}, created_at=datetime.datetime(2025, 8, 1, 18, 51, 1, 302818, tzinfo=datetime.timezone.utc), content='When it is ready, publish the article by saving it to a markdown file.', type='TextMessage'), ToolCallRequestEvent(id='c32abf09-2f86-48e7-a05a-b0c2725e7a38', source='restaurant_review_agent', models_usage=RequestUsage(prompt_tokens=7003, completion_tokens=727), metadata={}, created_at=datetime.datetime(2025, 8, 1, 18, 51, 11, 906820, tzinfo=datetime.timezone.utc), content=[FunctionCall(id='call_rABbThm3fmTWqiYGw0F3LZYR', arguments='{\"full_text\":\"Culinary Adventures in the San Francisco Bay Area: A Comprehensive Guide\\\\n\\\\nThe San Francisco Bay Area is a haven for food enthusiasts, offering a dynamic and vibrant culinary scene. In this article, we take you on a journey through some of the most popular restaurants in the area, gathering insights from user reviews. Categorized by cuisine and price, here\\'s a look at the top-rated jewels that promise to delight every type of palate.\\\\n\\\\nMexican and Bistro Delight: Colibri Mexican Bistro\\\\nLocation: 438 Geary St, San Francisco\\\\nPrice: $$\\\\nSummary: Colibri Mexican Bistro stands out for its vibrant atmosphere and top-notch food. The service is praised for being attentive and quick, although the pace might be a tad brisk between meals. A highlight is its delectable cocktails, and while reservations are advisable due to its bustling nature, the proximity of tables might feel a little cramped. Despite a draft near the entrance, Colibri excels in delivering quality Mexican cuisine that is worth the slight discomfort.\\\\n\\\\nTraditional American Classics: Lori’s Diner\\\\nLocation: Multiple locations including 900 N Point St and 500 Sutter St, San Francisco\\\\nPrice: $$\\\\nSummary: As a quintessential 24/7 diner, Lori\\'s Diner embodies the classic American dining experience, featuring fresh, homemade fast food and a delightfully themed environment. Customers find a mixed bag in terms of service—while some staff impress with attentiveness, others fall short, leading to some wait frustrations. Overall, it\\'s a place worth visiting for its lively ambiance and nostalgic American fare.\\\\n\\\\nUpscale Seafood and Steaks: McCormick & Kuleto\\'s Seafood & Steaks\\\\nLocation: 900 N Point St, San Francisco\\\\nPrice: $$$\\\\nSummary: With a reputation for stunning waterfront views and splendid service, McCormick & Kuleto’s is a haven for seafood and steak lovers. Despite its high ticket prices, the exquisite service provided by staff such as Mario makes dining a memorable experience. Small drawbacks like the hardness of the bread and less-than-ideal parking conditions can be overlooked in light of the overall ambiance and quality palate they offer.\\\\n\\\\nSeafood with an Italian Touch: Scoma’s Restaurant\\\\nLocation: 47 Pier, San Francisco\\\\nPrice: $$$\\\\nSummary: Nestled conveniently on the pier, Scoma\\'s Restaurant combines great food with an unbeatable view. Patrons rave about dishes like the lobster risotto and delightful crab parfait. The restaurant tries to embrace locally-sourced ingredients, though some believe there\\'s room for improvement. Despite this, the remarkable view and friendly, competent staff make Scoma\\'s a joyous go-to for both locals and visitors.\\\\n\\\\nQuintessential Californian Experience: Sears Fine Food\\\\nLocation: 439 Powell St, San Francisco\\\\nPrice: $$\\\\nSummary: An embodiment of Californian dining, Sears Fine Food offers a diverse menu in an inviting atmosphere. Renowned for its solid breakfast and dinner options, it is revered for delivering excellent value for money. From morning delights to a nourishing dinner spread, Sears provides an all-around satisfactory experience in one of the country\\'s most expensive cities.\\\\n\\\\nConclusion\\\\nThe San Francisco Bay Area\\'s restaurant landscape is as diverse as it is delightful. From authentic Mexican to intricately seasoned seafood, there seems to be a place for everyone, whether you\\'re looking for traditional comfort or an elevated dining affair. These top-rated spots exemplify the region’s culinary prowess, inviting both locals and tourists to savor a meal worth remembering.\"}', name='get_keywords')], type='ToolCallRequestEvent'), ToolCallExecutionEvent(id='01a91323-4726-44ad-b5f5-3b1c0a448ca1', source='restaurant_review_agent', models_usage=None, metadata={}, created_at=datetime.datetime(2025, 8, 1, 18, 51, 11, 911827, tzinfo=datetime.timezone.utc), content=[FunctionExecutionResult(content=\"['san', 'francisco', 'food', 'price', 'mexican', 'location', 'st', 'summary', 'seafood', 'area']\", name='get_keywords', call_id='call_rABbThm3fmTWqiYGw0F3LZYR', is_error=False)], type='ToolCallExecutionEvent'), ThoughtEvent(id='b308bdec-7065-4747-9484-9885d3608cc8', source='restaurant_review_agent', models_usage=None, metadata={}, created_at=datetime.datetime(2025, 8, 1, 18, 51, 39, 319033, tzinfo=datetime.timezone.utc), content='### Key Search Terms\\nThe key search terms from the original article were: \"San,\" \"Francisco,\" \"food,\" \"price,\" \"Mexican,\" \"location,\" \"St,\" \"summary,\" \"seafood,\" and \"area.\"\\n\\n### Suggestions to Improve Keyword Ranking\\n1. **Focus on Specific Keywords**: To improve SEO, we should focus more on long-tail keywords such as \"restaurants in San Francisco,\" \"best Mexican food in San Francisco,\" and \"seafood restaurants with a view.\"\\n\\n2. **Enhance Geographic References**: Include more geographic identifiers like neighborhoods or districts within San Francisco.\\n\\n3. **Highlight Popular Dishes and Unique Selling Points**: Emphasize specific dishes that stand out in reviews, like \"lobster risotto\" or \"locally-sourced seafood,\" to attract niche searches.\\n\\n4. **Increase Frequency of Key Terms**: Reiterate key phrases like \"San Francisco dining,\" \"culinary scene in the Bay Area,\" and \"top-rated restaurants\" to enhance relevance for those search terms.\\n\\n### Revised Article for Improved SEO\\n\\n---\\n\\n## Culinary Adventures and Top-Rated Restaurants in the San Francisco Bay Area\\n\\nThe **San Francisco Bay Area** is a premier destination for food lovers, featuring a vibrant and diverse **dining scene** that attracts locals and tourists alike. This guide explores top-rated restaurants in San Francisco, segmented by cuisine and price, based on extensive user reviews. From authentic **Mexican food** to upscale **seafood restaurants** with stunning **bay views**, there\\'s something for every discerning palate.\\n\\n### Discover Unique Mexican Flavors at Colibri Mexican Bistro\\n**Location**: 438 Geary St, San Francisco \\n**Price**: $$ \\n**Summary**: Enjoy a vibrant **Mexican dining** experience at Colibri Mexican Bistro with its lively atmosphere and acclaimed Mexican cuisine. Known for its quick, attentive service, delectable cocktails, and charming ambiance, this spot is ideal for both locals and visitors looking to dive into authentic Mexican flavors in downtown San Francisco.\\n\\n### Experience Classic American Dining at Lori’s Diner\\n**Location**: Multiple Addresses in San Francisco (900 N Point St, 500 Sutter St) \\n**Price**: $$ \\n**Summary**: Lori\\'s Diner offers a taste of traditional **American food** in an iconic 24/7 setting. With freshly made fast food and a nostalgic atmosphere, it’s a charming spot for visitors seeking the essence of classic American flavors. Though service may vary, the diner’s thematic décor and accessible locations make it a must-visit.\\n\\n### Elegant Dining at McCormick & Kuleto\\'s Seafood & Steaks\\n**Location**: 900 N Point St, San Francisco \\n**Price**: $$$ \\n**Summary**: Overlooking the beautiful bay, McCormick & Kuleto’s serves as a sanctuary for **seafood and steak** aficionados. Despite its upscale **dining prices**, patrons appreciate its excellent service and memorable dining experiences. Known for a diverse menu inspired by both **local seafood** and classic steak dishes, this restaurant is a testament to fine dining in San Francisco.\\n\\n### Savor Delightful Seafood at Scoma’s Restaurant\\n**Location**: 47 Pier, San Francisco \\n**Price**: $$$ \\n**Summary**: Located on the scenic San Francisco pier, Scoma\\'s Restaurant combines exquisite dishes with an unbeatable view. It\\'s praised for specialties like lobster risotto and crab parfait, complementing its commitment to local seafood sourcing. With friendly staff and a breathtaking backdrop, Scoma’s offers an immersive **seafood dining** experience.\\n\\n### Iconic Californian Fare at Sears Fine Food\\n**Location**: 439 Powell St, San Francisco \\n**Price**: $$ \\n**Summary**: Sears Fine Food blends the best of **Californian dining** with a classic twist, offering a curated menu of breakfast and dinner delights. Noted for delivering value and a welcoming atmosphere, Sears is a favorite for those looking to experience authentic Californian flavors in a relaxed setting within the bustling city.\\n\\n### Conclusion\\nFrom the bustling vibrancy of Mexican eateries to the elegant charm of seafood restaurants on the bay, the San Francisco Bay Area\\'s restaurant scene is rich and varied. These top spots represent the area’s culinary excellence, providing dining experiences that cater to every occasion and preference. Whether seeking traditional fare or innovative dishes, San Francisco\\'s eateries promise culinary adventures that are simply unforgettable.\\n\\n---\\n\\n### New List of Top Keywords\\n- Restaurants in San Francisco\\n- Mexican food in San Francisco\\n- Seafood restaurants with a view San Francisco\\n- Dining in San Francisco Bay Area\\n- San Francisco dining scene\\n- Top-rated restaurants in San Francisco\\n- Fine dining in San Francisco\\n\\nLet\\'s publish the revised article to a markdown file.', type='ThoughtEvent'), ToolCallRequestEvent(id='4d42f0f1-7a67-4090-a012-33a4a2206321', source='restaurant_review_agent', models_usage=RequestUsage(prompt_tokens=7772, completion_tokens=1708), metadata={}, created_at=datetime.datetime(2025, 8, 1, 18, 51, 39, 320926, tzinfo=datetime.timezone.utc), content=[FunctionCall(id='call_hNYw1jUc72s3ce1fe6W8WnYP', arguments='{\"final_draft\":\"## Culinary Adventures and Top-Rated Restaurants in the San Francisco Bay Area\\\\n\\\\nThe **San Francisco Bay Area** is a premier destination for food lovers, featuring a vibrant and diverse **dining scene** that attracts locals and tourists alike. This guide explores top-rated restaurants in San Francisco, segmented by cuisine and price, based on extensive user reviews. From authentic **Mexican food** to upscale **seafood restaurants** with stunning **bay views**, there\\'s something for every discerning palate.\\\\n\\\\n### Discover Unique Mexican Flavors at Colibri Mexican Bistro\\\\n**Location**: 438 Geary St, San Francisco \\\\n**Price**: $$ \\\\n**Summary**: Enjoy a vibrant **Mexican dining** experience at Colibri Mexican Bistro with its lively atmosphere and acclaimed Mexican cuisine. Known for its quick, attentive service, delectable cocktails, and charming ambiance, this spot is ideal for both locals and visitors looking to dive into authentic Mexican flavors in downtown San Francisco.\\\\n\\\\n### Experience Classic American Dining at Lori’s Diner\\\\n**Location**: Multiple Addresses in San Francisco (900 N Point St, 500 Sutter St) \\\\n**Price**: $$ \\\\n**Summary**: Lori\\'s Diner offers a taste of traditional **American food** in an iconic 24/7 setting. With freshly made fast food and a nostalgic atmosphere, it’s a charming spot for visitors seeking the essence of classic American flavors. Though service may vary, the diner’s thematic décor and accessible locations make it a must-visit.\\\\n\\\\n### Elegant Dining at McCormick & Kuleto\\'s Seafood & Steaks\\\\n**Location**: 900 N Point St, San Francisco \\\\n**Price**: $$$ \\\\n**Summary**: Overlooking the beautiful bay, McCormick & Kuleto’s serves as a sanctuary for **seafood and steak** aficionados. Despite its upscale **dining prices**, patrons appreciate its excellent service and memorable dining experiences. Known for a diverse menu inspired by both **local seafood** and classic steak dishes, this restaurant is a testament to fine dining in San Francisco.\\\\n\\\\n### Savor Delightful Seafood at Scoma’s Restaurant\\\\n**Location**: 47 Pier, San Francisco \\\\n**Price**: $$$ \\\\n**Summary**: Located on the scenic San Francisco pier, Scoma\\'s Restaurant combines exquisite dishes with an unbeatable view. It\\'s praised for specialties like lobster risotto and crab parfait, complementing its commitment to local seafood sourcing. With friendly staff and a breathtaking backdrop, Scoma’s offers an immersive **seafood dining** experience.\\\\n\\\\n### Iconic Californian Fare at Sears Fine Food\\\\n**Location**: 439 Powell St, San Francisco \\\\n**Price**: $$ \\\\n**Summary**: Sears Fine Food blends the best of **Californian dining** with a classic twist, offering a curated menu of breakfast and dinner delights. Noted for delivering value and a welcoming atmosphere, Sears is a favorite for those looking to experience authentic Californian flavors in a relaxed setting within the bustling city.\\\\n\\\\n### Conclusion\\\\nFrom the bustling vibrancy of Mexican eateries to the elegant charm of seafood restaurants on the bay, the San Francisco Bay Area\\'s restaurant scene is rich and varied. These top spots represent the area’s culinary excellence, providing dining experiences that cater to every occasion and preference. Whether seeking traditional fare or innovative dishes, San Francisco\\'s eateries promise culinary adventures that are simply unforgettable.\\\\n\",\"file_name\":\"San_Francisco_Restaurant_Guide.md\"}', name='publish_article')], type='ToolCallRequestEvent'), ToolCallExecutionEvent(id='e604af42-836b-4f1a-b0e4-a921635d6b0f', source='restaurant_review_agent', models_usage=None, metadata={}, created_at=datetime.datetime(2025, 8, 1, 18, 51, 39, 326920, tzinfo=datetime.timezone.utc), content=[FunctionExecutionResult(content=\"name '__file__' is not defined\", name='publish_article', call_id='call_hNYw1jUc72s3ce1fe6W8WnYP', is_error=True)], type='ToolCallExecutionEvent'), ThoughtEvent(id='06ee947e-2588-42a6-9eb4-1a9f91648d44', source='restaurant_review_agent', models_usage=None, metadata={}, created_at=datetime.datetime(2025, 8, 1, 18, 51, 43, 925744, tzinfo=datetime.timezone.utc), content='It seems there was an error while trying to publish the article to a markdown file. Let me try that again.', type='ThoughtEvent'), ToolCallRequestEvent(id='2d300bf4-64fc-4d7c-b912-3d65d470a2b4', source='restaurant_review_agent', models_usage=RequestUsage(prompt_tokens=9499, completion_tokens=766), metadata={}, created_at=datetime.datetime(2025, 8, 1, 18, 51, 43, 928394, tzinfo=datetime.timezone.utc), content=[FunctionCall(id='call_2nvpXpN13RtgqO3Q0TVFxxqT', arguments='{\"final_draft\":\"## Culinary Adventures and Top-Rated Restaurants in the San Francisco Bay Area\\\\n\\\\nThe **San Francisco Bay Area** is a premier destination for food lovers, featuring a vibrant and diverse **dining scene** that attracts locals and tourists alike. This guide explores top-rated restaurants in San Francisco, segmented by cuisine and price, based on extensive user reviews. From authentic **Mexican food** to upscale **seafood restaurants** with stunning **bay views**, there\\'s something for every discerning palate.\\\\n\\\\n### Discover Unique Mexican Flavors at Colibri Mexican Bistro\\\\n**Location**: 438 Geary St, San Francisco \\\\n**Price**: $$ \\\\n**Summary**: Enjoy a vibrant **Mexican dining** experience at Colibri Mexican Bistro with its lively atmosphere and acclaimed Mexican cuisine. Known for its quick, attentive service, delectable cocktails, and charming ambiance, this spot is ideal for both locals and visitors looking to dive into authentic Mexican flavors in downtown San Francisco.\\\\n\\\\n### Experience Classic American Dining at Lori’s Diner\\\\n**Location**: Multiple Addresses in San Francisco (900 N Point St, 500 Sutter St) \\\\n**Price**: $$ \\\\n**Summary**: Lori\\'s Diner offers a taste of traditional **American food** in an iconic 24/7 setting. With freshly made fast food and a nostalgic atmosphere, it’s a charming spot for visitors seeking the essence of classic American flavors. Though service may vary, the diner’s thematic décor and accessible locations make it a must-visit.\\\\n\\\\n### Elegant Dining at McCormick & Kuleto\\'s Seafood & Steaks\\\\n**Location**: 900 N Point St, San Francisco \\\\n**Price**: $$$ \\\\n**Summary**: Overlooking the beautiful bay, McCormick & Kuleto’s serves as a sanctuary for **seafood and steak** aficionados. Despite its upscale **dining prices**, patrons appreciate its excellent service and memorable dining experiences. Known for a diverse menu inspired by both **local seafood** and classic steak dishes, this restaurant is a testament to fine dining in San Francisco.\\\\n\\\\n### Savor Delightful Seafood at Scoma’s Restaurant\\\\n**Location**: 47 Pier, San Francisco \\\\n**Price**: $$$ \\\\n**Summary**: Located on the scenic San Francisco pier, Scoma\\'s Restaurant combines exquisite dishes with an unbeatable view. It\\'s praised for specialties like lobster risotto and crab parfait, complementing its commitment to local seafood sourcing. With friendly staff and a breathtaking backdrop, Scoma’s offers an immersive **seafood dining** experience.\\\\n\\\\n### Iconic Californian Fare at Sears Fine Food\\\\n**Location**: 439 Powell St, San Francisco \\\\n**Price**: $$ \\\\n**Summary**: Sears Fine Food blends the best of **Californian dining** with a classic twist, offering a curated menu of breakfast and dinner delights. Noted for delivering value and a welcoming atmosphere, Sears is a favorite for those looking to experience authentic Californian flavors in a relaxed setting within the bustling city.\\\\n\\\\n### Conclusion\\\\nFrom the bustling vibrancy of Mexican eateries to the elegant charm of seafood restaurants on the bay, the San Francisco Bay Area\\'s restaurant scene is rich and varied. These top spots represent the area’s culinary excellence, providing dining experiences that cater to every occasion and preference. Whether seeking traditional fare or innovative dishes, San Francisco\\'s eateries promise culinary adventures that are simply unforgettable.\\\\n\",\"file_name\":\"San_Francisco_Restaurant_Guide.md\"}', name='publish_article')], type='ToolCallRequestEvent'), ToolCallExecutionEvent(id='209d08dc-227b-491b-9692-aa978d9a4e4b', source='restaurant_review_agent', models_usage=None, metadata={}, created_at=datetime.datetime(2025, 8, 1, 18, 51, 43, 933656, tzinfo=datetime.timezone.utc), content=[FunctionExecutionResult(content=\"name '__file__' is not defined\", name='publish_article', call_id='call_2nvpXpN13RtgqO3Q0TVFxxqT', is_error=True)], type='ToolCallExecutionEvent'), TextMessage(id='a36fae6e-e774-4194-9986-463792608117', source='restaurant_review_agent', models_usage=RequestUsage(prompt_tokens=10284, completion_tokens=765), metadata={}, created_at=datetime.datetime(2025, 8, 1, 18, 51, 48, 640113, tzinfo=datetime.timezone.utc), content=\"I apologize for the issue in publishing the article. It seems there's an issue with the execution environment. However, you can easily copy the revised article and paste it into a markdown file on your local machine. Simply create a new file named `San_Francisco_Restaurant_Guide.md` and paste the content below:\\n\\n```\\n## Culinary Adventures and Top-Rated Restaurants in the San Francisco Bay Area\\n\\nThe **San Francisco Bay Area** is a premier destination for food lovers, featuring a vibrant and diverse **dining scene** that attracts locals and tourists alike. This guide explores top-rated restaurants in San Francisco, segmented by cuisine and price, based on extensive user reviews. From authentic **Mexican food** to upscale **seafood restaurants** with stunning **bay views**, there's something for every discerning palate.\\n\\n### Discover Unique Mexican Flavors at Colibri Mexican Bistro\\n**Location**: 438 Geary St, San Francisco \\n**Price**: $$ \\n**Summary**: Enjoy a vibrant **Mexican dining** experience at Colibri Mexican Bistro with its lively atmosphere and acclaimed Mexican cuisine. Known for its quick, attentive service, delectable cocktails, and charming ambiance, this spot is ideal for both locals and visitors looking to dive into authentic Mexican flavors in downtown San Francisco.\\n\\n### Experience Classic American Dining at Lori’s Diner\\n**Location**: Multiple Addresses in San Francisco (900 N Point St, 500 Sutter St) \\n**Price**: $$ \\n**Summary**: Lori's Diner offers a taste of traditional **American food** in an iconic 24/7 setting. With freshly made fast food and a nostalgic atmosphere, it’s a charming spot for visitors seeking the essence of classic American flavors. Though service may vary, the diner’s thematic décor and accessible locations make it a must-visit.\\n\\n### Elegant Dining at McCormick & Kuleto's Seafood & Steaks\\n**Location**: 900 N Point St, San Francisco \\n**Price**: $$$ \\n**Summary**: Overlooking the beautiful bay, McCormick & Kuleto’s serves as a sanctuary for **seafood and steak** aficionados. Despite its upscale **dining prices**, patrons appreciate its excellent service and memorable dining experiences. Known for a diverse menu inspired by both **local seafood** and classic steak dishes, this restaurant is a testament to fine dining in San Francisco.\\n\\n### Savor Delightful Seafood at Scoma’s Restaurant\\n**Location**: 47 Pier, San Francisco \\n**Price**: $$$ \\n**Summary**: Located on the scenic San Francisco pier, Scoma's Restaurant combines exquisite dishes with an unbeatable view. It's praised for specialties like lobster risotto and crab parfait, complementing its commitment to local seafood sourcing. With friendly staff and a breathtaking backdrop, Scoma’s offers an immersive **seafood dining** experience.\\n\\n### Iconic Californian Fare at Sears Fine Food\\n**Location**: 439 Powell St, San Francisco \\n**Price**: $$ \\n**Summary**: Sears Fine Food blends the best of **Californian dining** with a classic twist, offering a curated menu of breakfast and dinner delights. Noted for delivering value and a welcoming atmosphere, Sears is a favorite for those looking to experience authentic Californian flavors in a relaxed setting within the bustling city.\\n\\n### Conclusion\\nFrom the bustling vibrancy of Mexican eateries to the elegant charm of seafood restaurants on the bay, the San Francisco Bay Area's restaurant scene is rich and varied. These top spots represent the area’s culinary excellence, providing dining experiences that cater to every occasion and preference. Whether seeking traditional fare or innovative dishes, San Francisco's eateries promise culinary adventures that are simply unforgettable.\\n```\\n\\nThis retains the structure and the new emphasis on SEO keywords for optimal search ranking.\", type='TextMessage')], stop_reason=None)" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from autogen_agentchat.messages import TextMessage\n", + "\n", + "task_list = [TextMessage(source='user', content=\"Now analyze your article and tell me the key search terms it is likely to rank highly for.\"),\n", + " TextMessage(source='user', content=\"Using your analysis suggest changes to the original article to improve keyword ranking.\"),\n", + " TextMessage(source='user', content=\"Based on your suggestions, edit and modify your article to improve SEO keyword ranking. Give a new list of top keywords\"),\n", + " TextMessage(source='user', content=\"When it is ready, publish the article by saving it to a markdown file.\")\n", + "]\n", + "stream = review_agent.run_stream(task=task_list)\n", + "await Console(stream)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## The finished product\n", + "We got another large block of agent output showing us it's hard work. We can see the same `ThoughtEvent` and other actions happening, but what we really care about it is the finished product. Check your local directory for a markdown file with our finished article.\n", + "\n", + "That's it!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Clean up\n", + "close out our agent and empty our Redis index" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "await model_client.close()\n", + "await redis_memory.close()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "redis-ai-res", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/python-recipes/agents/resources/long-term-memory.png b/python-recipes/agents/resources/long-term-memory.png new file mode 100644 index 00000000..855288a1 Binary files /dev/null and b/python-recipes/agents/resources/long-term-memory.png differ diff --git a/python-recipes/agents/resources/memory-agents.png b/python-recipes/agents/resources/memory-agents.png new file mode 100644 index 00000000..975d1cb7 Binary files /dev/null and b/python-recipes/agents/resources/memory-agents.png differ diff --git a/python-recipes/agents/resources/short-term-memory.png b/python-recipes/agents/resources/short-term-memory.png new file mode 100644 index 00000000..1fc555cf Binary files /dev/null and b/python-recipes/agents/resources/short-term-memory.png differ diff --git a/python-recipes/computer-vision/00_facial_recognition_facenet.ipynb b/python-recipes/computer-vision/00_facial_recognition_facenet.ipynb new file mode 100644 index 00000000..cc6592f7 --- /dev/null +++ b/python-recipes/computer-vision/00_facial_recognition_facenet.ipynb @@ -0,0 +1,1027 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "R2-i8jBl9GRH" + }, + "source": [ + "![Redis](https://redis.io/wp-content/uploads/2024/04/Logotype.svg?auto=webp&quality=85,75&width=120)\n", + "\n", + "# Building a Facial Recognition System with RedisVL\n", + "\n", + "This recipe demonstrates how to create a facial recognition system using:\n", + "\n", + "- **DeepFace** library with `Facenet` model for generating face embeddings\n", + "- **Redis Vector Library (RedisVL)** for efficient similarity search\n", + "\n", + "You'll learn how to combine these tools to build a scalable facial recognition pipeline that leverages Redis's vector database capabilities for fast and accurate face matching.\n", + "\n", + "## Let's Begin!\n", + "\"Open\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rT9HzsnQ1uiz" + }, + "source": [ + "## Environment Setup" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "laLMMocQvVdW", + "outputId": "131d8315-af0d-42a2-ea1b-58c4974d5771" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/87.2 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m87.2/87.2 kB\u001b[0m \u001b[31m7.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m96.1/96.1 kB\u001b[0m \u001b[31m4.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m108.6/108.6 kB\u001b[0m \u001b[31m7.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m85.0/85.0 kB\u001b[0m \u001b[31m6.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.9/1.9 MB\u001b[0m \u001b[31m19.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m261.4/261.4 kB\u001b[0m \u001b[31m7.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m46.0/46.0 kB\u001b[0m \u001b[31m1.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m86.8/86.8 kB\u001b[0m \u001b[31m3.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m23.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Building wheel for fire (setup.py) ... \u001b[?25l\u001b[?25hdone\n" + ] + } + ], + "source": [ + "!pip install -q matplotlib numpy pillow redisvl requests deepface tf-keras" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "t5kMcFvhvVdX" + }, + "source": [ + "### Install Redis Stack\n", + "\n", + "In this tutorial, Redis will be used to store, index, and query vector\n", + "embeddings. **We need to make sure we have a Redis instance available.**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "N5XJ5MuRvVdX" + }, + "source": [ + "#### Redis in Colab\n", + "Use the shell script below to download, extract, and install [Redis Stack](https://redis.io/docs/getting-started/install-stack/) directly from the Redis package archive." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ndgIxx78vVdX", + "outputId": "d68dfc2d-603c-4eb9-a11b-8433375bec0d" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb jammy main\n", + "Starting redis-stack-server, database path /var/lib/redis-stack\n" + ] + } + ], + "source": [ + "# NBVAL_SKIP\n", + "%%sh\n", + "curl -fsSL https://packages.redis.io/gpg | sudo gpg --dearmor -o /usr/share/keyrings/redis-archive-keyring.gpg\n", + "echo \"deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb $(lsb_release -cs) main\" | sudo tee /etc/apt/sources.list.d/redis.list\n", + "sudo apt-get update > /dev/null 2>&1\n", + "sudo apt-get install redis-stack-server > /dev/null 2>&1\n", + "redis-stack-server --daemonize yes" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vY9PFatBvVdX" + }, + "source": [ + "#### Other ways to get Redis\n", + "There are many ways to get the necessary redis-stack instance running\n", + "1. On cloud, deploy a [FREE instance of Redis in the cloud](https://redis.io/try-free/). Or, if you have your\n", + "own version of Redis Enterprise running, that works too!\n", + "2. Per OS, [see the docs](https://redis.io/docs/latest/operate/oss_and_stack/install/install-stack/)\n", + "3. With docker: `docker run -d --name redis-stack-server -p 6379:6379 redis/redis-stack-server:latest`" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Rhozi9hQvVdX" + }, + "source": [ + "### Define the Redis Connection URL\n", + "\n", + "By default this notebook connects to the local instance of Redis Stack. **If you have your own Redis Enterprise instance** - replace REDIS_PASSWORD, REDIS_HOST and REDIS_PORT values with your own." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "id": "zoGJNNhDvVdX" + }, + "outputs": [], + "source": [ + "import os\n", + "import warnings\n", + "warnings.filterwarnings('ignore')\n", + "\n", + "# Replace values below with your own if using Redis Cloud instance\n", + "REDIS_HOST = os.getenv(\"REDIS_HOST\", \"localhost\") # ex: \"redis-18374.c253.us-central1-1.gce.cloud.redislabs.com\"\n", + "REDIS_PORT = os.getenv(\"REDIS_PORT\", \"6379\") # ex: 18374\n", + "REDIS_PASSWORD = os.getenv(\"REDIS_PASSWORD\", \"\") # ex: \"1TNxTEdYRDgIDKM2gDfasupCADXXXX\"\n", + "\n", + "# If SSL is enabled on the endpoint, use rediss:// as the URL prefix\n", + "REDIS_URL = f\"redis://:{REDIS_PASSWORD}@{REDIS_HOST}:{REDIS_PORT}\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "kpo_zEPyvVdY" + }, + "source": [ + "## Prepare The Dataset\n", + "\n", + "The dataset for this recipe is ~250 celebrity faces (images). First we will fetch that dataset and download it locally." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "_PD8Jp3DvVdY", + "outputId": "fff3bf55-2db8-42c8-f546-afbe1fc2203f" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "24-11-26 18:06:22 - Directory /root/.deepface has been created\n", + "24-11-26 18:06:22 - Directory /root/.deepface/weights has been created\n", + "Downloading dataset...\n", + "Extracting dataset...\n", + "Dataset ready.\n" + ] + } + ], + "source": [ + "# Required imports\n", + "import base64\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import os\n", + "import requests\n", + "\n", + "from deepface import DeepFace\n", + "from io import BytesIO\n", + "from PIL import Image, UnidentifiedImageError\n", + "from urllib.parse import urlparse\n", + "from zipfile import ZipFile\n", + "\n", + "\n", + "# Global variables\n", + "DATASET_URL = \"https://redisvl-faces-dataset.s3.us-east-1.amazonaws.com/kaggle_famous_people_dataset.zip\"\n", + "DATASET_PATH = \"kaggle_famous_people_dataset\"\n", + "\n", + "# Download and extract dataset\n", + "if not os.path.exists(DATASET_PATH):\n", + " print(\"Downloading dataset...\")\n", + " response = requests.get(DATASET_URL)\n", + " with open(\"dataset.zip\", \"wb\") as f:\n", + " f.write(response.content)\n", + " print(\"Extracting dataset...\")\n", + " with ZipFile(\"dataset.zip\", \"r\") as zip_ref:\n", + " zip_ref.extractall(\".\")\n", + " os.remove(\"dataset.zip\")\n", + " print(\"Dataset ready.\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "tpCdBUHl-lBg" + }, + "source": [ + "# Helper Functions\n", + "\n", + "The following functions provide utilities for:\n", + "- Connecting to Redis and managing the connection\n", + "- Processing and loading images from URLs\n", + "- Generating facial embeddings\n", + "- Displaying image comparisons\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "oazmbCRIG52l" + }, + "outputs": [], + "source": [ + "from redis import Redis\n", + "from redisvl.index import SearchIndex\n", + "\n", + "\n", + "def get_redis_connection(redis_url: str):\n", + " \"\"\"Create a Redis connection from a URL.\"\"\"\n", + " parsed_url = urlparse(redis_url)\n", + " return Redis(\n", + " host=parsed_url.hostname,\n", + " port=parsed_url.port or 6379,\n", + " password=parsed_url.password,\n", + " decode_responses=False # Binary storage enabled\n", + " )\n", + "\n", + "\n", + "def load_remote_image(url: str):\n", + " \"\"\"Download and return an image from a URL.\"\"\"\n", + " response = requests.get(url)\n", + " response.raise_for_status()\n", + " return Image.open(BytesIO(response.content))\n", + "\n", + "\n", + "def generate_embedding(image_path: str):\n", + " \"\"\"Generate an embedding for the image.\"\"\"\n", + " try:\n", + " embedding = DeepFace.represent(image_path, model_name=\"Facenet\")\n", + " return np.array(embedding[0][\"embedding\"], dtype=np.float32)\n", + " except Exception as e:\n", + " print(f\"Error generating embedding for {image_path}: {e}\")\n", + " return None\n", + "\n", + "\n", + "def display_images_side_by_side(images, titles, figsize=(8, 4)):\n", + " \"\"\"Display a list of images side by side.\"\"\"\n", + " fig, axes = plt.subplots(1, len(images), figsize=figsize)\n", + " for ax, img, title in zip(axes, images, titles):\n", + " img = img.convert(\"RGB\") # Convert images to RGB\n", + " ax.imshow(img)\n", + " ax.axis(\"off\")\n", + " ax.set_title(title, fontsize=12)\n", + " plt.tight_layout()\n", + " plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QMSOQuQCG8sI" + }, + "source": [ + "## Core Functions\n", + "\n", + "These functions define the main functionality of the demo, focusing on leveraging **RedisVL** to implement a facial recognition system. They cover creating and managing the Redis index, injecting data, and performing queries.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "id": "IQAvhlziHE8U" + }, + "outputs": [], + "source": [ + "from redisvl.query import VectorQuery\n", + "\n", + "\n", + "SAFE_THRESHOLD=0.46\n", + "\n", + "\n", + "def create_redis_index(client):\n", + " \"\"\"\n", + " Define and create the Redis index using RedisVL.\n", + "\n", + " This function defines the schema for the facial recognition system,\n", + " specifying the index name, data fields, and vector field properties.\n", + " It uses RedisVL's `SearchIndex` to create the index with support for\n", + " efficient vector queries. This is the cornerstone of the demo, enabling\n", + " Redis to act as a vector database.\n", + " \"\"\"\n", + " schema = {\n", + " \"index\": {\n", + " \"name\": \"face_recognition\",\n", + " \"prefix\": \"face_docs\",\n", + " },\n", + " \"fields\": [\n", + " {\"name\": \"name\", \"type\": \"tag\"},\n", + " {\"name\": \"photo_reference\", \"type\": \"text\"},\n", + " {\n", + " \"name\": \"embedding\",\n", + " \"type\": \"vector\",\n", + " \"attrs\": {\n", + " \"dims\": 128,\n", + " \"distance_metric\": \"cosine\",\n", + " \"algorithm\": \"flat\",\n", + " \"datatype\": \"float32\",\n", + " }\n", + " }\n", + " ]\n", + " }\n", + " index = SearchIndex.from_dict(schema, redis_client=client)\n", + " index.create(overwrite=True)\n", + " return index\n", + "\n", + "def inject_local_data_into_redis(base_path, index):\n", + " \"\"\"\n", + " Load images from a local dataset, generate embeddings, and inject them into Redis.\n", + "\n", + " This function iterates through a local folder structure where each folder\n", + " represents a unique identity (e.g., a person). For each folder, it reads an\n", + " image, generates a vector embedding using DeepFace, and stores the data in\n", + " Redis with the corresponding vector representation. This prepares the data\n", + " for real-time vector search queries.\n", + " \"\"\"\n", + " for folder_name in os.listdir(base_path):\n", + " folder_path = os.path.join(base_path, folder_name)\n", + " if not os.path.isdir(folder_path):\n", + " continue # Skip files, process only directories\n", + "\n", + " jpeg_files = [f for f in os.listdir(folder_path) if f.endswith(\".jpg\") or f.endswith(\".jpeg\")]\n", + " if not jpeg_files:\n", + " print(f\"No JPEGs found in folder: {folder_path}\")\n", + " continue\n", + "\n", + " for jpeg_file in jpeg_files:\n", + " image_path = os.path.join(folder_path, jpeg_file)\n", + " try:\n", + " # Load image and convert to Base64\n", + " with open(image_path, \"rb\") as img_file:\n", + " encoded_binary = base64.b64encode(img_file.read()).decode(\"utf-8\")\n", + "\n", + " # Generate embedding\n", + " embedding = generate_embedding(image_path)\n", + " if embedding is None:\n", + " continue\n", + "\n", + " # Store data in Redis\n", + " index.load([{\n", + " \"name\": folder_name,\n", + " \"photo_reference\": image_path,\n", + " \"photo_binary\": encoded_binary,\n", + " \"embedding\": embedding.tobytes()\n", + " }])\n", + " print(f\"Stored {folder_name} in Redis with image: {jpeg_file}\")\n", + " break # Successfully processed this folder\n", + " except (UnidentifiedImageError, IOError) as e:\n", + " print(f\"Error processing image {image_path}: {e}\")\n", + " continue\n", + "\n", + "def query_redis(target_image_path, index, client, threshold=SAFE_THRESHOLD):\n", + " \"\"\"\n", + " Perform a vector similarity search in Redis and display visual results.\n", + "\n", + " This function takes a target image, generates its vector embedding,\n", + " and queries Redis using RedisVL's `VectorQuery`. The query retrieves\n", + " the closest match from the index, calculates the similarity score\n", + " (distance), and compares it against a threshold. It then displays the\n", + " target image alongside the closest match or indicates if no match is found.\n", + " \"\"\"\n", + " # Generate embedding for the target image\n", + " target_embedding = generate_embedding(target_image_path)\n", + " if target_embedding is None:\n", + " print(f\"Failed to generate embedding for {target_image_path}\")\n", + " return\n", + "\n", + " # Query Redis\n", + " query = VectorQuery(\n", + " vector=target_embedding.tolist(),\n", + " vector_field_name=\"embedding\",\n", + " return_fields=[\"name\", \"photo_reference\", \"vector_distance\", \"photo_binary\"],\n", + " num_results=1 # Only need the best match\n", + " )\n", + " results = index.query(query)\n", + "\n", + " if not results:\n", + " print(\"No matches found in Redis.\")\n", + " return\n", + "\n", + " # Parse the best match\n", + " best_match = results[0]\n", + " match_name = best_match[\"name\"]\n", + " match_distance = float(best_match[\"vector_distance\"])\n", + " match_image = Image.open(BytesIO(base64.b64decode(best_match[\"photo_binary\"]))).convert(\"RGB\")\n", + "\n", + " # Load the target image and ensure RGB mode\n", + " target_image = load_remote_image(target_image_path).convert(\"RGB\")\n", + "\n", + " # Display results\n", + " if match_distance > threshold:\n", + " print(f\"\\nNo match found. Closest match is {match_name} (Distance: {match_distance:.2f}).\")\n", + " display_images_side_by_side(\n", + " [target_image, match_image],\n", + " [\"Target Image\", f\"Closest Match: {match_name} (Not Found)\"]\n", + " )\n", + " else:\n", + " print(f\"\\nMatch found: {match_name}, Distance: {match_distance:.2f}\")\n", + " display_images_side_by_side(\n", + " [target_image, match_image],\n", + " [\"Target Image\", f\"Best Match: {match_name}\"]\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "uKtpdFn4JCf1" + }, + "source": [ + "## Example 1 -- Celebrity Facial Recognition\n", + "\n", + "Now it's time to put the system to work. In this section we connect to Redis, build the index, load images, create embeddings, and store everything in Redis. Then, it runs through three pre-defined test cases to search for similar faces within the index.\n", + "\n", + "3 Test Cases:\n", + "- Angelina Jolie\n", + "- Kristen Stewart\n", + "- Hermoine Granger" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "id": "kSAJ-VTsJZlN" + }, + "outputs": [], + "source": [ + "# Connect to Redis\n", + "client = get_redis_connection(REDIS_URL)\n", + "\n", + "# Ensure the RedisVL index is valid\n", + "index = create_redis_index(client)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "roBUwRwJvVdY", + "outputId": "919e5c40-989b-47cd-d4cb-86cafcf6819d" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "IndexSchema(index=IndexInfo(name='face_recognition', prefix='face_docs', key_separator=':', storage_type=), fields={'name': TagField(name='name', type='tag', path=None, attrs=TagFieldAttributes(sortable=False, separator=',', case_sensitive=False, withsuffixtrie=False)), 'photo_reference': TextField(name='photo_reference', type='text', path=None, attrs=TextFieldAttributes(sortable=False, weight=1, no_stem=False, withsuffixtrie=False, phonetic_matcher=None)), 'embedding': FlatVectorField(name='embedding', type='vector', path=None, attrs=FlatVectorFieldAttributes(dims=128, algorithm=, datatype=, distance_metric=, initial_cap=None, block_size=None))}, version='0.1.0')" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Inspect the index schema\n", + "index.schema" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "9L7ZLDT7wete" + }, + "source": [ + "Next, we will check Redis and then add the dataset of face images and embeddings to the index. *For some images, FaceNet may not be able to detect a face.*" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true, + "id": "SwWZcCCzvVdY" + }, + "outputs": [], + "source": [ + "# Check if Redis already contains data\n", + "indexed_faces_count = index.info()['num_docs']\n", + "if indexed_faces_count > 0:\n", + " print(f\"Redis already contains {indexed_faces_count} records. Skipping data injection.\")\n", + "else:\n", + " # Inject data into Redis from a local dataset if no data is present\n", + " dataset_path = \"kaggle_famous_people_dataset\"\n", + " inject_local_data_into_redis(dataset_path, index)\n", + " print(\"Data successfully injected into Redis.\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "gmVapnB8vVdY" + }, + "source": [ + "Let's look at how the data is stored in Redis. For each celebrity, we create a Redis HASH containing:\n", + " - The celebrity's name as an identifier\n", + " - A vector embedding of their facial features\n", + " - A binary version of their facial image\n", + "\n", + "Here's an example of what one of these Redis HASHes looks like:\n", + "\n", + "![RedisVL_HASH_EXAMPLE](https://redisvl-faces-dataset.s3.us-east-1.amazonaws.com/redisvl_hash_example.png)\n", + "\n", + ">Note: While we store the images directly in Redis for this demo, in a production system you'd typically store them in an object store like S3 and just keep references in Redis." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "VVkVbtPCvVdZ", + "outputId": "bb630cb6-36db-471f-c22a-fb8fb979ba6c" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Testing: Tom Hanks ---\n", + "\n", + "Match found: tom_hanks, Distance: 0.29\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvMAAAGGCAYAAAD2Ag44AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9ebgtV1nn/1lVtadz9hnvvedOmW5GSFDojgI2YpgMYIsgaFoUNdBqBEWlRX84JnFoW6QF2iHQ8ogDBGxo8QE1CA6ADY4NOCCQhOQmufOZz9lzVa31+2MNtap27XPODQH6hvom+57atVetedX6vu9617uEUkpRoUKFChUqVKhQoUKFCw7BlzoDFSpUqFChQoUKFSpUeHioyHyFChUqVKhQoUKFChcoKjJfoUKFChUqVKhQocIFiorMV6hQoUKFChUqVKhwgaIi8xUqVKhQoUKFChUqXKCoyHyFChUqVKhQoUKFChcoKjJfoUKFChUqVKhQocIFiorMV6hQoUKFChUqVKhwgaIi8xUqVKhQoUKFChUqXKCoyHyFChUqVKhQ4csOH/rQhxBC8O53v/tLnZUvOm677TaEEKysrHzR0/6d3/kdhBD84z/+4xc97UcrKjJfoUKFChUqXECwZMj/LC0t8fSnP5277rrrC5Zur9fjtttu40Mf+tCewluyLITgbW97W2mYpzzlKQgheNzjHvew8vSbv/mb/M7v/M7DevYLhTvvvJM3vOENX+psVPgyQkXmK1SoUKFChQsQP/dzP8fv//7v83u/93v8+I//OMvLy3zDN3wDf/zHf/wFSa/X63H77bfvmcxbNJtN7rzzzrH7x48f52Mf+xjNZvNh56ki8xUqQPSlzkCFChUqVKhQ4fzx3Oc+l6/6qq9y3//zf/7PHDx4kHe84x184zd+45cwZ3l8wzd8A+9973tZWVlh//797v6dd97JwYMHueqqq1hfX/8S5rBChQsblWa+QoUKFSpUeBRgfn6eVqtFFOX1dFJK3vCGN3DdddfRbDY5ePAgt9xyyxiB/sd//Eee/exns3//flqtFseOHeNlL3sZoLXoBw4cAOD222935jO33Xbbrvl6/vOfT6PR4F3velfu/p133slNN91EGIZjz7z1rW/lGc94BktLSzQaDa699lruuOOOXJjLLruMT33qU3z4wx92+Xna057mft/Y2OBVr3oVl112GY1Gg4suuojv+q7vGrMTl1Lyi7/4i1x00UU0m02e+cxncu+99+bC9Ho9PvOZz+xqY/60pz2NP/mTP+GBBx5webrsssvc7+fOnXNCV7PZ5PGPfzy/+7u/m4vj+PHjCCF43etex2/8xm9w+eWXMzU1xY033shDDz2EUoqf//mf56KLLqLVavH85z+ftbW1HfM1CRsbG9x8883Mz88zNzfHS1/6Unq9Xi7MXtoCdHt84zd+I//n//wfnvjEJ9JsNrn88sv5vd/7vV3zsb6+zhOf+EQuuugiPvvZzwJw5swZXvrSl3LRRRfRaDQ4fPgwz3/+8zl+/PjDKuujGZVmvkKFChUqVLgAsbm5ycrKCkopzp07x6/92q/R6XR4yUtekgt3yy238Du/8zu89KUv5Yd+6Ie4//77+fVf/3U+8YlP8NGPfpRarca5c+e48cYbOXDgAK95zWuYn5/n+PHj/OEf/iEABw4c4I477uDlL3853/zN38wLX/hCAL7yK79y13xOTU3x/Oc/n3e84x28/OUvB+Cf/umf+NSnPsVb3vIW/vmf/3nsmTvuuIPrrruOb/qmbyKKIt73vvfxile8AiklP/ADPwDAG97wBl75ylfSbrf5qZ/6KQAOHjwIQKfT4alPfSqf/vSnednLXsa///f/npWVFd773vdy4sSJ3ArBf/tv/40gCHj1q1/N5uYmr33ta/mO7/gO/u7v/s6F+fu//3ue/vSnc+utt+4owPzUT/0Um5ubnDhxgte//vUAtNttAPr9Pk972tO49957+cEf/EGOHTvGu971Lm6++WY2Njb44R/+4Vxcb3/72xmNRrzyla9kbW2N1772tdx000084xnP4EMf+hD/3//3/3Hvvffya7/2a7z61a/mt3/7t3dtiyJuuukmjh07xi/90i/x8Y9/nLe85S0sLS3xy7/8y+fVFhb33nsv3/It38J//s//me/+7u/mt3/7t7n55pu5/vrrue6660rzsLKywtd//deztrbGhz/8Ya644goAXvSiF/GpT32KV77ylVx22WWcO3eOD37wgzz44IM5AakCoCpUqFChQoUKFwze+ta3KmDs02g01O/8zu/kwv71X/+1AtTb3/723P33v//9ufvvec97FKD+4R/+YWK6y8vLClC33nrrnvL5V3/1VwpQ73rXu9Qf//EfKyGEevDBB5VSSv3Yj/2Yuvzyy5VSSt1www3quuuuyz3b6/XG4nv2s5/tnrG47rrr1A033DAW9md/9mcVoP7wD/9w7DcpZS5/j33sY9VwOHS/v/GNb1SA+pd/+Zexsuyl7P/xP/5Hdemll47df8Mb3qAA9ba3vc3dG41G6mu+5mtUu91WW1tbSiml7r//fgWoAwcOqI2NDRf2J37iJxSgHv/4x6s4jt39F7/4xaper6vBYLBr3ixuvfVWBaiXvexlufvf/M3frPbt25e7t9e2uPTSSxWgPvKRj7h7586dU41GQ/3oj/6ou2f77z/8wz+o06dPq+uuu05dfvnl6vjx4y7M+vq6AtSv/Mqv7LlMX86ozGwqVKhQoUKFCxC/8Ru/wQc/+EE++MEP8ra3vY2nP/3pfM/3fI/TpgO8613vYm5ujq//+q9nZWXFfa6//nra7TZ/9Vd/BWgTHYA//uM/Jo7jRzyvN954I4uLi7zzne9EKcU73/lOXvziF08M32q13LVdgbjhhhu477772Nzc3DW9//2//zePf/zj+eZv/uax34QQue8vfelLqdfr7vtTn/pUAO677z5372lPexpKqT2ZFU3Cn/7pn3Lo0KFcuWu1Gj/0Qz9Ep9Phwx/+cC78t37rtzI3N+e+P+lJTwLgJS95Sc6U6klPehKj0YiTJ0+ed56+//u/P/f9qU99Kqurq2xtbbl759MW1157ras/0Cs611xzTa4uLU6cOMENN9xAHMd85CMf4dJLL82lWa/X+dCHPlTtp9gDKjJfoUKFChUqXIB44hOfyLOe9Sye9axn8R3f8R38yZ/8Cddeey0/+IM/yGg0AuCee+5hc3OTpaUlDhw4kPt0Oh3OnTsHwA033MCLXvQibr/9dvbv38/zn/983vrWtzIcDh+RvNZqNb71W7+VO++8k4985CM89NBDfPu3f/vE8B/96Ed51rOexfT0NPPz8xw4cICf/MmfBNgTmf/c5z63Z3eXl1xySe77wsICwCNOIh944AGuuuoqgiBPvR772Me633fKlyX2F198cen9h5PfvZT9fNqiGJ+Nsyxv3/md38m5c+f48Ic/zNGjR3O/NRoNfvmXf5m77rqLgwcP8nVf93W89rWv5cyZM+ddxi8HVGS+QoUKFSpUeBQgCAKe/vSnc/r0ae655x5Ab+5cWlpyGvzi5+d+7ucA3OFJf/M3f8MP/uAPcvLkSV72spdx/fXX0+l0HpH8ffu3fzuf/OQnue2223j84x/PtddeWxruc5/7HM985jNZWVnhV3/1V/mTP/kTPvjBD/KqV73KlemRRNkGXACl1COazvliUr4eyfzuFtf5tsX55O2FL3whGxsbvPGNbyx95kd+5Ee4++67+aVf+iWazSY/8zM/w2Mf+1g+8YlP7Ll8Xy6oNsBWqFChQoUKjxIkSQLgCPgVV1zBn//5n/OUpzwlZy4xCU9+8pN58pOfzC/+4i9y55138h3f8R28853v5Hu+53vGzFPOF1/7tV/LJZdcwoc+9KHcBssi3ve+9zEcDnnve9+b0/RakyAfk/J0xRVX8K//+q+fV34fLibl6dJLL+Wf//mfkVLmtPOf+cxn3O//r+F82uJ88cpXvpIrr7ySn/3Zn2Vubo7XvOY1Y2GuuOIKfvRHf5Qf/dEf5Z577uEJT3gC//2///eJh5B9uaLSzFeoUKFChQqPAsRxzAc+8AHq9boz3bjppptI05Sf//mfHwufJAkbGxuANqsoak+f8IQnADhTm6mpKQD3zPlCCMH/+B//g1tvvZXv/M7vnBjOanf9/GxubvLWt751LOz09HRpfl70ohfxT//0T7znPe8Z++3haLD36prS5qnMFOgbvuEbOHPmDH/wB3/g7iVJwq/92q/Rbre54YYbzjtfX2icT1s8HPzMz/wMr371q/mJn/iJnLvLXq/HYDDIhb3iiiuYmZl5xEy/Hk2oNPMVKlSoUKHCBYi77rrLaXXPnTvHnXfeyT333MNrXvMaZmdnAW0Lf8stt/BLv/RLfPKTn+TGG2+kVqtxzz338K53vYs3vvGNfMu3fAu/+7u/y2/+5m/yzd/8zVxxxRVsb2/zW7/1W8zOzvIN3/ANgN6UeO211/IHf/AHXH311SwuLvK4xz1uz7bpoH3OP//5z98xzI033ki9Xud5z3set9xyC51Oh9/6rd9iaWmJ06dP58Jef/313HHHHfzCL/wCV155JUtLSzzjGc/gx37sx3j3u9/Nt37rtzpzobW1Nd773vfypje9icc//vHnU9V7dk1p8/QHf/AH/Jf/8l/46q/+atrtNs973vP4vu/7Pt785jdz880383//7//lsssu493vfjcf/ehHecMb3sDMzMx55emLgfNpi4eLX/mVX2Fzc5Mf+IEfYGZmhpe85CXcfffdPPOZz+Smm27i2muvJYoi3vOe93D27Fm+7du+7RFJ99GEisxXqFChQoUKFyB+9md/1l03m00e85jHcMcdd3DLLbfkwr3pTW/i+uuv581vfjM/+ZM/SRRFXHbZZbzkJS/hKU95CqBJ/9///d/zzne+k7NnzzI3N8cTn/hE3v72t3Ps2DEX11ve8hZe+cpX8qpXvYrRaMStt956XmR+L7jmmmt497vfzU//9E/z6le/mkOHDvHyl7+cAwcOuEOs/Dp44IEHeO1rX8v29jY33HADz3jGM2i32/z1X/81t956K+95z3v43d/9XZaWlnjmM5/JRRdd9Ijmt4hXvOIVfPKTn+Stb30rr3/967n00kt53vOeR6vV4kMf+hCvec1r+N3f/V22tra45ppreOtb38rNN9/8Bc3Tw8X5tMXngze96U10Oh1e+tKXMjMzw9d+7dfy4he/mL/4i7/g93//94miiMc85jH8r//1v3jRi170iKX7aIFQX+odHhUqVKhQoUKFChUqVHhYqGzmK1SoUKFChQoVKlS4QFGZ2VSoUKFChQoVKjwK0Ol0dnUleuDAgYkuJCtcmKjIfIUKFSpUqFChwqMAr3vd67j99tt3DHP//fdz2WWXfXEyVOGLgspmvkKFChUqVKhQ4VGA++67j/vuu2/HMF/7tV9Ls9n8IuWowhcDFZmvUKFChQoVKlSoUOECRbUBtkKFChUqVKhQoUKFCxQVma9QoUKFChUqVKhQ4QJFtQG2QoUKFSpc8PjX3/jx3JHzeJciFzL7QYj8bUH2KUKYwEEQuGsdVuTCBEIQCh3G/+TiCYTLgBCBjknkspx7NgxDHXcQuPTL4vbLr5RCKjUWpy5ESZ5cgbzf/ArywwNIlV3vACFELt6yvOswO8Q0wRp4L1bCIpdDU8kqH6VSyn1KIsiXXeSf86/TNEVKiZSSNE1RSiECQRjVCELddrVajSAIyuMopuvS9PqJfij3bDEfFMpTVq6s7svLY8eDn16WQ4XtWcV09LX+jOXL3QckuWdsUJ398biLUEohpXRh8tcpfm1mo0Dit/XkdPL5zoWTyvSfYr7yb45sdASown2/NlOlkKZOsjrIj9uvedXrSuvAR0XmK1SoUKHCBY/xydWfkPVfsRNhPO8Ezd9HIsrPI45dCa1SOxPlzxM7EcU9x2GfewTycyHgkd6qKIR42HHu1j0EBSHjCwQhJspsn3/cCNR5lOIRy4cau9ihsj+/RCszmwoVKlSo8KhCTrM1NkdOmExFUbfm/eRrkAtx7oVElWt8d1oHKI9jrxpLW35fC5ilm0+xqJX377vcede53O5BY641xbuUwWqTS2PbAQ9bSClfCSiudPh1kv02/lyZtvdh5ip3sVOa9vfitb/KsZNQtasQJsru7zUfZs1qwoqGmBzVhPjOD2XPCO+3sfE8EcWVhfOAyv3Jrr2+bkZCYbycXzIWlWa+QoUKFSpc8CibbJXakTM4ZBM9bvY9HxKhlHp4Wv8JPK0Ylx//uOlCIS9kpMEnznmiNk5mJpFAS+rL0tkJuTwDwlMB+/nOBKRJAg87q23PV6VrzX4UaLOb8brNmRl5xDormy3VOJG35h6TsFtfESXmVuaqECjLqypcWwFs7wRUlMpFQmd4LJ3yfBf7rI3X1odACGNOI0AYGc+ve78r5O+Xp+3Kawh6vm5LCqQyDf1eVzN2M1faHbrAvoLBF7QL8uzDRkXmK1SoUKHCBY/SyR47lRY1hBlrz6b+TEPta/FK0zJWsMW4J+VrPJ6SpyaQ5mJck4h9lrf830mYpP3cu1a0THjKk/Qsr7rGhBemSNbMl7wKN7OPKtfC+7/vIZdjoQyx3FWA26Ogtpug5f9WmpYVpsw/O60InR9Zz7TAlBDlfBbywtU46fUqrPB7+bUwskc2WpxZlfDryc/H7is+O6c/LpwoI9kLZfvjbpgQQuWftunZ8uyWb1/YzqeTr+NslWZvfa8ys6lQoUKFChUMdiPyFlY5O1k7bja2mWuFv7TOrpP0ZEGi3JTGj7uUhhRtOCalM8EsJvtZ5Uxn/Ptl393mxkJd7ZX47ojzXg0ppCN2uHYf4Yh19inEWtDO+yRZTNB671jmXF4ezoqPv7Iw/ny2GRX3d9zEqDzfZb3LX70R5r/8Blqr5bdhKHbDzwtF05mciVguj8JUib4OCmHtSsRYvs39bNDbW+cnTCmrfi/pL58vKs18hQoVKlS44FGcEIUQTvFahp24xG62xsLYQpTFn5H3jODYcNboJLMEKE9nknbcavSUJSBWI1kSV6m3jSLDGSucDZov2U5mBjtGl9PMk+OB42YRDxOeyckkSrSr3l5kjSnyDHDCioB3OUGI0Y+Xe+/xw+64GuCnf758zzc/ypki2bbMbuc5vL8yov8RQiCl3DU9UawLsqrVxFh412a95jxXGMaTzZN47xcvI3496MvAlD1AWcc6uYWaXL4NB8cKphTbfac3TR6W1EtzbQX+sTyfJyoyX6FChQoVHnXQtsNWQ1kWIm8ucF7z6C7cw5/afVqvJk3652Hmkovb2hOXx+rFbz+7Cw8q/894+gXNZVmovL28AmPaUFqeAqFVHrssb7ZykjZJ05833nBUjVwANV41ZXsMinEXy1EmUFo19PkKLY+g4noifGFrbMXGXWR1a01VcuFygkLBa4ynic9CnL/d+iSU7XVw4154fVUILbR4DV1m3uPy6QnJn7/OvADPdr7MSF7ls1QapgwVma9QoUKFCl82yLji5z9N76aV9q99zWGObAaZZtHdKzEbcGFKyH6ZF5Lc6oEo12DuSDBV/sKtCvhxFmqgrMyTJI0y2//PW0tfgqKu2OV5RzMXkf+7R5QJYpPMbHbDmNb+PLtrqXDzSDBTZVTVPjxC//kS9IeL/EqPGOtfOot5er6bvf/nXw5l0sSZ1rhfdhIYissle0BF5itUqFChwqMU4+YiVpOoRCnH/PxT3AOpkVLqw590yDETgUlkvvj7JDKvvGuxh/gKBSgtjzUPyJks7FKBkzS/RQ8lXwgSn8tH7kLtnO2HmZed2s+W/bzLWaI9Pl88EsR6jNiWCWi2nb/4PL7EZCur8zyU132FI/mTSD2Ur7jsFXbkKGteZO8VzML8VTx8YfM8+ktF5itUqFChwgWPMRMHyC2pZxO9cjaxBRuMwsPmcpcJdcwHjTMvGY9uTDMnxj3YTDKzKWrli2GsuY2XhYlhi9dly/7lmt3dvekU48/tHlA4O+kyTLYhzxqr3A+J8m0kcvfz7TAeh3D/FOjfwzB1gPMn7OPefMiWPsrC74Etl+1xmGR6lM+H/lXkf8ilnrscq7fzO5ypaOWmSq53fK44TlVWPw9nhWDnZyaPjVz75UKWrAJNNLPx+qYX3157U0XmK1SoUKHChY+iFlOcn3Irv2V1HGUkLdOsZxpY4bNDF3f2L4BUEkFAoHfVZTEVtOel2nRD6h25t+kZsxdVyKYjaMI39yho1Qv8pYwEno/3mZymNMdXFFkGlcvHuM0zxSp02Z6MTA9adj/7TeTa2d7JhRdi7NnsZ9tmxtxEZN91F8jnw7fT38nePiOEeIR+p5L6+cnisZ5qfF9HBT9KpTGK0qKbcplPsW5z+u/z4s1ev1Cm39qy+Cps913lf7MXfmd/xO3cvTa2Kw7+rli8qlfgdq4UulIWZjcNv3V4y3lr5aEi8xUqVKhQ4dGA4kRvpnWt5Pz8PKfsamPua82LYVTujzNVCYRCKkUwYd7eicg7Ei/IiL2XFQWFe7uY1ngMaJKJwU5eW3ZCjqBbsqMs8VGGtxTzVox7j3pb4bOnneLbIW7LaseYtCqwN/1d5B5XXq8zIZX0adpEFAn9bl3VFxAFxbbC5WJ3Iu8eMGWxiRfKWyrYmL8Pb1iZR4WzZRd+7eWIvJdWcaXA2uv7Wd0T9lAvmRubscjzVkf51SdTsEyg2yF7+ftev6vMbCpUqFChwpcbivbX4xvgCppPVG5CLtW872TyUhKu+LfM+8dumJjOWP7KJIC9pzNOY/J617yNdP56EgXare5z3kVMJnwyrKx22/ymRBmx8QhVISeZfX9J6VTeq5C9nsyXVMkVGbnzb/oKYkfgTACjzT0fYbIYTmUV5P74AsL4qkleg0wh/NhKkIvVq++yfE3KcIkgmPt5LH8F4rvn63zd5j3p5POdpblndr+jgJqttBTL46/sqHwVKn8FYpKgWagTX5LbYawVUZH5ChUqVKhwwcPXIE8iTdauXOyBZE8yefF/Kwtb9vvkuHfOg4VT9nl2DUpkWvgcEbPPTLBtHyOKzh6eMbKU3fe+FDSSfpw71X3pnobxKMcgdvi2UzqlpkIoAgKs68J8XndThSuvfsoFCV87LqVEmZWXNEgJ2L1f7AXK/9e2WaHMNn/FPJVBuH9KE8rC7WKDXlzF8U1+/DBZ5ON9s/i9PL5y0p373dN3+/nQvvLHD2zaqwmZq+9cmvpaIrGHZeVEKOfNxo87E6L8vGbmR34r7w0Vma9QoUKFChc8xsiiGPeWkm3yKyh7d0EZSd/rdVm+Cjn38rZzhnKk3nx3ZjVl4Us05KVeO3wCUabl1V9yOckrTPeWTunGWZk3DXIKbWPyYe/nfygva/G6lMiWPr4HIj8hnUnE0pJ5EARSocR5ekXxO6pvY56r+3Ei78KU5YuspJnp1qQMPDyNdp5wZ/1nXECc1Gt3Egx2SstG7aeZ5UMpiVJyLM5J8U7caD0hjxCMhVTK5ijr15am+9ZZeGHxBYLzkP0qMl+hQoUKFS547GRmk2PuZr7MW7D4X0rixiecXiDhbZ0sXNt0xwi61Qh79/NEPstr/pApz0zECSXZXgBVpuIukuASgl2mmS/en6y5tJVJoY69Mij/4J58+rYqbfAyruvyauvXlYeMEJm4VEFLXSyj1YRm7jKzuy5Cv2j+RY7gqXxmlRfG+0gpXbl9DXHeheIOcM2fkdPsp/H0bR9wuZwoPPhl96Mphs/3qdLcTqjv8X5io/PSLqS3m7Czk2a+eD+3AdjToE9Mw/ZhYyoj8kUvJlS4FoWyeZE6km7DZ0ZN+bz6Y2c8md1QkfkKFSpUqHDBQ0lL8iyRNKYUAVjisJtdvLcibjx4aLOcIK/TNMTe35hK9nuB7BcpgUDos+SNRJH3Qi3ds8oezCPAesoo40eQCQNKFejEBGEjKNNuq4y9ZETekKCJZN5mRIxfK2XK4HLv8qGErkMphHMRKqzdEJB53rFeezwByJXD/uvtfVDK9ANDpgvkUiAQYWavjzOfKhD5Yr3Yslmy5+pEZfWmZI7Ep2lKmqaEShEGoS6/AFSUq63JKBB4jwT6mmNhCastv1deW/bdU5vUH4rPqvGwZXUvs2u/ELkc7CAETPrky0Ppd59SW818pp3PnvHvj39wMt7Y6poVDO3zOwgYtpsYEa70d79urUmOUox5pdoNFZmvUKFChQoXPtykSl7zbk+Hskq3CRr5onY+r+PztOM++bPEPbNdKMlYUTPvZc79VNSUqpwGWRWDOnOUvHmLJfMu74XVidJr893GPUZcdtNo2nDOgN+rZE8rmaODNrxQme2/KPHag0IF2pWkUsodtOXqwxIumz/DnrK6yJNBgdAChDZg9w4yVUbqK1PN50ltJjBZIu8LPnmtvJQSIQRSpgSBQCnpCW7eysKkas1dqJJr5fVOQ/D9Ot9VtVtCzktyULoak7tVqHsp3XVprAXhcDcyP+m5HXLsvnnNA4X+4GvvXUfKAk/cJ+CvCGXh83WZCV2WyGe/598t+fxlwjA7N00BFZmvUKFChQoXPHY0s8lh5xnSn0M1USo5qdSPoiS6vWx0dEKBzbvwDn2y6as8WfcklEwv7RMcMgJh0yg3bSkhKVaN6KXtfSm/T76+i2mWlpudCexYeGXbRGA1zznPRF7aefKXaU6V1RqL3EMox7GEFjA85MhaMe6JJHOc0AdBUAhDrs8IJtSX4+5er5hQcaqUHpZEtkdMavudwk4i3rsR+t3Clf1WvjqkoZs0T56LyMaCGXNifJzvLgiVpD72TFn6trz+nayN9TifEN0OqMh8hQoVKlS44DGJZD7cuCZ6fTkP7OT1Ju8WMK/Rg0x7XSTxflif9Dv9otVCT9iEGgjhGfP4BWQCe9hZG7o70RqHK3vgLVL4dWKvhXDmN4EQKAKtxQ+yZ5ypg6cZBpDSaIjRf6VUOg4RoGwN7GJhYwq0a3lsMP3RebBmNlozbzT0SmXuNrOlnd0jtcFzen0bxgbdKZ87k8wxodGlvXN0u2nVi2GKaZZda48z5y8c+MVyAqBd9Sl5xN+j4vzcm37np+Xf0+R/kkRVJjwU7/nP5gykvLLpVbfKzKZChQoVKnzZopSYPIJx7hU7ebjJE3kvHTxrFf93S+gVOCNzPIJjPwUSZdObpJ3Hj78MHqE7L03lHrS5QgiQ4JnKj7WdEAI80xp3zxd0TOF12b30i1p5K/AoiZKawe+4ijOBbE4mqpkde1E7nyPIkGmEDYqa4FLiqsw/Ywr63dplr8LI+Wj0Fbms7ULk96p1Lyv3pOsx+HZowl/xsEQ93819gm4PL/N/K6ZpN5nvVWu/Ywg1HiKL0uR58sJCKSoyX6FChQoVHjXYnXT75GDn8Hv1G1+aiqfVK82bf9/+M8YnM618QZeK91OmmM7ZTftxmLSNtKDsQ/koJ2vmi/HtBcrTOeaZUmbjbr35FdWoIvBM8FU+TikRQTBGdrSJvb8p0X4wpDpFiMBpya1P8MBUvD6pVWSCjotPZ1DX8c4EX5nVAOsGUbtCDAqkXOcrO8AKiszP7xkuTZH9Ivy69fKS+2vrwMt34MqX1ZntdqIQlyfFMQYviFIy6zsuzexaKbtCUoIJanPfFGtvZlkZYXemKuZ+dm/cJGysPP4tvxvhF61sxaB8TGVb282/rmF3ep/4QvYuQT1UZL5ChQoVKlzwsLbJPiYS6fOAJeRFYv5w4vFsStxfRywnRe2z9jyF8zTRYJ35SJVpiC2hFsZMBSEMeQ2chttXaJZpo0Ux2dIsZgGs7bmy95VPZwztsgKKtFrUrH70H08QUto0RRgNvS4DhLbejCbWFUKlhnh5G0NlSpokpq4VSkldH2GICozgIA2tDwSB2QyrTNh8CaxwkNc+6w2vKTJNtDY+TVGpRAUTiKzyawRH7n3hyRLR7IsOJV3DF3qE1yE0yVZ5kumtRpg9wJpu5vh71mblRF65cI6oG1I/RuxVZuLk8oXX3qZctl2FfQZy1+VCpn3cxuMKkGnd/fojf51f1cq3pSumaTolTT9U48+7a1VMKyuv+5r7WzbgM8F9jyKzQ0XmK1SoUKHCBY9JRLuUhJu5N29pkje1mGQasxeUxjVJyz8h3mIcyr8qKhZz3KuMmChEGFplM9kF42SpqAnPMur+LdXOl8VXYmJhf88072S8xgguIjDPBQJrIG9dAbr0lSrhQ3mzDi0LKE9LrjXwUqLNd5QgcCTMO73K5dSsdYyVYbyO/fIqZ1pTUO/mq2oMPpXLUX2hHaUWw5ZFUzQxmpSOr5XPlaug5S/PbJaGS8e7zmn3S/Lix+hWQnbog5MwviE9qxVN6LN7k2zn/fGSJVn0guPFncvauLmRXzI7IlzbKSbawufeReVBdkRF5itUqFChwgWPST7kywm6IWpq8rNlz++GUptve60jHCPpec27Rwg823CnZfY0jUWNn1UO6r95OpCz87UE1/5WRpy8W8XS70o0PDI4yd45I1rlJMuawiipffyLAE2QrUBk47b7WAsLF47SeYwscxOZ/fU9zRQ3PpaVIauTvP30RBt5U1a7hmBNe5wE4wlfk4Q6T9Ixz/h5zMhlph12RXbPFXpDluaE5aC8hr9EcjSadut+016X280zVq87YVLd79SX8uYoRTEny0d5GcfTzMlhuft230UxsjJBIZep88b5aufH1yUrVDhPFJehJ30+9KEPfamzmsPHPvYxbrvtNjY2NvYU/uabb6bdbn9hM1WhQoWHhTAM3ScIAvcRQrjrvaLs/eXft9dlKLWlVkVCRXmYIjH0yKE05grZ7xKpJKmSOhzjz09Kz5IwKSVpyUfuId/ngzLCK41tuZ8X/7ClNE2Ruc94WCml04Jbcut8x1uFuNQmMcW40zT18pFfxShNp1ifYrx8xbC2vwQiIDD7AIpa7Z00z3gaXSup5UyXVLFuJZgDm5R3iJW2F5GG1tvP7m02qV3KPjbMeL3lvdOU1e2k+i7ryxMFAlXy8QR2/9nxMabG8ixVSR4K/cSmM94O/jO7VvUjgkozX+Hzxu///u/nvv/e7/0eH/zgB8fuP/axj/1iZmtXfOxjH+P222/n5ptvZn5+/kudnQoVKnweKPXnTYl2vaDotM/spoE/H/v7Ug29yuzXy8IXEtPa+DEtv7f8n/so795k9qBXCErc6/maTi8Of5NmiVNEL9WxhErLlteo2mDlbjSV0odEWQ28CHwS65FgX7WfI/Jeuqis7Crv/71MgbqrJlmAUPl6LAoEtixg9wF4Ri2+Rt7TtufTKOljKqtxVbx2xDIj60op8tsx7G+7aYxL0vHJqUdsy8j2eP0VNeU7e4SZqJHfJSz4RSvGMd6mWT8qlsEGLwgDJX/zfaCQkZK8ZHY2+XznzKh866E9KvcrMl/h88ZLXvKS3Pe//du/5YMf/ODY/YcDpRSDwYBWq/V5x1WhQoVHL0SQ2VZLMxtrbei4qYyxhHbzaZFM7jnNHcJqLuARVeF5cclHUmL6rcpNckqsnPVdYQQF+/hO6kBtwzsp5xnVE7nvHvX0Ui5/3pZBeqQulydlSJLAbEgtN0+yJjGgN30KqSAwZjZSoYQ2w3F1aMim3RKgbDijeRUIAhngHJF7WcpqVozXsMIj5LZSzImyzsYib2bjNpoG2epOIAq1alnjROIuchWuLLl06QEqO21Vr1IAeDb74MrrNlqbOHI258rKRSoj684zD+6vrWObZplf+Py1/W7j8Cs+6+OTPM34QstYFVEyBj1ZxQqLWT6yOPP5M/VrXwne30lQ3idLKx8iS4/Mqsr+ZnuCKEnGH8x7RGVmU+GLgre+9a084xnPYGlpiUajwbXXXssdd9wxFu6yyy7jG7/xG/mzP/szvuqrvopWq8Wb3/xmAB544AG+6Zu+ienpaZaWlnjVq17Fn/3Zn5Wa8Pzd3/0dz3nOc5ibm2NqaoobbriBj370o+732267jR/7sR8D4NixY+5lcvz48fMql83vhz70IZffr/iKr3D5+cM//EO+4iu+gmazyfXXX88nPvGJ3PP//M//zM0338zll19Os9nk0KFDvOxlL2N1dXUsLZtGs9nkiiuu4M1vfjO33XZbKaF429vexvXXX0+r1WJxcZFv+7Zv46GHHjqvslWocCEhjELCKCSIQoIwIAhDRJiZ2pyv7fsk7ez5uKv0J/zSZXhrTlAM66WbJ8FkREPngqLqbpKJUJ4U7WJwUdgdWZa/0jKSmeZINAEf+0hJqhSp2rvJhTOnkRKVSm1yk6YoY35jf0Mq5wUFpUBKMJ5ltJlOasJm7Wtt2bP/8oUTKiP5gf0EgjAQBO7QK+nIr0x1GgKceVcYBoShfm5cS+7ld6yWU7R3nhRVMPvQz0gnrKhU6bqwXnRcnUi9suHx+mIeBApRsE/S6aTaQ49MSNPiJy01qxk3k5FjH990p2jGkzOB8U2gJn0KcH3QfSgpV3EcelFKrynIvwvyrSby/X5C3NKVxTePK4RDoQ3lpIutfLRNRqWZr/BFwR133MF1113HN33TNxFFEe973/t4xStegZSSH/iBH8iF/exnP8uLX/xibrnlFr73e7+Xa665hm63yzOe8QxOnz7ND//wD3Po0CHuvPNO/uqv/mosrb/8y7/kuc99Ltdffz233norQRA4YeKv//qveeITn8gLX/hC7r77bt7xjnfw+te/nv379wNw4MCB8y7bvffey7d/+7dzyy238JKXvITXve51PO95z+NNb3oTP/mTP8krXvEKAH7pl36Jm266ic9+9rNuifeDH/wg9913Hy996Us5dOgQn/rUp/if//N/8qlPfYq//du/dRPxJz7xCZ7znOdw+PBhbr/9dtI05ed+7udK8/uLv/iL/MzP/Aw33XQT3/M938Py8jK/9mu/xtd93dfxiU98ojIpqvCoRJkZTFH/nNsI6mGSZniS+c1OJjfF2Mvic3mYoK2flJdM9e6lUyJTTCpnPo/Zwr7vYSNHN/1yWnJj0ixaEChPfW+Jjcu3DZrLk6VB5OqgmPcyba/w7okxAcdG7Qkv7ntmwoPS5RfeykjOe1CxTYrXro/ly5MFGt9v4YSkMWRa4vFf/Lrw7poyZPWSkVWfYlrzLKca9k04yK/RCLI4JxHfMo45qb3s3/Lfx8tb1m8n9eNJmnxXP5nO3JH6SXmx+dktzbKw7nvxXu7fknGLKljc2Bax49yG3JsSoiLzFb4o+PCHP5wzlfnBH/xBnvOc5/Crv/qrY2T+3nvv5f3vfz/Pfvaz3b1f/dVf5b777uOP/uiPeP7znw/ALbfcwr/7d/8u96xSiu///u/n6U9/OnfddZcb8LfccgvXXXcdP/3TP80HPvABvvIrv5J//+//Pe94xzt4wQtewGWXXfawy/bZz36Wj33sY3zN13wNANdeey3Pfvaz+d7v/V4+85nPcMkllwCwsLDALbfcwkc+8hGe9rSnAfCKV7yCH/3RH83F9+QnP5kXv/jF/J//83946lOfCsCtt95KGIZ89KMf5ciRIwDcdNNNY/sQHnjgAW699VZ+4Rd+gZ/8yZ9091/4whfy7/7dv+M3f/M3c/crVHg0IjNt2Xv4h5NGKdFnZ11akShYM4VJcXv8C63vDvyAGUE4/yIU4t49rEvW+yczzTDhfO7ok/uSWnFE3stHWf2UbUC2351uXYicd5WcRhdN+q2pTFnb7fR9R8GohPBmZjXZX1dle4EytaVsvVlzHuv7Xte3MyMyGnp/w6nuKyClIAzN3gOhnFSmY83s/oUqL0tRS14k8+WmNXnCPGmVy793vkR+Z8Kd9TencfeEh124enmMTiAYz5sQAmVNt+w9fHG5LH/Z2NWk3oYujoi9oTKzqfBFgU/kNzc3WVlZ4YYbbuC+++5jc3MzF/bYsWM5Ig/w/ve/n6NHj/JN3/RN7l6z2eR7v/d7c+E++clPcs899/Dt3/7trK6usrKywsrKCt1ul2c+85l85CMfKZ08Px9ce+21jsgDPOlJTwLgGc94hiPy/v377rvP3fPrZTAYsLKywpOf/GQAPv7xjwOQpil//ud/zgte8AJH5AGuvPJKnvvc5+by8od/+IdIKbnppptc2VdWVjh06BBXXXVV6UpGhQqPBpSRtJ2mQ0GJ5rQExUm7SCZ9bznFz6TNrj5B2vPHeq1xf4ta2YeHEkXr2CL/2EertBGBQIjAM8sp6qknmBDtkP6k+pnsSWVnLyiWgAqKJiYZJrV9mblSGcrSDrx+IWxf2Elo9BhnrvzOpEhmJkL2pFmZmdVoc5jMLMZeZ3bqXm2LTPNuVy3KyPvEzyTPQhOez7WFV9Ss6HtPfyeBQ3+kZ9piPUAVyfjOAka+WXxt/oSwYu99JRf3pO8PYzhXmvkKXxR89KMf5dZbb+Vv/uZv6PV6ud82NzeZm5tz348dOzb2/AMPPMAVV1wxNkiuvPLK3Pd77rkHgO/+7u+emJfNzU0WFhbOuwyT4BN2wJXl4osvLr2/vr7u7q2trXH77bfzzne+k3Pnzo3lE+DcuXP0+/2xskJ5+ZVSXHXVVaV5rdVqeylShQoXHIrL7qVEOgud2Y3owGPxTPpu7xWFgKIm3TeR2QnWfEYU701Ie68432et7bgXwXiAfAKZOUCpiYG99vXyRvuYW01QYw9awrUXkxtb45PMJx4J7LjReYKphn1uzDxHhyR3WVgFGC+LZ4JhEhrTeBfujaUzQdurnHq4IAAV0/EEo3zUKiu3MsKbDZ8rw/i1XyuT2mxiWzqTs7Lf8ytBfl+xpH7HuF3o8ut8NkT2o8jitPetIVPW30si85pGFdtpj325IvMVvuD43Oc+xzOf+Uwe85jH8Ku/+qtcfPHF1Ot1/vRP/5TXv/71Y5ryz8dzjY3rV37lV3jCE55QGuaR9hUfhuF53fdfIDfddBMf+9jH+LEf+zGe8IQn0G63kVLynOc852GtINgl6bvuuqs0/cpPfoVHO3LmEd6/+XuFZ/SDmTlEySbSnT7FdF1aapyQjpkI2Ofc48W4tQZc/xQ4W2w/TeFssSesLkwudeGbMNmx8ZaH17nKajf7KPyNmpmvbhPSckHve1EYEIWVhswrTOD++oKSfudl9TqmlTdxBG63ap44++9Zm0aZPfYkE5Fs1UC6so97WMmTbldxebcrWnNMWRkswRMZWTYPZB5npLv2EkAJc9iWMQVxhFz4yWcecbRGXzrf63g+6+1hUdbEJ1/GTAjDa3NbpsnwmHBJ3ZZBE2WvbQrx2fWgosDj12dxZcD/68epCtdleXV5oiBjCG3+4gR884M1RXP3ykriOP3ehPKKzFf4guN973sfw+GQ9773vTkt9vmYfFx66aX827/929iL8t57782Fu+KKKwCYnZ3lWc961o5xfj5ar0cC6+vr/MVf/AW33347P/uzP+vu29UFi6WlJZrN5lhZobz8SimOHTvG1Vdf/YXJeIUKFxBKKJj565mG7ELSJ90vkr8sCeVmdf+d5ZNLq5F3m0n9OIQwrjYLaWbuU0rzOFbSnIIvK7e9HLc/3+O1MWdAyjyZV6pg4pDZr+fqRo1f+9rTIqGH/DkCQRB4tvQBQVBG2LJ4822VrxObV2tzv5tw5qPolWVHTa/VVkup29Hx4oyY6joc93ZiagAhGCubJuKetx/ltwhIIQiMfZGyNvOFOpAyE0RcWZwpj823JeklZbRE3hJ3XZBMMPGCTp53c6Emknl39oAl9MXVGyNQWjKfr6tMaPKaZCLyNWmvLQUXbhy78VeQ0ZUZa1bQJZfvnYQcX8DZSRDy6mVPoSpU+DxgNcT+wNrc3OStb33rnuN49rOfzcmTJ3nve9/r7g0GA37rt34rF+7666/niiuu4HWvex2dTmcsnuXlZXc9PT0NsOcTYB9plNULwBve8IaxcM961rP4oz/6I06dOuXu33vvvdx11125sC984QsJw5Dbb799LF6lVKnLywoVHg3Ys82q8D7es+ZijLzuVQvvYxJ5GYu7JHw+o7mIJsezB8VE/pm8Vr9UKJh07eXFanwtiuTHL5sl+5bYZDbMRe1puXa6qD3Na63z8ZR91/lm7Pfd0tkt7FjeS9ItDYslwF56VqNdyjDLzG/Kry1Jza0EeI1RpvkfKxeF8kwi8uPZzMIV0vNhu47/mVyeHdIu1sOYcIgrY/H+w1fo7TIW/RUg4T+zt/R84XhPdU6lma/wRcCNN95IvV7nec97HrfccgudToff+q3fYmlpidOnT+8pjltuuYVf//Vf58UvfjE//MM/zOHDh3n7299Os9kE8kuxb3nLW3juc5/Lddddx0tf+lKOHj3KyZMn+au/+itmZ2d53/veB2jiD/BTP/VTfNu3fRu1Wo3nPe95juR/oTE7O8vXfd3X8drXvpY4jjl69Cgf+MAHuP/++8fC3nbbbXzgAx/gKU95Ci9/+ctJ05Rf//Vf53GPexyf/OQnXbgrrriCX/iFX+AnfuInOH78OC94wQuYmZnh/vvv5z3veQ/f933fx6tf/eovSvkqVPhiwgrHOd/UlE3qeW1XjswW7p2POY27LnzfK/KrjmqcdBgC6GsDi2mPxzmu/dOPBUwi87YMY3EVv5tVBaSCQGjnKUK4Q3CUEDqMp5kdj7dAslRWdlEgX1ZzbrXyvqZ+Z2K7U/1kWnn7KZrx7BTXuGa+XDvvE9JM+y/wl05cf/W02UVNckkr5O7l86icJj+LR+Iru21f8vPuVlRU3mRqR5QokItCV9m4KR9LphZKSHwuHqWKdmCm1OXPTcy6AKVKClDIp0t7Ah+3pxRk7Vj82P/yz0xMVxVH7s6oyHyFLziuueYa3v3ud/PTP/3TvPrVr+bQoUO8/OUv58CBA7zsZS/bUxztdpu//Mu/5JWvfCVvfOMbabfbfNd3fRf/4T/8B170ohc5Ug/wtKc9jb/5m7/h53/+5/n1X/91Op0Ohw4d4klPehK33HKLC/fVX/3V/PzP/zxvetObeP/734+Ukvvvv/+LRuYB7rzzTl75ylfyG7/xGyiluPHGG7nrrrtyXmtACx533XUXr371q/mZn/kZLr74Yn7u536OT3/603zmM5/JhX3Na17D1Vdfzetf/3puv/12QG/GvfHGG3PegCpUeDTBN3kZ15iWTexiTENd1H7vRuTtBF8k8w8XWXw6Jp+w73Q9iXzKMSKv4w6CTPmxU9km5hMyUhMYUmrNNzwzgixsidvBMSKvrCSEoz/eM2WeTGx5iu2wVzLnhysTFIphi2YfZZ5WytIrEvkgCEw5NanP9588kfdrrMgkc0r3ApGnqFlHy13C5CFfVzKXx0lEeifYZh8vd3a928pWWRzFtCcJB/5qQHk7lI0FXadCKCMb7ObyMpNbimNQGFeTfl/PE/nyd8MkOn++7xGhHo4KoUKF/0fwhje8gVe96lWcOHGCo0ePfqmz80XHC17wAj71qU+N2dlXqPDlhvt/+zYApyktEpIysgMZoXWaWW+Vz990uZMm28aPF/teUNTUmUiN20wjnARBtjF3B5v58bhNmSmQKCEIRFgqrOARFI9qT8y906CmmZ/zNE20zbfUp7VqucRrC/sBZ4edv/b+ouz/hEFAVIsIREAYhkRRhBDCnK4a5MiVK4Mhp0mSkCSJbt8oIjDhwzBEiIAgMG4kDdHW9/PmQ7Zf+ZBSMhgMGA6HSCmJRwlJmhAEIY1Gg1oUEYYh9UaDMAwLcVsba4El3qV9wmpolRhrCV2+BCUlqSmnkt4GWKH7rq4rTN2V1ZNH4KW22UepzA0m2d/iQWxeNs1mWXJjTyqFPtnUuurMzE1KBVCT/TRNdXkKxDyMIiLr3METwLPxbTde+4JXNu7LVlds2Czf+XbICwpZdP59S+Z1NfirKx6pLxFo3bmvY79luX7aT9xRrO4xVJr5ChcM+v3+mF/2N7/5zVx11VVfFkS+WP577rmHP/3TP93RDWeFCl8umES2i+RukvYUxs1s/OtdzWtKyHwp7SnE42vmchtWLXFSCimyk2LL4izTBOc04xSIkyVBwm60Hc9XxljG6bxWwAdoD58KpbR5DYE0SnpD5gNpCJDZSAmabDqy4xH8ADL+ZdO2HliwFjhY93+Zecz4HgBbB2OCnCuj8D46eeepVGW/KJuoQgsmaZrTHEspSZOENE7MdawJf6hA1jzBJcuHv8k2a6Q8gVde+bM8ZoRfPy70RmGVxVSm5RW2gAgUEiltfNkhUNl1toE5ayObP6tjppzQF7TwZYKza0DKzW58LbkP6cUnpCQNAtMHx3Ni87tX6HeEH4s/epULw9jd/BO27+bK7o+d88iTX2N7RUXmK1wweOELX8gll1zCE57wBDY3N3nb297GZz7zGd7+9rd/qbP2RcHll1/OzTffzOWXX84DDzzAHXfcQb1e58d//Me/1FmrUOH/GRSJd9nSuV1Sf6Qw0bzCy8OuKBD5/A2Vs0HwTYkmrQ64KMbMcERmDlMwLcrnRYyRzFzUtp4FmnQqRaBAEWpNZyBQqal7R8qVtqO3phxIlPSIi7U+sVpOj9jlKKFHmKRUzptNGfJ14ioFjKeRnIxji+4RZOXUqwqZ5s1s7OqDNDbz+nCn1BBKmRH5UpKbJbSrgYQiXwHOBZJHLksY4BjRVbq+oGAP75P3ogCE7Y8ZIS8S+olCrco/J4T9mwkpufwKKNqv+xp+0IJiUBgPuXRLhM/dkH9HeCSe7IRcl8FCzq2AnXcISiaAwu7t+wigIvMVLhg8+9nP5i1veQtvf/vbSdOUa6+9lne+8538p//0n77UWfui4DnPeQ7veMc7OHPmDI1Gg6/5mq/hv/7X/zrxgKgKFb4csbttb96sIbuH1lT7WusyUxQKZMERnokJ5jjYWH69aJRjklrrOqZlLRVMigKEyoi8IeRCCKSSCCUQAUiZ7Rcomk4oE6dNvXQFwxcQcr8L52ZT82Z/eSAjYJN0ti7NsTrKQlo75zzp1KEmaXvL7ti7RUKfS9cjuJPsyMtOPnXuEyf0it3asJhXT57I8qq8qlf58BNKU0iTvAbeu/bLXrz281Qsw7hmvrzvlF3b5yZnP99QRUHWpev6yXiZTaI2dOnP/qjLrgsk3huHdgyNVYqVc5UNg9dgXiCbF39s7PZOKUFF5itcMPiRH/kRfuRHfuRLnY0vGc7HlWeFCl9u8H2aj2tAi8Qho3Nj5jk+eS9+dAJjae9E5HNJljwnHQHxl/utOY3nw9rP4wRktu76+ZwJjSHwpAIhpFdWmzmPxhQEid1MjhyB0olq8w97WBGYk3Oy43MyASbbhOhMOnL5wCOIkEqt2Q8CBal01auFE4EurvCq3Tdn0R9RuFtahx6JtWRdHwyV5vqVtaNPkiRnm29/c32xEH/xejKJ9dyXKuF1vQAhfNJqg6uS/pkn1Vl9ynwepcwF2JnMj2vWtWv3zGbebRY2G6OL46+8G49r5XfKS7EtxgQ8f5kFPw8FgbIQd3lrFDKcex94OnxfWEAQmPHlVqVsmk6Y0H+tdr9EPtsTKjJfoUKFChUueEwiHj7ynl/yZH7PKC7v7xTOXY9duGfz1sgmjMoIuc2vn/eJG2+NYGDvBHjafGtaY6mYW43Il2GSEJTbJGw2B5dq7R1Zz0xBtCE9lt+4stsnfC1uplD1z5j1tNNCm4qIwBMCPMKvba594mvyYj8mqd1avUwjX/RmY++VfTJtd760Y+21kzbatWXW55Qq2pWrrIg7xOMHKCuXM7fJAk0cU/nYzGPmk4uPwjBwfWnXDOfy6krp5XmS5xm/PxQU6+NhCys+ebHnfKE7uMB0d+WNA3D2/dlYN9+UMK+UPbxTdkBF5itUqFChwqMEGauwc6MYI4/kf/D+KgxptsTPkN/cs2NL4J5d7UR7DTwTGqwyDlBIlU3u9p7wE/Q2dFo6YE0IMj6nnKbPd0fpmyI4v/AIvJ2muU23WfE80cKSeIxXnyAgkBKEICwjonajq0+y3X+GkFP2EVk9ZPYJ5IQuy2mFcbOoFEJoTy7a40+QV5h6BLMMWsZRxm5fIQUEAaRp5r7RlsP/a9tAa+atn/k8iXV5RiunnQbXriYYbXimQR7nnOP02WqA1bg9t5VQRPFpqw3O14FSZF5rlLZJF140Ph/O2i0LM6a/LjBhJ0D6qwsu3/qbyAl8XlxFszeVCYll9vZ+P7JlzuXPdCWFWbzw+pqfZFbDuV/IVaz9owD06pOwAptZacrLrZk23sVYVn9+vXl/94qKzFeoUKFChQsegSNJ4BN6q3FzxEGAICAwrh+VXQYHEAJpCL32IGO02IY4WhQoFLtpGZVHGCFPCC0J98mIJhaWCCpPRlAuKeUIIviHFSkyzaWDIFviVyBTmZlD5MJbLaHJl8i0+EIIwigiNIS+lqYEYZhp+W1Yn51ZkwVJRpiVaSOV3zSo99AK0z6W5CkCEeRNTVAIqYUWYdpbqRQh9MFhSgWOADqtfwkv0vnSok8gBKn5q012bM6yOkxTq4VXaBMVhZQpo1HMcBh7GmmMe0UtXPjSZI4mptqNp5ZZRObb3po+KZBKCyq6/rXrTN2O2tWjrkZpxST9XOiq3mv7IkFXLm4MkbdmNs5DjCG9TnDxtfPeCoXwymcT0K4ebacOjKBs4jGRZ6TeaxOTV8Pa9ScIEEiEsr7/A1eH7mgxlQmJWhhUTkp1o0Llj2hSwiWErXAhILDpFFcPClKvTjcw3pzw2swKRv7qSfaMFR7HfsQKjGrsei+oyHyFChUqVHgUwEx8juzmNVxKWEpvSb0AkZ+gEcIjPH7Umb3rWKq5+6r80pBjxfiEbX8HlQkWCgKU2ziXm9QdYfInfU2efEKPbxFitdqAkoo0taRUkaqMuDotvnsuI2tBEKAAaUxshBAERgjwD+wKKNaTcv+WaeXdb7ZdvLr2BbDsISMgOEFBasFLaBIeBBmRt4SylBL59RcE2k++ZbHYcucP6HICkPOpL0tt6V3l2TLYwnsmWtpO3QhS9hAp97ufpv6EoS8KZJpnt+rh15MYy8Y4cS7Er/wfCtVkq956lMFq8U0cuRZXhf5qSG1RI+9fF+vNCZLOlMYKeeP1mxeEPY27q2q/Pr268fuIAFS2eTufkK+R98m9fd+Y9jXCqhACYYQ6X87JJzupU9qoy/cF7IQ9k/k3/uIbAe3I39rK2b92ack/Nc23ZyqeqBYEAVHYIIpqBIGWOKVKAOnFB36HljJx/lltQe1pbTaMr4kIwzBntxYEIVGtTq1Wc5tWQvNSqtVqCCFIpSSOY0ajkU6LbFOFPaTCHXWMfoGGYWi0AVryswdCNBoNd1iDPSwiSRL6/T5BEDA11SKsBXQ6Pfq9EVFYo9nSp5jGcUyv1yNNYsJQMD8/T7vdptGoEccxZ86c0b+bAyyCIKDZbNKot2i2pkApRqMYKRVJkjIcDk0dJYziAf5L3+bdtlm9rutIlytiOIwJAkEtqpGmgtEQlEqpN0JqtQClJJubWyRJkjtQo1arEUWhsWtUDAaDMXvCMptL3y7U1rsN779U7e/+UdxZX8mO2C7GX7Q/DUREGEYEgTkKXqWmT+q2F0FAUIuI4zhbSk0VzWaTWq3G/Nw8Qgo6nQ7dbpdaPULKIcPhkIWFBS677DIWF/cD2k/8+to66+tb9Pt9lFIkSUySjsbKpZSiXq9Tr9eJR4rhcEgURQSBII5HpNJMIFIRBBFRFLm+kDq3b4p2u017uomUKb1ej1arRa1RYzDos7CwwNLSEvsW52i1mtQbdZePJI7Z3Nzi1KmTnHjoNFtbHUajEXEcMxj0SGXiHWHuHQEOZjxDFDZpNqcIREicjOj3u4hAomRKmkiiKMq9tPx+kbcLtmRF9w+pZwYOHDjAJZdcgiJgOIrcRrTV1RVUMmJ2dobFxUVq9RobvW1OHD9Nf6uDYASBPqdgcXGRmZkZZufm3KQ8OzvL1ZdfzNzsDPfcczcf//gnWN/qovz3EbHpvwFBUINaRKPVZGpqik6nQzyStFpTBEL78VajhFAI+r0+o3hEq1mnXs/eDbML8xw4cgipFLOzs3zmXz/FifsfYHp6munpaRYXF5iZa3P8+AnOnV1BScHsrH4vpGnK6uo5ut21sU1gtl3KxloY1mg0GjSbTRYWFgjD0L1b7vrrP+GChfLVkj523jzqBctHV35b/7ZLdPrtp/ur9EiO1VL6CfhfnQbRhbc/ZqQrs8m2ZMz4dJ/AEhwhk5Ik0e9GaedbFIIAYZc3EK5sgRmL/vi0/Sk0h/f4YzYUJafKKt80SOXKmhNKcAZO5XCEytSSYkwAy4ipwrrMtOPAlsOuQFj484ifn+J338bcvv/se8OWt8xbi/9s1pQ7a2Gt4CWl1EWWWfzCChkeEVfOFebOcecIfCGMrV5nKKJK8m7aybyGncDpmsdvIlwTudUBE8W4RZrQHNcn8Zo32pUSHWFufhCuJ+TqPOM0oJxG36uDwigRqhjCL0jZNfl2Br0AofT8JOypyK6exoWlnLxp2xDG2mqv2DOZT9PUSeDjk0JYSqxsZuypZ5Zc6b9DUhm7MFKmjjDb8Lby/FPAytKA8UHkH5uslCIIQxYWFpibm0MIQWd7m+3tbUe8p6amGAyHDAYDgiBgNBqRxDp/Ng4hBM1m05CwhCCAer3uBJXRKHF5sbvbbdyzs7PUajVGo5EjakEEreY2p08vMxolyF7fnUTXbDYZ9CVpGrOxsUGv16NWiwBFHMf6pWlepEppsjcajRgM+16tBAQiJE1jl1+lpHtWCJEjgY1Gg9nZWWZmZnQ7iJDBIKbf7zMcjhgNYyBmFA8YjhKUShABY0QeIEklSZodG+4TeSuE2T7l9yc7UG19+yTRF+ZsPdv+UbxfJP9+/P6LKZUJCumW1vRSsFnOVAoiEIGgETUZJH19wl0qCYmQsaLdajMzM83GRp3BoE+3uw3ovry5ucmJEydZXl515RoMhnS2e56ApUjliDAMqdVqKKWc4DAajajX66ACut2u61OQIgLhiKAgYjTSbwVpTu+zr44kGdHthiRx7OqpVo8II52/z917L0KYMeqdTpgkiTtRcDSMSZLUTVpxPAKRJ/C2LG5CDzQxaLfb7Fs8gCLl+PH76PW33cvatr9t50kbmvR7QPf1KKqBECRI+qOUQZxyySUXEwZTDIdDNjc32dzYoNfvsrm5yfT0NEeOHuGimUtp1dp89lOfprPVIZEJo9GIjY0Nut0uvX6fr/qqr+Lw4cPMzc6yb3GW6akWRy++lMV9S3z8k//M5tYWcRxrYTcSNFtNBv2EJFFIoYiTEd3NbeLRiDSVdEYjUBBGIekozg7NUYpOZ+gms2azSW84YG1j3ZxuGNHZ2nKKgOFwSBAGfOVXfiWXXHyMj3/8n1hbXafVaiGEJE6GpGk8+d1nxlv+vazf6cPh0L2/FhYWGAwGY2P5QkFGlAuTsij8dUv0JXHglHTOjEPkH84IyQTG6ccryYiltBRCZQfzTPKtMkZOlfecMQ0ZI/N27AhbA5mGWqE18EqBTFPiJNFEUUlSmRrCZU6a9T6WrFlCb4m8nUP8ax0uILLXXthc/RQEEmlJIziCGAhfK59pRjMur5yQ5IppntevpDxR1e8uacid9oYjRDY/2bwWPSL5ebfk3fdgY//GhivYMeuX389DsR7G6qVwL5WpUx5aUq/zHbq8K6/w0jvJ1I/XL5d/r1SAUKb/mAbxBRj/edsUeRf/onApCsJWtu/Dp+HZZmxrf57FEwQKKTPvPf5KkBUUyuozf88KPXYMmocN2S4KwGWrBX4+x/s02TYUpYVIZUg6yrxJzFi1+Xa3HLv3fi/pC7thz2TeTrj+4Cxq5P2C+hO7T9zcxBIoQJN0qbTm3BIZrdG2h0FY7b8iCMYJW5GcWQRBQL1ed+HiRA+6RqNBq9Wi1WoRBIGbzJMkYTgaOcJjj2KO49jlSRPi7ChpyAa1EDofURTRaDSIoogkSRgMBvR6PaIootVquTw1Gg3CCGpRHSkDVpZXSVJNMLK6VK5OtEAj8W0jix1KqhRpbPcQgka9SXOqSWuqzmg0YjQaMhxqjWi9XndaP9AvqlqtxuzsLM2mXiHQbtJqCBGSJFvESZ9R3CeO+2YlJcXJuN6AEkCa6jpJ03Jp1hcK/T5k+5WF366TNPCZRjjzthCZtrNp2WeK/UQIBSLVbSklchSjZMrU1BTD4YD+1oBmq0UYBpr4iIgklaRxl5mZGc6ceZD5hcfSmqozNV2n398ijPTLPI5j1tZWSdNMoxCGETKF0Whk8qUQgSZ0s7OzNBoNtre3WV5e1gKlcXOmhY6UVCaIQGqbUWVsekXk1YkiVak78rzbG4EkN3b7A0kQBpmGTWq71EAIGs2m0ZgHCAKUlPT7AydQp2lqhPB8u9g6du0hQKCPOh8M+iCUmeQ0aSBgjGCWKQK09i9CEBJFNVqtJrVGg04yRArBudUNVHCS+fYi3W6P1dVVtra3iAd9oijkxIkTbG1vMX9gkUEncce1t+pNhNCrXs1mk7oRug8ePMjU1BSgGMSSeqvN9U/8Gi6/6hq2t7fZ3NzUR6MHgnq9yckTZ/iXf/k3ev1tpBKkwxEyjjV9Mn00HUqnobWThF75E0bAG9AKAmIFaRAj6nWQiv3793PRRRfR6/UYDgdsbm5w6NBRrrmmz91334tSUgvwZqXEHy/+OHPj0tN4Wbd09t0cxzGrq6tjY/FCgq85BMbIu/vmE8SyeLypXBm+4emCx4SAyZpwXxNI7lq3gf0m8vkxGkpLOoqaVFn47j42dkvGHNPV72gr6PtaZamUJvNW6BOBE7bt30BkGw99pZ19xp/vQ+9kTr8v5sa1Xw9eXbn3c65trOBlTSDybTFW59473q9ja1Kko8/mC/13fG4omytsHu3vRe81Zas+RW2/H3/pd9fx8vlwetscryrvw3tJa7yeVGlYn8yP1YnNI8oJfva6rHWyMVV+HoBeaUCTf+X3G+OKlALvEcL1DuXfL4XAidZ+EXbky3khO0fkxTjdz68S+G8KsVtCjwjO22a+SNitGYT/e9F9k2/Kkf0mUXrdiCgMjFSTDfpskNjjk9XY7+PLWfalgiPXNqySko31dUajEdPT00RhaDTOQ6SU9I0ZCGRaakt69YQ5ADQJs0S7aMojhBZUoiii3W4TxzHD4ZB+f4BMtTmKNl/R8U+3W0xNtbUpQK3B+vo63W6HwUCTJ0HxBZGRQr/8TuomdROIXohLabdbHDx4kDAM6fcH9PsDRqMRYRgZzZ5ebtTEMWV7e5vRaESj0SBNoNeNtUDSHTDoD4jjAVIlSJkghBHKLJc3cQmRnTLnt5lun6w9y8yy/IE+1sYl/UuBMZFRjqgp82wghNlopeskDALdn8iWuEUgCY1ZzdmzZ+hsrZAMuuzfv5/Z2Vm622t89rMnqdfrhGFEvd5gaqpNs9lkc/MEZ8+tcfz4vVx19TX0+10kKSGB6S/CrMTgtEJa+1XLJhAUGA1pp9PJ9X2AJIlJ09gQYUkU6cNflNWaANIIoLrP23In5uhxBUpv9nObrQJI0kRvLAsEjVoLJfUGMJkKYmNupsl+SBTVkeYeQCACrWd05CkjLsIssYsgIk2kMT/qGSFUmylZolsUsnxNlr/yFIY1BBFCBIRhjWazRZpGDEdDRknK+sYWJCG9fo+1tVUjdKEF5jCk2+0yUgnNSJurHD60yMHDB1lbX+fYsWPMzs7qekwlJ06eotVqEoQRaarLPD8/x5FDSxw5coR+v0+/P2A4iklTRbcTo5Rg+ewyAl3fKk1BSECaTZMerXPzkNZiOtINXH7ZMeLRiIWFBZZXlplfWODgoUM8cPw4W1tbfOQjf83BpSOkKSyvLNPvd1BSEccjZJq4MWHfD5nSQadnCZxPYmwDxnHs2vNCJfM+7ITqT6GZsE9GOMR4GLz3lf2rHFnxoHJ/cnBzjwmhwGjCLWky/V4I8rVt6UkWsSXgYN4N5oRRpTItvZ+mfiErLxL9zkhTrQzy/aKnSpKk+p1sTcJA/xWBVRag7eANmxZCzy9FLb0l83pVV/9mFRtWcPXNClAYby7ZZlxN24EgJDR25CrIPNS4FrHt5tUnStu8K5XXrqP0HoFUpq59le0C1rRIKlKpsKbrmXY6q1O36qmUXrU0K5VJmmpvOoHQK6ZRZD4hgXmH+f3Mxe0XqHDt6Lsj0J45VEFQzwvpO5PGUlI+IVw+PO5j84ch3AF4LDajst7LzhXQpaqyn3KCmRmXmthLAkLdrsqSDMMpsMJgNpeXQnhE2iZWKKN/PSYQCK+OC2PAL4eVm+3twLwzrNCXFTvjRCLrhN7vJQLVHnFemnl/2dbe8wmY/ymiqGFVEoQwNrOMx2ef8cmbb6Pvp5WZ8Shn028nL8iWxwA621v0utuOfFuzE0s+hWn80bBHEkKj3qTRaBIGEaN4mJv00lQSRqFeGo9CwkCglDZNGA6HhEGdZmPamE1ALQyp1RskSUqn26fXHzE9ndBqTSHQtoaBCAiDUGtTVWrIb14Q8olOztZPWiKl30iCkDhOESJkcXE/QSAYDkesr2/R7fSIR7rM3W6XwWBAHA8ZxdpMR5sP1UgTnIa4P+yRpto8QNdxoFdVrCStW41A1DwzKa0FrtVq2v471mY7uh4twc2bxTh7zMAcPuLmJYVMR8amXZDKlHqtoU20kNRCXf9SKiSSVKXUUMhEa4pnp2YZph36ox61Rk1rmeOY7naX5eVlut0uzVrI9FSd7c1VOltrjEYjhp1NuoZwx3HM3MI89UaDRr3BueVz9Lrn2N4+y6Ejx+j3hsTDvjOvkmnqvGtIJfXsHkpCY+eexAlJmtLvp/R6HdbWVpwWKRNkdf90fTQIjcCk+4MWlu04M60g/XGpSNPELcvaSZRQ0Kg1mGnPUqs1nMCqVKpt+lHUa/WcOZd7OQl/jAYoqZfyNSEIQejVNVAolZnTRWEdKRMUCU7TEgintbcrCo1Gk0atRiOq0Z6eYWpugeFgxPZ2jzhOCRKF6o/op13Sfo9QCIIwoDXThFCRDoZunMzMzHD1Ncc4dOiQWTmrMzO3yN333OP2owRBxIkHz/JP//JpVldPQ5rSajb1ZkGZcumlF/O4x13L9HSb9fU1zp5ZARFQi2oIUpI0RqYJQagJjN63ACLUfTggABW4+SSqRdRqNfdODGt14kRy4NAR2tPTbGx3nNnQ8soK3e6AMIzodgccOHCA6XabrV6HSITMTM8x6Pfo9rax/qdt/7B1UK5QsX1GopRwiogLlcwr/695j1slj76V9xhiJ9L8HG/JBGRTcxaHN/1n76ViPpTKvLTkyKAhRBh3lOad6WyJRcYG/EldGvLoVnrSFF9jms9XoSZMHqWZl6RSpEnCKI6zVRnnUcV4+DH1JMLA1kZGnszKsMCY3iAykz9D4DNT2YAo1KtYQgTm/SNytWpJvX5PmJV+ITQzMdc5TlGmEbWCEWQHH6Ey4cm8S6Uy++CUt6IQglCB1vxKiTQHW/lafb0XwWx6VZrQJ2nCKIld/SUyJSREBAFRvUZUqxHWaoS1yD1rlTdKSSdMBF6bW0iVaZB1T9L1kqSJs3Co1Wo5QSrf18r7JIwfrDQprC2/VoRm9Wl7m+PHlooLPSVk1C+vxNNPCXwPM3Y6yhVfZIpZocJMWagUgSKXd2HzVzoK/Ti9QeWJ5Dnhd8JzwnHdIPcu8WorCx4Yqq50nxJkK+J6RU0iZADCrDOpzIwtU4zt3DY7Yc9k3hIDn7z7GqCiVtU3hyhbPs8ItCbFgJGK85tOrBZch8tszvww2t64ThRp++koiqjVIpSSDIfDnM29IzSAlNlmXmG0yTafqRn82vYpRIjQbdhzLwICoqhmNqc2CITWktn0wjCk3W7T7/ddvqan2wihN0z2ej2Wl5cBbWY06PV1uqlekRBC5ja5FifZ4qQsjBRpO22SpGxtbXHq1CmGwyH79+/Tz6WSjY1NNjY2AGU2/CotOBjTp263ixAhYVAzJkYpAkUY5vMQuba3drohjUaLVrNNvd4wcULNmB+JQLGxscG6WSWxuiu/37gXjlKEQreNJaeBSBBoQa1RqxOrLkqOkDJhq9Oj3+9Tr9WJk5hABAz6ff0yAE6fHrGytkKtUWOqNUUYam3ugw8+RKfTYXZ2hqlmk/m5OY4fP0673SaKItd+VjsdhiHdTod+0EMmCYNeh821ZeI4ZTRKCNF7NKIo4tDhIxA29OqBCsBo5IfDAUmSCWT27/hqU16gNb+4+3YSs88HQaBf+PYF6wQlN/rMxK3va1tSLVDWahHDoRbqpIqNedcIIZQz98n3t/zysUALdTJJQdhxou1I7QSvBesUmaakSYIwgngYhdTqegPu3Pw8l195BUv7D1APQqIwQgUBvd6Q7e0up0+d5dy5s/R721oYGw3odPpMTU8xNztLa26Orth2Y7/RqDM91ebSSy6l0WwipWSYSHq9AcPhMhsbW8zOzTGKEwaDIesbG6TDIc16g5mZGTqdDufOneHf/u1TTE9P0+126Wz3aDT076urq96Kj66PWq2BCPz60YzRbrjft28/i4v7SNOUM2fOEMcJnW6XWSMwbm5u0ulscWg0YmZmhsXFfdRqDer1OkeOHGFx/35m7r+P7fUNQgTrUjIY9UlHmabTJ/QwPkEIUSSb0r3PL0RMmgAtUfYJYf5HN6KyG+OUsUQDXp5mUbtWZs6Ad62E/2Re5Vc0cfBXgidrWP20zV+ZkdHUMw1JpdXYKy0IelNIRrYyAm21+wIyMi+E2YifzVF6XtUKHSGFsXu2mzc9Sl+oJ6UkGCWbUka7ScYLdIaMoOa3iVenfn27d6v9DU0M3d4tpQg88prVu203j4R72nK7WpJrD62qNgq1TAjR03HeHMqVp6CN9+siXy/KbYYtrszn6mYH7NZvx8Lq4ucExrHnFGN7RwQi80ZUMubsu8leg159yXpaNih1XJB5Cs007cpO7KqQr0l14XeYHZHl3Qr1duU7K4OVZkTu2hbOCqr5OdJIPC74pD1iDw/nTeaLncYnXz7ZLA6q4sZZ2yEd+fC0spCfhMo6b3HznCaGunKSJCEMtSbA34ziEyLfzs0XHFw5wXgLiVFqSKPecpNcraaX+hF6U681xxFoYlSv11FKCw6zs7PU63U2Nzfp9wfESUKz2TTHPg/p97vajyyYJUd/2ShviuBvxLX1kiNTnrBlX6xJkrC+vs76+jqnTp1Eb+6VDAcxw+EApbRmOBtc2RJlGAoQmpjV6gGh8WiTmYBkQotNP4pC6vUa9XrNbaQdDofO3AihBahms+m8w9j2sHG4v0Kg5AgRoD9KoeSQ0WBIf9Bna3OLQdKnFoV0t9YZDbp0Oz1EELCwsAACNjc3ATh8+AinTp0kiXW7J0nK9PQUtUaDfr9DGEK3u81o0Cc15er3+05QjaKIwWCgBRKPXAciIO4N2VKrbG5tMDs7B0HIqJ/S7XURJBw4egkBTQJRR4gQp2lJEhe/r2GxdWtXl4qbyDS5Tt0LRuVlulwd+v2heE8p7WVoNFpma3sTJaUx4UlJkhgpU9JUC4n2EBWtxVROo1AUPtyk5vVLO9bq9brZZD1HKEInIPUHfZI0ZXp6mlarxYGDBzl6yTGOLB2kEdVRacpWZ4vhcNX0sUgLn/Z9IfUqTiuqMzvdptlo0Ko3XPz1ep3hMOXMmRVmZmYQIqA3HDIYaJO7Xm9ArV43m3X3MYo79Le2QWmvRf1+n1FnxHA4YGVlxfX77Q5sbOi9Lnj1obWTdeMlya4SZisR1nxJiJCF+XmSWHLmzGm2trYYjUakaUqv1yUIoNVqMT09Ta1WZzTS3rBOnz7N/qUlLr3sMu7ufRoVJ7Snp0nkyI354XDoyIy/+c3XTvtkxwp8YRiaPQMXLvKkGeNz2qPKynibMAJWRqiKRC5DmSnD2LWfvosxSzsLb+zeTbzWvaNJKItDWp/lmetD6wrRkUyrLbXjjrzwoDWrmsTH3gbO2GjmpVQkZgVQ940UEIRSEkjzXldZuXxTLUvKAyEIw8D1Lesdzpp52fs5s5CCht6vfyskqFBvfhSgNX2B2aBr68kQJ7v/AzLCW9o+eeVnqaBk2yEXh/USpOz7Mb/vwOcPtqxF5eUY8VdKCytlp38W8mTbPkkTt2/PplFmqlpEWdxF+NynjLz7gkj+Qa/tROZTX7eZ38IiN9yMnGBps24TL67cihpC77JVhgOwCyf3yXXZ/ZIy5wm85h5BEOpVZhfXJAE0P+6K11iBgGw3jj937kUQ2wv2TOb9ZVq/0X0TGMAt1dqwxQ2q/nf7TDFuX3DwNdP+b1YIyOzWM820dqGnzTHsYLCuB+0zdie+n4/MzhvADhShlyXFiBqheVlpe/MgrNHvabv7ra0tUIm3CiCIwjqdTtesEuiXrd5Et6HLSqxtm20H1a5UyDb67mwLVzZ4/U5iTYLsZlxNEAJjBlOjXo8YxTGRWZWw9Wih406NuYdx7xlFTjtjN/PaF4slyd1uj+Egpd8fEgbalCBOtPAQJz3XT3RdpWOdWmszDGEMlBMwBsM+2+tnSOIhp0+fIU0T5hcP0Olus72xRaMWMjczR5qkDHtDNjc2UMbsYWVlVXsMShLCQBAKCWnM1laXINSTwHA4Iqg33b4IbSMukKlEBNp1aated5r6ZrNpJrKIUMBg2OXs6U32L+4jiWPCIOD0qeMEjQYLC4eoRzUziVsb92xs2Re91WQ3m030pnDJYDgkHsWewJV4e1Vyb8HcWCzT2PjjMFsRSBgMYjepSKXJgggwHliyCU57vQmRKnPHlr3jbNwhQnguX9OUJEkZDAZMT09z6OAh9u9fIgpDut0eZ86c4ezyOSBgpj3HwsIiqYLltQ1atTrTZuN4EAScPnWa06fP0u/3zDhuEgSCetjgyOHDXHbsGPV6nRRJq9Vymm8l4eyZZR568KQWAmp1zpxZZm52RK/X5cSJh0DW2NraRsqUWr3G9uYW3a5xyZno+rECgq5i6RH50Lja1fU6HI6o1QX1mtZOSqlI09jV2WBwmvW1bZaWloxtf43BsMfW1pYR9GOazTorKyusrKyQprp/2vFx8vRpDl98lH37FhGpZN/iIr1BlwceeICz586Z/pTqukgz97Q+KbXkxfaDRrPB/n37L1gyXzqpokmTI+rmvlBoEwHzk66T8TiKSqwyAuhra0vTNwlnxN4Skmwuc9TWS0cau5xUSqdgSD0zm+JG2CKJVUq7mE2NrXeaptkGWGNyoxR5wULo1cMwjAiDyNSPcnVjPbg4Yd78DQPh9izZVTh77ZN5W5eO0AtPH2vJsCXzUjkhwao5lFHOWSKPLbsl2al0SrFiW1hYZxpSamHBHwtFZUeOrJE5oPD3HRQVj0UvNkUyn73rM4I4lpb56/uw1yaZSS7+SWUsohimjFOM8Qmv3ZVSuZOFwdJTXTPZHKRJuyXE7p634qRyf/XTrjS2Xe1TwrqmzMogpURYxawvNI0XuuRrXvnp/wXMXhFtIhOEkeOAuXFcFHB26GvK1Ynhc17aY4owW549tGcZzksz70ugfiaKRLso5frk3a+A4vKv/+K0A6a4Ic66ZbTfswbWHkl0lNa+WCCEdrGo357SkCC9pCgEXlw1lAxI0xilDNmipuMIBEkyQEo7UGE0GjDVatBoNJCpJBnFxEmfNE1IEj1h602n21jTCmvLnr14FYGxS9QtGbjJx7ZnGAZj9VPWDn57FElcZiIhNBEPEuqNGu32LMNh0/ist4KIr+ZVxhOLrkv9Yg2JogClrIAl0fZkgTPZSBItTPUH27lwMs3bWmuhJfNZrFAkgak7JbQto4JRPNCEfWuddNSns71NvR5x8OBRRsMRZ08uc8nFl5CmCYNRn0G8jZSSWqsOImT//gNmE/OQVCmSZKRt+JsNRt2ERlQniRXK7GkQUUgo68xOz5HGI9JUETXq1KamCQJBr7NtNsSGJEKQKkk9CEjjlDRJCYOIfqxXPeIk4cF772bqMXUasyBEnVTUCQKMKVUmtAkhiGoBc/MtDi4dZXbmAKiIB04/pE0/0oQ0SYj726gkMaY7gBg3b/P9HluXl+O20tmyrSUzupcYQcFNmtqm1I5HvYk1cmTf9UejiQmD0LmoC6MIJM6b1KA34tSp0ySpZG5ujl63x8zsDM2mNiFZWFxkbn6eeqPJxvomnz15lgP793H44IImyaMhBDC3b46ZmVnCsI6SMOz2aEzNUGvUWdy36EjL1tYWy8vLbG50mJ2dZ+nAYWq1BgmK3mBEb3CG1dVzxIMeo8FQmwuEAmFsjLMN73jvDd1m2sWdJuqBkIShoDndJlWCbq9HIiVBkhAFgV5dNXnS+3tiur1tTp8eEUYRSkGj3mJqukUcD1hbXaXf67GqFHGSEI8SQJsjBSIw7mq3ufjoRTSaTRpTTfYdWKTX77O6tkYYRtTqeqWh1+uxsrJMkvRzy/S+MiMMQ6amm1x62aUszO8be69cKChwEXull/2996ay44b8HOQ/lydyltdme1f8VQ976qMf1xhpKSP52H6VT9wfr/7Gy0kEPpcXL3+W/Fu7e0covbikV2dSn3+rx7Vd0Sik51ZRyQg9Sp+YG5q5RypF6Oo7IAgy861Mc22JezYPaxKo3zEq8L3QeJ+igoJCHjUDHatz2/b2vu0SyhDIMpJm/3NC2ASi78dd1MqP5dXvBYW+lu+HxZWF/CpbGSEvS9MUMtO0+z+X8Mas7F6ZTVjba63CLTtaVod2dWpvj0evw3naeDuuTMTZAPRIfTEelVVcYcxPJsKKfNgx+P0qJ4jkc+HqkXGhqDT9yRUxnq5N4WEo68/Lm00ZebQTgtV4+xKqfXFYzbAfT07KEnkzGPu7b75h/1pNkr+U5W+M9fuBEIJ6vYGV6wfDronXSs2a8Ojl/xZKhgyHfUax3niqNaP5JTcrTEip6HYGRvsYUKvXSFK9eTQMremQdinopH6ZCSo6zzjf05Pq2y6r7VR3FmUkv0xo0su22hRp3759TE9Ps729Ta/XJUnisfhsz7KadNvOlugIYTUOvtsyu2IjkFJrlYIwyA0mP/9+HgMUMk1p1uukg4RBt0sy7JEmelPjwsKC609rq6vs37ePer2GEHW2u1scPHSQtbU1wiSk1Wpz4MABVldXWV/PzD1arRZTU1Nsdzp6E20ao2TC7MwMYS2iJwZMT7fpdrap1ep6M1O9RhKPjBvJOe19Rmh3jtYjRC2q0el0nEZFm1ylnD1zkvW1NfYfOMLU3D59sITTAmXjpF5rMts+wEx7P83GDEFQY3Zmhl6vS5qGUKszlAm9tIvytEm+yZi/WlacgH34wrMdM947cmy829Uwv72EdgitTbXQAna9VgNzgFqz0aDRaNFstIz5SI/hYMgDDzzg4pppz3Bg/34WFxeZmpoyWkitPTxz5iynTp1k+eACrdY0U60poqjG1OwU8/OLhEFDb+o+t4KSKesbGzRbTVqtFqPRiH6/b1YKU86dO0uSKBYX9zGIh4z6PdrtJmk8JBkOiUfG93+sQNkVQeH1U58M+po1X6EgmGpPQxiSxiNatQZL+/YTRiESvSzfbDZZX99kbW2dUTyihmJ+bpGpqWnmF2YJAkU8GrK8vEyv1zPvQS1ktFp6/0Wv12F1eYWRMf06efIEc3NzbGxs6APalNaids2YFkHevMZ/V9g9C+32NPVGnVGcvQMuTBRMBSCn8fPbrjj3+gc7ufe+9CdrafZ4WRMIe+37+NYpOxLv50x4350y3u7BylAkjFY7myftGTnXJ7rmD3DL5kSPvLs68ca2N+aVMLboSpoVOpzWW0lFmmSrS8qQRKuZt/N4lKSuv4WB8WYTZFp/6wbXrgQExmtOYMKFQeDqNwj1M5EMkYG2twwD5RFUPVfY+lGmHshPXcbSQZCJUbq+pWGewjnAwL2PbfxKWQ213ssmlXV1nbrVDWFMMsLQeLIxc6Trf7a8AN4+PU+TZ4SKrHMIAUIJx4ztuR9W+M6UDJlgXkrwxwhv1u7++x5THzK1/dk7KZhMWPUqNH8pFMLogAIlCKS/kTzTzGfaae08QV9nwpzbKG02VPtbnhWe4Or3dbL+bdutSKCz3m++2XegSd++I5zQrpTbUO2/RzJzaGXM3HZi6uO/uVWL0lWF3eKbjPMi80W7c5e814mKZiE+QbemAf7LqGz50l+O89PINIMyR1SK9sCAMaPR9rVTrWlNlmrCudcTQrv900vaCVGYGntEu4yen6h9kpQd3jN0nS8zU8nS9yd9P79+2YuCSZkmoWyFw/7mH7xU1MpnGtc8+RdC0O/32djYJIq0HbOtB+u6zA9v0/TL6Eumvu2+T86Lwpm/N8Lmzy8XAmoiJAwVQqSkow4P3P85plpNahGESlJvNOl0Os4UYDgY8JjHP540TXnooYfYt38fQmhb43379tFuz+kDr4w7zjQZMTU1RavVotvVwl2tXkOmMNWaJqrViGoRw+EWg8HAEEFpJiC9bFybmiI1KytCaLOYXq9HHMfs37/fCaGDwUALeTKh199meWWZ3qDPJY2AWq1FKOpA5Ma0PqBpxOrKFlubQ0bDGAUMRttGyNJ7EmSajPUXv53zJxWT6xt+ffsrW7l28Pqv7Qel7eX10VqtRq1WY2lpiVazpfOulDnLYIaDS4eYmZnh9OnTdLodzp47x+rqKv1+n+3tbdZWVzlz5gyzs7NMtac5ePQwQkTMzM5w3733cu70A7TbM0xPz9JqTbOxscFwGKNkwKA/JB4MgZS19WW63Q7Hjh1jZmaGqakpLrroIjY21vnsZ+9hdWWD++9fZzDosb29wXB2CjkaONM7fxXLEvmyvm3r1B/P9rTlxnSb+fk5ZtsztKIaV11+BfsP7HOnziql+Nzn7qfT6ZKmqTHZC+j3+/T62zQatdzY1WNMAAmjUV+nq1KUknS7XaSU9Pt9zpw54671eB6RJAOjdcz2ZxQVJZZUjUYjTp86zfZ2jwsTJRqu3Ne8xs/j9+67m8RLP+DbMPvXPnG2aftk3pKajMAJ9zc3z3m59sdrJlh4WnovfX2oW2YCYt1XZvH6+fGJhEdwTeL6WpJagucLDXGCTJNceQXGvERo7x9RqDe223kvp3UHQhEYwq4dKFgXrYE11THKtlRKfQAVAhlqzb4IAqRxRWw3C8lUO41QSpvZyJLTWIWnKbZNIJXSm2HNX4Ud29qcxta9bQe3ed+crB6bU3QzEqpNOu3BUX7nEkJYDx9uw62t8OyKQr61kKE9uuh3jXXAUHw/j/VBTy7IcwqR9TPb3qbNXf83Qqr22pO61RFHlgX5gePyrSAwno4CLeDp+4FLV6ispHqFM3PZbMtuuZfuU4Ej2HjldWTemlWRCayozOxqPI+eUOEJej6hz+bLzLBIWtnAEHgbLjcX5vm5Z4aUTzsLL7K/9l1fWLs5H5wXmS+rHJtJayfva9p9AmGJJ+AmEt8ePr/cr3Jx+en7HbhIdP1rrRkFIUYEInJ26FKmzgxGGPOENE3p9XsEouaRU0vWMmLsl1e/XBNAkKZ2QOFOurV5LBKgIjEvlqdYFvubTbcYh58n/7oYf1ld6cOyUhqNBkoZf9UF8pKPKyCKss3Ifr70B/OiS1yd+fmYJAzmzyqQxoY/Znn5JI1QMNWocebcaSBhvdcjqtVZW1un3qhz6JAmicePH9cvu1HM7NwMS0tLKCCJJffffz8zMzMANOoN6vUGcZwQx9rufTCMmW5PMze7wN2fu5vDRw7rl24g6Gx1jJmKZHZ2lpXlswQophoNVLNFv9tlNIqJk4R9+w/QaJq6HI2o1evMzc3S6W2yuroCRJw4eZyHzp3kMVc/joNLl1KL9Km+QaBNoAbDIcPRqjHD0WZJ2vuCmVBifViU3+bFcVkk376Npk8QfJQJob5L10nPhmGIQrtabDabLC4ucuTwUaTZqKdXrkKmp6eZn59nMBiwvLJiPChJ7Ia5ZrNJz/hwnxvNUZ9qMTe3wP59+3nowQfod0esra0xHMTMzUsaU+bQs6lZzpw+x+bqOlEtAKE3fE9NTRlhrEaz2SCKBDMz06yvrdPpbDIa9BgNe2xtDAgCSJUwm+br2h+/zF64xXou1qXAvoyl2z9Tq9VQqWRUq7G+scH8whxBFLC5ucndd9/N+vom8UgLPP1+nzSRpv17CKE187l0hD7Nt9ff1q47602tBTQnB1u3qXYDrZ7NtU1/FNWo10OcW7jCxK/JYMLKygrnzq2SjjsuuiBQnJ787yo3yWZEfvyZSaYLeYVT8VOm5HCJoQm0EFZzKLCmWtilf39e8PJSzJMq3PfLmctPcXyTiRcuvkKZXFwCtG9k/WxWNuny5xM/4VWkkJJUCIQaVy65+URI50YZwCjfUUqgzEqfJWzSzDMyEAQqMO9Ba+bjEVCVESy8sqK89ySeWZW5tgTNEsaiciOrX9vO4x6F8sJKnuQW+1NO8eY33iTkhM18X/OFrOLHNXqhLLlIVb6MVmDN9XXpm2NZpZvA7You5FUURCaRu6/bzP4slMQyYCGkI9RKe2nX/SxAr05gx0xmdoaXL2z+vHbKi9OGXLu2zud/ErdSJo+OYruxY8fBDu2X6YLHfyp5+RTlox3jLsHDJvM+mfO/W9JmUUb8fA8dljQU4/RJtE23mJ593teOWYShLlocD40dvG4Oa/NeFBiUSpHoZXUhBZA/6dbXamXwl5Ey8lT0FuFr0i2hLfqG9bXzRZJcfKnbj0+8/HopohjGF1i09s4uq+fLp+sqIgjydvRhaIUvHVccj4w9feZtx28XWw6fZEqn2dZ+vAX691ogiUTAuc0NonqDQa/HIBmRKL38J8I6G9sdarU6/e0uVz3+Cu2Le3lZu4zc2uLA/n1sdbZptKf49Gc+xVVXXs3mxjr1RsjC/BKdbg9EQFRvUavXGCVbzC7Ms9XvM7cwTxREBAH0e9tIOWR6uq1fcKMBKo45cvHF2rXmYKCX2cMQEdSYmm6TpCmzi/Osr63pg5fqDYYb2vwiSYYkcUJNCB667x7ksM/hwxcRtWaRps+B7ot6SNgJV2sGtDbJ3Gd8sPuTSlErP2li9VdffMGtGJ/fd/w4zU3SOKGXdHng/uP0uj2aTb36EUUR21sdklgLQ3Ec0+t1qUVwcGkRgAMHD3L46MX0eyNOnTrHyvIyD953nKWlIdPTs8xNzzLorpslZsXUVJ25+QX2z++j1Wqztb5FLPThLVEtYpBITp9e5sRDZ9jc3ETKlEYzIo5HbGxs6uVxaVzgCUGqUtJUjwmtKQyJE+lMofSeG29iV4rQ+BHWGiFJENb0hqmwTi0RpMmIle5JajXBoN9jeWWFVKZsbGzog60GI+eXW6WKftwhSfVekzRNSFOpz64II+J4mLWJEiD1BNiYniJCMNuaZuHIUWJSVtfWjCvaASoVCEKiIGJubo56w3rk0ptpB/0+Q3Mgnj5QTJ/abDVqFxr88SCVT1/xaJwLvafJMnuXpY7ITdLMu7GTS0i4fx1P1hFnhM7Xlnrl8Mdw2XWZOU2R0Ll6sATNkp3U1+5n5kGZECKcOYirW5eOrtlUSmeGIGVGxhKzQdbWH4XrIAgIjTY+CrXrWSFwvuqjKNvgKVPLHyLSMJs/vGlXr1ak0hAtmSdJwtSsJ80pqZynlVyfKSiacqRWaZMTuypvNwK78oQhQRDmNvr6beXDf2/65xEU37vFa5tuEAS5827sPb8fQDnfzvTQ48KffT5JElKZkkq9XydNtYbamrMojwr7o8zunRMCdyChsPcdV/JGhGnE3Jgw9YnINlTr+yILadpZmba0fTNVVktPfhO0y1+Whq+AFCIgkHavBwRKj1S3EoF+f/g16DWm+5Pr67to1y0XzM3PxVW6LySZ92EJoX2hFDXJxQ5ZPCnW3oc8+Z1k++ULCXaglJmn+H/tko3dOFIkNECBVEuSJFshKJIdP89Z3vISuT+g7OmLPmEvkurdtH7FZ/z6zcqY2TL7cZUR+3KoCfkymzLNCaBgJ7V8O1qPA3ZpsuwF7l/nViHwvBoJQagkW+sb9Lsdup1N9i0ucuKhh5ibm+PkqVPMLyzQ2d5iYWGBgwf1xtbPfvazSKltkdvTM2xvb9OcbrG9tkGz3gCZMuj3OXrkCPEoQSjJwYOH2NraIhCCeBRTr9VR3S4oxdxMm2G/Z0xzBIPBgH379EbCudk5RsMRG+vrSCmZnm6zsaVPbj1z5ixLhw7SbLaI0xQRBKyurSFTRRhEhI2Ieh0EITKJOXfmFL1el0OXXE57eo4obGC1I6bGtPArPfOkQv/w4U8gZasgk56x43NcWM3HW+xzRaFBKcXW1hbdXp9Wa8r1/9EoRqXQbreZm5tl//5FDh9eYn5+HiklwziBsA6iRqPZoD/os9pZY/ncCq1W25DagCRRDIZ9zpw5xerqKicePEEY1kkSSZrovSy1KCKNU7YG2/S6XX34lZI0hhHNVpN2u41MJbV6ne3tTSBlMOwRKusuVE+SIggI/MnYe2krqVepQlNvUa3GVLvNdHuGem0KJWF9c4Nub41UDpFSsbXdQQjt6vKaax5DmiR0O11WV1eMiURqFA/W9V/mjWrcZEpT07n2DAEwNT3FkaNHOXBkiV6vx9/+7d9y/P7jxCrzfhME+tRpvYdD5392dpYgCDh37hzr6+sEIsy9Uy9UWNIKecVYjkzrgDl12KT+D9a8JvPP7rdL2XwFOOIwhtwqwbitvE3PJ+2TFDqTPjasI2A5IcCYJ6i82ZDhRPpZQ3wmQT+rvEOaxos3qT6tJzkhBLUwomY83kRhSBiEpKkm+IHQ5jUisBtqzSFobn7WqSk/H0qVECktSglllBWCzMWh5xqyyA1y5SyQeX/VEvJebMoUjcV5MKuX3YVKf97MzKqy5TPrsSonPBRlSq8udPoFMm+03VKak22lPtXWkXlLlr16s0TergL5HE3XQ+DIfODen2LH94swJL6MzAfO543Tk7s+awVut3rk+p6voc8rqGxbBUKh7MnlKiub3jQ+rijN79e0EorI5gj7wA5zdTE+KSWi5BCp8yH0eybz/obWokTh+8e2v1tYEu97pikS1kkmJv4A84WHItG2cfgEw5Jpv3P57qT8ivLTKdNE2jjHJKlChZcJJ0WitFPjFsn5uOCQP8K5LM1ifD6KYa1mv0zr46NsRcQ+57tV9J/33WfZurO+07NyYQQAUz9Skoz69LY32FxdBqE3QXa7PaIoYqbdprO1xeLsLK1GndmpKbeRcnZ2Vmt+kwFRGDDY7jIcDDi0uI90MESNEkbdHqNRzOGl/aTJkHazxsrKOkuL++iPRpAk7J+foxkJGiG0ppusb20zMzODUopaTZ9su7G5QSoVB5eW6PUHzka9bnyVL68su7CjwRBUSBQ1nAmWUnoj9WAwYLvbZWsw5KqrrmF+bj8iiBAqLB0bxXYvtq/fD4v91B8/tn2Kk5c/+RYJvJ8Xvw+WTVJSattxfaqwJtkohVQxYQTzCzO0221HJk+fXeGfPvlvnD13Rm9AH/ZJ06E5LbhHGEUIoe1VkyQxJ9VKlAqIwgYzM/PMzs6yb3Efh48c5tzZc9z7uXvpdDrmHRCSpAlxHDM9Pc3MzAzz8wssL59FCMnZc6cY9IbmpGbjvz/Iu6iz4zgIAr15ujlNvV5nZmaGVqvF/qVDzMwusLK8zuZmh5QAqWKiWpuLLzrGwaWDxMmAJEmYnZ0FJCvL59jaXme7s8loNHT7dfw29seWX9+NWp1Lj17EkaNHCMKQwGy6Hw6HWogSWZvYtp2ammJubk6TqFrN5CPrCwf2LTFlxtSFiOL7WBn6bj1TevKwhuetRYc370Cln8vCe5rtHchzBkGOsAt/wvfveWOP8flot09esJiknVfjEg3jWucxMq/Q3mxyFZaVTUmrCZ9MNiaR+cw0B+2xRukz4HNlU/6quS5fIPQcIY3Jha5Dlc/HeFZz7W2FJ+WRXZXrGzuRp/I2t+/ESXv9ysirEEYTaza37pXQ2zidoGbzYzTSKI+6ToxyXDOf7wPed2lNVnxPSJZOm7Zxmm8tdAnMfgRT35osC7catRuZV2ZsqEBgDHEQxtNfFtCOXVy5pZJuQ2q2MdWf07L6E0HgBDpdI1lft/zdCnHFuivyPV/otXOd3wTZmPJKUCLoi10E6N1wXq4pi94sfKJb7GyWNOjJ1JK/bIBmBHGc5JYR1iLR8DuyXeby8xkEAfV63fmnDsOIVKZsOz/OmV23ENlGUjthF5etio3k589eF+vA3yOQl1jzJkpl9ef/LZL64mDwBY1i3nwi4H+3+SqSPV9gAr0xLpXSrHDgyuB7NCi2jRVefBMjG38xj1EQGa8Jgka9zrAzpLu1gZAJU9Mt7r3nHmr1uiaGoxGNWsTMzDSNeoNBd5te15zcOjXFTLvNmWXtSWbU6bJ/fpHRKCZo1ImEIB3FqDQmEgqlUuIkph4GHFjcx8rGOhvpOs1axNbGGsiE/fuX2NzaYjDoMzs7S61WY2VlhX6/xyWXXEy323F9p9lsUq/XSZKEfq+HUoowqiEVRFGD+fk2UVRja2sTKWPXP5rNBsNhjwceuJ+Zx80ShQEYV6rFMVds27J+sdOkUBT49jKB+HH7wkCZwODiVDjNld5EmoJKGY1S1tYS4njAcDhgaekgBw4coFFvUq+36HV7pHKICLSbRyUUiVIk8VBvAnP5lohAT+5hJBiOeiTDJgf27ePYpZeyOD/P6TOn6Xa7TqiKkwEo/T4Kg5BaVGNhYZHHPOZK1jdWWD67wokTJ9je3mY0GuZMDOwJtlIq6vUaj33sY7n0smOZuQ4CKSK63QH9OIGwxvT0LBCzb/88c7P72NjYIJUjut0uDz30EP3+Np3tDba2tun3e4ZQTF5pDILAHU6nlDY/WD17jn379tFoTxGZsy+63S7D4VB7ETHvv/n5eS699FIOHT7K/Py8O8xncXGRNNVjNB7FXHnlVRw+fAR9sNmFhyQdV0R4RrsoZ2qREUbwbHDx+U+2Ec8e1ORrP4vvPP+vJS1FgSqzcMgTeQufoBfNecoInE/mdR5LNPm2NApnz6w5ekaC7eFUljQrhTsp1ubLL6sj0ZZNlZRD+c+VzEv2OpCCINUEztEbAbFR/IRSn2+iJPpwOKHNZEWmCNXZcO8lk0cwttYagSX2IsufqyBbHL8MnimjX99JInP1K4QwJ87XzMZXrTzQpC+LbRKhJwhyKwnFcZ+v8+y+r5RM4iQ7TMsrh0RYpmvyYt/X+TIBpDL7nqZWOy+11540RSqZbYZFkXptnNq68NpXGPfEAGFgNfP5A7XKeKswKwfWLEcYD0hWN2+fywnmTo6zXzLBBKuZV9Z7kI1bIkPdkUIRaNt8YfZ6WM281J58TIFcvhTWA5Mtsym9EJk1l1soMsKO7XMl4yWbW9GmScq2m3Dx7AXnbTNvE/Y7nd/x7G9BIMwLYagHX1ADFIHQk7EytnB6lJnlDJU/7bW4edQnh8JtmlFIUoRJExWgXVFmbh2FEMSpRBGSKn2EswiE9vsOekldRKhAIERAs9Fkpj2DVJL19XUzOQYIiW4YIZAo7c5KZcQmlXHuxa1ty33tnkKqxJQp1RpYTCezL1gwdmDSeQTwibCvWbUdwW+bIqGb9BLxNbO+Ft0XclABQVDT+ZYKVIo0Pvh9Qc6i6B3FXwkouy9liiJFyph6KNhYOUsYd1heXUZEDZJA0d/qMwz7iFAxM9umWYuYaenNjdvbHUhjVDIiCqbobK3T39piYX4O0WggooAQgYwHEPdoNcwhRp0OUsJwMKRWr9EbdkjTIa1GRLNWQw0jZqbaDLoD2s06MkiZaoZIJHE6ZHqmhRIJzakadVUnlgmNeg2ZJvS3NpgKanR6PVpT02xtbhGFEYN4wLC3xdzCPKN+n1iltGo17UlJpvQ72/S7HeYXmvolgsS+i30i7a+Q2X7hC6O2vn0BwH7326ooOBfj80l7kbgXYfulJYm1Wo0kSY32Ti+fowKUSkmTEZ1Ol+PHT3Pq1Br79p1lcd8+oiCh1YgYjVJthhSF5j2QeVeyB9BEUY0waLiTmIeDIRvba3zin/+RB07cj5SS9Y0VkmRIGGphqhbWmWpOsTh/gFototvZJJUpM+0ZLjp6lOArYGV1mdOnT7K6tmxMy0AQEUX61N/t7W22t7cJRI2Z6RlmZmYYxTGdToeTJ89x/PiDNOpN5tszrI46RPUahBGbgw4PPHSc0XBAvV6j2+2xtb6CjAemXfIKC1vPvmay0WixuO8A+/bto9Pp0O1s04tHnDp7hiUOMjc7y6GDhzh22TEWFxb513/5FwaDAXNzcxw6dIgjRw7TaNbodHpsb/fobHVp1JrUajUOHzrKffceZ21jg5n5ORKVjrXxhQAp8xOl/y52Gx+t1k1lHi9SmRFX8IlTXqnjm9fo30vSEyIjDf5Y8bhWcQz5sfhpFN1R7nytcnNNPk9ZFnwSa4l2Nr9mtvSpTI273XycRRODoLC/wg/r15XLTyFvSiqkMAq+wGy6FYI0SUmEdmWchBKro41Sq6vNSJ31LmLjtIQ+UC46R/MsZ8jrTsvbwy97VsdW2MorOazArxVk/oFO2d/sMMisPbSGflwZaNN3bVi471tJaO9FmQCu3xlZSaygpn/L2G9OMDRVKKU9j0D3BWtuk0pJHCfOY0xqbNbt+QV+2vqv5RQi573I5xplZbN14jbM2viczbxABBhTHEvmbQe3rkWLwtG4ebdf7wSZEIESBTLvCYnGhapwfKYwvkX2RZGtdLlxViinn5fcJ9CnmguhstWxPeC8NPNFkwo78fidLke49ZMEQUCz3TKTlilgKun3uqTW9ALtysnG63u8KTZ4mqYoIUm9RhIoIhXg3CApbXMaO5/JWuMpVYIUklQlCKUHoUKRkiKlIAiF29xi3UwNh9qWNUDppR8rOMkUhCBAL8sXiXXRYiWVSW6SRlg3Ynk7fREI05jjJg4+ufLJV9nLoEzLV9Zufp79gWZXVBqNhtZ2j4YksR4cvtDl9wlL6C15LK6Y2OvMti+lEQWoZAjpkIdOnWJja5vmlKLbHyIiEIGkVhM06wGzrYi0v00oJaEcUAsk7ek69VCxtb3FbLNGQ0CrWWPU2yYMAkbDHo1AcWT/Amkq2e70jdeZlEESk/Q7pP0OrVDQCECFgoX5Rc4tn2Npfobp2SlSlTCIE+rA/OIBer0+pJJhv0ddpIQqYHp6io2NbRApYTOiO+oTter0t7oMtjc5cOggqdQu49ozM9oExfiirxPx4IMPEtYaTLXmci9++/LwibxP+Oz3Yt3aMD6x9/tfsX9Y4uKvuvibuezzxWvbb8IwZHZ2lsXFRTY3N+l0Oh7hkGg3nAHT07PUatPEccypU2d58MGHEIFybhudvaWIqNUENX2IMM1mk0a9zsLiPqan5p3HnF6vS+/kFssrqyyvrIIhI0II4kToDd4yRKaK6e0OS0sHaLdbnD17huP3P8i+/fs4euQQR49cxL59i4xGfWqNBjKFznaftbVNTp48ycrqMttb25w4+RD3338fF110Ec1mk36/b8xrtjl48CCLi0eIRx02Ns5x+lQHGQp6vW363a5XNj3h6ms5NnZte4AWYqanp2m1pownLsHs3DzXXvsYLrroIhqNBjMzbeLRiFazyWOuuYb29DSbm5vmuRbt9jTTbb2nRMlzHL/vQU6ePMVgMGBzc5PNrU1q/R5CCEbmpNkLGTkinyPVmtIWNa75Fae8zfMkEl/UWJubTm2YHyfgdIeF8WrplZQy53qy+CmDu28ViKaMufDepdXMBkJrhSFTwmizCN+sa1wzn707QCmB3rg/OV/uHWHy5cjaBMWAfdYKMzrNFCkzJYOv2XXk3J2enjd10UopPW8ruzJhSaD5qx0LFebK0pzh1U3e9rpsHvbD5toqawydH0+A9Of2neD6hVH8lb2fVcF7lUnUlS7Xv2Qm4EpD3u0hY3Yut98tmbfE3vraz6zLhF45NQd36sO/jIJWKbPBdIKiEZGtMpDF5+i8ACGNEGmKYvc9CJ9Q54SZTJSzZD9nso1ACqO9DwJrwWPqxmZEgWcSpYxHqnFR0K0FZN/8oegLc8VxKtw/7r01aYyUYc9kfjTSp2YGHrGAvK26n1nlvdSOHD3Cc1/wAhAZMUhlykMPPsT73/snqDhx0rM/KHwtsbNlNZ+vffoNzB9Y0Kevat+QCCU5e2aFf/yHf9KaeuVpsc1qQFAXPPZx1yKiAJTRDitIU8npk+fYWFlDBJLV0aqRroz7SpmSEtNstmjNtPVKQpodaa+k9nAxGo3MxjU9UWeDedyGudVusLj/EO12m8i4sut0O2xsbLC5uUkyGhEQOLefxcmjOJEUXzRjGpqS67LJwu5vCKKQVI6IE/tS1+1kN8TYvuCb1VgCX0Y0fS9GdjDFwx5BGNDb3mBrY537HzhJv98jqtUYDQcEakAzjGhHNeYjaDEiCGCUjGipIYcO7KfVaugTeWVMGAQstCI9QOsBm1vbtOs15hYOMj/TJqqHrNZDYgVhqJBrXZoyIqprW+hWo84wVMxMRQxbIVOtOjPTDR44eZZ6o8nRhVkIIIoCenFCsxExNd2m3mqzvL5Fq9GgOxgQ1eoQBmxubiETSRRFjEZDWlMtmvU6Dz7woOvjyXBAKgMuuuQY62vriEV9qJXfhmXjzral395FrYcQIidg+e1R7A9FQboY1raxnwd/0rR+5q+++mqSJGFtbU0fYCQkSgiSGHrdIY1ak0a9Qa/Xo9frsb6+Rq+/TZJoX+iCgEZ9iqmpKRYWFqjVas7MQQhBPao7t46AcXu5HylXSZLE+GLWriZrtZq2hU8Sut0uJ06cIE1TLr/iUkBw9uwyd999DwcPLvHYa69h6aA+myCqR8hUHwx37twy991/N0kSs7hvjmZziV53yL/+67+aTdIh2vtVwH33b7O+sQoyZWN1mf5oRKL0ycAyTvRKHII01fb5/lgpaxfbfmmaOuEoSRLm5vR+g6mpKbrdLivLy3S728RxzL59+xgMBgghaLfbCKE3cTea2m+/kgFnTi9z9uw52u02vV4PmUrazSmOXXwJ11xxJRcycqRKZCuwYCZasxEyMeQ5cSY0vmYxM7m0fc93OTwpXcjx+ZwQYF3n+XDvX0D52niltK/4MlKvtLtaCu/tANzpqMIyVs1KNA9xYzV0859SijSy/tr1HCmVYiRiFEbbb+7niIvVVBZIR5GAjGkdybSzApwSzJ8XpZSM4pFetYwibQYhlbn2Vw1NHUrpmdlkphzWHzvoVfLAeFrRZh+KQI3vM/MaRlffDoKVVWDY1Uh/Y29eUTY5Ga18zK96ThLg/Hpy5lVB6pQa+boff28XYQ9FUgoSb8VhFCduTAxHsfFuIxnFsSb0SpFI3TdTpa0q7HvNL5f1EW+9dvljygp3ZGtmJteCbGUjGy96c6jpP2HgVoSEkyA0wXcedHyKrWSWP3M7CBRhqLXLdlVLvysygm9zJVx/yCxGLNE3MqQOFGTcV6psT0m+LbMwZYKbH//5Ys9kfnFxke3t7Rx58wew/ZvvyPpvkiR6E5u/UZaIS6+8nKc98+l85AN/CYixTu937kwrqTvcvv2LHL30YieAWbuz6dl5/ubvP05NZCeHSSnRFEG7kHvi1zyRVrtFYMm2lgf5p4//K3/+/g8ae7DArd4o0xlqrRr/8fnP49DRw/rlKHXi1n1W2k+560/+lIceesh0OgHkNxqmacr8wgJPevITufiKS2m0GuaUvEwSTJKYtdU17vnUvXzm3z7LoD9wE7qNx1+C9wm8rTe/s/h1aesz/7LJOly+IynSNCZJBoZw6K7tr9D4mgk/Ljtwixouez+JY4aDAYPONqJV5+ypEwz6fbZ6fQKlGPS6tGoB7TBifqrJgZk2+9ptRgxpNGqMRoJ0KmL/7DxpnDIKQ8TcPFuDLofnZwiCgM2tTcLpKUajEftmZliYbSMjRZwOEGGDWq2HGLU4dGAf6+vrLCzOsrW5xWK7SRhKDu+bo9WI6Ha3ufLoQVIR0B+OiJOYnoxpCsX01DRRVGdlq8OoPyAZJcwat6jdbofZRp2NUZ/p6SnqtTonTpykEWmf7Epps7OIBikh3V6XucX9jEYjGo2GrlfzQrTLuv5EUtyT4Nd1cWKAbDN6cZz6NqB+GhayZKL007P7U2ZmZjh06JA+OKrV4vLLL9dp1QJkIBgO4cypNR46/iDNesj8/DxKKZaX25w6fZLRaEgQBMzNLjA3u4+5uTnm5uZoz8ywtbnJ6dNnSNOEjY1thsMh7XbbpdVstmg1p+j3B/T6XeKkjxBGuFEQCUEYapvzIAyIwjqtZptmq0UgIuI45cRDp2i1mky3WzAc0Gi2WFhY4Nixy5ibb9FoRCwdPMhMu83mRo+Pf/yT3HfffRw4cICLL76Yfr/PuXPLDAZ94n6fqUaNVMakwwQZD/XJttYUgmzVxBf4fULZaDQ4ePCg9iM/SpiammFhYYFut8tg0Of++++n0+kQBAFbW5vUopCZmRlOnTpNksTUajUOHDgAoN1ybq4yGiUoqX3T2/MlFhcX9Xjs91lbWWFxcZELFWOk0idJLpTKNOFK5Yi61d4V9y8UV6TL0iy2o73nSKoh82XvXvB8q1uSZdP0wymrXx7XyuvcZ1BCYA9W8pm41spr7ZkCArS5pwokKjCa1zQlSAI7yeWEDpeW0mQc8gcU5u2iMxI/RuwLxN+mA2bPDZopJbXUEcDUmNrl60+ivL18fvq59jHmGXrFQeQ2QBbhiHwhb0Uyb+cz62zDN38t8qAidJ3oq+I7eTcyl/WpvEelrOw2nvH53j7vrwD5mne7/yJJtQOKNNUmV7HT0KfOfl4qva9prGwiQJA/OCwQgtDUk86jn1fr/FGY52z9+955DFNLhfOgl6Vn+IY0qyX49Zntz3Rtg8zeDQL3PhaqpG8K4TT9PudSvrtTq/wvrPrh6n68jor9yfYHy1vLxsdO2DOZf+wTruWjf/1R6mZzVCBC90Ic3ziJObUs1JLeaIg+6SuThCMlIAi59isex/rGBp/8h0/qGpHatZTVMNgOCrZOU4SQSJm4e4CTC6MoIFAxgYiALF9Jqu3qQ5mQJgkBWWezFVlvRCgSgqAOUhJIoc1vSElJ+bqnfj2Hj15EEBmhJDQNEOi34if+7ROceOiUNhnC7IZGgtDmOEMpufKaq3jWM59Ja3rKCKb+sgqaeNRClg4d4cDBI3zlV1/PJz/+Cf75E59ESfRxCip/eqevHbWTk0/Ki5qCMiHMakV9ZCRP2/7rzpUn7f7HkhObl+Jfu1lQyICAlH53hUTFnDl1ikG3y8rWgH4c0wpSZsKIKw8t0g4Vh/Yt0IoCQiSN5ixKKaJam0AEtCK9SrLV7RDWIg4E0wSRolYLmJtaQER1VlfXadQFrVaNTr/PTLNNrV6ns77B0QOL7FuYYaapid7FS/OEgT70qdfvo1BMN2eZnZ/XrunSlOXls9Tm5tnY3GB+bobRKEX2Y8IpRTg3BcY/bzQzw1qnh2oFrK2tkIoaUzNz5qUhkaMBkZJMzS2wtd1hptUg7m0ziOpMTTUJw5aW/Eukd/uxAp4vKJW9APyJtqgF9u2CiwKgP7kU47VtG4YB9XpEvd4giRVpCmFUd5qxqBYyikf0Bh0GnQ4bayuMhj1azVmmphvEyYjpqTYz7Tl9YvNUiyBM2dxeZru7qk8ojiUnTz1ErV6jXmvQbDa9viUYDHukMqHeiNh34GIIA9a3N1g5d4ZACKbnZjh0+DBhEDAYDukPN2lORxw5fJAwrLG9vc5g0OehEyeZn5tDKjh06CD79+9janqKo4Mlp4kDgZyJuPrqq5mammJ6eppLr7gCqeCKwUAfiDVM2Fhb59TpUywvr/DQieN0u3r1ASkRmD000p6AaDU/AULoky5FEHLRxZdw9VVXMxol9HraBv7M6TPcfc/dnFg+zfLyCldedTlf+ZWPo9WcZqrVRinB5uY2nc42a6tdNjdPsra+hmLE8vIKg4E+O+HwoaOEYcQoThBhyHZ/i0/+y8cRQvCdP/QdY33o/3W4VSmtSjOCkR+ifKL1iWo2G/jUP8M4cd8ZeRK8s/lETqfqkWBHCYUAmZ1KGQSB4Q+GlcvMXaC770xLzAQjRM7/uNtrp3skCm0KEUURUapNT6UMyVz+mXgF7jNJM+/qx2+I4rUlQPqPfsbJKNYEJDtAKk0Sp+rO4i+YmXh1X2wLiVagKoxmWknsSk0unNc/pMrIclZGrVEPrI28uydc98nVgz/XFxvc9Y7sm2u/Qh/I5dGaZUnpKfq0+UfWh/OnWLu/ZBs8NWfwyLxM3Wm3qYk7ldqXv7Wnz9xVWm83psVMRrW3IT3fW6WUEMKc5ROYfFqFa+ZOVPd5s8PZkflM4QoQqiC/EmAIsFJWwEK7mszEXlcXCPQmV5u+sP0xb8aMET6EsGnpvNnTgjVX1fXhBAG398lrJ0zv9vt5viHzY7aALwiZv/YrruUf/v7vkaOEUAnnjqjMtl0fZSxJE7tBIwHbKKaw2hUViDDgSf/hyWxvdbnn03ebTayYg1jyLi8V2oOFVCnD0UAXVpfYtZX2VqE9aOQIbRDoJdUkRSYpZpEP389sVIucDX0QBAQqMB41Yq646kqufdxX6MFL9sKwFw/ef5y/+9u/JwhCR4ydRCa0MHHRZcd41o1fT6vVMuPUl7wySRpD2KVQtOfaPOXrnsLRiw7zZ+99PzIZP6bY3+Dom1n4Gnv/GX/zq/1ul798MxkdJvBeZHmbM/tCsbB5kFKaU1PzGi33skGg0pRhf5tBPKK/3WFra5N0JJkVKUfn2zzu0iMszTRpt2pMTzWoh4JGLaBZi1zewjAkoEaqFFPTC4xkCmHgSGQQBET1JvGgR6vVIhCSffOzdDpdFIpDC7Ps37cIMqUVaX+9C/Mz1Go6j+fOnaPRqlNv1ajX66yurCJUjelwiUajwSkhadYionqLthCMFmG7P2SoUmpRhFLQrodEdJhrNjnd6bO6do5G1GS6VWdxfh6ZJIySlHqtRihgtj1Fgrbr1MeS5wUsv311189MMSA74Mxe2zDFPlGcnIr9xd6347q44drmRfedgHq9SRTW6XYHnDxxhsFwhFL6dFNr/7+8vMrp0+fo9zukqaTXXePkyQ5x2gelj0KvRTU2NgSjuM9wOPT6jnb/GUURszNzzMwssLG5zuraCoEQDIZ9d9R5kiQcOHKUfUtLbG2uk8aJFriFZBiPWF1bZmXtBNPTM8zOzlGL6ohAsLC4oN2JxglJItnY2GJqeop6PSAIQkajmMGgQxzHDAcxMzMzXHXVVfR6PeJRAkHA9tY2Z8+eRSVS+7vf6hCGkbZVNyfEJkmCkqnhVrq9ghDSNNGKABUiFQyHI/7t3z7NcDiiXm+wfHaF4XBAHCd0Ol36gz6DQcjKyjLx5ZexdOAgqIA4VsSj2JgwrXPmzBnOnDlNkg5JzTkRW1tbdLs9Fhf3MT09RbPZ4OAh3a83Nja4EBHVjKLBumk0emf3hvW0lFYDLj0yBBiTHG0aIJ22MO/4YacJ1k7cPnlytvY7aGgtNEXUxF1Ye29wjvmUEGZjeaaFtqTYCiipssv8do4zPN5pz8kTYmOaYNT9uozoZ6SUhIEgCscPJZJl5RGZn/A8q7GExiVkrjRJ1wTKayupw0hzijGY95nKtM/OJBfQbid1tIG1FSdrh8w+GlICMO+kJAicO0W892Dm4lA6Mi89QUQfECUIg9Bom7UAbg+jQli7bvsu9fYNOIJu6sHrl0VtrRXeVIGQ236bpCmjOMF6WAlDha809dvACmO6KZQj50opY1aj+00cJ8Sp1siP4pjYeO2KjblNKnWbSEPkrSccZb7bTq38Va5Ak+sgDA1JtmTeCEWm8YQxV8wGhZnDCJx3HL3xOvDqUPfjKIy0CY7Q7WI9znic3wlH9swBIYTeUKuMRlyYPJu8hoHt06YpjZ18IPU5MhLlDsiygkTWxz2B1LTFuDCf/Z6NioeHPZP5qelprrzySu759GdNZ8x2Axc3Z9pRZTd36XIUsmmDIajXGzztmU9nc3OL5dNnkTI7cCmKooyoisy95XAwNPHaStY1YXeVp3F+058VjpRSxIm2/QrCPDGqRbXc91QoEiQz83M87RnPoF6vZ5l3WgPF5uo6f/Hnf+HcRWWEy9gYh4J6vc7TnnYDzWbL1BNj9WIv3YThzUJpnLp6tmF8El80fXHlJiN8k2w+fXLuhy/T5uea0CN5NqzvhjM3kSnP9WWqSc2g32fQ7XL23AqNSDAVDrni0iWOLM5zYLrJ/tk29ek6tSggEpJGLaQRhk52q9VqICFVklqrSdRskCTZ8mEYRXT7Q/bNz9BoNJyAMdOc19rc2Sn2L84z6PUQYka7F6tpc6ZarUb90EHCmratV0rR2D9PvzskaLUZDgcc3b8fEomIYabWoDeMqQEjkRKaftsKppiJ6pztDSBUKDmk0+3T2R4yGmlCWDeTQb/fZ219jdl9h20FG41DXquSCVp5sxe/Pcu06mVEpNg37HguW1kBcu5WszhCarUmU60Z6rUWDz10igceetC4gI2xwmkYBto+W6bMzS0QhdMsL59ifaNDHA8J05DRaGCekV4+BEppT1FJkrC1vUkca3/zw+HQmX8FQUCz2WRzc5NuHNOa05s/QSBC2NjQNvXtmSmWli5ma6vD5uYW/X6f/fsXufzyYzSbTQYDLZDce++9rK+vctHFh5mennaHONXrdeKRHneNRoOtrS3Onj6NTBVra6vcc889nDt3zo1N7bZOC5k2fplqUxeUNqeZmm4ACiUF9foUoDhz7hRSSu677z4CIdx+HIB4lJCkWnP14IMP0utu85hrHsOhQ0fo92PWVjfodLZZX19nbW2NUTxEr2oKZmZmuOSSS3LmNO12m5n2FJdccslEm/D/1+HeYY4RF7Ry5ImS/1dlL9/8b+TfibvBJ+y5tCZp3nLP4tLCjlmn6DUCuNE6Kk3fsG4GNUMzYaTeJG30Qo7EWNKhlHKWB8IIDXkbY0WUSq2ZFwIVRY6I+CfeCktHC3O7b56Q/820g82v1b4qnLlOLqwVLqzHGyAtvMfsXGrL6DShuRrN2iIQAm2qO+5q1ye+vjbeV0jZsHYus5p5+3GlFLi9GsVu41sD5IhcgezlrnOl8YVS3/ORzYf0A+ZrVWE81yiniVdKe67JNr5mG16tW1arjU+NcJPKTCBO07y5Tq6vW9JuNPOBxxUDoVc5hQBbc3494u7p3hyIzLFI/lT6rGyhCr05wwoTXr1bAm+csQjQXgmxXgU9IdcTvDJ/92alw+RZj1HlDrTKDpHSeffblsJ11rKTUZzbd8LeD40Sgsc/4Qncd/e9ZvLM28xaEiCl1BtWyHaN6yPKU8JaMdZMK91sNfn659zIH/3v99Dd3NYnvgUBk04VTdIkI/LZa1CfIheGkJKTeAXmZR9oqd9KbcrLiT3q3OYrRRFEEc941rNoz81gl3N8DAYD/vIv/pKNjU2ioJarkzRVZrOG4uqrr2b//v24lWAhnBZHf7fvuPwkAoLBcMg//OM/akIUZJtN/Ua2dT/JXrBI0N3LrbB5uaiZdbvQvRefn+bYkipZB8y9dANLTCWCgMFgoKXx0YgwrKPUgIuWZrhousG+2RZzrRaz7SmCWgAyphYIGpFAqIQwCIjCCESKCKEeRYhQUo/0wU5pol8ytVqN4WDA4mybVqtl7NBh2O/rlZN2iygUNKZqzn83YUCcgFJSu7JEL6slcUJTNGhONUjjhOkool2rMxqO6HX7pImk1oyYD6fpDbsIATIMiBQoCYfqLWpRwJQIuF9t049T4lSx1RvQikIW5rWJyXa3h4o2WVw8kKvP3eq5GNav+2IYq53whUEhhBOcfZT1BSH0oUOghedWq8301CwQEscpSgnSVIEKCESN4XDE+vo6Uo0QQhJGIa1mm4NHF6nVIEl7bG5ukqaxeRnq94tdMZJmk5btq2mqT21VaH/zUSBQStutLiwscGBpCaIavWRAa2GOuUaDejNwwnu7PU273abbHbBvcYlTp04Tx0O2t7ddP5mbn6Pb67C6tsrUdIN6vUEcx4xGI6anp5mdnWEwGDrPV2dPnWbQ13b8lxy5iF6nw+q6Pt1VCIlSodvQH0URUaPOTHuWqSkt3NfrEVNTUygl2Ld4kHojIv74kKWlJQaDAQf27wMkw+GAwWBIp9NnfX2bbq9DHA84feYMKyvnmGnPIUREmmqhI4lj+v0OjUad+YUDTE9PMz09zRVXXM4VVx6j1WrR7/fodnuMBkOmpqZoNBpcqBDCczlntDw5f/KWvJRcg5mwg/zJ5spMCcUVrtL0vTnN09jgz3WFDLtn3DvSzQvmXe2pF60CCXzCiSP0SikCGWR7bFJrbiQMYTZCjbG1sRpFK3BjyKXePB6Z047Rq91KkSap0+ZaTyaOtBTmD53XCSeSmnxLoZXZfn3nVgisckFoEw3bTvm9XWLsvWhXgYtwpJm860H7nMu3myfz86z/PnSE3q4QlMh6xfvF+inDJIFTFJ7X8701scm7mqak9ArNfSyZdytT6v+n7r+fLUuu+17wk5nbHHd9+a5qgzZoWNFIlBSkRFCiJFLmaTSaNxMvYv69iYnQTLyQ9OQAgiIpGgggKQLobqDRaFe+6lZde+w2mTk/rMy985x7C2hIMfHUG7h9T517zjZpv+u71vquKEUqQN2FmHln+zCc9fj64Lnw9F6wjXnkSQCwDmE0SqG178a5DuFAHagGUCHUMDxAfAatPF6H8JhOmYg1Y6XDXuG3iWA8JmqH76rAprtQcTUEgxCxXz8E+2dOyWql4rUuG4uJAafoc6Q2+nNzHfB+01xj4/M///jsOvNac/3WDW68dIvH9x+QZ4ZNXduUScMHl4NyNI3Htk4e9JJnUQpMprhybY9/8Lt/n3/7r/8NvrUCuJ0ncw6ntLAEVhZb2wbXeb/SgkdcI8bQuCZYfvTWVRhocVPdtI/yPLjLPFhvabTjN379N3jltVcw2qzfswdXtfzFd77L/bv3yDIpkhCTYQGM0qChVS13Xn8thA2tL+ree+bTGR//9EOOz84oByW3XrrFzZs3Mblo8//0Jz/l6Nnz3pJP2nu9iy4LhRAlnJik0zRVABj9ffSMQ+yP2K9AkldgTAasJ7OuGy/r2uYOjzcKHCgnxS2cq9DO4usF9WxB0yzYzi1XxiNe2h6xNxoxGY8ZDQfoTGOclDnW0OVyaW2wzpNnGSYzwiTpDG09aAnnMgoKo7i6v9uVqddKFgVd5glbBWQD8ISFzFIYAbUe2W1861DBOIwuZKciM+UxeUZOi/FgdEFmDPPlAmtbsqwgNxbnPVdGJcYLQ/2Te49pgLbNKIYC4haLFfPZnNlizq3r1zBjg1cepUy3SKc5CZsGWbr4vGgD6jYyvMTOhiIVcWxthvFcZMGEaRmPJ+zu7snCpjOKYsBsOuPw+VPAMxyVjEYjtM5Q2sJpTVUtZFGvoKnvU9ULjNHUdUWM2I3udbwjz0uGwzFKScx9ZMbjuM3zgrIcBG+PJLgaY5iMx5TDIeN6QLVa0raerWLAndu3GY3HEn6yWLBoLC+NRty6dYsH9x/y3nvvc3j4jGvXr7KzvU9eFtx7eJ+zZc2kqqlXK+5+9DGL+YKDA4m1j1Vuq9oyX6xYLCvyPGc4GpFNs65ibZ6Lq1nrDG/FhTscDdnd32cymbC7s8P29jYnJ6dY63j2/BBnLZkxKGB//wo3bt5iZ2eHzBhOz6Z8/6/e4d69Tzg6fkrb1ihgsVjSBNUck4VNKIO8LGiaiuXc0ywWvHN6wuHhA9544w0mky2aekXrWuaLc6wf8Hk+lJL29dABlshERma5bSV3KiZ7dp4pL8Z7CoqgBwKbJMVl88zjO61qj8PFkIA1UN8fHbHkPS6GzRA/GsBgF1ZAtw91cz3Mm7gfWBeTZ+mAV38+OpKra6vodYux1z6srWGNKV0e4rM9ddNIDQkviiYRzDt/0fPgnUsUeXqDo79+HzrUmTSX1Apw1mLlgTtmPl2rIri6+LO+F8aHjzHel3mwN48UZKVttZn0GtfF/jvrn+9sy/WnS7Ho2nfj6831PB13kZFvmgbneu+6sN7r4zeeNRYF877XkPfO09hWQpC95Hu1bRIvb9elKqP6i8ydfk5FYsj7GOkuzyizR0JntI4hNxGXqW4v7n4nr6OevA5a9RL+kmjVB2NLsa6WlyU1hrrQHq0wmYThCLTpw7pkL1+nap33kHisL+6DIN6QixEKKloozq0ZhOvrxWbfb46PX+z4zGBeKY02ii9/9cvc++RTtMovLGhpUqYxmRRI8p62DdXpPB3oTh+ms6+V5+VXbvNbv/0N/uCb/1kawXmMp3fdhIas6qo/lYpn6fWu4311YR9hIbFeZK8igyNgVq4v8lIaQlz662+8xi//yi/16j3J3Xrv+elPPuCd7/+QLFH3STudcH/KaPavXlljYbwXqmK5XPJ//Jt/y+N7D/CZ7haZO3du85t/77cYDYf84C//m8R0Je6ntYm7Eb/eLyA6AJ4yfBbqOmM2m4V76J1H3ju0jv0XEkMiW7OxAaWbWdrvm8y/uKAI1rYny2C1rDh5/oR6eoK2NTRLbu5ucXNnzP54yKgsGRQlg6LAKE/mouRUXMDD4qAIMaDiBbKtDe3Tx/xrpTAm79pc9Gs9Rq/HmHsvDBU2Ask+s16ql4q1n8rFxZAqCb3SPUDwnjIf4LzCr5ZY7xgPR/hVTWMbxmXGNaXJvvAq908XHM1XnJ6eUNcVu7u73Lp5g/PZKc8OH/PyK9uYPO9Yl001I1hfZNL+SY9NT4nbkNjCrW8Wm/2bviehIkPu3HmZ27dvU1UV9x885OjoiOl0ymq1Ajyzue6qL1tnqZslMcrWe8+qWnD4rOo2B+V7709kZbQWSbqizDs3fNwwpPqq3FOeF5TFqFMA+uSTT7oqzzEEbXd3zGi4xWAwoaosh8+PaFtL1UgY0GJRce/uQ+7fv8/Nm9f5+td/idHWBOvh6NkzmrbBNQ0fffQxzw+fURQfsX9wpUtCdNayWC6pVquu2mtd1z2bFcbfZHuHPCsxStO0DU+fPmE+n1AUOeWgZLI15vHjx3z44QdMp2ddWM1gMGRV1ezvH7C3t8v0fM7JyTGz+bR7RqM1ZVkyHMqmNRhlvPTSSxwc7LO3s8/sZMFP3/8JJ8+OmNmWp8dP+fjjT/jiF9/i7bff5tr165TlQMb85/hQIBrqXgxW7y/Tbr/4HiCMsOsranfrfkDSm3veZQBQRUrRB4CgNtfM9TU1rlUyF93aLh89DGkdkzWWPo4v5db2BB/3BOvFG70BEtPzrwHEcHcpQWCS/cWF/UCAjuq8A5eF3Ijan0MhnwsXlCU2cKsRWAoDr1FcrIYuOEBJvoBfT9S/rP03RsL6EbHExn6d7l0XzqAu9vdlxkN6zxcNhdCtwRq7DLf9LBY27sMXrtUZcX0IrVJKgGra58S27Nu8Gzu+B+dpUmyseZAaAL0Rtj53Unbee1np5VEDRY3vMFdnLLPeRmm7Qlj/479DmJVSar0GVJSATNs+RopEg69rj5D8rPr2iPcUZ6SP7Hz4u0v6ctOIl3v14eeiklw88Sa51mPIF3b35kc/0/ELgHn5/doXXmNvb4/Z+aIDyilQiBuyWOHyHa10x4av3afvHyqWa9da85WvfIXz43P+8rt/SRYltHziLlQSP7qpyoESUCZ6+IouhjBcRxuD9VYS0C5pJHGvery1bG1P+M3f/M0unEAlRoi1jiePn/Anf/wna4tCB0DSRUZJvPxwMLiwtDjnefToEQ8fPqTIMqyzXZLHo7sP+P/+v/8VL7/8MtOzc5SLYUu+M1IuA22bi5vWumMQQGF0jm0VdVPjXV/0SanAvCesjcyaNmHhYzBqbzCsudY2NgylFMYrFA7vao6fH/Lg/j2axRTdLhkYz8Ew46X9HXZHQ7ZHI0qjKTMDVhKvjNYdmDdGzhUt8HhE2U6jNS6w16kcVgTDzgUXAZ7Us7AJVlODxIekq/jM1vfF02IsYfxepxtuMpwCjBajE8DkWJawaqBtcYVmMdJk+YDKauaLJbP5Ka0dkmcZs/lcNkArBbOUWq/ymrbz5mKRbiSbbmkfDBNP70lz3q1t3ulcTdumKAp2d3e5evUaV69eYzKZMBqNaBpJnophKD7IpS0WizBfWqxr15kiv+GW9euLuvc+ME6KWO45fQb5m+tyMLTKGY1GTCYTlssl81CgaTKZcPXqVRwth8fHmAD4F4sFq1XFs8NnnB2f8PTpc7TK2d4eMxpNmE6nmFwYySePn/Dk8SNyrft6Gwams7NuravriqoS78GqWoVkNDEqx+Mxu1cO8FozHIy5fu0lRoOC+59+zL179zg+Pubp0yeUZc729janZ2ccnxzhnaOua7TWvPej9/jgw59KiFme46xnOp3hXIPzTTDJZezv7+9z9dpVxpMBr7/+Bnfu3GF7axttFW+/8RaP7osM7MrI1jUYDFgtW5rGA21n7H/ejs0lXcZTksDoRKFDWEnXvRbmrK9o2G/GvgcKvr+K95debf1euvno115vHpHAi/cbSYYLYDFk4Kk+IIEOFPpYWElAlrORDeyBW/Q8RjDbE2qqi+1u27YzKlwg0jzxJHQkQGMSZj5e84Kx5PHaSbSr9ziVqqr0BFrXPl7haCXuRvVJtAqPbTXC6PXhskqBc8FgQ+NjrLKnW6/FYFtnW6W9XNfPAhBlfekYYdYJORBDPAJLBWTGkAX80zPzgRFXSQEpFGly7voggV7/OkLI2F/9HpSG1Mb+914ew+moLBPuMwlNVPR7m2cTyAv+cLY3aiOgj+u3SKQm+0tv734mkBnnSfpcyvckoets3vRkaRhL8DrLg0l7bu5zHS4U41GHCzsvSbWXGq5xbCUFRn1nYEbK1nc+BeU9sbosPo6ZGD4VCUY6/Bv7QW4lFkz08f/h+5cRAb4zAPiMbZwenz3MJtxEWZR86Stf5nvf+fNws+uKKSmwU2EDtq6laSJA8GvrXm+w95axMYa/8bd+jfPzGT/98ftkwUXTMSOKzrUj99WfMBYo8L4fKF34TxiUdd1XOIwDASDLJLkSpfj7v/3b7OzsJvdGdw+LxZw/+IM/oAqFWVSYwDFbqRuISmL0O6OH9SVf6z7Z0HtPpiVkRAeNe1s3fPrhR2RaY5Smdb3VmQLOrn8uYQjatu2KzeR5SVkMKUtJCmxj9V0V+ypICWZR2cZS1UvxqtBP+MsUVVKgGSeh96CcwtmWk+dPuPvxBzx7dghNxZ3re5i25pVrB+wNS4ZFQWEycqUwHjIUOIeDoCnbj8JYmTYykhFEWyeJpz5ZYPu2EO+Q0r1RlLLT8Z5hvaR6nue4Nkk+TgzXGGevjesW0cWyxoY2ybNMNkDvccqwpXOMWlDaCqdqru+MsGdTFk1LUWQCem1D20LV1Dx+9IhXXnuTuPml/R6fLS7cm/2x+Uzd93SvbtG/d7EQVfo7bljjkAT/yiuvYowkmiulmEy2GU+2ePDgAffv32exmBOlvtJiJptjNg3Lc85JRdxukZR57ayjbVpRlQrjFUR5KCYqD4cjRsOtMIczbt++3RVNunbtGju7uzw9fsbde/f49P4jPI6z2Smz6ZTH9x9gvGJ7co39/SvkucY7zUcffUzzwQdMVwseP31C21RMhkOu7R+wv7uLyXKeHj7l7OyYOhRWSWPit7YmeC8ehBs3rvPWV76CKQfYVkkxqvNTqqoScNQ0VPWSQZMxm5+Jio+Moq5P26amaaVCroSEaJyDLFOAuMe97YvrXbt2jWvXbjIabZFlBWiDHhRcm9xh/+Y1mqpGZyWttTx88IAf//jH/PCdH7G1tc3p6Qm/8Q9/nc/b4ZK5ERUzosSe65L52tCGYmAKcLV4RP0lznGiEe8Txtmv765xs089w2GEE+esf8GunI7xzXkW16U1kKij/KHqCJ/uJvx6PoB1tg+tCUccNxHIxbGV7hlN01AbFeKq+0JMCJYRIzqzUmzLxzCNAObDez6EY3gnbdwqFYphxbbvDQ+C0eBswAyWDijFcAyUpgW81biQ02a07n+H9dw4wQhehbAiBV45qexJv6ZId7iQC6DCb9cZCXH/joC8MyyAXoVFdUIbSutQhKr/WySQjNLhu6obE9IX6b30Ham6zO3Y7r4PVXJRwUjLKPMR0Hta366B3ziWSPXa14w7uXjUk4/hMgLgXTeWXBIiEg2C/sYvHnLu9VzAOPa61y4MJkjOFz/T91Vsy1RquTe2+kOF/3ivOu+QcqC0A69B+d45oIQY6pJsQ9/46GkK50D15+4N7b6zOpNaSQ6AqOv4rt1TEk3WAbf2rIqIU5PniBizf6rk92c7fiEwD6AyzVtfeZu/+sFfSWiDBZxB6XU9U20ktsk5adS2bbtOjPepvCTHKgeqzDpZJw9kec5vfOPvcHxyzPOnz8hQeG9Dgxvqug4gNGiWhtM6Ld+NaD4FddY5UGwwj/0t6UxjteNX/uav8NJrL0v8vFLdwHTe0lQ13/nTP+H508eUaiAJqYnVtelic8F4qOuGwShtSBkgL92+yZ1Xb/PpJ58yNKVU4MPLtZ0NMp+S/KNMkjG/ubGouGBIAom4yk3npgfQKscZMKZgOMio6hXOWUQ4aB0ADgZDhqMB88Wcpq5Dop/DtpamrfFONsBo6MbwF+9ZC2HR2mObGY/ufcTJ06co27C/O6E0cGW0xd54m8lgSJkbMixlrskzE2I+HR6H8xrtJYsdb8ky0YTP8xyUhAiJYkhG7VxgRSXkxruWmAyWaY0y0l/phrnOXhPaV5I4ZZHPZIVAoU2GAkwxoGlqqroG43DWg4GsNLjaoUPbYAwejdKWXHsyW3DWtAxMRmsVN3Z2sH7Fs9mU0WSC9ortrR1OzuYcHj7h+s1bDIaTsLHERXIdfL/IPdu5EZPf3Vrl+8XxYhv03p+iKBgNhxLfvXeF3avXKQYTyrxMgOiU8XjMSy+9xPn5uciM2gjM1w3cOFY7MKMEXMS+dNZ2Bkfra7Qy1K3D+/4ejTEBxEvyaJ7nDMYjiqKgHA3Z2tnm6tV9lFIMhgOgZXp6zLPHDzg/P6eqK2xbsZjPWZ2eMBoO8U6xt7fPdL7i0eN7VHXFYrmgqqVImFKeedNy5KAaT5hsTTqFJKUUZVkym80DQNcYI4XBrLVUVcODu/fJioKtyRatrbn7yaccPXtG27bkuaFtHVXVdFVAnRWQEkOHmraW9QuD0VlYQmyQuXXUVSVckiIY3Bmj4YTj58c8fvSEm7ducnBFCnEVZUHbtszPj9FZjikyGu/45JOPmU5PaZrq0vH0eTrWWC/fg4WeZbwkxCZSdPQMj+8XhBdcSdi8CE/WN2XfwbifeY+q38E6IJv83nydFrRK5/eawaz82jU214pY8CYF885ZjBU5ZuX6aAaVEmPyJTmPUigdiA+lut/d9b3BaYsnrikhrM+rBBbRtVDfDV5YcOeCYIWQOioYBoLHg7GxQbCkSLk3XDZotKTPO89DbMcUyW301WU/Omm/9Il+LgxLx9MFe+/it/sxuvG3YDBuEqnxub3v/939jt9b+/H9+eK/117Hf2+M5rVn33z1opF/+f1HAviy5+7uISGquut7Nr7n158puZN1Nlx1I6MbJ2EMybyNDHJ/rk4vyfdjwrl4zd7j3xOem4ZQeFf150ifc71///8F5uMgUIrd/T1effNV3n/3RxSqFD1snw5q6ZTe9QdN29DZYsnnzk5Pef/d9/jbf/c3yEzeW2haMZqM+Z1//Dv86//9X7M4PZdGViJP2bQt6+ZfYEi0yNOZYNV3jZUwFZEBTBvMIxbWG2+9wa/82q9KuWtUWPSkQ511/Ojdd/ngRz9mYHJxCRIHU5/dnC4U3ntWyyUnpyds7+zJ4AmX9t4zHo/4Z//8n/HBTz7g3e+/y9Hhc/pCBQlwV2rdbRauEdlpFa3M6OpIAF8vIygbTW4ydK7JMkPTVmvxxRKP3FBVFdZtkeUZFIpyMEQrg2s9J6eidy3GkkkYAWmv6IkoCoVtFjy8/wmL8xMGxuCNZzwqyZXjYDKhzArKPMPgKDJFkSuMUTSNC64yF55DnsBoCQvIskwSilUg0RBmzmSJvn8cizHkAbCJkZeyGB3gdaCVITM5WpneZZkYaf2QU9S2DZu5A00wJFQY/w6FobWeMstpaXFFTjMe0SyX5FXN/mSMyicUkyGHJ2fcvHGbzOS8+trr/Nl3/4LZ9IThaBwHTAC8F+PlN5OPL7i8LwEjYUR1zx6/F/uvLEu2t7fZ39tl/+AKxXAMyvDw8SG+EVb8/Pyc588PGU+G7OzssLUlEp8ynnxgNOju1wVjKxYGEUMwQ6E7lQwxCDNJxHIt2nsU+ZqhDL3Hq6pr6uPjjoVXRrNYzjHGcD49Y7Va8fTxIzRQZIa2putTZ1tWqyVHR09p2hVt2zKdTjtWKNPiETNGYZRmNptxfn6OOTSMRiMGgwFlWXLr1m2ePXvOvXv3qOua+XzRJZoXhefo8IjFco61Ndp46rqhqmqyLGN3d5eqqiTW3npZc4IBFHMEALIsR6ucohiSZ1JddjIR2dXj4yPqumI8HjMajZjNZrz7zrucn59zdnbG3t4uL710i1u3bjEajVgtFzy6fxdTlNy6/Qp7e7sMypynT6a09nMO5hV0LnOFKLagO53wi1tr+FpkJsLxonmTfj6ytmteQHkjgF+fhAZEI7b3Lio2gfrFOOwUHIi++eW1RDa/l95XBBo9OLrMPpF7jexst6Z4ug8rE0MxIAvV2EmY+ZjP4r3DZpLAHdl62wZPSEg4jp5j20axgQDoQvtt9kNqhMXfXfx8F8/vkbCWaEaFNS4hEIKci7SBjnljG/0a+yTRD0+9JVmWdetP30/99zf3is1n2Xyu9R934b14gRf1c9rHPTOcREwEZr4nHWUNtDGcyicKT7Ev08TN1OIIxp2OYDiOTx+ioeK47IcVnZkUMZnv0GDoqWS/TgyilB1fA+dxPF7a1orLmr83GC6qwG2eF+g8LPh4d4H5T54tDfW2dj38OGLCTe9cd2shr+GyZ9g0zj/L8Qsy88FeUYqvfe1rfPj+TzsJyLj5pK76biA4T13Vl54xzzP+/HvfY7K3w9d/6a+FGCkVnlVxcHDA7/7O7/Bv//d/TVvV3cCpVqtLLTmloChynPOYLGEvCHFyWtHUTX/TyZOJFvw3GI/H/d/CpFfe8+DT+3znj/8r2pkAuNctxwtsCQIIcp3z6SefcufOa6jQTni6pL6yLPna17/Gl97+Ms+fHfHuu+/y05/+lHa+ggRkRRM+HchpgSfQGDMIjAUYs86GxsUo/jSt60B8VHSILG1VVbTWkhfCeOd5jsKivKYoRBPbZKIV6wJDYm3bxaHmeY5WikePnjI/P8E1FdvjEWhHYRQ7wyHDIiPXnlx7DJ6MuBm0Cbhsw1iQMJbM9BtfZoyosSjVeVtMcEd3k1ZJCWmUgEV8+Ay9azouzG3I4lfKrNU3AAmduMh++JCPQNdmnnXPhIrgIRhVRZ4zcpq6tawaS9VaMqVQzvLSzWvU8xmTq1dZLmfs7m5xdnbClWu3u7g8IHgdehDfG1MbGx/riWyboVCbC0hk4rMsY2dnhytXrjAajRiNBhzsX6HxiifPj3l07xHPnz6TEDprca4hy40U5tKavb19BuVSvDpNi3NNx25Iv+adxnCsLgh9jQQZ1zllORZlqkbC9OL9xzFf1wKGnXW0bcXx8TEHBwecnjYcHT5BKdjf32cwGLC3d8CVK9c4Ozvl3r17rKoKr3N0PsArRdXUHB4edm01Go24ceMGSqmQ3HsWWPYqAPSC5XKJUorBYCBx8bt7zGYzjo+PiV6LGIoEMlaqasns7BSFJlaedM4xGo2Yz+fdHNQByG+GUU0mE27ffoWD/Ss8PXzC+dk5w+GYGzdKzs9PQn+NePL4MQ8ePICwrk2nU54/f97NzdVqyaqac/LwER999Cla55yenoryg18Po/u8HN36mzDlqBCWokGFdTFQ4WubewTW6YxI51G6tqfXi8ocQrYQr9qB316+kS5EUjinnn3frM2RXp/kszL2decxTnNOXmQMXAYqexW6dZCvFZi4VrQtVtu1NvBApgjra3w2eVbnBLTIXGw7sYA2b9eqlMq5LS58pqlrGhM+Y3sg6SOA8smaFo2R8Dp9dhfWhhD0Iz3ptSRCKwlr6MCCj8ykx8cQ3o1x1PePRBjEdSeuPenr1LjaNMKS0XShXzf3k9iGqdxjOh4idkj38E3Q3+eCdd/qgTkQw3OATqHGe58o1SQhNmlf9PAjAOzIXas1dZiYAxAN5r4Pw7OrAM8VKBdD2NIPqvjnNSDPRlv8vHGfHptzKiVCO6yW7IudIaKNhHGtnSOMPzaTnEVv/0Ie53pLJJ+PvbNZs+UiqP+sxy8A5hMLQcH169e5eu0qT+49IUOSRCOrl34+Dixh5jePPvbs9771LcZbE15//fU1phk8N2/d5Bvf+E2+/c3f6xo7ymNddhRFgVJ0m2F306Gjm6Bgsfl0EdSR/DUC9tPTU/7o9/8Y13hylaEduCTmvXuiFNA7SdRraHnvvff45V/562xtbRFdnMK4Eyr9QVYYbrx0k+s3b/DXf+1v8PH7H/DO93/AfCYso8h79smvqZUp4DYny4oA7gxlmWMyaWNhQCALYv+r1Yr5fIZ1TQcGY7IvBKvdttiVgIssE/ZUYfC+CYVuhhjd933bNiyWsz5+2DvOjp/jm5oyNyjfMshzXFOxdbDNqMwpM4XBo71FI+oLsZ9QgOtZY6WUSFFysZhRVOzpWIGw2WVljooLcGbQsgt1fZRuiPLeumWdbqTxenHcpVJccXE12tPYfrGOYzyGO+V5jneGYWFZ1pbVYkme52yPh5wvl4yGQ5bLOcXQc3Bll+OzGVW1YjQad4aWUr1aU3o/qQGdvn/ZZ9MxG/v3ypUr3L59m729Pfb29jqWXalQ6Q/Dsm45HZ8Ggxe2tiYMhiWDQcHJyQlVVXH7pTuA5vT0jNlsyvn0hFU17TZ0YSPzcA8NSoEP4VMSQlNQFANu377NeDzh6dOnHB4+paoqmqZB6z6h3gW3e2sVJycnvPvuu3jvqBYzxuMRW1tb7O8fUBYjjo6OKPIhk8kurQI1n7O7t0fbtjTLFW6jinJVicLQm2++yY9+9C7Hx0dddeeoxb5YLFgsFhwfn1IUZZf0m4YAaa2l9kECaJq2hhB2ED0B0Vgpy7JTEHn99deZzWY8eHifuqlYVRWr1YqiKMmzIW17xnJRsb09oSqXHB4eyvM0Dc5aBoNBWHM8VVUxn8+5efMmX3z7LQaTksf3H/Pu99/j9OgUBWxvb+P9kM/zsRn22Ien9bvY5t5xGZsdz7UB8eGyf3vfgcXICW+eTxEjSS8LnbkIQNbeu+T+NoGjrJmXABulLux2zkXveQ8+JMcrMJGXAEUVgHwE83jfxdKnBJb3HhU8X94kiiT037Heo73HxToSSoncMwnI9X7jvglAPAL9DbYeId064NgBsxhNnXTZRi9utm3apj/v57Melxlq6X3Ge7vcbyR3fNm1N0F/JP5iZdvUoJS2Ut3c+Kw/aVvjN+YOcRZEI6KfI8p3+L7/tCz4pAFqa38O307nzaXjYBP4kr6VYKxLnnWT1NpcDzrz1fu1NUOetW+D/vzr1+rHhRiXF2/fd8+wOdc3DYzPevziYF5Jp2mT8dd+6Zd5dP8/0uVtJEdkK+TGoalX4UN6rXeNzsizksZ6vv3N32fn/7bLlWtXpcSuQqprGcVbX/0SZ7Mp3/2T75B7hW8kCay7t96EI8slidP5NEwlxAYrH/SqHWn5aEUCIrvHle95LN/73nc5OzkmN1nC+1ze2LEzvJLnM62jmTf8yR/+IX//H/42RVmijIQBdSxOGOBKKdCKvb09/vrf+pt8+Wtf5c+/9+d8//vfB+8xCZCT2MmYsGooigFG5x3AVEpTFrKZA6xWNc75oDjSinQovRFWlgOU0iLZV6061h7vsN4CkSWHqm5RGorSggdtNK2tOwBrW4ezNYvpEVvjIUtXMSpyjG8Yl2PGWjMqcorMkBmFJg9yZ56iMCjl0RpMXggT7YWRNkYHpj0uGSFEJiT7tN6v69CaLJQLjwyNEgLBhfAb+uqGSim0iUUxhMVTJhRSD12tlehXt00DRuOjJ9pHdrxF41F4VKZpggu5yDIx4jwUhaZocspiwJiM89WSsSloC6hty3gikoi7e7tUTUu9OmNrPMGT40WdHq2kcJrIouqQpLwe/74GSpIF3xSSNyByhoayKNmabPP661/gzTffZDTZIgvVclV41mqxpG5qxoOS/b1tmuWcummYbA0ZDAYURYn38OTJE+arJfmgxAwztoodtvcmLGbnNE1LtaqZLRaiPuGlP8qypCjzziOQFwMGgwnXb1xna7LFYLQFJqOuaxaLBaenJ/i2Jc9FwSbPc5ZVzXw2p64W4D3WNpyfn/LjH7/HvXt3KfIClGYy3ubVV19l1TY8fvyY7e0tqqri/OyEtmlYLBdSL8I5Tk9Pmc/njMZjqtbiY3K9a5nNph1rLu5oKSduTMZoNGRvbycJnbFSvbWuJdkyAAwpwtOyWi4741k8k5FfdAxGA166fQuvHIeHh2SmYLmoOT2dY7TkjZyePae1c4qixDnHMhRFi16BLMu4fv0Gw8EQbTTb2ztcObjC9vaY7XLC7miLo+dHLJoVy2oFl2w+n4cjEkYxvBESYIjkPHWhn36DAU5AdsCrgkQiVEk27XhYCPNfdUC3n3M9Oxrf0QFUd+cPR3qPkcQK20H3986rpiSpTynxOGSZrEc6ISVSVrsnxfpDwo78RTLAmOAt9uisryjurUvaUFhelEp33075xjknRaC8xztDbnviqfuMtSIq4D1NndO0wsy3TSt/C/MiTZ7vjZ94URcq3UooU4yph1CNM+wPHvDxuxdGzDqAEtW0oGNuIvut1hj49HUXKhUArOAzh3P9OtwXorx4pGx6auhHVZl+2ClAJ+IePXm0ye53wiDKoay0Q1Srkc9AVPlrraUNnvTo+XTO0bTp6/UiYT1h1vc7HlQIR+7hdzel4mQKY6VHT14JseYJRmFgu41aD2uC0C/J3Ii/tepSLYn83yYGTsm6tIJx7Pf0d/raJ4ZV134IVlRJ/8k1QKlNVl7GwyaYv9QA3/hbfP0is+6y47OD+c3kVWV47fXX2d3fY3pyJqCou4m4oPSsatWB+bhASudLoZecXLUsz+b8x3/3H/kX/+u/ZGt7HPrfB9kpxS//jV/l9OiE93/wLlVV9wurtGz4h5fKdYQiVbFRItjSPsTMswbSfByd3TP0TILWiq989cvc/fAT2qrpqtNGi7QHche/7xzkpsDalp/++H2MVvydb/wmo62tbkL0nau7wei9PMFwMubXf/M3GG9v8Z0//NOkbLAUoMnzWL00LAq27mT7VivFcilFZAaDAcJEW7SG4WiAx4XkXAHhbduidRbipQdoXdO2NTGrXQXDxjqZFHVTwSyVdESUeLywOHW1oMxhb2cHWy24dv2Ak6cPGeWGQSYhM1nwShAWauUtCk+RG5xrw4IpxkKWG6xzZEpchCbLRHsYYXqyLCPTpouRRyl0VnSyZW3Thqq+RlRmUALWnYPIxAdNfGLytu5LoHuPFP5RCu09mQ9KGK3v4sTF5Rji573CSjozzlkUWWe35WWJXlmKXDO0YhCNyhLfNJwcnzGebPHowUOG4wnLxTnZtVdQZkimSlwjY7+IgHutJkC/kcTFIhprAuzEY1MWUn/g4OCAq9dvsL2zS1EUDIZD8rJAG/EmnJ2fc3z4nNl01iUeD8uculnx9OlTnj59FDaxXpZWWHP595WrV3jt9dfIB6LHP5suePDgIU8PH9MslhRZwcHeVW7dvtOFMnngdHrOk6eHLJYrCfm5do3j4yPGWxOuXL3Cajbl/PycpmlkDmSGJjf9hu8Nq9WKqlqxXC4YDofs71/BI4v5YjZnej5ltVyR5xKfv1wt8UBW5GyNxuRZxmKx4NnhIbWzKJPhXRs2DylpHte73tXasFrB4eFTmqbpQmfA451NWBfdbUJtyP+J0omLRV8S/cMPf4p//XWuXLlClhVkpgAylos5bWsxmaZpljx+csRwKJ6UyWTSFc+6efMmo9GI/f0DXrp1h9a21PUc7x2DvGR0ZcCVgwNZvzLxeKRqX5+no2nlvqWoje0N9BjC4hxR2WbNIxc31Aga1TpIi0BtcwPHJwo6WnWqUPGa3q+zu7ozElhj+3sgr4NyV78/CogSUCCH1ABRCkwmBhuEgnfOd+t4JCPEbFy3HhRI+IBfDwuQtU3ykDo2FgR4pzHuItfVyWX65P6cc9i4XkZSxMdnlkMSvCOILIRcc14qxTdCINV1HQr30e3tqgM9Hrz0pfIO5U0C5gU8K6W6Ynjdtzpj4BJYr2J8vCIKKPSgfT3MBgjhTnHfjmdZD3dZD4+9eMTPxd8p0PTRGouJyhDurc9r2gzBSxWNQoutMfByUdXhjrZtg7youxzMe9+D+bXzJOB87dHCnPEJzakUSktYcmihztD0OEkExYv+ewTzIdRaxbbv+rbvq3Q8dAYy6z+bbdwD7z7PMPWQvaiP0t89huXC+9b2Bnz/PRdqLKyH5axdO4mdT//uYU2K8+cdnxnMp/GfAkAlnOXrX/8a//WP/0wE+RNA65zrYsKVVh1gXGuzsNhlmZFqh0pzfPic3//m7/FP/pd/TDEouo9qJXGqv/nb3+D07JSj02Ostd1i1p3Se4qgDx0tZ+99kJqCmOAZQVV6xE7f1HBXSnHr1i3+zm99g//8rW8Tk35UoE9S8NQ9+xpLI4lLyuW8/877PLj/mF/9tb/Bm29/kdFwmBQEiROlZ2+8l+/+0i//ErOjc979wTvdRM6yjPF4TJ7nzGYzmjpKf/VJMG3bcn5+znK5lPjijTjxGA7QNA1t2+CcJL/JoiW67J5OM6xjLaNhQFqQJCwU2nisX3H4/CH7B/vYesnWZNItPHmed+EHa65CoDQG0yUdyT2kxlKe5134lMkMZImnoshQSuTCdCxkpTNifoM2Grxl1bSB5c8EfKcANCouKPDeoo2hsT04JXGRSwx/hkc2ucFggLeetmq7NjEmC7rPvqvKaJVDqYyyLFk1c3INy1ryQZSzDDKD8p62qqAcUjeWvb1dtnaug4F6YZnNRGWobmqsW8rGFu4rlUkEQiGhIaPRSApTXb/Klf19AeajEeV4gg5jo7UW21pQEg///PlzPvrwI06OTsIzS47As2fPmE6nyQbSj1flFZkSxZlqOiPPMq7cuI5ShslujdMS9zs/OyNXhslkh6b2tE0rYSTVilWzoCzLkJB6xmJ6zvzslO2dHb7+1a8ymUx47733eO+995hOpx3QkLHgumqxvQtVPABlWbJarTg+Pubs7KwPq9N9FVDvHIO8oAjjVMacJjOGRjnaahnKX/WH0f3cX61WLBaLNbY1lgyPoEBrE/ShewCQJk9Z59BGM51OefToEUppzs9mxI1kMBiiMNTNiroRtSzFiu3tbQaDQRfWdXBwwKuvvgqo8CwZq9WMs7MzxuMRk60JCo31jiKED8UQos/vkcSBJ3vSC8MXVAIMOsMs/Ckuy5tX6Na8HtinoDN1k18GRFJw+zMPRRIltP6lFFZcvuf3H15z23v/gi/0QCv51bVPvP+uTTtW0eOF6+/02B0g+G0jBDUAvU5/3kkCptMO70wXVrlZ7yM+TQrUorGxDlbT54psWc+o+lR3PnZF1z/qQl9dFtZyObBMrpq09QXMc8mR3n+6HqSPkd7f5n1semDjZ+MadfH8dDih9wasv+73q5SN92t9Ec2kPhDNx0ZZe75NMN491Np78rozpAma/cn5XgjoLwHJKkzmy7zTXeTE2v5w2eHXhlP0VIe/rPWx9M16iNd62/s1zJn284uvf1m7vfj4zGD+008/5Y033lh7TyvFW1/8It//i7+iXjVrF9YmYSnQ1HXcXNM7FXYhzwtynQGezGjuffIp3/mz7/Drf/fXQ6x2+DCKcjTkH/zT3+Xf//t/t6bgsfZQeSaDQStiUZ+085pg/UeZwXg453jw4AF37ty5GCttDG++/RYnJyf8xX/9HkZpMliz2jeTf+NmEl8bBGguzpf84bf/kO9993u8+dabfPHtL3L16jXysiBV/4jnAgH0v/yrv8zHP/0Iay1lWTIYDBkMhpSluNdXql4rr6xUiL9NilvEwj4x9nh9ofJ4Hyts1kgit7Dj0X2Y56VIQNY12hham+RCeMkT0FiadsHR8WN2rx1gipxMDTk/O2Y4HHYAKs8yvLdrE0rYqagd3zNK6TNEaULvwWSZuIfDGFE6w2QFSils26K8wRhhxE2eY32LynJhCLSWKoU6QwcVHOU8Krjgs8Du59GI9cK8bgIw5/rFJBpJEUwpRWDsehbQh41fNIoNZaYZeEPrPVZlWJeDMmyPtzDaUCvH9vYOb37xLVrXYquegWnbluOTQw4PnzIcDjk4OGA+n/Ps2TPOz8/J85xbt27x+uuvs7u7y2QyYTwZkucZRsuYbV2iM2wtq7rBzuc0dYMxhmvXbtBWngcPHjCdTVHK4X3by54qJ4gjjCGVFZhiQFYUVHjuP3jAaGvCzs4upTJsDSaYl16m2lngmpb5bMonn34Q9OmR+FmTdXOqqVeotsJ7z/T0hMlwwBtvfZFbt26tGapt27JYLDg5OaaqbPA0yZipqhXT6YzRcCIF57wkuYLExhsjxlUEK9baNSOhtRZnW2zThoW81/3u3eTrhcjij+QdAN513pDxeMJisWSxWITKucugZNMDQhAS5dmzZyg0dd3iaXGuxswMSolRAHBwcJX9vQNAqkrv7++zt7sbwpJO2dra5uzsjCwzWNtSNzUn0zMWdYUxmpPjE5qqYjgcMhwOufnG7UvX1v+Zj82N28VQOZ8kP9Jv+toEI1/1rLoOQCL9XNyouWSjJu4raLSPbDgigXsJ2xbuYA2UKt2z8Z4UkIXPaqQGCZK8H89lncPFOejXx46OVdDxnZLbZaBhjc0NbPeFdo1tG8aynDeo1W2wYj5oq0vbsM6qq97gjUAxNxlt1uCcpzEZNpe9Oc+yXhXH9rr0KTscNcs9KoRShp9Uc947AZsevI/xwD026cdEb8htEnGXHZ8FVK+B3w3GNj3H5rk2jZjLQN9l68w6MeZjalg/FyDRloe2bSTEyUuYTRsTlGMuGNBa18fbk9CNiSR4X6+rt3yjARDbNDrgY7x+HxEh//DJnDObuCS2TffwEL1baUJ4JG/F+Ew8XInRttmvPxfQb4B5OdHFMBsA52J4nIw7+U7qAexJ4PiTEr8RR142Fj7L8ZnB/J07dy4+pVJMtsbc+cLLfPijD9eTabTENeMlxi6qQEBs28ACaBgMcuaZkcJsKEqT8c5f/ZC9vX2++vWvok18ODEGdvd3+N3f/Z1LJ5xGkQ9KnFZonwx6o7oy3a2NrKVas3q1yvjxj95nMV3ypS9/SeLaCWwjAih/7W/+GmdnZ3z4wYdyfd8PiDWJw42JKJVBHRqDRpRb6kXNO//th7z7V+9wcHDA13/567z59psUg1zUF8iSjQW297b5wltf4OnjQ7YnOwwGJUWRMxiUHBzs4T2sVhXLZc1iseTs7DxMShcqqpoAliXZbrVaCTAJ9ymXkhyFpmnwLUFmsR90bVtLWwWAr5WWBbPzVniUt7i6ZWe8xe7eLvVixrNHJ2Adg0HZWd8O0GHhMUbUaYxR1HWFCQW8lBZ1ogjmjcnIs1yAqPfY1slGqvvJEPuhUxJxfSU5RwibcSIbKc8tTL4sWqKsEjehNCFSzqlxvu76OS4s3llobagN4Gkb38VOZhp0nmOtp6oa0LHqHuSFYTG3ZB5GecFisWQ0GVMMx0w8PH1+RNs2LFdT9ve3Wawqsm3NcDjq2mU+v8Wnn35K0ziuXbtOWQx49OgxH338EcvFgu3tCQdX9tjZ26Uoy86F7IDatdSrVoCic6EuQsPpmYDkoijY2tpmZ3/F08OnkqRmLR7bJ2IrcCGsLcsL8sGQwXhMURQ0Tcvh8yP0ex+wtbUdwrcyysywc+0KGsWjR5ZialBaJEcXyxXL1ZLlQpI4waOcJJ7WDdy9e5flquX69eu8/PKrokAU+urZs2dUVcNyueiMVQF1nuPjZ0ynZxRFSVaOeOONLzAajbh79y7OWsoiMtIehygzrZYVq7qh9S3GgMq9DA8rSk7aSAl6H2KF6Vzt0vfD4ZA7d+6wu7fP4fPnALz22mvsTCY8ffyER48eMZvOw5hN8h3CEuudY7lYElk556Ikr4Abk8HO9g5vvfk216/fYDab8uDBQ65fu8bLt+/w/Plz7n5yj+FoxHgy5gtfeI0r1/apqiXT8wWPZ0+DtOUxtq3Y3t5i/+DgZ20Fn4ujC6NRkgcDGwR7APCKRC0GkvV2A+ht8ugBqHYbtXMdoBQQeVEycv188XX0Qoph4bxbu4wK9xkJEK36zT7ma8T7UeHkJuYMeREUiHtQBO3deRNDVEBcG7zW60ZI9ATrSFYET3TTAElcOwiAjprzcPE5AdkrIhmhDW1YR7KgKOacI9OmD/tomu51qjAWDQZHD4jic8e/x3BK71WCTy4BcC8A5z8LNG+Ok3jNFFTL777fLzvS874IwG/224vuMcUfsb5KGmbStJamjYRd23kwm6Dktv55CV/1G/fay0zKf/o+jo0APoFWUhU3jFnVM9ldrqVSa5+NYL6zsOi2WeI/fMwbMTrgmpjzIHfUVXclrpYXE0ovY+mTP655qbq38X0qzcY54s2lxpPv5FvDydR6P0ZyMg3L+kUAfHp8ZjA/HG4oHCi5Ua89X/76l/nkJx93yYDxAwrV6Zu2TQKgw399qEZRFMKcok3HAmQYvvNf/pTdnV1efu3l0JuygWng6tUrG5Oxv2pWFnij1vK4YqM71+vdrn0RHxZ3w3/5z3/E/s4eN1++1VWoRYWYxzzj737j7zKbzTl6eLi2yF9mrafXl2p0IV4rqrQqWciOnx3zn7/5bb7//b/it3/373PtxlWiaklcgLxR3H7lNovZkq3xNoNBIepJ2lAUOcWgwDnPctGwWKyoVjWLxYy2rnGu6eLsuwUcG5iLcI9h0MUBFtsoJlcCXThH2uw6MLzOWZT24B2ubdmebGPyvJsA1bLCDzJ0kYESZinXCq28ACUdtI1VDPPx3cYkm23QgdfCSGpgZR2ZQd43cRIHy1yLgeY9XQzmaDKh9ZI3EILSwqIv4N/hUMaHyoBA04YcCQNITDOKTqFGa4ULlrptW4xCnkdqSYdGs+RG09YteIsLlUHb1mM9UrHWe7SDra0tnp6c8Pbtl1nUNcVsztHpGW1bkReavdEeZQj96PpBeW7evMNyWTMox2S5YTzZYjAYcXp6xpMnT9je2cJqTz4oYSVVSJu65vTsjLPzM2LhLVGwKTk7OePo6IhVVbGsK+aLBbPZOc42ON/iwmTXWlhPUU8aMx5vMxgOUZkOXoqadllzfHzKdDrHZBLKEeXMvPOcn58BcPXqNfb396mqimfPnrBcLqnrWiQ/HexsbzMajdjb22eytYdSmvlszvHxMYvlkiIvWK1WoaAca0aYc47GV9TNimVlKJqa6zeuUpQZ2sBqtkKH+NTWtmRlxhe+8CbWKj755C7W1eztbbFYTnl6+BhXW4nJVTJ+6y4nKCxVAaDlec5gMGA4HjOpG87Ozjh8/pzDp085ef6c09NTVqtlp+ncbSxxvgWPSdzchI0qGAxH5Ll45cTDoFkuV0wm27z8siR1DwYjrl69zmpV8/HHn6CMp24qbt26RV2LFOfR0RGj0QiTGQbD4CXN+/DGz9MR16uY4xNDPSOoj2XVL9ssN9e0n3tEElL187w/xzooiPfWg7x4TS6Ahc2LRHI7AiDhmR14hcN1iZLplX3yWxJRXScVuen5Sb0LEcD59CZJmF2tcd6hvVq77TXwn5w7vaf1vRHxvhEFCbR4dJMYaZeoytmwWAvpJKRBd9+bTRbej0QiITFzDXQFL8s6eLvY+r8IqPpZ+35867LTbRoVlxGUfq1/Lg/NWPcKhGv59fCY1Khb98hcNBrkpFzEN4S9NVZRhZSaXzek6PFEF5rlfZCnDAMtKvuF+4/jQUVr4bJ5qXy3HnaGQof9VQDzKfyXGSFjMG2z/m8Xnj386UVrgfeXG2dxDl32uh936d9f0Pbx1j7bagT8d1SA3TyUUty4cZObN2/x6MGj7r14c3GwRnfOegPIYIsManR1gshkKRR/8Hu/zz/5X/4pB9evoMw6+33ZvUQWPAXvKnR4fK9p2ssnFjLwlssl/+Hf/Xv+5f/2f2eytUWWrSe3jkZjfuvv/Rb/7v/zb1gult31onWVTtBofXVJcD5hSNx6wpTRA46PTvmP/+H3+N/+n/8PyiLteGnPyWQiCa/OsVxWiKQktK2ntY68kC6tVhVKq04/HlzQQV3P7t7sq81773oqsV7j82z2gRRYUKAaqmrJYJDRNDWz2Yz5fB4SeEzYA1WXtJVnGVmmqaoluTJdQq+wQf35tREXbq/WoyiGQ0yI91Za43WGVb0WsPWykGRlhnaOFo3JpQKm0gpPA4m+vqgMgfJBGUArjA7SkhqU35R/1BRFgasbLJJU5L3EO9e1AF+0w7dODBNHSPZqaRpPGwBhXhTMVitqZ8nynKdPn3L1xo2QzPicTz75BOek+JSArT7O0baOLCuAhvPzGU1b8eTJY6bTKVmWMxyMGZQjvNNMzxfc/clDnj5+RlWtWK0qajsDZOwOBgMGgxHOeebzOYvlkqqtxCCzYnRlOgeV94uR9hTDkt3dKzgLq+USj2d3d5eb165TZgVtkEU8OTlhOj0Nyak1bVAgETlZYf6uXr3Ka6+93MW3P378hLOTc6KEptaa5UrG1OHhIcdHx1R1lbgoQ4Kp9t1Y9c52Y7apG+bLI37wwynD4YjlcolvHMVCNPatc+hlyfn5khs3XuLlOwZjNG+88RrzxTl/+mf/haPDJzjX9kDbc2HeWGuZz+d89NFHmLt3O5WOk2cG2zZUq0VSofnimrnp8YuJW8YYdnZ2uXXrDnt7e0ynU87Ozjg+PmZra4uiKFhVFTrLmEwmkImK1/nJCX/5l3/JD37wA4Aub+Xk5ITt7W2u5gcslw2L+eezaFRMgBXGUSrmtk6jba/ala59oqvQJz12eztrL0LfstbHENbtcI51hpTes+I93kr4jfME4KECuyhMIl6jVQCman2vgaAg0/YFnDpp44QSNSro6SPri0NAfBMUYqyzQa40GDQBTBmjyUwII3SRjezBuvce65rQXkry0UKiurVtp+8egZQQrqoDgioCwoSd9fiIscN5paCXUmBU8Kpqg3OSfBnDLp2zNI3uckpshyl6cCjzxoFTgcsLYM2D13E+AVp3hgGRu90AvZdhjJ91XMaWd0MooXkvA+KXqdPEz3bgO+zlURPeu+gRT4Fr2m99cm3HzDdNF/LchkRX7/tQrM37ptPhD14PJd4hrXPpX61EJCI+ZOSvfPA+Q5cTGBlyHydU+Lzvbr838BSqG98d3E6t4DDesk7vn5CQHc4TzyFfWH82lShLhSv4DY9YfzebhunmmLh8jKwD+gDYEys7EqRxTY/9HyVjYzv+Ihz9/xCY71wFSvO1r3+Nhw8edhZ2PJyTbPbVcvlCRiTPC3ko3QNy7WX1m59P+dZ//Bb//H/954y3xgH0Rytu3S0RB2FRCLOUMjVdHJ8CGyStNuwKPFJdFOD07Ixvfuv3+Of//J9hsrIfFmHhunr1gN/6e7/Ft7/17bXwoviZ1BXY37Pmzbde59NPPhVFnZAV18faZ+TGMJ8tmc9WDA5GF9oqtm3TNNSNuMZikl5eKvIip1q1nJ9PwUvyo1u24hpTOpkPcdJKf8UE5Xj+VOJwM8F3s//jZ2TDMygseaHBVygt4FMKJmmKIu8AedM0lLmoJ1grz6Hc+nmddyiXLICq1/bP8xyXtHWsRKyzQsJmnJPyIToTdRlEIahxiMqN98KkJ8aJF2odnEicSg6w75Q+XGsxSRKw1hrbeLIsx+VxcSRIfWqWqwVKBTUAHFmu8as2bISAStQXlBS/Oj+b03rFF956i3sPHzMoByxXK05OTjifLdkKVT6997S2xeiW7d2Ccqg5O5ny5KlonV+7dk3AL57VqmVYW7TJObhyAM5zcnpK3VQ0yzrI9jkWiwXGiBEgINWjpb4TmVFMhmO2tnfIsrwDz6t2JQmUxYiz0ymL2Zy2qWmXFdp6rl27Sp4bFosZ5+ennWJKdPUqJbkcTdOwXC4Bz61b17l9+3YHXH/4Vz/i2fNneOeZL2asqjnL1bJTXtGaEIJCB/jBUxQFrW1xqzYAEFHIqJsVTbuiaaT4XKFLlJJwL601lV3x8Scf8OzZU7KslOfNPFeu7LK9PeH4ucI1rj9nmuyqNUobvJe4/dlsFtaPPinT2gYb7lc2HtOBtBTMp3MtJrB7LyEJsUjXcrnk7OwM51xXyMo6x+HJEZPxhGvXrvHWl7/Ew08/YT6fMxwOO338eN7xeIxt4dnhMXc/fcA/+hf/kM/bYQNot7aVPncC6pRtL9JoXc4DHZgHAkvNxV30sl01rusJERJBRMfA+bCGKQXK4bQSQkCDQnfhJklPr192DWBGcNeh4I6hTAvcOC9KNdY5WisVVuOck/UpxvGKWIQq08KE65rs3st+6ZztwiMDJA1Mv4SxGJ8ogkTwp8T/LE2VhOIEA0auZ8J+IOBOBbRjtMK5UH0bsFZjrQ79a1Fhzsk6HG40WFDdvHEO5/uQTuV9AJYEEKm7Z/XJ936e5+Zn/e3Fn1s/9yZmeZFXvwPjCZvuwrOvrxEXibeUfe9DqexaocgoXpA+cXofOiz+3bqmFFpnGJ0TCdgYjqwSZt766P0n2lKhFVw/voL6Um/9BgNwo9W6z0f5y4CxlZKQnCwQcCTvd3kRG8+13t50Y4ZLqfYeyF/eqz3T/yKPSvo7PpBHDG5LTyJ2eNH5DV3+z358ZjCfhmMIEF6fvC+9+hLbe1tMT6fBMu9Zce89bWOJg6KzJUO89WAgCZw6fWglcn5GZzx/esi3v/kt/tE//Ucisaj1GoOxOfhjko7rYrr7AgpAZ5FmOR1IjyE8eS5a0Xi4f+8Bf/Hnf8nf/Fu/Jgu+MfL5cKKX33iVb/D3eP/995nPZtTzKsheBoDrtWzYCry3vPbWF/jGP/h7fPrxJ/zBH/wB7dJ2yhEeyIuCYlgy3hozGgw7ZiNp9nWtV6dYLmvOzmYiz1cq8iLDWhdYeo3JBjhfU1Vtd5K4cYlMZa+HmzLe0QCRxdx14IhuEerbOz6vtJumqaR9bVNxdW+PZ8slynlGZUmJhJQ0TYPLteiZAwQ5szyTuPkoL1cUZWCNNLYFn3nIBXRXOERLRqFMRlEOMeMdvNLgW1Tr0K0NE0iByYOOsDxfUzdkJg+FLaTyq1IGr0BnYcVXHo/DOovKcpx3oXiXAEhFhtNOwk6UQZuM4XAoyYyuYTgcUDcr2pCsbZQiM6BC6eTBYMB8WqO0J1OerGnZGgyYTafUyyWr5YK93W1MZnj25CnzpcWYjIODfcaTMTvbE4a7Ems+Go4Yj4ZMtsYs5svA1it+8v5PeOeddxhvbXHrzkvcuHqdWze/BMDDhw/53l98l7OzUzF1vBImrvUhJ2NIPthmPBlRZjkHe/u8/MorXcy+NobZYs7pbMpiseLhg0fUVc28aZhNz5lNT/n00w/JjCSoVlXVbQrFsERZUfvRaByeZb3i8ZMneO9ZLFZcv36ds9Nzjo6PmM3nDMoBeZ6TFdtsbW+jlWY6mzKfz0LYU0ZRlBiTg/dsb09AeR49uh/WGIVtLdrLRrWztSObfQt4IRbKsmSMYzqd8ezwISCsydPHnzIcDXAuMP2BsbTOBvAmrmetDeWgoKoqqqoKa5UXnVroNlClpNS9T+b55hyM65t4LmS+jMdj9g8OQk6CSHNOxmPquiLLMgZDISRq21BkosIzLAbcuH6b+WLO7Zduk2WGu/fucX5+ymIx75jW6XTGo4cP+TweKRGRVlX0ySLa71k9EI6btWCRjYTRZHuADa9l3P83mFjVo4QOIPeUpcTUK0kYkndDQmLHMKso9xgoAOcSljXEwePDPhjWskCqxb3JK6mK2tS1VFx1NoB5CUGKhk+e5TRNm8TrQsKFhuvbsBeb0Abyvu+qT4eg0Y1x68N9XIZN1vFyz+z3nnepMxL7M7Z7pzjlL8pBx/cvA+PdPuXXny48ydrnNo9flKG/+N31c6bX+FkGRHy/2+99ovUeX+PX2nLN+EvHTKz66/xaG/VjFjYZbCFqDTGZNFbC1Sqy4RLK2gtQRBglBcGs730jnaGVeIV8ZOe7v6+z4PGZY6fFfor2K0qJ8l00BjZRt2LtjTjG1MbrHpHLf1T69Qv/Ti2fzZHUEzGbx+Z7Ppw57YvNr71oTLzo+Mxg/pvf/BZaa7a3t/nVX/3VLvQkDoasNLz5pTf48z/5c7Ks7MLVu0kX8gplPvWdFiUn03OBLAJeaYzWFLni/qd3+d53vsOv/92/I+ojYTO8jC3ulGWSASBxeWJc2LYPPenRsgyaspDkSmMyBnnGT378PtevHfCF118jugvjp3WuePXNV2loefzoMXZWowgVP+uGdmU5n5/R+JpyXPC3fuNvk5UZr7/9BpPdLX7w5z/EO2EPtdZgQBnNq6++ynAw6IzFQJDikcqtxhjaqtf9rVaVVJ5UFq1lcIjiS0bUae8Nz37xSC32tP0geAuUtF+nTERUdOldq3GR0MFt6b18vm2tgMvJhLZpKPOCrcGIzLYd02vXNsa4EQio6Bn/LNxfUJ5RoDKDU0CuJarHGMhydDnAe0W1WKJcDVbyBKw2mGKAtS1GZRivsa2lMGL41M5jMoMnx3sB8yYsZs5bTK5wjSgfKa1pPbT1igwfCvVoGt2KQVEQFG8aTKbAgrEZKpMNablaidGYaVRd4doa4xXWWUpjGGrLCo/xjuVsBs7y7PAJ+wcvcX56TmMzZvNznj87ZjAs2dmZcPvOTfb39xmUg867lGUFRucsFhUomM6mHJ8cM5ues7wz49q1a+zt7bF/sMfOzjbn56chqdkDjqZd4ZZNkCrMGRUjRqMR1kHTtpTegsopywKd5xRD8RRcu3aVve0dPvnwYx4+vC/MYOOpVlUy7kL/oxhMxgzKAaUR71ye5xR5QVXVvPfej7h//4EY3oVmd28bBbRWc/36dcbjMcYY7t+/z6effgwosqxkb/eAshhKfPhL19nZ3aL1LY8fPsI3Lbl2KGPYCmvZZDLhow8/4e69e6xWFcPhiOtXb1BkRxwdHQn7HxiTxWxOVVU439CzgB6CIaiUxjpYVVU3F+Ic6ZEWEDnLGBrh15mjuGYZY9ja2uL27TuMJ9ssFqKZv729g9aSMLi9vc14NGI2O8N7z87ODrfvvMTO7jbOKZracXJ8itYZN67fYmdnj+FwSJaVHB4+5u69T3n48GEH4lNZ08/TEb2q4u1RfThG8Mb07ZsC+X5Nx0uOgrUWEuDTg5p+e5e1oPeUXgypoAPksUZHXN8gEApekgmbtg6ARxFVQuL3vJdiWHWoHWKt5NvEz8dQgnQtb5qmUyaJLKyPTKyXUK9YODHPMsoQ4pYCFR2BWmwYIDOGnZ0dxqNRwE0y9o0xlHkII0y08n0wLuTZ04JPiZGE6qZFCs51uJ9ehaWXjk2TBdP4b5J2WPOUbBpzbp38S3//rONnsa+dAZP8e82w6Yyk/nub970WkrFxDe99N5bTH+9J1peeDGitpYl9n3ymTaqWr3vWzVpCeMyFiqIZfQ0EISskNEte66D6ljxoF0ILXoi6bor1a2Y0muP74YW8SgyWbp31vfdTBQDfq9aEs6iN85BgdRU9cOrC6+58CbESizx2z5WcM1CIa3h+3TC6OEbSfnUhPCquUzKmhazVv8CYTI/PDObf/f57Au6857WXX+PazWtrf9da86UvfYkf/sUP8Q19nJT3oCQBsW1bsjJNrpIuzPMCVB9usqYNHIDiwAz44X/7IXu7B3z561+T2hCB2dicZDGuVNmko9YaMiRrppM8/C4HA8pBiVFZcNd7/vw7/5Xd7S0OblxPrDRhKLLM8IUvfIHlYsm8PacsSiaTiWhTN7CsFyybBS9/4Q47uzvd/dy4eYODf3SF6fmUxXwhC5Ux7OwI4xhdV9IG4beTKpCz2Yx6IWE2VVVjXRtk+PpJa62laWrSBTFl0dN23mzvdICtt6/CmBJ8WEiUQhSDo7a9CcSSDPL9vX1Awj2mT57KuY3uvuO9J0NBI5tnOShwthFDSWsJXQleAwktyDqAk2UaMoNGk+UZFlGDKGyD0QplBjQYyBQmL/EmR6mMTKlQoEG0srzO8VpjfYMiR5tcWHMtcZw2TGKTl1hnyXRGZjKW3uPamtaprrgFxnRxu1GeMoYDVQHciZfBEhUsqqpCBjOdC1hr04W57O/vUzUNJjPcf3Cfq9dehsDKlWVBXTd8+OGnTCbPyUyvXQ6aPBvSNGJoxg1hNpvx8ccf8+mnnzIYDBiNRpyfn61tInG8RL36qmqYzeZkmRQpe/b8kKIQ75fIXW7TJKEz1bIhz6SYWbNYhYUq6/s8y8iyAofG6JzRaItxOSIzGQdXDsgzw972FsfHxzx+/JjVakWUbI1x96enx0wmE7I84+xU7r8sB5TlkK2tLZRSzBanzOfnXL22y8uvvSL666sK11pW1UqKjvkYilOzWi06SVQBu1IkK4aA3b59m6Io+Oijj5jPRUHHexc2GYXJJNytLEuaumG1WklMse5X/NjGm8pXm5t4XPcmkwnXr1/nzTff4vbtV5kv5jx8+JDlcsl4XFAUUgV2PB4xHg0Qj8aC0WjIcDgAMtwAmrrl0eOHLFczFsspk8kWJ8fnPD181FW6tW17Uejgc3TEmiMdkLcWAoCNZEFf22KTxgP8emiCt677HrH2BRvMpdYX9p8IniIIiQZsJFNUAO0qkCWtc0FGUIXieesqM3XTsKpWEjbTWupETELGjxjYEexVVdWplKSFiNJ5XVUVzjkpIpeHsLQEZMc43sheaiUSvZnJQ80WiT3XSmFsDGM1aN2Pb5QL1WaDobDR4h0p24GghJk3pmv7PgxVrT1T6n3ZjDNPX6/t81oK9Kwzoj8fPL0IyL/o/fVziRHXG3kX4/NfBOQ3z9kZL359bMU26MNqbMiVCGE07qIBkY7jtL/7gkoao7OuX+L7gq9CnRgtCnObc6mbQyARL3r9OS5rp83318nGPq5900BLvwuBlk3J9nDEZNlNQ2/T8EoNMO83xoWPQJ6UIf25x4V+DWuE1uvPy88YAz/v+MxgvjQSDmKt5f13f8K1G9cvrIVbW9u89oXX+Mm7H2CyLFhOkem1QSYqtU/lH+WgBN8vxpexxd5BoUv+5I/+lMnWDq9+4VUxBdTFiRZjZpVb76D+nEl5bPrF3weWIVZktHUDWFAtv//Nb/GP/6//F0aBDZTvydnyPOftt7/ID7/7feZzcVlvb29TDEZQKLYGW1y/dTMZMLK5F4Ocg8E+e24PrRWOaClCr40b7tjDYrHgJ+//hGpeo11SbhuPyVQ32FOJIwGHvarHZntsxsKnE0hr3bnKlFLkpkArAbtKtbS26Z7H2qgQo8mNXL+ua+pMYa3rQnuiSo18zeNbS6ah0Bm+FblD1X02ltTWYRF3mFICa4zWnffHmAwfFA4cLY23ZPmQbDCUBQ1AZSiT0xKl6OSZMnKUk6qYSg9Cgm4joUVZhkGqfnqtaVpLkWXgHFkxwGnNajHHhHEIhAJRrjNCIksYk7gUKiyAIVa/bjGYLm5faggMWPm+CNKVgwMaK/HS8/kck0lhnxs3bqCU5/HjQz795B7z+ZzVakVrl4FhyHEOnGs6tizWGEgl3lAu9J/emCcyHpqmkeq5oVjX6ekJnr7AmvKqk8CTsauxzlNVS7y/mE8SlW/ItOQzYKhrx7Jd4JymyA3Hzw45PT3l5OSEqlpR1XOUikXfWuaLM54exvEsqkVaZyyXFatlTVlmoBxlabh+4yp33vwC1bJifnbOxx9+yKeffMr5+TnvvPMOzjmmszOaVrwH09kp8/mCLJOqvnGjK4qC/f19jo6OJF8jzJPpdErbOspiyO7uHteuXcOYknt3P+X45AnWr2T8+z7fI02aF0NE1lcp3tZ2hMSbb77JW2+9RZaVrFYNo+EWN2+8xPn5Gbt7O53xYIxmtRSd/tFoxPOj59y9/wneGYwpUAj4Wq2W1PWK+WzG+fmC1XJFWZZsb28zGg65evXqGkj6PB39Oue6Z/De0yZj2sfy8TFMM7Bx8sfIundUW1h/k7USJSA1suLeJ+xyCgJ6w9glDGTnyrfiFXbO0ySgy4YkVGdtx6I2tu2Y+aa1nYBDhMcegna4MPdVtaJuGgEMnUpSvAFZq+u6wTsXpIADePP9LfaSf30hnzzLKcoFPoCizGiM7tc2SUbUFFnejfHchDAcLRW/PWrNaKC/LWLjdauFUsQQt3hnxriuP+I+34ZE2E2W/NLjFwTsmzeYfiR6G1KDLnqs+33+v5/53wS0cSytg3/Wfse/Oxd05jf+rugTpTv1oAjmE7AuhmvCzIc+jMA+Jqn24DjsqWE8aqV6fXqjNsC8tOc6sO/beRPMxw94enyzlkwd55p39Pru4ZwqenkkbNjoi8a3Uil7f7HPkztLWPsI5C/rV2l4RaSr5T6Cy6H7hECgVLFqnZnvrvMZj88M5jNVIAV+PB//9Kf8yt/6ZSZbY2EYAkBBwVd+6eu8/8GHOOe7+CmlJbFP9Knj/1T3fNlgCEZ3G936xFD9womYmH/07T9i51/usntlp4uJjy3mPWiTSUEo2zeGSoCK94SCFD0zphRoryiyDNu0KCUFOmTd0ZwcnfEH3/59fuef/C4mFBshuFm0huFoyOtfep1vf+vb6CPDtavXmOzukhc5k9E49KEKWfseWTnFpdqVhe7+I93dF/CW3v7wJx8yPZ1i0LigbR0Hc5xk8tFEh5feWImv4996Q6t3S6bgXqkkFhJCCMS4Y398DdDgvAvWOZhMijXduHmd6dlzvGtZ1SuqdsWwDOFEKJHcyxSLpqIwoIsS3zQM82GX6CcAsyVqyGuNxG16DT5DIj1ytMmCeoGiVUCe4fIcTEbrJC4UbTBZjlUKneegwLYWpQo8JcWgxNY2PEsBTYtG4bzGY1BOFCWqpiHTWuIEnaYcDFien3V1DuumxrYNucnQzkNru1LjCmE6cudZOduNXZ0rqrrCek+RG2b1QjwCRtpyf/+A49MFh08PUWrEcKSptKZaSajH9HzK6ckpdRUSWX0sbFUFKU+Nd7JiOStSm8KqhGQyLhp8qSvWO98tzDE8LXqBnG3xDpxN5iD9+Ml00THxna6xg6Zu0C6jyAuKLKdQmumy4v69Zzjb0jYrGfta47zt9K/jkebjyD1ZFA3er6jrJXqmKMocz0sMB0PK4QRnPfNqyaPDxzx9+rSrfSEKES2Edmnblj6Suq/qevfuXZ4/f473nq3tXXZ39xiNRnz88cecn88pBwOcg7qquX79gOvXr1M3C6rGhIQ+T11VDAYDdnd38cBsNmNne5s33nyL4WDEj9//MYeHT7hx/Qa2bXnri2/y6iuvsVjUPH16xNn5GavlKoRyOXZ2tsnznNPTY9770TvUdc2VK1dZLpdSbEoZ7tx5mTt3XuaLgzcl3t976qrh4cNDHj95zHw2ZTgYcf36VV555WVu3rz+om3gf+ojy1Ip37Q2hiTAeiehCnK4DtALOIhFozR0bJnCq8hsurB2qy4OvGfuwr6uelCvQp6EdT0gSYGYDWEIUu9DvNZNa1muVgK2m5bVqupYWIvsW03bUjUCXl3Y/CFCB0l8rurAzIcn9QF0xZhn75yQDi6G8ogHQphLnYD5wNpqI4mGWcZiWTEaDTFaMxzkIcfJUOa5KONkGcNyEAQPRJZVQmVzCOIH3vVgPoLfBPd2fRKPdJ7HHK9YnM85T9PUVFWN7wyXiwxvt7dpjfk5gP4i8xv30T40ZU0yWaXhVnS/ezAan3c9lj0ysTJi+q1fhXvH+07BxoXCflLcL4yr0P8dyHc+hFeFkKpQ8Mm7mDQtqEtCZGIEg1RBN6E9Yy2BCOx1GsaiYmigQiOhNVrH+Pn+tYz14CVQCmU0KtQK6serzKlN40raZT1kKranDkaSFFvU4Tq263cbVJvwMbeg9/ZIYThFFgxUUUOKGLDvOMF7idofkeUXwi6Sp74bsD0R0Onvex/QavhMZGUjgRnOHN9yLuj5O49xDqfW8dtnPT4zmFdeBxCqmM/O+fGPf8Sv/vW/Tqb7xBeAK9evcvXWNY4eHqJVzz7Z1oZEHNGrjU2lPGRl2bkXNydSNzEJsobW0iwbvvkf/hP/5F/8E7a2tiRKoTN1INNZuHabGAOIZaaM6POGTvf0i7/CU+YFRumoAh8GsEajuf/JXf7yu3/B3/z1v91V2OsHumfv+h5f+9Wv86d/+KcSZqNhPBlLTKT1vPzaHYoyCx3rweueBQIksSBadASmXtrg+PkRP/yLH1DonOh2iqpavcue7p46dZZkYdsE75F9T8F+L5EUvCPdgHOsqhVKS/iE9Rmt03gvTLUk/kKmHdbV5Jni8NkzXrp5nWW1pK6WLHzNbrEtm6p1aG2wxtEasEpcvqkxFxl07yXpMwuMv8Sv5iiv0CbDKRO03jVZUVKFGGfnLR6DdSJhFTq7Y7yUkkRaneXgFbauGQxyXNPSOoeqW0yRi4vSNeQKqXrbtHhrpfl9CNOopQDXZDJhuZizmM7IvJKFwYAwTBnONmgnEmwKj3WWZb2UsCKl0GQMlaNB8+z5Ia5RZJnpvFDbO9sYXTCfz3l4/xEmMzx/fshyOes2DKVESSUqrFjbrhl6Ssl9RSWI3si9OFa6EAPSz4TNKVAfvvun786nlRbjuCjY3tlhMBzRNA2LxYKmbtFkeAX1quLs5Jid8RBFi0ZyKop81Hk1rFUURclyuUzGbuJRi9fVsog636Aw1JXj4f2HvP+jD6AouXv3Ux48vMt8fk7T9onqYqyKAo2sFf38SNekxWJBXdcURUExUMyXK7zS5OUAU9a0rqGtKx48OOL45CnjyRbjyZiyLSnLjNFoyHw+xznHzu4uw+GQqqq4evUqb731JfKs5OT0DK01X/va13l4/z51XbFaVZyfz/n07kccHR1jjOHVV1+maWqapgIcy+WCs3OpDfDw0UOMyWgbJzKVqyWDQcH+/h4gIY+rVcXkfEH+PCfPS7TOOD+b8eTxE65c2f/5G8L/hEdcB9OQgDRUREB5wnrFfsbjddxiVS+agAfV5wJ5F/TqVV8jwVofeRpIyadAc6chEbHCr/NurXDPYrmiqSUufjZfdPKBi+WSNjD4hGvWbUsdal/YxMgWdR7dFWhs2rbbvyJh1BXR83QqOs6JukkE8yaANxPlOlWQ/9OGLJM2bVobKgkXFLmAwDaXatF5WEuzLMN58Zq66NlymYSrd2tHPC5nxNN9oOuzZE72rLULuQEk710EiYCE2LzgWpvYozM01j4Xfy6GWqWfVREA0j/rOqPeA/kO0Kcn2PhsLD60xsiHr4r3dSMMx/luvKdrO/SeFqMNWZgnUeIxyv9uzp/+673JEZn5CJSN6RPPI+gGUJmOahEd6dXNp43OiMZluhfJPZOQer23pgfzjrZVaJuOCy4YXln4ra0Nc2Dj+kokZCOBGQDIpUPUJ//t+mztr/7i6zD+u+uqvh/9mgH4ix+fHcx3i5Vc+N0fvMdrr7zOaDQKjSzAy1rPl7/0Nn/88NkaYHROs5pXTCYep2zHFjgvmrImSWhJs9fT1ymDfHZ6yh//4R/xj37ndzAh/llQp8coTaY1dZj4MXFGAz6T99qQFEUHXHwHzNZs8vD3LMtQtuAvv/uXXLlyndffeiMkcvaWteQNvM30ZMqPfvBjUV9p5P3TZ2c8O3zOW2+/zv7+bldKPHXdxPN0TLv3eOs5PT7lD771+8ymU7GkL0m6StsnZepfxMinn0v/nr6/GVtn25bFYkZVmS4kRIdY0uFwKDH63jIajTg5eoy3TkKVrKPIsm4iRQPKOUfd1AyKody70V08ZBbimeP9iC68xoR/N3WNzkvZ+JylHG+B0jR1TWTc2rYlz0pUaAdnLSovyIzBawHTLQ7tW2y1xDcrptWC3OQ0q4pBlpOXJZlR2ErReGH4sjynqlfowG64MD5crWm8Qxc5xWiIrWqi58ba9QU9SnlqrWXDRsLDvHVkSmMczM6njAcTTk+PWK1qdnZ2GY8HNI1jPj9nNjsDoG7mneEqiyRdv21Kk8VNxyVte3Guq27eZFkW2Jm4eAZWz4N3qmctEncn3oMRGdLRaCSVXwcD6Y88D8ZxRt02zOuK+XyKrZYhaTtne3ubyWTCo0ePODs7o2lq6amwNqTj/LL7t1ZqCGRZxvPnz/mjP/pDHBl1vaJpKzwtRuXs7u2ilOL8/HzNVZ9lIhPp/XrNiugxWq1WrGpLVTcMBoPA1jRo48mNojADrl2/yu07r3J8fMzZ2RmDQcnbb7+N1poPPviAk5MTnHNcu3aNwWDAdDrFtlNOT09FEMDDyekJ9x98xI93fwpkHD57glKKN954g7feehPwHB8fM51OQ6GsnCIfUVUr2qaVeOiyZD6fc//+/RAO1HJ8fBzkLGfcu3uPuq4lPyAbMp8vmM3nfOOf/uaFdv38HFGBZbPiKZ0ccDRCL3zTCdjG+67gUgegYG3DTuOW5eQEo7vfsZs2ymRK9U3bSgx/TE60VsaRbS1104TcMnldVbWoYKk+mbS1njaG4hDrIvYJsxKW42jaWP02rOlofKe2pNC5gDFnW7SJYF4YT4V4OTITw2x0X5lTG5yXcKAmaN8b69AIoFSoUFNGvtfmQapXaWota5SYFz1QT1RBOwAWwWLgX7o1MyV7IviMTH1sz8u8i3EMoHr67LK9bx2cq27cXHakn+8NDn/x8wE0pWtW5ylI9uW1cRjG2Rr4j8x+GFupZ6UrDLbG+iftHIa9AHnBapmR/K+4VnbMvJGijESjJTxDZzcq3SWEa6M7j0/6HD32T30OHZaV+4oqX0kfSKVeEBnfxNOR5Kyk7d0Z6V6hMjFQfDd3Y5hx35eZMXSBdMGw7gwewnyPuAfdtUF8NqVUVwxLsf6c8Smjga0iWN7o1+51jE5ZM9r47z5+AWlKuTzIJFqeL/lX/69/1SnRkMQzibb1enGdnIL/9H/8J8rxCKckjCoqhlgr2t2iado3Wjrw43m6zF+luP/JXX7/P32T/f2DsEgJ8HBOtMnXEjoIMeVeVFref/995vNFt2EbI+z77HQaBvA60LGtBScx1n/yh3/KoBwy3t3qJ7xWwgx6xZe+/CUe33vM0eEZq9kK76GuK7yBD370Pl/6ylu8/eUvMtnZCa4q1blw4nNba1nOV3z60af85Xf/nOV8nhTFkePCBPKbE6N/PzWKNkHcZe2dXqcD9VrhfI1r+2xsYyTedmdnh7OzU85On1PkJkjmZWA9GZorV66hm5VMpHD+trU0rsG5AmWyDrRLgqv87m2KrwABAABJREFUu2maztrPCeFRrkYZyE0OOAbDAYogoRk2bI9nMBpRL2s6Q9d7tPVoLwy7LIgNCoe2LVlYW4zRlJMJWEfTNjTWiVa1MbRNg0GTF7kYAEHP2gXg21qN9yK72CpFXVUdsJDqu2FTcrqLJY3CXnEBxjoGxQBlDJnSrFZztrd3Udry+MkD2lZin7sFXjWgfFfa3bl+Ab1svKQgZNMzE+dZ6tnxXrwmMZFXayPTSEVDvSUykcYYBuUIRdgcdA7oLjTLWst4OGQ0GLNqa9pzz2plqOtVlzMjAL7ptLHbtkFpd2EdSNeG2H7pM8V/t02L9y3OtuAseEdlK+pBzfXr19nd3eXk5ITZbNYb/sEDlsa437p1i729PU5OT3n85JkkuDrH1tYWN2/cYW93m5euXwHbgvG88uoreP8az58/59HDx9R13YH3tm3JsowbN26IQpU2NK7uCIUoBZgXRagSW+Np2N3boygNz58/pa5b7t27x9nZGbu7u2SmYDSakGUFy+WSpqk4PT3l/Pyce/fudWvz7u4u8/mC6XTKYjnHexiNRwyLMatqyZPHz/g8H5HxjoSDit4iDWC6TXMdKPWsWGcAJ3klMSTAAy7Oo+BhjGA+SmD6EALhnWO5WrEK4365qqjqGudiwR7XAw9kbauCFvyqqpjO5wmYD+Fr2kCQz5XrCSnUWvE2W+dY1cLea63JVRbURjReZVJtOssYDkpMzNMJhqxRumPmiyKjzHNBU851wEhpsF5yg1jV1CqEN3mpfSBFbzSZafHOk+kQDhNCRLQSXfDMxJhsj++A2SZbr7t1Jc7naFyneScpSx+L0KV9ehGYb7LvPSCPBkJfyCeJB0/Osxlv3jPSLwBvvickN+8v3kf6nchcRwMlykvKB3pm24eoh46RTxK++1AmHcoqqN5gC6RUHrw1WZ51xcNSsJyC8/gjIVdBZ97oDvh7H/Idu+6LSDzpU0WMRJMK2tBdM2LBppH5Ge0jMShVn8NhRFknNCjer4c44ftckf4ZZBzEczgrmM/7qO4UQtecxwcjVQfjoOuTYBAppzvVnPXe7uC8zFef5H+84FgD8i56JS4na3/e8dmLRnWlaA1aiyxR07bYJmjNhsHe+pamamDjMbTWNFVDVZ/1oCvcsPMuyHRdBJ3pETdaQLg9XXD/04fc/+RB52aKzK+OYQ3OBTAP0OumfvDuB7z7V+91g1ZrCa3B0enp4nuXlHdOJDG1pq0a/v2/+fd4IwNLog58F9OtMdi6xVpYrVyvQ+0zqrbmv33vB/zgv73DzTu3uH37Jfb398UoUtA0NdPplCdPnnD/7n3mofhTZsxam/qNxSFl2+O/U7CzCd43X1/GDMS+iUw60McTK02e5SgyMlOyNdllPN7GuhbXnmPCZMXJplitVgyUI4Ru49qWpm0YjnPaxlPTYIpMkimdo20a8mAoilKPDvJqkhQ6GuUUwwFeeZwFlSmy3ISkZYdHQrKKQSGLYOhDgNZZbNuQFaWwZFVFW6/ItaLIpD9bazGZASUbmTYGkxlaD6qVmgkmy7CuxbtWigA1IjGXZRm+bSnyAttIMm2eZ9hWEs68V2jlyRRkShLXGivxnNZCpjKqRmQhLZJf4K2jdTVnZ8d4V4QQAY/SEN2SzvkulnBtHPS9SuRqZKEJ8bNxiidsVjpvVQiXizUUvIKsyNkNoSInx0csl3OscwyHQ26/9DI727vkecHZ2Rnn0zO8l01GZxleKfJiQD4YUDWWtmlY2AZrpXJnXdecHIvXTjZnyTORPUpCgzxSbMqH8oE+GNRaxXUgzskQ8+8s0YsWN/6TkxPyPOfmzZtcu3YN70UJJo43haJ2jRhcWcHu3gFvf/lL3L//gOPTcxyO4bBEG4W3lkFRcvXqDQZFznwpSbFXr1xlOBxzdHLKX/7w+wzygrqq2N/f5+tf/2tcu3aNuq6ZTmfMZjOqasX29oRbL91gvjgBruAcLJc12vQesD/7zp9xdjqjbVsO9q+Q50MO9nextqUsS6azKffvS5Eo0JTlgPF4TNM0nJ5OMcawv7/PnTt3qOsGpTRlPgmhTf8D9ND/iUc6blNQ3nFoCct62XoX/d0+gKE1z09CdKRrZoyM7T4PXfyyC5WeY7Gm1WrFqhLFp6YJUotKdct6VKtx4XcbCvz4zlBQqCBf3EHfADCi8pZ1/Y9XiFpYQOE+rNtKmy5GWmkB+niPUSoB80VffLEzajx41zHD1jri6tG2fe6NbSXR3waZTwFpjjZIJwvOC54S71Euzte0Q+hRX/fGOiZIw6p6b3X0Iq57pLvfHRLoj01mPv0BtQbk2fjeZYaCUhvrbzLWPitAW2drk/DG5G/yOgL75HOxkm98XgFaATT3wNnoXmDC6D7EdVOhyfswg5TvyDitVR+WqNX6PccWVi9+3q5r/cU2T9taxeGrNr0l4bxaSQg4632UGk1CcoXk38Duo8F4I3tnF84L4v3ok27V5g2HxlChXTY+EP6setb+ksdPehLoSScxAHrs9YsenxnMixqG6Rk878hD0qMn6NLGhcW5Xps8Gcw2uJVyvW5Ra0woULQR26V7VZY1dYK2FReI1+Ky0wqtbFiTYtIeQB9q0lnUSFVPAyKzlViEcsNcGBCAxH8F0K6UIlPBXeMiqymvvfe0IQFRGwnkEKUZQiymGBTeeh5+8pDHdx/hve/chEqpDjQp1bdNp76wcWw+36Y6Tfp++t4ma58aBV0fJIuT9LMPLEwWjLoCrXPOzxd4/4zBcEhejjmZPiHPDXs7O1QrCZ9obY3PJKEMB5nyuKbF2YKY9LBaLilC0Z7o3vPJOHDOUeYZTusQutKgTYk2GXXdYPDkOgtJnQbfWnyhqG1NXhR9NrvWZGZA4+SpCpNT5gZva3wj0pa+HFLZJYqWzMlGVTethPkEV2pU5ml9Q2YUbSMx8FqBtoHVVb0aj9KeLFPYVuFdS5lpSgPea6qmxugSrxRNXTEYTljaltpbitGQ0WBEbQ1VXYt8pgaIlQCDxjmui8tN54sKgKGfWnHn9N2i0i3+Sf/355BiUt77oPKTU4wG7F094M6dO3jreHZ4yNOnT9Fac+PWTfb39jDGcO3GFU6PT5hNZ5zOzsFoMlPggOnZlOV0jm8l56KqVqBanGtwNm66Pmwc0ucRqIv3pmQ4GJNlA5ZNQ54b6mbJfHYeqlN62hin7ASEWG9RWuKgnbOcnJyglGJ7e5utra2kKqKAvyzLKMuCfDDko0/u8vipMPKz+TTUQ/B4LPVqxsN2Tm4sr7zyCpPJNm1rWSxqsqzg5dfeoPaKtm4YZgWj4TAAc2ESW9swm59hbcP5+Rmr1RzvJT7/i1/8IleuXsf7jNVqxdHREfP5ipPjcyaTLW7evM3B/jWMMZyfnwOag4MrlKWsN85KmFf0Cjx48ICnT5+wt7/DwcEBbdty//595osZBwcHn1t5yriGR1Z+HdCzBjwkmbHfb+Lnev3uJPY6AfqCh3sXf1ylrJOkVjF6W9oA1ueLOfOFSJ4ulhHM93rfWhvyIkdrgwoyu85DCbTeB2ZedzSlVxqvjDjwvBPQ7n13796Loa2znHIw4ODKFcbjMXXdMJ9JYTWvoHWuc/NnebZmyCgFJs8ZjIYd+Ime7bauhFBxFtdUgTF2XSK9QtFoCSvSgfCLbagDoaLpkxlxHmK+goLIoPaMOt36BRG8poCoZ3ZRiiwaWD5WWnbJuVUXrqE75n0dwF4GJi9DZJcx+uEO18C83HNvIMbvRNCr4vsbhmKHYvuzdKC9p8k72Lz2+8Idq967oJUJ7LTq6uloJR7imOwa+PKkhbvtojNeRXXFBUNQPuO8yKwGQIgUgQGiqmCYO3Fvlzb2REUXuVUdkm913wQqXju0awjDic/ZBbhs7nHdq/78okgVSKHwV/EWZXjtE2PQd79D6yd9Gl+v98+lyP0FhzzS+uejl04KnIY8rl8A039mMJ9aa9FNCZuW5/oASC1nWK9u+KIjnchrgD9xradu9NSdHt1P8V5SIOuTiXTZeVJ3XHovlwHh9HUEz6nhET8Tr5UmYWmdCVjXYFS2ZnnH0JKyLMN7Dq3d5UCbHqhlWdZtQEBS1Klvu/T+4j1ttns8Z3+B9dCmbmFFJl1MeGrblrOzM3ERI0oKw8EAUwx4Mj2nyDLa5ZJV25IVkkypQ5wjPowLF/MV5PxpRdoiyPZ1fRn61lkLyqK9EXehFnev1hoVkka1B+3AVY1cz3m8Eok552Rx8UoKZvjW03oJsWjqGmeXZLqFpu0SypZVhXYe39Y0qwW2XmJ879IH5Lt1i/FB2zb0v6hqEGogSB8577qFNC4Gtm1p6xqbadACJgflAOMM88WU3DQhwVsFIH8xx2Rt3CrW50lyaCWlzuOETudBHCvGZKECaRhriGs5JnPeeeVlbt25zeHhIY8fP8bhefr0Kefn53jvGQ9HGGMk5MhohgNN21asVjNOz45Yrpa0bY1zLai2Y3/iMxiTMdnalnPUNUopxuNtdnf2uXr1JuPxFg8eP2a5mjGfT1nOK+p2CqwnE0XgHAd3PH+MJY+1Aeq6xpjeQJbEqpY8L8MzS+XmplGsViuWyyWjsuBgbxetNfP5nK2tHcbjMYvFIlTn3eL27S9QLZZU8wWPH9/j+dFjXnvtVbz3nByfUtc1N2/eZLlc8t3vfo/VaspXvvJVtrf32NneBSVrx2AwYDAYcu3qdQ4Pj9ja3mK5XHJ4eMhyuWRnZ4cs05xPj9ja2uHmjZd4/vyYH/34XQaDEqU0q2rBJ58c8+TJE65cuQIoFos5SikODg74PB51LTUeYn2EmAiYJvdH1a20KmYK/tu26VQu0n1FBQNY6wSIAnHOOid1PaxzrFYVq2VFa1um0ymzEC6zXK6o6ibENstPludMtrYoClmDcpOD1pi8QBfBqxhi1SEA/HDfVd1QNXWIl3Y0Ia+oKAdkecH2zjZvvfkWV65e5eTkhI8++ojT01M8BDlMqXheFgVaK2zTYpsWpxTFoGSys01mDEUm4RgS+jmjWi1pm5qlbbCNRXlPo7RUwrYevOq84UWW4ZL8p1gMSkXQrhRO9WESKTToALOJUoQqZFAme1Uwuk2WoSKp1ZE/NuT39H2pVB8WE/fF9OdyYH85e58CeRPyC1L2PB6pYdjBw/g6HWeRiEsawZPgLZ/EdMdxuQboU064N4AkzEaMMmP6gk+ZyclNTs/SB/Kme4YYJ99jKwHyfVK3cl4CvZSEejWtKBaq6IIP9+FD26V69jqE/jjoKiwLgRKLiMZTeFwrXnnvJcQrCL5gtIQNeRDDUEVdp2gwhPN6ujGBDyx9+JTSCpMLXsicw2byDLKnt11/CYiPfRvNmk0sG9vf8/OOFG+mpEKr6NvnFzAQPjOYz/N8feAlx4vAes8wJ66dJGllE2BsTqL0OnFxjt+H9dLOcdLF80U3+SbYThf2eM+dZb9xbAL3TcZykxF/kYEQ79HTYNu6Y3a8B617b8dlxk5qgFx2b+kzpZ+P9xU3qU3GIV4v/d6FLOpkAZP28cIgKYOzEotsW7nfWMXWZLnE7bUtWZZLzDuWaj4nKw0uMxRFIfGUWdbFtsU2K8qy12RXCp3ESOZ5LuDX5DLRgCLEtSkjVWHruhUr21qcAu8bCh1ktFB4Z/FedOOllk+B9xI3560lKwa0Thiktlrg7BIXCp5JWxja1pIbxajMIVe4tu7ip9vGBn1yR1vVEPogPpN4bHod78xkWCtLg8iQeakya1u88V1RoPliTtVq2aB8Q6YNRTbCOXCuJSa/pQxjPLxHXKTdOHWdoRbZsXRcbBoDUQFkOBxKlU0j7GFd1xwdHXHj1k1GkwlXb1zHKo+rW+rliul0ymq14sxkVKsV0+UCp6X4zKgYSKKmraRQWLcO+I5hiRvlZLLFK6+8yu7uHkdHR0ynU4bDEcPhEO8sq9WSxfKcR4/us6oXNO0qjJnew7a5bqVFfdq27ZRyekZ3JRuD0qyqOVnVMhxN2NraYjQaUZSG8/MzTk9POyNhMplQFAWz2SyA5Kucnp7y7NkznhwfcXJ2Rr1aQePIjOXW7WtMtkbs7Oxw7do1VkvR/z86OuKdd37ActFQV5bHj57y9OkR12/cYDgcYoyRCrijCXfvPuCDn3zIYrHqxqgopFScnJzw7NkRdSX5HJ988hFnZ6dsb2/z9ttf4sqVKzx79oy7d++SZTmZkQJZT58+5fN4pK71C3tVQnhGb2MKHDe/s7audo5KFff08J3+e8731WajBKvkfDRdmE3TNKGYEz0DZ3TQvg8soxbZWwNkPpf4Z6W70Bqsw6tArugeMEXQp7yEfmZ5RlGUjCdjdnZ2aJqmU7ORtVaCET2EfC+deC363LdYOK3IC6xthZlvRRa124MQgKdcH94Eon1vnUNZK3VBnCjZuaDCo70XIK9c1xcb0KJbozps6NfBUvrxFGuk/Z725Sb7fhmBd9nry/528YcXHl1bbVzvkg++4A8pkAzvJEBe2OdEgaX7S/x7uGciS38xnCi5iY3rbDgDAkMvhlQAtQH4R5BPAOER3EYwv/6ckX2P+GSzci/BA63CdXqyeO3+Eu7dr9sxfeuoaPzFMebX8A1KidKR7g2oHg+l4HwTqKdENi/428VDrpl8MpJpiQdgE2f/vOOz68xnhbCHvqJFknfSvknB8SZATtnp9G/pxE8BfPq5NGxkM1kvnYhKegutQjJGMPc2DY3us6HpdNB/JrjHOiMD6fSUxVYheSoWlYqTK01M3eyAdaMkiceSJxJLkbgp9CxATNzaNArSNtq83mb7bHo40iP9W2pYpX0p/9Z4JJ5b2iSC5zB5QyVdkYiytFVFtapxywWqyDk/PYFRIRNbBT1VAK2w3pFpHeLgc7Is7+4vjo0cD5kR97MKLjnr8NYCHtussLYGbbAeDIpiNKa1lfx7OA4x75rVYslgWMq9BhZLeYdvatqmItNgmwpva5rVklx7tFf4aEgED0JmRAWitY0YB85JrHpmUM7iraPICxqHhN0Y0xktJsuwreqSVfPM0HqLtx6paGyDPJbEqI8nGa71DIYD6qYiz/NOH7gshxT5AJRnPp9S16swxtTaYhRjHaXPZSQLWRHGlo597xH3ZVwAQyVK76jrSqTHMsNkOGJ7dx+tDYPBkPOzKU3boLXiYG+PUVGSv/IKL710S9h55zh8esjy3l1mizmLpmWG7q4v15YcAOfFPY8SVZoYytTUDbPplOl0ysnJEc+fPcZajzGZFKhqK1arBaheuzgt1rNp+DtnQ6K0hNtUdbvWRj7M1U4hpKlQS0WRG3Z3trh+9Ro3rt3g7OyM+/fv41wD2rCsGs5Oz2juP6EoPhHJyLNTTpdnLFZzBlnOF7/wBm+++SYHV66wt7vPcDikLBx5VjGbzbh69Sp/9+/8Jj/84Q9BZTx5esT9+/fZ39/nxo0bwaAYc3p6zvPnx8xmc6bTGXlZMBgMsHjOZlOmywXz2YLpfM5kNKFpxKtR1zXL5TIYSLvcu3cPay3DwZjBcEhdVXwej3QtjKSPAGvbsYoBVQRQ0s+TvlJqf75uTQwYIgX5cR+oaynmtKxWLJZLYa+XKxaLJdaKnG9V1Z3udbfGBU+cyTJ0ZnoaMnroIpvqJYSnrUOCHnT64jbo5lvnaBpHVTtMphggRnBZluzu7nH16lW89+zs7HRVmjviiJ7w0UqLLryR32VZkmWZeIKKUj4DlEVOU1fQ1oRI/K7QjcwVqXxtlGJlRNLSh3weHZ4phpVkgRFW0DG1SY+G/ogiERGMBoDYdVZSOXaDuPPp63jNPBO2X+s1hv5Fe+QaNHyBMbCGQ/Cs7/us/T3FM+mY2vzM2g8hvymSDTaGWBL5D/FeREMmfIdo4ARPyVpl30ueN7R6D1nDvIlzwwOt8yEvQsJsVKDJm7albsXzZLtCaCGpfMNQ1lqTF0VQzpGCfNr09Qxi32R5j620yTq2PW5jOqgzEfc77zpDVZTUk2JXykmleB+T2QXZd/fFZq4NfXG/+Bnl+5oT3Sj9GUdsNPr1I+6/qVG12Qf/Pcdnj5nvyrFLtceUCY83sTlIQRqzLw+8DjRhneWOn98EqPF3yrCleqYpo9xhknCkhsT6EVn0mIEdwkh0wuj5ELlkFMYUaJ/TtDUg7G6MY980EtJJut4WGufWQwguVqKNIEI6fbM9NkNkNmPm4/2ki1vfNhfj4zdZ+zVwL5IMqEyjilwGX5OGWEXLHFAW7xo0njIrKbd3OT96gnaWxtZo2iBpZmgD+BV3c4vzWQDKCovtmOws/BijsUhBp1yXkgXvPMo3eOXI8wKsp9A5zjrq6RRvFN5oXFGg8xLrrBSGcg7nwAeXeF7Kxmi0tHuzOMdVKxlfTnTf29BHmQbrGrxvQ3IXaJMHNsCRGYltXa2a8AwZFg8RX2qFMhrXOlm4rKg6FUZRmJxV06K0RZkc23qW8wVbu7Car/DOUGQFy9kSr3MGg5xYaVXkxEoaVRM3kqiaIyPdB7a7X6zT8Sp0hAcVkx/XPWbG6AB4V2SFeFPKsgSfYVu4/+ld2nrBzs4Oe3t7DK9epZiUHBzsMZmMKMuSOy/fZmtnix//+Eecnp4hMr9hsUfCpZTyoWqzsHU6GHrT6RkffbwK/7bUdSXFqrrnQRZ2fLc2+WRDjZt1uk44b0O+S280pwQEMbE2ntxZmmrJYgbnZU5hciaTLQb5gFE54ujsOY+ePGV7q2axqCjznJ3tMc6JfOt4WLK1VTIZjHjj9dd47ZUvkBUjZtMZ9+89ZXt7i+3tLba2trpwkE/vPuD4+Jg8z5nNlhwdfcSHH37C7u4u16/doKpazs/Pmc9F/x4F27s7FKMBeT2nPne0vqVd1CwXMwbliN3dfZqm4dGjx3gv3oStrS28l4rN8/l5x/B/3o50nYwhi3FzFhldh9OhCrOK4WnJBu782lreM5/r3swmVGOtqorFYhkqEi84n02Dl2fFYrkK4zvcl9JkuRRQU6F/tTZBmSOLdPgaqFc6Q3tP00pRJOuEVCEADFmDPG3rqBvHqrbkXgOheNNwwJUrV7h16xZKKfb397sK0KtQnAq8JK8qGBQlw8GQzBiGoxGDwYAsyxiPxoyGQ7x3DIqMth5RrcRjqbzHW0tbV0mBoxCXHKQqjREwnweAFotWaaVwWUa0ZbSPYTh9X2od8UUEtZft5REYrbPW3vtO9KAjGXUsinR5iE36/X5fXgfYPyscJ46d9B7S9zax0SaA39yzu8+oXqUpgvoI5iMBrrzqQmXieIrfNyZ4p4OsZHpPaXt3wJ31tdUTFJqgIzh6OCtEX9M01I0Yi6u6ZlVXeOeCJGvbzZkmhDSOhkMB9FnGaCjFIrNYaMwYiiJn4AboYBDmYe7EegjyDHF8OFzbCikWjF28x2hFZnKyWJRU9V5sCaEJBrJzAcyve3F0zO8MY8l7KeDWReEHcqBrq0uP2HD9v7s+2Rgvm78vG+svOj4zmF+uFt1klQ2yv1h6M5vAML25eOObrqIIzjdj2+PfU/C6ee6L8ewb8cLJkU4WifmWOGBra6R+aMLCK4XWGXkuLMVkPKGtLaenJ8KI2HUmO4LsuIG8KK5/s4z75kKSejbS+7bWdqFO8dh8xs2N6EULyWUsQWoApN4AH1gP0QAv8NoHucV4n/K5pqkkIVXJM2o0zoa4eOS9tm2xRgCUVpKc1HonCiSDPEy2nkUVvW2ZBXI/utsco+JIBHhKGbxrybMcD1gFyhhss6SqFjjnKAYDirykMFnwiHhUCPEQS71F4Tt3tNZaKpXmoiTkvMMpjckKtFPoDJRWWJvR1h7feglBUTWNc3ituuqvabsCIfkIIAk9C7KpmckotWbRyqaLMQzNmKzMmKgRZ4s6qI7UVKs6tFEEI3EdT+dPvmaooeieT+4pRHIqg3NNYqytb0rWWmbTqSTv4TG6YDZdspyf09QLtNZcuXKFGzdusLOzw2Qy6WLRR6MRo5EkfZ6fT0OMfGBDnRVZVxXjUJUk+XZGr5eKwz5WaLXiVN7YgNJ5lI71dA1xzpHneQh3uBiOEceecxCL33gskUVZrVY8efKEw6dHXfy1tVaS3vFMxrvs7u7SVjV1UzMcDvnqV7/K9ZtXUVoq345GQ+arFc35grt37/LBBx+wu7vD1772FW7cuMHx8TGffnqX9977Eefn5wwGA4bDIdvbO1hrmU6ngGJ7a4+9vT3yPOfpkyc09YpqMWM8GbC/u8N8OoGqwYaky8lkwrVr1zrt+48//pjr16/zla98hel0ytOnTzk+Pv4fYof+zzziiqmCZ+fCZhj7mj5mNq4nKYDp95d+k444MQ3FalsJnbHW0rQNbdN0CjSxboEKTLtSqmMdJQE/D5KRgTXVkngn4S4ajeT7eO/7hFvVM60oFYQf+oROE2Qg14FqD0CzLOv2kPXkdheY8cCGZmZN6aTPuZJ1y4e4a5PJbwdYpYHe+5W2FdAxtfE5nBL5Pu08TodnVeuAqGODfeIxecHYVJGqTUaDIjLzqczhuqzkJrP+M8dXAqzTPXTtmsEW29x7NzHSZee+eL6NI+xTl97bemxJZxReMDo2YrAvm+troR6dVyq+T+cd6hj88NnWigKTDQZv9AI1bSsqTUHRqW6arliVda6bE7m1ZAH7dLKj2mCsxfuwHzgnkQExxawfGOvNs4GfYyS9D6/j33rjJVkHfPhGGFNKIbkJXd8oaZi4KCRrBaRjWHVvqLX3Xzwu1tj7X/D4zGC+rhdExks6Va/dUArEI7N62bH5nU1WOT1SNi1+NtV03QzfieeN4CguJCkT3sfu50zG22RZJkVpvMdkmmolZeQ9YJ14Dra3dtje2mExXzCbTWkDmDWmTz5MLe5NIB3bZNO7ABfj7+NzpwAkXRxTYycaQKmBkwLxGKedtnt6xDa7LCZfaw1e3JvOI8mtzlPQA13vLd7HhK4+I761Fheqmq6qigJFmWnolEKkfWVz05Rl3j2btX1eRNM04DQ6JqfkWWeRdwtIqIg4KDVFMRSWPTNJwEhLkYuLslmd46qcopC4Y9e25FmGdxZra2xbo5M+adtWyq4H1qUYlGAMtJ58WFLXNTrTIXm2xSmLCkovxXjIcrmUMI7GddVM4/MbY6CRMWEDyDbaSBVR3+KQSruLxZydg12qekE2KNnf3+HJ8wdkZsDu7hCTadpa4nMFdNJtvDowfaI6ZLqQstQbJEWcwnxxNYvFVCoWJzGxkRFSSmJr2/mUxrZkWYm1YCthytOaAM+fP6cspWrr8+fP0VpT1zWLxQKJ+7fdWsKGN8AnY12ub3E+mcNKSW5BZMJkgF8wSNNxH8dUaoCncy2dN7KAS6zw9vYWznnm83l3rhgXba1UWB0MB7RejN3d3R1u3rzD+ekJq+WM1WrOcHiNm9dusbW1xbJeMVsuOXxyyAc//glHR0ecnZ3x/PkzHj68L7HzKwnTOD+fUVUVSqlQfGsLgNlsFoxh0e4Xw8RyevSc2eyMZ88PwcBiPqdZVbimBS+J1aOReEpA9PyPjo74yU9+gnOO58+frz3n5+0YDESFJwV2WolUYkxQj4ovUpTGdsRAt3+E0ATZzPswgbZucFZAyjKE01R1HcJpLFVTd8Vi8qJgHFz7eV6Q55JPVAyGQe5RPAOoACq0/FbaoAOwkVAFGZNl01IMhh2wV8HrIAmwDc55dvdFuUkpRVFmoVqr5vDwEFAyZrRme3ubtm0ZDgcdOdc2DXhPWZQiXGAMRVl2IX3OCQjDe2zTCCsMDAcDtPdSe0Mp2kb05Nu26ZjPVRXCP5yTZEktIYt5LqEUZVGGBFxNrgw6MwGURa1/1RW4U1phnA7qbpuM+PqYlWlsugTRyB4rRVCyuZxlJzlv9zqCYR0LJEWjqzeqCCA//laC6KXPWMc9lzHw8UjXrvjv7pk6oypdr2SfSysbp9cJDQGd4RpypmBtHzBZJomkKV71fV5FDO3yvletiYncbUgyrppGaio4y3yxYL5YBE9Wn5Ae1yujNcV83oXU5LkoC2ZBbEEbkb6Or0XlTsbJYDBgWA7CM/rOEB0OBl3RTx0MF8EuLQph5GNNBSJCiM/kBOQ75zspcVFw7MdW3zcR56XGQkcFdO4MFarS6yCrrGMUAxBLp8V+6fobFagGiFWdP+vxi1WA7QpDSVWtaDXHB40b5CaQj5NlPRxGvhclGdNk2fj3lL2O57lso96MoY+syObGnl5b5ppDG8VksMV4PGY8HnNycsp0ek7TtLiqomlqzs/P8N6F4jOiWZoC7XitFGzH+4n3FkONUhf2phGSPmN6XBYy07dhfH/Nj9O1X3qkBkNqCab3Eo2A/juhf63DeWiVl2zyGGcdFy1kQLdtQ1mUnJ+vmM2maAN5OaBaTRkYjVFSeGk4HOHbRjawMGDruqbIM1AC6D0O76W4VFHkUj5di0JFpnJJ3IRQVl1i9k2eU7c12WAgC7RWGKOwNJDJZ11To5zG1qKu0jqPUhJ/jRe95gjq8rLsxnlrPc5LnKtzorDs2halICtLvNHQ1rS2lVAQHNbbEEfoiHHYOjMQxp5SUOYl6IXEtntZhOpqhdM55WBEphWLaoWfTzm4cZOmFRlH7z2Z0dQ+yrICiKazNmLQaCDPSwgxl3gncfZxDMY4cS19HBeYOO6AzhCNe4Mi1D3wDqMUGI1tZZzERFLoJQLb1nagoLUtAqTi2IwerX4uCciQ93W6qcYxr6WOhIzj9fmTzhcbwgckPUqStyWcQq4fn0nmrzy31hlFMaAsh+zu7vHyy6+yWlV8+OEHLJcLiqJgOBzRhCq4scpt06xYrVY8ffIY2zqGZc7+/i7n5/DBBx/w/PCQ119/g/2rVzg+PeEHP/gBD+89IM9zdnZ2KMuC5XLBo0ePMcZwcHAl3I94OOq64ezsjO3tLcbjIc7DYrXi9OSY+WzK+dkJq/k5fgH+7Jgsy9FKvGEuGMhKK8bjUSiUtcM777zD8fExH330YTdXMqPJs89efuR/pmM4kHEd9xuQsdoEY7dyFbVtQjGewC761HAMqh4qeliDMWkddSXesKqSvAYJKYjgxa2t/UVRMBhILPhoNGY4HGFMxmA4pCgHnTs/AqPaSQ0GAYsBzEeteC+M57BtQ8Ks6eZ23bRUYd/M8gIT8noi+6m14vDwkPPzabeu7+xsBwA/wnt5rirM2SIvKIuii7ePClbWOtpmFRpLiq6BGE9lnlPXFco7aq1FDSjUArHWYht57VqLa2UdKYqcohBDgbAXi6dS4ZGctzTcIahLChlhevCddeP05wtY6CQeX4yBHi90YD4B9IT1hjAvdATykdXXauPzdMC+u2xC/yoEdad7+SYJt3msAXl6L0zc2+O6qUI+2uazr3l0fI+V0vyheC+ZcyJRGtonkiOtD+E1vi9uZp2jbiXsVaoVixTpqq5YhAJp59NzpqEIX9tY2kbAfF3XNG0roTJZdqHfBNCbEIpmOrBfFpIPZDLD1mSL7RCOGOsVFXnOlStX2Nk24RwSimO9p26aTgVIvMEuFKGK7Q99npnHthJxIHvC+v15v/ETvRN9R4V3eqZJKZN8wnfja7PTPL1nQRT7okzmZzt+wQqwEXBG1yFrAwt6tlzc4e2FAbvJjKWvN4Hlz3Kdp2x7f4/rajXxHlKWL57T2pbZ/JS6EV1zlOj5DkdD6qamtfMAJhuWqyVVfU7bdDbTWiOnz6eSCbcJ0DeNlfR3/Nzm0Vek1Be+HwvohKfvNqRNy38zFOlF1n8aGiQxZBGsS4KTErlxCZNBhxLRUkQsft+6prsn61osDYPRFaazKZWrmWQ5vnUYBXVbQzGkaVsGuajgtNaTa4N1ljwTd3mc3GjRqc/KAmNynFWYWGUwM5CBMw6HYmVbhoMtlM8k7l43tHqFbcG2DpoK7RpwDZoMlZU4NNa3aGwY8J7WyoTOooGjalorrnVlFFjEaVcUaJ0Jm4YmL0qcb2mtlzAdDTgxTNq2oXEOi0UZTZmXWFq8suTkeGXItGVRLSiHA5bzBY2H0U4BSgBXVS2Yz84oiyFehYJIDv5/1P3JjyRJluYJ/oiIN9l0M1NzW9x8iTXXqurKqkKj0I2Zy2BujTkM5t+cucylUZcBGpjaprMzszIiPMPTV3PbdZWNNyKawyNiJmFVi/LoRgHpbFBTUREWZmJiYqLvvfe97wnSFXUNhcI68M0erQ2x4mTuFbP5nDzL2O12bHfXwQEwFthIn2WlGDxZAIUp0C4a7pq8LLBJ5UX5nhk5nl4F7z+ix28jZcoTa1ccPCsymkOCKkPNCgH64fkO1fvwhxExpaLRIuNmnBPSpEcBKChFbqRgisehVcZqecrTp8+pFjOR+atmKFPw8NETttvNoPDRusC3dJ7G9TT7mt36lqv3F3z/7dfMZhXHx6tQpOkagN/87rc8ffoUay1XVzesVquhYNxqtSLPcy4vL7m9vaVparquoSxLzs5O0Drj/fsLXr9+TW9rOutRZk5X79jcXLLbrulsKOrVe/Is52R1gsVT246mbchyQ9+39H2LMYqzsxOc60Ves95jsowyz5iXP02d+dTpM64ZZgjZx3L1Ljg/Ykg99bh5p4Qe5yKvNvwOICj9SRP7RgMiSh/m4lEsZH0RDrAAZDEgRk1pnIAOPfHMOydtM86h++wOmNeml/2VIisKsrwINDoVeMbZ4ChRSiUgyUotDRe0tsO1FnlOkRcSMY1yiyBGRejjMXIl+T+eQLkJ5/NhznDhGfSBo+H8mGRsrca5EJG2Qg90uCGyMcUKcYsAavSMHq6xcbvv9YCfIFkzD8fKobd/BPT3H+/uee/bIlhM8dKHvncfoB8PxODUuNtu7gfz4UOFunMNw5yZHj+2K+2sZD9PAuqj48WPSdj9wTPixt+hMrHzntGFg0RNAldd5nJQ2g2RGBPzL3QQ31AK0xtR3gogX7zwknw739cURYkOimkmGj69AHh84L0jXPqo4x7H6OG1RS19ufo4T6RjL3ZPBO9CSTq8h0OgQ0WH69Qhe3df79Ox+ofHV7r9US6Y9MDTBTTd5w9xs6d/3wdyU89KWvwmPeYgXZh436cgf2oMpKA1fieGfbbbHdpcDjxY2U+Ah3U2cGgFZH6ob6be+TsgYwLc0zanRsjU8JgmB0fwo5VM8HER0Vp0UaMhk/bBfeee3rv0vIOU4uR9z3g8rWPocqSPeDxVNWOf5xitOVosubm4CqBbFEycF6+pRGUsRmdY68gm40Q8/wHYScOHPlIEIJmV0kaj6b0iw1DMCnldzbGdFe+CU1hfoHNDnnma3Vos8M6SVQXRu5OZCnDs1ht8HzjsVQFZFhY+i+tamqYJSbIip9lpAZjWa7J8hvMdqm9BdRS5ofUt3kvqTGtb2t7R9h6UFI0Zxm4Yd3iYz2fBcOpEDUI5rq/ek+ea/U7UW4wR2brpWBuS+ryE67UaJT57C22r0LpEpPllMkuL5Qz9rBQEGk5UUuiUo20lbL9cLiWBaT4f+qSq5iF0WrLZbEI1yx7rehjG9F0jNn1u4zOeRonu82RNnx+lVFDEGQ3ZCEBkklQS5p8tKIqC5VIicsoK+Hjw4CHPnz9jtlzQtD3eabTu+fzzz5nPZ7Rty5dffsn65gbrhObSti1YO0z81roAxitOTk5QSnF9fc1+v6frOp4+fcqvf/2nGCMRnpcvX/Ltt9+yWkmE8Pj4mLdvRb9+v98zn895+uQZ5+fnrNc3vH//nrptwVQo1+PaGo8bQKsMU8vR8RGPnjzBKs+333+LDW3N85zHjx/z+PFj6rrm7du3fPfdd9TtHpxjUf00wfx0rHjvyfOcxWKBi9xcJZTHuuno6zY8H3aMmAbitvd+4MNba2nrBhs8803TiJMojDNlBGDkeS4FaIKUozaGxWLJfLZAB+pKlosUrhSNCiDZaOGPG0NWCCWOIUKmQmXXoFyiFT4A9D6AKEBAvjZBBauVCtbaiOa8yRh53grvbSiq5nC9HSLZmTahEqiiLArKUpR3bNdj+z6GMcQz7x2+03hrybUG29MVOV2bo1WIynVCvfMhDBJrRED0xmvaLJPrNposF7EDuB/YjoDq7lp1qF9+15vpByfF3fyI+J30J0bSY/5Bus/09YEB8IEtQrk/ZpseWwUBBZwfdPW9R+qeEP1PISdESZFPue96uPco4Z2nxmycE7M8CwaDRB6scxJZSanOPlQaDj+dtTR9h7WOtutoA/2wD5FrqV6sIVNo76nyfHqRobJ7YswNfRXmbOuxTUvTiXN4s9vz/vJKjJSwd55lvL+8YrVcYrShLATwG60HYG+MphheG4o8G9aJiDNcoOQlPtJw7fK8REM8BfxxLPn09qt4HSrB72oYB97LHD2911EVKh2XP3b7o4pGTakyHwLp94HEKUiPXr+4eOeTmzxYfvdw5qfWdKTqxM/j+2lIakrZieeIFAIA+jZeCFoZlMoAFcKuwgFUiacjHiPtn/tCWPdtKbhPH9ip5Z56m4Yy80qFUOiCWTUPRklN0+4H6/8+Iyf2Y9o307ZMQaFKvFRp2C69/vFHVGqaZk8f+7W3ZCjq3Z7seCY8NmvZbrccr+ZC1wrHNCZOOrLYaWOEqmItdB1aIR545CHKswyHRpkMrxVojVUGYwqMzml7Sahtu46ymKMwgMPalqyc0zQtTduRlVLpMNYw9E4MJes9RTWnNxmdk0Wjsw7COMuyjHrf4HrZz9PTo/Fa1BuczsnLOfgeZxS2r0V9wil6r2lC2Lltu9CvOow76YOmacA6ZmVJrjPqzW3Q3W9xvsO5Fus6tMoPDMa70R4HSu6P8wrXWaTIjXh+xWPbHdz30cOuqUpJvtxud4FGM4bRr66uyIMCwXK55Pj4GK1z2qanKh1lMaNpGm7XN7RtjdKHWuAfMsgHUOruKjVN25n+HZ8ZBQjvMRZC0URu5oOHD/FFwcnpKUerFd7D/maNUbBazfno8RnKlFxd35JnM87Pl9T1njzPePnyJe/evWOzvpLIS9/jnWc+m/PkyRO22y1XV1f4oPjzL//lv0RrzW9/+1u+//57VqsVz549w3v44YdXfPXVV7x79479fk+eC2VnNpux222p65rZTPrvt7/7HXleDAZX13XYzqFch3JSI0GHhH6l5Jla365ZHK2k6m4mC9dsNmM+n7NYLIbaEKvVivPzc7IyY319Qxfyhn5qWwrm47jI82xMpgvjRYxLD7RD9Cjqv3s7FpqKYH7kzNtBDUYK/4kmvFYCfmezhczLVUVZSV7OYr5kNpsLYM1zTCbPahcoaEprTCHJsCbLyMtqqIBpQn0MAQ2Jd1SNrw+VsJOo6vBsZUMRpcMfO7i6IwiMPOPgBJbIq/f0uqPXIUk+gnnncFryoHqjwTtsn9NmGVjp01a34LwokVlLN9TqCJQZbaRyt5b6I3mfB67/h0CxZzrPxfEeDbU0py79ntzHIGfsRvlaaY9QUmJ18BSoR9pVpNrE+eoO0FaRunNPs++JBPxBL3z61YPjC3XLK3/gPQ+38eD+KqUHXnakBAHy2h1iM6UUWQrm4/VZRxvWuzjWJPk1gHkn3Pm27+mtpe17Ua5xUpBMJEW8UJUQGlme5xIxJVEzsw6C0TBgPi8uPOeERe56N0pdWovt5V4SPO7GGI4ur5nNghrTTHI+ijxnuZhT5DllnrOczyURPMuJim9KMUamrRUnX3LfYqXoEZMmEb0YWZCwQhLRSL8f1NUYP4t1Kab3OB2XqSP6x2z/h8iRKSCPv6dAezpwU/Ccguv7+PTR45ZawtOQfOrJS48z/Sw1JKYAfPh+UOhxzg7gJ/LRvJeQ7RT0ThNQo2rLfRGB2I77Xk/7Y3qetJ9S0HJ6ekpRFFxfX3Fx2RH13g+kCScGQmxr7M9pzkEKCL0f5cUUIlcp5yD0S+SWBr19Dc52nBwd45s1vtnRtzWzImc+m4HtMUaSW33wFDhnsQ5a15PlOSr0s3WgvMNYj1GaLMvxSuNQ5EWJMjldLwyW6JXyQaotn+WgDMo4uv2ezFnK+YquazFh0TNBxstaB5knKwuRz+zqAKJneCNcvb5r6fsOneUo71Dakhc5u32DBopixqa5hdygfU7fgclKvNJoHz1mPYpOPBq98GSdlQqkRZaL7CUea1uqquD2di0hbCUl13OTUddNCMOLt9sFJR+lhTSvwuR9OD4hesNiGWuhD3RY2+G8lbHtpE+895Ksr4T/u1ysmM+X2F6uoesczo30tciNlwjXFkVG16XUNofWsQ2Hiar3jek47uLEnnrfh8/d6MmR9WI6/4iedBlyHtrOkYeE1s8+/5yimvP46VOsc3z34nvmyyM+fvqEk5MlR6s5vdXsdg2vX72mKGZstze8efuGN2/ecH11JTKsSnTDszKnLErm8wVayz1qmj3v3r3nH/7h9/z85z/n/Pycly9f8sUXX/D9999jrWOz2Q1VdIEBJDZNI5O9l4VC7rfj9euXWNvTtrV4O5XH2R7l7JBPMERmrOXq5hKrXACLmsV8jtFSobZtRWknyzLW6zVd2/Lw/AHPnzzF9fdHH/+pb1GGMEYTp/Pu6HkV4KqVOizi4wP1ZaDYjHQaa+0QmUrn0wgAsywnL3KMyULSax50srOBEpCZbCiCNyZ1agH5xqBN3DfqYoeaKQTlnXBdMSnRo9ABdYzezGS9USPvdnSMBVAysOnGZ0jBINChlBzVey+5QC7wfpWCUHtD+/AlpJKsVnIPopEI4n001mBtj+2kn+/Vdk/6fQqY03tozKEnffBY6yC7GN5PXeHyTMRaKode8gFIDf11l2oTAdr9AP4Pe+Ql6skI6McT33vc1EA5wFGRKqMYXsfIOF7uW+r8TE81uu3vRjym1zoAThkpw1iNVLOBcuYOixQenI+x36LMcLQQo9EaKWYyngl/u9BX8t1hPCMe/tg+pQn5FT5IFMta2geD0XlP1meDYRYdi1pr2m6swAwhUVaL/LiCscKuAuNEdSlpRWI0Jcb1gIWSXlAhwhf6Melx4gdTe06FZ1kN9+EPj63p9kckwB4CwBQcp97jYTFJPOrTQRr3Tb8Tt6lHO54nLuRTL8t9D0Ec1HHf6QBOaUDpNREmOOVjm0SSDi9V+lLjIvUqpu2egvD4Ov3OdJG5z9sQ+y7um2aex8/2+y2v37ykLIsAqKTcsVKx2mjQzld3cwumYCm+P42+4BJvyMAXSz5XoHRc3Bx4qY7qrWez2WFVRlkY2l0vyiyVJGO2Hpreiva60lgVxhV2yMxvtntmRclsuZJy5tqgshJdzvB5hc8L/L5BB91g31t877DKkmcOnedgSrTZUe9vIStQpkI5P+hryfUiHHydiecdj+tq8mqONQXeIp5P5dBZhvWKvJTko3zW0tY1fePIqpJe7XG1RTmDtqIU48oaZQ1ZkZF3GbpthnuDEvnKk6Mj2suroHkvoF75nvmspKwqVDHDFHPmiyPe37zB6AIw+FiyziVjyBFCrXFsjXra4U7LPVRSuMuYfEiYtEFeTKECIMnouo6bm2sBmaFI2OgpkuOKAsuOi4sLskwUPLyXxbztG7zvMJka2hGjMFNaWvp8TMds+plSCoNQJlDRmxiuH6jmc54+e8ann35K2/V8891rvPecnz/k/MnHuKbneHnMut7Tdpau2+MzRV7M2O8t79+95u2r1/zj7/+B25tbun7Pvt5hnQvFWaAs5zx8cM5iccR2u2O3FeWZs9Nzdrs1F5fv+eu//hu+/vpbTk9PAKjrWgppeTVQM+L1pcnxRVXS01P3LfuuISsMzrbUIVlReY/B45VQNNI5RymFzhSmUHg6cpNhNDR1zT/+4z/y5ZdfopSiDIolkcpzfHzER+fnQXHlp7fVUYkszsNeqi1rM1Y+jaoZRV6Q5x1aabquDx5qUWbpQ6h9oNNYRx9UXFJBA1EymmMyw3y2YLk6CkowFWVIwK/KWeDxanSWD9WfiySSXFQVJiS+qsBrd04M/UhrjDKWEbB4gucuVIYNd16eiyEaEfoigJBhPfE+5JWENUyJV9nZmCAoXnklFiLWGGzeB8AfIIzzuL6TStvO0pWF/G47FrN5qAfR0tT7QTGna4TWFGuHRCdRXIfatpUCfJlhsVhQliWjxzsAWDOq2ejknhaF3FeTZWQmEyzlxnWu6zx9L/Oe9+oAEEfjYjAy1FgbR+sxYnxAv4lGA4dOOe8T5+wAckc4F8pXhO+Jpxx36GxMj50q0g3y3YD2hgEmerkrLkREnHd4G2mTDEB6bGuYL7Ue1l/0mGzpfVCssY6262m7jt5ZmrYbvO6dFQDd9b2osQUrScW+yjOMlQrGrrcQRBmKSp4N2/d0222olGzZtw19b0VPPhiDzjn6cA1ZyDlRSpEFo9d7x363o673KKADfNeROU9eCt9dWU/TWRyKtuvZ17WMO60Hecw8y8L4kXw0iQ6BtYYueO5jsmy6eT9AxgDOE+39Qfw/7Dx8NYmmBJwTKy/j47iWaJDRZqjv9GO2P9ozn4LN+KBMqSvpfim/eur1nR7nvs9Tj92HPoNxoI/KG4cW/X0WKRwaGym4vevV1sODlRoY8Vj/tSTT9DzpfqnHMQU3U9572qdj2y2bzZrtdmxPaqD4OMCSexEnhrTf0vNO2xX/TusApB59pQ8jEM47bNswMwbbWxaLBbt2jw2a4jHc33c99b4mMwVOQd91zKsy0HAkDLvfN8yqBU4brNLkJifLSrTKMSZHqZyslHahND1O6op6kcDSThQX8qykbvb0tmE2W6AzjfWNlAg3BlPmqDzDashNzu3VHu8srfYS0gyVSH3wbHvr8Eb6UhcF2lo2u2vmixlVNqMzjrppBawZTdM6Or9HmRxdWLK2QUL8HpMJ9aHthaLkrSPXGu8VpcnBSp+V8znZfEG5XOLca7quoyzdHcALUyB/TyTIj/d4Pp+zXJ0yn88lQoFns99zs17jEeV91/U42wxjX7x9GcZ4iZZ4S13vhzFvbT+MRcm7sAdjeJrDcd/8EcfcBzc/7psZQzdUi5VFarlc8stf/pJf/epXKK158vF7vvn6W6wFj6FVHdYoqvmM1dGK3/ztl7z67lsenT0gU5r3IRFVklEbQOQ0ByqfH/vvk08+oSjKQdpRcggqtrsNu92Oq6srrq8v0VoN+vZ5XnB0dIT3fvCUKyXVWQFyb4e/3759GwrztMP9HubDsCDE59MYw2w248GDB5ycnfLRRx/x6NEj8PD61Ru++uor3rx5g1KKhw8fcnR0NID6eN+mc8RPZetC36UeyizLyUMELgVjWQB9+CCdGBbXGGGKYLTrRJLShkJRcdPBGz+rKqFHLRZD/khelBRlGYyGkjwvAhDNUAPtS9ppTDYUZ0IJv9gjzpvWtXgvQCLSSPAeO7RBDVScCBK0MZRVSRb05GNkIfbJCOaDsaN1ANYc6ONL5ELOY7XG9kaoEgGfeO9xvcEHp5EtREnH9j1tWYiMZ9tS11Jxu2skz2hIuk285tI2MaScs+Q+GFxBTUdH9RkdpSEP57Qsz6Sqq9YDhYIQJXDOB072yBtPPd0HHHiV6PYrNarYpPvcQ7G5b5vijYPPxsYTve1/iMIzGA3RqDvYRnBolR2AvFN+oKX4cTdSKqdmBPKpDGKsVm4DmO76nt72QZ466Mg74Y9bF9XBAnjVGoUTozTLQnHH0ABjyMqScia5R363o/eezlnarhOvuirIxPUuxnUYH5kuhnySqqqoqkrGs1J0AVtYL7l4DkXvPLmDXovh4ZUwAFwouqUZjUGhyJUYE1VzConaWYc1Go0KtRcOKVVCa1ODsSw+Tj/elhgCUuMNUDGSlnjmx6GiQgxOh/ukhwT2H7P976LZpOHuqXc7Be8pSE8HfZZlA/czPcbUMzz10k09c1NP/NAl6lACcgpqpvtMj5169uPfMCbkRVAT95s+gNPzpGA6Auq0TWlfpsdNvzelG4wA+v7vi8dDDVrFaR/dB/RiO6aRgGn/pm2O3LJp31lrUZnh/NEjnGu5eduJaofvB9eFUiqE+YNePYq+68gyeWCzLGe5zKgWS0xRUlRzTF6iVI5zUOgC64MurtE4oJwt6Ot9uLcds2qO7SHPK3bO4mmxWOq2Q3sn1VlzIzryGrxWtE1LURR0vkNVYjCoTibJrm0lxK1lgdE6QyMP0XZ9gVpbkdz0nrquqbICvGFb92AKcBaTOcqiJDMN/b5Fa8NssaC+3chi7j3Gg/FQZTlZ8IyfHx3RkvHq9Wv29R5rI93p0BAGhoq1qVF7YAyH/eKCeXx0TDVbkGfCm1RFzg+vX/H27VvaIM+qwvOwWq0wOmO329N2bVCC6cmybpCXdb4Xkq8K4D0AlGkUaGrwpuPtPuP+PoM8Pg+RKxtl9ebz+XDNi/mMzz77mNPTE158/5bN7Z5Xr79jv95gu543L1/y7uUPNPWOV99+jfZg8UJzCd49bcbonPStePFubm95//49n3zyaZCYLIdCUze3V4OcoUTOuuH6syzkRDDOpzEPYzabUc0r5ivRhH///j3v377FhqhIalRHEA9SZO3k5IRf/OIXfPT4MWVV8vz5cx49ekTf9ZydPgiesJ7j42M++eQTjo+PWSwWdF3HZrPm+++/5/T0lJ/ilhoh6ZwX57JBgcaJxzuCtdjvSsWk/PH5GGldhul8XZZFyDnJKYuCIpSnFx31kAybZWOeV/D8whiiN0YPBZoEzAsKiPlHLsjoBeXUUNHSHLRPmiXfl4JTI1kiglIfVGcFcylxUghxcuBEK3xQKJP3I2hX3g9/j2ZDIkoweBSFfpNlGV674MWX/s6NVPAc5h8fowVpMSn5EaqRGv4eAL0+nNPidsdjOtAY4nnSeSOha6i7LIGDH0IbOFzbp2v94br/YRBPMMaG74U7MALtuzSb8bhqiEhMr1mq4x46++JxR8AY7vfozzk4Too5emux3g20v24ohtYd6MvHwlEqUK40YMIxtYqYSAwIpfygSnNAsQl4wOQ5aENVlcwXc7I8p6mbQSHHq2HEJeOcQNvJg+EWKTJq2Ed+xucOHbzn8dxeogu6kTEWi6hpLdWJcyNjEbzUmFEMORTeM1yHDw90tGli56s4iP3hPfvQeLrv58dufxTNJk6MaZKptXbwGkxBRdzS9+N30gU63M8RCIYLsLYPtAMT9om60HcVY1LqTGxb2vb42ZQfHgFG6pGf8uAj8E8t5fsSatNwWNw+BGDuTEATQyK9pnieO0CHmEyoUMqglRmS6IzJqOs9290meFvsnXPd93fan+nfad/FNhgtId6YsIJSQW7K0jYd8/mc3abD9pbGWox2ASB7jFG0bc3p6UP6psY6Sx9CjmWWgTLM5jNMXqBMhs5yvDagM/pe+PRoRdO0VFWF0kbk3YI6Qtf22K4lnwmuzPJiaPtsPqPftjRtw9HJMSrLsM6DstiulQSdcobTEkWwWNpW1Cy8gs714MuBj+eRQikXry+YlQuKuaHrLO1uLepCmRGliCKTJDCtJZSoarquxzroOgvI2MrRdJ2j0FL6/OToCLwnLzKaek9moGl6lHPorqYwClRGrzSOcazEWhCKkDjl/VCwI3pTttsdmbnh9DSDuXhWTlYrPp/P0drw6tUr6laKQsWxv1wdkQdP9K6uER4SwQsh3jvn3Zidp8GoJOnJOVH+CX2nlXg4pnNFOhadjRAjoVAoTZ5LOfCszDk/P2e1OsYYQ931vHv3HmMyPv3sE6pZKYDCaP72d7/h26/+gUyBtgJmGrdBEoRDglMUME5KxM8qSRzt+1H9ZLNZ8/e/+Xu++uorsiwbZCZnsxLvPWXw0PZ9y34/0jS6rsO5rRx3NuP58084Ozvj+vomqJH0HB8dc3Z2ynxWUW+3bHqpXzC2KXitsoyyrKhmFb/4xS/5q7/6Kz766KPBs4ZXlGXF2dkZv/rVrzg/P2c2mw3FjObzhRQPU/D1N99wdXXN/8j/yE9ti1GNdJMEV6k3MFBUvHhrs0yUWypfDXN6luW0QZcewjriPS7LB092pOrM56I8lGUZs7l45o3JJI8i8caLQlrkD8dxJYu80TpormcjCFCQackF8iH6qYOb3GQZhclGmo0eQTzBEJAkxxCZ0AowOBUVRsLY0ZLQ6q3D9t3w3GWhfd45fFD1UN6iYz2H8EMA+PFNoZ4pjM5EsUQsgWGt1igZth5Rhwtre4x+eO8GqqhUG88GIC/0F6HYxGqhceyDT4QT4v2WuSpGH+J+AceHGhUqOfahks0hmNJD/09pNh9y3sEhe2H6esQoWgQB3KFnfkrhkfcFV0SsOGAhwMeEVqXQQYHOeaBXMlcMU1jItVDDUBnaEkG7dY66bULV1p7Ndic0GyuF0WzwhqM0HtGKz4Iam3ZeKvo6T2c9ppOaIiaTdSXmtUmibE/nZExqk7E6kfVmsVzw8OE5ZVlyeXFB+/IlrmlAaeywxkg9Bm8gL2dUMWG9abB9h84yTJ5jikIoNFUlYhnO4ToB/n3fhUr2UvztdiNjPc9E5cZozWI2Y17NMFoKW+ZZFmpxBBobo/b+IQdejf2rJQ2ZwbAZ8emUVhV/UnWmFF/+17YfDeYjKE0567FRUwA4tTgE+IbMZCXJihG8y/cUfd8iQv1aPI7hoUApHBajSxQGpRxejQWmUi96pNhMAUHq8Y9esCl95b4t9fSk1xL7I+3oeOxUHi6t+gqH/Lc0ETh92Keeh/jelJogRk+MECi8E098uVjy8MFHzOZz6v2e129ec3t7hbU1UZ5raiBMq8ROJ6jpxJIaO9baQA8T3fm+62g215ydn7HZBU5l19PZltnZCq1FYaYqDU3XysJhDLYX+chKeZTtycoClWl614KeobIMbXJaFGZeQqGp93uRUCtKegWd7VGBH+tby353g8qgqCp0PgMr0pXKebwVHp9wzQ2oAvZbMtuRZSWYAt9rdOHpdU/X1bR7AbVN29BkGQrFbr9F4bhdr2nbltvtHi4V87JAu556vyU34m3dNC11vaNuWowpmFcLNtuabWupewHz3kPvxfrPlHBY+1qkDy/evcbbhlWlaDd7Vlbz67lnUVjWlLz3JRtilVyhwAgYEbCgtcYWsmAOVS9DtaksE336m/0VV19fi1LPbkPX7nG2wbkO3zlubm7Y7vf0zlJ3Nb3rUdYHz4wSo9GDJgPlhyjL0fExWis2my273S4sKxatIrUtuzOfpF6p6L5SKLT2GOPI84rl4ojV0RHz0xmff/4LlosjQLPb1rx995rvvv2eFy++Z1nN2Gy2vHnzhtevXrFbX4463ApsqHjrUeJeGp9AhEuZ8+jRE54+fcbF+2suLt7Rdk3oy46bW6EZFUXBdnc7cOEj7aXrWvI8Ex5x0xzMW0VRsFgsKfIKxYbLixvatuHq8op3i9eUVUaRazEKCZxhIDM5WhdU5YJH5x/x/NPnnJ2d0fXCb1Uq4+2bC7795gUfPXrE8fGSR48e4Zxjvd7QtGJcvHt/GcC8Z7vd0/eOn+I2pQfJXOVRwaq0ztHZAOYRr7hWCpfLs+wCdUBrMyQiD44n7QbDqQpVUqMqkKg5zZjP5rIQZ6Jao5RCaVGmORjDAfgS1tNBMzt1QEFQxNIT4BVC8ckx1ADmI01iZGkbJRQap9TA107PYvH40CfamEEUwOEHuoXyLtRPJWERRM88gaokTiUTio5FZ0KsT5Ep0aNXSNS0t92Qa9OEiupNU9P33YAzpK8YgbQ2IbdAThpzt1JgHZ8rlbTVx0RyFSPZKvwev3cfvWX4LH19Dx1mHG8Hd2+41x/CF2I3qeHe/iFPrVynwjBGZeLmh+s6FAk5mD6TJoyYc2z7oNpk7VB0rOuFYx49802o7IuSKsRK6TBmglGpxXZwQflNBUzg9Oipd16M6iir6oJTsAzOhaPjY84ePBDqaddh3r5FdZ3QZGK0SEmUSwEmz8ltKfksgy69CbkyUlHY5LkUqHIO65XQrpwTWo51dF1LG4ow5kaTBzDtXRD/0AG4hxw7n8t1oMa+jPZi7OwRuEtek0KRalfed7//GBrXfdsfJU2Zgr4PhcLTwRs97akBIF6kcngdE19S0JtlSQnn8GN0LglB3iP0ETtktsdzpbSX2JZ0SzvnvpB9+v7UMEhpNzByzYEDsH74cMeH8NB4SNtyH01iuk37ND2HixNt8CLu9htu1wXOdzR1TxdkD01Ue7nnXGl/pRGHNJIy5TVP2+OcwykBoc5JiK7e7wXsainSYEwI3yqFySVk1TQNs9mMbd8LxWVWjlapCbrLWYn1sohleUFRitfTZAZd5DRKkk+V0xgcyjp0nmE7kczKk2vu24bcGPqmxvUdfd+Rx3GDp6l3ZMsMY3J6LE3TUdd76qZhu16zXq9Zb3fDPTDGUNf7waux2+5w3lPmhirTzMucpt2z3omsY993dH1HZgq0KehdPZS7Bum/3GhsFyZXr7AYut7hbQ99Q/9+y5+eVPzrXz/g0axjd3vLxV5Du8JzSptLol1VVaxWK/b7ht1uP9BkYtJjXdcsl0senDxksVzQ0/Pmcs3N5TV9O4ZX8XaYnPq+x2s9UD7yPMcpFxR+gndBabIgkyh9lHNycsazZ0/Zbnd8+eWXbDZrvLMHRariWIpjbcxPUWRZ9D6BMRnzxYyzk4ccHz/g0aNHVKucspwNRvVqtaKsco6PV/yX//K3/MMPvx3AWTRkhjknLITOuw/ODyBjta6bYbEDhmTRODfGIkFKqQNpQ+d6iqJgPp8HzflmeI42mw2/+91vyLKcrm1p2laSvLzh5qZh1hU8ePCQhw/P6foG6Fktlzw4O6dpLEU+48HZOfPljO12yxdffMHf/d1/YT5fstvtWK/XHB2tePb0MX3f8+bNG7bbLdbJsx112Otaqtj+Md6gf0pbVLMhmVsPPvd+QmtAokbG4J140aISi9Gafj7DmDHBPIL5uE8VysdnWTao14weNTl4pLlET7AgHkb5Py0UGj2gz7BmIJQaHVCogHVGIB888AMgC+BtjNnIkTTjNZuhLYw7anBapJclGBXW8ZHUMETCxvBbfD7kRwUPJAF4j8oyI5gfgApBXlg5nJOohBzPBadeNOqHuyYRs0ATUk4Hz/phWwTAkvRzjCCk7Z94RtXIk1fhnKPxMGm3/sOa3+Oa/GGazR0np2fwzKvJmJ0CPBfpI0zUbjx4PYL58Ttj/Znx3GpQTZLv60F6OkZth8TltpUIZKDl2RCpcV4ohybQV7KgTqO1RvsgSuCkmnBRSF6YskKlilVdpZCbC3k6jizPibRF7wl5K4mBOTxXZnhu0kc7GrMmk7GUZ5lIbWb58D0ptKbAeCk+ZQyxppDM3QEf9G6oVJwbcYwNBSN9dESHaBijgXwA1JORMIxBISQNe8TxhyLUdtCDwRONxzC4PzieptuPBvMp/WXqiY/bffSRCPSyTCa9xWLB+fn5wCs0xnB9fc3N9VpUBZAS6UXgIu52O3a7HbazMvE4+8Gw/BTY39fWlIue8t/jZykAny4G6XfT9+7rl+l+900E0wc3NUY+ZCyl0QxCmWBFbKuj7Wrevn3Du3dvAUPfW5zrCc7ag1Bf2m93aA2THIT7+vZgYoyeJa+xvVSVREHfN5gMfNdjbYvPs+EhEo9lxyqUZo4W/AjqDJgcrzOa3tIrR5X5UIiol8q9SKGK3FqyModM07SNPDqZWNRa60HH23YNxmm6eodyHXkI0SpEj367XVNUBaYAa0XCUSnYbja8fv2Kl6/f8v7qdqgIifcURYVHEhmVUhwfH/HgZMWmbuj6jiLXlGUBnaFpara7BnyPMT112+P0fhhbxojSxq4RyUJvDASJS9d3mL7hV2cz/uqXj3h8ktF3PQ05s+6WxX6HXZbclsf0aIwp0Donyxze74Y+OD4+5ejoBNtbVqsVrndcX19ztb7i4vaSdrtFhbGIdaJWFCaa2WzG8ugYnelBknK73dH3HVVVUM0yzo5PeXj6kDzP6fueuu7QOufhg0c8e1qyXBzzzTff8Or1C/b7Dcrc5TpHQyGWoJ/PR+CktObkwQOOjx9ge8/x8TGnD5bkecV+1/L61Vu++fp7trtbskxkUGM4f2pgD+Oaw+c1NWhBkgOvrq7YbvcSRfLiTJD+PB4oiPP5nKIQdam2bdntdiHsHzz8wYERqTHikRQDIctMoHCIk1XmAqiqir/4i7/g008/xbqOrqupyoLV8oSuc+ANzno2uw2bUEJd6gF4ZrM5SinevH7Nxbu3aKND1EBxe3sLENRACvre0XWWsvgDicf/hLdYHZgUtJLgUBXoIGER1nrM98oyoXLOygAOrWO5mA9GdjyG7CtgqCgKqqAnn+cFZVkx0jLMAMIlkqICEDAB/I7zTuSHj9SRACozKR4ViwUpEi98vLZkzY/LVUzKgwjOPRqPzjTEsvXhCwaNKaIqVvDo+8CR9zFhNmpiR9rM2M8aIMzbIOtAZsyQSBopMEabkIisMF7jgxpLGVRwxPHXSySyt+x22+CxV4O3XjsxOlLai1LgQv7QFE6l3un4fAtoH0GT0eYg0TW2OUZLtNGYoH0/rXEznG3yd/r+fTSbAyzgRTc+jkM4zNUYqD1aDxTA2JYIfkevMGOiNBKVcs4PVatl7ObkuRRJjImtfd8POKvre9abNfu6Fkdr10sFYO/pvVB4jDYUeUFmMvKqpCpL8ZQrDcqEnBMVkk7dQKtBBY+6FoA9X3iyohyit5EKWtct1op8c56LXLSJBc2UDtLVsQPlnNpoqplBMRtob1WovJyHXBavHV5L7pNXijJUqXXOQ93ggbqpaZsGBTT7hm0pggZHoaBflsn1lcH4F3UlAVcqRMFGGU1BZ/JMBcPLh2deGaEfwYEDIIvAHqSWwwfG1n3bHy1NGbepCooxmlgufjq442RZluUQooy8Qw+UZclyBV0rfLnFcklVlSilOT7quby6ZH17S9tI0R3xzo3SW3LdhyG3CIpTek36IEXgfDekz3C8+NBEjwwceuxTYCy82P4OML5PBSY97tRbPwXuU6952tahsptXQXN7DCd779EqQykjE3BSkvu++xm32C/T+5f28dBOCT6hwkJgvaVvmqC7bHj3/j2L5Zx2k9HXEloVScVxYivLQiZkcY0Jn8+I51ciU5ptXVO3lqLqqduWthHlj+vLa9q6RSnN/GgJRrM8OabtWuj7UCDCs9vLRLVYLMjyjn3X0/dt0KiV8eS1oihLlPJcXr5jcXyGMgV107Db7nj58hVXFxfs64bLmxvevn1L33XMZgvyvKRtmyHx0t/ckGnIlafPFG3uaVoBprP5jM2mZr3eUOYzkQDrerwVHnmeZZjMkBcZuu1xStF0PWVveXByjGnX/LPPTvj4wQzv4dYd8w8vvqe5eUO5qJhVc/Ljn7OxBfvthnfvLnHeYoM3+vb2FmNyVsuj4I19x2675XZ9Q9M39FjxsnuhJyiCcTl4vFQYT4CHPJMKmyh4/snHPH78kNVswbych0qbNVKsSzjBznmOT0749LOfYXLDq5cvWG9u8H7kKMfo3Wq14vnz53z22SfM51XQ8TY0bcvNZo/WOd4Lf1JjqIoK7TP6ruOHF9/x8tULPA5rO2zXAVHfW56RIj7HyPLvkrkreui8jxX/oOkaeuvCczXqdkfHhDwjdqBmxOrSPpyz69ohKmBMFig6sZgNONdjrXgu89wAkjiW5znv318wny94+vQxT558FBbTnLpu2W0btts9oNhsNrx7957dbkeel5ycHAOw3+8Bx2w2oyxKnn38MfPFNRcXFzgnXrJH5x/R96Mq0E9tG+ez4K6MLwdqSOSyJgttMn8P+yB8a1m4XRI+P6RaiJe+HEBSXJSjMkj0vBPPYRLv2zCvxyPH+TlZj5JjqARIjgZovERPlOj23geAr8LFxz3G8ew9QjVEAIlIMRPGekgO9qkfMbTPH4L5qLQhBknUxg/0GjUCbq0V5gDEytgGjzEeyMOx5bkRKlosXDYCWI8HpwLlJ+0HHy9+6NP4+QjoE7qKUgd9qVCJks1ohAxgPgB+NfnedEvfGsZcss7ewUUqJjxz59ipV15rLcW67tlHqTG5OaXjimfeoNRhNEk85qXM522Db0d9/7TORVPXuFAUyvtAu0oQhAlGbRZpYiYYqlqSnMuuowzOnghu5aLN8DrPC5GcJj5TYpyMwiTimY90yKGgogrxo4N+FVlJrUVqMg/UGhPoNoNHH4VXY9HH6DQUCXJL3zuaupFjW/HSS+StIMtyrM0oCovJLNqH53yIlkwGwWDEycvRqZAmCI9SlDFSpJKx4idY7A9tfwSYjx7cwyTIFEyPD44bDh0fJOfF87nZbtnX9bBgFEEFwDnobIfDsa937OvdAIK9d2SZouuCzF2iNpB62afgOm1XCuyn3un0OykITwF7vOaU25iC7fQ7MD7E04TbCO5TwDz10E+/E68jbbd8MeYhyE+6aS1STFkmSVhd1xGe+ODlicmI4/27w9scuJ6xjaI8E9vQ47AGik68OA6PUzmzoxWXVxd0+5oyL+kay3K2JDN54NPF/tIoH4o+KEXrHVZ7vFF0ytHh8H1PHagrtm/Zbw1a59geLi6v2PU1zjvab0WFpswXbNYbTpZzfvbZJxydHWGKnM42WF/QKY0yDpdpnC7pvUL7WCgMirLg3bu35EWF9Xv6zrO9uqEIobt9vcX2DfN5SZYtAkiuOToWvuzRaoYBcgWzMmc5K1HIBImXhLMMKLQWw0dJoa0yy8UI0qLdLtn/nswAfcvN5TWPThb86ceP+ejZHEfOfuv4+sV3/Ob3/xu//MXPOX30CK8zXm/foFafk2eaug30nRCe99Zxe3PFen0dvGGWrq+lvHsCJ8Q0VIFSI39pIxU1lfNYG+lbQds5y3iwOqEyM9rGounY7Xa8efOGLMs4Ozuj73vW6zX7ukVnOYvVEScPHtF7T99uhmfo/PycZ8+ecn5+zuPHjzk6Ogo6wOLNa5qOTG3Ybne0XcurH17xm7+5oiwrmqbh9evXXFy+pq23B7No5D1GrOMiPS1OVAfGbfDYYAQYRvpApsBbXG/DROvYbGKZbzsYIsYIuJOE2Z6ua/FeD0peUnE3zp9SpMR5R9N2GGtYzOfM5wu22y1vXr/jzet3fPG73/Ov/tVf8Wd/9uecnGSYzHJ1ecu7d+/47rvv2O9bLi4uuLlZs9ttadualy9fiGKKycizAoUhzzqWyyNOzx7ivefi4kKkXLW+U8/ip7QNRki6qCZeSx3AdlzUIygYVDAIiyyHCm1yHDUYfVGPOyZmxnVPBe+6vBaUHj3pKWBMaT4RKEME9EkYIQBsjxbJ3SmQVAmgD56/BN7GT4b3h6I8fpQT9N7iE1Usn6y5MXlVQHbYx9lhTfVqBPTeuUA5iN5Jh/fhtUNA3MHjdh99QAUjWg8AdOp084Hr7L0m5oyl4Ef6Ih5/9MyPgJ4BQB0A8w+OeTXep0n/HzwnKhhP/we2KRZJc9Oi0TFEZyLGGZ2+BxjGaHGwei+6/nmWhwTikGyNl7Vw+DdeY24MNssRMwsZ+4qBUlIUFVVRBo9/ThboL8YIPdUDCy9A3HpPE/j3HnHOoaReQhb4+BASdr1gAu+cFEMEcpOhQkTMBIMxMyKTihrzKbSSCGOemVEQoCyCBCVEVkIU60gdmXG8gRRnNFkuzwiEhHmo60aiS6EInEee/xJC5EYnY23s0SEiB8OYi0/B4ZiNdDInFXq9D9/9b+CZH7LCvIxs78eOlIYQh0P0CQyd5INpYq1lt9sNg04pCVOLCkBO27bDPrGT40/Xd4NyTgxpx31ScB1/p+/dNTgOOzMF3annfrB8E7CdTvDDwjAxbKb7pueZHnPqHZ8aCGkOQBp+Sz386d+H3vuJMg7+YNJSSuN8f9AnKb3ARaIicaKJE2V4z3lK78l9I5xTU0Je0bQlrdXMy5LNza14RXM9iHBET6C14gFumx7nEJUaDI11FCZjW7fcXtzggZOTE+GQo7l89471esf6dkvjmsB1hu12B1ZT5gX1ak6mPY/7x/TeSpJaXoByFEWoQKfDMuqEAmFQKOdpd3s2N7fovKTvLLv1DVfv3vP2zWu2NzcY5ThezlkuFwOf7+joaABEyiuM8ijlyHON7UUvfLvd0nU9ba/AKPrekofQ4rQqonhRcnZdj+oa8tmS26tLni3PqKoj8l5xVV/y299+wT/7Z3/Js2fPqKoKbTJev7xmww15WFgZCnELWGjanXjrrUuHw8GYi+M5NXCjUoTRktwKUqgnPou/+c1vBjAoii4z3r17x83NDbPZjLOzM+bzOXXTsAn5A9poHj9+hHKnOC+87c8++4zPPvsZs9mM2WyGtXB9JQnGi8VSInnLFdvtjpcvX/L111/z5s3rMBmKYWZdGxY1PSmbfTfJfHrt4pXLBEg5LQtUVLcZOM9iFKQ63vH7XdeR5wWz2YInT54A8OLF96zXNwfnSucBvB84+9ZadvtdoBvshmhg3/d8++13srCEMaeUcPPfvXvP1dUN2+02UGyitrgly0RHPtPZMEe8evmKclYNYfzY7uvr62H+/altabErN7rBiGuSaMDHXI4A4DwhGc8GwK0Hqt99IgkyJuJcrhm51XGeFP77APK1Dkmw8lofgEppawTgeI8maoOHCFj8yMbxl3iaE868XNPoKY8Ggo+e+eBp9GGcxahkBE7imXfEat7ejoBfqj33g/HvbKC6qAyMCmM32AnKBXUVhdFqkPR0ymK1Huys0QAaI346FDCKScZx/WxbyXWRQkYCrgSohjUwmTcPH+sR0Mdjy/0xAyge5tsBMKcjZgL8D86TGlWDiZKcd9ym+GRonT/cJ7YnFcpIzzfw+5Vw1k0A8y6C1cQzj4EinKMsS2ZVJV7uoLbkvVTzNoBFpnPlJa+izEtx/ugQ9dR6dAJqhTGi1qT1mGCqtCLPC4qiAqVYzOc4JYyBpre0UWUHAe5d37PZbCSPyVnadqzj4OIY856qKPGBUx+r0A/96yUXj0zWzsVsJjUzsoyjpdBsnBUluqgv70LUNCa7g2CoKCnsrBOteuuwXcu+adGqwyM5U3me01vHrGkp8hy/WlIUBcb4QbJycJoSE7dDjoJOnvlkoMbr9j4Y+wGbxHv6Y7cfDebzrBKJLx21M/tDDzKjPq9HYQxDIQfvg3bpJIFWkgclnFaWswHspglFsoh11PWY4Jp2xhR8D+1RY+Jmqgsff0+pMvdx5O+1wJPPPuRFT68xfS+NDEzPcZ+BkP49PWdKH4rnmSavxuOmBkT6uQrWLIz0oWm7Yynw2Mdpxb7CdSw2PzDzW7Qq6FhiqyUXucZmFd16g2t7Kd6UFwNwHYwSD1pntK2lqS3OKyyK222NaUTSUmnN8fEx+/0eD1zc7rm+3dJ3nq5zdL08rD4cy1lL4xq2Bi7eX5DnGbN5hS49zWYHrsC1IXyei6FZmAyvNPv1Ftf1lFnO+uoanZfstjvevn7FmzdvsM7y/OMnPPzosWgmh/6N3OPj5RwPLFcrqlxjuxrXdSifM5vNuL295TrQxdq2p2569FySVSM1w+NDyDKwXZ1DuR7fNzw4XrKoSnAFu+2Of/zyaxbLiuOT41GfvKr4tNNcbaGYrejaa5q2w9kW21uRhPT94HXT2uAGZdFJ+DYZgz54Nna7HfW+icIZQ7udE959HKe3t7dkWcZut6NthV5yfn7O559/jvWO337xO27XDY8efcTjjx6RG+nL9XqN0RlXlzdsixqtb1BKPCNd1zKfz3n69NnA816v11xeXtC0u+EZUMm4v68A0jQfJI7teK2gyPOSxXxFnlfgDZ23WNsP0oZdvcUxJsXfBfUyOV9eXlIUsnimcocj6B8TAKPHKMuyUKxIKDaPHj0iz3Nub295/fo1V1dXtKGA1Gq1Cv29ZrMRfr7wY8cF6tGjR3z88XPqXcObN2/ouo5vvvmGpmsH6uMiFD06OTnh1atXd/rsp7Ad1AVJHBEwRkUHKgxxjAPOijcMkVBVKnrFDymP0WnlRo08OXoAo+kyEcH6oWf18DOGI/gkBj/+eMa3/fBdNXhhvVeJ9rhm1IJN2hH7Ixwo6mgLUA/0y8R4Z7hON7bFB2eAH/cl/o79E1rsEBeuAhwjUHZK9h1B/Ojwin2S9mek4va2R/c6SN2OTjOXVE113hPV+70fjyW/A6Dn8H7o4Z6NxkT6/xBVSfo99Yrfhw3u+OXD9wdnYLLPfVhjus5PcUc6jgZ/uiKoT445AVEmNFYHN3qUOxy59v6uAROu0WgNITcpy4uBpqIzMxinxoiajUqoY1lIiNVagzEoY4SjYS25DUWmvAhqd12H7XsUBJEFwYhSuE3Gn0K88N6P7Y9zu9DB4hhQobCaCRSbbKA+WqWk2J50+gTIy6ZDQVCI0TaJIvWE2hRK0badGE7O07YdUW42zvtxLonjbxwrCVVuHBZ3tmFu8Q7lJJLu1B+nKvajwfzZ2UPatqNtG+pGytGLTq8JwLvEaEm4FKBgB8s58n6M8AdCqHEEwvv9nt1uTxFCN96PgFEphnLQ0wTUqfdkCthT8B8/j5/1fX/gCZ0WSZp6q+P3RyvqUDlnGraJnrTUaJhy0VNgOwXR0+uIx02/+yFjY/qZD6S6OMnF40UL3dno1R8XqTg5HBpsoxfGWkuxe8/D9iWnVU+Vz2n6lovNOzq1pNWKq95R5DlmNkcj/LNehwdVRY+gx+tQ3EprdvuO3X5LXuRBz9VT142EzqqKul3Tdpaus2zWO0ymqZsWvKMqK/LckGlF1za8ffsWreD8/KEAdmexnSTnnpydikxW39M3LbowGKXAOXJt6JVnt93z5uVL3rx+yaPHH/HLX/9KiiuVJc72otfuoelbijyomBhN65xQPPqW3e0t3b6V5NMs4/jomG1jWe9qWtuT9x0nixlt24RJILln3mG0YjErKWZzHpyesJgV1LuOt6/f8tW3X/OLP/0Vynu0URRlznI+54mD//X9DTtV4lxP3zd414MKi6534iVABb72SA9LE7Dj3wO1ChXCon1IGgvjM5SelwEWwKjtJZrmLFmekZcFKNjuthyfnPDZZ5+x3W54+PABj84fUmRmUJqp65bvvn3JF198yXq9RmvFp598yuc/+xkAb16/FdigFKenp8IH3YO1nUyoBKdrMmFPI2fjjofzRnwWjSk4Pj7j9OQBWV7S2o79fs9mu2W73WBwNLV4zXsrXp/Bw6h0WOwU79+/C3UeRq5xHPtp8mzbtWRFztHqiPOHD8O98SwWSz755DlVVfGf//N/4osvvuDm5gZjzJCU23VdCC3POT09xXuHtT1lGXj84dzL1ZLb21uuri6F3liV7HY79nspib7ZbFgul3z22Wf8FLcsJNZ70ns9zuNxgY/3afBfO4WO8xwjzWashxKBLoeDavB+i8Kac4cUJRXmE6VGJ5YKa98wnw5g2R8ec3Kq8WoYvfFaiRESjzWsHeEb0SAJIDdSDJwXydvomffWDY6DYX83FvbxB7ScOI411oZxnfSIUgQpPvDehGCWgsFr6Q+u3XsfX43ceC/5CkordK+wtgflUVbJHB4krkfjJD7siaEgRKoBsMo6GyIkQWUojI6h3YMxMRlXw1o6/ew+VDYYZof37eCNOJYOW4BSYyKljlzygQqjDw443Dtg4NkgGGsE+5LLZkyMIB0akoOMKLBcLoe+tyEqo7TGBK84SqGMRCW9D9KMMTpkTPDMBy32KF2ZiYJMliuqcIssEjXr+57cmMEp0fV9iBi5kEfkg4hAMziJ43XbpFJxBPZai/pMpqVomrcW20v1Zq1Cv3jwyoUx6sb7GTCQt/JeZkIhSe/JIitCKRl3VnTpVWA6tN1MaDkDVgoRtQS/KSWzCmpkN8gQcWG4JPs7qS6vlMbnbpCK/THbjwbzXkFWZJgscJ66aN0ZynLObC6cYbyUAa53e3a7rUyUOsN4j8MO4FXCfSMYj9ny1mZY29E2++ECYzGJuwmgd5NLUq/89L3RQBgz06ee+ak3/Q4ISM41pdGkQDytLpuC/vS46eupF/HOosChNn3athT0T733SsX2jwtPPKaJYSXr8Wh62w+0qMSZIy804DwZDqsLtK9xb37LFTWzhyfMCs3RzJJXkF2L6seu8mTFnLrb4+mxSmglKJGRMkbjQ2qNVT1d77l4dYXJNbqR4jgPHzzCIjr0V28v0ApWcwmnP3/ygNrBvt5TaFjMKug6+rZnv9+zXt/y4vsXbNcbPv30OZmG0i9RWU7fe4zOkUXJYozH+gbrOikq0XRsLq9ZX6/57Oe/5NNf/IzlyTG2cxjvwbeo3pPnFfksw3tFHrLyM6UpMoPfbsl1Q5M73B721tHsGyqT4RXkVclquWS+qOhtK1z5ICmmnKPQHpNBs7mhLAr2+x1uVbDdrPnmh2/41V/+kqOjJX7do1RHXhkMhrn2PPZv+eI2w/geoz2dD9EY7yWCMUyQcfEYjc309/hsOJRyuN6JwpACh0Vpi1YGjcEFCTKvenolnEeTG1Ynx1SzGeSK280N+12LURWr6oQqq1BOwLOzHdvNht1+z+XtNW8v37Hf7ymLkpcvX0p4N8v57rvvWG+uOVqtmM/nlGWF5HMcLq7WjsZ0+hwO4Vrvha6up5ErQ99ZNpsNp6enHB/PaZzFa0fnWjqbY5jRNq1Uu8UCFuWlcFtVyARvfaiaaBtRE4HhmcyKLCiglDx+/JjTR4+p5ktmZUWGZl5VlGUZElfh1atXrNfrQUEoyvlGhwBAnmuKwiDCEZrPPn9OnuX88PIH/v43f4t3oeCR0Zw+OAlFqq7Z7/dst1uury/Zbm85P3/ET3ErA80mwuHouYsc9yzkvQwe+QCjnDMjLSfMezJeQrE9P3q3o593nL7D2WKNtLAgO20DSB0Z8YlvjuihBohecKU+oHo2niY6jeVFyOMgOS4BFI+RhHH+jyD/4D3nxeMdXkdwfuCpt27wxEthNYso3PSDdzieXysl2vYqiGSQ4b0GbQaKkfc6WiUIN1nFrg+HUWR5JnlFfT8oR0nyeC+dIdYCg0V+QDEagWvwH0reSATzfrwXfqBHJZGVezD6YITd92F6p+6gd0KLxowkH9dU54NXPUBvJQDRKIPTDuWVzK3KgLLjCAr3xEYDJl61D55lpfF6zJHIQm7HkOQbLrTIMigLXC6Os6Pl6uBatVJSLyHorEdDr+tFstk6H7j0cjwTOPRKa3SeoYbXBSoyABhxX4zYDueEMLd1WCufS7VzoXd2Qee+rZuDWh0R9+RB814Dru/pwvVrpURwAAvWYr202Ua85hyuEyUl5YWn77WHLEeF5ymKGbgednVNZy2dtVTzOSYXp6jRGSKXjgi1wCj04iO3PzlnyFNzdhRosZmhD8aXc9l/GzC/220G+ktRZOClmp5zPfvdFuvGm6KUJNo5N1Y8dL4nhpBTT/WoJR254Bbn1DCRpN6RePyU0xv/jp0W1SLiIpfu8yE+fArg7/tuuk96jKkXc2oIxO+mvLd4jqnRkdJp7qMO3Qf+YzLdfdeT7ju+Ht+LFq5S5gAUHPSrd2R5NrbdK1TfoXWGdgrlel5f3vLdd9/zP/ybv+RsNmdWFTxbrejmG7Y/vGVxfEaFxd5eSThbjZGRrnNkucaHSqtd13C727JazXmwPKHINMpZtrc3OCdtOV6uMFlOVuTM5nMWqxO0UuTGo1yPwVDmokO/2+24ub7lxYsXvHn/Dm8cx66nms3py4KiLMiMhAo9I++163vq/Z6u7Xj28cd89PETZkWFrVtcY3F1Q9fv+O7VBa8u95AVON9TljM+Oj/n9HiJyRULFN4WWDpMlkthFduh0ZRlibUq8O6j5NpYQCZ6Xr235IVmvb7h4emS3rb0tqO1PT/77HNur6/YtDtU32OUpldS/e54ZjA3NZ67MqnRAxZG6b1j+zC6I57mxfyIopizb1put7cjGCEkYCukUl5V4EIZ9/l8zi9+/nMePHgAvWM5m1EWc66u1hBoKvt9y+Xllpc//MCLFy/YNzUYx3K5ZLFYsJgv6faWv//737LbrWnaGud6rq4upLhI2wzzw33G+BQgTas+xu9E7ngEVU0jtBTnZOG8ub2hqZthXoveMRADSeuMPKs4OXtIWZa8v3iLtb2AiaygLCqOjo44OTmhLCs2mw1lWfL5558zOzriar3h5csXvH31iuV8wXw25/Lygs12y263YbO5HcB8nF9i4lZ8Rsdq3IbTk4f87Oc/5/T0IX/zN3/D9fUNeZ5zdnbGkydPWK1WPHv2DKUUr1694u///u9D/YE9P8VtGL/xjQAYY98Mi+kwV47fU34EK9F7FjefelsPkHX41DM6TbwfwM0dJ2zi2x3Xg5HSMo3OplvqhIl2iHKaQ80ZOauzbpCejN719BgpsCcF7ff8JBcdrygcK67rk8iw0hL18+P651ys8qyT44ROThxyaS9FaUuZCzXO6TvrqBov+a7XPPk8UlJiRCCd+w597nepLdN2TV+NNt3d9flg94S1dDgopB8G2gwctPOwrYfzGiEY6oOxMOwVIqa4kN+jAtxXST8lz4RSPlQhnlS31ZIvFOdIO1AzJcdNh4hOLEAb9dKVimpGOui/C68eBMx7GMaEHRRlJKLQW0tmBLRnmdSiEd35Dt0qAcBW1Nm8l2h+HEcmqRtAmJtVMDCVVkP0VKsYfwt9MJhDAfhrPToCGPOgBtxkJdo21hBx2Ej38smzhU+wajTnRjw3PKMBBwsdTaJKeC0G3QdH493tR4P57VZCu1VVhWpfFq1dKCzjafr9CALCtajYqcOENxaeihNvBPcpQI83+pATPnrVY2dM6QBxm4KS+HrqyU+/OwXe6XtTsH2fp34KIO4D9en3Ui9hvM4UkN93rOlEM+UDT2k80/5ichzhqB3mE6QLn8kyqsWM07MzFvOFUFsubrjeblAWnj5/QvaLT/j+q6/469/8I//2v/+X5F6zmFU8epDxw/UNnReevZNZ5+De7HZ7slwzWyxDso3BGyXcPOdRvaNa6EHycT5fcHR0yvz4iGI5p7YC3m3TCpi3PfiMsqjo+56qqnjy9GM++fwzXrz4jqur99zcXKFx1KUBV1FmGW3TovMijNEw7rxjvphzen7OfDGn3u7QQLtruL244Nvvv+N3by9Z/eIv2ZmMr7/9Rzbrhm7vafZrUJYHZc7jxRG//Pgxjx8cUWVzTOlw9Zosy+htT9f1dKHPU85vmghbLSrqXrz0np5dW7M6OqLIMgplaJsNrl6hrEKvluS655OPHvA3l7fsfCmJaAnYTcf41IhLx9v4fCnm8yMePnzMyfEZ+7bh7fs3dH1D39dk2oSqs4rVcsnR6Snb/Z7r62uKouCj80ecP3hIs9vjup7jowWrozn7fct+3/Dm9Vu++eY7Li4vyLKM45NjFkcLjo6OaNuWze0O4xz7YsftusW6Brxjt6vZ15uDsZ9eQ0yWT6/ZBweBtXZImNRaU80qylAESGvNZl3Tth03NzfUtaj9SEEw8fZY58UzqWQZ0HlJWS6YVQtWpw84Oznm+GTFN998xXpzxWJ1xOrojJ//7GecnJ7greXVDy/YbDas12uutxt+9+WXvH/zlnqzRXnRl49gve+7wYsV25xl2VAELM9znj9/zp/8yZ9gjOHrr7+maSxvXr9ju63J84qqanFOonuz2YzFYjFc76NHj9hut7x48YKTkxN+yptSDPeFZG72hDlTjfzWDx9jMn8HT/AB0Pd+GA+9c+Dj/UkMZ8/w7CV+Y9GnHtBmBPOhGE9AXfd6gdP3g2Ei1xajCj4YmyPHPzZ4bEeyDetS2N/5w+NxSLmRjnPBMT6uLek6E/NWxiYrvHH4LNJuDYRxnYo6xL4eDJZgWMW6JHHOSvN04jGG250UfDr8EZCkDls13Ct18CNebpL77GP0InD/UUlkJfn/wKkQ79E9eEH6V/EhI25oNwwGaOpVH+8dwZESQGlcX4PKnQ/XPERdlA8V2xmKIiVDBFChIFR8dkICs5fkY1ED0zjrsSYYdMNXY4ankmhP34PWeG3wSqg6xujwHmiT4UI0IgLgTGlUkYs0rFbkWgQM+q6j7YQ2U+c5e5OFPgvPg2KQdoTA7AqOKh+4+CYTkQvvHS7PqMoC7x39bMZqsZCIvO2xvYyv3vbDWjHWgpA+imIQUfQiz3IMCpdlw/wjY9ck4zTm48jY7YOBYJ1Ur5WCax4V6gd5fzfa/Ie2Hw3mnetxvsfuuoGbiCeEIseEgnQCCfNfeFj1aM07O/LXInhVI/jsuy54SNTAS44a0PcldMbzRnAb6Sgx+XW8hjHUPgXC93mzU6CT0nY+xF2/73jTqMD0XNPjpAA8bXdqMEyjAUMbkokjNQqixyktyDSCt3HhivdhqNJrDOViwfHpGecPH6J1zrvZO5rvv6XZdJycLDCLjHn1a/7D/+c/8LsvXvHrP/+MIjdURc7D0zPe3Fr2QX5KaUXTtMxms/BgSPhqeXRCkXt651HGsN/X9EXJ8dGSRTVjPp9xcnJCUeTMypwy0yjtmVcVbt+TmwznOilwpHzIgi9olRQcOTo+5rPyZ8zfzqjXN+Astm3xmfDoq7IkyzOarfRzZuT6nUjf0zYtzXaPa1vWmy3XNzc4U/DP/sf/E//d/+V/4n/+d/+OvOp5+/oazZyb6/ecnB2ze/+eZ08/5rdffcu/+1/+I88fnfLZ03OUb6VargfvepyVQmlxMbEh1yLmoGw3tzx+9glNvcOvMhyO45Nj8VA0Nfv9mn5/indQrY7YNjc8PDniuNxSt2FS/sBYnRqskfcXJyQP5HnJ6ckDjMm5urrBKsfp2SkPH5wxm+UsZjMybbDOoo0hL2dsNjuuri/p2hajNLbtafY1V+/eU9dbHn/8hLLMuLq6weN4+uwBHz8/5/TslJOTMxyarhPFg6uLf+D9+2sB8VigF/URrfAJgDowuF0yN4S/g4chVDGUJK6iyMmLgs9/9jmffPKJqL5kOd9++wPfff89m1uhtigni4XtZWFwOKJChjYF1XLF6ekjqmpBbz1FWfKnf/pXfPz8Gb/93X/h+nZL3XW8eveOV+/esl+v2dxcsdvtefnyJdVqQeekSFSWGbqmoa535FkuoVjnaPtWQu9a9KIXiyWr1YqTkxOOj4/52c9+xueff06e55RFxb//9/+Rb775lrqu2W63gHiz3r17R9t3zMoKEJWGo6Mjjo+POTo6pqnbO/PTT2mLnsFhTkzmt1iDw3kGqtmYFJuAqOQneuOTFSL87wZZR2t9UqE8evnlHG6Y7xNvYMg3E1lhQAUwb/Td84fvSvvG1wHDhPXRDWM+egwhjPuIWUcvG5GKMq4R4RoHz2JynQefBRfzYKSoYR+ZS0K1VhiUQRRgjcH2wq12oVJn6qS6e81yLqVEDlfkVc0wR0Vv7QDoQpdEjz6MhsLgmU6uaey/sKYSAeBoioXbMt5/HyJxcZ1NjMTRSribXJ9uhw5FgmH5ASAfflIwH73GMYdhMFrDlYiHWyHkpbAPgfqlFMY5MCJ2akKSq0KA9VADIRT98uFqvB+90845skD9cDbmS8i+1kXv/Yi1VFQR8gplNJkuJXcSJUA+AtteDIVMB769Ujhb0Idq7zYUnnLOsdsV7AZqi6yTQwQi3Jv4LLje0jQ1tpckW3IzPA9Dn4ckcHwQagnn2Te1CC/03TDGIv2n63q0VoNyWJHnwhAYIutjnYVR5EDHQTeMX+kni/M25HdIb3pvsNbcO4Y+tP14nXmCDFLv6d0UCCchoGC9jyookX+deoABxpsODIPHmMgd9yhtcDjQ4K0bOW8JGJ0qxHzoc2naYWJr3FJgnwICGAdl+v37EnHjvv+1B3i6fzznfftN94/HTqMb6f5ah8SUOPKcMNJjBcLUOzvu7/BYUAJQsqykmM+YLxYob3AtvPv+HZuLLbP5jG3XYG1L1u/IyiOO5iXb5pZ/+c//gn//v/wH0JpnnzxjdXbC2WLGxdU7zLzE2RJ3u8MrTZf15HlJXmRcvbnm0fljjLXMtOKoqOhakYDSWUaRlZRZSY6hMjnKKfpGFtGdbblZb+guOr65eE+7u+DTR2c8WCxZLeZQaEQn3EGmOT0+o81yNusbUWZSUtwq2qZFXkExI8vWKOUwBvp2h7Ke3e0OaxsWixl97VgtH/OLf/1vIYMMBy388O1XbLdbPn72nOPFnKqd8yefP+XZasEPZyu+/PJL/v6Lb/j04wfMioyFgWXhOT6aUdct9b7Do/HWk2FwqqT3ItX17ocXfPrZc/ZNj+p6tG3w7Y7cdGTasW9aTFaR5RkeR1HOWKmONyqn90ghqIOF5O5zMIz9oG5jvYcsoyhnGJPRdQ3XV9d4oznNTimzkmcPnwYAnOE0NLanrTseHM15cv4Y53purm+5vd4JP/zjj7nd3HDx/oZqVrFcVjz66ISj47l4ob3HOc1m3fHq8hVvXr3i6uIdt5srmmaPUpHOZ4YxnD6nQ8QLI/QprejcGBI12jCrKjKdc35+HgxLxdnpQ05PzkKFxJy9g5t6z66uafY1RVZytjqhD5JqqJZqVlCWBYvFgrJYoJRht9+zXW+4mmf06hOe/+zn5PMFv/vtP/Dq9Wu++fprrOvAdvRNi/eOptnTdh2r5THLYkGnCmqzxytHE/ZxOKx2FCpnXix4/NFjlschcrHZc3l5xYsX3/Lb3/2Wxx89o2larq6v6bqWosgpy1Paegdakc8qbrZrvvv2W7abLUVRBE3/Z2w2e66v1nfmoJ/UNmLMux9FoD0Ye3eplnFLgSWTuT7iudRbnUaXhyizDxx2ItwKxxxO5QeHpgrIMY2OxnakbSK5vJj7eRjZDmA+Rh8CGE2R6sG1+gmf+54+G3/Hg8rJhyuLVsX0RgRbQhx+CtyYIDg9x502Dfb3mNM2Rnbdnb5QH7q+tD1jzyU7x8/VnWMO163iCqoCvknWajW9dH9gBN63TefitD/uu9/x9QBWYx+lfa/U4HU/vOz0no2XHg2F6DQdCn8N9MNwDnWInVSs+KvHq/NexqIN0QaGMcOgQqRcwIbhSxrGolmIE04pKTAmmEXWb+/9QINzSpFnhjwLks7aDMIq0RvuveBF7z02AH6UGwaIis9YfL48Q3sza+mDN906J0o7imGNU8rSdyNGjIalMyY8dzq0IUb/7qOuTd6Lf8e5ZhhD9w6dD25/hM78/Vu0yOOW8sjTCSl+FsEwjB6ROJCt7RkehGgxR4AxAbRTQB1B+xQgp5z0w0lp9Jp77weKw/ThSY+XerXH6x9f36eBn+6ThvpTQD8F69O/4+v0e3G/QzAfCi5MIgFjPoK7e6zEO5PlGfPFfAA5bd1xc3nD9c0tFxfvJMSYGZRtOc4Uq8UcHZ7MIs/50z/7Ff+/v/1bOhp+OfsTQJGbjHmVs92uZcIwGda6EOqvePjwIc45yrLENw2zqsSFmgLee4rKYEpDFxI0LzY13776nm9ev+E3v/+Kq/2e02zGRnv++Z/9Cd/9b7/lUVXy8yePOX1wxNHqiM45VJWTMXL5Yv+5sAjnSmgZLYfFv0xYQB4+fcLR8Zwf/vFLTnLN2dkRs/UVapbzqCq5cj1/+he/5M3Fe87PnrLf7vn4+CErQKuaj371nLPC8u1331JmhlzDyXLBo4dnmEySLm0vcptoLSFKLyth13WsZiId2NRbbNPx8GSFBbwSWpPyVnISvBjCUsDDJIvtIZVqOsYOVJ/CspVlGaYqKMpyeHZn8xk65Ke8efOG7c2a1XLJw/NzFscrnPNcX9+grGe+qKRya55ze32N9yXPPn7Kg/MTtvsbwLE6monnBoNWGV3f8u7tW37/+2/58svfc319TdO0IdzZo40jVmSdtnt4vqT+N9ViTjGr2DY1zXaH1pqjoyNRwNEZv/rlL2nblpcvX3J5eclms5HzOMu+t7x7+w7bthhEdu38/Jzj42MuLy85e7DkydNHHB0dsd/XvHr5hhcvfuD9uzeierO7ZbO+YbFY0DQNdd1hm5qu3uGxONsPc1pve5q6ocgbqkp49WePHtIr2G63IdLoKTLD0fwI1Um14iwz3NzccHV1xXa3oeu2vHjxigcPfmC5XA2UmqIomM/nZKfHbPc7rja3bHc72kY88FFf3hipDvnw4Tk/xW06vw3g517aJUO0xoXPFJEGIItq1LAmgH8SgC77ywLsieH+iJSCBzt8L0YAXHiehYWgUb1O3L+pR5bBgz++DxE0p976wbnoRqAg66APhjEJWD9UnhnBe4zQkhw3MfbDuaMX1Q/HUwFMhsI4wWlkAu1FqVHFI3rM4ymGhL+giCP3bPSkozShqP2Y54CAeBeE1Y2xA6Un5YxLFU0593BG74fCYGMxRM+AftV4/UNEh2R9D32pSOm3QzceAmgV+9wHA84fxHXS8RnX3xRr4P1hhCC9F4nxKKA5VOMO98KFfopGJBw6/VxIYBYlHIOogg3CnuLVDyR4T5DYRY41yCe72L5wLiJ9yaNideBxiEnytO1wXtO34IMz+ADYBnlKrUQeVgN9UOXyzoG1KNejvSPXilmQ+x0Mh1DUNFJuvJZnzWQKVWS4TCd9Oj5XaZ/6MC6dzcaEeOVDNNZR5rk4c/ItdaDXiNZ/UHtyokCHl0JVWsl47bpWaONWKs8DgVYjtCDnVagRoCjygjxIukd59h+7/Wgwf58aSxyAzrmDCqyxo+6zNlMvd6rOMq08KPwhPfBB+66jbdoDI2Fq8aSDPu4zpajECelAb1VrpmA/BT1T7nn6WQqMP6RaE9ty8MByaAjELSY+3hf2jX/3fT8ca3pd6Xem7089UNO+c06K9tze3kroq+2o6x1934aH2NF3ezIs8yJjtZhR93WcFskyzb/57/+C33/1PVfXH2GKGb3tWZyccN11mGh5h8p0RZ5zejqj73vm8zl5WXK5vxivVSvW2x3ruuPi9g1/+7uveXG94/16g6pm7K3l//Z//3/w8osvyB+s+LM/+Uv+7NFH/PW/+5/56qsXnF/N+fj5M7LVgnw5I1OaWZUP/RPHX5ZloNWgBKCUoixL6WcrFfQ++tknGGXZftFyPJ+z321oXnyDu7nkUab5vt5ztCxYnpyw322YWcOfPP2MmW2ZHy/YbjbkvuOjsyNMmWP7htxApmSiTA1dRUiATaokdl3HbitVPfum4+z8MZWyFEahmj37vaOrtyhvZVrXWqrohQlOcTeSE5/HdIzFZPJZNefowSn5rMJ3Du2lENRiscAp2O535MpwvFwxr2ahCJiVCs77Pe9evaFutijlWS6O6FvH8cmKo+MV549OeTB/SNM0OOt4//6C16/+gbbr6NqWV69e8ebtG7bbbfAwKrQatdoPAc3hFoFG7x1136EpOTo55ujJU5aLBbPZjNVqBZ3l8ePH1HVNXde8fv06gO6am5sbtvuGtmnJteFosQRTBJlMzXK55OOPP+bps48oioLXr1/z+s0PXFy+pW621M2eptmxvb0eQIjSmVSv7BuUctE/NDzz4qEXCdbFYsHJyRnLk2O8l0Tuosipipzj+TGvvn/Nt99+y665HSb8OA+LtOeeqpwNc05d17RNg7cdm/2Oy/UNXd+jezdIZGZZRl3vyfOC1Wpxb9/+U9/SxODRixgLFR3SDgeATtR2jvO6l/wPH2kaKuCFCI7F8y1eP6l6OjJZUiA/gvmh+FICKLEQQSTh5eg2ZQBL6fXE19O1Ybgmpp7AQIUInkcXC8f5MfkuNXDS/hq47NGxNnGiyXtBanrgvQcvb2ZG5ZTBGXeId8d1MNJpFFKYMt6H0KfRUAjzmDdOFGi8wwbjIXabItBlEmNk6Ec/Gi5yOTHJcXRVH4wb7jrXpOGIU2viOU3vz6H3//51/tBQOrx/4cUI6oc2+dFgjKA+gmHiOE2A+D34ywdZUvnbh966K5k9OhvHOdWGCNOYSBoMAB9/y084IQN89g6sxzuF9Q7bB6fteMaxnVqR4QPIddB3AShblBNHVW7AlNmAIcfnPnanRLvw4uzKynzEbaN5l0Q3OHgWhucj3GPrHHlm6OYzkQE2ht1uH7BVn4D4KNsajW4CZmqHexDXrsyYIR9KTBc/AHipdq6HefnHbn+UZ94T9TbtMNGIVnnU15TJyrr7+eUR8KcAPp2AD87lPc7aoRqatW4wpiPYVQrGsX8/yE5Bf9qG9Dtp4mGcLFNPfKoYkbYvbukEOwXMqRETj/uHQHfcZ0ofilucYNPKr/F9F7wFse1TtZ0PAaDhM+dp6pr3Xcfl5aU4LWyMNCgIQFErUK4D76TqW1nSaE1VFSweLMnKipdvXvPsk19Q5AVVGRL5lJKwmNGhop+mzEWLuOtatMmYVRW77Yambbm8uoHLnL/74mteX675k7/85/zbP/+Y3377NXvv+f1X3/D//n/9P/nZRw/47MmKrO14cHbOv/hX/4bv/lrT3byl3u95/snHqDJnt94MC2tMPtYqaLt2Ha7rMJkWXfSQHKk6K5N2kdFZz6/+xV+hbc7u3QWtdmRFwcNVzv/5X/x31PWWy4v3bOuWo+NTVqYj8x1X6x1XVzd01rNYrjg7W2G0ZzErqaqCuu8x2mK0wfsWbTSu73F+5Pi2bcvF5SVKOaqiYrZYom1Dnmt0u6XZX1JvbumbWDzJ03uC3JkaJ86pFwmZ4E2YXBaLJafHZ5RlxWy1oPOObt9iW0uRF5yenlHMKt68e8t+vRFP8vERvbWsb2+53W15+cMLLt9d0NsWYzRN3fHg9BFZlnF1eUXd7DHG8Pr1G969e8ebN2+4vb0dkoms63Guw3uRCwvZUnIfvCLm3kyfw8mDglcaC5w/fsw///WfcXJ8LGB3v+f26gZt5Hp//vNf8ODhQ9brNbvdDm0yiu2OvuvRHs5OTvE65/L6OtwDePvue+aLCu89tze3vL94FziQFqXcmEjo4qLbA0qMLZVCtrAug1TA7ns2mzWXl1c8fvwxz549Y7l6wGa/4fWrN7xsX3N7dcvl5QWt3fPo0SOOj4/YbG5pGjH6ttst3iuqqmQ+n7Hb7dhuNnjXs28anGZYsJRzgxRc03RsN3vevb384DzxT3mbzskRgKu4YP/XjzAs6nKMcOsUAbBwYEgegD8V6y4IoBr3SdaCoR3xYGOEaQCasaUJ+J2C+dSJc9+alP52ifSkG4wNP2iUp2uj1lrQW+KgUrEjYlsmBsi0X6eG1IfA/OSwP25TAwQ4AN3T8ye7h46Jvw4dWSqBdYNnf9KocQ8/nBsfx8b4nXTNx/u7nv3J6z+0/dj97nwv+f9HDnhidD4d96kxOPxG+iC+BsabMdmGHlRj7zEYVDLnjDvGgREMqPQZjv3rRyNG+VAgLPavkp/4looH9uOAiwb5YLDFaEl4oKOxIvc0KgG5odiWUpLYGrcsyxIHykgbS3/GhTZez/g6njeC+/jZyLXXIz6ZOIf/0PbjwbwWWSCUCNrjJVw1WM6ESoiuRbk4IMdJ4T7PfZRRi9vUq2C0pmtacF4qLyLHMdFKVQql3FCWfjq5TsOuaRuiZzZ+noL62Jb7Js30wZ2+Tjm7cd/7IgPTv9MIQmqATCeWmFyCCgFTP/UeHE7mqTcqff++a3TOhbCmkvvX98OkCSFp2fd4U9D7jvNlhjYZvqzwek0TMs1zn/H0/Jz9Zk+/X7PZNlBs5JoKjXWW0uQYIyEloxVZKdUt54slhTKUWUlnFevrHV/+/iXHRyf8X/+Hf87jj86ZLU9Y316y9j3Hnz9nX2/52edPqHZ7zne3XP/t/5fm8pKHxzMWn/8zzFwxe3TG6uiM199+zc3lW0C8b1VRyr2wNRqpktp7hyrGxCBv4GZ9wcPdHqoTypMTSq3JZyv22y29UmxMzfJoSbG9pSxmbC5ucU2DbXq2rqNtdnjfAZbFvGQ5F67+crHAGEPROlzt8AVst7Ukx3hH4y2dBuVEgnS72dN1Nf/6rz6G3GOWSzE+2gb99oZ68552d41XHutKLjo1FL8Y4EwAJhC8b0ZhcsXp6RlnZ+ecP/yIarni3cUFFxcXbLdbSlNiMGw2NbPZjofFnJyMr1+94rtvv2a1WgJSpXWzWbPd7nDO8fDBI87Pn6C1KAZ9/+I1ea5Yrua03Z5vv/mGzXYzGut4RNI6RpKkRgWAd+LdGBYUf38ejPcekxUcPXzGRx89lgSmLbz64T3XFxuKouDy8pLL9Q3kM8osY1aUnD99xOPsKVrlPH93Qb3fY63l3du33NzcYkzFs9URRWm4ur7g26++pHsphlfbtHR9i1LRcxnmBiKAIOBEh3VIVpmyKO3QOkepDO1Fwcn5PhQ76bm9XnJyfIyfz7m9uubNDy/ZbjY452m7Fo/j5uaKttvR2wa8RgeZ06aRHI/t9pa2bQP3XgnIz8pB1nbsawH1SvXYfsNPcbuXZiPvjKBaybqldXT4JAcIGGCqCpZu6fqCMZCL982YMTqdqrD1sTx84kX0pJKRkVMfo7t2BFBpO1KHjBogy/hx2kg/AojBDznimdELOb246GhTo1cdgnc9gopsRPLC8R3Xzkg7yLMsaHubAQxF3DaeKjrORvWZKMsbnWN3sIEbaZEHji4VoeChY00NfZQaTTFhNpF/HtzjjN+LbU4suvH/EThPnYexDT8auCdrdhw76e8BHE6Od4gN4n2AWD5E+ZHqorRChUJEokQo+/uxg3BDRCnJvyCc1hPG7NiHo+F5N7oTXoQq4Yd0LdkvUqPUYKBFYKsVYHskv8Kih/lz7AcfHIogybpOJVWEw/2yQcFGnpdYxCxeS3gyIrYJxao8BNUi6bMiz4AS5z15LvNl27U0bYNzkpDb2xbreqxVdH0XxkSO9/kwPlRSd8Fkct48iwW2Rm+9Dg7RKLMejYYfu/1oMB8r5zkhjg3c46IoGHlWHheUS9KpZgp6U8/8h7bUKzFozUdLK5QQ9s6jlRet0WSmcM4N3vRUni4F5/cln96XwDoF3feB4/Thm+YI3EdtmH4//Tv17EcaSKQFxUz2wSgJ34v7ec+oMcv0gR/PkXL6Ux4/cJAMMm2j1lomcC+FKDJjMCYnz3KU8/g+HFdpTo6P2Xee06M5VzeX7NYbCtvhccyoBs9NrF6ZhQWgMKAJhVpcy+OPHvKrn/+Cpx89BNujt5f82dkRr64vOHr+mNXqAcePzlkslyzLOXa74eS85Oj4mOrBMcXM0HYOo2b4TkFvyXKFwaFcT980+N6SFzneObLI1XQO7YOKkvdcvXnD40+P2G7X7PY7+kDBKMs5rTM0G0mS7LOWotC0vaXMNNZqyl6xdT3zMmNe5szLkqIsKHJRsEE7qllB7xxaeSlq4QWw2cCF1XosHX12+gClMkwmx+nnR6i8pK5rumYPRrHeN9QYHFbkuCb3U6FYLpc8evSI848e8PDhOYv5EVdXa96/fccPP7zk8uKCpm0p84qqqLi9vRUgHLzTbdsGz/rrg5wVpULiH5aiyMjzivX6ljdvXtL1NXlh0Fr44DGj/77xmj6z9xmmU6M9BQjzquLpk8fsdnv+8R+/5OV332K0SOs+fvKY2bxkNi959f0PXL1/j9Mtjx8/4ec//zWPHp5zu15T13tOf/1rmqbh9mbP9fUNXb8XelDMtQnayviES5146AbQFEDD4XWMq4sHtDFSrReHxnFze8U//H4n9Qaco2kb2raVazQKMEGp5pbedninA0fbsts1SX/EMK5hNptRVRWnp6coJWoM8fd+L6HjPya0+09pm0ZcIyAT0CBIISZMqzBfxv2H7zLSbyBx4iTniXN6WnzMBUAPHIBN01v6sH/XCRj0XkQkbLz9flyf0sqWw7qXjKE/dN1pe0Gi6FmgDhKBzn1AMz5f3HWIxfEzUF10rORK8GeP+ygV6QMmVEE2ScXd0YkwPtcMz2sE8/flrh14jN0heBw8ulNnXnrX/HStHR1fhw7UpB9jXyS7xPswvhuN9buKNLG9963BaSti2+4D8IfjMt6qu07FhKGOitGewcAZmQYDkB8MQjUYeM77YWyKuso4L0Wn7KTlw/VPwbxnzHOIY2u8FWPERw3VbcHoEdDjxGmpvCMIVwbDQgD3cLUKocQNVoucxzvx/ltGWm/sL2vH9XTEoUBwlHqtCDaNcNcDJdi6HOcdeZux3wv1WLWw30t/WauxfYfCD3VjYsPG8W3Ii8CHjwW2GHGY1pqyLETZLjFuf+z2o2fttDiRc6JXGuWKQKFVpKJEKyS7F+BOjwUjsJ56zg9Aph6rtiqlwIskkfUicymV4Q49KtOJIdX8TN+H+8F62oYp6E+/PwW893l24j4f8rqn3sURnE9oPloPFCbvxUuhSGlBY8XO+0DQFOSn7VDh4Vb6MGKR9o1WQvX0Lt77liyvyFDkStM4kWfrbc9qteTq5RtWp2f88OpKpCC9BxPv92ikgJSTXq2WnJwcY4zl5ds3zEvFyeKEKvdo31CWhsJoVJdx9uwJx6sj8tlDitMTTJGzX2+wwOOnj3He07keTYEpS7qupdneYHw3KOL0TUZZFGQmR1mPdh5nPaq3ZCjapgPlKbKM3dUl2/lrZosFmXE0dHS7DdvLC2bLY7JZhjKeebmgqxTba1C+p9n3tJ1mVmZkyxmL+Uyy+juHpw8ej56onqO0o9u7gZ9ImPicdSwWCx49+gS8GX7yYs789DHkX7Fb34K3GK252GypMXgswkUdx4EJoO4v/uIv+OUvf0leFPS9pW0tV1e3fPX7r7i+vpLx4T29b3GZ0I5ub2+5ubmhqgrarh7GR1pUQ2uPx3Jx8YambshMQd007OsNvW2om3E83plX7vFA3bdIxt9pRCsep20a3r56ge9b5vMZ7W5D13aQjxJr83yGNordfsOX//h7tpsrvih+y9/9r3/HfL6k8w5tNH/xF3/BkydPKYul5JO8vWSz3cj46iRRuw9RrPsW4rTP8ZNFz8fke818saSczVhvrmmaHU556mbHZns7JIxHcJTnOcvlirZtub6+oLf9gQMgBZMpn7koxtBtURQ8evRInDFKsd1uef/+/VB07ye5jfhO/vSjCkZ4YzK+7jqcpsc42FNchAI0glNDD0Dlnsqt3mO0l0fVO5wb6ZxYhdJBxMEF6cBI1XReCsYMbZq2ezjBHe/62M4A5nUC5iOQ86NHOLpGFYee9AjgUROJx+BIE0//XTA/ABOlD74Hh2A+vhf1uw+B+Aj+4jVGb/D4Wtrs1Qiv430ML0ZDLo1Y37P2HfRj0qFq8jue884O6Xkn233zWfLhH/zOfff8Dsj3AuAPx3K8jtgXDNd9cA6dRDTDwcT5cHj8u+1Kx0889KiWF8dgeq0K8GowHwh3b7hH0XiKR4qbVgFgexV+x+PHRiVtibczGomKw5uXtJVoVIiVdjAW4gkkgsfQJ7gxYjUUHhzG7dhHh/coPc9oIJJcs0qOMer7J8YQP2770WA+eoTig2b7kc+Oh1jcbQwbuTte3ymQThfg6cBNwaxSEi5MB3lucowp0NoGWsLo5Y+FqKb8+NFzeNeSvu/B+ZBnO15HBNmpIXDfQnjHMJlc730PbwpwhokvgvgI1Ce3+cfd9NE7dffaDv+eUobG6wkPv/Mo69BK07Udtu+kqqy1ZEXFcrWg7mrOjpd0mx20Fq89bdthjCTMRl1IsUgLlO94/OiUxarAa83m1qF9j1GWxXyGr+YcqYxMGwHWixPK4yO8deiupW7XvH/znfC/z8/oLCif022u8N0tRQadlRBZs9+RmRKs5H6gREfWdT1d02K7Dm00JlPkCvrtNU6LxyxXDq09eaXYbd6w3zmqo5koOWApSkXfdBjjKAysFpUUXSuMcAatRRlD27V0SFVdpb3QNvqW9W5P7xV9L5OLcx1lWfLzn/+C5WJBXhRCX2kdplqQzZbY29swETre3dxgtcH4UP48GR3xGY2Lt7WOi4trbm7WbNYbSZwNc1qWF8zmS4qyommaoQLpvt7hXEcfQosgz6y1ov+e5wVGa+p6i7Ub+t7S2xY/PKf3h6fT8a/1WNE5zWuJYzP9Hb2vkkiv6duG929fByqfEUWX2Zz5QqqqfvHVb/jy97/j+v0F+80WXI/rHS+3PwCKXsNytSTPM+q65vzh01CgSeFcx/b2hn1I0J1K7aWL7Zj74g48viCeeKMNy+WChx99RLWY0//Qsa03OOvRk5wikZgsg+LNivX6dvw8MerTqtkxWV7aYYcy6O/fv2e323F2dsZqtUIpidTstluub67vnR/+yW9T4BGfZ5esIzbK2AW66Ae2WME0LrpDERrUiEqVCvSTkfrlISiKBS9nJjRQPNgiVg5mqKaZvhbFkNFLPxq3YmQk8bXEkTyxPkI7I2iJyi4RiEfPKX6knsQVy+ixaJUP1ye/RsBhMvFWiuPHhBOO3letNLkZwXyk0g6gZ+LljXgrNQSGm6kC5SNW+wz8fxxSbyF6dhUDnWgsHKSGYw9A8x47bsABHwDWw30+cHolDU/65+Dz+7Y4L6TAMRqQw+vReEs99ulPfG/EMOYALMY2+7GBQ3s9Y80eFdoi40HSo/GSpxWLoQ2jLum+2Mx4bG1CVMcjx/QEHrsaTh//CkgnbVJIlk7Gd9g/04Q8MnAGbB999COSd25UN4tZIVp5MAqtEtr0gfEh+4sDWNqnI/UogncvY8w5PRjczlpcllEVBbaq0EpRBx38mMOJ93gnamUWD2SSS+NCdBQ1jNEDED8xaIlFqn4skuePUbOJI0Fscem4xPrrgzdZOmbkwk9Vaqae+tSDPOWoT5VuXFACcM6JhnqowOi8SLc5NxoBaXJt6h1IX0+Ni6lCTnw/bUNsfwyD3qGpTCz/+wB6um/qQUsNjKmxkXreh/eNGrzkMvkd0pmmBtPwNMvZUQqctwfnxHNw3thO7z1WTCqMUqxbSdL03mKqGb6A3u8oi4cwL+m14cFHj/mb//xbZouVJLY6R+cd3vbQhGvKPVpD3WzY14qj+YJZkZOblbRpv6G3DqWk3kBhHOUsJysqZssV1WyB7xvqzTX15Tv6ekdTN6xOHqDqGpUpMr2nvnpH1vaozNDshNrjO7BdD4XF9rJout7j6hbXdjRNA0pxXJRkRtN3DdZ3mMzgvcZkBbQduTNsdw3byx6lPLgO29ZgO/a7DXVTM5/NqGYzNArbRk8qGKOpaw8GlMooyzn7vuH9ribPcjIHZlbQ1Q1ZnrNcrchXR+RajGkzW2K0olzMpCCLdfR9xeX2kqLXGFXSY8fQeJio6rrm7/7u77i5ueHo+ITtVugci+WMn//yM9brLV3bs1qdUOQF1zc3vH//nuVS+PHb7YamteIpLiRxJzMFVbVAq4zNdou1bQhJdnhviXx3acchpS2lygxOgmTspUZ4CuSlHzVREch7T5YbnHK0tqf3UOQZunfst2u6Zsv1zSVX1xfsr68GxR+tNL23EI0Np9itr/nmq5rCwOnqGIPn+uKCi3cX2K5D6ThXpAoR4dEMHs5Bzi2AKfxIBZrNpOJslmn6dsu236P6DmM91vYoY0CFsHdv8bWl62t2u1sur96IPn3bY0yOyXLKsqAsS3a7HXW9xztLtNvLMmexLFCINGxTt+x2O66urlgsFsyqGavlMQ/OzqiqnybNZtgOcJu/M99K/5sgxnI38hO3dC1KwccIUg7dKd6PEsDDOuI8zozOGvHyEShZI7iK9J5IA0gBG5AkBgZwz8QBlbTlAFz68T2dmfAMjWDMJW2KRYni+6kaCojXMAvqSUoJmB+452qkV2Qh32jq6Tf3GE+K0XA6vA9OAJhSIvwTQa4bb64O1UOHYk+JwTDFQYMwmPfDB3cceH5sz0H7pm2bANU/BOSH9T49V+q8uwfIx89+3A9D/se0Y6ODQx0M3sTrnoyZlC7j/Ji3EQ/mh25XB+8PIHS4LJV28Z0+VuNRhmqto4d+bCMDwI3PlBFK9eR4fe8H77wbnovAvY81SCI4DwXafMCxzo340Bg9fHe4Bq/knHjopY2ZE7W3IhdabpHn4sAc+jJdD0A7AfJeH46lQ+do9Moz3KvBM/9HbP+7Zu0U0B5SaKKHYiyfnnrHU4A5cArD51Ov9RSUhsMPFpZYZBItEE/8yNlNb3iqMjN6qEbg8CEe/FQFJnr7U+9+eqypas5/zRM/9XjfF7WYJs+m+w/HUn4oDT718H/I4ykTwJj/cLjYjd+dtjvMuoDhclejy4dYaymqMnDuQHnNslpys63JleZXv/g1//4//Ueq5QLrJUO87TryhLMWIwV939FbO3Dom6ZFeUumhEevnMU3NRZZ3BqlsJsd++2WrtmjkeMvjpbMlwuq+RyMZn1zyW6zISvLgaPtvSfLcozWNE2DDcpJ2ushAUVrzXa7pZpVmCKnms8wWY4uhPPftqLAQ1j4hO/qaPoGFUTSymrOYiEAOMtEnlB76XdrBfxb59jt11inqeuGpm1D+WyL70Uj33tPVVU456iqAt9s0R4yrTC+Cyo2Yvv3LuPqdgccYZ2VEt7J+FFhvG02G77++msePnwESjGfz3n69AkPHjyg6yyvXr2hbXrKsqKaifzkYrFgPp/z7t0brq4vAMf5+RlVVWFMyaxaYkzGF198wQ8vvx/6BCVUoTvjNxlf6bMQx32aVxOfr0iXGw1soW3FQ7sQ+aiqktPTB5wcndHua354+R1934q8Z9dj8358btXEiEfRddL2lz/8wNHqlDwv+OGH77m8eEfbtQd0u9im+4z3wSscxntVVTx8eM6Tx09oO5HivLgY8xBgpCKOx5DnIyZIykLUY7KM+WzB6ekZ4AcqDogaWFFIQtV8PsPkmqaWa45jsm0blFKcnp7w5PETVkdL6nrHT3KL8x6EeU3eHkZcOg8iIMJHMDV85sa/g6EoQEMxGbrD+9NtoDmi8HoM5Y+GbEw4HKG5NMNj7FhMMSrOHHzxQ2B+uM7o0bsHzBszzOljouQI5k0yRjXcBfNKqmMbY2AwiPTosVWhzI8+lLeMAHsAmHf6cLrdpQ9N19LheGqka0wam1h0ybiI5/wDRtz0OOre14cN/zGe+cPujG2aXukftx1gvgHAyx+xIBPJtX7oug9HVoohYhsPk8V9fMCSc3o46PP4HB6eRUD18IAqDz5yzFNTeXyhhoYc3mcfPfxhvOtocCRtiYaFGAIqnFs2yUH0oWCWjFnn47yN5GcoDhycMtfrQUAgYpUI5OM+h70aWutjFDeyHtTQr97rIcE7VlGOTp8fO0L+KJ351CMWF7DpIEkVEqZA+kNAfepxi571FOynnuvpcVOAnXZm2qYpMI2GSOqVnnLhU0CffhZ/Ygh7et4Ped7Ttqf7wcjvj+e6zwBKuWzx2LGd93nT0/4EovTx+JnyA3UnemzS76f9K54YsHgsij0ZG6sobcd8VlIUBU2eMzs5pVwes1QlrrYcHc35/POf8fr92+G+auVF37vImM8rZrM5Wa6oygpnLV6pAKgVR8uZPBKuY7u+wigByGXX49uOfQBVnXXM5ksWC1HqWBydkJUVzX6HbToZv0bRNcJxPj4+ZjabiQSlHsdfH7zmRVFgjBkK6uRlEUow9+SFwuiMcpbT7LbiMQ/7Wu8pZhW2a0T33fVkKhnzWuF8R9cLkPcBdNne0lnLfr8P4WmprbCoZmMY3AjXucg09bYVA7bd4+obut2tVL1Vhu3esWscDVZ4+KRebDWEWWM1033dUpYlR0dHvH37lqqqqKoZ8/mM9e17jMk4Pj7GOcf19XV4dgzL5ZLZrOSzzz4lz0v6zrNe76jrNoybuwnu94Hd9O/7I1J3jfPD5270zMO4GGhjePbsGc+efsLt5RVv3r6ibWti8l2qPjI1XuNvay0Xlxf8p//07zGBFtU2rSScJvvG9kRQn85bMZFpPp8Pfz86/4hf/vJPZTEi4+9/819o2/3w/E/bkj6LclyFR1OVM54/f87Dh+e8eSNa+U+fPuVnP/s53kFVlljrsK7j8vodbbMeAL4xmuPjI05OTnj27CmfPH9KURS8ffP+zn37KWyD4RdBV/wvjic/QHhwgVYQQMUwxlRMzpNojVHjonpnfieC/LsG6uGakHKCx2VfPM9a6CpKD1HW0auf1AeJzp6oZe2jNzUejWihQAp5/Djnx8h5KnmbXk/kAqfr9NhWOUaeF5iowqGH0rXD6aKzIO2R8b17AKX3gufiNSf3IXqRpwZ/uv6P9/XQYTHdYqVcNWncvSBcTTBEXF8DaDwYW0y74HA+Y2AyDG8eAM3onY/9e6fd8foDSlUqJrOH7w7t05PTj7zrA6MqGY8CekewGX87/EG0yMdvhO+K4RmNRTVEfcejpCbK5PiDQeSHTnB+ZHmoRN0oOjFkdyuyqQlgHh5vo4djCziWNdUN41cO4qyj9w6HzJ8qN8NzrnVUY3SD6IR8zQ73Cq+kGGFZSgQq03RtgwmOURuECjIdikbF3gqFpFzIr9KDSElSLM1otFfoTg3vO5d9kBJ93/ZHeebjAtX3/Z1M2wjU4oJ2n3f4Pk9x+v3Ug5VSbFKgfd/3IOWmHp5jSo/5Q234Q+/Hc6RtnRoa02OkHvj4OgUOB4A5WJ5T0H8Ipg/Pf1/bY1+lycIDyAmWYOyTyF8c+tcDHHr5D47tHF4L3aYm583Nnk9PhEs9n8/xJyccffwUiooqr3DbnqL3/OIXv6Dzloury2D5Wooip2laMqPoupJqNju4JmstmTGslgs0akjyMw5839FsNrR1QzbTrE5PqVYnZOUcbTuMNpTzuUhWBeM/K3J6ZXHbHUVZDsW5TJ4P1VKttVgsvRUunTGG1WrF7XbDbrenmM1QdUN18nDo37JyKC1qIHmeo4Eym+O6hjYzZDiM70RD3Fqc7dBGUZiczXoti3gIKw7Pl7Uj/gC6TjTK+97S1HtsW9PsNyJrOVtQb29xbc3p6TnWOt6+u+ZmU7MvKorcU2bF4fOYLJ7GGJHUUlA3Dd988y273Y7nzz8lMznHx8fM5yKheXt7G4wNxWI55zhbojWU5YyiqNi7lndv3/P999+x3t4ITSls9z0ncVxNE+Lj2D8wQCaGaTQoYtVoF7waJngLrZMCaN9++y1FXlFvd1jbH9AspiA+bUN6HuccbdsQqUFyDDPwgWUsjIpaRhtRV1otWSwWweujePDgAQ8ePODNm9dcXd5yfX1NVYkxq9U4N0RHw72OD61ZLObkmWG7XTOfzzg5OaEsS46Pj8myjD//8z9ntTpifbvl4uKC/W5PlmmWRzNWq1vqfctms2O/b9FaIlFd17HbrZnNzslCsvNPbTsAdyqSLZL53hOiVGF+c1PAGPcNia0paE8BaNg+BOanDp5hXUt4+hHMK23QJkepMefK+wHpHYBced8NtTKma+z02YpdkYJ5EDCvrRVedLJFQ3Panz68liKOBcYEMG9i/sE9a+bBfJOsjdylGcS+PMgR4NAgSPs2fT2ALn+4/72ruErsnR+xTe/hAOYP2nDPSYbPxBuM8uDiWIzGY5yDObiXH96iGlbM0QgRn7RtB41Sw2fD2EuB4YiSR/+xGg2M6DiMY0TOroe+9klPRujuD444thvS+8/kM/ADmA/GATHik3wvjP2D7wawb5RK7kukBIuiTdoShRJ7wAkbIMtMYuQEsRSnwNrhuUnpY4RE3DzPQvd5yrIQGqS1tCHvQCuJUA1DhrjmuhBZjU7mMMZUIAl5HaL1JFjvv4GaTRr6jgtN6pmeepOGDkwA5hTQp56m4RYlE1d63KmHO13k4LD6X2xvCmpje+FQ5WYAtkk7UwA+Bd7T/kjbPTVuptc4peS4MAMppaSwR9JGFQaRUnHS19jeSuKEDvtLLOZO29Jk3EMAFSIbIQigiPw2TZQTjG2Pv+/0P6C8o/EV364tHz8ssM2eRVXS7yvK+TG9NpTM8IiCSeYqVqtTNJo2AtMso7E5poPtds98luGUgDFJ7gwtVLncx8HIMyidsTw5Y7Y4IpsbsrKg7wGVobI5RVnR+x7nBax7r7GdR3kjZdSNwaJxymB7K6HmYGgZpWnDfc+yDFPmLLIVrevZN3uKtqG+vmF5dILKcrSZoauSUhXU2zWV0fRNi1FQVDO87egaya3obSsa8ErAnypmNPUebRxFmbFet3g027qmaTuyzOBNhq0bTG7EA7DZ0lU53XaLWcwwRtOvLZta8/zhE/I852L9A9fbNZ2v0A4yxPs3jM+Ev+e8xSvIypInH3+K8oa27dltW8pScXFxwdu3b0RuC/j4+ROefvKM+XIOwHp9S1f30LRst7fs9restxdsd7fDgpOChhQ8p8/3lHaWgqD496FBr8E7nI3a0z1OaZzJJNcgKwDPDz98z/s3L6WCX9/hXB9WlENP/NTQTp8lEMUhWT8y5rMVVah6q5Ti0aNHnJyccXl5Rdu25HnOw6cf8as/+TWzeYH3Ft96lNXMZjMyU/HDi//AX//1f6K3Pc46muCVn/bB0D40eVHw8NlH/PM//3NW1YJ//OobLi+v2O9FLnO/31NVFS9evGB5tKLHs97dYpuWs/kps/yE7abm7Zu3bNYbFIbFbE6zr2mqhrdvb9hsOi4ur/hJbnGaG5y+U5WKkSYx9R7fBXkRtfjgWPPTHcJu9zmm7rblzglUALZ3jjd+KXpe0/YHqY7oEx6esfTww0owOkNJrzw++zp6c8N+OnDg73W2he9EKdbBuRTHavzPh73TNSk0MO6poueViM/88L4kicuBRpB5CEzHfo7Jq+O5D5oeHRdEgyQ+W4MZFo6Zatvf9xP2H0DzhHKlDnqdARUTgLxPfg8QNRwr3tehXfGzBKAe/MRdIt3o8N4P/aPGU6hoOvpkXk37ldHJg9bE4mdxrMRilD54mIf74gXgyrQcHSJ3hg7jHRg6a7h/4+fxUx1Ab2ANxCE6rCHJCeL9Ty459s0gjRl3DePEaOHe6yTZmyFpWvYz0ZGiR8fX+FAHfr3XuMxQ5HmIrItX3ikrtV8yMUiihLfS8l4W9P61jknhk7nICx1HKg0rDs2RP7z9cRVgEyAef/8hD/d0/xTQKjXqaE4pMofFTMZQ9ZRHep83Lf6dAtq0OFWciFIQn7ZpCshTq3l6TYdewrve+UHdYwK4B6AfLFyllEh9+pH24r0fpaPisX2YCFy06O4+GNHbekft4859Ej5otMSlfe6g3dN7L9aiUBQsmnXT8fJ6z8erHG0y2s7R7/cUR0fYHPpMo3JF7grysgzlz4WXv9nXLLUm7xxN47DdjFZSNSmLYkjEEi370VNYVHNMUVHOV+i8kkiBVQjcySiKI5wHpTO0F0+7eBg8WEdmsmHitNZByIXw4XrTcefDhJwVZQBuBtt2dPUWW83wvUVlORhDMZvRNHvxMliLdR15EegfFpwT+VaPQzlJPM5Nhs0y2q6lr7sxd8C5IfolbfKUmfCe1zc35N7RNBuKWcW23nFxcUmel8zmC1rr+OKr73j1+pL82GNWCxSaPBTIis9SkRf0IUlc5zmL5YqTkxOOj0+5ePuWN29f473n1atXXF9fYozwrJ8/f87J2RllMcd7z+3VnhfffcPN9SX7/Z71ehM4136o9Dsdox+aM9LnavqsTIZuxFnBGJUFOcsKimrBYnWMUprt5hZnrVCxylCQJhS/u2scHErXpu2Q5D25F8vlMZ99+nOOjo7Cc+I4Olrx4MFDZrM5l5eXQqmplvS9R6scZQw319d899V3vH//juvra16/fknT7ifJ/cmzNoCLOLc5isLw8Pwhz59/yunihPnihO12S9M0vHr1CmutRMjCvHd0esLTjx6jnUcrzb6pubq65sGDB8xmc6pixtOnTzk+Pma32/Pu7Q29veT66icK5uMWkRvIKhkdA3GsED8awYSJO4cPNQwcVpS8jo6XGGkhLMZDCcp48qljMmnSiLWSVTx6Qoc2pCA4eQ2gdWSgjAAjvPYRVEZgFkH84BVSwzUYc8eyCNxhUUZRWg+A6MCwHgCQGmT0hnOGK/VDf/ghB0sl/0UlD7meMW/B27EXfFzrfGgLDBzwO5EIn3QySW5CSKKVeUKNn/nYbo1SZnASaSPUM20MJsuF8hFUeQYD6j7aQ+CADwD38NYfQNmkl+T9ADI9avACSyZklBMdC3YprVAitxJ+UmWi0dGZAvpxiDnxepuQiKwCFhocl/FnpHG5wN3Gh8JmKY6OL5wKJaAmkD1phyy3ESv5wQhJum407pTDBW0ir8Dru89rXM8ViJMqNSjDprUO9YeS8aI0eaQzH+CnOCuoJAlcCktaLfih1wprFc47yScxhkxrXG8p80wqi2cZ1vbEhFqlBePmeS7HzTJMPmLRkXYm16a8w9lerjPisf9WNJsUcN/3WXoD0wcu9Vqn/PbUExYTTGWiMQcAPwXYKTBOX0+95mk7p6Hq+Nn0/eixT899XwjsQ0mzafumYfJpJCGGB0XBIEYVDtvq1WFxK23MgQWehubTbdqeqLozvYfD8pHcz2mfp0nFrndok9wDXfH91ZZnxzOq+YKbzZ7XX3/NJ3/+p2RZiZ7l+HzJ6njJ9WZL66xEtpXCOkfrLEempGlqbm5vODtZBSmqMHacAzqMlsRAYzKyzAhNRmtMZmidxaPIsxKlRIYQ77F9j8l0oGLYwGnrBo9GfE8evACi+57oiRnHlkKRU5VCl2jqGmd78J5ivqJcrHBFTt81FLMK1Xf4tqNudsTKc0YHmosO7cLh+h7tPaXJsUXJdi/n7vtOFjAleQN9sPqzbEbfWy4vL6Bv0XTYd+85NhU/fP+CTz/9BO88+7rh/8/dfz3LkuR5ftjH3UOlOnnk1bdEd9d0T/fMSu4abJcgsUYBGsUjQb7R+Iy/imZ8IflIAZIGGrEAjEvO7PTOtJju6S7RVXXV0alDu/PBwyM8IvPcqmosyC141bkZGRnh8ufu39/Pf+JXn37F/SJnLiOyAGQQoYKwGU+D0ZK6FigZEYWK8WzOyckJeZ6x3S1BaC4v33B/v2h8qZcIYciyLev1Pa++fsXR0SlRFLFYLLi/vyYvtu2pUt24/PJPx3xQP2Teh3NpaFjv06TWmlrX6NoH+oIoiJBRzPzkgtOzc7SuyNKtBSf0595wvrv5GoZh6wrTPyELGw8exkASTxEECBRHsznn5+cEzbHr06dPOTo6QmtNGI25v7xndXePMRWf/v53fPXFF2w2G8rKqgb5wYL8E0dnVBVFEbpRFzK6woiK3W7Lq6/fks9L0iInSwtGozE/+cmfUtedUW48GjE9mTOOYnarNdvNlunRjJ/+9KeEYchul7JZbVu7kHfv3vL1q7fsdjt2u+6U4PuUHtz2PNGlpZbmi2MuH3rZNLE8hECLhmYF3d+BUjtS9iCIB+JbmvVBfVvJ5jXTXdjLhm7bjDoVBIG3jvvle/kIr4EdgOgLg9wc8NU8/etOQty+4AFbAcLtQ6Ldx0DgTeO2nB7gNDQ681ghlRxIeD0mAq0t+PSZcMeo0G+4YwZ8gNkbOEcTLWMiO1DfgNwOHA9OK7zrhwxYTcvkOOasGSeHV9r6uDy8ugmfyDrp/FAo6OrhYwzXx/2qtlIPr8mNbrpnhAm2a61EXGC0T9udKtqQxu3dYf+4urc8VjcupgP0ptnrHGNojLHqb65tut/fri5OsClx6kf9J1qcxf77xqu390Zbl9YNurM3M13bpQahFNoSOXEUIgWUUloJfe3iLMkW14aN0FoFCuW5M8evheskY/X9hRSNncfDAvNh+s6SeR+s+pV6n4R+aKA53KgtWGwicBlrnKAaX7bDsh048O8PpeU+8+CSL3F1G/nwPR/0HtLR9yXx7h3XtqFEz4GBYd39drsJ6tRlLIHvt7mbAJ3Ft+/q65AnHH/iu4V52Ca3aPoSySFj4Mpynm/cQm2MIa/httDcLZY8jiSj8YyvPvuU8xdPCSZT6kpTGYNUhihJQDVBrwCNptI1ZVUhddUaB47Go14fl3mKQoOxvs/LoiBM7FiVWYaMYqwv1wgpFEJWmKpASk1VlWS7jZV+ImwgM2WD/ShldZ4RXcTgIAgoy7oLCCElUigqDWWpieOQJAoxuiDbrinLChVFCKVwHlvA9ncUhtR1AQZCFRIKQZbXYCTUxvqyL6vWHZUUwkYWbRYN66s9QNea6Wzagq4n5+ecPD6D3ZrV7R2Xy8+JgpCLRxcYYLla8/XlLWklSEZL8vGIeFx7c9b63w1UiFSKOI6ZjI8Ig5j7+zs+/ey3ZJsdWZo3LiUNUDegRlKUNbe377i/uyZQgTUiDgWVhqp2BkqdLqhPn0ObFd9trc/cDxlgX8XPnbKVump8iGvrlSiICYKEk+NTLs4fUdcFy/tbiu2Wxrddb97b/rDHpGEU2ejDcURRFG0kVOet4Pnz55ydnrNe71gs1vz+088JlOTx48fsdjmj0Yg4CXny5BFHR0eWIagV9/cLfv3rX3Jzc8l2t2S3W7d96h/tg42wPZ/Pmc1mGGNdh1ZVSZZl9sRGwHQy4tHFI6QMKEtNkdd88cWXZFnG0dGU+fGEZJRY2jM1N8s7ss0WU9WMkxFCCebzY5IkYTqZcnZyxuXlJb/73e/43e/+jsX6lqIo0O+JzP3fiGQ6QNN87bB0A3x9APzerAZAyt1z6RAT6a/94LyOdKDeCVr29tQGQLi89k+pu/XZfRGepLiT2Ar62KvbU4YG5v0609TX68iOaxhUdb/vhv3gcmjR4YC5GO5F7XtStmCOwUlIhzMPqOgJy8xYsK5wUUBlI0XtGJa+dNvjyw4kb9zoJO0WqPYBvaBb02yzPewkTOcqUvj939hZCJprvWcf6PI6mK9rgujUq/y/NgBYm5VsIpjadbxu9MRdG/0hcaovxlMfcnxoj2Hz2CpfMt/Kw4VoQWu3JjqPRQeAPB4z0BiytydljmPBVyfyx0n4bHLXHjMYXuH05GWrhmuMsX7opX3JRTu2/WDQddRgSGENWoVABYqwOeVRSiGDLl5KH4/1T2Pbv/+6JPPDhesQQHabNPQnr3vO/flBYCwx60ZCWjeDotojumFevi78oWN8tyj5BO5LvoYg3nWi800/rO+w7Q70Dw19Xd2Gx11Do1dXZ1Mbh/96pxHGNCotejApHaNR19RV38h1uIH4C333u7Bg0mi79DSLv++P33/fr3erttS4TnMLzKYy/P5yyfGLOc/Oj/ns/p7qek0sIqoATFaRZvcoUXMyP+Hy3RVhFGMqTZ7mFGFCEiqqssAEQcOcms7WQUUUpbbHalJYHfQyIw5DhKjRZUUyPqFWIUFo0GVOIAWm1NRZRbpcYuoSpKCqoKgKhDAgNFWdU9WCKAqsi89QEiKpSuvSzxhDoWuKIiNNa6x3lpgkVlYnvi5huSDQdpLXEmQYQyIYhYo83SAEVGWNVIIwUEgdUOkahKLShT050KBEQC1KUqMpjEEFCik0QagJJAgdUBZQxzFHz59BWrNc/5abr//Az3769yhDjUgrPvv6jvvNEhGPyKucuirQumr8MyuSZNyqD0gs/a6Xd2xWd6TZht1uhTG00mMbztoyNZYerDeeIFI8enzBj//kp8Rxwus3r/nd737LerPAuf8azjc3N4Zz05+7bg75a8iQEQZDEFr6i6Ipx8dn1IQs10vevn3N/d0VkZRUu5Q4jDBKYbCxCrSuUAHEJJyeXnA0m3N0dIxShji2EutXr15xe3fdllmWJQhNUWWssg3bKsWkBbt0xdX1OybjIz746EPCZMTp6SkyTKjIWWxuuV/dcbO4Q1cFaEEYjDBGIzDM5zNkFDKeTTg+PuHJo6dMJsfoWvLuzRu++sNn7PSO2VHC2dlTPvrwEx49fkae1rx684r7+wWbzYqyKijKHWV1xLPnT8iLkjfvvuTy6goM/PAHP+DRkxfMpkcIIM+yxluTpNYFi8UN292KuqqsaO4AQ/99SIc8hfWklNAd69MAJfd8hwFwG76feqB2UMbwc1iu/36rstEYJDZyxU6yaeiAvOjvUU0hvc+u7OZWWwXTtqMnjbcXXYd49/32+cC+p+7lNcsCooGA6kC/Da/39ka3XnjPHWKIjLE2W63ArjFwdKo03QvNh2zG1+0dxoCQKBW09gEqCGxUW6kQStnAWs4WwAf4700d4vdxo/EZKbxxPZSkRGDVW6yxqlUtcqcFBoFUNc4Fty8Y8T8PS+edQWYXwVSIzv7B0iMgnEAlaHCBaIKYNaBZODrrqx87RtKacfZ7xWBBvy+sdUSqGvDtY0clJQSqPR2w0cs9xG3AueUzQF0bRN0xat08U+342bHuc2Ta4Zu2th4BNYMolWiiN3d1NkZayX2tqRAkUUQgJXUYEAaqHZvAtacB/A6Yi8b2zErxNS1b4dYl4T5F50XpW6ZvDeZ73JzTZ/Z8rz8MIL3J1wDgoRRbys6Xr8EghSVe36m/+/Q5GgeqD0mVfWmevxi6+vs65UMPMkOuaZjPUIXG7wu/Xf77Qym7zylDxz3XA/WiPWk+1uWeP6GGEgyfqfFVHZxLPhog79o/7J+hxMfd31Nf0posr/js5oaPjiPO4pCj42Nef/2KHxxNqQNBmeWU9Q6hJSfzGdeX143UwlCVFXlRcjSJ2uOo4fgFQYB0TJIKiKMEXRvr4UWFxHFoF3IhqOuKuixRwhqhbldrssb7ijHW7VRe5CRRiBBWGqqCABVY7zZ5kVtPOHFMmqZ2rJW1EyiKHKVCbhc7zp+eMZ3PQWs2WY5aLkjGI0QQoKWxqkK6JokTdrttR2dCUGobF04FAWEYUeqKstIUeYXWUDRBY8IoIopDTFUABmGwgZ0avf9KCAhCjk6POTo94S69hkzwq8+/Iq8rVGX7tvboRzYRG6WSrWcXrWuMhrLKKcscg/Ms44R7/TnfMrLSBrhSQczp6QXHJycoJfnb3/yC5XL54CLk09HQXuaQjYn/fEvv9mGiJGY8PuL49BylInbbNbvNknwneProMX/6k58ghGC323F9fc1ydUdZGmaTKefnT/gHf/8fM50eIVBEsWA2m5LnOT//+c/5i79ctdFu3759y83NFbUBESYk4xF1ahDaMuHJKGGz2/Hpp58xmbyzHpDW93z++WcslovGM1PQGEFZHcr5bMZPfvJjJvMZ46MZBlgtltzfW/uH6WzKs+fPefHBEz7++AWPHz+iLGGxWLPZrLi9vWO9XnN8csTJyRwbcVs1x7n2VOf50+ecnJzwwQcfcHZ2DlqRpim/+93vePPmDaC5ubnh7du3pOmuoQcnbf0eJuEkoYeBZfuY9+mvv102D9PuMLVCEvbX4AfzcXmJDsiLRjxqhbhNfoeA/AEmwS3/PQGkX5YH5oXoLAUOSeeHTEuvDR4P0ErFH0jfpQ995qKHGw68YxyTo/dL77CzaJm2YTkt4HMGiNJJ6jvmCTG4fk9LH2pntyfv08bw3R5uaOvZfLqx8Os+2KuH5T7EVL3vz5WFpNkvZYPNBFILq1Ziq+SB8v6abD/78LgTCnouV1sBruhOStq6gDKOuXUCX38o99V9uvy6aylluw50wzhgutpa9nqq32fYMwJrO2Ea2xkrvFPGaYkYRG0r6uNcy4iJFswjRKua5kTQ7X7mFe+Gr2db8i3StwbzQ5C+d5QzAPAuDb3YOPDoJPMOGEtpfWrao3M6kH9gUfFBt7/5u+d8MDskbve7k6oP6+GD+0Pt8CX8PrCHvnR9CEJ89Z3OsLEjcK0bt3pC9OrhJ/ebz8T4EhSfsfL7yt1TSmE07x3HoUrEsO/8a52XZFnN3brm929vOfvBKY9ePOM3f/NLRq9mzB+fs10tWW93aBEQSlqdeKefXJUVxth7rl/KsiSKrNFrVVWtNMFOkMDqgMuQMB6jgojKWF10pDU+0bUmTVO0sa6jttt129d5bsF82LikDOMRMgwtwI4kShvSjQU2YRgSmRqZpVa6bQxBELFZZ0yPBMl4ShBWKN34bi9K4jhBNxIYIa33ku1uB8awXq1It2vCsNOJFrWiqAV5tma7yahLuwtJZRejutbEYYDRkOc569WK1d0CnRuW6xWPH51RKU0Uxdzebvir3/+BUtugSXmekWUZZVlS1VVjE1AQx0lrUG7HoKZu2jfc4B19VE1IdQfkpYy4ub5nvfol4/GIILThsR09WqnDAZrx5odLQzr0N7nhs1prhFQksxlHRycYo7i9W6DznLpIUaYmUjZC38uXL3n+/DlFUXD57pq//c2vePPmK5JkxJPHT/jwww9RKuT+bklV5a0dxWQyaRi6HWXZxCjQFUKFTKYxx6dnrG/vyHcpcRwTRxFlUbQxCQCKMqMoCiaTCaenp+iqZHF3S13bqLnz4xMuzp8QjhIKU5NlGbtdxv3ihulswnQ044MPXvLkyWNmswlFUfD2+jVv315RV4Lj41Pm8zln5ydcXJyyXq9ZLBYI4Ic/+CH/8B/8A8rSsNul1FXFbpsxSsYIIbi+vuaXv/wFZVm04zoUfnyvk+h/8UF7e3dAVwfB6+D5w/edu74+6BUOfEkPrDS62KLZ1IWQPRWfFve1+Q3AuwN5LVA1nUSvJ5UfdsUAqPd/7D3dBz0DIOsOdwe599rt13PvkaHag2kAGJ4ihvefMXv52HEQGKH7fTOkWUHDItlKORmsFdC4yLROxab7w4G/Ydf8EemPnkuWYHHjL4RVxToIwpvkl2NM915TkR5j4IPnjjab0yLTqTLa+B0gZWdf5vTHnVTZqs00gZCM9dHuAHdbJ2Mad6qgdY3Wdlyd0rCQonEp3GhIVMrb811dDwH6prMag2bfYBssGNZSIo1pbQNamtbGOuRwNGYa2pQNzWANuVsmxWica0zhmM5WAt+coAjr3MOq2bjIx55TlY6r2DtFbNvTVXFvjL8pfaegUf61vwEcUmFxlfEr5W8WTlrcglKhCIOIQFnpX60bN3JePkMJvA+S/fL9awfYD73rMwy+DprPePjlD/vCL6913ej1hZ+XzwC473t6/abTh3Pv+s/7jJDPSDzEsLg+bk8NDAfz8tvw0AK0t1jgIv0pUiL+6m8/5ceP/4x5MuHxkyd88dnn/OlkxP3NFZOjOUVtiAKrp1iUJUmSEEcxZVWSZYZaj6xvWWMIw6jtf6E1Wog2UImSIUIE1sWktEadQWD1v3VpddR3aYpUiiRJWC2u2Ww2SCnIUhv5Uwhr1BiGIUhFjWqk1jWCmunUSmjLsiQRMSpQCNFEe1MhVVZwf3nLo6dPiMcjdFURItFFiS4rKmEwZU6orMGpUgFVXZIkIzarJWEoWjBdVBXGyMZjT0FZNtbw0urIdxIauF/c87F8xt3VFY/Pn5OXJeOjGWmZkxcln3/9ls8vrzGiO5GxQSq6qLZaG6qqbJlYO9dq79Sm2RcHUsA+M28NjuN4TBhEgGC1WrHdrkjTDF+y788zrf1gN/057KQtPpB3upM+XUspUWFIPJownR1TFDWLuxXVZoGhJpAQh4oiL3jz5k3zjmI6PeLDDz7m+vqK5WLN559/wenpBUqF/O7vPiXL1pxfnLFer3n37h3b7aZ3nF3Xdo1K0xQWC6oiR+uadLdjPJqimqBiNkaB7aejoyNmsxknJyfsNmvQVvDw7NkzPnjxIXE8QqiAu8sbXr95zWSc8PLlMy4enVIXms2yYLXa8PbNFZ999ik3tzfE0ZjT0/OGGS64urpksbglDO1Jj5SSLMs4Oz9H14ZXX3/Op59+SpqmTCfWneaXX35pmV0vqNfQnuH7m/pITCA6bxcHQNDw3ndqu3CStk5NweXhgIWUTi+5Hz+FxuBP4Oabq60DY+67Q+tde1qo3MwlQQfmh/X3l/L9tu9jYP9Z6GZfKz/0ymj9jrvM8PCKV989ZGxcjs3D1q2bB+g7Ka+BVq9bIEC6J0Tju73J0jWm1z7Zut9s+STZeBVp4lFI5QxeOwl9K0WFfytzQgjhBTDy+7T/jH8tGgPUHnaSEmn6Wgp+HR8ovGMkPRp0wr3htY8FOucFulV91A0wd0HH3H23RrbX7tTX0L5jtBW6WRVKB/A9XfHmtCSQHb6RSjbSe4ESrj2Ortxc6MB8K0hVqvuu1D6YN53LZDenhBAI06iB0jhwcDhSWzDvprlQAiEUghBtbGT3StlPIR1z1J9zHbNKq35j90h3IuoM3vdp4tuk76QzD33J+tAQ1a+AD/Z9rxHucwj8XT/HUQgipCwlVRW0RzTQlxY74zS/7OGxvSOI4T1X/lC3fzgphhvcoY1gKNF6SJrtpOlDFR9XDtCC2WFd/Px85mM4of12Dk8DbN3sAjxUczrU7kNl+15J6rrGoNGypigM12+W/ObLK/7JJy+4ePmMq7tbfveb3/Lkhx9w/uIFi/s18tUVJ5MZ96sVdVGijSarMnbFGKMDTA1FWRHHY4yxkmmplDV4CiNMGKGFIY5jRDJDRyOECgmCAF2W6EpY94SxAFGz3a1ZbVdWVSVQhIGAOCGORtZS3wiENogwJByPqYstqgooK4lQoMvKAlcREQiN0II4DhFlSXZ9x52BRy+ek0Qj6rKi1laiHkcRJoiaBSxHaANExOOQ+TnUVUlda7arHRpDUZdoNCoMqXRNICQKgTDW771VK9oynY55+fIZt9dveXz6mIAAnYEJC1ZrwX/6N79nW+YERiBNidYZBkNdl9RVgYgSoiCykeuqsl14rbtRR7cKac8McV5gqspYvU0DCEFVlazW9xRFyngyYTp7zGz2lKsrRVlCVRpqneEMtp0hMaKRigUSqD3vQZbpqWsb4loIgTUrMASBNZo2WhBFI+ZHJ4wnM0oNoyghCeFGGjJlmX+lJLWCXbrh17/+Bb/+9S9RSlnGDcF2u6YsSy4v3/Kf/cv/B3Vdk2cFVVXw5dchWtftiUVfEGDAlJTphnKXIrHHp2GkODmdMT9/RF7V5HmOEII8TamLkvFoRhgkzGaCDz74gCRJ+Pjjj0mSEVmakmdbAmE4nox59vwZH3/0EZPJmDTN+bp8zevXr/nyy6948+Y1oDk9PWW1NlRVTVHkgGE8HjOfz0hGJat1xuXVWy4vrzk9ecLNzS03N7es1yu2myVgVdTs2O97FfqjpYn/DqTOR4i31je/HVq7h+mPAvTsMwIODDrpZnfd/x3Rqch0qL4bC0+M7eXf/LUYX7QCfL/ah8bxcB88PNZDQH+g6f2+ctcH6gLenuba1atfvxQHbXrMgPAfFR1C3yvf+/Q4iw5cydbFppDC0433xgbvAGRYzEP9cSD1BHsPtvaBd3tj79f/AL0dLrz9E4Prh/4sv+QLbq1qpitDGmNVbkRfOOnwhS9ENd1RTdvg3u8NtnN0KIxomTLh9g3t9PtF66ayr7Eh2/rpQVt6380AzLvTg6b/JI2GCPRcoA5VPIU3LkI0dTHWVkAZ06mBSXfK5c8j075t60Wz91mvT4do4rusRd9JzcZ9HgKBvpTXVeIQmO5L+DpPK3aTKRACptMpp6enCCHYbrcsl0vKsujl7RvQujTUrXfPDuvqG9D694bJf/chEN2pCR3W9/XzHhrX9gyLvH/9sodMxEMLtC/hfOg0YAj43TND1YfhGPkMic9Jm0IT1BpTlmxq+Jd//Rv+wYcvqMuUn/7Dv8cvfv1rZBgRTaaEWY2QAeNkzN39Ai2cu03Z+Du3OvQqVOha22BOQiBVQF1WGCWJxyPbZ0pav/UyoNLGEnEj0TcIgiCkLCuy3Q4lJMlkRhRHbNZryrwEOsMeUWlkIMCEGBMhAomIFKGQlEWB0CVxGJPLijIrIBkRqIBdUXN1eYVKRpwdWzeNURy34x2FEWVZEoQxuqqJlKCqM8JkRLWtyYqMu8WS0WTErtFXzvKsGbtm7ghrFKWkIq12PH/xjDAMGI0TNts1oQrYbVPmxzPe3S35xadfECmJ0FhremrKImO9XpHEY5QMkSIESetVpaMnV64kDJwBlF1sVUArOXCSuaoqyegMy8bjCePxhNVqjUABsl2QwzBuo4oqpTg9Pebi0RlZmvH6zWuWyxWYysYEaKoSRSHT2ZgwlI3v3oAnj5/z0Uc/JI5HvH53yf39gjzLOpejCMraQFogddkatA9PDq0EvWijCrs+qPMuWrQvqWpmiv3P2KNnIzRShnY8RjHz4yOWqzV5tuPs7JzJ6DmLu0Uzn2xfVlXF1dUVURTx4sULVKCIBFycnfH86VNmsxl5lrO4X1AUJff393z++edcXl42TILm5uYape6Yz+dcXFxwdHREFEWcnZ0ynU0xWnN5dclquSFL3zCZTPjkk094/foVX+dbttttM+9tm4YAfgj4vq/JXzdlY+j6PhDjA6P3td8CQNlsxJ7aDOzl4cBi69pQiFaS38uT/Y38oTFpJfPe7w4zde7p3drdz8///NapebzVIvIZDNup7emh+xD9A+e95M85JwG29zTaGUp6O6JpJe6e5NIBb2vS5Hn9EG0VW08wrt0ODEtvPN5TR0EH7Dq3oP0T839b6ZBQrWWKhGuwBKFbt5mwH7yyoxOPB3oPbR9qR+vFBQGBaKXTbpy0f+2NX1XVjS2WaddeYwxBoFrBrJLSevsymrrq7CJtJ9BI9fvetOwcBtWMsX+6YO2EOkn+EA8BiBbbiWYLE62EHJxrS8+Lk+tb08e9jgSscMphzc4Tj5QdE+7Aejs5mzz6QaCavB3OamjX51XfR6PD9J3UbITYdyfnUsu5PaAL5Dp56HPaf8762a7I89yGqo+i3uD4G48DoT6I9QH5oYXQ57J8IvSDV/ntcZs6OB/kXV2G7fP7oOeVxlvYhwzR3vN06ggHDV8Hajl+mw9N0qFOfaBke2T2PunbkHHwAb9ff2NAVwbqkhLJv/70DZ9dLvnkxTEylPzwZz9D1zXrbUZZC+rmWDYIA8q6om7sB+q60RkOJXEStWohWmtEEzrc6fG5hcQCshIVxs0pgSV+paxz2NXdhu3tAmUUSkYIAsrCoFTYo2WjIAhiTDgmjCdQFxizI9ulBCpGmhypDYGxz6fbFFMbqtKwTTNWyzXT0QTVuHl0G89ut+v0DBvHRGWlKU2NikOCOkZLEIF9r8wz6hZcWrsBoQyhkq2bUyklVVkSKIXRhvnxMYESLNYF/9lf/Jyb1ZI4kASBRFNidEVdZPZoU9s+VjJCE7WLqBCdylEcx1bH+/ycOB5xe3fL/f09uiopi4LdbudJ822KopDZ0ayJgnrMdDrl9vaK27trqqpiPB5xcnJGEIQsl0vrSSUc8eTxC05PT3n58ppXr15xeXnJarUizzO0hpOTM/7sz/6U8/MTyiony1KOZqeMRhOyvGQ2m9lAR9fXFEXZBmcqypK8qggdkDtweuUDiSGd+0kp5c17G8NACKvOIhrvW7vdjs8++4zL6xvW251Vs6lLxi8/Zj6fk2UZ4/GYUXLG/TjmzZs3ZFnGarUiSaztggsQtt1u+eqrr/jss8+4u7OAfrvdNqcEmrouKYqCOLZBzJ4+fcrFxUVrqJvEVte/KDRVeY0QkiRJelGwHR0dOkX05/b3PfnCJDWIHeF+95976LeD+TYqMtID8w8xBELKRg/XAcpWXNd8Nhmbw+vuXn4NkzysnzB+1n5d+vZff8zYGkwL5n01APe9X16HPf22DPdM/68HEt19WqjT6lb3UgtyG4xrnDpNB55aCTx044QVdAzHzAdNHfNAd3oghJUYf9v+a57/rmkf0Df0pkUvaJQcaDsMBXLt9YC+30fvLkkhkQKMBKn6hqbusx07b/zsiWYTZKlZk+xeXbXxO/LGxbLWNYWwgZh8GjDGeszD2+dtnSxwdnu8W9PCMEI1GMH37nfI7tGYZkiMZU7bnhainVN+fzg5fHuvYRADBUJ1mKwjlb5b12HSOPsC13eN2qkQLdOIK9Gj72+bvpOajS/hcoBzCDD9dIhYfEB+6F2tdRO4ZNf+7gMI965jKnz9df93v57+70NJlL/RDSeSD/CH+Q4X3CGhD3XnXX6H6jEE60Z3YN/3NnOofFfHQ8yOi+bXLZo1PUMtb5wO9d9wrP16aq0pjWZrKoypMJVhmRr+L3/xb/iPX/4L6jxnlByxzXNKDbu8YLne0AblMNYwJYgDZF22ksvIhO0kFkBV16jQkamtU1VVpKs1yewYgfU9L4Sg0hqEZLNYkq42ZMsNSgpErDBakhcVSlnGrCxLwiCklpIiCEjmp/b4sNihi4LaCIQWRCokNwJT1dRlza42SBFQ1YYir8kya/i43W6p67rRx7QMlPXXC1oKQKKFPfrTxiDCgOl8jlKSkBqtd4BjIAOkkChnW9f0uYDW21GWZdZryv0NX7y541/99S8QUchISZSAmpoKmI0THj96xNHxMRjLSMuqav3ehmHIdDrl4uKCFy9eMJ/PEWHELsvJ65r71ZoiS6nKTi1nuEE7Bnw+n3N0dESef8jrN1+TpraOUijyvEDJkPv7e25v7/nN3/6WFy9fMB5P+OEPP+HFiw9YLpdcX19zdXXN/OiEo9kxZ2cXKAVFmVNVts836w1lWbXrQBAEbYTbsCjYbjbgucccriPOk0/PDkjZYGOmAVVJMmI6nWCMIU1TyqImDGOOjk4Ig4S8WLNc3pNlGWmacn+/aPP8qq6pK4Mxks12w3g05uOPnvP8+XMuLi4oSyt1//TTTwFaZsoGb3rH3d0dxli3a24tqWvr598yRyfM53OquiYvclbLFV988QeUipjNZgRBYG1SYkWWZVxfX3P57h1ZlkHDhPtrs+tH6UuRv+epBSwcBjDuGe9L772Dz7jnDgClB/MU/fdAeG4wO0Th1umDZXqAos3ugHS/K2oA1MT+8986ia40V2/j/dbL1WdQBC34Ne647UDy98f3CZj8MqEByqKTZPr1EF49HhqbQ2Pv3WjL9HitpklNmxj0xTAft0bu5fvdAb7L29EyxrTM4SGaaZnG9wD2Q2nY/66Mto8PYBDRGz9Qqi/k9O2e6rru2S9aPNSPbq8bWhkyfK4Sw7lscaDcu7/XZtOc8uj2awuF7HgeoAEH8lu0DkL28ZufhurJPdyLQRq8aLmNWhH++Pn9Lw5evi99J9eULcgSfUntEJT616100lNPGQIC23AAZwhAM1BWWm+f6bfqoUX00IIwBNX+9bA9PhgfAvwh8zFsr0/Aw7z8Mnyg3psgtcd4GIM7r/w2hqnDMbA/OvUIt6DuG+YO+9Mfn0OMSo/j1RpTlWRlRllZg8D//Oe/4T/8h3+fP//hYwJRsrm54tnFOe9ev+ZiHvP6eoWWgjKv7HGhFlQmYFcZTpoFyJ3eZHlOcDLCSkUD8qxEqTGyhuksAVOja+urvcwykjCiWq+p1hvSdcpmm6OEdfOI1JRAvkuZRDFlrdBKYMYhdVEi1kuqWiO1RlUGak1tanZlwTIvWaQlu22BVAFRElLXJdt0wxPxmGyXMplMyLOcIKiI4rCx57D66tKUgEFo3UxgSakr1GhMmefokiboEggtrc97aY/ttKkpjeH4dM5oHFLrDGSAjgRGCYrU8J/+m1+yyTMCmgUVq76kpcQE0upUH83JK01Waoyg9RYwmUw4OjpiNLLBujabDTe3d7x995a7OwtW66pCNwDY0Yqb03me8+b1a25vFlYCPRohQ0VWlFbtqTZkZUZVa6azCeNJzHq9pCxzrm/eYbRGqpCziyeMZzNmZck2y0mmYwgFtahQYUgYjImFJCxKjBQsv3rD3d1dK6meje3pyGazoS5qNKVlmoQgGY0oNVTZDilrpGkChwV2YwyCkGQ8JUmSNnDXT3/6U37205+y2W756suvuLu+4+T0jI9++EMqY3j39Zf83W/+lu12w2w25fj4GCEE6/W6jdRbNUfNWpeUxSPieMx4PGW73bHd5oTBiPvFLcvlgrK0Jx9lWSKEYHo0I5CSyFj1pLqqkAaePXvGixcvKMqS+9WSrMxZrVYsNxtErdhu7EnAZFKw2tyyXC7ZbDYYak7PT9E11DWWoTE5cZyAESyXK8oqa9bZPxJw/P85uWXJzR1Hp06o4W/Mbj8RLeDbv+6B6Pa+aIxX8RifFp13oKc50m91haHx9Y1DRr0yG2xqDSUfWJubGrf1an/324MH5rzUP9zfB20PIgbjyX/MvmS+q4CfmQ9iGsk+Tl2D/h9eNx2o90OMDUIhZSsy7vazvXHrq1ghnEqFve4CNXllC5y2fqMD7as/dL3Vvnu42/zhd2/sPeSfQvSgnIetpJRWv1wKq/stZetDX4ANajRQt9mrj7eHD7EY8I2CWTv2Lo+ujj5tSmENT42x2g7WANZQlQFVs38oISkDK5kPA9WeRtt10goc67JqsWZZVa3xqfMvX1c1urYOG3StqcoaIax+v2i80bj530+iIebmlMM/VWv6s6MBN2PbDrT0YnRzqm08+hI9ukCIvWBPjoIceQpNG1+h1S0ddvh3ZMD/aNeUw4F3+vJDry6+keqQYzt07ZIDuy4oxXBghuD5fVz98Hn/HuyHl+/KfpijfYh5OCSxd0f1vueYh6TtxhgbOAF7LDM8/hmCd7/8PQYC6yrJGRC79BBTNfx92Fb3W3vaoTVC19RGU+mKWlfcplv+d//Jf8bL//X/nNOwpMhSNosVTx9dEGU7vrpcoI0hCBtf74GirCWVARmotr9sFM2a2tjgEo1JDC7YR55lxOPGYt0YAgTZZkuR7qiKjCzfkeYpkZQsF2vi8Yg0K6jSglClzGYBYVUi0pTACBZ5ASqyIcN1RVWVVHnOapdzu9xxfXvP1eUdk+mY2WyCkJr1ZsV4lKBNTZanRGGEECFVBVYtokbrirLckaYW8FsJqKJofMDnZWldRwI0kvwOB9jdrqgqPvrhDzm9OEZXNUpa1ZhtVvDqZsHvXr1BC0lVWXuAMAiwpjySNM1ZLBZMj06ojKTWhqA5otXauvAEuL295Xe/+x3GGIqi6B2T9iQxopPoOxWusiqpqhXL5b3VeZVQG81sPOb06JjpdMZkMmYyTTg6mjEax4ShalWsrm/uKCrD3d0d1zeXVHVBFCuOjmaWEQPyrLRgt6rYbnZobTg9PSWOY7IsJQ4Ui/sFu+0aASTJnPF4bI9kg4BClxTFiO1yYb0eYd2hOWb++PiEj3/wA+7u7ri5ucEYSEZjTs/OicKY69kVBqh0yWq7YbFcEAQBZ2fnfPLJJ/zkJz8B4PPPP+dvf/Mbbq6vCaKQ4+Njjo5m7LKUz//wB0ajEVmeUWYVVaVZNL7lte6ECsYYdmlKEFnVp6OjI+azI5IwYjwed15zBAgpmR0dMZ3MKNKKzWbDarXg7v6K27t31HVNHMfM53OeP3/K82cfIERInudsd0uKwsYX+OKLz7m8eosQkCTJwTXv3/XkNlDRRGDswLxTsRDt/nhIENRKPgW9jV0Il0dzVNZ6V+me8WrRA3BWnxYrWMG5mXbH+n0mwWANDI3pywkflCi3pXQgfwjmTYOYfQC/L4EVtAr3h1LDaLS1co+2VfHK88Gv6AuPnNmNfgDQe43ESaC9SrcthWaMPbn5oe1/2G998NmBexzz5RizZnD3svTa5Zr/UK8dAuiur9o+2WOrOoahBchurwaMltYlJ7TgU4rmpPdQXb182vxNp9o0/P2Qaq/3oldbbxzEvv3iUKpeBqVVFdSGQEqqMmzsygJPFaf7rFSB88QmhLDec6qKuvJtKxrsJ2qEKNu+audy62LSZ4ysrrtzSeo85ElptQTw6KEZqW6e+/2gaSKiC6QIMLLPMLo15FBqed62GIMQjX2GRwzut+8C6L9zBFigR2ju/iGwDp0aixscPx/LvXXSfl+C/ZD+u39vCDIfkjq7d4eRTl39HPh1QNX3cjPUpR/qjvv1OfTdz/eQtNt/3ueO3bO6AYVDj0DDtrlPnzmodWUDcLm8vPx9hsXPY9gG/3noosX6R2VKSpwf1grNv/r95/wf/8u/5H/5P/pnHJ+fcfP2LR999CHhKGY0HhOs1q4Au0GaqtnehKcKUbcGM2EYttx+VVWEKgbXX6Wd5LqoKLKMPNuxWNyDqNG6ICskUoRUJmO3zUl3JVmxZlfXZKZkriumWiOCGCNSG2+uLNhud6w2G5brlNdv7/jLf/1XaK35R//gzzFGW+NapTiaz5DSBnQypqLWIdrEnf48ls5Ho9GekbWjSS0FldFUGLSnHqK1JhASKsGjZy+4OD/i9e/+julkjCRhva34//z291wvV+SVNSIudIU2kkDaqLLUgvu7e4SKOD5/TJRMrHlqQyNpmrLdbnuMug/c/bnXGR1JZrMZR0dHVsKtQs7OzpnP57ZhgSArUnRRcTY/RqmYsjKMxhFhGBBHEZPpmDAMEUIwO5qz3GyYzkacns25u7slTVNW6yVKKW7v7vnyD19xe3uD1prJZMr52eMmVoBVJVlsV2w2m8YVp2I8mvLs2XPyPLcGxnVhjZYMvba5IE55UbBarRiNRszncy4vL/nX//pf88Mf/hClFE+fPmaXplzf3XC3vGe1WiKEoCgKrq6umM/nfPzxx/zoRz9ivV4jlGQ0HjOfzy2ALwqu7r5s3xmFI7LGrsLStSGKIqtClqZsNxuCxt2lU186ObIMym6342w04uhkblWtVis++/Qz7q7vWC4W3N3fk+cZQQDn5+e8ePGCR48eISWcnJwQhiOyNCeOI5arO+bzKVWdYbAuY3/0ox/urTHfhzQUyNi/7rv/zIPX4iEBTove+zsyB55vPWd477bPtdyE914HXg1eOw607WB5Lo9B3j1p9Xuxel9odPCZB3BFry7+/tzLv/t+CCB3GNFjBIZ7pQ+07cPtsw82UIAP6Pb6W3RldmO7P769a+9zr8Thns5hLDJ89BvkkF25Hm366/Uh0P7HpGGfH8zTmK6voEc3QxzSCScVRhm00O213d8s/PQxhgBMECCc8axSVv3VGDCd0S0DfLgnrNUdA9vVi2ZuNBFjtUYKicbTfGiZAEtTPmW56/fhvuYuHJws3s8H0uEh/Oa56dJ3dk3pb+7OcAv6rhf9Bjo/1z6R+ODSP/IZgp1DknSfq/S5yyEQdt8d+Bi6hvQJwLcMd+UcArdDy3G/Xn6d/TyHXLBftt9+x+H6nm+QA9/EXj18xseVM5yIqnEr9dAY+gvBsG7QN3r22+mPIVi/vVJKQiGJtWBtFP+Hf/mv+PM/+5Afv3zE6u6S8vETTOsikBasS2GotZXGW6Oezr9tGEWowBrMWElwd7oB9mQgz61Bal2UZNst6+09eZEyn89RSnB1eYc5lhglWS42/OHrtxwdz3ik5+zqFIwFzCosKTVQlWS7HattxjYv+frVDf/vv/grRknEP/9n/y0CIcg2G25ub/ln//yfNhNQEwRQ1wVhGFAU1vOSNdQRlGXZowkn9a6qyuo9lwW1aCzdpWxtJozWVMYQq5jHz18SUBCrmO16TbATvL3L+S9/+Ws2eWmNazSAoTIFkZTERhGGVmp1dHTEn/3sZ8yOz7i7uuLq3Ttbz3ZeaYzpn/a4cffpxMUtiOOYFy9eMJ1OrT/+JGE6nTGbzYhGEUZqdusNuqhI04pilVqdbTTG1JRVYaOnJkkT1r5iOk14+uwRWn/I27dv+cMfXvHlH16xWloj0On0GCkEeW6B9263Y7FYWLWdbIMNWgXaVGy2t1xe1ZRlyWazJS0rMBW6LFvD6yAI2jl3f3dHWRR89PHH/OTHP+F+cc9yueTm+prnL15wPJsyno6RsWIynxALxR8++6JVY9lsNtzd3TEajdpgUUJKbm5uLDOqbHyF7XbLer0mJGAaj1qGpCjyxve7XSuSOGE8mzIejVsGQErJkydPGI1GqCBguV2zWq24u7vj1atX3F/fYoxhNhtzfn7C7GjCixcvuDi/YH58ZI3IUazX1iYJoziazXn+8oK/9/d/zGplmaeT09O9NeP7kPwAgJ1nC9lbz78NqD+0xvdUILy9+jBD0AFPByAezlt0UkQhrHu79hfvqQfAWtses1+PYd2GIOSb8n5v8oDyQ1jjUBnDOmljkMKdSHbqCcb7x65JXsENGJfiMMzp4YYeo+AqLtox6gUa8oC9kH0h1jczU++rQ8fO9DHNYSZEDMptQa60xq8+BntoXA9hEugbyvpYzVcNfrB9vaOG7nRBmI7ReEhYKaXAaIMSsnWLW5ZWFccJerXW9jS+6lRv3H0rmbf7qNs/7XXfocfwdKDXr0J3AR21aFR1RBNvoHMP7hi91r4P0bkvhR6u7DCkaBxVeYZuDb31aKddE9wpX1NHD8d9G97uUPpOajbWqE/tDbglChp3bvb3sszb93zC8a99whoCTJdv2wkekHff/U+/jkMXRT5oPiQhHxKCX66vNuTKcycJ/sQxxkYUswAaKl03Hga6wfSl2b6bxzYPDEI1ri5Vo9c3qNdw4vn944BJL1/E3pgNTz18TtpPQ51+n2FSygbdiKIIi0FVE0FPIk3Fzbrkf/t/+1f8x/+L/zF1VbFc3pHWGqEqapOjdYWSAYEI0MKC0bKSKBWQZ5r5fG7dW+U1YRiRhAlCS6oapNCEQLbdgLb1LLKMvMxJs4zp7Ig4HvHi5Yd8/eUbbu4vieMxuiwJgF/+za+Yn8z40U9+hDIRQsTEIxvgIs01i0XGcrni669e8dvf/objkxn/wX/w30HrmrvFHcE45L/9L/59Tk9mlLombOi+KnKqIkVj/ahDaE8NjHVIpRuvO3VtQWae5xRlQVaV1iBVSEytUSqw6lEoam2spxY0WlccHZ9z8+r33KYL/ou/+luWxY4gaOaTtLReCpBFRYAiCBXHp8e8+OAlH334Ac+ef8D2w4/4y7/8S969e2cNK42mrguMKTFCo7Xd6DrvSsYuxA0zFkUxZVlzf7/k5OSM09Nz8jwnTTOEUEyEII5jomBMVqZIZQgjSyNKSYIwZLfNuLm9IYljHj95glSSTbojK+8bmorQNbaOVY0SEoV1W1bkBdluQ5ZmrBp9c11rnI6jUhJtSi6v3tDKZ3RzLC0FtVQ29gwSra2+cl1VFFnOdr1mvVwSKoUuK5b3C07mxxyNRyRRxOPTM06rOeQln33+KXldEIqAXZrx+99/zvxoThRFSBFwe3fD3f0NxlSoKCZJRuRFQZruyCpNvls2a2Vh3YBqOwfDMOTi/BEvXn5AHEdkaUaWFnz65VfcL1acHZ+glOIPX37JV69fkVeWQYmikLP5CX/ywx/x+NEjq/pW19ZrjkqYjEfkeYHWFccnM4Ss0aZmMhnz+PEFjx8/I8vyRl3r+5f800u3Tvkh0Q+Bev/6fSDNtLtzs+b7MNKBStEBzVZyOQRlA0Dffe/y6NXiPeBqrw3foGpis/sW0tdvkXyVpSGafyjfQ2BRCon2hL3mgIOGDqz1+7Xdk73RMA7824pYwYh9oX1PeOPkg3YH4vgGOvm26SBTsZcOAHrRB44t4DZ9MO/qNNzPD/X/IZB7CH+9t42u3LZ8W3f/ZOcgdgN0Y/voq2OHYaeZ0YL5BtC7gFKtp5yqpGqEYmWjmqq1VQl1175Gh+8UxO9rZ7oshEDLTmWpBfOOroRASd3FUpKyZTQ7oXXnIx8jbS9I72BO0NJaf143wN8xZ8JghDUU1rA3vt82fScwPzSc6EvcQYgu0qTlvIoecB2qbPj5uoEeSpqHQN+9P5SAD9VThj7d/c7xAeyQkH23mf5JgyP8oZTa5e8Ymlp3vuYxXRRWvx6uH52xGzSGuNJJDBrGTrA3AXoGqF75Ptju6ut8dPeZmyEj4LfX1e/Qgu/3u1OBkVISRiFJkhDFMWkaIOocg+Avfvl3PDk74j/67/5TdssVhCFxHDJKYsqiwjXU6cDtspJgHLNarYiScTPZ7TO60qBrNBWRCsnS1NJWo1eXFxnb3ZbZ7IjReIzB6jz/o3/yj/nl3/yC++U9o9GUf/7P/z3+wT/6+/z8F3/DX/+bX/Dq9SN++rOfcnR0BMByueXudsEfPv2cxd0df//v/Sn/5J/+w1bV6eWHL4mSkEgahKntZMSegoSBYrtZE4+n5FlKutsyGo+aKUq7aLnosnmeN/YBJXWNzUMpG2YaqLVduKJQ8e7VK2bjAOqc2ii+urnj57/9O2rsODu9P92sLQGCSAWMp1POHz1mlIzZrLfc394Tj8Y8f/ESbaAoCrLtlnSHNTbyaMnSe4XzGe8WUmMgywpWqzWr1ZoPPvigtQe4vraqMGdnZzx69IgoSgjDiDB0Lsk0utZEUcIoGZPnBVVZMxuNWazX/P73v0cg2K12LJdL6toGR9qtN+1pDnQqekWRY0Nod0x8UZaWeWrsA1QTuVdK2dgD1NY7UW2DZUnZ+NYH1ssVl+odMghYbzZcXV9zeXXJ40cXzKaTRtK/4erull26w6DRaHa7lDg05HFBFMVAJ0goihRRFBRpRlVVFEWBMJpKdCditn+704+yLHn9+k1DG5qiKknzHFOUKCzjV5QFpa6RUchoOmniHAjyLGe5WLJYr9hut8znc46P5xhTt2MYxxFhJIjiiDCIqUobTCrLi299rPvvWhoCsFba2l7ToUZ703vZF6Y1990a2WHIQ6V2IHwPzIuuiD0gL3p57m3abdldXQ9VoX3PfAMz4uc3BG4P5P2dkzFtfdvyTB+uDgG9o/lefQbJZ456TJLoFCJcCxzmF/3qDPLfZ7jeC+S9/tnbe5tCD2P1zltJ97DXjO8sgt1nTA1mQFf0fj9U54dz77+/93uLG7zx6JOxl5rnWlrr119KgdayXX9dfWUDcPH2IGOMvWf66twOwNufTM/b2iHc2LF9fYajG39/jor9PnR1dM8181u07WvabRpA30450V9LvP5uRQPC7E35rh+/XfqjIsC2FaQDmw7ougiIQ1/ywzyGnS2EVUcYAk9X1iHw6b87VIE5xH3694f5DiXXPsc7BLZDjq+V/pu+JNsxMj6gd3Vxv/faJsQeY3Po+Mgvw127MvoqPfv1dM8fOqVwacjA+Mn/roKAMAwYj8ZMJhOSJGEbKKrKvl9WFf/lX/+a/9X/7D8k2Skqo3n54iWg+OUvfu31Be1mtMtSKl2zy1JGcoQsrSU/QBCGBGFMURStx5vWR/1uhzGG2dEM2Rg2lmXJ0ckx//w/+O9wfb1gs94RBIpHR+f89/8H/4L71ZKf//I3/L/+8q+5uLhACsnd7TWBgI8+fsGP/4f/gqdPHgE1aZoynU7tcZo2CAzp1oJ1ISWmAcJJklBWlf0sS9I0JU6itj/L0ko9nR/91XrV+OrtzjCdHnVZluRFTq0l/+f/67/kn/7jn/FomnCTav7y91/wdr2xkWOlQgjdnpxNAkWiJPH4mPnxBefnT/jgg4958vg5Zal59+6SLMuYz60OdpWXvHn9mpubd5g6bwJBdbQnmnF3Bkl13Xl+vrm5Ybvdcnx8zGw2o6oq7u7uuLq6oigKnjx5QpJEKKVYLBbc39+TphnT6RFGW0PPNM24eHTGtsh49+4dy+UKUQu2m00DdEE37kRt/9SUZdYyr1JJwiBsVVyqukYbmB8dtXQeBKpVCSqKAk1JHMctU+CObrfbrT1hjCNKXZHVJbtNTl2XxGFIlmV2fMcjnj592rQnxWhNlmVIKTk6OuLp06eEiaKqc+7vC+qypixy256GQ63RntqYPc2wLiVjjBBs89SehMQJogrQGLZZTlmU1vhPWE894/kMFVp3pkFgfTC/evWam7tbgkb6BTaarps7SinyomSsbYTfzcb2Z5YWLFdLvo+ppxrhJINCOKtT2p2XTljirrtMPGA0AHzus/fXHMML6STF7rdDnkEOIJ8eUGVQtpcGEkb7rwfC/ecP7ZU+g/Itwd13Sq5IY/pt9Pkhrw/b02Yh6cw3H3K12K2NHS7zgBaAaWCa8NRQpHG+Dr06CXBReZs51P3J9nqPEXRZ9IjmYaA1/MX0rt+nSuEgnsdcNABXGo0WsglghVXP0qJTyzT7Uvsh3do+7LCE2+P9E6zhaVbz8GEbAG9OCQzO92PvMdONn/DGQTYum6GzrcSYTkfeS53EvnOQYQXGVWuLOZTMD9W2WyakPWDwTiscCLd3QIhW08SSxiA2QdNnKmiESNglx46ePRHCGJCy8arW5N1jLve6sM/jPYB5H0rfyTWlL433AXlRFNiAKqIF8nVt9el96fnwWOcQwPYBpF9OB1D7eu0OxPqSefc5XDx8VZ9hHu6dh1RxDgH6h0Cw32e+nrT73Qfd/uKla2uY0fMYY4ZHRZ2++ZDp8ftweArig3+/nx5iTvx3D73v2htF1thzNBqRJFYHuCiKhkuGdJPx7vKOHz2eoU3BNB7z4sUL/uavf4WUlsht5FZLR8koACWphcE0m7A1slQEjb5967VCWAbQgflnz55ZA5umfkEQYJT1VDA9mpGMp5R5SpLEyFAxno04e/SYu8WaX//q12it+fN//5/x9MkjIhkQByECg2oMWOPE6qsrJBKYJKNGrYxWCKFUQFFb6/04jikr64XF9ZeUsqUFGwnP6tvZfm2ilTbgsixLqtpwtdvx5rM3vPjRn7JLV/zh62t+/umXpFIQVN0CqpQhDAKmUcj58TGj+WPGR6c2+JUIqErNbpvx5vUbbu5uMMZwcnzC8eyEx4+ekucZy+Ud2lQ9GhbeJmsBvSKK4jaQ1263I89z7u/vGhUhzf39Pff39w3In1KWBXd3t+x2O8Ig5uTkgjiOWa83rDdLql9mFLpim2fWxWezNFVVRRgExHFCFEUt02YokcoufULYOZFmGUpKptMpGkUUxwgE290Gg+3zJEnsGtUc70ZR1Aaqcfc3mw1KJ4wmY45PT9hut+x2O1JjjVQ//OAD/t4/+oeMJ2N+87e/4W9+8Tek6xxjREv7YRAwm87sXDfaen6qDdKX3HhzNwgD5vO59R9fVdRCIKKIx48f8+zZc9brFZ/+3e/RRUklJKEKQEAyGRPFMaWuQcBkMmU+nxOFIafnZ6w3a5bLJZPJhLOzR2RZhq41T58+JQgisixjvUopyxWrlf17/fo1/9P/6H/C9y55u6Ol22ataKSCrfTdB/S99+2Phv46d1igYQG7r5MvGxulIZjvrc57Utxvp9IxxI5OKrjPHTQN/AYg8D4B2X/ltJdtK39sYWzXvu6uldbue1nxATo0+1OvfzyBUCvlbJ6X/b7o8nagXXp5dNfOLfRBIN/dGIxnn+FqXTm2Y9QAYsGBPuqeaYG86YNwpI3uTeP9BGOQCKTq46fhXj387IFYM/Cc5P/5ZR/Aav44PARA+9jC9LuwnTeeXaAxrXMGHz8Z55XPdDZnWmuiqO455fAl9wfpu9GBcYyM+3RSfbsXaA/M9/Xje/0pBUo10aB9xhrTCiDRumUQjTumEv4a0gfzAMLQPfsdpuh3APOdyoYFmn0ddq3rRhLd14tvm3cA/PppKAUeqpT4BOok3kIcdovkd/4haYB/FNO1rw/Qh/ri76t7yxDIQR6NuoQlDtpQvhpLNG5B6N7pE6FSARjR+st2Y2v9rjbGQ9ID5I1PeSlshFDLsXdqUU6a3Z5aGOv607lck8LqRw/bPTQubn8zgjBMGI+nzI9OmM3uWSwW1gVk44s1TUv+i7/4BaN/7085OwsRQcLR0QlxPCXLcwqjCbCS6gorSRHaGrTKsaCoK+uOMQqZRSFa50igqgV5VlBkObvdjvFsioxDKqz/emMMIhAWXBpDGEqkMkiZEI8SkBKpNWW54eXjcz5+/t9DSEleWdWn2Eh0VhAmESIO7VgKgVAKoRRIgUYiJKhmfKsGUEVBwHa3IxklTJMpq3XNZrOxLv8EIDTaVBRlRqBABgF5nlFXBXXlTras60KD5GZ1z9Xihv/9/+k/YT4bc/nmku0uJTLWeKxujGgUYGpNVRbklWbS9Nf11Vt+A6AiylpTZDvKMqeuatLNmrv4mvF4RNWoxWE615V49CslGDS1LqhqA0SApCpteG7r5dKq0AgRsFlvWdwv0Y1vXicJN7ri+vqKKIooioLdbkOarxuJulU5kUo2RtAhSgWMkylSSeoKIKNGIZUF5xjIdjtqIzm7eMTjp8/ZZZZpMVVlGSxdkZU1YRQSj61KUG0Mi/WqPdGI48javAioioIqCFBxjNBOcp7w8uVL/uzP/oxHZ4+odc10NCVWMSRQV5rtbssXf/iMd1dvUUqwWi3QRWWNrWS3ljnw4I6VAxVRlhXr9RZjNDJUnExGJAjWiwWL5Yrdao2SiuRoxmQ8YT4/IhmN2Oy2bHc7wiii1oa313eEQcj82Np0XN5ccbe449mTJzw6e2w3Py3YbXfc3t2xXq94/foNZZlTFNZv/fcx7YHi94LkAQih21AfAkE9yVzzwv47vYx6+Trw8/BOcriu3cktLWDtKtDPzz/l7aWB8GZYVlvmMJ/DleyePQDy3pcGkMcrdf/9Q3VthWl7NR7m6eX7nr3b5T0cY7/M9+39g5x6NbH1b2B9C/6bT4vGW8D+sBZCR1dGiIZP82nQNICwjz0OtWN43eIhvsP4Deva1tKXbO+noZDzUB1bzDjQiHDtx/TViobOVvyyDt23tLfvgbGnnmyayKwMDekPqDLhToNErwQH7YZM/Hsn/iC173+Hd76DzrwFl7bRTpe2v4gJR6DtO4elve0RW8MY+EDeSdqNcVEJO67NvfuQAaefh1/GoXoces+v21DFxtdbP9Q+KaXVdTaddN+9Kz1JPKJhFKRTV6Dx5tHV10mcjaktsBENA9XWUzZSjKpPsK3rPej46z7h+vWjnRhti3p94STIru1+n7k+icKI0WjMaDTm6GjObDZnt0updUlZazIM/8+//Df8+Q+ecTo6RiZQlpqACKqUSlYEjTRXKAtsJuOJ9QHeeEvSGKq6ZrVZM5pNUCagturqbbCM6WxmJfmNxNsYgwqspMzUmrhx8zcaj9sobFWec3Jy0jCqlta0xLrD1FAWpV13lSQQ1gWiCq0XFCklKoS6svrvQhoqsN4omnrdXN9w8eiCKLL+wW2/2b+qKhECoii0PsMbNQil3ElO3Y5lWeyIIri6fsebd3Zs4igkEYK8KKhM3c15Y8iKitvVGj1aMdIBRWmoqpp4csTkaE4YKqrCqgrVVcmurthuVw0TUQO6XUR6m4twy5UmzzNKUaNUhBPQWP/nOWVVEYU2CFWtq248lGpOK4r2tMLOtYqyKhoG0ZZVVyVG2+iuURgwGlvQHicxUgnmp8eMJ2MWiwWbzbqdW0VlYxOkRYFu1pBQKiKliOKkHe+FUmy3G6qsBiEIo4jZ0VHjWcb62S+ynDzNAEiikXUPeXJKnpf89je/5fLyksVigdGG0Whk1aqyHVm2Y7vZoAKJ1pUT+HZroLQMdxhGzOfz1t9+mqbkufXE9PLDFzw6P0dpxe9fveLV27cEUnJ8cdGuE25dkQiSOEYoxS5NyXNt1bzqiqLccXQ859H5OXGccNuoQG02G5DCuu7c7ciyDCEMQWDH6PuYDoHuhzbig0K7gSR0uJEfYhaG0SebHx6s3x7AOASov0Fw9F5pnSW09zzwDeD0m0CdYx7atWC/OoeAW/PK3vMOtAizvze793tMTQMghXFqH/t57hV4oFnfhJG+O5A//P7BZFxUVGP9xr+HJnzQKoV91eIQEMJaY0mpcKenQ82FQzTnp1ZoOcAsPmDeA7E+oOeAVN70DTkf6ouhmrEVSOpWzaaP2/rl+7ju24yRfcZiqeHoOwxqjHWwYHFZw3jvrRsG0wTDsgLQTibf9p2TuBugp0TmMumEAbSYoP/MdxDIt+lbg/kwDFtpuNNHjqKwBXnOF/hwIvuA2bdwHhKeS76bRqcT7Z7xJ7kryw9KdYgDHYJvX4XFL38IzIf5DnWwDjIQ9PX3XV/5OvhD4njIY49SCkzn997plPUWOilbwupAeZ9z9t8ZgnF77emVDfrWV49y9/26am1QyoaOT5KE8XjMbDZjsbinrFIqXaERvF2t+Zvff8nL0yPyasPb+yuCUQLLWyopIQ5al5Wj0RjH7zv9XkcTVVlRVhUqqFEyQjduH4+Ojto6F3neYzyqssJNESltoAhd1R2TIqCorSoHUiKrxrctGjmOqbQmavogSRLqxojT5V9W1ouKBPJSI6SlVxUGrG7v0fM5yXTUGEIWzWmK8vSWcxt1tK5R0rp9rIoS6XzPVyVKGI7GI3Z5SapLKi1a/+gGyPO0v9qpEBWNqIWirK3aaOsKVEpCFZINQIp/7OjrzA9pyBKCXRSjcMR4fISUUFYZu90GGyyrpGiBEUhpqBtD0KoqAFr3ZI4GHa3VtWVgDXTBw7RhOj3i7OyMILQ6iB98/BHT6ZRf/epX3N3dESiFCELKquT29tZGuZWSUmuK2s7dzWJJJBTFNrMnIc16FoY2uJPTqd9sNnastCZqVF2SIGE8GhMGI7K0pCwrwtAGdZJSkqZp66JTCEEhmqi/zWJv1zNPfU/QMjf2HUMQCubzI16+fMmHH33EbDIlFDGT83Om8znLq2viOG6NqHc762KyKAqkUohAEccjZtOoyRPq2uqaLldLdA1ZllLoimQy5vj4mCxN+eqrr6jrirouESJpjcG/z+l9QN7+fgi3dmoAw/f3QU2nO9sr4xuAxTeBq/eCe0+QLRDfWNZ3Lbt56L2AvieD9DFJc/+QlHQPDMJBQP9NAEY0QL6VHgzLOpSDa7PXhYd67RCt/LFA/lAdnOpEh1+an1ydvL13vw4+bVlGwBlMCmF1t/WA6fHxlhv3Q2PjX/ug+pvavwfoPSDfCg4PvHPou18/F5DLeJjjEAN8CMwfYsB62FLIgSpch91aMN9gzq7+na2AE8bVlWlx08EyncxedH1i6bV9oLs/7CPv+rsC+m8N5n0JbV3XrVshHwgMAbT7PpRUHwaVHQDzpfVDdRk/3z2Q4f3u6uAbc7qy/ToMDW59AHMoued895QdcR0OLuXryPv1H6oIDa/ds75v9V4bML32GWM5Rb99fjsOS4WGgL97dmiHMGRI3DuBChiPrWR+uVwwmYwpyh26KlGVoFSCv/zd5/zg2SPm4xH/+S/+ltPjGUJBaHU32v4MAtXqzLny4yRmlIysX/JRghB9Y2LXj+1E1Hqvz1wkTNc/ZVk2OvWKILDGtWEYUuUF1JrSQDiNIc9bqX0QBJi6Rtc1RWFBaRRFVFqQlxmFhqosGI0SZG1IwojdasP4eNZK5rMsRQhaH+dhEEAco4Vml2dWD72JlleWJUWeEyh7TBspQSnASMvEWEm4DYONMdTUlAgwgggJMgAVNP1qp/p6vSZodPr8Y8p9JrxvwOf6OVABYZgQBDFxNEbKkLLMHIV1C54u7MIOdC687AJnabXupGzWQW/nrlXK1k2jNarPePPmFWm6tf0jJa9evWp184Mg4Hg2QaiQstmtoyiykVelJN+m6KJku1yTb3dt+0ajEVVVMx7bQFFxHLNYLFoBgoucen5+ziQ+YhSPiJOE5WJJmttAW3Eck+e5DRQlBKPRqNlgJfYIXCKM6gWsc2qKQtjTryiKePTojNl8zAcffMDZ2RlCSAIRYirBHMPz58+RpQ0oFUVRG4isKArevn1LludEYdiqLr169Yq8SKnrglrbU6AwTBhPrLH6ZDxuN0zr5adE65LpdMbZ2Rnfx+Svr+/b4GF/LTz07BDQd3l4zz0E/nqbe1Pmoee8e3sSPPfOnlT5vzrIFIM6+sDCgctvBP7NXHPCxRb+9N4T7ZrQnfAJzF7RpjmJbNwcDtG+/5z7MCBasLX/zOHquzFrPgdj6OrnlfSe/j5k9+dUYbysPCDf6xv3nMMedJiV6+AAAQAASURBVNd+VRwvMmxOC5dFx+hIKXGuIod1O4STWrrzcJF7fojjHsQSplebVjLNYE8Zfvp4r2NYG9wy3JuMsaZhQmBDsNprCa1ajBOc+KdGfl9Dh3c6xQVvbgsQxnqFM07lGYvJTTMOxjR9rLsBFr0y+u31k0NtzaC3Mnsfn/ZG2bzfVHqYvjWYd76HbcFdMBlXcVd5J8H3XUP6nm2G0j53zx/YobHBId0oP2/fANYvA/q+3f13hwB+Ty+cjpmyc18glGNKsCocvX7vd7pvbOs2cNVYy1v7AtWo2nSS9eHJg5A0uu+68ZowGFpjWuKyba1bvdzmAQv4lWj8tvqLjOgaaGiPn4zRe4xPj3P2xsFW1Urn43jMeDRlOp0wmYxZb6zuscHq93/29pL/zf/9XzKfzPj83Vt+9oPn/Ph0gjRQaYMwhkA2thJNYCJtNEIJgigAhdWBNxICiZCSbLMijAVG1lTaoGpBVVt/tZGUKCFAakytqXVFXUuCIEIa0FJCqIhHI4LQ+sovq7KNwpmME6hr8l3ddpM2NVWRY4qCQEq0rtE1aCoQ9mRGVzWmKK1/+NAG9jmuLghGMSLPiMOIxXppJQRGUlWGMEzY3d82/aoBBVJSC0mmDfeb3AYMwaqDmNKQVyVZVVE7WkWAkFS1RkpBYaDUMFURQRhiBASyWfxqQ11pgkBaY1epMI29h5ECo2uEMEg39iKi0coijhPm81NGyYQsy60B63pJpbMGtMv2UxvnklY1pzjupMkGqMIJzBztI1HSLuRaAVXDoOmaMi0pChu7QipF3VB3FEZMZzNefvwjgiji3eUVu13KfDrj6OyMIk+5fPeWu9uCNC0Ig4SnT5/w/PkHnJyckBeFlXLnW4wxxOMp4+kx27W1cXj86DEqUNQI0qpkty5Y7za8efMV282KLMtIsxShLbOzXq8BTRBHhHGEMZqqrmxgs8q6Jg2EQAURs+Njnj19wstnT/nwgxc8fmKNgsuy5NXrtywWa+pKs0531NowmR8RjTsjc2MMeVFYrwoIRlGMEoKr60u2TTTcTqcWDAvCMOT05IRidgSFIEnCxqtETVGUrNcbXr16w/cx+ZLIQ9fflB5iAixIkK00vAUMHhAcgv12HXeZG3MQkPUAVYvcHLDxnvu3AOC/EZwfqNuDeTXge0+kPgT2zY3WjSCWWRd7Y+JAGxgx9KQmDqBZ031v9jUnQT3Qy00/u7xEmy1CWCNZYddPB/R9s9BDoF74/wrTe6q75ypt9kB6l9EBquh99WhSOs9ujW53c23ABpj0gWrbN+8xBvXqYOh78RtityFDKw42pStfIlopO957vmqNj/va+klpbb88bOg+tdbNWAu0bGhFSqTphCMdyXYsdMfgye62P3elaLwq2TZoafvD6HqAhUxHZ1K0zGcL0t1ngxXde10bdIedm34yBmqjqRtc2apQG/f8f01g3hjTSEG7QfAHx326qIa+saUP1P1BdMas7pmu4/rpkJR56Fln+N3P08+nD0hF264eU9FEYG2l53RqCA7dCb+ubiH2yhwajWo0olFRMFo3A3aYubHvN5JyKXCT1m+PELLXdl3vMzza1L0J7jMZvoTQH8Oh15+uPvsEaqUTkihMSBKrOz+ZzhitxmRZRq0LhNbURvDl9R3qekkhDV9dXvPyKMEAShjkJCKQjaQyDG19tKE2tVV5CSQqtHr0URJRG812syQcxfZ3FVBrjQaqukbIClNCpALKugAMVV2iyoK6rBChQlclQicUuxQhJXEUEyiBiSLSqkTXmuloTFVZ1ZoqL9C6JowUVVWxSbeYVGOEtq4m6wqJINvuCJRiNB6TFjlSCGQYkIwS1tuUqqyZTBK0No09RGOP0niA0rpCC6iMJisr0rJGU7feYySaKJAIbSi0QdZ2YVKNHrVUAfFoRDIeM4pHhGEEWD3tUTyirmoKYSPWCglBFJOMxuR5Rp7nSG1114UUBEoRRjOCIKSscooiZb1es9vZiK55nlNWuR3nds7J9tOq67g5a/+UDDCmb9vimFKlJLUxBKFiPJlYP/hp2rokE0KgMdSNuCrTNUbAzd0dz1+84IMPXlIUBbPRlPPzE4SE6XSECiQ3N7dMJhPiUcxkMuXZsxeEYchqveLdzRtG4wmnJxe8fvWWX/31L1ivthzPS86mR2y3G9aNsexkOkEbzXK9alXBJtMZSRyxXN3bwEtCU5m6WbwFSTwiCGJMZk9f4vGEMB4RxjFFE6V2tpthjGCxWPDb3/6eV2/ekSQJs9mMuvFwZIyxaj/jEZeXl3z5xRdslivqytqURJFVsZlcnLFer1v1H6UU42TCeDJhPjslDEOyLCVJQubzOUIYVqstwHfaQP5dSocENv53lw6d5h5KfTApPLr2pXuHyhmCviHUowOU3r322SE4fqh+/mPfEajvve/f/xZ90zspHlz0AAzd3tnu86Zf9n7mHTAXDuweAo90fdUB+UH/4Xf1ASbLB38O0De/Dxmodgz9/mmkrA9J6C1j4Fz5vl86374/wPdO6k6LsUQjpmv6pWEGe4yr7ZBvLdc1g2cP0VNPyMphBrP/O43Rbh/Uu78h89CO9wGs18NGTnreIGuB6pc9eNeNEb2a9Spt37GbUKsZYN1P+M5SHHa0kaEcg+GzfY4JHIpe/dOpdmY0w2f3QbtPKuX1bMuEfLv0nYJGDUG7b5zqHxUM9cv7qiDd+/4xzlDdxdfX9t/xgaVfn55Eu7l+CNQP1X6GQZmgcWso+uDfb6sYkLIQAhVYu4GhCo47PXA+b9u+EZ0+pmN8fFWmQ6cRQ07W5d880esHrWt8Pb1hPw37dchY+L8dYrTctdbWL/p4NGE2PeZotmI5WbDZbCnLql3I7SSp0UJys9xyvysZTYK2zUVRkjRG1k4y73SSwzBsJqU15lRhQFlWJNNxt6g3+6vrT6Ws0app6FEphaamrDJiFVPmJVqGSGmNLFWlKYsCEdhIpUooTJmjtEbUmkgptMHqvSv7TF1ZA0RT1lYUDgRJjBD2k61ktV5zMZ8ShiFhZFUhOlqV1E3wqTCKEJn1puNCWhusXUheWneXSimiQJBIhZu+ZSUpdY1WEqQgDhPiJGlPrMLQqsSMkgnj0RFal7AzZFmFlIbZdMb8+JQ8z1kuV1RFia5rJtMpjy4uOJ6fUlclr998zdXVhvv7O9x2ZxeoQdRhj3H3Xb229GI0snFl6+afez6KIsqGkU6SZG8d0dqetLhjeuuLv+B3v/8t17dXzOdzqxupFcvlBT/+yZ/w53/+53zw8iO++OIL7u7uWCyW/Hb7dyyXK4IgYL1Zs06XnJ9fsFlnvH17yS5NkULw1Vdf8dVXX1JkO5QURFFkA+NBG1tBSsmjx085PTvl8vINX371BcXOqvbUTcjwMiuRKuj8KTd1f/36DV9/kfNvqoKj+Yzj42MAVusdWd4wkVVl506tSXc77q+uGU8npKX1qZ/nOXVVUZm6nSvOpqJlAIXi6OiU2WxGURTc3y3RpiAZhbx4/oJPPvkxxmiurq64vr7m+5yG4PqwQAf8jXK4Rn4bQPtt00Gg7QmB2pnkg1egp4vybfP9/1Xy+9h0gqb9OnUgrN1LsBB3kGEPYzlQRyM8G46HD+5avNZKTvfHdb/6f9wYv++dQ+PhAGfz9v4zbowPvOtowf/J3/d9IZ3wfu/eO4wdhoJDwX5/DPf73m8cBvJdJb2meXTetnNQ/l6fuHEf1H1Yr0M4b5j69x1qOwz6h3lLYQ2De8JfaE6v7XvSnWg3/kZ9Pqxj5C1u6Z2W4H+1rov9OfXHzOzvpDNvC94Hz8PPVhLdgDx33/mdf0jy7l8PB+shjyqdhPnw4AwJ2r927x4CslLKRk+q00t3utNtPqZPaE5y6O61oYDpJo3fl5p+3/l63of64NDE8tvimtoZ4Epc1MducdzndIeMml/GkMiHjJZjRuz4hkwnRxzPT1kuFqzXmyZUfcfcYAzaSLLKsNiVPG4Am43i2fWbldD3gy0ppRBKWkBSlZ0LKaUodE2trYqJG4eiKFBCUDXvRlGEChTzkxmBEZQYyl1GMpqCLqmsxjlSBVa9qdbku5RACIQ2VKak2qWEgW1vWBobSRSriiO1BiWosR55UJLRxOomB2GINII8suocm82mtQFI0x3JaERWdidZtbZHb1JI60e8MWA1xp4CjMIQpbF5Ssk6S9mUOVpJwiBBKclkMuH4+JjTkwuSZMLJyQUnx6cYKq6u33J1VWCwLjCztMQYQaAiRBwThiHn5+c8e/GCOFDcXl+y3TbMmalwPvGHYiSfAfTV63yarWsrTXcneO4UTwhrjBpEIWmRs1gsrAFsbaMNO1rUxtoQCESrI1pWOXd3NyyX90ghieWI6+t33N/f8rM/+ynTyQlnp48oC81queX+/h6AR48ecXR0REXBzc0Nr19fUZWai4sLjudzXr16xds3b8i3S0QToCuMQi6ePuHjjz9mNptxd3dHURvKuiIej1BhiBAZsnUhZ+uZjMdtexGi8UhV25OO7Yq7+1vL8IUh4+kRycga5O52O6q8YD6ZMY5H3N/fsVqt0YFl+pRSNkYFlkFwYNwZ8NpgZ5LF8prLq1eN15yMZBQxGsWEQcxkkpHlW9brVc/T0PcpDSXz70sPgZd/22D+WwFuc1iCKrx//11LVujsCX4O7ev+PqOboD8G8JjxXn5SdjFEnHCPZk05sC91f32pvNtXh8DV39v/mHH+rjTR1omHwJlbOzvYd/iZHs4DwAVc6iS4Ayxm9sG8/zcEqMJ7bugSfIj5EH1R5jcyMS7WgwOxDxi39pp4gJkYCmSHOMY953/2r6263PD3hxgD612vu9/WuT1tsV6FnFTdtF6KaJmRTve+r4dvTOOeHE/4LTytEtOoR36H+f+twXySjBu3PZ2HGYPo0Z/fKc5g1t0H9sDwIUmzS0OpsPt9qP94yE2lu94jQvYXAx/Quyh+Vl2lCbGum/sNl9abCK3kwHbDoVOK3gJgV8Decd2hNjLIq70nVHMsY1oDO/+ICkdkogM9AtlUselrCUI0uvRCtEd1nSFR12eHAL0fmXa4UAZBQJJMmU6PmM3mHG3W7LZbCllhTNnU1/plNxjudjnl6SlFaZBaMonGRI23EhEoTCARRhKIAIVCGUUQhMgwQGD9vqsohEhRF7WV2OYSWQnquiCIFVHj1UPnOSYIkWFkDVo0kOUgQoKJavTxrDtLZSCqIFtn5Df31IEFm0WRs16tUEpSaU1ZlRS6wgSW8RNKEo8SRpPY6umr0h6bGUGtFUZXKKCqCvKsbDYsG7hoVBoCFXOp763nGaMpdU2FZhSFVFVIXlSUlWGV1hSVwkHpXBeklfXZL4SiRBBFCT/98c/485/9Q6bTY+5uF2y3O8IoZH50wdHRMVEYsVrfI4IQGVhPQJXOMbUAJVjc3bBZLdB1wW67YrvdYN2lGoR0R5sSG6tA7NHrIQbdP1otS3sKEUUx4/EMrTV5lqGxTJIua0xd2wBJ0J5WIIQN+jUeo41hs16BLkBbhlYohZFWB/yzzz/n1atXxA1jWFU16W4HSExdcXY858kHL5ECtsGW848uKKuat1dvubp9x3J1S5FvQVgpuQoURAFZXjApNNIo5tNjNllGkZdUpSaJJ4iRRhcFdW3BQxTGzKYzgigiyzOKsuY4mRAGku1qiwoippOYs9MLRqMJxydnrLYbFosFWZZZL01oJmbMtkitOpSSoK1KksGefu121k+9S7sdrNcrgkBRVjl5nrUb7Xh8QZKMyfKMLM+5X96xWq2o9cPRu/9dToeEHN/83L6A56H3e/sLpttoPTxmBhJ//91D+Yr2vgU8Vujjyjic1/va9k3Mw3CPfOAhv6AH8xru4733PQbF0Zszau9gTj8vIcDoZgycpLIVQvX3GwfgHZhvhVRthofbe6jfvg1gGkqmvym1/dF2gntz2OcDKbT7V/QB6v5QDWL5eP3TA9IPtWHYD+8bZw6/NxQA2mocoqmmPqJTF3LP9gA5HZNIr+2HBZzfnIT732vJvgrPkD7s96Y2TV16fS2cga5uuq0b1wYOttetqkz3pZkb+30g3G8PrBXflL41mD87P8cY04ZDd5EOO1c++xvAkGvyJfO+ZNxV2l0PfboPuckhoPfvDcHoIYDvd5av8kIDgFtdNOOOBDs9Uh/EmuEge2kolYf9xdlNEt+V5bBdrl+6tnht7625fcZISBB1N3m6SKM0Us0mA0dkwupcG93V1wftw/4cMleu7nGcMB5NODqas1ovGY9njZu/qgmUJVDYsb2+W5I9fcJY2v41VY2IlHV7Ok4QgYLKIJv/MA0Xa6xk1oWqj6IQpQWi1ujKUGxz8iIlD6AIckxVEwjJZn2PFApdakxVU2YZ4+NTRKU4Ojoijm000Gy5ZbtYc/P6HVd3t5hQkaZpIyW2ag2l0RS6pqgragEyCpgdzxklO06mEck04ezxKQJDHMeoMG7811pGJk1zxpPE+nyvakZhRL7LrI61sSpHZVVS1CV1I52uNdRGUFaCXFctR1+ZqiFfSShDgiQhDBMm4wnT6awx7tHsdmt2uw2LxZLz8zNevPiAonxEmMREccLV1RWXl5fURYHRJcv7+8bnem5DowOthxZvDjhVkiGt+jTszz9Hdk6FxBh7alcURROZtQJtnBM2wmbdCBvVkXg0QiYxH370IXVd8+rrr0k3S4qiIt0V1JWmrtK2DnmWoxrbEcdElGXNdrMiz7ZcXr4BoXj+/AUX52dsd1t+/bsb6zGnKKmqnFBatamTiwvCZEK5KyjzkrqsmY6nhHHM/XJBpAIenz9ipRR5uqVoDGzLMmd5f4+MQ4wUSBTCaPKspKo18/mcP/nkYz7+6BOiKOHq+oab+zs2mw2bzcYaW1NhpEEEgtAESAO1qcmqgqquPKcD3cmIEDYmSJ4bENpTf1IUhZXiT6dT4jgmzTOyIm/dxH7f0zdt/G797UvuRPeLW/scwXqyK+HwCd69Q3U4XDEGKKN7WPQu3t82W3kvz8PPud+dsIZmHT4MTwf5mD7O65gVYdVGmw7wT7h9V3/adLRYtaqD/WJbpgDTSuRlE8jQCJA0e45fUw/I2zIPsT5OF7rBEO1u3r/u//XrRPv0gfEwXo0G10541laqJZSm/CFYh2Zj7ijKXXb8nk8zHcD3wfs+ju8KN6aXvde+b06Crg+FsA4z9iX8nQHqkBp9OvTvtZLqRpg2pHzTG2davsD1pT82QsiOGXJAvNdId29/1vrCWUczriU9prP55yFGuM98NDVpGBlMU1cBws2NZoD7GLHL67uk76RmMx6PieOY0cj6zV4ul9ze3lppTtV4UxmAUj/UrjvCGTba/91du2ec7rjT/QR6BOSXM5Rm+z7lfYDq8vY/h2RkMBhtWv1r4U0kB+J92wAHFHx9bR8ID+vsAx9fr9hXtdmXooj2iMp6C9G954bMizbWk4xv0Dr0j9rvK7soDiUuvuGy3/++wbFLYRgyGo+ZTm1Y+dVqyXa3pqwy6qrbQKWU7NKUrCyowohdkbPLc5Jx1ATR0ajQGvD6KlZpmjITzmesJA4jAiQmjFjc3rG537JebymbwD/SKEQNVDZ4EMaCxFiF1HlB9ebWStQbPfbReMxquaTOS6qiYFOUZNAG0Kqbz6KuEFGAMcqCuFHC9PiMQEWYSlNlOUkYouLIql7EEUoYlsbZUVhQGUSBVZEwhrIoW5rSWlNWFZvNlnVRURtJqQWVAY2N4OlsEdxCa11dxsRRDBi+/PJLslT35pGUkuXylpvb10zGE549f8bZ2WO0hijaoms7zmWVU1VFayTrM+E9acKAfh3tDJk8d21PvjqPVXVds91uSNNd+54KApSKUEpxcnLC+fm5NTKdTBg13odqIRlPxgA8f/ScLMt49+4dv/nN35KmaU81TzZzwwkenCcYKUN2uzVffrnBBAGrdM3d+g5tDHmRt/0bhRGPL854+vQZhYblNmU0Cnj58iWnp9bWYHd7xW55T5plVFVlI9I2ANsYGySs0jWT5Ijj4xPGozFlWrBcLUmSkB/88EM++eQTZtMTqlKz3W5J0xSlFLPZrAmq1c1VIyXUuo0f4Pe/Oz3z1wbTbBzj8bixRTAYrVitViyXSwxQaU2ta8bjMf9NSQ9JueyBu5PcHVK3EJ7HDmOD+zh06YC4EbQBgHoSuvdswm05g+ec9xOvzG9s20MlDdbpoVDNtc/V5xBmEN4jPaFRC7g6oOoDeJ9B142qoAPzNhCi0xfu9qx2rTAKKZ1gqQFnoilLCNtHDRNihQGujVZNs11/hB070Q5N168dqyYPAHrXJUM6OeANycPpvaEy3afooQrRtLkboh7NGXBBHxFODUngUKx1mOPoz/1Gy6A5Jst45fuVcb9bBxxdOztG6kDyOAM3X4QQCClQUvX2Avd861q9wUu2frplIo3Lt623R5vuuh1j36U4eAeObfudYMnVsfe7m6eiY6A6YWjTt46Y3NyVAtG4vTRmP6BXb8p6c74v3W/63H+wud+OuRufdo669aUrT0rnXenbpe9kAOt04J1P5uPjY4IgIE1T6qo4uNm75Bt+wb4O+DBAka+i4373B9evlw9kXSe4BeSQr3T/u7vnBrn3nMCTdtF27FDi45d9aBMdPnNI38sHrH7/9PXNNb5k3hHOUO2lA1d4xNJwt97K49475PoTHnYpGgSBdXtHB3Ldu0GgSOKY6XTK0dGc+XzOer0gz7doo5o6NWULWO12XExjRBhQmdpGKrWsFNpolBBsNhvm8zkA4+nEGscKSOIEXVYUu5TaKDbLJYv7FXf3KxZ3a3a7nMpYQ9a6qgiMYBRHJFFIHEQkYUiiBIKasrBB0LJdatsuDCIOmUUh55EFlmEUgbFeVSqjCUcJpalJy8fIKODo5BgpDKbcsstTdFExPT4imY6pjNV3j0cxAiiKnDgJCJzxb160kUfLqrJqNmWJMVA1IL7SUBowwjSuRu3mJo1CCkkYRETRiCiKUSpgu91xc3Pd6KZ3oakNJbsMVquYzXZHVpZMZhMuL79msbxGVxkC687Trmz9dOi4c8icO/oaek8yxhoPW/UvR/+2LCEESoaMRhGnJ+c8e/aMp0+fNn7XReubP8sK7u7XXF5eWql7EGJQBCohimKKIm+fdcGpTN3FYhBCoAIYTyLiOGY8mVBJ6w3p8uaS09NTLh5dUFUV67sFSRjxJ5/8hItHT7hdrFhtvyLLtnz99dd8/fXXpOmONF1T5Cl5llNVFbXRrQRHSusCNBmH/PCHH/KTn/2UQIb81V/8FZut4KOPPuLPfvZTjqZj6gpW6xUAR01EWiEEeZGx2axYr9eWToqSSAW9ddkZECdJQl3XZFnWzt2yLKnqgvPzc548ecL9/YLFvbXbGI3HNurxKKEsS1ar1d6Yfx/SIWnZ3onlYHPsA/kO1LVPuY3esA/GaO41b3TQ7XA9uhcPXbf/OLnswXwOte1QGgpevB9o5MYtyHi4rl1tBpn33vX3e/fng3u3j7XSezow33NG0YIat2Z0xUFf/cgYv9x+ey3G8tow7EqPC3Lj7//5/dBKfX1BX9tnfv+JnsqU+YZRPEiXBhCdAlcPO7jc2nY5htJXZ/La92ByEnrPIHb4xJAmfDqlP2f6ILbj/vw8u/p1+e5hxAGN4tO28ds0zLnPjPawmjevD0q5HQ2LZiabJv8W4A8f705Deq/i1dXn5/fyaBjSvaxN76rry+9m0/GtwfxqtWCXblmtl2x3GytZKgru724pirydrH60Uh8s+lLsoQTvkNeZ4WLkwOMhibIPeofv+nn4YHd4f5gcp9iTmksvimNDVH7d/fx8zzj+ousWOn8h8/vAZ3IwEKjGQ86BUw83kTspv5U2uCNHAa0/2hawY/bLadtL26Zh3/rMlA/Q/JME91sQRozHM2bTjNlswXR6RJbvqDcVtW/jALy7u+eDs7kFH1VJXlcEVUYUhGAkMowb3X6rMx0qgdYVMlBMTo/J1lsSYQ0AR6OYjRQcT6fUhUaIgLubeyptCIRgNBoTU1OnGVUQUlQh0/mMUZKgkcggZJwE1HmFDAJkFDBJYsZRaPXci5Q8K1FScDSeYqRgWxSEMYwmMQElGoOYxIxUQpbnzMOQYDQliMYURU1tQiBs+1cISagUJggxRqC1pK4h12CKjDAYo8uUqqqpcUfXuj2VsXNNolREGI+J4ilxPCEMY6IosmVIg8FKpaVywc0EtSm4v79hs7sjjELyPKfIM9D9OWGMWzT782u4IQ1V3RzzIJt4CkIo4ihudNrtaigNjXqXxqA5PZ3zo09+xMcf/ZD5/ISyrFguV2y36yZYXUiW5Xz11Sv+8Ic/sN1sQQi0kVRVQVlldo/VGqkkKlBNv4MWEhVKwjjm5PSYDz74gCdPnvDo8WOEilhvVvzyV7/k9vaaUCqORjHzZ4/Jdju++OozLq8vCaMRkyRkdbtheX/VgOQKXVc0iA9trC/9MIqQygbICgPJ0fGMk+NjTo9PKbOS3WaDqWqSMMLUhpvre8qyJk0zpBQkUUieWg86pyfHrMYTrq6uqKsVWnYer8CeiI3H49ZWaTabteNQVRXr9Rrn6na1XKM1JGPrtvTp06cEQUAUhcRRTJplfB/TUEDj7g2B/PC6e94DY8Pn2/WbniC3g21tLejv6F3dDp2evqcxe7keau9D+Qz3wDa/BjAO27iXrwM1vcI7gZDRdi+x65Fp7XzquqZoomTXWlOVZft7XVXtfiVks56ogCCwgjsb18Kp2Qi/m/ttce1xe1bz6fY2P/m4wknt+aa+9977Y5MFez1k536hZRh7gBDvd33gvjvtHIBgIbx8hszdYVZiiHtaSvVotMfQ9eZIXy14KJR0knmrJWX3A9kekXRqVw8xov54tZoVtkvwGRH3zB5T4Dr2O6a9ujRdt4+RepzFMJfeu45R8k8/fM0EO4eGtGbaf79rK741mF8sF62rudvbGxsACdqjM1dBIfpH+ocWL/+7L2kfPuOD4UOLs78Q+3r0/v2h3rf7ffi+1toesTR5q8ZLRg+E151PUdNIln2idJJAvy2H2v2Q9x3/ntbWfZ87PqQB6WHoRUbDRnz1vddg6KKTeX3Xlz7tAzL3k8+nu3x9d5l+XkP1m5apQBCFCePxjPnRCYvZgt1uQ1mWZFnanTYAt+stu7xiqyrm44BtmhOPJSMVEiiJFrRMiJSSKq+oS0M0mjA7UQh9TSAlYQC7JGQ6HTO+mPL06TNur+/JLs6JVYApK0ZRjC5S0BVxHBPHcbOxSIwMQYVW9B0Zjs9OCacTgromFLDdrak3FUhJXpQQCESgmCYTNAVSGuJIYpRATSIqXVMZ6/deC0mZlwgtwEjSXWWZMwkYQagCCmrKGqoaNJLKQKIkGxWTVxt0I9kXoq8qZozBSAiikDCKiZMJ4/GMJB4TBCFBoCzgaI46Ta2RInBEh6YizzRF3vjDR2AELd0NwVBv4R7MYf/ekLaNMYRByOnJGeF4zGK7psxzIqG4OD3j6ZMnhGHAi5dPePzkAqkCdC3I84rLyys+/fR3LBb37emFs9tp9XDNkOYluhEARGFIIRWmqoiThOPjY54+fcqPPvmE8/NzkmSE0YI4iLg4Oef63VsIDJ/84Cecnpzw6Wef8qtf/Yosy4mjMVGYUJTWvkEqcFBEa42QII0iGY84ms0QUqNNyeRoyvnFI8ajMW9fvePd6zes7hdorfn800+5vrwiywrKsmQ8HjMaJZRlTp6mxGHAKEkoq5qLi0cIIVnc39m50MylsizJ87xVL/JPzKIo4uzsjCiKyfOCqiotg92Arkpbta1yU8DYcHZywvcxHQIHh1IrBW7WuyEAanGMf9/ZgjSSU4x9V3p5+LkYsz8PvsnbTh+s0pRhQer++dh+Pg8JwpovbX4Y9vau/fo0D7l3vfzcX63rVlhkwbyhrqvW9sXNU/e72xtVoGxcDSkt0DOqwdgC1ewvTjVuCMxawZHR7T7n9oeHUq+PHnzq8PN/fDokm+7yN40UWByKvoQYPOvWVdMA9+70AyERjR3W8HXh/dvRBL3xbNfrvfXT3Wfvvi98HNKYe14JN6bYkwbRsL3axtsZztU9pqtJLb6wfhb2nhkyE8Y0RN7gi15bvoHx9fvPP1volXEwh+49B/YPzS2BF0zL2NzsPHJ1FA2Patrnv0v61mAeaAGdnTzdEdqhRXQoxXWNGkqyhx3sdM5d8iW/LvkA9SHubtiRQ/DuymoBSxMFrge4DXt5+BLHSte99jkGxFfvGdZrWL4vXfOZjm7CHwbeQybIvmslG+4UY4/BEft94Nrf6b93C8UQrA39hg/732fqoihiPBpzfHzGbrezkTLTtPVI4vJIi5L71YZHyYxNWjCJJqS7gtlsShgklNpgtNW3VEKSZRVRCZNogqkDqniDbLz6zGYzbi9vyfOUWMTMk5gIqzM9jmboskQlCl1V1oPMaIQxmmg8BhmhQqtysUt3HJ+dsk53kGvS9ZqqyggCG3lOhRKZCFSkUHEEMmr7YJSMQEkCNJUxlGWBqXK0Vuhsx26zYrvdIrABmaxbzYpdkVHUFWlVUGMwRcVsPOayhFp7MQcGi5O/8YVRxGiUMEpGrf9zISSGqkdXgg6sW2YmbPKR1HWJrstWyuXG2I29o60+3XW0NPQuZZrFzdalCehV1WgtqCsIkghjrEvK45M5p6cnTKdTyqri3c0Nv/3t73j16jWXl+/Y7bY9fVxHm86wHnz1PMloNObRo0dEcczV7Q2LxaKdr+v1mjdv3mCMPfW7ub5nu9uw29nAS+cn5/z4T37KyekJ5+dPuLm55YsvvmC3S9mRoZS0EXTb0yhJGAaW7sdjnj17wsuXL5jNZigVMJqNEVKyWad88cXXfP3qFUVRMBqNqOva2h3Vti7WQLfAmJrNZsPNzQ3Vp5+CksRx3DAyOaaue/3gqyg6g0MpZWtrEIYxx8enVlWnLAmDkLzIWa1WjEYjkiBksVjw+vXrvbXr+5Z6e4vZF3M6AbXxNl7RHIPv7e09kOxJO5tN2QdSHQjowJNonh2u4wf3L1enth2drG6403X17uffvvjQ9YF+2d9HG1Wc9rV9QK+1aUF1a/BaW4m8rjsAb8G8Z1+mJVIOBGruP9EBmx42GDBL7su3ZeD6LesDpd7a2AP++8K2b87Zqxyu64ewrA/iTUtOh+lwiGd8nNDaEfiClrbErj7Co1XTFNqjvwGYd3Tlq/wcZhLpaNYckii7vcpVzPT61X9hjzFt50KnwuaYviFu7PUPD+Q3aN/BJJp/hvT2rZJjtgbZteU260PTt11de9xXi+W+a/rWYN7vjLq2x9Zi8Js/0V2HDb1b+EapLjmw0DVk38iu88Ige8T8Psm+XydXdl3XPWPaDtBDtwB3umTOZ/kw/0Nsk1/O+xgNl1ybDoEi17663g+aMyTkti3CuqEcMhIHOd0DSdc1esD9Dvt6ePLgt91njqSUJEnCKJkyn581XjnW1LpRS3BqRUZyc7/kBxdH1Ah2ac50OmO52BAGM7SwhG/L1ajEoE1Olq9sMKQkosgyhLDSyXgUovMSXRliY6gDkMq6gBTChlOWUjTSzxG73ZbJaEyNJC9r1ssFULNZ3lEZjShLimIHQpOMQqQQKGVQcYSMAoQSmOZEJwxCAhlQ5rU1nlaSIs/RVQFSQV2S7bZkWWrtAZQiLwoKXaMFrHYb8rokrw3ZasPjJ8eg8h6d+3Ol/VSKIAxJ4phRY+AYRRFR45VECtGq5dgFsov8CyBQzKYzJpMJ6/Wa7W6F9rzl0PT/EKgPVbWGdNHRUGPgW1asVismKI6PTsmClEgqsqzk5z//OWGo+ORPfsCf/flPmR3NWS6XfPrpZ9xc31gD6qYOQ3oGC2CTJOHi4oJABUiVMB5ZQ+xduiMIFoxGI+I4pqoqrq6uuL+/56uvvuLJkycIAna7HdvtjiAICIKQ5XLNZDIjScacn53z+tVrKgF1ZU9JgiBqmcLTsyMePT7n0aNHjEYjptOY45M542RGECRURrNNt9S14PHjx5R/kvNuagOJSSlJ0wxjBGmaUhQFQKP6ErFardimW4xqxt5gpZK625jcOLRBrTymu278eysVMZseI0TA1dUVj54+wmBYLBZsNhsWWY4xhu12e3B9+L4kMbhuI7e6/xwOaYBFB4IMwgzXzmZzdkJig5USNptya7ja3HLbs69Jb28YXHTRNsN293ZPtsjd1qm51tCfZ8K7cHNB+MyL+9143ECXX0/jwzjVBQdC9kFme6pnPG9ixlgPStqC+bKqMFpTVjV5kVNry0zmjWS+VVkQNG5tbfultO6GhRAEYUjQxGDwG+qvMD72bIGyj0Wa/1pDZXe/Bb8+WKenztO+65X9XkxlOsDvs3MHH/wWyafDw6mhEWFPHkVDh0Lq9rTI1KY3vL0rN96O8fIFAD0hYrOXY/sHBthKu7Mi0dNecL1hvLbY+dfUXYAx9hzB9Z1jqru9qGPmEKbxpG85BiP72MjVyxdwdsyt4xMGY/odQLJoKu+vsQIwQ4aq7dsDTHrT520zREdZsjlukFIiTbc2GGOssa/QfcbnG9K3l8wbvEEzPS7aB922ExwQrfvE4XPie2Da9DrokMS+LyHpD6TvCtLPdwjwXRArbXTLGRljGl1i03sXYY8E+1JRtznst9dPToLvMwPQGZUGQXBQuu4nfYBgpAuqAXsD7RbcQ4Ruf3N+Ufupf/zbj9jbMMjNImwJcMilDxkr9z2MQkajmNlsynx+zGp9QlYsyAtBXduFoMZwvd2xrTTTvCAVil1eEkWKKk8RQYCQkqIsCZQi1zVRXaPLAhVGRPGIsqioTUUtNMfHc3RRka1TKl2i7ApnfdKHIVrXBFKiKSlKENJQlBlGhcgoxIiA6XRMpSvGowhqTTFKKMuMMJIEpiQXdhMLwwiUQIbSAjCpMEJiTEWRF6BsEJQs3ZGMApaLBbu8JKsrRklMGEUUeUosJDupSMuKvIKsqhGi5Gg6p767Rk6OKLZbhK6RxqAcDTT6pUGgiKKQ0SghCiPCSBHFAdaYqmo3tnbxbMbIt90Ig5jTk0cczy+4uX3LYnHLbpcCEoxGNK5BhRQNHYneegCO9lS3aDniEdKeLmhriIkxPH/2nFAF3FxdsdtuKOqaxXrB+ucLPvv8U07PzthuUm5uryhKqxrSY+yV3VSCUNlATmHM+fk5H3/8McfHJwiZAILlcsnnX37Jdr1hPJmgopDbu1t0aedllmUsFgt+8NEn/OiHH/P27Ws+//xTLt++5f72npcffsjLDz9ienTOxz/8U4TAevBa3qICwdF8yk9+8hN++MkPmR8fESchQSAImlMRJUKEUJjSIHRAKCNm4ylPnzxFIthutzaw02xOEAZcX19zdXXF3f09uq6pqpI029lFvjKIACvlrDVKqHYtEcKebkRR1PzFnByfUxRFIwQJCYMAbWrGo4QXL57x/OVzwPDFF5rdek1ZWom//r76mR982mvhQus0IM97wOwDJxdfpMug2YUdEBQGtKeK40nRu+c9EO/VSTiPFd0dC0gb3WonMbUfplUrMHQBZmwRbj9w6gvNveHa3iHeAZ4cwr1GF96Y9jfjvdsasmJpz3moqeraqtpoQ1lY5r+qKrI8Q9fWG1dRFr19zK5XTnhmwbxTuQmDkCAMWqbBlxq7vjHaB4seQmqb1qx14jAMEg/+df8dRnzmwNc9uNzSU3+PPJDdg+nhhz0KQEiJNAKDRktly29Uf7shd3Ta9YU2nUZF2UQVBwiUQkm3n1iMJFq808ddYNB1B9zbAps5soeF6Oi0U1QWCCN6fe+edd6DjPDVpywDYQ7gQx83Da+H+MlR+PC0Y/iu8NozaAydC1GfCenatics9QC9MLQqbhiQRiKlQGrR1q2NBiss5P+26dtL5vE7oN+R5sBCMzT+HErshgGlhu8f+u4zBn4+vjT40LtOOuVLwZ3bH6vn2mcsWvUXm8newuC4UV8qCH1d5qER6SHA7/chdADfP8Lye8e+3hG3f8phjCV8B/Cc1N/Xc7eLYF/f2q+DVM7gxDhass+6VmsNQvWYFH9C+P0tpURJSZyETOsJx8cn7NIdaXZHnhfoOqWqa4zQrMuCV3cL5vGcWNdkVU1Z1pi6ACktJ4yx0s2sZFQZ6qKiDAqMkMgwosgLVCDRpUCFAeHpjM1mQ5TXFLvcGmFWmmgUEggIEgUCJkdTRuMZIowxMiBKJmitKXcrsiIDJCaOkLFES0MQxFR5Sl0USBkgpKAoSuJoZMdbNEbDVYUyCl1WVEXBtlxQlCV3qy1pWTCejkBKMAZZG4qyIq80ZQXbzY5JCElkn6lUiA5jRJEh0QjTqTwJKYmjTrUmjmPCxpOLbCWSsl1w3Tym92nQpibPC6bTI/70Jz/jfnHLp59+ynq9Ruuyo7Ha0UnVjrNsXVdKpFAIqYjjiMnE9mWW5exSK1lXDfCsi5Inzy+IwoDP//A5JpDUWpPnJddXGZdX1+28pd0rXH3t32w+46OPPmIymbJe7Vgul3zxxR+Q6muMVI2LRUGlc6Ig4OLinNnpMWESsby9b08u7u/veRu+5mg6JgpCNqsVy/t74njMyfkZRkoePXnJ/PiCOFFsNkvevfkajA34dX5+ThSPkEGICkJUKAhEhK6gKCvSdMn93YrFYk2aptzf33Pf+PCP4xilQsbjhCBSFHXBYr3gbrGgyAowtZ2PEmQtMRU26oKUBIGNFhvHcWtkDPY0MUnGzOenzGYz5vM5WZaSZls2mxVJkhAEAZdv31BVJevlgjgKkGJMmor2ZOD7loarqw/LevvIQ5uukywOhEW9E1MnWmvF2V0hveXZvtF9baUi3Qs99ZwWt/prv/E+zR4I6bJ+qD1dnq5u5r3PD3Xs+8C0PY1rpPNaN25RPRepdV33vh8S0jkBgv8nGuZ3KCjzJbyHWtcJQPtr2ndNPqg/lPZ5IY9BbG97jFBbv4fA+eEWHeK9+vk9UHHYB57tA4eTj92srVuHXdr+f28O+xV6b/87+jdelQfMdY+P9uaJnT5ib//yJeFDgL+HHW2mB+f48LqtgfA9E/m2DvtrAy3zRK9evbyFy8ern2OCet3ZMLzfgRP81mDeGVa566HE3W/AEMwOdaz9331puP/ddYAv+X/o+Yee8cvzQb89xjAI1ant+Covfr5+Pg8RgG/w65fvMwZDRuRQvk7H1b4Lwwlv67RfN9cfSqpmDe4maL8+up0sQ3WFQwuQP7Fd3bU2PZuGIVH7YwuCKBxTxzCdlBwfZWw2j9lucsqipta7JngCXN6t+MGjE6JSs95lzMYJaVERiQrR0J41stqRFztkJohGISKIMRJ0VUOlrS9cacd7Op0ikoosVFSlQec1RklEqBBxSBhFlAgwFbIUlEWG2hVIpZASttstlQFUQBRJwkBhdA1KWteUAibjMaLI2nbnRc5ut2v7IDCGYpdRI7m6vePrd2+QAo6Pj5s5FZCbkuUmZbW1kUFNmnJ6MQUqkI1XFiWdckw73lZXOySOR4xG1otNkkxQKkaKACkCrIecvp2Kz2BawFySphuWy4A4jjk7f8HTZ48xxvDb3/6WNNXUddnRqx4ypwJQNsrp7JgoigkC61EF4Or2hsIYTFmQTCYk45irqzcslrcIIUjTDXXtmEOr7oU3XwX9EONKRYzHE/787/05P/3TnxLHMa9fv+Vv/uZvuLy8tMy21FR11UqeJtGU2WzGhx9+yHQ249Pf/o6b62vrZrSqKNOKqsyZHU0YjcasFsuGaa25urpGoijyHETFfD7lH//jf8JkNCbLLJNSNVKuqgowWpJXBcv7Jfd3Frjf3t7x9devWocB4/GYkxNrH5BlGdkyp6wL1mvrtWc8GaOCkKLMqIrKBlTz5mGSjHjy5DlhaF0Dg2E0si5hhRBUVY2QmvvFDSqgYRqU53rSsNmsCMOQ2WzG8+fWV//l5eVBe5/vU+qvjQM96ANgw5c4GhfYZfB7b932pbLfEjv6IB1M50cc6HyHu3W/28h9kG/awkXHG3xTudr01vZD7enV0cUu8YB4G8vAmCZwnqY2mrKsqBrgXhRl+1zZGFY7xkGK7tRISkkUx8SJpcc4jgnDsN2jh0Ihtze3vdUoZh9ialwajvHDgPq/ajoktT303L4dxt4TPn5pmbcBczDYo42jDy9vX1J8iDFxgshe3xqDqWsqOrymlLJ/QkIzLu0abDzmZzC3hn+uri0W0Rq0O2lpG/Me5qWbN35r9gVS+6rZh/rEfMO8aRlyn0FqvRI1uEgKjN4XHfj93ZXZPxEf/q6N9ZKoVYdL7Ty0eG2/nIfTd9aZPwQK/Pvutw786b0O95879O6hMp2HBpeG+uZ+uUOO7ZCO/mEulh7wHrZ3WL9D9w6lIVPiMyTDfhoyDb0gTgfK98dBt0TQB/NdP8o2ANBQJWY4vv4JwaEy/ZOVoQoV+IyJJI7HzOeCNM05P3vOdpuS5TuKcos0luO+XacsdjXjKCTNK9a7lHESoULdM/RToaAodkR1QJ7viMcJKgotGKw1ddWdwFh/9JqSkiCJGTc+3gOlMEqSmxoZRhhhoCyoC004DhlNRwhRMx5ZzzVKhghRU1Y5NZWV2CuJCANUGBARNVE+SzarNVWj2hDHMaFUmLLibrXmdrGk0DWjRpqKtl4ftlnB7WJFWlTkeUWoa148eYTEMl/Wi1FEXRZIXYOxtB+GIaPRmNFoShSNiaMxcTQiikY26JKMkDKkrgt0Y0R76DTFqhqlbLaCcBHy2WeGIFCtZ5W6LslzX/Wif7pT1yCFYjye8fjRM4Ig4ObmhvVqx+npCU+ePGOc2UimLqDV1eVb8jxv5qJVw6nrmgDd6Ph780RJknjM06dPGY/HCCFI4jHnZ49I05zdLme7SYmiEU8eP0cqSRAHSCXZ7nYsFwvy7Y6vvvqau/WSNMtY3t03kVUbj03GepK5uHjE48cX/MW/yrlbrLi9u2V8NKcuDW/fvOb0bM7FxRlSKBaLVQvMk1GIlIrdNqcqIdtuef3qFbe3t9zd3bFarciyjDiOefHiBT/+8Y8Jw5Db21vevn3L/WpBpTtANJ5MOHs8ZbfbcL+4IdvukKXt8zAMmYynjceiACms69SLi3OeP39Gnue8ffuW3S5ltVqxWNzz5MkTPvnkT4jjmJubGz7//HPu7u6Yz+c8f/6cZ8+eURRFe5ryfU/D9Wx47dL/l7s/7bEsOfM8sZ/Z2e7u1/fYMzKTTJJVrKWrp3tU0z1aZpEEQYAASYD0HfRB9FrfQJAwmBmMIEgDtdRoTXdNdZeqa2qKrGEVySSTzMjMiPCIcPfr7nc/u5lemNk5dq7fSGb2YKCiTqaHXz/3LLbb//k/W2fd0ve/2yV3tNaIJoX27g28H9xrGpOcFsi49xpodH+dbT+352lAo8sx9L76mWcoR4Z2jvu+VwZIoFsQ7/aAqmqTn5WlG6OarChNyNy6JvciS7n7ZCAtMWLWql6vh7RO3Il10Hc+Hgia7K+7dWna3WlO3gPH9vX1Lh747/a4j4HMZ/hmopeHKdD3x8PONe3nPZipucB7tv1nF8wbEGk0Lrtmz3EYdZ5tfuzD9H379V08Ad3swAaoup9OxcHDP/uEtV1Q/L7+3EfIdhvFf+39OW4aycxxjUQIDcrNX9Ey6WInWiLdvdU/7+q3+05phaRAS6PtcvMPI4h3wgn9huNbgXkfPPqs7W4BffDqf+9i0MP9+Oy7A2AX1O4DIv51u4Nqd8A2tvL2vULuxFB3Th22zV06afeO3Xc6CRWtGycR/1rgHgPqs9b7wpQJF95OdGPCdwWn+6oftMDFmN+V5ruSqkbXblDuC+VpdgdTRtFoFVyc2Mpzxt0Vevzfri+kDBBEhElIvzdC1UCtybYbtts5ebGmKku0MmnpX93ccTp6yKZOmQeaQWLCUzqnxTAMyfOM1XJBFJtwfUW+pS5a1jgIJHWtWl8FIYmSnrHLFAG10sg4Nk5YCsLERPlQpaI3kISDAZUAIQKk7CO1cWIVQrFNt8aEHEF/0CeOexR5SQAESJS2duWBNeFCUytFnZdst1tu5zcIqXj28JSqSImjiF5/yGL5jtt1SlbVZJsV572Io/GQbeZsZY3wFMQxlIUhp5Tpwyjs0e8N6SV9eoMRyWBEbzBkOBhydHTM+flDrmbXXLy5aIXbojARKOrajBflIlBsKYo3XF9fAhDHEVq3WoBGIyPs4qRFM2a1hKIouJ5dEgQRcdLj8PCQR48eM56OWW3X3N3doZQiSQxD9+rla4IgZDo9pMgzFjcznGd9GIdEUQjCRP159vRDfu/3/ogwjNhuVtzMbnj39pJf/erX3NzcUFY1w9GIZ8+ecXBwQNyLCGRIWSmybcbi7pr1ds1itSLfphyMJ6jCOOiFYUhd1CwWS+bzBZPJiKPTM9ZZwe3tHWX9OVmWslouSbMpSS/kF59m3N3e8fTpUz7++GOKuketNqxXKZtNxu31JW/fviaII8I4ojeZEPb7jPpDRsMJgoA0zen3h/zwd3+P5XpJVmzJ85yry0vysqIfx4wHJ5wdH5mxEhh7eK01X331itu7W6Io4uT4hKQ3oTfoU2vF3XLBersmDASj0cCYC02P2G6NKdLd3R3b7RYIyLOK7SZHiJCzsylxHP8WO8Du3a33bqK75EOztnosamcP062Zi/uMt+Ia1lh02FP75Aaz7M0XYy7plLfBfh6A232/AT7ule/Z8J1AsAuKdgiq7vUGaDlw54BeY16jFKquqa2G1v9xbLxuX2T2AKspbX+sGaBsE9n5WpRdENb9/BuUITsXdJwfv87kpGmmpvM9QPx+QKV3/9I7J3c/e8V731P1DpO/r3+74/c+GedkzQ6WdXuzlE2oVYcratd3Hmbyweq9YB1fhzH1zotdHXT725S1bYTGYdzd95429/nu5lyDQ+6bubTt07a3Ewl8fOWeSgPY23ndrAcevkLcB+5++ffh1d1r3FwWTpBVGrGbpPHrCIKd41uFpmye70tZXuF2r9m3aDhW103gXVC/O3Dd376z3i7T7cqw7327DHLzXgtGpRBoay8mhY0tr3RH8tq7+GnT6Uppu07YqB3eu/yy775/tx1NlAq34HQ1Ef6g7Eh70AocVop7n1TqJmM3IonCJJJxM8rY3EsZ2MXbgX6rIbCD2ZVtV3p2dWsSeGkQMmAymZrQd0kfoTVpvmS5vmKbzknTDbpShAhulws2+RFRLyTLS7ZpTi8Om/Gy2Wwoa5NhM5Qh/ahHogOElgRCEIYRqqzQumY2m3FycoKUIYOBMz2oKHWFlpIgjInCHlKGVLVGIRBxSFGVxHFCXdekW+MMKKQkigOiOja2yyIgCRMTm7uoQIKqFFVZGXMuaZL4aCHIypIiK1nMF2zWSw4OxoS6IA4SNDBfbVlvCxZZaTK/pmseP/2AsszoD4+oamUWX20ilbhQcEbYiAiCmDhMGAyGTA4POXv0mCQ05haPHj3i5PSU4fSQTW7ikCdJQp1uydMtWZpRViV1bcepUFRVazJUllEj8PqaGoELh4gxqYkEoCjrguVqTq8/ojccIcOQ9XZDfzigH/UJD429fDKIiXsxSgmiqM93Pv4O6WbFj/7yX1OmW6aHE86fPuT09JT+oE9VVkBIlmuyxYrr6zdcvX3NYrFgs9mQZhlhHDGcDDl7cMrDhw8QUnN7O+fu7QwpQx4/foxSZlx89tlnCKXo9xLCQNJLemRZRlUVbDZrTk9P+N7v/A5pWfL555+z2a5NGEpdcXt3zfpvlgz6Q5Kkx3y54G9/9lPSbYnWgtHImBZdvPqCu7sZ0aDH2cMHjKdT0k3K7PaOt6/f8MUXX9Lv9/jOd77LBx98wJk6Y7WaU9cVi9s7Lt++Y3l7y8cff8wPf/gHnJycoJSiKApevXpFWRbGKTsKQNQEkSTNM7LrnMPDQ773/U/oRQHX13fM71aUZc1nn/2Kd+/eNqSKYfQ1b95cUivN8fEB2+2G2WzGb+WhvV+OXIDOBtmCBftPS1cCxsymeVxnbzGhVREa7SfBEZ49b3OraF5hn2rO6n37svB+vKrsgHDdnPfIIWhT3Asf+LvrW7V9BxAjOgSUu0l5AF75zq3WhMysCQVVXVPVNWmaU5RVu0bYfSwIQ0QgiaKYXi9BBgH9fp/BYGAzaRsTRyFakN+2133zVtewSmtQIL19swGfttLC7sV+2zZOrdqCRg8gtfuXJfMad+lveXjP2ceKtx3YxbldOa4dwLuMuz+mdw8nCBkCrh07u07YCGfKZL43fjfGTy/PMhN5TWsbGrckDEIEZt90ZspBEDRYaW87eYPQZUdQTVhSDys04N1d3Uo5/mxoAPiucCe8ixthxq+v/7cTAbrt4Wrgxp3u3OcJ6kJ05lfjZCxozeWEMHlkdsrbde7dcwhhotEJE/ZaWwFcYxNs7bvnPce/MZj31Sn7gKOrkC/d+Yz+1z1vnz33rm17syHJ+9FV3LtdWfxy+s/b9y7/Xjd4/fc210AnOZNhTrpSmKuXA9G7NuyuDj6Ydt/7Zjd+2ff5FuyW2e+HexJ7Z1LYTWnnfEd15INzr26+E/Ju+FG/34RoHep6/R4PnjyGoAS9RZUbLq/fUFt2W2jFxe0t8cNTAgWbNCcOIInjJl09dcByuSUIEvr9LUMdmHBmVY2wG1dVVfT7/ab8jgEKgoBSKcIwsuNGWYlYNQuWlCFlWTYqYNBst2u2W+OsaCK5yKbfkn6PKs/QUiCjEErBoD9ogFdZVSzTDdc3M6QWjHoD4igyqum85Gp2w6vZDbfLJel6zSgQnJ1OiZKQAkGqocIlMZPEgz66TghkSK83ZDA6oNfvkyQ9K6QqdGiSuS0WC5NMqFBUeUG2SVFFiaoy8mxLrUy4T0sQ3OvH3YRMzTz3NoNe0iPu9yEQzSagwDK/xu8gy7Im0sXBwQFxZsxCzk5OqUu4vrzk+vqSqqzo9wc8e/ac7/zO9xmPx42DbZrmvHsz58XnX/Du3Su260UDMqTNglvXNdvtlqoymWJ7SZ8wDri7uWG9FARSslgsuL6+orCMvJTCZI61dr4XF68oy5wgibm5naF0hZCCXj8BEpRSjMcTnn/wMU+ffmDNkGo+//xz3rx5w83NFVmekReZCVuqNNvlmjLNWa5WzO/uKMuS69sr+nHCfHHLZ7/6FK1N5JogCHj16pXN2Cp5+/Yth4eHXF5ecnFxwXw+Z7VasVwurflVQJpuQGhKXTEYDJhMJhweHhGJgM264OVXL7m8vLax7Osm5GUYhvR6PUBxdzejrrPGfvm3+tB0YNAusdRoVc0Jb3zbm+89T5vws+4a4c0T0aIzP3qI+7vZFd67K2tA7hKZrSTgHzusYytctzhvlzjbvy8aoWV3TzTMe92Aczf/KzevlaIozZpWVTVpllEUZVNcgCAMCaQFKFFInCTNOOv3+wa8h2FjWuP7wtTOJEjre/uV1trsEaKtV8Maa20jBbVtRAP4fCDvQTz7j6958UUv4Z7xtYfu9pFu/27Cn+5+7nzY88QGR+jdL35DWdzYa/d0d19nzw8CpBTNeYdNSrtHu/3TxzzaWjY0oZCFaDL43meeLRDWuhE0nZbHXWeL2yEkGwjdETrbdmvONSCZTv+4e10zNV2620Ze/3Yxiwf+m/OeWVdnLFhwr10Z7LUeXut8pouROwQo1gokMG1W1wqpncl0VwD6Tcd/KzC/+9n9vRtlxf8O7ktZvoTts+/+ff5znLrfLTr7gOq+cvnvc6Y3uwvabj2d7feuw5DevV4I68y5I/159vC7dXV12RVygiDoAOrduu223W4dd+/b1WD4oE2puiMgdFgDe49jxt9nR+++9zUR7WZngF2apgZ0JQFHJ8fU+WPqbEEoK5bzOdl6C0rzdnHHwXREoGI2MqcXKLKsb0EHCALQAevVltVgSyAC+kmCrmoCDTU0mV1d+7syAcRRbEI5Rj2yrEAIY4OcpimbzYZer0+/P2j6pqoMYFws5xwdTQkCo4FxC11V1+hQEoiAZDhgkxnn1yiKTJi2LONutaQsS5MYaTgyTq9VzWaTMl+tuFyuWW9T1HbL4wfH9BPJ+cNzPn21YlNrtJQUdYUUMBmP6MV9pAjp9UaMRwcMkoRer4dAsFwu0UMNWvP27Vu01sRhj34UQ1KTpilZtkLrqtk4HJfkZzB2beYLkW5uYlkDKQVFWUAUMxiMOTo9R6madJOiSsPmm/dlrNdrttstQRAQhhJBjRQRSkmyLGO5XRJQM+wlxLFx4FUKVqsVeZ5R1xV3dwuur6+5u7sDG2EnDEMOj45IBn2klLx79w4pAw4mRyhdNTbnN1c3ZGlGURTM5wuEMCBdSgkbcLG002zF5dUbaoz9YhCGjIZDBoMhSZIwHA4ZDAaMRgegA3rJ0GZVrdhuV2xthuOjs2OODo+4evuOm3dX1FVJqSqUBBEZATTPUl6/fmkWcGnaP4oi20YhWZbx5s0brq9NZB8nFLk+QCgWyxvKKmVyMOXw5JQHDx6wXq/5i7/4S0JCsmzDVy+/JMtSBHHjcGiSSBkHxH6/z9nZGU+ePCZJkt9am/nd9dsdLQhv18NOZkt2gd59RtOQNffX3J0S2FtFAxs0tP5z7ymd2JOoin23NOChW0bd+aA7e1Ozr9p6mM/C4pEu2NfW3A6tO6Yzzklc6fZzVdXU1l4ej4gTwgjNvllNa07jaaZFyygLYQ0fdGv64KNdibaxvcEkm+qScLsAuYsvvJbu7KHtDW6fcn2/D3TtPRotjuu/+9ff54fvf3dveHhY3udmXb9qra3g4IHCnX3eVqDzvfkNQst7ANn11S6YV3VN7ZGsJtqdsH5NXSsDH5x3hSQ6Y9AH9K3g+37ZaV+7dU84Qfv9pi2dY4/gu3u9L+//Rjzt1bPzTv98I0bsKZdw39M0guje/o2ObwzmdbOY0YRy9L9r69Uyt35YRCF2Ot6TXHx73N1rdive3CfdbxOn06kT3bt90NoMdNtK7nG+BqEpqzQLidbGgadTP+0EftGErgwCBxbN833G2r3DeYfv1ttlrmw7X1sBRXsbj4tAI5pQg18nKN03pbkPvpvJpMGw82bk+g4cu/f6/dTUwzaIshPZxBOWiCBEBgFVVVOqGhNLWFLqms1yRbFdsNpuqREkvRHDkUZqyWa9Iis1s7sVB6dHLLYFg0HEfL3hJAqRKLQ2gs52m3Fzc0coBaos6YUxUrcT3QlJqq4RmP6K4ogwNIJHXhgWsioy0jQDpRFak222RMmAIImoaoWWkmTQ5yQ5IRCmj5Kk147XIDBmSXVFkWeUZUEgE3Sp0DUUlSbNSxSCyWhCKEOziVYl2zTjbl0wX28o04KBhLPzKSenx/R7CXebt9RKIgOzkVVAoQWT/oij8RGj4QFRb0AsRcOoSqDI8yYfQFkWFEFOv9ejF4egQrKs3RB89uN9i6EbL05FK4KEQAjKwqjbI62ZjA949vQZeZ5x+fYtq7s5VWk2/802RSmT42E6nSIFLOd3ZHlKWdZs0xQlTEbSWimur24I4iHj8ZiqrFhvltzMrri+mrNZbwiERAWBTZLV5+T0lCdPnjCfz00q+aqmqmrm8zu+/OIlNzdX5JsUwDL3JUGgCaUX4Uq55FgKpSq0MJqZj55/xPe+9z3iuM/d7Zz5Ys78dsnl2zuCICSKYyuwrJlOJzx9+gStNb3hEKUVy7uElRQoYbQ4o+kEpKTOS+bpjLKsAG2zv9bEccJwOAIgy1LyPCPLM8OmIVC6BqWJk4jBYMiDBw+MY/BoRK8/RgYhl+8uubm5o58MOBwPefTwAZc31+hK0O/1OTo+YjQcMRoN6fV6DAYDpJTc3d6S5zlZlvEf8D/it+1Q1Z74+KL9YNZu2WCIjt2t+9DBSNr8L0BJ3doc+3OkeYDPgnhgtHPas+B+H3L5TUcDRLB7WZsMzgkc2v9twbmrf9sWLQBqmO66pq4ru260pjXOub9uPps8G1meU1Y1MghI4tiw8WFI0us10Wt6vZ41rYkJQuOUfs9fzPaJkL6Ri/fbE8KUakmwJnu6qtFadoCvE6jcc3ww2zTlDvjtAGdvDdzXVy0LTQuu6XT3Nzo64kUHiPsfW5JM7+79O2t2Zz3zyEGHiQJpQkab59UNYG/IqapCbbcm6pZSZBpkUTT7S13XRhOutRf62PwrBM250JrjAI3pFhgBEstWN9iD1kzqXvV9Yew3taW3X+0XxO5rqt73jO58oblH0Arn+0B5K7k5AsAJ9u7r+0J4M8YsQSalcYYVSn+r8fTNHWAD2ZF+lI0a8r5G2QWFvpnKbqO/j7WG+9lM3f1Omte2wVxj7dMYKNXGkq89AL9rhqLQJhTTnjo0i6XD3QgUisqCOim7oQV269A42u6RBtvPLUuwjxU1zETQEZT8wbkbrnNfm+20JGi8iDlmgdpl8oXo2s054URpjbIipNLKOH5iMviJIDQ+CDJkMDJhAZVSBPNbZvkGHcUE/RHDA+gPDynGK2bXV2xmc+7ulsyjEDGZMltlREmPbZ5zNB5QKY1SIWlacnc7JwoF5bBPFkSM+gNkFDahLAHqqiaQkqLIiUIjZCgrYNQqR1UKqWsQkPQSZDCgNxoRjPrERYUuMuoqgzqmylOkNSep69qa4QSEcUy2WZGnW/q9hCTpobOaqtCkeU1eKLQ2GQ6rsmRbmOgPq23Fq+slm02GLEpOjoc8fPaAp88+4Prymsv5AkRAoJQJkRlGbEtFGPWYjg45mByhkwSplKmbHV9lljdOwUIIyjxlvb5rTI1Ubcqjddu/QrSCpz8nfJ8TI+wafwMhA5QuWlONqubm8orFcsHN1SV1VTRjNwxCdBAyHA55/PgxcRjyGsHt7a15T1oRS83J8RFPHj+jLGsuvrpgs9lYdaNGVQV1VREKkHFMfzLl/MG5YZhDIyAFGO2YUAopNXGScHJyRpL0SNdz5nd35HmKUhVBECGEW/7soisEaCc0S5Kwz7A3Jgn7nByec3xwxmeffcZ6sUXVGVWds1jeUFXGvOX8/AGj0YjXr1/z5s2v2Ww3aKWZHE6ptGJ8MOHBw4fc3d7y9tWFjQBknIHT1AgZ6/WaoijQWqExOR9M1mFpoubY7L7j8YjHjx/z/e9/n5OTY4IwZpuXXF/fsJivOTqOODqc8L0PPqDSBf/NL37K7O0VR4eHfPTRRxwfHzMeHZDnOa9fv+bi4oLlYmGcgevfzqRRX8fCtUyM6rBf++hAt895D8ZOlmZtbPYZ/5rOCdEw4Lj3NITY7pp/Hzjsr2DnBS1BpXXD5mptgFGzN9aqLdu9d7faVgfmXXK20jetKQoKm8nVB/NFUVLVNaHWaGsD7yLXuORlvqbJRbbZQ63a8hiNk+6cEzvgv6sddgEjEKqz/wpfnrqHyvYwwa5t38Ps+s/YxTb39vTd6n3N4XZd4YNMR6zt9rWHCd53+Nc54O9rVV1fAGhlTGhqa1LqyNEsTQ2pqDValU3dm6ASGoOTPIseh7209dtTUiI7ddqx/xZ+O4l7QLf5xgG79zbgfZzzfkzatpHfXrv3NUSlK5vwiC5X2q95T7NOePWjGdWexq59Q0PENfux/cxv6G//+MZg3jdn8RczJ605VdouuNxly/3DB++7LKDvTe3e4+5pGsW7730A1o953hDSTqrWPkgxmQLfZ+oipUTXuvNcXwvht4dfZ1eX3XbbbSO//n4Zdhn1XQ2GXx4f4O/Tavjt976/d8/5i1VZlp14/Z3+8AegLftgOCTqDTk6OiKOY2OSIWqSSPL8ySOEqlltlqxXC26u3vHrX/2SV8u/pipr5rdz4jBGioTeMqUfx6SxotdPiFRJmhbUdc1ivQIJVWTGYE/2Ow7W2+3WmBIMh9RaU+Q5vcGAMAxQSiBFSGBnQRzHxP0Rk8MJ2zxHRpKaEFULu2gYYS6yNu+OpQitDaiKTOSSsq6p6opS1aR5Tp7nJnNiVYEQFJXmclXw+cU1l1czIwSENY8eHPH7P/hddFFxu8yYrTIqbUJRuj6tVc1mu6Vn4zQThkgPhJsx24YGdRuey+rpj09/DLagvqtSbRgdq4Y1MdUrpI1dLqVku9mwXKza8aIqokAQxzGDwYD+cAwiYLVa8erVK3pJxN38htV6aSPq1Fa40IRRyHA4Js8z7uYpaZohBARhRFVXxEnEeHLMg8dnPHz40JqLRARasT065M2bC1588WvUly8sMFXGrlzT0Sr5Y3dXkyVla4P/9q1xGH03vgZEA7ZrpaiVibA0Go2Iooi7uzuWyyV5niNEwPTguDE5qFRFEsZIBUcHU3ReMreZLw1YSo0tcq1Qebl3nTg9PeWjjz5iOBxSlRVHRyck8QBVB5RVwTbdIoTg8ePHfPnVS169ekVYVjx8es7Tp08ZRD0W8zlffPEF19fXhEHMcrnkF7/4BXmeMx6NODk5od/v31sTfhsO7fej/d3ZEaww2qy3ogVRzT26tbvtPqWLAB1Lt/8Q9nKLRIx00ID7dg+zj/RhTAewC//kzrNBN7DAXqIciFfG9XAPABQ7H5Sy16AbExqtlbWLd1ldbcQapRpnRj8OvWlaY0Yjpcl34vBAa6JqtOcKF/7QFlvv9lEX5NFoiy0IcnXX+3COT7vbZ+2Vktr23WXmXZb0XTxy/10OdLf3mieKhr0Vrn4Ok7mHWEDcllp4d9LUc/d1DcB3Y6vp+j2g+b2A1vfHs28XJoRoYC0Fojg25qNKo23mbq01dVWbEgaaEmFYZGGDiDhAKizQrU22Vr+5W02JPz9228HzWbDt2Hz/PgF6Zz33WmT/v/71TV/si2wD7DGB0x7D333v/r9d2ds+2zev3VzwwDz7HNXff3wrm/kO6PQmgh9usnGS8GzFdxndXWm2EyljBxTvi2He3OOVSUqjOdjHLtZ1TWAHmbvWMbZt5Uwnteq8bmSaqqq86dY0SFMWd3ydQ+6u0OG/w3/G/gWIZmH1pWx/cvpAzO+PfdqAXSHK/3tXaNtlQhpJ32onwNguDwdDm7wosSnqxyT9EQjDZgdhwGjUoxc/J5YBulbcrm558/olKMmLr15T9SICSkIheHt5RXV8TF2U6LIiFGf0+j0mkwnrdU6tCtI8Iy4iK0iAtMmiwHwejkdGq2BNbMjLRmWotbXFDKRx/AokFTWr5R1lUVBHkl5/QFhF1Loy5jWqAiEZjUam3S3TDwbkVyijsUGxLXOWmzVVXTWxmaWUrNKCL6+WvJ4tWS7XUCsODhP+3X/0D5n0B1zevmG2zFgUtbGxrrxxo2GxWFDX902tjFAtqFVpNiVCmggNXr+6ubl3Tnlj0V0X2GgUp6enRFFEXlY23GfAer3m7nZBlhUGjFvnyslo0CSNUhYEhWHIarXi+mpDmW/I89wbj5Llcslnv/yM8XjCg4dnnJ2fsN1uuJsviHrDhrE+OTlGSs27d+84Ozvj2bOnHE6Mn8PDRydcXLxhvt6SZRmbzYY3b94wv55RluU9ps/V07Vla+drgHae58xmM64ub0ySHGczjBnPJycnxHHMYrFgsVhwdHTE06fPTKx/GTV277OLl5RlxmJ2w+npKaPBkO1qzWKxIMsyiiJHU4GAWtUIJEIEzVh1yZ0ePnzIeDwmz0sCGfPZZ58zm81YbzekRYog4Pz8IUrBdrPhs199xipdEI/7LBcLPvvsM2azGXVdkyR9otD4dtRVRZHnTQjY38bDzcNdsONWbSlFY6aBNCBm/0q7SwrRRWc0r2lt790ChL3Gn1o+6GrwjWg0Aw48OnKpWwwH+d1DWkBjoLzdN6yvnGFUVavRqu083xFQ3HtqSwJpramqksKaV5RVRVWWdKPZeHHmtfEpMVUQltCIzU/DypsfKY22tq4V1BCEGrBRVYQ2C4RwhEmjymjqrhRolAXw2p4zyQYbUO+HGHE4bM9+renur82+h2WVwVsrHV5oy9Xc2hFCdKfUTRGEMOFItTckPMAtBBasOfDm+ka05jRe8QUCaUNK16rNvWLepUEpL1eAP3baujrc5N4t7DyI45ggDKiryJIq1ufLmtzUdU2eZZTWTCeOIqQNBOGbeCrbZoSmHM6cRjp/CV8YdSZgQljLD7FTZq//uvJPi5eaceParumeHajsdc6+7xq5YKfN2CWJ94P4dhzijdPd13e1Lf5ztNrBsg5Dfgv3pW8XZ94DjapuN3yfhXaHz6j7ANtNnl1m22fC3XN9FaD7vmOuItpIJcYTvwtQ/bIbj3fXesbW3UWjaTrLZxocg+Pqos1m4E8IF4rLB+y+nwDQ+XuXFZVCNpuLtiEuOwOnkZxbdsBnW5vLOqDcqJGd9Lgbhcf1zfuYe/c8v11cP5gwVu4ZZkHRgSAMQvr9ASenZ5ydnjMajYw/AII0r1lvNpYhjej1Q+IoRmpBnuUEUY/R8IAw6vH63RU6iNFBwdFgwNV8xuz2jnp6iBJbZHRHr2/sLycHI7IsJUtzJuMDirIijgPWWxMjO+klJIERMmjqoRsbzqqqKMuCMO6ZBQ3ZLAwyClFlQRBHxicjCKmRaARBEDVCZBQlZEWGqnKoK2O6U1QEIgABeVGR14Lb9YZYlwyGfW7nS95eL5jdrJnN7lBVQRJI/vAPfodHj89Jsy11rXm73nCb5yBCVG2iswAordjmKfPtktHBFKHtPLL9VVU1CGU3IIW2C7szz3ICoMtEauZaQBwnTd9XqqKuK5pEU4FkenTEBx9+yNHRERpBUZRss5yrqxmD4ZQyK1mt1zZDZEGa5WRFSRSGDIYjjqZTzh+csdlsuJ1d8fbipQGwdh4HUcRwNOL8/CGH0ynPnj1hPBqjtDZRM5TZFG5ubthsVrx++QWXl+8Yj8dcX13y3e98yOMnjzmYHjIaH1BWmjzP2G43fHl4xM9/+imr5YJtukbrAVHcJ81Sqqo08xptxoCUlLUCVaG1iUO/3W4JI+OYq4Wm1pUFgyZcap7njQnC1dUVWmsOJsf0k6GZg5VC14oyz9lgNtG6rrm9vbUhMStkIMCaGUgcSyMZ9AdMDg44Pjrigw8+ZDo9MnkXyiVXsyt+/eLXfPXlV6RZipAwGAwJhOTw6Jijk2O2dwtevXrDfL1gtZizXq+tKQUEMqKX9EiShI2do1VVNw7gv22H3lkT233TrnUKmkg09rP73v/FvQ3cnNuzDzd8rGP3uqybA5j3bqBhIIVEyJb966zH2r+h+1s7gcVCeodetKbDmisLmHbJJf975/BYVq1pjQPw5nxFXdXN/qtUKyy4hnPALghCAhl6seRdxDmavU4ojZRePRww7qgNWnisnXDilVs3nz0g1UpKO4IBLYDGs1++1zdmLWq1lZ3T7Wc6Q6UrMOwOG+Ff2+0Du+F7NbafXV/uQFLH2iob9ceNj1ZIsPX0o+w58GrrYGyxXa6dFpcEYYjUEikEcRIDZp3KnXWBdX6WQqClRHhYJJAGrCtXDyFQ9seBU+kB+bY52jEkvanj+mi3Tbsw2zW/Pw7due5sETtjoWl/ITqDr31ry6K/D4Dfexb+OOx+18VZ/prQHZ+uTA77Oi3HNz2+uQNsbeOU1zbeu2XjXaHfxybvY3z976B1Zmltw++rwn2Q755VWyHBDYrGIWOHWW4Eh2bttmYzO1JWR463Yr8bgLuCiHkOe+vWLgaiA/b98pj3GXW+K5NhH7y2bHIPOx8B1XmXz5KbZ7hh3Jr5KHUf+O8y8r4WY1+YSTe46loRhnFzXxjGiDBgOBxyfn7OwcGByfJnNRl5UTJfpiwWS2tX3Geseqz1unl+VdUEGGfZTZEjKslWSc4OjwmrDS+XKe9uBRt1QB1IhsMIGcUMejGjSZ/iJmc1TxkOewRBiogM+1aVhXFyRBCKgNVyZRh7Ka3JhqY/6JnkUQRUWoASSAI0koPTM7Iit0ILBHFCoEOqsuhssnVZIqSNroQAAnRRkW5TluuMNzdrrpcrPnl4TKEUb67veHu74c2bt2SrBZKSp6cn/PEf/X2SMDJhB3PFp9c3bANJVCsKWpMrpRUliq+uL3j05CmhqtG0WjApBYiwGQNa0xlzjnl29o9BEDAcjJkcHFjmuSQtMtbbDVpCEAuCMKasNXeLFf3RmIPhiLqsqWsIoh6DUHJwNmU2u+by8pJKQ15VpJutiRgVhvT6MaenRzx79oS6/JCf/k3Cp59+akxSpEnsJaOQvMq5md+w3ax58vQJp6enHBxMyMuK1XpNnq1Z3N2gq4qjgykPHz4kCiI+f/GS5TpjcmCcjAMdcDe/YTa75s2b18zvFhRlbhipUDA9Omakau7urtEYjUYS91FKImVI1E9Yr1YU28yYtgUVVW7MDuI45uDggKqqKIqCOI6bUKhVVfHu3Tsu38ygFgwGfQ4OpgwHA7JsTWA1R471d/cjBcPBhDASJElEnuaoAo6Ojvj44495+vQZh4eHKKW4vbnj15//ml998Suurq6MhkNpYmKKNOX66i3z+Q2EMaNenyrPUVlNEEgr5EG/3yOQIUppgiDk5OSUJGlN1H4rDw8o39swtUULDhGIPTc2mV1p0M9vbAm3FviUrbbPaum+99/uAW3/7/1soNtHzLM7ZjbKgQndAdvKmkn4z/bf6TuSVlUbjrKNZqMbB0mfXDPVkkhhiDHh7cvCFdUD2soDmVp5pjN+/RtA7rUHdLJBu71+t80cWDfl8rTNdPGAaSsNO0E8zNDYjz3uYRJ3yz6M5yN/rw6Oqe+80tt3v3aM2H+036B+wXfA5i5p2I4LmvnPzl0O8Bon5qjpqziKbGhJjbbmVtquEVLJhsDU0vr2uLTErr8FaOF8tIxN/q5wc09sboAt+HY22p+brty6e775RrTQ/Ovw6XuPe327T5TYBerub3O9Y/lbvNUKraIR1tryGrxJZ8x+m+Nb61N3QaD728Xm3jWz2ZV+m8XGM7nZDf1oFpaqo/5uwUqrZnLvN8y8vgdE9y2Uu9FefAC7e7jr3TN2zXcQrQbCbYK+6Ytrh926NIBcd8soZDvxjKOQbGPU7rT5vjL7mgH/XX599n3erbPfr77w4PcDQL/fpz8aMhqN6Pf7aK1J09TEVy9LirJitcrZbDYIIegPerZdtAWTpk2qumKzNUmMJIIVkttS8d3vfIx48ZIvblas5gqhc3oRhL0hD48jZBjRHw24vZlTM0UmA3pBwHqd0h9YhywRgTT229L2jfM7UEoRRzFChKi6MjbzSWLs0KWkNxiQb1KCOEaXith66Lv05m7C+iZlWilWixVpJri4vuXt9VtG/RAhQ758d831MuXXF2+ZLeYgag76EX/8hz9kGveQmaLONC+XGV/O7qhkjK7KZhxpre2mrQ3DWleNw3Y7Tp3QapglgeqMexdf3Y1VKSVlVbDZrCwjV1GqkiCQ9HtjRqOJNe0K2G4zFvM1w94AYZ0215sNQkMShQipUKoky9MmKkae59ze3qF13ZihDG0YSfd+MCA4z3OWyyVJHJPLLWm2Ic9Tnn/0nCgBtd4igozD4yHf+eg5k/GEJEkoipKXF2+4ubnj7tbEnw+Q3N5cc/HmNdvtCjCmKsPhhCSJ+eiT75MXOe/evWZyMOTk5ITNOuXNxRUyCDl//IgsS/n8F59xN7shzzM0cHBwwLNnzxiPx7x48aIZC25O1nVtYvtv11RlTZr10NTUddF8V9c1R0dHDAYDZrOZSebV7zM+mDA9HDMa9dhutqSrjNHIOLoOhwPu5jM+//xzLl6/5u3lJWlhooyA8V+Ig5iiKLi7vTUbQtyD42MenZ7z5Ie/h4wEL1684Pp6Rq/XIwwNA3d8fMzDhw8py5Krqyvm8/neteHv+uEz895Z+9vsoKIxl9m5TOxcTnfj/c0v161MsPMcBz7ugydz1kR37O5b97ejXcBvzrknmzlvyaZaNcnlqqo1x+g4u3omdQ7Ml9bMphOOUrkoN91nIIQxWxSSMDQmjEEQEEgbgtKSYM6Hx98ThTAOkkLYbOdCN2tXh/K2dd0H5pVXh46A4thW+wR9j0wDoUWrlJHtfu5CZ7bXdj93ibZ9Q6DZrO9/6QmG/p7c4Anug1pfhtNNv7eOvv4Y0t653b29a3osCYL7gF5KSSBaa4Q4ioyWxubCqYqSbbGhKktkXaPrdr8T9v4oCM2zhQ2qgfXh85pEujbcFZT3tVkrxdwL7+rEKn+uOVnQtdW3YbX3H/v6utt3vsDXHSOyKaEQ1rRJt4UUzsTIe2YjDNvzUgjYEwDmfce/EZj3bbF3B73PPvvHbqV9x0/XCL7Jzi777EdYcFJkZ3KJrqTrvvOFCl942DuhvPv8xc7vtGZB6qjhusKGu9+V3RcgmrZpWIg9zIF9TzvNzXcuW9suu97cr7rg28SvDjpl32373X7dFRCc06N/vZSSJEk4PTvj5Oy0SVCUpilKqQbcyyA0ocqSxLCYeUEa1MYEJknQ2oRRNColSV2VCCCL+3w5X/GD8wH/8PvfYflXP+VNlnKjCrZZSaEkWZby9PSAIAlRUvDm6oZSK4qoYjoatj4Owth7x3FsJ4ex3y+Kgl6vR1mWxJHLQmiEjFppoxSRxjFIIqgrYQVQSVmavqiqCg2NLbZSijxL0Qrm85zPX72hUCXnh2cUVc31es2r6yU3t0uEgkQKvvfhU/7gD3+HwaBPttmSFvCL6ztWRJQ6QFQ5ca81gXF2qm7TlaHsKAjNOEmapEBGuMqavvQFace+VXWJpjIalgcPEGFAUSiSeEQSj1mtl5RlTr83RhCSbjMTLhNIt1vWqyV3s0ukjXAjJYSh6WMj1GVcXV1xc3Nj+wGK1Ni0A0RxxGA45Pj4GIBBv8fp8QGHh4c2KkbAaDrhYDrl+fPnFFmBrozfy7t373jx4gtmdytGozH9ft84JouKXr/HdHrA8fEBx8dT+oMRB5Mj6lpz+uABX371grPzc/7g93+Xs/Mz5ndLfj74jLKoiYc9stSEs6yrilprojhiMpkwGo1I05QwNOM7z3O2260Ne2nYe6khigKCUJMXm05ujPV6TZIkHB8fNwJNbzBiMBwhA8Vg2OcH3/tdIhk2AsC7yzf87Gc/MRqdLANh5tl0OqWua9arNXVeEUWRFdBqCEOSOGFycGBCgkYhp6dbhAjpJT2iKEFISb/fR9XGF+Pu7q5J+PXbduyCmNaJzV1Aixdb9NN+t8uUefc0zOhvPO4DrPuX7Kjd+TqHuvsP2UdSdZlY30FVdfayrwPzdW3DFGrdYex3QXNbDdlEqJFCNnuf2Z3dvuXaogvIW9zrg/Cd+mrfnKYFyg7Q653P/j379tT271Zj2QBjhAWMLU7Zva/Zb/1Smpe9n13+muObsK/NYxwi1t6zPcHlNz/Hf1D3fNNnwpjCBDYSHVoThSEqikygAieQaagxlhTOOgIwDHzQzq/mndbxuQN+Xfn3VnYPfnbdK+6dstd7iL4FZs3nznvf20b7zt6/4zdGs4HuWHGsu1+urzmcALRvXH3d8a3izLvDB8Xuu31hEXelFX8h2WWM/fCN/n3uezdB3dpqnJkwUrrHRrctQiPR2sIYqU3pNka9ew/touCuE/5vV28ZYISINvPcvkUVaEC8u9+ZNTQmNjsdbNqgFVLMye5AfJ+mwz9MmElPyvPafV+77nuOXwdfwyBlQBgZkDYaTeglA7I0Z7VacXN7S5YZRnaxWDCdTnn0+AlnkzFZNmS+mBsb5jRHhgFxktDv9QikJEsG9IcjdCDQqgYdcJmnzDZrPvrgKf/47/0B/+THP2ZRFSw2Gz578SX5+o58c8bjhyeMJwfczi95eXHNyeSAUgmm4z5RUlqbTZv1TlpVl5SEYYyUIXWtKYraOKCoklCE1LIm21aESUxd1shaUZU5ARqtDEuVZZkRrmqFFAFplqK0oihrNlnNF5fXXN7e8uiDEzSam8Wa19cLLu82BBUkWvNoMubf/0d/zPjwgCJLWacpb282/Pjzl5RIqrIkEoZRbuxVa2VCz9X279AbN7VbvCST8ZTz83MWyyWXV28pywKEIJaS0XDAYDAgyzLSNCWQ8PzD5zz74AMm0wOqWrNcbpnfbcjSmvFowmq9IE235EXG9VVBFAZkZcVqccdmvSKOAg4ODpkeTOn3+0ynU6qq4s2bN7y7fIsWEMYRIpCsVyuUtZcPggApBGWRM7+7pSwrhsMeTx6d8skn36HX66G0oMbENs7TDa9fXzJ7dw3aANBtmiFFQJ4XgDAmL9QEYcgPf+/3ePT4AcNRH1VrbmZ3/Oznn3J1O+PFi19Tq4o4CqhrxcHBIT/4wQ/I84JXry94/fIlq/Wa/miICIyGbb6cM//5nDhKePDgAZODA169fsXd/A7Q1lZY0otiJuMJg8HAS0jWYzo94uGDhyxXC169ekkYhpyenhKGAZdX78iyLZ9877v0+0OSMCbLtiZ3QSA5Oj4kLzKSJOHo+JTR5IiTk1MWiyV/8i/+hHRzx9HhEWfnZ2jg5m7BNt3wxVdfsFjM0VqwWCyoqorJZMLx8YgwDMjSgst3VywWN5RVeX8t/S09jB+E6HxubGF3N/nfACxEYxH8Dd6qd2x+713is4ZuR+s8ooNJurd6ANaV3+1Fdn/w7drrqgXztTWXUB7A90F7WVXGAVb7kW20jWbS3SOkR8pJ6eyv/TIqlBJmb7aOxy4mvlICZU00TKRQK2FZxvZ+pR355epuBBZ8IN8RMkTz3dcQ6Z3mb1hvWhLRPcsnyBpCC3FvzPh7rd9f7321J4D4plENMG2GiIamSp4lvaYZA80PulUptQXzfmRLRIpuHVxxjFWAQIUhodt7qqox0THRjnQD2qUQBDJARJhM5UJ2TIBloBG6TSzpmyD7pG0zJ7uN2uI4H9P5Y82Vv7nGzC9ty3evn3bavvvSPX2nm4a21+8XsL/u730sfods2FPGb3t8YzC/6+jpA3R3bl+h/YgtriMdQ7gLOHev232Xr/UwjdF667vB0SmDECjVhmvUTvq2reWb6jiAb3sNLYwtoFMTCis8SAuWlKobadPVJYqiVnrlfnKnLqth6uPK56dHdiB6l4Xft6j43wNIETSN9L5IQH4ZOgu0lB2TAf/eMAwJooiDwyMODg6RImK93rCezdis1yY7pTbxvbXWzOdz+v0+vSRm0AuIggnbNEREIePxuGEQVaXQKoAgoQ4ldVkyqCULCZ/Obvnu2Ql/7zsfcVNt+G8++4zbdU62zfj8TcY8L1nnmodnZ0xPjvjq1WuuVxlnacGTekqpa7KsZKoFcRJQ6pqk3yOUAaFMyPMarQShVTvWVY2WGTKKrIo6R1U16/WmaaswDCls6uuqqqyaUVFVmgpFqgVfzdf86Ne/5OzBEdNezM16xdvZnNnN2gBuVTLtBfwH/+4/4MNnjwlFSFjXzAn50ctr3mUFQmvCsiRy8X9F63wdBQFaKSql0FKgpaDfGyJlSJ5VVpUZ0O8PiaKE+XKFDCum0ymTyYSj6ZiT4yOEMBljy7wwYR7HQ7KqZLVK2W4qsixHowkjSRgGLJYLqrqgLgrKvLAgAI4mQyaTA85OHzKZHKHqitv5LVeXl8zv7szCHoVETsMgWgFeCEGR59TbLZulqWO6jnjxYsBkcsDz58+RQcjV7Jqbmxtev37N2zdvOZoc8fz5c5Kkz+3dHbNboxnK8xwpJf1+jEYQ9RKCOKYoBev1iovL13z62d+w3ZpwocPhkMVixbt3M4SIGiY81JrDyQEH0ynT4yO2mzVffPE5t7e3aK1J4j7y1midSlWbhDdCEIZmjvZ6PZTSLBZLiqJASsHh9Ijj4zN6vTHrzZqqMloMpSqEqHj77iV5nnN8MuXTTzW6Mplhx5M+0+kBg+H3OD05JU5iTs8eUquAi4u3fPXlBetVRqkUhapYp0ZDsFrNub29RSlFL+kx7o+J49hEpigyyqpiOBigNdzd3VDVZTOu///lcFu9D+S1NbdxkUH8Q3Tu9VlGL6j2b3yn+BZBKFoQfL8k+xlfZ07UAHiwgr5j2OtmbtZ1C+DNZ2OCU+1cq5SyYL5owHyjDdddck5YYCiDNtOrAfeOLLahcAUYf/wdkGu2UEx8eLvnes91LLEDZC50pg+ozPPqBsgLrTxcYF+jFeidPt4Futr1srYyw33hbpecFBYUY+2/XVnb5/G1+26nL72fzp7b2mS4q9HY5EreNxrdRhbSuh13HkAUssUXIpDmR4jGfMzJPk3XyMD6HwoTfliYgCcmZK8R0MrS7H1OEAykIVsCIZrINa7NgjAiCM0e5ifP3CUbXWGalvcFjU5L7LTh3mtagbmRnb0LXLSY+xjeu8gJjmgP0PPeYx/Oa1t1xxJCCoRyYL7FtruY7Nsc/0YxyPbZnO8z0fBBprvWnfev2Qf+W1OR+l40Fo1ZjN3g2HXwNGXUCMm9AePHfvfNRkyHS7twWNacELSNraqNeZ3vOOhmwG4mV99caFcTsSu0OFv73QntGA+l3t/B+4D9PlZtV2Dy7/GPez4B9reUJhFI35pCjEYTFvMNi8Wc9WZuzU1MfF4pjUPswcFBE4owSZImvKHSmjzNrH2dxEVOKIvSrOlaEAtBiuDlIuX13YZn4zX/ve9/n2qdcXG75KvZDRuleXF9x+2y4NHVgg8enXEwnXB5s+RXX7xgPp/w8fOnHE1GpGhOjw6ItWI4sQJXXZuIRaob0UGqkrAumzHlsokqpaxpkG4cSM1PSVUXFLWiUnBxO+e/+tu/ocq3HA+OSddbbtYrFosVSRQSUJJozR/88Hv8/T/6e4RxiKg1ooj54vaOf/7q19ReX7goNm5zNVohMzZMxCATH39yMCGOemw3OelqzWq14quvviLp9RgMh8bRdWj8G1zGzyQxWpbtamOymFYFhapZLTdk25woNjH0C+v4ud1sULri/PSUB2fnjZ/MwcEBk/GEPK9YrVJW6zXzuzvW6zVRFHHQj8l1gZSS7XZrQsXaueGr8t0YzrKazz83wPn3f//3ef7hR6zWGS9evLDPDNlsl/zylz8nL3Lu5gs2aU6cJDx+/JjJZMBms2W1nrNcLfj1578iDPqs10tub6+5vV0QhhH9fp/JZEIUxWRZwcXrt9ze3rBcLomDiNOTU04enlPWFRdFwXA4IU1NdJvCmpb1+32TOKvfo7amT3VdsyqXJsRfWSKEJIpC4tgk2IqiiI8+/JDR+AcmQ+5mQ16VPH78uHGk/eUvfkG+zdHUnJ4d8Z3vfMTp6RlPHj8zzuJpypt37/jxj/+a16/eUNXGwbyqKl69etVk7XTzWtqkU870yZiVFWxSkzF3cjBgPJ6aMJxXV/fWht+mYx/b7pvIOLt5f73UeiduvEU4ThRoKcFv8P6d3193+ECqc/59z/ABg7fnOFbe7cWNrbpqo7xp7ztnTuOb2agd0xpnUmHaqLsvmDLeByOu1I7p1kpYM4O2D9q90qxlnb2tQV7+I7tmNP5Ph5Xft79pvVO2veoOIzjs4BL3nGZs+H59DuDtYh7vXnY+33+t3v+zB8TvvqN5l7vCf6dfWydoOEFJeAJPi5rbsnogWwqTM0A5XwhHOGJISK1aYRCwjtIaFzHKvV8o1UbQ6WCu+1qMHcztVQQriLeVvAfecbKZ3/dWUPOHQVca2PfRe8H9eW+G3P4+vvd5Z7jtI8B9ktq/RkATxembHN/KzGaX+fYlLLgPBndVVd+UJfaTJTUssQDpSdku/a8PoIUQDcsQBLIzQX0G3S+vs0MXGNOLMGkdWU2MXEmWmRB3dVW0Nvw2bJ/fWX5Cp2YxpN00dn/vu6a7udzXdvgb0PucYN15XzDwzXt8kyi/f3fbMggCaxowZTgckvR61EjW6zWr1ZqyKglDSX8wJI5jjENpwuHhIZPJBCnNtS5xUxAErJerBuAfHh0i4og4TtpcBYVCygotBXc65m+vb/idsxPODxN++J3vML58y2AY8au3V1DUrLYbPttseH11zenJEScHB0xPjnj59h1XyxUfPX/MB/qcCsWDw0PKokJIqI1RPHWpCMPIxjDXyBqKzISZrKqSWgmqSt9rMycAZEUKUrPeVszmG378s1/y1Rcv+fjJKZt0zc1qy816SxQnUNUIXfLxkzP+/f/+PzL241KQrTfMas0/+9kvmaU5ojZCpRMenMBj+jKwKdENGyY9UCxiQa+XUOUFWZoyn8+ZTCacP3pIGEVst1vm8zmb5RwpafpWKNimW4I4Ihr0OTs7oSwKyrICNEVi6rzeLFit5iRJwrNnzxgMBna+Supas5ivKIsFQRBwenrK0dERWZax2C7R6aphrMssA2/s7wrjWhvH2evra/7iL/6Cz371OVFizFXACDbr+dz6aNRUdY1CUpQRV1eSqspZzFfMF7cgNMPhgEAM6PUTwrBHEMQMh0MGA2Nff3FxwXZT8OD8IeiAslAokRGEIe/evWOxWrJcrNBaMOiPCGTU+CFst1tj8570GFub/8vLS4osRVeGnQyCkCDUZNmG+eKGKAp58PCE58+fM5lMjPNvWZBXJhzg9fU1VV6xYMnl5RuuZ0bI+O53v8+Hzz9kMBzy1Zev+fUXL6hVzXgypixKimrDarVqQmU6TdLBwQGnJ6dMR1ObPXbMeDQizVKjmSlLhsMRw+GQLMt+ax1g4f6ato8I0eiGle8AehwfvgvC7FnNvfV2bxl4P6B3GS2b779mP3wf4bLL5sJuVJrK7i26ZeaVF1ZSKcq6as61yaEqCpsB1jfpdGtN2xQOHNr28MqilAN3ThtORyvi7jF5+GRDlBmyW7bMvGW9NSYsojYouQHvSut2D3YmPBr0DmDssOa2A7TVhmg8DcB7iLBGeEIgtNWiI0wsRX+/lLIpl1ZdjfzX9afutJ1nxcAep2Wt748r3QWbu6Bea93GLPfe58a6+a29fhDUYELwWq2PwPhGJHFiMgoDeZo1oSorS6iGUhJWxt5eNjhDgKgbIcEvg29msw9Pdhh6v8D+l76Q2JxzA417ApeDbLrTJp0e8RvXjDna+Wbu2RVK2fl+53l7DtHOintH88y9d77/+G+dHcR3ht0tjL+QKk/q2sck7wO7fuMI79mOKXC2652J4hZK7xm7QNa/pwESwoTxqipNFEYIIYmjhF6vx3AwJgojttsVWZbaBQVrevM1duxO2PCYjWZUagjDmLqqAY2QAY0dYAPWdwb3TptorTrttdsPJn421LVxBpWBtItj61HuR4AQwpghBTbxz/RwyuPHjxmPxs29623GbHZDpQqmhxMOpueMxxN6vR51rdF1G1tfa8Niu/B7SZLQO44pi4LLy0vevn3L9PgIUYckvZhBr0e6Bo0iCEJKHfByk/LV4o7BKOT5k6fMV9d88sEDJqMBX71+x2WWU8mQ1bbg8zczbm5uOT854uzJU27v7vjRz3/Bu9sbPnr4iPRBQSBh0E8IIxNBRVWw3myJopjtdotSGULU1mQiolYShUszbplWGTQ22ts8Z5lteHe74tcv3vDpp7/m0cNjojBgmeXMNhtEEBKHEXW1ZtJP+F/8z/5DTs8O0bqmLo1Zx7969Za/fHVBLCKUNKm0nQBRViVlXRFIE2NfIiirmvV2w8FkShTF1EqTFyVaC2QoCa1TbxBJsjynL01ikKIoSNMNaWqcHGc3t8RhxGa7RaFJBn0Op1Mm4zFSCnq9PoNBQq8/QIbwxZefczWb8friDR9++CFZliGEyTVQWDAwn98RhGYszm5mLNYLSl1xOJ1y/uQp4ukzVvMFV5eXrFcmC2y7orbztqoqlssly9UaIaPG4VQpRZGl1gZYmbTjaMoKZrMrZrNrIEBKiOOIKIpJEhOxRuuau/mc8/MTHj58gFY1URwRRyOiMCZJNGdnD9isFyxXS+ZvVyb+/dlDwjBivVojpCDdrpnP79hmKTKQhELQ6w2o69IABlUThEZ4OT8/5/z8AVpIvvryFW8v3zEYDfjo4+dUtTIxnpVmfTfnenbNdrshCEMqVZLmGcvlis0m5fWrd/xo8tecnJyQ5RnrdMtwMOLhxw+ZLxZ8+fJziqIkCEJ6vYiiMtqQMI6otWKbpaRZxnq14jqMASNA9/t94mhAGIRMxhOOpofvW+5/6473gWWlVRPKuAPkfMDU3OvsW++z0/sPuz/R5VVFuy10AP17n9IBIfdBgw/0WgCvGi2eUtrGh++C+VrVlD6AL4rm+9JGoeowq0g3VBogvGuu4t5thANj4iOlJPAJL8eaaq/NtW4CN0gb4hIw0T68ujvG2mUj1Vo3ZkXufNNmHr5otPqOjfaKgjDmJ/h13WXaNU10Ee0x2lrJThz1hmDzwLwrQ6PJ3+lXvy99wUxr1YB512dNmf3y08XynTHSqUP7t9PGOIa9KZPWCAd0bSQak4DKRPkJg8iEnbaYYaUNgVTadjSx5kWT/TeQLrKR6GAO1ydtcj7ZGcu77blDVbJ7NEDe/bML6N23Dou6Ofg+MK+1d5eJvGeuvR856X0/u8fOVOmc7Goi7pOr71u/9h3fLmmUbhllf9DvRprxgXLDaLpmF+az8Cb0LrjeZdFNpRwp4DkPeJOwVnXDGDTv9gaHb4Pujm4MeEVV51BDrXJEIU0s7aq0wD6iiiNzXVUZaKfrjpnPPelet+GuzGJjVkGBBeraOAMJIUF57IAvGe57Lo7NNADTmROZhc4zqREaparmScZnwCxgdW3Mh5wjE0ClFf3hgOnBlNHYRMo4OjkhDE1UjfV2Q6VLJkdjTh4cMxj0iZMArUyEl2xrMkhWZWXXbE0URa19vGWbD0+Oub69YbNaka/XjKcnHJ1MGUQRV6pmKwShNmBsrkJ+vSp5sMyZjNZ8/8Pv8stXX/LkwTF9CeFsTiFDHp3G3N4tyKuS68WS+TZlejDlJHnEl++ueH255PpxSl4qHpxPOZhMCKRxwNIIimxLmmds0wV5mQIBk/EURIBG0B/0qSvFNstJ84LVJkcRkhYFX11e8NMXXzC7nPHs7JTxdMA6K7mZb1GFoj+JqIoamWX88Psf8vD0iKJMCUNJVRZ8tVrxT/7iRyxqSKSmKqrGdKusKkptbOODOEJJgaoNm//P/+Rf8Lvf/wGffPK7PHo4JK8qiqJCasVgbGKZl3XNarVCa9MXRoNSU9aa7XbL6mbemNtorZnfLqHUHI4O6UU9ULBMl6S5iT0fRAnrVcqLL1+R5iaxlAMLWZbZ7LSthqqwoIG6Jg5CHp0/IOoPWZ5mVITkVWUZoByttImSs7OICTTahs0rBYggQIQxVCVaSEIhbQbKqJkbbt0ZDoecnZ5T1gGrzcaYr4U9Bv0DTo/PCSOJRjEeHaIVvH79mru7W+7mNyyXRsvw8YcfcXb6GLTgkkvquqYfRKiiJooSFJq6rFguVmT5Bik1w/GQg/GEjz/+Do8fPWJ8cESWVyT9Ma9fX3B5M+Nf/n/+nNFobMzYwtjY7l9eMF8YZ/IiL8jz3IQgrRR5VrJarZjNrm2GzQRV1AySHmWeUVeaKIzp9wdMpges0xWr9RotJEVVUdcp48GQuqzJ0xVxb9gIR0op4jDi+bMPOD48+iZbwt+5472kyp5jV92tPbLJ393b8/bfPUz/zpPxN2X7FO957Zlv8xQfqPn7TYe53TG1aT93zW/Ue6LW+HlbpDBmFQ4lCcfEv6e8XUDTms/sYgXDiprvAWMe5Gs997TtXtC0o6HwhTCwMoO3juzrFVOWtl/9dm6u0dx/hgYt75OXgMnCum/8eGPtfXVr/kbbZth5xw4AN/f4Y9i1rbm3pUd2Ccbus72LbC2NI7BxCHbPp0kM5rQQWreaCEUr0Jm2Eo025179vgEQ7rSXrXsDAu8Vf4/A2P7hHnjv2Z3Pur268z33D63vP+N94LuBc3p35ohmjN5/wZ6XfoPjW5nZ7GMKfEbY7zD3XZf9pjnPzvMcAPDNGdyPkWxlx35ICBqQ2QgZ9ntffe+XxUnHvhDRSKn2ujaCi6YoUvI8BeGcQysaCQ19r02ceVBTbuTeznLtImWIEG28/bq2ST7uleX+ImDa3EbiUewMYAfuAR166irZhDZECKIwIrG2w4PBgCiJ6Q0HHBwcEMcmTnsURQSBsZ2ulSKMY3q9ngl9GAUoVZKlJXm+YbVak65SVquVAY5JjNaVtf1vmSHnqAiGURr0+6TVhizLkEJS1RWiEoRRRKpDfvT6ioMkYDAd8vD4jMPDI+abFUeHhzyqBVeLFVoKnj5+xOz2rmmz7XLFIEr46METZos7fvLFZ3w5u+R7Hz7nu8/OOZ8OCMyy04yVbaXYlqa8d9kCLUJqBXGcgsYwm9uMVZ7xbn7L9WzG3eyGONB8/4Nz+kmPTVZyM1+SFhX94QhVK6rNlkmo+eEffB+EoB/F5DnMNor/7C9/wsViSUhEUNZUdnw4m3zlhKI4oq4VdWXrt9nyox//mL/68Y94cP6IP/yDv8+jh08ZxmNIQkBSlhV5vkUIwXA4bDI7hqFxRHb+EL1eD61Nf6RpxvX1NVEUkaYpq2xN3DMp2o+Ppoz7A+IoMXb2mUmqtN1uyfOcXq/HJ598QhRFbDYmG+9yteDlyy+4ubnhpz/9Kb3BCC0DNqs5uioNC4TRdPnrhzuUUmgX9QKBRJDEPcajA4IwoJckHEwn9Pt9bm5ummRMZVmaek4mlLXk9vaOoiioqpq3b94ym70jCCVCaA6nx0ynU25ubnj16jVZliKtNuPi9WsWdyu0hpubG7bbLbouKKsSZR2QQykY9no8ffZdkiSh3+8zHo958OAhQsD1zR1v371jtVmjA0FdaK6vZ1xdXdu1KUIg2WyM/4LWiiAMSETCMBwSBRG6Mk6Mk8mE09NToihiNptxcXFBafMk9Homo2svSYiThKPpCcdHRxyfnJBlGbEMmY7GqKpmvtxwe3trzMWylG0vJEwiFuvVvTXrt+Hwt+B2CHXZOF+D25BCdME93j6mLcAxWPa+OYYh2HY43x3Arr1zzXcOY3Su152NXHsPct8p7ZIk0sSS1+g20pW2QN0y8yavgeqsv1VdU5YFtcfMO2CmlMkgLoPWvMZlcwWM45hjoZVJHAeaoJJmb0Qjg4CgNqauzifM/3F7p8GNIU7DLFXQ7P/+bqa9PnVgVVuH3rav7VXNO0BIDS5CjUdadcyqVJsxXQjHlPr90H7eNQERUrbCn9MyWGGmES60RjlBqGH2ze9amSgxHQGs6fkWy/jCG944bcZrh8UWTZs0ez1t+RvnZDem7b1Si9Yd3D1faZRnsiWktBl+22SXWmnK0vgRSvef3VNMcQUBgsBrd4d3dv0FfVJ313qjGS/euPDHSfe8u3ZHhGsElq6A0Qo4HqD3Z28HqN8H8V937HSRV2pP0LDvc7JsA/6/Jaj/xmD+feY0u6Yfu4y6cxj1M64ppQhEm2jHVLYF1/uOytqfujB9eV6Y7GT2niBsMxfuguBdZn53cXHqnmaxqyqiMDJMvT3q2km+rne6QovPjLTtdN+MyP2YgWwEklYYMiY3PtPi7t0d4Ob5Jsa4SzallAHOrZAS2B9TYBlIotAA9DAMGQ9HDJIe4/GY0WjEcDImiIwpQ1mWLJdL5vN5k9l1PJmwzVK2WxMjPIwCoihAa2OSEkYRUWRiXed5Tp5nFGXaSXkPdLQZaZbyxZdfsEyXTXItVavGuVJrxSWCf/HlG+LRkEFvzPPnz/npZ79AKM3TkxN0pbjarFGh5OTwkOXSMNFh0jMxwJcrpoMxMo6YLTb8qx//DZ9+PuDDpw85OTw0mWHtWM2qguVmw3KxJU0LSmvPjDW1qWpNpRRpuqaqcpI44sMnpzw8PKSoCpbblMUqZ5uVRMmAUkGVZ0RZxvd+5ymPn50TRSEazXWu+T//yV/xp798TRGEhECljF28GfNmIQ2isMms27CoUYQuKxPDVxe8ffcV795dMB5P+fDpd/jux9/l4cOHCCGpKk29MKr3JEk4Ojri+PiYXq9HlmXGZny7bQDwNsu5s1FQRqMRP/jdT3j+0XMD+JViuUqZzW65uLhgs9k0vhUOTDrHUpMw6pYwCjg+Pm6AdlUr1psN29UcXRVQV531xP9s/jYbiZtvcZIwHB5wenpGv98zRIAwrPV8Pm/ivYfWXGyxmCOCfqM9kFLSH/TJsg3L5ZyizLi4eEMUhtZheMDHH3/IYDBkPp9zdXXFbDajqmorKORQ1wRRSNTvcXR0zJPH5zx9/ISHDx4TBjHrdMvbd2/5+S8/Y7VasbEC7HK5JE1TJqMRD07OzBxIU+pak/QSpsGUNNsghMn+enZ2hhCC7XpLlSuKvCAIAg4Pj5lMRoRhyOXlJaPxmKOTE9Is5d27d+RZwXg45vj4mDiO2S43bPMtk+GIJImJhzGKgNevX7Pdbun1e1zPZyY51m/YoP6uHo3KfZd5U/fro4W12aU1lWh2U7pkkg/moQvqEKIxw2jfiYcBd8qyC+Z3SDAHJBt21oLChn22oJtO+VpzDK01qqqbRE9lURqfEruvOVCfl0XHzMbVswG9FrT5JhGAMzywe4xzyFfI0mRk11oRSEkta+t3Fjbt25hPaIWyibJQJpqZ24cdS98cwgf0dOq+z8QVq3kGTIQbSwAYzUKbYK8x8XF2+wA2uc89kObt876w0YB/rVtTHK3Qqvawgm7XsB1hwvkrmLq4/d4KBrZQjebFG0N++ZxAapJvKQsCdRPBaLcuQggq2jEsrW9CICQu8IeyeQrQNlqgUmgXzSY0JKQRKgS11o0Zr7AA1AUUAUv0ujby1naX52QXP/pYp4M39wB5v+f3aV7uHz5q9+c6+Mx5V6Da1Rjsvtl7+q6Q1ZRtJ1RtR9AQXplEA+J1c+H7dGH3j28dmjIIAlNF1bXXbsop7pvhGJbaG8i6HdCNA0/H4aahLYwHNQJpwXNdmeg2cRR13uVLrX6ZuipHBxBcXxrgFMfGzEApRZHn5EWO0orQMcpWupeEDaBym4B2kr3WTdM3Ag2t5Okq5A9oF1VCa2kXS6fWUqaP1X1wEwShJyiZGOdBaEJJ1aqkqkrAxB6XMmwSJvX7fQajIUFsyhTa6DKRjZ0vgxApjdOveX5JUZTMZjPmc5O5czQes91uefXqFTc3NwCcPzjjwfkjtDZtEYaS4WhAGAYmLnmWk263jTAGmiAw0T1qG+IqLdasNksrkLQJjcqioBcFZDLkTSH4p3/zK0aB5B+fnfDd5x/zi19+Sj+JeXR6wqYuuEm3xJGgHycUlpGKRgO2yxXlukLEIdPxgDSQvLtb8vLqliSJGQ+HxElCGARoXZnFTUYkSZ/+wZDDYQwIVqsV2yKj2KwZByEfPXrCycEYqRX5pmRZVtystpSlJkpiiqpCC6i2OQ8mQ/6tv/f7xKFEVIq50vzTv/4p/+LTX1HJBK0rKl2jJcTWDKqqKoIwpJf0QZvwYLrWlk0WKDRSmB+z6FQsV7f85G//K3726Y84Ojri+Qcf8uEHv8PJ8Rm1rkGauRxGoU2AVeJMx1wEFKUVYRQhpSAIQ+P0VCuk0uR5yfXVNZ+/+JLVakVVVSRJywjnec7PfvpTBsMBvV6PyXjEweEBZ2cn5HnO3d0dSm3J0i1VkSOcw5wNh9YBPNqwXEIEgBFKkyQhiftoDWma2d9bNtkCISSD0YjSjishJEVecn014/T8CePRiLoqCaTg6HBKFB1xe3vD64tXqDonHvT57ne+w3e/+13Ozh4ghODi4oK8yFm9XpJnmR1XNaEwGTDPzk74B//wH3J2ekwgBEVRUmjF7d2cl68vuHx3SZZnhGFE0kuMfXwQopRu/A2M5itgu91QljlJ0kMKOJwecnZ2bhJSrVMm4wPUUHF5eckvf/lLzs5POH/wgMPjQ3pJn6IqKcuck5Mjsm3KqD9hPBiSpikXr15Rqop8vEUXFUeHRyS9AaenJ3z+4nMuLmZE/YiBzUHw23jsbqJuLDXsqT2EsxfxyLF94K3dS2hA9e567M53X+yxp7RCBv7Y7lzfAmS98+69nz2mdvenY06jVffvHTOc3XN+BtRdwqthu736+sSdYfRrlDKJhKBuNLJdc1YLojzssEtWtf3ksI1oyLPmOUo1YTnvHfc7BEfGNGXACWd+/91vbzzwtk8z47eVA+/+fr8X4FnBqek368CrGybdG5jevb5Q06mHaPGSe7z279sVTnDYx8tub8d5W55Wy3DvfivYtkDcvNwJilrrTjKpzns8vLb74+qy22YG23W6qG0H/3znGkHXSYW9a4EZj++Zx7SjozsHu/25Oz/98wLRJCO710/+e/zh0SnBfwdgXhtR1NTbY893GWPodl5zjQPwmnud1zzf/W07VNrQhWbwSNAuTq65NwzD5h6lNF6U1T2LQxv/1KkmzWeoypoo1PR6fXpJ3zDJWQa6NJKnTcoj9U7iJm0XBN0uDLYhXCGQMrRMdE1VFU2ozdYUSFMUVk0VgLNTM/WRDcDxO7vXSxp2O4oio1bv9SiKgvl8TlEY9u7oaMrxsUkb3+v3SXp9kAFZlrHZbgCJlkZAKWpFWFTIMAINm3XK7c2cd2+viOOY5cJkrczyjNubW1arFXWtWN2l3F2uODw8tIJkTa/XYzQaML8TbFYLIhkgA6jqipqaoswQlekzQUAtFJUuqc1uSRgagSXPcxCCKDaLzWWl+T/9+Kdk8ZD/8e//Hk8/+JCvXr5kPEl4pKZs3t1RloVRD4cuIVRF0IvJiwJp1blIZeKQ64qsLNguKtBG6zPu9+iHAVJaVXRdkG5Mm2V5htYFx9MBT07PGISSKtuAFmR1RZFtkaqmtLkPtFJILRhKwd//w084PzlAlJINgv/i09f8X//sr6kEBLpG1mYchrZfXSz7Qb9PIGKrzrQCSj9C1zVa1tS1RnRiKSsIoKbiZj7j+vaKH//kbxkNxzx89IgPnz/nO88/4fJqSmhtzPvJkOn0iOHQhFssS5MUCiHIsoyf/vwzXnzxkn6vjwY2aYaQJo49aGvuVjaZUPNsC6rk4ZkxXSmqirm129dam7ll2ZxKYcY50gpzZqwLaeeANirb0eC4EbizPCfPcqRcG9OfkxNOolOUMiYos9mMN1+9MiyagOVyRbr9kuFwgKaiyJaU2ZTz06dEQUC22bLZbHj+7Dnf/eg7nEyPTTKzPOfq6orFfIEhKwMoc4JA0u+bcJ9lVnHx1QW6Mpvg27dvmUwmTI9PiaMeWgukiAi0hExxPDzi/CCkqguybItSisFgQBwHVFVAWUIv6fPxxx9zdnZGrWo2m5TJeEISxSilmRZj1LwkiAOC2CSzenv5hnybcXQ04e/9wR+SJDHrVcFXX30FouT87IjJZMp4NDaOxesler0kjASDQY+6Ljg7O+bs/JzFYvEbdoO/m8d+MK8b58jmPNrwJbJ1yHOH8O9tnuE29fsBCfZutVo063XDtmO3hWZvoDnn2zkr7727YMwH7O682486kWqswFnXZh2p9pnZFKWNPd+GFhTCEGnC2kY7rXHjqIhunuWXKwgClN2v60iBkIRBawLrnuEAjQ+oVF1TWXZY2nj1CNH4cmlXMLu9+m2immRSXse5/nGaFNdXUjbCirB/u3I4u3m0czTtjpkGRkgIMGuKCLzEWfZH46KkdftGNJjJxwgmz43JVWLix3fYad/X0APczRjQLWkZyDbLvPOFaE2FPMGpabdWEKU5X6MaAUM180bXRshQtaIuy0aIMlqXiLqqGqfpsuo6T7v+dtnI/Xm2K0z4510bdH4jcHZAHUAuWtbbNL1F9c6bt/Pw9wg4DtDvXu45IrfXtyLVPiHJr0NXINwB+qIjY3Setyu0fdPjW2eAresaKaS1u9qfTMp9FkI0E3r32DXHQe+PPdpI/crFXm+vcT+NhkB2bfT97xsixhM8nLpNa93Y/7oyK62ROmTQT6iEJi8KRG0GiFk061aDYOsjRWBBuY1bb8tr3gNadxc431PdCSTg2BETLlMpX90krIlRbpI4Ba0adDgc2pjZEavVijAMOT4+4cGDM3q9nmVyBdqqGn0mttfrAXB7e4u4M3VaLBZcXFywWCyIosgyql5MYsvkFHnBzc0ty+XKlCcQHB0d8ODhAz7+znOePX7EmzdvePnyJYvlomE3TGIagZSQFVv+y//yn7PZroB2g4iiqDG9MeFANeu6x3/0X/2Eiyzjf/X3/4gHjxS31695dDylVPDq3S2lqun3eoiiIgkTNunaMsAlm0pTIclrUDJC6wqljdYgLSpUkbLxJp/vWR+GIceHEwbhgHSRE8QhUSjJdUlW1ighQQYmook9yjrn6YMx3336CPKKlYQ/++qC/+if/xlp2EPpGqnrTkxwV2fTb60PidFaGEGnspuDEN2FqF1HdRv/V29ZrrfMf/GOX/zyr4lEj34y4Pj4mI8//g7/4N/6xxwfnbXagCAgtKZYQRBwe3vLfLXibrkkSRJOTk45Pj4lyzKWyyVCQBQFzdzJUpOD4NNPP2U0GhHGEevtljRNTUjIfo/tasVyubBrQNDU3awpAYiAIIBBf8Dx8QnnZ0+RUvL69Wvy5RItBeODEcNhj5OTIxSaFy9e8O7NWwCSXs84OQcBcRRzeXnFanVHrQo2myWBJRdOTk549uwZdV1zdHTEcrHk9uaW0cEEhGCz2Zh21JIk7oE2m9N0OkVrWK1W/OQnP+HFixckSUIcx8Z0oVSsFyt0pTg5POL5s2fEUdwArYs3rxqBTUrJeDzm2bNn3N7e8ubNGxaLBc5h/GBywPEHH6KqitevX5v6JQlFWfD69Ws2mw1FnnN0MOHDjz7k0aPHBpDJJY8ePSKKIsqiZL0yfg1aGw3nerthMBjw7NlTbm9vSZKQsig6ZM1v4/E+1qxzDff9pXbI+p1N2TkF6s6+tQ/Qu4ypu+9/38bfbuLvB/P7/MB8Zr2NYKMavxhDClRNgihn0lHVtfH38Nh5MPNOCNnsKQ6A+fsutOu/e5+0/myGfDPOs3VQE1nteZN3xWPxd0GbD+DNHtqGwxSyNTfYC8Z2nuOb9DZgUAYI6UV9Mw9pBKyGGff6o7nfMdHYmPlmADXnhCUKNcoqn50Q2TWR2S23b2ZjAFxLhrrgHUaYsfd5/V1bUlMKgbCCkvJAvu+82pRnt92ENPVwINcfp+45tYlqo+ra2Pdb+3k3Ppo6qlZg3DWncX/vhqLcFzjlfZ9NhJ1WQ+M1aAPom7GBBfI7GpT3rgva9edOP+F8HzyQvWcO33ueXxatjZmft87YirFrQsbOZ5zA9Q2PbxWasgG6WDMTWsDjOtKPRb+vYv4i2LGPFzR2dO4a9zwhBCIwsbf9ePL+wPF/+043DhTGUQy0SYoAG2vaqJTXNotplmWNcCFEyHR6zMHxIZdXlyxns2YDMCZlbd3N+yIGgz69Xp+yNGHluirNslO3XcEHLZu+kyKwnWmZBGEmVBAGTZhH19Z1XVMURRM5ZjqdkiQJo9GosY83kU0U6226I0C0TE6apk07rFYrlstlhyX2B6xpY8lwMGqEgaqqybOSy3fXhJHgYNJnejil3+8bgelXKVlpMsW6d1dVxY9+9Jf88rNP6Q0T+5yqqYvWJuZ4FEWEQUilFWmt+H/+6K9ZLbb8r/+9f8xRL+bu3QWn02NqFfD67SXFdm2Y/lozGSQUoWC93kCZmljzaEKlCIBa12hFYz5V6+44dHUuy5Lb+RKtBEejAaqGKARCQaUFRQW1oomqUpYlcRTw/e9+RF0o1irmX3/6Bf/xn/+EJZK8yolljSS8pwJ3CX6cLaWLM59EMaUqm8XabZL+PLs//1p1JwKqKmO1yVitb/niq1/xp3/6pxwenvD48SMePnjIo4fPODt70AgUYRxRVBW9Xo/j4yNOjk7pJ/0GQGy3G5NvoN9vIhdVlWqEY1IjfIxGIz755BMmoxEvv/yCv/7rH5PneSf6jSmn8fU4ODjggw+e8ezZc7SSvHjxgvl8TpZnBLFktbqjqlKurt9RFbW1a69sWNVD+v0+QRCQpilBCFVdEwYQhIKyLOj3+zx//pwwDLm5ueHNmzfc3hqtU6U148m4yZlQVcpef0IYBCyW8+baPM8b34GDgwMLrr8k3aTIIGDcHyAwQkCe5ywWC66vrkizLYPBoPPT6/UYDAaNrb7TNtxczwiE4O7ujizLmnl9cHDAyckJs+tLxsM+YSjZbnI2my2z2cz4B/T7rNcbZrMZeZ5zenrKJ598gsKQGKvVilevXvLll1f0egk/+MEPfuNe8Hfx6GymlpnUe74DOg6ozb4EjRmJD7LthcDXaPXbFzvs1Lz324D5faDLmT34Wm1/rfA/+yC7Vl1TGnddEwKZ+8DJt23f3Vvf3/BeuZRLIKmarLRojRISJU1iQaW7wKcxe3JmPg3LLnG2Nsbu2O9T1w4Os1nQbfdM9wyf2RW0e15rJUAH0Pvt3ykfbbs73KOVAinQWjYWA7vt3RGMGzK8K5C4vt9laBt4b+vcud61ta/l7wgQjT6osR7wtRu2Ro2VAk0b6M5vpdpnqsa0STcaEGFjyqs9wFlpjdgzRl2f+ISuO9w5KSRa3AfIjgzcMwTb9rK13pmZzTPsh6avXbLde1dr/3rv6dpvs+5r7gF6T0txr9z+dzv3tpf8hrnnHd/KZt7ZvwGNU1G7QNx38HCd50BEM5D2FrDrXe2e7QD7Lrgyfxu1vJvE2r4zjhP6/V6TuMaosRNjUlMbh5/lYkme5wyHA3q9PpVNluE2vcViSVVUhuVOYpI4IU56pNstSplEMM5hRoYhcRQzHNooMAjK2jjgVVXVCA9ShGiUVampRg1o4rJKpIwa58eyKlEGVTYOSEpXRJFJyHN4eEhV1SwXC5vEyUSgGA6HTA8PSZLEOlpCabOVpnlBmuUNiC6Kgn6vZyLIKCN1bzdblsulBfBtP7oF3sT6DphOp0ynRxxMDhsGPc9L3lxccTe/5IsvXrBY3HI0PgGEUd03C6dRr0op+OriJX/5X/8FdV1QVxJhVbZlWdrwey0wBo0MFWFRo0XAv/z1C15dz/jf/W/+l5x8MOCrX/2K6cEYjeL6ZsF6W1BUBZsyoz8YcHZyzFFdUtrkXwIQWrJcrBsH0EJB2Wzc7YaBME5CeVEwWy0p64p1FDEZ9ohjSV7W5GVNUVbIIEArRb+X8MHDc07Gx2T0+MmXV/wn//qvWBFQC4hkTUhlHFQtoNVa0x8MieLEsEkoqqqmqit6vT4IYUN/mnFTV21CjvezBsYvwnGIMlBN3UBQqQ1XNxsuZ18Q/G3AcHjC08fP+cM//EM+/PBDRCipigoRSMI45u27t2xXG1OuqqIoUuq6JI4T4jhBaU2v3+P4+NiwwlWFkJInT5/w+NFjBJqLV7sxvh2baVi4JBkwnR5TFIoXL74iyzKur2cUZUkQmAg0m+2asszpJTm6EsRBSICgKkquLi+Zza69NaTmydPHPHp8zi9/+QtCkTCajBkMB6AhjhOODo8ZDcdcvLlgNr/j9m5OWdWMx2MePR4ymRxwdHTEer1mdjtjm27t5uM0czajcK0psoxsa2L5X1YmhOdkOqWXJDZrsBHAnSBxe3trNC5V1cy5NEsRQrBeryiLkgDB4eEh3//+95lMD1htVvT7PcIw5INnT3hwegwEvH17yd/8zU+5vHxjMjf3+xwfn3AwmXJ4OOXo+JjRaMRqvUKpmigKOTk5IU23dr2q3rML/N0+6s74b7d1f4tvLlEKpDZOe1Jb5s/dZjbqlrUWDfp3gLARPLt8Xnu7agGY26zpXGl/7wK0pozt2mMikDhwpaxNum6i1GitKMuKyiaCynMTIlhpTVXV1FYYaLSqXnl88B7a0LVSykYrt89cFdw+bX401sxVW1v5vEAGhsl1mbbjsERVsTFtUj6w8Zhvn5l3LK57v79G2PIru5m4sgjHxsr2b/edDGQTblPXxknXdUTTN25z8vpUuueJVvBTwjh+ompD/gQ2WINSFFYrgm4dlRtrH9F9n2G921j5TSwbLdFKeOPEgT03dI3TaW3JJ2WxkLte45HSArTQDQHrO9SaN9q3doTOVkOhqroR0KqyNJHZrDNsGJoyNQKM8jVImqIsG9NmN9bMdy2OdGPM/XaO6EoIpPKIUmkdm3eZeR8vdoap2PexmZ+mnq6+ft/7c9MTylwveA/wAb3wHWi9+Yx/r/dO4wQquuVv5qXXed/i+OZmNrXqdLhvouIzva5Q/qRsCmYM5zsN6u4T0rN98gC7e5/ZLL1ILTZElhbG3MPMmcCq1ROmB4ecnZ1xfn7ehFl0DFpRKIoy4/buhts7ePjwIaenp/T7fR4FAY8eP+Dt27dcXFygVEE/CXhwdszp4QmXl5cmbjcKGRkhZTAY0O/36SU9ELBerSl00QgizmYMHaCUbhZbYyYjjI23VW36jLSLLhLHJiwg1MYsw7ZpGAYms6qNsa0FDEZDJgcHjcZBK0VR16RZgRCCwWBAXdcsl0vWqxXb1ZrDw0PDCCYD+lGfjd6iityEOhOtajIIA86sHfTR0RHD4Yg4MtFEVssVZVVYu38ospq3b2Zc6RuCIGjUiaI20rwQgjdvL/gn//Q/J802xmRJaUTYany01o1fhLYbU0hIEBpTBsqaL+db/vf/x/+E//m/80f88e/+gMuvfkWtckIZcnezYrbdsC1z0m2BGIYMB316yYg4gMmwz+F4hLAbXVHk3N6tuL5ZGEfQuqYoa6rK2Ev3ej02ZcWr2Yxiq4iGY1ZpQU+FFIVZxHv9mELXTPoDqm3Ko+NDbhdb/vzmHX/2xWvWIkGqigQFIqKuJVrXzaLV6/cJkx5ahlQaqlpT1hUyjtCBMHaJaOIootzmdvH7TbPXMTe0iz/eQhIIm/NAU2nFYnPN8rNrfv7rv6Lf63N4+IjHjz7g6ZMnrFZ3lFlOmZeMhgdEUQIoZKhIsw1ZniEljA8OOH1wynQ6ZTwakYQGJMxurvn1r37FV199ZdpYKRtkQtkNTCJkTNwfIYKE5SZnu90wGPQ4e/iAcyGo64os36As26+1RtaBCRmpNZvNmtu7a/K8zQYdxyGB1kz6Y06mJyzylNdXF+RlRigkd7fGB+Tk5IQHDx5RBwGv31xwM59bln7EbH7Nu9lbsiwn26wIQ0FvOjJRkNYFaIlUkpCQMAiMNqCq2aYrlquEpB+hlBEke72YojBmCJvNpone1LBXEsZjk+iq3++zuFugSsXjx485OTmh1+uzXWW8ff0OpSqePH6MqiNWqzVffPEVX375JXVtBJ/BYMDDhw84P39AURTUdcXN7bUN1ZlzeHjIv/1v/wO++91P+Ku/+iveWFOl37bjHmT2WDPtb8AYIGNyfAhQFvjZe9z605iDaLeJW/begU6c8U3X4dWRFu9j5H0yz98/d1l8f+/z2U3f1NGZhJZl0SSCMuFXKxtHvjW9aIGchQye9rolarp28ruHE2YM6WgRqnYJDoGqpqRE1jXK+v8IIdBRBFp7PmDaf2KnPAgrZFhmXog2m3vbzq1JUkfgsDb/juBz5119hBBQa7SXxGnf4e5VAgK7VjZssxBgo9YIIRC1Zac9LXen3wVNLhj/MAC4boQ+f2w6c57u2DEP0srmClA1aKhdC1phRuz8aKFxzPK9MbYz1gzGs1pfZWzwtdJNsIp2fTI5lANtNNzOXp+Kpp1UVWNCb8uugEY3fLgbZ40plw38oaRuQlq6SDl7iWDRYkcf/zZ4lPv3ddpVu/YxV/tt0h2rO4c/kel+7rQt9+c0+EIqzfjqVmS/duF9x7cys/Ht1ZVSTcKRZuB7KhRTPnu+yVRKI166BbN9ZrfBnU25+15YcbMRICqNDEO0NkmL3ALQ7/c5Pz/n5PQEgNlsZgBvEFh18isWi0UTi9q9czQaNTbn7p2bzYbFYkEcR5yfnyHCmIdPH7HdbqnrChm0C6BvCjEcDhmNRqhCNaHywAzmyIYZdJs30NE+uHZz9rcuXbxhSkJqZZj+2WxmBYWIs7MThsMhSphY+234zryxi3dhCd1zgyAgtTbPl7NrhsMhoQyoipIghCiWxEGfGuMjEScxh4dTPvzQpKB3GQaLoqAoCrLcpIHfbDYmfm6tEMIwX85+U0hJLRRZtuGnP/sJf/6v/4xVtrIT29hbCto4tG48OUBflmWj5XDhM6ui4K6s+E//iz/nz/7mM/63/5M/ZhL1EbNbenGMXETcrdek25SqyBDDiF4v4Xg6phcGDPsJh+MJSRwThGEjJCrtTMkCsIm4oigiLxU/+fln/Nd/+1Nm6zV5pagrs/n1+32UruhFAXEYIPt96vER/+wnv+L17IZCSIRQHXnbjUMpDehKen20cHkHDPMtbP8b07KKKI5srF8rOP8GCd7P3eCOzhbhNlA8fxRAK81mu2Wbfs6bt1/w3/wk5PjkhOdPP+KDJx9yfDLh4cMnRGGPuq54ffEFabZiOBrw8MFjnjx9wng8phcnCGWSVM3v7njx4gXr9bo1k9Oq2XyDIGQ4HDEcjkxegzDk4cNHPHv2mOPjY8qy5Hp2zcWFEQZOT0+pq4rVfInSJUWeo3TVjBmsgC+E5s2bN1xeXlJWFZOzY9I05bPrX5JvUgpVMRyNUEFpzFLSO2qdEccxm+0deb6llxgTmJOjI/TBmOXSrCNZliGDkiLLWSwKNttVwwqGoXn/2Jq83d3dsV6vEUJwdHTEw4cPCcOQzWZjoiVttybKVSg5OjpqbN5RUKSGIHj79i0mKnTAoD+gLHMWizmz2S23t7csl0uSJGa7Ncz/48ePmU6nrFZLXr58yevXr8myzNjj27Czbl6VZcnFxZuvHU9/V4/9m67HuHXAINgJZL91DDydax0zL967pzrG2JtbumVRvw4MOEbUv84HWj7g2TVV0LqNGOKbdzTXNfHY95lytEyu0/o6UO9A766pDdiIJ9LEE8ex5MKLC+8BUN+E1phN2OygonX2Ncf+CDpKq8bhUUg6YF43wFR1hCvTT0bTYnCtbOzthbCmhkKghPJCZezr0lZYk0KgtBX2LHFilAS2k4VAKgO+tdbdKDsemHdkZgf7eeZOPovr1vXOOKH5oj3b3NsSqI6Jd22uPY2HY7UdaGygom5ZZo0B046VVrUdWy6HgWq1RK5qDqhrrY1fgm6TSQE2TKYGb4y66/0x7kyflH2GFKCVTXTpwK8/f+lixh2xp3PNvjnYCjB0nrsPfL8X0GOF+X2A3ReQ7n1nhYxOedy49t/3zdn5bwXmgc4k3WXPoW0437nIOId0mXs//JEQwiSAEG1oQp/VN88xLETrWR8gRdjEl3dOh+4dVVWSZSlXV1cNmCzLkizr2rEDXF9fG3vo21uGQxPKbbPZcHNzQ5ZlvH79mv5gwMnjhwynA8ZHIzMgVWv37eLpK6UMgEl65Nu8AaBhGBKF/WYQG6adBrT57eee4wSm9jyNHbABl5LxZMTBZEScJGgRkBemrpvNpokT78rmIt/0+33SNDUKtsiEGlWB4OBwynQ4auMOB4Iwlk0/RFHMcDhqYg5XVUGWFY2d8uHhIUWuyfMtVWWmk2+CVdUVn37+KX/+r/+My6u3INS9+ga0QqNLM25MhiKvbw3LH4YhqhLktSIHPr+d83/4T/8J/9bvfJc/+vApQbTgLEkYHxxwe3vDcrlku1nTiwM2a0k4GiB1AlVNMjBtI8OQKDbCXxAGxn47MG1QFCaazL/3P/hjfueH3+ef/em/5MuXbxDSsM5GRW20MOtKs6ol/+Jvf8mL+QIZR6hKI3Q7zrMsawTK4XDYaJBqH8gL0ThVOhMMF1mimVO6HTv+sQsk9s1Xf9z5UZa6X9YIWVNUOW/fbrh8e8FP/+av+f73f8h/+B/8T/ng2cdIGXB2dsbx8SccHh024UWzLENoqPKCy8tLXr161SSaahdKgDbygct74NonSRKEECyXS169esW7d2+Z3VyhteLdu3dmDhUFpR0vTpMVx3ETetOMsZowDJlOpzx59ozhcMh2sWJxe4eKAj786CMePHiAqms+sIK8EIJ3795xezljMhjy5MkTkjghiCTbdMP19TXX19foShGINjFdFJlwnSay04j+aMh8sWCz2TTAyZEMSZIwGAwYDoe8fPnSCHhpzsuXL1mtVsZMMIwpsoLlcmmAtxYMh2MePDzl/Pyc1WrJq1dGwDk+PmY6PeDNm9dNzoef/exnvHr1irdv3zax9o+Ojhp/G3O+JE1TTxD67Tp2NcRAC7p0dz4orXF8nks05Jh57O92jLaOjv7zBV6iHeiMZx/Mf92h8WKJ7/zsMvC7nw2YN8x8Vbbx5MvKOb220aFaYINN/mMBvNXqOsIoiuKGmQ889lprjbRINnBAz8pJSusmigq66w/m2qsMI6qy8pxc/ZjvreDg/7h7hY12o6ExGXICiwPUwhM+XCAMIWVzXtfSJJ5EoANF3cSX99nQtrwtwWGCNAjMc5vcBO4dzkzIAVFrX9Wy7K7NvQ6wR5OkywpajfNzW5IWy7l3OEBr/VuNaYthzxGtkIbXhp3BJprHdc41fgsay8Zb/4uqZeOrsrLaAN3Y0WPHENrkAnGaF2NKaMZDVVeIsjXpcm3syFzfysNoOGx0IyWbPUtIgfSitvnRD30GvtNWjemVbOvtYVC/Ye7/fV8o9Y+9GgL/CbtCOra/XfhR1V1LGkGYroXKtzm+9artN4YPLnZZeVcBM9kA3UovQpjP3Ug45h+3YO5mhDVe9r7aLCQMzYadxAlFmZOmmyYpy8WbECE0222KAQqujDS2XRYOoZRh0BeLRcOy1zZZAsLYe//80085Wdzy4OEDJmOTbVIIww7neU5RlsZ+ziaWWa83bJcba5dvmPowMKDUvQsgCqPGfKi2ggy0gNWXXBFQ53nDrkdxxGDQI+nFCAFF1QJArTWBDCgKE27QgcZBv8/BwQFBEJIkPXrDgXUE7nM4mXA4GrfAWYKWzh5OkeclWVawWW9QWlGWNev1tjF3mEwmaBWwXN6RFylaC4LQRD66vZvxJ3/6J/zixadUdYlownBKb9y4RdpGkQlkk/ynyRoXGpv6qjZq5EAmBEJQ1Sl5tqXsTfmTv/2cX/z6S/6d3/2Ej06nBOmGJAoY9xOW2zVlURKFExN9SEE/iknCiF4UU+uAgB6RDAllCHFEBWgpiPo9RJ1T1SWPH57xH/6jP+ZP+Uu+upwRJyb0Z5aXrEq4WKyY5RVFkEFgBDpBbCI91HnjsxAEkqFlbc18UCakZlk2ApgD9koZJ8wwEJR5ga61sdndWajc/Ns95x+737u/3fjrbMhamvnbZGHVbLM1P/7rv+Rvf/oT+v0BJydnfPThJ/zjf/Q/ZDg6YHIwIFC1FSy3zN5d8ZO/+Qmz2YzChsVr1gILfmQgQAryMqe4vW0EpDTd8otf/IKiKFitVwggDALSNCdNU7O51FUzfhAQahNmbzwZ0+/3ACP8ffTRxwxHQ86ePDLzT5i2vF2lbNMcdEKvF9FLJkwnJyYj66Zkeb1gtVjysvqKg4MJg/GIKA6ZTo1/ijqrCIOQ05MTtNZstlnTXwDrNEWuVpycnjAajUFr7u5uef36FUmvh6qVZefXSCkYWGfWKIoYDYdMJ4eEMuLd27dUVcXJySnrzZbPP3/BF1+8IAgDwjCiPxjQt860jx8/bJJK/fznP+fq6qpZV512zjkIaw3Hx8fGTNESDb+tRzO2wVFtHZDcXGd4S8PJ69ZR0GmNGzMbQBI086xhQdH3zWw8Uu43bcZunfZ/dtn4Bkh5+0EHzFtgXdmAEMamvrZ5W3DRFmkaRLSmNS7fRJxYO/kgtGu/7ACvDjspBEoZxhdaP7VKCHDhMT3Bo6lPrcAysga8tYSdA3Pvc7x155XSBsw37WOSLCKkB+ZpcIIIAoTNYisCs8g4dle7TIs03Xqvb4QwY0OK9u/3ldFfZw2+adtcA0JZHO71gy/EdQZPc2gPzBuNQyN8aN1EoVF1N3nWvbLsjPtdjUvnnDaRrho7+apu2tqMO9WVVmkxGqI1ka3rNkqPG79OSHTt6MaxT/7WVmhs2rW2fenCh/rA3esXX0hqBBRH5Mtuvp5OC3uSbuc73RLOu8f7CLHdw1zTZeXVTl93BLQG2O8ZCt/g+FYZYPcBA1/CMgx53TCHrqBdRxVrVuKVuGEMrZmF0LRSqnbZwjRKi8bko7Wlrsjy2qS9twtHa7ogmgVNOLsxYSLF6Oa9EMigAQFu0TSHyUZao1kvNqSbV9y+uWM8HjE5mBAPDWOo7MQaJUOUUmxXW26uZ9zd3VFVFZPJhNFoRJyEJurHIGa5UpRZQRQIEsu8Ku3audu+LnJFTUVRlRR1RVjkFIWJ8CIwpjtZXrBcrRvwl+cl6TZns05RSpNEEYEOiURMIAIqXVm6o6IuUqoqpmJIHHlplhXUlQGYSgnKQrHdZqRpZhbXyiTtqUrNcDggjiWHR1Nzr5AgBX/+r/+Uf/rP/nM22zlu5pj+F52U060DjUKEIcgIrLlQHMdGdScFQRIhauOMGgFxGBLJmKqSqGxDHQRcbgP+b//13/DsYMjvPHvIk6MJR6dHyLvQJB6rJeP+iH4/MTbqYUglBDIK0YFGhwIdgBAh1BCGEkFFoCNELdhmOaODMT/8/R/AL37Nu7sVi1Jxucy43ZZs6pJMKpSCQAkCDZrSOo0WjWnNeDKBMLBOVWahLKsCIbCCZUlZmMU6SRLCIIRaI1UAtbAh4XivNu43gfrda94H8s1aY83CmvmsUFVGttqw2Mz47MWn/Bf/5f+Lg8kRDx8+5snTp3z4/EM+ePIBxTpjNrsjTYvGrMHEdzZRkbSuqNAEUlHLmgjji3J+fk5ZFSyWc+JewtPjQ46mU+azK7788ksWiwW11ujArgdKIcKI3nDE4eGE7//gYz54/oyqkNzdzRFCmCg0v3zBfHHHo0dnnJ2dgCp58/Ilr754SVlUJBFMJkY7cHtzS1HmyCAgKwvq+YLZ7cI4zQtFFEn6QcKwP0Rq4xze76fk1sG1rmsqrTg8PrKseEAYSk7DY16+esnFi1cURQVaMBqNGI+nPHr8kKPjKVVeICqFKipEr8/jxx9QliVRFLBer8htxKzjkxMOz4yz+eBgwmg4oGc1Sk4z6IBgGIaMx2M+/vhjTk5OuLi44ObmBqWMed+TJ0/fO1b+Th8N/dydDh3OTbcXGXigGxMRbUGKA+I+yFCoxsmtO5dE84Z2n9adzXh34+9oqN/zY0B561To270rC9Sba3SbQbRh4rXZ7MyrLMssje25H3YyDIz5pksQ50LfCmn2WmijzwghkLqlmXXLIiCUQjYYTzRAzvzd1kdpjVSOLBVIqZHS7MPSgvLdznQgXWtsLHT3vdtLWvMbKY1vsxBGOBNatMFtHF5SGi2dkNYZNl6XmvskAu3lI9DWpEYI0ZBw7bppy3nvibZPnDBoHm/3V91+v6sicGPFPUZp66xtyLW6qptn7AqpzW/d/t4df66IvqYBbTUrO2ZdzfjSqhvC3RdsdtqiKY9ue8uB5/cJsb7Wpivo2LGkdRujXXuChNunmvpptHZls5lxHVUsvGf5BWzaq4HgvxG0N/vje67Ve+rqGt7H8B3tQicb7TdH9d8YzAtv4LpK+Of8zw2L7IWO9CvuqzT9+/wQl9gFxd0nGwZPN4ySc/SBFoT7ZTFZSXcaww5uYWO5mvJIgkCgUZ7zCp36CKFRBaRiSyAlZVFSX1fUqmY4HJLECVVsMroul0sWi0VjTrBamRjseZ43yZ2klMT9hMF4yHA4JMsyquWKuq4IwsQ40yIB0djAZ2UKFY2U68JJug27tI4qztZ/vdqy2aRGy6BN9AMH9KuqYrFcUuuS4ajP0dEEMH2W5zkAm82mEUhMKMyA7SZjNptZdXxEGCRkWcbd3dyqamOyPEUGgiCE//s/+b/wp//qX1BVW2Sg0SpoNxu6v5VShFqjypqSgiiJIY5JtyYHQK/XQ1ubdiEEoVLoqiZNy8bJWNvFKLcmWV8u11z87JdMopDvf/gBD47HRKpEDoaIIKZCsCpyiMxGloQBQWyy8ZqJZWyLS5VRU5NtcwJiY1oTwHBywuMPY9bxBT/79FNullu0DqmFVZ9b9bxGU1s2viwrpAwZj0YIGVJbRyrHYABNhCBjUmGENd/kqiwKVK1McifPAnQXmO+yNPs+v2++uzJ1NoqdZ7rNwG12StXMFzPmyyt+/osfozVEMmA8MJFjDg4OmE4PGY8mhGFiR7hEClMLky01pjccUJYZX331grqu6PVMpKfF7ZZ8u0bbORBFEZQlcRI3SaWSJDGx6c9POTo6RxCTZRs+++wzLi4uWC6Xxuk8EMxm73jw8Ax0wHa7ZLPJ2W5ypC4ZDHqs1ybSUTLo07MhVrfpliKvyfMMGUDSC1lXa27FHBEE9EdDKjsP+/0+0+mUg8Mp221qyI5AkmZbtumGZ8KY+7x58xa0sBoaqJUJBVohmM2vWK/eEUQJg36f3JrBuahSZWns/EWtqVWFqBXnJ6esVws+++Uv0dr40fiRSoQQjclPURQ2jOiC09OPePr0txPMN6PSI7l0gwJ2wIF3+El0jO9fCzBall83+1XDzlozGwdqm3fuWd/M910Q796tlAfgHeteq0b7qOq6y8Y319TUysWQb5lTE+XGtEfDetvgCjKQjfbF+eJEkYky45h515gN7HCmLThnUHOB21rrukYjqGVtHDerykAh1WZ21zb8rwGnJjuzsG0iLY1qnF5tzHB3n2tQMAy8Z98fRUYIURp0ZXQkykOaQiiEqBFAHRgzG6PVk425T9CYy+xfE5Vo498rr+9NcivZgmHXt2ZBawREm/4T7fkwtAminNDXiJRN2zvQiQduEa2FQZkbYsgHpE272d+1sz7YERS01h0A78rvLCaaCDveHDDmWzVKGR860w5GAJP3zLH88eNCVJr6Gu2KSaZo6mX2LoeJpJToIGxzDIi2jK4GDdgWnp+mw5TCm4vCjS/jO2F6QlgwrzvYsE0W27aU03q5evl13D2cmZQTWJxQ7fwMNJpatwlPBdKieAxJ0PieOK2XEye++fGtzWx2wYLPyLvzuOJKH1hbSdiZ5NCqrXafo7Vu7dNEazKibOM3oR7t901UDO95voqyER68cmsrErnr61qjsUkwnDNHJ2GPRqkWRANsNkuKvGAzX9Lr9Ul6Jk70crlku9027y6Kguvra25ubhpBJIoiesMB/dEQGUWEaMR6hdSQJDGDYQ9BiDPZqusaqYLG4TZJEo6nB0zGoyZaTOls3W3bFLZdnOmEEDROqlprahTTowkPHjxgejhm0O8jhIn6s1wuub29Zb1eN0yeVnB9fcO7d+8s4BfG+RjnlR4aZ0iVs1zd8E//3/8PfvKzv0KjbLSabjjC3TwBSinqoiKIQxMhQIMMI5JENTkAwp5xVHVATiMoVdkk0nLx953QUoiAIgwoK8GfffqCONQc9GMeTCb8zvPnfHx6yEkQEgiJtOENtTKLShgnoAR5BSURq1xzs6q5WlxxM78lrytevrniF1++4Wpxx6auqAUIXTcZB3WtmtCg5qcmiYc2JnuIsgy373fhQpoa0yjZAHnHUKlamSRmVth9Hyz3Hdb/TY99zrPuaAWGdkMxxFeNoG42qqIuuV1n3K4Fry81UoT0ekMOD084nB7z4PQho6TfLHrb7QapRGNzr5UiBJztuzMnGY1GNob6mhoTccjN/bv5LVmWcXV1R1Wa6DebzdqC4JDBYEiep8xmM27vrlFKU5UaIULqSiOVYrtd0+/3OTs/Jy+NoD4YDIiiiNn1HWm2JY5izs8f8OjhY8IgZDyZMB6PObC9Mp/PG4F7uVgiheD8/JzJaEytKp49e8bHH3/MT3/6t1xeviNJejx48IDj01PKqiQMAh4/foyqFWGcNA7tR0dH9PsDvvzyS169ekVdVcQyYLnZ8sXs1wx7PY5PDhu/gU8++YTHjx9zcXFhHfhrvvzyS0ajEU+fPmU6naJ0zXgyYDjq/RuPl/9fHz6g93/vjt/G5BMv4Uzz02XTDBhSjtfrbuy0dsq7U+Tr5p0PEhyrrDUew96NE197oMp9doEGHLBvGHxl6UXRgiEjxAWWfbfAXgb3Mr06wsAZoRrgZwUZ2ueBD4CEiV5j90xt2XNLftp6KSrt8IFhSxsQjWPpW5NL3wSjwRxSIkNnjmiiuWlrvmu0fJ5zrWMLXb9pw2hLIUCrJmsrHrB3ALI7oFzoxx07fiFtJL0WHAohWj/qhlC3QpvLCo5u+m/v4YQC4QCp9x5tekUphapqVFV799GaD9txUtX1PRDv//ZNhrqka5vDpBE6PYa+9XWTlnS1QFRZvGbBta8hcP4Ubnw6bYcbG/5cCIREyzYUum8l4JyIm/3GK7+2ArnoMPc28pKWTWn8+f2+o1kP6F77vnu0N1/apaQF9K7vm/ttssfuiPOEEmdW5Gn+ftPxrTLA+mr43cWooybYua9lN4SJO2sla1/y83+E7Q3HwpskST20wi44xjFRyoCyLFmtVhSFYb0PpgcM+j3yvGC73bJcmmgpDgw1woItg2ND6rpCyDaSCnSdH/yB76LZoI3NnhEuDENQVpWJEW+BhwGsUNcGVBsVecRwOGR8cEA8MAA6lpLBsE9VloSRZDAckMQDsqyw0TIk8SBCyAP6/b6xmQ8kvTgGgQG7ixXrjYkVLRAMhwOEMNFkqtKCybI0dRWC8cGYBw/Obfi7CBkETeKuKIoYDAYEQYhSJizVcrHk5uaGNDUMYxhEOBohjCL6vQG93ph3ly/5T/+z/5iLt18aBkYHmIRYRmBqhaUdplhrlLWR11VNmeXEUdzYk2+3WzabLUmvjchjeB3RRNXRWjffgUkIRVFTIgllSCFiLlPN1XbBz69/wkEScDYe8eDwmGEQMRj1GUyGxk4/DNhucrJc8fLymsv5krvl0oSBUxU1GoKIWgRoLREiRKBRUreZ86rKmGrZ5CmTyYQ4GuA0R7WqKJXpEw1E1izD2NMH9Hp9AtmG50RI6rKkKktiacavDOgsbP78/P9y92fNlixZehj2uce45zOfzJN55xq6Gj2AgoAGaTLxWUaaZKY3mR71pp9ESSAkAgQkGUkQAs0wdFejiaHnRhNdt25V3TnnPOOe947B3fWwfLl7xI6debLRD3XhVXnP3rEjPHz2by1f61vhnH2X+d2VQuHA588z24BXUUHOFuCFk8C+tmBcQsNgtVlgtV7hxcvn+PLLL/Do5CGOzk7QG1IQsooDTvGZqI0sqa2mtSgi9Hp9RNbGqKwK6IID1wmkWQqtDNarEloJjMYZLh5eIIoiTGdTDPoDvHj5HPPFAmW5seZeAnnWx8nJOUa9IbI0RZKmgBCYLxYoSvJ1ODo6RhxliCKBLEvw6OIRPv7kE0Rxgi+++AJ/+Ed/iF6aodhsMJ3OUBRbqFqhLitkeYYf/OCH+Oj7HyOKYrx69RpSCpycHOPgYITRaIwHD86R9wa4urqBqWoMclojsjzHYDAAAEynM3z99bd4/fo1AIHxaIz3Hr+HzWaDP/6jP8If/cEf4oe/+gN89NFHODo6srE0anz66U/wx3/8R5jP54jiCKPxCKenpzg7O8NsfmeF4Tef2vyyJtZKtsGJ+z0A5/wra/gY+xmLQHfGeeDz1QTzZmctaz/blVyAH3gn1YY5Df/eKos3s9kNUOSif8LPZylJcxoCeTanIbphJpGg+5yW0xhYVTrCpvSA2x19QAKQUYQINn6I8EGEfNlAoBRWOxoIW5bw0/ebAbQmtjTSFNNfctxldq+IGOWck6u3mWclB3Gck8mvsoBfC9BeJD34M1boMUL69cxp/6R3XuW+N4bycVpt+zy9NDgZ4GcIIDcAnQN9hkdh0MjePIopLalPhRsvLiAX4PrMBGOGfRd0K/+2YrULzDOQd/VF00kbO4KNBdNSQkaeWdD7RAZjQRtoZhbSwkWkD9+njXaHzY5Ag6k93dAT4SSGO9sQFrzbSc5TMNwPw74kYTW4xvWHXwsafR/83fm8d9m0Y4QljO5b9lw0+37cSe8E5sMGYU2q2+Dt+xgAR/CA3FgNNUuVXlPcBB7Nv3byabYXTtHr9TEY9KG1xny2gDFAEqcYDY9QqxLDYY7jkwOcnh4hTTMAEW5ubrBcLtHrDyCi2DkSSiGQWGHg5cuXjtGGBCIBo5sDPM9zTCYTHB8fwxiDoiyxLrYQgkwiqqpyEypKJSpdolxvIdk2zw7G0WiEyWRC/Pf9nu+2NEWePnTa2ShJEGUxYnjWnNjazrOmdrstsFyTc+t6tcbV1Q02m62LRHl6doKiIKfgu7spyoIAUhTT7w8fn+Pi8SmGgwxxkkDVGiKiDYBoLHO8enmJ25s7FGXpTA5Yu5mkGfL+BGkaI04ktts1/tUf/DZ+/ON/jtu711CmtvhOwxgvRPHC3aU55oUIUqJSCpFU7ug3y3OYqnAsJ2maopekznyAza42m43TMsUitkfRGkVdwGhP9Vhp4HZtMF+v8MXrNWAMlFDQ4NMh6TYft6AqjciANCZuUaaTIg1Ndo1KQVXEKKG0ghYgxpJej4KN2QiuZVkRd6/RlsIwhipr8olIYsfiQuOHN1GDar2C0JW1wvKTfR8bTbud2/MubPuuFApf/GzT/CbY3Nukb/YnYQSE4ONY0pgZKBhTY1tW+PL5Al+9/AJJEiNLc+T5AKORjcA6HKMfDZBEZMZjtIZUCtO7OYSIUZQVapS0BBuDLO8jTTIae6bEYDTEo/P3YIzGfH6H5XSG1XwBXdZIRAJlFLTxp3snJ0f46PH3MRiOcTOb4ouvvsR2W2EyGmMwGMBogX6e4uL8HINBH0eTQ+iixKtnz/Dv//RP8PzZMyhdB6BLkSNeEiOJE2z1Blkvw+HJCfKsD2M0jg4OUGwpaqvaahyeTHBx8gDL5RK3t7coigKXl5cwxmA6neLVq9eI4wz9/gDjcYzpbIr/5Sf/C7bbLV5cEmPNaksnEaRQkBCIMJ3OYYzGeDLAe+89woMHFzg8PMHR4SkOJseYzWb46stnnePglz2FdrehlteNU8Naa6ejc/ezIOrntAfPggZwp2Y+9Pnh1DXXwueMMY55xuMFQZp2y0zCTqxOMx+a1tjPteowv7FlohM/IErIdCaKIqRZRo7SUWzXzIjMbvjUj4GxbSs21YFrLeHAMwBnUy+UpABGQtDcjCJExivDQkGDgLpxtIXaUhz7FFI80jNknkCKgMi+n513pZCILUsbn2oyw10kI0QR2b0oRSwzUgA6svkI7ywrhaDTWWH9BSQ7agKAdNp2GGVhI5lQutMP1qq6NZICNcF4/bT9v7X5Ng1NutNew55A2DEpLW++AchvTRHYrWvlFKOOsac1Tuqq8sKhe384NqU/3d0jAHeNaa4nA3Y312KiABbaIIorCp5oFTGMuUgJaqz/BhBhN9ioUtpFf3X7jhSQUfheKxBarEj9w8cZtsvs1miEcTSnDaGBBQU77qjXeK2AfZi+hPXvwiwsOJiO3wULFQJuDWkLEF0t7567Z/pLcZCFmghjO0ajWQH+jQrlzW0YGLBtMF/zFRCu84wxzqRmsVjg4OAAFxcXkFLi7naKZ89eYLstIGWCKIpRljVubu7Q7/cwGh+g3xtgMpkQQI4FolS4AAhGAULF7gicqRx5AQq9+QFifzg+PsYHH3yAXq+HWimsy60LWc/PF0WBKIowFhMUkees7/f7GI8P0O8PHBsN4sg5DDPlJLcJ89CztmG9XjdMZNhmjW3ky7JEUZTQmuxj+4Mcw+ERxuM+pJRkk19UiGWMs7MzfPjhh5gcTZDmKbQG1qstlsslqoo04xR6vsTt7S2m0xnyPMfx0TF6ec+FsI/jCINhBimB3/+Df41/8dv/DC9ePCPAZWixM9pr4rvGBve5/eDHl/2ZNzIWMGQSoyjJ1GCz2UCXNTJL6cgBt9jWnB3/iA2HWGGUMdBV5dhiIpHASG+LbiRraiSMjcAbLhyC77MbjlK1E+JqVZMTt128VF0j6+XI+j134lNVJXRZBxPeILFlLMuSIgeniWMUMlo7Zy0hBIrtFkWxtZutaozRMO0D7G9L7bnNQvv+hV7s/dr4pQFq6BiXNcCe0984M5LFYo6r61fA10CW5Dg5OMPZ2TnObHA3JRSUKhDRoQ+EiSBApzJSkKBrDJ3IxdEWr1+/gjE1FssZ1uslhsMxDg4OUNc17u7uMFvNIaVEURR4+vQpUtHDg4tHyHsZ0izGZmXQ7w9wfv4ASikkEZBndAK0XCzx1Zdf4Oc//xmurq6sKURt62g3vJioTiGA5WqJm9tbDIcTjMdjbLdbFGWJsiixXCxRV2Qvf35+7k7x+v0+6rrGz372M2w2G+R5hpOTM4xGI2RZhhcvnuOzn32K169eW/McGk/ffPMNvvnmGyyXK4zHhzg9PcZ/+p/9ZxiPB3j0+CHiKEVValxd3eLq6sre/y3+r/i/vNO4+WVIXcJqcwMGq0mbQB7hPGlqMfmKaD9j2hs/Wvl0f+dr2gFcf81rsbupKrv+6fB7WE94oYZNOyNrLy/tv8jR7kbefpqBFXid86dvABxwJEBHZhbMPtYW+H3bMngybt3ULfOgQN6iv4r52g1q7bnJeb2TUYTI+s2kdn0KlYQMsBlYg01HYHGdMb5+AGnlI9LvSsP0k57xhkEf30/neAG3u/ssgn1MO824Sy3Q1wnmjQFsO2tQbBJjAF2z6ZWlAmXTYqp0QwAN/5GA1wKkAIQwgEZnn7U/M6ANf+v8JyUEtBUUyBvZBa2yY0CA+ec1tEATHxhj261ZDnJE3m/y6S/Z4GUGTtgyLEU17g9OSFz9wjtEc353zNMwr9ZtneXkU5ydJHaK16j7fdO9wTxzvPPmHr6IB2Oj8HxCAN8A+4BHaO/O+bK2ge2f1+s1nj59CiklHjx4gL61mb27e46qXCGOE0hpECcSMC8ASDx69MiBOWUUtLKSvtLYrLYo1zVubm7w+vVrFEXRGJRZliHPc1dn5r52QTakQCYyGEN86L1ezzmi8hGYODbI0syVIUlyBzTLsoSppdMicL15ctd17do8NDO5vb0Fa8YnB0OcnB7h7PwYi8UCV1c3WK02SNIIo9EAw+EAWUaa6yRJsD5YQ9caBwcHxF1eKWy2CywWCwpms1qirskR5fDwEP3eAEmS4OTkBP1+H4eHh5BS4vr6Gk+fPsWm2OL3/ud/gd/58b/A9fUraEOaVlq/yPyh3eftjXZHkLNjTUYCUniHVnsDhNVyR1FE3MpF5Rz52AmWNVGVDa3NwoCUzF9rNxYANQAlwqBdGoJtAkGMBhqwgS/42DkwN3NsBAzuaQPKrUmEjCOUqvaRAQ0QQ7jysb1qURRQSpGJUJq48moYF0Gvrmt3MuJ9PZSbO11a+X1tv++3rs+OXo79TwLNTNiX7cV+ryAhPFOGEx4MglgNlhbTbgBbo/H05VM8f/3cjcezsweYjI9weHiC45NTjHpEqZrlOZaLBV69forVag0AWMwXuDZXgNDQuoLSNS4uHuGjjz6G1hpff/011KVGXVeuX54+/RqX16+RjwbYbLfQWuHu7g5SSkwmY4yHY8BoB5Zvbq6w2axdO4Tt1Ov18PDxIxwdH0MIisKcpRnKknjjF4sFyu0WsfRtud1SELaw/cfjMX7t134NaZpiuVxiOrvD7d0VFosFXr54jun0GrXaIstSnJ+f4+OPfoDRaEQRqw1pITmo3tHRBGkSQVlKzG+//Qb//i/+HK9fvXIKlO9aamvO3DgONnrewMNn3Nx3YL85pnkdEK33+Eyar3Fj9w3l9MwzhpV/UOy8arRzetV2jitL8KCUshzynl0EIJDN2mZeo9hElal9oyj2wF5yRFTpmUwaJ2xOlRgc9gt3P4FW674uKW9AIE4MkrS2mlersZe8LirS0gbAXmliZQE3PWtC7QmKr6c94RI23mldgyO9VnXtsAI7evN+kCQJrfnSO0h6h0ym26VTVaMJxNNaak1xpYSO/RgJHTOlBXwM6Pk6neKyRMV14L62NvPBOLU1bgiLWvm9hvLzrHKs1TfGWkRYk95aKVRlCaU16qpCYeNutMchlzc8ZdkB9EF9woEuRHNumFa+zJgkLZOWARyFqgDcKbnQpDqPjGfOc2xBBi6iLgtoUSRdMCyevzsCiBU6vTDLUlNr/oH2bW5DgdY9vGwEj3szqWa/uTwNPFtRB4hnCcMHnwvnWlgyAEbs9Nl90juz2YRAwhUhWDydnGM6QIGdreFGH2rttdb+yMg07a6UUlgul/jqq69wfX2Nk+NTlGUF4sQ1zvkxjgVmsyXmP/kM19fXODg4RBRJ1MpgtdkAQmC9WmExn0NX5GTI0Sidp7qUGI1GODk5RZal1sGWIsJeXl4ST3scQ4HKnFtNO7VBEPCoqhFHZNsPEGUWhHCLjxDCaSaYB57BPGuW2cRks9mgrmsMhgNEMsJg0MfB4QjnDwhoG2OwXK5xc32Hotji/Pwcw+HIOvv1cXR0hKqoUG0rt4guVyvMFwssFktEEQlJeZ5Cawq80+v1oZVBURADS1Up5HmM4WiIy6vX+Hv/4O/hybOvCcCjtn81hIjdBrUrzcOBtXAhCe9RWsMoBUiJKJbNcUV3QcoIWR4hjRNr0lJbSlKvjc9zcuRjAaquaxilyTrFAnsNDcUTGiCtArz9nR3IdC8vniLQVhuaoEIIxDJCnucQUkIbg6IsoLYaMiHATlpjAVMpB8KF8A7caZYhSRPH2KCtnTjvqHVFEU4Tu88227Vbgm9f79IctjXxrh8soGAGlHYeXe9sa+d2gJUrul3csLtwGQAQ2v5u+yGSUKaGKis8f/kMz1++gJQxjo/O8Lf+5t/Gx7/1n2M0GEIbg+FgiLqmE7fNekP0jYZ0LUkqMRkd4Vd+9COcHJ/g9vYWj997D0dnx7TRqhqXl5eY386x3KwQrWY4ODrC0fEhDseHMMbg1avX+MXPPsVmvcZ0emcFsdppnHjTi5MEk/EY7733Pr7/wx/g7MG5UxAsFms8+fYprq+uEScx+nmGJMlxcHDgHHuNoTgZNzfXuLy8gtYKDx48xHvvPUaWZYBQuL56jZubS9zcXmG1XmIwHOCDDz7AxcUjHIxPkee5PYn7CHVlIK3AMJ3OMJ3d4vbmDov5GtfXN1CqwnDUx8HBYedY+mVPoTDbEFyNFbiDgEO8NtF0ZltpOES5K6B6QYFAip2EHbsuCfZobfzhfgkP5mGCv+S0yACe6IqNc453/l2WLQaAs/dOrHkJA1pSQsmGc2uSpIGWnq5DUqCfXZWhpDlIKlynVRSS4n+AgX0ANiOtISzNs6oVZFTCCDKbqKoauqjA5nXKmtrUtUJdUX2c6Z5Bw6SJwK+n4KQTCe8InKQpMnvCntoo55GUyHs95HlOPjRxgjiKSGhS2u0nnqXICisg4M9mNnEUIY49g4uMLOAX1uaeMnGWBFxmYQGtsIIBU2fXSqNSlRMW+IQdO2smfN5gNjTtTZIC9hNtQWxVVVhv1qjqGmVROt82eg8ByigiMysIMreVEZ0W+tMMfmdQJoGgrGR65Ea0BbhCwI8HYyDteNSaTGsco4tWZHIpBZSOEFmMx/tMJCXiyCt3ufxaS0TWwVZbMy4ALl4CTwYnvwfzUiuzM7yJJSoE877BjUX3PH99n9DnLisUen0g8bvcrC8G3dH42Vhs0VTn+w/vCujfSTMvhHB8xW0AIVqSh29Ue1TPIrA99uDBr7TXmmpjYBSZeQgDLzkJAQ5aU5U1qlJBKYPJ5ADj8QTb7RZVSfR0ABAtJJbLBZ4/e4lnz14427RaKUQt7b+zmwqEFfb0r6oaQkRIkgyr1RKLxRKz2QJ3d3O7IFJdDg+P0D/pUd20JvAexSgqjbJUpA1UCpuyxGa7gTEGeZahl2cNsxBVVcRaEUVArVCVxNLCYL/Xy3BwcIZev488z9Af5Oj3ctI+SIFeL8fx8SQwYYoghaeNQgYkaeIGXF5kSPMEvX5mI28OkWWZc8AkilBNAoWJsSlKfPv8K/yP//j/gx//7j9FUS4hIk1UVmxgaRLCv+Bw3CJoY0BruxEJWg6E8EOQFg6BSAjiUhcKSkrALopGCkhNAYyIzlACiYJMYqK0VBq6MqjLGps1cbVHsUCaJg7YM/0j25fCUJCKcBxEUrqNQtox64CCgV3wpdskeRFSSqHWtFizTWdsT1ZYs15XFTn5RjSPirKEFgZpL0OSclAp4cx30iSiDbGqsZ4vIZUBENkNSFrNj+cPZ4Hwbcdzbe2xn8P+dwYu+/Jtg/+2Nr4rX0redj48Ag2Zroh/3i5pRtgjbWPXDw0YDa1rXF0/wf/vf3qCH//ub+OTjz/Bhx9+iEcXj9CPejg/PsOlukS5LaBQk5P24BAySvHq8gqvrq4wHA7x8NEjxHGK5y+e4dnzJ9BaUVCoJMWDhw/w+NFjpJZJ5osvvsAXX36B9WIKd/xt2Xt4sU5jiTjv4+zBBX7zr/91XFxcYDwm6lc2t1J1CagSDx8c4/zsHJPxBEaR+UGtFIptCW0ENpsC11d3mM0WVuMYoyjIHhYmxXvvfYyT0zMAwKtXr/CDH/wAf+Nv/A2kaYa7W4o4G0URBoMhsnQIIQ0uL1/h1asXuLy8wuvLl5DSYDQe4vHjx3j06DGOj4/fOHZ+WVPXxutRL5q/WTRiGjchVA/7PAWcmU3niVP7q7Ej2zS1mDv3OE2fdmY3HBXUa6OZzUa5fYw1u425J70NMyszCBBFYCdYb9/s/1mktjOvKXlHTIfwhDWvce8XLi8CwRoyisEMN1JGVtMaMJ1YAd7YdvAc+r6dBAv6xri2ZKYfxg0VB7YT/qSQ7elVJBHXibUhl9BSA5GPL6NNQADohDprN82c5EJAQUAK7WyuHeAWYOpy+q6bY09IAWGkEwzJadUGX6pJmJGBvbpT3nL5WtYPgBcA6Tq3Eq/BJABWluiCT//DU2kAMLGlpXRA3QN2Y5UQLJwJYWAkizh+vQ+nSDi9GNA7pqLQTAksJJMCTWpJTtIMkLm+ALTw+wz/1ZriEYDni/b7jd+HTEOJzGWk1+zO2eZawDc369S1puxYobgO2dGyAcE45vnUpQzj3xsF53a7Z3pnm3nmOG9oPjpS2AgArITKYdW127hZM82Dize7tvkFAS+v1dhuCwDSHanVqka99tR+w+EQcSydmQoAx58OAMvlEqvVyoHl0N5uPB6j18tRlhU2m61lj8kwHFIeq9UKxPBSAjBYLpZYLhaI48zZJQpBphPT6ZQcM5VCWdeOUzzLMmK0GY1c+eIoRm2BP03IEhtrkx9FElmeIe/lSBJiPNluCkQyhpQJcfUaASlj5FlinWRI+mQ+eqZv5OPHJM2QK4NiW2I2W2A+X1rbfQmlNIrtBlEs0ev1EacZ/uwP/hD/t//6v8KLF09gUALQ0Ea5Dcc5d/CGZ7wmy5nKIFiIjHbH1zunOJq0OcICahFJWH8iWnyFsJugcouijCQSESOJElemWpUoisKVgzVTPG54kvL94fvD8vAm2ZDQrWBQVZUHvmmKPE5cn3K9qqoiViII5GnmTl6ElMisttYYg0rVgKFonmzipWpFDpu1QholPpQ2vcGVMwTbb9Ked6UQpHC9+P3te7pO1tr3hO20rwzhYhvmvXu/BxVOCDfeuQ4w2Gxv8elnd/js53+G0XCMjx9/H8PhELPZHL1ejtF4iDiJsFovUJYK88UUeZ7hRz/6EeIkxnZTYbnYQIoYJyfnGI8mSFMyUSvLEtPZFM+fP8eLFy+w3a4BYaMhWlgi7QlSEsc4PDrCJ9//IR4+eg+Hh4fYbDa4urpCnuc4OTnBcrkEtMKv/dpfc+ugsbvhfLkgXvssR5ykkBJI0tiaxhwhSWJMp7coihIAcHNzjcXiDlprnByf4/joDEdHpxiPxjg6PMVyubQxOIgB56uvP8d0ekuCEQQeP36M999/hA8/eh+D/hiAaKyT36UU7jnkcCcdiGhs3mhu5I0xxyCvce/upsqncrwvhWVg4IlWPuE9itla+LMd07Ui1iellfPBof3Ac8grbX1OosiBZF6fHJhPKLJ4bKkchVUukHNl1GSu4boLb4oCQ34C9gf7m9dYh+0S1o8VGwKA5nJIopKkkz4BHUeIVAQtBaTWiLiNtI26Ds/tbgBIBvTs72a0DZqnnMKFQX5ZltaGn/zjqrqmuDBpitS2SRJFiCXzpCOgpPQCCyt6vJDhzVWEoPNbfs7AwNtP2D1QCxhTW9yjbCRV5WzeaVx4kxAYw5FN6D7Fa0uQp+1rbYC6qv0eZ01Jy7LEcrVye9J2u3XYhscGtxObwMS2v2XUZCly622wp4fsN+HY1lpDggJEStt+0gqXMAY1W1v4QWP7UzsKyuZ+q7xztc2L2srOKU3Oxe19QpjWCZMb1rt7SuhULtDqvtZ4cGOBu6oTYLeAvP3GImO4XjT2aBE+xtoFEeR5//TO1JShRpsBsCtY6/4m6NeNZ5wW1FFBwn3ngQOEEhsNOKYdrKoK8/nCaaF79kiNg0cVxRZJEmEwoKBMWZY1BriU0tkghwIGnzwwXRgHYBqNRs6UpihsGHlLt7fZbHBzcwMpU8SRnzQy8hFxtTFYWa08a+ONoSNULrsVPB0jy2a7wdYCcBllgCFzGzbLyLIeBCgCLHGvA2W5db/zAsplruvaaahJajdYzNd4+eIVbu9uobVBmiYYjUbE2mE0EhNhu73B//CP/jv843/yj7FcL2CMBkfD5qAI4UIQphCkScmaBNi+bWkJ4HnN2bxK1zXKLRAZjSilUOMsfdORnn9W29MB7kMAiI2E1nXDnInLFQqQ4Vhsj1Ge+Nvt1i1gYZAyHpNZlpGNfdAMvMjWlnJTCuGCicVxjDTPgMiP9SiKEcnUa+SUwna5hipLpDKCMAbhMt9uZ9/WTWeh0B9FCE/R2jaZC01r9gF1zq+9QHZp6sPf+Pq+7+Hz4TvbGwiARh/Roqht+WvM5jf480/nVM6IwrnnaYZHF+/hwfkjABJJMoHWCa6urtDLe5Cih6PDU3Kwj4C6JiHw+fPnePXqFap6C2M0BoMcJycTrBZ3mM/uYAzxXYsowXA0xve//318/PHHODt7gLo2+OlPf4ovvvgCWpOvCvv/VMUWo8EAR0dHmM/neP7yJbZF6aJXnxwf44PzU+S9HOfnJ7QhJzHZyk+nuL29xnK5wd3dLSBqnJyc4cH5Y0wmEyzma2dSw2M2z/swZoub6xtoU+OTTz7GZDJBf5Dj5OQQw2EfWgvrOPxum8gvS2r7jBi7Qzs+9DaYDwA3JxF89tcNOSK23mdYvdzKW1ufnHY+4V9mqzHGONMa1sBzoCgGbLUiumOjfSROMu2QjTWMbeOTNEVi/W7ShFhrhGTaQNKkh6Y1IUh12ulghSGbX78uexILFiz881JadhxNAQATpaAj0s6rWkPKkFbTnl7wusKKPZDyyjHr2FKQgqp27SeZuaX2pke1UhAVmawWRUERbiXF6sjTFFEkMchzZNbkMbbv4XYhzQIcNtPG2DoKMu2ITNAmhPTIYVlbpURA98hmIVo7MxvvL2Db3eosWZgzBs6sKhwvZKZJ/nfQtKeUViG0Wa8dNfNyuSQzXqWckomVEqzECsG8V6RFLviT38tZ2OsG81w2FhAiIQHhT415jXZjRhtooZxg7Zx/g302khLCkHaeT721BugU1O/zgkCAEyapvZk1EXzm2xjX4TzfB+adgEsF94FLw3kPtBTwogvLw99mzYSF2HWkD04CGkqBd9LJU3onm/mwE7vs5lsPAICzk4cUDUAB0NGbso4RzIXL2pKiKhqdICCRpokbjForB9p4kHKAlNVqhc1mg9m8wM3tLdJXr5BmGaQQTorlyd5e4Ou6xnK5RFGUECJymnsG3UIIN0mSJEaWES1iVdUoC41NWdh6kyMlL7BC2tDZceScIw8PDzEcDl0dSxshkp04M2NQOodajbyXYzgkZgvSMpPwYIxAXSloXePaOvRWVYnDwwNkWUrmJ4bs8IuCQsyTgxWwXGwwny9RFqS9K4saxB5F5ilPn3+L/8ff+a/wxRefodaVDWAhYcIzRjvxRVPMbAB51qRDWOGchb3WGNsZdxrQFVE5wgAi9T4IrBmqKwUIGk/GGDemmBUiPHYOg5EwlzOdAvBiy/UjbYzb9JxUTQsVRVKMrU1lHCwWVE9lFyumB8vsuN1ut4AySJMEEWv6tR8ngLB9Q5tDWRSotlvEgtytIiEc17o2BrGMmotDq+05hQA9ZGwKNe3cBqzF6Urvounn1ABLrXK1BYQQ5O9oUfeUgRZTawcaSWvSRydBylLJbTY1vvrqC1xf3+BXf/RrGI1GVilQ4+b2FuulQpImOD4+wNHRgXUWrL1DdWIwmYzwyScf4/T0DJcvn+L586c4ODjA2ekZRJKiPxrj7OwMSZJgejPHL372Ob786ivUVYXDwwNcXV1iOp3i4uIRTg4PYTSwWq6wWCxxe3uH569fQ2uNPM9xcDCBkAZxLHFwOHZRWstyi9vba3z77TeAifHg4RkOjyYQEKhrgcVihZvrO8zmU4xGfVxcXGA0GuH29haff/4NNtsNDo8O0Ov1SNOfRtBWwNBEnk1MW9/B1DVeSMve/Xto4tXKqJGnMzOw/23MdZtHex8BvN2zCfLk94Z88s6cxgTXdfOz4e/2f6HGlP+FZib+H51EQgjPRBOY1oQYpCE0o7GS7wjpu9t98/ewDABcuQDveCmFgdASUgfxK+x7w/tJQSoAHdDsAkR/aQyMNN5kw7YXr/UwgJESqq5RSwljIn+6IYQLXtSFxBjoUV1Zk86jwA0I2mc0KanYFASAo+TWTghjjXw4Jv27aIsz3pzI3uCFRO3GTBjJnUF9af+F/hUAnCILQrixxuXzY3Z3nfYHFe3+byrAfYVdd8EPs/Dkp+N27veOudte903Y6OC53WHyArg51lYC8T7umH46wLwQZA4mjAbFSwnKGyrNw7y5jsE7G/X1m3TnmtOoQljn3Vv3pncys+FFbEd7qj3bBd8npHBct9oCdA7SRNI/aVgjGTsAX1dMMSURs6mE8pykPDi11livVzZs+wFGozFNUKURxxJxYhBnAvMlObvWpca62CKRZHJjjHH2ZGGZgMjy0xOYlZLMYdi0KAQ+RHuX4fT0FJPJBGVZYrFYWo09aIIp0gRXWiOGwMF4hMFgiPFohCzP0R8N0e/3URQFBaLSyrHqSBkhkgniKEFRblCUG5RlH3E8cTSWNWhSSwNAaRTrNVbTKertFtAao16Kg8MJVG2wXhe43Uwxm08tULHOTxHw/gePEccRtpsS19e3mM5ucHm1wjdPvsD/97//B7i7u3XmQbBHWc6720R7Afku8KM2dguEu+YTjycn8EWSgmPUGtoUxD6QpUASodYaEhGYVcEYAw1BgaJAx6dktyjdhBOxsHq2gKY90NApUECQMJx4Q0SxqxQt3FZAM17SZ98MFhizlHwIVGX7VkrEeUpUhZE/7mYNPm+2xmjooka9XkPoGjJJYYSmTUsTWDVO+Ghqr9tzsX2tnZyNbgDk2/Oc89onwL8J5N9HAAg3i66821r7tmbfaVCshkwrbx9LZ+kGBjWmyxv8/Muf4Pvf/yHybIBIppAiw8GRQJrEmM1v8Or1M8RxhPF4jJOTEzx8+BBpFiNNEwyHA4xGYxxMRvi13/gNjCdjxHGCqlLYbEgLvl6s8MXPvsBXn3+FQb+Ps8dn2BZL3BmFYd7H2eEZDicH0JVAoRWG+QQfvfcJsriHq+srjMcTDLIhnj55jiiK8fgxnSa8fHGDX3z+C2zWG5ycnOOjjz7G4eEhqoooZBeLO9R1jaurK7x8+RKjUd8GhOvh8voGTy5foywK9KsKT589xYsXTzEcDPDRRx/h+PgIsOYd2+3mrf31y5gcdzlh6WCN8b870GjMjp0zYFUSbuNtvcBqbMmZOhAKDI077Zitwv1YOGDjgHxgGsGaXz7hJC09MbxUlo1EaY1a80maoFNYIZFmqXX2jJD3chvwizTzdJpLHOxRTEoC4QIaec1re+3m9YdWSX/d6Rgls5UIRBCQDQHGOpfa9jAGSFI2oRCAjRsjowjSKu7iqqITCGM17Nprbg08BzgpawQi246RAQwSAmaK7NBDQQloAjRt/AnItiyhDWmBtU4QW3pOA2HNlui0gHCXtc+GgIGC5qid7G8ANteywgEMiMnYwNR+PDgtNLzQUtfETOSEQhpeLpIuwMIe0VJW9QbGkMJvZbXxStXYbrZeSSklZBxDGiBOSCiP48iaXTHDDLnqa0O0n1LIxomUFwwFotjzyPso5AJhYDmeB1KG+4NlLBNt00k7iYIxw3snm+UAbPpE7Uf7kXbvCE+eZaiZt9cNz0EWewWPaPh3a030p7zHB/uJI+Yg4yEP1EMgzlJeuLd1y4RvTjtonZUE757uDeZDMMsdw1Ry4WbPQEzaCQQr/ctgQ9Zakye1aAJkB4CyDFJKxzkNULvVdY3tdusGFYPsOKZImavVGkpp9Ps9nJ6fodbwHOwbAvN1XduIsWUDOJKnPwWfoPcZxwpQFBSoiM0jGLQpVWMw6OP4+BjHJ8c4F0SrVxQlNps1ylLj7u4O6/UaaZriYDRyEU0FgM16TR7o6zXm8zlUWdEphZ08RVFYeimDCHRkvlqtSGufZVDW7jWKYkgjHXPFwcEBttutrVOMNCYH1jvMsVnTRt3r9ZD1ehgMeuj1ejbiK23m8+UN/sW/+Of417//e9iUy52xEB6NeYkXXtsT/Bbe0wX02/SG4TUAzvwJsBtFWZCQaGLIJLYaEW93F0UeFDY3GPpc20i/Tntk/Nik99jFWPAiBr85cJ6h5kBbhgJ7gsJ1zmwgKx4zxhjEUYSsl0PE3kSET4f4hCmy7AJ1VdGJhAPlCBbLZnk6TzQ6gG/7e7iYMpBv59kWBtpCw5tAdzhO3gbo31Te9u9daVejL5wJF40h1nrVuLm9xh/+4e/j//C//z8ijnPEUYosl4giibIqkOcZjo+PrVM4BXmL48id+G2TCoNhhuFohDTNiCd+W6Gy832xWGA+nyOJE0zGE1xcXKDXT3FxcYE0yRBFCV69fonVauVMANkUazgYot/r4fXr13jy5BtnDnh2dm6ZTBTyPEe/P8ByuXT9FkUxLi4owm1Zlvj666+wXi/x6aefYrFYYLneIEsiQEmU2xVKqR1rDp8IKWWw3mytve53L2nFc8U0NGQ8crS1ySbs5Z0JGWgBILO9ltabTQMZXgjt9zEfxVUH+XjwS2sKfWZNu9KBrw1ggyLRGlDVlaNrLMvSCuzeR0TKxNnBZ1nu+i/Pcx84KUkgLbNNnCaOicpRdxtSVrWTd4pFg4rT38AaW6pfIlnxYIK5rt01QBJo1BpCkB+ZMQZxnSCpE3taTNHJjfF0zHxSyso7t55IQ7boCACnEA0hTQXmE0op6LoGQFikUgpS06ltXdeIIwKPOoogIyqvJNNvcvwUrIW2dvyafnNjrKGmDQQ5yQx8tRdkwjvtV6Vt0C/KsLHmCsuAwnuD1hqbzdauEwrr7QaFHR+1Jc4QgnzLmNXImSwLfyojJPWJMCAWN6WhJfklSONNNMnERTihkJSsUYD1dpU6DaHYKrtgfKwNGgctjXw4z4xxUXm14CjAsd33YgDN8lF7km9HmEdYJi5Me0fRmujDWZHMezo5LrNAYSticWxzPgTnde4euLF/HwWWGw9mF9O7Xf4dhIN30szzxsGdxt9DjV/o0BVq+MLN1l2PpGP64Dw48A+bsvB720JDbMPeM1vDcDhGvz+AMTXiBBiOxkhtCPPNZoPFfI5itcFsNnP2486uOo7R6/XQ7w+dwBAuJMzwsl6vnQSZJDGGwwGGw6GlxEygY5Jm034PWb8HUwMHBwfWbKcAaoXZbObsWIWdKHVNtIpSm4bPwGpLZg9Hx0c4Pz/FYNB37b1cLlEbC3R7PeSxt9vm9tG6xmK2hpQxqorMUbhNN5sNjBBI88zZg2+3W3z11ef4B//vv4ef/exTMqtBc9K2gVYI3NoAsK3JbYP59vEd5xOOl/BzJIhL19QVpAQiSVH7uoQA1sYEaw45lenKOc8IISANyNYPQaAwWm2gTU2UiIH0D0USPQvmYYAXTwknHDjj0x8OFGYEUFktPIAdh1whBEo79nlDiqUH/+2292C1acMeatbb/dPOx7Nc7J68dfVvmGc7te/jz21BYF/ft59rbhC7K9s+QUWIqPFbYzwB+OKrX+Cbb7/EX/vV38Dr169RllscHR3i8PAQjx8/xtHREYwxuL29xfPnz2kDXa+xWq0wGo3w/gcXiOME202Fm5sbPHnyDFoblEWJLM9oLSnJZG4wGODg4ACj4QRPnn6L+fUVnr18js22QL/fJ6752RIPzh7go48+ghAC6/UadV3j+PgY6/Uan3/+OVarjRsT8/kc3377LQDg6OgIJycnuLi4QBzHODggli8pDbIsw7fffovFcgltBGJhIKEwHvXx8SefWOpeMsOI4xyjYeb8kL5rqau/vR6wcae71rn5m651zdg9vTlWDUINPZvW7Arb4T0In9l5fvcfWEPNaxabsHAAqMCkhQCbX1s7QYUDJq3fnAzC2ueORm7kKUJIY81j7AmAhmPYAewaE5HdtIwkpIkAbRBJDRNF0EZDmghsWyy136tcmYw/LZAhmLdgyhivKWWlCwcagmiujVrTKafWmhjTdHCCYCU3AokSQlgLg6CiwmggoBx0GlXjHWa97wSPIZYIjQNxLOBRPWRYTPpde9+purZsNdbERinlhFKue+iDFgo8biw0xkPze3gf39u+xnOha2a1dqfGeHEK3o6T+MY88fp0+7uGMd5xN3wOoqlca+ON9jv2F7b1DI8js7tvunxY8Ajvt5/9PR35u/J5UzUrBgbt5sd9R3X2pnfSzAO+w0OTl7ABWXpr2yO2HfL4N9YqUEQ60i5vrUaetO6JM3cJGUJ4gC+XKyu1FkS/liWoa42iukGvP0StSBO/mM2xWa6s3WnZWFiZOSb0Di+sM1q/30eWpUgS4i3XWmM0GuH4+BhnZ8fILK+tqxIPKCEcs00ck+Pa9etL3N3RUXiapkikQFGSiU1ZlpDGWIclq5mvNGQskVgGGjYBWq3WePXqFW5nxJTTyzIcjw9weHAArTXm87mX7qVEvzdEmvbx4OEFTs5OiK+8qlCpGsPhEMPhEJeXl/j7/+3fw+/8zj/Haj2HMQqQflI1+i5IISBr+1G072mnd5FgKSMgkmTzqKsKRgjIJHbvDstIbBY2HDYMlDXXiiUFEIOBp3sz3o5eGBIauB+1AHTkyyi1QWT84hPFMeIscXb8VVmitGNJSkmBo6SPelxWFWp4G3kOCMbtxEKAACw16q6jKafw1KLd3m8SunbmIprgmlMbSL9TX2G339/0fAh42oDpvlr5IDe3qGqtgiNbHnOAUhX+6T/7n1AUJaIowcnJKQaDAQCKNl3XFQCBq6sr/OIXv4BSwGAwRCQjbDZ0TF9VBNZfvHiBTz/9DJv1FpPJBI8fP0KxIeF4NBpitVphvdqQKd58DhkZ/Ppv/hoGoxGMMfjJp5+iVs9xdnaGNE1xc3MDIQTOzs6slv1rzOdLED2btEQAxJzV71Ngt/l8juVyiSiK8PTpU2y3G5ydnWA4HCLPc0wmE9ze3UEixccfvo8ffv97GEyOnYarKAo8f3GFwWDg1pnvWmpv9jyWROua/dZYK5yGDn5d8to+bwsdviNk4Wjm3RREna1z8FdZjfsOmIfPQkqOAOrnQJqm7uSa9x4ZSSRpSo6nUjhTGAhSNkBbcNo0qmmaDgpAgJ1ihbsc3O7udWs+aI+htiMHRQm4qMz0ftsPts21NqTyDACckGRaJGQNoSg/4ignPymvMIG38xahKNFUGjhbcQt47asBCxL5GW0MqppMb6RgPyWi2ORAfWya4kCyay7vf9Cg6VceyLFpiBOw7HUWSJSmfYlOXQQggmBSFqCXZelOKTZbYqQzmljPGsEUbSBL5raXQT91KW+aGnhp4w6QFtzRmbaFxECIC8Gdx3RNzXxkyQd0kpAgFih9jSEnbzTmTXNchvOHMWdbUaRBvhd8f9de0aVcYqXzzr3wQow7idqXAoFeAK5jnTuhcLtOcHZj6+VMgWxbGJYS4f6+C5AH3tEB1tehyZgRNsw+MEfCMwct8ZPSmVAIAy0NjKpQ6hoaAkLE6PVSDIdDHByMISUxgSyXSywWK9S1AlChLCsoNQ1CVhPAy/IMaZKiqtnjm2zLSmuLyGUHYKneFp6f13ZoWRYQQqHXz9HrDyBFjDwfYDKeYDQaASAtdzmfI0lzSCmt/fyCOOPjGINBH1AakAbZIMPh4BCD/gAyksTIo0rUqoTUQJoyrWaMuracukWFl09fIolTrNcbLBYLrNcbFGUBrTSWWGH6eo5+/xJxQm0wGAyQZDkkDApVIRY1esMhBtkIgICqNbbbDTbFCv/8d/8p/uu/+3fw5MnXUKoi++JgwQz7nAWprkEeTo59Wtf7XA8ncGMc2UEeG6AuakBRBNfI8rMDgDTShaiOpIQBUYLJiK7FyEBSMYcQV2CmJd4IlNbQio5nhRSIjGyM+dg5NJO9fl1pbDeFoyqNE+mCA9F4KBomaUlEp1HhsaVbuMsKWZyjLAsoJZClOaCqxkLVdiQP5yVfb59ShH3YBZK7tA9vA9FvEhq6yvW28nSlcNzxs+HY2PussE7REcDArXFSIWtMl7f47POf4Fd/9TewrWosNxtcjMc4nIyg6gI3t3dYzWY4GI6xrErUQqFUFRIR4/b2Dt9+8y1ms5llKoowmYwxGJBz+qDfgzA1AIPr60vMpzOUZYmH713g4eMLnJ6dIE0TzKZLCBVDmAiLxQKrFSkcTk6Osd3W+Oqrr7BcLjEZH+JwcgojNbb1BlWxRCqBPnpEn1lUtNmXJaZ3M/T7A7z/3gcYjwcQUuP07MRthpPJCJPJAaRMsFqu8M233+DZs2e4vb3D0dEJhsMJ/rf/u996Y9//MqY20A41fiL4vQ3ceb0B4MxsdsZLMFZDH7E2IPCaS7vPdYF5/hy8HwAMmsCGlDG6AaiSNEWapYikPe3LCdjH1qEegLcFAfurWfKAFhB3yNTbjsCjdvhr/DOCz6wsYvBjVc1S0JrI+0fcqJ9t+1oAjBmEBKRlbpECUI7exbVxg7TACV7GRYkN2yc0d9L2FJvAse0rYyhv2w+VjQ0ihEBUKwigYaISSYnI0nGG7SeZEQiw0U4JuTW48m1zCiEQWRMe48A8CTY1220b7UF+YMq73W4tCYfCZrtFaQk2nNgomgyA7IO1b2/wfecZkPhzFO2C+G4w3514/AoEe5AQpLACmcFpS+ZhjIFhE6NwuLmGa5abx0H7lEAK60LW2vO6Unsf6RROWvnzte76wiF5HpM8/20r+BNAwSDergswdhh6R3e6j+aTL879FWjvTE3ZTt4WynO92lI0NlxyKLUc8kLCSG9CobRGva2sDZl16tNNCWq5XCLLwgh2xGrCA5JB+mpFIdWZvpIdXlerFeq6dOVp/1XKO5+ySQTZjmqcnBzi7PwExhDbS117Wy9+9vbmBqvV1i0mPEHSNKXeEwJxmuAoP8LBwYGNTCdxeHiIk5NjTO/uoCuFnmW6yfMcxghnJ7dcLvH69SUW86VrZwHhFhq2o8/y1PHs9wYDiIjab7PdoFAVBqMhOb8C+LM//xP8nb/zf8dPP/sLKF3BGAV3kNkxhri92jbt+9I+wHUfkNjYiEPQacdWJCWqsoA2NeK6ouiqMoJA7LUSbpI42dkyDNhgWgL2SNrXI9y02wAybAetNbZFQfRsNX1PkgR5niJOaFwTl3ztxmOSJDACqI1yDDvchnx/mmZATVF3h8MhIimxWZSQiQ973ZXa5d13b3tR72r7fX3yJk15WysaPhOCoH0Lblj+ro2H82CQ1XVPVzl2BEJhBTkAQkR4+vwZ/vZ/+r+BVgar1RoA0O/1MBodYTKZ4OhgidV6g+vZHZ69eI7bm2tEUYR+nuPu9g6r1Qq9Xg+TySk+/vhjnJ6ekuldHOHu9ga3t7dW+TDHwcEBLi4u0B+NMF8sIIzB06cv8eTJU+RZjkePHiHPc1xfX+Pu7ha3t9cAgMPDQ5ydPkASZZgu7iAi4PBggo/f+wCHByfo9QZYLta4m95YHwxSIgwHQ+R5itGojwfn5+gPiDmLGL/WqKstXr1+jb/4i59a+t0hjDYoi6qzj37Z087YtusujN1ceSnYm4HPpzneWUvWNJPx77WYNwAHJsir8x98cYi5RjcYbgAQA5wJTGoC0BXJyNkyu/EfKF8gBJw+3Pj1j9fCsHlce4G/t+e3CC7tMdEJ77Z5MMByJnbW/EZKCaFZSNENc1x2qKWokXBAqSH0MJAXAeGGqwgVQITXBWACCmMHOgWbYvI+s4clKLQyYMEQzXHi+ttqXCmYn28lOiGxhCFWU+tZijQ5uZI6n0xqrAmN0qxo8riKhoYvpzevaoHuYDzy+HR1Cs1vpPT/RGimhQaO6+rjzj0meCfjpB2fy6Avw7WdplkwMLHb/+E+Erbxvj3oPomB+VtvD+sr/KXm/mPniwPorlGaY9gh/abA67J/w37fld4pAmyX7Ts3bCg1cWGrqnLfpUgAESG1pjJa1/55IRz1nqorQCtEcYYoI1o4Yq/ZYL1eOYfUqiqRJJkDzGx7z5pxrTU5kNoAKFw+YzzvKlOwESUfHXk1gJc25BDX6+H09JTeva2xXG6tLf4WcUzvz/MeqkqhLCtrf98nxhlrfyqFwKDfRxQHUrQkXvvJZILBYIDIBPSKSnnNvFLI0gx5lqPMKhs+3teHtP9DjMdDSGsSorVGnMRIs8y23xrT2Ry30ymmsyv8k3/yj/B7v/d7xCsNBQPewLuBEfct+xqE2otQkHsTGGx/77q/C8B3JSlJM1IVFVRZo4oK6rc4dwGXSDOARhkpemqwWdtZzN/bp03hQhPSgTkPfBEhjjPH4wtodzRqSwopYwruJWIym4rIbpRNutg/hPxRNIqickfoVVnYjffNwPy+vzUF7H1g9+0Cw7v8vu9d7XKGv4frTNcYeZdFjvMJn+Ms16s17u5u8fFHv4p+L8fXX3+FJ199gQ8+fIzHNuiT1gbxAuilEVIJLBczrBczlGWB4bCP09NTPH78PsbjMYSg00MdR+j3++j3yc+lLisoRb4xN0+mmM3usNms8NWXT3B3d4cPP/gQx8fHzn/nwYNzlGWB+XyGu7s7aEU8zhePzjA4GGIyGeHs8BRJnGO12hK7SCywup1juZxiuVji9voaH370Ho6OfggAKAtlj+u32G4LbNYFFvM1zs8u8P3v/QriJIKuAW3erOH6pU3hmHBAHq6zHZZ3SNoCObCSAI1NtzkXmoof/uxfSZpqfjUDRqWJoQYmpCb0zzmlgKoRvomcDxMIAcRxQrzxIjCtkRJpliG2+54zrQGaQEgb7/gqjAVnmgxOhLCsXk0T2kAVb5PswO7UtkaYFgDhtgAMJCJEENab1sCa3UhLCamN5b+3xAGxhGTTC24rbRBFPsCWP+VQ0LW3q3cBl5wwRDbNwjq5StaIG+M1w8ZwZyGoNSLpgyzFhqPXWna0oH1ZyyqMgWETC+P/Ep0yt45lrbFgHjw2rG9AzQDeGNSqhqqJ4ccx3hhAxjFyix88zWi3MkPYAgrA+S4IIRAnqRtLfJojJZny+kBjJChK4QNjNfIO+jgcDsIKsULwP4sXY4rmLaRAVJIwqlz7NU+uOOBYGB03XLvbn2MYQHiWnZ12CK4x7gp/58+hDMnCuPO3awkX/kFeSlr7m2HNvP0q3O1OUGeWIq6LF+Cba+99hRHgLxEBNpQsQqe2UPtGEm+ThQTCQMCgFhpxHDlTGNaIw/K0ZgmB7CzvkbOEW/wkimLrnUkhUJbEA00cydrZ30dxhLIoLED3jqxKkfb08PAQDx48wHg8ds+v1xtcXV1juyWgnGc5ZBJBRkRvOZ/PcXh4iCzLsNlUmM3nmM3uMBoNMRyO6O9oTOHY65oCfZSVo6pMkgQyixDriBYT6+yqtCau8iRGIkmrzAEfWNsLIVBXFdIshRCw0QNJYs/z3AZ56lvnUOVYfjSA/rAPQGK9XuPFi5f4N7//r/Evf++f4fbulR0oEQAFIqsSbxVNeVFgYNv0cO8+6tqnAW5rcDn/cFw1AVgTiEZRhEwK0loYwNQK23qDKKogrK1jFMMtTBACEk2u3Uiw/wdNaPKcp4WYHIzs4hoc9QLe1yNLc8goQV0RUFO6hhDameHIKIEwsY+mKgBlSqhKuTasqsrFMNhutoARyHs5BUaxTCPtdmrOyTfpyd4tvQnMszD/NkGBU5fT67uU4z80vTUPY2Cg8cXnn+OjD3+EJEnR6/UxzDNkWY7Veo26JmG/LrYY5hlGH3+A6XQKIwXGkzHOzs5xdHgEKVIYI7BcLukUMYnRyzOk1qFfa42bmxsUqkahaihVQcoIjx8/xmR8iCSK8e233+JuOoUQAhcPH+DRo4c4OKBItEVRII0TPHh8jvHRGHVdYX4zx3Y7Q11RmPjZ7BZffvU5ttsN+v0hjo6P0O/3UNUV1uuN9SdSuLudo6pKZFkPJydnODw8hhDsK6DcUf5/NClEycbjK8buAp7RKhzZTUDvtYLNOUAwkMa5BQrwWsaQXYVBA/3mN/WyqhwtLds+Q0SIrRaeTvzIbC9NEoqZIik4EyuHdrWxXAdb5wCx0nu4SURL+xrsAYL18CHUhSu7xzrNdZwfl9I6dRrLaKeND5rD91qHWQMDKAGhiICA9kgGebIB+Iwx0EqgNs3+8CceQQezcsoYSEhn3qRhBR3HaGJchaJIW4HKmu7YYH9cbgTmE74hQsGuCVKNE+TQAG7aeN+JWpE/lXN2tUxHLJwIIZAkvr8jq0kP258FTWMFVO7yUPFGJ8KJUyQ6m/kgFgubDQkhdsYTJz/cWqcifPIDjwuFpa8WgHPYZpa2EJhTPsZafbUFzKbpHCve6ETBE6S0LQXaysGdkwAnfdk/dlEQ3N8M0vcA+nDFaGjXNd3PyoOmmY2lG22NW5tJ0Mbvtge+swNsu+Dtz4DVgkv2gjGIowQ0AZQtK2tJKU/H+iEjjEY9nJ2fI85TLDcbzGczrFYrxEKisNFPXVRVrVGWNfr9PoaTEZKMNk+lFJbzBbbrtXMa09pr3LMsQ7/ft5RzxP5Q1zUG/T5evHgOY4DJhBxDt9stLi9f47NPf47xaIwkyzBbLTFbLBDLGB/kOcZJiiQmW/X1eoVNvcFsMUe5oiBNUkZI0xpxIdHv95D2UyQyIW2tqVEVFaptjS148FrtTJwgz1IISUEvhJDYbFZQqkStFJIkJ+1fL0OSRjbKnHGOwuvNGjNrX//NN9/in/72P8HPfvHvoTTZg9PiQkBW8Or+lr7lscCnMQxIAR9HYMeDvmPcvE3L26XtDz87aqpaAtBAFCHOUgAkCGUp8S0raAq8ZcsogvCpNEeF16qAtCzC+HdpoR2VZZIkPgiYWxA0tpulXehBvLwxsRvJSLrNVIHsViMhgZroxJjRZjToI45ilFUJVdVI0j4qJwxr1BEtGik1AgkloamJYaHZMgaIbhDtTyfenLraO+y7fZ+Z6aotEOzr8/DodWdxvWcZw+9vGlNtgZC+AIDCs+ffIDIGiYjWNVU9AAEAAElEQVQh8yFOz88xyBKsFkt8+eIbjEYjfPj+xxiO+ohiASEpGnGa5TBaoCwV5rMlAIHJZAIAGA77SJIINze3uJ7eIoJEv9/Ho+NjGAEUVYk0S1HXCj/72c9xczfFdLsGcnKm3tQU/GUyobgS0+kUl5eXuL66xWq5QZqmWC7XULVCkqTI8xSPH7+Hg4MDaG2c+V6/30evl0MrhaKssFnOcXv3GqvVBmenFxBCYLFY4Pb2Fre3txAQmM5mAP5P9+qHX6bU2cdvubeZuk+O9gu4IcgN7GMtONxVQgC8+JhgM2/k6ICwt1du2DPbv10ApfHZgpJ2qel348rSpSxx5XCaxnYmfBOLQkG99yTSJgsf+Kn1bm1Iex4F+VBkWDb7FA0ACMPxZ4S3h7dF695zqEG4HEILgh9GgnwKhI074AEZ2TVb8K0NKST5b8Dzyc1N74IDbCSM6KCvPXhlUK8MCylNYYCBurR1ddp4aRlvAs18mNyayt0DtumXTkNPyq0Ou3jpHWeb/9r921TgujKHbR5+twIkRBPktxP1q3DtR/e3xrf7H5fnzXtS5zs6rvFl0eBv9Zp2CxY8g00jAy4Z19cLAnwiFZ74+fxb5WWhAeEYbs6xN6V7g/kuR5+uRS7UsPpImsYxuxCg8GCcJVilFBCDjg7jGJGMUBUFVsslVqsVoLQDWcYYx3aT5xlOTo7x4NEFBqOho7Wc3t5hMSVBgLncOZorM8psNhscHR1RuQD0ejlOT0+teRCw2ayx2Wyw2Wwwn89xfXkNLQAkEZIsQz7owRgbQjqSKLcbzBdzrNdrbLYb1CUNEgoIZCBtxFYBgbqqURaly3u9Jntd0rIT97SuFTbF1knRWZ7h0aMLFCfHKMsSUUQ+CGT2QRI50yPWdY2i1Hjx6jX+7e//S/zb3/+XmK9mPsS5W/w9N3JzAMH1YxtohdrpcBNhpx1jjLMHb76rvXGJxmceC6ENZeiDwHnwvVLSAbE2VismBOIoRhwT17ZUElm/hzhNXPlQkxOO4zRWBOidA1xQ7ySOEUdAnEQN4MnjNXSiZntWGSeWgYI2+jC4htYaVVWiLrZOEzccDhFH5POx3WwtJzDtDk4YkAK61jCSgptA+ABqQWu6ed9WIrSdvd8mSHX1/X0Egy6w7tr1De/b1c40r7savgGotwFNeP+bxp2UAkW5xWazwrbXhxD0XRiigEvSBAYGWZbj8OgIcQxoU8FEtL6tllssFmssFgv0+0RVOxgMoHSNNI2R5TmMMRj2B4DyJlhSSCRJCikV4jhClqUY2IBUR0eHgKU05VO2PM+R5znqqsaiWuDhw4f48IMP3fqUZilOTo4QxzE532uNXq+PPO8jimJU5Qaz2QIwAqen5+j3V9hs1vjFLz7H8+fPnZKkqiqKUvwdTvsARvs3d48INMp7ADDgw8nz3HZvsJu3D1oVBC5qCN4alqCFAh0xzzjfK4UD63EcU0Aoa0bKn6M4RpR4s4LQX83NzYgdU3cBFtWnKWC7NgmA277URXLQzse4f74NhKR4KCYyEEZD6AiAQaQ9tWJkedmNbu4lfEJqglMObWk56d7a+SaJAHDxfiIEmfUAFByJTEvI3FJbRjNjjOcdF5Ls2g0gtEZZ1wR+Ndn4Q4gG5XHQCLRfWURvrALHAU8H6oNIrqyxZ4AqJGQsIeOk0XN8msKCmhDCj0Dj90NWcgkhAmAuHTsPUX+nkJI/WzMbq6giOSG0sfd7SbiPcH7czn6EtRrGsB8CnYozDjTGkLMum6wFTuVKwwbtEjDSMgnB50MKN7Ik4Gi5ofDRtW+08Sr1d+BM7a7DmdrA+jn4ht7dXNm1o1nl1gmf/RuuC9oE8yR4f3OPuz+QB96RzaZLq9e1CbNpQLiRSykdhWPDURawjoKVi164XC6RpinxLy8WjQWx3XFaa6xWK9zd3SGy9JFJkmDQ60OfnTvax9lshhcvXmCz2bjBNLNafyEohLm2mxkflTOFJYE+RQ63cYzhZILecIB+NrDmKy9o0zcKdV05E4xNUWBTcHS2GpttbI+3M2deQU67RK8ZnhYopaABlDXZXkdSop/3MJlMnMDCzxdFgfl87tqa6/b7f/hH+N3f+zFeXz2B0it71LPb5fc9zgm1n6HQFv4egr37mtzc573hX164ANJg0NGtoeiBAJKY2r8oCpSLGr1B33v8RzQBHSBX5A3vtUGgzdlOMGVqGOv70RY+WGDhRVRKScfK5DLlEo+huq5RFlvoqkCSJC5YV13XWNsAYnyEznkrGyHQAYa2NG9CxQEd38VtjUnwPZw37T5r3990NOoGQfw3FC7CBXOfBqZdpjYg/6tObafZsCxlWWI2n+LDDz+EFBJFucHNzZL8V4TB5csX+MWXn2M07OOHv/IJHj1+iN5wAGnN5MqywM3NLS4vr5ww3R/kODw8cFSTl9UrqKomU5uiwHA8wkff+wTj8RiPHj1CVT1BL8mAqsarZy9QlyVOjg4sNS6tm6enp86WN01TbDYbSCkxHo+RJLFTctzc3KAsKqyGBaJoail8l1bgoDXGaInLyyu8ePEC2+3W9QGDgf8YktizEb4J0Ld81+z9QLhle22lB/VdGzOP56ZQDFqvAgatsLzMn87EDnEcu9grHDHanUq2lCtu/lgMYHXRzpwoqBG6gQLZ+janoFfwcJu4eRuY/3nNuOeCb7avhIxsG0BA2CBuMlAUidqz0QgZnszK4HMzrgb3GTuKkn1+0+TXtYtlk5GIAEkLp9BN4g5i2LHR60EBvShKKvWbdOCUx0lzPQ6VPOF1TmGfa01g3jYQEEQ3lZIpSYNuEN48a6d9EcRJ2fNZCAooFlthME5i53MRxbFlwrHMobZI4Vho7+07whx2ueBF8CwLFm2GHAd+DY0doY1z05C2f+0f1+bG3ssnPPy+kGkKO+9ujlcT9Lv/q+E18qwpD5ScIaDv2k+CDw3H1+AkyrTv8w0W/oLd+fnm9E6a+bb2KwRVjgNU8IIUOdtkBie8IDm7MAtoAbhgSOs1acPTOIHRGmkc23DPyh2htQcGAKzXxL0+m80QxzHGwxEORmMcHx8DAI6Pj5EkCS4vL52mK7EmOSQNUnlmsxmm06krFy/Eea+H46MjHJ2eIMpSyCTGZrHFYrGg3/McaUYRSRWUXUBNY1HZbDZYLGaIotjxi7MGhs2ByqLEAgsAAgo0guM4RmQDV0VCQqTCbfBs418UJVarJeaLOX72s5/hD/7gD/DNs89R6y1IsieQSWNkVyMepnYftyXeLtDFG1B74doHFtup/R6+1nW/Lx/csqptGHQT0WLE7VqoGsvFEn0L6HkzkZI2Rq0AF+7QEEUqnN28AXQNaTzwbZeTj74ZTAPN6cgAi6MZJ3GEXq9n50MKcngtLJONdeQOzHg46JTRHG6Dbfulix7o3238QhS0absNu/qvS4v9NmDdHjtdfdh+75vKAPgxw892aVra+b2tLu3f29eN1phOb/Dhh+9ZbbjCYrnG1dUVptMZnr16geV0hrOTQ3z/Bx+h18uR5xmMESiEshFfZwAker0eRqMhBoMhBMgH4ub6Bk+++QZpnGA4HOL4+BgyiVGWJa6vrzGdThFLidTGKrh5fYn1eoUkEsjzHGXpFQDT6dQyXVH04CzLMBgMIAQ53rJmPYoSbLclVK2gVI31ZoObmzt89dU3GAwGmM1meP78GSlBAvNDNiP7Lifeh5zNNPx4eNOYprEGwLSFYSDUyjfH9O68oe/2b/Cv8d14ekoHxCyA578hVaCfE0EdAQvuqL6C/wqCPSa4o1VTB54ac8sE4k9HOzE2CQWZBlgO7uM2ceVm7bJw5sQQIEUKCxYUfdPy63MkXht8KvzMtu9CEjoXQRuxBh8CDtg7TGVsu1kgDws2pX0OEZx5i68MjQmKOg4vqhhfTwJkhMpUANYbY800+8oY2mckC18cH8COBa6zA9QWzHfiO1s50sZ7kMxmSFJY/nluYyECm/ignA3k3miC1l7iuiy4R7AmzD3uWp4GvHuWyxZFEZTd2zy+5CrRCxj8iqAfHYAXVjgymvZ0E8Y3Mg5zAyFWMK7vuAoGLaGj3bzuYQLwIgTyjXnv938TVL2dobCPBXfDCQqdqVuAa6f7U1MKOiZgyQiwix83uyTHTiEFlDaIYokIzaN2pYiSj2gfVSOfuqZjMnbCSNLYMYREEUWGqypyKCXH0B7yrIc0STEYDDA8GCFKfHCe9XoFUysH2Pl4+/j4mAZTFBFfb5KgNhRmuFissF6vEcUxyqqGMUASpZhMJjg+PcHJ2TEODg+hjcZmvcF2toEqStKOrzeIY9oEtTE2xDIv/rTwmFphtVqCtbrDwQEyG/lTGwNV17i9myOxQFQkEmnmmVkEEmgVoSoNtC6x2RSYTVd4/fo1vvjyC/zRv/vX+NkXnzotvUYNIwjIsy7l3v0dLPLhorRP294FqLpA1D4g3/X5TclL9FZLYE1lNIibl8HJIMtRRRWqzRY6ihDFKZRjJ4goRLjwi0AEQXnZCH4C5AQdAssGWBQCmm1QWSbQvg489qQk7n+tNGIpkaUZWCtcFEVgu0i2/izoEt2mo12GWyKtIFHXNZnlwFgnX/JF2Slnx9+3A5tmv3T1fTvfN9FP7kv3AVntd71rCo+Iu8bbs+dfoyhXGA7IRj3P+yg2W1xfXSMSEnmW4uj4CFmWYb1aY7nYYrstcX19g5cvX8EgQp73kMQZ4jhDFufo2T6+OHsEU2msVgucnp7i/fffx7Ys8fLyEi9ePMd6vcF4OEBdbjEcjvDDH35iTwXhTO4EBLbrNSIh0Usz9Hs5sjzBdlNitdpivV5hOr3FyckJTo5PMZ8tsZivrR/PBtfXV5jNbnF7d2cjWdeIhEESS6yrLbJhjsPDU9Q1xcj4LiYHxJj/3IJNttMFgnWN/7VSCOab42QXzBtDgX8MANHQ8qH5GW1AbxqOsTKKEAvikO/1+qQxtftkeOrXVGQxyqOFh0GcW4TgTX8YtITPGGOs3O8ZfWQHaHC43WZCZoMi+NGDM7jbvADh1hoH1Py7SCmhoTWv5aSONVojsojLseXYzwCt2TACUF4zzwBZKwVd17ZrFQwIjEujw1K5P8KOA1LcsObUOPt5o4GaP4d7YpBNOHg0jyuxq712twkJCOPs1p0AxoGlfBdSvzpmF9Noc99Hvj8YjHLwK1iAzzSmcRR5p2lrKggpvDoeCNiPmsJjCOaNoTYSwjPe0PiSvm1hYIyAgQfrUkaIY3boTRz2q5Vy5klsUiOMPR8xwgk4gDVV0mR2DSlganvSKwyxJ7mG5g8UxdeQk4T70c4QGt62+rI1xt0aoLFjotweAsyoZOxzbtya3Xt5PAWNxU8Gd/D50P3SO2nmu8BMaJ8mndZdN5hOuNPYlIZD1wNwv7FTa5ZlpN0aD5HnRKs4Go0wGo8hpMRiscBmu0ESZRBGWnOYgjRWfXJsHY/HyJMUkZCOo329Jv758XiMzGq5hRDI0hRZEkEYYJjkyDPS2F9dXaEsFQ4OD3FycoLjk2P0h32S4oRw9s9FUTgbU3f84yRNiiinNdv/KecvUFUVFosloihxWvooou4gzX2KbJChP+hZCk0BCdIsr7ZLvL58iX/37/4Ef/THf4Rf/PwXuL27RWUKaFE3FxAL5O8L3MINLDRtChlr2s+Gz+0DvSEY5N/2aXXDa2Ha0agGC6sxBrGUMDGZRjB9JAuEcURmCKwVAgSUs++nzd8EG1skBKKopbnoqjczMdhb2NGJy8csS+wcmmUpssgLmOv1BnVdI8/zBve8p4LVFA2xqoJ30xFt0DLwkn13wK12O7c/t+vFn9t91SUItLX/od/Dm+7vSm87QbhP2jdO9t0HAFeXl3j27CkePjDI8wG0Ao6OjqjuWuOrzz/Hi+cvkWUJXr8+gNESmw0JYb08x7qo8PryFbFeHRwg+tGv4Pz0FEVR4O7uFmmaQIghAODly5eojcZyObc2q0BZFujnKQ4Oxnj48CEAgavLa8xmMyfopUmK8WTsnFqLaosXz19hvS6swGhwc3OD9XqN16+vsF5VGI/HiKKIfIdspOvtdoPRaIQffv8TaBhcTW+R9/oYpiM8e/otBY77TqYW0BUe0AOtcWe1a63R73GeCWNPtMGMBxXsx8X5hcmdlvF3+wr+jf+FmsoksTSUAYhvrr1eo2prHNR1l0IyBBZMrWiMBy8MXu/RtK7Z/AXh3uE18CAWOuyu7dI2EUEqAl9aC0g2fzEE47RVqEhYjjXNYJd2QWhNWlgL/iQiRNwPxsCwxl5LJ0AA0mvkQ/DL5aMOdcBei4CJBoFdPTs9NJsl6G/3hUA6wnHnXkgCpyQWGdefjbWOhB8vxDX7oGtMh9fCf+HpjnOGFc1x1K5Q0ErNvF3pjPcb4PK5MWHHvbG7atAuQgh38sd7ndtbgn8uFysEOqWxYKUyaeO11lCixYLnxRu7LQY5WuGPgTwLLpa1lVUAfikwcEIvF8DVpwHqTeuvfx7wApKfGSa42wtvO+vFO+yB7xQ0qnnc19JeBAZC/BvbdjKgYq05TwoGL3wfm7+kaYrxZETHbVojyzKMDyaI8wzj4wMKc68MdKmwWvXw6vVrXF1f4+ZOIU1TnJyc4Pz0DL00w2g0ghACRVE4Wkvii9+iKkokeYaDkyMcHR2hn+Y4ODjAer3GcrlCFJHz2Xq9xuLbJUpFQaWGwyFUrVCsiMKNTR4YQHI9ta6CMdQEtNxdG8vQ0+v1GgGxtsUWStSIYlq0iqLAi9cv8Ud//If4t//2X+H58ydYrmbg7AxzCKNp5vAu/bsP5HF/7QO17fe9CUxyfl35NE58OgBZWK62zbexi7QxdMSaZRmEEM7R1Ld7baOCNoUVzlMbjaZe2UrvojvyqBGkmef8QlYgzpfHOJdXKYXtdkt9X5dIktjGKsihDRzLTbPdRaD1apr5tNv1bZP/XcfHm05U9gH2v+y7/qqf5zy6+i/8vNlunKne2dkFkpjoIFerFQAgS3swRmMyPsIPfvBDJHGKm5tb1HWN09NT3M5muLq+xbPnzzCfT/Hnf/6nEMYgSWKcnz/AyekJYPpYLpf48ssvcTe/w2Dcx2/+xm9icjBBL80RCYqhcXl5iaIosVlvrSNrD/3BACYSMJGEkqRzlJLYc7KMfGem0xv8/Oc/x+3tLXq9AcajY9R1TT5F0yk2m4VbX9MkwdHhIU4fnONsdod1UeDq+SVu766RZt9NM5twjoVaxE4BsQUwaJzZB4zfp5tjvwmWiCddQxrREGAdMjDG0Q9y8ooeNhXwNIOxpR50dIEcx8NqWHn757WOAUcDX3M9W23TBn38dd+83nmG/8N1B8BmFQ1NPOA0qzpoYxPk65w9AwWBsUqQ9jWvqOBKNfsN/D7+3MIoOwJ9u76hIOYRlRMIhSHBAYKoJLnuuw6wpvEHDKK5rRgMAi7iLjPIOODtyBK8ENgG84LztsizrQBr1F0SZ3uDpYZNeByYb52gBwPKVTEcZwEo7WrGoLZ2jvl+bQu3Yb1lRA7GpMkmXwKuKwf1avRha5w0KWOptKFAwHulx6smKCPj6KD9d2Et6/CblQ6uuL+t2AuNPISdLcY/73UIXgghYalD2HpDujeYZ1v39uDh5G28vJahLZGlaeqcO5k9ARDo9XoYjyfIstTZ1cdJBGMnT5ZlqLSCUXQcY2CQZzFkHCHLD5D3UvQGPVzf0hHyzc0NjNIY9vro9XoACCAtFgvH+66VglQa0kaITaMEpk/HnqQVpTqyVr8oC2yrLfo2XLsAeWazLb6UEqsVmbwsFgtUVYkoZineWEfNKABgAlmWu8BVLLREUYRa0QZc3BX45sk3+OKLL/Cnf/In+PybX2C9XYK28hpCRjDCtrOV6kTQ3u0UAuL7SHvcf6EjTfhb1ybZpeEPwVSYz9tAf1c9uoB++FuSJqhV7VhA0jSFMcY5M5taQ0QqKIcPbmaMgTAKkTWb8Zo544B+ZCUBAzomFVEEEUs3P2ghaAYG4yQlsxhVqKrSmZ31et5/o1YaLG3UdY1ISrc8qlpZO1E0N+4WMLVXQcJNc9dx9Wy13ZuEJ36GAUub7zfMrwt873tXWPYuB9V2Wd+Wb/sdXeOjXb5wjD948ADj0SEmk2NEMsL1NTmr9vt9XFy8h6oqMRyMEcmEWldK1EphvV4jSWKcnh2hrgtEEljM7pAmMQ6PjvHe+xc4OT7Ddls41giZCiSZxMkJRZod9oYwCri9vcWTJ0/w6uUrxHGKBw8e0NgwGvP5FMYAg0EfeZqiXK8wm61gtMD0bornL57AGIP33nsPw8EIz55d4unTJ1it1pBSYDTu49d//ddxenqK58+f4+r6GkYK9McjyDjGs2IDbWocHo73tusvc2qDeael6wA74efGehjY/YZjkgBJ615BgvXu2udBN8X+8EoepZTjFtfGIJISaU6+CnHgtxBq5ln5DlC+yjrpMShraPcQgIr2fJEevAkRgsj963oIIBkYCivwGEaYIZh3IIm+K4diAkdFBKweAQhrKwd8Gbjxu+e/kNIq3S2wi2xgQA1ypsR+pUArRy+ICQlh6ISWmW9CAaRRFGNafRAAbSvquHXStiUAd2Icgmsh+B1NMM91EFagimRo/95xau4Af3A6IKytvPT9LtikRADeUES4eoQa5X2pS0AOuj0A2wF+FWTmQ2HFDOKE6Mu1IR+fHZwSCCchABcW9+xq5j0Was9Pacu6j5GI6VDZxAeA186LUNRqVNV/948120L4oFHGBAIDV8aEQoCAP1G4X3oHzbzyC4ohO2MbeoHsoKKkxTNNC4bWFNzJa6u9h3qa5hZw5S3ubutJrmurqRbYLBYob0vc3t5iuy3w3vvvod/vQ9VAUWrEUY7JYIIYMbZFgenNFHPJDC98hJlTWROBSEaoS4X+gAB/GtjWa60plPtR7KJzahiUio6tDw8PkSYJTOW96slRUWCxmGG5nFthgAQSKSLbY3TspzXTOhIdppQxhJBQMFC6RFUV+PmXn+IP/uTf4LOff4bVcgmv8WEJmAQCHni7bhvdaR8Aamss3wSad8eGX5jfBBK7wNXbytZmRNoBjcLGLhAayiikUR8yku4EaFuViOIYaT8nCjTlqSlrrYhGMlispTaIgoXbSAMj/ftJeUCdYIQ1g1GwoIFt8qjORPXlNXFFUaEqSmuiZalVe33EWQ+1JtrCOIkQRVbAkBqQBkJx25jG5tupQROAgbLKBQUpJADP/x/2RVvwuk//hBti6A/Tldpjqp3Pm8ZiKCS8Sfh427vbgkCX0CmlRKFqzJYLJHGOPNkgjmJIA5weHVMwsLFAnqfo9zO8fPkKUZqgrCq8evUKP//iC4yHQ3zvk0/wg0++h/cfPUZRbJHnOY6PjqxCgYT30WhE4ziWqHWN5XKJ+WyNclsjT1IkSYwPP/wADx89hGJNoAFWyw3qkkz71ss10jjGzdUlXr54CWOA4XCIR48e4eTkBFmW4fr6GsvVHZSucHg4wXg8gTHEFqa1to7+d8h6fZw/uICQEifHp5jeTXFycvzGtv1lTe0xJsTuquhAB4+P4DlnsoLdsUqf7V3Bs5Y6vTVmCQjQsrQbAC9k0YAQVnnlY1jwXhhFkUfx9oUMjrgs/r/7AQYBuVbZhW+jdtt1NGzzL7evNUrYmYkmhPetnzoE6a5S765NTSDY/q1LMNv3ee/7uU0b640g5h3jwWGzoXfr2bXWtfdGL0j5fc2X1e8hDcHUCS8+sBOAHaUR9tSZhYF2fqwIZGE1rKLhOoDFNj/qGs1pWKEIL/m6r81Tl7A8zvxHkl2/Udrd24VFGuMHHJ9gVxB0ZQ3mnZQUrEoH64IwYftwO1hFmH1LUzv/djDfeT0Yv6FQGGbsOOzdWONxvucFrfQOYD5c8Gx/aVr84jhFJP0iREwwtAlxQKG6rhzwZLMbbujFYonFYo7YUgrWdY04iSxAlhiPxhCS8l0tV1gulxAQGB9OEEc5qlKhKkoYRZpwCYHVZuvs5LXWGAyGOD4+wuHhOWSkoeoaqjYufDpr8IUQ6Pf7GAwG6PV60Jrs/zfbLWYrosnMbHAqEZOmZbPZYDqdYjqdYrNZQwjSwrK2lrXuoxFRzfH1quSgxgpCGsyXM/zJn/0x/vRP/xDffPsVSl0QQwuM18IYnk7BCMN+5pgw3fe3t4Gt9nNvWqC7NGEheGyDrHYeXWYkYX5OWwGB2p74pHnmNeVaoaor1AUJhlmcIM4Cfn4RATYeghSCtDGGNV4WzEfN9zYWZ61hao26qnfaX1veZBYsaNEVqKrajfVev49tRcJFkqaIIomqLkAOTHCRgoNaN8BIdwoWVtZqtdrwvmB4nxa9fe+b8tsHrHUL6DQAz57xt+9d4bUuIWLfGPWmEQInJ6c4PTxDKlOoWiGSEnmWQSuFWErISODbJ9/g+YsnSLIMg9EI6/Ua/X4fo9GQZqTWGPT7OD46QlmW2G4LzOe0bgwGxEMvBFHfaQ2s11vc3d1hvVxAAjg7O8eD83MMpMCmLMDa3NlsiZvrG8xmM2RZhosHD3B+9hBZ2gNAQaIGA+LJv7q6wpdffonFYo6jowM8fPAIx8enuJte4+nTp/j666+t3X2PInFDoC4rJEmCi4tHOD093duXv8zJDXnRAhptLVlz6fRjDyY4nOf7TOv+lk+M2Y1ASnd5EOcY02yQPY7oSb40UYN60lHoygisPd+xamew7OZM8MOO9MJlF2EDeQDnGsX/l5rI38Nt6rTNTuAR9pUieM6/VwAt7adxdwq029WCOwscIxky1gAG2rHdtIEhERV4EBhZ/nkT2eipxri+DTGUFxCC9TQAtK4yuqNZW2jO2HHSEB9FcC+vcay1B6iPrQOs29I5vzCLoN+4/R3jjbBmWi2BqwnWWwIcO9QGJjxCSOu7GjyPZn2agL4b/AsuJ4I+aq//9t2R8RiQiU8AWKVv2Np+zrn13/gOpHlmLCMgNbibycaXzGjT1JgHdRIM3h1S3+PAakCa9+D5duoC/PwcV6u9h4UzEHYOvHWbb6X7m9nIDBzNjGsZRdb8QiTOblwIYXnVm2GEjYGTJBnYcOeR2U0BwGC73Vr7cwWlNOI4wu3NDKPRGKPRCA/OH0E8EFisFy5/JBK6VlgEjq78HiGIOaaua1RlRfb3Y9oA66p5X5ZlzuyFg7RoqzEVEWllAapXrRTK1QZJkiBNifHGGIPVaoV+v9+QtpMkwdkZhU2PIhq06/UaV5d3WCxm0KbEv/n9f4Xf/Z9/F9c3lzCoYYyCDpxXG1JnByi+D/C+T2rn0wXWG4C1QzO7T5LepxkJ68Njo/1smG94/B0CQikElCZAnyQUgTVLyHufna83VY1YRsHmmcDA27wyTZk2hhySpQFFLt4ndIjG93Dz5muhYyvb8Pf7faRpak9+RMMcDPbUhVUCkSSWG6NqbgjXJqwdb2oPdzoEUu73Sdg3dt6muedr7TFwn7HYBdb5e1sw3ScodI2z8BqPk3C8dAkDQggU2611SF5hXa2RZblfN2yY9TzKEMdAr58i6+U4PTvEZPIhRqMRhvnIBW/hQD/b7RZffvklLi8v0e/3cXJy4vq9Nxy4YGYUwK6EKmsMBwWUAsqiwu1sjixNobTGzfUdnj17BmMMjo+PUSuFg/EBHj58hOVygfl8jpcvX+Lp06e4vr62RAOZM93LsgxHR0e4vb11Jo5CEF3uT3/6U2xt/SmC7NujBP8yJhegTXiGjTAxMAqxbzsZ61gXPuSe403eboIEIJT1m2RQDzsJhRXEahuZm4T6yiq3nMNrmiDLcmR51jCtIV52DrJoAKPdBs/6HAkE4CRAHA0EaD8SYtsFjgJWWLCsXsJq/R1zinDLkQAsgLQnfJb6EfBrt2PIcaUiUKQtgGcgyMUiKm8BIwQiQUorAmsEMI2lHdSGI5t6x3o/vw2MljuAz9iSGMs4ZKyyxrONGVA03OCkw/V3MApCv2IGpgGNp+v3juSEF80AlK5yW7IZVZiMEK4fDQNjQePbO7LGbr9ybGth+dpg3n30pjpOGQa4KOdcZhifV6Ns9q9293kAKiBceanld/3a2FSGPjf9vnhNKoqiITALeqAt7wAWxAMGUgbzz/B4C/cP48zChC0r+x240zVbHTbNgjBw1LOBQM389mGbhHsZm9m0h4TjxW/d73iWTCBoccbvsBTfG8wPBuRIquoaVV3ZRrPaRhEhzzMIAWdKIwRLSgzoqVPYlr6qakjp+Y2N0ahroo8krdEQxgDr1QrbYov1ems7jkB3WZYo6wJZplCVCsv5AovZjDbdPHcBedI0Ra/XQ5ZmSLMMk8kYwyFt1FVJoGu1XkEr3WDW4c0NgBuEvV7PdUJZFDCA43o+ODjAeDzGeDx2AI5BQBzHGI1GMIbYeMqyRFkS7WBRFvj7/+Dv4Cef/hkqXUOZGkRBpQEkMKZ1JLYn/VWD+VBTug8Add0XXutKbQ0s5xVqb98EHsN8HLew8ZpcxZtmVUFGEZLMO18DNFGN0i7gjkw0ksSzKyljaEOTAlqQdr09o5xmmrUCrHELQBALcSE7Ddvm9/p9xElihcQIWZZDCOFMvKSIaR5ru9BoHw20q7+6+udNUn2oXe9q631CVPu+rnz5+a789o0j7ksG8V3C3D7N+5uA/puctpt5Utv/9u/8Ns6PHkCXBg/OH2A0GlHk5+tr9Ps5vve9j/G973+M3/jNX0XSSxHFtF5st1uUmxKxSLBcLnF5eekiOvN6xMBjtVqhKAoUNZ0gjUZj0koZieVsiZubW1xf35AwmSY4ODhAluUYjyf40Y9+hCiiOAVZkiGSCYptBVUL3N3O8NnP/j1ubm6QpikuLi7w8OEFsiyHquHW3KOjI3z/+9+H1ga3tzc29gVRUT56RFp5Lvt3Ne2FIAxo9gCvdgYerNnvIaC3/21o5U3TXrz9mw7Ga0hFG0ZH79KACwt4G3Uxvmw8xE1j0ocgK6hMC3TwfW2DJOd7F15uyAfC5R22jwOhbbWke9C02lV4sBYAaCGEZb0hAcMZMAq/ZvD81trYTvXrCOchhBVGtD9t9fOfyhauEeE+JAJQ3WwGX3e4PLA/GQMhdKPtPagO1iNfqObivfNcoJ0XJPSEkcbbdTCch2B5bhfwOwGm/foAQZvmNGqcxQRdH9zUHFXhe/mmcP0Hmj4C9M5Q/OtONL+EFXSNe28DcBsC8+HpCJeXp01Dm2/7Pjy76vrM3xvlCf7tlLX1rGs4mJ154z+/bcGidG8wf3x8jDiKUJQl5vMZyqK0XNwUdS1JEkwmY2itbYhx0rB7yj0yFWCNFVFKbiGEsYA7R1XFMEYTE8N4hF6eo6oPcHc3xWKxwHK5wHI5h1Jkc2wAxHECrQ1UXcEYcig8OTnC0dEh6rrC3XSKut5iMiEzmzzPEEUUQbUoNyjLCuv1GrG1mWfQtF5vXECm2gowaZY41pm6qjG9m2G9XqPX69nIrbQoj0Yjdx8LBqvVGtP5Cq8vL127LBcb/N3/5u/i08/+HAYllNBWomtMi73prwrA70vhJHsboA+f6bq3nS9TNoYAuEv73c6/Dfr5Oy/iEYA0SSHiCLVRKIoCwsCyKuVkXiWUA/iqLrGtS8RR7AK20OYiSLPA7zBwvNCVIT8Koy2vceDYGzI0AT7SLAchy3s9yCRCUVdILJ+0hEZVVoBSSKMIRtvjYA3ISMDIGEZqaFNBQ1gm3e5NyBgDaEYjAgjYdfYB7FAgCgWjNr1kVz++6dQmfG97XISAPfzHv71p/HCe4YlE+7c3lTcEAnRdQ8oYn332GR785xeoqhpfff01YOik0BiDXi/D2dkJLi4eYjCYoCg3uL29cSZQd7dLGA3M53M8ffoUWZbi8PAAx8fHViurMBpN0O8PABjczWZYrKZWSaHx7OlzrBZr5HmKJImQ9XroZ0RlOZ1OYYx242o2m+H29ha317cwxiBJUxsOXWI0mmA0GmM4HCPrD3B8fIxiW2Cz2QImwaB/gOHg0J06Xl9f4fT0FKPhCCcnJ5AywvRu9sa2/2VPbxU8A4Abwo199wsBpy0lHZY16QAgJNnsauvUChP42xhygK2tuZ3WCqyRJC75xAn8zpTObujGOr8xGBMyfL9fJ+l9xmvJbf6ujlxfITxCY4DXXmeDvwzudv/ZMrL23XiTJg+jPMBz64u2Jx5efnY4hjWVRERmHJ93uCbQnKVF0YM23qN8HA5et1iRKCXl4drXAjTmSOc82mtpcyyY/XiKB9Ib1qEuZRwLbU4vRAVxfcR3s2mmEAJx3PSnYL87FwAqfFDw6ZS3zfdlaQoF9Jg3fXJCSqPIIXg1DWTPALgxxujNMCxgSdloI3qvFdcCC46QjrXhHG3NldvtGI6DxngJ5rbbI+xg2/HnCPYlD/B9X/AvHqSH5nS7aR+Y1zANMxvaD+HYb6i3XAncWnLfdG8wT3zIEqYgEBbFEUxt3ICqa6JHS5IEo9HIUQOGR4ccnTAEcuS5HGM4HJBmXApyPpMSStcU3CQSyLIEWUaasNVqBT5Sqa35BDuNJEmM4+MjnJ+foVYVopg2v8WCNiilDlAUFHnTgBZgGZGD6mq1cqw0y+USs9nSAVpaEASK/tZFXzWGIrBeXV0jjl9ACCDLiBrz4cOHGA6HTriZzWdYrtcoawIHry5v8d/8v/4efvbzT0kbL0Op7e0bzH1//w9JbRDWXvDYtCq8F2iC732pbXfdfm9X6gKL7XdptptPIsRxgixJUZdkVlCVpaNKBSxbjGFPe41iu7GLZuwWFwAUP8EQsDea/C3CNgjvD+3bjTFOGOQgMAYUJZC5pA0AVVeoq5LyCCYzL6pCEB9xCRFo6Jpt3tZE+7ZqakN4wesC6iGwDzVcDH75lKHd9u3TkbaQ97bvYXm5Hl33te8Px9++cnF+XP6949QQTezf/Ft/C5t1ic/+4qd4+fwF0izD6ekJxsMByrLCz3/+OUajEaJYIk0T9Hs9jCcT5A9GuLm5Q55XOD4+AWAwmUwwGo0QxzE5P1fk8Pr69Wu8fP0KWa+Ho6MjXF9f48k3TxCLGB9++B6OTw5hBHB4eOiUCzy2VqsV2div11DGxirYrhFHEZIkRZJQQL4XL1/h+evXGI1GZFImY2yXJeqqxmw6w3gyxnJ55yIP53mGYkv2+69evdxp0+9CetO601i7IGwk0d11tluJIBxIJRYaa9OqyGHezSO7J3HAOWPIhKq0JApK0TiMZIwkTZFZRVdiWd44YnrbRp5AklWqMGMW2DSAgaaxa4WAME2iAAbiO3VrAUeAhJbwmfa/wLImeC5wDrWKEP7I64yQAkK3HhSwpmm+noaFExvIL2TO0praMFxreG3CjlKgCeZDQGcECQxtBUOXcoT7tJFM449tj2bbtsFyd/4GrArXDNz4WXuPB7cCSRLvgF6ABAIW+hz7DIN5EWrxd4G8r6emf2jPoyavvi2iG6GShdodYcXa9BtmQdPuYd/evt3iOHZrdKjkYwWaCsB8W6EHNClfAWse04IRzsRlp46AFh0CmfE29uH9YfgxB/hNKBzCmWSHz2p4vqDGa2zALmMAKdl13gdpvW+6N5hfLpdOyyyEcE473KCRDcoTOpSWZYl+v++cWpm2kc1XeICRcCCQpGRCI2UEVWtst6UD//1+H2dnZxgOh9hsNijKEnVVYblcOnOWzWZjaS7H6PV6iJMhJpMJtNbkiDZbOPMZGuARpIzQy0fQWmG5XGC9Xjtaw+Fw6DqjKLbQunZUdZPJBHVNA3M+n2M2m4EWELKHn06nODg4cBr6NElQViu8ePkNXr9+jR//+Mf49ptvoY2CMQpaaSAybgCSNrhDmt+T3qYNf9e0TwO+s4i20j7tbFcK+d27tBdd5eF37LtHBvEMhIghBYHtJEmcIyr3LwPvUFNbVZWjseSFkzWi7c8h4A8BaEi9KiVFfq1rosuMkpjoyFgYqhWqonD0psauna5N3IId7RWAQiDfbv8QuLYB/T6tNv9j8M6mc3xyFd77Js39fdPb+p7vCevDn7tYItqbdPi93Q6clNF48eIF/uInP8FkfIRKK4yOaP5mwwHSPIOqa7x8+RLPnj3D++9/gPfffx9VVePy9S1gTXXoZPAEcRwhjsmsLk1T1LXGy5evsFgswNr0sizx/PlzLJdL9PsDDHsDrDdrvPzJcyzXa3z48Sf45JNP0O/3EcexC4iXZRmePn0KY+jkYL1eE9y0bZEkxLQzXy1xfX1NQfogkIgYk4MJlqsZVps5BoMeTk9Pya4+jlEUa0xnN1B615zrP5bkNZFAQzMv2oYm7TWV10P72Vg9dGvdDWdCOM/Ibtu4nJhhLfStEgHgbJSBIYgxTmkXvqNzbbRgnUFhu/47itd3SKSV53YzzcyC5hIdnxl0Ct+EztTBlc/LGS1/l27FgAgaxckJAWh194VSyJ7Kt4U+B/4ahQwbI8izvQ6Ge7ktlBd6GpmEBWj85T2Ayt8M+OTr1sIG/L0F2v0/7OTBjdLo26C+vmrNsd658rPw58rSmkssyKDZNyGzzc5+YOxY5zKGvweCKQupLBhx/s22bua9d/9q4ftQe+8GKc9JhPUDy9aNIgZP+rLYPAwEhCOr4Pnuhab7pHuD+evra2cqkGWZ48Pljb6uC0gprP27ccdARVE4Kr4kSVx4cgZWDBiEMIgTiV6f8tVKAlhDSontduvMF5KETF3KqsB6vUSWWzovGWOxWGE2m+HFixdYrZeYTMZOsBgNEyRxiru7OytQVIiixDHNZFmG7XbrgkodHBwgzweQkoJGPX/+HIvFAnVN2rXFYgGtBabTKVHXKW2PzGigbDYbaK0pwJRW+Ef/4/+A3/m9f4blau60DCaU8UwwgVqS/r50H+C8s9l0DPC2djZ8jidX+54QKHVxj+8rV/u9XUJC+9621retEW4n4tKlMmlB7EZt8K4CO/eQ15nHLzlxK+vfUDY0ITy2VV27RSR0fOVxHXLcU7n8YsVap7IsKcQ2l00027Wxd9uN7m0pbNcuQakNwrv6JDQdehMI7np3O8/2b+282oxF+97TLndY1rCOzpm5NW7bsS9CZCQEgfHf/fGP8df/+v8aAJBkKbZlgXquINUQjy8e4uz8HJevX2O9Jj8epTSur65Qqxr9ft/581RVgaoqcXV1hcFggNPTc1eeg4MDJFmK2YKc+B88eIC6VHjy9be4evoKZVUg7/VwdXXlxmlZlk7Lv1wSSGdn/6IoUGy3SKPYsWX1kwRawAWlk0JgfDDAwcHYleP4+BiHh4cuxsFaVHj//Uc4Pz/f27/fhbSrJdwFsw1EFwBcTk1trgfixm6w7fnDoEsaA6UM2CG2oTHktV3A2cmH60qz3KEJRABg7F5P37kerRSAm3A9J1RF+QlbjhB38VGg1W0GhgV+fnr3RhYxhHsuxEkOAAfoemdJ8MgWQtgArBZMcrBWamKr3ben71qTMATuNetxaMiblqiFjQEi47SwzI5jDFw0Vz4t4dMAZ6vTVcgugcXW3cDKNMLnDRhIY23aDQsd6NRiu/axH6XwfkMyilxQMRlFzinasdmggZsbAkTDDp3jAEnhx02784WwVI3GgWLPyxjuRN563ACOUpE+h2URcKdFUjotfVvoCTFGFMVkJgs6WSAzVtuPmiLzOrAfCH00NHjQwPlW7PbkLpBvKIBCqN0hpDdLHmI1P0B2RlE4Xhr52//IZh80B9rbcSCne4P5oihdObbbAmVZII6JPssYjSiSKIoCt7e3WC6XGA7HgAGKsrTazi3iOHKBoxjwsHY/jhNkaY4szS2zRwSBCFdXV1iv1y4g02g0wmg0QpqmuJtOMZ/PkVnWhtVqiel0ajX5AxweEsdzluUQALabDSpVozYGdU02ykpppCkFZ5lMDsmuWikURYUoKpzz7mDYw3Rxh+VmjflqiZvpHbI4tUKGRF2To6IQpMlUWmO9rfD81Sv8/f/2/4lvvv0ClWJQJ+wxbKjZJptBSEnc4HYgdYEpoAls9oHa9r0h8GmnfQCcgVEXyGr/vW9qb4Jvuq99T8iX3lVOoQV0BUQxcfEaIWFDREFEEaSBPeqWiKSA0hVtJBaMc7kYjOd5boU1Sy9X16gR1FsICOmPPlkz6voHgExiQICCTAk63jcGqMoSkZCQcQqwDb9W0ELBSAMttTNjay4VzTZrm8y0BZ6udu/qz67+4HZlIYff1z6V2dcvXe9o9+19xm9X+cMy8/ewHOHcYGHJCSrGOzHbt1jzlGf4L//L/wLr5RbX1zdI0wTf+/gjPHrwEJPxhKJIV8ScdTefI4sTjIYjJGmKbbHB69cvMZvfoSprpGmKfr+P4XCIXt5DkmQYjydOQTHsEQVuWZZ4+fpbvLr6BlGa4td//TdxeHSEl89e4MmTb9Af9HFycoa6JqdVKSXee/w+jKrx/NVLKGGgBaDKGtuyhIxpvFV1AQOFPM8wmUzw8MEF+v0+NAfry/vkgCnptKjXO8HJ6QlG9kTyu5buo9gIAfLOxo7mmubmlMcI7rfwr828tU75QHPO9pcFR8sTzkoE58hvS8bla5Y3eO87aOt8+RgnWNAmfZu4t1rzE+FAPb9HQ0DaK6wJR3Bw3BCDPGQJ8LaQsOuecU+4NzsAKFxWMgCVQvBcJpDM5Br0O2guOzAn6MWGyiGFcABe23uUofy0MRCsgNEGRqiA6Qb+3V4i8QJZmIyTsawZlnagWFjmSceuxEJUq9VsZ1jA7cdECOCjOEKUxJRFQ3ttXG5OIJCee15If8LrBTqPGx3w5g7T2nE+mHadWWhx6699s8X97jN8vkJISKGdILO71tM9QpC5TZamJMAA5EtmaL0yypdDcD1MUAdtbP8RYYlb2ZvSqu+2NpA3pjHqCZ/Z8RpKTVzmdv/xO4xvB/+hmWht8W0qRFPGMcFcuG+6N5iXAoEEAWhdQylyXhWCBhub4CyXSyyXRO8WRRE2mw2WS+KRJ07mkbNddmwftcZisUZVaRRFjV7eh1IKt7e3eP36NcqSImbe3d1ZTXoPdU3RF8mcgez2pZSOPUJrg611/qrKCnVZIkoTjI4OcNg/xGa+wHRK9JDksHYMpTTu7kjbPpmMcHp6gn6/h7yXQ0E7iW80HGIyGEEpheVyidtbckbLsgx5nmO13mC+WuO/+0f/Pb785nNoXYBnsjG+M93gFqRt0JZGizmG75vaYGmftvVdNebh9y7N6l+2fO2895W7/c42zeAOWOUVRZMWQinj+IlpwgMCQRhtSRcZoIZONwzuGxuu1lYgt9qyYKEMNSGu7JYVx2lTIABl7e61QZKlMCKC8h5cMNBEh2Y3fUgBYyj6q65qINpt+32nGOHvXSCkC2R3fQ813W0gH7ZdkxN/N+0TSveltuDRNQ55bLOCoD0+use933m4TlJKXF1fIssTfO+jTzC9myGKIhwdHQFG4ub2Dnd3d7i9u4MyGuurDcb9AY7GE9R1jcPDA5yfn0CbCr18gKoiVqX1mqJOS8srTsJihKKI6VQmz/G973+C9z+6gBYRkryPNM1RbksorXF+dobDoxMYRf4/6/UaWZpgtZjadufNy6CoSmAr0O/3cHZ2itFoZAXNGHmvh8nBAVirlWeZjT4ck78QNG5vr7Hdbt7Yh7+s6U1r0u4aw5txFxNUE9ADHiu6e4JNn7Wujfd3FIV+t+tYEIG1dVd3Bfjl7g+tdfuq3L1GezMLwD/bqdwB2+6K4HsIsP11BHcBaATZcT/6xsIuN4l9E2uDXV7NPUE4p2D6HF73dbIsOMLbjBsG5HZ/MMYHG3Jrg72HBQd+Lze7u97Z4EHfiODvm7qW8zG+Tv6nDtOYIEpseE/QsB3lCvKyiFeIoL9DAYM/uAqj0WethmjXfLc5hP9iwnfBjs2OcgL+VKJtTtRZuxDI+8zdu9r7RuP9rXsa87ytnbdjq7k3mkDICyscCgNA9yBotp9oFnvvEvC2dG8w/8GH71uTkxW2261zyjLGOJOZULMJAHFMEWCragtexFynWeBTVRUdExdsH2+Q55llW1B49eqVo0oTgniRt9stsqxAHJNAQDbKZK/KkRBZYGAqt0hEuL25w3y1RGo1YuNeD1EkcXV1RRETl2sIIZxNvdbKmfXISOIBHiLLcwr+MhhAaIPbG+Jtvri4wGQyQZqmkFLi7u4O//zHv4Of//wnMLoCReXcZRYJNxKSYE3jnvtoLO+b7gPk28kY06lx7UpvEha68m2/f19d2xNv3z0E6PjEgiPvakgZBSBUIBJeICD+9d1xyW0fOk5SkoCMICBIAwMDKZpa8RD0hvRvYTm1JipUKSR00M/s1Mn5ICiXEMKFg75v4nKHNv37tORvErhCYNNOXSdHXeVonx60y/O2Orzt3W1hiusdPq+tMBYK0mE7aKXx2Wc/w9/8T/4WHj96D0VR4Pnz5/jii68xn83d+5IsRRInyKMYRVEitlr4o+NDSKmgatLOVlXl6GqVIuVDVVXIsiEWC6KpHI1GOD5+D2W9xddPn+MXP/8Sm80Wqd3UXr26xIvnr2GMRFmWWK1WqMoCRpUotUKhyAdkMpkgyzIopZCmCS4uLnB4eIiiKFBVNQb9kYuBkSYJoCpoU2O9LrAt1jBmi9eXSwwG303N/H2c6t0e1LHRct+Gjt9+bAZgwH4XAlaZSQASljdbG2OFc69Z5XVUCEtZm8aIk9gBSe3GsX8Xv1kbDcUOgXbtAAARkaNoWD/7Zaf8wjCYC22mm+1DS1UARrT2oFja4E2SNOP2zDFoO1/iQOFokYpFXPYdnovcvd0+INwJRNd65ALpMRhkICzhYjxQN1jALjzblTas7AGUNhbQa4iwTY0h1p09a9LedYgVc/DrUBt4h3bgTUDNLEb+fo4rQkI4RUaVQkDG7GMRgnmfZ6MvhVUE8Tht9be/t6M6ARAXYf/wXmaE9fBkBhsPghn8kkMvzzPj/sf7186pFrdTJIkcwpJOlFUFWde2jZuKKmpXr9XfB9h9bXz5Gu8PfBNDIZ1r5T622sq1TXDdtP525BR85/ni50NztXk3fHdvMP+f/K9+HVprZ/KyXKyxXK6wWHinUV6o8jxHnAjkeYYkSdAfZCiK2jkjCkGBAdjefrPZoCgqlEVlnQI17u7usN1uKF9JkRiTJKFCxzHiOAXz1ANAWRbQusZkMsHR0REOjw6QJBHIBIh4nPNVD1d3t6hgkKYx8ihyR53bLZ0mEGsPc+FTBMbDw0PESYJNWTQcfE2tMJlMnDaS7OzpVGA0GuHf/fmfolYlDBQ4OAWDCKBDKjTGB81A94DsSl0grEt7vS+vt4EpZ8LyFlC1L3Utjl1lfVvebfDV9bu2C7xSCsLEEEI22plOP4IF23iAHZoTheYa2mrNhZQwIoKMUtRKgWw5a7gDvQA4u3YX9ojVvUdBBXb67bo7+jrhpzMBQTIN0uHC0Ro/+9rkTe3K5byPhr4t2LU1/W8D812f39afb5sDLBiFwli7Xu0TAxPk3RYqhRD4i7/4926Nur29xe3tLcqicO9QSmE+nwMGWNzeYTmeY3JwiMGwT9S3sYGqjQ0QJ6FUibouISQwX9zh5uYGUiaAIaaa6+trPH0qsS23ePH6Cpuyxmg4QmSAy8tLKFs/bSl5i6JAWWwBUyNKEyT9HOPxGOdHJ87HJ44jDIcjHB0d0Rq73kApOFrcNE1QrDdQqkaWp+gPJhiNzx3z0ncxdY3NMIVroUMxxt/vBPBO4VW0lWo2G7ZtlgQoQWBRRhQ2VFpbZwDOPj5JEsRJgjiJAaslbuoDqXx8pcFyE4L5QPGwU6+gHYRgHXsILvfsBYBzxCUcZmAkm31SLqyTZE31XiHfCSa8fgYmDTvASLjoru01zc/t4FSbGobaSEgK7mfYQdKuWdL7yDgPAANE1hxDWRt6KEXPSd1QlrTXnjfun3bfkUyIH9YtUDQQ6OTr0lk7hPdEgQ9VFHlqykiGYN7nvSOo2raWMgJEc0g0sYW72lkv1kjDtYP3k2BLYDe26LYAoDL257aB77s2FjCmQfQQJwmtoVohSQoKBlnXjkWumYdvn67+aSuauAbNMvjPDaYa2DayAkkogroxKuBO6bnRnFwr0LjeKpn/hcezm6dosEbdN72DmU0Ebf8aDcRJhCxPUdUZkpQcrwBQwKe8h21RQitFE0hr9HKaOOQQS5HxlFIO/JPzYQIhCfBvVhJ1VdHCEcc4fXCOh2fnLlLmtiyxtBSVWZYhiRPUZWU3Iom6sk5IWmG1nmK5WGE2XWI6m0LDYDWfYjwcev7vPIdSTHdXW41sThFCjUCtqJulIM1pVdcwWiPOM/QlsFlvsNpuaHONJF5dX+InP/t3UCjJhA/CKjIMlLHmG62jVjZeeJPtcfvafbSif1VpH2jbCdIR3BuWtetzG7h1Xd+XZzuRJoMW6VpVkCZCJCMY5TVMZAcnQKck5KdAdukWuKvacjpLGC1IcxKxRpc0cLquKUqcXcAUBMBmUVZbT01ClKeRlIAwMErRmDYSkYyhLR+pUdouARpQNaTREILs+40CEEnAKLuAKmjdNHvpAuQhIGmD4reNlXY/vOm59vvfljdvWqGD7Zv6tktYaY+NLmAelmWXVpMWaaWaDECcxxeff4FffPYLVKXGbLpAWVRIRIYoi1HXCrraQBUlqrrE8OwUo9NDJGkOZYCy1khkDBiNzaZ0p5hKVRgOM5ycHmE4Solha1Ph88+/we0NMd7kfaIq1FbRUZQV8cMDSNMEUWx99EoNCA0Ig4PDMR6/9x7yXh/rVYHFcoWiKHF8dIh+1kciU8hYIo1SxLE/DZWQ6PVy9Ho5hsMh4jhBHEdOmPwupraSpOt3d512T3I4D/bbfeOYtaChg3rb7p6hbvio+yw8iA5NJjww9g84DAw0QW8AloJK7NY/eN6XlcB4A5DstBCapi7BZ9FoE1fqQHHZRrBhnXxxGch3rxONQjswyUASQdH8dUBwICohYL1N/QsRdACX2nYb9UH4F/5djfLwe/a1WqsG4eth87SgLwTi2AfEhTeF4iFGX+83LxvPdqR9QHanIkH5PYz3fS0a7QI/Zg37OXD+BOgN66Pb60sAYt37jDdH0yKgXIYX5kTwvPvWwhZda0Io4HVV39VPNEeQNzXzgqxw+bHxmAnaAY3rXVFhmy9uCUJ4+14dpnuD+devrxwrDQVc2kJKgZOTY6RpSgwNVkteVzWWqwJXl1eOE54jvaZphqLYWvo/0oIMBgOMJyMIQcF9kiRBJCKslmu8ur7EbL10jq/MoCPqCkVFm15v0MN4MkYsYhRFgel0hlevLi2HvcJmu4RWCqPRAR49unBaUXZULMvSHkVXrqOrqrZmPBmyLEd/0MeqoJOIm5sbZyaRJHQkVKka6+3G8Yj+2Z//GRarmZuAxHsaDCIAQkR+cKApibXBbwg22hrdEBz9ZUD9X0ajymmfMNH1fR8o489dGuL2ffveLfzqAXaUImHOrYd2QQm0t5AE9rULTg0pYzc53UQUflPV2iAWxvLOAxA2aLXx75FOLBcQIiKqXlNBG9IAiTiGERSyXWsNKCqzNjWMrm0eEZkDQdIWJARIb6Do2htAdBvIdmkt7isgte8PPwshHA9wV1ne9s594+4/tKyhIBPWP8xX62Y5hfDmT8vVEv/wH/5DvP/oQxxMTvDgwQVMWmE2n2E+neL65gZAjfOLc/zqr/819IcDvHj6El8/+RqrzQr9fh+b1QrT2zvUdYXDwyOMxwMYZBj0+zg/P0YcR9hsCkynS7x4fgWjgbyXAwC22zW26zUiI5FliTXbqGBAXNODQQ/9fgYIjYODCQH3/hBf3n2D+WwKKUkR8vrlK5TbAgcHBxgM+kgTSQHxVgsYnePx4wurxFBWu0WBjL6r6T6C5M7YgnD+kzAENENlSqjx5vFNWnJOXhhV2pt1GKOJdpjBvQCiWCKJSSMfBSedDjOHAEqCFy0YaBij7JimmBj0m7RrXQgA0QQVDgAa/48/7rSFBxEyqLsEPGe5uzswx2noY+FzEQHEF/59Isg7BMgO/BiCTcRiYlw+lrSGPkt4CvQgoBY5G1lTOnib9+Zf7fbpyJ46aEgYLSkrw2uNgWlIU93ji+8N4K1rGfdk0H7cZ3DrEsC0kwCdQNDJiYB04N8CYqNgjBcKfIR4eq9wA8c4gShcNnc14wzMO6ophKcUBe0/gCBNsuEGb+blRoIbHIaUadqzO3nij0AcNpocpPm6oJOFKEkAKel0ylJGQwhAKWgpIREhtoo0IyTYI4PHI+/7wn0X7p5wvHKVNQsbPITRnCpBjyIUZndbwn9vz8D2O934p2Zwl0Qk4DzV75HuDebX6zXSNEWWZej1ekjSI0gpHCMNA3k+gr65Jmex1WoFIcj8ZjgcIooibLcF1us1tFZYrVaYz+cYjgY4PDzAaDTCYDDAIB/g7FTi6OwEd8s5Uhm7I2YhhOMKV0phOp0iSzLEIsbt7S1evnyJ5WIJA4PhsI/zByc2ouyQ+Oetkxwv7pvNxg00ANbuPUJVKdzc3ODu7g4HhwcYH40xGo0wnU5xeXmJLMswHA5d/efzOe7u7lDXNT777DPQwqSxD9ygNclEYCPtuvme3/dpohqv26Ox6gLZoQa1DbTbz+0Dkvu07u3ydR2ptt/DQkz7+UbevFgGu6Jo3ee1L7QB0DgSLlrvzulAq+zGWCBvk9baOaT6RZ1OXcgekhfaCNAKQsRkqsMaaRjPdICw7dkWUIDDIkm2pdyzqey0x54ULuhv4q73ddqfQqFhXx93jbtwbLQDP3WNp/YYDP8yYH9bXbTbUBgU0e8s3IW+Di9ePMUHj9+HkAp5nmCzLfD06TdYLBYYjUY4O3uA9z/6AGenp8h6PfTSHKvFEr1eDmMMri8XqKotzs8fYDweQRs6It5uSmxWJWpFZof93gjn52cotgWZJ+YZ5qsl5vM5ZBQjSiKgVuCAOWzCNx6PUKsSWmusVivEUYyHZ6fopxRPYTgcYjIZQkqDstwgjgWqmk4gHz16hCxLMRwOkVq++7r2zt58WvldTfdaV9qKE7tjM25qAH/+LCxod+uEh7/aAgASEuEUVQSoaOxGkUScUMDF0DdHCLi1yS5LO0Cc7I3ZCKAJIhjYueLCoKEVpcZoft+3hrT/CTrR9DX1z3sIb1rBcIITgBYWDuEur8M7gN4ASgf1CYosQoHH/i4hLIGNscBeNqtti20MCQPaAMZqe6UQRK0oBJkx8u1ujfQCwf7k16e37bm+ruH9wgH4UPEQ9imNCw1jQjseBzWD9mualAh0n3gDbPLrmqe1a9orjerYdwsC9GjkFYD4AOTTfqkcmDeNfcK2gQGZqAkEedqAjJbJp6oqGNh5xqe6fDtTBsGbWLGdg+H5Z4skELSpb5VdwM0NYu93X0Won/cYoTEveHoKn7P3H0BA3xmYm5kgv8ba0j1Pu9K9wTyDZykl0T3miYvUZQw5wXLk1MVigc2mpM6wkb0AuKAzxIAzhNbKO5taLmVnzwwDren+fq9Ps1tpRxnYHw1xen4GpRQWiwWKbYGruytcXl5SEBUhMRqO8PDRAzx6dE6BV6IUm80GNzc3WK1WyLIM4/HYUe9FUYSqqrBarSz/rCDnVys0lGWJPCft2Xw+d85mHJnx1atXmE6nqKoKl5dXgQYFrQkddCz1oF/cWvft04yHG1YIdPeB7q6Fpp3a5gthPqFNeZjuo9W/LyB82z1dwkNYrxDUw5ApV5r03AJC5dc7+e5rV/dXtECpCduU3qe1RrAn0SR2C6twDmwI8tNaQ9pIhzBtB7hgFecl1jr6cF04j+72bfblvjblOr5tnHU92xbc2sD7Te8J7+vKq6scbzqheVM9d8ctgx3RAPJMPyqlRF2X+JVf+T6ZyhQrRJHAD3/4fQgh8PHHH+Phw4fQwmCxWePu7g6DXoaHF6e+P3WF+SzH8dHErpMR8jxHVRls1gUur66dIJmmCYqCzHHy0QBn52cANIr1mqjZhEDeyyiK63aL0WiE3/qt30J/kOPbb7/FF198gTROcHZwjJODCdabNaQUOHt4islk4oKgxXHiAt6RLa5vH6VKlCWt4c+ePcNv/O1f72zLX+bUHiP3WVd28qAHG88LIRpMbj5fP0+FG7P0i5vTwTNCCKIdFN7UBiAsEu7qIbjdWevCNfpdKsXLiHGoYecmIZp1dv8ggvf5PUpwsU24SgXvbOcffHKfg3eGKlAhLIWvgCuDhrHXBIwgtG/4urCAKShF52rBe23wbv7XNvmj8RT06VtAfaMuwbWmwGKCax1tLRCYYcE1t2/xtyc2gmIhI6wT37FbeP+nbTLVgX3dD37L9V/c826shaC2gZODPY9F1laxpGyZeHWn3dNpyrELN+zbX/hBJ0w37jHOj9vXMUTiLVTuPgVmNnyNx7lo5tZ4sAM3vi3dG8xngwxJHCOOI1SmgioNOaDUCqqusdkSywIHMgGso09Mpi/GaMRxhIODCQaDAQACW+v1GkVR0DFwmjqb/Lo2KMsa0/kci+USUgBZmjhKyySKrVAgIDTwYvoC69UKRhvkWY5+v4fxZIQkjjC9m2G1XFtte4VXr15hNiPaudFohF6vh8GgD6UVyqLEel1ACIkkiXF4eIjxeIxNUeB2NsXz5y9RbAtstxsUmyvUSkEAljqzhtZWw+Wkq0ALKsj5l9lKwmALBAICCLcHvLZTF4jp+t7Wkr8JTHWBqPsy1ewr831NJN703Js0vD4DQBgKM41KwSSabOBdXbgtyClZWE23axNBtJBasdkSIIyEVgJCaNo0tG/3SLDGRHmHWZAJDS0m/H4BHbAZcbmVUogQ0ViwtKSQsHSWAGBgVG1tWSOIKAWUj9DZvUAF/LgAYHykyXZbh4t9V158z74FsbMPWv3VzrstLL7pveHnNr/9m06NOL/dRd4LfA2jAcPaU+qj29kt5qsVLh6+j9PTExwdH2A4HKIsFObzFaaLBTbFGtc314jiBPnFmT2ppLY+PD5GlvXQ7/cxGA4gQCeAm2KN2XKGxXKBzWqN0XiE8XiMKE4wWyywLguMxmP8p7/1W9Blga+//hZ3d1P0egNMJhOs10sslws8f/oEjx69hxgJyk2Nq+Ia69kKR8cHyLIYaZ4iSWL0+7S2kUbZWOfXFFLSOlRbrT8gMb27w5dffoWvvvoS/+fOHv3upzevQwawR/UM7tz6Kptj1PCmb7y9b+g4qo2BMk14IqMIcWLpSCOJKBJOyxfgHjTBARpzV0jpTGAI3LuKeSDMQxyktRYgXx8B44UG7W9ioM60gAIBT7lgzbxw9zqAIqxJg/D+Xu3U2Evsf0VwnbX+vu4EyolqlZR6RniqXy0koImpRoHXJjjfB/ruGatYS8oaT21A/k4WWoX9zG3d7mcmQAjXwbBGrtRuL+b9xvclm8346832oXJQG0sr9IV5eIFKNJ5vJgcXA8FNNK8H45GEy24RgXRODR20fy9vMfbL3vXfZqRhWWxaoF6074WfO6zx5tgtURRBRLIxdih7j01CmtFQMx/26U6AtkCQ4orz+cyOcCbapQ5k8I66m87PXhLieRe2jzTGvmf3XW9L99fMqxqTgwmEENhst7i7vcN8OkO13iKNE8RJhqquURQFNpsNhBAu4utoNILWNdI0AaChVOWOc7fbLTabDZRSyLIMQgjMZnMoZbDZbLFcLrFarVCWBbKMaCL7fQL+k8nE89RXNeIoxsA64spIYrGY4/r6ygoTftPnY32tNW5vb0FRYFMIaSAQYzw+xOHBIYbDHozR2G432Gw2WC1WKLYljAHSNEe1KVGsV4F2VEMIG2lSeUDlE4E8EmJNiNx3ND9v0kTyPcB+8My/dUqfHXm8CajvC1y1L91HCHnTs/uee5f8HIPM3mcNDJRloAhYMGhXdsewMAbSCBjDC4k9ZhN+URX2RbxsaqaLk1bbYIxlpGCnHjSEOgESHsg2WkNICmjFGidpiOqO7CpjmDc4KfI45Pfy5tzVJ28CwvdN9xGw2kJiW5PeNbbaYD7Mlxfurne0nw+/+2fYGbq5aYfv2Ww3+OznP8fDi4+ghcHrq9d4+foVbm5mePLNM8wWN+j1Mnz88ce4eHiBLMmgatITIpZgCtNtWSEu6VRzU5R4dfkaX3/9NXSlMRlNMJmMIYTAdD7H8xfPAQCPhcD4kw9x+v4jHIwP8PTpCwgRIY4kqmKNYrvEV1/+AlVRQyuFo4OJNXM0GB+M8OjROYajAZI4c5shrTt0OmCMwXq9BUXupojWNzfX+PTTT/HkyZPvLM/8X0VyoOkNYN4BCAivmW6t2aYF5CFoHY0sVaWMfFROdk/l5PPYnbdEgdkEJKL1nM8IXgsN4fEBI1wBpyVn4CKDurv6M6RzQMm/W7tWa+oXmyDelzNcC9y73TNcLANj4ybQO9hkCUHoKqoHX2fATv8CkM8A377AuDXAuHd2rTFhXwuhW/kFNRPNz2yz7q97gaHdLr6tAmDdBpdh3g31w247h/VyHx0w3F3j6b07l+145keMr0+zSP4+B+jdQ34MI2j/cEP2mLahCTfBMyxUNuZiBwtT9/5lOn9v7DNBW/trvjBB17Y/tN6w+2bf4qbR+q7aQXvydASpBSGMsaB+zwv2pHuD+aoyKAoCq3e3c7y+vkSxWiPSgEkUIMnkhh1J2ZwGYGlXOkdTYnegMOUu3LjtLHLGIketKIpxcnKC4fAURbG1waiWzpSFzWMODg4wGo7R6/VcnpvtBpvtqqG9A+Bs+9uOgUVRIEmpzHVd4+r6GlfXtXtPWVWkcbVmRnmWu+iNBBIMosgvhMzuw4DKaGPZSHYXvBDM7NOQ70td4Ow/NO3VZu753lWm/xCQuE8YuI8A086HPda7yuOv7dbPmWbYn6SzyzOO1s3Yxc5L8MYeo8vOvjDGOHo65zgKDypZOyMjCaM1ZETmZxJeY6SNhlGaIgF2toc9AAzGNlEzxp3l2ddXXZtbO3U9y5/bEWHfBtzbQKjN9c2/twF9qFELQVjbMTcsQ1c9wncBcG1Y1zV++tOf4ttvv3ZKh5OTE/y1v/YjywITW2IAjbu7W1RlicFw4BixuCxFUeDu7g7T6RTj8RiH40NAA69evcKTJ0/w6uo1IAzee/89PH78EJvtGn/xF08RR2QKmMQJqnqLOJG4uHiADz54H0dHpzDGkM9QnuJgMsJ4MkEvpzgaoRCu/v/s/UmTJcmWJoZ9R9XM7uhjRGRGRg5vruHVqwZJEUj3P+A/4IILbLihcMGfwzUW3BHcQKQFgAAgQKFQhNXVNfTrelJVb845IjzCpzvaoHq4OHpU1eza9fCsRgkrH1MzPfy6XTM1nfU7n57BebStrI3GyFoMADc3N/i7v/s7XF+/hXN7fPDi6bdaZ56IIiP4jZ/N2Of+5q57fBpH0rbymgiEFbCpxxqmNKfJBL1o05sXmrnC4TyyqQ+uE4fuMpUI0rVLfmUAkpVgSAA+zlEFXUkCCPcpUk15JDCX3Wuy07qDOqB3rwpG+l0C9fpbDRL7z8Usw3sMqVFjts4ZAvvM2LHHmnJYHzQfgD1iXjYYVBLr3qDzPuiEZ80Q8QMi15uLJuEFHMdHf73RMXUI0A9BuQo4GaAfuycHmj3BKlfRSR2S4DV6n4aA9WC2xH4gpAbJBkcutMY1U6/ruOQ4pNL4C/9oXZHPNUI0Dg5/52qQ+Z6se4Tn/p6Q9sBc2kjtc1BNFVYOv8oaOdRvpLGOiRFD8B6vc6p7/0X5+M2b4J/BAHa3rbHdfBXVYlpuJAT4tMKkKEHGghniJrIso269MSb4kd9ht9vG/Lqui5uG3g8g6qYzO5ydL/HJ9yQYE2Cw3exwe3uLN2/e4Pr6Gvv9HtvtFk3TYL3aYLk4iZ3ctgKyVaddgZSo1CyCMOGxWMwxnUoUxPOLE1TlHE3j8ObNW3z22e8iS+UZMKWo9TRNg3beojKipiNuNSsQCdhq6joyYJ7T0Q8z4oL+GOD9GGD+GPb+oc8P/Z1fH4KzY+XLQdeQic3L+5i65WBtTAh6TPLOoQhCpT7bA46SeR8sUt4GSDMyLhb6/sCq9fTwj6slqQpH7rffdS4+z4GV16kueRgYsui6NmxGBg4PnZIcLky5zvhjxkTe5g+N1TEhbwy050JFDnqGeQyF2fye/PrQYPax9XromUHNwB5YrVawRgT8k+WpnBwah48+eoYf//iHmM+XEaS/ubrG9fUNAOnnu/sbzGZTnJ+fw3uPzz//HJvNBlVV4f33348h33WTmkxKLE5n+PDD53jy7BynyyV82+Dl129g7Q4vXnyA955/gO//4EPM5hWqqsB+L+qAn3zvOabTCaqJhaES7NXwmiJp0nUdus6hbdvYJ7vdDtfX11guT/DTn/40kiG/++1vj7bZv+ikcxZjsEXS2HqZj1FjlAVFPs0DSDK9dYM9AwFwq5DOzCgKUaOR91kI0SMqNhrHpC/oyo/ELUpeP7rOxc8uuHlOFSQwvKiNBHqT/HDjDyonngAyYI2USqmtQiEjiWsCISiqKCpQJxBirA3sqAA3r+DESDlyU0IVYKLaUig8Mwu5FetOvXJoFhzqyqGRmOW0UuoKwOopSQCOoV3Un1juHt9TiJTMQFmI/3bPjM6FgFyaTxAwtO9d59Dqesse7E0qmwbiyoBiUtkRn/O9vTTiYu4PUMj4MqFB9HQkH8/D37HdVAjIPqcBnwFVHfd0mF+8lVPfpfINgXr/+wTmpU/VsYBcD+pOA6NXKRVDDVeJKNqSqGqap6D2ZSUWQxFiMxAJ0avqzcapLWdQTQrqTBTykf3GZu2jlc9Pw9LJTeiMQT3VUDUD9ZyeOwbotYWHgD6O8zTskbxiqZ2GzFkyD0dUz9Ojwfz19VvUdS1BR2ZTPDt/iulkAniG61xk3AEkwBtYbZFuE1OW2CIXAkBJIKayFE8Mu90O290GzNIRZVnBUIHCTsBMkWWqqklY8MQYxrOEc68mFap2gqatk5RLFIMxiDqPHIfN53NcXFzg8vIC8/kU1oov6eVyjs32Bl99tUPbOGFIWIx1OxB816GsZGGuqhIOLjK2dduADcGYAvAE9hIMQVM+wceY+MeC+KG0nzOb3wTwDoFe3k9j78zLPlbeMeD+UF5jZcnzGQN3Y2msXV3boawq0SI3BKNOhjlb6Eg2Lgp+yaLOKcvkklVA9egMvHeycLCPLEjPBSLyPpFnCmtFjcaJ0WMEqIbAzoHRAsQwpgQgYAwAGB4dM2AJ3snvuLkeaY9cxlcwkAdNeihpuXLB413j4pggMMbCD981BPvvul/fMRwnQ8HzWHmOlaE/lgkdO1zfvgUZxnJ2ghcvLJ4+vcT5xRmKwmBSziQGgCMYFje6VTWRAHNFgXq/wd3NDW7f3qBtOxhj8eHzD9G0LcgTNqsNulbY+08++QTPP3yOy2cXeO/ZM0ynUyyXJzj58Ql++IMf480bcYX79PIJTk5PxF0leezbHUzQvyYGyImtERjBmLeFcw77fS32Qh1wc7vCer2GNQbr+xWurq4wmUywXu3Q7j2uXl/h7//+16Pt/21KRDrHD68fGzu9cRc3/pzdQxRGmQVw5MAvMsl6Omc4eMqSKJ4S9CfzZMXhVC/mLe9j9hHAJw9MPpYLATz2yIcMvMQUkIasM6yLUcwmXyNo5Hq04VF6lThDyEGYUZCnNkLxxfIqg8Qym+zbyI8A0dZA/864kwhstK0EhEm7apMYAny8ObSP5qPDgEOsjyBYGZjoYjTlf7hugBnOiZtMAxJHOek1Wb+lsaQ/UTAcjCtWQI/8ucPne+sqellE4/UeOSKN3LtbgfZwSY2yQsTYnN0/knIpa5A3lIVHWvN7PziSN6UPeRsmoVUCZQEqLFsJDxPmBZH0i7iJNr02BSUhUiubgHxeKep/0u0eQLJ4TaM1lS1Ni6yB4gwYttYQ9PdaIo619K2M3UPvhg+lR4P5xXKG2XyCoigwmUywmCxQ2EI82AQvNnVdR4ZCmXd1ZzmdSoAS6QCP/X4PayWCaxVCoWtAKGMMVqsVbm9v8dmnX2B1vwGRMP+qllNVE0ynwiSpWo9GlyUzQVHve+xHfkxT1zUmEwHuznmsVusggMxD4BSPtqvx4YcvMJlM8frVW6xWG3RdK8dzRGi8R93JO2xtY/56hF1OJgCbsOgE/6wPgNKDyfuOTjw26YZGgo9JjwH+mu9jQeFYvjq5j7kQPJYeOn04llS9Ad4LY2BlIjrPsFBfvARGF+eLRhjMWQpSP+8QbzXsOYL/XIUnbghhpVddZTCDYIJ3JIYhYeoiSGbR3We0QcA0SOHfQr2NLFocVvF80czrKnkibuBAWOyt6Z0G6PWxNh4TDo/1yVg/jgljY6cUx54fG4tjbL++J1fHyV2pasqB0zcZR0yM1jU4OVng1//wO9zcX6NpGhgjAfLa3R22weC/bVsU1mI6n2G5XICZMZtO0NUViErc369xcX6J956+h91uF9eqV/ev4L3HxcUFzpcXWJ4uMJ8vMZlMwB5wXYfJZIIPXryP1WqN+/s16rpFWZa4ubvGVy8/x8nyBC8+fIGyqLBZ1bi/v4+kiLEyzm5vb9G0HeqW8fnnX6BtWywWCxRQYEr45S9/jd16C+89lovlo9vpX1I6GLs0fnx+jHwYA1MKBsbXZzGoRAaG1UOVqtnomDSDPIb5aZn7PzqWB3Nq8GwCTHww/1i9w3GKbmuIQmwlLVMAJsGoVAWMXn0D2vEu0x8P/4EIFGN1ZGoXHMBN3o5Ab30KaLrfH7Fe6bPUQV3KEzwnT2BMPuKuKHyEnBSkUXAPCpLTBw9ATj0ZIB/BU1TlCTkYIhTWgkM/qupTfA0Fg9WABGWN1SitfXUtin2FjN1N9YtCD1HPAFZHsTLdvWd64wKxHLH9kkwCFUxVbKNYbhV4pFwcUWr2G/naztlXyVUzB7UXcH9/GqWuB0nbsr++921JospNaB/K2g1EUb0tf2dsV3WCgUwSGywOuTBwCM3T972rUTCj3j06qTgb29r3ALL4X9l5FqkkcYRgeEd6NJh/9uxZ9PFurUWzb3C9uo4MvHZe13U9JqHrOhARnGtRBW80l5eXYGas1+se89C2bXQ9+eGHH+LJkyfR5eVut0fXCSDRoE91XWO/38cQ5eo9R446i6izX5ZlvDabzWJgqslEPtd1jS+++BLMXRQwZrMp5vM5Pvrwe1gunuC3v/kdVuvb6K2mKAuwYTRtE+uaqzOcn5+jKAo43/X0eYcM4piXkcemMRZTVRBydvoxz+n1sXvyz7m6zRhLO8xn7L0PMbvAocHtMYb3GPDrCzNhQyuKYFCavNdIoRAZLR2Hw03Xe071pvF654BemCNVTzGx3VKb5Ww3MoFAGb1D1Zb0uQ+6898CHFL/p7bg3rWHGPMcFKfy9sdF3s75uH6XQDBU2Rm6O83L9pDRdc7g63da5rzex5j8fHMa9mN8xhA22w329T6uTVdXV5hOp7i8vESz2+GX//j32G63+OCDF7h4+iwa47dtg7Iq8eLDD3F58R7u79e4u7sL0a99JD2WyyUuLy8xmUwAS7CFwWazwevXrzGbTHBxdoqyLLFer/EP//CP+PLzL7Hf71EUBe7vbnF3e4OqLHF2dob5conWMXa7HZ4+fYqnT0Wf/u3bt7i7u8N2v8dssYyB91wnpwV1XePVq1fY7/eYzmb4yU9+go8//vhgXHwb0lH1rXc8N5zvmk+uMjG8RzMuAsjUd8r+aCLpwZzsZPLIr9nLe2VWwOi9Cz9qk4NUjmzP0HqK69t+4EAiAvReZvhgcG/ISGylAHKUQXYswLgnAhFgyUhwJQCt8xG8kEY0IkRf7aqOIeDEg7T8xoJsOLVU0kPBZsRVfXCp1/KyKNT2BBgTTviZAHJQlUfFopQ/bUy0WaPwYzSIo5FT/Z6gElh7ayyKygoR5MRzn5ApIS8gqoiARB9fgWZfSOG418iJQPobQA+gJk9COjblcdmHBmssZYGlKLPtYo463mmrywF88m2vApgKaN5xqiNSmyRBLfUxM0ej4nzN7e0Z70DzkZzSkUXqVSmpbZFJnsaMtSGqOqIhuarZxDUgoubQrgdgPktEmT582hNIy97H7uFqH7yn9ooPxt+ZCBSdAIlQqzMtuQlmZKpH3xAXPhrMV1UF5yTI0363x24lxmCz2Qynp6dwzmG9XmO73Ub1mdwi3nuH/X4fAf9iIQzWarWK3mY02ImqwyyXSzRNI0x3WcLatAFrcCoF87vdDuv1OkZ1NYZwenqKxWKB6XQKjdh6eireI/b7Gt4jMvvr9Rr7/UZ86E8moi9rKwAWXcswpsBkUkUPJCenpyim4l++qZsI6hWInJ6e4PLyEm/eXh0A+RysaMoBzmM6cbiYD/P/JikHRkPArX9HA8wHVCGGYC7PY1jnMWZ2OIDH6jGWd34tB3TGGDj26JxDCfH2cYwmyIFk/4uw2A6OxvNnjuWlC1LX5cacsjCl8gvY1k12GDhM20yFNNX/OyYQiV5vWqCPtdtDaUygGT6r7ZuXbSj8jY2TY+B5TK//2Bh7qA5DgD8mEB0rQ/wbskHd3tzi66++xmq1AgB89NFH+Pjjj7HZbHD15iVADn/60z/CH//xH6OcLLDZiq/4oihw/qMfYVKWYG+w3ze4ubnBfr9D0zTYbrc4PT3FRx99hLZtcXl5icXpEtW0jGtnG7yC6f3n5+do6xZ/8Rd/gdVqBQbQOQF+L69vURYlwCIcbTZi+F9VM3gPfPLJ93H55AlmSzGK/eqrr/Dpp59ie7/Cfr8HAJyenuL9D1/g7Mklvnz18mj7/ktOY+RD/O4Rzw3HfPqM3pzXJO7hUxCfJOAKuOOw/8X5hMOxGK9k61lu8IoAEhSEER3OC2FSI3pJc4oITAlAh9zE9S2E2Y6FYAKTD+eP/bYxJoEqMTgUtVYTgAeIsgg+qTxsTPQHj/BeBYKUL8VSwXhbLNJBPyb1GTGKDfOc4rmp1H/IqBJFYM8EUXtF8BZmGMxGjOKCpzIJzoXI/EbyCkj639Rfu3S8JO9Rw31MJBYfVDMpljMbb0jjLv0koC7RXvtrMMXPiCBQL+RtmLhjxFOX/ERB8+BMCNCuCZ9641FB79hP9tBjSHnNHfkpQJzLqbIC2jlgSpMCWOkPZRM1VqE3Z4IQegDOx8qasegHZe1/r/3LOvIYghuy45c43LN6yS2EvBNTub8ZkAe+AZgXIxOgLCtsN+J60hoLawtUZQVnXQwNLp5oxNhUB3frGtRNDViDxnUo2w7WlqiqCbbbXWTeT0/PsFyeoKgqeGZs9zX2TQuw+JkXX/ENdrsWzrVomn1gPwyYC3RdBw0ZbAyid5yTk9MQFMqhKEQn+f7+DldXV8EDTwPAo2kazOdzlGWFtvUwZOEcw1qpOyABWAwRqmKCyfkE+32N9XqN3X4vpxREmFQzPHvvPby9fnMAKA42mgF4y9MYm32MBX0ojT3zrpOBY2Ds2P05IB4DUfln3fiGLrvy54/lcaycuUCSS9fOdbDeiXRuAM8OkU1yHBfRsfcwJz/17A91DyUj05v6UU+Ugc45sFO7nKBw6cNi7hlSFANwAYYEyGAfGAeiA2CNrI5a94Ny0/C6Mim6wBwyew/16fC+oZA2NqZzAe6wH2XBk3qndWv4TG7oOsyDmeKGMtw4E0PaVwnL66Butof1SnUxqJsam+0ay5MZPrn8CB999JHY2zDhz//Vf4ayDGCNEee+xq6wBnj59Zf41a9+hc8+/xy3tzeBQPCYzWY4vziFtQbX19d49eoVqlmF5y+e4/T0FEVRwJLY5UwnM1ycX4ot0WYH57141mKOkYHReXTegbysS2/fvkVdN3j63gd4+vQJpvM5zi8uUExLfP3113j95jXeXL/BfrPFpJri8vIJPv74e3jy9AJff/0V/upv/gr/x//zfzE6Hr4N6ZiQ/a5n8t9AHwjpOD1c/1iRJxK7OMJFZpu2PJ7nEwej4OKg7meCep0+yMxBj30IuRHv6f/VFyBi8gJFPMQIO9ChonqT1V3z4aIAG2GnPYsqhSxnRhFvZJUT9gttF3yne2PhrQMpWNaTv2BfABIWnOL+x9m/OfoKe1doi9QFUlM1CM52S+StTNCor0hxAdiDgkca9roGIOzzYu+Q90EUVkK+ZoSZT+VNDDbAIDYC+zioYMR2TiCT4g+n8jLiOyIgpT6eoFTJWOM0VEM76DNQQUEXX4WnSWDKkzw7AKqUnovPDEmm2GbaHBnQD2XVE454kQbZ9AgfZIRXAsZDsJzqnwB+FBizRqL4T/46Fb4eWkP6rZT2Vs4yVZB/mHStAHM64dJ8/wlAHvgGYP7Xv/51VGNxITKrJw/nOrSd6HFOp9ODTRiQI0CyBtVUdO5hCE3bwrUOzjEohL2v6wZ3dyssT05xVk3k6NBYMBm4roZpOejgS0AUcSklANxa8aF8fn4OIsLNzTW6rsF+v8erV6/w+vVVeBfFDVdZRRUAnBN1IVHVAcpygqKysAVju5XAV6qbfHt7i2K9ji44S1vCVen47fXrK3z6+98fBYl6bYzNPnavfv+uZ4bvzEHusTwfEjBytuhYuYZle1f+xwSJsefzFHXhB88cb1+Aw/GpZ8CofiVRFPgISTUnV++Qv9PCzpm/4SR0CfDLVx89WmZmCV4F9FiHdP6pRmEEsBhTM0MCoGRtlOuFx02Ok2HrsM1EjShvB05rhC5UI5v8uwS14bg6Zmj6UL5EBPHEkY0buelgvAz7IitNaEPKlvP0riFjlpcz5sWp3EOhRPYJCzDj/fef4nsffh/r+x1+/9vfo6oqfPzxx5hMJ7i7v0HbtmjbFrPpAm3b4e3bt3IqaQm3tzf44uUXWO9ucXK+wIuT53LvbIaf/OSHWM4W+Lu/+xyffvopyskMthTj/LZtsZzN8ezpeyiKAre3t/j5z3+Ov/mbv8FqtYpuN4us77kTNpGTZRxOzk7wwx//CNZafPbl53j19hVev36N29tb1Ps9DAOn52c4v7hEWVa4eXONv/n5X+OzLz8dHQPfptQbxxw7O30/cu9Da1GElQdAngOg8ZG11tO2fJ2OAC0onyeMkVQYCAxLCIb4Bt6K6p2ogCTg2Qv4FCY2xc+pbgSI3r4EvOgJG86niNVJpggqE4xsTgBlUaIsCgHzuSpF1n4R0PbaKK1XJhj/EhBViACCtYUQfkaCTNpiAEnydTMWVtV5wlVGdGwggs6RNUwKF9buYEibnYI4yr0HIa7zxpoIqtVNZj6mcnuIyBpn6xDHcaHvCWOLEYyIdVxIIcVySsaJISGHQAAZG05TOC7hugomaKpsf74nQFyKhj8io0+ppTxl7ZnlR1km6u6UFcuzPEdeMb70d2+1zvpPsRFCPnIOFNYrFe4yoQOcgimBxJMSiGCchSlsAP7qEEJnUHg+7OsUBM0ekM/qnwrJ+kodKUjS0XAcJY8zcW/JhCHmwXMjEgMzw/mk9pbIOm3ubw7oHw3m3759FQNAnZ2dgVtgvxN90t1ug/v7DmVZRSv83PUkEYEKgi3FuLRpGhQoQKB4jCzGZWL4+vvf/R7zN29gC5no2+0W7X6HsrDB08MSZ2dnWC6XKMsSr169Qtt28Xh5Op1CXWNeXl6CiHB9fYO7u1V0Vdm2LSYT8T5R1zXu7m5R1wISVc8fSIaF+cRUuwD11WyMQVmV6NiB4dB2Lf77/+G/w36/Hw1ykHfWY1jxHGgoczlUdzlgcI+8sy8Z9/Md3pvrTQ/LOyzfsF75O8bSUL/1GMM7TMOTiiEYO6gzRJhMsni/juCk7qNtmLdxrteti/WwXr1Nm2jwTAoSpqdUGmchtb0sNMLy9vVeh+DUu1TPoarWQd1Gv3iweR+dhvU/JhCOjWNpkKww7AHi0TYd7VdmMKc26FwL8QB0fKzmZcr1TsfGjy7GnhlXV1fY3u/w5uottiFiq7GM9168H07wxB7HmhJd51CWpfh9n1T44f/mB/jP//P/Na7evAQzcHJyEl33WjCaeo8/+uMf4OJyibplzGYzzGYz7HY7fPnll+iaFm/evMHf/u3f4vPPP8dutxu1C8iFFlVPPDs/Q9e2eP36NZbLJTbbLV69ehVY+xpd12JSGNT1BuvNHbquxfruHm/fvoXLIgz/QaQHiIp3TYfIGlJiFw/nVpLYh8LiI4rTe55ITO59IByEIExzIf3O2FmtiaKRg/ly+Fl1fEnlYnDmapP76w5ZGEp60UMAQ0SAtUmdJQNJCt7YyI/koWAeEe8bI9Fdo+pPXuRcGMvUmvI6xapHciSpsESnJFHKESFJCBohT4b2O1p/jREAHF9vEwmQhBrWPYqFgfde3SgIgcNBmIgAswfAQ/+iPz57bZt9SfFuxFOANATyvOjg/pQ3JQEla9OoopUQNlLvZvn0xtixwZ+Eu8TW99d8OchJdZHfoTCGQEgqTbKFUJarVkbHYfY3hfaNoF6/OoK/egLkoAoh77Fqcv4hayjO+iqq4iDp2Q/7Om+TxwL7R4N5Mh7nF6f4+OOPsFgsgZZxfX2NN2/eYHV3j309lOgzHTJD4I7RdAJ+iQiWLargt72qKlgrxlh1XaNuGqy2mxigqa5ruKbGzotu/GazwX6/x8nJSXxHXYvajXrKmUwqTKcL8RRxfo7333+OL774Cq9fv+4Fr1LhQ/T7LZzr0HUdzs8v8OzZ+3DORc86GhBL9Vrz1DQNHDVwzuEv/t1f4NNPfyuLhDuuymKtjSzb0OvGGNgfA9wPgp6xfswAztDbT3+zGH82B6t5PseeGZZzrCx5+R9iePPrQ0B/7J06ib3zsEUZZ2D+/ZD9HRqAPtTOugTnZY+qQ+J6YbQPhwKEAn5xY3kYECkHbsYYuOAG9qA8hOB5YsA4xwUkK/ig7d4lYD6UhnEIhkJPf4zLljZcyMfSWNvpnbmwlaeHBM3h6Ua+EY8JKDc3N7h1dyAAH3/yIZ4/f46z83NcPn2CxXKBruuw3W6x3exBZOLp5eWTS7z33jNUE4v33n+C/X4PYyzm87kIIE2H7WqD6Q9O8P3v/QS7usFmt49tt9lu8Zd/+Zf4/e9/jzdv3vQcBQwF2nysqoMAAuHTzz7Dr379ayyXS0ymE+y7Oo6f6XSKJ+cLPH36Hgpb4OrtK1x99TraL/2hpIeIhmOb5/A5EMkJWzZWIpgYPBshwOBeneNjrLECA5VzAdFTt97AGw/xPZ1A9lAYlc/5HqNqFB7ecACjucoN94lDxWOsYF7Hv7DcNbfo2hQ1Pc6hAEh6dczrHhqZABjjYa2ATN1zAcA7wBghNrq2gzFNaIdMFTDLJzi0l/oEaUbbDEgOCLRiienNEH3Imykx7Wy4N598T6jJiYjjHrj0XRGfswoYHNwcI6gyBUgXu0P+VmxrSO9jwHNmvJn2GuhY6ePveGqjFhKyASXbBn2WIxMf9segmiynBRpxV09qMsSJvm48D4Q/VZ86wPah7lHYgAo7/bsVoI8lQrLdGP3+YK5JXqZX98O5cyhkcDaO+vUZgvi4Dg/64qBsuidrMyKAeh2jlD6rMPJN06PBPMjAeYd9LYFK9us9rq7e4PrtNXb7HbzTRtTwuynSpYWNenagBBzbtg2GrbbHWvpwBMjssd9uUDcN2HVAeGa73eLu7j4Y2aagHETqEtCgbWusVg6ff/4Z9vUO08ksfE/ouhZ1vYNMfjFYkkVSjv6c83DOB9/zM9zfr9C2IgAU4bQAkEEP48EwaFsDbyz+4R//Hn/xl/8feGqhC903YZ6BkU1nADjHvIgcA8HHgHSexpjVY8KBuh3Nv8vBxFgZxoDwWB2H9w/zONZ2Q7Cd3+89w5KVuACTShYyL4ukHpsOAX7e1sP+k4VIjvjEEAxh5VXdSIIpirCoyYrS+Q6GDDrfZQZSgPcdiHyY6YFdlUxGyyPMRTDszfqj32aEpPajG0ZSu9ENMG+j4e+xvjv2fd4HhypB/ef7wLu33B/kNxzTY4Bb35kXSTfhXP1oTGB7Z2KxB/rJH/0YH77/MfbbHbbbLWazOV588CEWywV2+x1eff0K96sViskUrnO4fvMGb66usN2sMJ9WuHxyDiLRlfWdx+ZePOS8vb7Dft/AGIvZbBpd+Hrv8fTpU7Dz+Lv/8HNcX1/HjcWHWB3MHA3A5CBHjvZPz8/w0UcfYblcYrk8weT1W2y3GywWS3Suw2a3A9jgww8/wocvnuN8OcXl5VMUtsBf/MVf4rfbezTNPgqK39b0EBHw0Po7tobEdSQYnisxY0xftS4HOABEFxzZWq2EzpHX5yBeshA/9cQSX0Lz170pPJUB2RxUBvBOBCIH9ZJljY1AUgWC9G4o0kJOyjEY8F30Kc8+se3ZSpIB+xQoyhgDG8B3URQoCwE93nt4rQN1qQBB2CEi2EL98ecgPID80L6qPiHBqbR9sz02Bm3K1C1ChRMgTp5n9DXSjSLUdG0nUd5Z9nkxBj4YOak/gocSYiQVkQBk4+/hIAiGt6xtGAUAkvgAgdVHjImUVHuSK8k0PrTfNBihMR4xzk2m05/EngDKg5ed6BKV5d06plX9U4U+Af65wbaP6jIJHkPsMhTtcnwjEMdxv/2RmToN9+JjGEqv636Q35vI1NgBg7xSaXMtDM8O7DNc8hBafzClPNTFa75ba3nTfA7l+4ZveTSYZ0/4+usrvPz6SpifDmgb0RfVBauqKhijhjsS2AkQTzjKZNuwKHauC1HZkpSujJG62Ktr8ebgmqZ3j4KGrpMgThJBlmCtMpxyjLfd1djtt7i9u0FZlPAe2G63MaorkQaSIpTlBN4jRErscHNzi3/8x78XLxJti65LbjOdc2jqBmAJAoRignK6wD/86u/wP/5P/zOargFTCwmxPR59cwxAPzRQ9Zn8vhzcvEtIGAKi4XPDcgzLmN8/PJUYe/dDTOuw7g/VewxcH2uXg/IwxJAwMBzsfPKxHJ6LEXqRAOfYuxOYtQAMuq4Nmw3DmEx33Fq4APJjZFiTFkLnXdBh9QAFMB9ZJYTfDBviHRzWNZVvjJWW7yy8l018KOio2s+wLcfafqxthwA5v18XzrF2GwKknMrQTTt/57Duh32c2irld3zcPVTHsb+ZhRyo9xvc3rwFYGGLEtc3t3jz5m/x/rMnWCzmuHl7i5Y9ThcLmABA3nv6DO8/fQJLwPpuFVUIJVgdod7V+MUvfoFfhkirP/rRj/C/+lf/CovZHK9fv8ZXX32Fq1ei2w4EgsLLupYONMRoz7OsYYvlCT7+3vfxk5/8BOv1Gqv7FS4vnuB7n3wfhS3w8tUr7PYN3n82xx//yU/w8ccvMC9LtG2Dq6srbNYrtK6G8y2KkTH1bUjDnu+Phex4PafH8jEwOk4Ff/Q5tX4aXbuy79LGTL3vDkt/KOD2oMRAsJd5IfMozRECQYkEBX0+AmUTiathLBIFW4dt4b0Hu+RLXK/H+EQK/JhBxOAAqNgzYIIwRB7eHKrqjGJbSqqOCXjrGh2EI88gK3VS9Z24jwQBQmN+BJiU+ikKPdTT80/fCynDzPAj7kSH/ZcPM32XwHNp04DRIzPde550fGlm1M8sPgz0R1G/LL2RE4StKJgBUWCgTOBE9mz+jH7NvZyTwJZOHYI4kPX/sD1GG4nTB+Ywf/R7/fwOPPNwGjsV67fr6PUhgRTmkIL4eJowfBtlZBn6fdF7ab7t9cC6jsHs9gFR8Jj0eGa+I3RNi84JK2sDmBAXaBL0SRtCfVsrg63X1Yd7WZZRdz7XrVcgIAao4o+5aZIf91wlRcJlJ9d4oq9aRKDvXBeZrKZpZKx5xPtzPWhrbXBZabHf77FardC2bTCcfR2lJmOKeIxdViV8Q/BO9N/+/h//Bv/2v/mvsa83AEmgotwtWd4xQwA9xgTnabiAj11/F+uk92saA/HvEi6GYEsl3jHAfwxgP8T+Du9/jB3AgwOdgEBdpA2EgseBsGhoELBD0HtcYIobDRBOZ7J+9F50R+lQv551c+HA2owVmVKQp7H+iIsf+oHQhu8ZgvH+tcQGjLXfMQB/THAcA+zD+4a2B6mD+nmMvX8sMR+CtaF61PDEKOVNovrnD0/OYm7sUJLH26uvUaHE5fsvcPn0GTbrHb7+6hWu727hSXSb19sttq9qnJ2ewhYFZtMSq/UK96tbTCYTPHnyBE+ePInlm1QTiQYKid/x/L33MZtM45r429/+Fp9/+hl2m02a3+gv7swSBZKIxPbn/AJNXeOv//qvsd1u4T3jww8/wbPnz3Fze4NdU+PD5x/gww+f471nT3EyW6IwFtdv7/DXf/1zfPbpl3Bd37D825oSOJEURj04Kq4q0DpAkQFwZfrW2emWptwVoYl7NMUxV5YlirKDyU9QTWKs48Ye54yu4eJGV9ZXDvZaEmHddS5EkPaRfe1B/YjD0zsIBsaImob85cK9fYcGqalUH1p9zwdVwM7Bdy7UU14kwZRMNMj03oV1xQePMgARwwUvMV3n0bRBNdD7uP7pOqT9hmxtUhCfg/q0H5BMAD0BsHJPOuVXlbegx25TNFFl3RHm1ej+wtqSJrgMDm07cqt4+uuflmgba1to/QjJ1zigJ71h7cvlK53zA08nqrqpdqMcxms6VUlIXIrEgBdjUxU1oP8SRWFHelZGTgiEHnwM5Cq0KpjoKRQytSHNNXjrST3aQ7dRuyfLQ9WdFMhLm8TKhc8J7+RqUDGGA+k40BO0JKjlzLyqH+W4IpafpHeCrBJ8RlEcmAGD9+ZL6skMpwM9mewwcXqCQqniWpBs7HhE8HoofQMwD1g2AIvHDbKIDSgBmCYwxgTdUBOPdXK9VmvFW8NkMokDRN1Ydl0Xo7vKptdBg+sknfa+Sz0B9PK565JLTAXsGvBAFtnkEUDLpXkrgJ9MZpnAkPQUpZ42Ank5MizRokVXW/zm97/Bv/1v/u/YNxukcTEO5DXlg0nbaOhKLweTY0BzaJj7LjA/lnfeFsNyjgH54WcFtnndhvU8BgKPgf+8vg+9/1h79kGkC5NFXFSSLeKzeb1z49f0bN/YMOadCwDhP9J6IAv6gb7Hl6w2g0Wh1yrZRpcWIx3TQyHhMcB3qJYV3zQihOXf9Up1pA9jjQZlHRMctSxDX8xj3maOCQyALprZnBiwlrmAOeaFiTJ2JH9n7GMQSgIWswmeXV7gB598hOV7H4CKCmwMnvr3UG83+OLl13j55jVu7u9ADHzy8ce4PD3Hbr+H62qcnC5wfn6OJ0+eoCxL7Pf7EH16gh//8IfYbbYSV8Mz1vcrzBZznJyc4NmzZ/jy88/jWiRCqICjfh0BWwh4KasS1WSC9WYjqo1liV1T47OvvsDLly9hQLhYLGEZaDY7rIhAxmKz2WF1v8F+38RTqscyQf9iU16HHEhEI1ZdpHMggnjtkFrL4EomqOdj2JEDOYI3HkXhUFXVwbwzqiICCGjxOoeln533aLs27AdJZaLrQrAiBfNRrz0fu6ourUBewLioWJgIXsGqsz40dOVUTyKURYGiFBujrhVhQta44G0l7PEGBsweziPT5dd5BBBcFIsEoCIbw4gqMkC+5iQvJkSicpPUd1VFhKJRpgQ/kjWlCGShqEEhRNwGShiUtgjtKaSL9HUQUZihjG1MQWixRmJ3xHU9HzKM6CQjTwpUNbqs0X0cBMOJrRfPXgHI68X4pXwPovArqShKcKEMyANyEhK6kj1HTzkgD896pEdJYDJmAMTlx8DHtuXwmSHR04EAyLV+CrzD6Omv0IjliY2F1Hze+0ioIHiq0bIjAFrtonysxjVR35sBed1brEkCQlRJQhC6ROrM5nTqN6l9imbso/W0jhVkwsogZWg+LSOD9YX7lwhJgAmtAiUdhCh8/Cnpo8F8UVg03sVGkL3QBpUaoG07aMAaZh88uzFgCG3bRUCv7iuHG6h2QjJITR2YR9PTZ0SVhjMA7NF1Dk1ThzaTUdQzutOREReRBJ73+z2apos6+7pAAGnhomBI1LYiNKAocfPmLf7tf/tfo26UkZcukmf7+sNAH4hq3VSYkbqoNEgYevhIoJIAtpAIYtx7z5ABz8FRDnYfAoLHAFsuSORpqJoy/G5MFWTYFsPrD5UtBzRjjHqvzqAQz0TUbKg0cYKSKWRisu+BzPisKCjCB7qCAYkeSPpu2UA1JqK83wJe1K9UrzatzbJYeRaXXMxGfuvSEPLlQdsc6KFrYCj9ofiCg3bQhW6svcba/qH00LjI+2asT4b9Nxyn78q3X5ChIESxnfL1Yqy+ki8iUMhBf09FyACL6QSnszmatsVnv/8Um12Nuu6wXm0BMO7ubvHm5grbegt4AjqH0z/7KX78wx9guVzAGoP1eo231zeYTCrUgTSYTqdY3d+h3u/QtDXqrkYxqVBUFZgJk8kM1pYAMpWESBJluwETqrLC6ekS0+kEi8UJvAdub2/Rdi1ubq9xv7oDQWJkXN/fYdfs4LycYl6cX+Du/g6vXl+FCKIAw6OaVOMD4F94ilAwH3t6Pcy/Y3yHCumRk48beNhwM1A+/NHnKQgH0YXhAPSPkxk8ClbGfpIRdKqfYqrgiAZadFlDZK/Q8a4Gjsr69/NHBCEIggAZYfJdrgpLFFlH7xlsBHhrlGxQUOVAOvugWNcseB4QTIWygmd954OOPhGBvJwwyHUfgZkPe61gDl2z02ml6xxcEQSlQgQSBkfwTSQnMYqRxxw55ARC+p2RHlpGjMiA2TNJuBxX5eoDuh4CTu9Sl8fSEOKnXp/N88vrwEo1KdsdgDYjqCGlPHpCxOAjsqJFmeNg76DezZm3y8GCzfF9vfU/YLMoXKH/jr7weXzviuJsb25SKky+H/U+aV9ncD3r2B4Bd6TuvdfkNY510zf0b2CdgPLXaL3elR4N5suqQDkRybaqKohKSlKD2Wx28chDf1S32gPo6gZt24JIdOuFZXBBH71LvpOLorfIKRsJIKrnKLjpuiZWwXsHz04MVTIQ0Gdc9cgxLRSTySQa0k6nczRNg91u14tqKSy7RosT0DedzVAuFviv/u3/DXebN8FjlomTO2f1x9IYmPHehU3chJ8OeccmPegCotMbdKMNADgMxT4d+EPPM8N0DKQP78nLPZZfLmzlKg/D5x6ThgLHmJAyrF/+ffgjixTIwd88SWRCVgMuRpGd+ADZos4AB11DVaUBSBZSACDpbx/LK5udCZuMLFjhuJrCZoq0CUugKF2402o5ppsX68kAkwVzEAY8AfaQKRgC+uFn7ZshK3YMeA9B+LvSkKEfCpJjRtz5c2NjKCXqjQfJN7338LvB3+GfcUFZvuvIo6trfPab32G1J7QO2Kw2KMsZXjz/CB4GvgPWq3sYDbPuGbPZBNNFBbIGnWd0zFhvNliyBzFjs9ng008/xe9+9zvYwuKn/9mf4+ziHNPJAtaU2Kxv8flnX2C9WvfrToTId4a6EgNt22KzWaPtHF6/uZGQ896j61q0rXj8evr0KSbTGagssGfG/WoN5zps9zus7lfY1rvg9k1E3+EJ4bcljQmpeokG3wOHgqUCckWrcbwY8XFNlNQ4hsy8vovC/lDYQmJaeIa3h+qCOSBRTyLeO/gQ1VdswmRPbNsOTdMKCPcezvdPGBgAe4rMvLxH1iP2XRQWlAmNYCx7vwIrLZeoCsne6loH14nSgaovWGPgPIv/ee/hAmFHhPh+IrFZSu2tfRFOJkGIJCgU5Od9pG1skDPzRCTqkboHOEbnFBMEezYQ9uUehS3Eh32l9cnXeWHyTehP7dcDkJiDx5HvPHMwHs0vM9i5YFiaBIjU3pkghT5I1V6lMPa0Pb3xIJf6LbZV/mIafAydzQG4e+ehBBAz4ikBZ6cLMoziAAljZShc5vg/vzevk747a0Ok8nju55na7nDN13bLvQzFeo4J2SaL3NubezrYYs7DZpNrJHImh+c9D/bYkT8ICclz7zvqfwwyFIFi4LAE5kPvf0O8BHwDMN92bVzIptMpqmoGorUYqDoXwe9sNhP9+aJA0wqA1wWzrmvc39+DiKKLNgDY7XY9wC4TygU9PA3ikFQMuq7rATi97jPf3UMQIFbrJrIa1loURYHlcomqquQoM/jHV4FjNpvFgeO9x2RSYj6fYz6fYzqf4dOXX+AXv/hbADrAHgbEmsZAholgUSZEBPgjG5AOhjA/ewPrmESbg6bh+8dc+42lIegaqjAMWdCxtngsIMzvewjQ54vvwffyF4CgbqEgORMAiPuM7oH0PyiT8x6GkVh35h4wjOBByxI2Nx2/KkToPQJagT73k7EEGeCIG8EQGGT3ab26zHXlsP8132Ntl793+PmhNHbfMN9h/w/fk6cxcDbMW9pDWDprD08GxguKwWJ8KKQSxN3sz3/+c5y+vsPFk6eoyhIn1mK9vsXb2xVu7+5gzQTvv/cMz957gqqyeP/999F1HT79/Wf48suvMZvN8Ed/9Ec4PT0FvKhfLBYLXF29BRmLZ88+wOXTJwATXN3h/n6Fm5ubzGNJKFNedgR1JRLXtuv1Gn69BowEu7PWxDVTU1VNMJ2f4OLiAs8uxVXmbrfG3f1dOh01EpDv6dOnx9vuW5D6fa9gpJ+Ggqqwq4eMGQCQ6uKazPVn9lz+Xs+EwlgU1sKH8TmMHTEsawTzzkevIs6Jao1nDoJZE8A8wzmOZIKqXrBPxrBqAOq9R9t08M6FfHwc25QJ8RrdPR8zZdmiKOR0yHXJ+4w1Yi8nY4xRFZ2w8uqFjhKIMkbtk/qAyhoDk3vv0j7LAGr0ZAMF8vkPgdgDUHeZEoCHGSG67CGBYMsiqWBk4F0DWRpjggMPVeMBwNxT3UBY/4+NtwhsAbELCP3pvRebB69/p1MRr+4gs2cBtdNAiJCrfygIZ7iAj+KI4jBOC5vGsjR8XxghkpNpAGQZanfoOwcf+l505cM9nAThSDzlYDoD8gfAfASo523GmXAThbRwIqMp3z9yLPYuMK+BmPJxRwR4n1SqIuOe4e3IlXBQAxsh1oaCQOwz0ME6k+5LgF6BvPSTOgzi7D7KXIc+Pj0azG+CMZYxBtvtFoCNTDuA6OlFF8m2qbEPvtydCwOFGev1GpvNJurY552jOvUCrhvsdtve5l/XQYUmG5waQt3Y4LLPud49iaUlGFuiKExQqTCRlS/LEnXdYLer4zvUX7QGhTGGUE0Mzs/PcXpygnJa4f/6X/2X2NerAKoPdavzxSRPw7Ip+yDsDEePA6oaNAR0PembRPCR7/xhvZE2jCHDqr+HOtiPZV/1meGEyyXiYVuMPfdQvnkex4DiEMT3M0KP+ZETlkH+2YaifZjqMVhYEjGaNsKAvyW/9F14SqT8CJz7dZB35H77xQWaJmUjElinCOaZOYZU1xOjnHHP6zNsrzFd8mPpWF/lAsbQ2D1v31wQH/brsZT395iAmr8rlDK2U17H4f2Sb7ZvHnknQNG2xxqDZ+9dYjGb482bG/zjL1+idnXYaEswz2GteDj69//+r7Dfr/HVV1+jbR1+8IMf4MMPP8Tl2RlmiwWm06m4uJzO8fLVFf5f/8//N86eXOC9Z+/hbLHEq1evJDgUJ3/fWuY+65ZOHZ1zEqQmnOS5lkEhhmTTSBRsAsG39yhA+OTjj/Hs4hL/8Ku/x/39PZgZVTXBcrnEe++9h+fPnz/YN/9S0+Gme3x8j49paeThdcU2D63p+b3I76Vet6m4kP7O8FZPyMUQiCGOB2U91WIHjMAOh7kXEIOCc+fUeFZUU4kIpHrJfgDmfTqRVmDhXQDzBBCsHBoHtrmNeQhQTSQKEM1pSeuDyF5yUD1XdaTUX4F8iYRVDgg9hMsQ0KduMkU/HLEtDogDRhRG8mibRBSNvkWNtu3thUByVagAeSjo5fcmBhtBOHNx/e4x8y4x8yroiSCTxoQIXSR1jmBe/mGEU5z85JsRVEApGjzHSLQ6JjA+hhmZg4hQAKZEOiVhOJ0ixHofbmnxmVjkvI3y8g4f7bXjIYYZy2eYogBDg/mk+6X24bA8B3XFwfcjdNLBVRX6DsiDdEP/XhyWJb/V0MiAO5IeDeY16qluyG2bNmgB5gIk2raV4ErOxcXCeQd4HxdFZkRBQAE5EdB1LZpGfLl779B1bQQLCtI10JJIr4n5MD6xnqzNJ/RF0F83KIpgqEsG09kEZWljwKrp1KGuxavOdDrFbDbDZCabdNs0gAGKqsR8uUA1ncCxw1/99b+D+qkH+nq3YykHz33AqIMtgCM4GLI9xrWfVBdSGX0DsIEaDI8lnajKQgzLNVZOfXcuIORAMBcINI1dO9YOw2fGBIHHChfH6qCziEzQ5XQOtijFiIwIgIMlgiEL53xQWTIgYoAzcB7YHkMUmQopp75QtfONbGLBFaU/QI5Bfs/b1vho4KTHx3onABS2CMxT0olkYsArKdLXOe0Jfg+0Vd7eQyEw/3tMQBxLx9457Mv8nuHn4VgYsj2pXwOQCQ6c9R5V03u4DZKawlAYlQIDnghd51AVBc7Pz/Dxxx/jow8/AoOw29cwBYtR667F/f0Gr16+wS9/+Svcr27RdQ3KosRPfvQT/OxnP8Pl+SWYGbvtDm3XYb+vsdvvcfXmDdqrVzi7Ocerr1/C6UkmBFQxJa8fKjCyMjthbc2FROYMiLEP4zdt3NYSunaPt29fo2lbfPXyK2z3O0ynMzx79hSnp2cgItytVg/287/0dGzcj43ffGyB+lBb7zcmeDQJ/trNO4AdIREklgycRhCl/jMKmNV4MxeOicQMT41V5XsFmLq2iNUks3iLcU68pzjvA0AXNt57D+/EkDbaXOlxPovajoDL1HZCkNmsuFK+qixRWIvOe7Sdi9qHkqPuG4mNj2BEFqqQt4mqjWpfIOPTwOr6n7HrzvssH4rZIe83HedIEVtjb0YhIggaAYC6zsP5OpY/kT6IgCw595B6HVNT1Tmo7Q4OHn6CpxvnwmdwDMQU1+5MUKesPgSE98qXLpB1nhnOd5HV1z4yxsAWRWTzrU1xBZRXp6yiZCi6utUTIW1PHd5JiEkvUqEpSE49EB6X5FSb7IS8n4hkTzb5vMsEIr0nb+f4XLau5ardlI2nfP4qIeLBsXyHkDuVQUeT4kxdfIVR5/hdPqGTtyypV8o9XdffejIkeA+AkxhHevKkqnp6OvaY9GgwP5/PI6hW8C0/jLat4T2iwai1Nk42aQgG2MMWFkVhwxEdor69qATIwpQzkYedkW3yehRFOolIXHdHMBncXNoSi8UC8/kCRSGBWYCkztN1XYg8K0B+NpthsVjg/OIS0/kSRB5t16Budug844uvXsJ7j99/+jt89dUrGGPjRJYqH5cctT5Dg9G+zrcY32r9cnAcNCyAGGiIIBEWCAQbBtmYjjFiO+ZlHE6UHNgMWc68XjnLeqy/8nyH+R0rwxjQewyQz5/PEzOnRYkDmO88bAWQscFtmgmeDQhEJbxzwfg5tLv3IBOYK1YAmYFTPV7zgDEFYCla/4dCyfc5+OdUPiaIn2TjA8gHyFG8l5nhTFIfAxGoNMG4LgtMkjEmef2H7XmMHR8T3PJ+GvbHEKAfYyy13/P+H+vX4Xvz8ow9j+ipKulw5q46xxb+vtccabPx8UVwDGz3NZiBSSleO6rJFMVsirOqwLScojAWm80GbfspttsNVqt7LBen+MlPfozFdIoXHzzH+fmFkBT7Fswem80Gtzd3YlBtPNpdje36HvCiFtU0Nfb7LRgeHYvBXuyzbAPRjTmdxNjghSGfnxQAXYf1dg3AodyXePnmK+z3NerOgYzByfkpLp4+wWaziaemf1BJwdwgjQp82fgbAoYIFAa5cZaf5kHZT/RljsM5IgCRwRzAfzTCJ1jm3rvlHWFehz8YwlK3XYe2FQa+bTt0Tk52XAg45Z3EfUnG9GlOpFM6ivXPPXLlYAnGRCLCB51wE4C4As/4k9WZffJVX1iDIgR5NEYCSxERJlUJLhR4u/i0qM+GuodTBHmHtKqxRnTjteyDKK0EksBFuu4GtXH2Hl17yJ7nfanqtslbiqr/pJSfciaGOwPtnKmGZOCXkT7n40L7XNo+7UWdd8GTkXyOOCJkYYyBLYPnQGPAVtVNGTyGCwSthzbJyqIBY5GdZBBCINnBPFLow2pgm+ZDGvWHcJ4GP5GlyID8uxIN5tnw5+CeILkw9JSp/y7OBCP9PCSz4v4f12MErEa950QXPrUCsnZTIU1wrNgt+EF5dbwV38B+6dFg/oMPPsDbt2+xWq3AnPSL06abJoD+1k1I/LvqkXsHwMJ7RM8xgBq6pskg7PyhkV40iA1gNm9EbQzNrygKzOdzXFxc4Pz8EkQmqPB0WK1W2G63WK/XMYR5WZaYTqeYTqdglhODxXKGk9MlyMi767rGdrvFZ59/jq5t4bmvYjAEvcPPY4ArvycBfVnocxY8ByppMRuZYIP8x77PAfcY0z4EXnnfDlnbh94/BGdDEJnn+dh6PMT+5t/HdxoTJ2ZfDQqIx7IHIBZI4yuxLThSxiS0UgwQJTmgt0GwZzE6Gi4QCALcYKOgsHDo8bf6dQaRbGwkTD4ZOuirXO1s2HZj7T3WhnkaY8zH8tZrYypnY3mOjZEhu36sbMP6DMfZMQFxOKaHyYKwbxvcbVZY3d3jd7/5DDd3Wzx9/h7OLy/ArsPN27f4+uuvcXt7i/v7Nd57/xl++tM/xQ9/+EMQezT7HdabW3zx+ed4/foN5vMFmqbB9fU1HDwun5xhv6vw5MlTvP/+czjn8R//43/EdrvFMQP6qF+aQUpjjJAtRtY9cRTAoCyUYl3v4bmLa13TtvAwIO9xd3cnqjhEODk5OVBP+jalA2CebdBy6WFyIHJuI2Nu7NkeQCGdw4dAg0N50ljXfAFZZwZlI8RrceNn8eDnghGrV1eESPru4t6yC8az4d6gStN2XXwmyLLBE43OUwOjnuOAELU9i0qt+7yC+TBHc+99EaDxkMWU5xTocACIzICDKBY6lrVRwJ2sp1F81Xf3wHxotwyHKobS55TpJeYUtIkZ5NVwlWOeYyBSBKLM84+32YBKe4PsDwG/cEC4CupZPRBpG0Y2J7LDOuYAktPhOAeFLpLsOGv3NADz+uq7CAxHyfOP+k/vJYqt1CuXdhkRYt8SBYEo39uojwfG9oR8howJwD3Q3bv74fQuID/2EwngMPAYQ7Cej4F+aeI41FU3Vibs3Zzq0SPuDgsOFdZppML5OvDQvjmWHm8AG7zO5ABcWQRZ6MyBEUnO3rZtB0D0OyWIkxo7hCM9UyKPbjn2Oz9CB/WBpiELW4nevqacFdzvd3DBz/x+v8d+v4/1ycHP2dkZTk5O0DmPXd2Cth7VpMBiOsNkMok69P/T//z/iJ5z3gVEgTTQFQzloEM3aFUh0r81jQoJ3AdRsjbKIDkmMBzbnMaEjmNAL5+w2mYqfD0G2OdjYpj3kL3/XzppW2tgFhQm6hkyqy/g1N7KABvbb4++hyTIhkUkx+EIglIQTDWMe2JvgnCh42Ewm/MJbIzpGXQxi+ETsdbFiaAcipZ7fxkK1EPh7CFwreUYXjuWxhfxfjuOCXD557Hj61HwNBh/QH/cDOfOGGBn1ijV49+DAeMZHXnU7FDZApNyirKcYL3e4atXr/H66y/BrsNHH32Ef/Nv/o2QBK5DVVbwvkG738O7DtYazOYV1pt7vH59BWMMZrMZnj59gh+f/wDPn7+P58+fo209/urf/20WJI979RlummAGUVq+O9ehLCosl0vMZjPxNFbL2lbXtYA0nwwUy6qCJ4vZbIaLiwtsNhvUdY31WpwafFvTwZhRoMnH17YErgA2Hj5s2fk8z3+iVYuggfzlIBiQZdjwPlvYoB6B4Op2uMlrn6a/FPibYDxaFCWqSTAU7DzIJi83bSfxVOq2wXa3R+cc9rsGTduCIwCU313nIxCMXm0AcFAnrCYTTIJxr4tFE4BtmGCZ4AhwAYy3UAAuoC96rmEVaCCGrgDISuAmBkDWgoLQ0DnRLTdE4M4FXflkwBhRdgCx3iX1VI0mX4JANggP+TT2ecwODgCVYO3ADW0EdkFIHqyPemqfX1eAO0x9WySOrHRvrMW+TntCflt8Tyivjhtx4hD6T0uh63r42zkGSIQ6kxnRx97uSbbyj54QDL3IEAW10ihU5tHDs/qMQPD8NAno7z9ax+HeFOsOFdiQvY+CSnEWJAwUND2Sxoe1FoYgQfmMlF3LzV58yMv4J3EnnPdLTyRV4C7XJWo7Q9WNMvQCJet91rjqJYiy/LRCROIH3wYB3VPwVJYLH4ZEXeqfg5l/9eoV6rqOC5x4f/GwViLAivcFzo7axJWiNpQ+0wcbcq9EhQ1usIJHGbHeT+oFuZ65VlaZTjIG1WSC6WyG+WyO2XyGwhZYr9bY7XZYrzdYr7fRQ4RumHp0qDrygAgtbdtiMp2imFQxMJWC7KZpQCTebnSDGAPD+nkIPIagaijVaj3HdO97gEQuoB/Yqu9h5hgYegyQ058xli5/XtnfIWA8dv8xsJgDuqHaztj7c0FomF/ervmCwWEyuq6FnVRgiL2DIYKuY70FmzJjLs6Fj2G9QoCSTL8RLLqA8LLJFMaic13YtMPCSbLYGxiw0/pT5FB64x8Gne8igCAgnAAMBYvjgCUHJkP3g8Pnh2Nh7PshED4GkobjPE9jQuOY8HBsLMpYMWFCBL/9HtBdXcfVsCxqCKh59N4FgJjQeoY3BebLJU7Pz/D8/efY1DXevLnGcnGKFx88xwcffIDFfCEqT15sebrO4eLiHIUltF2LzXaFyVRIgNl0jufPn+NP/+xPsTxbwlqLel/jt7/5Nf7u7/4jVkFffQgkUzuoR4+0QXsWHftpUaIsJ5hOZ7i8eILNZofb21sAAvabRvIUw/8StiixXJ7g7PQM5BnsHe7v77Hb7Q7a+duY0pacgPSxlAgiRKpzbD2LwCeb54MXigODoI1BzsSTwcEb5RHqZyFv0O/kFM5Yi6IshPwiDwRXyc4z4CQya9c57Osazjls93vUdRNxsLK6nePgjz4nU0jeQwSyBUokUiMKGNlnDwEeHkDHHMA84VAUl+awUHBOyc2isTF4n3cNOhbmXMCngp2wdvukrpKrBClYMmRgWIQnDY6qhVX/93l7a3+KalN/nTFBhShXMVI8MrZu5WvtUOgDkkAzvCf2cwagD8g6/U0E8lHk6zduBub12yQsMFwW/CjeE/HqcP9Npwj5K4xB1EHPAboCbX3uoXbJl/gh/hk+k+7Dwd8JC1L22QQVL/0JdhhDlS+CqA+pxydDAB+xmcraLD8vSGRfNDUYCGEB78e1QZ/XCiB2WYxFgYGaaiyBAvqH1608PRrMy9EvhwYTg1KR+HVxcPC+AxFHYKx6rWLMGkIoI+mCAQgMQxsAhvqBNUEXPXlryAEciziDopBob1VVwZYFqBA96NY7zGZznJ1dwHvxxKMsfD6A9O/pdBo92wByf+s6LM8WqCYlFosZyjIFcSEiTGczeBZPF0PmTNMxMK1p6GFGn1E7Ai1P/lzvHZSO2nMJeQiI8oUmH+D53w8BvGFdhkBuzC/1MSA+xsjrZ627Xs/B/ViZhu87BkB7zxHDcwcDKywQW6StKBmUxec8YqQ8YXDkHpm4HOZCdkIF2dzSRqhHe3K0C5XYSVyrMRjkClkwvUjjXGQedYhC5GWgQAHPYuQGkiNshgPzw9L7sb4Yu+chQbDXjuiPq/zv4ffHns+NnYcCbA603zWeJV8DgoX34Zg68+w0VDUKJYl9dDBWImlTYrVrcbPbYHr3BuVihrPTC/zwez/EZr1BWZRwrcXV61vc397g9HSJFy9eYDqzKAqgqgwm8Pje9ywWixnqusFycQZrS0wnM2zv9litV3j58iX+3V/+O3z22adoW2UB+/2i4J1gYU0pkI/aWObJfIrZdAHXeTR1h+fvn+PFi4/QNE1c/16/fo3VaoWiKNDUDbxrQVOH/WqNggnkPbjrAJ9cWn5b03D0prUufUv9f8Je+8CpFdI2nzCRdlT+OZ2U5nYceU6cZxqe5+zPXl0ikEHmP1s8sukeUZZFdLFclqoHDjGKDZ5rgi4HbGFR2SqUVxWkSdw0hpN1ikBR9wsBTeVkgrKqZG8uCok2bAzKqghMY/KjnrPnNgNYpbExGqs6mCRAdIhCJFCyIUijYXDnAvkRysMcvHhZMBEcM1rnQEF/P8b10MYbjAvPCMaelPVjIhhlbdH+zADzAL0psOPsugo+8qyys5IHh2MiBdza3/lekcoZnh8RJKOUQIE5jmN4RN88Cqa9wZTy5iA+amTUATBnH4xGiWA4PZ5e2ccd8r38rarYUs5+kbQMFDAMaaZanSHI1fdmIL4P1imVK5RFGfk073M1GyS1r7QRpM4IZeHsc9YwvSaOX8fxwNltHO/JVyUNVKmjQMtFWQOz5wOi6aH0aDCfpCAb2Nh+cCD57aJeuaqjKJutAH0IAHSxc64L+vThWLh3pHPIEufXvPcorYXzXjzptC2afQPDBpvNBrvdLhkwZfr36spvv9/j/v4ei8UCk8kE1orbzfv7eyyXy8jc58Dig+fPg5rRcYA5pjZyjL3Mmelj9/TzQTT4jfcN7jnGhh5jPo+B9+G1h1nS8c0wFxzGyjEU1sYA27BcDzHCY894L4YvBwZffCigjAkUuijos1LGHh5IOs35O8G9xScuuhEAZG3PiTUW4YF7Ej6FBVyEC61fKsBQgMnbMQnj5qCvhgz2EKDn860nVGN4pHo8jY3Dsf7M5+i7BAIp00CI1haiY+3xzpIi7LpYrVa4v1+hdZ/i65dXePb0fbz37Dn2+xr7/R6vXr3CZDLBZFpivdvid59/hpcvX+L9p0/wRz/5ESYTC2srfPjhJzCmgOsYu22N6+sb0Z13Dre3d9hud73xPmwbz0mAZA6u9MLpZFEUmFQSE2O322G1WmGz2USVweVyieVyiclkgrZtsd1ucXt7K26C9zvcbdZo6hqb7T3atv1G7tD+JaWcHe5BoNjhJpvXmaeVbJPN51m6qIft42Bb78/zBovKR1EYMAJw9S6O1TjdIcJjDgiHNSA95jcMC10vbPArXgp77AAyBbrOwdoC+wDsd3WDtu2CgaMIaZP5FGdn5yjLKoJJJoK1BYqyApEJp+UlQBR1442xmM2mqKoygWWIgFEWBYwhuK4TQdF7FNaiKsvoXcWEE6XSWBTGgr3Her2B324QaHYBWMbAlCUKK17tuGklejcYVr3cxH8JrXfY7/ZgAGVhozFs7pGH4nodfNK7dJqtjCuCtxnLorpIoe+NsQHwclR51J7Jlu3D32qIGwUMEhAX2GzPsk5JHwRPOFo3ks8uGL0Cg3XPZmtuBoSjoMiAOspRI1oixAi5QBZXgAFmFx1BGJt7IZISSnua5L0o7g+cge9kBJ3HYoDnFHQxlhnQE0YgqaYyQ0gFJIZdrht4NiDPKNjK+CdCWRiUQYXLhL1RDbIVnyVBi8Ac1GWCMp1OvmgAnO03nE/4APSJKNgUZPtWFEKGBJM+rAIPQY1wfXATK/OIkmE1mTBuCG3n4DPC5l3p0WBedaLLsgQRYTabRkAsgaMadF0C77k6TW7QWlVVBPrKQjEzbEFwTvTybRHAE/rgYthQ6kPXOYfWdTCl+IVvmgb3t/dwTTois9bGgC3K5k+nUxBRFAA0GFVZlmDvsdvWse4AIvhvmgbnFxdYLpfYbjejoFPTmBrIMA1BZF7HMeYzvouye45sMwraxnSShyl/by64DJmlIbhSr0DDPPK/h8x5Xt9hnmPM+kPlHUtj5aWwmDrnYL0XfbSRtlWwm584RBDu82NwLeNxdlqAbmq/CKKD/l8PdnCa9FFYCkA+CoZEgHMw1sCFBTQH8g8B3zwo1rCNx9pbx80xoTC/71he+XF1asd+Go7/YyD+WDnlOP4w4l9+W97+HOmWI0mxPCS2xX6/x3x5hq7r8NVXX+HVyyt8+OFHePr0aVQ93NY7/O6LV3j18iWapsGf/8lP8YPvfR+z2RTGGLRtg/X6BptNjd22wXp1j+ubt2iaBp9++ilu72570a6H80b2pKRaJqeSVcBABl3nQegwnU5RFAW6rsP9/X0E7/P5PKhDCtnCYDTscP32LqzDDPIOVVX2TgS/ranHuMWkQniAgQdjcZx4ibLygzLOQL0g6HwYNrA2qVSI96VBXjmwH5nDCOOZEI76gxBnQSAjIHsy6eC8eC7qguqNsZ14LPJBOSYAqqIsMQ/CXcCw4T0WIAFJk+AIAkCMOmuMwSSAeSIC2aSWUhQCLru2A+wOPjigmEwmEjgKyWVgQQZFcGVdth3qGFgyNIWxMGUJYwvA26CgHPYXk4AkIMt35xyasM+LcBTch1ob3IH2O0+CNXOwPUorsGbrWewAYr8aBYAMTjovB9Jd6rewHufCYvSwk1SYFFIygvpTzIv1f7Qus/HKkgnAk9JgHmAlRNVRYwg29I8Bw4ZidU7cmYqQ4uUBAixM1JxAxC+B8InNGEA+4uvD2FbS1EM9NOVAOCWK3ZL2Q7k1wOz+daOMfBBObCJno2pNAO5ESYDJegc6RzlrOyHL+uVSoUL/1M+RvKOUZbQJHhBHeUqnJ6kc4lY0nA7pKdRgnDrvwZ3D2J45lh69ajvnon50WZZYLhc4PT1DVVW4v7/HZrPGanUfDWS7Lh3VMstxX864RfdNQSL13ImaDtR6nHL7hCCh6YLYP14piiJ6zHGdQ9u0cJ0DgeLRnyw4sricnp7GyK9t2+Lu7i6CpbIUV5Z106DeNLi7vcdut8fd3T0mE7EN6DoH9sCLFx/id7/7bVDXMbFOeeOP6b4Pk5YPSABKhRQ1Mu4b1qTnIpMUBqpHUksasp5DllWv63vH/s5/P3TkM8YmDt89BGLDchwbtA8JAfn1sTIdls+AfGAhYAEWnWNZFPugMr0/0wsMC7jeY4KAgHhHYGCgniA4Gh4KWWNk+fYIG768RwSIuCok4UJFBwp5UVjYgMQsZGkIvocC07F+GmPij7Xl8N5c8BmOm4cE3bG2Hj5zXDjRFlC7BlGB0r8P35aPhbRAH1+A5aduGmzrPZ4Yg8XiBATCxcVTfPjhx2AwXr95jfv7Ozg4LJYLPH32DHe3d7i9u8cXX3yF09US+3qHl19/jX3dgD2hrlvs91t8/sXvcXN9g9VqhS74jT7WL1oiFQ6LsgCMATuP1jugaVGUJU7OTlFVFe5u77DdbKKgfXt7G9mqu7s7rLcbbPaiG29IIkdWpcV8Pv/WuqYcW+/0s36fs5njY1LQXW8cU1Jn7OeBiPRJT9CyfWl4f5ybYanpjb0wr61NPrETo+gimCfKVCWDqYi1jJmfgYyovZCxqCZTMYIlg92+DjE0WjjnA2sa2im+Jew9NvjTtxZkhNn0RDAQ8sMUFjYQeiZExS3KArOZCJFt06CsKrigwqrltlZUa4gIlS1QFkKYOS9BkcTPuQM8w1pxA1uVZayPcx0MKJv1WnAG7fcyf7w4Z+2cl7XVOVkRAtCLqpIs6j2qY89hQVAvPYB68klthAC6lQdgjtvFUQEsX8cVFDP76C9eyiF5+tAWvb1S3x3GILOP61YsH3Mcg3qKG41kg/GzYYILQN2QARkJ4Clej4RQNfE18l6j+0pQvzGxPgj3h92OxL6BWdl8CmXJ5JyAgHt7P+QZ6t8ymvpziqHenQQrqWpPujfvgiyXo8QV5/9xIkc5tGXs41jWrH6chPCDcud/xE2J44OqLms47OPS8NABlpfpMenRYD5ndsuyhLVF9Ewjqi4Ma8ugQy+GfglYpEZq2zao3XgcBrtRXXqxRM4rIUdTPkpocq8EdJjP5yjKCk0teRs2KE0pnVyUEll2OkFRlTHyrPiWryNIVr/zyuDbskDdtWiae6zuN7i/X6MoDKwtUZUTWFvg/Wcf4De//h0oHKMaE3ss1knbbgxU5ffEemagPQc1uZtB+Q79vMKEBiej1NxrTn7vGNP6UJnyzUjLODY+9BQkF07y58fY8vz+sfe+ayBH0Dto67F6ERHgw8LUOZiqhDWFHLGRB9iFbcJGid97B0YXGQRp+KyP1a5dVifRtzYIqjIIizqFIFUQg1jNw+c2ESETdW2ZtaFO+hTqWlivjiyg7AeOs9pDAepYOw7vHfs7f/7AcPQBwD7WL/nYzhfsh04AwieAg7ErVJBq4X0XVRx6SykDgAob4W86nAMH7yE5wt+2NebzJX72Zz/D+fm5RFVtPVarO7y9e4O2rfHi/Q/w/L3nuL+/h9uL8f5nX32B2c0Mq9UKr16+xnQ6BxHh7u4OzjfiEYQdurDB5206FKLzUPZVVaCaFoApZP1tHWrXwm83MKUEhbu/u4NvhM3UI+zF8gRnZ2eomx1u765RkoCsk5MTzOdz1CFit0T4/vald43tHrA+AuZVvxnAwbgcEiT5vciZeVU7Y/F6Y6FggBP77pPTgCickwGRemwT0wV5jtAFl7YxeA8B1hawtgADmM0XcMEF5b4RLzd1XePN2xtstls0bSe/uw6TyRQwJgJJBbSFNSjCPlhUFYqqknc5D2dFYC8nU5RT2UNtWcJag+lshqfPnmA2m6KpG2zWa4nfshc3zt45TKoKs8kUxlrMplPMplOwZ0yWC8zXa7jOod7v0TQNCmuxXCwwnVTwzqHZ13BdJ0JnYNtDSwPMuL+7Q+Mc2q6VU/oAUJvgoIMIEcxTALQmgFYFr8h/6xqUETYAwKDgsUQ3X/nlQ2CoMMgi6AydrTfFNc+xS0A+gEQl7ziMOz1RYABsBDq76J0nGfYmwJyDyqQSpEJhAqX6w2ibBk1bg4gwqSpURSEqU86m4F1hhBBCG4YfE/ZDawxKslnwMIIJnH1uqkHx2CG7iLCmGYbNAP+QdNQfwYQmEEdClilDL9+j95Oman/+R+yB1GbRzSqHgGsiYsV28zmYVwKJE8jPMchxzJK+l8BfHPtYoGM4ZTdBUdT7vBLvTI8G82dnZ5hMJiAS9to5j/V6HRe8qqp6qjW5hxMF6Xpdko+SYK+6GUgF+vqzzATvRJgoAzCfzWYC5osSVemiy0kiCpFdp1GtBkjhzdu2DUEgZJPP1W7athWjD4iXAFG/IRhTYLlYYjabo5pM8PXXXydQYhKbMgQkD7maHDKYuf/+vB0OgQ4jZ2UFJx5nQIcpL9/QI80YGHwX0FdQltdheH9faqaDCTDWLo+txzC/vFy9e0LYVOc9rPOAccl9mnqTcWm8HXvP8NqwXvE572GMjao7rM6OR+oYWbtw1JfAspTLGAmWxrlBuMk2lyzPXLd9rL2G9w+FsByAjwmj+lv7/Vh7jP19LDEn9S6i/gnToZARc4fMuQfWPVLsrptyUlcZvn/YJs45rNfraAB/dXWFt2/fwsHgydMn+PM//3MsFlPsVjtcvb7Cb3/727guvnr1SgBQeNYWRoLXlQavvrzCbi/2PENGfsyblX6tbbTf7eHJRC9bUh9gs95hsVhguTxFZQxOTk5QliXu7m7hnKiYVVWFk5MTTKdTvHjxAmVZ4uuvv47rYu7e99uUxsiSse973/XAef5vn8WPwjwyoWDwih4Iya4ZEyI7ewEuYEgQu3h/eq/0exiL4bch3887bCU2eLkBCEU4EfQeKCqHzjOKfYntbi9qI7aRqOxGTmFE1uAETLRexoDCemWCHi8j6LJbA1NYmBBFvCgLGGtRTSeYLxdYLpeo97UIwW0LGIO6aeT0oChRTCoUthAVnvkcYA5sNOC6LsAniK79dIJqMoEPkTEVzJdZBHMCAAZ2+z1MUYC8qI10gfRg8vAIkeoVhIJQWPnDgI6GWHSKP5D6MvIt2VLEjAgEdahwvDm/L7GsLpwg9K4xo/PphJdN8IAUF7ZwchDUtBRc9svS30/FlaXsQfodcxI+6rpG09S9iKmG08kQIQPzhEibGCNsfL42czaPOPtJALbXGPJc6ECKkXkP97H0O01VBfUiYCRm/qE5P/yctxcPP2fCj97XrxtnLdPv6qNEVGyK1D8qMLLhcNISxlCvLI9Pjwbzn3zySQy4dHd3h7reR/ZXdcnVraMCQzWiUalT3TrK5sNxw87B33BBTj7YCzALG3F+fo7pdIKiMDEibdt2aBrxWGOtRVFVqKYTzOZzlGWJ2WSKwhjc39/HwFfOOSwWCywWi7jpee9xc3OD1eoeN3f32O6EpZrNZ7i8vMCTy/cwmUzxj7/8FT7/4vM0CDxDrbi1Hvnkepe7xTGJ9LE+55UJoLDQ5IBu7H05cIuTPnvv2L3538fKr+z8AYM1AMAPtcFxqfZ4+mbgUSa/HGs6qGtHjbqrRnJ9wUC8RwB9o+9j79K2IKLekWpkgZD6bQimRUZL6lM64bPc479kxA+98YyhC6tcuDqWhn1xDPiP5ZGPV/081MnP8x27PnzP2LgZ61sZr+p2DWnTG0nyfF9//qG65esOAJARouL07CwC+aZpsDg9h7UWT58+xe3tNX7161/h6tVVPO3b7XZxvZvP5yjLAldXr8EQA//dbiuqA2H97DqNqn1Yj2R3IeWr6xow4o2JAUynU4mzYac4O7vA06fP0LU1dmvRh5/P55hOp1hv7vHVV1/Be4+zszP8yZ/8SQwG+OWXX4KIcHZ2hvl8PtqW35Y0Jvw9JskWPfhbwcQQuY+8M08G6AEcYoYPwvjhXhAX7l5JTFBfiEaLREHHOa1FUeA1BARd57IysCwI5+TkBLYoBFSTgmsKLhclYmynDCETirLS0idWMji2AIq4v1CgPyn82KKALUrY0qOoKmH6mxa2KIShtSYIDgwYEQrAQFlVmEw7dF0hah8+qJaGH0OEcgLYsgwGtcFddEA6zB6T/R7ldAo2KmyEUzhjYCh8zsQWB9WZ94G0O054GDIo9IQbIaKrEmkcWsn7IJAjguHhuJLfAcAGoE5IfJxEGk9RgK169TFGbBM4RX2NAkFcwxB/5wKC3psbunrvxdCXGdY52OC5ynlG08pJXr1PAD7Yn8IY8emuRqmFpYg3jDGwIqFGAcB5H9wUEQxxb3kmpLVdBF3EeC/HktybiE6JCQDYQoycTRiHpuem0ozk0Y9BIn3txQsaiTYURYksAHetaK8G/TQKvBWXDa5pe8YvjJH5q2uCseF0zwTs8bj0aDBf1w2ur2+w3++x2WyDbjxHFsd7F11MAqJPd3Z+jrOzUxAZrNdr3Nxco66bqD82BlJ9Jp0aY1GWRTgWs7C2wGw6w9nZGcqyQF3vsF6LX+S27WBMMnKdTEStxlgLWxSYzmeYT6dYnizROSeGOkBUu9H3t02D9WaD27s77HZ7AIgqOLt9g6s3b+GZ8T/8j/8dmraB6vBz0EkbpnexlQ+B2xxUjDHYJij9Kbsj978bEA/Bfs6wPha458/1y9R3LzjOqj7uBOGhdsk/H2vjUeYc2eLqGaaQI0wmApGq3ARVHOTPq/vRMD21/wabgW790VCWVUUstYeHi8wfEQUPCZzGUdgktE9ci15ZdFPMjwAL6rPj/6mpx7pk/TVsUxU6j/XD2PWx8TB8Ln/nu1yTxj7p/fTugPZ8rgOZ5zk8fYhlYeDi4gI/+tGP4TvJ582bN/De4euvv8IXX36Gt2+vcH31Fuw9yrICDERtxsg66NlhtdpgvV6L2lZYI9kznBfh15CoDOXCOJAL6iaCF4DhXAsyJaaTCS4vLjCdzOE6QmkrdE2Htu1wd3+P7XaL11dXmM9nUNOy8/ML/OhHP8IHHzyP/SMAooAxNsbj+Dan4VgaS0Pwnl9jneLZ72G+Y+/MBXbGYB6BAXdIbnBg7BhRaQ8EAgcwby2jKHxc2zunv7twGmtQVBZF0HevyhJkC0y7CQpboG5a7OsaRTXFvq6x2+1xcyvG0W3nUAfnBcyE6WyO6IM9lLlzMp6kzMkjFhkDWANTFCiqCarpVFTHOgdjxbNOUU3AZEDWRpevZE3wmhPmXmHhug6OPTwFl5ZVBVg5BSgncmJeFgVms5k44/AeHIw3G+dxv93ANg26roVru9D6JgIx9i6qNrm2g1ebvo5TZ2V9okC4yHT9ZRxEOgbqxiTFepHI0UZV+GRQDAeJCCo6NgbgEiQ2gOoNRoQkAbEK5j1ztE2UoZP2ImXsc5/8ErdHsJlzEkzK++zecE/TdvBO1J3atgERUFgDa6RMs9kk2CcSyiBo+YngNG/DHmqCrZjz8aTBGAig1/oTkuoSMwybsP6lpo3LbwbeM38V2pRh3TLR7keBvbEGuQMLnZ9D0lLnoRipA7rPy71iu0lQYVfqNqTW8p+8v4+uFKRelEJwSZiAP2SeiK2K2K38swSN+s1vfhd1opX9VjZO2CUD5hS0yJQFPAGNcygKQjGpsDw7Q1nXWK1WYoTIfcPP+KwxKCczTAOjRCRHYmVUi2FsNpsY4KTrugAokv77pGlQFQWsF3dWrm3RVqITWFUW0/kUXefDIBbVm+iubbNBUzcoSjGYraoKbdfhzfUtmvoGZQX8/a9+DuYO6kLqmzj3H6YxEDPGUuftQ0HC6w2sR4Lk/P4xRn4MbA0BXb5JDQFbj4keKdNDrO03Kf9D9crf0ysfQqRCBtA5cOUBY9ExwxoLRgeSHRe6YOuRHhHBE8f131gW49Y8lLPLAaHw+Z6T6pEwUwiR6BiWLCwlUKwPxrb2WbRJrR8ZMBw8eRiwLITfsO/z9hlru+H32kfDftbPY4LbcMEc/h4Kj7l6yVhe+WnIcNwzE8CyCEo+A33+8LeyaCGczajAkpeRiILeL1CVU1hTYbvZ4+71K9StuOA9PT1FOZ1gs9nAEGN5egKqKqzXa9T7jag6NE6AXABJuqExQ2zMZKcL77Rx05LfhLKoAGvQuRrO1yitxaSaYTafYVpWKI2Bcy02uy3ub6/RtDVqJ6enrvGouxbzyQQfffgR/viP/xiTSYVf/vJXePv2DZqmQV3XqMopJtUMZ+dnB+Pi25AeI8zH7xBA+9h4xWAjHn0+CfG9cTN4NrGPavfQd+AgDwlLp6Bex7fmr77TJTZFYgkVdEpcBa0rJMhUoV5pgtcuIkyn4r5Rgbm4tOzQtS0YiCfqkd1F/z0+EA35+pYAmoknCAKmbGTto+taJTyJkneSwqIItkN9lpWi7YGx4sO+KEuUVRXAvKgbeu9RVKXo7zND1aFUYNb28j6ET/AMJheFJhVawh+BfBHXgfn4UeDVHwociReE8UAZE5ufzCBrMwW0CuZ745OQwLwRpx22DDZ5wU2lqtMml5UPg3kGonEtQ05gDHHsI+MZDuKkxHVOnH/UeznlsXLaU3mPohRgycbI2Y0xqTwcvARB1jgK7UkEvRgwSwDNph+BV5t/bAtL/dB3Vw6kU0vKFPoP5hfSM2Nrwdh9On6i96l4XWmhIfoaSQ8B+zAHxNc9ZVkRdF/6Z2Pm1Vc7IIMt99uu/nOj7ixkoVB/xwr4c7eV7DqJ+pZt3kVRRB33opqiCHrsJycnsERoawHd2+02hh1v2zYKFWKYKwNuH4xptJzlJASWClH11JhMO1JduW02GwCIhrAnJydSr3oPU5Y4WU5QVMB6vQaldTXrIzr4rEBkjKUeO51QwK51UZCTq8XoMVx/PI2ryYyVb4yFzEHWUOd6WK9hncYEkjHdX61b0vMdj+A6VoeHrh8Dob3vOG2UoLBBZVEH5X5EX8LCghqA1ZpGfHp33kODR+XTVNSMPCypXUjIcziVKb+WRylMXdqrT1Y+n50AxTamfp/k7TM25oaCWS5UD9t0eF/etvk4GUu5z/1jZdF3HRNg8zL3Px/6oo99OJpD740HG8dD5frs08/wy1/9PS7Pn+LzL36HV6+/xrbZo+1aGGPEU4wpcXn5FH/8x38CW1h89fJLtO3n2G9XQoI4D8Om1z8mLtScQA5w0M7WWjx79hTGlLi6egXvC1xcPsFsuhCXuq1Hvd/COxmfBYCytDiZLEFEWK1WaOoaeor35Zdf4uXLl3h99RJd1+Lp06f42c/+HE8un6Hruqjj/4eaxgiIdB0YjqDh2FOGDoe3JpUvymY4C8oxhkC+b/ANvR9hRDPFUzkO895YhvUCWKy6L+Wg3gEP8gbOOhjrwtoCAYJEYT/1sEWBjhnTukVZlmg7J7ES6hqb3Q7eM4rCRpUM55wA2gCGw/IXIgk3sIWV/dQSXPAI1zTi4nm3FYKtqWt0bStjvrARNzB77Os9CIS2adEF1VwXDP6ISHTsK2HvbdirmYDWidcnViadGWQNpvMZbFkC7IOnMv06nKayi0aoru0iq+9dF09G1YbVxQj0YW/KiZS44QYQZsJaHoTzoixhi0L63igwy7BA9MQi4FQ/6+BRHFRmHoOMtRFTOfZgz+iqMpSPEA0nwUH1LqnWsOeAg7RvPTqr6jpi4OmdAHLPiLr7dduCALRG1L065+QExXsUxoC5hA0CV1F0sN7HcRsFFYKAdwJ8YOZTlHQPNv151dvfOc2LIQbJ54+6oFRvhYo1NaZRb25mc05xSb7/5WQTUfAep0d0HAuVz3Qt/INCggp5cRlRoG5srGv2VZDIg43KPwczb62NjSUGpwX2+30wohDvNNFlkDEx2IHqoRNR9OXufXJ3lIM57RBjDJq2EaOWcI9zDtsQAGq73YqvZE6qCGrAqioxQNIpZGa0nQMbEyV8gKFGufrMcrmMz87n8+ibuW1bdN6hsgUm1RJtt8VutzscgINO1DTGamt6CMxq3bp4DDoA5uhj+Xwj0s1qqHOfp+EAznXBh2XKy635DZ/P7x36adf8HgLe/ynp2ObcK392zRiDzjs47zKhVI5uDTKQG8C/fu+cA1Ooe9C3J6TgZRKVNUQalpkJY8rRdiVKi30sZ3aPzBNZDCLQpX6vE/WNxPW5Y+A0T8eAs343FDSHAsOQYc/7d6yvc2E0L2/+juF7h+UUIJOeHwojwnbpuOOD8SllkMi7utkPx85w3NyvVvjFL/4OZ6fnuH57jfVmDR/6V4HPZGIxmVQgYmzWK7x69RK3t7do6gbsXIie2J/XeZ2MoejdQgX3XH1pX+9RFh7z+QlefPARzs7OUdcNbm5v4DoHQx0miwrPnz/H06dPUU5K7NotfvOb3+D6+hpd51Cjxu9///uwJoinpqdPn+Jf/+t/jefPn+PmWtRylND4Q04Ha0OGqAQrj6uX9fJAH8snwNZzpRHnrfEuzoE4Z4DgNz7LIwCZRI4ZlLDiAaOTwD2eORh7CuNvbBEYeCmUkj1lJadVbdehms7Qdh3uV3OADPb7GuvNBubehsixBZzrwGDYTmIVgET1T7JldG2L/X4fWPIJqATapsHbqyuQMeLzPdiNiMARFOCoQhn03Z332Gy3Ihx0nRi/evGnLoDPiIOLaeYiNYDUpm0jeFIVFVMUWJycwAcbPgVAPjD3DCTf9EJbS37eo2vF85T8LWtC2zTBpsWh61q0dRONRnunE3F9T5F+y8kkAHGE04UgnCgAVZKOsqBICviDm8WiKFGUKeiSElCCqWRcOp8M301QAwqyDZgV+4gq9H6/hwkBuNrWhSBiPpbHOTmp8CB03qPtHHb7GsI/y081qUChX8pgI2mNqIeYoOrigzoKkRgcq9chsY8UFT+rAanYwFvx559PLeYkHOVzKqp2EfUclyTXlNQD89Ymjzz5XM4xi+5DObDvzXXP0RGKD/OSKI/LQDDBmHmY+kBeLwZAH9rdWDmBdUGYilRUqI+qiD82PfrOy8tLEFEMJOGZ4Xc71G2LznUgMAoSpSbywmjOg6cZZpYIh14mt+scCkIEUrphNU0L5q0w85MJnHPYbDbYbrfo6iZK/AoUbWHikZROFgW+xhgslkucnp4KgGCgc4y6qUONRBpXEF8UBZgYF6GeYnAEbDciOLRNA0aHpmasNjdBgDnUwTqW8gE1BmhzsDH2/VDokT5IRoC6sRwTMPJyHGNlj90/BGt6Pc9vrD45QBoCJq3Tu8qq9x+7PmybPI0JSMg2at1sitJGUA5KrG3gayKAll+h/Sgx+D4eSeesizD70kVh4RHkLSyHHq9yxvWE5whIEenQrwOzaNbasLj51sEbhqXDsZj/fgi4H2uzsTQE8vkzORP/TdOxeTTGihpr4F1fLe+w7EMmP28HYUaOefzJ7yUiONfhq68+x+r+LqhCiX2F9vd0OsF0VuHVq8/w1de/Q9OILrLzwhKKjB2EwhCVUBZvBQR64pLmSW5MDACbzRpVOcXJ8gJFUWG/a7Gvd6j3ogNtDGE2n8J7h7fXb+DZY71b4f7uTjZda9G0DVzQFZ7NZjg7O8ePf/wTFEWJn//8P+Lrr16hruu4xn/b0sEID/Ord8+I8JZfRxDyxtY5vf/YujR2Lc5B5l7/5iANnASI8TyyuvQEfx0fyegR2S0RRBoLBlCWDmSMuCGsKrF5a1uUATDEfYAZYAUY/XcooaEMOwB45+F8CxB67qoNKLpYFJBOkRyJxpnqkjG8QxdBBTtaHq2bCgkEiKtOIPjnT2q/GvRMBW1gIHR56Q/2HtbI/IYut6EInetggmDTdaLCCw9Rqcz6T/dj/REdd/HjbzIwb9SlZvhMJEKZxB2BBMMKi39RJp35fMwwEWACUeOUuDARzANQt/C9k+8++A2kHZDUoFj9zwdD+zjeGWqjI33sYJy4zVQVH/WPD9LgYj71uVFckgxjDVN0qZ5P2NC9+W4X/8rb+vAnsf3aF3p9yHaOYa+xFO8hBCItlESXk5F847qS12G4PuRfagE1Y6iyFuJ+If37+L30G0WAnc1msNZit9vhfrfBrmvRsoMnwBoLT1ZGJTMWsxmWszmIhGV3TQvXNCCWSSieRKRFZCLaYBdrUBQVqkok3ATmO7AL+vRlhdligeXpAlVVgUDYrFeod8ktZTmZwBNQTCrMplN4Dl4gNi74U3YAC0tX2AZF5dD4GgQDY0u4zsP7FnVTC0PGQAUBaoW1cQCbEZ2mhzydAOOAewiUx8D80BKbyMfBoN49coAyHLRDYcJnEzIvw3DDGdZlWL5hGuo9j7XDEOz/U9NYHcfKE99JaR5aEMiF8N2BESBj4YRjEPUXdhDOQcNNe+gqlcA1AGuivmIRhTwjATW0fSGLYK8tEdyjkYcxDCKG6WwQKrJ2iZu/PCHrvgUFV5fvYpi1/kNG+DFtOxwTw3fk3jneBY4fekee8vE+fFbksH5k4967mUcDMOn7ovrU8Lkjqes63N1fw1qgKmcoigmYSdYykjHU7vbYbTfp5JEQIm8GfX5j4AIIkYiS6AWpyemd4ZyTUyEBmbv9Gp9/8RsABoZk+S4Kg6Io4TqHN29fwfkusHANmBmFAVonAYOIxMPJn/3Zn+GHP/whiAiff/453ry5xunpKTabDd68eXO0Lb59abDzAlFYl88q3D28luRsXlwXM2F7KIgO10siGoBbZewogoQh2NB1uXMuOpxQ+7C0zstzRlU2lKmEGH02naik+IBWrSFUVYnT4Jq0rMrAqHdwXryahFLDdQ2YEVRuxNuK94yiqVFWFcrCin60oWC4J6fIXS17ZhEMWImM3BfWWKNAzzMci8FqFNQDIJ+oq+jYwiI0dG2XnXLKnDDGoihLeM8oywJFIcx41ymYD2tMaHMT+sJ7D9eGwFQAKKwJbduirKp4yrCrdr1+J4hQbsMJjA3tbowYH9sgsKsQI+tUAuaq+y3kZopTooC+LAoUQc1GByozw3ctvFPBLQFi9owYASsb96zkFCm/HgQpzn6CIawtCkzCuFwsljK+vIdzLdh7FIUFM8E5wR2d8+KFpu1gTCMRyZ2TU0IjdSiD3UZhQ3CnSF4QRD9J1YModbKu6UQwVgUfed5acRRqCxFOCHnQqGS/qW0PILjyDIJoOFlhqIqRj/sBhz0/3JnmrsykQ6Iga+cksoQxmV4/uDUJ5D4IkwxxluCCRzrRPJI2yfv/MenRYH4ymeD8XNyxzeZzTLYz0TE3Bq4TXS4d8EUpPuCLosBut5MgKa6LEn2+cwnzJVbDZVlFdRkTQpKnxUsY9+l0itlshsVSVGBU/aHNLLZlQfTRbSURRXUfFxbGtm3j4lg3O4CADh2KosJsukBRlNjXO+z3ezCzLC6zKabzU0xdhbIsQLvxthou5HpNQfkxYDMESjnQeIg9z2fxmPQ5xnYON54hqBoKF8P6HMsnvyf1d5/hfxfgHiv38Hrelsc2UU15OYZt410myIQJmd9jrA1HgaEfwnGi+hZWNiU/WRnO/He1f/aNGHSRHbQRxXroOngsabsMT04eGnNjaYy5fOg+vXcIjt/1/LE8o6A0eC6uF0iqdMrE9cdBYg7Hy/C48qiw0gSAYqcSu6KuWwE4ob2btokOAuR9sgUkgScxN0XYdJqmSf2TzQ2i4KcbCgQMrCl69bCGYpyN09PTYCNUoygsnl48QVUVuL6+xt3dHcqiwMZ7GBK/88+fP8eHH36Ik5MT/OY3v8Fnn32G+XyOi4uL4K3sD0jNhgD1OpKn/rBKoFwBcj6f87nQW8MyDJLed3i6NFxTNWiRRCflEIiof6/n5FFFdLhDZPW2S8H5KG36qlpgAtOLABaapkMXoq/boE46nVTA2Qmc8wHQi4OH/b7GNujPO+/RtaLK2nUOrpOTo6ZpQMagmkwkyBCLIaV6jnNti2a/F//wZYmSDMgGwZfFb7sl8Tbig9VkF1RnlN0urJVgkLNZAv8kvub3+yYKMwrUjS1QlNInVTh1IIgQ3mXxU4Cg124sLIlRsmsbeOcgxIsw5l3XYjqfwQXPLmUIfGWDFoChvseZnIEvjBnsZRz7KI6LQPq4zonxcVynELGKquoEyUywiveAE2t5BeUEQfUDe/+ABymskxTUaBTEcxhfHEkCW5QoygrGisoSiCRgV7MP0XwBzwR2QlQ0nYHNXmqI0BYWbdvCEGEyqcCTSWibApasVjD7MSrBxPlHRCDbV6fJwTwoCFJWTz/E2w6AAZjXuR+cTYCD04kQsIuTzUAE94zQSokl59iY2VqR5N2ssfttPyTw4x1hD2AF86zBwCBRoZEEL/xzGcC+ePEiBo2ati0mZQVuOxgvemy1E68w0+lU7kMK0CSsgkRo5Oj6R0BPDsh0EIvKi3TmYhHYd2Ys53Msl0tYa1F3HbZBf945J+6ovI9Gq9VkgjLo3K3X6wDeZVE7OTkBAGx3G9R1jdlsjsVyDirEI09dt2jqNoJ+ZeZ54lHYAignqMrqKEDUNAbahpuD3gcc90WfA5scxPbYghEQPszjIV1k/Tsvc/73ELSNAfNjJw45I5zn+Zj2y+s0LFvehnn7DZ/Lnxm2jws+lE22CBsy6ILwKCHHx1WMxurk2cvCFcszsBvQI7W8LCECpHPia1wne3qniWNXOQLv8+hwfTCiZcv19PP0sGB4mHKWPFeNGo6XoTcaTQ+dFgzTu05rhnXKbRkARG9XPau1o/m8m/WIczNj+hVMLJdLXFxcoGkaXL15FYG/PDNs+6S+kasivcuIuCgKLBYLiCqGxWw2gzEGs9kcpycXkTR58uQJLi8v4LnFmzevYSzFqK7r9Rqz2RQny3NcXFzAWotf/OIX0UmB9x7b7RYvX77EZrOJgsS3Lo0IzemP3jcH68Tw83DN0M/vGr/jhFx20hmYvnRdnxqQGAfv4fiCODdCfj0hNpbTRyZS1wpdiZT9JpLAT8rOO+dRtm3wEU6ARiQlEp3hUI4IRLwPQZ0A11HQQU8GrQYEZ8XRheqvG+ciEeKdQ9s0qPd7AfMBjAGI+64Jgi7BHDRJAkTc65soNBmbVHGy/dEYK2olnsA2qBhREpiZfQCLhDYrk6rwEAlh2QPzyg7rPjIYK2P7B6uAz/r8YY/rMhZZ+Kyu7OWUmOHF5WcmXfbu0wxYhhUzospzz5YLeRuJoxBjLNjoSbDKFhlrPCwzo+eZKxdkDn+Q5ZN+jt2P3jPo/z1oY9lHE6fOoeK6t8Zx3OunEbInx+49rJPu6Y3LrD04+7M3dLM+Gk1H9r53pUeD+eVyibqucR98F7tGjCjK4AarhEfbVtHVUtd2aOpkqCobrFZLWkgXM5WodHLUdY3O+xgAYFJVmE4qnJ/K0SAzw2/3olcadLRmyyWWiwWeXF5iNp/DsUcTjHV2OzkmK8sSl5eXWCwWsNaI+7Z6j6IQIcIDWG+2uN3e4f5+haYVP/PT6VR0/wHs9ju0vMd0NgNu3t1ux1jY4cYw3Dz0e934jxkNDtNwYxrmf6wsw/uGzww907yL5VWQosypAp2xdzzEAo+VZywda8shS5y3rdyEwMyohOwACoHMkBtwpQ1Z9Q/ToqBCGgBWVRoAoDT2BckFNi+xaQDgHINJdMEJCJ4vcsCdLzZJ1ieSDZTNOPB4VzsN2+qh9n0oryEAGst77N3H+n2Yz2FdpB3kvsNxpetsP9/E/vQ/a466Jo2Xf7kURnu12qJpajDLKU3T1Li7v49kgeCwxMsM+8R7UfcjErbN2nHBSnWgO+fQOYdJNYU1hagvBJXH+WIhBovMOFku0TQNXr76CqvVLd57/z388Ic/Cu5795hMJvijn/wpiAhff/011usNjCEs5guUVYXNZoPN5i0AiPDwh5TeQRQcEzbfRVT8U1MOUDisDcOxb4jAYb0trOi861qkrmg9dFkxsJYA9vCOUe93wcYLcByYPqZk9Eji5pktAEzjWj2fzrCYz+Wk2zm0XRe8oXTo2i6oKkhb2MKCvEcX9ONbJycHTdNgu5GAaJPJBIvFAmVRomtqWBZbkKZt0TYN2rbD1dVrvHnzNgq0zIzFYoEf/vCHeO/ZMxRFifl8hrIo4/xRPfa2kTnXdV2wYQOwZJRFCWuNuKgOxGJGjQZ1H4BZPIH5qLKh8V45s71LXlGSkGB66zfQH2Lyvv6+ZWgkmJTzaJHWheiFx4ugo8BWmHnf8w7UdG04qSUY0jIGwSesLWos29WiyuScnASIQa+oENV7iZWjbe9ch7ZupCyeUdoiBs2yIVBUUVhMyhLGGpTWoipDRODCimpNOP2ZVKWo3FiNgaBuVoNBK6ntAIFCrF1DJsS7SKdNKjAZmwiQvC/y/uiv+dwjWMaEv2N7U8QJ4TvO7onmbBhdWo6meCsrOy/jxBj1L5/UikAkUYiPEHJj6dFg/ve//z02m03USa/KCU7PTjCfT1AUQNt1WK02uL1dY7/bRyOY/FWFrULD6GZsUFXCNmnwKWWG1JNDUZYSerws0bZtDPJ0dnKCp5dP0D3/AE3ToJxMMJ3NUFUlPHME8W/fvkXbtlgsFpjNZmDmKGAwGLttg+32ViZK06Jlj33XoHMO83CEfXJygsIW2N5t8ebt1/DssJgsIYAq66wjAHdsExgyl/lGcoz9zMPbH0s5O31sAxoDXcN358xwLlTk+epEOVYeFQLGGOJvAtKPtVW+yD7EBuf3DPvIEIN9J0fWhZUAFt5En+DJBWUQUAbMh7rG8o7gnb6PQXGB9WC4TI+OYlTC+LxNngkiCOW87loGLbuRUy7uAOpA+Ke5ElQB+jFMbPScEMZB9ImPPnN/7D25LYf+DNWBgHGBTlN/nMhGFk8oOHs/K3GQXfLpFMiQBUw2LgnSlsqlEGHoh/7y4hl++qd/jr/6q7/CbrcDkcHd3TVub4OLU+8ghJywokPhWUG+rNOcXUtH7FpoBXmeRFd1ujjBi+cvUBDh7du3wXVvhV1bgzyjKA3ub+/w9vYWq9UNpnNRVWQPdK3HyfIMRAb7XYPdbof1aoeyEHVFY2UMTCpZO+/v73F9fX20L791KSfnj2zYxz7/c4D5ocBAUHZ+eJ+BBm9KwD+AoOAFQ1UlNF+wh/eyFwtQMDBFJff78F5m0d0vZHwXQT/dQ3TM21YCUTVtiyaoojZ1E5xTMFrXBdsLgNjD1TWathVX0a3EK1iv1ui6DrPZDPWpRFZn16Gy4m1kvV5Hd6mff/4Fvv76ZTwF77oOp2dn8G2H/XYn6r1nZ5jOZtmJgpCF+30QJNpWwDyJrvZisQCMQRlcXQ+TDy4b2fuoO0+hzSn0tbXJwH3Yf/mPjg1J40SJsP7J174y4C472fVB31z2VAfnTO99nhltLa64PfvYVghAWJatFClYxwcYclLSuhBzoosCWFM3qPe1qBt1nRAD3otbTieBDa0tUtTXUnzO65ix1oSovBmYLwXATyYlJpXo/VsKsV0gax+FcazBkVJbEsjYzL2kxC8iomCTMNYHpgfuxwgk/fF8COKH9/bmaH6/olYGOEb/7dNsYylRb+h94kwgMNaCilKAvbUSZSv0eXKd8+70jcA8UXL/05adRPuiBSZTYYzqusZ+t4uea0yQjnVC5e4krRXd06qqxO9t2+L+/j7qqOt9xhj4oOeufuUlClyJqqqwXC7RdR32TYOmbXC/uo+69veBMWNmMaLtOtzc3ES9eU37oONHDFSzKRaLOabzOU5PTkAk+qt3t/fY3G2w2dyjqgqU0W2m+19kkR9jLf+pTOlDeQwFB01D9iH/PCa9DtUpHjo5eKguY2zyu5nZwzyG+Y3VMa9rvI+lDy0q6NQbMrzKkg7zSPWmyJDpJFfwa61+F8qH4UIi0ZMjIGYEI6K+u0kBfuHdgYGBtXAHx/bH2fKxdh0KWsfGUD4nc5deQ7sIvT58Vq/n+Tw0JvIyD8fYsK5DAVOBT14GY4Pu6BjTMRgmw1IRCL/7/e8wm87i+qTlSUINj4KyvC5DIV1+5wJMeobBKMoC5+fn+N73vocXz1+gNAanp6fYbrcoqgkWJ2eobAHXtNhtt2DImrzbrXF19Qrr1RZEhMVige12hzdv3iZvHwR0rkaza6L+r8bp+Lb6mT8232Ueh/bWuaKnZjT+ubd+ZHM35ckRlI0lCu8dm4dAtraC+3P7yLpF4SbdE4VlzAhg0jcigBAEfWoPllCy8tkTMAi+Q0b02a0heCtBhHzuTclLXT17UEvoSPZOCZYneuKFtfDewluL0ophbGGN6MdTMC1Vwdv7GFjIkKimsDHwZOBJjAC9c3Bti46MqO4EEO9tATIkxFsj+vNtxsw3dS2uMYOKTgTR+XjwPrih5KgyJ6ywlMkHH/vxJxBSkZhihg+4RDtPyRrvDUzUQpAksQBCWwNCHAUAL4JFlje4H0TOhKyUDlaAlxYLHWmIm49eD4RQ0rPBwffpJ4BXhJNoCIBWtSFrCGVhBcwXRXQzWliDsgfmw+cguBGJeleQY0DZqWpc2wcC0viPtIfcPqKqk8+pd+CFfsX7c6z/LB3c8+6UjzUefApEEedX8/oH+wHS07R3Y588PRrMLxaLCJK7rsNms8X19VuUlUFRSKOKUZgBIKoxp2enOD09xWKxiIC6aRpUVYXZbIbpdBpBtwL94VEJs7DszrW4vydcXV0FI5cJqkr08+XYqUPnxeBVNyQVPuq6xn6/x/39/UGH5xO0MBZd16EIhrNXV1dYr9e4v7+Hdx4TM4EtKBrlAofM71gaY4mHHmQeSvq9tTYtPpTUPYZs+hAMDcsyBOfa7sMyDp/L+0VPaMbAc17fsbo9FpyPleWYRD2Uyt8lEOQ65c45WO9gUKQFEMqQysKWu13UTVryzdvPyhFuJuCpZxMFzmRsAJYK2lL5mDkcM44Hioh1ytgdyrwY5ED1sYtAzrA/JEzl9RkD1/lzx4Q3vZaraw3TMfY0PyrN3y3fMUwwGo7jkHSD030r2wAP34pji7a+T3XKJSL0JGzcQ0Pjw7oP54LO/eHc0HGUhA8S+5/TU3n/Zouzk2VUEyyqCidnl9httnh7t0JT71GUhMmsxG63h+cOJyfLsOla7PcSD4SIsNvtsFrfY7u9h/MOVVmBDME7UYP44IMPjrTTv+x0HMzzwacEgPSz/ArBWMEcYv4A0EBOgHq20M8PJAVu2XgYAykGBhxUOfrC9aEeOBAM/uK6kU4NI1CAnDbGPLwHuIO3Hq4leONgjIUQzyGAYgBzBgwrCBvFpAImEyEm5qJu6LyPp+4MBfMyD84WS2GMm0bUcLsOtiiCkwqL2WyKggHjGYtqgsmpQdc5mM7jZBKMTQNZN5lMMK8quLpB6zw2BDSbLaKeNEjs9PY1nPPRNg8A9us1tqtVVEWbTmdBYEmgqTAmqiqp2gVlwL9tO+xrIfh2ux12mw2c82gLi6YIqiNliSowzxTKRETwhRXGPfS/9kmMigpE8K/2AurCloMzBhRC1MQ93lgQexGGvAM8wzAfgDcCgrmrGLxS8F9uvPyw9jHL3RYESwTDAiTJWIANXAF4I6cJk8kEhS3khHBaoSgCQTuZyKmeNclrTWGjf/wiCALQdVcjckE8fEndisDAU1CpDp5qikJUTiPYV4ybwHtSrbE9zJjW1ENsovIRWD8QiFRAPjwhSyeo+t1wxlPKM+uEtA4N9kAVXHRuhtustSH2EcGTgY4U5zzcN5AlHg3mf/zjH6Np5Jh2s9ng+uYGm/UK3U50jEVANCjLKaaTCZYnS7z3/vu4vLwQYA3K2HBRsfHeiw/3tkXbdphUslHaEIQgBw27XVK/kc4T/6pFMFTxBEymk+jhRnzDytu6zqFpWnSdqBPETRMUr4UvwFvCpN6jqEqAGbu96ObPpjPMyjnK0oJIjqLY++gH9JixYcp63CBmyDa+K+VMXp4eJ5GOp2PskZZ7+Pexcg5ZRyCxt2MAdQz8HSvDGLM1VvYhQ5uXJ88jqY2oC8q0Waf3AmlC6hTsJ2PkuJo9RUFAwUAUwkM+sY+86JyKAVLwWw71cjFktRE3sVj38CcZEj1a+7Cu71i7HmubIct9LBGNq329C8jn6THjVckoZlncxvIwhvq9E1fYh+us14bFUDVA+V6u+XD8rE4AkveDXKjsC5YpX87uTdfyJD69U2CZ6XSKyyeXePb0GZaLZTRYlE2zTMxYYdG0e+z2W5gKODmZ4/nzJ5hNZyjLqUR39B5d12K3q2GtRec6bDYbrDb34bgbMN5gt92jLCtsNuuHO+VblFJfc6/FQ48JE99/IHQ6I8Evhe9J7Ovt3w+s2/k8GgPzskaYnjDHh4MlPW8AA2XNEU76EEtEBAkRLxsykvcOhkMnpIPlGO8ArGBeVj8bpo2c1ihYtWG+e2yKAvvdPpRPFrgcXHVdi/1uH/W5tdzGGGFomVGUJUwg4QoYnMwW8WRfo7ZXRQluW3TOYeccahP8n4f6tm2L/a6OQsA+BHFsdjvU220MbjmbzULwpuBTnYRoLLL9SMmYqMLTdaiD96r9fh/rI7FtgreWqoTvxHBY2WsiAjsLH4LWxbWRpR9Ch0n/Mkf1ICUTtb+JC1AwjjVhbwCzxO8JpxpmMDYAAfKq9U9KMgUgr4EQ1aMQs9xvQeDgVYZCBCcDC09ChM4mU1RlibIssFjMUJYFyrLAdDYNgZlE7YaIQtyfELOFOZwMhQBXkTRyQFBDtIVNY6MI4NwWMEXmlQZpOc+BfK4nP6YKNbq1UH5PmCs63dNZWn++vXMfRDyVgeYweCYn/2I5OL1N1V0ZEHU4yMrEIVDZY9M38jOvQNl5B1o7+KKToyJmEEQCh7VgA3jj0fga99sV5vMZKlOEjg4+Vpmw3YpE7b3HpJqiqiaYTsWXvecOdb2LYFcjzoqrSaB1gClKcJBCAYmEp27qvGe4zqPrHLpWKBd1B+dcmFiZ0YlnFr/0RQE4j0U1xWK5xHQiAoKAL2C37bDb32O7WwuYyhbfh4DuWPom4JuIYKiQDtZoDPZhEDXGEg6Bbv53DuSOlfcYcBvmnW9gyoLnm9hD9Rxrm4fY9zEPQe9K6b6gqNJ1gC3D5p6Mb7zv4JzMejl14hiGmogC4aCRGjUirE4rTiwAAQQD9gxrAOMEIBg26JxHgRLcBcBBwrHoZg2Tn8AAZFogsDl5W+d2DXm7PZTGhJ5hOz2Uhy6m73qPCq75ODvaZwwQqcFbUGPyqsIUNgnqzztjPcjkHmrsoeT1iJTq0WnBw/ht4LzoqRZFUn3KahhuD0Ghoi5zLpwFTzthNc/LzwbwcGC2mFZTvPjgEzx9comqqNDtG7S+wWK6xGIxR2E7bLZbbDdf4/7uBrvmHhfvneKTTz7BZDLB7e0tXr58hfu7NyisGJ9ba8MpaoGiJNiCAGPhAdSdgyEx/t7XG7x+/S31ZjNIww01v/bQOjG2hg3zeyjJGgDgCEmSr4NjWcZ3K9rIykCsjKHmEb6P7wsnCkauek4gX8VbksoI4M+ESxNvpGioqMSBIQITJIJ6DOaUGOmotwzAlw4u0xEHNNppihxuQxTR2WQCYolmWxYWbVVCveyodxsF2Rz6gCFl54rjySIHHFIUEpzJKIj2PgodLAuuuFoMbaCno/n61HWd6JkHNToN4CfsuYMngnMGrjMg48HGRPeZxAyYpA6lfagAPu4JzKGcRg9IolhpjbrJFObcGnGjaY1BYWwUM+P6EWNmJJAL9rHPjLLkLMbUPgTZ9AEHeWZ4ZyX2DwvBJB59xNC1CGC+KAoUQU1P1Wis+n+npJIjY8InboXyyKsyODXQ09CYVV18kp4ajUxTQpo/Y3hCT0mBodppguzHEx/eQYIK9Hm5K5y8Ie0D6VTvUAiP+ZD2chgP8RSNenM4lmTIHDyQHg3mr66uYqjvpm2wa2uwJ3gfJPfQwF3XRZ/uXTCq8N4DlUE1E935rnPY3K3x9s1brNdrAfOTKSaTaTR+UGOttm2jb/nT09MkwbcOZEW3syxLGAuUpajXdF2H7WaP3U7Ua+q6lgkDF9VDgqmLHOkYicrpSfzpn5yciNFt0Om31grjsG9R1w6r1Rrb7fbooo+RDh2mQ3ZwsGiP5CUurMLCRALurDVR/Wb43H9qele98uvDco+ByuFx2PD7sUk59q6Hyqr3PhrUQzc3+THWxgk59n4FmLEuRMgjOMqGpvcmqV+FUg12kaurRJWZfKkgjm0W2UDqnxy8q4oPGScP2cJhPXttNBCgtP65p6Vjz43Ng1z4yAFtfAaIx98HeR5Z2dL789WP+ovrg+01vszHkzMTAvZkYdSJ+m2TxvAheNO8dKPJx0teBDXyA4D7u/sQ4K7DbDbHcnmG+XyOrhP/19WkwIsXH6CsPsTzD97HYn6C9WaD1f0G3gG7rbCVi8UC3//+92Gtxc3NjdgftS06JNsHIsLetXBOI0v/4aThGPunPP+u06qDNWdkHdfxfqhmdWiUJ+AmW/PjFxyNWfOSUPBJzYGRVU834pRE1feSz3bDLAwp6yyhwGDbSDzAB1AUdLkNMyZFgWKGcJIYyDmE6NYQ3+RtWUTD9LgeUpq7OZt6tlxG/fWucwlQIsoxfcIsgGEXBABmcWix24mdnrDnAQgbi+CVAHoi6gloOo+WJMaD8y64iERwgSk2VF2nnnKCXjuzBGNznRA+roNrmjhnKdSrLCsUwRuLBJDKo+omwUjutygmCsTTdQontMJUixEoM6M0Bq4UJyJO/aRz2muQrT2uc2iY4MmDyhJGQXs1ie3Wdh06JwbPXdeGSLhpLGrwJxsi7E4mchpYViVmgZlX41hlzo0JRIWX00vtxBQgT4Qb0b1PKjJF0McXAaGAumHWCLQ5cBcBr4AhwNo+M6/rq/cSzygJzQ/buBwjsuKcZbH7kOaOlrgIcEz5ujBGCR6HGheCF4LHOoQIy6FNyAT1Gtfb4YEHyjxMjwbzn3/+eWClitCJhRiMFOJvVV1HmXBEPAkgWPXjq+kEVJZouxar3Qar9QrMLEEryhJd62Mo6LqusVrdoWn3Edyrjr21FnVdY7Or4YILv8lkAmvF2ppIXFvu6z3W6020ki9Li9l8EvOZT2fwXZeM9QDASgQ7Ywy22y1ubm6iAa0E6iAUdorV+gZ1Ux901jfZLNKESYakY6xzb8OnxCDo5xTxmkcG9eFAGHoeGWPph0DvGPAe2+AeAumPaZ9vwiTn939TRl7bkRH059nDcNCfN+oyMkUPjM9knxPTIOUQV6kcBVsAUY1mrBy53UQ0agMD6MAQH/gEsW6P4yMDFuo2rc98JNCQG5y+S0992EcPtefYd/qcCJi2Z5Og14fjXPOKfaHjySfAc0yg4+xaPqblfpZ2o/5zDwkWw3uGpz3qsUY3eHHTdujtYqg2N5xT+X0K6OWzWLoVYT2t6xo+BAeyVjx+zedzMDOapsFyucTTZ5d48vQCs5msq1dX17i5vgEzwZoSq9UqBhi6u7uLZIi6F1a94tlshslkgvXdDJv1OnoW+0NKw/Y/tj7+p6ZjeQ6ZRB07sj4cuT9j/eL4RFKZYFYaHgH8hVgQQAh0BxHYfGBn47slJ1IUEv4VdYfgaUtxWAD9IAIxUFqDwpTJhWAAJ0qIeG9RFbbn/UqTAk5l6QXEFdlpejAEZUbbSrAr3XtzG5nQIFENqq5r7KbT+Ly2TWTDOVCqJK41PVx8X553vhaJtzB1GclxXVFBl72Di8IKRxDuKw9flsKuA9EOK7a0Cg2kTLa0tzUUgx+Rar6TBqSS5wtj4G2ITh5iCKS+SsqB0u8kKnYAYAsgBNVCmZhfH4UCRts2SQ05dJYIGFJuG7xeGSO2PNOgDh1jPqVelnYCpN2AoI+eMfOsZJAA+NxrjV6X8R532/5/vfvHiTtZWx9P6kmV8zXiCLkat/wgvYxlnwmuqTwUhdv8fWraFYNDBU5Jd7Fvkh4N5hnAYrnEfDZDUZZYb7fY7XfSsbMZJlUpRqmTCtPJFHWzx2azBtFK2M56H10qERGWJydYvvccRISmrvH69Vtcv3yF+/t7MfJkcfU2nU4xCd5wdAMikqMoxz4OpKIsMJ1WUL/mp6enKMsK3om/+uXJEhfnZ2HhYLjOoa1rWGNQBddc2/0Ob6/eYLvZom7qzHd0MO4oRECpm/rAe8sxFjHyCZyABqBsmAYDSgYWuarEg6wqczjuC+8aKUN+bZjX2L2aHqs2cezaGHhScJfrzo+V6ZhAM3bfY+um9zwEVL0TpoMyQ8phXmkf6bPvgGymYO3zwN4HIyuQ2FboeCAQcveFzJxsQQCAZLG2hYX6H2aINwllQcZYZN2IhvUbepEZtkf+/GP/HuY3dt8Y2/hQXulLZXgCu/NNFrXIUA3Y/pHPeo8AadU9lt/esxxFQ99PorLXdahKBwR3oOruLFchUOBPlIJ8xbINi6sbq/cwRly+Pbm8xMXZBXabNeq6hg2eu5q2gXMd9vs9Fos5qqqEIYnK+fLlK9xcr2GMwWazwRdffIWbm1ucnZ3CGIPr62usVivs93u8ffsGd6t72LJEU9eYVBXm0ykuTz8WN7/fUm82fmzN4jFd+YxFOzIHHhL8emARiQ2MO3EGkIfPyju0LMPShM+azdiAoaDyAogLu/C0rkkMBJAegBQl1lQhArMPOEnUGSKQYFEjAVHE8LFNguea+C5SY8uMPwxlQ652YjJ2MV8/VaAJP4Cwt/rZqi0SBw8z7AfNQSECLiJgzz3OHPSfnlxkl7z3UZ0mT8we3lkwPPIoqYKyhEizxorBbCpNZOatLWBt0M0vbOpLHgpVAbiGNkkhJygAeoAoGzeQNs+JDGZli6UZnJIRYFgllYwY1KZiBKKJPQxLpGziIhl8K5oM/WlI9brFF3oRGHmKwJPTc/q5t9eaUA9WiW4g2KJ3LW8FnSwyVkzvd/4jr2RF8UmV5SAdkpPxWYzsRaM4KHtnfjUbj4oD+phIT/ARgH0/+m38TXqK8A4j+0F6NJh//uIDzBeLqL92cnESJ40EZygEzJczdJ1Hve+w3dTYrLe4vbtD5yUc8nw+F/WVswq+JHDr0TQO+/0Gu/09PNdgeEznc5xdXODkJLzHdWAvlvjL5RKXkxk46MhHvbkAkCaTiQxAAqgsYMoC8ITSTNC1LXa7Hep6D4CxWC5wenKC1nVYf7XB9naN1WaHzhIIbWT+T05OMKtmcGzxi3+8RuPUY8kh6xY7j1VlA0E3n6PUy2rsBgJYWDnvOxBx1Cc8ALaMyGK4cPSnzJ6mHOgO3UfmAzYv5zG2OwdsOWDRe7XtH1KzGAPR/ymM2LuefQi0D0GmtH8hizWR7IJBVE5tQrC2DIu6jD/uPNRYUQU02WAD80Ms7tO4g6cOgIMxpfQzU9B7FaFUWaA4jgjwsABZUfUkMVoiIvEe4eV9Hby4LUvYIfbPkMUaY4aHKe/fY2x1fu/wvnwM5ZtpLkjoM8eEvXSNEY3qIYKMxq9M36NfV2/g+TCi8GPHC8EKyOGodADvdaGVI1CplwOjRRcislLYQJhkjlsW13psCGzlpMUYAnkD+NQ2Ul+tv4Fl4HSyxI++/0OcnZ2JYVxJOD2/xOWzp5jOFuhah6vXr+DqBtPqBeA83ry8wvX1NdquCxGvGW/fvsHN9Q2sFQ8Jd/d3st6xCEf7eoOu24ObBo33QF3jbDbD809+gmUIPvVtTDkoO9brvZH8jjkht3AU0PR3Ok2JqBvCAupkzJBwAOekjDrl9ybDWlKYprrGlAzp82QCMwkAbBhlAC46LRgAOzHOJoh/bw22Q4Fu5yxfawqYohBg4cTfuKJ/irZAGaCywqbKjFSLNSU3CGRJ9lukU4XUI4dCfmGtBMXKCCpDhKKysT4+MzaPuSkYAiSwWjiBcuruEYjRY4EQ/CkzTAUQHXDoXppYfQ+vhsOeA9EjuEsO0Cjqj6c6hlXKFuKO0xgUhYmnvFI/BFyS1I/U4UECuoAKTYzgJtM7GSmsJ7fSr9ovDNm/vBcjWR8EIBgxbmVr4Msi5q0o3GV17qoyU9VV4YziCaT0vYnYMwpg7EN790VmbRci6qvCsIfq/IfDyMjOK8se92aCxAQhtSMQNShbWBH2COHkIpRFdMoSxhohiZLQnZU2u7e3t6mBNwZ5hA+szx6AdhW6coE2PYNQL2Mh3u3iSUQIjsWhhXpA/93p0WDeBuCmvt2LQt0JKWCUgBX7fYOr12/x6uUVNts1jAlRNa30nKq57PZ7nJ3sMbEVKjPB06dPcXq6iD7gi2qKajoFEWG9XsO1wKQUxv3y8hLldAZbyADc7XZYr9fYbutwFJT01GThkcG+2+5wc3ODzWYDZofzi1Msl0vYosD9Zg0CcHZyCqYCjWGU1sdj6PlshomdwJtS9PoGxzDHwJJepjDZYqdy2ih0U6DQlrn3l8eAsDEglqdjjKj+/Rj2FEjASZ9JUfKOBwwalnXIzh8r59j1dzHJQ7b42ElFLs2rtx0GB+8sonLTZwkSe6DqEVCAHfJMx8qEbqhzTKpWkUUaJIpsPHNuCJfpxbNsQsab6PGASEALFYTha8b8mD/Utu8au8eSngDos1LvvuqW3vfQKcm77oug/Uj5tP1dvtmSqOnk9Xt00pVWnoYyX3o19n3GQGWyVI9nVcaTiFBWJQwT6t2+Bwh1wyIiTMsKP/j+D/DnP/sZVqsVrt68xp/+6Z/iBz/+EcykRNM4XF1dwzUt9qsN1qsVfv4f/gO+/PJLEBH+7Gc/w2KxQNM0mM1mePrsKZpaDFqbWiJdu46xr3dwrg5gskRZlHhyeYmf/dlP8cHHH8WTzW9j6p244OH+z/tqLI98TB47GVQBPIH6xMyFTBARaXirIYKjPL/wnBqyxtuHo0qzTKeCOVpW9th7zkYwMvCRgWjmuHYwCMQWBC9ERG64TcOTNxP+E2GEwIGYkBcRJePW/nO9EkX2HEBi5okEjMV12cZ6JrEntYEAn7RHKiB3zkVQ2vd6UkT1lhzM74ONXRQEAumWg3nXhX3PIALOsihRFpmjg9AdRtd4BbFxSIR9OtQ3E3/0BvCI0NKxR1Abx+CcLzYpBzxBxEJ9sIdh8UzEoW2RR6ANvx37eLJoO4K3Nn4tj5iei8h4gMPJSJY5+cfvpUz9xhibRbrO3FVm7TZk5bVyQl4HVRyTvN9EQ1kzEBoHU64/d0PFBhhhDMgrPovbT696+QsPsVP8HSp3UC8O1409GJNC0MnI4GjZ+bj06FX7//B/+t8/9tY/+PS/+y/+twD+L/+/LsZ36bv0XfoufZdCeteJY37POFTuC7jD08rDHxzce+xz7x3IuGwV6DgBLcrLOUK+qKA5qD28ZxgjHrIYfvh1UEPS04BQfuYEopWyF1obEXQp+NTonT1uUmUXJycOYMAa0PDleZkp1JNCHgpiWT4jChUU8Fd4loKQEdrBkJZCKG85jUjvFkZYAKoAwOBpJYB8MbadoCsKMPsYgZXZR0Nc5z2cETbZUAKXeqKQuiHZSulva5LakNpnEWm/6zgIzRxElh5MDG3yGEpCQV8UjCgSy6F0nORNHbhejWilFVUJ1JgkYFmTTjfC0Ase9XK2enCqQArAczWafCxwT8hMZBl692s+4Y4kVIwA5B4QP9pKh0L5wR1xXudjO1Fs8a1K6B2B2/lYV1CvU4shJ/ciFIeIvQi9r02pckcS996Zvp0UzHfpu/Rd+i59l75LWTp2EnfsnmOnRsPTyeOb/pDNO8x7zF2s5ivGoyxqeRTY3yNbd2L9knFk/zrDGD2hIhiNexFAXGTkA6DwChy9g++0nhmDzoinBWqoSABs+El5i5qBqpFQUYA46eEnocSoFjiMQdR3JzDgu1AoF9xFs3iXC6pN4nRD8hR/5LnONORkE0Ef3lpwgXhKoK4S9ZiCjEFRlDBBtcdNxaUle45ea8SbTSess/PREFdP5Si0iQSZSicgCO2CcFqhuvHMDIfE9Op5Qzp3gPSIUsCcQH7w6QJVsOHeM1k/hD+YRGPCk0YmD6q4cZwi9Fd+QqJCWii3Sey3CXryGdcMB4ZXbTDVhUc6aUQ4lbBB2NF2y4d2fiqRQH8QBEz+O2fgKc2bOE8PmfUeNT9MI6dtB+o4+fUMwuv4zaeJGKOnXj1YO1KzBRU7aR9DErxMgnUlj3XZeUUQeB+n9QB8B+a/S9+l79J36bv0B5BU1Sr/O/ur9wWP3PQudj0HDUM1m/z6u9XHZH83RFG/WTZ+ztxOjzD6GYAfCh3ixlLtUwSaRZaRxLukMoTg7D05M59BLEJEa5G1NVA/K/poAp8aryXqhGQAU+rbB685o51OBFTg8PDq0pqNqOh6AJYi6ASiIx9pux7mCaAvU7PJ27CwBiaolFi1xfFegtKxDx7NglcbyzBd7tUsCDiU3Hz2ukqlJSRXkwwRXmJfY5hyEJqNx+wnlT/dwgn2ydghaRPPI88hB7Da1h65rqaOwwSaUx17rasSTD62s8KKIKXM/KB++jkS1wkZU0L+A6Z+wMhnjP1oOk7Ny9dHBPr+5+H9+TkC9z4RHb5S66JjntPDsdcMKLoL6gN5/aAN+nB9NH0H5r9L36Xv0nfpu/QHkYaAPqVkrB5vPHg2Aet0vk6R2VQvMvo3KesZGOQc0I+p+eTXoq2ZMTBGALWBSeoLGWBTZlnBOGX7e8w+EwLUg42WXaAIg40w0KxMa+9VQU2k3yIB9BHAotPO3kVYru2qzK4y9Or/nIOgILiERR8YA6CjgJcIYBNBvwvgN4J8MIJSf/AXQeoxs4ekxEOMgCANYqR9m+QXqQdycKieaTgBUNEHD/ZonOqmtU5tlMrBsbxaMErPxTKk9krD0ad65jQ/cWS34y2UvyfVLTHJ4R2ZwETZ9aBXA0M8EIKkn9QBs+ri602ad64vn58XYMimZ4IOh4mZBLoMxmf3xfERf4fPkalOT+o0PVB/QxqL8d2pq8K14IkMSf7i2DxZu8Z1YjDmDxB86utc0O4BdH0xwokSyYzTNUTaO8yAKMzg0ek7MP9d+i59l75L36U/mJTURSTlG2JyeHN4tE5IoO6A2QyglPWeYGw+5slLwbqUpe/pYujdiTyDLRLwVrUViNY7RXY8K+PIZzaUcFpueBn+8SSg3Ku3nABQ1fWitlPvFCIAjIwmhe8IHCKckjEJjGdCknc+lMWLhyFmMBlY44VZNxbGCsefR4ZVNQTvHFwr6hyqUy/O8wEO0bilsMlgVsttjYFVF4bBAwojRHgPne+dk+jZxoSgkcE9pFVvYBaFMVB9ch/QnsSZCKo4zodI8oGf5VT/BLIHbRkHXwL1HBEk0uCMIDaw7VZv0TEiLigZPrwu/M7zQ1Ldkid9xqYHccxyz42plkklPam7AXyqBxDsCIIffg7uwTkb30NmXrpLQXl609hJkwpj8XTADO9Jn6VM/bgCcW4dyuphHITfsX5hbOgpVtZ/h08friuk7ULZuIzf9x099NoYSZAUj0kdGAaOLLwK75kw85j0HZj/Ln2Xvkvfpe/SH0DK+NJsX81xlvzm7L4erZtuyh7mwMgjAwtEyD731Ww031Hj1wMAk0DQUDCgEXCQFzXPXlluQNRh2EQCNtK6wthnLlHD9VxdIy9xApw5QFVgfcjj51xkBFnq9QpJnUddwKqcIPVQph5gr4akiisTsxollpGUjEuTmohei/0U8suZYn0muXknsDHxNYb1ea2b1GXA1fbaKRU40sfxGgchJV3qg8/cFWJsk/Cbet8ilifmE66Rxs2IOu3yfRzW0FOoseaMYmsE8EAa7/1ThFROouxDzrYPjo/ycZNYeRr5nAlqkax+DLhNdhwH7DxSd7DWKV7LGiJn5fP2OXg9Bx36cWY+1ny4zmT5yHhigDx46G/6G1Dz34H579J36bv0Xfou/f9FepcB7PC7A3aNVbUGIPJgNj01G30mT2OgPrpyJYZhFvURSuo5gHKz7y7fWFKQTMnsFMwMQwnYAaLOklhFcTvJALxL3k2UTRX89v9t79q2HMdxZICynZfq6d39/z/dKRH7QFxJyunqmTlnsxrRx22lLFHgxeVAEARF7e2ETvBMJxYgE2LwOabJ9AWk0f5BPIOCzSOM+PG42y6fh2xShJDuVbObRJKnxF+dBXPCtL7cnQyLfSPkhkytHQp8x3n+hMZKR0Jm9aEQzsReDyWFFO4cm0J6KmHvO+mGuQsDGVReTSCMXJMY+wWAgY40LkGyYFZmBKgN5V2WwgZlXvvEnYSMSGpP96FG70pdvR20gHZ4KsvjEFU9jQPJCRPqr2W4IxDPZ+PCfEYaP8t3OvsZy3c3KfjhvPxx8e/C6qSl0K143hw2Sk5FGo/2bdm9ZHxLBqZXUWS+UCgUCr8d5h/lKwLwK2VpfKsSkKim71T53XuMm++9g0Nu+DMSuV+sn8LIEDzzB9NQ7H2vk/HeWgfRaVxlxPBikLgu1wnpJWDE3EP21MAxyH0i2Tzi0cUQcyUISJtqOTs0RfyUZxER3t/eklIbmafxXwqx/xzK1pAocgLohFI1aQB9bHgEcSJ0NmGQ+VNIuaeX1IcR8aiPblYUGHEUrG08dIhzEVThuevUn5L+a2aiM1x1HppsMkldMuWcqjDz2GBLHS8R0GmIvl4HDs0pjoImZFFnhK3fQwx6GJaDY4ozJWswWtgAqR1jzQKCQwmW4LHkT8qagKYOaFTl4/oQp7rDxtj2mZBboNqGvPvGYNfEfkX4zljmGn1KGH5WMbLh6CE87E6kleZtq46kZ8qRBdy3/Z48OxSZLxQKhcK3h4eLrGR4nmZfEH9kOavF83taUMf7cJodErFX1ddCQULIh5GFQcSmJQD5mcxm+zIjIGSokajoRHChT57BJMoxAqGf2zBkuxaSoiSEAgs1mi3ERQk3/C8hZxrmMjWQtafvCjpVyOxMYQyzgqvtM7HmaImdZe/TuLuv7dRMunevPobDcWx+MkWesdoXQ030nviOcE9sF6LQ+qGc3cLqVMkZ1u7zM9nsZWhd2PqQY2HejSEcBj5DEoh4Ogf4jIiEV2k/R8Kuk0RaJ6tiCtPZfy/NxKDMX6nvV7Nzc5jNDB+zYVwtX/3gdOzKDVflY3cytZYxXOcVFJkvFAqFwm8DjqwjTWyrOjZ9tCFRT8ufCIKq83MM/Xytkdv5lzz8bckMg3pqhF6Y2OATQf2XctM7YKEgQzUdV2qWGSnCSLOSIOMobeQKZyClJ3TFNJ5TIj/qqakRPdZH6+xM0BRX7uii5Pc+8roTEU4AXTPMWPe4u6M2KrdySuR95A6KZg+RMqyBZHd6UbZ1lqSzK/MMQldCSrBdUPWZFJ6rXYQwDhDayPpYxwddKcFem6Hs6oJiV5HPPhbxsnzuqrQu1FavZ/RNGD6BSIf1H2kgyn3ksyamKgeyre+WF540r78vgLVeIw1BGguLc/gapQZyx9a3AIvOZXKoJwU+fv5MjY8O29UMXnZn0zBb/q2IDpJYFb6H2vakX8QwcsYFNDZfwM9+4mTGjQgf9wfe3t/xKorMFwqFQuHbg5/8ZWeicrmQ+PwLPRNzPad/d+7oPDZD8tCbfYy9khkl4lkFl2NJAalUZoQSCLEQQq+LYu2e+BLyqGqohWZo2UKqndQAQMNxyLnOsgErGxEDokI4so0YqVayRqFRtRy7rwUirZmCBpUZJKdbysV+njhPJXrenpE4NjrMliY54rNzNi1c1DYManGcZNDsNCNcxQmykvmOECrUkLOrhPGi7d25y2JGPSeOThxjZq8TboSSXKkd1FzDNH7+/CkZdJTAdxtjfrs4CeCR5pTzI7P3yPacdD76O+q9mGOGpU8sAxR5KlDPMR/Ue5AQaM0a1ENbeju28G7jdyLPl06QknVeZ1lmAv96mI2Um9pvZfVO6Oc29nYD+QBUl0FJPjNw/rPjf3/+BB0H7o8HPn/82NqzQ5H5QqFQKHx7XP0QL9eF469msXeE3p6lKuwLdpgamlR5JREuiasiGamCHUf5l2jJduP3+3H8gNhZmtaLyMMdLCuH8rZI2JIKH54Qn6/qvh4D0KwqSQEldqeG3LHYO0BaDrn8fQl1UMQ21meE1jAlGNb+W2LHucxRD/KZi6WBYX3pszDY+JS8nOTUj7y9bbFx46zuHNhYmCvEosRb26y3bE8QUn97iNhK8P0a/8zDw7yfjNsGwj8eFZ3JtS1ynSdFXk5fOeF/NcxmMsIMy+M0+mpexvxdnFvZQuvYd+ttx4Hj9jpFLzJfKBQKhW+PqPS9BiVqqpS5opt+iKMyHFJIdu7ovaG1rMzP9ymJ6UnLDSpiDySSRFxVAgSMzancZLedctrFWO5ChAEPEemwOPmhpsII6AnILADZ9ZY5xsryUIHxvImsB4W8n5pLZfxHRDjaDTiEBHX4RlkEtCOo/TZzkhXNWKdYZ+1DVUe71BUkMwDnKGtkFZEMNqLURmIPqCKsbdi9zD7a/AxqcnTKzvO0UCHNxmP9BbFjIeZIjhmHcnuwiQgWWsQcA2A4PsH6xBY7y5hi+LtM8yQnMu/RC79XLwhdELvHQ2HiyBA6zvkeHeOwmZmscKduJs7sGDtH2R0oe/Uu382syM+vK3V+qn403lrKL2hjITTH82GLLoKvZm4UstPozNv4Do5/RBgd5wiraoSPzw/8+ed/LTZdoch8oVAoFL49ZuXtitTvlD5Vfl383qinyNlruDN660DPKSXVqZjvbVNohn7mzwoLKNVOhhGJZFFk9y86L3ZZI9kIiDH2fRox850ksIMnZVRVbgjxCCK3mq4OyVw326iJG3oXJ+MWFVsGk4ZmKPn1dlpmBTZ1dTU2k7KuzcS626eMD2qD0M9kGV5+M2LtSimL0m+UTfuFu8evC1Ec48HDTnQSY2zS5eEx3vOj7Hm9hV7D0m/eIzRRRyW1Hj8/HDYZU6TjmiZW73C3Q4cd5Q83RN65Nkl4DMNGzzI0Kc8OuGeRvhcU3il6AwE2oyUWpzCaJ6E1M4mP7fwM1jaUT1IbjWCzW5vZDhLnkVpD3s3NG3OEo0mIl6R2/fj4xD/+68+ndkUUmS8UCoXCt8es0Z7VRgAAIPpJREFUps8/0K6UA1HRTCp24DhfTcdrqAJjJQQzsR9KPiTPe1bRMd07iJoQ2qBevkLZoyofCcbWsdFzpgrLzMAsw3Igdnp68Syek6FxVVDPPR5HH/DC/eNeQliXQJYFP11nR0mxH23PuqGS1n16irY72cdLhV8CbY7VITHSF0Vecuv3YTRKDP26S7OiV2hvZCXbugzT4585vpnUq7tlx/Fj8tLSLFUw1URuLU88AnMMCNNwCM7Ugo0yL6efhdns1Ph4tG0TnQm7cFC0/nk8ejtNha3ly/2tNRxHw3GrMJtCoVAo/M0QFfFd/G6GE9A5VtY4phIfIhwSFtBkQaemzmPNTnGh9KkaqPc0+wEPhN7yuWPEtYMlnaTltkl0eSH3G+Iy6h6UQ8CWn1o8hPLJ1sR90E2jJjVU7EoqMkTtZiHKibmKI8Ke0QNEyf6h0kudycMy2nEkisngEYIiDz7HZvcjPIhlcW0wKhFdABJsM2ztQv57W3kaPHOLulLDbMnKwn5dqJJdDckI1IDRb3KfO0HZMdO49338uzuJSQ3vYhmzzzqIY6SBTKn2lNtfTmnXj5mDFB4yMIZjLsvi2aVvPf3kUJXHNS3VNzszk2MtZalj0RDKtfKnVklsPqvyswp/9m6zRWfXWHSgc/4+MXwG59JdU2fDWHloC3VCyNdT2AyRXorwb8R5grXdWgOogcH42U8wCI+3Nxxvb/j88Qc+fvzAx+fnS048UGS+UCgUCr8BZjIfF91lpX5+l78mEu5ljWsbDVV3cLdBhKISvlXvgyo+ss/pT7NkhTGSGOVKIZdKEIgQ45uz0Sqqr4ouAxLq0AY/JN2VEkkq1qJHPPbmOcJ4jPbxUCc7fFYilWe0GCBNexnIvKZbHHSvg4SUE3OKHSftk6lNx2P6cD3s2knOJVXxx7s6HmAe4Sq7mZv0HhwihI2qpmtBIUSEaITohzFHZIVYPTQV6LDrTMNQw0ds9oJCuwdbYrtk5TqQcL0x+HDmaEEcsTQYtG6chkCc5RlFjM3IRpNr6IhnPEplpS7J7a27DY/yvOw0C7RgJfFqYyL1LH0ux8waagWrdxcGPxzS7NRES0ns8vgit1s3DlPb9V7NCgW4U8LihIEZOA4h82PMdO4AHbg/7njc7vj4/MD7x3i9iiLzhUKhUPj2mGPlI5G+Wjg3FRCU+TlG3VV6vzY/d/+cWISr3noEqOrNiYwpYvaPZ6FDNmu/ES8zmVby4+2SHRgnsYmBCjlWIg91MmIbU+ZfNq9gKq2SW1gbEyjETvszdHMmtyt8hvna0CdaA/UvLghhWqcg/oM+dulnq8tE9GclPLbb/LytIaszqe/RvkU8V1IvThRJhS3cQx0AI/JkZc3PXdRvaQNM3yGf4XI1Wh8Uq7xv85Ca1Ro6VMd8ITJz84xaJPD6dx4fV3HwDKznty2xR673vpLZVpJ/K1jaTp929e+QOJudQY0tg83tdhvrLaYZjmcoMl8oFAqFbw+27B1sm7Pon/qLmLQ3VUHZSUI8Vq7YiEA3UVR7B6gBzUlCVOZ3zgMHQjhCMBgI6vXkNbjdNAIiyBnbMgMgBYd7VsIf62skJpEe9WNi2Xt11LgUyQJLITaqyjJz6AdklT78X5V50lAQAk72TDBk+eR3Dof2BbmiLyTRnaK42ZWqvrEt8iLlyU8YfSnHzRhraI6lzzYkzWxG6G7O14d62WLh7otY4wOHGC6bL3UGYeme3P/G7q+wtzty07GAV9tPw2lkwSbIQkaSqVZqsAMz6fWPhsKtCn0SwJcSdw7Q/HqWS34XK/8VLGRK/k3p4XyYogkG5+eQOF1nZ5zcwSA0Zmj01s+z42c/cdwJP97e8PnHP/D5xw/c7rfV23qCIvOFQqFQ+P5IyqwSPCWwM9UQcnvxIx9/7DuRhdSwKG/gPVGaSUIm9frsIbUO0V0jxHOuasf4w2PZNwjXX14jzx9N4iTTyfxMlqKHYCbHBw2yruEkmsuEGaeGjgSFdeZlLMS7BQXeQm94kKemWXZC9pdYxghQaF45hsRFK5sfG3oFcRWqnOb283Nz68WFnlNrpudG++Y29vaiMAbcufqSbCrBDfYSCNTDBeF6SuNhY/K2pl6UvsU0pDmrUHNiPwXPxJmLzUiystROVest6U/LoSsZzxX5r9px/m5/Reqz4E7TWOaraYhcNvs46dxHphqdmSNPj/rz7KBbx/1+x8fnJ97f39Fut6vitygyXygUCoVvj2VCmo0mY6W5nAjQ9jiqo0p4KTGihTgsNoQQAg1RMHZm8RAXJHwp6vqXnacSNLRGOUcMLlgcDiNfsZRYl6C0ix8DQlrM6xlw2FIien3lqtB01gxQ0uTkdzg53eKOR7pFaENZGZ26kVyllj6zIn0TCrV2iDvrBi9lFsO9VUZOcAqOh05naDgFhzFjVDb2a9qwK6Sm5C6Evm+dw5kvKpEcO+jqGHZLl/svlfqthxKeF2cjtKMmY/TJojBTcArTeOR1MavfS34/+XqA7JC4423nJifZX5moL6o9d++z8H3wEK7RnubEbZxRO6OV1jEUjI6+7z60JhyEfyOO2w33xx23291D7LDtqgVF5guFQqHw7XE7DgDj58/UWfRwDMu6kmbxVVHliTTYOyysAWAPmegsC+zGb7pqbr4wTrJ06HHzhX6qrirhY1P69qQ9xhVn/VPu7xDbNee7WCOK8CAmTlKcrAXyGd4ZPSurSmoOwmF0Rmxhu2qQXjQjRyk23eoSVd65H8Z9nRgEz0xi9bFLm1w/2rG7bG1P6oHER8cp1CqFSpC16+Q0INgYHR/WOvZEIu2qeD45UsntSvZYm7ifFK2ydvJtr3T0TGFDAZnQhzebUYkXB5IdT4Y3fao3qLQ31LmQxdHyUWOg6SZXunYj9DtPXdPZFy57R0xKtzeFvUYOf7Zc/pbZ5jyNyJ/9tNmePrzF1Lruknq9LM5/4wexrqK18DldUyBuIvvC/K62EsY6GTa3DGiEdhy2UdT97Q1HazjPE8BrRL3IfKFQKBS+PXyjH1fmhIlPSthElo085HOI98ivsHExETlZFq5ZrLjyHo4/6p5yD4iLCbWcVbmLn9vhk/hZCrnT5zUAJnw7U/H8hFJBo4qpIYTGikKY84a7Hm73sBBH4dkciNhcnbzIcVN/6bMuDlMkyUQEnIzOZGouWftQsLmD2e2PTkdkZpHEm1LPuV+i6m1E3tp6H9IxHJD5s5nMB/VXnRwOTkYeKqF9Aulcxk90ENjK1tkS/ehq7wE9vR+VuzE4ze1woOEcvovk9gC0WDnIr4afaAnKgLEh8mtYHHPukxQ/353EX4XYrK5VeuBon+AAZHfGHYIUuiXfR28TvTpklqIRk39/PPD+8T6U+UZpk7qvUGS+UCgUCr8N0m/0jpEYsYinghTLgQYF/qO/yMlRQCYPQFZCR8hA3rhpPl6w5VgbVhcIMye7Qrm9g2l1IGhKPbNTbycDNp+xzS7oZzGiw+mmK+qm6e/Z0sTX1ovy49lLV/vlucQhYCgQvVwOSTpOCuQ2jAMoWXb79Fxsa1+wyiHUQ2P99doehp2Pk3lsxEoS57/9GUOJd6XaCX1uvtlpWJozPffyaxPJfXQIQlsxwvhjNmV+cFrK94pkfc1R4zOiLTwZJmcnxyr3Q/h+Tjfvvns6LnQcTYsV0ncuHyEttB/OavOa2NAaHtpoL1kM2w7cD8L9fsftdsNx3MZ+C7+w+BUoMl8oFAqF3wC2UBIsSaSfYEPoXXYfCLvNOxGZlNidQgtoFpALgv0EX252tTm9xAVLiAEAy2uvO0ua+tv6UtjlMzXFSHwmeIQQabOMk67q2rFmnAE85MVL8To4WZ3JYoxVjyUwn0PljAs1AejKUJZNllLfcC6JmuS4B12nAqTcf7GdAeT25g4Nu/HzTuwB30xq7pOYlz6FVRmZDk5Dd+LajdTPLbsn88tMwHT9Quozt/YrLNXq1CYMU79BhIPI1GifoVoaOZRumnV+pj52mQFZlfgYZpNLWfsyto2TdwIaxNlz+8xphv5bo/c1ELo4lWNzORx6gSx0le8Lk+SWP09QO3B/u+N4vOPj8xNv75+4v72htcOy57yKIvOFQqFQ+PZYyHIg54k+UL4+xTnDhEM7NjF1w/2j8j4fa9nxPDCp4BukcJZL5XRVGmeoWur2ih1SmVidl1RAkxiDMbIiNgZQpFs03pi0LSMZn2mjt9lsThTNPSxm0CQWxmkq9/jL+p85qOfhkRoxzgTLnJM6OvkUK2ndhnLwaccaq82sxLKLk5cJ/IowTkJba+iJh/AgqPPz3bwZs3FchT4PyvMutCjakAtcHdnF0dU20tmH0Fdqx1zeKHPTLFrfcLyq8tEpnK6T07vrht8xzY7EhQvJJoYr9Er+5ftoi3LI9i9II1/+x1Ygo7UDt/t9vESZp9bU3dw3xAZF5guFQqHw2+BLBdxITvihtPCB63tXRX6dzp9tiCQDcCJ/RZ6fKfNqcqTiT52CTW12z/6SyG84hROzF2B8Z8PQZyJq/TBuTKbFZ7K/UbBv3uBoNwGTngfNd8TpOLs6+750fiv1IK2jk2AfL64Yq52tNc+3D5L0o3GRL4tKnzwZu3/jX0q4x7hv6+xJW6mFS2rJ2Rld2k6eOo1vFjU+phHVeO88/q/H21d9la+dv2uxnXNbXxH+2a7YBrn3Qwux7iY8KfqQ2YftPyHufJpPYX4A4Xa/4/39A2/vH7jd7zhkd9ixQ+xr7QEUmS8UCoXCb4DrcJbNL2IShYPavGy3uZbniiyjtY7eBzHT8621ZeGakrcd+d6FPVyptnkOwcl5DKGwWGwgxY5v636B+dkmxItHQcAckv1VgXumJll4VgO9HVoIN9AEJKZIz4ox+eY+McHLbjaEyanzdqaD9RP9m01RnXwKaHgONyF1fXzahWSe3MG9exw1Scki3zYiuzcJ5mEcjPAc6RuaSH9sEyX/jLVOweadMzBfN7eZt+M435nHAmV4Jpno8BIRjqSUt0mVn/pE/rcMlc1Yc0KuMyOnzYDk0CedHciLX6ON2+9gaKMuzwFLnTl+F4aHpNVMpF2+h7othQZbQa5pRHh7/8A//vwTb+8feP/4wP3xAEDo7nW9hCLzhUKhUPgt8AqR36vZWVGN184LWnNZKsyu4TR6/VchN/H92fFQjIeta8gOreXuiDz2JO46Rp9EQXSGFf//GmIdfh1xoejwtUIbzsp9fKYKpbHPlopvzkHamnSTp2z7dvTItUrAmTLhd79DnYY4G5BJrD1T+zDNpmSi6c/eLKomn8FZDQ71vLqG3eLdgm1TxJHJ8TqDsSrg0fnMzwQQMjN9jblXrteyaKjNzsYZZld03KxMPQ4zR+x1VddlPI6EyJOfzw/CcRy43+64iyqvu+5yf5ZwdEWR+UKhUCj8beE/6hr3eqXw+/UxfGKnzM/Xzvdvw2gmEr+Ew1hIxD5UxhXcthCavMjSFyG+nDHDiPx+AaNWcU+UGEORfe1RT4yA5vLOBD0rq9b+IonOjpPfRtvXWrd1PMTFlcyyIJI1x73H0Z/nidb0XLbvq7afx83Z2Vv/X2nML27N/ZfHULRrR+CV+s5K96p+iyn0hbPlVqXv5VMbXnxdNcrzMRDaxI70WGcrRl91iCJ/HH6teNJEDWg3tHbD7XbH/e0N9/sDrR1gmSmMKv4rKDJfKBQKhb8lMlEz+fQpkdf3QeT3P/5KqKNavgu9mYn9VyR/h1lBNhUbI8xmKYdINrJ6FZHIr3zLKJwolhrekNERQyzGjYtO+dwKUTh392jIQ2stkPlhsTpYu5CRV4j8jsxHh0mJfGwYbQMNuRrnaOrr1wm9qsrU2ZyXmTAnW68K/IVunwOPZgKt9fQFwPnBV86SkvmozieCvZs62lTIwmf6GjoTX5bhhq9zzGtfxBCbfb39HRjEnaa2OnvHP0/ZTO64gdoxSD1UsScQHTiOO47bHfe3dwmveUNrN4Al2w3zl0m5IorMFwqFQuHbg4FrxfLJlHpW3ZCIgypxa1iLEsusDkZispAUvK7K744Bp9VRAR1lbpwD5hGLPT/nKsTh4pnPENtsDcHYlTfNUrz8pGuYqxHbDc4Wn81CaGpI/XwXW//lwzc5+7VsdRKHOp9TDaoDsm/uGGqSQz1yZNFV+IvfGZ04NXlL6nd+EmOi9OGjhTh7wRrXjzALpOdnhybPnKyzWNOJLRl/dm52FHZEfoW0a5iZQDgzHGVE/98+ZXYi3vQ+onCtODStodGB1g4cxw1HG7nlvdv3jusViswXCoVC4W+HLQGaif3mnllpJxo7lY7wl6wCf8ULNexiH4qwUYpxRa5WUkhEuofr7sGX9kzF7g7NFmAKPfhVIqyZUQKR8yzjLItsfRfbfenZMmZ2h0VIfSb68n6hGs/jYqdI6yZQQ2lt0FSRsf+OY5D31ijcEx1DTO9qmS+wjKErkVjPJH5V5mddPbTSFZGPx5wO0rOGyu0k+bSZGGv0PK7b2sZa790w3I1vZgZCXv+oumsKUJ0lyLMFQbnHSvi17XazMzpBwOb9yJnYxuxrHrTkzhAFf4xcojbCavRkw8hg8/mJx9sbPj4+8Pb+jtv9gXa7ARam13/J2y0yXygUCoVvD97TVtCTX8QljCJz+nSdQkl8zFpDFMmcEnuAwmI+naL3665DPa7V8Qs6G+5LhDHcYXVQ4f6ijOfP97pEm5I6eUnolR7ND7YWS2U4x3cyD85KO09FZrKcyaWHUEi40AWZz/XM48NCZpjAfAIgIYtZdR+hPgdaI/Te5D2Hg0QKmEgky86x+rmGd0wOU5s2FVqUaf8gq/IzYvsFzhrLTE6sEHhmBitxBoS0Shs2Ah1K5ueNsb4Is5nXRGibbTbpOs/zkszHDaSUzHf49zR+Z+a2XNowTGdwXKDLHba4lchsN0IvZB7UABpZfwiEx+MNnz/+wOP9HR8/fuDj4xPtdsNxvw8yL1327N+uGUXmC4VCofDtsderp2s4E6L5/P5YY9LzvfH91dCUV8Jp5mNXW/f27q6N0/UUbOR0/dc2+gPjYVCKAye9sun5Mwa9MXZE4RgTOd9Q0as6WH9RvmtevvuVA3OlgGuIzNz3UXXXa1oDmH2R9H5NgTuCTsJzmWsdr7PMGNdMbXDhTOXHJZV5W3Z86fWc++LKOfJ66vHatvOx6+BwYj85GUs4DbBc5w+dbdnMhuVhCJ/5kja07aGR+ktj46MbHdPP23eyNRy3m20S1Y4RbgPyVJbbsKcnKDJfKBQKhW+PJRYWTgRmgqjvqzLvpCFfuz7HVXlKG+Qsce5BjYx/58+uw2usXOx/2y8diUDqXsVzpyS4B6wk7jmBj/Xbq5+jVlmd9Vzm27Zc4uMljEGtNA9jhL+kZwvB3tVy13fXTlM8TtQ33Od9fhyHnB/Zj9TGnVOpu9oS0Qhn2Tz/CtaGlNwC+QxAyK3/FS5J/CaMZVxDkgvfFyJfhZGNeuzqQtBFzklVP0c4DYICzzyyBcVjVenj+Zh5KFbd7dNQmK/adzDsJmlHNXe8fRfUWaYGaqwPEYVelHomAA33xzt+/PgHHu/vslnUG6gdAB12bWfgLDJfKBQKhb8TFuJF/mtLeEJOJjK/luUkVsnBHDYQQ25mhdDNuc7uET/fwUnjntJrVaNSS0T7TaMu8OrsAgDoQr/xrFnF9PKURKcsM7EcZsxCtaq1V2UqmXd7CXGrUu9P2aRJ2+LC2XoVqW0lFn9Vx+eY+CkOmxtaO7djz2ZP4s6pcWbiYhbB7tsp0ZPyrTMoi9MytR02fxt55zWDTLRLX8dxPFXnZ/Js/QQfT8N5YJz9NDI/E/VI4OeQm2UmZHKox6vZuoYMH4Oq4I+3eayxKepysce9yyZho90InYEDDffHGz7/+AOPt3e8vX/idn8DiNBbMwX/ZFSe+UKhUCj8vTCTClWz42fjbSaK1/PZcnn4UdfyYkTInrz/2xHMXBXk65CFiyLy+S8I7mWoRyjNtrSizftG9dS2nR/t5Htv55bMwwmhlq1BKwTZoMlILPv1yEr1rp4Wq25x7Hg2ZGaD5+W58MZAjr2Qz19Rzo3Aa/0i6X7BsGCFPX/N3OLPSsR9cjJmXDmp87i4smt5tn5fJztefblhV3b63/G5lyCZ25EZEC84hLalstzXdOdhZLC5HTdbUyCewqVz/BWKzBcKhULh20MVuKjAzqRl4k1wRhUJFpvqOiOeGj+6I1/Mlco632sKqNrMDNoo/VKRtZJKJH4FQbm1KoYiduRqVmTXC6b6RHKrBId08SNGGENbN44aze1EPLbj2CAqOwWNXO2l1qy7jABxB/dA6MlJuP5HliKSAW4YO47astq1ot6MidiLUbkumBqC5sMGsjCSrOaPhaQMQh82MoPkFfuBma3uamP2LWJ/zWPKqzhRduzA4aUZbPrST1KzEFqjO5lezTxd8vlQdl7MmlX38zwB4GmYzTxuCQQ0nzHafuf2JkEXJQMakjPGd+PRjz01oSx6lZ48Tx7fj3bg9rjhfn/g/eMDn3/8gfvjDbf7AyO4aij3tlkUtVoAWygUCoW/FxLZmRTgRHbCj+5ggBOhzxfBKfB4jyp4CgfYkK50PpQanxqvz7HdM3G/JhxqTwr5mMJsjNBTqPETIn8VLjQ+c5uWSQ5Ro6lJWkKQHc+XolH2CoJN87ObOQR5cyhmSQ3KDO6UmCLDFexIxH08aPJOj1PfVzgSeTPUGkIdR2jIz9RtWmyjwKYRx0gXpwLg3tBDdqS0QVUa427MldnJjEDi80jfO24LkZ/OpeeQhpup8txsncB8zWrh9B1hbxcj82cfGXQ2mWqujrXM+J1q1KQ/Xt+JNzleRDi0DO1YhuScl5YRR1P/rTjPMfaO4477/YH744G393e8f3zi/njguN08E4617xOH/gJF5guFQqHw7TErhYncztcsHJVgaSSnEAr7kwMhmokzsJDPjYXLX3NMewoVAoEXQ/ehCjFu2j5XQj9dA6x8c37+TOT9ODs+zH68ZY7T+V0og4bBeHuqKr/ERYjKH9TwixmUHWJICocZjt0sygK5Xkn0/Mhn4RxLUdO4GXUYNyrX34UqucPgzXtJ4qcP8t8hXOiqDhdY1O6LcJodcV/DbLJbYCE8WMcg61TQxp6r0JrYrxqepW37dchPtHHN4U/hMw/dcr+UdQokOEHUGtpxw3HT7DUtjQWdN+r6HVObX0SR+UKhUCh8e8w/4jHc5jXs47R3zwB0D5tRvi5+1WuiLb33oUz3kWs6E4yskJu9RGhNftC/CAPQsnZ1bYHsml2bor6aVQhXGnlhzoTnX0Em6ACzZ4yJpHf/cvIf+30HjgqzzITswkB2ds0O0/yM15caw+xW50izqahNO2I6yJ22hSrMe1sv6zA5h686QldlusJNosbfTJXXBbCxHt7emcTHV+9jpiKq89wZXUKoYp75KzK/rdekzD/7XnnfNIyx/hM/zxMa8z7yxpN9V9GBk0/06NxibNrWuYNBOO4PWfT6Nha93u44jjvOzvj5v/8EiHCCwFJ2u91GhpsXUWS+UCgUCt8ez4hJ+tHmr+ink3rmq62oRkGRcO5UbTvuALdNKI7YQcF2JRmdWnq2k6Br0hYJpzoLT6zPf2+I/KrEap2DLX+ND4ZCEcJF9hZbWMmGeEdS/AzWNlO/7VRwM+1iFmA71ni9zh2fqKbvnxNjz5WseigRw8JRlrqvtm7rr+FFfO14vELur5wqDX2KZF7LnGfN5v66Gnvp1a9mi/b37ewGYYqXv6ylfd57cMpppAuFZEoyMk9DV+88Ym4ofDW6HB/HDW/vH3i8veF+f+CQxa/MwM/zHA5mO8asUWvQhd6vosh8oVAoFL4/YiQIkAhUUq3Hb++4bPtj6apzjAjYEiCSqfSvyDzl85beMjwkKcpiIy8m5h/4K+VYQzJIGmFV7Z1t5BCXNVxnF1oxrg2xHuyHa5POYTlWk+QTxKs1pGkhgWo2O7HdktONI2MEWPTtXZiUtZs4CGrasIlN2R+meNiFh0nkcBCvL+e2tRkFv85esMGZ1N+mZBE7ZybXMdVLbNdwphgyNPfJFWYHJMabZzKvcfN63xodk2d29uR8rcNz4v4Vib922OLs0vJ0H+OTTb13WR6ifaplrc42taG03243PB4PPN7ecNw0i81Q/iGKPut33syhZ6pDQpH5QqFQKPwGcMJnv+m69m1RRQehmX8nVQEd6EY4ElkUQqeKuqWp4z7K7B3Uz6Hc9XMQMiaATiPOiQQBiRAxMxoauGmM9151ncMEduS0h88ioXdS6ip1F9VSQz1ifm628AEnQSM398TCzUFRYs+mXC5Ex4oK3hfCZZw/49Ej1uaSSEhCMMY1PfZUUvLbtg0lF5HFQHuNNOwFQqDDIsihwRp5H2EUbKRe66EkGvEzOOEkIrTDQ620joMXNhAxGh3A0dLnETORt1kd1sWgo35OnMdGWq9MpxDyuNOxMZNjPb7dDstio8R+3DfPVGQsju/0t4bZ7Ih7zDMfw2+WuqizQQ3U8qZWI6RnvUf7u4vz1SQH/M/zJ3CS7Nh6oFEbI0fK1qw04BE+dbs10HHg88cP/Pf//A/e3t/x+eMHjtsdoAb0E3yOUByGLoKdvlsvoMh8oVAoFH5PmMwVSK+Q+JmsIFyhqpwri6uKaacpkrURI9u5gSDvRvKdAEViBArJEoM6vIp8mbjvwjV2NTHnY74uTF2wOiXTTMZMwqLiOs4FJRg8fQ4j9dPjtnWapkGCJB5NDjMN6Oa4OdEORcb2UVtSYektPUonGxJJ1785EPP43zQjE23uQqAj4WyNcGDvZKhHpDME8Yo0uzGRecvcwuqwsZWj45iwquVXcJ9qDamZHckRXhN3Vc225WfqgnNf46AOJmOjvoPXc7+oykc78/nNQFM7prLAI6a/iwPQmCGuVvg+iMIuzmQ7DrTjwOPtgc/PTzze3nF/PGTH1+H8p8Zif/aq81+jyHyhUCgUfgO8+LP3a4KX4ZVwhL+KNQzm34gQcvJqHXbhNa/c8+9Boq5a+L+/7P9Qc1/hV9pzbstM4HezNH/drlds+etjPxJpP+tO4uuOxb+C/9h3C3/B/l825bUbiP+T/0IVCoVCoVAoFAqF/xja15cUCoVCoVAoFAqF/48oMl8oFAqFQqFQKHxTFJkvFAqFQqFQKBS+KYrMFwqFQqFQKBQK3xRF5guFQqFQKBQKhW+KIvOFQqFQKBQKhcI3RZH5QqFQKBQKhULhm6LIfKFQKBQKhUKh8E1RZL5QKBQKhUKhUPim+D+ryTYADnHgbAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Testing: Angelina Jolie ---\n", + "\n", + "Match found: angelina_jolie, Distance: 0.39\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAv4AAAGJCAYAAADyqjddAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9e7wtR1Un/l1V3b33PufcmwSSSzA88gAJCSgQBZRHIGgCfgQCaBRECYz8IggqH4ODCoQAygyDPIZHQJgPMAOBkZcmjkGCggIB0ZGHEwkkhAQIj+TmcR/n7L27u2r9/li1qqp773PuueGRG+l1P/uevftRXVVd1f1da33XKmJmxiCDDDLIIIMMMsgggwzyH1rMbV2BQQYZZJBBBhlkkEEGGeQHLwPwH2SQQQYZZJBBBhlkkB8BGYD/IIMMMsgggwwyyCCD/AjIAPwHGWSQQQYZZJBBBhnkR0AG4D/IIIMMMsgggwwyyCA/AjIA/0EGGWSQQQYZZJBBBvkRkAH4DzLIIIMMMsgggwwyyI+ADMB/kEEGGWSQQQYZZJBBfgRkAP6DDDLIIIMMMsgggwzyIyAD8B9kkEEGGWSQQf5DyMc//nEQEd7//vff1lX5oYu2/eMf/3jcdvbZZ+PYY4+9zeqkQkR4yUtectDnHcptur3KAPwHGWSQQQYZ5DaWd7zjHSCizmfXrl145CMfiUsuueQHdt2NjQ285CUv6QCrrUSBGBHhXe9619JjHvKQh4CIcJ/73OdW1elNb3oT3vGOd9yqcwcZZJCtpbitKzDIIIMMMsggg4i89KUvxXHHHQdmxne/+1284x3vwC/8wi/g4osvxi/+4i9+36+3sbGB888/HwDwiEc8YtvnjcdjXHjhhXjqU5/a2X7NNdfgsssuw3g8vtV1etOb3oQjjzwSZ5999q0uYxCRt771rfDe39bVwHQ6RVF8fyDnodKm26sMwH+QQQYZZJBBDhF5zGMeg5/6qZ+Kv//Tf/pPuNOd7oT3vOc9PxDgf2vlF37hF3DRRRdh9+7dOPLII+P2Cy+8EHe6051wz3veEzfffPNtWMNBAKAsy9u6CgDwPSmCfTlU2nR7lYHqM8gggwwyyCCHqBx++OGYTCYL1lLvPV772tfi5JNPxng8xp3udCecc845C2D7X/7lX3DGGWfgyCOPxGQywXHHHYdnPOMZAMQ6f9RRRwEAzj///Ejh2Q4X+/GPfzxGoxHe9773dbZfeOGFOOuss2CtXTjn7W9/O0477TTs2rULo9EIJ510Ei644ILOMcceeywuv/xy/MM//EOsT+6JuOWWW/C85z0Pxx57LEajEe5yl7vgN37jN7B79+6F/vmTP/kT3OUud8F4PMajHvUoXHXVVZ1jNjY2cMUVVyycu0w+8YlP4Jd/+Zdxt7vdDaPRCHe9613xvOc9D9PptHPc2WefjbW1NVx33XU488wzsba2hqOOOgrnnnsunHOdY2+88Ub8+q//Onbu3InDDz8cT3va0/CFL3wBRLRAdbriiivwS7/0S7jDHe6A8XiMn/qpn8JFF110wHr3+fDXXHMNiAivetWr8Od//uc44YQTMBqN8NM//dP453/+5865X/ziF3H22Wfj+OOPx3g8xtFHH41nPOMZuPHGGw943b4sG1ef+9zn8JjHPAY7d+7E2toaHvWoR+Ezn/nMQbcJ2P58GGSw+A8yyCCDDDLIISN79uzB7t27wcy4/vrr8frXvx779+9foNScc845eMc73oGnP/3p+J3f+R187Wtfwxve8AZ87nOfw6c+9SmUZYnrr78ep59+Oo466ii84AUvwOGHH45rrrkGH/zgBwEARx11FC644AI861nPwhOe8AQ88YlPBAD8xE/8xAHrubKygsc//vF4z3veg2c961kAgC984Qu4/PLL8ba3vQ1f/OIXF8654IILcPLJJ+Nxj3sciqLAxRdfjGc/+9nw3uO3f/u3AQCvfe1r8dznPhdra2v44z/+YwDAne50JwDA/v378bCHPQxf+tKX8IxnPAMPeMADsHv3blx00UX45je/2fE8/Jf/8l9gjMG5556LPXv24JWvfCV+7dd+Df/0T/8Uj/nsZz+LRz7ykTjvvPMOqOy8733vw8bGBp71rGfhjne8Iz772c/i9a9/Pb75zW8uKD/OOZxxxhl40IMehFe96lX46Ec/ij/7sz/DCSecEPvKe4/HPvax+OxnP4tnPetZOPHEE/FXf/VXeNrTnrZw7csvvxwPechDcMwxx+AFL3gBVldX8Rd/8Rc488wz8YEPfABPeMITDnS7FuTCCy/Evn37cM4554CI8MpXvhJPfOITcfXVV0eL+qWXXoqrr74aT3/603H00Ufj8ssvx5//+Z/j8ssvx2c+8xkQ0UFfN2/Twx72MOzcuRN/8Ad/gLIs8Za3vAWPeMQj8A//8A940IMedFDlbWc+DBKEBxlkkEEGGWSQ21Te/va3M4CFz2g04ne84x2dYz/xiU8wAH73u9/d2f7hD3+4s/1DH/oQA+B//ud/3vS6N9xwAwPg8847b1v1/NjHPsYA+H3vex//9V//NRMRf/3rX2dm5uc///l8/PHHMzPzqaeeyieffHLn3I2NjYXyzjjjjHiOysknn8ynnnrqwrEvfvGLGQB/8IMfXNjnve/U7973vjfP5/O4/3Wvex0D4H/7t39baMt22r6s7q94xSuYiPjaa6+N2572tKcxAH7pS1/aOfb+978/n3LKKfH3Bz7wAQbAr33ta+M25xyfdtppDIDf/va3x+2PetSj+L73vS/PZrNOe3/2Z3+W73nPey6052Mf+1inPne/+93j76997WsMgO94xzvyTTfdFLf/1V/9FQPgiy++eMs2v+c972EA/I//+I8L+7aSfj+feeaZXFUVf/WrX43bvvWtb/GOHTv44Q9/+EG1abvzYRCRgeozyCCDDDLIIIeIvPGNb8Sll16KSy+9FO9617vwyEc+Er/5m78ZrfSAWJ8PO+ww/PzP/zx2794dP6eccgrW1tbwsY99DIDQhADgr//6r9E0zfe9rqeffjrucIc74L3vfS+YGe9973vx5Cc/edPjJ5NJ/K6ejVNPPRVXX3019uzZc8DrfeADH8BP/uRPLrVw963PT3/601FVVfz9sIc9DABw9dVXx22PeMQjwMzbojbldV9fX8fu3bvxsz/7s2BmfO5zn1s4/rd+67c6vx/2sId1rv3hD38YZVnimc98ZtxmjImeD5WbbroJf//3f4+zzjoL+/bti/f6xhtvxBlnnIErr7wS11133QHr35df+ZVfwRFHHNGpH9Dtn7zNs9kMu3fvxoMf/GAAwL/+678e9DVVnHP4yEc+gjPPPBPHH3983H7nO98ZT3nKU/DJT34Se/fu3XZ5250Pg4gMVJ9BBhlkkEEGOUTkgQ98YCe498lPfjLuf//74znPeQ5+8Rd/EVVV4corr8SePXuwa9eupWVcf/31AIBTTz0VT3rSk3D++efjNa95DR7xiEfgzDPPxFOe8hSMRqPvua5lWeKXf/mXceGFF+KBD3wgvvGNb+ApT3nKpsd/6lOfwnnnnYdPf/rT2NjY6Ozbs2cPDjvssC2v99WvfhVPetKTtlW3u93tbp3fCnJvLef761//Ol784hfjoosuWiijr7SMx+MYO5FfPz/v2muvxZ3vfGesrKx0jrvHPe7R+X3VVVeBmfGiF70IL3rRi5bW7frrr8cxxxxzUO3ZTv/cdNNNOP/88/He9743jimV7Shqm8kNN9yAjY0N3Ote91rYd+973xvee3zjG9/AySefvK3ytjsfBhEZgP8ggwwyyCCDHKJijMEjH/lIvO51r8OVV16Jk08+Gd577Nq1C+9+97uXnqOgUxey+sxnPoOLL74Yf/u3f4tnPOMZ+LM/+zN85jOfwdra2vdcv6c85Sl485vfjJe85CX4yZ/8SZx00klLj/vqV7+KRz3qUTjxxBPx6le/Gne9611RVRX+5m/+Bq95zWu+7+kZlwUXAwAzH3RZzjn8/M//PG666Sb85//8n3HiiSdidXUV1113Hc4+++yFum927VsjWva5556LM844Y+kxfWVhO7Kd/jnrrLNw2WWX4fnPfz7ud7/7YW1tDd57PPrRjz6k0mludz4MIjIA/0EGGWSQQQY5hKVtWwAS3AoAJ5xwAj760Y/iIQ95SIeOsZk8+MEPxoMf/GD8yZ/8CS688EL82q/9Gt773vfiN3/zN7+nAE0AeOhDH4q73e1u+PjHP47/+l//66bHXXzxxZjP57jooos61uZlNIzN6nTCCSfg//2///c91ffWyL/927/hK1/5Ct75znfiN37jN+L2Sy+99FaXefe73x0f+9jHsLGx0bH69zMPKRWmLEv83M/93K2+3sHKzTffjL/7u7/D+eefjxe/+MVx+5VXXvk9l33UUUdhZWUFX/7ylxf2XXHFFTDG4K53veu2yzvY+fCjLgPHf5BBBhlkkEEOUWmaBh/5yEdQVRXufe97AxBLrHMOL3vZyxaOb9sWt9xyCwABb30L9/3udz8AwHw+B4AIOvWcgxUiwn//7/8d5513Hn7913990+PUwpzXZ8+ePXj729++cOzq6urS+jzpSU/CF77wBXzoQx9a2HdrLPnbTee5rO7MjNe97nUHfU2VM844A03T4K1vfWvc5r3HG9/4xs5xu3btwiMe8Qi85S1vwbe//e2Fcm644YZbXYetZFmbAcm69P0o+/TTT8df/dVf4Zprronbv/vd7+LCCy/EQx/6UOzcuXPb5W13PgwiMlj8BxlkkEEGGeQQkUsuuQRXXHEFAOEmX3jhhbjyyivxghe8IIKhU089Feeccw5e8YpX4POf/zxOP/10lGWJK6+8Eu973/vwute9Dr/0S7+Ed77znXjTm96EJzzhCTjhhBOwb98+vPWtb8XOnTvxC7/wCwAkgPOkk07C//7f/xs//uM/jjvc4Q64z33ug/vc5z7brvPjH/94PP7xj9/ymNNPPx1VVeGxj30szjnnHOzfvx9vfetbsWvXrgVAe8opp+CCCy7Ay1/+ctzjHvfArl27cNppp+H5z38+3v/+9+OXf/mX8YxnPAOnnHIKbrrpJlx00UV485vfjJ/8yZ88mK7edjrPE088ESeccALOPfdcXHfdddi5cyc+8IEPfE854s8880w88IEPxO///u/jqquuwoknnoiLLroIN910E4Cu1+ONb3wjHvrQh+K+970vnvnMZ+L444/Hd7/7XXz605/GN7/5TXzhC1+41fXYTHbu3ImHP/zheOUrX4mmaXDMMcfgIx/5CL72ta99X8p/+ctfjksvvRQPfehD8exnPxtFUeAtb3kL5vM5XvnKVx5UWdudD4OIDMB/kEEGGWSQQQ4RyWkV4/EYJ554Ii644AKcc845nePe/OY345RTTsFb3vIW/NEf/RGKosCxxx6Lpz71qXjIQx4CQADRZz/7Wbz3ve/Fd7/7XRx22GF44AMfiHe/+9047rjjYllve9vb8NznPhfPe97zUNc1zjvvvIMC/tuRe93rXnj/+9+PF77whTj33HNx9NFH41nPehaOOuqouKBY3gfXXnstXvnKV2Lfvn049dRTcdppp2FtbQ2f+MQncN555+FDH/oQ3vnOd2LXrl141KMehbvc5S7f1/rmUpYlLr74YvzO7/wOXvGKV2A8HuMJT3gCnvOc5xy0sqFircX/+T//B7/7u7+Ld77znTDG4AlPeALOO+88POQhD+msdHvSSSfhX/7lX3D++efjHe94B2688Ubs2rUL97///Tvj5fstF154IZ773OfijW98I5gZp59+Oi655BL82I/92Pdc9sknn4xPfOIT+MM//EO84hWvgPceD3rQg/Cud73roHP4A9ubD4OIEN8a/9gggwwyyCCDDDLIIN9X+cu//Es84QlPwCc/+cn/MIDVOYeiKPCyl70ML3zhC2/r6vzIy8DxH2SQQQYZZJBBBvkhy3Q67fx2zuH1r389du7ciQc84AG3Ua2+/6JUrnxl5UFuOxmoPoMMMsgggwwyyCA/ZHnuc5+L6XSKn/mZn8F8PscHP/hBXHbZZfjTP/3T20V2GufcAYOLP/rRj+Iv/uIvQER45CMf+UOq2SBbyQD8BxlkkEEGGWSQQX7Ictppp+HP/uzP8Nd//deYzWa4xz3ugde//vV4znOec1tXbVvyjW98oxMrskyOO+44EBH+x//4H0sX7Brkhy8Dx3+QQQYZZJBBBhlkkIOS2WyGT37yk1sec/zxx8e1CAY5NGQA/oMMMsgggwwyyCCDDPIjIENw7yCDDDLIIIMMMsggg/wIyMDxH2SQQQYZ5JCWtzzvVwDIokbWWvlrDAyZtNBRXO/IL5xP8ZMWRSKipZ9l+621MMYsHLPMYV4YgsmO28qpbnqmN2YGg+GZO+cRENva/RhpVbiWto/Cv25bTDhet8WrLrRX25qfnzqYsrMWCuucJ20MZYVPZ3/v2H49+vfFZB22Wb9SXk/e4rh+XQ4gS7pg0/PTJZf3S38F4P625WUunqPfmT0AGTPe+wOWudk4z6620BhmLb8F4vj0m9Yltr53fn5sXlfvF+dtv73MAIPkw8v2d6+1VY8u9E28t4v3NK/7sj7Va/lwD1JfObRtE9um85uz81K7wocX27HQxvDp1+U/vfI9W7Q4yQD8BxlkkEEGuf1L/g7cPp773i+bA/QDKAWbHXuoyEEBYWApsNI2bqssBTMHOJ6Zl+5f1p+M5bf/oOp1O5TvO2t7CbBetm/zkYBcA9reJReO//7cqwMqVd2Dvy/X3P4Ff/gyAP9BBhlkkEFuF7IZ+EvbD/6Nuhmo3O610w/5z3sAdGCQKda8ReurbNPvajld9EZsVa8D1XvZ/v7f71Xyfs1Bdx+AH8gq21emtIzNLLBEADN1IOMPIpTx+9VP2p68b7aSpRZgbM9rsG1ZUky8DivQDz40Uqyc3+8DFN874ID1ZhI7ebgOozuu8u8dz8IBrP7da+CAesat619amMtdu78eJd4MHVb9+ZOPEzmBQNv0FvVlAP6DDDLIIIMc0rIMlHLAIITtg/fvVz0WJPjqmQFPPlqwDwTQ8/f1sjYmCk9G48mOOzhQ3z+WlH0DINFoDoYCs4WtN8oyBWBJRbe06vdB8WYUiHj+VtbqQ1C2C/6XKzz8QzFSyzX1m94nAwH8CfwvGxXboTZt5VVQdgsgRL4+aO73S+d7dtyteUZsl4q1XGhh7m1VzoHmk44PY0wssU+h2o4MwH+QQQYZZJBDWrYE3Nuw9i/j98vpy8HmQdFUIkE3AbFl5W1LOSGxBy43PSYGf3d/shIuu/yB29I7P9sei+woKP0vm5Ta36+FfI8KWs6HXs41kv8OCIWo/50WNi8puHNAXxHdrsdpGSXsYC3/3esulr+5wrXQ8M454Uc2vhdKD/+H/eHY7BS5brS6d88VcNulaG3d3GVweBvm+VsjmxS7DPx3Y1WwvIrQ4b54Tw90i/vesUWqWrrowSo0A/AfZJBBBhnkkBaTvey6YavLwPv2AelS0B/KT/Sa7JoZ9vPM8E6CEzkLUiQkqo4GIgOLeFcBQaovxc9y2J/q3H35d48mIhAvKXOJByK3+OfyvWL0dC1K7dysLFoM4l32XcB+ALL6naCsKsQLdPpmWb2A1B+LAIw3rWp/xzIvysHLMoC3Gfjf7NhUn77yubkyms4B8iDxSOnRziEKgDig4tjhcj3pTkJ+fWafKQ8c6S3pWI4KAINhiCGx2MFzhvwa3Xp1MbYqIf226wDepiKWl5l94awuW1vqU5sIBJ89C/I+lsDnhQtJN9Hyu5Tof90xQUh9fhCEJgAD8B9kkEEGGeQQlwWai75qF4DPsnNVugrCZpz2DsBWgCindy7BXgC/zz4AYkYf+RgYQwvXTlfqAvQD2ZxzZaFLIegpPlndY1t67e0YLDdB+B0L7rYlB/0KxvvtyOrSq+OyuoZSY74mBf05MN1U+Yv6wPL+2K6VPu+wzfujC0u3K98r+E/gUpUZBhGDebmnadEDQFkZGXUogn8EjYh7TdQf+f2S3/2qK/jX73FSMQPEQR+Q78LpB/L72PEoxCp070lqK8d+oW3CYoXQvUjfJf21WQEEExSFvFfUh5euAqQ+6oH/pcz/rWp862QA/oMMMsgggxzScjDAc/HY3HrYA5NLgWCC4AuiLv/wU9MRSuq+AEuNgVmox3Iwm9dLi9+qqfn+Ax0bS99C2dnM2r+ZUtDto0XwlZ21cC3uHboU3C/7vgzQdygpafOBvDlbbe8dtMWu5QqGAm5EL8d2LrM5nWOz4M5lx+aSjgWWKZwHppzl+7LrxhsuoD2B1ny25HC3W9SBrpvaqopytz6dsa9be/VZ1i/bIQX1A29j0al2nS1Lx1k/ngDJQ7VwveyaOb0qPz/v335dF/rxIHXNAfgPMsgggwxyu5Y+cN/O8f2/uTehL8uCKp1zcM7Bew/nHNq2BQEoigLIKD6pfBuBy9bgfvlbfJlCw5xbeDdXXDazovdBXn/7Yht65QbvwrK6doB7MPAuAKaelX+pIkYUE8n0PT9S7W69F9Sqg/JWbC0HUiw2s9JvVVa/zM3OX7jHS67fVxZufWAq9f4CgE9W8c4+jk4BsWIT8vGTeyDy8pNiwvCew7GaA7/fLsCYBMgjDOfU7k7tM9C/LBB42fet+yGesYUCn66dniX6f79B6fqdDESb3FPut3M72swWMgD/QQYZZJBBbveSv4i35OP2rftLAPNmoEr/5lZ+Bf7OORARDDNMdkz3unk9uph1KwySg/uuRTOlBF0GDJcC9SXt7rV0sV+WKA4d+Ne/Tn4sdff3vQbL7seC0kB5yHPvPufn9twK36uCdSCvwbIxd7CKRg7U9fdWmZC2U76e31ckthfM3h2n8ZwF+o2C0Gw85FZqSlb57iUXVDMQ+eilyJWF/nEdvJu0jaXt61JtFu/19gOpKVNaliim/evmfbxNhSsexSlVabYJ3bgH+b6gDByEDMB/kEEGGWSQ25XkTA/52we4PSBC+Z7s5R0ByqbknoUXa1cBWFInUFhl13RW++3Saw7uZa2AKG9D2kYB5RC2ZQmMJlOOFvdcYr+EtuTgvRdWDUSLfx9sK+rrA0ra4phUDqPfXgXEvetrm5Uz3bsiL+uPBX57qk/qimV0nV7dF6QHiLchm1n7+4C0CzI3Ky1RfPpKIQLnfRHo5h20vP7pnDQmuGt3z4/OtlPa1Ck2wHHSeQQQGcTgYQW1oZjl1BvEtubXSsp0FgQc5ndOfdL2LMzhUL/lUQF5uxbnTJeaoyVpjJAG9i6O9dQJm1ODYqn54yzr3oOF/gPwH2SQQQYZ5JCW/OW8lcFzAePptviFkIAHSSBu/9il1+9aTcXaH7J+MOB9brE1MKaAMWbho1fiaCUN5rxN2pq3mTqgIfxlSh0SFzWgpQ2hfPsi9hXwhQzsax9pvQmJisCMRPPR/P+dwrKyMyUiB/vh9HjdnhLA4YBcAaAA9DtQMASDypYlkC0fO9m5CgRFOTOd628G7rdnzddj/NZHbWJ53yzIt68IdSWNqVRsF+CrwrmUOnJAyZQvMACDlKenpyiAwDBhj3L9GXk2oJR1SsY/Q633nEzcILAG+pLWVbanvlDlRtuTg38kpRVAHuy82D/pV18tytuvCmFUuBdK8L3jEftKzuDYQzqjO9VZUiQtr253XOPgZAD+gwwyyCCDHNLSBUPLwX9/0xJYFcsgSsnwlh2/VTDlZvm4cwu8Ws2jxW8BtOWKxDYsxdECKkBGuf1p31agsFeOfs30gMRJTsB8U8pN5wZQ5/zO9w6lp/edevtzi3Z2Z5a2hrIvahqOCGqL9nNmp17a1Vu0pX/kUtCeX2rxAgem2Gw+7hKNZFEp2SygOIHgxRV1+9uzs7asI3OE8pkBX5QxBfhivKa8gG558X6l/RT7Kw1KXri33Xbn9ds0xamWpVfulJ21mvPjet+5N8UWnhzd1qky0rXOU3aegv64EkL6vjCEOSu1f1W9FwcL+wfgP8gggwwyyO1UlvHYNzsuP16tdpvxqPNtXctrt0yl8qgXwBgDW1gYa2GsAYUgXyIDCpbxzagLB2gAEopRMERbrFxMHWAFBpgSaIsVIETw0IHmHdymQC+z+nJ+7OagP//dsZRS7/gFSVSMrY/LmxzgUe8e5ftpE0C+LM7ge5ety9jK4t8Hs8ByAJ+fs1VZ/fOXnZfoPNKPOk/6LfLGAD5x8jl4EygrZ2tPAkUdVhvDsf+7notE5em260D8+i2vr44DTvM2KvXxkEybz07bLF4gb/fCtVUxysd+pvik+5Suk7dVx3RnTKCnXB2kmAMfMsggm0v+0Nzq8/GPf/y2rmpHLrvsMrzkJS/BLbfcsq3jzz77bKytrf1gKzXIIINsKV3e88Gd27e8959RWv5Wn2R3k49SeKy1KIoifmxhYa2FMRZkLHSBJAGzYTEq7gK4Xm27dcyuKaBe/25yLiM7Fp1jOfskCEFLvi8C97zvNgP9S98Bun9Jn28q3P+p/7YQRaBZ+XotQwQKilo/9mI7n4OX/J71q7l5eXm9+9s3q9N2PBOxH7K26/hdLHuT/jGyLkWir1kYknG+jNqWyg50qgyu9loXPx0FsbN/+7JV/8rcSxZ2Dp4gHyl8PqzRkSz38YPsmAM+K7r9ns/l3BO45Zjr9YPOpXx+3poxOlj8B/me5H/9r//V+f0//+f/xKWXXrqw/d73vvcPs1oHlMsuuwznn38+zj77bBx++OG3dXUGGWSQWyEdyx/C63AJJzZ/Mabv3XOXgvBe+XFzB6AAxphgtTNLyu+DmC4w4G7B8Xha2Jac+6AUyJpTADg7PBn8c+to/1q6vZsNRXcv0gsyEJK3L35drgjEMzrfsSj5xoX9iyC6D3aUhkSd/stqGhrUMSRHgNVri34PwBBEC2Mrc3xs3o6+qrLkWvH+bUZZifvlaKLllu6FvkCvj6KFfnHbZvXvHNq7vpZP/SZndehY4LNx2+MdZe0Olcr7uzPagbzD87rkZWmFclt+d453+6C/f8FwH3up2/68rZ1tUfnOLtA5Pi88DQTqHxQmdO6VyMfLZoriVjIA/0G+J3nqU5/a+f2Zz3wGl1566cL2WyPMjNlshslk8j2XNcggg9x+Zbl1M1kIIzBmIE8XTuhamXPrJiiF4nFkiFD28t3MipYCT40Vp7lhD2sLuYYtogKg9BifgQKPPLgSC+i6CxUogztKkUhAVr9zAK/yXWk5+WeJBCum12QjCjIYkHheSU2aAzBKF0ZE0J37Ib8NmdDvvT5dAvyXkFSy1iJYirWcDMwRpaNj/VKwZzo/U/q03WCwyYDxUuCvTe1rCgeS/nF5+XrEcsWnO85zcMgL2zqAOi+b02jJx02sSiyN49iTbckPpBej7ESiEMprAA5Un6XtZp/KZr8EVCcArZWRW5AFv+vMMcnTRqT+njSmtT9krrH+kHM6Co3uBxI/Tu9tyCgU7/Fm/ZrVnxeGSXqGbHeYLJFlz5uc7pTAf3xgHRTgVxmoPoP8wOXtb387TjvtNOzatQuj0QgnnXQSLrjggoXjjj32WPziL/4i/vZv/xY/9VM/hclkgre85S0AgGuvvRaPe9zjsLq6il27duF5z3se/vZv/xbLaET/9E//hEc/+tE47LDDsLKyglNPPRWf+tSn4v6XvOQleP7znw8AOO644+KL4Zprrjmodml9P/7xj8f63ve+9431+eAHP4j73ve+GI/HOOWUU/C5z32uc/4Xv/hFnH322Tj++OMxHo9x9NFH4xnPeAZuvPHGhWvpNcbjMU444QS85S1vwUte8pKlk/5d73oXTjnlFEwmE9zhDnfAr/7qr+Ib3/jGQbVtkEEONVlutQf6r+AIKqLlvOsOV/Cv+/WFzfm5AbgufDqgI6f6FCjKEraQbD5dK7KU66EKQPjNCSzkike3HrH12gmpjT0LfdqfFBO1sHL/OL0Wq6VS6iMflrohbePseGQLNHX+5v0T+ztRPRDoTrqtq5j0z82OjQpesOMrbYRoycfELD2gQO0JH9P5buMn0rD0nmd14axOyxWpZdt7z+RlbaWs7C0+ebv626To7t/0PfQj1PfRKxcEgsnaTiCTj/Nu+9I93IqmEu6LMZLO1iS/y+J87a4J0GkjmSXtVUXSLNQvP7Z777JrxXGrcyHb37/nHUt9T7LJlFOAJMMXL5tkmxYDZB6UJcph6Ji4OfafXj+WcfCaxmDxH+QHLhdccAFOPvlkPO5xj0NRFLj44ovx7Gc/G957/PZv/3bn2C9/+ct48pOfjHPOOQfPfOYzca973Qvr6+s47bTT8O1vfxu/+7u/i6OPPhoXXnghPvaxjy1c6+///u/xmMc8BqeccgrOO+88GGOi4vGJT3wCD3zgA/HEJz4RX/nKV/Ce97wHr3nNa3DkkUcCAI466qiDbttVV12FpzzlKTjnnHPw1Kc+Fa961avw2Mc+Fm9+85vxR3/0R3j2s58NAHjFK16Bs846C1/+8pdjerxLL70UV199NZ7+9Kfj6KOPxuWXX44///M/x+WXX47PfOYzcaJ/7nOfw6Mf/Wjc+c53xvnnnw/nHF760pcure+f/Mmf4EUvehHOOuss/OZv/iZuuOEGvP71r8fDH/5wfO5znxtoTYPcLmW5JawfyEdiPQzUDFoACF1w1Anq45TnHAtgRcyKmnKQ9FqgzvHJdJ8BDM5sjuGLWPw5nRILpWhJJKhVT9/6YVu00Ob52lMbk/eAstp0FZClEurZ6VMGYLq50okotUcrtaTPOn0Xm9cHlItfc8l5zun8DCDR4unLct93gHLolD5YWhhfEWRt1mNpFDCh17Z4EzYvv3+dhTO6sjwDT/d+beYBWFaPznGEhYHB2V/qHL8YZdGlkkVfQrcbOA31dDrFg+JZ0YSfxq2Ov9jOfh90a5O2hLIUXKf5lD0voiKWVTp6eLodk7Wsd+Flfd4fD71fjM6zR89RT2Q6mKN3KLf2kxa0pO+3IwPwH+QHLv/wD//Qoes85znPwaMf/Wi8+tWvXgD+V111FT784Q/jjDPOiNte/epX4+qrr8Zf/uVf4vGPfzwA4JxzzsH973//zrnMjN/6rd/CIx/5SFxyySXxgXTOOefg5JNPxgtf+EJ85CMfwU/8xE/gAQ94AN7znvfgzDPPxLHHHnur2/blL38Zl112GX7mZ34GAHDSSSfhjDPOwDOf+UxcccUVuNvd7gYAOOKII3DOOefgH//xH/GIRzwCAPDsZz8bv//7v98p78EPfjCe/OQn45Of/CQe9rCHAQDOO+88WGvxqU99Cj/2Yz8GADjrrLMW4iauvfZanHfeeXj5y1+OP/qjP4rbn/jEJ+L+978/3vSmN3W2DzLI7V36WUkUjvXBQbQ19sCT975bTgDTatU0Ib+7V5N4XiYRiGxPodC6SFnOIJrzCWrt5wXooYA+35Z/JwK8Wv96efqF0kExTz+zWmYBcep325wDmEg1QgqdJaJ4DSOaFIgJxmRw10QzZGadR/horfWETQB/p/6I56e+TddQIKgW3wi2FRTycuDTuTf63wHw0cFSJxKlRi+QK4KLmXQWz18O+jc7byt6z60Rtf/HbFM9ZXgBth7oUkxJkcw2db/E0vKKAKrg6L1lFkWeOc7VdHKqW+49yMtNUDlOw1A/PVLHKAPkATZJmeu3l7IWcfcKqQGUjtWJnen4nP9bds8WHlxpwHYNFX2F7OBkoPoM8gOXHPTv2bMHu3fvxqmnnoqrr74ae/bs6Rx73HHHdUA/AHz4wx/GMcccg8c97nFx23g8xjOf+czOcZ///Odx5ZVX4ilPeQpuvPFG7N69G7t378b6+joe9ahH4R//8R8XHx7fo5x00kkR9APAgx70IADAaaedFkF/vv3qq6+O2/J+mc1m2L17Nx784AcDAP71X/8VAOCcw0c/+lGceeaZEfQDwD3ucQ885jGP6dTlgx/8ILz3OOuss2Lbd+/ejaOPPhr3vOc9l3pIBhnk9iwLICWaGoHNLJN9q+di+r0u+I/QKKcEECWQ27dwByCuFnQfvAWeEeuon2T5496+hBZk0SH9mVtB9Vp5f2wCsonAkV6SztVjcpCGTt0SdpG/3TK1jG77c6BKvWP7F8uPXyyLev2sn0hgCQpB5x507kd+nX75yK6NJedsQwnQc7PzU503B+/Uqy865y5S2iLNaUk5S6u1tKqbXH+JcLjxi9lqEnjNj11MYxmUx9xDs7SGvf0dD0++qzee0Af3+XY5kfPfnTHcK6A3F7q7+/XffP50DtHr07IylylXWwP4zv5MUY+bFvp/axks/oP8wOVTn/oUzjvvPHz605/GxsZGZ9+ePXtw2GGHxd/HHXfcwvnXXnstTjjhhIWH1D3ucY/O7yuvvBIA8LSnPW3TuuzZswdHHHHEQbdhM8nBPYDYlrve9a5Lt998881x20033YTzzz8f733ve3H99dcv1BMArr/+ekyn04W2Asvbz8y45z3vubSuZVlup0mDDHK7lsxxHtI3QqJVA6hQ63rk+S4BiMq/9nqsguFMvEKxYK7O7byA8uYzW7CC9+xy6kRQQAUwDEnqSWYxrIvNT636CTdTpETEaoemJODMSIAxVaTbXmUXcLBoEgiGbOo/I1ZQ4cTrhbTNOTDSygSLpBorKfXdAgbUcjKA321DF/SkS1HXeByuE3kUCpIBxHiA1GLpZ0OdYzcTogDUMneO3HJVaroNS0rMMg+EnnDg7ZvWKgzgvPZEmlWKljap8+7M6Tj5vjgWs/3h+2Y0ozTXFkX63EDvoIdPY8Fz7/7q/eIspiQLgocSXLLGkVKbQvk+KSY+t9R35hiSYguh3XlVcjSFJ5J1nrLzZRLI7/wOxzKRXc+ki3N+/eza/bUDtJC+d6cD8TsPmbCHN1fgNpMB+A/yA5WvfvWreNSjHoUTTzwRr371q3HXu94VVVXhb/7mb/Ca17xmwQL/vWTw0bL+23/7b7jf/e639Jjvdy5+a+1Bbc+18rPOOguXXXYZnv/85+N+97sf1tbW4L3Hox/96FvlmfAh08Ill1yy9PrDOgSD/EeXCCIIEqwYAhYlcFHAf0xig2TBjsCLKKS0yYJs+y9fJBDvOwC3a/3zYLgQ9CdAIQEWCgDCBzSSl89EyRfPogQkZUQtlxma0EsbgVlyarJILlgj1eoN6aOYTYVUkQiBmnpcUJ40V3vq61hgpn0gWDtzoNnBzMhPAyD59SkFSvclQbFc6VgEowwCk2aR6XoEYlsyC33eh1tZSxXz53Ss1P78WjqWMkVoGxKt/ugqANQzTyvc7/ZH2hoPXnJLehcEwphcpPJomxc1XeqN75yuko/v5MkA4qJ1LACVAcCz3KdelRIg5zQv4t94WxcaJV41wHkW8A+O2boyrJ4Uikyx8J7h2AOc5e9HojjlwN9YCvM+A+bQZwgnnRMM+DRmOsDf97Zl/dnVHlLbOm3XGAVCpsAt0fQOIAPwH+QHKhdffDHm8zkuuuiijnX8YGgnd7/73fHv//7vyaIR5Kqrruocd8IJJwAAdu7ciZ/7uZ/bssyD1ZC/33LzzTfj7/7u73D++efjxS9+cdyuXguVXbt2YTweL7QVWN5+ZsZxxx2HH//xH//BVHyQQW4D2Wq+Ls1XvlhC75zF/Z1A3dzq1rPlJ/AZgHUfEGY83OSCzyzA+gJXAMB9PjQLZSczxOb249xy2W9dDsO4Y+VNaDBuje2l/Gvsi2jNp6xPlvRxhNIZGO8A2P45CZEfkHISq58pD0txTt5BEdz3gGjc3QuGzbwBB7p+x/K/RBbB//alc65a9fWane9JAci5+du6ZuZ64dSozSrU2bed4OGtJd0kot4KuL2vHcpeds3e2tPh2AS8l5FmcrCv5XaAN+efPB4gQOpwrGeAOEV0cHBfdGIjuHPVLgVn075LAcj5Pc72dg9XJQnZvD/I+zJw/Af5gYpanvOBuWfPHrz97W/fdhlnnHEGrrvuOlx00UVx22w2w1vf+tbOcaeccgpOOOEEvOpVr8L+/fsXyrnhhhvi99XVVQDY9sq9329Z1i8A8NrXvnbhuJ/7uZ/DX/7lX+Jb3/pW3H7VVVfhkksu6Rz7xCc+EdZanH/++YsPD+alaUIHGeT2KltbaRcz9miAoH4SIM8BcAb+xW0QqCIWxhThk9INarpL5xmt82idQ+M8aufQOBe2MRrn46d1LB+fPq7zAVotM3yPv1nTgHbTQXL28RCvBvc+SfQcpDYTAcaCTCErDRsLGAOyViz+1nYUBV03INMWYlmSUtMurGZclCXKqkJZVSjKEkVRwtoiS6+Kzv3p3icBQJ59SDea8c6z9inIN9RfOXaRO4+s9v1jtvOJvZkpPJ1ezo7dbFXbZXXUQtNXWlrm0jiAA9QVS8oyhmCN6XyMfrc2frZqR55eVf1jnhnOO7TewXkPz3ovOSp/eu8k1W1KJytzNXyPY5jinHM+Wfg9A46TRb//8b3y9dzWebStD3M0zE/PaL1H632Yix6NftoWddNg3jSYN238W4dP07Ro2kY+TYu6lr9tK9dxXihIXttCmWcxtpljatClvH3qzuc8UHjg+A9yyMjpp5+Oqqrw2Mc+Fueccw7279+Pt771rdi1axe+/e1vb6uMc845B294wxvw5Cc/Gb/7u7+LO9/5znj3u9+N8XgMID0YjTF429vehsc85jE4+eST8fSnPx3HHHMMrrvuOnzsYx/Dzp07cfHFFwMQJQEA/viP/xi/+qu/irIs8djHPjYqBD9o2blzJx7+8Ifjla98JZqmwTHHHIOPfOQj+NrXvrZw7Ete8hJ85CMfwUMe8hA861nPgnMOb3jDG3Cf+9wHn//85+NxJ5xwAl7+8pfjD//wD3HNNdfgzDPPxI4dO/C1r30NH/rQh/D//X//H84999wfSvsGGeSHIcvSHObbtk53mMB+Ts/IwZfajTu8WyQrXMdiry9vpN/eLb6MiT1MTJO5rFEA+1Rfo1lSDPXVlMzqR2CYaFPtF63bO4bxzKLfDzJVKzjloLTDIUHnO8V+S0A3B70IZcVsQMg9Ixm438L6rFZYULLC9u99pDDRIr1ns3K3spPruMnHTtfDlN2BJXVZtn07krwogmbz6y/7fiBrfGd/ZsnX6widzIQ4D0CpQMtqTpRSyUbAGQeeKmmIivYBGxoAe1zXIgD05NpKB0cwH8ZMh0YDBOU39xCkv7FsH2g9kL+t9+gC7TSD8m3cKVELVnW7vzkdp+PHS+RBGMNZ7/p0Tv951lfa0j3MG7a0Z7eUAfgP8gOVe93rXnj/+9+PF77whTj33HNx9NFH41nPehaOOuooPOMZz9hWGWtra/j7v/97PPe5z8XrXvc6rK2t4Td+4zfwsz/7s3jSk54UFQAAeMQjHoFPf/rTeNnLXoY3vOEN2L9/P44++mg86EEPwjnnnBOP++mf/mm87GUvw5vf/GZ8+MMfhvceX/va135owB8ALrzwQjz3uc/FG9/4RjAzTj/9dFxyySWd7D2AKCmXXHIJzj33XLzoRS/CXe96V7z0pS/Fl770JVxxxRWdY1/wghfgx3/8x/Ga17wG559/PgAJND799NM7WZEGGeT2JAdDM9gMaOUUHDkOUDCR7L+JWqEv+9wqDGR0AhYAAs68CgBcbo32i9QDCdxNQY+dukuxApwZAvxC7I73snppCpmUE4iEe0ye4YlgjFhbiYNLXwEqESQQEB1ra1cVyr0dea1i53Y2UXYOdRZtyr0RfSVliWRgdGuhDsdBMacUkQEm0OYACn0FI1nX+8dQ6CdsomDGfursW3LdAygYy4WRVpnl2EebzYMD0eEo7+OOIqsAmzt9mY2ETjld1BmuG5WytCic7kvV5U6JCoJj0G6Yj9JmHT8cFeu8Dt0sQ71t0GZyvHcMwLkwH9nDeZm3jsUbkXsDkdcutqUThRPbkPxujGWDiEJfE0iUKso9VFk/5F0T+jjernAv+opbdxgcHPon/t5IW4MMcpvJa1/7Wjzvec/DN7/5TRxzzDG3dXV+6HLmmWfi8ssvX4gLGGSQ/2jyzv/8tC0BT9e6Kh9j1NpMIYi1b5E1AqEVPIM6QCEHxYZMCrKNoFMs+hypJ2LRa53vBiciB1dZfSmA5hxXh3qZUF+rAbUUrLIEGAiVJS+LIMqCgQTjWivBuXEbpT4gMjDWdPqMSIJ39Rhj8uDeZD03ob4pZEDqRSAY2wvOVVys3gICYhwxJdCTA7t0j7nTL3q1eN14zxcpL3K/whoM2RiR8hNo9Z6z87Q1iOAr1iqvn/epzpyFVfaBfehDvWep7OVKRsJtGaDLxnvH29Bbe6I/L7oKUBjHWb2XiWeXrOhbHNe1iqNT1wS6fVanVBcf+zPA6KA46/egQyevGTNY+D7ZHGN45+Gcg1YjnqMAPnyAjDrGjLZ18RjnhHDjvY/Av21bOOeye9/vi6SmxHtKITg99LtmvVrmaTKWQNZ0zmf2cK4Fh6hfHWlCoaJ4jTgm4wrBHuxdvCcq/+mV71l63/oyWPwHuV3IdDpdyHv/lre8Bfe85z1/JEB/v/1XXnkl/uZv/mbL1KWDDPIfRbZjn1qk6yglAREg5Mcmg22yTAPKMZbXvA/lxQV5FPSHOiloUE6zbhNgsbzuy4Bqvo/Igzlrg9ZXKScAmHyyyrKkAEXwLhj4BGY9R6O0Yb2u/Jfjy9i0WNVgdVXUQXkfdfs5fTT2AYn+gWjAjB0nBsutrNbZCVl/Z0ctM1x3+xAJjOXnJaP3Ioe+T6sgBACbW1z1e+qlzjl9Cbbb3v4MmGuFYp9Q6p+orKglfVERWKj3km2UewsWjlwUVVCWXat31EJduze7q+ARKM4VZL3YtXYDaiEPq7LBU9/Krzz4VBuxzCNl9dG56FwA/4ymbeFcsu73436apgkKBQORsJf3gXzyvjUB7Oe0tmWxFTJ/Dazh1L7Y6GydjkyZY85Af6eD8nbfOrv9APwHuV3IE5/4RNztbnfD/e53P+zZswfvete7cMUVV+Dd7373bV21H4ocf/zxOPvss3H88cfj2muvxQUXXICqqvAHf/AHt3XVBhnkNpNF0LMcfC3f03txUqLfCHjQPPwBmGUghiEgw7UuWBlT0GnrHFyP259bDnMOvVrz8/qRWquJUDBgjIANa20As2px52RJB8EQxzIF7xOsZbHkE2AppDZkxDykycKtipACEV0DADETe7A/putGxUiVBk5rCyw1a6OjgG12SAQ4y0B9VEKyInkxjoOjRTUHaozuAmfLz+9cjbrHbFe2eyxzl16zJY8/Fd45v3/NZddeVm7nHORgdHm5eR9spgxkcB4LiqKOi+g1SAG34GyBO2QeAefBwWKvoDzm2qcE+NnLvIvHqhXfOTnPM+pg0VevgXL81SPQ1A3atgXDw3uHGDQbvCWUeTryW2FC3Iq1FlbnmrVRCdA5XlgLz90g6eRBUeodIX8GMQPGo6u4abtVo78V4H8A/oPcLuSMM87A2972Nrz73e+Gcw4nnXQS3vve9+JXfuVXbuuq/VDk0Y9+NN7znvfgO9/5DkajEX7mZ34Gf/qnf7rpYl2DDPIfXbaynAM5e2IZPzsdwcySvQbyMtWMOAlAQEB1sJKrtdE7h6ZtA3DwMRtH0zq0kSuc571XGJTAumZLSZ4HREoNEcEWAiasNShLVQiypIaxHQJShd5DsMYHZaFAYQEyhAJCHSIwmDgY9An5P10DwIffzOkSFMA4MWIdKGkGQFigiZhgbaIjRXATy+qB+uVm+/wOas+ENRYWJbeU5pzzrkKQ+upAltJUJept7ykY2wBdB6M0bAb+84rRkn2bzoXMGp8H2mqd+sB/O7E0i/u7yhJIVsrogn6hoIWKRGjr2UlMjA/0m+ARUL+Acw4+UOfapoFnDhmbJCtezOzjPZqmlexB3qMNCnnbtpHi07SNKAfsO5Z/F4F/jbZt4dmjaWtRInygFSEotck0r84JkEwIFNaiLAoQGVRlCVsI+C/LCsYYFIVF6UqZn7aQzH6URnneX/r8iXM7e15pfyYLgO/u24YMwH+Q24X83u/9Hn7v937vtq7GbSYHk/50kEH+o0mfpLBIn8i+c7Kkysu5C6Y65UYaBOJLOFoR43dOi36x8oYRQYFaDXWxrjak8Qxm8Oxa3WqqIiEUmdQyQ2GRsfBy1/OsZZDhyKYgzgpFah+zAVjpPh7eGFBYOMgzw0T8EgoCkhUx4ZpY1x57Q7YzsliH1IWJ4nNgoJth0l7hW58XVYJlYKhXcKxbdtgyYLscnCdPQa44bDWetiPddqfz1da72bU67fwerr9cuqC/H4rcUaIiOM20QqbOreC+MpD/1sGSKd7Ruh7PTwqj1zkXgDpMGpQ5XcfF+cgR2DuX5mjbSmpR9ilGwIdAX+99mLfpWO9dAv7qzWIf66cKLIVMSFwUYM/B0i9kIRtWvrbB0m+t0vi8eAKyeZT3z8L8W+oB662FcBAyAP9BBhlkkEEOadHXGy373cMVyiGO4J+TO15OChZQ1gBPsbCr4VoBsPdp5V3mRDloG8kE0rYt6vk8AIeMXhCUAKXNbGWdVYt/Tv+JAbNhvzEGhbUYt66T814aywkThPOttShsASJC6UOGn7Bqsay+m+IGKBjR1evAwYrPZIJlPxjZOdUPCPEGegfIRJpCzHHCmqVQ9uTgpkMpwRI8w0DM19kTPZY4B57ZvtDvGoapwCnXCVLXbQWaKHpEknIUxhUYpDwT9JTSTn36nqis3dwF7ak3s2sxlgM7TmdtaenNvCC5d2JzT0Xw8mAxBWe6ZynyBQGQax2jshwoKtJ/Elyfe7Q4TDDF0VHhXOq1k/72HILmnQseBQnCbVux3nvvMJ/P0bY6N9Xi79C6Fuw96qaB8y54CGS/xuMk3r/vAn9WWhAC1Sf0QexDeTYAkjWosKJwt87BWlkHoWxk3hZlgaYtYYxBVVUonAMZCYonkwV/Z/2ZO9Tyxxx3xgBtNQqWygD8BxlkkEEGuV1IBPz6FhTeQ3wxJiM4d87SYNncei18fHlp22hdT0GDamEUC6KLlsP5vAkUghbT6RTOC6dflQTHmsEkBPnF2ug2xH058NdjhePf3V8WBZz3gUOcAaSQ/DynbRTWoizLxCFGSA9qDKwNQb4B1BqTgS4CGAZEHiAvnggAMQWo9HwAJxGCR4At90Fuisf2VwddtPzzJhpB0gdUN+gAng6YpWys0MLuzaz+ejyrshTKitu11ABkowVcrdWqaSIRp5ZLCjwPpKneXgKTpLkR5SXVd2F4L2tDPG5z0L8pZYf17MUbkIKvOXrDmPuhsFqXLMg1u8HRoxYz1OjlKF42n8tRCXcK8oUa5BmRyuOcw2w2k8w8PmTw4e68TVSfFC+gFn1tGxFlVCFVCDi2mWIf+lA3UUYYDEMObYjNadsGxhpYY1GWAfg3BZq2hTUE5z2qSihA5aiEIatTML97Pc+PzCl9fuho4Oz47coA/AcZZJBBBjmkZTvUitwCHMEsqwVYjcHBkpq507V8H1BG4vD7EDAYuMI5gGhbtE0rHH/n4qq7DF0pVCx3eX0V/Cu4V0Bk1ANgTNzHpNZXRCWgbVp4q+kEKVF9QhtNBrDIGBjvpcy27QQTSspNDsBfg38FPMhvCe4lw2HNAfUM6AqtHME/AaCwzkCoFohSHRMgyfqi47GQ4/N7QQnTdOCk4MIMaC+jwMSxwj3AnAPP5cB3eRCrtimB/qU8fFXwelrMZgGzOZjbmq3TBfyklYpldo/Ns+jkfZRb/Tf1dGTtygFn5wqd/Tr8lLHfrW+nzaz6hIJtiYtxzsN5F+dn9B4gBee2rYNr25CVRzj/LoB/Bf3OOTRNE4J5Zd56luB7F743WXCv0+BeJx4CIM2zRB9KsQaq/KbxmClHhNC4lA7YM4eoZQ8T6EcggnFCxbOtgzEOxjKMswAIZNBNh4us6GyccNjQfX5tOYgWZNvA/xWveAVGo1EMEMk7qG1blGUJQFw/o9EIbduiaRrUdY3xeIyqqkBEmM/n0V3pnIO1trNwgrpB2hA0JY3i+MASbaqN11VXaFmWsNaK+7WuQUQoiiJeQzU5AHGQlGWJsiyj5lcURQjCKFDXNZqmgfc+3gxNAaVtL4oipoECgNFoJJ1aFPEY5xzquu7sz5cjB4CqqoKbSvqRiFBVVbyWaqTj8Riz2SwO9Kqq4rb19fVo5XHORWsRIFrxysoK5vM5RqNR7B+9br4cd9M0sV+173XJbp00k8kk3kc9rq7rzm/dpuXm29u2xWg0wnw+j/2o/ROj/bN7pfc7359eYEDTNPHeMTP27duHtm3FEmYMyqLAbD7DxnSGXbuOQhXGp6sdptMNsGtBYBTjEUajMdgD1WiMojBY39iAtRbsPdbW1sDMaJo5yrJC27o4RvSee5+C6rxntK7BuCpxt6LEaYetYOymKJwBl5IbnJ2Mc9KcvT692BoA/7xvjs/VjJkhCfArClhjUBgDGINjWo+HrFVY87WUQSbkPnYg7wGyYAL2coGLrr8Ju8sSRVGgaWqUZYmqqlDXcxRlhTt4wqlrFe5EDsRi8VDwxK6BJQsmizlZfHJW4/+tN6DKAk7GiLEmzpGqqjCbTeGcD3Pfomlbud58Hp8HdV1jNKpgDKFuWhgy8OxhC4NRVaGe1x2LTFEUIGPBvsWkbvHww1ZwjG8EfDBA7MGhbzgs0tIYi883jMsd0JCHJQuQCeM+WD4twbUOe/bsQVmOUFWVPI9IFk66k7F4+M4RVqb7YQ1AkDFBhgFTCPXTFKitxT/VNb5WM9gC3HiYooCpSjjnYZjRuhaABKmBGWVVwNoCzrXygmrkZbeysgpDBuMwZ7334PkGTlkZ457GwbYN4OWB710LSwRvClBZwVuP67jEv7QN1plhigpo5YUkc28KYwgrkwnmdQOA0HqP3/i1X93uK+E2kfz5C+TW2QR41AoZQYcaEtVcbBYtwJ4ZPr5XQnq/tsV8XsOFZ7yk+/PxWd22DvW8DvxjDcYjUGEBYzPwu1yICMa5riIQPAEaGCupAgFDFrN5E4J7u27/WFZQHIqikCBDY1DVNcpC6QVlog4VNr4jbKAFFZqJxFD0LKjVkkgzlYTvgcecPBWazjB4Kkym0FCizSjlKvdQKNbZUqkL95SW0FA2OWNzgIsDW/z19wIdR5WPZeA/+9634G9WB9LnK6F3DscB2rH2M3cGbrpu+t1pWwb28xSWC5K1U4/L+yJvm1BjkifMR4V3UZFyzkeFwof6ab587z3mTZ3AuCreSOtizOd1nGuz2TzigbpuQ0CwAHfvApVHOfqR4+/gWgX+jdDxIEoDgHgdrS+ljkxKZmaJl9+qvCOem1voGQA7BvkWRAauDZigtagbwSmN86jaFoW1cAE/2MIEHKPzJbtmuEK2DIWqoUt8LQeWbQN/BW8KchRcxhRLAYj1wbKCNd3ehpd/3sl6g/oAG0As31rbAf/60NLycwAa3aMB1OfXX11djSBR3LZJEQHQUTi0DK2bguW9e/dGoAcg9kcOmJumid8VOGvZCnaNMZhOp7FdKysrUUnIJ6oqBNoXCpTbtsX6+noHeKqik5+vykBZlgKIszrredoP3vt4n7X9ul3Pn8/nGI/Hnby3eqzee1Vs9PrMHJUaAZ5N/K710/vdNE1UkvQc54TDVxRF7Gc9R89T97u67wwBpbWYTtfRNC1WxiPsvv76+PIzYHlBAajnM8xmG9jrGdYWmExWMFoZg5lRt6KgrG94jKqxuPedjy9MbYf3HuPxOD7YmCkbswBgYEgVKp24FlQYYFQCwZoB52HIwhrg6B2rKL97E/YXBlU1CUpIWKSkngMMGJoAIHjnYeJa9gBZIw84Bzh4lGWFwgog5uAmlTE9EmDTMoir8HIjMIwAEKO2jHBtAEVRoqoMWvKY1zMUpce4GMdxJ/1ToiwNikLG7o61NexfX4+KsirsDACGUFYlXOuj0Ujvr86f6JZlRtvUKBoHeIZhnx7Mxsp70YeXKskD3BgD8gxrDXzrsX99P8bjsRgz4IBWrleNRigLeT6pEkww4HBfrbWAd9JHFKy0YcVSJsB7dS0DLXuMbIHRZIyGPSwIrnFBqbBoXRN4pIS2bjCZTGAsoWqVhyrlbWxsZMpxFdplgdKAGwdin+Y8Eayu8ErAaDTBrGnQtC3aeY3RaAznRPFumhrr0w2xFhkDY28fDuCuRTYHYWoJRrTUBcMl2DMo5L6Hj7bTAEoSgPLOh/krQGJeC4d/Pq9R1018DrVtC9c61HUbgQ+H8iwAYzPQtAWgNR1ruYJoA4Rc/CYCAIemdVA6kMmKjdushSHhF7tQrncernCdZ7tmFZG/FkUh5bb6XOx99H1aFByzBXkbFhkDIujPP2wSyE/vbLFMLhzLiwpc/36HL9D4ja1kueX+QKkoF6+5UBft7wC2tgL/28Vi0VvQa1Z6P2THZRv7beCe56DTZz3Qv7T9qmRgefafvMxcsdaMOsuAP4Iiq/NRV7TO39N1rbz7tJCWAn/FZ3r8bCYc/qYWhTw3oGpWH421ccrhb13wLojFXxcpk7Z2fRSapSr+pfQ7gX85Mj0+BEfkZcY+Zoa8eR0IBOcdjGLjMO5dYWHUyIqwWB9MnDvhkSZdqV4T3RHHxeLtPJBs+0lfFEUHYOfAXB8MaqU2xqCuaxRFEQERgAg69YWuv9W6BiTAnCsPuWKhH32I6aCeTqcoiiKWpZqfnq9gUy1nbdtG0KvAMgfCRBSt0gBinWazWVQoFAhoPRTwKahVoCIv2WSVbpomljOZTDoKgbUWTdNEZUj7NQfSej/U29C2LVZXVzvX1fuk3hN9gM9mM1hro4VeQWuuzCkg1IeZKgXaXu2v3EOhnghmjvde+2R1dTWer4qE9ql6LnRffl9VYdNjdH+uUGi9dbxoSq75fI6ysGjrGtPZFOw9Nvbegtl0iqKwmIzH8GjR1DWaeo6mbmDIYroxhbUFVldWcfiRR2I0HonVwhjs3XsLyBiMqwnqeQMb7qe0owVAqJs6WutUeWrqGhhPAqcRYdKHNIEAHAPkXABxDDgPBGvwkUWJY3esYdbMxYPQNMJfdA5VYUBW3ITiPRBAakhBqAchKB2k/MWUlkzAeyVAnBm2sPAGYGtgGCDPETjBFABMSHtoMFvfi3ruwYXBaDSG9/lcANrWwdoizD0bPWhN02BlZQWj0QgbGxtBgTfYt28fCAaHH364jE0rLw3PjMIWcayqd6SqKlg3Dw9oA3gPxx7WlKBgxdHxa40Bt9KQ8WQC3zJW13ZgOp3KXCMf50B8VtQ1yrKQ3MttA0sMC4Zva1hIajprjFh8vAtPZwAkK54WtgCjhTEWrm3ju8IQwosImKyuYj5bh7EWVXhG+NpjVI3gfQMiGzxWJZg92taDiUOedicpH8sCHJ4XprQoygq+dmDH4AKYz2pJuOEdyrLAysoKiAjT6YY8J1sHshaGAGu3y8r+4ctW1tj0XQE4R4tYN0+I/u6+RRmSmjOCjbqBdx7zusZsPhcloG5Q16KoiQIgIMMr1zcoy4RktFEkptujsS690yOlR0FGsiYaGcfQbZToAlCnReLeU1T4KAYbk6GoyBgygV8snrnCyiq9Avwzi79NngD9q8eWRRm/q3dAFjAKFCWjygBBnYVi/dfAYoINQcJx0SPkGUwovhvy4N4EVtX62R0LaRxEB6X0OnXHzSJYXrRQ5+OpDwu7wEuvE8Ydd+vbCWSNdzvVPW1DdpVlXgjdnOpDm7anV0YP6Pf/9s/V8n0wDAGLOqu8nsI7OObOT2A9bxnH2kraTccuvNNbtG0T5lqdMumEOeXYxyDcuq7RtuppqwO+alHXjVxX56BPK/PGNLzglO5TFSBe3v/AoseJU6fGOW6od75GJ+f9Ggeh9IJnyFwmBocYBWvb+D4z1sJ5h9IX8v42BoXNPdKBOkjIFMTemFu4o1vLtoF/WurYRUsdgGilVq0snzxK0dAHoVq1FRznisR4PEZd1xFUA+hYlNUKnFveVSMEEC1iCm51YuiDRGkleoxaqJum6XAfrbWR/qJW7jwQZGNjI9KKFBRPJpMO/UYVDqU5KTjO6UR9ZYiIorW/KApMp9NQBwegQFWNZLBzWo0uB+fr6+uxD1T5yWkXCoa1rfqwz/tzOp3Ge6f3Mbfo5xNDPStaFwX8VVVhMpnEfl1ZWYnX1DoURRH7l5kxnU5jP+h40evltC6xEOS0KYPZTCz1VVmgrueoZ3O4toUjYLqxD7P1/eC2xXS+gemsRj2bAm2NqrBi4d97C3zr4Ftg1rQgAOPKYjwSesrqjp04ctfRYLIoVsYYjyZoqzF27jgMLRGYGOWoQlMTbFkBDFTVWLR7a2BgAd+imU5h1sZCDQEA60GsATsEagGyFbxvZSlu40EoMIHHrlGJr05rTK1DVRRAYcFVhdIAYAeAZXGhSnIIs0Q9yb7CgMlAKD8E8sB4NIavZ7C2xHzewBojQLtlWDKgkDGB9R3sOSoianOzhcV4VGLmG6ENmBJENirUzHUc623bAPDhPlmUZRHnkFj/CxS2QFWWMIRASRujqkowK2VAcoMDQNPWICpQlBawBO8IVBQwLEoN+1ZoTt4ANtCpnAEZxmw6haUSRZHmpFjaDZq6EctM28D7FmU5AhuIBZYtrKlgykYyenh94DO8a2HIwjPBGwMDoDIVmAjOt0kvIIIxBcqygvOMjfV1lJVF3TZoXYvJygTwjKZuYUwRFfT16f4IKCejEsZ4mMYH4AiIhaiU+9M4mLD4krcW3HihhtkxbFGAHaOoCvH8QFfSBFxdS58d4tIHWIv7FXAk65tsD20LgDlhMJmDdXh/Oecw3RAr47xusDGbCdifN6gbyQ7SBHqe8noBAMGrxwBa52R8QIA9Bxu+eqWitygqBErvoaCgc4R5yCgfCh4NBeAfLP0IZRktzxA0RaghE+lB8t4zsIZgS/EOWGthe8BfswhR+Kv0g6qsZI4GOq4sWESRNqRGOcEliTet5VsbMphQCl6OXg0gnp/uU25hDu8ELK6MSpQ89pm+taAsHqxEsgcDlEcV94/rYO1MwWREBSDJMo/Gss0cQb96jnW86v5uuxJAzevSt/L3Lf7R05WB42XKgtaHmdG6BLYjNuJEmeHYVeK1ZAg9qAk59Ou6iQyMWR28Z67FvBGjbN22aNpGDF1tEwNtmzxTT/geFXyPmJ2HgxLC2q6gyLgQECxzJgWkd/ox3AsO8y6B//yTewF4eQh3toaF1xcAM8j5YDj1sLaBtUEhLyyqssS4bWGtzC8J/iXAhjmsekXvRvOSMXUg2Tbwz63wuaVWrcRqLcsBsFoAcwuw7gcQQbVa4LWcnMKhIHhlZSWCb1U6AHQs/PowyD0B2vl5vfThoqBSz1eAmj9UtC7KV9e2q0dAOfy5J0T7SQG/WjqVKqMgF0BHCVAgwsxRoUoPNB/rl/Pti6KI/aFKgNY5V6xU0cn7XuuiytZ4PI5ej7IsMZ/Po1KgfZGPgzyeIEaohzZrG1XJYuaoEOi9yL0lqvjoOJlOp7G/88j7SNMJnhNbEMajSkD8nn2YbWyA4DGrN7Cxdw+ajQ1srK+DDGHvvj1og+VuPq9h4FHPp+EBXQDGozAGPAdm+xjeFLj55hvx3W99C1U1giOHqigxGa+gLAowASura1hZ2Ym1w47AyuGHY7K2BtoRslp4wo4dE3ADFERwvgYbBwp0HwHTHiFrt3DGiUDWCvgnwMDiDiOLtQKYWwtTjeDmcxAQUptBHkCMYAFpA5AQC708CFsotYTJovUORZE8L8wes+kMq+Glyp7BLgAIUOBDyiIhbAyoMCE7AmEyGcMwoW4abATFT63tOkbbVsbUeDwRLn8tHi/1hDknCpd6+4owLmazmdQv9MtoVMUHuzEGBax4JpBwnGudogjxOBCBnXA+HRhUJOqYtRbj8RgA0IQ6jcdj1HMnwNuMQMSYuzZYdjx88OyQB2AsTFHCUwvnAVOWsKbAbH0f2sKgYaFiFUV4SZBF29ZxUShmD4INq6l6FNbAw8NaE5UfTS+3c8cObGxsYP/efXA7JqBsOXdDBvD6WpJ8KkwEW5QYVYSiLDCvaymzGqOp55jNAsUxWG0LXVDmEJVl1tkFay5R9nrOwQ3QRWwaGBesuByC/EIgYdM2Erib8fqbRoJ5PftooRTAKdZsCtfXusb6sNYlgXQ5SIwGOWjwcbdOaK08xzYwAxxoZRH4h9KjeuAJRFnAoioWRp7VxhoU3iSLvnp6Q/yQMSbSflwh1sgUdMjiNQjvIjYmjMEU8ydKqijGSmuQ95gJ8yAEL+fgq3/DlwJ/07O4Llr79ficOnRrFIAciyuIP+A5EfGmszn7vvXlu8GaScKT7WCuH773T1kG+PO/ikNyZkFfYeBo8ZffSs/p4C05QY4N+5xLOfLjvPJeVst1bVC0A/BvGtRtoobH90gWmCsgX9siF3XBC8FAWNVXlZVuf2R3BFH9Dt1M2bhDHDucLpJ5DnPufX5v83GWFEHtk66nktnAtBLXRgQUrQWzDfn+g+JkdExn7U0X0KviYOSgLP5qUc55/Ary1NKdW9JzagiADo1FHyRahnZQbsHXAaXBwrott/zmIF0BbE5byUFonuJMB5PKaDSKNBi1kGu78ziDyWQS+0KBam7tUOCcW+S1v7QORVFgNpvFtuUehZzPrCJtT8HTeZyDAhel7uj9USCuno5cydLYAhUF63pflMaj/aKTNefi5+3Ny47gLYt70GtKIGm9cM9VydF+yoPIlTam5yU+X4MiUBPW5w029u/Fxv59YGbcfNNu1Bvr2HPjd9BMp5hP52IBRQi0pgLzugEZD0/C/WP2GJUW7BzallHaQh5aTYOmdmjrGtYCtW9R2z0whjCbz1AUFRgFyI5AowprOw/DjsMOw84jDsfK2g7c8Y5H4qg7HoFibQdsOQa7OYAKxA6OnaQR9A7ctoApAatI3gAhnd5hRDjSWtziHKazBgURwC4Aj6Bw+uA5CveUxWco37yk52vqGdpiBFsUaJ1DUdgw3kpYY2DnYWXEEBsg2CEgSu8lZgCJA1rXc3hXoyqrGKAk1LYKAMcxZAzBOUbTzCLoLssyAntrDcZjiQ/Y2NhAUVaYzWbQmJw2xASI5wCwRRHqJK5TAsAhLSO8D9ZUWZyFKunToirBbg7XtKhdi2okyqyO+ZzeNlmZRKWqDpkiGj8DuIAlGxSixENlMEhI3Wi9gzfAvJ0BVuhUnoXjOZ3KnC/KESaTFTS+RV3PUdoSZVlgY78E6CMoAW1doygsjEnPptqHNVWNKI3eSy5oz14oO9bISpeeMZ83QHgG2PickhdnUZRoG4dx4PrLvkMX+OcieJgDz72bVaV7nPqnkp0uWggBuBA0yMyYzWuJg2hbTDdmaNoWTdNiNleKXYu2cUJpCHQCIsmCoxZEuZBAgviiD14AT+LZgwKGiNgp/iWjAbMm0gWhnGRmuFYBGcVFjIiU/JJBkaAcJ6TD6R0FAf7OZcG7YezbECPQpfqYsF2Cg8tSnhWjahSeHRIobLSsMIY0uNdYG70EtjAofJ6+NCntucWfiOTx10PKxrAYUlmfbelOU8THCvZTQtEcMKUyE4jbFDSpwkiU0GJuUV/qleF0XqfsXJXYhuTVC21ICmwOYbuKrWCmLCmKX+T45wZRBcQ5hbZ7bDAn+LS9dUKr5MCnB+tq1lIH9RwAktoWzKiDt9+FfPvK0a+bRPVpAtWndWLxZ9ZMPBJMrBZ97VeirA2cXZd0f6ZcAjCc6tgZW2nwZIqaj2NJkT0FC7+eI6cle3tSA/Kiw7tcPQjar+wA52CcPLtlTqakLBqAbwKlVDJtIXosbp0PK8lBRXPlVJTcsqvWVwX9OQ8cSGA1d+XlmmRy+YuoNS4H4zktpR+IquBaLdQ5310mQRHroeVrJ+u2qqpioHBf48257LnlPQf32j8KfvT4vK2aVUepLloXrato/dwJBM45mESIPHftI5lE86hwGGPiNVRZykWVI1Uw8n7UuqpnRL+n4K5UpipfCthya4EqRQqotP56j3PvgioPqljkMSGqOGh/ikehiFSsjfV92NjYj7233ILrr/8OVlfGaF2L9f178a1rvo52vh8WjLb2KMoSbA0cDCxIsuKwx7gaoYbBbN5io25R2hLEBi0MLCyAkCbMe4zLEgBh5hpUVQimDqnIAMbs5r2Y79+DvTdUuM5aVCsrWNuxE3c95scwPvZu2HPs3XGnSYW2aUGTCoYs2NUgHzK8WCNJWkIAnGcCMWFMhCPIwNYNMJZ0erYQo6DMKUSrGoesQIyQCYclWIi9j1QaUxiMsgBxwbgcgn8LADWInIBpFtBiWayaas3zYFSjEbgg1LMa1hYAKHKgy9J2aFmurQEGijB+mRlVVaJpktdNg6NdyLigY308Hse5XRQWrReA1tQ1zEoFIKx26j2MLWTOe07KARAXMSqLAlSZOL50LqTxVWJ9fW94wc1RlAWMNSitBdiBWwdYmUMCuIOn0MtCL2QLmMKAWqEnWlNiVI7QtA3GozHKskDdiIt3vLKK+XQK18hqkgYCRtWabEIAJXsJ3GRmlFUFCuDemLSfCguUJRjC7ydjYIoC8+kU3hqQF0s1gsKitA95tlXQQLtDXfr5wuOiOrTstZtDpASSfABKddNgNpvDe4/pbI66FiVvOp1FOsG8bsLz1seFfPQj+e4Dv51ZgAU0ywZFBUXf0p6i3V/OEZQvOw2BrIkA2OZJADgsIhQyqYgCo16kjPKibQyKSf4uIyjthyKoIJLxo7EdEXQjlZuMWhSNVtYYjMoqAf8yKAnGRpCiGYQKW6AdVbDGoigLVFURb1cETuEm5cDfWhNpQfoRZc8EAJ7udKThgAHW/tdljxTw62jIldvOSArHpkw7aTunlIqczk1fM2pWVq+4vsGW5voehOOFL93DIjhNx3SBv6TJBALo9zk4Xvzk4ySlukwJW3KjpAbJtq6N1nXnFTBnY5V9pNqoAjyr51jf2IBrW0xnM8ymM3j2WcAtYr4mydQTlIC27WToked1EXCNvG+0HVEhR04lM9Gg0eX36+1K2xLuk3kMzu4OIVDm1HvDcRwmbwKDFi6RxkDsFw4LiHkHEAXqajJQCz400TBXWAtmI+MYKaOQof61ti/bBv5qSddBoNZ8vSFqfVZgrpa0vmU/WQFNB9ApQBWe+ChQURoAHACni4Bfj80119xKPJttxA7UrBhlKUBWg3vz9KO5MtK2LSaTSbSkT6fTSGlSBUV5wePxOIJh9VRov+QWa+03jVDXSSV9YlAUciMFyM8iEB+NRvGhV9d17Oc8NkGBfj8rTlImEOulgZzqAdD7kU/uvhKgAdG5hV+P0XSoSnWKAbZZxh7N4KTXUZqS1j9XYvR+aPmScrJAUUofw3m0jcP6+jpuuukm3Hj9DfBNjb233Aj2DW5Y34+mmWPf3nW4pgG3Dg1L+ZKcpgCBMW/nqOwIrmnQ1h6jagKDOebOwbPE1s7bBlXlUVgGKGT5IIa1Qslppg0moxEsLKZNg9o3ABm0TYvCWLSt9Nt83z7su/472P3Vr6A+7ng8/qdOwZ0O3wGz3qCsSggBxUrdgnGdmAEbgIUTReXuh+/El+sbsdc3YAKcNygNUBYmPvzUMijPGQchqIfHLxHGkzFs08LAyAM8y45UFkBVViCYADw9qCzBrYc1ADTw08qLtWEWAF4zyJbRGzBZWYH3spiKzvm6ruE5KIyugSFGUQQLhncxxWzyKMm+KozrfAy2rRPucVHC11O03gFkwY3w8k0xkvSaIQg2vqxDsCOZQtJesu/EG6kSX9c1VlfXIiVNWMWSQtQWFahtAO/gTUiD2EoedyoqGFPAGKHu2HKESVHAFwXKagKGgfPCEy+LEvv23YJJs4rxaIIZ1/DsManGaHzO75csFmJMKeE9o5nPMS4qGN9I2lNj4VuNyXAgyAqzsCzZioLVqp7Xkvu6DHFWrVCWWseYz+uO9/BQlA5NIbOmchjbCveCgTGC7mTASeV4rwYOH4xAPlIR9LfkCs8SKqghN77IqQNUSd91FBQLwaCZkkBbfsyS7yKyoBb7rvVyK5NfVDh6fceQIExwCPI3AlTkXSVWzqREhKtHI1eqkzcSTWC9h/VCUzCG4I2DCysDEyFmULHGwFsBo5JtijLgHxQWTpkDRSESYKWKECjErZBPaUKtgCHE9knFJQAyVwb0kOBxoe4aDt2eo1xTCCcumPqx9MdCoYm+k3u4Y/9SKjce1ykyUbxCQ7Pj++A//Y3gNQJ8RE4+BwAKTqksmRX0CjDVY7vKQPouWaOcnOeUtqjzLgFweexKvZpAndPg3DbEyYi13wWFWfpcgH9aPCtXVJJ0J0CYkh2lVfs9HkOLtygZXFNSDFEeAdZA++xYxYoK/PWdq/ciVwzTfemlHGadiSbqsNpvivHyOE5dYTzVJRuft1IOCvjndJR8m37Uwpc3AEgUn9zK7r3v0FFyag6AAAwp0nzU8q0Wun6grP6WY4vIXxfr9SiWq1ZofaDloFXbNZ/PI2WlTy9Rr4C2QwG/3iTNDpI8Dhz59PpiTYOHogvNGArR6xLNrhZ3LcdaG7PjaDBs3+OQW8yttTEQWb0w2kda97wftJ55fIVa9VW5mE6nGddTX55i8VxfX+/0V1EUMZBX+0/HQk5VyjMpaeYjQJS2yWSC6VRSGRI7tN7jxt034tvf+laYPC1uuuUGmLbG3ht3Y76+LpZQECoQanh4OFSlAXOLoqhEe57OMJ9Pobp9WztU1RjkZwDkhQjv0bRBeSWL1nm0TYMKFqUlsGNM5zXG1UgeKN4BZOANY9YIhaW0I7S+RtMwrt7Yj5tu2I0vXHUlHnPKKfipY4/HnY68A6pJBRjAtQ2sM2LZDWOhsCYAWI/DjcXRoxFuaWvYooxKTcsFaFTExX8AgJ14IXRtAM8eHhbTWQ0qNZDPYD6foapK6AvfuQagMQACmUqCWA2EqkIO8iMFqJZkMB4VaBoP9oHi5mRMVeNRVJqJCNw28GAUpUU7V6CtWZl8tCYqz1qtNLkirkH0s9kUhggrKysoq0qyGRUES5IalMMY4KBEUCGKQFEWKKqg8DVtNFK0bbOwRonGuDgn2ZPgGI4rcFHBz+sAxlqQJXCLEBfRgo1H4T2qkQExwdUObbsHhTEYWYNm3sJP51g1jHHToJ7NYckAhUVbFijKUVgJEhhPVjCbTUM/Cj1nFGIomBhwDq52IJj0VvPSdpABh9iKlhm2KGDDWJCsGDVc22I0XsXq6irW19exvr6+3dfBD12c0heQZeYwDEZQ7gKtwysYwSLwZ0bgFbcxRedsGtJ11jXqJij4dRN5xAo8ZKwGy3ZRhuw3EkeSLNRqWUzAx7HvAZauEmCDFVFTawogtoHqo8CMYa3vPKvVk0CR8pAaScZEe7eRC4piGK7PasFGAGZetmbsUihdROk6RITWSeAhEWEW621QFCE7XLDwi3eggC0sCiPUWRveTWWZKESaDtQa2/NEhPdozDwUsqcZB7Y+1skE2hACHQJBAYtoiiQAW4GuUKwo9pkoGNmN6eOpeN/6IKvrYdFje0UFg4x6N0wGTpUKhgXp6izJkqxgvntiFswaFdQAKlm8RC7MBfUYcdYulwF7oQeKt6Bt27B4nXhVfV4WM5oAzH3IpJOUC6ma46Qwt2GhrrppAm0u0HuaJhifXKQNxfUAvNBgwSnouN9HeqMo0NMYQBnqEe9t5iZhRkhj3Uf+iB4CpbRF0A6hqWoGqk7weqaY6he5YmJuAAkLS5pRFwKUPSQrmMa3Srawpm3BAWNpG3Q+gGUxvdKGcd4ZiQcv2wb+GoinHaBW5zywVQGfKgi6cJcCaaC7HgCQ0m7qi1c7TDRDF/jBDuPxBEQUcqi7jnVAB2+y4usAkJuoHFYFoX2lRCOo85z+Ssep6zpaLxXAa4pOpQzlsQz5omEqmmUoj5HI9+siSm2rVvxkPc9pNVo3Bcvan9qHqvgonUc9BqqwKG1KlSeVPHNRznfW+64xD0oPUlELqfZ97sVRupIqg3ngdJ8Kpt6k3CqiHo66buBdC24b7N59A6699lq4pgU846abb8R8th/1+n40G/vlZUUG3jMMWTRtAzH6aiBSg8oW2LEyxoZt0XjGfN7CEwULf4VZPZcVK02WQs8YsZ26FmVhBVhZg3nNoJCJqipt9BQYY1DaAo1rI//Ve8be1uNfr78BX/rI3+KEww/Dfe5yNzzgnvfCTxx3LI7YMQFZwDCBSF6YEmELgFuMmPBj4zGu2rOBxhBWxytwTSPvbErZWaJlW12DJNxtogIwFs4z6vkMTEBRiFdFH3jijfMgsoEu0IZXVHhhkgmrHHqwk4DYeTPDaDyBLbO0qlWJZt7AgOCdCzQgAEh5lRlNAFMlBMO6qIgKxYfj+JuHBb80LqZtG5Qa5G0LtE0Nq9ZKZqFMhZeAMQbeAFRYVCOharXMcR2K0WgEyRYk1ki1CItlV8Z7WZUoXCtUJ7KwoxHgGsC3YGvgyxLGFvLQbxqcUFS4EwBPHqNxBSYH78RFbdcq+HoGohalZYBLTKqd+Fo9w5c29sNUE0hcSxPS/a6iDlbU+WyKyrVwthRFz5N4H9iBTCEBv1DQ4YEi9H8pi4c5L3Su+XwWXoIUny07duzoxP0caqIQSEG1/BCrOhFJDIoaNFzyBOtfBf7inRVe8XwuVB8B/rLWgffiVdR84DoOBQDIAlZlNQqpfG0G/CU7DgChKQTA3noX66uAPRpqiHqgV3L/KEVBzgmAjcU7nHtmcyGIwqv2aXnwybNLuc3se1Sl8FdWLM77S8sPho/Qt84TjDPqUoj9ospAGcC6UjJt4PxX0atv5flpdOEwE8CMpkU2KIJhonQlXCwrrOMjbgTpL/awCN9hIxhM9CkFwQkwc+ipqHRZk/VC7Llsmw6+cLJqBdQ7qg8mw7YINKMHg7BQ9sJ52TXjV8biOUoxUct45vUN21ywqOc0GRUCxaBaHVP6V1kRSp+O3i/HEfh75hj0rhZpnWM6R533qBu17LeomwYJCPvodVaajgbsenaBrqTdkAybEdDnnqnM6AV0rfwp9iAp0bmk7DwI2c9s53xrDWy22F0y2so96HoBMq9Y1p8xgY2TRRflfrTh44ICIMpUGyitZWlRlhbOSbY7G5TbIighUcO5lXJQwb25tVeVAOV46wMtzxqTU1tyS/9kMomAEUAE2UoTEWAqWk9RCFDVl5KWT0RxkSe9bu4myTnqef53pfkoaFXQqylJc2rObDbLuMVJoem77cqyxOrqasfCnVtmtG25V0PLsFaAqioDskCPiZNPj1MaVQ76tRxtQ57NSPtctVQB51VnUTMNts1Tmqq3Ig9u1j7Re6bgv2mazoJV+rDQ87TP9L7q+FHev3gtlCpm4MKDSLwGDrYo4Nlj/74N1NN1XPWVL+Hm3bsB5zBbn2I+byQDh5vDQIJYDQVXOUvAZeMcPLysCFvX8CF1FhiwZFBaA+/bMPMtqqLEvK1hCwOwifxDYwoQARYGVSGr1baFwbxuYAsLQwxjPTZqB+fFumCsuE0rI2nvGB6GCkwZ+Pfdt+CrN96Cj1/+JdztiJ049QH3xWn3fwDuONkBQwGEogVbC2LJ9Xv0jlUcPa9xXTvH+nQDk/EEHCza1EqqQSUAMnHg9wsJovUMU5QoKX/1+DhmqRwlK5wnydsfOIgkpo/gRncAHIxnVAQ4Q6C2iS8Yayza9QajspRsPgwU7FDYAg0Lx59ZUkqur2+AvTxwx+NRHCdN06CsRnHu5Yu4FUWBqixgDaGZN8DqigQSeoS0o8GVH+aNZw/vKYyjfWhaxsrKKjamU0xiFqu0DoMAP1lxsSyFcmhKi7XJGOTncaxaClZ+L6sMkxdr+8QY3GWlhG9aOG5h1V1cGLBvYagElwW4dTDOwZEDuX3Ya0J2FRCcB8ZjWd9j3779KAuL9Y11ybXfOjhL4ErSlwLyDGm9E9oFGLAWTCxZjKyBrnwJIkyn8pxhELwTBV+fx7m379AVysZvdHwL0OIuNSBsBsBwjqOFsgnPK+EPt8GaGcBIBDDBSBG8ZrYoYE2I9yhLAf6UgL+xVp4rYEmnGsaeYdt5F3BCoACyrDvgMH8JEgac7POd9zznVj4N7g2Kv85t7nvjfWebvFM8POR5pkHFab9aPXsBklkZEeUhWSe99/AkzxvjkuWTKKxSzg7se8A/KCiGDLw3ci5RuJY8twnheRqoe4ZkkTSEeU6Q4ynkBSWWBfXiIkhI7dbfmvEs9aUuypUOibdJN3I+6rL9Otbi4X1AJn0Zr5ft506ZlOgc6sVJNv+OtT9A2Xhvc6+AQpOkMHC2P5SN7hjJ8ZFiKX0fy7Y0t5SK4wJrIHL0w6VcUHoch2xZAdQ750IK0C6FKJ7v05zN8Xn33iEqVXFi9O+DTpao8AYlldSARdFDLsp7SGlelih7ixhS5olLbAUkC38sK8yRMHY9K306KV2tc7DOhudQjbbVZ3MBpWD5EIelmFQxlbVW0ngHPKzvN72hB6sCHBTVhyhx9BVU5pli1GqeZ3LRQaXp+9Qq37dcKKVHwaEGcKoDJV8VNrfe53woVTIUQACJc5+vWqtgur/ardJ49Py2bePaAVrfPEe9/p1MJtErUNfzAOaD5ZS71CS1gGugr75sNWWmMd3Fq3ThqtwSrpKnylSKTf5XgJO8jKpqBIAgCyuZqNioYqDKl/aLTnDtn7zPtS65B0TBWbKmSFnqyel7R6Q/SmiAodCTiuDymmNez7F//36wYxjn8JUrLse1V30FlbXwzRzNTCghHh5tsHYQS453ay1WxyPYosS0buF8sOA7RkOMovUoiwLWEopJhY1ZDeYC67MGa5MKFZeoWw8YgoOMwdKWwQouCylNCqBkwob3KBkoIQ+50ho0Ic+xaz1gLeC9pKgsCA1q+FYsZ1RZXLuxH9+a7sf//eY38Ykv/jvOfMhD8ZP3vBcOH09QkigYsBXgDFZQ4462wI3MqNGAYFCVSg+Ql6APLxcyRnjBLFYyW0qu/gKEFoALCktZViiKAqPRGCOjvFwHE9zj8eHStmB2AMu9/TF2WDFAMVmBb2qUpgpKuoctS4wnY/imAdc1ShDcuMJXZzW+O29Qt6IclcUojDWP9fX16CmazedCTwmpEsuyjLShuq7h2xoMg8pz8IqEZdglZwk0E5F4YwlgI8vBe4eVyQTVeCQBy8E75xwEdIRMIAoayqJE09Tw8znWGwMe6cuiCIulEUxRgsmElKOQrEL1HIWxsM4A7MDsYmIHsAeFwDT2TlJ4uhrMJSzEw0COgdZhZAuwtZjX87juANwM1ljx6BiAIC9Na0sBQaaQ5lsLghWlr50DRNixYw3MjI2NdZBhrO5YxcbGFPN5SqBwyEqwgGvCTn3pAn0AI2BCtsupYlhpJTtT02J9fUO8kU1YAZQlY46mWQWH9xuFBeuIUJUjlGUlFv/RONJM4+rdJqy2Gay7AfbKfAKH1bZlXOpKpcwMH1z/CoKA4B0NwETbmCcqRTAMAEFxCAHeHMFqnplFPQaIK3ZrOYZIUtCqtyoDiBJMGBQLTTAU6ygARd87zOE9BA+v30MKUEOEJlB6jKEY/KvvG2tMsmhag8IWcbEwWxSwZNBUJQojawyU4Z1dliWKtoQhgiuLmGK0KIoYb8G2oyVJPwbUZozUJ4FKBec5Lk/jKw6mDHBtZu2P96xz7VwRXTK8e3/zcxC9Fzo+gx+DXbq3GtAbv8vfhXEQ2ijjMFjyWbyoLiyUVdfz6G2fzebQoF4f3gdNoAI5L7Q4GdcEr3Q7HdvMMTC3abPFUxuXPBE+8+D1O2OT/pL5mrBcv7fAGT0oTAr1SOkYqapRCKAtIlthFJNbpGQlFOYXIa1DAYRtlChAucYoSkxSiLQazktshGcfn7tt24AIaJoaTdtgPpvCM8u+JqyFQ4BzLcajUfSesfeSCAQhW9hBPru3DfyVMpKvzgskDlNuIc4DRxWE6oqRzCmAlpk7aRqTNYIjVz7P/NK3ludBuToZFXACKe2oUIXGsW6qKOgNV3CbW77zlJQAIrUpL1Ovn8cvyHcdEBT356BfLfhKh8k9E7lLThWDjY2N6N3QfmyaBpPJBABiusucckWU8u/L5NCA7ETZ6gP9XHFSTVPBvSouKysrcZVkPS+/Z8nSljwOSj8CIIslGYONjQ0BidZCF2by7DGdzTCfz7Bv7x6AGZPS4jvXXYOvf+VyUNvCVBXErtnAWqANVniA0HqGtwbeA+vzOYqyhClHkooPgPEOTAwPAweHsQEKAiajErU3aGrGRu1R2REKatF4XUVasqNXRQXvGnnpGUIVYmfrxsOUkh/f2grTZp68kYFq4ZlBLHUEM1ZWRrLgmPeYsjzMPvrVr+FfvnEdTjj8jjj5znfBqfe/P+51zDE44gixNI7AOKqyuJYb7K8bWOuwumMnvK/DCzmzjLhgvSJZdZjDOKxZQKEG9a6ursa+94HrqykE1W1OrBYzoSWU3uHeqyV8sIJiXAClKG1EwSPkarDxMGMLdh5NYbDXEr7NLlgY00rfmqZQqWlF2aKqRmCXAJJ6uUajERojL4zJeAJrTPBshLpDVsVNlh0BDG09hyNCPZuBbREW8krrZmi8kT4b6rqGcaIkEwiuaUHjiXhj1HrGgG89yLr4PJBsPCW4rQEE0K/WXJB4UZwFmULGKtQiJbETxlolLkhSgUAVaRpZpdh58f4wyToOhgO4sRCLkAuLxUAyXszqOvYFgECdSOuv5NnF8vVRDlXpKycRGmXgXz5pvwIMydTTRqNO27QZ1UBTFwKaeDNZ+0x43gm3X+JRymgMie+lAPwNybnMGmCNDIAxnEvjrPXikVJwJm1BSOqfgmDlNot6G63Ccoioup13P0Ppjfk/pfR4Dxjj4ZVCQcmTr32crIl6sdyizJHKBA94bb8HHIky4kIZngByoZ4EuHCsxqHJ/GI4Y2C9laxkJNnJCu9lQTwC2HhYn9YGiDhA6R8W8d0VVP+Q8nRx7FDWnrytFEztHOZP5+RsnG31u993+jtXMBZxrtZrE60gu5/x18J458510/dcmcu8BeGdowG+3quVPxnoxOLfQFcaZ8jYaVuXGVsbaKYphonzzfsUW6C0ID3HOQcXYgOcxh3o/cms+DmQ7/QMJ+bFQk/1+yLT/WS9EsmSMwrrTJVlidGoWgD++j7VeolXL1tx2pj4HtPxmGMf522kK6na7r2HY/UsiiKmSiyCkYAMgUI8hWZ4E/yo2X26GSeJkDJOHQT4Pyiqj1rd67rGyspKBIq62E4f8OcpMPt8fNX+8smnGWL0JZ8HsOpgUr65WviJKHKA87Sbxhisra1hPp9HOouCW71Rel6uLPQt5wo6tB4aoKs5yIEE7OUmVmiaufB5bbLe54HPqvRofXOFKvee5NQnrbdaRgFgz549nexEOhi0rvpg9UEz17yw6g3IPQZa1/wera6uQj0PWud8VWQdwHqP8/USVBHJ77NeV+MzpN4uauH79+3FzTdej3o6Q2EIu7/7Xey+/lv47re+gWZeh3SHDQoCLBFadnBtg9ozmGWpekcWoAItA9y2sLZEUZaSPaBpJZ82EZqW0aLFGgiTSmg8bVmgrmWRLg4BOTYA2QYeFhZkgdZ7sLHwnoRj3jqgtPCOUBUWhTGYtW1IR2dRuxbjqsJ0PgeMwXhUomVJEVrYkN7SeUxbj32uwfXt9fjSnlvw4cv/H048chce/cCfxmkPfhB2jizuiAKj+QwFGBbAbH0dNNEgd+lLVTJYVuECSKhNs9kMrQlpXK1YgxUAtm0DXxYgKiO4yMG/Jw8mK1x271A4oSChrQG2st4QMwAHskI5ct6BrKw0TMZgXK1ghUv4jTla30QrflkW8D65lSeTCRpV9JEWz9P5UlYl5hszrO+fg1buEHiaCbyQgm0meFcLB9SK96MsK8ADo7IMKU4r1E3dWTAOEPphEzL2VEWBqqjEg8CQoF6IJVnoB16WXwBDHGwSKyGKEAFGvDIK8Mk7wFAMJPOQPNdkJQbB+7SyeePEQ6aGixr74wvbWCtrLZCRzD4+vKw8JBUsiaJNZYl5iFUS0C9KiHOyToJSHjVRwaEoyyx/SkVJQC1tBzgD9D6C/Cb8zd8tktuewBaQlW1D4G5RoCjlOdyx+FeVWMlzTrACf6lt/DCbCNQEeDNaY+D1PQNR4IQDHBqqQBqIH8k4IqtP+0gJQlxwyzDDhr5wRtoQAViw9rYh1kTwp9TPO3mGqpKhvaf/EWkyClajuLTM2Ei/UWCEvPWhHRw8DPpbqXiRW+6CRzK0w1nNXJeUafYp/XTJPgRzBh9foCAyMSwsTKQLyTxQC39UnqhTy94Y43BM8gDo2OsqB8ja1RuRvb7IryGK3TJwJtQNOZSyayzy05nVUKD31sUr6LHeK3UmZMxhho9eJlnBlhmJysOcFqjz4hVzrkXTOrRt8gpImdyh9ipWUNAPpDTJ3ocYF88xY5YqjYrIk6cpUco4DbXYJsppUGEs6pjK+zt6yaKVXt7HxlpMxuOotI/Hk2DcTV4ka8XDJO+9Vvo5mxORRpyBfQqeKo0V0Ab4EFQuCla4l1YWnZR+awEwysKCuUVTFxL/QiHeranRBMyoiW6ICLPpCK50YUXtwIih7vtvO7Jt4K9gXIGbvpg0H/uOHTs6wasKRPVvHgCrD1y1mOhxqv2olT1fxEvBovKdFIzmdJjcK6GARoG91ikHxnmWBOWcIwwc1Xrzwa0vX90GpBWNVSkhApzLgW1KV5lb2F3gcunLNqfI6G/fe7DqWgP6W9uk7VG+ttYrab8e1uoquJIxJQ+mzq+tgdjah9p2zRCU8/hXV1djHfWjDwRVVvLVgVVBrKoqUjyck5Vbb7xxP/bv3YN2ugGu57j8ii/hum9+E/V8BucblOUY8LKqZkGQfM7MIbCHATZYHY0wdx7zJqx/QMGlywRLBRwxZrVYx4uiwrx1INeigEFhCQUTfFmg5lYyhugLksUyV5Pk/2ci1F4s/UIv8ShIcv8bBixSXnlvDNow+YkMymokwX+AKA7MKAB4C8AbFIINsMGMKYAbvnsdvvTh6/Hv374OTz39VNzpTsfgCDLYGx6DzXwOGpn4fnHOSXYRQ4BjMHmQEUpVVVUwDFmddib8eY2dGVVVqLOTZ12wljnvA6c2rCvQerBrxSbqG5AVKhl7DplEGBzcl1bQroytukU7qzF3KZe8xrIIx9JE6oS+WOAlXaV6rvbs2QPvXVpIKFqGwiJeLIoWecm4A2tCPR2a2QxkLapSKEkuPGBd20omEKRUssZYVKMKZZhHbV1j3rTw5SikE+WQQ9lA3mE+gj7X1ME1LK8rUAGyFt63IFuAOfQbE8hJ+jhjC4yKEfy0lftgkvJRlCWmsymMkWfGYTsPQ1GI8mDi+ASMZ/HMWAICF9WSUJI21veHjDMUXfYb6+vYsbaWAZrkITwURa3xapUVrK2gTsGSUmA4WNhcsE5KJpG6bmJCCnn+CuiHEQ6/CUGmZTEKoKBENRoFiom+YyQgXZ93Kf2kqhsaaJkyqCgQ1uBa51wE+7UxYdXgFk2TrPKiyxDy8FMyYt5zEB41AYEiE94ZWV/5QukWPnjzPOp5jZYccgqIdy0apPePYAgJJCSiCMgVpHkisAaR999Z6Fuatf0hkQfrwmfJUEREaJtG1hgwFJQuyQqkdKqmaiJIG7lKFjsKtAkTMp+VXMJZBxjAsKzBUoRKieISVaisfgrcc3Ce9+QioyB5hfLtGfDM+jGPiQw+iCVKqtZG6xes55nlOvewaJpN6LawwrsOQLXei2dJALy8izWgVjxfHLjnGmcnbAbBO/N5DU27qcG5nlOGq6ZpY6pbVeBABoyU3l0z2eiiXBJo3GZ9xgmzIiln+Y1Qr6ocq7Ei2u9eOzxqY6qAm0whH49GGI8kGH9tdQ2jUSXAfzQJSS0SM8OH/pX+QkfZAuTaJjx3CpPiJ3VxRDIp0JcDxc97jyZkB5M1OSW+xhqgKixa16IsDNq2wbyuUVUlXNtifX1/4PsjZp5zrUNpLcqixGQ8hjETGBPUIlocU1vJtoH/dDqN1mUFzUrjUMqK0kE0L7c+ZJk55pBXcJ+7anSwKMBXC7qWr1QaBed5hh21FmtQKoAOPQjoWsPz4OBc6dAHuJ6XKzW5RVzrooBX66pxDGKtH8dsJMwc4wTUnS4Dq4G6eoC0+nGufGi99dw817nGCKjykqfCzHn1zPrQk78y2XN+ZqLoFEURaTwagKvZgNKDz0faUXwoZeBf1zTQvlFlRcdIvl6DjCeDvXv2YO8tN6KeTfGNq7+K71xzDdY39mEecs6XZSW57YngWPijZQFURQHN6WCMATuPEXmQZUnfGDR0D8AbwFABGMK0EfcliFADuGU6w+GrI4yLABI9QJZgqxFcO4fxDsTAvAVQVVipVtC6Gg4eDh6GgKb1ktqRfHgAhxRqNuSfbhlggm/V9elg88QcLQd3HeAcY24cDEnA0U3M+NC//F984RtX4QkPfTjufOL9wI6BEgA0U4d6rARsMzyoKMEs15/P56jnc4wOOwyG5MVZhaD02Wwmuf1bD/LBthKsXpozm41VU17wIhAIpTyADUs9vChLrBYQ70EQd783AJNFPZvDwWNcjdG0DarRRIJT2xbzeRMBqAIfBVFFUeKwww4TJXR9P8oqxBRA4JusU2bF79kKN5stCbQjQlGWKEPwslIjisKibVNygY0NSR3LwRruvQ+KppFFuayBYbFAwloYKy9bH3ytErxrpM99KwqANWDXgtiDKcQEsNZbFsAhwzBlAZDH/vUNNE2NlZVVzIJSlAweBZjlOchzsdSJhUqmt/dOFoUzVpQMJy++aVOjLEqACNP5HLYssbK2Cm4dOHvO5vFDh5rkllW1Cur3znEZLUKt/d1P7iZP/FwbKGHWWMlIY6yMmeB5LcsSZaD3SJCfBqkW0UJMAZR4HROsszIAtlBxXV4vGgfCMd7blIEntM9kVlDS+cXBQoxkhZS+CH+jx048VMYDDqIksAnrGFCyPucUEQBpUbSM6qB/c2ULGeAQ0JWB/WglT9t0rQVkxjciEosocXxXGUpxZd13NsKCiQxnBfjLY0aAKXEPMOeW4Thu0v1XqkQ+HlJfUKx7hzqCxTLSuNTBKN5Gjh4Gzs6jhf6WisnY7VNGtB3anwKG9W+WpSZUt68w9L0+utBgDtD1u2KGznzR3P7Zyr35/o5XArywX+dczHCU1Vf1FR2HOR7UbgnDJVjc8z5Ofd7/qEJuKKVXFy5/ES3+OsczvQHkGN6k9Ore63yS/9JaG93rmt5vrZc8lw2MZ8DIa1MwFyKVHADKUhgH3ssimy2lGJgcdwkdy8NQWueAuRdzsk3ZNvBX6omC4HyFVaC7QJd6A/ppJ3PrvVJp9Bi1nOeANHc9JypNCg5WcJznitdFtabTaXy4aJ376wEor38RpBPqugnlu/CQN9F6nT8k+uVrPTQjiYLyfvsB9YwwTKBfqKdB21NVVewj7TPKBrO2IVdYJMA48f2dc53sR3pdVUC0Ls6lRZdyIK+UoDyV59raWqRf6PF5dqB8AquHRvtOFToAmE1nuPmmm7Cx5yZc/61v4KtXfRk337gbloULB2J5ucLBeACG4MOiM847OKNZHVi4zU7A8qSyICNUFs+iPFhTgrlAHVyejQecsWhZLHTrszlWRxYrhUHtCJ4snDWY+1aAAQNt40FUCj/bMRzXcKFfm7AgCZNY4zyABowKQEWycqqHh2uaQPOQVV/BQO2cvMiJxCXKjMZLthmqAOcatNbi89+9Cd/860txz8u/gruffB/susvdUB51ZHCHS8aiwhpJ7wgj3pBgYKoCcJm7NmQdEvrZ+vo6xqMRmrYGqjKASy+gnaOrQsYyRKkhA4AsmElWsQ055eUBKdxH5M94klSI1gTPniU434axWMOYEVrlnBdF/F6NxnCtzMM9e/ZgHFy1o9FIAFkzR3y7sqzW6wGwEa+CNQXYW7SexKMQxkrr2jBWZc7JooEaRA+URRlyllsQMSxZjDRDlVUlg8Ca39mr98lCo3jJCVAjz2E15eBBch6SsUk8KKasgnXao7AkC5IZSV3YelnKXdYZqKLVliayWrF0N8G1bci1jrgsDIFQNzX2zBqYQmJM2sbBBm+CtRbzWQ3jStjCxmfCoS6CHVLgnQKp6GUMlkr1TNZ1Aw3uVS+rpJqUjDzWBCt/WDRSvaHWirdlNJ4EC2KZLHtZDnt9bmeQDy48C9Ik6PKOxXIawFcrwX7i3m8yznXXw5FbV5WypNZh7Qd59oY+Cos1sQ+pbb1HQarQOrTOhmN0nuZ1TF5gosRrVuUm9jtMsNTnq+kG75uX/OwEIOeuK5xmXZCIgJbSisXgoCAhGb/0rxjKuuvg5LF2OcU1ebLlnuSLoi0qMj1FMNzJXDHKsXoOzLvHJqVB+unAyoKeHtusqZkQEi148ZgIQBdLv1qlPbtOJjcpv7sC7zJgX9cpTlGx2nxex3mjHjHnhCLnuWvFb9s2A55hTIMhwcaQFbA1dtGn4F0KA1qqatKA6IwOaYpXWlRYcMJYg7IqgyfKxFV0ZQ7KnLTGxsBuXQNiVFWowirTk8kkKfUmBOOHORrsTPLsNASCBes4C/+RSSA/Z2IEfwHAFDMIqSIEZlgTyg1ziWEwKiUw3ZcFrAFaJ97eqhLGS1lI/IF3Dk1TwznJNOdaoZk2TSMrwHe8StuXbQN/AAuWeLXOqaVdgZ5a4mOUfXi56sRUikoOAvNJnBbishHE5hll1PKdA+7OQ5i6NCKlDuQ5a1UU3OZWbCKgqsoAolvJ7NGj3Sh9Jwfa6snQiab11mxBCpYBYDJZQds2kaeVU5xygNxXWHJlRV/W8/k8AvQ8GFfPzT0XeaBtP0sPkcQwSOAtxwW79F6pkqFpTjUTkj4ocrpP7tlJgY9JO23bFrtvuB5wDb7x9Wvx7//2RUzX94HIB9ezvEzmjsWtzYBrnQCj8KAtrBPXGYTqUNjgkvYM5+ZAzJHNAFoYYzEuDcpyDXunc2w0DZwHPBnMW0ZZAhP2mBSFZOYpDHi8gnldi6W4Fd5jQwQDAwcDJotyXKCeToU76UmAPxMMWZQwsJAHo/NecvGGlQEb6AvaBrc5o609mAzgADYGdaPUMg+LEtc3La7/8pfwhWuuwV2P2gV/v5/G8Q/+afzYEWOY1oGbFiClKUl+d2ZIsJAXRWM8GaOwskq0BosTJZDP1sJAFoCS53Pg+nuGkMo58mflVR9SpQULd0iDHxbTEeXMOcnkUBYlUAB1GLt1XWM6dbIoWaaIFkUBcFohejKZxHkXnyEupIx1iS4HMkA1hoGHb2Q1ZSoqcEjpaslg3sqD1BgbY4qcc5HeJuk8A43ClKjnczhm2GqE1svaBiRZTaV9qnyE7D7WlnDkwGglO1IYscYEvrf3stoxWXhjwMZi3raYNlPQaIzJaALvJYvS3r3r2LG2Gts9mawIWCUjXgT2gd7J8qKiwBlvAJCFLUo4kAQcuxptXWM0mQTLqXjeJsUEk8mk81w8VCW3IsegQubO862p65hxRN47HEELABSFPP+EviMGrfF4Itz9APyLwO9X4G+tBF4TKC5+ZWgx77fURbjSAYEj+uN6gE+9Egzh2ufvJ++znPxA9PhGhcbW4VqBRkApn37qJ0TQzyzPxwT4JFCwaXVRIe1X8QgQaVY+yXSVW8cBuZZy7CNY9rI2BILyIoG6iIpDbD0D8BloJJ+AP3LrKTrvjbioWLagkr7j9BjFBUA614ADR0SB5WLe9bzPuuBflc1l47CzJbtb/W2LikLHgxD+0z6injIrimBGk4kpa13MFKXGmdzSvgz4t62LrIU81mU+r6NCEBOYBG6+gn0dn5ION8t6Q0IhdEHhbBpRIsTwlrBFNAoG8J5ar/2kyo98tC8AChnoypj5qbQaXG9DOm0Tg+9tZ22JEoUtAxOjlDhH0oW4dP0bVUyCUkIGxsiNz8eIMRSp9H3PQz5QWNukzwmDdH5Qmimsc5G8Cy4YaeUdVAS817Yt9u/fh/lcjKB6P2M6dJOCjA9Gtg38VYtWcKqN10mXW+v7GXF0kOcLIACIFmLvu4HAmvVHOiOBYB34wnOXflaKj15bgalqrtbaGDirQFQzmqh1XakoKbNPGFAho4um2FSgrQthKfjOQbEOcKU15VYLbYNOLrHaA9YW2NjYiP2SA2YFPgDidVXx0n7V2AP1miifXuur19f0pHrvckWgbwHIXU35KsS5l0bvHYAImvp0Hz1Hs2J477G+sYE9t9wM187xtauuwBe++AXMNuYSlOgkjaY+F71nMDXx3qtlnAFYffgg8OqN9jNAZCWHtvcgalBYQlUVqCDa/hGrq1hxNfbPakxnDjVZ7JuL1XVMjMoY1GRQjko0HoBvUVaSaq5xLUbWgsmgqOTB0/CG9BcgWWo8UNhClBGo1YPEQmPEYuHcPKZmlNRnsuq0BwFswC64HQuDlgD2HiP2KM0I9bTFt775TXxio8XqxgbOPPWBOHJtFW5egwoDWxWhn8LLnGUdh5kxMWioLEvh+9dyrwwHv6cpwL4Juec9NG+Y3G8nGDfjWNrw4mH2YvkPyiyHh6giBgJQlBbztpYA66jAivXSuRb1XFaZ5QBYiERpEe51gboRJVPyqls47yWFJXtw2wJFKYGHHF4aJqxkWhSYzjcwYoI1BVoSjjczMJ1uYG1tLb4cy1Kuw2xQtw1ACJQOtRKR9IlzIPJgbkOWhxIgSR3qbQFYK7QKDp64QDsSSgLBk4EpRnCFBRUeJTs4A4wqC+cAlAXWVg4HoAkTRPF1lRUqk/NwdQ0iC2j2IXjYwgrgA4fv4kkyJJ4YCvObxozZdAbeYKytrW33VXAbSQYc46s6wQYgWWbTJ+Ue14OIEo+8KGx8jknWjCJyyYViZWCNBPDllJpQnQwI5xbtEP+hGWVYgTgWcCEzhfETOPOs9JNlAYuA95JQQICgeOYIBEc58E/vSQACxhV0R8NVuJZXUlAC1gwfrKdKY0hWWGaFsZkFN/u+TLnJAV23qxYt33m9ddEyBbGpDrI9UVk0D7z0Y2xH+EjbTKo79z0w6cZoly+C+kXR/ki/KTa3i8GSQpW8Iinda7p8TgFirUiqZxjPObDkrK7Rk9JpV+zpTptTjEePksOcPtErtXh/8nGatof5xv2+1Q6K3dwfEWlj2CpjTq3tIdYkZOMR4G+jRV9xms7hSMGL49ckio72RuxH7R19Pgh1pnPPwv1JUVvdeRnvV2csIL5741hYAsyjchuMY3G+GRPbCeZggNKUud37oOPkYGXbwD8HynrTFUz3M7fkQDg/VulCOZ9dFYGcqqJlAsJbnU6bkIdeB3qwgNoy25bqqIpH35WXB6GqBquAXMG6gN4KzsnAVxpOrvAofUbBulJytF3ajtxLoP2Wrzys7daFsLTP8mw4CuSdczGYWa/DLEG3eT9PJpN4n3JLuyoNeZ3Uk6CDSO9hvkCYWkJza4ret9x7kCsHWl+1KqTFzyTwlAywY20VV379GnzuXz+HjekUYnoPKSW9PFV9AKzKizNh8npWEEAoDOJk9BxW2m1VAQ2UDxBapnANAhUeFh4FATsmExhyqB2jdQ025h5mZFEUYrknMiErC2EyGWF1bQUb+/aBnIfxBRy3aBsHZkJBJAAUsnhYWVoYCM+d9UFjBBA716I0BjAOcEDrxEJOjMDl1YWiGOwYRXhZN5AYjQLSH9/adyM+/M+fxnS+Bw++949j1TkcsWMH1tZ2YOfhR4CKAp5FCRlNJtjvPcgHHnIYs8ZYCX5uZwJuvZfVktEG64sV47bzAInC48kDXtZRKHzg05eFgGFPYokQt4C4gYPFf9rMYSEBUQxGoalOAUzGMqecd5hMVlCNx5L5ZyxZlqYb6yhGFUxRgKgAWEAvQ7L46EvXACAfQFHt4UOWoWo0Cg9OoCpH8J6xurIKW6yEDENjWFuhrhuMJ2PYsgC1BaipJW+0G0vgsCWQHQHWw7s5JKhYxktrCd9iRu0LzFyNEiXaoOwVowm8IWzUG4Gi4+HnG7CjCvvIwFCFum2xd+++oGRYWCvPSYLEsJTB0OHQgnwTPApC20Cw/rOV9QOc8/CyapoE9TViDV9bW8W8aWACZVDn+aEtamrzAJvuLjGCho9awb3E07QuWg5tSM85qkYw1qAqq0DttKiqUbT+l2UJY8WCWBZFcPEna58qVQGNARyyzIRxbAxQwARAkYGjHkCQqieairXhuZdZw6OH2TtUZSG0pbZBU4esT40szqYgR6yvvsvjBsLcKKIhylUhwDNYdqOnItAPdWkrNaRoG1IS0ABgOTMCZJzztFhSAjgRoESAqEH5SYlwTkF0igNI79MCuviXcy2cF2qddy2cldzKzlvpU0K8bxxDpLVN4sXQDEOCOYUeJ9TIjOKB1BfobE2W3IAM5ZteKoyQGNeQqapRhc3GRH6NCKQzOo2soZI8KTLetL+FOohwTlzFV4PMI6D38Oziir0S1xPGUdvGlaubJsRPIFegM+XApYQiiiXEQ6DHhNXECXGhLDKiC0tX5UpBSEONsHgkSNbOMOrxCRm2rCxuKsp4gcKK17MoA9PDmLAt8PbDfTC6wBwEf6AVxVY18U4ygLarZEq9JYoQBKFhcbDY9ydymCtRMSCKbIQOQNf5ERU2kpS3RgxCsAaegFFRwo9GaK1BMx9FxY+9h0N6RiRv8w/I4g8gWvMBRNCsgJI5pdzKqR4KvDX4VUGg0l5y67KWo1xzG1ZJZE5WaAHKdaAXpcYqJz6n4WgWmU6DA71FH/DqMciz9Cj41uMBxEHeX5lWXWXafh04akVX6o1y/lUxygNmlW+v5+oxORDXvolc1tD/eaYjYyTdZ05D0gUq8ocogAjKVUHR+6aBwRpkrA8IdX/nypm2R0G+fs+pSvobEB5bM9/AdP9+fOfr38Cn/vEfsXfffniWrDgMwBtGEbLHFSSuZrWu2IIAYlltkiUHugOHDDk+PrA1AA5BWXAMsAtjrTKoWwdyDpOVEeA9dq5WaDxjOiXUdYupZYxsisKvqhHq+RzeGpSrKxgDmK+vg9ihcCGQ04pyItxtQF7pDBiDpm5lASlDKGyB1kuqT7DQlwgEYwEHDvneEZRRRkkSoOpJHs6tcwAsWu/hQHCNx6yd46b/+8/4969fjZ//ifvg4XfaBUuEfbtvwuphO1F7j30w2Nio0RYFHCzIGqyFdK2z2Qy2rLBjx06AW8C3sMbAN/rypmDFNCBbhD53suAUFWhLoavYoggeAolnoCKkBmWgLQrsN/tRlAXQIo7d8WiEsiwwnyXvnLFF9ExVIcuNtbIwlXBGgTJYuIuiBLlGAmgl1yaYXQAjIZe09zCmgKs1uYAYFJxv0M4ZFUtsg3gIQxDsdIqJWQE7D24CBaMN2cqYYMpgNfKALUfyVvOEKVtcVTfY64F9bg5qJZi5qkbgdkMU6bJE20gKRec9JqUAGqEdSdyJrGqanqVN04RMHC1sYWAbL+sXkJWVm42FbxsBOq4Vg7P3ojiwKGCjcYUdO9ZkDYPwLCtKCWhtmkR3PLSFouU0t4/qO5XjCzKBFQAgYwP4tzFGqqqqOL6EBhD4/qX8NZnFX8EoACh3W7KJpTzkWieLQBXIrOnJqr7MIp6MGmJgSceogch6E4OBjcYIebFAah7+xHWXzD/J+i3XUCWPWVJ+CiBEBOFta5AywvQstsEymiz+2XoCoU2dtoX2dDFJ5i9QwJqdou+o3FiXU3hy77la+b1HyDjjglfEZZ4BUVOIpU+IZCV2E/4SKxJV833wgISkG11bevd7svDnlv4sjgAAKLvfhBg0nf7nrMQe/UfHCuszLQF9WcirZ1XP7kFUGNSaDaVJqeIgaT41YDRR4XwG4BeBbZxXvLyuik00voURjDBKcVH9iFIv5GMs58/bQi39RQT+lcbmGItCqT5lWAGaAh1PtTEF7sjuRxgvhjgskyGYg0J9vHfCOEBQ6kie6cGEH50A8VGQge04D4J3QK3+Yqjk7ghS8I9Ek1XDphgYAvYtLAhhTauwdkLbyzR0a+WgVu5l5kjhyDP85OBeQXQejAogAuk8WFQtyAqoFbAmAEwBDIRJGwDpfD6DMYSVlZUYtKWAvWkazOdzrK6udizfOecNQOT2MjNWVlaC9SQBaKKU6rCqKkwmE0yn00ifyb0a6p3IA2BzjThRiJL1X1cqzvtPr5/3Xx63oP2tioBmCdL+yr0yWh/nHKbTaaybgnCtS77asvZfvl8Dn52ThcQmk0knsDjPhqTUJ61nHnhsg6V/Pt2Pb3z1q/jMZZfhlr17wkIrJnDixcItEyCsths4bN5LysS2bUGWhOfo5MXhiIUXz2lSyUsgBHXBwBKhtAXqlrEyKtG6GvvXN7C6sgrHDpOyQGUq7AMwbz2KUta49SRp9lrnMbEFrr9hN1aqKgB8obYIX5zEck+SXNKSQWFIMrNQAKnWoJnNUJUFCEDtnXDlreTkb+oGBsC4lEDC0gp5o/WEecOoGfCtg4EE/3hmzFqPqfeYc4v2u98G/VuL/bMpfvrE++KwaoL13Tdixx0OR+Na7LnlZtzkGYff4Q6o7Bjr6+shhSOBjABmS0XoWwdiURAYXmg3MGKvMgWun80xswV8AzTGo2VZTErGmEftgRZCgWmmNWpq8Z15IwsRh3SIbduidS3mdYN6VscFk5gRvW+imMxBAApjADZwbQO2DOcd6qYWIBbAYFwpFSwxHrYMoN8F65GNz7PRqMJoNMaePXsxHo+DtdYKfSvQtjyEXmZGFrRSwTjIisRwwRpUoNXnhi0BZtTNHFOM0BpCURKKogKMZNiZzefwxqAar4HhsGpIxoCRlS/bbF0LIhsTHFRVJW7rZo5mNhNPWGkBtlAHtPethGCMJiBboLQFuGngfANbjdA0tXjpihI71taw+4YbUIxHwdLrO3TDQ02c1/iDBHYUFyUuNHespEACaLm3t/8RJStkfDJqpQ7nEsdrqp1PrdNGFWIFtKyMZCQgFuuaU44Yndc2ayCneCcUXGk5RIEiGICeWELFo+ZtsF72rK+GVOHQcyi20/ssA1G0vlN4ZmqyCgXlCaA5pxQanRkBXGU5xH2wFCfQr8GcqSwCwRsFVYjJgDr0JloMLjYmKRKExXP0GnkaRgV10dqf9akqHqTXw4GEo2dg2a7oBYpwPmVX6gB0Tn2q4zTh7DRuxBvQp83wwkfLT3NBAfgiIM8t83nAbneBLeHwa//nZSQFoqvsqcdLlTVjktclp0BHq3gcM2LlM0aodkTC51fgb0LwvWIIUcgtjE0UHlCyrIsBMFPRON0vAfshAUJQ9HLFVN8dpBifw5M1xrNRXB+FMi8PwsjqZv0xEdCDO/6cOCaiAk0Ug3Rzpog8XxJ1HkDHM7tA+TkIOagFvPIbqxdWy3UO5jVDDjMHDrEEIuUUFbUK9wNAvfcxV71Ys+sAStMKu+PxWDizIS9zHn+g3HdNS6mdqW3QsmPgTwDmWnftdK1fP0AmDzTWOqp3Q1/SecYcBb/aViClRlXqju7PLfB6g6OrN6NO5esb5PdFYxXygKh+36qionVRuk4+iOLDyKc4A6UF5cG+2lZVkpTKpeMjTwsq1KIZ9t20G//yz5/FDTfd2DGmSHYCmQCWBDhL9hMOaSFDfmqmQMNCVL3jwjkkQbcyNnXNTAHV3gOtl8k2ndcYVXIP53WDyXgE37awxFgdl5jNPeq6RVUZtK7BvNbgOIv9++ao19exGlZednN5UHiWnPM+gLhxOQK74B1iRmEsXFOjKgwKazCr22g0KKzksh4XFuPCotD2sEftGRt1jY25R1FYUQooZEvwmiEE2OMdHBv82+79uPbmL+Bfv/pN/MRd74a73fFIrO5ewbeZsQcFalviW9+6DpOVHTji8MOxc+dOEBHm8ymaugUmFciUYA6UnZCRhsJDjGAwZYPP7Zvj26aGdxSCqwjlyMBYhmtlcbI2zAF4Ru1qoXER4OElrmUqzwVjLUbjcbyGvoDUCGDDQ9C1LlIwPDMmkwmqooCfzyEvj/CQDwYFsAWzpOH0YRVmW5RoW/UWWkynMxhj0TQOo0qU3NaFeVGNAM8wTCDHshqv97ClBRcGbdOGBXMlJsJ5hjcFnDEoJysgW6HZPwWThayZVaCwjLZuZeG5ego/rmCKEqUpxXrLLRiBjmdSNi21YLNrMR5XsK2DD6ueApIjXeaekMsk65IFGY92PkM5GqOaTCTgtanDmgjilpfsWRa2tNt9HfzQRQ0WuSgg0uBDDYJXwJM/5/XZpc9v7deURMEgrSdBwaou1n0SuzEUdCuUEACuwDYFK7JPnrto3fSI2zgDTgi6AHsJvo+ALUwWowG7wdoKSNamwgp3ggA4S9HiKbSgsOonM0wjFCd5tgr/WTjc/YXFEDK1JNCoYFL7WeelnKNZZkTVYbAg+MziHfsoop7QiwQQbJqnS6zLgFp/CblyRhpg2TOGxb5nBf7B45fRwgS6qULlg76kduGQAS0oUTnOSfexh/WADMSH2xwVRVVQepZtTudorveoC2hZARlyxrPvLODFfSW4C+41A5D3EjSeZ+VxTlbNzak+MY9/q6uWNx2jHZASpDAjy1yTDJzsfVynIgL8cPP1e27EzGM9cyaEIbH2F4UNyqwYayTusohYSb/nIjS1NBaAZPGXA5C2EWVjNDMOkElKVygmYbF0rI3jT2PZxGKvRj4LMVKpByB5ObReqlgggH4DggOsZLVqo7KDaJxTXJrfa1X0DzYxw0FTffSFnFNm8puqoFAHqVYUSIA4D/LtewZy7r1+12N0dWBrU/79oijSqpaBF68PdS1Dr6O/FZRrx+WgXRWVXMvMgXiedjRPmQkkWlAeABsnRtYfep7evDyGwHtJSZpTeXLQnXPr87RldV1jPp9jPB5DvRd6H/RYQFbyzPtJ22StxXQ67dRRPSFKU9LMKtp2vf9FUcSVfdUbpOlUNVjSe4f1/XvxL//0adx44260AKwPXFDvQnYMwCDljgeLZd8YSVFpg7YvLvsiasxilUWwIqRFVzyEdmJB8JAgR1hZ8ZcbsUa71oHqRq4PSRtWjQittwC1KKxFWRms718PFAkBVdVohPl6G95ZooxImkpGVZYgC7hGXtIjKwunjasKhSXM6gYeCPnhpf1rI1k8ibwDYODA2D9rsdEIJ/+wSYVRWaBtWmy0LVov+f69E6vEZGQwax2uu3kvbrAlvrN3A1/+7m7c/Q53xOFrKygOPxzrRx8FO9oJ2AJt1eDmm29GXdc47LDDhEblBECyFeuzkKlYQC+x9C8znDWoRxUcGCgsfGFAtkQDGxbOAuatKOjWWsznNaqy7M1zB/YEIgt2jBZNoFQIZagoChQ2cEedZOcpR1aoTkZWhHSd9GnBKkoehiWVaYgTF2XDt6CqhCkYlgnO6Tz1KGwFYwhNW4MDyCvLMqgGRuIbmGQB5EaeJ55klV0Cx5zttjCQgERZa4BLxqgoMQsv0vFoLO2Gx2gyhodD03gY7+CaGaqyCpbY0EdhwTpAgsWtUapGyObRerh6Djsew5Ql0Hhwoy9ih3buQGWBshyjmbeoSZRbgqTvK0IAuPMyftF7kR5Kssyq1TdW5PSI3OKfA8gclOTfk6UO3d9ypXhNTY8bf1P3L0ARpGXm3syCG55YEfxJ8SkgVcG4jEP2eeERIUoVSNMDUlyISK3vbAyIWVYIDtZXyUpCMBxKCMCXNIhT16BghvDgF/s43osQZCtVUkDfpbpEWytR7EfdxuqoQIbVsMyCT0vux+JQzS2q0aLEQRnpjJ2gacV3THZ8AGc56O9yuSn7X74kY36iMKnVOHkB8rqlOiwogMvGTNbnueW//7u7LaMGZdu995kykfL7J6+PKs2Jw5+X3W0DYj8xJ18HkOaPfkdvruk8jPuhNPK0kGM8Phh9KP6m9FdHFae5hU5/9/pf9aps0CUlPng3iLNju16NgPPlWJi4tpAeSiH2jSjMMc5AfyyvpwDGuaHl5s+f1F85hX7xfi9/Pm4lBwX81dqcg8/JZNKhijjnsLKyEq38Oji04goOFbRq5p080DcfDNp4pccoqM4HlnoYjDGxPrkQUYeGkosG5io4JqKOIpEPQm23KhCqdAApUDLPZpSDddW2l61DkGcVAhAXvtK0WsaY+Dvn/2s5/YBmBf0K2NVLknsV9B7MZjPMZrNOf2pb81SH+crLGnwMIJ6rbdR7rvQtuT8z1PMp/u3zX8C1V38DHLjalkzIm2vixJBgIHl4WSuW0Ko0MMRwXgCzY0r5ytW9bgyaEGyq070wAsZbDzRegm9lzlu0xACLhr7RMArvQfCYrKyEF3MLhiyos2M8wmx9Q/JsO4eqECCvM9baAq3zaF3IbW0N6nYOIsbIWlgwysJINpeGQbCYlISC1J0KtI0sEgZj0ICwb9Zi7jzKwmBcFKgMoa1bbDQtGlg0Th7iVWExLi0i17gsMXMe67MW35nNcNXevTh6ZQ2HHbYXtGcfjr7rsVjZeTiKRhab+s53voOmrnHHOxwGW45gg/UmZlWwEApCsLbJC8OhKAsU7FHPPVzdwhmGtSUYDkQujled37nlyNoiPCgt2IvHQACveDJmsxkOO+ywqLTHRe9Uma5l8bumbcFuJOA7wHRigGsH8/9T9yfNkixNdiB21AZ3j4h7M/ON9U1VBZAlALsANKUpIDfkksIN/yQ3/APccdOLbkqDLZRuFqqKhSaIqgZq+KY35HBvRLi7DcqFqppZxM331XtoAfA6vi9f3owbg7u5udnRo0ePRgvalRmB1CMd3BGliobZeUKMM2qRRl37viHGALGqU8bVebigcrYQQLECOQOpqnGLLrguAi6iZmWayWMruzD4zFr0L2uEd4Tz+aKgDYjzjDlGlJIxhQkfnp7knp7mtvmLzM3qomRDqbVqoy4WqZZKOFCKfu7UjifnjOV4gCfGvq+YZgvWPQ4kpMrHWPUfy+NeXsHKiBoJU4roc60jrq2vlpGc4gSvLj6LrrchBnUHcZpVctp9kwbNvcydyvXlsdi90sCAMN+11O6vDgCkDZCKAugB+Bt67O40Vjwpv3fVtc8ZN/eWldXjqswg1oZ5BghJ6pScd419b+cwfKb8UZCrDCWphIj7l8NrtkDWAIfORsvvXR2bHnVJhGsGDNxkPXaNwJpdGACM7DGD9KpJfIagQo/XAb3hmB1M7XPDsXjkE0nXYWJzjZHxYcjnW5E1NTBtAcE475T8uJuZFiwY/GUWIuomcDR/yvaH9doxxq/k4R/m1y9rQMUo/bkNJy0D00F7VWBvhbjG9JuMx55rHX1Lac+bnMfmlZ2m7NM6Umx9GIwBd3amN8BfIz+9lrqO+tsAHLglgO3aA7cyMekvQ6hUpAgcVibcA8oxAG/XTP+y7ApR/32T57DuIjZ/P8KBtICDtf5PNq0WsDFX9euHYAddRww3yZhZMNbjUdKJQlWsWakKtvFalxSDZIPBjBQjsvYx4KoGKKWC/X8g4D9Gd+sq/t+mXbcF1tji0e1ldM4ZI2ljokdJzD1DbuDWmOOx+699lgHZUVJ0Op1gnShHDTxRb0tvINtkNwa8x2ZiXVLUg5N5ntt7LXAxeZMB39Pp1M597MZrG9RYy2AFdZfLpRUCG2NvY2afBfSsi8l3xsCKiHA+n9txtsKwob5iLOC14xgzIFbDYNfErp9dz1GaNQZDdiyd5Y/tc/K+4sPbb/Fnf/ZnOK8bSq2YQ0BEr653tkkQgYgxxYCgrFVKm4J7mTvByUJH7MQ2MwQs84TCWRp7mQ5OJUJTEDacnHHYWnCjN6OU13pMISKlKgtPiKLtY0ZNCafDAZfrFVwyiveI3ksjLi9Fgqmqs5FTy70CzLPHMQQQKvac5GYmh4eJUDmDyKOUinVNcMFjmjy2lLDuBaUyDnPAFITx2K8Ja8pIutwdo2oiAdHjOwKcx14rtlSQtNFHrgzmM/7u6Yzj+7d4Wlf8gz/6R5iWBQTCFCJ+9ctfIl2e8Ac/+wWgTWKIAwCtpwBAFABtUgKueH5+Rpoi5vmAXDLIeZRcEAKBtIDSAlAiKTq3ACAluS9DJIjrpWwK0lG63NTcyBwLTbu57ztKLphCxERBU8wFZF17a4Yjr04lWa6fdiomL5kxR0ElP7LxRS8uEZhkc7FjTntupGFw0tkYzoMcw8MDwaHWXbIAYUKBgw8EnwMej4+IvKNed7gALTwjzNMsDkEElS7psXCFUz/+h9MJcZqQK2Mt5pZGWA4RfF3hfQRpl2AH0ehS1k2DoH0CHBIX5FpxPJ0AIuxWnAwvY5SBeYp49+4dyAHe//s1g/mP8bAC1s7qo3UhrbVKI6wGXDr5YHNunmfx9A7+RhIZLKgzwK8ApGcdDXh9XEs7Npuyvc32AfmFgIJaqmrkAbPNHPjGBvwBlfEVbp9rj/H7x31Uf4tiWmRm7YQrAaMPfexsQtPwmWNDtI6JGr1599oR+NvPrOftUKu7+SwiI/DaULR9or0/l5vP7kBRgoYG/t1HQD+4/5GFHYL2K7hUVOLBwl8aQEKDtCZhBItRFKutoppLaLRxc73lY27vE4Xe/drqNXGDw09DeQPAb5IkBrr7UyeuxuxVZXGou8kQ3LD/1mW3amMvboC+VkbNGSWLA5SA/+6615pylduiYfmq2sagsew0BFv68EbgoRO2N+NGpNl6iBVz8H2eKJXunAUB/bkWOLHVvZAEdnnQ4uswf6xJ233GZMwEArKumL6+DFKgJh8eX+tESmzhp/CVcu3tQGzOFy4QW1EhMp0GTUbQ3QyfzTOW7D40OA3eoxAhqgQKDOxhb30Iqjq5Vc38/5DH9wb+xrp775sUBUADhAZER7vPUZc+arru0xMGFE2yYu8x8DgCVKD7/5usZPydfacx1DbBx4XZwOk4Oez3pmM0MGufNaaGbTy65qq0iPZ0OrbzYObGqlvgMn6OsfkGuK1eYdTc27iaO9Fo+dnBu6xU5nc+TdONnMjG9D5tZONowYf92zIOFrTYeIyB2Hjc0zTdFPza2KWUUUvBtm/4H//Hv8S7t9+ikkSynsTSisFwZHZZGcFTGxthsYwdsojbCYPuCPDaPZYZed8AtQyz5h0lWdMagCKQWwqUkEtFdbrhkketDrUIs3cIAXCMLWUcTwdc113GuLLqZB1CDLhcVlD0rYMwqw6RswhlHqYFNe/C/nvJWkwOiNHhmh0ulyTXLARQ9LjmjHUTV4rHxSNGh1Qy9rUiFUaYIhwqgnOIOlcZBPKSAUgpYSsFuQIVhEAOewa+KQneAfvTE57+6q/w9t17/PE/+9/gJz/7KU4PD/j000+xX8745d/+LbY3RxzjDECKqpmrFE4TSRkWS9ZvXhY4ELZ9g7cCegZSZkxTgPcBDw+P2twtw3uHEMbO0x5EsQfwllUy+9xcMM+LZpwSUtqxHBZkTvAxAGAsU0SMHrRTL4Z01PQ9jghIwti6EDAF0vkXMcWIWtVet1aE4HRdS+2eEseIAN6zMDdM0iFaU+J+mgEEOCdBpA9eMlAkZAHNDiFGwEF7FejaD1nU/bJg2xMu52f5Pi96bOc80r4jlYIpiuTu+ekDLucNp1JA86SgTua2WE/rWqrovxIh5QSigPP5jD0lLIcDDvOCKQI5J6zrhn1L2rXYI5f9+24H/9EfticA37GZ8/jv/p627tEtsB/X4RuGEp3nZfmSBsJugLf+3Y6lfUaXTHTQh8bAyqEaqwpQg6+3Up9bacUtiBnH4vbBCj7vjnUcu98RxNhrO+iDBgp3QKWNgO2b8kzrcYEO2Syokp8VtLd9VyRsaARX/952nQaNeBd3fOS4v+N5OWcdO71PWJ+kgQUGc7+P7LWgF+PYz9yeg13im+ftJ+6Xr/9WD+DFdbBfN3A/ynk+Luvo43b3p0Hiu+/iPkfG3+urbo+nX86bAPAe1Nuj93x4CcDtHpRY8mOv6ziMdXyUl2sAvyVNWrBKIttnJfHQA5I2x9pFUByBHnxK0KcW4sODiIT5VzJyPK7b+8iA//017PdQvya1z63bb9P38Th5YLPdnH4sa2W4q30Xvbzfv8/jewN/k88YKBs7xpq23aQvxtYBAlS3bcPDw0NjtMcOt/acfYd99hgomIRm7BBsAHh0CbKLbc5DFqh0H/mKbdtuGlsBuOkqvG3bTb8BO8ZSpHOi1RmYlMYKTUrJACqu6xnBz+07x+8ab0zxpZ1xvV4bGAIAs+e0c7GxsH/bOfXMwI5aHaZpRgi+gXRzRYkxqvtRagXGVpA9npcFE2OPAevIa2M+2v3FGJsUaSwusXNr0p/KePf2W/zFX/wrIQ9Mk81Vi7ys3ErkGtct6zwT263W7lqelXRkYUTn4bxE2s4JI+sKIXj1nWZhGMAMbzsOVxRmOC+ps+oYRaVCtVawB+DFV9cBOBzFHWU6BqTLFZ4Ix+MBKe0gQFxT1IWGfIBnAXiuVrw+LPA+4Gm9IriIwIx58nDB4d15x/maERwwxQgEwnVPyGvGYfI4HgQsXlPBliRQCV5AuAcQSLTtzgdh97kilYpcxbqPiOC4otQsBc4MoIqL0MxA/fYt/uWf/gmeLk/4w9//BU4PJ3zx5lM8/ebX+Nu/+Wu8/gd/CPgAV1l04yGCoOlz9BqP7bIiThJ8heC18d7xJvvHLE4500SIMeByuer9wEipYJpmzMsB1+uKw2EGAfjw4YME9M7BRYc9M6Z5ESvUnODU/WZdL6izB/sAyknmlAvtWoOCdLNlgM0CkYR93PcdOScQSV1PSnJvn88XnE5HDaYrct7giJANPKnI24GBPYMdgaYZVBLqvgF+AjnCuq8I8QiPiqJ9JeZ5Em29Ml6VoC3kHbbtiuX4gFIysna9JAWEH96/RUoFh3nBadZGNSrnIWVT5Z7y0syMJnCQYrHDdABvQkIE55Bz76xuRIT38v3CKv64H51l7nKFkUEGMACGDvTvi3rHbMA98Fc0egu8bjZtapbBXE0f3+GT6aT1pXL71doY1S6nMIBCCkh74NJZYyvu7V9/D5x6hlxu9HsM0DIRtfTgYwB+RhKNYLWPZ3/uFu/1L+nA3mxM7dfSB8WImMbh3o0B6iDBIMWbrr/HAgCrUSDCiyCuBwdtojRwKI3K0Nh8k3bY2FS+PUGnQI+cMszDGNsY9IBHiztZ9xi0GtJhqAYgbt91D/wb8FMGGeiBIEz9YNd2vMBWU9LtOF8EAQP4ZK5oqZd2oSxjIVlVG1dGr7se59moROA+KV9kQkYlwscCqI8DVr69nnZvKulnAUIjjS2Qa6Nx9x3DNbDvHOeJyftuQxnCKDUS2VonDmR/7c5Qdt3tdZJ9EpMSZpaeOMWESfoNQ1bR6tTECltudGP8ayVkV0T+47qd/nitxxrU7/v43sDfWGQD7sYAj/KbsUB1rDi2olDTgxswn6apgUsDpcZ4WxW5fZa9x8D/KM0ZWWyTuNigLMvStO42WUYAa5PYZDkPDw8tyLFB3ve9nb99hllkGtt9Pj9j35NUo+tDChu3JkUysG7Hsq5rA92WvTDW3XT0xq6PAPw+qzFNArS2bW3nNEaGoyzHsgrjRmmfC/QCZRsz+4yxkNgAgwVINn72+tFqdLue8au/+Rt8+/XXwqSSazeZeOYSwAVARSCvBYwM5xnOAZ6gi754TIuTp0NwAc5rdomHaN6TpsqrNPVwTmQRDIQKTD4gc4EP0vGysJPOvOTEe94Jy36aj6L7qwxHDodlwXo+4+F0xPlSNXA7wc8T3r9/QsloFmgxeMQp4mm7oEIKSQ9xQq4VXz1fUXbCEmaEWFEJWDdpRPXm4YCT34FAeHstWHNFZQFmyAnzpJZetQLkse4Ja67Y26IGgCT7gKr+RtTZrkqENWckZoT9ir/763+L69tv8Z//k3+KcjjhD37+M7z98DV+85vf4qd/8AuUtIO4whWS6IqlMRm5Lg8zRxy7DwG0tcHqQIgsI+gVVDCsBb0FqKZ9BxHmJeLh9ICn5yeZC0GyUtf1glwKUsna6bjqpg05pspyHau69jAA5+BiAKkPcpwjUsoI3mE5LGCu2LdVmqKFiE8//Qysza9u7HqnQwMM7AKIpFkWtNaDNCsi9ehV3cvEfjUVab5nj5SSnAMYp+MRUFeNp6cnnB6OiNPcAHoIEdV5zHOEgFEg5SQg0TlQAZArKhg0BQE0OcHPCygGlCr3rDX2SynhdDq14D/n1EHU7+RNfzyPccO7B/221d+w/U4tAAewP9Zf3QJ/06Fr8Mh3AK19BwEqMeL2v5HhM0A0Av8epIzy03tgdP9dssbaqd06zox/m5Xmd5F/vYizH59lQux9Bixb1mJggT/2neODyLIX3MB8m1t0y9g7p976gCzy3CU93/Ud/s5q9T5b0wBiH0j5q1a1cqTGDMvzti72mhBHpIXH6hA3nOLLrFD/t1k3Cvjjm2tgAeENuB+CKnu+s/SdtWcMgP2ekW+fPgL72yzYi9cN33HzZzgepxolbseEF2P9Evi7JvWx54187YGpBcN087r+921wMN6/IMmNwQ3F8+jA/2OM93dlJgDtL0Ake36lF691fBusyjl0abWdXxs/m5P6P6/BNesx2isBnTttLHmYFv26E0icACGOXYSi96rD/Rpzr2D5Po/vDfxNFz5Ke4AOCLuetzPHY9EpbKBrd8QZi1aNgR4LWu+ti+Z5vgk67HfWA2AMPgC0IGGaJqzr2l5j/zYGyDT89v5xgtuxWdBi52fHtK4biHYwi473PuixjMBYcHyzgAzg+h6UW2bBMgIfkzt5H1QzPd3USADA8Xi8KdizyWIbnp0b0C1PLcggolakbcd3vV5bjYMFXWbPOk5CC9pyznj/9mv86//hXyHvAsZaQ64qkpUQPGJgBArS+IY6Ox+cw6ydXQukILOygBxPosyH9/AQvTu8aKxF689YU8G1FNRCmMgjKkMzxwhHQELFXlicfJYZFAO2nMEV2Ncd8zQDBOzrhmmecVwWkRKBEJ0XBn2a2uZ2Or1BSit8zUhJtOggL9p7CrjmhIxZdOBxwl437NsVx+jw6nCAp4qCiOctI2m7TUcVk4cyuYRcGQUOa5biX+mz49rGYNuRNyAsHyP6YQbgCKlUfPPVt3CZEeHxL/7Fv8B/8U/+KX7xj/8xfv7Tn+PbX/0Wn372BebJg4JHLSwdYisDwUnxKxHiNGGaAxj1JhNlQbL1qjA9YimMZTmCSKQmUmwuYEjWCMa6XqVhWtpbrQycyJnIe3gOCFMAw+GTGMSNKKn0hrx48jgv3YcrixzMqcVhKXBBOqQKw1X0niOY7p1Ack872cDFYShimqJkq3IBBckkVUgtiMtSVF6jRyHAxwCPgMy9wLTVEeWC61UC9DDL2ofaM3MS0EiQlGoC7xlcCqZJHJ22UuAepaCZnVp3Fm7aUEVUKPuGgoCia8Hlcmm1E+u64vHxEe/fv28MaIzTdwLGH8Pju1LZI+AfASoBbaO0dLmBz1bQB8N13LA8qtjN2hLd1zYDcwbWLAApveBVX9+AvezwAF4ydL8L+LfDacfQnwP3TMY9IB8/wCw6jVlk4GZf+1ig0cCmEgWkmVPSdZOG8/ldk4VAKrcT0qSPN2lBPAB28KR1DtYN1aFlDFomZDg/R6Tgf7h+DSDq+8YAkIe/hyAApETGMNAWUNg86nEg62FQA2bUALQc421gKCCabsZoCKC+C/zju8cTOuwvwHY7xLG/whA8NPmYav9bNmD8XB0/p/IW9Gsl5RJyHe+zYswDaGWozaqOB1glj9TOqwcmaDa0Pcj8+Pl3kC3XjNk3T32bGyPwt89pwcLwHePlIEJbC+SJYSw05eTUKIFIdfranbsOZiLG7qMFo67VJ0gs7eX8CM0Q2L7rJjgbr0f7b59hTo+hul6PAGawORHeXZvv8/jewH/s5CoOFb077sjyGjgdi/uEjd5utO1AZ27soE1mMrr0jDUDzNxYREnPd+mPHYd9lsmG7H0jcB4DCvOfB26zCGPn3JFlHxddA8HNgcE51EqN7Ywx3hT32mS04xrT0GNQZOdkAYoFPeM1sHORc4vqx1tvZEpWzGvfRXTrWASIZMeyDsYIjlIuC/RSSjgcDjdZA3M0sjG3QKgUZf+54O3bb/Hr3/ymXUMPIASP4CI8EZxjOCqgWlG4YjfwSg6FGblsesOp9EEXKTixzgKLawUTq1VhhYNIemQh8iAfwRxQoE4/pJ2bIQW4lWSRYxBO84LL+YpUdl3DGTklBA+c5igLgt6YJSfR3AdCiQ5xipgmj7qv2K9XHI+vcN13uGkG4oR6XeFTwTQ7ZC5ACHgzn3CMHpN3eLpsuGwZiR0cM+bg4FxEyTtSlSClMGHPDOV8QeRE+tMalah0ivtCZt2LS5Xx8gRwYbx9+x61FPziZz/Bn/3pn+EnNeO/OPznOM4zvvn1b/HzP/g5zFMeEGlWLQXsp+aici0ZpUI18zKvpchZpC3THCUwZY9lOdyAItH+a8BdCxyZg0+Fcx7bJkHAFBes6xWshIBk4kh082GCc9oxGOqakDLYiR8zuICLnPeyHOFCwPl6Ea9oHwCW2phpmlEKYdV7RjJKUnBccm7oS4qdMwylVCKUKODbVZOlOcxTxL5eEfUev1wvCHFqjHvWzuNznHG9XgBoF/QQACZUkmxASQlxXqRWJiewOgFVrqi5wjuSDcCLywN7qWeI0SFUj7RlzMcDQA77trf79+npA8SjnppDhK2DP85HB0h9jxOCAG0T7b1VQN3v2zuH4LTjp/7snOsMNAMsiB+VALYmVDebaQf/9yl2ZiEkChsRpQYDRC82+pfZg+EbDMjDNeZ6lHna22zfsGMc9yXb74pKwQIR4MWjvoOhfhxWSzWeI2BlMiat0e/S/wjYUxA3AFkoaCJA+7DcAvcRWOnZKZMrDHMH37dBigF7AjX/dMswuva7G3J+mBNybWu72gLUPBygZEr/n6FYaVZodo1youqaVoFCVcfC9V9juEYNgFqQqP0yWOHczXjrwwTs9s8BNN/NEsVPL2U8NzaeLO5rRTvzmtuVFcAbBrM+EUH3P/QrrRlAenEUY+zXgo0xauuHKnt3HeUojMEg6zsfPZOg627LKIyyNh0hIr0v5bXO+Va0b7I7O1Zmbbynnd/l3pUzd9oBmAittsQ7h+gDLFLhu9Gw14DMDUykQzVGxFCba6GzOarBBDPUIltnrk1NklNuNB5JTSSCzNAyaS8G5+BKkXvN+25G8D0f3xv4j/p8A722ydsAMHPr/ni7YHVgbMAaQAOc9tmjY48BTfseez/QJTSjm4yBYWOxx+Zd40JtxzCmeC1LsK4r5nlu4NjAKlF3DxpZzV5c61vx3libYEGMSYLGgujRBcgW7TGTYXIk5u5SZMHB2E133/vY2kY39gAYGSXbEOw77FqOWZLxZzt+O28b31orjscjgFsmi7k39Mp5R9o2/Pmf/zku2wpyhEgBTivXmSuqgxTMhoAQxQYTqEh515tYYDwriHdOPMwBqCMPgeBRC5CqdCSkUuG83EyhstheEsFFsZDMnDBPEQwg+gk+OrgQsCXGmgtqytjTjn3bEPyO4+GAvK/IToNatdrKe0IpGefnZ5Q9YZ4nHB9O4FrwnBKm4yMYhNefvUZhxrpviPOMx4cFVDNCJBwmh3J5wrZteN4TwBHRO3gWpqyWii1VbIVRWAj3yiK3MYhGkDHMJGAYXNXS1MGx1TswxNqvbzjMsig+P3/Ar38LvD69wn/zp/9v/OFDxP/uD/8Ql6/P+Oz1I+LjQa6ZF1sNRw6FK9ZthY8TsvOYo8eu8yJ4j3lewN6JtKBI9oNrVbvMSYCGMoqiey5tA/U+IGrxbggSKKR9l67LVetRApDSDn84gass+NJ0LANV3JIYuoLmHewiCA7rZUWqjPnhAO/Eu75WkuZtQToBO+/wsDyIzCZG+MDYs2SxEIKkXvUPF3m9uLQQyAVU57CvKxIccslI247leMA8zeoutCGvK+Y4yZhsG5wTe1jnHJZ5UcmgZPr2soGrdCee54i6rQ04+cpATgJggpf7qkpwmCuDcoYrGSmtOJ5OuF7ECSvEAwrJendaFqR9l+t0+fHaeQIvmU4DUI1J1ccNGKY7hr/93FliY2k7ULz9nPaaxhyO7L0Bf81GVm6WiQMebMf5XazteEoSkBmI/10pfHUW4TvzDHQbxhGo3LO2N8cFbuzlizF0t++T86YBExs32Uk8A0EvjtjAPRm7DHFKofH396C/Xz8Hun2OGm/bIKoFczqYMtamKq3cbImHEUALXMZMQQPuymLbZ1lAYB/axkX+czvC3H75sSzL+Bq6mSu4ee52unxcw//dv7uXAA1ZHQvEHEn/k9urBaOz7+drxxRor7mJ3PQcaxmDkfoiiPiurNVNpg1V7glWTGA2vneDJs8zQujzZiRv7WfnXNPo2/MA4NnDOcVjdqAKqu1ebHIl9PuOG3GrRCY7FK8SWZLCXDCGRnZynSoriTHogMZwz352pESn1V7o+fgBV39sDH/X43sD/9GZhrl35B1ZdgOwxpZbVG6Wlwa4DTyXUnA6nW6AvQUVMua+fY4x1Aagjb02wGyfOxbG2ntH8Dt217XXjXabzIzz+dyAswUZFuS0i823PtH3gUVjPomaH76x6xYwEFErvLXXWqBjRcimzR09+O24bHwvl8tNjcC6rnDO4Xg8trEei2zsPIpqj+0aAWjBg41/CKF5fJs0a1kWTNOE6/V6455kwUSMwuj/5b/+a/zbv/w3oFoQnLA1js0WsqpempCKNCRyGQAKfBDQxGABMHYtqrBhzGKlHsiJdaETe8ysZp12nI+HGRMcntcdqICfRcpxLRnHeRL9fWJcnp/lNnNBtr8i2l3HjLITpqA9AJxDDAAxw3MBoaLWjCkEzNOCw2HBt998g3k54rAsIuvYVnEK0j4KvItkZgqymVyLQ3YL4hKAUpAuz8jrBXABpXrshQEnjjQlZzAcSq3SwKvWtrk6DYSqrhjiVtSLs/q6rQutY9X2Mp4+PAPV4/jqgP/m//MXOJaC3//kc/zdr36Nf/jqj0BeMgqirxQGUILGHlh7r03iFESICMWjZnXugNMaiIK8Z4RoXbtl5YvK0FwuF11nxNe+VsZykPVgihExBmzXDWGKyKXAHxZQqcrSemE3vbB3pN7WhStSzZiXGa+PJ1zTLoBJN6Xj8QFFexOs245cgHXbMLGw4IfDAU7nGRXSOZhlQyxmKqDsGBPCPKFMEyIkA5ZyAZFDypIF9CFgX6VoeNKapG1bMWk3aTMEsHXTey8ZhH3FjFmaw2RhdMVtqgJFN1ZygJeN7XPn8LTv2NKKkycc0w7nPICALRecQFhQ8f56Bnmvv/vxPmz9GveLkcCx9dfWOlvLpAHQrcxllAbI4yUTPzLhllFgFimWdde9ZfyNXNFGSAPsZpagjGHBxceBPwANSvqmfnvchnWMIe/ygp49q9LoDmiSSwCwjsadIYZkyuw8m4ZePdeBVl9l32+PcQ8cQbvwxoSPQZB2m7x48Ed/cROsgbTgUTuj3tdmKF7nWlHpVgvdMiHD93xnAKTnWCFMix2zEr6KcVXj3T6jy42kU7BptY1Ee3mtXwBdYFykYcHIPWj/rj/f9Xjx2hZkaFCnmUIRpdyPCbXnxu/56Njdgf6PnLC8jz8+85n7tRk1/K1/AUpb88a5IvK6frzALXnZswN9DHq9pJ1Xr2O0NZBIrr13HtG6BFuAPASnVn9jAXLVPdkB4CC9iqhqloG0jgXQAEPO2bUg/34KcHPBsv4TnpwGCiz713eP+O98/CAf/7Gi2Owl2wcNGt/RxtNA6zj5rDDWAOdN1DVIdgw8jxdylO/c+CVjqEbXY2UWPat95uFwuAHd9jrbNOxnc7ux7zoej60YzhbSsbDVXmfSnMPh0BZb24DG9JoFJMzcAgED8aMb0tjUa2yONWYKxiDJAP08zy1Auk/vjvIpGxd7P4D2nqenJzjn8PDwgGVZWldfO5bn52dcr9emw7YgIeWE6B2u6xV//qd/CtSMKRCiCyK5AIa0F6FoGk/ArDgOeBTkIptO8F4W9Sp++yDpjltzwQ7ddMmBvEeGNJGKbkJmwvNecDhO+OTTI2oquGxXLMcTsjqrcM2o1eMQF6zbBVylO/AhEKbDhNMcscwT0r7BERCCw+NraRD3fL7g89OCxMBzTggBuLz/FlGCc1wvz0j7jnXbMMcJYZqwX64ohcHIYB9RE1D8DHjGdduQUwaqQw4zXIyIYcEMQskb8naVWoeq2Rxny7JmOKjAwYHZiwyoiiynkqUMlRnXxdl728wkEHz/7hv84tUf4t15x3/153+B//0/+2O8evMGGYzZB2mcArGQBInMK+QC9kEDTZlTU4w4Hg94fv6AkisOywFg8RJPqSDtGWnPIAooqYDCJKCdpW+GBcI5aXda9Loba0w0zTOYxH3DeQ8oIy4TncCOxZSZHaqf4OcJtGXkkpCz3F/ruuMwLwi+in8zOVzWKw6HBY4cpjqBAJScUVPBdFggRedeAg1L3ROBfRRrTSawd8g6z03ulCFAzJFD2hMu64pFfeVrLSqpk/XzcrnekCVRrTu3JNIzAqHmIlblXvsIZCmEp0CQq1QxccXPnMenjw+gIHUOtNg94pFEDYMCxv5wQoGTOpIf+WMEe/cuF/b7sdYsqAf2yD6PrJ09xqZF1jm5avaMbZO1mrKSUar+25x6mE0MIhs4Ohn0caB2v2VT+4sGVnuU78hnjWDl4/akldVBCL2WTtgA+QJShpcMzRpzqEGEI6kdoyZ76ONm+46dRztWdLYeYPHRr/yRU+xZhf4k379ovOCSYbu5nrfnbey+7AUvsxotYISFJf35Maga/waL3XPTqtt53bGrto/ZIBF1kFlqGa73/WnR+I8B8Y3zo/8Zu+3a/P37wP9H5x3fZnW8c2DH0kXd+ZvP0VkBADff+zKAbtHodwJRsvNE33duxnt4jK5YLbPGsoYabvE+ANDarSr3wojlutHM/diwkivlJqgiEve5njmT95jUpwW4ZBjKt9fHeLcuEYFrRc5epZgBXj39rUBdmplVEDl4SAD/8XEThQFI5HPB3Cs1wP14yPz3P773Sm9gcbzhQggNEJprzX1jJ3uvXRBrLmUA1mQsVnx7X8Q6svUGxke2wbIBBoat06wB3DEDIRZ+Xa4E9IlldQsAbsA9gBZ8SKfLfvNZ5sHAkwHxsfjXWPCRUR+DCvuc++JaO8YxaBhvNHv9tm3NNWmUSpmDkI2XFTDbZ9rGOAZWMp4erCBs27YWpFkWwPT9dpzbtt+MnSeH7XrFX/3lX+Lv/uav4QnN/9yYGljBEUS2Uk2nC3HsyZnhXICDpu80UhbbyKlJCc37XRpzudbmPuUiRThhwvsPz3h9OsIBcAyslyvStmPiA5bJIyNjmgM8eaSc4VCwTATnJhzniCkEJKfaeO8QSoKPDsvrB0wx4un8BI6MfTtjng9wxNjThuenM/akLktc8PTtijgf4GPEWhjffnhG8BFTiHAk6ecwTcjJwWFGhriFRD135z0igMgVzjsEcsgpqz+4sShSYFiybHA+BMmkeF0MLXXbtkAtrnMAE/DL336F+fNP8f6bt3j8y7/CLz7/PVyenjG9eSP3m7L+QEVOG4rzugl7TDFi26VYmUsSeU4MqCXBETCB8Hg44Pp8Rjgs8A54vxfstaDuOyhElBBwvpxFagfZo2II2pyk9nufRELkfUBJG+p+vSGbOAvj6sICmmbAS2C554IQZxSWBf1yuUgAHwL2bcXxeELJCXBSnxIU/OzbBZhnpJLVKUkkaOK2QJJlIAIqMIWAiSe833aUlHA6PYCc9PKIXtn+5ye5ArWCnUOM3ap4mrq0MeeMvG2ozNjXFcfDAWGa4GuRxkT6fnISMMtnJum0DAJ4xynO4JTkvqsV7B2YE7gU1JTgXASYQJ6Q6o/Zx1/+Hvfwvtmyrg+dIbd96ta1x5xKXgKOEYyPr7FuuqxAX4JvXY8NDL0A/lr+eQf875nHl+fY2egRXFlxfAf+IyOKGzBuAXKpt6ynAH8LmFSq1jA3D2DsRjBjRyav+QijSwrM7XPlcpDql+9f/RFYaIfGfHPO43fdH8kN0z+cY39/B6XG1GIAp+Nh0P37bVyVZf1dqOr+OG5CmI+872Pjd/PyEf/rgY5z5QaUGxbA7XPf99GOXa+XBW4fezB/5FxfXCutv/uO47glsvvc/fixWfA9uFfBgei2IL5lWpQQ/FggR20+68wm2//GmFcyab2DtI2rLAQORT9fewtUu9+UIKhVg2S7/zpBTSy1iOJJpLUjBGCsnePR8+d3PIwwHcaf+q++10fY43sD/1FiYgDfGGYiahIaA6QGPE0nbsBwBO0551YTMDbrsojNQDKAG5Z7/PneQcc+F+hZipHVHoMHc+oxAA/0SWWg3yaQFdfadxm4HtkPe86yB3ZMpZSbpmd2LAbWx066Bt7vz8fG9eHh4eb7x9fZOVn9gfUPMFbMggjrVjwWE/dAqRfpmqTHwP7o9++cWCymtINZXEi897iuV1yePuBP/+W/RC0Js3cIUAsujYSZuXXAS1k9y0nTWlbYxhXOR1TSm9ATAgUp2CVhJ5yWhUlQ6rGQAJhlmsBcEKeICka6XBGCx3GOCoQrSlrh4glTCCDHwqxGD8oZh2kCCAjTjBgCeJlwXBZ8eHrG8XRs0f6edpTdg8nhKRNqSvjw9Awmh1K0OZd32FPC5DwO3uH5csZ1TyhgPBw9ohOHmev1glIYh+WE47KAibHvG+q+I6UdjsXKNJWKXCqSzs2s3vqlsV5abE6ubQyuEgKxuOFUp2xgZ9Flbjl82Df89ddf4YvjhG+fr3j74T1qTmKNSgCxFxYRBLdVxECYSsGhEuI14cEByBmhZCxzxMk5HAiYQkR0wBQY02ePABPiNOPP3r7FvysF08NRgz2S+osm7xM23Aff6ityqXBeGKF9v8JNEiASi6RHWFBZIckxSt5QETW96uV8dWzsvkn7Lgs3oA3aPNK+IRwdUmEcDwvADO8DOGdxwvGzFhQDXEpjEtO2YtuuKMrM57xj25I4frmCnEW+F0PEtq6opeCgXdDtmMwYgZnFhWlPQqIWlkwHOdAUwJcdTICPk/jKO0KuIqGjEOFRxAG0sBxjyUDWQAUOgSYULd6sRfpP/FgftsFZjyir8TFGUh6s61AnNppHvbJjFdo9vQEGfWeVTMkIACpXZW0hWn4F3lmliaxFkw346/1mwFP0/rca4w7m0H7GAE30UG/2owZwqJtjjHtaY+YHksxkSo2pBMGahREBznd5iv0JHFCqg3deBAhOChW9ue6Qa+PfjlM/2f7d4G/tfRDGLId1qh347UFSNYBjDc5BkAwebhnmkX12EAtOG0P7CPpdf2y9lA/u4+9vC43HzAsAzXje1hi8QPntmtrvblnkjyO0l78bA5iR+W6g1LIB919997nM99/YQ5Q+z+TNNn90JG9OreF+GxxzfPpItMPD+No9JWvcbeDa3XFkTyc7ZvTaR5JCFmXv9ZqoPZQQX/rt2ln4NljqY2JZvVIrUrB7WDsds3S/ZZPDWcBOFSUZPuzHHFOB81689gs3KaHTe5RrhfdVHYG4OVJVJYkEQ4naodYi5J+OaxtFuxXGi/di7rUr9YMePyi3y8xNP25sO9DBvDHf91ZjI2s9gnpblMeiUcsIGOs+yn7GaG7U/htDbgGJ3aSmiwc6s2/fZa8xyc5oOWrvNb2tgW9rpvX09CSbtwYqtmnb36Z7t8+01xFRS+Hb6y2QsfM0Fx07PgsaACmGTinduPqYtt8ai9k4WF2Bvdd6JtjrrV+CXU/LjmzbFQDEkWWa29hZfYddL5kLV+ScsCyv8fx8RikF5/N7bJcLvv7tbzCHKNGyatwKM+A8HMsWDAaidy0I91r9UkmlQRC9MqWk2k7AeYDIAy4CsNQvw1EAM2GKDofZI3oHhkNYTqBaEb3DYZLuqNF/grRtyFlkQoDo+OMEeGYEkgVlnh5xWCZw3TFNAW9OE4IPeHx8hPMel/UK/snn+He//hrp67dY9x2LZ2G7POApCBDT2/LDh3dY9wT4IHM8ZVyyZAamecarT1/DwaHWjOvlAl8ZlHe4kuGoYk8JuQKZ+42edVFPLKwgcVWmqghIdFKUa3aoVIukSZ1K6qrwlIUrChOec0HcM75ZN/zV3/wt/vl/9sd4/YmAZpAEq3Mt+KMpYvceR+8xTzMWFzBFQuAjHFfEeQH2DZ6lYJcgILbUHeQccik41oTZBZRcdQEci6ckk/BwOkEKvhO2vAt4YdlKp2kSltV5WWiJtJhM9Pics7SGrxUlV4R5RqkFMapFqZOxto6S1+sVXj3/pWiXxZI1OP3MCVzFXtMFj6obElWRhTARMjNKSWAXcDjMArCcBCGMjMoFzsW2sXjf+5CYDaqtO+JaImOwa5BQ5KZBLgUhigyuFICCA5ODm0664YrUSbIRDC6SXWMIYwWu2psBKI7ho4c7//gbeBFZ9o81ChgamAFNBjCy/veAJGu/DbIPhF4/BfNjo61ch/1Dr1kxUHAjKajd1rNWWKHh+Fn3Eg2gBwMvz/N2KxenkthqakY77d9V3NfZVw0cGvDv7iXWGKsyENiDnd7v6JmBEdTI2EIZyO8AHSR1XPdZDwH9HY3JUz3gbHIJY2qJWlfk2yCis6qVCMSmzR4O4ebKyzA3Fp/Hfg32a5Z7gqAk1C3IEsDZgX+XhQgItWCufRdEjGkBUf/9DVruB/sCtb8MeFoA1VhptH+3n29ePxyTflHH7z1jZkHOmD0aAzxWstyuCSygNG97UD8FC2phunWTKPdCX5OdmksTnPTasPkJBcKT1kTJqZGO48eBfRu14ffjuMs8lO8OvrTMWK2CM9OWeqBfurzqPuNCRChRnSzD2NNmkJ/ZdSBp9uWcQ3WEWruLkshthdS0e2zEuaRkBbf5gRe///d9/CDG3wDqaCVpTLZJe4hosLnsMpbR+nPc4EyGYvacxkSPbL652NjCOW6UFijYawxUG/vNzK15zlica6z+CNItm2GL1TiwFvQYCz5mPuxzRvacudvj2XGYDMgA/hjc3AdL9vl2E46e+zaWNtEsU2BBjnmo23GPnvvW5MzO0V5nwYL0BIhwjtpn2njbe+1YUirYtoR9/wq57Pjw9lt888tf4te/+rU0fyKCY1JdmoCoyhW1FAQv6S3SSD5EAVeVpDreNH4OjJNqunMpIO0SSx6IynYFiIc7SBjjz948IqDCO8bxdMTp4YjXpxMiBNRTBa7bFet6xrpJqu10jGAqCACu5zPmecLD8RGvHl9JpF4yuMpcCzHg1atXSDVjrx6vX73G69Ov8M2799hSgo8RH54v+KAuMvuWse+iCw7Bw/sonuw5YQ5SsDrFKFIi8tjXFa5mlJyFqY8egMMUAkqt2FIGuKJURoTUSbiiLknKgrJTBrIysja8YpYbPuciDFlbqNBYyzVXfLhmPL1ixOMD3r17j5/8/BcylyAA/eAJf/zZA4gCkAo4ElzeAQjTQRXAtgO1gD0BEC00VcARAzWrLKIgZ9lRUi4ahKIFoXYflFrhHOC9zMkpzrCFnJy6KjjSFKw2mvOhd1WtQNB7hl1vupLSDueko3CpHUiG4BDiUXsMANfrhi0w+OAVK0umRNpNMKzeSjlIEHnkXAEqKCkB7OCj6Pm9C1i3TXSf3jfXC5NN2n1qtQ7OiRVjLRIMTK9fIQYHlxPARY45F5HSVQJcEOtALzUHlIvIj71DIcjPpUrwrEXAVNWbfP7xavwbEczjc5J+t5/12Zv3CcwywEnDM+a1Lv8Zfc6L6tPNpaeB1yps6whgLAgwsM/gwTIR7bNGlrpJNAwg8a1POn3EEaeDCuuOS0qWyHMjs387HgbBbhn/1iirxUVGqhmxZlJAtM82KYNdEAueWhCFIdAgY7q5vdcKb0cQb9eM78biHnDVKhaado16UIcXr5Uf6I7NH2ZEY4BHxf/9mA2vMcLRGF987DECfG4Tltq49kxEm4N3gUL77Q2o5RfPj8faz9fGwT7sBRpuQcPd0zfX/MUvG8jUf6KlQm7Ovb385ts1yGmf0SUtRObUF5qNpndmlMD6NlIdvWbt+HaO9rki3/XdgdV4VHLfkHPq3MOQzjwOHGQ+1OqUIOn9D6ABqtWtWJdsEOCyU7MMsaEee4bAOZSqRAxUDgSrtzPCiwHH6HfM7Rnw3enYPTdixh/6+EE+/sYMGwA0hx+bhAaWjQUfHRbseQwHPTbUupfNOHLinw1qnvEjOw2geeUzc9PrGhtiQNsWilHf771vMh8D48ak2PdbQGDPWWGwgfSReTdr0RDCTVdg+705IAG9/4AFCqO96djl1wIHGydb5Oz8YoyY5xn7vt90+L2XM439FuwYxjGyMTc3IfNQl4yHNBay4l6numhAO/wScDgeUcuG3/727/Av//v/F7a3H3BdV6AytizylJ2zsCuOUHW9yFy1ex4ACkilCotq7crBkgoDUFMGgpMMBDOi91iWGeu6wxNwOsw4HmZ4RzgdZnzx6af4yRdf4NPXD4iTBxHwyatHLFMAJ7HsvG4bnj68RSlSkMo1oxZG2XfktKPUjIeHE7747DO8eXil7bcTKjO2PWFeZoTDjDUDX3z+Ob5484jffvsNUi3YM+Obtx/wm2/f46t3H7ARYfaE85qQqrbwVnKpoCJShCOPdduQtw2cd4TgMHkPTgLqoheZDdWKEMQzhwlIhVGYMQfJLnAVi8yiSw2TsE5FUQ4XXeThlN3MsuAyt/0/gfHt8zN+++4JH57O2FJGmE4gL0AXuYDyDuIkmYMsEgqqDoAHe4ivPLThClsPDAPKhNl5BBewXlZQCIhRgmmCWpdCNLaX6wXOAfu+NXtfVGDdxNOeHEnhce0LIkgWbtsU2AnDWWuGpGKCrj2iqV/XK5wPiD4iFQHrKe+IIWKZF8AHnI5HMEmxtK+MWnZp+NUCDQ94CVprqYjTBK5SPCE1PgnLsoBqweJIthrnNRjW+R4iUsmArmvNGjclgBghOJw/fED55BWcC6iqo3ZzBOci7j55h5+iACwfwJxAVe47cg6krDY49+cZspvGH7erz/hozLCBP6BRvAaqLQMmu+jt7mnFtyY9qbrJ25pcDcxrkWxj7PlW459LbiyiBQQ5F32fFRfqd95s0gaA5F/eS6dO0jW8ZdMbu9qLd0eJiSP34vciK/AdoRrw0kFirihsEqWitVHC77O0M0BOBYUqvHfDHi81LwLKlOEEqcTCzm8A/grQnOsOQq2ea/jT993aWFaTYYwEYNE92s7VsIVitxsmlNB7EfRx79fC9sDxs9pxt3mEdl5FXegcCYCz6/mSfXWdGWegF40b2B8BeJsYwxwZgf9LUKf8/M1cttc2OdBHxrOPQA9guHIjR6RT+a3Ur2U42r91rmnWox+vnitYbzMFyiS6fGYHUuLGpHCO5d6dpgleHd1ci0J7MB9ilH4rGMd0DFJ0X+GuuGDGba8AxTUFKisjh6j4pdYgMj4Gpji3+37fd9RSpI4wJZmPKaNC1utqvZmyw74LdnXewxsZO0+IwcN7AfbOOQTvUFkLkFlYfyKW3is8SJtguOg2K8nM7R4Wb//fPVd+1+N7A38DkvYw2YmxckC32jQQPN6ko/adiJq0x8CoXTTnxMs6KDjf9x3n5zOcd+pbvze2fwTr9rPJceyYDbzfP3///mmaWlbBgPDYkMxYufP53IMT1x2ETNJk+vlxY7JGZm1xGS6UPW8BgI2NvWYMSuz9JtGxYMxeb+dqgcEoFzL3pPtgzRZWC6JCOCr7n1rn4DGbYZvOtm3gWvH2/TtED3z1q1/j+nRG2oW1ZWZ4qq2DpOiwnS780ilHdHoC0uCksc7so2zEYMzzJN1Yc5FCVRJ2dZk8TlPE68OC42HC68cTPv/0NR6PE47LhFcPJ/ziZz/DaZ4xT1ELigsOSwSBUJJJzn4feU/CGjKD4ZBTQla7xxAdDtOMh/kAlCJyDWZc103A9ukAJo/Xe8XjsuCnv/cZSs348PSMD599gv/hL/8dXp2OOG8b3r1/D/90wXXfxRe+EAqkCC7nDfu1IkSPx4dHeHoUNqBuWMIJSBkODk/nM7bKSKUI4Fd9f64ioxJszwiO4MjLgq4LRWBpOsWi7lCJEIMqSe1AtcKkir0yvt1X/JuvvsK352dhw7mAC6ujjAWMFdIHJ4CzMIrMkhkR4aUHUMUGFFZ8KXO0EsH5gMNRmmqllNs8d84DzuH89IwpBpxORyzLQcmDjPNZ5GhunoRdLRla+gEuBWjMptBUTMB8PCCUIoXftSLGqd0XIcyIk1jhRueBEOBiBPS+mEOE9wGeWCUIDAQHClIYyzWDJrM/DAjBIwWHvHezgZRSIwAKF/hpBtSRqYKxHA5i+7kTYvA39T22XuW0Yw5O6l6yACgqeiwGCnMFF4afrRNvkM6+PkD73cFFQtl2uNK9pZkZbv/xavzHVDeAm/VIIdWQFpDXN8DT/4POTt5pp4e/G7AfwMRICrVeKFzF9YmrkAYK/FMqw+uVkaSPM8WCobRQkIS99z7cyJXsPLvMZpQUKGQfpAZudP9oX0rtv6VKrUnlKlmikofXSOZMuhcLqBLP/sHJR5sFii7bNVtLc7SBgqt2DVglJE6CjxH0f5T5NxAJDJ14FfjYNdfnnXMvLDxlToyfa/NFPp8Id9+LNsYj4G9g3bIEynrfg+7+AfY+zXQY2839mPv87Z/TQPl3gP6Xx2nvtxegnW8H/F3qww2do8Ubdm/Y7614fBwLBtpabwDb1lVybjiG4d4aJ7v9rGNBKi2029Tka/cy6/EYvAsYbYZvsxq364Fl50gzBrd3nINkaqENvEwa5nDvqGO1CMUVgMRSWpglqwPqhfqlVBQLuEtteM17Cw4B56o69wCuSmDoiFG0wLc6uT4EAHWQIerY21ncZ3xGif14T3yfxw/K7dpiY4uhyVVG5toWp7E5l2UA9n1vjLi9brwBjb1nrihlzCBkVBam/3Q63bjXGJtPJLabNiD2nB23DZLJiew19rvr9dpeP2Y1aq24XC5tE7ZgwEDKWIxXa23SJwPlJqcZ3z9+f7sQd6DfPrd7znZpjp2/gXZjLGqtOJ1OTUJk426vW5blxTmOE2n8LpNKWcBh2RK7pt57lJzxJ//dv8bTh3f41d/+NdbLBVwSPAHLPMGhilyiTdoiXv5ebmbvxJe2VAGcngScCItbULPomL0neCqIjjDPE06HgMMEvDpO+PKzT/GTLz/HL376E3z65hGn44zJOxznCXOcMJlshIVxcKTFrSzFRFyFUedaAO0AS1AP3yAa16DZJ2KR69i8cN6DfMBxAk7LjDfpiJw3XE8z3k4fMNdf4Dll/Orde/z6OOP4cMX79x+w7xWXa8KadjAYYfLSARgO69MHlAqQD/DB4blcMZHD5AMqPDIIWylISTT5cB4Feo9UqSewLo7OSSMrY1maK4JzmMgao8n1r/DoGwWwl4pvrxveX1fUfUe5cmMjtdCibbBUjQVyqJlVa6/F/H7U3loAQABrA61SUVkLiIN20iRhhB4eTvDBCTotrJI58fiv1bJaAYzVttm2BXlbFAGRVm0ZKRfpxFt2PJxOWJYF5/MZoKJLodbdMOF8PWMOE5ZpQqSAtO4oU5GmKSyuT1QdJHcCYBcACCe1JXBiteljRM19zsQ4ITpCTTtyLViWA+YwaRFzwPFwwLZeWy1SjBEPn3yKdT0jpx1UKyhnUJJi3AqArbMwiY6bC4v8xwOoTlkiJ03YkoA+55zUGyhAtKzix03lfiSPBua57+kDnjEkUrm2+SniWX2zvoYV3QnIV00vd0lOqdycOYrJdErPkmYD/g1A2+8tWDBJwACWDPjYqbS9CXKs3ktxo5NCe4W4qAYaK2Ba+BC0mWEDyjImzhlAUz2/AdkBSAjwknsVkCLfdo8qYLNwwo6TVVtdK6NkkRQSFTgnWdlwo802zbaCfBplOFXkf0C7f2UMzBZb1qjxWtqPndU1Ca7IvJgriq8glgAAJDI8zwJCrfmSsKcMgoOp+lrHVu6K+bGxUweYL2U6clwD+BxiTgseAEivGnnRzXvuHwOk63/dBbtN1jIEB+1+uH+Oe5bKgtlSSwtqa2P7uQUGBiDb3KRe1wELYgCQrf9Aa8bYitstkCjqgFV6p/YxU2XB6qA10zk/PnSO64DeBvJthupxybUH2b0rc6OpUbgqHqo6n/p5WUBiD5GVil0oM+B9BVFFCP38Ss3N3MEyJc5xY/clU6ZzzDvtp0MgZ9I3nau119nJfeNgDX2b7GlYR2zcYcGozZ8fAPqBHwD8Dbjaw/TrFq2NjIgBx/H5UXd+f8NbwakV69pEsYnofYClW62ZlrHQxqSNDa7sfeu6Ns3s9Xq9yVpYbcDoTGR/LGMxnq+NgX2+6ZCN/TFW34Ijk+GMRcf3n2uprpxzk9IYILfzsyDBjvt8Pt/YhdrnGEA3B6Wxydmo0wd652P7fLs2lsWx62WfPQYZFpzYgvPh+T3+6q/+UjTGTKAwY9tX8LbrBPUis4Cm1UHYiyw6DgQPBiiAvEhGgncIzIg+SJQMBjnG4+GAT18/4LjMOB1mfPrmFb78/DN8+fnn+PzNJ/j8009wWhZMMSB6RnACQIN60MvCUeGdR3VArnINvYuyCZSCWhg5SR+C4D2o2TQyOAag7gI8ld2ram9JOvZzmMAIWOcZU1jwcDrh6XLF8XjE68c3ePv0Hr/9JuLbd2e8c2eE64ZagDUlnHNBDAFzjCCumJxD9B5uPgHwyFXsKOEDYmDUmuCYkNQtoXWhZbEVJEg6UtYb2YUFFzC45O6NTZKe9Gr5yUXS/iUxvn4+46ILu/cBtVTARwH+tYizSmV5j3fgIAsTl9KADLxH5QKqGUSxL7jssG8JFDxyyQAk+J7mGdETwBUuSNOrfdtxmA96bwrgiDEgaLdiHw8oSWoMnA/AfXqbNJVdGcfTA3La2/16OByQctZsn9w38+GA0+kB0Xt4BjjvoDiDQwT7AE4bQFGlVCw+/nAoJYPihLptWkchi7zJBJ2TjFIIE9g5cBWd/nq9AM4hBlnHnp8+NNmiuIklyRTkgrDMQIwokE3TRQcuFS4XsSL1ojFlVJEQlSSFj6RSMaD5Qjsf5Bq6bnn8433o1WysMm4JPX1KQEzRzd1AwfgHsA291NJcxZqbB4BSLACQRn7MIv3MGlynJIFqqQV7zkpU9YJbsAA+cg7BBzgn9xk12WvX5NsG75wDBW2u4DwA3xhZAz2lFD1vjxBkfS4WALMSFeTEQEEzBlY02CJ6hmh5SOujgm+yB9bfM1jub/1yA8E5MwqyFALrXhCCBzQQ8d5JzQEkm9sU3daxlSuYpclfKYTqbgue5W+PgZbW5zpDXqnAAqLKak2ae1akKtgrRAhOMmFMUiDsnKzXzohptX8urEX6FjxXtWdswH6cXxqE9BnZHobN2vN2gbl26cnfh8+GIFVClREw6xgMZOl95mQE+7nI/K4qScu5tOZuPcM1ZAXQMZdJb4LOoxb56PyUOaDaddW7s4L/UsR9TeqSVOkRPEIMw/x3qvEXVzy7znYdqQW+ToKn4VgbVhvHGIBJsCoXpFJaIAgI5txTkqaPXtZD58bs2XAJakWoUJtkL/1ZatV9VIwkkAkFBbVKFlnGrbQAvzIjxKL3loP3Era3zBSkgkakegVOAwZzSnJOVyyWgAJkmU0tdv+BQP/+8YMaeNmksAJcYaSmtnCZNaUB3DENMwJKe36sGzC5y77vYqnnJSyPPrTIaLQFBTpwPhwOTQJkrxsLee1nY6yNubmXGY0SopQSLpeLsvWQotcpIAQHog6g7TNuU049wLACZwtAxrSxsfFjLcE4PqPUyNg/yYpYkWhArXJsYyBiwZhtWMZgjLalY4MvZmmqZpKEeZ5hnYYtk2HBjncee07wQQpea87YUwJq1c68Hj7OyDUBXHVN6AwDuA6AEMh6nMSMZXLws4MnwiF6zJN0+f308RV+8ulrfPLqgIfTEZ++eYMvP/scX3z+GR4fH3CYIpYYsMRJNHZgRE8IXlZ4cg61VOSsul8f4BzDeyfSDjACBcAD7COA2lrDO+8Az6iFgKpaYBR4L4tTAoNTQs1ZeDof4CYP/+hwWiY8Pj7g4fUbfP7hCV+/jfi9Nyd89c17fP3uPc7rjg8frvj66QLeVgluS5LMBgpcJewbI9cq0hPvgCSAL/iAPe0NygFaxMkQdpBsj1e3/orWR5JInyMgcQFRkT67JGyDESrfbCv+5G//Gv/ntOFVntuCZVkZhuiEqRLgZXcUqcGsPt4MkFqBVmFlJEXqwFThorA9c4hY94QYpJ+C9KaYxWu+FByWAwjWiTWicJYC8WWWQlZmuDgJa1uqdBoGZNGuYnlaqDQdfAgBBUJarNsmmSfvkfaCwzKLprNWbHqfxOCwTRFfgbA4oHgWZyXv4WJEZimWTRzx233HtWTkCnBlzA8B5+sqBcYhirvVvitQZJyvK6ZpaVm1lHa4EKT512HB5XoWa1EfEecZH0rC33LEJ8vSdNCBREsK50XfnzOil2YxxWdhn0mAGUFcW2IIra7DCiddmH5YCvg/4oPvEFOT7CuobUEe0Fj9m9T48JM9X2sHUaM0orvzcNP8llphHXkN5LfnuMuDJBlBjUluAccN4B//2Et6cKJihRFBduADaE2IggC2QkHu52+0PYYsmKFVi5j030SuMf4jM8+QNdky8PZ7Zi1kL9oxvThUz6Los6JjdOAmbl59XSG9luSko+ktqP2ua9WvYwPew/UaVQMNpyj4onorewF38NjnjL6fBitLCzAtq9JJfXmW+3jbJ3H7Y5/cRl9fxbdP3T86wTtcpjunneHR/j0GvRjH5raHRHOuGsejHbkewov52TNHbY625+vN6VhgxDwE0sO1GT/TDXUCt+c0jEX7vPGPzvwWYBkD3h1w5HUmM9Z7nfu9TNSzwXZcLy6Ek8DPsK3sl274uWcv7sfTQUgmKhWO9GeyayAHaMcjgZyMHtkxscjj9Aa9XQssiP+f+PhB67wB/lqLMG5hASAs3KibH5llK6o1QGtMth8WG9OxmjTFAO7z8zOAbifZm9z0rrmj1KeltdRpZ/TwHxmtEZh3bXsHziM7b98xTRHMRSckw3RhYw2A+d2PqfNxLOz8DYDbpHLO4Xg83vxuHCOTFNl4xRhxXc+oBZjnQxsPA/IWTFwul8YaWubAmETruzC6GllwMhZej826JKUl7js5Fbz75ms8v/+AUnJbUFETAIYPsqHIpiS2J855AcdOgrlcMkDCwJzmiOMiHVCdA1wgeA989uYz/OzTT/CTTx/w+tWCT9+8weeffI7PP/kUDw+PWOYJngToe1WFBB8kCHGA7uSAA0KU4xH3HGkG5m1hhTJBXqAyF5sjAmDJ26ZcEZx8jrOlpjqUQkCIjVnyRNLDwAdM04xjcPjkEHDZC754/QHffPsW7z8846vlPeZIeLhGXNcNaZci4/P1isSESqKhdbs0KiPvEZwH067dAXfsXGA1ZLKIuGEZBPpuIj8z92byBFgtFjJKy7J4As4A/p//6v+H/8ef/AX+T//b/zVeHxcJPkgZNwAEb0LlDhDIS+Gp6o3BUrALosZIA1LDwdcdhcV/nZywJcuyCHsNYI6T/I564brUZTi8ywXfHGY871JkTNHjejljTRV+OqCAsOaMtRa8zxnzdEBhmcfbdW2j45101AUcagGOyxEhBqRScD6f4aYZf7dt+FXO4FpQ2WEvCctpwUQT9usKgsPx4QFXYsTjCU7JhMvlKoW/UA93Zb+s62PlKk25tAC/lIIQGeu+iQVv2iVrRUCpjA9w+PNrwswJKSfMhwXeB5ScMccJ6/kK5wgHiijrDg+Hkguck06V0XtEH1DXjH3dcFzmti6AgH/+A/aD/xQPC0ob6Ic8QRhYYaAFA9x2TQUt7R6BgnW5H/JAThiD11zXdI8aneosGLBuor2Il6RRm15fH6LIJZzYrdrGrii0YSlXpR6HiBAcUL2Rmc6UbkgqJfKhSJdziEOXFYjHIqCmkHSj7t2s78CY7l+kwUEp3L6LCHq8QYJClv0ebDUMalXK0g6QvWj+m8Uq7By82jMbUwz0Hi0KBp08JwXF4tzVQFStDeCMgPce/NZKzQ1mBMngXg/Q1QgadAxgzT7znvFuwRJp8bKdS5ty1AB+ZQ1waDw+G4sRpw0hTSMKqx63mdGz4j2VuAzv+a5Hm1PoRcu1VuQktXqGnVLKirfUR79NDyG4omKUViSuJh+tVkHP3yQ5zGKqUCv3Gpc6MvMO87zI/PYePkQYaO9Bru4/zLoPDRkIAkLQ2kbuARWR9KYByXYkigcNyDVrm1Lp/SFIjnHbZQxiBFyI8L3o5GacLZskBhoOcAFEmlUjB1KJJVwGK1svxf4aZDFkjHVsQy6y+jsCCqkJhgy/1KYVxbMAaW1N/91wH4+PITj798nU/iDG31j11nTAeZXeyImMlpPX6xUPDw8A0KQ8I8sNdNu+lj6ttUlP7Gc7KQOsIxs+dhO2Y7zXv5s23b6PiG60/SPLbmDf2DcLEKZp1kwDadFGLzYx6c4YJEigMLVg4z4FZ+djYH2UENnxjAB+LIz2PmDbNszTBKIA56Qq3YKikdU/HA5NVmTjnlTmIJ/bU+KW9di2rY3TyDQYCCZHqKni3bff4Fd/+3e4XC7y2RA9fNUNJBWWojEnhbWApA4lvSXFcD7IvJhjxOMSwCljvW54eDzgzesTPjud8HufforP3xzxk89e4WdffobPP/sUx+WE43xA9AGRSBwxvLLzMPKZtImGbmYavDgigKsW0DmgSkdeUpZA6gvQFnHDFkQQ33YAxAQfAAdN0YWARF0T7CAWplruKfUJhwWLY5zmguMc8LhM+Ho+4jAf8fD6Fb55esaHD09493TG0/kKzpIyLVmyJuQFqBQieHaYXMTyOOO6rdjyjpSFQU7qSMJVNiQ5dj0nZt3A5PyKbXa6KTtI0RFBmo0UBn59WfF/+b//l/jZl5/in/8v/wARkyxKECtMclEG3ElRb5MXGEtZdCEnB1KmPfuAJ2K8+3DGHBdctgvE1k386cueMUUrkrI1gJvMz0Dfu1Lx3371DU7zgjUnrGUHwHDsMGVgrxXTsmDPFaAZHoAPEeu+NWmbcw4uRpxOD0gp4Xx+lqD0ckacJoQpojgnkicfsRwe4BmINaG4ivO+YcsFyxSxV8K+Z/hZJE3rtgIkNSJhksLyNV2lyJYd5nlSmRMa4TACG+895mmR7EbwqseX1HdOGdV7lDAB3uOaCvbCSFVawK9rQggelTygVrHbvoFLRbluiDHAHQ54WyvytiEqQfBjB/7tYUCEDVx17rGDPLTN35jCxhzCCCVuYCiXTjAZiEjmvmbAn3txLxsYHj5fsoQBIU5iURgCxuJBATripHN7OgyvmZkqhh0a7Mq5StmGBBs+VwRbz3NBThmBgTyVVmvTi/3lP3Ks3Na0VnwIUnLGageEaAgKpmstWgdRwbwjt74EGvB4SS9KzYE8vHPwcahnwLAOjQC5Aqx1AlAgV4dgjjFeO7R99HbcCCWrxIIA9lZj4FDQZbBVpRpj3HD/ueTcDemOlpExltsAcL+WOrriHoVbVv6GSLYULNACVxmPbnkqwI+URNEAhYb3fedj0NYPBKoA4G6iIsC/3x/2XQTttfIx4O/NqKQHIS0Thp4hK1r/wfpzrQznHaZ5Fh9+kpq6zpBDgkkLyiqriYTI10qRbrmlsGrs0Y5DLq/OqqBYzwJ1NXAQiZMuDo6E7Nk1EGJCmBlwGgxTH39bI8yLCc6BPADW/dyNwN+DKYOK1AAwpC4RDKBUFBbzjZALCnRuOxqkOw6OBNN6hrjPUccccKRZB8ZQHtTiT7NHfZmx+Psf3xv4W2GoAGbCvl+xrhucCyBihBCbFMcYbGOS7PmxcddYKGyM9v2NeDgcsG1bA6OHw6EVvRmwHzX39u+RTR91+wZ+7Y9lFwwIm7/92BRFjklY6G3bUYrYOporSJc8xSZDsqBl7Ctg5zSeuznt2PHZe+11AG66EMvirU4+OYu/fIVoi++CBxtLyzrYd27bKpu+tle3gjR7v9VuWPGxjZHNOGMBfvOrX+Gbr77SoIShBozmoQaQb10tZYI6ZZm1+t1Z8w65Ib798IyAik/fvMZPPvsEXzzO+PLNK/ziJ1/gi88e8dPPPsPr169wOMyY44wlLggEBOfAJnNB0U553Q1DdHPmRKG+2kKBodak/YM1Laz/s5+BgSvUTUscZ4ShIa6ixK0AB4daRK+XtCEVOwFvExGAisoTQJIdCa8ecIgBp4PHJ+mI30uv8e7dE96+fcK2V/z6t1/hm6dnXANh3XZwzcgg7AzMbkIJAnYYEd4DRBnJybnlIs2kmEXXbwwfa/raadMeV6pmZWSx8gQ41syHMoYpOvybp/f4v/6X/zVeHf+P+KPfX7AcDkDRwlIfUcKMSow976ghojiPXIHLnsA+4LLv2HNCoYTEjK1UPCPjfQbmw4ToMtJa1G2BEOKCtK2YJqkTmOOEfZcMlcxH8fEvJSPPM7L34BiR6gRPwrYkkBSzgsHOIzogoYqlWhkyaFVcWLhuQ48AYF4WVBJJTNqT1HvUivX8AWERCzpWFtZNHvH1Ec+XFdftipOmkpfpABfEL3+7XLAsExgF65r0HGLbFMXyc29kh9UfbeuKWdcaIiBxliJo7zHHA96/+xbzNIMm0f1zcGBH8NGLZS4DtWQQHIITzayfb4vswjxrd+kfb2kvD6DppgiwASPumQB5RyfWYfeKApXBi9uAf1EG3yz8mpzHzCvqUOg7SoQMoA4BKdT2EMra2mEZM1sU6OhR6mnc+r/LR/WgIutxmXbbiCh7HiQ/m9ViL4LtQLtowaVzXWZkkgdZ/41t7HriBnjR+wX0yt0OdplJ7SEFENZaUSwQUr2yNeICm8THAejOf8J+y3N8B2bavqaDYzIey5oJcCe0JAffjm8bVNxKT/o0Itx+48D43ByIzcF2YHrpaZikH5+D7f1/H5C/f/13//PmPMe9/55stHl+fzyEjoec1mc04K86fGol/9SvwXD+Q2pNXzV+di+i5Tb+eHGM7b5kwSQplzb0bW9WsE9Eeos1Slzv235vyL1iRJfrcr3aZXkSRBJAdchq3BIHxtoDLHPyI39G2Q/0nqtAy2wVdc+y62CS10qij5OeMCxrNTNMqAC2eLHLiIz4sqt+M+A/4PGD7DwNWItDBRDijClOWFcB5+Y/D+CmoHVk4MeCWDdsNObTPwJfSU+lxvbb59qEsQlq2nkAN979BuhHv95RX2/FxGOacJQm1SqOPjGa/AaQIKAHE5YFudfPG0tuWQo7btPWG0NvdQejvGZ0DrJAxAqjbUynODfQbw8LJMbsin2uFTNacFOUibXXns/nVm8xBjPW58CsTi/nZzBXeD/hl7/9Gk+XC8DiniDuFgwlk9Ri0A3jLpO0Vu3km6U4JucCD8bx4YDXpxmnwPjkuOAnn32KX/zsS3zx5hXePDxgVqee4AMCQYt0pOeDc9QcHKwBTgt+yMkG4CQrUao498AYAdaCRwAN3Dc2kSHqeG7siDAM0E1AXIe4FrBXtj8wsrqFQOeKZ4/IE2plTCHCAfBU4XHEcVtxWAkPLuAEj/P5ijfLz/B3b9/il9++R4wOxA6FHDhEYW4IWPeC6hS4uwmxqoyKMzIqHMkm7NigklpqKuCTAjyGNa7iItclqEbemPbnuuG/+tf/X/zDP/8F/g8u4Hg6ws0LrrnCHR+RfUEiwpYSNl6xA1i54nA4wsPjvIsP/brtYIjLDvkJiQry+QwXJEMyT5MwMkW6C5scxgBUiAE572AumKYZtcr9kksCF8ly+GlGmCIulytiiFivCdMcUR1hmma4IEHvPItM8Xz+AGZCykm8pqP4n8+zrEdp3QHrBIyKeJhxOhwQ46ydfiMABm2MxU1wizBWAFBSQeCAmjpLHOIEHx32XQrN5mVBrgXbngTQ1Ir1cpXu0IBK0QpyEtb1sJzAWZvZoeIYj3DOi+96LTgdF2zbhujFVABEiHNEDBEp7WCkFgBLB2c1OjiecB1cxn5sD37xA9BZSIaauEgBnYEK1qwWixtfYydLb25Xq4Dhfd+RchZmcNsbyC6lgDGCfTkIbiCflIGTnx05wAew86ik9xH6/ikBqzra8Mg61+YSYusX0eCgVgrSLuYCqRRknWNpT8hZMkKFK0KUnhjLXLVwUNawWhkpyfnF4DHPk7D0VpxPhGme5Puc1rE5AHBwXqWnQUgwadIntSNSKCtZg5wlI+IUiHklCYP6tHvvpXGjNiEzrbU1MbL9vDKjcBIGGLfN0Qx4stZWUFXgpwENw+s+IJVaZr8rnyRzounzR7D6EbLwxRw0NCb/gGqVYCz0bZAwzpX+h178/haI23GC7ahvPwMDqXcDnodgVfoElYafZB7nFixaBqrNM2fmKlGndC9Cd83dxkCrzNUxMDbWnnQsTJrpVKHgyKssbsg4aL3clsS0ABYIMrBuG67bKmSUqkLczbVhndfi8mck7LquSCqX3net8fReya2K67qpnTIjzLP66Od27wYvzcTsvrR4xnJMcvdqFkbly+TUKpl6Jkreq3KqUuFSRq7cPkeCVWpzHgC8Y1SvBGwLvlWORxCZENAISaDPD8Y4V77f4wdp/A18WxOnKQTkLAuQZQQMNFogYC41BkJH0D5KX5pTjAJdk+lIGlbA7f0NaXId63A5SomYpatwrZ3RNlBrzkGWKWg3pb7P9O455wbip2lqxzgGQYfDob12PEeT/xiwBtC+w8bSdPgWTFlRrenvU0pY17WB/luHHbRjtWDFxq5Z891lVQDRhEqWY2sLjtmkXq/X5i5k8qd1Xdv1tWPYtw25Vnzz/r04zWi6mG1xrpq+hS3utpAAgKQAnUqAohNBzMMy4dOHEx6XCV++ecDv/+xL/IM/+Dm++OQTvH444TBHkfZYnYDq2l0QzTtZQS7UmovM3g7D3DHrMI3sK5oDjunOhXXTVzgH5gJD+c0fuBbdTjor5EgkFuyq2CSSQ4VJiyTg8OQwhQhoah2O8OC9AgNgdkBgxmmJ+HBd4Q8zjo+P+O037/Hu/QfZ2CcPTA7bnvGwHJGrw3XdsO4bUtkQfJAlgPpC6xyB1F4QOsc9S3rXtLQFUnRNjJZm9SEII86MZyb83/7bP8F/93e/wc//6H+B3/uD38frT7/AXCuAhMl7uGVCKhU+RNSScQHD5YS1FJDzOJxe6QK84nQ8YV4I2/WKKc5YtxVp3yXwmKJmkopKCm2jcigiKgVAOB5PeHp6gguy8b969Qrn8wWTc5hj0HSz1w2FcX06I8eoMjsr5Af2lOGIsO8bUpZC+ZwEiE/TDGYJxNd1FaBcClK+IMYZKUtRfNX7u6iV5Ojkc71eMU2xsbC1ynwslbGuWyuan6aInBIeTifR7E8z9m1FTkksWOMBlcXzP1ZhiyYntruWHs81gjzBB49t3wBoz5So/UmmSZzBnAeX2hx9ck43xgk//gfd/WzgzgCegDxj7wz4l1q1l8PA3teKPWWkLMHYqpnOBvwH9s++19Zx65/QmD8nVq5MFrACYHU7GeRBtv9YwYE5SrVv0c+L1hOnSCOhxrgq8NkN+BdxIYs1ajGhZXllhJgrti0pUAttDa5F5Ant2EHgEBCVeeyMprqLeAIryKmofeSVqa21NjllbXtQ36v7+DmM2mX72TmRzUizPMkC3LDYcjYtoHNEKE6yqN5LoGEsqj1sTljBd9Oo9y9/wd7aU/YJzJqVgQF4OfOhfPoj8/MWuIMHeHZLm7/4+eaZgSHvwcI9u99lPo10LRli89x7TNhYE92y+9713g+2T5JzKs+BrlldljNmvhqpp+MqSXYaukpLFseK4y1+EjOXpKSp1UMStn3H9boqngkaSFC/vsbDO+oyo1Jw1UaqAvwVD4UAH6re4wl7yiDnkXSPs3Em/dkjDPfMyPp30C89N/SP3u8AxD1NPfmbhJBZFA76Hc45OKt7BOCZtRZGPq7UKo0pWZotEkTuc0PuD0tfC16/axp+x+MH2XkaqLUvNDZ+tJc00Hk4SNGpSV7GTIABdAPF5qYzauXtPQbY7bsN5BsTbd18mbk5CtmGax1ybZH+mEe+HbdlFYxpt0zA2FzCjm1sqmMRNYDGpo9BzXgM9ue+KdcIzsf3L8vSALdlIXLOWNe1yW/u6wuAXnBsC4D1PnAKEuw1lnmwMbDvE1eVQ7uWlrGw447ThPPzGTlleB+xFyn0klRcb2xmi6WNH9qiCXAp8F5u/iUQXi8Tjg54s8z46Wdv8Ps//RJffvIarx9OmGPEFKLx1AhOOu+Rs4Y1tpEY698Xm5YeHO6M1iYbynjczHS5caHFaqyFbcyaJdBFmNRH2wriCBWlJASnhUg1tyDMey+LpWNA51NKWWz3yINODp4dzpczptcnvH51wmnd8WrNePPqDWbnMXnGt++fsa4XPD484GGZcV4FnMYQUZRJzNsOVNauyA5efbRJG+BJIKAMChwsjeg8NebPkbDrKYucJ+UCN2e8rxmfhIjl05+Apkf4MCNQgA8ePk4yHqVIYSNBHGeC1y6iXsAXHOZZAGxwooGOU4QPvmXoLNvQs2UJtRZwqpC2wNw6YANA8BNcLdiua+shUIq1Q5fixGmaME2Tzmkptr1cnpvcg7x2BC8GQBxK2SEFavGmful0esTT0xPOZyFAjKQY7XytfsAyi+0cwJinA2IQe9TDQWxKr9cr/Dxrt11ZB9Z1BTlCnGZhsAgAM56enuRY9X4ev4er1M9cryucgr9UUxuryhKEVRCmOKHWgvPljMNhGSR9P74Hv9jUbMPrEh57Yduw2wZssh4MTjydSa6VVSZQWzag2PswbPzcN2hjqtsurOuO2fRZN2QDEcJ43gJ/SUUYiCqtULitU64HD10S0WVJAJq8ASSkDkgY11yk0Z4jCzKl50DS4CIFqXHibhE0gEjt4mqkwR2BAufgEeBcHRhoEwj18bZCRWt21O61mwX3lnUXttNptk/rjXwAoYimvI4OQ6xjI99tmQ3AsjkMs5kc90f5e5Se3P7OQOBwYGj68sYKjdKgj2ktbCwGsG6vvDmOO/mN/cwd8GOc3/az/t7GdCzqbRK22j+D2jTt+6NzvtVstuwqBuA/5ieGwKODfQtodDx0roG04s8CSaB561e1NmVI00nJTGRxltK91IJksAWEvZkcM0G6TWutqNYN1lKV7RcFwa7rtfgCWv2d9hbgqja+4yW2zFG75G3uynoMPeduW9qumwXNtWpPABUAVhmXyqxmIXIMTEJgSZEva6BelSxkgDWD1QLUnmH8naqeHyD5+d7A30AgdBCteNVAsj1vUpOs3ti2CQJDdAI0AGzA93K5NHBprjz2MABgYHaaJlh2wT7DNl8DmtYszD6/FXe6Xkxsx2Sg4Hq9tuDCzs0As0lfDocDzudzAwJ2nAbwR4nOWMhrgY6dn0l8xrGzczRQPo6ZvXd0KhpB9f3r7BqNGRLLJIyZFcswmKYYQOtabLUK9tm2+eSUcTqd5DlmYYqVR/E01g30Ogm7aYJ0ToFzIrnxweF484iN+AABAABJREFUWnBYJsy+4ss3B/zDX/wUf/izn+PhdMQcpLufc2Kv5SBBy03qT5kX39gK5fVd/1mOQ/7Vsw93KV0iWWwcUGtqoF4+QeznmOUG5doXC1uVSRcEZxsYyzHUKtpyLuKb7dqCLXrsORDoKOObasXxeMT8wDg8XzE9nbG9eUROG3Ku8Bl4f77InJ1nVC3onZxHCQHbvsNHj1ABhjQcqxZwtfMGUslglSmBJCHuNEARGVZWXKLe+ETYS8ZyOAgLvwRca0KMR+RSMWHHsoj2n3MG/G2/B+cqQJL+r4wBuBScL5cm0xKw6xphUGvv3VF1IZ31nmuBKUvX5+fzE8hpe/QwtU3veDzCe4+npycAwipuW0KpBd5NjY20Riw5Z2zrjjdvPsG+J00b19ao7+uvv8GyHFDK3u45G9+xm7nZAUuvkQnezzifJWCOISCGiMvzM5bDAfu24X3OOB4PN0W+87zguq2YDwtyFobV2KtJs4RGKBTVtY7ZxlESKfe3Uxclh21PiMFhVvOCUXr5Y32MIA0kDdQsGJfNeZD1FJPySN1HqSLDkgI/A0tyz+4pta7O0hXbLABVw88DGLRNmAFtXSUOIdrYqKre3Y4XMIBzmzEe0J1kkVTKY/cMESFXKeQFK+hlAC43ltFkHblKxi6ow49rUjlZi0opuKyrSJriBED3Xyfe+64ScmEQSSZ1p12lOj3763ReA33vkUBT5belSL2ZgV69Ds55JXwqHG4LNW04ASV1fBDgxGoGoeyoFVujJBhxyLVC883SkZw76STHKpnBUVnQCB8naznQG1fafQJIJoGpg9l+b1BriNYasg2Zgdu/b+dt+7uB+TE4eGmzaVK0G2Z//LnW1lguZ3GsSUn9+gcJju17Thl48eZX0iWIEYHssergY3/IWO/h+yq3ZnWlVL3H0Dz5Ze0TowYB6dD1vkvBLIjOuWDdE7ZNsqyzSoxSrshJ6tUqE7yX/b1opjeXHXvaAQKmlBC3qc8JZux7wmWVjEEcVBu7jglygVs3uJDlTHUfD1kCEOvsS7q3j/inXYtaWz0LDOx736YCFYLU6LCYS0BdgjSgZSKx0Nb9Sra2Cl8HNx+WsIm0CSEBvR/h/8THDwL+AG7Aq4F82/RMqjJOTAPHI2MxFsLa5lRKaSze2ANgbKLlvW9M9L7vrVAYkIs3svYj+z120bXjs5+N+b/34zcgbpakJlca+wPYZmuuRWNH4XGztWDAvntk5O07bcwMXIy1CcYI3jfzssDBe9/GkYhwPp/buRFRA/xmk2pBWW8v7ds42rmPDcRu54BIQP7RP/pHOBwXXJ6fe7RcexMbVobfbhwpHDJyQArRQvA4zROOUwBqxuMy4Q9+/jP8wz/4Q7x59UqDKi3s0YYb3nu4EEU777TTKLNuUrYnW3bhNiiSDUUWfk89K+OdWFIySNP0DJB0cpXPsg2XAB7SyJXB6mVcucCKgIiopU2FoZMFpqim1pFHoIKEhIoKJsAFKYi/riu8g1g8ksMyzXBxwpoKnvaK7fmKZZ7BPorGPxcEBvaSAMeIhwlZbRxddcis1wO2acjiGbwsVjlz63Kbq3RWrnC6qNmYVdQt4+JX/Nu//lscX73B5z/5EsdXByxxQaIsdq0hgErFvu3w2lwra4O9Pe1ahD61jM/5fNZO0zLX5nlpYGdLIl97fn6Gc0CMM5grSt0xw6FWaU739PSEioq0JTjNHEpgnzFNM0IAnp7OIunZN8Q4i8e9F6mZI2g9UUbOO3JJAIvGed8TxMjAFnxzNLEO5NbITzOCUToKl1LbmgMFDVwyKhFCiDgdDrhcVhgjvaWEOM9YtD4pVylclnNhUAW26ybjCw1DHWFbrwLwvJMNnBnOR1RfkYu4+uSSUWqB8w7vn97j9Zs3Uh+QC6Y4iW2qsnb7un3f7eA/weNWxcr2XL+1G5AaWVxmBVDcGefG/tXuQFJaU75BwoBmhtW/tMkAWNlp+xUpO6/ddu0I9TiMpb8F/oCh435MapnJQo54lSTIack6NDL+1pEV1PfoUPrvoRaaTQZSCrzLkiXQ03HktEbCGHkBlHbiDfTSKIXpoJ21ARaMjdcxq4AWLKK5Jhrb/vLqGikhLKgAc8nMOec18GJQ7es5D4y97X0yrq5dRwA3YPkWXL9ktNvntmjkjhi6I4vGAKZPEj2uFyfJL368Bf+3v7/NUAzs+vCnY61Ort2fq+xJaMfeJCfK9Nu/hUTrwN/usX48OkfYpi33022fbdkDr1PCpEEWSPeMnHX2zbmAqBtsjAGOdcMlAkRhJtk5y1zZvs3oEqRcug0vOdesla2ep3JFrgUu84v57BSrmDSnj38nMAFopqwz8TY/jPGHZiMYQ9Cp6wAb+VKr3LfMoMotSJKsR79XbOzb2nM3rTo5+f0f3xv4G0AEOigeu9IakAa6Xt8KdI11AjpAH99nnzum00eXnxGYjt9jj5GlN42bsd6NpdZsgIFtS7Hbd43ZglG6ZCz4sizts8dzG338LTMwBi5Atx41/Zl9h43rKAGy4zDAbcdhgYN9nn2vyYtMWmDnbuNpcisLXOw7TaZk52DHPVqAWabCApqowIZIANaXX3yGf/v81NJaYzc5MfdxCK5LpbgK25Or+MXPIeA0RSzBY4kOP/nyM/z8p1/iuExwJIyY8wHBC0tO5OBjVO0hZJGDblxcZQNCv5ktMm8ytbYZiqZW0rbCgjADcOoqwQ5AAEi6cor+VWtcHMEqCY19lYwmtQVAblKTADHgAwgZ3nkUlvoA7zx8zdjBgHdwCJhnTdOT+Owv8wQw4dXphN/75A0+rFfk6sBY8ZwzUpXxsaJuLhU5JWRWlp96vQxq1Qy1BFC5iq6SIJaAVf2jvTLfrHOPSSz92BGwb/j6t7/FV7/+NWr9pxpUrk2ikFJG8B4xigyrUMY0L0hZmCgJVK83c1/mNGPbVlxXaXJVa20dR4Vt7CzhMk+Ik9QeXC5nDYQJ0xyxrityThok+pa1k/tuR5ykyDXXDOcJPkbUwgoY+r0RwwzTnMpnWiayZ9EulwuWZYFzhOfnJ5xOJ6zXVTWoErQ/PDzAeY/1ekHOu2xczuHp/AyCEymOlwB0niYJErxHAPDw+IBSMi5Pz5gm6cNxXq/IpeLh4STfP8/IwzrFpcDHWe7tvCFlM0bwmJcFU4zYUwJpwAKI5t/O7b5T+Y/toeE8ekMpzTOyMPQdABkO7SxjyRW5cJPcFGX7Dexv6nNedB4XS+9D2Xd0NlhvbFBRP30i+FLFdrCxpQLWqx6MSBBSC77Z3AHYGP+Mfd+02RrLR9TRShk9QEs71n1r60/l2iSGVkg7TRPqwEBKYKFAojHt/ViNiKpmLEGEALP0VBLM9eaS9jAihwDtT6FOWlWa5bECFwM1Olwwg4x+HLhBNHJ/2GfrvUlOZYRCTBR9XrKaCvBJAzLWpnSKWwTkjjLUsXtyt3Pke1QF3ABDkJFLaO9/MR7tH3z7rH3J3avHp24B+8uPamCarZFcbeBZskqldcstWsvSRtRRWxuNQHTOdcmskX9s/vomeevyryYNAwmBFUQuSk47tev4iKwNzV46a6d3IZjks5I2/0xZZIy0e5BzSKW0Go5cijZhg8iEmJHyji1tYDBCKfDBjlu+O6WEdd/0eyv2kgEQqh5TJcCV0ryKoGDbt+yoQ/C1SdxI7+XepE+yW6yBRHMKtAkC7hJB7iCeSgVSbkEXqenIngqKk3vTO4/qGOzFCZFIPtlV7TwdvC0/A9T/4TmA7w38xwZYdjMZg28sPDM3C0vgNjViz6WUXjjprOvaNnnbqNd1xel0amDddPUjK25SlO401B10ADSAbmy8AebxNWNzsVHaYkGEPW9WewbOLZMB4KZr8D3jP89zyzaMbL9lC+wGN5BuIM5Akb3XAgFb1E0OZZu+ja8d+xhY2ffepjzrTfbAnHvsJjdwZtfGgoecRS5AEABCMF9oZWUKKegE1GOzfScBSKnAOcYUA07LjNMUEYjxcFzwxadv8Oo4YwoOc4ytIr9ttK63+SYIWytLVIHTjaKbcqIxVJ0RQk/LKcAniIZVronae0G/0xljqMDTvK9VB85EgPOokAWANACx1c/AcwUDg7uRc066+sFLgONUJpCzFC87WZyoAl7Zq1fHGa8fjtiyA4WIer7imXc8rRtCnJA2cSfwDGwlYUsyEk5XHiEhJPgqVTyGfRDpQy0MF70ENxBGpDVNIVJNOJC54rKteD6fUQqw7wnLYVGbUJEMWL3Ovu9an8ItcJfz72uK1Zw4J1mpYxApXdEAi0E4Ho9Y1wtKFQnU5frcMk9xmtSBJUlxWhQL2WU5Ytv2lsU7Hhesq4EcIC6Tgr4CHwm5bEhpxcPD48AK802AfTwe231uUjhbGx4eHjXDpptd6ta8+77DB484P8I7wrauYBbQD0c4HU6NMECtTRq2rWvzeg8hYF1XWW+qrLFWW7VfV3htvCdZlYJ5joiTZCxSSjgsC7hWxBCBWoBpwvP5jMfHV20tdU6yqT/aR9vbGF3e0/80px4GqgJmC2ZqZZEPFAG/KRUtCBSHnFoZ65awmed5Fp99YyUta2NZS8vFt5Q/AO+8khxW0Csgr5q3eclabD+AOlbqFKwFiZvee11asmO/fT1EhmKe86bBD16cU4IWSJrMdQSSJpUQJrIbHdjQppR0ngQEYy6BRpyAe/DTgSm3tdb7qMC6Iu07KgvgasC/AsX4ETLHKmqfIyuWHCORGi4oi0wQiWVwAQzumWXuygLJFgpJVWoEszbO1Mybd9YbZ7S4bluCnm4Phm4Av56jBTkyJva74TWGi28Ye7R9aHz0f46Zq4Gtv3stG+M+gHGT9SRt1mXE3RgUdGxlGX7XiA0bn7bX2nExAB7sbHNRn36AKwEw1yl1NlJ3IAawaxBS1YGqWNM3SP1GygmbHuu6yzqdq/SocUTYc25guWQ1n6gSKJRakcqOLQtWcWFQQCiUz0U0/pUZ3if4XQV5SnQVAC4W8c4f7kfvizTocg5ZA6JR5iXOSOK+lVPHo6UWMLR21GrUWlYDsOQZqySvB1xes4C5ZQ+dD+Lwo8GDI5FJeZ23ROYqiTYPCS8D0L/v8b2BvwFS00sZODXgPkpNxtSIsdJ2o47WnPZaY9NtkhF1B54RqI4SlPHGX9e16Xhrra2Y1Zj36/UqJ6tgfgwgRl2fpUNH5t2CAhsDawhmG+ZomTmC/1GLb1plu+CmWwbQnIeccypr6I3FRrbfmHf7vV2HUZs7BlgxxuaqNAY99jvnXOvsOxYpjxkV+247jmmKIofICagZr9+8FlF/ZnDJiD7ARY89iTsGk0T6Niaki6/3QHTA7B04JTg/YZkiHo8HPByOOM5HTPEgXXBlB5CbwHvtgsrNGYfArUBXiTJYEW4r0NU5ZYu2rPQEQtBNSUG7jxIEVI2y4Tu9A3WbqPolMN9tzXA7B6pQW1PZxqARvXMBlTPEP98pw1ARfEAEkJTk88GBaoELXpqG1ArOFZEqQvQ4LAe8enBYt7eYiDCFCWEipDWDYkS+JngmTOTgvDKebOw5pHGQbSdeJDXijBQALaSTtKrM96LgSfZBj0IFhQA3T/jqq6/x+PoVtnWFj1JoChIJV92EjRRHhr45ex8wz7EF8gKiF9QqBejTLGuD87LoSpM1j9PpJEWMqWKeJ1mYc0bOltEjlOYKMjWZjczpgpy9BA2Xq2SPiDDNi/YX2eAccDgesG4rYhB5zb7vePXq1c36YWvWePx27wDSbMaC9G3bNFAg7ClhnmZJ69YsTcX2jJR2xDghJ8ksWZGxSISEcfOWPSQgp4RXj69QmnPFjmmwA56XBWmTorW078Jm54LJi43vu/fvME0en7x+Be8c9pywa/ASQq/l+XE++p4i/zKtcPvN8LJx/0G7xw2o38t9xsxwGWRBDGixnbBxIAW59lUmrwDk9+ZywxASRPXQzKZ/Lx3QNaTXpT7dhtTAODenNHC3gqwASNdUMIaaoYrqqJ2brFFd590A4wAu7WdA99hShv3nu4FouxYNLPdMq4FC62fwUe8bNtA/gGP0zzLwPwKcto6zhSvyWjvONpx674xBwf153+wLP+Bx/+rx/XZJX5zr8Nofdo99TP6Du3/fno8Vs4/XywKaJuUZghoiujmn8TvGz6/jZxJk/7SoCWjX2j6A7boMf+sZDd+lAalMTricURXrZEvbDXOz1DJ48Ut0wo1t11FnAf4mq7Mos88lgtPPaKQgW+6LJOuv30nMLZgBumvVzR/mW9vZAYvdz7fK6tBj64xm9woJwTZK+FwlOKpKvOk9MKxnwG2R/A+dx98b+BvgNenL4XC4CQCMoTYvfmPEjEG3YlsiYcR6FTlaBsDeY4GCAVYDo22DUxbdNPTj60agPDbkume67ZzGQmFrGGaM5TzPzTXDOu3eD7C9dyyms2MZvfpNimNjaK+1Yx+75U7ThDiJdKGUglePr1qgYBIoC2xGd6JxDC0wupdR2TWygGbsI2DnM2Y1mh7Qqdcyebz79jdY1zPyfoVjiU6dRq+FC+IUQVm0eMET4IMUiTqRbXjHCM4j5x1bKDj5gM/ePOKnP/kcx8OCaToghAnW9BoEOGIEJ11QyXTrxsTrhizafG0+o6wc2c0GZQRME0gaJVe7uQns1Me3rWFVu9EW0bkXAMRiYzciAPWjFu2/pJvBUk9g7jZynA6gCnYMdrLQ+EqiOWRWa9IoQQQBDhU1JfAFcCHi1eMjLqlimSKWveBpXXGYFpR8QS7CzOeaJACxe4FI5SDDHg1hbVwrjmRwYRRNKzIInGrTOVvbdnIey+GAf/yf/a/wT/7ZH2OaNNhnIKorTtp3AdtVJQg6l+IkDKRYW87IhRF0rd73HXEKIrGowqg4bQSXtLBRrAwr9iRMz+PDaxAqCkmtyNjvI5cEAiEEQowH6QicM6bJI0QHrg7giikEIHrs21XXIMlaxTkiTgHbtoKI4X2UpksOkgxyIs1yXsBz2jeY84PcRhU575AsSMQcZqTzFQkVJVe4wI08ABi5SEC/HGZJk2sPiCnOCM6hpATOFZOuR9u+o9SCw3JQICoq133dREJGjOV4RK0FlQnXdQW8w/HxAdfLFd++fY8YJ8xTQMoS8HuuSPuPV+pTsrkScQvMNa2ogbTwfUVtA5kxAHtGLbJBp1KxbnuXG6jUZ00ZKYksweQJkv3S9acCzoJ++9oqbJ8sURlE4rLFWhjAbIw/NLAzsqpbK8pD1osKdHtAJQiYsup+x8ZK43qNRmawjs+ekxbMq+zmDmsysxIwQe4Blj06px0lZ1QWhzfHmiUoBY4rfBH9Nmxd1v1B+qnIU1UXGu+CNK8z0oGNAGBl8wcIeAdobx/mQsPqlKSBFnUjB8AsVxmoBHH3qW1fzLnAe8k0B6+1DSrvtOvwgt0fQG97XoHkxyFWZ13Hz7QgZniZfmb/SHsv811wwP3zRiKwBakD5unFtvaHh8/WIm0XQM4kW4PEFZIxKzW3Y2LWbuJZ1vFSDODKPuC902sg17ioK1YLmm/AvwXfAtLJO/gYULiKFCclIGdctc9Lan2OCFHJn1KqsviSQWAbnqoN8Yagx7IDzAxfK7yret206R2znkOvawQA50rrAWHZICLJZAOqYDGWv5TerM6yg8VEaSPw76QDtF6LiOBSAUh6qngna1cuBbUI8TXHiDkGIamiZOAqAO+lO4UOP4zg/KGU//cG/sfjsQFOY71M8mMylNEH2oCySX8EaMqAxBhA1AtcU0p4eHhogHtd18b455xbkOGcFEDmnMX+TgG9WV6ON6+lOs2px45vjHTtwltKVEDJ1G4wY/VOp1NzFmnNVJQht/eOGY8xAzA20bBjGzMCBvztmOy9E01aiOVbNsQ+bwTn9n47D5MCASLTMbbSnrMAbgycLGizngB2rhaEjN7Aadvx9tu3ePf2K/zNv/t3MmnZtY6JhasWUUaVbelN57yyxwwKDpUIe044LR5ffvYJfvbFFzgsBwTV8FuXR1YWzWvzLa5Wia8brEb0aBuh6zeBbSa6AcLs9/TcmQF4LerVhiPiESQ3rKPu6QsiVE+6oZe26TEzWKv3mSpqhTp8VMnxQTZ6u/bOOVTd9KzRk2zkurEHW5AkYAlhFv0/BTyEiId5wdsQULiglB3n6wr2AVvekWsBBY+0i7YREF0jagXINwDiRBMli7AeF2twACIUlsWFSTI0rHPWmKJSC7ZtxTxPwsZrdqwWaxQX8fDwWtaJfceyzKhcmlyFSHzu931XP2WHlCT4jWFqDbxKrXJdiJvnPtSedF03EHkF0L4Bq8vlihB8q+E5n8+IcZKNCgwfXCtsL0XGolbGNM2ijS0Ve9l0jTJJIGMOkpk7Xy549fCqjYcFKV5rLUCM6/O1ZfYqS8EYmDUYFStacwpy6CAupQQfg/5bNux9lwZizntJKTMQYkDZxBqUlMlL+97Q07u370TuEyN8nPDw8IBaq46/GDA8a1F+rdIleN/2Ri78GB9V17gmMb553IKxzuIPBb3c5Vt7kuLWXMXBh5mRcmlBQK5WBMgtQ0ak11G+DpLp62YGgkR0faj9jwUhGk4LwL8D/qYVd173L3L6h8GV2n1KrjcyMjACKJAENTCUS9H74yVJRUqMhBDgq4ovdB2TZmCpyc0skEAtYDiRR1WtFdJ12Y5L5lJpbkbSwEmQiUnWhOwU0Fvl9GCBm/3ehrddV1vfLYKAIuThd40FZYhlsmYujeyT/cvso8ci4DtQ/h2PmwDgd4L/28fwcj1Oyzzj7vr/rsDn9hheZDGq+ePfFqvXNpaKK6jr+q1Bl40rs2aGYBlyeW/JpX829yBYjDSCXnvBUKVm1JJ7AS9wA/pvALDiF/Jeamo0gMkqi9tzUpzjsMyLmBCUgj0nuXc0tW/z00B/0YDdmosp1kZxlnOSP5UB5/eGl9rePP7sjEzQ2gjcKlnsGoxrBKO0cbfsiAoT5bl2b7AU7SeCIzTRnZBe4utv/XVMngZRESIzw7MEwY6He+J7zcj++N7A3zZWr138jKUf7R4tBW56e5ORmJ5e3HGyRpq5WYLaBjsy0LagmixmBOoGuMeCWfvdWMA6SlUsyDCwa1kFe71ZbBogNg0ggGYDaBIY+0xjxS2z0Meqp+jGmgH7bDtuW5jGQl5jLi34yan79o+e/fZ6Oy67qS1wGrX7Y0ZgfJ/93jYwCy7GQG50NAIzzudnlJzxm1/+Cu+++RZcUgPItXSpkQUz3jIBNYk+3zuQC8gl4xQ9vnj9Cl++fsDDsuDx8Q1CXOCDgHDW1BwB8BCdLLxp+eWmc+Rtax5ma78ReABc8B5WbCaLn1P3IdtY1CHKUWu3LdpFYYKt06QLHlwKatF6B+dQcgZrK/sKKd5lZrHF1PvHjqdk6QRM2pnPu6GATnWXuVS1C3TwIEQApyliCh5TVKtbzqhpw+XKAHnsOSGrXhIs91RQaqBlHQwwWKDk1MsbwiRWZU7JOQgfLQuTsR3Pz88t6LasmAFpc9kyeYzX5my1Jqz7OszFAu+CMIQsLgyLZgO3TdaVeYmo+yZWgQpwm2TNEZwn1FzhnRQM2zWMcQJz1UI3kdIQOVyvm/QU8AGlZMyzBAO2Jjmntrw5ic+yWo8GtUWEyjZePbySAJQrAjmkUjFNM6ZpQQgR+37F6XSEgY+UMlKpfdyZUFJW7xKZ21XXknmeUZU5I3LIecfxsMB7h6rZv23bMM0TDoeDrGfOt4yirLPS2MzcheAKilrbmb7X1jpANnEbf/cDWaP/qA+2hP6drab+YFrxzopyY+cGiNXAzQ1LWnuhpPl8N0BhQgJC29RNU9jtFtFJcKBFJwZIREpg3iO2P9QGyuQzjdkeCSy1FWQB+0H12MF1i01byx0RohbXeucbGL9nsWWsrBfNIF1i1s7FBbHUG42yJkYbqBthBvePhd2DBGVM4WD9T1jBug1h3yP1bx2j8cKObvpEJIECyY5gAVA1W+UGsMcpY5+Nhj7vpTHjXn3zXv3P/b7ZfgYGMwvqA4K+v44fO+7Z90GfjY0Ro/L8ywD3YxjD5lJ39emimh4soc0rC5hezI27Y7S5PO6tpAy4o66rv3nYdykZyJqlMf/6ZjesUhfDT0ztwwGIRBQKtsmp248jTPOsQFr+J5e1qvNWBWV7rayfDNzgOGadJ/qZqH1PBqR4vDH+XrPuRPA8BNkYgH8dMg+EHuEALVgC1Bnsbi5bTwGbnkSSpS9cAe5BNgMItYIkWYFgWA7Wi8fkV/+BgL9oybseVNJrtpl033mgW3Aej8cGAmQxLiACYgwaZcrEHYtr7zvHms52DA7s59HKc7wRTDdvLLV9h4FnA+4mKzI9sIEuA8/TNLXMgXX7tZtlBMfX6xXGtN9r/McbxLIYdkzG7lu2wKRHsqE7+OBxOCwIPrSAAOi1BvefYf8erU4ti2CZESviHesZbCKPsiX7DMuYMDPO57N0DY0Bv/31b6TzJwPMWRmANrUBWJRfxTHGAQUFBQzODp6A07zg9fGAhyngszdvME1HhLhocEBtvfa6KAZvqWtZ7MyRhzRspgbqNQWpDAUcgZ0D22ZYAWn8oWyRbrCVusOBLH4VUK99qhXOGu9UuTktUDBW0TlqmQrzCYf9e2BpDBAAUrBTIU3JJBnRU/iVRWa0xICzTqPDYcHpcMRpOeAd3mEC45IzKhd4FslCzgWePYgdclXpESCLHrhtUgw01yNiax5iTE1tQZfpIc0u882bN022ZnPf7jm5pyb1BCfM6iTji+jsiwKOklTz7MTnO8apzV2uyug7OY6cpHDZeSn2hcquUilI+wYXCNueELy48VjL+FrlswWQWz8OCSTWbW2ZluV00nsyIKVN6h3IZIgJMTKO80llTUocaKHtFKUj73pdZUuqBaUCx8MRl8uKPe1wQVg277xktCBdgoN2TrbsqGmsKwPTFLAsEypXbLp+xhgxLTPW9dqCqFIKshIlQYt8hSCI8N4hKInAsM0KOmfVOlJv2mzn9D+DR29sIw/Zb1XekwvSnkSawOr2A6hWVoCPOfvse8J1TxKgaQaAWetiMNQFAH1jvQN49r0YQLHTTVkagxW0BlPGAbLIIByJNTJpts8H80FXggRA0HXVO7FstftunqYOvlk/y/WAwThp7wSoVRa5XNGA8Hy5CqHiB8mDAXAfkJgR9XOkZwnDl6qgSkq7SKMhccZSCY8RZy6oD38FFwCtCRJDaiUM8LL+zpoOtiV7MF0wQGkNCWV9DTqnS84wWwY3cLu6AWldh6xntWidkrMmjt8RCFhwVrXJId2SbWPgMz5uAX69+beN8ccCjZ4duA0GLfiw99xLfQzjSPH44N3fPrdLfcyx5qOgf7yXBoesDkxd65PjtRCYWWU2QAPvRARPQYpRrQNzrdhSxuW6IZcs95oW3icuSq9zIx7mEFrN0b6lplJ49fCAEAP2nFpxr3031178O2YPrEM1A1KcrNF7BoBSkdKu2VK7F5zeY0GYfupF/R9j/O2cDVdYB2rJPug6Qrdj7Gwt0iDD8A2DQVmy7CL3UzdCYsTq4KtvGK9GD6Ko2Qh87yyUPX4A48+olRpTGmO3jry3fGwHV+uNz3zOSYMCYQKM3TeQ7b1vOvsRsBpgZ+5FvTa4I6i3990HD/c3tckMiKi5j4wWnBY82GfZ++yYGjBEL5TtkTrdaPntfcbwd2lQ0ECIse8rBASGxrDLuRdU5+HmLgUwUD5Kg6yJjwVGj4+PLZAw0GnHOHYkHjVuo0sS0DMFMVrQERDiK1wuVzw9vUcpEiiRbqSlCLgnFpcaCf2k0ZUVuTmvzi+csfiAOQQsPuLLN6/ho2oCIeyFyPK0gh1ZmmdVVjAoi6ojKc5tjXzAAvhJQTwB5Fk2fT9B2HkCqMJszkhTn26aUF2vs5BNo4geHABTUmAu20vVRmS1ShGz8w6sga3UBlTAeZDKMxwIBaKftYp9KCMu10EZefkSVHUOymWXwMMHeFfhaMcyebw5HPGVC6j1DNSKnAr2LcFVhtfuhpbdAKNZqdnGOM5X2xSLzhNPhGzyJNJFSMGMzKHepVY2HWHYAcLlcsW27ZjnBc45XLQ7bakVl8u5NQWqLOf7cHzAtm03Gv1lOSAEhz2tyNuu1mcW4AMlyYZk60LNgFdruSkG8YV23Y7zeHSYJsuqqRVxiJgmOYfL5QKQ1Fq8+eQVzucLctrUrSeCiLFqO/jGhlFvIFZKxnE5IgSPpw/vIGy9sDdvPnmDfbsixhnEdo/qHEEFKEgBPCQrQJW1qEyGviQpzk3odsSn0wlp2yH9TKGBguj/n89XkHdYJjn/khJiCCi14HJdcXqQtcIVyWZcnp90/jGu18v33Q7+kzw+DrY6i97dmLQxF4yhs4weJPvFViwo87bW2ljIyoyiLl32uXzzbbc/fYw5DgQhFoy1Y3M1M0awM4HmF04NZNjPpOt0B20G/K15X5Oe6Nj4AcwZtjTg72zvrKrZzipXVCJsZIFnDT4ra7ZPP7+wsJIGXByh2Wg6y17ouYsDm5ou1O7ew0ouVK4DIqptPFSp09ar++vfpRjCKguPMQg5LCCxYVYWnatKMZnhXgD923l2kynQlIjt4/dsfZsLxpAPv2d+ydLbl43r7/3D1jkCbucef3zOdSmb+vi/+DzcAlRC+7t/+HAqbMW8xmYTNA/ciLF23GMgo+CTvC5e7OBql/0kMyXIAv5NmkMqPTXoGtSYpOr9yRkg7zEfFiFJ0g7e0Rh16B4Gn6S2rVSQ01oOpyQiA0SlywBLdx3a9l7/6ItrNSvWPdrdX0P0AKwFVADAtY1pNhkgyTQfr4lzDrlWsQ8lkqAHpESFYKCga5IDw1eZCQwgOQfPjOCpWZ5K54qXQejvevwA4G+gp3eitQEwd4t7aY0Vt45FNsakmQxoBMOjZtIKV2ygLKgwiz4ArWDWJokx6qN/txx7v0kMJI+g1wIFu7HneW7HZlH1eF52rHbs43vH4lpj8O8tRUWbD8zz1I5vbLhl5+7QbceMTS2lNBekkQ2x4MvqAOy77ftGL/9RSmWyLAMx4zmafSdrcU+trGxrFo9lYxFt0jFQEUAVCF5ZbsWOkp4FqBZETzhE4GEJOE4TuMqYH5alsfq1FikCUlaJoeDabBsUiPbaEYuiVZpDHiBhakhZdSIrTKO+GPoAJi8gnMh+2xZ+8g6E2IA4WDzvKwggL4VGVRYvggRrI1ioGhyYtwU5B5SqXXKHTV+L5ioroCTR2pdcUEtGCA4HF7CsGzjv2LcLpuiloDEn7FtqwEVYBnP00ONgs617uYGx7jLeCnRTApEw/W5gjMwB/KoF/Caz2/cd+55wOp3gvTCUUvgr2unz+YJSVNNOwDQt8F7mTUq72us5DTL3Nq+cI+0yKdmz4KVpVilJr5/D4ShN/zgz1usV3gfESaR3lnG0jJiQEAHkHYJq+NfrFdMUse9ihycdLAnzfNSMxqoSx24DbJmO4/GIdVtxOB7BlfHhw3vEIHKyWqt05E0ZMR4Arth3kdwcjie8ikEYNRC2tEnwcDyBq2/gKucdD8cjnp+fUHJGnCNykd+djsemV1+3TRZ+FhegyhJEFM2yOh8QYgRfr9i2FcFLwIQITPMiAVRK6L4xP75HJ2X0CbbNV4BbaX+XFoxWBory7FU9/2W9EqauA3td07neSFpMTqhf18enZdBeAjGCMpBAy+CJS4+5kKGxis57zPMk3Wrp1qUDalTgtLjROVJmVKV79mEK1AhoDLZTOQYILc9g7iNFg3zJPKExwHKOgvZSqfjw9IRt2/UelOM9HY9wtIC9dMruANBEOR+RkFAncEx61cezvUuvMW6zkXYtNFgxZE9EcPAaNBWRr2XqxEmbL3QD6g2I32df74O4+2sKRnNUkT0Gt9fbgsr2PS8/t/3uZhLf/u77PkbA346zufkMQ29A3/7XwL4dbD9uCZZIyLtqV7RnHGyPsqwZ2pzp4y1ZALt/pK7iel2RcsblesF1XZFyEuCfS7vnRFrrmm8+iKQPABhhmkDeI05Ts2UV+9Eg16SdioOrFcwkyXjXi2ub9E7P14eAOM+SUQti0W6yPej+KetJwcAzG8WggauMu8knjSQTm3At1LUi5DEgB4Nqbe5yRISg3bUB1ppJQspZCrGJxFjEOdQga3/1Dr44xCqQ338keP37Ht8b+AOy0BpQBHoXXytSnaYJ1+u1adFHsG5BwAg6reDMwIhlAOx551wr7AXQBnqsHxgXmdFPf9SmGwNvN4kxdyGEG62/ZQ9MS2v/NinQqI0ddf5WgGznYkHP6PJz1I3aUvLO9V4CJpWyLnoWJJj0yR7G8NvY2WeZk9J4bqMcaixYtutnmmLLAtjY2/n0azK1Au11veJ8fkJOOwjiLZv0RhHGGBjLzOR4NV1rjDwzPBxOs8cSKoIjvHr1CV6/+Uyr10m8xh3DEYO4oNQM70IPMEDg6kCeQJr6JZXdCPtPujkCUkTuhnVZszNCewiAd8JmMKNZgoKh0h+5IZ2bgOzAXABjX1HgozQcYZWBmOpOCoDbleuba5WMFxEDVLUfGCs7Ju8vOcuBVAYqgWtB9ED0hFfLjM/fPOLthw+YPPAwz/hwke6rtRQUBTsAJFMAdPaIubFjdj+NwaMx+Da/0BZ1wEGCvmWOePVwwocPH1rWSOZ6l4kty4xaRXIU46xBOLBtFjAkXC5XEDmkVLWm5QopknWY5wkp7TpfD42lCSFIse4U4Nv9Y909CW9ef4LL5YqSpfB1JBdGe975cGjey+RCC2qFNd9QStJrJn0GlmVp64UF4LdduAvyLnUbpWitBwAuItnLJDrnPe04nk5wPuD5/CxFtesOEEmzL+dB8Fi3VeZmKXj7/q2wXJVQcwZKxYd370XucVgQYsRjjLicz8p6ypwKUeoZLucLat4QYkSpjMl5+OCxrSs2vcZxmpBKxbz8eH38O8OIZtVYctHmcWgMpa1fknFhtHidJCCz627g3MB9Y9tYLYiHgMBAPysWasB/eIxA0LFIXxhCHAhANfMNkmZq04TgPY5HMTQoRexdmatINkzuqQ0YbU0C5L62JIYaCGlWVfawGALm2DPYFcLWZy1yDTEiLosWCPesYKkZtRZsOeOrb7+FA6l8TEgphshVIwIwe7HxNQejRqgYCBoAodY7VfTXMrN6rEgdk+FRcrrXq1tL04QX6T5tbjJeO7fX6pB8gHOSSWtGPz0H0AD/PXF3/9y9OqARj01JrUCTu2XjcFlu5sHHMkH6gr9/sv+Ox0fZ/jow9NzvFfGtv5X33EqJ+jgZuVMrozpoQYu6wbEUnjuzNrd5MxwXOQ9tBo+cdmXSdzw9P2Hddzxfznj//KSN6hKSkqnTPMGHoAGd9M9hBnatBZ2WudcwBq378w6B1FZeT6XUqtmFonu6jHXVDICNBxQLmv37tm2Y1wNKLrheLtjXFQwoSQ3NHma9bDwE/fIf532T69lYM3PrXdAntrxF/DO6HNgRYfIqDdR55V0P1h0BJYuLTwwBICBUzQCWIFnDynD/oYC/HawBZKA3nTKwYIyzMQHmvlNKaR1krSHUPM/NUcaA/MheW+BgANyeA3oxqwUCo8OOsfPGeBv4tpvYApCxLsFkQUDvVzD68htoOJ1ObcGwv22xGNn/8TjsnCxw6IsAtaDEALZV0I8BkAEXsxm1Y4sx3hRHm2TBOYfT6dTqAEYZ0hiMWZYl54xlWV64FAFoloM2xsyMXT3ag/dgdUjIKWOKHsERmIuk9Nhp6szuTNKbG1jCgkOMOM0Bp8MCr98xh6BpWAFyDgyqpRfatp2PmlykKtg2+y3zw/XOKysmYErgsC5yTrMKuohVkBawFnhuXAfIBcAV3Rg9QBWlZjg/KetDwmQrnG5zWI+pslnHCfsuRKP0MbASJe+ddBL0TnC+uow4Asw9qNYCcAZqxRIcHApOxwmvHo748HTBYZ7xtCZp+11qsyG0EMwiJgEj1uV0YMZsIapS4GhMO4NbVoK5IjjgdDggeI/n52d89tlnbX6EMCmYlz2f1WLPh4Dz+aqZgJ5pKCVLR9ppbvP5/fv3OBwWXNeLACXnG+hnLriuZzw+HnE5n6UTa/Pr33G9riB4zTKILMuK5K3p1jRNWLcVT8/PMg+HJkfOQe89Kfq1e/p0Ot44k1lG0LJqlQu2rSC42FhNyRxJhhOuYM9iszkvR8S4YFe547ppU8BAjb0GxGquZHHJkPO+gHVjCj5gXg6osIZMwvDGGIEYwTWDSbKYcZpRWNaQECNi2uGdBDM+eJyOJ1y3Hdd1QwWw6dr4Y3y0wHkA3SM4k5oxBUYmeWBjwWVdYN2Ub4Da3Q/GNHfAr/+GZvna+n2bH+HhbwO2dl8J26ryFCfZpmmatLHbjBgDchZ5Xq0kRaPtvlTJjC5KxtJ30KbfbIGMnd89867PsX6uc056ojBArM5BkOwptDZB+qRJJsL2ipYZrsYydpr5Hnvw3XMEKPiHAmgtb9c1Q1ckOSvtJH53lW7Oy0kKs4PZThjfMPCAgXQ51pFI/Njj/vmbwABo39leq5eBMXwPPobxfxg6s7n38WO042oY9OYh8w43jL5lQeT/GhShxWj6wv6e+180Vtt+5pfnacGIkZwm7xEVQ2nZG6t/s881UC77kM4tIpD3cCG0Zm42f0mvvR2rY2iAKT+Tq6BWw6HHb3I67xu2sTWkuIy0B2Tv2xyxP6WYnr+faBuaWkFcQVUzTrZWVHWzYrqZH1UJ0bEGsDgjBblJ4LwGu0yErDeMc1rf4cx5sGd5uLES3+/xvYG/FaCNbjSj3txuDAOqo+vPyDgbODZ20T6r69pFLnQ8HtvnrOsKoFdoW6BBRI1Zt8+wCW7ZAJO62EU+nU4AoPKE/cbH35xJrLDVHvM8A0CzuzMwfTgcbiyh5nlumQbT/o/yGfP6F9BQEMLUzsOKEA3EW4BigMOYe8tGmDPQ9XrFsiztHMe6iPvsiI1R3yx7BsWOv9Yqmmc9LgtwvKalX795jW9/SQBX5MoI0aOAUFHhakEMEYQJW5XGSkRA5iJScXDTfk7LATFOCIEwH2dMy6wOMxXOB71FFASz3ORMQK0ZVKVLpHfdp1puTNcYj0pa6EUMQPTuRpO1BbxpWwEQ5HvV/pI9gWsCzDWiFikS9lIoV4tuZDpvUC31OjgFUF+8a5UzsvntndmPEZyPfUMi0cMa8KsQ0M9MKEk0ip4IswNOxxMeH1e8X98hBoc1yXeKTpy6tZheSzAaWwNCW3gIhFIqPIkjiPcepdr8I3DJYOdRncf5uuHrr77Cl7/3E6nrQMGyHEAU8PhwQC4ZMToUFj6vQguemaRHAYCSgWU5gLkgeLnm4im+iO2cBlXruiHGGTGKM5Qn8dZ33qNWh1Iz1pThncfj4ysAYhyQa26MjtWn5FJw3QQM133HPM1wIGzbFakVw0r9Us4M70VfndKOaZJeGXAEHyO2Lf3/qfuzJumyZDsMW3s6U0Rk5jdUVQ935OUVDCAAykCBEI16kGR61ov+lp5l+i2ijA+SiU8yGkkQFMA79e2+3V3TN2RmRJxhD64Hd99nR37Vt6tgBqB4yrIyv8yIE2fYZ+/ly5cvx7YtOB4PoJRh4UClYF03lJwROh6r/cBBbU78vMecsT49wTvZH5EEqoREVOsJnDHoQg9DwJbYptP2gSVilhkmypxRSjHW6Z7nRZFzOIfeWEzjhJQiLs/P4t/Nc2MvQdFyvfLz2HVw33/d+Pe+uUrliqOHLtjC+EtO6sZpg/XEkhEAB/haWFjk2hvLdUqwHOS2YL8AuxVf/f5C5/3iODXYZmcvy+PMOQTv0XUB1jqcTkdM0wHW2RoALMsMPBvknIBt70VinAMsP5e6Bluzy26to2odaqxkrb2HDaF2A4XM8x0RnA8smbScGdWOrdZwQKJ9N5bLlbMOAFIhlJRxuS4w0H4dEV0I8M6hq0TcbrbhCJ/0EShNVkLCIzi1/TRqbiDXlBudSMZVnk1r4MJt3V6xfDxZ1vda2VHB0A7cK/su1wtifEBqYbSjqJpVajOiRJyxrmNB/0a3AWkdKYKN22zVDRpv9qPXqAazN8eACoZL/blZ90gzLi3Ax03gaL1kaCSrLNFVDV8rObrHcaiZTYj9a20myMw2X0J+lmKKWKW49nIVWU/OmJeFdfrEskJPBaEfkAtfO+f3zspqtx3EfU2vE0Gy71L4ZJyFt22gS7AesL6vAaoXM5ZVZKgGgBPCcxxH3N2/Yiy2bdi2lSXU44h1WZBTku+MtbYYGbA3wXcNhCBNL8FkFyjX51+DFwUYOuqNkYwCUJuPkgwWA1QCKVnL2n9nxPmP0Hcd1IJ6twt4SUP8/u0HNfBqrRoBVO26ur8AqBKdl7aTOknrYqwMvj48CmQVfKtbCLAHHQD2YgqzS2UAVEDdBhQK2BXojuNYi5CHYbgJQFqdvn7p7/SzW52vpv01wFGJkP6sWxt8tDIdPU/NAmhQoVp8PVcF5S3ob6VM3vtqp6jZAC1Y1s/JmT3U9Xq091M13RrU6WdppqTdt/ceh7FHXK6wJaGkDUsh2NBzV1hZUK1zcMQNQRJxYyhnWOPvBYynkpFAONydcP/wwA0piADL3V+9AHJjZTGvTLyyaDzY99Qy6uRHVOD4Bwbx2Nkzws7E8b0gFFNgxdv4xrdbAhHUhVUKcYm5q7Rxwx4OWNjHGmC2fi/YkYdaALcLVrT4TQYCBCILqzUItIIoQh0CrPHwjm3R4sYa+OMw4PEiNSPSsMU57vyr487CVA9tWYFQiO9FZQZlAbFif0YyXqv3dmXeC2IClnXF1998gz+vcjAGJSF0O/DMGTDEnWRzAS2rBALEgaG16F2PZb1WW8EYucCdny+xooQGn+wcwlbALIEZxpElESR9HoTN9V1AR+Umw6ZNr/ppBOTZ99bvcgrnEILHtiUQJTkPhxAkCN9W+MAdep0+L86hEKHrOVsGYzBOowR1FlHnO4CLzcDXapgmriVwDs5aZCkI74cBoeuQE48LnTO9D4DhIk3KBdbY6qVeCpsQqJySQUiRtva8X+9dtSXVbYsR2xYx9AP6rt+zsuOPV+qjjh9FgRZxhk4tTFkjb3ev8GYuZCmPRSYtoMvSjEhYQhgYUwCzd7nVBbXUI9hBSIVZ9B0EqYHMISJbG3qWZfV9DUYfHh5wOp1Eq8xywsslIObIxwvumm2E8YSxsCFgnLiAvBS1ElTQLwCwylUZ+Csry+QJIVgLXxQoSnGxc/CB5RbH4xHDMGBdFoDY+CLHiBQ3oBAuM4O44D1SZODfdx2O0wgvRgXGiF6ZjFTqyhcxKcLPtTrPMD3r1Z0PpgY0RoC4lWwJiRbcSVMwgM85yxqWdP1TEI/fAfwr2JdjUC0LMataO7O/CBba7H6buYSMB+wf+7u3PRK4pcl1L9/xmQru63eR9ZRmjL7ckxJbNVsk9STOK5jWQIYHARFnilOSPclaZY2BkZolBf76foLKbFkPvwkJGXPG49MTzpcr2p4YZIBO8AdpnQpQJXW6TxiDfuiZGAJhXTbELQrbL3jMOSkglkwpqazYCRmc4NaFmXpY5AzBNT2c9xjHA06ne/R9L4YzUYA/j/24bXh6fOTu57Km1wyerOdtvyAmDHZLVUDmqcooSr1NveeEbBT4F1YlCUFsJCOQwdJAa4BsLZzUlqQywBa7mw9ALYpfJGh+z/a9gb8C5Fams+vMSpWPqNxHgb469ijrrw4eyn63RafKLisQbcE0AGjDqlaqogBcH8jq9d0Uueq/W93+siyfONnocWkBsALryurKMSigaM9LJUxan9B2+lUg3wYUKiFqXYrauoHWm1vPV4MFfU0byOj7W8tQvabKAmigoXppgIMQlfro+RljauE0wIHX9XoV0MX2adYSnGXme5m5mVPf9QymDIEb4KplGgMfEIN/lARQxjgdcLy75+MjAnJChoXtwy6ZkEr5It4SBKrMJfvmu90aqzLqXCAJ26TZCCgUJZsAcOrPSg0dg3ZrDfjAJX4u7KVPmYEW5d0NiAxb7sXIvvS2nYblY42iBiNpRqA6AVkXONq3qC4eSQEieGwUaf5jjIMzLFsM3mIcOpyvM0LfYxxGTOMKd57ZNk8zGFBbULsvMrJ4FFMAKbQlydYUuNp7gCD9GAwHLlvJcIb9w1+9fo1//I//MT777DMcjkcep+uG+fkJx+MBxhD6fmDbthgREzNwXef3ZzhFRMeWlqHrYYqRGoEMzZgoCaCFjTwP8PMRgjb54iDsME08HxVidqawk9DHjx+l5iBgHAdot0a2/ytY1wU5xx1MUcaybJimCSHws5JLliwMBx6FCMM0YF1Wke4EZDrX5yYVth+FtSAycMaBrEEIXCcwz1cYF5qsKeu712VDCD00+LHyvF6XGdbzfBWchxdLUJJxtcXInXy1dshwNhPWout7bMvelCulhKxpd+cQ1xXjNFWXM82s/hi3XbcMwLxc5BQkfarbZmAA8ebXxk76t70YvrLBdY8yceBTjPZdAE+t/4wRW0DLLjxd36PrAoZ+qO5x/TAwCaMZQSEjhHIQcGMFCDdWjNZKhoKZVqrz2otzplu/fZVFOJkLSKQYDLzZNpDZV48gmeHpeEQXI+K6YltZ/lBtEUthW1z5jOg9imfzBS9Asd63nSJFtV4mdmEz1NYckYAjU++tkfmJ68SsaPxdBVEvCbrKsmMfI/t4+RQV7YHBy3/fsvrf9b4b8F/v3afvufncBvT/ffuvL9djqceHm7F6+97b89MgTInLVs6s4F3HPx+nleD3lqGG3p/2NJpjV+kOE1BqL6rSGG42CHBNSlEcR1x/YypY5c+0ovFnC8t9bBcIKZgzcjGc0S673K0l1pWFN8ZVos5J53mex/frCKCuLxxMc++WzXEHemctcspYupmlb819Uwkfgar5yM090YHYBKntGKiBnN7PoooGrm0sOv0Yw4FqhRa3tRq7lPDfEePfSnLaItoW1CowV4tJYG9gBaCyx8fjsRZhaeFtux+V36g9pw5ela8Aez3BzoxxGqp2BJWOuS3AVf2+yoj0mFuQ3rr1aGCwO52YG039y6yGBiLjONb96EPX1hZoDYAW0bYyKgU87XXjcbSD+7YGQo9FgxvNnOg5awaiDdZax6P2WPT6qsPQuq7VMlGDsKenM5Y1soWU8+iKQS4JeUvIwYkMY2d1QPwQa5osgzAMAcdxRO+7WuAVrGE9jGXWPecsVnSsfdWHXCc0+QFFqvSsOAd5LwVKUhxkyPPUoNE5ZXBxrWNgLSlmTdkaJ848mRcmKCNkDEgalBVj2AUlZ2bKSxJgqkfI7zHQzrf6gAOZGBRKeRgzlZa9u2EK1q1wt87iQIWlS85zACQkOLoQEAthjRnWAMehw9B1mFOCEVtQXTB0/iGZ7eo4kpmS5Hq6EIQF43OgkpEBZh4cyyH6vsef/cd/hj/6kz/G6Y6lNdvGLOXpdALAwNZaAxe4+ZwCmZikezV4kXHeoTMMMgoVeMsFz2y7ySCqFKpjT+cflhKyXacFM7bLulSffueCBGT8b+7gS7hcL8gE3N1L8zyJyvqeuwpzEy+LuzsuslW3KF80k1YwhQ7XeYaxQOi4s/ayrnCOCzZjjBi6DsiEeV15EdlWBGukGJkDicN0QIoJVAq2dcUwjjDOcbO+dcHQ95yZcY5Z1XHAMs9S780dxjmYZNCmAVDMCYdhqEG7MlZd6OpzT8ZgkC7s1nIhOetNM8Zx+r7Lwb/3bQf+DIphZG41hmV0wvyluIOPmBKinF/MouIjYMskvyvivsEZyFyy1tMDYBD6ncdSNfE74GAii9PwfdchBI9hGPD2zVsMQ49xHHE8HuGcxzSN1ZntfL1gi5KVKGwB67zHoONPpDkhBPhOCK/IhEshlgwkdUgRRzEvBIWumUGkOF3o4C2va/MyM/vuHMhawHtMxyMe7u9hjIX/Ga+H1/MZl6enKhebr1ekkvF0fgblgkHkrcE73B1PbNcs0iZ9hup0LZEO2x1zkK8Nk3h+36WSEKbfAjCSaXfesY2pZUlUSlwEresV3z91u5OxYuXLSSaiAWK8PgIv/fYrgKsgbf8bmsDkNlD84dvtZ6L5+e/5KruH/y0+aEGv/E6Zfln/h2GA3glAir3jrl83jteIrGsHOOCSnYm8ZJeYpJyxxQ0xsVXw8/lSdf1keI483d+j63teS4g17E/PZ5wvl5pNhuWgs5OeSikXRLHZjSUjFmn8FRMDZFC1mA1dDx+4Z0nXGViV/lsPZxz6wcL5HoWYkFH1xbZGWFhM04jDcYJmkqmwquLx4x22dcHj4xO6jtUk68qe/4VKlby3RfW74Ao3XYCVLKz3SjNghfuolJyZJSxGegEYOMO9MsgYFBNENicqG+cRPMvy1BHPO4cfsv0gVx9tDsMPFsnvbu0gW828Fv+q80zra69A+0Y/Z/bC05apVxZb969Bgv6sAQARVXCvIF2b2qzrWtlu9eZvpTb6OSrlaYG6ThIaMbe1Bq1Xvn6Wsu16Hgwc9vqDNihoJUP6Gfo5LTOv0h5dsPX3KsnR/V4ulxvLUn2PHoMeu75PP0uzDXo/tKBxv/YGHx/fI5WEeV2xFAEmMIiF+fhYEmwmgJT1IUH8VCU0vQ8ILqDrAk6HHp+9vsNpCui1Yt9a7gVAXFxmnZXUmshgXrA30rsLtgjKtR7aCYaUUgMAKnthELGO3ihPnwHjmXF2ucARRL7DAYexxD9bszMQ1iGR9A0gbhpFIrNBMZKi5iLDSmoUAwsPQgaVBCuNzWA5e5HShpKIaxiMRQZYO+oAQxaUWavYhw7H8YDuwzNszjAZ6INH7wPiVrDJ1XeWxOOXsM89e8YCDaMI6cxdRVSWi7WNjC1vgdcPd/j5z3+KeZnx8eN7HI8nGGMFBBcEz3UqMSbEKDU7VLjwyjkEr5IUdn4wxiCnCCoFSyKELiCmCGsDnOMmgZz5WjAMYg6wrthE588F5sBhHBCsQ07s4MB6eVOL3AfpCp1i5Hbn1jVzS8A8nzEM3D9EQTMH11qfJMYBueDucETXd5jLDJSkfBMHY+uK6/nCv5EMzzAMWK9XLOsFsMDbz95gm3nxyKXgcDjAd4Enf3DzmpJFTiGgdROSo/MBKWeYrL1AAu7v7/HVV1/VZ3ndNtbAeo9tW+W5LqwjX2NlbrVOCAK+XBe4nuBHvmlNTgsmNdOn9qU6v/LPmeU9AvxzIaSMHWhLwKCBQ1sXw4/CzvwDv4uhZZmBEif90KMT55DT3QnjOGIcR5xOp5tC8xgjrusM2lpZh9R12T1Lq2y86vGRuWapEHt9J5njd/IMgBG/7xAqAOz6nqV2zmGNEQQOoLnPiUXoOwzThC50OB4O8N7j/PSEx67Dtq7IIucohRvsZcmuW2vYSajrkaXrtN4rbpLHV8k5y4QG2UqEKGC9BdNamwUhRdQAg+skjLVISdcAqnMYBw23BdUw6qakLG29k+COtzvYbqW+yu7WT6lr4w7SVVLT/OL3jJO/b9vZ4pvAo/l3m8X6Lsb/lvW9ZfpVYaFnRMomF55j1HmK69e00Z9IWmpOhkC0y2FzEZZfsrvrusozxVlS5xym45GJUABRxui8bcD1IveXi3q9D+hFfk3rii2mm+cz5Yxl29jeuuxmMEMBehiU4uCcrnayXwJ8sHBerck5gMiZbbKTY6vjaTrwGJMz3bYV1gDrssDAYFsWXhfMFZBzYFkzE3w6dzSXHso1yh2E1v7IP3l8SeaBz8WKTXibvRAcQkXwiqldk63hOcKJtPTfGeOvGnpAi2gJ1roKtJVh0yJSddNQthzYgXrLrhtj2KJPNIkKztWvX9k+BfU6kFWe0kplFLQr6FXA3zr/tMy5AmC1CSyl1GyAnrMCdA0GWnCsx6efp5IhPd42vaaSIA042gBA5VMaRSpYV8mNgnUNVNquvcA+ybTnpxkLDbr0+ujxKqBv72nrgNQ6+XBtwcJaZSp4fnyU4sQCZxw6b6RYhdnrUtQ/WQo7IQ2WHGBNRhc8xtDj0A0YrcHgpZBWmmCVYlgqUVRj2wB4NMyfAUAZRuzg1K2HU9JGHpqmOKsmlg3UszjnzGw3IDyCk3QbakpOBowQ+eodXgBxHALEdotQwS4XGms63e1MF2U4s2t4CfsEADIInUFKMxcclQR1J6FSKpg0RJj6DveHEb8uCdu2yr0AF6RuamdJkjLVxVR6KWDPBvBEn2Ql0MVPZJ60X/HOOsTrjL/5N3+Bw3gAvWWXmYeH14gp4dWr17VRCvvhM+M3dB1W1VnLWKMCkV0UJMMZuJRZ2rStK7qOswLWWgmI1VkhouQCJ0XwKZcqP7DGIiEjdB0oJc4uNYBo6nsYEFKKlSHu+x7zfJVCMtTntFCRuaETNy12I9N/E7HcrGSWCV7XhYmKmJBSrDIOawCShZEzewOWZUXcIhdH9gMKcRdhJR9ggCDFv8uywAXPz49nL37jPIpkQtd1xfv379H3fZ1DrbPwltnmjx8/ou96XK8zAC4eLibjfLnU2gC2HwWukkX48W/KtLfpbk21SzdiKiKF2Rk4QFPrrSSm7FrvGyCl8wRJ5m7f+Bk0lYDgRZcdokZxvDpMI/qhxzSOOB4OGMexynuc08aSfDw55ZpxVcLIWM9gvekkDsPSDBgu0D34wAx3Odds1yCMaXAOfejqfG+trd7lfdezDExksApMiDQoyggd15z0XQcLbgzGFs6CA9YVz95jW5bKNOpasiwL15UYLlDUPgAqE6X2OtLemE/BvxOfeOe0EzEq8P8usrBl97VfQCkKepntN/V9v2NE3dx//iJlZQV0VcC/J4+F1FFtOvYAYB+qn/5Tg4obUL+/9btY/n3svvwIU7+3bH/rrb9jFSPrjaylBqhWn5BraNkUQpuo8f+0rrMwsULcmyWXgi1GLOvC/6bCzDuAKQRYkbQ93N+jH0esW0RZl/pcpsTBgfEGzrpmfAN9P2IYj0g54+PHj4jpgq7rcDzecf1USlLrxlbEPjApdDqdakA9LytyLtXExYCd6kCQ3jCmXkGmAG3tV2EBHKcD+hBgZN3aNu5s3ok6ZZ5nxMjSyXVbG+KgIhauHzEaPAkVqnhEF30CgMJyngbmGO/g5dnvJGjruoAueHQhSAG0k4aYMs6/e3h/5/a9gb8WleoCxaCWO1QqOD8ejzUIICKcz2eoledL0K0AX7+maarAV5l6YNf6VjcU+XmVTpqt3r4tNlZ9v15oreZ+yby3+26BPvAilfciwvZSDHU+n+t1ad+rx6Ia+pTSTdZBsycqzdGf1fK0Zf7bB7j9fZvt0KBLgfwiUSoRuw+1kh29n7pvPZ82INCJVs+Zx2oB5YQiVfq5EErZYK1H8OwMkXLDVGDvngmwpi8Eiz44DJ3H1PcyiIMwQ7aCJRImCnZPYVrx6ndSpGtMrml3gpMHq+inycRm9OAF1Oq/AZRc2SAYkbRYTZlZAFnQMTOHIEj3WmmqRVl0/wlkuTOxNRbGe4AycjJwPrArBonHe0nYLdHkSGVR9N5zp15kxLQCtMs4smilvHVwIIwhYAwB98cJv333hLit0NS5s2Z3qnixcXGvnH5dcUiTJM1Cs8uqdBFNW8Rf/ut/g1//6td4/dkb/Pk/+Af4wz/9U7x5+xnO52cE7zH0I/zoscW1Ps+X6xXGOwx9j3Ve0YUOIC44tdZiXTb4jhlqZvgjxnGsz6RzVsbzKuCYARG/3wDGYssrYLgwvMoQJVjnZy3COk6lQhwllGnRAFufkV0eI8+esK85sxxGz6uV42lWrAsBJSdpZqZ1RWrzysox5wP6YUJKzDj1XcD1esUqjHxxe0H/db5iXYFBHMQUKGqh6BY35JIQOm4CpQG/FvNTYQelOpd6XzXga4wVaE3jASmnTwfMj2R76ZYFYl29c1Lcpo27SuJajLJ3zGUMJ+O6sOkAN7Oi2vRO53Bgh/2lIi0SIG528kSYNnVSO56OuDvdIQSP+7sTpnHEMI54++Y1etH2h45tgHnNY1C5biuu12udr3POwu57ZvW8hxYtJpEfHo9H3N3doeSCGDPOlyu897h/9QqDZBPGnjvPL8uCdVkQQsDhdMI4TgjLwnJFAS3buiED2FLGskUMI2cqTscjSn4FygxwPnv7Fs+Pj5ivV3z161/jcj4jrguWywUpJVyvV5DIUHOMYpdr0QW2urW1E7uAeAGjzmoQZSp76Z2tAQP3a+H52drb4t5WQUAg2OJqQOa9k/nQ1c9T1E7NmGj3xQCbwT5nK3ddeCWMJGNsrfZ2kAWkRV6EhmRqPqcZl/tcq/az312rUb8EXJJ8PmS08mdboBZYyyhuAiVeQ1sHGX6bta5mN2AkZDBWCC3LXwTEuFb8cr7OWDf26p/XjT30na/j/PXbtzjd3yN0HQ53dwhdwMenJ2zffiMsPmGRYNX3AxMvxiEVwBrCm9ev8Pazz7BtETn/FS6XKw7HE/70T/8jHI9HzNcF14viLmbSh2HEF198gePxgMenZ3zz9TdYtw2Pj4+Ia4SBwdANoI54PGpWigAHbpQ1CLAvQ4/DMKCUjPl0j4fTHVKM+PDxI56enhBjxPPzE2eI1w2X65UlTpELhTVDkavU2giJuMvLeDGQ3xejwwrFkDQmteicg/cO0zBg6DscxhGHcUTfdRj6Tp4rlvl4Tat9z+0HS31aNps1+nsjm+rdKuz/8XgEcKtrb7MACrxfAvFWhpNzrg41+h7V8B8OB/R9XxtnaUZA9etV6yp6fz0HzQroRrTbfGrRbVs3oOfcymOUcWuvjerkddOOwCrjeWmxqWykAhwNmNpNgXpbcKyBk9qOaopSr6/eDwUmbUCj10HPtQX4rSxJf1eZSHDAdn56hCFOBRpYZDAbi0I1Pe1kwtWuv5y2NGJDCHhrMPUe49TD9gOsC3DGwyiwFrYIDpVF1klULTyN4bJUGAb4EGDNqUNiD36Z3Vomj4Q1M4J0a0BD+8PH+nJTEw08t1sQMrf6zuxoZEuBdxbFWOQc4ayvi1mMbOuVRYLEhWl8/CUTSGzsSM7XSNMUZqN5kdSCZj5Hfm/KCRZA7x08S7wxTT3c+SoaRapFc9YAifbUNLDHPKrV1EVCA5D6OrmXOh6WkmE7C2SD6/UC/8Hir//yL2GcE4edhNPhBCe1IeqQcr1eeRxag22LCF3Hky4BxhBS3hAEZPf9IEH8XqDO49QhJQZE3nlkYv02S5A8ogBadhTzXPwFlomNfsTxOHHx6jzDyjyl2UqVvbTdv/OqJgLSTG/bnxlmSffFeYsR8/WKYRhwdzjCGOB6veByOQPEbOU0DViXCGOsOPp4zlY4h0yEbb4qx1jvQZUa2t3BbFkWzPOCrmmq56SeQYOMVs4XUxLHl91JbNkWyUIZzPOC4NiRyQUHQz9s8fgPvinTK//cgZt+31+3b3uwq697ydTeMmdUf6fr1EsJBbNyLAvrQsAwDBhH1vEPwvRbp3aKMoYkG1hyuVkPboot7d58CYZlhqYwWFOJrbHsLgUhbbq+Rxc69MMAI5+1WXV24ayRl+CCAFhh/UmunxY7+8CFyUYyHiVnlBhhiF14ng8HbjRYChbD9s+6RjP5l7i+qTgmIsgCFrtzWWXp2ytuanBVC5r1NfJ6xe4VuNfr1QJczW6a5jP2j/ldhB7VMaH3vVLf0MwC/7wfw0uwv48hZZSbcfjic/fP38/nuyRCn2Yk9k9pv27mb71o7Ym/PE6JEjRYEGIa5tMYRjLIRTT8bCiQBCvlUhBEeulDqLI2r05UIeC6LGLbiQqA9caqnadeC97HBOe40zoRpDbmgNPpjgMFEsmOBNF93+NwOOB4PCHGLM8HZ2b1fmhnYCtZOh3b+nd9ph0ESBOvpSXvHepTjNic44yD3A6WATFmoczKhyw9eFDHQXMnCHWNvhlnSmpI3bLVAFbmGe/lGjtXg1kr49wCgHlxn/+e7XsD/7bZQWVOYStTDaCy8Dp4WxtOBee7Ho9uimO1ILjVsCkA1UVO2fq2eFgzCir90dfqIt6mB1s5ke4HQAXrDNhu3Yp0EdVBoUGHAulWuqRuQXrueq2q44YwRC+bmNUUr9kHX6vnVzD//PyMYRjqPjWgUmmSspt6LBoAKYjQjMK2bRXs6PV/WUSpmsk9hcodSj+++xqmLDBFmQN+eLKBeK1blBKlaNfAFgNrA0thioGzDN4OpyMOpxOOR9bXVbYH6oNtufDMMPPvoI012HZP129rxXITVPXzhrE9kIu07+YCY2TxtweaSZg1/4bYdaCUIoXIPDkUYrstnSy5wp74706yLtYBxUvTmQKDAioJzokdq/Oi+/Bgd7BcZ1pjdMHPUlRIbC25OpQsUy5prYABrIE1Bd4mTEPPfu8ylkKUJkwkzUtksVJnPfUWdnyElXnYHdL3uSNTBrL6DPPEvOWClFd0BnieZ5SPj/j8+Yy4JtzdDXg+P3MRnXdc5GssvONCx2XdOHNBGbEs8G7vWbFtG3IhjOMAoixSob3jt/UO4zRgm2ds2xUGnmUrubD/urFYVw4ghmHE85kLsoLz3IwoFXjfsS45oWr3F2FCjTFYN567jocTrA01OOBMD8uRlmXBslxBxmIYBg6uiXA6HLh+YY0wziESs8WmsLShNw5Dz7aJFAtyjGJLyFKPSdn8nDEvM6yx6EOAtxYXKZa2EnwfDhNSTBj6DilGxJXdJ1ZZWDXTkGTO8UNAjgnj2LH0Ah1f73XDcRyRSkE/Tghdh6fL4/ddDv69b2rjbzhVtQe31sI6trD0xJmqFAjWFqQCeMsOIs4xqLOwcEX7guxArzrjQICWzERWnxlhoa3lfiZOpGydNHw7Hg64Ox5YcnA84jBNXFDZD+g6cWFScFcK13QUqou79s8ABJi8OP8ayEiwuchae71ecb5cEFNC13dYtxXB7y5scYuIKSKVgnmZYSwXnKecKitJAsRd4MAhdJ0UUJsbYNGJnMkAuL+7g7cWS8/9HzQIQCkScESsRMgi32Rm0iILaaZWhTvjz51JreFMB0nPFSKqEiErBdgA67DVf11tlA1IWHiRPmiQgB001+Da0C6RMAC7DKm+cddjayCpYYGy5vuN0QGKFz988ofbe3kD/L/73y0W2r++6+HY5+02+AG4sNQYdmHaRB5Tvftptz8ttNtrpswWy+3XsqxY1qUSu0rKhBAQjME4HXAQqc39wwPu7u64DmsY+Hvo4J2Hd4GlOV0PbWinl4sJCsLz+Qz79dfYtg0fPn7E+XIBYPG3f/sLjOOEdVm5I7nMryDOiOaccTwecb0ueH5+rkX+3gcQlVofAEdVYQBIUGsYAzj5HbtPEajrkIcBKSZMw4i4rgjO8RxuLLx1LOdMCd5arIaz9yDAJNRMLzTdW8TG03p26jMGXgrPnWGpmzUGY9/jMI4IweMwjRj6HtPQow8enXcI3oohhqlW6T9k+0GdexWsK4BtQX6MsdGNKlO3F/0qg6+/3yUkpjLhysTr31rpi362DjYF060rTZt+V/CrgLotOm6j6r7vb7IUuqkGuLUFVc18dRGQoEM/o21apuy/sjkqJWitSBVkA4DKlV7ae7YByuFwuClGBnZtfntt28BHz1cdlLTYun1wW+tO3TgIMOi6gMuFm4Q9P1t88+23KIVZH7aylKYaAAplpJKhOnGt/gexz7zv2Y86jAOMd5hOR4zDyFkLJ+4S1sAQd1IFxOXCeXHZERALlfdw0S+ZUr3N9xVWGLLmiTDi9b1P/sK01O8i1TGmNsXx1gG5IKdN0sm8+KfCHsGceRbmTbTcFkDodsvGnDKsc3ujHaNL0O6WZYzhRdNwYa+yN7qoEfaUrzIlfRdwd3eH9Otv2NmjCL3LPp3CGoBZHZG46DpkKsNAyLpLZSEqU2YlC8Pjk4u2hEleV/hureyOFoFdrlec7ph1OYx9ZUSIGORyx16PWfTBLIOLcDI583Po6rPVdR2sd9VDP2+5vk5lc86r/drAxyuZnafzM7oQcD7PEjDvDmL6nNbnbokYhp4DCmGQlLnkTFmCcx7cgdii5IIVG4y1GHre95oXoABB5F3DNIKoiPNPQFpXkGUAtUrtgrXScds5rOtSC0DjFjHPM/fU6HaZXkoJ/dBXdw8j4IjdMVg2xWx/5H4J/SDBT0La9uJd7/fM6uVygVkWbhb3I93U351jfEYJung7iG2gPBepFAb+mdhOthCcZd2/AzNolsSgwuhzZWvzLy7gl+BCiA0vBazeOYzDgC4EOO/Ri8T07njA3emELgTcn+5wOLDV6zgM8GINGxPX0lAhUGZHECt9MLwUv9e6ATArqEivzQZsMeI6z0gp4flyxvP5Gcu6wFgmALzzCL6rUg9rDEIu6OcZBdrYjGtqslgrejDT2g89ur4T2aMCEkbmQ9/DlALvHDaRFc3DAG8tUoxY5xnrPANESFtEMQnRWrF/5sApeFePSR19vJX72wU4B8ByATAXalKVbgGozPCWNnZDKqV6rbN0pQH+6vgo5AnIgOzOwBtx+4ERcsUA1cWGdhkRSFcbVFaWhM3leVoWkSa10CYDanYAnwJ7/p1iku8G/a0kWmVCLbuvH7KTdNoviEE7wPOljgfV7UvOXJ8wAKY61mgvlRj52i/rxsSJZHVSSuzqJ2PldHfCq9dv0PU9Xr96hbuHB75XzoEAdpTyHbzPCL5D1/V8zNbtS3Zh4uzp6Rnn6xXbtuHd+w94ejpjnlfM8yymBRHbssr94fPthwHzdcF0ONxgqyx1WCz9zJIV5+DSW8eEX8ookoXW9d9ZBuWWiNd/n7AtC9K2IfqIkjKCYxCOwnVcq3VwZHg8EvfOIHBwRQSu09PCZyIEw+M0WCY+rTVV1z8OPY4TA//TNGIYerZMF5eu4LQGgEmJH5qr/cHAX7Xyy7JURrtltnVwt/77ypC3v1emTaU1Othbfb1mBvS7WmrqlzLwrSxIWXAF2gp69fXq06/HokXEegz6fn0oNX0O7AXBKvHRz9Djm8RP/KVDkO5fj18DCAXoLbjX82yDjpdWoBoQ6HFpMKD7aq+rBmgqJ1Idaft57STS9lUwxlQHJGVf2RmDJ/8cE4LztTumynR0vACA9W7PHFi2V+z7HofTCafTCcEF+BAAK82uJG3orHITPBnwPjXtTVL45upib61DTXlaf3MM+yAGs09ONDLEtBNZaV9vfZ3ojWN7LSL2pzYC3Hmyt5xuzFkYQsAYBwvtGtrKDbi9PeunJSBJnOZk1l0a9UDTgEUYAXOzAGRpDqIWhJnY7us0eLx9dYevPn4EUQIsuNnVHhrByMRjjGkapvBWE407ZcTfC/sb87UnKZyW8QKWsIzjiM8//xwfHx/xtus5CCtAXBOm6cQKUcdjcRx6bFvCurLDDKdweb8pR1hvcL1uwqiGBnBHBMuFtsgF3hWkmNEPnOl4enrCKYimGQZx3ZDWDSU50XEadH1Xs3caMOtzM88zO+s0z30rM9KgdL5eMYwD95CQ6xUGfkaXy1Xem5FThLMBx8MB5/MzxmmEN9IZ2Qd0vmOrOwBxizCGnxGAA4J5WXCYDvvzY0QaVsBN7zJ3U11TrnPZvK4Yx0kCDHYWG6cDrvMVl8sFIHZ90sWQCRSRKkowWy3lfqRbOzwN2NvamJ3h5LmZn1Unc4F1bAkMQ7CsHAQMsWuXMP7FcHbMWYtirYbj/FDYHSQ5ywybgnQvQYCOGy20q19aeGekkZ4A3VL51qq0aFha/t0OCpv5y9xKmnayS8EjGuMHAMbCFikk9rfjui1ErCSYgJC6vrTXvv696SIfAkrXIUcuenTGgFJGkeDGNsEZz3uKC0TjLGuFNWwZzPhK5aWfat4BlcR8CpyN/E+vZ/1H/eOLc6nfb+nzlnWvv6sQvv3e7qG5T8379rXnuyj6Tz9TQf93H2173p/+3eh/xjTPyZ7x0Pfv+IDfpRlgXQMAnqd0/dfxpHa/+iolcp0Qs9Zzwak2/lRCFsYg67hWW1WrfSlkrdbz2JMUPD4TE0UkRBcRZ7pyzkgxIUa1I5f3qH1vI2XWMVfvTTOW2tvSygX1qmqdDwep3Olan2tdS7xzSKLDBwhZfmcAKbqV8WxKPQ8N0FThYKszD+v6tbFj8B4heAQfdrLZNcW8Ro06GuzwSffo3719b+Df2kK2TL+y8Kpxb5luBdIKJrni31fmuR2MCoL1RujntQC6ldQQcfGwOvy0shs9LtXW68Ta7lMZfpUGtQ48enx7cR7V7IMy6RqQ6APSBi510W7+rudYbfSAul/tV6Cv1eyESoJUQtQGQirvUCYAwI1/f1tM3V7DNiOg91WDML2ebaah6wKu1wWXy4VBmHiMGyoIwbGkJxdeOGUWIXD0bp0DSfqOGS2PoR8wjSMe7u5xPBxq5K+LkA7gHfjLw2j3Yl2iLA1qqLIGFrsmXZkAY3fgzA8cAWbvkMcHahjUGylkMgZGPHWLY8abqMB2HoiaatYAgxfIHBO8seyIYB1DbsNBBU9eahkorgnSdMxZhyLOPQponHXIlGCtq65Eem1iYtawZPUxJhx7i5++OuCXX3Z4ui5wBSDRoesY00LiXOcedm6Q08fN8kasi+R6BezXSu9DHacFr169ghYe7s8eYV039NYDzmJdF1lo9voSZpF2lwPvHVLaEHwPIot5Xuqz433AuizwXQeULKxPwLzMCD5UmZ4FuzYQEcZhZFaeCrppBGUuzNbndtu2Wuh/PLIuPyWWPFjja8M6fW7WZcV0OGKeZxxPPd/PmEApI27a4yLCWIPOd4gLe/Q777CliJxYvvT27ZHrE9oiWtpJDnYhY9vj6+WCLoS62A3DwPt3PS6XM8u1SsE8s/MPM3Cs/R6nCU/PT5KhsFiuV6xU0Iv88Hq9AjD7wu3YJtU0QdGPdTOGWVpDFoUYzFv2AUYJhJgSrHFSWOdgrUcuhJAKUi7IBMTMtp0xZ2a+iRC2iBikOaJ0IOd5jD9TMy/eeRymw42ZhLUWgw/whtPu3lrukmuZiTPE3bKN9zx2UkIWUMYBBffJoKKdbRm8s4zJVQ96K2AqJWZF1b+/63n9S7mAtgjvCMx6W4ye+wtotmgRk44UYy0YVQaeddIjhr5jZULiRm+MEnbnOgsAd3c4DAPmvkfnxPVuWRCXFVQKkshwUEqVy5WcsErncZU08DRZAMMZ4+Adz7sqjVDwagCCBC4SHFgnxbXiDkTEPR3qOrKPGgF3bR3ADobb9VKLL7mAVrIEADQAlIkaDWXSAHYmhV6MWAHrt6CsVTYIJpXXNQi4/mxuXlOZeln7DAjWFTjc1kw4qSvj9ZXnXV7XeV7Lhe1gecyLZj4XkZFl5JT3Rm1Sc9I5i2k6wvnAFs09S3kOxxNOd3fwUuPipYZE5TjOWvSiu+9CgDqpVdJLjgtyXDlxRqwPPU6HE98ryZpVMg7ct0kDDq4pkQBJJGyliLRO3g/JulNhRy9nufg8BDYYoZylQ7A00AM/0wC/bux7BGeRtw0eQiYkzoAEWHgIIUsZDiTNzZqMDni97LsOnQ81E+bEGGIYenjncHc64HRkS93TcULfdwjOYehCDRKc1WD3+wN+3X4Q4z9NE9jaca0AWxkEBZYqr+EBvQOvlx1mlal/WR/QavhbCY6yfwp+NWtQSqkAuQX/GnT0fV/9ubtm4VPgS0QVPGjHXWXatctwC4w12lVw3NpltpKml9H7y8Ci/XsbULTpvbrgNPIEfZ/aVLVBhd4fDSb0vun72vqFtsmYRrCn0+nGUjTnhG2jKn2w1mI8nhBhYSnWWJNBJXF1es4oZGCcODfJzzynGRBKLdKxxoFQQIWbN2kq1cBwF9oCbMuC/nCoLhds+eWlPQCz9tzRtYisBQAsyFL18oWAXbJWUrK2LujGGJRMMMHwB6pbgjz81jiAEkphmYYLnm1Ni4HJ3AQEEoWTszC2AGT5WoBgHYGsA2UDEzNKXsUogWCMrzrjQiKzsAZkHYpxnJanBPUmtyCUmKQQWOo6CjD2HV7dHfHV+0d4FHgYFKN65T2r40wrG9g5LE0UGhmj1lqULdV0OQAkyvDWohTAGo+70wN+9vM/RD+OsM7icrlgHEccDgd+duYZ0bLWt+t75JUza+M4YU0bptOI6/MZ3jkUKjhOB/FZ5oJoMpxlyQLAYtxAlAFnGICFgMt1RucCMy5UkHPEdb4idKEGnDYFeGNFt7qTAEokxLghF20uZuBsgOqLeY4zGKeAbVvhg8OyzAiWmRiV6niRL7AEKWFNG7azuAnFjL4fcJiOyInlPZ640DltK1zoEXyPXCKsJUzjgOtl4WY7EqTElGFiBMANzgwsfBfQeY8tRhjHiyzlgjVHXD58i2mYuI7CAsFJJ2wAUBduw428lmVByhuGPmDddrOCH+fGLL+6qVhn4MBN7oxhJRvPrSLpZEjE98lnAfQGQRt5pQQb5e/GwDkuhtaGQYw2TZ2HVSY5DUOtX9uLez27g0DZPAG2AhCt2Y9NiwtZ576zdwpGCgyIdqMGQJ9NqUdZWfbAay/30iFSPbYy/uIIZlgGZQVQQbLvLVnF+2ef/KHvb22p5RkwRqyrvYczBu5wQOl7BH32UkIeBuQtouSE5XrlZkc5YVtXlJyRIyGK7M+LXSfPQgUw/LuceoAckgFA7JTlvIN27c5lb5bEGWaw9zARSDT6u5uTnFubLZK1UlnkFqNoXRsD7QJCkblx58R3VrVl/PWj9PPszWt20L9nqW6yCqTZjBb8o+5Df1+K1qPI67TzO7hbfQs5ODNu67EwYZuFSBTFQNkZ/W1LbMuZuXs5d+HdgX/fDeg6ZvmPxyP6YYR1bBFrncMwTbW+SDEUE4QcwLHiwCNnnq9dg+P4LHe71lJK7SUQQodxYLL5Gq873hGJT9d17HAmxa4Q0N+O7yLPlUphSS4gFe33xMdkYUC5MP9HKrcT6agx8M6h7wKcAWIXuMcNFeTYIzsHS4CR7H6KAZQTiCyyUYwMGMNrxSC4ToG/NcAw9DgeDgje4Xg8SC8Nx/VCAvg7t9t3uhqA/vDtewN/ZZ2VpVbArFKUtji3tdlUMK43WcFyKwVSplonHA0eWhcg3Zc66mggoIy4sokte6+seVsc3AYVGljo4NDJHcBN8bCyJQrCVUajE38IAfM810GrwF5lRFr7cL1e6wPfXjsNUvQa6TXWLsQakOi+9Zx10+uhWn0F8m1wo7/Tf7+8J3of9F7oQ8PnwOnyfuhxOh5hbGAHGgHK1hogMSNjvIBqZ1FS2Zl1gLMEzuI4djhOE7q+A4E1uc5IJsMy855LwTJfcV1mfH6YQNaBa2aEwZbJm4MJADCC6T2KtP42ohHV1xq4Kmsh5H1Rs45jeytdY60skijSh8DA+oACB0oZhqQA2MqiJZMcSRdCLcs35GFoE8ahwDjAmQCixExv0cp+9g4uVCTvbRpmgmDA0f2yrIi5wBaAJCAADLrgcX86oOscypoAZ0BR05ziK9FOspYZ/1KzAYxCjGHWcYsRwWpTPOkjYFkvCfHF7scRb96+vRl/IQQ8Pj5WOcCyrPAhYF248FaD9H4cENeNJ19wEKtB2vW6sPTGc8q0aFM0AgBu9JJSlC6dBBjgulzQdR7GGYyHgRn66YhVitiL88zsyDOk9QF932PdVjjbo/Ps8WydR0kJp9Ox1uqsceOOvLjtq6E++Pvc40CINTgkEA7ThCz9Cfq+q426QvAwhmBDgB88yhyBLD7q6h7mPd6c7jHPC3JhCUXwAeEuAFS4C2tKLJeQ83k6P2LsBzhrsC4zOyGJtMoQVVvmmDNgrVjjMvM1ie3nj3FTJlOBfyHDz4EtO1giSKGvWkISgifuGGoMjGXXLFM08BX5iy0o0qGZLIES2+oBqMDfS4dMTvfvnt/e2kYLL+l3BRdGv5dmvkJ16shulwvZxqXDtLivYkYFtDvhxFnfDhV+yv98CCwVtXvdADSjUMGudOm27IwVvK/yhPYY5J2Ve64dv/lGyGdwYOHBmu6SMyyAFDx31pW1l4MhzchyMFSKFBjTLr3ldYrDNiIL660ETnu2n9T7nITLMRxE6HHf8m4yx33C1u/rHHD7XefMNjgioHag3yH/bW7h5fapfOfT7RNJ6nf8fV+nP90fz7/inNSes1VTjp0A2q8BEyy1Q26M2ATkMyllRLLDEHHoR/T9AB+4aeB4OAAQmayx6CUoto1iYJfKmFrLwmsDG3wUKjUrwBJbGd+QcSaSF/R7P6cd+O+GLSyr26V1pOOXRP3QELHGQBhzJzU7Xhj3vQuuNaYOIA4iGM9yfYAGEHvQ7qwBaJf50c3PHPyQNfU+WWvEk5+Bf/Asqx36HkPPRdB9F9B1PD+EOt+Ymv3bn889qPwhMcD3Bv564SZp966gW6M7BZz64KrOS0G83lwF0SoPAHBTLNsC6r7vcZUijzY7oEW0+ro2Tdc2wtLfH4/H+jsFtgBqDYBmL1TCpABagwTdlG3RAEUDHA009LyUBarRZgO09RjaGgf93sqZVKak110HvIL5cRxrsNEWBbd1B/o+DSz0mLqukw6Mt70R9D7v0qGMvXPffozGBKSS60PbagetcQjeYU0RouVQegLWAIch4M39EafjhEIGOWshL7/MGycpaICsh+8G5Ax4px3sZDKBMCCGi1uMAn/nmPEjCJjdF1xmAmURsx7FcodhqwtjJiH5LNcJGAJRlNNwMJ67yQKZu/B6CyoJZBJrd0MAwCnKLE9hlsXEWna3MM6AclNATIYfQ66+RUFCJsNBThZ6p/C55gIkA7jMuvtSCM5Y9C7gzf0Jnz3c4cPz11X2pNeUp+BbTexeXKfMl6nFjXw9ys56gh0PuIuyQz9N+LP/1Z/jeDrieDphWzcB617GvoH33F2T5UxtV1HCfLkAht0UNvC9WUTew/NLwXK9wAi4hnHcmIsKctkNAHZG1GCLPM45M+Wq3e/5OtfW6PrsK2ngvcc0TtjSxpKidUXOCd4x45cz++E767DMe1ZPg+jr9VoJhtrh2nlMhwnrvKCXPgUpRcnCccAxjuwRfThMWFLCfL3CEne+NsZUh5kQAnKKSHFDSpt0MTVYlhXOGsR1ZaarN7JAOHRScMoLQca6JqTkcJwOUHdY5xxC1yPlDOsNcuK6AZ1ff4ybzmdaoM9uvAVWWdCyM/4Qlt9Yx4EcAV3iOplMXPBbiOAjg4VcCry1iInHanDM+Cs8NAC6npvnOO8xdh5dHyRLwLUkvbcIzsBzFIYSI+9DJA8GRvTIBr0PUpBnMXQ9cirow4rOBwYrpEBewH7meS8j8zlbrq/R8Z6ySGnk+e27DuM0CgMqMFfWIJ7bK7UsYIObjQ1dJ7aMahNYndz5y1qQY4c0k1nSiC4A08SyiSZzEaXTb4ob1vmKnJj5XxZed3KKyJkb3l3OT4g5Y11WlMJr4DgMGIee55SOwaKFgw9iakFF2H92EqKixb8338CZO2GTIQGkAPeW5dcswU2dnHQd5yVMsglQVfV3b+aGha1Rwr/V1gYEFfibNljZ1QM8D+1Fu3zeWtMken7I+q5St8RF4szyr1i3vQlrCE5c0pjFn8YDxpGdqr746U9xd/+AbYt4vswyj3iW/1jLjbws9wLwBGQYdN7XOqxpGDCNA1KSbrxZe+RwY1gDIFgPWCAcPAgsQ9oOhzrGlchSnKlZN2stbOIYohiWl8XI1psa2IbgMQ7slDMOA4aOx9kQPILfswYsiduwLgsTPOuKtK4oucBKw8xgLfrgkS3XuFDgBp2bcyyTA0BSw+W99JaQ8d33nVxvDrr7vsNhmti7fxwwjj2ctRg61vlbAzgnqzkVaP3dvw3r/4M0/q13vC7k0zTVAtiWjdbFVdl2XVRaMKvsumYM9sr1PUWj+2olPPsisIN9lb0og67SHj3OFjRv21YBvQJwlfQAzNDP83zjra+gQQG+Hq+eSwusFaQrKFCA0hYCt2kuDY709Sr7AVDZ/8rWGtX2zvUaKoOpQdg+EZib41XApHKgVuPY2n/qvrgWgqv5Y1zx9PERl/MZkEZdBcJ8Q4/NykJK8DBIxItBAUHbut9NI94+nBAcs+9kmF0nsVcrhZCIuJAujAjjHUAelFjvmSXSNvU6ctGjUxkPDKxcr92XnM+bU6Ji0kfcCMqKSwtIimANKkOnhcopFzgTuPLfGZREMDYglYK8JTjjhH2SBm6GQCWDIAW90saMgWvhpmMGIGeQE8uf1LFnK4QtF3ECYPlUyYVlMMTHnqmAxB3AAPDW4th1+OzhHn/31UfMMXFqn/Y0t6a2a/JZHX6accgYXBcXbXTHrJExLBnohhH/yT/+J/jpz36GScA+sIMKfsYMtqjBLRddpsjddFnPnzGNA+A9LtcrsyzW1YxAKRneOwRrUHJG6APUti+XzM4iXUDcNiTirrYABybzEjEE1p9e5xnWGMR4m61rO1Lz5204Ho/whhfDKO4oOXOgO50OyHnPtinIcM5h3VaMw1AlkMUARQr8VVbYdawG1ecSEoToeHDiwEJgHS53aeT+JDFu8rw6qPtITgnT6YhpGETGGGFsFkKE5VVasAoL9IGLkK/zmYNr55CpsB1i3Gqh3PdhJ/9DbTsIMqLsIG7yh73gUflQV5hRdsXDeyOZIQtbAFsKCBnqeJJd5m7jlX1kpFwaq09UltA2zL/ZGX/TynuE8c+Fi/pKqVIUBYxsGejhXa5FgtWX2xqgKGEAweiKPpkRddbWMe+cRSi6XrLJQt/3GIdRgs7UFGiWJoMmsilhTYMCKGFnd5Z5h67GoM671nDBsjKnRMTMpPw9OCvA38OCkFOqnXhLzojRICUrzARna3LOoE362jiHJBI6vcHahVevC4xkcITMb4evMToibgZRfa1urdzHNFLIPezbf2ckq9Su3XXX+4fi+7Kvba3B3/ea28/aWf/bwIDnWQ0yAS2kdTKv44ao0w70Oj5iTNWYRGsMvfdVrz9NE6bpgGEYcH9/j4dXD5iXFYkg84+DadQYO+O/Z4R1rPOXF1JKrnfZs2RthkN7A+VCkr24zcK09YiarZIWPBUgl8wWmmiKi70Uz+4E9Z7Rq0StSu9yQkmpYfxzvRMqO4KlmnHQwl3tOaTW4N47hMDBSd8Flu84rqN0ztXGXN672qVXpaTe6fWQEVakAee/a+DfgnfIzVJgr8Wp2gRHgTezYAneczpII2xlpVuHmVYuAOye9LpQA3u6RwGsAlaV1OiAbQtW20LWlt1udXY64Fs9/PF4rD7fGniklKrbDoAbsNMORAXqem4t8FbArm477fXVfbYuPColIqJ6PK0kSD+7nSBKKTcFw3pt9Nw1M9EW+OoxaACi95coo+s83n39JR6/fY/z0xkwBZmyMMuiqSX2Sy92fxid4wK8XAp8ASgX/OT1A+6PE5zvgELM+DvLwF9AlfGsXXSGELw4OpXMrLpl6UouGZ0LFajCsu8/7C7nARVQ0RIdncx5CjTe1MldswgEsFOQfBkSJsJ6GNOJA0UBvGVNdnBIy4qcI1wIDMgJsGw2LoV6AMigbJwdyoVdeZSFiWlD1l4BhQsO13UVRiwjRp6gC1lY4+GRMIuLEghIVBC8w9T16IPFMI3AfObGTfyg8mJr9n9bo8EP1WulVo6aCQB0It27dE/DhPuHV3j75hWcNzifLzDG4Do/483rzyUo9xinEeu2IG4ZpUTuNSAA3ToLJGAT157j8Q4xblwLIAYBDCwcCpna3bcULs5yAIzzyDHDqXUdgYOnAvTDgOuySBBm0IUe1jssMkc4azH0Hew0iAVxhxgtQhgwpwXDMOK6LogxYRonOLuKFGn30rek/RFIFPOmAm7rHYbQg3LB5fqM4+nEXvzeSOv6jYsXPc9VQ8d1DOwGYRB8h74fsSwsyeEeBgdcL5fa56Ifeg6WrRULXC4CHccRMW4oOSMVntMoFyQAoIyUuS5nSxvWFNH1HVCAYQjsGvWDTeH+/W27TFG+ACAXCYZ2cOaMRbFiwek0g8kPi2YLSiFmAwvbSzoqMMRylSK2wcyKyrNKYBZfAXRKIOdq0GxFqqe5UdazcxfmEDyycLBUbOWLtQi48x7Jc2p/7HvO5EgRvzGGJX9CJHkNDpyrfuOJikgz0BRnE7ZtbcATA4+cjRqk8fUAFxSepgnjMGLqe+le6tFJBskZI11c+TgoJ1AWxj7lemzGGAQf0Kv8bVkQtw1R5HY5cef6dVlBlFmul1muaIyuGY1UBzso1wwYSOcmwNTOtTomWpZ931p5hTFGTCJ2SfCnwHrfje73Ru4jAcBL8K9zq36m/q6GAs37f9+2f+Y+3ncou0tY93PVyOfTfdUAqJ6nqbVwt8e/X2smVwyi3DPGC1xLE2PE+/fvEVPCsqz48PEZW2Q7ZhcCd1QPTBoWImxSjL2s3Pyq5FL7lBgDrKs4SBEDbF7P1WSDA1zjLHebb0jTVn4F4rGZiasyaiZILh6bZ7C8jtn+DsfDiHEcMfYdnJNMldiOc7Y3NTIf6QaeZczmjBQjd4ZPEdvGNSxxW/n3eQ8S2MSDr3VwlrOG1qLvA8ahF1WJAv+AoWec1gVX5T37bVIEIwGSlp/8W2w/KLermnsF9ezBnepDsCzLjaRlXZfqF23MbRpNX+O9v/HCV6Cvv9OUfAtY+V7TDbP9sqBYQawxe4pff6+fb629KQxu6wNa3+yu62465+pxt8w+Ed3UErSBhzrydF2H4/FYZVLqPNQC+XEc2dfb7otwWzysmQn9+8saAbXd1Ouk96h1/9H3VtstcBZEr6/akgKAQUBMK2KKPNnHFSlu+z1swKM1BqVk1rMrWCulTircyW/gAjLvuAMw2EUjOMvV7yhwtWgXSHlj1hscRFgnHYkBRGIwVkpBMB5ULCjxhMjBdoEBO2lkcLWws17GYkKJAFKGdR2sNyBjUYi731qpmC9kuZ5BDe1hUEoCUJjFdkEl+eyXXqVbLOVRjeGyMriNueC6rFjmGXGbxWs8Y4sbgMyp5ZxhwR0AyQZsiWpqOxcgpsKFcDlJpsnDIOLhdIf7wxVff1ywlcgsmrKh4nyRidkP7V0ACPtv93vIbcx3IMOLusP93QlvXr/G6XiEMxbH6QBnLA7TAcvCbjvjOFXwZIRe4wI8bpIV04otRngXmqwSLyzbpowTu7J04r61xYRhHMWekwsEQ9chpYwwqP9/qTprZx2ztiVjXRZ0wwBjOPjNSYNcB2t5Qeg6V4vYAA4OthhR8lnGrQNFLqwFDNZ14TkwBHGq4Aza4XDEdb7i+fkZnecOli3BwOOWsC6cIe27jvXP24YucEOuWaUQmeB9QM4RUebbdV1F/sRyKu7dwHPGvMy4zleurTGcBUrK8koPBEiQFLoeznucrxecjkc8P1/gfOCeFT/SzXsmhOqYJW5MZJQpxF60V+xOvjJ2JpjEftrqsMGNi7iVXSELbyxClkJfJGRbkFIEiSyIErPwxjmW8QgA53FEcCA4w4tySRGxFFAJSN6BiB2ynNfsANcykXcYQgD1GSkNOEwjQvRYlnUHkcTWhs5adN4xEDIShBJBuv4B+jvDRM4yczdd7RxcikGyzIYqZjQAxr7Hq7t7jMOA0zRh6nt0PmCQLIDRTAOxbKLEKCBnqxIxJQu6rsM0jkjbhvPHj1hnfk6ulytSitjWFeu6MGtK4naWU5VMMbDRIvS9FkG13WxQw+df9gimbvSCaW+ZYwX+2glbZci6Rn+6teD7FvjvevHvCBhe7EOzzfre37e9BLZyJvVL51QJfyq2MobJM2XQ9+PTgMeJj3/hJpISgr48RxJiiofIChBjohQz1oXnvEyEj4+PWNYNHz8+c/O4rkc3joJzevgQUIgQCxNXmQhRrEK9tZiGHm4zmO0s1q9ALrGer/bUUQtNgqlZUTTXKEkWqxCqlWwNwmT8cNYN6DqPcWDnqlcPd5jGSXT04gqlNTCFmyyWkkVmuSKnjJQ2ZMnAKsjf4oZl5qLjbY0s0RZjFKICS2oDbNAHh0FA/mEcMI5DZfq9Y5Z/GHvO4kmTLqMZqtqVVO/tHiSz89QPiwB+sKhTL7gy9iq1Uaa6BekhsJ3cS2DaWnm20hi12dS0vAJp7bLZylI0e9A66LRSm5ZN16BAAfNNkYjdK8mV5W6lM8rYt04I+jk37gdE9bz0MzV40SyHbjrRqIRInYe+S4/fuvzo8es1aesp9DUq42mDmTaw0v3qvdJr3l4fDUa89yiZpCsqFyOiJGY8wZ1uU+Y6AAsDWIuCArZC00mXxM/dCbMjTSqIQDkhW+L3ZYMEwIuokgQsP50vWNcE6zvExNdi6Hv0/YBu6DAIuIqOU3fOuupg4p0B4ADnYdTvN5Xq86/FcqWA2UPvOS0HB4qSxSGS4iAOsGAIJW5A4q6AJOcU1xk5RahdKACs1xkxLYhbxPV6wfnyjOfzFdd5w/Uy4+nxGb7rYK3Dss7IJSKtM5AzvOHC0OPdHcIwYt0isiyCCtpzUS6Rj2EIAQ+HiVPukRlLXud5Ei0iRdKixtKwVnpPDXgR91ZmHGvggsU4DXj95jVOpwPm+QqAMA1HEAiHwwBjwRPhws/sPF/hug7d0IPIIFNBPw64Xs4I3qPruGv18/MzSik4HA41sE7iLgEwcNkqKJfaInmOVEpDIC4CK4RtXrGtK7qeO/c63yFmzhbxviMTuFWus1vaapF+GHqu08gZRgI95yzmeebnIyeMnTTRSgn9OEjgzBp/3ZIwQmoLbK0QCT5gyQUFwCpZz5yTzGcJKW9wtsMw9FhXQhc6bngmHZBd5P1O4yR9NViC4Tw7QQUvrkMpYcucNYgpcRAmd3lZVhyGEQacqfWhuzn2H9tmjDp00c3vjLm1fNS+GBao3vkse9AidQtr9ufWWivFd1xIyuTAPn8BDOYZFHGHT2a+M8jslo+67jJ7uYMo1qDv1C2fAlXw1kogVDKTXOJ5TACRFpqCpKGYsPCV720YQQVzlQhT7Xu7DwFR3FlbPNhDYMmRBv/1PERDL/OgfuWUBPhzMSXJs5tTYleTtH9pcWQtkKyaes1WqEyFnbVaPXsrbbnFNt8f6Px9+LyVkH2/vd/KdGsk+js+6IfI516+luh29/vH7ORnSyy0P98esXBW/Ko9IKrSF5Ex2t2KnKB1ZbniBS0UXpYFBGBdWf8epXcECd7Q+ZUARLHGLZBytYZ8VGkOZ6ChaR4mimS+hzwDTcTfBEYclOo6rVaeetYkwS0HlgKmQ2BvfOfgvb3tM1Go9ixQJ71SdnlP64JYRHpa8t7zgF8rdTR6HEYCY7nWXNgvsiKRGPlWQihyI81S8X2VL9nffif5/1p58kO2HyT1afXyCpBVK6+e8gpwdRHXNIuC+JY1V217C47VSaNl3LX9eEqp2lC2wFiPry28bQMDtaLUjnO1ihx751qN/vVhavsS6DGr/k0DBHUCMsbcMPf6pVmBUgpGiYZffrbeWAXoAOp56TVSZr6tc1A7z7aAmtNGfQ0k9iLdVO9JK3/SIE2vFYBP+gzoefRDjz/5kz/G5cO3ePz4UbpQmmoT51yAA8GQRUyZZ5rCJ2fVO9/sjduMpN6JClIisSVjxjbGDR8+PuLLL7/Bl1+/Qy4GGcB1XpBSwnE64Keff4HpOCH0HXeb9B7j2ON4nNA5KTB1FqHrgRJgiCv3s6bOa6EwN+YqSLDJw3oPKtwFlRKP5WoDlgsKJZQUkbcVBhbZWKBk5DQjbguyeIWnLeH5wwecr8+4zFe8e/cB798/4vm8gMABBgBYFwFTpPsl28fO12cGB+8e0XVf42c/+wLjdASBtY4wFltcKxvPDbEMgjO4O4wYOofLSvUW5FKaBlwchDkQQFInYDl5rAy/NhriyT+hJHHwSpHf65g5e3x6kiDMox84uCyiMeJglJ2AnPdA3jNuXNDNGQsOSoVM6DrWuHd7gL4sC5zn7t1ZOnV2UnsDYvnbeJwAw5afQ+g5KE0JW07oO4CsqfK3YWDXHyOuLEnS2fqswBgs81xlRAq0trghl4LQTyCR9JgCkMmIccO2RUzTBGMdzvOV5y95Hp8v591dhagefxImfovscBScx1E6vsYtY1sX5JiwpIx12+CD52fEBoSBbReNZZu4nDO6PqDEhFyInwFwqryInp8XTQV2YkW8LvChQy4Jz+fn77sc/AfYdJlThptYUmcAspKml8VeyXCdV3ncEYrjZ8EarpNJif32CxVsxsDajJwMsmV5DxlCBDtyUSlICSCXsS4OVBKCD3AAimh3UXgtdCJPc5azZ5BOvUV81OEcjGOwMXQdjzWZD2JKOF8uCOcLM/fripgSUkzYlpWDAufgPBdtUim110hbu6LuUdGKY1gp3Hk0JozDiIf7e3Rdh8/fvMFnb95UqREX52Z+rTEoOSHHyNd325AjA/7lehG5Q0be+HO9tVzTVQrmy5ltPAtnB5Q9VTtPa6mCGc6mAxzi5JphdI6lgbs9JlX2toI/RXcVGKnCXbOVL8A0UMEj/0hQp6SX4F9eCpWLaR8YK+OvQCTDzfjkccfhtbaD+z7by4zCd33x6e0Kg1ZibOTqoR4PJIySv8nzYKyBl34VfR5wyAkpZ7jQIfSbjHsNasRIBQY5ldpUcVk3WJEqz9cVuWT4bkE3LyKJFEmnHAMALrRXb/8UYSUr2YcgAfIebOXCdp4wAHLifxN3US+aARIZrrHsqgW5TyAmvNRVrQse03Disf7ZWxyPp6o4QOHO1ZS4Fq+kxHbkhRsxUslckD7PbESxsnwt54R1nTkbvW1YpECai9Wz2IRyVt57lvJ4Z9EPHcaRffrHvsfUd7DOitaf55AuuEqOqkQPMp40c8X3e2f/NWvzQ7bvDfxVYtKCfWWoWxtPY0wF2spAK/DVDIHq1veD3gtOK8vSfNfiX2DXj+vAbx+CVpqj+2679ypwV/27ntfxeKyvUYCvAL39XAA1gNFApw0+FIC3hcwaEOj5KohXm1H2yk81Am4/X8FyGxy1GYeXzc1006ZjLcvfBkoaTOj11eyBsp4aUCggIhC6vsflOmM4PuB4vENO75Eze8avxrElp8hjvBf/dQtYOKTM2YVcwKyasUiFZS2GHIx1KJSQYobNwJdf/QZ/+Vd/i2/fX7AmtuKLuQCOOws+r8C7p7/Fti2wHS/Cr08nfPbqDg+nAx6OJ0x3B/YbDgyQumFAcuzyQTCwhRk7Yx2nj61DiQkpAvCe/5a5II2k5XmJCdaQNKeJ2NaEnAnGEmJacXl+RkkZ12XF1+/e4f3X7/B4vWCNCSkSrktETIRCCT506PoOJiaUtHAa3xh0vsfmVsQtIZeMp8dnPF2u+IM/+Cnu7u9BsEilAIYzG33H/Q2CdejdgMOQcRx7fHg+M9gvBGcJmaRluwQwpoilp4AlJS2NBdseZsA4NkA9hIA3D/d4+/kXON2/4iZsxwnW9nDOIxWCLzxRX5czd9klAyAjeIu0RAAWqRAMHGAKLpezjN0I7xxPqikChrXqjx8/1kwAwMWBh8OBg/EYQbmw1j0nIBcs24y+D9jyBuc9iFKdO/pxFDa14OPHd+h8z/IzAzjaXbhKKZw52Ngqs+86GAMs24piDdukSiH2um3w4GAySdbzuszwIWAae5zPF4SOSYohcFA0z1deHOIG5zxMIQRrkSwXM1JKbFPpPRfdFsI4TiAQJnmGe8/ESEGBdYApGSWrjKlg6HuRilh0fYe8XHCajnj6+BHBerjO17mQsxtdDfbdj1fpg5egjDNTxCCQXWZB4njjSEkLV4GftcpgkkhFCMlaJLPXgAEsb4uOI+ZsGLyRAImcCyhbbNaw1r3jhlNEHiX3gK4ZBty8y1iZ4wT4p93C2oJ/3/mOu5fLupAys/0oUmgeIzbJLGk2zQcPKqEhmZitTOt2I7WFAbIxiMK0xpn12odhxP3phGkc8frhAa9fPXBzxU6ac1FBlEAxbRviuu7yB9E2X8/PiNuGbd0wX6+77lkKxS2EZSYC0w+cEUyJA3bnjHw5kfw58GykRJ64xLlbFpqlGw1Qlv9rXkBi65vtRjqjCBg7sVVH1EvwLzskCaxUWkPEHKul9tNv3gTV4Fuz/+33sf+fAn365H0sV2rAfSUsGuQs5yExJ9qzMsbUTuE9cVDLBgMBftOaSs5ml1wQJahLNsO5JPu8gmRMsekE4MMK3y1N6o2Pg80u2Omn6wfAWu5ubgzIGvTec0apuY4pJSSItWhOKASknCU7qpLX3QLeC7bSG19EIg4A09DjeDpi7Ad89vYtHu7va2YbpdQ6HiJZ1yXIzWnjYHrbsInaJG4bYlylIePKf9s2Jmhya27BVrTOour6vXcY+g5D38vPAUMfhPDlIl8v8h7uUWCk6zg4qwmSegG9k3s66FNp2O/ffpCdp4JGHUCqz2+lMt776levYFTrAvR3Kk1pPfIV7CqD3TagarXoCoL1b+2JO+eqpl3fp/vWz5vnuR6Hsuxa3Kv7VdDfBgutdacyKwBuAoM2KFG2XxluPS8NMNqbxaB8t9N7eX7KyOt3DSL0mqq0aRhYM6ZSJT0egIMBrVNoGX5tDqaZjJxzcw35/SlGgNhD3TrWCvJAZ9DoHS+kORc46XYLaNBCovcvSDkhE8kXW/A5z0WNOUb4vOJvf/HX+Ntf/AqXucB0E8apRyICtohEvJiRCfD9CLgOT0+PKDnClisuT8/onMFhHPH27Rscjh1eP9xj6nsc7k44nO4Qup71g8XDuiDuOAWQJmBUCGbjh4+MPsic7jaJpSIxrchpw5Yi4pqwzFe8+/ZrLFvG9brg8fmMZYt4/3jBh+cLYDqWE7kAY3zttOlch2B7+OGAw8AsRKGIw/EOhTI+nh8xf5swpw1/+6vf4Gep4HQ6NYGvRPrCljlf0HWEaWDmYJkTjOEF1UML++S9KKz3VbkCJM1owMGCYRs17xy8sdieL+h+Qug7j2IMlnXD4dBjGHuE0OFyYVDL+nPHBb7Liut8QcmEfjjUZyoED8Bi21aEYLFI8V/oegzThKenJ56c5HnQGplt22pH3WEIOF8u/Nw5A5MtSuFMUsyRP4N4+Q2B55hhHGEdIScGI4aAedsw9HsWMecMK3VJWSWB1vEikAqAKNZqXMw4X6/cMXfoAGuxRX4mu9Bxsa/ZMx2uC8jZIW4bLwaG5Tk9dciiT+0DFwAT+NlYt7Vm8JRwIOJn6nw+I4ljES+c3GhnHA4AuIncMIy4XC7IuWAc2IZ3kcyoC0GK3x1K5kzCj3WrRfyy7UynYW2zUY95ZizrMigFcCQ1LDCEQg6W9iyewQvvetp963W/pX68BgK5kZQSknTv1HVIpUnZ7U24irrS5P1EVNriLEsRjOWC277rWDcfAlJOMOJvXrPBeQ8iAFSWX5l+nhKE8SXO5qmcZ+g6dN7Lv20NQkrKonFmWRMRBxOb1p1sTH7kxKYeKUYuzNemYJohh9wDvZ6qTZYMDJNDMt94xgNOgD9ugP/ebKqC9RZYt2DH7NkgI/KN9irvdw8tZrrh5G+wk+Jo4iyZ/n1PMujvBXxJxFFVAzJeP5Xv/G6Q9rJmQLMNzQs+jWqgoYaM39+B/3SZqMy/Ecc2x1bS3hMKqeGHhXOF66EKhMHesYQmUaosSz+jiOmB3iUjttqGUMS1Tfv6aGbZe4dCHnxFJSg2pnrpl7JLq3JmQxFWofJBBJHJ6bUFdOxzoKY2x967Gwkbd5PGLuWRZ5qlaCxZK8TMf0o8vpMoRrh4NzXv3cMWI9lUIwYDKt/xjaxHHX92CdBura3jps5FeusbMc/vry35/dsPEnUqWFSGWSUvwO6oowuU3gQF9INY3ql8RptSKUBX0K9AtC3abZn3VmffHosCV/X4by9OK8G5TfHt3v1qVdr2KWjlP3rsmtHQY9HgoJX+tPacL6N4PT/18g/BV8s+BfJ6vHodh2GoAQOAes31ummWoZX0uGbB0eujwYOCh00dFyRIUMafNdqzLGIBMNxw6BwjjLPCzELssQxMKei9xRLFf98AxnCxbnVAEG15Jra32xI37aKUYFFgc8Tf/fIX+Nu//gUKeTy8/Qy2m2CtgzVcAErGYF42lAzM1yu3vbceNhdssQCdw3VZMWfCddngPHCcBjycDrh/uMPnn3+Bh1ev0fUDnM+wPsNYD6eTniyq3I3XwXlmeiyxbWfaNqTMwH/dZszLFe+/fcS337zDslyxFuD94zPm64acgcuakMkhxQTn2L7rcDjizavXeHj1gLvTCQ5Ajlv1yTamIMYFBQVr3vDm3bf49S9/hcf37/Crv/sNfv6zn+H+/iQLoq+pPyJeLMfB4zD0t0DGGLEsFBDKYpj6mQC46FnkPo31B0ACfGLG07tvMJ2OGMID4pawuCuOpxNSyhiGUeRnK5xPWNNZgGwH6/g5VleqZVnBEkCDvh9gzYZNxv22beilJiXnXLtRq61c13WIOSHmhAKeWBf1VjYeoXewnuUbBWqh1sMYi3WJHKBi9yU/nE5AARax7/Xeg6zB9XzhArVS4B3XC3Dhp5XGLwzK1SJuXVescUPX90gxQ5e/4AN3rpSAedv4NYUIcVvwMNzDEiGB5YKpsL1kKhlj37PEY9swDEO1GXbOVf/rmhF1tjJfPIckRGl/7ZxD6DvM24p+6AFr+Rhkked5UHt2/C9lE6ZbQJY1VhbbvcCxAjWAA1+Zi4JX17IEZziLGNOGyBYCMFSAkuHAtpRcP1sq4MspVo0viK+vsojOeaQYEYK4c4g2OnQBVLpai2ElOHA+iLbaw4mDmQUDmhgTnDMY5x4xJsxSFK6sLEGd5VhekERa65yvXUG5mzAXR4+ne4QQcDwc8Pruju0DfYCR9y3LwoC/cI0elYJ1WTBfLszorxvSxueethUlJ66FSdxHIOdUC35dk43QLyXRrOXGY51mK4ODM1YIGMUNtmE8lVmX9UMAanX7aUdFC7wb2AQAXHvG/2TmmmBL4UJteWWhPf1pigIwldmAf6kAVZMHhoNPHpP7d/MdKPzvA/23ch8+Xw2FVH5D+vf6OqqovgY+tNd/6GtRmh44Mudzoyh+RkLo2RWnEHKSgtyUsK0KelnGwteIDyQXghUCsNbgCAjWwKmYDD2y7LSOAGJ963AcB5S+4/dbFptqUM2YJyNnZuXXTrBTyYxBwI2w6rxXeM7lIDQDBjgeDjhMLJ90BihZi9OlW7seb2HPfi3qXde5dp1eFpH6iDyzlIxt2WS8Zxj1Q3MW3ug8wNgoBHbvCd5jGHoMQ5DnwFdP/9oYUO2AoV97IKPzi63Y1tRn5d8p4/9dzjrsLJHqwqfgsWU+WqZdNy1U1YMGeFK4u7u7Yd9fFqnyZzCLrHp+LVxV8L0sS80oaFc3TYfpIqlyoxZg55xxOBwqo98CfgUcLeuumwIUDVr0OrUAv23YpTIclSPN8wJj2KNWP1uzG61W/2VBsl5H3Vd7X/Qc1be8skRltz9t5T8aSGkQsAdiFjAJJW9Yrmc8P32ENcC6LnL2RgAXWGtqrHSplc6XxBOpD9zOPm4JH5+eWPdnuJDOFHaw+far3+Cr33yJ8fCA46s3eP3Tn+Lu9Wfo+gnBd8iRH0YGPISvvvwtvvrqa8xnYLsWXJcr5mgAyyxu7gdm0ExG2p7x4emC62XDH8SCh9evMQwTPBXWSEOL+di+0gfNYkVOcaeEuC4sBSoZW0w4X2Z8ePcB7775iKfLFZkynucFX79/BBWPzvXwbsAWV4Tg8PDqHg+vX+Hh/h6HYZJxzFpwaxy6bgCVhL4PCGFEoYIOPQAHWjIcAd988xV++5vfoA9/hOk4CeAQJamxDN5JZBveM2sjtoQAT7pFLEaD2S10Iew2E0Z1yRAnEXbvMt7ien7C+eN7wAV0I8tuPn74ACoWD69eSf0Np0F9GHih6XwteNIC/S6EGmilJAEv2E1nmReAgLvTcS+y73tsW9ylgiHU55xlgDyeDscTHh/fw4VQ2UUA7FojmYEtZsAZeBugReilpLq45ZRhg0MvIJuI0I0DYt6fLwOe9zjzxTZvvTzPrMF3sM6wE1bO8GrHOy8M+qw2dOHjJ6lDmo5HPJ+fYAowjIP4NAPjNMEYg/P5XOcdvneOU/Upw3cdVnEHOh2PeHrmrElKmRnkoa96cessYmbdONcecVfxH/f2kuVSMCbsLlONYrwl8N/swF8lCIUakEXMbBsw5jAgBv3yZQwxgLUG2ajlH7OE2puDn2OLbQ3YwgrnktgSkzjwaBd57ijMY1LmXOfg4aUrrYUXK+IsOuEYErbIme/FrBwwiywCQCWobuQ9ALOiIdw03/LW4jCOmMYJ4zhg6lkCGZzK/1jWo0GNriHL9YrL+YySEqIAfy5qj7VwWLGxsqD8S1szMFbqt7wxtblTPwzoOm6Cxg3DZCeSvdHCR4CQC8svFOzezFL1BjcjpSH9FAwr010h1QvGX7FAy+pTEfto2jXUfP/bolql2ffxpv+mm094MXppH783x1t//tSnhZrvnwI9U9n2/aw1MBZQbG6xC6svAojYxU1xe84K/DOc4Tl3NRuIViaY9PNkLOoh1wyFBjDgRmEAULLljs5EXF8l5+27oCcOa3eJNH/p+JbmphACNucqeem6rgJ/xTpE0p/DGPRdh17sRS24vo9laVv199cMAY99biqXNnbh27YVq/SWaWtEs2QBiswfytKrysJLN94g/QLYcMFJ7YqTuWBn+6vdbGX++Qoa/a8GBO142VM8PzQL8IMaeLVg0VqALYv0wbrtTtuCdb0p6lbTdr5tZTnPz3txmWrzbwtvS/2sVt/eSom0uFUBNLMjcU/jC/utkpfKEDRAv/1726yr1cYreFb5jDLyOmHqeapsptXn6+9UMtT3Q5UG6Wu0hmAYhlow3fYUaAMAvZZaf6F1DBpw6DVSQN9mWFqZlm7X6xXH44RSCp6eP4Jywm9/9Uu8++pLPH98B5siPIBUClftWwcy7FMbCcJ2GBhTYFDEz5YB9Zp3X+0C7sC4np/x/pv3yAh489nn+IM/+VOcXr2BC50sKEUK+QjZZlhT8NmrI+4PHT4+PWK+LLjOC+b5yoU4KWHLGcYBKSeUWBCyx+PHJ0zjwF03nYNxHt5wxz0DB3gu/EPh5jsoGcgZOa3IZQOVJMElN016fn7G9XJF3CI2ynj//gnrmhG6jhvwmIJpGuED+/Ju64KnjwUXcwZlwPuCrjPwJmD2HbwvSFtA3w3Q2OjQ9/j89St4yihxw/X6hOv1gq536EOHkglZUumUikh0jCyeFqYoS0MwRbtTEhLYgabEjGCAY9fh81cPeHp+xsdlgbGAtw7BeWlmxoHg5fER/eGEbhhRssOyRNzd3TEwoMwguB8AAMu6YjUq7ZNs1bpJMTXhurI7hDOQYJudTZxlW0V9xi4SMEzjhCQMkw8eVpgVshZb2vDx+SNSTJiXDeM0wvUeKXPzq+t8xXQ4wElhmwue9ctzZLmZ4Z4BpRTEdQ+Mc854en6El2cvpYhpGBGCx7yu8CbAeou4RaRtRXAW4+HIBZqB+0zkxNmJYWSb3FyAwzhguV6RYkTfDViXBJ/YsWpZF3Ed4iJrleZkWVRTShinCZfrBcZ59N0AYwyCdTAW+PDxAzctCz0KcYOdFLlYzYuOe1s2EAHrksAt5Mc6v/4YN9tkIxRsUOGCXvW1JtsAegOx+Xy5H35zAWqjHXLMsLPFMGc3DYCUpftH0Qz2nkUARI4iuhG2nt5QMgd1Vb6aOdvT517AjYXPHlYCQCOyCogMSNUjfFwOfcfZWWd5X7FxqwNU4qMWpcy8t0TVMPTVNncaBvQhoNMMBRHSFjFf2aUrrqpxbhz3UqquPurG04Lt2vALQLHgXgWGew5ocaKV5kPauOklyOFnTUFMqRkC3faOtLv2XcEh0e7z365hLUhq18q9dnB/1Q72v5uhN7S7zuwBhL7/d2+KK17+7uXP3/U7OeHfud89K7AfCr/VAFSa34t1OfbPKqXcNMBUwK+FuNZxvY81DhZqzMFF1kQk7jeAKwUGSWS+at1tsCv2TQ3+WNqyC3pMBbUQ0Gzqs2mNrc+yBZAt2307I3UFpaDPQY6Vs2dE6r4nx2qZyOu7HkECy7Rt0pArS5E5/0yZs1wxbhX8r6LbT3HjIKEUUObni4mC3WpTaotrY1Ed6wz8HYIP8l0ahllbi3eV8a9mAE2GTLP5Widi5TrdjigNEf4dMf4t865RDxfp8sS0LEsF3MpkKfhu7T6V+VagroA0CIunjLMWEr9suGXrxdqZ/DZroMenQFp/bgFzWxSsAL0tnn25X5UPtX9v3YRawK7ZDj1nZSb1PSmlWkir56GSptZvv2XtNRMQIzuH6Lm356HBT/t7PYeX9QeXy+Umg6EBlC5WfOxc0zD0A37zq1/h3TffYhxGfNgiQnDsVS2TLmtiWV5UjLSCkqZUJCxEpoJ12/D0tHcPLZlZo21bMS8bHl6/xuc/+QJDP3CHzZkzEPO2YltnrNeZC3zkHOdtxbat6IeALjicph4ln+R6Fk7rxQ2uFPjgEYauHsehcLGeNQWgBGsJVjz/uaAoAyXtDEDegMwswLJccbmcsaWM88yuM9u8MABzAbAdtkSsp77MXBhYnrBCXKmSQckEYMPrU4e7wwlj12MIFoexQ9dzWjB0HQoMfABO90d8ET/Ht+8NLtcV4yHDWe6MbJ2VCdzC+wF9N8IZBxS2vtwXGBkPzor7TsHRO3xxOuA4ePzpH/8MX737gH/zi78DOS81HQHLEpHjBhMTAIe4boiiyVeQtK6rjE1OvW6pYDoecH7msZYyNzXqAlvzdkNffw4y8WmA7r3H+XxGzly3ErxDTIR1ucLCwgTpEC16Zi6GLCwX8B4xLlzrljnojLRJViximCZY5xDjxi5AXc/FVF0HwLAlp3Qq5ueKazGGfqhz3DKfsSwWoR/RhQG5RDjnMYxcx/B8PvNcuG0Ibi8cTonlGd5ydhIGHBQ4Hs9bzEAqmA5HsQLNciymkiCd+KuzZE8yEcQBazdwrYCxFofjkbMZ24ppHLEtM6w6pViCtYWZ/5gQY0HXd4jbjxf4O68FfPw/IjCDWTXAjMpqsSNJHUvZ9fr6dgYZBrAO5Pla9CIVTY4lLtFZZhbjnuXl/hBUJXO6GSrIccMyC9CcuSu49w59P8I5j3EceY0RSZb3HtY5qYtiFxRbO9VCAmAHczhi6gdsKWHoBrFP3htZVRZYWEid73UtnKaxdvHVddA7B0cAcsZ6vWCbL3zOjTc/y2wMctzY9USsCkm00RAA50SqwwA3CBAy6EJXwY8Vn3RFmcroAxDpk7j3UAGkkWC7cWdUdo/LJd2swerT3hZoo97j2/o7/T1/Z1lJWydYioG697SBRCHAFmX0W97dNF8vNlLG+/sBspfgXwOc73pd/eIz2QUhhuk0zQjwbZK53zQORCXDktpuQ86Rs2GKh5xzQGeqnr/vV6zrhlrQK8Xum9uq9Extl1lqJGoKkTha2zQOA9fV6DhTkG4F8fKcJ9meUGo/nDz0rPmv11XqsCQYVfzUhV4yme7mmq1XzrBrpEdE2NaFJW45I0auWynSYE41/CXze1o23nnOpfG+xSjF7l2vncia+uCr1Kfvue+LSoCCSH30u1HpNNRqeAf+Vln/G+C/55R+GOz/gcBfAWYStwEF0crMzfP8CUBW9wgFnlqo14JutUVS5l9lOzqBacpdT8/W9Nue5tB9tl2B25uuE5/q4/VvCh4U+CtI15uszcp0/xo8qDNPC6pV46+Tku5LA4K22ZlmDvRcNVPRZk70/LQjsk6W0zTVIElZD5VKqexI/6b7XJalFv/qfud5rgGABhZ67MsyMwNogKfLGXevXqN3BiltABWE4JFKQoKBEYeZkhIPzlIqjeCtBTlOfSfR9+vg9dYwQzvPON3d47MvvhDANGNbrqDEWv1r3HCdFzw/XRDFNeKyLXh8PCM4h+M4IsWIZVvw8HCH02HEcexh7QRTWMdpnUVw7CTAbhmJU9Bk0HUSshcjDAlrTXPOALGGNqWEEleRnESsKyuC/TAChVn7zhtkypjjhveXDectIfQ9TtMRhgAfPA6HCdc54nKdcXl+hnEF3z5fkRPh2Hd4fXfE3eRxOvQ4jANr/3wHb4CxDzid7vH4dMayJgx9j847GOl87LwDUmJ5Tt/DXTex6dwlDhAm1BogGODzuwP+5LPXOB56PD1+iw9PHzFOAVQsrLewgS1OO28QnMOaEt59+AB/vMPhcIS1rroisIwkgGAxLxc8PLzC8e6Edd1wOB6wLiu2ZcHpdGJ9rQEcjBRn8Rgex+lm7FY2UHTMxRR41+N4POLp6Yn7BawbnGNbuFwYXG3rxmMs7JlBHzzWbRUHEc5MAQXblqSQNuF4OgGZUEoCUca6zRg6bqTlA5MUa9x48TJc7Hy5RhhjkUtCGEfEbWVtfy4IPiCXjGlg0PZ8vgAwGPoRY9+DqGCZ987naxRL2MzyP2cdjKS47+7u2CJRn3vwIsuNb1hSFXNGF3rAsGykk34D67bh7nhAJmVAZQx02gOEu/3+WDfbsL41xU2mYi6r/9SFsTLKuiQKv6iMbbOQW2NqwR0JU13cvkYBDFCK5QAbzdzcfufCWgMYYT4LF7rzWsDzvCuuHqNKEph1pnrMMEbYUlRiCDBIXYZ7ke2twLUU5LT3t3GOixmHrscgWWktrHVGMxUsW9IaAQX+1lpAAgdtjgbgBnC0hbTGaIfR/Xp6z/IGYwycN3tmOSuj39QA2F1yqBXB1NzpnWI3wro34Jv0laivMWZ/j7m5pvtr9mu3s/61loB24NwGjPXsG5r9ZQnxy5/aMfL7tpdZi08/uX1d81ltBoLMJ69/8WYeq1Umsmc86l6MlWyUwnMgBOkgX7jGInO+vlENEGzixl8w4iZk92Z1eoxGT4mo/oNH+z7GOCAApNkGCFQLc8lSHRtEBJMzTOGMNpm9IDz43RK6FHYuyuIIp6w9EXGBusipK+NfMpI04KIimX+gNn/ja9TWjCoOVSyoDSI5iKn+/M7dePTbJjNRMwjNvuvnaIDa/H2/d3rdfs99f7H9IKmPgs/KtDUNXxToArtlZSmlWme20hJgZ6L1xgzDUAGoMaay8MqY62cCRlIjbu8uK0Bcsw0KnPV36hykk18r39H3K3OvwF0DkZcZBz1PLVTKoofUol59eLUJmXbEbYMBYC8q1qBCg5+X+n09J5U+LcuCy+VSI9yW8W8DGS2e3poiQD2Xw+FQ76cGCvt14J+HoUc/DHi+PCOXgodX9/jbv/oLcTmxGLsexm6gmLFtzDjyooOqhSXJPzLrpg0svCxqnKJnXSjheDrBOY/r5YqcGFxvy4qneca3j1d8+/4Zf/flN+i7Hq9fPWClgsfzGX/+H/0J7OGIy7t3yCZgIY98WfDaDDgeRg48EutufWD/61IyluWK4A6AjJHQGeluy5MKO2kALGUzgLi6bJG75+asjkUO1+sV28b2oME6PG0LUir4yedv8eb1K5S04fx0Rtc7PD+9gzcO68f3sHnDeHcCdR7nSPjq/Ix353f44n7AZ+uIdFcweo/OUz2ePnSYpgkhWBRhpFWfb51MmNJZWNkDnRL28Q6YAvTe4LP7I1zekM4Z6/MZr48TjFmwRoIfBtiu50ZIAFzfYxgnuK7D+fyMw+EgtQScJUo5Y+x6xC3DWYd5viKljNCFG0aOiLDFiHEakWPEsi4g4kLYlLT3Bz/ny7wABtwlGdyo6/n5GY+Pz5gOE9dGZE7ZJmGALFg3zP763G3SBw9LgC383HShw5ISKBNOd3dYloWlGiXBELd913GsUCSlxI4o/SiZoA0hOOSYELoOznv44DF5yw2OSgHFDVuMuJMMIAB0fQdIZsBag74bqiMGgCpR4eJ4BnXzPON0OlVjgS1GpJwruwpjuNCMdutlbx3YPjRi6Aes6woXBsQUazv4kglFei1Y++MF/kaVxYocDEsTVGfODbhYk62LOo99WUDrXYT0X2BXMWUhvbPoRH+ec4bzrhoKFGo7zlfCu5oB8HHpemJEesJa/ZyLzO/il24dZ7u6jguBE9esWOcQcgDLFKTQkQCVXzlrMXQBhXzDPEoWXtemKnVABQudc7CyfllALH4LchTZX0oCckiKdeX5CaJFBuANywO9sQiWs6JFnlMnGQRl2BXQaMbBWiPrvrjXiX+/D07GoDD+er5q1Una8V2vAdcqfSJpkMBDawMUzKszTJX7fALGVavPgJ/vbfsapacN2Of/pde/ilWgEedNILp/zu8H/S2Lf/vvPQi5OS4Bfjqy0XzfQaN+f5npaIOD/XXWGBSpc2vlSfw8GVEeOJRCCD5JAXCRzuWEGDf03cYy0pJZdqbX3siz0kjFNKxKRs+Jn3FjGFfulugk9yojiY8/aD97PRUiArTIfF1xVdverMA/yxwfa/DDwH+rsh/KCapU8Iab0sGw01a9tvXC8E8a8AJ83E46JAcp4O8Cy/W0QR+7C3H2sD4rRhh92a2OVh2/1koAZtq7LWPA7KYFP2T73sB/GAZcLhfW2k6HCpT1S28UgKorVxC7ruuNtEZBrTLfClyBvVi2zQrwBVZWOknRqlor7R12VfevshkF1i8BfnvsKj3S12swoZ+tx6Lgnz+DJ7pxHHG5nOvrW5mN+vR3XYdxHGsTMs0O6LG356+dQ3XfAG4kU3ptNavRdgZusxHA7rKkgYzeB2NM/QwNZvTzucDPwjnDTigAKCeYuOLx/BHX50cect2EDAOYhNGzkTYHPxabFOEY5xCJO2RqOttbj8M4wlsDkxOsZ92oFbstSgnrdcb58oynOeLD84zffPyAX3/5DmkDnq5X/IM/+2N88fPP8PH5isfnMzoBvt++f48/+4Of4fTwgFwyLvMF0wj0hxFWUnqU2bIupQ3resHgAWcJLgwCtjhqMcbAFA+TChIRUmKmKhMhloQ1RSwxYVkinh6fkDKhmyZ01uF5viL7gp/+0Rt4Q3Aw+M1vv8U8ryBv8NWXv8HQD3h6euKmV7ZgnE54PK/IcHC9x1fXCG+4v0AaCFOQIKlkeAs4k0Ve5bizYraw5GBhEBzw6uEew1ffgJ4ufD5sMtNwaOxCYS3QB4u0PAO+xxdvv8DX1/cYhx62s9jIIWeC9xawhCVuMNbh2A9wBti2lSUK8kyVQvBOM0cJGZDiqBmdD5XBvy4LUinYPrKtJUsgeCJkn2/uSsx+5Zzit9bVokPnegCE+brCdwFFgGywHUrKcM4g5g3WBaRSEBxLL1LKOHQ9Yo64XmcY45CIewowO+qR1gWAxfH+TuaPXWpHiRedAkIx7O4TEzO168ZORdtiOJVuPXLiTq+rFCY7Z2FAyCXhfFkqE+m6gG1dgZLx6tUrXK9XOO/x+HxG3x9AOeN0OtUux9M08dy0rgxYfYc1RhjncZx6Ya42LDEidD2c9zg/P3PwZiJLhVLEdV0wL5H7I2ypgsEf49Zq/HUzdXFuMrvE+n1lNQv2uR9gIJUEUCqLaIyp7HTKHFAnkeWQkQZ42Bd4fYZKKUh5N0/gRnT8Oy6iNygrZ57Xda31asM41uxryizndN4jZ8lwOSc2i4B0NuRGP66XT98BFXfb1eZ8svgrI0xS/yBBkCXOEEGAEGjvVN+y+mRsre8hy7UGRIRkHbLX4satron6+buuXzXOlqVNbgdPuu6HwHM+r6nMfFIRM08iCQAy1KWl1hfgNtOv31VbXfGC2dnqFsgqtX0LtCXAVxCq4No0Pzcguc6hLQxT0H8D/r+brf+u3336dfv++r4ae+wBrUGjz7e7YYcxPO/d7MMYWQv0FG3dqTUqiWqDCL6KnUghiSBN3KQGRJovMsmyimQxIoo8psjFTTkhivQyF3HtARo7zH1Td8E2G5GlmZZmHPQYlYQlGdcgQooJ68wGJHuhMJtLpHRbw6JdeTmUqOGEFA8zHLcQyRBuUyM6lhX8M7AXb/4+wHvOEA9CCvvga42Lt9olW3z7zV7AC9PKe/j52scw4WXQJ7f0B20/qIGXsuW6qTc9gApiW1mLsuFtMWpbJFx1rzIB6cnpTWlZeQW2CqpDCDgej8g5NWzL/hDpgNBsw7IslfVWDVsbOOj5qBxpGIaadWhZc91HzhyEKIuvLH97HArwVdLUnl8bKKmcSY9N36uAXPevD7XuF0At3GptTNvPaXsCaLZG96s1ARos8fFnbFtmxwXncTmf0QWHeeYOjdZ6JPBXcQ45zQguw5mCLljQNcNag5i5O+OWpaNmTkiUAUswyLDice7kb3NMeH58xvU64/l8xW/fnfGLr97j14+PePvmLe4eJjzOV/yrv/wLPK0XGOPx13/7G1jj8cUXP8GXX77D6Cw+ywk//8M/RHd3h8vze4SYcBoHTN4izmzNldOGYC1y34GK6PutMj+AsQ4OFmQTQJmLeqWoNOeEebng4+MHfPPNE4z1uH/9Gn0XcF0XLHnCz/78Z5gC4V/+d/8jjq8+x4c14vm64PHpgnndQJcVy7bApw3dsuJ4jPjq629wPNxjun9A7DsMS4YNG9hZhJn9REUYSKDzHsZwUzTOskixeiGMIeAwTfD+CZQiK5gIdSEEsczj0HegmFCyhfWG6c9I6Aa2tA2uZ7tUi9rgi4MGng8uz2dM00GeD8IwjOytLymFoZuwpSgyCofL5YIQOqzzitAPWLcFRMA0DjJX5CrD8UMn4IuwxgjvDEBS5Fi4gJpBFo+jVAockej3V3R9h2kcYX0A5Yy0cZfctG1IlOtzsy8YEMYfyHlDNryo5JWbFI3TJCQCZ7C8D1jmBdPhgHGaACI8X555cZBCt2kYsUo20BjOQDhr4aWZmYLSZZnhHddKLMvKQdG2Yuw7ZJk/c844Ho837l2HwwEpbtwIznksG7NXzlmczxcORNYNXce9Fgy4a6chyIJuWRIm84KaLvwvadvT7fqzAjTczIUV+IPqQqmvsVDwaGBJWGsyVTIDY1CcmhIAHGnwT7Yys2zFC0gxnhX5CO2yBPXYZ7tCnr9T2ommqoUuvrL0lf2HgoKdoYWyfU1MxGCKardxtuZlxzXjPdddlVKzAzfe/0o50i5f4M/d2UUFOmqB2RbQGmuqzlnXeKu/N7+blSRBospu72IO1GtD9Truv2sGwSdr30uW38h5fT+AZOpZK7N787caFOhr9ZgqGd+89Iexsa2MiW7+rWD3d+xLmGLFB/XQa8C7/57kYI0ElQZAa9LCwJgbU1YJGtpAy/KaQFrwzXUcip9cKeIkB3b+IeLnqhjAWn5mZN9ZjkWPiYN4IYZbsZWOySYw4mtbQNy6G6S9OYiqtScVOUYJHm8APxEgkk2QjhlCvSho5oaX90YCM2NMLV5XOY9muaq0p5JjWgOwzz1ofq7AHy+eqzquqflre2k+LSL/fdsP8vFvo6tW299KRfRAlN1obS6XZan7URD/XSC/PRkF5fo+7z3WdZYLzRZQKeVPugq3DjsvG42p9EazBK2mnogqSLfW1myFAmeNbgES7+u90ZCC/PZ6qISpBdn62e3PCkL0S49JswZ6zYG9N4K6/6jeX/epQL6N/jUoUYmS/qyFxPu1XRCCw7at+Pj4Hl0IGHqPD/NZgG/GdHeHWAxy8IgAXOEi2xhT1e13ISCvGRYEJ9eiDx7eAgYFoAxbCCgRQMH5fMGHxyd8eHzG4/OGX3/7jI/XFb7v8O2H93iyH/E4L3j3eMYvvz3jdDjh2HX467/5Bd4/X/Hh6YpYvsaH64rXn/8Erz7/ArkUfHx6Ru97HIYB/jRivnZYLh/xfLliGgMGGlBKQqEICw8DL6jAIdMmzFZEEaZ22xKulw1ff/0RZHv87Gc/Fx37iscl4Wc/+wmOpyOuz+/x4XzF3z39CjZ4LHnD4e6Aci2Ylw0ULD7OC2K8Ah8vSGnDx2tEd54xTSPKm1cYpw731mDNEWkrGEbu52Cdh/cdYmI7QesB5w1stuicxegDHiYuCly2ArKscdTFkxdp4gxN3ICYcTj1eH95wqtpQJoGfFgTkrHiH83ZDiNpzJQSfMea4KfHR8BYTIcT+n5gy7YQkAs3dEu5YLvOGDoGnuzyZbDNM3zHTcI+PD7CwOL+dEKKBb7zAmoIT8/P6DoubkwxIshkGroO87zABo+YeXxnkiL1LcIHj/PlgulwRMmcPUilsGc59ucr54w+7IH/OE5cu0IsG8mlsEuTBsw+VztaL42zlmXe5U4xovOcFp/XFcZY6S7pkTKz7cE5ZO9RjBap8TzgrcV1nnFZFrx+eIB33KRLHY5aaSAgpgMgbOuGNXJzvODYYWgc2OlnXRekuKEfJsSYUbYNlAu89fCux7zNFfC39U8/tq0FTy8XuXbdqQuq/L51PgNY+FCMOnOw7Z4+FyjC/hdfgasTy9TkM2JKOzglHt9bZKlidoVZUAjWFilQTBmF2PK4iCtIlPozYzcmvCyvk77zUH01z+UWLrCrVgX9YCcTXZO8aIh3YKbPAI8XPRhnHaZpRBdUnroJ+yo20VDvfINiDUswNQgQ0GUNWEtIYCMEaQurADs4X2U/O/EGAf5K6GmGxEDVu7lovLEfr4Icvd5a06INvtp736579WfsREdl9oEK4F4GCvq6G4zeBhHyVfeBFvJ/xzg1qAWZN7//Hlsdj3rc7XvlEu0JgZqquLke/LOFsUrMlma/+mJwYAkDymLpbAyQOODMxsA7yepYD+fkeliWp3ChLR9fMEHwRoH1Dj6xJCxnHv8u29qnoogUqBQpKG9INSIOpi1uAxhLAFmDDCM1UFJPIAkKImJ3HnWdUpUHVCRILIHN8SZpYmFgFK/xlQDMyyLbSpntASnxzypv0zHvfZAmfNyUzjuHru+qJI4txneJUNX72z1MNUCtO9KA4pbx5+/aKFWbx/2Q7QcBfwAVNGs6pnWPUTCqABdABdEvgb4y6fqgKlAFUIOF1gNfFz2W8eRaqMvsm79ZyFvZDbAvBG1vAF3kVDqjvzPWVHu09ryUYWfNJncZ1Mn5pRxIrwMAnM/n+pk64bhmctQgSScWPVe18VR5RCv3aSeu8/kMIqoBgOr+p2mqx6GZjb7vsW1bDZCU+ddgR7v15pxxPp9hjMG2rbiITAmlYJgGnsTjyqmqIcAXAxCnjAkb+iCFhXz1EcFs+hg8TtPAgQB3igJyASVuGpJyxjcfP+DLb86YqcM5ZjxerrisM2w26J3D21dvMWe2JTzdH3AIBuPdEdE6/Oq3X+Ld8xU/+cmX6L3Hw+EEWwyeLysMWQzThOP9W5RCOM8fcLdsGMeIfkLVqhvnAcuLGgdxBpG442CMEct1xYd3z4gb8Pbnb3G4u4NxDskVmPvXeP3FF7g+PuKXv/kGH+eE57RhOIzojyO6fsT93Qi3XOFXg58cHnC9LvjFL/8aW8zYUsY1P+O6zVzMGwwehtcoAbguK95IE5K+C3A+wFJB1wUYZNa05whrxbO76zH5Ds9mYbtVaPET5BkzPEk5j80UXFNCXGe8fftTPKLg/ZyQqMB3I9i9oEArBra4wecBlgzWdWNnLyECvGdAHjrOKGm3w2uMwjxzpu7bd+/gTcbdwz36rsflcq11KUkaAbGcLYCowPsO1jikuMF5i3lZkHJG8I67nFrWZLNmumNHJDJ1jomZrxWZulbUZ1G19DkXzAs3T3M+wIIdWFST6ZxDLsQZj8TF1Vrgr8SGDx0IBpf5in4Ysa0rvOUs5Twv6JxHCQXD0OO6LFxQSoTrPOPudMIwTrCe/c3Pz8/8uZ7nx34Y2OOdeOHQRTWmzO+xDluMyClhmkbuSWCAbhyRS8E4Teg6g8cPTzCO62188di2VXqY/DDW6D/UxmygbC8WPWXO+BrtxEd9b/OTsYYze8TdxF19NpqaJ7EwjHZvyFgLBq3aaBaYLAwzgf1pJZjjINMIG1vYfjelygbHuNeeuU31+7auLV5kQO35aRbYGLXI5ONVmUaMG9Z5qQwowGtksBZOAgOWTeyEFx+xgyFX7Q25fkJ0IbQHSyDpImzok+NSbb8GqKairFsQW2TfzCvQzWuMaUtmW8b/RSbC7J+t569ZBtx+7O3Y+YRJ/ZQ1rSDsJZNqbnjoT/a7/2J/0cvP+F5BwO94zQ1wb1/7Ikjhn6VeBIpj8EnWo/4977IcAvvtU7NPGFvd+4w1AHGdnkqxuHeJrcFFxUOWi2UV3PJxWBBJrahkpgwK19DqOIPO0XKg1rD8RgB3koJbKntRIYnjExUNIMHHzU/f3qND998A7/3WSX2Ic3sw7L67saES1rYCdCfjXgPfHewr++9d+0y0QeUt26/uQHqM+9jS+c4Amqn4jiHx+7bvDfzVV36WDpdtanhPD+2AVzv1ElEF8Moqa+oa2LvKKvgHcANwFay3ha/jyA1tFKgasU5rZS1tV9vWv1+Z95RSPUYF4JkKgvP1rqgzELDLZpjxT/V3zJ7zcar7zrZtn2QqFLjr9QBYpqMSJ023v0y5q1vS3uk37EWC8hnK2qsMQIOH9t7o52owpFkC3eqCRsDlMqPvJ9ydDvjNb/8OMRPmlWUKtrN4Op8B42ANcHc84Pp8Rc6QZiyGrR4N0A8BT0sEiNPVp7sTDsPI9oPWwpoCEzyMDyhUMPQ9QAZfvvsWqx1xJod3T0/wMPjJw+f4p//4nyAcD/hXf/PXePX6iPtDjzxHmN7g84c72NOE03iPX3z1EbZE/NN/9OewvUXvj0iRdbcrMobjPYxJuK4Zp1RgSIponAOcAxkLZwjFWxRjWStcslh5rjg/P2EYe/TDiAQHVxyOD29wd5qwnq/45V/+Df7il7/G6Sd/iHQ945/+s38GEOHu+Bb/7f/3/4O3ryZcZo/7+zf45/+bf4G/+9Uv8V//P/8f+PI3v0JKnDn5+sMHECU4Cxw90FngOIw4dA4+cBdgYzLG3qJshM0WFGdhc4FBRucsjsOA9+6KLWUuWhSPbG8MBkP47OE1tssZiTKer8/4k/s7/OSLz/HVr34FQErXasBqAfVxJmDZVoRg4GKCMZ4b6nU9rsuKaTogxYwUZ6wbZ6y8FFHnzLKDYRxBZJAjM6dd18nzuSJYdt+5nq84ne7gbMDQj1jXGTEarFtmtxrDBdc5XWFgMIwnhC4ASJiXxN2mz0/ohxFdF7CeV7x58wrnp0d+f0rohxFeZEi1rmZNOIwdLAGdD4iZsMaEDsKmWbcDCOxe6uu64jAdEGWOUV/mdV0xjiM7/Rj2uV6XBduyoOt72ODZzSolrNvMoNUAIXTou4DL9crXJiY4Y9F1Peb5gtCx41IhAyKusRiGDmlbufFfSuhGnYeB5XrGtjAwNMZgzTOMAa7XBdu2/iBW8t/39l2pbLv/8WaeY8leA/h32rUyfQZGunbKvgxzydpMZ5c+sGTHC9NNIJTM7mDGcCGvkyAgmf09ICBbgwCCc7xQa+Ds3N7cSuULUHACYR2J2W0qWU1F6kaFvceNMSDvUKq+XayhU5SmeQSiXGU/KtctWW05qYIrzh7sXURBqn1GBRdy6YQRdYC9ZaOr3EMsPHW95o4tOyOv97PeU9OOO5FOsYgJWtxs2mvbHLMibL7nAsLkaA3tB34zFl4w6S+Zfznl/YcWqTUg+2UW6ruzUjss21+z/46o+Sz9nGb/L/fJc3J7gJBM0P6+m9cbdSwScGsMTLm9Flqb3Ab+RHLXGimwFt9qKSrRbcG1SrSMNfuaSrYGubpf4RABCc65EaVBcbv6Qxt8VWWEMSDxwG+DO+8DnHfVHKHkAnIEUv2b2cnZ6D1KSTubDpWmYc8aELP4WpdiBay/vOYqT2PnIlGESPFuzXjZ3aPfmHYY7VKdm3En91FJKe1yrM9OHXMy7o2Mzd+Vffr7tu8N/LXjbAuUWyYf2Dtltvp5ZZzbSFs3ZWTmecbhcACws/IAbhhxBb6tHOglm60PlmYVdB/f5ev/0mpTBzFCAEBwjl+vUh8NEvT89OdW498+qC91/G0TLb0G2pVXj0XlUW0/g7YmQt+r112tRjVbofdB7U8VyOj9UDbmpcd/6+GfMwMma4F5viKuK7wNcNaL9V+Bc1yEuaaIcQzY0gLrDFu1gRvjDMHDEGGJQCkGthtgbYcujMiZkCnBOfbD9Z3hJkiXhNPxHofTA3775Xt8iAkeFn/80z/Af/bP/7f4T/7Z/xr//b/+1/jJH/0R/vzP/hDj2OPV/c9R0oa/+Iv/Fp8NB/yL/93/Hq+mI/7n//f/C1/99iv86R/9DHfHIxIVbmJiHI7TEbNPWC7vsOYNRHmf0J0D4GrtiHMeLgSUmQuZ5nVFoozjYcLx1RscX79C7wKG44jL+R2++e0v8e35Gf/H//P/BV8+P+K//x//JV6/fYP/4X/4l/gv/8t/hPs3r/H4+FsM/SBM64h//p//M/zhH/4E//V/9V/hr/71/4Tnx2dsMeLLx49Y04afDwP+45++Rs4RcAHGAVQ29J1HcAbR8qKdZGbijruOi7S9hdsAcoY98KmgN4RXYwdH3KCESsSpH/H29T0OhwMu5ysiPFzfg7S4UBjMTAVU2B2nTp7CCIUQUKTwPIQJhIIlJvT9hByT2BNabFsEWXbx4aJHbhgW01IzT50fkCkBmbDGFVv8FqVkYRV5AochTBOz6gY8JruODUy3uDLIJoYQKbMTyeX5gpwy5rzgcDrxPCITe3Xeco6LbUmYyc5jWWYYDJjGCXAWyzzjWsSulgDvHaaBbWVjjDgejzWo70VHr5k8IkLcZgBc0GitPm8zyBqEPsA4C+MslnVFThmh97BUsEW+XizVszDSG8DZHl0YsC4z5gv3EUgpwxf2+79crmA2mIvVDwcHgMHh6XTCsix1Xvgxbr6CSFn8iCpb2a4pfA9RGeIiDKRqflEKTGnBI4NDW5hRNNg7yZbCNoIE4pR92AkuKsz0d4GdTlIuyJEDrFxIy0bQd6GytARlLPkXREAhlixYoLJ8NRggIMeMknTRh3ynZrryEkjI+mDZOpkqScWEEBcBG6QoMiPBxM5b+MDWn33wu5SsFGSKFWgaOT4FZE68x1sJKnuTs9RBgxuWe0hAZm3NqlQgBAaSfD1a1rk0oJ/BG8AyEY1E9P08DFqgKBerqbfTTQMX3X6nhIwALdRlvHb7Hl07W6b/RjaESp1A98Cv2aUaJNkYkAHJNeAbIz+rA84n8bgAvwZPUXNBjfyswQD/enesY+2+4H5wsay1Rpp68fjNVGAI0t1Weyjwz+qzv1+7HfoD2P3syUjnY7Ecz2qdnpBzQrFihmIsistwMl6cZ8kYE4m+ZkWTDzXDoB3orWMNfS4F2+qkFrMZW0JY5ZxgKMI7lr0xxrH1Tim2rSRxCOK8o3U+PKaImvPVwMXzsfJxew6i5Jk0BgiuZe5lNNhmrDabdXuReisH2s9nD0A142aa7Mz33X6Q1Ec7zarspnXo4WO5ldooK6/g8mWRLIAbS0xl9ZUR14WotdDU/bSyoWma6oNYizeaLwXJ3/Ww6v75ojts68aFknb3x1dQrkFDq8vXc9FjU9mMXi8NGMZxvAkKWqCuAUurv9dr0vd91fm3x9xmD9qJSNOter56P9rj1s9s7Ue1gRpACJ1HyQnn52ds85XTxgUYxxHbssGUyIuAc1jWDSkXliFEXlhy5PvoQTj2Dp4CbOfROcMe0gSkRKL5zxh7h7EPeJTjfLi/R//NE46p4PM3r/Hnf/ZH+M/++X+KV5+9xf/vfzbIccXXX3+JX//d3+DXv/6If/Ff/At4a1HgcDgc8A//0T/E51OHv/5v/ht8/YtvgLcb7n7yCoe7AVQsDtMARyMcjQAKiiGQBRe/hYAC7qzJxbQW1gUYw1KSOW4IQ49pGvD2zRH3X9zBbAmPH77G3/x3/wpfnjf8s//T/wH/6T//z/Ev/6d/hb/6m7/CX//lX+Lbr3+L//v/7f+Kz9484Od/8IdYEwNn5ITJO/zB2wf8F//kH+IuzfjFr36FX3/9NUommHnFw/0Rnx1H3E8T+q5D6CyG4NB3Ad5bODhc8yKpRbZU7ToH7wxK2gDKAtCB3lpMzqALPd59eELaVtwfLE7jiPFwxNN1xWXJCHf3yNaDjEUpCWTY4WQTVy1dQKdpgg8dhvGAdeNn5/L8CGMDCmXc300wICRkECXEyIwQZ64SUlp3dy3HVcQpAxF8zA5gCVMx6LqAZZnRDyPX2VguyB36XtKjGfP1Cf04wFiDGDOAAGNVasf2nTkXHE9HPD+d0Y8DYojoJVsHa2A9a62D98gxIqaEvgsIfcc9KTI3tjNgXfOWOFggY6p0cJFuw8Mw1OZmKSVcrzOOxxMAtQ+2Ve7hnGN9rA9Y5ysvzFnsUPNucfpwfw+AZVYfHz+yPCou4AyRQz+M+OzNW+QYcVkuN3NG18n9lCJYnoc2/P+p+7df27ZtvQ/61Uu79NsYc6659vXY52bHsRPhOMhJZCwQCkGCB0DIjyBeeESEP4AXXhAoD5F4QEK8A0IoUgQBKVYs4ltIiBPLcZwcjn3O8bH3PnvtdZlzjjH6pV3qhYdSS2u19zHm2nPuY29vt6W5xhi9t0tttdVW61dK+cpX9vt9UfX65dx03l5QULWGXP8s3r6i2amFvRZctXhBK/BYQJA1ohKkybnA0k9aUTfnLN5HmzHJLEaFMSKlmjNQtOozeppSKCmLh1Ujq0sKa1aYWNalDBQvuYKN+tZrGmv2iZzccu8ii5mhFDZLMQq1KItmuRrrbgGH0kZr11oGVj3BKzosSF2966s63pXH39pnwCUlKr41C4Avj3D9femGau1e9rMlCqMUYmlL7TV9CXyrR7versD5DQ6oP6+OYAHt6LORfvnQ8dfnuv3EvNCsCjavbuGX6RtmNV7WiIk6X9Y+MDfnqce9Ps5l7C2eZ72XFc/JEy/WaixYhdWAub39XIwyayp1IaTOj9FzZivvaBZHEFloNdlJorCOQaFYlvoaCFhOORelKTUySuGrkrBuNOKwjAshDVkjzpkmujIPrjkJV0ZYeYd8RVurHSK6nz6/GgeKY9dVBqi2o1TdrZ/h0nHXoH75V9XFuI0M6Htpbn7/lO2TCnhpQiiwePpruUzVhgeuKu8Cy7EK7G8njvp7vUmlrmjHKnDVZGGVpxRDwRQ+MEvykj6YOkegNlTqXARrLZvNhnGaCNO8fKefa4dr1KCW0zyfz4t3fqX/rNrPwFWisX6uxpNSdi6XyxKO1fsFUe9Qw6AubNZ13eLd18/UaKirEauxpc+kpgutikMs3pScknj+vefh4RFjHdZ7pulMyiL1GccBY51oVafMOEfGYaZvO1rXENNM5xz32wY7Z7I3eJ8JcSgTusUYT+Mih+0G/7mhcQ1T+imf3+34wZs7vno88ub1Hb/5q7/C93YdWwc/fH3g93/0+0yT49f/6A+4P+wwZoLU0vqWH7z+jJ3NuO+/xv+5f4nhi2949zt/j3d/57f4ld/4Dt/5/g9xaaK1kLxfvLq2kUJYMi4lgjMzLJNvyok5Bvp+w92dY9s55nc/4Ti/592X3/Dbv/17tIfv8t/5H/wFTmnCfPNjfrDx3FvLJUV+8zd+jd/8tV8hJTifE2EY+FN/6te4dxnefcPpy59iHt+z8wYfR171DfebA7/62T2/8d07vvNqx7Zx7Hc7fGPpGi0EYplTxDvDNIP6ptqm4bDb0LWeyzyKEpB1tGRa7zmPMzFm7rcNd3up2YD3fPP4RDJOkgCRiXZZ5IBN1ws4smsejrGOyzDw+tU9hlwSvU/4piHHiWEcSdngnRgDSie4jIPo3zsBuzFmQpiJWLb7PYf9lsYZxstFvK4avbOOYZqJc6Tb9DjvGQeh0+QxcT6d6Dcb5hBpGpH+nKeJbd+Tgd3+jpQN1nku5wvtqzvxQoWiFgRY7xgmqeTYWsn9sL6h3WyZzqXugPOLF189qyFF2q5b9OCNgbZ4UuV9Hcgkmr4lkWh78cxvNluMtaQo0optI0bOfrejbTuGcSRE4ag+HY9s+i2n0xljJNHbGAF5xhpygNP5XCQVHcM4LO/8OE30m5Zpnths1irgT6fjFT3xl3F7CbTVn9WLJlkK/9wuiFeL65W3t3jQrSE7S0pF8rYgJAFJSinSBNW6fkqSKqMZQihebmrwpvQhOU75/1r8zhTP4YLIVKDcLP9bQIy2AVi8ktaWfABbvI9OqgwPw8g4Sh5Ko/QDa2mcLwa4aI2rUakUpJzS0pY1CgEvIYwadK+FvNZ+tapwJAQRfYKsJxQjxxoBlOLVpQJX9fntetwCPp9TdTRqchuJf2kc/GE3HYu3hsDHGAalMdKW5x9ftVfmYPHMc3strve9OnfVnmuQaJZ/V71jdBXhykJRU0zem9oI0+cDJkuETPBxwma7XFffCFMMA+Og8TJmc5J1gZRX0Lu0ojxLzQvJdVP1HU/l32qQ6J0ZI8pXTePI2RePvytjSaMrYoTEGEv0zBXaXzFmq9jNVVeV90mBvybiGqUrIREpnV/M1Vi+NtSWfSpDQK55fdXVwbHu86k0zU8q4FV7iXXRl8IOa1nzJVxeWUHKqb+tXHt7DmDxcmt0QEFwrQSkBkHbtgvP31onxXxy5nw+XhkQtXf8yuMDC11mnmf85PHWYZr1GFXk0YiDhoMWelC5bwXmer9KJ9IoibZHF+A6Z0BpVHWEAVapTr1mrbpRJ0dre7T/dXCogVRHIDTHQftRk1C0RPU8zpJ9nzI//fLL4uUdwWTavielScq9z4b9/sC7t+8xBkKcwSDKK21LyqIKcX9/x/GbB5pGilhIsrIBI7zzZESZ4rDraZ1ju9ny5u41h90df/vv/R5xnrHDyPiTn9KcTvzxz1/zB68PfH18wvjX3O1f0wDeTPzJX/sVmqdv+Ml/8QVP33zJ8P6Ru7vX7O93POYH3j888Nl3vov3Pdk7fNvhkEIji55uCbEWeXactcxlkc850W82dJsDu23HYbdnDgOPT0fu7t/QHbZ88Xv/OcP5xLs04zdb/uXf+BXO1vHV8YHLODOeB+7txGff/y5//LMDzTc/5u03b/nt3/5dfvTlT/nmdMKGzA/vD/zq9z/nN3/4hs/v9my6lsN+T9O1UKgI8zTirCdZSUxUD0fjHa0PbPqW3aZnmGamEPAGTIKpqIvs+45Xuw2H7YbdZke2lm+e3nKeJ+bzie3961KafZLJung/XYmAgCSPhRjZbT3WOcZxEF36IWJsw+PTGW/BdxvmIEYxOTIO42KQTyVClBI0bV/kDmceH95BmDEm0/Q9wzxhjSS6i1pCxxwDD+/e45zj7dv39H3PMBRQ6yGliRwN3htO5ye875hy5v7+NRlDDNNCyeu7binpPpeImTEG2zhCiAyXUZRIMoRpJLceQ2bf33E8nRbK4TCN9F2Lb1zh+4t84/ki1bCHcWCYR9pNxxiEUvRwPLLf7YhR+Nk5SYJxzJnT5cw8iZCBRgCfjkdiTri2od1sOB9PQpnI4NuGp9MRMuy2Qk+aplkWlCS69G3XEOJE07YM48B2u2Oc15ymX9atBpkveXqF/iM8G1OwZe1EeQb4iitdFmIkSoAAhZXDTMEG5sYjLQBZHNWZWChGc0hFRaWcXq4s/7I4EVI5xxzCIn24rPi5WsiX9lq8Rq5g8YbbkrxorShduWKQq7rd5XTmcnbIe+sXD2VflEaaRkDQLaBJaem8kjxpqqSKl5+LJkrC9XOxTipzG5D5FcgVSMtLB0uBL7m+IaW6VRpt0AuuZtXLXnteBP4vGYr/KLZb8L+wIKp9PnQtse0qbvd6k8/3Nbc5KHkZI+rZr3Z+du3apy8RDIXNK/ivIwk6iHXMmSz1MYqOVFkHrtu9StiWSFdKV7diCzAGzScpzsZSgCvltBQxpKzH0o5UjI41X0ENSJOTJO+SSvS3OHRLvg8W2sZhTYtz6uxU7r1cSylpeusGCs++AHuznteY61wVBfvOlghDiXjJPpWBWt4hexWVqP+9DP5vf//Dbp/k8defquajBb0UsCoAVvlJ5anX+v6qF6+fqRe77/uFZ15zzlNaq//eyobWsps5R06n48LdUs+7Al0F2HWCrFbXrROMa6CtgEB5/sMwXFlWtWddX/aa2qQLjiroqKKOTkR1Ym9NwdFIgjGr2lFNkdJzqwFW1yIAlr6sdfxBjJn9fr+0b62OV1W1M3L8l1/+lK7rRDbx8R3bviPFlssYpWBQmME45mRIIdLZjLeZaQ5M55mucYSc8U3L3XbDnBKtbWh9LwW7HFgi3hhoGnJypASvfMvm8IrsWi6nM1+8fc/f+tt/i+nrt/yp3/wN7j7/jP/mn/qTvBsuuM1eIhDe0jeeQ9cSvvpSKpheLmytw6aZ+8/u+MGvf5d+v5HiOI3HG2hzxOZQSKJi+YtfolSv9KLRC+pddPS7jmg97W5Pv39DbxJ/4u57THMs8oyJ7aaBaYacuDvcccnwvcOOtt9jponx6ZE4DHzz+7/Dw8M3PJ0vfP3NVxiTeLPfcCFwf2j55/7YD/nem9dsNxv6pmWzkb6bkyTniS5xXgr+OJuwZpakVAvbruf+7g3zbDken6RmgRMO86H17LuO794dcCnRYrm//5y3v/tj3p4uvO73tKUAFUZCmIS0SFn2my39Zst2v18Ub4bzSarSIvz9nETbPydVxBL9e7DCs78MNF3LdrtnHCaaRuaFcR7JCYZxoG1lfJ8eHjns7wpcEBnT4XICQ6lQm9hseuZZ5piHhwf6zRaMJZxOkCNdL+/INEs9hxQCMUUeHh7Z7baEeV5ohG3XyUKE4fHpkd1uT44TBEPKFusMicimJOXqu9R2HeFyZhxGbNdBEk6pRPyiLBjFm+WtJU4z4zTjbIu3UsX34d07fNNAWQCddWRvlntLSSoAOCdA8HQ+4bwsZuM40mqNk6JyNM0D2+1GlKqSyFJuNjseHx8xRMiG4/HM8bTSgn7ZthqwXH1+tTDKDouHbMH2K4WmhlTPvHgLeJLPCqRYfjc34CgX2gFQImOCTwSzrMWHli2X82cwSsVxFpO08Wt71yRWQQFSDVdAyEqCqat72jXxsaInKP1gBSN2URvRY5y1N9cWsLLYHjdA/hpbXhtiCmDXPlLgY6hq3S69rlGZ9f8rgF2frUYGbkION+2oKcdUfXS7vRQp+rSt2v+FKMgC/m++etEpW43Ll7++bmeugG99nZf2XZtqPtAmfQZGQ1q3d7e08bptN2e5PaAYDAs2N8Uvr+9V1jFUCUgAaN2ABMloLmdejHer+5V7qoINRbHOrGpAejEF0nlN3F8Th1fwrddSiVr9W40UA1fHovEIBexcg/haiae2o27fo2tHxAfGYd1GU96kXN37x0aWqu2jgb8CaAXFa2hjLTCl2vnKF1d6jdJc9vv9ktAaQlj2qRNZF+WBwoPX89bX0RutlX6U/6dFGqwVDX4F1xpqV+93DaaVkqTGiF6n5uIrINBj9SVUz7uG+9W7r+dQekJNk7rl2SvAV5lU/VwjArUxoJNbDf674qlUw6vOkVik5ypDp45UxBgXScJplDwGDQ2P40DbOra9ZzydMb7H9z3jJPKBGIPvWnzvCeMZa6U8/DwnpiCc7pASeQ5sug0mzpKkZyiFjEzhxEmykLMNY4yYZPj+53vCb/4A5pHzFHmYHvmtf/B3uf9qx2G/p93u2S9eNM8P/sivcplL0qN1bO7uBCD2Ld419Pf3tNueFAMhjhis6OFbi3MNKReHVtaQofCDjRFgbYylaTf4pmHC4pqOS5joNhtisvS7Dc63xPmMiYE0zYyDqM0048w8jKRp4v2XX9MkOJ+OQGQeJvrW86s//A4Pj4+iGNXf8au/+kP+yPe/z2HT0/cbuq6jbT0RyPMI2bHoJBNQ9QIp/51ojMeaBu8adn1Ly5YQJ1IYOXQNbw57dtuOTetwtGw3W+ZkePtwZpwiUwjMIWG8W8CMei+ddWQM4zzzqu04Xy5srGXT93R9V55BJmRJmLTGMU6R/W7PMAx0XcMwBcYQ6LY7LsNEmAKb7V6kbXMmTBMSyWuI2ZCzKOcY5zldRu7vDjStwZCYJ5EK1SJXKZVIlheFLosk0I7jyDxFtoc9kMXrHSwxJuZZqiFTgIq3lqZrOB4veNdhsiWnSNt4pjDjfcNmu8Egkr2xcPDDPNM1rSxSKWKN4el0oum6pZCXLYlr0/mCd47NpsfgmKaBeJ5kHEapgSHFlUxxkKzza4iJzUaSiS/DGbwTmpARn6q+93NJzsvZcB4uxQkBYynsFeeAeO0ym832kxaPX+xW+c11DbxKepOfwtMvJnwZr9moB7scvwBaSVp/gVWzeuqX4kAK3IxS9StQtRAGADFE1/dFDYAq5yylymEmdDrlsWNKcq5ev1xDqDoiLbvA2gXo6KKvVWsR76gxtK3HGlHBa4rkq3OOtsgOOmcWucKUq/y4grvEi++u1vtbZ5UaS65ZC3qu4B+kkkuheJQjpH9SBfcBYxcQnFgDDPlGu18vcGUXlGstkQr1VH8LBUINFd0+hi5hbkzG1XS8Rf8K1p4DMh2J+hzVwFyusBhMz49VUAlrodNbg/QKSCpIre9zud/yfmSKBKa24IX7Xoy6YkBSeaj1rHWUo/zurQUL0ZSITi6J20nvdeks6c28VmqWXnkuOJCpTN+S6xGT0CDjIpeZFyMDWIQlDMIO8cUjb0puy9ru9Ro6MpVip3Uu9DNzM/ksxepKHxlbzQraTwvYr6IAN8bC8wiAWi/a16XffvZw/eD20cBfuaywAl/1IChYV29/zcXX/euEJAWiqnAB10o5quNfJ+/qdbTYlLZpLUS1Ghk5swB+jS7U3vJbHrxOZsaYJbqgoL2m6dyGDWtKTq02pF56lUDVdut1dMJU4F2D/ppOpPvWIcS2bQudYVgoPhpZ0P4IISxSoXodjWjUFCUxFmQQxSgl6sMQyNkW+k/km7fveNX25DkwZ3C+YToPIoOIwZojTb/h8ekBlxONkRcpJUmCe/3qFV1MXOZEY6HvWqzxS1Ev51typhhdDjvM+Bj4bN/B9z/jcjqTpky/7YnOYY2j7zpa7yEm+n7Ld7//PTZ3Lf0YpSBICsQ0wxwZ5wvm8IrgPM55Gu9hmLHOY9oGm+PiOY1JteqBGMviWTwF3tO0DbOx7LoN265jDBPDJWObLc42hGnGhABxhDjjSDTO0DaZQ9NwmSbGdsLhSDGxMZZ83zGHmZgddtPBruPz777h8++84dX9nk3j8I2haSxN22BipM1e+NxtyzyNDHOWSrA5FXWOjnOY6ZqOvmlIvWe2HhI02XHfN7x6feCzV68kOXWO+L7n8Nkbns4jGcs4zexV8aGMSWsM3rdsdzv6rl+A4mG3h1zofCdREJlDxjhHu9nx9PjAfn/PMEwYKwA0G9jtD4QohfD6Uvyr6zqMLfUujFu4+DHPDFNgu+/wrRQvc9aTYqnIGwKZCKcTbdsyzoHL4xOH3Z4QA13fsum3eC/c+WkY2G93S9K6d5LQLvOOCAiMoxSUaZpOjIumYZ5mrJeF4Xy60LYN8xywGFzjljwa66TwkzGGfrNlf9hLPQwrHvowThw2O3zjiTmXaIAYWVIozdA2jVCMxoG26ei6FrJnniesQQx0hCqXY8Y7S0jgjFD1mrbDL2DGYLBcLpIE7pwktjnTkRI467mMv7wef91WQKnh/pvvjcKxfOUdK3Bw9a7mGq4VD6r+rbrgZf/CMljpDihfubIY1KuJER3/4t3P5WeqwH6IkSJKgkuFUupscTCI0pMaKlox21lHW2pKrFW0SwEiKA4foRCZQo8wCO2vKSC9bbpC99HiQArs5T6kqJLqo7NE8m/Bfu2wWgCJfq+a52l10Bmz9vGClVLZh+KOXTzZYmhZa5dnJk8zVQ+7eDhr4J9XxZUFGt6s18sAWQbKCog/xWu6QP8XvP0fuy3jsfq5Nq82aK/pQ+L55sow0AjJtef/ZdB/awAo5Szl1SBeZ4z1/kwZ43p9NcDN1RHXxpNBwbaBbElKRTYWbElm1z1zFiM8SzQ3pcojzgqQ5RppkRFVw8ElkZ+NYvXK+1kZ7BlEWKQAfmdX/r4YvqYyoGW8qVGlfai5adIW+2y8XIN4ezVGM/nmOcin9X3dgv6lF6t3rLqadvgyNj5l+2jgv91uF4CvOvWaLKufW2uvaCbqqddNAbBOKPX3yovX6EBNA6r57V3XLcBYaToC0htiTEvCVc3JVy94fY1brXv1utfAXO9L91dwXgNz9frfJptJhdLVSFLgrSC9jnAAS3s0IqJ9pH2jCiE1Bei2f+t6CXV0QCfp+rxqMOlkvEzqiPzgF1/8hLbr8F6KIZ0ej0xxxrgOMGy3O6bTBWs8bbehaTeEy5nsDM4CORJj4uHdl3y29YTHgda0eCvCZR5JPLRuzQWR2lkOOw6k3GHcK0KMvH/3UNRKtmTj2HS9eP296P/6eGJ8+0gIM9McGEOk7TeYxrPZ7nn1ne/Tb7cYB84EsAnfShXAHCwGOQ/GlQU5k2MQkJCNJBWlRNN4jHG0fYf3hr7b8ng6I5WIM85bYpSJIiVhG55OJwilkFWKOJvIKeC8VNfc7lvGAWLO7F8d+OyzVxwOO/q+p2072sZiKBSRwmPsvSc7T3SGFEWTPRud/DNYj22g6wyfHXZ4MzKOBpsC973n+5+95vXrV1KkJWd2332F7XY8zYGny4VorSQzTyOb/V4mYyMUP2Md3no2/YbXr14J9SZndvs9p/OpGBIzm82WyzgJKHYtl2GUxN0UsE686WGKWNfQNC3WQde3nC9nxnnEO0ccE02/4XB3jzOW83DidHxinCYm37HbbqFQnqZxou07LsOF2DQkHBjPNAU2fUMIiewM03xhu+1wSNjWdT2Xy4mcO4yxxJC4v9vzdDxirSj15FzmBSfvnXcN0zDKnGeQAmIZQgqM0yjJz2SMswsV63IZSiKmo/Eenw1N2zCOE8ZJYiYGmrahazvmeeZ0PrPb77jfdEzjRIyBeRSZ0sPdHe8fH8B4qc6ZSyFA65mnmTmI4+Ow34ExRM2LaloyiWG4CMMteSmMFiac/UO4kP4xb1dLnql/rxbrGnQUJF8TPszN/ssiC6rc+GxbCIC2eMHNDejXa195fe3iaVwdqcUYMOCyQWpisHjujJPkXgX+eisajVBPvdId0gICVTYzY4zkFSzqIhWYEaqQJh8q7q3vIV/1jyYhruokL/9jMcCuAaZ+fg0ea6hbSUBmxdA3LmdbfNm5/lANhPoRrM9jBcM3f78E/vVzY1589h+zXR95exbD7ZnzzW+3eO0l/FYDw7z0xfMdDTqeFZmvbTI3z8eYEmnS+zdakGt9MqZq8EJrKcfaxbCo266Ddn3rrqkzpR2LI3x9/8iZbNIC1vXUtmq3GkUpI2sX6jmX71cstCbgr9G2QpWz67tgzKpkdTOgqjG5UnrUWHgJ+K/vU+29t0tvPjcSrueQNTp085mpv6/OU0dXXjj/z9o+ieqjQFdBolJpdKtpJsojVw+zAn1Vu1GvuFanVW90Dbxrz3Utpannr73ccK37f8vF12N0U297Tc3R/a65gquUnIJnBapazEyBtJ5TE4NhBd214k99H2qIKKC/VTxSg6M2TG5lQ7Wv1KDQpGk1vtRw0VwDvTd5pjKGUpLCZNvtluPpCe89d4cDl9Mjm9bzHkMIQoPp+40oqMyRru/Ee58NISN67QqlrWW72/Kbv/I9/sHv/4i7fU/vI8YkEh5j/NK/i5JRlKTfTd+DMXz/B2847DuOD0dyyngPfZtw5gzJkKLjaRyIwJwS/eGOu8++Q7+7A5doNjuaTYv30FgjHnkbsSaBFe+ZeFhbxCSxZbJI5CAca4PQVZxrcI0XjXxj6LuObOA8TJg0SLVX7zFOPONNjoSuI80jPsyMw4ApydQpRmIpyJRTxjpDv23Z9B3OyvFCP8piIFWawjrmMyUh2QgYDy5IeNFIe7tWJqD9bs+m7/jed95w8I6Ns2y7nv2hY3+3J6eep2Hit/7+P2A2gDXEeRZjZZ7JyKLgXI8rOt2QOF/OOC8J5O8fnvCNYwqBpm2JGdp2w9PTgDGG3bYhpYj3rWj3Z0nm2m0bdvstKUaG4SKT85RJMeE7KRMfoyT45hRp+oaULTnNNM7hWsfp+CSJ7M7RbzbCXbctu90Or+9GzjRti7GW3eGO6TJIUboUsS4zjhe8F1rY8XjCOU8Wk05kRoGgRneZl5RT3bQtFjidTxIJGAacMWz6nnmacVYqaT8+PtK0DW3TkmwkiV8JYsQ3MicYxGlwOp1Ku8XgtMYtc2bOmbdv3xJixNrEfrcrUUyRWzXWsN32QNHQLgUGc0pk4whBqCUxZ2IY2G13+KZjmn+Jgb8ubBXe+NBiV3tHbz+73W+JHi8As5r/EYChf1RQdT0H+vXqv9QCXgLQQegLEK160SFqgaGy2Dvn8I1HaQUFLSxgR06sxkReqGVtyYsRrLeub+pJFexQPJbWLYowyoPX8wGlknGJfvMy4K+j/QLiCsAxaiwI0LNXwOjav73QPYrDJOVYd0UxhhQ0Z4xqqbLmHWA0b2PNErh+toi2ud7bLXDiE738Lxx/5ZV9fsAV2P5Uj+yHr0U1Nla1NW2FQZ+JdmZJw7X22T2YsrblDMZBKkqwJqZST6FcTJ2aVp6IKzr9Or5lKKXlj+VJZwistRRsMRCt0TFWAeZcVHt07dXndtUjJWEeQ1KLeBkXBmMaUnKkEkGtPf6QSSW6JnUmViUr9fjf2ob67lkl1Jm8fKbvqexn1/vAVPtcm7jXY/TGScFqnOm5FPjffq/9+YfZPhr4q/dcaTN1oixc895hpcHoz2EYFvBZU10URNfeb51Y5nle+OfAQvO51b/Xa2ilXTVAalBee/4XGUJjFvWD+jwKvjXiUNcM0I6vtflrxYg6JyHnzPl8Xig/tZSp9k3Nua8NH+Xu63l1//re1WDR86iBpHz+ul/VUFOlnzqasRorgIGHhwdevbrneDxy2G5Jw3mRAiSKXybGJGEzJ2A9xUSIlCp6wrfzGLpmyw+++0MuTxcOu46Nt2QSqUz83rdXieHOWrqSqNwV1aZt13E4HIhBCndoUZ7kPKbr8L5j0/f0uwPb/T3GNSRjabxdgLa3CZ8mYAYHcRYvfmGAg3UY45ljQmUyg5GKgXPKRCOGTAZMTjRe9tlvexofGMYZky1t1+KceJixBu9t4WrPhGkixZkUJ0JJ1HQGTEqkPNM0Fm8srkzYyUCaZSzp4r1S4CJgaZoWmNdwMDDFQMqWrmloW0+THU1rcdbxve/9kLu+Z7NpaLZ77j/7jKenR8Z3T/zDn34JxtBYS46JFEJRZJCEwmma2XdbqbLbCSVm1+8BUb7pupYYQ8kXEe93ypKcGmMqmuLyHgyXs0SNpjMhjBjANw1xFkrRZ28+53Q5c3qSpORxmthsWsbxgrOGzW7PWLzWIYgxab3jeDzinGN32OGNYTw/kYzHdz1zlHf4pz/9htZ7msbhvMdkSczGZOYwEHKWyEbT4ttm6dtpnoXWZyAZWaBsAkIgFWphipH9dkuYpUJk4xwxiZEtybcTqcxp/aYnxMir+3spoNX4Zf7RuattG+YwM82T5BUUemRnpDrq+SxVer0vOUqlPHzXtbx9+5ZNp5GMWOY7MabEmQBxnjmfLnjfkF8CML8km8yB9WLJi3jr5eNe9nhe7Ve8pMscrwDmZr8Fwq4Yt/pOcilWx2deWCyL9y+DyXb1brOugX4pKrRAuKXdIgFa6DMljCCGiyuRyFVRpKa3KHyuHWrq6Ln1PoNZor6yNj9XLqn/tsXJsABNtVdg8ayqgfEMpxQwdit6qoirthnUeBHet46DyhDUeMGtYad73j7rjwT7t9uLx33I+OR6bLxkeOr2IiXpxWuqBzhfY0i93rOxfgsor98BsQHlb1uAakpae2Kly+jzWMbRzfNZ2nNzD+pxX9sox1kt8GVESctQwPnSR9f1IUx1LqFwWTWxlz1SWlkLKUWiJqfX72IxTPV9U8/8S8Bfhrb6+7XQVt3pqyFVK0je9rH0Yj1mtY+ej0k1Nq7eter9vd3/drx8iinwSRx/TX6tAbA2sv5Mi11phyhgV6+1FrTR857P5wVY96WQjiQBdle5AeoZroG8TkAKiBU8393dcT6fF0UePb5OutWXrZYN1ciE3tttMmzNta+LhdVAvI5UKHiXugNDKTbGEsFQao8W75JiXc+VgoAliVfvRY2FunZAnSBc/15TgJxzvH79mvfv3y8vgFbunOaJ/d2BOYg3miDGV0YKYAQy3smwmcKENYkwTpCKxKnx5BghRjovFe/2rzf85j/zR5jPZ0jF02CieHyMWfqdnAUEG3l5nW/wtqFtNyQjHPwMhCiSYs41ON+QXUu73eKbHuc6nG/AWgGd3pLiBDHg8gwmka1FUicluc1YU7z9BlKsXrIkiXgGKJNKLLOJ9768kJb9boN3I8McsNZjnaVrekyppplJpBRp20jOMwapkzBPIyYHUTbKmZxmTE6F6yjNCaYUSC/Xto3DZEsKCZvUGDFl0hQNce88LY7z6YLJibvDgfvXB6ZhwDjP/tUb9m92vP78V0Qp50f/P754eOL3f/KFRBsQCtg8TVJ4pZFqhGJkSAKevGeO0+lMt9kSU8Q3mRhLNC1l+k0rFR9DYg4z3jvGYSq0wRFjoOu2DMOItY4Qs9wjhuPTI5dxpO87RKq3ZZ4nNn3POM6ElHk6ndhse9p+S992zNNI0zdM84VpOHKZA5fziddvvovJME8B62VuGM8XwjyTYiDGxOff+YyUAiFk4pS0fhPWWs6nY8lvKh5i55hDKHNVZA7z4lnsNxsZuwbCONL3G8YScciIgpYcl3l6OtKVpOTNZsPj06Nw84txN00TmUzbNovH+Txclnnychk4nwepPzJP3N0dOD4dCUYkSZtCDZFIQi7qS0YiF9YwXEac97hFJvKXF/hXOK/6fV1AdXkVb/OasLtgkrKq5sJvXyQ0l31WoPxhPZgVTF61BwH9BtbE31wc9GsdLgxrYu7qzyzgQhMHq/MaCvXRlihkSfqNRfrQGCOFhqq1S8H24sXXNuo9FmNFZTfrG6tpDK4C/ssuCyg3a2VSa0rl66onFnBoigdXfffq7c9kBWbLA83LufVc8pU8kQV3FSpmLeauHt3FhayGQH1uPePNEL+l6L60vQS6TNXGvFz35tzP/jbVs1+mjJvr18/lBvQvKPbFVpZz3bZd/lmjz0/vZ2UvyGNavdri3BIPvBoGamApCL9uYZWivOxurqrJ1nclFMmbPuWaErOcx5j1GnkZRWi0SMeUymcKVrPYaNB8HL2yRMnX+kxi4K45LjKMTHkXqmhZlWZezxNKAdIKvZiV2pWrMVePwA9tpnou62dm/fJmu3VAfKr//5Mq99Yyl9utKAVoMmytzFMXsKpBsTFmoQzVVBcFpjWQVk+27rfZbJbjbqUt1buu51LPtwJ3BbsK3GvvOshAvFwui/SoUmJ0XwXz2nY1NPQ7jQzUdCCNVKw1DaBtm1ITQKIkNX1J79M5yzxPktQ3SJ6AqvHofWq/1pEI9dy3bXtz3ZUapJQfLTimz1T1/ZvGczyK6srldGTbNpzOgePlTMgCXo2r8jhyYrfd8H44k4jCgU4ZZ1vG6QIYNv2GP/ZHf4UvbOLSNljjSBFiiGUipBSesZiUsV4MR2vsQs2Q0F4mZUNIiZAAa+j6LdZ34Fusa/FtCxgCYqTklDA5YolgEU86lpws0ToCUCp6l8lP9PCdNaSYIcSi659XCbAM3jfCj0wRpxx162jDzBQyxiZCEq63czswDc72xDCTcgMESYRuHOQAMUNKpGgxORSJakPKCe8bLOAa0cnPZGIMJCwxlufceJrGM40z3jbEKJOV9w3eGXablu++vud0bti/esXdd77H93/4GSGMEJ+wKfHu4Yl3T8eS7OQk4TgEoVw1XTFMu1IrQzyGbSeG1zTN9Nst1lhiDvTdpngoZ1IQuUjfWPquwxrxfitlqG07UrIlemRpu4bT8YmcweGZhsj+sMPYINz1cSaGRNNYPvvsc06XIzjD+TIQSmXllEa2XUcKCd/0hJBwLnPYbTiPR7768qd0bcum7fBGknDfv31L37diuJVFpO0aLpfzUmRmUTIxEiGSCMZMilJm3lhHNg5rYU6iu38ZBrCWvm+Lko5QM6Zpxlkp8R5CYLfbccgH5hJVeP/+fVkgnRTGKxWA5zDTdx3TPNM0LW0bMBY63zLOE8Y5Nm3PNA1STThlurZjmiTHYhjOxJSx1hNTYLvZ07YNIUUul8snLh+/uO3Da6AuxCvzXvBq5XUrK6SC2pwsNq+eVoyAMvT3fOVTXi5srq7IFY6sF97V429EljCX81ulxKyg+srYuvlVCmx5cWQAas2EWKrxwjJejS2qPyUquTRC6RdZqJwqKesVrFdgsKZcLsZgOc/Su2Vf532p3m7W3ITKCSZdpip7BeRrpePbR6j7W1OUUCoAyNrMnAqYzwr8pU0J1X03KxC6MQLWfv05Ab557jWvvbIvBTTqdOT18wJe8+03JZvEgPC/9egbI2AdXOvv161e7nF5vMvzpRhXdt1Lx7rRZwjWpjJ/R2K5lhqs6zW1PfpXXj66krzUqFF9J/Wtq15/Lv2Z88KP13avz6U886qGQ0pr0dicfVmbIjHaYhAITTajhkxa3+ViVK4PySztsK6i7KgWVUkqLneGzilWDWK9uQyJNfqhBqhGLfR+lqhceRD1s1pa9IHfl07Vsf6JyP+jgb9OCAoia0+zJuSqkk7txVaFHpDKtMaYK665esc1UbcuZqWbXq+enLQdSmlRmpAm/SqHXSU866Jb6rEfx3GJTGw2m8X7HUJgs9lgreV4PF7RgvR3vf9atUcNhDqXYL3PWGhDfgEQqsyj+2mfxaIuAuZKh1/7t46saN/WxpD2k+ZY1ApDSiPQPAit/isREOjajmE40XlweWKOAd+0hHiUSr0xYjF0mw0pBra94+svf0pIEevF2y8KEhumceRyGTnYhksv0oMhJkI2xCwLsPa5Wu3OWhpDSYqURSWbkl9Qynl75zHe0TQ91rfgW4xrwYqqhNc1wBqiUm6MqACFMGFSwsaITSxyXrYsUsZkbBK+ojNCvWmMY0xZcgycxxlRUYkp0jSSG+C8o3GexidStoSUuEwD8wRtuyNFmXTkPj3GJGgyOcpEl1PhukYjhbKMxZT3x1mDN1VxtgRBMitK30XGaSSmSDaWhCFZyzSNkgzct3TeE5yjcZbDXuhbnjPGNFzOE//wH/6EEBJziiRmlBs+XC70tiGpsZ6FH67F8jbbDefzhXG4sN30eNOy322AyOWS2W3bAjZkgtztDwzDVBJ9Z56eHtn0+3LOhnEqjoQkcpUGyzxOZBMwQJwjb159RjaOb96+wzeWMJ7Zbe84JXlHmrZnu93x9PQk3h/rSGlmHAXEWwwU+s2UR6limj3jMLPbNVASjS+XC865Rc1M35+MRBv7bot3ljzHUmAskI2hbTdMU6T1HV3bEEqiuBSrSbKoWYd1oDKswzABIi0qUb+2ODlSibSY8jPjnOd8PotxGCJTTOKB9Y6u2+Cch1nkasdxZJzPy3vfNB0b7zmdTjTeMU0jmcTpfH6RavDLshmTb/5ewcDqOV2+feH4Gri9sE+hNKyL8cvneLFtH/w0i4GhBoICCfUyZgWM157gFVasqjv6Sc7gcgZnC0hbwcdyf+vlC55cqV3aZ8s6YoxyO66Av4KvBcwruK3AmPL7b1XvPtg7FUB5HjVZoeG113elQKy/rOfL9cNfjJT68i88x28B//X1P2YfiZTpo31+3Euv1PVnL5mO9ec/uy166dVDzDIOzAvfL99UgLX+3hqzjJtsdIxembZX92BeMJRvDSY1ea7uphjay8FigSzjD2oaTW1w1OBfQXmdryF0IHWOWitysskYrupjaOOXQVn6w6zvVW1IpVzWZsDkayre1XgwuQSkbsb+Tf9dDeUXjM4XD73Z8sfs9ML20cBfvdPambcveS3FqR7x2lDQzxT0G2MWjzSweKRhvWkF8Aqs1TjQmgJ93y8gV6MO6tWvJ/Cu65YoQB2J0ChBzZPXfY7H40I7UpWgOiKhBoe2RcH+InPGOikJnUivHRcKkBofSlsSSlJeeJ468dbgvpY9bZpmAe31M1JjRO9fjYqU0mIAKP3peDwu+wC0fccwndn0W/I4kEMSeg6WtmlojYSXG+uwORMvE3GaccYyleRNUqJpLfOc+dEXXxN8w92bN/z03Vs2e0skgV2HXtKibkUvPwOmPKeCjoS7bCQq4BqpXiuLqMU1wumnyCCmGDBJdIB94ZraYhonCylE8hwkIlDiAPKiZpH8SknkwYwhx1RUfTIpZpyVqSCFCCYyzw22zTRdh7cOV2QtbQrigSAS5zMYi8Vic6L1XQHoXqSrY8l36FpSYY3kRPHYiiHrjdxXioHsHDmKR1laLdSUFBPznJmzZ8qJcRjwBjZ9K4tkipg88PTwY/K2Zd+1RDzvnx75nR/9iOw9tiSYCk3KkUPEGyv0qBiXCWYcJ5HRnKfCGc8cHx/xzvLNV5P4ZqLBeLAknGuY5ok8y+R7ONzxzTdfSgTMNnjf8vQ0kHMi5iL1S8A7W94bi3M9yWXOlzPGNbz5/A1TGDgfn3g8HknZ0fcdw3jh7fv3zOPE/u5z+m7D+4eviVmKzr063DEMF0DeLdt4ZiHtM8XAPE6MU8QYj99tlvdK82eca9jvd5yOx2JcRlwIi/c2zBNN6wnzzPksFXM3fc8cpWhZLJEr37S0XY9JiWmal3dQc5UWjv8803WtyDWmzOUy0vdbQpD8o+12S0xCp3Je3gHftIzDjHVNoQcaiTRmofg03uOs4XS6LFSjWqjhn9ZNAMzLJWZ1ga7n8ZfA6q3T6fa7l9ZYc/2/srMhWfMM02kCfr3yS1Rz+WM9RCeDys8oyZU6f6p2f4HmNxQmbVLtTbz1IqqXvVbwqUF4DShXYFYn995SZa77T/4Vx0cpwXeNc8zSNqtakVW/6uM0Th0dzy5zdb0Pbab6/+3nz72pnwL+uaK16Fk/xZD+FEPzlv9e35OuZXpPpho3useKec015aaMbecE4KbyKHLW2hPFCZmfd319mrowVu39X8ZmXg9aDFWoquLeGDJXF6ivbK72XRkcmr9QA3/EsVaMjQ+N13XcX/daBmwWSvBqDrw09inXysvPpfp3Ob+A/muHxdp2W31GeZgfHos1dvuU7aOBvwJKvdE6WVaBfa2Mox7nGqzq97dhs7oYFXClZKOLkXrw1XO/2WwWD5yCcD2+rhOgnH31cOt+t4nAgCSvIgNQgbHmAAALSG/blmEYlgmwrgVQ95caNiLlCaeTaMarMVPnLqzXAzCLV08NBO2j2sBSOo/es4ITYGmn5hEYY676LKW4tEEjN1K9d6JrRVFmmhNt0/LlT7+iL58Z7ySMZQRQP7x9h3ctjU9cxjORKHriYcY6yz/84mt+/6u3/PO/+X3875Xcg5gIMSKZkQIwXckfMRiaVgyunBJYV6x0g3GWtjEY56VsuGvECDCSuJqI5ChaLN47TA7Y8qKSU9EqTuR5JkddTC1k4TYu4dNcwIMRj3wYRogRkzIxBKZRuNfGGmwMtBpqNDLJdM4xT2ClcGtRIMjkFMgmQ56xlEnXWpxviGEWCcvQEIO0m5wxWWhitsybwm0Uw80CqfDLDRCT1BxOyKTui1Rq54U/bF3DdrPlcnpg273CuA2n48DXD4/8/k++ADKtF2nKaISWd7xc6A/F+CieZ6wY0ynnkovTS9Ss75jniZgiGEPCELO8I8N4EXpLI8o5b99+g0pdNk1DBu7vpMBfiBJVSCkilhtgpd5AHCc2uw3Hy8A4C2ff2obGd8xqzBlPjCPf+973yNmLcdy0bHdbxkkkX+U1EnWIOUSs7zC2IeNoO6kL4rwY4rWssOTMrNG2DGw2O8IcFsnecR6JYxZw7YTiFEKQHANj5Fl7jyUT5wnvrCRoWs8wXoh5om9bck44a4gW5jBzKXlPriTlS0KoK9KrM77pGIdJirZt95DPkGHTbRmnEQwMUyCniPeSiNw0ogLmrBju/7RvOifr77CCT91qJ05df+V2q4+7prE8NxY+BABsRenQpL7F015fC5ZE4OKDKEC+/EOPVc+81rJZ1wxzg8gE9JslcnDrhVXg/iHJzroPuQH5i0CHWWkZ630CS9EtLYiYF9BfJ/SuERgK1ee6/1YApB9IYrQ4Y9a+v3oeeT3/zdmewf76WVzd9wtHf3gzdTCjasa3GCE3xlftqLwdRy8ZonWkozZcaiBtqn81oK1/V178MugQ6VjMqqWfc4awKuQ8uy+9plmfp6xZZsk/odCblmNzAc923ddat0Qfbo1HPShX91LnZ+h7IX25qiIq6wSyqMHlRD3Gb53E39bny+1SVKuW239+nBQDlVybmHLJ8TLLW1HTfJ5FR6oH9yHMr8+xpn5/yvZJcp7A4uVWsFpTNdSboj/rarI6wSrtRr/XSVgr32oeQR0VuG2DGgS1h0yBc13hV7+rvfF6/SuruQB94ZNnckwLsFbwDGvisP6t6jh6Tf19rSAqXP/VYFrDs2oU1YNmVf6JqE6sGhbK29f70Ovrd7XxoFERbYsaYfq99H/EWqFl7ff7hUaUUySFiTmLeo51ljlOHHZbHh4e2TYHLqVPO+85e1EtyWjiM6SYscYBicfLyF/7j/82//yf+FUOrz8nZ4ezDd53S+XNRS3HiPffOOHMKzCOEYxrMBZCDBjn8U6qUKYsAMZkUwo/rXUcZJ0RxGxIzEMgx0CMYQ0150KziVGk+0yliZ+LNz4kwjxJxd/cYCapPyCFRkSqT4C2UIa88zTWSiGxmEgxE1IkWlWGEt6veBAkBN83HmtSWSYlhGmtePxjEINXkH8Sz38KkkSdUqEdwZxgzhDJi5G62bS47CAEYpg5Xy60PuKMY5pnfvzjn/DFV+94/3QsuvMGMrTOMYbINAcx8qxo0ocY6P2GaRYa3TzNgEhkZuuwTUMIc/EUJfp2A2TGaeJwd8/5cuF0OhGjvPNt04rxYwyX4UwG2lYSeofxwmWcy+ITaLseSnGtnDJTnLjf3TPGCzFI1MkXdZTzZeLx8QGyoe024rEK4HCcz0XCsswTjfdEJJJ1Pl34/M1nTNOItRDmAUOzjKnNZlPaL3PBdrsjp1wMesnRyVEUoyjv33GW6Iw1lk2/kYgXhmkcsG3HHDMhsSjy5JzxTUPfNcQQmWdRnnr9+g3TOCzypcaUPBDX0PgG3/X4Qt8ZxgvjeKZre4zNWCuc3YTlMlzYbXtiTMxTKLQtw3az/9jl4Be+XfNhX5LmXH4rf18DnQ8B2g95Vb+9Mctlrhb/ZdGu9lNPsEYKdJ7jpr36mzEydFA6DlRa6y835xqsKjCsmmnUy6hU2QrAvwD4n/VT8X7W0YErg+AK9K/Xhw+ARXNz+wt4/cDz0M+LdaSGjsJATfBc7v3lbnrWXx/67NvHxNXDqwbec6MiwzOc8dI1v41e9ny/ZRTJpfM6GK9akG89xdWgJS/75nJ+bavR874wDhTAo17rq/tff70y1srvtXe7Zu0sz1wNhuX61/uVl+mmY4CktLQV+KecBA9cvZPm2iheGvtil9/024c+v30nr/z6XD0ZU8yWDzjwawNGn+THTE019v6U7aOBfz0htG37DIwq+FTQCSyJrzXVRz0tek4F4SovqTSUWo1GPW0KruviV8rB1XNI4tx0dU1d4NXg0GPbtr3qtFxC/2NYq+JqRKBpmsWjp/eg56krCeec2Ww2wh8uycDqpdd+uy1SBqsOP4gBoGpEtbpPTZ9Sg0CNJ80ZsNYuMqtKQ1LDRilAYoxJgS3vHfM8MU1FntVbLqcRYxKXy4XT0xNzjCQSMSdizpzOJ17f7ZmnC85mpnkgBJHG7NqGOAdJeHSW4Bp+6/e/4N0l8eqzz5nHkcs4Qu4gl9LfOZNjFGqNEcBrsTgnXG/nDMaVcJtzEsdDKBXWeZwTKot1Hl/Ak77nJiPFleaIA0KJcMRSEtw5rUSY8RpKjvJdmidyitJXKYAJYAwhzHhjIWSCDaKwAZiccE6SPG1jMcEImDcRExJWbmAd/yU07zBFzUcqdGYPZJFMtYj3O+RAiJEcEyZDmgX0a8XcMQSmlLnMgRnLEGaiybRNy353x/n0DW9e7+n7hnkKjGPg7fsnxpj5z37rt5ljwPmOcZporKNvO3ZNT4gJE9NCOZLE58h2I+pUQsdLnIYTm81u0bjPMTFH8f5ba+n7HZS8jhBEUx9EYSZESVB23gidy9gl4Vy0/y3THLAHS7YSebO2YdN0PLx9B4iS0Waz4+HhPcZl7u4OHPYH3j88MM8jOcNwOhNjxvrVebHb7SSSGEaRfG0cX7/9Bu8ch7s9x6dH9vuDtM85YpLqwvpuhTCLIZmVktfQb3riPNM0nhgiMUXapiFnkQSNSYyYnFd6hyu0rvPljLWW8/nENDc0vqUtTpHhfCKEeZl7YpRaACYbSIaHh3d0fUcq1J2YItM8ME1nYoocDgeytYyjyPM665hzIoaM9453795/0uLxi93EWNIw+fVmrn7WAOR2U/B7K8F8vQ/VdwWBFLmeXLVF99GfZuHi37QtlwqpRZVscbDqtcpi701xzOTiTDCsNBe44fpfg8Vl4b923l55NNVRt1Jx7ZUijbWuWuc1CgCq06/r+21/KsAR72bx6pfKqjmrdHPtoVZj4trrL8+mALUrwKzHUmGrKnJQQH+ub/zFrQa/1/fwksGzGF7G3I6w5a/bb+orkb+tLc/bUHuwv9WDm83SjtrgXfBxFRVYzpuR8LOhOMikybYYhYvhVIxBa0VOWqoEl0JfpXx1Wm2sD9xL9U/7vOLSrwW89JlTMMo65lYbpfL2L21kOYGOM3k/7ILPkruO5OX6Z15Vr6iiTwrMV4N17Ue9L21YXt7D2mDLN4/8+jgDS5G0erxcjT+r0ZOXDP2XO/0fq8ffGLOA8ZrGo2DaGLNo9Nfc/Zoao5z6Wou+jhDURgGs8puwatgrgFXgXPPza8UfrS5c5yOEEBbZyporrxNhNmuSbK27r2C7vo9bik8o8n76u/aT3rPSlPR6mq9wK8ep/al9rQaPyqACy3cxCghRg0ivpbkRSzXeMjBqg0ejJjEGjscn7u7uxJCYJ3Kcl0nhMk003YZhiri25zKOpeCaUFcwAvBb2zDPUUTBnGOOUSrrJvjm8cTDaeCPf++7XJ7e8cWXJ3wOkkSbZU5wS1TGi3e/TLbOitdsDpMYBNlAysQU8N4t7gTnHb5psM4uRWoikrAbQxCt9RAWNQxjLY6ML5UsyRGyVTcNKYm0qIB58STHLDKAOU+EmHB4TLTkNGGIkJVLKGobtAYzT3grvMmU06rglNaqia4sqikKB9GViU+VCFKYS20ElbUrs29MhDkwzeJ1VyAZE0wh03Y77l+9Ep78HHn96p79/T1ff/U1P/7JV+AtY3b857/zu6JdT8Z6jzWGKSSmcaDxjjTPWLMhzkXe0xguzpfxLuA5pMi2bXkapdYDeDBSzOt0eoJkOBwOQKbf9CQMwzQVuVN4OD6y3/cc7u4IQZwBXdthXQnHIkm7U0oY57He0zZS8Ox4eiDMgXm+0LSu5DJ4Hh8HpjmRmGkbAdDTKJr4zrklub/tOryF89MD/W4vSR2KycUAAQAASURBVM1hIL4PdF3L6Xxa5B/vDnfVWFWnQlokMk9nyQ16dbhjGiemNBEL6GuaVnIoSg7PPAX2+wOYXELDFlcMVlmYLKfLADnTt1LDwBqJOKoTYYqReY6EaSKQ2TopGnY+R9pWImM65p+ensgWmtbLeJ4lT6XtJBTe9Z8k8vZPYFu9ydcertX7piCx/noFIteA+aXF8naxrRd7jDgp1J/3IS/5cqws9QCSD4WAiCvGr4ICu9JnSCsHXnjPq0TmApevvJdXF70C/fW2Ju6WiCiVyo5h0VY3RmiVt/dWA/+F+lRJIV7lTaBg/Nobv4JAuZf62Yihc2O1XQG0m/s0NWyr93kZBOm+V91Vg/pnz+/bQf/67/mJNeH1593qfn8+Ts2zfa82jVzrMypr5O3Ry/2U90YNJ30WFql0m3MmFRGMnDMkVkPupbbX/wpIX16jehiwPmZr9R1Qw6s6WxXpWA1IWDs9l3OUaJQ1mHSTbJ7XYxX8X3fb+sDqcax/rxfVvq2H6If7IteHPeuDGyOzehdutzXa8vL2qeD/o2d6BZuwFuVScFlr4tee/dW7nK+AudJ6lHtuymKm4L6uQquAdi1clJcogaoA6fX0PFLQ5rqCrf5dX0vpLdM8g604X1XyVy21qfkGdbKf6vSrIaHgW3+vi4XpVnvs9O/z+YwxwsPXRT0lOYfSdmouphod2ifq1Y8xMgzD0kZj1mJrYmA0GCtJrDlHjscnXr9+I8m5YSrJmo6ua3h7fCTGjLGeFBM2J5xvcV3DZRiIIXIeAxgBYSc7YF2DITIvsleJL77+hqfzzJv7O57yxPt3DlWNIQSSb8hOKukKqCrKJzljciImkeLMUSexRNc2GOPIxpKdpWkbUNBfCt0464nzIB7/lEkpiO/JQi51AoxBkoGDAydV/3JUIzSSiWBE7ScFMTiyCZBmtJLvPI7EeQbfYDBY68lO+ITeN6QYcI2T8xYpPmMXPYKy/ArlR3IbxJMhBogYgjlGcgyEMDNNY/E2Sz+lmIhzIsyZnIWP7o3Ib75684bH0wOHV3e8evWKpt/g/YbjcOKP/toP+b/9e3+N98NF2hxl8vN9h03ieZ9i5DRc2NnXJVFp9YYIF1SUaAyZYRzZbLZYYxjnma5puZwvNF4STU+Xgd1uWyIultQXzXtnaLyh6xrinOS5WQpgtewPBzgOtK6HDubwhMVKngjSVynHUszIcT6dOZ3PNG2P8508J2/p+hI1fJIKxykGhou8d7b19JstAoBbrO0xGF69ek3OMzElfNMwBcnPUHnhEGZJpvWe1ntScIRx4uzODONESJIP4zNYFwlhom3FWN8fdnRdy+V8wrcN0yiGkrWG1jc8HI/sdxtiiEBeaEZt2xFjpmlapukkScJtyxwnLpcLKSYOhzu6tuN4POF9Q9t2DMMF40XtKc4SpQox8NMvf8rnn3+n8oL9km8vLIzVl88+ydWYvT7Ny+Dq1miQk1CBO1sBf7lm7SF+1hZjCpg3CwhLC/CowfXarhXsXCuMVHd1dazcZ3XVF+5rVe2xy/d6hDEs2v0K/Os+qo//EMB4GfhX/YAaZmYBbrW3f/1ZtbvGO+ptLvf6Mjh73qb1aZiCI59TI249/T/X9q1e8J/znFy3TQDst593BbY6Lr4dMBrEuVYrOi0U7VKFun72xqzvVG2M63dL5Ga5yNWPYkAvvy7GgZ5HIwB1G5U4swinlnGUrxJnr25MzpvW+9dI3zNwXcaYBvcUoJv8vP+WZ3Hjsdft1iAylPOYa6eFPqOr480aQXru2Hge0bp9vp8yxj4a+NeKOXVilALg2ovf9/0SCq9pPNqwmoKinvVb3X/1SNdAV29Sf6+jALe8ff1M6Ty1xn2t8OOcSECqEQMlITOthR6U6qOUGjUG6nYpsH7poagXX49Rb7+2U6lJwNKX3jtSkkk/xrz0hRoMqvSjScTab7X6kdKQtA0qFeqs5enpxNt3b7l/9QrnBDwaUwrGmFaqhQ5j4ZMLB36/6Zkj7PqeeThzmSaGiyil5JyXN9tZi7elJJ/LPJ2O/M7v/Yh/7V/4Zzm8fs3mm6+4nAfmOBOCpU2dgE4HUmgIkaYsNJgMRVGn0MmahmxFxQfrsa3wxJV/qnxassjpmdK3KRbFmsLBzimSY5T7btol+gBSNGuprJuTqATlzDhOYmwYi28y1s/0vYTJnfdQQqTGGLxpMDmUCTTJPmVMZc3vKOeWpCMw1jJP0+L1lshKLo4GySkYp4lpCkxTIEVIAWLMxGSWWgeNs2w3Dd4bTtPA97/3Gt+Il/t8vnB32PP12wf+6n/4n2CM8tPdkrPQWFfkJzOX4YIU9TFsd3uapl3eu1xyEaxzHC8ju63DpEjXtmKwWina5dtOErFtZhouzCHSNBtimsgZNqVQ1zhMBCvulHGKHNqe03kADDklurZjDhNxFqUaYw1d1zJPc1G4asVLZWZydjTdhu3+jvPpifP5jDONSLtm8G2LbTzbbc/lcqHr26IwVYCOcRyfjlgr7wUmsd1uuZxOGFMkgaeBpm0J88wcArutJPoO40TTdvS+wXct03ghp1TyPpwYLcaI5KrJjKOIBTydjlJxeScF/0BkZa1zhHlmt9vS9zueno7FaCqqZGQa2xHCwHYjNVYuw5lxHOi7vswTDdvdhrFplgKJ969ajk9HjLH0/fZjl4N/cpsxcLMm1mBtBRLl6xvv3fWp6mq2177j23OZ6v+6362BsCy8qeyiJzCgBZIyMh/ZykVsri9ydV3n1MteAY3l9PnquqtjUooK1X2gDi+pQ2HQrEpRA7JX39fAvz6+Bn/Lelx59a+i9gu14xqoLICwfF+Dff1egeXS1+XZiKpMrRL0Ic/sy9tC5ahwxoeOedEwuB1733qtPxzY/1B7cgWSX9on58pzTRYxCZ4bO6txWP52bmmz82shOLMYWKvYyfqvOKgolaDLddeiWDJSFyCtF8vXwF9bu1Lorilli7f7at9cxl7JictUlm9tvMlaf23YsdieNRN/jQ6U/91085UBUDXn2ki5PYbqmRg0svKSoWmNWSJet47iqmHPtk/19sMnAn8Fx9pYlcmsv1fwCSz0lRACl8tlAd5qRCgFRik5ylGvIwt1AnEI4Upyrq6eqx5vnXzUoNC2qjLHMAyL919/10EWi+xdrgB8SrLYp5QWzr6CdeCK1qPRilqlSD3vdZKyGgI1YK8jKquHH1KaF+5lqgYwsEy2WjdBr6cRlTrpt46IhHnmchl59eoV3nfC80sR56BtWkKKnI4n5suwaMNnLM41pBTorBSVeQqRGAPeOaY5YLJhnia8d1iTpeKthUzi//1X/0P+W3/2T/P97x9oNtsFuAjHO+JcJAdLMqJSk3NZAKyTaEOJBsjCYzDGY3xDLtUjAeG/68sj1gLkKNV4kyT8hCkyXibIicZ6jMlYByZHUpzFp1AoSK54Jrx1mCyFc4ZhIluPcVKR10+qOhVJKWBNUziMZaL1bYlCRCBhsiUbef7WGCwrXUnmLgOI7vzi4UmJnClKNKLoEdMkRbZiBixzhGwcuFJTwBs2rSENjxw2HSkmvvjJV4xz5Pj0wP7unr/yn/xt3j0+SfJrnIrhKtNhItF2DdOciqJQot9tZZxaI0XXnMN6kZQtVqNUnvXyLqsc7m6/E337zZZpuAjVzUOYR4yD7WZLmGXckg3DONH129IXXiRMY+ByOYG1DONIjDPkhB9LJeGYaNqeTOY8nDnc3THFGZsahsuZy/lEbFru9h1tI9r6wxDod9ulcFUuHNbLeaTrO7rOMs+hSHtaNlvDKZ7pu47zMIrXtgAp67zw92MEZG4Up4LhcjoR5onDfofd7SVhOkHXNPRdx8OjXN95j/Oe7XbH4+NT8XBmyHGZo4Zh5OHhCe87vO/IROYwMU4z4xw47A7ElBiGCymLAbbZbLhcLvJvPC9UP51PN9uNRCkvw8cuB788241nsPwGPPe+QbWIKpZYQOB63EuXWIAS9X43BoB6CevTGNkhmzVZV5yotzuV/Rav3jXfvN53be/avnrdN3pM9cUKrNdK3wKQ7KLMs+ScFQeE9s2tR/GlKMl1/xawXhkyUEdHrlFfHfFYgOgCEilKaCz+3g9f98PgfwH68kf13F8aPy9vL337UvTgxWNf2OdjwFrdTunS5x7fD58vf7B9OZeilHIi9PksEZ+yhpq0gtJ001eCP/QZ1u26/nl1P5X7f/l6oX49v/er3293yZCXd/IaqBtTGV/m2qG8GBGGxQB53k/XHHsxZsv7lF+wAU31y9UXJb9ieV/KRfML9/fC7x+7feoxHw3860JdsEpmKmdfPeGrx3qVrbTWLuo4StFRiox6ppXXrpz8cRyXpF0FtLWn+9bzrQ9O26c0FwXEdUKwcuOVk1+r66jck95TneSrEYFhGJZrqOdDZTRrWU/1steFvxYZtPJT21fLkWqlX22Lqh5pW/Sl67puofZou1RJSPtSDSXt72EYGIaBV/evmOeJlAyX4UJOs9RxmWaRiQSmeWacZ1y7FSqN9cQ8L4bbOM9LMqZBvFN938A846wVPXNnmYzhb/3W3+Uv/42/xX/9X/nTMBtSssVaL2NpDqJMoqFkfUko9DHfiPqPNZID0PZQknFZnnuZsIyRrKSYBZCHmZQiMcMwRwHIGFL2RDzWOiKFv1v+6QKNswjhR9ozliJNm+0GshQWUwDVh4jxsQBWS7Ie0zmMbTDJihFCLuXEpZ7A4tE1npiVwuYKN3si54TFMIbIHGGaI7NWqUQqDIc5M82RkJwQhxTAxxETHRbH11+943D/OdMsFKF/8NOv+Iv/0X8KjcMUT4uMe6kQHEwRHyu5CVKdU6Jf1olHaBxHXm13xJCwtqHdbhnOxyVaorks7x/e47uWkA2X85nGGAxiHEqRsKJ8xZkYE4fDHqxIwophO0EKuL6la3qwnmE4YUxiHgPbfoN1LcNwpmkcm+1OjJlhBhyNc2w2UnF4jonjSeoNHA470jyyP9zLe5JhnEa2mz1d20vfO2i7lk3XM40jfdez2e6YplE8Y86ScqbtWqJzNE3LME5kA+fLibaRaFbrRaHHe8+c0pIkfT5f8G1DKIm6tsw7TdsSstCeJNHdE4JEgLRS9Pl8puk80zzRb7cc2i3zeOHV3T0Pjw84I0pMGlG8v7/n6fS4zAN3d3eczyfaVgqDnc6nj10OfuHbCuJl7BdovHgTl5XYFP59dVTWhX59bdbf0UVTP4QKnrDmDFTBfcP1CVjBrYQUy/dmnZ+szkt6leuTrXeXERpgNlfrUAapXHt1VQVqZU1x5XgjFZ/Vy2rKvOid5EDJPKkVVRX0mSX6rfPot4H7Gminyvu+gOtyV9q3CurVo699WBsFNfDXcy8Iru5xI5HPnIQuuvysvN0sc3n5ffH2swC4jwFL3wbO6z54yRh6ru3/4fPU9Gm9D4O5+QlgloTbn31iFsMvp1Ryz6Qol7Z1iQwt3XxdQfaqJoYaghUV2hQ5UGMrh6mp35+qPct7A0vxOqNrreS+yNAQxxN5NRavHP4mL+PAaKZwBopaHuV86xttCm1Hx8d6srwYqdX7b5SGW73f1Ebt2q9LP5d23W5LhAEd/3K2lNfrLnPLi+IA18YfXI83/ftTt0/y+NcX0oGqgLcOFeacrwpb1TQhTWKcxhHrnHgn23YZNEqtUSNBQbdeV0GyUnmU468GgFJuaiCtwMwYs1To1c9j0bI25WWaprHo5ucrSg6wJATq75p/oAaK3uNYEmA12Vk9inpcrUjkvSNnmKY1H0LaJ69A1/VLO3POVxWHYc23UF1xjS5M07TQftTbfz6fGYZh4Se3bc9luIg0Y9vy9O4dd33HZRw5DxfwnjwHGiPJgE+nJ3zTkOLM6emBbAy+bbmcBLDFecb3LRHDPId10gJO08C//e/9Zf7Yb/yA770+EG0rFXQXwC375mJEWKOymg7fOjBOXgznxNu+hDAjxjiMa0hRlKIdTia6IqVpkeJX4zASQqJpOmKcpZKfsYCsmOKFd5STkEoJee87rAsYE3C2IVmPbzqsk/6fhoHL+UzXtLRdJy96Ue8xqSTASfhGaDvW461nTqNMMHGm1rjOpborxjKHsRT4YpEtjWMQeUosl2nkPF5kLrJZ6D8pQCoJ18PIHKG7+w4hS7Xh43ngL/+nf4d3j080vdB8Gt8WRQ5LTBmQgi3WSMLw6XSk7fuSAOgYZ0mKzcaI2tM802dhP8/TVHBP5nw5MU4DWcIqpGzwfUcYJobhwuvXr0rhKcPh7o6n44XzMNF1nsPdhuPjEWfFcJ3GE+M4stkd6JqWaRhomm6paLvf7TkPZ/abHc52dK1jDjPnMWMSzFMgpTO2cbRFijTnxDiP9G3L+Xji9WdvirNCDF/nLBZRkOr7npgTD4/vSmJ5Q57lvZ+GiyQQNx29l2rFIUTaVuaU3VYqV+dZwKgY8lJUJseIt26J1o3TpERXtrsD8xQY5plsRFVou7sjp4yxW4wzhPjENI6EMbDZtJwvR7x3DNOMpO1C12/IGdq2l8JsWM6DqB3N08w8Brz95U3uzYsCdu0xXFfUxSNoViNhTQTMXMfmy7HP1tgFButpWaBDjWA+sMCvbaWwFlaALTVKKomeG0QkAFrbLe8+mMqplgmxgC3q41fgrtlCpiijiTPGLYa6835N4F3WtRVYG2s/UJBLtpcKn+VUqL+1J7rqW3F2UfpAlFvkWmv/apSj7u91q5VSrsFWjoVyXIosrg4j5GeRn8kFqGXyogin/fdt0PzbvPkvRUKuW00FKD+wz21f1gYAN+C/aOAbNZKoDA894UttzatxJjQTqZUjbIj8rANqA6wG/vIc1/5WY88mXbNW77/SgEz9jtb9or8tBqD8zKU9aQHjq7e8PtigClfAUkMio8pbpRHiALCwwPhcjdKsJJ86YVjGi6EC47d9WQH/qyhT5ai8fQ5qmxTm7HIp6aPqXXsWRljO8OzR3kYI/rFRfWpPs7WWzWazJNfWhaNq2osmqdY0lZqak1Iiz6LIorSUy+VyZf0qkFXgDmuVYKB4q9ab1+so/aXmcKqGvwJivZeaEiOFg9LVuepcA6jVEVZupEYRpkkAQs2z131r1R49f4wqsyZSkHWBrro/tR81OqJ9ohGW/X6Phu9ro0D7MOfM8Xjks88+W6g/Dw8PoshTojEGEWQZ40wy4PseLpMAeiv6z95amsYRg4CmaRqZwyyLEuuaZozw5BdOqTX8Z3/3d/l3/tJf4y/8t/8cPiVCSSC1yD5zTLiYpPpukjoCnZUCXcZacEa89SXxN+eiepERg8AYpDy9gTliihxmDDMhJmIQj0DjHeSILJUiiWltW7xdvvBbEzY7nElYF3BNR+tndtsdyTraTiRTx/ORy2Vgu0/M48DkLb6L2Jal9gD6wttiwCAeK+NlokgxYLLmzqxUtVw8+wmtF5CLbj6EEBnGwHkYmWNinCPBCE3LGOi7js3+nrYpFbM3B4bjI199846/83s/5m/81m9TJJgwiUVZyTeemCLeeqYpMc+BzdYRl8R8T7/dEZMsCpdB6GCv71+VBV+4uJksRdUS7Hf3GOsL/SXTto7hNJGJvHv/jn6zpe07ns5nIgJSrZEIYE4i1em9Zx6KMXE+0jYt3kpC9jxfGIYLh7tXzMczl2HCWElotdEzTYEc4bDb83R8ZHd3x3AZ6buGu8M9rm14fHySSsklKf1UpDPv7+8weGJIjDlwOBxIccTgSElqQHhr6PsN8xwI08ym6zldZP4x1nJ/f8c8TZKcW877OE1k42gbqaA7F4Wjp4dHtrt9ATIledgZpvNQwG0mpnl5r87nEessjXM465nGkZgTn715A9YWmlZmnC4YJALT9T2YgTRkmrYrHlOhov3yb4t7rfxYDYF1dawWeHN9iC7quseHgF0h5TxbYFf08bJnTj2KuVovro2G+tj6c7M01ZSZ6RYUmIoScU1rqv+tYEIBvib0mjKP1pHnxQlqVi9/fT+3gOLKo13A1RXor58H61pQt2v9XHes5VHXc6/0lrVftHe+dbvy/LOAtJrqc92HL53i2tmop/o2Q+FnbVfG4W0/Vte5bsjz383Nx9WJnhkazzzFV/dVf59ffE56xatnV1RzAFlDlleiPuZ5C/Oz/98+29IuU0C7GrIv3SsUKdq1jYsxUQ4yWQ3h2+utV1w/v5ok9IaWYyjHmZszLM/MVBd+tj0H7s/2uJojbncuJsq3jNt/bFSfmjqjfHT1fuecF68+sCj3KEC9XC7PPP96Tox4u12hA9UDTIF6LRmqnv0akOvfWkPgNllYr10XtVLPugBtW5Ippax9jAKc9TxLsZwqKlGfR6+pCcNKQVLDo7bk9fhaS1rpRynlpSqxqgGN47h46PU62t+3FYs190D7RGlY0zTx5Zdf8ubNG7quZRwHLpehFFpqcNZxenpku+k4XU4MJanwcjqJAZIjFtGZzykxjyPTOJLCzDhdGOYR57riYV+NLWtEp997zxQnYsr8P//yf8w/+2vf58/8xq8wxswwTXS+w1uRRcwxYIxIzTnnwdhSsV5AvSmhaK3gGKaIsY5CTZXXNwRMDORpJE0DYR6ZQ8IW8EmKNBaczcQ403iRh/RNR3at3GlMGCLJBIydaXyDAbxzBAM5zbS+h65lmGZignGcsDnSx5k2J2h6Mg3GN2LuW7ECjBHlIecgzROUHA5bVsOMIcyaAN+ACRgnBlHIkhMxh8gwzkwhEbIh5JJUbMEZz2effYdX3/mcbDPJOeIUePv0xG//6Mf8pb/xtzjlhGtcSSgqk5q1kqfgHGGS+gTipzSSSGrFQCeX6qd5rbkxx4nGdWw2Oy4kMPD49IRzLcNlYrdvmYYjMQdmnFSOzQ1ZeplkMiYZ0b13UuH44eGJpu2xxjCPI8Y0bPc72r7l9PgE1tD2HTFEur5hHCc2vRTmupzPjMNA27Tc7++5jBcS0HiPKQZUSqLK1TcNIUPbNpxOR8jQ9cLRP53O7LYHDnd3i2KOJr7FIo0bQsA3q4a0Uu76TkQOshdv7jhNZOD+/hUZePv+kWEYuL87rDlQzhfqlOX+7jVzkHyGRvwAS+XneU6EeabfbIlRJF2dzbRdxzCOXC4jIUodZ41iShQn8fbtW3zT0PUdORlSmmn7lo3rP3Y5+MVvFaBU+owu0plrKPghKH/rvX8O6tc9dclfP1bv6IcWWLN4ukWOfznD8n3tbSzI5Mojuhb7MstuqXh51TsILHklcna7GA3LZ+rxN2bx+C80vuLxV++iKpewHP98uwXBCvi1T2owv0Cf4olV4G9MnfRJ8cRWsCtf5y2IFzUh6s2FfGpMwZkvESJu2vpCu+vvb42aD3nkb4+/NQY/dPwHwfnP2F6KAty2/4NGwkfey4LDSkONMVhn12gQ10ar9JU8OznN8/yPGm/VdKW8eNmv25yX/13f921b65zP1ahcTU2VxL46WQ3+qcbLguCFTHT9gOrBR8lNZHmvrnrUGEy6NnilvTc3Vc770aDfcPUOqkGmtUR+Hs/+h7aPBv71BZVrDiz8ffUsK/jVxFmNFNSqNuW2xPPetrRdi0UVLla5zZq2onx5HSD63el0WvjrCuxrylGd5KtAWnn4qnrjfcM4JkKQBNc6OViBv95rfW+wGhyaLJxzZrvdLkaBLuh1tKNtW5qm4Xw+i9faWpzLzLNwgM/n82Ks5JwZhoFxHBeQobr/wFJbQAse6ctSa/+/f/+ezWbDdrtlnieGYeByOS/GXOMcsfXkaWCeRqEHTDM2JjabHePpCUsizVH0v8MMJIbLhZRm8CKJqlJZ6kWwQIOVAlUp4zM8ngf+rb/4H/Dr/6P/Hn5vCMEzx4iLEW+E191Yj3FOFFoK5WVd+ATdZrkQcc5YbzARjI3yiueJPJ/I00CczkUNohFwnyM5zBgiOSWcazHWSA5Bu4FuhzUNhATzhJlnuFwgRMIsdQBM48gpkONE3zcMs1CjnN1jCVgzYI2lyQiQzhlcA95hTBJZzwxkSwozZp7IMRJDXKrxOidhgjkZcrakHJmLwtIUZsZpZhgnphCZYpJ8AucxQTzkd6/vsV3HOAfCFHh4/56/9bv/kH/3r/8NxijPMcdE03kBKjkxhxnf9mTSYuQI914Ki2HESDXWMw8TP/jBDzhdzlIbou/BGobLREwG33hSSOQ442wizmdiSljnuZzOYDKb7ZbLFIg50rc9ORocknh9GQbR/Y8GZ+Hp3Tt2h1diFIUgUYUE8zwSpplxGun7pjCqIv1mQ44RZwwpXXh8+prtdk/fiKFw2O0k4mItx+OZz7/3fS7nJ+aLGFyb7YZpEo+/94Z5viDVgy3DeaTxbcnvmDgcDsRUcl+MYwoTGOkzrcZroijwZES6dw6irnX36p55WqOmbdtgraFpPJfhWGpryFx7d3fH48N7wiR/e+9IIZcoF8wh0bWuADwnUZDdjlev9sQYGIYLztlFSOGuu+MynUkx0TRbTqdf4uTe2gtXOYcWj565Wu+fH26o5hD97AUDYDk+Xy/Iy3btfZOvzXLktbd0BfD6yxX0KY1eIwUCUtbrrDaC3sRCv1DhiqIWdB2Rdgvwt4W3b4wVkQLl2Cy3Zqhv8NYTXf9eg98a4KyREG3Hdd8uQkJmVe2RS67nuwU0hiS0z5zAliiu3mPOLz7jq3bfgMirz83zxN6XznELttcn823e8eUGPmn7NnD/KaD/Z20188IAxBXDGBDqrY6N2stfDLdcrIWXjaL175TE+ZPiyt6of677r0bYs+jEzbt6FTGpIwc3RqPun8uzVkyyGuMU8H8reboaECvor1+/2kheP6tZLPU9asSKm+M/PPaez0fyTq10t39U4P+jgX+dMKoc+rqqLEhFTQXlqjajXmmNEKzUFwGtBqSwUs7EGBZPd84s3ms1BpQGo3Qd7QhtQ90e9cDrpgpAajxcLhe6rivtHNBEWrDLvrqp5r/evybr6rnUGFAPiyY0K92pniR0f91HExjrZOJ6kCs4V+pPfR6951plSJ+DKi6dz2ecc2y3oshyOk0Mw0RKma7rJUoyn9n2DV++/YrWN5Ajj1PAuoYcAxnh9IV5Zr/fYPLAPJwI0yilsbPw102GmAx92zD7QlWywvv2zgtVJSd+6/f/gL/+N/9L/rt/7s8wzVKRNmZocuHlJ1EKImdyiBhPocXI5J9J5CiJSdYaRLlHE7wCaRogzsQ4k5GEV5MzOUWsyYQUmaIkJrebtoDqGeYJksV5WZRjDMQYGC8Dw+MTp3cPRG9ofEceZ+bGkWnFoHn/yKbfkDCM84TxXqRRyUwh4PsNNjXEKB6VjCRyMs3kKRDCKBz7yoOiXmUp/BVEWjWGAqgN0yQGQEjqfxPPfN+JpOXleOLxODC5ht/58Vf8nX/wFbnbY6fHUgxIciGMNYQo72DOSOKpNaQ5FY5/IpnEFCaapoOcaJzn+PhEt+1pm0bA+uVC13aEEGmaPaZNDMOJFCJt0ZSfpglb5F9NZ2ldQ8qJL378Y17dv8a5Qm8xhhwS4zACM/2mJYZRvH+ToWs3i1G82e4xrpUxGmcu08yvfv5rPL17zzCODPEioJw136fb9EyXict4pms3fPP2K5EvjYmm8QyXC9vdhjkGYoo4Y4lxZh4aYpgZc8Y3DTHlEiEr7yWRvmuYY4As9RXeffMN+8OeiREFR9aIcf7266/ASO7R4XAnyc/eMY2DCCrkjO86hmHgq6+/ZNNtaPuG4+kE0RKT5Aq1TY+1jnG6cBkGQsz41nOZJqZZKiDf3+05nS40RdlrOJ8X3qngq+Zjl4Nf/HYFpj/gmb6hB1TQYPFu3tISzAJArz1z5nYRrvZ7eeG+SczT79V7T8VVN+qFNIshIwDDLN79xaIxSlcw121SjzoVD7uAN+Hqr5SeVd1OFdBeBv4rveY5mKt/V8emJlFnPZMBjWKY5e8q5lEDyeV/LwChvD7JLJ31YQ/6C7aIHvmh3V82DD8A4F84gxo65oXH/axZLwDCq/0UJC5/X9/LS4D5ReB304AP3Ympj8+JNbr07WByNZxXI271cK8Gnz4pHUcf+vmh7fl312+zfFK87Vdg+PY8XB93M770s+eG1C24Lwb9TYt0UK7v9PrHtcFSnbO67gcHou5XvTf6/t+29dvG1c/aPhr4bzabxXuvwFitnXEcr7jpt6BVvdR6fA1mNUHWOUvTbAsIl17Rcz6fwFZ9/dooqGkvCpzUS69AW/dTEK/3oF5ybW99bC2Vqderr3GbjKwe/VrxRxNvL5cLwzCw2+2WCpxqoNSKSGoMwFrBWPpp1dPVaEtt+GhS9el0QqVItU3H4/FKCelyGQhx5v5uw8Pb90whst32zBNgDP2m5/HxEVLmXOhau23D+6/fEuZIToZ5jmREF93qy59Tqf4q3H+peprBZFzKTAl+9+sTj7mjGye2/USbIjHJguhiItoINmGwoqGfRK/eYsguS15AilLZl4wJwlFOaSaHiTCN4p03rgDaTAwBlwNhnphD5DhNzNMsRdMCuC6R85lc+NspBqbjE49v3/P1T77gNI70rw6iKBETcRZDwsRMNIZkGuYk1X6H8wWHoe0yGEseMtF4jG3J1mEspHHG5iT8+aLwQzUxxhzB5OLZDsQoijwxZMZhYBwvjFPkMhty68WjbqBrPOenE08p8+qHv852c+DP/7P/Vf7C//R/xv/h//i/5y/+v/4dUsz4xi5UN4Po1qeUaaxlVmnU5f0Qw7TtOtq2I2dHSBEXAv1msyh8nU5n5jDREzHWMs2RV/evcCS22x3n86UsNobT8URMkd1ux2G/J+dIznIO5z2bbktMAWOg7zfFkdCUKJxnmkeMFeqK8y1t20A2bPqermv4cjhjga7bsuktKcHlcma76bg77DgeDd2mZ3934HQ+MY8j97uDJFFbQ9ttGKeBfrvFlPdzmiO+kbyTjCk0GokwxiB5PtmIrvWm78hZFH18MXAwhr7tJNpX6EC7ww7nmkLlc4Q54V2Lsw0zcv9t1+IaSQCeo2W73xEnSUaPKTKOZ7x3eN/gXEvKhsZ4pACdRG/O53Mxyhru7u4WJ8SUJwwwTeMnLh+/yE2TDKHywS3fLqDiA5BvEQO4Lam6rMUr+F8oO+sFq2sVVJbrj831viUxV8GxHlYt2Wh2q6nWNGPceoVymbS6FgW4K9CvwXwxChawb1Z6j9TYqBI6Cxha8Yp+tq5n2p/PPc9JnC75updtZUQtxkdBiKZ0h362rBFmhfa5JEFd+1qveks+vXpuZlFqWRIlM6t6y7eA/+W8S79f/3tpWwD6tcjNet9X2O5qcCzH3557BeB5GVZStLLc0Aue9J/l8V/MOHMNVq+vK2IRJhUHlJWoMjh5vsuoE0fo9f0axCdXxlHWaLy8QzKnWIxJiB+rBsErUP2QEVQDXPnbAkLD1utf5ZUUwH01LVxt1QPTEWYQUY8yjrUEmJrWZum75/NMaejCOCgHLOe+HXKLEazXVSPbiFH7oUjISmH62dvPEwX4aOBf6/ffFqpSL38d9qg57/r5UvQnr3r/ug80qELLMJzp+/4KtNfgXsG5Vs7VyrS3FYNroA9cAXZguXadAKzg/jbMpMfXGvxKxanBv9YIAJboRt03CuyBJfcB1joImnSsIF+VhOrv6giA1kjQ+56maYlkqFGhBpY+i+PxyH6/JyWpgDsOA/Mc6fotzjqeppk5RXwjxZicFc+m8wbv4fHhkRAyMWXmGMnWFICWCPOIx2BNwhlIOJwFazM5iVTlr/zmH+N//r/8X/HKznz5N/997oNQNZzxtLYRoB4zxiUB9jkTp4BrO4ixON+KwGZ5gU2SmgcpSO6BeMoz1oBzjSQgjxMxDkyXkWGaOY8j4+nMvJvpt9B1CWNdqQ7pmKfA07v3fPXTr3l6PEIrkoyMEGOQcPoM4zAQNx1NfyCniXE64ZlxXDAJnLekecK6FtMYsi3VgGMuij0CCFMUA1iiQMLtSxhiSsUra4gZppQ4j5JUO4ZIyB0YB1kiZU/DTBt6Xv3aH+Nv/t3f4U/+iVd89498ny++/CnbXqrjNm2zjDFrrag+LNGbyjNkxDvdNxs23Z6u22K9Z56FTmOd5Xg6FfUjQ7YG6wzD5YmmaUkhMpwnUioRs6ZjngPOW8ZxYLNpmaeR7U4MqmGa2WzuaLuGt+/fLWP+PD7x+vUrYgjkFHk6PpTje+4Oe47HM860bHYHxnnk+PjAbqmuKxQw33is3ZJy5Jtv3uJ9y/HxxDhNbPqO1voyd3i6rmeYZlICZ0sRvGSYkhhIh8NBDEmnOUsGKXIjQBxjOA8jbdOw2+0ZxwnjJEKl0UOApm2W/CKQas/OyXzx9HTicNjx9PQARtrfti0JGKeAQwUDpKJz3zfEDG23ZdNvSTEwBykQRkVf1AjhOI60TUcMicbnK1Dzy7YpGK8/+dhtBQk8x5VXp83LBx/2/pqrH3Dr4bvxGOaXjBGzXE3BvwJ7NSIE92VWO2UF+Wii7hVgvU7iXag+9vm+ile0JbcR6aU3XvL0f6hXjBpN14B6vcb1PzWylvDB4jGt5VjXB6aJmi9c+SoioH33Kdvts/7Z3v+a6nOLz2pDrzawftZ4zR9s+Eu0mmee3/rYW9BfRx2uPOcUr7/OYaUHc2XoLHK29QnXcaRnMqYeR5URfYPIaxrMB3tiAf11QuutUUWptHvjRa9b+ewalZb+zzYL5b8X8fzN8cvge9nYMuUEGgXLy0hd79esLwPVFx89zX1ctGrdPhr4K22naZpFKlJBfM2Z15tQwKvSkzXoVkC+yoMhC6yTBKSu6xev/OVyudIEn+d5Afaqw19z8vVvpcxo/sE4jgsdZvV4XxZFG+AKHCvg0GvrOdVLpp+N47hMsGp8aNKzPpB6sPd9f0N5sss93V5Tf68Ni5pGVNdNUONLDa4YI5vNhsfHx+V+1GDqe0nik2tPkCJd12NwOAPjHEiA9waKkTMOF/q7DY0VlZR5DgzzIP6BFIlEvMmEMBGtAYoHO1O09ct07j3/+v/iX+e73/8B//7/49/mhw5OlwtN29F6Sa5OZbzHFHFW2mBAPP+UCs0ZSWbFSOQhZCCQ00yYJ8I0Y7xdJEHb1vEwDsThSBgnTpdRCsaZjMmWQMM0IQnFZbEchomn45HzMDKGzNPjN9i3b9kf9mx2PXEKjHjOw5m7uze0Htr2QBwN4fLIME0Ya+hNQyJL7kQWYyVnKfSUS0lxSewzxJhISY0q8fBPs1TqDXNkniWp9zJFhpAL4EdoThhm43j7MPIn/vyfpNm94l/5s5+x33p++pPfoW0bfu/v/h4xB1x2GGTsOduRQ8Zav5wrXS0WIoU5T4FpDsyDKFe1XUuIkWzE66fvbM4NBMmH2GxEOhVjyIh07eHunpwjMc6MwwWTDandEDJE1UBPsN1tsK4hxsQ8XDiOIyYEiIn9YY/3nru7Aw/v32NMoOs8x+MjORveXaQOyGbT8dnrA199LcabbyVBOEVRHvKNZxgHHHB/uCOSGYaJw/092UKeBSA739Jt91jnmELiMk7Mw4W+b4kxAUmkXpMBKzKx/aZnHifiNGOdSIimEg1baYcwTjPeQwkISAmKmGhbD2Q2mw3H84k4RnzjmUKm3+zJMRAmoRh23Zam2dK3LafTwDyPpDCx3W0ZhgvWOXKCKVxTCadpFqBlDfevDp+0ePzCN8XlLwDtj134lvlYQWq+/u7nata18/FZk69Rk1nmF2PMIrVZe/FTYvVi5pLgu9RLUcpOJRNaSXSaYqgv4NtWVVBfAPh5uYFSeTevinPrPjew5xnYXUHeYgBU+9Qe/5USUsAilQxpuZZ+pobAld+18oavQPjjvOHLOa7acj1+fuYYKM6QWwpPfdy1kbTus/bfDUdeumP9e/n33BN8e67675eoH8+MGswS/bo1+srZWE2on73Vxz/vS82LfH7vL93XS5GXF++//D8XsP2h7aUoi36el9+vHfdXRl9+3hO378TPjsA8v77SEdWAXI+/Bv8vGWv1d9/WRz9r+2jgX+vzK9isk1xrT7R1opIjCSQGZ92Vtx9YKCfS+LR4wuqiVUqB0eJVCpbbTvTSyeJtVXAfQrhSy1HNfk161fYtBZf6fvGcq1GgoFgNGqXY1Hr5dXJtbdDUij4KzOv6B3W0ozZStK3ieVXNXZgLSN+WRGA1djTaoYo/t8bC+SyJu+/evSOEwP39PbvdrhgYEyD5FJq4PJ3OTHOgb1vG0xM5iTf9dBk5Xo58VrjGTdNyfBLN8BgnbIq4LIU7rHVkk8hGOO3WGEJKkuBYAK7BQIr81b/yV/jX/tV/lT/75/8Vfvw3/zpPp3fsujOzMzgsjdfnOWONcPkNljhHWUSsXIfSzhhFdSDnSEwz0ziKFGaWYl3GeYyFpu159+UXxGnk4f3A3//9H3G+PPHP/Mk/zne+B00TsXiMdeAMcxAe9Ol04bf//o/46dffEEPiN379j/KDH7xh27eE8QSN527f0xAxcRAPf9sTxpFpDJJl4MRjX1IfZDJ0tgB/8egnWGhmMQkFKERJOg8hcLycOF0GhmkiRghRciayN8QwY0wWkLd/zb/03/iv8X/+v/6f+LN/5l/gr/ylv8j93Sv+K//in+Gb9+9wTQsGklk9hcms2sjDPGBw2MYXupQpXnqPsVJ8z3hHUA8yhsYZNq3j8fGRti1e7piY5pmcZ9qmh5zpNh2XaYCcy5gTHf6m6zg/HTEeMoFhChjr8Y2DmHnz6jXDNLI5bIkhMI6itBRnAKEgPTw90nUbYjQ4axjnmc1uz7v372jbhu3+wPkyEKaJGAOH/V7mgzhhG8sYJnK2NG3D+/dS3TglSzaeMMuY7tqWbrMlhZlN35NzpO86trs985wlX2XW+SYT4sxuv+V8OZOiVLo2hfInRvhGjD5jsN7inWMeJfk5zJGcI+M8YqxhDok0RdqmYzgdyTny2WdveHw6cTqemcOJ735vQ5xHOm/Z7XdchpkUBXxJhLFlOJ+LVrah323JORGB09PxE5aOX/T2wgL6iaD/2XG5/C9//Llk+TLV7x/cSX41FehWY8M6+WfW2jciWVzyonJeHALqzZarrom8AuaVAuuKPVGqSBt78/3zUM4CMfJagCsmdcaxVAuvIyKr99ZIBPfm/pfEXSr1HsMSSVqEzUo/6+mEZqIgSrSFczJokaciuiwNTtcgP2dxUtwCsBeBpV63+veiaszNflePlpch8TOKFCuEfmm7au9NNKU2aG73/Rjjpr6H5x9ej3V7CyBLvQCq612fx6A9oKD1JcAuztF1DCznf+F+9Fwvv4PPDaDqFbwyxF6695fAf31/ek9qoN9eWy9Rt5UllvPhZ1FHu+r5RbeiU7Xsewv+r8aiRsH+EED/dvtkOU9gAZtKP1FDQEH3UtQjSWEPV4FcBTa1LKe+8ApGa8UcperUhoCJApC9XQt56f7qje+6DvVwq8b+Kpu5euzrqsEKnGuKjhoTes/a3jpqUVcFrtV0NAqg16pzBJRmVFciTqW/UvUyhBDIheOvhoRGWOrEYe3/p6endUJMif1+LzKBpS0hCL3q7u6uFP2yRBMYL0futm/45vhAnCe2TcfxeMRZJxrfOdN6R54H4b7PYeXJFdQqibwAhqbrGMJAjplsEt6KFzMbw3/8H/1/+Et/6S/yZ/70n+K7v/7rfPWffcnj8SjjJIFrWnorPNUQIpaMswZjhOufC6lTXwYtjBPjLNVuk44HzZEAbw33n91xfDjwzZcTrt/zJ//lP884PHF595anr59o+gmHx1qPax1TDHzz9Tt+/8df8ep7f5Q3f/Q38G3Dr/yRH+B85vT1Vxgsf+Q3fp37V/eQJ1IwON9ivaiz5GlkngNNtiQXCakkrmaDLYu6JCUnYorLuEg5XtE4pnlgDiPjeOEynEXmNmdShpiFppFS5Ol05Hd//w/47d/+L+F45D//D/4DmGZev3rFv/Fv/Bv87u/9Lm3TQooYk+naFpczcxYZ1YwhZYul0PWQ4llNa/GNoesbEqLiZPqN6OxbR5wDx/BIDIFoDafzGdv2JXoRsc4wXi6Mc8L6hsPuQNd0kCVK9Pj0IMnkSPXc3W5L51taazjNM0OK4CzTNLPfbTjnyPt37/HeSS2KridmkYzd390xDBeGy4l3b9+x3W0YhpE+g0OMEYlMFClhV7zkTWTbSyQhkwnzKFgjJrabnuPjI9ttz+npEe8dm03H5TIRAozjO6y3bLZbDDLuTqcTMUbOlzMS7euAbonGxRjxTUOIiWEcmebApmtpncU68E7e74bM+/cPuKYV7jbQtZ6m6aXWwN19MZYjDw8PtG2Dc1ZyepKojA2XM69ff4YxjmkaGKeJ02XA+oZYVKS6dvuJy8cvcrvxXKo3+QasfciT+PKWhRP+wrmeX/v2vNVnBQ0qn3n1nS4nvvr8GigVb3/lIpc25atj5IS3XurS5gVEm+VvNRA+tNWFTG+BtOKinEvybnWatY8NL53+WTSm6oLCoFYbSI6/QtL56gfGXAG0q90q0FxTU+BbgNGNd/rnNRxf8vY/B7WrVzfrNV4CqTWYfGa8fPi+XvLq1yD6Q17/xQNtPnzfag9XA3k9djmkinpU4P86+vBCVCSrJbv2R73Jel5Y8S8Uyls+yRol55kFftuOD42HnwXaF+NHX5Sr3z9A4DMG8/zTF/80PO+veidjqnojz/b9uHv50PZJpRproAq86PV2zqkthAhbrFqsCrLrBFYFqAqwazWcmn9fJ/faYghMMYkGe5VPoOdWgKzUGPWsK11GaTUKojVXQNuklCbtaDUS6sq7tTxpV5Q3tO7AZrMBWI6pFXvUO1+rH6lBQEYKE2XoSgE0lU9VQ0Dbr1QnPf50Oi0JwzFGttstxpgl4pFzZrvdcTw+LdKn1iTCPNA4OB8feHp4h02WMM34nGitY9t1vH04s2k9X/z0G3JKQvFAvOzOWkkszeAMYiQ0HSkN5BRovaWxhpCE3vLjH/0D/nf/5r/Jv/Cn/zn+J3/hv89kHMMYmUNibuRep3HE+2Z5TjIICpUoRpH6dPIyhCD3F+aRaRYutXEO6xt804jGf57wLXzvh9/H+Z4QPfvXdyTzhnH8Lk8PR77+0U9gBm882SaOlzNfvn3i+7/+G7S7O1oH233Pdr8h5oD/7ufc393x+rN7msZi8owxjhQmvHUkZ3B9R54npkLnMERZ6LOhniKyEWpTikk4/jkyThPzFBjHM8NwYZwmhnEUA4oMOJxt8EXuM+TMu+OZ3/p7v83/+n/7vyEdj9gU2b56xb/97/67/OgPfky/3eKtLecAUiKkwGbbk5IjJqEbGWuWaJc1YlqNw8C9kTC8956hVCvumpZRRLbY7zcSnWosd3f3TMPEu7dfcRmOdG1HTElkPE9PxJg53N0zhpGUM/vNFmMsTdeTs2EcLsQciGGm8VumMDHOkbZx+KZls9tyOV8wxjIOE/12SwiRd2+/wTkBx6/uX3G8nMUqzZbT8YFuu6XxDcMwYo0k8YpMbaBpPOPlwuefv8E2lqenIya3UmncO7q+JxyPjFOg6TtwnqbpmKYzrfOEacBZT+MbrDFEa0kx8erVq0XfX+cQidxFfNuWon+SnG0QQ/ByOXM4HOhcx2azxfqGvutovCt5IJFpGDiGE963YCKJtVChJBonno4PhCksjoDLZZSE7JTIObLdbjCIstM/DZupFsbVs6Ye9ZfTe19miH8IHN96OKu/FiyqXHxFBDXCVTBuhL5DBc5R+o3mzBXgX0CxQo2ry19FGfIC8AWWa10Ts5zjFpRfeZPlJMUrnUvxNvlbPf56nVw8ldas9ytAiupa132j/WkLsjdQefw1EiDnVKyztAW73H8iVWBmBdUaWU85X1frfQn43BgNpWe47qnSH8ovVcT7wvlyzlfVX6+AWAVwa2/9cnWtUbZYUVkqC+fS/+nWq6/3/e3RjBepMPk59ehqnJtb47MeLJJXYgru1t9f2tQTzeJ6M0KtLQ5U6S9ZZ6SobjGIcoHNNbbXNlHTwXSM374VeRnHLzXuZxlIep/X97L+//lWm3DVMTeP+EPbTddX77S+tvJBzhXQr+e16th/VCUWP0nOUzn76kFW4KshMwWpzhc6zTTTNg1t05JY+erqVVeajQJVpdAocFegrIWrFNTOUZOGr9V7dIAr6FeQrGAfeGZ0qIGhoF95yuqV14hBraxzmz+gk1H9vRoNeu36uvq5qiHVVYSBRSFFz639ZoxZ6EJLdCXnJedCB7kWUNMoR84ieyiRkPZqIjEZxvNA2wl9waTIMMwY57gEAUZhmmkbRwgjX717TyjKNTkEEsLJdAaIEZxItZ5OZ0IM9M7SWss5pFICTGgYf/CjHxOHge/3G/7FX/+cIcMwzeK9bSYa64mUpEzr5TomgZc+SgZyTBgy8zSSY2KKkZDAeY/zDa5p8U0DBIgzjkTft3z3u28YQyLZBNbi/J7d/jN2uwN/8Pf/gPPTiWkYOA9n7t+85vX3vkPTb3AO2jbTt56m2eCbV7Sdp/GGxiDVDE3G2gg54YyRasN4kawdRcpSnmNRfdJnqc8ky4IwTxPTKFKMYR4Jc2AcAvOUpHhTjAuYzSljbCakxHEYOI8X/sb/9z9BNEGUbmdxjcMY0fBJzpOAIU703mLwkFVzWxK+dBzGlEgR5iFgsqVtWi7jQIgRj+UyB3zb4ZwlxiwKRHbEvH8gjDONa0gmE0tOgjWii9+2PY/HB8ASosEYx+X8hGssr169ZjidCaOMiTDPUjESCCEzTCM5Gvp+zzwNpBxpU2bTb9jttoyXIyHIuG3GzDxGmt0927t7cpI8inmaubu7Yw4zu13LRKDfNFwuR4bhTLoEKRiXMraxdE3P0/GJu/2e8zDgfEM2lm7TEdOEs/KOz9NMNJHD/kDOmaenJ8ZxXOh63vvl/fzq62+4XC5sdg6tjE0WpSUpAphLRVXRYI8xMI0Xuk7qdzS+IZtMijNN60kxYK2R6sFPR3b7DW3r6duOGMWzv99LInXfdUzzSJxlbk9h/sOsJb+QbfEa1/9draz5GfivAV59pnUVlk2Bycur+PUC/II/Xv7OAvZRUG+vdfYNysVfVXkW4P4znXarGzbrfVeAf4VfCv5NwZlruqz+lYRLJGtIVAdcLLQfvUGzHKugXsH/VclWvfvlHhXsaNKnnMsazT8oCnDlEkovwsh96aWTXmFx7q+R7JxSAc4v0C1qQyCv0LF+svX4ISPnM/rsUMy9HFB79m+9yHWyptJ8yNfXq5D/sh/1v2cAf42+XN9avvpZ/76yJ172gGsE5iXeeX2Pax9x9fvzT2vwL89UnmOlvGNL36K0Ldk7cW1jrV7+9Q3Xq92Yf7eNfgb+v83D/xL4v6LlPD+KFfJXLfk0B3u5zs3v6s9UO/NmPlr2rQ6yVGMAXnzeH7N9kqoPrJr26qGOKdF1XVnM5xWsj1OpzGuYQ8A6u6je1A3Vcylg1/PXL5hSfRRU55jwJSqgxau6rltAsaraSF+pV1gkLRdPd4ks6D2ph18NDvX6azXgWgZTaU91gm7tka8HV52YrIbErSa/Gim6jx4nhgWLwSB97pimeWmnGisagVBgoX3R9/1itDnnuAxnrHUMl4HtpiVZMK7FGqEGXC4jIQlnfBomnDO8P58xZC6XM8McBcDhiDkScVjrsTnhTMZYR2YmpYnWO0hSXddbx5SLPCeGnDI//elX/F/+rf87b/7H/0Puf/W7PJ4lCdL5Ces8vYGUDNFIMSiyxTgwxpJyUWdKSZIrkxRTMk2Daxpc02O8EyCehDNLApsy3juya5hNlsrCFoz1mM/eYHzP8enEZRiIOdD6jv2r1yRjGKeBrnW0ztJ6R+NanJM6BVnHW/GSWJEyEmlHn8mNJYZZiqAZkZbUTTxXiZQDGUtIQqPKxRM1T4nhNDJdhtXLBSI7aZxMBsbhcxYjzjmGEMoCKqDfOotzjUQikLoJ1lkpAGUtwzyx295J9IgMNi/OxJQzxnu6zY5hCtiU8M4QMUSTRDUpBfE6k/j8e99lLMXeHOAsDONQIgkZa8F1nkSibTqmObI/HGhcw2AlOf7h7Xv2ux3kTqoUXwY2mx2u7YGGcTiy66XwX7vbEELi/v4zvvr6aw73O8Yx4IzleB64jIHNdsfhfkt4uDAcR3bbDWGauD/c8f79A3EOOAvn81GcD01Dt9kzh5m22SzPIsbI23fvOBzuGM9npnmmczAOF6ZxZLvZ0BdQXp6uVMW0Bt84UonWpJT45t075hDptzsab8lJokEhsOj8n85nUkr02y3WeR4eH9hseuYQZMxIJThCnBmeTpjG0eWWy3jGeYtvPfkoA7NxjsenJ8ZpZr/fE1NimKTmR5giXdN+7HLwT2B7eVl+Ri1hgarXO77oHFxBzDNQ8G0uPODaXSmA9aogl60ScRVYLNVsa09r1Ybr5rLAHyPXy/pHffyN1/Yqiog0cQH/NwD66p/+t6zNNVxeznbTh9d9dE2fWfdf/63eXFO+k36Xc90CGKFVFARegeNnnfUR29LXLwDfFwHhh9zcvAAszXWfP7v2t5xnBfLf0vgPXfeF759Ra57t9MGDr/586U24fT9uvdMvXdMaQ7b2qu05q/ymqZ4/1c/rvAPDGgmrDY267be39VJfLQbQs2/KMeVer47Nz355cfuW0bJc+3l7fvZzv43c6GfX7+qnb5+U3KtSlYtlaK0U/klK+1jBslJdtAjXttuSc1647wqIYTUqNCkWWHj7CqpVDafm62skQCkvizegiipox+12uwUsK2CuNfprFQO4NnAU3Ncvaq0kpMC7pg/pZ33fX0U46qRf5ehrG7VdSj1achqMYbfbMU3jcqz2XUqJ4/HIbrdjt9vxxRdfYK3ldDrRNA3b7ZZUjLNpmvCNZ7Pd8u6rr7CbRjy7Gc7nM5dh4DxOAuTGqRTPahjHkcPdnuFywWXDZZyZYiSastgJ9JXchKLORM5YkKJU5cW1GYyzAuKNIRnDEAJ//w++4E//xg+JGS5jwLuZtgkF4Dt8TqKDHiIOW55FYp6nEpEROkjMka5rSk0IW9pRimKVsu/GiYccK+FmS4kUOWh9x8E3bO7uRL1lHskh0W82zDlxOVkaJ7QlYyTHxDuDzalMR4vqNjEFchYJxpwFXJvWE+NECDMuRpEatQ6QZGvnnYTyjIyFaQ4LF3sYR6ZpJmElf8AYqQwcHVMqErQZTpcT1nk227bQ3KBxRXPfeZz1xDTRFjlPLMzTvCS1z/NUwGco/SKJs9ZbXOOxVgubSbJ3SpmmtTjvuZwvzNOEU9nJFMQAbHo2fc/5PGAMPLx/EGUbk3n1+hXny8B4vmC6TNt1bHc7wjjz+HjkcHfAt4aQDN4Jra/fNGD2hOlC32+Yw1zyQQKtJiQ7x3azJeXEbrcjhMQ4jRyPTxz6HpMDh/2Gd2+/pmk7pmngcLej8Q3TFHl4PPKmbRmHiTw/FaUxL8/Ui+OAnNmWeamWUnx6emK/31/JCs9zYCrRC+ccMSX6fkNMWpAwk2MgpZGu33A+nSFD04g2vzWGy/lM2/UY62mcI02JEME3LYfDnvP5BCZLJfLLiDWZ9+8ehM6IIWUIUSo0j+MAxtBv9uJwmGaOx8vHLgf/BLcVKN+C/hX82uuVOK8KMi+dT3BezdN+bkyoN5Li0axOLT9RWGKKbGtJtLV2OY8W2oIK2KBe7bwAmOUzQGtsYM1yX0tCL8Wo16TgxRhgYZTkEkGU09dgX2kyafk9FQfE1XVve36xRJ5z/BdsbbQCbAH5JVJnrcUViZ+FepUhJQsmk5IhrQ0v7Sq5glH+SVJTurqXj94+OAauPekv07+W5j4/w0sfmqWXrsbmh8/6gQb/HK7ll6ITtVEsz/3aAE05Y1/o05fbvr5/NRitk8j1u5rlUTtjb/HW+k58qL9ykXRd4PmL913//tKzFND8IaD+PMIi133hGXzLo3kp4vKPYnvJCPh5t48G/rXXW/+pZz5nAX21F70GwEpHUSBrKwtQDQT1lutiqXkDtRSofq7ebaXX6E+NAChouS3oBaLao8dqe/T8WvG2Luyl//RvkCiFgnYF4jU1Kee8SIVqjYEa3NdUHTUEUkol2XZVBNK+VT6onl9pQ8YYzufzwvcPIbDb7UqF3tMVhUnbN4WJ4XzBO0vrLMP5giWRTWSeB/FUx4TLYJq2JJZeyLnn7bt3zONEIpMt2FKIyVpLirF4n8qk76QIlLVmSUI1BkxRLBIPecY2DV98847sPTlGxjnjpxl7ucj5rIciB4kxpJiwSXTnY4mghDQTY8C3ogLjbCbHGXAYk6VseBYNfLDIzYk3zJCx3oKzuKbBNpCyyIrG2JPnIDkMJFycCxjzy2RgtR9yoWQlAf+a2B6D5LwYW0KdRnId5jDhjOj2LxNmhJjF4BzGqSj7SLRqKlQp4xpM4YRiYR5DATWJmCOnccC6hrbrMJcLxmRyjFgszji5f2NpS6J3zEV5yZhSD0IKnankZMqZpmuBzDCc2R0Oy1iWCJjFWs/5POCz4fXrN2QL8zyQY2IeJ8gJa5tlUn19/5oYIufxzGU4E0ISnrmRRO7tdseFCwnoNhtOp1N5byNN6zifntjtet5dHom5w/qGh6cHYsoc9jvePzxIhKN1TKczMYOzLefzmbbtOZ5OEvHa7kgZvE34tuHh8cjhsMc6j0lRxnRO7PY9OYFvJGqCKUn21hcDTyVyDV0nBlRMmXEObDY9xjn6Tc9lHDHFCBjGibbr2R8OHI9P5CQJ300xFNvWE0Nkv9syThNxnvDW4FrPw+MTqduQEzjvyDnx8PAeYw3OWaYxEqMhpJnNpi9zdyYBh8OBpuuw1onCkGnwtsE0plRJ/qdlewH0m/rzG/Cif1x5tOXn6nlWI+CF86vBsXjp9TvZdwXrUjRL6Fm1asz1cUsbzA1gufp6RfCGumjX+q8ualk1qJxrBdcCvBTcrg4vcYwoCFvINawhkqq/Ki/+7Waqrlm9+jLvWe2L8u+2CwRwFu/wVU8UYkgqEdVcceFrcFoa8G1e3mU/XgZiPwvw/3z7/izAr+f7wNHmuv0/z3ZLTVJq0+244wOG1IdAf/19Df5vjfFbA21xGr943uefL39nWBS4yv65DuNV53/p57dFJYxZXe9XRkHWMfjsrrmeX/iFbWt/Sxt+3rHx0cC/7/uFyqOTjYJYsdoFFFtrGYZhsfY0SqDJu/9/7v7sSZJlW+/Dfj7EkENVdffeZ7jn3EOAugBJgCAJgjCDaDJRj5LpVf+mTC/kix5oGow0QiIIUjTTvRSNwJ3PtHd315CZMfikh+Ue4ZGVtXfvQ/HyQNGWnVmZMbh7eER8a61vfaskxpYGF2OhTsBd9ku5Ya2KODWXv9CGSlvqirvl2DXAPp1OGxBf9lGoMMfjERADoHjKyyQpiXnyUG4XI6g2KIpXvzaIire/nLTFws7RgkJDUkptxriA+yLzeblcqhv9ajmXBOuyTV3tV2u9GDOlr7OfMMawP+5R0TOdT7Q6MQ5n/HBCxYjBchkGsIqY9dYLNvUp4mJAa6GYeFTud35oak1UYZGjVEpkPWNaWHxojVBZQiAo+OW3H5l8kKTTmBinGVLIiY4QrCS7am0x1hLymIVsAIYUSVrR5Oqm6EiME1FKiS3nUaT1UglSoJJCoze1A0QtyqKVlsJNGjQRqyBZiw9eqisqtXjKEvLwtAqRc8zc/UjMxXlKwnuUbSHr9Qe81gK8jULpRAgih5qSgEeJAEhRMW0bkraLelIMnsKYVBh5TKpV+s454bhrrSFmOl2MJE3mzctDVWmyUdmsCfXF6LQGHwJd13I47On7jruHe379698yz47D/sg4zSLpmpOph2x8Hw4HVDKcz2f2B8P79+94fHzkm4/f8gc//wO8dpyeP6N1B96gWqHbffr4ETQE7xgGQ4wuG/Y9p9OZ437P5XRhngMxDnz46oOobsXI+fTMru+ICh6fP0tFZ22IWrHbHzgej3xGJGLnkLi/fyCkCZKSImIp0neSND3PlxKrYpouNK1Z6F/OzZiuVh+TKtnkcxtiYr875AiJ1F8Axew8KIULAbzHekfTWLwP9G0nVY8bS4oKZQ2fPn2ksQ3Oew7HO9w00hlARaIBY8Qj9XC3JyEF0KxpUSnXZcjEFxc8tm2JKRFCZBjF8Ak+MLvErm84HLovfRz8zS/V823Bo2n70N0okdTgfHm/2uAV5SNj7RsefxbwL9ut4KF4UgtozffowhWvEfEbEYcKd7CWr1ILcJZ1tOSbsK1ir6s8gtfDtQU/5fMNXylbIFM8uvUzawX0xZu9/b/qKiwgv95eK40uov7lmCnLCpMphdQGS1ruQ8v7ckR19XlBs+tvNdjdtLTqeQUMXxtga6Rku275rF6NxWZZ+qnWn285j5dxu63yUn7f2nYrkL21XPer9vgvxmSFX0s/69c6D27P22XD2rDOOy6UnPIsifkBu1TOVvKskvozmZpXHa/sMeU5AmyLaSmWY3zfsrni1TaHYJ1tZe7cMB5vnbPFAH7dgmUOL1Px+y2DYnx8CYyX6P5Kl/rS7erli4F/obIU4F5uPEaJt7fw3wv9pgD9klxbljKprmkutZpO8XiXBNlai7hU+y28+Tpxt054Ld7+Uh237LsYB/v9fkMdKoZKAdfjOG688TUYLzSkAtJLhdxlULM3vuQ0FFWd2tgoEY6yrzX5N2BMCQ+nrN6x0oq8DxuVoJJgXMagjHGpzFnGCFb6VGMVDYBPzNNAa+RG7b1nGgcI0DaG08sz3b7lsN9x2O84ff6MIhECRDRCoVf4IMoEO61QKRfdSgmj5MZplCIQiUGhGkvUEZW08M295+PjC+fZc3dsCc4RosI7xTx7tB7ok5wfZQw6WlJgGbuUBGQ3+04SSINHkYsk+WxwGIMyBqMMXiUigdZYYsyh9ZSkglxKKMmrFK+31hAdMTh0SjTRSyJl8hJ6znUEhNobIUykAMl7IPP2EY6jD6J+FPONLmnxYjVK4+ZZeOCNWUGHhCMk4jI7lNYYY/FRVBd0MuBHIOcDBDG0kpd8BzdLRCFFT9O0JA1NqyXfRknugRgoEmWwWothogEvNzVDlhyNiSbPs+A9p+cTfbfLBlMAlTgejiQ3SfJ/txNqyxwYhgnbdpyGEYkOACnym1//ClTCuciuF8qC84G+2+Gjp2lbnp+FdjYNEyoGaANt19HvOoZxpGkOdP0O5wM+RIwyBAKtgrZRjBdH296hVYMLE5fhhIszbbsDIk3Tchkm9scjEAjesesbunyfOL1cOB6OkDS73ZFhuNB3Ld7PGN1mmWIDWiJ6l/OZruvod6187g9yv3GeaZQb9a7fC/0tKrqmI7pA8IG2a9DWoKMhZZGDaRrZH454H2mNZb8/MI4D1jbMIWLb7FSZZ8bJifFpGoxJNK1lGBzReUhw2PdorfDziHcTx92Bxrb45LFW8/L8hPfzlz4O/saXNdlPLQB/gXPVQ1BK3Zdtlo2poUnt/XuNm9RNwFN7/VfefqbvFNCWqThKqQWwpwL+b2KKFcDWYFKOlWk9qgL5tlmeT2tRLokGJ+nQej9LaXM8Afzrv+qXpWFbcFlHFQpl5xp8XkHwBaAqrDa53aLmg1o9/mo5bvbASqOzsyRr+yRxShRvfwyRFNISlJBcKpVtB0WhJhWyVInI1rbgNfy65f1dgHTaenpXgL0CRaVW/nk975axWEB/bbC8tUjra0x0DfYL4P++KMIG6F8ZLeVYimzg5ql5TfVZnGU3DACFXg2G0r0K/Jc+JCSHLpHQKhHz/iIq04QTcZHmZjVI6nFa7YRXpvw6j/OP1bnbrrnO0wL6t/vaGprrhluDZjPPl79vGYzkPqUCDr5zWYzOfP/6YvCf74Wp3Pd+wPKD5DzrarWFglOAev13UZkpCj2FflMXy6i94GW7mjoDq/JNAbpl/eIlL5Scss8CqEvEoOb4l+9qqg+sBZMKgC5GQkkQLhO/tOEarNdUoNK/ugJvoSCdz+eljWX70qYSmSgTSPomfOqUVqWh0qfixffeL1Sfss9ihJTcgmIwlLb4YGgai3YTp5cLLgScm9FE5uBRKjK5idZaUhJVnRREq32aZkKW5ARFioEYBSCqlMRDnxKt0iStwCRGLxr8OkIoDwEgxYC1HS4ELuPEN58e+fnDzzAKVJSIwTA5lLZoE1HaS0VTH/HOkyLEFPHB0XYSgfFuRiVLXPj7Ml80lka3FJ6/VQmNhxRJLhK8PFRSknmpTVZUSUIR0jEr58QZFT0KoQ/FQrXQEJJHJY+KGhU8MTh8EqWdpDRJKdziSdEkAj7KNWFbC2RlrCgRiZSNJZ8iUYNtG/nOSz5BTGJ0aK3RUahVc6HKKYWbizEsc3fKCeHlwTsOQsWJIYj8qVJ4X86t/F/UMyTqZDgcjrIPEzPHX9bZ73rGYZJzl72QXddL35oWlOJHP/qAn0a0bnBu5v7+ntNlQGvRsU9IVVqjFa1tGC7PpDDz6Zvf8u7dB7Qx3D3c88033/D50yehB+3uwCjOl5No5CewuiE40c7f7Q4Y2+HniLGW/b4jxETwpWrwxH53x2G34/npM1pBaxouw0TTNrT9jqS1JHoHL4If2mONYdd3tH2LUoiSlILTPDJNI8ppur6XqJgSB8bhcEdjG0Dl/IqANQINTDYcQpBCeEYbxmFgdjN91y8qakLFEnm8/X7P0/Mzw3nAGkvfNez6jufnZ4yZQAeU1uwPexQpF++biEHTt5JvdXr5LIXW5hGtDCmtogO/b4uq5mX9vrjpl8+8jgSU9ysgnzfKz/prCss16C+fX4Pj4gZfvJYL8Ck/3RYTXY+yBVirVVN5zLWWa/eK7lOOLT1hA3rkz9pTftujKX3ZetO3nv51DLZjWPejWpft+gtIuYJcBbJvve1X4K0Co9VmSzsp3mLqSMH1+H738iYdJOP25fjrlFlA+EKlqTzT9ZFT1b5bY/9d9KQ8dVYsuozT6uvejF1tqSzzeruOquaWHD9/uvL2X4/5CvrVZp/r/tb1lrm5GOiKqFb2hMoGYKLShvoO73gFzb/jh+282QD26rib+UvVh+sjfM89pLrirsZ33dOXzL26jQv4/9JtWOODVzev712+GPjX9JRS8bYA4ZRELrJt24X+UivnFIBe1q8NhToRtkQTisQmsHjNC7AtgLr2epf2FYPgOpeglsAsYLh8X9pT1qkjACBAehiGpS3FgCmgv+/7JX+h0HLqmgR1xeESKSmUniJfWqIYMn4tMVNppE0idVarBRXjqpYyLQaG935RFLHWst/vF6NhmiasMVgt9JthmsRTihRkupwH/OxRIGoiKYoeOYo4B86nEyiFtpIsKBV1hZKidGC52WQvv46S0Csl55EfYi7mhXizS6Lub779hP/bf0CjEAnOJJVpJx+wIWEMEANSxAaUTrjRgYGgEtE7YvTQRpQ1kkSsEipptIoip5kSKgjn3SclNJAhYLxCaUvSiuhngk54G7PiT4MJUlgszhBHl6lPkuegGg0202WiQhsp+FTOqc9OqogkVoYYsNZIgmijSSphWrkOlNak2YtMalplXMtctE1D1BE/OclriJEU881Tw+wdaE2YSr0MJSDXBFKuyJiCp8m1NoqXQJm1mJ3OakI6R52aRoyq8/nMV1/9hNl5un5PCBNzpnhN4whEhjnQ9jtOL0+Sm0GS6tnWQp6n0zjKgyCKx6mxLdPkQMGH91/xcnrKRsaeYTjRd0d8CMzjJHUgYuD9wzuenk4oklCkUuJyPmG1wu6OhBCxtmcYZ5S+0Hd7nJs4nzxt24k0qEpM48iu28k5946u3zEOE1jN/cOBaXrkdD5Bjmru9zv6/ogxiRAdT88zTdOhjQKjaayla1sm58UrPzuJvBiR6nTOo43JsneRaZaoong8DdoajLaczhculzNt12CblnEYubu74+npidk5MZBsgxtndNOgteHl5UzwYYkwmoZc78TjnQMUXbfncp4IQa5DlGLKggG1F+//n5bae1o8qq/XkfdiAFyD/u/ef/lABfTXbZcAHixFs6qtN6Bk+Umt2v8rrUe/AfrLIsmw0o+0PDfK57yK7D5lQLoArQL2VyCjdV0lWI5TV3mtAVANioqRsDYrPxO2+HBpjDj749L+5fkcY650HfNrFeS4Bqa3wPOXTOVbgH/xeGenj4pXfc4dLoBfKQWxUDorlJ4SSa8J0q8MhFR742FVaE/Vi8WZXZbShIIwy3lc7aZ1XDffl78hV0tQ637kBnQb8FfH1rWBm+fG9dirG3Ok9L12bl6P9w1n/WY96W81gdWqzrMYDt9x0q8B/+u5+NrIWde//f31/lMGPxs/xA8A5Ko6YW86Cqr9LXPqB3r74Qeq+pSTVIBvXTSr67oFyBfPe+GY1w0sHvk6Obb28tfHKWC30IeKMVCWaZoWTewSVSj8+muDAVgMkFqysxyvRBaK97wOdRUakzGG/X6/9Lteb7/f35zYhYNf9lMMgJKQXFcmLmNZX1TeC/2oRCrq5OnyUCg5B8YYLpczJWJRvgeZMI1tSMkzXM40WhOSVMLtu46X85nkExqDjwkJAxqGy8D7u3suTy8EL2C3aawgTT+LVzPOKCXgN+qEC56+aeWB4bKCT+b4KZXojGFOQY4TRT/6m4+fSUllOc+sWe4DSQlg9lGMG6XFix39TFKS+OyThId1UATn8SkiZCaJQjjvpHqwD6izIz17/OAZTxf800CcErrp0PuG9qGjv3+gObwTPf3TwPz8zOnjE/E84IeBmBzJKJRt0L3BHiy610QNg07QgbeOOUnV5WQ0s5f+huhpGkOIDbbtFo9/13aZBqQEwGcVCxUTBkXTdyhrmccJ4fKXULTGGM2UAqfhgvOeOQN4a5ssaiRRBptrBwTvMMZKKD2H1ctcDlG0+csN3FpRoJmnmaenR453D0zzREqRy/ksic4qkVJgd3jHNM8YLRELYyRXpLEN2mrcPEGKxATTODNNI23bYQzsuz2n5xeG85nYS+Gphw8fGC6eiOZwOIrHOgbJbYiRcTgTx0Df75iHC17D508fuXt4x/3DO375q99yOOxp2pbLcKI/7LIxZ9A6ofoe7xwv5ye0VWgrkZ3GtJyfTjTKgGnY73pCSKJiFhOzn4GId4HdTomBlfWqrRXlpBTFFxljWu5h4zix2+8Aqafx8nKiayUvwjlPcIHWthjT8O7dB0m+9oHDYc/pdJIaHMjD3mqNhkXpaL/fc9jtiMlzvlyYh4F37z9AnDFGc7mMzJNfVIWUajidXDaCwDaRmH7/dfzfWtZnzGvn14qRb9MktttUntAa1b/ph6uNBPI9TlUIbXVQrzkIW2C02Zit11QShQX4L8Wvqsh5BZ+pwVuRed0A/6u2ppSqcYFablRfGxmlXde9V6Vae9Xu0p3ig68c0otxVBaxTlgUfJb2R4LP96QcZa8j9W+B/i8FQW+tt+T1RRYvdV2zqJ4K6znSK9WiBt55Ym2jFakC/Qtar5F79VqX2ru76r7nfa0f8x5i/kMv4F/u0RnyJr1ON7XOBa5A/3rs/LoC/mUMriMDt43rNa/yerxrAyilt89t6d0q7rmO0yub+qo9m9e6q7XvrPeIbd9rx8E6Hrf7Xk5jTY/6cvCvtjt51Z9XBkmFqX8o+P9i4F+A5uIZrJJHaz382ttda9YXsLwNacqyubBYKTvARg2oGAK1AVKiDUqp5djFaCjHK9sXIF72XbTzCw2mAPDye32jqeVAi8FRDIWaT18bC5fLhUvW4S4GR8lNKCeuTnQuNKI6X6IYVWXM6xoKhfojOQSRYTgzTTN93y8UK+cntEFAe5RiVzonnoWQv3OO4XJBhcjz5cx+J2DMh0TEk7Rn9FIkSUVN21jmOSeWxoiyKnsmtOj4J48LXqguIABfKeHHq4jSLUZF4bknj9WaT08n5git0SQUjTHYEgkikEzEtEoq8WqNvyS8cahGE0gYq4k+EFwCZSBGTDJoNzG9DAyfHe7zifDxjP/s8F4BkpuglUVbQ1QanyK279kd79G6Ic0zw8uJaQ40xjC9vKAUjH4m+sToRnbHFnQipIBTgblxtO871L7F7izq0DAbeZBobUlNh941qFZjuhYsNDsBi8MwgJfkU9tapkGShG3bCZePSWhJuR6MzlJ5RHgZHC4nVScjspuNVrjZg9LoDLojSoInKAlE53tGKSJmG41qDaaxKGOxtqHfHUhJcRlGqajcdhz2e2bnSDFyd3cneUCdAO1xnkkmcegPzNPEPFzoe1m/79vceIs2Fm0cptUcjndcLi/EkFDKEFH0reVyeSb6VqpBh5QpSYHdrsX5mfPLmZg01naEJEbN58+f6fsW22pS9Nwdjjw83PP58yMKtchp3t+/o991PD5+yzg+o5QFozkcdiJFbJTUa1AyVwyavutkDqiRFDyoBmMadKvp+z3ke453EylGQijqYVrAfIzsD0cOdxbvZuYpsD8ecD4Dc62Zx4ndboe1mmkc2O06qeTsZnb7PZfxQtNaTucTXSe1A2IKYlh3LWGQ+3IIBgg0jabv7ui6jvP5TAiB43HPOJ7QWuptrGJ8v3/LynxdA/PXj9MVyN4C7q/BfdnzCo4K6F9pP9eewuVzBewLeLr+e2lxDdRutL54+19REupjXPWzGBA5/X8BTClVPP7qu22/V093AacFoKzv21fZ+pY3tB6rBbxcDfPShhXXrL+x9d6/+aJa5xU4fv150+vq3FzPnWvIdE25WDFLur2Dsut0xc9OVZ5AAWdpg9DX7/L61H9TitGt/XgNCSvgCWtEocyBHMlJOdy0XD1XYFfl46uNAVC1q5oDr/p987q6td4KVOvP5RCyzneD/uv+1r+U8/wWBt60bhnidPXFuvKbvdnY6+sfy/0nFSNNbVauR3DJFLneXr7cGhT5u/rzEl3gzen4ncsPAv5Fk7/W4S9AuvZC1MW2lFILX76uQAtrYapC+yk8/pLUW0B5iS6UdtRVbZVSC8WlFOIqBsc8z0skohynLrpV2lDTcUo/SjvLtufzefm+0ILqSEUB4W9Ri7z3i7pOaWsd8ahrAhQj4VpKtLSttKkcr2jZiwe1X+hDIUtsztNMjIm2aSHGTCNxxCASkOPsuFzOaA1aR2KYCN6hdZGtFFpCBNAaFwPKGhJC8wqpFFnLUp6I5624IrTSqAwsdAJJvkWUYPJc+Pz4JEo32pC0om1aur7j+eWFkHWbtZLCvY21RGNpd5KciJtxLmSlm0QaE3aOzB8vpL/+TPjmjHuKmGBokxHg3LW0u56kFT5C9BpjWxptmIbAOJ7o9nuSc6RoQAk9xbcd0Tmih6gjWmncEAmzI3jP7GaGOBP+8oS3cFEj7hCJe83u7sj+/kB/t+cP/tYv6O/e0+1a+q7Ddi0pBKxtQLmCFIgpYZoG2xp88PmCN7l0sQyxMOQjjy8vFOlXOZc5bE7KXmiZKykrKgA0bSNGYAz5nMmJM0oAqM8KQ9HHfB2Dm2feP0hV2ta2mT/ucT4SGRfq0Dx5Ug/RO47HHc5Hmrbjch6wVtSMQgjM00TbNnz6NPLw7j3TUFSBjpxOLxwOO+4f3nM5j3Q9hBT46kcf+PbbR2aX6LodbYrsjweGceDp5ZnDQXjsD/dHDrsDv/rVrzifL9zf3/Pp8yd2+xYfpYjWB97js7GhlBjXLy8ik3o8HnDzJPUCnEMBMSa6ztKEJiegS5Kz1Ybz5cyu65imMSfWa7xPfPXVV3z89AmtYBouxOCwtqVpW7wGYzv69kDEYyyQPPN8Qeue2Xtm76U42G7P+XyW++XOsDsemSaPVOW1DMOFmBJd1zOOA33TYGzPNEmERe4XRZSgybKukd1uT9f//hbwqiFVUgvEofB0tw/uFUBff7f9HYq/enW0qdrpdmPrLRAW2oF6Df6X/a/fpdLqivOjdAX2l8+ZZrPsQ67yzM4SrfsFk60jE7NAQRJ/TPm2Gqm4abt0X9IvldqKaOiKplI6ISprNSJS2XXA4oUtHVVlXWnk2v+4BTwpVRV4QyQWL3/whOhzLlWuFZQyBYcCa4sBVAFltZgH6xiVJl9PgRrDl7+X77aeXK42lfHQSz/LdxswmhKLh2Zjc9VGmYxPkSkVI6isU8BdQi3nMUdw0rKztf2pgMpC7VqNwjK3EokYQKm4SM7W2RdlLUmiUzKRdDXfUJQK0d9pPXFtdK4G5aIcx4oV1ygVa/+R+fH6+t6C6OUsFrnPYtvAMj/FCFuxydL0ArZf9eG2gXG91O1QmSYr52I1vtcDquUeoZZk9HK0ref+dV3srQEg2Yq5ndcG5xcsP4jqU7zftYZ/CWMXsFsAfwG+XddtOPklOXhRKtCr3CawUGCARRYU2HD6y/q1p7wG2uX7uoJt7aWv6wAUT3pNNboG5LWhUPpa9g8ywXe73QbUj+NY8TPXGgD1jbVEBmraUK0cVNOgSt5DbWwU+VABZDZ7/YflOzlQQ3BeKBvBybsPjONA11rOJ4/zEy44ZjfTNQarE/MwY3tLDA43j8zOoYyVZF2bZTFTBpBG42OkMflGkmRiakBFqbLsc5KyItDaxHlyJER3PAYYx4EYAqYVT7/RIv12OBw4vZzwLuBbR5sUVnf0ux3KKjqVCKHn9PLM6fNnXr75zHCamH/zgvo4cH+CxjdE1aFj5Gil8JVyI0YZkmlBW5I1TD7R7BuSMqI2YA3PpzNd0+DGkfHxkYcP78BobNcxjCfS5NBItGEODh8VxvaM/sx5PPNpcnz+1nH82Xv+zi9+zlc/+5rduwNf/fzHHO72aKPY9Tsao5mGgYQipCCyoD4wuYBum5ygK7S5FJMkASfQVpRsYoLzNIpBDpKcHWWeJ20Wzr7WhqjicrNI+Tw559ffo6jINE2bqWpyc3x+fOL9h6/QUYrGLTU4tAZt2B96JifGj1GWu4eviMlzmifOl1HanNVKxmHg8PAgcx4Yz2fuP7yna1oupwtdrn57f3+HaSzDMOWq0J7+sOPx+RllG372k1/w6dtf52TlnsZa9HEvAH6a+O1vfkPXdlk+tRjgLTFEzpcLje1BKbRu6bqWpjU4F6Q6rpsJPoBJeD/nCOdATIEYJQrX2I62bRjHkfP5xNdff808jzSNxVoxBCY383I+CYUNaNsGbUTBax5Hdvs73OyIKnC+nJjcwH7XoVLkfBmISZJ5Q0oMLy9LNLXkFbl5IiXN5DyTC0sfO9swzxPzaWSeHftdS4gzITqatmF2kpDdNBKB0er32edPBmcZxi7AscofovYcXifMlh1sd1g/bIv389WS1u+vd5dqwL8gp9VHu3j+r4EfBZhko0GrXOhq3dG27Rn8J/HyFw//8mv13Cs1CzceUlWudDmCVmtfCiCrxTJe6e2zAtzrKIiqQPby/cZjXrVRXY3hFfBdnrtZ7jgmcVSt0skVmMwAqyAopYpNVf1eD/sy5tUZujLWrtdf27qcrWXXuhh8rMff7CMVUy8D0qvfCp5NWblonRXrtora6M3GQBmHTWPrCVbPi1gZxwURV5O2qEOlYmCsxspiuKT1eS/zOV0N2bVh893LLY+/fJ+W4MJ2/m56+3p/mzP6ukmU4ywT8cZO3gD9bx9ze/Tl88Zbf3WO1LpFbYBfH22JirC9xrfUQHKEqZ4nX758MfAvXuYCost3pTEFYJdE2UIBqkFtAbZ9328oM9fFugptpnS2eP7rYl5FprJIchZveWmLUmSwuyoE1Rz8um3lOMVr75yj67oNSK/3UdNzyvflZBUjojZqQghLQjRsrdySiHttXNT9LuNX2j/PM/v9noeHB6Zpym0XHfGU4PHxkb7vOR6P+BBz0SBJSCV4/DzjZhnjpBLDNDDNE7ObsUbjXSD4yMFaXHSE6LkMF6GJhIS1StRgYiITumUCaiN2bCqek7Q8YIwqj7SEVhGtEzplecsEl/PAOA6og0UpT0ozWnf0dsc0TrnqaDaOlMLsulwKPLK7a+gfHji++4qm+4a//tNf8fnxM/rREWfDvbH0CdzzEydg1zYSJQqROcGUFMevvuLD/VHkYZuES4l/8Sd/QtPu6I53jJ+/5Xz+ROcuGAXnEDhfBqZpRBuD0kZ095ViwjOEgY8vF2Zj+cUf/YK/9e/8bT784qvF47879DStpW0a+q6VyMHsiTExzTMJxTw7fAzc7x9QukEr8dqP01nk7VK+0QCjdzy+PINWtE2DxhCDB20Rrufq2QRJ/BznidY2zIvCliSeai3yml0rnPKiSS6hSMln8THR9HvGYWQYR7rekFTIz5Os5KSkKnGKcPfuA998/C0xTSK7GQIvz8/sdzuslfXcPGO1pe1a7o57vvn2W6zTfPrmt+z399zfv2N2M/McUabDGMXL6SU/3MDNE+8+vOdXv/2W9+/eY03DcL7QNC3WVpGx88T9/YG+6fjqw9cYa0XiU0kV3GF4Ydf3aI14xOc1mij3JQHURhdhgpnj8YBS4J3L1Y/hYA/53pQjGzlXyTQtw+RAaRpjOD1+pulaul0HWpJw5X6QlmRq7yNN2+bE9yJ8IFW1+67jdB4kt8NYettishSwtYqmadntjozjQJhFTez+/h5Syom/cl07//vL8V8pDKoCWG8U47nx+dZ3K+Dfrifgo3qAVw/s5VMGTq+OUJyPq5N064Es32eA85oTvQXzBRqkxW0tj/qYrter+1gOlL2grLSD8lM9HrcoPtwAHtdjtcHEVVsW20ettNylXWyNM9LbtJ7X363HrYH8q0Z833ID6NfLCmzTpq3X86XcD1n6lbbr5n6o3PkVBKb1vTIEl++v50C6Av+bt3zM5eerfRZP+Ab0p63X+6rva1tWI2Sz/yW/rEb7xTD+nsGt+/UDlpsEv2rcX1OH3gDMm31W7Xn16bqPr7d847J91erNNzfvT7lf6ZZT47vHczMvv3PN7fLFwL94rOsbVQG4BRDXtJfaei/Um5o+U29fFGpqrn3xhteGBaw8/+LtLserP6ckmuVCZ1GApmnsJmG3Lna1FMFKaxtSknyAosFf1i1joLVeHuRFCvR6Mtf0owLY6zyJ4mUp1KZyzALyy1iUqEGJTux2u+VzOU7XdVwuF6xt+NGPfsTlcpFKwG3L5TKSoqdtG9w8k0KgyXQE5z3BeVJIQmVBFGA8ChdFI36YIz6Il1FuAAHJDVXE4DFY4ZWLsKeEvLTCEYlKo1MQT0LRnE5CMfFTJKCwrRQW++3nJ376XjjhXdOgkHyIbrfPdCVDCIpAom8tqJxHooxIGj609Npwtz9wF/f8xX/5J0yXgdN4JvgEs+M0XbgYRd/sMBgG7/AK3PDCuNvjvOc0j7zMI48vT/zow9fEz4ZhvDC5gTGKNr857JlJhNaQkiZOHh8Cp/nCKc1MOvL+/TuOP/ua93/3J7z76T1dZ9FGDDqrDY2xNLZBaUNEKFZ+lmJSyoh8p2mE255SyNdJkiRhFaUYijbEqHg5jbycz2B7oh9RRNAWH4IYfFqkQV1wS8K01gZJQAVItK0mOoduOtAJT0QbTYgR5x3Hu3fcPbxj9jNtoxmnieP9HQno+k4Mx0ZkZs/DmZiEp7+/ewdas+/3TPPAru8Z1IyPivNloO0t+92eh4d7Pn7zDcYofv3bE0Y3jFOuOyDippjWkBKczwP3D/eoFAnO0/c7QgwM48j9w71UyU1gmp7ZC/g+3t3z/PyZu3d3UnDrcIexDY+Pz3RdQwqRxmms0pxfXtjtd1LXIimaZic1CUyL0NcarDXcP9xxPj1zPj2jdUPfHVBaJHNDDBhrscpk+dMOYxuGyUl15bYlhchuvyMlhxsHUlTsjwemcSREyc2JztN2DY1RDEFkObuuJyWNbXfEFNntO/quwSiJKgzjick5YmqzylGz0HuMaZinka6VROJxnDBWDNff16UkqBYazPXyfYD/1rL1zl1/f/uhWmh0i6dYry7j4rFdEwJXSl3BXwX8L3hx/ZkVctacd1ZQUWoDJKmEfr0sktda6uuUAxTDYwM4C2BUEnW9puvWHv8C5t8e1hUgLgA9Sv/L92WtutkSvVwj66uDUN4X+sum3bcOvz3O77rUxxJa1RrtvwX6y+u18SaLWrzVr2fsSl+50eYM3MvYlHFKlcNw6fcytvV8KdZKQqhekAtKkJCClDLNzJWxcfU51fMwouJqfBaj7ruutXL9XJ+X9APO12b/ab1migGd1KqHdC2u8ta+VLGFXi2vz8fK1f/dlnpuvPm5XP2qOp83DPvX38mF/dZ97LuWLwb+l8tlAbmSNLYq48zzzG63e0VVKaFDYJHJLB51WDXny0CUbfu+53Q6kVLagPCaQw8sybxlnZVW4xcAaq3B+7iExmuvee2RBwH+TSPylSWysXCuqgTk0s6SWLul3MRXhkk5bjEwainPOtm39K0coxhPpW91dKKc7FpatIxDGS+fOedunrDWCMe3UG/8LIBJN8whYY3FtC3EgJs8WjV4FzGqJG0HKVqVlCQMK4XVWXkozDRWxh3Tk1KhNiW0Fm9/RGVauqi9CCUlkpSM7WX0/Pmvf8u/+2/8IaSE81JhtNeKvu8yN1TlcxkIMWH7Fh0s0c20pYJlY7k0iR//4T3h259yih+ZP164zE7q+HY7mrbBmgblI/ssmeqeXhg+foNDcTaK5+SZLZz9yDxKVdX3737Ofb+DFGn7lj843mG6Dmg5v4yczxfO88AFB4eWdN+w+8V7dj+6p7/r6XY9pm2F3pRidfGrbAxOhDChVCIkz+xGmtZgDTgfUHiCn1Aq4MKE1haThPbz24+PDM6x7w5ghPYl8yODppRw3kNM+ChVkJvWMOcog85SEaUKaFIaFwJNydeJibbtmKYZtKJphA8fA3Rdj0oRFTVGWSY/0e96fHB89dVXTOMFN56k8JXtGEbxinf9nm63JxFQSvJoxnGm7VuOD+9wLtA2DbOX6/lyPqONJQRP37dchjONMjRNz+n0jO0M4fTE4e5B+h1zDk/ypKAYxgmVvew+RubhjG8sKXrOp4mf/sFPmecJdGKaR5IK2CYnvmrFfn/A2hbnJScB4NOnzzSNQWtL1/e4INFCub8Uh8WqkDLPM0ab5fo87Pc8Pz3S9UXxa2KeHEX5x2Qecdta5kL1yg9xozW2adBaMVwukCLPLycO+wMplSisiPf5kFDaYpuG3W7H+eXEaThzvLtHKVFpMuYHlXX5m13SCjauftg8TMvyQ8D/9WHK91tgcyuykMHUq2OtCEWRVkr/NeDIOGq7+eplFsCX21SFCha8tzR2bd/itdfqajxYEFKqjrHx8i9teWscrzydpT154LbnRjq8BSur4VOMibT0pzYe8juvQWPt7d+M2g8APrcAa+01vu53DfBfefXfaFHp2+8KzK6jKGV8N3PjOwB0Kv+pqs5BSss0yjPzapu8blo9/MtYLfOtOvnlGrnhha9Hpe7/24b2dwP29Zyt6y2X1Y3z8qaXfx2ArSH5HbeL1+B/6dnbGwFv3Y+uDQBYgXy5Nuq+bI9Z/769X/2Q5Yvv9PM8L9z+Akxr0K7UmpB66yQUwF147/XFBCz7894zDMPiRS/egOIVL/SiEjmoDZCynxgTl8uUjQJy8R29gORaj79QZbTWaGUWr3YthVmOWecG1AXESuSigH6l1oRmWCMbsEYs+r5fxrX0teQflJNbGznFqCkRieLduVwuHA6HzfELfSpKti3WGsbpwq4X4OndJMBEaYxSi0pMDAmSJFalfMyuMZyHGZJU4cu1auUYuVJvVHKTNlo8/TEl0XxOidbkfieVqYWakKMwCkgxiBSntfzpX/6SOfyjXOFWdJxj8LRNQ+qEGuajYZxmdOvo246mE2AX/YxCYZVi17f4w4UPP3tHP0Rif6QbFb1P7ExLaySPwbSSdKxiBKWZtcd70fh/vFz4dDnxYX/gw+7IrmvZ3+3prCHMM0YrYnQ4nxhmUSiKNnJ2E46Z9thx+Nk72p8caR8kedd0jRgdVoo0BecJSmOUyEjOs5cIE4lxdoSU2LWN6Fk7tyS/KaQIFMkQE4wu8me/+g1oI6A2e5O0hhBkDhqtpYqwkrSixtgFn2ilsLYRao4OUjzONoQkc96aFoXCh4lpHmi7HS8vJ/q+5+Hrd3z8dIGUaNq9jKN3aKvY9Ucu52ceP38EEnd371CmFWnKvsM0QlGLMXLoDwzTxIevv+bT548cNMToGCfY9we8m6Rgm5eI1cP7d8ze8fL5iR9/9RN+8tMf8+tvfsXkLjw/P7Lf3zHOM8FPwnfvWlJMTNMsNDUS+92O8+Ukx98fuJxP7HZ7Uop472g7oSFFJxGDrusgJcbxjNYHqZHRtkzzKA9BFCF6TDQ5aldojWlR2TLaYJuGx8+faLuOgeywwNA2htFMpBBIKaJVmxWQ0gL6JYoI0+RpW01wM5d5Fg9vgvu7O6Zp5u54T8wG2+wkn0Ybi9KGT58f2XUdTdfycnqW+7qfmaff38q9xQMpHv+UccfrB+hmffmF9Ukv398Cs9uH6brPDSDJYF8V/mJ+bXBwXk3wc8pKXPn3N72MaukTGXgVKs8K9lbXZqqSe8vxyzG3rwLxNl2V79RKY10prVeJy9W4yKHe8H5+n5e1OM9UNTZ196uIQdXC9V91nteaBGuSa/Ge1wYEV0bDesqvvc9VOzff1xQltaxbVlu3S8t8qTuVzZ718/X8LKe7ig7VhtJ3G7HXBtbVsTcGYWlrbaToV4bMalG8td8bS4XfVLX/2o9dIkdiN1wdU610Mq3Ucq3EVCJM6wgWQ+WtS+j6Gry1LONYDPAKdN8yhPKqX+bvX2ySxPZ0XRvWb++tGIv1HLueb9c9/J2MSn4A8C/e6QKea169927h6xd+fO0JLw0s1JeiblM+lwda4f4XL7xSaqHbAItiT514WzznNfCHQIxapBNTWkCwUopxHJf8gAKyl6rCJmvFpxWgKyXUjCWMmg2Acqy6bkDxyhfvfzFKyhgU7n7pWwH2dS2BlCRRuCQsFxpP8eLX+6sjIvM8L1KgxbPYtiJ3GGOmR80Ou+uJMxJG9Z55dhjTEH0Q76LRjISsuiPKIylGUXhBONwpJnzw9M0OTKJJMVeGFSlJUiLkbTRCjQEyVzwBBpMfmkZrTPIYa/j1r3/LefLsjx0uzDg34L0ojzTW5nyAgHOBaZppe482LUElkfz0ARsVfbvDHWbmn87okDinJ/w3g0hBJk+nLV3X0PQKnWT+YAwKgzYNQcPPNJzPE/u2FZBMKRYFKVqCd8yXiXmcGUfPPDmehxOP7kz68ZH+5+/p/uBI89UO3bdo20iBpibTnWJgGl2OBDV455kGh3cJHyLOeYxpaUwvCkIeiAYwpOgJXh7aPmk+ni/85TffYNt20ej3YabchJSSZL2YVsDUNFa89ylrz+cogTUWpbXQuChGgWG3a0nJobTQRZq253R+4fHpMyE6TNODtUQS7796z+ePHzHaoGLgeHfgMsp8vFwGPjzcc76c2e97ZhfouwPn84A2ivP5ieOhZyqyniim4Dke9oQoHu1d33E+n9DGgko8nT7zcnlmnCc+fPU1T58/8vLyzP5wR3t3wOcqxhJ17PEx8nB3h9YK72d2Tc5P0mKE9d0BelELijk6Mk2S/N40QtFpu5YS2drt98yzZ5xG+lzNd3WOBJzzmYYnBvk0XmgagzWapimRPeHzz9NI08i91c0XurYDlYULSBwOB7RqcC6C8rkonyXFyDRKAvTd8Y4YI5fLQLvb0TQt0zyJCom2TJNHIapNbdfR5ohjua/9Xi5VESqVysPUvPEgvQWMrh+Oa7QNXj9At55/NkC/cH2E370CmyKNWaNvUZnJgCjdACaZg192IgCpUDoqALrZcHWcaFV01Erqbm5i5dfduGER50sZthr4K710JzekBsw1APou4LlduwC4xclwteW147Xeuty3tJJChyzr5sYtYxSvfluNgeVYqQCpa+BUH/H1Ntttr8FYDaavx2OFqeu8uIaR6tZb1bbvmtu3z0Hd7xosprTOZaUKAFd57BQp6bxB7mza7OBmE5beLMZcbcrIhyIYULMXFocwLGA/Va8FKKcKBCs29LZl3c13+Tq7AYY3hlT575XR97uB6OUK2+xzfS/3me/3ylfynNWqWyPzhnHyO4D/H5TcW3utV/AZ0LpU4hRefgGqxTgo4Lic9JLQWm465VWAfHlAFv57nQxbKD8FyPd9v6hcFE+8GAwNMa6VeAvoLlGCAradc/R9L4Dce1yIiye/FOuqk5mBBWDXmvslIbl45sdx3CT91sZMiTqUNjnnForTNE3LA7hQp0rkofxd1ye4HqNiMKzJ0Q3ONpAS4+VCaw1unnFeKrj6IIBFaYNSCZ2UhJdVQkqJBZx32UAJ6ABJSUKvcxGlNEYljMnWeQhYvXqnjLEi95kSXvyOcgWrRFJCMUIFtDV883zir3/1a77+139BUprRzzRuxrYt2hisDaL2kCDOnnkcMdkLZZTFp8QYHNpA07ccvrpj9DBcJlSMuMeBODps0NgpSYJoowiNxu6P6H4P3Q6tNP585uFDB42l6Xb4yZFmh396YfAjwQeGaeR0uXCZHCc38ylN8NN7vvp7P6f78R32rqXpG5JOKBPFKxsSAS8VXZuGnbFEBdN4wWe5RecD0Uf6pqMxrXi5MzD0KeKjQ6fEnCRC8ed//UtO40y/P+CDUKwa0+DcDMiDM2S9/RACqjGZ6599KUaMCZXBr8pzDSOSmzEETllWtWl2NM1AQDzXzkPb3aGN5nx6kj6iaJsORaDf7bicJnQUbvn59FG80TERXOT09ES72wMKm6QYltEKN0eUbnLirwajeP/uPefzE9N04eH+vczJ/U6uz5SIPjBeJqzuSCowO8fdUXN+fkHv9jRtQ0gGEwCVMLbhNA60Xc84nel2PT4F/DjS73cidxsT+0PP5XLh/t17gvcQIo1t8/U2o5JjyNr4u1Y4832/Y54kSlGimSkFhuHCu/t3xJgYp5lxyMXUUDS25+GdIcRJojvB4xzEJPUfXIi0jWWaziglAgoP9+9BRVzwnE4jykTSRShQ+/4gBvquR6cohouy7FpRIprdxDwGdvs9logJv88e/+9fbj9XMwBW29/rB3N54C8gnwLy0rqO4vUBln0ISCmUn7JqBceq5ggCXsBCIoPa1bW39e7dfqBv4KOqE3Sr3xaUWvWjMnS27+t2K/avt6valKoVvwP3r6Nx1a7F0LkGrK/7mMq+XhlmWwB8+7ft5/qcyt91x9Zz8F1UkdLsGvxvqSY31q/6c/1JvM/52BuwV/ZXbaWu21fPles25nm2MWBvJ79uGpoH/fuA5A3zBagjQnWuy20qTgH/XJ3b2qBYvlmMgNdRinqe3JqPr8bwCpxLaxPFKfZ9/f2uZWtIrr15a7+3x/nauFtrjVwf43cxVOAHJvcW0FpLTxaAGcKqX1+oN9eyljVvvQDUcRwXxZuyz/Jb0dcvSzEi6sJWpYAWsHjLoXjsWeoMFI96Aed1f2rt/pBWHn2dU1BuruM4LuC8tLUkCteSpQXoN02zyYmolYHGcdwUAatzFUobSmSi7LfW8K85/U3TMAzD0t4SjfA5sbGxDcFavHNMw0AMHtvtmAgkK55+mWJkQyWIqkuu4KtEgF8Sx7L3UStI3tM1rSiItC2kMg9kfDtjcCEQtCKgCSkRyfQeIioFMQe0wbmBf/Ev/pK//4ufs++lsuw8z3Stx5hC8cpzKAW8c8xG0Si10M7Qov5jGksbO9KPoI0B0xnCrwzu88T5EtBJMV9EoWinW7pGY+4sqrFoLOP8jOkM3itmE1BdS/SeOUXOMZA0PPnAZZp50YHTg8a+e8f7v/Uj9Fc71F1D7C3eiPDRcm3EyBw8MSWOXYdSmnGcljkVScyzQxmp6Dr7WaJnXgqmFfoYGGwIvFwu/PGf/hkpzzEBEyl7SETKTWsj4D7v36hCfzNobSBF4aMnnaMb4mkLOaLUNA3G2qxOI57k/d1xkax0fmKaxAFwPOxzQrxhdDNN39LsOmIIuJC4e/ee59M5R7Uc+/0eFwIPDw9cTs8YY4lJYW2PMZrzcML7wPt3X/H58yNaG9pOill5H1A60WXJ0eAVRKGGuSlwPBzYdR0/+vqDqOr4HLEiSn7APBKDI8QeYyyXy0DTeO4OB4mUZU+iFHsLjMNJaGcEQpxpGss4zkyD3A+7tmOePUpZ3Ow5HO74+PFjphr1jOOFJiuR+RCxOfKo8v2zeC5t03EZX2gbcYD4IAZe0/aEHMkxRpNiRKnEMI6gNcfjgbbvmcaRBEzzSNd3uHkiBAdEXi5P+OQxyaK0pe8ahstFFLW+9On2r8hSh9i/Y61l3ZSuw+xXlsKr/a0KQ1dfL2+LnH4Fphb6joKkhGZIDf7z+tl/SaGBFOAj/RJPvzYie1zAcc3nXnaUG6OWXBMW6VCl1Hrs3+n812NQGT5Vb2osdA3e6qjGa1rV2qfyr17q7eqxLe/rvXK7Td3Wa5Bfg9Lt+foeIHxrAmx+X+obv56TSm049bf6VGOnuh/X/bpub6q+q0F3cUZe93Gz36sur57r14bjrSWlVS30u6hLb3mxWeZ+XieJjK24tr5MwvL6uMv8v+4bt6lE9Ty+/v77lu+/96zLYqjdMGTf8uh/pxH3PcsPAv41+BQQKwBPgL5aKuGO47jhxxfgWyZdMRbKxKsv0AKQgQ2lqK4SXMByvc8CzkvhKqVWac0iA1poMkVKtADrQr+p6wOUNtS5BsUIKe3v+35pe9muVtspf5e21MnMIQR2u91iHBRjoBgT1tpFUrS+OK/lSUvUoNCipmkiRkmUlLHSTFHGY7fb8fj5o8gUdg3Pp2cAuq5jejkJHy+JgRWSEn64tjgX8CFBrhJr83rWCpA3jcY6m1VDjHhsyw01X7CgsEqKHykFMQZaIwm5k4fgAkYb/ts/+VP+o//wH9LtepTTNE0geJcBrEZbLcVdgsfPE5pENPlKThG0JgYnD06t0I1h/+MjIx6zs/Docb8583R27CI0QcE4Mc0f4ekRezhCv8OrSHSO4elEm2+SsxtJ08TsRh4vz6QGLgcwX9/x1c/ewUNLOjSYQ4tpDVFLZKNpO4l8xIhS4IJHGyPUGKXxk2cYJmYfJInXCOUIpYhJAL8PgbFUsY6iaz1Pnn/562/59eML2rbL9WRUzqcoeSEpogI0XUdMIo1qVK7sayUnRjz/SgzAkqeRr5Wu67Bdz25/ZJw9H+7e42bJsbicXogkut2R1u6wtmEYLoSouDu8RyuLbRVGNYzTZfFUjePIPE+SuB080+VCCpHLMNHtDCmADp7ONtimzc7PFaz4GOl3e9quYbw8o7XhcHek6Xq+/fVv0bbhcj6zazv8NOFCYJodSSnu7h/w0wwx0hrDMFz40dc/wjuHd+NyTfqQJTyNIRmDdzP7XY/tLM/PL/z4Rz9mYsJYi0kmKwutUc1yHwBFDBHQOB/QJuBCQFvLMA4YjVQjHhXdbo+bnRhkgNGGaZ4xpoEE3gUOhx3T5DDW8PLyTNfvQNucrxBompaUIsM40LQWHxzeO4zJxf9CQC8yjzl/y5ilyM/v63ILMNz2zq5g9Hq7W0Cg7Os7H7CZB/PamFjhbSmEdQ0LUto+0DdgS2c6TmID/guoWd7VCh7r+jA1Vac+nhyuGBiJtYqV9MdofdXMK8PjC5fFGKlGozgfNqPzpl2Rcju3466ojLHlbxYD6i2AXD7XoJZqX8tR35w7N1p4BYhvebDL59fmThlXtZkbb1FPaqPj2ph5C/TX3y3byh/fCYxvjd22r7euhS8D/beW63PweuzYfFb1wACqVB8uj/vvOdb138uLdS5dbfVqTtwC/svfNwH39t7zfdfUrehUfdbejlCt3/0uBsAPKuBVQGih2Ii3W1RahA6zJt0Cm0q5BfDGGBd6Tq2qUyacc24phlW88qVTJWG2vIBFI78G3YX6U9pdgH0xDkpybzlGrbJTRxjKA7z0NaW1enFJdC6AvXhGgeU4JTJRU5GApWgXsHj0yz6L/GdNXSpGS1FFKmMLYnzUdQVKf0tORvCOru+Zx5GmbVCKnEjqQCt2TUcoVW8XQ0VjjSEhsmYJQMuzL8YgniOtCG5GWcPs5T3mMUUJw1QbTdRSuddgcF7TtRaIef8RrMFF8Wg0bcOf/+Yb/uRf/Bnv/v0/QiepZutmJ5VnYfF0CdffZSk6gzZK8gtyUmUMQTTRtSHZlvDhntCN2EOgueuIzyPz5AiXSJwTNnqarsGFkWZOOJUYZ48hcR5HvJ/x88g0DwxphvsGddfSHA40Xx9QB4momF2DaSxKJ5yfscbStB0+RlHPyQ85pXWOcsy4aWKeJ8ZpxvkIymT+OiKrGQM+XyeiRR+Yw8TnMfBf/vd/iouJQyN8cuGka0LM+S4p5esscZlGybvQmhSCeBhSygpDlqgVLgXaphe6XnXtNEoRU+R4fKCxDd5rzqcB7x2H4wFrWi7nGT8HUtIYY+majhhmUgyYpoHoGIaBEKDre5TSnE5niXhNLnPRZ3xMOVnbcHx3z2Wa0dqiteJd/4HnlydiUlyGgZDEOL1ME8e7jmn2HI/3JBKzd+LNvkgk7O7hHc57YgBJkJRchzkbin3XMeEZx5n9oaPvOsZp4vHzk1S57XpIivP5wt39A5fLRNvuc6J3rtex2zHPEyE6QhB9f+clT0CHgHMzMYFtG1zwGA3Ozbz/8IHzSZTT9rsjbjpjjSLEAElhjcV2HSTJb0mJXKQvSbRilPyDGAIuTbRdx93DA24eCd7z9PTI8XigCYr5MqKXwkgyH4SauEoW/74tWzBwvQi4Ei/9W9u9Nhqu+d4bJHAFaG/to4DW2jP5ummpgoCrl3JJWMwAfYP+qqPWXn6d5TxFiEK9YYiQwxV5jqu07GdZN6OZJaEx3Tz0m8tyvFfgfmsAcAPUlZGQn1NlpFRtr491tdkWyl4DpGJErL+nCkxf013qba/XKQNStr9e77pfb31OqM24LyNUf2a1+RbwVp+vq7+X9tTn7pXRmjWFrgyU4ngp866Ocl2PyTroNwyAtXfVSXq9o/WaXE/01fRZR0rV26zXu0K8/Mt3qayvKuMmG9DZKbl+KzsphuQC/Ddzvd7H9n5xC/hLG9Jyzax3ATaf1nlzDeBfjVJF6qnH7ruB/C1D6kuXH6TfVtNwCvB0Lixe9q7rNqC3eCSuQ0rDMCw0nSWxVq2qOcWzXdOD5FhbUF7XAag967VRUJaaHw9SCbN4/Qu4XpOV/bL/lBLn83kB5oU6VNpa6EM1D7+A91ras1CCykO2HCOlVZKzVDQuRlCRHPVePMS2bbhcLouBUUuZlsTgMgbFEIoxAAptLTFJ8u3lZeR4d8+URs7hE/iJptGYWTE58T5ao6QoVZBiW8oHWm1Akb2KlpACmh4fPG0jnkQAFwNBiYdfZfPcIoozMYrOolaelHXkjUooDabRnCb4L/7ZH/Pv/Z0/pDnaxbufimKSBmWL6o8nRYvCkEIi+LAUjpILPEGraAzsTIfftXAfifcjDA1xnIknRzhH0hiZ/YiZEy5e8FrRdEcpfpYuDGnAdRP6Q0ez6zGHFrXvCceG2InHrelabGPX/BekcrWqnuulkqJWokfvpgvzfGEcL4zjTEpCDbNagRJN64RUsHQpEKPQPkYX+H/9yz/nV98+orQBLRV/ExGfAiSNznQQMQREklKrVe/YGEsMEZM0Nkliq7EiTQlSsl0bg/Owx3Lo9+z7lq4x2Rve40MAZXh3d+Q34ye63Z7H5wvv7u4ZpwGrIikEolGM0xkXI113QJuGzu7QVqrcKpWwXYNFEm9PGdyPzhNi5OV05kdf/5inp48Y3dB1ltPlRNcfOV/EyBvHgb7do9qGbtfz+PhIVHB8dw9xjcr5acIaQ0yJh/fvmaZZCm9Njt2uYw4wTAMhyj1ut++FGmEM4xwJ0XK+DOy6Hc55gkq5im7PNA6E5IjREWJD9In7dx94eT6hrOXh7oBza9VdlSKnaeR8GVHGgNKyjzDjXML7wLt373k5vXDXyL2qbVopINZoGtPy+PSMi4ndYc88XEQ2tpGE7eA9bW/Rz4r9bsc0jsx+xCaLbVqcjxjboL0kPv++LjVlYAXZCSiF7Mp3WwWN73sYqgUBVN7Pepvsxb2lZpMWAFLA/wrIavBZ3tQCLxKJyGISJF1anm8UJXl4fZjLM6J5Bf5qsL0cUasVUFcGzKqqsyXOFNtjiQx86VIDqvy+qLhUz951/aqNFbBcYE+q3hOvvLpF3lNesfpczp0kyZf9p80gfJnn9RocK/XaMw6vgX59nmqwDhU1RtXn+LVRIy+hs6ikUDrnxKXsMFIp198Sb5yKmqRjBrGrEbDIx97oX23lleTe9V2/GlOJHhTwn9Z5Qp5HFYJ+DVPLebp9PtZk1a31J9f61dyqxz+3tfydNu9L97KjsDo3y3GlD4sRntYZkvJa19fN1WDmdrCOzZUBttLH65P71hx8bczejATcMsBy/36Itx9+APC/lpUsg1kAbwGj4ziulIMMdJ1zC2WmVp6p91tAfaHP1J0p74UGVIpcFc99TX8ZxxGl1KKqU4yUuthVPUiFXlO868VAKMevE5ULeI8xMgwDu93ulZpPSdot1KhiAJSxqE9WMUJqI6CoGxVDoBhAjVKcz2fxoueoSQH35aLy3i9jU/avtWEYRtrGotCibONnUgroCBbNZXaIrGKAmIQC0nQklBT4ipL1H0MQWcgU85gaiAqjJTlUq5CvASU3qig67CiRkEzaMM8iVZcQw8JYQ1TCy/c+YlvLf/Onf84f/w9/zX/wb/3rtAfL7B1mGuj6HrRoBLWNgN1CbWrbFpUpKkqBsaVKsvDAG5uwRkOXcI3C9Ro1t5ijJ5xH5suIGx0MnuQiurHYRjwabheYoiLZA/bQoXct9rAjWqH0KBJW6Q2tLSZJHiVHQJQC5QMpRzf6pkPl62ScZi7DiI9RIhiZbuODhyRJq8FF/BwIs3ik/+zziX/+P/wFDkVjxGtrjcbHIIaGVkQfMjZKqAh922KUYvYeUNl4EtlPUe+xSEQFlBL+v/D4NTEFSQZ99Dy8N7x79yFH5zrOlxMvp0fAcxme0Tpl4y4xTpOAz5QwpqW3Bq1spqJZlILZTfz0Jz/l0+eP7PYHhvNAZ3uwhncf3nN6eYGkCMERgtyDzpcz3jmGy7D0M6SEV25JeLdZCSrkSEiMQkl89+49Es27cD4PmKZl8p674x2XYaBtLCF6pmnNc9HoRSxgv9sTo2OeHftdh1aKw+GO5+dntFYklbi7u6Nte8ZpZJ7GrE4WgQjJS9RtClgNh/0eXZL9dcS2DX4YCT5iTEuIYgBcLgNuDiiM1CTQCoXcq96/f2CaZ9pWnBDTPEGcJR8nCd3Mu4DSmt1+T4mc9V1H24qyz+V8/tLHwd/4cu3xL17EFZxtvZpveWBvL9VDc/FOquULpVbgqDa/p3qj13utwNYKsmuQk0FDBm1p8QKv4LI0XSu1ROuul42HOS3449qtmQFoAf9L79b2pLWFP2SpQb/anqC1n28ty1Bs11F5zGruO/XnZeP1VUDkbarKdwGvGvBvP1///l0e1g2d5GochCn2xpwsOCe3UZXP2dEl3au8yMu+iwxl2WllO121/aq3VV+26lGvjJwyP5e5Sn1EeGXI1HPx+85HaUtp9+r1L8ZSMVA1EEubszFQf153mZYd1IbzxlguB6ivy5SyIVP1rOwDNt+nupupBubrdus+rufrdow294LNuG0//1Dv//ctP7hiy1LltiomVeQ5C0AugLz8ndKqx1+Wwk+v6Tx1B0onije+bF/2VQyKOoG2eMwLOK+5/kqpTUJw8ZCXfRewUKrsFnoNsGl7oRLtdrvlZlAAfu29L5GHYRg2qj01xafQjAq4r6v2lpyDQpsaR0nUM1b01+u+1VEYpdRm/IsBJvkFwpVvdw3D+ELf9Oxty7NzYlHHBDFk/qdCGQs6EqNGG4sPY27rmiTTWJMNCke32xGDo9GahMEosE2L0gnvwDuHtQ1uTqDFm2yMobOKMEiVYE3kHBP/5//iv+Zv/ezH2LZBii5pjDNoLfKGUpW1kWJeJdcDLXz2hEhS6pRVVcQ4S1HSgoxtsb3B90n48g97gnOYoEkBog8yFJmeEwDbmlx5V6MMKGMwWnjX4tFXwtctN5eURAbVipEbQxBvVCk0Rj5ODEzDzOyiFN7SCtVIsl9ySbzls2MeRtw8MXvHx/PEf/7f/n94mj0qF4NKKWXpu/wARi0Py+gz1UapHEFIkATIGtPkvAspdhflIiRlPn2Mgba12MbgfGB/ONA0HS8vLznaJJ5kkJvTfr9jGC+cT08EJ0moMUpOjW0MaM1uv6NpLVpZPn76lg/v3/HycsK5yH3T4p3jPIz0u55vf/NbnPfcPzwwzRemaWC337Hb7zGzJCNH5zkcjlLfwWiUTlwuJ6bJ0fX7PM5yvT/cf41tWol+5QfbYdcLjSJB3+/QBLRuCN6jFRwPB4ZpoGk0XS91MPquY7icSMnSdj3Ozex2QpG6jANdt8M5UWeap0Eq/qbAPDqmyXF/90BKGudGicxNQhu0rRitzounbNf27PodwzDkCJ8iRlHDsrYlxIhtWyn+5mdUTHz14x/z6ekx1z/wpBjY748cj3vGaURbqQfRmpbPT498+PAV4zRJAb9/BZfvonHUyw8Jha8bwfcB/Fvt+T74vEKQFTUptsCkBi58R9u/r98s+7kGHD/cU3gdXyg5N6XhhX7Bm0BkBZcx5yrd8txvwGiWiE6pVK+tKtreeJUxue2dv9Gi7wH99T6uwX15Btc5FwvI3GyzDBjUqLH6tAGhV57c+vg1K6D+/brt9e+3+ry+qzfH8q2xfT1G1/PrNRi9Zfh8n7Gu8nVRqHFKKYottGDFG8f87uNugfWybv5p0zd13autyf9Dl1vGojSkvL02MG+B/3q+ftd5fmv5YuBfc+ILsCwc9gJi64TZOim1puvUDS40lQLcllB8phHVYLp4s+sJUtcIKJ7WcvyyffGIK7VSd+Z5XhKFazrQbrfDh4BWa07CteZ+afecEy1LG4CFblRHAgrorsehnuh1dKFWJyrflVoHKCUSkDkc3zQNLy8vm7yLesxlbOPS113f4+aZrmtRJnF+eUGZhEGhy6SLEVLMk084/3PmJ/sgibPFS10eADEKjx0U1nQEEtZqfJTkQ4whkTCNhWmiaWy21GPmrIJtDHqKWGsI80Tf9Pzxn/+K/+yf/zf87/7X/wRrFD5omhiJXmhBnkiK0LRixM3zjG0aVD5nRusMApucqBDwWqMSWNtgY8LHTCHC5vLwQudwUSRDCaVAjFQdto1ZPB4heokBJnJOsexbzoWoHhGTcPWz16RQOVTJnwg+K6rMkjxNVunICX8h5zd453DziHcjL8OFf/bf/Ut+9fmRpBRtY4SrHSCFuHjISh0FqzXGWnyKTHOQgmnGLLKdxlp0FAMpJsk9sNbkmguKtuvEaN11KC1GzPPLM7vdXq4Nbdh1O56eHgkBgodpdJic1Nx3PdYqzucTKYd+z+dnLpeJruvZ9T2fHx/Z748c9necTieUMXz14x/z8vSZl6dnPnz1Iz5++5G+a+g6Q9s2PJ+eUCnS6JZ393c8PZ8wtuXT50/c3x9FL38WgyDMI8ZqqQj+MuI/f6btmuWaub/b8/z8TN/2BBfFQAoJ20j9htnPxOSZZk+/U7Sdpm0tij2oUlwrJxQqqWT8+PjIT378B4xGM80jWiti8DS2oWst8zSz2/d4F7m7O5JUrvIdYRhGDsc7YgDvPL/5zW+xViIwKgOH3W7PNE5oK7kxw3Ai+oC1DSmRq1vLdeCCRETO52HJZzjsDgTv2fe77LhoF0WzfxWX/1+C/uJFVRvQL79UR+Q1JFjbUhShVgB3ey8r7l9h/+LnrMFlDR5/SE8Wu6Hefo2U/ND9lf9rHFuw7OoxVcVlSxk/ccbWoL9E4VIG84UWsr4WZ18M2XEiBR1jNha2Rc5ueKtLb5fn7Ra4Xy/Xc6geu3UM11d5dpfnfG0IAIu4QjV0W8ifDcSUEiqWDBCRyK7nXd3ea9Bf46ovmeMLxlU16H1tRNWsgRqvFANS6+q4VwN2DUrfBLtv9GdzDqjGXit00kQSuj73ed06+fl6X6+jMK+B8usxTNv+Xa37XUZVjeFuLfWxlnVJ6FTFAK7m8PX5vmUAfunyxcC/qPXUk3vRv6+800VGsnTaObeo1pQJVTjvBRAXTnyJAhSlHWMMx+ORlNKmAE7x5heOe01Dqj3kx+MRrTWnk1QZLVz8BUxXJyCEAErR73qmYdwkBZe21INcQH9R6kkpLR77EvW4Nnjq6MT5fF62KTkKJXJSlpoqRCrJYCvIL324LhImbZYHk3cOa0S7P/rA7B1tt+fl6SScbyMWtHcelAYt3v1Ga4bLBaVbtBoheXx+GmoUKSYBImjWaKvQWxJRqoQiUpYqKNq+5/ky4mLAq4gFVADTdLhcdVfFAEoAu0Pzn/7TP+Zv/eG/xj/6e3+b1niMDWACjTbiqVcJq42oz8SAjkasce9AgWkblBYqkUtgkORfFcV40EaiCSRDSoqERhtDixKw7LOcbMqGn9XLQ8nSoq0hBA9KjKYUkCJpjZWxDJmGhcqeBAHTTZPnsHNMwwWXgaPVGqsB70kpohGayuQc4zRyeXnhr371S371+RN+AQdyTogJlTSEILrgSkk/DdlznfNmFBKhMBAy4FdGY6wGo0n5OvXB09peaFu2gSQJ4+8/vCclxfnlha9/9guGeWKcJ/puL/r1bcv9T3/Op0/fMPoZ5oiZcoG79oibZ1IUKtk8z/T9Lr96UgI3gsiLilrU4eGOYRjp2o79Ycfl+ZkUA4ed6OQX42WYRu77HfeHO6Zh4v2H98yzR2tJpI0xset6Xh4v6D7gQ8AaS9dYPn/6DCnh1MTz4yN3x3tsdyDgGYcz8+Mj+/0eqw3DSbz3YTrj3MTd3ZFoJNoTkiKFxOHQ0rYtw3heokZta4lR5lvyEglECWWvsR3nyxltrSTCa8XlfKZrW5QBYzTGKGL0tK1lHB0xKEiR8TIyTzKn9oc7um6Hn2dMAj9PfHj4wPk8MI5Ddlo0WNtwuQzEMONjYPrsOd7fcc4qX/8qLRug8Luh2ZvLeh/e+GLFOfAlh6jbcuOZvIETG6CzBemLR33p4muvX92c72vbpqDXBlh81zbrjgUz3TIArr3a9dbLAyK3Py1GAFce/9VQWCkQb3ufq8jAG1SJpRVV4zbgrgxHdb7eXLfaVwHAtyIAKzjWN7df+kU9swoYL9z32mi87dW/5SV/E3BeB62uf64jLFcG1Gsv+m1AX49dmTPFW19/V7f11udlX6+iS3mf+VTdipJw4++6mZsm3xinbUTgNuhfjLgb25fIRPl8uz23zxvleX69Tzk59Rev2v4/GfAHFonJOlFWKbWA+0KhuWVV1xKXBRgXi7JIdBaO/bUMZ02PqY9bK/yUqECh2dTyn8VAKYZI8d7XkYK2bUVBw5OTVVdKUzlm3eYC8kufap5+eS9GRjF4imFTtik1BwrNp04+LpGF2tIv7XHOcT6LFnodJSltLcWC5Ly0tI1lHAa0UnRtT4wClnyYuVzOy6QzxmBUgwcpABUC1gh3fHZCJYlakiJjCqQYaXO/jLXYxtK2mvF8pu93eDcTfWLftVIFFoWLjrvDgekygzZErSE12FYR4ozBEJPGtg2/PY/8x/+X/wc/+3BH+wc/AR2wNpJyjcqUNDHKeYwp4YNo1OvcRkLEWo3Rlojwu0ESXI3SaNtIgmuEGBXKNkKJQeg4AoDFWxpDwmqF946UwpLsGWNgniXikJTQLkzm3KugcS4rVhkDxGxsNDgXCD4Kj59IQoweHxxGiXc4eMc8T1zOJ86XF371za95HgZCvvPVyd1d3zNfBmJOACvSrCA3IO8D5VZkjRaKiG1Wj4o2RKTYVwQaa0EprGlISXIpmm7Hy/Np8Vb9xV/9JT/72c+ZQ8g31MTj0ze8e/fA7MQICCHychn48U9/Rt/fMagLw3jGucuSEDvPM+dzxDvPfn9gfzjw6eNnmWMJghfP/sdPnwjzyFFrlDb4EGhs5NPnjyLvGhzTOOBnh4qJh+MdhCS5I6bF6A5rpRJ0jHKDfnl5oWka7u7u0Erz8PCQr3FPv+/Z922mRGmsMhmwQEpRaD/B0WoxWna7fS4c6BeFsGLoS0R0lrwY1HK9N40k7JdlHi80xtBbRd+K0ap0yA6AIBQr3WWHw8Cu3zOME9iGcXRcTme++uoDd/sdp8uZl/OLVHk2BkWQ2gGmYVYSfXPjnCl3Yqv+3i8FoC2uy+o7kPBbIj9+dY5grh707a5ee8oKaKu/rR/mG7hRjO7lUrvyNldgq8CJay/fBmxuwGOW7iwAszh91ob+MENnGa/XxsKNla+AorS+tKT0Zx2Kck3kfmyAozhKIJHiWr01eL94/IMPpBSJIUrhukzpKUZzDHHzrC9e8vKvHuy0Vk5YOrCC0fUsru0vgGuLWWoMU9N3jDEiHqEzsyE7qowxGyNNtpP1xCdWGTSpzLBEQsQeVPafaVSpb3l16krSaDG31jEvdKmaNr0aw8tR62GSo0uAP+cRrMZYinLNxBBJRqLfWikp3Kkg6TL9rq6da6C8zIcy7aq5k8eqnEutNJLHvBp0V1NsmfPFCy826HrMa7nTlNKrS7W6gIDrCI/a/LY5/tVSY731c/mxnMDa6K2G5crIqQ0qOQ/bzZbWJLmGcmeXPPxr6dovWb4Y+BcgOwwDxXttraVt2yWptk7irfXtvZeS9UUWs76YykOxBshlQIvUZS2XubkBpCJVuJ7w8lsN7GuOfgHtr9WJRN5yv9/TNu1ieCglqkFt2y5RhjrMUtN9yoVXe99L7kFdcRdYcgjatl3aU0B96Xvpbx3Sqdcpv9VGUNk2BIhRch7O5zPBe0x+VoRMZwrRM0/zcpPV2do12tBay+ikmrHRWpQEQLR0lZYblVKZ5mKZ3IwJgbumI2Q+eVIGbK5cqxK7/YH5csZqCFbjfEJHMKZFG4jW44NGmRYfI7pv+O//6pf8J/+3f8r/4X/7H/GTD4rWinSnNkZuTMTlplKuCUnyVQtg10ZhTEsikHxEpyy5ai1om8EzoAX9aGOXC63V8ls0EYtGK5PVXpLcELVG60jTKKIJyzlQSmFQhCDa6wqNNEkSpmc3E91EjF4kHkMgKoVShpjAuYmXpyfOpwuX04nf/vY3fHx85uHHP8P/+RPGWEyzFoNLiORZiDHLEERUhJSNYJckcqVE1kfmSQbAEm0zlITeQgVqmobdTqQ6lZabTggSzWn7lnd373j8/MhwPrPrpSDXbt/w6fNnnHc0tqGxLb5XDNPMPH7E+4CPHquF8vTu/oFxvHC5nGms4enxc44YNXgniehNTra9v3/g8ZMnhESjDX4O2L3OCcpK6DC7nnMIvJxOOXm84Sdf/xQ3Dzw+PuLczD5Jfo7znv3xgEJqGigSbp6I0dEf70kxSrI0Ij963B9EFcdNkoRrG4zR7A8dwzhzPr9gzB1GseTuTNOIyonfWjX0XY+xeqmzUaKfPnj6qkaJ0ZqXlxeO93eEGInTnJ/QiqYxpJTzWjS0bYdShrY10BpeTi+iLmUNqpG6GvMw0liFczM6JwSfz2eaViIALy8n9vv9D3p4/I0uNXBdAO8NLxgChBRSyyIlLT7HnLR+tdNXnrhr0F+tuQCWsqjtnyvAKw/va2DBFvwrVaBSfm2A/2sPMmkFcKtHtfr7VZvfWGrv9rLelfewgJMFrKli46xLhS1LJOHaK5wWsJKIIWSQLwISIYrYQczPYqHyZKpPWMF/iJLHFWJYgT8CrlJa255egawtqCvj/Rqc8nq9q9eCV7QUMhQxBbs4GY01mz0rpdDWLOA2lnNXADYsRupiLCR5phLlHBStpxrI1o5FY8oYq5yntbIBlnzKFTW+Av9luJJ45WTfUc5XIpKUgH+tIUUtxea0Xq/FzUi/9o6rPA71nOfqc41xi7MtppLTkTbrlDmPNPfmfq+jFeS5UtnYVy3ctnUx7+tbC69dAXVbljZkC2U9zpURcyOqka4PlMrB02LwpHT9WzFqVifUDwX+X+zjKQVp2rZdVHnqBNqaK18D+OKlrzX4Cx2nBuzlAVg6UIyMlBJff/31ArxLVKDso3jQ3zIiCj2pTt6tefe1/n6XjZaS+Ltc1GZb3beeWHV14fJ9rTRUaDxlnbK/st40TYzjuKghlfbVoKAA/LJdoQyV/ddVg8v6xfhZ+6FwXmok2Kah6dqc7CpKMqGMq1FYkzA2QfSQAo01iEGgaYzBoLIxAEppnJe+DeMgCi456dZH8Elh+w4XRXO/sW1+iAh3UyXFPM5YNFYbnBNvqWksTWPBdvzTP/5L/rN/9v/m5fmFcRyYZ6l8i4qE6EURKPhMXSHrtJNzFoDssVDKoLQAfm0b8b5rizYWrS1GGTQKqwwGTWsbjLZYbWkbybNQ2mC0BTTeR0KQpGKVk3aNFeAsV7+4caStBlSmD/mZaR6Y3cg0TkzjLA/EKMpKw+XM6fmF08sLp5dnvv3mt3zz7Sf+4Bd/i+PDj3BBchvapiV4MUZjHoMFfMT1RpDyg0Y4p8Lf10plConBGEvbiAHftB1t20t+hhLKk3OB/eEIymBsK7+bhq5phdqU513X9Rjd4b2i7XqmceZ0uoAC72e++fY3XC7PNEbT5nyMT58+MgwXyZ8g8tWH93Rdx/l8oW06Pnz1FSkFbKOZ3UyTawxorWibFq1F7We/75jGQSI4JFwI7A57kkp8/PRtqb/E3d1BKlc7ARGXy5ATkOUaa7uGu7uDULhI9F2HQvH0+ZHn52dmNzOMl3w/mZimUYw3PxHCzOVyYp6nLFEKbdey3/dczhculyHf44oxX+7jiQ8fPnB3d0eIifNlYPJBinmFiG06Hh4+0DY9h/2BROLT549oA947tFZ0fUvfN4TopRCbNbjgCX69Z86zY57mnPBu6LoepQzeRdq259tvH7/0cfA3vtyiIKxPxXWdzYNxeWKyAK7yUlf7hhWAFY/t+vurQ2289VSey+9bFqBeeRcFXG5B9W1awK3v3lp36cprQPbKK3w1hqxGzKvohXQ3t3frmlzXXQ2fsvFy/sq/G39vztfaou2+qc89N9Z/3eFlXMq5LTA1vTYV1nHJ5+TaALthDEhdBf1qXVXtq97u2iCRJr+mD71lCG7bWM2fq9+vz73K5+ZWpCst54y3f/+Ov9cf4HpQ6zl5a3nd7u36y/mu+srVGN+K1KzRl9fHunler9ta3S9qv4N8eG10qOr35fawXGJXz+Ore9mr8UzfMcZQ3W9e07O+ZPlij3/hn9f6+rCC0JqqUoB87f2vKTW1/OW1bn9J4K099KfTaVNZtwBwEJWhrusWRZ/icS3e+jqBt7S/ziMoF27IlI55XOUhi1e+JAWXk1S8/MX6Ln0p4f1CyylgolCNYE1YrlWPSttK0nT5u3j6i3ew3Gj6vl/aX34vNRTmeWYcRw6HQ67gGbhcZhprSD7PRgNKK9zs8fMgCVMxEklgFXr2JPGTEXxEGfGgrTQrpJppYin93lrLMAxMLrFrW/oWlHMY05Cyrn5n4AL4KEmnHkdMAW0USSmatkddPMlLXQAfHEFpBuA//X/+c76+6/nH/+4/AGXQRPquIWLxAYwRAEjbSOXaFFFBEfFEDI1pJCHJaEgiLQp6kWlUSi9eb6Wk4nFSwq8OOQEtagVKZ0WYLDiXQG7b4llUKhu9MeJ9xDkB47JNxHtJ1g0+4kbPeB4JsxcVohCFNnQ+MV8GhpcTnz5+y1/96te8/9HP+Nkf/iF/8fEEZGnSJPSrEAKq0UixGI0mZR6/jGsx/pZbRox0VqrhGmNocrEwrUQvmiU6AafLicPxHRFLCArlArO7yDYxcb/fcxnOXC4D1jTYVsbP2o6ubRjHiyQUJ8v9hw/Mw8g4SOGvpu1oe6kD4UOg6yVh2AWRAk3JcTnNHPbH5ZpQbeKrD+/5/PkzXWsZziN+9sTk6fdHYtL0/YGuaxkvA9ZYJjdxHmTOjeNM37agFG23p+kaSJJQJ5E9yfW43+9RKPzkaW2Lyve0rm+kJoBq2B/3DNMZ7xMpwHF/J4nHz48YI3QecpKiNhptIATHPHnatmMY5V4RvBfO/yBjlYiSUO8Dh7u7XN1XMw+XfN1D01qGceLh7gMv5wuTm+gaC9Gz3++JSfH+/gOXy4XgJIm963umaWZ2Uu9imiYaa9FWczqfaJruix8cf9NLraq23ovV5qFelvpeXZ4HtZRytearbTOcWiFrBYQL3WbhbqstqqjX/eJlcRbeAH7UQEX6W3936/N3HuoGgKyXV4bVxsiCuvrvdkMWr2qh9SweS9KSjLtJ3E2RlEIWVYjcBi61xZXX+47RLX0Sb6iC9BpQvvJLp7Tp13Z8rs+BxlSOwJpWvNZuyWOBWpJ7FWTF1tL2st/st1agq3ObUqF1SURbcMZa5HT1+K95h1rn57Fi9fgrDSpWXX0N3q/B52sD67sBaLW3L1hn3e+tOVsLldxqc20Aa3hVcqKmk6/vikL/eus62Rqst3Ik6s95bsiut/ej/P92/wr4/orLX/J7aXs5T3JP/OGgH35gcm8BqQWcFrA5juMC3JeCU3nyFXWbQtupwW6hC9UnvHiw+75fAHcB5vM803Xdhl5TU3AK0IaVdlMrB123rV6vrupbagAUEF8iBcACuMv+atWflNJCZ2qaZmlrKWZW8gIK+B/H8ZVyUTlGOZHFoCkRE2stl8tlqT9QjIhrI6sYXzoXcxmnCZLchINzJO/w3hFJzG5e1Fxc8PgUcFExubBU8zRGEl9jvlGHkIuUpVVvuek6TlM+f22Hcz5v22KMSEq2s1AzDMK9D6p4TliiBbPz7A57LpcLRiuUafg4XviP/7P/GmU7/sm/+a9j4x2aO3RTDJR883agjEZZnSVKhWsZvEfbXLVWyZhITQK58ZJy5oAkAIBSRKQqtVbgk0cpUZag8rB45yRhFpX52xLG9t7hXFyicwkJZbt5JniPnz3j5cL5fAJAm5YYJubpzHg+M51PfPr2t/yLP/sr+vdf8Uf/5r8BRpHiCa0bYkjEtEaWSrGu5Uagy01OKv/qHNzTRVGIRN+2xIQUfppnEiHPlwRIlMMYy67vUdHSNU1WNvJ4P3I6T1jbkWLCWlHbuZzPtJ1lGM6QRAa0aYRbL5K0PcE53DTgJpFKbbsO7wNGexpjpdKvFhnNcXTMkxMqWI4w/tWvfslwGdj3PW52NM2Or96/Z5wmnp4f821NomDGtkQmYoo0Xc/L6QXnAu/evyPGQIhwd7jj+elJahzMaRECEEGBFvK563ctpJyorOFyOS91Pna7HQrN6eWEVobj8Y7n5ycxHEPE2jZH9cA5j/UKZaTOQEwGtGEcT1hj2fVHuY41jMPIy8uJeXL0XYebHS4rWOlckWl32C0qTqfTGd0YrG3wfuR4ODDPbuFLK6NRBMbLhDENu8OeaXaQEk3z+yvnWe6HNZXuu9a7fnjfBBALYH3lF729b9Jr4PjG8etF8TYsqr2MNfgv7azBjny88jLeADMbAHxj3TcavgX612Mn7mK+c3zSFvCzvG9B/2oEbN+3o5Sqt8qFXLy/39kUtX3buGHfHoLtGLLc48tv9asG/LVhmYklm/3Je/Gov26AWs7tFvjLJrm4VpS7Nqxgs+Cd+pq49nZzYy6U5S3gf33dfJ9BKf1mAc1fslzv90u2U1ydv6tN6mt+s2/0Zt3rYy3XS7wF0DdntN5ouUbKcV+ts+yh+lwZFm+B9bcMsOudvm0wf//yxcC/PHTLQepiRQXQ19bP9eAW8Fs6XdatQX/t0S/7rWU6d7vdAvrLfuZ5XvZzndxS6DyFZqOUWgB86VO5aIuqUE2VKW0qv5W2TNO0GCyFy1uD7ZrWVKIc5fiFolRAflE5Kn0CGIZhoVPVnv5yvLIfa+2SP1CiBeVYJaoh50ZxPl3Y7Xp8cvhpQqWE9w5jLD7I1A7OC1c/J5ZJG/SiCy9tFCAzjpOAjTw2AkAlyXZOUSr15giIUg1tK3KW96rj+fmE1RY3lboDDSr6XPDLMM+RFJJUL0yRtm1wtPzqZeD/9J/+54yXgf/lP/z7fK00u0MUbmBQ+dmVMMpmikQjIDdGUnSgROpQ5/75JDr42ooKT9JaALMSb41RDaAkqpEjGynN4iHWGh2lmBgVJ9KHQAgR71ej1buQi565XIzLM40j4+WMmya0MSK/OI+48YVxmPjlr3/NX/zlLzk+fMXf+bf/Pof7Pc8vT8xOpCG9W4vNLZS5/N9y89eZ+5nnnjE6G64pU6mE4x9IooyUo1vGKNqmR2srOS9tiyISwkxvDrycB5KC/e6AtZLM2iQtykpG0XYNCU/fH7mcB0JIMv5Rkvps1/IP/s6/y+PjM5fzRdqmDW523B3EcO7ajnmaCc7Tdg0vp2eOx6NEHrUGpXGzwzQNpu2YnON8uRBDYLff8/Dunufn5+yVh+AdPjq6XcvhcM/hcGQYB7pGqIt933I87rmcLozjhDXDco1pnWg7Sa4lezbP5xf6fkcIMPuR/X7PPM0cDndSDyFG7u/f4f3MMFxomna5xu/v7yXPw3vGcaTtejHu+z0xBMZxytQBw93hDqNsNuSEgjdPE9Y0Uh27NQSX8M6z6++w7Y7Zi8FnrcJ5KYyXUkIbTdu3uPFC8DNtt4ecmN9rTdf+/lbuvQXoU6oeum8Ah7c82/Kj+AOLpxTWh3QN8NMVylyBQN5gAzI2R6/auf69Ogzf9twv3v/S52V/1RHyjlc/dokMpC0QUeuWZV9br+gW6GTi0itrpRgAy7mottn0t/qUEtlZ9BYlIbd9Y6jlY6diNOQ8gZSWr3O6CzVlp9gHKkct12KEqxzqchqqU6oU6wgqVdF2ruk7WwOggP9axz+yeuXLKyaJKiSQnAbqxi6p58X/tBpeiezxV1keViPSm1fnhNJvqnkgnS3Jr7UBWc7X5tpQm2nMW5V8KfmA2ZOetKaeZ9f475bH+vuWzbXAapxXNjGrIbx0v77QKJGWPIO2B6ivR/Xqp7Wdyw5uG/PbKNH2clns5HwuS/RBrr/aSKhyP66Wmoi2ft6c6M398IcsXwz8C5e+gPCuEzm+Apqv6TDFS14843WF3HJSb4Hl2kNfOla2r7Pra4Wc4oW3WYJRqbXKb1lijEtV3GI81AW7UkqbSrnX0YhxlId7LbFZqwjV6kPXdJ1iyDRNwzzPS+Gy0ud6nQLiU5Kky0I3KqG9OopSRxLK2Jc2FRWQwu/XWjj0IJKOzjv8POO8KH1E7/EuZrnHiNHNcgOzViq4ni9nlDZ0rQAV8k29KNwkH0ghMkwzRhs6Y2lQzJNHKYjRoU0HKtK0mnnWNG3LNLucW2CYXRTVGe8hSKKxnydaa5ndzGcf+T/+X/8pz8PA/+Y/+Pf4yVd37I97YjASNlZgrNB2fEhYAwZICuHDG5H5vL4QjZEnSUwJlVIuby9XWIhitESSAE2rmEZJcrfakGIghIQLLj/A5BINMScpRfF0BeeYx5Ex013OLy+k5NHR41xgurwQxhf+4i9/yV/+5lu++snP+aN/6+9xuD+A8oAoYcx+xvsgNQIQT4WbZ4yWZGuUfGeNJHjWlauVkloBxjYEL/SPuNw4FDHmh1OUsQ9BwuvWRMIsFKbD/g5t1vnVdz3zOIoHPXgulzN93woNyXuM7QEBp8ooJj/zx3/y3/H+4R0kMZL6/Z7gPS/nM0aLCpVS8PBwj4uBbtfi/CSJvLYRL3Y2Nu8POy7nC4f9keQTPsxM04XDccfnx490XY93npfwTNd12NYwTALw27bj8fGJrtV5zDRKNfnelY1OP0pS8P7AfrdnHkdMo3E+oEhLbYp3795JvouCNs+x4XKBfO3u9jvc7DhfToQU6PqOg92hktD3Hp9eSF5qMYx+4nj/IKpSorLL8+mCRXF3dw8khtNIjCeavl+uyb7by7yNgfN55LDPNU3aRiIrcSY6w93dHafLxPB4WSr5nk+/v5V7l2RFarCvl+flWwC6foct4FW6PD0hpgrA5JfKaLJ6PFMS6iKIfK6SyOLyLF4QgCQXrwDzBt1IVceq2q0L6Cz9QSh7BZ0tQAzQKefyl32Q/cLl9wJqFcs+Y0qSWFuasI7O8lIFrKQVQG7QzgYxXUGetHpJxTMdXoly1MYXCzhlAUoyyPJKldY/1b1Kiu5lPf+4BVBaZ5ENlfPRFoCaDYMF6K4GgUJhMp1HaU1NB65xR8mpK8/n+jm/As3VeKtNq2sjiKLqU3BmnnMpgVkqjkuNlVgwUVEuStvCW2XeiUiHIaqYOybtuTbyVtAohlJZNxGXSEO57hY8ViIbOpGMwSwTMC3XyJd6/evlOjol10ratjnvVisllp+qZ2y+pvO8V1pnQ6uo+dXHyBdlvjZ0xgClMnB9LaYUywW1bbAqfQWznOfVYI2xUNry/E9FkUnn+4kqW9wwvrdwXxqQP+cq37Ux97uA/y8G/gUAHw6Hjae9JPuWC6IMXA3UC2hdecbryS0qQeWmUEBKAbuFylL2Xz8AioRoeQAIuG4JYZXRK9uWNhTQXryx5IGvPemwSpeO47hc6OXYzknofL/fb9peg+9iLJT8h7pfJR9gmqZF1UdpjSXLcvqwGDVlv8VoKRdgae9+L7zol5eXzY0pxlJwTWgnfdugVcLNIhNpNfhpZJ4mklR/yqCwyQ8Sg1Y2XyIJN4+opPJELqFFmfguCA0h5Iep1i1aN2gtF944XjCNJQBBBdq+RxmH0hDdTAhrpKfVhqgNWJsl01op2KGg73tccMwh8J/83/8rPn564X//v/p3+PnPfkrXHlBaEWZIaPTOYkBuDjouHqNWd8QUcq+0XPhJoWK5gUmNgugCIV6kg9pI8S2jSFGhopKiZT4SQTzBKUKUhOaQL3oB/YiaRQzM48A8DoyXCy9PT3g/AQ6cx42Ox8dP/OWf/RmnyfOH/4t/k3/t7/5d2q6lMYYYHcp7hmHEhSBGBQENWGOIwaMWGbGUOeIeLcVy5QaVH4RKybltGpGq1EqhGwtaE7ycC6slh6BrW5qmZRymRa7SOU8Mnq5r8X5mConGdswuoLURw3Jy6GRoG0sMQdbVWqRy+57Cvz2fX9BWczA7bGMIXugo++OBXd/hppGkDOfRc9i1aKSabXQB2/X0fcfT42esbZmdo+1bbCd813kS1aoPD1+hUsC2WW1rFIP5eNijVKTrRUXHOy/1LpAoXN9LFWIQWWFrWobB0ZqWpus4T5/odx2NtaSouVzOoBLaWpybISV8lvRUCiIR0za4OWKbnv3ujtPzM4rAPJ6JQZLd27ZFWUvSifN8IfiJw+HAcbdjuAzLA/ndwzumacSPDmtbpstFHmA+MM0zGM0emOZZ6gzMI/hZjCYjV8C+bzkcdoyTxx5/v6k+dYh8/XwbaLzl6d8aAVA8rgVs1Z647SdYUXy5KwrQqNHzAv6rLa7btUS+ly3U69/LZ1YQUm64rx7yZf2qDWmzV1avslKLB3L1bq6tXfqbVsrOOi71GG79qJvfc8cLoCle7C3gTavRxvUYV+8ZSKWUro74qvGvvKYb0M5b84QN8C7b6Qro1/urPcq1p1/nm+zGNmIF/tIVheSAlXGIy8qaLYBLKVEqa8r4r0bi9syu/S5jXyDlMs82U7S0vzaClx0t72JH5H/1eYuRqCTysFyDVTu+5Lqrv39rUdmALpstaxZDcbO/qyt02ajs4DYw3l4zb9xDlvyP18crhmOx2Mo+Nke6mu+qkvl8PefLJvXf6znYHF/9boC/LD8Y+G9DhCxKOwXYXxfIKhGC2kNdDIWyX2BRsCn7KZOleO7LBVa89OWiEwNBLGO5way0mxrcN02zyIqWJFyQwSuJwKVt1yo91w+cmhpUaE5lvZKgXJKbyzgUI6H0tTYmdAZZIUpRIRfEE2uy8VHaV4yhEgUo1KTT6bRwjdfJUPdnpjUGEsTgIAXOp2e0Fm94TFG89lE8PI1tWPwWJqGsJqasm+880TTZkxyxRW/aCO9caYUPkX63I80DykhxLWO0aBQHxBOtRD7UNC0uOfFGqUDXN5zPM4fjEaUV4zTJvhCaxTw79vsDgxv4r/7kX/JHP3/PNA389Cc/Z3/YY7odbpwEqLeiRV+sa5WBGAi9QZkt3au4y6WoV672G/INbtYYIwFOrSDEgJsnnPNi6JEIMRIyh9sHT4oyt7z3TPPAOF44nU88PT4KxScF8BPz+cIv//LX/PWvf0t7PPL3/vE/5ie/+EX2VilMiEzzCMEzToOcrzw/Rb5TSwEvkBuCLl6FUociG7hRZDAbK8adc7OoO6WIDzlpXUvF55QSxhp2+z22aTCzUKdi8vgwEZPCuSnPO9gd7lCjo+0apmlA55vV4dBzGS9ok7h7/8A4zBKV0YrPnz+jUsSieHo8oZVmvz8uhu43337ksN9huz2HfYuKMyk57g47Xp4+MjpFSoHZeWzbk0LCGsXp+YWHdx8gKX76k58S3IhKCatbmqZjGM5473l+fuYnP/0JKSpm7+ibRpKsvaj0pCGw23eARSmTk397AmAQxZ+QIy8q34u6tuN8HrBaS2Hn/GD0PuDmwN3dAWsC3gfO54G+P6BUYBxHdl2P93HxyO5MjyLx6fmJRre0tpWcF6UWmWCy51NrROa069Cdout7nk4vvJxOa25TUHRtw36vuZzPzG7GNpLw61zE+/lLHwf/syw1gCj3uFu/3Vr3u7yQm/s8Bapt11ev/l8wyLrOBqWkDV64jkSsVIQVfhQPcb2vzTbFgq/arDMV863lrQhI8XKuvwsFJRUAU3k/l7GpAeatY26+L2Cn9mYW8F6DIXHILOB+eW2NhXVcywdVH2Y7/ojHv+77W+Mi5yHTglRVdEu9hoIpbRqx2ddiICzGwZUpJjiWIrsp/RKvdplH5Z6+vLQ8szbGYh6XEgVYh289N9dg8PUYvO7DLWyXUo626LVNb533Mtmvr7vrOfN91+JVw6WttwwAmb3rjLoF7PN4rZ+rrav+1O15da1ocfbV28n18dr4vjY819+4NeRvLjXevF5undv/ST3+xWNdPNGwauIX6ck6GRdWXn8NvqdpWihCZdu6A/U+Shit1q3vum6hwhQuPAhVQylNjGGR8KwjEQVkF45/HaYr+y996nspKiQPVhaPfp1YXAwcpdQC9Esby/FL9KDso0RBinJRPa4xRtFlNxptc9Ju8MxOSwJp5VkotKE64bmMXdtKEqEURpoWmVCfEpdxwKhICo7zqXgaB7rGCID0wu/2fqLF4P2E1VnGMhcBMFqkI5u+Z3KDiAYYCXk3rVR6lURRcMFjtSWkhPO5ErHtGIYL/d6Kpo42aC36mzFKUrQPMz54YkxMbsb2HSZbyhGhj3T7jvMwcnGe4Ae+/e1fc/9wz+7uPbY/MI4ajSRTd1Y82JokxZ2U5CpA9vyXG0BKKGWkkrDShORQiazqAzEnIY9BjJCYAijwSahpKQRCVMyzAyI+R4bmccDNI8PphcvzM/PlDCnhponP337Dn/3ZX3CZAj/+xd/m3/73/xEPP/mKcbpACJmn7fAxEtB4JXQcjTzcklw8hBikeBTkAixkBYoSgs7XAwqdoG0kFGCtAQXOi3xlImEbg20b+t2O59OJbn+g6xucmxgGKUJlrMXahmmaMY3l8fTEcS8UFO8mrFW0rchyyj4bXIi0fZfH1HE83tFozTTNWNuiFMzjCEqi/A/v3gEabaExMJ49JMd5OInhpjT3Hz6QTie8CyTvCM7TtQ3TMHJ398Dz0xOtVXgXePewZ3LTEl3a7/cYbUgxMo0zjbXYrhfJV2WZncO/zBwOQvHTGRi64DHJYpuGMM+ZQ+83Tg+roWst0ygVsqdpBgzD5YJzA0oZGtsRtF4A2DRcsG1P2/WcHy8M54HZD3Rth3eRXWe4Ox45nc9LLo/cWyNKSwL3HAJ92xFcwJoWlMY2IqFrtc4RqCS0n+ByLYKGOI1LQcHfx+Ua2KwPxwyfrwBx/TD8TsCxdYdSAEX9zSsToKx/C6hv/3vlUaxBHNkPv/FSchuoq0w/4epBb9TK8K/BwnVfN6AfQBdP8NoWiUktG7zarhxjs89beCNlb3Z5X76H60q9AvxLdPQa/F+9CspXsrNbWGdtr35Nrao+F8ehDIV5Bfxvg9O06e8rQ04puXcUIyAXjESRqVorlqjHUtTgVuC/0KEyxWkxRpBztjAM8nPpppF0o43rNbTWSqqvqzpJuGCSpKM8b7R+8xjLud1Qil6D1C8F/9vf1OZt3dfiC785BbfHeTvRf2vcXl+flbFXz/tNpzdHZcnZqO8/ec3vMkLfAu5vtbtsV96/2JjKyxcD/5pmUqgsBbSP40hKaUlIVUpxuVxy0lxP8eDVnvsyWQs4LxOvjgQopZZKwGXdlNKS0LpSZsaF1lMD/nqwCuguxyngvVCWCqiv6w8Urn7xmJWE5qI8VIyIcsy6vcUrf+11qvdV6ERKKWYnFTS9E2WblMQTP1wu7Ha7pY11bkGpA1DyC5RSzPO0FDuZ52k5D2RdcmsNl6eB8XImOlFPUQhdRSmRdEw6EZOTwimTY78XGkYi4WZHQoyStmuZvScmRTwnvnp4j48R04iOekpSpCthaLod0zgSwkQInq69w5hz5jAGkhIOox8uIl1YVYCe5pm+tRgtRVJiDBw6y+w1k3P0jWXfKabzE9M8sju+B+8h7aDfoaJFN1ZusEYzTyMpgbYZJMdEcB7TCm0shPwgwhODcDCjj/nirSpQ+1I7QCr8hsnhQ2R2EzF5iIEYHPN0YbicGU8vzOcXlPe8vAz8y3/xL3n6+JHu7h1//5/8Q/7o3/4HwgMPI9ZJ5CESCCowxcCUFIOLhCTAOIWQw8cqg05deZyoHt65XoW1pBClIFaKECKtavEhkBAOoig2ZSMgJXa7nqenRw47uf67bscwjOhGkqJbbYgpcjweeH5+5OHuDm0kKjIMA03bcz6feXo6gbXcHQ6YJBK0bdczu5ndfofO+QQhee7u7/nm22/xIdC2PX6Uhw9J0TZ7oMG0knz8+flMUol+16O7FjedaZsW5xHqT9sSvcfoRuhwJuVImlS0noaBXd+z63uapiORiEF40E3bo1TEmFaiVKYhKcVhd8BHz77fMTrP7CYO+3uM6SU3JUV8CMRR5oHWO4gSrVJYiAbbdASvUJ0lJYdWRhSqUuT5+YnGGO7vjpwvCec8KsHz0xNd17Hf7xmGkXmehX7VdZwvJxorUcLZOamTkA3yEPySN2N0zhuKYsQP40CXvvvh83uxfF/bys9f7Ex8veLizat3eAM01t+r+nMFhG89h2tzYnkuVN8XLn69/eahfvMB/+Uev2sDpgCd63WWobwC/VWD8+cV2CxbfwdQuQZKxdu/eP2v/LmbvxevMhtf+q1Fxmzbh1fLsuu3TbzrPlzv63/s9bKO9TVJ5K1ow9VxF4BNxqavx/4af9wyjOttrg28YhffjAbUhkCe+1+KP98C/1vAnlhyTJbf37gVlOsONreCetU3r5PK+H9lJFYH3rSLq7NUDJ9UmPtVI1DbcamvoWW12py4fZ1s2vs/cvli4F8aUEBxAdI1b76AWqXUAqRrhRqlSlXb9eZqjM6GxLaqbjESyn5qi7SuBSBUBknqlTCanMOSBFuSaWG18gtFp+5XaWfK3tvaE1/LZtWcv5rzX0B9DfjLvmovfWlH+a0YE8wsdI0YpO0GjcqGUxljYGOR73Y7jDGcz+e8z0RKIhvpg2McBdj44Nntei7Pnzk9PjEPEzEK79s2GhdE2zs4R9c0aBPQ2mJ0Lu4VslqOFgAcQ8S2LXjRCI9EkVZsG4bkUNagQpOBtYDnrt8xXi746IlKowzoPAemeYKIJOVEL57YPFZGi/Z+DC7PA01KmoeHOxwKuzvQdbDThtNl4Onjr5nHCRfeyXi1HZqA1QpCniBaYxMEp9DKQISQSvg0kUKQstibi2xVk5J2JJwPuGxA+mkWL3EQSgox4aaB4fTC+XQWxZjzib/6q1/zp3/214DhF3/0D/i7//gf8aNf/IzGaqKbSXOgabqc4ByJwaFIWNMwXCYBpyDjpcQAUOTrAxbevvwrsnMaksh1osmguiSFJ8nHSCpTs+QGt9vvxHsVkYC0SkzzwN3DPVMMDFkd6u64ZzxfeDgeefz8ia7tuAwTxrbo1tC0PV3f8+nlicvpmXeHPdEHhniRHJrW4qeRrutBa375q9+AgsO+wSr48NXXJODz50diTDTtjsl5jJXo0uVyYUosuvkhzNh2RzSG3fHI+fwsSZBapGubtpXaAmhsYzhfziSl6HY9h+MdL89PgDg7np+fOR4NCpjmQaJxU+Bw907qJShJmlckkne0xjJMA13XigGpNC+nE/3+gV2vaa3Ge8U0X0hYtDmCVzK/o3jjGmPo+5bL5YXgI9Mws9t3EplwM0oLza5t+kw1i8SkuIwTvdJYYwi5SFfSmhA9zo8cd3c8vTznQnqa/eHA8+kFFOx2LY+PTz/kcfA3u5TLsH4IlmITV+CtPJsVrJ83mP3afVj+K2jx9ZN561XLXnZVJaWuh7/y9Zfv9aLrXntwJVevcMML+NCLg2HjTa6Ou1INKlMl1YAkrV3Jncz+WEgpH+o16M9XetWpLYhWm3WvtlkO9dpbX9pX1+2JRfwglIhvnfybpT+ptPtLuxcvbHlb79G1l7+0uz6+qpJYyyRRC4NqpRgRE1Gv/arv+6UfxRFag1+tI0qbfBaqhN/SluLxv5piMY9tTLyKfJQx2SRIx/VZxY1xLm3mqv3lrG2eazV+rfcToyQI5+0L/gpRkoZVKlSbVOJW9Sz4nZ0J9XVWTrKqxnCzLNfutjvLlaBem4mKK4Mu70JX13i55lJ5VdfReoVfAfRXpgaL93+5H23afXsp7UlJpqm6wv2y/ev58UOWLwb+xatfwEKhzlwD6HriFEpOHd5aAXGkbW3+LaBykSefJe4K1754tsu25XMxOKRiaLdchIV2ZIxZwHzZV/GMDsOwAO4SNXgrPLXwYzPQLtWEixFQFwirL7jaMKoNh1rlqOxnnueNFCesqkR1pKUuYlP6AGtxtcvlkrnqGqUVl5cTKSXmeULnJFs3DozDBZISoL6T5Oxp9oTZSeKOliqq676luuduZ3Ep32aVxvvAruu5zJNIfM4TxiKUCz9jNEyjGF0pJrq+Y5wmdNNwugxoY/Eu0hhLNIFxnukaiyKIZrzRnL1jfzxitcZNjpjIXk3PoW94GSaauwe6Y0MbI9YazqeBeXjm0XviHEgP96RDy840GCOVaH0YaVuZo5EEPoDToFWlohCzjZBlauMq8Soefzl3zgeRZ5ynXCl1RBMJs2Maz5xeHrm8vPDbX/6KP/vzP+fzaaQ/PPD3/uF/yN/9D/4J3V1Ho2eSmwjJY00iuHz8lCBFDAkdPDqVUGK+AeU5pzOvX+UbjFbFKLcifZeSqOM04r1OKSzbEEXrv+t7UIa27cQbP3uOdwem2THNnuNxT9O0zHOga1v293uenj/zfPrMvj+w798xNB0kTdvfo41imEaGy0X448HRmERKMtd9StzdPRB8EklXpWg7yz7uSDFlo8Xg/Mj9wz1d/zXffvuRft9xvjzz8vmRtjF0RoOy9P2erm95eXqm7TqS0nz8+Jl936BJ3B/vGKaRmCTyNc6edw/3eCQ6QYz4acBocvRPEqaTipxOZ5q2pbGtgPHLSehj2tC2PaRITFKsLQRPjBIh0MqwO/Qkpdn1O6Kfmd1ZqGwp8vzyLMnZ3nE4iJxn23cMlwtKaY6HexSGptH0fYubBdDf3R04nU40TYsPEIOi61qMkXuLtZa+74kxYfuO8exRSqhAd/sdx+MBN03sAlkWeOZwOHzp4+B/vqV2BNefr7zSy59f4IUsD9r1ias2WEHdAARlu9f7VrdcjXm7rUzkcpDEZv8LsLgCbll7gG0q723v6dZnnPtUNeo1RBEgswzD4sG90ZbiglXrvpbjIED8ljc5lfca5MdItng3ij+y/koZWo5dd2VR8lnHCNgYVvXxS9tUUsQM/JWCpFbakBxbDvCKWpEB87V+ftlOKUXUBm0SoNEqK09VY10cYcs+VaFrZjs2Vrz9eBv8p3rsFrx1G7+8mhcKQlC577cvjDo6IEICa1EwpTU6iaNBpbTU8fkh3v4ftNTXw/JdPmBlyKxzTy3/L6teRTFQalHsqnepVHnfRtm2V8utK+f1sbbXS3nfXjdvLqWZbx2pzI8bxvWXLj+I419AT10w69oIKIC6WN4lubHwagWAr1535+YMYNeKiAWIt227UHHqfAKA3W7HNE0LcC5RhpJUCyuvvnhZCoivjZAaYNc8/aIKVPIaynb1pKgTm8vFUlu5BTAWTn+JZBQqUJH1LCeu9L2sV/pdjlU+17UI6joHfS/UiRgTJgJRKryG4CAExsuF58+fGM5nUpBqpc0ijZgIMeEjdCiMMsQSdWl34g1Wiugm0GpJ5vVJohzT7LLHw7JrepKLmL4j6YnkA947dvRoNCoq3OToreU0PtHt7+D/S92f/ki2dOt92C+mPWRmDd193vEOJC8pUqIHkpJBGRLsb4bh/1KAAf8F/mBLhmHAhmVIpAELGmzTlHh5ed/hnNPdVZWZe4rJH1bEzp1Z1f2e80r38uU+6FNVmXuIHTt2xLOetdazchbPTWGD2sbhigpNjCJBaoxFa7mWdgaU5ek0EJRlt3/H3iqWvqVpjgyniWGaOX76ljCdyd+8I7dSzThlULFIVhqLMVaYoKzQ1hCyhO5Ua13YcAHh23oWIS7EEPFzYJpGlmUkxwzJE+PCOI6cz2d+/atf8S/+/L/j0+fPaNfzJ3/v7/Pv/Hv/mJ/+yZ9hXQNhQaW4MvW5eDdULgYvFqMzORVZ1Gp85bp/hiiTsLOOTLqq/1AJQm0t2hq0KqFLdexR5W4jrnE416CNRRvD6Tyw2x2Yg2cJCWXANS06Z87HFxSa/e4dfgl8+91ncsqEtKBtwmFoGwfJ4awtheMUwWS0CuwO98Qgiayic68lHEcrFIa22zGejxyHZ5awiJpWzJxPL7y8PNP3PW3TsXhPikACP45olTAGhnni3eMdOUT8ODKez0UatMM1DZ8+P/Hug+Px8Z1Utk6eeRS1qdZZyIH9vsM1PZNeUKbBNT0xjKgkuSJZabTRzOOM1gqjrXiifA3na5lnT7drGIaRw66n7Xvm45G7+wf6fk8IC2GB0/nEbtfjfZFr1fD0/KmoJwUIinGccS5yOOzJRI6nF4xuMK5ZPaHOSljTMAwcdju8nyArQog0tiHFxPl4ZhoHjGuxtiWlzLt3737U4vGHt10W1i+FEqx7vvVdfo1etn+9CgNYf785x0r7X+9/a0BQ2X512ed23+0xOVcw8OUwCcr3F8SQV1b86vbW9uWVPxD8KO1/C8S8bVzk9XQ5b4H424z/LZNdL/yDgcvaterKPnvNcm/7bXPu2kaui8FVD8uKDbQuSm/X/XpruGzvS6nqwREgnlVJ5OXyON4C/vWnYIe0qv7EFFd8UgnSW0nUCvorEHzVXTeGyWUMbMN+Xo+5+hhzeZZrtEMhxSh/X+49X13zzb7/AdvX3tl1K89w3bfcVK5GCJfnpbiE3tzuv0XVSl2Ou77WG+D7K7d05Ul4ywj4Ef2y3ed37f9XBvyrOg2wAtf64tRQlPrd1hLeAtcqZVlVRkK4vDB12xbDqlKf22ttB1v1Btx6IirAr16BmkxcO6gmCNf2gng0amhRleus4UJKqSs5z1vXWz1PLprkxoino8p1SgXQixJPbWc9V034rbkDtU+3XoDt5HlbxKwmE6cyUZDh06dPhMWD00zjSJ5ncgikYsDMs+fu7kEY7pCIpTjR6qWJ5bkohbGS/JSSAPAYo0yMOZOiR1tRFPIpk7KisY0kM5Zn4dPC+XSibzoa6ySeXkvNgL7tpA/L8/XFoxNjEJlJRIc5p7wmYfngudvtiFnxfBo4jzMqGUzT8njYs9/f8/zpM+b5M9O4MB2f+D56lrs7drt7jOuIeUEBRhsa16C1xSqLskYkOlUmpaIVXSYETST4IJV3w0xKXoD/tDANI95PEncfF07HJ37zm1/zl3/5G55PA3OE/bs/5u/8/X/I3/0H/4jD+3conclxJpqE5AvLs0gl/lpZzTIHrGnkvAqpl1DX63Ue2+g6J/GgqA0rolBY48AolLGcp5GmbcrYM+QYMdYRYqZBs9vtaduuFECTZDVnHVo7cpKiUDkFUvJY1zKcF+4fHpnmER9nlAZjMssy0rgdXdvI2AwLXbcXpk5L3YQK+slIAa+7AwDDeWIczlL5NutSsTZgjGMaJ9rW0fV7vM+gG6xW+GUhhwHTOlIMJD8RvEMlSY60bYOKUTyEKfLzn/+ctnVEv6BQxCCyrMpo2rajbTtiSqQIzjQ0rkUrLWFCSuYV2zRM47DmKBjXcjw9QVbEIDLBMSVenp/Z9XtighjB2qYksMu4d430USYzjgPGOIy2EEXDWWmRYNUmoY1lmEYyIq+MsusYXfxC17bc3R1Y5hlnDfOcQUk+jDMOosyByzxhtWGeJjKJl+PTD10O/rVuv3sRLOv6hrl8HTX9+22vwPv1la8Av7CHNSH3EuqzOdnarisAqMVje+sF2ALM1/e8ZS8Vueh9C4h87ZGuBQmlzRci4dJwvRIfXzWg1ju4Bvdpo72/BcsVxK51dnJeK45/8So34Liy41uSrX53kdjUV/1X90upAuULg2ttqWqtNgUza8hQ3gJijVbXghDbZGDpV3MJ6VIlrFnBqkBT+uXWoNziEynalYlFMEVyEUvuXiwqcul1JeTX3fZ6rF4MhWtjS6u61l22any8yk1Rilzwx2o8aX2lpLRVZvyxoPR3bdK31/hy2+YvHbP5o0R6bUE6V7j/1ljlK/fwlndr2we35/sh26vrv97jlWH9Y7YfDPwrgK6N2Srh1AFQY9nXyVZdNO63nVDVZy7x8Poqibe+vNWYqDc3z/MK3G/Pu5W3rCFAtx6KCri3Rbtq++u/mngLrGFH1dNwy+QrJTHGNVZfgH9YJ50qsbll7uvx2++3Scf1+tUIyTm/KthV2zGO41rNWGtJ7F38wvk0EqYZpTLT+SSxyFbY8/MwkjQENLqxZOXR2tD3e2KeUEaTk8falr7vWYLH+oGmbUkpkLMu96JBZbTKGFUlLhMhR3SOov6TFSkJM6OtZlomSWpMkZS8eBUUEoqkoGsdaQn0fYlvTxlndEkG7qTqbZIcg3lZuNv1+BAYh4GYA4kGa1u6xx1Nu8c0jpePnzB54PTymfH8mcPhG/r9I7a1NaASay2N29GY5lKMTClSLkW4EHCd40KOmRgW/DIS/EJcZqbzRAqZYTjz/PyZjx+/49On75nmkYhFdTv+5I/+lL/99/4BP/3ln9IcDmhry4JsEWdwwsdUvCYy1lIG44qSUpBqrof9bnVLai6gX4rzSFE1aw1ocEYUY0iQtYB/eecCKKkGOc6ThHYpjdEGbcQT1e0SWSUW77FW0fWimR9Cpm13nI4DjbWkFKRGhE60jZHnnSJEuNsdGIeBru/YH3YM44BrDNq05DJ+p3nEL4GH+wcATqczH755h2ssOSIhYwaOL5/QpmHnLMu84FyDypEcAjknjueRh/t7joPnm4dH+n6Hn0WpJ/hE03e0u55P33+Pz1EUbFLk/PKJnBXjMHJ3OIjHLXliTHz37Uc+fPhA71rmfEbljCHJmG+kKvQ0jbTtHsg0fYtPAes6lmnGKLi/v+c0nEkhSVtCEC/Jvgdl+e673/L48MDhcOD5+ZmsMo8f3jMNsygwGWHxp3GmaQSQLF7qM2QUTSfyoSklYrKM04gticHzeCJEUdualoV910ISkuP5dMI5Q/AzxlkhKMbxRywdf73bFsx/eZ8auw4r61fBB3wRWP4uk0D9rn22bVKVBRfAdwGrr0G0gqu45S8x/cJasp73hyz0F6bzdby91hqNFuNgbX++OlorXrVjc8Nv9MHrPtmG/FwZBPk6rIcNaH3LQFNsgFt5GJfH/LZX5Rb0XtbNXMD/ZSylpFAqXe2nEXENnS85fVBCWzZk5isMofMG+F/GwdrDKV8x/vXYS+7gBfiHGKUGzPpPiIK01jgqhZ3eAJXXLPNbPZpv9rk1EJARJL9cAfzK+F+Pwy8z3T+IxX9je9PAvbqDr6t5XRxaN6x/vng53mp/OWF9e77gkbo2Br7kbbn9/NVnbxz3e5tJP+LAHxXqU8FvVcWpTHwFq28ln273qdZ0Zbsrs17Dg6ohsGX9a0dtwXg1Lm4r89ZY9yrDuTUKKkO+jcmvrvGtoXIbolQ9CvXc1ZioRkT9XNogDP12cqv3W/evfVTDlIC1P7YVe7cFzMZxpG3bK+nTrfFVwzQAlnlmngZyyiLdmSK7/YHh+EIKM+M0ihZ7iri2kUJI1uKXiNIWazXLNK8vesqijU6OxCyhHiorSuA4MSZaoyXxFo3Sd3JPWpMjmKYjxgVtHT5GKdxlDI2RkBStFTH5MtlKESytLcsyC7hVauNGvqR6+TpGUub4/EIMM9EbYIexLbv7HtO09N0dn3/zK0gLx9PAp29/hbEf6Xe9jDtryVlhrcNpCe+q0nmCwxXkRIqB4GfCIsWrxvHI+XTk9PzEdJoYzxMvx2emZSZrjbYOu3vkwzc/52d/48/46R/9Md3+gG0bnLUSux9FUchQJDqVQSkjuslkRFHG4adYUE9k5wxOaUKqPVGBBlyKd1FkPMu8og3Gapwz0qdaQL/W5sLg1AnBuFK4LRawpTBWE4LneIxY22N0pu8P5OwhS25DHdPOOaYpSjiVaVAmoHRDxmJsT7fb8/T0wjc//Snj+QWVGwyavu83C1ym3x3wiydEzzx72naHUgbnGtp9yzSeMUbRdpaUIHhP1ztS3INSHE9HWTx9pG075mnifD6jtOabb37CMAwcjye6tiGmTL/rubu74+npqfSV4927d8XgFuUs5ywxJaxrGceZ/a4v3q+E0QqyZ548OZfcnsIUtdbQ3d1xPpf8oBzIaIxVtMVTGWPk7u4OVGaZFiEcrJXE93khlRwdbR2ZiLUNwzCtTGUIgcfHRzG+g+f5+aWEbhnmZaRrGsKyEJMUHkRlpumE1MewzFNAqUsI4R/iVsdjXStvQWX9bh33m01dfXANzq8vgjDgeQsq5DNV/f5qu+/2nJvTqpqIW74thvrri7HuUF7Fdd67bVwFrvXzV7Ao5xUQVah5C7Iv56ge3beA4aZ9Sl19n2+bXdtxA2gugGmTpHvFUOeb+5GfYqTlFSzXDqlt1frC+FNZ9CyhLsI4XzPwcopNkqdKqwFZj5O1Ll0fV9bVenyVzZX266t+rR4UsjDROkPONRTpAvwBYepjXvtW7kKtBE5e+6yoxpXqvTEWueAyR26f49us760xt3lmqj657WcX383Vs6aEiOUs9WPSxQi4Jl/rEddellug+1Xv0RuGyKt9rn7ZvOgbA2C99hbwX93btXfp1gC46rX8u1n6i0fgxqgvRsfFt1b6cnvc5jrrXEG1xfMbj7DOMxtr8suP+ovbDwb+tTPrvxrzXhNka7LqVvUGWD+rYTlb5ryC/cpmVzdgZfwruAUB8V3XAQIw3vq8Dsia7FvPUUFzbUdN+p3neU0O3honTdOsx2/Bdm2fJM1tXvry3TzPaG1o2+5KGrQm+lbPwNbwuM1jqH1W+7hOOnHzwhtjmKZp/XtZFna7jmmamKdxjQW8e7zDfxrJgG0bTsePdI3h6fNAY3r2XcuUPCDynCkmaK4LsfmUcFaRkyeBgMCYyEpCtaIyDHPAh8y+bTDa4oOEGKis8dHTNo4UPK7tSBm0saCQ8BFj8SERwlgWBw9J9OWFgS7GkhI3bWXgQwyi7OIavvv0wrDMHNQ9ISpsSFirabsd3S/vJCbdZLL6nmGYmOcjx6cjMSUUAraVziWhFJlsQxS1lBhIfmaZZ6ZZwk3maWKeB2JMpBTQ2gGGaEDvdrj9HY8ffsqHn/8R9z/5CfvDgxTBciKpabIiR2FuVBIZ0xwDOXlh2gygNSmK8ZGKC7Wxhvtdx75teR7HAnKqwaqkSJpGDKq6ABoDWupD1OcMyPVLcpy2DqVNyWtxaG0LCefIKRCDKDh1XU8ImZfjU5EHLV6hRZLf9/s98yKx7tZqTqcjzjWczwPWOvr+nm+//Y5M4vP3v8X7ibvDO5pmzzAM63jPWZWCUhFtNNa2kC0Pj+8YxpHgj+QcOH7/TN8faNueEBZ+85tfcbe/Y1lmmrahcWU8LpdK3sYYXl6O5d22NK5lmEfQmpfjkQwYKy768/nM4XAgxsThcCDlxOl0wroW7wNNiLi2xRkr9TLEXCNlxbuHB1JM+GlEq8wyjczLhNYGiDikwNfhsCdn8X7M88xuvyvl3TWLn7FJQoh8CDjX4JdRwrA07LquiC5IKKbMP5L4v+t3ZZ6VKtM5JpZ5puk7IDNPs/TzIvUzrHPYMtf9IW/rGrv+/prtFAZ3e4ystmtyrL4GmzdXkB9XmCLLQluVYHJFy/X3elhlUi/FnCqg0qok5264++1P2DDFWqGrbHD9fwFeF4NErSD8Cm6oFQ4D1+oz2xo5xlYFvDeq05LlXpWS+WUbArLpurz97FUfVpomkXKUaug38em351MK0CUMY2MFXcJHFNpeK+XUMVCNwm29m9v7kjCbTCrA/6IwtDUqiwceUEXooZKGUApwcWG7V0MhqxVoSmGumjdwAypTzW24emRyn3DVRzHEteq7X/waylsFTmSsld+uwDWb674e468NoptHV9u6+T8JEuLhr2FQVzLsa4L0Ncj/fVj/H7JvBdOpFNuU329uJW9C/K7s/osP7XKty6BWSB5dOckbhsvmrd3gNqmWcw3+oXjmb67BOo9tXqQ67pHCbdXgurgFL+fOIDUc4PIi/IjtBwP/CrTroKzJuds4//p93acmsG4TWus+dUspYu0lpGc7mLageptAvMpKxYAoAl06pL6klT1XSl21vS6O9e/KNNYJsnooti97rSq89RyM47iJJ5TEU1EmubwU25CgKvUpfSVMd86Z4/F5VTSpRsVtDP88z5xOJ5SSBN7quaj96xonYD8HiTs2RgpsTRNN2wGKHCNpWZhHkVB8eNhjFChqgZAEShKPTNFm9yGgjRE2QoP3sSQqB1mYlCLGhLOiJGScw0dPjpG26SAlGm0Yh2dSDFK5NysWH4gq0zQOyjN4fhlpraNpIj7IhKONwRpDSBmVKPHWCWMtScEUPId2x+k8s/iIT5nFB5yxGC2JusY63v/0FzgnADh9/BZlFNFHQklqTnER+bYsE21YFvy8EHxiGQfCPIonZZGaraBw2mB1QzIatzvQ7u5p79/x8OEbDo/vaHd7jLVoJ3KkRhusaWisK0VZIObL4gwScWPIOGOJIZKNwqRADLqwXJq7XcPj/Y7ncVwn/ToelAKrTXk2YK3DpwoRCsvHhVmkfJKTsGWNk2JtUpyrx2pHd7cTj41RaBNJfialmZQ6crLMo3iH5mliGKWwlLOWrhPP1zjOxUhN9F3H/m7POA4FbFoyEHyUyXaTAxRSwkfP4mec0Tze7xinZ3a7HefziNIyPoyxnM8j796/5/nlM5HEoRdG/u7ugfP5xN3hQIyBw+HAPEtxua7rCN4zLR7XigGjspAKkoAXyVmKsPX7HfM8snhfJE4N+10POTEMA8mJ2kXfimpVDmI89rsOrSSXZV6EtT/c3ZFiYJ5GOmMZ/cTDwztyjGilCKXqs/cLrlROjiFgbaBtO04nke19en6h60R+9Pn5RONalNJ0XY81hqwy/W5Pzoqm6dj1LdM44iWZhH3fMS0zupeQNsiczscfuhz8tW83xN7m82t3/63rX45RZX3Nr4/LNwyf2gCAK3oxV3R4aVDZdy0itu67Od1Xb6jygNWAL1j3DeZwy+qtoLPsd4F2bzGEt4ZRMQrevJfr7S38pdSl6asds364veo1E30bdvT6vJtJ6c22XBsBpQOu7v6W6b86loKflNrcdu2bawNy+29LeK47l2uu39d+V9zcX+J2BNyqFK2PrIzD6+tf1HvW39fzvwX03jJkebO/f9d2dYhivces8qs+kit/+Rq/b8jPdv8v3UM1mraG2Pb30rhCyVwbQ9vmXF7114W3ftC2eZ9v27ex8darr9/dXmA7b232ffWKboyFavj+mO0HA//KxN++WJWxr2xdjbGvlW+3FXMrmK37CvsvC1ENu8lZklWXZblKGK6M97aoFoBzlxCgOhC3Wv2VIddar+E1W9lMuCjjtG17VYW33l8Nt6lFt6ohU42FtnXlPJYYL0ZPBXQ1lCmU6qjVk1BzFkLwpc3mohhT+qhes+Y8rAW/itJQv9threb5+ROfP32P1kZiGFOCmJmXSOM0YRp5/vyR4Xwko9kd9qScaKxjPI/EmKQSacy01jFOAwlw2qK0ZQmJTAl/QUExXkzKZB+w6sJ87bqeXd8zDCfmReoFxKIaNPmZSHn25TnO8wQZxtFjTMuCaOO7xpDPUVynKa0AmmIE17j1lDLJCzsvzH0kZYNRGkXCWMPd40/IymC6npenz4RZknTneSL5QI6JmFMpcBXodpmwRMLBk2JJRsOQkkbrBtd2NPsd/eMjTb9Ha4vrWsmRIJXkZ0UmSdEk0+GaHcraosQTS+KmtI+UUGScEhCMBUkQTSiVRanGOnqr+LNffsNffvcZnxKqsINaCUOlRJyIlBW+VGiNOZCRsCzIawXQDAU8O/lpLa5xkiCaNd4vGGfQxjGcJ5GPtA7neqxS7HfCfHsfIQcaK4nCi1+IIRQlnyDFskpxLde0HA53TNMghntxX9ex0O965mVinBcO+wNKJVIIfPr4iW7XQxLFqXkWBaWwSAGwT09PPD4+sswLCU0ImXEYmaeRMM90fc/xdKTpWl6OL7RdgzaaZfHc9feonIQZbzv8ckIpAwjLOo5HAdTW4GzD8/MTu363GvTTPLLfHyTXBo1xinmZSEnIgpgCfbfj/s4xL1IYr3EdfgkkpQgxkGNAK9HpjymL4QyczyN915CyFPKKIbPrW7S1DMOZHRBDQremaHuLwdQ0UuRsGhbISep57HqWeUYvI57EVORxxQgK/0Yw/nW7AA+ZdGoNl7q9Hb/72ij4XdsFSLwNti4MoOI16Mrrgn0LeKsX4iumwau2/ljgtG3H63/lnOW820RepdSqaf67rrn99mJ03YLdt8FiPYG+Ae5XILyed9setTGNVpvj1sB5/ZyrUXVrAF4B2O3fm8+3194aGpdLX46/kKHX+8r3X+7LemxKVdEvChmVrlV9amx/Pd+W4Zcmfh0w/6DQFd4a7V/Z/w3jSdqzMWJ/7/F7Dei/sMOqqPQWEbC2U3bm1d2VPly59TeMiVfegc121WM/3s56dW/rOOS6P7ff30aI/JjtRwH/GqZzawBUNZpaRbaC19phFbhugfl2v2VZsNatzHvdr16zVqit56rngJq4y5rQW4+t4H2bILz9vQLraZquwm/qz61HQ+J73Wq0AKtBk0uhnJQqsLqcf6vhXw2Q2i8hSJEm5xogrwAqJYnPrvsuy7KGHtV6BPUcTdOglWI4DwyngfE8cTjcS9vnieAX7u/uSX7m49NHiYu2DQ5omx3eJwyanEWe05Z71kaX2HMjoRIechZQ4EzD0U9kJZrlzjnCEjFO4tb7thWFlRhAaaIgOoy1hNI/aFAGljDTO1GLatueaVqQ7tWykOsMlEIliD9WF8YqZ1H+iWTGktScvCgBKa2Lp0KUVTCiorK/eyDmjG12hOjJ2kDOqICEvhgrDHh5h4L3WNcICFRapDfRhARaWZaUiDlCiuQQSbm6tQuDnRNaO6xtsU2LLaFNymhSlJASKc4RsVjIYORNX92+OReDQCsarblrW/7spx/4rw+/4rvTQOTCFmqtwWiyEm+HtU68JCRUUqDr2EtoK+C/MVZCkFxDLFr+IRZ96ySMVQxSP2AaJ+ze0nc7xvOZlALDcKRtuxJ7m3l4OHB8SeSsMMbinMI4S7/vGJJnmRf63Z7WOU7LjI+BnKUqdL/rmZYZ1zha17DMnhASYYk425CyJqGJIXM+Dux2e7RSzPPAft/j50BOlpeXib7r2e0aclwwTcfj4wOZxMvzE/f3jyilOZ9PPD48MM8T2c/0XV/yIcRT1O/aYnzNpJTZ7++YlgUfE8Y1ZDKtdhzsXgzuCNEEUlqYZylK2DYtJluapufTp88s3tPuOtCKHCLkiCKIt26eiLGyUWo1/BOIYdl27JURAB88wziwzAt393tiCGQMyzLRlCrX41lCfhYvil7ez7SthSSGoITbtTjXMk0jbymD/KFt10xs/Vuh9dcURLax/9dMLtwAknr8m+Ahb77+wvEbQ0BIwAsLe3vdurC/Sa2/dRev3B0/5KDMpVjVSi+viF0hymlb0K90DVP5Iee/bsetsfAK9FNBzgZQ39zfq+dR8fPm3BcpTwlHeuux3wK/yvK+3cZUxpG+/M1rs+zLHhwBnddCJtfA/zZM5LatF5ZfcFEsVe0r+L/kSKTLRUsXaV3Dii7zxw8B/bdj6scAyFvGfzuub7evGZG/n0fiDWZ9072/G/y/3m7H4fb3rxktF29Qfb1+D+T/1vnKuTLX/Vqx8ReN6R+w/ShVn62kJlwmvy04NsawLMsac1obWo2D6h24FLgSAF8lL+sAcc5dKQFtE0kuCbkC/oxRos9eQyZK+2xR0ahtr4ZBBfHWWsZxXAt0bb0RFeDX/IH64FNKqzfics5UQLwtgOciaVXDjOp9aG3Q2oj0Y044Z4XxpoZaAFXOq4Q+VLnPrUFRf1qrOZ88z08vONOy3++ZSr/v93tiXHj6/tecnj+TQib4RNftadsercSQMi5CmAkxMfvArtuXSr0SMz6OEylmtAOlIlmL2kiOXsChKTHmWrgbXRIbY07kDMY6UAajioY84JSC6MlFYUmMMsXpfBbPR4iF7TFIeLrIleYkcd8JSYCLOfF0emFeFmHtfUA1rYDdHAWQ5SBSiBp2uwM+RMbphLUNzrYY04hHwiiykmJQWksiZ5UUVYo1Lj4UzX0TIovPEGXS8VlhsYRlJseI1Q7rdpi2pWnkPmp8qNYie6p1IqZZQqGSxmRdJneoi7XUVJN3onOW97uGf/Rv/Sn/t//i/805ZbTVNEYUeUIMaCfvUcpSRVJri1ZGEq6zGF0oMRBiSuy6RuQjrXgsjJJnqI2wyE3ToELC6D227Zimhbu7e+Z5IBOIKaBDQ06KVLwMWokx3fc9u13P8/Mn5mmgOzzwfD7hiudrf7hjXgIheMYiK9npFr/IM+vbHZ/On3h8945pGfn+47e0ruH+4Z2E2aCwjWMpCcApRNrGMJw+472laTsSSVzUCQ77e4yyaKXpu46UxEC1RipGhxBR1hCSrCIhzDilWWaPdRIa1HU7lDGcXo70fUcsSl5kMcZda8h5FHUlFUX+NYo6EV5czuLnVPSuwynDNI7Mc+KwPzAMZ+ZhZLffs8wLIUm+yeKlujbnhDJSsMwYyzxL8n9OmRQybuc4n08oZdE6Y4wkj6fkeXh4z3e/+bUkCWvH3d2eaZrouv5HLBt//dsNHt8seNvQjevvt4Adrlm729/XrQLRV+RgCRZQW6b1EkqwksHbBq+MsIBXxRaMbWHlZUEXAHMrbbkF6huGW22/ut3hNTCqxPAKZta/661fchJUBdqvu+E1+N303+8EIJvvv4SlKoO8bb207XLga6D3lXP9znZextGF7aew2Osur268Pi9u2pJSug4rqe3lcl5p8/b53/ZbLu26xM6/Zn3l8wsjDdsxJR6Ky86buy8/vwz619+ubNrr/X8XmL+EZF3G5jaMrb4bP8QT8EOB7da0WhOrcw3zqRPEW1Yir55vxZi353/rsLda96U2X7WxPrubc2wN5a035a3trxT4V9AsyXzLGq5S4+K3Kj81rKYC9wqit2o4YgB4UtIlGfYiA1pDhap85Vbl5lKVT0B03b8m0269BMBViFA9Vw0dquFG1WCo97Xb7a4Y+/qvhvdUFaOaCAzC9lejJkbWRMJqGCl1qebbNC1KgfdLSco0pU8M8zSjjVq9HF3XrWE+tUCatFNyBYZh4vuP35OB9998IMTINE0YrQkxMoxHvv/uW1SGGBNLTBy6Fq0kflnrkl+QM8Y5TArMfiYpCDnSOcM8nElpQWUn0pzKiCGgNDFJCE9rmwIYtQAh12BtQxwHiW93jrB4coam7wl+ZN82RXNek2IusYxRElpTScpWc0nGknwClCrsapSwE2t4Ob0wTOIJiTkRc0anTNRJwn20IkYvibgqF135BqLM7K5tscXYUCiyNmQkjj/nhK5rrHIknTHaifciB1ol8pgpBGJcCF7kGo2zklSspAKxVWC0QjkjaQI5yXVSBjSqeFTIGpVA61zY30vCvNEZ1xg6q/i3fvmBTy9/xP/rz3+FMwbXNGTAKkvjutUDoK0lkiAplDKSE6M1SkssvXOOefI4B9o0zPOE0oaXl2fevX8PZJyzhFJ0LaSMNh2Lt6QsCdof3r9nGBYW73l6OuKc4Xj8zMPjA6fnJwlLmz0pKrqulzoA0dO7PafzmbZt6fuWXA3pJMxXiJ5xEC9WiFGK/TnDbr+naVqmJQAakZiNpOCxJhOWkcNdx93jI8N5Yn/YE0JgWSLGNNwd7hmGF5GytD0qC6hum1aSB41jt9vx/Pwk8fWuRelSaMw0NK3ldDqhrcZYg86iBJXKuxAXITZE71/k72KcyST6vhMvxTJLWJIXhR6wNI1BO4vre6ZhIOdE2zr8EOn6Hqs1qoTYQYYUUapBayMJ1KZhvz9Ibo1znI8DS9eDgsVLPtTTpye0afAhst83GJ1onGFeqsb5H+aWS7i0tPGSV3Zhwa5Qd/lsC/Qu8da3zDtsQXxZyiv6v6p4m+RvXa+hV3CxZXevAH3O6ymyuo35Lp61ddmvC30iX4HC67NemPvth9dAtiJ0fUPUUQwWo1+H9Gx12N869a1dU395zfQWoLX1InwB5F446vqMire/xrSXdlexgut+fm1wbY2xDRG7trMq7tX2Vmb+tUEp+2qkpk1SRSVGvzYehOnP6/W3bQCpop7XugmXdl/upT7PLAO95gGsBtxr+c8vsevSRa8Bbr7pd9kSm8d4s6mrB34ZI/qKfH3r3+1p1p9KXZ17rcJc++q/J1NeX4ttCxSqvEuZhNQeesO8kb9Kt23nh/qOXO2dM1UJVyP3tRrj661s8lSv2sNqCCq2Y+gLBsQNo/967P5+2w8G/hXoe+9X9r6G3izLclUxt4LqKukJl2qz9TMJ93ElTv4i+7ll5t8aXFu1nQq+K9ivdQaAVwXG6n41dEYpteYg1AdcPRaVpQeuPBH1YW4TcGvCcY3F39Y62GryVyUhpRTn82lNYoxxm5uQiCmAutQaANa2bh/4snhiDJyOL4WVdSit8NNC17WQE36eGU9nltnTKIMnk4zBtg2zH1EpYZIikUQfP8nwG5cZ0xj8aWHX97x8+gRkYoY5ZrIS5kuXJEyp8irVl9u2IXsvEywSHiPJrAZUIGdxWc7LwqFvyyQvg14rCQ+ZF4+1DTknnDUMwwymqjYV6bCcscbg55l59JxHT4gJ70NhNxXWGNHCry+pNsToUQqcbQgqSEx+FiPGdg5K0jKqxAzmUgQnZZLPpZ2gHdjUEoMnhAlvEssofeJsI+FG1tC5FpUyjWsxXUM2lqwjmiRFuRLkrPHzTIpIXwE++MIwlsRw57CLxznDrm+Y/cC/+/f+Jsdh5LvTKInCCmzjJFk+JVzjiFlhtKPv2qIeJbkoaFnsrLUY3Uj+iGshSdK1MQ7vF5q2YV5mhvOIcxa/BO46RybTND3zJMniIS5open6HdYZCV2LQXTnQ0JpR9YwjRMaiFmhkuFut2MaB5rekJXhOJ45HBqMhWVeaBoZy9M0i1GlHZ8/v9A0FmuczB1G9OhjXDAqk7VmnCPzx2c+PH7AKofrHaiZpmk5n09M4xlnNTlmbGNpnRi18zTS7TXTNGCt4XDYo7M8b2MdMQhAOuyFHFA5E3NmHqZiTBn6Rt55rQxk8WouSxAFK59RKUAK3O17Xp5PPD6+w7rM7H1R73GcYmKcRg6mo22kkjLJAxqtHTFEYkg8DZ/ZHw7sd3ecTmeUnrFWMwwTxjpOpwFtdQH6O1pj8TFgc2Y8v9C5B6Z54fl4pil5BX+wWwVybyx+l8Va9qkLePnrih1989SbuVaOqNfLF8CS82V1lgvc4qNX1HNmwwrnm6/rtdaLXYBzzukLbc2rnfH2up+5vuC27ozoi4hq0IVFf+vfG7z+q0tcG1avqVH1yg3ylVOuIPcmdGHb5/XEGx9HfRSvLr7pgssYuVzrNXv+GgTe/iPlq/OtxievgZnatDGpjEbfPvx6pY2BdemD639f2q7Hfv3kCmNvxtTVpooxUAziW/Py1ph6C9xvf371KW8bdHXiAszrM/7yoP7i9toA2gyW8usKtldkD9UUen2+N5q/YeVf31o16HIxAF4D9HqO6+NY++KrbP72/xsj4EuG3w/dfhTjX4ts1TAZEMWbra7+ll2vjHoNW6lJvjV23jlH13VXcpYVrNdY/sreb8N8anu2A94YswLybTGxGrNfJT23eQD1uOoxgIsk6PbYrRFSr1mNnC3oh0sysFIXBZ6an7A1grZKRdVIqG2qFXt3ux3A6i0AViMrhGW9R60Vfb9nOA9Y5+jahrDMTMOZMEnhJ6xG2YZOw+FwgOh5fCfJkEsYJY4+RNq2Z54CsXgVtFYMk8QPaxQ+eKzT9F3LNE6EkGg7UTSyzpJilFoAy0zWlpTlhcup6PQrmKepWMyKJQRcYzHAPHtQ0FgryYvjuFYUDDFI4Skk/CYiIQyLD8xTYBxnwuzJCULMGKckHKdIqikUquhfyTqbsM5ijRTQMll0uo3RpaCVJA7nLMmTKSVwMkGGGEkIu6t0JuNIZPZ7yRkgJJHP1IamcaXqq0M5K3kFBMiBHDUpKqL3KGsJWRKofRSJ1TozVY+QMZq2MQRv2PWOLmX+N//+/4j//X/6X/DdecS2Lca5EqJUeCItBlAscaNoXcCAQWtR/tn1d8QkFae1MXRdj1IS6rQsC7vDnp//7OccjycO+07eC615Ob3gtGYYTkzziDUdSu8AxePjez49f6RpOrq+Y1k8jVUM0yCFt6KncZrz6TPWOJZhxqeEsS3DOJNS4Bc//ymfPx1Z/ML944Fx1MSoUabG5GZyjkSPeHFy4vnlmf3dO9puh3WOl6MUz9rte5zTnOcRGYbCLobZy7hOkd2+I2aRaCUnpnHk3cM9wzDQmB2n00Df71Gokhg+E61BlUWh71oa1xC9GBjeB5QyqATKOFISwwwSbWtotMI83OH9XKRlE8s0st/v2O+7ApwsIcx0xpCVxnth/KclkhHp4Jwzu31P33f46Dm9HLFW8iQiJWxLiXrT8/mZrms5HPb4ZeZ0nul3e3a7S7XSP8Rtu7BvQ9W3310W2csCfh1XfaPQwnaft7cvfneD4rfYpkxtG/x9DRSvmFGlVlb77QZcfrzJ7r7RrNv21/AdtHgslLpc763wDVYG/AtG0tX1bkFIyaHgOhn3dv8LUK3Iup75OrG2AlluGWWlNnH+t+2vGPo6fOdrLOnFm7DdP5FKLZetx1/kPvMqO7q2dzUs1XpfGfELyS6l7+v31Fj8S8/KdV+3+a12Xxs1ZYyVrqxtW/unGsJr9908/2rcbA1drsfH7e/XDP/rsXK5rdfj/1Xfby329bAfBmp/KAheyYC1cN2rll6dR73x7dV3my9uPYh13zp237rv7bFX51a33kyo4b9fAv8/1gD4wcAf2ISkXOQwK/Nev68Nqfts2fMaAlRZcO890zRdJftuDYoKiOs5K4s/juNqFNRwowqg67EVvANrBVxx9y/rQ9jG61cDRdj0ZfVMVI3/GtNfk2zrfvWh1VCkakTUe93mDFQPRT2mtqUm79Y+rP23DUGquQr1HruuZxwHWtdwen6mtcLW9k1D8J7gPfM0sywL948PzMtCY1tUzrTa8PTyxM+++cA8jFKUqHGM5xnrWlJSwsjv95yPJ0JJZlQoGmXQWvR8QxRXYdt2qOKFUYjnIObEPI+Sg0GgaxummHDW8XIa6ZuWnGGcZwEcKRCjL8WgNM41WKMIUdR6cs7kFKU+gNbyNqTEtHjGJeC9SCTG4MlE0MLiK7SA/5xBWRShvEQRk8A2EpZTJQ0lPEOVuHgNWss0vZnkVZTE5kgmeIW1hjZ1AuBCACPP3zWd3IcTRl1pLcA/KVKoKtcFoUfRy44olizqLNVwFoNE8jnabKETJahlXrh7uON//R/8A/4P/+k/5SWIV8YoBUbArNF1sbLEnMu9ZjRivM6zx+iZttSmsK5hWTyHQ8+h61iC53R8YVCJxu3k+egM2RBipOta+l7AffCgVGaaBihF0aZpwLoGazXzuOCUYhhHskqk84mU4P7+EVCYpAmL55uf/IzvvvuOT58+07U957PneDyV0CRRHnp++oxzFm0y1ophHFLk7uGRfX/P/u6Ol9MzrbMEndjvdzzc3zGcT/R9zzyNmMLKh7CIpyqLfnMMUmRu17c8ff7E+w8fpIaD9zw+NkS/YLVGZ0g+cjj0nM5nVGFTX85nbGNJaKw20ifLCMrSOoPKItF3mjy7fo91ltPTZ/Z3d5igiH4mx4WkLNE20k4Sx3HCh0zX7Tgc9rwcX8gJlnFknid2uw6UYrcX48SZmmRvVoO32+2YzwMpyDvdtTuW4AnJr9WT/xC3a3ZZWLukZA7YAjOlrnX8K5Cq323P9TXA/7XvL4v47WIr+1/L3q/Q9Qr0r0DzFYD6H26r3sIVWBW97y8B/6t2fYXDrf1d7+kCPC4MtVIKo/QKfrbg5gr8F4DNxmggs4b6AOI9vWofxWP5GiTWz6qXtg6ba8C0NZDqvdaCh5fjYxRFte25r/rNXsbBFeNcWOUVrClRdwO1FqRElRCSm+deDY4vAbnr+0gr6XppX5F1u3mOqpBuXzL4ar+vXbLZvhTSc3WOLw2Xy/D/Kvilvk8/Ar9+jf1+8zpXRvTtuaSxt6B/2558GUw3Tf/yu5Jv9t/2f+2Pq7GbbzwR63hIBfL8NQP/LRCtoN1aKfVeNe3rxdu2JYS4hmbIMawgt4LjbXz9Vvu/SmvWOP9qDAzDcBXvXo9pmmZN5K3ta1tRi6mFrrZFqWqyLHD13dZDsTUsqkGz9UxUz0KdXGuoUX2YNeynJuVWo6A++G2NgxomVY2DbV2B2u9N06zekVCOAfj89FkMAjKH+wMhJqYlMA0TRinGeeKXH36BfnnhrDV9a6WYFkaKCCVVKglK0SydIyolltnzeP/A06fnErIgL4MB9rtOpAATKKVpW8c8TzjbSanzVPZVkFXGolnmiXEcaLodPgYOThRZlrBwf7hDRxlTdTmNqar5CBNfi2uJao+hsZZGw5QTIdcwCY/3EyHOxNiSjZNXpl9LAAEAAElEQVQXJiGx0YBVGoPCagUxQAgoC66R8JyqiKO1JMtqZcCZwtJIm1paYkqiKmQNYfb4ZUEpjc+grHgSmqah6XuMEyPCaE1GEUJROcqRHDPOGlLwZCVl2pWSoktJSVXVSFXCaoTFasA3BkuLMYq//0cf0P/Bv8t/8k//K47JsXip9GuMLhNHxPuIM2ZldoyW8BNrnNx7Schuu67UfpCQH6kQHIgxozsIweOnhVYp3j8+FE3+huG8kGJmWWbG4UTT9hir6dqe8Xzmmw/fkL3n5eWFEBWHx/d0zZ62bXl++oy1ihA92hiOx2cq+RxjwLVtMSAMplE467g7PPDy9AlUptEWv8yYppFiZVrzq3/1r/j5z39C17U8H09M04T3C3eHO47nE/M80TSO/W4vhb6MYbfb4aPHueayXKYoBb+M5iffvGcaz3gf6LsO1zSEsKAQCdvoF9rDga5rOQ8DKMMUBZBbY/ExsiwjOXratgEFL+ej5Cx0HeM0YFD0XQvFi6EMpAA+QtvuMCYwDKcyP1nmeaHvd6QUSCkz+4m+VTTWMc8Lyzxzd/+Az5k5RJxT7O/uGc4jKS0En9nt9uVc0w9dDv7at5UhZUO2v8F4Cov6GmxXULGy62WBvQa+b1/7rYX9SyDmamH/XTelvnLR33OrbPKX2dW32/r7bG8x/StSKl2+Bf1vH19R+AbIcA1kbs/xCrS+8Zlaw1deA/76dwVRtaZOzpJbVX9uawlt1Xrk98rUb8bZG/cn96HIWdcnwzqO3+6VV8d/6d8WBF55OijehUvzrtj/rXfj9prba1/1+ebYt43Fr9/LW5bBa5b8y73y+oxvs/Tbv9VVB9RrbpwLN+e7APuvNuFVe9f72PTxbZt/8Bu2beDalNeeoEuby29/VcC/svu3RbDO5/NGocesoLxW85T9LjJXcGGwt3H623ChyqZXcF5ftmoAbJmTyshP03RV9KqG0lxekguDYK1lGIarir0VYNd7qex6LdwFrFV/+75fwf228vD2BdgmF9dz1WObpln7s5633n/1EFRvQ60fsHoJvGeaRkmgJeOXme5wh7aS9Pj9x+8JcWFeJlRYsMZijeFuv+PcN+y6ltP5hV3nCHEmEVFaEZaAtZrOaT6NZ+4OdzRty+JnjBHAqrKiaUX2MYQEWfI0jDF0raNrXTHeGnxcCGHCOoPTWkDIktBNEpmy6NFYnJUKyp1x+BAx2gjrXWRFfS38lUpuB5KouGtb7pzj2R8vbnAtFReD96QY0UrCgcihkjBFKtWCl3ERQ0B5j3UdxlkwBrTGGSnGZrRFa6kVgBIgmpMkn1mjyTGQohfDIknegbD9DW3bYp0phoQk7eacMUqVioMlT8HLM4iFCbbWgUlM0yVXRmuNNRJW4orhHeOMJtGQ+Id/9kuU0fzH/+S/4SXZNWwjF8lbVRiNtu0LMScTlXWOmCJdu0OhmZaZkBKH/Z6cM35ZpDhd0zBOUll2mmdIiXE4A4plXlBaS5Kx1ZAjMWVJAi+LY/AeYzX3Dw9SqTkmDrs94/lM4xwZ6PoG51peno5rvYZxGtjvD/QPd0zTmfPJc0oDfduhjeGw23E6vYg3oHEcDneonHl8PKCNYpwGnNXE4FnmgDWiPGS1Y5kDu15in9uuZRgHnGvIScaRzD+BGBO7Xccyj/jFo7QhZqmhkIDjSUJrrHV89913+LDQ9z3OtkzTRN92UtV3nqVaMxowvHv3yNPTE/Msfdw4h9GKYZhAKampsCxoo2m7nmle1iJf+/2e8/nMfn8oBEGZi4zBWcm3GccRMpxOZ2zbQozM3uN2Lf2uk/oEbYO1ijY3Fxf4H+wm+UCyogiDrdI1gNVasZaz1zW0guvVdwX99ayXEI0t2X29/N4aEhVEll0U6zz0GgjdgjkoaYECT7/Cwl6DLF2Ml7cAyhYoX1jlXM9f3v+32EqlarKh/iLrux6/Xj2v/9Tms1zW2Lp/TsLmb4HjFahfH4SIVVQyL6UL8L66ry2ZvV5GiKGKdOtzqEBJwo8ldHeaZ2KIzPPMeRikhkimFDGUecAVQnN/d1jX3lrjohJJKUstlovtplayX62Mf+kVpVYPrlYFE+VLQnDtFxCPo1xDvM+phE6P5wFfyK15XrhIesr60PUd1kpoqjGi5gUXL5faDOwt8L22Dqohdzm3ouTU6c179AYy3j6XrSNj+w5dvGRfMhZuzvvWPregWG12vXk3Kot/S99v71bdsPybN/3S7tIT4jC7eZ+o41kA+5qG/QWyoH6V8+ad2bxX15/Weg0bg7r8nrK8W5kLaf5jth8F/CsjXn+vrPc2xr2y1M7VpNm8AuhtIa36Qm3j6Gu+QNM0677bEtwVwFftfWBV0qmT5Bb8b8OMbqsGxxhXhn7L6m+vta063LYt3vvVsKkGirWW8/m8GguXiSuthlCdfLquuyoIppRaC4bVa9br5Zx5eXlZz6uUhDOcT0dSDDTO8Pz0mbZt6fqebrfjdDozjgM6R4gznz9/5MM332CMxaczMXn2u3f4+czu0DCML5ymM0uIoG2JF06lyukjKUdCWqTAk3bEGGgbx/F8YgmZrCVMJsZI38qE6b2UZ3eNgH9rFMsiRbC0aTBK01mHVplExDiH1QZnHeP3ksCsgHkaaLuOHDwSCyPSlKq8iNYYrLGomGmVwhpFTJEYISyRHANxGbCtSIkqrYusYs3UtwT8+uIEP4uH1DlsI4o/OUeiymRdngkKigGpyYQYSDFAkkqvCSmOZZxo4yuzVWzSoLLEcos4kVTWXSaU2rxfBbTFmMTgylmMN2vFWFIWUqbrWlHHycJw7kziH/+9PyaT+U/+s/+GIRpQBh8KWNLiKUllQeqcxTZOckn2u/Vd6nc7pklizqs3iRTpDvvi/s4Y25CQMBkFDNOMcw3OKqzVRGsZjwM5S5/tDwdO44D3I/v9He/eveP7777Hz2einxjGCdM0fPPwnqenl6LPD4ufaE1D4yw5BPq2w59GDnd7jqcjMQWO5zPWCuP/rm8Jy8TDwz3H48I0SUK9nyb6rkW7hkYrorL0ux3jOGC0pWsdcwkfJGeWkLi/f8B7T9t2QFyNe63EM+aMGF+NlerByxIYppG+6zC2wRjNMJ5QSvNyfBajTYuEaAzyTOfJSziB0YUAyaQUaNqGrDTnQQw7BUjmdyQXcYE6Z4halcxDu35PiqLvH2KUGhop83h/R4iBnWlIuSUEz3R+obGG8XwsIgOZZYw/avH469y2y30qH+SUpXDdFjhnhS5hGypnVN5CHvns4mJnBezlBOItuKAlhFW7xGTXj5WCVEw4WfTfAOpXba8hRxUA5MJEbCuK3h61Ze0FhK3oqwKHFbRc2nwBo8VYqGfcgqbyuy5gdP1sxRevDRgBKxupYarhIvunfMljo5wrp7xaSIoNQ7yxmi5tfM1kbzelKOEx296SkNM1LKigznr6lDIhiCLYsgReXo7My8LpdOLz588SIugDwUuY8f39PX3fsz/sS75TK9d0Tm4zpaKFkyHIRWRuVWu/X5jmCyrNpd3KGCgKbilGLl6FGmpUujZnUozEIN7k0/HINM9M08jpdC65dE5IGWvJGdpOjre2PNsa4VrHTzEExRirY+UyplfQmQrgLJLPK17fGs/leVVDRy6R158bK+Fm/4sxcju21oZsnu76zikxhC771/NvgL1iFeTYQPC1Gepmv/U8m2ZebIRi1NZJgqLqVL5O1agr1scFvl/2Wd+fq4vkS1gx9Z26gP3Lz6JwtRomt56rUkMoS1jcXxnwr4B6y1RvWXi4FL8SUC/M/m4nOtEVUANsK+dWpr0y5FsWfnv+bcx/NTRqjH7dxnEs2vVxBdHbrTL7NUxJqUuBr5oXIK4/ffVdDTvaxvpvcxjquWq+wlZy1Ht/VYyr7l8Nk3q9rQtvnmfatr3KPdj2QUqRXb/nV39x5P2Hb1BoghdFG+c6sh/x0wRZ07Z9eTkz+33P6SiKKEprhnMA1eEaGKcJSIzjWSY7rTgPZzJVWSmz37U0jaXxPUsKpBwlNppM17ZoET8TgFikDHUINBqGMKKNzGyttWiVeX55YYyKh7t7jqczMVGq0KpVutBpzZwWGdwRtLMS6+8sPkdGv9CqjFHCwmclFRNz9JAUORiwpsT9KpSq9SAMokGfMWRSCGSUxG2nRNYOq0X9JueI0gaQyrQpBAH9WSZmYX4kRh+lUEYUfYzTZcKS5OjKalWGsVZirAaqLqFGOeeicGQgq1KrojyHKsNnqsqWVIPOwL1T/Id//09QIfJ//Kf/H4YYSDmjtBUwWSaZlEQq0ynHPI9StbdpJXm59E3M8Pj4QPQL8zwxHk+QYPEzCoXtmrXadhOjhFelhU+fn+iaHV3bgdY0XcdutycTOZ2lXsc4yDg+DyfG80C3P4BVnM4vGJ1oG6kabI0lJXh5GTAqs9uJlKZrGx7MA5++/8zju29IYWbIiWWaOJ8GjNYc9gdQmnmacU3LvHj2hz0+RqzRkCJ929A6g18Wog9oY8pCKIam1hSXvrzbKSX8Eum6ByRSzJPJaNfR9h1xGEEr/LwUFS4lSkBRPE4qBLAOVI3NldoSOSZykIrHPiy0nSRIN22HBU4vR6bxScaUtuv8aK0FBdZZcspM08JwPkr9ABSulSTe0/mMc2L4WuPY71qc2mNtK4DHaM6nI9b94ar6XNiyrWb5hQC8AIe3mEQuO69s/TY04xpsb8/zpeX0mvj7mhb5CgOuzr/eQ2EpL8dXwL9hTTf3K2dSK1t5u22NiAv4/3KfqAqkv4IbXodkXDOk634boyEX8Lrue+W5+HIV1srSb4H/aqhR+moFg1eP9GJU1DYUA6Iy/iF4Fr+sIcTTNBOCJ/iLR6Cuz8F7IYrChbyTOGstQjhi1axtfpUvuj7rS1u3O9zeo1JSQKwaLNX7UcVSJIpiZp5npnEsWCRhrYSfhhCwMWJW1UQJL7odS1fk8c22Gh5f2eodrZ6N7b1dP8n13ch8fQy+3ZZbo1OufjGcubyqcrnLTZB/533Ua1yx/esx1TDfWgevt9evxPaNUG+O82qw5PX/9fDLWH/jSm+8fxcj4S0j+XdtPxj4byde4Aq0bkN0KlCv+03TzLL4FfhXkDyO48ru1+2iUqPX0KE68GvIzG0yyzbOv0pxbmPz6n41FKcyA3X/+nnXda/Cjeo918RaSYacVzC/rea7DQ+qScpV9nRZllVxyDm3hjdVwFcnHBDFnxpKVL0Z1Usi/Tnx7vGe77//nv3+wK7vSSkxjGdCRAqCLYmspbBRLvNT8AmtM5+fP/L+3QN3+3uG42dUKZjeuI4UAqTMw8MdSsMyLTjXk2PCkDnsWlL2IjkKWNNglC1hMTLoG2M4nUZ0I+A+eI/VieH0zOO79xhlWNKCUg60IcwzbWN4evmMUmIwWGcwOkkFYCApjbViVU9RtPZ7YximmXHx7PcNbdeA0cWlKmw8+ZLHYa1o12tDCQco47mEByUyJiVy8FilUDmCVhikiFWuVE5OUqnXC+CPIZAyxOK2tUa8F0ZrpOKvAqVRSrTmQbShYwwC+PJG5UNJPQUpTCYhKJmENpewMqKwNZ1riG1EJGoUKWtChIe+43/xP/3buK7h//Sf/9f8+rhgtbDGPit6q6VugZFic0pJInXOmcY5+r4jDyNWS6KtSFYK1Fi8hM+1rdRPkDoUmnfv7vj+uxeiEiMjREpehbBW43DCp4VxPPNw/4hfBEDHlLF9LzH1RjFMJ6wyPL880XU9wSf2uwPPyzO7uz2zn5nmCW0djXW0jSOnyDAs9LsDIYhcqUIzThNN02KMQykwJQzGOov3AZMizlqmaeHx4Y7FLkzTRNu2NK3GNprh5UxSmYf7PcfjkfM4Ya3jPJzZ7/bicdJK+inOouSkFNOy8HD/QI7i1enanmWeMU6RicTkJQE+Ru4P9yLh2TiOZ0/TdqJ6pRxOdzI2U0BrJSo91ZsWAj56OisEwXkYZRJVokzVuhaUJi6SyJ1iIPiFsMxIvUCNSxLKBopEJKSLh/QPdduy9Suxuv1+w4avwFHQdWGCNyD7jbXyCiT97sas10o5o8s8ofW10VChhVI1D67IEpdvFdws3q/rDFTQ82rboLXrNe/rwH/dj2IsbIyMq+83PyvJeguY1vZx4UZZwxQucqLipS21cXLesKbyswJdCcG8qANWnKG1RifBG8ZolLkoBxpjr9fs6IvkdeR0OnI+DyzLwufPz0zTxOk88PnTZ6kfVEBatJZhGAtGyHR9R7c0q3JeDbe0ptZFqAaZzO91TCSqmktRlFOXpNusItUpUokf6WNh/KtXVURMRCp5GEY+fvye8/nM+Xzm6em5FEfc0bYdTSvy5MEH2q5FG0OMFucs4Fbm//bZXwHKXD0y9d15a6gVYqtgs2uS82LQxhiJm3zQ+vnt+F7HVb4e718yEq4Nk/y1L3/3VjD69XsmYKkaXtyMz+3vPw5of9naesvI3X7O5vu1XTfH/ZUC/23y61bCsjLzWwBzCZNJKHVh7W/1+WuS7TzPq7Z+PWfdt4Lk2oauE/m6CojhMrFsQ4lqW+u+tV3VY1H/rgz+skhcbmX+q2egtrGGBlVwv61jUA2BGgpU21sNg2rQ1ETfcylaVJOSq9znbrdbDY+a0Lv1cmit6TrxiHz3/Xf8jT/+myzLwnk447peGEIDL8ssMo7O4RfPXBRgrHFkpWnbPWHJUCqGatty2B9Ypmek6WXyiUrihXWksxJuEXKksQ4fM2RDjhJ6YIwU1dIIY++MZloKU01GaSPa+V7iIkOMpQCURmWPD6OEzSgFKZewIdHmz0qTouQ0oA0GCVUZ51m8DZ0kqIKWIlDRk5IU2dJBmFyTNUo7lLpekLRCmHqgrn9SjVg8CDFK28nChkuxLg85kEoCe1ZKrlENVq3FnMpArrUHxFOTsxhDNZFZ3gWN0pnkRc405yyATEGKCqUkxCmGQMgeoxS55IkoBSEJQ10X0vd3Lf/Lf+ePed83/Mf/9P/LX7wElHFkZ1FavBSyUEK/2611NPziiSFirDDI83RRnRqGAW07fIqoZaLb9UQfWKLnt9MR54oMKgm0Zdd3aA3LMmNMw+wzZE1Oxa0NBC/Vmc9h4Gc//6ko32TF4+M9v/nNt3x4/1NeXp5KIS9F17Xs+j3HlxP7tiUFz9PTJ/b7O4ZpoG2cFBoLmewXpnGma/f0u4aPn77n3btHxmnk7uGB0zCw63ZoFN9//ETbNmUMyXPz3jMtonIlmvgt9/c9KIXVYii6tmGeZjJSK6H2Vb/bE0LEGcdwPuMah2scL88v2MaRlChVqRxwTSfyq9kQQ2DXHfDzQo6BttGcTkeUShijUAiTt/hlLUqzLJJPhdJ8fvpE02iarmEcZ+nrnHCupBVqCXEDxTwtkAPKaQbvmSYvqkD/BmxbBrj+bwX0FeNv910Z8uvjv3Tet7drIHw5pmKOqtvCqpq1rSlWmb56fM4lUGi1NG6TNG/akiut/Eb7VA0zuQb9t2190wBYz/96v1fHo66MJwEblX/Pl31uGNe6Pq9AEdZcgFugU9doCduMV/2RUsJiV5whqss1kuCyvucsbH/wQlyMw8jpdGKeF15eXpiKZ/D4cpL3tJBxKeWCHaQQ5TCci7fV0HWN5B05i8oyN+ta8oVMTY9Yi5ABEvoibavSogLk6r0namG5gvGodY0Eb8yM48AwDLwcnzkeTxyPJz59/ESMkcPhjt1OBBL6rhfJ3pzp+n7tdwkfrEbga+OxhpFcoPtrT87teKk1ILZ1lrbPsq5D9fOt8MvXttfjU735+2q3357yxgjeXvP10L/c5brv5t9b4/P3274E+r9sTNwaAvnqmNeA/68U+FfwuZWY3FbwrSB4nucrZn6rw39b7KqC4G2hrapdX0H9PM+SKFeq+W6BtHNuBc31ZwXm21h+uOjrV6NgmzNQ23c+n9f7qNtWzcgXwFavXw2c6sXYfr4Nh6oPpoYO5ZzX8Kd67bu7u6vaAcaY0jfiDTgcDnz+/IkYA7/9za95fHzkdDqRyTSdsKausSzTSOcaVNMy+am8qBlnNWGB1vXc373j+emFmDSu6Qk50e1ahiHS9h0pJ4ZhJiVF1zVE72m7jugjzrSkCCGOZKO4v9tzf7fHTwMpJqawoHR55j6w61uOzye6vmcJUdIarRVmOMzs+5aUglTbLSEYoAhJVEh8zKKjHyXZefGLVPy1iu9fRrTR7ItqSg2Fqf0dc8bHjNOKmJUwclTAr7BGyzUpRW2MRWuDUrqEHWWMVsLwZ5Eq0mRyqaqrtcJqWwoAX3uZhGFWJblYQmxqnHgqM7GyGrXIuaWQmwDwXBLOFApjhSUmR1Aa66wkN2ZLkwT8x2FAJU2KHrLF6Ja7w4F/9Hccj/uOf/LPfsM/++0L+1/8TQ6Hnl/95a/4/tPzGtubkhRhs03LMC0Mw0jf7+jaVpRrUi3SJv21zANPTx+5u3tHjIplGfE+kYnsD/e8PA2QIm3n6HedFPNaIo8P70lZEcJCooTQzTOazOdP3xPjQtcfCLOnaxqsNYQUmKaB+/s7cWnHxP39PRRpXrTmNBzpOomLv394pOs7Xp7H4k2UgnkPD/dCLBiHXxZ2XUfXt5gitynArbJzGWMavvnwE/E4xkzft6QYpRhX8DJG/cI8e969/0ba5hdIEEOk7XelevZC9pFD+8Dd3QOmcTyfPtO0LV0rCeXJB8ZhQKNEbSeCsZp5OeOcwtmOpnXMsycnYQe1ID1SlIrDWdexnHh5eeHh4ZF5XmjbPdN0Zppn7g73nIdZPFI2F08PWNfw05/8gvNwCZv8Q9suy98lefPC+G+ARwVXbBdrsQbqn1egNV+WYLEbcvlsC14u174C5+U/Nt6HgqNKHPgWrFyDoxpvfZ1ceInyrcbEJXb/wtCvfaFYQ0wuDP8mAXazfdGeuVV/uWnv9YdcsaT1HshvHyO3tTVGRMIyqet+uTVy6r7bf9vzq2LoXC6dr8M9eM2IrqCuPi9VCkZqhSkYZpULdk6SeTOF7IkE78lGasjo2seFKcpVtlRdrn1xoSQRnaiAUkHOm4Gyjk0xALYRDmK4eGIQQiZGyfFZjbpcw4+kjTEEyRuIkWzMmlgtz00GS36jj+p4W7twY0hePYuay7Ay/dvxcj3Gb1nyi6GeV4Jte72tsXg1Hr/E8NfDtgN3NaK3hvMG/K//31yovOv109fsfm3XDwkfuh5nXwPjuVz3LdB/fX3Kc978q9d6w3j4oduP0vGvse0VzN6q5tQGVEWdylJvQXa1roEVzG+Pr9V0txV6t3KhNfxlm8yz1fOf55muE+aqMvHV6NjmD9S4OWPMyqxX9n5ruDjnVpDedd2amFzdkrVPlmWhbdurdlcQX70Qp9NpTR6qMcPbkKFqQVdDyDnHOHq8X4DMOA64kkwbSpz5+29+ImEtgNGKeRhQWQoTtbZBW0vC0+16XuaZvtthnWWYJhaJPCHnxDxPWNORcqRzDc/zEW01KE1/uJdEuq5jTolhHvEpsu979ruuVKDNpVqrpy0yh35ZyI1UGcVYslLMy0ire5yxgKbvdgynF6SrZDKLMZWIFlXYn4RRhlRiSN7d7yEHhnEAZdnvdzhjBcRR2SExILSWeGdJGIvrZCVjN5WY9vKyao0yhkwxDFElTrSONVE4iDGJIztlEe1WrGO9bgpQKZOJGF2KYfmlgGyDsgZfAHCKCZWlqFZV+VBKQpJSzCgSSmts05DCgjOKlALGahpnoGtJgEaTgiwkbWNo3J6/Yyz3fc/ffl74xT/4Dzl7SV79j/63/zuqe9o5h3ENTdMzTjNtv+Nw/0AIQRJvjcZoVdy3whwvfhIpSyUqSQrFOA+oYRR1nf2elGdeXp7Y7x9BwafPH/nJNz+DtuF0lpC5rm3Fm5E9Dw/3+DGASiyLFPHa7Xu0Svh5wqdEtz9wOp+hEAjaOgldcga/eEyrAMk5eNzfYY3leDqTkjDdfvE00dDcWSlG11s0mqfnZ/7ol79kmkbu9h2n8yRGdSsuc6MpxcoGVCNhNGjo93tQmpzEC2S0Q2vL0+fPOCdhX12/ZxgGkSmm59Af2PUitzmeTvT9jv7ujvPpKJWKE1K3QEvi//Hlhb5vscVj1vU903SmbS2m0Rzu9gyTqG+lHEsIQWQcz8SY6PueYZhYlowpniJUpmls8ZxKkcFdv/sxy8Ff67ZlvbZYoDKVqrKNSfT9Vb6w0pkCkG/XxpTFc1JxWvmX9GtpRuo54FI4SkHWlecHianmSmloBezlfX51XymLF1IpsgaVK5rXl4uo2jR9YWa39Gz55Yvg/ivbCmB/yL5cWxTV+Np262svA+s8U9fprVf76lwrISd1VIy5hIvU7+rx1btTgVsqoCutjGha1/2chDjKqcyziJxx4wzRKBpnpdCik3lrt9tJMj6QQsRPM0O5duoiyTmp0O7Ey6uAtD7bC1BElTWogMF1PJpLArQclSR3n8wyL4zTRAyBYTgzDgPjOLDME2GZSSmu11QKchLA75eJ2UqV8OAXtEJCkrJDJfE+qU2+a71+zoJRUg3ZKeOh9rF47BWmnFubIm7giuR1Vc4qxT4zQNx6Mgq5lDNUcmxruK69dhlJ1wz3W7+Xg7k2GFfDgo1BuWX2Ny+NKsm/SWUpS6Mu6lSv2fRtx71ux9qE+pxzVWfaTDo3wDzndBXq9pYBsBWK2f6ec+aSM//j2X74EcC/bdsVfK+sZgHVNZQGoCuFgHLOK7CuibvbKrkV/O92O0lYmaY13n8LoGqCr9Z6BctV637bKXXfOrlUY6F24lahZ2u41Imk7rudWOq+28TmrcxnBejVi1GNGJHVCjhnSz2DTNN0VImy2r6cM4fDgZxF5aeG99T7kf6Ffn+Hj8KWn1+eMCoxnM789Ke/EGCbJGE0eNHy1trSHw4s48Tp/ELfSPGnEBbu7g8Mw4wxDpMjmSwhQClirIESHy21EBSN60BpbOMIIcrENHu0Nuy6ltZZcpaQnmAklMC2jvNwhBxRRhj7vmnJUSZ0pRUxevquxWrNMHrAiTxmLl6SJO42YxUqCHAnZ1qrcA7maUQhk9tPP7wDEsZajNUoEn7xhDbSdoaMJiQpOibTmGKN1S9hNkplckygEqqo1ShVQDkrYYIw+waFJhBQqsR9akOKHlMmwpoXkJNURM0507TdhpmRULYQvbAoWYvSUbhUdE5Z8KVSYrw0TUvIUpXXlSRnspUk44iEB2VD8JnWJnTruH/c0zYO3Inj0/f80Z/9Xc7Tgs4L2vVl8tHECMN44vHxPd4nrNL4lGi6HsjE5UzT7ESq1YPFMS8SR5+zxraOTglr6f3EeaTcX2ZaBmISl/lpODFPM99884FhGHh+emK/7/FxQRmLnzznlHBNx+k8YKyh7XqsNoRl5nw+kmKiaRy/+NnP+fz5MzErxvOMzhGvMjOZrm14+vw99/fvUCqz+Jm/9Tf/Dt999z3OiRLC6ekZlaHrex4fHsgxEuaZUxJFnH7XE1NA6cjxdKZtWtCaXS8CAsfjURQ/MsQwo1RiWaB1hub+UUJ8c2ZZQjGQElolko9MhThoXcMyLyvb2DSOaZwwVuFcgzFOKgBrhTYNcRrwfqZpxXBR1vL99x+lmFrbk7IUFFvmkV0r725G03Z7GtNwHgeRJo2RYTiBhjhnliUxjn/AjP/N4lZx32VdvYCJbShKXfwrKLhlmDck4UqOrizgFXiozGBhWms7ykFy/uq55uoalXm8vm71WGyYznquDKIZpC4EpdrqhWz74TXQfvu7/Or76w5++3yXry/g6WtA461wjSumXuvVKHsdjnGz76r2s+3H+rPq6G9YUS4s6hYUbRn/ymTrAmrhggOsFUndtoQdVxJJcvBkvXfWEnURlDWarF6HWlyY2tJzm1AXIZveMACLMkuMYQ1RCqEy/kEksAuDfxteszL+MUqF9mLsrOyzuh6z22uugy/nYtBe2nbldalsv1IF7KsL6K/2oNoezeU9uvZTrX+p2xF9O3a+Os7qmTafwdX5Nndyted66PoO3hzIFlC/xRhc7XnVzPVOr8bAW+e+vs7t+NkaAG8ZI2+25EcYAD8qubeGyVSVmxp/X1nvGupSP6sJqxUcw0W2sAL3GqKjlLoK19nKIG5Bez0HsDLflRGoeQKVfV9jAYuXoibbbmPut0XEtqzDtvpv9QRsFXm27INk3F+Sh23Rpq9sWs6anGtOgrSvqg9tk5lrf9S/ay0D4yzffvsbjFZ8++tfs9v3/Mnf/Ns03Z6mabHLwjCcmMaRZZlwRrNMI36ZcFrA8nA+EbMYVedhADQqB2IIaBxZg3EWpxXnacQ5Q6M1d4cDwzyzPxz49rff4sr97/qeh7s9ZF8mlYQPC3NIZD0y+ZmHw4FpWlDGMS2SeCRGhjDZOSdeXo4s80JGo7TCh4TREkYRUyQiIA0UGMWub7A58zxO+JQxKnLo+8JG1DEjoWlSzXSHbSS0aGV+sjAUUuBQkWJC1oC0TtaKorRdJzOty6KPVAst7FfO0JQ+AQhR6iGkXGQ4XQNaYzJS1bcYD6lM0OS8FirTxeOQUlwXSVJC6YzTkkORShy9NQ3JZsianLVo6StRnJAYUYXOIq/Z3O35Y7PnX+UPPH0a+Wf/1f+Tf/inP+U3T0fOsYbfSUKynwaUslg0OSRiWtgfdizRkEJg8pEyjGmaUom69os2uMaS9UzKgZQUD4+PTOMZg8SVq6xobcOnj5+JKfLweEfwC12/w7U90+KJKfHNh3eA5uXlhHENtnXsrOHl5RmDFPH67uP37A8Hnp4+Y5RGZXh+PjHOC10nikOL9/T9DqU0x5cjjWsIaUIpjbOWzjVMpzNKC3hPKWGSoes6nHO0uuXz549opUuysC19LTkftmnx80zTGpbFS3hPiLRNh2kcx5eX1SuZEsyTqP1Y2+IaKwt9STA02nI+nSWEzGrGcUApQ0qZ+/sHxnEkxEirpS6C1qIeFeaZ/f5AzuC0ZZlmfPD03Z7T6UQTIv1uh588+65fi41N0ywCAMDju0eePj//4IXjX/e2gvSygOfN5xlhxCpwq5/X7Tamt877K2i9AaOXcJ5LMM6r0J0VpBf3QTVAuPCNWxSwNRAu9ySAoIZxXYUFbTDcl7brcJnXAPwtFKK2bee6PT92Uzdtvv2p1CXGv0YLbIm76+0CvKo439qfxWtqNgRh/X5lRAvDn1MpfugE6vT9rtTcuGCXpmlxTlTKHh4e2O/3bAGftRIGpIsQRL2OYJhEzmZlr7ec9YV4TOvzE4Pl2sCpfSCJvQL4Kz6qbe/7ToiuElZccVK9F+fsGsLKWuk1UZNV1WVFu7Qy10iLcq+5GEXaFPZfreuQVpd6MreGR8oZXUH01RMsyyUZvYY3VZx1bRz/uO3tsVz7s16jGjx1ftiG6H29ZMnv/w68faZ8de/1Z7pJ1L39fv23CRdfSe7MK4Pgx2w/qnJvBbtaa3a73RXb33Ud0zStjZZE1G5tbAXlWxdf/WwLzreSmxUEVy9BDX+Bi6rQbUw/UF4EAd8VXK8vUQnTqQB+6424nYBEwaRdjZJqaMjEcAklqpOYGCealC5sUYxJ4uTL7DWOw5UC0darUEOMqhFR7zlEz+dPHzEpcj4P/I2/9WdY1xBT4nw+IcWtYJhHusbx/PkjoRgARsEyjUzjyN2dxEnHontc+w4EsHa2RQGTF6Pumw/vBQsbw/PxhI+ZYZmIMfDwcMDoohiSRQ4zhYDKmvP5DAqsc3z36TNd14sesI7kGGlsiw8icbgsocTvN0zTCGRCqJKbtgBBAZnaZg67nuQTz+eFkKEzlkPfYI14JTBFVcpEQhAtd22kuJRxLcoplimTcpCk4SSgP8Vc2PpaC0IUggT8W+EnMuQsCg8plYq7iPZ6zqJEobRBGYdtG6yzGGuLgkUiZYnVTzGskzOqhPRkirdGPBJZgYgCiTQuWTwayVlUksRoYxyq6OmTS0GYEtPgY8BES9u3aNcRUfzP/v3/Fabp+RvvW379Xxu+f3nmz78/8effnjj6hW7/Hq8dKWl8CBz2e2Y/EpYRlMa5Fm0tSmem4UQI4l3yPrFzO5TWhBixTStVkm1DzmJY5CSJ4jFEUpwJGZrW0HQt43Bm9pF3h3u0axjniY8fv+fu7oG2bTgPA4uf6duGvmnlOt4zlQRcRSwF7RyP7z5wuN/z6dN3WOUAS4oKa8VACcFjm0b08NsW7xec1TRtQ7/veD4dLwpa44gvdSSapiUsHt0o+q4pJIJmGI7cHQ6rGEFM8n5N84BJEkO/61vOw1kKh7mGlCRXoXPNqvSVEnz6+FlYfitsmtaGEOKqOCbyrjLXzfPM3d0d87KgjEYZTfCBvtkxDJ4lRBzQ7XZoDX1nJZZZKU7nI7vdjqZxnKdxJW5c86MiP/+1bxWQCyEu81hCXgGlkKJ6Wa0goFZoXdnmlFawsoK0AgpWlr+Ckx+wrkpuwJdAyVvMYUZkhuWvSoqlIowMWwB/vbi/ZvrVfw8Q9T/cVttQ1/Ntu7QughtKXdXVqWv5drsNdRAPvXgLagEsZe3K4FeQV7XxU6yiI1IPpQppaG2IMRViaBbipmlW4P/+/fsV29S8qxo6p8o1BE9swjFTFTepvHZe1xHph3z5Pm8NoUtUQY0gqLmTKV3nJt7d3dF1Lcvs15Dlev4aruycxZgiGZ2iyEjnWMCvWdeGC7iMVKW5nERoQWlR0DMl1EnXiIib6Igrj00SAY63tgK5C/i/BrW3Y+aHja/1t1fjZQX6XBuhV/uUVtU39cvbhe1/61w/fMsSEnzz/lbt/VvgXn+uxmB+O9Qnr8TjXzHwrwOtWpw1AWWb8FvZ9m2F3S0j771ftb+3llll37cGQH1xtlKX2+TIum8F7DWZtsbgb5OKa4fVdlfgX+9hWyG4xttv21732ybs1n22oUCScCwFmATESx7BMEhCjhRlMmsxsG3l3gr26/fVw2GNZRhP9G3DX/7LP+fDz37G/fsPWFOq3i4zp2EWANM4Pv72t6Kq00gYzjLPkCOts1iV8bUiolZM80zWisYZVEzsmo5Pn5/wWfH47gP3j+/59PGJALyMC1PIPJ9O3N/dses7op/QpkGj8UsgeQlDIUR2XcfnT59ZomfndnRGo1PAdGIkGS0gTMIcDKrE2yud8cETolQj9aGG8FgaFbFa8/H4go+JlBUf3j/y7v6ujE0jsaHakILEaPuwEGOLSaJOZE1D19/hF9HAj36BHFEkktl4fnJGiXyLgPLCWMj7laiUgVRXLKxVhq7bFdAvbCzroh4hyiRslBK1opRXz8G6SFJdrjJZGFuTzCghbgaVVHGXG/wiRq1rDDHkorhQagoUdslnjf3wc3b3B/6bf/J/5/Trf859r3i32/OnH3b8T/74A//trz/y331+4iV0JN3iMyjT0ZgOo7QYi+Ii4eOn79m1BpTjeDzStQdJggsBozXLNDPMMw8P70ilqJrSyPNcvBhpKuMaSVg1xpFTZhkXVEjc9YdSf0AAawiwzAvRWcYlYi3ELOE+usqRpsQ8LSQiL8cX2q4nhETb7iFGGtOgMrSuEXafQI3h9yGQSJxPRwiBpuk5HA6kEDidohTeKgXqlFKcji8YY9iXgmEpBbwPRRVMxoMm46eJFDPH0wvWNsLku0bk9kJmCYGs1OpFu79/V+YOw/F0ZIgjd3f3LIuEQsYYOdwdMNZeFfGaSyX0pml4eX6haR2ubVDG4ONCp+D48hljd2Ck6NfxuBBTKhWmuwtD+Ae63S5rt2Ev68K5DQHI16ziW79vf8qRFeRfWMKVaS6XfMVsF5K/WCCvWqlWEHG5m5wr4MlX56Ww3Guo0WrZqKvjKpCs11l/+xE4/uLhuP7sGiD9/tsXw342oPfVv5urbsGOVkKOSI2NrSLSpge2gLL8p5XGGk1SiuxA68v6TQZXgH/NPxSwnQqOTKSoCOV5bDs4F7Klniuvzz+vbZG+lDm5Psq1nZtQ5GsAV8cWK8apuCKnixJh9UJobYpXwmxA+aWNaj3n5bnm8m7UsJQLM//2c7z14KwxcVyMnS9v9QW5tOkyfl8nd1+Oeev3tVVXn6uv7Fku+kar3gDM6zwAl7C7K5vi5irbdr9+z9cr3QD7OjfVz157/lZK/xWzL0bO9S39lQH/raRmDXlp23ZtSF2Ytuz31pXnnFsBLbCy+LcFreCaNagse2X6K9DehgzFJItzYw3WuVJ4I6xVdmsYTWXlqlGw1eOvhcAqy76N668a/BeX3GXiUAq8X1Z5RKX0yvwLo36RQu26fg0Lqve5rUK8Vf2pfecJjMOZzmpSVvytv/13ubt/ZB5HUk6EmJiGmf2uY/JHwjKx73fEEJiXgFaaRKbtO8ZhYPYQUYWFzVJlVmca1/D8cuJl8jw8vOfh7oHPn1/wKfH9xye++/SZxjW41nE47NBklLGEDNM4EUNJ9k6JXsOutXz6dKLrO3aNwSDSmMknUJ6YE7Nf8NFjtGH0njlEusYR4yzJqpV5U5oUZ7pWE2Pg5BNLlJfx5w97+sagrZEYRKNRBmw2RSHoAmhk4oZMwrmGtt0RvXh8lpAwBIwJIn+oFDopfIgY3V7YnVwUf7QihJkYk0iM2hbbN2KkmOrSLsZhCS/KRcs5pIBIj2ZSzJBVGT8JMKVo2MUDkXMSQKMLSAwe5QxhCUQFqY5XIlpJ4po1GWUaUg7MCZr9e/7bf/HPUaff8Mv7nu6bXxCWM35Z+OYx8ssPO/7t08iffxz5V58mPvozy+Rpe0nyDUvAZwVe0zc7+tYxBZG7tLZhmCdySLSuEfRVVGa0Uqhux+QnzuOZu/0dSwgoFE3TMZwG9rs7dPKM84hD8+HdI7/57W85fn5iLIvxbtcTk0jVnY5HulYAawiBcTzjl5n9/o7GWkIWD1LrJHzHGRinM+gd8zKzO+xRiLb9Mo1gFDEotIJpGrDO8vnpO5w2PD4+MPuF2S88vHsvRefGRZL/FDw8vGMJC1klQkjs+p45T2W+KInq0XM4GPb7vXweEt4n+l1HTpm2dXz38QXbNsSw8NDekZUmIkawawwxZY5PIztzIPtI21m6vmc4ntAJYkjsdw2zmYSl84l5HFFosrO8HI+8/2YnS5HRWKfx4yjVkVXHMAwl5vkPc6vL2lu49hY05ArcVb5AkyvA/Db4r9dR5GJBXMfvvt2wXDCIet04ldc5Z3sX1+TkVg2m6i5eEg0vhyZSumaLBTtWdZXMJZTj6+j/CsR9GSnxpS9vGdDb6PEtkL9ldq0x5E0+XYxSfXT9qSKqhFxKmEPJXYuRbA2aiyqbaE9X71hJIjUGlRLOOlJzIeZC15JSxi+ScycRBZN4bgvoN0a8Yrms761zZb3IkNtr0F6gckq5hNfIc6yJsWsIWvUUoGVIpQvIUypSQ8JSjUpQ4KwhZ10IAVEJ0whpubil1ELIq6FijKHv9zTOCUHWSvKxsVIHRvDEJWehXqtKpmayhJXWsaeEdNFGknq11kWhTpdYf1ijXkmotbL1xWC5jMnaZbmQC4oSwVrGSF7H8u/nsdpsYs28/e96x9XgubQtU6VY6zutqsFdjLetUf/qt8yrPshcTvcWsH8N/OtEoCBfjMmairFN26hG29Yw/jHbj/Lt1nj0yrZvAX4F/dUrkJJU6awAvL7kNTauAv/KsNc4/m3IzTb8parybA2LesMxRVTOK6CuAHobP1/Ptw37qcbMOI4r017ZfXl40q6ajFy/q8fnnNcqxSHUxOEsiZc5M9dY4PLi1fNu6wFU670mMFfmv/bxOI3M08iv/9W/5Ge/+AV39/cs84IPklDrF09jLCbD8HLibr/HWs2SAkZb8rKANvjoiSgJRUgSYmKNoTEaUgDb8HIeOBx27PuGGDzDNDF5zzDPhJSwJD68f8eu79ay34ufGacJZ0R6MYTA48MDz0cpMvJ4OGBKLCTAPC9om1hKCJbRhhQT8zLjY6DNlpBEO38OQQC9gk4rWmcZZs+4BBKZRiv+xi9/gi4VVo024pJ0UvU3LGH1HjRZJDgVEWc0KosajXNNmYQMqYalKIVVYI1FF4NO0rnknUypFuyST61zWNdIYRNbagOQScmjlAaVZbJTmUQkU2oNlLGUU80tMcUrVPNIBMRnMipJCIBxDaEoVmSlMdZJCXAFtWaClLV3qJSJPpPufsL7P/obdG3Dv/j//T/Y7Sy9cWSn8Y0UZOt3C/cHx5+8v+d4zvzFx2f++Xcv/Hr8LdiOKUW8V6hs6dqW3d07luMTOWb8MmEaS1YQ8TRdy+PdB7799ltiCVXpux27dsf5fOZw2HMeB3KIqJQZT2dmP3O4OzAcz3wXpAhfX1RmpkmKY90d7pimhfu7g3iLlpndfsc4nWj3B2zbMy2Bvt/RNA3H58+YnSImxX5/T9t1uNbRtC3ff/stH949iHvcmTKxigdzGM4ytpVBGytyfCiO5xPTskiccNH2Xpa5TM4JcZ0XfXYkob7rDDHKPHc+nxCZ3ol+dyfzh3MM48j+sCMiJODpeEZh6Lq+hPt4Ys48Pr4r+SjiIQwxMM+SH6FUZplOZCJKqyIsEIjes8zQ9xKORCkq5kOg2/XyngR5l6dp/lGLx7+O7Zo7fOP7fNmrsphqDdyp+7wN/qnnriB+PdcNj1eOqdhG2MFNy7Y/6udvygpdjrks/Gpl+rdctizysZAJF5lFafaloNQ1E/rlnnptLL3Vtt+9XcBNBTzqan2s5BlZvJAKA1z6PMZ4EVBIIpe58qS51FIJnuADORlMYcGr3CYql2rvorKVSg5BNgZKYULnpLp8SpngBfgvSwXQQgJZW5T1lBAy2khYsda6eCsv7a3YQwoGXkCcgH6RCZUbKAZMRcKln67i6tXls/r0BPhLFftKJOryc3GSi5VzXmsBGWPZ7XY418gJiv0nzyCRUBhiuWS6hKbGuCoCaoyAf5QcryhKPaLmIzl0G6MG6ftcrNgVNF8NsuuRUr0jSRROV8N1c8LNuLwY4tvx+FXT4JoCfwPwb091C/rr/vKvvkXyDl+8fq9Oc/v/dVLI6/jcXmt7zdvfq4FxZbOkuk8dJ3K+lOuc8FcM/KsreWWiS3z6dgLZAvYaBlSB/Zp1vlHWqeB3K8FZX6pqINRtGw5T21CNgurqctbJCx4ToVxrW0m4VvWtQLt6BCrIrqE9Wz39OoHVmgVbQyKlxDTNGHOp3iufs4Y0VWNh20+1T65i7IuXoho+VdZ0OB15eX5imBb+rW9+wjRNIltYXsZxONM1jnEc6NqeGA0azzg8c+gPkCMpBxYvcb9aiyymtQYrfCBLSHz/+Vu63QEVZ/wceHlemHximCSO2nvP/aHn/tBj0KgkbGQsE4dIjib6fc/gZz6/vHDYH2i0xmnNy/EFZRymcYQYWRbRQtdKch38HKhVaGcvijgRyFrhSOytJSbFyzgRkzAj7+96fvmTR5xVdM7hlEErLYVWjAVmUpQQlBgTzuYyWclCY52laRtigpA1plTajTkT5oBtCvhHGPs1oabso60rCZ8ia6aNKApVxjBTAXplFRMpe1LyZGKJ+S8TjdLrYg6iL60LXlA1iS1JeI9SjqwyximMEXm3mJMkC+WEUap4HjxeNcymoWla/sv/83/Cz6Kn32la04A2WCXJxJ3p8c7ju0TXB+7v4E9/duA3TzN/8e0z/9J7Ps+J0B1w9x3LMkmSK5nHu3uiFmUdBajgOT2/oFGM5b2JKRIWqcY8TwM5eObxjDMOHzytMcRpliJcMYhXxTSEINV63797J4m9xjDPkaZtaduWaZrISkmuSFq4v3ssC7ml7VqaxjGcTljTgBIJ1WGa+OanP2U6n2lcC9nw8iLym10nicDGGOYl4DO02pAyhJDQyjBPE4vKaL0jpijFyshYrTkdj6BKLlHMjMvE/rBHYo0tIXiJzfeiFDKOC1Zpsirfz56u6xnOAxMTOcPD/R1+OpPCjFbQtJbsYfEy34YY6FtHToGH+wPPL0e8D7x790h7d+Dz5yeMc5yPA8TE3f2d6JJ7YZataWiaDmP/TYrxvwbZN5/ebHVBfTvs580jvrCQbo9ne64rmH7dkLcuc7n+Nuxn+92mHQqR+YQiO3h7p18yh34oGLje7y1HgNr8tgX55OuQKDa/XzH+ShUbSNpa19UV7G/W1mo41HCebVJpbZfE8UdU1iS1CdGk6vMbsMVzCiUXS+blmBImXsesb3MYtwSm1nplehWZpC55CxKWzMUI5ALSLj14PfaugN4WQ5dzZH2RwBT1OAGCxlyKlFbc0DTNCvxrnoLwwJsqEtXmyMUMvmG318idbT+oS3+LI+B1ONb2ONa/L4bnZTjnjR1ax8MboS+vxtBl7F26q74rr0d73u78Ow2AyzO6PI98bTOv93b7fuaN3fD6Hq7vK/NDXsFbz9jv3vfS9tvr/tDtRyX3TtN0FeZTgXfOmb7vWZZlVeapYHdrHFSwvWUC6gCuwLwOuMqE15j/CtK3HoO6X3UTgsgvVlnNLUCvA7t2Ug3z2U42W09AvcaacLUmGJn185rwK+W2FdY64ianoG71mG17an/U5OJtEnKthNt1HdEvfP/dd/zkZ7/gcHeP0pr20LIUML6EBdeU8BClaNuO0/GIMZkcPcpochQAu0ypxLwHrNHElJiXQDaSvONUpG9bkVcdF85L4nQ+Mw4Td33Pu7sDJmdQqRhDnmkRd2lOCaMzOQaeX450bbfGUz+9POOaVuQhraiOpJRom47hPK7sRlYZHz1ZG7QSyVaTobMSoznHzLJEVAarFD9//8Dj/Y6uM9ii6tJYKfwkk6Utxkkq50pYJSCdJLkDbdcxTgskBQaca1DKSuIvGR8TVhW5T2UkNh+R6KzhLOQkUqBGJmtd3LwoYVEUmkhAKYOo8FBY/vIip8p+mDXcQquMqXGhCcw6wRqMa0T/3y9kEtYZcioJb+UArQ3Baqa05zwM/Gf/1/8L++WZ7nFXDAZDBqxWpBTRzmByi0uJzntC2/KwW/jpfeJv/fSBT89H/vL7gb94mfnV8S/xes/OtZznhWEZ2O0PPDy+Yzx7nLbM04n9bkfOmZA8h77Dq0QIYtCixU2tlSLMgcY5yZXQ4El03YFdf2AJiraRfBavZ8bhBNowLzP3+gHXWLrU0LiGnBTj+UhKLeMU6doGskjU+hAIZ1HvwUji9uHuXgpnLTKPNI1FK1sKhYGPmdnPOF1Y/1zlhUV60xe5PWs11iipW5ET1kpYQdNICOEyLzhnOZ5OvH//bpXFBfA+4NqOtrUsc6B1Dj+PknDsLBGYlom2NVhjGIczKXtyiizTxH63p21axnkiJZhfjvR9T9PIXDJNI8YouqaV9yAkTscTu/2eaZlpu44U1Wp0/JuyCdjkGt3U7ypIXpnoUo+jIgZ9AUNvhf98zSi43rf87wopq+vm1Pf2SyZJvgY5X7wW+Qp8/9DtFljdfsYm2fR6qz7Ot7cVrGzW97eMquuw2K1E5+U8Nryu0FvbmGKElPHaU3CYsO0+MGUB+bGJl7W8kDDOabS+hjehEHUhBAk5QkItJVxGQH7btiXO39B17UreheKF1Dmt91K9ALX6u3h5EyHUIpw13v5SdGt7b7XLtzmPNaKh9I4YKsVjLkInovADIqhSoyBqkVMJxV5KGHAkFAKzJjpX6c8aKlLxmXOiQFeT/GvO3CWBeKPoo6thssV3N/Kq6/jKV6A8I/2xHSNvjZvLZxczN6/r2xvI/+bKb3mwLp9d/75l+d96GVXN5ys2RHnS63W+xOTXvL/LeTbvwcaguJ5TLt68esxtn9zew48F/fAjGf+UEvv9nupmqp+FUkVzfVnL4K6JwFuWH1gBvtZ69SIAq9JN1elvmmYF19sOqsD7doLZ5g/AJdRnWw23Mv4V4NeHtQ23qfdX763utwXudX85l7gvK0rT1q3WYwhh9WbUh7StDFzVh1Y51DLJGKs5n488f/qeHCO/+OUfYZ2A2nEYi6tS4sjnaaZzjil6AdXes297xlEq7jojUoMqSfnytutYpoVlmdnvWs7jgveB4BTTnPA+o3TDcP7EMgtj3j0caJ0jzBHXtUx+JilF4xqG6YRCCkyN00jTCgPaWFExCjljtaJrOvyyEEPE6Qa/hDXvQqlM3/WM84zRohSUFTijcFpUUF5OUwHsmt4a/uinH2hdy66xNNagrMU4USVI2WCblhA83s/EuKcWwAGJYSRl0Jam1aRpIeaa+JxQxqCRwlS6gAshjCS8RqVLEEGtaKtrDGQB/jnJdeoEu5R8lHWsbhUetBTssSVPQiGGQE14BlHQUUrhtCalQFgS4ikwNLZM8lmKrinlmOnI97/gT//07zF7z0Edmf7b/xKVm8LNKIx16CwqRjknbM5Eo9HekRtHS8B1mrte8fPHPf/2EvnNxxf++fPCr56PuK4D15D8wtPpRI6Gu/2e0S/kGZSBsATmcSaniCaxTJG264tRENHW0PQtp5cnrOtptdS8+Pz8UZSgUiKEoxjErqGxDuOcJKenxDwPRL+w6++IaWHX7Hg+nskx0bcHmn6PAtqmJeXE+w/vCH7heThJeFg27NueeR5Y8Oz7PRno217mBDzTdMZajXGGMHt2jcTjtzsp4HU+H2VBSJrD4cAwDdw97EkEHg53fPr0iRgST59f2O8PKCXhA7uuldwkrQkK0eZXGh8jcZ5ou47D/Y7pfOLT8xNGa7q+QylIcWGZJTdkXhbu7t4xz4MAj0wJbYOUAp8/fYuxbWH1Fcss84fkUEV88DzcP/zQ5eBf63YN+lmZ0+uFcZNwiSzred33wpDfMtNfjzP+ErN+vV1Y/xvQ/5VDb42Nt7wTBTb94HbcAoJX5/ziubbCpa+3CkbW8IcbxnJ7H1tGWJUz396n0Zpc1uOt6p5zjqg01hXVn1wV1GpOQFmTa05UZeu1xliLc+3VtWKMRTRA1he3OJIWT5v8M2vcvNTUaNY1X7AEqKRRquaMmTqq1p91br94BSpr/GXllS0puX0G9QEopVaCUM4rnoq+71fg33VdwU0BpfIaux9TXNnnSlzUmgEoNu0sIN9cvB6CSS66/VvG/3Ys1Gf5ta3A1NUgr8e9vve33odLH39t/F/1c0Xq1B/XQHll5Tcg+nZsXq5z+f4twH37+7rPK2+aWs97TT6wzmM53+77Za/A7wP64UcAf2G07fqgtwmqTdOsVmRlsSuAvtXrrS9GfbmnaSLnvIL1qnhT96vehZp0WzuqFsza7XYYY5imiXmeX1UGzvki2blN6N0Otq0ykajwDKvlXw2WrSusJjjX9glbe13ReJomwuLp+x6QiaNqg1eDwpdCHbUNIjG2yKSlEp8/fct33/2Wn//ij2i7TpJx5gBlQvEhQM7sS/XbHAPzfEb5hRQCxnZM40xYBubhxLx4wEiVv3lBKZimzOk0YI2lbQ6chxNLUHx+GUlaMSWP7Rv6vkGRMdYRg7AJPkSWcSryeZGYynNLAdc4FBm/LOy6XhRdZs/z8xFjHGjFOI0kAiFKRV0fPClLUa7TKAaASgLih8kTlAYVMUax3zl++pMD7c7Sdg3KGak0TBLgqw3GSsJWDFGKXaWIwpYqgjXxLmOMpW0VaIsvxoDWFpQpRcWSaPIXxOFjLBOkBUTBRal8ASAUBl9MdzF+QwZSUTKaCrgvSU1mM8FSFskS31mreK7egbJgW2uJjSN5KaamlEFrkaBDKaJy6Mc/5o//x/9zxtOZb//8n3H2H9lPA8EajBYtbNFnLu91Fi+HNgbrMiI96qV4lus47OE+RB7vdvxiOPP9ceIvP438+tMTvz0GHtsDZ504jZ/IKeHnRONsyZcwoqSTFMFH8rTgmoZpXtgdDkzzjLGW4D2ucez6jnEciOmS8K+UJsTEu7sdwzTjQ6LrWmIacNYBeu2LXb+X+G6TCYt4FLTJxGVmHl9IGSExkLCAXMKtYpBcI+taUgEYTe/ocmbf94zLQjaKl5dn2rZhGAbJN3EGqy0xZobxSMqKefFoY5n9iHEaE6FtHS8vL7hOhBGarpXK15RxZa2EMYF47ix8/vRRPArBk63j06dnlFb0u55f/kKKmGnbAomf/PQnfP70iaZt6dqO03REWcO7Dx/QtqVxjtPLSTwgIdC3O1LK9P3uykv5h7a9Xpi/DnyvgEMhEXL9PV+g/3bxrcddL6bX1/mqXcAFLFSCgawu4Tn5QgIIsMtcwkgqCJcdL8dXj0I5rv79xvcXILNtD5fP6vEVdGxauoIpddn/y16KLRgp7b3pmO0+woyrwta+oWCyOW4bRlNz8Kx1KJTIa/qiz88lzw917ZGXE2m0vngSXrPtIvGbki5hkUL6GWsw1hQSR4gcY0Q0pMov17CbVFy1VS+fXOUvpa/X+V+rq4Ej98gaIqpUDRO97jupGl+MI1trBVx09rfhJ4KtLvkHYihdrlf3q31biUxVyCrryn2vQP/Szpunvxp8GagVeqW9m3foFTjfPuVLInHtv8sbU5XuLgCYmzNdNyev7/XVAdsrvvFe3Eb2KChVvDOvXjMup34FtNfrblV36jyS1nf+qk1r55U/LuzExv9Q/qnt3W+e+TqhleN/JP7/0UGdW4a9Dp6arFpfrsrY17+3SjnAmuy7TRCuILom+NYBWpNrt8xMTfSt4L8m5tZz1eJZNRxpKxFaj6+fVS/D9mXY7Xart6Bety6KNb9he15gbfdaH8BLm6dpWu+nXmebD9A0zWpEWWvZ7/d0fcfHj79lOL7w7bff8g/+vX+M1rYUI5EJa55GpmlC5VxAv8RMz9NArxXOWLLK6Mbi5yRhOdOMaTokzzZBVrw8n1h84O79DpUS47TwMgfmlIgh4uPE492DAOAkKkMxRuZxYpqlbkNrhWUf50mSHp1UsV1maF0rkpiIgWGsPKfzMKyAP+UCulJCWVsKxYEhl0qJhnOYQctk2lrDL7955MPjjsaCMXn9zmqR9IwqY6xoyftlwi8zKXaQC0A0RsA6muBjfa9E2lVLqI8A+4xCY4yCJJO9VsK0k0U1SMp/ZwxWpC9TKolZipgTOUkcdgihsN4y61T1CI24tJWyJVdAQoTE+1BqDStQ6GtvU25YYgStUNqiSMSUSMYyJkuzf+Tl5YVf/Zf/OfHzX/DQKrq7nlorQGJhyxjPSPVhigvYZEiKbDTJWIKR6ctGj3OWfd/y4X7mT7+JHAfPb49n/vLTyL/85HlBkxtHQqNcR9Pt8cvI4j3WtWgr/S+ViTXTPHN32LFr7/j08QlrNMP5yDAO4sbe9XRdL2E1xgroL/PLbr8nRl9Ad8QVrW6lNJrEOAz4xdM6S+s0y+QZTkd2+8M6YcYcaPuOrrVS7h5H23YsIaCNYfGBxrU8Pz/jWoc1WeRVnQOlmJeJjOHu4RG/zHz6/Jm7+0eRKc0LGUkcjikSU6Lve4Z5wjrLvCzkEBnGmW63J+XMvMzM4yhVsUNYpVu73Y6UFF3bYwxM08i33/2GvttLkrWfCb4ti3/k+fkZ20kNimGcsI2QHzHnotft6DopSjZPE+fz8GOXg7/27XUYzmtIsF0r6pqociIpLbHyFRBxkS9c5XSVWpMQ62V+F9iHsrhXUFkIAirovgL8pc2q8t+XFfvyrSz7YhOkq29WwFTPq7JIId/smi82D1sgfwH7qjYUVbNBtwnKX9mu+l+9/V01qGATYptea5fXxN967FaIw1pR2VFZ5sdlWYheWHuRUI6AknVEX4hJYwwuV/Lk0sCUSkVbBLw3bQM5ozfAX5RxLuy31hpbgLkkCNdogySGeCm6FYMvxKd4W9f7rV2ki6FZY+eVwjVCTIkS28WLsoqWxBqdIM88JlPWAkmIlVCiXPb15BzXY7YREVuweiV2Yg3WWZTSou5X+q/etzHVAKCslcUgybEAY0VGDBJR0LoYruuIK8/gygCtA0eWX1ln6vuQZcW9PLZKpcHamM1WPUG342rL5sOXCY1b8M86fm9zNa6vuVY9zvlKpz+vHo1aQO1ixq/HX652+b4YMGnTf+t+SiHk361ZoFdD/sduP4rxr2E7bYkDX5aFruuuYuS3mv71s91utzLyFRjXl7yGCwFrDYA6MCvzX4F30zSklNZE2+3AruE8VRK0tqEeXxn17f7eew6Hw1qZt04c2yq82wrF25oC9ectcFdKMY4jmbwW/zLGMAyyqG7vrX5fDYEaP5yyJ/iF49ORP/7jv8nDu284nkZSirRts1b0zTkyPD9JsmT0kAL3h3uUD/jhCHbBOMc4ngk+EHym6y3zPJFjZPGeaQ70u47GGaZh4PQyMMYM1hGXhb2z7JzFlD48TwuxhnbFWEIrDoXph9ZpdJJJyLgWbUXx5tPTEwnxDs3TTCKv6iIpKdq2wafIHEIxBJDJVltO40zKiUZb+ZcVP3048OFwx8516BRpSpEua61UB84S02ucJcyZWjgrxiCATGmMlkU2J1FlSmFBqYwxoLXDIrrRqrzkNUGsiKRBVqgcpeqxKr9XcQNVY/UVPgoTL5OzFAXLZYI21klRmpX1l5oGMgGLK1kr0OR10co5rxOqLqFBiYTVYF3DYnZ07/6UD3/yZ/RW8avhMz973LPXCuUkLE0mJl36uuqeZBF00BqlMzkqclJopBpyTBFjFdZZYla44OibmYfe8ZPHhj/7Zs/TkPjNy8RffDry7dPEMM8MSbOkyLzM7O/fMU0Li/eI8EYLWs45nM8E77HG46zhsNvhnGOcZs7hzOFwwC+BcfH4FHh8vGcen5mnE/3jB1JUaJ3IBFKOaGMIQe41es/5BEa1NM6U93fANg13h0fGcaDvpLiWGOzzuub0uwPT6STeR9cwTWf2u56QE8podvt7ljlyOk2EMHM43DHPC96/iNRndjTdDh8zTdtBgiY55mkmO1fCuSyL96usnjGKGBdsNGgcSsl7a7TFh0iMGbSEgx2PI67Z0fcdz8/PhWCRGODh/0/dfzbLsmTpmdjjIlRm7r2Puqpuia6ubhREQwwINcAMZ2zMxviBRv4GfqPx19FIIzmkAUNywB4MNAZoge6q7i55q644au+dIoQLfljuER6585x7ToPsrg6rWztPZggPDw/3d631rnf1ByptaNqa0UVO4wmtDXVVM049d3f3Ikl7RsH4VdsuU3HW3v949m0+TgAKyY23LLRlBHl9jQW0XvL+nbdDDIsL1zrb/zwKUYQBMupY2l5e9PxzXvjVAhhUMghmHFA4AePZvRawbLmDMorwDtsl6sGl8aOyx/LMs5/bde7xz+fJADWQ1cpE4Ww2zkia/ipCQApJhrDCC/lz3sIKFJIAtTg/5gRivS5QpZLHXhdqRFrn4kqBoNI8mq6js4efxAIvxlR5byW9RhXAPxRzfB6DAQHjyxhJIHkZLIXBEFb3WF47vxnnURWllj4gGSVlv62vc/6EE1ddzKKzBzk/6AfHzMYx5/uIQSrnTO1djc83b+f3HSNzYb983VWzimZeHvVveRdi2ebS6Jl/LM5wmTZXHL5y2sd8hLrQdfO2ngffl/LzXh7/HE6appGmEd56BsmZApNBdfamZ4//+UPJVJlMx8n/5WPLEF326p8nxWYa0Vw1s6AbzSE/ZECUUYB8/rpeKmdmoyYX88p5CxmYl1KjOTJQFgnL0YkYI3XTEJPRMGsVz/23Lk6W+2SmQMXA8XBAh8hnn/2Cv/13/z5VVXN9pRMtaCm7HaYJTaQyWiKNthKFn3EEU2Ns5O7uTpKjphFrK4Zx4jSMtE3L4fU9WENTG/rTkbu7Pf3kCRim00BwnuuuBRcxaJyTCqnjcGIYJCl304hmwjg6brZXEHqp6GpqqnqD0ZrTocdPAVPXDJPjcDqR62SmXEtAePw+BEKUCqNN3XDsJ6bRYSuN1aBD4PGu5sMnN2y2V9iqRXlHRSUJsD5ia4OuNdMUidYyGi1JvpnvqETBRykISM0FbcxivfuAVpGIh1wDIE22YrglSx/xVITgqbRBRZm4c7XDBUCIp2maJqLzGBSDE2AaY0QZCTfnpKmYvCHaaAHiSjyWysiiEhXEoKjrjYD+VAU5ag2mYXCWT77160xh4F/8d/8PbvREU7UoFah0UmtTQSo7JulUbRaFKYUILedFRBY+0aFWSmNiJKKZAI8hVIE6erat52Yz8vGjlt/8eMfd8cQvX498fjfxajS86hX3+1c0VYcyirap2R+OVHXD3evX7DZizE7jRF03koA6nLCVTpStiaauuHn8lJevXnLaH/jw2VMxYocj2ii0qhlCpKprUZ8yhtFFqrplt7vCKEAHTqcjk/NE5ZiGATdO9CEkyuHiKNjf3WN0zTQ5hn5CYwguEhuR/jueBrqmYhoGKtOJhG5AJGOJKFuhVYUbPY1t0ErT+5HgArqq6LY7KTBWNRyO9zgv8nt+dDy63nE8HkUqNhq6tkveMCVJ/dYw9hPOganFA5nzpnICcV03hDBxfzzgnBTsUgpC9BhTsd1t2e977m5vabvqfZaDP9dtXksyaFczrCl+L8D5jJOX5N1zyskSzY4rnPFGg0hl0C9UoqzgJ6EsNe9z3u5ZoeYMFK7PvfaOrhf2DA4vccMh+SQeXLdcU9eGS0zY/90Mv9VanryczI9DPdhHJU+tKkD+yjP7BtCSPeMYM8tstq0n1/ZxWs++0ZjAr8zzUvHU58iN1mnMLzz/2eCIUZwfxbiApXCW1hqj7IwOQ3Ay52bWQAw4M6Xnmag/KfRiTdbFXMaTJMnK+lClnD0B3rJeiFpRruquUDm/EdAxJsdSMkpTfgOotcGT700VctCl4ZGSjo1ZgL/O9Oe5v9a8/nlgURiYxbhaKD/pWb9l/Kizv8vAIr1EKr1bi4KVIq2Dxd/ysPVpCiPkIqq/BNLXc0GWH59pVyuj8YLBe9b2xdAWlcfV1eNCByqvkQ2E0olevkerOaBoz/uCfnjPAl4Ccn0Cwwv3Nnu/c0MzQK+qatbIzwMz03oyF78E2rC8cGXNgKZp5vOP4zjr12ZAnik9mRaUpTBLq1ZUO+q5DXkrq/vm3ICyDfm6OWM+Xw8Wek8+Jk8GMUgBkdKIiXFJGI5xKSKWk5iWULNMFqdTj7YV26vrOVKRjSgfPEZHhv6EnyZIL7utKrAGXVtEyWQkohiT+osPE64XlZvD8cTkA1ddiwJe395xmjxTVByHHqVEVaTtWoiiDpI9zfl5xxiw9Y5+6LnabrA6MkzSP7bpqJoN/enE5DzaWE79QD+M4r2OceZW26piclKMzHmH8lC1Nf04cZpGlNUpGXdi01R8+OwRTx8/kSRJY9CVQbUtUQNRyrWTw77WitqSd/MLZxIVJCCgFyXUmck58aSjEuBfJ+oye9XEYxGCR1lSMScxz2evlEA0gpfiV0Pf5xLAOOcx1sjykPifSskcLouCgA+paCwTjVCLAiGQKEg+VX2tcUoRUsEPFyJ3x5GX//Kf49091+bEk8dbrNEYrSB4oXqgMAZCkDHnvUtJ6nK/JA8UWolikZL6BLJQiwOgqmwa98t7YquWehzZtiOPN4YPbwLf7yP7fc8Xp4HP9yde3N9xNyipbtzC4HvqpoLo2HQd2+01x9OB0/HI3f2erqkwdaTeNdze3XP7kz+msoZH11cENzKcetquYZqS7CwGHyBWFbbSxKgwpsZ5R9UmumFdUzcdSmtOxyN1XXN9fZ3EBKQWR1WJ1KitNFCR80NcENA1ThMKoSHIwi3UvrZrRE4QTX860W42jL1LUY09VWXZ3VzhYuT29SsqY/F17tOaEDXROPrhJOokFkIck1Gp2W523N9PYvxVNeM0pDmnwSvP8bjn6uoxxAmFRC82m45wGtCqSvUjXJIhHtluG04n89Bj9yu4lWByDe3PPPCrY5bFtjzHctzaS6h1YHGwFHsWwHm+4mxRFH69wALcE1JZGxap8iwyZh5CoKI9pV/+AvgPYZGcziDtkge9/PtgK9r+vuD/Ag5a/V4Cx3PaTUlJudRWmX80BgU6zv2dccAcvQ+CSyKpCKiSvDHr0pqa+Prp8FX78udzZ6PWemYfaGNQSW0tuKX+itAtA25ain0G72T9YSkCugb+JlF0NHVdzcB/jmQEj9cuOahUqu0h7Q8xEn0qCJn7Kj3vGOKMA0LyFqsZgK+jF9aYObKhjUhYZ3rp3O/qPPKRBgoZtC79WPYrxMWAgKWMxdkwERNhIcEUQYUVgC63XB9h2fcNgPdNg3K+QCwatAD/c5C/vr944V5T21fvTDLK8rsonoDVMTEZm8u8lM57Bvzf57/33d4Z+ItnfZqBv/dx5sdnoF9W9800ntwxs+Z28njklz6D9bx/6U0vowX5xTo3CoCVx7/UzM+JvDk6kLn5wAqAl9ZyTrjN58y/ZfCdk4mHYVjRg8rEZWPMTEvKk1MuWJb7pIxQlFShcRiI0fP5F1/w8aefUjftPMnl44xWolTjRq52WzESuo7gR/pxpB96/GnAOY+bsqqNVAns+x6U5niaQEmfHw6eYXKcpsChHwlokQSsRD5ws+nohx5jNG6YhLoSAl1lIUJlLUZFpszxb1ts3dK7idMgtJ5+GtkfDzR1gzUVfhgheSJClMq54ySe9k1bExVMwYuXW0FdWTodqTV87zvf5snjG2pjIYqevqos2uYkWHmFlDGgZULzY2RKeRchxlQBUiogagM+TDNoRy3LfnA+JWmlIlw+J3qnRTyGmVsrVJg6vQeR4KfkkR9RIRKcTNoyfmVRQ6mVrKwxmfIlXi5yLYDZy5QS3oy0JdhKvHve0VNzb665x1Apx7Y/8vT6ho0xAvpxxCjVnPP4S3aNJKwVEzFRPNbAHLomeUJi8AnYRqFLKU3wMpFrVIosBbRVdHgq5Wlsxa7TfNxqjtc1h8lxP/TsWziOEz4eiEpTXXUo9ZyxGRmnyLSNoEZ5D/oDftxjm45xnPh4d8PxdIftb+maa3SYuLp5zOBG6u01/ckTDhNNMgqUsgTviFGJstU4st1uUcnwXhwXjnGUd8ZoxfFwj5SGsChliNqklO5csyTVoIiBtmvwpIREpRnu7qnHEec9+8M9lTZUm5bjcOKwP6KUZttu2G63/PLz19RNoNvsOAWHrTeMfc+ulffPB4/WFucGQjLUTqPDpLyYGDxtV7Pd7jgdj4yTQxEwpmJ/f6KuqzSvBbpNTV1buralH3qa2nB3f/+uy8Gf+bbyHssXD13l2fG2OmahRJTge/ktkiX0socuzoBgvaivPp+3Tcm3+Z2R06sH+5XXV/m1Wr13y7kiceUlP99kt7icK193bn1u89Ir58BeDPk3XOANW/Z6XvJ+vmn/MsKx+psunz3wcYY/+R4XAKh0kk8mA2gj81GWHk2Add1OsuW3fF82Lhlmq34pPyq1+l0pjdIhaUgodBBQvkiF66T8k4F2mkdT02SeX5ySuX5LPj4fQzg35NJzzE71S/Zi2k1xRitLfSd+nKw8V3jzM0jP+5f3Cw/OlQ2+/NuqY8t+LEH8g369cAPzWF8MYpX2XQyPs4G+8tafjcfcZfPYi/Neq/HwNZ8ffre+TpyvlS2ccu64fO7S2M7tmcd/YRCcRwcebmo54Xts7wz8hcayDNAyObUEyBnMXjIGSuu/pMxkjn3+ru/7+dgyyTZ7yPP++VqLtbycM0apD5AjDvm/vu/nNmRVofwbMAPxbIhkT3+2/nPy8Pl95H+XhkduU5m3UIZvslFSGgBVZfHO8dWL5/zWX/9b84s0qygh3MLT4YAmJbu2Laq2jEMkHkbwHsKAUYH9YQ/O44cBbRs0cBoGTsNE03SMwRPGkWkKDKeJ0YfEHZYkYhN08qSMeAdumPBaklA3XYObRtq2YZykz6oUwdnv9/Qu4GPgOJw49j1VLQXWhmGg0gprNTEoDqcjx14SKRtrsRpOk0PeDkmU1SFyvd3QavjGhx+w3VR4HJWqqIxB8ns11prU9zLhKK2xVcU4TqmvXZoAZUINUVRsdJDKq3Jsen9DmBOGQ4xSaVYp4dprjdHihZeXNi/knhhkche8nJR2YkRFhfepGBhSQKyyFqOzBJ2evSMhCLWHefIRQyUDf4WDKLrOUcEQKvzVN3n20a/Dz3/Ipx9c8dXvfYmfRpzuUEEUiMQLtISVpR8UnrgyqFXM4c6Yog4yicUo8q7KLMZ4CAE/Odw4iSE/jkx+ZPSe4HyiDYFGs2ssXVPxgUph6mT4KJ1iJEboU0ZLHgZp0nbepQlQpYS6iIuBfgD3Sc3oHf0Ejp6jh89v76i6J3SPHvNqf090mhhqmsbi/UTdNOmcMuGKY2KQeyQwjCemaeLq6pq+nzj1I7vrG+qmYep7Tn1P1zScDntyxCTEit1ux/3hyPF0omk27K5uxOkwOrRu2F3vJEm4azFNS52q8N7e3tLUNSFMGC1Vi53XaN0Qo2azuaIfe2KIjP3E0B/ZbDrqpmb0keiRfpkibprYbFraKMnN1nY0dYcxMUU4BXC8fr2XvJ+2oq4qatO863LwZ77NYPDMc7YGuG85vlg4S++u6ISvucvi8V/rq2u1iAGrbHOsrYw1XJ2BymWpwvxXpUT7iEpBRiU1RQpX6ax4khuZPb1KIcGJ3P5l3ckODEUGofmwh/1UUg3OwVgZKZmB0wxE0g+Z/aiW+1ofL/8ujev1f8lTPf8uzZjBsFgGaV6CaJeiXjnJVjz+yzgRgC5tFmdFdmIs1Wl1iq5nbr/Saq5aiyKHYNNv6elbgwqJ2uJzfYicPyCFwaKt5seUx0KWebbGinqOUimJuAD8qd0oRdQJQ6lAnpMiELNhQGpfvoYRq1dqjC80pmwsmGxkFB7/bHyQz7kyVpiNDpXx3fxMU4vijKzJSccKJYubXvz5irVxkaPheX0Htdi76QjSs17GfzJwV2Zhft5xPmz5UwDiGfwvQLzsn4sGaREFeJh3sYLsy1YYGuv3rLhuvsbcchEMye9UWQcqpOTw2SEV45qmNr/v5f2+2/Zeyb3iLReqQtM0KyBcerfLpBFgBtBa6xUNBxavfN5Kik2mykjhimr1YEp6zuy9VAu1Z7PZzDSeRW//IXct8/tL4J+jAll9qKzomxOU8zH5+uV9eO9n46XruvnYPFmV7cjnVipJNDrH/d09k3c8fvqU4TSiYoXVErEwVvpTo6k2O5QPKC+RjDBVHFMF3WGamE4nxuORvp9wwUD2PPYDDk2nRFpxdFLIa3Q+Ve0z1NZg8BgF09CjgH6YUFoxecfNpmM8HTGV1CwwtpZkXGMYncdYS23giy++4jQOQgsBfAxYW0kEZBo5HE7sB+mDbS1Vcg/9RDAany3nGGmsYRoGPv7wKW0jqitSSz1iFNRaqglHUoJsklEYEYm1qjKIGkEue72EPmVChaAVRsnUKSpBhuAjXiWee8xa4DrPbaigCX5CK4+EdJPyAiLFGYNHG4UfPSE4iEkFSOyruUqitlbCySEm2dFkWMY4+xGNyaoOoKjQRjMGR/CWqe7YPPmYxgQOP/shX/0Stg1Utei8+yjUKmLAR0f0Mj9HBS44/DBQ1y3KiBxmnqxUMmh0jKsJyfejqM9MQzIKw9w31lqqtqXTBpuMGpvkNqPSKGukQmVKkNMAicaitNCaRE5VJn0fRP1JZ+iVFgk3JWEAJTUWfAg4J+Pn1eHEZ3cHfvzyJW21pb3+CKssd8cT3XaDd5N0wBQYJ8cwCsivqoo25QAoZYgBtK2otKayFYogRcOahuHUEwNc3ew4Hg/iRLCGsR+wdYOxEuk87ff0h3uUVrx+PVG3LVppmsrip4m2qWmaitvbAaUr+kEkWruuw00SNbNOUVcVh/6ED5Enj59xPB2YXE/dbDEKdrsOH2AcUhQViD5QbUQqdBwcMXqMraiblmN/4v5+z/39m9yHvzrbyr+WPIsl8D/3Sr7xPGees3hOhieu1rK8zSmVZ17/TMlISIJF6DABlgsU/LIdImWo85er3xcPrC5AR75yaTBkQ+bh76i4tP3iMy48oWc45hLN4Y1bdsSee10pnF1noD/vL4AmzJ/zb1qnooTJmzoD/8KjKs8KnM+OnNIRJ+M6EpmtiWRsZbCbo7d5LZjvI4P1wjue2xRVckAAQQU0IoUZ41IMlKLvSi387LgU/HDOoSc5pVI+o5KaLCTVpnlsJV7//DgzOE5/F2i6PIucd6ZT1GSJOMwW4Qz8V5SaeXwvNJRl5ESyAhYZ9AORACHf19LO2bhJe82AuLDp1XLys1tUYiScRR6Khi4DOPdHLE7ycHAvIP7B2F4M0vXfM7h/4XXK88b5My0vsUS3iv8S6BfH4JrfH87ew8UYX8b4+27vDPwz8B7HcQa2GfTmgZz/nb3Txpg54TUbBNkAyB7veTDmLP5E58nnKyfhklp0XhzsXFkoA+8M4vP32bu/cLDiXBU48+2naZrPmc+fKUEZ3JfRjXyOsjBXKfOZ/2YqUJ6wtNZz3YJMJdIKpmHkyeMnbLpONM/jEu2IcSKEiI+RbdPh/QRjILpApSz9ceBqe83dy1vu74/EKKoykYiuNKf7I9FB21hUmHAxMowT/SiFlPCORhtqFcA5BifqO8MwEiIQpLqvSn0RE6B0zhFiQEWobM3h2PPVq1fsjwNtW7NrNwzHI0Ybmm6Li4HXr2/pRydVEiuDUn7uS68Nru9FTUgrNEIj+fDDD5jGAQU0VUVtbNJQ12gl3H2l5LOPDq0UQWmMNsmaTtULg0fbCp0MTWWtzH0hTZ7JqzG795JVLS9tnjBIk2VkDsgm70rUGh+87OdE7m0MYpRZq2mqWgySFA0yWrxAAb9c3yf1g4ho7LuAsbKYowNKVYyh5tg2bB9/yHH/is9+7w95tmv48KpFzJ5ACArvnHD1YyR4TxYfignoDKcT0UdMJQWe8gQtwEboENPkhHIyuVwugaq27DY7TFWjjeRTSKKySnQgOY+xNuE1kySIF8+FjimqkEK6WimhQc0LwuLtK3xIAngiMlkikqlEuNqOPL22fHhl+WSj+enrA18dX3LSHbZqUGjapqHvT9SNQVUth2Mv0qJ9j2Kkazu8lb6pqxbnHP2xFyODyMn1jP3Apm2p65bj8URlG5wL2KZmGkdMrzkOI8ZEttsGozUhgose78Sr37Vbgvec+hM+Bhrb0HVbTqeTjDckl8DoGlDsdteAYhx7jLEEJNHRu4D3Df04Yo0kJk/DSIgT9/tXVFVHXXdMLlVfd46uazGdoaokMjoMw7suB3/mW+ntTv4/zhe8xWuYfp29+gWAL767SHthWbxXi/0Z+FUJUKq8qp8ZBOX2LgbJ5TbIvZQA7sIR5HnpT3PNN4H98t8PqQ5vO1/h2VwBlbfzk0tDa3Xv2ajKmdMliExgXWkt4gMxz91xHie5hwQnqQSmS8C9eL6z53/Ob7qI7BZwTb5+LPBH2Ucxj8OivWqh92QP/MqgDFEkWtMxMyDXGhVKadcHyHgF/gX3RjIP9dzhuaL1zH1TgtULAPvsOa/epdmH/WDP3DxyTYuVCZqfbdnBl84SHybkX25bXH2vZsMir9lhGVucjdcL5zn/bd4/Ye43zSFft+VxMv93oe/Ox9Gb2vKn2d4Z+A/DMIPnDPDzZxAqSqbIaK1ngP62HIBz/nyZJDxNE9vtdv53rm6bH34JrLMRkI2LssgWMCcQZ7Cdz5U99vnh5SrB+SUex3HOC8hRi5xUnI2bkiqUjaJs3OR7LisVL14KuWY+V+6PcRx4+fI517tr+tMRrSTCkmscNE1DPwzUTcvhKIonMUg73DDw+PEzXj7/kuNRqArOO3IdqFM/chwdddViIigVGAbhUjsfqSuFiYragAqOyTlJGPR5wolCxQkeVMAFAVDeORRQGUkG/uLFK169vmecPNvdjm1do2OkqmrarsNjeP7Vl6A0V5sWhZeCY3WNMRXHfmA89VQ6KQ8gaj673RUfffgBXdMQ3IQBGiOgX6mYJM90klEDUUYQw9Rri3eDhGZBdINVSuY2RpRxNOIRSl6kPHnKuDJERMHIatIE4iUJlwDRExDNZ3mpAyGkRK8QMMmToq2h0hprtBRNSUBXJ6+Edy5p+iuJEASZuMzshZF8gEkZJq6pbj7BOsfpcMvrn/2AzXTPk91jrMnn0ElqFLwTSdPoA55Ek3NyXaMtzo84N0rbZ89D4himypa2qmmaDqNSlcvaYCrRzjdGQL82OXE5JzrLA1Favo/52aRN9hEQT6rMmR+A1lk5Kcya3krF2cupUBgvhXVsjhBGix4Nj01FpTTXVeRPXh34chrY28dEtREqUTzx+u41dduhlOjgD/1AXUWOpwPW1tR1Q9/f03VbxmGCqNh0rciObjqC9+z390Rkvtg1WzzgUYynAa2ksraxlsGPqbBcnRLJT9R1S4wBpYWyZ4xlmhzBy5zX9z1aW4y2HPYHbNWw3V4xjpKcu+l29ClfZkhVsZu6YehPVNZim5rXr1+y63ZEFTmNPURN3B8wVjOGCRDpz/+UheTPbIsxaX6/cYfFl7i6nwxSQOs1mC+BPrByNmU6XC4xVDqMSkrnfIU/nQNubs8aSOR2+uKkZ0DjDZc7BzSlF/pszze2pfx7/vnrjvHerzz8wPzv0iCAtZd09pir4nzZMSwPQC6mlRQ+jAqD0Cjz3cx9UgDTRMZkzqYowK/ggBz5t6K8Y/RyrdUzEceLQuiwMRoiJKWzKMC9AGzztdKhop6TqDZJwlmRE1cFfMdISr6VoowoLfdYGrJxcZ6UBoJWavburw3e3Nd5vC7HFG74dzIYL42NQJK9pjRyJKpBEdGaqf0qe6vL7ezaZ4bU2ov+0KgvDpz/K8d9SBF/Vu9CfHDcmwz+cyOYs3ng8jHnt5Qchmfv1fLfQvvJhmRY/Z6d2w8pSu+zvRfHvwTuc6GqJJEJ6+IQi1Ztlo4yc8Js3rLaTj5nmWR7fX39gMOfj80JtDHGVTvKySNz+c/bnD3uMcbZs1/y8rPRkdtVRh0y7/88AlDmKeTISFYsyvtlmpAxEsLPD3BISYS5bcE7bl+94uOPPxUlHcDqem7H/X5PRCWv3khlKvr+XmQimxo/9kxu4nQ6EsJIDB4bI9MYGHpP0Iqg0wTlYXQO5yVMiVK4GDFWKpBOQaHDxOQccwExFDo6jLI0bZeSRsV74YPnJz//jJeHEwHNpmmpiLixR1uD6Sr2fc/t7R6tFJvKEqcBRSBoC1QcjxMueLSOaBVRQVFZw7Zt2XadqAcl7froPdFNBKcwtU7gHGJUKVQLdVXjQqof4d08x2mjk5ymqLKQ6C1KiVGTQ/AmyXym2VgAOh4hVfsUevaiG58LR2ktdKIpAW0iIXgsSqrYKoU1KkmZpkThGGdajwKinwhhQpP4wjEvVBrnFL2ucdsboqmI98/5/A/+BTddzbMnT2iqiEkGI8Q06UtbBJyIvz94Mbjc5PBB1DFUlEhy1EK36dotVVUno8ws75Q2koCceKpGyYKm02+oXNhF/GM6ikylipDZuJnfGtKzhCAUnwjamqSkJA9Mp7oIUmNAogSzUZRqE6jE+VUTKFuj0GyvpC8qfWT74o6fDNC3G2KoqOsOH6dUF6MhxkBVV2y3FUR4+fIVNzc3WBsJvp+jDW46YY3hcDyw3Ww59XsgUtcVEJiOIpd7fzjQbXc0TQ1K0d/fY7Xlyc0z7u5eCx3HeLRGqEOjODvGRPUZ+pGu22Ct4bjfs+m2uCRlmMfCMIxYIzQqokRJtRLHh1Gaw2GirTvu717TbLYYY7jaXXM6nNika2qtubu7m50pv8pbWuoWr+vZrwkzzhhivTAnozFmDv6yz9sWzwQHLu4zg5GYPJkXcNNDQD83Zv69PNdDQDxf7Q0NjGc/PfRCKpUpL5dPsfphxq2XQP9lU2PVNzM4OeNGXwD9b+v3FXhVagWWSq+10DD1A8CvFItnVZpFFmden6fAKsnjfxH0nz+HBF5nmlBECnWd0cdi6pPyWip54bMBkt0jS8GrIjoQQ1pXCnCZLKGlmcv5ytyUpY/zf9L+FQ0nfy7bHC972M+39X7F5xhB6/TIHkbGlnciGQNzn7IymM7fhfPPuYcfNjMW900x7oo57sK9rYfxQ3DOcsb5mb6pj1bXP2vbuo0l+D+bj+Z3Zm0gXGrj+2zvpeNfetNjlOTZaZpm1ZlcwbfkxGcvfGnNZ6CdgXf2iudE4azTm+lE5zkDJa8/5wSU6j3nkpulHGYG64vltI4cZG5Vadzk+yuNkzI8mI/PDyLvO0wjFXVS4nCpIvASLchtM1Y81s4NhKlnON5TNyIdWNctWltGJzkEbdcxjoN48lXg/u61VN1rGu7uXxKOJ2KI9MPA1lrG0wlrNdM0MjoIPuKU0FGmYSCiGZ0T2sAUqCuLiorTscfWNcfjSTwgKLqqorJJGjXRosZ+AG0YveP2/p7T6Kjqmq6p0VkT31jQhld3Rw77E02SNJNKrIlTHiJuEqpB9n4YrVE+YKuKum14+uiG4B2V7mirGnyEKBrvbVtjJIyBVA4P6KjRiMRmMKnISpjQCAhXRPkuAXUVFSF68ehjJCchRTMiCmU9Gi1JTVon/DxJtCCmKAGGgMJ5J6o+PiYlLMil0CHRzqyoCaGkirKUtfdoJYVhVEp8MkoMmaAiDvDdY8b6GrPb8fKXX3L67E/4xtMbdm0tbQ9+Vm8JiUfvUo0IFQLOSxG2YRjxkxgXxlRs250A/MpiqgprbPI2m1lNY06qU4qqFnqP8DtzMp4YDMpWEmZK3nnZ0iQVQjJoREEnBsmPkNzGZAzkSTOSFkfSO6fQ8ySYr5lAV/4bUxJdyrcIIXCjwOhIcz/yi+NPea0fczINm6snNJst09ijlOQJDJOT6sRXWymaVVkO9wdubh6x3XYc+xPaaLyf8H6SiIqWvI6xT1UtI3SbDhcmiLDb7lDXN0zjxP39PUppHj16hDZw2N8x9CdOfZ+iT0j9Aq2AinGSwm+RmBLURX5U5lPFoR959OgGozzeyVx4c/OIu7t7Ua2yFhc9na4wauLVyxfUdcOxP+FTNLHrujk58y/stsaeswFwyWOY9zn32JWfzwFqUHGmm10C6Q+bsyTGx8XXPDMPVF74s+2QqqnPUbLI8nl9e/M8ci5quuz5EHyqBwbCG7aiaukZ1LnQkgKMzsfEebzmPp5BTtGvmbss96NWf1Gp/1gDPpUjAhQASRky537uHLWcK5QAazYYF+NAZ25/2Tfzv6XPlH7YcTNwL8fN0hHlAJzbK/UFQjIUJGE8rI5PfZ6Nlvl+coMStTQunmD5KSfpqmL/pZ0z4FXLuVVpIZ89z/OoVtkt63+r9W/lMTEyJ++G7JhRC5UqvRurAT4bB6WBfgauV8bKm4B1YajG1KszmJ7/bx7hWR2rBOPr35dbutRX+XP+W74TRUvSv3OEkfVxOdow75s/5/tcBunSrvTbe07d7wz8S/56SYUpi2idJ69mUL3ZbGZgn6k/OXF2mqa5qm0G2HlRyx2aZTqdc7MWfzYK8lZq7mf6zjAMs9c9q+eca//nBOBMByon/GxILAoCcS7yFWOcaT6ZQrQUDpOJXoyiiZurGySxNCTKUD1TkbSRwljaZ4sdoopoY9ntblBKM45DygMYAUVVWVFOGQYUiu7qhhAc04sJN44MYy90hOMRqyvRKp9ODE4EI7RRgIBBYvI4a+Hf6SiUp6au5XcrcphN14qH3U8M3uONZRgdaMv+fs/kJaF3V9dUlUG5CWs1LmomD89f3+JCZNt11BpUdARjcAGc94zjlOQtxWsrk3FEGYXtWprrG66fPCJGh7XQdRVtI6FQayzW1BAifhrRURSDJBlIjByv1QycROUhoLwXdR6lwVq88yhTEUKu8CxKOrBMMSH9pyUeQIiO4Bdvjg+5BH2QSEKMWK2hTucnpnyFCOk6Oas/JDBAkLGSvVzOR6LRuNBwcC27Dz5EjYGvPvsp3/3kG/z4Fw7lR6KLYCTZGC8GifeeyU3iKU65JNF7MAZrKrrrDU1VC62laTF1gzYmqSMpnBMgawrgLwuMAWVR2soEreW7+T9jydOWtjHJnkqkQausjyJ9pbUSgJpddKwnUZ3Or5VKfbrQLspJWvo+oGbD3qO0pqpbmDxXG3mejdrzxf4XfDE0jLZG12KkKuWJ3hFVhVeKqm4JQZJpTWXxPvD8+QsGN/Hk8WO22x1aKa6fXnN7+4pxGnj06BkxRO7v7tndXFEB/enE7e0tm81W6AE4Nl1LjBMvX95iNEw+UtUVwzDQNp1QwbTcb59olre3t2x3O5wP9KO8+9vtlqoyhOC4v3sFaLrNlm6zoW6k8JjSUiyobds0J6d6KoBB8gWYE7D/4m8Z316QAk+4Qq3+fe55g2VszY4e+ZJy/C45JyzHlItwTOD1DWtzjBBVNooVOeqayB8IMSUlTRbyh5m2MZ/4a1b9GOMb+2N9nqXNC+R/eO7yHA89rwuoP6+UW6rrlABn3ZR0dg0xJAAfFoCl5gjzghalhkkWF1gAfQrPFneTQdRD+Dr/Wf2XQL8iF2Jffkx9SowziJ8XiFmOZrnObOQkTKTmOTPNhGqBd1HlscHybFSu+7C0WocwV7mfIwlZgejcEI1iWMo4KMfz5e3ck7yi2RSfLpiXC3iPMTl1pANnYyPo+dkUVi8LJWhpW25raVBFLWvt/Nge3EcxsmIkkihnZ6C+3P98NC4e9+J5XDiy3Pci8M/Gb2p+SKD/En1n/i+fg/VziIXtshhMeV54P+T/Xjr+JcUme/xjjLO8ZfaQN00z/z6OI4fDYabO5CTa7D2fpokY45ztnhNzq6oSVYuU1AoC7kvK0XnYI4P0rJVfRhzyNfM+eVLPnH5YBlCOMozjuIoQ1PVCuckGTJmrkA2SzWaX/m1mAyEmj3COXJS5CaqSZEAI3N3fU7cbus029zzeOyY3JG13w/3dHSoBJWtrjLWMxxM1kf54z+n1c3ZNxecvetqmZpg8vQcXxfunVSA6h9KaaUyg0zkqbWhNg6ns3K/Bg49Sw2HsT2zbjqbr0LricJp4ff8KpYUjXDcNyntabQjaMbqJwQV6F2jqhpumwQSP8p7JwTQ5plTQKsbkkYqiJGSTl7duGj78xjf4jV//dX79w8dM918gk32gqgxNlak4KlE/PFFNRGWR6rQRrcBqPRfayqBREVFBPOHGVChjcWm5tXkijos8rFYKr41M3r7wRmXVBSWazjF4pqGH4DFaoixaRdCpfkBE/p0UaWKMYmQp4fLH4FHBYwj4AM62TPUj7Aff5PlXL9ntB37w2/89bniF+6NrWt+jNhWBjlEpvHf48SQSm84Tghg/1lja7QZrLFXbYaylqiuynrQUBpOKtMqmhSboZSKHeQX0UVSOVJBJPaSJW2uh+sSkHhGT8aWCRDKIER8XhaMQ/Oo9NkrPXOCFKhCIQbj+KhlIeROwxbyI+lS0J0/Y2mhsbcFLobqdEr62Vffshj3P7/6IgU9RzQ1m94hhmmjaFpTiNPb0o+PZ0w949fIlVdNQNS2VG7BVzRjEsDieTtImpdkfjpyGga7tOBx7CAFby/t0Op2Sw6THuYHdbovSMq+40UHyWuoc2TAyFjRg6hrdarZXV4zjxH6/xxjN8XjgNI70w4lNXaG1wSbZYuckub2uapyfeP36Nd5LccHs8Li6eYy28Pr2Nd6/p9voV25bQdIZbC8OyHPaj+x3EQucbXkRXlMOzq9Z7H/BE/igtWpZyM8pQwL2ygV94Yk/vNsFlbwPR3vZvwAXb/i8Ngwun28dJYkX95n34839UrYtLh1UYJzSOJt3Xvpj9vin/R9A1TVNTM6xgP+yT0oj6F22DKzL650fv4ryFHPrqk258an9FyNKxT0v1KcyMbmcKEuYvrYAY/HL+dh46P1X833mfZY7v2Qc5HdBxoTc7vrdXPo/pmFfvGPFXWTwr3KS8Nm+D7f1szsH6MVZH+zzcL8LN3Zhn3OgXrw2F9+bVZtmA+H8nPnCy1wgN19+9fXvfbm9V+VemwrFZOpNbuC5TGYGzG3bztz3DIBLTn0G4hmM5+NLXjwsGvbZqMjJsvm7bHAopWYDo9TXz0bG7DVI+5V8/Uw7ysdqLUWsyuTk7KXP0Y0sBVoeZ22Fm9zMxa3qGqMlUVMiFmtpUecdh8OeuqqoKss4eupmy/HU08ZAU9fEKBQc4YqHuTKwIqA1DP2BOJ2YDrfsv/yM6yoyjgeUFi/i6eCYAilBTaouqxjwUTHFQFAaHSMWRaUN0+RwyUNbV5WAVO958ugxVd3RjyPPX+2JytJ1O+rKQvTgA42pccPIYRyIWlFXLXVnxW8V4DSMHE49o/dz0qaPaQwRqbTB6kilNMYqrq6v+MZHn9APjs+/fMEH24qqaohB4UZJ8K1rjxt7MBptK/EAKVB6saBVFFUoa4SHrpWCnGQdIgFJzo3GprdJpE3z+IlRQpXKJPWg4Ah+IPhe5DwTeNZaS3ElJdQAohgewt+PSdM+EKNIV+bXWAyQiFfi9whBMQTFZDsOaseTD77L/tUL3B//Pv/+X31Jo0Y+uO6olBRw8uPAcRIKj0+GhVEGW3XUdUtT58TbCm2t9IOVxNwcsiYiHrmYVIVC9nSIESATlSyaPibpvFTYLIZIXRmiMihbSURAKxk7qfZElh7M3vgYRAkqhhwODoDH+zB7sUQ/Ws3cXDW/n0kRDCRalSZRYxJdj0X7WEUn1TsreRc3eCIbTA2tnnh9+0fc2htG/yleN/TB4dEEbdl0V4QgBoTzE3W9Ae8YponD4SSKVE0LygoNb5gwxgq9Zpxw40Td1uz3e7abHShF224Qg176epomurYDVaGM5nDYp3wMy+nUs93ssFVFBO73+5Rw3GOrig+ePkEdj2ht6CrLyxevQWmc93SbDdM0st/vubreMU0T0zihG8lFcW5CKU1V6eSUeC/m55/LlqDNRb/txS0+XBvPAfzq/CVoUw8BV3msGPuXAUgGHKWQQ3mOfH6dvMPLfovyySWqxaW2vM/2dWA773MJAJ0zwS4B/vLYhxSIh/uW2znQnL/LQDEDHSWfFyr9yoKaMWjMoH/GuWfAdQbcar7WOTe+dBC+6Tmu7vUcYEdQc6EDAev5qBCXPs0GQEJUKMKqPefjsmzD+X5lDsvSxmzYpN9KYyNd+3wkPQT9c3fO9/gm4H/eRxlDZSZIxm/rnR9+df6z0OcCKi74r4z+5L8PQPU7XCyPz9Wm0jO6YMRfAv3z/cZ8vrPPhVNrHl8xm5eXOyAbR6vnPBtRX5+HcWl7Lx3/GOMMdqtU7bJU2sne/EzpOR6PDxJ+8z6lrGZZzRbE456/y9/na2Wgn9uUjy+pQZnLD6wUc8rBO7qJ4BbqT25LSdvJBk4IYZa7y9fLVKXcJ7m94zjOVTurygrfOlGb5HeHUksyr5smbGWJSqOVJjjP9fUNpqpE+s95pmmkriz9sacfc8QkoAwYFTHDLc14x/3pBcYdeXR9xS+/uAfv6RrDVy/6pLdryPVZXVC4qCX8p4RP3zZNqrQr3trKGgKRutLC6TeNyIsGxfX1DTEqutpitZIkVau5f/Ua7xyVtlRdg59GjLIM48jt/Z79scd7kj6ycL2NFk+3jlBZUWlorKZrG252HePhlr/8t/4uf/U3f5P/+M//70RrMKbGTeLRnEYBMKqyAkh1wBgJhYrRJY/d5CrLzjN5T2UN3ge8EsMsKkvUBl3ZxZPtg/SbsShD6j8B6MGPRDegYsTaRtRC/AjOoYIsJwI8I0Zm2OUFzwmt2ZEVHcEnvicwqYr72LL56HtUUfGHv/e7DJ/9kOnlZ1xtO662DbiByY24qDFGUdmKpuqwtirGbyVAtKoXw8UIZ1+S2RKon5NnZYGa3Ej0kdE5orFUppYE5aiIiN6w0RGsQRzFOnnYBVTK7WZlD5c8+5IELXUMUtjfy0Se6Vc+5tCogqw8FLQUGkt0La8UMUWLnXfSt/m4ALlOw1zUyoNXkWAi0UW0trR1jSFio6LCUJ3u+OqrAyd7jXr8Cd5eYRqD8pHxeALvJSqnLVUlhf+6bktd2VTHwaZx4tk1FYfDiU3Xcjre8+Jlz3bTiUJHhMq2MiC9giCVrru2xavA4dizaTfLOq0Nw9AnB4qjHwd602O0xeqaUy/zF8HRe0/d1IQQcS7SDyNaQ1VX3O8PhBDYbjZM48h2u8Nqxe3hlsfNIyYfaX/1cT+Lz/Y9AG+Bfc69/vDQWfaA11ws+mtwygJELwCGSwvyA+CgFBkDzZ7gWEiFvumWVm1JF/xTbF8XmZi/i/OtPriHh0W53ni1h6D/LeA/n7/cYwH/qgDK5XesMah6CE4j6+/E57E4Lst7K8H/GlxfBpVqbpPiYcNZGTBLX8maLP9ITpgL7cnnz99lPHTJKLj8DJLJvDrn8hzKCELZBw/H4SVD6fJ13wSUS+WsJcIitLaV0ZfHOZFQnEc9MKjzMevnxhue00Ur4037ZuTN+tm/+T6zwyz9NwP/r6H3PGzRWTPUqk/O38X32d4L+Jec90ve9EyPydGBUtozRwIyCM/e/Cwjl8+VQXc2JMqIQAb4Gdh3XTeD9tzGXGArnyP/Ox9XVRVTqqSaz5cNjRgjXdcBi8pQGSnI58yRjKwelCMHObqhFFhbypquk3+z4QACDJumZRwnove4aaRJ+Qa5omvbNIzDCe8cjdLYqkNVBu1e80Eb2bkjjRm5cyd2TcU09ozTxKbruL66xocv02Snid4LrzBEgpdCG0bDrq2IbiQqUV1xbsJoS11VNHUjakP3d6iqIgTPh8+eSQL1NOGniVN/4LAfqa3l6fU1r+/vCNHhlcf5nsNwYggTuqpQOgqVB4+K4k82Snj5lY40RvPB42seP7rm6mpHd7Pl2U3HZ7/8KcfDyN3zO+pnGrutGMYeSDxHLfz2trP44UQ0CoyonBitqbIaUAxoFYlRgJiKmQMbUCYXhBJ3zJyEpXJVXaGqRB8FqKZiaqLnHIl+kkgCwm/MtVaCD6ikQhN9xIUJg1SfRSkCmimAcgOTMvjH3+bj73yfL774JZVy1OOB0/0LHl9vqJtGkqytpaoayXGwFmMsthIFGTWDe0meVkYKhMU0eSgrikYOiYQEt3ZNxCD/ZWWjgMKFmKIUyQMfIjoglSj1YjhHLQuZiom65BXeZV+WSYnPouLjncP7aaF8IsA9F4aJMQo3SunsmBL1JucJUWgxPoqcZZ5gvRMedgwCiAnJa5epQzC/903TEHTPE6toDgOvj19wf+vprr/BPjSYqw8x1nB3HAkqYCuNqTbUqfrm0Evy+zh5Dsee7WaDmxyPbq7Fk99t0NZw2O/ZblratuV4ODGOju12h0KhlaXvHdEoqqrFTW52kDgf2Wy3HPsDjx5dUw2GECJ9PzK5E3UQ76APnlN/BAW7uuLqesvoBtq2wxrDfr8Xp0RV0batjGWnqYxmvz+soqi/ktuZ4/LyLkUCbbEeCj5YPGTy+yXArM4PKs57CfzLbxl0vgv0Xnuz0xUXRD1fD7VEsVQCHnN0IR8c836g5hyA8u/SdvGUFvd10erJ79AbPP7FYQ+8/Wef5f9yOyIz6C/gTf6sirbG8vNsWS3PNgPXNSDVS6G0PJEo5u9WYD6fI++TAafKAgLnhmA8+/xmD+ssL1AaJ/PHxZhTszHytqhOYcQU41a+ezjWSqNEFdctn3Me7vP4Wd3bO5rSeXi9YefyVpZuygetP6+jOwUpSrEYANlISscuRlucj5vvY2VQPRxny+c4983cr7Ecc+tjYOnffM1YvGflO7G8Cxn0l2P4bDTFxRGYjZSH4/98/6Vv3xZ9+LrtnYF/qXKTvell+CaDXlg0/7O0ZTYU6rpeWc4xxuQhX6vpZCMg02pK73vWyjfGrCoGlx1QSnmWCcW5mq/Si9c+y2xO0yQa+SlhN99vPqe1dlUU7FwtqGmaObFYaD0xUXeGOcJRGhrDMHA6nahq8dAZpdCERSEgCr1q6E/0/ZG+P9I1G4y1NE2gcfd8aE98tGmIvebViz11hI+fPuazrz4Hpbm+vmZ/OOGD8PRDcFTGiIqNj4QoxkWlI2EaUVYzes/kI9u2xShF17RoZZiCo24b6q5JShUBPw0QPPvDXtRxbMVhGOjHI5WtqeuWaR/wMdDqGixMyqN0RMfI5MBDKosuwLqqLR89fcw3P37G0+sdaAgm8tlP/ogPv/lt+gl+/uVXHMcDnzy9YbtpuL+7J3rPNkLdbgjOo1Qg+Ei04oWOCEBVCoKfCH5CIRKlUmUwpKRnS2UrSSSNouGtkcTS6D0heAge7ybcMBJDxNQCvG2ivEQkL4O45IDE4JNhkCrVIufTWowM4yectxzYcbA33HzwG5h2ww//3b/k2cYQDnd85+OnNE2FrmqaSpJoc9Eymzztykp0IhqZnSU5WaFtlbxayUDKHneliC5Kn6HwiZaHFgCutMGn+0drQuLg+xBFgSZGVIgUxbeJwc3zQohFufcIvgT93oGKs5zpMreo1dxSbiGEJKGK9KVSoITakz39cvxETAZ+DIumuNIKvFRlNqkGRj2FBOoj226E01fc3r2iunpCYxWx2xHDRNtuUTGyv7/l5vqaoe/xbiRGKVymE+XocDzgvZuNLu8CbdvN1DFjNLvdRpwapCqdESIabaVitQ9BqgVXFcM4isznOEEq/iMJ6DCNB8bRoY2lahqUQQyvKOPtcH8/1x559vQpz58/J8bIdrtlGMfF8ZL681d2K9a1kvIxfzeDCBZwPP+2PkGZk7VyDReXWiDrQ7A3y06TnAYKiVqpXGeiyCO6AOqWcH3xXzK2UVGcLwUoyZEBlarwLugqg8E1vWPV8hiW/kI/oOtkuA0PtcHPsUSJ48TgWaruEuX4kLXc49L2JSIgTpcFVsn/h+LzAoTCDJrmokvZaUGh95/6ISdGrx7n/HiLZze3v3wguUuXZyVDoxgJRXL1w02tQP/yvHKl8eXe3qQUulx3uTdxnBqCyoIRce4DVGpSytjOY24xCjIolb8l6F8SYxfQvLb/3gwi42yCzZdOV1uMwzcdufT6UohsqZytlryG0tCJ2WhiPj47eOaGL7bNYjDMtyJrw9L21M4zwxWyStKSbL9ccb3J/Lsk8oeE8mN6H+bvyOM/XWem+QpNNot6zFGl7HBLBkAgn3d5o2djIb+f8aw/3nF7L49/CfizF3+73Qp3NIHrMvn3PDKQDYESBANzLYAMuIEVyC/Ve5RSswGR9z2PIuRjMk2nTML13hOcAPS2aTmdTnMkIJ8rX7+qqrnysHOOtm1RWjT0j8ejyGu27Vzoa6lDIPrph0M/K2VIIZ5F+rOsFOxdooV4hyZiU4Le8XCQQlqjVBKtrGGj4Sbe8+G255Prhjj29CbyfL/n6UfXfP75cxSSNNm1Lbd398jECIHAlFQHXIxMMdIahTUQlGLykeg9ja2ptObR9TV1U3M6DTR1w/XNBoUkwr58dcfQj7N82CFx97u2orUQhoH9V3t657HGUFsLWE7DhKgLaDFIQkTrQI0ijg5loNtt2e22PHp8g1Jw2w+8ev2Ku8OBn332S7rW8Rs8oTOGH/3oT/jut76DxqK8J04jXhu8BoLD+JC84Bp8pLaiWKMQBRgBOxqCIqoJvBihdVWRJ8zopRiXJKc6pumEGyUCA6CtFSWZpOgTnKQIa8BPUsRLjJFFrwOlidrO78mgoH/0Cdtvfp+bbovRiv/5f/jv+M4WtnWguX5Cq4WuhTYoHVO1YaGIGaVRRjz7mFzPIAqY1AZ0osclcOqd5DAQUqlw5wnep4knoBqLqS0+COCPSqGtJQS/8F2VTio+qbR8MizwgeH+lrprwSbjIPqZ7uP9BElqlOATOF/TBeRdzAtBxCdJVNKEqFJVuhCln2NUEJNudHQENy2AP60zYryIMRRhjn6ZylIjBm4VFSb06OnE3eufcTzeE55+Srd5jJs8pjKE4KV6tELofBgOxyNKGbabrRiYWoycqunwwdN1Hfe3r4UmNPRcX12zu9ry6vXrBOgkd2QYBq6vrrm7u0Nrg0ttrJsNh/2RGCVKqvVALiDnXeRqd0NQgdNwYLNp8C5itWX0I7evX1PXNS9fvGCaJm4e3cjcU4u62CcffSyG43suHn9u25sw2BvbX3qhLyX4lifL6IiMQRZ4dAbGF0CSLxML4FWc8aJHd3VFlgauk0FLr392jsSYvPj5wPk+8tkWeCanzQnvZ37Mwlm6ALMFVLwNTFyiK4QM1gtDawH8i4FxyRu78nSy3nfevwCEi1EVWdz9ck8FllxL1Mald8pbL4G4mh9GnM9xwTa8MNZKEJ3bKN8rmCv0znu/ZUjk+5JnngUU0rlWxo0q2q5Wf5crX2imKvdbDQLmwXTh4c/RidV7sRabzIcppVb3uPTr+v1ZGYFxUeqJZ+/apa00BlRq1Lmn/nxcrb4985jH1fuxfFpH6Uqal1x5eQcyCH9oQC/efYq/BZhPBy/tKNu9NHUB/8zGxvt6++FPoeOfgUo2BMoiW6Zw+5UVcUuAnzuj5N1nDn2m3GSKTKn/nwF8jg5kIyFX4lVKzV73bGicTqdZzjNTjTKFhwh97Oe2Z6MmU4OyhOg4jnNNABc8BsNpPM2qGGXl4qZpUiShSZKhHUot9QpKJZ9ZHtQ5cglvUbcRS3CaPNPkiW6gspL4emVHvtF5PtoYPt49QwF7B198/hm20lw9fsxnXzxnt93ykW4lqTRp9KMF+CgC3oGwfKTarY8i4xm8S+ovUp00xMAwDSgdqCuRyzz0R8Z+4tRPVE2LrWte3B242x95/OiaR492xMnz8uUth1EA4mmYGF0QikeMwsPHJyoJWBR+Ek/uvvf84Z/8GMaetrLcHu54vt+z7yN39yfA0A+GHwyf8+WXr2m151sff4uoFD56qhCIY08wBm0VuqrQxqIxaGp0BKNrdLQJhHsm53DRoKlQJgiNRGcvnEhwqkQV8W4kTgPRDRActm5Qtk7FqbzQebwYXj5kD5e8Gz57xlioccSIo2KoGj79W/85X72+5fZnf8BXn33GJ53iervBIAtHZaU6LkoTlSjKCFXLgjXC09eSwLso7SRqjFLkbF03DfgQiX7EGoObRqKTarExLwzOg5Vk6ahNegcdnogyGpvyQLQyVKZmXnEjnI4HXr34kqcfPKM2XUoYjhCF2hOd8PwFmOcJcvHcSA8FiDoZSWb2gupUPyES0Gn2CyEXBtTEoKS0fUT+DZKbESNWCWj31hKcABWlNbqqMTESvKNpKgELXuEOR8LxBXenPeOTb7L95DfQocaqiqpqmbwjBsUwSC2T60c3VK3l2E+o0TE5MbDbyuIGoUD24yAyodFzPB1pu444SbSlrWtcCJz6AaUl+dZHyVE47E+k9AtxOlQW5yI+RDbbK6qqZpwGopc57HTs2XQd3WbDqe9RWs+OC+88bnT4yTO5kS+ff8XxePxTLSB/Ubc3Uyy4CCAuWRvn0eY1//ftYF/2ZwXczttTgv5ygS+9oeeXykbBbCAURk62aR7e0jmIfzfQX34u/52vp85+/9OClHWTSw2at+/5YEsI9Zyn/daxkA8tojSc9e+l+5+dIGcNUMTVc5djSiO0aGyOcCj1oM3ra/FgHK748bEwZC7f3YPf32Rb5+uu+fel8breZ3WVr+njNxnXl/fNi0U2RAoDoNzn4ru8buyl8XnOIlntW1z/0vh+8H4UV3zbu1A+pRgzyC9A/8oIXrfzfd+r99LxP51OADPAL9V08sVzEa8MdPMAyRz6zNXPHvn8e1kcLJ8vg+QMwIFZgz/vVxoLOaRYKvvkvISy3WU130zbAVZUJfGqyWI5nz/TnWC+j3xMvt65ZVhGQdq2nQ2luYowouzTNFWqaBqwtWJwIvmnY6D2E08qxfefXvPxVnPV1rSmwoXIi5fPCXgeP7oBXeOmiBsju80V90NIEn0SijRZSchJO23iNlbGEPxEYzVNpWmaCud6pjHSdaIochodt6cT/dijo0gEHseBl69uiTHywbNHfPj0Efv9nhcv97y4PeBjlARQwHmpPhjQKcwV52IsLlFFKmuxbUfvRj57fs+L29/DtBWHybE/DBhjqZoNg1cce8dhP/Jb3/2IuqoIU4/pdlKsKwp1qqnqVPch8dy1SonXedwlj3OinkSH0FmAoCwaSTjV2dPsRtw44KYRN0lhJqONTDXJu+xd1uDXqXit5FVIJeDkIUx8eK8MDsP9MDJqw91Xz/nlv//X6MMv+PjpE67aChssWhuqWsa0SpQeEdrRxKjRRsA5aJQWbX2X3FtZ31qhCD7gpnHJ74iSR+PdNNM8Mi2KPH69RGxCqq0QnZqr6JI9UkqkJ401BAXNZsMH3/o2CiQZPAakYqok94YoETHvQ/KQJoCjc1KwVEgWGoWeNcFVesdm705M0QlINIUkzasVYNAq+wKlGJrYNJYwyf2byqC1RTmHDpKD4SLYEGka2ISI73tCfyJ88XOC7lDf/B7ORUYXOPZD0tuPtK3FWpA6Eyn5XimRVDWaYTqK0yKKtOphf2C7M3TbFh+AGOmHHpMkUK0Ro7C2DdMklCWjK8ZpgBgYp5Fu22Ftze3tHS5G6sZiK0PbSK2Tpm6JwbPZbNhuNyilmZwYKc55gg90m3aOXB4Oh3ddDv5Cb+Wa9RBYxAegN4Ppmc5wBshKR47snxJGz4DL+TUVqXTJG9oIa1rS+eJeelFX6w4xFetaJ09eAooZFP5pgP/s6c+5MyXYyVRCWP/+nwr8L/XB7Pnnwt/iWApn9gWv9vp5PXzG6VvKJ/bQ4LlsUJRAeQ36F0OpvCelWI2tMv/mbdfK+58D1zXQvGwwMAPNOO/1dSbW+nlcjnad9+FbzkYey28D/6XvPiH74uMFg11dAMZnYPp8LL+1vav3ZE19f2AQz5dSD65V7lfeW77D5b1hvtZ/quGct3cG/pmakgdVpq6UYP1chjMbABn058F/nhBcaumfGxNzQwsjIHvac3XfDN7LyEAZgcjtK6MH+YGV0lJZqSgnFOd256Jhk3di/EQBDmUBsKqq5nMPwzAnJANzRCFHJrK8qfeetmnwIeCCeFsn59laSwgTjfZU48BHXeBvfPsjPrxq2VSBgCJEGN3IZrvFVpaqrRhG2HY7bl9/wePdDW6/J8SIC+KBNgbqqmYcTyJHqgwKMWBU8HSbhspq3DQRlWKz2dCPI/39Pd12myxQMRz68cjdqWcMmmc3Wz5+9pivvvic0+h5cXtiSh6MkJ5xrmyKDzS1nWkyKI1R0LYNu22HNhECjCowTpHTcWJwHqs1N43BuxM+GpSfePKNj/jo2Qc0lRQp0zYZdkpjtaE2FSYBR10Z6lrUabQySFVbh3PCBdckmllMPEwdRaoSWcSCd0z9ETeNTEMvidZ1S2UtRgHe4yYBtFqZ2TjMvD3hewZiAn8xBiZlmTbPeNHf4u/3DP/2f+CDtqb56BtUlaJSAVSNVhptarCJy2sMISqR5jSVSJgicowRDUoST51zQrHxDhMzoNHkqprEOHPulVKgpeqx0GgMKC1gP4hkaHBhBv3aijqQsWYOH2f+ojYKVAUx4IPQnkL0xODx3s2eD7S8FyZp/qN1KsaDAF2rksGQVBwSANPJeIz5XZeBhJZTJGNIGiXru8cq2Sdf11YNITihZekxySqKIWERQ7UNFq9qnB+5Gve8/OpH+G2H3j7ldDjITetAVVmqWiJIIuWq6b1n121pm5r96UCInv2hZ7vdASnfKQF47xxWG059D0qS+ZVSuGlkOJ2wtqJtO6ZpJFPUCOAGx6bbsdvt0pwmVZCPhwObzVY+p+KIp1Nf0Cll/nv06BHei8zw4XCYI5u/itvXg4b/32zzslqC5OL7NwGSvCgvIPvyvhcpGSvsVYDjr/F8lm09v1YJ2rLhIseUXuCzm+McTD645IP7fSOAiefnejtguWTYXL4w843lvk7/mD8/9F+vv1QJ9D/0t17o4wdtevM4XO/7EJyfP0L56SzBdd5HTM0300yWv1/nWT8H929s/xt/ubDv2fuRO/i8OJjKVszSmK+53mXwf3nPC+/o2g5hZRicn+uC4ffw3/NbdAbk18ecj/XlfVjeu0t3ujomj5nVeVMzHw6tB2PjfbZ3Bv45KTUD2FLDPgPc0+k071cC3Ayks0EAzF757JHPnP6s/JMNgHxM9u6X1mNuT/49f86AvDQ2gAfRhJJelO+jjBZkAyFHGwLpXpTmOB3nBOGHk55ct6qkEmdJSaqqRWrxeDwmL0TyolYVTdsx9hNX20jre57Zib/9rY/45KbFVhVVLXr89/dHQpzYbHZ07ZbHz57w5VevUTiurjuur7b84svn2ColRqfJzjsHOtGiBpdAB1ztRJ98nCaqqmYKgVeHA+PoeXR9LVV4R09rNHfHgcMwMYZIXRu+8cFTnn/xJafTwKvDhEcjvGUvibERCEnpiAjB0VYak6UlFVKnwE2cjiORyJQAqCNVglWwPw2cnMdqy6e7DR88umFTV6AtzeYGbSxEiRw0dU1dV6CUJKTG5IXSAsSjSiCdBbASpQpkMAqnJAmNGERv3nvCNOKGnmno0Tp5i5VEgjQak6r8iiJQehFjAsvaJKUa8dIfTcOpeUS9veGTquOrH/+Aj55cUZmIiVK1FW1BKayWglrKJDqP0ihlUaZGJSqOpDBEQGOqCosRQyQK1Se4bGyGlKyscUGM1ggixZlqEWRvg1WpqjOptgAJeKfKvjn5TJKmJYSt0wwsytWBqIXeE7zkECT8DUrhppwrkOYypSUxOVfmJaBUmjOUghAwiGGQvYkmcdMF7EgegNJm1qSXey642Aq0lQvqoHEAOkpSrJJ79ErThBT90EBoserENB24+9kfs/vNHZBygmxF8GCrCu8C++OeYRh58uxDGltzOh2lMrcRQ7IfRq62G7rthmGcOJ168fxWmu1uR4yR0+GISZ7gECamyVHXGu8nTscjVVVjjTyr/d19Wr8C1kYpGmcr/CT1BK6uruYcrDw/G2N48uSKu9s76qZKczlcX1+9w0rwK7SldfVNwPjSvouVqhZwWnjgZb8zwFqAyhjz8FUX532QunxigC6Lcj4mg/TsN35rqwsD4JK3L0OKtWc/X/cSrA1p/inVTOLMg38bUH8TsLnUB5eMgnOg/fUwRc31DFSiRKoCDEu3pB5UGTSV6P7hxR7QYXIMJ15q0SIhvhYaSPkVxf3l3x+0P+bAQtFHahUvWPrn/Oorg0Gtnm2ck7ALcEhEZXEJdSZ4ctau/O3Fd2b5uXhf5oZcuM+5Fcz9X4D/+dv8qC6e4dI5Lv1++aj50/lOEdT5uywfCpC9XPmyxZhPpS78FNfPJhn8MiexukKea8poykPjs9wuGMLla62yYys7Gt7HbHtPjz8s1XBz0assuZlvKhsBwzBQ1/WKr5/lPkGSXcukXXiYpFtOrjnSkHnyJVgvX7zSwMhe/bLWQAbz2dhYTc7ly3VmSSmlMCiRPDSsvP35nvO95TblnIa82OboR53kOrUWkGW0ZjidqExEBc80HGn1I67UiV97XPGNZ9fUVUPT1RA9d4c9SiuePPmQw90917sbnj5+xstXd3h3oKq06K9HBSqI7KOdCEHhUzGiYRrRIdDVFdtNi5smhmGkbcWQOZ5GQmWp2wYfI6ej5EMcTicmF3AholHsrjbsjweGcaQfJ5z3s1eJKJn6IfVd8EIXUcbMk0LwHkLkOCaKhPMooxi1wqcE0EprlK6IWuE81Foz+sBh6NFNx6MPP6SqN8TgUFZhaoOthfJh6hqNxgVJ4p3CRNAOE4WiEyN4LwmjQUW08oTxhAsT2laoGEXpxqeEUeeTV1dRmwodcx5K0pj3IVFWFBEp0CNccgHyJ9Wwj1uefOcv4e5u+epnP6Rj4lGjqHSgNqm4Vgb4hTdcaEgKpS2YClM1KfoTAZHrVAp88PixJ4aJGEmqG7IYWGMJzs3PRYwJRYgTVldoNNPk0Xi0NSJJqlWSKAVlVDImE3VMQwhi2CpiKqsrKjkxSKE4gpecgaToEaJQc3TKHdDpPVTapjEDaMip0AZAaQKSN6GiVFHWyTmQz5spXHmmjQpc9GI4kiV1pd4EKSpoMcSoCFrPwEKrAasNehiF1lVVMk50ZDq9xr34Eh5XVJUhUEMMUrNEGdpmQ9Pu6NqOpq449cc5Itl1NQrF8dQzuTSPTZ7ddkuIE4fbOxSKcRqwtcVaTd1Jbo1EmBoIYGyN0orJJ5AfJAE4RIepG4ytGCeHnjymcmJQacM0ToyJxri/36dnJnOSrWrqtnvX5eBXYssL6tc7u4odzhBIppDJbmnlLwDb+jRrZBCQ3JH51AXQDWHtrc0L/Qr0q7e1/c0L+QMD4LzgV0JBD6G/Xp232HW19xpUvun+ZJ8FSz00FC4ZK2Vr3vrYMlpUS7Qiv5/S9oKKodYH5ghHJM5Hos68omrpiXkKmc+dgVrgIaZf2vCmaEd5l7NxWX57BkjLc533QR5Dc05kBoSra2ZPtAYVJJ9rtiqXsf424ziWf+dxPh9YtOldwH/qw0uWbfHI4vrg5R+p3WtCz3n/lBbKG/pvblJ6oMVX6/u9YDNkpzG5LSWQf5OFkIzQ9D7NhkA+xwVDOEcRLm/5WZ/fc/qsl/eCN93/G7Z3Bv4ZkGfKTwn+88AswXSmumSpy77vZ+OhnBAz1Sfz5cuIQQbOmQ+f8wcylac8Xwb8ZZXdTMEpB3w2XDJHP4NwYEXbyfuUxkxua8nTL+lLua05+pCNonx/2dM/TdN8DVElEVAclPCclZ+4iie+san49IOndJsNxlRYa7i9OzFO8MGHnzAcByYHVd3hgyZGg4kVj7ZXDCjGAD4ojik3Q1vNkDjoGmhqy7ZtRI98mgjWMPjAeDyJ3n6MWK0xWnHoB/phwmPxQNAiV/roekscR0lkdFo4qyG/LqS/ah7gIUQ0Ui00Iqo3eTnyLhCihiBON20Mylp8VHRtl6IFPShLr2ri9Sc8+fTXadoaZRUgSjTGiudfKyXOO53GHEKV0crMNJGZl08karHsjbWi5BOFWuGmIdVYyPKyDU3dCOiNoo4T54U3V7TNcl+OqBVBV/j6murZr8HJ0U8TL378h3ywrWitxnoLBKl4q/RcEVcbA8qmSrgaayp88oKFfE/ILKuCeMmCX6Yp57OBLF557/18nLYWFQM6hBS9UAQvlLDgHDGKFKjQ/z0xIImyCinYplVaMQX0u6xmpMEEj/MOnwqczeuP0uggoDxEBOxLMoTo8s/0uIjRyWuWFmGSlw6VEvIjizynNiLappV4vVK+QM4jIUfVMgDQOlVztpJ0HkDbiPEhRVU8LkTabSdVptG0eK6i48UXf0x79QRf3WDdyD6JCAQCj66v6EfHyxfP0Sqy22yISjEp0May3e44HY+z5LDzE8PQ8+FHH/DV51/QNHWKTFqmyWOrCm1h7Af6fkyRmiGNC41PdB5jFHVj8TEI9cxoJufwU6CuG8ZxoLI13jvGaeRqtyMS6Y9HAgbTbHmx7991OfgV2hawsQC99Tq4eLfnXedxJZ/LZMW3XOnMq67md5zV91lCsTyOs+PmNqj1+eeGFvvNbkTOKEQkeHReqTUDvhUYeJh3IKct2/lmoH+pjSUdYbn3DFS+Hoi8K/hX2RJbeZ+XvhNs9zDP4eEF49lB60s9bF36G+Oq3+RUZ6A/rW/LPmfjIP+eLhbP+mjl4U+g90HU5Kw9D2+vaBNLknc5PpdbWBsv2QicDYvZQF3A/3nEpLzeA3rZ6nNBNVsB6lVTzu/mwae1M/Zy310y1tUbfp+9/e8FmuXaF+lUbznPA+OP9e5x1XPn1+MNv51d/z22dwb+GUC3bbsCu3Vdz577zIvPCbgZhJeVcHOBrzyoS+98psEAs4zmuaJPKQOawX8G0TkCkA2C3NayRkBuU9bt77qOw+GwStLNhktO/s1GT64fkCMHTdNIcmT6Phso2WAIIcyqQjnCkQ2lYRiEjqSg0lLt2LuTaOeriW9dGT5qt7RtxzBO3NxccTzecxodV4+fErWh6zo+//xzrp88Sf0eMLamMobTMGIU9MMonHId0QZwUg+pMZpt18x69T5GfIw4wJsKEzWt0egYub27YwoRjGVyEqFQRDabTsDwMOK9JOnOgzCBNJWeVUgKPiiF0oZIek4+YpV4512QfISualDAtm2ZXKSfAjePHtFax+sXE8Zu+a2/8Q/43/0f/vfcv/gx+8Pn1EZT15q2rbEKrF7098VbHPBejJ8YIwQnOv+JDjO5CbSjosLjJWk3wDiN8pyCT9xoaKoGa5Lcp5IFVcaVLMyi5auT6ozGqZY7vaN++m2+8Z3vUv/yR/z73/7v+Wjb8aRpUQYIIt1oK8knUTEmkZxcaxmyUk+I8gx8AqlaW/zkUuJvxBqFi2dJYQn06gpgJAaZfK2upNBVTAahZlaAitExTRFra/GQR4heojQ6LRQ6XRN8oqekhclLdV5QQhFK3mViTNERDVGSqJPAKZn2oxUYo+aE3BiX0LV485IStGKpPIxMpDrRniKRECVRGyNRrpyDFL3kNpg09gOKqIwYNTWoyYGbhIamNbayhKCprWITA5Pr2X/xx+y+97eZnKfrWrbbXQLskdpqzKZBazgd93SbDTdXO7746gVVqqqc5YJF3nPg+fMXaCP1B+qmAq0ZRhkP+/t7KmukyrdGvPwx4tzIdXfN8Xik7TaJ/jQxuYna1rTdFS++/JLj8cRms5HIQxBD8HA8zPNf293wen/gdNy/63LwK7ct4H35Tp39lj/DAlxiuLSIl0e/7aILgMvzfW7DAwPhDMTl70PIDsnLQE7PDboA9iIymV8EueGBsREWGHdhy28VD9patuf8HhLmvQio/lO20puvYgGqzowZ2Xf++MDoKo+J+bPKwDr/niFuvgbiXMinVUt7lu+UyDdT9AXL/LS6j1iAzNyE4lpzYbZkzMT0vAX3RGKSnV4iLZe3/AyywzRLbWfH6JoidT7mFuNxMYJVmpnX91/eW5m4XR5Xnv/8/To3ot62nYP+83O+CfTHYrzEC6D8crTmoRJTOZrK+yvvYfU3vfvlXFRGv9bGsYzXZQ7J43e5+/OmL+/FYvz/abb3ovp47+ZEV6UWzn8G1pl+U2rw58GRveUZzJcJt+V3ufhX7rCSJlNy7rMxUVXVRcpOKRdaPtwymTgbA/khlsnAGTDlCEc+VimRw6uqSpRB9KJMlCMW5UtW5jVk46Ku6znpTis9y5kG16P9xJMKPt5W3GwkbH91fSMGj7G0Xcdmt0UD2npOY89N1xLxDOORMUy0WmF1RBMkUTfGlIhpaZVFB09rDURP7ybQWpI0Q2CKMPmA856uahhOI95DVJZh8FhrgEDXVAKulZFCZWacvUcq0V8ExKXiV4hVG5O39dT3UtAIhYuI0owCa6SaqCLSVJpxlITorqvRTtFWLR9++Izf+iu/xnG858l3foPp9prx+Y943LSYyqCCUHGkf9XKIxSCaMJrpPhTNBoTNMp5vB+ZokMbzQTgBCD6mGtL2NnQNSmfACBmWVrUTFGJaCYME5Z9dcPHf+mv87Of/pjf+xf/T/ZffMY3njziSddgVUzFekRNSSRXc4kv0FZUfIKSZTlET0BhtcKncLv3jhgdszpOlD4PKOq6IcaAcyGtWgpMStqNUvHVZOPIObROwD5FPzIwUsnLrjKlJ/oEyoGQwH16yt5JFMBHqUicrYQM/IXyJbkOAU0Ioo6ElsRgowX0g3TxXOCqeJ8hgf40zgT0SyRD2mogyPhEJ/6rHAQKjNUE7xJo0LOakTagAmC8UL0mM1PQqgg1gbYK3L/6Jbe/+An28Ue0zYbb16/Y7a64v9/LnGEkSdcYyzSOOBdo6ppcsE2q+naM4yg1I6IYOLaquL8/0LQdT5885qsXL9ntriAG6iamiKTBhcA4TUIxMvIe9cNAt2no+xN42N/eM04TbduBAh9EHej60TUvX77ksN9T1y3OHwjjQKOXueov8pa9jctyfhlsxPX/zXu/u+8sLkDyAbB42KYSNLy99et/5fcsXapY6xbDY2n+mz2P2XO+Ak/lrg/w8ruA/nj5cu+ASEov6aU+yb+Xhlg8b3AB+mdn/hvaM4PINE+V42P5JD2er6aK8bCiGiHz8UUDad5fzrWOkuQLrhpERAy1qEiOlDhXT48xF3cSJbbzviqB6CrfIKpFdW1W+rmsKqTy2nB23jKnYt2flw3V88jLw+usjdG3bedXuNTX5789+Jzaqi7suzpP/rx6fx627xz8r7+j+H6JsF38bz5/bsulprxhrnhHo+lt2zsD/xg9xmh8og40TfcA8Cu1SHjCWr8/A+1ccRd4UMk3g/B87DmPPwPrMgcgD/YM2nPEYfbuRfEwLtSgBZiP4zhLdyql5sTevu9nWlE+V27fOI7J+ha6iICJ1JmJApW5/nVdz4Nkt9txPB5RSpKSF5oQTKOE8K2t2DaaejhRBU9nK66vbuj7nu12iztOVNrQWGmXnwYeXV8x9j3Bj7hpoB97VO/YNJ0A0ICAqFghRYIU212Ndz0qCpjvh6Nos9sKW1kmLzKFwSnqdsM0TgLUEZnMfA/HfsBWmjD26ERNGX0GcWnai5HGisygKMYY7g/7VBEXggIIM2dcK4UODmMU+8MeHw2brmMcBsJ0QhlNW1te/PJHHF5+m+9979scNzV3wx3DtMeaQGUNwq83KC9YzyjLFMeUCCqeNKkgG6Wok4HgpaKxdxMQEl9dVHqMMehKz0mtSkHUGo/ChigFw7TGK403lj5o1OYxVDv2L14z/eAP+fzHP+Cja8t3nz5i07Z4NzB68aRbE1FaGivvg0apXIhLjCVjTA404v2E0lpyIgCrtejiR5h8lLan3AWlJQowvzfaYKInEOcK9yFEjKmIcUJrkzjwGmNEmjJqobZpI8CapCGP1diqSsHpgPMRhZUCY4BBjHIfnQAXbVI4Wfz8qqh2aiqLjo44TuLVJhJ9JFlTsuiGVLTPCG89ivssJVCLh3/JO0jPCohIJWUVDcrWSH2FMEvqKqVRRuGyp8sYjK2IqkabiK5GTIxUQVO3hs1ouH3+c+qbpxyPI9c3O/wwUTcbjBVjq+429Hf3VMZitGaaeg6nfXIYSO7CNAw4rXl0/ZgQLG4cqKsa7yb605FN16KUBE+mydNUFcGLGtXVbsfr29c0bUPVVGy6jsP+wKbZSh81muubR4zTIAZVpYjBzkXL8BE3wTTtqSpNVS20x1+97aFXTrCKerBL6bBXqzU8zoZiCSvOF9oMaHPkkgcL/Nrbdg5ixNFAMkiFdqGTMyDTHhbQq1g1sbgddXa+ogfm4+Z9YvEh32NxX6w8icV5833lf81uShZsWny35i0n0JIdDiU4V0t3P4Au+XSLS3T+9xqMnffC+XWZsb8k+Jb7Sb8/MGbm+1igfwa4y1ERAmgViSpV/0t/s/DAul8W1nfMFpqEKiDJKZcNmYlIkcVwDOkJaDXfstQ/SfcYKY45u6c0B14yCMp9FsCbnCWy08MTEpfXJPXJYu6s+/jS9TIuu7Rdigist/cFtWsIfQnUX7zD82un93EVsVElefDCSeZzLX9jfj6Ry+9c8ftSwyb9O5Yne2hbnc8xqzfirc6Eh9t7FPDKYH4BzeM4zvSVrIiTwW/JtS/BehkhyGA+A+yyum8eIDlsBcz0oRwJyDecwX55nRjjDLyHoSfGTFcSOcNsVGQZznzN3IZM9ckGQzZaADySQGkyjYJFnaiUJS2Py1GKrPTjnMjoKWMwRjy01TTy6x9d8/KPf0p/PNJ981som+lPsuh0m03yvBrGccIahaoMr57fY2ItFWhDwLmJTdeg707UTQPVhmFybLYtMUxsN1doDKfhluAi0SHccDdys9vRWMv+9o7TwdEHoQK1jfCinQv4OOJD5G4/0FhZjKtKEg6jkqQobRQeGL3n6ZMbdruG51+9IFRWqgSHgEnejSopMyhVUWsrMpsorDFs2i3eRQ7HkW3XEv3ITjv2n/2YH9ia3/qH/0v45vcYvvwp/njLU10JpSWtdyF6uV5MxZ6MeLtREa1S9EkL9zwol9qRF3mN0RZb5f/qeQFEefFY65rRGELV0scK1d0wBMXVs4+YwsjrP/g9nlrF9z7o2NRGQLqXxFcTxbOc11wxnsPskZdFX6FCJEQZLyEEnA8Yo5PEJXg/Sd65tWkCCpDoPt47VOLKhuBQkWTAM1O9MsZRyohaZAY7Oin56Ay4FkpDfpeCd2RlDa2WqsEq8eh9XBbgGCPKaJzzCfzqlAMBhsh42HN3+4qbp88wdUMkafqrgE/6/Eb0VmWRjBFiAkHaQIg4P6I02EqDZERIcbIIWgdi9DNQ0coQU0icEDDWYlOdg2AsVVMzuSklWMuYsChae+JwPOFffcX2O79JPzmm04k4DtT1hrpqGMc0J2SqX53mlVTToB8P2EoqWKMkZ8a5kWnynIaeYfLUbYvWkvBdGUnQresKYyzDMLLpOk5Dz+FwwKb9gEWTX0ueh/eK4/HE9faKGBXb7Y6DO8jiozTH05Gnmyfvvhz8OW0z6F95ei+DBVWgl9JYWBb0OC++M1hRECUHfAVgdLnoZvCS5oGHXsAFRAb8DGAjQd5DPevTFB7k/H6pAoxLw+VzvuHyvzRnFO3K9zr3SVHUdtkzI8t5Z2lXTP2SQEmcgX5cQH86MBS/hyQPvIqVqFjkEse5Dx5sK0C6Bv1vgI5z38YUFVybYUVfFFHDNQxUxb2QcsBknxBCUmWLBDRRC91VRcPqZMV4mYFyFGW1meJcjrN0sZUBNwN/Ug2fNOb02Z2L3FhqYOrO0kBTi8GSx6zKgD4u+QKLk1Wn9idDA7Wc+EJfl72e/8wj6cE7qOa1hDdEC94I/gug/PAwtXrOmWaVr5NONv+NReRj7u+v8ZSHYlQsY/kyoM54MYQi+iW+pDTk89pErptJ0thI7Y+pEOUS1ZF3qXgX3oLlI2va1/9fgX8Ika5rZ+BfJvmeJ8DCUnwkc/MzGM+AP0cIMti3VqgUOSIAixe91O+H5SFm7315jcyhLXMDYiRRghTOLZScfO4M0kv6Ur6fnJycIwuiIY4kz6V8hjLxNyv+5PbEGGejJd/bXHlYSXtM8Hx41fDrTzsOP0GSWpVG23pOEg5RKDsuiJdgdB5tLEZZDscTzse5Suqma2lbK/z9EFDBUxmF9yO1tUxT5Hrb4N2SnKrTpD8cjoRKg0mznPfUlUHnIlRKEitd1IR+hK6hrSoqIq2H/eSE9uLBVJa6lirA26ai/fARp+PAaRg59QP96JhQ6KhSRCGAHzGI/Ge9abFGcTweiCgqa/HDgdjfcWMd9viSz3/8AzY3j/FPPuVQ7TBqwg631LWiUWBVgDClxTwDSZnwQgKiOmpC8EzjCES6riNa2Z8oCb+2qpMCDWg0xECgoddb1JMPqZ58xBe/+Irrdod/+ZzPf+93ePzxY3a152pX0zaa6AMuigc3nE4c719x8+QDTNvJchQWr6PMsGm6C7I0ZK++jhqiE/35uChVqeCLpY2UjwGBxNGX1S3p6wMqpeamBOjgFd7JaFgWGPGey4KfIn+J86+jFi+8Bo0VkB3cnNuR36/SSxrSmAMxVFBSP4AIpqq4unkkBpZSSdJPFnmltdQTKKKEWue7TeDfamzUKBVSG2KiO1fMnsi0es8OFm1m4yHEMCsdoaR9VVPhwgRTRBkwUVNbzdb0vPziT7j66GPuJomYTW4ghBPeQbdpmMaB2lboSt53qw2VsYwOqrrmxcuXXF/tmKYTDg1Ro4yl7ba0m5bj4UiYPNtuw/5+j9GG65trTkkmOOJnKuV+v+dqu5sFCrquI6qICUJVwmgO+yN3+wPb3RbvR9puAxEORzdHKn8Vt3ehBqy95Q9BxPrwhwtl9vad08RnEH4GWFag46yNGf5nB/y8MJfnno2RxeO++jkhqGz8L6B1fY95rljaVtzv2bVWBsMlbJMASzwDl5meMEP/+bvSHIjLFVRxq2VnnPXXpc/Zg/6gbZz1ZXnVB8CnaCfnW/lwi/blA0IgJiNfxXz+MB8q84kSpbXzE81u33mGObtHteydJ6CY904OzZCe7fnzKf/G8pysnsNsgBaqSJfoL+Ulih+KW1qS18u7zIcvu10G7Oev61u9/ef/jOdA/W3Adj12Lnr9lXp4zbeeMabldz1AViNvvs75+F3uIT+rYlgUn+PybsXiPcpjjuWYN7X/fQF/3t4Z+GegWmr1l4m0pURlWbE3e+LPAXX+dwb2GYhnj37TNKuFKCcqKqVWFJrcKcB8vuxtz159azTGVklCr6LbbOY2qAS84/FE1jE3RjT3IxFrl0Je2VCBREsCqqZBGSO8dKWJkTkCsrSpYhhHMrVHa5XuV4C5ihHfn/j2r32DXX1i9JHdoydsr67S8XVSMNEJnAn4G8eJut0yDD22qTn0R5TSjH2PffKI06mnqizGRmwN3nnapmMcJobREUaREjTWMvlkjCUvbfQeXWl2rUUlKc/gI8omg0pLH/g4YX2FNZZaV1ztatxe7kEraKyi7098fjjw5GrLpx9+gPYem7jcx+Oe+3EkeM39/ZHnL19SG83N06f000RQmmE6oZSmMqDCRGs3PH18w1VnudlobqzHHW+5fX3LX/t7/4BX90em+wP7V895fXjJ41pRa49mFIxHlEIjWoEXKURtNCaoOWpVVRXJJ4zK9DBtiMqAtkQlHPaDaph2TzlR871nH/KRj/zOP/3HfNDAo+sNp59+xSMCnTYopzBodLL0j9M4Ty4qK+XHOEfV8jstRa4UPslwRkBrCyGiVAC8TPJePIwxT5hRETwoFTF5UdBxBu1KZbpTXtRkggsgCdfkAmy5KqGTysjkd1HGrnguEv2pmOWyAZPVdECiSkYbjLYpJ0KiVzqAV0EMIFuhtCXiQQXm3AUldQyy8T1PhiolLubqzLqSxGAFMXqCivggORoSsk8RjmggMudYEHO4XWOrWmhUWvJajJG8jqqKOD9gdENtJvThFbe/+AntJ98HU3H95BGnw4m66pjGPs2RI/3YC+API6fTSN00hKbjyeNnhDAQUuXnGDVVkkHW2oiAwDDSDz3bzRYXPMfjCR89dd0Qgij7bDdbpn5iGEe0Ujx79ozXr17hgmN3dSXXnpxI6ypNXbf4aZAqylGlAmG/2hz/klP7rtuyRrx90Zw99iRP7AOAuZyr3Lc4Gxn8Ze+3DM1kxKt3yx14s4GTYHd82I6H97z2xL6JenEOkALLO5vRS4iLZz2eHTdfLxkuKwC4MmEK0HsOWEug/OC8l/rg0r/fAH4yaLq0Rwm8VEj4OznOsidWhaQ0ppi90Rnklf1ZAL/oi6KC2VbL4C7fUx6TMCvOxLm/w5yrJP9bctPEc5znW4jJ4VMaXnndkDUloNGp6XG2U4JfktBzErNUB4rrTr/QrXIPa6Cfx2FpnALz+H+TcbzaVNHHX7M9oITN36/3+bpzvO28D9+x7CiK6+d9Zmjk4bwyCopIm3y9phQuDWA1pN9oGMPFZ/M+23tw/OVK2eOeJSqzF9w5R9M0q+8zgCq5+1lFJy/aJTUoK/6ch05zRCF/Vyrz5BwAYL5WlgbNRoeKkd3NE/6b//a/5bu/9h3atk03JeDPe8c4DunlkqqYP//5z/m//t/+z0zTsKo0nPuiqiv+zt/7B/zn/+gf8vrFS/4v/6f/I6dTj9gFbm63tClQtx3/6L/8L/ne974nCX6TRBlc8IzjgS/+8D/Q3v4U7Qaha8wDDYzR2LqCEEWab5qSZ1qqtyrjsG2N0oaqahOA0SShUIyF1kSithgd6d0JFRXTGPjok4+473te39+z23VUlSVME5P3BK3BO2oNMSqGqBmmMOuw+5TjYKwROVCj2NUNHz66YXSeV4c9w3HEoyDAD/7457RNx298+xvcbCqMkuqsTV3Rbh/xj//f/4wQHL/2zW9wGDw/++I5gx8RuocUA7Nu5JPHn/DpJx/TdRsaDa9+/IfoquXTpx/wo3/9P/Hk17/Pp9/5Bv9xf8+v/e1/yPOf/YhxPHK6+4qtaWhQ2OjBe1osQU0oq0QxpW4S2FcEVeHQ+KiJqWCX04Y+aK4fPebu1WtMu+HJhx/w2b/7D9THO/bPP+c7z3ZcNxatAptqS6bcyLwWhLITA92mo91s0baVJO+0GIWQeaVC21KAjznhN4WVwygTcAzz5CpKPctEq7XGuwmtBHznnBStwGqDcyNROF5JVlMmJmOrBWxHyEV/dFridQwSNSEZoiGZSJUi5IhDSv71aaLLEQSjYlJ1UgkMiSGrtAYnidSZ9iDPXQtjQAPREKNw+VWSAFUIYCHKeLcp1wKy58wAE9pEjNGgrCRIBw9aFrswunSIRlmpc6CMwliN91L7oK4a3BQIXmO0x5gRYy2dnnj++c94+uzXsFYxDBPGaKpaceqdVMZVPdM44bVl0+24vr4iKqnxMI4nmkoikfvDHq0t8SRzTF3XYBTKSpSvPx3pupZDfxAZ2rCnqRqqqmJ/d4+tLKfjkU23oe973DRhtCGmft1udhwOR7q25f7uFiK8fPWcq9013nlOp7+Icp5fvy2e+XdYLQtv2+ocxdEzcFljmmWPuPz7HCOuL3WWG/BG0L++XAlOLh8j4KsE/Tkv4Hwrk0GXNafU6Q8z/aBsZ77MGgQWgFaBFEmL62tkEHwB+L/fVqKkN/xctm3+LvVjdk7IXRJyjsDMqxeiFioSgiYXMlw87EK/zMB8Np6SRLTYeguGCRmtF88hMwxXm5IikvJZLefPSb454TetEz6cGetKobQMOq01GIqLJHKZLjMaMrMhlrstgP6i+XVm5JXnf+DlLzp+te+F7Wtf0Utge7m9PIy+zjP+JqPgkiOg/H72zM/g/gLIP/v+PGKSQf/6fHlMZUPh7dt/IuYH3lPHPyuaxBjn5NfshS9BN7AC6iVgPy9yVUYHste/3PJ5Sh5/CfZLb0am2uTjZvqRbfg7f/fv8/f+zt8R2ofS2f+ZzlFW6RCvxCff+Ihf/PKn/LN/9j+ikoezbMt2t+O/+C/+Cz7+5GM++egj/vD3f5d/82/+LdMUqKolOpHv7bvf/TX+6//6v0JeDk1/kEXch4hRPf/x+Y843nva2rLb7ubrKDToWiQFvfD6o0LUOrqOGBSVabi+vuHpk2t+/ovPOBxG7o9HlFbUVtMERds2DL1QLLabLT7AMDr2pwMhRh5fX9GfTty+fEFdNzjvqBqhCNTG4nygMkrUYdIEErXBBzgeT+w2LcM0YpTGK0VdGT58fEMImuNJkqWnceJ3/uCHHA57/rO/9pf48Mk1Riv6ceS3/z//nJf393zrW5/y1e0df/TTX6Jsg9aGurZEN9I2FTddxXc+/YhNW9M1DdtNw3UyDGt/oLY19z/5fX7y8z/Aj4bT/Yd0H36TWite/xCefffXmaaJr376cz764BGff/k5xkZwA7YCgsNPDlt12JsPOfSO4+hFB1PBR9/4SKJeH35IpOZn/+HfcfuTH/JBU7E9BJ49btEEiJ4YIh6SMg4wjzo9y07K+hqkUNZciyJTYdTMLZ556dmLElPUQklOQB5XkrsgVwkhSPGrKMm1REmK9cEnsC4AXhKxRYlHcgsWqTp557JPSK5rjJ0n9AUECLc+v5OcLQyZfy+LYirIZ0R7X6j6jhgLpS9IOSB6ua8E5kV9LxFz0bMCUC4GppRInYqgkEZjiM7jU1xFpDs1wU1iAERFiEIritriCShjpRaAUmhdYW3EVhPjOKEAkyIPldGEu1f8xqfP+K1/9F/x73//P/KjP/oTxnGalb9ihO3mKs2BjqrqcDHS9z0+5EJeDlPXWG2wxtJ1LX/9r/91mq7F1hV+ckzjRCSIio/SbDYd1ojM5+u7Pf/hd34X72tCDBIFtCY5H2paaxjGiaY1fOvbn/DkyV9Lc7BAn3EaOJ0OX7cM/DluM+z+mn3Uhc95W5DFG8HBfHgBbvK7drbvQxCzXFN+f7jv7C3Oa+PZtS61ev6BNehaTvVuCimKhWv+4L7JUHrZ5+vBUurPwgAojSK1OPiTU2FtVJX/Kr9fwXXFA8NgPm9c/l5uG2WZguV6GV3lg1UJxpb+zHNcaWzJNeNqlJUAToB/XA3DEjDmLx9GjMp2x7ntUTEfe+4djnFpz2pLXLUcHVDCyZyvP9OXKP4WHZlbcE4RIn3H+ZgrBm2uKfF1gH9FZSp3PdtveWbzm7v8lt6xVbesPl9Q8noHA+BNv68NDvXgWg+9/3Fu97l9+/DfBeI/f9bAm6yi96Uw5e2dgX/m35/TWDLAzRSgHAGIMc6KOBn0l1SZfGyZvAvMuQP5XFn7PxsGJdAvC3nl65VVfWdZzei5vr7Ch0CIHmsiOfSq0sjJE7JCKovu9/e8ePEcpRRuFBnTfF7vfZovpDjWpu2oqoq6rvBhmtuXKUnOjbRtnbjREWMU211HDBGN5/Uvf8oXf/x7fOuqZTiIzJ9Sir7v2Ww2NF2NqQytarm7u8fYmrrp8MEzjh5sQ1A1tu0Ypx4fA1+9eoVS0FSGZ1dXBB9wbqRrd5xOA89fPhePalURp4muUzx9/IjOWm7vjhAjtY5MKqCpZAJSgbpS+KhQiTpw8uCc59QPbDcbnHcM00g4eOq64qqteXazYbf7kH3fczhOPL+955/8j/+KtrJcbbfc3t5zezywvdryH/7wRxyOPUpb2lS0THnHrjY86ir+1l/+Db73a5/w7MkjttuOymhJcFYRjMcy8EQbggvsbMXhT/6AT/8Xf5/PfvRjxpe3hI9HXvU919/9LrvHj3jeOz799qf8/I/+mOB6TOg57G+xLfyV/+z7fPmHf8TTjx7RVS3/7n/6pwwvPufxBx8wKMNmcnywqXn0uJJoQeWlFkPyjAckYTVqRYgpgRgBbSDzc5bhzom3WkkERd5lVbzY8p8moKNw9mMAlEn/jqDCnL8gi1OUZIKUXaS0nislS34A8zvgU26I2BsqyWyG2diNSoC4MgofQqoj4DHGorVhrt6bjfCQEpW0SvOBTOLamnTDiUKQwqiKVI1Xy74+5TSEKPQXknxqlLpV4kUMUlxO6QqtY5ICrQhRoXUkJwD7ELA1RO+JLt9/BGWIeJTNsqBRqj/rGqU82k5om2h+OojST2WoRlE6qm1FXddsqwM/+f1/wz/8X/2v+f73fp2f/+SnhLColNVVzdXVNa9fv6KuK079gWHyWFtLjQQMdWNptWIaR0Lw/M2/+Tf41re+OVO7DItkXPJNSD6RkedU1TV/7a/+ZX7nd38fN0kE88mjx9zeviQeQdsaazW/9u1v81f+yvfTYl0uim9Xef/z3xYDkwe0nTfC5ctnettCOYPBc6BV8m6/zjNfLOL5mxhT7QlVIvZ59Y/Fb/nzyrOf2vCwsZqH29roWNrw0OtfAn2KY86B8Gor7z2tmdnbuwKDRCnmqMv7vJRwe2nT89ywbvClZ730d4GtL1xk7W1doholpFTzPcc0DoIKD4ac9NGCQ0LKvcp0ZukLmQ8lOhfmNuS+EhW75EZTava0rynMeUzkDNE8/NWSszW3V0B+nlaD+I5m43Cen3VyErF4/LOhJtfNxlWcdfyXbi3GvopLInLM97YG6Jdpacs4nOccVRx/DrjzlfMzORuf5Vg/N1ovgffy77vQBi95/Ofk9rhEtMr3Zt36tbFRGkV5CpjH3BsN7PxfMjrn92451/ts7wz8nfdztcm8lWDeGDMn7pYdkaMAMcYZiOd8gTIiUFb8LavenkcQYoxzMbGyWm/pXS/zAWKMTOMJlyg7SkF/v+ef/JN/zH5/L92qc5KyprIVk5/4xS9+wReffy7Sh2a5lxyV8EEquZb34ZxwoH0CQeM04dzENE1MzokXvapw08C/+pf/nC8+/4LxeODKveaRGtG6IirD9c0NSonySt00SdtXwJ1UvgWUxk0jLkRs0+FVRbO7wYWAi4GmrvD9id2u43acsFXDxx8/5tXtK16+/pLJT9RtS6oexXF/lCTPGOjairpuQTn8JNQLqzVZXzigcNEBDqMgoHE+0J9OtG2LbgzDaeB0mjiNjmp/wn/xnAhU2qCNxfnINB1QX76WgazhdLsXSVXbUlcVlVaYGGiN4sObHX/j+7/B3/hr3+fDDx6x2bQ01mLSBKuNwSB8zKACqlG0ylG5gS/+6H/Gvb7nO081089/l01QxH3Hn/zgwOH+wOeH54x3B7pdy/3LL9lUljDc8+N/9v/idHfHq6stz4Pn4+3EtlZw/zmHu+e48cTVRlEpRR0M1iGSkiEIgM5umShAWWUnRxTubIhglFA+vE86zsS52qzSklicF4MY00LqfQLpeQInyZOG+VipKAw6zSo6e7CyEaBExSMvTCon9ybPelbqkFB3nN9BeWHUimMf00JH4cmKef9UfTcCyuRK2MkwUpFMIwphyZ0B6ac50S3JdMa0OmUwjFKgTcrVSX0eFcqoudIxSlEpSapWOCJaZCzdhItCRYpWohEaUEESgn1IOrBaE5VEY8TIyXlABhsilbVUFn7yg9/hT37/P/Lok4+xxjAFx/4g70NVVUyTyJkOw0kMDMx8rnF0XF3v6E9HcRT4SeRvo1RHMEqJgZL6NS/2EimRCJHRkdvXr3n1+hXWWDkmAY7hcMRYx/XNFVVV412QehzJ0BPPnn6IK3/VtvzyJEC2YJLFR7ksgqVP9n0MmgtAQanCS/oup4grL3IGXg+2cyOANwElCtC/UEsy97j0er7Rw3nh8hn0l17V0tGwOBwubHkuUxnIlmCVxXDSGaiFlKifrvs20JIBb/5PZcWZBQjPsCcuz33VxZeaXnwnCiuXqBjSeJkq4zInq7DqW5nW5cAS45SU4IxBMrMhn1upBKeNnhOEZ7yiBLwL8BaKZFw1PNFv8qSalpg8Rwv4z8g/pDk2ZVwk2k9EpzkozM8hiXstnng19+rFMXUe2ZmV1VTqHHVh37M+fpOj4ZxiQ2pHiMUNr9qT9jgD/edt/rrPl7aHoH9N9cnPu4zKrM+/BvXL5wvXuNwbZENRdlPFL0tuzft6/d+L6hO0oms6KRpTeN8z6M0GgCx04vkeBinAVKeEtb7vZ2BeRgz07EE0s+5/aQxkgF+C+nyNrL+fX7yS5hNjpOlamq6RKrpEfv7jL/hX/+pfL9KiitngAHDjNJ/HWr1qk7WWyTnRCFea2i7XHvoeWzfYyjIMA5ObaOoapRuqZoPRFQrF7e09v/3b/5TXL1+iponfuI58/M0booaqtlRtJx7FumbyjlYpYpDk2qZtsXXL4XCkHxyPnz4jWsvVo2vqRmNtw3Q6UqkoUYam5faL57TbLfe3Lzgej7MqkFUaqxWjiux2W5q6ZpwiDQEdHF4pNlWNMobTOEhhKAynyWGNxSpwKoISfflpnIRaoTW1NRA8IUZ8DKAMIcJpcoRhIpEu0FphrMFaQ5WKiFkM27pB4bHR88HNjqdXW771jY94fLPjendFV7dUxqAVVDM9TCbynEyqMRAnutvnPO46iI5NkxYhf0+nBz5+2hDjPU9vLC9vn/NsU/Hoeidtd4FHj1tidNjaondbNCpp54/YzmK0EdqMCQQViF4BhuCSnFsMxCiUlfQmkcPXVomnXGmFSXKYaJ2OQZJ3tewbkpc6hoDycZ5gRe0ne0+AIEpR0QvP1KexOS8sOUEsuY2VkQPTUi/8+5gKn6m8WJklOpYoQVEFMhdfsSR3RVRyqKe8BkQK1KWEMnFxxdnAIO0rwDMDmhQRxMjCl7/X4u6PKGm3NC0BAyTxWoGuDCFqlKnF8AgBjEFpi2fChwmvNBiDMW0yOkTBQwp4BZQUnUApDdqTrEqMrbC1o3c9LrjUBxHre37wL/85f+9/879lOJ1ou46mqbi/e425uaGua3a7HeN0FAdB1ZApSW3byiLiIm5y8syUBm3QRF69esEf/uAPmJzn7n5PDJGmrlBAXVU453E+8tWLl3gf2O46cIHJOW5uPqAfBpwbcdOISmAjIlSjH/7wB3gvwOTq6oa/8ze//65Lwp/tdgkjfC2mlx2+zkN/foR8eDvVJ+9dLrjzAlxUmp2Te4vfLwGbB62+tJgXckPrSGA2AM5Be25+0VHnoIkF+K/P+Yat9NrOHuIF9J8bLpfucX3/pbH2Zg9sRCVe/nJPa1BW3NFsU6iL4H/Bj3H+m9tywSmd5jg1G0b55/yYVQFil/hH2iuBtSweIJ5atZyz+LzQpXIT9PxtzNqo8zXTeWNx3fNnrhCArxR5Ks9zeE52l7rlzEUWZ9sqPV49I0616o8FZBdrz7n9PX9Z/l1+e9t7WYLht4PatbX3vuD/bVSgB225APwv/b4+z/I+ZdBfnne1f/H5Yb+s8yciRQP+FNu7U30qUcvJlXVzAm8G9Bm8Z2995ttnaTlYEomy9778ruyQDMLLpNoY11KgpTVdXruU8dRaC3h2E1qZxIWOcw0CgLpp8N7N3LxIXCUkO+fme9Ra1H6UFulHoWRIu4WakIwUJwaMTp5BNzq2m21KJPYMp57hNOEnz01T8WhnEkUpUNeNJNsFha06lgihwjY1DoWtKmxV011pvNGYqmK7vWI87GnrjnG4o3EBhSaMjkfbHS9fvmAYPCEoqqphdD11XVMpUTXxPgiNSMM0DVRW03Qt27ZKPGfPqR8Zg3jt+0miG5X2+OAFxMSIH0d0XWGUotIaH6VCLkqjNdhqifZERJ7RJgAfg2e76bjeXTENA4RIYxS4gVpt2FjNtrG0laatFMbomQOvlJJrSU1jpCCVxRiP8j1ViIIz0+QdYqBpq3naCDg+ue7QxoCWglVKRWpFUnYIUuAqeLApwpTqKxgt3tJIqh6bF4gZyEokhZKLnrTcdSoiFYMoZrXdDm0aDDp5ODwxOmIQCVFRdAqSDOwDPiapzcIIz+9MBuuR7JnISblRKECoRBeSRUUBwU3JEyhe5nJCEsWslFSbFjCd/qIkiiGPOpd6X0C80iSqkEj3hhjnGgLl/LUGEVJQTVYgAfyocolVEDXeR4zV83oTvFBbSIZA0BLzlnc1J0mDDomihFCxxANGihRoQtCgKtAsvH8luQDKKCnsZTy1hloFfu/f/jZ/5R/+faw19Kee3faKuhbaHkZz6vdiBNo6jVHJtbg/jGzVTryjOlKZSp4pQAz84Ic/4Hf/4w9A1/gpcrXdUdce7wa0snTdBucnttsNPiqsrsFKMTVbQ90YmrblcDys+vj58+f88E9+Ql23TJOjbe9/ZYH/A49ysb0LsH8vj1iMK2ASQUBnjnDltQt5l7Kxmt97RRRApgoQd9a+S2B5/nx2rzNAzrr1M6BWyTscVmshlJrt5X0VaDZ/xforOfcCV1a9pjL4W6gp5/fytk2VHbJ8OYuKXd4ypSbOgB0Sg7HwoM6AfwaMhfGVIXUG+SxcfIlYSt0OVJrPlJ6lgEnOilx7QauCqolQIFUoNeAT9FfMY0Dnb9O8mR1TRi9ztknRyWVuW4+N2USLEZ+uplM0YB6TWY0oe/Ijc5uCSQ5TLfPWUitA2qpz4UhZqlM707/TTZTRHJXGgXR9+n1+x9QM/jNdqXzqJWj9+vdyAc2LDVJYHnmvFShf3tF1lObt1zr31p9/lx3LxMQWDeV1y7G4bk/wst6VWPacGSPj8lIb1dyH5/cwmxZ/CgPgPXT8pUhVcH4l5VkCjdKTD9LpWVM/h8KA2bOf9y15/tM0zec/946USj05CpDbBcz8/mwAZO39qq7xPjKOE11dzbr7pVxonkxzTYF8vnyNbPQ459DWkKuCikLQUvhrmqYkyxcJSryNIS4PeX9/z9AP+AlU1IRpoLNbtDYM/Ui726KMqIMoLUl/4zBR1a14ZJVHa4sHut0VvXNs2g3G3vHixUsePX7KL5/folWFi5EYNAqLioZNWzPsT1gFtVHgR/wQsDpJmDq4Oxyl8q6bCMcj27aRJNpuw26z5fbVnuMwoK3Bx8h10+Gc4zROTBiMjijvUFrRWIMPCh1FCjJGhVGGrq1x3qV+j1gTsEpTtw22gjDc0uqKxtZY73jSbfmrv/GbfPzBB3RtlyoDL5Vss+FnjE7VgStUVHgvEQXbVBA9RgklSeYxhQpRQDsBI/wpRFIz6ftHkZPUieKkE1jTKuvbLElgMc9MafLOUmvZUhfvibzcwY2zl15nj3QU2oiKHsIoKjs+SHIoIUmwJV16glBHAG2r2blSvne6ACkxiEScUnFRpwi5DLwWDX+SQRBd6lMzJ6nFGMUDnT2JkdnjnkE8gLZ6ph9lQCTtYQbvAp70rFylUPhpWhlJkKQ3o8YY8EnDXyXwH2OqhJoSrHwI4tWKUSr6Kov3ae2JQtnJFCqx/ip5/t7DpKSgFskA0Rq8F2pR1GhdE40mKpHCVMagTY3WA9p4UEJJrHXgfv8VP/y93xGKTUq4HocR5ydinDgee5HgjHC161ARXr56ydXjxwyjp60s49CjtFCRvPcYLfPb08ePubvvabc13XbD4f4OYwxXN9ccj0eIAWsM17sdSkk9hGmaGKeB29vXbDYbmYsKcPjq9St8iBIRmDzh/dePP7PtbZ7BNTh6iwdPlX8unW/tjbvkoS+92AmOPsQhcd2SNx5fvKMrgHLe7mIrPbsqodm8azZSMkJen0PlGyu+UsXHNbBY03EeNGI2/s+PL7cHxysu3r90YL7zBSaWNJzz/s3flcBr/q3c+awow7xvZFHK8Skhl0hMlNYZ1AsrZpY/1kneGcUMukP6VqbLdMB8yxkB6xWYXzlOsrFx1p+ZopNBNgnSq7j002wqxOX5LrKscT1WQ54DPYTFg6xUosdmQyMitKxcJDEbZ3ppyzzmMg859XuWklYZoJ+B/vnZvWlsnW0PYfDcQRdA+sP35m3/Pn+/33RM/q58N7Ltcg78y33PDZHz/873vbQtz37d5ottfY/5+73kPBWLZz13WAhhVVE3N6zU7odFt7/8r9Tlz5r6Y9K7h4XvWyrq5PNkNaDzlyXvmxOHx3HEVhXGGozWHE8njFkKhc0UhdRmaa9U0czXCMHPdQEkYTcs3H5kAIj2uiQbBiLW1nP7q6rmdJKE2abtZjBlbc3GBmpjUvKtS/2iGMYeHxx1U+O8FP4ytsL7ZMNrjbaG8X7PWPcobeg2W7puw9X1DYMT/nRACn1ttleEqHhqG/zLl+i2QoeAmyZQRoDCOBIceDyoiDWGg1PcHvdsjycebTZ0TUVdWSbvGaaJyY9ctQ1dU3Ecx9nrOk4il9lZ8SoHFCgjoIRI1wiNoalr4bnHSHCONmia2lAbS1dt+M63v8mnHz/hu9/6lA+efchm01C1NVVdzyBbKSUTmoopAqASh97J5J4q9Cpl0NbMy4oKiwchJoPAe4+OKZoUQWUZzBjwcUJkI5dJOYasqCPqOkopTKoMrLVOtJcAWq28cCYt0t75BMj8IrkZR4If0EoKSykgOp84mlKJGCVSl7KI5fyAxIVVhsVdF5NXXug13mWOfSqsqRQuxGWxk5ddAHNM/ZmAcfARCROnCV1rotLzIiE5C8kjltSFSvqATp70/y91f9ZkS5KkiWGfmpm7nyWWG3fJpTKzKquqq7pmBpiZbnAEMqBAKEI+UAARkHwgn/m3SMq8kU8EVwhESIjwAUKZAcFpsmfjTE93o6u71tzuGhFncXczUz6oqpn5iYib9/YA3TmeEhlxz/HV3JZPP1X9VI5TNoS5MEjGcrOyKqZn7Uk8R7J+OglvIkmCBovcrW2St2y1DRhMGU4iipBjKmxRBV1NH4C8q6SwzYWANEekLGOVWcaL8x1AUhNgnG4BBBAiPBL+1T/9p/j+3/178B0wjROc99ispDq3kCAdAMbtzTUuzi8Quh773RHnF1eI8YAMoNdaJALkGGDCPM0IRKK+c6Qyf7569RI+OAxdL1Kemw0cScG70PXY3e7BTBiPkxjB3oMLEUF4dHGO3W4vcoZpftfl4K98u4sr71vlbPah+78vYOTu8QuQabHobT/BEqjbGQSI1dMyWIratefmWmn+XTYD/swC1OjkO8MCMnQs7E89bkIH3PP8jJbxN4/kwh6gB1tOtopC77nn0/ZsnuXeEzVPw3UvweT6HHzCcpbBKqGPtWqqgXl7h/VYudqS8QfUA6qKW2DD6k3ojH2m3ojabagQMDLvM5yuL3ACys2Yuc8YqsBf76v8vhvzLv1KQLUBQGLx5EukviXoyhqXzXBiw+q5rg0K3KHejWIk2rVK6DYU7BPY5QLgnZI29srsz6xrB5F6eakKRJS+YMeUIda873v6BTX/bCDunbas57cxySf/rm1un58e0+K/0+PuA+dLQP8QyMfis/wA8D+Ndrl/nNxvlNg7thH7gN3w4PbuwD9lxKYYlxXJMgA8DAPmecY4jndAeVHXQU1isc8tnOf29rYUT4oxFtYfqJnyMUZVz+kxTVP5vn2xdl+AqOqM04hpngXsqL5t4oxpnlTaMJfqu0nDKMRIkLi4ECQ2PaXcqARJASXnPDwBcxRgeDwe4H2HvjfjRO555dYIjpBTxqvX17IQeMZ0mNF3og4CliS+FDO26w2++OY5knkrsmiDEzvMcwKNR3nO4wiXM3Y3N0gxYT0MapQADIf1ZsDNcY+JIwIL2Lq8eoTrwy1Cjpj3E45zxrAeFGyJagvnDO+B0HWYc8YxZYx7xiEesOo94jhhCEGKgznClBiHwxHrdYd+8MgpIgYHh4AuSO7GcZJCZoyMIThcrgNojvCobq/QdVj1Hh99+BRXl8/w8Uef4IMPLvG9D67w9OoK52dn6DqC84B3tdAVIJOVMTkZjJwijGkntolf4uelSJkkekucdQSgzHvOxbWLrDKSrLwFa8IpAUyiKuOcM4yryZYZOQmT47yy5Pq9ufsk9h3qKiRVoQlgTajlzBpGJuBsnmb18ku8fHAeUnZLw3OyeDO8EwUKWShUPScbGGAgq7HqQgW7nHSxskVGwDY0ht/pYmAAXSYyqPdEwgx8CMJ06Q+rWcGL82YF6UDKsRoFKSGnBN9MwGbESBSSnNNqBkAL3MjYl/bKWUKfUjHCAHLKajkn6hYN2CBNzNcpU575BCjAEZwngB0ydcDMwCT9hRwh9CvkMcF3a/h0gPOM3hOuf/Mb3H7/R1g9/gDDsMbr2xscDhOGPiBo7kvMkjMCJ6pFUnzrCB8Iq/VG5z5VN5pnTFOE9yvs4wG+68A5Y45Sy2O17jEejhjCgDhLfsc0HnF5dolxjvBrh6fbp9jv98XDKZ7LGSDCN988B7PMc32/etfl4K98qzrqQAUNXBhwC7+w7e5SWnlkYyJlwayLezn2AZvhdN8S2gboXILSzUjD/+zzViGrzT+7j20syevQMBGb4/R/tQk0nE8D60grqxOWKjTF86h7nzKdcl6WMXACCGvzLY2GUw8F+C74b1rOTnLfmYvRZYBJb6cc1wJ/m49rqETL2DeArgH7C0htawSrN7Xsq/8poLL8WHu/Nl+VBFhUxtw5XY8M1OmTkgo6AFRCaxZtp4bbsm2qp6W9/wK44VQJjuHh5b3JThCaQNY2O0NuOgwnMRA0Rq15ZwQJF5P3TN5Ctwnw+uo91NwgaOSkroNc2sBu2gOAN4MOxUqoo7Y+Y/u+VBEDFjoKvtvX7vSdewE539nnvt8PneN034WxaGDeRJYaAG9KP+1xrYF6X3jP8n7IXnL9+y1bmcXeE/QD7wH8iaiEwRgzb2Dce495nhcx9qbHXxslLyYc+7HPrfKvsfA2UdZs+Copatspk2LHtN4HC8lgZq07IMmYUUMngioEzRouNI4TMAFD3wOZEbjJuGep5MtMovIRAhgSnhQ11Me5oIXIOgxDX+VF7f6IMPQ94jShDwnrLgN5wn43Y7NeY46q5x16ZVhF4jDGBHDGOO4F+IaudCafI5BmAY5M6PuAcT8B6LHebMH7Cbe3ewGeWqU2kMdIjPV6QOhEo74LAZlnhNVKwPo4IgLIFDAlRpoZFDzgB7w+HBBGoPPAer3Ber2GI8J2tcKmJ+TxIGoi3sP1hNkzcp5FNjJl+CkgwGEzbNGvB2wvz/Do0SM8e/IET64ucfXoCS7Pt7g463F5vhVPQ3CSAOxUcUWZfpYOipiyyDlmrcbKhOCkkBassJQjkWwsfSbCpqTMEipi6NaTqL6YUg6CR5Q8UHgnhpoMZkjojIFZlvCXlCNIJKEWYThS2dHppFDHB2BhAzZZCMuetFKz8xrqooBc9P9lkWKVVnO6sEtFVjEKiGRBaw1pGz8CmLKCFOGQABQXbpHcZJvgTVe/LvOSiCttEHWRs7Ep+QwoLCjHCSnOCMOgeQvax6FeFz2WHJdxKwpCSynf1uOYUkJCQs4AOfHo+K6T9xk8kPJinpAwHMmRAKtrv5mgRSmp5h6Q87qIi7fCeakQ3HUefecwzQzvgICIdLjG8fY1Vo+fYdLk/m69RuaIw+EIhoSgicGZsF4P8N4hxhnH/ahvV/qJJ1m4OQMvX74EyOPx5RVW6wHp/Az73V6GgXPY7fe4evwEnCVJ9zCO2O8P6Pset7e3Mv/1nb4TcdUfDgepy5LF8/Q+rPRf9daG87QLnYH/5XY/ADX4e7rPvSwfgFOAfPo3iO6o/ZBBOTUK9M/FuQq4bf4+fc67+yrM55Orkd0LihF03/PRSauYN8k+X4TXnG4N8LofhNWj7oCq5a0szs5mE/DysSrQP/lMQRcMNLEZZPcDtYftEDM0uNlHABeZV6Q0tZ4vQxWK7p6yNbIstKcw4NA2M0afTtrwoXtEwfrynoxiZyhzrudmMx2o7NuYJvW9tn1cyY46llhBvHgwJCFY+5O6s7jmJp8ATWt3/R4nOTH25ekrODHqWDtB9XIux8LdNuI7f94H+us+dz8/HWN32umBv5fPfArel4x//Wx5roeMENla0H93vJU5QbHt/Xu9fXu/UB91+YzjKAeHgO12W5JlU0qLsB1j4FvQY/sw8x39fUsWjjGWsBdLDjaFH2Ot7F5aAACgeBvMAJHY77B4jg8/+hj/4//oP5baAwoek6r2TOrF+OrLL/Fnf/qnmOYI7wgrBcM5CxDabLdw3oOBIi8qLN2ytgGRR1S9cyKHYRjgKYFCh/nmBv2Zw3F/g3TcY7v5BMNmjcRAP6yQE+N4OKLrOyQHzPNeAIb3GMcjnA+QGSxhPu6w290g5QgfGKHPSGkEccA4HnF7nBB8j+lmL2FFc0RMQHCE4MTKB2d0XsBfJgEUx3FGVDCUYsRux9iuV+CsoTChBzMQ04THjx7js+99iE3HOO89Drs9Xrx6gZxmDFcDVsMWcB4JjKHrcLba4unjx9icbXD+6AznZ2d4dHGJ1dBj6DpsNz36LmA1DAhBjAzvVd1FQXBSlktisqGFx4U9kEAnkbU0vy3nDE5Jk0VlK8nmTkOGMsOxxI6DtbSVD8oQaTJvTkgQiUYBcpWxYFvROJeiV2QsS9kMbFPp595Vl2POSUKHQKVaduYMr8BRqkoKI+1ICmGlnGQq4AxWz4T3VOL5KVdAbmOo5iKYx8JC7NRjoQuVqPzI4uN8TZC1xQlZOHoB7a7sA6AxxAEiRt+HQmdZkS7OWRWIoAuGTaCiCEVYTtRtohRQ1nJpa6cGjyNN3nWqV6chTk4SrsjJ3CMJ0wRTmpLcB3lCqVAtErZQVSEYI4YMTxm98+hdB4cZniLefPlbnH/0A/hO5GbncQYcYxxnbLcBPmWZF2JCjBP6fiXSvX2H9WpA0loDu9sd+q4DQFhv1uo5Yrx4/hzkHUIQIiPliPVqja4f8OrlC9zud4AjHMYj5jjj4vwCzIzxOMKKdsmc5RBnSczvut5yR7+T24JhfmBxf99tuTg3nzfflzAA7Tunx2h3hXmMGAynQgI24A2cfxtz+e1bnUTquifXWYS8asX25TOx9m/bier4LYRyGc0LA6g58eJ8sh+KgX7fcxgJIuBZxxWfsKs53zlebZn2RHJcM+7LOcwgAJe4fbCahPWRahPqfiUy0ohIVGMkM4AsijfsGElj4H0EnC+KGwABOSXEmBZGE5FQ3440h4oXjafPzQW1Vq9H1nuv35XzAYtnzVmqKrPdsAJvp2/SWYy+Ggp2DfvVWDc1CszcDGBkJ+upeD1qSKsl/wLQfq6GhJ2ECeypnvf0Gcp63G73j42lIXsCvgvwvqed3nqu+wB7XadOjzk1Knn5ak72v3vNapjcP98stm8xsv/bmvveG/gDKNV7ARTQTkQLkG/ftzKYBugBlOTeFohYKA9QwVhbAAzAovKv7WuftfKf7X3bRHNzc4sQOpDz+OEPf4xf/eqXuLp6hM8//yGICJeX53oMsN/v8Q/+1/8b/PY3v1b1jZqXkFLC8XiAyACKugznasBM81xUB/q+E89IEiDSDz02mwH/8X/yP8X+xZe4/W/+MWh8gXmeFDQRkB3mSXTeQYTjcZQwGU22DF3Afn8AmDCNowDGHJHSjK4nkE/oOsJ4HDHHIw63B+xGqebZ9QFDp/kIocM4H+E8YT4qq6zGz5QyjuOMxISUE1a9BxJjTBFuPsJ5mUyc81hvzvDhR8/w+fc/xQeXF/jwyTkerQcM3YCb3Q3+4i9+Dk4Jl5dX6LoBruuw2WxxpjkD59sNVoMU6xq6Dt559F3AMAQ479GHHs6xVmG1CbAmRWWugFOq0grAFI1/mUiJAAs3sbCAIrHG0Oq6rKEx8m/OSa1qUoMha1Ipg1m03YVNo0U/E8Zdk7CsBPyJt4sZtfaOLk4pS7VfRwJMmQUgkiMkLR5ni7cZDaY2QXof8zxjHiestpsK0HVRKzkGVPxgAKEo83DSPg49rz6HFJqjUicgRVG0KqAo59J39PRqZ+mkTAR4ZRidtDlBcjpknCe9D8kZyMSaTEy6CIsRRc4haztYQrF5HkrMMsSL410AqQypyPz4qgBlRlkSL5pIi1bAIZrY8o7E21NdtN55zLoAOkcipzkm8Sz5gKF3OL5+jZAzXr18CRBhe36BURPib3e34MjYbNa43d2gH3q8fv1aiIqJkVPCeiVKQF3fgUH4wec/wPXtLY7jCEaWUEIWbx2Rk6RwctgdDphixHazwe3+VuSLyWGep3K/gOQ8OPLouw7n5+e4vd3h9vYWq9X6ndaCv+7N3vX7slx/ma2se00/WxgEckeoaE5Y0hqCZN+/27VOt4fik+u9yTy28CLAQn6W120ZfvO01etUI/5e1p6WT1Hh2N1Y5cWxWaV7DaQ1cfl2DLffn16guUsz+O28RZWnAGmU/CDDg/ZMRZZSDQrOAJKBVzWcGpQqeWkK/JFLlfTsROFNwKvsv9Tpr4aEg5O4F7PXCFXBqFkvlu2RVaJ5aRAtwrLYTlW9otZespeptFG5bsk1gwq6GbFirauAnstaqO0NC2djWH6XRF8qm6/PxpnB1o6gkn+QUUnf4rGtHNl7GMMtwC9I+kGD83R7iNlvce3bzvE2T0I1BpYGQnvvD3sPFjdZ7vW0Xe7zDv6bbO+l428FvNob67quVNZt9zW2327aQL9JcgIoYTkm0dl1XTEU+r7H4XAoA8pA9TAMZZ92ImglQ+165aVAjIHNZoPjccQ0Tnj+/DmmaQTA2O+OePToEjlp7CASui7g8vIMv/7ljFmVjKxysZwzF2UaAW2itCLPazKTBEDzIryXvIQg8dW/93d+D10+4P/xq3+GnnvcRFESyZxFL5+cJqiKLGVWyVEJK5oLq3nY3yCEgOPhgN1uh6EL8J1HyA4pEG6PI6aZ8Xo3IiFjcEAEY71aYdUPOOyvMacZx2mSolpCb2M3zogJmLMw3mOcsQoBFBM4zVj1HVbdAOeAD549wWffe4rf/fGneLw9x3blsOl7nG/OQO5D/O6PP8fN7Q3iPEu10i6g6weshgFDcPBOkqJN4aDvejgv2v6iOCQqL44BwBUZLcvZgAHBMrlleGU/WBVfGNA4csgkR/pdSU7iUuwq5SyqTeT1vKzsj0w+Fk8KZawLIGj6v/2bssYCu5NFtTFmGRLikqLdgySsOhdgMpxmXNq1feiVsJFzuyyVIBG6uuSLdSALPkNdxGKg2mJIgIS81N3lGYp0oEMGIymzyJnhXC1m58pknuEcF0OLIZ4Qk3oDZyUMdNwnjZlS0M0KRrMaJaJMoYuErmspRTWMLBG3OrarV5GV0c/gLPkBTuOts9bCMMAkcqJiHDLVhFebNyzEi3OsIMs5dKFH6iJipwn8bpLnB+ApI0+3ePP8S/RXH2FYbUWBinu4nOGdx3a7xjge8fTxE7x+cw1PDl1wmGdh7lNOGOOM44vnuL65xuc/+ByffPaJvF8zpMriIg10u9vj//Vf/wFurjOmacJ6WMu9abKd9w7jOGHoerx6/gKh65CiVAnebDeY5xm3t7fftgz8tW13QmUUqT4EG94GKL7lQgva7qHznAIGM+YrMdt+vyDy7MztZZrjlvvKPi1IPwU6fOezat4ugQLBQjjkOCMPls/A7VVaLvW0AeoYfAv4qkx2ZeLrKRrgbvO3mVIVy9Z/l3OgYfb181LnBPUa2jTtKy2hWQa8F88g8xXDyIGSHVWMOUJGaUQFsVUK3K7FRXghWy2WrG1v75NRCKu27bgxjMoz6vXtLVjbcGmt2q7ctGH7Fsy7Yc+7bFwzKAx4nrwzuy/XXOPEg92Gmclcm5W3udsn7H08FDbWnrh4KZp+TmU/LNru7nWa83Bzj1yPO72H9wHXdw2Td7uvh+5RPmi/W1ytnPvecfaeRsE7A39j6I3xNmBvSbYGwk0tp2i12yJKVJJ3jaE3tt+YdKAm7dgxbViC7dcmR7XnB6oxYZNYTBE+i1Hg1fPQB49PPv4AVxdnYACvXnyF16++RuiEIYw54le/+AX++I//FTJHjbEXUH88HhFTRn+ckAsAJDVWOg018uj6HtN8wDyPcK7DaiWxvClJYajtZkC6PgDjAUgRfSfJmMY++sAAInJOGFadzhhS1TPGCdN0hCOHR48u8MVvf4vdfq+FgAiPLq7w/MUbjPmI3TjiMEdEAmZmgBMIDl3O6DIjZ4fD8SATi3eYIiNGxsyk8f1AJkaCGAG970BICM5h8Iz1eoUn5wPOfMQ6HhBmwnpziY+ePkPfd3AKPK4uN5imCXPM6ILHqu+FCHZWFVhAJkHazkCp94TgNUlKFWPMDVo8i0AFAVowi6xfGaEBCWuxd+a96r5Tlnh4iCu8DF82LwGXvt0avTLZZ5v7FVw3CVLEEpIjmbBlOiveK6LCQGcIKHXwIKdsi01yDbNIrh4bHJ1MXFzGU9d1cj/NfXJqkwqFFStyN5y1VkH9XjwZZS3QmE1bNBhgCc8h58sMVbwZcoAqXUAT62vNC2Y1ICio8lFVAPKOQCyenZhk1U6EInnKLDycvcfMWZh9qoA9Z0YX5K04jV/inBZogkikWYsSknJfKUs4V2KWECRI+JRzhOy8uvlljAcfcMisRmrQvI8Elw+4ffUVNsMFQrdGHwLmacbZ9hxxnvHqzWt0fYcpRuwPR6zWK6xWKxwPb5BzxmpYgZjx+vVrPH32RNV4CNM0Yuh6BM0bqT0v4fHlOa4uzvDNl1+XedA8YiJ4IORMSsBmvcGb69foOg8fHFJkDEOP9Xpzz8z/3duc9lsbe6cbNf2x/d1u9y3677ItGFjmGgvdAGfDkACQs8XhS79/+H7u/7v5FAbWl/ch39HJGKzTQl2jSO/VEu/JEnr5nvvB8uOWtBDwmAuIrASG7WPEgwoaaBItMkseD05AfJlTDKDpfNc8q0xTVU2vGbZlvhJiRK/FVLy3QibU0CboO2L1xlqOUH1SLDwmLeRMjuEoNcDfQilzPZpI8spA8EZOWXJvebctoG3a3TyRQH1WuzMzzHLz7l17rJyvkFXNu8zm2eTanuIxdlU9yEZT23+Zy7xpfTybrKd6CUAQtl/Pk0FwbD5l+a/FbeZRbp+rgtplmxTjpnb8xbi/y66fjH1zeTRrqnlJTsHyfxuA+nT3+45/67xj6y0tyYC6KVGm7bT8/e7be+n4yw3V2HpmLsW07KctrjVNU1HhsZh9YwqJqKgCWcKuxfO3mv9WA6DrOnGXO9FvlwRav9DdB2r57NVqBa8Lsk1L8sIzvvzyN/gH/+AfSFxeBpxnpBQlGZMA0kJJoozi4RwVw6frOqQ8a+gNEGOGxVNO0wzvxRV2PB60jUTD/uWrFwCJZ8KFhD/5k3+J21/+CWjeYzzstJiHhmskccdHzSmIKaIjp2CVMM+xFCSbxoQ3bw5gZAxDj3lO6P2Ajh3W3QAKI47TDM4EDweOjDlHHDOQfMQ8zZiistxe5BZ9cKAsA57NKGNhpOHFQHBgbDvgYtVh4zPOO4/zYYWry3M8ffIM62EAQZhqMCN0PXofMM0R4IRV5+CJ4DUZ00Fj950AKHn3DqELZXKnoPr9ssLo4sBAzsgxgVRJwDtjdrImfJo6j9ab8E6TjI04NMOignMx4BSMakiP5Y8AuuDpv20s+BCQooB/56QNc86S15DlYq2qFXJGjElUaqB5FgQpJpUZFrBWDF7vkWlp/NqiC9BibIEhcnXmXSOAc9J3TKU9wNJWpEmfUUNpWFYL8arYJo6J0kay6CdQlnuv7BRksXDyDlgrUFq7gU0Vy+Rzpf29D0U5LGUujLwDmfYoEljGnBoY1jfbcANHaqgBZWyKIaQtSqqYpP3bwJOM1aS9UTwdGVpoBx7wYlSEkBFnD+fEc3WcEnxw6INDzBndlPH6m9/i8pMf4/b2NfzRY+jXOOx3yJzRD1agy2G93qDrQ6ltst/t0fmA9bBCvrjEeDgibyccJ5H0nbzHMAzFqLOgrd1+j2++eQ4iwna7Rc4qAew7xFmM2qEf4D3w6vUrbDZbfPHFlzgej+g6mX9j/O7KeQIN8MEJ6L9n0Xsb6H/onEAFbqeAC7hrLBRwWhZoLv0S5T7t2HoF+/uhW2sX8RMHRGM8228BmG2+m3x3mrBhSdAGshrDkU/awZ7h3nur11/IFKJ5DQqsST2EljQPY+Ub0FVBvAE7A/8tSJfvshXasotx3V/RLTixWSAVW9uJaTkHId8HHIEK/l17tPy2ECAF8+XzUxDpHJzL1dxoX0cDbk/7gHmhzZCp83vTtgb8G7Bdv+Yy57efZVOM4wYkqj1CRCch92p6ZUvuVbU4UNlXnr8KETDq32X9MLBNdZ0q35Wu1jbASRsWqK7fVexf93gL4q39ncoblcPqGHzb8e8L+tvjFscuxvMDyf1NO7Sg3/5dAf5y7Pxl7/G9Qn289xjHsYB5A/LzPN/R8icSpR4DTTElxDjD+4BOC2O1IOjUoGi/b+P9WwUhyzWwKsEW7mOhPmYUeNU1d0TYrAYc9gfc3tyAGVJQJxMAjxzFmsp51sQYoOsGxCjhPcb6910nxYIIGKcZfRD2sO9FHSfFGQzSpGLCHEeQ90VD+9Wrl/g//h/+U6x3X+LvPOnBAIZhVeQeiTU0MEYwZ0zjEY5EqrPrBnS+R3YjgIApHsBMSHnG7e0R05zgQ8B2vcKb/QFxSmqBK/sRM9gBc57BgQHn0Q8djuMEKQsuCUN93yGw5F0khoTEAEgaGpNBktjogYthwOV6g2dPnuHq6RMM/Ur03E16MicB8QBWAyFOIzwYvUq2OqqVC5m0siErY5wr8E1JEjWdsd2W6JUz4jjCdV5UiwAxYJwpt1S3qRWYAiBAGzLNAQKMiWRC9VpzwNYIi020gSau3FRAgtNaDKVgG7kywTud+xmaMAzNYckZ0zRKaJOzirhy7jYcjsGqIuVB2QA26TuxPBkAzhdWDM1EIRNMUsbHl0WVWBI95dlcvR5DFWVqcS5h/ASkO4hike1LysAmq36pBqppPFsIjTHQ8nqoFOUSsQyLmxeWyTtfkutk/uGSN+FJJFDNMDOjBdB7SAmZBUiD28VIQn3gRaqTyqIgVaXJO2St4RDIIWcxgkqicvaIPBfjkbwIBwTv0IVORAgyY8geh90N5sMt8nAGx8DxuEfXyRieY0TwhMPxiNvbW5ydbeCo176WcXa+BeeEFy+e4+nTx/izP/sz/Os/+hPxFJ6dYY4zbvc7dH2HcZxAzqPrBiQmdMMKMSVcX1+DiLBeyRS/Xg/oOo/DeMRvv/wKf+NnfxMuDMhMOBwPWmPgu6vqs2Dam+1O8mb7Hd2NlW3P1e5XvpMd7hx3ehnxiJGKoywXctM+bxfmOwYGVfBxcneLf7W1P9pr13OZR6GCgQfDk1DvdXE8UCGWeTKa42p4leyPE9BvDLMVbxIywZJJDYgb4Obmt+xcgCBzc3/NvRYgnE+Av955a1A0IUCVGa8JrxX8oTmuef4GJBLV/e3RKphEmVsWYLo2IVpviIDg+pxk5zT80zDgpX2ygXgqpNTiOpC1wm6mbcfyTPrb1qV6pMx3JVSzea7i7bVWYYH12fLqUElKO52Q9kZooXoilM1v802KYcd8b/9ebHTyN5e7XLZXs8PbxjzXRrozVh4C0eVz654PYO1TIP4umPxuqA/d+U7u8/7znc4r77q9V3KvXeBUutMYqOPxiM1mU+LgARSWvnR8EvDTJsT0fV/Y1Hmei+pPLaBlhZGEsWurARvrX5LvlJm34l0A0A8dOh8W0mvTNGvC8Vw8FYAA3YuLiwL0JcGSFl6IGFMBraSJLjaAvLr1RWtclDucDxhWK4AI8zTheJgwHxMeBQ+HjClGrLdbOPJa3pvBccZhd4Pt2RrkA0iBKDlGzhH90OH1m1scxlsMa8I8EkI4w2G/x3a7ArmEVd9h03WqTSzsZQLBSnsH53AcJwmXcA4gCQWIOZcVNUCSZFmTeTlHpMgYZwK4x9PHV7i6OEecRzCLLn/nGSHICxdvSdckcgNDWIsRGHxhxwEATkI8ivQkSRs6DRPxZOE6gAbIiEfXM6gThR9O4kXglJG04i2TU4NB+oZNQs5XrXkAKElyThO2bSGyRQuNta4LR+akbdcCTFMCkc8ysAiR894jqeG62W6VWXfVtZ6qgcJgdI0B7b0Banlf2dzBFnFzQqDY02YSuVZbbMVr0IkCCSohZW3NmZFYvUCaVG6gPeUsqkqMWsVYZ0RJsM6gzHAugCmXezeww8QgL8lpcEEUL7iuG45qQqBIllZjywp4eSJk0gUUxtZLfYEs4ucSopYSgndadVmTiyGvNWe9KDOg1TjJA0iWNqfPDy8F1KDv2BPylJH1e28GQOgQUsaKGZuYcfP6Bc4+vsBqvcX19Q2cF68lM+P87AKb7UoUppB1Hl2BHXB7ew1AgP80z/j6q6+REuB9h+NRCxL6DoejzF2h6xG6AdPhiDD0yMx48vQpdrsdYhx1Lp2w2WxA5OFDL0XJuoCzs3N8/c1XGALDU/eWFeC7s1U3fu3uD7nUTyVKbR17MPxHDvxWEGAs530gIKv6Urt2lWO4LRT58PPd99Oeo96fhKbZPu3z3nlG5gIs6vHK1Zqx0j4QnxhFDIje/1JVK9k82YIW1oh4ruE3nKsHcqFoYwIIfALiDcDmrHld4tk1INGGApVj2rCiMm+QhvsABZEasNbnNENO5lwURt9AcQWuba+jxqg5fYu1jRbtrfcGJbtMRIGg7Ze5JkCboUNyBy28JQhB5kRlQ3CKknalIjFX70GytidJ8ifI2updGyZZ33sxyvQBhdMR68Ox3LfLBBdIFkNyhvG1VoAaK+X5lgC7hknf009Rr2VVkqvBUd/33Y2bd3PPtyf9avFeTv6+eyyavrK8/B1vT2MgWDu+0/Y2A+je3Zdzwvts7xXq08bOM0uYj01uXddhGIYyqdrnFnrTD710VCJ0IeCoRbqAavkx86KAlyUEd1p+PsYoLvEgJUz73lzmKGDfjIPWAzHNE/bHA9g8CkCVSNRnsuvZtYAaY9fmNogBIG7xnGWyiFG8HtM0gqLE5YfQlYJg5MQgEPm+pHHJMzxlBAqYmLFZrdGRQ5pjYWGrJ2OoVrnGqfvOA0joQ8IuT1JhNM0gx9hsOoA77HdHcDrCeyBOjCkDFFT1gRkYRxBciUVnAiir4ooqmRBJtU9hnjN85+GYQDlinhLyOOH5V1/hb/2N3wEj47C/xvm2B/Gs70UNFmIBYMpceOIah6xKL3ASd5+TFIU6HZwEoCSDcobzXWEzknorCBmUbcFVsEi1ojMeGiys4DulAmTJkSSDQkCq6OS7EkYCzU0w7OiahZeUMReWOZXKiHYfXp+VASA4jaUkDa0ieOrALMmgXpl8aCs4bU84CaJJUfI2zLthbIqNC2ZG0Lby3kAHNcljpPHudX8ikY1lgjL4yznAjodX48fmhWzTHAOkeQvkF5NUYf6tCrJABHBmKXSXaxgSswNTRtR6C5Lwaxr7NbyoMIYEASckqljeiazGKSu0qPqZs4R+6UKec0JOUcYJskjGOoc0zxKV4BxC36PX3AkB4gF912GVM1xOWPWE29df4tnnP8Nht5eq2AxcXFxgPBxxOB6wWq3Q9x3iPIEh+UMuOOzjhL7v8Hu/93sgCvjit1+j6zscxwOG1QAKhClGnG0vMM0HMCcpnIeAeZwQ3IA4T+iCx6z9ZrPZSL7QMODzH/wAfd+Bc0TnCB8/+wgxZRyP41vn/7/ebbmon9q47ed/2e1BN/w9d2BAEQqNCtuv6KeSCXW9rMbvw4v0275/3wX+1MMAu1tuDRejUZf3fffids567van0tkoIM8+LyEmtkcD1PWmFuDdfss8IAY6tz9sqkn1phYsOWNx/nLNOuM2xzSATu/w1NhZ4jHL16JlO97TWKegshJJLB4RosqO23u4j8nmYp6d3IwCagPcC+DO5XfbprKGUnmfdRzR4nrlNljBPwmgJ6JiUJm2PwDBE6ZoxRb6U3M96sA0Qwh3tlODXJ6tHtyaXty26QPnad7+oj1Pj3hX8P82/F49Cbpj8z7uv+pyWxg/jaF/38Xv81K81Wtyz/ZejL/FoVoCroF7G6SnSjttOE4XOmmMvAzjMXB9eowlChvbDlS5TkCSVcZpEm9BjMVyNdBu5/Teg0k0rWPSQlrWAbiyL8bEGjCLMWKeZ2w2m+IRMK+DHE4YxxFffPklnj65AjOj73qM6kkIIeB4HAvQifOM0AV45/A8SsGtzgsQY0cIfQ9yhJgizCNnzz3PE1arFWKcMR4O8Gcdpjhjteqw6s8w7W9w/eoaUz4AnCQcq++QHWFMohZU5gcWUB+IgJTRBYILDhNrsSoYUyYAhzNhmhMcZQRP8BA2Z7XqsBp6vHr1EivP2AwrBADn262om0BkR32w5G1STXkBzVI4qLJNNQTEwduEQVTDn4iQUhS1G3ET6DsGYpLKrc47OM5wORetYU+hvFtj8loQahspECegMM8M8wqgxqEqwAcBnoImpt5125vh0DL+LSNHgLpftT+D4cjbC1CWwxeZzgocLIa/GkNODSfOKsVJTrSndWwRkbDwBDVWnSY0U3OvrvQP6bPCeDPLo3vyi0kmm5tdjTBWEJ5ykrAty6foxEsEsqlGFuasMfxk1ZQ5ax0BBnNCzklXFqk47RyVBcg8d0SiHORE8gOeJNxKpKv1/hMjFcbIQ5J1rX0ByK3WOUMNXgaX5F/j/6H1LsgFOGY4N8uc4b0w/86h8w65J3RphNu/xnh9g5lEjWyMCev1CvN4BJHDNI9iXFlfyBnBBRAx5jnin/+Lf4G/9/f+fYzjHqOG3E27I5yfEELAOO6lj4cOt7e32J5tQarudDjs0XUdktCpzQAAsNdJREFUNpsNXr16hXme8ejRJThJpeCh9zjsr3HYv4F3A2IGQvfdDfWRrR1kNWEeWALvMpYfWAy/DVyD70K5xV08AODLZ83H7Tpp99Pm6JRrnpz7vr/vu25hpO8FC+09A1APmX5SfhfM4mxQLJ/V5mgDW/ZchZE/AYwMLl5lZCP1AM7pJPTybrw+Ghxg10hzquE+mhzs4EqYS6t+Y5V3JW9IAVhh3ivbLVwyifgAmbQ4yjMBVuivbkQE50PxGhYSA07nJK7Nx0Jg1ebkcq/IJg+qc3cm1cunJkH5fuNWAgzUu0P2Yqs3pWXDCRoKRFUoxdZVAoDMSKpE2F6teinEq669pMy/yaKPHMEnfY4g+ZQggDxpKCcBTS0BKzbGzDB3zX0eucXfOsgdOZBfijjU+74f/NvBxddjgh8QMqm+7waw37u1Y7AeI+tY9XxZlV6g2Hcn84Gtn3JOI9gWVhjafU+eTdu8BRt3vDXvuL1XjH/XdWgTHE3Rxy7eFs8C5KFtn8PhAKCGPNx9gXUg5ZwL+245BC1bKkWWpPBMihIu5JtOUarlqmER+gGr1bqqQQALj4LVIbAtpYRpmpq6BIw5yiJPziPOMxiixd0PK/RdkNhhXXTkkQTUT9OMVb+Sqrgx4bDbg0gW53UQFrYfBmFvQ4BPwDhPcF407IMaOzkJoI9qfBERur7HfEx48vQZXr95g5dffIXOE95cX+Pi8hF2xwMO86yTri6VWUA2sRTvQhaVHc/AFCNmbmQPATAcOufQeemEMWZQzqBeQG/oAp49eYJV3+N8u8XQd8VD4Mhpoi6VeYWAIkt4h4EHlYqxoCakRftf4YZTVb4RdRhJpHJOFgTpQ6mEmEm8edaQJonfX1ybax9fMFsNS2ZhKs6J0SEDnmqRFEj8uT1X1hAxURdCAa4FkJBMih4qnWmTrFZKtBoBBpJzYTFM/YcUkuozg2stFTMWtDCWtbvkJdjkKw9u1/DO6bor5wzOw0M8Ec7Gd5axJXKn0HekSdMkk57TuPoaogVQzgBJkjOTPAEngAIVoJVVbUpmeQcPlnwUBSYWA5vtHpIYfZ0PUriMqkEmoTN14mexjsAQY8LakRT9J+ZSrE36Yu1fwXkkFsOsC0GIgyiVhO0ZpU6JgyMJxXLM6AMQxglvvvoNVs8+gR8GrHrCi1evgBQ1j0O8a+vVGjGJUTBOIzbbLYgCfvSjn8CHAB88Dje38KHHdnuO25trrLc9Dvu9SO/uRzx59hTTFLHf77HqB2zXG4QQsDsc0Q89hmHAzW4nc6+XGgHTPCMjIs7APOeiMvXd3vjkz8Z4L4Do/Z7jFDDL9P12dv4U4NdzNUxfMaKXoTpvu/Yp6L/jdbhnvWyrWj9sAPDiL/H6mvKKfaEeTOa7RzE0rr8FPvagltDcfNeE2hRjIWakFOVcClRJAWEF/7KvFcvknBFVBEQmKNkv+GBy9YvcQk8OdbmRP2LKCsIVpCvwNW9wCJ2IdUDCe3OS+SM2qjp2/qA/aNsbBCoVGu1BGoPD7ClCAehEMi8JmNbZm0yFTd8Km6HG5f+Cr1zT6xlG+rTFzbS3ldwnX/bm5j1lzJMWa7SwoUUfy6jqTVkThCW5OZPkrrkgAN93QQwFR3AsJBypZ8HBQoucGoaVOG7x433Mu6EQVi95WZMXw4LuHlfmclfaz64nIF0+FxUlM/CqQdKeu9hyTf82j7EZqHbNYhyo52kxvlDnBxuiS6a/3EXztrh0KzEU78kNMiP7PbZ3Bv4tQ18mWFcLc9lDtwoop5NUq8lv4NXO3Sr92CCz87ZMaUoJnXNYDSupvOtcMRDsBYzjWPIAsi3oek+H2x3iPC/yECxfoAX79lvuQYtbeS/a5KgvzxIUTbbMa2jL8Thq/oHIl6Y56jNNcB7wyBg0rn6zWRcmQoz4DOcJq3VfYrqZgaFfAQCO44h+GLS2QYc5Rlw9eYSXr14DLDkXX/zma4zHGcfISBbnTqRMr8YxGnjUOOhVkMGQGMjsCgCXFGXGFCOIgW3X4YPLS3z/e4/x4aMz/OD7n+HRo0tcXF5KZeLgS6GtEqPoSEOcpGMHHxRQNglHZKyuFA1zzssErHUbpM8IQ1wGlQ5CpwoD3gcwJa0L4OokqMYWkSVt1cnUgG31YKl3yW5LOikIDXvnxSCqXivZ2RaVVhHCuElLSs5ZZDDJe2Fk1LNj4NbCBcRIgBqKQRaGJBV9Le4eCsyl2VyR/Iwx1kWFctWPLgBE4+4tzEoNFnIec4xyxywlsCRPQiZ4W6OTVsYVmYusXhItsOU8wK6oM8lqkeSJSIxJMeCSJigrC8gZruuk7cjBYRYZUpXeBIknylL1nL5Hi6dmXQDhaTFBso5PY4EKV0yEFLPmAJqHQPIHWDtNTgku18mYUNcGUVpyIDiRne0dIjt0YORA6JLH9csvcPnJZ5hjxBxHZNeh8x7rzRrHw4iUIlbrNZiB3W6P1TDg9nYHcgGbzTlykjCtYehxe3vAsFojdB6v37xGyiJO4J2TIn+dQ0oZ681WPJZxBDnC0K0wzzNWqxVcFyTMaDNgjhljlPC10AXsd99dHf/lG0Ax3E7DA956hreA+L/MOQofxw1grzveAfEPXfP0b2AJCO777PTvt4H+u9eSu78PLJwCJy6fG7A5Bf5Udiqf8cnfBk7VIChAVc9HxrcwS3w7UJhvY1EtD6A1Emwc2hMT2nZA0f6vbdJE6p+0GekcKkUEucy7dlu2iCwA9+JvauYVazA7GIXguLvV9rKLVbZa76GEAVk72WWaY0t71/PYWnT3Lrk8b7kWndyDXdHmRnt/UK+oSbxlIevIZyUyIOQO1X7E7Xurj3LvdneMLmEwoRoIbxu31jdt7bet9Qwur1XbvL2PuhIvgT2a+7j3u5NnuW+sLUE/3fdnHVtvazRaPOI7be8V4388HkscvVjKoTSigXkLkwGqsbBQKGFh7Fq9faC+kFbT30KCzJDouq54DFpddWYuwHCapmJAmGHCIC2+JQVyzCPRdZ0kWqpBYsy/xfkbAAsan88s7NxBB0bOjHmapHNkxvF4xKCeBSJJdvbeS/a8utmuHj/G9c1LUJ7QOSDOM9Zn5wjBq8HRiZwjZ2X7o3yWtYqrAl8BuR55npHihN57PHvyGL/6xS9xdXmJ1y93+ObVLa4PERGuADNRrpGErOwCPDxyikhJQ3C0m2cYW6Xsi9jsGALhBx89xt/4/GN8/9MP8Pln38OnH3yAq/MthtWArguax9FVoy14wJEwKOqLTaxhTiqf7L1v9NxZ4+ZNPjGg9SRZ35EfGRSOqABBUwWyvtFWiS4jRTfnqo7xEvwvh5otmOY1sGPlNyFnTVY1VkH7VJlkAGj8UbEavReFnUwERx4Mc3PLtSRnQNVtXPWAkJc3lKKErjnnkPR9Zb1vyZEQQUpmTcgiY/QJ5CsbRGzeDDFaO+dVzrXePxEkJpWF1bYQHGhuhRnCYoTphKnJZBkZjh04R0iwmBgoDI3hZZE0Fa1/MZvEbpJQJ6/Ji4nFGGRtSmPeCVQS5nSlLJOw83qtZIsESYXKzOCcJLEappqglSZZPG2JMzgTcooSwpMZrM/mQIhqmYUQcCRR8fJBwuhyx9hwxO6wx3H3Gv7sKcbjiNV2QN+vEGNG1/VKakil6mMasd/v8eTxIzjncHl5hpRmjNMRh8NO8oY4w3UBcZcRuh6r9YDpqCGAtCpyyCZssN6scRxHbLdbjOOIvuvw6NGl9uqAYbiAo4CcZ3Sr/tuWgO/Udh/4twX3PqB9CmpPvy/j9J2vX8FnuWaxBE4W/ub6bVjs25Jx7wP89u+WfGsB/0Megtb7AAh7TxDiyjwkVZSFS3GpSrBUEGfPoHdTD2yumVITnlNi9WuojzHbUuFbmoyzkgi2r+6TYiohGoU9ZloyyRAlMMEIavRrmzsiRB37Xit4C8N9En7ZtGdmFrlOawPNuxMxg3q/pmTkFGE6Z5hEcoOMeCrV0dVjLCx77UkmHiDPLGtHCUvS67bUM7MuJ6iERzYCyl6Sq6ZKu5pZjRxR0Gv6DSezQ1ANkhr2mHICgxFz0rwnwCV5Xt/Uz/FBQh9LXRhPgEetJA9Z76wf3fEgLTq7PrL1A2fJ23d3Lc9RfpuP/f5RvcSedq3T8QNAyxO391kZ/7vhPa3BZ3fxb7I9NG+9bT77tu2dgb/p7bfg3T63icyYcjMILDbe9gVQAHU7yIzx3+/3GJTJjjGWvw3AW7KwvTAzIGyiAVAMgMKskiQBjeOIvu/RWXKlgkhbJK2y7ziO5Tz1HqHSnMB+vyuVT4kI27NtmWDMS5EzlUrERBK24ZR19OQliRFATx7zeMD2ww1C6BCjPNM0jqKU5ARiAA7zPMF5h2kasdpsEFPCEITBj9MM7wiH/Q6ffvY9/PLXv0bKEfvjjOMYiwwiQUNPSN22pCyxFpkhkEiTWodWpkaqkhKG3uHqYouffvYh/ubv/ggff/IRnj0+x5OLS6w6SW6UGHwZ4Bb/zGCZZNTDYXa0gMR24VKWXrozwCgTaYnPa1yDIQT1sjgELwnDuuaqAUFwIYAYZaBKXxP3eNFjPjE4SeU0xZtDJQ4fOmGSTpilOBh5MVayTqrOYijNOPUAOWQnKj1kRkTzPEQEkC/5EMYz5JyVgVaz3jAuWGPfRVZSJCyb/AWnLIuFlNSK8roY1TAqMSqocB6Z1Yueq/ayYBr9L0Ok3XxdNBxJfKoDNM5WPAUE0jwJ9YaBQZyQNeSMyUK1xKjNGurFILBXAyQKQJDAKMk/gGOwl2t6IsSYwS7XhGsDVbpA55zhSKVMdQ5JKUmInhMezEFrPERoroADPIFyKgu4dw5D12HmiJmcrPiOELqAlDv4JLUAsmf0mLHmCbvnX2HTX8CFgLPzLa6vrwEmbNcbXF9f1/hiALubW6xXAwAz0hhEjP1hh/OzK+QYMR4P6LwUEAMxNmdreEiy/0HnM+eceBo1z+lwkLoic5zVSHMK2DIcGK9evcKHHzx51+Xgr22rTJwylqfg3yxQLBfEd1kk7/vuLjPYHlBJTDu+YHT9omUX2/O0QhntNd7mJbDvH/o5fZbT+14YB9pO1HwOWJfgog6zMAD4vnOrMd1y4bkCeykeWFV9CtArzD8X4J+TeNxs7TavQI7VwwvN3TLju3127z16JQdtTW7PA4jqF4GKNDiwbLtC5nA13gz4130r0Fu+lyrwINiUS/9s142mx1iDNu1iBSUl96A8K9HdfqSeAFOYa3MdAGjiMC+v1TyjrJNKuN4Dvluga+80s4RrJSXpXNb70oW3ELGshpUnAHV9JA0RrWMm37lu26Z1HKmX2Yrg6X8PGfHlb8UwD3kGyufl68ZQsD7Hyz4vf7c5Ao1RzI0BcNLu/11sfxnQD7wH8G8lM9uY+DY5VipE1iRY+93enIF82z/GiFGBrunwGwtvIL9lsVppQOvABuKnaYIlBbeegQxxhXulIqd5LixwW0DMpEfbn/rCcymI5EMQds8FjIcR61WHEDxkvkmYZy41DzabNZhjYSPnGBHHiABGyhM6H9APQ5EGFKMkwIeA4DuYzT6PB7jgsVoNkgDFGdPMYBY5vynOGOcRZ+cXuLi4wDfPf43QESRtSMNZIKzJlKMyssCcJlGrIQKVpGtJ/jRwuw4evSc8Ot/id3/yE/zsR9/DZ9/7EFdXVzjf9uj6TttcvAIW318mLecledV5xMzCejCL4peW/uOMyuaCiyY8DPBKN9ePCMwOURlwS+Y0IF69Sa5M1KzSlKTnJCeskTEflrBl7FEIHjHNCuYl9ISU3DLJN8v/MNLKjDxZBBwyGeuPEjpSPEyk4F3BnU2a4nGQ4mXcPANBFBMSSyI7nHhSnAFYNiZHgKK4rC2OkYXlZgG2VrQqZw0xIilYVYC+sRvGVbAZYVDDioGsEzw5OC9x/1IFUpj0zJLcDFURMq8CEeCDAztLqO8KQWLMiIXxJI3TFydAEN8CJ11MHbxTH0kGvBcvkuQkaF9iS95neJAaJ0oV5QynhmU2VonNqyJ3If0ywTmNX2UAjpBdhHOEvusAZKQ+Yp47hBgl3yfO6DqHMDsMPuH2+g0uPvOYM+PF65eYx1nzXzwuHz3C+eUVUoqYphHz3CFxkvHihSQ4O7/AMDyHD0COs4wdBlKMOOwnAA7EHquhR4wSs8sM1ffvcDgcELyEPkrBQmmTzXaLL7/8GilljMcjdrt/Gyr36ntBMy0svqbmzwqW3unMVDrCwnhowzQKjFJDsIB/2//kTutd2vnQ9K8KENrPgOXfC48GtwD0/u0+78bD+1dOUphdFKAnfd5CSGrTtNexO+Xm3wvAyNWI4Fyr+Apry5VpyEBbvKrIcTa41cipYmo0ALKF0+1mOMG8q2L8V2b+brOQzo26ZpKsk7wIw6zv2vph87bKj9O1xhW5b6A+AWq78x1ToJLP+ocZa9aeBtqdc1pksJXYkf+5sq5xkVC3Bz6xT+Ud6nmXxsUSybYGnu0LWF6gEiqaz8aOpTaK5iw4rySjhWJq25anPnkXrZHfAnDzgthxxVNX+t+i8exGm3dXx3d9FtuXwVaDws7V9vnyTV2v2n3vGE7N9/dt9TZ0rweHdb2qEVv1WtUT967beyX32mZhPRaDbyDafluMcQgBXdcJ89RomNtNmzvakmlNgnNWYH56bfMcmDHQJvW0OvtWC6BOlhnj8QDOCYkYv/71r4th0jIvbSw5IIbAer0u17FwoxgTpumA43GPZx88Q44jdrtb+NAhxySusLKvyJBeX99gPB7wzZe/xa9/8XNQnnC7u8X66hFiEq1254WhnOcZ5KQyaM6MhAhCRpwztudbzNMMcMY4RazXK4S8AfZH5MjwK+DjZ8/wq199gd4zNp3HPEcQecwaS22x9SmqCGYUXfZVkOqknSP44OHJIcBhO/QY+g4/+MFn+OmPvo+PPr7ExcUKZ6uAzbBSWVWCd1qIiwHQSZluHXSkCaXBC0cJIsQ5omvehzFnZNqfDABZVIFYQlViTogKkL2z+H1drAgC1IFS/pwNEPomEY4dipazqxVvXYC0kzeNZNhNyETldQEwtzAY3kM8pdq3vRdwXkE+QeokRBSGXJkDK3ueOcG0QTm7ArRBEHlJtmkkKZBmzJrELBKhVJQzYmJl0QmcCXBFmwbeB5BLyLkBNw4l4ZR1YlxULGb1mmj8q3fiSQMLDLdEYuHqZcwRq8Ru8BJHn1mYelcXJXufKN4fgCC1Axyrnr/TWgFqCIhstCgL5Rwln4Tkmq4JXSiMKoSYNxc69FnqPqq+QZCFMjWKZbA+SMqSa5KfJrPFSNoeHjlKfkDfBxwnqVMxhIwuHvA//A//Pp58+kO8vL2GY8If/+s/xi9/8UvEJFW9QxAlnvOzLS4uL0DOiz46Ofz9/+A/xN/8W38L2+1WDUeZIw+HA7ouwPsOr16+xj/5p/8Em/MtKIg3oHeE65tb3Fxf45PvfYzXr15KkUFdzH7/9/4OPv3sY5n3QDg/P3vX5eCvYaOT32/Z83RRPwHxD7GLlf2jBaixzY6vyXwNgCoGgt4j1fNWaGX3oR40boFnCx/bfVF+274ypZ4aFKeMZPVCt0zxfZ6BrBLJSce+VcgthbkMdKGGQhU8wCJ6u2BF2UJW5DwmUZ1TkvnYDAn9TU2oDzeqP/bwTi/lYJ7W+nNfeFZtGQGIFERwQmYWezcViIuhg0IqyQ/regLA26zWvm9R/VE7rJgCpG1GYK3vQeoUbAC/9hOWSUs88LrOWciQ3hmgzLJ5Acp7hKx53pGSGh2YQzF0yPqevvtxmjBraOi9BhLLvRdvUGu86QPbcbJ26W45q8NGPRVE8DGWEEufIsgJXktZyLfQBYQuQACrrEui2lO9tVnn6sV4zSifWYRca5SXJHOzxsEgqy4MMxxRvef2LooRUQ2DAuKtXzdtdQr+W9bf7BgjzorRpudfjvfl32X6sGcot8g6/luAz6VBHvKYvG17r1CfVtXHwnnaydTAtxkGFqYDVBa2LcplxxtDb0o8BsoPh0Nh44EaGmH3Y+56u65VE7bzWq5Byhn/+L/+R1j1srj+o3/0D4vru1UDskq/luQbtMKwPVO9j4jd7TX+i//7f47f//d+H7/65S/w85//N0gJ0vm45hwQiSfin/+zP8Sj8xX+9b/853j1zRc4n97gEPagx1fC8HsPZlEpIhJA6zxhjhOSkwRmUcuRtpOiaR5HdefvdntshjUOuxsAjO1mhThHbLoOkwcOka3kFToiJEihrq7rkOOMOSVEtcYDRXQMOE/wHfDRs2d48vgRPvr4A3z47AKPzjcIHlivAtZDj867kkxLTsOtnCuTTo2lUwPA1bFGALoulImz9SAZWAcRvE2WjiSePXiEzDLxkcm0CcvMrKFakAkdpPHrTViNsdXwzWRusfWuSQq3eaGZmAUMOoBTSfTNmohWVAM4F2We6nUoGFKMEl6GBgi4Nk8La8wri0cCMsmlJv9AbkvaiEVnVdoZvpyLszLv0LhiHYspJ/AiNldZfxJm20KQADRJ8ijxqfY+oc9RFwYNxWELZwBS0gXVAUROF3+APJcQuqSSoM7CgeAUGHldaKQgly1IKn6E4CUBnBwQNFTqTr9rGDNt6vpeATjV/CcHIOcSAkZOjnHwSBz15RPI+/LCnBqdznus1mvM04SYZgkJCh4xTFhNB3zzyz/DRz/8CTx7XJxt8LOf/gT/v3/+z0uNj48//gjzdIT3AdOUVFlE2mk1bLD+aI39fgfFaNisz3B+domYIva7HX7y0x/j17/5Bf7k578AeY/Ly0sMvVSEPj8/V2LCQufkvtfrFT779FMc9gcE5zAMw1tWgL/eTRa+CoZpsXDe3R4Kk3lX0L+8dmsknhgDuAf8l89khC7ue/G37GOntH+fgn777i5wv/uMLehvP7uf8W88evqvOvfmospju1SGs20X0jG5vPaC8bcwkZxLjL8BfwIkz0v/XXT6yz7ynEvzaRniszDSGmBc5mwn2QG1Lam5fyxeYsGBZT95UXfazwyWcs5FT4CsZRaQAlVKNcBf743tmgYScfJW7d004UoViNb36pucESMu2+ecnbbAqVHcvM+2H3Nj2JV1EJUJN8KkZfzr/XApCpqJiqy1T+qFteKY5fQM9lwEQRbw1/rYiXl314iva+xyR/2fGl53Rr92qvY4W0XLPZb7aFrJFnKD941x0PjK9bzNN9z0q+a+zYCtZzy5G6pzxh2vwnuCfuA9k3stdKYtjlXlkaqev+0LoCQDmxfADAID+G2ibu1EuXxu7P00TSXuv71OqzZk2vu2gHnvJcfAebx8/gr/1//zf4aYJsTIpVpwCKF4HpxzpWqwgX67N/M2jOOIPsj5/8n/9w/xR3/0r5ATw/kORBmT5gi0SkPOB9y8eYP/4j//z/Crv/hTdJ7w8ZCwftQjfZTAPIOcQ5yThlFJgTDvSUJjIKC9Cx7TXOsE5CyeAOSIm9vXOH+0xfxqxDffPMfuMCLDY4wj2Ale60BSlZcBwEkMf84YVDloZkKAvKsZGZ6Ai6tLPPvgMT778AkeXa7x4eNH2G5XOFsPWK0GBIL4Rcmh6EnCwGY1gphMklOYaA8D1NKjSWfDNtZQhoLTmHgq1jVUSYV5RooRLgSAfXFryqZH+2UCl/UvAKo+oPsqqCWSyrMMApwlrysjzgRT/jLHgoDoCpatHxXDxRKcmEHKLNtkdzqYCVrNEVkSYTW8qJUnLCl1jTHCnMEWVqRf1vO3iz6rd0GANfQUsvJIJyFl8Z2y8W1uRWLLC6BiZBRWMYuFZQYKyhW1sQCJp4eC/SwVoTOZ+cLNXCr9oORzqMITKfOfkgJyS3jzqhiV5d6zhuPZe/bOSaXfnIskofM1XpfZiUStWH0IKjNaxAU0cdjeZ8q6qHs1Xmw8OodIgHMBQW2DqfPYdBl/9If/b/yt//7/AJ998AyJGX/2p3+KzBnn23OshhXmMSIn4NWLNxiGI/78z/8Cn//w+yUWOZDHMPQYDwfkOIOCQ+cDutDB0wovn3+N51+/wOXZOXwIOOz2CCDkNGOaJ1ycnSFGxvWb17i6vJA3xSLhuV2v6wL/Hd7uA7D2r0ou0L1/P7Sd7ntfC5S16dQAuItHpB+36PHkOu/yTG/b722L/Cngvu8Z9Q+7WSyAyz3HL69X22cBQlV1ToxVxQGpJubO0wyrQptN+MOMN4ZW+YW0b6FM660avF8w/c1dSfiQhLQWj0JjGrYkxh3QDwgwLWyAtgnnGkVA6u0jFPlmAkp191aVsM7XvBxTLHNfZllzpc1Ndx+FhPIs8xEKWaH7WUViqoaPtS+gyn2WU6ae0wJ2mTHPlfFvjdtFeJv+2HXtGWypcUp4mXgGUEkucG3TLHFS0k6q/mZzr/eu5I2UNczer7N8ndpsd/ou6vg7XdtaI7oa69AQ7PY83z7PnY6B5bWWxjdpv3lobHLTl9vt9Nls/WtzF9oxXzzYJ8TWX2Z7L+BvIPx0YmmBfKuf37Lylvhr+7TMrjHtQGUXiQibzaYAepPtbNV7zAuRNYHteDyWRrF4/WEYALZiWIQ4Z4SuK3kKrYehfRZjKOyapZaAJoV6SALPeJiqmpE+87Bao+977HY7nRwk/ng8HHC4PeDN/ga0mnHlnuDXv/kCTx4/wgWAflghJUnGnacZH6zX4OOxxuZlUQ7peo+cI7wDuhBw8+Yl+uBwfn6O19e3OI4zbg8T/LDBzDMyBMDEnESBSycQTwRi0Y73nZMEQc4Se++AzdrjJ59/ik8/forL8wHPnl7g/GyNvgtY9UNNxLWOCYZX2VAHXay8K0YAnIMnCc0Ba/Vg3XJSl6Grg0DOJcnB2dx4ZZzrJBdC+TyxJmQ2+F/CeXTR4QzvQxPfqUajeZJIQF4El3h5WZlQkp1J8xcEqKvKkMlNFh5GYxs1tEoGskzMi8QzZUPKTGeLjrInQq4L0CZtT0v8ZV0QpPkzYEo1LH04+ACwaD6DGSmqN8PORw5d8AtPluQHWCMvgYYx8XmhGUz1efX6oioknL1d2ybzrEBTpOCAjBkeGc4FMUTYFI0yCBJ2JHG2XnMoGJmjLPIUijeHSIGEI8DedzaFKDHMyHgYzUUAxCNCZdG2Cd7aqCYs2zuGk7j64B0SA+P+BvvdDUK3hqMAcgOci/C+ziFdFxB8wvMvfo3/y//+fwc/PMH1bo+YEpwPGI8zOt8DOSLOEd53OBwi/uE//AP84T/7Zzg/2+Cw3yN0Uivgg2cf4MXXz6GS25i16t7xcEScHR5fPcJh3MM7IE5HiflnxuFwwGq1xv/nD/4Av/31r5Az0HcDXO9AWYiGV69f4n/xP/tP3rYE/LVv94L/B8D+6d/tolkM1vsW33uua58vwHfD5pXFuQEF32Z4vO/ifR8YP32mU+B+r+dDDtQYa6OVUBTB6jlOriUnXJzfwoKYgThHJFW/S7N4rVJKmMZJpXsFwBILOPYKKaX2CopKj70JIxEM6DuS9YNIFX0Un2Zdd2tNl7t1De5TP7K5j8gECCoYT1nqB1X1QFnHQgjwmifgvXwust1dwQfOctjUCDEik5nByWoS1PfkyBUM0sLYNEfxzGZdH1OSPEAfZE5NGYlnBfYzkoUytv1fi2fNMZbvS7uYZ177gy13KGFWXPq9A4rnmc0QQhYijJt+AK6EmhofIEIIU1FaXCXpG6QhxYYPvEezdt8F2aZC9zbDFKCT/q9Lq7ZJVfe73zMmfbpJQl/sc3c8Lw2Sh7iTumZX2/uuQWN25+k88xD4b//9vqz/e1XuNVDeSmDav1sgD2DB7J+y/WYl24BpKwJP01SMAavCa1trFBgLb6y9/btlW21A2PXtOSyp1wp4ee8XCb5tI5vRYc/XDxpOhOo1AEx61MP5sEiE7rpeQi5iRIqMeXfEmxcvMVwSXu7W6J4/x/d3B5yfX4Ez4c2ba0B19p33iHHGdrPFPMmkOgwrTNMMcESMAvCuX73Bo/NLTFPCPEZs1udw7iVSnkGcsQoOMYnWemZfwjmEbVF2gBlSr4DhgsOm6/Dxk8d4fLHF0yePcLbpcHFxjhAcNusVVqsegQiOAa8VfR0b5JPJxjuPTHUuEateMvyhIJMtpAbQ+HcxHLwWS2Kh0gHnxUjRG+ecCih2QQB7cXGWPgtY1ULOIve2YH80FhJeko+tcEo72dnWujnrvVfjRpJJ24Ivqshih2ReTCaAJjc5BiVpt2QyrSfgpEw7RABJ/CPp4mPGQNaJm1hAuLEwdnDKDB+0fcwb047XIkPHtQGbmazdL1lehBkKtg8ZwNd/p6TzOGn4jKrsJDEuPSyEKCJ4A/8MqAwpoKo6BtvZqkxaTD7JfqWtvN6jl0WOnCZj62TpCB4BCawARs9tGuFqyhHUda0LhkMAfEaKsyaqR/B0xM3XX+P1yxe4ePYR+vUjkE/wXQefZm0+h+ADgkvokfDVn/85hmeEm8OIru+x2Z6BAHShx/X1NR49egQGcDhEhG7AV1+9wG9/8yW8J1xcnCF0Htdv9gAsbAJwfsBqPSBlh3GesB8jxpnRDyvcvHqJx4+fYLfbF+nQ4zjiz/78F5hnkRMd1gPiJITA7fEG/9ZsdOePO6zgfYv0fYB4sYjqGRegnGu4Xfs5F2bajnr3bXGek79P7+9tIP70nHcBwH33pp/ZvXNjzBfAf2poyNzTnn5haOhcWCQ4FdylmITMSirVmUxAQMNAdB60+OxCPOi4rfixxkcv+P57DJ7722DZju2ztaxxfZ4aniSGAyQQnzUMSZnZem9V6c1pP3JNf1rc62IdQFlz2lAcYpZ5yubDrMW0MhWlHlbPgVW3t0JUhpuJSLygqPKoaO+37Gvk0z3GZQNGYe+iMdDs39Z2dn1m86ZLWyUCSLFUihExKgGnIcKmumciEHe3ZR/mxuhefs/37HMX3N93ztPv3w6mC0R/8Pp39z/55GQOqut87Zf39VkxQE7v8f3mn3cG/uZyZmbs9/vyt/cewzAUkG5AvwXYBshaz8DpA9nxto95DgAUVZ8ysXCN5zdQ3/d9CfERSc0aotMaJERU2HvzNJj1bzJ4dg4Ahe1nZmy320XokhkVpk5kXgm7TwsP6roelBl7nQhzZsQc8PzNDh88e4bNuUj9MRNevXqFR4+usNsfkecJaZrg11t06xUOx6N4NQAcj3sgA1++/kJilHPGOM0YxwnkOyAMcG6Eh0xUzkl8/xSFabdI7cwMypKYS8jwHaH3Dk/Otvjx9z/FB08f4ZOPPsDZZsB61eHi7Azr1SBVf5OEA4mhrudsOqjoQUNBG8FJ1ixMvy3nCE5RFgFYtVobBFzKmsuJRbZTZBkVGIMQvNNEUZ0zGWVCmpVZcU5kF11TB4CUiWhnGQOpLgQF0o3kniNwSiKr6kSRhfFACID2Y5sbnPMAmQtWE3CzAFuCxmemKLkKNn6asSfPDHWR5ob5gP7W6wMFrNpzlnCXoDJ3YBCr0aTqqve5UWEGtOiCLgoaCmtfr026j6gkaYEXHVdi8GXLWtMcBgckgCzRHxkpz6JspVWVJfFNjrOwIzFKSBgvMoaOdWFeunlLYT0D+UWtZ7lo5JwlmRe6oBEVWXJn+Qy6GFnODueIeNgBxz3yYUSAg+8CfOqQIiEE6W+BB2QA/ZARphnzq5fYPP0RHj+6QsyMVb/GNI14/vw5hmHAfr/Hze0tvO+Qkswf69UKKU4Y+jV2u1t0fQCQ4EPA/nDEMAQQRZxfnCHGN0gEIPRIOWOtcqF9P2CaJhyOB3z/+5/i5avXoHHG/rCHCx3gAih4rNqg5e/cRid/K0Bq4Mfy37rnWwB1+++3Mv5ECvbu7puNdm7AJTE9uPyfbi3QeghonDJ8pz/37V+9gU6JFuhnS2DVxiOXx70HKLEBQz3K1Hlyyoi6ps3TXNbE6TAhzhE5i9y0FXeyEB8mB6/jzatsJVTpihQ8m/SmJfE6coXpF8lRqXeTYywsenYiUGGAXK14ZJeUfG4TSCthkXXNseiEGBOmUbzt3gn2cURgpyGRUJIFkDDHGPUcQJIGEy9wFu9BjBGcGdM8YZ6mxTsIwSN4AsgviJYUZ8zThJRyiXDw3oNTKIA5OpMzjyWcphQrtPWTZe3IuRosgBap1NDiYveVd63Hn/YroKoxMYEgFcvtcQRmK/OfM6LKTLuY5IeEOJpjgvcOfRzgO4+uM5EYCwFajluxU6kQbq3YTOm3ajTWPlt7+eJcdsIC3O8afpWkq8c51xgR1U5eHL88t93XKSFxl5hYkAnvscl6nfHQ3PHQ9s7Af57nUhHXEnst9nccxwowmoTGU1ebqfVY8uypi9IAdt/3hb2f53kB5Fugbte3f7cgv1UXapOC7d7aGH7zWhigb42V1utwPB6LYWLJyGYAmCHRei1M0nO92uA4zYiOkDqPMSaMU8DrVztsN1usvEPvHY7jQVhZAoJ3yHPEqgvovICYru8wjROGPqAPDofDEW9evcRnn36ML7/6Ci/f3CIz43p3wOvrHV69fC3tkFKdeEl0zyXhESCSUIu+cwiO4Z3Duuvxk8+/j5/+9Ed4cr7G5cUWF9s1+uCxGjplIPQcBJmEfA2dIZIKomAGglbAdRqPrWXAwcKgpnlE3691wiGdMCUG24wJcXF6NOOkGJC1+q+yIbow5CzJQk7VdZgshKMBtzpJQhcIKt8ZW1MlSTlnBOfgu64lymRCYi7A086dc5ZQJeeKWkIIQasXO3CcNemsurGhE6sPAZnTYoIWVZ8aTtRuZdCr0eNAGs5SG8xpiBNYC72QTWa0GK91PEIAs96b46UHovUWSDOY1qe0q87BhR1j/c6MAQdCmqN6c+RaPgNEjJxFqpScB+dYEm/Fq2Lxrw37VBaJZpLV96I0rX5uz4DlwmJJeI3hZvOFJSiDpM+CpMDOfLwF54hhvcKwWSFCDLg0TiAPhK7DnB3ymBCGNbr9DBxucbt7iYthhZs3bxC8x+72poQTMjPOzy8xjjN2h2sxhJPD1eUjHPZ7HPdHgFfohoCbm1scDyPOzje4vnmJrvfo+w7j4Q1iUrnOlccwrGrfmzJ+86svQc7hzZvXODs7Q5wmDJsNDsc9OI53+tZ3b2t5xiUY1n+UhXVx1D3s2b3u9tOr2XFKEtxZsBdLdQP+H2Trludt9z097r57eRfgv2Q5T/8+MTLKQD05/AT8L4wFrqx1SkkBvqyD0yRhPYfDAfMoRkAy9T/yBcyzyg0TCFBFMScZsFA4qSFAlvfUhAHZHAXNB4yiFkQMZJ+Mf66GvsslT6qtA3Pf+yhreoyYVR6cvQdyADsH7jrAwgWtDxlRQ0vREs5ijFh0Qc4Z8zQVfFDeITo5b5OHJqp7UYF/Kr+z94WQMhzSAtWUM2JOd57vvj7FIUDCO+/2oWrcGiDV/1tfYIBY2XrmotrHSvZJ7qGEVov3FSAvZG7mKgCTmdDlDmBC1yV4L2vSKbllag5mmJjRVu9VyEVacnkLw7X19uuRzc+SSGvXwfq5tcSpV6I1ItD8fbePnY7b5VwCnM4ozZPcOb8963tifgDvAfyN0bYGtN9WGMsWF3sY0/Q3gGzAvK2+C6Cw5S2T3urxG2hvAdVpUS8bRG1C7WkeQcuCxpgQY4L3Isk3DL0UpdB7dC4gpYyUZjDnEn+XkoUL1QnEwoAM/OectSqpTErBB5mUwCK113VIccZ+ZPDMeP7VC8Q5IYLx9YtvsNmu8Pr6Ja4unwrhiQ6ZNfwjJonbnQFOM37+3/wZPvneR3jx6g2+evEG8zQipYjffvkNdgfR+/al0qt06DlHjYGW99R7D0+MDM1PIOBnP/ocf+Mnn+ODqy0ut1ucX5yj7xwQJyTO6H0A5ZqQy86DSeKenfJF5AnkPZLu453Fw1c3qnceGQFzTIDzwgY7US5CE7/daUiPGC9anwGAUzUXYSAkIdfiL0WRhaCi7nAscZLOFHiAIu9p/crARAH2pd8oG9SUC/QKrFn7Q465SLE55+GGmrgOG+wsxghnyyFI4AjA2z0TrDKAIy/sGJmSj8TRelOUOXWN6/tlsmrZGtPvrGCZgm+2hNo6kZhxo/9QuTOqEypUbg56fzrRmDHebnbNwhCSyavqPbMw/MSusu2OAHhkyqBQi6YRJxBqLQOv7Zc0SZg05hflaVgYWDXkYtIY2sY4SKq+wQr+SXMWyDldTMyAZcR5luchBjxJcjNDcmvWa3Dfw7sO1PWgHEE5LiqiDsOA/SFijBMAxhQPSLtXWF09xrAZME8T9scJqywsWM4JmQnDeoXN2Rq73RHj/ojpMMI5wtnZObZnZ+INZYcnjx9L3oQjvHz5EldXV7i9uYXzPS7OLzHHIw5xwna1xjzNGFbnmOYZb65fYbtZwztRKNvvrrE9O0OODt/VreDUhzH6WwH828/99lh7shX2xGAorOoDxvh93oaFsXxiHLTHvY39P/27vfe3MX+n3oUyA5xgFJsnlvdqIGPJii5/kq7PuST6WugPM4OtmJRez8A5c2U67UmMhCkAV+WZDfyzGfHt3Ffmcesnes6cJazI1ufG0DptHwHogg/Me2FEBrOQaOx9GeeFONLr2jMD1TjKKUvhvJwRZ/GKgFHUbghA7LqFwZWzzD9xngXMW7y/PrPV3sknoc0p5yIZ/VBPsDbOejwW87/1d7LJvLYvDPRb29X+R+2Z+W5fAUTcgUiwJDlZ1/zk9d0zQhfgfUbwroSlVrLG1ipUj8bpc52EorXv9ds8ffdtpx6Cep674P/uWDZilRb73Mfyl+PLGFjOG/L33Xu6z8B51+2dgX8r39mq3RBRAfhmxbUSmZbkawx4G4IzNdZvK0FlYTd939/JFWjZ+qpuI2zD7e1t+XcL+E/lQu2lSWhOrxamK8/gXKf7ZTA7cUn1Pcaxqv/YZnH+pjYEAFETjboQJImRE3xw8G7A1eUTPKc/B5Kof3zxxZf46ptvsN6swBlYDyvsdjtstxuAgurbBkR9ns1qhevra3z5xW/x4bMPcHN7wK9/+xu8ePES7AO+fnWDX3/zGi9u9jikiJgiGITMDjExEiRZ0gVSC1rCZGJK6Mnjg8dX+J0ffR+ffe8DPH10hvPtFqRJs0yaEOUDAE3etHjxxgJ1vgJHIqhrLi0SW4mE9aEgXhJKpniTAS3HziyR3sIamwORaiy+a0C0CzoShC9iA/J6fw4Q5l86WVnrLHmzslAK5suiZBOcTvBgjVGviaym755iMgmBEtYjQFkYIafAt3AMthCbIQKrJVANmaJeRRK2wmpIST+0ycjCcgDSeElbWO376holWHErG29yK7pvYd0gzBLUlUjGCkobZNYCU02GrSUqEwvbw2AJGWpYJWv3lKMmk4sxl6P0GzH0ZVFLUeoV+CCxqnaeWt2Z9Nk194MkIVy8CjJXeFWFsubOSWpWwBK741yNvhI+pIuF0+JwmnthykfZbeAffYjz1ANwoEDAOAEdY/34MQ6HA46JMY4zxpSwOx6QAByniDdffA1aXeJse4U57rDeDpjHCCTRBV+tBgQH7G9uMI4znj3+AM4R9vsdrm+vwZRB5BF8DzAhzgnH44icGOv1Bl0YcDzO2LsDfCD0/RqzJl1OkUG9Q7/q4ULAbn9A33tM04zQ9bBKzt/F7RQw/5sc3wLgO4D7ZN+3XvNkIWc2QHD3/A/d8+n4+7ZneBto5aaf33dsu19ZH3W8L+7lLde3WGwj8+KcMI5C1E3jhHmakXX9lnozrHH9DK9SuDKWzLgQciCDhCSAeFudcwhahyQoGVR9PCgx7Znq8wAoBBxrWORp2xtmaRNuC0ufM2KKkiycszwLM4auw6rvRXabAMdCVmRvoZtcjBtrl3bLqjaY9ZzTLDjC6/N1XQCnjODVO673tN/tcDwexXDQ4606sTyHCWfULWUxMrKuW9YXWtUhY4vFU5Kbz6UrFLETIlgMbQnfhAXqynpQFIT0WgLKE1LMSFnUhlIJQRLmf4oz3MHBeYfj8YgQvOKrET4EDH2HYdXfeW/eC4nF1n+a9ynPVL08p++93VqD8nSMno4dWw+ApUHeSmG356mXtLpCcuzyXu8aAfpW7mX7T8fut33+Lts7A38iKrH0Bs7tZ7VaFZBvrLt9Pk3TYrJilpCeVuHHZDeJqEiFOudwOBzK9a2qb9tgxuoDKMZAm6zbshJWHVhCkcRYMYNinpMa7Wa1Ry2SExGCV0BAi3j+YsU2HgmbSMz4AGQgpBiRkqiBPP3oY/zi4hz7m1eYUsQ3u4B/+Ad/iDgnPLu6xPEw4fLsUrwISTwhaacqKDHi5tUbXL9+g/PzS0TO+MVvv1TQCvzpL7/Ab1/c4PmrHW6PMw4xFYAkA490goWqmxDgCQGETR+wIsLf+umP8f2Pn+LyfI2rR48w9EFSjdMsijgEzPOEVdeL+g9ksu1CQHA1l8Opoei8xllDzIOU1BNjE65qoxtDDGjyFFKJ0Za6ZqzgU4B1UFkxC1+xr8Aq9akVi4WxcML2U8NGN/3IgF9mwBR/GCwSj65h31qwzNBKhXIt5xwSyeTmIYm+YEguhLIk5iGqrFNehJZlzuLlcVRiaO0Ym3iKwa2ThE0s7QTmndPJVgtRlba1yZAW/V2ODSVJWOLwcwOqUa5FlkxRVgpjnGzi0iRep25SVdrgxv0scZ4ZiVk8MZzRVkskSOy0KS1Z23POAryzSMI2UBBW8KU8D6jkIhQXMFj6JZnxkZXQyMVYkjYSw9IXIKQhT96rQpCH6wacPfkA45iwn464Tgmv37zG5XaNNyPhxfUt8jTBc8QYZS7suz3m21upkeE8IkdwmvQR5frHwwHzJPkwjy622B92CF3AZrvGq9dHzHFCnBkxSnXp1XqAc0Fd5EDXDUhRzpNzxHqzxvn5BVI+YBg6vLp5A+ccLrbnGMIKZ2eSB3Bzc4vV+rtbuffbWPm3Hfdt/z5l5k+3el1WQ5gLMDJD1vYrZ9A55pTBP73WKZh/iO0/ffbT+27PdwrdT8/bAmWTqr1z/pNrt/dkc5b9SIy/JvIq8E1RADQLGpR2opb0UHKl3B/MdgeA4qUzlR4rgNUy00ys8sP1OQ10G/B/yGC0qICWyBTgP5fQ2KgKRZRl7Qg5Ic49UgmbFNCbExc1IwtNbq+XU8KsxtFsjD8qwGb1fictGGnAfzyOGI9jOY5ZBCqQTb2uJdjqWjYXMqP2s6Ia1O7PgFUUtqapxb90ntfpN7MRb9CVVUgdUkLI6DVSz7TN/WYsZtYQJLAmQdg6J7H+MaZS04S1BoBrjBohuTQaoNgjS6Pd1rZ32R4C4PcBcttqX7Lr2t/1c6J2bLbfLa99SgiYl+0h8H//ffzlQD/wnpV7jTXvuq4o+RjrbmE/FsdvA8oMhvblmPfAEoMNnLeVXlvvgA2UUzbfzn96XrEOfdH+t/PJpFDPZwNejJUsSZgQ4E8Efc6AYRhU6188BAAW4N8mxvKZk7jEOEcgJbjg4RHADDy6PMdPf/A9/PG/eoNjTPjNyx3Sv/4lAnf4e7//NxE64Aeffab3LvGT+3zA7X6HmzdvcLbeYnt5gdv9Dt88/waH8YjffvMKf/6br5AYoBDgPaEjh4kZowJAkFfeWkBy50WNZ+MZ37s8x26/w/c/+Qg/+/HnuLrY4vHlGfoQ4BzgNYHK9evCvscc0YUAVmBKLMaE01hFA9cCagPAUHWHBO+VjcgCdLO2mSOCy8IYZM4SRmHsbvEsWMXC2leImrhvNdKchnGVQeyWWv4y05m0V2NAMMuCkm0BbeK+GxechFigVDGUedDByryDdVHLEhPu78QXovRTr0yPFe+yKrZtUvoCXDAXPGwGhNyX+A3UKbvwvJnhACaV1a+GuDEVOQs7Y8y5ubk1dqVcz94XQxOIk3jGxNDwEGlRURUyFtnBLRYjqSmmJmFmEHnR+NZ+5L2X+gxE4JQA9QhyMbYqwGknv9LGNvGW+1fPTJmLrT3kHkVCVGNmkYWd1DZP7MoLcJ5UcYOwi4zbMeGLFze4vj0g7iacrbfYHQ/YjQkr38FloA8Dus7hcuPx+jghHm5w6M6Q5oTtagvfBUzTCDiZn273E9arDjGPiHFEnwLG8YBnHzzDi+fP0fkBwXcgEHICgg+Y5hG3t9e4OD9D8CKteLZdwTlgnCa4MCDNQN9tdEElZI54/foNYkwYhg1Mnva7ur0z+GcbuaiI5oHF9HTRZ0DmgDvfc+k6trjrDgW8olzTTITyCU5gazHe7wP0p/dlnz/E8L2tTe4zJloSDkTKpTSGBKCG+PKeLIynVcSb5xoLb6C3zZ0TkL+EMtT8wL5nm1dl7jUgnknFRu0Zbb/c1voRqUhxPEq7SjLrknkvjCwJ4GzXcCgBIdKgokIk9QcYlBM4R/E8gJBjEq+k1gKR+gS5kHwxJZ1yBFGnGDGNkxgWMRY9fe+lNokZK95pcq+C5WkcERXwl5wqEg9D1vkKZN72hsw56RtCggjDLu1vbale6mKJaXjoPYy/BGjq22sSnF0m9eqiEif2dts+zvpj/U8HqRmNRA7jOMFHycfwzqsnXw3AEnJkYU4Wbl7HbRnz7ZjQ8XnH6KFleKutBwXMt9bQPcDadlvYAnXSuNPna/9rx2rzNy8NiDKJLf7G8vvS2t9uLJxu7wz8Ld7eOmkrcQlUEGMPZvsDKNKc7YRzB9jo5xb6w8yF5W8Tdvu+x/E4YhwnOEfoul4Ngsq2m1XdnqPmCWR0XcNMO7N4BXDapFJzETLG8QiRUGRM0whhCCOckwTlNvQJADoXkHJS3VzCqltjSiPIOazdhP/ejz/G/stf40+/eIndyPji1S3+9V98gdVmwO/+zme42e2RY0aas7D+LMk9H374kbARMWM1bDFsZzz/4gX++Be/xe0olnOeR+kX3mG76UDzjCkmJJVb61xG5x3WnnDeB3z05AouR1ysz/D7f/unePrkEhdnWwx9APIEJNX/1xj84CSu2tKtvBU0IQmJAlgql3qPlGYF/LVbtnr3KdU2Y2X/s4IxqNSig1OVBNLqrnIPbYEpm1wqRpWFxKuaDoPATkJhyjzPjOBJ7gEMU8sR7X3UCr0MLTDDSyAMglNAaLJtKMCSy2RSjBMYaLVwH40D1cHtdI6FhpUQeVU1qnkjWdk5aNgVkZyzHT9ENV8BqFMLNwZQkdSjurinJnSPc0biqvkMQCtKu8raGQLKgIOHNIUW0oLkpKTMpfia6eZIe1qOh1bzNhlZdPo+5DqcJeYfTmoi2FTtVFFJiteIl8FCo4gI5Dws+YvsXZqiiVYyJvUyJWR4UjeyycrluoRkbkLGCAX4vLkd8fNfv8bIGa/e3GAcR3xydY6+I5ydrbCbpRjPygfc7q/h2OFsu8HF/hrxcIP140+lj+cOXTdgP+/AFOG8x2a7BjNjc3aBNK3gkOB8xotvnmO/n7DdBqzXA8YxgueI/eEGnoD1cIlpjlo1WliklDLm6QbDcIabvbD+l48ui+IKZ1XbcqwG+b/lG1fQXcH3/dsp6Ad0nNLd4yqgaOKIqTUGlgv66Rkq0KUyd4KW+3ybx+E+4N9e923M3ynbb95pG8OL6wAA3AJKMEPBvgDmw+EgQH+KGI+TqvvEol5TBDmEJ9I5ozL+5YdRwK7UW0mAY7hEKBVMqMblJ52DzduQc8bhuMes4TPVSOGFbr38RkkgFuNlBrPUwumUVIzzJLH1MeJ4ELZ9dA7BSYjkuD9g6FcgJwW8bH7OsQmhypLX5RQ8xhgLc2/kCoEKeeq9x/FwqHkMatwswoa0T2YQMsk6Ii73Cmyh+IbVwyJzodxjCKFo9pc24qz5BoyUo67N1HR2V2L8S9V75+C6DuQ9nPdaC6jF9XpPSrQQOfW/G4mmYVqckSAhxkRmAGiEQBTDyzmJ9ZfK6A7MHZz3cN4JcCWqGH05YMrYWhBBzU/pE85CQR2kFHPz20bDYk1f4nGgweztZ4vRR81vOvnsdD8u+Ofu31RIq+X6Tg+c7+HtvRj/VunGGHlj6k8npXEcy2Btw18sxMfOaaE5BuotBMfCgACUsJ1WMtSSFuWz5URYLGhfGSwbYC3bb8aHJcMYSOu6rkh7mkHTJjEBUr3YuVDyBsxYkPuciqpK1/c4HA46QBI8JXzy5Az//u9+D9+8eo1vDhG3OeHnXzzHq9evEVNEmjM++uAptqsBGz8gDKsyUU/MeH79En/+yy/wRz//C/z26zeg0AvzMo7og0dOjH6Qe1m7TtlzYWoDHAZPeLQd8L3Hj7Due+x2E/7u3/138dmnH2Oz6nG2XdfiXjnDgRqWXcNhIJCLiHVgatxgmjVRUg1EEjWezG0oVWNAShyPGnckeRFkBVck1MeAnhVastAX7ysLLb+bv431YwV9jlRtAHUSzQkoXgGdEBrmKxeTvrJ5tfhTXk4EoPKdfGysBgOQWHgGhK1gYS7sPJYM5nzV8M+aKGoD2v6UiTNpYQRZBEtBMbLwIfGykBoWIi1KxUgCtQwgGdoRA8nOZ09FBhYYQNLqjQTnNe9AughIc45bMBO8LwYnypylamBwCtRrPQImmW5TSurZIfiTHAKZT3KJLZV+kyoLZBMgcX139t7ZjB3W6+tbKgXBrPaBLYzqDdFm0gwTICfMMeLLF68RvXgBfYoAR3Shw5PLC9weIiglbAaH8+OAnBl96HF1do6vDntwnHB19QQpOxyPe5yfX+DVm1eSKwSo8AAj+A5Xj67gQ8Jf/MWf4+nTp5jnGbv9DUIYsFqvEGMP7ySX6TiOAmzmBOZJ6m14jxAI63UPzjNevvwGZ+dnahRkkRPsTEPru7mZvX0H3N5Z75YLa7Nea1c/AeQn4L9lDZurA8ar6cJLzbp8l3F/eCGmB/6We72bc3D69507a747NRDafez3Q16DxXF0l0EsgC3X8MSUkhSttFAf1e5feBTKc9oE0H5C9eSgxXHCcus4VOB/GpdfPAt6L+W5IERSylWMwRhxhs0b7TGuzBUlRMg8DimBckZ0BOcy5jmoahoheZUGzVyAv7HzFfySekZUIYjFKGnflb1D85xbP28JRffA+1908AYDlXMSld+tsiGzhUnl0talDkAZLxnImvybcwHJrGy8rZeOGaXCDnO5j3YrXoDGACg4V9eXWhMpN6Gu9oxaW4WqeIp9BW5M/PuM+RboP9SOepdtj11+ZWt9/a41ABZd28A/173vIxmA+45rTrD4u9nus+/fk7N5Z+Bvia828DutfjuOI47Ho1ybuYD0tmCWeQIsPh6ohsR6vdaqkiscj8eyf+uGa+Oi7VoCMmtlYDvGXI6tB8IGQc655BzIOag8l3kljOm32gEAFqFJMUaEEHA8HtH3q0X4iO0jIMnBhw7kPACtqpeBvne4XHf4/tMtPny0xsvjLcYZeJkSQjfgH/2TP8U//md/iovNgI8/eIyPnj3B9uxM2Dtm3O6P+JOf/wLfvLzBlAjMDuRmDF2HwA7zHLHqe7jgsdMYQY7iegwE9M7h2cUGHz05h8+Med7j93//b+OHP/gMlxdnuLjYIjhxb3ovE0PwnbCiWnAjKDvqmFWphpHnGRYNTqwymmad+qDAS5UQci6VcSlnJAg74JxTCcesEmEKtQzQ6zH27oDqBiwGqL0MW+QZddIsc0PNx7CJUWbkKksm/Q3IpkmMNh516S4sEx7qoJa5ioS5dsooMBc1CLAKFzkP5AQmZd1LSFC9HtvEpgc6XbjKPKH3bwuiHW+hTmRSaCxeLaC2mXwGFUASttz2Y4YoWFJT2VJ51IyqriB9nAFyZaJjSDgUkyr0OCea1qxeD7tvqBHENrFzHdtSDae0d2l7jYm3asGlMjQZ08ol4Am6MKdcw90AsQs8iSeiVOi9Z81iZk0YruDHecJmvcZq1ePN4YCLsw38vMfgHULowJzw9NEF0jSB8ojLRxd49XqHV69fIMPjuDti/+YFXAi4Pkzigdt+iPPzx1ive7y5foWb69d4/HTA9fUNpvmAviccjiP6YcRHH32EX//mF5jnA273ojU1dAMO4wExZwzdANf12G63OO5vsT3bgjliezbg5fM3uLi4xDgecTiOuLy4wna7wW63w2a9vTPvf5c2g9/Qfsj2vluc3fQroFlkbdA1232AoPbfxZ6LjlFDZ5ZgZrH/yXZ6LZk/3g/833e+RUHC8twOhcY/OXdhpd8C/GU+W9YSEW+8eNLjHHE4HEVbfk6YjpPiAgOPDE6NkaGJ+e35CO19Ny2pwDlxBGswuNUQSSkVT749g7DWE1KKtT0AmW9O2kUiBDrxjOeMPGjSsa49nDMoM5IPiD6VAoN2b0SEzofCzMOKYmqojxmF8sw6/0HrCil28i4gdBIp0He9VK4lKom+2tgAUIhEZ1jGWdVi8SxLsqs8p1N2XebdVLurjhEfhCmv/dDyNGPBa6IqpgYVZyHrzJgBSfgrZyTMQIpyP/MsawuhFOuMOakSHRdjB9CwVniNEJBGtb8lL7NTAjgs+nUxTDQMVUQyqif9FLC3oUHtdp8hcG//v3esL86EOubrd8YZlbGlRujptR4y5C1EuJ0UyhUeAPb3jeN32d4Z+BuDb4B6HMcCvI2xP43FN3BlDLo1ou0nk8m0APotyG/j+duf1WpQq12VZbBk5ltAbwaHsc2tDGhpXLXKT5WLLFdhHMeiMgSInr9zrngFzIth98wqhZUBBEhp73lOGHyHnhJ88IjUY3+Y8OTRBX7z/BrHyLg5Rk2GZLy8OeJX37zGdvUbrIZeQn6gCi7OY1hvcAEPz4xucJjnA+ZDQt979OTx+voG0yxApQ8i2ekAXGwHfPTkDIMDyPX4d/7dn+KHn3+Goe9xfrbFqvNw6sLOc0LoHLyjov+fc1IwJowvckISdKix2RLnrqUchd1gBpyy3tpJvZdKvJyTKK90HRpkXpJdyVfZTJt8BedySdYt775ZXEyhhQilQJOF4pSJgRuXqN6/jV7S0eaIwEEXBSwnBJvoiuHAFaDKwIe4OJ0AanCCUuDqHdAk1KDDmxRUJ2kXGLMIq9ZbZwRj5ck7Zab1FERNGyWYZ6FOEDLjmkdFDATW4maVeQf5ooZjzDe0fYshApskLeFYDJmcquFg79OMlFItGQr0IUYRq/uXRcMUpljByvKHEKRfOUsmTvp+m0QqBhjqareUcpa6EGYkmsfAkhqdrzkQdr+toVEQv7acJwd4wmrI+ODRFo+vNtiuBuDC4awTBpC8x9nWIw09Xr04YH9IuD5EzDkjdAGOGTevX+CTH/0O3hxeIKWMV6/fgMhjHA8YJwFVu92u5HJMM/Do6kME3+GL336BzWaDm5trjPsJm80l3lzf4OmzCzjuEEKv8cnyLDfXbxC6gJRFnngcJ2y25zgeJdb45kYq9r58+Qrf2a2waNX4BKHKslZe+S7LdneNLd+3P/dcbrGoLljGepbFbznN/cB/cU9QI+YBAPIQ2396z/caLyTG9OLeT9ZQW1fJWYwwFkRAk+tejpmmUcD/NOOwP2KaRpGinkz2khYAxWytbCRI+52NcQDVOwcgy/wTc7SXXUIsY4ylZlA1UipLb+HHxSg6aVvvPVbDSsA2atNzqpVxHWnobsjoXaix9ep9cHpeRg39tArFNv8KySK1AIqHRPFN5zv0oSv5jUE93AuD09ZIA/pKREpkhSQTA0DXBYTODIdQgb8m0WZmzecCXHAF+HsvqkAC/OcC/EXSPGOcRRY85YxsAiGsrD7b+XWp1LndgD8gJqcVTiSox8ARgpPCY6EL6Lqgc2U1YCVXVDT8va8tYgaeAf+cXRmMzGoYmqukGSPt9m1j5nScnB5be3S7v7VCOXgxxsq60Vzjbd47KFEFXY8IjTEAfcbF5U6u9x7bOwN/oLL0m82mxvOxsNyW4Ntq8tviaS4cC/Wxm27BuXXu1lozY8OOqZV1Jd6OVHnEjAw7zjqRXcfu2xpnHMfC8J+yJmas1MnRCnyRDhIghKE5N9/pSCFQ8R5wjMjkEPwK1BGCG0HkwTlgvTrDy/2Mp+drvLg+4M1xBLLD2WaNs2GDfuhAjnE7jSBmhOBwtjlD6DoAjOCA9dDj9vYW0zjDd0GUO169kvCYNGHwAvCIGeuO8OkHjzEE4Gyzws9+9yd49vQJtqsBZ2dbrIYOgSqQDX2vrILXpUGST0lZGQNlLfuEMsGzFPkyeck8N1n6YhhIXLkrFXUN+HpHADFC0bcXlRoG4EKH4EgZWynylBVQOl4ODBFpZynAAjVIdLCSqjIIXtf70sTNHKOw/32o4SXOlaItxogJMG8nEKfjoRP3cJqLYWGLGBOJnCQzSPtWCJKQzBr7KaeiMuANmLbehAJFs0qflu9NZapOOFa8rcbtSvx9NaZcMSwMGBMLG5OShjQVUCzvLBXg4AF4yRtwVLw1ZpzJLZWDZR8FFyZHKvwkw+LwY5IQlxiT1HAIomgFL08qSbpWxbkye1IfwCB/dWtbghhIVCfECLDva9J2NgNGPT/sRMXHkZwxs4SXpRTRO8IPP3mMmQlxnsA5II4Trnc7XN/sQI5wPBxx2E/IWViw0HVYDyusuoiXux2+ef4K/dDLu6eA3f4W4Ii+l0WRY8Jmu4H3Hhfn5/jyqy/QBQbBIc8ZH33wAaY54rCPAvZn6d9Pnl7g5fMXGKcJMQnQxzThwgcM6w12twcMqzM4Irx5fY1h6EXSd474rm7Wg++B1AUEPLygVmbwPiOAm+7Z7KlGvV2/XXftW/uzPek9F6iWyMkzPWiT3P8MDzzfKYipIKDOF+WafPffoAoi2orbtl+7Hlp8to1hA2blum2z6F+Lu37LQxePpSE6AzWpinnU0Mh6Hll3JMfMG0FQrl9aqVTgDV7rDRk7DxIp5xIfr+pkSWsQ5KwFD7nMz1wQZ4ZVQS/9EKR1YqjkabWiJYaVgg8Fp5y2A6GGM0uYssToM3MB2D5U6XSn1Y9ZySKGKqaZ7KUlyZJVurcbDmhlT8llqaDuJLyHTR4ZjZqPGt8MSH0ECOh3EKOt5HSQGbZUwD8cNGTYS7NpuJRrZOCdJ0stAMhY82rQ2Snlnmubl2suXnv9/I6R/9B80YyntwHq2sfbffjk9+mpm2s2f/I9x3EL9Bd/485A/u8M+LehPmZ1WyOaxqwx3iWMQgG45QQYI2+f2dbG25vR0MbsGeBvf9rr26RgFYEBlHuxScKuYYPQJrP1el2uZ/saaBfX4qkqEBCChNSY0WMGRPuzXq8k7ChGJGTwGNGFHqsQcHt7jU8/vcLPfvw9/Py/+pf48MkjnK16/OrVLa4jQCkB8wgXD+icw6Yb0Hceq5UH4hGeEsgHzFPG7f6IcZoQiLDqOrx6fQ3nO/g0Y9tJ8aKYGas+4OpshYtVh2fPHuN3f/ojnJ9tsFlvcH5+hqHrJGzHGHSdnLwXECIg3BYEZabzsiKyJWxyYjXMFGxRy8qQDmYJH/G+084sybvkHDxK3lKJXwcJw+EVgIvcm7DU5EiKlDFUdciYa1vVZMykMliUcY82mDRIyRE4MahTttvXGUb6GQoIZpAmpllcPElSMQBmDa1q8gFaR7cVqMpZPSds+tgAyIxMAezVKCUF52Zc2QrahPeQgXiGyZJq00K8Yq7WHmjGNjktTAM1xrVKV0oWXw955gLoLVY1itGhE5GDq8SdGsQpJZjmArO1I4EhpdyRsxQwI7V1klQsTimCskNwKgfr5d35QEXvW1A7o0iI6sVlfrD21PwHoDBEUitCFwM0Sj5KDpR6AiQeRTF0pV9J+4m3KeWMN7sJhzliPBzAMeH69RtcXJxhPB4xZQaFAY4iVl2HiD16MC6Cw/U4I04j+vMVQB43b/bInPH46rEk+rkZx+MNVqsBZ2dnePX6FUTieI++67VuyTWunj7DOCestudIANJ8xPPn3yBOM4AZq1WPeZdwdnaOvl/h5vYa/bBS/W7g4uIML1++AINxdvbdlfNst+rFQnmv5Tu0i+AJW376V6Ncs/hGwUU7SiT0RcAeWexJ+3eBAPeeEXpau2w95mT3d2Eqv529dIs2qAC+3pN5+0TJRoB1NFlLBmITqy/HVqlKWQeN8KnrMZsRwIaBDYA3hIX9oLkn/SDGpEw/YB5jZjMoNK5fCQfBE3LtYTXUEN3QgZzG1WsdAQOgIQRs12t0XVdyA5g11EfXjDhPJSwndXMB/lnzjsQI0XtrCmrZS80qDZxzxkgjYkoVmBJhGFYYhhWcd+h7Yfytz1k723zV4hUzaKhhnWuF28abYgZwY7AyA5k1X0A9vQRC8B36bij3zTq3WeXflBNmrUk0pSh/MyOxSDETUVkjq9Sn9KNYEoXtB6UWTN934vl0Dr7zxbhxDfAv6Zn6KCL1qe3RhCw5J0nGjqhgjhawky0s5DQhWVPGy1Ch4qhiNeCIcwl5RRbhiHIzaEc0FHPYOKtgvCUO6k8dq8thz80ndR6x/xbfN2uxva+2ZsW7bu8M/FuLwoC4sb0G8i3R1QC+AWWLlTd2/xTME1EJHWqlQo2Zt3OdsvK2UJuKj8Xlt0m9du8WsrPZbEAksX6WTNxWJbZnsnwBKf4lYSreW+yZA7PUIrAXejgciuuuLdEtlUUl3CaOexx5xNUnj7DpJnx82eFHHz/Gn37xBh8/2eLHH27xq6932N9OGP2EITisvAN6YAqMBFFKopnhvOjyO60iuD1b43izA7LkQQyBcHG+lip4qr//6GyF73/2ET7//Ad48vgRhqHDalhjNUhyoHNaKl2ZESuYIUIIAn6ksq4rLO6pGyuxJoGbRBxiAcsmp8iAyneqG5AIcA6BAjwIHuI1YU1GTZzRqRyZ8x4ECXdicyOWocFlciFyIIszzRDQlk0CVp4RXr0LnHRwy0TGMP3+OhkDEDe0og3nvLDLTWgZc9T7EVevzS6lOjBXAAxy8AGgqGy2XKkAh8rW2/k9krp4TbWn7bM2Bst7SNwsHL7GbeoiZLGwSzehLSiuXMNmLYkbzSV02EKNOEdAF3/xylQ2vXj6yoQort9GGE4MslQL9OUUJSwMDOYZ4Cw1IroA1udVnS5h6pwv952b57DzGbgHIMydGjiWvuiM6WvaMJe2lCTklKUqBEPeuwPDuYzr2wP+5FfP4boBnGasPIG6HsOwQk4R48hIeQbljME7uO0aHoRHmx6vpxl5POA6Mp48fYpnz65wc32D4AP6vsM0i+FoHrwQ1MPhHbq+w5s3t1gNHaY5wfcdxnnGOE84GwLmOeJ4POLi7BI+dLh4dCUKSgzMc8J6GLBeb3B98wZ9mvDo8SMwZ3R9h+/0RpqALv9AlZysQAcAzLS1JbRdriuYr2C0HKe2tDHGC/NYgTKYFeYo6G7G7H38H8zMLpe1hV/vkZfGyfJx7wvjWYYxPPS5ja4W9C9Jwbqvhc4kY/RzRox3Q2yLVGeq8f9LQFOB/wk8agiTCvyNuihAJmUkJdTshlvcYd5Iu31jiVerNVar1SJqYBrHotxl99eFgGFYiYJPSpgh4UTBBymexYzkvMS954zsOq1yX42EpBV0BU0LLnDOw1NVCkw5N0RiDWMx4L9areVetUDpfeEm7Ts1YZLK2LvSBtbbpFIyK4BWD4TO3/LuZiQIGDeDzXsvqoeNkWDrs4UyzZoDcJwmjPOEzGIYGEnnvMl9QrX+M6Z5hkuWg6b93dZ9JRXN69F1QYB8Af5q0Hh7/trPbao3UqsYngtvwGm/k2uSs5+T2H+i0hdlPydQwCnot3H/1s0G1x0L+0EjvVAE7XGL3/eA/vZ67XXvDu5v3d5L1cd+m0TmOI6FYTeg24bbWDKtsfxd1xWtfwMtbQLtPM+L/YdhKEy9AXfzHJwm1Vb5zYT9fo9hEEvWmPpWjlQ0+Q0gpcXk0Or+VxcdqSt9Lh6Avu/VeCHM89IQMiPIa6JqTDM4Zjg+4PHTC+SU8duvnuPf+cmP8PHHn+B/9Z/+l/jm9S0eP1rhdz//BIfDHl+9fIV5nnDMDmOKCF3AzSzhPp1LGLqM7WqAp4zNJmDcv8E8ijTh2arH5fkG83RETAlzmnC2WeHZB8/wwx9+Hx88fYK+7zB0vbAlIYA0ht/5DsGHYqCZgspiMlKWvW03YUq9xvpRZc0KO0ZgODjfFflPY0LgpBhJ8AGeSRhwVycLp9KWBkKZPEBeU79YY+IzUgZiYszThGmeMU0zcmZMkxZCQ1bjXRmU4BA8iYHVBXRB3MWhU7ejquaUfkCV0RPsLqFGxnQwB13cJDa90ckDWAZb1jyCzMJssyNkrfvgGs+IMTfF/U11YFufPAUFSyNEnhMgfeYmSVr7fvvuiOoCJNURxTszx6h5G5q8xeb2Zy2oxWBKYARkdnAuaGiRMYW5gAEyQ6KwY+phiJIoZqaBFH6RtovTpLkGXBihNM8g8vD9ALa8ikU7GFjRN2WhRmrEmroTARLaxRW82TwnXgxhe3IBMdV7ELwU8TpGYN0RzjYbrDwjoEPvgP5sDY4H9N6D54SzboNx7nBzu4PrGA4T8nQErQa8fPkCRA7Bd8hpxnHcYbNe4c3rG3z99Tc4O78owgfTHLFebxBjwpEB8jtszy/x1VcvcHZxjvPzMwAJfRfQhQ77vcguSnjmEWebCzALaHry5Ar7/QhyhH5YoeveK/Lzr3SzcLx7ODf5nuvYbNk2+07+bgFzu14ujW1jcWv43OlG5fsyh9l15K8GGN8FdQ8B/W/7/m2ft8c95PY3ryURqoxhYQ0ZLmcNTZG6FnaaOi84eC/P23dCaqWUSo2O5JIWslIexcJg0RrfDCaRcmSVTkbOpQ6MkQSE+4wZwEL4LK/O+4AQOsUkZlxIOKDl7AUfSsiqU48pYDkAVPEzoxAlAIl4ADkQBOhzZvFOwhjlJGsaNMmWJbRGwCurMpeMNSsEWvMBXRGWqDhD+4A96eJ7XxV6XENsan5EzpB3psdbqCbpWuA9F5KNSGSuTY7UwC8B6iXXfuxEsjoryRo46PshOCO2rCYIMijryHAOriSH1/wu6Bg8BcIi6kEF0IsHoDVq6w+o7gOiRRvd118eNAhO9pHf1StdP7/rw6vzyAPjzN4BUKzce+eSxTg1XMHN6R8C/He394P978n4GyC3AdWqqQAoLzGltCi2ZSy+WOerAu6XBYZqFnsbs98Cf1MSqqDHYRyloiwg97PZbBag3Y632DrzSpTQlJN923wAO2Ycp0U4D3NCjBOYE0QpsZ4vxoTNZoPb21ut7ApQjIhxxuNNj+PuBjcz49HVU2zXDt/73mP8L/8n/wH+t/+3/wpfvN7hdox4erHBz374CXLKOIwzbg4j5pThgsPgPFbe4dHFFmme0HnCeJyQYkLoAZcZ69WAxAnZORyOCavB4+OPnuLHv/MjXFxeous7XGzP4bsA5wm9uspYvRnQGG4ZZ8E4q7q4EsG5DoDqqxMjE8H7XkGrQ9QCSJQFlJMXkDvnCFHhzaW3WtIOaAIn1hLwCsh0ssiZMcUJiSPmOSv7LQN1GieQFShjm0Rkgg299KnEGV3owCzGR2SR1bzZHeCZkeYRrPUHJLFUVRCUsfVhgHe6gHhR6+l81xTmYgTvELquhElBi5H5QGJUkdf7TIAqRqApNmbFzBjKNihQ9rCqtxqjT8bWa4KrFB0AaV2JzFEmTpcLKUDkZck0KbSKTBQFJYCE7ShGDUlMO+ckxztLXs9IOUpl3GwTYwQXMWdCKmydxv2nDCIbW1pUzsAKaQVHJ2M6ZVGq4ZgR44ySPEwEZCkFT15APACVzwMklAmiBV7+bUpNZkxkWdC175B+XuTp0CYzCwOFVJObwSJfy5ExBIdHZyusVz0uVx4rYnRu0DyRPdzlBlPsMB72uLk5YgLhdpoAF5DiiJuXX2P78SWGfgXmiNvrG3RhQHAdcpylOFfX4TDtcL7Z4s2rGzgfsLvdYTNscBgPADnc3N7gyZMr7HYHTMcZqyFgnmb0fY+u77E7HLGBE1GClYPzM0ATbm5vME8RKww47m/Qh/5dl4O/+s0WQ1vIUYG9Lc6p7GbKWbT4hNRwvU/xo5zphK17GIhXULL8TMdvWzzwL7ktwhXaqxhYOgE13xbnW9YvSHih/HYF3DEApASijJS0qF1zbSKPrhPw3ne9eFBjxDwJQz5PUtCLM0udiJR1nqnAPyUd24lLBjFZ6J3tSSTFsnRt9vcAO8MTogy4wnq9QU4J0zSDk+T+rFZrEBFWw4C+6wFmlR5lOPgqQcxchB08BXjHkHBUrRngIiI5MVpclh89poQRFrjnQJSQyWHolMzSdYjIoe9kTFbA6xYeAenf1t5O5zj7zEKrvGJoWQNFTWlGKmSLzG0iwS3Jwz6EAj4tXLS1n7OSWtVwlRwBncHRO4IL4omNWmCTAa2tw6JZgQwHCYUmF9Smq7x11kFbQrbVg29/++CLAWBS3QUkFOCP8j0152rHRNvfocbPQ+OkHd+nHgbz7r/XZrfLLS9/j3dvwfRjcR2+7/v7LqB9gv8S08x7xfgbQ77b7bBer8sk2oL3tuhEG5PPzNjtdrWDA8ULME3TIga/TdS1UJ72OmKA1OJeXSeAzLL+zY0EoJzPAL0ZIxYaRNSEBBAVOVID/cK0oaj8SHhQrWIMoBgkkhMwYbdLEAIgI8VZmGNiHHbXGC62+Pjjp5jGA8iLtvzPPv8I//P/0b+H/9N/+Yf4Zp/w5fWI1/uER2dbbPoBT0KHrguY5lkkQgGQJ2yGAeNuByKg73qkNKPrPKaccLwZcTjOCJ3H9z78AD/64Wd4+uwKV48ucTassBo6uOBAFOA1vCcB8E5Z6hAEyOWEaY5IiTHnhDST0jkR0yQhTYk1VAoBU1KFGIut1vCKOSfAU5H+DN6BYwa5HqwLD3nCnFJhcYCMlKfCELPzwr7qhOc5Y9X3YNfDXH4glRItA52gSK/EoaYocdyYCS5DE7oCsmNEFg10UuDswZinGd6xAHdPiCkCziFB2G1vSadx0vh9yVWBJoutVgN814G6TkOLMoLzEr5k8qjOI+eI4MScCmQsvINjeQSbiYk1wdbYOxKW3FR4CAzyHaQCgykayULAipZzqrKaRASwL3HsFSzVrTDhtpA7CTEz+TdkAsGDadbQuMphmKHOuj8ryCBIQmmKEQDLwqLeDs5cQndk/MuYTqTzRIAWC8twpMo96t62GH22xDuoEZDU01gYXs2H0GcknW8ECGj1cObSxmYU5AyAMx6fDfi7P/kewAkuTgISEmOeRhwjS3K7G7CfZnzx4hV2xyOYAzaDFAza7/bojhP6boPd/ohVv8HLl68wrDzWqw5nF2e43R/w9OkTjMcJXUfYnA3Y7w5gOJydXyAmCVUMXvrWfn8N788A9ogTAx54+vRKZBfHAw67W1w9vsA333yD1WqFEAKu31wDDHzy40/fdTn469moAStNPwUqQKlU+ylwXrJ59233sebV89mOBlr8xaWPoxiTrUVw6mX7tu0U8J8aI+126vV7Z29BMWS1EKESeI4t3PXuMaa0wiQAHQwkciCuanZs82xim6ZRKF99Jwxo2J0Aa6j4gCjmuHJ/Fo5oMdynLHEF/7U2EDAXXFLqA3U9BvX4c1JAD5tUuYB/uUsq0sNFiCCzJPhrYUh4mW9rnZf63oikDooksVrMui9hwj6E8jk5A/oVwJpFa56SU2WiIntt70+NzDIeCtFjpzJWH2V+JF0nS4w4tM+aF6vMzlRIJeccguE8BhJrkFuWvL8Cmrkaphm8zEm15dis9ubZ72P+zdjR1rVbWvSDh8ZD+fvk+1PQv9wqOfD27f7vbUYqnrLSjvdv9gbvO38bWfDg9ak5Az207/3bOwN/Y/qPx2NpXAv5sWIe1mCtkQBU8N7Gs1kMvzHpNim2CbnjOJYBbJ+JLGib4CjA4HCYS10Ai7G3jYgW+r8taLdQpTYfgYgwDAP2+325f7k+QwrdyeRYwf5cDA1hKBNC5zHPokqUMmOKjCfbDR4/ugS5jHE64IMPP0VOGUM342efPsF/9Pf/Nv6f/+LP8Xw3Y4oZ+5gRhoC+66QSb79BnI9wLmHoAuJ8xND34JSQcwKTJPKOo4By7zweX2zw6ccf4JOPP8TV1SXONlsMQbWMnUyqEYQpZRx2R8zTiMyEMWZMMQEUMMUMcgGh7+AcSx8AASzSYM4JG+I9MM0ThmENOKvMy+idMO0Mj0weCUd45xBphBj2MuD7LoBmCZFyziMngnMDSOMnGaarn8WwYg9yHXKMynZD4i99AJiUOZb2B5TVyjI5e/VqSPEX6ROJtV8RgXUxnNkhdGvxoIAkesd3ZVKWUBaTluzESOSM7JyhAEwcgNmBJ2FEJHxkEjYCVCZocJb4cU7CXJMYUJQjgpcwLgeHoeu1ErFUYe47WeCCM51pgs9qoLFUdE4kber0vlxoax44LVZYAU7WBF8Jj/HQuKqi5JWyTUyuAPWobKG4lZ20C6zIn3hk4hylOmOWwjhIUkAv54gcNb6agMyN6ztLpeycNc+BPRwHSbrlJMoVziElNRBIorCzepr0LGKMsMVx1poKBkRqbkPD+CiIaD2RrAvTpvcInjBOkueQsoR8HWLCly9vwQyM04w3+1skD3AXcHt7RPCMzcrDHyY8eXSOCMLjq6e4ub7BBx88xc3tK7x+c4vLx0+w3mwwjgkehJcvXyD0wNXVJV6/2iEMA+Ix4cnVY+x2e2zWaxwPt+pxlTyA9XbAyxfPsVkPGAaH4fwczjnsbneS87Reo+/XostuVUK/q5t6kFpQv1jYuf6xAPnNcYvTNQssGlba/v1tGxEWS7sBrnc79t0MgBb8n/6c7lN+OydjiwjIVfrSbpqafXOuHi4indNIqrOLKhqaNtJnI5TQFniAg1WshSbDMigDyZ5RuSQPPS8AUAZ7rgowsCKRAvK7EBBsLlPg324hdOg0bCaEDgRhxwXgsxatCxWEloJQTj2XQI5aEJRRPA0WgmMCFMSM7IRAIHABwuyE1IIx/oZrGuWhjBmcEpwPsk568UKs12uYXDG1Snf6Pi1IxjfztYF0R+oJARWPBJWwGOvjyt2ThW2RRX1qF6gGBpTlL1kbpW/pOqD/zjr/MfRvJXFi0f7PkhAO1hUaZf2zS9m8KaIerv5WwF+B/LeMjXafEyOgxZdlX7c0vB8OhWuffWG1LjbW/xFwZyw2X5wc8O2P9fDzotqn+m/mb7vLt2/vDPxtwbcfS7xtretWttM2axRj0u3ltMy7xeO3lq+FC7Uvyo41S94kOZklCdc+N0PELEkLN7L4frtO2xHs7zZhuEwaOUESXp3mMsj+XddJpU31EByPR403DFLBlqTohh96DAOB/IicE6YpYrUesNmeofM9vpkmnJ0Bf/P7wP72Bn/wJ7/Caxb50OO0R0oe6AOGocfZxkuRlBjhk0NOEcF5yV/ljP1hBidgM3TwnvD5Z5/id374I3zw7ENsNluEvgMoYDdF7MYZN7s3uJ1mHKcMgoa3OEIXOoB6uDDADzLpwQl4BiloIrH2waIt7L2D7zbC+sMJRnaEyAQ4j5wTvGOErpMYfgX4pDGLUWNMsxM2ISJJIhaoTHTeBWVjg1Q5Zge4ACYvIJMBUi1ok4cm6lSNSIu9OQJnUWhJIDEUXADSrAmUHRw5pDwDziMRgzRedY4JxE5ZHNGfZwhLkeaki6IHJwkXSmlquBRCzKlMGOQg+stMmOMMEMOTR2StdgyAkySgpgiIdzwjZMYUEzgnBGIELyEh4BG9lzCSvu8lgb2TPAYfGD0IHVQBAVnrMbjKwiGJMhGz6tsDUF18p+x4KVCnzJ5zvsw8RJbQJoCfHJCzKmQUlR8xbsBZCsCpbmCKUSQvg8akhgEEUTLinOFD0HNFUNcDLGFADl4q07EybZonARKGUnIv5A14zV0pRos+tycqOtEy5mVhOZUNtPkhcSpJxfubG7y43uNss8L+cMDucMRXL97gqxfXuLw8x6uXb9SbJTlBORLSNON8cDjrZkzHV+jOP8AcI7aXZwiDx6PuEYbVjERSeCfFiO3mHFdXT3DzZo/VcImYGL7vMV+/wYtvniPGGdvtCo8ePcY8RRyPe4QQMI0zOj9gHmdcXpzjOI7o+zWurp7g1euvcXPzBo8efQRQj+vd/n3Wjr/abQHqdd7G/WvpEowLGrfP2rn+viVTFvW3M39L0H7fPg+zjP+m2ynwbzdb0xxRIR64udfWQKjhTgLVKAvwNkSRnYBLIUtqvLb8nyQvS89VY95l3HAWgiPZPRjwJycFnAAgcMkB8JpfFJwvxEWnwN4RST6NGuWWiLwaVhj6VWHOCRJW02kocOclmoAgHluTqiXy8B5aEEqjBxRgF2xBOq+zzCtEMqcB4pXWwFeVBq64BJA5MSnpGRkqwBEQOsEn680Wl5eXMBUbR0JQTeMkScGqpAMAPnQl6TinpDlRvijtWe0TKnR+q+win5mBUehoqqE+AsaXgL8NYWJU4J9ylXFNLJKfKSfMcRbgny1fUgC+jbkyd7rK6IcgOQ+t18a+Lx6B+zaqv8iY/6Zvt94g+/uktMS9Y+fueK4GAHM9brE1n9fvGMXF0bg6lqbd+2/l7PYsrH+fgP/32d4L+AOVCTPpzWma0HVdCZsBltKf7SRzCvhPgXeb8GvMfGtU1KTgrOydQ84RluyYc8Z+vy/Z6q26jl2n7/sSDnRfqI+x+Pb3MAyYp4TMmo6Upxp20BgY9rzydwazxHtLYY+M4ICgJInzHYIDutCDfIerZx/jzYuXQM74/Z99H33n8Ud/8Vu8OkZ0Q8C6HzQxdMI4MfreI3hh1EctqtIFYb49JfSdxxA8zi7P8Dd++rv4+ONPsd6eIUbg+esDrm/3SEyIIMD1WG+usAoS5zysVkhJEmZ9EG8K+Q7MYtEH36EfvMR9qysPIGSfwE6KBHX9gJgy4KR6cRFicAGkBZrEqAvKWFCZhDMTCAHU9XAuwodO2GEIm580UZUgichEQKfFvmKMiJxA1IOtAFVWlQASdsH6WcyM7ALIA16nTt8NGKcJ5C2ZuBc2JCUg///b+652yW0kyxMg01xTRqbNamZn/ezr/uT5Zfut657ukUql69KQBGIfIgIIkMxrpO7t2hFCupWZNHAEyRMnDHqg77DtBaSmKEGfKUmGKE5RV+kVgiFQJ19SACNgHEb0/UbcqYhEeQCpsizHcJIHaqdB0nKPi08qiNTaETAmRkcbnIYRm+sdYugwjAl912MakwR5TxMYkz4lzHUtYLcRC8HNfo/d/gqbbQDSqGkr1VyeWMkgAiJU6UJ+ItuYgdTKRwFMJUh2ms7y4I9yryaWAEDiJJaTaGZ97ROzKGUMpCmJG1iaBHjECSkB0xCx3USxIvQd4hQlk0ZH4GQvN0nHmukRAOCkHJSyeCxsnz2PAOTA8QL6zTqgYMYpBSDxi2YwUgp4PCXcP52Bfo8hif/rZn+Fb77a4ua2x91PnzAMjHFkpDHh/b7Hh5se0zHhd+8Yf/zT/8E3t7/DkBIOP9xJHM9W0pmGXlzWeNpgEwIeHp5wc/0O/+t//AG//+73GE8H3FxfoaeA4+mIu58+4+NXH3EYJoyRcRU6XF9dI6YRwzlhv9uh7zscI3CYRoxTBGLA8XTC9mqP+8eH174O/t/LGsO/EAPzqwVUVoA14Fx8nH216+452UqtbTL3GLMhFTB8md1/Devvj3uNAkFuLvt2XqyT6u1z9pS4uOVJG+an0+Lcci8BnKiqIwfUJgZCSZxAUPedDMBd+u6uAHNrg7m8WBtKeww8al0u9euy395VJNteq3Fk9seR6wODWD/ViiAPh6TJBDQgNwg5Esj6Uyyv5uNPgKaoNuuLrjUS6sxt5IhTAbVcLBValsXgZWBM1qcyAKoLzyw5S7F68+q9uppvdhHyn8wrcwPqFoaioFn7w+y3Plsptx2uzYUy99N3cUlpZS7ma73ev8vbasvH7CD/sVLWDPFfbsLrxV3CvwSN8KasPjYJAWTwb+4+FvhrQNtSa9qxPpMPEeHq6iqn4bRtxsab5m0uPufzGQAqNn632+W6zH/fjrGUnvay9sHIfruJjwGwlKIAXN5iU1ASxjFiswk5Behc07SxICLNQiR1gxlIEVe7PQ6HR3x4d41hHHG13WO72+Pm3XsM5wOud3v857/7Pa6vrvCnHx9wfxrEatB1wvICmMYBh6dHHJ/OiIkz8NyGDrugAP5qh3/8x/+Kv/uP/w4HInz/5wechg7d1Q26m3dIibHtOnQUwXHSdsfMdMiiWpolgIHNZidWjK7D8XDAfrfF6XTEfr8HhQ79Ri06LA+36+0e5+Esgb0kzINcPwHx8jYJoJ4wRU0PBhKw3HUgVd4IAj6tHMBScmq7thvEJO5Z1PWaflEXigtiBhardzASBJGjPih7BfaWt4VkWyfzOE4xByDB3NRU2aNNJ8G7yhwJS9hBlxHMIMKU0pgYrNlrQBL8mibzjxR2h2MUVzGi/AAXNjwir30QAogDpjgi8Ygx9qDUiUtqEMsLUw+mTXlwJ0njOZwnDFOPzUB4Oj4h8pMsj44Ju+0WV/s9dpsOmz5g23WaDk8zbrCETko8BgpzxIwQ5AGZQgBHUcAsbVriiMiTKBApgkMJqreFzCxDwzRpMDwIYk3SZd9jwimdRElBQtcnYBQFLZve0+zhSgbwLU+/mqdF9V6+JEInaWthsQVqDUlc3dvMCdQBFCXjz9XVFtNnxqf7B9ze3GDkAVMa0VHEzXaD//R3v8f3nz6DuUP6sMWGBhwPjziMg7hgPZ1wOjyB+xvsdztEZnzzzbf4wx/+gBAjTsMRv/nmO/R9h3fvP2K/v0W32+P7Hz/jm2+/RmDGp88/4t3794jMuL97xGazRYeIm+trPD79pCtwJtw/HHF/9xnvv/0Ww3nCpt/h5t0tpjjhz3/6I7797W9e+zr4m0nFxLlneGYBK/jmWUGalfHMC9S/sGdAuf5NwMor3d7RntR6TtbA+ZpSUNzw0uJ9XAF91Ezk8/XLQ5HASlaIy2HquGqHAbuaCWVNt89ZCbLsX5aFjNwQhUDFv12TPwTSbSDJp69KgF7M+hoRZQtjigmnoxAMZumXBBVy6pQmjXsqaxJIb6UxHXXYb8VaL89xHeMEcIAqDLK4VNeVsewtpbf2R/oVMv6Qa8PqIRHQdbKw5na31b53YjUmRogsigIzQD1Cx0pmyHtJ6pJyQ2cgtMwLeSYlUGJsGTmAN2lnQtdrlibVRRSoJ476+qXsClmAvJIzLGk7x0ms4FNSd24wEhWXH07lOltZFkyrGk0G+qGXa7/ZKlEcQmb+iZDJG1Gm5GrZQpmgcl8zWN2IkefQ2v1zCfhnpX12nsl826qC9MwtNX9G+J9+z1oR5D7X9s/d9gAdtzdG+L4a+PvsN5bfHkBOjekz8Rg4NxeYaZqyq08GIkq7zRUHY9t3O0n9aQ+avi9ARnLrl0W8ttstpmnCbrfLq/3aAHkwbgqBpfb0ioG1037LuFI2X+33V5IffydBzaZMmJhrkn035WWz6TGOEcP5hO6awNOE4+MBt7fXGKaEdDhiPA94enzC/dMJn366w3Aa8Pe//Q1urq/x/U/3uD8ecJxGgALufrzH4/0dgITNZgfiBJ4G3N7ssKMe11cfcBhGfPjNd/jtv/0v+P4hgLY9dlc7bK467HbXQGJhbFNSE55ck6v9LoOeruswxai+2aQuPoQY5VpI1pte3XREUZimiM1mr1mWkBdAmiZZlEp8tSM6ChinEaFT5j0B1PXia6l3c4wTELaIMaGTpL4ASDI2BH0BBJKc77rqrL0oAgV0RBgmRr8JyixBGHkIq9IB2d90TGrNCgGRGd1k+dtHeYkGyYqgnQJpRoGkawIwB40LYHQpYUoTum4LeYDJA2i724kqEJV97nphs1nz/CNgGM9gFl/YYTwL+2OaF+TBTqFHYsmQFMEYxjErGBPUUiZ56DAMo64hIFaGYUjYgQDqEcEYY8JEAXFM6IcR4WkEMIE44Xp/hdvrHa52W2z7gMCdWLIgYxzlSQ1Z38FMzCykVwgYJ2Gt7AVBkRGnUUzEYHQxInVBF15R5S9GpHFEd30N7ntMmhpwitKv00nvp2kUZThNoGQPeQ0+tkmQmaMAzvleTEFD/mNjgmFgH/oQ1e2hAKqU1OksiCWi74BtR3h3fYXP9494uJ+ANGFDCVfvdtjQhNt3N9gFxsPhKEG5MeE0jEgI2PUbbNOAEAdsb7/BRLK+yfF4xM3NLW5urvHHP/4B4zDg6fiAjx+/xtP5iMPhEVdXexyfDthtxOf33fsPmNKIQAHD6QnHwxM+fT7j9v17TIcTdvs9Quix29+Ap4iPH97j8+efcDg8gZHwzVcfsc3uH1+2GLvugRBVf/XLtv7hWfz1V69XGtbEAwdgnvmnBmdrbgW+XA/Y1+rx2z2Qt/eoF3vXeZbYW9JX+wJzo9TzE0tgqovHK4H9Nekn36FGRflS2NpcQf5dZWOhANLV1HsF+wTShRnlHrORNEwjbivIwH+chCi05BosN7S4zyAiRfVfn40TQeKWul5dTMeoufmtL1CsaeMpFnYAOUOhvd89SWl4wbDGODFAZ3R9nzELSN6HRMXiQaRuVkSSRELftZLieZaRRt/ZZlsCBdjCkaEvKxzbdbfHob1GxC8/6X6JGQMZuC1uPQxZwGuaJsSUMMUJY5SYCA6cz9Gz8nyFAvjM5md8ULL2bDY9evW26LpyvXOWBbh7Kd+mPiOOEDBM9VyvrrFpBXBFzPbbffui5e0XUOymwAgBMddkL5zzwjG2m4zt0HfgSxYcL68G/pbVxsCysfMA8iTLL0f3wJinz/QA2VJ+Wvk+QHaaBIDbQl9d11V1ElGOOzD2w1YDtolgbTZQb1aIcRyx3+8AUGbuj8djfoCYhaEw+jbchHGcsN/tZAzGEdvNBqzpFm2dAXP9YZYXOXPCdtOjDxL01Hc9rm9vxU889NjcbNFvdri+ucHtu1v8+OlH/Hh3J4G25zM6ZozTiO+/f8ThKWLT79HxgC5O+Hh9jQ/v9kjphG+/+QZdd4Ur7vHbf/9fQdffor99j9AxKARsuANPliVFcTPE534clEkPuqgHQ5WkHSzmLyX1S99swAB22724Zmw6ecgywOgwjhMIjE4XHWKWAM4pJXQBGCZZUXHT7wWI6/Xr1M2CILlo0jhl5iVQ0KXKk1uEo6yzICy0xCgEVnccUzCJ1N+8BCbJs0t8zkHqKjSKy5T46EdQfonIKq05PkofbOkcQX1A6HpllZThiwkplOzv5vfJkAw9fdcLI8VSruStFyWg3/SILKC8V19Ogr6MqMuuTokJm92VLJOuq0lOkwTmUejBBGx2kjGr6zpMSdZXiGAQR2BihK6XFYK5wwRlt7HBNI54Og/44e6EbU/YdISPN7fY7Xpst/LyZQ4KnJMGy00IodMMPfKQi0myWaWYwOMkiiZHJDAiRSSW1aCN5eOYJHC860B9r8HXtqDQmO+vOE2IvcSMBC2DWdoiIF7cqDJ7hOKrKqZ1eemxRo944FZSeTrFgVC9JCThR49NB+y3jNtNh6tvPmC7Ddj0hCkSxmHA8XiPOCVEHjGlEfePJ0zjhIdjRBf22DCwQ8Tp4Q5p9xFpPGOKI3744QG///2/QYwJ+90NvvvuH/DnT/8bd4+fcbV/hwDG491n3F5f45QIu/017h+esNn2OI9HdJTQ9RtE7hCTtJcC4Xg+yst/ihhOZ5zPI25v9uj7gOPhgPPp9NrXwRcptPjiQWiGkTCwzivH22s1P/OJqt1cNhdTv/4wTtn+rQDRW/pxQTlYk1XFws3nyhLwErtpKZhzH/Q/Kn0qCnJxdVoDHFRuP9OjYURAqVeJGHUtJDvYuquPeU6SiEJcS72Kl2vL/+bsP5UCF9yRZR+D9VqSU5rkXWFqCABw1DNIMwz5NX4qdpkysSREWSm7pK3s4BeRqmeljpF75tuq6PY8cjxQFdRraagtBsKIurnSayvNM7PGBcoYJKgPvwJ++Uziz8/Fv5/JK7aU30/Zo6sC/iGPUdA02ETeS6Ke69U8J+u8Ws9tX8Zi61KV4ZoqbauV6Ev3hCcQytyeH5dncjlpScbrgMwKXylu8YyZ/WK/nVFt88rXa+XVwN80a2PyfRYfoGTD8Sk5vYXAfvtYAKCYLT0DH2PS/PwBFo5u9ZqSYYAmv4xd4I+111JyGotfUosKQIjqP0wkVgRzVfJWCCtb6qNs6RjHQZQtjiCE7AoDMPb7PcZxxOl0glgrAgITUhowDCfc7vfoWFjZlCZMEZhSwO7mBg+HB3TbDToKeDoeMcSI+8cj/vzjHcA9dtuAPiTswXh/vcM3H96h4wnb/Uds3n8Lvv4W/+F332Gzv8VufwNwAiVhpRE6zXrD6PsOaYIw3BAWP2yE3QepGTMGhL7HGM9qMp3EP119qiXPvj0U1Jc+ACmJogVicNSgS4aYBVmy//T9DmHTYzifgCAT19KC5ReLuoRQ0PkEcaeRhxGDkIBpVIvSXgA7iU/3cDyI5SHJwypmdk79NjXHu7kCcEpAjAj9Fh31mGD7CFCLAgUJcCUEcGS1HCjznxicRow8YYoRm9BjsxHWeprEzzPFBO4DEJMyLQHgCT3pQmB9AlhyYW83atWaIqZxRL/Z6toFE2wxl8TqOtdBcs0HWc1W0lky+k7YtKRj32lubBk7eVzEGEVpiVN2rZIZwei7LSYGTqcRD0+fsdl12ISEm/0W79+/w7YL6l4UkVgySiFIwLkEBU9IgGZOsvSmSU3NjPM4Snq7XqwvrM+N4XzGbr9Fms7qShUxDGcwJ+x2kuY1dB36DSQlLSBuSbqar7CFFlfE+mS0dSnkhSzuYaK86KjpfAgKLspcBMysL2Z0ihFiBUvY73r8m999jWlKSHHEFEfEyPj0cMTnz/e43m/x8DTgeBLFNwRgu+kwRbWeUZQUnOcjOIlCsd8RUjojJYlf+cP//u/46rdf4fjjiGEasb+5xu31DY5PB/CUsNsCD/f3ePfhA/7853/Bh/fvsOll8cDT+YR+u8EUE3bbHR6OnzBOAdQxpumE80B4OiR0gfDu/e7VL44vQXiJmgD3tQb98snsjjCkUiP/QrldwtsVk+je+D+TGbzkTrRwWXCyFnvgwShmoMYIslX3H2aPIAQM66rIRAGdrpGCYO5+DETP9prKUxh/AX2cGfRihVFSjhnQRQyjAXU37L2uw2ILbnVcLLlZLaHOjY+5k0qWOXBxQ+kUcALI8a+2ijegAbPBMgCpW4rlyyd5vps7bOgsbTSyMkAUNPWnuBUNwyikhWgKCJsNdldXObmAJ0wBwbcCwqEBnMVdK6lLS1CQnJIx8kBvrlFBrcEkltNhHCSGQq+tqrryW/uSOAFJYqwAcY0yMkqUAEaME4YcvCsum9kuo+452d2JSmixsPcy5uIdIDEQkj5cEhZkpt/mS9DzQPqMVmU6lWf5W+Btvj/cnDL2HUBOa+2vQzDFLffSrk9xbcuSg3cZlv0KVGKE/K1p4R9ELkuXnVqXut4X+2Ne3qpsLqxvkzct4GXpNQ3A2+8YowTBOj9+ANnvbT7Zva+iXSDz3zeQzvpUT6lYGnxAbcnbW8ox5cLcirwyYuV7C4Mcr+Y+XQPAlv62Y7uuw+3tbU7tudlsZCGcQLnPKSUEDuqOlKo0pNM0YYoJIUaEPcA8YbOVIDtWFpYhKST/+Kc/4fz0iMfHA+4eH/HT/SP+5dMdjhG4un6P8XgCxRPe7zr89t07fP3uHVKa0NEVrj9+B/76O2y/+R26zUaZiYhAvVpZgmT62G/EvNr3ONv6CJadQIGmpIok9NstmAjbzUYefp2sBiokhLp2Kci0bC+WHz7nfOay0JuZo4iAfrdFnIRzNTcaVuCVWPzhyxxidH2HaZjyA1cWv2IwiyIXpwjuzFXDrEAat0BmCgu5DpuXeeVmIC8dziQKDZOwLykmZYpJ00YCcYogBdHMYnkapxF932G734qCkrikOIsRm80W3OnKxJqlYbPZ6kOA0fU9jscTgsY3MJCPoxCw6zUzjCoi5vIwTZNkOgKpaw9L36cBHEcwOs0sIe5ycq3EjMtECJoxh0isZhQCJlsESygcjCRK0/Ekrio/PXzG1a7Dzb7H1a5HF6Bj1CNQRCKJQcj3Jg9AkheZ3ZdTStjIhXDBweKiZCbzqNYMZsbhcMD79+/BnIAzsNnusdluJbi387yfvDQsRWph8QGYBUiP5Mj5IZ2xkK5WnXG/e+izWWh0E+sDfYoTxmnCT3d3OJwTfvzpDsTA1X6H778/YxgmXN++QzwdcTVOOIyDJA/YEqbxiNPxiM32GoE6XF/tcD4PiBPjeD5hs+vww/d/QoyMD9e36EKP0+mM63e34MQ4nc642u9wtd/j649foeuCKvYTNv01xmEQwqAP4o63DXh4PGC7u8Jmd4WUBpxOR+x2JQXylyYFDNfb2ZhNKMA0UF4pAo6by29cyuzyKr53SoN/MVeuN/6L0tsv+fO/JJeUgDXxIH7OnPp32Brrn9tZJr2vFfkegoFmy5ql7n4LtpTrs8ldM/uX3GhyUQqcj4dzczCABnVtEYRYyHJyddT9DmRBrpZ1xwKBHeC2jHSw5A/mtiMg1VbZBQgcApJz+VtXxowYYExGQkrhoNBJhh57z+X++zgMFMuIex4xxJJOnQN57OaztiUvhgpCiJJVLffVLAZAuX46+BbbMMWIKUW1BCjwT1EstKlYAxiSCtu79djNFtzFFzBfFumiUNx66tjIAsiLdwUVfZyLdeatd9bcHz7bgGx8865yLc3xbQnI1+Z6Qe5k32di03NOQpDurJTzZ/tixxRrZXG1Kn+vlTcx/t5v0BhyA06W/tIWxtqpO8zxeMyKgbnj2IU3AOBdiLylwMC5dFy6Zekzs0lLYwP8w88UA3O18RfWyh3HKbP3RAGbTdDFuUoaT6v3eDzifD5jt9up6w5nxed0OuHm5iaX03U9xnHA9fW1gpUjhvMRm64DxzP6bgsiYLvpsd1vAV3N9TicsO87DFPC3d0DPj8+4ek04DRM2FzfIHHEzXWPv/vtP+BmC+B8wq7vcP3+a9DVb3Dsv8bNb78D+h7TOGDTA+N4RhdYAx8ZKY0Ai7/86XQCa0aaNEpA8DiOSFPCZrNFAtD3HcAs6cUUfO00nkL8J82igwz2AwHDYHEWoVpMbRqnnL93igmh6xGSrCwojD5Uaxa3j8z0k7mKRfSdMP4gLoFPFlylD+44CYhNKYInRuhlFcEYp6yImJuPVxi7fgOQMB5TGjHGEdtOVlkkIGeDmZJ4jfddD2Zh5AmM0G8kzWOQrDzDeUIIhJ5snQM1WTMQh1FZkV4DmyFLv2sauuQAiqw+XCxQZpWybBKMhDFO6FVxSSxpMgNUKQiywJu3hoGAcZqwu9qDQo9pIowxIbIoEAnAMMnaAWBx/Y3oMHICUgekiIkTPv30Gbtth68/3OB6v0VAkhelKgxpGtRULNmJ4pRyTu1JA7ZD6MDq/0pdj+PxgOvzBElTnbKSYskAOp0Xu/2AOO1KjmrHqCQW/t9M1vlFIzc1LHDXXmKpvB/zy4ihq/4KtQKdngCp61lKiNOET59/wnmUV+3EPe4e77Hb77GlCR+ud/j24zt8vnvCcB7QBwJtOlzvbnH/dETfbzAdztgG4ONXH/D57g6PhxHMEfv9HhEEigHvbq6xjUA8j9jfbHF3OqLf9DhPUwYwf/7nP2K33+Pm3TV++vwZHCNubj/i4fSAh/vP+Pu//w77q2uczyN2VzscjidEZkxjQugCbt7dvvZ18DeUuesJgMzk23vYvcjJGE/M3t32ol5m3/Ev49e66az5Gf8SJcC3Zd6GOZPv6ydjSlfqvrStpOct7/dVF6IV5cJcKQEBgbIeiBAQGWjlrLh6vrLKxVWo3JvZTcdy3JMBXuFhEwfHqtrNqn2BA9Cl4epGKr7m0BgBTmZh0IUZydjokk2o78U7IU5UAF5wzxHX1pyRMGlqy6QZ6kLU2KxgDxXYcz2Xk8tCBs4MID+UtJ/52kKeTZGTJE0gSVscSAib6BUPPR7kwaJa17W+CkBSeQ5CFavQEUjHnYjQbXpdJBM5MQObqmHA31x9TJEKxRpVFmNDvnaUb1BVKHJaTKfQu/FiX5ebl55UznMEtXKc+1fdCKjO/2sLz+ry37JaoZ30TkWLP68EvkHelNXH3F66rst+8GUwywPIjh3HMQP30+lUMfH+XFMAzF3HuwMV0FdcgfyaAXZ+rwE0x+OxWpXXGE6r0xjT3W6f/c/HUV+ybh0Cz/gPw5DTfx6Px2r/fr8XBhIB0zhhv98DYNzd3QHQTERJ3GR4I/l6w+0ep9MJ3W6Hq91GfKunE64C8D9/+AF39494OByx2V/h+jYBHeGrDx/wb79+j6+ud+BxxKYj9PtrpG6Pfx6uEL79PSInbMezPIwSwBRycGyMAkLzugebDtvNFfrNRthddcPYbGShEYQgDxZNsxkIWZmz+3W/22GIQwb2fd8jTgNiPIs7StjlB2LO2BR6zT5gQTlyDfte0q+CoHnj5cFhwFyUu4RpMgacABLmOs+NQPmBZ+/KaYrY9j1SFJebHEROEX3oqpecpdcMAWDE/IBjLkG2wnsQSLPSEDN6EpA9JlL/en1Y9oxNF4A4lTZD/NVlbS7JOsS6ci0IonQlyaM/TqOkt5MbC8xcBZ7rF2m7rWLZ9wX4xAkJA5jdiwNQ954o7Q8h92kYRaEYoyxIlVT5YnNtSRLPIfervIhH7kC8wz9/OmLfP+H2Crja9WDuwCyuepwiYmKkCEh224A4nTXf9QkcgsTK6LUbxxGHwxF96EEUMY0DhmHIz5NAErA8jQNSnECRlKHXYGMuYCHJQgg5+4+9qFMqLmh5DG0lTbC8eOxtb8cwy8JzUecMyxw9HEc8PJ6xubrG7uoGCE+YphG7nrHfBPz+q/e42u7w+PiE4+EBaZMwDhFPTycMI2M4R9wEwg8//hmMgK8/fsT9/QOub2603wM2u3eYIuOHf/keD4/3uLq6wfnpgAlCZNyEK9xcX2Gz3eLw9AQC8P7Dezwd7pAw4quvP2Kz6bHd7bG/usXT8Yj9/hrvv7pBnBLG4ayuil+m+PcBADjIpCkn5VWYIAGiAOVnAOBwvhcHwspx66/Q1yoAvoy/NPt/qY7595fq99tTzkrGFfBfa8cc+ANCupivODODOwJYFwLr5N5hRSmUWW6Ao7iPEMRNhmBZfdR/Xt1nAHGnZY0XIs3I1VFJhVn13WCSA4VB3zmmeBDkHRNtDRKU58Km7/Oz1DCEkQ6GQA0Am69/Zx4FOv/kvRvFtVazBEoiDPWGUGUpdGExnv45LYuiFQulNhxJwXCKEaOmPe5S0LVnIsY4ubUXtFglR9jSJ9sdo/cAk79BWMkRyHoueo16EsWn32i2IdKCVZ9JZq6x5yhpxiYD/jmw292b+XPlBiUuygFRrWQokA9uvNaU1vnctYDnlacBbDL8tcE/X/gOU56QeSa9d0yZp1WW/+e09tXA/5/+6Z9+RvFN3ir/7W/dgCZNmrxJ/uFv3YBfgSxAcEF8CohY1VcIOPAvf3eoK3BlP1cgIhNaqvR5ggvz9rgy3ipzVr9QK66Lz+gd83bnk15oXzl2efgcPM2tIrm9zBlHVS4wChKZJaGFmExz6b4mFKbXsbeuHAvClcX4hGSbZy8swB9uHuQiYI4eYiCwugIWsMm1QYiqMGsPLY8LRQnJcYQAQhdFKTK23/XY1FcP9JdKAKpxWI4ca5prAiUCSFKJsmbqK30qJxbQv8IU++McMM8KU1f6G7pQxiNbHPQkB/znufptLKWPXOp1bVjc6g78G2NfFId6zJ67/4pSQJdYgJfFLCjPnE0re5QuXAB9/zUz/WUGux0Eswb8JdSSVwP/Jk2aNGnS5EsQzhR+iXUBivk7m/SdLLGzZ/ioPofcAl362zO+5cCae7PD5JTnrQQeTK+59Hh0qy1UIwUhZzxhgPUzu29w8QM3Rt9cevyYKAGf/8yfGii50YlKWk0DeLJfA1KDAWi4MWRwTEWhIO0BsWYw0xSjeQGvDrbIoq3CC+gqMixue2AgEGtyBUIfesl6BkJgAedMjD71yIGXOh5jHLOrkC20xSlJPJsCMijjzwSEFNFFcSklIkyjMP7i+lf804PGWnWpQ88bAOrqwxavlIclf6aUMOk6NB0BhKBpTrs8J7z7tHd9NrBsmclidK5ZeTVyyZzmYwcMSgpTrpl6PHzU6UTQyZvHTtNmgyWFtYL4nJkoa1KEzvop2s+KAiVuuALsQx7zVPzAaite1ibLBmP8oXO9ulW4ZHd8TvI9bUqoKkpr1rISH5FPXnyvLAwXELnBePZKjXt+1Kc5wL/egdleHfQXnjVzacC/SZMmTZr8fyOOhNfVSw3so2LkMgjP+GHl5bjwAWJ1UVuRGfj3/JsjwP8y4tNa6u8M/h0esXUrmNR9LZhrLCuITM6FZ4ldCujPncyuLGvdzwlXSLOeZDpWzolRxigpuAao+NVb0oQEdJ0EyUt8Vsntn2PrkrUtyWrcrDFlkFiw1AmrHUiAv7lwRI5l7RMbo0nSB3vXkBSTJKxgzeRFAZQkU52w9hLsWrn6oDD6RCQuhiSJMgxHTknSFScH6Pyn5cQnkrVYOgLAQZQAIsQp5nVLzsM5x0T6rISmJMQU3aq6DLN6+cBeY/h9Sk4J1HXzwDQkA9vJz3MN7Faw712ciCjHZecg32wBqZl4y+oj2+pA66zE5yKWrkAlRkDvDVOadSKbwr9Ys8FZVCornvaPUyqxFN4q4gH2cwrAqyRl9bI0TG+6RVl2IV5Thw2OEQGvlwb8mzRp0qTJFy2FHbcNVN6P7p1nP6vj1VTO8IsACdgwMJ3r8C4sROXFr5JBhGubZ/nXZA6iX3YHsvbUdayey/UQFIBfjvNs5ot1r+2u+l8Ur6Ui5SwE3j1GNS+5Lsb0S7pPzwibDkEgzRev18bwjatPYJPmoofjtFmCamHg34m4rGhqaQXD0lie9cS5w+hYZhhf9Jy8P3FZkNQD7Hy8HVsaMnPrKODXvhsYl3FcObbu2Fx7WxHXnkCaOtTVEcq1kziZgMxVEzQlZ8jHW7sq9yTnxpP3O6VQpoy/hnYVF7BYrxZXeLYcV/dzfs/nElbuu8qyduEe8duek7X9vsbXWvzy93l73Wf15wwMWXl/tqalNODfpEmTJk2+aCkvSTJrf2Ht+PmXrHF3wpZ7f3gI2MpKgqFa2bHmflNvW7Jzc0yxzpxfWDjoQh/mgGUBYNw2/90Y0DXgX41BPVDOYpBWywfKiqmr7QQkT7qmys4xC8xAD3FLIcv8A+fGYoHZKIH3AKhz52sGIgRGouIGw4GQiDHwhBCVxVXfpz50mr0rAJrBJ3HMLjEb2qLrzT0FOUtYBtrEmcEOXZ0aPHFCnBImjmBI5ropTqIwEICOwAGYkGQtH1kVUuatzuPEjDFFUCJJoQlxQQp9QB82Njk033+C5eBkSjI2XIbHRpGVTZZFGaUxxKZwyVXRxJ1SftdJylAAgbtaUdH6YQubZWWEcuYliQFQRt9tM+uYMPYyhomLgiMWC1PfAOtBVixZVimWoGhJe+64/mruXXSZm8klpXht/2uk1IsyZ3Py/mUbc72z+tjmDDyoLxmTfL+T3aOw9LEvKX61NODfpEmTJk3+v5Dij28vxzVwXrPwGYw78O82FkbVylrbdqEuw/3z4MJ1RtyddgGczJnPOSCpwP7Ki34O8i+x/c8GQcoBLx4/74O5aLDbV1wt3HgnZAWhlON6zi7gNbPPckHTlFwxwk2LC5FklYms634Y8Leag6T3TRrHYL7upuj5INQyujXLT2Qr0OoKuUlTarK4GDHE/SYmyzgYtH1SWmRlsG3xKCrXMGaLARf/eweWiysPdPEz7ZtmK8s6Wi6akHPgs+F0AaKWijO560o9mZ5mXDsW83f+k0hTUuunX/uEyrW3eVGmi1qlbDIs5vG87gKMc0MItZbtQP9z4H9NgfYK888Vcl+yorvShMqFaPGb7X/9Rx4uNfOvmX24rEafUonpea004N+kSZMmTb5o8Qx6AYUefHq67cK5UPDvqDl7yS4Da7kGFlJ53l19oyUj/nJ/CvNegRFtX10Tu+9wey6znmt1VaxwBualb9n3mR3oxRIQXVRalH03gGomFbtm2UUhcMnT79hdMrCTTTo2Jm4UzKfclZsNClBXHyKAOMd/JF2LFRCwH3SbpZBkO98tHcxAXtiy8oG3P9VFKIN4hcss69eUbXKcBRdLWaogWf3ZPADhdrX9eXFYY7zN2cPaVRCitr26auJ2lINnnaJAZY4Fc8nR1XYBiZuogb9pt1Zy2Zoz+Oj1JLtGVK5RNW724e5noKz4rMOW++Dry512SjX77Rdk1cc/n/aCkvzaezrP2aXaMpc1xdrf5b5t1UlcjmL/x1DG//XSgH+TJk2aNPmyxaGNJdNcH7p46bKBwnqF2+qQiiXUV7cH/+XAvJ1yW2gRVPhsV9wLfb7QkLSvuJbkfxlg9ses9+E5EMO5qFqxMCsHq6/65XiA51n/rusy8E8xOeCvi+Sp+xAxgfsuj23WS5hAzteB3XXIeoAbp6DZhDiDdkb0vVPMGXW1WlKAlP3OLca0g6w5gDJPCiWu463MNgeAg1RKfUAwFw8bh0CgLmr7KTO4yawAupKt1gQLxE06r0JOlUlyDlvefQ0XZganCA/yMw4mGcyYooLCpIoEnEVDm0oSCG75+Dk4gB6gSpNpOKW1ULY5j6+585ALvnV/FqNRsDoj6zZkSxqsWQYM1rqZZ8qyFThjz+WQmtH3Lmlr7P7cHW7hGoc3iEPv63ELqFddttPcPTSLM5Yu5kAHzo+f5P4iM2ID/k2aNGnS5F+TFNKa8md5XS4Z8fqVy1i+wdc4tgsVz1wKXtPO5zk/O/b5+mu3HqcEVAe9rix2n74EU148x88e3C1KWG+fV1yYGYFZiWkP6qR2s2qsxQnUXfOrrHJuL5DRYQF5ruwMuvRYgf3CuBMn9XgpgNWz0cxLgBsQynE2Po4Bz+VAlAlygeesADVbeKp/tBxVuup2Q3WeHGkAc42xRbjc4OdTijrBpXw9JjgXo+ySk7PxIFtTiiXDDYyVP78FvIuUL9crQ1gUIwQ5zxXeqiZ3HlXMu5/DwnivW7rm7ndr39f2VZ+vYPyrul0fLrkcvWwdXNZrCoCcm4+afXm9NODfpEmTJk2+aKlZOwN7Bp9yXp71k821x2MlPa8AynUW/dmgYffmrV/mPw/018wnLfZl6O+PWemydyPKnxV76cBDxe7r5+oweqg1B2yztoKADsUtR5n5oCtmg5WFd2lGBetwzq+e27E6lJyBpYBlO5BLPnr79E0HZ3cehqwLwCBMaQSmXESuwtoVQsjgP0YJ0i3scFGeALigaM0gBNIYBB1fCkCoGWgGy+rEEAo3qakhxoiUJADZcvuTttv1SCwlUDBNkAw9OiQ2FiEQ8nILNibBGHsoy2/bi9JUsdbklDEbKKdMeMXBK2vS17nO7NbecHPRu75dBsi1FcuOe8mSN//uj/klfv7PxsustGstJgkwBl/mfeLivpPYUvhan2cLgVG4cJ9clgb8mzRp0qTJFy35pZe4+GSjWMErNrwCjGU1X/moYwTgGda8tWaT5+1YMouvBwyXwMwlwO/rKADaI7jn2cOqTK882YJPzkPJKzLPSTWGs++sri+B+oWrAxuYYYAU0DLrNYV82poDGnn6TCOQffjh3EIWK87O7ELF378wtGNiTBxR+aTLwQCAgA4dXA55COBOKeW5Jj7zFngp2XO6rkcgybDDwYByErcaIC8clZAkk0+VihSYJlnAK3ES4J8YXRew2XRVXYD46ueeWnsMxEPY/qyceNCeYxVQWHoiXWyqjF2leDKKxYPq71Z/GfH6+teynjVrVdyt7Qvz7jhrIHvtfltz/ZnX/XMUgEvCTuuZ3yulHXof2L2QFXKo6w+pG5DFX6BYQ6heGfo10oB/kyZNmjT5oqXyU5cNyvg6LtqxipmJnbH6WS68J4nWD/Asevle6ioHLst+i0vP2u/19pXqLrk4rEnF6M/H9Nk25m8vHFch77qhWg7P2shBwaSxxB5Ezttvu1xQsu2RfVT80xWU5qBatvYrk6rFyPJKqVYUsi4h7kHJbbMYy7wOgNaQy2YpXQKNUawZ0Loq0KpZiMyXn4TBN3edBOdzri014Ffcmso1zMoLoG44cIqAA43IGL/cRwbkHegvrlTuPvNjiplyuQL6l/7uDCI92w/byj0m4+Svs22rGf/5eZfugRdd4px7jx/Xl+SywlIeEss2SQ3G5tuU81awefk2ZmxWgOqKvl4a8G/SpEmTJl+0xGwPl6wtRKSryOoL0IAJ1yCluCy82Rq+KrU/saBY8yQqb+DX1zQHWM8fa9qMA8cX3SFKe7OfuGP0M8BRhnnNZ/wXkZ60BE3Z99yYaJauBDa/f71SeqLkoAfYgXvD1TL6BnqT5P+38x34JBCqTJdciiq/NaMQkWa5MdZd2XTuNKXo5TGZX0eCuAUhKnDWEzt06FnyZtpCX8yc1xQAlzISoqx0HEzjADiIMmBWJsPEgULJn2+B4ereU1u5FGzm/XaOjnPF9Be/+xkOze2cw06eHV2G2zmo+MtJBWjPXX6qg7NiCHWzWgf+c1eeOYs/t37Z/VPuB1MgL4P+tXiCi8L1CGULpVmODPQ7ht/VpApmCfpNeh/74N4pikXoLdKAf5MmTZo0+aLFklZQ5Y8LZfaNRtYPe3OrCEaWV/lrAPZLwL3yRYb6PDOVt/rLRcghK0z/s+0zhnbGps7ZxFVQwuU8NlDrtuUm53iA5/nOeUDl3C1kDp58MCzn62NgHQWIp4yMQGFejmfUDV5qfn5zQ8kuN0n7UMrIrL01QhUPz67aYmJ+DANSXkvAg7OF25j+DkQVgKvAJxIYsdouizHFirUHxC2JSZW2bOFgUQbcmDLEh180AIA6VYwDcjYfL/leML9/0Rz0Rqmv41wy259ZcVrsX581K3ucdlkrpjVIt/mUlT4PllfrmtU8vx8c6M+fXoH+S7r5VN9t7vp71QN/V72f4wb6mbMHXAb+CYiRMcXXZxUDGvBv0qRJkyZfuBSwXwLbChgs/GImEx1zivzxds5/LRjQfq+Bbc5tWD/Pl7n2+1K5/vul89f2ezZx0Z4XfBnW/a9LHZcCJ/25tLKvHGPl2vEJ3IkCxQRd4bdc5+zTnttcwGe+1GQOO+a2Q9m1hgBNxWlnsdMIrEQu/2YkVsZJYhDMyuNBtaWiJFlHoB65oiwEZC3WxlNAXMrjVELVy3/ZwqPgnGbXjqp8+m4sQt0+RlGF/LEZ9Oem+++uHlxe0Xo5mZyiiXruzEanfDqlqiiXcPNgKXNXnxdd3UqjFvfHJXkTy79Wr/1jWi7Xz6OZwU2PdzNhoawUpWGKEcMwvqk9Dfg3adKkSZMvWmKMmWFVPCjuHfAMssjs58+QZQmrL352WWTgwb/7d3bOa0D/HOzP2U8f3LvWTw9kUtLc/BXfyi+Aflq0a62Ol/r1cqClVxSAlAK6Limombs9GPvpAJsByQo0mcJBMj+4OlmUAMOgZqFJFuwsZUr8MeeVUYkJlMo1NjcvckVbXzJ2JnG/yQhd2zFxQJc6LUuy9xibyxDmPlQAvIB+gjD66ATkBwWRRITQdRLgG2R1YTnWA/8y4mTuTITM+LsMpFIr1WeR6/FqECwtQbUfHS9+nlfXM9Vz3ZSVUkwd+IrZ95TSarnz42CWAgf653Pzl4B8L2VMrY1OWc3ZesrRdnxWqFHalrjEvEvufiDGhMPhiMPx8KZ2NeDfpEmTJk2+aKkBn20zttiOovIWJWPfPYLxPsvrL/Z8+hrbmX2/9VhCyXBi5+u/ZdXVy1L7XS/7at/XrAB1ZqLnz80+/vAqzTPI30DgjH39pZIDTF1Zvl8hAERhBoaK2LWvQN0liwpLR8h3mqERvcjXkZkzAGb3W4BWcvWUNizbNa/f+hMWaxVI1pZKGxHgn/cDHArrXxQ+bbetkGusv1kaAoFCKN9NeaClUlax+wr8q1sIawplUbLnVh4P/tevx3LcFvMUs+uaz4O7Z5egf3WizGRNoX4O9M/buKaMuw4/U7Pbv/I8qJ8b5E5xSmTOIpUPzEoxsygS0ySM/1vu0Qb8mzRp0qTJFy0GykLwL+kZRFGwZ2DKk6bZxP5KW8Cqy8Ac4LniFowhzc4xxjYDmRq45+aVAxbtWXXludCjVfeeC103YOvyiqBSkvJYeN91PxieuX8+TsG7hPC8v/aRFarcgLzDRq1YBKgwuL4lRG4hLYe6gjHwcmRgkuBZQZVF0QoAhbCiPF7qWOkDaZ9yvIB3YQnFYpPH2wF/sehojW4sg4L1QITOAL6B/7wtuGBeHcgZ418pAoS838dglD6t9JP817IYm4xdPWfKwSsKwlr5emmq2Altb54qkPiNMqBO2X9BXgL+lxUA12jrlzUoz8hloHPVqVJaKSYrk5fauzxTs+EiJUaMCVOMOJ3PeDocXjsMABrwb9KkSZMmX7jYSy0lyZ8eiMBVPnt3rL6GweU9/Tq4L2eLPA/6S7vWFIQV1lNB6DrHjxmQ8FaNAt4vuS1c2l9tg8MsDuPJMcnVXxZWWo6aB/4GaMiB0HUXobKNIWku5buBdwplAaLKJz2zzFKXZO6hzCBn8K8WjdLJWVurtD6lbNJMPYGF+BZAlcoaB7kjZQRkMa/luORPW1uArC8OWMtgODC+ZIMtOBh+THVcClHvtpEFFIdsFch6JSFnRMrxDCiZfOaSXaesZRcJbafk5LYHEJ4LMJ2NKeBP1ubO042W8Sv7y2dV1DMK56qLnm4zVzh/XK0guEbntEJ1t9ydcAH8l3Et05Tng7E4JbP6bmrb75gSxiniPIx4fHrC57v71b5fkgb8mzRp0qTJFy21qd3ewfVL1kN2e1/Xmf5nq47CnZDrqFlKt3vRDkPINbAoYG6BQ+ZKiEeWVVkXEddCMohYa9/K0Rn0z1BtZp89o1sFWBaQX7s6LOVSIK+3FlRtdqx6ncbRA+SlYlGV+wJARTUPCvQH6sWv5NNW3i3V29mBgmTQsSJnbSWry9qaD3XAv+oDV99CPo8KyCcH/F0vzKLglQS7hgTUi3DNFALvQ35p5MrtQNX23F6W/ngY7owzpXfVjfn8vC798DWtj5dd/LWg8kty6V5Zv2+WSuzare7v1+fc9qrzuC5r7hpY6bCLkwFOjJhSVgDGsQX3NmnSpEmTf0VirFyMhBASwIQUApIu/hTy4pWcwb0tcgOG+E0vSbXyPQMIzxi/nCHkUtaf52TNZz8LOV7zBQYzs91rloCZ+J55phwXzrkUnPtzxDP+HogasJQgWGW7DczmVs/LWQNj7DuXP9htYy7Zlow9tvKqTDoaCE0Qn/ncUC0shG52zWuFIrfa6Pn5Dj+uM1CNfEqxooCQv2dcX+kQXjnS8shV74E/VZWolaTw/EQ1Z01+DFF/d1tn7ZdGFgWbraYLUrS2Oqi3VnPm5DjZdXHK6ZrVqarJA33H8v+lAnkviQfx61XV/fQ+/MViSQCJk1Nixnkc8Ph0wOk84OHpEfdPTy8qVV4a8G/SpEmTJl+0GPAnIsmMQZLDOiV96XNhfwW46XcfzPk8Gfiz5JeAhjXGUXDfGmO+BOFE1i0DChdAP82DEyGDl38sj/dZhC6V81ZZS+PoU06GENB13exYr7CtA/9M6LttHvhnv30Y01+UDKkr5HLt/ECSKYeIJOtPBv7iS3/JJ3wVczoAXgFTx/6vWklUmSVro01qywzjQH9Ksvpvdb2yMkxLX38AzKlyMbLGauJUKNbMYyn311oHOdeznB88+/T1u0Bnu7RcK2SLYmAg2EwKvBjD1ygAc7ee18zrnzv3a9BfrwWxnNP+bxarBLlnEhjnccTT4YDj+YzHpyc8Pj29qX0N+Ddp0qRJky9akgEvfWlLWjuBDZRf3gAgKRsZUHcgZSAxAy0zV4TiwmLg4VJLCqNZyFTHkxpDl3GJgTQ5cplhxMryLKyxu7xoyMIKwTW7uupZsKBtSzpDbVU1Ji9J3f4auEgfL48f2ymuz1amx8OZ5cQaKKZqbLLS545dA/4A1KvfAcPM9rvKmUGakUeQt8wpsRIUi0TKsRF102oOnuuNuZ9G5RuQLfppGRP78yCWJChB+5912lymK8/mYe6eA5j2ywPqPAfLvlK2B//VUOk5PluRXhS3z9fxnFXKj1NuK9df8nRfK+MVbH+xCi0Vt9dYNV6q1+5Hez6BXQlzBdy5uWUrnP4wEsMrDjGKe880TTgPA4ZhwDhNiDG+hfBvwL9JkyZNmnzZEqeyJL0FQMZA6AJlX2ZjRzPkYlniXoAiKvzlcfpclthhDr71THbglC8Uls9hEJl7AVVgCrCMKKTaCqNOC0TwHchsMwDilINXa7/5msE2t47ifeHcX3JVeqwD3WVMKLPkvp51n+z6vAs7MhFeA1TO4NhcVYKxvw7Ml5WnJDMPrB8vAH8LloXOodzhmUtJIELX9/l4A9OBwmqfssOMNZw1UJhZVt1dGwYih3PtvFn2JrJulf0FuFq3OV9fIqiLko5rsPatCAeQAvQcW5B7o4DTlsyeleCVTdvN/lx3zup4eQWYINcgB0O7a+HAcAbSixqekeqeKL9TNY76mSrcnT9fD6g9+PcAPlWkgjagbCMxS2aW39XL2q4EYJoiTqczxhhxf/+AT59+xHkY8Ph4wPHUfPybNGnSpMm/IjHGnywLh7r8pJQQQmGZMy4EsmXAYDN7+nImnsV8nbiw4awAZCejC3WUOIIlmPBWhMLoFvRD8PlDDbQLeEiulGWf8g6HKFZdMmZa0Tx+YT1oV2GxA9wX3V1y0X6MCsjPSoj7y4y37qMEZ7nREN18LlUuLd5lYtnm0vaMXd0QhK7LrD+hAOOX3EiKxiKLzslclY5fDKSdMfpr7a3cg0xp88qjjVGA5Povxc3El03OOlDiHMpeIJG//vV9UilWrvTX4OQF82/g3xRpzOeyhZ+XGl7r2rJk9cs9ULmG5f3SgpeCf+v749JzhXOWKN+jEpdSPzM86MfsuwXyDuOI40lSeJ7PA07nAZMjRl4jDfg3adKkSZMvWmzFy0CclQBb7TRlgJchPhhQphiyTdNpzl/Rc1DrmcjKfJ//KeeZrzFReflX+NYBlHn5l8QCRolq5YDLASU//Brw0XYUEHM5R7kHj3UnRckoIO+yAjAHwuXzAijL5LwdVzaWtPtujJiLwlMpZx4k1u4zMjbl2HVffA+mZaXbOUtd+Yxb6lgH7D0Ln7g+j8GSj59ChvwEWm2LF68eiEJTj6+39lQThMqXamzzhHT1Oma/HDCb66im+/MuOk6ZnSsj/sap3WE49205r6wQazdcobO2sUJnugzU1/atHsv1kL5W/Hzz4vu15lJkKw3Dtb8oqxrDBEZMjMi2UNeA8zjiPJxxOp9xHkZMMRbDzCulAf8mTZo0afJFS8wBjQyKCRwCEssLMQBIBnfYAxbOGVBYmTVy6GQe5LcA58zVIl3zcwCfhtIywQO2wJBnm18C/F6YWRWdGbCbnT9XUHxdXJW1zFNeXICK1WIOrObNnbv5+O2+TaWE+bGF2VwEuGbAqEpdSmWhK162paqPCuCfux7ZNZgHcVbAPnR6/QoTa2CfAPmcrxlBBNLg3yRR5rmHmT3vbFjLKsDZ/acqrNRZj9bSypBiRDTG38Yva0Q6FMGNrdXAUZooOl1WlCi7TDnnmTXkn3tXlKlle7k6zhdXlDPdr+YVMsXAWRzWFN56TjtG3KlKc8XCzqfZtfff7XqUel93j74szyNx5pSBPxHAREpgiBIRkwD+xIwxJoyJcRoGPB2OOA1n3D884e7hEeM44jxOeBvf34B/kyZNmjT5wmVukq/YMarBAFBASDHbaxnmErFeSU1Z+u+vYNSM6S1uAnVNS7DkWe9ZUzIkN4RTmMHnpNS7VDzKp0N2K10rY7cC7i7UX9jxuqR5n8y1pCqrUqz8sNsPhg/MvtCCXOaCOc5lr/fHYkbyOFCxJyzBbT6xKgPz7QasDZSuuPAAqKDywvWlKraA+TmoZa8UzvpuM8jpqq5tdugSadcua7U1xNqTrWNZcSn1VEy+u+bWorKfFvPflyO1rrDzcLclFYVtbXKwHbw4vy5r7furxQ+Xr9d203q5FuOQSQsu9y3DFusS5T3GhHGaMI6TfE4TxikiphJE/FppwL9JkyZNmnzRctYFahIzqAvgAEwpIcSEwIRAAFMAgfO7n5mRKK/ji06Dajn4tVcNnMi/8gIuKIY56TY9gss7fk2FqDL8QCwBa2b+JX6eg8f5AUWh8Ax2SiUlYwY38JlApA/2fb7N9XrWxrQKkleFgGwaWT3GgV/fRXe6bwXpLwLJisfmAwTA8vJkq03VLkKOZtUxFL1BtMIMrqwODSa1FJ1+3sw93hdKQ0U7sygOus2ApmfQyxSgXHZy1yMZ1FZQDlVozVvG2OHKFU376VWiPFepfBJk/YHi2pV76uYqlz8qgyTY3CmIc2Ukb0ywYGGvJHBw5Tvwb/0IYe524wZ9bvGq5vTsvjWrSP4vLMqo57+rbzVFadlfWwK8qjYTc4+buenZoXbfMSNbgJyKCQYjRhawz4wpiV//eZwwTBEPhyN++PwTDscj7h6ecBoiYkyYmJurT5MmTZo0+dclp/OQ3/3dpkeHIMA/RQQmUAA6AzlkUISBlIz/BifN5NLZgj9SdnZ7ACrFQd7QKCAqg8FQscELQFy9hOtsKb7o+lzvc16OrgCEA30ZCALZlcGAYK1oCJhbuLs44LEgSjPLniHy5b56zF3hfg+SizJUn80FPOrFrbLo2BXxoHm1fj3W8vFTfVzlY82UlQU7pl40rGpedQEMrGa1zO2z+ZDm4zwTYkJWXpAybc2af0oGsSirma3Wwc2AH+5arCmKeUzlZghzVyWUeVCAurU3LcB/HXtQa20yFkHcnVzGqszEa/k5s1Ruc13vwholA1aUjnnbYfOlgH3/yw8Gu/Oq6e/Hy52zdP/xgJ8Ww53LoFRd96y86TWOMapi7u77PM8ZMSYkBib7iwmn84jTOOL+8YDvP/2Ix6cD7g8nHM9RlEc/pV4pDfg3adKkSZMvWpI6KCdNg2cAKyUGgmMBCQW6G45QAGLkXgkCNoyb0Qsyh1i5maCUl32qPUioGezLUoPyNa+iuqAlcKx8+rWdBmQzSHTHPhdIWnUAhR0ubPUK0J9tWyt94WtNAm9q96eaQa9rMei/Pqg8O6/iYD0G9tjSKRgVR/7shZuB/nJS3b/5WRfcSVaLd2OdrRIOWC5iONaUiZV2yfaZ29OabsMziKyWm5KG32llvuyFslvmUNlUB91KKaZA1uB9PRDWwD/qizwbgioI+5nrOS+3HsrleS/tr8bbAHhupz58Zm2tozvm42VTQhh8W6BwihHjFDFOE4ZxwjCOmre/KGdvlQb8mzRp0qTJFy3nYcysat/36DpjaQkhyB9D0i7CiF9myXPPhGRsNAOEpId4cOlBgRbgATAK+KoB+xrVNmdg18GfBzuXxAOhNSaZ3TGXQPoicFl2VE1jsLLRrgt2/HPlA9lTYi27z2WZKV8r5y+/r4CzMgoVK+26kJdG8I2dg8RVgM5L4JYgs+PSeHjGv7QP1fgX64OV75luV7ecuFAkVts6s3CUPoayzRRZ15vSLj0XBHbpYYsbTEBJG7t2bVcQ+WK/tc8yAPl76vlVoUVvK0D3ObD/4txbsSD8bAT9UkUza5sEyAMUSFcVLzESDPXpV6Z/mCKGacLj4YDH4wl3D0+4fzji8XDCGM1C5P7eIA34N2nSpEmTL1osT3XoJkzKdoWuQwgRHQJiVNcXYvHXVkAlRBzrYqeERAxJsGguJARLPWlgIDgMUAUwojDXc7a+Zv19SslXMO64DCQvHQsYjpXKXwP+3QY5d85SevCzMgarYqTlCvD03xfMtZ5cu1utn/+6cbF86OVXhYYq8P+a4tbYWtmevb9m41K5U5UO5H118ZeVQT+eLylec6kVL/lbC3jOCUYXiqGBf5Tj83yTzFVrzZDqngfv/iJ4xt+3fdU9qjSh9ED/eS3bv5DX3Za/QNaVteo6BMBcz8SYY/nAoIG8EcM44Xg643A8yd/pjONp/EWgH3izZ1CTJk2aNGnytxW++OPy5ksLKK3JS+/SGqCsvYHJ3LJ/sbwJ0LylXFzm0F9XwM9DHjkQ8y39Inq2qrfguDXF5E3yGvepv4K8ym3rJanGcN73ZyxPlf/UmkLx15Dn5td6vX/d9vxlpW7pK6/tqrVCy3tD34n/IrOpSZMmTZo0adKkSZMmX7I0xr9JkyZNmjRp0qRJk1+BNODfpEmTJk2aNGnSpMmvQBrwb9KkSZMmTZo0adLkVyAN+Ddp0qRJkyZNmjRp8iuQBvybNGnSpEmTJk2aNPkVSAP+TZo0adKkSZMmTZr8CqQB/yZNmjRp0qRJkyZNfgXSgH+TJk2aNGnSpEmTJr8CacC/SZMmTZo0adKkSZNfgfxft028OJsXDEwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Testing: Seth Rogan ---\n", + "\n", + "Match found: seth_rogen, Distance: 0.29\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAn0AAAGGCAYAAAAOzjeKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d7wtSVku/FRVd6+1djxxnzmTA3GGITiI+iESJUiGy1zBQLgil2BAxZ/3eq/MqFyzICJBULgKA4oiFwwkBUVwMAwgcTjD5Dlzwj5np5U6VL3fH29VdXWvXnuvfcLMmZn1zuyz1+7VXV1VXV311PMmQUSEqUxlKlOZylSmMpWp3KtF3t0VmMpUpjKVqUxlKlOZyumXKeibylSmMpWpTGUqU7kPyBT0TWUqU5nKVKYylancB2QK+qYylalMZSpTmcpU7gMyBX1TmcpUpjKVqUxlKvcBmYK+qUxlKlOZylSmMpX7gExB31SmMpWpTGUqU5nKfUCmoG8qU5nKVKYylalM5T4gU9A3lalMZSpTmcpUpnIfkCnom8pUpjKVqUzlNMtnPvMZCCHwF3/xF3d3VbYt9+S6T6UqU9C3hQghJvr5zGc+c3dXtSKf//zncdVVV2F1dXWi81/ykpdgbm7u9FZqKlOZyj1O3vOe94zMd0tLS3j84x+Pv/u7vztt9+33+7jqqqsmnlsdMBFC4L3vfW/jOY9+9KMhhMBDHvKQE6rTW9/6VrznPe85oWvvCXLNNdfgTW96091djamcRonu7gqc6fKnf/qnlb//5E/+BJ/85CdHjj/4wQ++K6u1pXz+85/H1VdfjZe85CXYsWPH3V2dqUxlKvdw+eVf/mVcdNFFICIcPnwY73nPe/ADP/AD+OhHP4pnPOMZp/x+/X4fV199NQDgcY973MTXtdttXHPNNfjhH/7hyvGbb74Zn//859Fut0+4Tm9961uxZ88evOQlLznhMs5kueaaa/DVr34VP/3TP313V2Uqp0mmoG8LqU8c1157LT75yU+OHD8RISIMh0N0Op2TLmsqU5nKVE6nPO1pT8MjH/lI//d/+2//Dfv27cP73//+0wL6TlR+4Ad+AB/5yEewvLyMPXv2+OPXXHMN9u3bh/vf//5YWVm5G2s4lbr0ej3Mzs7e3dW4T8hUvXsK5N3vfjee8IQnYGlpCa1WC5deeine9ra3jZx34YUX4hnPeAY+/vGP45GPfCQ6nQ7e8Y53AABuueUWPOtZz8Ls7CyWlpbw2te+Fh//+McbVcdf+MIX8NSnPhWLi4uYmZnBYx/7WHzuc5/z31911VV43eteBwC46KKLvMrj5ptv3la7XH0/85nP+Ppefvnlvj4f+tCHcPnll6PdbuOKK67AF7/4xcr1//mf/4mXvOQluPjii9Fut3HWWWfhZS97GY4dOzZyL3ePdruNSy65BO94xztw1VVXQQgxcu573/teXHHFFeh0Oti1axd+8Ad/ELfddtu22jaVqUzl5GTHjh3odDqIoip3YIzBm970Jlx22WVot9vYt28fXvGKV4wArX//93/HU57yFOzZswedTgcXXXQRXvaylwFgVm7v3r0AgKuvvtrPYVddddWW9Xr2s5+NVquFD37wg5Xj11xzDa688koopUaumWQOv/DCC/G1r30N//iP/+jrEzKQq6ureO1rX4sLL7wQrVYL5557Ln70R38Uy8vLI/3zhje8Aeeeey7a7Tae+MQn4oYbbqic0+/38c1vfnPk2iY5cOAAnv/85+Oss85Cu93Gueeeix/8wR/E2tpa5byt5s3HPe5x+Ju/+Rvccsstvn0XXnjhtuu+lThzgX/8x3/Eq171KiwtLeHcc8/137/1rW/FZZddhlarhbPPPhuvfvWrG82U/uAP/gAXX3wxOp0OHvWoR+Gzn/0sHve4x42wwmma4vWvfz3ud7/7odVq4bzzzsPP//zPI03TynlCCLzmNa/Bhz/8YTzkIQ9Bq9XCZZddho997GPbat+ZLlOm7xTI2972Nlx22WV41rOehSiK8NGPfhSvetWrYIzBq1/96sq5119/PV74whfiFa94BV7+8pfjgQ98IHq9Hp7whCfgzjvvxE/91E/hrLPOwjXXXINPf/rTI/f6h3/4BzztaU/DFVdcgde//vWQUvoJ67Of/Swe9ahH4XnPex6+9a1v4f3vfz/e+MY3+t2um0S3IzfccANe9KIX4RWveAV++Id/GL/927+NZz7zmXj729+O//k//yde9apXAQB+7dd+DVdeeSWuv/56SMl7iU9+8pO48cYb8dKXvhRnnXUWvva1r+EP//AP8bWvfQ3XXnutB3Rf/OIX8dSnPhX79+/H1VdfDa01fvmXf7mxvm94wxvwv//3/8aVV16JH/uxH8PRo0fx+7//+/i+7/s+fPGLX5yqsqcyldMka2trWF5eBhHhyJEj+P3f/310u90RrccrXvEKvOc978FLX/pS/ORP/iRuuukmvOUtb8EXv/hFfO5zn0Mcxzhy5Aie/OQnY+/evfiFX/gF7NixAzfffDM+9KEPAeC56m1vexte+cpX4rnPfS6e97znAQAe+tCHblnPmZkZPPvZz8b73/9+vPKVrwQAfPnLX8bXvvY1vOtd78J//ud/jlwzyRz+pje9CT/xEz+Bubk5/OIv/iIAYN++fQCAbreLxzzmMfjGN76Bl73sZfiO7/gOLC8v4yMf+Qhuv/32CuP467/+65BS4ud+7uewtraG3/zN38QP/dAP4Qtf+II/51//9V/x+Mc/Hq9//es3BbpZluEpT3kK0jTFT/zET+Css87CHXfcgb/+67/G6uoqFhcXAUw2b/7iL/4i1tbWcPvtt+ONb3wjAIzYeU9S90nlVa96Ffbu3Ytf+qVfQq/XA8CExdVXX40nPelJeOUrX4nrr78eb3vb2/Bv//Zvfuy45/Wa17wGj3nMY/Da174WN998M57znOdg586dFQBpjMGznvUs/PM//zN+/Md/HA9+8IPxla98BW984xvxrW99Cx/+8Icrdfrnf/5nfOhDH8KrXvUqzM/P481vfjOe//zn49Zbb8Xu3bu33cYzUmgq25JXv/rVVO+2fr8/ct5TnvIUuvjiiyvHLrjgAgJAH/vYxyrHf+d3focA0Ic//GF/bDAY0IMe9CACQJ/+9KeJiMgYQ/e///3pKU95ChljKve/6KKL6Pu///v9sd/6rd8iAHTTTTdN1K4Xv/jFNDs721jfz3/+8/7Yxz/+cQJAnU6HbrnlFn/8He94R6Wurl51ef/7308A6J/+6Z/8sWc+85k0MzNDd9xxhz924MABiqKo0tc333wzKaXoDW94Q6XMr3zlKxRF0cjxqUxlKicv7373uwnAyE+r1aL3vOc9lXM/+9nPEgB63/veVzn+sY99rHL8r/7qrwgA/du//dvY+x49epQA0Otf//qJ6vnpT3+aANAHP/hB+uu//msSQtCtt95KRESve93r/Hz82Mc+li677LLKtZPO4Zdddhk99rGPHTn3l37plwgAfehDHxr5zs3Vrn4PfvCDKU1T//3v/d7vEQD6yle+MtKWrdr+xS9+0bd5nGxn3nz6059OF1xwwUgZ26n7VuLG0/d+7/dSURT++JEjRyhJEnryk59MWmt//C1veQsBoD/+4z8mIqI0TWn37t30nd/5nZTnuT/vPe95DwGoPJ8//dM/JSklffazn63U4e1vfzsBoM997nP+GABKkoRuuOEGf+zLX/4yAaDf//3fn7h9Z7pM1bunQEKbPLcbfuxjH4sbb7xxhGK/6KKL8JSnPKVy7GMf+xjOOeccPOtZz/LH2u02Xv7yl1fO+9KXvoQDBw7gRS96EY4dO4bl5WUsLy+j1+vhiU98Iv7pn/4JxphT2rZLL70U3/M93+P//q7v+i4AwBOe8AScf/75I8dvvPFGfyzsl+FwiOXlZXz3d383AOC6664DAGit8alPfQrPec5zcPbZZ/vz73e/++FpT3tapS4f+tCHYIzBlVde6du+vLyMs846C/e///0bmdGpTGUqp0b+4A/+AJ/85CfxyU9+Eu9973vx+Mc/Hj/2Yz/m2TkA+OAHP4jFxUV8//d/f+UdveKKKzA3N+ffUcfI//Vf/zXyPD/ldX3yk5+MXbt24QMf+ACICB/4wAfwwhe+cOz525nDm+Qv//Iv8bCHPQzPfe5zR76rm6i89KUvRZIk/u/HPOYxAKpz5+Me9zgQ0ZbqbMfkffzjH0e/328851TOm5PUfVJ5+ctfXlG1f+pTn0KWZfjpn/5pry1y5y0sLOBv/uZvALBZwLFjx/Dyl7+8YlrwQz/0Q9i5c2flHh/84Afx4Ac/GA960IMqbX/CE54AACNtf9KTnoRLLrnE//3Qhz4UCwsLJ9S+M1Wm6t1TIJ/73Ofw+te/Hv/yL/8y8uKtra35FxNg0FeXW265BZdccsnI5HC/+92v8veBAwcAAC9+8YvH1mVtbW1k4J+MhMAOKCeZ8847r/F4aLdz/PhxXH311fjABz6AI0eOjNQTAI4cOYLBYDDSVqC5/USE+9///o11ddT/VKYylVMvj3rUoyqOHC984QvxiEc8Aq95zWvwjGc8A0mS4MCBA1hbW8PS0lJjGW4eeOxjH4vnP//5uPrqq/HGN74Rj3vc4/Cc5zwHL3rRi9BqtU66rnEc4wUveAGuueYaPOpRj8Jtt92GF73oRWPP384c3iTf/va38fznP3+iutXnVDdfn4hzyUUXXYSf+Zmfwe/+7u/ife97Hx7zmMfgWc96Fn74h3/Y1/lUzpunuu6h3HLLLQCABz7wgZXjSZLg4osv9t+73/X1IYqiERvEAwcO4Bvf+MZY06b6ulRvH8BtvDc5/kxB30nKt7/9bTzxiU/Egx70IPzu7/4uzjvvPCRJgr/927/FG9/4xhHm7WQ8dV1Zv/Vbv4WHP/zhjeec6lh7TUbPmx0nIv/5yiuvxOc//3m87nWvw8Mf/nDMzc3BGIOnPvWpJ8RIGmMghMDf/d3fNd5/GmdwKlO560RKicc//vH4vd/7PRw4cACXXXYZjDFYWlrC+973vsZr3OLrAv1ee+21+OhHP4qPf/zjeNnLXobf+Z3fwbXXXntK3uUXvehFePvb346rrroKD3vYw3DppZc2nrfdOfxkZZK5czvyO7/zO3jJS16C//f//h8+8YlP4Cd/8ifxa7/2a7j22mtx7rnnntJ581TW/a6IWmGMweWXX47f/d3fbfy+Tl6c6mdzJsoU9J2kfPSjH0WapvjIRz5S2SVshzK/4IIL8PWvfx1EVGH76l5RjnZeWFjAk570pE3LbPJ6vStlZWUFf//3f4+rr74av/RLv+SPO7bSydLSEtrtdqMHWFP7iQgXXXQRHvCAB5yeik9lKlOZWIqiAMCODAC/o5/61Kfw6Ec/eqJF/bu/+7vx3d/93XjDG96Aa665Bj/0Qz+ED3zgA/ixH/uxk57Dvvd7vxfnn38+PvOZz+A3fuM3xp63nTl8XJ0uueQSfPWrXz2p+p6MXH755bj88svxv/7X/8LnP/95PPrRj8bb3/52/Oqv/uq25s27c9244IILALCz48UXX+yPZ1mGm266ya957rwbbrgBj3/84/15RVHg5ptvrjj7XHLJJfjyl7+MJz7xiXf7mnimyNSm7yTF7QzCncDa2hre/e53T1zGU57yFNxxxx34yEc+4o8Nh0O8853vrJx3xRVX4JJLLsFv//Zv+0k2lKNHj/rPLubRpBk5TrU09QuAkWjvSik86UlPwoc//GEcPHjQH7/hhhtGov0/73nPg1IKV1999Ui5RNQYCmYqU5nK6ZE8z/GJT3wCSZL44PRXXnkltNb4lV/5lZHzi6Lw89HKysrIO+y0Fy6UxszMDIATn8OEEHjzm9+M17/+9fiRH/mRsedtZw6fnZ1trM/zn/98fPnLX8Zf/dVfjXx3IizRpCFb1tfXPfB2cvnll0NK6ftxO/Pm7OzsRDaMp0Oe9KQnIUkSvPnNb67U84/+6I+wtraGpz/96QCARz7ykdi9ezfe+c53Vtr+vve9b0QNe+WVV+KOO+4YWUsBYDAYeK/h+5JMmb6TlCc/+clIkgTPfOYz8YpXvALdbhfvfOc7sbS0hDvvvHOiMl7xilfgLW95C174whfip37qp7B//368733v85Hj3Q5FSol3vetdeNrTnobLLrsML33pS3HOOefgjjvuwKc//WksLCzgox/9KAAGiADwi7/4i/jBH/xBxHGMZz7zmXdZAMyFhQV83/d9H37zN38TeZ7jnHPOwSc+8QncdNNNI+deddVV+MQnPoFHP/rReOUrXwmtNd7ylrfgIQ95CL70pS/58y655BL86q/+Kv7H//gf3kV/fn4eN910E/7qr/4KP/7jP46f+7mfu0vaN5Wp3Nfk7/7u7/DNb34TANtCXXPNNThw4AB+4Rd+AQsLCwDYVu8Vr3gFfu3Xfg1f+tKX8OQnPxlxHOPAgQP44Ac/iN/7vd/Df/kv/wX/9//+X7z1rW/Fc5/7XFxyySXY2NjAO9/5TiwsLOAHfuAHALD679JLL8Wf/dmf4QEPeAB27dqFhzzkIdtKofbsZz8bz372szc9Zztz+BVXXIG3ve1t+NVf/VXc7373w9LSEp7whCfgda97Hf7iL/4CL3jBC/Cyl70MV1xxBY4fP46PfOQjePvb346HPexh2+nqiUO2/MM//ANe85rX4AUveAEe8IAHoCgK/Omf/imUUt7GcDvz5hVXXIE/+7M/w8/8zM/gO7/zOzE3N4dnPvOZ26r7icrevXvxP/7H/8DVV1+Npz71qXjWs56F66+/Hm9961vxnd/5nT40UJIkuOqqq/ATP/ETeMITnoArr7wSN998M97znveM2Mb/yI/8CP78z/8c//2//3d8+tOfxqMf/WhorfHNb34Tf/7nf+5j5t6n5C71Fb4XSFPIlo985CP00Ic+lNrtNl144YX0G7/xG/THf/zHIyFTLrjgAnr605/eWO6NN95IT3/606nT6dDevXvpZ3/2Z+kv//IvCQBde+21lXO/+MUv0vOe9zzavXs3tVotuuCCC+jKK6+kv//7v6+c9yu/8it0zjnnkJRyy/At40K2NNUXAL361a+uHLvpppsIAP3Wb/2WP3b77bfTc5/7XNqxYwctLi7SC17wAjp48GBjKIK///u/p0c84hGUJAldcskl9K53vYt+9md/ltrt9sj9//Iv/5K+93u/l2ZnZ2l2dpYe9KAH0atf/Wq6/vrrx7ZvKlOZyolJU8iWdrtND3/4w+ltb3tbJXyUkz/8wz+kK664gjqdDs3Pz9Pll19OP//zP08HDx4kIqLrrruOXvjCF9L5559PrVaLlpaW6BnPeAb9+7//e6Wcz3/+83TFFVdQkiRbhjAJQ7ZsJk0hWyadww8dOkRPf/rTaX5+fiQ8yLFjx+g1r3kNnXPOOZQkCZ177rn04he/mJaXlzetn5s73/3ud4+0ZauQLTfeeCO97GUvo0suuYTa7Tbt2rWLHv/4x9OnPvWpkXMnmTe73S696EUvoh07dhAAH75lO3XfStx4Gheu5y1veQs96EEPojiOad++ffTKV76SVlZWRs5785vfTBdccAG1Wi161KMeRZ/73OfoiiuuoKc+9amV87Iso9/4jd+gyy67jFqtFu3cuZOuuOIKuvrqq2ltbc2f17SuEfE6+OIXv3ji9p3pIojuRRaK9zJ505vehNe+9rW4/fbbcc4559zd1bnL5TnPeQ6+9rWvjdgBTmUqU5nKVKYSijEGe/fuxfOe97xGde5UWKY2fWeIDAaDyt/D4RDveMc7cP/73/8+Afjq7T9w4AD+9m//dluJ1qcylalMZSr3fhkOhyP2iX/yJ3+C48ePT9eMLWRq03eGyPOe9zycf/75ePjDH461tTW8973vxTe/+c2xoQ/ubXLxxRf7PL233HIL3va2tyFJEvz8z//83V21qUxlKlOZyhYyGAy2dALZtWtXJbjzicq1116L1772tXjBC16A3bt347rrrsMf/dEf4SEPeQhe8IIXnHT592aZgr4zRJ7ylKfgXe96F973vvdBa41LL70UH/jAB/Bf/+t/vburdpfIU5/6VLz//e/HoUOH0Gq18D3f8z34P//n/4wNKDqVqUxlKlM5c+TP/uzP8NKXvnTTcz796U+fEibuwgsvxHnnnYc3v/nNOH78OHbt2oUf/dEfxa//+q+fElB5b5apTd9UpjKVqUxlKlM5Kbnzzjvxta99bdNzrrjiilOaMWoq25cp6JvKVKYylalMZSpTuQ/I1JFjKlOZylSmMpWpTOU+IFPQN5WpTGUqU5nKVKZyH5CJHTmG6Wjar1MtVMs96+Rkc+bdMzXY4+ssICBqOcBJAti0m/jL0b6o/i0Ml1/5dqLup+a/7LXbeYYjdSQupvE5unI3uY8bV+76cXW5K8ZJWIdJ7tdU76brOu2FU1jLqdxV8m9/+Fv8gciPcydSSv/MjbEvvOJx4H7cORL2OFC+fEQQwVAJx48xxo4jQv3djeMYQkhIyenJBASUlP5aVzeCgSEuR0rp61IYPs7HIgghoLUGhICQZd2b2qm1BhGBCDAAhJCIoqisuzEAAdK1PfjOtVEIgSzXkFJCKQUhI1/3wtVLCIA0tNbQ2oAMyv6MVOW9K983wY8peP/Cz3x9WQci2+5a3xOVx1wKOPeM3XNxc1bYtvB5cT8ZAMR9EYyFcXXzfxvyn8txULZfSVVO/K7eoHIMBu0IryfuHNTFnSMBSCEb5z5jDN/Dle3GpCi/D/vR1qLCWvl6GDt4grJdfxGayiklPK5N+CrRSH+eiJj6elt7xnysXNa4A7i/jK1DZfz5FrH8fy/fOtrFGeW9G74Y95XkyFsBkbHXCZQj8qS6KiyoVu7JlnoGPcK7Y0yNA3XbrUfTJLkZAJzKPUcqCwlR+Uo3bQrE6NghIn79xx0fc6+TFQJV1ncHJLl+IWApzwurOG7ec38LAZBdzYxhoOa+qCz7xoBq64aUEsaCRwAQJPxi6UCfkhJSkL8XXH1FtX7l7+rxOgDi+hGaJuMQxIWLdh1YhqBvXN/wV7as+ty9CRit1NtuMOqATQjBdZAGApLJBSH8PF6vl+9rU2MgauLbQc39F/aRqaxFNHYt8uWQqcyFZNtGhsbOkSHQGvdO+Pqc4Csztlw0P5dq/ULsfIoW5EDOKNAHnDyrd++R8Q87HA88Xwl+QU7kLsLdy5ZNNALWtvtE3GBu2i1P8nw3e1mbjjcthicjk7Jwd6U0LvbTd+XeIxbwCf+ne74BMEHzGBg3Uomq5dVlq3E+jpUuAV/1e+OAppQQ0jEU5Xn1FowyaWW9+LfltYyxrJ+wTFGtXR4AlHOONsaznzCFZ0k0AtDlaaKSfRQQ/llU6zbKoNVB1vj3kQKGcJS1dz86BKqbvtuW5YUDfvW6jj67ylxsqHLfenuMMVDCMqhBZ4/Ov2J07nX3a+oXw5DOAdxKD7k6oDrORnqyutMYZb6IGPAhAOoBayggyg1EvbxaH4TEZZVNrtZpSwDZeBQjz6W+SQrv1cQy8jG7CdrGUnDGgb5Q7guLWonqw6Ex2u4qbV+eQs2nb3q/UMKdo781kT2R3P/2q5Lqr5RZX4y2WaetK42wEqPq501kEvC2FSN3ogDwRNTIJ8ICTuVeLu4Ri2YmqUmqKsnmhW0U0AhIKcCm3uV9DBmM8IZ2wRKsz6ws5AoCQqjaPRAwPSWj07SZ8cdNUDcyEFJCKFbtOhGV+amUUtUZtqMsW7i/m95FQx74uQ2wEPDq7jrQ8GWKquqaKAQ2pvF8V95WbJk7D4E6XnjUGqj4jBkZISNzhBS+GEHCq0ir50lXdHl/e1EFmI2Zy1xfh8CMjA7U1/V22c+ysi3w38moOp482K/d3oO0el2FsQSJ9KDPMbQV4GvrPqpKFcF4CgFg9fO4jdI4ados+OUXbgwJD5brciI84BkN+u4r0rRuN+3sT480DBkRgNEtqlAHfCPfnyo1ZHCb7aiNT4S1q6s8pjKV0yV+kUAAvRrGnCdLAnbAM2JheWEZVFskG+7rrnYgxIGl+ntbuZ/9nhqOO8aPrC1beG3YribQF4Ifrn/JyLjFGQAoAFeVdzQknACrnrR/WfZJSMvmCcFLqWdTx7/ndfBYr3e9DaM/o+XV+6NJlVsvd/R7WDBeVRvXy6wDUge8jDFs/0alWtydT1R9/iXrZxrn01DRFNolIvhtrP3iWIDLqKwCmnmcNbB5wXvTVExJNfp/Kn0RljVOmvt09K7hu9L0uUKTbLkUlTCOtrgoLH87ckaBvnCQno5ym+TuUOOF1alSuZO1uzwtPP9E+2wbewU/t4591U5BfRpK3mLym/T6Jop8K5lkfIyov2h0QWuqz4nKFIjem8QCDuHhV+Mm0J8dslVuAatMKPDfV2j6hjKcuDIccyecSo/sckUlK1IBeChV0iEIG6e+awSTAVogYypsnO0NAKVdn9a6dF4RAhByZHMWqhe5LPcjvCOBA4UEsiAw7MAATPv2bj33NKtLS2YuvG6cunDyNYDHiYAsWTUHFtw5vrwq6GPgZ8Go0HC7/LJe5fOvzPmWBRYiAEOuL0cYN4PKEBAC0hiQlBCb9KNj+ri/7bMF2xWOzMU0er077lhWtzGhpvNQPh3/fW0TAzRtnKj5e/5j5B7hGtu8oauD/1GwGaxcI0WLBjZ/Mzlp0LeZCquxk88w9mRS1H+yZds7bHr+XdI3niZzExtVd8ib7D5PRs6kZz5OTtVYOBF2cSr3XRHCAaL6N+G7WR1TlUV807JHbboq41PwYu7VtAC0BUKEqppLEqCkQhQpCCkhg/KiKPJG/UVRoCiKCtAbXbCd+q9coIESPDhGxTOQrnOIYCzwg1KVfnCs2iiPRA6vlOUF96tCpfK+FlX5ecGYav83sU/OGcNBiTrAcxKeM36uCPol6I8qjWWZS9cKAd+3JKRHlNrwXC9ldf4nSI/xjC3LlVa3r+NnY2AqzJUF2K5viCzgMzDasLd10EeGDCAFVMOoJaCixQn7TQcOG95hyKp362sWkYHRVcDnNwLBc/OsdJV5gQD8WK4z3b4Nwtl/jtZ1O7I10VUdl6dCTgj03RMW8BORE1msx11Tn2RDqZ4+KeNU3RGevNyzQcl2mLpxm496OfXF8a6o31Tu21IfJhXSbgvVoB9jm4y1Jna7rrYiAhTKkCHhQlRR1QXHEJwfMoBEZMOgaP+dU82GBvRh3cK2VNXLDFqklAxExqjbKos+X1UCHoJ1KrHfSbdwAwLBoh6CDYiReSH81h2r92cVVAMO9JXH6vMLecDbDPqrMjo26nObhWv19QaoOFGE50tZ1s9JCITq48dAe7AUXtcM4mqsrXuuNBoguAq8RtsuRdPYESN94goQUlYW2knn9DqAHLd21Pt+s/m+/l3T3/V3bmKxbPxpZfq2Qz+fzPWnSk5EpefOPREAuMUZ9rxtFWsl4NpPRhqLmGSXcdfLiYyVzZ7ZOHXMZtefivG6lbp3KlOhLXZ1IWtWX0RD7qdSXnDcMXdN54BKO6yiKBrYs3KRcwyIW5zcAqW1rjAxIYCsA6Lwd/i+hYAvBH0hmzliRmEXvTrw87MleSovUNq6No2CPlb1UskkuXsBIBvPqkntN7rOhKFqmsBDtV/DPhkn9T7c1lzn+qJ+Tq1vPWNJVGEaBKyDA6oA1/2WUpXq8JD9EvD3EEJ4cwFhgvFe6efmuVJ6ZpIqYWLCupfXjK6Vnrn1dQzaNrJ5CthpW/emvq6Pxc1AYnifcUSECO4/ydpbVzdPildOm03f6Vg87yq5J9X1viQnqv4eB7ommTynMpXTLW78GarazYXiF5Q6y8dfBgo/KlWWNeDn7jX6EwZFdou4rBj2h9eHYK9+3J3v7e4ayuC/nQelgRBOTdvQdgcu0Pyeal2U77FtLYOLUjnK3scsSiiretSoKIJdHwruw5LxDMBfA9gL21//HLbf/c3flYCziQHdTOqsYpN2omn8SFX1fq2PITIGReDg4esftBsApFABdho3fzJEk0IAsgEMBUCciGwIGRNc2dhyOOM7Nj6Q1U2MB3IABLN8TlXNjDM/S+fEY5GcpYWrGy7iDuM/jC6BbLiOBPWfVDZbv0bZZBf3cYsyQWPfjXEyMejbzmJ7Ji2i2wUJk1K2k9zjZMDjSA/e04Fo05A4BU2aZKw1MXxNx8PJ80TGzbi6TLKTP5PemancdVIBT7XxVx83k6iQqqyEVX+NGVpEZO32yjJUYCcXqmYdOHHfOYeKMBNH/bxxG38us0o8he1l4FGCoTqIqp/rfwJ1nzP8L9WAASymEi6E3Mo4YO2rWQMHTaCnDr7q57jLTZAVo4kBamKNPAtXU8G73+PYpiaNRr2+oUq33s+VNojmjBYjz9td1wB0PD/lQGYAgEfA6Ei9nc1hra8q5xqww4nFdVKitBtteIfq71elvyQA50UsKiU0Ae4mCfu1SbM0/plPAhC3L2eU9+5U7mMy+j6fsIwDdqeirLtCtsM6ThnKe6c0sTUjC+9WY1PYUB5EltAo2aXme1ZVan6xlwJKKraHozEshRgFNiHoC4+FbWpqX9gHdZVytXmjwXXHqd78dwGoLU8dBWd1oL0ZqKu3pb6wC1G1NxsHgk9k01qvt6vXuDo1ScgUhuxeWK7va4eeKjuIEkTXgaenTEEVW7xKfTzjWWVNN2XDam2v90V5onVOEeUzcc2rPv9mdWy4FeCmV0Ghe7c2q+9W6uD68c1Au6s41a4pW7K9deCMB331l2w7i/upBAJTCeXEQVGw397+tdsAY1stOuPKPZWA70TKOpnxPZV7nlQAj/0BcZy7kG3xrBdfNP7Z2+EinSG7BXV1laC7Nyu9yrqUP5JDdDByROgjbIyBUKMMn68CNdupNS1o4XvqPH5d/cPPdVA2cj0QOGDU6E0qQ3YYlwvXnhMCXVviSJcyY+U0fM1M3igjWj6MKigqnV8a7xP0YR1AO1FKbcncbTZvjOTLbaiHv699/h74wd17dE5l1q46FmTt+5LiNah4bQcgdWTzI4L3Av7Wm4NhKA/8DAFCunEaeBMDEFJVNwiwzZXKBul2vsrhON4cnDbJVs/L1duNo7HgLxBjQxyRq/SEcsaDvkl3Q+H5p7rMu0Mas6rd1Wv8uCjIp6Ae4WIznoeYylTu3RKqMLdkB8YsBG6x9ad5/RmNpNwqi7JgJWBvhAjUtgCMKOsX3rcELKNquDrr1dSWpk1WU90mnaO9em/8CZuuC9V6sZrYqfjqoDy8Ztxm0bF89Xsy2DKNba1/Dv9uYsOa6t/0nKt1mnzirgTJlqPP2Z6F+mIgxGhO4Mp664AkEQQ4Zp9j4cauywHmKknHZhKoehEqKn+gBMwOuJbPUcDZeArBIYKMCyHuYhraEl2Zk47PSQC6a3vThmDTjT82Gfdj5LSAvhNlZLYqq6nczZiRzepxT2EBQ2B0l8jIjep9SA2f+I9JnnpFOWBf5pGBO0lj3STgPoy5ZpIxc6rEl+sX3er3hMnGZmOZGD/ZT+WeK6FaB9hkgcDm75djQso/4FmVJra7LM8avAt3ejBG67/dQls5urWMW8ybFs4RVWGDNLOKYX1c6yablKr3GfVydscnkbGqSQrBtzu3/G4zdWWTenm7TN+koNedZ4xTYYpyXI1IOUJC9stfZxvpmSgR8sUlg1cnZylUZRKNVGErjQ17CFeZOXdPC9lQUg01+05h1xQH2oWAkAoieHb1EbKdZ1EH300gfdzmr360LGd768DdzvRNF67N5e7vnVNZg+p2jUR9p7iNe0166lar5cmWf1ezr1O510kd+KG2SLBZuv27dt2I2IWJVWnVeGj+fKeygwDIQHqmD+DcpKxmUioauTZU/YVevOFitpkatlbZgLkJ2www2cE5gMexVOPswCj4jw9Ir94tF0+PMKqF1h6BU7E2SRNzWdbJtaEJ8G1ORmwGCrYy9xgPsJvZ1fFlu1RsBGgHzPxOG84EoCw3UNValakQ1f2Hy/nLQy/ia4ggZKByJtjUcPa6MW0WTX0owg8hlHNAtFSFClcptzEyAIREOMyEkoAwUAAHmXZBp0MVMZXeswKj49yxd0DVZKFuFhG20TnqVGxXR1tbzhtjNyrNctoycgCnDtCdCHN4Kr+724HphM3fbGIc933jeePOqd+voVs2v9bYiYPsRqz+6gaTytgu3x4a2/zsrcuatC82u7acaE4OIZ4uhnIqd580LtKijGvmVJN1UFU5HeUy5xi/Mo5Z9Ro2zId3COGF3VTKDMO1OAnr6FTATQxFvT3jmHbHzjlw4D677xlYup/xZTayZFsqvWjk+7CPTc2shWhzxnD84j1q2zgKhjf32N1KwmtGwG8NYGym9Qi/d4CuOoON9mdoa+k2Gs2qfTv7G+NLrIdmqdejAmIIY8odaYxrePDZAq86vQrXRmfnFxIQTW0VvHlw/eSLK+tdqX8F6Aft3+RZhOUA1diXYd1HATxtPtxrcrczfVNplmqE+Hu+CLg2Vam3sYqUTeZtt8g52Ub88m2Jm/bGvU93Pws7lXu6kJ+va8Am/C8AJBUGy57XRGZ75sGDtyqLUy7wDPxC8FA6IjRteJlZMMaMeQGqi2KdgZjUXKfOJDWBvuqCWALcURAdnBteEizclZ/gWVRUfzX7sPBeDmw3KxbsdfXJxNZZWOaV571R0Obp0OBztQ/KejWDiTowCdviKuXaz8cqXrdhe5tKF2U4k7COFFSdYWOg2i4rUu2SMUzl+LZVmthQBlWVuNQESClQ+9qjjgVsqIMg4e/Htn+2zAlV71uJA4r+PRppW/P5k8pJgb6TZR7uKcxF08Rz2u+J2gsmJueJNq/nuBdqwksazht7ae2Lqgpmk9PDmXZkEyNGyh07SYyr12ZCjR+3Pn+C+eiEh48fDCNLUGkvM5V7pFQ3LHYB92NcQqAWl652vVusNKrDQDTMF0wcMmslKjlYVXlNBXTokfqSAYQNHOuYyLD2pfourGPwucbY1EFgaRcmbB2FT+nmzpHBdeUbIcr7CPiF2QHq8ibke5nfK/Jsm2cXUcbRI2BsPlgK2lOZg0aYWXffUXaribV15VJ4oAZwQWV5ZRkU/A5/gFo4SPixJkbrIUQ1N65GwFiJsiDPXNmHTra/SaDyLML+cghQV2Fi+b0bUzWQX+2ncg0Yz5iVZfpswQTABXUO2TgH/IQFqo5ZNLrsUwvMIS3os+CRhIAkghFVc4ew7pux4nVmlpyqGe45BecJ1pDJimNN1Rt7EjktwZmbrplUzXgmS73ek3b0ZrvVceW4SdtPktutbMN9JrugsRD/1XaB7zi8uGmtRPDBTnCjZbpJn8Yj1trkscmNKiVW7zU6UfMX5JeZkTv49bQ81y+GE0swkVN97PhvaudO5Z4mlfhosJBPcK5RxwBtSwTnU/WsXTCORH1c1qSudmpSqzLokiPnVqtQghHyr0DzHBfeO/zsmMpx39c/O46NF/nR97KcR0MUUg3Yy/c1gCjD4ziwQGF93Xxun11TH7nFHq6khn5o6kMP+Px51TEgwutGWKvRZ1aZR/x9q0OgCZDIgGUtVbjUHNChgY1yImVN1SmC2Im1OdHdQ0rJ5gdBvXxInIb6Nq3LJWtLALk68HzeNH6kkpUxRzAuLnPDfWobndo740BY07vUlFc3VAczg16Ox7p6t74GE8oMOZOuzXeZeveeCvROpYTgr8lGYdpHk8ukhqtNfXoyjK1/EQUad6QnW/52xW4Gp3IPlXAeKFV9VVVjsIvAuIcdLj6jS9PkG9aKbVetFAdKy1s18/WjZdjjGGU3wlJC1bVbpP0WTzQv1hW7tS1mBcc0jfZFMCeLkKaqwMbKhs/XuQGAhD+V9jX0+STHtiJPQoZ0krlnO+uMw3Me9ApZ+7ZS8ug9XD8QQRCbBAgSrFqvAfvNHl44njYz53FsofD1FVAgz9yaAFCFZYfPtsTZwntCuc0YnxK8h65topqXerN2NIHsiv3fmH5o1PVR8xjaTKY2fSchk75kk0rTzu9kGdZTI1WWiSqTYu1etXXp5KriJvSGb8a9GBPMImPrRKg1cAwjEjIJmzTQFROqkk5Ump7peAgwlXuqVNWCwo4v50nJQgEQ4g/uVzl2S8DhVHClsAqpGUy5Y9KB0PALAlgVyn82sRZ8vbOGFawKtowO+fb44soWiWpqMsvJVFSYnnFC9f6un+pvrUDJ1FONMasKwRjNXSf4KpeJQoQFAn5+aLKjalLXlZ/LgkTNGTg09K+XUwGP4f2CqXcr5qupbk113Ez8ZsR3sudBR5eACjtVsp1CKUgCBI1qL2xlWLXqPXmrcfQcayhFlT3k0pkg8/0mg80TsQrfEPmYe0ScpUOp0rTBGFYDCxCEcCpZCppbjk3fd1TdyIRBup1sFYuz2gfw7HL4bm7Gim8ysBtlCvpOUprX/M0fwr2D0XPc/Bjgd5qlqp44jYWfWAGVv3wPTVrspu0Rm/w1lXuqeGYCjlWoghjHYmldjCwy9TFQ1SSMsgpj61ADGqFDQ5OMyyrhvDr5ewdaCT63QQPTV7+PIQOhzQhrVmHPnG2TlJBSBbssUYJMlCo9559ZlmcBHIijhwAgMpCiDPGilAyegywzIDS0u15H1Nrl2yLLBT1U6zmv6Mq5Y+Yix1puJiFocDmVG84Kui1k6ty37t+AhR2pDDXYpo7WTUAC0s6GhhxurLaJ0Q4zeoE61481X3QV+IQb8JHNkJBBmJUSRCnVkM6PLNknQ7BmAKfjD86veCMHYYxc+U2ArQ4KS4bR18ybDRiQN88wIMiQ1Q7LwF0csmUqJy93LQjc6l6TDJ7aOXcz8jhl3bfNcsadHmoKnDQtdo1i58Rg+h1757tSjTyV0ycjKl1RMhX1wV2CHgpAmfDLMgKGBPbMqpQQRthNW6CJ8/evD7vQrMHfu1YnP3BDhhLlV66eYZkBOVljztmRQ4gqCPLXgarspyhZDwZWIbsStFpIW64FfIKYeRIOINvGy+AlDBbmcPcmLCvo2lH5cfeu9H/pqQsh7VJtUFoHV3+L4EE4Xs0RTuNnEuHrxc9W2GOj6dzCfrafguNUwVae1yMB8hsJ1wagqvIWZRkVJqo6dsuSA8AjynuT7wf3XUNZlfvCEbEQjCvhuF5jx4EHhnChgBoYVLIbL/uOGPtahY9SBM8lnOg3A+r+u4DNcyYFrkeEjRVobN8Z+430G4TqRs69CyU431qmoO9kpcmy9V5Ov9w7mMrTL2U/TcHZVJpFlssLAJSARVa9dh00UEqxo4JdOMhQcHU59YSqKQZs8Jo2D+wq5/LFUgGOxTeezbfnub/JsWK2DaJUkREAYioL2pcfqGGBknWxCyBIwCtzPRsmIFVUAX2+HsbwT9A+Yz18pZSIhPQBgg0ZaKMtoASUVJBKWnBQgmRONVyGHrHcDrS7UNgGSwtGg2doTOH7h0BQ3InQOux/B5MFlFB2oXeAlEDgXMcl6JP2p3xGxlWKbFlBJar2fdW9Qsi+cv+H89EoGPTjIQCtJgTZVG5SuF9MbbNRMm3GlEDMdpLvSrdHqQqHQGHAxsGRSdgx5V10HHC2/RuYGbjbGyoBP8h4JlJKBv3Svnk8dgzI6BDCQkL6sDXGaFsggz0JCQPDv43md9P2MQc1V9Aux3Nlo+K7yXZZuDGzgchtYHSyzC83kwBTZRGlDJ65B6qTyRT0bVca12+x1QlnsNzT6ntPkhPv282vLBfp6eO7Z0uoxpM1oFdRU1nwIVSw69dlyAkJUTlfSGE3pKZcnAOQ5Mqv2wfVVYz1upb1EZXr6iqrejuckTvCS8kF4g3KssuuhEBRaAC62h+hejf47apkQCiMhglzkThWjwi5LqBJcnw1pyoHIL1tl+1nIGAILQ8j6wu4YxyrTA+3s9p3YWBeIvK2ZGF/NRn4h/1eDf1hGZ6QffKsnhhrb8mtk75dFbu4kPAKwD3fvozdKGxHCeeJCwmgCnJK4Feth+tTOQbw8S8FIV3ZyjJgwn92IwREFfDjWD9CzdlDWBvVkIWjcrwLuL6VtgqmYocHSBuceTS7hpSyBIrB++uegXuf3N/OvlspBWMcmHdo3ne2b7NrkzEGqsYi1sfdpJqfKeg7JTJdeadyN8mUdL1HS7hI1FVD3iOzPOKZrxGAUFGZucJLNVSA+eBVr47FQjPYCAGVZ+WEP+JqVLl+3MITqjrdfRmoCV+mv4+7hxDV0p2KOWhfKNIybATBNoFWpakiFQBTG9bF2WR5lVst4LHXoY4+k1FD+io482dvshBXgWPQpBE1Nka+d/eoq0hdn4GqIIAdGAKv0sDRpnHtCjcPFqSU7hhh20PA72pVL68K6Pm3iy9q2UP3yAOGEJX2BXUK7g0PRh06LR2UwttXN1EWvBGxU0fYfZZpA41mgXFj0ZXjPNEpKE9rw+BQVH98MaJsq2PfAWHDxZT1de+9ktaGNGBR/Tzh+pPIb1AavXsb5JSBvkk8iE60zDNRnVh/3aZyKmTaq1MQd9+SOqvWBPxCuyUnQgiQFE7/CKAJYLCnY3CV/TdUCFftzkqbwVBtVtqJlaphCsBBlZ2oAxfPZnhA588GhKy12YI9IdDo9RgwUOVayipxKSOr0rW2T5LjrykVA2C2pDAuf6qzlyoBsaRgrfGLqz9jTDw08v0ClFl86uC4Lk0OHuFYCEFh06ZAogThIUj3Rv0BqwgAOgC1YRzHylgLQG695uW4MAHQ2yQ+nKh+sCu5zbdONg6frICyUgwECQ6jGGx8SuaLHHaDZyA9mGLGUYpq37m6kCm9xMtUhXwfZnIlA1wpAWtGYHuH+8c5DxF/Jqv55bFBlefIfSkralkhLVh2gFPUsp8ErLlEyQRWmFuHi8qP21o27tI4fWea4fmpqJOgaoeb6aI9lalMZRsyTmXjmT4LUCDgtWV+Qyw5O0Zd3+k9C1V1QtpsA10Ba7X6EJnaAurOt3l6a/NgqMoMnUAqQNFe68v1KulqXUkA0sVXc+rbQHUmlfJgSwgBQdRoai2lZA9Iq5pTcVJh6jwQcHXiWjT235brBlk4XWMG3bUhqKsDOycOUDk1YmWcjNRsVEbtyUYBpD9HCt/H9faF4NsEZY25K5o27SVDqdwNAGlBEhRcphijAQhtPXeNZ7jqnuLGuOfmNiGM/ISCvaYaOJvV6Y55K/vfGAMpRLk5Cqg/KdkMIM9zP05cH0opocn4zYErq9434fNVSnm1sNYaWVZUAF29nPD68G9tWei6CcWkckpAn3+pt5A6yDod7OB25EQBn9jqsq2+b34vyu8mLXOC7trube5eObM2BVOZyumWcNL2wVdqqh6/4GA0lht5fgd+wSKEC354r/JD3au0/C1KFk0IlInoHehwtIrzCLVwK5zT3CJsj/m6erzHgM+zaU4VFtbFMjmc8apkJU1YP5TlIFg7XEYHYVVrnmW0bRL+vIjBAVFwj/HSvD4JCBhfrgjuW64TrnPcc6IAFKL8zo4Bsl0ftjt8vr5Mx3bVwCCE73gOhAyyIAn22Y+2gYdYyRiiYZ1mUFwCKsdkEUyNUQ5BNwG18cF1dB0k7BhyWj33nR133vuoDNlCJC3jWN6Ch4B9gwRBGHbA8CpQzyjDOuLYvpHlmOfNCwFkRvrU2P4RdryRG4tkmT7HLpdPy4I74wluY1WxcMy0DQdEpgS3HpTaZxBiKxHMB9rWRUphQwxNhsGAu5Dp28w+4Z4m1eF9AlBlim2mMpWpoAr6LFfhvzPkIBw8OGC7ITlyPWrzK9ulBeqf+lRbYzwgWGXIyjfhmQRevdln0YMrz8A5L1T4fKXuvqXOrayADNpaBmp2dlGogV3AAQYDZ1PmAJ+ti3SgT7G3ri2b+8d6XhKhqABlt/iTN953NlMjfQrXtRRcX2PDqBkuOtUw+WdYAnrf58G17K/rITUcsHZYTJDVLFpSlx+L2GT3XoJQACCtS1DhWdcA4Nl6eWW/BTBClE4hBA5iHTSSn6uzq7PHSqhKZX2dStbXjs/gIRCw1dI12H52QcRlwBAKVsx78z3i1irpfOGtQwdp78XLz5v4HBvbUoAZZLLqXmFBHycOKVGqDti4OIo8I0zE1hXGEAodjJFApZ0XGlJxYGkYzd7fQkAoCWkiEDSEZa1d+7ju1uY0YBalFDDGxnQ0BkIYSJKIIsB5Ik8id7kjx8T0eHDuGSV+Qqoea/g4KpuwdZM8rvJlmlzGspJi5MMJlH6yciItmspU7l3iVW2118AtTI5rYxLCePss780ZsDQWntlyEbxazHI4wGhq7xwBPiaYEGWdpBi/RBAZEDlHiPJtLtmuqnOEVxPK6sJYYZXAuUcJvAgH6zqXKwVipQCUzEhYfkU9SuV1LpwGbN7g0MM2bC+ASjlaj6pnfY9a0CNqgNGpu+s+BdxUqvxu+s6X3fS9KJlAd16TGte1o1InX24JLZ1228B5AjvP5dG6ODbMnhYETBbQRVbrF/h7uPK82lKU3rSlCM/KVYN72289TnZtjCCEs6ML8gTbcClZoX0fSBkhjpVnpo1J4XA+m0FwcG8iwGiNIs8BsEpYirKfjCGQ0AwcVYRYKkipOVwQWGVryMAUOXTB5XT7PeiCvcQ7nRaSJClVvEX5nJzqVwiBNE29+YJTP0dKQcrI96/rS+f5W9+QbCanBPRtB5xN4pxxum3/TubebHsS7r63AHr168N7beO6qUxlKvc+8YDPsWuoMkEVoerv8jxY1ZPwbIqwHwKtpldNAY4ZKG2HShWrY8+EBwgh++hZm7A+XoVXCztDpROKY/ecig1OpehVnGHzKtyY7ZeSZXScaGi3x/WqghmHh6Vjd6QErGoQgpkiVxfX+b4fXD9JQGA0tVZpo2b/dV0A4UGrC7Drrw1AuOtDB7IdmHMFeRVf2F9VLBU82LKjQiAcfl8dUkFPm/CZliC4fCbuD866QYYqIXf88yKU6nv4D+FpqOSf81lPgnqHIgRqyQPL/rKJPQxJSGGC98eOVyERRTEMadu/7AXr4gmyXaIAhIKKeJskIGBMAW0MtFeFEztLiTKUS57lyN34DsaLimIIKVmNTgQjDEgIBoNWfTsYEtIs86yclApKRUiSGDAC2mhm8rSzaeSYlsZu9lwmF+4+pxIPmfDJ5LQyfSNUeMPxu0smVTc32iuK8uXw6WTc+UA52Edu0HSwfsMtvp/0XBGc5MawCF6jCa7dkiQ8VbJZXdxcNIYUbDLYxvjTty13/0idyr1Zyk2w+7t6fNRvVzaCvi3HKdN8tRsFQMovZIEDg7Bq0nD+oxKUBIWXINGBK3uu834kP2e6sqRlMU2gVhS+POdJWgIyBo0+ME3D2uJAnyM+HWji1ZLVwP47UbYlZKYctPA96rqBAFNUDe5LKdWTZa5fGxaGSmcMBuH1tcTVERCyCnPKNlZBd9URg8/zoDIQG0PZ1iUsAR7wG+3AZViurNRD2zRkhMDJQNpNg0DwrJr70KuMRWlLWuZCLvurbLNF7JVn7FhC7u8yXmUtHiMEpFSIYwlNhffWLbSGw30QNsuFVFBRBGs4ikIXMARo64XLIV0s82i4HWmae+9voYAkSRBFEaI48Y43WmtIQ5DGQCoFITV0UWA4zFAUhe/DTqeDJEmgIuVVyHmel6yf8w7W7HVOkuM7KqUgwhRywEhe683ktIK+Or1/KiSksk8USNZp8M2o0a3q73a0E99bjLybXM7EJYye23h3ajhxgvtULVROBxe5SQ3qC8kE143z1DvhOlQrtN2CpzKVbQt757rsHNX5iSf08liYg9RlPPX2gAFgY24GUBgv7hwBlIuIpV+8g0ZNql6Uwq7PgcuBs0USojK/hh6gfg63U6fLMBIWC1jDd6sKhL8v2Sg1rP6VYKN4v6G24KUMthzEq/MMDmdbMJY9cdcaS3u5+rvruUqi1vaG/qTS8L4+c9TVz2E/1I/Xr6uf79lIFxMuaGfY3mp5o57X7OAC3/dOzcigg1WnmshnqiAQlGMOPQNp72H70QO++q67tkw6UwL7VdlnITMa9mvNwzU0IRjxhra/jXb3FFAy9s+Ax6hGUWgMBzkDSgLiOEank2B2RqIoMgyHQwyHQxhjEEkFJSVUEkNnGYq8QDbMMBymiCKFmZmZqjpaKURIMNOZg24V0LpAnmU2gw48sAOAPM9938/MzCCOY/4+jpD2BxgOhxgMBkizDFEUIQYQqeqbPcLwbiLT4MxbyFZg0hmoNl57F1Fl9fuMgKDgxT6Zcivl3c2ypQe126hP2u76JOU+ngFtncq9V8KF2oEwzxp5BstN6rDqKmvzBlkeQ7AgjtD5lnWxgI4vcuU5sChKxsmzBk6tFYKN8JXgstwUWQGcHvDJ8p58gAGDL8UyGvZl8yplac+TwqZNkyhDoJiyjaKst8OOwjJ7HgQLCibFsr5KKdstlosiy9g51SMc4VRNEeeZKMD/Nv7JkXNK9X0Wgjvfc8HxOhhrAn4j5/pnVLbdX+vqiGq5wR9lfULgJgSrFY32GxECeSaP61F6HFue1Ocy9qDNlGPZx7wDADLeaULCdqNA4PnL9XassOtb3xp/nH8ZIhS6sOeIivY4bCcRkOUFiPgpRVFUfV8gAQmrWi0s65exWtaqdg0A0sZ6L7tqEPKiQKELEATiOGLQLEv7PCkliiKHNhpKRTAF961SqoLR4iT210QqYkcPpRDFMRJiUwFjODuNcc/L55B2G7jJFruJQd+W4GfMDuVUSVN5k96j6UWqXz+JrWGTbNbNwVTnpR7Hb9zdJnl8Ysxn9zKFqMU3axIgF54T9puf8MoL6gDT/7nVfYIdaNNJIlhsRnbNdZxNtQEfsgzu3/B+lcTdti6OBAjHSnjeiZB+Yx5uU1FTbHnflHDe8YwelSYjZVgPVAZOacPkQBsatA7hGBcgYk9LBjrWo9BdJ0JQA5RsH8pzgt+uDvVzQuZFCOFVvQaB8b6Px8cgAp4ptLaEADtxCPDCplTZEmPVdMKGuPEhW2AnhrAt0veJWxQdaGa8FAT7BcElMXWBfX3Xhe13AMYCIzcVUjAHEarzifspWSazJWvo7+36MXg2Htj6XgmRuAOkolLvunhbNHuhMcbmvDWgomw7s62BnaYQgA1EDIIPGSKltMDEMLjygK60DyVjbdSMS18GfjZShBWravDssUr7yTF5Bnle+L5VQtlrhc+MQfb8NMtQ6AJFUWBmZgaRUlBCelDP4KyALgoUecH2gHb8SiGgC3bY0LpMwyakRJ5lHPRbG7Ra7KjRallW0Jab5+xcEqkYWZYFrK3xuXY7nQ6EEJW0bUIKqDhCIgWEksiLwueY5vAv9v2yaugz1nt3EhlHdTedUz9vKzXtdpxEGu35Ggt3F9SuFyeGFU5EtnOfeos2vzZcOMYUsJWMuy7EXtug1UpAG4qo/VWvd/Vv0dSs2rMW29cb1yo65vgU4U1ljJRsRnXwVDcxGAF848TjRSJIImufVWNnbHmi4v3avMmuOmqMTnBlOIuq+hIWwHlQphQvWmSdACwL6W2ZHOsU7Lm884MKvFKjklXxuU1RDfrsMnFowwyT9CwZPGtS3xOOA2WlKpsnIddGpZRvu6uba3v4OewfV14I7MbdM3gItj/KybPCWgXAexIJA0Dr4GGa4HptQaq0ZYffeS9SWxEhBBDZHLmWLSxBfanWlMH4alqbQ5OBSj8QKud6NXVQtiFCVhhkWeozZeQ5q1i1KZCmKTIwc7exscHsWhQhSRLHXQPgUC6aNHq9HozWAAHz8/MQMgYEEOcJiqLwP8YYDIdDZFmGJIoQRQpxHPvvfD9rjTzPkeUpjA003m63Ecext/GTVs2ubagdEkAURzBSQhcMSiMpEccx0jTdFq45ZaDvVDN72yl7O/ee9NwT8iDeThdMWnxTmSPU1/aqMoK1xl4nKgcqhuMTAlrnlThyrtsJ1+5TToZ8kn9ehiqVHgFqmzG1YvPnORmLHNZr9LzqxFy9puxw21rHxE7lPi8GVIZYQU0jMTrYKuDAsU4CgKc0gkXRq4Iri6nDDcK/dqU6V5RhUhxz5d/T0s7PsXuhN7BjKMvvHetmrwmj0FkHEa8utvlw4UK5uPnCvrc68DIO1cBCKvtjw7EIU17onFYsw+SAneX0AN8Gsve3O0kHNhyLZ6gCMKoTZNBO4rJCVWXJ0MEzjyADqdyySzZXbOnLax9z8NldLyvHS221bWNtQh997lXgWJoTlLH5KmwuBTH7LGtoysLLbxyID9g64ULuBG3gOrNjS9g/wYDlH0M+1o5TxyJgj13jHfj0YYtsEVprFNogLzTyvLCAGiVrBwUB6UOiDLPU29m1Wi1ESiFSDNYorJZNCZflOeI4glQlextFEaKoCqXIMAuZphnyPA9An6mk83ObgOFwiDzPobVG0mohiokzzSgFMqZ8PgRoIThep32GQko+557M9J0OOVGnj62k/nKNUyWfKRLunEM50R4RboXwByYsqYGtG9dvdqmoYKjT2cPN42MbGwv3OwCnIbsYLqb+7CkIvM9KBWTBvgdhrs0ADIULc5k6qlz0qu+QA2Ei+Iv87/A7LtMCT5B3soAomY8S0Al/gQtn4tshpE1a70BBadPngZ8Hrg4wWBcWWapb+TfXUgd9Ubbf2u050KcUCDpg7EQJiDD6I1CCDsZ/LgQGr/LGZ0koF9MK+yeqH4QFQq4P688Kll0FlZlXiAhSBPHrggcRllFX74ZPF6K6gfTYb5M1yM2fI6r48D4B+0dhwX4DH5wrStW1Z+Ps7UOmk4MNM4OG0I4zyOcL2+8gdt6os6KuMqFqvSyfkGU5ioLj9BVFASkFlGWGpQ+9ws+qMBq5VemSNiiKAkkSo5UkbEdq2T5Q2VdplgKCEKFk4Rzwc/2htUaeZsgLjX6/j8yqgO2jhRDwjLaU0nvtes9eye9CTIQoimAs6y2lBEl2vim0gVTEXIidH6gpMGSDnNGg73Syh6fj3ltfM/pQtgde7l5kEO40AZSrlT+h+qdbyCr9EoCd7eDDets3u7YJ0G7fVrPpyZSG8+Ue2d2j2sbQf8/V37EvI9IAgKdy3xLHXHjGzGUisIDBLRIAqipWPgmkzWih4Zh3LJUtzzMo7h72/oZGyxEiBEnj6x+CI1c/B+Kc+s/ZEfrQyAKs6rUqYK01yIbYgJKN76ELtFwHQww8UKqWhYW2qrRlBFBRY0tvdK8ACz5MUQBgwBf2QcXLVhtABGpsAlxYbGU9K40LdWLfe+89jJL9IwMIJS0DRKNzbABQvdoRBBrjoVYyrlUJyYg64HNShgqRzE7V1a0BiG0Co2SMDUqs/XlRFJWe29pYFauB8kwr3OjgPrSA22iNLEs9++Vt3ezGwzk2oVKHAoPBAFobaDL2OfC5WZb5cqJYgYiZvihSiJXy3txEhDRNkaZp2Z/g0DbGGAyGA2xsaK+mVUp51XC4KdAFh2nJsszWifskihggzszMoDPTtlk2DPr9PtsUao3hYABjTCVXL1CmE1QWYHL+3swGnt78/QzljAZ9p1LuCgB5JjN8p0N4rRjTr6eoK5xX2cTnb3msXtbm31aFl6pxXlIhoLOEfLVgp8aq36VyKo02YmQhmMq9RgJVm7NvK6kS5t0kSuBVATtBGJTKO0Key6oAQ+/tN44xAjMtnplyTBzYe9YFsXVs4Lj4Uw4g+ZZUogqHZZdBk72aUFDAhCj7KuhKuc4eUVovW8bI4Uvk0p+59vE9lCxBjkvP5f6TwqnaGLQQaRCZEnBJztrgeyxcjD1j5RhIB4KEDwPDRvu2jiQgJPk+4PY59a2bY8qdYBi/kO8Xsm+1bWTAZLmppCQlxcgGs3RaE8GoK4sqvaRRiYTg+84xbcSgD8ZUpzLndBAAYylE6SxDALwal/9xDJ8uCuRZXtq1SQc8tSve2xvCgkEdODpI5dKWFRimAxhtVavkbA4NIsvosTNK5NW+zuEC5LzrHfAl/9m9p8YwS+ioceVUxBYMRlHkmbyiYHVvr9dDnmfsUKIUYhUhUhyvb5CmoGEGoAej7XgwBioqx5bPrGMMhIjtZmoK+ipyutS7YXnbAn130Rpeb/cpbrkFfp7wL++7LTBlz9lMNb5FAaEKq3J+pTiqH9i68Ak7jNC8w7aVGymLJ53KLLpZ4b6I0zmOp3LXS8Wgnz8FY8ECv4pKtwr6Kos2ufDEJTfu7eYYSVXG4rgR55ipEgDYBcWpZN3FosrwOQnHZZjHt1QNC8ACSSlVhZVz4FSStWeqlcthVkRwHwtWbDouvqdjsRwuLVlSp7b0Dgl2ShDE6kHtWEbLPinbz8IDC1sZCQgjLRtYBWeVAM0ur6sQgIZn+Fz/8WfbHunmP9dHBA8AfX+HY8XVp6yXB4NUzsGO2WuaLwJM18j+icqJAfMXqqTdvG37vLL51caPV0nS5+kNVbo+ty+x57QxGlqzF21hmT7HRvM44bYYIu+961Ksaa3hPN5dijKtNdJ0WIJHxHYEOk0qP+Mkjmz4FQND2tv6lc8DUErCEm52g8JjzjHUAlyeckGbLSuXZRnSNEWvV6AocuR5jjxNPUs4Pz8HFUkYAvqDFFmRWw/pksmMSEEp6ZnuUjXPpglSjj7fJrnPgL4zQkZYMbqHETj3qMoCaOjyTcTZ4J1oK5se71Smspk0bnIEr9pNKlXPom0B+Ct5aO35zos2ZHSqJgqVmoEZM/ZgdABvXCDhsU4Dtg1RFJX3EQIyYiYP0sYdC5LaQwiIiGOUhW1xbafafdxvrQtOfQYENlTMKtXrTURQKrZx1SSUkDCkoIypdG0kFaS0m1utPaNCVLKPLj8vwbJwAdtFHoU5oCo9S1PWqWSSXEIt97lqF+ieSxVshqq9+sa5sqmwzy88L1RJOgAWOq6Me64VVS8C9hF++PrNi3NEMEH2jEJnnpXTOi/BplW7FkWBdMCesAA7WXjQRgQVRyACiiwPHH24v9icwIAy8qzdYND3wDfPIyjJNrFxzPHxFAh5wQA1jmMsLi5WlucqIGbVP9dNWCwqbMSgMM8zg8F2u41Wq4XZ2Vm02y3keeZBXwl6+X1XAui02hxexvaDUgoqUjCa2WeflSN4J+rPZzO5z4C+u4IVmYzxq7Fh5Ub99Eqws9/8Vm6ScC9v/WxR3/413y6YMMbtMrescp29OyGZ5OpyR+wYjm2XJxpO8bvvLa4ZM17qfTiVe59osgCBUElC79WKwSJSsdtx48FQZbG2xI89hTgtGoK/UeW7CS47QvDOu+/tYiohYQSr0cjSHLy4lkDG2cOFVXMqQPhFqWy3jRzDrFDA+HhmUEq4PGIiiJdJFQBFnsUiIhSG/D1dWwgI6upYTmZGSsbPhg7kQqFkBAp6yZOpnvGDBQRcd4nS8aMijiV0v20ZLvSJy0XsGEl3DWrzZdM8yIG5qQIcgydXZVtrwK/sv2rWlPCc+rwTTm+OmXWhV4QAsqLwgZeNIX6+tmHOGYZTvrlnZHy4kqLI/Tlk7fm0/e1UyjovKrmMOSctO25o5wkLF67GoDAlS+hCqjg7wFxJSCURKVXWzYJPKRUiFaHT6SBSkbfZc+9e6IXLdn1czyIvbJw/DscS9qG7nsc9jxPOwBH555XnhbXpDDZ8cHacfFphDFAQchRQSvgNhGNTJ5X7DOg7YRm31m7Sx/UHUKpgqgVWla2naVGvqxbJ2Q25r+t1Desyqg5uAjCnElCPLesEb7Gty05VM7ZTziaqsbHFT9W69xpx71vo6e3A31iDeY+qEKjVgg0WrE2Xo1xCsNXw25Myora4u/ItOPNApdICj1ZGQJ8xbrZwXpjwoA6C7aOUDOpiARgEICvArbyHbxYApxJ29SeX8SGsW6A6rrBmRCBNdqElzxAS2LnD5aMI7dikZVe4ss5j0lj7PF+Jyn0ctxUyM84Iv9r/Abiqz8n1z6JU544z4N/cDCS0SxuVOvCrjImawlMAkATud2eLp6kMdUPOQcKgKLT/LASgzSjTZ7SNaWcIpI1XO+uCQZ9zdqKC7fnyLLeADiDbr1qzCpXj15WML9lnVAhiNW0cQynhvWfTdMB5e1UMJSVEywaflqEtresfNjVwNovGplnLshy9fo8DPBseVUmc+OcfKwaVrXYLsWUrXUo4rQ2ElP694XiS8GPYFAw2uX8kpDQgKZFTkK5wApmCvgkkxGqTqAubXqZxC3V5ruPE73qp7/Yq322BSze7tnZmw7EpeHErbVNPTKJmcd9P5Z4pbm5xC5JbnHiur7J9TexNGO8rXKT9e+vzzdYRXckeGQTqUKd6FBJSBPk9BRrr4rjDUC3octdyUGQNQ2RBjuQUW1JAGgNlFNqq7e3tnK1bxdaLhPco9qosB6w8qBIwIERSwQjyjgMcyoUN9EcANASGg2FFvRY+EyUj211lqI04LpfLoigzQThNhisrBGI+tVYQxy2M0wbAA8Cwb8er7Bgm8nmjAaTZhnDUAzv0AvUlURlouRrvzs07DPKkYynts+H6M1AJy2QAZ0CBuhvEYMYYDZ1pFKaANpYNs/85xo+ZvvKzQtm/RVH4tHBaa2z0ukjTFIP+EFmR22egkKYpq/kNg64kSbCwsIC5xQUIMGOY5qkf867vncqUiFDoDGk28O9L+KycZ7arU6E1O+1JDhSuiBAnCVQUcRuUCnZVQGyzdszOziJJEhARhsMhet2uD8uiiccQA0UFF55IqciOVQ2ChDZAUZgyePaYgOJ1ObNAXxOoqK1nVRJ7VE5o+dsCa4W7PUE2ldo2Mcw4FedkKuFtSlUPUKlD5bCoMnfOXqFaVKkOGE3yWz+vyg1WFqlNO3mrp3lXguG7CXhv+p2jPMbZX03lnioiBGwWOAgLjFg9yLlnncoyChZn76lYC8zKQYDhFxq2t6qNMFHaBlotKsJRZQzBEOc1NcJAS4MIBGkUjDAeBAJs3E6BehdWnWpgPAPB7YKvd6E1hGRAF9twF1xeyYDxB+J8pbD3U8wCcuxCaZtoHVwkQRjuU2cPaHwxDFaiKPKAN4rjAASW85/vBas2JePCqehgThPem5csqOX3FB5guzPr9oQhWCSiCiAMbe5szb1K1LNrwvpRu3rbs8p4f8Jfyf8HwB/walggyHvrQVq50RQAJAxgSoDIacCIWbqitLEjXZoW8HPh79NhikIX3gvVtQewLJ0uYFxqPQv6PPiMIp/uzlG8TnU7GAwwGAwxGAz9xoJIYDgYgMhAKoG5uRm0Wm2oOC7V60rC5MxOGgikmbbsmYY2GkJIKCWRpjlgx1fSSmAK49PnuU1KYfP0AoCKIhtTWiAx5XiNo9g7CaVZyqYOUkJGMeIWh2yJWy3IKEKWZRgOU+QFv3eKgIIISdJCJ4lhiFXoWgNxrFgJLO0mQEWI4sng3JkF+pokwBx3ldShxsQw4O7BCyPiLFj8hGd3bH6CILKpL63RMaEc0C7ZuLMvILb54eTnrpxyUpmyTKdRal0bpp8Lo2WcIcNuKicpIbMraqodVpUZCBFVGJk66BNCwIiqWtKpmdwC7VgywM4HwoENXjjdFy6TBS+EXBcpCMZ5YDr2T1o2QziQYecYv1mx84uSlTrBABlSBjGOQTEmoCob1JBkuUnD/UOGQW7ZZ3xf5WP2lZ6hFAKbgH3z6l6nnnXgjWlHf60ObKdCNk4IXtQFebdOV9kRsBcygJXnMU7sMHBqewGr/rfdLcrHhfonWDV/aStWnkG24r6mVLbVtck9UzLsmeqYMTfmTGGPk4HJte8TKdmLtsgLpMNB6YErla+vkcJ7sdazU7j+Lb2ZnVko36socuTuxznvEINZbVlbKQSiOIJUktXARe7V8YXW1lxBoBAM+rThMD28J5BITW43RDw2i7yALgw79Sh+KFprSKFsOCB2TJLKbiakhBQSURxBkIDRnAoQUsHni5YulJBC0tIgCGR5AZPDs+PC9luLrM0iBEhIQCouF7a4KIaM4vHjKJAzEvTdXYtZ/dUTY74Y94p6FuYEgVA4t50MliJR7qfcHK6LAt31deg0B6hAZ24Wndk5aCIURekWr+KYd015ASkEut0+CAJxu4WZmRkot910ddzuw5pixKps2h911Fc7NAXc91oJVX0eHDh7qoARdD/hglkCOx4yLqht6P0opESapj4rQZIkPiwJYNkgA6uajAGwutaa7ltDcliQFVeSxDuuTGun2nMsm4GKYrQ6bV/nNM8w6A8sCIE3nI8TxRkGLDhTAWDyfUSwyeZ12R+weXC1YTBiDIdXsXUTgPUmFZjpzHgAg4CJJG2gixzaFJZg4ns7la5TvW2mvXGx6NzzqJvBjMvVGwIg2D7hrBIKLqFdKRbsiBIYV/FxzdZzG/OFsGYBmoy3T9Nae3MBIoLJC59HVuelWjYcs8MeZ6TIsowdHWxMvs5sx5sSmCJHYbS10SsQRcqy2wZRxGFKILn/syzD6voahBBot9uQcQypIkgZIYpiFEUGrQsO7Fzk6PbXMegPfF7bVquD4XDo6zo3N8PviR0rkXXwkFIiLwxahYE2YKZPG2YKySumbXBvVW4gpEQyM8sgEIJz9ko2NWiJjn2gAv08RX81q2hvpBBozc5CK4nBcIhutwtog8EwRX8wRKfTQRwnSDozEEJBFwxgk04HQgjLkW8tZyToC8VtuKoHRjWN9e+3fZNThTDPgHWYmTwOLEqFhskzHD54EO12G8Zo5OkQt996I+bmF7Fr914knbYd+EBu4xmZvMCRQ4excmwFe/YtYWHHIqQp0Jmd87HC3DY0XJCmcnplyqzeu6TOAI2z4QN4I+cyFLiAsG7xqrN9SilWQwULcFEUnlmBYBBoyEAH7J9xscakgpKRzagQAE9RZrFwmRRYLUderalJ2xhqubUxYxu4NMt5mu1uMJiSEiqO0EpafB/FtkuA4MwOxQCwakwlWIWrlKqoqp2GQtosDZqMZXsKQDibPunVn25zK6RAXmQw2p7vbPEAwBC05n5iEOnAsIELoszem0Bl1yusClaMAjD3XNzvkNna1LSHOBsEf2Qmk7uZfIgQr5Haag2j0kzEs3rhGCMqzQ2satMYwBQ2hmFBNsdraX/n4iNqnQWgr7SX6w8HPjCxHysgpMMBO8ZIYVXGmoMn6wIa7KjAtn7c35o4q0aa5RgMBojjFjOVQqDIC0BYZwhib9pca2ji/LXtmVnkeY5BmmEwzBFFMaQNoKwJiKMIcRwjTdnGMy8MQBraCBQaMFDWS9fACPLewHmRI44TxHGMubk5tFotxFHMuXMjfn85NVwKow2Ukmi3ZxDHMVqtGLqwY9Kqlbl/DGYXFpHlGXrdHobDAfIsR55nSPMcBhKQ/E5qo5Ebjd7qKvKiQFFMBvvOaNBXX96axvQI0dQAEMcCOlE97e6WJkPtxjXeg1Q3GcDvSNn2wkCQQTZMkQ0GOHTrLax6mJ8FSYHCGMRJjNVjh/Glf/sCzrvfA3HxxRfDEKG3vo7VY8ewfvw4ji8vY+X4Mexe2oO5hQXs2382du8/D7v27OWdjVWhuEnVefg1tYerSL6eKGu+iUwVl6FMAd+9V0KHAGAUIAA8J+gA7IWgz7F44TVSyjKfrT2nKIrSA9KxDMIBN/awZHZPQMkytZlxtlVKQQoBYwTYjs+GdRHKqnyFZ214oeeQJFpr5NZDsTAaRAxs2zMdRLL0ivW2wVJ60CWkhBbSqmyrKlNjDKAAKKvZsGBDa+J0VbKMI+cdBCSzZg4Aszek8epTQZxCjcjYPLnhnOY+sZK0nO8c4Bv/jMO5kcJnUGMCQ/bW3rVUlxPjYgmH35zaD5VxskklGusTNAlkrGmQIcvSEoy2x03pyCEq7GV1vXLjM7eMKcH4ECX83DT3GdnAwmDGUsnSeAhwYXwM0ixDmmbIcg6LopSBEByo26mwjWHQx2PNeQkLRHGM3ObiLfICMyqCso4REIBUEeKkxaFfLOurtQGEBEHCkLRqVWc+YGAgoUmwGZQhFJqg7OeYWAXLWVwAaA0BjnUprRpWqAhkChgS0Kyb9uM5STh9HCTft9AavcEQvf6QWfA4gVIR5xjOc/T6A6QpA+JJ5IwGfZuK2ITtQzOQGzn9dGCKugpuQpnEocNPDLW//eQNq5Yhg7WVY8h6G4hMAUUaIokhI4k8yzFcXcdGr4t+r4dIRrj52zfiW1//Bi655BKcf/75aMcRbj10G9aWl6GiCGft3YXjx47hus8ewMYwx86zz8HSOefjIZdfjp27dgKRglCK1UGYgpOpTGU7UvfSDT3x6vOByx8a/rgFNkwAH8cxs3lGe5bFZQiIpGSmwzo1GJSAMAQgkfVAzPMCWcYekpFNGQUALqyJ9yQlBifOsJ4ZR1b9cj5VG3g3z6EtM0hEyNOMWREQM4wqQqvThrIaBecx6drl8rk6D2EAPogtGc6dm+UaERl2hBEahS6Q2fhpKlJQUW3pMyUQkUIgUmzQr0T5HOqxEusq23HSBO6aQF6d7XXn1e02yQBedxzcoz5eBBfmTvBlh+xwpf7sicAg3zouGK2DezNzxWMlh0Spjg9j2QHAcDhAlqcwhvPTJq0EM51ZBk1k0Ott2PsbtNotuKDUeRBPL0rYWzXLcwwGa8x0GSCKEuSFBoSBUjHiVgIigaLQyIdDFFojz43NjSsRxwJSJVAkYUwBEgqQip0pYoU4aSGKW5iLOYuGUlElHmWrPePZbc4IwwC1TK3GjiWrG30YY9BqdTEzM+PHahzHUFECXWRYWd9AXuTIsqG/Pk1Tn/aNmUuNPC8wHA4BY1DkOYbpAEePHkOWcWDnOGohz3MM0xTDNEea5cjyDL+z6UhkObNA3xZAbjMw1fhVnV4/gSptR06Flri6w2sW3tUFth9kPX2szUOv18XG+gpmIon11WPYWFvH7Pw8sn6Xo5P3urj55lsgpESnNYPlO+7EgRu+jdtvvgWPe/xjsbp8ByQK5HmKbGMDt91wA4RS2LFjAbuSFvqGcN2/XouPfOjDuOR+D8CTnvJknH/hBZiZmRk1QwtsU6YylalUpWIH3AAAAFgPRniVXBhw1ql73W/3vrlMAwRitahdfByjmOfWiN6qRJ29mrKArsgLdIuuV9MVBS+gUihrqO8CaJBnA8nYrBg2zlirxTZUkSqzcTBIsJ61RMiLAv3+wAOLOEkQRTEIwNzMDOckjSLPwqSDIYqoTHIviNm9PC9ZjiiKUNhYyRwo19k2ClZXGgLlOQDyAXhFJMo4cgZg42UHktgzVzlHBGtz5Ixa2IuSH6YwYDtDRlyeWAtZO0C4eNVw3hiOxXXZK5ytVxCetzImBOcPK9W0qAE+N55QsrjloCOQNiCt4Ux0nHpR2HtqdtkFaUaBAhzGRyjF3tNk62pZuzDDnikKGOJUdkkrQRRJ+7wiaFOgKDhOnmuOMx8wxiDLOAtHoTVIoARVacbeskIiTmwqPiFghLD14OcqVQQJAQUJROydTTLCzPwcoojz4SqlWMXabmPnzkXEMY+xwoZyIQLXIbdZMcA28W5zVegCWhvkeeZBWK/Xw2DQt4Gm4VOisecyj6u8yLxzFEEjzXJoXZQMvDHQBat6rW8631cbFLrAcJiiyHPkeQFN5J1rChJjQ/U0yRkF+oT7ZwLkdF/GEFpr5IMuipx3B8tHj6JIcywuLiDPc8x2Otgz28bq0UNYP3wQMDlWjx9E2h+g2+8hN8DC3ALmd+3BodvvBA262LMwj7Vjx/Hl667DOUs7EKkYO3ftAaTC6rHjGAyHWB/08IDLLkNrfhGPePh34HHftxOf+OQn8Wu/+it45nOeg+945BW46KKLKgboU5nKVLaQEPA12fLVmCK3SLgFxzF+4TmhuljGlrWyzgPacAopl5heOyP2iI3hpQ0Q61gIxyY6Rq8eH04IAa2NXQhzf1+29VUwURg3T/l4d0Sc59bFdwM4V6sWGnmWQbdaiCwIdSpaD2wJ3o6PAAhRhtNggMK5WbVzvvDsqVWVGgKRBkkJQJahOAJwbZE2XDgaVieWZnHuMVWsVQi+fhBVFa3rK/98nS4ZJWALVe+AC6lStfH0nt3u5g3zbMU8ABwIx9fFtdHYCgsX+qOsp0fK9lxn7yiFAEkBJSUKb1pQWNWztd80hWdNo0jZH1a1w4ITB/q4rYZzHhcaWZ5hmKU+Bl6eF6xqD98RxR6vrOfmeHXMfhIiKSGiGEIbJD5rRYS5uVkkcYxWEvuxniQJOrOz3CYQdA4Ulo3uDwYYptYBxZo9FIVGmqb8zhXMfuc5exEPBwO2v8szD+CMMch17r2XtS6CcUA2v66p/hTa2tNKREpCZ4E5htuAaY0sL3x/GJIOu08kJwb6JrGbEw2n0Oh3TReNY8s3tXO7l4t/X40GmQK33HgA/fUVtJK29966Y/UIehsbkKZACwaKDDZWjmNQ5Dh2ZBk615ifn0ev18XaHXdiZuEQ9uxegjAaJhtitt3GdV/4AnoPeAA21tawa+dOaCVw2803Y+/uvYBMsLLRx77F3ciLAv9x3X/gUY+8ApdcfAH+41//Bd31dbSf1sb+s88Kwr8Edkp+Qmlo4H3wmU5lKsCoik80BMoN1Xwcz2uIwWDgVbKOvXDqO6eKUkqh3W5DWZXoYDBAmmX+WkMESIFWq+VVqTMzM7zADTOsr6+XnpeWGZJSYWFhwWcZcHVKUy4XQKDSJcRxAoBDWbh6OHVgK455ngjmBCJCOhiiJySKVsEpsez5UkrP/oQqMQcq3LyjhPAMCQiIk5gBpJIwYM/ewSD1/SSkc9hQDAbJhf+oqkDrcfRCNayzq3P9pFTAzNXU9wDDSW1cv8KXXwd9UlRz9TobOgrqVgHatbrVJSw/HGP+MxmQNoAhy0haxlIYCJD1JpYwRtjsFwWEZLtPrTXyNPOq4ySJ/DgpisyrNKUNV2LIoD9IPfM8GAyYXdMaWcbevmz72YZUsQ2LotCZnYOQCoU2SDMHsggqSjgsiorR7nQQJzHa7TZroYgZu8Gwx04iZLC8vIzBYIBut4v1/gbyPEeW51hfX0e320O/38dgmPmMGWmaIrcsYMisSwX/juR56tvPpgnkn18Y8gY2DI17t4UQiFVksx8GzyEQNwZy945LgTTL/DOZRE6K6ZvEbi60ez1Z9WelLLvbOZPYJBr5YGUbgGYrmz4BgjAFFmdn0T92J9Y3uojbbahIQQ+6mJMaq8eO4PCxZaTDDHmmsXvvPkjVwnDYxzDTSGYXoDf6yIcp1o4fg9EakjTaUmP/3t34z69dDxG10Jmdx3nnn43FuVkc+PaNOPv8i1HkOf7ls/+EJz35qXjIQx6MG64/gB07d+JR3/Ed+NY3r8e/fPYf8fTnPAcEjSTpeHscPwE1IH9hd1pTmcp9TSoLsyDL/BgYO/ETATBlEvrBYIg0HbJNleRFVQiJJGl59a0xxr93APy1moxn7sJ5RmvtjxeFRr/fR54XGAxTDAYD7zULyUBKU4H+cIBWq4UkTpilcV6w4HRlSkaA4EXZgNm/tgW0gPMOVlCSIJCjcDaKhgGZ1hq9jS7SwQDZcIj5+XkkSQuznQ4ym3oryzKkeeZBpIxKEBrFbJjvAZWAzXjg0qEBkVLsFQz2hJVwKkNmYoT11nXiwFLV3q50YHNODp5hrYF3b0cnLZCzqi1hnWDC+4TX+Gu1cxbh1GChQ1wd8IVl+ZA0bg0WghmyAGy61Gew5+uiAIisTSP5FGuFyTlrho1tZ8iAUMbxI9LMjMLA3VDbYMW64Jh4QkoYkAdYa+sbHgzmRcFevUohbkdoKQUZKbQ7HUjFAYkLo5Hrgl2LIRAlHFIIAETUAqQCCYVBXqA7TFEcXwFAKPIc6XCA1ZXjyPMMeZEhs3EEsyzDytqKDV9WIC/YljAvCuSFDUiteXMTqxiRVJ7ldBlFXM8b0r7PdZHDadZL0wD7bHyqOgcZ2B41UhzuR0Bwdg+bKzgEjGySyiYWc/NtZtpPt/euZ5e9r03pZDCSquwUrOeTgLsm79e7UkbsEcXkTa/Xt/7ysos+v1T97ga6qytAkUIPU6wcP4q0N0Ax7GFhtoVBt4vl5ePo9QYQULjljqPoD4bYtXsHonYLRTfDjp27sLKygn5vgEgpzHTaWF9bxyDTWFlZAeI2/uMrPcSdDi578P2xe98+DAqDOFbozMzi5hu/jQc++FLs2DmPb37zG3jAAx6Eh17+APzrddfhEVc8CktLO7G63sX8wgJaSYsdPURpuyEDjz3uAJx2tm9Sw+upTOWuktBrVXoGBxVbLb8Qa43BoO+9Tp1DA4OeuDGzgwNHWpeejU6t68TZ+Dm2hIhVbal13pCRRJzEgWqZVXdGGxSiQFGUjgasvmXvQmbfbCw2w6BQ2Xbw7QUiC9SUBX2ZtXFy9k3Oq7bdarNNXasFJSWMVWu6c13oDheaRarYAxmSlkkJUm4JweozBk+w6ky3+pYLcQjA6vaWPgMGlexcCQxpZE4vHTEIJEbLc+pOd27d+QPBd6ySLldhB/zCcVWpO5XHmzyE3bxM1uHGeeeStBHpyHlF5zBks1hU2hds5q0qlo8KO97YKcSFEcrzAmnODgh5oVEYggaDUaGc00QMaWP2CaXKNGyGkBapfWSC1bzWDi7pRIhUhHanA5NmKAYD9AdDjt9X5CjyDKurq+gP+hgOeqxatqDv2MoxFHnG8RkhkVvGUduwQ0T8PiEiQEZ2/OU+h3CpgjfsXS2FdRhyaM/meCabek6X5VbXPt5ISCGQJLE1zZDIMgIUmyHMxwkKzTa9cdJCmmanGfSJ8gOVMNUeqkdsq4OZSgFoXO1Dqr++PvvBNFr2aB3H6okbjjVdv32pPbuJcvWOE2/nYThYaHdtFb2NNegsxXAwxPFjKzhyaBkUKSy2Exw8dAjx/rNx8M5l5EWO9e4AUijkJFBA4Ph6H73hndi5OIc4jjA3v4Dbbr0NBImNjQ0AQHeQYmlpLzrtDgwZfPUrX0VvYxWPeOTD0Y4UFufmsbG+gXPPOw/CEC44/2IcObyMAwe+iQvP2YvFuRZuv+Vb2LlwOUxhcPvNN2FpaQmd2TmQXQi4TdraW8gpyzeV+67UzGNGwpFYEGKss8Lx48e9R+Dc3JxXexLBBkJmY/MoYs/Hfr+PXq/H8elUqVZ1C7YDNlmWsVpUsR0fL94S8/PzaLVaaLVaAALWUGvkuUbay/1xIkK73UanM4MkaUEp5dkvd06WZVYtFUG2JNtV2eCyQggM0iHSLGO2Mc045ppV+wHw80cIwlzZaZZ6JiRpdQAiG9rE2epxHzuVbqTKlFqhp6pbkhzIdfMwe4MqD6jduURlPl9nzkKGgbRTbbof4x3wjJ//QhBZUf+5IeJUwyJ06wiIAlFuZutsnwehYTmWgXTqRjfWdKFBmuPlSVuuNrn/vtAFiiLzwYldeUopaM3YS1lVfWEDc/O4ZNtNMpY5lBIb/SGGQ/ZgFSpGK2bzAo2STW2126w2JsIwTZFmGQMwCHT7PWbiMo1hloEIiFSMvWedjV179mHfrt2Y0xrra2vo9/vIMoMkaWHHwgI21tYwGPQx6A+wd+9upOkQusghLFPJa5MBmQK6KKANM9ORUogjTsmWZ0OEzizSMcZ2kCUtthlcXFxEYtMMGmPQH7J5Ra/XQ56X3vcAg8RISUAbBnyxwkynxWkOiZDnQ8zMzGDnzp0497zzsLa+jsNHj6LIGaj39WCiKecuceQodxn8gpRAyAWYLHFYHQ6WhTSXHaajCncem5I5DXrmsffdjoTE1YkWEmJgIuRZiqEdoEkcY+euXSBdQBYZbrtFgKIWzr/oQnSPHgIQ44v/+XW0WjF2zM0iyw2yvMDSvn3Y6B6E1oR+L8XhI0cwO9PBwtws5ubmcfPtd2CYacx2ZrCw0IY2hncYUYT13hAHbroNO/fuxczcDGZbbezZvRvdbhd79uzFwdtvRZ4OcejgHRh011GkfeQbK7jjpm9jfsdOKAJuPPBNzMzO4ZwLL4FWMaJWy77YGrCTWdmBUwA4lfuSuNAQBCUUL+qCAxxLSxAQAVmeYpgOEEleDOJYsZMCXJxMDpPBNn4C/X4flkzD4o4dUBHb/A2HQ6Rpio1ujz1eBSyzwt8nrTZa7RkADBLm5uZgyCAtcp9yi4xBrgtkeYEszZGmKQMYpRAlLUApqJhtqYwFEXEcgQgedDDjY1DoDJCAUhGSOEGkS09fHcXeM9mFxSAi9tq15cRx7EGSC7wspUSep95urER8BoIkTMEqyiiKABf42FIukqwzheZrKmyd01TYYNCejaXSAUeCg0cT2EOW470JVulKdl5w21xB1m5OKfusRAUkGstyCmHZSQQMo4BdWGt1JPJqQxfhAYYDcAMIVM7kbcBKsMleykIJCAeYpUBRuIDMvHFQ/lbcDk2cx9Z2EgoNaJKcupMse0cSusiRDQsLCAVU1IGMO8yIOftQQej3+wyM1taRpgNkeYb+YIDecMCeq5rb02q1sGfPEnbs3o1Wu4P5uXlcdvnDsGdpH5aWzgZUhNWVFdxy4034p3/6DI4fXcbtvS5Wjx/Fxvo6NtZWsLF6DLrIkGcZBoM+XPDruNNGK2oBnbbzZYExxGPQqm6hjSc1hWAnkihWPlxLkiTYsWMRMzMzfhO2vr6Ofr8PZQy6po9MGxTGPQsBFBoChFaUYH5+Fovzc9a7GTh7324s7duHCy44H5fc7wH49o034rovfRG33XYHSOeYzKJvG6BvvFGoe9Tl73AQejV2aLriL7Z/U3hA1H5jVBleu4f/VNMWhgAipLJ9fRqA5slKWJdJ4Ev1heV/yMZCoqJAb2MV6yvHobWBWtwBnRtoU2Cju4GFHbtAqgUhYyzuXsLq+pdRELBnx06k/T7SLEeaGXz7hm9j//79OLJ8HCKKUJBE1JpBf5hDUx87d+/GbbcfQn+YoqULFEZjoz9AbzCEERKDQQ/XXvtvWJyfw/CyPh74oAeif/w40t46lMnQUhLCELobQ6S9Lm698UYoELrdDXRmZ2G0xnX/9nV84+vX45Hf/T1YOuccpsOFQFoMmUWwDPHWqleyi8f2n81UrTuVM1PIs90OfDgAA7hAtzmKIrf4QfgfXuR5EXTghxdpgpCC0za1OGtAHMeetVFKIcszBiyAdfrgGGVClN6EWc7qqyzPK7EDdRHa4JENGycsgBWcCUNJP/9LGcOYEng4sKK1BoSGIbYFNAE4EYGNovNQZhYSnnFTUobdaKvAjBqryNwXJRAyRnAGDpTsFwAbbJj8GubOd2KIODg1ESDdOSifG5i9Y/v1MnesV3yGNngNo6A54oEFlTUbaATjpQ76XBibMKxXqDUKywkdU4SUANl+8enW4O/FDjLwmwmtjbXlIzhHYCJAk33qAjasjPtsASkIKmohjhiUa/9cDNI8x0avj36/h16fw6DkBYcWKjSDUggG++1OGwsL80hslgsVsRNOnqXobWyApMLG2hrWVlZw+M47cfzYMQy6XQwGG+j3e+h3uyCTQ0qBWAnsXJznMEPtFjqztkwbwLnb7aPX62NNshmBKWwcSlmyp0kSI0liLCwsejZ+fn4Onc6M95xvxREGszOY7XTQ6zOIzRwjDA4KHkmBdruF+cVZzM/MWJY/w8LiPJb27MbuXTsRR5Lt/og49I5/B7eWU8L0bXYvAkYCSVa+A+fODj1z3aJ+wmzZFlJXKLtBfKplu7yVIJT2NsYgEoR80Efa72EwTNFpdwD2PUN/kCJqzeC7HvoIbGx0kffXsXf/fnztP7+Cb/duwkzSwo7FnZibncfR5WUIFaHVmcHq+gbWen3ErQ6KLIVjGmbnZrG8vIo4jpBmKQZpjsIQFhdmECsBBSDtD/GNr3wVg411qAhITIZsmGL92FFsrK6hn/Lu+eDh42jPzmC2P8T8wiK63S5aSYzjR4/gz695L/7rj/wo5hYWOCgnGegig4oTAM3GyCfXq1OZypkrIZAydqE2htWgTvI8x3A4RBEALwBIkqQMDWEXDgAYDvuI4hhxEqPTmfF2c0IIJK0WCILtqCwoUM4Oz6p+XaiW4XCI1fU1ni+FwMzMjL9/ljHjIgTnQGVVpfIew+E7XM0hXOaddQGVtUkBIX2b3VoQ2ewf3sYviE8YWyZRxhGDRWOgqRZsOBAHfJzzgrDlKgscpXSOFSGYMiPXOrWoUuGG3YXHkYB0Hs4SUaTYZgvEzhNc2si6ZoyxamZRAbgAg0clR71yiZh1DesHWBBA8CDKsXo+Dl8NWJaAJbHsIttRSjBwzG1WFQgJZVOLMbwlm23DoLBqXMeGGdhQKcKG2yENGAEVKyCKoex941YCqRQGKeeZ7Q0HOH78OO48dBArqys4duwos8hSYNeeXVhYWMDszCzmFxf48+wcdu/eg95giHSY4ejhw+j1eojjNpJ4BlmW49jyMm684QZcd911yIZDRBIgFDbeXYZOO8KOxQXs3bML5513Dvbs2YM9e/ZgZn4G7XYHrVYbRIQbb7oZt956Gw4fPozhYIgiLzjtmo3xF8cRWq02Wq0Wdu3aFdjaloGr+V3e64G3e9ZpmlummFXkSRQhSWK02wliJdHv97Cyehyzs7OYnZuDEgLf/MbXcPttt6O7tgroApIMStetzWVy0Ne0zoryBQvZu8qyvBnjFdrnyfKzA2F+h9R46TjmcXuAoK5Cdu89VQ+fnDQ0ZKSett+M20EXGY6vHMXRw4cQKwmTZ1hbWQGRxsxsB3PzC6yWiWLMLSzi4NoxPODSB+P2W2/H+vo68oKQtNoY9PtY31iHSjOsrm8gJ6A3zHDH4aOYn+lgMOxj166dAASyXGOQa0SRAhSYWUAESTlacYSlPbswP7+Ivbt2QucDHDt4G3RucPDW21BkGVbWuujnGrcfOYruIEMsNc459zwYoxFHzDSYIsdfffDP8fgnPQln7d+PdqeDXGsOqqnkFraadx9Td+bVaCr3BomknaoFkGcpJ4rPcpii4HAYukC32/XegZ1OB0kS23h6zL5AEJDbkBHGQEURWm0b444IvT7b+iil0GolUEphfn4RcdJmY3DrNZkPM2g9QK8/8AFoVaRs7DuBldU1uCCwzGQxO9jpdDzzZqCx0d3ARq8LIQQiCwRbSYLOzIy3b2I2UKE90wFsNoV+v+fBjVIKxsbhK6iAhoZhM3hw6F1CQQYJeC2IoghBhBRIZR00wF64gpjdI2sfBQMoIUDEabYEcco6Z3MuBVXWMEDYQM7OeUaVLJojz0TJFAo7oQtRar9C+3fPvDmwZrjyhWVWtSmYqXSxERk9ekDnhJ00yDMkJMqAzP4cGL+ohuxe6XTC/U2CAx2booDOcxTEqkfy5YCzdgjXqxEgWD0NyQBXGoKwjjqGgCzlUD5pmqI/GCLNhkjzDIM0RZanSPMMx48fw6A/QJqlSNMUaZ5CmwJRHGHvjkUkrRba7QRZlmJ1bQXrG2u4pSh4AyEjpDmX313vQakEIAkyQJFpNi8ociy0W4hmO2jFDKgW5mexe/cOXHLJRVjauxtLe/dgz55diGNehza6G+j3eqxW7g8wl0Q4a9cOzEQSWnOfzMzMwMVw1FrDWHML5EPkumRZld10sZ1nAYINX6Ri++w1lOC4k5FUUFLA6Azdbh+tKEEUK5yz/yxm1bXG2rFjmJ/p4NIHPRCXPujBvK7bQNITzTkTnbWFePOC2jHADtJQOzsGPJ4qCQ2h68fqMZWaSKOT5ZBcX4Q4j4DNHTrsyZnOcMtNN6C7chQdJXHw1puQ5gXOOfc8KEPIeuvoDvpYWybMzc8iz1Lctr4MGINed4Bs0EW708KxYwU28gGWN/qYaSfoZQW6a8ex0RtARBGEEugOC6x1j2HPrgVAxFhZ74NEhH53AzPzsxjmBf/oAkUB5FmONB1ibbWL48eO4sJz9iHLhjaRdIRWkmDHfBt72jMY5gY33nYI3/2dD8W1//FFmEzg//uuh0MghyKD7rFlfO6TH8NjHv847L/wYhAU8nwdC4sLED65eVOHnW6G7+6451SmAoDIxzkrdGE9ClPkeYbhYODj8JUpyOCzaACoqEGlsqnclISQCjGvLQzMlILb3batIX9ccAgWgMNTSKUQS4k4YQN2F//Op53SNlQJGWv8XoYocdk62DORQDaVGxEhabVgIgYgLoaekMwKeZMWO29rrb39mTteOg7Iylzu2KeK96q1hXOgq1G/Q8JO1gZETrXEKmF2VKheU6o6GxY7f9iCIjIgo6t2KKEq1q5BHlC5djgA50AiytzJ7rxQResrFpgu1YmM8EAI+rgcCp6fYL9TKa2nLADJtouGnJmBzRgiODuLiDj1MQnlvXRzXXi1Za/bw8AGLt7o9jAYDhgApgMM0j4H/V9f96FPPDi2DhzaaA54rDPkWeoZ55lOG3Eco9OeQZrl6PV70FmBfm8IXRhAA6QBJSXarQQ7Fneg3UrQabfQbrcwO9vBjsV57F7cgdl2B0oA6aCPQY9TzG1sbKDb4zh9/cEA/f4AVBSQ1mxCSI4FyVlUNL8HmuNeZimPX6PZFCuOEu5bIuthLmC0Rhzz5smFu4EUKIwCkQCRYU9plbM9bLvlgzwXtq/anQ7abXZOIaKJnUYnt+kLx1jD99Vjm9x9goptFVxyEmkCf6UKOXiRm1pzoms/lZdu1l/liw+vyyZjkPUHuO4L/4KENDqRhIDB3r1L0EWBo0eXse/ss7F71w7855e+DDMcIhv0ESuBXncDrfYcut0+FucWcWt+ELoQWOsNcfDoOlSkYGAwyDViKOxYaGOwwjvxiy+6AMPeEIcO3olWqwMhFdJcQ0CyQaogGKGxtLQbeZZio9vF3PxepGmGO+68E3t27+UUNtk6JBEuvOACHDq6gptvvR3f+tq3sGfnXnzzW7fg1juXsWfnDGbaLfR76+itEW676SbEnRks7NiDXreLTidB0m6DTZ2rz7HyeCYaFtt5iOMLpLIitQP1uk3B4VROQIh8xH3vxQegKDL0+z1W6xYFZmdnvRctAyGD4bCPJCnDozjVZ6sz49moKI4w25r1aqZhzoFmKdfo2IDMBgTVjdAfDKEJnPfWnu9CUUgpkWvOB+oCQ/s0UFZN6+yYgAJETo3KAGM4ZNtdx/K5dglhw7GoMnerC/bsPHWd16xSColN0+bKNcayf1JCUhA42WqhwrXEhY8R/j9P4oHzY8HaFbFjTfWNJhtnzql3HSBDxd7OgSgiAZMZHzuwfNxV0OZJQhGEbxGlGnac5ooCoOea4D+HixA54GrbLErvXW/jaE/hPmIsbKxKWkZsi0lFgbTQGAxyEHiTMTc3zyyWUjAaMHmBgjKs94fodbvodrtYXl5m4NTvY21tDf3BAGk2RFZk6A/7SLMU7PXd8s4PUcQ2n8N0gJWVAXt95ylacYS52VmctbQX97vfJdi3bwnnn38h0jTHsWPH8I2vfxPfPvBtZIMMkYjRihPENvPGnt27MTszg/n5ObSSBEQaRZGhu7qKleXDnHI0G7JX76APAAxebXaNdquDOEnQ7/dZKyUVhoM+smzIGyf7rgBAplRgkpCjnfD4JsFMLkjAFAWo0DUsws8hjsvQZoaKyrNmFbDE2soqklYbnZlZzMzO236bDM6dEqbPs2ZnsNRfnq3UwKJhkZ/oPpi8KwQ4YKVU0gbDNDhr3z7k3TXMJhG+8dWvIh1mWNp/NvLhEF/693/Dxfe/P+64+WbMtdo4cuedUJIwN9PBHbcfQpoBh4+toTfM0RsMARWhn2qowkCgwPxsB/Ozs4giA1CBPbv34Nxz9uNf/+UL2LEwh+Eww9Le3Ti8fBRzMzPQRYaF9izETIRWBHTXU0Qqwvr6OvbtWkSUtLDR7WNjYwOzM21kGwMcOXIUtx88giwvoIsckphiv+4/v45Lzt+H/Uu7Mex20ZIS0AWG/T6iaAORIqyvHcfOaB+kktjMFanZ4PnEzxt3boUtHlPMdu4xlamMikGWDpGmGSIpECmFqNVGf2MdxjJc8/NzaLfbiCKFXrdrP8eI4wS9Xg9Z3kWhGYy02x10ZmZ8iJU0yy2Lx3l14zixIC6CJrBqUADt9gyiuIV2Zw6tdgvK5ijtD/pl8OM4htZl2ildaB9wlx1RObUUZy1gA3kpBaSKoWKJrEhBQ8O2eJGAEsweZkUGBYM4ipkd0RppnsJYVak2hlkMyQBVk4aAgdYCmooS4Eack1UIASXiAEi5via/0SYAEuy4wGbN0sbGdvHrXF5ZcBYkGJARfL6U7HkrJIRlxqRPPstEAjM1BgrssOZS27n/WMrIBcLqbqUNZyEgfJgTbdir2DdEex7Oq6Md4yBEcF7ADgrBttuGCKZgB4yiKJA7FlUy2tPWeafInX2kZG9bkkCUIGoxc2tA6A1zpFkX/cEAg/4AvX4fG70ujh5dRteCvrW1FQwGfQzTAbJh6tnF1kwbALxzUZ5nGAz7SNMBByOWAkowq9Zut3DR+efikY/8Dpx/3nm46MILsXPnTszOzWNh526kG12sr61i/549uGj/2dhY20BvrYskSkomXEhoo7G+chyAsZlEcmTpEGTjDlqoazdSCnORsuneAKVi/rxnj7db5KwkHLOy02pzHl1rEykszSwloGDVu4LBnjEWUEtm3R3L7WJZGirgvIgBzgM8GAzQtpu+pNXC8eOrGPQGWF/bQBKvQEaxz5u9lUwM+u4py1rdEWAS1nDThVsINk4Yd7/KuaVqt6LN9u9gYB1hmOo9tryMY0ePYn5hHlEiMTs/i34xxOFDB3Hk8BEcP3YcX/nKV3HWvn3ozHTwr//8z1hZPo58fg4GQL/bRxzHyLXGHYdX0M8J6/0h+mmGmRZB6wwzrTZ279gFU2SYSyTmFhawsdbFd1x+KW45cADShmGYbcdotSKcv38P5mc7UAB2L8yiQIFBbwOCgNnZWeT5EEVh0OsPoaIWhARmO23cubyG3tFj0JqDLyMiAAVmOzHWBxluvf0IOskMikEf+/fshs5ymJwp8zxLQQKYn88Qtzh4qvDePAIhkp4UZI2e16DPdxM1lQ8uVCVVvL5ru5ty6hZWVVN9+Gf4PmgqZ4CkaWrTnOWQUcyLPjgFmBAMAtutFmKn1o3KMelihDm1oQuF4vJzenZLc/w4F3iZYHO6ipL5UZFATEDSJsRJ4tk9A/L2d0JykNjIGq+T5nmDGUYO2pznOaSQaFnHAKeSdg4j7sfFyiOr6XBx4JxjilNRl4vnaE5iIeDrKaUoQc8YYTxUziWCyrhqrOIFYNguztlqGQMYU1iNjPLMGGMoBnAS7IwYziWWByzVuJZV40DHbn4ZXZ+kfWaytoZV1zQEemEgzObhjdLd11Sm+PLlEI8FlwWFATDjWW0cw1TWq+DlCjYfFApjkBc5+v0NbHS7WFldxdr6Onr9Hrq9Lo4dO4ZBv88BkId95DYwsil0+cxy6Z+Fi49oSLOdqr0TpxBMsLCwgPPPPxcXX3Qhzjv3HJy1tMTLcp5h7fgyuisr2FjfQH9jHTpLIciglURoxTGkXUfY2cmgIE4wEEcK1IoRR5wNRdoQQo7+dePWx7W0AZpVHMMvFXZzABA67TZcZg6O81c+K2U3BAy4tWX2YdcaTiyiC85uwsCvsFsDm4Ku1UKn3WGnI6UgVYSFhXlkGQe3BuSk6i8ApypO371odQsXeQ8gpQMfYyT4ygTAz+vYPQK0j1IXOHbnnbj+69fjlptvxtl7d+FYJ8bO3Xtx8LZbsXF8GaLQ2LVrL6JY4rZbb8fXv/lNaBCytECa5bj1ziM8CCBw9HgXx7t9TrWWGwyGTMFneY4dczPYNddGIgnRDOcgNGmGyx9wAXZ1JA71ulicaUMXGnNzc+jMzwOSUGRDDLsp1lc3ICJCe2YWEhqkYnQ6bdx8+yGsrHYxt0Nh5/wc8oKQkcKgN0AUJUgSASoIe/eejdX1FJpW0BtmuP7GW3DR/h3Yd9Y+LB9dxszCDgjBccXOveBCFEUOlSSQxk7ik/qhNzyLpmdbAj+3w3aXkX8J3bzpkrf7c8Uo+xeWRgGorIco31ZFp3Kfke5GtwzYKxUKKtNgOYDU6XQA8PhttxMbKkXbEC6C1Z2KQ55AAIPBANoYDtPSbiORzlYsyN1q7fScWlZGkc9rCjgTNUJHuI2r8HH9lGQ1qxLSqqILpGnGxuRFASkYtNTDhdQ9RR1QdbHX8jy3qdLYyzhWsT8v3IB5G7Qg37DL9FAHSOG9vd2hfcFJG+8EYcBrPgSgbQ8wSANcLl4lGI6AXEgd3pySMYBQVlUsQIbv52PuAd6T1jjwJ2rhUhzoC7yzPSgeEfKMGReA8nMIPD1bWQ3TArANZWF4HDHwYF6VQW4Ydw8oiDO1aCLk2mCYZuj2e7jz0BEsLy/j0OHDOHpsGYMhq0Y3NtaQZSmPT5vTWCkJJYEoUpASyIuhLz/Pcw+y5uY6bCMHII4Vdu3cgaWlPbj0wQ/CBeefhz27dyGJFY4eOYLuxgbWVlZx9OhR9Lo9dDd62FjrQkFibmYOIpKIVIw4bnEmDZIwRmFxcRGtVoKkFSPNMqhI2jiSmhPIEXmvXOe4MxgMkKYZkrjFmigLJI3mnmq1Y98e3iRwLD8XKB32PeFsJ/ysysDYpZmCgcteo1HoHInNtJMkCQaDAbIsR5blWFrax84qBQenzvNqDufNZHLQd4LArj5oT8ZO71TK6K6xmR1scgipXOdgf+Xg6P1CA94iG+L44YP493/5HO7/oAdi5/wsjhy+AztmZ0HDIVaOHsOhOw5CZzn27t2F9fUN5DYg5aCfggywusEqnZmZWQwGKXIiDNM19HspZmY6WOwkoDzF/p2ziBWh1YrRarWRZSnmZtq47EEPxL9+4QvYtXsXipwTuF9w3tm4/c5DOL62Dk0GESRyAxihsdNIpIMcrRmJjY11CCExv7gIoSJoJLjjyBF0B0OctWcnhr11JK02kijGgW/dgG5/gI1uFypOUKQDLC6ch0GWY9/Z50BIgdtuvRmtzix7nkmFPNdIEpuz1xlbb2cAUm3jE5CFFbaVH2pwTQ0QhnPqJlK5agJmmWh8e8LQRVtJk43qVO5ZIgAOCGwI3Y01m8XAWC9djq+nBGwqNQPEVRDDWTliCBXZlFEGRaGZrbM5TNudGW/3VzqCKJ8OzYAdNji2nvLG9Lz4xZDWAcSFk3KBh8logAxarRZmZ2eDNjGzyAwm2yQlSYIszT0DCfD4jYhTbfEmS1q2hAGLitlzlciFISHkNo6oUgqxANuUQUCYaq5bBkbSqpilB1NSWTaNBHSR+8WZryCQyxZg5wsJB85cIGab0kxYNMxJeyHDrBwRpwQLAZxrr6OJGKdZT2ghfZsdo+kcK1y7HWgcAYG1Vz9kmRj0uSwTJRA1ZGAqBfCz5ufLzWKHDAYUKytr2Njo4vjqCo4eWcZGt4fVNc4G0e110d3YQJqlEILYJpA0iDSgDOJEQUUcdkYJBnJJkmDn4k7sWNyJxYUF7N+3D7t378bc/BySJMLhOw9iZeU4jh1bRmLPP3THbTh4y43cXwSQHbuCBHTOtqFJlGDvrkUooUCGsGvHAodVSdrIc3aygBTodGY8k5y020haMZJWgmE6ZA/iLOU+sQCNpELUbgNxjFjGzLYJYVW7DmAX1oGJbQUdyxsCsaIoLKtu2Wltn6/Ns22IXKxwEBG0jZnIpgMScdyCEOwxH6sEiCSSRGBmTqDINfK82GK2YTntGTnuyQvSRGpEqr53jfsyX451p88zpBurSITB/n17IPMUa4cOYfXIERw8eBjLy8eQRC2ISCBJWhxrKy84LlKUoygIs+0OuoMUK6tdCBmhMAUioTDXbqETK8xEwNKe3dg114YQvNvYv38JRZEjilu4/cabMNvqQMGg1UrQiRTyYQ/IMrTiFg6vrGBhpoP1jS52796FwSDFMNforq0BEOh0EgzzAoP+EOsbQ/SHKS4872xcsLQDRboDtx0+Dq0Jg8EQeV5Ayggg4Lyzl7Bn107sXtqHXXuXkOUp4ogB3tzcPCAU4lbCqYACg2PHQEwiSrjJltz/nEwdfs6tPLFwjyzcU/LkbllGaGAdPlu/Sag+9LLcYJGry2bfTeXeL6Gmrtx0wI97F6pFSc6aISWnNoMFAdoYSCLESkEJAUlAHANRkkBICRLSp0RznrWFJghYz1JhY6p5j1jLmlm1octq4ULDeCAjCEQSsB6bXn2IUvUsbNkW0XGIKTiVGDtLRLEN2kzMLbL6j0DEDCQs6HN5gWEBoCGy6jBmBoWoBx5mx1NjqrMzsSUfd3PBtoHu/HKpCjUBDhCKkffbhWix1B4AycDHzhO2G7kEqgZkrt/PPXmynsR1ZrOMuQdWRToQivpchEB1SCNzFedg5k2G1swuEbFatyiMBR6E9W4Pg8EQ690ejhxdxtraGo4uL3NO9/4AvV4fK2urSK2HuS5ySCUQRTaGoe29OFFotWK0Wwnm5+ewOL+A+YV5nLV3P3bt2IWF+XnsWFxEknAg7iwdIlISSaQw026xTZwA0sEA2XAAYwwiKZFEiXccEnGCSHKcvLnZWUghYQqD9gzH2UtabURZwU9aCERJycpBCUBJkJKQUYQIBCMEmxtJgGB4/JMdu86UhwAyJbvAxCv59cPl0TaifG7jWFv/3hEAMj67C4gdPN14U1JCRBGkYHtYITnnsB9oE8pdkoYtlK2Ys/CcEwGM9Wu2c78TuucW/e3Ndu2ElecpBt0N6DzHdzziYZjvJLjjjluRDgZYPn4cUdJGFCc4cnwFSauF7M6jGPYG6PU2oCTQSjogFBCZRhIrZDnHUmrFEdqRRAyBHXMz6CQKF56zBztnWjCCMDs3j153A9l6F53FRURFisV2hNmZFnbuXMRNt9yGI4fXURQCg16KTpJgae9eDNMMpDVW+0OsDXLESqLT6eDI8cPICo3eMMfuxUUoIbE428H8bBvLvQ0IqXD4+CpaSYJBmmJudhYChmMOkkGv14MEYWDjee3YsRNZnkMUGVTBbuuGCJGw+Z2dcWz9OTV0vovGX7EDdL9F8zWAnTQhKqn9/KkCIyzeZi+zA4m+3GASr07UtfZUygjGZWONQyP1qdwTJXzuZV5qVhs5piyWygaCjUGSgye7nLZplsOQQNTqQKoIwmYriJKYQ28YoN3uQAgOz9Ib9NheENJmMWCHDV5AeEGTQlqmiwDJGUW1ZjDgmDMRCQiwjVuRDvj1IF7wnDOGtqFdCEBecHJWIQV04UCPRJxEXr2li8yCSmHrlwCCbchEoQEXqa+wQIVs6BhRMoGuT1mFZvw7V+Y3Jc42YQgKgBLEdmSSF3+3Ma++fe5hlR+Eh2luUeZ3UYoyVAzgITxc3D5fjP/sAK+dH6AZR1IY0Dqov2DWjLNgaL8h9fObZSErx/xGgvs5twyWsaCFAOSax1KhNXKjcejwEayurePo8jHcefgwVlZXceTIUayvdZEXHD9yOBzajYAABKu7pQRUxGBfSEKnE9t0YvM4/4LzcM7Z+3HW0lk4Z//5WJhfQKfVQVFkWFk5jvW1NRw7eggbqysY9nuIFYeLEcZApzkEAbFSmGl1MDczh1arhU6nAwnJafySNmKlIIjV1K1O28b46yBKCmiroibBzkHacGw9LQUKC5KhIkRCYpilHiRCCkiyoVTsu0kAdK7Led32JWct4X4gECflq4Hv8Ln69YDs2mDKzZgUAoVjh4W0Nn3SxvYUDPgEs4VKCIhoskRskztynAwwCuRUMH/bqcsk9xt3ziQgkc8LvwyOw+3eeOD21tcRJwJFnoKkxNLZZ+HonQdx80034cjhZRw8ugypIrQ6s2jPz+PokWVQnmFp5w484JKLbY7bOxErgV2L89joskdUDGBHp4X5tsL5Z52F+XYLrThGEgsszLUQzc3i6NFjaCmBnfv3Ihum2DkbYXZ+HgsL8xj0etg108LO+Xksr6whVgIybmGwvo6ZOII0GjGAlhRIWm0cPb6OXqqRG6bLj/W6kCDI225Hmg0x6A3QTw26/SEWdy7AmAydVox9+5awY3EW7c4MNtbX8cX/+He02wmiqIUde/fj6JHDKIzBhRdfjKQ9axdB3uFstZGp7MNDIC7qv8XIdF4BceFkHeyaG1X7Y1g6GvkA++I27RCoMoCq9kj1Qur395/GnjOVM1uc3ZZTFTmnh8I6ORkhkHQiKBlBQKHb7aEotM3pqhBHLZsJoA0VxYCQMCRQaAOTa+RFjt4ggx/MNsaYkBEH1JWKU4tZ2ziCVS+CAyc57owACCOhydhE8YUHN0ncKpltI6DiCComIMsREautBumQAaBhNkrbOH6iKLNFALwhZFVjjsKx6EKhyHJACKgoRqE5MC9pQio0pDZwMfWU4kwYgsiCTgMpyqwg7E0pWG1r1dRFYaCUAArBNvHWe1TIcK4QQT2pVN/avlKCIAWrHqEN28QJCXJhCIQAOa9bIdijE/CWK86r192RYDNqOBbUzh8CXA6RhoBm9TcYyAihGMyQ8dk6IJyq3lhCUpbPSghARCgKjfVeH8eOr2BtfQOHjh7FLbfdhpXVNSwvH8fqyiqGwxRD633LoXPYttuYHIXJkagIQhKkLJDECRYX57F75yLuf/9LsH/fEpaW9uCcc/aj056BlAp33HEQB67/Go4fP44jhw47LTl7ryuFSEq0ohjzcxxiJbYOFFJIzLTa1lkwQrs9yzmohQQQozCsKte5QWpyRDkhKdgvt9CaAStZb3BBiEgjNhqJMYhiBRh2tigMh+gxWkMXxB7choN8e9ZXsyc365sJpsiZmbfMqRAcPFrb+IOQbCvplgJj4DdIPCIFpFDIMwaTUaQQS2fmZH+E8Eygi8tJpoDE2MRnI3KXM333RgmX5Xq/u8mz313D5z/z99i/fw+KYR9xEkNKgZVjyyi0QW4EepnB2toydu3kHJOdJMaDLnsgds51cOj2W6EHKS67/0Xo9vu49dBhXLh/D5ZmW5hpJdjRlrjkwnOxONPGoNvFwtwiuoMudi3txvLKKs7aMYciyzDTitHZMQ8IgWGeIY4FgALn71lAmhXYv7CEXprhzqNrUBJQM7MYasLuzjx2AUjzHDrXKHQfvfUBck3oC0BFElGUgWQXK6vrECSQxBKzMx2kvS527lxENhxgOefd4dqtt2K+08L5552Ds88+DzOtNlaWl5HmOW69+WY8+vFPhJRzABFkktggrqcG3GynnBPZNAignFhrwE1QeBKL8/arlyc2G1goWcJtcftTOaPE2CCuLuadG0qRVBAqhlSsnmUnDQYeUawQxwIqTtBqtxHZWH1k1XaFVbkaMtAG1gOXF/wo4rRlkWJbOmm9ASEkpwojYZUSlmFyY0u4OG8qSKvG6kHt87Qy7eTUp0x+cCDpKE5K72HWz5Y2ZxaQkpBsUwe2MWTwYxdYu/hp2z7Asoomg7N/U1LatGCFZUOsbaBVX0spITRBg9NKahtuQwAwxDHqYAQEGQ/6QnZPqZLprziM2HecSTbH3ghuD6zWgUpWkO3AWaXnzU38HGJbXDEoFuVHC6LhmUPHFFmgGDhvkHG5mAv2SjbWacA+48IQeoMeev0BlleP4447D+H4yiruPHwYh48uo9frY6PbxbA/QFHoMngyCWjNzgp8zEBGEnGs0Eoi7Nm7C0t7dmFp7x7s37cXM50WijTFbbfcAq2JQebaBnq9PtLhELF0mSgkkjj23uqR4EwuURQhUhHygj2ss7yAMQJCaJDhLB5CSLQ8o83OJjKKOBUhCWgL+rI8B0kBktx/iggyy6GGQ8RRBNIauihQpBx/j7RBK4pZ7Qo2DhBWFauEKG1k/aMgzzLzY3S2klbnR86zO4gKYZ+rZ2ZtoGYyskIoCfcj3GeCdPcRW7sOOpk8OPNdqEe6x9oBNugD+EEbDNZXceCrX8bKLbPYv28vdu0/Gxurq2jFMY4fW8GRoysYDnNmt4xGO1G49CGXYaHTwY3f+hbaJsP9LjgHh46uYrU3xO6dO7B3cQazu2axa2EWl1x8LuZm24ikxKDXA2mDJbkIqRR2zHdgNHFQykLzQCT23trobmBmYQZJnCDPMxhDWO9LRFojPm8RGgI33nEEh4+vQ2uNjhK47MIlzC3uwo23H8TtR5bRH+bINS9Utx06iiw3SKTAwsIsjq11IaIW1rsD7JqfwdrGOla7GzBFhtmz90FowvFjx7C20YOMYmS6wLGVVdx+66246KKLmQ2QAtKqocb2uyhpc9/7YjRnZeWyEca2Ydz5iX1yYOWmaOHUvxX6sLn6I6xg40lN9wnqOJV7nOjcxggzgNGsqhRCII6Y3XA/JNiOLYpiKPvTmukgjtl2z9jF0NnsGQ9CmHESzlM3totonLADhWB7PSMASxf5mGHOjsx5xrrwFcpmBNEm59hkNiWWsynj3OHMZEjFnryJi+9mY5H5z1r70DPsBWvtopTwTgVCMsB1AMaDPhIc5kNYr+AogstdHKvIviAGsVRQRkHZFGwuVIvS9lohIIlZQG4APOhz0QOc3VXoaOGFyjAs/q0UgLNTdMBVOFUfrMKXHFBmFSJE3VzDqk5tGAhixGZtKMkDQ6dNMlRYUEfWoYA9OoucU7qRAbIsh1ARDAHDXOPOw0exsrqKg0eP4Mabb8ax4ys4dOQI+oMUub1e2AfB/iwCgGEWrCh83ygJdFoxFubncP65+7H/rH3Yv7SEubkZ9HtdHF05jDsOHsTGxgaGgxSzs/OYnZlFpzODvbv2II4Y9EVSodNuWwDmxiA/azYZMEhNASEiCEgMUKDXG0BKhTljg4gXGr3eACqO0eq0QCpCQZxHOCtyqMS+T4IgC5cFxkAJAWPHs05TjpNpCJ044TRpktMKWr0vWhGbXURRxGn7LJPtws8APCaMe+bCAf7qHCCF9AHaeTwYGwZEs3OjRXmW5+XxK4SN6QgblmZy3DRl+k6xWPxR/kX2BVcCj/iOh2P90EH0uuvAsRgggQPXfxsbvQHnWhTsxj0cDnDBeWfj0O234c68QEdoPOZ7HoGvfuNb+PevH8CF552LNgz2tCM85IH3w449uzG3OMsedETWNZypaWknHN6Z8cCVMMjTDCDC4twsWnHEw6koMMwyZEWBs/p9IIqwsbKKc3acj9sPH8dGP8WxXoq4k6Ddkjhnzzx27pzFzbcfQTrMcHy9hyLPoOIEIk6w0h9g/ZYe5jtt7Jjl1DkbwyEgY8zGEebn53Dk2CqOHLgFKok4A0irhSiOcctN38ZZZ53Fi5xlPMZKuBvaAuhtS0Tt84S4b0S1XCnTLgx+Z0feycRd6FTLk9xyCvfu4UJAJCLIxDktcdy0VtLi/LpKIrdx0QwROjNznOVBMvM3yDjpfWbjf0EIREnLe/52OrNs+0ZlqBN2ypAwUnlHjdimZ3PesjxvlfHkENgmuc1SknDmjzRNGdRIDjjr2EuDIDiy4GDDRpf1JADazlXufSiynFVqWiOSltGw3sZkCLLI0Z6ZYdsppZDnubXFtY4cBJ943qmfOfwFAUVuN46cOXYmSTxwcmplp7wzhiAMoGQwnxgCSQmSEiJyLKawimIbqNm+kQzo2JsagA9hw/USoDC6hpujJDvsuHVDFzkE8QzOTi0ASSDPNKuhYYGYrbUuChjSluXTIF1wWBpwOjIj2A6yv9FFrz/AoaPL+Pr1B3Dk6DIOHzuGo8eOoT8YYpAOIWTkNwpKsS2b1gWEYdYQROjEEp1OC/NzM9i9ZwfmZmcwP9fBzsUdEFpj+cgR3H7rEEWWQxcFZtqz2Ll/F5I4QaISC1xs6CBpnR8Kg/5GnzNUZWyWIKVCqz2DVmcGrXYEgkSW8UYDMkJHJYjjFnbs2IF2pwOtDfr9DDNzs2i1W2jPtLG+sc6qXaORtNsoTIEszyAUAyYpAGiOF5ulQ/RzQp7alHHrXd7BkHUItBuTOCptbVsx58xVUlqP99Jr3IfOAaudfbpEGVnvcKvrJWeOYFk7a7PJFayvf449DhjACaeceyTou7uZwDqjtLlYW5M4wY5du6DyDP3eBjrtDhZ27MRwmOG22w5iJo4x2+ng+Opx7D/7LCTtFqhvsGvXLlx6wRLW19Zwyx2Hccn5Z+HCpTk87NIHYN/OHdi5ZyfaiwuAVIhtWqWYiE2e7Q4PNkyCC9JJOkXcLgBjMDu/YCcIA2EIHZ1jmA6wuGsHVldWMLtnJyAUdi/OY6M/xB2HlnFkpYs7b7kJ/VyjvbCIs3ftQNSZxXo/xU23HUQvzbAxHEJGCWKl0B0MUeQcd8zoHHEELO5Zws0HjyJOOjh2fB1EBrNzc4iiCGk6xPLqChbmF/DI7/oeq64p0zRN8nyantOJeMg6aOa0LN7Me6uyArXMmEr+/+z917NlWX7fiX2W2+aY6zPzZpZrh+4Gu0GCpGgkcTgkhxJDFEcvihEn9KLQi/6oeZKe9SopZmLEiSFnAgIJECCIBtp3+axKc+0x2y2jh9/a+5ybZTqr0Q10NXNVZF13zj7nbLd+6/v7ml3TJk2Y8Kds5rO3sa/2fDW+nMPm1IDx+pwEAdahc+sIvLQ3U5rECxAJKFFiAspaXLZWKcoaW1isdVhXQhKFrxD3YWoOZe5RiAGyBcausNshd+PvQuYsCVo1ZuBqhqEfQS1iEpPmGCJqLAAzl3DMZg1hbBrn1xohPXIRGAWlMjnRQ/zuhKslthfyszZmUgkbbSaulFZ7nnxGYcZ7htrxFUHjU9r9jR2isg+9j1f/3X0zFtCJ/Sk3kVWceRcntbt/xNx+Vfl6F2uV3fsiA3cpx8Gl3CrMDoJMMXG5wJ0AIWA0Z0651TpxAFOa3l1M4H1k27R8/OQZl9c3vP/4Me++9z4X19fcrFZs2gYfAyr7PY7t8RAFhU0hoAFjFFZrDhYzlos5R0dLTk8OqeqSuioprChdiYnCWuH7oairCmuEn2qVzYixIkVZDPgYhLuZ93yMkhSSm5igJElGGUdSIloqqhkKjTYWWxQkbUhJY1wSRFNpBh9pukGyo2PAJ/AxMPgeYzOH0FpxkUhiyZNmcp456+jbNsemxfy+PCFFQt8xBDlPnRHDZ2sEqbTOZH/CzMlTefGixS5IPuJ43Ni15NMuiWN/ilEZjdzXgE+oYAYSXrYs+lIWfV+mMV7Y3ns2my0X19coP/Due9+jqGvWtysK69j0awgdp8cHHBwc8vziOSYGZgbWlxc8efacN+/f43Cm+a03z/naV17j8OgUN5+RnCYvPcEYUhClmzZOVk9ZjqqjEFLjoMFIWLpKEUJPCjIxmGiwTjy87OkpKeYQ6cFz1NecH825uF7z7GrDuhtY9x0/fv8jPv7wGU9vGg5nCxZ1ARcDm8EDibKwVGVJUZWc33/E1cUl77z/IUVVEsMty8WSup5xc3tDSglrNcl7bm+u5cIs3efu4xfg1V/aSHvb/RW9hGxbvXzpdrfo/SLru1fj13EYV+TCCiATupVElyljJPILaW+pJD5eE7k/iskvWmOLAlcUWOcoimpS5AZU5nBlL7axmEiiYIwxCAcwqxJDCJn0LxM+MCETQ99N6QlpTMwhh8vHRAyJfmjxg/xsjBEFcggTyzyRcp6pVIk6x3+NY2zzhuCxRgpL50R6EeNdU+TRAsZO8XKCSpnM3xPjaUPh3M7WhbEwBBUCNmlS5u6ZzNhKJLkvIhYvYxUW9yq6MZNY5YVgJOU2JDvkTg7cVIPJ9hI6qUx83J+o5c1FFXY3hLH4VFLQjcWnViqbCOdiIC/+7hZ8MFoVKCXCnm4YWG02fPD4Iz568pS333+fDx5/zHq7oRl64sQZzTmy+VhEHyAmdARbiJ1KXVhOjw45OlxycnzE4dGcwlmsM3lfyz9XVtkf0lEYK7zOkNBJSwGoFEOQBYUfJMJPZ4sgZYy0cU2mIWiN0kJRUDZhjGO+PMQaR0ww+EG2FSIhQe89Q4w0fc/NaiPxct5jnAiSQgi4wlIWBVVZYuoSpQ3GOoqyxmiLtyVWW3w3EMwARIZBkUJPP0jhmGJEoyickbZ0jLjCYq3BGjuhfkVRiDJes7f4SJMS/xMesndGlHMxX7vTgj9zYgWhf7l7zqui75c5xuPA3ak4pcRsNqOez1keHvL47be5f3qPH/3oRzx//pznF9egNK9/9TX6IfDOz95BxcT52QKbzULPjg+pjeLRgxO+/u1vcnj/HrZagC3RVokSL7dItNYC7YvtqlgRjHy4EFBGYxLEfkDFQFIR8NI+UcIbGPM2R4fwIkWCH+i3G2Z1wYPTA9rec3m74v6y5oNnG969afj4esXWe37rrde5ul0z+IGiEhfzm9trNu2Kro/MZ7McEdXTdw2oRIievh84LJcsZzPms5q2a6kXi12L5SVO7DuF0R4Y9ulY2vigF8en426fvY3PRqD3MYPx209uRb140nzm9neq4fy8V+NLO1IyiOGqtAxB5vBkLSG3QKM1mMKIIMEK6iFWfXKFJyWqwK4fiF3P0N9IvNvg2W46Ns2WtuvYbjd0XS/cKO/pvEyCfd9LmzSrRXdh8TteWAge33d7KJcoDUGxbRvKqqIoSpyzU3KA1jpHtHn6YcjIpcpCBKaJMGXLlmGQBAJjDM4ZdLZTMVZjTbEX4SaB98Zahm5AG0tRVlRVRVE4ikJ4VmShiITRGzFyVoqysBSFY14W1EVBVYpKtLAOazJCo23m0wn6lLK605gosZVKFLMmyXvyYSz6lHAlgRgGRGWrcus3I33oO0pLlX0LQeK4xAxHU2YLn5QSfugnH2m5NxvQkpU7aZ8zUimgkBTDPkbaPrJabbi6ueXPf/Aj/uOf/4CPnjzho6fP6IMXsY6xUwfRJ48eC8qUqApLVRTMZzUnB0tmVcmirjg9WjKrKxbziqIsMEahjc77MKdZmAxGoElB8OmYIqkb6NttTnPpMsqq8rHNRbstcGWJsQ5blhhXYYqSenmAtpaUFL2PXF5f0rQd620jLVwf6LqBpm0zfzTS9i1d17LdbkmIqbdzBcZqqrJgVlUsFjPJOI4JlYQX6iYQBUDjrMZZhU2WIpbE6InB029bMQ4fW+o5Ti6FiHOSqHFwIGbRRktBOyJ8o+G0KMJBZofdAmM6VfaMxGW1kcUhURYn6hMt4E8fr4q+X/YYC7/cFlFJ+CLeR957/yN8swJnuby+QDnFpm2oqxnWKMo4kPqW40pk3vdeex2UwtBSk3j9tXPefOsrHJ8/RFeVrISs8HOSsbLe9ENeylomekiCfBaKqMhVEIWgK9ySAoA0DJlfIxefUkq8uawUGiF4SusIw4DvJAS6cJqT+QEH9pJCXbC0iY9v13gHy4enhJR49OZX+J9/7w+42vboRuxX2n7DvCpZLkpcaXFW4eYzmGli9FxcXfHHf/THfOW3vsXR8emOqPM5Y5/LN/3ul3hod5Rs7hST4y/S5xRgn1csTtvjxW2SL+7P3uqr9u6Xe/ikJc0hCYozqW57n8PXIx4YOXBt3zMEz+A9TdvRdD2D95N3mveBpuvo2i4XdPK4IaMoY0JGSiLkGgn/3u/Feo0oT0aPRtQvBonHEqRs5ABKHFrwgda0eD9MMVNlKfFXPkjbMYQBH1VGzeRaDTFmHptM+lF6nyifsEYKxMH3GJ1TOJzD2oQxshhu2haUph/ksxdFQVF6Yoria2YNxon6MmabmG7oUJvEDWIRUhjLYjHHGYvNbbpZXVNXBYt5JZOx0oKE5YvRh0hiIOiITeO1r0gYRgtfNXIiUVOE2/ifvlP1jV8TZrLMyerotEclmW4FKaehQAqBmAuA6IXfmaIoqpPS+JDYbBs+evKMj58+42fvvs+zy0tuN1sR/iCtd7G1kWNg0RRaUDgDLOqaeV1xuFxycrCkLgvmdcnxci5JT4WjqoosfgEpagWVGykEMUShqAUphIa+n1BjrdTkF5kyL3RE3HT2kiyrGuMKUJr1ZoMPghivNy1XVzdsm5b1VhY3CZm/uj4vcFJkGCRpY7ttAEmakUJVcqLrqmLbbFEpSZEXAi5TJkgpt4ANVWlBJ5QWYWThKhQJqw1+GCBGOVdyDq/ve1kw+SAgSoyTIGr3XwbC1ThFy6S9n788sUVHylLmFY6orsq1xsuMV0XfLzg+y6NN/ihfhJEhF2O33vCH//bf0TVrTo8WVLbg44+f0XYBHRO2Lnj+7AKVEov5krJacnxyjw9+8H3eenTAm2++xcPXH7K8fx89q1G2RBkH2kmLRymSLD0ZX33qG8UxSFpll/78vRtNQ11eIUoLSBvhH4ytAmO0nFAxkrQGayU6KnjxZooD5/cPKEp42Az84AO4aALfe/cjVFVycb2h7/oMw4uyLBBp+4G4Cqy3ikVRs1wIUdfkQOlHDx/ys5/8hLP7DygyX3Fa6UwLns8rinJt9ksEw+76dt39y2ehg5/4/Uu8n0+ghntEj1fpHb85ow/ICj6kyW7EBxFUSbtK/DATYlVys7ql63q6vudmJYH3TduxbVr6QTI4m66l62RSTSllXz3h2sGOXwSZYB7EyoPc9jQwCTBkrbhDG0bCvdEydShgsVzih4HUdWy2WwrncEWBUYog3WeMcdk/bidgijHhg5fiTOsdvzH/XfhQQuhPOVlDfA3z1ZaSIJTkHNOosrmwoEdF4aiqkvliDkls1VKIDEMvTgVDwCB8wINth9FSrFgNB8sFi/mMlI4pS4tzOqt+pdswRpmpmHKRYWB0/0tyX9W5NSsJCtJmH03j9TRHjEP2i9lDa8JUcOdfqPFxSSxYyPdgJR2I4EM27pb2Jtoy+MRqveXDj5/w/gePeeeDx1zdrmi6bjIqHgt5k3mQ1hhmpRgdF0ay1RfzGSeHhxwtl1SFY1Y6Dhf1xGMrqyJTy1IurqWKGfmd0UeCT5PA0GcBDqQpQ9laC0b4eUobtBWDcW2Fr6eUYYiR2yxEadqOm9sNF5dXbJqGzbZh2zZobalnCxEOxUBIgWEY6HuJGwXk3BjKjDY7ur6jbRtBh2OAIWCNxhoNMVGWhbSB6xJtwDo5X8vS4awIokzXEX3ApEjqIzGSUfKQxSXSjXPWYrINjR55pnu3+1GYNB5y+aem6Xw35QlVYAQjXnaae1X0/QpHiomb60ve/dGP+Pe///8jKXj0+ps8++h9Pr75mNW6YRgSRonE2xUlh/M5lTUcHh3w9IN3eHQ44+HZEfcfnXPw4AFqtkS5OZhCWrbaMrYdNdksMgYp5hKyItBylxGah6wAUWSIOcOBMYA2aJvh5hyBpnPESxokSH0EuuU+pLDKUpiILhL6cIazLeHhGY+85vq64cLD05sVKSm6TgjfIQRwMPQDjdEYZ7m9aThoWxaLkrfefIRO0KxXPH/yMX/6J/+Bv/u/+l8LT4mxxbm/p395Hn4vP9KE7H2ifbs3prf1i9ZpL36sV/Xeb9R49+lzmrZl2zZcX18LSjd0bJuGru/ph4Ft2+5SEPoeH8Qyo+lbum6QSSWmnXVDzmwlCcIyjp0QajR/EGK51VoWeqgsgsha1P2Td2rpio2sXIvCYWs366kld7hcMMu5wSmJYXGMYJxls23wg991Q2Ji027pjUyAVVllHp6lns1wTvh0zmi8j+jc3o0x4FvPNgS6tp+Ut9fhRh7jLH3fCp+vKri4eo4rHNZZlrkABMXh8pjD5SFHh0d8+1u/DUDfdnz/z/6cD59e0LUfs1zUnJ0ccnAw5+R4yXxWCnfLiUhFKUFItTJopTEqkBDEKtO3GFM3os+FTlKEqbbLUo2Ro6j1xLfsh2GicDgrbVIFhKGXdrXWSKtmPE7Syowp5XZ/YL3t+Nk7H/JHf/JnvP3e+3z09Fm2LFEoV6CSn1CjuiyoioLFfMbpckldlNRlmY9pxXI2oy4KUa06y+G8xmUe3+i5GGOk9z4nV4jRcRwCsQ+0bUfX9fhhoCwdGaKS+ckacOIXqZwcK1dUhJQYQuTj58+IEdqu46OPn3J1cyNIdzvQD0E8+DJVIaK42TYUVTkZGYu6HbSzGVXUKKNxhSw0Bh/wcSuLHqUonCWkiPcDbdvi+iz0uJUc6bIsGHxk6efUZUlhNMo4jDLgPcbmrpMeLYKQ/N+wmVrgZVFkPqq7K1JMIR9rs1M3j4WhkoJaZTQjTdeqzhm9P3+8Kvr+guNTlbyTKifw5P33ePLee7zx+ms8fPiAH/7H7xGHyMdPn9MMCe+hMIp+6CiMZrPacjQrsSrxxlce8day5utff5Pq7B66WqLsDKXFeyjpXPRpDXHYEYkBVGS0e0/jMn4fFVPjEtxCXhkqrVFYEXugsju9EWVfLreU1uhM/FYpEX3MqxBxy5/VivtJ0wyRv/HVh/z+j9/DRPE7slpLuxhD9J66Fs5eVRQsjuYMvazc3n3vMW+dn/Duux9wcq/l6nbN7/yNv8l8sSCplG92u/pHjcuhPJv83FbqJ8YvXkl9XsEH+6XhF9/uhCbDHsfvVdX3mzT+3R//EW3X0XYd6+0WH2QCa/tu4ieFlCYk3scwRWh5H7OTxK7YgxHcz8uyT7k/SULDfkcASBn5G731dPaq2+fD5lSHiLQVjRYEy3cyiZfOcryYM1/MqaoK6xw+5mK168TINwa2TZNjxCSJxFibuVJa0Mkg0ohZNUMrRd+3XG6uiTFhXY8xLncx4PjogDGV4tmzS4ahpx9ambT9wGrVcn1zJTw9q0VsYAusLSjcM85O7vPwvOc73/1dTo5PsMayWrcMIdK0PR89uWC93bKYVdyujzg7PWS5mHF4OMeokfcmecFjfN04+U6RbKSdP1ven6PfH7mQVloQLqGUSYKT3Wt7SztdjoTc/yR5w4eYd4W0dCOSJuyjYtv0XF2v+Ok77/H84prNtiWB8M4QlNBZSX4oC8fhYsa8rjiYzzk9OKQuS2ZlxXxWUxYFs7KktDYjYGrqvIw+i+N5GTOyFUKi7waGwTP0gdB7aZ2OXZqsZtW2wFhB90I+HUMCnRKd93TDwHq7Zbtt2TYtN7e3bNuOtu/ZNl1WoEehEWST8RBDtugRkY9xYn8UQk5bMZJLbbLwovee4Aes1ZTOMZ8VWC1xakVdUTjhe4qXrVgk3azXYgRddszK7OWXEjpJ1N/otzkV/ZlfGEOStBkgmpjFi3fdKUaB0OQjmZH5cY5Tn9JBetkO0Kui75cw9m+s09o45Qvdd9xcPGU2m9Nst2xXKy4ubrDlHN+vuN5uSSFyUAnKt9muOV7WlEbx1r17fOurj1gcH4OrUbYC42T5qDVJG0HrctGlkgJlspv3wEQINbn1m+87Oo2cHXGN10rUUWiLmMOanTpNW2IYUDrl1blB8iGzuk1F0DvCqo+JunLE1PHotOZbzSnX2w8JSW6I69zmnc0qZrXj8PyU9WrFtu9BaeZ1ie8GPnp6xXzTkZSh2LTc3tyIH1Jd3T3Vx97EuN/3/n/3Qb+K8RIX2V8A4fvixeur8WUbf/rDH9BnRK8fQq4LkhDsQyQmaWkaa1FmVO/tKULVThQwTgOTlcO04Jj+Mv0kl81obSKWE2MARVk4jM5mxiEKWT2OJsrkqlJysY2CAFTOspxV3Ds94uDggNlsRlFXUqgGz81qJRFpRtG1W0IUbmFhDQeLOfVsxqye0beSv7uYzzg5OkQpxWZjubq8Jnjxe7M2ZARHM5/NcE7U/c+fXxD9wBAGDuYnQqzvB9pmMxXFw9BNRV+Klu22wwe4vl2xPDimrEqK2ZykLe0QeHZ5w+16TVVZtp1YmvTe40pL6SQubGLVKIg6ZhWt3tvlu2bd+J1WOe9YyHRTMorPBsxKRYwzu+ckPd0PlDakMEjsF2J5Mpq7JCXZ4UOQtu7ziyve/+BDbm5X9IOHnMGckDamNeIxt6hKDhczFrOaw8Wco4MFs7JiVlZURYFzltIVFGb01MtnVZIosZF7GEMi+DjRCYa+Z+g9wyDqcJWkha1yS1xZg7Vu8gVMISKMh0QYBto+/+t6btbS1t00DZ0PDD5KOgdSKIeUxLIFKRpTLgJtEs5gSsIzVCqilAatJdbPewJSXMaUW7XOTcKkMgwUrsAaQ9M0NG1D33X06w1+CNRFQZhVFMZgtcIqSeEaEUPNLh0l5rpgauGOdcOI6Jmd0fKErE/tX5XRgN2ZtJ///rIN3ldF369w7OwHIsYa3n//Q3789gdcNxvmtuR0MWNeFfigCF1LInB+dsiDo5rX7i355tfeZHZyALZG2UJQOaNzCDqTUz6MHDzySZRd9vNNWqu0a/cSIXqYpgNRommTncbzDUvQAFm57KODk8N42lk6hKxuUiSMYuJCLEvH68dL3jtasn2+xhhHjIlN61mlwJA8T69u6TqPdZZZaamd4mhZU9WVBMSvVpyeneGHYcollbdy9wT/fMTtV1c8/dLLyZ+3wb/sLvar8Ssd7338dLqXZ3g3Rw4Kym6UyubkYsY85njDaNHBhCKIzYZck2ZvsgiZ02u1ygieXJ9jmkBRFJwdn7BYLjg8XHJ8dIw1Yl5y9fyC9XrFanUriERusWaCHColnFEcHR9zenLCd77zHR48eMDBwQEhJUKmiiwPD/jJT3/Cu++/zx/+4R/y+GPJ2f7a177G3/rdv8WjR6/x4Pyc0A2TojOkxGa74aOPPuLk+JjLyyueP7vg9vY2K44D86qSArMoaDcrBt+jjea3vv4V6lmNLR0np0egFT54vv/9P+Pjj59ycXmNczUff/yE9957zJ/8x+8xny0pipKu62maFu89dV1idMRY+PDjj3n85Cknxwe8+fo5jx7c43C54OTwAFDECD568agzBp0zgyVHdbSdknt2RKxqUhC+Y1SGhCGqRNQpo7t6d0sm39fJ5h3aoQuLLUr6vsP7AW01OiZ877m8fs6f/eCH/PTtd/npT39K56PY6ChB+EiB0mmWtWMxq7l3csjRwZJ5LUXf4XxG5UpmZYmz5RSPZqxwG1NM+X4s1CRBEBPD4OmyGbP3nrbtCF4KPqsspirRWaGtnUVbg09k5E2BUQwRhr7j+dU1QxB0q6xqorL4pGl9wkeFj9B58bBUWuOqknYQAVRCDJBSiKS2o5yL2blzencNWEM1qyXBpS9QCAq67Qd8grooKOua7XaNV0oKai1K7bYbuLm+orSO0jkO5jWVcxTOMCsKjJLO1nxWCRc+RWLyGMbrz6CMtGcjgRh9Fk9K4WhyBrGeOJ5KWsdqD9FT4pmYxlSRl5zmfnOKvpf5wJ8gz+6e+4m59JcwuSqlmM3nfOvb3+J/+P/+K77//R9Rz+Z0YeBkueD0aEkXAo8/eMzR6ZKHZyc8OlpwUmu+89vfYn50iDEFyQr/gOzCH0U+J5OAkvV8ykia2AIAYxaHEvbOKOZIOZNRTDFlotDSn8j8EI2ywhEYhR2j99SIDoyrE2lRxGyo3BG9eGv1ntz6DSyd5tuv32PT9WwGT61LNIo2Raxx2MpydliwnBeUhcEQOX9wn9V2y+xwzsHBkqOjQ2az2d1DtqfU/TTV7qvxanwZhitGq6V0x9gXuKve9Fnpp9XOpy8lTCaCG+cm0FsKRWljjf50xhjKssA5KdqcFdsSYwzOWA4PDijLQsx1NZgcIj+vC6yaU1lBGZ21OOskdipIu1Yp+X3oWt772U95+vFjiqIQj8HRz88a1psNm+2Gg/kc+9pDQHG0XLC6ueL9oePJRx9OThVKCYHfe8/QdhzMFzhtWdSzyVZm8J7Cja3exKPz+5IaoeBgMWe+mFHPak5PTzDOCp859Nw7vcfl1TXvvveEwQe6vme9XrNt2jzx2glVi02L1hGjYRg6hjBwfXvDdrth6Afun53gjKPO/KxCG4ap7U6+j0LXD1hX5EW68LJS9k/s+4DSEVSY2rMBRVJijCytepUj7TQxKqKPpOAhiWWIWOz0tK0oVB9/9DGPH3/Es6fPckEg3RmnFcYJ/3IxKzk+mDOfVxzOa+alZVZYFmXJvCwonaMqiqxc1dgsuAEmr7mUi90QorRxhyHbAkkkoMo2J1hFoR3KCKIXUuYxYiYVd0wRryQTvmlbrm9W1Is5RVliywofr+U1/L4/ZUnM76PzgaZpMdYxXx5gC0Hx2qYjNZ0odosiK2yjUCdCEFRba4qqQvW9IMoJirLi4PCI2WxO27UM/cB8WWCto65mws3s+2wmHuhiInhFGgYKazJ6nrCjb6Fm4hjK/JtIWuyKRCmfoeGfw817MXXqi47fnKKPHZ8t0z3+YvjOX6RDOLZ7tXAGNusVl1eXnJ6e8PijJyQf8Bh+9uHHHMxrvv2Nr/Lg+BA19NybGV67d8zZvfvZd0mBskStUXqn3EyZIjy2apIyOxVQHATNy5DveEKpBHHwclsZ+SRaCxaOAsxuFaGNtKeDz4qk/NohiO2LtqgU0NEzDEHax7ketFphchZh6SxnM8c3zw/52dNriuMD9PWWJzcrVBh4cHrMsq5QKmGLgtb3vP34I44Oj/ERrm7W3Pz5D/jmd3/K7x4c5pBr8+Lu/pQD9mq8Gr/+w9gdIj+ifVNbf/ySvd4gJ0/kG51RShIFcnKAzekT1lislaLPWGkZOWupavGxs8YIAX/KO9XMZrOMLmisimIgnBKzwlEoqK0FpB1YWCfxZNFnhXCOV/MDl8+ejtGk4gdqLKBpfY8rCrTW2dtNItxMUdJs1mzXK4ZhQKMlCaEoKIqKMYmjKgpK61jMZpSlWEyFEOlaQeQG7zE2p5qQWM5rZrOael4zq0ussyituH92RulK6qrmo48vsUYyTIcwMPiBhMa5Gm3kftr3nTRXVGIIia5vWa8NQ9dSVyUpJQ7mC1gsqQqFK51M5iR0AOVGYUbIOJ0Uz3IbFS5aDH7iW0dtJl5aQhOiFH5KG2yOnosKhjgw9IGu3cpxiGKe3fcDzbbh4uqaq6srbrPhPSmiVaJwhpQMzioO5iWHy4p5XbOoS2alY1ZYZmXBrCgkLs25HJOWFxG5IBm71uKxmHZ+jL0UfiEIumW1zUWVwWlJ0UhKi8Ao6Vz4igWOT5FgDF1u6XZDYGELiqpGG0eIiSEEwtg9VwrtXOawRjFmTlCXJecPJNVqs9ny9Okz2q4hRTDGSgBKjISU6Pt+Z85srHDsYgSlKYqS+XyJ1orb21satWWxmBPrgT4rdVfXN/StcFR99NJECx6iA5swOoET4ci4QBuLtqkxN+3QvbYv47puz59WfbLDNY4vUgD+ZhV9L3wdx88rB/af90VLh12e5e5Ajq8phVbgJz/+IU+fX+D7xGyx4OLikmfPnqJ04vT4gOViRiLSdxvuvfUWX//GWxSlQ+VAZbQ4848VnhR5+VWyUzsqw+7Bk3wPScKwtZYbiBghxymuaPcmd41elIGsRpseNP49RmI/kLzPvCJ5M3LxyuvIDSowApFEkesXBh6eLNHOcXW75qxKNI2mTYqbzZZt1xGDYr6YE/EkFJdXK548vSClxPJgwX/7//7/8PTpU/7JP/0vMIvFC0Hor8ar8eUcQ46dGi+3ONrlZfDdGkVVyQTsrKVyxcT/KbLyz2SvuSIXcnVRCi/PaowhfxV0b0T/RiGBoINpUsbr/LNWCaU0RV0TQyk2G2Fg32cu+ERUYG05JQoYYzLHKtINfV50ysJVEhuseK/laLWUr98YI8FKElAMEd+1JB9RmfvmciRdaQuqqppQm7H9JekPBQkxkh5yskhMgZvL58L5ioHr62tubm65vlmh4oDVUUSjGKwt0NahdCEZ5P1AN/Ry69VgY6KNgQ2J9e2KFBNXlzf02543X3vE6fEJ8/MFxmW+nlF4JQidK42gfzESYqQZOgYfGPyAso4MA6Gs3f3TCoVQekxRUuSc15QSnlu2TeD7P36H1e01bbMFPG+98QaL2Zxt39L2ndjd+I5CK4rCcnpyQNvconXi7Kjm7EiUuXVVcLQ8ZFbWLGYL5lUtMX7GTdzRHXddsonF/06sUJpGjJGHYcAPIWMKhrKQ9+xGm68IMSmsm9ENA10zsOkHWt8zpIguCgIJbUtO75/z4OE5tih49vyKdgi0Q8SjhCNIAmUZwkCIgDGcv/YG3/7Wt/gX//x/z2Kx4N133+Xf/Jv/md///d8j9J6qKJkvF5CkUL26vqDvevwQpFWaEgpDVc6o6wWL+ZKDwyXHh8f4YeD+vTOSj/Rty8/qGR+89y7Xl5eoFEg+ewLGJLayKaFNQhtB6A1kI3W5PlzmdCqtSDrlVJeRd6uk/R9zt24PIRzHWCBqa75Q4fIbVfRF9XKF2+eZGH7a334RnzetNcFHnnz8EcF77j8458P3n+B95OH5fY4Pl8JbG3qOjw54+0c/5D/7O7/DN7/1DbSOaKP2eHvjG2H6XsXcxs2tV1IQZZTvScELQjwVosItZHzOuLkkJp8qRsy0YUUcOQIwubLHrLpSo9JMi5Re4l+83KC0IgyjN9iQiz/hFpVa8dpRzVfuHfD8tuF4seI6Or7/zgcsz+/je0/TNuKBZAwHBwtSgrqusVZD9Lz/7tts1ivKusJq96rgezW+9GNe6omYrZSgXEYbCltQFA7nLLNZjbMycZa2yGpPhdOZ96Mk6N1mK4jKFRSly9mfWY2bC0Xr9J7J8Q7p00ZLQZJ93tL0LxA8eMkIy1QPuSdoQBmFy+gRKWGsmziK1tppshojvtCZqjLSUhjXtYJSBq1JFlJUaJ1bt2ix/iCitWIbgygpMxI1Kgr63uYbuPgdpoyMRJ15jkBVOOJ8jtaWEDVGPSUMnutmA0SMksnYmIQrFMYUophO0grMbGea3vPs+QVd25FCwg+B9aZBK8tsVuGKgrKu5H1kGHfo/UTm11bixMpqTjmbiTgDhS0KTOEwRYkrylxsaVwu+gpXkEhUVzNiUlzerPj4o4+4ub4ghYH79+9zenqGMYau72iaDYrI0cEBh4cLXnt0n82qJsWB+bxkUReUpaVylllZUZcVhSskTSMrhgWESpm7rSZ1+DChe0M2U1YoLYsLyIW4cVMkYApBsqJDIiVPn/l/6/WaaDSmcJycnRG1nC8hKY5OTlHacLPaYqwkfGhrMSq7R2Tqg3SzmBSyAFVZMa9nLOdz3CjYGDx+kLQY8U/UpJgY+h6v5DhZo3HaSGcsRKwyFPO5CIeqWmyHQqC0jllZ0Vc1oe8myrwYgUc8nmFIGU2W60RNqKmmzFQLM3J3c3SgyakkO6GVvrtQUyOiLcPuRSK+zPiNKvrgbsE3tXv5YoXbpyKFv0C71xiLdiVow5uvP8JGxfXtLVVdcrNeYZzh7/3dv83m4hn/+B/9A77z1TeYlYUof6zJN60s2simT6OuQqWYV8Jqh8aFgIoSip1G7l1ezaPUdPGyt1+U0hPRNF81jDL88ecURXUlsUY5psn7He8l5hW5yi2oTBIfgmLYiOGlSoHD+ZxZXUr0UeH42cUG/c2vsekavvGtr/DkyXNut13OG/UcHR0SY6QsHbOqxmnD4/ff58HDh7sW+ng4XhWAr8aXcBwvZ/niFVuOMa+zLmeUZUlRFMxmI+piKHI8mFZS5Jns4TX+bHO0mZsC37UgDfISWCeFYlEUWCeh904blIHgvUx+XmLawpjUERVJq2wCL29XTNw1IHGNI9/XZINlAOuKXY6q1cQxuUIjSkvGHFHZF9ImHpXJgg4qWb3ShVZSDkIShFFrkg+50wEQUd7k95dIOmZ1rAhS5D4ohXJdVWL7Qs4GHgb84AnoPGl4jM4LbqNJQyB5QQqn7cfIarPF+4BRmsK5zDEsOTw8oJ7VzLynG8QkOwyj1Y4I+1zpqOoZC21xUcrflCdzFRM6pmnSSlmEN+5j4cIJJ2y92XJ1dcXF82f4oWO1XtMPfRa69CLwUIm6KjhYzDk9OaQuItF3WAtlaSmc5BMXzu1QOb3b9zu+WZ4+ouTbei9cthiTtPIzGCCZucJndNpM50PIRVmIiWFI0sbtBrp+wM0qirLk5OSUaKToG6JiuRRBkHX5/WTk1CgtxtgxK7kTKBXxQ892s+Xy8hKNtGWHviNb1WaFccgGGDpnP4v7RFLStYqkyY5ISE/ik2itldMjROmaKUXpJM2jT1H49VFoDyPlaIwzDBmR3mVCj5xaeQ8asfwxxoiSW+0eL4CKvlP0TZ3FjK7zn2TR98JnHjuj4/g0cO+zdtOLj9Xp7t/SS8CJ4wEpCseziysubzu6bc/y6B6Hxwvu3Tvmq2+9xvXNNfe/8ibfOD/j4GCGGVeTMYCymQws/Z6U5eQoaRsrRJ00va8UwQisDkmEfFoJKjgaNmdRh8omoASRkMcQhCScZCWrMydv//NMxsgpQRyI2YNLa/HXmlbzKPFHsnk1khRGO2pXsChLyrJCOUuD5um7zzg8PiWlgXtHC6JyzI/mHNQ1J8dHLBcLnjx7SkyJm6vnvP32u/zNv/v3pyP4qtZ7Nb7M42/9zneme0WKu5V9YYocVG8nXpVWCpPU9L1zRuw0rJMCMXOHbG7jGqMpisxhygrfUbk4tkVH1W+MHkXKVhyizI1+kFjHGNEpUTqZjPRIxM8FHUpLseAczgnfTlpSNiuPpY1rnUMZjY8hE/dzN0FJ5Njge4Z+l/sLooB1rmB1e0PfdTRNs4uFUwNt43eCFT9Gl0Xq+WyKAkOx26ZP1K5kUTuOlkecHh+z/erXuF1t+PDxRzx9fsHz62tJFLEW76VrMYQeP/RYO6aHyOfYtA3huadpt3z4+EM+ePyY8/Nzlssly8MDttstQy8csIcPH4l7wWYjEZZFyXyxYLFY5BQKLZYtKtN1jJu4c0VRUtc1dV3jioLVasXV1RXr6ys26zWbzYbN+pY///M/5+LZM9792ds02w2FNdmsP6DwOAVnJwdAwPdNRn0LFvMFxhVoV2CrGjLXjiQ5zyO3KOWfZdrRaC38UTl/BESwTs5d5xw2W8QE7/Gdx4dI1w9cXN7S+siQwBYFJ2ennN6/x1e//jWCUngi29ZjC0fbdhjn8DHSe7Eiq8qCmKBpGvk+RmnXXj7ne5s1zz9+glKKpmm4uroihIGiKKhKi1FgFDijcbmAstkWKQZRpBugspZlVeGA2PW024bbpqXvGvq+JfqOWVVgWbK1mhQGCB4/9GJxRoLoJSlFQUqVoPVlSVVVlIUV3n6UNq3RUgzaHMKdSNP1Kmjg3RbveN/YJTe/3PjNKfpeGL8wrf8zCIGfVUB+mjfOxPPTGrA0beTPf/QewQ+8+eg+pJ7vfPsrHMxr3nj9NWaF4bQuKGxCBQ+DuMyPli9SpDEVbSlL5sd2a8pQpIRniHHntHoOERiRurRHGsqIXm4LpxjFn3Xnxsq4UlGAMlryQYPQT3zITu5ZWj74geg9IORYpZSsXhC4HAWh9+i5OPrPy4KHZ4e8+/yWrRchyIOH53z//e/xxz/8AXVR8drDB5wcCefROs3x0RH37t9/4Wj8IkzMV+PV+PUY52dnU0HmhzgZ3WrMhC6UZSkKSp1bQblF5Arh+O1QA2n7jskcWiuJtsrtT5kg4kgNlkzQHIklqJBwsmIM40yPtYXk3OYuqrSjbG5HIsVBnjStEQsRrYUfGHJEWUoamzNUBQVK2JjGuxnjPU0bi9a79rLWIgJRKBbzBb0TZKTvO2kva0XwnhSkBSx+oUGi7IYBHSNKB4wVKojVlmS0uAZYiYRUlaZ0JQfzBQeLOa+/9pCPnz/j8uqa2/WGdrtCp0BhAJuFMbklHjLlJaTIpmslZk4ptLM0fUfne25ubwmD8KBdUeB94Ob6hmfPRFVrrWOxmEvrUlsphJW0Scuqyv590vIzVjibkiAx0PUt1xdPade3xL6ltJrKWeqy4PDwgKvnF2zzImK1WhFDz7wyLJcVZWmkha0l/syVhbSWXQHGZfsf9uxiQCUtvDOYFicSlQdKFRMaOCJZ1uaiZhgDAmQkICqFKSzWOe6dP+Tk/hkHx8fYUhYJOkGgl31KFAFSIS1k33t04WQ+TBGVYs6eDWgifbvl448+EKpCkGK/qgpJvvIdyiqs0hRGMStdni/lHJb2q2FRViyrikVZkPxA1zR0bQcx4H0PwbOczSiNoS8k2SQFk7thpSiWiXTtlhjDnYUWjIF98g+d83f30TwEydOKO+jeZ3W0voin629s0Qe/GBfvZcY+8hfHmmPvtSZXbWBxUPLVrz2kmNe0bUPtCv7a197izdceUc1qtLMsD5bo2IuIQhviuLqKiXHBILCdXDxJgUaPeLVQ+nycLkb58MK7GW/wZPWuFItxp9PIlgtKyySQRqZNLhK11qhkcgtYshpjEqWtYOZCiLXOCacyyPa8DxAFArcKBj+AlegibRxaaY6XFX/nu9/kBx9esN42DEPPN7/xFodHSz54/JTnVzf4pChmc3RKLA8POT07lbxOZT7zAng1Xo0vy1jUNSm3/bwJueBJGeGSCbnKOaiCBJjJOLkobOZfiaVG7n5NQylB+2APFcjWGERZuA2Dp++7qa3r/SD3gyzrUHkCHheYNpvpGmNJCBqUlJbSLPPvtLZS+MVISPI750q0k6JP7iE5xSHJAjSlmAUfomYWg2IRnQUfsNaQkiUEJ12QcZEbfJaKyE1TWsC5nRpSFkPklpnReT9abC5alTa4fDOsqpLDowOKHBEWwsBmI4R6ldW0kxBGZZusLGwIKdJHz7ZrWW3XYg9D4uZG1LOFddzciOXI6mbFzfU1IQSUUmw3M+yYPQuC8mnDfD7LaRIWhZnmmJRBgJgiKgzo5LEqoZ3FZY/UMvNBjTUQoOs6UvJc3VyjzZJEST1zk8Ja56xbZay0mTNtKOXW+DgljG5BsCtS5F8+6VKSmLNcEAoqm/AhMnifTcg9aBHelPWMk9MTlocH1PMZysr7UYAJgeDls7rCiRDIaNoUUNmjUhGzOXlCEXFGEbyomsPgp2vAGDFMjmFAUaBVwmhwe8EFhiTpJK6gLrIRNeIZ2DcNfdNk1bp0zeq6xGmN05qudcSMNCslxt0CrIiyejRaluO3SzFhLOb2/9tT6/JCsTfm7Mr1Pe3yLzT+aou+z3qzX6K5/PNxJkUIhnd+9h5vvPFVFAOzuuDevVMwBdvB8/D+Els6VEioMEC2UxlXUjDWfEHEGTEjiFP7VU035N2Ok3ektc5IoVypIsbIxq5B4tNGBEAB2ubVa87kHBFEhWa3+FeZ5Cvb75FIn1G4odS4Ah8yIpHtW0LAGI0PgRAS0Tg2qw3LxQF/66/9Fj/44CNKZ6hN5GRmsY/OeHJxzQcfPiaR+NqbD9hstpyfn++dHy9U26/Gq/ElGzqkzJlNMjk5UUzW1ZwyqzWLvWxOKbxsbsuZrIJVZE0gKaPzsHdPyF9iiLSdIHoxeEIK+MHTtS3DICri0Z5DjUk9kDldMXOjJSMW63LWrMK6kq7t6buefruhrmdUVU1R1RTGoY1k6Y4+oyFGfPSEKEKAGAMQBUWzbprFQh/o+57tdisL1ewvap2TDoIWpCQGMbcNIQg3KyW6piMTy0jJUJRa8lzHfYkUHSG3fbuuY15VHLg5i3ktPLhC4uFub29p2pbOI+hlSlm8ltuZ1mYPRIt2hs3Q0N323K5vGdqOsigoD4948uQjghd+4KKupmNUluX0TzhcIqxZLBbUVU1VVshcImKSvm+pqhLnDHMXcLHlmgGMptCQ/ECKgaosmC9mdE0rCtXguV6tcJUCE6lmDmUcWEtAi4pYW4YAe32ljPjJnEGQ82DMX7ZZFa722pBjQkpKifVK4tNWqxWXl5e0bUcfAuXBkqOzYw6Pjzk9P8OUDi0GkZhCC+cugEUWN4vFjOVizvq24vbqkjB0WSAo6lUfZH47WFSkKMIal6PNALz3QgnwAatrjI4oxOeQmIRSFaAsZxwsKg7mFYZAt75hs97Qdy1+GCCjzdYaFrOSVDr60tJtK7q+JQaPNVA4K3svVnsLMem0xYyoGy3+hdaajM4rqRN1yvz9dAchTOyoXHqv8NNT/OLLVX+/uUjfL7kWSJ/3/ee8lkqJ+XzOH/3p97h/eshv/9ZXMVXJ5eUF56+/QWVLCq0waBii+OClJK0KyNy7iEoqc22yk/tuKZDJ0Xr3NpS0bUdT5enXSh6rRnJtiGhtwFhp8YJE/yhR6SWU3GwBZS0mRVQPPgThykRZScckxs/iyaVIyQvvI4jKzvggaiud8FHso/tB8kbrekEIHYe1Y35wwKbvGZhDURO1Yb5cYJ2laQacq3MbRN29kF6NV+NLOqqynIo5QUfE18y5EpeLOynC9p8VJ0J9VBmNzyRmhSAbUvwl+mG0hBGEr20asdXwHmM0IYYXikSyKEv81Ha+oCanCDiStsLpynFWOpHTFCxOF9iyQrsSbUspKpSm6T0JTyThQ6D3gxQxcRgBjVyMpamoAFEALxaLHME2MAw50xbhZU184hzrNhZGw+AnpCQOPUNe9JZlPe3FlJOSnDW4+ZyI8But1pzfv8diPqOeVbz3/vtcXgVSFzJnWeeFeYZWUxJzZTwKRddt8VoTtL1jgWN0whaWcu6YVbPJ+64sRJVbViWlK6WdazRVXYtXXiFJRsEH4Yf5PtfPEcsJR/OS3r9OPa+ZLw5IKJ4+ecKQEVxRbReIqjmidYGxFcpUJO1I2qGsk3nBGox2hDBkWlEuRFQOelM7wUFZSJtcaAh6ihEDTd/3dF3HarVis9nQNi1WO+Zzx9xoiuWCxXJBPa9h5JoTCb7DGIlNm1cVnZKW6uFixvHhgmY95+bCQfIEH/F9z6JY4JQhajkeQ+hpmw1BjfxLm68zOZNrZ3BGYVXCqkRInuQDzlkKraiswaTI0DRshoGh7yEETIx0m434xBYO5WvqqmJWFvTbA9Zr6IcOo8jtbGlLjyg7JEFU99q843WnjZFzXpEFUneLPq11XhztATp7Rd7LFnzwa1L0/TzBxV/1+NT39CmF3j7Bcvz54OgIbTT3753y1usPaPtOSMLOcnR0SFE4FAOh69Ex7Nq1udc/bm9s0Y6/G7l84tI/elXl95t2K4IJ+x2h4jxBpKQm/z5pRJjpcUopVBT7hRiFt5KUJ8SE9n567Sl+Td2VkXsvN7+EoBdlVUpGZP4cKSW6rpUbWQgoYDYTs9azszNu3n2fy6trtm1HSLBptlilKIpi4pC8Gq/Gb8KwrpgUfM7Y6QZvtJ1+bzLPJ98Esv2KfJ9SzOpJ9vgs0i1IZKV9bunGGLKPmiBsKZqpzaq1nlpLOtuEwGj5pHJVJlFhozE8+R6SlM5RWBCTJkTofcCnAVQgKWl/xiQedb0f6Acp+lIK0g0YP2f+fHaMoVKiRh4yXcV7LwvVrP7VuSBWYccniynKxDnSUQLiGeoh7YkjfJ+k1acFBfRRUlE0mnk9kyzxMLBa3eBDT7oNuV2c751qJ4ZJCEVGdBMeYi6MnKMsLNbArCpFmV1VLGdz4dIZURM7VwgiWNYTglYURUZ1rRynmDIVIEgBnTx1YfBpSVIwXy6IEdZNg1VjElPYu+8rOX7JkHAYV4NyJIwUfLkINUZSNsbzDSVZu4zUSZ0tdpzQDZyzOGsmPqmkZgy0TUvTNPR9Dykxn82whcMUDl1XVHWFdVayg6MmRU0YelK2+imMhBJEY5hXJUfLBdvlgmdVSbtthI4UfBaqiCWPyvOc06MHJWgihigiJCXiDauknVs5S1DikTevKuZVybws5fkxEodBhJBJYkkJQVS6XkGMFJm7uJjPCL7P+GgkBC8K97xwGos+k2kGOkes7f8b06726WFy3e/mfPn9fg2Qt53SS7d5/8qLvl/35txn8QJf6n0rxXy55Dvf/Q4fffSEw8M55w8fUlYly+WS2WIurdC2E/5CCHLiaslQBIQPYF1WpcnNTrqyKUvVM9q3d9BjLhzHX6Tc5lEmt4GCmGcmZ3Z/Q06iGIK0jXPLSBtLiBHtCjn5h+FOwbdbhdxFC0aT5qoqUF5u9p2XXMTRxDOgabuOxfKAlAaMMfi+BxRd32OsI/jIW299hdrZfHN+5c/3avzmjKKud+1as4cA5OtcabCFyYpcIYdPi8sY8fl61bkwGy0pJBeVqXU5ijSktbuzZBnbQ0VRAGK6a7QsrOQWNBL1NQkjRV3Q2LLIHF+FKiq08oCn23Zsuy3BR5quy8Wf3If64BnCQNsK2jgS1Z2R4qdyBUTJ910sZsznc+q6YrGYg7YkFZEEB3mfKUSsG+tRDaTsVVhg7SL7Dga22yb7t3nwrRSNSjEM3ZQqohKTr59CYbXClpZH5w9RRI4O57z3wXtScCUxgB6TVKSsIHuvObq2x2jN4WLG4XIpx1dpjg5OKIuSqixxiK3VYjbn+PBwZ7LtqkkIIQvcfH9WCls4rHM4rQg5QWSzuc28NUO1nHNxecnTZ89ZlI7aGTYG2q6flNTGlPTeMoSCqj7NbXODwknRphXWJAhKIuFCEiWqyidjilkgpLCFwhWaorTYkQqQEtvVltvbW26uV9ze3mK0oaxKXjt/jeXhAeVsxmpoGWIgkAh9h0IcJoYQcChMSpS12JUZY6iXC944f4Ajcfv8kg+bD+mHARMi/Xoji5WYcFpa7TN3hDEmt8N7hr4T0aErsAlMiJgI9w4PIXpSCGKuPZsxr+csCjfN8VoX+L5nSIHKFdJ5i4k0BErjmNUz0pFHp8TWiVn0mIc8hF6K5jxPShKO5F0XrsDldvhU0I27euTx5d9HwOjdQkMlJsETE+Xgl93eHQEjdefHv9hQZLHojov2udvd/+PLzvuf85wXX+tzN3mXLvfChvZ++UJBUtZzfudv/HX64Q84OjwQ8Ya1HB4fU5QFJkk8T/J+WlghTnukGCQOSOtMeE7TQU9jUZeNUrO8V24AyghXgZB99/LNMmQCbIyyXENP8W2CDAjvZ2yxoMiB6UKoVrYg6ZbgRcLrXIH3UqyNnCDxhxpEvYWW4PAkVhEhRJr1hiFCHyIDiTR4Cus4OqrwSdN1t1hbsjg4JsRAMXieP33Cm6+9xqNHj3B5cvr1Xy68Gq/Gzx9lVe0MW/cpeLmNpgSqkFD7rLzXGW2KjKr+uxQOY62ocr2n2TY5FisLHLJSfzKhT4IWhozOK2WmrFdy20nycw3GCepkjQOjGIJM0qvnz2m2HU3TcbvZCrevH9g0Ld0gCuGQEr0XXlmIIVu/KJzRwhWLYh3llHDE6rpiPp8zqysODg+oylIQkpz5OnqGpriLorQmewLqPJGioEjZKF9aozFI7FlMibKuxNDA9/QdCNt/bLHlQssZDhYzSAf4/oTBd/ihp9muCUHeS1lVIlxLwndOTmxQDpcLHp4/ZFbPmNW1oIfWUliHy2rnwokHqTFGxC+jKGZapO+a3YoIYaDrg7SLVWIxrwlBUNS+aUg+UBjDg3unPH78GDMt3oUrOISANgXGlPgAhSvQVlJUmrYlxUhVLOS8SnIejjxJsRYZF/f5PFSCPA4kURR3HZeXl2y3DW3f5txesfMZ+o7V7S2bbcNtt6X1PT4EtLaUdYXLKODm5laMq+tqAiCsK9AxUhnDwaxiNa+wKdL34hoRvHjHaiso7cnxEYv5gsEPrFdrrq+vAXCu4OH9M+qqpiyryVPPKMViVk+RcUPfirpWKYwtMxoZsieltLFTiAx9T58TMcReSYrCoA3RJHQawRGFc064mGPRZ/ZMmMfrN1OX9J54Qy7TJMKd8ffj9SvozhcCQr4Q0vfLnmbVC18/83HTB0qfUqndrULvtIonPspnvPD0wJ/zBj7nMWrv//KaO9gVQBnH6YNzvv3Xfptt03ByesbBcpmzLhWm9/SbLaVKJO9JI8ybb+tyTDP3bi/3MOUCWTOeKPsGjYkUNSBpGwhPGhWTZPLGCIhhqqygZYUntaNA5USxYyGkXIMakkngChSR5OXCB4U2FmvdZNYZQhQlWlYXGxOwSVaCEtWmGQI0vqcsBq6vrrj/1ld4/PSC5eKQdx8/4+r6hvms5v69M1RKWGN58PDh5OZ/55z4T368KoC/rGNMK9Ajny2f21qR22Ujf3UvlzPtFn0venaBmOL6wdP1HW3bEmKYJu2Y4lQw7d86Y4zZEDbtbVdN9ixam3ztyULO955ukIzU69sb1pst203LarOl62ThJ/mpXuLGcrEXkZaryXyrwhlCP+Ts3kChDc4IB2u12VDXFdu2YXlwQFkWYr1hbW5dRmIYeYCjQbzc52IiZ+ZKeziaSDBS3AqXMGG0REcKzcRL9NzkiiCFl9GK0mrqwnFytMT3jr5v0LHFD7IIn9cO76UVXVUzok84UzCfzTg9OmC5WLKYz3NmsVjvjOR9rTQuJ6OokZc9ui5kFfW0EADIbXplR2Phndo55cV14RwHB0vms5qycGyaRor77I3oM+dxu23R8xpnM6KYxnklTYUHWmX/60QaVd258NBmbBmniTrQti1Ns81IbqQobOapavquox8GIrAeOnrv8TGgtcEPg7R+rdi4WCeFIAjKbF3B0DQQAlXhOJjNcEpJ1m/XizApBOrZjOViwdnJMQfLA4ZhoMyq5gRY6zg+PGA2m1PXc4auyee75DvLfkpi6MyYdCOiDEW6Q0EgyXkTvJ9ScSTOEMiFu9bimStt852VjR1FJmPXbtynefsKdmrffG1PdC31Qu2U642XLfxevuhTv/zpdQL58oY/rZV694OozJvNxd9fwlz3mZFtL/vaSlMuDnn9ra/x+IP3KMuKaj7PN9LEdnVLqSB5L42UGEl6ZMRlQqjOXLjphkwWY2gk0S/n8u7z92Dixyrp8yCGq3mlrzQqgsqxfSlljy9jmRzYk9zUVMruTEqhnEOlQOiHzOkRoUlCJgStZZVrrSUiF0TK6MNsNqO93eTXE9NT472ovTLS2LYtR4cHPL++4fr6EusM3/jq19Ba8eitN+6sil6NV+PLPszeSn+0dRBPuT3fLshK/fFGiVzr4wKTNGXfKhSBxHazpWkaNs0mo0hSWMbxWibmCRxgl5ahx8k+vw/nLNqKAteHJBYvQ8tqu2HTtmy2DR98/IT1es1229A0LYMXHqEylsEHeh9Yt1vxG3ROskKj3Mdsr4n9QMwpIEaB1ZrSFehbQUeWt0vOzs5YLOZiqVIUYptCQueCRJELvRDFVgOFsybn/RboQlzR9sUem2abbTMSEEYStCyQtYjZVACTPJVVLO6dEkNH124wfsPQykS7nIkhdV3VPDx/RNP0uRgteO30hOXygNlshs+55SK2MdN7ib6HPZXmaJdjlc2Ibz43MqqrjDxfGU3fSus+hIBxYtUCcO/ePU5PT7m+ueXy5pYwDCQl/L7tZg0kYvKke2doteBgOaMoJaVF0DeVuZI5sSnmRYDaJUoY67KThLSbu66bjKdBjt2imgmaGhKr1Q1t19ENXrh6Son9mNb0XSuoMkjMmjXUdZ3Pb+kSpczpXBQF5vQ0K78jfSe+jcYKwjubzTg+OWU+nzMMA/NZxcMH9/M+tJTOUlU18/mCttnSdS1d1wqXMcgx2W42aIRbWrgCkpxXhTNTgRUzfSAE8eGz1mK8mXi0AIV1hOhz23y0WzL5Wtz5Yaos4LJWIgdHYReMnFFEUCMnSD5PXr6luz++QNH3yan20ybfL/om5EPsnrNXA35q5foiereHsb3we3Xn50/+8PLjZYHBz6wPbYl2JfVsRlFWaG3xwaN8wFmDDZrUjzEwstpMICurXNmPN2HZX+O6b+RZvAD3ZjXtOELfo6KH6AX5gz0bl0jKJGzxozJiRJgiaczgzS0gpRTRyMWqjCH5hDIWCGjrsD5SlYpgPd4HlM6Eai8rEevkdGu2W7ySC6DZNjTbBnt7y2K55Hr9lOOjI14fBpbLJUlpnjx9yj/5J/+Y+cHyCx65/1TGK7Tzyzqm+6VSjIy+8bY38su0UkKty9fhvuee4AhMhYxMRJH1ek3Xd6JGzXxArVQWcEQSEWukVaUQRGekeVhXMHrwdV4MbUNsubi8Yr1es1qvuVlvCMAQI88uLqW9lnm7gx/wIWKSxK0FlTDOMqSIDwOVc/g4onuDmE5rTVGVIhNRGuXECcArWLctRbMlGY2ra2whKn5jLdEPgvL4gYBHKyHoDyFSOkcdEvPaYXOWsTUZYUmJxdDQdq0oTft+FOXme2HI7gaa5axkURusTcyqI1L0nMwdtzc3pBBYzOc455jPZjx69Ijnz67Zbga224ADdAiETpS0pFzMF1IoGhAkSdorGUlSU5FHSqTg83wg6uGQ7W6SEm/VEAUxC70UD845Kmc5OT7i5vSEd997j5grhoRm2zRoozk5OWbqFCqFjxE9FhgISqqs3rU5p8WDWMoURTF1tbwapnNSGUHHyqIQQ+rBE0JPJICWNrwpSowTv0dt85mv5P3ZHCFYODHQjjEyZHGi0QpTVxzOaim0jJG5RknEYMxcd2sLysKhlWJWVVNUYELiBjXSetVJJIxOq+nxqoaqNEKkQ1EWlqCFR+qcnbicchqJ4rsoRgTPZL57Rl2LgsGTubM6F9NqAj5STsTR7LwR1V4NNaJ/KV/7v4zxVy7kgC84ZX0GzPMidU8uki+68Z//si+7uV2LN6FVxDhDNVtQFCUml6S+bbDRC1HWQAoSrUZejU9la4igI2iR1SelUIhbPUnuVONnVSO6NzaBUyB1LVpBVCMvA9KI6Ct5rMrFHST2d1vMyiU1ldEKlAVbCjoQvMD8EZSLspqJAdW1tP0glELUpNQVJ/wtnR/wSaELi/eR21XDoFrW61sOjixVUfLTpz/j6OSEo3tn/Na3v4XLYe5f7nbmHQLCX9m7eDV+fca4hBtRvulaS8DU4htbPUyT6x3ydhZweB/o+2FKixgnatlcvicocuspq3TT2D/M7TzE8S/EhM9tuK4fuLi+YrPesN1uWTUdSWuCgqbrJ7PZECMhiZWMIhJyU0ZbS+/FGsN4L59DZbGAkjaqdtk6SknWr6D/ij4G2mHADZ4hRJS12KKiqkqGXjh2IUnaSJqUyoOIPWLC5GQPnZEUnf1DlR5FCdLWznP8VAglyObPgVFo4GyJMyUcH6Gi8MkOF3PKopBoLa2wJCyJQmucll7MmNc6jWyHcsdMH3FVYFzsT3MAOxQyt+djzM6MIciCnLS3HYn0Ojo84N69M05PTrhdb2l7EfKkcDcHOMSAj4FSFzsniHFfkM2Ntc7uCXZaHBgrXO+UOeI6I21lVe+4i9bKMTGSIKO1JhZgbIGxbuKs50kLpQzaCN1Ipqg0db1QkHROArESm1aVxeQAYawRYRMKtJEkqKgprMU5mztnQgsYs3WNkXMvKHL+rbx2XZWImUY2AddjIa4gJ5PIYYxZhS5Z1Cbz9EzuvomaXPbpiJC6HFEXg/DsfRZFppi9dBkbd/naT/uzRkZguavW/SKlzksXfb8W0+z+hP8Covip/eyxBfxC1/MXGemFry898v3UuYKu61nOl8Kp8z7fUBAX/DBgc8GnRiEHSVqrWZmrGLMkRYShpqVpDkMf32FSGexTgEYXjhT9DkrWgiROhWkMJBUleSNltDGTuY0xEALaqPx8keVHZaZWMIDLfn+QSGHAlg62Ct0P9H2g9T0h6hye7fB9S0DjtKPtepqLC+qDQ05PT1lvtpRFyfmDcwKRe/fOmM1nwllJ+ld8Mr7sxj/7TEgvrNQ+e9u/xFXJq/GlHGOephQi8rvdpZymgkzlP4wtwbHFtLNskOSKoe8lLiq3u4qcS5pSzJw6KTaMsTnpQRIJxnSApLWoKkOUtux2y3rTsFpvuL69JfhICCmLHoSn6/PEN7a0klaAISgpHqNKkp06DAyDJyRFVVVYV0qLML8n7SxDCmK5gniaja29Td9jhp4+RmxVMVsesFwuaNstbdOQUIShFwQsBLqho+t6mowEzcqBvhoARVkWaC3q2LmrmKUSY/QkeNF6ly/bDw0hdMQ4kGJHXWiKuuTk6ADfrAnec3Z8IAbaKJrbK7rbG8IAlVtSGoNTihQCNlNkxnxjjRRTk8VWPpaTZc6Yb6v27nkp5caYzA+DH3Ir0IjgJ4pBtdGa8wfn1LMF223L93/4Y548u6BrGg6WBxitaduWru8p+4K26zg4PMAVLpe/Y9GpsghBxDVFUcoinoTWgnrFAYx1lGVNWoB1VeYuaggSzalVonSW0ecwRT01qMQyKBd6OtvTpEgKQexYUqLQZKNtGHxEJ4VTkdppgs58V5UBC62kAFVijZLKYtq/USWUNRRWzM1TMhA0cRAAIyVN0pqqKKQgDpHQD4KHay09OC1zcUrZO3EYiLHI/pqSgz14ubc7I0kyKEH9ZlVNWRTCMw2eELzwbjMC773H5OuQmKT7B1lUkwU9k3gjTfF2Y6nzMuOvHOm7I3rY+x648/u/qrHfOd0fL18a5H6B1szmc/rtFqLHaujblhQHTN9TJohBjDRDDFJsZd6AMnJIk9IobVHKfuIdqOz0rUaUL3pS30HOw41RZOZ6zOIcl7M52zcTODJ3II2Qgmxba8mPjBEVoqiAyTyLvMZUWmNcNpLWiqAURVHifcL7SAjQdK0kAgSJ5UlaE4B+06CXS1KKHB+dYoxl3fR85699m5vVLQ/u38uk5Ywa/NqsQD6/YHtlLfNq/LzxonpvHOPNfTfX71q602P2zq8RcRiLr6IoJELNaLqum7zknHN3vABl21Jf+BDp246m7fExMoTAzWrDarXmdrViSGLAbgtHGgJDLgxDQrz6jERUxYz4JZWTfpUWc3cj+bIPzh/y9a9/ncVywermhvfefYftekWIch8hjajb6HoGbT9QDJ4+RMr5guXxMacnJ3RdR9c0bGa3DF1DGAb80NFt1pm/HOi6gRTADwGioqoKqtJR1SajRppZXRJLaScmsp+hHwCHm5dAZLu9yUV3xNQlVT0nBo+rapIPtE3L5cUFVxe3pOSYLwp87zEq7JCbKa5MFuQkLbFyU19Z2i8pL9ynh8p3udDwBCXCCmst4wPl3pjnCUDFRGUtv/X1b5CS4v69awKK3/7Od7l//oDzhw949913Wa1v6fuOvu8YxUTaGYwCH0OOrZPEDldVGR2W88YHyU1PCiptKKo6d4ekUPFdSzEMhOzusKsntSCx2btRa5Xb6poQBgFGQ0SlgFGK+WzGyF312pB09sDzHputvKqqQjtLP3jWm0aoAkZjq3KiKcWMiFtnsQowBluXVIX4BY4LJJ3bZkoLNUEbKb6DjxglBWsEYvIMHoZekEdrFHVdY72ZMnfnbpYXWqIi71InQpcYiDFzAnNxLSBLJIWIj3eFWuMC8e6NQqgKL9ZOnzd+6UXfiwbFv8jzf9Hn/iq39YVGevFH8dcpy4rm+goVPFFFUdhtbpkrT+VULrRy3NHoy6dEAZSMBe1gX6Wbxji1BD4XeJnwnXwPfhBE0QfBDlMimeyuCVLERSAMI+kAhRJexBgArMeszkj0A/gB3/ekEBj8QEhhgvxDkMelIO752WGC2WzG4CPDtiWExBACxjnaPtDerKCuuLldU85nzJdLPv74Y0LSLJZLDpYHrNcbMfj8S6yhXry4vsh5tEs22LXkPufR7E6YV8jff3JjzNRWWT2fv6Ly9ZrFF/DJc3BS9e39g8wdMmKWy/Q3svmuFDojAT8lyXAdQmDwkX7wbNtWWrqD5/p2xbZpaPqBcjanKEtcUaJ6T2g6Qu+zCETetNIGSanNC+YovqHD4AkhimXGo9f47u/8dU6Oj3n84QdcXVzQbDb4oc8pGzslY+5l7VAhpXCuoKgq6tkc6wqcdRgl+aeh7/FDiVWKOAxEP6Dz5BlCoGlaiWzzFmMqjHFYqyhckdvCkRB31JwQHcaKE0JMirYbhINlFE0nfMLVpiF0A23TcHm9Yr1tcRYW2epqVF7mTeb7wY4ws6N1jo3+sam5+34auTiUBJY4zvmCEsWQ1/Di22i1prCOw+UB5/fuU1cz+hg5f3CfB+fnvPbaIzabDSi4unqeW70RZ8fFgLzZqdU9HWPpMsWcDa9tykUS6DS+oZwvGxyjcEWNHPIoVjsmv4aNcaKpi8OJfD6jFCGDnKM4RyuFrTQjAXYfJdQ5ls8ohTWiilZKiyl45qfHFEVYaLJiPu0pZbNtUoyy13WO2RtNp2EMOszXGWROn9gjiS2OEnshLV61kK2E9tvDe9cu7BJmxrZtJGUntrQH++fXytvIW3np28z++JUjfZ9VeN1pTfzK38Sn/O5X8LJqr/cex5ZMLqJiiHkFK1B307aYGEl+IIYtwasMN8sNOakoEUauBFugtJNiLZOwIYi3X8iZiN2W1DT0Qy7+MtQdvEdnskoyBgsol9vEZNf64Kd2kXSYZaWhEsSc0xl9x9C2hODZbta0m63wbYIXa5dRQJJGY2hAKTbrDQZp59R94GZ9Rcyr3KACaI1PhicX14Trhm9+C4bes+16vO95fnXLyT1N07bTMXvhWvhlHLndd5+x4Rc9kz7tuXdPKrX3t593su2KxE+/HD4PvH9VJH6ZRwx+QvvSyG0ir7d0jl6a1nh3j/XUTt1DAEVx63J8o7T/xr8ZbSfRgPD2pKAcvKdpO4YQGUJkvd2y7Xq2Tcfzq2t89ko7OTjMYrRSrFgurgjbRni7ClGaGoPV49QFaQj4IeaiLlLXc771zW/zj/7zf8z5+Tnf+9M/4cc//CHPnj6l6zrq0qGVmdSQymgMLrtMyeTpyoKyqqnrGXUFvpI4rGZdEoaeOAx0VUUceikCu5bQD/h+YLvd0rUKZzXOBqyZSeZ3WUmbOga6HqxFIiYJoBM+JNohsGkGtIKm91xfrQjDwM26YWg7urbl5uqa6GG5KHFVDVqTw0KIUqdNPougJm7jeFCU3ktKyshfZuVM54m1CmnUR1IK0jkZPE3fEbwsIpxzFMZilMG5ijdee52TtuVmveZgsWRez1gsFpydnRFT5Pb2mhBlZnHOCa1oJA7mHFix2xLfVkG+ZFFilRa0T+cCNiN4KKbkCSmuEn4Y8D4I/UipyZaE3NKNKqGjBUxWyGbOYi4+TW69GifJK23bynlPIoacNIOIMqq6ROVEjKZpsvDJTPtSayYDb4nfE/GK0Sp3rAQEMexSNYKCkATdlO6T8Cv7vhf00Dhmswrb65z3uytK8xvdm7tyMhZKrsaUdglYGSkdC0ylpKW+s3O7OweOHN+XGb+yom9/kvx5iNunTbSfNcl+0ZbZp3P9/rImyrH3vjt4m82a0mi26zWpa5krsSrACOF1XC2kXKQpZ8FaWekGiXkJfYeJkdD2pN6j/IBvbuhWK9r1LZvbFT4mqrJiVtdy8toCN5vJ6icZovKgc6Ralr7LnorC8Qs5GLrZsl2tuLm+ou06tr2n7weMcWKyud5Km6ZtWJ4csDxYyt0tJlJI3FyuMCjmVU2pC+q6pk0NTdMDEtm26be0Xc/R+Sk/fecdDpcHbP0NSSmOj4/o9gq+X80xyt994Upyv1j7IqyKL4okft52X6GDX+Yx8vPuxgumiWg/ThLj+aLZLZaHYbjTWZkKJaUZvJ8i1hSA2otKVIqQhLQ++MC26Xj67IIhBKJSNL147DVdTxcCZVWzODjkweuv44oCbQx+CAwB2i5wu9oQgmdMC5lazUlUjlojRrT5c/3kJz/h937v9zg5Puadd37G4w8/ZL1aoUEQGKNzG1T4zc5YQhI7lztCF5W90VSJ1YpCCS+LEOirWjh+Q0ffbOmahq5p6ZpGRBIxsbpd47Oh8HJ5KD5xxlIUsuiOKaKsIZHQYaCcN7TNlhg8XVA8vVyxWa9xxkAM+GFgs9pw//QBs+UJs8UhKJPZMtlXVQuiZKyV9iQKp8ZPtPNonfqHaXd1x8xb88HnLNw03atJUGbTbFD4EAlDoPcelKYuCrTSNE3HD/7sz1n/wR/y7OqC++f3mc9nVLNK7EqGQKp2YMyIrsYki/HODMSocMWIGCuMAWV2huApicpYa40uR8uXIP6JIaJUxLi9e1oY0RIpfkak12idrWKYziuJFhyEMaVkXtF25H4G9Oh8kUasVD6HM5ak03TNgVjyWCNt7H1OICDOFXJhMfRdNsCWdnrw8nlSzp8nJbySveWsoShr+r6fUnBMNvqWcyBOi7SYQZL9MQoxP+2WfrdzNCqI1Rcq+ODXgNP3WeOLmA3+QuMl58p99G4caXz+S74MuVWRohBst5sN7bahW6/oQ8uDuUWVNsP0SSxTlEKlLNaIQPLEoWPYrgndFhUjzWpDu1qzuVnRtxtMiugYxLspJK765yyXC2ZVRTmfY40itBbjHAnhaICCoSdmryGSR0XP0Hb4vmdzs+L6+oZnzy64ul2x6gO9Nlw0LeXBksWs5vK2wVUF15tI1bXomPBNx/r5R7z/7jsU2rKYL3hw/hDtHClJm8mg8DFwfXXFzXpLuL7m9fNjrldrbjYbumHg5PiEql5QVbtg+t/U8bIX7ifaxq9qvi/tmO7x6YU7vRrbgbmptusBCu8sG+2OCMg4IY7t0P0N6Sy4ILdyY5JbSkiJru/ZbBvWmy0+RjCaPsQpRcO6gnq+4Oj4mMPjY+EEA0MfqGdbqmoN5GKGMSh+7zOp0aZCsMVh6Hjv3XdxzrKYz7m+vuT2VqxPbCGGxUapibQ+Ul50Vm2KmbHFaiMqTCfUEqsKGIbd/jQGFYWkb7UmGEMwhiG3RrUSzzdZwGrm88RoWWWdyQvvRMwc6zhokrK4ao6zhtPTY7adRz9/zsXTZzkiy1HOllTzA4p6jraF8LJSVlLndqMcXDmWCj3lbTB+5vHn9ImaIP81/y1XhCN/boQE00j7SSkvEnYnmlGKMHi26w0ff/gRi8WcshQRQt7V0oJV5LZsFvtE4WHHKLy4/bZ1TOoODXx/ASwI1Xg+yILDGD29z/HcSXmeFbQwT84pTS1wpcTnbixFNWoqLE0W/Mh9UU+oZIqjC4aaij9g8r+DXVtX3kucFhRR5eIs7Xo2Op+PU+Nd7fVzsvAkBY9WZbaIkf1mTO6gpZRV17vXGa/psaiYOvz5eh1Ph/GY7+83Mp6ePoP+8VnjL63o+3lo3q/quZ+xxfxlbxmVxyd2m+LTDZo/q8P3adtIkIJA0X3X0Wfy8c31DT71PKgPiT7ICSX0EbkBJKD3cvMJkfX1Jd12BcGzWq9oNltCN3Dx5CkXzy/RJI4PD1nUFd22ZfADRmti32VYXqGSx1UVpihF7KE0vm2IQVzzU/D07Zau7ei7nsvLFTe3t7QdNFHT2gp3eMRrb84Z+ha/bcEnVKcxPjCwJfYeFQKgeePNtyit5fnFJf/h+z+kaXsOjk84vXcP7fRkQjsMiaurG8qqprtdEVKiaTuUUpyenbI4WApHiRHW/qKVzme1YT/nuH7GZj4Puf70czVvepy393/ID1DsFjp3Tq3P4chmHPnnvOFX49d6qJ1YQbww9yW8O2VuHJGXfO7F3D7zGSncF3jEiQKSJ+4xSzdGucaTTG8+BLZNw+1qzWqzkSLSOoISz7ZEYraYc3RyzL3zc47P7pGQ1xx6z3zTMFut89vVee4Kd+rOSVigpE3XNA0/+tEPePvtn+KspSyseNVpjbUGa9SUbiAnuPgOOltIpJcxVGVB4QwqRbFEURqVDF41BMauShJyVkbBJF1hVIgKd8uHHj94epPdEFROHrEG4ySLNtqCIfR4pfDRsFgecHR0yG//9reZLY949513+ODxU+qypCwKDk5mLJZHVLMlylg67+X1taa2ThbxSWXemHDVpNgcc9TJC/6xsLt7SxJ0R2gAAlzJ81RSpJARpJzFKgpXzZAyTWfwaFTOfXX4rsegcNqildltw0eiEV6ctSbzMiVNSYq7nH2cC0+hcgsfMoYkNNUshlAjqhWCWJIpMeqP+byFlC2FRgRb50zZNHETlRJUbrQfGludgByvjJDqbJcSYyQNAz4j4SpnBpOknSq51NnnUo2euFEqToRPpxWEXMkaLSZrKSVCXmjpzDnc8bcTMQz4QRNjiVEane1q8seTazRNXAj5zGo0V5OLRic1prBORfzu2L+AwKZdG326V7zE+LVF+v7Sxs+bM1Pm591dhO//+cWHf2LofNPxQeDedrvldnVL27bEfot+KCaZGrE7IYHKubZdD1e3DVdXz7l++pj1xTN06yVD10rrIAQ4ODwlADe+58nza9quw6JZdYGFixwOA33X0S7mLBe1GKEWhUw6Q2DoGvq2oe88m82WpmnZbHoub7Y8b3tsteDk0escKcUHj59y/eGH1PWMVM7AOZJxOJXzgsuS9XpNSKLgrQ8WnM9rzh4+5MnTa/7jj9/mhx884XBWc3pyhFOWWmvuPzzn4uI52tWcHR9RVjWn5w/52re/RVnX7NaPX3S85LM+AeF+9kX0MouOuxfhfnn2QhWYv47F4OiD9XLjU6DoV+NLM2RSAojEmNX6e4TvEd0eDYU/rZVzZzIYuUch58xGaQNPk3IuCnyMrLcbNtuW69WatmlEyaiMLAqVwiXF4uSE++fnvPb66xwfH+NTLjSzwjAMnrIs8Zl6oo1lGGQaC1EsN2IKdG3LfLHkqChJCYa+z6a0oGJAkfB9h6lKCivWT2JjIX6BZW2YWcv940OOZjWLoqA0mtT3+DwRb6+v6bPZcru6oe9b+q4leQ/Zy06P6IxSGOPEINgWSKKQAWVIGHqf82y9JxmDNiVVteD++SPuPbjPvde/ynx5xOHRGT/8wc/o20ba666mni1xZUXnB8j5vCqpqU2vMw9ujPLSIPfzqUABSJnrl8u+lKZiLubW/GjZkWKajkcajREVqFxjxOglkSNGyrLkMCbC4Dk8OGDoezbrDWVVUlc1RmmGPmCKDDpkRbUmoaNiGDyCpomgRhS18oIpq46luBGULJvdyRvKMWVaKXzX3jlvx+QZhfDQBTEcrwV956tSCpOLJMUet9UnBsVk6JyvsF1rNd29VjQKbbUg35mONPIRx8XWOAWMBsnEKH6SCrGGYezmjVm8A+1mm8WNk9pkd4/fu56NsYxCkAkhlRVZLlDvXtf794zxq6CivwHt3V95C0994ptP/omxPZELvr0/pE9888kn712uoMBYy+HRERePH7Neb7i5vsHEJK7j+WY8wv1RGdo28uT6mh/+9F0ev/tTDgjcP1hw/3DG/GTO0HmStgRdEJUoo7TW9EPPzWrF89trnq8anrUW03ruN2ten/ec9B02LFBxQQiDnMBDZGhbmttbrldbrm63NNuOq3XPdYDZW1/h5FgxPH/Gj95+xmqwdKmgCoo6eowecMsFBjAqoVSkMtCrSD8EmqbDOYe1kdcePSRowx/82U94fN3y9OYj6qrEVAX/9X/9X/Hs2WP+ze/9O77+1pucHZ1w7/49MPoOkvEXH5+BHKcdB+TFx/5cAPAzOKj5F9Mrqr2X/8xtfg6yvX8j+DSrj1fjyzV29kM7s1VBfLNJrhqLBbIaNk2T3fj7F0+XiTM0mu9OebOjrUukGwZZ3LWd2Ipog8rJGM657MNnOTk+4eTkhKOjI+rZTAybs23TfD4X+sisZttI6zZ6UWJaYzJvSQySnRs9PDPSGMSuAsAZnbN48/WXr8M4DKQEVhvmdcXRcsG9k2NKayFEuu2Wvmmz4CBxe33F0EvyRbtZ4YceP/SojLaIqtNNxHqFRRsL2hBycWlQ2QYlQdJok0gatJH0oa73rFYbnj55iu+a3b3NaJwxzGcLnHXC10uj/nav4NvLUx4NmFPaM+XOrU1pV07+LrmluvsXGJ+b25h5stGoad4JKEiRGATRiirhe9knKUZmdS08vbYjhpFHOhoC70RlYwJFSgPWZEoQOb0JaYOnfJxJKYNqe/e86X6oJnRw/FxjX3e6p6XcylQqI6/6BdPyuxPxuL1JmZv33vQKe9dC2l/Up+l/jC3yaf9Oj897Uo2yG7lgU7740nhMUVPOPDHmHGeNyqi1nnq2SUQwSgzJUy6UFYkQ8p5UYzNcTYXipxZ0eb6a+sFjwfES49ey6PurH+OkyrT/P/tRnwe07KBYrRVVoP9LmAABAABJREFUXfPue+9zerCkrue899OfcvDoLJ+YiYTGR8UHz5/zb//wz/jgJ2/z7bfO+AdfOadyJYP3KGvwPhJtjbIFJrckEkZuatFxMC9RsYT+CR9dXvKk7bk9POY6eH5brZnVlqiX2IMj9HzB+nrF88sVKRqutz3btmfVB1auxL12zOIkcf3xc378s+e8/azn6rahLAreeHgPV1Q464m95f3rNU+fPcNay9npKXVpZSXZdMyVIcUBrRIPzo5469EDvveTD5k9eMCb3/gKT1e3rPpB4ozKihQCP/oPf0q/bfiH/7t/hj0xP2dff9b4gs/4nEL+U//+Mi+ldhFb+5u50ybeX4ik3U3rN5nD+GqMc0XKrbwdtCAhB2Ord1foodJ0v9eoyWJzQiLyGCfB4P2UzTrk70e17mazYRg8MUQxFzYWba2YF7sC60run51x7/SMk+NjlCsmVMR7T7/o6A62HBws8b6n7xu8H4RzZy0xJUEFVaKuK7yPdL4Vr7VB2ntWKypX4axBI9BUigFNIgw9CkVRFxwtFpwdHfHg7B6FNsS+o2k7ri8vMzUmst2uJZ1jGOibrZDtY0SrhDViY2OKYorDQkvGq7YWHxM+gUFRWodGOI9GKTH0jYAy3Nyu2TYt69UalSKr2xvxYpvPqIuSRT3DaZOP0ZiTjqRMmDHbmF1pNrZJlUYrg3B79maOvUUBGekTdE08CEHQPCK5zYm0EgGFODCkGLFajkfXSBfH9x3zWU3bdTRG+HzBx1x4C34l29P4YRTpyHakAFSQzNRyTSOHLiPJ5Pep9wow8nuJe+e8CBf2WpNjofwCurdjO0rbexcWt0O/R17raIE4FqQhyPkq27PT86ZYs4ywTduIYyDCqIjfocP7v0gwtZ9l9Zby+ZtdLFISoUsu3nV+bylpIpIcEqMU5iLMkUehUi6aNUKXUHfmisllQ6ncAtZ3wISfN14VfZ8YL1cuT4uGl3i4nNiyeqqc4fG7H3BwOGO7WfPRM/jK62ekPvL0o6d879//CX/2g7eZucR/+U//AWcnCzbbLdt2S1KaIgSSV/QqMNCzaTw3m47nTaDtAtvVDW27xpYVy7pgVi8411s++Ph9npWH6Nk5dQuxN1y984Snz37A0Cveu7rmyeOPWV9fcXZ8yMmD+wzasmgveP7TgR/8ZMMHNz1ts+X+ySGLw0NWMfHTH3+IHxpmVc3Z6ZFMHBGe/uxtjhc1D+6fkrqW4HM+IQlXFrz15jnvPn7C9eVzvvent9x/4xF/9If/nnd/8iPODg559sGHfOW1h6TVNX/w3/93/Jf/l/+r3IQSe2alLzc+F4V78bHT43jpiyg/gxc3vX+h7uOU6sXHjCv7aUt3NvvJJ70av9HjRR7n1Pp58TFqVxiOfNA7iPhea2r8fd/3kjXbdKgkiQHWOlxRSauzKHBVhasqqtmcs+MjlrMal+1kdFYHtyQOl3Osusebb7yG0YmUBm5vc5s3gVMaY9XEBzMpkoymrGd0TZ9zgL10B6InDD2mKiXBIiZqK1m5s1rizRh62qtrnnY9pMTQ96xubnNhp4l+NLz1WK1wRUVRWPH+ywXEfD4XD0OjKesKWxZY53CulALGGBKakKKgfyHSdB3d0GOM4/nTZ1zfXPHRRx9SGFloEzz3j05ZzmdYYGgloq6YWeHFaY3LwrXJYW08Tmms6acKaELt4v5dQ436XtgrGacxmf0oNaFYI8o0tkJTTPRdh/c9MQWstayvLvEpYrWR6SyrxhV2Es+Y7CyRYmLoB4KP+M4Tq4h1wg8cOyVigeIzZy+IAfKIlOX3NRZR1hiUMbvtp0gk4YybrFzuFIN79/GxCNwXfCqldgIcEmoMpr67G3OUWhagTFzEIGbcKWcUv9CO1bnwVCrurk+V84nJdjz5PCutwxmL0qKOF2vd3XEfy7uYxlZynm+S+OMqpUHLrLCrM+/OYSO6+YuIG18VfT9vfMb+VPtT9OfUEaNtaVQK5Up+53f/Nv+P/+a/4fnzS776ta/QWMP//f/538G2xT97zAMHh7rkf/NP/yHn58esVrd0fZej0Gou1w3vP7/k3SfPud0OzE4eEnRFE6AbEn2zpt/e0HfPcEazLA3zquJsccAPPnjG/+ud9/m9wpCGgBta5gwoXbDuYdMFVmHgB+9fslg+xQwd/4vvvM77TzdcbAeWrubw+IghDvz4o6fcBkuxmPPRxZqb9z7kaPaMr5zNqK1hVlVcbjzh2RWv3T+lbTtIEeMKUoKjRcW3Xj/jnccXfP1bX+fpesWzxx9irKPvGlxhOTs94vhgzmq95vbqmpMHD74Iij2Nl1eC7x4z3Ts/8ZfPeI3P2uKnvO7Y+rjzvj6l6vu0t/wK+fsNG2MbbB/pzb8X7E+Rotrd/PMV8IkFBiN6klHDKVs1EEJu706on0xczkmrLjFyrTQGQSacNhTWSaESIrHvsUWJVmJMbIG6cOj5jIfnD+jaLX3b0G63UuBoWaCNZrZaqQkJ0ilJoWcURVlzsJhjlaZvthRGY/I9cz6bURQli/mceVXhtKZvW+G/jaiRH6TYUAqjkqSCaIMx4tVWFoUIOJRCG0HkVC42bFVgpqQQ8UdVOfNXIi9lfw9+oB96rHUopYkhsrpd4bJn3P2TY/HEQ6OR5COSiEiUNpnPtz9fjMjW6Lcmr/mJ1iQvrHD3CqhRdTpabe3QtJ3AYiywjNH0weP9gLWGSpWgNU3fk2LADz1t21DXNVor+r6ndDqjeXvt7tz+jV5iO42xqARDjLjCTcCkzu+TJErpSYG717YchT+jACOpkO1ZMl8RNRU3+yf7pyJaI3Kops0TU0BL8J0gZ/k5EfEaHCutmBHxmHbF2ESbyG3uqSXPzqR5fJxWe8dxfO50LBCeZY7Rm4q8fP2ObXnp0kpJr3QSEcF0vPWdeeDFOenF4v9lxqui71c4xlM96ITO8PvZwwf8H/7P/xX//b/6n/g//st/yb/+H/81P/xv/xUPy5q3Do44sx3F6T1ee+M+/XZN17UCMyd4frXmD//8p1w0DeVyiZ9V/NE7H/Dh5ZZUzNk2LX2z4Rvnh5y5AKqkLEtC6NmuB75xfszbf/wjnnee+5Xhf/s73+A0NVTW0vrEs6bnh5cr3r3uubnteTAveHIRiMny1ddO2K4Gnq9u+Xv/+d/nX//Jj/n+99/hUV0xPzzkdtUy+MSDs/tcXTzj2dWKe8slISm6tuOwLimNonQFXUw4El89P2J9ec39ZcFVo2nbhsV8zhv377GoHD542nZLt93SrlfEB/fFhuoLwV5fDLKL6ott/ZcxJkuBFzu94z3yL/n9vBp/mSNPNOPdQr1wK09JJsOJ17RDBe6Qu8d2VUZbxq/eD/ixrTvI9zFGQXDGLNSkxERiQpNEaFBoIwXfMODbDqt2WJVVSHi80bz26Jxuu6Fvtqyur/MEKK2ncSrVWpIQgpIiUqeA1YrjgyUP79+jsJbbq2uGtpHMVa04OjhgNpuxnC+oq4rSWoauhTCglVid6NF4WiVJklDSFnOFpXQFVVli7EicN8wXUvShDViTTer39++I7ECKour1g+y7sq6x1mG0FT+7NFBqw8nBkSA7MV/DmXcZfUQbpqSI0VrlE+s2vSv4GL9OBxrSWMnsfsqcxJ0q+0VUePJoVGCtYdu1+NDjnMVVBWZwbNoGASoHNps1RSF8xxgD88qRjIEEztqcXgFt04mFTUrEoZf2vfeTt55CLFGku6qkiJlAzH1xBVPrW40oY+56jDfAGAT5k1bp+NQXlv1qt7/G30bEsmWaKkQpkw9Nwkc/FWmCCubFSS5CpbhLUxG7L74YF13jZxnv3aM90XTpjscjZnGNYrJXmbiDL6J1SRrrMY2cTnaUPaWmfbF320BB5ne+/HhV9P2CY4J/P/dBjHnp6JDwz57ib55ypgr+T//8nzFcPaW7fM7pQYVrV9zcbpgfLfn6N74G9MToJdNcaS5WLf/TH/+IYCz3z+/zwbMrVsHzsydXXPWKrz98g+PC8B/+/b8He8zf+N3f5vt/9gNWqxu++7WHlGUNoee7b93n++884Z/9ve/wt1874nBW8uirb6GIPP3gI47+9Mf0P33G2883HB0c4Vzkq2/c5/L6mo/ajq+8+YC//tY57334IX+Sei7ee49AYmESX7u34JunFbfmiIu1p/MD86rApgHtE1pZSA6wJKWZz0uqyqCtYlaVKO2I0dN3DYt7Rzy4d0bfrDlcLIh9P124v0hZtoPr7ywcd1vbJxuPB+9TX+mzXltNqO5umy/3VPWpfxzbF5/zkq/Gb/zYb1195mPyOZteKATHMYo3UkpiZpxFG0VRiIffKDrQYlVSlDXWOXQIXD9/xna1opzVLA8OcUWZEzFKKRyV4uG9M0qtuX9yzKKuefzBYy6eX7C6vpIED+cIgHUWpcAVBddXLbNZxT/+B/9L/sk/+scs6hl//Ad/yM9+/BOa7ZayKjk6OKSuaxbzOWOyAkFC6UUpbFhUFcZoEYqo7KGmwBXSNrRWeGfWOaxz4gKQJ+AuZ4hrbcQ82kqyUDf0wn+MgX4Ik03J6naduZY2I2AlzpZIA1Xjh8D26hatJOO4KkAlceLTZI8+pUl7DN+EuvNzPtj5y+iv+Eklp3Qtdya/d7jBe3XBztpE4azl4OCAQKIIAeUMl1eXbJuG68vnzGZ1vm8Fhr6iMI6ydhNqnGKkKitiiIRhYGgaQemKArUVsaKzltJYmLzG44QSjkbkowAhpEjykZiGO5/Tj1GiZHNyI+cZ02dOk0JY6DFhulsrJTY4yjmslYI+hp0tjHj7mWlx471Hq8SQiYBaSY2otZnez865Y9yxkf2dPM0XuegPvme0ijEjfxSFTikzNsdDJfw9pRJKje8pyX4ZzZvH6vSFsd/WndI+XnK8Kvp+4XFnev+MRwifRafAcPEYvbqk0gm/vaG5avmTP/4ef/g//I/87usP+e6jA/7g9/+Ai21kPivp2syLILJpIn/yw/dZbTuOjit++s77nN67z1fe/Dq//+MP2HaK7//gBxOfoFCKr73xiP72mn7b0DYb/uZ3v0ZdJYrK8vFHT6gxFMsFv/XP/gtMYQmXF7xZVzT9wPc+uuYnKlHVhm+/dc4brz/g+rrm629ECjTtx+/xD796xndO/z7KOG5Xa6qiotYJGwY27oiPyy0f3txiwsBRteDBwZyyNPQ+sRoSyhjaWKB1gVWOhSvouoF79x7w4MEZR8dL2tsbWK25enZJ+oc5jipNTYJf4FjtH6/0wq9/GZXVz1HT7t2X71zL6c67uvO2krr73GkDr8ZvxBgLfjX9fPdA74Dtu+Hr45kyoiVE8fwaC589yCGjBZkjlPlME9KicqvQjMWRpSoLjHUY6+Slg8e3HVu1wtgGY61YPuWCCiWY07yqODs6IrQ9hdIUWmGdwxg9hrKhjWI+m3G0mDObzVjUNe16jRo8lSt4cHbG0A8UhaOqKpxzlGWBQkvxEQI2Iy7GGKyWidU6kz9rRreccNIk85QcZp/5j3nvTtm+JOHPpb22Yla9jsjo6Bs32uAoZeU9oQk+0XeSBNJ1A84arJVWoAgR5N941SfUZM+b8gU+Fu37aOP4HDUKDUaBAeQItrEY3AeYRsPejCSRCz+twMj5FEMElZjPa+pZxZBTSYZhEKPj6KdCr+97adWr7J2YRBiD0Sgl7dPoB8mEHcuv0YSQfH7l83gUG430ltHQOcZdvBj5HB6lKPv7Y7xnpwQxV2JGS/E0LbIFmpPfqz218J3tMLXU5Y1J619eK1voTF55+WRJI6UiI4/sUEtGJDbJmRRCQOuANnf5djt1tmxvEqPcuZ+r7EerxYfxzkSxjxK++LyXH6+Kvk+Mn7cnvwiUmiYUqb26oO7WeGWwdYFzhq9+8yv8revvsv3gfa6vFdHNuF1vubm9xdkEYSD6xMXza6rC8pXXDjk7OuRbXz3n4PCQw0dv8Pbf/m3+1b/9M1RRkcLAoXP8na+dky7e51EdOX3tIW++9YjDozl+2PD6wxPmheXP33mHf/Ev/znm+ITUbHIAOywXc7F+CYkhIgRmq3nz0UMKbdEpEFOkKAvePF2QYmK7rek7zzB42t7QDh2+H5jZyGGlWVSWWV2wrAvWTc+QEslZnvcDgzZgDKWzzJRivboh3TvGb7dsL2+4fPvdrBiLe7v+BYj/ixyRFwnxuz/8hfhyn/fMT3unMpmrFz7TS27w1fiNGTu+04vrjn38d3cfkR93nKSxKDSjgjL/fUS8dIYupDhUu6JvwpjEu84YMyE1VTEWfVZyY3MrrwleChijJ+TMOEtRFCTvKbTmeLlE+cDMFVTWZhSKqcVmrebg8ADnHHVVUVnHxZOnFNaiU+Ts+GQqEMaQeqVBI63GZAwh7ygp+oxw9oyeCj6lpfU8Fbp7qywplqQs1lpPk2dMOWeW0fxaWqRT0Zcn2xAiIYwfSFrjISS6boBsWm21kVadMoLg7BV842FMuSCJcnin1qPOrWVpMeud3UeUMnEUPGQZ6FQAjM+f/pvMiKXVKa1WTYqBED0oxWw2YzavabqW9XorbWwziCAmF71d11EVpcSVGS0G3ogaGqPxPoh3nzHEgCTEaMGzpFA0UiDmlu+ujlJIOTrlWzCKk9TokZZGREsujpRP/ZjtZFQu2JTOV1FSEzqYd+tU+I51mdznx/bpaL+is4An7oq+saukdm3YCfnbX0wlpvNl9GiIMfMGVcx8SKZtjOrj3diht+Nn1EqLmlczeTpJ+9dP5+FI+5PL/YvZmb0q+n6FQ27IclA3z5/w+D/+B+5/41uk5ZKhLJkdLvnq115HH86w7Zbl5S2Pn9/ivadtttTOEENkPit469EhVe2YVyUHiyOsLQm65f/2L/4z/v5vvUHhLPOqpE4Dzjfge+5VJxwdH7GohUzsihlHi46z0uLqkvn5AzySvWu1rNjbrqMsKkJSXK0bFJrrZxfY40OwBc4IV6Jb5Rxg76HtUX3Adz3t4Am+5/yw5uvzJYVRVFbj8DhVMCsszeBp+57r2zV2tsQZQ1U4jucLkjM4q6nLiudX79Jsthwslmxv1ztezC+pIHqRHvKrGp8W5feyRd2Lz43je35VFP5GDFFWykEeFwK7dcAO901pbAwJWjKqcT9roSLz4ai+zAVT3KkejTGUZTVZbhhtxdLEWowWoYVVCqshhMgwhJw9KobGJPF8GxS0GW3TKA5nM2au4N7xCQ/OTsWLT0FdVVhnMUZjraYoCpRSdNuGq6dPMEpzfHjM4nCJVpph6KfJ03uPtjkhwjm6GCa+mjMaYzTGKCl08sWhM70qxoRPkTR4Uo4LU0aD1tImHi1HUsq5sRKVNYSBwXv6vpfWeN6rMUaGYWCz2TA7OaaqKpRSDN2AihHnHC6rN3dHQvZ5iGJYrHVCSfwro9J0msyjEP+13gkipPA1EssZI3hJOyIBoSclOTZ3ClTFZOacUqIsHDZqrlYN1hhcWXJ8fMyD+w9ICW5uboh4lC4xhaNpW1Dginn2ppN/pRPBRsw5u1orSmdFXBMhqSTvT8k+tlbyjI01mWYwmjUD2kziGT0KFtTOniT4niF6RpPm/QWQMtI2NdZKqkZK2Y8yJ7BovYfOyYhJ+HUjv3Mc0vp1BES9u0NccyGWkfVdiz2fDfuF1/j7PN/L9Rny9u0nJq3RhiYb8Oy2w94CDVlgTXzCtEs+YSxmp/f/SUDjs8arou/njk/fkfuqyz0nok/MxeMcPXOOJx895r3twMl3vwMnJ2hb8PD8HDcvUdsV2io+eO99lrOa5WJB5RR1SiwOZswWC+qqZrO+ZXu7JfUJv12BuuK3j60EpG/WEDxdJtjOlguqusY5R1HNME5z8/FzHs0sR2+9RllVaG2I2Uh1JKWWTrItr243EBKH8zlV6ZjP5qTkhdC73TIMgbbpc9qRXEgLqzmYVzilmBU2q5vyKicGVEpUhWXoA9224eT4AU4ZtIJ+6FgujkVhSGJ5eAA3q9zW8cgF/xer1Pbxk887vr/q8Ut51b+at/5q/BKH0WNbK00k/OnAZlRiHGlqewkiwYguTAjJfscqJz8YQ4xOEl6jwucJwlpLVZVT0RdC9v+LgeCHrIz1jDGoJLBKY1LARClKRt2CikkI+0phBV5EG00sC0ZEpCgKikKsPbbbNXoUkyj5NEYptE6kIKhRYS0+eInxAnTK8VeIMCGlmD+nmMGDvCeZ9yLB70x05TMK4hZHZa0SxW9MgUCUXFcl+38YPH3m9UUfPsW3TbbpvafrOrqupTRGxC3G4JxwCbUeUapETIExLmxsuWrUzotRDndWiQIp7nkwmiywSBNqOmkitGZUiIzblfe5i+sL3mOQ9rdVmpgbotYYzs/PUUbz8bOnNM0WbQ1nZ/dpmpZu6GnalnunJyKIcRZlMrcyQYw5Vi0XYKPSdKQlETVB64waaoTulLl4WuNMbn0blT32YDyRlUry2eLIxRvv2fKZtLbZ+zBTEOKolJaCSOkdH1Ij+02x11LNxfjOLmYspNPUIpd2P2QZN0rHyTwbhFM6Xhvy7vRekbg31FhE5oer0ZQ5f9w9TqdSOYotwT7CMS0I0rhAVDtD6em5L4cEvCr6/qJjdy7e+XH8PiaJsLFFjeo7+ounrC8fcfzaGxA6Bq2YHSwxDipr+erDExaF4ejoiNIoIhFdOGxVEmLk0Fradcuzjz8iBHC2oGl7upDwPuCDpywcJ6en3H94n9mipj48QDuDKzRqu+L8wPGNv/Y1jHUkbdBFTTKOwQe01hxWjuNSM0TPqm1JoeewWlDWFqVLYgg4J8hgCAHfdXTblpCC3JS1ZlZWVE5NaQB9P7DtPKAIw0CpwSXP+eEcrRIheS6u18wPTyirmpvVGmc1DjGgLa3LEP3Pgbn2rulJWrF/nf8Vjb9Iffapz31V8P1GjImEnVT2ZdstknaIwm6hs1cC5mkrt3gzYTxFQYi01hgE7XGZX6YiEGUCtdbinNuZ66ZhmlhCGPIiSyZ4SUUw0vKNERWCFDRJmE1KAfH/z95/PdmWZGee2M/dtzoq9NWpSqBQKIBoTHdjWqA5Nj02MzZGIx/mifwvSaPxiTYcG6MZ0QOgu4GGqC6d4mbm1aGO2srd+bDcfe9zIm5mlspCVYenRd6II7bw7Xv759+31rfsUKHAWzyeMoABpaXubZXngOeqrsGKT1yR52B0KsPlrQWlyIsiUJMOqVc/yGrGxCxJJ2AT8N6lvnQhaUAF8Gl0lkCf9yQZ3JssWXXEqgreQ991dK0wfc7GRImhSoOCHdBX11uK6UQ855QwmSYLYqaKXI6wp1Fu9t6nsmRDtYgAALycj1M+nFOMC4wgksQSis2HC1YzcWQQwEswGrY9PrwfjYJVSK44PjrCOsd8saBuG/K2pJpOWF1f03Udeg2z2RSTZZSKWJ4WsVEImcQmxkuG/o+SfgDfwvbqkDQkoMdolXwR0WpINiLGMnoBkSGhQgWfSAKLqY1BG402Waj4EbOjA7tmjFyrKHn7WEFjyJgFWfw4a7GhEkm0k07VVFSocTJcTpIdjjEBeIX+ZB+gksCeIpyDJ6xMVFqgDey+hFpoH8fAIP2OQwxgmMrG08Ad6Pu6W7zhRldBUL0MOD2ZMp0tcNuWyXSG14p209D1HZPFBHxLZRTf+fa7uH7DZFKQKeH4TZGjciNxJtpweHaKyTKWV0u22xavPVVeUBQF8/mMqpowmU+F6VvMKeYzdK7w3YZus+bkaMrvfecbckN4EPdIWYlpbVhMMt67d8CziyteXi5Z18coLzJzVlTJ78vkRm4yNwcntR+VjwWrFa4Xb7C6rlFa03lNu3Uo13E6L3k0L1lUmq2WG75tWp49e07drPjm++9wdv8e9dPn6CxjfnoajtV/qbqpQufvy7fpRhldpLffKL9ChPhF2u6X7Wbv/XEN6K+8jbv2j7aZePECYIqZnD4AQB8Hc+C4I8hSwQcvJgokrkFL2HxmZaLIjEsVOVql0V1HZN/wFhdKZllrw+sKa/tBqVIK5QzKgO29SI9dh2tDrdoQC9x1QQ7tpci91pqyLETa0zKRVnmGMYaD2Zyu61DOU2S5+Jh5sG2HyoskvenASAmTI8kWXnsBgVpi6lToHwFlOlhy2MAeIpmzOgtVOHSykCHIoTpI0845XB+AnRWWs+86tk0bsn0lvrmua+qmoesaDDmdUWy3WybGkBUFpihxTrwRoQwAbbhpo7VJBNuxRXaWcPVTvF6Q85QSliwmxCTZ17kQjwbGZulxtwMSfIj5ZAC8bdPw6uVLMBlt3/Pee+/xyadP6fqO5fIqsaRt37PebtBGkxc5xkhChzaGyWxCjC01OrBezqHyLLGSKVsXB0jij4qeiIEV86PM3lh6LSZ2GO0CUI4ZuD4AfLluIutLPw0VM2RYEu4axZBA4qz8G0MfsizD9ZZ+xFI6p4lsuhr1YTwfE0rDZVlGhHTaGJyLsYZRrg66klI3fnfOIURhPGa5phLCFAbc6Bq+LTP/F3n034G+X2FT6X+kQNOYZZRNpiwOjtisX1JOqrCKUMwWC7yymCxDK/jGNz/g2U9/SJYVkjWllawolAEcVnvK+ZyiyJkfLGiaDuvAK0MegF+WZ2RlST6fY6ZTTFmBbaivt1y9fsnJ44csjo6ADOUzPC3aSB1KnWUsqpx3T2Zcr9Z8+uKSq/efsLreMjtsKIuCybSS+BHvUCp4Mlmps6nDZNQ3bXCgl9VU3bZonZFllsVMof2W06MDWWVriSVqu5650nRdTzmdkBdF8PbSzA6OiQR9nATf1sYGCLuf2rVj+W1t43P67T6TuxYzSmGoqjASeMPvQ8xPJHpkBhoVoQ8MkULhDSgVmSmbJgyjB7kNBBRqD+hRPqnaNaCVfXph8rzDJcuRLNAeOjAYTiYpZ8UqRSuKLAumz4re9mw3a5nwrMROaW2oyiLVznUxyN5ZeidyqNaazEjd3lgzVwLt4yQ6gAvrxO7COb9zk8T4R5HChsxYo4R90VGSCz/OWpwNi1iCvKqgVAWZMVKirbfiY+cEQBhjQqZxKaXMggoSAUO6oh6JYdN6BG4GRih1ZZjgnXNgRUZ1o7tdhclm/H1tNNoNEmWqJqE1tu/xSjGZTNi2LZ3t2a43OCV1YGfTKd/+1rckQ9k75vM5RhuyLBMTbq3ZbjYUeRbAlklgS+x+pIqKV0qqtjhJIHHWCxBUCqUsOhhVO2/xNlqSxDJiwhgaHeP6grTJ0F/ywlCaTIf3vdKoeEz4G6BPLF7CWI6AOfadFgAn4ztIzd6hA7ss35XjEQCeLkBi6eI4ilGzSg/sbJytxiA/ecOk+9wTK3/gYvqJDmEMYZt2ZAqWmM/IMg6H9GXtDvT9CtrtbFG4cMrjvYZqwmRxSHGxZH5ygp9N6LZLkSJ8L1KMMhzfe8CH//n7rC4uObp/PwxQWdWaLEMVJcVshut7JrbH9eKQ7nQWMpnkc1lVoasJqqgACbJ98dkLLs+XfOtf/htUXuK1wseYGKWk3mZWcHZ4wOt1y5OzU/7mw2f88OkrvvPklO3VFXlmyKsKUxZkXh5IrrcSj6JzofCt3HTWN1KcXQRuet/hM8uT+2f857//z0zmZ6y8R6ND+R5LXW9wvkFpsJ0ly0vq1uHS5Lhfxfa2nifdbDvX6S1/71LlX/at33TzN47wH98x3rWv2nY9tsygDjAw0m70e5xQfAB9Y9NYLRQgxowZBfHpi8yGVipwGGHCDiFhOxmjSYaC6FPmQzF7YVwCGFEKlNTPVfE9PEZLvFiejdgs7+jaJoEroxV5iN2L4EH890hSapYVQyJKyMzVRpiQ3REvE2af2CWC7UV4NzCZ0icmZDFriQccfSbFcwVPughWJANagupNlKGDjYvEVYbzzXOqssR7OY8haWEkycV+3gN88m94boUYsJgVSmD7ZEuDvckQAzpsUyT+AexBkKKtgL6yKml7qcPcNg2d86jMMFnMuX//Pr21vHr9Cq1ziqJgOp1imwZne7Zdx3w2xZkMnWtcjDdLBw8oiXVzSkaZ62MMn0I5YdGU2wWwWsncpUNf61gVxUfQJueQ4uLcqD8DvldK4QMwjIuaZKa8/8D0w/0VM2pVGGdpW54A+sLfblfFi8AvvqS0QvnIPqel2WiEhusc+iyEQKbmfDTdFtTvtTDbygk4VCgJzUgHMLCE8bWv6td3B/q+tO135JdzK0mLT99WqOmMbD7n9MljqoM567alyAs2S0vnekoUeI8uSw4fPeHDn/yEP3n4CKUVvbVkRmQQpTVeKVSRkaGwXY/qe4qiEOknE/pcZ7msfPA412Ntx4/+5u85fPyYh9/4FjrLQTlwLb6X5IysmHB0csq7XtGh8bqk9Z6//dHP+MNvPeF4eoDdbrDzGflkiu9jEXGDVxZrPd56bNdjO4t1jqa3dA6cyehUQ3WwYLXcYvQUq6T0E0oe+tPpBOd7imKCQeRv21mcH/j63ZJGN/tdsQv23na10oN27wr/ppiz8cP7C9sdvvudajfMl0MmryOwFl6SFMbSTpJ7HMPElrY3bHdfUoqyonIqsfIRVKWSbI4E+sSTziXgl2LKAHCYkGCgM0V041UKirwgy3J5NoRPZ8EORmuTitCnOL5wPuMaweNjzvM8TJChD+yuRUU8T2NU8nxTJkziSuOcTZmsxuTkudR2zQIb55zEgQnDZ+nqJsShKQqTCXtoRY3BybNKQ2A2hW2pqgnz2ZyD+YJmu5btJmgznEsE1RGQxf7VI4ZVB/ZtnNFrrR285NQA+MafYW9fY3CZ5RnOe5ptTW4MqqzorWVzvaTfOpq25ez0jGpawRk8f/6S7XbLarWiq7cYLRnXm+1W5gqtKYoc1ytc2yVQjVY7Yy8uDiQHyWJbh+oUJjOpb/JMk+lsVxKVM9mVwCPKQ8qsCSNGOsdhv2FRk6TZeJ0lezeyoIkBD9Y4Mh59SAhSwR8xSOuKdL/pnQXFOFxo97y9F+Cf5zk6E6gVs5UlI5v02XgfyEDWKWkpSsEyvofnwLg63y2q7xe2O9D3a2xxleHwUFZwfEKVG3zX0rayym6aFtPXzCcFBo3Tmvd+/3v8r//P/xf3P3/O4/feRZkccgk61l4IZKeDJKEUWVGgsnyQgk2I0XMW53vwlmc/+ynd6pp//n/+P6GrKeSlHGHvZAVhcphMmJ4ekReyqrq4WvF/eHKEwfP/+f/9NY8O/xWTuYO+xTYak0/CnejxOqxoHZK5ZxV9jCr3is47isWCg8Mj/uEn/5GTs/u8XNb0zgugBfreMp9OKLKcZrWmfnMdpACfFpJfodO/ELl91bT2u3bXvo42zkokEQEhyFuB98HYIVFYcbLa5XxV9JhDgvUlmD4Gtw/xcWkSdXooCzZSQyXxguiNK05qQXbKQtmyBE5Cgkb0AvRaFoB5ZshzQxbZGR/LhoEOmZdFlg0ysmIn+1MF1sPZfpDiQmkjYb9suo9jwXtQwUQ49JXWqLCoFIEslCZzkuihrRXrFi+SdLT86PseZ0NZMa0llq9tabqOTV1z8eac1fVyBLJk33meUxSSGBP98rJgJxKB9b6kG1vKwEzSw2hhu8dK7dtzvC3mK1p7REDY970kkxgj2dBKJM1Ma6yzdE3LZrVi4mdURUme53R9z2azoVmvyLIsgfI47rQSGxcHIftaYv20UmDBYMgLPyhQOsM6yYYe5bLKoj9GKwbjwrjASFYu8V7x7FS1GO4jiVt0Oph4jx7zkWUbYgLD3+F+iEx22sdY+/Fx+5JlPGTTR/ndB+k3sJkBrupIMHoSWNfBh2cMiuO5puSS8fyUNhLZ8l3WcpDWh/voq7Q70PdraPGCeu/RLqwS8hx9ckpmLK5t8B0SX+MkuFQRMnWtoqxmfO9P/wX//t/9Ff/98RnT+VQeiFrhOisBoDKSw02mIWRBRcAnMSEO17f022te/8e/5o/+6T/h8P4TdDbBlRVqUqFsLxNIafFMwDiMtZR5weP797j86CkfnB3wzPf83/+Xv+R//h/+BfPjY6pczlWbXPJAlHhI2a7H23Q70ztH6xzVwQI9m/Ef/+I/cDg/ovOKputxpqDt+tRfV9dX3Ds7xTcd2+Ua2zTorCJOaF/W74pddDh+wL4N8N3BwLv2G2u3xeOMGLU4IRDBDEN90ujvFmP5tBIblejv5tVg3SIZk5J04ZTCRhuJBC7kGGKigVc+fVcFQBUn/iR/BcBnIkI1wvhJRQr5SQSdj2BOWD4zSqBQAe2mcw13pA2WIJKAMUx4zg+Aa5zNr7VGR/ATAJ9SUtkg1HdIkrVzLsXyRTnZ2h5rgy8cRkB3YPZs39O3nXgTBmbLWpsSCGJ1kjHrZozUNtboHcA3nh/Sv6MBoNIYUHugjgEc7Ayh24P847FE0OfxFEUBzollixZg3vWWtm/ZrNdorZkfHkjsolK44Lzg/eBjGMdllCuTXG5MMCOOSEn+F983Jpc60F2fAFzMZiaEQ3k3JBTFcISd81WkhUR0T1FqOJ7IkqbKF2oYG+OxpYkhESIHx2zdL1KGlNIovZdZT1iMecIiJihSIw1JLHf00F/jhd7e9Qq/pHfTYkAN5zK+3gL6btva29sd6Ps1trRww6MwcHyK3l7Qnr+mr6asesd6taRvNjxaTCFYnijg/d/7Ji8v3/Dn/+v/xr/57/8tVaZTORzvPdoHBizcVDgJpJUlcgfe4/IM23c8/fd/ycm05Mm3vimD0RRQTKCa4bsOfA1IbIVzoIoGlRnKIqMoSi5WV3zj0Rmr1Yr/7f/7FyyXS/70n/8xRyclWJKkar3DEXy+ejkGbzTz0xMulmt+8hf/gUxlbNuO2np0maOcp3NOVmbeo7OMw4MZq9WazeUVZWfxRsxgFcNiR93Sz/G3ty94bt7Wd4Dvrv1jasNEKpOFtAHkWDuAgJ25w4ZFpvbBc28UCxxsQeKPdZbOdm8FCzEpQBg4nUBfnucj0DfswxiZnE2oFVoUBXmWU5TByNd7VNeGTF4zYl3Y+V0yGkX2c0FSFXA5fHY4xpt9F7NcpZqH2ZFCEzpgNGl6m9wGJCRFSl/qVOdXGCOjDQeLBb/3e9/hxz/5CQA//tEPcE2LcZ78kZyXdY7r1Yq+66RaSJan/e1L7fFYgRRLtt8Ss+Z3gcYA5vwOCJPvSEzf+HOSmS3noVGgDMoovM+ZVVPwirre8urZC7arjdRk9jApS8qyxLYNzjmauk4MYZ7n6RyKoiAPSR/GmJGvIVCpEdOZSZZ329E2zZBcEYFQYLPdHggern+wvNGMrtGu1J8Y4FEGcJwRvPcwjgdMXocKfxt9OLo3ImjXRvwJrRMVKzPDQkKRhXsukCAxPjYAzBhnPgZ3fnRN02tvuS/3zzEmrXjrv2jSu9HuQN+voY2DruVfARvFwRHuRU6ZeYxzNNsNy+U18/kEa+2wYlbywP9n//LP+Fv+gv/w53/Of/Wn/4z50aHUNjQGEKkFJcbIGAdG43H0tkN5xXa75mf/8S94YDKq+w8wWYXSGT7LoCixKkNrD5mRLF5rwWR4rVGZoapKqqpkMplglOO733wX5Z/w4vPP+H//Pz7lg2++zzvfeId79++LTBCo8zY8PH2eYfueH/79f+b64hpPRuc6iQHywjg4r7BIppd3DrxMIs+efka1bSh1FtLoXZB3bh/d+6Hd+3fBOO6CyJAwPIh/mWv9y3w/tl/FNu7ab2MLOmpqQQZVI5ZjzMYFD7Qx+wMEX9kwYQbmAeWEfdAxID38aJlArR3851wocygylyFyISZIVnpE2Skl8UXRGFoHU+QkE/sg14Xs/kRSBMNhlGThp0lZRXZeiQ8cpIksfSR0wG7sFqjkjRbAZWR8dhIlhgoNqGiaHNgia6V2bN8hBr3jMl5Rbhvi5uRcRBo0RicGab1e4boO46HMDVnIeLVWYtqycL2cd8lAWAylTWJrhyEwgCAd+nMs68bJ3hHyukMITazRq3TIStaDVYntLba3tG2bTIW9dWRakxuD9oq+adnqNZdvzqnbRvrTaCaTidR1L0qJa2RgSKN1imJgJYl9pNUO+AaHMQoKg7M62AVBFsq0AfS9mPDjVcj8FZZaa80OeRfOVYyfw3kj8evDQkGnOyuOz517KW1Pj1hfSX5ywex5AKVxHIXxaHTq96jjKoa+iWkgPmw/bYB43MMF3wGC6SnAMCa88Ic2nU2MvwhwMoJivlq7A32/xub98LAC0GWBywp829JeXJNXBQfHRxhvU6KC1yLPap1RZjn/9M/+JZ/85Cf83X/6Wx4+fsyDdx9TTCaYvEApQ0wpd96iehkAtuv5+Kc/5fzTT/jeO4/wmzX57ACfV2hdinTjLK7tUKMizuG5C0ZLQfUiI8sU3vc8fPiA0njeefCAb737kNcvXvHm9Wv+6pOPKauS2WyGyqTcjsTZKDrX03UWk+VM84pl1+O1wSJB4h3Q9J6tlYLfoKjrWsowtR2Vha7vscYN9v937a79zrW43lcDqFBRfoqSUJjwnQ7ybqjQEG8KLexRtH1RRH6BtB1PiJ1zCsKEJiDMJaktzEDIpKJHE15kyf3OcQVpgVT3VkGUop1z4bEWjp+QmOJBLKjktThl+XH1kST7qVAQYVjW7TJ/w+8qWYMMP5E0EpDnQZvhOAMwFVubIT1TMKjoM0p5sW9xjs16Q13X9J14EWahvJhzjqZp0R4KbaiqwfTa2g7vRoAoABVhZXelS8Eyu8wdQbIex5oNMZ3xpTg+QLkopwbJ1Ue5eZCppbarfMFoQ2YycmPom56+aVkvV3QEJssbyqIgMxmTsgxqUxwjcvzGZGEgBbZ2nFgxSsSIzKAJMvDAQIYERUbsNZH1G8Ze6pNbwJNsO57rcN09AeyN2LF4p6XNhdXFsIgKn4lKmoqfFeSoUsm4gYSQPw0R9MWQTwm3GDOO+5PYTbpiPB5SbwwXO13r/S18VeLgDvR9nS3LsWiysqRUGy7qLa/fvCGrSjg+xIYVXG4MsboSWvPud77DvUcP+ehHP+Rv/9PfcnR4yP0HD5hOJuRZhsfT9h3X10tePn/B5vqKR6fH/NE33se0HWp+iF8coWcL6BXU27DoLSHIOKp3KOukgHbf09oeCxRVIR5M3rFYHLBpG+6dHPOdsyO67XtslmvW6zXL5ZK6biiN1BmMxdSt1lw3NVsnVHzXCZsntcrFMLTpWpqu5+TkmGW94frqCuXEBkH1Lq1sUQRH9KHF2JB/3O22A7xj9u7aqA3Ec2q3PcS1Fr8wAQ0y1w7qpdqZtN4q3QYGKMuyIBOSPOXGP/L42Y1Hi9uVH0sEggMAMKFGvKPvu2S1Id9z6ZhiBYfO9mivd44rHmc08NVajzibG2eUji3ta08GHmKqQikwHCS2TYBflJVj8fq8LETibjouL69YrlZ8+unnvHz9kqvLC5RSzOYz5vM53ksdWl/kVJNJkrClakeXPPfGfSeAZ5is1R4e2Gf2wqkmVsiP+nuXYRtdYx2VEzOMh2FTABS5lMbrFguJt+t7lldXmCJHZwbynNlsRlWWzCZTMmUIRVDIMkNuJCs7xvtF5WOw2tE7cYVZlklsaKXSd9LxMcQg7ieq7I5fOfqhDm2MRdUJ9EXwFRcLN1jIERscGXXZnozpmOAxNsz23mEZCJqdC6ZMuO6xDrBPnocxA3//ft6P7YybTIugvXlj/PlhUeMTeN7xAfyCdgf6fp1NDSQsCshztDKoacmk0BTbHm8dm7qmc5BnmYg92qACPWxMgcUzOTnlu//yz2jqmuuXb7h48Rkvlh9jt1tc14LyTKqKR0dHVIsn5Ebh+o5yOmVrJkzf/w6qnMLqGlVvcfUWbSq8NngtDzvX9fT1hn5Ts9lsWG42rNoWlWm2jaPeWi6bLYvJlCrLmB4ccvjgIdZ7nLP4zuO7nt51tG1NU9fUTcdUgW9aPJ5NayUDMAdLT9cpVpuWZdtzclQwW5T4puVwUjI3hs35FS43mDJPD/NfHi7dAa679o+jJcVpD1DF3wcWJ8qDQ/JGrA2qINTzHHzFBEAFj75gQUGoWKEU6NwkSc55kyY8FxIUJF5Myqm5II2JMXE8nmBHosbsh5LFnGiHgQUZGK24cAPEfFkNZedg10YmMyZJgzv9ElkvNfCYsY/UiGFKOjEwMGRS6E6kbIciMHwKlFGpFBshTlEZw2SSMZ1NsN7S9F1iTo3SYijdS38ZozFGEl0ia9T3fWC1Rkke3if/P5D4sAh6InAfrv0uIBgwW7C6YQAxEbSgFLdFwEjXDaBKBVlWmwylFJOyYjadUrcNddcGuy9xVMiNIdcKqiqZifdtR6Y1DkvvRU6O43DcdMjo9lonABVr9opNEOE1h4tm2KHWbaxkEo89Ar64ONBJb43nGDNgRbomZuvu3VciFd9cEI0/40KySxyTsZ/TaFISliTjQQ+VRkJhZJ1J2UONh0AiuxETLccwrNjM6PrEDJV4TdNxQ7oXZa+iqLkYnHhbXOIt7Q70/dxt/466fTUNiQEfVhjaoKdT2s0li3v3OLt4w9VyiVGeVkMWsKFzUlonbExK6CgRVvKi5OzBA44P59DUqLrGb7e4bkuMoTFZhtaKrMjYND3lw3fQ0zmu76Te73JJ31t0XqGMCe7z4pZedw3LqytevDrn+cU17bbDOOjahu3WsFxvWa22HMymeCdlc4rpBJdLSRrXtRRdi6m3VG2LuV6Czmgc5HmBo2db11SqxHrP9aZj1bQopVmulrz/7jvMdYbqr9HK02nNvSdPmM7nQ4fus+SByx9PkrdeudtWVr9k+/pj8e4A6+9UC4BPpfH7ZS2AJEXIUFRpSCgV64symiAH1gMQajDKnWqUFKYUXitslLFwSaIagFnYXZK6GL0WJEUFYmsRYIl3eB8zF8dnESxlIkgbTYbGGLI8JwbFy2GPwlB25Ntho3oP9I1jHtNkno7JoVN1H0RC9grlQmWLIJFqZSjLgqYNSRlOEkyivJhgmB4S7SIWFRZrYJR2WFQ19E+Mn4xXf/zZ8bHL3sIz7G3yRpQS9+Tg1O/eJ1I5HjMIoC+LAuccddvKuVmxZ/FOqmd4Z5NPoe17nJVMXe+cZO2OrlUELANgEgDogrehUmZnDKbDj8/vAOLje+IDmLo2nevw/B33a9zS0G7cW37Ur/t66bDFHelU/tbDQfghYzgteuK+owxOrK6yO3aHkoB70lU8uFuaIgYdMPSCAqPMjpXOl7U70Pc1Nq8VejYla9bYvuNgPuVgPmXbtHR9FxI0BmNH730IzoUon2iTYXtHXs1wGBQZ6ByvponuB4fvG/rOkh8cU84X+M0av13RX1+xvlqx2mxwKMpJhdYG5TxGKdb1hjcXF7xctTxdwuurGt9afOaZTBReFWzrTpgF5ej7Bt0bdJ5DWaLyDGMLmUQyQ+mg9RrdtCg01otVzbbpQBnWTceb5ZpyUuKs5eDggPbyipkxmM6ii4o/+jf/WpiJ28b0LSviL2t3SRN37R9j209SuK0lCdQjFk0jFgRkYog2IlL/tgRIzJPz/Q6giJOzMFEqsXJaS6hH3OfOMYXZN8ani8QavwuB7kstJUGY3YmRwKxpMxjzGmPSTwR98fz2k6bCWi/sf8zGhONDEaszRAAoJU0tBKcBNzJ0i8BEgGeMM4O8kOoU3luaZktdb7C2k4V1JsbWWZahMw1GyXlqjZB+CSXvtH0pfeiTm59zgVX1fviM825HNh5/HiVk0djWTWud5pfYhJ1SAnY9lEUZwm26ENIpoUaFFuudvu1odY3LMnyeC1MYpNY8yMRxX8J+mgQA9wHsuPbu+PUd4B6TekbX/6u0FGe491och7FPE1wcMa+xibw7gL60XYxUzFGQaeHbIuPs0zpIy3iOJs6RXVVDCMIA7G0q+xaZ7GSzHZk/vnh+i2EaUeb9snYH+r6GNownhZ9MyGdzXNfgW2jrLavlmivjmJ2eidu70mE1iSB7ryFU41Bak1UTWakVBco6lLN414YwFYevV/Rdg57MyCdz3PUF3XrDm2dv+M8/+4Tvf/Kcw9Njvvut9zihkRgcJyvdzWZJ0yv+/uk5/8tf/T0ox8PjIy4vrtncPyWzlnmlhYpXDqV6vBXgp3KNMhmuB60MvVdY77B4OgdNb7m4XkEm9TZb69haz6puaGzPB+8/kYkDz/VyyYkqMUXBk9//9s7KVfpF7fSvOPHf1vtDrMvwCPxNsXO/Oobxrv1uNE+o0akV0f1/PI5l4RfHvpJar/F3FdgIFX3zZKI3aJQdZfYSSXKzY/mS/MnUWD4zO1Ka95E11GLOrMY1RYVdGE/UYj8yBjoDi6f0GMgBKpYOM6lSgdZGTkTr3W1E6RpIFUrcAFxVYtlU7FiZTJVPvn4DxxUTYCSASlgvFY7No4Mcq7TGAmVZ0PcVmTGpase0mnB0eMDR4SHHR4dUVUkeDPJjf6R4s1HsWbymN02ab4L9CE6cHxIUQNjcIV5s129xvA01GjZDmbAhBkyA/nDtJ1WFyTKsc6zWa7wFZeRZrtA4K3WJvdJgAkhTBpMZhudsqDoSTbMDWo2HpVRIUDKBFU4SqgpqzSjWLhQg8ASGdSR1DgBz3H8RHKlUuWkHVPpw73iIyUbjfosLBmOGyjBRco9lCr2S+s4SFqAT4SuJQCpdx7gYUUolZ4rxvrQe5vgxGFUj1tEjOVcpBsQDYzCZ2Obw3lucLfbbHej7Wlq4ch58UeHzApNrejxHsxlX10saFJ2zZGGljnOSZIcE40rat0aRYcoKh0f7AqyXYug2Q/UWtit804DOyQ5OQGlWz57y/Kcf8+d/8X3+7vMLfnyx5WKz4RsPjvi//Nmf8AfffAxeYXsBaD/65AV//f2f8ODklHlhyJSnt5affPo5s8zwzumMzXJFWR6iCqBv6TYd2ndkeYmyir5taeuW3nY0bcOmaVh3FpMV9A50nqFzx+n8kI/fXHJwcIjvo8zs6euWlYGHf/yHnDx+mMo5xcd2aj7eE2qvv+/aXfstaBGoKKm8kZgqRvLTTs0l9mStmy3F8O2EQMRIsEH2dM7fWCzFCWkfSETZdQz6nB+sV8bf2QE0IXkiAsoB9KkR6AsATw+gbXzou0BGpcnVK5f6UO2BKBdi9TwjmTRkgYn87IfvhiB7bQamKpXL8j6weZk4dASfkaqqqKqKSVlSFYUYUUeWVI0ByMDqwc0n01dRHcbyrvy9e177bQxgknQeGL0I8pJczgA2sjxHac2kqthut+JFJ0GQeOtwykppPi2sku3F0zAjS8BaQF08SDXQsf4mk53OPVBkUdrVencMee9TrOCuxL+ryiaQtweAxkxqFNFjVm4cA/vXI20r3Y5q+B7D38M+CDWBA+hUA+vsR2B1zO668XXwu9dTjXehdl7d7TdiwshXV7vuQN8v3cYXf7fTd1fsEjugqynOGHTXwWrNwWzG5OCA2dEJusjom5ZCSRyAdw5rpYC1yWT1ofOw0ZjirpHlgLdo3+LbLZ3tKU7voWZz8ApTzdk2LffPFvxXkym/V7c0XsrnfP70U06mBfPZgsvLJTbP+NnTT3nn7BjbO7Z1R4ujKHNMprl3sEBZx3a9ZTItpfRQUWB7R7fdYrseozParqZ3PW3bcbW85vLqmuvVGkI94La3uCzj8mrFwWJGnmtOj464f/8BV9bTT67I7z/g3/7f/q+ospR6w7f0erqdv8LD8zfffhuO8a59nS1NhID448XJIb4/xEjBaB7YmZxIIGOQPHezGyMY0yPJzFqGag2jCSPLsp2/b2bwBjPlcUzcCPDtfDYsVsNRJ8Aor4VzNzrdx2ny2rf+GDF48QTHku74M7clQUBwTYu4cnQew8UYXhcWSlqeZxRFBiG+TSs4OJgzKQupPqI1RilMiMs2JljkuMGbTxJq9M5125Xybyxnb7SRuvtW0WC83WjULH9rYgkx56ROet/3oExiHvM8Twbc2+2WpmnoraWpGwF7uSPLh6ojzjmqqsIYg3VSZcOEZJ8YhhDj+sZjIx7+20DKeAztAKERexpB3wD8RuDeeWy/X7Ul3APGDL/v+dsN48btgLAhDlIGRah4GDK9A9sXyvuNt5GOO3zXe1INYADreqyzKV4x7ksA3+j+jh0WgPG4ee/pbAjZuIvp+7razyPZaVRR4ozGLRsynTGZLVgciTHoat1QFTl110lMSMzSshanNTrL0wrEu0HucL2FrsE3W9qmJZsfoBcLXFGhnWLy4DEf/AlcLP+cenvO0WHF/XtnkBvO1yvW6yXr1Zqm6ThfbyiU5miWsW0d13VLXhQ0TcPBbILSDlNktN6zbTvMdstEK4qqomtrbN/RmSw4+qskT5TTCfXrS9atx2PQheHN1RJdTNDKU+Sa2aRivdpw+OAhZ0/e5Y//2/+Ok/eeyHm+5Zn4W4H1brTbxsxv5YnctV+6RbfXQcoCH9WzHRCXvqEGMBTlWWHskhaUfOLG1Tz2J9m+l7JjMATK79o+7DILsboAhDhApQcPPRUTHzTK3ASI3gN6qFIQn14imY2SSgI7EmvfKqXlWRKO38cYPBUn0gBkEDOWoTl2igvfcs+l/lI+qWTDJRkm0WjsfHV5TltvUN5xtJhTFgV5llEWBWWek4V46r5thQHLsnR9I/iJYOdmTJ8cx5CRHI9RJ5kTBrCUJEI3PucoCUdmM7CnOsQZ4oOKpNM1F3YzxIJ7ycKtqorFfEGWZWy327QwUCqwVkrsVsZxajrE9zk8Vku1EBXCFbRTgw+f32Vk03Xdk21vXqtABgePbR38H4lyvR/3a9hO8HbVoR/jWN0H33GFFf0M4zHtjpNhURVZ1vh7HMdag3MhWWUUXpHF+FS1e+172yeJ/sbJpjMbfccN55meF85jw2rgqxIfd6Dva2wejzc5Lp9A9wqd55hS4y/OUcCq3uB9SRcYwIPDY9H1nSOLQMo7vG3lAaoV3lr5u69xbY3PS8zRKZRTMCE/TVUcvPMu/+p//B9ZPn/Jan2J8QqdaQ7rFZt1Td97VssNve3wSvPiastV3bDyHrve8OBwQVVkdMD5dstp25E3NbowuCzDZRkYRde1tHVNNZmhjYzfoijYvllRlQWrtsZrzXJbozJNkRmsKyjKksl8yrat+faf/An/5F/9K3RZyc3+8+DqG+1Llsa/yvZ20veu3bUvbXFFH6axG+8LEbXLTo3jluKnVNCGhji13Yk17S9U3xCPviEmL8ZF7e8n2sAMk9wgY42ZnGQMrHWSmcWuZcTcJSNS0owurMYuuxdZqni8MYZxf3pLwGnUWZG4i0Bh1MtDh6ZXx0H74wk/WLM4qWbhvcdoRZESGSTpw2gtsdE+RgtGECM7Sn1/63WQSTxe9yQkpslf3hEIv68m7QGo/TMY9W360cJCOh8SBRnGkUJAblEWiaF0o/2kceTkSGIN4t34ueEIfEBoyjlc+Hd8LPtgb3w++0wtO316swkgIt1Do15K4/RmLCWp7xOhsgf40rmHnURgLZ8LEbZapf0kuLa/cEsvjUHusJ/9ffvRa3F/6TN+l0nd77svaneg72ts8RbOjo7ZvHzOpGvQ1qJ6R9P1KJ1RNx3rqytypZhM50AAfZOJrCT6UDPTRNDXQ9+h+hanDMXpMWpxiNIioxLKJXnn0QdzZhqyK7Ei0FqRLQ2ZMtTblsIYWue4fvWGxrU448lKRdNb6r5hdu+QjJ7GO+q+Z1M3eKPplKL1ntxo6ralbjs2Tc98PiXLFcZANS2ZdJaidZyvGhpr0blhvV4zm81Zr1Z0rmOyOKRX0HmoQILYfwkS7LYV20Cl/+LbvdHGC/Q7wHfXvmKTh7hKJanS65CAy85ro+/t/z5mOWI2bZRqRc61aUtR0ov/xsljMAW+/d6J5tDiEuB3JtOhPqkeYuxGcWRySmECHU12KsT0Rdk3sYF7gGTcxqAhVZwYs6JhIpfj1aPPASNZekcWDKwpzuMjKwR0thfA11syrfGZAL5MazKtKIxJ0inB6HlnAvYDQ7M/Md82Ufvx+Y0uvPVOiEs1+LdJH++Pgdv6agTOlcZrn6TGCKqttXgkwaMsS2I8YL+XFZr2G459nGARuj6dR/x8/NwNz7vR+e8DvnF/+T1G7DZpeAdEDphrZ1Ey3seuVBzH054crHcXWTKOPNbZAL5i/w2hC8L4RYaZnbEnREiwUtIG73UwhB6OyXsfwlaVxPZ7SZkKtF84PhdickViT/fRV2h3oO9rbDro+r6cUL3/TdYff4jqLMVswXJ5RYbms88+Y6IVeTGhbVuMMeRFIeWVYk1b79HOoDS4rgHX42wP8wV6cRB8h4ILkPW4tkE5S09PZyy9UbR9T5EX+CLncrXk6nLJwcEhVjny0nB0NKU60mRvLnn/8T0uz8/x2nJycoTqapZNQ1Fl2HpLbxTLtqbMK9q258cfP2V2dMT9kxn3jw/JyxyUp+l6eucoJ1MuXp9zUE5QuUMpePfJE8lKA9q6IQsp97sr8F91u8lo/Mpa5Obv2l37gmYdUhYRQoxQAFIGCGHn0WgjhqGnyT+xQQMLkz6pxpPoHgvG7kQ3JGnsSsbDNuWPWGEhHocPJsfjGL7I4ol1bDAqJjJUASiEbYTgJfl8AHuk7eidY442VrALMCOQkPfH4CRMnF5JstuNPlCoUcxIYlScE2cTL96oCtiu1ywvr2jqhjyTmLdMa6aTCfPZjKqqxMvOWWzfgw9VJkw2nHNkKEdgZ+f3LxgjwzUJnJ/3Ui3C36xOOY63c5EhgpTmGmuYxy/1TmTwWIEi2oRopZN5chfYPGstvXUoB0o5ckTmrZsG58WrLyMXo2s9qqGSGMbRYmDv/MbjZ2BtZUEUr+cXtZ3+9HLnjO1ixuBtfK3jvhRSi3psn7Kf0JT61nuSH078N4USBBMXo1M97AiuvfcYRAaXyjU6GSvHmDylobPBtFlHy6Gwi1jrF2H6YuiGyYrhfvwK7Q70fU0txY94wGf4w2Mm353SXr6iyD6jcD2vP/uEpu3QSvHJJ085PT1hMp0wnc3EcFmp5JhfTUpc1+O7Fq2hr6YUB4d0XYv2UqtW5ZJ+79Zr2tU1pjB4LNu+RVUztiE+ozVgq5y+yMjKgmlZ8M58QY/mZDZluW1YPLiH8j2d7VCuRxULrjZbpj5jYy06z+j7a7wuOK8t3//7D/nj77xD13ScHB7Rd6/okQHd2BbrPJtNjbUd1URiYspqQpZlvHj+nM1mzcHB4VfAZLfLG7e9HQHkWDq7bfUdPzvewFeBhjtMw127a1+hSVxOCLPyPjFGPklFuxNaigtiSEO4Ra26IceNgVwa0yPQl0DFrQN4L6M32HHEuXl/cgwnMAJ18Rh1khsHMESK3RNmawCxN2KpbgF9kfUSUmSIj4tSnACHaLExYhvVrl2HD4vp+DWVQCq0TUu9rbGhjFiR52Rak2eGPDMYrbFeqmFopRKzl/qYm8+l25iqL2rj2LPRZbltw2/9vly73ddissmY1RLwoTBqVEWE+KwcZ2kHptVanM9Gkuft7GUah6O/gVSRZF/yHY5zuPYRPMdTHT+/h0WHfGc/ESSew45MGjbkwzjZZX739x/Hhk6nuHu7BPA+WtSMWfaB8dNoLexdjHlPQDee26jfhh2Fkql+dFBKhYpYdz59/yhbGrcSuYLPSqqj+5SrNfXla7rtluPjI1YXl1xcXzKdFLiuxWQanWm87fBakRUFVgNtB9bidEFeTejWaxloyMBwzqGLgr5v0V1Do8WoNc80ddvhJwtW5+eU8znu4IjNxRVVCEruNRRFxmRyDM9forICozVNs6XQhnXTor1k4AJcnF9wOJ9TtyteX625WHX87U+fU/zBEzJzhckMeW6YzCZ0jSWv8lApSXO92rBYLlF5xgcPH2NNlhzG9X6GHakTue3h8qVN7T0nVboyX7iW/DJOcAB8I3B/1+7alzTvHA4d6pneLlklJmgsfzmZNKLXWpTw9r83lo72JbU4KUaWb19OHV4bxevtZOOGCRB2ji8BrwhilUqspFIaUrbuLuiTHvDJMDlWeRhP0JGVjMkD8p6UkOv78Lv3SfJ0Tkqt+STphsxcfRuw9MFeYwTWnKPebtmsN/R9z2w6ZVJVkulqJHM3cpsoyQ4dx8bFGDqCtc3ONRyBD52uTeyXL37ieBVYvq9AhMX93oxlCwwqpPhEHc/H6OHYwmfEgNokgJhluzV9x2BwnyGDkIUOOLWfhXszuSKCvPFCRSWgPjBg8qgdWFAdwFas/jHuTfwu4BszkeNwh6GfxmwseK9C1ZndWNnI+A3seXbrlRNgJhVJpAycwzpH7ySZSuvgb6gGysGH81XJCV0Fli+OcWi7lq7v6dr27YNg1O5A39fdwmIrPlhioHPXdVSzacio0pyenlIUBW1dk+c5tu9wGpE9bYfb9mhnaWxHNV/QrVa0TYPSmrzM6RVkaoKqJU5j3dRYndG2De31kqyaYZua5fk5RV6wWS558/wlp9MZjx+c8fL6mqt6w2pbM1tMabYt9WpDZjRFIYXEyzLHotluO16eX/PmesW9Bw/IphNOygPOXz5jU3f4wznHxyd8ev6Uy4sLri2s2xqtNWenZygFdduS1w3XyxXvfvvb6QZ4+3PvSwDfW97eD5C/8bG3bdZ/OfDD3774/soHd9f+i2yJZXE+ZBoiv8cKF373s7GUlSz4h9q20iJwi9vdfcQPLEaMr5IJZZgMo4w63qdOk23cuPxlAm8eg/t9MifWqW7u2FZFAKOOpsCQZNlYh8AFP4wIyrSWspImVB1wLghiXsyKfQR1UbKL/9o+AANh+BQxjpGhv0baaGbyINWJya5RIs0uV0u2m5qu6SmLijIvmFYTTk9POZjPKPNCzk8rcBqPTddTklrAM1Rk0EpivrTyIbE29LvAYgSUhifNwBJIXwhVIDVf1WBMvMMmyQuypQD27J6psQ8FU5wFE8EvHtf3UnNXa1xv07MyAtj9cdT1Ni2XVdemz0f50sRYR+9DMkgWSrBpSUyMIFixc/xjIDj42I0WLRDmzXB8Pi46IiMajin851WsviE6j00VTlx6qGtMwlPxnFwAVbbvwucJ3rmyXan9G3Zs027FYk3HSh0erTOslWznzvZY73B9qJMMKB0qcRHjbg0eJd7jKrKiocpIGA7WWnocnfW06w3O9SE85MvbHej7DbW4ivZ4KWGjNbOjAzLneHFxge171psV7WbL1evXTA9mFMWMelNje0thjIz2asKmbli9foaz8iBfHB/itWK73eK9wnlLvVmzXG6wbUs+KXD1BrdpmeYFbd3w8qOnuK6jXMyx2zWPjg65p4750UefhJgizWQ6w7senGM6rWj7nlcX11yuN2TVlE29oUMxP1zw+Y+fUlYlOitB5yy3lzQBlN4/PaN/8YqulUzf09MzbN9ivcc6z+HRMbP5XB4io5v9V38N2JtQ9wGb2v31i1bT8cFDzLK7a3ftq7UQITfQxWH2kNitMPCSxnRjkMo2dtiJCPhGQG2vSbauyEzyd4xzkn2Pt5vi7Xb2RwAXQ+WOMGPvSK9J0kXAIzEWz/tkv+JHLGc0SlYj5mmXwkw7SnLcWJIbfpcflb4zPp/ARqFGQBEI8VYuea7FUnQCYiZlxXQyZTqZUJVViHGUE/AuyoPDPuLx7PfbwAjd9mzzO/0RvjVilIZnzf4w8IMGfoPVHZ9/rM88XMd4Dg6HQhknVi/jg/a74yT126i/U9yaGXz5vBvJ5loHUCXbS4voOBeG1/YBZjq3W8ayGp+jH52TgyjjD9+T3wfJXQ8s4egY0qbi/wLz6MehF5CshhRqZLGpxCJHR4guBRa8N2gj5ezE0Dxyz7ug1Ctk8eClUol1DqU1xmR0Tv6OUnHXtjRNLUUNvMSUfpV2B/q+7ja+oWWEkxUlRVEJgDs/J8tz+r5jtVwzzXNW19d45bB9R55lLBZztPc4DRZom5rVesVyteTs7Ixms6FZbzBliSlLfFdjuga3atAoat+Te0/fWLrVitXFNSdlycHZKYcHU2bTiqbuWV6vuVdOud7WNF1H2zuqPEfpDGcV69pSe8O68dhmxb2zY66vlpyc3uPs5IhXr8/Z1B3L9ZbOWpzRHB4f8eriknfuP6DvOqyz5Dimi4XcFEZKud3IgCPcxD9HG2SCt6G1QLt+AZob5BbSg2pvC7t/fykdeNfu2tD2wYGXoKFUU9ePxlyM6xrfF2OAESfLyLTssHNxL1GyG3m8jRmV20DCACAhwg0VSDGSPDyY7qaqHUm2DXKxyYaaqyEObzj3QTYT6TATI12lkpfZAPJgfM8GyBE7DcKkKuc73MMqsGzGDMDUWovrxSQ3HrdHfOlsb7HWYbRksy7mcxaLOfPZlElRQbA0UUpjA7OoCUkDgb0aX7vxz23XLx6vAL9R2bW4nHRDrODAR7EDVsbbjdd2kMFHySDDkRGBso8MmFVkKkvIUCsVahY7iUMLjGvbtikmzdqKosjp+z6U64ulxvo0ziR5Qbjhvu93QgZ2wBYx9CAeHxCOTXiAgYG8DdzGrw3s3nicjMa4IpVrU0olMGXd6FiUH/VfHFBIkkVcEMUFTnRtDrZFKfY1QD9dFGRWGFSPC6EE0n+DBK+xPvgdek/dteR5QT4pWa/X1HVNXdcYY2jqmnq7Zj6Z3cX0/WNt6XaLizYvlqLK5GSmZLWpuTy/YFoUrNYbvDIUszm9t7x89oLZdMqT956gMoXrwYYV5sWLF/zwhz/l8XvvsGlaPvrZRxzN5pyeHNN3W7q2Y71aU2rNarnCdDnnlysyU2Jbj1tZHhwcMC0qKkrq846Xl0uev7ngoul4sVpSW4/tLDjYti0OCSBtmxarPPdOFxTec3rvjLrvefjgFOsc15sV907m6LxCFRV9IxKCsz3r9TWPHz8mLwp8npFPCt6cv6asJrf03c/Z156dm333wbr7gHw75IsILi4hv/hL/vaX79pd+8KWiIokV6kE/HB+l3UhuADcTvgRTXIHhu520DfIvMPvSToe3R9jUJLUuLhdM+wzHb/3O+BGXnL03qEB7UMsXgKZ7Fi26AAwTTYsyJSHPDcohoB/uS2lJJh2GnQENcJeiow4BjaR/RxYyL6zWOdxI29AgL63dF1H13bU25rlcslqucRaS1EUVNVEQm5sB8qHgvdWmMvR+QPCOAWgpVXKaSbGAcrrEuPoIuBzUc5Mh74DIL33o1i+IRN1/9rdSFgILcnkoSbs0Esa7T3aIyXYlEpJHAlEEuIWjcHaHuXk88KK9iH7WcB0NHSOUi/K0HYW7zqyPEd7jfaaXOfDmAn9JJfX7pxTPNZoW0McB7e0BPx2CFM1rAJGi33vQ3a5Ec9F7aVqiZRJ82mM68BAS1Z02IwJcXha46JPjEKKKQTwZ73HAuQFeSGgt7Mt3WZL7xxeQRbuAevBGQXKYLRB42msY3O9pOs6emuxSqG04d6jR5yeHHMwnfDq5UtePH9+e2fstTvQ90u3L0ECt30jDT6NNop8UrHuOqGbPWzrBuc91WzO5fU1s0lFay26a7De0TUN11fnkvVnFU9/9gl147habvFK01vHcnlN7ixGgzeGrumxZCyvOtabNW8urrm42uBVxmazYWZeUGRSTmi7bVi3HRYt8Qje07UdFkXnHNooJkXGwXTC8XxKXmqKHMCyubzAakM1m/Gdbzxms7zCFRUuU1TTmqevntJ0YJdLTo+PWa/XmLqm1XBa3OP47D7zxeKWXv5qsO9tn9qfyMavfREgvLFxv/vnl+74rt21L2hjNm6cPDHOMfc7Y07d+G3M4sRt3iYf7o/3MQO0v//bMij32arbwi5SoPsoE3QMK8bnHZMXCBNeZDkHoBPlUkKMYASmo4xcH/bgo93NCDAlsLdXgSH0aVx8x9ejZBntSWwwZK7rmqZtybKMPM+S96HzDjUCVt4znBNDMgJRch9fu7E0OLo+yZomdb8aWEMf2T6fCrncBuC/7Gf3IaYG6Tb8OO8wygwf0RrlR7YnYWxlmfjM+cD2egRQdl2XEm1iZq4HYbkCeN0HpPtjN57PF7XEXN62sNnRekfbU/EhLn6Fw3d2M4eVIhlJC8hOK56k1kVp2yovylvYVoz1i8DcBRLQK7DxOx58tLVRHq9C/+ForcW6HucJFVFk/1VVMS8OKKuS2XTGpCqZlCWb5TXL1Yrzi4sv7K/Y7kDf193CmIuBxF4pdF5QTCe8/vAavOLVi1fMqhK/3VJva5q25vDggG3b0Pc9MUmnazo+/uQ559drTh48wKH467/+PsprFrM5mzqjyDNWy0tevnjFxZs1TW3JNUyqCZnSVGXG+w8f8vDkhMPDOdOjGXmRoZset23ZtBuurpecL1e0SJaXV2DynGo+JS80bbNhvW3plcJnhh6NdT3aaWZlSde0fP7yHFPN0XlJW29ZzA+4uLhgNpuhtaaoKlCKyWzGdD771Xb56Gb+JbfEHZd3137VbfAiixPZMKENr+0DrDB5On8D0OysQAYaMX1mPFmOAeMYPIwLwY9bZMtgyE7drfE7yF1x8h2zRbvWL+G4R4AhNjdioIQpGvbrnJSttM5CAF9DlrKUY4u1ugdmkr1zjHVTd41x+96G8nQC/KKc1rYts8NDiqIIzF6U0zxG9SlLOIG+ANCG8x5f4zG4Ga5x6kcPQwLMIOl65xLzhN99Eu1fO/xuFYcxE7groQ7xefE7yjtMZF79YN48DgeQkAA558jSWmfprU2gLwI+8ZV0ZAEIKpWiWFP/3LaAkMXPwOYlsmT8mdiDe+M8vpcGQRyDxHHndwD6fuWaJE/H/oHkexgOJsSlCoPt0nVSaG0CSJRzt14WPpbg2ee9GF4bifOLIFhMmBXbtqFte+qmpWkatDEUZcH9o0POzs548OABpydnNNst1xcXfPjTn/LpZ5/z6Wef3ejD29od6Pul288LAgbgME637z3kkwk0DSrL8Npw7/FjPvnwZzx7+RpLxrQyrDcrMj3D9Z6+9zx7+YZV27N1DlSO7Qs+/uw5V8uPOZlUlLlikmfcPz7mn/7huzw8PWW2mJFXBfPFTLLIgteUVshAzHIBpLan3ay4t1xRty29Vljb03ZWArJzg2u3NGvDrGzpUFit6E3Gs9dvsNaTlwXNtuH6esnmWmwP5rMJm/WSs+NDprM5XilslmGdIstLzC0PgK9+NW5ejxty7q2T6JevLIdr7eOT5uZbd+2u/RzNWY/WLhixDnITjIrVE6gCRTJ8TUyV98IUGCWyZpjU5eOSXytbS9wEo3lUJmyhjHaYQ7VTxWLEJEacooSVSH6wSg5OayNsH4o+2qcQJmzt8WqIVYuL34GRHBvzhk9phVYgZrsWZy1t08jvzkkSSThjFSZzHzpxyCbdjQ9OYFYLHeOsMIfitQdVVbJa9dTbmtevX9N1HUVRcHp6ynQ6I88z+qZLRr51bxE7kXjUsQ/FQFmjMGiUC6ykUoDBp2olAQgyYgOVGsVKCqBCabwKcqeXPiHsQ/JSSSyhC3/EMTU2swaLVSE+Mna39SHnJoIal4CUNnJaOnxFbHjG8ZWhT4O83XU9SrV4D+WkkmxWFL0TMKm1SNxxfPXWogKg9HHMK4XRmfgFpkzYcM/sgdch85kRKGNg5uILieRTY3U3je/00oiFjVxgrIohySvBJN1aHOMqHkPWsQrMXds2IStZkeW5JIc7C17Oy4bYyOVySdv3tL2ValVZTjmZ8uDJE46Pjnl4/wFn9+9LfWfvefXiJU8//pif/eTHvH71EqM177//AV+l3YG+r73trM/kOa41eVmh8hK05ujeGefPX1BvN2RFSTWZc7WqmU2PaLuO1WqF6y0qK/Fa8ejRY169fkO9rdEq42xW8K//8H0+eO89jk+PmS8OqCZTiqJAmUyc4jMNWQZ9B67Hdj2ZMdi+R2UmFOZ26Axyo1BdhzOyumnbNq0ma9sxnUzJ8hzrPVebNVlecLiYcH614fXFOcdHJ3TOsWoss9mc3vYsjs7IjWa13bDeNhyenbGYzDg+OZWbY8Q+3AbQvrSNZKJb4+9+YeZvvJIcHdsd6Ltrv0DzYRJROwNWxlbybuMmYPHeY+3AOig9ihUm5RcOLJEnyVE7LNtbjmuXHR8lAYxYRT+eYMM5hKkvZIiqxFo651BOSwZkkDqHGDuTrF5iMHq65QOKcSELVKob2ABeHCnJYSQ/yrG9PX8+gqOx3BlLWnnvyYwkJGzrLVdXV5K5O5lQlmVir5x3A8OUJvxx/w19q9IxEcqDxevid9jNYS2pEvBI20MRDaVj7OS+bBv7VCkVauoOBEPclsiwCjWqZDI+BpHmSRYz0gIIS3WZ2X0mj5+l4fzEf86SuQhypbKHVHsGo1RyTlQhqSPG9MXzHUvxY6ZUEj9cGm3ymREzno5vfAXCZyPzmz6JADE/ZNAmwBj+jsysWOyoxPi5ALi9IlXzkMWHDvejpwlzpUfRO5vGmXPyXtf31HVN14vVz2QyYTGZUk2mzA8OOD46ogi2QBfn59je0rUNnz/9lPM3r9lut8ymU6bVhMn0Ziz8be0O9H3dbbS6EBNGjdIZB0dnfNj2aBRX11doBdvthsPDA+rVlourJVfXK6alZnJ2gqUnL3N0nuOVYlpWLKoJ1+cX/MEffpN/+id/yOLJO6jpHPIqeQGhlBTLTgGyJb5vaLc1TgyksN6CEX+nXjk65fCZxmnQTlGUpdSitJYik2xeioxt31HqOc9fv6F1npOTY66bhvOrJVerLa+XLQ8f3scrxabr+ODJB7z40Y/x2qDznLrrePze+2RF8YsBPeKE8+UI7Fcn+aYd3wG/u/Zzt8jMSNa3DnONDxzDrgw6MHwuAKAgqWqF9jpta2DMZAJLwCDtMwAEffs9ti8rR2B0M3ZKjhWtJfkkZB2KdKYDSBAJVECfBcVOybdUAk7vysvDvz5Jt977kCxgR5122/HDcDPumk7HmCzPbs3YsfypMkXbtmzWG66urzg8OCQzhqLIR5K4G2xfnEVrFQL9B9n2ZjylYsBiQ2zbuM9F+rwlTm3v+kg5MHdjO+PPqAT+Sf0tPzp9J8rY430IiJHXoknzGPSNJdDd85PO9+HYbOzT0L9qBDIzE2I0vYdeYgKTv92o/nIkF5QZoIpcxsTjBrYbYU7DAsSPjk2Nwid2wXQE7OG+Sgwf6ftxIaXD8ZjM0Nkeby0ok8aa6z19yFS2bpDOt02drrt1Fq2zNIbWmy1N07Cta4qypCor5gcLju89ZH6w4ODoiElZsV2veXN+zsWbC8nYrbd8+vEnKDx5nnHv9Iz5dMpkOuWrtDvQ9xtsaTGrDcf3HvDkg2/xk7/6c7q+4/hgzuHBgs16w3w24cWrN2iTo7OcvndkRYl1jkfvvsPnz16TK83xYsq7Z4d875/8EQfvvIOfLnBFFUyOIyPlwXaoXkq1Wd/j+o623tI4xyTPabc1mREDZtv3NG2LUoq+d5gwoNu2RSMu7V3bYr2jRrHsPZ3KWW43VKqjcZpN57ncdrQW3lxckZeK2WxK7TzV4oCLqyXzwyOq+YIHDx+lbD7gxsPvq3bqzir5K27jtofYbQ/lL27DZHPX7tpXaSkODp8mkVjIfcx+xBZ95FKM1cgAmSCbSvUA+fxubF74jFLgo/n57axYlCsjmbUfZJ/lBrSW+sFO4puCdBE0QVDBThRnd8FJkAg9Un8YN8TUSYUNJ9UulEI8zYYYteG8BmAooFSHYxX5dDiP0XHvrcyiCa4NMqOzFmdFzehtT1HkTGcV09mEQrLVUqxe2EC4JiKPGhTKGLQyobrC7uIy4dFQlSGyUvKZIfkFIhgTABPl03TOQT72kbYkdv0QZwkqJZpYJ0knRVlSGIPWhiwztH1P13WsNxtRcKzY1MQ4RI+wpgLClOzTSX/l2iTZU2uNthZlLSYzEjKUZTR1J5Y7QDn1lGVBjqe5uiLPcwF/gMkyMmMo8wKfKcmiBZquAw95XjI6VVQmVS+8E7tquQ6SLSufi2EEscPDGEg2QsLueucwWUFuDG3fpTq5MUNYgThVhHAngoF0uIRpDPXeU3cSC6q1w4RqMtZ5sf4JxszQpPsxyzKOj4/54PCQ2WyGUorOWq5WK54/e86rN6/ZrtY4K9cuzzKmkwmL+Zz3H79DZjSZ0ZR5Bt7h6nr/Fr613YG+r7npuNoD/KjihCkrzh69w8XDh3SrC8r5nBcX55zMFlRVycF8gvOOT5+ds5pt+NY7j0FloA2Zhvmi4v79Yx48uM/s9B4UJSgHvgWMpBB5D87jbAdtje22tO0WD2yurjBFid9u2G7WVFXFerOBIqNdbjEamq6mzEuRObQG57Cup/M9dVujZ4dcn6+hmLOm4+WrC15fb9l2ntaK59BheYDtW548eZfPPv2MvJxQVRPmB8f83vf+gMlsGmKChvaFmbt7b90W07ffdlfFPx84+4Xl5rt2125pA0GiEDQzkpl2PhcXH7uF4yN7NWZyBKCNQVFs44VLBEI375j0emTybns/TKAEUCD2U5HNGgBpKqdoDFmWjSo13LyHEtDwEezdfndGM+id+L+9Rd5tBr+xz6IZs1hyWPreJSbLaANeFrNlWXJwsGA6nVKWRWJI4z5iPxH/hcDSDeXMxvuN1yBWBxn37lB7OBKBPkn1tz3SVCjXlaTZQCFqJUpHSnrwQ4ycCv6HMbN2qBoyWjSEfhRvRAVOYVVg/bRO/pHpbwK8DobEJsuwzuLwdF2H7Z0weFmG1pq+7+n7HryMCRO8GCOIss6hnEdpqWShdcz4VQlkRYk2DpCI7xQKFZhJa+3AkJNuMqJBuPcSX+qSsaoK/njykwLuwzEN10klg+S269O1bbs+Sbk682ThG53tZTxkGbOJlO8bJzN579nWNRcXF3RdR912WA9t29Fs1nhryY1hUpbMJjPKoqAqCqqyCk5OjkypW+71t7c70Pcba3FFEm5+pZgeHnF07wGf//THrJqW6XROa8Xj5+DkFIfn4vySxWJO46GtGz7/6BMODw6ZTzJm04LF4RxlFFiH0gL6nFdhte3wNtgb9A3Ly3PWmxX0FttY8sqy3tSs25qibZkcHdD2HY1W5GIMiMqkwHacraxzoVyMhr5jUpX84KNnrL2m0xXPry+53jTkeUbddrx89ZrjwwUfffyUs3un/PgnH/LeB99gMp/zne/+vpSaeUt/fUl3Shsvwr/gJthl9cbvvN0GYPy9nRgS739O6HjX7trbmhrF5CkSCnjbp0dgb7yN2PbCrYZ3bnz+pgSaZMiRdBd/ogzpGbz9vJc4ROc8Su36xmVZtgP65Nj2gc9u3BjeJjATsZUaHbtSw30YvzeWjXe27/3I5DmwPEEiF3ZGk+fC5PVtjzGGsig4OjwMoK8cQKbzIysSAShDFvDApKqRtDw8P8bPkPD9G6BdTjaWCRufV4pzjnvffy6FQ4gJOMoP21NKSfWnvTEzfpbF162zKCe/uzgO2V2Ax4ovWmucImX89n1P3bV0XUvXWsqqojCGPMulTmzXiWND9N1D2FnnobcepR3Gg1YZRtsUPzdkucsCKS4M8MMw0ToLNFx8z6fbiDhmlUESajx2BDh7D86H0qhKpTHS9718V2kyBW1nafuOuhlYO2sdtu/xQGYGv5bOWvJMkxc5i8WC6XRCluVkWUbbtqxWK16fv+GzT56y2Wxoupb5/DCxoJNJxXQy4WC+4GB2KEDPO8q8wHmLtT06mmqr2xc6++0O9H3NzYVnwv7qTQFFNaU6OKHFMC0q8rLCdz0mK6g3LUppWqc4X665d9/Sdz2L+QJQaJOh8pwOKLXCdy3K9fJgjGafPhpvyiri8uKcumuZZQWrq2uyuuPNmwvmZ6dsgmULyqOzjHpTk0UJxwkb0XWdJHYECbje9mTFlHI+4/mLcy63jg9fnNN0ntOTI/KypOs7srzk/M05B4cL7t+/z6PHj/nG732Lk3v3Ql/8YpLuuH31eL3xxfhikLgj04wemPLvDW7m9gO7a3dt1IqqBKLtiFSS0BqKosBaqRShjb4xQRuTkWWFyGA6lHhScbJRqXxZLPWUWqgWoRQpkB7AhwJR4FNNVO/BRXAYmCJG4CIuWnerK6gQJxYlwlE5Na1FqoQgZwdG6xZTYWBYoOJu3M/CMCm8uZmZu8/09U5YH6mvKoJdjDsTMJrT1DV9YHBev3zFy5cv2W62HB0eURUlucnAS9wWXsx0o8xqrUXpwUPbWpEbTWZ2AJUcuAajsTvM7RDrp8JragRskCOWpYCPtV/lKhhjUlWMMcBMBszeJ2YvWumM4xe7HbsdtfPdeG1NNUmvex9MpkO8XQSxOpYe05rJZEbZdxRNw9XVFeCDsXXF0dExeZHx5s0bmqZhvdmilGJSTiiLkqqqsG1H1zusDcyfEtPiIi/RWuqdtU03VLIYtVybII5DFhKEQAkgC2NNuRiX6OitQwxZROa2zuFCrKwLi4qmbZPsq42RhAzvyYzB5LKQKU1ONZlQFAWTyYSmaWjbhuVyiet70B6HZVOLjH5xfsHLVy9p2xY8LI4WnN47JS8KyiwLdZY1s+mUKsT7ud7heitycVNjbU9vu8S0D7ZFX9zuQN9vqt3CTCljmJ/d551vf4erZ0/JyynL5ppyMmF6cMTLFy/wJqPpHa9fX7CYTtEmZ9022OuOowf3cJMpq6ZllvXoLlD8cQUQ4oDqRsq5OOso85z1ak3dtEyqGT4rUCZn9eYNTdtzNJ/RbRoynZPnBpzFaEm06DrYbGvW2624hGcVnz57ydHJGQ2GD//mh2R5QYfj/PKKw2lFVRQUkwmHR3PquuYb3/wWj5885rvf+15YjTLWvFLfyMPzlg70A32/AxZvaFbsvJe+8yW47IbEFUmI4Ze7dtd+4SaVHYLkxcC0xbqmcHP5MMhDQ0LEGGCRauF6vN5brKR9hBf8cLvtL1ISGzRigeLxjOXKmIyRPNjCNsfHNJZ0I/MGuwkUO5msADFR4ZZM3CT/jqQyKYm2y2AJ+6gTqB7YR0k4EEAtx9g0DXVdc3V1Rdd1oKDIM8qyCBmUu4vDGCMm5x0qSew9UMZS3j4juwNO95i6ob93zyU9GkeSJbE+8+gaiS2K33mW7u/fOScxjHuejAPAG8ZNMloOgGg3TtSnPjRamNwqMxRlidaaLpS5q7dbvHdkjZhbJ6lZSWxgXTciB4c+7TqbwLCpG8qyk0xvEJ87pcgyE/pQmLl2JOt2ZmBf+64LY0CWKy7Use1tl2RfG+L1gFR5w3sPxlCWFXmWU1RFukZlWZJnebLWyfM8McDb7Zb1es3z58/pmgatFIvFgizE+rVtw8HBAUZriqKgKOS7mTbYtkMhpfAEAILrWvpO6ut650TKVsIqSqhCiLb4Cu0O9H2dbYxJwlJ59AjA6JzF8RkP3v+AZ599TPv6kqODBVdXFzz99BkvXr7m/cePAM+LNysa53m5XNH3PQ9OD3GLQ9a9p9SWMtO4zRqjwWQ5LsgYLki8VinysqJfr7HrLfW2x04NanHCxx9+xKI0VNMpL378EyqjmM/nqKLA5FliEcppyZurS1atY+00i6OC6cGhVORYzPnW732LZ3/xt1RFxmbVcbFqOD7MaZ2DrifTinJa8f53fo9qOg31CtW+3jqSM25HaCk7S0Xgtysb7f+hxrLZVwJtIzj5lUHer5Ll20Osd+13puV5nhgZISUCgAnSniitA8CKQEGFiWoc0xezYCGU0QrfGUuAQzzfcAw7C5uxhAY7jFm8YQZQJ6+mGLEw4clXdoHO+DhlnwPoizVPb7J5fgA3O28M25IkmJEsOjr2CF5MnoGVZIuU8ayUKCBaZEpZxHZs1huur69ThmmeZxRFTp5neLvrTRcD/QnXQ+s90LcHxlUAh350LdLn0/dG5zAC3NgR8AvPI51+2+8etQP6botDjn1jU//vAr+3gT7nSczs+LMmy4QBDKx0UeRkeU6e56zWa9bbLU1d03Wd9IP2ImFmOUZnYlvSdfS9S0xi1/X4AOiU8zRdL959BMucAJgESCmxTfEWtChfwR8H78HaTpKfPOCl/F5vHb1thSnPcvASZ6gzYc4JmcNFUTCbzZlMpsxmEzl+o6nKkiyTbFzX29QX0cx7tVrx5s1r2m2NVpIRHo+3KHNOT06YTCZMJhNh6bxYwKyXK5SHwogUjxPDaxfuE7keJmSLiwWPj7L0V2h3oO831gZ2KsaKeKUwecHZoycUswWf/uxjJrM5nc9QWcl0Nme5rimznBcvX/F7k/dYNT0mM1T3HsHiiFXvsVhc2zLLM7wTzV/hMFok3q5tsPUGVzc0V9esViuur7fU55d89vlLcuX45pMH+NWWe4dzptOKSVWhULhMYYqCcjJhW2/JipLLl0s+XzaU2557jx7x4afPOLz/kCfvH3Ly08/Ic8O5umRVN6zWG+qm5eTomPl0wsOHDzk6OsJkQ5zPbUHeb+3FHRZjj6m45bcbl2D0XP0ioOZhxyHi55agv6Ttx+bc3Ptd+51sOsOrVlbqWah84MH1ndSqVWD0EOAfQWKUp7Isk8zHwCDEoaKDjOu4GZoQPiEf97tABmSuU8SYrTHoG2ePjoCX0aAMHpFsdRbqy6qh4oeVmfeG9ArDmN8HQjqJyOMwCj94AI4YRInh69L+lDJBnnRkmQAgjafru5S4IItgT69a+rZjs1pyfXXB6vqSxWLBbFqRZwbvLLYHozQhVTkeeDruCHwhsI9RRs9M+luZPSrmBuAbv+UlOSKAdEkmcMMCwIsoGdTL4XkU96sVxim0H5Ia9hlQ+WO4/sP1NjiXJZLAhiobMUEifjf+roBFWcprvaVp1kwR79aD+SF5XlJVWzabbQCAGy6vroThKkumkxnTqXjTHR4eCwBsWznnWHbOeUwgSRRQt8LcbepGgBdKstqRJBIXDAEFcGcURYbJcvK8IC9MmHcVzvcURSmAbj6nmlSUVSUxnIxY7ZBhnxudrvNmuWS1XLFer3n98hXL1TV1vaWtG7TyGK35zje/hVGaPMuYz2eDnU3fUVWVjNtO5GOtFCbLOVzMZa7xirZpQtUdyIocZyWsy9peQjtMTEy5wZW8td2Bvn9EzXuJnzs8vc8f/tM/Zb3e8vLyinpd8/rNJb7vaZXF9huuG88PPnnG2fExxXRCjaGue66uLqDe8uDeMaosyYymqHKUIaSng84yfJGRZzWLYsrBUce73vP62UseTks8ngf3TrBtw/HpGb7MxT+pt+iqYNPUGAW+KHDFlKtty9W6ZlLM+PQffkQxO+Bnf/N9Hj55R3yebMfx4YzldoP3Cms9FxdXfOfb3xzFhuyv1n/hXvyVXIvbNrsvs3097bbz+fqP4q79eprJMrTJMJkJrFVguLxkZyoERESda7w4iADMWZsKvKf3woDVCvokDfrEEgJ799qI9vakWKjbEp7U6H8CuAz4WHZtV9IcS7ZjsLEvS9/2uiRy7PbXWGDd4b/HoHB0XjEubacMmXPDqXqHtY71es1qJRO4UoqyLJlOJrvZroEhdZ6dZ9b+uaR/R/GMO3VrxyekBqndx/cjwxcZzRHDm0yTo31L2kz4XlwghOsWq7q4kWQbwZxzUnVjXCM3HmtcfEcfv5TQMNpfvLYedurt6pAB7ayj9Q14T5mXzE5nzOdztnXNfD6XGDorcmVd1/S9RSlD00gVC20yFosFeV7grGO+WFAUBVop1psNXdvR9T2ZkWuU5QV5kYlUHOR5qehhKKuSPBeQmefCDArbaeU6BQPuaLWy2WykpFxvaZomlKkDYwJDbC3tdhti91qazQasozAZxUQHOxVDVZUoLwuGXMca0xqvTbIkct5hEELG9p3EJXovJQFDzVWjZZsWj3MqSdE+vOe9/soz3x3o+znbDQnil5h/FaSnl49Sr5I4kbN793j4+DE//MEPefnyDYeHx6yvr3n27BVVVXG9bTh6eEqvCzatw3vD808/Z6E9ldGyEmpb7p+ecrXaUk0mTKoZKjcoo8i9x246tJW6iN12xenikHqzZesatHf0TU4xmeFnU1yR4esW53u2yxXbqzWUFdX9h/iffsb2zQpXN5ycPeCz569ompZXb97w5vyCb7z3DtpbDlZLJuWcrqn5zh//MacnJ/RdLwHlfqdX3tr3wyQUJ4mdT/xC1+GLWbavvJVbXtuXbMb7DJ/Yid/5VR3LXfttaSYz4mvWj7JWA4ulYvxHBFjsxtKNA+9jBuqNcSNURRpvt6+pRpz4jjoZLC64ad8ylmu1Von8SuP3lr2MgdmY3Rv/O+w3nXiK69o9+N37ZR8Mj5vtLbEaCQzypFLCVvVdz2azYbNZU2+3ZJmhqiqqySTVi9UBfBG6wQUrFGAH6KUfpW8Av/0uH+IlfQJ8BOCWwGC49vvf9wHYx65Ji+Z4iKP+0FonaXAM4iTeUeYbYwwx1tkYc2MhHoHz+FzjZ6IVS4zTy0IWtLeWLsTo5VnG4eEh035K23XM53OWyyWb7Ya+s/TO0bUNm+gX6BxFVZHlOdWkwlnPdCpVpbTWQ4KHlXhCYzKqScV0OsV6h27qBH4zrSmnU4oipyzKcHwhrs9KDecY8+n7jq7v2G63NE1H07Zst9sEkrVWuL6Xn64nJvN4Z8X/MMvIMwF0xhiKUViAitdEh5CEANtCVIfEEFqLD4C671us7YRJ1pkkC/kQmqF8YH6BaP12J+/+etqvci6OcqFcOEK5Q4/rO5p1zfHRMVorpvMJ67pl01m2nWPdXDM7OuDFy3Om3zhk2bQ8ff6K42nJst1wdjhj3dTcOzvm/Ooq2Sg025q8KpkdH6JMhtcOJjM0DmM8qqjYYCinJ/jVNSrrsdUEMKy6nlxp8mzCwf0pH798w8HxMc61PHj/fb7/9DW+d7jVknW94fTslMY51ustP/7xh3zj/Qcczqds64aH9x9zdnzI9cUFFhXMZX/9IOdGXEucVL8m9fR2FnNPkr4xwO7A3+9yy/KcrM/RfctquZIYXK3IjVS3UB6cGkDHMJnDjbExCraTclHBxNmPB/ntnl5jUHFb4oGPvm1ADNonlFTLtMGrGDs12DnhB6ZSQMLu9of93Z69O87riHVq4zlESxvvIlOm0CoDBVFFNVqRZwEYh6QQvA2gTxjVvpNJ/fL8NfVmjcZz/8EDDg8PmFQltuvRXonRMgo9ijIcg1cBQyIlDtmypEzodNHS7wRwt8egRkk3XTKP1w6dKfAGnA4m2Erq1XpGIDHA0j22M+7TOTewaz5k9SYoqwILJV/JsxytDcZkNE2dQE8837iNaMXT911KSJplBkWGUmCUyMYGT1cLg4ezHM0XHC4WST5tO2Ht6lbKjDaB4To/fxPkeM355QUAfd+zWW/kO8FeJzOGsijJS0m0SBnbRonP3WxKnucURZGOv+97qSw1YsFNlqNNtsM+j9le14lxc46mmFTCMmqN8iEWUSkybXC9GH3bricWfettH7Yjt47t5V5RWlGEQeu0ou3bZLljTLj/cLRNHaRmxBgdub/7vpf7j6/W7kDfb7Ltr14V4Cy2bXnz4iXOKd579z2uDpb8/d99H10UmLKgzCZcLlc8fvKEz56/oKhKiumEWQnGKj7+9DkPHz1g43JeffqCJ6cnYJEMpKJidbkim1Y0mxWH04q2Fef31lsu25rFwQSvc/TBHE5O6K+uabcbTJZR95qtA+aH9Canaxuur5f83u9/h1Xd8tmzZ7z3/jf4/PkLVJ7xrW9/k+effir1AScTzs8v+Mb771GWFevligf3H/D0ow9554P30SnD7+1IbCeG7+dE4DdA195uvi6WLU4Wd2zeXdvUW6yzmEyyRHWYJHOjgszr0Uhsk/MSJwRxDDFilgbWL8aQ6QAojBqknzGDxs5r3AB6++zzLuAkgRMBdDel2wSKkux5O9M4YMQxW+f3jnU31nf//hli+cIE2/fC8mRZCIJ3Yj9ijBjrti0mUxJs//oNr1+/Tl59k8kkSaI77On+4+OGpDtO3BhsTMas6PDvwMLFpBuvBu+7FI9JLJknxshagddaAJ/blcUjUEl9EcICFEMiRrTXiX01/k4svQZIIoO6OU6iH+K4fNsY+Hovlidd1wGQZ2UAzOCsJQusXwKpWlMGK6/eWeYOjo6OsN7R9y4sWgYx3zmpliKxrR68XGMBXEE+DayuxSYWNDeZsG8okXyVIteGMvrCqqGKCSpUBDEZRpsgKQub1vUtRoUaON5hdKzJqzHhPMUaTRKzjNEybpwwkjhJTtKh1FyoXigeuoQ4Xa1T1r1Xerg/gg2SApTRqRRfP5J6v0q7A32/oRbW7eNcLTwOnKWva+rlisZa3nn3Xdr2p5zeO+Wzz1/SWIfKc+rekk2mvL58hmlavM548+I5pet4/8kDJmcP+PDFGw6LnBdvznn48AFKKc6vlrTacJSVrJZbJkcW2h6anrZ3mNmErrdM5wfYoqJptpTzivnBhPXrC5T2uKJE+Y7tZoOznsXREf/wH/6OzhvqpuXy6pqmabi6eMP1dU1ZFdy/f4/V9RWn3/mAssx49tlz5tMpzz77jO75c4r5nH/+X//XbwVCYxnj54/72//8VwBbN3bxNhD6Rezv7d+5HfD9Asd4l+DxW982223w2tNkeY5WEcwpyc70PtR7ur1yxjh+DkhyU2RvBEQMg3Rg9PYXOON/Y3bvALjeJgsnPDQCXTvje8Ru3RZLOMTg+b17SaWvy34i8GT0Oum1/f2PpcjxfiJgETkSlsslb968ZrlcsggxY1VZhTgpH2rBjo/bp7XiLugLasUI2O1fmwj0YrbxOA5vuKZ61O1DhygtVE5ke5XWKCfxnHH7UZZNsiukGrI75zM6/gj6XPBeTa+P2MHxeUZZN77XW4nzG8eTWmuFP/SeTOeJgfbWYbQhMxkdgzQcs2Ctd6AMOs9AK5qmC955oTCdFUBZFEU6BqPFxBilwEo2crwHet+H2FZPlktcehYqg6T+Ho3rvu+T56EJZtJ5XiR20HuPQfpQK4Xtu0DYquCqFyRb54ipV9oYvLXid6kEFBPu6dTHirRo8t5j8ujdGFJ3wldssmoRsCznGaun+J16w1/U7kDfb6x5MX8ksvge7aRGX7264pNPPubw3n1OmPDo/j1W6y2rbcuPfvaUuVswrSY8e/op16sVZVVyeLTg8nrJt5485NF7H+BNTlFOOLx/Bk2NuXefpmupL685PDvizdU11WTKqrHMtKava7Z4eq9QbQuTHHyPUoZl68gP51i95GK5ojwoUF5S/HoH0/kB3/veH7Da1Dx/ec7lesVHn3zM0dEx3luKsmC93jKbTjk7O2Z+MOfjn33Eo/v32axX5PMZ//4v/5KzBw/4xgcfRLXmZo+N56VfBd7Zj1Pa2bb/lWOq2ya9u/ZfdrteLanKgjLEKnknLvu9s+RGCzuhFFlRoFCpWoQACrMDZtKEpgbPOmPyHXNnGAMtGA9y7yNDB2NAJxmdDq2zxDAGlQkYvPakEsc+oBkm2PHEtn8PjBRh4teiWp3Yr3C88v39cxlYSKUU0+mUuq65vr6WzNCqwjnHZ599FvrC89HPPuKzzz7j9evXzCZTDuYL7p/dYzGbSbaqc2SZGWWpBvY1AVGVroNSEfgJQFMmuDUH6VVBUjLSj5bPZD5M4EosT/ZbvKZjQGzQKK+wI9ZO9h1Ko6khc9o5N/gkjljbHQbXe5wxKe5Ma41VKjGmWmthogTlyPlZFZIdejJtUkUT1/WhVq2jzC1OibmMtR1WSbyjyRVZnqXEiSzPMCBmyd4P9Y2VSLQmVhJBDVVGYFQWTqUS0t45bNeizQBs472xz4biRFpum4ZCKRzi6aisI9eOwjp0MFAGyZ6XaCQv91aQx11vIZmJ+6S4B/citAYXQhxiUk08P69C8UVFsj2SBCOL68N5xrjOMC1563avH7dOmbe2O9D3S7RfVA7cWemmf8Nq11nWy2v+4fs/oDp+yf/8P/23aGc5nFUcHy14+OgBRuW8fPGS+XzGwXzK/eDkvc5LXl1e82a14r17p8zwHN67x/mrl7QmxzqPyzJevnjJ9HBO3VvUeoPSlma9pC1KrPXYtkU5RWt7dFWgqjmryytev37Ny8sNjyZHbC5XTBZT8qrixdPPOD27x4sf/hi05oP33sXonB/85Gdsmw7rFXXbc3p0yMnJaQqkzpTi4s0b3j0+Yrlc8pd/8Rec3bvHwWy+C/zGq3qG+gK7iR03//4KVyJ+MexHJVIkvfSVtrEL5vbB3f4x3XaMdwkc/2W2zWZD33W0Rcd0Ukm2fVZirVhk9N5jnaWI2X6B1XA+Sn+kAWuj358eykN4P9wvY9l0nBAybrvvjxmoIStUIJPIbhKHPHx/zG6lfYffpWauSuzRTeA3TGJikeZ3jnn8uf3ji5vqe4f3g2eaUiLhxpZnGavlkqvrSz7++GPq7ZYiL7h//z6nJyccLBZyDpDMeROADRKd0n5gXMYAV6mBzbuF8RyzfxK7JwH9gw034vmHPFWi7U1iAsNDUSsBPnhSqbT96xf7LYI+nzY/LABSQgcMIQHxGoRtGGPIMjEQt1bi1AgApMgLqaXbdXRdnxKKjNIUFBiTiUWJs1grCRU+MpGhFryEM4jE7Zyjd5bMFAFEW8oiD8AvG56RIY5TMTCSQuipkNXs8JlO7LCK/eh3wZJCFhRVnlOYjL5r5Zo7nyrdmJFFS0q98ENJP6fU6P4iRUhGKxwfpXlIfQtSHs+FySYuQqR+dayuESqiuBAj60ERWFm/u3gaihN8tXYH+v4RtPSwUx7XN9SbLc9eXsCqpe8cpVHovuXsYM6szLlebaimUxxQFQXaGJ4/f8XzF694dP+U5WpD17VoBdv1itW25sgJPb5ue6o8Jysq1ssl3bZmtb4iV+B6R71psF1HM7OUB3Ouzt9QTDvygwOePX+JmRzygx/8mA8eP6brHd44nFL0DuYHB7x49ZSiyKm3W46Pjugvrjk9O6WaTFjVDdu65fzVa2zbcf7qJYeLBbZryfIpr16+5B++/33+xZ/+aUjt+M0AoDsm7q59XW2z2dAXBdY5ijzDmCKs9mN5sjC5EGK8jBZGLjIccdLZYTDAKJPAltrFR3vjW934NbJtQvjFFdAuve4Jk6j3qFjBTQkjtxuLFxioFJ22Cz7HzY+Y9/17cGAgfZK1brtLY0am0SFGy3uaRmxD4llsNitev3rF+Zs3VGXJfDbn9PSUxXxOmRc70i1IvBaAiwg3JbQM53vjh+H7+wAwxfbpkAU7koyTnBv+p1QsfTeSesc1VtXOhb190Th6bee8YgYuAyPmAlC3o9eyTMajcw7bi8WJ0QaTBYBqJdM0MnRdJibK3nucdTgs1kv1jAQMI5WLxMRZH0CPsyjvg9XKYH2j1DC+wwEnRjOeXxymymswYSxFZmx0b3gfEmEYGNjMKHCheIGWWDytYjLOcM2kUs4gIe90s+jpcu1CZpMfAUHvpUKOCveKHjGn2oe6v5ENJy6sJJ43JX2OAKcPFbaUuXnJv6jdgb4vbb9aALAfzzJu1lm6rqFrW95cLLHbnqbtmJUlR9MKrXsmueGqb9FAXfdcXG3ZWsv59RKnNI8ePuH1y9c8vH/C6ekJ3XbLy+fPOVgcMCsL1usNalKh1mvOHjzgr//d/07lLA8ePeSnP/qQSZaDtTx4UnDx6jXKO7KZIS/neFOxOJjzk6ff58mDMxbVAU1vef7yFQfHZyjvybXGK0/vLdMq54N3HmKM4fryHEyGsx39psYoTb1ZM5vPcV1Ha2soC374ox/yB9/9LkcHiy/uyN05KL12O39x4yrsfu0t7NpN8KfY/+jud287qLdv93bGL86zg1w1bPuu/a61l69fM5uJf1me52LFoZTU9cxyMWzViq5tqLteXjdmNJHIOMryXFgU62jbjkJrJPEvTh8CtITdkX0rtTuex4uskHcbPyhMYnglAhIX5z07sEvWy6Rrgi1FnJziJCl/O2LBq8ii7N5qwTsuVDuIxyrHD0oNwA8ky9c5HwyqZSLcrrfhvKVWuDBVPevVis8+fcqHH/6Mtm1558kj3n/3PZ48eULfdfR9C2hyk1FkeQynlP2MegckyJ7AqiqjQ6yXjknNEvAfY/Qis6nA4oesWcWQEex9Mo4eJv4BdCaeyJNAfypGFAFo+ICPB+49RmWh76TWbGzGBLsgPF5LKEHy77M9aFBGUWgppyaxkBatPUYbJmWFyxyFycGJFNy3li01zoolireeIsvJswxTgnM9fW/IVUnm8gBUg5wPGOtRzqG1SxmtKpyHC2NXTk36p2f8rNQBBI5YcK1SZrmYMQtjFjtUYuZ6rHV43weAKEDWGI32MUs9jHwlo0pH1jUyp5Gddg7vSBnHeE/nx0BOwqJMSPYBQh1mP4QOaA3OyfZG+ySZc8tP7yTmMfPZ7XZNb2l3oO8fS/OgrKJpLU29pTdGTJlfvuLwyQmLxZzXbz5lkWdcVxWX245iUtBaz3K5pe0c07Li8xfP+eb7jzDFBB+sBh7dv89iMcN2HZ8/e8HDszO2XY9yhsvLFY/OTrharzGzOau65d7JKXleslpecnG95vjhYz7+yQ+5//ARn794zgfvvsvscAEmQyuYTGdY58jLgvuPjtCmYJJXzGYVOsv59PNndL3FGM8nl59hnON4XjLLNJtNTacy9EJxMK3o6y0fffgz/uSf/JMUjH1LV6XJRywtfj2X5PakkduB3fCxfRB465ZvbGNXEo7v3wG93/W2Xq+Zz+cSg9a2WO9o2o4iz6gKmSy9F6d+YzL6TuQ0BZShHqz1oPoeo6WEVB4BknNkeSYjyY+SxsKE9YWskNoboWPpKspSvG3h4nck3CQxjtiKKEuNM0D3E1LaYNsxft05J96eLgKbwYJms9milDCPrutp25q2aygyAcR91/PJxx/T1DUnJyfcOz3lwf0HnJ6eUBUlLYpe9WgV49+gbYOsOZaTR/23I+EysGOxRF5kiPbTcOL5D4KfSKp+ZHgc+zg9g0YMHeGaxn1CBBoChsdl1JxzuH7wcUwsayp7SUgMcUmK9Fa+m2WZSKZOqr9kgVHu245WxWooYmzc933y8+u6Lsi4HlVJ8oMN8X8o8EYWKlkuJULxwzLDO4vvvYBpLfDYaIVPMaxhjBAXEaEfvBq71wx9TQDsSixkUsBDWDdoo8mLDO9y4jopkdVqDMBlP4Zdak3FaxPZwAgKA6OXpOCYkaEA54KdT7r6AfxqSWgZjac4DvTopMbVUn7ekKA70PdLtF9H/JVylr5pWa629Nby4vNPeeekYjGpeP/hGdfLLU9fXdI0LUprMqNo2hZnYbuuWTx5zHd+/7t88tlnKO/4s3/9L3DLJb31bOsW5xXzoyPyouCTT55STKZ89uac07MTJscntC9fUk0qzq+vaXvLwcGMn/3oRzx49IjPn7/AmIx33n0XtObqesmmbsV0czLl1atXtJ1lc3lBnmmulyuyoiAvCl6dv6TvLdMiZ5rnEiBcVNTbhqtNzf2DD8iLAqs0Tz/9lD/4/e9SVmVivt7aX+HfIa5hoPS/7PqMAd1NqekmG7cL7G4Cv5uxe285ZuXTRPVFx5iUtbdu6w4U/rY3pVSoxVniwyLHA3Ut5Zdc4SjzDBUC0Z3vQxYflGoozxZZJKUUOjNDnc4Iotgdv/sAK34msk+RYRgdKGr3U+m7+6AnfopR/FGMlfKj73mGgPYIlsbbjZmYSsniVT7v6bthwhvKxHm6tkVpiR2sN1u22w3bes18OsN7R9e1rNdLtFYcHR7y5PFjeXZNp8nSRABGkCadcEnjvotPmdjXu8DvNql3yMa9KXvvLhCVIoDLyM2GLM7xN5TaqdCidbw2CmXUzoWO1yAxUuFn56EylqCjFcwIrOoAWAcfQhMAh6XrJKnIGEniiIkS0fuu73ts12Mzi8tdqPVrcYDpBUz3tqfvu53j9cEsWfngcBeq1BAq1KQsVS9gzocau2p0SuOe3X2GRoZ1GPtKKZGbRcUewKeKC5OhVF26hl6yZsd7SrOC4sa8FUd+ui8Y9hUPZ1gUDeNlCDEIsZyjjca+v40Y+aJ2B/r+ETWPQ3vLdrVmW/d43zPNDd1qzcHpKX4+4Z3HZ8x++DOev26Yzue01lJmhqwssG2LVp4PP/qQajYVD711zWR2wOs358xnM8pqQlaVLC+vmR8ccL1eMTs+ZtMr+nVDs9miteL88orj+/eZzEpefvwZ784OmRx2lMUMrySgvLeW4+Njskwczt+8OaeuW+ptQ1nlTBcLXr0+Z7Y4pP7oKblWaG/wfUdmCmH5Osum77lerjhtO5wxNG3Hj3/yE773ve/dsJhIfeV3b+wve/3nug432D1pvwaMf8s+9ndyx/j9LrfH77zL4eEhZTXh3SfvYG1P09T89Mc/Zr1cYozm/tkZLlg89P1gdQEqARWFZADG39EmWYOMB27KMH3LYLb4YRujNg4ziExdZBvi8SS/OmOG/TiXgvd7Z3dA4n4G6f5PAk4h1swHI9pYpmtcWQKgLAr6rmNbb/j882ds1iu29ZqyLIlsysF8wWQyYTab8eDBg/R8adtWkhPKgiIr6TqRzlBKZHfvads+Terjcx46aZioYzmyCPrSBB7YK/m4RgXWSKlYTUNAsJhx6z3GNYDIAZagtNnZdgR9YtESQI32mKJIVTzsCGjfGAcBMcWsWqUkY1wWAQpT5PgOutbRtA2ZycjznDzPk1GzmDX36fpEgB4ZU688tmvpugbdSlZvFqT8yKoBaG3QRn7IBvZLqyyNGSC5eCsMKsbURVzo3U7/pWs2Om8XLHxiGzOk6ZuaFIPZB5ncOSdWLfF+VKOSgnuEwmB1M2a/B3Yvmo87J0ke2odqL5m+dT4yRvwDxwz42Gfxi9od6Pua2pg5Gj+oxs15B66n61qcktp9R9OKItMslyvyQvPw/jHffvcRL15fYLRisliQFxnnqzXFdMHJ6TGffvoZp/cf8uD+KderNaenJzR9x6vXb1Da0HlNOVuIdPTiJZdX11xfb8g0fO9b77NpGpF7NxvIMvLpAcXiBC6uWG+3lNMptrdU1YRyMqHvLc+fvWCxOOTjpz9gsTjg4PiYDz/+jJ999AleGWzvuHe0YFbkTIocnKPrexSScWetZ1s3tMDhqeeTTz7Fe8Uf/dEfEanvG33KsIIaty+DSF+WqLGfDTfeslJvB4S7cXhffBT742A8EUYqfyz03sYs3rXf/nb//n2pMLDZUBQFB4f3KMuSg/mC588+5+Lygoura4wSw9hJOaHIc5TW9M5ThMkID23fhQlfZF5F8PYaSZM72aihSWbtLsvm/ODFFmP/htqqg03IjbjkEPcVtxMn/jFAG39nDBbj37vbCnVz7VA2K34/xplFOfHFs2esViuury95+eI54Mkyw8HBAQcHCw4OFhwfLijLkqIQexFheaQ0Zfw7/hsl2iSljWS3nZJre0zLPvMXgdvA/A1gVmstzFXAccrGzGAttihEQBwB+25lEudtqGiESKQxySQytUqhgmVLZF5VSHCBgXlSeHSInUNJIkMEbFGe1FrmJCKQC4xrBHiReYoVLCIo8ohUrxFLGp2ZZKjsraNpW/osx2TCGMZEGK1C7Krz2K4PoFgSICLzPGZBJZVcD4zhiGWOlKH1u8x2fN7edk+MQejgEznYBY2TdnRgUH0cG2p3OxCtjSwxgz092W9Z8MQxNr5X9sd+ZKdjlZUxSP2idgf6vua2/9Ab4jXA4fB9T+c6enqM8yyqnKbZsG06jo4WTKopJ9OS773/kHULry+v6bYNfd3QqY7//KOPKIqcbx+egNJcXl/hvGU2nYJ3dLbn+YtXWKDd1lxdbygKzWRa8eDBA4rDI5xtePj++7je8ulHn3H//W9wfnXFarVGm5xyOgFAd5bX55f43pKZjKefPuN6U1MdHPGDj57y+eev+fz1NTjPo5MDCuWZFxne9zjlwXiU9XS9wzpFlhW0zlL3PTPv+Y9//TfMDw754P13ZeLaw1EesLdgqy+CW79+6PTLMXP7AtBt7+/v7a799rbFYsFms6HrOinsHmKnTk9P2Gw2NG3L9eU1nW1lbHiJa8qcwSqLoiAzMtlEGUqpofLAuO08d0ZhEOB3JsL4WfmR8muRkXBe+ET88Jn9yTL68cW4sv3PjCensby7/29kh/q+x8bqDKNtOueot1uatqXebnn96iXL5ZLl9TX1dkM1KSmLCbPplMV8weHhIYcHC0le0Jq+7wZWTu1OsPL6YH2STH/jMd6QcW9jR4c7WY3ZviilqsG+xY++o1Sw+g2StmCcqFsOoE9i2kYJJqKADkxXzPJVkiCijUEHg98UTxhYKRUYQR2Bixp8FWMm8hCrKCymHwGhMeM7ZjvFQoUUz5epDO1jWUHZf9/1qY/IYoWMcIbO46PMHLrTBTY6gsAIrGVQurdIQNIPaUzfsggaj70xAHNpXETJfwBkemf/Ic5V65Bt68EriadNCyuHizY7O3VYR8c5mkJuDZ0Yj9P4Ne/vQN+vrv3qptmxlHFrDJn3dJ2VrD1gPil5cO+M7eYNRpdsVhvyxvLBOw+Yzio+f35O37Q8v1rjgPVmw7Ju8N5xdu+Eb3/zPZrNlh8/f8E3v/lNri6uuH//AR998pTVtkY7R2Uy2rbn0eNHtG1L4zzT2YIXL9+wXa44ODwmKyu225az+w+5vF5yvdqwWa+ZLw64vrgCFN///g9ZbRr6Hp49f8XLN29oO0VvHUdVyfG05MHxYZBnesqiwiqP95a2t5RVSVGW2LBy7J3IVf/uf/8LTk9POJhPSQG2t12WUduJtBjJBW9rt0ldXxTvt/+54f39u/fL2b79fRGDO4bl5M3v3bK3u/bb2Q4XB1RFSdM0PH36lPPzc+bzOY/uP+BgcYhRBts5rq4uqbdb1uuaIsvIAityMJ+ligHCsAQ5USuMyW4weIAAh8BMxzq0EmS+z3LHpAK5hzrbgx0mGGfFTmJcm1Q2L9sYTKQHeSsyQ5HBiwkb+yAxfj/Vi+0HoNc0DdvtluVyyYvnz8V37+qKvm0S6/Sdb3+Le/fOuH//Hk+ePCHLDFornBXZtm87lFE7sXz7LIsJ59W2rZxrPLcopRph48YydGIuQ1bv+Ckw/hwRVGqDUiE2zTtUsNpBmxjeH8BVSMKAxML6qDVHoBf9fhlKgwltF2V/hfHglUvXNF4T7Qe1QsXSYYi/XpR6vfdYZdHKoJVD50Of7cuMib1VQyIDXSuxioqhgoWckPjnaUk4icyn1qN4zzxPgGhg30bhC7LRwIgq8TuMQJuY/RyznWM1jF3wPm6xr2NHOxdiUJFqHWZvrMd7KTGoAQR6YoJKYLKDDYx8LnodEYC4/OXGQH/UxsbSyoMPFUqkyHb4+QrtDvT9BtqtgA/I8DRdT1FU5Hi+++QeB2WBanO6smIGXLy5wDcbMuV4dP+YTz5/jsk1qvUcHx6xqRvmswm+7zg/v+Di4oLJdMKPf/IzDucLlssNShlm0xnTsuT18+c8evyQzbbhennN0dkpvVP0GA7PHjA/OuJyueb4+JjPnz9Da01ZtTgPTdNweHjAxdWajz99ztPPX9JbTzmbslptcU6R43hyMuPJ0YRJpnmz3lLkJVgngdcYNnXNdDrFaE2ZZVjnadqOzjrq6yV/+Vf/gX/73/xZkChgeMrd3saLpf3bIFL5v8q2L5kNGG5Xun1b+1Ufz1377WnGGMqyTABns15zfXnFhz/5KavVis1mw/mbN7StMH1nJ6fJMDbPDPV2S17kVEVBVVUoBW1bp9iqqih32Jcsy4LEJo/+OEnvgy2tR6xNTIncaxLHdHPxMgZ3KZYrWoGwK+nuS70R+FlrWa/XtG3LdrtlvdpQ1w3r9ZrLy0uapqGu62Bpo5nP59w7fY/FYsHh4QH3z84oy4KiyCmKPLB2oDCDPG1GsYg+AhjQSDJC13XUdU3btvQBjBhjdrIoIbKCOgXaK6V2PxOlvthXkd3TIwkWkW8jkPPjL6KG2D3Ez00+71Mcp6Ck8J0ISkMmLkEilbiRWLZC9qIiYFMqAEyi7jm6LgrC+BRg68mMQZnBdy/LdqFEYkXjOAm7FxAvcZnaaHJUSgTJQjUK14fYyWBErrRK8Wo+knnjvg5jKbKNccdyXnrEeA4yO6N/x8e7dxLpc0oH1jVVnxlVObmlRRbVOYdh2N+Y0R3ve0cBvIWoiPdEuiajbRozxIV+lXYH+r60/Wr5FD9mq/Z2472iaVqKPGOuLf/iO+9RGg3zQ15eXJHnBacnJzh7QP/5M9qu4/HDEz76wcf0bcvhwSFXFxecPnnIdnXNx9fXWOeYHyxYbeTB+dFHH3O92fLf/B//jOvzN5yeHrKYT+icw5uMH/zoIw4Wc2bzBbos+OmHTzk/v2A6qXjy5CE4z3a9QpucV28u+fHPPuTzZy95fbHEI55GZV7iuisy5fnmO/d5sJjw8N4p5+fndE2HdwqjpLbhettinWM2n0rB8cygjZbYh3ATf/TRR/zw0QP+4Pd/X6SKLxrbo/f8W8Dh+Iqq0Vd2JiAG8Hj7ddyV6Mdgcgw21Y097kpo6Ti+4g37Rcd0134Lm5fxbIzUIK2do2sE3KyWS9brNZv1mt5K8fjlcplARZZptmUpsYDzWbA4UjQj0OesCyxXkOTwaD+YTsTJJE0oEaD4UY1XmSlH49WngPO4DTe6ByJwGwO/ruuGxe2o/uk+KIxVH/q+Z7la0dQ1m82WzXpL27bUTSM1v0Om82I2Y1JNmM6mPLx3j4ODQcYVoBcl6kGaS9KjHthI3DD5RtnbjyZ4YdcC08LtWfcRIEcmb2dilw8kMOJHTBPpuaGS9DpcDCW4RZn03BuX55VPhMQE5UGJxYmKJeDCGJMvifQv1nPB+iQYTqfj8aN9qyg1e5TyQzyn9vhRybaxtdYN8BRW30qrxKY6Z2maZljEm0jRDX0eZWVtNIwAOSMRJJ7/GGDG+D3lVTJojlBrVDUZiAxl2J6PBzp+FkdgNZzLeKFyW+jC7gUnKryj4xwTAYP9zO7rgfeLGDDI3MI2h8/pAejtx/59WbsDfb9g2w/A/7LPjQNARzBj78MaB5SF4WSS8979Y0yekRvFtNywXK2DNGJ5eHrCcrXi/funfPj5a5armtVqyXw2CRUuMrIiYz6f89nnz9nWDffPzphNDnCbhr/7++/zzfeeMMlLPvvsc6aLBT/48UccntzjJ//pH1DeMa0KJlVFlmUSC6Mz8NC0PR9/+pT/9Hc/4OnnYuNiLWzbBoWif/2aRVXw4HjGe2eHTIzierlktdkyncywzgLilN90DpNlzBYzvNagDVlw03deQJ/1jr/7/vd58OAeJ0eHwBBr8/OyZH70/wT4ouqVLo/afbJ8SYtlm8bfUXE7tx7E7Ss5+crtrMqNz9y134nmXZ/sVY4OF/STimY2o8ilHm9RFGhPivn77LPPgPCwV1CWBZPJhPtnp8zmU/I822H2tk1NiTCJmZKgfuWHDM4I+oTFUZjM0LteJs1RMuCu9CoTpFbJYjjEqI1iueKntJT2ikxm3GfTNHRdx2q1Yr1eJ8m2a1ps39N1HcvlMjF6zglYnM1m3L93j/l8ztHREWcnp0wmE6bTaTLzBSjLKtxGjq6tU2xgboL1CzK15nlOnklSR98Fk964WNS7wA0v8uA+W7Mj75qQNT367tiPL8XsBQkSZRIDGPvSuRhHNpKKlU47Nlk05/YoYoZwADQRNIwfI84LUCOwe25UIs9Z2b9WUjks0mGhcoRSDhUW2kqF+s4qgL+wUBjL+jss2uh5pbXEmQqwd1xfX9O2LWVVUVTl6Ltq5IsYMqC9wu0lpqbjRwDszhNRKbRheMCncmwitkqZPlnWC3Po8TbY0hidsqtlHoj7iDVxNF5J7KwTmmM4d22SZ2AM10rjhhBz58fAeJB3xy1Kzwk7ODGm7rsufcYUeudeS33+Fdod6Psa2jBZ3/6+ABjJ7HEeFpMpj08OmZUZyoB3Kjm750VBNTG0tWTqPTo55L/7Z9+jbv6Gz8+XlNWU7XrJvYcP+NFPfkY1neNQXF8v0ari7579lHsPDjFa8+/+8q85mE8pjCEvLmnbnr/6y78Ss9JcUvGVMdRNyz98/8eYLGOzbXj45BGvz694+vlrnJOYGGtbnPNUuWZm4A++9Q6ldhxNCnKtQedcXm4Aj7W91DfUhrbvmB7MyScVnZI4D++gth1osYUxxrDebvlPf/f3/Is//edMJ1VgSH458OMZwiDiM3OX0Xh729+3u+U7bzu6L97622IQ74De72IzSqONTEfRQLcsC+bzKWWecXp0RPPgIRcX56xWK2azGXW9pW3qAIpqmmbLanmBc548zzg6OkqyT1EUAoiC/DuWVvdBC0gyWZ7nSXKL0pH3wXfN9iED0UtyhfU7IK/v+ySNbrdb2kbi7Lqu25GBoyXKZrORmLkACKuiJM8yyWA+OCDPc8qy5OjohOl0ymIhlivJHkQnzpKqqgTEFRnX11chRk6AXbS3yLSitxbr5Cf60KV4OCUOIH3f07VyjAJelUipIQZw3Iexr/czepVSoYaCGiSesfSqRzWSQ4JE0C7l89rI50LpvQge9Ij1kxgxAd9ejYmF8CTx4LwNCoGcg49187xDRblaRflUyqbhkASKLAvgLxynddiwGrCB4YvM7TgeMoI+Z13qj0yblMHathLXqdoGZWIWtngsxkV9HCuCQYe/478uvLcTXqMUyvlURi5m9A40qQrPeEe0FUrlzJQC64KtjNSJ9uF8tNESy6i1JFzGOMUA4pxzeOtT9ZkxmeCERt4FgsTD2WcVR+ywv5mtvnP+bsiq/nnaHegDfl2C2Zj+vQkk9iQ/D23ToHVGWeQczycUGsChjWE6mbDcrJnPZzRNg/I9282GHs/RrOB/+NPv8ud//xFPX14wyRbU10sOZwd8/PkLHj95SGbE9LhuLdUyp6kb3n33Pd68fs12ueT07IjDgyMeP3qMtX2IYYCffPwUyOh6x2a9ZVvXPH35ht7Jw0Objrre0HeOqsiYZ/AH7z3i/dMZry+v0VqzWm95c/ma9abh+GRBWRR0jQT1dr3lweOH5JMKY0ps58WRXaonUZRVkow+f/acv/27v+O73/k9Dg8OGY/1XwgARgZ9577zQ1wLSQi49bvDzm+OIFkkvn1c3fj86PVb3xtJGHftd6eluciDd1ZYCiWec0WohmCdJ88Ns9mU+XzOdrOhqbdMqoqm2dL1HbbvknXDdrtJk1ie57RtQ5YJ8ImTaAydGCcgRE4qJjeMZdgo1cbFKUDXSlZtAoYMNivWWuq6pmvb8D1/q5FstO5ASbzhYjqjqipmsxnTyZSiyCmrioPFIWVVMplMyLN8B1jIRBsrE4wm19E9k1h9hlhE8Ay+d+O4XL8DKkT107eCusSy7cu5KY5nYOAE5OkRCAmMTmT6YuyZjtmpka4TJcEpBq0wgZwhJi/KgklZ9MJHuSAxDvuM69vIOgqjJ6AC4pNLx77UOsX+ReDhRuNnbLmT+jcMbu0Hpk+HWFTnNNZJDV/vB5ufLLNonTHYYo2vWlqVs6vXyIJbxVCEdAFGg8x70D71T6BxiUg/stc+SPjKh+xmL4Dd/f/Z+5Nny7LszA/77eY0t3m9e3hEeHSZkV0hARSqISUUJbGRaGWUSJEDmsykgWQyDaSJJhrJ+EdoJg0kSmZiI0qiSJlRJI1FY1WxCgUWUCiggEKhR7YRGY2HN6+7955mNxqsvfc59/rzDM9EopCZ8J35wt+7zWn22c23vrXWt4JHIdq0OT4xqiyhEqZ6uQdu3+wOphw/lt/n/aXU/D4zCfR8VvH8/fzzg7h1c3sF+v7U2+GgffHHNl1Hs2iItwYfIlFbCFBZA8uWI3cMPrJuF9ioqZdLnl5dUlc13mj+W19/l7fuHTN6w84F+q5j0RiG7Zb3Hj7k2x9+zDA6grKcXdzjD/74Gzx69JTz42N27jEPXnuD7e2WTz97AipwfnHOMAR632Gqhk8+e4xRYOuWR48ecXq0QkVYrRoujta8/doFOoycrhcYPGfLJTEEKqNZtpaqqRiHgcqIC3fwChcD77//PpoK70Rs1AUI0YmVrBV13eDdyOA8H3/6KZeXzzg7veCrX/kqJ6dHZXH6gYHf3HPzgo/c9Xpeew+B3+d9b/8Az3/+8y5/HjP4Uud51X7sm0Y08UocUwIHi7YWN1ra9M9OjwkhsNlsGbqOcZQEh8urZ2y3G7quw3th2a6urkoZrGEY6PseELfhbrcTV3HKmJ1v2kpJSaoM0uQ7k7CusAqqJHkM/cg4OBHWnYGhuq6L3lr+Xtu2VDFSVRWLxYL1es1iseD4+LjUZq3rujB5x8fH1FWNTsfI13SYDGJn5c52ux27biTuAkYplLZifPnI4AUQV5XBVqIJBwh4yv+Wvpg2XJ3cwTGCsrawn1k0WGktLl9FYocyIEpsWgJ0Jn1WaSPxWErYveKYVBMYVHHCdoUdVKokY2TARmLFCrSdXQMIGAqJxBRGMEoCSZL2CQWQKcAkEKFTjGAkqBQLqaYEiQLgtIaUyHAou5N/VwAzBtToiSHFTKzVOHqGYURrQ1UvyDVpBczq5ESdAejZqpeZPgCdQJXSAjYLSFSpEzK4iiRgOavtC4UZzmMiJkZPSv4pSFnJkcldG9ykjzcPd8iuXK2UGHPF25ee4QysSZ9IOZB5MsphguAcaGcDap7c8bIA8BXo+yHb9wMY+wH6sG+llHf2LAPvPbt+oLaWYC3L1ZLReWKIIqJMoDKW29trOu/xAZ5eX3N0esLt7Q2r1RKc43S55vGzGzbO88GH3+HeqsEBN1fXtG3FQODRZ09YLZc8evQEWzUcrVdoo/mN3/wnNHVNu1ihdODpk6ecnFzwwaefcvPkKUpBU1WMQ8+902PWbUO32/DWxTFfffsNVnVFbS2VNWxub6mXFgU8edJxtGrZdCONqSHCODoc0K7XvPbgAU2zwPcDnhQUnoq19+OIrWqqqsaPPcPgAM1Hf/ANvvmdj/j617/KV77wDotFW5jzH4b0e/4Bv/it+BKf+WGOX6xvXjyB1QzczkbZn+BCXrU/y5ZLUCklWZJa6VSMPdWEIhKCIzMF61WLbyw+BE7CEWfnx4yjuF1lHXHsdjucG3FONtMcR5WzUV0CUfPNRT7jcN4VwHjINsjmnfXrRLbCaEOdMoR1YgfbtqVpGqpqEkCu65oquWSbpimuWGtN1isBItZm17IluICbeUv24gXTNQ/ekWeC0qTasArvXBK0tgQ/FjcxCDNpTUp0icLwBJ9rBc+Brps2Wj2xeRngHjJ7cZbskfx+EwuXEzxygoU6+EnuXqvTNWQvRMyuW6kbC5m1Ez4uMDE/aFW8AjkJJ4u85/7VRmo5xxCIwWWnIrIfZYaS+eKSiEVhYlVi5gB8ci3uZZ7OrkcpVVzDc2ZqHgojMXUC/LRyVPWQMsxNiY887Ov5ercf5xwLgxszRZvYOnkOmTg9ZM5I58kAFanziyQ+yRiRLsnJUlprfGFY81UlQKZ0ApX7jGS+9O/H0uXXpznpn3PjZqCd2ff89yvQ92fQfhiqNTfnPF3vqBtDVVu++P57OO/KoBL5hZqhqrjd7bi83nDrRuy45OjohKvrZxy1NcFGjlev0XvHuHuPR89u+OjJLU9ub1CVVMKotU7Czwt2/cD25pr1csmw3aBcT6M80SgWTU3fdwTv8c7z2r374B1Pnz3lwfkJZyvL8vSCB8cLXj9pMUrhfGS7vcU7j3dDsoYcTdMSjATo5qLbnXe88d57HJ9fUC0XjOEaN0iWX13V+BDoRnEPaVsRlWaz64q7ux8Gfv8Pfp9H3/uA999/n7fffouqsil85qcPCM2Dl1+1n46WbcLZNlZcqHkIZ4gve0wUN5lRKCzWasl4TCxHCIHxaJ1AS0iA0KcMWkc/iAB0jseSQ0t9UR9cib+bbzTZ3bsv5SKAz5pcRUFYKmsMdVOn0lx1ujdhzKzJnxcAKKxJAD+J5mpthDFRGXsk8DTrsH133LS56lJijuSKE/bSJBeygCBTJG9EgdgTQmaR0hkjKc4rlrWkMECZwTpoc9kNAU7ZlZcf4r5mn7w0c+Hm42tTcg98FMrvrjPG51HZDIBI1nJ2cetZPJkYjaI5GDI4LcBmigk83MkyGCkgLwSizkARpizUKaZP+mr/6kvMW2ZCiUSVMr0TU501ErWZSsyV+82gKcXbZeHj0ifZPT3bAzLoU0oRtEJFiZ3M4tIisHxwv4gRlisg+xAQGb6ApAVLBn1OCMrPXCHgW0dVkjrm/alm11LGWozMKz3luVDiBg+ew13P5RB4f7/25xT0/eicYlM/T6xdbi8LPPIksrbCWIVtKs4vznDdLW4c0HWDNoqmaTk5FjNw8AqrYHu7oWNLoyInRys8sNntIHp+4S+8zwff+5Sz41v++HuP+PajKxpqjk9X7C4/42LdcFtpFo3l4cUJJ9bz4P4Zu80tm9GzGTq6fgfes16ucMMAbsfD++e8drpmoR1v3T+ljgEdA3XdsOtu5VqXDcNtRwTOjo/pu55FVTE4xxhlk3Io7j98A1NXxb0RoriYlBZ2wCED33lP9B6jNUPXsVquWDQrlouauqr5zre/y+PPnvDuu29z7/4F1ljy0viTBAAzsDswtqf3/ylfz6v2p9v29NwixFDC5GfM2hQLN46ZGVQYpaiaem98Z1YslL9VSloIxU1azj3bnOfZuaX02SxQP9dW3d/Q5ZqNMXuuV5Xit+bX5b2XpJX8/QgxbfTBy2YtoXYRCCWfwaDwzKphoIoIbq7So3I26WztbReLxFyOLBaLcj9t25A6sPSXiAfL0ZOPNLFh6YxKKnbIBe6zO/NWmLJ0XKmlnuPI8jofCXoWiqJ1YZpIYs2k/vHBT7QelGSTSJbuyH0yixNUatqU5qAvpBq0My9BJEppueRpYu6mLYkKscS35fd0AqsT6JuXhtsvUafKyWTfykLNRltCCm1QOmWTOwe7nWSsJ5Y2gyMX3DTusvsX5JghiU3HeYzerCVQrJRCo1G5qkzmOY1BK1M6OKZxppUwjbmXI3mOCHCcwi8oAFRpMc5CqhCQGdcsbzPPKZnA3WFVG/8cc3cY2zePr3zZmru5/TkFfT/KNrOOkuX0g4KMHPRrrCWGkaAtpm24vvwUFwYarUBpqrYhBM/xyTHaGD578pjQ72jXK1bLFbZd0ljD8ugYrTU3Nzcs24qLp894+Po5b3z3EX/84SO8sRw1p9iq5lsffswbZ0uOG83b7z5k2VYMR1IhoKoqnt5s+d3vPeOqj5wsDO89eIvjtuL+8Yo37p0xDgOPHz/Gj46dV3gX6boOopJsRKWxVUXbNgxupHPggmbT9Zy+8Tbn9+4x+B6soQ/gAjRtJRMjRprKoogYBSHFU6Ato/PUtWbXj9imoW0X+Bj4xje/ySeffMwbb77BxflFUZPft7F/MqDTnYzCP/WreNX+NNt8M30e6E/c0JzVkpinSMQT45QYMY8HEnZEfs+yHzkjd972Ph+njMAMkvLmMjF9urj6xEU4ybEU4MjEfOUEkRAcqCTwq5CYOwVVVRHNxFLmzOAYU4mrcp35WqfNbq/vlATc61SJxAeHNoq2aosmnDEG51ypqBASmPF+cpPJBszePZPW3xeBvcPmc0LADHyr5McMUaG8xyQGVIHo1CWjN2Y9OyVgTmUQmoFjYY+kL5RGwGh2H+fOKueMeFLpywz+Q0zHUcJeJfZtLi4dUyRd0FOiSz6rVgplJeFiMhTurkus0hCWz/mJMUw6f1prfJxcleMoIL2uG6oMbBBNSJ0B8p6dlFnVYubsPYspoQKiisKezsd91gDUWRswlZlLYVYmgfCQxrq4eCNBTWXhsqj4nkFkIKbvEea87NRneawftheG9szm6vznZcuv5fYK9P2QbT9TZ3pt/mDm7fMybbwPovODQ1vLYn3EpY8M/ciyDGgjpYEWsgBtuy3OO9bLFUor+l1Hu0h1cS2cHZ8wLEZWi5bz7Q4VPWfrhu98/IQ3Htxjs93RvnWPVVPhXUelLY2xvHX/NW5ubtBaLPiL1Y7KjBwvKtoQOF/WvH6xxnUbdpsOHSNtVbHtBq6fPqNdLIjBU1d16RfvPcGl2CIf2I0jX3z3He699hqr1Ypnmz4tvJK5mN1I4zCkmqKlI5MbROGCp6pqooLRe9EhU5ptt+OPv/ENPn30GQ/ffJOzs7M71+sfZwLw0KXz/TKBX7Wf3LYP1PJ/krtH5c12EmU1ZrYxh1DIKcUU+6RLCa9E9qT/HTgXn2MS8mY0j5+bu3gPmYbiVCvGrrBucYIoRYLDGFPEnCEUhkgpSn1WyYTMpazS9c42N0EP5fKn39N9GJ2yUfP7qe0JBytV+kyXJJDpWWQQmO9xAn3TtRy2Q6Y1uxiJ++EYyfm3x9Hlr+akhXKLkSLFkt2HZQ2IeX1QomCQQL1Oigvl/hPzKIU6RF+uPPM8Trwv53vhgjhzH6rynCXpI4cWlPtIbs/8s99POudO7J1KSzqThCakEn3Ou2lcMWOlcweUa5q7QWfjmek8eSwm9Jn+yk8DSCxo7mOtJHEjBpG4QacYyCjHyH2stUmxngICD13/8bDvCgsbiwh1efalqw9Ba2ah94sSxIPj/iCyLa9A3w/R5lZmGQizxfIH4WNKQPLQi3XhBqKxtOsjbLuk7wb8OFJVCxTZMg7UBNpFgx9bjlZLdinWzSbkH7wHY2iqCqJY119//12+4j1fevuSIelkhRDxbsSYit224/79cy7Ojtl1a7bbHcPY8TNvX9CNnray3Ds+4v75EqNg2xsqpTk6v8A5x8JWvHH/fnEP9U6WKSmY7kXHCEXvHa+99ZBqueD47IzgRpTSOO+pbEXbLsQq9lIlJEbHMI5JfmJAq0jdVGhjCIjr1xorwM8YxlEClC9vbth985ucHB1xfn5O27a0SWw6B22X5ffHGAH+SWJFX7Uf7zZnqwL7a0hW8JizfPvVLGIRAc41NhQKYyp8YRR8yZOYmLfJtTV3yz7PnIXZ9bDHZsTZphtmsUvGSEZqzniV+DmF1pGQdMxCcnOWdTTMWLs4XV3mKs0McAafNvfZJp8N7zmLqfSUDbnnfrYWEmDVMxZTKV/iIHOmsNZa1ls1AbUSJ3YAkDN4PAR9GWxMvKWAzpjiDWeoD2UnvUPS8ZTSaLS4Rcn1kediyDkcJpUEmx0vgz4F+32sMqDUBDdmuwJlZ2NyBirmzO0cfBil8cj9mhnZYUqyjyo4SxjNFKOnJTs45uerFMFLDNw4jkXnMQSXJFwkOWI2aUREOwbRIIz7TJdWKl1PzLeWv8j8V6VSPF+MkEMGyvP1AvyUKtValKRBg5L7qGYl+bJ7PGv+xVQLN/gJaGfQDPJ6jqmcA7Y85+Zs4PxZ531rzsj/udfpu2uD/FHs5/Pj7gdNzlwoeaAdxDi8CASKkSsDvx9GjFHooIhBYxdLmuNjLi+vOT09wdYVqqokjgKDrWvWqyOsMlTaohZQ16mGpywPWGOSmn2kqhqsDbRElosFXVLEH4ee3jl2mx0Pzh+wWC6o2xqJq/G888Z9jq9u8EFxcX6G73va1nJzdUtwnkXTyKQl4kJI6ekygYyW+3Le42PAx4hznt4H/rlf/EU+vt1SVxXPtlv6vicER1W1aK2wpkIr2Cnpv7wQuhDQTjEMA4u2wY0ObVZJEkHRdz1VXQmQHkei97hh4PrmhjqJtC7aluVSNM/aRXsQD/R8UO+fRZtb9RPLd8D/5f1F3T2+XrUf/5Zrlk6LfLb+BVApxUyAGLwfEZeuKmBLJwZlL+4nSryUD/vxQRNQMXtswRzw5XbotZi7rwrDkABVbjFKfFaIIQk199N8Sp/LsV7F+zFn3RI9mcHaHGRKAopH5Az3s3kP+1J26H2ANr//XDe1yI8wCUvvdn26hyiSIwlMhbv66KCvICdISDyfT8BYEYlz1lKpBCYnVlQxjypLz1UJ8FAhs43yycKmaUrZt8JiMv0rK8ZMjDvFCCqhC1FRYtxCjGJEJOAa3Fhc9hkMZRfw/D7390JKn04geMZmgvRnjLgYmDbJ6VmqKHGrQ98TnZdyb9MASsdSGCsafyrk/XYOSmPZ9F9kL8/MnqmvyrXrBAaRNOpUnST3qGSqS5zrc/3BLOvWT3IuU5szks9jCvn83Rc97VMCeuchGIfP4fu1nzrQNx8gP4q278adA70XIYOXZPrmH4mKMSjWdcSoGudHnNLcf+sdHv/2r/Pm7j5V28jCbiqJAUHTtgussbhhpNIRVGQYexmk1srv3rNaLDDWMo4SM2FNFCutqghtS+9GFkl2oW1riJHaWLy1EAKv37/Hxx99gg4BbTTDbsQay3Jpuby8RSuND1KMu6krdp3oYUXn0DomgdlANzg653j/a1+lPjrhxNZURqNMxeg3WGuoapMWSZXqkdaSZBd7fARrRXqhrgxtZRlGEXI2WkvGVCXgr21a+mEQxlNrtrsd/TCwGEf8ONLtdtze3FA3DeujNUdHR7PqA9MD+rNgAPdGT/HVUNYnNZvcgdn7r9pPXMssCty1aAtLFOK+Gyh74g6BRinfVL6ZN2FJTICZcG751P451WyzVGUzTCCrgIjEGpYvxXKYmAAPhdUgsSrquXG9P2rnCUwTI5JpIoWQLFHoGcgYZ8aWZeZoDnwU7G28icQqc7yASe/3fsJ8/mewNrv2F025ePj7ITA6eG6ZGSwb/h5bNx2n7EMFZU4fy89KWDmV+lIVds8nz493vjC+MbFbk0EZS8waUL4TQihlzuZ7a4xTUsac9dxzZe619DAycEZG6j77KGMtBM/oRpx3mGBKPwimnZf5y8kk8+uYVsRYhl9K3EhbcyRKR5aOU7PnIl8KIRRQqNDTmIkpvg+PSXtLTkraM56YADB3sKXZQzj9nsPE7gbSc2NrcmVnkPuDrf8/daDvR9Ge96s/vyDPaf75517+AcSpYDUKFzXaakwApwy6qjl+/U2++4/+IZuupx4HlLVYXUl5HGMwTYWtKnw94kMtJYOSKr8OkegDVmtIpXMqayWAOQQUo2RhxUhdNyzqVjaXVJ5GQhVaFk1Nt+s5Xa8xMSWwx4BWhk2/w+Z6lxFCDIz9iAFqa3FeyhzpKKzEzo/4yvKXf/G/zae7wNn9B0BkdOJmbpq6TOi5RlFdy71ZZXA+lOuuqgqlTXLfiCvJOUWTtL6wFd5YRjeClhq+265jGEfqupYAYmB0UudzsVhwdLQWC67EAf3ZAL87myr6rK/aT0nzIYObDOz2AV2MEnyewr2k/nXeBPUEwkICDxk05YPpVHFCDjexYjHGvVjZ58d4hJjFa/N55F8tdNNsIE6Dcs62mJkA7zz5QilF3ra1ZkpOSPdA3tSCyGoo5gHyGl/iwlTpM+kDP4G0dOWo/fU7JCkWYUmfB3vO+ZSIwaxSSe7LmbYq7E3EmADEBFwTQMtgBEoPUjxCsYA+ytpr9oBNyP2wd845+E7nKJ+ZIaTkanTO4caRkNzW4lrPXplYjiPGdurLDH5DwCQrI8ekydjx4qL0+8LiuS/2Qc3za5bJjGJithQpH8WoJB004NxA5U2R1cv1nYXhnMrvSULTBODj7Bqz4RCz4nX5TkwZ4vmZpcoyUQH5nnRiQqeQiBJpoVPlmmQMZZHmvTGeAF/uk1zRZg4M5fFNSShKkVzXz4cP5DEvv4fy+bxevCTR99ME+n40zF452kuCuT8ZIJDJ1/Uju8HhFxVWaaqmEV0629Ke3OPxs0vWxwtsVROMRxtNUKCthRjRRPCy6NiqIjiJL3Ah4oeR0XlMVaGixAShNRoYyartIgCtlCJ4hwqBYKBqFG4cGWLkeLUCNN55AmKJ1dZCotYdowhaerFWQ6K3Y4q98N5z0/f8M//9/w7L01NuLj/ltZNThqFju9tijCkxd3njyPS1dyNNXVE1CxnqgeKeUUnMViZ8LIDNaEPVWgbvCCqik7tGB9lod13PODq6rivCrX3fcX19SZvcv8vlupSu+tE98z95+9GO9Fftz7rFsptPm4G8Pg+Qn2LCYpgBG5VZPAFxArYOmDm9D/oOmRmY2DCtdYqbmzNJ8nmd3YgH3oy7N/zpPaLoshUgFiYQJPp5JrFSBwkUh2AhsXo6qv3zpnNrbZFYMWb1aSN105bMYBU1IUSGcURBqVgyDEMpqzXV0TUoa+W78zVgxrgGVYjHco0ZnOSs2uwaDon9VJDchpk+SgxO8KJPp2eZv4XV2e+Gw/7P/4ZZ/8eUmetcX8ru1Y3F9YHgAqPzyW0p3xkHASVKIaLe3sl+gLiarTZiKHsvIHKcVW5RE7OVAasxau9qVZyMgjzmJIN1ApQAbhgZkBAeMRykPJtoVyq8n4TC5flPySXW2gmUhpCShzKrJ70XU5CrYmL0xLM0D6OQPVRpQ9VkF3MSFIqyr4VRCBuQqjFzo2XOLusC8udCy/MnGie3stalik0Gink+5JjVwxjA/Oz/3Lp3f5iW+yqPO+nA+SdU+XdOR999rJfreCl+rVFEOucxGpwL1LXCucDORxb1ggfvfoEPf/Pv8+Yb97CNA+OxKln7qUC30gYTxVqRurlKJoqxYEX1X4CXWOA+FbbWVmOAkIKXQRTth3GcrAw0takwwaFQ9D4QUvFxk1i+4GUxVVqjgiFGxc1uJ2WaxkA3eq66ntX9C77w9a8RrOHZpgMDIerCvFltWDSNTCDv8TixyFO5Iq0Nq7YlKA3OYU2NUp4QFWiDMgJaXUzyA8ZgFDSKUtA7Oi8bQ7K+nQ8439MPA3Ul5aDc6Ol2PdfXt1NJqHpfD+3PrP0YXMKr9qNrIR5u6GrvL5gbGdkVNW2mk9uM/J8EniZWI5eg2ot8ST85M7S4YGO+hufzx6f/7r8a80ZaWJ3ZdSvhVdQeNRYnrqowe4m/OmCypnuc02qZ9VKQYgHZ+0kgM/1OAhVaKWFtlDA/wmZlYeqQypJptI7JqNSF4dLpWe3H48lrvjB0lExapaVWa9Z9joRp3QleQFLuozA9phh8Kpsm8LC4LcPU94frkEquWdm8QmHjJLxaiphH71K2t0rC+cLk5ZrPzrkkQOzlGsKkXRhDIOBxPmBIxyzkbGLVcgkzbYjVjOkKktQTYkj3kJi3GAg+4l0omCzEwDgOBdA5N+K9RWuV9Fszy5yN/ByHl2LuZkykKNLoVJJtqrNLVPjoUzfNMmhJBIIBpfbLoWWAiCIlZkyAP9dujjEkgiOxrjED3Yi2MjY0eexILKZkKIuL3RpTyBLvXUr0yJCSBCRzfWlViI6YmNIQPO4l9fr+XIO+fYt0AnzzdtdG/9yku8PV+7mtDHTYDSPWpgVGG5QRIVDbtJy99Qbf+g1Pd7tlsVgQ7UgwCq2sLJ1ay2BAlPpDNKAmmQWHxquYBhjkcRGDKhlXMa++CezuU+UpNd1EvJslaRhNiBGrNS4ErBHXq9GaXTfQjw4XIoOL3A6O69HzV//iX8LbmiFYbjpHu6jZPNsICE0TNvggpRJDmC37qljr1lpuu45V3bBaLrnd3BJC0n3SEL1MRBE51VSVWEh93wuYVLrEqlRVJa7wZDl1XU+wnlGP2MpiUybZbrdjsVhwcnKyx/z9WIDAV+0nuh3aljEZc/OhNVUvSB/KjF95JQO/9ErwIp5bvj+Br3LeACWuKQO1mQ/xEHaV4xfWT2UnGWXTy4klKVFD4v6m8I/cdHapxem7+XvlestX1N7f2SDPbkyVgB9aDMP8J8oUhjMGUFElkdyk9UnAJ6DjvBjEMQGFzJRqndg6Uuby/LoKHpixazmBIVctMZJBPMFlOW8IIVVyiBitRNVAJV285GlBawJ6thZnIxyYxR4XhiwDgPS7eFoSGMSLa9d7QpREiey+VWnNzcyY955x6DG5Mgg6gRhJxMuyOzpO5d3KsZQCMzFO4t5MYDkmYyTtLyFltgYfiCqUc/d9lzLUM+ir0UbIDaMMUecEjmlcmFQ3OI//fHzS/mjI547kMCQBxYchDsICz0MRtDx8GQcxSj8mvtartDcqnSq7iOSQuJWLVYDNGfZ64oS1plS+yft1jBLq5PLrUJQmIOKdK/u6MbLv+zS+fPCM48DLtD/XoA/m1Pj+3y/rzv2hN/5klXkim36grXXJvPXe07QLtNGMdc1bX/85rrc3nCgRKlY6W38pFsIYgkuZPKl+Z3ACcLQ1VKomZxUBKWBXAJ3Skxr/3N0zxUQII+iDJpKtQTmO0OeSRBHvOEbvIrf9yFU/8N7P/Axf/PrP4oPiyW1HvVhQV5aPbjYE9jPoILlMlKKqKlwGgMkSqusKVGToe0nyYNJAylT4IQDPmX1KwziTccgxEiLEKoAwxkAYJetYDQPDMNB1HdvtlvV6zfHxsUg5ZMv/VXvVftg2qwNatM2UEpAyo+b2Ypi+zxqVGezCeOx97q56sfMvz35Xd704fS/k4NI7hn8GSIWJSCyMZkqImKd1aLLorjq4PlX2TvI9kYmxWFhGFSEnbGaGL7tYlVJI1yWglFy1MUSG0dG7kd6NpapBARLGoLTey7jNLu5cQzd/NgRZx0Oq1YvXaOMlBjqJJhulS0hKBgegiCqkDJUp61klh3ExAEjlvhI419rPNBkngDLdW5Kd8X6SxnETqAtJA08phRtdcv0alIpSZUJbvBulOozztHUlFSvSdStkj3F+YrfyuPDeM/RS6s+NbqbNyL7sSupjgGHsREliHBl2HWa1EvaOHHsYSpZ4ZuDm7tO5iHi+jrm7c/JaCdtW+i4913kd27kmpbiSPbvtNkncTEaGAD1xPUcVyn5eQLrzRb5FKbBWQgZ8yLWw45R5DaXOs3OuAPAsJzS/x+zyzSC7qir6cfiBCKefYND38jf5fH/ICyEHUZe2v+jsH+P5hfZFyRwvd01CyfaDZzeMHK1WGKsxFjCadrVAGYOyCy6+9HMstaN78gm1lqLXGtFnKrINlYEoWbQxJiAYI7aqiARstHsp+GWiKEPIQgFxiqvJdQ9H59OaneoQJu2qScNLM/S96OP5ILEgafL3o2czOlZn5/yVf+6v0a5boocnH3zE++9/ke1mI/GKRyd7ky/T/yhxLdhUyN1awziIflNlLc2iIXaBfvRpg4uldM884FpFAX1a6bRoUSbNnpK6NtjKJiYwlQiKquh2OSfF7K+urri4uODo6GgWX3EXI/xSQ+FVe9Uo4ye5b/aSFOa/39Em9ykFGO29nxi15OfdO9/Mg0VxExexvP0A8vz56ToyS5iOp9jbaOXVrNmXABD5HLM7V7MM4bKm5s/IRWUwW5ZX9fz3ShLHHPAdiEr7mftPStOFoqU2bfYpnk8p4ix+qmz6CbJmt3hmrwCCiqACBCWMXaTUh1Vm3BeKznVoZ50h618ogFelSh0FYau8d0wgoAD8EKYkjXxfGRxFMfbHYShroE41iH0IjOOIdzmmT2GNJcwM6RACfhwZu06+qzTDIN4T54UMyP3tYsSOUvlElWQJOWaJV0zVKEqiSfoRqR49lfyb9z3JRZqZwwz8c9/PgGAZoQfjMZLjZGP5XSmpszudJzOn+fPiIlZKT9njCCs7H19JhzzVUxb3L+TscLmGYRiKm9ZWpjzDDPQOY/Pmenz5PkqCzYy4mAPEz2s/waDvh2/Spz+AK/aljvli4DdnlPZeC4pN53E+f17jh4HbbsQZy7ExOFPhlMWe32P94CH9Zx9RbR/TKI2LgNGoIFZG2i6EvYsRbapER4v1Bl7OEYXBEyDjpcYjpABScTmHFEwaoiquD22tJER4qCqLTgKUKsJuHCa9KMB5xegjOwL/43/tX+HhF97j8e0tActm0/P1r5/z+NPv0dQtVon4qLYKpZKlml0KIbCoa6wSW90rOGoXJQ6FdA8xuXwkYNoVYGqUETd2FMvSxShaUXqqNgDJFZEWAKU1ldVyb3nBy+4LYLfb8dFHH7Farbl/7z6L5eJHOpZetT8/bc5CkGPi5usEEz7Ky8oE1DKwmr13cPy5YZrBXwYu+59Lx1PTGedgag+E7l1dOqvaX/fKPSRQNt3nxF6WYz533OnO9yBsjOlUavrSHuBjYvmYXp8HvvtZf2QxZh8mg16YngmcYGbrhEqsGjOGdAbeUIqgRP0gECQhjojK8WFmVtlECVsmoG92iyEgYXjZRSoMHKnOa4kpTCBYHdwPYe7enUBf1j8chxGd+t5oOWZQkjQRfEArsJURps1LXKD3Hu8cQ9ex29xClHCcXMs5uymV1hhrqVJpPgF9CZQoTV01he2MqZZuBMZhxLmxGNfGGKydFBRyZ+dUJj0bFxFmBMT+WH2+xdn3MuEzJYHIOSaQnsFWYVM1RJ32Wx0giKu4jJsUQ6hQuJDDFrLAsoRY9V1HCB5rDbZelMSNfO+HOCIndWQmOmeZ59eMMZhKxmv2Zn1e+6kEfXexbTG+6P3vT8fcfax9N+Zdn30ZN3FQChciOaxZJ6055wPNcok2FmMsPZFhhPbolKN3TxguP6V7+imN86jocNoTHRJ74OVoEkchv0tGk8Z7XbKBhmEoy2lUSuRVtCYGCAR0VacFTWLfxk4072xabEyqnRhcYIy9rMFaXDh+DIwj3PYD/8q/+T/h4df/Ipe9w+sVzy4v+drXvkyjPaerJccLkYp5fPkUpaQYunMOtFxTVVVUlcWmovM12ZJSVJUlBs+u23ASJElFq4MnmhZjm7LwrLVlks1FmWUxmll2OgneMtVWzBMuP9/tdssHH37A8fExp6enNE0ze76fP7ZetVctL/RKKcnCR+ZfiDOGTc8Nx+l7+V/57ovH2qGrK8YSqnZnm9gz9n6+X8tzJrt2i2htQqRynVOsnyq04n7bE5ImVUTI95F/TWAFrTC6Khu9j7F85hAA5A18TJJW3rviJsvl7IQtseQsyuzGldrCE8h6nkud1obCNqXr0wn8VFUl2a4p/AY9JdBkLVGlTKoHTDFiCQLEop7c2f4A5MwBCmGqCjG5kSkAsG1bWbeDp+u68t22bamMJcZAP3Tstlt2mw3Pnj3h+tkl0ac66jMLY+5azqoJUg0qooz0n81gFcXQj4WYqGphpbz33NxcSUKTgspaFnXDsmmpjd0v5ZbW8vJ8UXIv5e3ZXJq5afN7JJkan9zezBi06fuJE5+xbvMfSQTSxCil4+ZsslKTgHlIiUGQY/c8oxvYbreIDJkFDSZlG5ewpqJEEcp38/3OpYWqqmK329H3Pe0PSDr8VIK+edund6cBNLc+fxCXbP7Oi85z1++Hn8/HcTGyHQYUCqONxJ4EsRSF11JoY1HasNvtaIYRvVxTX7xDXJ/Sf/YpbJ5hGSX5IXpUlgFQpLJnslRkC0prAX5t25YFUGGIeEaXNPqMBZTERyuJ+zDJirAgLuMocTEujsSqxoWAcwKmOhe5jpEv/MIv8IWf/TpPbjd0AWpb8+0PP8VUNV9+9y+zrCwfffQRZ+dnPLt+xjAMVK1J1zS5QYwxWGNLwXTnXYnN0MagU31MEajVEiuR+lw2IV2Oc9czn6jzVNIobxZlc5rcwfPvZYvr6uqKm5sbjo+POTk+oWmbFz77V+1Vu7tl9ijm/8/cd7PfeX4dS99OrlTKppxdX3eVWZv/y/Tpu6+nONcox5GxPQNX+XhqipUSRufA+I2Uz++dK8cqxhlITcHz4umcGDKVGZUM/nKWbcxr54RUs0M7RImZc2nTF6HiSXRYK4PWuQLIvM6rFmNSSw/nPiwS1+n6JLhk6ifBGKEwkc45YgIFWmt0ZVE+QHREL6El2sSSDGKUJqZ4Po1kr+ZxkSVKxJU4i18LgVxzLybAl2OtQ7rfcs0hjZeS4BAZhp6+63h2+ZRnjx+z3W3Ybm7pbm8x2rBoWy5OTqirmqqyRUIkkwAZKCtlSnJL0a8L4m7OPeSdJAY6N9LvOpTRGGto6oaqqpOmrOjmSaKLL89S7OkZmMsXkZ+JSsRFGj85cSgyMcOZmc7rfIySKMFsTOQDezcSSgKFlT2WSJaaye5yDDJOYorvzCyo9ynRYiwAMEaP2doS65dBb0x7mEq/+wMQa4zZSz6cExEv237iQV9+5vt767RA5oVrZiT8gMe/G8ztu2rzL9kanVuxuUDzXDwxB6JGtv2AssKqqZjk9oylbhogFbM2lt3uluq2pakbsBWxPaZ9e0ncnDN+9ilx80x0kXTSJ8rBwBGx/IipFqBjHEaUguA8o3MI+SyTTmuDdxPAUTFitCEEJ4tsGoSlPuIorFxUktBh6pa+inz5F3+Bv/Yv/3WcsTQ3t/jB8Tu/8zv8+/+v/4hd71kvW/7y19/HGM2Tp1f4KCLSJOteQWL5KilqrRUueBHZzCteiu8YnQOlqKsapSJ2tiCYqspb4d7kyZthnvhTMLApfWaMKQtMdkUQM+WerbIp8+3p06dcXV2xXq84OTlluVyWgSH9+cONwc9vL2e0vGo/zk1CG2DmhIr77ru8EcDzHgSV1rzMpGX3312lsvK4za7e6Zj5E/trJ3tr19yQnpVmy8c+YNjSnpquce+C91y9MQOa+bXGibnbc90m0IeW+rEotQcMlVLFG6CUKoBv+plcZJCD+035OQTFWulUoSOt63Gf6xMwoadlCchyICqxXyAJZya5QJURN4LPcWNGYrGNVQnQJjAbUz/FQNZEFdASJwQUCzVY/o1JnH8eE5a1+uaxhDqF1uSEhZvraz75+GM++eQjhr6X8/qRpm5Ytg2L5ZLVYsFysSwyVlExuTa1Jsbk+h3FnTmOY2JVZ3FpYyh7iBtHDBXWWhZNQ13J71JzOPW3TxnPGZTNYyPngyqPp+yxKuuu2lvLS3hAPkYQgJrHfkn8I+KDR8VADIpJb3ICfcLCpbPHlHCS2eRxKIzyOA6Mw5D6W2IevbVUlZUwLaTfjJJY0rnbOgO+ubt5XsjgB2k/waBvesDzv+Mdi9xLEnmff8a7WMFsIGcpgBmwm1/rnn0eZYEijHTDgDILamtQUTGOsO0HjoyGODL4gd4FQtBsNzvWq04KWisDukKt71Mvz3C3jxmfPiJeP8Moj7aaGB2oQFQajAQW6wDWiAtARIy1iLrGaWMxs8Ugr7pRib7RJLwpEim+UnS7nqgVRHjWO/6Zf/Vf451f+Hl8NDz77JJ/8A//Cf/gt/4JH392yZvvvMfV7YZ/7z/6//Ha/f8577zxgN//5od88PFTvvjOG5KQMhrGoS9JI7aqsJVhGAZc9Gy2HavFkghUVlhHlBJrETApKNcYI0yDEutzyl4MJfs20+oloQPZEPM6KrsWIoyd2D6VY3vSxqn1jL11Av5ub29Zr484Ozujbdu9sfAKpL1quc2ZMmkTuzx3586Zh/l3S7B7wUmT20pYoQNw+JJWRw7o3zeqM9h5nvWLM3S3t0aG/XX47rNniRo/2XIgLsIC6Exi70ggLzHwiV8jSonGfH+HQrs5PCOzXAKEQCmdZDFMMQhnnSX/pLCVEJiA48yVW7JBjRGpleRiJbF9hfUaJZHDVClTOMlKoRQqiIRIjBFtsjadGJcT+J9AhwAsJhCT+ziDwPS08vPJLJzIxUzG7mp1xDj0fPS97/Gtb32LR48+5YPvfAcfHEdHK9556y3efvMNAWO2ErdrXdM0zV6Wa4xRSAGjUZgSQrNLclljPzCosRjNl5dPC/GxWCxYrVYsl0vuXdyjXS6pbCX3mQB2zHHvIRkIOuzf+x3sdQyxSJqIwSDzyRgDOhK8KmM3kt348myKe3cWbiDkgEMFJXvqLPM+BLu3h0xZuI7t9pa+79ntdvgon2nbNiV0CGNq6mnsZhmdcRyptS6zrq7rNI8im80Gay2r1UoEs3MS5Eu0n2DQ9zwLdwj47nZjfP7rdzF6L7Kwi3GVJpEstJ9/7UopjLGcrlqMqbDGEMII0XO0aNltNtTrlmF0XN5uWVUVSmn6vpdMVqUmqQNt0aev05zeg5sbhieP8LsrlBrBOGxw+HEEL4u4UTUhy72gMColc0TJsHN+CiCNiBs6yxeMzqVJowguJICk8CPc9PD+X/vnePev/FVcgNvtwN/7B7/F3/3VX+e1t97l3a99ncdPn/HRr/06u82Ov/E3f5n/xf/0X6dta+7fP+eDTz7lS8u3sZXGj4BS2EqycY02IpxsK45XJtWSdNgUaG1Tibna2uTmSYu/NdhkGeUFypgpk3kOYudjR8++k2NVstr7pJo+jY159pUxhmEYefbsGTc3N6xWK46Pj1kul+UYz2/mr9qfx7bHis1MQzWnuF6yZcC3Z+WqmbtKzcZbZoqYIbGJXiynFkCajKpsr8zslolsms6bWUdmRvBza2vMx5+vx4aoQsklUVrAXWbxJnZGlUNM90k+2ARE2C/nKOeQ4xSJKRQoUwCMzM0ce5glfacM5HyyfByYNPQyY+SDLz/PxZclIO2cF4Mckd2g6OJRmLoQfCIWc6JAfgaxxBhqZhmbMZaYPpL71iQX53x9qoxFGQHDtzfXXF1d8Z1vf4dHn37Kbrfj7OyM09Mjjo7W3L845/TkRDJvEe+LNbYkgczTUEK6Zzf2Uwy0c6U605hqoXsnSSY5S/foaM16vWKxXLJYLDD2+SzUQzCXk3mUohAOc3b5RW0Kh6Cs43lIWWsIKQFD+kuEqmMUBjvEVNUlZVQrrcqU8XhCcnHbBFiNVlTWUNeVCE+7ER0DWstrVVWVxJY5KxQRVjhjiRyjmd26hxinNpWMN/dTLs68H6t3N1A7ZOZ+0A32RbF+8wUsh0S81PHIC2JIQCFw/+yIOMrgWiwa2kpjTMc3PviY9r138SHio8bWrbg61aR/lTW4tDGooEHXcHRKuz6GccTvbnC7W9x2i9/dQr8l9ju010nDyaRB5UXiJQSiklJuWbjTOYll0cagQ8oKS8BHm4oRjVsusEf3efiX3uadv/RXuexGjuqab333Q1i0/OK/9C/x5OkN3/nwe3z3w49oFsdstj1/85d/ldPTY/6Nv/4vUNmPGbsdH37vU15/cMHoHE0rfea9R6saow11VWGsxo8DIKXmbJXAmDFEpKQc+Xt6X7phPgTm1Pl8rMzV2OdjxodAVUCbKi6cnD4/gcGJaXDOcXl5WWr7np+fs16vX4G9V+2ONgNWTEBtcrXm1/e/ld2i+Xe1/84e2Ju+G+efKJ+bfyZhlPS7gLjDGMIsofHcFcX99fOwDqmanWyaC/vzM2vhTSEzqrCA08Xmn5x4Mh03AzsfpkVajDxV2DdJoJvW8ymPeuqlDPgye5rZfqVI3pAcj5jchDmbN+6vMSHF+IGS+qrp+MaY5IYskYIzRjIPgTgD2ykG0rPHCseQvpPuW+f+1TrF1sldGZ2uPXiunj3js88e8+jTT7m+usYYzfn5OW89fJ2j9ZKj1ZKmbuQ8IWC0EcDHlImdtQFzzGTfDamiRGKdE/BzziXA59BKU9mKpqk5OlqzWq1oFwsRv1eZTEnjXs3HdHkok7u2eGSSwXLXdw5asV+Ugpjc6UglkBDUnrSZ3KPcbSBKAQWl0VGXawwhElLSjk5Gg1YKm5N4YsC5quxTdV0LUZGzmdOcyRI6GfiVW477SSfz/cNaCw6ifjkg8hMJ+vYCUmPkZYCdyibU/qt3Hve586XhLbUTJ02f/G4eQSXS48C6zcdWKUZDThvwBJZ1xc1uy4hhM4CJnmEcwI10u46qXhDiDViTEhWytToDKd4TdcB6WfgChmAN+qihPjoXmZWhw3dbfLcldreEXYfa9eihg+21ZPOayOhTdQybdPrUQKwqyZhbLGlsjTaWarGkWiwwqxVqdcImKq4HxTYo2qalH3se3+z4h7/7Rzy+3rLdiEu2bhaMvuMrX/kq3/7mN/jP/ov/incfvsHPfOlNXr93QucifecYRs/tbmB5BCZqCBI3UtuaMA5UVtM2rcTzpS4tSv9Kp3T2FA+Y+szkDSZbVDN3dYmV2XteEmORVdFLwC2yUIeoUSoQkUolKkpZt1JAIW08IUb8MDCMI9vdjvVqxb2LCxaLZWFcXoHAP79tzvyW1/LrIECnWPb7n5PNaZ9tm69ivoQkzNxwB7/ndvj7/picYFBh8Zi5Qr9Pm4DYdJhcpcEkEDSdKpVJA0hlHhOsmTu284EnTT5UYtzCHhviU53YeR+Q8VkIe4LBMUaJA0OAZogRF6a9xscotXGNgJ4wDMQxMPRSCUErRWUsddOmqhwK56UEZpbkEFmTKXhfqlAk741NG/je85zGQgjZs+ILCzRVbKDE7WX3tVFTLFiO5wsh4LyAsM1mw+/93u9x+ewSpVRSIKi5d3HOxflZit1rMcxCEJyAoXEcaZpGwF6qXORDYPSOrutF/zAEVEgso5e+rhqL1q1IllhxbR4drWmaRurGz9yp2HzdgJ7VYlbT+MyMbDE8Yiyl7+bPfPrs9Lk5W5aTd7KnRmuNNxrndKnmlD1fWgtbFxNRkrPCtTZFJ1ZCDYTJrBupKlJKeR6QDdM15PjAKeb08HMgwLCua5xzkvyYE2pekn36iQJ9c7A30fWHixPl9f3f54HJMF9oDhnBw3MlG1cMCa0nq0IOk9ay5zv8+fi/NCnVFC/zzW9/xDe+9S3+e7/4zxLHEWUNbdNwcX4MITC4SF03VE1D8CO7rmO5mosCp/P4iM+LOXkTUUS01Kpt1uh6hT4GlKMhEl0gOo/PZV9iBBy4odxbwBARyRPK8SFipGZvcGzGQMTg+y1PH33G42fXfPuDj/lbv/zrbDyYuqFqFtw7OwVjiaahtRqj4Hd+8zf4v/17/wH/+//d/4Y333yTf/K7v8vJ+X3a+oRucAQ3MkRHNVPAt8YQvLCOCqQQeHIZiPsUjBFGLlv02WVQ6PgyqSZAnoWp57Iucwo+u4Oz1W6MEeXDKEG9c6HnvOFkt7FPG3jf97hxZHu74f79+5yenmIr+9x4eQUC/3w1efRhxuxkAWA4KGRwx7oyM1rUVCd27vLK7dDNehi2Mkmj5eQ3tbfc7V9DLDplag7cnqMPU2xgYH/jzdeZNvZyrTGxe6lmsBwyHhxSHSSNqHwmcc85ccWF5LEgSuyWGIYRYkgVQp7fK0LZK6Ywj3xfIcakPSdryOgcu16SFWIQw6+qa2xy65mZAG9d16lc5BSUn/sgzF14iWENqWyk0lJiLgRH0qwv+5KL4wz0xXKv6cbIruJS95VIt92x2Wz4+KOPGIeByhqapqFpGtq24ejoSMBwpLBWOeabnIkbI33fi9s2gQ/nPaN3DIMAXTmvnmUsC6MpoEXitK2dpFuUUpA8KQDKifSLxJ6nCinESRZGiXpDNnRkb5oMjMP1NPMt2VDKTJ4QBjnxWVhLrXUqd5djtRNbmdzkIQTiOEzMIpPObb6XnBRktIYkNq1nsaYZ4DrnIPgy1vu+L/N5Duj6vi/6h1nKpa5ruRVFYis/v/1EgT7Y13H6wTbGQug+984hc7i/MMpSMgeZeZG9C1lPrr/945RMTzyji3z3w4/5L/7G3+I/+S//LjfbjubfWvAv/rM/jxs7rNHUleF7H3yHql0SlMFYi3MDj55eUjULTk9P9gDG4fXMAW4sv+UNxcprGqhBV7HU4QVRhM9d5YMnEsQ1ECMmQAwK7wI+KvoYubzd8vTqlsdXN3z3k8f8F3/77/PhJ8/AaI5Pjlke1ZyfnXJxtOKzZ9c4AkfLltVqBdby8dMr/oP/+D/nf/2//J9xdnbK9fUTVusTTk5PaFuNdlMwtlKKqqlKkkfXS51IrRS1tQUIZrHKQAKzWhWLcH8xmCZ2dtnkZ5et6Ln7Nhsc880g/561//Kkz4Avq8tn9fkxaSU+evwZj58+4fz8nIuLiwLkX+G9P48tltUpZq9BnHutJkRV7M05IMoM3uz1z2OQn19H993I0+cOzjcDQfnvDPzy9eyvjclg5mCdUqq4AFUBbbNzZmM9H+UOAKsLU5gNd+mwrL9X6tGmg6oEEohZYOV50qAcR02EQITktvWIyD30qURj3/fCBiX3ZZWyT5umommbkmmqtZEkuThJnFhjxP2cHrS4gFMvhiBkaswhQdO1ZdbJ+1h6LsYE+pi70yMxiQMrBTEEdtstV5eXfPTRR4TgqOuqgL2maSSuzkjpuMRpyvlmfSrAyxfg2/c9LggomkuIKK2SS9hgTVWecVVXWKtTVamp9q6akRnEiJnFWyo9gdhUFBeyizV/BfYY5fkznY+mEiIVgrh003shTlnOUrfXlrHm1BQWkK93XtowJHf8XN4rEwbzZJ+8p8TZsaQClPw9Jmb6cH/PEmvWWvHMJVzhU93f7IX6vPZjD/rmcVa5vcglcVebW4/78Rp3AKX9bxYAkI8zuWGmgfPctcwWyLIQKYnhcCHw8WeX/K2/8/f5d/4f/yHf/fQxpmloFwv+L//P/y9vPDjh/bffQOOpiVx++G3q4zPUao3S97jebHl6ec1ysWC9XpUYP6nLOd1LiS/JfTebFHJnM1q7MAvzPp8YMR0VMapk6YkLxYVAHzxX245HV9d0Q+C7H37Gtz/4iL/9S3+fJ9db6uWaL3/xXVarBY9vNoxBcbXZ0bQtq2bB8dGCfrdifXxCDMf8wbc+4m/+3b/P/+C/+5fRJvL4pud2CBwd3UdHqQ2ptZZFdgi0dT2Vo9FSXs0Yg44wOlcSQMpzTP2iZ2NKOkGnDRNyVc855Z4/myfbHGDP0+jnws+HlP1divFd31OnCT9+8ojtZsdbb701C2J+uQn8qv05aBkEzubtvGV2f+66tdYKKIjTBnyY4bfn8oQ9g+YuD8ohkLvLgH6+TZ/JRtf8eNnjMTdQZxcsYOgOBmPaFPcFeOfzlUiqyTtRld450azz4e77mxBmuoSpTNj17ZYx6YRmsDePFww+MA4DV1dXac5HhnEsQOP8/Jy2bVksFlzcu6BdLFgul0X82TupV+tRotuXjczklRAt15xwll29+ZrzPjeT7QkRreT5a6WKS/fRo0d88skn/PEf/zHvv/8Fjo6OqOuaxWJB24g0y3rRUlkRxR/6negaZmH6EGYyJCN93zOMUn4zEIvBXVUVy2aZXNcWjWTHhuCJSBhTHKRv6rqmqip8WkfnoDi7wsPoJkNbKXKFlAwydXJjEwCT+uPANTp72jPQFfdCtuYGvNGGpqnLOBiGoZSLE909N5Xp9FnNQdyvJpUPVcbuXUOeh/O5KJVhJsCcSY1MIsyFxefAEEVhH3+q3LvzyfzDu70OO2QOkmbvCk/KxArmBSVnek5mRKaMQwQVU1BzQlBZbNEHx6Z3fOvDT/n7v/ab/Of/2X/FH37728TKsj6/R103rNYLVFXz7/7Hf4N/63/7v0KPO07Oznjj7YfQHLFYLHDX11ycHHOzHfG2Zbfrsdak9SZVj8hMUdxXFFeIJEC662l9CDlU9G72M7MNRJFviTHiCDg/EJXh7/yD32BUNb/2j/+ATz59wtXlJT/3Mz/L8dmRuHSN4Vvf+R6PPn1KfbmjffM+77//Dtc315wcrbh8qnnrrYcsmpq+7/gHv/bbvPvG6/zsz7zDZvcBn91u+MNvBxrg/ORYgoqXS5a1pttuaNqGXbdjDAGPaByayhD8QEBYVaKIXQIoo4tYaA6qDgTJwnI56SMLOMeS2ZU30XlR9sMNcp7tmwU05wvSHBDmRWJMEg7aKG43N3zy6ce8+cabd4ZKvXL3/vlu01q1zzJPrF4akzNjL7vCyH8dstzZj4jEmmXAoOXjc7h2wADO/bhTRukeJLxjvMr6pMnxr3luZU/k4ZFzDdPpnRyTO8t4nv2uZ1xOcH76asylyESANwYnrwUpkxb8rLoEYtxG5QkxsOtES250jq6XuLXMqDRti9Gapq5pGvldxciu6+j6ns3mhqfPnrHb7dhut2y3W0wK4r+8uuTo6Jizs1PWR0dYU4nxrhOADx5jVAknmiqHTN6IPC7UDDQT5uZBThaJWG0Yh4GnTx7z5Mljbm+uWbSN6N85T7uuqa2lSgxfzs6Vc8hPCJkdm8qvZUCcWa26slLdo6qwlaUydTqWuIu9k2sdxqGMCWttEf8f3UBVWVFdsKass8aYVJozjWOlUFqqXuRxpJUqtZVjmMZ0Gfcqpx7J7xImmOdKZk8VaCOMbhpAgusFiFtbA8Ku2apG9z1qGOl2uzTXUkxeCEnhYsSQy+ntV0/ZS9Rg2jsy2CsVTtJPVVeYaFOIGHg3xf69yPN4V/uxBH2H8SaHjNpdn72r3RWrd9c5JuCT4uHK33PnwvPf995LxYw06CTRwxPRdGPk6eU13/7wI37lN36Lv/G3f4lvfutDVqtjTl57k3a1ZNEuqa2lXVSs1ys+u9zxe3/8Hb701j1qZXj49kN+/4++hfFrHl1f83N/+a9yfDyw60e++d3v8jNfep9FXRNsKCxmRv9G2cnNEiJRics2phq9czdBIUMPrPD5QJpbRd57hhD4+MkVH1/tuB1h4xVvvPsOb737Dt/56CNGt+OP//CP2A0D0RjevP865xcrVitLXR9zsl6iYuCth29ysl7Sjz3PHl/yX/83v875vXO+9O7bqA8+wkfF1dUVtjbYpkIZiGgCMDhHVIonT5/w+huvg1IM44CxhsVike5d7ldiZSTmwwUY+pGqrtA6YrVG5Rqbasq0U2qKNcpjcJ7ZO7ljJyo/W4m59u88vs9aW8rgzcdmPwws2pbLy0uOjo44Pj763HH/qv10tLlbcp6qkG1OeWu+DrI3FrNOX/52SMzQ3DCZzrW/liWZSSJxVu5KaPEM5KYPzz0eswvM/86G6QvX3QLUjMgqkefQQSKLSqtZtrlV+YWcxHbIUs77TTEZtFqlG02XE71Pcibyeo5PU8YUF1+Mk6Bz33eJ3fHC5CiJc6vqirppqKua5WLBYrHAGoNRmu1ux3a3xVpJAoghMPQ9u74jhshWbYkx0nfJJewDbbugbRfYOle5CIQo7lVZp1PFj4M1ITN9au/vycNTXtOBYei5vblhu90wjgNNI0UBYsrKtUaYrcPyZfmQspVMJecyuMleD1tJUYHlcomppISoZhqf+DAby5IQqY3EE+bzudElt/rsfph77KZ9KfqJWbxrLMz7RPaCZOjkcbtnbeR/NUqLTl4Gz77MoaRikQCklPZMkj1aC+tAYvJigJDGaJgYwPkVZu9TbhnoZdAH7IE6Yy0mfSeUZxwwmBfPuTvajyXog8nVcBgf96M8fgE0wJzBO+y8fP7D5IksyxEjRCVCkNttz8ePnvK3fulX+bV/9E/46LPHPLm8xjZLHn7hfVYrobvbxQJrrIgya6l9uDhd8OHHn/DlL7zBJ0+ecbo+4otf/gqh71mfXRBDYNU2XG17Lm97/ui7n/KFdx7SKLDq7gevddKlSvEQBIWKkzL65w2Uef/HEDEqMiqDri1f/dmfw3z4KWcXW4zRvPfuW/z27/8R3/n0CX4MeAfnr71OPwxUTU3dNGgN98+OEpvguTi/4PzkCGs1p+tjPv74U/7mL/0a/+q//Iu88/oDnl1e0tozlus1TW3RSkCSUuJa1cby9tvv8vizJ7RVRW0NRkcqbRjGQUQ+Y3KzxEiIKWsuJhFqIwBS6z3Fq9J3ediF2eJ2uMAcimJm8JePkV2/+XNZGLr8JOreGMNnn31G09R7C+Gr9tPdpuc8uSEFV8VMxBXjc55tnv/Na1OJjZoVb59ikSkZk7lNY3C6jucAxfdtc8PxRWP17tdzqanp/g/OpSiSLekbheXj4BrLupevNwPfGEX+I8/PCNGHIqUxJAPNeQ9ZDotUwjwESUzoB7x34gJUsFiuWCwWnJ6ec3JyQtu24sKL6bwhsNlsWGwbjIbVcskwjnRdx+PHj9lut2w2GzabDdvtlsePH3N6esrZ2RkXF/c5v7gQ+SwFQz+gjZdYOD3tP85NhmdhtXJ/zCRbMlKLMdKNI7udnNsn1+V6vU57WCQEh0KS5Nq2ldAAP5OjyXtjmMaV1hpLWjvriqquaVoBfZl5HntXYufwIfWlRxtdWK3j4+NixNxu5Ng5KzUn0smYUUUE3DlH8kXNymtOoTomMaQZWM3dpjK+sot8rt8qYv4iLyO5FZGA92NJoCCdL7ug5+NvGEYJ44oBxpEKSj32XJ1lHmrAbI7m87dt+9wcL1NiViK0aZoSYpD3lpctx/ZjBfoOWaVC4UNZ+H6QjfC5RauwetMSE7MHMz4f45GPIVbnbJOPU0yXAAm4vNnwne9+wN/55X/I3/y7/w2DMrTrY6rVii+/8SbGCn1v0gJXVTWLdplcioHlcsHJ0QpjFOM4shsdj773mNPVAkPF8dE6L7F88ukjiIYPLm8ZzSO+9vYDVHTElOk0WcozEJgYQK0NKqgJ4h6weXf13fx9YyzKan7/ux/xe3/4R7z2+hs8fHDBetHw27/7x3zy5Jrj8/t4P3J7e80YfBLlr7DVirZZcLRecntzTV0Z7p2fcn68pjaWs/Uxy0XDhx99zC/92m/zP/znf5GjRUP0IzZGGmMxKhcoN4w+ENEsFwvOT0+5vLzi4uyU2toSa6MBa2xakCPjKBZ7RCZRdgP44DEpEWQaf+KWHRNgFItalQ1gskKFrTgEf3kxyAxfXjR8CGhjsErhUizMMAys12uGYeDRo0c8fPhwz8iYH+9V++lp83jPqcX8f0mgUtMczVnpebOIMRL1VMIpZ53LupWyVRNgsNpgVDZUw6yWqUpi0LMKHMi4zuO+bPqFdctXGvfG5dztOrXp9wJWCrGi9j5W2E6VWT15Yy92Ov8koJUdmiEJzAPCJMb06QKKJNHBKIWxhtFo3CilKV0MJf4rpsQJYsAajbUNKCVr9nJB07SsVwvqyqKJ+FHqrGbwFUYHIWJ1RVODNRWVqfCjZ9kuOVqvud1uUjzYSN/13NzcYIzFVLLx101DVddEIqMbCFH0R42Vcwqwg+BdAWLZgCzrV8zxfdD3nQAEY1guWiojlZjWy4W4Y62lslUCMwqj05rppvUwM6FkgIS4zFUMYBRBBYbgoO/IXiE3SO3ZECTe0Q1jKkEm5cfqugI9jd2u2xXGy87AlbW2xMlpu692oBI77ccxUbtKmLqsv0geJ1m7VafwgdnYDp6msfjgGEdH1/dolTJvkT3EVFWKSYxFvk0Zi6nAOE+lDNoHlM9VniI+SKiQEndT6UsXJpY0D2ph6sVrF2MsDGNU8uNSxi4wi+fXe8zry7QfK9AH+2CjgL3sbnipwOE7jqNyIgLl4ctaNvnY83fmC7CwW6lGJRIzIp9XKC3o+mZzy+9/6wN+6Vd+k7/3y7/KbTfyxa98jU3fUTc1Z6cnxYrJZWe899R1Tdu0tHVFW1vauuLk9IhoDP/4D7/D0WrJer1m9J5n2y22qTEYPv3sCdE7rm5u8buRdrni6c2W10+X6LQIyOJpZuAvx4FM/TGniOPUUaXPwtyCVlMGG8oBgT/89sdcbgLdJyI8vNls6VG8/5UvMfYDjy+f0lhNheP+/VOO1g11rZBKRYpt13Nyesq902PWrehatQDqnMoqfvv3/oD/6u/9Cv/SX/tLrF3P4HputpqmrnD9SFUDJuIDtEaxWjQs2wseP3mCOzlhrTVWS/wQaHIpS2UU/a5PWVWiAaiT2n+M+0zK3BKUMSILpdEGqcYhGdk6WZRS5sgX6zIneuSgYJDjO+9T6KhGW4tKmXBdSsnv+55nT59xce/ic1iUV+0nvT233jG5ffJ7UqA9r1HmuTUrA8Ci0zbbSPIYzP/uATSmE5a1MY1bWTCy23jGBuZrvYNtm7c99pLn38uu5j0wVxi/SX6G2Vr8/LGZmNEEeDJaLsCQJFKcj0uuWZo39FhkR7QxIhGiJMNXAZUxYDRaG5q6pW1amqahnoEv50IBRxphEwmyX1htMUpjjWVcjlRVRTNWaCMxdn3S74whMgw9u90WkMQCEZ1ner5aoUNCABngham8XMlYLsB36vlc41ZrJQL3SoBW27a0TTMDfLqMGwIEFcpzyDGgSqVYQySeUEUtuoYJPA1ulOsOAefGJJ0j+oAupPJkUSqXjF76PScrZENGkWq5J4atrmtiFNmbauZJmY+DEKNUKEkh+THsB2fl30OKiYsHb8aYgJoPac1WhKCnRJIoIK5cY5B5oo1JRrxGm4hyUoYtRKm8krUji+cScGECaGXPQYCe0lOCyny+7leWmUKNclLNjw3oe46ifIkNbHK7Tv72A3jy0uebXkuxEUkLKwc5H4LDueUdo7BA80wvBRg8Afjeoyf82m/+Dv/2v/f/5sn1ji9+8Ys8PD+jrmuOTtas1iuUkqoMOfOTKBNaa8OiXbBaLFi1NZXVHC2XVFXFttvxjd/7I3x0/MLXvsL9kyOMtmz7EU3kq198m//D//H/zsW7X2F9fsazXYcxivOTNZXWk7WcBqpSEqmY2b/PS+1+0SI+Z7veenCfQS8YnOfo/XcIMXJzc82901OIkdvdDq0iGs/jZ5c8evyMN85WHDUWGz1j37FcLlkulzTWkiO7zfExTVXTDQP/6Dd+gzfun/HzX/siw7OnjP0OozWb3ZYj0+JzrUoFikBdV7zx4DWeXD4juIHTkxPQpmya2hhCP0rsjbXFGpzHB2k1GQJ5PEwJHLIoGK2KRYZSuDlLrC0SqB739fwOJmyO8attTb/rSmbycrFgHEeeXT7j9Oz0eT3GV+2nqmXmIYcS5DUiVzkQi9+VsWPt89mIUmPUl01/DvSsNkUyCEiZh5JBCdN67GYu4fz5u8ZeTGWkfph2aFALljhg8eauXjWBjP339+4+bdaBXLZM2DwReVZEYX/Spm5KXysqa9ERonMM4ygxU8ZS1zpJlkjJxpgYldpaamuT5wDGYRQ2a/Syu2SQGtN5Y0xMqy3r/zD09N0EYgB2Sfw3hEC/6wjOM3Q9xyFgqxpTVeiDTNWQavXmRIrM8E56q2B1iqiLwhJ574CYWD25pkW7oKlrYftqgzYzwiOJZGeZER0CkBILcnk1JKwpDY6UbJL1BwNexaJLWNd1AaF937Hdbtltdmy3G6yxpZZszpCNaY3MhnMep9VsLc2gMI8Lq0ChpTZuGkPzvTt76QQS7I+rmICo9KOAVo8vmbvz0IhyvjRXhI2c5Fg2mw39MLDdbvdjJBXFkMlZzcYYSSgKgb7v0/MVF/echMiJM0XeJt3bmHR2X3Z/+FMHffPYgx+0TWCtvPIc1/dikLd/DTFT/WgiU0zbnv7e7LXyoGKcLB8E8PgAHz35jP/y7/4q/9d/9z9iFxQP336HqOHk7BijNSdHx7RNg6nUXjzBMI4YLRR+U9c0VUVbWZrKslxU2Lqmai23u1P+4//kP+WX/t4/4N/81/9HvH7vgrPVgvtvvsXt1SXvvfs2l2Hk6vqGzcUJbHtcjLx+uqIqWXn7LKdsKIGg7n4Wc6vikE0o8ULjiNKKL739Bqa+xOk6TcqRxTuvo0Jku9kQfMeyrRmGHoLjvXff5otvPuDp0yfCkN7ccnbvtZLar7UskE4rKqt5+MbrXH7xfX751/4Rrz94jYujI3bbHSFG6qZhs+vRJqX4G4lTtFoRULx+75yr2w2PHj/h9Xvn2JhEm0NIbheDRlGlkjmTmKYmprT5XHw7Mx/jOIJJkyx4EYiejbMYZJwIMJTN5bAv89+2sjRKKPrb21tZOJQS7SWmlP6bmxtOTk72xvQr1u+nv8UYRRMtzbuswwWw2+3KWJ3X7cxhCQqJy4JkoKbfixDwLBtwL153PpajuOYgYxhZN+XvzKFlhYPnZaueA6XfZ+0/jNnOAun5BtTBZ+f/ZoCc1zVCYudDlDV+j9GMyRgLJcPVKKiMprZGsn2jnN87j0FhrMbYipxMYoysG0pQZikrNgxjSYRRkfS8Yknmyh4Xqw3YClUHauryHOu6I+ushRgZneOmu2Gz27JcrViu1hwdHwloSWCguE+duIidk8ojGfSJcHwK4/ECJgSkBqkIojRVZVivF1RVnergVsnlWhPcZPiWGOQgFWHD6IiIe9InbT6lJBFEV5blalVi6vq+J4wCSvGTHmNNzeicVPHoe6npPs4NmogyCh/lLpqmKfc+JJALApxyXKW1dtLBm42ZvJeLsHZiRpk8O3k+iASLMKLZ1a8V6fojMXrqpikOsa4fUIMwgiYBe4DtbrdXuakfBym7FyWspxhlxuBjQIdSaRdgDy/kY84TCHM/5FJui8WCHBP4Mu2fgnv3cMJH7nLTlk0xF96bcXs5M7Uwfnu+BrXXYTkWpryUFsV8tFg+ncj/xPqpch5VaF4Zt7ps5uCJKJ5e3fCrv/n7/J///f8Pqmp5/eweq8WCL7z7kKY2vP3wIYuqZrVcEPA47xJtaxj6cYpRsFbiK7SmrixNrTDWsmxqKq35C1/+Kr/y6/+Yv/2rv8lbDy549/UH1FWFNZp/4Z//Rf7LX/6HjP3AZtNR1zXb3nG96TheNFiTBnzOdktrdIgBTXYbTeB3/u/h41KRlNVqwMrCtKgVod/S6yABwRoqDcZofFtxcrSm2+3QaJbLFSrCk0efELXldjdyu+14UAlVL7EbCms0g1Jor1kvW77w3jvc3N7wt//er/Bv/PV/EWMsnz55ysnpKc5DPzhMklkxxqAQFg6lOD0+Ybn0XF3fsFq0rCqNG3pqo/BKp/iMUCy/uqqSzI74gXOh9UzRB6UgbSiVqQsFn0eSSzE2xhhQGh8dWeAnW2Fz2Ze2EQHUo+WKp5dXNO2Cpl0S3CCCpsbwySefslquqFJG353T6RUG/Klrc5feIRjzPhQDtDBxcZrLc9ZaqXmowtzw2M8en59jkoOZGJF9IDe5a1Vaf/fPeQjMPu9en/cqlKU7rf7fL8ShAL854Etuz7mrN+Yi6TPjyyS2r6lrqfATRSR3DIMcK1bUxpZ7LH2ZwjG886WWbN5z8vWQ1l6V48dCkHhubVBVJTVcVS7tOMnADOMogvhRsntVOkZTSynMiDA7+T6y2LtPEioiRp0Y2eTDzKXoQhAFg8parDHUTVXkVQTciVSKuHGnZ691SogICpWAWQR8DAn4BeKYkma01I7N3xPGcJ6XHtN+pNHWYIymJ+Kdx0lPY2wSc64mEDg6VzKy89qb40EzW54HXCCtuVpNDOze+EoZyfmF2TnyXp2Zcq01Nu2bUnd3krLphwGiEAZNo8vxnPeCKdJn4zgUDb5qNk+yt9H5SdFhrgiRgWxxJ8++e6jzl8mTl2n/1GL6vh9BsQ82psVFFMkFpk1s3ewzE6t8eLYJCKaHq2bB0LKgTexfDFEGSEbSKfg3ojAmD1qxErfdwO/90bf4P/3b/wF2ccxXv/YVxm6gNobjoxXvPHyd+xfnAtyqFGQZPN04ElH0nQRjGmtYtI2APVvRVBWNzSVrFLUx/JWf/zm++e2POFqtMdWC3/idb+CGnrfeeMDPffVLfOnhA9qjpdxHVGjbsHGgesfxosKkQLVCKSsBsSr1uTF3ZwnNX9Nx/29rLC4GPJH33n6Tx7cjVVNTmRarPLvdjjjsWDUVrusYvGNd19R1zcN7J3z46AnbrsdWtdR1NAatoLKGSKRuKmwwuNhwNq752pff5zd/67f5g299xFffe4vVsufq5hZCpF0sk4tBE6PE3Yj5JoLJrbXU5+dcX9/g3C11ZTAKYvRYWxMxjKMEf/voJZhdidaTSeWDVAi4mKQBUrC790FiE9Pki3l8Rwkm11rqa6oQi7s4L3QqGTbbXY+tjMQz2g1PbrcctS2ryrLdbtDpHj76+GPeeeedvU20zJA8qV6xfz+xrSj2ywASsBdDMU/3w09gAlxqcsHOxoTWWgL+jZkCwg/cYXe5dOfsobR9L8iUta6Zr9HTEHwe8P2Jmsrr+vOJIqVPcnxVCEQfUualADKizGsV806QSYWpT6uqYrVcpv6q6JK+3u1GkioqW0sojq1kHVRSsrJUpfBJriOydx1i+IE2UbTaQmRwHk1EG01lGlyYmFyjJalrvuEbbdh2O9w4cvXsGf1uJ+7n9GxzywLJ+V8S2xuDgSgJDW4Q8KiVpqmthNTUDavlUmrepmOa5L1w3mG0ReucdRqnfUSrwsv4GBljYAyiYag6UUPo+q5UJYkxiUt7iXecuzpF5qVCaY0Lood4e3tLXYt6wenpcXGDf/b4cQF3bdtSt+m6QyhsmfceRkVQkTGVNcsEy5wx83lvUwI8dRSwOqYEjDIEjVxf1dRSW9h7VJK1AdGAdmk8BEVJ7uhTeTZbS+bxru+mY6pJiy97dXKSXwZu+Vnkay5FCGbZwrvdrnwvx4z/2IG+z2vfj206dD8cfudFf+fX8vf33QgHCRx3fD/XhdTJ8vFR8d2PH/Pv/If/KbZd8/rZOdZUfOkvvMfpquVo0fDOw9dZtg2rVlL2vZfU/23fEZVia6YCyXVlE9izVMZircIkq0opxZtvvsYXvvAQWzVcnF1Q6ZrNdkvnI8+2A3/1F36Wz548xWlRrpMkAstuFEvjZLmAGJI48b6b/a44mcP4xn33yNRyQsvpesFu2+FcT1017LY7Njcb+q4nKsum6+lHx831DRenRwl0Km5ubkRo0giorusKVIp1VArnI01iPN948Bq7r36VP/jmt3nzwX2OlgueXt4QEApfq1SXMsr3hO2b7qlSivPjI643t1xutqwXi2Q9G9k0fH4eeeecLCmtp/jHmDYPodl1ctvMXE55sw6RyjbEGMRyTp/ddT0hBKqqwnlPHzxd19M2lWQRE9n2HXXVMqYC5nVdc3V1xXa7lZJ1h2N7GuTPvfeq/eS0shHFWRae90nWRIBWZYSBUSrLBomAbo7xKWCDiSUs7IE16KhT1mEu5yW6b6rE7sV0vgn0zYfVtHZmxmF6b4pJTHMBihtPAMLkfsnvRTUDijm2SilESCn/OQtRmS6E4psL4q6TZK2IJmVKaiAkRlKBSnHcQJKukvsgJXYZK1UXtCbVgg2Mo9T9vrp8JuuF0imDVJixtm2Zr6neS51fNziqStyMppJ65VGwn4j5pr4qmdbe4buusLtzeRKlFD44Yf68/OvHUWLH5A6kgkcCkFbleq+5zzQYTW2gsjWVtZK0UacycTkbNl1TJKC0GPbBCWOoK03X7SZX9jjQjwNd3wkrmerRDoNj9CPOjzx5+qwAmLZtihFijUUHGRk2MX2VqjGdxXgrzKFzJVu1qhuWq3VKLNLc3NzQ9z23zzY0bUtTN6yXS7CJLQ2BWglYU1ri5EbvGb3HRqncpBNoy0N7KOxocomHQEDEuy3CKuZKIT5l4zo3EFLCivMjwQe6m5HlosUaizJaXOkJ/BlraPWC0Y3FzTy4UZJ/ZBZiWjHeog9oK/ugRqWkGPESHR0dFVHsHJKUxcK7rhPm8SXajx703bX/vMDwex7ofR8K/47fDwHcIbB77jJm4FEyc1LixoE0RlTJLYe4DFRUaG25vNnwu3/4Tb75vUd86We+SrtY8OzpJU1Tc3624r033pCqEbVNenFSo9YFTVMbBh8knkwLYq/rSlTQlcFoLaCvBNLCydGS97/4Dh98+Ii6spyerlgdL+n6kV//nT/iy++8wdfee1MkTSpLiI5KGUKEm91A9IHz9aK4JOb98iJwnRfn+bt7fQ6pGqPCaojB0blA1VRsh4Gb3Y5dP3KzveR7T264ut1ydrymbtsSp7bbdSwXC4w1yd0prvSICFAqBdEa2rpCG8ubr7/Gdrvh8bNr3jkwEFcAAQAASURBVHnjHsMwomzF7WbL8XolcTDeY73GGrVXCi1GEQQ9OjoiRs3V7Q3nJydoZen6DW2yxnJGWRZpTl8u950D63XK3A0+Epgsz+AdVksmVXAjUYsbRtmKum54cnUj9H7VsNttqepKXEn9wKpuid6grcIaofW7rqNtW/q+58mTJyyXy7LpTvMk7v/5qv1EtuKqSaBPmCoBMIA84wT0tJnYEsUd618IEorABMYyQxDxeDdl++Ys3cmlOx9IAuyeM46fG4McvDcBvmw4ZlfWBOL271+lFw/X7T3mMAM9KMCvuFLF1UHefAr0zFhyfq0616SdMaZGU1Wy7gggcyh6Rhyjd0Xb2Y0S++eqiuAc2X2eN9/oBbQQJW4uu/jKVcSUPawUzGqyZhepj/vlGovCgFbiMoyyH/lxcuvFIEljOfZOPCc5KS2Bw+CpbEVlKxYJmBij01qrSh9kER9ttCS5xQgxlR8bB/p+YHBSemxwY4qtc8XFLD9j0RwVtzElRtqaMZ3bYHSdnoeSOPbkMQk+oK1Bac3oHLukaKCMoW4bItANPV3fTckMlZW1u1GYaMUjk2qtS4KEJzrwxmCRWLo8jiY5rjiVuCMLLCfJlVl5tRJnO0ukiCBFAYzG25j6MorOo3NUs36WShxJvDmm9Mo8pdJcK/uXmcZ8Hg8lCamu95h46bs/0+zdg1k990k916bJKn9NLjGlxdVagFr6+BgkzdtkFzDsLWQvilfJf+9ZkOlBTOfWYkGmbDqFEm24GPn2hx/zu9/4Nl/4yvu0Tc26bfnSL/ws9y6OefuN+5yfHLNsJR3e6KTRVltssoaMkjiLTOMbrWmqlCmnBLCUbB0Dy6bmvTde59GjZxJ/URuqpmF0nm50/Mo//l3+8Jvf4Rf/8s/x2nlTMmFd8FzfdFzd7KisuBBNfgbJSr8Lm8c4BdrmhTPrMh2CbR0VPgYGNxBVhYvi9hzciDaa9aLm9Lgl4lEGSFlOQSmuNzvuLZZkv2jQCkNKsFCppJy12KYC5zk/PeLLX3yXq8srHIrXLs6IwbNYtBytVlgjEF0yycQlHWMsfSk6ToGz4zXWwM3tDjAYbRm9LzEzo/Misp0W3zEEeufYdb1U70hZdDoN2XEM1LVFYTAWjFE0seF2s2MYfbLqSM+gput7gnc0dYOuakY3cNM7tpsNj55d4kLg3vGa3fW1MHs3G8bRc3V1xcXFBavVqriq9mfbK9T3k9rm2nrEyQ2ba0TvMfMKjJq7g6c1bC7zELyfxWlVe/Wh57IYc6HxeRxfOd/sX9hfY+fv5dfm6+9dbN18mMrfE8M330Dz63PguMdqzzbIGCepGnkf0eebHUOEneNze0LWZjXaYJqUwJDuwVpL3/d03VBce+PoGPs+3Z8p96FTFYvc6rrGWFn3rbXl/lwK5A9WAIaUHzO0ywXd0LPd7fCdLzIsGtJGbwnA6CR7M2d4ZpBaVbYkNFRVXTJKrZ70G3VihpumKQlsmMljoY2Re0os4agcPgbcKOBu2/Xc3N6UJJIYoySHJEA4hRFA3wsACkGkyeQ7cp7VaslysaTRTakZu1gsxAPiHJsMkICnV5f4p08w1nJ+dsbJ2ZkkXARZE7ddRzcODMGxXq2EUfQBrYNUAkkbXQZfueRbXdflWfV9X+6nlOKLOaFmFJDZd9S2os713tNek92vEQh9YLvbYe0oa3cU+ZWbmxuWy6Uk/oVQzmeMkX0gi24noyEY+Ux25+r0vRJelRjUIXmDsot3Hl7xee1PCfQdQoqX3ZTSwkMSKVQaFSfBzYBkznovAEarCXHPF8i9M6u7XcPZjZcXH59FEQnFfalQoMER6YeBJ9c3XO+2/MWf/xoWRXCed956wOnJigcX5yzrWuLyZgtcTMWcjdFoJ4kgIaSi0lqVNG9ZyGWSKqWoTEVdRS5Ozzher/Hec3S0LgNvrQJX10fcbAb+zq/8FtvtDYrAa/fv8bUvv8/77z6kWS1wfqQbIsumLYkF388ZqA4eX+6/0o9pEdZK2L6madjtHLtdJ99NCTDHx0e0bcu9o7UA96HnydOO682OXS9lx6zRGYem8j+qLOYoYbyUEl0pqw0qBEY3cu/ijJvrSza311xcXCQ9J81zAbqze1CIkX/c1hhlePTkKfcuLlCI+70ymrquGH2kqkTceRwc3TCkjDARcFZ6qqNY13ViBkIyRDTLpqIxGoLDVJZAZPCBoA19iDx9dsVmuyXGwGq55PzsjIdvPuD+g/tc395yulxws17R9UMJCDbGFLZvekiv2k9Dy4DPe49ikluxWoTDJeZH4oBjYv+MMcRkKJLWjagmaSGT5k5T11RGAsHd6Oi2O/qhh5gSjpIrMC248o/aB3V3r52JbUyB+ocSUMlxLBt9nIG3xGqIMyGxK/OEqOcowMRkkneFOIufTeeabdKxsFORXG+XdIQ4WxhUPj8xge5QXN8hBAbnwGiqpkHbitq3KUt3cq05l92qcsRsuGutcEGYLTNaqqZK7JbdS5LRRqVwFl0ARE6qyBmxu67DeV8qghgzgTsR3JbEPwF0hiq5a/OPTuueHyVFQivJRlY6xRdrTdK7QmkpjZfL+FVNg62E5avbhtXxEcdnJ1xf3dB1HdvNlhA7cclmhiqE5E51jAFG71AmretKEaO4s3e7HePalVhCbcS127uRq9sbATbWsmoX9E76+/GTJyitqeuak5MTItAnl+bN7W16LoHT8zPRUVwsEsuqig5gTnzJY0tpJUxguu+YsoxDCCyXYmAXGRwkcWW7FR1FleaYNoZKKXQnEjQ5tjJ/t+sknu9QekYpcfvqFKLhOumPVk2l15q2YbVaM44j2+2W29tb0XlsmuQZFAFt95IMX24/etD3AjmQl3HdZpdCeU94IiEKtcInuhalJUN/VpMSpiDlQzYvW6gHZy70eg72DWlCWgR5G2OSpRB4/PQZjx4/4bUHD3j42gUPzs7lmDry+r0L1m1DYwxWT1Z3jJGohdL3UeGRtH0f5d+qksWdxCjuBUzHINp96yUXF6dsuh5rT1ksFjjnaBrDw9cf0PfiMr66veW7H3zIb/3hd/jN3/1jvvLum/zCz32F9956gNILjBupjcWQM1Mp/fO5j/SgT2dPi+12y+jA1g0xwnbbUbct4+jYbXturq/EulsuGUbH1fUWRWTZpgLflVQpCcFjTFYZF/BXW0s0NkkMKB68dg8AP/ZSs7FtqepaGELh5AGDj37P8p7fQwRWreXBvXMePX3G6fGKumokKLkfUGlxzgG2zjnRl1JKZGnahtZURcZF3AMBr8ANAwaorcTpBSK3NxtuNzuubq7p+pHl+pizexccL0Wyx2qJuWmsZdiAjh6TZGuUMrTNmspabm5ksV0s2s+ZQ6/aT1LLm4zMr0lM2RpbyqlBZv2CGLz5b53WmISnckzpxJzJWuK9L9mdwYe9dSYd7IXXd+g1mbsfC1v3HIM2JaHsbQcZxM3Olz8T8/dmx5t/BzJmy7GGsYDHQ4NfnLf758jfKEUYZp+NTICvMF/ZNW4Vxnu89eRScCEEQjVVvnhua1Hid1DBE4LBK5+MRqn6oVNti5lLRXTsEtOZQV8AjHM4ZxIJQgHaKsU/50xXrcWdqhPYm+R8siscciawgD6FMioJDIMyGtwkXaJ1qvWrkjdNZZapZhhGCX1S0nf5WWfB5Rxj6EBi6LLoM5JkMwwD0QsjWlU1Icmx5HGTdecWi0XZl4e+p+t7SPV620Ura3IQo70fBrb9jnrX4KOEONiqSkbG9MTz/ZGAaAZYQGEe83VIMZxY6qVPrtfEho5jeT0Dep9E9uGAxWcKy8ify3PfZc3DhDmGcZSaupWladu9eZeBa3ZL52TDH6T9U0/kOJzwmTxKrxSrUWnNpht5er1ht90CoI0SBfGqYdk0lJjjAhbleLnzpnNMulTPx43ka0nnD5GgwOgqfR6Uh6Plmq9+6cuc3r/leL3gtFnQjyOnFyesmopFZalUvpbk9sgFvYU7JARxb0oWkgRqaq33YloK6MFQEVkuF5yeHLMbHpdBVlcVi7rhZH3MuAwYFTldVRwvLDe3W/rBsdtu+dXf+j1+/Xd+h3/2Z7/Kz37pi5h2gdGUAb/fB6r0Q7Gk5+4Ynl+wtdIcHx+xu9xQWcMQAje3G06rhuubDZ/dbLndbGlWK5Q1bG83XF3dcrQ+YrlsRBvK6FQUfdpUYojSYyEWbaymrlmkGLfbYYcPQTSTksWr0vVopXLd6wLy4uxvlCEGx6qxXJwcc7vbErxjvVww9ANtK4tUjKKzVaXMqH4YaNoarUhxVaBcRCmJ96iNobY13sNOKZ5e37Ldbjlar3jzjdc5XizYdh1Vs2C1XmIIsuhKShsqivSMCynuB2EuNJMkwZPHT3jr7Yffb3q9aj9hbS+DVk/ZhlUpHTiL34oxsVKTG7WsHyQA6cMkWZE2O+ccQy9uyhwblJPJskH8g7iHyvXIAcj/qHReZu7dw2/szUWmxKj5d8unZyzg3jnzdcdZbdjI3saYmcT9WEOKqyOveRNwm85TMqpTHKX3yd2qbKmlKtqiUy3c7AJ2LsUBximeL4ZIUCLNETWooNEpK1Z8S2CsaLWCMIXO+8JQ+eAToxme28uMFX09o41ki2YGON1oKcsWJmIhAz+JE5XO0NrgECN3t+tEGsgY6qYWBis9m5j26MG5CRSmZ5eTOlyqseu9Z/QjTdOkRBkpO+lHz/XVDW3TUtc1x0dHpeZsVcv5+nGgXS5KssvgHZt+h1dSlaNdLqmahqDg9vaWMXh2w0C8vqLpepajo1m0WDsxn3msj3sVbmIB+Bnc5USbJG1dANZUU11Y7D67+vOzSM9rGIapP2bVmOq6xlaV9MswFM1N0b91xS2/2W3RO02X6upmPb58XcMwFNavbdtSzu1ljf8fm+xdUBIE6kUW5cmzG253A6uTY87u3WPVGEl995EnT5/x0WdP0BpWywVHyxXr5QKjYtEiykweiObeYYdMIDGgVaQ2U3mjiMZHyQyrjMirhABvvHaP8/NzBtfRbXe8/uCCxmqapN6es+DEwErARYtrMEYwGkz0aCX1CnOmXIgRm3TmZMOXyLqgDZWFk6MFV9sWydyT+pt129DudqytJQRPqCx1U3G8XqZJrLEamkpTqcAweHZqwLSTm1elSVwyV1KLULLrygu5v5RK/Sms6zg6rFIsm4pn/Y7PLq9Yn1/Q9w6rK9587QFnx0suTo+oVKTvdhydHtFYSWLJsjJiCYorXCmTFg2xbnWyRI3W1KslNzfX2Lrl/sU9FrbCSBFOIBS38GTdQ1RKFPqTRS/WgqKtNM3ymM1mx9PrW1aLFQqFDh4/DDRVzbqt6QfHo21PVRuiD+zclqZZSGwMlQj+K8VNP/DRJ5/Ru8h7D+/z4OKhnDdI2R/nRlarJbVWKTZLMrasSoHIWuEidOOICpGmqqRvkpv78uqS+6/dp2mawgy9aj8dbR4fF7zHRYrbN29MxmhsZfbYibxJaRSj0oSYXIO7XZLKCAxdhx9HDCptIBWVsVKhIci4q2ZGcnYbRzUzxGLcu8aYUV4BnmqPuSptXv/0B2x+do/zw8bgCwAqoJO4V4OWIAliz8VwF9CZE2iSy9hojFaYAhSnOrwhaW62iwlo102DNZIFOg5S0SMkEW3Z7CUGsEB2xZ44sM3nQcrBRUQnzlSVyITUNbayyb07ldiKURLIppCgKQPb1FWqwKGEOYoQU0iUnCvFxQdhsXKGioSsyLtKmRLu5MbA4AW0jMPA5fVVWmI1J2enfO97H7DrdnT9gNWaoJCM3LYmdAE3DtzebLA7cde22UsREW/aOOCJVF0S2bdW7nsc8alKSgbTQJGscd6z3W5xo8QTaitj13nHtou4EFBWEzQYl6S8CjNM0fcLITCMA5IgJbV+Kyv9P3onewGaqm3SMx1TWFMkBs9u6AthU1mLTsRP13WlUklUcLO5FSZQKVarFTb1Z4hR3LRJM9bHUORdskvXGMNqteL4+JimaQpIHBJofPz4MUdHR4UxfJn2pwD6XrwTHbJ8MHO7RYk7CSGyaBe89fBY6FWlMSqig0MZMDFy//SMeKYJSipE7LZbbq+ucNHTNi2r1Yq2ERFjIsK06Qno5HP2fV+CdkOq0QrgCkhUBDT9GCVbNVVpuN5uePONNzBKUymFVXP9oXCw0IjXcW5J5yLOcyuhBGbP+wSxzo5XK47WW1QQpN+2DW2lefjaWaF7u0GCfFeLBucddWVZtjWrZcuyrllUFW7oGd1IpaayTPkiyzUfeFfmj3TvdQU+BLpxYIyefhx4+uQxTz75HvfWDc1yxWv3Xxd6fBgI3mNSDNHRep0EQu3E0s2Yi8Oag/kSsuvr7YcPIYFjWcRcucj5Mco3E8VvlMITU4gAKCt9cLQ+wuiO222Hp6VRgaoyKe5G0zS1BE8rxfHFKT6Ai1HiPZXm8uaGDz74iHax4LX791m0DetlLSCfSFRRYlODxA6qKELdOcsuzxipSdwlpiLQdR1HR0csFgu6TrLVnj17xusPXk9j6ZVb96ehZY/CpCg3MXD7Wnn7jMW83JqKEoyv03eck00rBpl/3iXXVRIvDt6LK5ip5tGey1ZNr83Xsz1GIYE+yPN3qtm7d7zve9/PJ33kNo8hnp87Jg9Kltoo7vH9b++xOTmof85OlutInqJyr/Nrj9I73vsS7yhM6aT9lvsiBFPWY609wtpNTG1xzSqVBJCztlt+8qocSyU3psnPfq6fWLJ8KWu2UqlCC7rcp4mRqEWqJ4Yga6gxB3tMKdBJ1he1VTVl5o6exXJZEk/GwaONxNY1bYsLnsE5YSKhxN2FKAlx217kXiJQhVj2ukWSztJKia5d8j41TSMKCl7NxPIV3jtxmyphWdFa6iR7LbI3XpJOVALiq3Q/uQLG3FCyRpJrdJTEw+yezqDSWltCIYiwsMviUs0Z1cz6kChVVEpVFelMDAJUQ9/jnWPX7SQhUGlcCBPwz4RRNuD0JIE0dwOXxJG4n4RVGOZxfOFcm7c/E/fuXQuBUuK6jSEhaaUYnYMsqaJEKIToUFHoY1MZmrZh3bQYrfFEttsdu92O6+trQvCsViuhl+3+w8qoOLuBxT1IcrNKsoho9kjWlfeBzXbL06dPeffth1RaY1Vi+NT+gjX/PbuNy0lgL927fG56e+8YWimWdcO6XdAPvlDNldFSUC4EmkUr1LkzJdbMGkNTGWptiURuNrc0WtGPklSyF/P4Oc/msJVMPSV0PVHRdz0ffvfb/LW/9LP84l/9i/zW7/4+QxhYLtfsbke2mx27bgdA07SyKJmkN2amBJa5uynHSRzGZ2qVKoRERBh19n7+t7jFNOg41UTMnKDP74cIKrBoGqqq5en1FTd+5PWLU0L0BDeA0pyeHosRoSJKWwYX+ejxp9zcbliu1nz5K1+VOCI/0lpNbSSoW0eRc8jjS+cFfTa5sytGKSnT58eRZdNSpUleVVUBfU+fPuX+vfsY+8PVP33VfrzanvEVp4DsPA8mSaNUDzZl88GUyae1JjiPrez0vRAIQ0+32xGdL4BpDhqzS2reVK6+8ILrzXGDIcOUg7knv89ciQfG2/SZ/bhAAX+KeRCgOBdiuZ583RnwiSDz5NrKuoZ5nj/fXkA6IDJUqP3XhcGcdOzypn8oniugk8Q+pnvTmqg1anQTKDUCQoy18r5KdbtDLOAkqkkeCqbYwjnAzveS/wypszLoi1HAV+4/Y0xK5kiAKUyJFyG5jkEAoVWwAHZdJ0Z917FYLqmbmmN1zM3NbYkfPD07Q1uD856u68iyPO1ygUnVPW5ub593SRvD2fl5ASrddidspTEsq9w34m0ylQWt2PUdl9dXNH3D+fk5zaIlJhDZbUa6vmd7e4uyhqjgXCvqpi7zI2fNAiURJrOreT5JjGFVRKr7vmccHVUtygvdbpeEnqfnn+foPAtYku8kOxolpROHcWSz2ZSx45zbCxEwyX3bpMzi3E/52rLG6xwEGiPlXHNGd87q/rz20qDvrkm0NwSfs57uPoiaffZ55m+quqGU6FYpZVAquRUjoCJRSdJ0o2SQCugSur+tNct2hTFVYexubm54st1QWcvJyQlNXaG1SgH6qYOVFQ4oAioJKHYDLoh2Xjc4Pn38jHffeQdrI1ZL0r7Rh3eastbyX2khMkYTcvyAMXub9h6Y0dPClTutqSoWTQOIRaWUJiqDD164eaXRMaJjwKDQlRUrCo0bPTEorK1o6oqh22KNpmay+kiuwmwNvwj4za39/PuDe/f47NktBlgvF/z8179GrSNvP7jPf/N73+b1NxsCmuViya7rhFWcSSxIBYsseSBWk9Ea79xUQzQn22QXhdZYrYjOZ36PmLO9k3ZWib+IKaZGSxC3Ujq5h2ZuK5IYanQcr5c8enLJ733ju7z/zptYxMDYbLesVyu6XsbB7W7Hu2895LX7DyB4YhSm1abFQBtDDp/0qY+N1sXizv05gXu5hr7rsDrVa07fybIMPrk1rq6vOD8/v/MZvWo/eS2P0+BTGcGoigtK1sW8TiqG0eO8fL5K49c7V+qqqrT5+1Saa+h6yahPm0iOIcxMYQSUNZAqyehoCvMRUlhCbnN2KAMZqeDgMVmLzVoR3tViEAt7kUBQiM+zbCqXipz2jNmukDuogL0QgoRLzFy5mb3M5YNy+TZmrGRMgXwSCZKuw2RJp9n1JN5NRVJGs0tzNlLXNrHz4PxAiAKkhEWa35UkaigFProUcwVa6llKFYkQUokwhNBQIq+jzOQFEkWJqZ/yTwCIck0ZKGbgHFO5DNk/0nrukZJmpLgzfCppFgqAGIYBF6ZEhjEBievbG0YvyWx1XdOPEq+26TZkjdKj4yNGN9IPA2502NqWOL5h6MuYWywW5Xlsu05cynoKJUCJe9jWlciBjX1KFBwBxWLVojQ8efqYdrGQOsFVha001huqphbmcRRXtK0rFosFy8WCuqlLpvd8TFdVRT+I4HS8vWG5XLFYLsS9naqNPL1+hlGGummS3Ess3Kz3QWIwZ3GCUrVEFYPF1hVRJZdtt5uAX/AEF9kNfcm2zxItGQQvlssCQrPRsVgs2O12heFbLBb7iVmf0/7piDPvNZUsojuyQRWgk0BjlDiVqZB1lGD3FK9gQABfsQMVRklnGy2JEyZKcGRzdsx4csy263l6fY13jouTIxbtlNYtlHlaLIIsJJttR7Nc8fFnj7m+3fL+F7/Asp6uWd/ZyYcdENBJDzQnb8QoenI+Bowyha6FWZ+oHK/hqWrNojIMzqU4C4nXMErK96hIWXCVnizrylipFOE9zim2KmCUlInRSRZCXKQpjudlHl++yygZSE+ePqHvA+vjI6qq5rsffMDyK19idJ5vfeu7XPWa9997m13X8fTyGg80dZXKruWAdES+ZQYq3YxBUKS4vKTNaJUi+gAqbVrpv7lecraevPcYUpIEWjT4gmTSyYYBoFNshQB4FeC1iws+jZrf/+YHfO2Lb3O723DbRz749COWi4aHbzzg7XfexoRU7Nx7YnRURqUawqpoBQYlZd3EiZN+4nwRTx4sH6iUjG0fFc1qLZsmMm5syoBzzvPkyRPOzs54yTn+qv0Yt5ItGMSbIOBJE5gKwc89BZnx2vt+zkiEsvlLvVUJzNeo4p6zSRdUXIBT5qVgHAkryEkDU+ze5P4jnb9A0QT8SOEUh/F3QlKp4qZ8oUGZmf4ElhRCwmdDsLB7IRSmap6wMXfnpot8/iSZdEh9edc1TB+46/186Cl+MD8Dn4Co94Gu70sFB9Gok+eCVqVyTwZl2kyJBGpGIEyfYerXkvQ3samzL+AzaRHz2ilrq07G5l0txikJox+GVLFFAEauQZu9DEpJQp0Lfi/pwWhhL3UCd86NaF0neZkFfd8xjmNJalBKsUvgR2uRjQlEXPBFoy6EQD/0OO+KgZJ16ZxzoMD7ilCJG72ua4ypGN24l1CR98V5YmfWtssAKiJ7Yj8MEk/pRBZFnmsqb2dAGfHa5JrCe/p5pZZ7KOOBVJtYW4OFvfECki2sUyhGVVWYFNO4227Lfa5WqyJd1qfEjkPdzWEY/nSYvjlDN734g+06dx7jsMU0mGOi3CExUSlLKAq6VsaIfvgMPGYgqdSUAZvPa5RivWhYNjXjOLLrBx5/8ojlcknb1qyWDTEqlPOYGNhtB2y95I+++V2i1rz/hfdorcQBxIOF7fAulfr8+5wvHCU+KzNP6X6KUGtieuwwSmbUOMhCqCSpQwCTJ8RQFpBclkkpJdTydsdw3fPa2RGMA5VNRZ4NRJIbtbhXXu65xqhYLFe42HFzu2FxfMY/+YNv8OTymu3mli+885D16TFx2EGzKEWrTW2LGyeroB+6ZvOiXtd16ZfoPcpUpU8OGWN59rq8n5nLeV/OY5TyOebnViqiQ+C18xOq2vKNDz7lD/7oj9iNkV/4+Z/jvbdex4SRCkeIXniB4ER0uW2pjd0zBgpjMrvWPddWZoaVLPR939OmjLmj1ao8w+xKcs5xe3s7K832sjD9VftxbHnDDSHgnS/MrjKhuHJ0MeT2Y89K3J+f6neWOJ9UHcF7j05VEJqmoW5bFGJcuOALiDwEMCGGvTiovVCL/CNvlOuAGehLr83LfGk1Ay08v2bLW/KOKtd14Nb1kxg/iSGVFybJrXSKcj17a3E5t8pf2/v8vB2u4fN+8nFSiMhais55hn7kZrvBJ6NU3PMKnQxyFSSeS3mpDZvdx8roaZ2LEg83XzeytJjIrUx7o0oGcIiikZdBn4AdXVjEuXtcjpuNCQHUwzDQJfYoEEVIPgSapuHp06cMw4DWmpOTE0mk6HZ7z7ypm6JL13Vd2rOkAoj3To7fdcWFutlsSk3cqqrEszY6NptNGfcZAGZwudls9vpjHEc6rVksFjRtQ9su97KouxwfDaJxmrxMuV9zkkSIkW23Y7vdlus5Pj4uY+f6+hqHxCUGInVlxRvlJzH1um1K4pXr+5R1LbGzOoksa60lljZm2ZVB5mKaJ3Vd0yxabq6v6dMxXnvtNemfIOLPVcrmzXqRIYRSnu5HD/rSfCrT4EW44PtYSszeUgcbY/53PulVcrNOoA6i0kSV6kj6gDbP05rFZTazTDViweoYsBqO1yvWKyltdXl5yTc/+B7RWN558w2O64rHt1f81u/9Nu9/8T0uzk+plfA0DoVNKfF3MpXpOg/vT1wn+5/bv94JSM5BTG51VWFUl+RNYpq0B9pBMX2OlDiggpS5aQzWLIlxKYzhdihWUNSGeSzLnp/lc9p217HteqISqZZoar76c3+RP/7DP+D4aMUvfOUrhKjYdD3r1ZL1osUCjbFYPRMQTRtHKRcV4/4mA8lVqovg6Jwtzs95YkWmWKIcL1jub7ZQzVveVEFhEKHcs1XNqrng9OQIlObkeE2tU3yVyE5Jke4oGeNGT8K6+Rx7m/OBtV3GZ7o3ayvZLIhFG1DraXHPFqz3nsvLS6nQEZ8fT6/aT0579uxZGSNVVWErS0Vk8D7FNFVYa9CpML1SlIoCPoRSNL5pJSQieC/B94sVi2aJc0NiQUT7z3kHSrwi2krQ++BGGiPJICF4tl1X5tUcuNlUJD4zkxnMBWZslZLKPC5VQKjCBI4y8DPmoOxlPGShZBfIXpHgA/j9xI3M2hVXqvg0J+Yl6SopSOK1sRxZePeJXcycZwGiqW/jDBwoLWAta8jJSdL6VFzxAecHOadz3G62bHbbsp7VdYOtLLZuWK/XLJcrjo6PQUdRKwhO5rNWIpasRL/UewH0Ohp0VGw3HX6UZx1VBs2SQGHrpqwTwYVpV4k50UUx9j3OjYUh8t7ho8e7gWEQF+Ru6IpbOgTHOPZsNjc8efJZAmuVCIRrzXK5ZLlasN0sWLYNz64uC/McUthAHoOk8ZNDDTLL5Zwj6EDTSqJDZSpO7EkBN0CRGcpjSY4fCkBSSrJjfQjcbG653d3Sj70wkzHQ1DV100jd4M0tbhx56623UEZzdHRUGM1hkHrs6/Wapmm4uLjg+vpajO3dhu2OwoZmg6XxbTHgbm9uJJFldixrragxGAF+g3cYL6+tVmuqpmb0jkePP8N5hwuebuj53icfs2gXLBYLzs9ORcw7BHa7HVdXV1xfXxf2T+pBf357+Zi+DES4G9PtbaIvYLmm+JQXo8IcwJl972Huwk2TQCEClmM0EBSWXFJxslb1bOMtTFraeBWgok8xeYbz0xPa5TFPrq754IOPGMaOTz57wle/9hUeXJwx9tuU9i0Wlk1LR7piMtB4iU4s90FUd3TTVKcRNQXzohR1JbEy1oibN5BdBV4o99FhqwqtIwsin3zyHZS1nFy8Rt1ITINCSsrFuqLve5q6ASPZpeVeUqfnwOo9V8gMFwYi15tbXIgsl2s+ffSU5XJFVdf8ha9/neADg49SKHwY8Y0HZTharWnrSgp/GykHNN8CcjZ1tobya94nViKRd/sWfCTHTWqtpiooSak+W4s5Bmn/kUwGh9Za9hCtwEfwjkrByVL0AFsTqYwixOQ2kcFWYs/3QdzE1s4Zg8kgEdZGrM/koFaS7VsZy2q5TC6UKUtLFnNxdzx79owHr72GsT9Gqkuv2g/c8ua4lxChyiBHEocSU3Zg4JZEjBhxIdJ7jxtHxmGQ0A4EzvjE6DGbOwKIJsZu7nLKxtScpctsUT7vPBmJmBNNkji+UhD365hm154kJViRpSqs+6TfJywh+3GFeQ5lpi0xfGnmztZV9gy83FNS1nO/3/N8z/tZTBU5cl8czlsSI1OqpySPBMklPQ+wzxIoczArMi/itciuzsGNdEOPi0nbUCVJHS3KE1muJSfvKSXgZ7fd0O060V3UirZpqOtGGKEUC+xDCodClWfkfWDbb3Au6c5Zjd+6FDOXE300bdOw66XCkrGGnC3dj+MUVwlFDxWlqCpTwFkGmnMmcF43FsDO3MbZVQxT3dlM+mTjYz6+DtnbTHxkhlEnAJRB2TCO1IkJr2br/eicuHQT45jdprvdjqdPn5ZrzSB6zvTmc4YEpnN2dc7gZXb9RU4lzYeY/h71iEJcw5lJLQZNut+s04iSsDcXXKn4IUzqooBo+5J7wZ94x4jFgvj8z8kv7OGjzIplpiUHBmstuj8+B+inD6sYS2zcmGRAInfjzP24wYnSDyEUXT0FWK1Z2MDDi3Pun54QNHzpiw6DMEtBy4M3URzGuQbwwdn2b+yOppQUs9ZOE6LoB2ZLWmJnIMebUQBXAglK01QVfZogw9DTWIMPkRCTGzsEWq25+exjLu6dASIZ0A8jTS0xIy6IXIio9HuiCUmTL2V9pVsRSYEXOz8iSKFsFzG2YrlcorToMaHg6vKWYAxq9DgXeHZ1zfc+fYRzUlpMadmBdFqotZrctXnxmFtzOd4nINIrirke3z57N18wDuOf8iScuw3kOnS51Zh0rPLItjljLzEtKu7H9JQN5A7KbX4NU6ZmCobPpf/iVE7Kao3Vpixg8zqR882o6zour664d+/i+465V+3Hu01ZjRO4VwcgZdr8zMzVu28gjf3AOI70fc/Q9zhbpXkSUxySJsRqAl7p+8WjkjYrN5t7NmWZls0qTu7dnHyllEKnTadsyglwlo0uxj3QJ8BQ74VBzPwiBSzuMeRl/0iALwE9lWP+YiwZuIdtHv4z/zn0xuRzTXJPszmbNvkSU5aOG1P/5u+LiLNCJ+F1KbMprs710RrnA7e3G3HHjiPb3Y643QqoScCjrmsqaxnGAefGvczQEAKbzYab6+vijjw5OSmAIY5D6l8jiWtpDyNEvBu5vHwGQFVZTpbHhChMYm7GGppFw+3mFh8U1UwbbvIqKZzWDIMkqbjgadu69E0G2Tmx6BCwiadEYvRyVSNRcjAlTEErVZ65TqLlbduW42TGdd7vGUwvlkvOLs7p+77oJY7jWObKvHJX13W0bVsSVbquY7fb0XVdYejmoO9wjc9JKvnZxdmYUUqVjNucqayYAGMfKYx5MeCUokpzKwuB53E4Jpdwt+uK7E3TNGzz+DEvp+jwJwJ906b3ch5BmczPo7P55plBICS2JEBRrEuuQLwAJjMron0Xezjf+OcL6vObc0QrARRWawKe2hpUkA3ea4OJsrjpO7//ki25ZpVS4rLQ02SSxXS67gw5jDFpYEglDr3r0sIX0Mpgk2ix0gYdA932lu3mltvba5p2SbU6LWxBVKL2XhlDjCnr7AWsa3a1f78Hmwe81pqjozWX1ztMTBtNVOy6ERNjcj1USUTyEdZOm0/W7hPAOy0Kd8XTzBfvnOU0l7woLt355hIPSvAdADCjdEl+UUoxzizZOWATS3W6tjkAm7vj5+OrMBWzTSam/pieM2UTywtSnuxKKeokxDwB4ul4l5eXXFyc//Dj8VX7s29aMr3zc68qqdXqMtCJ0yYxjiM+ZjYFqjSPYoxFrLXrOsZhgDZKCUMjJSvRGm1rmqZJIQMTfR9T/VSgMDImxaDZlDXunZPkMWOk7KGZSk2Sa7lmFqdKgfODmuRB/BSvCInEzOv8fA1KFvx87iS6kFxPV6p+y8qV828zowgvSrA76HYtkhoZqAy7rnz/sIB9fn0ONHwMe8ZpjoXsh0HmLKRatFKTuzY1VW0xIRJCi7GaGD273ZbdTsorHh8fU9UiCaI09N2O7WYjQtuLRQEFMbFBxMjNzRUxBsaxZ5eAijEp7mtwEGGxWLJsW+q6YrVa0e92RO/lnp0jjI6YdEEjEW015+dn4qrcbjlaLmlTLN7NzTUuMZTdritVIba3Em8XEAZxHEfGwaca85rKihh4ToLYbKTKVs7yDUGqyYxdT3O0ok5xbEolHdpuC0xx6s6Jy17cxGNhWtu2pmnENbterxmGIZ1rqhLStm1RQri8vOT09JTVasX777/P06dPefToEZvU7857mqZJsf8ttqqkdvAwUOXynCn+sGlbjJWM29vNbWEwbarlvtlsUpEAmdO3W4lrjIoi7GyNYdvtqCp5VkpJGIaxkp2MFrIrS8tYazDPJqPwZdoPDPqmGIjUIsmimNqeS3D/0y9sUyyXLZk6WosOjp4hWJ1dH+Rxv3/s+UY/BwR3gYj5IqEQ1ikm96BCXMaEmCpHJNdBCOJynoGKz9t0y+dQpQROGB1gDoL8hWELQUoozS0sFcUVba3FBiRAVNeiCh9lAgQUuyFi2jXHi4rRB7p+4GR9nIqgkxZnYUtlEWvRd1i+uX/vfFZM7FaOW8g1B12EGD3Prq7BiCu8qWrGEDApfnDSH8rnDIVNeF6yZr8fy/iL+8Xac+xbedYH4LwAtWShFEOAqT5oSOWWcrmq/Jm55Ta//xin42a29vCc85CDaczNaylSGFWfZC9y7Ep2WedNcy63YYxhu5UNY7lcvHjwvWo/1m3PUCjjKxYvQAge56bxMcVwKUxi7LO7CET4XTeNSFoYu+eiyhvFvjE0GUH5uFkb0IdQxJ4zIwkUkeGcrWh1lS/9js9K+EaJ32U+j2f9MPu9zK8wy9qNMwNrb22Y3OLlnC9Yj8t6pg4SG2Yszny+Q15L5DzW2uIqt6Y6ICtiKVV2aLyHEETSpO8LoysgZaQfXSoSkMpxOcegBnzwJSlit5OkiZzFudttGYYO71wC0nLCvk+vJUar73ohF5Dkg8pW1HXFzfUVQ9+x2YiGnlKIB0qLNu7QDWhryf6mvpeybIooMXPei55o0n/M11cEpTMzlpitDE5CmJUcVJMiQVVZnBPWS2RYapqUcDnfB3JcoIzVoewBcxZynskqBo4uRk42jvKzWS6nxI8sh9I0DavVKmUIK5RzNE1TWPR8b0AxtDK4c17iWHOcYX5m8wpRc9ww5HV9ljCFSrquiRnMVTiyUaOUCFhHL+O263py5apDjPOi9gODvhcd+MUAYdpkvx+rVP6NguxDCJgoQCtEjVciwySTVUCRd46QY7ZSAdf5xH+huw2plyjxCoDSRJ0ES5F4FXG9abL+W2TK2NLPLTDTfR26DuZsUVSRECXrM5AWTGX3mL4w6yUVwSS7Vga76CV1zjO6HqUXUr7GWKnjqBSrozWd1lx1O0BzfnFvtpindPwQUabGDX1aTPcDq1/UEp+FCiJe/dmTJ0TTMNxuklTBgI2K3TDw0adPuXf/jPv3ziFEnjx9ysePP5MyO9bQVFLb2EdxLSskw/pw0c3gfQ6s5kaFfDbsP/f8fnIhh+RO9YkpyJUIrLVF2DTONqr5WJSKMDpZaKpM+Cgnx4WIj2C5e8PJi9Z83sQ0rok501Hez/FCm82GZdJnUiovWDCObm+uOOe4urpksXgF+n5S2954mTFcU4yYl/Uiu4HMFOMUzFSsPccG2qrCpqxEm9ys+bvZXQWHcWtxL+aqbKLO722qJcluBk59EKmhvKk6P1XTmbPuksShyj3mcT/d+v4ammP5cl9k0Je/nxn7DKJyX5Z1P05uYpUXBEXS3hOjcC6vEYmY5FYr4C7MpGmUrBdjSoTJgAIoMVYugb5+nABJvh+pabsTaRNj8c7R9cJC+RCo61rAxyCVIKKScl7dbkfX7Yp70hjNZnPL0A/4lARhs8tz6HHaYZzotO6225Lkt1wsRUO0Moxjz83NDV234+TkhLqpJR7aKKITl6cySQWCyHabk1EM66N1ATXDMBZ2OStM6MpgtZ1Jukz1pPt+Tu7oWSxdkidC3M51LWXoIjMRcSuFGLK7NQPn+VgbU9m23W7HZrPZM54L0Ep1ca21BcDOQVpO4MgVmLKsy9XVFTc3N1RVRV3XaK3puo7NZsMwSLJU7KdnHaN415rZuFYqgeI0LnZqmjPzJglB8hyy1yfHBWZg6oeRXSrV5tz43L75/doP7d5VL/zj+VYAn9p/7fDLeTHIVgBpofExJiHL/z97f/YsSZKl+WE/XWxx97vEkkst3T3TPQsGQ6CH5AM3gA8E+RfjAQTxQFAoI4QIAREKACExK6Z6uqqyKpeIuIu7Lbrx4RxVM78ZWZXV0w10iqSVZGXkDb/u5mZqqke/8y3qXWcsxuQrpE/BnevPfHHB2+QgP6DOHbWYKUXaqJSteCj6uzVmBr67wP1d379+rmscsm2w7neZdWdZ9DW5lJb3Jy1eT9d5tWEJMDg678lxwlo515u7e+zdKylQ2iSeibEGQMsOfN0VEX/oYY1kGrpOTJ8fnp6JKVCS5Zv3D0xLZsmGgMHkyJu3bynOcYm/Zeg7mWTM5jpesghKGvpqN0n8vuVbJ/TtZ9cF33dd+/o+SfmijYO3R1OhIWqg7bPdeztnCSE1tXFBie9s6MfLzcZLxHC751zd/zohDcMgjvF1R6fZqPWh37+3xLJ94LPPPv8r3cMfj//5jzrGc86sdaHVsVB5RL7TZ6FkvHZCnHOkknl6emaZZx4fHhk7acE1hMNZOuevkDfYOFbyuZtyeEP5UM5qJgXdiBmhkVgjHL9cNi5bRTIq8hdTImdtexrhYe8PSdLY5nrJPdLntxo450LOsc1d1EKR6wKxdTAU+ax/v8+83aNv7dlDzdJ1ox1SohjhU7m+wxa5buu6sqqQopQiUaG6ebS13VqK5MSGlcv5Iq3fkvGjZ0SfYfVjFWK+pD1M08Tz87OY6yKClhhXUtL3XGZiWMkxYkphTcKRXJe5tTRzidjZkNTkvvMe30kBhimEuPL0nFQhe2QcBcmSojuT4solLsSwNgFl1zuenx81D9yKf6RzWOcJGuUpCNcq/SUluQsyaOg6r/NyEcWy3yUitWIdvLdiKwMb580UXN+R9Hokk0gopcEbulFVtceh2cAsaaE4cL0UeamUVozVez6OY+PE7gWCtTBcFjWCVo5hLd4EnTXc3t3w+s09v/niN5wvZ3Ip0vI9HEg58fDhgaACma7ruMwTcV1Z1kV8DPWzrJNit1EAtECs9jLViLnkTCoLgxajy7Lw6u6ew+EgKl1FfSsn8A85/ieR/u0LsG8vzLsHOGcw25dok1UplNqS0AJyj6CllLAfUa68bLftf8eYnUDgxaTU2m46U+wLsxqazfe80PvvbRTZ6ZxrrvpXE9hH0KatYCx0zjGHQDUdWNZI73PLKC5Zd7BZpPJ1p14NiaXYFLjb9ZbVcCVI+F7fh20ePR5PWNdxc+g4ny/cnEYOpxPrGnl1+4a7+wMdktUYc8JZOI4DnfcMndciWFS25UUEFWyqqY3sviVo7F/3suB/ef324+RjCOz+9RVhqQhubalIfbgp4XLaMNm6KO5RuP0OtH6HbxX3L86zeksdDoe2o6yvqhPQHpGprZXL5cJhvP3e9/DH42/P0RSPxhCcaXYmew+w+vd1/NUicUNc1JvMZZyOq67r6Lz6DOzGZX2vuvERE+byrbnn5Tht6F7RtqvSIjbbk7oxclijqvwd0rXN5ah11q6jAe1ZouyRzkw1if59s62sDdfXq7oS1B5T3VCjG/p9FGfXd1TPtErvAFrxXArEGESAEaMgmq4WLIk1BhFdhLUVvksQoYKzmwgh63N+uVya1Yi8h6A2DdE1hulyYZ5FpTuMA0aLVWOkIN7ECVnXs8S6LqSc6Lq+gSfGiPDPUJpoo+97Tqcj1FSOFNu5Z/37mKKkKKlRuHj4bYfvfLuu9d5LcbdxHes6W6/zflxVDquM45kQpBie54lCxnvXxvZ+LahiF0DNr0v7TiIo8u3zq6rXGEPfDzjnr0ye6/ttlDLx/avt3LPOycfTQa1pjuTzhWVZuSiSWsdV3fzUYrIgaK1Qs7YoP2MMXRFbrmgM0zS14rLyBtsznhKpjodpat/1OIxq8dQR1tTWme9z/LUXfX84Clb/LbuKvEupaHy+pIt3fRCNUXumGhUkN9c601IMvuuzqkt5JQV/rCCt72DQ3aruaqs9ArsJ8CW6uD9eLu51w1l3ufU1V2KOF7/X0CMr6KZEeSWcLYQ4U8oAJKpM3hor/oX6gdKyts0PzxhPKkEQVN2Z/877s79Ju59WOwEwpLUQ1hVnHJ2FT18fGfojr489Jhe+/PoDGCfk3BDonFjPOGuVkyhw9tXCAptVA9vEUq9/Q9SMReL6tp/thRiy8GzXs06qdSKpn7kXXGyoxTaZOSfpJQ4NAs/i1r6Nh+/m8+3P/2PI7v7ndZJuCKf+ufJUJKj8ejPy/v173r75Ee37IR57A+R1nyazU4jWo9pvNBNY3Qg0gYH+z+xauTlqCyxro1KH5J6i0lSnO+7qx56l/WarFEHkhKcnE9vLok9+5xppt9rG2DaP0mExbJSK9vztuXz1Gsju6yNzEk0Nv39dnUfqee+v6brjnIHwpHMSVe2VTUgtxLMUPUmvF0YK2HVdxQg7b0bbIcbm0TcMo0QzWvFoExHBWduAtHN5enra5ftaQZ7WlZgS/eAbqghV2LPq1KPdoZxYlxVWq/myWyESVmkHhxAY1PvxeDyQUlTUMDLNIlzIBk43N5hoeD6fsVZolOu6skZNuRqkgCqFq/kMLT7rfFjvJWyK8Hq96+Z2XRedi9FiawZTyLljDWuj4+wBgH2BJfeUtlGuQrmajVuvqbWOYRgFAdR6o/OC9NVnqSJpKSXNDS6t9VtbvcsaxM9QkcGcMwcV2tTv7H3XCvwUhHtZ28K1i+NVpFnn97qh2593yhmrIETlTgKcDsemmA98e5P4u46/OaSvwunfA0naJhFYYuAwaHFVCqZkbClkbCttjLWYnLCSTk1xAtG77+wz7y0Qqpx84xbUtkYdjG43cURFF+trzF/BF21b1GshIhNdebEL3xd+18XixqGxBjo95yWIG78rEiOZc4GScErglta0wPNy4WiTMwBaZO9bknUyRv9dvgWjZYopkiWYM4lIXgsP08zjZcJ1jpANHQmsYQ6BKS4cb27oc8fQdWppICatErtp8eYamau2PVhLKpmuuiEbyZ4UMY0WTaUqlwogQpWteKt1mQhecpad8tX3KYVSEjFurbY62RcL1oq5dx3LDbXIRaMC7Wb5At+6j3WcXYt2rp+LijAcj8dW+OnNJyhPpZ5X/f3639988w1//+/9oaPyx+Nvw9EQh5RIwbUCzBRa4ZFSbmTvp+fnNj5iCjw+PgpCgeHVq1eiWjye2mLovZdWKTL2w7IQV8NqqphAuGthFtsM50V4UflWl2kSIUbdkO4Ks/YdUgTlqNYWYzXfrU54gtBfI4m18JT5ONfctbZ4VU7jyw3x/j32ekUph/YkHNO4dvV897Sayj80xmxmzBTlvnVXHMd6TvX5/Oabb3jWws0519C/sEawlpAC5/OztPTshlLFlAhh4fHxAWMsh8OxtRZjjNzf30v6kqJc8rmGtGp8noF1XgQFXBbGccB5i3OGp8dnpnkBY3n79rUglCTm80TnOoyRVItxEB6gIFKOoRvox46YA9M8MSsS5n3HZ5991tDGeRaP3Mqbc17i14ahw/ht7IZ5p3JOod4thkFNwn3H69dvWsTYV199SUqRrvM6p0nxOC8LUMhkLvMF64XTepkvG8/be4ZxbBvmEGQseivPSC0sL5eLooaPMsZSoqyB06uDdGliIswLlM1e6O72FmMMX331Fb/+9a/59a9/xZs3bxiHEe+7K7RwVdW2UTHMopnD4zhyTmfWFPnw9MhhGRp/s3O+dXeqMvusSUtd1zEeDoR15bLMlCmLEGcRcY9Tfvm6rjxqgkeLYvw9x994e/f3I387pIMixOUsmanOOokWM1ZUobwkAO/adx81O96Ol5vDPZq2383K276YZHYFWdm1dmsL8Du/2YsTejnxvbR/udpVfwQFaoRotTkxFJwTSwXnt/Pfq1rl9665ZsZaiir0Pnb6Nfy6mPofu+umE2mIsogUI6jEGiIpwTQnHqdATI5jn3h4OvNwngjF8nx+xhjbotcazfPFeVeYunIrvKZqbPy6a66c29lHeL+Ng5eImhR88vOW+0huNe2eQL9PEWjFMtfXce/N9zGfvpft5XYNX9z3fRt4j0Lux0X1YqpE/D2J+fvC+j8efzuPxtdky+H0yj+yzjRCe11Iq3CtKncppcU8md37WSvodNKFqR4v0fM9nSaHDfGr4os67sr2YLXN4IYGGgzXVksVVd973TUQYL8pSvrddnSb2kV5+UzVY9+ibnSHvAkzmgl7fY/2jG8Ujr3fnnREFI3qOqyiNi21ImcRTDixq4kpcpkE6ZEWpRSR87KSUiaVjdIRY+Tp6Qmvnm3zMkv+ufr3yZqXWzu7Frv1HtTzc8r5rAbMxsimYV1XMIZlXWTt9HWzEBuSXEyBInFxwQr66b1Etcn7dtzcnHDekZ+fyTliMvTd0BAl6x2Dcxr7J6bBW+v2u50y5BrTgJM6Pqu5cOX8GSN8QN/J3Jf0HAvXAM3WknVN3PeyW5Y1M3cYBm5vb1WBG1kW4U2j466dn7WEFFkvES4X4c1p0Xg4HEjnyKIFV9cPTQhSv/+6rqI90OtQff+qMrgqsatYcV1XIqE91/X5qohftZYRr0EpLg/9gB3HFnknvyvUre96Tj52/I0WfR9b8L799xuQVBfm+oAVhDtlrLuaEGpLcr+gyz+ZUr7Li++6bbFHXvb/tNd85Pf2E90fesh71H9bba8mXLZXsPB3HTIBb9YHSYtjaecIevhyYq+T7tVEXAQdNDnhnajUrk8UyRauFihXdW2FCzMxRJ6ez7x+84bn8zNLiNy+uieuC+8en6DrOZxnQrbYbqQ/nvDrzM3drZCvjdmI4YDRcxHF2KYurF5+zpqWrlG5kK0wq+19a/muNmt9QPaxZvK66/buXjhizKY63Df+9+P6JXLXlJV5c/ffH1etkBfnWPN0a/5j/f26s66WG/sJcH8OPx4/vKOOy5gS1mz8T+s7FQfRCvsr3t1uvnJ2M0aGnbl5zlL0tSLheszt50KgqVm73VxXW5x7EVL9/P13MFioCDu7+VjnjLp5vj5UVKHWLHuOdWvFwpVgD7ZCSPh2WjDoc1rbuZKUoH0LY3bvk4kpEmqM2e759V5ys20lyZfCsq5cNJP2cDzQKyJTvdmWdSXqwptSYlnXJiDwndUNciSGZ/pxIOXEMi8EtVsJcVXe5fZtaxFYxTXW1k6U3eZ5/f5Jz6O2mc2OS5mSJLTUOagY4fSFINfB2IKUAHKPD8cDxhrWGCR9o2QK0iUSOxZxMchOlLyzuj+knDBZAwK+BVhcr7sbMrZgtCW7H7uCWnqM2WyGCuWKZ1nBE2M2oEC6XDQBqBSmQfJsh0FSRuaFFCVP2MiA3xJokISOyvcrpbSc4GEYuEzn1oZ1rsP7rql/69ydcsY4S9/19KOgmilGpouory+XC7Hr8Vba7Dogd+uNadQCEM++KiwJIdDV9U/vrWxcZE2r69X3Of7Gir7rQkp+VgeB/pe+7kWaghEUyVoHKVFEUkQuid1jLH3+IgM5pqRFirl6793ZXP25AnT7InLPGanvVBfXulPeFxr1O9amwv74WFEor62DXybYlyjbvvDcrtduUGT9s/LgKpn01WnURWOHahVNlZD/20jVWa6lQ4i49TrUz8vKz9Gz/dblNHraKRec6wghc36a+PTtJ7iu4/ycMBTGTgi1D4/PhJR5Ok90wwnvCqP3GOS622JbgY8iGvbF9968lq6vb70/mH3axbevvXhEJWq713u7/S6ySBjQ7NKsZqIdnTViHKuAqNUA6hpWXv9d7+l+8tp2nPlb3+VqE4G04HMu9OOI7TqCosmi2pVJPWir4GURXxfOH48f5nF+emgLh+1PioIE/M2R2oK8nM8N0a5WPgA5Oe5vbqHI2Bt8B1mUgF43h41b1wqfraDyzXDc7FqJkvdbjMRXDYdDo9rADtE2RjjWhoZ2WWsoJHKu/YDS0Mg2f6EbV6RTUe23gIaKVcS9pAhsc7BcA4dVflxDunMmhVUFYVuDV0sddUGoQkFBkFYVWWwFiW0WWVa7J+sa+PD4wLxIcYM3xKJWOmRiyYQcCbOoY4uiiKUUnHf0w0AGQlyZLxN+6RovL5dIToZpkes3DiM3t3cscWljY4mLZJRby7oGuVda2A5Dz3gYteibmZeZGKOIFSycnx+5XGbCWhWlGtNl4Tw9Y63lTf+KEHcODrnQdz2fvHnDnCQt5N2HDypaoxU3GIOzHmvFuitniS6r1iyn06kVKmTh33VeOKYllab+fXp6BK4TMnIqhBIwBuW86YY9ZuIaCSawzquIIo2lJLA4Lewtn7x5iwHmixTqpMR8vkh6he+wt7eUUggpEhTpDTGRlm3TX9fPWpDWRBRjDPM8gxGe/+3tbfP6e35+ltdFREVvHZ3vKM5zHEdyjMz20tKcKpWhJbBogV+fsaIF5tD1Ivx0nl6N240xnM9nEb3odTfGMY7fz7rrbxzpq//+XejYflfnnWWOid5KWkJaRcFiDMRcg7N1AjMCy4I8yDjfkL6KIF5/thZou91zbZcqDPctlZgxlRtnGurzfZGV73rdvlasr9krVOvnfuuXtPiok5/zVvh11qj/1Ha+pe68gX0ChBRJXlAA3/GtCDPzAti7Ogf5v1IkeqfkxKHv+eztWw6HA7lk+pL46dtX/Mlnr7ntO16dDvzyt19ivScnWNZF1X9qgu3Ef1GWAFEal/JthIyiC4a11/e0bEXPtrvccTBrha/nnXPZtYMzzhoSO2RU74GzVgpjI2NyfxEaJ1NVc/tNzcdQ5q2423Eny2YuXYpMPPMacONI5zw4qy08UdBVJKK2Nup7/tja/WEfNVC+lNLoDDlnbtUPbeP8bK39Ooa8dkBqIbdvp+aKWpfUCOR7BeR+bs55b5ar6IrOj845FTikHSWCZkIrYrvt+dhTNGrLNeWNE7gHAuo5xySbrbKjV4QQsKa0+XafFLL/jIYqAll3pIWiCKCck3SPVJWPkXXDWfKyXa8qtMCYhvhUJC/EIGhTDEJnqSrW9pjrfKSX4eb2Rq5l53i+nMm5YL0Xn9BWP9fNtQgKsIZSvs1fTDk1AYap994YXOexTovkHboaY2Ce4d27dyzzSlQhz83NDV3XcXd3y7tv1ibccLqmCa9UCu6YE7MWxVVxWkqNQxO/1zUsasfiyaWwhNjub20HD8NAiVubulOeZBoSxpsmkHj37p344sm3bi4UXd+1rklVrtbrs66CkFrrvzWn1rZ5/Xkt2sSyxTX+XOXqh1LIKlDpug5jbRN2tA2Ifq8QAufnM8u0tNSMvu85Ho861nKLdROOYWht7JSScly5Qi7r79XW9dD3ZF2/UOpDjJHedxvnV62TKnq6R+x/3/E3U/QZGnfD7FD9inZ956/pgE4pUB3AQVCxGruVSyGWJJA6QuR9uRDWY/8AXS285TvaY+W6fXvVZjAb4XePRL08fndBuKne9q/btwZfFsrtHLQ1XAsv7yzeGnpFzYy1zfSx6Dlit9+5Lki0gEiJHHZFg9m1Yr7rG6gI4nQY+eT1K8beczoMYmcQEiUFxs7TOUOJC2mdsSXw9u4Oi+UXl5lsxPOp5u429LahCRsSVq+JUbsDw5ZT29qz+j4VcbtGmbcWVp3Atvt0fa9z2nzHrBZd5nfc632hXhfVl+Ngfx4vz2s/LlKKMjEooifFbWZdVonv0Yl0jybW9/m+qq0fj799h/i25Ybq1bHd2jchEMJKKf5qUq8bk7QbU3sRUuXIVUShbhT3tkX1qOO4og61bbjnuCYtANp82NpqkqIA6CZOuzl1zt61sKjFWVYebbnm0ZK375BSkvfSc6yt3Jo2UdWNlSoitJCy7VjNdSenfsZeobxH4PcFbdwVfWLFElubtp5/Xcb20319r+NJuXFk8rM4JDjvCDG0+7txDaVtKghkaj+v9ygF4XOlvHkVSqQm2GKbMXT9vRjF6kaQNlEj17WxFmKPD++JMYsR9HidX5tSEhRMrVL299xap6rUQIoL3h+baDCzbJx0a/BOM2uDrOWVntV1YryccpCxrUKExv2sQIilCWo2Dt+mqF7mGTAMg6+3W56DXMBtqU/1WgBa1NlW9BWkttjHicrc79r9r8rfOgZTyoR1AQynmxsRdXSecdh4dhW5q+tNVTsbY4h6Pxc1tK7z935Or2bNOWeCUh9SSoz90O5R17nG4228ze8JRv21FH3f9VEbymJevPq6VbcvrGpYcwxBK31DXqOkZyC/Kq3LgjebmWgdLPv3ap/44gTrebU2Wy4Yb75Vj9aH8upn33UNXhRx+/d4+R0LpZkuvzxeFn7tH22HGlMnfINkERpK3hkG10KHgtOaKO0U1JUzVxNM8gtOn5zSR2Y0uWJKCC7EsLIsM8XYtktLufB4nnj38MzNzYlj7/nimweWBG98hy8wTQvWgCUjghTT7ruppqc7Ivn++hn77aK4bjDqpCcoBu061SKuohbbrk/4f/sNSYiBkit/0rIXwOwX1ZcFZZ3sX6J8+/v3sfGyLwTXVdshtqKx246wThx1QjJUJPTb/MAfjx/YYU1bOFMWU9+CtGgr36+ib/uEAWstuM3ypaJjQAt5p4CvfD1FC+r4rQto88Hbjd/62tryLVm6LdUbrY5PQZbi1p5TSynZ1IIXddn2XY1pi3OlnsSYWObQCgxnN9Wy07SG/QY97nhXq3K2qlUHyn2rRr/Uz8qblcpeiXstBAHIWkzS4s/mdWkIbDGl3YN6H0CeUecc3nnGceTm5gaAD08fWjpH3/eQDFnPzysSVYvhmBKXaeLV69d456DId83OYovFekFcS5ICYZ5ngiYx1IKo+nqKJcwFqPOY3BNnLUPfcxyPmKytRGTzUEGAUuq1k3uVU8JbEbccjkdKQVC3x0zfD9I2HUe65zOzIqMpZ7reSlYssMaJZV24LJIw0fc9fbVKSZEwC2pmvSemVedsx9D1jIcDJWemXlKKhmHgOIwsl4mUIvgBk0WUkVLm+fFRUVvH5TK1gqoqe5clcHd3xziO3N/e8/79ewIBgyXFTEorpWQ+vH/f7Fhub2+xSIcsp6LCisRXX35JVsGFsxtCLnY2rm1MKq/Qe8/z0xPny4Xn8zOEDU2vKLuzlsv5fA0Q6H2qrd2+7zm9EirIMgw8qYL/f0b1rpJzy7b47gu97WdyXKFZIIRgCtOy0vueNSwkCikkBvV5Q9sRxWxR3dkYktZoSinVzzO7QqbUD6UumDlnCQyvsPuuWKi/JYkY30YO922K33lFWqGiXD5FmJYYsJ3H4Vvo+McKhYpOOmOwFrxyOyovxu4mRKuInxF4ryGLWSf6rMTbNYv8PltDQb6f4nwvb+d2HsgATAXO88rTZebT0y1YCb2el8ASE09L4JISo+np+4EwzTw+POMorHmVNy2G6jtWciFZKJbGHdlft7q7T1nze/O1ybJ1G5pZQa+c9Waqm3+OMmGWJC0Wq2Iai1ADckyQJdLOOyOLz4sCrv77pclzu0cfQVD26MumuHrRXktJlXaZzvZ4JNYtp8L5MhFSZBwP+L4TIrVudEobzj8WfT/Uw9Vi3lpReOrkf7lMbdNRPffq69pGBFqxV599Y3apM8YIr4gNOYRtrMo43OgdlagOm+9XjLEpeOvrGvqu80FtAzrrSDE1I9r6eqAJsOqgzYpghBAEAUtaeHppy7Z2q85H+/NZQ2g8wGuerCVxXfR9e77enpWXG7U6N9uytZ337fBaPO4Rp8qH9F2Hc56bmxuZz0qi6Peo51Nb7iEExp3f5l5FXDflSdWne4RSKD01vlLm8Yog7dv6tRA0CHWp73vmeebx8VGLZilmJBlCVKby/aRd3ve9ZC6XTFqDCI2A+XKhG8bWvjTGkbL42UXNLY8hCPWnXu+yFd7bRibTn46bYfXu+taUjcqTq6KYtra5LeO8tjbrJmbjBtLa2uj4lGssren3799zOBw5HYU6Edawe450POr1AdkA1ON4PDZVbh3X1ci5tqBvb2/beTZRVR2nep593zcPzaoyrsXhuq5N2FQNrMdefP1sFXfE2PixzntM+46///jrK/quwKFaKXysnfvxFm+D2o1UtM/TzGHM+M5jiuE8Lwy+e4F8bRVJLplULN5or/7qAd8KvqIthjpQ6gP0u7+b2dCVPxBZ2SM6gpUZqgAAPdf6PerAf4kibS3hrLxHt2VIapFd36OJHspWqMhX0Mkv1+tSqKTmrbw17U9yPh+9GG1Scd6xLgtD7/DW8DzNUjxaQymGmAs3t3ckLON45DR2DN+8I6vPn8JxGCtFO0YyFuMSW5FUv1NRBE+U3bKgNCWrse2kK6Qv56+v1e/RJnloXBYZN4KirjEwONlVa+/5qqjbqwvr/SqlNCh/Ty7fzuXbKSD7dlxtP4UoRd/h2Av/qRRSFLEOxkg+pvdYTFMd1hb1d2PtPx5/248aUF9bQUa9J9ew4JyXcerdtzoO6IJSC4oQQvNeq3YY9RlNUTN8k/iauUpb2I0baVvKa16O02JMo47sC8aayBFjwDsZmyUnESFVdH7/ev0gY7bc26jjvo5p56xsbt1W8NXiNsaoSFJq6M3ermKPxu8L3JdHnU/3rVT5nrTfqQXavljOWgg1uowinvUzjRWLj5ilZb/xKLXFaKTbXkUCUqBnMLIBN06y4AvCs9TZXT67ZDrb0SvS6MLa2rX1O+3XXimYN77iugaMuWCMFSpObcXKRWgG1sYI2lrYNr0GQ06ZtaxYL2rW0+lGkLMQWOOC94IuO+9Y59BsRrzdLFeqcKZuCLquF59BbadWnts8z43LKsWbrFt18yEbjlrcxTbOto3CdbpVTuJYUe/VsixNCNqMtWNULufSsnSdF+TtfLnINTWW0+FA0aJv1Y1Fvf8xxibmaYrpUr61bhgj5szBrO31dU1tFj5JxuU4jhwOB25ubsghtmIwxtBiB737/e4f++NvhNO3RzL+kKNOMt4IoX+KKzedF/K9olSF+nCa5tQtn6mtytJdzY/1PZuRr14cayTTt7bJ5EHLFPtSHXn9va54LaYWcNeft//zNZK5X/z1NfValY/HsO3/WwqWbYLbFxmyWLRXtvNqO64dB6eY7Xt8V/vx48dWgN4cR17d3XJzc4u3mfcPZ959+EDMmZvTDc4YpsvE8+VCVLWSiR4xWC6teDZGUlQy27nsW6btoYFvXYv9BuDl7q8e1gj0u1+E6r3MWcQuKatpqvLp6qag7CgDLxGDbVxde4XVY48Q1Nftr/V+IggpkTFMIXBkuy7V22lPNHcYIvux8qN694d+yNjPXOaJYgT9W6PD6bib5tisI2psFcBymRoaklW9X+e2XtHBSmmoxeHRHfHW4yoPr0gLeVkWWRhLuUoOgG3xf4lQGwPewbysOINaeoAzRVXvCWPUcy0lnHXtHKuP2l41LK8T2y3nhaNXcqGkwjwv7fXCzfJ03YC1jlwMa0ikvCFje/SrFgb7zVbO4udnnawnhXIdHUchKd8rxggGYvaUuPPOK8Lt811HPw4MhwM3d7e8+/CeVApDf6DrV0LMrGFq8773PYcbUZEuywJJMtJd1zEvK95LIsfNeNNQpMtFFajHg9iGeIfPnuPxqDy+pO1I6W4528l/J7F+WY1QVwwT6yJ2LMYYHp8e6RdB+w6HIzFGHh8fKUjYwc3xRNACZ55nUpkwxnF3N3A83UhaVcmM41FUufPMV199tVEJDGKn493VfIj68A7dyNs3b7hcLlwuF5y1PD0+EkNkwZA7oef0XYezDlMghUxSNW9Ki24WXLPWKqUoiuYwxVIypCjXoR9HUnxmXQMpPQnStq6i0M6ZdZai7zgcGLuBrvNM580jtbbuK3JZ2/SHw6HRDnJM5O46OaQignVsnk4nJt3oLcsiY9DIXND1vVrOCA3g5uaGzz77jBykEJ4uE5d5VlW0pxsGuhBwy6b8/l3HX6no+31rzO8uIsxHX9NarfUVxnKeJw7uhnUNYB1rCFTnjloo7Rd70JaF7pjg4wWNLpXfOid9w2/z+HYFg/2OovC6ENz+/LGdpvwc3a1syOP+c2qB+XKXIG1peZBKLoQ1YG7M1TnXnSrs4sVyDVfP2npIOD5enP+u+1d9t0oMQmgtJ3IQKD7lzJs3b1mS5fXdHb6sHAZPQvJ1bw89+YsvSGzxb4J0QfX4aj5lOzI5bPB+0R2613ts5EI2Xp+QntMuIePavLh9t9rGN0YLbi3yqrjDbB5T8nu067nfxe3zJPeL1171VYu+nAvWXtu4YAxrSpznmRATMQvXMefcQsOH40F2nc5Ki3pXPNYW4I/HD/O4TJdW0Fd0DmhIkKB+oRUvy7K0hWSapraQwLYhqUXOviX6shDaNiFbiwpEEbzPdzaKAlXu3jbuLClp50ARP2OMtv32lAeAzfkAaN5y6yJkeUm02W/ygJhV9CBFaX229vwnjAo9SrmaI/cq5zqHvrxG+wKwCTyMUV5gnRdVvKfX0Xf+ai6Zl4WYEsPhwOF4pB8GQhLRhTGGYRwYl6F936nxiU27ho3LpahdN/QaUWlw3jfEcH8/6lpXUc76Pep3rtegWQHt2u3n85nObaIz4VXLdX9+flbE0tKpmO3GWR6entq9mVeJi1vWlTefvOV4PHJzc4PzPT53OO+Z57kVcRWFbl0bJMoyhcj5WRNN/EZJOB6PmkrStftVx1Xd+PT92MZ+XSvqNRSHg0Igtd+rmyWhUshzVdvI8zy3/Op6r+vzJ58phV5r5ytFq3Ir67gdhqEVflk5sFbbuDVTuY7furbV3PRpmjgcDu3+HYYR17k2J1gd68PxQD+IUnieZ0mDUr5mprD+T93evUal9u3U69dsf//yZzpgixgzD97zME2Eo8OUhDOwxCgcBuswSdpiVRBRm6exFJxESVzZr1ydx+4cr1oP8K0F1JjKMoTOOYkhMgWJ8qp+bR8vnF62OKSIcIB4LpksbVCZF+XGVTzwWxnCRkjXwtUoYtNiHKmYHTK1mRBTNrPVOoEJj0Y99rqaivFt8cHvKiJqhFnMwusb14gvcFlWbm/ueXVzx9B3DM7Q0XPsC+clEaPhNDg6PDk4GAqJgjO16NsrlXUyt5aihVnaTWxy2W2D+BOCXlIQZXdJON2pojuoYsTyR+xGBfnMFEwW7lyK2v4yDmc8pgi5u6gfFGwIQePlIfdA7s0LZDdDDIkc5RqnVDDGCn9Qd+NqoUhKhedpJRUQ4ylHWCOXy0yxDtfJhOeMoVjLqpOdmIyW703g/fH423fM89zsHSrZuy4kL9FpuE5iqYsefDzdZ9+ebGjIToQh88VGM9h/7h5trwa210jN9jmVW2xqu5QXJJ6rzVNpvLKKjHS+k5Sj9uxkcqk0htx8VOu5OeU2tUKvzhetEPr2pnv/+fXfBVquOrt5fo1BKD9my17fssa3I6VELtD3HV3f4Zw8mzElrBPxQ9f3dCEKL3lZtFMl7+nqd7E7ZWoj9CuFRv/OWSdt1rxZ1Rizzf37DefLdXi/POVSzfx1fO3apBJhVhrlwHeebuiZF+HVYS3ZzK2IDXErcCuIUvlqrYiqiF/OV+OqvkfJmeV0VORVHDmGfmj3qRaLror+MA0tLkU6gJUX20zEc1L3D4vrNkV6/V5d17VCtMazhRAbR7M+i0Pf0/XdZomyj9u0tOfWGENf5+MXz049p/o87js+ewBBHhMdZ1kEUbWIrb9T1et9P1ypuXPKZEWmv8/x71b07WuD8m1OWvsLvt32/Nif5T0NxhTGvuPxcmFaZo7eq9pUd3xle22dFHLOoKqd+qlph7jtC8CNTrZJ+i3b73205NkVb1IMfPs7XLdyr1G/7esZfciNwrfyYOYsbt6tcLj66N1EVQqd98SUaWadRWJxSimqINoKvnoPiswOjSsSY6Sz1/y074MYGaTmen4+ixu9tpViTGB846wEzbjNRXkrudDZQueMWhP07R2tNSR2Njp1It9NZvW7e+932chW2/bViyuzroFpXum9Z+j6Ni5hQ9/a92VbHEOIDa3YX4fW7qmfkaRoy0XGlzOoSe21xUxBzqdREQxgLDlmQk50CO9UCn3T7AG892BgmmbmZcH3XSPyY6QdVz/HqUn3fuL48fhhHU/PzxyPR47HI69ev24LZItj8467u7tt4a/js2y0g7Y47FWcRVIMZo116rqOo2Z6AqxNJBBJqoKtyFMxtEWlLlgvETLQxSYmnBO3gJITOQUpvFDvOfFsEc9VbUFO08Q0CYE+Z4lOxEjpmIs8YymFhlhKIbEt6mIyLM9cTd4wBqz6mOWcyVrAwLepMJsaVzaCqWQ8ReZfCk9PDxp2H+n6Hs5nUhZOodnbMkG73t57Uik8f/jAsiyMhwN9PzKMkZAK3TTThdg6N5fLvKk6u55SMmsIreiz1uKdeJt2PmOOwo27XC6cz89SpDrZRIYUCSkqgLGht7WNKgWNjI+b25sW3YcVkUNQPt3d3Z2ipHujYhjHI4fjCd91FBWunC8XiqGJLowqSxtlR4u/kjIWmVsHL5m/QBMrkDNPD08NjRa7tkRnt2Kt8vDWaSWticvzhfPjE6UU7u7umlrWWumEhHnl8vTM4XiUOd53woFzWTioITDPC09PZx4fn9u16jo4nY7c3t7w9u1beV9rsWzPgFHOvHWWw82pIepPT09gTBtb9Zx0ALKoBQxsm5Gbm5tmtn776r4hkI/Pj3jnORwOjMcD3dC3InlURHEJKylE4SIquvx9j79WTt/LXeBf5bVFUbTOWoau43y5MNzekLMkSNRFGLhK0sDWgisL8qJCBYpU0LnQWsPy+S/OQzu7RXl9+4X/Gla//g7171/y8erfv3wftLih1Ei1Hdcrb2RTmew+YvdSdwsh4CwMvfjdld1nvojLbe2Aer2MFoovd7+//9gm0fEwcjwcW4vaOkvOMK0rMUcuz09C7s3yma7Ah0vkvCxM80K5HfXcaChZvYbGWuKO61MfpEbitW5bgFLRyd+wroF5DZLoYizOChrnXixcdTGp1/qq/fDi3l+jGqIK023DDsGt0YDbeUWdjOVNtUhFrTOUP2hUoJJz4ny5EGMStV9OXOaJVDK9H/BeQttNEWuelKpqT7gq3//+/Xj8bTtqEdP3PafTSQyB55kPDw8cDwcO48j93a3wqVLidDwKUlK29Ir6PrUF65xri0C1kdgjLPujPg9VSWnqwpVLK/oqn7Yh3EVMgHOJws/V57cuTN6JkhU22kQVZu2tZSrq0vd9++ykn7EsksqAFmY2yvxlrIisnPGSy3q1AdqQ9vaMAylvys9KwF/WZYcdmGZ8HlPi4eFBwQc1rO48JgaWdaXXxdwY066tU6FNLShTlue7WpjIzzKvX79u53dWW456XnK7yoZslYI/HBWJTMrdi+rbKJ9RKK24qv+OMZOiFqhGKD01z7WmZfRdDxSWedZiPJLSJFGPfccwjoQYWFNmDol+GKTFaCUNqut7TsawaqFpjGFetK2p5vcGg3eO7DzFJ0wu9Na3jUxaQ1Nvf/PV10JHMigX1WGseNrVbtw4yDxYKKxKcTBG1OmrIpHeOXzfKwUJlnkmrCvTNGP9hvI9Pj4yTdKCFs+7rgkmjscDNzenhhx6J5uuVpRmyQN2nYAKa9y6LuM4UrTAqwj7uq5tHNZNfb3nVeV7Op1wnW8bMavIeEuMQYCSMIVWeNb29HSZCNqedn7bkPyu4280keO7jo+hZHURNtrqs0Xiui7ThZiR9u48cTqegA0xS1E8herPQEQBUvPJhKP7UN1NXn9mvaj1v1ORtvC+YKtQbT1qTXB17nwc2fvIt5dCR99IWtSCFpUsfA+jE23bybbKqHruodYiXiEo+cymXFJC9nYuFV0rm99hUYL27nS/D9pXEbLDeOB0lLBsW+15kEzKaTrz/PREd7gjRQmqvj3d4M8Lrh9E6WeqEef+Wm58mrqIgdgXVMFL5z2wtWasNeLoXyCkzBIixRhCSnSdoG02G5ZllQXIWGKufKFCzIlpmQkp4TtPRY6dsWAtSZEKvXOEoGpcRRrqP7VFlLRdljRPFSrHyGhbZsufFHRWUMbnpydu7+/xXoj3z5eLTLCdqC2FpGwpeUM/NiXej0XfD/aoG0ptbxortg7VNDbEjRO1L94o13m8+3ZRLcBqYdISP3bO/e5qPjNX/9TfrykcztqG0LS/yzU9AtjNn8Kp3pD1+ndrCFqMpLZwOaMmvtrSrvzDyst1Gq1ZCe4SgyHzZW3FXomojNCDYEMqMWrfZIr4uWkRFdOW820qclkLVxWLOL9rryHt3E7vgVVenIg59PtrJ6EWajWHV0ydC4fDQTfHwseU+230WqBtV9da9UYdBEpRcY3ed9/1lLAKjQfxeXTOcTgcCGsiOrEnkaIvs+XxCgI3jmNbK2uSE0i3xlhLp+tMFi4Qw2GUDarcZEXyfCseCoW4bvfNO0/OCVuMqHddh+lkbW/tTkX/0C6HtLZdQ7MpEotZ7/HY+y0pJkRZ+0B47ZXeUsC6bS2siu9SVnwvG+dlWXl6fGJZxRy6cilPp5MibweOh4PExjkRDPV9L8W2iqGst82P0ii2tM9LL9DEU/UZ+BhtzHsvIqChv6IvCJpc2hpVu0YxRmxY8aFrfpXTPLFMMw1M+h7H9y76/rqXlYbU6H9Xbp4pAmNb5fX13vP+8ZnXd7cyKJHBIyamFmu9FiKKmthMUm8+k7dCEOUuVHcpY3aTnZwQxknB2HiCLwq/et71v1+2c+vPv7vw2yZJaxylRMnRNZasAS1ZI4vqRFcaBAkGCVVeY5AM3AbpWmCb/K01kHetW2uEH1cSxgjfDINkFv8B6KwMcimYHp6feff+PT/5yec8Lyu267npRuZlwWB4+/YNr+7uGJxhmmaWEPnpJ684X57UMsLpN1ZeitWMYyDubCNqcWO8EIArebUGgJci6teQM5c1cAkRawqHviekwBod1jhysaRsWEIGV4i5YFLisq6cl4VApusGnQfFjsLiiKW065z1s4wxdLbD6CSasyDJS9TzVs5eDBKSnqKgzxjxzYoxE2PGWi10c+F8vvDZ558BibBsZOLOe3rvcMg1W9O6FfdZkA/zPR/2H4+/fUcqkuEac+Lx+QmviM2rV69Yl5XLZeL58VHUleOhFXMxbojZvgWbc24t3bYQOdnozE+PV4R4rMF6z+DqRjnjlAiTUmKZxUzXqKjEey+LbFMJVlHCVnRWpLGek/OSyvH+mw9UZ1FjPb7bWtPOeXLKTMvM0/OZlNSMv9TZ2mLU6DmLe7rwfHPB9UJ7qD2fgvw5qum8NZaMPpMIn60Wd/X1xpirpA9jJOas63tct8vL1c0i1tAPgyg+43bdoyI71jlyyjw+PnKZp7Z5lVZuRyoZ9yQ2T8UYjLN0nSBFN6cbWZuU8lOVu7e3t7jO0ysQIO17yar1mmt7c7pl8SvrGnCuEwEkhvv7++Z3t66R49HQdT23nRQzZnIY90zGkDKENcpm1xjlwclcF2MmlY0/PHRDa9dfnp9lc6JxbJ2OvcH1dMaTvc6hulFxVvJ4nXOkJXI8HRgPI0PX83w+syyzvJc1eC8b3rEXQdvYjeT0Xq7N84WYItY6OtsR1pVS4Hg48Hy+EDROzkf5TiEmHh8fASlAX716xe3dLfevXvHmzRv6rmvn1fVS9DnniGqePy1iil2RNu/FVglvWjvXO8e04/BRhJZ0OBy2TVlWHl5YSU8bhclaC3arj/aekxVBnuaJJayyqQiBx+cnnR/G7zXn/LUhfbV18BL9kuPbCNJ12yxf/ax+4aqKef/VN9zfnhjHUXduW8biHs5vNgQUTNmKNGN0UmNTy74k+W4Fk7aGMd86z3quzl17se132/vi8OXPtkITnHfYYHUC19ZiobV7q0KvtY71f/v2rHDUtszDRhTNXKnh6gOccwFbuUAbYvny+F2Iny2QteWCc0xLYlkjb169ovM9D4+PPF+k/dh3nufzxHkSl/Pz5YJRInKSbRkJjT/j2tOr5gtKoVvbo/pv3QFH/e4xF6Z55bIEpiVyHHtShjVmjAk437GkSCiZNSVsFAJ2TJllDaRcSKlgXUdImdEYFVVkOmwr9JLC7SCfbZwjYwgp4kqHqeMgF1KBWIRDOXQyGeQkhq0xhg2lsWK27Kzj5uZGDU7XNgactYIqeEcKmxFpbeW1ieXH4wd5uM6L6XbneX5+Fh7PMNCPQtZOKVIM9MPAMAzM89yekX001b6l6ZwTbz3vGle2oXC7xUR4Y5bOd9Lqiqn5gO3bxnvifG06pCS2HwWJYROUQtH5YkhWFjXUh29dV6wVhH/PQQ0xUvLcEJumHHZVbACF3Lz56jltsWnazdnNVw0lY1Pv7v++EvX3yGe1ZSkGbu/vcV4QJyH5r8IJ8yJuaIu7tgCP2n2SxIeFYRwhZ0oQ/zcQ0v/T0xO+6/B91+7BNF0XhcNhZF0WLucz4zi2OLB6T6uvW+USVkSrzpfLsjYj4q7bCvzOS6bs8XCUokb98+o1OhxOmvriORxGYspkRMxS82g9O/qLke7DbBdyTBwPRxYmppiYLxeSdaSu4zAcFDHrsaWwZgg5c+jku3Zdx93xxHg84Jzn8vTcvHp757XtawjLwlfTJPPjunKeJkrJ9L4TLmYuzNPEqoK8mBLLIkjrNE1kJHvX+65RCg6HA2/fvuXm5obb+zvhNDrffO+sMzi3pUN5RQX7vtMNhG3j66uvv+aSZR3rOvFTrPfGd/L6WsDX5zSoIAfgoGbdFcGrm5L62iqOmaZJzKL1eYlR4ju7rsPv0mJ+1/H9kb6P1AD7H/2hvKKXBd5LHlV9GOuOdZom+s4xaBRQQ+iUs1VbBvX3a05ra1cUVbyizcG9x1/JOLYd88sc35digr1U/mWW5ceQwOsrtnEInaI0V4Vis+Aoyo+QhV2K2N2OWtVdtdi+Vt5tg0WKZBV2JG39UiR9okLUH7n233nfrMz6dzc3vFkL4zByexg4DB1PT2dGZ5mtZZlXuDnx5bsH3j9d+OTNPc457k43zDESU0T0tdrCqK2XJMqrGAWOFMVxwXur7QGrHW1F4IwhFsO0RpY1soTIYRxZY0b44dKSmcJKrIVmLqwh0nWO82UipiSqKJ2sjRUXfWdM4+Z552SB0mJMVHCOghVRR4YSM85Z5lmhfVXrdsZgDUg3xihRXX38kvD57u7u1IOttHSCGidUTTir+7q1W6bjj8cP+9hvPmuyhQGsCp2cd+SsmcuqDq3ogdENQW2HFe1S1IzYtItw+1jHoraVN67bSlxDm1ubb93L+a3o/KLuBd5XEVyhxIj4xIlIqYqfhGMowqasrdeCbpp1oc45N1WusXUel9SQ1hJ2m+CuUjwMG2KHMlZKWx/QhWr7vIrsCUJkNSO4tHWj62XxzDmzrKJSzTnjbbeb1zc1qkR8hbZZzSVjcka3tg3RrDm5VZy1t3TaI4lNjJKENlNFHalE6nLinZeMWesaZ3BdgxpxF4kF88qXtA7vBA08HU/0vfCBQ1xVIS1F6dAP+E5sTbretiK43t8W51mQyl9sTrEYOutIzuOtgwxiDRaJJmA7sezyzpFNohihMKBznTdW1rdSiCqoq8WX8Nwi07KKqjplcozM0yR3tC90w4A1mZAy57Nwo2PjnioXr2ScA+87hl7i3U6nE8fjkfEw7rh2m6WRdSIylHFpMabDdp6UtG1rtzxr4SeuLfkKdnGC3TZPV8QVBDyp47FaHRljWJel8Z72Vi9XfFWlEGGMINJ/wMb/ryd7dzdwd43O3Z/K1c+ujINfvI8MIRUdFOHX3Z6OfHh85LPPP924cLmQtVjIuXK9pGUp2YWGNUb6rm8PChhpZ2Zt85ZCNiICkNdUsp7+Ube1hf0EtBWr9SE1pp61ufafUz7F9t4bf6IUJC3CGLyzbaeWsnpG1Tav7txlAshYQ+O6WCeB1NVrTnaA5iprVyTu2wObs5gjW1PAO4qzV0Xeyzb21c+EAkLRh/xmHMFkOu/JKfL49ETG8NNP3wKF26HjH/z8DQ/nI2FN3J6OLNPM+4eJkF5TCbdGr20lJxfdlcUYdTctPD5jBYGzRhzZjZGRJbC7RMBJwSgCF0xmiQm7rmTkgTNadAvCl5nWFa8q3zUmyJElBnJKTI+BcTwwTYGuK6zLLO0sA77rSdlAgpgMRgtqlw3TKpFv0yLnPy2BrnPaHpMFOeYiJsspEWLicBjEpDrIrr0qAru+w3jZ5VekeI/aVBTnx+OHedR7WQUOEj/1xHEcuDlJd8MaI+a2SGt1y7oVmptVVK8tGlGFT8lS+We+E46SVZL8nttXN45hXZknQRI77+m7fre5rvO80EqWZVHGgsGmSGWhSIGTdANdVfWltV0pWRIQdoKSsIRm6XGjC7Ax8PT0xBpWQgpNgSyJF6L6LFp2GmOUI6w8KC1WpEARNFI2ibv2rXMNQbcqfNmnb6xBlM8fHj4wLzOpFXnyTVKqEXYbdyxq4SdzrNhmObNZhQjZXjhir1+/ZlkWzudzW9hjjJzPZ8gFZztizHjXcTzeMPQjU5zIMYuIZfANEAhrJIVEMlowWSncDuOhJXaM/cjhcOTt27cYYwgxsHyYleucGYaRse9lDUqZ+9s79YjbUOR5nnl62pS21Sg8R+FNd8ZTupHoBanKITOFC7lPlCFzuLkF12GLiEBqa7akzHg44DvPOi/S5lXlbFgCy7Ty8OFDK9C9E0urGCNpTdxaD84RQ+Cbr75hDTLfn25uROAyiOH+nr93OB45nk4ioqginijjGH8d0eecw3ov97LznM9n5nm6Qtudc+SlEJOgvZWLv89qrhuwpiQ3mohVytXPn2IiKQq991qs97K21I3RpCZFz7+vgvd7F33fjf3IsXHblEP3keKhMgP3ReL+da240NdZLYg674gps8bEoRNUJRVxgI+6U0nFEPUhK5rrWhGhHBLWW8jCBzRFoteMdaouFX+nXNEmSlMDAyQ98yRotxCJrVU3cpo5qRRz224TDCWb9r1N3YXqfzglbBqkkMuFq90ubCkgpkp0c8EaCCnRa6A1Fkqq31nyaa8i6rKIE4zRHYMVYUyF6b9/0VDbyxDDyrouajEAISQysisce0cMKzlEelu4P/Z8PT1jgJvTyPTbB3IWnkaNyytJWtjXMVDb50oNrjvEslkw5JxZQ+I8r5ynGWKk5CAtgZzIxrFcVjrrWNXfb1kTl/WRzntSgufnR5zzzCFhreccn3XyDgzTxDRPDP3Auia6vsewYOwiVhOKelg14LTGsiwztnN8/fCe29tbTLB0vqfvHGPvSSzEFFljJMzCwen7HpRgXtGDyo8yVoRItc1Wic+w7QB/PH6YRzVprQsp0Mj2d/f3HMaRb776SlW9C0WV2866VmxYazmdTm0DIJFfiuL5DR0WHthK56VokMKstPZh13XEsOXNVj5RcU44tylJ4aQFqvMWr5zqohNbazk7Rza6ITbS5pXnuTRVY53bgiIXGEMXVkJOxBh4Oj8To7SRq4dhQ1Z0DnB+o4TAVkTLJwlnEqtenCWTQhBrG+foh6Ft6K9ysQ1M88w0XdqzJgrZjYrT931DZ5oVlDGSzToMShMSUn7lEIpFlyy5tRiordqarXy5XBi6nrHvRewB9L7j+fmZp8dHnh6fXrS3RfBAEVPrykkbjwde3d2raEP85bz3kjWeEqRM73oO/UHoJjFSfEc/KPcsZUIJTaxSsqwrx2Ek2kiMgbAGlnnmfD4LaIGojk/jSPV/jGuQfo4iuY0+EJN216RbUmJiDeKbl0LAOSn8l2VmXRaWaVYlrOSj16LKWAjTQtL14PZ0I+drDIfTUVwPsBRF5bq+4/b2lsPxyOnmhtPppDzu0p6BTtv/1slGe11X2RSURA6rtHCHvvn31Y1E14m1nPe+dfDqc1T/XSPmjDEUu3n5wbeN/+smwHvf1PVV6V8Lzq7rKEqf2KOIv+v4azVn1j9JGbP775evuSoyXhQcex5ble8baxkPBz68/8D98aQcNwgKZVvX1XoIqy2OfXtVBq2omYy+MCFmayHGK9GGFKJWOV2AkQKzZCm0nBViMBmBkDFqISJFW6zwNztRhyKGBt35FhBD39TQKurEZaQgLbnQ263NXBf22noucZvwcy7NL8uW69aDcL+0CG8Ea7lOzgja9Fe51yll1mXlNAwYa5mXhfO84HzmeJOZppnoO/XBElPhgmnJKjElYoqqmEWh/Ci7uzUI/8duxZ1zW6A2Oi76vgcMay5EHGsCZzu+eHjCn4UcTs6MnWfsPSVFyJl1WTDWEpzFlsjYiZVB5yy9M8rZAG8lXLvkW93LbBFNFMSsNImCrrAJUHI+goG7YSQEKUY/PDyxzhP3tycODvUF8yxRyLm+CkJiZBz75s0nMnzZlKCLdrXY+DZ94Mfjh3ZU498C6vIvj+oeaYBtztwbttogBRN5ExNkXSysd2J/pd2EgjyzlXdaBUslZ3IMrdXbOGI5QxHUItpNrVgUMSslqSiiEta3Ys/ayomyJFXDp5SwTjbGolSmFVywNVdilnNcllkLw9R4VfuNcGHrLF1dJ67XGemUWJnAVcxREDSw82rSm2JbiI3yCOvvV4QRs829+6LT7OgapWRFSDVZxToVnCTyqkbTeUfwh2Y9UhfzZVlagVCza52vBb50MqyxW56snKh0mhShHYeB4+HIYRwZ+pEK2YgFiYcSKUZaxoPyAsMq7XyDkQ1FjIKSGqughvrTdQPJOqIGJERjsQVp6Rtph/puMyOeo7bfcyEHRediJIXN7qUpbVNiXRZSiDvFdCDEQEmZpD6H2Uo6irMebz0V2rXWcRwPzVpmOI7aaROOp+87Rs2xHcaR8SBIqJQEuT1XZu/tpofQkDb+eT1SrnF+rqVn1O5cXX9zTg2E2Y/hCo5lkGQto5ZszmLilhN8uVwYx1EteWIzvm7XzztM/J+4vfvyeInuGXP9IO5fd41S7AnD0sKtfz8Mg/a6ZXeQMgLbm9omFoUayhWwDtntqkN7wZC11SmmoZukX7iAKnRAirc2iWTZQRUd2EmVmkZ3B6kUUOGEcLuEO1hKgZhkwOl71dyQrG9gjLiH17+v8GwpmjVsdwHTu+tUf1aKtLWdEx6FqEGv70EjPyOtmIoGFvXsyy9ivfbH70KQhnHgeJLiTmxIEh+eZ/CJ4p95eP+O17d3rCFynmaOpyNLCISYuUzzdo9LhiIon3DohCd4WcLGrTC2tTZTSni3RToZa3n//oF/9s//NdMaOI4997cnfvL2NbenkdM4MA493gm6mdaFNazUkHeDFNhdb7Bkhq7DWfGbMhRsEUsY77xkilrLuqz4oWeOq2Q4ZxEWuSLjIJbEw9OZVGQHFkPg7c2R8e0th77j9jAwryuXmFlDZFkDQy9cEWvNhpbod7fKowyaf1lbDvtC4Mfjh3nUoi+XQlG0pKTcJnxa4SKo76EfGsJUSiFN8vyGFFvht4aVzvY4JOkia8FXEb2qYF2D0BhiWCVtiF0UWkpCQdBNsYG2UAuyeCDnRIpgnGXse+WKaacHg7eWGFdiilzmiWEYRWnaeVLuwNRoLjB5Uw2nlHhWNahztsVoVc51RoR6xmRKFHR0vwjWjXTR69s5S0G9C61VM3VBa+Z1YZpnUsobSb+UZqcxHg/tXlkj3m8VAR1HKaiqQjTF1FrQfd/TDT1LCNJuV/5jzRyuRWZ9ffV5e/fuHXFdebpo+3AYca6jFIP3PeN4wKtgpqKOXseG16LndDxxcysocTV4zlnawkM34m0iWrn3XpHTpZorY4khaTy6wSbh41krBR2uV1QxczEeXywmytxkjdFOW2n3MS+5tXrXaRUjaS1cqhF13/fy8yUwX5Yr1Fv22aUVo8IQKHgrPnmH8Sj3Rotzq2Kb8Tjihk6AmJCw3nE4Hrl/dS+xam7j01du7P6ZXGPAF/nedQNjrSUtCyHKRqEU8WNNOeE68XPMOUuGsNsypxv3TkU11lrx3QzbM5s0EcQrrSLr81rb//viOITAq1ev5FxzFhGINR/VXXzs+Gsp+mq8l6Hy167FGXsUTdqkO7XuDq2o8Tm5FELJRApRif7ewmEYhN9SOV04VjXZdJ0hY/Eu01vIxhFCweouuu8tOcmuw1rh8RkDxskuLhaDVYuXXIRLWLMfY1Ij3bYfFVQHYyEljBW+SlDibUiJVKCzYnFQTCYbSdAoSf5cjBQb0tLdWnetVdB1xFzwaPtYkyeKtii9cTis+CClRCYCTtMqLMZskS+NT5ihmNJIzoIs8q179J3FXik4Cgl4mhYez2eMdayXha7r6fuOtcDzNNONB2zn6K2hkMgp8uG8sE5nBu8xVnf1tRBHkQoju/GYpMBKRfhvFa3IGYwVDkROmRwC/95ntwzx5zynQgiR8zzhKcRlZi6Bzh7Ia8JbGDuPK4ZsDd3xIBYCKUluYlgZDwdKMXS+J+aE70XU0fe92uSIRQLO8f78njefvOWb9++5ORzorOfrd+8YjzdEO5GLJVAIBUY70AFpXYm+Y10zz9PMGldyjhgcIQWGvruyvbDG4NSepz7wtSVQJ4If27s/3KMV91ZyR1NKUDaj49rpkFiogeM4tlZhzTWtqEqq5uuASQm/Ewo0zhKwrCtPT09tc9l5R2bzqZP3Ky0ZpCQRHK3rqka2A113h/GWoqkOdTEDWEMkqefb09OzpMvMM5K+ETdRQ9mM6nPOrT2VcmIJK73vOBxGXr161TisNYS+zlvV/LY+C/WfJpQqOzJ/RVRLhrQl9CRF6+vv1lzXhv7pfOmdpWjaSTVzLmVry1X0UdrO0iKMmvYxjvI9jN2yg2txVAUFp9OJp4dH5nDhfD5LTBvSQl/mWVuiphk1hxDED9U5et9xurnl/vaem9MNx+NJRUGW7KTkdMa0dc1iGLsRr3Gc87ooxUaNtEMQTCQXnJe1c1lW5vNFhAxJDJdJkdF5bDWJL4UYxANvDYFlmjfBStKEopxZ5xVjZSx0RuzWTCnyZ533OufFE895TgdRW8eUCEuUjGLvGXxHLLLWjX1Pfzjg+47+MDAeD8SUOGsB3fuOUTdN6Do/DENDnet4gcrhL2ortgEgQp2Qa/T8/KwWLrEpwkHyjavHYNFNXUVz65irRXt9LuuYKqUIRUANt2vbv+s65nluvN9KC6jK871zyu87/p2KvvYhZSPx7tu53/U7V8jSVXGoL6ronTFNMWmAfhwotmAcavobSCFhvbT8Yk6kJWL6jpwiJRuWWXgJJqupr7ZQi+n0oXlmGHt8Z9vOS7p32mKOscUb1dZLJO2+pqHXoSGTqyFhEHPKrAhhBpOlLdx+UT2jkky8V9ioDozsJBJJ+FyWXJK+nyI8OmFafVBQNEx85TZui0xItD/nXEDzaV8OlN9XQAj/sTD0HafDiLWOfhxZp4nOu9YywFje3EkMDuWWh6dnbo4H/GngL375JRQZpElNA00uip5KMW2UM0nKJJsUoSwKmWfmIhOLt4Zx7Pnlr37Ju1TouhGMw9gLP/vsU8axYzgMrNOFru+4rCspWaZp4XjsWFYp+h7DTEqRIcCyiIBjWSZpj5WC7zqM9Tw9PXF7e0su8Iu//A0/y45fffEbXt3e8fT0zGVaGE83fPHllxwOR7749W8xtuPV2094dbB8dnfg6SJG0R8uE1hx0G8Zv0ZaEa2VXaAYQanXpMaxOyTwxxbvD/uohrN1bDvn2sILm3qPXUu2JrqEGGVjiipbsVfk67qg1MWkFjhhDaRVNg9D39N3/lttZKvZ3vVnOSupXZWgXddJ0WcKMQVahi2CbgQtMNcg7TljbSuQ6oIqn2NJGq9Z21b7a1FbxVUVK+vCRp1ZtXisr3fO4nDCBdTrEIJShSp6JHKubW2xtmXc1vesyJ31thV91amhbrpqMV2UblTnKDGS33VQ9LuO4whWFKJdJ9Fg65q29nQpUizk62I4ajvUIk4Vx+ORHCW/eJlmhn5gHEaO44G+6xURK61n7pWSJFxxW9tWCqDImOl8RzH6PVRAkVMi5QC+I2dRdy/TTFQrGlOk3ZliVOWqetBFAUpSlM6FwSkbRuY3ayxDN7T7aI2lcx7TGfIh42OkNIN8ESn13dASnpKLOG2h996LLZGx9DWjvOvoOvGtqxSsmmJU2+lyHtoxQb1ZzdZpLEW487WTyG6DnZWysN9k7OfinHMbW/U5rJuBNv7z1upvXEJNBjkeDs2qp9vlClcVfuN6my0FZo+O/r7jrwfp2ylW5Q+7vyxc9cD3O896bLD8LrjeSiFXf8cYgyuZzoIfJObnOB4oBc7zQj+MOAPeGchJvXYsxoxCYm3wrQyQYhI5O97e+UYmFfm/PL4xCr8mBtd2cCKjl0JFCkJJcQjr0lowMWeSFT7HauTh8k4czG3OWDYJ9sskhQbh1gk6J7y1GOuvBst+ka/8x4KiYZogseelGGOaKSagfk8ZJ13t33vseTd1WzR4Q995Yiy4nFmWlfNl4vPPP8NQmINEKcWw8tVXX9EPB25vb3mezjrh6yQk1qmK4sk1DCm361mLVOO9zp2GdY0sJrPGwNPjAz//5I6H88xvz4Gcz2RreX54zz/5x/+Y3hQOvSOuC8dxaLv35/MzlVPRdV5aX0rYvrm5wTyeOR1H0JbNukZSSZhu4BISIUTefvIp6xr59LPPyalwc9/jxsB5mhlu7/nq3QeSH7hMC+nxiZQHus5yP3q+efeeNRYOg3yvmsG7iYq2xTGnSn6XjMVBd4HNzudHpO8HexwOB8kVVQd/773wsnaczYYOpMRl115cdKF1zjEeDw1pA1ox1DzedHGoIfemwOl0whi4MUddkHeWJsr/ylos5SDnNg4jp8OBw+EAzlBMYVo09zpI0SYIZGz8o1wK/dBLJwg2X1JFxGrO7bLOWnxptJh3GCXST/MsbTJoBWXOmZg3g+q+78nFaet6afPpGjbUz2v6h8FIFJuBru8kOk6RmGmaJD4tRgbXt+drmZeGvPR9L+hlSoJq6sohPLREDFELx9gsPWobLgPDoIWUojZhDUya1FGK5N3GZaVk4fGGZWXoeoa+583r1+Qo/LewLJwOghTe3NzinZf82WWl63q816xip2kfCGon5wxZDeWdcRivFlr682VZWaaJ3ndIctDKOi+STrFu2a9xDaQshb/w6ZW/bWDsNcJNhZL1GIeD0hpy8/ErAxyHgxSMyjUNKSr1RzYbxgA9KsaxzafPGIszjmy3aLpxPIAx9MPY/PIqNQJohZxciG2DVf+dKlMBWoEoRs1iOdZ18tlV+V2fseolWNewpAhlfc0eYbbWiin3zQ0H5Rt23nN+PvP0+ARFNhOd8/Q327k3HqQ+Y/t2/+87/p2LvrLbUTRUix1iZNgGUtsFbcXLNT+p1E2I7EgolCzePNZasQbRCjjjSIC1nriuctOHnuky8er2RAwBbNEdplT71lSipGY2loItFpMzsO24jDHNQdw4OY+mEDOiyNraoVK2UMQuZg4rl5R5niLnKeilyXhjuDn23B8kVst7z5rC1cRer2fXdSw6aCrsbL1tnJvWTtghBDnJRF6stK33vD92g1xaymr8awph3RWe+9eyK+LrYTZzaIvk0K6hQFl4nhbmEPHeSkvXFLrhwLIEjqc7XNeRimEYRg6nG1JB/ejKtmkwQhFIMcgOdHceMaqVDVmMQ0thCZHHy8TP3Bsu08rjhwtf/OYryqHnT//kj1kyDDcn6Bzj8QZrwQdpp/7k1R/x8PCAtaK2ffP2LSklDuPI8XSg8xZrCkMnbYRpnrnpB8IaxGPLWrrOKRG3IB0ix6VzlLgwrZFDb7k53vIP3/wdXJGotZvTQbiXzhHWBbOIoCgrV7V70TYKMapSsyIpW2u3kor3i/2Pxw/rqGKsru85n88cD0eGTjYei2Zq1lZv/XOnaEUtmqoFSC04zs/PLav3oq1KayWv8/HxkaKtrtPpBIWGFIR1lRZxEcuk1rLVeduU6ucmmw6codjCaEZCCFwuF8mOjpmacVvVw33f6+Yli8pfrTecc9QWinOOcRCj2WHsKVmKgvPlzKrG6NUTrymXvXJe2ZC4TcC2WaVUpKUqZZ2zXKZLQ1C869r9qOrpruvo+k35nONmHl2TgnIRs3V5X0fX9bx6/boZ8saSMTvuna2cwiwczpIyOUSWNDHlxDIvOCNqf5xksztjGU834i83DIz9gOnh0A/EeeXm5lb95g4Sc5dlfu/VhDkuKznJPe2MI68BcsI4R5yXts4YthZ/mhfiNHF5fCB2Azkl1nXm8nwmrAvLuogbBkKF6vtefF+tFZspYzHG0Q29CA2MYVVVOUhmeCpSDKeYhbtnwFhPyk5a/CWLpZC19JqMUrl7lZ8OYnBudbPgB7Ulco5Vu3RdJwIO0zjySbpJxrIGSZfJhd/bIm0UAucwWrBPy8yipsm15okxcpmmxrdLKRND4OnpSYQjZTPYHoaB169fN6TPGNM2DHUT6L2nHwY+PHxodcLbt2/bvL8syx/U7fkrFX37D6hwe1FEb9eh3V6j/67qsn3BUn8uF1R/txgB+Yr082MKrFEWxuc58vXDhHUdEeh9IRXHV+8eMLans4VLSHTaDz+MHeTE2IufjTEGrMdS0ST9TFul11JYeN1lGjZJdqXLF+UDiootIxpYCa7Ggk+Jt4eO16MH33E+Xyglk8JCsgXnDc73Db6vN68VwHp9Vp2ArDPtutVjL/UXWX2HNQXndqrlHVoUsxQV2MKyLuRiwIqIwhZahqAp/B5CqNyzNYgIwXW9WMiUyOs3Qh6+HXpu1sjQG46vjoTQ8fB85thbbvxIChNriIJsZRT5yxQLJQFFH2dFGaTIVuVzSqjtK0Pv+OztG3rf80c//Zx8a3j1yRvWYrk9Dvz0szd88Zsvuf/pT/Akpnmm9477G5nQv3mf6J3l7as7DuPA+fLM/e2ItdB5R+ccnfOklLitqjBTzVI77m5ObXe3xkQscHvsuDt9xufTLZfLzHleub098vmrAzG85uv3D/zm63eMh5GHx0eK66S9ry0ZUyR2KkbxbfSdxPJYAzkEecacl/EWI9abH4u+H/BRY8ycNeTot0IIWTyWZSGn2BwJolpGWCMCo8710pGIgo7ElIRTnOUfYzV3WyADUQY6qz6Qrv1u5b5lVa0Za4TSgG7kraANnRfCekvMMaZtUDYkg9YC6/sB5zt9XRREhYwITwsm1NxqlFyvaRqVw6uc6lwkqLKoGCLnREoRYz1YyQeuYgNnrXDSattVW3nSxtUisaKZvmb/OnJOYESkZq2a3jvbnq/U9YgCV7jDDbky6pnqPN47cknkZNQ/tWg7s9dWvszdNUvYacu8lEJYAmFewXvxs6t9pwJ95xn7QaK2aqpRiFikmOx9hzeWQpYggiSRaRlBmciQTWIqEMLSwIUQ1g3ZyjurnmlhXWbCPJOWSEqRdZlZLpOMqyJRas46nDVqcaKehN61os8PmzF4SUkLA0m78AWyNcLb1/EpfHQn96jvUW0lnXNY55vnZD0KNEGI9x392IOzFGfaWJLf2YQbWTs89TtTNnswZb9v714qcKSJV85hoiK/6yJWSuvSBHbWGoahJ8RATpmu9+IbmDPT5SxJHbrhAYN3stGvIpWwCvUnpqTXUgRFXd8xjmKvIwgpOOc5+I41RP0+36/j8wcVfS+ryWvOgvnoa43Z/vySULzvoddja1VJQVXRJ+ss0xrI2fKLX33Bq9dv+IvffI1BiLe2c7x+9YaSAsdhoHeGsfccDwMmJ46Hkc5L3qu3TtzN2Sa66lJujKGkxPEofXXvRRIuO1W5ESkFhn4g5cTgO+YQ6bwnUHicFw6HE+dpofc9Lqzcjaq2I9KR+O03X/PZYaRQWhxO5cskFY3UBAj6obW89+id7KhjKxqLcvgSMklfIX26i6pIpXfirVdyanfNXF37l/di/8N6H0Vx2FnL2Hccj0eMTxy6DnIkl0hYi95rVSPnQiyFEFKTqOcsSjGsJSeJbMq5kJW/Yst10sqe/C2JFIUUA3/3Z5/zP/63/5pP37xiXlf+yT/6eww2k1/fUMIF13s6b3n96o5j73h6euL8/MTp0094fX/HMk+izDseZTzc9bIzN5ZYlBel332aJl69um+LgXMOr7mOyzITwsppcNyf7olRJn1SpgdOnefQeW7v7/nNb76UxcOJ9YY7DhhjCVFaVjVmCWTyKntuJhsK/WPR98M9up05uuOokVm+IWeXywVrDV2nyvEYyJqzHUPA955C4fHpiaBJAaXQohed9/L8W/EwPRxHvHOCKA49xpqGKlQPNUALw06zVCty3ylaJfFkIiWrMWB7UcTGUR7HkWEYmddVrGlsIeWasW1Yo2SlFkXxCoWUkxaxiZyFVoEpamYbdZEW3nLJGUvNcRVfV+9t89fLWVS5GxevWrIIid95L56CVbxC4XQ6snjXiuH2fI2H5rM2TXO7h9YJulWV0fM8ycLue7XScgzjiO87mSNm7eLkIm27rpOW4RpZphn6gbEbJO2iFKwtdL7jMI6cDkeiCiRWVYCaXHBG6VBJ/skpM4dFC1NBCwHm53NbfyXmbSFnKdbXMLc2YZgWUgyksBKTcA3DIuix845h6DkMBy22BBWuyGrtBklmer22WYMQpKNnjXBGi7ZuczXmL1L8g2y4s4qTnJFrbPV+VXQSA0bR5GEYGA/Cm4xkSQxxFuerCbdVz1OnNkIacyiJA4o6c7UmQnXmEA6oc07/OzMtE7NaCwVFDLuu4+bmNSCF+fHmxLouTFPmcjnz6v4VnfPQD+QsrW1rrK6Pmcs8y7MRI13f0w+DRjCOdF3PvCxcpomYCv3QcTodCSkxz47CNiZ/1/HX097FXBV2teUIsI8s216/Jwzb6wdLf2bq+4JeEEgxcLp/xaefvKUbRv7hn/4Jt8cblnURBY9yoUbNffVW4oB6NXg2FDrrVSmraisthPSk2vmHGISHoAjTrEHgYvYIj08XkXpjeJwumGLBdXzx/h03t3d8eP/IZ59+xunYI1qADCnQpYXH88LrEDQdZONkGSRWR3bbUtTEFEUGX3cpdVI2O7K/Ht/F7art0Ir8hZjICbyJmBeKpboT++hhBOGkGA6HA7fZMc0LIRjO5zMhWeYlYkrgw/MZjBOfLzXbHI5Rij3n8a5rD1tFNuXPwgkJayA5Ma9OOQnRtyKYyouUdlfm4Wnm7/z8p/xHZuRw6nn37hv+/uev+Gf//F/w+dtP6R0sy4rX1lTnxfTzdDwIouc9j/OEt0YtLOTedK4jp8Q4DDhjWfPGUyq55onWyB1BBovzgpayApnOWn7z2y9ZiqGvfJNx1BBtIwHhLaantHt/PByvlLlZURxrLTix4ajRez8WfT/c43K5qGIXXt2/lqJPW70VjfHeSwB9DMhm2Ld7vpkKT034UO1Nuq7jZz/7KY+PD8IPdo7Xr18DYr+ypkgH9M6z33x7L2KsYRzB6OKfqouBwSJtPEFSLDlspHQhpnus88phEwP9EALTPDEvgorU7zUOIxShKkjBkVjXhcenQN93eO+k+NTvua5r86Tr+761xaQVDefLmcfHR4BmhxLCRqNZlo2A7/uO81lax8IBGxlPJ0rOVzFpsqiHK6Xwsmycwdvb23b9UkocDkeMsSxraF0iYwzLvDBNMx8eHlsxentzw2kcmfKMwdB3HaYU1mnWcAKHN5beekwuhGnh8fKe5TIRllUyfY0jzqtk0CbhRheN3aRI96Ta7pSUlRNZmLoKHCRSEY5gTGKMLfZTUgjdHKTNb829oqlqJm23FJh6XYSTXv0DM2QrIj39xxYprENMDYnz1pCNbfZFlS8mNjSdvsY1JLgosmqcRJxJN0yKumINOKPCFC0+nSVX6xftSErXcfNM9NY1cOXlUefeeo+fpwvzPDVfxfo7b9++bSbp9bocxwPm7duWm12jMyuXbxxH8YjVdJN1XVmVd+6c5LHX91vWiPOZvi+tOJ/nlWlaGv3j+xz/Tu3djyF/8u+dgCAXqhVLPfbFiahktqgf1SPgpL8n8vAi7+OdpXOWT9684tX9PS4HeuuZ04GAJRvxuxH3+gvd8SCu3xSUWtpizIzyBjOoy3ts8H+mYA697CQKjX9WWyxgiVVdlDPD6YaQYV5nPh8+JyfD+NMbPjw/8dsP7wQNnCb+7s/e8uGb98zrSgdE9cuTmLEtlcNaKXai8vSk0CsUsvZftz/XKKDaXI9F7Wbydi8A9SVE+TlCCu87p7+7uzf6O6beDLlh9WbJWwBrzDw9S+EbSybExBwzc4jEsPL1+2eMH3k+P5NL4tO3r5U0kkGDvHNrZ1aoPZOS8PfEtyw2wmr1jQL1woti7pyB87zys7eveDUWnM98/mc/xZTEZ5+9xQ8jY+dZ/MLDZWadLiw5k4vh9nTCW8s0XSjAzc2NKKKdxRmDd2C8V16JIa0yJsehJ8YgmY/VvykmLDB4S+88ISXWkLVDUPjFF1/yJ3/0R8yPj7x6fc+yiiXFh4cnTnbEO93YkHcIn1zzqgqMOckEVukRZotm+/H4YR4hxKv5tPF1k6ja94TtGBPD0LXioqZAWCuisHEc8d5JVFmMrbDab8DBtA1LzploHdnLe+4bRDVRoew2mWa3mImtUsLsfOcqH66+rtRFPGUpmvR1sEVSSTQhUDTlCCnuQlhxTnhyNYUD/d6YbQMsOaip+qazLEvz0Kt8qE0Qltt/W2vbQm70fKr3517MUi0xgKZQrkKa2iKW77HFaIkgRO5pErSCVT0213WFIp0Pi2xyk3oNdt5zczyJgrf6p2LISCs3YEg2Mp3PhEUSj7y1TJdJfN66TuaKDOu6UFs8tohC1hqlTqnHHDk1VXTdSDtjwDm8kU6LdxL1WQtlZ7eNplfQwag6tnIz67JRSsHsokuNcsIptA1D5dlJ0SDG3K1a0IKtcSita61/42uMXo0WFA5MRtZ461UnYK6Nu+s6udHQttpDOou0c91+vj2XoO30YcBGS9+vulEJ2roXxLhxDH1Hnwt9FxTQUcfgek7a7h8GccIohRYtKDYwY+NvGyOxfKa3nNNFC765US26rv9ec85fqeh7aROxV+fmLHyNCr923mF3kOn+9xunr5TGY6m3x5iCt8J5CSGScmnxZEPfYykch56SMl9+9Q3Pc6IbBRL2ViT71hzpey+Fn9l8cii5djyaJUqF/Bv6V3bRPjownNHCxMCaJD1idB02ivnjaDviFOi8eDm52yPdmxtyyJRX93xy0zG9L/z088+wapAq16YWk4VqBu6t7NqsClAECpZi0HkLa9H3SFLSaru1Jl/U98yg3BZN6kA4B7bIZFRR2obO6g4PPtq1b1VkwTR/oph155US49jzNJ25O4wM45FP74+s64x1hvubIz51mJz0uksx74ycby2QalKAoLySO2zcbvEq1W9Rva6MYSlwc/Q8JzjPgXePF8bxQFhXRmsZu44yJtYl8v6y8PB4FlUvmfezkHDHw0EnH4MpBm8MvZp9ppRJzhIM9L1n8J6+8y1OKaqYxzlLSYG4CkF5Divd4Pn5J2+YL5cW5VdiaiacXhcceWa2iKUWLq8TTsq57V5z2ZC+H82Zf7hHUMPjivBXdbktuiAZ0/y5Ssl03bEVWRVlkHlNlMBdJzFTVdQgh0YeYsVOI27Znd46Vue3rGctkFISRDtFaa3uvSN5UXCJfYyIK7pdgRBCIJeVgmnFWEqpqSur6XKKudmUtA1O3FrVzjnZ/Goqg1ELmpwzaxDUMCahRNQCrSXaOGk91piqvt+Mnt8/vIdS6LuOUTdaNWKuFrc1pUEvIzGpclrpKc5luq5nPEhrfhgG9VeU80g5idvDPPH8/AxZRSxajAc9r5Jh7Hte3d0zTRPT+awm3YlcjCZVBAxwOV/EU0+L4Mv5zKTzl7ceMDw+PuKsbx0IMVi2dMLrgVKIYSdcMKUJhIwpOG05VmQKKjdy22TuNwFmVwPABgDVaNO6vtSa0FndHOj8lXLGFJ3j1OqsFoQ1Ns80zqdszK2zUvB5EQPVLOpasFfEsdKDaqWyFXwVAd048ALpmEYraxuyXNPBhL/Yj3Kfo6aCzfPSCr+aF195hgJYeQya4KSdzaTo9rKsHI+n1rmr5y3iVaGGRSKWqIrlnmlZOJ8vnM9Pkh+sm4/vc3zvou8lqmfMFgbcSrVWEEhSRcliSCz9++339pBw3R3kUiBnaR3s6u8KGZNTK5ByKkxrhGwZvON4M3K46TDWtof7cDwKwlc/ukhLwzonbUW7nU9WldC+mv8Yv01EIJLz6/G1PhDn9WXldBjxRngvzoAzg5g2F8NXHyTP9XKe+cnPbnRCF9FIe2/2D5RpO9T60NR/6uDctw5q+7YKPDrlx6xRMi/rwyecC5WSr6tc7T8AKRLlWab3hjd3osLtOsuru1vctDA4OKeFtzcHIHI6nYjR8fj0xOgdJa48Pj7zZll1fFhKjpsHV1GeozcNDt+3L43RWKMsSNcSVt49nLm8XRl8zzrP/PI3H3j3eOHu7pbbQ4fvCjku3B4OeLvw5bt3PDw+wN0Nhq2YDCHivXApz+czd8cRnCARVtykOfgeDBz7QawGXCe791yUi+mJOXJZAh/OqxhLp8Q//JOfkYEvv37H5XxWpCUy9B1HteeothNeie/buMjNhNforrZZCNRElh+PH+Sxbw/FGBiHUWK0xoMS4msrUzjHIYiRcC2cTqeTKlrTlZ9XLbo+fPigi5Us0JJ0sbIus9hPYIhmoxFIl0BEE7bUMYj60AvNwjunaNci1jBs0WSieu0pyGdZL0rOlFLbeNfN9zzPPD8/t6KvXodaqOWcmKYz83whLGszXK7o2zzPWLcVu6fTqVndzHM1hN4EJnsFrzGGdQn4bptf6ufX1m41Q6+q6b1Xmvdb+7cW2N57jscjT09PYvuyBHzfY7Wz1DuP7UThWztS0zRxOh4ZuoFxGESMERNLPouYy0le7nqZNnuYUjSlyJDXzdfvcNdzOJxEFJBElGiMtC7Fk08KFqfOGCnFjT5C2uhCRmguGPHIi+tmAB7rPK1iEmNraoXdxooiwRtbSBZhW4RPaYGIiIWMsY13Z4vEBlaTcWc8thORg/cO2/k29xVF/HC2oXwYEURZ5+S/y7Vv5bcbt1yJKKvgx+0ss2rxl2vhalVtrqBK9dY7nU5t01YV5iEEKfT1/V+/ft3qk6enJ7pelLzH47EVxc651qpd1xWD5XSSjOC+H9u4PKyL/jn+wfSePxzp0xrvqgjc/7GUZhgqlXdpheHL4qXo6601zQRRBknRiUZ3BjrIul64fsZZYoZLKJACrw9HDJbzPBHizNhZMFnueyuMRO2yR0kaF2HHSdz7njUvvd13NQZGb7HFEnIS7p8TWD3HxJvRE0tmWhYJs86ZaV3obMKWxFdffcWf/f1/SIy7tonZN1ZoBORaCGSRuOLKLn1BH8xafC/rKkITfSiMMW3gOeub5UkpghTWyQrz7Udhz8l8eetlH5TxptA7uCyBbhwZvOX9uvD08A7ChWISHx4fiMsrbm7uOR0OpByIORExhCS7OvEGNc3QNSVBiqtRa0qSd1yvi0z8RSKicmJeAl+9e2T+eeTuZiS8e+D2/oZFTpXHy8KUCp0rgOW2t8QgCSLW96yqZDuMoyodM853zCFwXhZpdag9wKpcmL7vSRS8cyxxJZVEKkXE0FYKsLHvWL/5ANbzs88/ZegcnsTNTz/h4bLwL37xF/SHnrHvWv4lijjXiXPP52uxRPJAtEXmZVH84/HDOgad+GUe0vZrqbQXq4jQttkLYQW2/66bvFIEeQtBUDwRHIRG0rdWyPziGVdwiu5J6oO5am8CbX7ouo5CbnGN2SWSdSSEhpFiFC197YqUqoQULpwrGyLvvW9UkYrkiT+m04Xd4wyU7HDeKpdQUERp5SkiTsEF+c7jYWj+ZlXctizLVaEnliCCplrj2s+rJY2zVoCA+tyx2WasQdDOUtGa3uBdJ151aLqFcpBns9D5Tn1hO7IXf9ZSMnEN8ndWlJvzeRKFsXogJhzGQlhW4rKSgih5i0sYnzGdrFPeWMZxoO86jYYUnzgDYrTthU95VD6lQbNzjXDjh77X+1yI0TTxQi5p6yxQWLViMxVNywZTKjAiOcJymwupVPtlWut96wbuAJ9ahBkEyXamIX0VgTPWYZENvdPcYauImRhly3sURfZMLfqMkXhVQysC29LWxvW2sajdyYZAlnpqL9rBpWyKcv0itQCsnHSD0fAEeQaGYWw2dMaYq/Sc+vwZpVkktUqKii7Lswwg4yxnec6qWrx2fHrlq4Koseu4/z7H9y76KlpWe/L79qxcTJFCR0Q2vq8ZStsxOkpJ5AyxiMLMeVFiGm17RZLAoEZuVtEvGlLkYHrWJGifzQHnPcZ5JYUWcEZasAlQyX1xjmyNwqsGbxBvJ3RH0nZ5wmqQB0UHgDFSlJRt4GYN7q5QeMpFWskeYikiHDEFmy0hrcypkHDcHTzn9x/48sMjISeG4pWv5SjqeWOcg2J05yvn0pzls6HUXR6Gkg3WeHJOUkDaDluE+JtVkVSKwfoBg6BxdaJNIRLKZs6cqbxLLTowL1gPu3FQNn/CJUQCEBI8PV5493jm9ekt/+R/+edgLCEs/A//7J9xXhe8H3m+LIRl5tX9DR5BduV6ly232AhfsfJ46q5cbpPwAQUNtIQkqulcEnNcKeVIDJGv55nTYeR27Hl4PPObr75hOIzc3xwJgO8sP/vpJ/z6N1/jlevS9eLV5IzBeEEDnuYZ03UcnajLgu78bC6Mzuu9T7r4Qu8KpggS01nP3/+Tn/N4PjMOHcZC73qlF0SWsDIcjtKiMKrS0511cTKB1SI+xsw8r4DFG9n41NZLa7n9ePwgj8M47hB8KZCMEtTEn6tntP2mqgxrQ+0r1w/QlmhgXQ3Pz09M06X9Ti24vHVt89D3Uix5a3FwJQqr3KtaLOYsXLYQAsk6ohVVZjWQT/k6cSDnpLyylQ6DdXK+nW5u6gJYzaIP40F4Ur0Xrzegzz3zdGFdMmtO0rpUv7+KwDlvub+/lxSD45F1XZnnmfP5LG4LORNChLIIt6rvAUlByiVxPBzaGpbilrYhbdfQ0MKNw+ZVUVqYtOi2uWCMY5lXKS4xWBxDP2CNByM+iGGVrkdNUVpmSbYgFzE5LoZiEvP5wjrPxDUQlkU2kT7jkcSJoet5dXvHYRwZ9DvWQmLoB90EOo7HTQiWaivaWoZebXjYeGPGIGu2XvuUo25w0VxaJ9FoCNpLlmhNaanWQqjWXdqSLbKe7Pl8dX0pRrnrWrA577f3UbCo6Jis/3R939A8SmnGyUYFHa29q8VqsULR0Q/XZ2TjqDYUT/4DoFnkbEdpvy6+gHJ9cqqipcL2NkZBQcM4jNjDgeoOUpE7MUancf5QysK6rKyLiDCcl+hWaxyuk25iCJF5Xq42Vr7rOGpn6MOHd8zzzOVy+V5zzvdH+mohv/1x91c6aRWj5HL1tlOeE9a0iQrq38vNjTnjjcU52u/lnMiGrceuvX/fyU5xHHp6B64YinF8+XhmWlbubkf6rmcJmZAyaxFfnR7Tdga5FBFy1Ju525G4NoDLRkbOkhhRH6CMJWFYongOeefprCGpQXQyDlMKY+8hJB7XRMiWobf8s3/xr7msiZgTUL3nNqf4iqK2AaQcw5i3tA+R59udEakVkm7JJEUsD70nhYXp6Uw/HuiPp/rG6ukXpThJWQZfHelmu5+wtX234t5Qg8ONsVwuE/Q9IazEqGo79cmqkUyfvvmU/+L//d/zkz/+E/7x3R+J+s5YDoNa5CBIb+ccxUtuoySesFNBbWRakIklafHb2lLO8vT4hMUw9AOv7u+xYeV46BmcYejke57nhcPxSCqSg/vNhydev77H9x3HAs6KybYDni+X5uJeVO1VckUIdHeqrfMQIoduxFrDrLv6fnB03vJ0nriUzOHNa2K88Hw+0w0D67LgnG1tfKs73pSzouVyzSukX7lfve823p/9MXv3h3zUxIxqfeHVkgLEUuP29pbD4cDj0wPTdOF4PPDwIH/eL6i17RhC4P379y23tyrMu66j15Zk533Le3VGdsnC34uNclH9+E6nEylJWsbj4yMJQd47OpnanSRgdPqcCC9O7DDanKZ/DzSj6VqMSsF2oPPy92IqLcVtUDuR2vaqm5yKbpdSGu1hb2IdY+SgBZ2sJxuy+PT01Obcu/ubhsg8Pz+31xwOYs1Sr6G01qTYfHp8YlFBxng4bh57IYgydppVmS/BAa7zOCyD8zx8867xMedpwlvHqAbLKUvCxbosmAL3pxvM6baJMF7d33McD2qB0+PVm7DsUi5kfZKCXVBTEUhIiIF43tY5tXVzTJGoM+vxvRggp5IaiokxGC+rfqlrZ7Y7ntx2GOuUZyecS1OqGldBFK8oHdCZ6uknPnSVW5+qkEM3wK0d3/kWGZdKVpsvmoq3oLw7bbua9qGm1Sx1GasOCW3WLNepYqWU5gZiFTUsmtiREfuaFNNVkVUpAbWG+fwnP+FwODBNE7/4xS+4XC7y35oDXErhcDgIP7DvW6oG1vDb3/xWjMed4+bmjtPpxO3tbdtUpZylDa5K62UR9e48/w1bttRBUy8gqCGnKAeuCoasfIirtmHtledMtpXEXgeiKIyqr1wj1TpHDCuHvsc7w1Asl6CeTkW4fuPQscYJpyHil3nBHByEiLeGzlvIRVIjdq1mdhNo7eFXP579d3HOsYQgIgbncRZGbzCmYwki7TYknKqOCpaHh2fGNwf++b/6BWt/EuWpl5SQshts+8V7396ru2NrFekxXKFgcv5ZuYmeY+f51Re/4N27D1jfc3r9Ka/efKqTpWFwPeTIOoeGyG7FL3xXEbEX7Bhj+eTtJ7w/X8jF8DTNGOP45sMjH55ecxg8LDPL8xOfvb7n87f3zGtgXlZubm/F4NNUeoS04q0plJL0nDYbn67rpFVfBGpOaji6hoBVTk6MiXld+PzTt0y//QbvLWkpmAx3x4H7+xMmJ959eOLu7obz0xO3xwOlyEJwPJ4kB7N36iEYcZ1jCStrCHTeE1Ni7NTKIhdsoTnqdxZ6L4jgorFPN75vLaV37x/xw4EcM9F0PF8mXt/cYu5kIrHeE1LGl4JNSdppTkzKKyqykaFNm9jMj0XfD/qoiJ20G7tNmGMqCuLagiJChL4VQdVmpOb3VgujZmK+Gy+ULV7K7FBiU0qLkcopNSQE6mZ7Q0zqHGTwbTFF0Y26CTFG7VfappQ2t8YQmweftPWEb0ahWSGFZdGFbG7zgvdesl6hnZ8kiAQCayto5MMMh8NRkBMjBVPRTaqxlklFW1IwKbKUM2HdlMVWN9IG4RvXFp5XkeCKYV1WLI7Oi3GuR0z113ndKZSLqGy1jbdcJlLUDOGQyFYMkwfXCeXGdfRqKeatUy6ebOzu7+8Z+4Gh6+X76LVPVRmGIFmp7NqPTmPVjAWjSSC2mieLwpWW4GRwWvSRLd2QWwHWmqO6zrRiuiqMi/AH69ita30pmbwrDkUEJOVCBlXeelzvG7pndM3HGKzfxhTWKJ9OuIGt6FALl4KgexTTftYOUzntytmv69wONNjPoLUOqXOsxMuJwKQ+KxVF33PuK1/+6emRu+fbttmqwqp1XblcJKhB8pfFbDqX3Dp6qW5gcsbt0Px1XeV+6X0oUZD3ylutfPDvc/zBSF/Rh3ifDlFJmxUHFKhcCoNqd3HdDtYiR7lSV1J5W/v+plXj1a8IlIuXs/ALSgYSN0fPUDyD6zBkeu9YiqRGOGNZtJc+9OqYTiGkjePG7rtQSuMFxKRZdrmAr6oyaU+nIrwEVwoO6I0he6N8P0cs8M3jM++fV/HFy5l//W9/xR//+3/ecnCN20KTK4dvf42qj1CxWvCmRDIFoTBsrRgD9A0WLpwfP/D523uWy5mQIu++/pKbu9eMY41VSoLZpUS/G0j7QvP3HTFGvv7mHd+cF46nI7/8+j2v3n7KwXT83/4f/y/+5Oef8f7L9/zLX33Bn/0Hf04MieDl2o3DSFIzzrpxqJYMztY0imoNoM74GnxeC8+UkiqHC4fjkay8xjvvuT0MTJcLJsrEdOg7vMl8eP/AN++fSClzfzMy9J5be8Pj4xMYQ4iJ0+nAqpD8p/dvSTm3SDxK/awsyGQpeGMwznE6HelcYZozT+cLoQBdR2fheQpkDP/8F7/i6TyzTBOFzN3tHZfpTCqFNSaMt/RJsNScM2j2aQ3T9t43d/jqTfVjwffDPjY0KjOOW74nOq6M/rlO8BX1lteN0qL1viEFgjJtC6345sncWReoWqQ554RTpp9fYzKrIbhsWrfOzj7abM9DfkmGT1kyWSs/qc79IQRC1HgpNTPunNciMTJdplb0zfOkRsuuJWxUukMtaitHqvrGWdc177NvvvmmLbqltgKtYZpnOt9hOuFLkWUeDGts72WNbNScdYRi1FJGr5n1WCxhDphkKb34ebpiSFnyeVsbzlYrj4wphjhv4jWn64dJhbEb6L0kcKQxavSao1e7KGcd93d3YkBtbUMgc65m2FpIlUJKpRV9dKZZnbRcb+dwfScFd9m28cah0XFgSqYzBpuyduLq7hwoypUEkgo8Us6adKLonbVNWGjNxkWunQyhiGURaXiPq/dInweNPZL27x6Eqc8FWnzW92pD0W7dst20qI1muT5FumXWbJGixqhit762oOIUoxSzmmylXcj6vOjc3Cx+lCv/+PTI8cORXDKvX7/mqIb/VdRREORbkEwjSV76fC5r2ASyivjnLN6KdleM1rbxPE8Ys4mfvs/xvYs+0ZnKsXPSkRuqjcicJB4kF0WNrewiralk+CyDhpq1V9SaoFb/4utjsnTPbSl0RoKPbckqR88aQQQ5K19F1VDzutDZwpoyj5eFYThSjCEkefe+MUoNqQgKl3IiJTWW1AsqnLmiN99ivFUOouF8uWB0952T7Eq0g83Je9aQuSwr52UF1+F6cPHC84f3/Orr9/wvbm/EfqAASrKuBOc6gBtMjA50iuxKk6CizvpWLMlkZ4lpIoVAdLBOj9jDgHcDT8/vscMN03ThcBjld5zu3nNpg70dH0Fj9wig3EVRZQMMQ8+0RKYIPz+M3N0ciZ//hK+fLixY/v4//g+Zl8h5ijhfeHt/S4gfeLdGsGIfYNQ7J6dCSBFMwVuDt0V9yTLWyKAqOZNykLFjHI7CceyZzmduTiO//O2X/N2f/4T/37/8C4pxnC8XUsrMIfF4mbHjyF9+/TVD/3Menp/xvuNnP/s5KS1Yc+L8+ESxlvube0oszOvKaTxQUqKzPa4I2ir3JJDXWdz2vYhTFqUtdH3PeVlYp4XpciHkyGkcOY4jT8+eDx+e+Of/6hf4ztP1VqwfSiEbcYyPuZAoksupxPTqel/bf01R9mPh94M99lYodfPjnOPVq1d43xFD4suH3/Lw8MD5fGZZFmnveU9Um5TatpT0DsubN69bq/fx8bFZvqSYGMex8UG992LxVM1gta1bjYfXdeV8PrdCE2gFVpsnrb3iLUm0V2zItHLdySEwTReWaiCr5PuUV5bLJChgjAxdR9d5us6zzJeGkNRr1HUd7969b+3havsieay+Xc9xHDe1r3eNP9i8C63h6ekJ2NDD+hltg2XUANo5SspM08p8nlnnIFkkBfIaeFo+tFm0cqZLzsw54a3k/HrnOPWjKGj7Xj3wvGT1Hm/aeQ2+A6rAEExGOSSFdVnUYzFuXY8sfo6yfggf2YGe+6CoW0XiHHbocMMgaliv9l7G4jpLPwyKimX6EMSeZg1qyG3UDXYDSNZlVdseNbw2VgUPsobFlERdjII3regrWONbBJ5T2lYRhOdamKHjrvoDNgpY2nWenK5iRcCg696t/GcVmOYsiSVVKFK9QvaHQRJAKocwKppdz3dlpWRR3VbEb1lnvPpdzvPML37xi2aufH9/j3Pin3k41BQT38ZazawupahRuFi+9MO2qaubpor6VaGj95sa/fu6OPw7Z+9+/AUouodCvEa2Ei+OlBNlJyB9ySGzxojZsDF03jN4S1oF0UnGMzjHmiK//vo97x8eefv6NcdeWiMlQ4mB481JeQ8yEFIWoYhRaLx2dqvUWoqZQvUdMtaSjCEE2bWlrNy/AqRI3w9tkkgp8e75QjaWcZQYL4OhK4Vf/eKXLGvidDq2XUQum/2AtRbb27Zzq9ehtn+qRL+gKJfuekSBi0TlZMkyfHw+s14kbicX+PDhgZ/9yd8jREHTSJoDnDPN1XR3vIS69/dVbpY8mPd3t6TnM3kOfPbqltc3R26PA8Pnn3J3OjI4MVFe1pU1JhJwfxx4fICnrz6QPv8UOitjwNg2ScuRMca39lC9ZsWIqENEsoXeOO5HQQ1+9e6Jf/vVN3z605/w5vUdMc54PxBT4TJfyOuEtZmxM/zil78k257z88RhhNevjhx6w6vb1/ziL3/Dm1f3eJNIa+b84R0cRg6ne5yTYtQUyQSei+HD+YJPhUXb164/8OHhHUM/MA4SQ/XVhw/80//qv+FXv/0tfWe5v7kVB3d7olMEM0bl7jlBbWXSXZqtx9VDvUN6fzx+uMeeqypm9NszME0T0zRxOT8RU2qZo74TpGaaLi19Ymv/X/s21oLJq1q3coj2BU4ItR3pGceRarxb28YxBEJYr8ye9xvBSmo3wLoGQoiS3qEb6ZQLl8uFNQThIxnDvMywKKdZjF0FJSwFh3AUnT1RVCnqvKPrO46nk7aylfKATEsxJXLYWmi11SWoCU0F6Zx4bq4htmgy6VxtbhJJuc7OilCuegTO08LlPDFPE2GJ5KDZvnmzgvHO03eCuBTlNVZ0xg7SsTmMo6KcHUM/MHgxd/aK7NUZOFcfPV2raoERw8bnFkTMNxSsKJlNRECD8vjkZxiL9QavJt7GSbvXWin6rBePP4p0MkyKFG3DG1CkQlAway3FOWyMjb7VkN6UKVYRS9HiamfP1Qaecvyc+O11vhWDBXaKXDaYWTu3hSIiDeXOQ2kooTW2JWxJ8qXSGdjGqm08yI3LL4DepkWo44AMxZargqrSFqzTVnXJlCLXqGKKXec5n8+6YVlaTJ21htPpyDj2Mr7UHaTStzYlPupRaJimSzs33/fNHLyCOH0/Mi9zQ/G/z/EHFX2m3hh98738ef8zvXVXKEQ7IaPvU7IUYFnIp/sLe0U0LduDe54mDl1PCok5rDyFyBwCsUA3HllC5vXNCUtmuDthDfReis81ycToTVWImY0XZ8XmBGuVH5CbColSCEvi6fnCmgvj8cjD0yOf3N9yexzwBkSUIZP3YRiw3ouzeAzkdSLFyBdfvcMfTozjIFesZPX80zi4Ij18gekF1UxBkziUp2FQjzpriDoJCC/Hko2lGBF7vP70p4TpQnEL8bzy9rPXZArzsogRsDPErA9hbXHzHQXEi3GU1eMwxsi7D+/5cJk4HG55c/+KGCKXqUBKzMtCcRZPojdyv+YEOR/IuXC5TKxr4NSNsgvdjSFjjExCTpS2dZKrpyM+gzQEoneeYRxJcaUfB/6v/+V/xWgtv/rtlxyOB96+uuXmcOTzz37G/bHnMl9495tveJwuzE3haPntNx/46U8+5+39kbxewMLy9J7/+H//v8MZ+Le/+gJnjnLfEozqmXc+T+LbiOH5+czN6cBPP/uML795z3/+f/+n/PN/9Qt++Zvf0vmev/f3/pTjocN20rpbQsAtFmt7+t5vO9IiNImanFAXsbq4VLVkRad/PH64R507Stm4z9XORIqYZ4ahp+sHdQpwDYnb58PWf/bv2YyG1VS2xrw1I9iUWRYp6FA0A2gWKrVlPE2TFGI7Sgp2M7ZFEb0YkprpJ30vWTXmeZbCjCzZqPPa2mO921ToSSk+Q9djeym61nVtKs9xHDHKqZvnmXmVVqdskFIrmj/99NN2nuIAsSktU8oYk6To0SPXNrTJknzSV86jLPQhSvt5ukhGdwoRlSpisnRrjGb/HnpBU8llQ+VTpjPCATyNRylifcdYbWOMdBAkhlI2wVnXvaLnVxFUQdbEqNgZh/OdpHFUOwYrCGWv2cLObVZAqST8MOC8EyGEUkZc5xqogLZrS3Ki7PYCkpSs66ITDmWkYIMjab5wpWuVEMimet6ZZttmjHLyhCknxZ1awiS9OaWoo4OKM9rUVtji3WA39q6pWVUlTP1/fd9WeFtJ7rqaMXdzqDEGU59HrT9st6XMxJTk+6vnYCnC4/N54zH2fcfT05bDPk03IlbsOo7HQ2sHw0bVeX5+bj9vPEEy07w0sc7x5rZdkBBWxlFQ7vPlrFS3v+air0ALnK8PT63jSkEeLK2c68QFaGDyFsD9ssBoaJY+7G63gFX3d2staQ188+FRnLwx3JxODMcBvxqYF7pB7FtiXOkt9L7TeJQVY+RBH/pBd1JalCIFRFJeQmcQHye01azn542jHw+8e3jg6y+/4k9/+imnwwhxJeguhwJrSPTWYQuEmImxMIeFZV35l7/4C4bjibvbG/1eUsTtVVB7lC/tWr+F2IrpnOR6SlEQmzVBHQxdNzB2Bzjecjlf+LM3PyMqH6G2jEFk5et8UXVyuznfaufWgdQ0UIq8GWAYD/gEz9PK//gXv+SPf/4zps7SWykqnTHcDJ5v3n1gvHnFebnwMAXwvRKQjWQLO/HFktazbxuDCrv7Xe6u+BmxqatTwfqOmDKf3N/w5pM3LHPkN7/6Nf/9//Av+Mv/4V/x089/wuXhA74kisv8/Oc/4d//sz/lZz/7nPHde371699we3vLv/zFF/zxH/8xP/n0nhBXvvjVF/zkk084jj2kzE/e3vObr7/CHu+Z1shnr+/E8sd6sbRYZt6+ec1f/uqX/It/+S949zjzF1984N9+9UR/vOP2eNjc/51jXgPOZY3D63WTk9u9XlYRDNXJqvI360RR786PJd8P99gXaSnFZlUU1SB8miZSCtzf33E8nnh6euDp6UlU7qlo9FJprVVjDNM0tRZQHSu1ndT3fVPZPj8/czlfeHx65PZ0Q06RZbqQc+Z4PHJ/eydK02XhcrmI2lcRwHEcwRQNrk9430veaSmC7GtBWvlk1jtyFN+7WVtT9fvHFBuPyTsPfYfxB9KOp2itberEx4dHEXGEgOuqubpp86dzTq6Rbui6XgrdfSu46zpG9UisxWdFS9dlJQbJQ57OF2lLzwvT85mskWljPzD2qqJFWuPOiRp37Hpp3XrfsrynaaIYydF1wKFTtBWElrOuLGzUHqudMeOcIHkGbOfprMVaTxX6WO/xyo3zfYfvBnzXMR7GxvlthsqlCB++78SmwEJxjmIhQStakorpsi1ERQ6NKmWdjiNrLS510sWztAK4UEgWSjEULMZpW7gUKLuukhGOX+WNGluj4lwrRDE7n98kXakrgKnNfrsib/9svfiZDBOJyTOlqHBZFc7Kfa3g07Kusvk2MDhZr4uOrU7brZfLRfl00n2SZ1U2O/f39xyPx+Z1uRe51Oe9UjrqUVXoMSZsCKScCCFh2Iz46xgW67vM+/fv6QZPBZ6+z/G9i75codXtEmqBIOVRtdmohR/QskEzpRVR0lKI7W7ILkbEEOifW8VeiuxSqsjBeh7nhb7r4LJwvjzhveP+5paC4cN04elcuDkcuSwz07RwOPTc3ZzAZIZeHkRKIuZMKEKodc6T8oorYh+TzE7cUDJzzHzz+ICxlp9/9im3Q0eOAYxlyQlXCqZYlmxZ10AnFnzMMXGZZjpTMHj+6Cefc+y7pshqfJdGnqahOMJVFD6fXEN5bV+l+Fkk5WTJvcWCI2MLWGQX0g0jCYMHTbHIohiiSLax7g4MKFReb+1WkG8oUn2wNtPLkhJhnsm2J2KZ1sjD88Jnr+54OD+LHYw98jAtTJxJGX7z8MSoHnQpy66/trVK2tii3nv6rsMZS7HbuVlrKaFQUsZ6y9B7zvPMvEZuXc8XH94Ri+X0+o7/y3/yH/NP/+v/ji+/fuQf/Qd/zuu7ga+//oq//Le/5P/z3/ynfPbpW/4P/5s/5z/8x/8e/+Yvfw0m8/X7J+7H1/zFl19h+xt+/fU3/PE377m/uyPFwhdffc34tudf/9vf8g//9O9w0xe++O1v+Pkf/RHWwH/2X/yX/ObhiVTgq6/ecTze8qd/8nPubg/kuNK5QufFrmedF7rOU06j+ErGSEmdqOZyghxZ1rW12uomaL9rraTqH48f5tF1+6B3yzD09H1HysITmuZJnACc5H0e05H4FMFEDqejoHUxEi8TsDYaSn1ub25u6LQIkT3dZnVyPp9ZZjF0LahVkG42JdtafPisVb4XG4/0cDyyhoUwT5zPZzofJGkiJeZlJmj2L4g9V1UZOvWQq4hVSomuHyTFSDcy1kniR4pB0S4papvx9LRgDPjO47seCiqEGZsquZrZlhKFBK+Fr/j2CeoVltAKRkHRohbc4nuXY2a+TMqHjOQkyJ0zVuM+pR3rjbbDnWfopPg1QFzl96pIbRwG8QvsupZbW/IWOQkbKJJ1knXQChVXgM5oyodrBSEqlnSdZxgPdH3PeDxohyiT13WDzIwhygdJMaEcuqqezYpsejWZN148c5WRT44JY7K24qXYK5pSUbsUsRRd89noQxbICnYouCI+fYairVIRTmxtXNOAGdr71cK0lhmVZ/5Roah8g1a1VJDFGCn4BMPY7kHSDfYGL8qTEWOUAsjsfA0LeO+IUeqeaqu1D1XYe6hWbuo8L21dNaZoq3ZiXVYdf1meXyt8S4yT65Fz84zs+57bu3tJ1gmyPuyL4d93fP/2br3xDXrceuKi/BIUKRfIOSHFynbZnaEVdq1/X1FDvSm16q0tBoF3t157/WddV16dbrnExMPTM//q3/wz5suFf/SP/gHDMPLuwyMYy/F0ZOx7Bt8RjRFeWZoZ+o5iJGHBWcvo4dRZbFH+iPWQC97IJPflh0dubm44jj0prKTcSQUuMxSLuqqf55VLCKR84XK5ME8TP31z5Bf/5hd8eHzg05//XU6j2M0UuBpc+8KvXrf6MyFZG3LM7QrGKOakvnNk5Pp7bxTVTKS4sqaE8wMxx0YQTznTWdOUXx8bJy/R2OuyT/6UUuLh4UEWBytFyWEcuT2N3N2c+PpxxTgpVP7Bn/4RHx6eeJoCn7y+w5csO1YkY1RUcVlJ4KF9dn2Q97simSgFRRS/5syh7wkxkEsSk2PECX84HvjzP//3eX6e+Prr9/zq/cKr+zv+V//rf8I//vf+AV/88lf8Z//5/5M/+7M/5v/8n/wf+eyTT3h4eM+/6eC/+Kf/Lf+n/+h/y9/56Rv+q//6v+HueOBXv/4tP/mzv8/Teebu9oav33/D3Ft+9vnn/Pf/3f+Xrz888s058NWHhXfv33N/d8t4GDgdRw69x5ZC31lZpFNRNaZRj7QBtACou1eZRFJTeYvgh5ZZ2fyqfmzv/mCPzd6i4JyIGLx3ssuPgRBXrBuafcs4jlwuZ6J1jIeD8nZlHo0xAbLwVO7e6XTTPgdUmMam/osxNCuNVDJFKS/b50elU7g2zgrQqz9nLcRSL958Qe2s8v+fvT/rlSXL0gOxb082uPsZ7r0xZEZW5FRZLKqqmtUgxW5C6gYE6E8KaOhBQj/2gyBAb62JgKTuJkE1CYpVWVmVU+UYcadzfDCzPS09rLW2mZ+IyIwgikAGcC1xM+5wjh93G/Ze61vfQLVNQHLlIlPRCt8xN1GpC4quhMDF0krWr+3fle+qaskQAoYQ0IVeilSeeqhf4OPjCcZkHpNKccnrYkbxFS5lZHlPyqtWlTwAFLECi9MMVe5zceelwAuybll4I5nv3rPC1nEMWsosTlHP2qEbGJVzrvn7qbEypOBpilFB9aH0I+dEKGHh+w7ed3A+wPrQ9hLjLELfI/QdQtch18riShm1qoo5gz+PlYQno7Ynho0sapXQAgMYGVvqzlPKankCMLCjLv8qlKjGoICBikY/keKapzRoxaaxm0g1eQ8k/7MyIdSCVP++thHjNSVpSwFiQEOVvmhFogIihitiHlvL96swU8UoRmoeBiQAyIhWgZgQvNQ6aEi1vg8VPOmf9VqXzT0NlPb85FSaBU6WwtpaB9+Lv6XQPUIITCMbd+ueyNFjX3rN+fKJHFrJV02MX/+NL4xpXKTmE0RVqnqefcsTDSWhaoer1iRqL6DCBo05ecpTyVJ4vno843i6wI83WE4R/83/4b/Dn/zgu/iv/9f/AuPQYblc0FuDaka8eTzi4fERH33jA+x8B1fYW82agkPf43YMSCniF7/+FC/eex/wBqkCr48XhL7Dru/hiQBrkXJBTJz9WFHgDOQBsnAGjM5Yi2f3d/j09Vv84pPXuH12jw/eu0fvABBzTGC4C7kqaBSGl983grYSSWVcYa2Bc1Lk5SzjVAcyri1yVIkX5sIKKuX/kLNS+G3cyb/SwQXIixcvQMczTpEEiTK4PYyoJWNKFYgTest92u5wg5wfMQQHWwhUMpyEgRNlENUNX+VJDJ3cG0o8t3KvUamAM/CW5f0AYdcHnETs8+nrRzjv8f0/+ibqsuDXb0843Nzh1Se/xdj1+Ed/8Rf44Bsf4pe//DX++//+X+Iv/+LP8Y2PPsJP/v6neHYY8ZNff4r33nuOb37vH8GWhH/84pt4HQt++/I1dsHho299Ew/HE/6H//nf4fXDhIc54tXjEX0f8P3vfxs5LTiMPd67u0XOEcFbHMYRbx8eeAxS1o1sa6Oh3SUp5WGj8HTeCQemAmTgN+P4d8fX72i2UUAb3RhrscRVvKPmrZfLBUMXMI479qUDNWX3e++91xIkzudzUwre3983E1ljmNfnvUdOLPDoQsBuGBmFmCacT0c8f/4cpRQ8Pj5yfq4x6ILH7e1tKyYvFxaRPDw+sBJYeHmXy2XNoM6ZxWUk5s1937zGWtKCNHpFiq6b/UGKXjaqDS6wQ8A0NwNaFaSM44guDKuXG1bOq4IOvH6U9r1v3z5yrBoRgr82K9ZnrO9W5W+pnDccHHPwxq5HcA5O0o+ctegsT1/UtsRAQwpsE9E4a3EQao9ONFqRIAbt3nPaB0kBxDYlHt4HuD4IcgdOy/AdXNfh9vkzHtc7hzkuSKUgUUVcLlwwGotuNyCXLOgXq7XbhED2ZyuRaJYkIcjx2NMag5wTdMMvtbSc9M6HVtTVWnl0XA0COhhBiVtTKsWU2nAZ/ZkGzOdTlA/gcXQleL9pZs1K9wE+u2cpF0++tCWE8NeiUZLsFsFQShqxWjfRKpzRJocA5o0SU5uKZikbYLfbtfdirW2xaEqxUL/Gm5sbdB2jvJrLfJb89RQT4pKEcuHYCs6l1uSPw4AqdYAK+mqtuLu/x7JEzHOEcwaVSitAf9/x5ce7VwXC9cnXESVX4Qy9ah4ge+OsECtVat/NHjWrsspaB01oyKUI1McPUXAO0RZ4ZzHljEwZz+9uYY3FNE3wQ8A//S/+l3j1yW/xv/vf/x/xF3/+5/jf/Nf/AktO+O2nnyJV4MMP3sd+6DlTwxBueodUM8Y+gL3rgDlGzBJe/vLtEY9zxosX94g5IRFnX5pS0DmOtJmyw6dvH/H65Sucpxmn0wUPjyf8+jef4Kc//zl88Lg7DPj297+H+7sbWKsKVIuY18Br5Wq1wkY6hdYNgkczRQrkruuQsyrYRHlmCDHPsFRhKp9POLYAIfDDW3IBnG0FhbWffZC23dMVZC6Qu3Z1v335GtF4lGpwd7MHDNB1HjVVeOnVXj1e8JuHI4L3uO87HC8LOmuQclqB92pEGc0jpWACgrVXRZ8Ww60olDxNXrwZNRyGEdVEFJPx8PYRo++wO+xgUfHxNz9AP3R4dnMDWzJ+8ZtP8NtXj/jovTv86Z/9GagkvDkd8fCjH+IH3/8ufvD9P8aPf/0pfvjXP8SHL57jg/ffx6tXn+LvfvYz/MkP/hjPbw/46x/9GD/6+W+QCkcS7fc73N/fwVuDx8e3mGrCEAKsBYI36ILF7e0O83RCPEcsKQNmjcczQofIif281MvRdl7CxtdAcCtj9kpPSMnvjq/V4fzKxSFUlJpbOoBy9JS3O00XTBOxn11OgDRKrL708LVDD2C/sRzR9QNESK4lpPLPdk7iz7iIW0QpfjweuYBp4yzTeG+6Rk3TxLynSri9uweI0Y5pnlkZKhy8UgEYg35kb86S5LkFwTqLYAMgaU1LSnDzhOA5nUQtQLjYWf0MlfGrKU/WWvEoWz0/jeQWwwBeUZZcsN/t11Hg5mQwn9g1sUi7JpUQPI9jHYwUfR4W3Gw6Y1kYWDmD1znHUY4g9iCsRbJ4+bUNuMhhMIRtQYqIBhjxkuLRsZVJ1/VcMKhyUxBE13Uw3oGsQTE8Di4GgDMw5MSyTsQbtcioVXh0IA4z4IvWEDlntnw53k/aZMGoAbdjnqLwNVf8R9drA/J8XqhaNXsAdIwqVCXvJOkC/P70a3QMbBjGa3uR00Z/sxe02a9Z9yn+L12hgFbPOVYUjyTOU0EEawzvXXU1YoZMIflaSXFbCgzJfVm4ZnDGohPfR0XFcy4gMpjnCafzBV3K2O0OfH19gA8dAz8wIMP3bylsrm3MDMj4PKvDiACspbJyfZoWLAsXj9ZzY1P+oYs+fTD4hMmbbSefsBmSowi5lwCWeztWNmp3s8qLJWiMuPDjipX9/njBAkhvWKpsl+EcbPCABT642eG9mx2mZcb8jef45OVbvHd/wLi/wb/99/8BP/75T/Bf/Yt/hn/2l38JnxY4yQSelwV3fYeaOczb1IoCwi9//Rt0wx7HJQOxoFqL3c0NcozIcQFgELoBb09H/PVf/xD/7q9+iL/58c/w05/9vPnp5Myjh/dePEfX9/ijb30L3/3WeyBjcHtzA12wpLGR0UUWmN223yvKp//eiPtihMhQvPD9CiHXiuAdDBl01vMo2HGxV41kE1oHOF4kg3fIeYHmfG75e9dcvs3RCkCF8gnd4NEL0TgEi+C4Xfvwbg9nAgoq5hR5TFkJ87QAncduHITb6ZGL3lfy6tZsDGBxVfhtzxffS4Uhe2k+qFaYQnj/+XNcLmfsbxhZC73H9z7+CCAC1R1iukdMwG4/YJkmlBRx++I9nM5n/Ie/+3uMfY9vfPAcz+7egwHh73/yQ/zdz36Bf/rP/jlevXmL/+Ff/Rs8nBfs9nf44L3neP/5LaMbQkqfz48ww8gPby047EaMQwe2Q+BuOqZ8JXpqiEXlrq1W4g7QezgvxrAy9lFrgmp4s3l3fD2PpniUiQcqYEwFYJv4Qu2gWI3LiFXOGZp8FEKQ6EjTRsA6ztVCqY2XaoEju44E5ZeiDjnnxh1yxuD29pab903R1ygJpQDGcgJG5OSaJS6oxCPOeZ5lE7PoxwFZRmBOLDoUijGWC4JcMqZ5Rgkee7drDammIKzxhOxJpwlk6yjNiiAjt/XDe057WAUh68gtxzW3WKdM3q+2Nfx1HHtorQVKxdB1CNYxhcTwOfKGo+cMAGsdRNsgNqRrrJ21mkpVG+TkiAswo+NOxypl7wP6cUA/DOj7EVYSgVIuQIywPsB4h2qADKZ55FYoYbVMA6HUTTNvZRxbJTu28vsxpJO3lUMHrYtlDGs959dnwx6FMCv/fKWYWHadJpKc9nVkXahBP+KUIVxSooYIGkmcotXHTV7awBTmgNunE8engw4uQzZCDrMpPtHGvVubE95zxAy/gJHRNkomsUxbUVroNScuCDsfkGthfYJz8D5wESfqeCKg768jBblGMujg0HU9ci7wLgPQRgcy8oWMhfm/KfNYuNkWFSPrQ/5Sa85XKvoa6rM5gQTID+QioJaKCiDLWJaMFd8eddcWCJwKP9Ry8tk+oADW8MMBtS/h/D7rnWTFeljDN+yzWzaTjIPD29MZy+EAIoPvfNvj/tkNPn31Cj/80U/x6998gv/tf/UvcHOzw8PxhJv9nt+r6QBD+PGPf4Lz5YQKg29+50/w64czKhXc3+wxxYRaE5x1+Puf/wr/n//xX+N//uFP8OnrN4gp44MPXuCf/5f/JV68eIGHx0fsDze4O+zw4Ys7dA64TDO+88338MnLN7jZ7ZsBqpGxLloHde1qD6yjn6bwkY5EFcja5XZdQI0JhgBvuUvqugG5MtEWYJi973pUx3mwzoo55WZ0rsdTpG/98/r33jt848MPcJpnVGNRq2c1oXWIwrkbgkUfArowolLFm4cznt/fwktkmfoTpbS0kYF6gW3tJ5pFhLyfUkqzMOFnn/jneAf0HUqJGAaPzg14PB8BAg77Pbz3OJ8fYKli31l868PneP3yNe5vDnD+Hm/ePuBwuMPJnJGJ8B/+9megWvD9734bz56/j7843OHf/Jv/L377+gH9uMf3vvNt7PY7fPP9F3DgwnueKmzncXM44M2bE1KM8Lc7DP2AoQ8ITj2eDOZ5xtB3n7n2dbMJbUdX22QbLRZz5di/d8fX82gN36aZYXf9sW1K2vQBrBjUka53tilqX79+LUIJi7EfWmKFcmQBNP5QFXQjxogEJu6fTiekFFsBpc0Fb065qev1/U3TBGst9uKbd7lc8PDw0FS+MIZ92HJFoYrH86mR27uhbxy68/nMAfXyjF8uZ5Sux/39M9SSUUrCfLlglrxb5d1t34uukzHOjft3OByaAbX1bs0mpdXapqTrKMvts7WaQfM43ACI08woHBmgsCjFWQMP24ocHRWCahP7wXJ2LAQBNFayaYXu1HlGAUPfMWLrA4sx9juEwNy9TFVGnEDnehgfuBAUtI5KRsyp3UvOquGxYRECaBVrYMNjq7WNPHlqJ/SszPBSJc3OFXqWxvJZpXNxUxGkoNXro7+CiFZUla6cyc5u6GCKzIHPqbGOKVCSJGxgsG1r9bqTRKutYKJZvQRlIkIgLoo3DY5Wtm3Pk8+1ba5IogTVUs27wGbWlWDc9Z5krcUwDEglN75h160pW158GPW983MQAOjYnABigYn1Dkm49s5D7mcWd6TCXsK1AsNQYQyvE+fpwnZIGyXw7zq+MtL3ZJTON7siRJWtT+YlsQLIORgEFGNAgWtvs7kAyg4lcMeh7uJilgLNS6S6dnkK68c5SifBqFXvPca+QzUWt7d7vHi2x0cfvsAyJyxxwv/rf/pX+Pa3voV/+k/+ArVkvM3Aq4cHuGBxf3OH/e0thv0BD3PB2+MJ7z2/R5ojOuvxo1/8Gn/1V3+Dn/z45wA8+i7g+9/5GH/6vW/jj/7oQxwvZxAI/+TPvo9lTtgNA252I7wDKgo+vL/F27dH7hIdu7tXw+0GyTncqo/4wtZW1DkniiH5N+5iCYQg5w/oQgdS1Assf2cRAOcDN5jceeYC4toX7/OOa8hcfxJfm1orXr1+g+o9cgVOlxn9MOK8FLx++QYVFsAFz+9ucCAvFp0VsPwwxzjLAsAdcK2pFXu1FCAIP0c6xC3hXe9FtTCxACtiwbF8+51DyQmUC+bLhP3tPccBgpFSZz1u9zfoLeH5/S1O5wkEhw9ePMP797d4/fCAmBNuDwNevXqDv/vZL9h4eV6wGwb86Q++j/efP8NuDOh3OxhYpJgAGAx9QC4ZfcdWGqVU+LCO2oxxcm1Ws9Xt59JRnKathMC2D7Qh4m83KB0/vDu+ngerd7lhVrGVNjZqzlxEuGCdRc1rBnOtFVZ4cc45xBjbWsLFgmuGyESSJV7X0bGOQnNmhasBJ8l0XdfQ5GVZoAVDJcKSIi7ThErE+bDeN2NZYwyePXuGcTcidD1STpjmBcsScVlmSQ9yjaLBvmU7Lvhks+77AYMkz9SSeMt3Hr7rQcZwLJgUc86xvQcj4QEdLLxf+b+rVY2DhYV3nBai611wQTJ2TctqNUatSRyc83xuBdECAWqd7MlI0WfROQ+Noqoy8kOtqN61ODrXhcY1rFRFNADh6fJ5cRpL5j18CLA6vhW0jqSQ9i7AOM88bwsW8lVCptL4/B7EdCkjsCOUM1dXT1ot2jb7gI6oU04ohUU4VAmFAJKJCo8lLUgQSwODJcVVfEP8ftmVg8eXsOyobyDg0Gb9YtuWtbBQ8K7UAmfUqmq9d9cmWJxc+E8MHEENmZvJmMzWFP1jwakx61qqxv+p5Cam2NY0WRTtlSQ61XKNYq1pRRm/hpXnj/nWzjqMwygekGjvohbCsiScTmcJTDASrsDPvHJBQ+gRggeQYUxuYo9aKk7hwtdTaiMViHyZ48tz+gRubGRKeUhJ+QRUUYgzbUnq8lINKth4sVRCscSqHbIw4HD6nDOP9yxYfVkZ+rfGogJsOOk8auIM25g5muoyR8RKqCWhkEGFh3UZt3uPWiJS6NEHj9gFpNSj7wc8nI74v/2//yf85X/253h2d8cGogSMh3vUUvDT1yd88vINvvH8GQ7e4befvsX/5f/6L/Hv/vpH+MEffx/f/ZMf4PndDb7zjQ9BxF1I6D1gDeZlwTAMGPsO59MFqTi8Pk/4ow/ucLsfYUKHvrMIjiP1iAAr16ga9t3bqnZVkZdiEhKpa16CFRmWBB0oAilLGLWTvMJMgLEEItZRlaobBXcRvvETvrjwe1oUknAzuWyrSGVhKwRwRmY/jCBr4PoBy+mC07wAPuDxbNp4Pr+d0JkM23XItQA2wMCi5sKFsDHonUdwLIppOYsCs1fhf1QidFbymJ3FdDqh83tWMFZC33lcLgkVhNAHLNOMLvDrDp1FKfx6xhqMY4dlWXC4uUOKFwydwf3NDYyz+PibL/D69QNSqphjxn43Yr8fcNiPCNbCdwHTZUKRPMFhGPHw8AhrCEPnYVGxG3pQrej8AGdMI67HGJGE7Kv8rZQyG3uTgbUexlh4A7m+ajngQHL9tYB8d3w9D+edcDoLSsky0vQNNYmRvUAriQEwrSMpmDV5QTmgbBFSEQKvMVEKMhAjJlv+aK0VWePSqhrSC7oMSAb0yi+GjEnnZZZmwzS0XjfKcRyx2+/R9X1LBMqlolzUz3RtcLTwo1pbOpH6CALraBpGuGjVM9etNb5SEKiq1a/0FEXwuPCxCMGK+IUtarQxNtIkqy+cMayC1aIyBM7EJSL26CN2BwiW83G16DMkxVFOAqVV1KI+s2yn4mSCZcFFvZFz4AXt18LPOrZjIcM2KYbErkTRKud4XxRuZBVUjD0TaxvROr9SP7Y0AmONTGDZ+J6oNB55oxMIgEOE1jRAETd5fSNoWSUSfqcWZdeTOllpIXNnGFtbWgZ/vfLsridMqkxlU6/r+0ZdHLCZcmhhBxlrK6Cyvuj68wxW5G8bHUeV2r1tzPo+9D05A9QqxuZkZIRbALhm8J1zaXw9HwJyFjCrjZWBnDJmsWmxm5AEIjCNZ9uwWP5+fh649JrmBZoepoVn+Ycu+vQNc8MgcLHCszz4B8zKz6sSfRZTgjFegFq+sHpTViVlSCeTa0UfWKWUapGHVOf8rsWnpJxxuUxYvvkBqBb4bsDj+YxiDPb9AFsNiDo8TpMEZxd0fY/bmwNOxxP+6q9+iO98/Ef49sffQpwnPJ5OePP4iN++esD3vvNdxNOE//b//H/Cv/6rv8buZof/1T//z/HN99/DB+/d4/72Brf7PT9slcmeXc9E6xgjQs/5iZ++OuK95/fYjyOCd1ykhACzCaCulXMhjXR+2vXoLZyEA0NEqDBYYkI3ShST98j6oFk+J86Cuyq5QVekTiXivJFUMdrUm/+rHgYEZy1uDzsQWfiuxx4jKhl0Hti9uMWyG3COkf0IU8Y0LajGo/Me+8DnaEUsOLpmzolJz3516F8LzrqOu+XJKZSbLB7gzYV5KhIAblhRFeMCa9hotesdxpFtHk6nE0joNePAimiqFcFzZFWKC8bg8Mff/giVCNOcxVCUx+wwhtEO5+ByxjhysHYXPDRIm+OyJhgL7Ghg1NbZNgYxQENqiISoLPYTPKZxnJVs1JdPn0d+xrZCnHfH1/NIKeFyuSDFIqNFycYNAd0woDcs5nDWIsUZy8I2IofDATc3NxzoLohdEe5aEXERjGG0jgBnHA6HPY+cnF8NnIVgT4b5VcuyrOrajq2YRrGHKaXgfD43kdl2Q1R6Rt/36IehWbLEZQHlgmxWlE1HtS1JxDt0xmB/OLA57rLgMs2gWtpoUIvVTiggAJParWUeo3W2GS/re2NEfUUWGVAwUgytGJBOGQAuMHT9USELAOzFgsYC6Jxn1I9k2iBjw5K8ZLdXpDjD96H97NWYdz1nlaipd533jAgYti5JpcIQ00GoCRCY0sHTMQ0YW89/rpkFH5ThqqqTBdWUxpETOvhaxxRZQFcLxnFs6u5eeIGa9woCfC7t9QzYPaGUjJQiXr9+25Tm+/0eyhWvtTRXhi1S10yo5fo3MaLudzI21lg61QRooWyMwTYHuB38IgCoeTyqnYq1BrWu5xHttfhvtlQL652IIS1sEV/ZUlCIhLdpUai0+9h7j1QKcsmCjptWHIcuQP0xS+bCHGAuvhbpeu7u7u7w209ftqKRizm+T6y1bRw+TTMUBCmFE3D+wYu+L0ITaq1irWK4Cq3aZfGHNGDCbRGI2AmPQU89wH/W3UwhfFYDF7noaDyFmBgZnHJmFCeEpkwahx7OsKFzUqWZcxhcYO5fXDC8eAa8eI6UEn7+85/j4z/6SDJ6D/jADfh//D//Jf79D3+ESyz4yz/7x/inf/6neP78gPvbW9zsd9x1yNu2QpZVMvX5wibVN/sdHBwS2DxYHxBnLYxZ1Ue8CKzdl3biDb6WTnbLmdRFSjf/UgriklCrwdCxmz3V9UYvpYh/4or01UoIVhe9tTjcHp/3dwCar5GBwfO7O5ymBUm5CwZwVGBRYbzBbhzhncMQOsRlwcP5hJt9D5MjPxMkSSzSSKhf2DoK1RglHoXqYl5yhhM3fWctkkDwhRgV8NIsNMfzXJqB6jAMmOdJujODceiQU4Z1FnFmNJC/Zoa3FvtxD+ctiCqGLsC5gCoReKwmK0ApGPsOkCSY0yZD1TmP3W7E5XJmrzIrpPiyxkspypdzhgWa9UOzaXGujXB/n9r63fH1Os4TWzfkWmA9Izu5ivreq9muoGG1MArVd9IsMKUhpQVJ+W7SfKrK1Tkm31vn0IUe1nhQBVIuWGLiry3cqMAYLihiQddzjNfN7S2GgW1ajsdHtlZJCcb0qJW3j67rWnE0zzNgLJYlNXEISSG577gg60PHUWbCOzxIoZeRsaQIk3g/cN4BxM+w8x6h67A/HLDbmDDzmkooJQHGtxH5lXJZRp3eO+zd2PzSbMuDl8QbGdFZRYHAe9q2r9KGrxrNG+YotFYsCMTKvvdOvwnVGRgn+x5txFsAI3ZWkymcoHfM57KO/W2NKktrwZIzoPm02CJlhd+rAaN3qaLAsJ+rcyyCsIyb1UpIOTKXWnwU9Roq2qhUqiKjf4KHmneTeDqmFLEsM+IySXYw4Cxz150BliVJ+sXqQwtwpJx1nNrhfYAaMWcRsRXh1ZElNudXFBZYx69GuH1FR7qq8mbwycu6DSgdSIvu9XryuWPeqfoYGsOCqCCFLxfGQhsA1xG1FrHEIWnwWaPg4RGRmniG87IZgHA+oFQD6wldP2AYR1hpaG5vb9F3PYyx6PsTcua9I+fMCKi1cKEDxOGC2szYwPkOeTM1+n3HV0D6tjN3/f2GeK4zehkDN2Nha2Gtk5NmOYmFK6VWsVeB92Fcg1itPASMpnFFrD+rECEXhjW7EFByxv3tQR5OwmWeEHMWF3rp5JxFH7gQDaL0qjXjk1//BiF4/OjHP8V/+Juf4u084/vf+2P8L773bXz4wT2G/YjgHMa+h6naAfJo2oAjborwEa3ji3sYd9h3A96eL1DQmjtJ9p3iLpw9kzTcu5bMZrtS1JVaUcEG0EVGspAbmqfhpRVKfdcjbWLNoLC7cHa2+brWOlAV3glR68i+5F3Ar2EMTAXePByxFCCWir4bcNiNMKaIb2CFTxmoDkQVAQRfC2pijpDybbQANtbCkLlWbsvDbazl0YiMoJgc61Aic0djSY0L2Dm2UFCeUkoZ+36AqZVJ5ygNFQmBjVZLSgARvOf3mmTT7HcH5MqGnrlk7HqPLjiUIlzDWjleSUbO3vvm3J/kvfnQ4fn9Mwzeo6QFvguw8jmzmINrx2usRS183zZBi1G0UzpR7wFZQLVL/aIC/d3xh3+kzFZFhAprg1AXKlNprIXzBiGwETKotHXTWgMfPIgqcpHircp4aoPAWeM4ucIHGZvyRp5SRi6aPlGBsBriFyHHW2fRDRxhZp1rkWuKbNS6om+K5JRSYFxEkUJCUQ0A7T53zrUILm1ytehSnhcRcwZh2H9NEbyu69BLdrC1Fkb3ChLaSdVYuOutTWqEDdqGzbOF9vxx8+3W75P1mL9MeFuGeXQyt+JCUf/dqkcgAVWaNWMk9kwrMrTKwwiqB8uiR137Knif4/QJAyfoVyGmUpnKP9tuGkK0K0iyV/AkSlXD/POoNdst9tOs481ceN3s2yRIUjgg6Rta9NUKqhk5sbNFLYUL17paSBnDnDhO9GDbFZiNTYuV0bpp8A9QOR2jgUBfAEhcCQ+ffPT1xTYj3HaSFOhY6xjda9aXWakLVpFXRY7VOQKK4PH4PsYMs41CMwzauE0NwkU7I3tWkD39+q5jQ20SLmB1gHEWNSkHEnA+ANWCYBkAknvLOgdj8/ZM/M7jPxrpq+CboEKNljN3qWCyb86ssOyshc0Z1VmQQOGsny6sDHIGlAwqceyIIZ7jF5GhWzgYqWpTzUgloVbCdJkxzRHBs+/Q2AcEazCnimOqSEmEIEAbD3hnMQ6B1aOhA4gweYc3j4+IlfD8+Q3+s2/9Y3z47B7Pbw7Y7XYc7ePAxYiXzgoVzqmyliXznJEqvmlE8M7ibj8i5QWggnHHqJdFaR1aEQdJfbCcdcjEEDITZOXnWgtb+efWWlDJMzOEOP4NIPShY+8jYvJrMbLoWyvE1TW2S8cJxWxsQr7g+AyaZNaN4TxNgB+xG0b0XY8hGORccVkSokQa7foe2Vd4Z1CtxxA6jlArAOUqPo0Fua5EclgeQbTFvDKPBgT25yPO4CXwPVEFRe1dgEOBt8DpvIhyjYvU0LFivIhv1tD1jDTkjKFnTp/vAoJzSClhv9th6NhtMKckTuxW6AsFVJlXaY2BC47RU1E6Gus5bscYkOExw/1+wLIYVBmVpJjQeY/DbsConCxS2wYnha6oAjfXZ3uleKOSRfLd8bU8tBjZIrpEaEa2pPZX0vBxkUSwhuPMmBedrtIkWh43GRjjcDjcNjSOI9EWHtslRrvZFFhsRiwkAWLjk0kVVczoNVqM7U8YDVqWBafTqVm9GIl8Y3NabvAYzfNQvt04jq1wq4r4b8apVMUTFQZ9CLi7u1szc0Xo4ZzDcpkAyDpXeF/ZbvJa5AHrHmYtm00DGwpJ4zIaCP62ondWKTPM6SNBx9g8hkvEaqQZhmWEqVouDOXvVcHKryNvaFtoGAsYXqurASoZycTlYi/H2IpG5VfCWvTD0NYJNQTWKYN+hloNiAqILNQTl4tx5llrwUtEyInHk0onCM4hCQWgeoeaMo9ViX+VwuICq1oNq9ddzrdMtioRShH+nCEQ+N5rS5s2/7QiemZTbF2JPaRovooOfVJI6/O00s6u11GCcla5eNf7UgvK7Uh6q/CuhUfrFYRxN/I5KwXLZUKNkeP7QCyY9EG4rTwZOp1OiDFx0SdcXH1PKbHS2zrPHoryWWLOWCQZZ7+/aV8/TRPff3JvhkrCHfz9x1dC+laZsowYUdfiWiD8lArqptvkGbRBKhXVW8B47sgKADJiOlgFIeSCkXNXOy4w6qo6s9a2Kj7ngtfHE+5v97gfe1hjsOSMmDJiZv8ogPlSSlJ14jLuxFeOw6NHWAvs938iXSswhA67oRciLyuWjFuTQnQx2BZEeqN54zGnCCconHcGaSkY+p7tOmhFNwksXtH3p+eZu1Z+QELXNduFlZy8eQCkw1RlGHdxRf9BpO1rRAz/rBUJbCPUzUPxheNe6Y4YlXD46MMPMcWKJSfEssBnj1oqpnlGTAWXlGCcl66eO55UCMsSkeTzp1KBWrFEMZm1tXVEq2Hx+vBvuSDrIm6BUnijEvQN4IQDe+IxbXAAKiFJML2e85Q4XD0Ej77r4BUxlE2SQFjmBa534sO4epWlUkGGpHAcWqe8lc8P44hpnrAU5kkxFxAACKHzGHeDjGz1flp9zPSXka5REVEdZ1RBbLmTfHd8HY/dbsQ0zShlkdEZJ9t0PqDmilwJxhsMwwBjelzOQCmpjfmbcpbE6soBpahYg5WhFUDMCXOcGS2TyERG2q3QVKTRtBZW0aBSMM8LrxeV6QiodLUGAuBisBRGrJwVrqDEKYoVRt/3SCU3HqEVSsyyLIKOlzay1VzaufKzPgxDs6bhrN4OXQjofMB84mfdONvsRYB1Td6u08D1GgpyG5TRYSUd2as1XUn9gJVcbN6/dOpgjfD70OaDMo5jJJZHkVZQQmnmZfwOMmxtJ99X5XW46eW/M/LfFkdGq69f14Qwuj6yzQ1HeWnRx2ulFd4gA2kkYMDKaUspS+YrkELXGg6N6/PWiqilgqgwbUnW6a3VVkpRvldG4LpnWR3LbkbSdI3cqTgN9NlCTb+hqY31ew1akdjGwBZwQeoFqwUoxPwZzcSPqWGAMWth15BQeQY0McQFTmaB8EEfjkeeyJWKeYmN6pZrRd+P6IwDGYtpmWXyw+baPLrObJsWAnwpuEwTXEycJS3XOKUFuaxpNdbys9APPXzgRo1AeHh4wCI+mV/m+MpF3/bkk8i5+War7QLGGKGFSK0VxRg4EkNN4f9JXwkNb65UEXOE8zwKjjmJ5QuajJwSV9lK3L1MCWMI6Bwwp4wlZSy5wjh2eXd2feCV57HlSukDzYvKuBKFhQOhSGHFGtOzXUCcc1y8EK1dXGVYfloieucx9EASvyJD6yhER+Gr2GItqhuothmbWMOjw2TZzVxregKacamzgBfvQ+UCbsn/GlrurEEWUvLTh+p38cRIrrvCTcfLhNfnGd4HNmLd9fCWDaxjmXnzgEOpBsuSUQpwmma8efsWBQZRlGPeVjE3tQ0K3yKTzjkUWxpfZ45zc9nn98oPd8kFzvHn7voRsRK6LrBpNRLO5wtH2BkLpZfc7Pd4+/YtxmHPru+lcn6m4REuYDAOA/NeYmoIJGBAuaBUYqd9yzzSGCOjhsGDpkUnLZjmGeMwIAwDr/VUcTjsMIzXMVI8/uANGLKIbT37eFyj43pGMrcjtHfH1+voul5sRNjA1Zh1vQMY6a/FwQTfuJ6MUPH9oo2Q1ZEkoSE91qonJG+UKSdGnjYRjFpUqGUKvyaJCWzCvMy8P5LQEcy6fqp1CiDIpFujIkvhezb0jBjVWrGkBKr8jGj+rrW2IZnraEy9Crnx3u12Vwkj1hhB/qlNAoopV2vzFqHb/t1WPLD17NvyvYiuv7YVuMa0Rqx9r5GRr6YrYFNIbNZeLtqkeFTcZFskytfIotzQVq4L1ymLHjp6tMYgy1qooovrhB8+Z1wEWrgQ5H3yz3IutM9VS4GpFdVaZLEGqnIvlVxQKLHQsjKlwG/21xWwU3GBZrtvkdJNw7BRWqtCW6+RnIIvnEC1e2W7fxpc5ZAbZxoKZhsiJnusoavraeRaGEFM2y+sRTYMo+Y+BKGvsWJZi75cipwrQqWV8pbkemT5N71/cs6wwuW2zrHHYinwAm457yR9BI06xypwFlf5ENqYoL59237elzm+sjmzkU2pyq8iH4S7RE4fsNa1G0/HqkQ8Ci4KoMv4SjAsqPK3FAIMmzAXQVI4qoafFGsdfOAR8BIjIO/jkjIuS2JfIWKCP/Nj+FdwDrVmkOHcUnYM4hPJozvAOzY31nQRLzeBikL02BZUzjrYWjHPC7q+Rx84J5NgUKyDsRAvHiaz6v6sr7d1zGffIQ7IhoH4QwG1AMVUZEEA9XtCx958WUYjRkbkPMLkm0XXFj6XjG4ao4XUqv76vOPzHzpZqGrF6fiApXgUshiGEYf9iJIivDegUuGdxwf3N0BOmC8TDFV0ocPdzR4Pp0mQDYuU+Pw4a9pyBLPNBlYVXpbRgS5mQEoFxhJSLqgdIaaM3f4AqkCdJ/Teog8O87ysKIJlq5XT8YglLhj6vnWKRu4ZHplw56ZCiyXOzLuCOPyXzBxKcFFXyfBYt6wj6Zp1Q1PhDJpC+fb2FrtxQNf1AIDgOxi7qtp5rWF0AUY2cHBqA0c9Ma+Qx3Tvjq/jMY475FwQY0JOgLUePvjmo8eWLRkQgdqyLKyOlaKJiCdthUp7RtQ4uevYSklR5C1arg0gb4SrQnVbPDCXuDaj5lISrCDgIQTJ991xk7MsWBKjeEtcEJfE9BjLmxSvcVWcFy4YaGQOtF3TdmrlWDkQUyVevPcexn7Afhw551yaH1RCXBacE8dKKho1DAMAXJndA9cF3LUrgJFCmseAn+GKbb5P/oa/z1pY8du0UgyQkZEvAZDkJ+OYcwgAZA2qoEu0sd1h8Qhag2cgry+2LDoa1eJDfzkpuHUUyZnLx7bvKmdai75pWqDen0aEbgAQAheDapBsnYMnvQ4VpSR4Z5i2FWf0HU/qSkmwWF+fDZ1zO/96L5ay8re318Yb/nMtBcWuI2Y9rpC/TVOspdgX8Zgb2ufcRoEjr02bydDmZ+h1gKypprI1CxFnCTNGJVzyvuPxuAhK+bNz3RIj1wm+H2CcQwVwPB5Rioy3qcJIGhMKmtrWOIs4JdnvFuwON+gcI66XyywIME+AYA2S7PmaP80cWU5z+TLHfxTS10iztI6gcmVBgzVstMud4KqiAolXnyMIcwHa8jBhlZVSyoejQqjWwDh9bf73lEXZYwjHeUKigpgrYDxX8MjovOWMwsQlpvNsXOqdQSyZVTDgiBPrPSOCqPDGwkHyDYwgkVAF8nrD6LmoUmxZY+C8xzRHdDuHwXkstGDKCZ1zbROHQON6c24fYhgWYVQSijCZzdcZyWZk3gdVvgkLcfecSwZlA9t1qOJ0Xiqrm6lyHB6Mke7byrUQL8Andd0V72Hz4BFJ7q50rM4SPv7GB3g9VSwpYz/06JxFIfaW6289Cir2gQnhh36Ht+czQjAIxsOIQfPQcR4hnORtWhbd2E3np15I2zEvx9Bkvkbe8r1oWK24pIzL6Yyh62EDE85jTPDBw4mtg44kpmlqoyNreEQUOh71lJTQhYDgeGMahqFtmpWIVXmtEeICtO8GnGhC3/cwpwvmaUJMGV2/Q9d71FzaWGg37njDkOKOSO44vmDSbZqWjcleV1Z8GpnvxV3kl1NtvTv+8A5vPYYwoI4Vk0mNK6xj21ornCHMlwsAYJon9D2Tvl+8eMHWJpcLPvnNpwB487q5u2tUFIDzsI0x8J6LxmmeJRe3IjgH59VeozI/MPJ9b63Bm4cJFqbl8Frr0PfciF+WGXNK0vyX1pRZ59ANVkyaV6sSLT4nMXdmA+QV0dNEhBWhgnChLvLvHY+nnRMLjbVY3CJbAAS55CKMFbe2Gf3yO2EAwYlHGmBXYcP2cFYEB2jNF4Nk8nMEKbXGwTieYFkxsyMqTLxXCFfGlvxs8zNvjROxAP+4CkHxLBctRWx4YlkFL9azPymVgnmecDydcLlc8Pj4wOiqD9jfcFEN4vF7EbHPPHMiiJF1ZbfbwfnAnOh+ROg69OPAggoCgvPY7fYAEeIysZ9qySiJUV/vWSh0PJ34dDmH0AcUFDbhzwnBBBgycv5JmVdA+6xc4GiubqHa0C29Xo3Osy2AoezL9dCiTy7ySpMx4J1cx796GYValolrDyOjGTKA9Q7BGAS5t2upiHFF7Xa7AwCObLtMb7AsEaVU7P0A7zhVxViPlFhQmFOWhijifD5j3I3Nu3GOWbive97PiyDFqHDeYucGGMPTrFIrrwGC9vmug8sZfoPW/67jSxd91xw2LZq3hSA7TasjuI58QRnB8SbKHd2K4FiFsa1FiREEtnVBKXAwgsZxQcUPl2zUKaPrOzweT4ip4CZ0cNwgcYJBZb5BEFl7Skk8/yAdawGcv+oGdVxgjUVRGFg+AxtEClS8KfoAFm6EwNnCKWUsMeIwjOwJuExwziIuUaTba5FnjBHiMRqMbqSboPZ1jHiGEBCF89L3PZCTtjx80+UMYxzH1RkWHmgXCPB4GUa/LjDGKejZUyzvaQd1TX6V0Gr9U8lwtWDwDr0De+dlQilRRpSE7AiuFbqEUhOCBQDeYEJwYmfTS9HHC4CO47nAYkn9nCJSZe6echxKZkJvkc9IAD599RrPbu9w2N/gdDkKJ0Xzi/mLrGGlWd/1QBWUtSQ2cA5clBpjVn8tww2H+jOqktHK/XU6XQDjuIiTTSilDO8DjscjXtzfI3QdSkrMrRH7GN201gaA+TwEYElJEBsupLl5YE4RK9gr0lfwZ3p3/AEeci96F+CcmriKn2Zds0u1AGyjO6wbJiNVq1BBOXH6d41v7H2LcGvUD/narfoWQOOMxYlTPiwMDoeDjB25UFLrkzYelPs4+MBWRGKyvHrs8WfJOcPEBa76VvCpv1+MEUbGu+qlt/0MBhBRQBUTXP7MWjQ2JA8rE0VVuq3ga6japob7nEuz5QVu/lKa3yeIoGURhxHqCAlhzBiZXpDuoQBg2N9PTKUVoWnrPjZrrbzBNsbUvYnYf3CeZ8SFLXs0Xo90WkIrzy9KDF0uBV3Xi9CA3QG8da0At5anOFXuA2sNgucJiTVGovF4TeZJmUUQX1K+h1gsV2sV77gCR1zYNISOZBLibdv/G/+/VtDnXg05f18w8jXb35j2aMn53Lxi+3elNWiToHFuhHYGpT7RSWBGbvderczJZh8/Ng2vxHvENM/Y7XcIXYdxHAEs0BQSrRGmeW4GzIrI6si5bOoj5xnx5X2Rp3hUgcN+x2LKy7mZaH+5ku8rjnc/y//C1UlQK4BaNtYCjm0wVG169TpmHW/qJkrWS3oEI4chOJSUGfmSB5QjtQxyNThNC9479DAyjs05c66r4ZFwrQWd9wzF2lXcAWDl6BFJVh93tEbhLyPLAa28qusNWlYVEIJ3GLrQODVEBUPgxdh5h8F1YHuUTVyKWQtJvekBRiABUX7WVWyh8nZGmYTfYrkYCIFJvc4SDNjPTonPuqgpQka1IDwhrv4uLt/1RZcFTVC1lBPnKwdgSRHnywWQmzMISuYqSVKIR1wyUuGOqB8ZeavEn2sVaZir91ZrxRIjZiF9MxqClUcqCyEvuxXPbnZ4frsHSgbVgst0gXI3e7HMqZXHzwhoqIh37KvIn7MidH1TQjLPSoK4idhMu67XMuUEL+kKSTbmrgtiA0OY44JbjLIgMoFabXyUn9c2XyGMj30vSyWj3ADH/jDHirDEBWRtQ6HfHV+/Q1FjAy7e9B6Y5yjPt7vaUHn0yqrz0/GCmBbEGNF1HS6XCxdieY1w1CJRiz59/ZQSxnGEl81ex6+1VvRDj2EcMA4DHh8eUAv7R4YQ0A89+nGAwYq6bxM0nONknq5jZeI8z1iWpfG8NS4u19VPb7/fo+97jmSTNXoYBvQhXEUW6trrjEVOCZfzGSXlFuc2qH+fFMHa0m853Hpsp1a8OhbotskTXNua8Eb7qGsRth4yjtXIM1iIqwsqWVgqjOppM73hr/F7WkekHEXKvqqWgCAjT+s9bFnNtp1zyCkiRUaMNBEldDqmr5iXue2ty7Lg8eEBl8uEXAvu7u6x23kc9nvcHA7imLAW2OfTsY3Cu45TjIJ38N6yRx2x8heCQo3jiJhSowyo8vVpxGTj74HH3d74pmomIi425fxsz/312d6e/wbXNZ6kchUr1ma6FZJPL93nHGtehHDrrWFBoLOw2WGZk7g+VAwjEEKPrjPYHfY4nS9Iecbx1Usuor3HBx9+iDcPj8zzPJ/beYmRc677nveYvmff2XmZmV4k52UUL7/Qd7hcZpkGEsbDDq9evsIvf/krFmrJ+f8yx1cq+vSQ68MnSIj3qnZhqL82qN47RimMcTBg8izHtDCbTwstgE2ZqTLHIG8eQCBLh8Tf642FKTxXf/X6Ad97/4690oSjR0TwgXMqrWW1aHAe1hAsEZALjAeoZHlmZYxrLWABV3kjTSQeQ7SKOGolZDE/9t6zXUat6LzD6BjKfTyfcDyfcXNzg33vkVOB7bSYWxecSgUw4vpNnCMIy0pU71b3dDXE1O+3losP9ZMygBS6zF3MtTavRFRCSRk+dOhcJ508L1J12xb9nkMJtuszwZtK1w84XWbADFhSBjmHFFlibp3HkgmuFtR5YV+jarAfbnDo3oAZmVnUgmu3rr5SKwepYkmRC0wieDi2PjEAGYIzfG2NLODP7m8Bqkg14jJf+MHtek5EqQQD9pjy1gDWoBpBhdtr8HsZ+w6si6F2DXTsZi3zgap0ZrUUkCfMMaKAkBJz70jGwt4FCRKXLE2wFxc3R4KEF/ZeM8Qj/ZQrqrOwtQKVUVxjLCD+ZdUFEK4J7O+Or9dhDRNKjDHY9QNzi8hgmqIsshWzbKQA4fn9MwRrsVwm/Op0bhusAbAsC4iAoffY7XaCUocWbTYMAwuh5hnn8xnDMPC4dGAj5pTWjciLL5/vAkC88d/c3/HrdgNKSg3pYANZPjop3vqeqRBsmk4IQ98KQN7g0dSc2xEtsNrXeO9bw62bYs6ZrcIKm1enlGC9w7Bj26jG59uMurS4BKQ20DqvIWi1NeCcaW4Ao6ircnI1s9V8puYDpBGXs0CK8KkwAJDChGQaQG0tLcIb5mKd/U0hY18yaEiYWueUUhHnBcs88a9l5kI7OIA85nnClDLOx2NLDYJlg+au96hzaWNM5yxKzUCCCAcYUY7LAqAyPYt6TlQpGZ0PyIvcl7IfMdqbMYwD85GpYlnmdl5CcHCOC9ECQZ5h4AvY75Qn6yhFPR3FXcOqWJGEEqUorah1FamV863IhoHw5/KafIVKKzCrKOCmENWvU0eNdrmEIsDFJycjFc8g1zRNOJ8ntrbxzN/r+h67yokpl8uEUl9imldVbd/3GHcjJ954AUwAVveK4hkA9ocbDgRAxfP3XjQe7LIsjKx2AafjCZfpglg4831r2fT7jq9c9G1PDoFv9phT44jp2EAfYM197ENguXIRzt6Tk75C29Q+BJsXrh1CQwNrhbMGFoSXr98il4/5ASuZ+SnGNZWqMVyYGQJ/j2HIukH7Ar8zWRTr6LbKI2ywmkVLoUOFC9MkSQ4ksO4QOhjDvn19VoJ+4a/jZridGx4fq4KXx4YsxiAu+PSsyGdWNJINitUjah0tdF3gfyfeAIIU3SBC3/VXoesEnc9T485tr8UXKXo3dwFArAY+ns6AZXFIFzym44zgA7x16LuAEDxcMdx2G4NaM0phPtrxeMJ7z27hreXg7A2FgGiTKlKfKPPkv6UW5sPIZwYRQtchxtSQCzVIds4Jn47vAygKKu+764LYHRQZqfL3QEfvQEMsuNhf3988z+hC19II8sYk1wC4ORyQU2K/KyVxy9jAWVUvcvyg9x1KiTzKNQzpzzHCgsnFwfMISTmFJUXk/OWk+u+OP7wjhA5qUeQ9KyvZ+mFuhKR1QV8tMrjxXp+Lxo0Si4yu6xCCThf42CpX12d89UHT6YyusYqAO8tThBB4bFsqP1ea09sKT3luQugab1ZzXBXhA8S4XwqxrdhAnyf9PLIgs01LCA2pK5l5ylaeoe14bBVeXFNp9PNrEcYA0XZdk5O9QYMI2ykI4Rp5UuWnWqnQSnyRasSY9pPa1+sP19Ejam1GyUWLDiKQYf83S2s0Z1UksBTEuPAvcQqw1iIuM5Z5RkoZXRdgmmiF3SiyjG+NpIo4a5CzCggCIKbxtRTkElGrg7XgtJeS5XJwg1upAinCLRaz58xgPWu55IZUBe+v7sFWJAtPTulMDfEWqxrreC+s4oeo15HPue7bgvzZzbUktOeEFFV9sn19pvbQCZuikED78xWVS6xuiiDlp9MFoes4qnC34/z5vseYR6GVZXaqkD1lt9thGEc479H1HbLsN3lmmx39+fubm3W6Jz+7lIJ5mfmZKRnedTIR/ZwJ6u85/uOQPv4JfDEMoB43AD+IUbzQmEu3mlIy+daiWiuoHy9exkhwPK3+UHrCt5L5OC1IuYgxKMPvj+cJqZAkGYhlQFW3dP6ZTjo/a4C+E07b5k4whkOdnS4yJGoksTqwcgNYIe6H4OWz2eZen4mwiFJ5N/RtUTaBi4DeWhFArAurAUfLVWJzYY1R4a5XR8dWzm+VYpeb0C50jIySbgQEBgf5XG1VXFRFHetkNSLAsEEiI5xfxJPYLJbrAilcBwMMQ4/bW4PjeUKtualv++AQU21FdtcFdLbj9IxcQBbodwOmxzeIqcJ3FtY9UWnJtW/Zj/J3KSX0ws+0YqkDsDs6wCPfeWHEAkQIoYMPbMFSS4XtPWrJcE6d6tXWhnmgVrh2qjbT9IFceKNRxDcLsXq1jeHzklNGyeoLufISFY2txB6R3jGPJuWEzoW2uZScxUtLfLMMkEtC5yyCt+jsynEiojZKfnd8PY/94dDu+74f2ColZVRpBAFs7C8Ij4+POBwOrOAVc1fdAHXtVHFECJ1w3/LVuLcJLqxuGMph5p9xuVwYua6E3X5E13XYjbv2/TrCU4rC5XJpr7fb7VrDpM3T9rlJUsA67xpHWd+HFo/67OiITosDVQ1fTuf2mv1+38bTpa5RX08byO1atnLr1kKiIXLYzD4240hjhF8lNUSVf9e9UMs+a7TBBeoVvETtZ6qly1aUpvudb0XSyuNUoKVIWkbNCXGZEeOCeZpgFvZtPZ2OzdN1v3+v8SXbhELOpVr/WGMxz1KID2u2OaFgWSakxM15WiTtRcIBctbrzwXhEhfc3N2296v3IF/f4QrF1fOvn7t51Aqq2TnX3l+tlZ0s6HqvbvFzWFFXs/l3VJ6qVVOvrvtnqj9cF/5PE0q2HNfGj098/y/LgpcvX6IbegzjiH4YeJ/xAT54pFwRU8LDw0O7JtM04e7ZfaNaqDp/EWS13a91bTameRbRYsTxdGqv1Y87GGvQ9x1izHBuk7Dye46vkMhBUEoEEd+43JnoXH39N+XyZUllIE/t7ysJtK2/sBonNiKjLHCNcGssx59YTv6w1sLDoAsdzvOCQhzCHak2FBDksKTYTqR3EuVF7HmnCJeSfhUp0gJQ//wZYQMYYg6B0xdKNc0aJRXesIOx2A8DjvPUUjeYd6bnsrZXS7lAM3ytc+y8juuFCpBoliJxYc5jeVIYp5RAxcD1oX3/ykNk/zr9sQ4inpGLoD/rd3UKV+Nd/kjImV369UH0MBJxx+ep5AyS4lwjonJK6Hs2PY6Jlde7fvUd0+DyZsBpTNtAssSqRct5oZkqXPDMzSNIx8gqqa7vEbqAIEpEbxwba1LlMa7hBc17sYyojFr3oWendOBqMa5Vw7+By+XCiN7G/V5HvGxQzjmIXddht+tRSsbzu1v0ncciOZZcDK7elkqKJlobDH3Ac8moFvBuAPte6b0rkU1fUrX17vgDPIzhBBbvUQhsCFtVVJGQS0JOqaVQLMt0lc89jgOCD6zY3B1QSsHpdGrFkhYPuiHovaVWD/xLlasGzgdYQZ1SSVxsCZfPSBaoCsWM5xHkZZlR1Zqj2VXwhqXPyKtXr3C+XBATe/Tt9nuM48ijZDH1fbppUZU0CuLNUYsJmJXzxIjV6pkHyNopCJcWDLrmVqxAgtvkw5NR43/DHDr5mtUPVUo94ZPzb2VDbD+GoHG+ZMRqU9SZXJCvKQ8lS4ymsaslCBn0w8B0ksK8PCOF5OVyaWvM6XTC5XzCMk+wBlfr0OFwwH6/x/Pn98yxywkxJkyXM+ISYQH0geMkQQXLxEKAUnOjFFHlEXKtBXGZxLOUww2oVOSUMM8T+9TmjGmZOV5SrsPhcBDEN1ylhPS+Q202NwamWwGhmNhDUu9LFWAq5x5GfA71emhBrnt2Q3g3yJ04JWhR2a5kXUGf7Z6nXH+Y6yQQbZL0/jzs9/A+IKWC4/mEh4cHPDw8CAe8x/39PfY3N7jxB+wPI6ZpwSypNW/fvkEIHuO4g3MGHItX2s/qug6HmxsEH5BzwaevX4GILXr2+z2OxyMeHx/xox/9raDcAXHha/yfgNPHpRGRAcE28nGVB4WkIrDOIZaKvHDB5eXfSq1whu1ZqjWomZAFcdOCQmpyyUUNSDnBwcFZz1m7hTkRLjgsE1sYzJHj34JzyJEtT5wUDZ0P7YKp4zoVdrg3TxcINcNlfBDOArUQChWUCsnxXdVHIGKvNGdbuDJVflBd3yNYg33HcTk5V/TGsjWMFGA5F2TiGDFnVvXdtshAQ6FkZOO9jNM1mWHl88SUEYZBxCvCRfQOsWSog7h2E1OMoCDq3t9R6DVIvY1ETOt0G4NFZ+DCgwmSb1wLIVHFYjMIGd4AhhwKAOs8htAjeM/iGmsRNC1F0MItAbjUglQKCxzIYilcrHk5b875pia3hjB0AWT42jlnUHKCMQVD2HHihhCyjfWomQtAtZqwnrlM20JYkWVb2Y9JR1xE1ArSKlm7JRecLxcQOQx9Bx8sxsGj7x3isvAmaj28ZV/FShxdSMaiUIElwMJDI+IMAEssmlkV2ipyAdTx/t3x9TyKCOBqZXslLdByWX/vNmPMnONVKgzHZa2pCMaY9l9Fl3RN0aSa7ZgXWCcr20NRQ1UGGrvGmcl8DURoa591Fl5GwMA6jlJUkLmCkNNPAACmbklEQVR8tZHTx3FsApA2mia6/mXW95I3iLqqWreb/XYipF+3fhb5Lz5LKWpfIyNY2RWuz4VMjdbP/wW/354f/T6D9n4J1BSqG2gKzvv2Jp13T/YAbgS0AWXO3YycEqOxBm0a4sT2Sqk+WvjnnJoatymcjWnGy7VWUOHsXEU3SdS5XGgbFqco6qa/9FySJD0J8quFnHpG6r0a/DrR0GtnNtdHf6OFLnMzRdixuZ5fhOJur/sWBdRLugUNDdCAhe33YVM8blHJlYJQm03XMAwcOVsKLpcLnHy+aZ5ZqCK0A5iViuCcEbW6R9d1TdSxjpgJ8zShdMx91OtRN6p2Zx0eHx4xjCMOh5t2E/4nGe9qN6OxLzxaREPmKlX2FRLY0hiDvTHMq/IOZBhp05taK/kt9KqzfoXsHZz8LB7HFcnhtYa7VV6w1qrdkJH4rIIoalAlBBORcE0IRcjTta6qXvl0mw8rXeCTrmDLO+EkCbSFOHQepa5/Ng5tQbZGPADle0nPm9xUekeyCKZKTJzGBhkuAo2BMle996hS3Qchv3rnUAgibFmNMvWmtdYCgSHoKMTv333NNyhg+1p+0IP32O8GnKYZDnT12dB+78BK7CICBZHrAzyaIB511srilebOj7UIZnQhczg8adeuVjz6+XgsQIbVb3GJCF1ASrF1nTBrkaSbjMLsRe7RrVeYLrr6e2st8jLL+9zYW0izYIxK6itguMO/vbnB3d0dLucjWyOAUc+VywSknLGkBO8HEIAlxsbz6kJg0m8RQrxRwRM/g7nkK17mu+PrdeRUOJszFdTK6+F2hFpKaeo+LfqU1K0FHhGnxShK0nXdZoSJ9po8RuL1Zb/fA4Dcx2kdE2sxJ2PhlDJzh7Bymhtdp7JtChcbAX0/cNyajKPO53NTdMbIaUvdJkdXURQdd+meoK/t7MpXyjnL+iiTGAUK7Mrje1rwXdNSvvgg6JouiBJVsJm6HAzNt0mUfhe1hlcLmesiZMu10jFypSp0Hk58Ul6kAduGKSVEi6MsbhilrD6IKS4wIHjv1iYh5yvkVou91dAezSZKf4ZmI2+nXFrsG2tgSc6t25ojUxvF6oTHCAJogtyPxrS4vdPpBO89hmHAfr9v97Uis0bAHgexYxHzXwOOIiy1fG7ShDE8RjdQuxusBSUkZKHdC3zf0OZaFKE3XXP2VnqANvMNeJAmPJWMJSaeJnUd9vs9WxvFKCKnHo+nI16/fQPnHG7v7qRuNZI/vabNjCNn92rRV0pFjAmffPKyRQ+G0KEsM06nE8hYOOcxjnv86jefgmCw3x3aHvZlaT5fmdO3PbEa/VEFdlaCrpUIHmPUKLg2VEkvDkdhSewWsRzdWCv2LKuaq0r+It/cq4qWX7sixYTT6YS9v2nvrwqnr/MBxXJg9Gc5HevIWR/g7UVWiBeGUT59bX0N5cxp4ocWJ9bx2JRyYe6ZFGhr2DZt3kNt3AV21XY8WlEuh5y3ruuYbwYeGVhnQcYixQRvHUzoQCSZhXXtwloxCbT3DVx/TjXEfHo8XTDbGISfH359Irx++wiyHo/nC7xfHxjdPDi2jMUTtQCn0wl3twcRScgDb9mRUc+DLqzKQVGCc4yJFWabAlZ5PjFX6Mj0eD7hsD+gdwHHfILvAOt9W3Q7v6Zq6Ovs9/v289aCjxegbWi73tNVLCd07KSpAHqfqxef8pucc4w8xyRUCS06HVKuCJVE5eXX54U4x9FaVtrFlBA83yd10/07/x9FzX13/AEcSbI4YQ2Gbmjo1+VyYT5QjEz7kI3b+w7WRlAFnPFIS0aKGbVwUae+X6qCd86351GfF70fo3ijGsdFYPDcOB2PR5SccbnwtMCIEfyvf/MJ+r7DMIwYxx5ZEMlxf+AlwQCfvPxUCtkC5zuMPqArbNm1LDNyrhiHHfuNwmCaJuz3B/Q9F6rn85lRwnmGGXYwsPBeLGGkaSbI6BeVpySWXR2s1SZZx3yAhq3SEwoSAMBS+7q1sOCJBSAjdCtj3yqIzzqSaibDW6Bq3X8AVf4+pc5ksV/x1sqID6DCaSXzfBGAoiKnyL9iFuFGQkqcf1xyRkwR0/nCDbWBpPusGbjjyF5xJ+GC1VrR9QGhY6ss3vd4j12WtWDIKWG5TMhCJ6LdDkHum5TEliVGZMtRcU4ylI1l3mMYejhao/pUPR66wJ9LfAPVAUP/zbSGYmPzovvZFqbTK0VYCzls93d7vZdfXSXTvtcSc/+I1Z0NIW8FMa3fVYn3o3mescwRyxLxeD5hnpeWM03EIsyPPvoIx+Nx09BwU3R7e4vL5YycC06ni1zP1Ebg2kTM84yUC+aY2tQJsFhmLqSnecHhcODs6riAKlox/WWO/+js3S3KuyXaF+1SpfOIC3uJ9V1AzAW9ZyPjCmqKW1UTeWcRjfCdagXlghC69rN9sBJ9wskS3lqEvkMsBOctciKwaQyP/Fi9WsV2A40nFYKH8269SfA5fDbiAtM8vdHAI2oVqrB5My+qfd+j8x5LihJ35mS8W/TuXH+mMSLekPB0gYC1au/7Ds6yKbWq9KznG99I6oYWpoyqWlANwjlhz7k5L4ARTzmsRW4pWWJgClSkvkUvP29EAgDKhNDCjySj03eBOR1UEUQZnYUjdJ4WdA5wBgB4gUiZPRi9IJOG5F7YkJaXxlMpDXlIKcsm5ts94azmIXORqRF4h/0eaV5QS0UXen6ADSE43zo6FR1ZZ+FtEP87PiPWmIZi6CKeEpOgL9PEKz4x0lEyO7XXKsrCWkGuwgcWgCxLRAgdQ/VFz7hFLQUpMv+w5ILkLIhSswrgDZopArAGvgstkqnUinlh008vRey74+t38FrJJse2dw3RG8cR0zTxerUxHWYCPTfIKx2ktjVCxRFPm8yt+8D1Or6ubzqCstbCeS9rmHpiloasK3KiKt9hHNprLMuCnPjzaPHhPTXkB5t9w2r81maZefperVRWyk9stAYjwjt5DWev89S39BA0sGdD/N+Adk/X+Pa9DIG1gqJWjaQzm7GuToO255M++1pYx9j6WnDcUPIYvTRkV76Ri+SUUMV+hGrhiYds8DrWZQNlz5ZUcl0asrgRIzBKy+dK7w+7uY9W3ievu7XwfaUoYONRSnHG6+IKohQpXD2te/Y29k4Tp1awlDagg9HqG806ha5Bpu29eo26ot2Tem23f98mdVjvi6v7Q37OUyHhlkKjrgtKNUhlpVjoOYwpwSwzut3YGqJB0GwiLczWbGSdaHGx6xs3POXM0zoFH+TTaaY1DPtYGnlOdOr0n8yyRU75Jg+Q3zQZzocstCJVyu8g8RdKhg0dO+/QCbzrO49cM7y3cEkKu1qxlIzOOZTCaJFzEIKziEPER6iSwVxZaVsqwfkAFCuK1QpnABc8LvM62thO+0spvHjgswuhN1bgeC6waq1ixLla0nD3tzGSpAJvLGe9Hg6wYhti4a74V1ywrMPjXBL81esQHJhPWGFloyeYTjhnQAtK99rdeSujXWqLqxZfIC4+rSWwQbSgtVi70ysEcINqtqtuNosdEfZ9j49evMCryxljN4IKsJSM6TLj7fGIAg97AjxXU7i92SPWireXGSkm7HY9I4BV/RnXh1k/AzShgqp4PoILe7IN7eWxUEb2BqHr0A0jqGTElDCOB1CRTcKZds0BQfpkVJFLlrxdw36IZuVzrJC/xbTMvBHKOUoxoRTgMkXMiR9uC7ZFgOVRbEzsCdgLtTJWoMCwN2MmJJsRApCzJCTUgi4EUCVZoOVe0fdUmAheC5tGa3bvu+Prd+j4k8eZrHYcxwGHwwHTNKGUgkHpCWAEUDcaHeup9dDW2uRK2bsd2z35u6upygaV0hGUlSQYtUHiw6BWQs5cFNyJArfW2t4zNyO+qeBjjO3fkgpBjFBUKjXgAFib4uBDa4Ivl8vKdSMxXnY6Xrwu+IDtpr2mmuhrbw9eTxTSkX/T7yPTUCYCodYMY30rHhXVv35dwjZJhaSw4eis/mrfAEjQMx4XxhjXTb5WnM9ntosiSHoPi+O4gF6Qpegbx6GZ/ALUikFjmVqlXE49580P1Vn4aaXUlKLuEQ1PbdMiTU1Rs3odd25dCmqtSDGiG/q2f2wTUpZ5BvDZhJQq9yXISrADBG3Vd8GbmZZ8V43Lpg4BdH81rdDnYc1TwOo6uu8KD9wUlvx1wm0t6/i01CKUNQ/AwjqPMk24TBOWlBD6HufzGUSE29tbLMsFlRbO2J0XpgBB0EbDvnuojC6meUJOCU4FoPqMgidBRCzqGH2AptJowfefbLyrJ0P7mZRzix+BsUiJvdM6uRH4hlk7VCaYShiyoEXM+yqfeWjV/LF1FWYdtdVasSwRqRQsIqPmzVlEGOCsWpWG86Ipi1+tMIWa0vTqc7WFYiVw6sOrxZiq61SlTJBRrfip9GOHpWRcpgtuxp7vQf21Kayc5fFfKhkkBaYWkM2zid+Y5DPyOTGGGo9Rnb1zlixEs3o6WWvFiFPWLvAooRQlJm8738/v/p8ivNh8faWKT16+QvaelUzHM5xnld+4P+DhMgPWoBsHQNFKxykVVXOZBYGsVOHavGRdcLSw2i5kPgMgNT3mc7gk7cSYL+NEIJJLhMkJg1j1VKrCjcptMdA/F7GpAFaLCX0PbeSLNRHmfDm3Dk47xWYvIb5VRbq6VCtuDnvM0yILEWc7ktHOnM/1MAzonnA5Gdkxa5FbgZgTYk4Yuo7Dxd8dX9ODvRg1B1ubO2tti+nTsRMRyViU77mL5PEao3GBMl3QV5Y0gVlUtLpm6UZ8d3fH95bTgm3GJ598itPpBGsYPaqCKOecpfGlxh+DTGti4si4kjOmWQjn3qEbtGjkKMt+HHiDkkbYWIuu7zlOMGfEJaLrewzDgGfP7vHs/hkMWLk6z/OKxhA3Q8oDzCVjTmgFJgSNwabwUERKGz8u2BQJNCvqZ7iZ1unLunZrRrwYuMv1UBTMWivIGknRxM2fdbw3lJyQrfqsKu+ZkEvCEmcs4rHHDTAXivPlIhMwtt1KacF0OV+tN/v9Hvv9DuM4QMeSJNO2XJnXN02TTMzYOLnvezhvYLF6kxpjUAWRIlmLybFPqYIBKjrYmnGrd24IAV654hseZ80FdhgA55Fjauva2PcthlXXbd6jiLnuhgtfzTZmISZfC/XaJWIeufLX0Qo+kve2Il/buuKpJRyP0gWZdg7WOlTJyy2lIPQ8fi614Hg84uWr17hMM56/eB/Pnj+DMRZ/83d/C5ABpYpPPnkp0zfgzcMDIPzQtw+PDVWsqO3263d7OFjM84zHy4X3Uecx7vasrK8VUVA+K5F5AD9j1nkwf9zgs6Gqn398pfFu+wU+t8rpg2Vz3ZRLk1VfiQc25NT1InCVW7FuqrZByAU1ZbbfkG5CK3g1/QQMf2BYXKYZpd4i+HUUUDcRMM6xAKRuHtDtzfB5nLZt8adfZ4wRXzT++iY6MGhZeruBDXcPw4BUNt5HRGDencHasV5z7iBdiXZGtRa5oFw8uM5vQGy0gjjn3Dp7PVLiZAjIOTWWOyoLAxcCXKkolJpz/RcVd1fnZHPO2jkybPMAY7DfDei7gZ3G7cApJUOPsQvwjn/+4+MJz272WILBj376i0YYByrnO1o1r2Zvwm33QgSxr1gX/FVJW2FNgHdsxZBSZmf0acKL4RlUQQ7wgtpUt1g5OJUIcVnaudyOKHSMzguFawad2lnre2Z7AC4k53nG+8+fIaWEw36EMYD3wgOUbrGT8Y6Oc9nmJrTMX96oPVvU5Nw2gCgLr1OF2Lvja3mkjR1ESoltTuT3ABpaptQZ/dqSrzl8Xdc1tEs3cStjvC3St0XEeGICoKzroGvNOosMQujgNkR+TohYo9tAhGlaI7+Ux6q/YoyIKeIyrVYztVZJI6C1mZHxmBdEUykLpZS10JAC2JuVy2uNafzwSrVFaKpadYtsbkfH7RBE6PPQwKdP1fU05HMaYehUiwtOFl6F9vP0mmrhTURXMXVN2CjTmirXh2R9yvLvWvjr52FPxvV8rVzovLmmgOJmK0hWxTaqcsMgE6FamTfumNDcXlcturb5z6A1PtM5jh6b4yK8vwTIfaHFI/9cQqXC9kANDZExpxXv28L7Yyvk2p79VKH9eXs3oKjf0719i/IpUquOVzlnoIhYkPje9Nav30OErh/Q9QNiKsxNTAlOhCpKAy+iwq8gXKaZNQFSOzRbIaDtd2zHxpQnHUQXfR7IM7XHe8DovmjgfWjnIec12u/LHF/ep0/OZpu3C7qlJ1IXkFKlgpXxobMWJRUY7wFRA1UAlQzs5sHRxcgZfdAzirdwrmBwds3DFYibx3oF3gHnE/umWblwhoil73IB2YdojXfhDm0j+8Za9LTirvFX0CD+bQGyigAcCq1eedGxD9IQPDpb2Sjask+gAaEUAsBmwNzZMH/MwiAmtpaJMYJqRfABKRdUY0EV8JU5i1W6nKHvMVc2XfbaxRJ3X6EPcFKgWzl3zjmojUARFZne0O4L0KLropTtTfQ5887hww/ex9spIueCXR/AGGtFZ4HqgN4DYwACCBkGJ1NhSoSvBcsyM9RtPI/YjW0WFoaopV4w0m0Bw+hszoSx8/DWscWJYVsDPsdAlsDvlDNzIx2P1i0IZHlBM5ZHCVpkKj9p2xCQUBQ677HECGMdgnWIMaHkDOs9zpcTpmWGcnkYretRM49eGYEFguuEt8HiDCXU80bCViw5r4Uje/ERrHHw1oFg4YxDyQXzvDRz8H4YvjCE/N3xh38oz0c9HhV9mOcZJI2A8ocrEXPmMpv0qoJXI9Z4k2MBgBLIV/uW680ZYLNYVUd2oQMM+6S15sZY9P0gqMo6deERsuPNsWYeQ0qTv9/vcTgc2vuZ5xnTNDF6KJxlLjRW/toWSdI11lrbEP7z+czRVSqICuxLyAK3lavFUxAp+jZTGj2e/nktgvTvN/Qa+aXlHU8kxMqEru1AtIjWRKrGRa48/ZGypU279NlPKbXzoxYsqARxAlz3VWk4U0ywhlWg28+hGd+s1C0t6QGGP9t2rLydpjGHbPWIc2YVSdpyXRwryne5XNo9amU/qe2+kuSPnOXaRRi57whYVaZFhD5WYzdXJbB1DiWpO4Gsx8RrcTNlNk+mb9srSus11a/d/tt2elPlWm65ejou9R3fX17Wfh3v7g83mJeMSgYxZ1zmCc4H7A8HOfeFx7AzkFPGZZqEfsPPgjZQxhiYcZT93yKmBSlnZoiKUG9JEWSAYAOj5mktVrnJ42L+cpk3n/33H18N6TOr+rYK50qRKz25upFpFV0kWSJYJ+PgglI9qsZhb9ynGdniKnuaI+Aqur5HzAUWSvpXfzXmEOYU8fh4RioVnV1PaCnl6sHVz6DdLv/XNFRte3NU+ayVaL3ZaOW4GRnFsWu8aZyLWgumhYPFDQooF8DxWMBZi0qpvbfG7yNqJqHeMGplwGpTGE6qqNIBsCqNl6FKYA4gaSe4eixZt44ZIcWTnoTGRctJmIKf5bnoufpcBIk26ChVvH37Bpds8P7zO8CIR1Hl92iNR84VyUSW0JeKHCM666SjF67Q0EFrSe0gnZh4klFbCULOahbboRDQGyfE39KQgWmekUoStM5iGDpGZy1gDcGJwq9SFdNoJuuWwotRLw+6ItTWuRYx6GXztdaw6jalZq9ClcQO0aDrOYf45nAAiNBJWkiVDrIIB1WfE1VaKkK4bT50BG2NRYpcGOTCpPYg1hxfVLC/O/7wDxVdKJIwi6rxPF2gFkzbe0KTOGqtCG5F+cZx5E08Z+S4oPMefegQrEMvqvFlWVqDN44jjscjTqczzpcJ3/zmN5kbNrBSdrpMmC4XnM/nVngawzYjRITXr18j5oSUuXBRC4rnu7F5zR2PR5zPZ0zT3AR5gLkq8kopzUZEf44WROfjiUdej48AVn6YNu8AU2S0aculNn83Tef44nZo5fuxb4g8c2LN36Yzjf/C/1G+mxOrvadNMZXK9iVgyxEj3CwLw7nfMn2kwvtDSbl52jpj4Ton4QLs05qEu9f1PbrOYz/2OBx2sM7DyGcncIGUY8ESOccVgMSzrWivAitMlWHkjkfKJFYrXDgz6hgZaQOLc1RRrfzAruswqA0W0K4nASgxoZYM6dbb6RmGgZscAMs0s6m2WdcxLRB1/GrdyhcEWG37RVQjvV56bFFF/fsq6GsFMehRK+rG6maZ52YPVyNJU8Q1SNf3GHZ7+PMZhQA/DDieTo3uwA2YbbQM5zxyyjjNFxbxweAyzzzJkT07VxJ3C4fL+Yxc5N+gU9QKVwHkijItsMa1cxJTASiv7ihAK4p/3/EVEjnq5uRuwW1R4ADi6bRW0ZUIubI5MBlGYABCKgUwHoCRGDfhW3iPvHCaQcwZhiymGAHD8SzWWmSZtU9z5ILSWsn0rYjEnmwt2mUztwfQ+FrKldKbopQCeNduDu04M/FFMVQb+bTmVYbPhSW/tjVM6DS1ImU2afbe4dANn9uZ8M9dk0iYs2gEnST+ORbigl+k8POstn1i9WI2Hcz2QdCfw19LqIadz4eOu7GAz3YHT/l8elwhYNsOMCUY24PVXoRpSW3RnqYMWII7jHC2wrkV0dVCGAZtM7gap+v1qUxWzakgLqkFrysHyio3kFajUf35fd8j5YppmTH2gXlGHb9XIvWJZNFIzrU5xStHRb0oY0pXjQNJM7B1areWQ7dJNl5nDQ77Ec/ublFyxLws8I45eUuM6MZdO4dL4thCD76f9bNvz7f6B6pivB88ozOfcw3fHV+fQ0VivGCbdg8rstDWCazcPb3/3OHQ/l6bPGNXJKlRGBTJ1s2vVizLIukxqfGenRcaiKz1IYT2uirsANgWqdLqJ6hq471EoinasaTITaxlNXCLAiuraIsRo9ViY/uet++RfTbX81M3Y9oqzyLK6rn6RZQd/e/2nxXZ48JD1035P6HcGGsQNnsEdOJlLBsXA6vnnIwp+75rI9um1iROJeKX4CxwoioWNMxPI0H6eVTOdCE24ebXZc9DgvdA6DrknFqxpO9vi1yu/n2qAM9t/VPKk75HHeGmHPF0L9jymwFJT7I8YSulwGRWejMFxQMydfTOceyktSjGtCmg/rwr+hdt9+hr/ruVtXGL2H4e0sfF+BN9wBbd2/zd9pwxv5TRvsvlwrSCUrDb70EEdB1zNp0P6PoKv0TOOhZdQ8kZzlk8e/ECIIOYEvJL4mkMEezZNmQx14plXmAtCzn4PTHQ5LsAI/sesIlhBI+Su65jr9i6RtkB+NLN/1cWcjT0CGvhUuVilcpcEy4AmZ+RY4Xte0SxMaHKY6yUCzgjw8jY0Mjc3wHGohKnV+RKWGKCGxymyJFEqRbxsYmoBLx5+4hpidjth3az8AiBPnMz6YhDvfeqjNq2RW2hyuaN4NGwt2y9sh0ZWO1spLjVxA7AwliHQoYVu/KQ11qg4KbeZEz+3YgE9AZ3bP5LII7rMVhtWiy/J2eZS1fSarypPBHdMHRM7X3HnoaJUyNS5MKjlxFMu65fdL3XP+lfNo7G/f0dXp3YJgVYu/d5iXj5eIFxgPMWyQJ9MEggLFSYQFxX9ZGX7t1aK03EykOaphnLEqFKKWtd62oqEaygmU1oIbyiUgoeHx/RDwN/neNOqUpoOGBYFBG5yO/GHmqGqxsQj58hCJ9H6ALmeeaOsbJaTc+NFthEJIhJxTh0mC4JKfNoCLIxVyIEy5Y96k3ovG88zypje1201Qcw5yIUFwfneMz2efyid8fX49CccKZTrYiFcq2qKPT0MWQX/wLYijCEq6KNEWPTxlIaT7Y16NWmRjM/syg2U0rsBkBFCj2OpdoqSlUZXKtyofj5vLm5weFwEPNZx8VajIgpoQJtbFfF05K5e5wsYMUQ3TnmNSmyow2O8vmUs5ZLQa4Fpho4WsVWKSUYAhxdTyjWcS3/eVv4tX+XfHNsij6u9tavNeA9I0ucJBVG68kAttbm52fBNlK6Oee8miu3a5szpMRrP4uIFaKoFeRcs1WxxsJ0sqHLPjZNE7qO+YvjOEITN2qRzPknn1nH6lr0sbkwZ+iCTGsy+dpEiXy7tiT5vMPY1YKmNFsZRqBBYEqWQYsJdMYK9Wu15toWfcaw0GVbhGtBw6ilFH1PeZmbY0vT2rps8Ll/kjojP1/vuWEYEHNGpYXFQ8vSGn4iFkCWyvtI1/XwYcLlwvcewSDlhAqPm9s7FmimhPNlwjCOUAsjIrXEqZimpV0nbdgIBl3f87UkbRj4OUslN+7u0O/aM9JG9//QRV8RgjoByMTQZCGO++IFyoAq/wIACwdTLZwx7WJXucBEkuvo+YFz1qHmgtA6PoU4WSBSbMWSI/oQUJCRhauXa0WKC86nM05LxP3NgCBdMNWCYCwW4aIYSO6uqHV0TKk3WIV6s2XhlQnC4p50jlzb8MkT9KWCMKcJYz/AWwMbLGINiCkDbkQtYk5cCcZuijwtSPWwFjly1mQuGaGZCBceaUixxWNucMck751SgSOu/osQdK2xcNbz4iuvWUtBAV8LjTv7ouOzBSFxccetFFAqWArBo6Pg+ORUMoBjVDI4jylmJAtgSfCwePVwxjyfYXyQsp9Nuavh3EuqFbVkUCWkWEBkOIaNJFQd7NGVckYILNJxtsKCEzFcNaBS2bhU+C22D3DWYV4iKw5LbRwqIvE+RGVeoNMoOfXMUtERIWcuAmupSHMCKo9uCoBYcys2Q9dhGHdIpaDresxx5gKd2AyXRwzEuavWsxiGCNYAqRJsZSNYbgsIUUxRcy0YdyOcZ7UmGYtUvpxU/93xh3dUpRbUirDvZTrB62iVMdDxeIYxvIbsdgeAgJwTXr95xQUaDEZBE4jAnLcQYJzFkhMKeGKgY1RFBIxhr1DfOzgrOmIChq5vKJ5+fQgB77//PiNEMeLxdII1DsMwYn84YBhH+BAwzXNDSQ6HQ/OTu8wXxBxljF0Bw0rJfhjQjyMXrIZNzRWBgSGEzmFvR4B4bZ6mCX3XtaJzjpG9MWFgLOC6gH4YGi/OGINCWcQezEErwmVjtwD+ZTeqZwLzhMkqG48vFGWeSKjqkreRilzTNbhgDHKKeDtdoNYsxoBHniS8aBBSipimGVkMlw04hg3EnqQxzhxtZj2KRNmlhdXRu2HEfjdg6AMu5xNHd+WMZY6yLgYOB4DFsiSEfoQLgZvomc+Z8x6h8wgiRFBj7CUtSCk3tLeSxLd503ik2lRoM7osC3sFdh3u7+9BYms19AMOw4hd12O6XEQIyWt1VqTR2tbwWycmydYwl04aZQIAtzXevvY/5IIbn1GwbvcwZ1icYuGQiQBrQN61n88oX0IpzAXX/ebt27c4nc8I3YAPvvFNjGFAVwmfvnnDim4Y+K5nB45K+NWvfo0f/OBPcHf3HKVazPOEGBM+/OCbbF5eK0I/osIhpYzTecK42yF0A4bRcc1TKpxLOJ5P3KDNET4EiBMdvvP97+Hly5c4/uxnWHJqnMwvc3yl8a6ebIZKGY4EGdSqBoZCvC+1qWyD3BxqP0DiUZOLoFXSXWnFq5X6EiMyZfjgWdBhLaYqWY6xYJoXxJKQC/ugpVIZHYSV4s6L8WO9QqbYBZz5ZHXTcVQds0rF2UalcsM11U35HKWMWVEeKzehEz6JRtqwlcx1EojExbaOhOoaZ2ctk/atl4giaOHJqGJJqZF9c+bzpGhklaK2Stalcxz31BZ5xyRpbWGeFn5fhPp9XnlItQC1Mq+oY6RqTgWEgpu+x+3tAUPwMFQw9neYpomtSkIHqlVUthWWdT7Cw9TzXmUclK9GEVa4IN4JK9EYlJJRXYCxDsfTjGEwOF0WONchhE7G41wU6thf0Q9rrYy21sUH4Dxj7wOTlXUnMAa+6/BwfM2E6crGzOQ8fPBtrDx0PV+nXJHl3DEBv8AYXnpiSjDGItcZIxjZNsS8IDsOcF2Q1xdVZ2ULAxKQoAitwft3nL6v6xH6DiZllFp4MkIEZFY2UiKUqnZUBuQ49pFIbKcUhSE0NMyAOT8s9ilIRZAIuhYpKRoOrC4EW9NY4JoioiT+WqkVcpV4bRuGoXHxlJune8ESI+ZlZrET2DM1DB1HTDongjLhvTm38qyNkftaqSs84tOfw0UWo12KhgcRrnjnGyqm758/kCx5m5Ws0TU+t/kV2gl/oRSi8kLyzwZo9KZGFdIfZtjbk7+dY+X4vJLsUw5d51FrRkUBCXe51oqSWAGcS0YqCfM0tXFzkOItpQQzM4evhSKkjFzyOr16wm1ck6QI3pir861IX4wRzjG/chzH9u9aHGoxqJMlAKBSkPnkYlFPXOcwDgP6rkNwHjGxhYtSmJjfufoGtjVY1MZbUKbtuW3Y9ETIYRhl/bzruR0HAxCXEItaHdOl1OZMwCT9fCkXeF8E7WbuOI9ZDbIUq4wQC8XLOhAVnM8XPD4ekUttkYkxRp4QVZIRr9r7sMh0nhc4l+CkUIex8D4g+A7EAHBDtC+TaROp+/v7RiH4sgOfr2zZUtsNLiIN2CcndQ38bhtrzyOxEAKPK0qVWb9v3Aj1qFI1T8kZl8gLYQ0MbTtvUSore1OpiLmIZDpgjgmpFPQ2QF3o6OqCM3erfQ7pDNpnUpNgOXnX5NB11CiSijZyc87x4gdZ6AxhiTOcdRj7QewIiRftunJJeJy9sauxFiR5wEV4g94FHn+SEUTAoljAyohapfkpJZA16DwrkArVJpAB2NPNyMMNY9B5L/wT85mi7+pB2vydvmfaPHTOWuzGEbdGoHswrwG1CnJQ0HuD3hsE13O3Ghc83z/DEDyTnolQBEEkQFDKgpJZJKHKa0Udrux2hOjO407uEkusOE0T4Dx817GHGAEEJndXGWedTyehG9TN+MO2ZqWU0lC0Uok7SKKrxSappQK4wCa5H5xz2I8DrDF48/YRuVSM4w4+BJTzBcfzGcNuL+OGgpQlS9kZiVmzzH81kmOZmcfKimNepEqpiEtG1/vPjC3eHV+fwwtXzRS+96hWWEGKSylAzkiVOaKAa64BSkvRplV5qPqcz9PMI6dNRvR2k3bOXSls66YR0pGXZvjqZnM8HmXMxetOpQrnuaHfGv+2UWzOWOKCaZ4xixVS6LpGK2FB1br2cHGy4SI7B6eFFKG9div6wLWANmoaQeY2xfHTce7vGgt+3u95zMu/W+k9kFHw5ktkwlSSIFnOIfQdnFO+3Nq0Y7OHdF3gqLXKEx4iHpUq767kjLQkPD4+IniPXozYtaBOZfXOUy/TUjU7nGDqOjLX73ta2OsvzetllLZH33fY7XYcBWh4rd2NOxCIx7XNboo/Ui0FqVbM09SMnId+QBfYQYEWnp7oKNjKqDaEsBp5a9Mt19XQNcjytJh7emwblTaV2xSNiv428ICYgqWFsK7tKwfSXb3msiwwrqxG5huqEdcJrIp/eHhETPmq6DudzyLg5GJxC6DN88zvSWITvee4QxWBEAHTPCHl1Ay3rbW4ubnB69evN83G7z++AqdvrU51/MpKJ5IMOJktGwAQo9qSMQivQTsPH9gPqFZCkuIPRrxtBAp3Vnl5HFE0DgMKGeSY5XW5cFzmBCILWCCmipwJFJj/poa31lpQzrCGLy4ncnDBs+VgMVl6hYLb2M+gIZHGGJCMc/XmyDmjH5kLUHIBOSY6u2a1UdHLWMWC+Y66APBr2taUVmJvnloJ1hguoKzjLld8eayFLGrCEQEbPaacULuek0lKQR/65kfXOSMjcQk036CN2JyLpx3R1dXXz78pWkkenJQSF26F5NpzBe89Wzqw0sgxP8IQnCCSWfzqdNzjvGNRhdhIkCxcVSKKthwPLToZna2olY2q47Jgf7ND6By87/H215+gG0cEGCwpIS4Tk4jBRb/bbFZd6Lio13ECieJL8lGdwPcpJZynC19LSNFaCYTCnMON/1LfD/jt3/8CH300gIwVLiDhfJlgjEEngpFSKgz43u5ICt1SJGauohBY5QcDHwLfl9a2e+jd8fU8jqczo+8Se7bznjfa3R6nhweczydMlwtq5mbOjDtYZ+Bh0Q93jchdUsYwDLw+1oqU1MxYcnVDgPcrv897jw8//BAxRhyPR7x9+5bvR8mK1ibXioig6zocj0d4Hxj9bgUMH4r+bU3NFSGxsrEfDgfsdjvsdrvGrR6GAYebA4IPnPm6LM16pe/81caoX68mzFTZmstrMbgh7ys1g9tJWdf07VYeY6soAPjiYpCRRhXSXCvr20gXK3ignGYPwt5zPF0qBcs0iYCstsILAIwlxCXyei4Tk5oLclrw5s1rdKHD0A344IP3GCWrFeM4ME86J7z59E0r+rKMrbWQsp4Ll2G3E583/qwq/LDiaABUOG9QqaAST2m82K9YwzY+zjJXMaiRfc44H08gYtVxJ6KVeZ7x6tUrHA4H3N3dtYJTGwdFS3u5V51f70/rHHJlVw2CxALasLlsK3prjLkq4NZiWv5TFSHkvy+FlbpVvH+LWGepYGgWn11d+8/nM+YlMv+xElC5OX88/T26YYAPPZzQKLSIPp0eeVyfORd5Z/Z4//338bO//wUeTme8evUK77//Pna7HT9n3mOaJhyPR0zz3J4JwKDvB8DYK1Q3lyoBDhV/97d/yx61peB0PkO1AV/m+NJFn1UPH/APqoYVRlaGzAopp1LZLw5MTg0dGzCuCBLH2QAWKRt0vRWJu4VxHkgLOmfQB49lPmI3ViyLho1bgApKkdFWqmABLOF4WXCZIu53A6zhAi4XHpV5w6PUBnnb1foEQBuV8MpimWMBVayuhFgtetSFnNElj7hk/jLrYCow+A6v3j5gtxsxdBbTzCaVBpzYYQwx77eyzQpVQU6JYBxL+1nQIGNwz8KCEBxAzM+rhgvmAhaIeGvQdw65GGQwtL6IsXWV8Yx60RmIqsyI/+KTe2WL9l0hf9I8GQBGikbrefElaxE6w2OglLDrOwQDWKqoGfB9B9dJlBwAawlePA69NfwLFhW8sBWhDyQhHbcxfK0oNYHIo1YHEnpBSsBOkPFaCoYhIEbxPUwFQdSDy7Iw36UfmJOSIwytGb5F0TxjpbjOWHLkxSALoTYVLEtCrQaXmRFm4zzGcc8LLwxSIXgQht7hH33/Yzw8nPFAqZmYV2e5qy6Ew9iDaoENHqfTBb0/CMDgkAohpblB+D44FOKxs3UOuRCs+5K4/rvjD+4oW9uGy8wNrzHIMTIHt9bGcQVZhODaeFJFGk95F7XWZgXjfcdxapYZT5pssSwLbm9v24bVEpMsm/2qipOFAvmquGGUaWH7CBFiqHmver61uC5ivqzaynjZ6DixgJutnDKoVJwvFyzTDKps1A6SoiklWONbI67fS4xCwEDWdublQK1rlByvqTbc7f1uDzc9tv+mv7+yD7FqIr8qX5++Rvu7yjF5PFKUAlEy573zDIwUFkHO04woXoz7/Z5teRx7G7qOx99dHwABCzQgoRKJfRRbnZRaoIEUbGdT2ntVoEPHtg3BMkDwnvmhEHW2pKQQLAqVNqaMMWIUaxLnHdvT6M+SfacBAlKA89jYIfgO+/2+FWzNEFzPtf7eSqKU0n2eTFr06z6XnmQ/e/10BM/qcjZWjok9V0spMMQ+qTCmWaHwZDEKOucEtJFUrsRehGq6PQwjvA84Ho9IkRHTFy9e4P7+DjEl/PKXv2z7zzCOGAa+v9V7M2fWK9SKNsXTYt1Yi17i7YgIl2kStJsFtFta0u87vjKnTx8ktT9RaFS5acF7GPEg6/ueuWZCNM85wdlO/NF4McvFSOasBcBVvvccuTLNE27yTXOed1ZVXZkj2FJCTAVGFGfTsghvi8e3V2NJQYyaCmozwjWWERjtInQxbQuLfA2/GN89WoR4K7FwRc6B8yglo/MOXlFPUQprXamLBLCNTLLt/em4xhi2HnFgVU+RCDZjgJJKG0fGGJthqjUGfc9jmb7v2whaH/QKNaXU2Ljr6/yUz3P1b/p/yrcgwuAsbnYjzlOCQQDI4PF4REkBvmaU6YSXL1+BPvgAfthjiRlTTAiGu685JkFuhc8oHn9Ui5BZXXuo9D4kYv4Ed1ncy2sUYMosnHDOo5aE3TAAxH6Ar1+/xN3Nro0TINfBBVZExZSakoztgXixhKCaMKweXOICax2WdEEF/1xnbCus9/s9516mCG+A28MOQ+jwi9/+BgSHnAtSqi1ou1BFHwKWFCU2b00p0EU054zdbgcfXON8bpGGd8fX8yAAbPvhMM0LgmPxWxb0phamatTCHC9eH0qjrvBr0NO6j+P8up7HQ4ZVkdt0C2CNLVN0CljHvs0GBWj3YSd2SaUyrSbI9rEt+ojUd5LXpizIThBUBACOxyMjK5ZjxLIgX5fLBfM0gYjQOc9UB8t0F+PX+M1t2gY30UYsXdbozpITm/8aD7XvYIT/s+vbtqCltgfIPGhTIFpnrwrs7URIudj8vStHjkEOakUMQMhZ1h2hxDQD7VoRNzY6u92OAwyk0Hbeo5Nmj+vd2goCWIlolDfIBU5FrUbMkPNVsafvU19bVdrWOgz9wEI1EkW0c4DjPTmlhGWecZkmOBj0AxC6gE6mD7kUyQxn3rU2q1T5vgkhYOh77Ha7zTRtLcpkrsY0IruKZn4fIkuyOSkws10bt8gsYCQGkL31LnK/8X6mvoBOnkt+3SyhCSzuYYqNsbWhl4pwjyPnI0dp2GKM8N7j5uYWk/AckxSaSs/Q50KpFIUkmIDQngu+WAa9eF2WWhCXuHmPv1tl/fT4SkVf880h7fhy8xxyzgK5oO8HEHHHt3ZxXIk617WLUCsnJgTDwgJnPUvfBUsahgEG5qqrMwDmiWff87RgWSJc6JClqtaxr5PCFBKDlnNmhbA+0M7BYO3MrIHEx8lNg9Xzhrl2emNRK/gANGWT/gxVzFkYPLu9gTUVk6CGVAXF29y8dcvFkgXdyWJRS0GSz14rF0WVBllM6pW3Vdd16IceRWJhfAhXDwejhEG4kpzlyPfRqoT6stCwXj/5HYgcXr99hQQHE0Q9VQvuxhv86Z/+MYwBzucL/sd/9a8xvvgmXBhAsDieT9gdbpBL5U2vGU9zcaz5xvrem/ci+MvY6oVHL7nydbe+R9+PcM7heDyhZMLQdyi14pNPP4ULnIqhfI24cfl3zsLZHlGUUBpnNM0zjCR45JwxzROc91hSRExFhCjsq7g/hLbggyr6rsfYec6KpIzgLDJZTNOCWPk8Bt/BwiJ41xIGvCwCAFo6giIlxgIh+GaKzoj6l750744/tMM4QGyqCgEolROLhOfp1Iw1Eohyi+ICAHLXBUzMSQj4PfaHWwx9D2MtXr161XhF3JsalJzwq1/9qqHnuunEGPGb3/wGIQTsdrvWWGU1SKcVzdPNKhPbal0unLyh/KwQAmJOsp56QVYi3j4+AJVzpsdxRN93DTTQZ4CRI552AKYVklUKIy30GDxgqhGrSblBMpWAoIbOqyCAqm6QRljE3NQrn0uPWrVQ8JuCQVM5CJyqJOJFpXgYAxskEs9wiclrmKRqTDOWuOByOSEuC6yM7+wGlRr7Dp13rYhetCAng1oLcuY9wQfO3A69h+8cRgx49vy+jUmtsywwk30zxSgoVUUnQptaCiZBmeZ5bgUWAFzOF04sMgYWzFGshQGWLjhYM+L2Zo/buzs8e/4MqKzsBQxImmBDQJpl/yOCDR59P2C/P+CwP2BZ2NZnWWIDJqzkyjYK1hcU6WuhWFFozTomWtfDbRGvjX7tOlRjUArBGFYdc7bzgmcvnmM37jEMnexJHsYELEtCrhWxFMyXC3xY2KtvHBpYsT4PPW5vb/H6zVs8Pj7iRz/6Eb793e/hO9/5Dk6nE16+fImHhwccj0fs9wdGVGttIr2+71GyUowIj+dT42sOYj1WwV5+CgYM/SguEP/ARR9ZrpCt0ZudT5z3QYj7Fn0IMN4jxtX/phIXYa0DdDwy1YtWCMgEFFTUWmDAPKuu9wjeYJ4X3hg77upC75BTYaKskHqzcJ76oUfJBb5zrfuNmfNrjTHCUTDCwzJNdeXUKR1rLqHeaNxhiUWKIISAWAuQpCvQqgJ2znFEUk4YhwCqxGNpI2od4kWXEz/AI1ZaibWtuAYEomY1kweJ6sjDCpHfe4+5LohLxND1WErFPM0YYJBRwMJ4HgnqghWC53NDFYJkf6Yr2j5crYjRwypXgqP0YC37hvmAJVYs8wxvJTnFWaAW9J3FD77/Xfzbv/k5vv3Hf4LLMmOeJzx7foPfnNhiwA6hPaQpFTHe5tevQnCOMaHvpcCzDmpaC2NZVFFlAU7sm+Ucd5yfvn6Fl2/e4Dvf/hjGe2QC8jSx6avj1I1UONcW1rIxOAwuy4xMBSiEKlFZueh5YgQylczWQpmDuT+8u0XnLU7nE/a7EUrYPc6RO/TMIeGq3J3mBZUcXGA+yX436s3HimSq6ELX7nXvmA4BS6LgCl+6w3t3/OEdw+7Aqk5rMQw7lBiRU0RJicUIMLDeIXQdUNk0VpEhpaEAHC3IJq4VtRDO53Pz7tuuLeotCqChA9sRm7W2RZ71fY/9YY9SqAkLdIR7d/8cPjh0wV8lfWizoj+PTYeVFpHFfsohdGzozJ6YTMnQtU/Hc0lSHZQD17hNglqpzQsgAgUZh5fCHrB6MPKzFgHrerYCGNtJFn/Piv7paFj91XT6o+R/FZ+t38PrjzU8vYEgXerZZ43B0DPPu/P+ynB41oxiAKfTaT3fd3fCvQZHQjrec9W4uus6PH/+vHnYnS9nXuulmFZ0Sc+bIqu1yL5LaHzKWmtLygg+QM2Bi3KMHX+eruvQhQBvHRctcrJ11Kj3Q/PXkz+rD22jLghiSQYAWRj5MzOrPjumvbo+0Ouxorh6zbcorF5jpXeFwNY+u/2ei2FiE/5cTjhdLqjQsT0hdD0LiuR651IQ5xlTXBqKnLOKNmLzZ8w543g84vH4iG0ELOeuZ9D5BABt9O6UdynotSqZAW7+lxhl76YmamKAYquJ+P3Hl/fpk6KDR3sMSzvnm2CCCwhqJNFmFlw5i9c35ZgWgFypFgKSol6GCyLu+BxuDyNevZmx30NONkeczWIqah0rFxVG9mIKaa3BlCKIABdYwUm1IKg/lSyQVgLuDStJwEpkSJGqiwBEqcNO60vOqLBC7i+tCN7yPfqhx/EYMUU2OXVe/82Ij54Wf7Ig1nUEqzmGusDCBUl4kIVR7Ah61wFkkBOTUh8fH+FqwWgKXv/67/H2EvGNj78Dax0qZYlvsZJpyFYQRsbPnzvK3YwB2mFkbCD/hSX4YPDRN17gOBf03mHxQGcrfv3rX+P7f/QNWMMG01QydiGgcwapAt/44D2U+hI///QRgBPBhnZmtiES1omEXzh3BIMQOmj2J8C8xDlllMJ8n1oMyBo8e7bHdIn425/+At/46CPAWiypggy/H2cMC4QqEIzFHBOM80iZs03nFGGcwzJFLDFj6HssWcZHxPehs2yVc1mYj/Xh+8+Rlwk//fnPcXd7h5v9Di9/+1t88uYt9kOHm/0NYloAw8jH+XJBpQ7jbuAGxBj44JEFsYA0Hhqz5TtWezZfq3fmzF/rY7c/bEj8HlPKKIWnIKQCBsvcOSq8+KtSXcdKWqwlGQeXQrhcLiwy61ntqfeRjmCdW8dBWvRB1j3nVnPh0HXwVZA6oS8YY3A43LSmkYsFHQ/zmkxAE0ARqI1lqVZ4z+NARRdzZgSTJzKSTCJjR+XoaaGnucPe8ZqhNljMV14NkJ3zjYayRcMZ22PQQgfj22Lw6fiQ/8zdOdXaCgGoIEMmDduiLwS2HFFPWC1E9Ws0c9aLzYxeA2vYu45q5cZwM4rv+x5GKD5TXHi/LJzxaww3hTc3N6jEEZsanweYxnEsmTn2POoWn7y6etbmLDnQuWA37OQa9aiFFcGlFKYzCeqnVjBKHaDCAQNsC+Za0de8IVVgIqrfq2kU1sk5NXCF79unx/p96/UD1gLxdxV8SmNg0KjDuBvFw5bv1XmZkXIBwCIT5xxPiAB4qisfcFlQQOg7FhYlSQozxm6aE/7v6chOETo9qqVygZpTuz7qrAFjWqHXaEYlt+dEj9B1GCQe7jItqMvC0bRf4vhqMWxWUTo0qNgK0mOdQ4kZ87JgmRfJPlXrXbSHNgTfLlyt7GGmiCDAikrvPDrfYRwGnC+vZGTxDOS4i+UbhiF65vcxTAvDMS9LzLxIFYZlYU0zLnTWIdb1htOT6qxDptLMMNfEXrScPgJgnBMVMTPtrHVtNAtAFFDA4WaHJPwMhmVrI9zqDb5GEq1mzduL3XWSO+xYyewCFyQWQAgWJRV+sJcZBsCzw4hyfou/+fnf4v/3k19ijgl/8o/+lAu/WuT9EXJJjTf2eYRlPT5DnP2crwF4fPHw+Bbv3x7QO4MoHc1f/fUP8e2PP8blcsG//+u/w4cffx+5AnFJwNAjOI88TZwpaNeiV3kgukHpot44KY4Vik42qyVGXOICmFsMoYPtGJmuVPF3P/17Vln5ALIel3lhy6BaMPTi6WXYIBmGcFmSdGNArrygnefIBGwkRk+twZwKo8iouL+7Q8kLbnY7lFyxxAxUzQEmvHr7FmPf4Y+/9x381Q9/hJIiTsJpYu4lK+JMz0o1TURQBbCO4xsiUde4ORLl8rvj63l89K2P8fj4iPPpBFt5tLukjGmaeawGVljWymbdKtAANveDYX/SlKug3wlkJowE9Ls9o805Y4qsUuRcWC+IW8A48muWzPSQu2f36LsePvQ4HS+M6PQdTtMFZAx8P7ALg2FU6/F4RpGCUxtg3hdSe5ZVrei8xzAIikLA24dHZEneOD08YujZ3zKEAEMrBacSocsJQy3IKctza2H6jTJ0gwC6wXN+ueVGWyMWm+cmYzmcPFG14b/mRfH5zfJvll8POhkRilMuiDk1RA5gxwL1bK1iiF9LEh6fQd/1UvBCvEpZRFONgbcswLucjiiJrVK6rsd+3KHrmZ85xZlTOOoC5yy8qHSnacI8z02Nen//DF3XcwMgFCjvPXJciz27mbqxYChxMEC4gfOW/5xXBLXreK12XY/5fAHlgiRpScooPBwOuLm5wc3NDfph9fkzxqALHCGWGn0hIIBRLUY8sboS0LYor02cQTKSh9aGJNx02y4cqKx6g1qYg7pNpiFS/uoIaz26bsRlnnE+X5DSBUtcYHKG8wF393tGOAGczhNSYts43wUx0c5XHFimAS0ohXUNn376CSoBj4+PmOeZJ1XO4u7uHjAG58tFVL+cNjOOI9T0WikMsAbGaBSdBYxDP+5xf3+P8vLlldjq9x1fuuhTMQQs+8xYiyY6UKuR0/mEx9NFHiI+nF1jdfq+F2SMi64QAnJaQMRQeK6pPUh9CLg53MAay1mAKaIzmkPL3D4YIMVFfrGh5JwyMjL2+1E4IBkVq71HLgWpRASJ2iJikcaSk5ibckZwi/ORArdo1wAWZnAUzspR5NfRDFjIpmxxOkVUCQLnJJCNeeST0erT4opFG0YiksSQFUz05yKyNp4ZUsQP/+2P8F/85Z+j6wJuxx6f/OqX+P4f/4AJzlRktKKCkHW083nX+ovugfZ7MBIHWJzPE6gadP2AGGdcYsZ4+wK/efsS/+av/+94PF3w0bc+xrkavH71ANSCORNiIuz2IzwbJkL5lNYoP2Ql4eo5KqUg5YyuC6ACGGvYGypzl2VzxTc/eA7rDH74s5/jfDrju3/0EZ7d3+IyJxjjsMQEbzjxJeYKGIclZuRSkWR8O80LChmcTheUXEVRlTCMo+QtVuQC7Hcdnj+7g7cVN7sRLz99iWEcsBv3MLD4yU9/iptnz/D4cMTf/N1P8PrhiDlmpLQqrhRp8d43lbFyuWDX+0LR4m0h/m60+/U+PvjgmzDWcazk40NLKPChQ+ctOmcRvEWOjKaFEBDT0rzYYFi4Nk1n8U1lkRN0WiDjxKY+lI0wSSE29MxBSikhGSmQ7Kr4Z0SCU3+maZLN0iOlAh8cUxREcaujPWC9Z9XCZbrMbWNXw2L9N0W5SIUAUlDtxBiYRJ2o97v+DEVtOCknI8cF3mnc2GaDLBKBaVaUqAKAjGsrrSKZbaPbON/6nKrK1FxHgdWG6pFMsVjE4GBQDVCtQYb45QFwggYxQpabjRaIif7n8wnn8xlUCrqh24zBJS+8VrCpcWDjezDq+/Dw0EQ5OSVMlwviHFlYlwujqLXiMoutyBIFAVSw5gKAVp/dUjHLOqyq7nEYG7qs3nKsMu2ETARGA6VpN8vCfouyvvFuaqQuWCdHMKK09jzZIQPYRCg5iXk3GudQVdMABLxYgRLo1BDXDcMV6qeAUym4TFMr3LKklOz2e+wON5iWBfMS8emnLxsw8/h45BSYWtCZDs6HVSQpdQ8/o4zYn04ntqaTezZ0PZAiLtOEru/ZyH8c8ebtI9dPb46YRJkLrHsufza0pj+V3Jo/LfRjXOkev+v40kWflwIIWoyAfX7YNBg4X2a8envElDKCdTg4FjmYqgkYKh3P8M6unD/wZNUCMFWr/AoLwjh47HY9Xr15RPfY49ntDUuh5wXOGiwpwnmHeQEeThcm51rA2o5/tuE7hR1kSMiYGQVAmhcMXQcn3Kzge7lochM5B6DCWsCKRFv955aUYL1HJh4vpMxBy956EByILC6XBWHsseTCRS1BRrq8+KTKi5tyRJTnALmVG6KqC4nh0axVOLhjs2ErxO3Xbz7Bz3/yUwwGONzs0QeP8XADJf3GOAvMX+FKWrsvfBbBu+a9mPV/kqVoSN4iEUwFgqiGl0xYFi6sTjlhePYhvvv8Q0wTZ8Y+nCeE4JGooncexkYYKihUUOE5LcOwrxXIwFr2baqlIqWIGCsGcfPnRZfPacyVUQ5LeDw/4r1yB08ZJWYcxj1u9js8v91jsBPOS8HxdEE3juxj2LNs/jQtiLlitxuxxIjzZca8ZNTKnwkAbm9v2KqFgMs8g1Dx/O4WcZ7w/O4G3lR88ukn+Ma3PgYMCy5qHfDjH/8E3//Ox7g9DPjk5RtcLjMAHk/zAin0BynG1e6Cxy68W5XCi1kqBSF42fQBXtzeQX1f1+P+2XNc5gkPj484ZvZnNMaI1YpHHzz64BCtRU4JBtTiolRIVivbdajpKwy1KUKMEZ2oZpUOwKzS1eyYR3gVxfCkQze4WKKoQgkpFxEVGTjHxUBvOjhnEePCEx2zqs4VSXGOOcQppZa5SsTvUydH1jpRzYtZsyBzPgR+LmSt1OKhZo2wBP+3VuFJVfCUerVpIR3tEmBkNKvNtCLm7H12zWt+OhokcMauFVWqFhkEgsPqjsDnGWvRV8F0EykwedkkGffmlqRBtYIkGnK6TM3epBelq47v2aKH2rn1XYeSeGwfYxTki90kOBkjYrpcxLTaw5DBMnOBQLU2b9PH0wmovLaMw45jU2m1Ddm+l0ZF0vMn10sbDStICQtQEpxf9zgFo5w0AAyoyBTN8L2gBZKO0itVjsasMpzfjnPNCgwYoQXwvvBZcQ42ky3lmcaUsMSEFNlOC3LfGesxSyHISTT8OS/zwpQFw64Nxq4WRdxo8OtfpgW1MuJK1jaf3dAF3junqXH2bGX/Yi3ilo1QSSdcKuCsxDzZTGvhu6jS/x+a06eEV7J84hmaJqTCXcJlijhdJsRK6G9u2VjWCYetrNWqwZPYH2JSqA8eNSf2FyJC8A67ocfd3QF//4tfYXfgQsYQj0XZ5DKjVoPz+YJpnsXWhQComa7BPvAGWmExRybT15z4pAlh1hiOgyuZfXqs800ZaQy7ZMtdCaA2wmjJmYsQ4gcydB1QCiwRduOAWFiQ0Pcj65A2C0gVErFeqKIE4XazM8+Az5FBSjzWgOEMwSSjmBgTHo9nvPf+h/jwww9xPj8AJuPP/sl/jp998pY7KWIOJW8KQDkfG19h2/1+npjj8+4DgflgpPXa7Xe4IYclRXR9hxsAxnlYH2AMwVHBON4g54JpOiPPhD54lGzAKmp5cJ1lw2bp4JN8vpgigNUKQuPbNAWg7wI652FMxWU6YckJCRmXuGBOM4Zxh4eHE/ZdDz8aeOwQAkcKha4DpRklTri9fYbTZcbxfMbDeUKKCVVyj7suIKWIcRxwOjG6/Oz2Frc3B/zmt7/FBx98B4uMT46nI9577wVevX4F7xz+4s/+DPvBA5RgDCSVpmC32wFYlcjMhwK0hsu5YBjGVux5sK9hXSLGPrRnMMblSz/G744/rOPZixc4nk8Y3rzlVKHM2djdOKIfOgzBw4E351wXXE7HtgHltABSeAAGRu6f82VCTBmTXzAtEbeHvTR/AXf3z5g6YCAGvh5xSZhnfe445i+mxE21NKM5F7St1hT88te/ws3NDXa7HaY5bvJ+NTub1zPN5A2ZaThscbHAd/yzXeBMbG5eWcRQwQh+P3KEFwgNJAj9gJxkNOjZr46LE+a79uOIw80Nr+FEKClxsVDQkDJrOMeYpybMJdc4MlWQWrh1j1IBgIzvmGPpQYZaQtHqhchFnwFgSY2QEwBGfXJMTYGtBV8VlBSVc151TPitjz7C4eYGu8O+cTSLZuJ6Pt9E4GCAmJnG5ETkQxnT+SJFGDD2I1NciJBjxCJoUloilmnG6fER+90One9xf3t/5Rpws9tjGAbsdjs8u78XgQoDEIoweSciTcncrYVQC4EqI48uFx7lFval5SQaFV/oOTDN97XUyg02NPFjjbhTniYgjUVDfqso1KsY9nNh5LyHqZXtsJxDHwJsyiA41NMFKRUu5qRgJAJOZ86PTokDFZYoAiIfUBJfw1+++TWC7zCOO3zve9/Ds2fP0Pc9pmnC6zdHTNOCaVrguwHOEWAMxnHEfr/Hzc0NLpcJL1++xieffIKbu1v0fY+PP/4Yr169urJL0oL5dDlf1Qlqhm0cF4Xd0H+pNedLF30KJ1YIhJ9XRVVMGQ+PR1mwTBs9FCmACmqrWnNeRRIAWrRaFRTJeQebC5xjM+bbmxHeW5wej/DWYuh7TivIGbUQ5nnCsiQ8PBxBwgcgQfRGH9Bbj6ksOM8X9B37TI2+Q5bCMFXxw1t4PJwLoeaIPjgx+q2wUPWrbUITvShxiUJc5YJ06B0GF1DI4HG6cPzccI8ii6C1ljsbomaZwl0Kd4ca7+KcE9Lo/7+9N3+S7MrOw767vS2X2hqNbgAzmCGGI3FImSbFMSVZlsLy3+5w+Bf7R5s0TUqaBUB3V3VVZr7l7v7hnHtfVg8oNiLoiEFM3okeNNDVVZkv37v3nO98iweEhDSKFD9ZQLDKJ8SEw/EEY1oMmx3+4t/8W0xP7wAp8O3DhD/+l39CIeuaHlJjDJAzlmViP0VCFMvN9SHHj56150KP83FrgcmfHp/w/rQgK439tqPCJnkYobHpW2wNoQBJNBC7Ht8+HJDsgk2j0RqD4DlOTxB6pY2BdfHspl9fT4n+OR9rKgC3Vzts2gY/ev0KDw9PmJzH42Rh+g6Lj3j/5gE//dFnGNoGj8cjur7Dy9srLNbhsDhc73doG4lggQdLcLmdFxitsdkMZCyrBKxdIIXA0LXYbbfo+x6LCzhODvfv3qDre7TG4OH+Hb744nOEEEjhpthoNGfYxUKZpm5ipmkQc4YyDTIEnA/YbbdEEA4BLJKG0Q1SJuS6aQxSigg+wi6rj+Fl/cAW80ml1pBKQygNhYztdoNWKygBTMcncgngxrU8g0opZEaopDJcBAkMihWhTPx//3QgVB7AZjNQykNHMVsF7ZmmCcDZYZwzk9NLsgWNpqpC2CfMswUgYUzLSlq5egtmMH+bxspKrQ+xUhS0HQMpSJUga69pngj11hqyN0SxSBl920A3BgIC1nrotoWSkjjBzGUyDSV+GE3TI/A5QOIuy9dLVh5sTAla0phX5FWJuxp0ret3KBRnKKAoxbNcjY5XhDDC2oU5iwvF3bHgoRSSABisIH/GaZoq4jMMAyFDQLXtcM5RTBtI3V0sT2KI2Gw3UIKoUlJINKZhxLSBdx6nxcJZi2mc4axFZoKOMQa3N7fEp9Qa4zjS6J8Lvb6hMSTtgatJdt2/Soya0ZzWwtcsJUK52CGhFN2EuCnmV67c+pQz5dNmolERr4+Leh9r3VBV0QIgKxtugpyveeiF81x890JFvgMaRhNN08C0DZpE4spptixYSTBtS1PMlBEz0A3UOPkU0XRkXj7NC7wPiPGEb7/99pngrhSfUiv2BYzQQmAcx8r/06YFBLC/2mO729VrfH9/X8+4orT23pO6lwVBq5evgDmzwvuY9fGWLQCb5RJhs1SgRfIttWabDYK/Y4wQiXGxxG47ghRCWtMNoKSE1ATxZx5lCb4JYkpoGoOr/QZXuy2+efNA/mjOwxji9i3zghQDnPO4v39AiOQPlEKEQEaSCZNzeHd8glQGW7OFFALLOENpUu/4SJy/mARtqFKg04bIlgxpuUwK37bRKLFgOSXstlvaTHMmkm3OMFIgJ9osU/SYlwW3V029sXOmLrisc95LQbHKZlA29MxoaOG9aa0RUmSVaYQ2DSAU1LDDdhiwTBN+dPMZEtgnMZHdjhCi+v8V/mLhQ5wXfN958zD/4rwCKyOdYejhhcH9ZPE0e2gkPDydsN8Th0UjQCIBgro8hIC+77Dt6PNerMV2KCMoGhU3jYFz/tk4pXQ85fqQhYlCo4jsnENA3/X4X/+3/x1HG9HtB/zkj36M+/v3aE1Hec0x4+HxiO3VLTIE3j89YbIew3aHRktsjMD1tsPj4QlqaLHdbAEAV/stZE7IIcJZogZ476rC9te//QafvLiBXRZ0XYvPX71E2zZw1kEridYoxFAsjxIfog2kkozG0oeRMqANeQtmH/gATozqJVgfsOm6ah8wTQucXT72Mb6s37OVcgYkZ26y0CELoO16GCmARFzcnAn9igkgIaSEVIYaZkZGFO8NumtQVKPBOszLQns0yAesbQUaFhN452DtSF5p7BUJpSAkk9IZ/ZM8ikoZPBalMbP3Hn3foSYZxMR2HGvyQ+HdF4W+1oqKPh5nSkHFmwuB6A48XbE+AFiR/Jwzgg+1yAI4TpEPR9O2lTstePwYU4LzRL8RUqDRhqLG2BKW2Iq0ShEic1EIMN2IfgfBKNaHTfD5WC/nMk4mH1sayZKgxQdKHhGZPi8+9GiMLSm2c7PZVPSv8Aa9X4UUdZTKZ693Dt46/n4EHJCIpKSRKDS6wXSaME0T5mXGMpEQBIKEQVprNrSna1rSQPq+x36/h5YSxpAXLCHBiYGawndUz0yGC7c08/sTgjwUa6HoPbQONc4UMtdxPTl60N83hiPYMpATp9MgM/czMOlIAWzIbRdbue4rVUtyjULFW+RrX+gF2hjoEKF8RIblsTDQtA1I4S3hU2TLFQXJNklBkydxSjNijHg6HKC1qRY6Ma0q4fP7pSZvhEDNnlIYSkyiMXWUfp74Us6+c+7gh00GQJGlH7M+3rIlayhBIgJJdztKqoOQQGMAowQy80RyShBGwS0OQhqElInfhgRtJBRIqSS0gtQaGQLxbNyZM3EcGqnx8sUN/u7v/x5ZANvtrjq7JwEkQQ/8t9++wzw79NsOWTbIwSEkgcUH3Gz3UFIjhwCHjDk4eAvcXO9ghIR15N4uMyBApGqbAd1oDEbBBU8II/vcbWSG6iQapaC1ok6S/ZhiJFsXnzOkaXD/dMLnPxKA1KRGS+F3ir76QbIJsBBEzo4p0k0NoNUGiAm6a+FDQCsNgEQ5nEZRUkOiqDdpepKIO4cgyAE+Fjl3JiNhkaljKlvah6veqELUEQbROs+FFeXhlMASyF8sashGY7vZYmgbRO9hmvLaMpujZljvMRiNriE0S0ggcKetRIaUmRFKOihq4ZcSUqbDqEVGaxSUpNc7+4Bf/eo3MEOPP/7iGp/c3UAbg2khL8OUIn799T36rkeKEY/jjK/fPWKz2ZBCN9I1eng84Ppqi7Zt4H3C1dUet7se0U6Yx4QYPcZlRBYK+XiE9RZfffEjPNzf4/XrV9jtdjQikgJSlPdECK+L5HzfNYY8+NoWxkhoLeCCg1AtFkb3tASkEggpouu2QE7IITBvSmCxDtMy8/j7sn6Ia3EeGazQ3O6gpETyDl03kGo3BuQi9gGhbUWtqbXBaRphrcVpHHGlNPp+wKtXn8EFh2WZ8fDuHotzRNr35ACgtMbtbcsRhRPuHx/hvcegBpiuZ4UwRX8dT1N91gUktGK7D0RSxiLDJzKW1ZRmTUrJkjpgWuQs4dzCisZIUjQhIFJCHikfOHMVZpoWbdfBtA0LRxL6NKDThrlqpFR2jsbFt7e3pIYtlhhIZCXKNB7rHRZnq/1MNwxcEEek4JFBNB6k4rdHXp+FSqJV+50TkMJdBGgiVf37GKEqGd0hlkxcwHsCC6RgOR4HE7RtDyVpTPnFlz/BPE84nU44jiPEJM4OfmqKd7s9FTEhYcmWQBVObpEQUJCQkEghISLCJYvD+6eqHrXW0ui2NbjaX6M9iwPLOaNtG9zd3WG73WK73VbUSWoNNy81hUJKBa30igJywUJ9AfMWgRoZiYwKVADUJGTmqCqj2apEUhQhCz9kThCJs8i9Ix5kpIJaSomuE0iJiqiS3EWTs9XwPHguJIWEUgbWRwBMI2s7UhJLh8BJN0orbHZ7bPcSKVMymGd+X0G7Qwi4e/kpTqcTpmnC49MTQsrYzBvc3d1BKEX2WkFgYIpDCJSPHWOsIhilNfqhxzRNlbN5e3eH4+GAN2/e1KJcSgnrnxtBA+y96Um48s+O9MVInAEtCzKRuVMi0mzZiBxDm9IYElBwUeFDQFgWQAJNbtAwqXNZFsiup8NRkHiBHipZ6WPDQHPw+/t75AzsdruaOlGCyp+envD09Ijb7avVCycGGN3AB4c5WOi2gY8R757eQ6HB1X5Dth9MiO8bhXGeYRMwbDcwUqLRpJAq4wTKhaRoIOcdIMi9e1ksur7H7BOcizieHrHd7aAUpS2UQWohDlclMFf0pUavUHUITKqW1bg0ZcGePXRtYkrVoPScl9cYg5hz9ehKIUCwSWtjDMbT8ZmM/lzF+2EXWz356id5toREEgLvDyccxoVGyVKhbxsELWC0BJSpxqACEbkYfWZg9mSc4HmzyfXBlBDMAy12BkqpOspJMUJ3DbSSkCJT1BQApTp8+dOfQPcDTscjvnm4Rwqpbl4+RgzDBiFEOLvg10+PyEJBmRbvHp/w4voKTw/3ePf4iK/+6Cc4HUdY6/H5yw7wDkjAw/tHJCg4G5BA1hF3Nzc4Hg64vblB2xg6+pjMbRQlctDGSQh1ETYJITguy6DhMQ4AnJYFIRn0bcNGpcDxNAExYb/dEEUg0WjMBlIdX9YPczVti5ubWxhtMB2OuM8Zo/dYHEWyiUzZ2yl6IEtsr66gtaK9ARTbJJWGMg1ub++w2W7RdC0e35Dr//E4QghJdABJf4cs3kgcRUix53uwqSiaUpoUxG1kRWjCbC2M0dCNgRLl0GGHARdgY0SMHjEUJS8l40g5EVcbqzK2FElka1GUuQZSEqKilMbAI7XFOihjYbRB23MebwiUlsMK3SwFpnGGVhp92yIE4vmFmMjjE8R9O40nTjMi2xpw0Vd8BsH7YTGWLoT5MmE5H62fv5diTQOUcfBZClKMCNqQXQcLMYQgR4mSXAKAD3SFzbBF1w1YlgnH4wmn4wnDpsdms0Xf9YAQcNZVHz/iPWYY08JZjxjJ/kNz/OcykdPEdrut1mlKK+yvrnB1fQWlNbx3NUlls93i+uYWDZ+xZdxcMpcjU7s2w+ZZlFh1IpAKSbKxP4/rtdH1zIp8vYgDyP5zZ6b/WlOyFXHx6Vq1bcsZtRHjOFUOZoyJC0Ey/+57QnRTzkhCQqliCUc59iUhho1fOIM3sDhDwgULZz0O44S+79EPG9zc3GBZHJZ5wdPxCOscvFvtiIr47hyJe3a/nKGcgnmjpiXUtAh7Av8ZhKD8476vHEGAEELTMJef84+LDyLZ33z8+h6WLfSgEBxLN6vzRCA3Z7CkyESyN1IicmRUypJJkR6qoRGtaAQkZ9zFGJE1feBlLCAl3TxN02C32+Hly5f49W+/xTzPFBQeI399wsP9PZxzOB5Pa4EiBMGznGupDT0oh/FERaNs4ZxFqw2ZfRoDH0gB1jYN7rY9NMu+u6ZBThE652qaGqKHCwEhZ/aAUxgnziTUCvvrO/zqN7/GzfUVtJLQzHepsGzKiDlCFnOh/Dw/U2sNF848/MCjICGgtKrGrJK5CQAlOADMgxMrMTljtUdImR64hnxSzuBhPCv8nql3S6f57H6gLo1U1h2i1PBZIXgPiYShNYgxYHEW07wgxAytgE2jMfQd7p9OSNGRCprJvm2jmdtI44CUXD0cyuZJnajhEQe50mesyurGKFzvdzBaQyoDgYS+K+TaE5ZpxvX1DioK9F2PTgLzeIT3HnPb4h9+/TWG3Q4+BLx9eMRmu8Pj8YitTggh4+3bB7x49Rl8CPgRexBqrdE2Hbq2wdB36LggVVIgC0JWgxDQWiKEVNFSCiMPQKYusGkaeqB9xLw4nOQIYxS2m6HmqwybLYwxld8zTfNHx+9c1u/f6vqeEKiuw7e/+Q1OpyPm8USqXJ58KW42s0jE/WP+nEgZpm0htEbTddhfX6Pvh2qkPE8zox8klFCCOIDFK7QY0hK6oWszEZ0jqxep0LR0mJVEDggaidE0ItVUoxgjH4SWpg3iuRl0FqhnROIpRqZ5XlWWKlbwUsQZSFXMQiXjAqRQEE0xaQermCO0jpBJciIB0V7yTDZfIRJ6k3JmSkykTHRxxt7LxX6KaWKZJ005I8Uywn1uGXNu7XJuvLzuoahfqxQV6aXwyZmQ/+KTaEqKSSaPWiEENEDerIqyg5XSxMVse4QY4AUJVLRSEEqzQDIzCke+s8jrJEnz3y+G2KZpsNvv0fcDijCijGd3+z3alrjZwfua7EFq48SFvnyGQj0DC6SkETnPqUhsoWrRR98rsj1RGYuvDQRRAjIlPUnwuJ9Nu1OGtY6iKGVGCEXQSbSCponEA0Qm3QF/ti4EtmZxODty+TnLjEwSFWC2Fj5Q6AGExM3NbaU3xEyiphK/lvn9UpY7ie+stc/uh5xSpSGA92oF+toQAvIyI+UEIwk19SwILE1Y+T4xMwUhrebNolybj5vsAvg+6l2+SFDF5Jg6lciJGEoIdG2LxVNXR7ErxSdpfeBd8IghYgoLRE8IYTbFpqgUGxIpcf4qqGJ+/foV+v/7b3F4eoRhpES3DZxd8HB/j+l0xNPjU/WgixBIEJA5QSsJZAGTM/abDbIQcM7CJkIupdF493TE19++watXn+H17Q2uWuKbHRaL4CkNA0pVK4TAPIFlsRjjVGXbSim8efsO33z7Bp++fo2ffPEZ8/wi2QhEUIi1kJXoWY2ZMyr8T47zjm++WPkmWQDTMkMBbBLpobRCCKQmLhyfrutrXJvgcUJKEVIAPngM3aZusOfrd8cYz4vAQukjEjAVfduuQQQwHycsloq+pu9wOI04TTOWEGGdx9A1yIEEJTZE7LYb7LPA2yeKoymjn1y3YNpoBCNla2pJgmppNCKV4AZh9THadj2CIzRRSEKgr6+vcX19Ta73weHx8T3scoKSFHG03/YI0eHq6goZGW+//RZSSTwej1Ayo7nZ4O//83+FjwnTPONqt8fpeIAA0G8GNI1G1xpC+oSAkoIi0xTxKmncRfd14Rs1TBbOEAgx43AYAQG4QFdhv9uiUQ0WHs19+uIFIMg/7XQ6kVQ/ZrT6ez3Gl/V7tO4+eUFNY4r47W9+jZFzWRty9kUOAbrpkDNRPsbxiKZN0Dw9aNoOgzHoug6ffPIpjDY4HA+YJ4txnGFdgNTEfdWG1N+RCfFKU1E3bDakTg8J9/fvSXxmDPp+wH53xckClFDTti3lorPtFqlbM/FlA4n6tKS0CecjloUUuaWgMMYgS7H6yYUAoQ3aVpKHGWekOx8xbHYIIWB8fCLzdAgYQyrZLCSkNng8HjH4gO1mA62IZ3s/vUewjoUbtL9prdFkYOgN0WgExTpScfdBLF2K9fWlsO47RUFceMUl4q5Ew53zrpSUUEZV7qHWGv0wQHNqg1FrPnFrmvr7zDY7ZOKbMQwb9B3lwWqpkULC6XDA8XjENE3ouo6TqYDj8YDgIzW/QwMBCQGJrh2Q4gSlEq7212jallwWrnYAOHFKURFnmgbDpqexq49YFsqZpfdJ3FJyM2jQD0NV1ZZ4Pc0JI3Q9qYgthWG573IuanAacXdDT0U4799hcRRPyuejVGR5Rtx/wT9LV8HEmjKjYK1HSf/wnFMspcQ4T5z9vIrepJTY7q9A/pWUET/NM6yzgNQ4TTNm65GFgjGUY03WWdyQKQ0haMxtmhZ2WbAwlUgIsCelosaLE1N8pIIxpoR5JhPoxVq8+ORTbLdbvHz5Et98/XWd+BW0MKWEp8MBgVNYCjocY+SC+OPXxws5eNNBjICW0ELQmDMBrdbomgZts4ABF1jmaWnd0ofPKpRWSixsMRFSIvKu95AS6KSBD5lm9kkAUNCayKhD3+H1q5f4m7/5O4zNEVo3BNcuE/w8YzkecHx8QhJU3Pic4YKH1g0gqKNoTQfhyFeqMfSBTMuIxXm4EPH5Z59BKVZFEsGQvNoMddbekYJqYR+dUug573E4HOCcg+l6fPLpp/jpT35Kua48Pshsr0ElLaAgEBg5XC8y+bZFNlRNieLTZKQGoRBUc86IQsCFRIoeZkrnlKmglJQVHAN9n8kGCCWQo0erFWL00EZT5yzWG+a7eCu/00BUmf3aJYWQ4GeP6B375mWQlNpAqghEi55Hv6P12LcDlNa4udoD8RHLspT2mj2bqOhRUqDtGszOPvMrUlohpgAI+qyAjEZRDqj3ARYWbaOQpYaWRAQXQmIcT+T7lxO2uz32e0E+aG2DeZpxOh3RqoR+GKDkBiEJPDweEJYFb986nKzH689e0eZ+tcHQ93h4eMBm03PnKWAaUgcqsdr8KKMRg0cIDofDWBESGSNO40jjGp9q0xAcRRk2JiBnC2SLF1dXGLoOgMBpHjE7h8U5NN2A7XbzsY/xZf2eLULMIlKM2O62+Ozzz3F9tccyjXj/7h2OyyOso7QJHxNCypiPJyBnbPsB290VhoHQmmVeMMYRDw8P1aiVhFAKUijiM9kZjkdTdJgUqyYS2U3ThMVaUm0OG/hIHCznifOUloV8K/kgIiNcKjSoIyQerk8kniBOLo2nuqGH4hQDYwzapkPZfor1h1EajSF063A6UVEmUHNJXfA1j7dlftRsF1DGu0Twgb1cFzRNA607GEN+glJJ5pRRAGZYLBqjaCogV985YLXKOP+cimkxgKqcLOs8Dq+4MZTvVUZ9u92OC0Ndf6ZkLp+SivY1RylS5BNLZ5QyzG8jp3YY02AYtjCmQeA0EMo1TmiaFm3T4ubmBimxPRQXRVprJGSywmlb7PY7nMYR3jtY79ENPbq+I+9IRpuV0RXN9CFAaIW2abHdbGC0PkvrKB6MrNDl9920LMAJAT6GOnUqDUMG0HQtTTyEYDcEB88jW52oSM+CvmflDfL3nKYJRUxjNPPxWTTTtBwj2DZIU65NRtt1VTgyzhMcX/PFLmRS7T2AwI4b9HqHYYOmaXmUSznop9OpTjDbtoUuUaGMYColicPH94FzDou1cN6T8fOyVFeN6+trXF1dURHPjcN5QEE+qxWoQWirovvDe/WfWt+D0xcZmczE1QJYkUMvpDGGguGVxsIKlhDJ1FNLXb1zlFToeE6tlGJ+g3z20IWU4INnRG2VLr9+9Rp/8zd/h8fHRwzDFspJnJ4e4ZcFSBF2WYBMiBeRGwmhU52BYL6EkgpDPyAjYZ5nughSwogExAApNcZpQnAS4/EInxM2HW0kTWPQdT2anOsHvliLu7s7fPryJbQ2iDxyJLGE5E1NVCi4/DMxcoeczpRomQQwSiKyEasQAiFyEdCYWjynVKDtCGNWBHLhzS5msJklqOvxHlqCu1L/uzYEWO1ZPrRpOR//fjjiLWTcLECu8ZGKzpwzOqMh0aLraERklKzqsvsHV0eURZVV7gnysIrMgRBVhFK6HikArQQkMrRcMxKLyKjljUrqszFrzlhERtM11eRSK4UUA5TssN/v0Pc95plGYsfjEXYJ2PcdXtzd4On9e+x3W/R9ixcvXuBXv/pV9e1rGvLMK/8kqP/56JysADx8JD/HhHUDI1J08fiSlUNDIdszrnYdbu9uqbMWFNN1OI3QWqFtDb5no3dZv0erWD9FJnmL6yt0bYN7Hn8t1sEu5FIQQ2BUOCGnddpAmdUJgCPrk2li1Hwtlor8PnOjtu5HnOxTrCD4wCqUAecc8Z6cJ6NmAGUXKHmsIXhoLl6kVIQviZWjprXgvcvwqNhDGGre6P53K0qWiIvnnINcOJqrKCB5pBw9XTPyXC0KWc5Wz8/NeUktTBY2EMQFZOoU7Vv8OcTE+bSJDJTraLbYqTDCB2DlZ31Ah5E8ahN1TvHcdLjh/FziS64ZuCIXn0CFKCNfM7I/ERBMdcmAIM89oxuInsj80zSyqT/xyrbDFsMwYLvdwlnPBT7tOeVeaPsOpjGEluUS5UduAk3bMs3E8DVM67mVMyPGBk3bsuj2XLW8Jl2UAhggt4uiypWMmgpBtUNk/nrg1zAMA0pWc4yR1L9J8HhUkPhQUtHona/iDa2piIshIGbKrhaqROcRogixqmALfy6kVD8fydYygs8eHyivmOyMCPQqZ6Pk1JcisDlX2pINjmK0nMz+1zxeul+Jn0h0ryKEKakrMQTEGJBzqoVfsUgrjhVSEfrqnOM6Ys2X/qfW90D6qDijqDG6nYvSVEk6zPu2hdEak/dY2KoipgytaRYvWdmLKqcWkIoMLFNSAPvnRDYhzvSDqbo2Bje3N7i7vcWvf/1btG2P4C2m0wlhmfGjL77A7d1t7TpiSog5wLmITavLm6hGjlkAHauW5sXiOM3kJYSEeTxiyRmPj094+fKOChGTMc0z3r17B6MNbm5ucHd3VyH+KqsG+ahJQSrUfHb9IDiJQ6yFVNlA6obCr5MeQgXpA7SWdcy6GrNyFyIJ3eq0Zk5DSzeu0rB+WTsPkZFDwtA15BlUNkKsN/J3FXzftSrvgr8sAZjmGUlJpCyQQ0BKCtu+Q2gNXCDSrmCkcllGiJzhHWUAe0//rI7iGbU79T6w5cRKjtVKwrApp1akP1Z8qBHVAOyzSCNWJWhTL0Vn0zbrfSsFWt6AEx98xhjc3t4CQgHBQYqI3X6L/Ys7NG1LD1r0SClXEUZKkcbNfE2FWOPVitdeyonSXKSEaVfSfCHrlpzFwgd59+4drq53+Oyz18ztIDXl4+EEqQ26YSDLmst49we7ppnGn5FtMrquhes7vPnmG4ysClxOR2RGtGmERpYsEcDhNGJa6GDYbrfIKXECDuXJam4wQuHQSVThw9pgk9G7EAJt12KjN9WP7elwYBQpYthseWwlAQV477DMM+ZxIpFF0+D6+hpt00BJiXkea7F0d3cHF2i8VorLDAbDQWPYzWZDubDcvGZB/nvd0NPYlx0eFuchBZH7hdRw1tJrUKJ6y/lAqUw2eOwbU/dZaxf0XYu+aSh/mPNex3HEOI7wzqHRhj+LDl3X1eZMy1XQ4Pl9rGkMElKQHoGKHYGYVeVBCqXRdisaSOM5OhdziHzekWWT0hqdGCAzj9C9J+88HgVvuDCKqSg2FaT0uL7ucHtzi81AyP/790+Is8U8L9judnXfa1ryh7NuqcVH2/XY7XbYbDaAEOj6AVpTYRisQ+TCqTEtmqaFNg0yJ1IIqSBEqtxGx3xzYwycsxUNM21XG3RjKMkqhYB5nslSjM/mUjTHmOGCrWcondc0sp5G8j2cJhIQIksEFWGDAxgZti5AyICuy2hMy8+Eg2CtQNM08CkyP17j+voaSo+QaqYYvEzhE0/HA6zzaJqZhHdty3FtW268gOPxhJKDXAyYu67DZrPB4UjRatM01QK6IHRN2+L29hbDZgOlFN+HJzhnIaXAsthKNRiGgYzOjQHxXlevxHOA4Z9a30PIwdVmzMiapNB0cILsSaSCVhJdozAuFBs128BmkYo7FSIPFwQLOaMzDRKPENYs3wzrHWLmzlIRIV4pgc+/+Ay//s1v6MIsJwRLM/1//2//Ap9//hLWLkTaDBExRZiWLAOMEsggfl/OCVJqzDETv22g0GVAwDsPIw2Uklh6h6+/fQMhJa6vrrHbbHB7c1vVsilRmLOUIOhdEGooBRAFdcQ5s80Ni1REppt6jf15XmwJ7qYTSGpeOCmlW3I2ICWy+FCKpO9CAD5lBB6xKJGh8+rplzNt7lIoaEGFT1UAfkeBVzsW3ojO/9v5KjdZqyV2uw2Oi0Nb/p6gHTBFVihH8k4UGWiURiMlhr5H9g4qAylKQGnkBGRE3gSAEIjPlmJkxC4AiNCaRzbse8dtCCDI5oR8qkg8glw4qGzQKolULaVEa5pKhA3Co1U0AiEvygDTaFxfX0EIiYUl87Oj1wwI9E0LBcEqcPqce04RKMdaThE5Blif8PD+CS54bPqudp0A+UJ5huuNVnh4/4AYI/74xU/QKoOcMk7jjGkptgoUiYRA6OFl/VCXIN6TlMha4+n9ezwdTvj27Vs8HU9YnIP1gdC1TL6MBfEHBPHSAPIMBUUy3d+/o0Y6A0IUM3MBpSU2ww5d1yPGVPl2bT/AWksOBU2DzZYU7gubI5N4Q0EoU1ESCquXHBdHyRmtIVGCloRG3NzdYbMhBCMEj7fv3sGNVKSmTDFWu92G/f8S3r9/j2ma0DQNvvj8c0AS71BJEqY4NqY+PhKX1jQGjW4AEKAAKeB9wOl0orQdVo2Op6n6t/VdhwwBHzNy8Oyh53B4OlRazTBs6X2cGeMGHxAZcUxpRWBKPFnOmdJyMo1mCSnUOB8Xn8dkFdRTa4EkBI2lrWWbGtoniWa0igYA3oc52xYgmytlKNnk5vYGjSaPT2c9pCIeYUgU88XIAawlP7oQA65vbsgexRimNpUCokSsRoREhBvNCSoZAo7ffxldag5fKF6CGUBExuzWomVvSKiWnQcg6doHT3iopCnNOI5IDHAoo+HmmZOnVu7ePM94enrCslgk9tCjaSHZ80AAuknYXe2hDYEOT8dD/VnzYomyEAKurq+htEHKEqbpEOIRh8OJaAvctC+zAzJxDl0IaJ1nyoCun8u8LGhbA4DGsicpyZpGrIBXGStrRpS1oVzl6+sb0js4h6enJxyPVPTlTM9oCXYodjtCCECukXYFJPhnL/oKrFOcsxUXDForCE9mh8WEVksB5yJCkKy8UWwvYmgUwIiItRZaEn/LGEMdHKt4QspwPhAfJEYIkdF1DV69eonr/R5v3rwFYgAi5QX+z//h3+Lu9pomGaDiKQfydIuB1ayKFafsT6eZDKoEhQhro9BuBhhGZ7bbLa5urgEBMmBuaFxYItqoi5V1lAGAQ6HXAk6WCSv3L0opCpGOqSp2cy52NSxBz8WxPVclloBEDAlRJhjTwoeJOTMMr2M1gtSM/JQRBUXdkU2DMKTqIoidr9VHIHvftcotptnp3vuI/dUV8zcilKSsZR88o5kgnqMSEIr4OT5QvmfOEuQDS8roMoISDAcUI+jGqCrXLy+CCj/6Qh88YqZYP5xdW1KFCx6nU4NCr505kUKg1QaxbUjWL0jw0TUN3SchkqlqoOg+Cj1XaIwhukKKCMmTX1ZFfsuF4pF/At7dP+CbtwfspglX+z3da95DL6TA895jGo+wzuIXf/ILNIZGxo7VkzFRXNtiHeb5LeZpQgzxn3h2L+v3dWndsFtFJi9JUGMslUbXDxg2O7jFQtMmw7weUUeYMUWoVAQD3GCADvmUiF5DCttVfQqQCMyzVUWZqiQAKQtIZSCzAISHUGRrkllYl4WAzJk89nKu+7vigkBISsQImULhQ4xA8BhPIwsnAGMaRocEpyBFxJAwLwssZ84qwybKBQ3j8Z8Uksjskb6/6MiOphsapEAkdx8CNpxLa4xBsK4ii4KVyM45iJzgrIVdFozTtCJwQnIaQ6pFTZ3kcNH3PBJsPXilYK2jeG7rEmOiyUpelaKZ97QsSr4xCRzAzfF5WkVjGhhtoDSJFBKjpYnzYklBaur4f3GOVNSsApU8zkxYKUZSa2w2G6haEPJ7jiTYyBlMhaHPmfz2SIFsvV95nDzaJrFh4kkW+ex6Tsmo419+3WBhIXHzKMteSInZ2mrfImSJCaVxv2LaTC0sc2n0RX395FwBil0rmc5SwnLTEFJEr4nuJULC4mhiAwg0bQdtKEO3jMwpqzrxs0ajf+s8YsxoO7ruyhDvMMYE5FDPYCkV1zA0lcsFLOJr1nU9un6AUgbTSKKOw+HA6KuHAFBcUwDiZ6KcxUwbE+IswvWfe7xLSM/571d0SjFiknLGpu/RTgtsJA5CYviUNhoPkcl0V+QMwwagWinESMRMmVPd+OigQ72AXdvier/DV1/9FL/97W8hM40YfvzZp/iXP/sKSUowlY9GslpDFWSPrUMzIzBCUIZtYwwkMowpX0sbqdEKzXYLJSVcdIQKaRopRoGK9hGah2fXo4xiy3+rBSEXzkopiBgrp4KInxIil78rWR5EWYYxASESz80YGpc7n1nF1BCPzKgat0b/jNCaOvQQMjpN8U4ix7Oi6flrPd/EPrRxOV9rR0FcoRgSDk9HWBcxzpYgae9wvd+sHWGMyEIiJXKld54sbzI/4ElkuBAgZKrchxgp+o4OK3qo6aBgvg0TXrVWbNqcoRQJbiqpGlSgIedKri68CCEEtCI0BDkjScAoCefXEO3CI1RKIbPaL3oSZZimg1IkuGmNgeTXqrnJKdfKGDKpdo7I1t4H3L97x2qvBV3bsj1FxPF0wjge8Mtf/hVevXqJvu8x2QApKGP6eDzB2gXffPMN3r19B+ddzfC9rB/e2u32lRLw4B9I0ag0Xn76GfpuwH5/DWcdEf8FIJRCYEsVlUUlfZfCAgLYXe0IObAOD+8eqOFhZIlMbKnYoqIvouR8iwjkHJBA/pq6zWiSgGXusl+WqsYEPrAqkQpCKrRKI8aAYD3uH9/TSDQTB3q73aLre1zf3tXnsO0H+NMJ1lOslRD0/iEkQqKmPgtBTblS0I2C1AYhWszTjLbpsW073N3d4nQ4wtoFyxIhuOhruxbIGTIrJNBzfTiccDwe0bUGdl5glwU+WBrlNg1PmjwrJTnOS0pEGZh3SGdV2WMK8lcQeCMIndRaM48wYp4X4qtlyr513kPGVBvzmHL128zMx07856026NseJVUkZ/IPdDVyjGhFKZNpcQgR0zKjMWSybdq2nkXBU+qU1grdMGC/3xOa5YqwIAIywGhDojwGXrRSaLsW5DXqYeeZxWYGfddykSsgtISLnoUa9DpKgUzvLdfxeGLa0WItOtkjQ2KcRoqdVArDMEAp4kmmlGCdrYWo4cjKmClzWRldC8eCuhZOadd1WLzHaRyxLAu+2O4hpUGGxLff3kMbXa1qpsViHBe8f3ok0EZIKE3nM5WGoEYBFkIraKPRa4V+s8HpcMQSLI/oG0gdsZRmPUY4Hytiab3HXduhbToEH/Htt99iXmZYO8POS0WFh25T39M0TcTx1Jobk/IMPueP/1Prexd9OXOsmsyMdtBoTIJsSDTLufO0kAEod6aaOWtGr2RbxR0LKYQI+RNICEyahBDc4QlooxGzR9+1+OLzz3B3c43j0xFLivjJl1/g7mqPd6eJFK9CVLSsdKMpJ4hEZZfIhT9GsUFSF4sN6phjjIghQIFIxFoKdG0DSSg0g56EHGWsxGHautfr9TsfhACNbz05wgtBG0iB/lNMxL0RpDKjXEEwvEtSdSrWIrRW8C4zj4B97RjFqq9CFAUZFd9GKVa7/uPo3fda9a1R1/IwPWGcF0zTyGIOHucLgZQFxpmQsMxCGw2BYdjACPJxVMy/o82ABBj0Wlnlpsi0tRTPNJbQlXoAfsiLL1ahEBSStRBk0SNQCtcMlIgz2mkJKUkRWeQ1QievxWZKpHIsKuJnJtdYUdYy/i/X2fsAuzi0bYeb62scDgccnw6ws4XhWEJkIsf/4s/+Bf74Zz+r46Vpdnh8fMS7d+/wX/7Lf8XxcETOGcPQo28NcrqMd3/4S2K33cItliyJhMCrV5/CLoREvb9/h3E8QZu25npq3dT7j/YajunihqU8n5k5suM4om3bWqxZS+bGpm0wzjSGywnY7K+gtEKGpHQNFoUAxEuNKa7onlotOkpxaC2lxBSeYmtamK6F0Kqm+xQjYK3JbibnjGkcyfO1aeBCwG53BaUI2es4q3pZZswTjUD7fsDV1TX2+z2GzQ7jSJypxIT78TTh8HTgESCJMjJThnRjYJ2H86SKtj5CmQzlI97dv0fwDkDGfrtD2xHK1mjF5soJWmnKxuWkhdLwG2NWIVb4XSsXADxhygjBMc+Mijzyc6PGOMWA4HwVlbQ8ghSCRokFhRTcAAspMDsLLSjZ4ur6uop8RA0DYOVn08A0BpvtFsrQHhNCqMhi8OTHR9FxEW3bEtLYdog+8N7XIGeLEANOY6RUKEUK5BpvxrY/ZSx5OBwYFSO/O3pz5J84LTOyXWB9gGS1MiSJU9q2pSJ3nikCLkRKu1DyeW50iTDjwIZ5WSCUwrCllAypCHmbZ4sMhW7YwPojFusAMWMYBqSYIZTC6TRWsc7t7W09o621sIxYD9tttfMpnouF2BkSqYiVcwzuAIv1mLmgI8EiqdbnecY333xTKQMxuEob6Pq+3k8rwolqf1Maj/9fij6tyzcmzzuw/UhOGVpT9JhUBDFv+han0eA4L5i8QwugZWWWTAJJFS824gQqzXm+koqExXoszrO1RYaRHBdmDBoI9NsNfvqzr/B//Z//B4zI+O9+/iWiyADIIkWJBO8jpCDCP6QkngAyROLCTWYgBhhBo1cPGhkIKM6wVAwVZ/qaGEixIwDNEL8AkIVEyImI0fT4QiRWwGVUR/Hy0JUCooohuDBIyKCKh4pSLQ2m5KGFgM2E9AlGLQUkcipk4MxdIY1Siyq0rMIpVCIhR48UEqQgDkSdnX7HomKFYfYz9O+8WKSvyFAKmOcjvHNo+54tFxSNnoXBcRpJuZ0z2sYgpICub0g5lUjKf5gsNn2DDgJaAI4VhTlT0HZKAUJk/rUqdcnaRVHsUiLj40awfUBiG5ui+gKN6SUyFI/5z98M5TFraEf3umEOJPGpAJkjgrdVnaaEgOFCVUr6zFT5XHEW1J4pmP00L/DOo23I68z7AGsXWAu4eYFWCl/9y5/jT//Vn6IbOnjn8PDwiDdvn/DrX/8aT09PkJmMVnd7ItXvtxpfvH71sY/xZf2erVURmpgn12Gz2SIFX2kYbddRqkSmZ1AVFTs3qCEUxKkc2r7SAuhwKekXkUe+lOKyLAtxuQxZBcWY4CMRzGVelYnnk4wM1JFw+cPzBpcUhZwzy6PMhEx2JDFWRKz40i1LgxDoddHcRCCwldHN7S3apqnqdu89TqcR1lkyKu56DMNABS4A510tUktU2LIsaLsGQjZQAA6HA4swPASDEjERckQhA4azZakBdM5BSJ4WJFMbPmMaLnp1pXEU8RaBAImjuwJ/fctKbfpzci7wHA+Zqm1LARxSpAa5ZvqC/RUTKTY9j0mVpiKvChSZH9d1HeziCAThoiDxZKoU7FprlN1csBgzMWJcos0AGusqPlMSAzZCKchErzfEyAIhAQlV84qlFGjbrtIHlsXC5AzNgrUyMg3M1xaimIPT9W/ZsB7clM/zzFnyGbpZRXDjOMKHgMVa7Pd7pguhCpRstS9SlFPPn0FpfgoSSYpfVTOHz02WSxNfmqyCqpZUjGEY6M9ZqWs904w0CXjKZ37uKVju0WmaqrBDsYK4FpOMBJ/XDORfvN5v5w3Fx6yPLvqK5xIARqly5YWlTKa/Ris0jYaxDIeHiBAltKJOQrNkvZgyppQof1eQbL947FD3RRtE17RnAdTkK9c0LX704y/x23/4B2gt8de//NeYFke+fzxKllISsV4KtiDgYutMrYq8ytVlGW+CCgORCdJWUkKJ9IyfUXhwxJdDRfjoeyasTxKe1VTnNw9q0QKqQlOJIeONNqGKPZQsCRyiKlS9I76MUgreOUjRQGhZ44TKjRVjZB4FZVJ66/gGWpWm56/vWVEnVv7Hh9L88gWCUdzN0GNwAn3XgmyxNbnCg2wfpFLYDT22XQuZOjwcDvAhojHk3B/ZP08IynOEFAghMeonKupGCRYcQt5oQh4i6kNSXOrLJifPPjdCH2PdIAspu/xeiDUyhz4WThbgZJTII4vgPUKIvzPGr3mdmnOP2cMqZQqKf3p6xOPTI6B6smkAjTZyJL/Fn/78j/HTn/8xcTymBd98/TW+/vpb/OY332KZZ/IPZJsZZ2dc7zf4yz/7Of7NL//qYx/jy/o9W23b8mFAKH7f93T4Bo95GuEZWSmWIyEEtG1HoqbgMY5HpBiqWMJZYJ4mjtAqDWBEZL+2lDiVJ1KaS9smtF1PFljKIqaxPu/FkoImGiuacC5iS7wHne8LxG0S9flPOaExDeZpgneeFci6JtAIxcVrSkiePNOs8/jyyy+renZh9eObN29IDGYa7Pd77LZbaK3hvceRx7spJczzgnmecDwe8fr167o/fP3119Um52oz1Gf05uYGfd/BGI3oA5SWiDHAxQBYttFQq3WU0gaai+XgAzWigsx7gYQQA46nExIXlFo1sN4RDU5InE4nzNOE8Uhf0zYthr5nJbdHigGtaagJZZFKimQrY63Fwmjvi08+Qc/XaJ5nAmSEQDcMZKbs2A5KCoicESzZYJWGtHxmxTkgcWGyLEs9QwonkAq0YpcjgaxX3mPMZAIuOJRB0NRj2G7JNkUKPD4daRzL55/jnxVShG4baGMgQ8TiLERJ2Si/YsTjI3m6SqlwdXWFvu+x3W4xLwvCsuB0OmF3tYeQco2mXCzweMA0zUgxo+9Kk5BrLF6pa5z3aBrKHd5sNhztSpnFAGqRSSKYCO8pGWSzISSxqG+fnp4w26U+t9o0FdUrTUDOuSqEi9dgQTWRY6UUrYkluSKyPgRAyFq4n4M8H7M++qulXDl9iblZKcVajQrwA6EUuqZFwyhUcB6OSnUanwKkNszEf0gQJNrgCDRrHSDImFKq1Y167Wwz2rZD3w345NPPcHu9w+effwYXCSaOqRRdK5mSPIHYg4oVtFKtcTrIGZrFABLMH8uEblK3rZ5BqM+Kah7L5Uju4UW1WYqkUqVXXoNYCygqWFjqnle7EikEfFpvjuIEXx6CEAJCDHVT7vseSmUmvhL+JoUCMhWBZMwqoUSGrePd9YH/EJl6XviJlTx69rXltSIRuXnoe5iTp2SWxsBZIiQXtZ/RCl3bcNFNqSNSCGw2A7qu4zziQm5exTL1Yuc1yDwiV+4nvYRMhTrWeru89sK5KauMAMpBVb7uQ3ic/r0IakqqCfsxcbNTOH8rl3MleZfUDXpYqah9fP+I9+8foRviBM7zjBQpG/gnP/85fvzVT9H1PZbF4c23b/G3f/v/UN50pO44Bo8QPbRI+MVXf4T/5T/+j/js1S1aY3BZP9xFaRWGUBhZ9qVbKJ42vHj5KcaRTJOloOdYKYnt9RW2uw1yipQksMxYZhp1TdOE1cvzzE7DOUpdGAb0fU/0AUYayqE2zzPzpkw9vCk2KtT72znHyTPc5JwpN8uBVdCMmGhEeHt7Cykk3ff8dd57hIVGi2VUWpr8b7/5FvFFwKtXr/D4/j0VSvOM/Y6SJB4fHxEdfS2pexcSrWSyO5JSMqLucfjmgGkasViLvu/Qs0GxcBYpRjLRjQneLxApoWkMjG5wOh4RJYnPwE3gh559RZ1aD3ApEROBFk3TQorVoy3ljARBudmLPbPryvW9e+fgrIXYULMLUZA6VgBLiaZrIaUia5CWUkqsteSuwXtZGR1KSakXWlE6RAEwpmWu+3NpWMv7KqjWwI1mOcNK5j1yRpKEGBqUQjcizTNxxil8fEW2mG9XVMPeBRw4VWh7tUM/DBg2G+hmhn33DrOlnNtpIZrYOI54//ge1jncXt+ipFj1w4DNboeQEh6PB+IyIkNog2UaKT+372GaFjFmxLhUMUtB1iBoZHp1dVXR88fHRyhFxWWJvfTeY5xXjqIQoppM931PxuZcLG+GDYluUJTbuSbTFDub8rwAZEdTnjUBVV+fXWw9d+iZpuemaZtVuGnWLPePWR/P6ZM0eqRvjjrKJLRJojEaNrBIQJD3WWsaLMERJ02vhpm0udF83WiDaVmwMH8gJCCmgHQ+wMtgIqdDZId3pTX6zQbH5YBpcei2TK6VVBgISfwoIQyLgZgfCFTBxrl4IaVUESIBKrwEyUbPED6giB+oO+BiCXw9eIwnxLlB5xmKJEStY4SgYlLIuKJ8/P0pNm7l5ZXsw912S5tRY1gsAIbOGXIHReRUw1bE2tmbVvOoNNf8RZyVSR8KOT5urUWZXSweHx/R9i20krBwzNvI2A4DaVJyRARwmo54OByw3W4xNIKKGe/QdTv0nYa3lh/QtBZPWOH1RMzier1KUZrPirvSzX9YfJcEksKzeTZq51V+hvcBShE/hAjS4dkGf/69wZA/sDrxG2NwOp0oDi8lvH13Tw/u0SIyXeDTV6/w+ssf4/rlC3RDj+lwxK/+/h9w/+4d3j88VPRymUYMQ4e//PM/xX/8d7/Ez376OYZOs3HtxZ35h7rORzMkilNsut0h9B7Be+yu9hi2G3Rjj9E5JGTITNbCUkka/RVbDz44yij3HMEuhy4h6lS8BB5vlpEtZZtaaq4iJXHwi1uRwtLYKFW/jw+eeHwxQnOObpmEgFWQhpExyvFNVe0Z+BAth2s5jJ13WCzlmTsWr6ykeBrd5hgpxzxGssviZ3qZF6JwZIllWTCOI46nE18bUsme/ASARqv0DCXezlYTev7XOpEhAECxcbYFMuAYfcogsZ0PnJIAoG17LgKL8lKwab5gFI2izxSDJwAXXOxtuhaYoo5DUyYnDDJcptdSVLGl4CvAQEyUUR9ihOAGNqYEEQkxMpwCRMUPm3Lzz0AWtamWggQEkq9/4DFmzGvaVPIeGRl921Vhb+D8WyEVgSJCIOaMxTlKeYlrIVSKzqZtmJOfq0Fy4bFCEG8yC6IBTMtM1ByjYUyDebGIEBg2DX8mZONjHdm4CUE2QzSedRSo4CycdxjHkTio3ChM0wTnHJlRN4REWp4kpkQBEuM4IjGARRQhjaZtKL2DC0i6p3OlbxRBVeV4llE7o+oxEKAWY4JUqNOj8lxnPuzrOVPU2R+5voeQI6P4jwi6ZxnkYuVYTsRL4zHvdjtgM82IE7045wOEpMJOMcpUCJ/WOSRIHCZb1UdCsFmuV/WAdZ5i50MiuX5CxH/6T/8B++tbFCI82ZskvlAkwlCKlLFZcCHE4fXl+5aLXw5tUf13JG+Wa+FXEDLiltF1yZlQLX4JUIxUCSGqEXNKFL1FGhDi2YWcEcumCInA+bwZCaZRWLyDlKTMjS6gURo5ZkzTjMVZOE830nbbIYaEBgIxeeQsEDNx/lzwZIqcI4yk8PICCJLYYfXqq4VgXgtCxgK/sxjMGSxD55xkJeFCwtCSGszGgF43kIlQvGQEoo+QymC73UFqjYfDAa3RCM6DqtgEn8nwMjMJMoO4nVW5i0ybfaT/DsXIKRPggRW1PEdoCx2hvJfS1T4ryvnvxBghtYQNHqqEr6dCEk90T/HfKQ8s3xyIfF+VwtOHABcF3t4/IYQEmQX2+2vcvvwEX3z5Y+i+AzLw21/9Bu/f3uPdmzeI3sPbGcgJu/0Of/4Xv8C//3d/jS9/9Bn2257i3goC/bEP8WX93q1CwSDSOHvgaY22BcCUjJvbW1zdXGOaRhyfHiuaZa0lHkgmCgFZe5AwYhzHah6cBCATJdiUQ7z8GUDPmVJ0FFC01QylKapxnuezKQtZeYCFcJnHjlIr+DFg5CSQoetrISFzUdprSEmTF6k0SP+XaxRVEUEUnzqAJiHzsuDtu7c0wouUR7kwL1BJiWWayV/QGPLl0zTVsNZSMWstrHM4jSNO44j9fk+q5RAxnU7YbCjGkOowCcmpUzEn5MjnAdaiWRkNqTRCTBinI6Fzi8Vut4OUsnqtkdBqgNKG1MaJilrB+4dWhmIwW0Hqey7cgFQpJk3Tom0bHt1TwR04BaVl42gIwYUR8wchILKsCGtCghQS1i60T/NYMkQqhgfQxKIgZ5B0ZkWeUIQUIWKEFrImaWW7VL4cFe+p/vwQA9qG0joyyNdOCMnBDG19/dMy11ixvu8peSkT4b6YEC+WYj19jLDeQUiJRhHYk0FevvcPD9BGV7Pkp+MBbUgYNnvKn1cK82IxjpSqoTSlZBSuX9u2sI6mLsuy4PVnn2G738N6j3cPD3h8fMTnn3+O7XZLZs4hYLHEzZ4Xug7NeKTYu5zRtA0JZCQBNUukPN7MheFms0HOGU9PTxXl7bquZummlDAzxzXGhE5KNJx3vSxLNbqm5ouQwq7v6T7950b66gaSSvJqsSwRKweEuz6jNWWaNgatJ17EsiyIMWLDUVLlQJy0xmmcAKkxTgQNLwu5UQsIJEkInJDkP5Q4msTaBZ/cXuF/+nd/jabRsNbVDqd0DGtBx8IKSEaD1sSE88P+Q/SPao7EiON54fd83Jm56xa8QdRxolg5c+X7RRZcZClIeJFWlXFO5IOVUqpdXvm7LnjMdkHX0hgoJDJmBv+E0qFSx0qeiWWjUACmaca2a+B9xMAJJd9ZLBQYsrxmsb7P82twvoQUNGJQGtZ7GCVoVLJ4qE6SHYOdMS6a75sECQk3zvjZj17i4f0Jh0CkZefICNWfSd3LoaMKqlVqUy6mhQREQuU/FIHG+Vh9RQljLQDLPV1+TkHyShf2DM0TpNoFMsfCrahe+ezKZ1w5TylxHCEdMsdxxLDfY7+7Rrvd4PrqGiElTI/v8fT4Hof3T5jGEck7IEV8+uIW/8Nf/xJ//hd/hlef3GG/HRjJBY18QPnKWV7Kvh/qKvenUorFcbRPWWshpEI/bPH555/jdDoSsnA6IHiPHCmpwVuLHAOUJD6tUgaNanCMI4InZbrlQ9pzPGZ5Fkr26YdkcHrO1uSJylONEZkbn9I0GmOw3W45HaHEv62IE4kjVpVv4YlBZHhncX9/D4AKj+12+wx5L89kUX4uywKtNTbDgEZTlJnPxAkkWxWFaZxxPB6x228BkOjheDzWBI0ymg4hwM4L+mGDtiOvtBgDEsgKK0a/8qMFGS0Pmy0ao5FTwuFwxP27d3Wcd+MstFLw1uE4TmjaFlc3t4ykaXgXkCSp+MdxxMS+gC3bqZBC1uDp6al+zfl+4h2haEJKbPc7NE3L6JaBS67uVVoZKKlqcVDevxASihXH3q/ZyWD0cFxm2uNSIgW2s0TLcRZSaWi+T7z3dA5DQDcNIiOGx9MICOL1FfsUSELVjDH0vboDpsMBp9OJ7pWUoLSi4AC+x3yibGChFMaZfBt9CGj7Hi8Kd63Y1kRqNPZswnx1c43JLUgCmO2Cly8/RYlsE8rCNA122z1002Apo29GynPOePv2La6ur9E0Db766ivmhs44nU712QHYWFspbHZbPD094XQ68XOwQ9cRbcDoBillHA4HjOP4bPJ0fo8LQaKbpiF1+ul0qhxG5z2aEOr49nxapdjZoTwj53XMP7W+FwOwbBYxRJBBBfhBXsUDYE6cFALbzQAfE+K8jt0g1gxVIQR8iEiZHcnZSLRUuQCQJBuM5gypyJk9xgjvHP76X/85Prm9ZhuV9YBfi7hEPnYoY9VSuJzZbMh11Hsu8KjDVs7sqy//Oy5sIbmmFJm8zIURd+BlA4sxwifm7yXB9dXK28sCABcKZbxSitiUMpz36IcWGcU7ilS4MZIRZhZsN5MCclhvghATYqCBubUO235bR9DnY2h+g/W6lLHGei0+fO8lcQQ4jSc8Pj0x0plhncdpcvA+493jexyXCZKtWXLO+NHr13DTEfO0hZb0KkrxBNA9QmOm1e+u/F5KWe11hCjpJkQOjjF9ZxFUxRyquOWvnLtSBJavezYSlqV4JquAwgU8v2/q+Ew8R4+L4tBaojjELLC9uYFpKIT7eDzi/bt7TNMR03iCXyyQEj79/CX+6l//Jf70F3+CF5/cYLftSPBU0EulkBMAJVhU9X1G8pf1e7W4xxKCFPwlXUBzRJ8AsN3tcH19jfF0xPH2FuPpBLtQ8hAAgJttpTX5n5rmjGeX6zNdxm0A2T+ZZiXcl2Y+p1w5zBACRhtISVYcOQMRqVqAlGzb4oW22WzIF674pWFNBSoHZnk+Qowk3HNk1h9ixDzPFLlYBGrMowLIDuacBF/G1OVZFkpWs2ofQj1kVwoLvf9lKbFgDloqKvJS4jg8X3lWKXpym1AKISaERMboi/WIwVO0FkdkKaUxLxZKCkQf0DQt+n5A09IEJgQHu7iaLFESF5qmYb851F/zsvB1oMgvHwJskFjmmSZXRpMjBY/3ioUOjXEJLdVKY+a0FeccF8s07mzbFkKtU5Bybrrg6T7gayhVcXiQNe0kxHXMqo2B0rKO3UOMBFSwITJYeARZpmU0nrbOYZxnWOvIX09Txq/zAZD0vaWkZBhKEyFx52ItobmcZ5tRojrBOfOEVHb9wM+DRuaROOVKJ+hEz5m1DvNCRZ82q3rc+YBxoqaBGpuVElEcGwCy4im1UAEjStFamqpSaxTet/eeBB5ziUZd703BnM0QAotx6OxoOSpuBX8kI/KiulWEEGDSqir+mPXxQg6xJjgUXls5OIUs6jIBxAyjKPFAs4dc4aosiyM3dkhWxlIns9n2CJ5Gcz54VgkRvyJFys+NKcNousEXu6A1Cn/2L36Gxmj4kODD6p5e5OVKaZxL3ikfjcYGMq/dZFl1Q2FG4TkCWP68/Ps52lU8+irFTaBC9OdFRBkfa23geJQplUIOnjdQATK/BIU7Q5CKV4q6UboQ0HUGbdthXjxlcvoIkdeHwFoLyeagxhhkraCUgDFk37Dmw/Jr/aBLWN/fivR9uJ7fuBld02I7bOFcQB7oEIopwaaIx/EEKImhH3B39wIiJ9xe7XDMAcN2i6Z7j/lwou+XQIrtHDCDYtwSH1zGNPzDmS8SE8gnNpGiT5e4P8GclFzTOhKfrpJHwR9mFp5/ns+C1bng894j5jIaowSacxRDCLJwCWkNWVdSIoCk+osPiEw/mMcTYog4+QA3L7B2RoxEWP/LX/4VfvyzL7Hfb9FvidysNCmIT8tCz5d1aFuNpiVEvQTQX9YPb5XpQNlvyr0UAvFgaWNJuL29hXMWy3jCW0FKzGgX2j8E6oEockZsGrRNy4eCZa4yIEUgy4sMaBPRiLb+POcci9BIQFfV8BkrwT8LIPvqLXqOMvT9AClVFWlkbniFFNVzrKBtgkeS1rqqWo4x4nA81rG0UooKA625eGH/QqUQ/Opfp2pRIauQL4OazjIZUNrQfhoijqcRdpnhvcPd3R3tUc7V5IiqRk4UG2mMgTUGUgcsziM49k18pPGcFFSgWOfYBB749OUdoT5tj2Wx8CFgXiwXHIRaCkE5u23XnxkzUzF5OB0xThN22x188BAOGKcRXdfyWSsrZ9uxmrMUXU3bQGuDw+lIFjZc9A0DfZ6UrVumQ1TMFLUupZEARXFMxb6BMgbge2ReljqSbFrKb1/sgpgyhKIzVyhFNjeZzi5yeCNkbl4WnE4jnHXYtR2atkPKwGwtfIyUINK1aIzCTuxhvcO0LDieTri5uUHTttjyKN2HiAyi4BSx42a7hRCKuHqRagJrHZzzfLYmOG9xOo04nSYoTZZAMVDNcTye8O23b+nZiaGq5jNP18q1Kj+vnLHll9aaxrDeIWcq+na7XR37H9hjtcQo0mSOmrCFFchD30Nrjb7v0fX9M4BBa7IVSoxiF0DiuyZw/9j6eMsWuSoqpSiedHww5lQjSvjEQ9s0GFKikVZLcOriPIyPUDoDiGh0A9MS/C0B+L5BiBGL8zWfcR4jslYIlmXkALyz+OrLz3F7vUfOgOOCr7zlUpkbrRjlI7KpYGQNZ2O785FG2Xw+RPYy+7KUC/9MESpWLhc5ujHSgzLyPfewok0rhgRkJv9zviIE4D2llSCRmTEEEYe11NX4V2vF44cIF0glmn1Ea0jc4b0nq5EzJRYRYDOESAjeMR+tFJOoBw6hZmeI3tmo9/xanRfBMktEUJHrXYRoGjweJ0Tv0bQG/dDjR69fIwSPq90e26GDXSb0SuDBBTy8P1Km7Dxz1B2NJ0TM1BSwyEUpjRQzIReZ7VSUYv4cvZ8VQifbCCklcXMquhBqkHx5UM4fltK51ZFv5vicXIQx4M1ZVPizejedXbfMVWlm5DrGiHGe8fDwHqONSMER+ucDcojYbAb8yZ/9Jf70L/57XN/dom00tCZvL+cjYoiswlPQUsL4AOsl1CKhUDaQy/qhroIMlBFPnQoEskU5PB0Qs0DT9Wg6QpC6zqNtWxwfH7BMI9k/JFaC8pak2HMscyYtMjDPcy3CDCsxz+kMRchxbgVRRqxllFn+TsGnnp6eKtJHallX1arEnztRkXNGZTkcD7DOoes69D1xxU6nEwkytMbV1RV/v3alYfBeUMPrM4kGmqahsZo2Fc13zlX0paZ/tC1OpxMCFwuAxDQvcJ4I+Q0T9rfbLbxzSCmi73tASUTegyi9w0OaBrurng57KfF0oOxeoxtc3dygbTsszuPrr7+uvMXCnQshVH/B+hmwIIUseiTatkfTtrXYOs0ThCI1cqKxCMBpV4Xcb4rxcYz45ptvcHgiKkDf92jbFm3bchDCasPlU0Sx3g4xVFR4f3VFvrS8HxLXc0Kwrn4/iLwqwluzckSRkTOhbOMys9FzwNPhROhojICSEDwKNg3pf2Mmw/lpmbFYi9M417Hq69evKzdzXhaEFKtICIKM8k3boDctIOgMLf58ZWoUE6mIN9stqX75nk45Q2iyW7m/v4dSCjc3N7XwKjzTgj4Xu6HizZdSwul0QmLeJtmk0bnh+B4vn8/xeKrKeMP8267rYO3MPpQnbIahTkNL3jRA1IBCnyhefj3z+b7P+ujTouTTUXXK/LPMfm8CkJKsASCo2NFaoTMGN7sthJzweBxxOJ4Q2b+pbxSE0lBaodEKWiq0RkNKgtDbhip1mRKO4wwlBezC7tZuwb/6k59DK8kjgFAvTpFDF689yWop8hUkK5Mc104VWA/r1YiRbt1Kdpbr15TNqwoDsHJiyvpwXPy8WFzHvRlrEDelbkj241PVYPR8A3PewZgrWLtUBZrSpPb1IWJaLEvjVzuSimLx6JQ2dFOJ1pUjx+/jQ9UxXYnfXTTW5TQSCDwcTnjz8IjbTz5BDBRcvttvKGs3tUBq0BkFIzJMa+BcwGmckOIt+raHVjMX1pSXnFIgUU8sBqeSUQNZR6mlcIsxc0cmaxxbUavlnGsaTEVyU3peuGMtZEuxHGMEMirBOeWECFLB0Rhu5YxKKSvaRgVj4tGQRLb0et6/f49xnDD7hOAWBE82EV/85Ev85Kuv8JOv/gjbqz2yAKMGEqfxBGcXtI2G5fu7URoxRCw2QSlA4vsZc17W7+cq91IVfQFcIMRqdKx4PNd1HQl9nK1jnZzLGBecM14MXkWNEdJGQ3n17N4FBFk9VbV/qiPVQmUoB/u5pyWwUi7qSJSftxBWfqyAAKSEZaSO+EqBc3gzttsteePFgBKv1fcdbm9vybOQM9pLAZlzRvS+3vNGG0jeK5Eoe9vHgGUm5KrlwilncCoC7aXGNGi6HilnzMuCx8MBm2FAFgJdCHDBk8JeK7S5RRaUEiW1QqMEjKZ4MykEFus4QUpCNw3AE6vD4Vg5emR/c8bJUroiqbTXkJVLjIScNg3l7KYYqoJaSPbAA2rMWCyq3fJ5xIgQInvAEWdOc7ZuTBHOWTqzpYRpW8BiPct4BOu9x7A5Aw34+i7LQqQuAbZj8RVsKcXmNE+Ylw1EsX7JlPBhLXHSc85s+7LGqwI8IlWKz7WE4An5AhhHkpJ8HgMX4ox4atNA6iJoIzFIATESn+MC4FQZEm9ccdHWth2sPdQAhaZpsNlssL/a04Tl6T1SStQ4MQhgvaN0En6GCm0BQG12yEuVJkJFRV/U6wQspXoGFbBJiPUXuFZoOBLw/NkqF6TQxs6fx49d37PoI7++UgBKuXLXyp8JUApFSglGSrRao28NurZBgsA4LzD6iPbuhsK5Q4Q0BkoK8jRChBaCxpaCjIcpbiYgI2E8nfDpyzt89vIOKa7ZkWUkUIoBCbJmIT+4chivYdZlrFku/jlp/7xII6gHvHF815h3vUaCUb9CDC2F4PkHVkfKAsTDy6vpYoapP1txuknKAYE3dMmu5WXjyJlI31IICEWm18UO4VxQkkh2igxV82mLx58ovD2+ichN/RzdA87+9XfGoWVT102Pq90OInm8uL2BloA2GotdkFKAs547LlITz26B6TQ22x7ezkjJo8Ta0cA4w3sLUrOJShEoI53K5RHPX+d5kU3EZlV/X8c24vm1WeF2WjVTVFLxXfhRLsSz8Yd5NhY/90oSfJBmJsqnlPDmzRvmEtEo+sXdHX70ky/x4uUn+PFPvsTt3S2hJ4nG/jFl5KQgRUarBTrTM/G6xAXSCIWUlJei74e6zu/VfLbBg0diMccaWSWVRNf3xHUKHs7SoSiEYDsRSfZAWJuXnAW5EYAsNwpXkGIdCy9JQYiEEuNW4qDOkcDSeJ43v+X1l/23IEKOw+1jjIQ+cSOzxr/Ziuhtt1sA4KQOoOta7HY73N3doevaKkawbkUPkVGb7QTm8XGDGAMR4I/jieJABaAVW3SkjMUS8mKaFm3XY54njLPF0/FERURjWJlKozNldC06IjLZY/B4ncbwAScWsGitoYymMbMlC6vD4QiAOGYxFeCB9nZKLeLCrSJ9nq99w5zgxKIeWe2j6Cxi78XErhmgz8kKh+AJlWvbltDEpmELs4BlmcnuhXmfZecoRsC5FNA8CUo5r4bQy0KolSBali3JKwCEknCW+IjDdkvxmJK4x47j+Wa7IEtQHjKoYKOQhgyj6Np5H6qQzzrL+cXEOzycTvDOc8HeQpsGTdtBNXSf0pg2QIgEJU0VOOaUWDtAr0VrjbZp0bYdYnykM0cJbDYbXN/c4MUnn1QbmRACrq+viY7AiS9Gm/q8VpW6lDgeT/A+UNRhoIat0B2MoSKTnrU1LrE8U6UobJq2Prtt21Z+arVqKff9B0Vf+V4fs76XOTOR5dM63RJAlgIiSkgopEwqspyBwKOGtlHog8F+aKGVwHFeMPQ9RuuxS6XgIAJ+EBFaSyRBHMGYIpQhCf6276ClgEHEX//Fn6JRQAgCIaEae55vRIpDwTOK5xAXM4LVOmm9iOeIHL+tVTQgChH4+aooD2+4Rb2ZgGovUljadaPk/zXaQETiFmTOcRRQWFx8VlTFSOkPxB2hQs+5CGfJAmeaJ+hgoDc9NEiWP/QDaEJ9/n4IlVOCrGu00lCS1J+kB1izaX/3fZb/W69T/TOsxsjXQ4eXd3tEALvNABEs7o9PeDrNOE0LrAuAMoD3SDHBpYiQMu7fP/FnQXwQLUnBXLq1UgQqLRmJIBTBaDI0zfwmkgCiZAPnSCbPYH+8Z2hsJuIvcSmKJ6NcuVVcHEqlkATggwMk4KMHJcf4WtCXh74W9zFC5IzkKc4n5gzPHKb3j0+M1LZ48clnuPvkBa7v7rC9usJ2u8V200NxBnTfNpT33Gg0WmI3kMIPmcbbZZxN97k8I61f1g9tffjMlZEk5Cqo2m42aLVG17awM+XwOudwf3+P4MiQtzEdnPNYYsB8GhGC42lBwtX1NbTRdVznfag+ZIU0X1SkAGrBRnnYqqIO52gkiQDO9inm9gFrDCQVgmsxWxC7gtCf+5XFGGvyg/ceb9++xcM96t8r/KUYIwRovyqTlsKtyjEBCnV0HWPE8XiEVk19bYV3lQXwdHjC49MTjscjFVSmAaTCu8dHmlS1Le4++YSMc7UmBwU2502J9rFSxA5dB5kV5mWhiVZImBfHsV+oY2mjSUFbFJulAJ/nGafjAe/fP8Fohb5rcTpNpChOGbvdjjzk2g4AGzXnjM1mgwMrSMdxxHSa4Dh1qYwPb29v61kQQkDXD2jalptg+u/d0KOYyvebDRW+5XozX7w0JyEEHI9HLMtUuW3LccG8zJiWGcSqJIDZBzqnTqxg1cagMQ3atseyLDicjpicxWa7Rdd3aLoO37x5g+PpiLbvyPsvZyyzxWk8AUJif3ONV69fI+WMX/3mt1gOTxBCoO07xFC4bxFCrNF/4zhiu91Wax1jTFUyxxQhlMDV1RVKqkbOlJhRnrPNbofdbkfPQeZoU6Xw9u1bLMuCu7s7vHjxAk1DFIL3D08YxxFv3rzBF1/8GG3b1XHtNE2UNsZjXwB48eIFXr9+jV/84hd4fP8A5ywrpeMzkUhpqJq+qyKPohX42PU9fPoA8BuN0UNzJQ2REUEoTGZznsKnAshnSkuBoWvxyc0NHg+/wXEcoVuD0zhhaA3aJiIrAUTy9SFlVrEGkOwcTw/3ttP4/NWnlfNS4PFzZK2MNaQiiw6JTMVpKeCERE7hWRHzfDNbbT/K5XyGbp0XckLSaKSoP88KSS5pzxBFAREJgfRxVY5Sdw/u/kS1dQGKwXQZIyrOOjZEeuUQ8ZK92KimFiOZEb0YE9quRbKZO2SBxqxmjue3y4cH0D821l3Hifz7SJvQ7CxsSFBSY2NA9iuBTIgXN+MwWfRa4TQ7qNZgshbdZgt7OsCHQNnHksw7U04s4mAonF8bFWSyXjetdX2h57C5EGQv0BrzDN3LOTPaSbYU5G9dTMYVwLqeFCNcSoCQcM4DoKbnHOkoP+c8MQWgVJqEtXHIKeFwPGF/dY3t1TU2mz3219dou+7sM/eE3qaMpAWENGiMRqsljCZBEr1XKv4rV0mfpb1c1g9u/aOjmZw5O5rEAZRrrusIatlu0XYdUghIgvcKLr48F1YQAobVg9R8ruIGKRVljQpCoWiUR4bLGTTK9CGyD+fzfbKMc4tIrhRujjlUBa1cebPr3yt7RxFAlSlHKSpiIoVneHqEUc8VibWRzRlJFNuOCBUjZIxw1tJ1y2sQAHKCUqU4pWtSxGmJhzjgsWkG/T3dNNgOlOvbM/dOCsAuM5y1rPJla6dYBCuU8V4sT5BJUKgbgxQTfCSja6kU2q7Dbrfn/ZlH6sFjmonLlhJxt0nJHKpC/xwlLSP/aZp5n42kEOY9t0xrzqlH5TMSWH0XnXMIKaKTPV23BACxFhvGGCixfm35JyGSTHNSdEb7ECqPrphAz8uCcZxwOp3gvK/Co6LwLYI4gARvs7VkAdZ1NfYtxMTWQeRg4L3HNJPlS/GRpKKogfczlCCUTEpdC77NZkNhAPx5WnaRaNsW1lvEFKvStryWsq8uywJlNAc/JOQYIVCi61b0Omf6b1dXV1CSikpKTRlqxFpzliVd0pyKpdDKE8xAJhFnzqgij/Om6dzQOp1xcj9mfY+iT9QPE8hQrILMUlFsmA/15mpEhpLsIaYV2q5F5wNef/IJ/t///FscTiMgBVql4YcWUksYzgYshVeRgk/zAu8iqW5CwJevbtFIuhDE5Vv5J+eu3oW3oJRgJRZ4Fp4gz95TIfmWDQr8dVWQkYmUKsRzXt/5ZlRHo2L1VfqQA0jXLrP6jL25JCtcrQcgYVriOqxIX6hKVWNMNf0t71dKVTFIIUUdca8FCPEUaD8SEHwTnytO/1tsAMYqn63fVQpRcX+aZ/zdf/mvePHyM6TjCH21IVLzzsClxMirhlACHsRxyyHg27f36FSxPaFCTWjieZCDumLex2qaXN/zWedZPCLLfy8EYO89lFw/5/NCGyBBojSaxmkffJ7FkqIU3M75ivSdo3wrL2O13wEYJebD24eIq+sbtJst+n7D0Vt0gKcUsSwWw9BCSB5BCOIyuTlCMz1hya5eh4ISUB71f+NDvKzf63XOLT3ftEvBlyLt/AVZMMZgs9nA2T0dtMuM6FcP0BgCe3jSPds2XT1cgIKKSbITqQr2wt2lPaLEVCGSGbIomxBQR7mVD8jPX3ku1vW7fKNzTuD5PlXGvlJKSujwAX7yaBuyfyGUERXtLnukEORoIEOAkLIKTWj8lSrNBrwHxxRRzLgyj6okR4kVa46YyOx2u99ht93SKJiv3xhPsN7COyoIvHPIvKcLSb9iSlicgxJk5Gwi5QtbNokm4n6PLUfJzfOEwIe5deSPB5HRxgbzshDNKadn+4rjZCpA4HQa6fWwWKJYXuWz619+lQK70GCogLOIZXKRqAHOILcA2ZBwRLHVVrHQKihq2zZQbNPSbwZS2nIMYPGam+YZ4zRiHCfkDOimQQPad4WUxJlsSZUcAkWzNW0LvdF4OhywWMuAQIZi7t6yLDgejnStl4V4oU2DxrQ45QlKCOaDrvGABeUrRV+xgaMs3YToYhVKFsFGAQmcc5DzTOillLXoI6SO7kW6NnQPbzYb9P0Gzjq0bY/tdlcVz23b1ganNO6n0wmHwwFtS9SGhgVJibsSGhMv9foXOlI578qzdc5R/28tkT+2PLysy7qsy7qsy7qsy7qsH+y6hHZe1mVd1mVd1mVd1mX9AaxL0XdZl3VZl3VZl3VZl/UHsC5F32Vd1mVd1mVd1mVd1h/AuhR9l3VZl3VZl3VZl3VZfwDrUvRd1mVd1mVd1mVd1mX9AaxL0XdZl3VZl3VZl3VZl/UHsC5F32Vd1mVd1mVd1mVd1h/AuhR9l3VZl3VZl3VZl3VZfwDrUvRd1mVd1mVd1mVd1mX9Aaz/D7tpSI8tZyzVAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Testing: Kristen Stewart ---\n", + "\n", + "Match found: kristen_stewart, Distance: 0.34\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAu4AAAGGCAYAAAAkUgRgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9ebglR10+/lZVb2e9987cubNPJitJBkjIIKgQlhATkE1AgkEUyBeIRBQX4FEUSVBUXNg1ID4GBQIKAk9AQhIkSABB+ckiMYFJMtlmu/u5Z+2lqn5/1NLVfc6dmbAEM/abZ3Lv7dOnurq6z+m3PvV+3g+RUkpUqFChQoUKFSpUqFDhfzXoj7sDFSpUqFChQoUKFSpUODYq4l6hQoUKFSpUqFChwkMAFXGvUKFChQoVKlSoUOEhgIq4V6hQoUKFChUqVKjwEEBF3CtUqFChQoUKFSpUeAigIu4VKlSoUKFChQoVKjwEUBH3ChUqVKhQoUKFChUeAqiIe4UKFSpUqFChQoUKDwFUxL1ChQoVKlSoUKFChYcAKuJeoUKFChUqVPhfjy984QsghOBjH/vYD7XdJz3pSXj4wx/+A7VBCMGVV175w+lQhQpHQUXcK1SoUKFChR8h3v/+94MQUvg3NzeHJz/5ybj++ut/ZMcdDAa48sor8YUvfOG49jfEmBCCD37wgxP3edzjHgdCyPdNdP/6r/8a73//+7+v955ouPbaa/H2t7/9x92N48b//M//4Morr8Tdd9/94+7K94U//uM/xic/+ckfdzd+YFTEvUKFChUqVHgQ8KY3vQkf+MAH8A//8A943eteh4WFBfzsz/4sPv3pT/9IjjcYDHDVVVcdN3E3iKII11577dj2u+++G1/5ylcQRdH33acTlbgPh0P8/u///gN6z0ORuF911VUVcf8xw/txd6BChQoVKlT4v4CnPe1pePSjH23//n//7/9h8+bN+PCHP4xnPOMZP8aeFfGzP/uzuO6667C4uIjZ2Vm7/dprr8XmzZtx+umnY2Vl5cfYw/8dEEIgSRJEUfQDTWYq/OggpcRoNEKtVvtxd+WHhiriXqFChQoVKvwYMD09jVqtBs8rxtCEEHj729+OPXv2IIoibN68GZdffvkYWf7617+Oiy++GLOzs6jVajj55JNx2WWXAVDR8U2bNgEArrrqKiuBOR4d9rOf/WyEYYiPfvSjhe3XXnstLrnkEjDGxt5zzTXX4IILLsDc3BzCMMTZZ5+Nq6++urDP7t27ceutt+Lf/u3fbH+e9KQn2ddXV1fxm7/5m9i9ezfCMMSOHTvwy7/8y1hcXBwbnze/+c3YsWMHoijCU57yFNxxxx2FfQaDAW6//fax9x4vbrzxRtTrdVx66aXIsgyA0rG/6lWvwoc+9CHs2bMHYRjis5/9rH3NHdtut4vf+I3fsOcyNzeHn/mZn8F//dd/AVC6+n/5l3/BPffcY8di9+7d9v1xHOONb3wjTjvtNIRhiJ07d+J1r3sd4jgu9NP06ZOf/CQe/vCHIwxD7Nmzx/brgeAjH/kI9u7di1arhXa7jUc84hF4xzveAUDJvZ7//OcDAJ785CfbPrurOddffz3OP/98NBoNtFotPP3pT8ett95qX7/uuutACMG3v/1tu+2f//mfQQjBc5/73EJfzjrrLLzgBS+wfx/P/QWoe+wZz3gGbrjhBjz60Y9GrVbDe9/7XhBC0O/38fd///e27y95yUse8Bj9b0AVca9QoUKFChUeBHQ6HSwuLkJKifn5ebzrXe9Cr9fDi170osJ+l19+Od7//vfjpS99KX79138d+/fvx7vf/W584xvfwJe//GX4vo/5+XlcdNFF2LRpE37nd34H09PTuPvuu/Hxj38cALBp0yZcffXVeOUrX4nnPOc5lhg98pGPPGY/6/U6nv3sZ+PDH/4wXvnKVwIAvvWtb+HWW2/F3/7t3xaIl8HVV1+NPXv24FnPehY8z8OnPvUpXHHFFRBC4Fd/9VcBAG9/+9vxa7/2a2g2m/i93/s9AMDmzZsBAL1eD+effz5uu+02XHbZZTjvvPOwuLiI6667Dvfff38h8v+nf/qnoJTiNa95DTqdDv7sz/4Mv/iLv4ivfe1rdp//+I//wJOf/GS88Y1vfMBJo5/+9Kfx8z//83jBC16Av/u7vytMVD7/+c/jn/7pn/CqV70Ks7OzBbLt4ld+5VfwsY99DK961atw9tlnY2lpCV/60pdw22234bzzzsPv/d7vodPp4P7778fb3vY2AECz2QSgJibPetaz8KUvfQmveMUrcNZZZ+G///u/8ba3vQ3f+973xuQeX/rSl/Dxj38cV1xxBVqtFt75znfiec97Hu69915s3LjxuM75pptuwqWXXoqnPOUpeMtb3gIAuO222/DlL38Zr371q/GEJzwBv/7rv453vvOdeP3rX4+zzjoLAOzPD3zgA3jxi1+Miy++GG95y1swGAxw9dVX4/GPfzy+8Y1vYPfu3Xj84x8PQgi++MUv2vvwlltuAaUUX/rSl2xfFhYWcPvtt+NVr3qV3XY895fBd7/7XVx66aW4/PLL8fKXvxwPe9jD8IEPfAAve9nL8JjHPAaveMUrAACnnnrqcY3N/zrIChUqVKhQocKPDNdcc40EMPYvDEP5/ve/v7DvLbfcIgHID33oQ4Xtn/3sZwvbP/GJT0gA8j//8z/XPe7CwoIEIN/4xjceVz9vvvlmCUB+9KMflZ/+9KclIUTee++9UkopX/va18pTTjlFSinlE5/4RLlnz57CeweDwVh7F198sX2PwZ49e+QTn/jEsX3/4A/+QAKQH//4x8deE0IU+nfWWWfJOI7t6+94xzskAPnf//3fY+dyPOfuns8///M/S9/35ctf/nLJOS/sB0BSSuWtt9461kb5WFNTU/JXf/VXj3rcpz/96fKkk04a2/6BD3xAUkrlLbfcUtj+nve8RwKQX/7ylwvHDYJA3nHHHXbbt771LQlAvutd7zrq8V28+tWvlu12W2ZZtu4+H/3oRyUAefPNNxe2d7tdOT09LV/+8pcXth8+fFhOTU0Vtu/Zs0decskl9u/zzjtPPv/5z5cA5G233SallPLjH/+4BCC/9a1v2f2O9/466aSTJAD52c9+dmz/RqMhX/ziF697fg8VVFKZChUqVKhQ4UHAX/3VX+Gmm27CTTfdhA9+8IN48pOfjJe97GU2Sg4AH/3oRzE1NYWf+ZmfweLiov23d+9eNJtN3HzzzQCUzAZQ0eE0TX/ofb3ooouwYcMGfOQjH4GUEh/5yEdw6aWXrru/qyE2KwtPfOITcdddd6HT6RzzeP/8z/+Mc845B895znPGXiOEFP5+6UtfiiAI7N/nn38+AOCuu+6y2570pCdBSvmAou0f/vCH8YIXvACXX3453vve94LScYr0xCc+EWefffYx25qensbXvvY1HDx48LiPb/DRj34UZ511Fs4888zCPXDBBRcAgL0HDC688MJC9PiRj3wk2u12YTyOp7/9fh833XTTA+7vTTfdhNXVVVx66aWF/jLG8NjHPrbQ3/PPPx+33HILACUn+ta3voVXvOIVmJ2dtdtvueUWTE9PF5yLHsj9dfLJJ+Piiy9+wOfxUEFF3CtUqFChQoUHAY95zGNw4YUX4sILL8Qv/uIv4l/+5V9w9tln41WvehWSJAEA7Nu3D51OB3Nzc9i0aVPhX6/Xw/z8PABFIJ/3vOfhqquuwuzsLJ797GfjmmuuGdNAf7/wfR/Pf/7zce211+KLX/wi7rvvPrzwhS9cd/8vf/nLuPDCC9FoNDA9PY1Nmzbh9a9/PQAcF3G/8847j9ticteuXYW/Z2ZmAOAHSpjdv38/XvSiF+F5z3se3vWud41NFgxOPvnk42rvz/7sz/Cd73wHO3fuxGMe8xhceeWVx02k9+3bh1tvvXXs+p9xxhkAYO8Bg/J4AGpMHsh4XHHFFTjjjDPwtKc9DTt27MBll1123Dr5ffv2AQAuuOCCsT7feOONhf6ef/75OHToEO644w585StfASEEP/VTP1Ug9Lfccgse97jHFSZOD+T+Ot5r9FBFpXGvUKFChQoVfgyglOLJT34y3vGOd2Dfvn3Ys2cPhBCYm5vDhz70oYnvMQmnphDRV7/6VXzqU5/CDTfcgMsuuwx/+Zd/ia9+9atWL/2D4IUvfCHe85734Morr8Q555yzbqT5zjvvxFOe8hSceeaZeOtb34qdO3ciCAJ85jOfwdve9jYIIX7gvriYlBwLKAeR7xdbt27F1q1b8ZnPfAZf//rXC+4/Lo7XneSSSy7B+eefj0984hO48cYb8ed//ud4y1vego9//ON42tOedtT3CiHwiEc8Am9961snvr5z587C3z+M8Zibm8M3v/lN3HDDDbj++utx/fXX45prrsEv//Iv4+///u+P2V9A6dy3bNky9rqbfP34xz8eAPDFL34Rd911F8477zw0Gg2cf/75eOc734ler4dvfOMbePOb32zf80DvrxPJQWYSKuJeoUKFChUq/JhgHEt6vR4AlTD3uc99Do973OOOi4D85E/+JH7yJ38Sb37zm3HttdfiF3/xF/GRj3wEL3vZy9aNGh8vHv/4x2PXrl34whe+YBMWJ+FTn/oU4jjGddddV4j+liUdwLjsxeDUU0/Fd77znR+ovz8IoijCpz/9aVxwwQV46lOfin/7t3/Dnj17fqA2t27diiuuuAJXXHEF5ufncd555+HNb36zJe5HG4tvfetbeMpTnvIDX8MHgiAI8MxnPhPPfOYzIYTAFVdcgfe+9714wxvegNNOO+2o/QUU+b/wwguPeoxdu3Zh165duOWWW3DXXXdZmdMTnvAE/NZv/RY++tGPgnOOJzzhCfY9D+T+OhoezLH8UaKSylSoUKFChQo/BqRpihtvvBFBEFh3jksuuQScc/zhH/7h2P5ZlmF1dRWAkoWUI6rnnnsuAFi5TL1eBwD7ngcKQgje+c534o1vfCN+6Zd+ad39TMTX7U+n08E111wztm+j0ZjYn+c973n41re+hU984hNjr30/kfTvxw5yamoKN9xwg7VuvPPOOx/wcQGAcz4m35ibm8O2bdsKUqZGozFRRnTJJZfgwIEDeN/73jf22nA4RL/f/776dTQsLS0V/qaUWucX0+dGowFg/H66+OKL0W638cd//McT8y0WFhYKf59//vn4/Oc/j//4j/+wxP3cc89Fq9XCn/7pn6JWq2Hv3r12/wdyfx0N6917DzVUEfcKFSpUqFDhQcD111+P22+/HYDSKV977bXYt28ffud3fgftdhuA0q5ffvnl+JM/+RN885vfxEUXXQTf97Fv3z589KMfxTve8Q78/M//PP7+7/8ef/3Xf43nPOc5OPXUU9HtdvG+970P7XYbP/uzPwtASQbOPvts/OM//iPOOOMMbNiwAQ9/+MOPW0sOKE/3Zz/72Ufd56KLLrLR2ssvvxy9Xg/ve9/7MDc3h0OHDhX23bt3L66++mr80R/9EU477TTMzc3hggsuwGtf+1p87GMfw/Of/3xcdtll2Lt3L5aXl3HdddfhPe95D84555wHMtTftx3k7OwsbrrpJjz+8Y/HhRdeiC996UvYvn37Azp2t9vFjh078PM///M455xz0Gw28bnPfQ7/+Z//ib/8y7+0++3duxf/+I//iN/6rd/CT/zET6DZbOKZz3wmfumXfgn/9E//hF/5lV/BzTffjMc97nHgnOP222/HP/3TP1mP8h8mXvayl2F5eRkXXHABduzYgXvuuQfvete7cO6559pJ5bnnngvGGN7ylreg0+kgDEPrrX711Vfjl37pl3DeeefhF37hF7Bp0ybce++9+Jd/+Rc87nGPw7vf/W57rPPPPx8f+tCHQAix0hnGGH76p38aN9xwA570pCcVko8fyP11NOzduxef+9zn8Na3vhXbtm3DySefjMc+9rE/pBF8EPHjM7SpUKFChQoVTnxMsoOMokiee+658uqrr7Z2hy7+5m/+Ru7du1fWajXZarXkIx7xCPm6171OHjx4UEop5X/913/JSy+9VO7atUuGYSjn5ubkM57xDPn1r3+90M5XvvIVuXfvXhkEwTHtEV07yKNhkh3kddddJx/5yEfKKIrk7t275Vve8hb5d3/3dxKA3L9/v93v8OHD8ulPf7pstVoSQMEacmlpSb7qVa+S27dvl0EQyB07dsgXv/jFcnFx8aj9279/vwQgr7nmmrFzeaB2kAZ33HGH3Lp1qzzrrLPkwsKClFJZL65n8egeK45j+drXvlaec845stVqyUajIc855xz513/914X39Ho9+cIXvlBOT09LAAVryCRJ5Fve8ha5Z88eGYahnJmZkXv37pVXXXWV7HQ6heNO6tNJJ530gKwPP/axj8mLLrpIzs3NySAI5K5du+Tll18uDx06VNjvfe97nzzllFMkY2zMGvLmm2+WF198sZyampJRFMlTTz1VvuQlLxm7J2+99VZr6+nij/7ojyQA+YY3vGGsf8d7f5100kny6U9/+sRzvP322+UTnvAEWavVJICHrDUkkfIHyOaoUKFChQoVKlSoUKHCg4JK416hQoUKFSpUqFChwkMAlca9QoUKFSpUqFDhBATnfCw5tIxms/lDsQ+t8OCgIu4VKlSoUKFChQonIO67775jFiR6oAm8FX68qIh7hQoVKlSoUKHCCYgtW7bgpptuOuo+p5xyyoPUmwo/DFTJqRUqVKhQoUKFChUqPARQJadWqFChQoUKFSpUqPAQQEXcK1SoUKFChQoVKlR4CKDSuFeoUKFChRMK//LOP4AQwv5NCAEhxP5OqYpZSSkhpQSlDJ7nFbcRT+3re/a9AOD7fv5+AMhfAqBKxbvHM1pUQimoBKQQEELYMu5CCHU8xuD5qg9ZlhX6Yto1xzWvuefDOQeXUh9X/SOEwPdDEELytggBQMEYA+fcaT8fq/I4pSkHAHiBb/sMqBLyaZpiOBxCCA5KCQI/ACSBEMK2TwiB53mFkvVmjNzzcNs252v66W4vn78d6wntF66px+wx17s/ytvN9XGvAyEEjNCx9t39TJumDbd9IQQ8z7Pn5h4vbyPvh5QSUverfN3Lx3fHcr1zMNsmvdecnzkmkWo/juLYFn8vtl+GPa7+V+4PAHucSe0U96f6uICUorgvKb633Jb5XAEAoxQQElmWgTFWuCcEF7a/5tiEEkjJC+fjwlyPLMv0dwodO375PnHva7Pf83/3bRPH0EVF3CtUqFChwgkF84A2D1OXmBm4pIoxBsZYgbSV9ytDkWDAMHd3H/MQtg9tSgEpITCZKBlya0hCmqa276b/Zj+3X+YYhgBI5zVKKTzPA6XUEkfGFHEFYUiSxG5Tx1Akxvd9SKl+T9MUlFKEYQjP85BkKQAgCAIwxjAYDJCmKcIwRJalEIIjSVMQmY9ZEASWYBrSGgSB/d2coyE7huxTSuH7PoIgQJIk9hzL47weYXWJmEua3YlJmVRNut6TJgqmrfK1cPtk4HneWL/d8XAnT27fzJTPvk8x1UK/pfN3PgktTnbcNssk3iX/5nqY9xBCQCgFEfo+tT0qwrRjulm+9wv37DptrLf/+PgSHG9WZvneMO2Yv4WUoKVt9nfd0fzcCKQc/25w+2w+Z5MwaWLpTtgm9fVoqIh7hQoVKlQ4oeE+OM3DeT0ib39HkbCZ7cWHKym8zyVEQkpFUqQE9ORA8XwCUJJH6g3hgQSkeqBP6pshXEAeFQVgCXseI8wnKorA5QRZSAkIRUyklPB9X5N5QIjicaVeTqBUkX3OOQTnoDo6mWUZPM9DEASQUuqIukCWZZa4lwmL6YdLVAx5jOPY7m/IfJqm+aRkQjS9MAZOe+XrblAgpaVrtt57ymSqTEQn9ckldG5EtTyJdM+rTP5dIlwmlpMmiS7WW4GYeA7rnK/6DJQmE855Ffs9HlkutGW2l8bMbpyA9Uhs3l9R+lt/ho7xXmKOqXdhjEFkHCAmwi5tH8WE7wnTztEmKOZvc/3dyXd5Elf+bjoeVMS9QoUKFSqcUBgn2DnK5L28n3p4EjCqI/DSyEvGH85lslZctnfaNq8RxQ4IoYXXhczJghsFnSTFKEZl9blCyxAIBSG0EKkXQkV0LWkisKsM45IhaiP4irSr9jjnyLIM1GPO67CTg5yMEHVuUhakQOVxdyULhty48iFzDM55geyuR2zWm4SVibQQfOL7JpHO9VC8pnk7roypHNWfeH9ouOc8TuIny2/KEff1Vg/cfY72eXAxNibOMdZ7T77r+DkaecwkFLYfpY/F8ShuP97zKrRTnrg4SwGk+PLE90+a+Ey6N8v3PpCvsK3bt+NARdwrVKhQocIJBc/zCkvRwOSH/Hpkp0D63AcqyXXthFAQOjlyu95DWKL4oJ+kPZ70YM//Jpr8kzyaTwiobZPaCPmkqJ4i2h6yjBd0vUorLAq6d0PapZRIsxRSAj4NwPVEgDGGOI7HNLqEEB2Zp5BaZmEioczzkKVpQSIDKGmTkcZMkmy4+5bJobsKUb5+5b8pJAi0rOMBECU98oXrJ0Xej0mTqvJkw4yr23cj0XInL+Vz+34It3sNx6LfpYmme4zJY6zHDASE5tr4Um+OSkZtBLv0XnsP538ddVJdjN2Pj4fE5M+Ne6XtJ8m5/pRQyHXOoXw+k74nimNMQCnRH033NYCaSba+mYSUagKI9b8zJqEi7hUqVKhQ4YSDSwBcAljeZ3LEc0KyHjQBNeRdS1vK5KfcvoGJert/u8vo7j9DZAmMJl3Ja6g+JyFNsqI6P0bzR3lZjkF0whzRY+H7kyYHRQJCKQUohZQ6X4AQ1Ou1wkRDCIFGo4EwDNHv95VwQUtwGPGQ6qi6OUfP85BxpaEnhIxpu01iXxiGdh+T+OqSUXd/N5GyPBlwJTbmOqtoqhgnSuuQ4LHr6fxO9X3jYtJ9MClfAVDjmmVZQTpRJIDrS3gm3WvusY8nonu0VQDbpqHCWt1l3ldcxRAgZP02jNymMCERirCqcZ+cV+JOhAqTiFLQ3J4HJl/DfOUAzjGLY820hMU9JoDCRJZotr3eKp3JV2DUAyFKfkbH8maU3EgICYBCCm4JPnGSnY+FirhXqFChQoUTCuVou8F6S91lkq9IM4Ek49pTN7r6QJa8pcwlN24f3ImDG3FVx5jcrnnNPOwnySfKEwqzbTQagVLl8GKSVxWEJZKe51kaxFjuuAOoZFPjiBLHMYbDoZXRMOYBEuBpiiAICv3mnMP3ffA0y4m07lOSJFb/2+/37TnUarWCpAco6sJd0mvaK0tk3Mi9e/3ca1++TkeLervtHOv95jxNP9w2Jt0nxXtqfTI8ybHkaJh0/66Hou7++9NgHxO2D8fXf3P848V6n83ytTHb3JUz972Fz9aEnAO3HXtNkF/rshNU+VzcCXQVca9QoUKFCv9nUSZV5YejS2yZEzktaMN1qNFG84iSC7jHKLfpPnxN0qj7OkrkvQgCSL2GrsObWoSiopYlmYGK6pECuTL94lxA6iV7wLjAeABUNN8dlyzLICGVtIVQCEhkQoJSx5EHFEmcIIpqyLIMg2QEwtRYBUEASYnVwRPkkgsTRTfkmXMO6jFASmSCg4CAMuVaYyYC7iTBvM/IPkybk6LL7oQqd8rJEwLtNSmRt/XsJV1yNol8uRFa9/X1SLU7UXEnE9YOlJYnYeNR+MJKCiFjkwEX5fFZL2L/QEj9pImgPmvkt7cwO48dj9rP0/ooT5qO1S973VWnCtsJACIny2PK7QOT9ed5roiAEEaOlovi3TbVvVZ0M3KJve2X+Sw4KzDuitKxUBH3ChUqVKhwQmGS5/l6EdLJETGtPwUUYXcesOUIpPvQN69Zgojiw7sc/XXbMRpiQghSwa0WdhK5LGqRldtksU3TdWqJFOc5yTP9sPp0SKRpbgXp9jHLOAgEGMvzBjyPQUCRjTjJiadaqQAg8rExOu7CdaAURI+RGquiBtyVlpj+uqsoroWkcNoxr5VXRSaRQffvSdKH8r7l+2niNSxFa932yrIes93d5iYl59fweJI2J2ve3VWX8n2/nuSjGAXOufB6Y5QfBxiLoDufIcj1z2XSeB+NxJYnLWVYQg6tKy9NcNxr7jq9TGrXvc/y6yitJr48uaCEQtLJ99mk7x73fj3aObmoiHuFChUqVDih4JLocnSxTJzV344Uw5AdaP27E3kuwyVsE6UP7k8TknSOO6l/stSM2q8YZbXv1YmDhegsMZ7aOXFWmlqh9nP6a72pZR65d/3shZQQUpF2QikywcEoA6HKLFPtZ7S/FFSPoyRCS4odj+8ScStMPkoSIfefkZq40fTy9XPbM2240frx8Sz+Xl41cSPhkyZa5njHQzTL712PnLl9dt97rEmH+Tnpfcci9pPaWv+1o0eD8/dr0u9sN68x4k5Mjh7ZN5g02Z20n5k4FD5XUq1cTJpMuW1IKW0OyKQJmPu7us+k+uxI2FU09z639k3mo2kCAeY9E8ZgErFfDxVxr1ChQoUKJxTWi+qNJW6WflrSLgHGlI5bTpCiTHqYl4m4dXrR/4oP+JIuVkoQyqzLxPgDXEIIo4fXZES3TigFoSaJTh9XTxKUxaIPIVJQxkCZii5SpkmuNMWftLOGzJ1IhJ68gFB4vo80TdW+kFby4HmedfAxUWIlEdIElOjJhVSSBTfqbMdMSgiZFwByx9BUtTRj5bqwTEpWnSStmETK3XvCvaZl4jZp1eZok7WjEcSyFKJ875n35wnL+X7rkfdyxHfdyWBpn6Mduwz11lwaUm5//Pylva7l/YWc7Fs/qU23z+VVMbP6Mr6aUi7QhULSankFJX+/+syXV07GJ/jmNSCfYVNA39sgBFzq1TKar9RZxyAhbfTfyMgMTG7J8aAi7hUqVKhQ4YRCWYpgIrVAkeC43uEuzPNaCAEQHasuEaCjYRI5dPtTJpYFEiPVQ9/+KXNJzKT2PM+z20w0WghhSa/RmAdhCM/3MBwOLfExlo9AHt02Gniuo+lGPpPqhFOX1JgEVEM4TLVVCWGLM3meBykkuK7CCgBxHNvjEKKkDG6fzHm4JeHNuK9XkKmMY0WQj0YcJ13f9aLAZSI8ST5RhjuGrgbfElzrGFSacEzo43rR60mTQ/e9ZaJ/rHv6aOOx7mtuu3oyaPpmVpKk5Jj0uVpvcrHe8aTxfZJSuweZY9GJbbiTPemsWKmJpwTzmEpQl0XJm5ACJopvxrDs124SutM0heepzxylyj4205NcU7is/L7jQUXcK1SoUKHCCYWyp/ckGUVZ/uISBbW/kXKgSEBKMA/w43H6mLgULjV5do9DjRykWGVUN6IqpWqy4LquGHJBKYPnKQKcZCnCWoQkTdDr9wAAtagOABBcJaESSiGpRJylUDMVCcY8e06DwcA6vBgnGnP8zLF9NOPg+T4AYDQaFQgqMgnJBYIgUEmx5pwoASUqadXIbUyU0vM8CCGQav93ALbi63rjWybG7rWaVBRnUtT6aNfOJWtHvbbroExQy/1e99gl8u6+fjz33fFMOMsR8fw9ZhzHZTOW1AoBaSPRpWMV+p5fg6OR9vLvAJSkZbz14j7u4UlxjC05dz9X5roTQJi1LH3vcyEgpFqlKowzVXkplFJkCQclKgjPubAVV01uhklEpYyCCNVO4OU1Cx7oxKki7hUqVKhQ4YSFS6yBYuLq2MOyEEHNbeCknEx+yuT/aJFaN9pe3D7e55zIAa6+3YVr5Wiide5KA7SDDIAC4Q3DEDwrelZLqSzxlNf5uK98FEWW8BhfcnP+WZZZyYyJiBtS7nkefE3isyxTPtda6mIi+a5ExnXtMd7vJmppovrrRb4nJgc7RL2sHz/a9SrKIibb/5Wve7mt8vvX239SASunN8U2YeZ3k/XXZYJ6tP6VJ7duP9cj0cdHLseJez7xyM9rPdI+1tqE8ykTd5vELLlz6MmTI/O3e38Q8/kmxeO5hazK47Xe764tqZl0upaghtAPh0P7WSp/Do6FirhXqFChQoUTCi5Rt4SmQAtReJDCFCCCirQBBJSWpDRKog4CoiJqcPXrAM/4eGRe708oASUUxOiF7fuLGmvTX9jt49FCguI2dQ6qWJLUSaYguX6ckVwr7mpoyxIAdX755MaNrvd6A13V1IyrkeOk8Dwll8lJDgGhPrI0A88c3T2AwA/BeYZRnMBz9L+kkDRbDCpzLgCipCPGasfzGNTESktsCAclOqIJYnXNqj0lBaJ6/3LkdT2yezSSf7TIfH7cyS4l67W53nGPdbxJ/VxPArMeCZ+0UrFe5D1f+JlwXBQnX9J9rTCRWX+sJ04gdNtw+1Q+NwDM5n6MFzubNNYF7bz+PJgJYFFONq57p1RVWxXqBleRekpBkc9P7P3tkHMzIYCQhclmeXJxNFTEvUKFChUqnHAoSxDMI1FICYwlt2m9q9pYXEYHnAiebs8cRKsGpByvumheN6TdkFdLPiZ4wpu+OkdwtuVVSMsw3tE5qZaQyOVAbnRXCAFIra3Wh7JkxHH9MDp5l6io9xerV+YSCdtbQMImrUohIQgc8iJtnw3Nosx1aFHk3fhmB2FYsOSzx4CaZLFCUmqZspmLBC3VKL1SIqdlcvbDxPjkbFxr7sJdbZkUYZ/U/tH+Lr+3uDpz7L7n7z2GHMzuVW7EbWvcf15O+tzlHZh8LHdFhOT+SmZC6vZ/0nsNrPRrnf3KY+deMyHNjF5P1tRNODZhK0hiJq6uHO+KRkXcK1SoUKHCCQZLdLQlm0kyA3Jni/JDsyiLWJ9ElOUu7u+THvKujKOsrTWRQ6xDGMvyB3tO7jkSagm5mXwIIcAFtzIVFUEUlmAzymyynIq8K2258ZEnUBHHVEttfF9F1RljyHRyKCV5YmXed03OpYQ3wb/dJMr6vg+IXFvseZ6V9ZTlKVEUFSKWbsKqq+93JSdl+Yk7npPulTKpPp5I+HoR6Un7uH9PIu/rE/fxYx/teJOOezSyP+k8frDJC3H6TcytnR9L5K5NwLFXLY42ppM+a+57y/tParP8+TZ/u7K6wn56cmDkSsbLvbBqo94w8T4sTD5Lk6gHMuYVca9QoUKFCicUjD0haE5IAbOcn2tZzQPVVAk1y+Xrkff1KmgC4+TKPIjLD//1lu1duIR9PCqriSoXNqpu+kYZNXoe5YzBWK5J11KYKAqRCo5MCIReaAm6oBIeJQh831YwDbxQTziAfr+PdrsNwpWu3eiCzfFdu0MvYBiORmCE2smDSdDzfR+EEPjMK7h/KLu8olsLpRRxHI+RNXO+ZUlH+TqNk21hSRUhpOARXyZObsGdcoKr+7N8zcuvHY8Ewhy7TALzlY1xgljuz9Hado8xaVzKmCS1yd+TT9AmHA35qhQDgVBjTibJYsYnIO71c9edhPNe+3kz972JtBMCCTL2+Sp/LssTQ0Om14uoF/pIibZJLV4TN7pOCQVhGGuzMEo2sDDugHU8qIh7hQoVKlQ4oTCJYAP6IY1JD2UtlSlExCdEx7F+9HMSASkcd71CMk67NjqPnJiUo3GUUp3kSW2k3vd9tV2KAhFwfdChdcWj0QiNdgvdbhej0ci2axJH4zgGAKRphjTl8DwPURShXq8jyzIkSQJCCOr1OsIwRL/bA2EUfuAr/T8kpORq/yS1Y2H6YeQ3StRDbAQ+CAK7csA5h+AchObE38Akv2ZZVtAflwsiudcmJ1ZFmYIh7mYlwIyve00L0VTnfijfY+uRb7c/R4sgl1+jdPyYxyekGIfbthkz1wXJPdfjmVROIu6T/i5cD53rAQBKlTJObAtjZlajSu3b9zjkNx/vcc961wFJHbtIlE2CdfkeslIYM4FjFK74xXwuGWM2UKB08aRAyCfmODin7U4yq+TUChUqVKjwfxKetlP0mGcfiCbRlNgHvtKlcpFLL2Qh6kvBQOBRtbeUABcZOJegtOjoQihV2m3CVMEhynT0XiLNlKWhitLpCCFVGm9DHAlxFO9SqlxMIm3CnTCJmRIgkgMQEJIAkiiynrhJdFAadqJsJqWQYEzp2c04DAZDMObnUWslygUhilwnSYJWsw3GPHR7XQQRAaiHJEnAvACEEoySBHGaIksTMPhIkhQEEpQxpGkC3w9AmIcwDCGFwHA0QhRFgJBIkgSDUQIpBRhlAPNy33mufLI9P4QgQJImRSIsJaJ6DaM4BqEUHlN+20Lb7hl3G0PYhSZVSpLDCq8ZeQ6lFNS8BhU1pVT5y7sTJ3cCJtVtMZb0XJayuO8trxzYFQvFPm1xHnUcfQAAymIxT7qVQgBmNYDkiZRmfKRUybgpz+yKQTmyXCDp5nyktD7j6jwkiDs/WWe1qNCmbo9IqSwSzVyJaP25FGVOPjZ2pk17vmoxTMnc7C6qxoIkaruZmAJqm/5NycA8pmQ6ptASoK+vaZ+YvOei5IUQEKoLfpWi6+4Ez0ympZTI9AEIlBpMSIBCWbTasaKmUJneybknjgcVca9QoUKFCicUyhHSAnE/xnK5IlO6+Ao02aaKdVBZjN7lS94EjHnFaKtmJ+qhL1QE3TysJ5AW6bapyQ0IcfqV6/OllDYZzqMefD8YjywjjzamaQYBlQQahhEAYh1mDBFlOpk0DCIEfghCFBnxmAchZE4OSS5ikFLC04VkqJcTE8/z7VgYQkMIQRzHEBm3jjXmpxlHzrmVIaSCIwgCMBbaMbW+11DEKQgCdY5cQJY08oCeJDnX3L1uR40YE/Mjl1WZtguTHSPTACkc91grNeV7ND+gYpzmuqldNIHWRNpG3kv3r/vTlZmMnRuK5yOLL4xNPIzMhUy4Z8vt2XPQnSj5OK3/nlJfLWk3czUxQc4i1lnh0iJ0N2Jufo6f73hf3M+hFfVMWHFxtxW+U4Tj1lT6rsgXC9af/BwPJq8nVqhQoUKFCg9xlKOck0B0RNJdQmdONF0RaW0nSagi9Q7xL0tZJkokdHTf+KhI/bswv2tCIXTYTwfXlezExB0J1e835IMUZDaTSIUhum6U0BDgsuTH9ZwOgtB6tnuep0ibkGBEyXhMpVNTIMmMtdHLm5WEsl++WZ2A/mlKwrvE01hR5omt6lyFMDaCyiLSbDeRaAmAMJqvPOhra9paT7dtr5vztx0bQgpVbN3r6+qcbfT9GBFTt/3C5MGJ0pbJvzt+kzDpNUIIJDk64ZzUV3diAnuWpd9KY1Qes3X7Ko+fnBJinJhoifw7zTnnNOn9k6VS41F9d9uk1RKDSdKoiX0w9wzJJ1Bqn/yzuN44HO/4VBH3ChUqVKhwQsEl4W4SY/nBrAhCMVpq3FbMErZU7olQpdPzgGKZWBWi7e4xKLXL7dJpQOpDWG0uABBAgICSPNqoHcxBCAWIBJeAtAKNImF37SLdbYBykiGEWetIoyVXsgpnGV8f2BDzIAjGxqlMVkxk3bTHGCtYSZr9TZTdQEIi45llhUbW4XppK/tI16HDEDOqPN61jAnGK98h1oa8u4TY7fNY5LlEds21gZEqmX6b666j7uZoOUkrEkL33lsXbjTZuZbueFM67q9eTo42qzHrRePH+iLdhOwysTUjCTuBITpyfLTzMStEBZjPYGHT+iRa7wHXOtL9jB4PyS1PKiatupQj5uN9GG+zjHL1U7uPFIBeJVP75MT9eBKe10NF3CtUqFChwgmFst85oQQkF8cWiPx65Cq3VzQPZKnJ+3gkLydWkwkFJQSZjmYb0ux5Sn+fpqkmqrk7CxgDs+0q6sSFkpFwya0UwES2gyBAmqaFY7uvqyJF+bmZRNA4jtV+MrdXTNMUaZpaFxgz+TE6XtO2aYM7mmiTZBr4PqQEsiyFIb5G0kIoRRgGgITNL/D0uBjZjDlmmqZWDmMmEubYWZbZ5FoVVVf7cCGUjaWUdnUkby8Zv1nIuHJpfKIH5HIVfU0ZLZA1c63ciKqbB1G+NuVtLukrTwjN/Sfl+pPEghf5hLbLxH1StHqcuDoRehNCBoFKwii+r3x+7qjmK1d5gm15bMt9KIyBGE/+zsmx3TrWFkjuekT03wR6MizGz8H0qzzhLNs6lldNzCqW+SxQPRGUYtytpjjm+XhIKZ2/jo6KuFeoUKFChRMKJkqcJ9YJZDzTD83i8jtjTBdkImA6QVHwXP7CNWlStToV8gc3sRFO8yAXArbiqCHNlEhQqaqr2oQ7E4Vmgf1bkdcAoAQgFEJwm1AnBFc6cr0UzzwGph0xRqMRsixDmqa2f67chFKKJEshtPRlMBig0WhoWUwAz/PBhUQURRiNRoUxNAmcnCtfeEOgDZmiAeD7PlJiEvwIeoORHiimHG8IheRcTS4EMOiPLNlkjCHhHJ4f6r6qUc64QBjVAQj0Bn34vm8nO6MkVk43np5oZNySJEIIvCCEs2iBJM0gRAZKzIqKSgidNMlyt+WSIjm2nbGizEedLwBK9LHXl5AUIv2liK8h4JMcThSJzX3ATTI1AAjtxGP2P1bF1kmR4zFiCpeAE5jMUNVXk2QqQcjkYx1fBNlZ1chpbHEPSkBEqXKpexz3f2ZxRMpiOyT3mFcJ3/m3QOHIEyZFR4uIlyd5dqY9YWJfnDSZhGJp/zteVMS9QoUKFSqcUDDe5YQqIliITE5cLgc8T1FzKVUyqYGbeDgpKqr2KZKhYqQU1sGEeqygIeacI/B9+7qUSmZC4SRi6jY45yCMWvLKOUeWKhtDo+WOoshOALIsw3A4tEWKGo0mmOchTVOEodKwN5tNPblQkhMhBEajkY1oG517OQfAjcBTSjEajRRp11HyTCegJkmiK6hmGPT7qNVqCIIAw+EQURRZKz4hhO0roCZTxgZSQqJWq9lzNv0xExVDcj3mF1YdpFDUzEwOPM+DFFzdD1qDbMZ40nUrRKgn6KzNhMYdE9N3KYqJjZMi2+tJM8yqTNnGUBFnccxoubn+7oqJ208XhBAbhS440xytrygSWDOBpbT4uTI89HjlH+YcJ6lUjASqsKKlC3jZPql3Q5amGy4m5XZYoo7iGBZ65ew3eTUk3w/Wvebo521fn9DOsVAR9woVKlSocEIh11FLHSVUfnKcS0iSu5wYzTXnSsZiZBPq9XHZS/6wLpEhG20XYMwrJIQan2chBCIvgpDK5SXwfUgQjAZ9TTZUxHo0GsAPAgjBQQgryB54msHXRN+ECU37mSbwZl9DVpUEh1jHFs9Tto4AkCZqsiD0+SZxrBMCYV078naKhNH6WxMGjxFwma8OuPaDgJKVUI8hExzpaKhXMoTy89aB3PbMNAb9gSrQRIn1aveZp8gcAaQkIKAgYOCZAKMeCMmJGqEMRAKMUgjiaL+FIrFCijzHQALQCccmcdLwTUUUjZZbR6AdJx3GqJIsle4N+1NK5fktAU/fi5NIn/vesci8hEoKVssY2l5wPFI+KTJfaMe5T4+m9zYnOx6Np+ol/Zcw52Dahc6/UN3UkXgCgKmcDiiddxHuNUBpLPLt5ii6blbhNWI+q2Y3HVEnMLKc0rgSAsGFPbrUyh/hTDImjd16evf1xlcS4ZyASkpV11sApiBVaSI4aVXmaKiIe4UKFSpUOKFgpAJSL5froqg2Ausuh6u/tQUfcmZgkzwnRM9ycgKraQUxBY98mIQ6N7Ju+mS8xVOpPMpdJmKiw4JnyDhH4LNcskAkuI4iC6GlPZRZ4m76XCaE1hmGKJLiSl885gNQ/uFcqEi2WQEAzb3CDVxrR0NEs0xNJrjgAIGWtKhCTmEY2kmUp2U2ZuKh/MK1Z76RhzBqOY0hZXmCpvZX9wNH/+4DTsVWZeOp9rPDQPLrQBmDK3uxqymFzFNzOagmXfnkTA+qfa/tazliqhjsmBznaATNtGGj7O4+UsWTJ0lcyhHkSX9PIvbl41ryDkcuMmGlYdIKgttWYQxsG+Y9eSzcJe3le1Y3YLZMPqZ7PfSvpmiZFMXPn23b7p9L3IRz3uXJTFnStF5kvBCRL5xD8bwK251jluU5x0JF3CtUqFChwgmFSVKVsmMJ4BAd94Gpn62WBE98WOcPWvXgVU1wXkxiM8c2fydxrEqmCwGhq5D6zANhShdNAfieWgGQ2jvdg7Fx1P0RAjzjINouz5xHWYKTV0JN88kFVHQ9DEMkiUocJaRIWGwlSZjiQOPWl4bMZ1mm7DR1YihlDJ7nI8sU4a3VayDEkHIGKRWBT3VFVTNujHkYxbGWiahQM6UMQaBWC0xiK4heTTERVkoAjgLxoSaaqy5Efn0oQAizkc/iBSd58qJUUgdCCaQYl0FZEIfWEtgCPwXvd4kxUjYpUuvedzYR8yjBV5dIlq+dPAYhdCUfLrEXQljnoIn9m9D38e02Bu62oP4R87vMN7sc3U6Y3L6ZKPuECYv9H8wlHO+zHcZ8slBoxZk82KupGyZjnSxWQS2Tevs31ATZ/f5xZTH5e4S7SX8FVcS9QoUKFSr8H4bv+zYq7JKUvMpoLiHJBIeS1Ixr4lUUDTAkUsklVCTZuklQBuZUajXHSdNUE+gYprASJQSMUPgeg+QZmOeDMQoKQPAMjHggUmLY7yEIAoRhqP3mgTgeIssECGX22CaRdBTHWvudIY4TTE1N2T6CC1DmoV6L4Ps+4lFSSGYNwxBSSsRxrPoO5ahDCCCp2sfo5d3xac9Mq3OjFL7vw/cDLCweQbPZhOcFSJLE5hyEUQ3D4VAnrObExw9CpJmSBpkqmJQx1Ot1rK6soN1uI45jda105dUwDJEJgUwKm95odOHmH9WknesVFUW2GSDzxGF3dUSdV07iITM7qTMe91T73dNyRJy4Voc62XACITUoEFFN1Km+dyAnpypOItzmPIyDkEE5L8G938s++7YbeoJlru16EXrb/9Kk1t3fJmaasQQApj5fgDMhMuMtcpKbt6MGkBCX8DrHdOcJjowGRvNmxlZfGXeia45PCbMrI2bCpG6DvA2z6nas1QazqmC/V5z3mMJh5l5VkiM30l/MEzgaKuJeoUKFChVOKBj9uiErZcLpQggBAUfygjxqLaUEmClaJMF5ZhMlTeKliYZnXKBWq2EwGNiCP5xzZFmGwWAAzjnqUQiZcYw0mU+SBK1WC0QC/W4Po9EItVoNmVCTDgoCX+vwh8NhTgQogcfyUvZxHGM4HMLzfYRhiDCM4PtKx27LsYNASKDb7Vp5SxzHhX3W1tbQarUKJdyDIAC3kpHc311KiWazWTjffr+PpaVl1BtN9Pt9m3gaBAGazSYAdXxPV2n1PA9BEFgibto1P7MsQ7PZRLfbhZTS2k1a6QtlaDSUg4zQqwymPUmljSCb8QvCvFiUej8BoGVEjhe3m2jqwo2guqR4LIpOqUqTLK3YFKQwKEZtDY7mUc70ZM300RBwd5tpy0xWXaKfS8OKMhCzEuWcqCXb5ZWCwmfIrFDY19ZbUdChc/BcplIeO2cFw0pa7Jgpkuuex9EKGZXbNudbtudcb3LinrOE0acXpUjmvWX3HkP63WuT3yvq5JS0rSijOdqkoIyKuFeoUKFChRMSbsXQ8vZ89VrCC3y1j16WF1IClBQik4wRUCqttMQ8lI0UQwiBfr9fIFLGBcUkWo4GfRCpSiplmYrgDgYDRSo1uRVCAkKCZxnSLLNtEkJAGMXGjRuRCl4oAy+lsnKkmqCORrGVGNSaDQghUGMefM9DlmXWccQLfCXJkQIyk2g0GpZsU8ZAGUUySOH7oV01UIWggJRzxKsdhKEi03Eca6eaBghVCa3u5Gk4HAIAdu/ejfn5eevPnqYphsMhNm3ahH6/XyCXy8vLaDQaWoKj2oqTxJJ+IYFubwAACHwfYRghyxJwqGJF0KslSZYiqtcgJbf6ZyPVUUWNCAhR+ndiM0IBYSPm0kaEDZl3CV+ZzBWiv070dt1oLWB19hQ5gTP3reuGMhZ1tudS7J+7fT1S6ErKxghsUcOxPhyJiPpTyZHGjulEsCe34+wjpOX6kkDpnGxbx0du89PIyXt5tWj8VCacq4TuhOnT5HG3Y2ncbvIvGECaMmqqQSMBclF2vDkaKuJeoUKFChVOKBg5QJm450S7uKRtNPBKN64jllIUvMtNO1mWgnNp3VY454jjGGkmrI2isSUUQqDb7YJSijiOQYlSC3DO0e/2EadK4+4HAfwggJQS/dEAAQuwuramLCL1ArvHGIIoxPz8PEAoqOdZuYw51zAMFeGmFIypvtVqNT2JEOj1ekiSBO122xIZAQHC87EZDAao1WoApD2PKKprX3gPURTB8z2kelKSprGN/gJAHMcIQmplPGZVwrx24MABG003Y9putzEajRDHsXKVISrRV/WjGO0N9DiZFQjThikoJaWalIALcNfb3fPAMwFRIsBuNNdsd/23KaUgUruFOPdQmWRNjt4qHT4hBJKLiaSxTPwY88Zey9vPWzb3rGvj6Eb01yPqbhS+HJGehPIkwZ6ZO1kp/V3Watu2S8dcF0ZnTgAidD0GUzPBkZeUNf2TvOvd8yxE0kurJseKeCsuvk7Sq9s+gc1TyCP9asXOXekxl23SvXAsVMS9QoUKFSqcWNCRVhMslfoX96fVsRICSPVgVS4nJiHTPPSLD+os46A0rzBqCCrnAsNhBkIUSR+NRkiSxPqzx3GMLEtUoRwhAAEQRpEkI/gZh5DAcDhCyjNEQQ2pWU7XpCKjFBzQBDUFYRR+EFhLS8/zABB4noqAG/eW4XCknWoEOFfVSZUGPgZLHJtHPUkxshcVjWZWFpRlGYbxCFES64JNXE9cJLIsJ4+UKgKfpikajYb1gldjp1YeGo1GoRoqoFc+9LkYwuxpPbkLQ4aMm47Zj1KKTHu824mLnkQZYq84Jc2j6pIAUmhSla+eqPtEXXOVDKunT8StdEsKfVr/VjQ2gVqvjcnJovkAEkAYP3OTZJnLbtxJg+vXbiCEOgYlDJKoCLCxBJVSKp03kSDIK7+qc9NtyDz6bz4vztlM/L2onjHkeALBLf1zw86TCLbdDrdP+jUK9Rlyx4kSa2MKSC2ndzMPnP45L5UnMWbbA7nG9qf5V95easOdEB1vpN2gIu4VKlSoUOHEgn54FmUFriWdiU4qC0NCKKQAODhAhCasFJQyVbHUqYKqosjESkNMWxnnGI1GoNTDaDTCYDCwEeTRaKQjyiMkaawINPUR1iIkcQzP9zGMY3jMA5cCPhuiVq+BGhINADLDMM0AKdHt9QFIhFGEZrMJQlRyaZYKMJYgDVOlOBACSSZski4A+H6ALFMTDUmUTaUUAjxT0fVaraaIPhQJ930fg8HAkvdRHIPqCUsURTD6fxMB9XSRJwND1g05YXZFIE/uTZKkkIdgIuRl+YArTzIFmkxbjDF9HAohJMLQB9HHt8S9YD1iNMcUkBxGWmSEHwVNuChaYx4rQq1uQUXU7b4lIp7vA/u7fS8tRoCN0w8cuUeZ+OXbDGnW/jrMJY5Ca8mJ/TyYSYoh7tYZB4YsG7KZTw4m68LHz3+M7LoRb/03Ke0zSQpkx9Y9EABldE+KOxSHeGyuYZKGCVU1AfTZF/p+PJiUn2D1/M69Us5pcOVJttsP4LhARdwrVKhQocIJBjcJDSSXN7gyBy6UlML3cycYLkyRIsD3lUZbubjkVURV0ubQSlM45xgOh4iTBKPRCP3+sJCQJoTA2toaut0uCCMQUmA0irG8vKKsGYMArVYLU+0pNBsNUI8hzVLQ1FMPaJlr5UdJgsBXevIkTcD6/YL8hxJ1LsxjCKMIMzMzqDVaSLQuXEVnh9i0aTPa7TZAgCRNkcQxOCWWcIdhiIwLPRYqmj09PQ0vDAqkI8tU5B6aSBvJTr/fx9TUFPq6f2Z/E4EfDAaWFJuIviGnURTZtvr9PprNZrEiqsw1/UYm4hJ6s6/HlC7aeMSb+yInTuNJovb+KclppCgSrUlJiuZ3A1faUiBqWi5tCLLb1kSyK51iYBOiweX8DfczYPpWlpGsJ1dZj0Dm4zOu69fvHNvfNFVusxDJtktf9sXC+/PiRZPca8wk5dgEeNK1Mqs2tvsTZDbFRnKCX5bcuHAlMuZvV5IDjOvZ15uorIeKuFeoUKFChRMK7oNQSEXIVRRZeahbYiEJIKn2NJeQhOooN7P69EajZon3cDi0UpJOpwPPUwWMkiRBZ20No9EInheAc25tEDnnGAwGkISoZFDdt6npDUiSBCsrK+h0+zhyZFE5wkQhfOaDegxRFAEAkiTBcDjEzIZZxMORclahAOcZFhcXQQjB7OwsRkM1eQAhaLVbOHDgAJrtaezatQtTU1PW8nF5dQUzMzPWOYYSgiiKEEURmO/h4OFDVl5hHF8450g6HTCPIQgC1Go1pZ8H0O/3bVuj0QhTU1OWmLvR9W63CwCYnlYWkqY4FGNM9RvAcDhEt9dFkqZotVoYDIc2cm7GjlKK4VBNkLIss5aZgCJHtVrNOub4fgCPElst1q6+mMxTUiTDlBBL1ClVUiAphCV25vpPItmTCLy73d6fpCglWU/zbvXrTFWaZTIv5uVOTo3dpj6aVliNyzVcTbiZULkTqIkEUt8H5fN1JwV2teKYqxClsXHJa74RFGoVxB2/8bYnRf3Ht00i1uXrR5y+HA+JnrgaYAh6aYK53srI0VYWjoWKuFeoUKFChRMKUsqCRMLogFX0NNe6MqakHVLqqqZSFJJL19bWcM89PRCikgZzF5gRlpdXVIRemoc0wTCJsbx8oKR95/C9EBtmZ1CrK9eWJE0R1iIISPhBgDiJMYxH6PX7yDjH9NSUWhHIMnieD8qUG8zS8ipqtZolzvV6De2pOuJhgs5aD41aHa12G1zkE4feYISDBw8CUNHzVruNU049Dffccw8IIWg0GqjX64gCH7VGHaEIMT09jeFwBIBg48aNyLJM6dmhijcRQrC6uop+v484jtFsNpVbjZbSjEYjSCnRarVBqZLxNBoNlbgahDqxUhVrCsMAlDJs2BAhSVKsrXVAQDA1NY2pdgtJrJJpjVzHyGQ6nY7ti4koWz26JvdCCKRZCgEUtOlutFXIrChvIQScK2mPSTYGUIjcA8XCWva9E35KCEdjf6yI9uRtLkkvFxMDgNFo5Ew8FNE2fTQ5A+44leUbZlxcMn+0z5Z5n913bJFgcpXR4+WoR1vdyI/PoHIVxMRjFfo3od3iCg7sfVNejTgeYl3or85RcMfJvf5GBmbuq+8HFXGvUKFChQonFJJRilqtBs4VKWPUQxynSmaSxGDMg+8zUMqQZRyZIEgSZaEopIDQ0eNetw9QhuFoAMFHEEJieWURnEssrawoCUuWQnCBWtRAEIWo15sglCJJYkuokpTjyPwCQJcgdRGnen0AnnFkQhVTCiMfHvNBfQaZcgziPigAynwEUQSPCyXHiVOkmUCScQyGIxAKUDAQSjEcxmg0m6CUotvrYcuWLVhb64FzAcYoTIEp48gSBIH2b++gI7h9L5cCjUYL9XodK2sdrCwvo95ooNlsYXVlFWmqotzt1hSSUEXkISUE9RCGkZMEqPTvWSaQphz1egMgDEkWo1FvACAYxUOEYR3dfh/DgVpNqNV9UMrQ6/eRxAm4FIhHMTIdbSaAldTESWJ8RizJG41GqIUhJCXI0hTQKwpCZjDVNIXgGI1i1Os1Raq4MBmTVrZjiJyQRmrDIIVAxjk8n4FIqSq6SmnJmEuosyxT2vuUa/m1mTwKMKoqyVLKdLmmXKBtXJH0WYFIgBGqrSulnZi61o/WN1yqVQTGKCCFiu4DkLoAkDmS0IWrhJSA4FZWBmpyKtR+thKtI/mgZfmRfh0u8QUgCnF0/VO6Cd/EriCof+qNwiaWMttfk2ROpJoMcSFUq4SpjUJdJ+UMpTsAlXisrodrA1om5Sp5WELqBFcBV0plTsj2A5PtOdW9Sex4mDETIh8Hd3sVca9QoUKFChU0GGM68q10zlIAnAuEoZKfSAll6+j56PfXrN+6a683GAzBpcBwOECSpFoCoyLmQkpkXEBIAhCKYTzCIB6BeUxHLyUIUc4nkgApF0hGcSGB0/M8+H6gHvYS4FIqkhb42Dq9Db21HqCTZD3PRxCG1o0lyzIMRzE4zxCFSuaSZBnqADxdwTSOEwAEXCiNfBwnGI5GkARgvocN0zOW7ISBspIMggC9QR/D0RCpHo/RaATP95EmqXatCXO7TSmRxqoYVeD7YJ6POE0R1SJNxigAiThOLFFRkx2pVzuUtWPGU6iqtRRSKuvIOBlBSgEyUttNQqpZtWDaK55rrT0hBEJP1tI0sTaFriwi45ldDXETjwUACAGipT1mjF3P/5Rn8HzPauehrxdFbs8oZV5VtxCJLSVRujkXzk76XnBWAJwVBGUrmBM+l/TmCdSiYIdqo+skrxYqtHbcMGVZOqZ5zR0/OL+PR7EnRKfdcyHmXGxabEHpUpD5kHybmgzkL9mxAwWIQ6x1zoDZSZFn9bc7vC5RduVBxic+n6jJ4iHNeRlN/ToLEuXVh3zlobiS4U6CKuJeoUKFChX+z4MyBiGlTUClhIJQVd20HqqkxjRJkfEElGVY665BSmA0GiJLM/vwHg4GSLLUyk5SHVHtD1W0XEXPc//y0WgE6qm/qbaVTOIE0FFYNznNEDDPC6zcBjrKF4Qh2u02spQjSVK7b61WQ6RXErI0Q5qlmqR5IJQgTVIMhgPb/7W1NRDKIKFIZxLHyARHmmUIahEgociv76HVaCDhGaampsC5QJoOQVkC3/O1PCUAF1x5zvu+IuxpqgipibYKCaElM5C54wsXAkIkypJSqOqZSaLkSMonP0OWZAjCwE6ehBCQQoIyCikkgtDLI716ZYRzDkbV68aZBlLY6DdBXpBICAEQYcfeECfjeGOCtIYku9pxE83OOIcX+GpypvenVOnikySFryciLsqEDZigbV9fmWLdgcoE2m17nEwLCMEtQZy0T5mMT5L9uJikMy+ea5EkW79GO1Lalx3K8RKOlKUcvV5Pq25XBQw1P0rEerLcZz1JUmki4kbinUnJAyXZeWQf+WcckxNa3Z/HQkXcK1SoUKHCCQXP8zCKle2iMIVbKIXgHMORSlIcxgl63S6G8ci6msRxrCqPxjG4E30XQiATHJlOOh30R+CcI6qrAkGG/KkofwbKKDKR5VaIoEpHHoa2KFAYhkiSBHEc68i7jzAMVYIoY1hdXbX7GtmG7/vIeAbf99Fstey+vV4Pi4uLSic/6INSVSwpCENQQrBx0yxAiY6gZ1haWQE6xLq7EK1DJ4Rg69attuppuz2FjRtnsbKygjCKkGUZev0eKCHwmIdarQYvVNH3JI4xGAzU5MZj4FxJOQhV+wZBgEA7wfhhACAnQx7zASlAIJHEync+iiJEYWD15gTQtpUZKKGoRXUkSQIBU0CLaBKtxjLTkicjXwEACV6wnTTXO4oirU3Oo6GmqqtxuHGlIIwxSK41ykTJLIRDyNzKuW4iqYuJJE0CXMtWXB26yTEQokjEze+u9aDyo1cTCkKKxZwM+bXnA4yR9vX650aJ3f6VJw/EJKBKVdBMEkd2IgFJAGM96errDcqTkrHJjh5Kirz4VFm7Lkm+vpG3oSYSefuAkc+McXwj8zIRfzlpkjBO6KUsGI4WVxL0e9Yj6Q9kUlAR9woVKlSocEJhpOUgfhiCEKVXHo1GigAxJYtY665hcXHRyi8OHDigiA9RRWyM/GFNu8VwweEFAaanp0Gg5DBhLbLEOggCMMYwjJVO26Ber2PQH6Lf7ytnE0LAfA9hGGo3FompqSnriT4cDjEajbC2tgbfC+B5PmZmZrB7925lrwiJxcVFLCwsWLkNAGzbtg0bNmxAmqbo9/tYW+thesMMarUawihCXUrUm030+30cPnwEa50uDh05rKwop6fQIsqu8f7774cEMDU1rSrPU4pet4v9+/ej1Wphenoa9VoNkLmGu1argUggDAK0p9rwggCjeIjAD1SlWcF1omgCShjSJLEyCAEttQl8SK6035RQFbX3PPR6Pfi+X/iXZbyQkGnIKKUUiSbjPqNKuqNJapqm4CJPCCSE2Mqs1qtdwySyBrrAlSFgka4om2UZIPJJAOccQRBApJktfOUmRBeKSJUi8IxpHbeUIJRA8Fxjz5iK7Gecww98GOI3KZpsEqEBaKceVZDLLXLlRraL1piTo+1m9UFtz7eZ/crReqKlN8X+aXGM1Gp1WZLfmPbNQRypiulVLoIp9mFSn80Yw+2bft09ZwCFqrnrTmSOEWkfGz+ziDJx1WD8/ZMSb4+FirhXqFChQoUTCiwIEccx1paWNVmmmJ6eQRanuP32W9Hr91U0Xkj0BgNdOCl3IUnSFJ6WwDQaDWyYnbNRRkoo4lj5i3vMs6R0dXU1J5ZJaqPoFARbNs+h011DFNXQXetidXUVVAI7t21XchtC0e330B8MEIYhtm3bhs2bN4NnAsvLK5hfWMCRhXlrD9lutzG3ZTOElFheXlZR61D7u/MMLPAxM7sR9953H6IoQqPZRBAqSU4cx9gwuxFho44DBw5gpdNBbzBArVbDxg0bsHXLFgRhDWvdLpZXVtFotdCs1SGEwMLiMg4cPAwhOMLAx9zcHFqNJrrdLmamplCLlPymHoXwqESaZphqNXW/CYbDPobDATjPUK/X4fkBuBTKH54SZEmKbkdZRrYaTbSmVZv9fh9RGFopCqNKokQptW4zSnbkQUqOZrOhkhiFQJalyLi6HoR6BfKqEkdTQCiZj7G0BNSkxNpgJgmEEMo9h2eQXOiINrGTgjAM7QTOQFWW5QVSWI6+m/5QJwoNOBpsvY2AgOoiUy7hNtF9kzsBGHkNL0T9c5KtjjuJtJdBKYGJSiupS5HguwWpzD65NEb1RBU5IirqLscj5NbXXqtgpPO3+3OdHjrRcgkp1cRMGjJc2rscmVc/iT7PcRBC8n6ssyoxFjmfoPfP91unsNRxXAsXFXGvUKFChQonFBYXF5GmqYqY+j663R7uuONOJXPRFU1VYilscSNCCIIwQBhFqpKpdl7pdDro9/sAYH3DPc/DYDAAZdQmM0ZRhEajgUajYat+GtImpUS9VkfgB2hubWJ2dhaHDx/G2toazjjjTERRhN6gj87amo2QdrtdRGEdMzMzaLVaSLSe3VRiXVtbg+f7aLfbIIRgeXkZMzMzmqwJtKemEdVqWFhaxGpnFRJArVbH3NwcNs3N4c79d+FRe8/D/JEjWFpehiTA/QcPoT8YodFsgBKqJilpigW+oHzgfR+j4Ui59YgQy8vLOHTgIKIowlqngygIISRHlinp0ezsrPY9p/A8FZk3kqBORye0BiGMlphRhqn2FEbDIZZXVtREphYhjmN0u11LpsMwRK/XQ7/ftxMkE1mXUq24aPdxUJrb75nJl4lAB0EAkXFkMivINky0nDFmZUMmOt7r9VCv1zVxz33Vjb2fSWgFxh1HKKU2qdWV1diKnoCtAJvbl0qbaEponiPhtm9+J0TJO4wr0rhEJ49dl2U27kTAtKci9rkMrNCSs/+4/l2RfKPrzgkphZQ8jzKbc3Cj9BK6qqnWuwuTcFo+dvHMytF/k69g3ztxdYFCyjyp2J1k5W1SCLJ+oaUCxPg+ph3T5/L7XOlMRdwrVKhQocL/SRiCF8cJut0ulpeXsby8bF1mkiRBlnFwKRHHMUKtvSZpBhBFVoSQaDTqmqxzZI7rDPM8eEGAMAzQbDbRbrfRaDSU5ltXGjUP4TAMHcLvq6goIWi1WlhbW0On01E661oNW7ZsAQB0Oh3UajV0Ol30+n1VSVW3uWHDBmzevBnM8zBKYiwsLNgJSZpmlnzEiaqCSilTCaBCIs0yLK+sIMky1Gp1hGEN9WYLoyRFxjnqjTaGvT4EIWjWG6AexXAUo9frQkiJqVYbfuAjICEIJLrdHiTnCMMQ3V4PI2+EqBaiUashSWP0+l3MzMyoVYg0J8ej0ch63TPGdGRbubcYbXmSJEiTxBLH1eVlDAIfrVYbcRiAZxz1KAKITnaUqkgS1cSb62JbEhJBoOQrptgTgFzO4mi+84Rhz14zV8NtKtCaa6rsRh2y7akiXzCafEfWUpZEuInKhJpwc5GQmigtoTqC7lh/u3IXt13hNGBWkdxjmf4SAhAiLUHPj4ex383xivrwycmk+T6mMJPersdFahemPEavo/FmNUDPLQgIQHT1WUfuAikgC1F9t495BF641W6J0rcL0x+iq+O60px1iLPUibRmX8BeKvObOmdn1UGC6GPy0tipg5fH2dx3BUnVUVAR9wo/FEzO4B7HzTffjCc96Uk/2s48AHzlK1/BjTfeiN/4jd/A9PT0Mfd/yUtego997GPo9Xo/+s5VqFDh+4LRB3fXulhcXMLKygrSJEGaZcgyYQmYeXwGQWjtD4E8oqn4AoWUGShjqGlHlVqthlarhSDwLXE3Wmjz0xRJ8n3fqSyqCRdjaLfbmJmZwR133KWi+4Ctllqr1dBoNCCE0jcjVmTL9JsQAuYxMJ472pifxg5wMBwpoup5qoiT9h/v9XoQkmB6Zlr9LiTCqAaPC/h+gDAIMYxjcClBpQAXSnud8Qy9QQ/NRhOB70NwgX6vD0YBf6jyBMIoRFQP0Ww2MYpVsm+WpaBEkfHhcFiIaroVZpXGn1pZitF5D/oqwj0aDjAaAoJzNBoNBEEA3wtthJtSqsgYoKvjSkgITcCLxNIQWkVqx6uJmv3yffJkUN/3bVQ+TTMdsVVkjGl9O9HE07WINDAEzejj3UgrIQSCl5JTVbhYecnzXEJjpT56JcESQIxruYswum737/HJhflZJuXlyYj7r4icXJv7Xm3OC0TlbRHtcS/078SSYSWfccZPy3HKWnypGXkedc8j3Izp4xKpIv6q8/bsjQORe24F+QqBTV4uj6UdCyPrgZq0mLbhjJXdPkFGU0XcKzzo+MAHPlD4+x/+4R9w0003jW0/66yzHsxuHRNf+cpXcNVVV+ElL3nJcRH3ChUq/O+HcVnpdfvo9wdI09QmUw6HI2RZnsQ3MzODMIxssqMpoMM1yTW64Xq9junpaUxPTyvd+4YNVkcspcRoNMJwOMTMzAwAWAJuqn1GUYQ4TuyDfjgcYnZ2Frt27cJgMMDK6ioOHjyIZrOJVqsFz/OwecsWzG7aZKu5zs/Po9Pp2ATSWr2G6elp8IyDMgqP+Uh1Iu5gMIAQAslARfONl3YYhti4YQP6wwEG/YHydPd8+L5ysjnrrLNw4MABxHEMkSTwfR8bGxvh+z66nTUkcYLA9+EzD0kSI4lHWOusodFooNVuwfc9UCkRhD7iOMb99x8AAFDqwWPMjmOr1UYU1ZCmCQaDITZvnkaz2cJgMLBkfGVlBYPBwLrnJIlaQTGJvP1+TxMzD1EYIgjVBAwAQABGWS4z0WQbKBJ0U2XWSGMIITY51UzCTHTeJOLGcawnJWqiFwTqHiGEQtX6yb27cwlPPjkwxJ1QCqknMu7kwPjIW8eVUhR9vci4K3/hnFvJDDErABPeI4Wa4Kj+G1cYYvvvknjX096gTNonkV/1e66XH5ejOOS21PYk5ONl2nJ/L+43eeWg2J4h7u6kKE/qNROdXNJT7r8+WlGqI4sTHfUz324mZmV70uNBRdwr/FDwohe9qPD3V7/6Vdx0001j278fmIeicQCoUKFChaPhwL33YTgcQofKbJS82+0iHsYQUtkxRmENw+EI/f4AWZpi48aNYIwp0ut5OP3007F9+3abZGjsG5NEWUr6fmA10I2GKgJEqZJULC8vY2Fhwcp2ms0mPN+H0EmQcRxjcXER09PT2LJlCyhjSLIUnU4HWZZhcXERQVhDrVZTiZyeh2azifn5eSux4ZyDgmBudg5pmmJtbQ1RFGLDhg2QUuK++++HlIlyxDFabQB33nknms2mIv2CI8k4CKXYvn07FubnsWXLFvA0w2g4VOdEKOq1JnZu34kjRw6j111DEHrYsHEa8XCkzpNnGAwGGI0GuP/+BNPT06CUotVq2e/u3nAADoLVbg8eZahFqnDUaDRCp7OGer2OMAxRr9dtvoDkGQa9PtrtNqIgxOrqKu7Zfzc2bdqEzZs3wQ98TYwE4tEAgEQY+VaKA6BAig2xNZIZnhZLz7tEPQiCgmQmCALrUGTyGkz0vlYLkaapdonhdpJkJgWGkJvkVdOmkMqr3vNUBD5LUrvq4HkemPNedxJgJnNGo04p4HnaFpJzqwkPfF9NhJzJgZV8aDIquLp36/W69cNXFVGLpF29Z5x8Grgk37QPoECAy6/bFRB7NLWXkAIU+STE9teRpChXGFfCkxXIuiuLyslzPjFXKyIMQZivwBgLVt/JmVDyFtXv4mqGtK44RqJkJoWqT+ba5BVUpSQghIGxfCJ5vJF2g3Fz0QoVfkS45pprcMEFF2Bubg5hGOLss8/G1VdfPbbf7t278YxnPAM33HADHv3oR6NWq+G9730vAOCee+7Bs571LDQaDczNzeE3f/M3ccMNN4AQgi984QuFdr72ta/hqU99KqamplCv1/HEJz4RX/7yl+3rV155JV772tcCAE4++WT7JXL33Xc/oPMy/f3CF75g+/uIRzzC9ufjH/84HvGIRyCKIuzduxff+MY3Cu//9re/jZe85CU45ZRTEEURtmzZgssuuwxLS0tjxzLHiKIIp556Kt773vfiyiuvnBiZ+OAHP4i9e/eiVqthw4YN+IVf+AXcd999D+jcKlR4qMJY+Ukh0Ftbwx379qHf7yMIAutQAikhM47Q87Fjxw5s3rwZW7duxWmnnYaHP/zh2LVrl/JfjyJMTU1h27ZtOOmkk/CIRzwC7XYbzWYTofYxb7Va2L59O04++WSce+65+Imf+Ak8+tGPxt69e7Fnzx6cfvrpOPvsPdizZw8e+chH4olPfCLOOOMM7Ny5Exs2bMDMzDS2bt2Ks88+G6eccgoe97jHYfu2bdY5xdgibty4ETt27MCZZ56J3bt3o9vtotvtolar4eyzz8bO7TsAIbG0tIR2q4XNm+Ywu2EjplpttBoNbJyZwcNOO10lwHbWQARQC0LwJMV9992H+++9D/vvuBMH7r8f8/PzWFxcRLfbxb59+/CNb34D8/Pz6PX7OHToEO677z6s6YTaXq+PleVlrK52EMeKfDabTfv9G4YhtmzZYqPWoXbBWVhYsARrZWUFnU4H8/Pz2L9/P5aWliCEwPz8PG677TYcPnxYyWZGI3zrW9/C9/Z9z+YuSKkSiSkIer2etf90o+smAu7KmjzP07KnIik3OvfRaGQlMlKq/AjjHmTuMdeKEdDJlU6E3yTkSikLEz9j52mSW/Nqur7NlzB01pyjORezMmTOy5BKAAVtvoFLKMtRbrctA+kK1JFHhpUbU07YJ1WJteOgj+NpuVZZdpNLjlLwLE9adS0sze9mMmUkQmYyYcZ+vUmDe13c4xoCrq5Fbidqz7e0cgB34oN8MuNGy92xLD+TJ61MrPfasVBF3Cs8aLj66quxZ88ePOtZz4LnefjUpz6FK664AkII/Oqv/mph3+9+97u49NJLcfnll+PlL385Hvawh6Hf7+OCCy7AoUOH8OpXvxpbtmzBtddei5tvvnnsWJ///OfxtKc9DXv37sUb3/hGUErtxOGWW27BYx7zGDz3uc/F9773PXz4wx/G2972NszOzgIANm3a9IDP7Y477sALX/hCXH755XjRi16Ev/iLv8Azn/lMvOc978HrX/96XHHFFQCAP/mTP8Ell1yC7373u/ZL4qabbsJdd92Fl770pdiyZQtuvfVW/M3f/A1uvfVWfPWrX7Uf6G984xt46lOfiq1bt+Kqq64C5xxvetObJvb3zW9+M97whjfgkksuwcte9jIsLCzgXe96F57whCfgG9/4RiULqnBCIx6OFEHSSY5JmiIMAuVDPrUBUzPTACEYxTGmpqexfdt2DLVXux8EWvbRVs4hWjLhPpCV7CXOo7ZaL885R5ImIITC830l4fB8+5Dv9/uQUlV0XVxZBgB4Xop6raaqm+o2680GKKXYedIunOoHkFIRcRXRV0Sec4EkTtCsN7G0tAxGKJYWlwCioqxzG2dBKUWv1wcoRX8wQBLH8MMUtEWRxkP0hjEYBTbMzqLZbIDLDLKu9PuCC/T7PcTxEK1mHVEU4ND99yOOE6XrhkRUi2zUvF6PkCQJOp0ONmzciPbUDMKojpXVNQz6fcRxXIhgU0pR17kC3W7XJqVmWYaNGzdidnYWo9EIy4sL6PV6oJRiYWEBi4uL2LVjB7I0xaDbx4HsPixFamUiqtcwHA6RaQJMdVVXkXF4AQMxFVDTTMlIoKLTRpZi3GnM76PRCICSPalkZ3UO5noaeZVxnTHtQAKZzjUIPGbJvoEhnrl1ZB6tNXJupfdW8griuN2Myz+EzunISSfRWm6gmHRbJosuAZ9EHN1Iey7RIVDGOMJG3g05LttDGkKa94HovACpC2YZ0q9ddbiptEqRZSlAiT4GtZMGE+mmWhojpAQMeSbKBcYozNV7TdRd2ZOqzxyzKxim/67UhhCi8yRKGn5RStIFIHieL0BLKzvuWMBpp3xNypONY4HIBxqjr1DhOPCqV70Kf/VXf1X4ohgOh2Nyl6c+9anYt28f7rzzTrtt9+7duOeee/DZz34WF198sd3+1re+Fb/927+NT37yk3j2s58NQNl+PepRj8Ltt99uE1+llHjYwx6GU045Bddff31BU7pnzx6cdtppuPHGGwEAf/EXf4HXvva12L9/P3bv3n3M85qUnGr6+5WvfAU/9VM/BQC48cYbcfHFF6NWq+H222/Hrl27AAB/8zd/g8svv7yQpDtpXD7ykY/g0ksvxRe/+EWcf/75AIBnPetZ+Nd//Vfs27cP27ZtA6AmDGeddZaNsABqVeLUU0/Fm970Jrz+9a+3bX7nO9/Box71KFx11VWF7RUqnGi47PHn2N8ppfCDAK32lNZ3b1KVPfXDPqrX4DHl9hJEEYIwsJHUIAiQaZkJACtfMATF+mbLfJnfJkpqsmXeY16zD2yqKneGYa0QcQWAqK62KVKgjhXHsfKFN8Q9E+CZ0uEfPHgQAEAYRb/fx2ikElOjKMKgP4AfhEizFIPhEENNNtMsxZHDR+AHPpptpTefX1iAxzw0GnWEoXJsGY1GyFIlpeisrmqSIpFqOUcQqMjzKSefrFYoGg3893//N7hOIjXfTcxxkzG+56agU7vRxMrKCqampiw53rhxIzZu3AgiFTHtdDqqEFaWIYljNbkQHI1GHc1mU0lrmg2EeiKROZaOJmIOnUQqhXKcsUQbaoXGrUBqrquRzPjaItSNVJv7y/M8xHFciAab86ZSWGJv3ufKcQCd+Ah1LGMpKIR24XGiw660whBYIbiNRLuafBVdZwWCXo4Eu8Sdc25tM11CayLPbjQ6P4eic40hpa60xZXLuM8p9/Nh7l3zHuvCRJnNLTDtmrFlzCSzFrXspmiV2eYS5TiOIaUAY7nnveqbGVedjAw1fTDvtTzGqWrrrgoAAJHjY5Cmqe6zsG1LYarqpoWovTnOy/70/TgWqoh7hQcNLjntdDpI0xRPfOITccMNN6DT6WBqasq+fvLJJxdIOwB89rOfxfbt2/GsZz3LbouiCC9/+cvx27/923bbN7/5Tezbtw+///u/PyY3ecpTnoIPfOAD9uH6w8LZZ59tSTsAPPaxjwUAXHDBBZa0u9vvuusuS9zdcRmNRuj1evjJn/xJAMB//dd/4fzzzwfnHJ/73OfwnOc8x5J2ADjttNPwtKc9DZ/61Kfsto9//OMQQuCSSy7B4uKi3b5lyxacfvrpuPnmmyviXuGERhSFVsoQBCGiWg2tdltrzaeQ8kzLKCSY74EShnqjjnqzmUdGDQkjebTRfTCbaDshxEZEDXFTD3SVBCeEAPP93PFE6gqSet8giLQGWcCDZ8mmlMrNhWe8kBhpSRMXEAKIahGYx9Dtdu33mulDlmV6xYAhikLUG3Ulu+n24Ac+ptttDEdD9NbWMOwPkIxGEJ4HSAGhPeMBiWG/DwmJWhSBMkUmszBEr9fVib9KAiKEQBioQk/D4RBpmmE0GoJAfc/1+/180qMJ1mg4RC0IsLbW0dVkeyoHYDQCoxTNRl1NXqSSnAS+j5XlJWRZhlargV63CykEPKZtOIWKZEvtsEIYA6PM6pmLFpACnses/ENdIgIhlGNMFIVQUevciUhFiimEkJbEuTaS5j5RJDhVlWD1aoKZ9LmyFyEEGGE2apsnRkoQIgFKwUjR4cbA6K7d6G4xqpvLT9ykzEmR3vWivW7Cptu+gfuaaVv9VJ8BNzQ8SarjSnyAoqSHUmplReX3FQtLlXT4gLV4NN75Rv5krF6zLL+WKvJf9FknpGgBaeQybrTcPS/zmvHadxOBy/9+UFTEvcKDhi9/+ct44xvfiH//93/HYDAovDaJuJdhIsnlL5jTTjut8Pe+ffsAAC9+8YvX7Uun07HuDz8MuOQcgD2XnTt3Tty+srJity0vL+Oqq67CRz7yEczPz4/1EwDm5+cxHA7HzhWYfP5SSpx++ukT++ou2VaocCJidpNyQYnCGnxfRVKZ76Fer0FIbqtecsHhU4otW7dAAmDMsw9sP/BtFJJopw0jozAJaeYRbIigK2VQhEJ5qAvtJEe0rZwUwlogAlqKwxgIVTIc62JC/ULkzkTyleREEY0wCtGemsLhw4exsrKCmTDEzMwMOp0OlpaWwHmG4VA5s0RRhMbGjQg8D6tra6qi69oaVtc6iEcjBL4inmkcIx4OIbRThseYqhqaZTYi22g0IKXAoN+H7/s4ePAgDh48CEopGs0WpqamwHmGtTXlMb+6ugohBDZu3IggCNButeB7So6yzJeQJDEWF+dBCIHv+0jiEe7efxdqNWX96DGCMAgQhCFOOmkXbrvtNmzeNItDhw6hu9YFQKxDjJQStVoN1PchuYq2JzzT0hmhJzMUhHiamEITOnU9FRHlACQYc6PjApR68H0PcZwgy3K3GnNtjCyGMYY4jtFsNmzCp5mQmZUVc88QAlCmJoe+5+uJGi1EYifp1ssSC5dU5tFgYs+x/H63nfJKwqS2i1p61+awWIjJTeAsy3Fcku+ScZPc6bYFIK+doD97huRzLvREWZ1beRXDgEoJT99ThBAkCbGTds4FKFUrKkqOQ0CpGmtQCi6EmR1pGdM4AXd/qnGkACHWGlK9BuRNFce1PCbHg4q4V3hQcOedd+IpT3kKzjzzTLz1rW/Fzp07EQQBPvOZz+Btb3vbWHb6D+IgY9r68z//c5x77rkT92k2m993+5NQrip3rO3uh/SSSy7BV77yFbz2ta/Fueeei2azCSEEnvrUpz4giygD86V3/fXXTzz+D/vcK1T434bZ2VmdHNlGvaYcWUwFzkwojTNjDDOtlqo2qiNrKkKZO44omYsTWdckjZWkA0CeBOcSG/M5N5VZld+3+nwaGYmJkgvrckEtETT7GtLh/nMJBOccu3btwszMDJaWlrC2toYNGzbgvPPOwz333IPDhw/bJFYhBHbt2oWTTjoJ3W4XS0tLaDaaiEcxljurlpwLKRH4HpqtFhhjVoJjdOq9Xhecc8zMzGjNPbfOO521rnbMmcLJJ5+MNE1x5x13FAj88uISQi1J6nY7ViazZcsWTE9Nw/c8fO9738O2bTtw2mmnQWQput01rK2tYe/eR2F+ft5OrJIkQWd1FbMbN2J+fh5pmlo3ICGE8o+HhO/X8mul9dnGA9/YdpqouJG/mECHIaS5bCVf3TDX3fM8O8kqy0d837evBUFQkJMo//X8evq+b6Uypu0yETbX3RRRKr9m+lsk+rmdY/k+clGIEDuJl5PgSmCM/MTIQyjNJ7TKgnXc3ce0waUYK47FSe4oY45hzjvPK8g16+beLEf2Te4E09fPXFNl65lCOc0QOwEw55BlmZqUm1Uwno+LuwIBqVZGiJSFiq1j4ynGSf/3E42viHuFBwWf+tSnEMcxrrvuukJ0elJi6Xo46aST8D//8z9jUYM77rijsN+pp54KAGi327jwwguP2ubxJoP8qLCysoJ//dd/xVVXXYU/+IM/sNvNqoHB3NwcoigaO1dg8vlLKXHyySfjjDPO+NF0vEKF/8Uw7kxGtyx1smCj0UCn28PMzAxqtTqoJnaFSLqNTAJBoB7wTEfDJaC82LRso0wSAEBAJcgZUAIbgc1ECkhFpuI00T7gBAyerVfT7XYtseCZgOf5jvwmf9j7gQ8hoaqXSomUdxEwDyft2g0hBBaXFnDPPfdgx44dOOWUU7CysoKlpSX0+32sra2h1+th8+bNiKIIrZayl9yybQvuuftuJXkJQ1BG0RsMcOTwIRBCrM3kcDjEcKD88X1NoEz1WCEEOp0OBoMBOqur+K+FBRCirBGnpqYAweH5Afr9PtJkhJnpaZyy+2T0+n1EoQ8pOFZXlxCGER796Efja1/7T3ieh73nPQq7d5+EhYUFfPvb38Y555yDz914kyLbvrJgXF5ZwtlnnoXbb78dySjG3NwcNmzcoMaOEmURSo0lorouLsk2ji6MMWu16CZe+r5vI/pBEBYmb8aO0404Q0daOZeQMrGvmfE1EzfheKaPRgPrcGOKSrlFloqR3nG7RvN3WdKSE06TADqudS+71Lgw+vn82CaKbBJNFfnNsgyDgUrCDsPQeZ+SpxgLTTeiDkDJnfwAhBJQECRCTYBNoMmsPJlxsUXU9Lmaz7CSxFA7Xvb66eO5q1eEENTrdcTxCIDU55Cfv0141WMjAVUZdwJUpde8+BNkPnGw4wq3hoAqyGSOU5bfHA2VHWSFBwWTLKM6nQ6uueaa427j4osvxoEDB3DdddfZbaPRCO973/sK++3duxennnoq/uIv/mJihdOFhQX7e6PRAACsrq4edz9+mFjPSuvtb3/72H4XXnghPvnJT9pENECR9uuvv76w73Of+1wwxnDVVVdNnPlPspmsUOFEQqvVgm9Ju6o6GQQBRmmCDRs2olav5YmKOiJnEvLKS+Cu9Zy7zRAHC0N2hLKYhJAgEkjSFBQ6Csml8qYGgcg4fE9p34lUy/AQEjxLlQsKZfA8BikzJMnIEhzP85S9YhCgFkXYvGUOkR8oS0fObWSdUopNmzYhTVMVKfd9bJqdxe5dO/Gocx6J0089BVJw1KMQu0/ahYfvORvTrSZO2b0bp568G9PtNtqNBs445RScecbpIFKg21nF2uoK4uEAjAA+o1hdXgJPYvAkRjoaQqQp6lGtsNqXpqnt16DfByEEs7Oz2LhxIzgX6jtNSgyHikCZarR33HEH5uZm4fsM/3Prd3DHHXeAUnW97r77bszNzSnSwwXq9TrSNMVdd92F2dlZSCnR7a6h31ee8clwgH6/D5FxVeVSSkvCKaXW9tNEaM1PQ6qyLEOSJHY1WEWUqa1eaoh9o9GwbQWB8lA3kzxDNKmTqEsphcc8VTlU5y2YfnHOkRpy78hHyqsvZntOXPME6rIdpr5ZYQoslS0N3f3colQumTWTHfN3Ll/hdsXArHaY2gcmSm4mQ4ZA+76PKIrshLDf61sLTgNz7qYasalt0G630Wq17CSo1+vZlSG3QJaUyslJSGn17ua8siy10jmpE6HdfBVTc2E4HCLNVBSeCwmh/3Gee79LG3Eft3tkjIEyWpD7qOs22SLyaKgi7hUeFFx00UUIggDPfOYzcfnll6PX6+F973sf5ubmcOjQoeNq4/LLL8e73/1uXHrppXj1q1+NrVu34kMf+pDWiRaz/P/2b/8WT3va07Bnzx689KUvxfbt23HgwAHcfPPNaLfbNplz7969AIDf+73fwy/8wi/A930885nPtIT+R412u40nPOEJ+LM/+zO7vHvjjTdi//79Y/teeeWVuPHGG/G4xz0Or3zlK8E5x7vf/W48/OEPxze/+U2736mnnoo/+qM/wu/+7u/i7rvvxs/93M+h1Wph//79+MQnPoFXvOIVeM1rXvOgnF+FCj8OBGEISQAJAsIYPKoekEEQAATgUtnJwT6gKTLBx9pRD3wOKWGX0c3SODXPXKls7ggIKFP6Vi4EiBSghKpoKleVTYnysIMUqrgMg/q+yt02CHxKASGQxiP1gCdqCZ9RAsEzSKZWBhSBSiEJIHiGWrOJLEvhewGCwAcXAoHvY3V1RSXDUgLqMVDqIUtSTLea8KkqdMOIQBB42DS7AY16iCzjmGo3MBqNMBrF2DK7ATOtRynPdu3O0ekoXbzkGQCJeDRElqpEwiiqw6MEfhgi0JptIz2Iswy9wRCSENTrNTTaTSSjIbjM0Kg3kKUcC/OLCHwfmzdvwdLiIvq9rnaBySClkpqsrq5i29ZtWFldQZqlAFHjv7A4jzBUUpMsS5EkqrAQpVRJJUDUJAmKfMcj5eolBYfQzh/C2EPqokhSqogwhABPM4S+D0KYcoAhEp5HkSSp1r4PQYh2TNH5FIIXrQWlEJC6eFDuYqImbpQQeMwD4ERhbeQ8J9wAbPRcTQbU6+q8oF8fl8MUixmp9yj7SIlMZDDyLJUzIODp81fFjgyxJHpbpvNCimTVEOk8Mi8siU6SxFYuFkKR9ThOEIS+HQ/VRgAutT+7PV/1z3WXMcfwfV8lIxNgGMfqWjMGSIkwDFShKynBGNVJyhkoI+BcQvC8QJSUUk/kPRDCQJlUNqkq0xkgAkQnLOvpjZI1UT1Guo9mIl9YpZBwfhfq/pFSXX93eI+BirhXeFDwsIc9DB/72Mfw+7//+3jNa16DLVu24JWvfCU2bdqEyy677LjaaDab+PznP49f+7Vfwzve8Q40m0388i//Mn76p38az3ve8yyBB4AnPelJ+Pd//3f84R/+Id797nej1+thy5YteOxjH4vLL7/c7vcTP/ET+MM//EO85z3vwWc/+1kIIbB///4HjbgDwLXXXotf+7Vfs/aZF110Ea6//vqCewygJhnXX389XvOa1+ANb3gDdu7ciTe96U247bbbcPvttxf2/Z3f+R2cccYZeNvb3oarrroKgEqUveiiiwquPBUqnIhgHoMEUWSVMTBdJMdnTHEtopa8iV7mn5QwZx66QigXGCIBSqiWzDiuVCbSRpSsQSteYEgWgUp89FmgpROKuDPPQ5YqDS0R0hIm3/ORmSI3goJ6Hhij4FIizVIMhxnCMIL1q5aA73uIogC9HsCYSl410Vzf95QfuVSWjIwCCc8QBD4atUjLAXRUsNVA6DMIKZClGfqDAbprawiCAGy6jdkNM8h4hngUY21tCsvLywiCwGrcRaYSP4f9HsJaBEgCQSWgixf1+j0wr6atKQeqr2GAQBdj8piPKAgxGo2w0l3BhpkNCMMAg0EftVoNaap84nfs2IFbb70VO3fuRLPVwnCojj8cDuH7HoajIUajkU74FOBZCo9RNZHT94jUiawESkbBs1xTDikhdISYmXwFrbc2HvHKQlBX5KQ561KkMq/Gau4rT5NIoxmnlIBnikhKCEiRF1VSLjhFFmfkJua+0q3DkE3zusNzC5H2ssylHN1V93pO6qGjx2ryANsfV+5j8jbciL0rPStWr6XaeSjXwpvVICEEqKfO3ciGRnEMzvVKmL5ubnDOPabJAwHVXvdZhowLMKjPeqaJviACgJLDZVmqckco1RMgqd1mMr0SYHIEKAhl6roRAsp8gEs7xqovBFzr16mZxKCI8rhL/Zl3dz5e4W7l417hIY+3v/3t+M3f/E3cf//92L59+4+7Ow86fu7nfg633nrrmC6+QoX/q/jEW/8AhACUqsqYjCnfdkBr0G0UFWC+IgaeJpeuRtkmIkoBFbR2KiOCWN2sIjnEatONPEdCk0LOEdVquZ4agB8ESs9eSqoLwxBxmthJg+/7iuRnGYZJjNEoQRRFqNXqCIMIvu/bcvWHD8+DeR6CQG2TQsL3lVUkJQSB54EQiXg4AqAiyH7ggxpJQBqDc6EdUUZIEkW8emtd9AY9bJjeoMdRghKKAwcPYHllGWudNaysrkIIiTCMML+wiA2bZiFztQM4F+gNemg2p7C6tgLBOYLAR7PZQK1WU0RbUuzYvgOccxzWK7FnnX0m5uePYG5uM4gm2Oecey5uvOEGnHnmmTqJdITBYABCgNNPOw1pmmJ5eRnT01PYuWOnKqAUhUjSFEEQglAlkRgOh2i32wW5i8knMMmWSt7BIDWps8nEQmpSRyCJtFpuEwl2iWwQBGrlwTikaOKZxKm6L7IUmZ5omUJKaRYXiKmiaiYKbyLEKOyT70sK96/7WjmB1YBSqu5zlJxOpPqsmGJJ5v43VpNGbqLGw0T0lezEkHLGPPh+gJWVFV1FNoIQHHGsagE0Gg0d7ddyHM4xHI2QJCNFrkFsYqny7m+CczXpNnSXUoqMKzmTMLIYooqRJYlKQKbaAlTqCUoYqjwFnilL0yzLMBwO9TWLCrIWIYSyMKUUWZJAGO985ml7T64mGDS/LpIbmZOeYAkBITJwvXIjJbdSLyGUZ/6v/OUHj/n9VkXcKzykUC5WNBqN8N73vhenn376/wnSXj7/ffv24TOf+cxRrS8rVPi/h9w/2uhbze8ERMkUCMA8qsOTBFmSWmmKELlPe6HQiibsJjIJnTxICAElAE8TcFmMTFJKIaCqopo+gBCILEM8HIJEkbIupHnlUMkFJCXwPB8Z50i0Bp+B2M9/lmaAjK3P9WAwgB/48Hzfkv1er4d2exrNZgsQWqoyGkBwAT9gEBnHYNC3HuNcKH/xUTICJRS+RxGPEsxMtTA93cLSwiKILl4jJLBlyxw2bpwBYwy33/ZdrK52tObYx+Ej89ixYxfq9Tq63S4OHTqEmZlp8Eyi1awjGanxEBlHGseYajVRC2pYXDgCISTq9TpWV1dxz333KgvJKLRJm9/d9z3Mbp7DHXfegTNOPwO1Wl3r41W+0q5du8C5cg6KkxiEEoRRCCEF0iyx0Vqzsmo8wc3v5voZopulmfV6D8MQURTZPIc0yxBGEZrNJhZ0Iq4p2CSEsMWw3CRKo4WOkxE8n6n2s8yxHs2LDeXIo+smedr00+2vkayUybos3ZfmXjSvue45ACzhNNTefCak5E6CaGYnMWbS4/sh1tbW0O/3wTlHs9lEq9XSEyuV23DfffchyzI0m03UahFGIzWB6nQ64JwjDEPMbtiIbrdTiLJTStU9Cl5YFVPHJsgyAUZVfN4jatKS6M8dAASeDyE4Uj1BMTr7ZDQEJQS+56FWq9lCTUCenOx7HiA5kpGSsKnvDoDzFJAcDDqJmBGAaOKudfBG3qSuO4UqwQo1wQKBJGpFR0yQ601CRdwrPKTw3Oc+F7t27cK5556LTqeDD37wg7j99tvxoQ996MfdtQcFp5xyCl7ykpfglFNOwT333IOrr74aQRDgda973Y+7axUq/K9BMfooITnXUXZpI5oCuRMH00SGOqSFAuCZJju6mBJ1pBYuwQFyRw4KaG0uIAVBko7gscAm9Zl9KbTtrZS6IimxEoLRSEUaqSYOcRIjTVM0mk20mw0cWVhAEEbwfdVuvV7HkSNHAMqQdDqWlA4GA6wsLYMxVcgo8H0Mh330uz1kWYbAV9H5MAwhIcFYgFajgX6/r5JvMwnqq6RXAom52U0YxUNwntloNKAKKz38rIdhtbOK++8/gNNP3o2Z6TYOHDiEw4fuh+d5mN04A8/3UZuuYXl5GTtO2ow0y7C0vIyTd+3CfffdByKkLjJFkaaqkuzS0pIllzt37sSWLVuwf/9+bNu2DQuHj9hk/eFwiKmpKSwtLWHbtm2Ynp5Gmqbo9XoghGB+fh5eoCY1RhsdRar4VRAE9t4xenxj2agi7MwS9iRJsLy8rEmqD1+vliwvL+duQDr5Mk1VVJ9SikZUK5DNwWCA6elpvXoDW1HT3pM68p9HyAFD3I+GSfKYSa+78jDdcuH1ovuJLJyb8VWP40R7oOfVTk3+QxAE1ip037599n75zGc+g3a7jW3btiGKIjvGa0aSpSc2vV5PTUZ1teAsyzAajTAY9lTOAmGo1xs2ydTYbZqxK/ZTVbVdXl4G8yjCUNmQDodDiExNFKQQiJMEca+nVwVqhUkcFwKMFCu+SiHURF5PEMzniAs92TcrCCVHKKBs0/nACjNVxL3CQwoXX3wx/vZv/xYf+tCHwDnH2WefjY985CN4wQte8OPu2oOCpz71qfjwhz+Mw4cPIwxD/NRP/RT++I//eN1iSxUq/J+EJiVC5hHD3ONE6Kik0hWDEGRZDD9QxXoIoSoRNEuVlyNU0SRKCCgkILldJgfJde4cagIgpISEflALJXlAoDzijb0cJRSCUpVAy4UmzR6I4IiHSned8QRSCoRRDY1mHZwLrHY6EGIVtShELaqBSI7O6gqWVxbRbDRBqYd6FKoEO87BGMGWndvR7faQxCOMhkMwqnzuCVWrD1mWgqcpeJZBCI6VpWXU6jVMtdvwGIXIMhw+ckQl4QoOpiO/PB4hGymXjnrgK3LrbUDN97G0tITNszPYuW0b1ta6mF9YRKezhk2bN6PX62HH9m1a006xZfMmLC7MK0tHKSFEpqUZFGeccRru2H8XAODgwYPwPA9TU1OWNE9tmNFyJOUKk2UZglYD9957L04++WQQQtDt9rB1awtLS0vwfB+DXh+UUUR65cJGwJ2IuHFEcR1T0jRFkiSKhDcayASHgNJPM1KyEATs+43zjYmi84yDZ5mN2g8GA0gpwPT55+JopziRUMWgyrBR3IJ+Wqe6OufkRtld+0tz/lb/DlkoJiUlQAmzTiuuy06/34fvh2rFR9tA9vt9LC+tYGZmBlPTirSPRjH8IESapvjP/++rOOOMM7Br1y5IKTG/uIDhcIh6vY5ms4k4TbAyv4LFxUUkSYKNMzOo1xs4cOB+UEowPT2NVnPKns9wqBKBGfOQZcoLXggOPhzBGQk76Wi32+BcTy5W1xCPhnbSpiYWASSUjGk4HNqVGHNPACpxGSbSr/9JyQGiPvdCSijOrr+D9LXMJ0J6lQNEHUtKCElUnupxqtwrjXuFChUqVDih8M9/qWoiuBpVaiPuxhNd+61LVRjFEBhCiHZ/UdUsGWPgJqlQy1woIaCMAEJV6xScgxIK5jMlufEUOYcEMpEpJxeuJDCMUni+jzAIkGZKIgFKlV87VZFCIQVW19YwPTWj5DiMYXp6Gsurq6A62uf5iizHcQLKGDZtnkOaZqCEgguJfr8HQiiSOEaWJYjCCIwSDAZ9zExPQ+jkTOUMwxH4HnzPw+LCAkCkdmCBJjojNJtN9Lo9AAI8yzAaKpkHBOAFHjRDAYfAysoKuJQIggijJEGns4aV1Q6Y5ylNsFAWiVICcRIjS1MwL8BgMEQYKUKdJKowjoTESNsjzs3N4aSTTgKlFP1+H/V6HXfffTdExtFutTAajVCvK23ymQ97GLIsw9raGnbv3q0jtkNIKVGr19GealuJkiGrBq423Hi+GzJsrAQ5cpmJWS0xkWFAEcEwDAuRX7WKkYER7eUeBFoHnuvFpUlMJnkCqhC8RM7zZNiybaK5r93+u5aRZSmQ+R0ApNao5zbFirgbom9IvxACvV4PrdaUSjBNYgwGAyRJgqn2tLpXl5fR6XQwGo2QJKp67tatW1Br1iEybhNGPcrQmp7CkUOHcd9994JnHPVGA/V6DZ3VDoaDAbIsRRAEaLWamJnZgCgKEUU1JQvzdOLzoG/HwaxcCe1ElMYqd8P3PXu+HmPo9bq2foL5rDPqIeWJKrYE9d2grq+W6vAMXEvXPM/TCeJK/6609epeUePH7YpfLkvKV1HMvcE5V5aSkPi1t37gmN9vVcS9QoUKFSqcUCi7aJilbfNT6CVuQpW7AwEgBFfRM+UXqYoxaX91CRUJJYSohzk3unknaTATIFRCigxSUEgitWOJhMhS5TYBCSk4eCqREaXvVjIJtU0Q5WASBAEglDyFEmUfOOj3EOrIYZqmeaJclqLmMWVVmKXIJCC4BISA5zOMBNdSIJV8l6YJBn1V32I0GulKsADngOQZGFW2iiJT2vosSyC4srQkUJMXCsD3VaEbHnPwLAXRrii+R5WGPcsACdSjABQteIwgjlNFkDKl1ZcAGJUYqcFFu9UEocySOkqZnWiFUQRKKDqrHWzbtg3LS0vYtmUrGvU6hoOhlUuYpFIVjSU2qh2GITodpcH3GAPRhJgW3FpytxCX2BqU7ylbJ0BH5lV/pSZhKhnSJPhKmRNrE+WPkwTCiZ0SQpS9p14pItrtR92X+v1aMgPHctDtr1lNgpZ3SWNX6iScFiYlLrSDDqS6z20BIieptaCdlxJJmmCts4aMZ4iiGur1Bvr9AVY7a+jrIl08yyAh0Wi20B30kKXK0SWq1UBBsf/uuzF/eB697prOCVHR/aXlVSwtzmPT7CY0GgEY8yCEBNf+6ZlIMByqGgeJJvcmD8yQ94wL9AcDcC51wno+DmrCSJGlakWDUApGGEAlKJiygRRqZcpUZ6UUGCWJmqgzVY3Vo2qylGXc5tGocSp740+qUquTjaVYt7hTGRVxr1ChQoUKJxSMDtUlJ1II5Sqh/bgFFGGGtqeTQgCGiHGu9iVEeZNTCs9j8KinZQEJ0jQBpSrqxghBKjJIrjyxRZZCEh3RJxI84/D9AKDQhXw40iQGJQRRVAMXXCVNSgnP89GoR6jXImRpilYUgTKG+YUFTE3PaLtAgigMIAEMB30QSCwtzOtCMICVWUCgHinnjEG/j0G/jzRLkMUJGM21y5RSpEmCbreDVr2BRqOOJE4QAyBEIuExhoOeLlykEgD9KALPEggCSOskojyxQ8+DxyjSlAOEgEUhGAFEk6DX66HRqIExDxISvqfGeDAaYsuWbRgOY4iRQBj4aLWn0Ol04HsMrUZDacN7PTCiHHKyNMXGmQ3oel0kiXLbIRCYarcRxzGCIECj0dDe4UoisXHjRvi+B8E5eJpqS1BdDtcSqyIhh426Oy4uOkkXyKt/KlLuQ0DZEY5GCRTDpohjtWrg6ZUdU4QJgHZM0YRSNWPlWdBEUMm/REFMITGeiJrbQ7ouMsppxl1VmGgLafdRCdyCSxBWjNy7RaSGoyHWul0MBgM0Gk1smNmIJElx7733QhBlU848H0EYokGbmF9cQG8wwPTUFJjnI804up1V/Md//ifCoIZNsxshhMTKagfDYR8Zl5CSoN5oYGpmAxqNOhhlSHmGYWcNw3iEeDQCJNCaaiMIa+j1BxgMR2DaylNKVdiLQFmDEgLESYKV5RWEvo9Gqw4piPbwV1KmqBYh8EMkaWwj7pQqB5laPUSSqGRlSnVRqChAFifW7pMA8Ch1lHRmrIvfU7nUSVh53fGgIu4VKlSoUOGEglu10022o1S7yEhN3nX0Mo6VPCBNUpjIGyTAfE8v68dICUHmefBD33p/C54h4ZmV5CTxEASKGJhKmoQQFdnOUv0+CkoAkaXIALB6Q0fzlFuH1FITz/Nw8MD96E9NY2bDBogsw7337Ee9XgchBGudDjw/QKNRR5alWF1VkcZ2uw3KGNY6HfhehG63j5mZKczMTKFeCzHQEpNuZwVTU1Na46sKKKWpqnC5tLSoyKgU8DyGmZkpDIZ9ZEmKei0CpQTxcIQ4VX7wgLJkzFIOz2MAAXiWwWceuJCgVCIM1AQh8KeQcmXLqJxVGPxNDPOLSwDn2DA9hVGSYG1tDWkSY9vWLfjv79wKjzFs3LgR7akppEmCVquJxcVFTcR9LCwswNPRU0II4jgG01abhBD8z//cij179qDZbFpZlEliVFFSagkaULJEhHrdIMsyUOIBWmJj9N+cJ2oip+8Txhji4ciuGrhtGocaKZUsiTiFhQghdmIlDRksRMj1yo+RcDmE3IU5DiHFip1uJVY3SdVIhszfbmXYMAwRx7HV+g+HQ3S6PSwtLWHnzl2Y3TgLxhh6PVUZd3V1BUEQIAxDCCHR6/Wxbcd2NKdnEI9GOHj4CA4cPIhDBw7grD17wIiH/fvvBKMM0zMzCGsR/ufW2/HkJz3B2jbGKQfAcfjwQRw4cAjTM1OY27wZGzZsRBj6qNUb2FE7Cd/73vcwPz+P4XAIxhim2y0EQQTfVzURMi5BPQ9LnQ4G+rNqVigIIRilGaJITcaGw6GSAaUxakGIWi1Eq9G0Y5lxleQcJzFEmoESVSxNUgbmOYGDY6nSpf3fMXHcxH3XqWc4WceFQl4AVCU6nQmg/G3VMOR9GlvOmZDZbDRYUBWuiIRNMnLbce2Biks4UMlCzj6qBgfNPwC6BMN6mdUGkwbbuggoQ197fsSuWsl131tuowxJABAGswRGdEUttw1Kqb62+QzYnI+ZqZvMdLu/1EUUKPTDSNo2qDt3J0pSR/RASiXfVO0QPXWGXurVWR+FaJbpp8wfmkQv+ZXHmoJidrqJXTumMT0Vod6swQ88pCJBZ3WI5eUhup0B6rUGPOaBagunmZkatm+bw9RUA/PzhyCyEU7atRUzUy00ohp8RsAYIPgAg84RjHqrSIcxVpa7OHRgCZ2uQCIImEexefMmzG7aiGarhZRLdHopFhdW0O11sG3XFjx670+o6BkYVnsD3Pm9e7Fw/2G0pyIMZYokyQBJsLY2xJHDS1hdXUOWJJCSY+funej11kAJRTxSUZ5Go4at2zfhpFO2Y27LJmyY2wwJjsBjCIIQa0tHkHGBrTvOxMyGjQBVkbvRoAeeZhAcuOe+O7GyuoruYIB44OGUk87CqWeehHrLw6C7huFaF2AeuORYXV7G2vI80tEQd373Ltx5z0EcWVzDYKC+pCKfIfB99YAcDDEYjpSnNaPwfE/bgLFcz0sphMzsg8XoPBllNhhFhITPKDgE0iTRy+cc1GMIowAeI/AoQxR66kHuM0Q+g+8rDS+XDMQLEEZ1EC8AmA/mBUgSjm5viGHMEWeApBSUUFUKXAqdNKhT5rTNn/R0YqIAmPZa5vk3mHowgoBK5c8MqSQJhGpfZlmMSLluIOVlY0viBAcn+rNHAEKYkiw49z70/oWl6sJnSH+eoSJA9pj6uBJC+R0LVXlTJbOpzz5hgCQETH9eJQgkVRphCgJqvk+dz7QksAmYjFBbCh5UglCCr3/xCxO/r/63w4yxSeqjlCL0mErE5FzJQUgexcw4V1p0XfGSQEXNFuYPo1Grg0ulTSdSYBQPkYzUZ9oUgkmF8j73A/VI5VkKSVXlTcY8tFtNrK6uwmcepBMdzQRHp7OC1lQbvV4X/X4fmzbNYardwpH5eWRZiij0sWG6jSjwcNLunRiNRuj2emDMA/N8jJIYBEA9iqykxvM8BDoa3GzUcOTQYYxGQ1VkCAJd30ctCnDk8EFLQIbDoXJCGQ1t/8IgQBgGWF5eBhcZfMrQ6/WUxAQEMxum0O2qaLfvefAZtT7azKdIkxggulqpJjRKjuBBCq4imM2mSgScasMLAtT1agOVAvfddwDbtmzFls1zkEKi3+thOByg3+yh2Wyg1+0gCpUrzvRUC8vLyzppcYAtmzej2WhCCKFIPfPyz5h+tiVJYuU1REhV3ZYQcKlWEJh2A1JQ3y0eU3KlOE2sHtw8B+vNhi0+BCiC7wW+/d6Mogj1eh2AcqEJPd9q7KVU95CpOip4am9mQoiN6vu6aisXmXb7gfrMa+lK4bvJynlyByRXl58XUTI6/9wC1Xz/KWtEiW63iyAIkCQplldXsby8jHZrCu3WFKbaUxgMBti/fz/uuude9XkLamq1I1aJrc12C4eOLGB1rYOV5WUkSYpGs4EnPPkC9Pp9fP0//j/s3LkDvu9jZWUFhw8fwjnn7cVgGGMwjG2/ut0ujswfwmmnnoENsxvg+T66/QHuvX8Zt932XSwsLKDdbmP79u2Y2bgJCwsLOHj4CPq9ISRyTbkQAq1WC5vDCELLbKSQWFvrYDgcKr3+1JQd+zSN0e8N1DWgDLV6DWEYFPItPMbAiLGi5chGUhVDy+KCR7+5/yhV0h0hJvPQ9XDcxF2ah5m+kexyjvmiN0s0dlkSWC8LeuLfRB/DbNckcpIua9J7Fdkk+gvCWC6pJSI3y1v1ajJpd/8uk3CXoFJCLbk15NqSeKd/6xF4CYcUa9IPCUiq9WuaSJjBkFJFgIQe78L5G4JNnLEoDbsaQzPB0ASfqrLPRBKtq1J6T6J1nHpxzbZhSII7yZqsk3MnR/pc7BxKfUF4lKLVrCEIfRBG4AcB4jRFUKsjyQZYXFmDR30kSYYUKYKIo92uYdvWjQgCikOHDmA46GCqVUctDEAhADlCLWwjS3oY9BaQJT1kwz4WDyzhwIFlLK/0EdTq2LVrFtu2z2Ljxg2otVsIG3OIU4a77jqE0GM4skiwNN/B/ffci+27TgLzAkzPhDj1NB9E+DiyOI84y0DAQQkQBAGm220M+wPwZARCgNDzMSJA6DFErQBJFGB6Qws7dmyG76nJWRb3kcQ98CBAQj3Ewz5mt+xAo1VDmg1BqEQ86iEeqgSzg/feh/vuO4AoagBS4rzHPgpbNm9Dxoe45957EQ+HCD2V7Dbo97G0soJ777kHd3zvbtx/77yt0De7aSNmptqQXKI3GCLDEP4oQ01VggdjFH4tBKVeTmgZAecCaUaV3tdMYDkHkargCggALmwRkanmFAiANE0wjPtIUoE4EQgCgjhJdSVJiihgCH2tNYYq8uEFfRDPQxjWUW80IAkFoKsRCoALCk6U7ld9jggIMZ8XmyGnvxyVNRcBgaDF6ntST0q4LVNN7HtAnIQwCSV5KH2+7cRYT4atY4D+3DAdyTD6VFN905BwmyymAwHQ35kE6nc1Hno/SsCJKt4hiVQTJmjLNkgQyUwMTmm0iVnd1xpV86UtVHQP+ntbj4geS9NLpWFmcnKQ4aEARU64noCqBDPBAAkOSA4hikSGSOUOor6jFBEbZhkgpLWSA2OghMJjDGujAdI0thFTIYSq3EykrQbp+yrianTVUkqkaQJfk7XhcAgvDBQpWltDr9dDr9/HcDhEqzWlCUEPR44csdc5O8IxvWEGHmPq7zSGR4Dtu3bhyOICRqMEq6sdpJqQLi4tYtvWbch4iloUgCBAv7eGQb8LHjP0+wNQSlCrN9BqtdDv99Gq17Bp0yY0mw3EoyEOHjyIKAoBEoJCYjQcqgkRAdbW1nRCaF2542jpjZQCg+EAnh/ogJH6DoGe3INrTThTEpVaFKDXo/AZBRUchDK0Gw1s37YVo2Efp550EhYXFwFKMLNhRn3nQIKnalXA9xiaOvI+f/iw8u6WsHaQy8vL2LZ1q5pQOUWGjNTFwEzQzWTWfeaZiTSk4hTUywm6sY80SZuU5jIa41oyOzuLJEnQ7a5BFRFqqCI8etInpVolAKBsEikwGg6RxDGIFDpybRJXZYGAqm4V/drdn+oezS1LDWyBMV0lNs2U77wJULjcpa3lR8sryzh46DCmpqYgpcT27dtx5MgR3Hfgfhw6fBiEMJx22mlYXVmz5+MHPpIkQa1ew11378dopHTp8XKMb3/7VmzYMIMtW7dieWUFmbZn3PPwRyIKQ+vKc/jQIRxZWEQQBNi6fSeOLCzivsMHdRXfLhYW59GstzC7aU5bTdYwGA6wsrqGfn8NjHg6UZwiCiNMtRoIghDDUYJev28tHNMkQ3u6BSoo+rFKqh0NBzooShCGPkSWoTaMEAYBGFUTcDWVlfAJEHgUYeAj1G46ALF1ANSYi/y7XYMxZu0sj4XjJ+4u+STulz5s5NcyNAeToutlUmwaJVIlZHBMej0vc1vulzo+KRydEPdDN67rIg7xdI+1Ltl232f+1rNcQp2IdGlyUR6DwuoBMasXJCe3RG+EateURzavSx0tMMlSQB51h7kRiBg7tlkQMVM983/pVPdzJwqgsM4K5mxc0mMGuTBuDqmzkyNzXYkpksBQD0O0mpHyEA5DJFwgEwQhfCSpAAhFkqbgcYKZmSlMTzcwOzeFjI8wf98BCJ5iuhlhU7uNeugj8BjqYQ1UZhj0FpCsLWOwuoy1xWUsHekgSwW2bd6ATVtmMbWxgQ0bp+CHHrJkAIIV1FpbsHv3SVg8eBgCFHffcwj37D+IsNbElm0ngRFgarqBh+05BcH9NRw6dATzB+8DBAfPJIb9GKHnIaHqWjBIBIygUQtAqAcuAszMNMBFjDBsIwg8DHod9JeXwChBa8MMWq0pNGotVfocHDxJsDKvznVpZRn33X0/Wq0ZCEiceuoZmGrVsDC/H/cf2A9CfVAa4P5OB4NOD8tLHRw4tIDVlR7CMMLpZz4MnAsQqSKNyShFOuIqIiw4wiBQyTxMRQfBKILAR5ak6kEHDuGpUumSc0WWJcBB4FNfaTYZwAIPKSVIM45RkqBWqyH06qCMoT8aIElScB6jHoVqIpBmEMIDJSHCkMHz1GQvTRLIjGsf5xG8IASoD48RZEJCplxVv1Td0PeaEwAwk149sdY3vr3HCdcknQKCSP05M8vOEoSN+xsbH+/yZ5y632lELbMbb18T5cq/O6j1CzcQehVQBQRUf4UQYITZz506HwlJ9LcsIWCU6e8J8zoBlwJST0CoduMgUBMFOykg5T7pUdSRZ6ON1U0+ZOFpKzsBob9DlfWj5KpKISGazOhrxyhFkoyQJhnCUBXTkVIgikKMkgQe8zAYDZF11zC7aRNGcQLP9wDtIsKzzFbmHA6GOkkNgAR8L0Cv11duKhlHlsX2e9kDQaezhla7jajWgARBr9dHmnEIrqpRrq2tgTGGubk59Lo9LC8KeIFvI6ZplqHb7SMIQ3iej+lW08oiptpNDAYDMEARQOiobxRhbtMs+v0+0jQBFwJploIx9b79+/fr1QJVFIroezRNYv3sUZNQ3w8hQTCKE5vk+f9T91/dliVZdib2mdjqyCtcR2RECmRlVUEUGiCJn0CO0Rjdf5Gv5GjyP1A0UGhCFApdlTIyhIdrv+qoLc2MD8ts733dPYEojn5gnDE84opzz1Ym5pprrrmkhsCRZ5lkfSKgV0Gy3wph3iV6lLb0zjs2qyU+BLQKGA3ZohwlMMuq4PLyjGFwDG1LbjTGWpaLEpSiaxuGriOzir5tuDg/w2pF37X0bcPZdk1eZLRtQx+lESaC67k1IsS54QMpe59e870uZcEm9xUJ2KpcvN6Tw0zTNGMQd4oZD5Sa/MuDxwePiwXSxkoGsK5rKXIOsSNr8JGFHwjegP4Yo6TzSuejPyAIIDAVrd5XPoQYWCXmPbHMXdeNNQJN09K2otnfbDaEEFitVvzd3/0dz7//nsF5ttst27ML6qZlcAPL5SpmCDRKG7755luu3l+DUpiYjeqdY73Zcn1zC0pz+eCcy8tLjLVopXh7dcXt9Y0Eo0XB4Dy799c4H+gHKU5V2vDLP/sVKlo53tzecTq94nQ6gYL19oy76zvaviPPC/rBcXV9Oz5/Ewu9nXM0dUvdtlJobOUZdm2HItB1A56SIstp2o6u7ymLgtvdjmPdUhUFpdXkRpNnluVyidGKPMvRZqpZcN5hgo7kEONc/jCQ/JPr2w9eCSMoC4rI1I77YRoTcfBMX6cB9OmP+wCczwIBHTfdT0lk5vqr+UtBLCKQjUq6VX1655lPwD/Fus/T4fP3pmvUqITVR7I7ROyrPwHePzqHELMVI0MWU+4hcm4JyM+ud8xGzC96/pmx+jkkjd7sDdqL9CIBkBR8jM8hfPBxIzs/gRKJJ6YHfO8a4/uVoPuRxVJKZAySfpZUvNZQlMVovzQMgeA1r19dARarDSrTbFYLzjZryjLnsL+j6xoIjiLTbNZLtpsVuTEsqwWZgtPNa4b9De6wo9vdUR9qFtWCZ1+ILGZ5vkUZj9UanRVYaxmaltPtK5bbL+HRQ5wPbJYn9oc933/7PQyBh48fY7IcYzq++PySwmqUa/n26+8YOilIMTqQZ5YQHIvC4PqMItdsNmuaduB8u8argB86dtdX+KFnd3PL2XZNs99htcH7jr6+QxnLfn/F3c0VXef47d//DpsXdEXPZz/9EqsdN2+/59e/+S27wy3b7RmnU8fx2PLm1VtWqw1PHl7y+MGWuqsZBoMbVOxCl5EXKwItQ3NgcH3cdAZAwKHBkuuS1bpgcAN1vRc3iOAYgkOhRd+pJLjr2hNe+eh+AVpZnPPi02wt3eAIHsqiwntP0w0ReMLh1NK0PXlpWS0KqqIQ8GAM/dDT1APWObJiQZFXeAJDkKIpj6xFIl67HxwrpuzSJD0BHbTI0GLA7aLkBMLU7jskWUucO/FzPIj1BtxjpFIMr7WwoDYy2vM5quAei3fvpaMsMCiClsnkvBRReUJ0I0lts5F5NGYaVLRrCxilwSgMUzdQq5VkJ1RckwJTetzomFkIMcEX8HHx1YGPSJIf0yt4kR7gk2NDwEVHlPsJwjCCM+89gxswQ0/fd6OjRgIybdsKAM8ylDZivWhsDBDgWDdYaxicpx+knXtne7bbLUMvMoQQAl0vDhtVVdF1PfvDkd6Ja0oIin4YAMXhdKKuG3zwKK1Zrzf4ELi9uSUrchbLBdZktE3HyTdRuy1Mu+i6LV3bsru7oygKFDAMPcE5Hj64pD4lFtHTdy3HusGHwOryAXnTiO1dLOrUaT9WjEGj+M9DUZTR9nBg6DqG4OI4C/R9ew9AJttDa2ORcPDiRkNgURa0XYcyMfurYFkVNMsKFbzYZQK92OagMJRFjg/S2XTwPVmRk2UWrQLD0BECGKMoywWZtTg3TIHw7Nl/NCeD/OdDqefkby7zZN58KzHXKQMDjLKZZBPpfJRcxXFlrSUMw/gckpORc04Kp5m2XPnMCL79bImZDegPCcgPLigO93CPBE2XLm4t/Xj+qZg31QF03SCSpkHO+3A48PLlS7777js651gslqNfexP/7lSfGPaOfhjouj76tjfiEBQmXLfb7+mHgdV6TVlV9MNAHYOem5sbuq4jzzI57l4aM6VAOS9yFoslm81GfOSvr2Og0ZCak4UAg3c0bTfOzeTm4mPTrwCjz35Q0ik1xDnjYwMy5+Rfr8SLX2tZf507olTNsFox5JbcGDKrCSjBBSgyDAaNT1gq+EgYTU9Jf/TcPv36hxWnpk0oAbgI0tKvxrRyGjgfsNvp63vD6VMgXEX5xp9gxOegemS/QrjX9U7eq+8d90OQ/uHxp5TYfRv8jybBnI2af94M1H4YDHz8GXKjgtZRlzo18vjkseP9/lQYNAU/3Hsm6TDTAjVj1xLDSAI2H33qvYDhXnFMvP65VObDjEQaA0ppUk2BUTIwV+uKorTig2pK6rbm9vbEoW5Yr5b85NkjurYRdgKPcz0hdOM5lEXBsirIM8NqsSY3gdPuDd3dO0J7wDdHgg9cPHzA5uETludb8sxyPJ74/ruXPP/2NeuLcz579pDz7QV5oWkO71guH/Dg0RP6QfPu7Rt217d8P/QcTjuePH1GXpY0+xP0J376xReUWc63X33F6XBiWeW4oQUHuYJNKZ7J55sFJivQuXg872+vQCnq05GyLGibhr49kWeaZveOIctoXODt29e0bcerF+/Z350oyoGnjz+ja44M7Y7nz9/y4sULNmcr3r19B1gOh46m7jncveZ4qjnVHcFnFOWKslhSFGegDcFbNqtzFnnNurwQb2krsiWjHUoFilxcF3aHPbCgKALD0HM4HSXQDAZQ+DCA8uRWSbFZgK4bCL3DuZiJMyLzcn1PnmWUWUHvBrzzGGtphp766DnVA4uiY7nIqaoiglUHPVhjwRisyshtbIgyDCNb8VGmbFyXop82Ci02IhMJHyRN73ATgPtgggljbZh0amGcGyNTN2Pi09KolehNVQzIUSkrOa2HSU8aQ/UYxMfriUGwTgGGTnlDM2YaZI5pUgafSCiMS2+a88GNBEEqsBvnbWRIfXprYumV/uRa82N5DV0HKjk2RKCGWDPOyaUxazNj3oehZ7/fk+XZCNwH5+l7yQI9f/GCz558zv54R1A6SmIyDscTVVlBgLbtaNoWawzL1Zph8CjT4wYB7s47tMlou5bD8cjucKQsK5EU9I6269gdDuwPR5Lc6erqBpMb6rrhWNfi1rEqITB2h2waaTyT5zlFXvDq1Su8d1KEmlnapub6/RXrZcXLF9dkmSUEzzA4un6g947L7RmXl5f0fcvpeOSw3xMQ2UnS9Abvcc7TdaINrqqK0/EkNn0+gEtOLTGEVpPjjFLioT1lxzwmjXMTM83InmMyxcMHlzRtyzCIDG9ZiTxJI/K/EFRkpANGKZGguF5cZbKMPM+wxmK1piyKUZOu9WwgMOm94U/jBa0m4O6Q6wFGbXo3uLFrqlKaIs8pK+nOOpepJElE0tcHhWSE0jg0Bo+P0pgAMZBPMi5Za8K4tsAMC83Gc/p6+r8QminImGaB/F3q8gqTjCwVeNZ1PXqyd4PIwb75+ltAZEDWZtR1w9t371mv11RVxZs3b7m7u+NU1+yPR7I8pyyLMXAZYt+B7779lqKUAPB4PPLmzRuqquLt27ecTieR6YTA/nDgdDxFiaPc+8ViyWq14ng8cnNzw+3dHUZLRiaPjkB3dzu6vhd707pGK3GD6ftOZEqIVM55T24tyhiavmfo+yiREnLFGiMZ5Ubq2TJrRfqI1BlkxqJCjrOarlc4D1VV4AMUPifLxenGKESdoFQM2ibW/Ye8/gFSmTRwR5W0HFQJ0y1vmpilwIyJDh/r0+f6UJgB8/j+JK/4FHOdtNIupJT0/cn1SZ15/OxJb8q4as+PMKau0+9n5/UhAy8Fe/Hvxm05PpDE+qW/jw83pWdj9Zrg8XkQ5O/fj4+uKwHmEXyMN2UKdtLEi6xBSp+nK00Mo1cKZbQUqX3wHHxKqcWNXtL0saA1jYE5WIpjYVpUGG20QogZCu/JDBSZpcgLlusKjKVt9+xPNW3XsCgsZVVCntEGR9+33N0dCGGgWBQ8frDm4bZis96w3ZyRWUNbv6Pev8U3O4buRN91bC4uufj8S7LlitPxyOt37/j2+Rtevb6hOQV++/V3XL2v+ce/8tgsZ3vhUSanrDY8++why4Xh5mrBqxevub7ZcXd1w6Onl1w+/ozz8w3ffvMd1p843yyFMRkGHp1vcV3LsrCQS6qxzDIW2xXt0HP17g3N8SAdDXPDXV2z14bNdkFbn7i7fo3NSq53Ne/e3xAwvH51Rb0/8my1xgbL62++wRQVf/jN16y2Fcd9jTKGu+tbXr58T33qMXnF48+/5F/87Gd8+fkzLi7XbFZrirIYO8M55+jrnuPugPODMIZtw+luz+FQc3dzw/X1e9SpZuhjOn1wExsdPMoHrFaYPBNWq5CUqNWKIo96ybYnoFlWC0lb9z3Oe4oip1xmNG0DBNrB47xjGKBrA/gBk1lMJuye61uM0RijyJSRehhtZPH+yAVC5oUM/9S3jsiyzdaLIKxsWhvSZ4Q0b4hzUqkpa67iDivphrFIXRj9+2A+EQA6NWzx/l7xePp4HVJxyRTsCkCYgnYd5/F4Lajxs4Kevv5wTo5XF2+KivNYKSnE8z5eX2AE8UobDOaTa9CP5RW8E9aWtKwGkXlxn2UVeZSn91AfjuSRxWuahkePn+BcoGl72r7HWktWVPzu11/x4PIxp7ZjONQUZcFqtcRmOe0gTZaatqdte5wF5+Hq+obFsqLvJdgcnOPl67fkZcnNzTXPnn1O0/Vc396x3W55/v3LKK3wBBWom467/YG6PXFxfsn7d29oe8f5uRRIHo9HyrLk5u5OQGSeo4D9fs9iUXI4HCB46tOJ/d0t33//PdZaTseDADilsFlO37b8+3//v7BYLMRnOxZTDn0nBapOtNnWSKOpPM+5ubnl+fPvo35XCeON4pe//CUmutsc9nthb5XGu4G2acQCMQJ172XPL2KzK5Q00XFOfNZFL5yTMkPxKaPcgDYGbYXl1JmN6xBkVmOtjkEyDEMXi0djTQxCRiS5iyRY1L0MQYhZl3FcBfHCT8B9DvCLoiCojtVqRdf2nE41p1ODUgJ688KODXu8GyQb2XUC8kMQ9lZrtI37tJrGZ3BqZHjTeaiRa5iN57T/zv7dlwFNc8RaGzuhOkBkQ8aYUdqTmHlrc4wxPH/+WwkQu47j8cSTJ09QNuMXv/gF33//Pbe3ryV7h+LZs2c8f/6CpmnoB0ef3Gpw+OCo65NkSYaB4+GAUoqLBw/45ptvaJqGsix59OgRu92O1WpFnufc3t5yPB7HWgFrrbi5tC2vXr2i6zpu7u64vLykKAqapuF4PNIej7RtSxebeJkoR2m6DoBVlPMYK2RU8J6mkyDYWIMKkp3wg6PpevanI5mxGC3N15x3MaBc0PQd2iiGQeGGnt3uQLUoWa9WrFcLKr+gLIu4r/mIRSXrKf8cP+T1w4F74mbjpkYIUgkb2aEZfhz1lOMAm7Hkcx0WzID1jCn7lCZ8/r6JhJ4cGv6r5x6kYCyBzgQs58HF/WuVl9Z6Bl2nzxqZ+Xg9wYu2dHQLQIrKSFEUSTcLuBkjOJF1sdB1PMgYdaf7l0Cx94kjZ8poTF/O2PWR1I/OEXqU0pA+IRb0yWnHYCPeHwlUwshaja/x3k8+t5KuV9HJIoIVHRmVeE7i7CN6rqqqKMoSY3OOx4b9vmF/OIpNUx+4Ou7oe/FJ7toj1sD5+YrHFxs+e7TiYrPiyeNHLIqCvr1ld/0c1+7JbIbxBYtNxsWTL8iWG15dveGrP7zid797zVfPr2j7gZ8+fcTFxQOev9xj9Fsuz5a8f3vH51/02GqPUgWLRUVz2rHdlARt6HvPH3/3R27fvePps2c8fXDG3//nVzTHE2VmafuWwhjy9YLNopSGKn6gMAaL4nq34/r1++ieE2hbL0y3cRwJnApDvd+RVStu9i37fcvx2HPz9o7CGh5ePubb589ZrEpefvdKGK/Osz8IyD/ujpTVgr/4J3/OP/lnf8nnXz6W4t08p6osZS6+tNpkKCWuMVobhuGSru3p+oHOd1FzpzgeWl6/vuL58xd8981XvH31ivp0QnV9ZCRPdN2AsYHMKalVoKXIMxZFLo1HBkeWZRxPHShYr9ejA0VdN6wWFZv1mq5rMHVD3XaiYVdSHO2dFGJqJe3nh05jco01Bd4raVYTi7ZhSjMGT8wKhI912uN6ksZlmnapPmR6W9KSG6OkoY4Poi31fhrXiNXafP6kNUTNNlE5Lz+xXEpJuj+9P84zpQXISM/KuPmq+yy/VgqjzJTGV0z1KGG2ZsYT8WmSJ5ZuiuHjGufGdderWHzPjJD5Eb58cLFAeSZxnOUQ5s4bIoUxrNdrrm6uY2BZ8ObNG7K8RJmCU73HOWnY8vbdFb/+7e+5fHDBqa558+49fd+zXK549uwJxmT0DnoHTdfwhz9+Q24tmVd0TopdnXNkecl/+I//mfPzc8rFDu89x8OBt9c3ZNry7vo92/UGpRR3uwO3t3uy3OJdYLc7cDzW7Pd7rLW8ffuW9XrNKYKezFp2d3fs93sePXokkr26pm1qqiLn4vwBr1+/5MmTx9IFtW1AaT579oyzsw3ff/89Nzc3NE1DnudsNhvKsuQv//IvaZqGu5tbmrqmKApubm4oioKHDx+yXC7l/g6OP/zhdzjnKMuSi8tLrNKcnZ3xzddf4f1A6iIZXIiBbQRBxkLwDF0DWuQKWV6M+3hQKvruM84ZlMhj26alzDNc8PR9B4hGPMsMeVmgUQz9MOqak5RFjWmY+yA9qHG3nUi3OA/NrM6g6zoOhwO987Rth9F2LFbVWkvNRHQ0GZ2woqbaOcn4KSf9AyYcIMWSwXt0dJyZ7tuMbNOzRe4DrPWp4DutI2Oha7y+0+mEsZZhkK62wzBwOBx48GDBv//3/57z8/Px2H2e89133/HP//k/57e//S2vX7/mcDgQApTVgl//+tfi4Y+40njvefbsGXf729hF9cDQD+McfPDgAc+fPwfg888/59GjR3z11Ve8efOGBw8e0LbtmLVo25anT5/y7Nkzfvvb3/L+/XvqumaxWPDzn/+cuq65ubkZj+uc4/b2luVyycXFxZhtKIpiDJxu7m5HN6Rk4Xo6nVCRmVdK0XXdaAN5vt1IxmCQ+o++79kNO5om51Tk0tAsZoiqphY9fj+w6lO/gwyrAR+/HzM+5qPn9anXDwbumgkcCpSV9EHqsDUh0LhHJLAZKzDnAH4aY5+Wrsyj2HvRIgloCkOlwuygn/iM9PV0jCkImN4Txj+/J+8hkmDq/mRO70tgOm3QWoklZgLwo+AlguYxsIl4WRYAopvEBCZQ02Jxz2eVMOrGx6BIJS38dN7j9aPGHwc1T9czu0YJKkJgTN348UTSVU/FavPrnx9LvvBTtoRY+Bd/LihIU+QFZ5uKzXpBCF60ak2PNhmLakW1qDjsdty+v5bmGM6xXBrOLrc8fbTmp08vuLzYcn5xQVnmuGbP7u3XtMcrKXoyFpMX5Is1xyHw6//Pf+Gv/+Pv+P75jru7mm4Q27f9bcvjB2dstwv+7nev+NnTSx6er3htXrJc39F7hTUVp1ODzTJubq4xVlKhb99c8e71O/7sV3/Jr/78z/nP/+k/0Qw9eSbV5UVmUEhrZWtLCpvju5Z2v5f0MYbT8UhT9xACy1VB1zb4QdJ01brn1A4MQ+Bw19KcGp5+8RNOhyNNXaOV5vrtNYvliqEPPP/2DYTAP/rFz/mX/+qvePTZGctFgQ4N4XTi7ramXSyxekFRbSlXFXleUOQLsiwnzy15PtD3PW1r6YYTQ38iMz1lEXj4ZMly+0s++/IJL797wbt3V+z3R4Iy9G1D1zcxNTxgjdiwZdZKYGYURge0dpzqmuAcVVWNG7ZYZAXKMqfMM+6OJ5qmZXBBrCNNFvGtFCyHoScYg80yKPKoOVcMaU6nQanV5KAU9GiDOp+749oTp/dcW6ijTMSpqCn1wqYHzeiSJC5L0qFSaXEuUfG4CfSPQXeYWqMTUgF3AuMCmkVPzeiCMv0+jDrIMTUeYIgOO6hZTVBa7/x0XUpJcbgP0nBIzbJi3sf3IsxniN3/VFDS7vu/QYj8//PLxpbywQvLHiJjJi3JHc6JRV3y15ZmSqK9bk/iUV0tlpxOJy4ebnABKVhTms9+8iX7w5Gru1vKUgpZy8WSq6srNmdbqkrjQmB/OHJ3d0dZleI0NYhP+xBT9qfTibysePXmLVlZUpUVvfPc7nYcdkc8jqaRzo7GGMqiwqQCbe/p+hN3+wOr1Yr98URQoqOWIsKW62uRwtgs43QSicHQdayWFX/913+N8z1vXr8mz3OxpMPz8uULlCJa21kIgev3V7x/+w6tNS9fvKKqKlarFZv1Gm0zLh8+oq5rvvv+BYfDgbatWRSl6JRPJ/IsAw9925LnFoIjy4xYlGqNMop+6Mii+4psmZrMKkJshBR88kuPe6cbQBkZt0wBbFFmFGUmLLYxY5bOx7+HyalpTih+6Ps/4hDEqe7DjpYp4AORySwWC2GnM83gXAz47QjMj8cjeZFFaU+gdz2hC/hB7CRTYXowZhqn/j4RNz/2XMY6Em7JUSukuyiv+04zTLUy99YmcbJJnU7THm+t5bvvvuP8/Jy+H8QNJrLnZ+fnvHz5kufPn3M4HMiyjIuLCz77/At+/etfg7Hc3NywWa95+vAZ79+/Z3d7NwUesfh2vTnDWst2vZb7Ogzc3t6wWCz41//6X2OM4d/+23/L1dXVaL347t07vvnjH0ewvVwuWK1W+GHg/bt39MMwOu547/nyyy959uyZBBjHI13fcXN3i9VmlH6lwtD0/DebzWgXmlyClFIsFgsOx6MQKMag0FijY13FwG3ToJViURUUmSUYsats2pama/HeURZis5oZE4uxFSaz4pL0Q9a3H/Qupo1RjUB4pisF8LKB6BlzQ9KihPuDDSapTLpRH77up5PTIExAdc7vh3uf/afSuwm4jqBUz76eHTMB8cRoh/kG+FEwoUaQQCCyd4lBg/THo7Y17a7cDy5SkDABiel903mlnMdIlEfR6/ReFa9vHkilYGcMXULUwTK7j7PDhXg/jZYNzRPu3dtPfZ3OkXQNQtdHJkCqxzUKYxTLVYXWcDwecUHRu4C2Gm0s795esb+9w/dS8FlVBRcXW5482vKzLy95dL6lWiwpypyh3dPt3uC6HXlRMfQth8MNwwDHqxN/+/s3fP31e65u9jQnsXWzRlJhQzdwe3PgdKxZr1d89+qO3aHnwanlJ59B17eUxRqlM1QIVFnB23fvUFqzXC7RQfP17//AxfmWJ48e8ub1e47dCbRBK0XfdSw2a4w1uK6hD05YJW3xTtGcOkmLBU/d9CgcQ38EreicZXc4oa3lVPecbbcURc7xcMJ1ju/efIfvB1RQvHrxjjyz/Pmff8E/+vOfcvGgILR7jqdrwtBRZDm2yNBqRbEoKEqNMR7o0brFWkVmc3yhcIOhyDOarqRtpDOi1ku0bej7I1p1nJ0vMNqzqHJ2t5amyaibjOPxKC4Cfc+izChyRXBDLPDRVKVlGISpL4qC7dmW0/GIiROnH3oWecGjB2fs9zGtOfR4YL1aoAkoJeBFCtocRrnYyEY8ooOaNibFOLUl05TmU2TiP2aSwwh6CUnihbi0eDDxc1AqAnQ5rh/msyaSGGnvnBEQ99wdUqYtpbyj5aaQ9uLs4oMjoONmPlunVBLlyPwCHX3Hp2K4xM4n2YIcgxHIh9nCIkxfIhjkODrexLQO/HhfPhYizgKm+EwkoyDyhbZt2Ww2FLnheGooipKA4rA/itTFw/srcbDQxjI4yUgd6pqgFL2rGTwCZM8v+P7lG1bLpQCMU83uWHN1u2O1WrJvpCDOOTm3vu/ZH0/sjydevHrD+dkZi+WS1faMpul5+/YNP//5L1itV/R9z93tjouLMx4+eszxcMS0LYtFxZdf/hR+/ztxvjmdKKuKaui5ub0jy3K26w2LZSWyG+dZrTYoBT/57BfcXN/gg8N7R93UDMN+ZMmHvqdtJDuw3W7HNvJ919Gcag67XZRUwOl0pO+lsNFmFp8XZFnGs5//gq7rcH0f9wBN19QYq9GINMB7h0MKGJUy9H03zndQKG1EquZl7llt8MFjdMqcpH102qNTsaFSSrTOeY53A0qDVUka4yc5jtb3gvcJuE9ATuaEn3TuM6Z7asYz+brPe15st1tQIs0BqKoS7x1t3YxFq3OArtIa4ZExM+rv72vXQwijVFCIujDO6U/hqvmUngIX0eQfj0fudruxcDXp229vbzk/P+c2gm6tJTh59eoVh1o074vFgvOLc7ZnZ7x8+VKcaAYZN1prbm9vub29HS0Pk7SoLCtQAsbbth1Z8N3ujrKq+Nu//dvRmSeNwaIoePHiBcHLOD2/vGCxWNC2LXXdSIZCKUwMBLuuo+s63r59izGG9UpY86IsGHrJKnRdFyVbXlyhvGPopkLddK+SvMn1srYoEkEkBOcQNfNFUeB8YLc/UvYOhaOMTaTqpsWHQNv25IWlyKT/gdJKjBN+wOsf4CozM1WM4DJhc5XAefr1CEDDvSZKIaZohYT3H8lUPgWO7zH08dAj6RzG70btumyCkyXS/DPuf1aUsMzeN2rEILIBH4PT+xmDj+/RlGqX6m8lJuvRwSFee2TUgcldJkS/ZSXs3hx9+ChBSXn9ENOFqQ4gRNY8fXYKFj6SAc2ocz8D60n/PoJuUlQu7x/ve3yuyXP73n2LVzQyGQkoqVl630BZZJIOVNJxrO56urbjuD9yOu5wXpivMs95cLHm4cWSn/30MY8ul/iuJS/PUTi64w3t8ZrMVgQcd8c93/zhmhdvjry9a7neN+Jgg6EsNFkG/eCxOi7A2tB1QdLP5+e0zvDyTc1+/4rL8wqlmthY4oJ8vYBwxs31HYe7O1bVmiIvePPiHUpZ8qzgGGqxNyxyAXXOUxYFbdfTDT06aLQynA41Vlu01bIYA96LBRXa0ruaw6mOTgSWBw8f4J24JpwOJ+pjjSlEV6oJ/PIXT/niJw9QtLx5+S10AzoENmdrNs8esFyvAM/p9hWHvoYosWhdoPc96EBRbjC6YLGwLDfn6FDi/UBZKH7y7AGPHp5x9e6WF8/f8NYYMmMoMsOp6ahPLVVVcnd3y+lUi5uAVmSrJUWe0TuHUhmZMez2DYfjgc1mQ17ktKej6FyV6FozY3j44JL9Yc/dYU/nBpq2ZRMttbRSKGtQOBRS0DYoAfXe+dFe1cS5k+YJzMBr+HidSYWYyQs+BfDjhhjHth7nskIFTdBJMhMrXHyINQCxCUVQseW2mqWlU41JarE+HcOHENNU07xXSgrXg1bjxqyCvrf4iHlKiHU0orufOzYoEqEii5THo0KsdIl/F0JAJel+ANHZ/3iBuxt6YdtnG0aAqFmW9chqQ0egPh4pYzdQyRgKkdB0A23Xc7jZi4GAtaA0gwendGTPPHXf03nPwwcPqbuO46kWV6Su59i0Akp84MLmwvzHcZCVFYVz+P2BU9sSdju6EDi7OGdzcc7zVy8ZAJ3lGKXpvWe12XI4NXjA5gUmy2m6jtX2jLquUdaSlxV6sISgMDanrFZREmKxNqOqFtLdFEVW5NFpRhrFZFYsK0MIdF3PqW5o24YQpJmQ0Ubmt7FkeUaeW84251R5wWqxJC9y8jxncNGlKjG6iHxSwCwzi0kpQPeILW3TRrY3MesEWTtH6kqGvp6N63k5Xxqy1pox8yWgXOaDcwM2y0brSsIEiOPkF/epWFg7SXOnY4f4PjDjHpgcYuZTJkkykp+/m0njlGjuJMOlUl1NHJ8RO4z4RqX91o3nkci5EWt98PqvkaFKTecGUxHqMEhBb1WWuMFxOokUa7NecXcrdowhHlusfR03NzdUiwXbzZaiqDieau72exQKN7L5PkpWBkJQZLk0zCryQqQ5veN4Oo1ymPjg6PuBoz7RdS3Wiu2wd+IzL8W9E+GSrmGzWbPb7XAzm8WqlIJkazPW6xV5XgCMzjOH/Z7MWqmp0oZFWUmdpvMEpeJ96ei6dmTxy6oSWWm08TylTEVc04dhoFWafujwyFYia0rP3eFENQyURcGAm55/7EfwQ17/IB/3BMwmNjltQhOrfC9S9TN+J/0sTsp0wQk0fiod9OHXSV8m9okwjlgVmbRx9E/WkZ9qSBD/ZJwQanacECPduVaUMF3HPSnPLOMQr2LkxUNk61OTI5mQjIOS+F4V01SJiQuziToi5hmrr0ige3KiSMVyktJjim7m0fj8wuNcT7r6P6WDm96uxsk+D87uy5jkvDQTK5hOQyHV2CZaYsmirqQ7phq4ubmVlGGQFHdRZJxtljy8WPKLL8653Frq+pazzQOpBD9d0+yvxuO/eXXDv//b7/nb37zh7tAStKawms2yYrmoaOoOPYj3sQvQDz0EJSlc5dgdDug4wY91oB8aMqto2sDN9Y7ziw1FUXCxPef2dkdbt7h+6sDWtr3IN4Ifn3vwHq0NRanxtVgEyoZnUKUVDXdkRdsOnBNrKGHTIThPngtIFk3sEBtjGIbBY4zl8vKcqqpE7/pix93dnouzJT//2TPOzi/omxPv797S1DXH44m7uxOv395x7DqOLUBBUZbkxVKsOW3PalPy4PIhTx9fcna+IssUWsPFRc5281MePTrn9Yu3vHl7xd3+yD47CXOfGU4n6WrYOcfheGKjV6xXK7qhl03faPaHlratWa6kzXtbN9RtS9P31E3L2WbFZrOm7QX0NP2AbVs2q6VATu/JCIgZO9ERxeNRI9s+BpWKyTLSp7F+P5AfO6HGSaFtTB+n9U5rrDKjC1PSkqfi7cRepEzkyFkQxgU5bSzjGhPinFUqgu0p0DZEX+gEdpRGjVWWMYQI0+dM81TcZYJWsukEUF7dWwe1ksyERwILHVdvCRgi8A8JuH96XfixvFz0QE8rUrzECNylwVRmDVWRs98fcENPuVjSRWs+bSzO9dTtwOF0ondOXC+qBWQZXmsOTSP9EdqW1nmq5QpMxvX1bWTmBdDV/UB3qLl4VIB3+KFHa8Vis0VlGVe3d6gs59i2nPoeW5VstmeYsuRmfyCrKunqqDV5teDtmzeUZUm1qGi95+vvv+fhg4fcHQ4MAbxS+KDonUdpi81KmvrIMDiMycjzEptprm5uyLIMtMZgyOxibEjW9b1I1jqpf2m7njwy5zbKBrLMUuQZ5+szlosFZaxdstZwu9/hXM+7d+8A6crbBkXT1litGFwH+HGcGStuMKe6wRg7C65VfF+yQBVGyGiB8iYWs3o/y5bHDFuSxGgFbhgwWU5wHkWY7C2DFGNLkOFGGOIj6ajHtSIGswlTAIxzfprf87k2l6KkrqcqBhFuGMYgRikVnatE1uXGxm9zTCQZ2hDCmBGUhSCM0pfRonb+VzPsk7CQnKP7gFDwGCPrgWRVBpq6oW1aPv/8Gd988zXVYoUbBumvMQzkeY61ltVqRVFVNG3Lzd2OwXmRBuU5xGeklDT384j3+3olspiu79BR2x+cp0kFpNqilWaz3WKrRZSYDTh3pOv68RqccxwOBykkjZmNqirHvVkpNTrcKKBaLCjynK7vOeyl27kberIsw2pDnueURYHN8ygxFCeb4He4WJQM3GuGZbSQcN4HbLyHzgVC6Akq0PUdmbEM3lN3Pc4f6b3DZBlD77HW44Mi+GHmNPZff/3D7CDnrw82QBgll/cGTPq9AFE1bRTjLprA//R3c6b8nlY9vseH1H4l/Y1MNFRA+48Ztfn5JHY6IXelIoD9wM0lJp7vOeOo8c/ua8VnHzgeYzz/cceY3Zs46VLsrSJDOP10FgQx6XVTADG/78HHTVeBCgLeE3qYy3buAe006WczfK7rm+KoMVwZAYmWB3B/gVDTdUkCfwLuxhrx/VUqsj4Km+dYm5MVFfvTW0II5FmGCp5FUZDlhrNNzhdPl1yeF/ihZ7HYsjl/iB9OHG/fSyZDWd6+u+Kv/9Nr/ubv3/D+9kAgiJOA0+Ras1leUNmCum5xHjCGYcjwQbq5Cdki1eIhBEwLWZaTWQFAZabp3lyzWq6osoKz1Rlt13NqamkrnluG3mO0yCrEI7alyIy0F4+yisJaqrzE6Iy2dzJX4gZYDgV3u91YfW+txRozdlu01tK2DQDGSrX/crmS4qH9idevduwPRxZVwYMLw/FQ880f/0igp2sG3r8/8erNHbtdRwiGs4sNTz57xIOLB9iiwlSSBTk1Hc1p4PWLlu++/gN56Xn2ZMuzz7aUC0tuFjx+dM6DszUPLle8eXfN++sbrt5r7naKsiroOmE8mtOJ06lGG81iVVFWOVneURQZx5O4I6w2G7KiHIvghj5g9BFt4Gy7JihFfarZH2usNVSRFR2GIc4ri8ZI3KrtOA9Trb4MQEPShn9IQiV/5VQAJs4xaoyt05zzo9+uHxsuORfL3SNbNy1ps6g7RBJgXI8kyCA2RyLO2TD1RxK9uo8e9SrJfMJ4Oek6Egc5fyUyQupm0jyW96RC97F8PM3fsVuygHbvHUFFzfunKvd/NK+0nsXvIojWiFSi6xrcINKV1XLB27fvUGhsuZA57buofbY8ffqUV2/e0PYDtlIsNxu+/v57mt4xRDA00LBvpFtn6zz7wxFCnK86Y9+0OKUoyoru5On6jo029D4QtGG5XtF2HXd3e77+5jv+4i//ks3ZOTe7O4qq5PLiEmUzbnY71ufnHA4HSm3IipLd4Si2wtpyaHZUqxVKa/o4Rsuy4ubqirbpWS5KFqsVXddSLpbCXCadrxs4nmqMtYgTSsvhWJMZw2q9oioLQpbHzruOrm1oTkeu370HpBlTFq0hHzx+IHu7sqwWSzJj6bt+nAtSuClyA2MM2zNZN0D88rXW5HkRs0Ey53QKXkfWWsatiQDWhXAv857mzGgigY+B8LR/zuUwH42gxATMvh+zJVnG4KdmRlpruq6DKDG1Rsk+kmWcTidCkMZXI4jVU3EqxIBylo2REwzjOA4kAjIx5fK1n0kr7jWSmlk6pv9P2nKR3libj0FFCiySTGq3e4/3nvPzc96/f4/WWpqRNWCsJXOeP/7xj/zspz8Fo3nz+i1N26JjQ6M8zymKgqoqGIaB/X5P3/d89tlnGKNikS7gA3V9lJ4BfQ9KkdtMbBYVdE2LMhLU5bl0GT5youtbrJ0kSXLPDb/5+19TlAVVVZEtlhhrsFpzfn7O29dvqOuGtm1FjqWFulivVuRZweAcfdfRN210C4Pj6STrhjFsNhtUCLx7946d96TmSXme8+DBBUZZjsfDWBDbtS2eMNYM1E0re0ul0d3AqWmjp38rjkgK8uyHrbn/II37HEjPX+MAj3vMfL2/p4WeTTgSuzOyuffBZfo6AWYfgjC66t5cSicwfunjxqU+MRHlveCjCYRO56SjL07c+Ec8PvtsH1lvnU5AgR4Lb5movgl3T2mzMWgQRiykv5WjjfdkBMsztjt9xIeRdPq5H3VW8tNR/z7eyxQQhHGDnoD3p+9R2uA/+OF0Xcweghp/PLKBSaIg8iAlDTJ8QOsSm2XYosA7xd3dHW7waMT6ymaaMrdsljk/+3zLs6dLtB7IyzUXl0/QBOpTLG5xPd+/eMN/+tuX/Pbra5quZ1nm+CAaQ5tpfAjUp4Z1VbFdVtIISGn0QorAZIPSYzZhURQS9SJMxGHf4AodF7IDNUeqYkFWlKyXaykQDIrL8zPRfUaZCGHAO8fQ98KkOE9mLZvVgmM7oHSPNoYsE/eDwmc0dYsyAyrqLbMsG5/hcrnkdDxSFCWd89GrW0mnx16xP9b03UBVFLx/t+P26paiKtnXDbd3J06nDu8UVbXk6ePHPH78gKxSDO6I8rAtt2zPLyiWFUoVFHlJ13Sc9nsOtzd89euXlEvHdnPNanmHUhmXD9ecXy55+aqkKi3V+4x3VzsJRIqC3W7H/u6O27sdznu2W2mkZa1GGzicHCYzXKwfkGUlr1++pG4b2ps9g3NcPjjjs6cPub6643a3o2l7rM3JdRbt0Xq0URgVsEozEOd+ynCNiI0xyE8/mm9wacMKUc8uODyJAsPMXi01P5nmyEi4J6A+D6gj+p+TCCOLNq6VHh/lN0FPa1vq5gqxA2qINpJa5DUKMSMITMz4mO7XsRg3UefMiAxSsyXJ/nklblc6aLSX32uVCgA/LMf7cb2cF4DhfRB/ZhdGG9y2bQnBxcY9wrhdnJ1xOB0IdYMPisHBsio5nG55890V13c7bFniTcbty9eszy44dj3NqaZtO9SpZXCK1WoFWYlXDWhFXpSxG2PDb//wNQ8uzyhyK01ZFCyjE8xllnG+3pCXC96+fctf/7v/haqqaJqW99c3OBfIshxjM5q2k0B9ueLRZstme8Z3332HUort2TnrzRld2xKMYUDcT5qhp8eDlQ6RErxpbF5Q1yfatkYRKKsF+/2e3W7H7e0tbhD7x4cPH9KcjtI5MwSWi5LHjx7Qty2n04m7uzuUkvqTgBuLfnWAXfTVLgoBcUFBWRVUVQkE+r4b3XE2m7OxWc+8mZGLnUKVj00YTYQusy7hH3UKDcj+rAI6Fh7OHe3SS0HECxOZ+CEOSV/PGWyT7Gjj9845FtVCvp95spdlGcmWJXVdU9c1mTUjAE9ExLjqjK4xjtR0CRjn+Fi38SdeIXiI9248Xy/3QsXP0UDf1jE7IAyyUrInD8PA7a0UXm+rNX/3v37FarXicDgSQmC337PfH/jZz37GanvGb3//O6pFSVHmnE41yjusgsuzLbe319zt7mhbcfvZ392w3a5RAfqulzqT+oRGs1pUXFxecnFxTp7lvHn3luvrW1ablWRW3UBRFGyePGZ9Wty772msfPnF55JZ74fo295ybFrudrcsygqlFJv1Cq0Nx+OR4+HAcrGUjLspybOMxWIBSrHf7yGEsSC3Ph5oTjUaWJQlZ+dbiqKg7wb6QboSLxaLMZioYzFragSVisZP9QkJup6Qx86s1hryTCREP+T1/zvjPg6SCSAqxehSkpiiewx1fKnEOI2s7sTQwgdgnxmQTMfh/kSaf3Zis4PsPh+x9igxyk8mv4lhHoMNlTZENQPh0TGCuG1GNm7OOAtYnXHUiS3X83xCfHv44HgpsA+z8x3bssr/xkhcqXuflyZhmtQj4zdboFLwM96p2dqVCis++ZoTDkG8pD8EKCPbPmPsE8vsvCcgE8oiAN5mOa4fqOuOu1sBdakrXugdy1XGz36y4cvPNywWOWjDevMAawv65g4/tPRtx7dffcd//s1rvvr6hv1R2Ogyy0BnZJkVpj+NqxDEprDMcUFJalhrTPSn9UrTd56yzMSbNaVTTSDPpGmHDRrftTjnoe+xmaWwBVZnaB/otSw81mhc32CtxhiLsRngCL4nKzVZqbi+3VMUwr40XYuy0hq58I6u78c+CNKW21AWJdZYsqzAn0TH6r04VPR9H9urK06nlrZpWC0Kbu92vH53A0qzWq1ZbhaxCYvh1atXrM8WfPmzn/DsySXLsmC5Uiw2lmq9AVuggsWHx/Rdz+7m57x9/T1vXz7neH1EZQPfPf+OBw/O+OInD9msCl6trynKkuubvThxXGwoi4zbuzvqumZwPev1krIsqKqMqhrYHxsaRPtZVAvaoacfHLfHhryqyYucs7PNuJG3TSvMWxYzN4DOjNDUHoYwDey0JklL8TBm9QLTmnVvYyMF0XqcKQHZ0KUojXH9AWSMx2JkfLSJ4z5zl8Cyc9FTXCsUhlTs472La5SeuUVN62lqtkJS+KY55uS8UoH9nEH0QZwqRiBCGM/TiUpk7AQ7VaYgune4t96Mwc+P8CXdHuPeogzGBFw/4P1A2kWIjJ/WOvpZe4ahoXcBj6bKc6yOgXOUbh1ev+VYN5y6XmxduwEfBEze7A68v73js2fPUFlO0zSc7nbSSt0H7g4H6uZEVRVs1iuCsWgNXhsOp4a8qNhstrGxmKJuG0CzP5zwQfHZZ59xbFqKUljzum04nI7803/yT3n95h3PX77gV7/8JZcPH7Hf7agWS7bnF/wf//v/ntf/57egFavthlPX0TtP054oioK8WqCzjNNxj0Px7uaW0+lI03aURcFqsx6Z6+PpgDUaoz1lJlnBVIyplKbreq7fX/HmzRseP37M2faCn/70p7F7bE/XNQQ/0PctXdfTdS3D0LFaL8W27+YWpRTGWDJjcSEWeKoJlI8suZocX8YMGYxr/hSwpn1S5kvwXrzimYC8mGX4UbpGvF4fBrk+rccMWGKpxZZSunnqFJi4KWhxTrIJ0uinH+0Fi6LEuz6OuxabGXCB4CYNPHy8lsg5TZKXuTIhjOyhitczfUZq4uSj3C91cU2f07Ydh/2Rq9sbtqslh7rhfHtGIPDm9ZvRL10ZzevXr/HO8+jhQ5xzfPvHP1JmGVfX1xyPklnI85zFYsHLl99D8CzLksvNGVlu0dZwOB7EOWdwFMZw+eQJZ2dnNI0UkR53d+yijPR/9y//iqKSjsJd19G1DX3vMASaUwvKU5YLlpstRSHSk1N9IM8KlusN682ax48e8+vf/EYaiSmF7wdc6FHAT559Rrlc0JxqXNx/3715Sze0HI+1rNFB6q/KImNZVhRFhrEWTaA9HujaHh8GDk1PtZQ6D2Mkm346najrmr7vR+lWcsLp2+9ZrRYsFguqsmC5KDk27Q9a3/5hGvcPBtV9SUoCtYKCU1Hqh1IVYATtCtlwXSKxx8+atKfyfu6x0B++EuuUbNZCiEx0wqlz3/jECis+2rzG8xwB6QTep8kRIlsexoBkDFQS0z+Rap/ODkSWXms9nXOKqmefdQ8MzxmAtAARNbB8DBpgAvPp/IGxm2O6sYHp+/nPTQpQQpz8KRhKtyX9TbRSmn+fmtKE2bG10Sy3K8rlQtJR0fZo6FuyPMMazXpZ8Y//0QN+8rhAKSlUqVaPWFRnuL6mq/fc3Nzyd//h9/z6t695+f4gTKw2KBVGT16jDbmxFNZSxFSZMYaqyKILglTGl0WFsTkYyxBBTZ5nsYXxgDSpUVirWZdrgpMCnrwqUTqQZYbCZFiU2JXF4dJ3GVNAKhIhLNjMsl1WGJsxuOQjLNIhoi/+4XAgRK/aIi8wShGcoyzK6LmtCVqzO+yxWot9GIo+dLRND9rTND37Qw1a8eTJA8qyHFtFv9rvefz4EZ999hjXHvn133zH5fmSfFWy3CzZnF2QlSsym7E+e8BydcHi6ZaL85zPnl3y6vu3vHn5FXkwvH/1nqt3b/izf/RLfvXLLymyBUX2lqtrxW5/ZLVesFiV3N3e0bZN1CFqlssVZ5uK1bHj1dsaow2ZNayWK/bhgPeDnL9PVmsrtKohpaq9lk6IxqKtRRmF6zwEi0stpOME9wRUSGXo8vMPs4dT7cYHc5EYFBOijCZl1zTGZJN3ulaoeYp7NpcUiqB8NIeJFSCja5se5ShaaYLzAqAjCEpBsEh0jOjTXdLKM6Zzp+uR9SU5QQU1WUv6qN/VSk8a91TErwB89IVX0UUnBTE/zldQGs/APOMySh1CwLt+BErBS6GaMVI/4oaBbvB0/UCel/gmaWo9ddOIppoR96OMIc8L8qzg/dVbXr1+MxbZpeBK25zWdYTBMBxO1E3LsW4IeE5Ni39/xd3dXuQVuSEvSnSWcdjt6foetz/gnn8v1nRKs94sKYuCpu25ud3x3fMXvHjxgiwreP32PbvdjqvbO84vH/D18+e8v7nBO8eDvGB78YDj8chf/Xd/xf/8P/8blAqsN2tWZxd8++239EOgGzxeabTNsVlB7zzlooJrYl1Pxx7pyfDwwQPq04k+WhteXFxwfXPN7fUNh/2Bw37Her2iLMvYMKem6xuqoiTPBQTtdjuKooj2fAqjZTw7l2Ru0iwNJVBdh0BI9SkJtKpA8BLwTlm1FIkidXUmjIXsCYSPwbsK6BBQykw/T/uXErOK+40jJ414amaUFeUIXlW050xjr21b0VJbw7zPjo8ymWRJlY6hic5uYSrCJEx7cuLhkvwlGVPIz6bPTtIN55K9rcY7h0LhncM76VC+Xi5om4bz7QY/OHb7PU1z4tlnT2mahvfv3mONHUmnYejxrufudo/rB5ZVSVVVVFXF8XhEx6J9azRlkaGNPK/z9UqaOmkzEqLH40m6FWdS3JznGTbLuL16T9O2KKWlLiw4glcURcb5k8dUC3E/OtU1x/2ePC8psgznBoYeTgd42ffiblaJ9EqsOiMWcI7d7Y00BvMe5T2b1ZLt+VNubu5EzoWK5hoaa3K0lcZmbVODVzF74tFlgetbds2JwU2dhY3WBGvj+uOi9EbRDT2H44mm6yjynLZdkuXlD1rf/kGM+zzCm3+fBspH7Hf6RQL4avr9yHoo2Th8TBXd02/Po0rUpDcn3Nt8JzY+fbIcPITomPABsJ0+e4bRR8YMibyVGYF3krd8kDb4gLGLDHtivhOjQ4Jw001JzH/SmyY3DD0HEp8Ieu6l+ULS308gebrf40nK56Zj8OnXPChLf5rkGAIsxLd/vA41HSYk2U0EP6naHwXaJMtP0TRmZUHneuouFiBFZjkzgacPC37++RmPLgqMGmITnUBZrOnbHfur1/zhN7/h979/wXfP97y/qzm10nFO0kw2eqdrMpuR2Ywiz1gWGVlk2K0xsWtrhgpQlBXWZuRlSVaWDA6szliUC3G+wRGCQ2tDtVijtRUfXit2hwYvhVpIutH1jqHvoMzljjmPV4qu9/RKOqqVRcFnTzfc7vaSIlUC3LOypG9lAjvv42KlKKtKMgZZJpuW0mAMTVvjXIbWhgzFbvA45em7QYrQsozt5pyqXDMMHbc314Sh58njx5yfbfjD7/5Ae5IU3TfPX6MyyMqcoigpywW5UTx5eMH5+RmL9Yb1astqc8aXv3jCgwcVX3/1DfW7NxhT8ptff8XDhxt++tNnVGuL/r0U7JyaFhcci6ePORzFR7o+1RgDma64PCsx2nKzG9jfSdOP1C3P9Q3Hk3RX7PqBzXqN71r6fhDrLKXQRrqq5tbQdE42bsDFATqO0aDG5UHkIPK91kr2y/jGewRzUFHCpaZ1LUjEn942TrV7BMZ9EmAkAhKHH6bi14+yiuPfT0VtadZqBS7OdmNEm+lHXdz9NVmFgFdB5Dd+6geRSHjJFqjJ314pCSKihCaJie/n9n5cL5+ua8ZQgtwfKUiT1LaMr14yI8MQiQ3JutSnmpB5muYkxXMhZU/0uGck4Ni5gYDIlLo+yTz8uAeVWYbzns6LG5ILjv5umAIG59A0LBYLfvr4p7jBcXV9jQsB5wMuDLjDQTKTwVN3DUWek9kbvn/5iuubO7q+Z3c88e76hru7OwiBq9s7/l//5t/w+uqKRVGwr2v2dU0Igd3hyCk2WOpdoG4b3lxdU2YZd/sDRmuqKtD2A871FEbR9z2LsiTLMpEaDQOn00nGGDIntdasV2vJtPU9V1fvOR4PnJ2dsdmsyTKxZ0ze6cGHyEhKgzXv3Oh25FPHzbRJqgAYgvZjj5gRpSYqLqTmgAGl/AjQ8QqtQqwzifv6bFyk/4f5Z6Z1I3BvvqYxpmZ/lxoxCXAXQJfIpCzLgPs22Anwd/3H3TInjkyC72TMMQbqIZGU8/OWezCvsZtAuxMdPYzmIs5PP9dKYY3GW4sKHu8HjIYyz1GxmVXwjqCg7wZOfU/TtrGey7JZLTEmgtOhRyMAOMtEOlnkRcQv0txMPO6l50Bd1zSnA4uyGEkmFeuPiqqK1ynX6Dw4PJnRFJmhsIbcaHJrCcGTZTn90OMjcPbB07cNZZazWa7QmZ1cs4xYm9osQ4GcR9ugtRhVdFWJUkxYJQTKoiTLLatFRX060daNFHIPUsx7PEq9iTFGCB6t6Qfp7qsAl2oKnGT4mrZF9z19lIZp88Mg+Q9n3GXE/MmlPMRNTcooPmBw03tmX2ulZhPu/ud8KJWBGdBnmkBzVosgms0we1+S6wh2vO8yoxIrPm6q4wlIdD0D3cB97+c04WeTew7Og09dWqUpE4H7QYkW0UlqUpVs39IBP7y+e/f4w5uSQMUcmI9AeirOSs9uHmzM7/d0v7jH4HvF6A2t4sKRwEvKQKSoJunnPYGgAzraN2XWUlXCHve9pEe364pWKzarkgfnhi+fLHl4lmONBD390GOrLcYaXn37W779/e958/qG6+uau2MjxaReip+MthRZTlFm0iHPZhRZRlVkLHNhc3ObUxUFJmrJxLUll8ZJmWV9tsGYnKxYUBQVwMjOBeeEUSsLdGbJyiVGaYb2JI1Ahg4VPHjwQ8fgupgK9DgletnmtMdkWopireHifENdN/j9ka5rOb+8oM0yyqKg78Uqqu96ymiZFQZH07WCq6ylKqMvsw4oa2nbfuzMmWWa9WpLUS4oipLj8YAxisdPntLUDb/77R8IBIZBLCsHLzZgQSvW2xXrVYvyA29eXLFalJydn7G92PL42ROeffaU1XbNn//Tv+TNy3NevviexnW8fvme3WHHz/7Rz6j+8U/59vv33N3s2O0PHI4nFssFeVFy2u/Y3e3IjGexyPnsyYbV2tG1A6/e3JAXBZvNhvqIeB4HoB8Yhl5syuoD3juUNgwg3We1pywMg4tAjanA1GDiVuZjQB7TSEp+Nk2E2QQmsdhx8wuTI0xi7OfzMc2F5HH8oSZ2vk4pFST9HzGyiWsBYQbaJw9DlJ+cKoKOQUcC1XH+QxgdFNKcDxpQGvTUuM2n62K2RsZ10MUsn1bJ55yxI+2P8TUV+YWRkYQI3AdJyWvAGi0dHpWi7VoCIovQRjy5m05S4eK378cMBkEAYHK36LqW1ndiTxiZxiEWzWmtxZ4yBCloNBqCFDM2dUO1qMatpPCBLCsISMbRBT81/4nuH1opDscTx9NJMnJBcawb1tst7eC42R3Y7w+sliveXl9z+A//kaY5ETZrbnY7MJpMGd68e8up7TB5ye5Y8+LVS/anE2Gx5G5/YFGW4oTRtlgVODQn+mEgyzPKcpJ77HY7lFIYm6EQsF1VFVop2uihLdZ7NVlmsFbsdNM+Y4yWJlBKHGBE1jFIKj4B0XF/jAVqad+OcyXAKB8bexp4f79I0yu08vjYsUwK26MGfjZvISkGYFoUklRtthbMMEEiYbqui8/bYbS/J8UR8D4FktK9M0MPMfMW61lknPrx2mM5+cfEW8Qgae2ZiNN4P9SUEQhRLqMBtMyHIcrDCCE6vom/fNd1BO/JY+Oh03FP27RYozjW9WjHODixBz07O4sEk+d0qjkcjhRZxvJsIQW50T/aGCEMknd+3Q0MXY3vWwpreXB5gbEmSpEcQSnOz7Ysl4vx+lKwqLUmzyxWKfKypCiKWBcGbd+iUGLhGAtD86xgtVph80w+vx/oB0+XWTbrNU3bJHQJSLO2qizIciEBUTD0g7gp5ZbMGjJtaIxkWpxzWKXEitgYlBWirTnVNF0rQQ2KwQ20bbSI7eQ+aqWlt4P39zIx/7XXDwfuJvn+Mi6CMnbSUIne33oCgdOQl5fxcTOIE0Jw9afB+yfP4RMMVTpWeiUGXSkmy8n5L/8bn3tf/jNj9EMYfdTTKpv81rVOZU+fAMRq4q6mn03T8D5XMA8mkvvO/fP+FKM3ptY/mNppIpvoU30vHxLuv28MlqIDTnKi8elm6pmW9gP2IWUbArOxERvHGKMx1ow2kLpX+CGgceQ28PTxmicXGatSE8IgNkquk8YoDy+5vXrLH377a3ABo3Pq9sDt4cQwgDUZeZ6R5Rkmag2LLGNZlCzLnDIXecyqKMQZYbUgL0thK5wsVsvlgqAVVSl+x2QVeUzX6Vw82YW5k7bTRVliioo8syjWcl1dT2hbYSpcj3cDg/PiOOEcKM3NVbSPVIHgBmyWs16tWC7W3O32DHXDerVBKXGpCQzS+dCKZr/MM968fUevBtkgV2t8J2k8k+cMvZMAENFeL5cbue99j7WG8/MHKKW5en9L2/VjWrXtBpqmBkAbg/Mnbm9rghuoSstyUVF3A50Xxxs3nHj67EvOzp/wxS9+ydnFBd/8/tcc7nYQPL/5u1/zk5/+lD/71We8epXx/rUG5bi63hGC5uz8jLLK8b5jGDyD6/js6QV5pnHe8fY6MX0rvBuo6yNKaQ6HA/nZGUVV0cWul9IgTNO3Hev1grYNNF2cI+L3NrFtgZixmNmmRXQ/zcl5qlruT5pDCewGpXAS3Y4ZpxQ5zwmHeTCcJC8aopvCJJXTWktwPNrjTsdNf5/m+ViYH5k1Hb9ODP699WpGXqS5P9f8Bh9Gr/dAwI2ZiNg5lfDJQr4fy0ucmFqx2DTy3Lq2GwGW98Iwe+dYLCphzdK9RMm6Zwyu68mLjNAPZEZhFTR9LwDd9dgsR3tF1/d4PF2bALdIKzJj8AS6pkFnNmrvY6dha0USo+24Hh+OJ/7T3/wNSksnywAjUeSCJ7iBZbWg6+SZuxisL1crbJZxdXtL23V4pdkfTygdcK4iBEfvHYe6phk6jrc7+r7n4vwcjGV/2POHr/7I2dkZ13cH+qDwWup/XJDs1KvXb7k832BsJrIRZcc6MmvFA9s5T9/1Ik0sK/pBCgrF8/uauj7x8uVLtmdrVssl52dbLi7OcX0ZgZeLreQdfTcQgsiYlI14Qht0asoQPEan8FskNiqlg5EcsZ7vbSEG8B5p6hQmbDDilRFXyLyW5T+9S7zIvZfxJeYLqamSis4rZfSNN+N8a5omzjMXu3BCG60F+74fMzji005025G9eJTEyKS9D8RnnUF9XANSdk0sIxUhuAjaXbSYlcDSDQPeyXGMVlI3pATUqszitOi9XTfghp62PjH0Pc1JHGDKvGCzuRz1/V3MEG9XC5aFxVorRZ5Ix9yu7VDKUhYVh8M+ZiZgu1ywfvIEpQxBQdfLz1N9WNu2GCDPLEVZkBfiyZ5HoC7BkBKG3Q8QNOv1MjlkRwxiWEQHJfHT93Rtx6lu6G5q6kb86gHWy4W4ulnLdruO7kc+jsmB3W5HfTyI/LORruFaSaZps1rx8OEDlLEMQbzuw9k2Wh8XHE5H9ocDh8OB46Li5vZGrGh9wLtAHxwHd/ph69sPXwoFnCW7pY/BddwsVErlMMookg95CHGzSOhawkJG94MZo/4pUH4PTH8C3OuIr+WQGq8meUfasNJrLkWZf/789+P3ShZhiIKRFLmqSUKj+EA/TtrP5VqDm1hspRibnqRFJgUYI2gnjBtuIMlo1His+f1JGjyVQMWssHVMJ8a/DTGjcP86x7ePG8h47UGKbj+sWUjR/vxnU2AQA4roI+3dgFEm2l8NtF1NWysuL3LONwpNT3CaoCEoT12fWG2forXl5de/I9OK3ilujgNvr04oDFWVU5UlVS5tg4s8Y1kVLEtLaTXLqiDPJIVWFDmF1RS5ZVlVWFuQGwveYXNLudygrRR/5uWSwlisNejMYLIMZXK5MifMXJ5rjAGtLd4aQlEQVkuGpsH1LcF5HE6sC7ueoXeo7Tmn4wFTZAw6H4uFtDGs1hvafqDvHUVZyQbYt5ytN+zv7kANoDPgAfu9NHrKck1YrcQlp5AOcc719FkGaIpSApngBhZ5gUFx9f5Kmq0ED0HhvKN3w5ji7PuBpj/SO6ngRymMvub5S8vlxYbHD874/ruCX/75gZ//quf8/BFnD5/wF8WC199/w/XuBbSe33/1FV988QWfP71kUVqKUlGVGS9f3dB3wpyHIEx4PzjaruWLn1yCDvzt3zlub1varsUoQ5FXwr6FwG63Y3u2ociKyJQBkd2yWmMrzf7URqtQMwa8Mj5NBPJ8sIaEceBPAbAeLSCVUtHeVDZCN05AmaVS06LH+Td3rJnLzyafGsauqWltDEFYvxQwg7BjKujZ/NZxDRU2zqvEzN9fF+UcVFwCZk4VIcTurLHBDCodTJgeAsqI1EP5uBaHaZ34Mb6sjcASQGms9bEngh835EN74Or6FpMVhNET3NEPjrodGDxszjYCtJSmGxynuz0eJF1fFvh4v5x2sg94z//4P/xr7u5u+Xf/7t+J28hiQdOJdMzmGYWxEtQDSmmyPJucqJTUzOx2O7wfRrY2K3KOx6PIGKK9Yt8PaG2pmzvKXkiCtA9ZqxmGjkNdo5VHH0RmUGY5x9NBgMhhT12La0ZeFNRtx+3tLctqgc0L+sHTdD0Pnz3h+TffUlRLbJ7jPPRtJzLMEFAYFutSmHdjxrF/cX5O13f0fYdzOTbT/OIXf8G3337D3e0th/2Ot+/esChE21sUWZRtSHEqBIJ3KGfiXhOtoENkAVVio8Ve0AQhsJI5RWBWZJ0Ip/n8HEnE+/uai9SnCtP1zDNp3ntsXHdBRdbUjaz7MDi0MpRlORanhtnfpqAdpnqL1AdkPDctWdyAZCD8B4TpnGmH+5aP054cfx/Ji6Du/31i/lOxqtXS5dr1jvp05PbujtNJwOSyqnh4+ZnMq/gZZVlKf5F1JQWXfY+txLYxs5IprFYLioszjDEcDgfWqwVlcUGW5Sit6Lqe8/MLmqaZmmcinauV2rBYlCRsqY0mtwU2y8bjKaXQNsN7MZzIy+LefQIYnGe1WkqTxK7DWsPF+ZblshqhzBCDqdTd9XQ6cBfNFeqYaRicgP88y1hUlTjvrDc8fPiQfmipTy2nuqaN3WGdk4D59vY9u/1BMlbWcH5+zsOHD3nz5o00n+o6urYfayL+m2vbD3pXupOzBz4OrvHm3GeXJbs1AToVI9KRDUp/oqYCq8Rmz0Hzh1KODzfFDx9Q/OX0c5m/o1Rl/vfzbAHzv599XiTTxkhez6L01GwoePmhGYXkspRMqav7+vUQpuNNlpjpnsT7ERi1eKSgQ8m91KPBzMcb68Tyz1PdU9X5h9IgNcpc1Nh4ZX7PtVKSsbx3EKbswwwETYU7U3DhhgGDGd+jFCwXOdtNwXZlKYxG0YBX5HaBdz3L7WNWl59zuH7D0Bwp8pKrmyPfvrgjoNiu11ibU5Y5mdUUmWW5LNksKta5JVOBxaJgUxYYIFMGYzSlNayKgnK5Ic9KKe5UgWyxJI8FN5nJKbIcrWUzIMvR2mCVQmcZzgcMDhMLpEgpTm3wdkFwJcPgcH2LH1ryqiAsrBTNVCVN21LlFSEYvNH4IJrZjbFi9xcCuRbWs21alkXBze0VLvQ8enDBqmg57Hb4EFiXC7oQ8EbGt+s6um4gKzJsWZBnGbvbG2yRc6rr6KqReiDIP6MzfATtoqWFwQcEK3s6FWi7lqa5oW0cy0XB6zd7/vD1c372xef88s/+jM+++AWfl7/CvIDw7gXea77+/bc0P6l58tmTcewZY7i9OYi7gg60zYAxOXd3BxSez55sKIzh73/3hhev7zgeThQxXWu0oe8aurajWFaRTYoNRYx4Tm82K4wJdN5B0PfmuIrrQohUzP0g/aPpf29uJdlMUJJXcnGl1+P6lebvxFKnNurjfIxzWGkphjRGnJdCBBcosYRUimgR+amXmi1tM5ZiPMep1kTYQiXd/2YXJ7KflIGb5nFiH1MRXgjCwv94X54k4fduAjSppbpCCkazosLrgWPT4hnI8gKUQZqUGwYcbdfRO4f3bgQLXilMltPWDVmes1mvaJqapj7i3cDrV6/o2pY8y/BWAFpVFdJLQikya9muL7m+vsY50f0qoGvbsf1633eUpTSxca5HDbDdbsTz2oksRBtDZjO8GjicDhiTS/ClFZ0LIuXLMzILddvS9S3E4NL1A13TjZ9Ttx3HupGiPaVAW5TJ6AfP3/znv0UhwKgfJGjO4hratQ1ow/54inawJW7oef36NRcPLiJLLZvW3d0dL168YLlc4gtH3/f0naNTnVhpjpme2OU0+oKH4DBG2F3pN+CxWTZlzWIRsHdOpHIpQxyiecJMT6+NAH/nesCT5+XY8EyCJj8LeYXJNcqgvImZKPOBJE72ugRoi6KgLOfEoAclLPcwyB5ojPxuGJxkvLzH91IkOgURjCz6OK9hkqymT/cTOA+xFiOtOSMqDSIVTBkacTaZiAwTWf+2kcJhN3isNjy8vEQ9eDDaLWqtR5a973v80JEbcciyxrAs0zM0+GGI64keXXuWZUE3DJQxU66NoSpFNlXmGcpMWT5tDVpZfBBnl7woJHszeOr6SJZlUvSqbSQspIGRinKjwYvGXSk1SrO0krU34bPMmlGqbOMzEeOKjEVVjA5BEGJBrnTzbk91DJQcXd/y/uotOM9qu6EspdfL4XigbhxFJjKg8+2Wvpe6llPU9i+rQs5Jy7gbhu4HrW7/QOCe+OvpNYFz+Y0JkV0nTIx7mBVuzZkgFTt9pg1WRZ/0D1nf2bHmqePxZ7HIDDU1/xl/x8RwpXO4X0k+bWBaK5SPso951JoC89lnz8/HpVT8B/eDuOGr+e+0uqcdnQpa4x6cFiLE2SXarzKy2BHBfyqAUQF0YuHSuSbdf5gyDmMwEUBN6YJ7rF26XwFQid2cPZNJXvAB0J/VEYBYb2olaUKtIcs1ucmx1pNZIPTkVrFarGRDsTnV8hLnA29ffkfbdLy7qvnmxYHdvpGi0yKnyAqWi4rMajIDi8yyyA1VZlkUGYsqY2EtuRGHmTy3aG1Y5Dmb5RKdl2grbjZWW3SeYa2wPcYqjBb9fFABY+Q+6RCwMerXSuwxRTeNgHcgGLDaEEzJ0AqbiTZkm4KiKlk5Rz9IV1WVGYhewNqJx7x07ZXCtrJaUi4yKeo97gh41tmCZZVTnxp80DS+59gPsNLQO5q2YXO2xmbSuvx4e83gRb4TfMCabErIaEPn3Nj4wuaZqEWcx5GKqKSjXmYNfR9wXnG7bzn8+jXXLw988/sX/PP/w2v+4p/9Ux795FdkecGbl99SaMX71+8IAR4/for3YjlYZpqb68DucKJtYyFXkfO27dBG88Xn5ywKS5Frfv37jrZrKfMcbS1lWVGfxC1nsVjIsMWhTcGhPrJcluSZou7lXsq6M9s8mYpN0+te05KUWtIyB7XR0VM5zd/4TxYtjGKyj4vaxDT+0yttdmkNHOd5RMvCmoWUEMCgxLVqPM9pEx4zkgRUUOMmlxqQ3Juf6BiUq9i4Iq0FsaBOMA3KK2y0m1ReobSwlYGP198f28s5J03pIsjqW9kUQwgcT7XYLgIugEcxBNjf7fEetM3IihKd5dztbqVgPAa31lq6weMGYXn7tqPvxZMa51ktKm7fX+G8k6I5ZcdCfRXHjDGGuq5RSnFxcUFZlvRdh3MDxiuyLKMopDYoyy02y0Zyoe869vsDjx8/4ic/+ZIvvvwZ/5f/6/9EoCcrClx0v1IattstzfGANjnVomS5qFgsKsq84HQ8cn19Q9O0sXOzwsUmeDbL6J3n+m7H+74j9C1fPHtCsVjKWhoCBMlAZrFRUnKb6Ttx5FquVwz9MHZC7fqWoig4HPb0fcGirMQHu++o61qa/+QF1aKMsj1HXdfYwiLBNmORsNYWrENFCCPkmQTAWkthIDFoDsHjnDz3D9nYqXMo8n59n+Aj5b19wKukb58cSKb3TTaROj7f9A8YWfsxyz522Q4EJ44ysr5ItDnp0mdYBQix0HRedJqY4vm1aD3hnBCPN5KJkVUOYRCHnfhZ0phIOlwbrTFZypI7kZuF+Lmup2sHrDVYY0B5QiRKtBYHLO8dNjMRAwZU7HqtlWIRG1FpFQlVI65wKCWuQsZIJ29jRhkUkaMYhh6FYrWoGAYXj5nWVJG+Nm2Ddx6jGCVLIUqwQIpwM6tljHhh9pNlptw7HesPinvjIGVKQpDeIYkE9UEkUH0TZXLeYXRgtSxZr5ckuVRdt7S6xSgwWowyrLVkth7Jkh/6+of5uH+M28eDRWx8r/FRYthHfdkMPEbiYQR/947x4WFDkot8CJ3j7/y9H4zplg/PcWJ9P2Tc5Lx8YtTnIHUO+mcBxRzc/inmOxFiKfJNm2G4R/FNV5ScdQiJzJaCUB3C/ax1Yu8+uL57xyfijyTJGc9hAg+jl3z8sMSUp6/H850d7X6W5ePv0wLl4/2SSRUwRrNZLlB6QPmewhrwvXi5VhUGqNua9cUTbL7g7vaa2+srbq9qvn6+5+7YkGUijzFGo40mM5pVVVJmmsv1krP1ikWWUWYGowNWy921xlKWC8pCCmQ1jqqwmKJAG4MNUiSobVx8FBhkcgYdb1R6Njo2uCFIkBczFtoNpDIijQRoWVVK0QmisS0yqdh3g5cshtZRehYIPsMrIwxB9I71YcBmBVmR05WGoWtwWKrVglPdMHQS/VeDY28bcqNp6oYsN2ijaEJHYTNwLvrQFihtRFPnvfxfQje0NuJa4p14XpuAHwbwTtLAg+fu7sDxdGKxEMut63Cg7R31//s/8/7qln/6L/4V67MnmOB5/+57jFHsbu7QSnF+eYEKZ9zpHbgepYP4zsdCKG0MV+9vqaxmuyn5i794AlnBV1+9om962q4V+VNux2YtNk8pWcthN9C1A4vSsj91Uf6hp7GpAA1mvh/Px7GWhdwrcaIYwbaKIHjGgiVJzbipx71Yq/ufORarIprqQJgsJGdzVxEDPKWm8aOm9YogUoSUcZO/Scx4ZNZnnZ8n1l3mbdoUfJKNxPkscUGqA5JJPwwOpcO4DvxYX6NsKRbSJ/cTWZ90tAzsqdtWdN+dQ2c5h1p8otFapHBBWp77EOidp+0HlNLiCtP18vUsIDJGiuOPh0PcszQms+SlsHeps+QwONzgqaqKi4sLVqsVdV1jjKZuDOAoipwyjvksy8hHZ45F/L6kWlRsz7bCkqNBa37+819wdnbG6zcvyTLD3ZXGh55yUXJ+cc7Z2YYyL7i5uUNby/F4omt7nJdmSQEJ6kFIqX7wZCajWKxEsmcyjAaD5G5MJk1qTnWLd44iz7FWxnATZQnWKrF+NFK82rXSNTKzGQpFVS2Q4sYT/dCRWYuJxJfxgsxU1MJ651EqAinlI2mnxLLV6JhRAFKtilIkkJAC9XFoB5FGgWxWOuiURE0D6ROjS4L58bPiZpoyBURCx0ep6H0LycRdJpCo8Ol81LhNS8YrgvcRP32obXcuOvBMwHMsbiURaLNGTBGgJlmMcwPBxXN1Uj+hCQIsIzGlgpefWT05YalAZsSykxhsqBCLsuOaZxKBERKFmAC8uO0k1xgVa5HyLMPFfTglO1TcM51L0iJ5FiJJEkyRCl5VxIZu6OKz9iMpqtTUZ0OjUUaPNQAqaBxBjB5mmMZGN6CU8fFe7DMVAVUWEGVSaT012tAgXX9tvEdCzMRO37FeLsssbWPRTYs1OjaHG+h6S54Z3PC/savMvCNnurh7oG0s3JxuulyYmpp7JNAcR2likQLRhWVWpf0hu67iR7vguQ/L5cYF7rPX02/iZvYhIzV730TKJXAdvx2DkSlmmU/A+bnOPzt9rSDqvBltKf38APGehHQO8RYk5v2jOCkex6sol1H/9ShNxWuCpAeGVER6L2YKITLuceEbryfpCT9+5n/q5ZxYXCmQrpYGisKwrKpomdiyXmaUeYbvjhSrgsJYuuZIUS7RNse5lrcvvmF3e+TbF7fcHQaGQYpsxcfaozMrUbQfsKqk1IZ1mXO2XrMqcrJMWiaLEYMnzyxlkWONQWFQ3lPEiW9QMf0YI/IwaYpl3EXwFKNsYSeZBZkqLlB+lumQ1KOyesyc6LiI+QSSlYKoQZR0uiI4lSJaAhmDc1jrKLdr2oNUn7PKWa43dE1DWze0zrPqO46nE6dTTde1dJ0U9VRZhu87zldrqmLBzX5H7wYGF7BBoazD9FpS7NYy+J6mEybGayO6+eQ+gGIYPE3dElyg61rRA/cdfe/Y3Q386s/+EZ8/3vLoyU/oXnzHOhj2N7d41/HgwSOUC+AdRZ5xkx24ut7TNx3aGPbe8VopNquKclnyV//0KetVye9/94rD7R1d17LZnOOdaGaVtWhjCMhm1HQt27M1mekYugA6jmk1FWnP16cQQgQo0XpOzVyYAgRcHPtR9x5pdXE18+KgFIG92KeK1zA6ForPSIJ7GloYJ7xRUuDmQmSP0hyb6de991OwqIgyLj/bSPUo2wlh1vY9jbEEGKL0Lkn8FAo3G7NJ0hQS+fEjB+5aR5erCFL6aNsWYrYiIPIR8VL2YCUQ7geH8yIfG3zAeWHaByeNe5SW4rh2f5QMmZL9LTMWg4oOHb1YtWYZeVGwXC5ZbTYsV0u6vud4ONI0HUVR8PDho9hV84Sxmts7DaFnsaxEDpgJs2l0FoGKtJZru4GrqyuU/opkLahtxl/91T/jV7/6Ff/u3/1bvn/xHVVV0naeoshZLCuWy4UUjy5Ksixnuaxp2z42rJLaAGusMKNa07cNYZCGU3UnjLLOM2xmIYgF4rHtaLte9i01kLmoLw+egEcpS55nsocYQ9u20lAtF/mSFLAOtHXDUPd0WuREy0UVN0XGfUqIDgGb6GTvmKRnkcUbnU71uJcC0eZ3KgxXMAJ3mSoq7nv3GxgGNVkxyvji3ucqFaLFqprIOqb5m8AyxL2XmOGegU7izwNR/uIn5l19AryHCIzH72dQIIH71AAx+ICPILHvu4nJdxMukiLLJJsZmQ0ByVqjomOcNqIpRzH1lYiBq9y7eP9mXd0VMueUMmSZjbaH0wIjsrZJ8pSym9ZYgu9l/BszBjHOS9ba6Kn+UGlEtqVSqAAER6zoifeb0Q5Y+JG4psb1ID5NUXE4HzuhC6FijezdmRLYPAYmsyAujfG0RvfdgO/DaA2aZRZrZG3teyNF8X1Pl2V0WYYbfpitzA8G7oaJgZVr+wAgR9CeNoD7jHQC1XKzwvg0J7Vtoq3UB9HpHCz69DQ++H1ilD9isxWj5eKoRZ9/Zvw8771s2nGiT0FHnJjxfRNbPb+2++D5nr5s9rMUpGid/JjHj43AMAUZkSXU0wYeM4CEGeiODR4/vg+feIUQCDqFNvN7Gu5fQzzl0ec2nbeKrdeZwMSnXsKAQHBeupfqQGYVeSaAOQw9mYGqsLT1Aesasm2JHzqMseTlEo9md/OOb775hrevd7x6s8Oj8R4ym6OVpHKXZUFVCLu+XohsxhqLxhNcT1bk2DxHG0umNVlmhFVXBmMrMqMxboha4yhD8LL4pvswLaaAMeMzmsKfNNRCtGyb1TWkMS93RpraqOlvDUTJQnymIRCUF59hNUmvtIluJARMVTHEMV4GzZAr+iqjbnuqPud8teTu2NDFNu63N1d0dQ3ekeUlxSAlz3XXcjo1KG2xzqOynCzPwdpoMSet4p3p6TuRb/QuelxrH4FLSZFnVGWBtdA0PW9fvuN4e2T3s8/44pePuXz4lBfPv8UYze37a3QwnJ9fALDb3aLCEhMMNzc7uqHH+8Dp2OJ6Rzn0FMuSZ09XaB7zzVfw/t07drsdF2db6q7FIAsnzmOMFTcN78hzy7GRYjBrTASyiRsJ47zR0eklKAm55hkveWojWyEdWGMkl/SkPuqMU1AegiNoYtMnNXZrTbKyiQCIzHr8uaRWRT+bHHA+zCxCcruJG7rsFiLxM1rYrPj5Wuux94RKftjeY5SJi859OSEg2l8l2uDklvVjBu6ySUaXDOcI3rJardjv95xODW0vQFMpQ56XdL7lbr+jH5yMFaUZBkc3DGhrIugXe8Eit5ydndN1fcyqTB10TSHSiDLPKaqSrCjQ1rDdbvns8y+4ePCA3g3c3t2xu9vz5MkTikIs+PI8JxBo+4bz7UOKUnpTGCPgxEQWvGkalAp0XcP79+/59d//PadTS7VYcnF2yU8+/4wvvvic3/56y1//22+lRfuykB4UwUU7TEeWSfHkar0SV4vBsVitKLKcw+HAw0ePON+eMXQd79++4eW33xCC4tTkLIuMdSRj3r99jesH1qs1RisO+x3eib/3arUcMz5D76S5VGwFX9eiE87znLu7OxYL6SLpgwDMAPfwQGJaQeGQ2qCgzGwMe5EbxjGglZ79vTC1QYEJIndKmfaEJ1L34gS2YdqP00vA31Q0njBR+ieNekzUwcu59b2QH+Oao2JwMAbYkTBQU90O8bzSWpVY9SSP8aM71VwiM9XApPcGUpOxxLbPvNuRjMpoe0ysxfNS0CskgTSGc4OM9SwTYOqcI7MZ7RDlNnMcQqDvW8qimrCcUuRFgY5Bb56LpKvve7Is4xS7BBfRNUYbE2sGJqyRgh9j9CjZGBUfUd6itY49AOTaBODb0XFIRbAufz/hLq1SM0yRVxoNRmd0fYtWGmuFIDKIlWWyelXxY1IwZMzUl1qy/RqKDOeZmrJlOdlWHHMSPk7yB63MD1rffrgdZBpIIJFWArrpgaWomI9Z2TFlwRzUq5FeTm4w8wfx0WfEgfQhUJ3rRr1OExFSikYxuTXP3VQCjI0ICBEYK+IGPD93JrlM/MGHNlLz8/CR1R5lNWkikWIdNTVVT+A5bq7x11MUPx40sQfTz+Z3Zw7a/+T989Pfp7UojP9C1CGpUf86HTdEX+cw//F0H2c3K0l7cI6gVQR3WlpkGwXBUWbSsKhtarabCquF8SjLBT6IZOCbr57z/v2BV28ONK3DZsJmGqPJs4zMyoZWlSXn64JHFxvOlisWeUmZGVHs+gGNFKqmBg0ml4VDG0sWU2HErppKzeQFapIXKR8IIeaFg06PTNjLJH/wKajz0Y9XxQVBNkqpI9BpwI1ATp5LDFgVSEgnzH0ahBrIlJYqepPhQhi9/3UfwA0EFbA64JUiP19xPB4YWo1ar2kbAcJZVbFQgA7Yk1xfbgtSZshaw3K1Zn8qcQ66fuBwOnE8Kax10LbRqkvRu8DtYY9RimVVsV4UFN7QlyV1Y/hff/0Vu+aWv/jLn/Hk6We8fvWc427Pm1dvaVvH46eP5b6EKFHSitv9gbrt6AcPYaDtBtYuYPLAZmX5s189RZvA21fvWS5Knj665NT0dEEzIIVqbd9zOrVYY5HmWQoQaUTqaDwNV02IKTUVgjgaMdWDuAjUE0vvvCOYOCbSdqvCyMwpzWhBKQPJx2Mz9kJQIRCcHEcR5THIemK1pGyli2HUnKcAO5gZgFAobaQZCinQiBnNaAmrtEifJIicfKeT3IY0hpBr1HEhCHG8jxP9Rwzcg9KgDYRUkKxZriq6rhO5ix9wIdD2HU3cdNfrDR6k10Q/SCvy5Zqrm2s2my1VtWSxWlEuKn7zm99RWBulASpm9EoMiocPH7LebikXlRSKZxmPHz9mudlSrdagFINzoKQwzscbfnX9nmBgYEDrQF5aYfMTxxR943NrKMuctu/IGoOxQkwE7zgdTvzf/6f/G0rD3e0NKoRY4yJjw2iFMYrFYinBe2QUjNHSAXYQhvazL79EKU3nA+eXD/iX//t/xb/5f/4/+C9/85847u/QwVMaw7Iq2S4X5HkGpxqFWBxmSnE4nRj8wPnZlkVRYo0lSr5ZLpdkxtK1HbdXN2zWa/q2w7me8/MtNrM0TcPusOdsvRmxQ+pe6iJgdX2PNtIJU2uDVx8PWplD96UyCeTdJwHjRFD3Ca1PEVUhMZUzvOO9ZxjBmGRGjDGxE2g+at8JgaHv6IceiA54SQbkQ9RiT8F7Au7pXHwEpOlnI/suFyF/48WaOBWV4l0sjp2Y/27oxus0xowFquP+5uL9ksVBMI2Xgs+h78E76T6M2Dcm/OYGz6Ja0vRiBRpCEO238yilOZ1OdJ0EZoN3tEMfsy4VgxMbSh/tJTeb7fisRhluCpZjUDZ0U1BkrWXw0aI5rqEaj0ZDcJJh0GbUvhNChKEhWjcrMpsjlpyeTMu9UAEyK51wgxtQPnbvjc/DaIUtc4ZBMnsQpgZjQYpiMytz0A09XV2jlSIzStQHfhH34f+NpTJpUIzgLU2QwHQzk5TgQzA3gp3p5wkgfzjNPtSM3wOgI3idpC/pPemTQ7SexKUJF5mtMbYNE/B1E2iPFCkScSWAHLdyr8YiNBUj0nTd6TU55oRx4gaVsgQBPXV0GDf3cWGIP/vINzkGIOM9uXf/pmfy4X36pJxnOrrcP5mLMdU/McvJOSPMPkvUwgKeVbxhc5YhHX/+rIGozTT4MNC1DeYsZ7koaI+3FEazLDNUcFIEGuHQ7c0133//lnfvjtTNIEVZsctekVmKzFBmljLPqbKMzXLB2ariYrNilVcYQiz+UhRZJg2WjJEKdWvFH1brMbMiQZibgWqIYRbBS3pPim9AhWgxqDXBDyKv8WFk6Mb7E1JNQrrjMwCFErDnZ/d3ZFmn9wWSEa0Zp5rRBh2kGMZZkdUELeeYRf933bd433MaGgyBx5cP6eqWar0kX5RSdBsc2gcym8c2zrKIFWXBZrkkK0reXV1Jh9PCcjp1UkDUiJ1n53rqpsU7z/544jbPWS8rTu3A5fkZ59sNr19csyg1P/np5zx8+JTmcOT27sDrN+9ovefxwy1rDcqeWKPAaIbrO7qmJV+tOO6PeBdYbiArcspNzl/+6idoArvdntCveLBachjg9tRgNJxqR9P0VIt8FpxOxZgy7lOxaXRB8n5kzRKkVkp0lipVro+RdKyBCIqAi+rAMM6J+cxMnxlANjelxu6HIkWZNnsd236boEYZxP05Hcb3ztc6WYpiMVrsfJpO1yiVWjLcX4+JaeAYLKbPEHtIGXVGa3QIDO5jwPJjeQVAaU1mxFGqA+noaBSrZSVSClSUSEGgZ3N2IY1RtGaxWLBarbi922O14Xg8cXV1LZtyUJTLBdvVEqNE0rGoKi4vzlBKsaoW4oBRlVSLBeVC2sAXmQUv1q6ZLdDRnSMoIyA8F+lKyoZqY3DDIHK7zGKj97jUQJwocstqtaCuW46nBvAcT3u6vol+8QOu7zEGVlVFmWdRkuDZ7/eR4Ze27E3TcapbnA8U+YLlas3Dhw+pqoX0uzjb8n/6H/5HPv/8c/7L3/wNr148Z+hajm1HXuSszrf0bc/xsKdrjjy+POfR5RPKIpemSnF1G5ynzAXgnJ+f07Ud11dXMXBa0zQN+/1BukxXvVaIWAABAABJREFUJQ8ePKA5nmKZUdyDdCqE1CiEiJmaIso26aMnug6TA0wiTO4BYKlajQDP3CPkErv+p/oZDL2AzwQYjTHyjJQagfsI1uP7PsQzIiOSb32YFaO6WfGqnzIA6ZW22Q+L0lNmou/bqWNqCAQ34IZhLGwV5n+qSdNaCzsd5ucpQYyPrkfex0xIkIzFhyThmHXQmiHIujYGIXH98yGwWK/oup7MZpwtl5Jx2e+om4a2bUdmf7VaRWvNgbIUu9DUzAtgs9mM15uO27YtWZaN93zMdkbs6lOgw9R0S8X7nWWCQ7quxmZWarzivQFP1w3jvZtf76if19G2NbPxXsm1l2UZn4kEanmeUxQFTdvKemsNNrPyf5P91xe2+PqHAfc0aCJj7uOg03BvQN7TVY4AZqbZHgcZ97zPx40usZJh/t7Eds1A6/y4ITmqiMexMir6ETNOzBBZ+KDluPipE6EnMWjcCzIinBuPnzRWU0JuBsCnWS/MewQIjJttGE9+3jn2o3qB+AqKccB9KMsJ6eRA7LxSsKFmnR65r58bPzeINnfsyJcYnZEIVh/dMxWIRSPpfO594gTilR59ToNz9L7HuYHclKxWFUp52qbl7KzEaMUw9CwXFSbP6YLn+v01797ecbdr8F5RVUWsvLbYWPSSW0OuA4vCcLZesl0tKIxBe4dWHmNyrAbrHTZKCYxNgJ2xeAbvY8fTIOxcBN4iqVKgpI35JO0S7V5wMpHleiV9LYGb3Aul04jyoEzccOIC62MEDwRlRtAvXUFUBIvRAQBQypOcURQpACSes1hUqkHGvNGWYV9jVXTp0R1kOW17xA2O5aKiXy/pDgdKkzH4QF7mrJYrurqhWiw5u7ykWCwJ3mGt5Vi31JV0Vr097Lm5vUXjKFQRNZOBpvUMrqbtxTGnHzyLKufb796TZ4bHT57w2Rdf0n39NVfXB16+fEPfNnz29JLVaoEPij44LsKGw+6E6wcUmsP+RJ5JPYRyDqt7/uLPn/H8+RXH/YFNmbEoKo4tWC0BUVN3VNVCGOwBgon6VJU6Kk4CpnFOIYXcxHSqNoaQ1hM1rR8qSLGbDgqXJnsEQsGpcU4aHdfH4KeCq4ioJ9eZJKvy+JC84pGAf7YujJk8n7q+ynFHMJE2diWsslKK4DyDctN6Eu43aEIrwuCj9EnAiYl/m+xCQ0DY9x/ryxhC72I3wmi55xxZZslsLvMOjTGW9XbL2/c3BB3IcoPzhq7tePf2LU3boZQmMwrynDyzscgso+9b8jxju1pzeX7BosixmcE7R649JkhX5cIuqHJLkVuCycTRKivwIVAUlTDujWK5XLJcrjjWLUWhCLrE5pk4Z1krREFQ2MKy2WxQ6hAzA6W0jj91AkwGydwFLx2Fq6pguaxYLiry3BK83Ie2bcnzktVqxWIJdn+MEjpDuahYb7dsNluMtTilKLKCf/Lf/Quq5ZI//O63vPz2W+6u3+OU5s37K4a2A++o8pyudwJKMsluKmnsEoGtHhtkBR+oqor9fk9VlVTLBcMgQYcUFDtWi4VcU5wbQz9IIKDGRHH8j0ZlUgugtYpr+n05i4qt5xNwH+tC4rxM2EU+Ut0D7eMel4D+rNI9BQGaZH8oLLa1dvQaFy92KYZ1vVyfyC/kZ5OtYwSj48+mbMHcKSZ9n8B4+vkw9DRNI+tMzOjK5yd5x7SPjHJY6aw5mkrEX0Jk44cZOw8i+7DWiiuaExJDupfmnOoGa3OKPLoDOQcKzs7OePnyJe/fXZEXOUp3nJqa5WLNMDjyPOfxk8dYm9H3cg15XtAPvTguxWxQnuc459jv9vjIxltr6WOA450XwjBmxK21YrvrE2Ec19RxPRT50tCLTE55aOujSEYJeJXsSSOu0lKEqtXkHjTP4riY6UjAXZ6DxyiNzjI8U6drcc+xGOOi6caHVPanXz+8ODUt6glwBsamPAn/zaO+CVhOUpj7/FH62w/Y4ZAYTJh7p9xjp4kOZzNgL0dSJCeIVCA27/KZor4AM7eYiMnihgyMbL6OBVrJDlLNO5nN2K4ppUYsrhgvXgABjLaT42MJia1jjAjn93DuPjHNow809TMWQTEFAuN91Uy/+8B1wqd7MDKA+t7x5889nfnIFIb7bOB0WOmgJ4szdF0bF4ggDZIWOcf9DVpDXohyu6oWVOWCoDW761tePH/D7c0xenyLDjHLMozWWCV2UZmVwqmz5ZKlMZjgwPWEzGJzYZZSZbykgCe9nqQv9QiQkr0mQd6XUqoqaonxMrGV0gTd45VBaenWNo7vSO8q4rgzmhDmacdxdJIahsiYUPHngSSuDvE5agQQ+pCaiGlQIv/QpEyBwmlp/Tx46eiXZ7IxDcGzKKB3HdtlKa3VrWFdVdxllvJ8TR2LQh8/fsT+9pZqsWC7WeFC4PJsTZFbTk2Lx7A7HshLi/OO292O0AeUEQ1fF9OSznv2hxM+QGYMN4cCjcfajAePHvH06TNud7+nrgfevrmG4Hjy9AGL1YLBefzgMdslh31DP3h821CfTpSFJcszFlVJH3p+9ouHXL24ou0ajMlYFDm9g1oPDH2H0YrMak7dIOx4AtkxOh2ffWJivKRwTdDRWSKtEyHtXaM7SQhq7JaqUrFrfG+qY1HxeNpEmUZIvPz0efPBEYhF6wp0bOk+ZmK4v86kIlTifFWRtZvWBvlo7+MmHJ1k5ptuCAmEEDsCq3vz+lPSgB/bK1m7pfkjrkkaos2ptEzPQClhgYuMbogpb61wGobgyDKNczKeVQgMg5BDVgNGEdzA6bAjU7B8/IjzzVb6D1gr5IwbpDFb0eAzS1FUKGNGgGRiUWVmLEVRynpYVPjQ4QaPtjJYxnR7BEKZlWLPPJM6k9ViwdANeCfjAUBZWC4q1uuKRVWQF/J+bYWp7ochZl+iM0sM2NarlWQKqlI6Rcd1WBvLYrXi8y+/JM9zHlxc8OLbb7m5fktdn9CZNKVaVgVFZkXy4IPIQJyDMGBy6RsRfKBzPUYbyqrCOUfd1KzW61EbLraE8ix9YCz+DAhJMWa1nejdjRWGWxtpbBFmge486P2T0peERXwg6IntFgzgx3Vb6hUj4QKRXZ8C3zHjPjuOMNSSsQx+cnpJOdYQA/u0jyfP9Q+B+lzjnqwg53aQSZYygvxhso4MkRAyHwUjIhcdm2tG8ZYELvIcnJt08MAs0JH7XeQFRZajzJRlsNYKkacNNsupqiVZVvDoyTMCQdjzqP1PTY/u7nbxXhHlNS4GBjp2SZVzdlGik9arBIS9F7a278O45yslzi5h8BM5GddKWSRUcvMd10YisekSoTYSP4iEaOhRRrq9OueF4Y8yInHoEcIgkafehzG7mwI9a6TeIwQYnMPoCQf+t17/AI17EGs8ZLNQzkcm8v6BJlA5A6ohtdNOFl1ENDqB9vT/VOmdJsxH56FG8koOM0e2pDgiSmnCpyZqYv71xKTNomw5xn1GLhHlKU2Zhm/aKMcHGi2G0qYsf6tGgB7i+Y/XPp7ztLgk3ZYQtHKmI/M9X4Rmf58+LbH4SqloY5ieCbMIIC7rITLpWs8Wm3kBrzzESUaTPmyenmMCPxFUa6YCT+ccOrqlrFcVRom+qyoteQbGBqqqRBvNsT3x/as3vHl9S33qcF5SSC6yD8YoYW9yS24tmVZiJ9l3hMGSlQuK3ArzGoJEsVmGik0eNNElZgZuxmDFT0U58QIl8h5RG1FClIIbYX+UMkx0PFOwKRFcZMyDFJyM82KSRt0bB4qpLgJh9Aki85g0mvHZxWNLelehrCUMgeB70dvmOcoP1Kc99f6ADppMK+rjniyzrFYV682K7VpxOJzItGaz3bDeblHa4NuWB+dbzjdrbnZ7GhfwOE71iYvtlhA8t7v9WKBjbBpDAFpaoWtD1zpevDmyXF1hc8Nmu+HRk8ccv3lFXTfc7k5k5Q1n6y3LRUXwgfbUCvhQStwHkPbUfdtSlgXlZkGWa5589oDu1LHfdRgfKK3BGji1spFZI8/TJx/hFDxFoOS9I7U/FzAfn6EPsRFSSI9rPslSTXgMwASkpw2YAKm2aJqjamR6UuAWogNFytIppca1NMwKR9PnyLoZGXQfYgH+LK2Piu4UsQgtyPvnKe/RrSbNfaUwSuoitJJAUADEbE38Eb+SZ7RI4oiSMoNxgcEPEIh2hMKuL4qCEBoIBlPm5FazWpZ0g6dppENp32t63ROCANTcZCI/6Hrq4xE3DOQ2I5SVbOQRCHV1TWdF615WDm38CGiCd2ijBLhnOYtqwdnmjKubd7jOkxsb9yqAgDGKoe9FH2ulUczQ5wxVgRsq0RHH8WCNZrVeslpV5IXFZpKSt5mASOsFlPRDL4Gyl8Lz7XbLcrEgzwtstO5L9ng+eFbrNXmWcXlxznq94qvfW66v3tN3LVaJ3t9ohRsGmrqlNyp6V4PW0hkyAVSthJVfbtbs9zuKvkcpkQWKT7imbyTrEVdtCbK1wdgMT5J9TZryuLiPxMok+5gaQAqGmGRnMMvCawFZKCUgexxHalq300fGPXuUw0TAnuQt97zU5RFCBMlj0Xxi8WFG4vkI8N0Y/BMB6gjcBzcWm3ov3V6Tc4yAetGgS1GkHFzHrHna0dO5ypqn4l2RV+IHVHTbSuucPBtLNwwxoJPnlKSnhRV5avCBEAZx7vLQNC3GWC4uLqWHQVw/+xh49H1HfYra7zynLEtOTUM/DFRVSWYl0E6yEzNKoGaEQwgQ5N4kLOmGgaHrhEBOtXzpoSumTEciV7yQTYPrZLzE559uSghhtM0kOFzvUcEK5hlcZPdTDZwnORslvBtmeMsaK7V9mafIC7Gi/QGvHwzcfRDgHsKse6iaYPD8NTI7CfHyAZMzB6EfuMjM7qdwkXNGPW2GcYAIcInnkYBn+mP/6ciaxJSmfzGKvCdRmW1eYTah5hHn/fdMg8dHQAwpyJhPWEiNnoB7FpX3QTkxLTrd2g9/Pwf9H16lmv13/t6g0tDk3uCdy43G4MUnvXec4iqMgVA65/G3KlbSp4hKiZUaYUApw7LKeXi5pmsbuqbmwWWF+LAavB/oXc/V3Y6Xr265vjpIgaKy4ggUwLke7xSmKMhtJqcSZS5WK4osJzcWnaq8ow2cuGcIUDMzt6B40aPGOXmuMhuHSQM3LfNqXFRjiMkYvqfFViX0PQP5KjCKaNLiICF/XBSQhTnKukRfLQua14ypToj67NE95L61oVbikGK1dHHFwWqxpMhzBg+9C+zrE8EatuslBMfZ9oLtZgUmI8vXlMslp+NB7quxeNehVaA57Wlr6W6qgme1WNB1vbi4hDAyXoOTRk4my7BGrCRv7w58872iWCq0hcsHF9zta777+jlX1we0ElZ4US1ZrCqMtgS0+NwrTXA9LjgMivpwZBg6iuUCow1ZYdmcZXRXR9TgiFiJvuvJbDFuNj5uwsnnZTaLU4RKSqHKEqPuzd2UUZnGThjXp9SMRQD1VKyaNjlF9Gr20+fJOi7jc3Qx0npk+YmsT2KGE/MlB01Zv7hpacbmPvFkcYMfC64UwjoLSJAmO6gE9JN9nhoddD6SPP5IX6nISwUj4KUfYsO1DN129P2AwpNpS5XnmCxn6HthyiNbmJcld7s9bdtzOJxizwH57Pp0krW+KMmyjKos6bqem7sd29WG5BqitFjY9qcaliu644k8aP6/3P3nr2ZZlt6J/bY57jXXhMuI9FXV1VVtyaGGHFIUMSNAkAQOxH9AAgQM9H2gf25IzZDDAcghyO4hm+xme1NVmZWZ4a573XHb6MPa+5xzb0Q1szkagKlTyIqIe19zzDbPetaznlWuDEVpGdyI1paqKIi+Zl1vuDh/xJs3r4leYVVJoRTgCWEkxJEYR7SC0kBTWkJVEJqCujwHhCG1VkiOqKEsC6yVIlZtDcZaQFMpRd8P0ik5Asqw3TZcXFywTtrjLAPIQUPwYIqClTE0TU1ZWozV/Ownf8Gb128YupYxRmI3clYX3NzcorVi3VRsNyv6XnS+VSWNkIKCMQaaVc2xO9HmhmtRMXQjo4bSFBRVJQxsFJmq94GyNsmNScl6qDREjQsxydV0cijRjM5P89+T9oYI0cdpfmYDhwxqiaINR2uJA7RG62xyoYSQMcI4Gy1uI1Vdpbb1QlIOwzCx4FMX43QNGiV9NZxLhIw4eEWV7YgDBC/Ocul8iNnWMaRGW9Lf2Hmx5c0MvBtH6cCbMExhxOJTGgumtSP1CyEKu6y1lm6nxWx77EOUNSNC8A5j7STdyj7lkUjftvhCMuhVWUpAOAy40RMCHNUJboUI/PKnX9B1nfibKzXJiZq6mbBRoQybesXNeMs49Hg3Tmu5Tt1MxaSioE4NnaQjskjFMtkRvcMrkeQ2VYN41uc9QTrYhnQesl6k7Eb0qRlVavCFrIemrPCJLTcJ70lzpyTH9J6Q6isViNwpOSBlYtVHCaCGYUBbg8VQK5HZ5azCf3B9+7YL4RRJKpVkJrLp5Tg4RyITmM1gZ5E2CpnFmqLg+VgC+4eykeXPJmiZNp6sw5xSTyEmS6i0AS7eO2P1BZj+BZtTBvMxBe7Z+/OeHCj9jEUUZ6ZgY46kJcBJ55w//0GmIcUQ088EP6hJzvJQl5u5cDWd7AJ8IK4/80Yc77nb5CtcJjWmrMMikFI6y0DeDW7yezLjoJCUqzUG51KaKH345fmadWP55vUbrApUlcZYKeqKiCXU1693vHq149QOAnKiuNloraX5hymwymCVZl2WbOuGdb3iYr2lKSuJgHVeqE3y+LZpAVREpacIXSfLsOhzYR+o7MyBmmQIMTM0iwBNdPApiFMBowty0WIG8TE/HQUx+pThUEwsbY42Fw0zloWtwsAmTTWSEgxBWnnLIJQnKc8/pFqFpB8tSrw1hGEQC06FVMAbRVFdMHjHUBbsDicgstlucUERg2M8Hhi7EyoETFFz153Y3d7Qdz3BjzjXo400RDnbrjkcc1wRGUaHNmJt2PYdjx89xg2K42HHT396pCojTaF58vwFn3zyEce7Iz/92dccdyfcENie9ZxfnlOvV4Qg+sOyrLi9uWEcRupCPO3H/UB76iiqirIqqaqaR5cr+usjtjXEGBjHgaZeoVXEeQeI44FOgVVUeV5nWcsyKI6JjWcRGAmbtpSsKG0nYmG5xgixkkB7lto9DHwjOaqXx6mEmZHsneiYl3K9qX5CyTiIkbnYXSmU0UkTG6fANdkP42MuC5RDmwTYlYz/uaPy/TUGmFjE7+KxWq2k0M3JpmlL2RDHYSAQKcpyaq6igMPxRGUMPoqlm/inF9yMAwaoS4tWc/oeIuPQI7aRjq7rIEa++OILztYbPvnkEx49ekSVCtVOxyPVaoU2BaNzHI8Hzi8fU5QVQ9eiUiOiuq65vHxEYSu8F13tiDzvorSM40BRWIa+J8YwuVLo7QqtpROjFErOnS+LusB7jy2SRa62DE4AlQsB5wLjGAhe8ejRUy4vL1k1jazPcZZerKqaqqqwSjH0PYe7HVWz5sOPP+Hy8hF/8Pv/nm++/JI4DlS1ZXfYie2uMowucjz1XF5sqapCQFuSkrnBc3l5yeZs5O7mlhgim9WKs7MzrLXc3t4mK2FLYSSwUkox+kBp5Tn6CC5Ik6xms2YYnWQJjBbZVFQUZcEYvLieZRCY9oRlp9Nll9MYc3H7XBCbD2utkJmkGpSp0dlkDixBXdMQQqBrO2ICy36UMSQSlBwqpL06ZqY9JomFzO0cBMQJvMve4BKr3vZdYuNFU53ncVEUVEUpdRIqscHpu/O2JQScvFalup18hBAYu56yLAnOMYTAqBzdOFAWNX3fs1pJh9Ddfs/ubo/3kaqqxV41YUBPZLs55+bmbvrssiw5f3ZBXEHfdhhrcaOjPXYydpVltVphTYHzjt1+z6vXL3nx4jnbszMeP3rEOI4cj0fKQki9vm/vFQxrFKGUedF1i2fgPGPvKMsyZWdFnpT1+7KLh8XaHojjIFgwCLiXLE3Ah4WePQG+pYFK9BIoKCTTp2Kkrmv5znGQoC5lCb/N8e017vJoZ0Y7Pegpvf9edlvYwVwsGSePy/SZSxZ+8e9lqvYhwE3fnEASBJPY95j0ZWre9EKcU9sTME2gd44r3j3v6bsnyjmDpQevyexrSlNnQDcxZvlWZRD34P33Mg0ZTD5ImU3Nqh5mJfK1JKAwnWf6uuX1qekH0824F8Dcfw6C5nPqPT/r6RnkxUype88pxORVHkltnwUUVWXB0ydbuq7lcDjx8QdbysKIr7otMEXJft/y8ptbdncnul6anZjkv21SClSuNVIZxbouuTzb8OjiXLppFiW2qrGmnFsoFyXa5lbJOZUpjiAmiutAZL53aXiglJ2KVSZmVWnAiNVjZlrUPAam+6AWwD6N9ETOJN170hXrXAwpi7RGiiHFWzffY+kOKJuCjDEd50hL3FFkMYiJPVBGo6NNVpwV0Y24zoN3klo2VggcL7ZY0TnKqsYqldKJI02zot3f0bd7pJ1QZOh7OQkf0DGgoocoHRJH5zFK5DmH04nSGsLo6Y6tFO6dXbDf3/HFF9dcnjfoouLyyXM+/uQF19e3vPzmhp+6a7ZnDRe7no8+fMqqbvAxUtYaNzpur4UVNEXJcDpJ/YEacG6ECE1d8+iyoXeRU9visj+/2FlMG8f8nAS4kxonTZ3W0vj3Iac/Etu+mD55gmUW3hPl2UyB2PSSPE2nt0+/kwdKXkxzwB3TWF1+1zKIzk43KgcdcnnkPhQoIQ601emSBD7oqRvNPK8zm68R68sM+lH31+Tv6qGNpSjBKzfZ5RWF+Pq7oiA4kRWM44gPgSdPH6f1DQ6nE7d3d/TDNUQpNi6T3eLYO4auJ7O5KJWYTwEA2hi6YeTl69e44Hn6+IlYHxYlh/2eY9fTrDdsLy7QeJSGVV3TeY8pNJui4ZE/58WnH/Llz3/KEMXmUCWHjhgCPo5TEbGxirKyGKtSg6bZ1zyzmcYUKGUIHtpThw8BU5Rst+c0zYrjoaXX0uvh8aMnPHn8hPVqgzUF1hYUjQDtw+FA17aS2Uv6XKMsFxcXnG83WKP5+MMP2d/ccPP1N4yZbQaC8zgvLmH7Y4u1mrIqJnXp9e0NdVnx5OlT2uOJwY8c+pbSWVabrQRUtkikoKJaNfgg1p0uSpavbirKpsaNXphxLcSNtpq6Lhi9E3vXhAqytWQ+HtaUFEUxBc55zkgBotzf0TmKohAAr0jyFHE8iSEyOkd3ammPpwTCfWrAI8FBiBDc0i1m1qkDk6ON9FWQ181dT/3kD9/2nZzPOE5gXpMkk0pJsJX6gUCS98bkeZ4KUvHymSplikT+IxuVG0d6N9InJtuNjn4YU+ampSpr3r69xVhL0zTU9YqI5u7ujsE59ocDu90u1WZUPHr8hIvLS6y13O0PfPnV19MaaqtMtgFG8ejykoB0+b65vaEfer73+fdRxnC33/Py5atpnCsFdVUtPPNF6tQeT1RVSWFkflSVNA/TWuHHSJ8kRVneJIF5qlmIMxsfY0RbpPA9xiQVjSg9yxYLbZJ/vJd1PpGv2TmOaR+CGJ2MQ6MolMaEhez6P3D8le0gSRtVInknH/f5JXIJuYvZpO2E6UImsLc4Sa2yVu0+YF/+e8lOq2ynp1O/SsXMfKtcFLpkS+O8KcVs+Dftr+8NItJOOmUVlucyBTETG80EBDOwnbTgKp/K/Wu79735M9+NEeQhG0X0vAPg3/d3EQXMBW+R+ODcHxwTpp9f977Pn96f2UuYAgeFSimsfFck8Fk1BY8uVly9vYKosFpTlKWwpc2K4EZu7k5cXZ9oW9Fa3mP8tNxpo6XxybqpOdusaKqCqjDYuqRcNdhyJTAsg36tiam6XyWXDxkDkpXJjfF0AttSnCPsatQmadpBkZp6KPEGB5UKVDM/mZH5cjSxKF6SLrK5GFrSnnMGREeLdOjMDHpuBDQXgwsDolBqHsO5FmGWA0EggJV7oIGyqlHKcIrCygc/EpxjszlDeYWOXhpLaEUcOkwUD+ZqtcYf9wzdaXLyUc7LmPIDRkkrao2f5n9VFthiy+nUUlcVMQTG0VHXBdZYdvsDf/bTK4K2qKJmvW34/PMPOe4HbndHxgB3+4629fzw+x9RViXDGKjqimq9oW9bjC1o1htubq6pdcPoPP0wcLY942xzhovQ9iP7Y5sKg2SdiDFAtlnM6wRZXy6L7nSvUQRmH38W82E5F1yQZi4hJo9gZKMlB2d5QdBzEZRSeb5nmdS8HklNxTwh1YPvzWSDTmM1kwQhjeX0VSn7Na+9OSLNy1n0EaXjpLFVSkk6PI3REOW+xBiJzvFdPbSWZi7eGMZBXCmUMRPYli0TdCoA11pzPB6T5EzRVDWlsdwd9nPHVIIUf6uaiOJwlP3MWJs6f4ozRgzQdQPffPOK25s7nn/wjE8//RydXDhi8Ozvbjkcjnz2w18iuCFZgkoTmNWq4cUHz3j79pWARUlB4v2ANYroVTaVIq9rAgwSGMvrkI8oC6SsgzYaq0t0YTFWik7dCMaUlFWkLBs2m82kFa9So5xcaFhVFednZ3jnGLuerm2JwWOQ4ObR5WO2qw2H80vWtoIYefvqJX0/YA3UZYHzonsuipoYFLYsaJqKECK9G1lVNUVZpOJqhYvSY8L18j2FlUDG+4iyBYU2RDTGFmhb4HzA5aZjMa+bcOq7ifmWORim+QhMLHb+fa41mwIhtSwYF7lGlmw65yapyRQQa02MZpIbid49uf0gz86NLpFzIokJCyeZ7CaTGzJlLJHB+jCMjMOYZDlyhCDZ6xgChbHCJC+uLZI06+ILMZNVkCyUTQpKE6sf3OK85drG0aX1QnE8tIQAP797idaGZrVmvV5jjOHZ8+ccXr4E4NHjx3z+ve9RlhWPHz/F2IIY4XA8cDwcefbBC07dkXH0OD+y3+3Z7/doo7m6vZ0aqQWkdu3ly1eYwnC22XB+fsE4DFxdveXNm1d8//s/SA0gC0L0DEPP2IknfLGSQGZ0IoMJUWygnR+lYV7Cjvl5LY+lzJt0z13waR6G2bglpzrTe/SCJI3IHq5AGHbvkyxKyf6kFIX+3wK4x+xQAGm3mTcouLfZyP74AAxnwlA9AIRq6R/zLlh8n6xGZRbcSwgRp8+ZNzkQyYjSmVmbU8ZKMTHqOt7/3GXQMLUHX16LmjWhkwQl65QXn6HyJgiLc5qB7fI75wZJsyQnJrAfpxuKNHAJc/rmfTrU+fyZd/R03PMglRNPftT3MMp7n8Py51NiPWZWWlhIH6X5EkZhjWG7XTH6wKkbqcsarQ1VtaKq6pRa9HzzZsfN7YG+HyfANBW3eI8uxArSmtTMCdGNV0UhrgeFaOoUTF0GFaIt1slBJt/xDK/leiUkU1qjtE2Mtk6flR+sZx5OKj+kxd9n0D6Bda1Bmfnn+fkrmbgxuBnMpf9XcfIdmYJdrfQkL0uzPYeJ5Pk3RSBysvkJQQwYbVClIuoNvff4fqQIhq0uWNUN/dinAaWlWccw0N7eYBvpeOedp29PeDfSddJcpa4KXACLpigidZCxr4xmk1KT0QfKskjZAmmOVFUVN3dHXr65pagLPv7oQ55/8Iz9TYv72TecBkd7ivT9DRHFiw8vaOoVKmUPxD8YNufnjHiGYaCqV4zjyG5/YJu0+x88kRbSRkmQOCbf9uADWsdpUoinesBpj/KIXZcxUyFarkvQzIXFeWMOMeLTHNUB7lewpjlNZj6TPWuc555SwqIJBIipOFpj0pqmlh3eps+bon8Ssk6+yGHOGKTmLjGEFADKePAKkRQGNXnPQyQmGUEkEo04KyiVC9Qj4Tvs466TEwpREWyuC5D/dIzoLHvSirNzafKSwbfykkVSxnC+3XI8HPAx4tLYcYmdKwo7AXdQ7HZ7+nHg0aMn9G3H6D1qGLi926F+/hWrTcN6vUZjRTutRq7evGFzdoGta2xZYq2BWPPo4pzHjy7Y3d3gBpccr1IHZclt4n0qYERcc2IUh5xptdKaAiUdfqMEsEpDoS0xeo6Hlq4fURjqesXFxSVPnj6jWW9Sx1eb1kYZmy552GcSSmudGknBODpKK844cRuoPvtssuC7u72m744cTqJrLgtpmAQaNXhQI1UpbGg/jMlBRix866ZBKU1dN/LVSqOLErQ0gpOamESphJj2l4pT3wqRk9ZzcXhiZrDzEprInBDjpP3OxaZ5vssRF/tjXoOTVW+Ys2VKiVOQEFfJJ30xjbJTjI8BNzqMyZn3MK0z0xEzgA73Cl2z/WPaeAEB9CGtYaYoKG1BURQp+z0XR+bvCCF3nk3g3UfMItmX14Ws0zfGMg4jXdczOtHYH3YnxtHx4x//mGfPPsCHyPXtLe2ppWpWfO/7P+D84oJHjx9TlSVffPklXT+ifRAb4cHhEVnkarPl5199jdKKomnY2oLT6UB37AhohkF6DIiERWNLSwiKwQUO+z3X19e4sed4PKXCZct+f+Rw2FOXFWUCyaP3hCH5vhtFDAkzBsGKWguQHgaRxFDI845InyKfnGNyt+xJ4pSCAB+kzmlWp6i5WDXVXYQYk75fyLYsicqdcL/N8e1dZTJTq9QEwCVaU9Mm815GOaHC9zLDmXmfcfb02UvZzC86MsDNqD+fYzqL/KoZCqn8/ek6tJrtItMFKXLU9G7gkc9d2omrxGynx5om771mDUsQn29YXjPUIgBhBs3ZOjNGiDpOi2TOOGTP/LmWQL4/67ZhwR5m0J+u/eF915npn+7xHPjcX7Tm92ZGQSmSRd4MLH1mdolEF6itpq4rdvuW46nn6aNzqqqmXp1jS8PQHxm85u31icOxox9GINs1AjFglfgAl8ZSakNlFaXVVEacC/KY1MnnOGv7dJZKLB66XBOpQDgxlyrbRS5dCzLUVghllb9nCZKXoaYAdm1s6tioQCV9ef5fTMGeErcjlT5i+qasO84e7jmwWgQcYYreU9AxzZuFE0Cep6lbpNIKa8UKL1qF9Z1kvqym1AV+6PCpYNoUFlNahnGgHwZssm4rixJNJ565RmoT8JHRO4ZUHGVVIc+oKDiNJ0KQFtE5ALLWEuLI7u7E3faIiq/4pc8/5pPvPaV1Pd+8OnBzc0foPD/5yWv2hxMvnl9ycX6O1oairBjbltE7njx7xuvXb7FlhUcRfMft1Q0XjxRPLzfgoYslWrcyGkPy8s4FiykgD5GFi1KaSxnQLeaMWox/lvdbKYnPWGTNlutWlLnpc/1EDGlzz4HB3G7r4TKXRYXTPEws4bS65fVA62RZJgNDCMGY4ko5h4AQCNnJJl8vMWvmZ4s4mR5aenQ8qMn9Lh0qdY5FCxub6cXgPToGLBGX9tvVZs3pdKIxhr7rCE4yUd5JJsn1UoTtjDCmPT1olYLYmQyqV424XViLLQqIEWssbTcwvH7D5rSi3Z5YbzbUqxXKWN588w3j6FifbWnWG8qmoSkKzjcbXjx9hutauvaEjwGrddLsK5Qy+CDOISCyEO/Fii4vDEqD8zElmAQsCVSQuXk8nHA+slpvWG+2PHnyjLOLC+qmmTp9ShpHSJkwDJOkAKVSIV0E5ySYTc2MtDZcXD6ia1txBLOG67eRw90NXdexqitslr0oMb7IDH8gJK98yTRKbYIUIbqsH9aGoqoIo0tzScatjxJoK2OEOJmyDwpjbFrvFVNvDJVxbK5JyR7sc9OleyRYHltKgusQfAoKzIQ7cgY6TuRAIp+yEUICcSHdqylzmj978fcJtMdwD7z71JcgxJjGgNRYRCWa+rIoxOFtkvkwkWyZRICFhDkmS00lRbrLxk0heIZxQKmRoZf6or4fcU6exZOnz/jhL/+YJ0+fcTgcCUpT1S1l1XBx+Ziz8zNW67Xo0NuWcUgZpERohBhxoWO1brjZ7dls1qzWa0wFp6GnWm/EPScqfAioIFVfYQw413Jzd8dud0d7OrFuGg5Jojk6z263o+taiqIEpemdE3vMpDcvMCjEGS4ksiL3/mnbjsKapCwIE+4jShdtYxMxoPI4mTM50zqdbnxI84+oJytQ70aR8iJBWwxhOodvc/xHSGUgs6xTsWWcB9pyBM6gRCVd5wxC8+szKxWT5ljBon/Z8jXvCQxUZjnnc9Lk1HSSGECyOpO0RVSIXCEKG0BKb4jOdMFqTZN6/r6Q0s8TTMovjxlMc+88pz9zgEMKUtQCICh1b7ICiTETeBDT/Y5TtJw+hxRspNc8lCyltyXf2/jOtRAjYt6Yi2OYr1ktP+PBwpKfATNIzMHDsjhWoahKS9PUHA97NCJ1eXRxgbYFgxs5dQPfvNzx1dc3nE49o4/YheOOWJoZAe6FYbOuaeqKsjCUZTEVKmlTIZKHkLrqAVaJJljrORMCRK3xiUEyKi3w+WFmu1OVvbRzdf9cgCifEnLUSna/yYAMkxs2yaRW6KlzZzaJmdrRx+RCksajdK9LnrzpI/Jzj6n3YA4upLETgHTvS4hNMgQxFVThk0wrYGMADUGn8/eirw/9SZhaFFFLV7vRiafyar2hqvbAyKquGcYBFyXFZ4xhvVkTji3H9kRUcFae06w2vHr9UqzxmlKKsJIDQFSSXr29bjnuxEbrB7/8gs++9wI3vuF46FLQ4Pj5l285Hjo++wyapgJlKJsVXT9QrWqadU3XSyMWYy1DN3B3fcN263l8VnM3KLRejM8YUoDtMUgNg05pzVy7QB7ZaUkJSWsW59/go8ilYpChE5V45ks9BotxEYHcaVc2naAUhZ44GlAamzd4VGJTc9Awy9FAbMYgL8H3C2J1RLz20vhSmSCIKeOn4+SKkTtKT2RAmMeXGBAsgN87K9N38FAKZUVXLKzXKN2VlWj7g5P5k90c3CDFn0Zrhq4XXbIxsn8kidNQ2ql52uHU0XUD2lo+/OhjAN6+vaasK0yywfNO5sv19Q1vr97w9NlTnj9/gbae/eHA6dSxPT/j/PKSs8tHbLdnbMqSj589x3cdr1+/5HQ8YkubmFqPtRrvVfKVVxiDsH05TY8iukg49VhboG1MwF0RlCcEh/dQ1SsuLx/z7NlzHj99KrporSnriizHmjpMZp20VkSjiUajDXT7kaIo8MMgnV6juJFUTcMHH36IteKgY4zi6vVr2r7HHnMhbYFC0/cjdd1wtjmjqkucH2lPJ/rBsT0/oygqKi3Wgc45bFlTrQzD4IgI0xlCIGpDPzhsUSYCTMa7SWw4OXDW8x6GyqBLhkwGzALep9l6D7cQU6ZRB2Bm5wMBFWRsuQzOk3QDUhZYW2mYl1zViGl1T0B5KkyN7zLuS8/2DNj7vmcYBoqqmM7Z+7AA36S+JPIZWqXuppmNRwpVQxjwPnI6nej7ER88iogxmrZtRSbjI8PgUCg++eQT/t7f+y8JwNX1LW3XUtUNl48e42Pk1HZ88/o1bdcxDgPdMPDhh59yd3sr2A0Zs94NuBgZvMdUNQ44tS1jiFw8fsrXX31NVIaqrqjrmqKu6boWPw7c7W7pTie88/jQsj60FOXA7voGpRXrlTT4s0XJ4XCc8KjW0iKxrkr8kBpYTffZ051O1HU9yWeIs8oh98jIMttJGjPVDADpe3zM5AwTjpCsyUh62axESU2wvs3xH9U5FTJYW2x37zDT8qoZeDJtiPcOlbdW+Z1OTNDDIxv+R7X8zvQdCWuzeK9K2ua5+1/6jphf90ArjkTRKpXkqeV77gUbpJur5n+TgbuaN8x4v8h2ulzh5yYP8RkIz6A3ZwDUYsFQ+TuYX5/BXR6My2ZT+TMyEM93eckO5sE13YMgqaKp0PL+Bc7nn1lFphOYwPvUjlrBer2iKCxd23F+seby0QalFV0njgjjEPj5l2+4u+kYx0iMsrhaLa3Ky7KkKitWq5rtpqGpCurKUtc1q7qmLiqsrbC2TM96Xma1KVApXR6T74oUR6d7pQ0xAff5js5WX9NzCfO1z58+y1+UmpmZ6KXTqjIlebBFlSZ4WDAwKnlmT88tf2ZWL6s8UGWTlIhjehbZMUlrcF7GbXYRWo71iPRMMDFCEF2etxYfCqLzmKgYx54wjkSlcEEWHe8DY98TlBYNfIC6qaiGEtxAQKPLSjSmdUO8ht1+x7FtefLkjPV6w+vXr+nHgaZucN6jlE+NDDV3t3vOzy/44z/+OTFEXnx4yWcfX9IeT7x6e0s/tEQPx0PP9dWey0ey0ZZFweAcx7ZjtV5xPN0AinEMrNYbutNJCmmJrIqGy23FqT3hk6tEDIGok1UiChXmORxTl1NhM5N2fClDmobAPG8nf+N0x/OaG6foN071FeQ5pSD6OAFzhRJ9awypbkJNVo0SPITJpSJr0pcZOMnC6VkukxfDRQZArO/UtCZq5qzA1EhlWhfSuNGpIdl39DCmSE1ZSOtTwI9xAp0hSBfD2tpJKnnY74nEqe7DO0VjGxSRbujBBQqtaKoKrxR3uwMhOGwhPQdiDFxf3/D48RMBcl4Co6qqKGzFm7evGPuew/7AV+5LbCFdobvWcf36LWcX5zx79gHd40doY9iuGn7w4cc0yvDq1SsGL+n7buzoE8sdgmb0DjVKxrMwJUVZopW0fz/uTzRNkxx0hJwanWIcPVXd8OzpCz777DMeP3mMtpZmVYGSLp95fKClQF0n5iHr5YOCrjtJa/qxI3qNVtIs7+bmFjcMrFYNm88/47NPP6Zvj/zRv/89fv7lz7i7uZYO2LbAKI3VBXXZ0A+Obhgk3tUFSksW0yS9dlUUVAks9R6azZbjqQUFVV0wjp7Lx4949eaN+NAbaQZYlhXOjVkJKUAsk2HRTOuDWxRn6iTPlABm9mbKGW1jC4jgUyt7ay3KFjifvP71bO+nlJqc1iRgDoTgpNjYe4JzBC//+aRTD8ktxqdCauecSMD83FgpxjhZIsZkFeu9p8hNs7SetOrRp+6pGoySc8qyG5ckMUPvGMeR9XpDXTdYaxjHgc1Z4OXL1zx6csGnn37G559/zqrZ8Du/8zs8++A5z569oNlsef3mDW+ubticben7gZvbOw7Ho9wzU3DqOlZnZzgX2B8P7A7HaR0LSjP6QDfKGm+Kkrbtubq+4fzsnLJqqJsV2+2Wi8sLXr58KUFbhNEHRtfTdj0vX91wd3Ob6jUKimLg5asryrLEjT0xiuRmtao5njqqqqLvOmnQFDzOjcTgKctAP47k1gC5gL8sywXOEyJHKSUSOtLPkXXHeTWZl+CZfg+BEEaUKRZQa65l+A8dfyXg/lC6okJcnAjTAF0Cu+n3emaPE+KbvJKzc4qOWR/2LnLPQDSoZLmY0wrxXbCfCS+dUL5Pm1neirPAI8fTPoNdSG4T+Uvvn0NmbTMAU/oXb2zvyxLk92eP7jxgIZ1MYGLvUe98PROQizOYh+SYQZZRzMFGvuYpmGF+n2CLB89TzSrr9ODSvYrpqzWZnVcP2P/8bLXRWFNQWsPZ2QatDEVhuXx0TrNq6J1HO/G83Z8G3r7Z03WD6GnV3A67LEvKshD5hhEGzGrxjxUfWUPVVGhT3AsgVczFAgLOYc7qiHTEpJutmTvrzUArN1qK+d4tHfGmB5KcRpRFmO+YxkUQUBZHRPqiQGvCFNClzmnTs4lErTGUoFOjDT/rmXP6jQyogkeFpGFNRUs5m4RW4MU+cnqWYjmSuhZKEaVRUuwlj88Sx8AYR8a+pR8HTN2IXRaB0/4OozROBQqjaeoa3wZ8nkFKsgeXj55w7HpevnpFP4zY1Gzm5uaa4/HEqqkZxo7zszWlrXHDgEFjtOUP//gLrq7v+MHnH/Dpp+egI/5l5O7ujvbkefvmBpTi7GIDiMa2a3vKoqRpKvaHIyhDUDq1Sx8x3uLckaeXJYMr+OZ1i/fi7ysp81lSl1lp0khWei6wnsZUXtNSsByUdOXNrzFKo0LOPqY8WWrqFFI/hGytKPMyTuMppp+ZNOG10vctwRJjLzpaed/E7qWixTCRE7I2KjVXO6QwVIaQjzxsIHdv7i/Xjlz48h09TOowqrRIGbTWOO1gFMYzFgHvRsIoZapD1wv4KSzBeckYGbFDHIaOMhiIAe+A4CmqiqYuaeqaMQR8gBgC5+fnNE3F3d2eru1QUbo21pXY+dVNRWEt3kUO+xvKssbYkqZp2F/fsru6pVmvOL+44PzygovHj/j4gxecrzd8/eobvv7mG4KXmpLgAt6DMVJE2nUdXTvQd26WUEWIHoqqlDqGDDrrmh/84Ad89OEnnJ2d0VQ1zapO7jslhTFSyBwkC+piBO+pqwo/DvR9h+sHVmXBcX+AID7l3nl6L43gmqbBIgRDoQvqQvP06VOePrrk7evXvH75kpvrG7bbDX3fM44j55dnrNbN5CRWNiswhjHOBcfr9Zbzs3Oi0rx8+ZKzi0c452nbFltV9KNje34umnzmegdrC4yRfhMhOGFH/bxe5vg6WwkCOO8k62oyUz8TNd75yZoSSBKWvKeoiRXPHuM5spdupClbkvYfrVO2JKb94t6Rg3Tm717IWXzKgCpyTZcUmeuoUEYxjiPEIHU/tiDip0LWruuJQSwKT23P3c0OpTWPHz/j6dOnAHzxxRd8+umn/P2//3/j5cvX7O52vHz5mp/89Lf41V/9dV6+esXuKF1vi6rk7psdv/v7f5AsPs/Ynle0bcupbdmdWtqra4qi4OzikqcvPqTrOt5eX3N36hgj9M4TdMFHH3/E7/3b38NUNY+ePqeqSpwb2Z1aqrrgq1evJTDRFmUV5+dbytWKu6+/RhUVQRv2rQS5RWExSrPZrDDWSEO1o7jx/PyrbyCq1ERK9tmmFBvP0Q8UNtd4iLPSo8vzqWhZgiM7ZTAy7sqki+BMqXubMigxin+7LQlERufFd78f+bZlRd9e465m1nYaQcyL/z3mdsH6xrSJ5fdk7wzUDMZzxKIevPedY0pbqCly/YXny/Lz5RzuVfguwHo6g5k5XrDresGMx5QeyZpT8W5NKbgpmODe65f2TumLUmOhxXUqZqZ1MUknAJ9ZtBToKLK7RIrSYkga9wUjB6nDYswPbXp287Wr/CgmVjlCKuJN5zXdwnT9+ZwT8A/549UcFJSltKHfbLf4GFlvxA5tvz9xebYmBo33kW9evuXt9Z00NonCHOfikAy2bSqQEpsrabhUGOmql06B3JZZK1AuEo3QKnKdqdnFokA1s9iiscxWgfP9hrkL3BQ9LwKvCfDnwC3fO6XRtiCaLHhIDEgI82flqaDEX1bFmApdDCAFZjFqCaoEbSUgTZJ2uMn9AJVrLWTRDibp66JChewrPBdcxSByjtIUqKAYiVBYsZoLI9qNEwtcWMvucKSsVpPcyhpLWVaMPqCLQjTCIXA6nliv1sQI+/1enB9Usog8HBjHgbIqOOxOnJ9tsVVF13copRhH+NkXVxz3PT/8wQd89PxCbi1RaiOOLcXtnqqqMasKqw1g6TtHVZZ0pkNZS9v1rOuKMll1EQNWOz798JyI5pvXRwmsUlZDhnCcvfG1jJQMpPNqttwsQ2LQjUptlh5mwqb1Ywb7eVxF5iB51r9D1JLK1jHO7aHiYm3LwX7SGWfQPpEoWqOCFODqKaMk88IonbzkRU+al+icnPFL0JLmsE41Grk593f2UBpjyylIyffTFtLtNDsxjSHiR0dd18kStSdqgyoKwugYhoH1ek1Vl/R9L0GAtal6Q3M4nRj6AQ+sY+Dy/II3r99SVTWri8upWLI99ayaDW135Pr6lnEYWK3XVPWGw36PAqyR3hPRe/749/+ATepm3KwalNYMXcfFdsvbmxvCKOGzjpru1HHYHTnbnPPp9z/neDxy2B8oyoK7ux2FsWmwBSprOT+/5MmTJ/zgB79EVdXi8lWkbtSADZE4DGiSRtqNFBHarmMYR5H1OY/2nrEfsCCOPZGpONZYxbpZURjF/u6W3e6AHwZsoSmrFX/7b/8XfP3VV/z5n/4pX37xJVVZ8uEnH9K24gneNCtMIda8dbNmdIGiqDBFxRgiu7bFuYCyRapvAm2tZF+VxvUdxhQYY8UvPkSUyQ50ktGStV3mnMjU0hxbFKlOK0GIkHotKJvZnKwXF0JIKZG/WGOn/Ue6ZAooDCGDbilMdWMOICJqwbC/S4RqtI70fccwSGMlka2EVEQqDidaK6yy0/kP/UAkJFApWT2rwDmxkhzGQbzMB4cbHVWz4m/9F3+b88tH3Fxfc3u3wznP8+cf8+Nf+Q1+59/+Hkopzs/PuHzymKKp+dmXP2P0js4NXN1d03Y9zjl+5Td+nbqqcSFyfXNLO3gePX3OJ59/xqtXL2lWa5QxDD5QNitu9j9jdXbG5dMndG1HiIHv/+CH/KN/+D/wgx98j83ZGaumAQV91/GHf/j7dP1A13YURcH52RmXj57x5vUr6maFiorN2YbNegVRsv9Xb98y7o80dU1ZWNq2RxtNNzpKW3HqRqL31FVB7yJ3xxNuHCisobAGFSO2KBlGj40zAQx+atQUgp+siEMIDG4Uv/ask09YToIukSONXnopiFLhYdD2/uOvxrgnMLNcCH/ha6ffC0jSsiOmjS6tI0rYaxVnJvzhcU+mMjHrDwf2AyAMafOB3HXsF96OmNgzlTIAGrGaTMWms9ZtPhe1aMwzM+MpbR7i+89ncQ+zlP7BacyM+MTM3wcOarr+GSxkic3CH0zuaw78Ed0/GTgmlJ3vyQTa03uzDSEJSEzinPy96f+DjrPP/eI5aG1Sh7iAUjIgN2db+mFA4/EB+n6kH3q++fqK3aHFRZITS5YeJF2i1hADY9+hqxVFsnMry4KiSOBYW7JzgFJKQLOeA5h5VKl791V+E6dgZ/GA0oPIxYDTBTJnMHS6n2rK0Mj6bcTWafqYzLqG6T4ndXIKghSKWdcWlUIlh4pcEKMwwIgKPm0C8r0SdKTBGkOamwLklnSrsqnw0cu4s1GKpQoZbMTUTdHjaPuWoT2hlJ067bXtKWn3JJtSVzXjUUCwLSr6U09ZWkbvqeuG4AP7/U5cUqxsYl0/MjhPXVrU4cCji62MMSO2mijFV9+8xRrFi+eXPH3yCNAE3nA8tLRtx5s3V1xeXnBxcU5dVsQ4YnWgLksGFzFW4wjUVUkYB0pdcupHAj3Pn53RDp79MTUDSYE/kOZNmIF3Wo/yOCRqctycC1o1M+stDk9z+nxZ1B2JKcDOOnZxv8jAX4JkeQ4B0cDrmKVT6TuYpYAqBbXZNjeTApMNXbqGoFLeTEW0mgN9bfTkVSwZmTAXySNjJ0bpjK2nIPa7eYQQ5+vKhwqyPqUsiEIcZ4jC0I/5uXipyxhjRLvUBE5ZYV+1Er/womZ3OtENA2Xh8VFkI1VVcjwdefHhh9RVzX5/ZL/fczycKIqSqm7EDg9YNSuaqkYpxWq9pu97kZx1bZIUbAnO0Z7a5KgizHVlpRnZkLpx1kXF/+X/9H/k+vqW4D2lsRgUd3d3nG/WIrvZbNhs1my3Zzx5/JjHj59ydnaG9+L6ZAub1jRPcAHnBgF7CYj7UTzKFRCcw7sRP44MqfGUMWq2RVWR1brhsLuhKgqsEcJgf9hPfuKn45HSFnz44kPqsuLt27cM3QBKc2d3DONItWrYnp1J46jaCAtv5L8QoawrCdAKkdNYHynrisqWjIkpR0nmUbIuELxLcrHMnENeMOddkfS7OAXe74wl7gfnGZS5cZwwwPteK3+ft/8pcx4zYTfbQfoE5INP+/GC7c+AHqWxduFWFWZywhaWvu8wUw8RGdOgpDmhDzTbNXVVU1UNjx8/wY2eP/ijP+bi7JyLy8dYW3B5eckf/OEfi9zID1zf3HJze0fUcHZ5wZdffkERAhGNj1GkMDEwhkjXDxyOLd3oOH/8mN45fFT0ztG3LV3XU9U1P/3yS370ox/x8vVrgg+UZcW/+93f5XA68v0f/JJcn7U4N/LnP/spX716RWEL0IbV5oz19px92/L2+oa6qTjfbqnqWuScxuJCpEidWQOKUzdwOh3xPjAMPVq1qKgorbjyuHFk9I4YvRT7jiJj2qxWaB9xwWGtEGbeO0I/JGJN1m1t5v1kGEfJkKU9QKyqFYMb03MOyVUGQvx2i+63b8AUYSqOewCW82CaWF2WcCn9Xqup6HSWX8irdGTyXY9pZGdPZPmnYmmVM+kxHxwTE6UXU0yLBGdBhU0T6N5nTMD4PnN+/yIe3pTll8+/zxNrKS2aWPO4vEvp9WkjWZ5bvu4MAKdoLWaGbLEQpHs3eYnODyEVZ0qwkQuEJ/Y4A1EWQYFaMs8L4J7PR5Bjeo2eQGdmGyBZABppslQVBTF62r7nfLMmBM0weG5vjlxfHWhPQ9pkNcYIcy6essIyjEPHqqip64L1qqIprVhCJm9ho/UExlEqFVrm8Zfv19xEYwbwKo2v5RjOi/C7z0g9eDZTt1TS92bQFMKUrpQZo1MBk3yXWmZTJqP9OJ1L1OnzpiKzmSFOswXxgk7PTRuiKFuQ+McSVbKIm64jBVQKYmLKiAFD+q9e45WmHhzHw47RHQkhUlYVLkTacZgu2xgpEtq1LRYtKf5TK+n/VBAVfGBwgwQxyqCVp++F3YkxUpcF222TmsM4uq5HKcPLVzf4ELi4OOf8bE0gcH29p+8dp9OJ4COr1Zb1piY4Q9vtsMbSjz3GWkIMUuCUtNlFobk7HMEqPnh6xjgcGEMkKOmOmYb4vM6kNSImgE5ap3IGKI/9kN6jEK1tWMynZdo8zUp5xEGAtFFS9DyFhCovCyoNoXnGzXNe1g6ZJ2HOCkwXMAcSEoAIcE/eE1hlJ1CSA8hJ/5ozSiqvx/I/Pa0N383jfRJAYbQ0mEQQKJlXWmU3r0hUWrTAzkmmzIzgxZWk8AW2kHqQsiyofElTV8QY6QcppixsidGKuqoExB+PUnehAkVhhRUuiiQFLBNA8HR9TwiRatVgC4stC+pVw+AdfugJMWJLeV/OIJa2wGgBtI/OLqiM+F1fXV1x2u0Z2451dUZhLU1RsK4qtnVFZQxxGLi7eotCY4tCLC2VNJwhSLt4afLjGAeRU8Qo5MHQdZMOOwaPGwbIJAhgrWbsVtzd3VDaglVd48cBNw40lchwjoc90QfOtlthUiPc3t0yjA7vHcM4slVwdnFBs1oTlBRcqnS9oFHGUFSSITIBiipirEVbPbt+kLNT98lElBbnXmBi0vIYSOttDHGSSi5lZO/invR+cgDvp/U//ywXgeZgPwfdGWvE5BwTw+zbnsF7LkyPMNkG5qaCOjHtIfjp3EIMmPT7LKfJ153P19qSqmqo65qqqhMoD/z8q2+4vb3j008+4/GjxxyPLW0/EFGcnV9wdf1WzAiIBDxPn33A4DyqFHtFUxbUqxV3uz1FObA/nLi6vWEYRq7vduy/+orj6SQZpHGg7weU1nz19TdcPn7M9c0NxljqsuL1m9dELdmMm5trhnHgeDzyZ3/x57SnlvVmw2azodlsULbg+s0reufZlDX1eiOORAqi0rjgsWWNUjAOPadTx/HUEmOUrschUhhLU1XooiDGgFGRojD4YUQBhdX03qOcxxotxgupCDl42VOE1DGYoKdmd+JkNbPtoJIdsCLkrEmMad/830TjPrO47w7iGQSpRVFX1uiqxZyRP1QmrKc6vPwlyw0jS1NyCmGSljyIaO9/H/P3pe9aguxfmC0IkWyQD2piA+9JSiYwOE/WJfOdp2vWHWfN+rwBM9/ExWIgb5r/vdTV5u/JG/OSCYjZIWfxWTkYmp6MVlNhxQQuUkYi7/057FKoqeaAON+2993vGAMmXZ9OqUfvHE1T0KxygabmcNhhNChT4IICH7m9PYpN2ugIIaJ1wCjRoWkU0TuCg6pacbZasV3V1KW0brbWSuGpMbKZOFCFna49P5Xs1oI1UyozhjkImoKqJDuRoZoftAA0FVPxwWLwL6UFIYOt5ESjdd6+pJHPdBNjJAmNJlAUdZI4oIhqoU03AtxVWsjToEmsvpzOxBHlgC8X0KCJOU5IbC46NXSKEa1Ty2VrCF4K8dCit6urFcFHuu7IsduJe4y1xGFIC2Cq70hs7zgM2Kqmqkq6bs/Y99Ioq6pRek7FirOOph88kZ7CKGyhWRcFdVVzOnQUlaVtj9ztWk5tx/n5lvVmRVXU7HdHTr24EtztdmzPzjDKMg6espDuun0/CAJL96OwhlVRceoC17sd64unXF6uubruFosn02hZPCZxhgC0slOx8vTKDG5zQJ0BYXbeWIyRPM7kGecBI899DiBzjYgiN9hSYQ76l5I7VCCk78lSthjDtN7eW49Vzm4ufub9IgxPMsAQ8Cris4hR5WzSdxm2zxLH6Yjzz2M0kmBMBcBeRfFx9l7YXOfxSqFDQNsRHZw0PgKaEBlT10qrtXT59UEC03HEO8fZ9ozjfi8FbyGw3aylMZPS+CBynbquKcuCm7uBbhx4/foNH3zwAd/7wfdpmobT6cSbq7e8fv1GHEOKgs1mI0BuFN30JjW7OR6P/ON/9I/48Y9/zK/92q9x2u047XZYoD8eqc/P6I9HrruOfdIXZ1eM87OL5MylpdtyWo/qqkInbfZhv6e0JaPrIUSGvpNz0Jq6qdjf3TEOPeMwpoA1gA4Yq4k+SCBTlqybBqcj6/oMFyMuOoLzECKPHz3h9u6Wu7tbXFhjk0NKvu5924nVo573464fqOsVzjvQiqIsCTFw6rpktTfvh34ckrR1MSQy261ylmxBfEVZH5QK75mH3JvnshcLUDbWTrbDYZHdEuZ8nIoPp3mZHEpiWuvzSpNtWkMIOC975DCOKbCZib687wZylmye4S741BRxUXBrFEPvaMqKi4tLhmFgfziy273kJz/5KXW14u/87/8uP/zlH9G1HT/78itubm/5B//gH/CTv/gLeucoV1Ig+vL1S272exzSZjBE6XHQDoM0Lgs7rq5v2e8PjM5z868PXN/eMAafZEjia39qe06nE//2d/89RVlQFCXBBd6+fcOTJ4/5/T/8Q/b7O66vr7m7u6PvO1arFT4EirIiRNgfjtzt9tTrNRdPnlDVdcquedp+EGmtinjvOLYDp7bDJV/4Uz9glcb5iIsQtEHpSGktymr6tkMpePzognYMjL5js1kTR8c4DMl5yso4UpHcyVyjCTFIk7C8Z8cIShq6aVMk+ZT851OB8Lc5/qNdZZZM8rzJMIHR5eCcvNxZoElITYdmUDyBz4mBZGKXlkDrIWM+MVPL35Gj7Pvnu9xQ83GPIV8i/PxJGXwnA/3McC/3tgmP50tcBiP3zmuOz98Bwyq/Ykma388QZHA9nff0PnnTxLqni5/BxoPnsjwv9e75qBz8TDHGg7qABZDN7d9jiKnxTWRVF8QQ6PqOtu24ONsSMYSoxFnhcExd2MTlwyizWIzk+RljaMqKs1XDphQNprSMtiIL8B6sJztwAFPdQdamGz0HYAKsF7rFDNIncPZucCJu6PM9uP+Q01/VAoznwJIEtTNLm14cI2k+xPwKsSOcUmSLZ6BEPhQTwxbwPARU98bg9LESSEgwmfx547yJSNe/7EoUCUZT+MColaQf65pNDATd0+32gDA8VVkyhkDvpXmE806KQY34LCtaqqKkKErs0BNPi2YhUZiifhg5dprt6KmcY7XaiPOCVlR1Tdu2KFPx8s1bLoZzLs7OePL4glM7cHV7Q9+d2O9uOd8+oiw3eH9ElxY9OrH389IcydSWQpupqOh4OHJx/oTb/SDe1nouoA8ssmxz3La8y6g0doKKTBVEU/CeyAX9biZSTa9jsq6VploBozU6ii3pND6SR/aUsVx83sTgRKmZUJMve16/5jEhPSpmJyOd17AFM6i1yKRUDNI4Lf1WbODenQvfpWO5lj1c7zNoCDHgowIMIYUueV64FLhra2iKNd3pgEst7pvNmt3dARc8dSUEhVZSj+ODQ+N59fIbQLHabHjx4gVFUfD2zRUff/Qxo/Pc3t3Rj1Ict9vv+LXf/HWquubYnTi0J/7oj/6I/X4/FR5eXl7y9OlT/uzP/owXzz7g8dMnDOPIPunjP3rxIb/zr/8Nf/j7fyBuXEWB2aw4HA68ef06dUGVBmk2AeJxGNhd3VBV1aR111pzPBwJ3vP69Wt2ux1a6+TzH1lVdQK/kegD/anl5vYKjWK73VKW0rFSup86hr6dpILGSNb9808/4/nz56ybtfTzYKQoAh999An7P/0jrm5uGWOgbGq2+z0/+/lXfPrZZxhbcGpbjqcT27PzaTxrY6Y1P8+XcRzxo5vWngyqQ3LXIkpn1pg265yFzQD3LxtPy39PgFhLoJA7mc59QZaYY35/DvQ1BTE6kjlJcvUSy8uctdPZZjAEjJVgqu/7qfgxEGmaRtSmaRMIKbjM156DoKqqKC8rqkqKmd+8uZI1V2kuHz3hv/lv/l/87u/+Lv/L//Kv2Wy2/PKPfkS9XvPf/5N/gtaKzUac4d7e3LI7dhSD5+3NjqqVXgcSNL2iHz1XN7f0/ZjBBf544NiKCUJ2s5I9yaCM5ur6hiePn2C0rEMXl484Ho988+oVzo20fY8LHlMWHNuOgIHrG65v78QRZxh49mzN5ePHGG3p2pYu1WXo4LHGcrc7cDoeUEpxdv6In/70p7IWIioBrxT+KFaQpjS8vrmDGLFW072+orCa6EaeRbg422K0YX99TV1BGaXvA9qIQ5sbKMpS2P4kgfVRioLRiugCLiR7YcQa89sSJv9RwP1hGlKOTFmlfy0A/VwkeV//neUK9352j51+vyRmebwLZKIAbDWDd52KQvRici/fm/8dlGx4+h6AV6SM+MSaRbXICtz7+kXwMoHFxXUtGPql77pSUjTjY5h6br0viMiAQgGEkAKJRXCjhD3W+VEEyM4x0wKVWMKYzjXkUCJmUQUTkCfGKY0zL1RJmqJTcx9tRALhBCAqI4U41mpGJ9XsVVVTFDUoLZvN3R3dqWXoU2HOVByawGeKyEtrqYtCfJeDpzSKQhvRASMA1NhiqvCW5ymeSyoGYeW1BFrRu1QEmhbmCYRPsHwO8vL1oaZufXMmQl6kMwUdIWovTH1ux5ULkvMNlQ8Uxv1hMBdTgZTKUF9Nz0nlrI1JNRVBXGMEa0hDD58DhThLKHRM0b1SMDGoQT47RpQyRDvfB6UiIRX9OmOJwbJpVtSrM5xzOOfpvaRkya4nUQI170aUiQTvxCIuud5UdT35k49adKV+6HEhsmsHmmPLal0ToqdpanbHI+vNhv3dLTFKCvHq6pbTUdj3zXrFs6dPOHYdXd9RFke26w19L2xUUZbElNIUYyGdAqRAaQsOx5b1FjabhtvdiRgVYv2abOEWTFUObO/NPqUkUxGTLjzOzYsUgFZ4ldqoWwPBpwA/2S8iczxrLEEAe+6YqFKxeUhevkunrEmGphSO1PobhU7XmXXrSzmekm40snwpKWLUQQpsg0r9KEKQYj4/y+gC4j09a3m+o0cU0BPSWhoBjcEoiw9+WheNMWhj8cOIrrUUfnuHMimDZgxj16JtSalzx1LpsrrZbOj7kcJ2FMayqmqubu843u2oV2uqqkIbxdtXr7BVyfPnL/B+YHu25exiyx/84R9yPLb8tb/+G3TDCGm/+tkXP5NCWGvZbM548eIFjy4f0Xcdf+//8F+y2+24vLzkeDxQVhXn5+fc3u643d3xomn44IMPCCHw+7//+zx+csnN1RV+GLkdeiKBVd2kbEuk6wbGcaRpVjx79oyXL1+yWjXs93uePHnCZ59+wuFw4PU3L6mbknHoGPuBrm1p25ah7/j80095+/Yt12/fUpbCkI+91L5cnJ0nP2zwbsQYwxdffMFf/MVfYJWhsAV13bA9O6frOuqqZnt+TlGXDOPIsev41U8+kSwBaX1TapaAaDOBcpTBOcdhf0vTNDhCArPiE2+1QRcJ8qR1UBohyVhhkq3MJEcG5ss9ML8m/xkf7OUCys09Tbq1Fko7GQtkQiM4R4jSGCh6T4g+rblutmr0HucDg3OcTh3ee3TqjprtGrMnvEoBpEpdUzFmkmZVVUVRlIyD4/f/4I94/Pgxm+05dbNGKcX/9b/+u7x684avvnlJVdUc2hO/83v/jma14vzxJadTy6urK47HI20v1osxRg6nkau749RIc3880A8DHkXfS7FqJGu7NWPwqBCl5qOyDIMU6q42G273O9QhN/cCFT1fv/yGGDw++EnCVVU1gxu4ur6d7r/WmsOx5cuff8N6vaFvT7hx5Pz8nHHseHt1w9X1W5qmpiwKvvj5z7k7HFitVqw3W4a+59QP1I30jvnpVy8prEhz9QhaRS7Pz6lXG75+fcXb6ztKK1n/fhypypLSjVSpg7jWStbcGFBK8F1IONSNQjh6P0ujRp9A/bc4/kqdUx+mg+8PZkX2tHwfK6h4N2pdRsjLfy8Z4fe9bnlMr31Af+efZZbrQVfy9zLwmdFafrl0wroPkFVuWrJgo3UC6ZMkhQeYPp/Y4lzvX9f86syST39Pv59w4OJ7H/xAgp17Gn31zv/nVONE0YY4ZRFyYWeWAJAXJjW7vSilJuCeB96CgJdOm1rhhyFp1fW0WA3dia5rcW5kHAMxLLTjagaYhbVUZUFVGPH7LUsKaxfBS5zSkvO9nK06J+2hNgsQpu69NuvJ89jMQyhIS00phGIOVpZIPCZ/YPnUHJKl56+SfCGfwzLD8XBETM8OkTSBFEfH3LI+FSKC6P2imXWQU6Sh5u9ajK/8nIgRnTrE4b18jjLoKBZ30ijEobURd40wElWgrBueXD4ieLg5CMPovMDOsizx/Sibg08M1+RSAn1K+Rmj8cmXXJt87oGruwNn2wZtNFXTYDoSYw3BRwpbiQ/1saPrR46bHtDUTY1SRorzRsd6+4h+2GNdD7ElopJVo7TJBmmu404tp+OJs82G475PmvMFAUGWSs2bQHAy7yb7Re8TKXAf2Odn6EOQZkepxbxJpIVSSoBxLiLODGacdcGTr/+0eOVHGSc2PzPxCiYXqZjuOZC6TWZ2TgLHTPyl1Wkaa2g1efarkDIKEYIKKXh4OFK/m0cOwoFprclBdVxMSmU0Bo2LaX0wEVVIsxpbitdy9DOYMsm9KASP0ZrtZo0x52it2RdHqe9IjmPaagqj2O3uUFqzP+wYnchvfumXvo+Pno9ePOfV69d8+cXPGPuBv/W3/hbH4xFrC87OziltwdXVFV3X8fXXX2OLgq++/or9fs9v/vW/xp/95C/49PPv8Tf/d/857enE1998w+ff+z6/+Zu/zj/+x/89TdPwn/31v8b59ozf+Tf/hmfPnvHb/+q3+Gt/7a/z1Vdfcdgf2K7W3JUV0Xk+ePKUoixpyorPf/VTtn/zb/LP/+d/zsfPX4ACN4woBZ9++gl/8O9/n+9973tcX19xd3dL9J5mVdN3Lce7A92plUypNVgbxGZvHDHKUKRsndaa1XbF6myNi46iKjm/OKdpat68foUtK+rVSvTPTUNVVeI0Zmyq1UDWMSKr1YoQAmVRTAWeRSGdWp0fyfIZqYXTKQgP088fHg+BPOnf2TIyRsksZnwkc9ZPY2Vm8WcN+5LY1MqkYHrGWWVZEmMUic1CE18URXqvSnuqoqoq2SOC2B977xj6fgoujTG40dN3PfvdEWstn376uXQzPbWcnZ3z+fc+53A48G//7b/jV37lVzkcDhxPJ4qq5DT0/Nkf/gGH/WFqdOW9ZKtsUdK5wP7Y0o0DPgR8DPgQKJuKVbmVbdgaLi4u8CHy5s0bQElRbFExjI7b21uqomS9Xk/3xjnH6dAyDAMqNY2yCQv4KInPEL3U/gBWK47HI3/8J386PRuFNJAaxoFxGKmbmiHVDRyOBzQaFyL7w0l6DpyfYXTB7eGOznkGL3UcxmjWq4a3Nzu0ClRFIZI5ZyiMou87mmYNSjF62btLaxiGEVNaxq5DJ7e70Ul2WGuRMYVpL4+JMPgPH39lH/d8aKNQcbYmk5ukZ8BH2tBU2jCmGZHkAcwA9+F35AniibMd4YNzmAD+hJLV1EgjxohPQHwCwAvGfzoT9e40jSkNnUE6MQGpyalBTTKSDM4nFwY5DZmsc48mSedpPW+ecQYNuUiXiV9PgUY+t+xSkwpYxWkivXNaaGYpxr3rikxdO6dgK+uAWYCCiRWEiYFWar7IBFSCApsGXyAQ3SIFn1hDrVUq/lLi3gGTPdbQdfSHPV3Xcjq2UpgSszQ56cQjWFtQVtKcpLCGVV1TWksGztqIL2r2Z14GhVrZGbAqzSz+jtzr3pXHaGbal+BaZTlCAkoxj1mZbFLVNKmWyWA+f0ZMDLecj0rdjqWcJ2SGNmPtKbsS0cEztVBOUC76IKBPRaIK8t9i4c+fo5RJAUtYBNSz7AgiKupJo2lsQXTD5LAirJBIN2xRMJ56dITNas2xPtGNA0OAEAZpvZ42yaEfsGWV0tAtwzCmglk/syREjJWCHaM1ISqGIXBzc6CwmrpuWG9WhBhpViux4DLSdbdte7puoOtHTl1PRLFeNXzy8QsZaxqqqsEWJYUpUvO5wNgdCGGUazUaHyK7/YHnm3MKa+hHYcdzB3CdHkrMtjHvkA8yT43SEvAtslExTfyQnpfyQQrx0xjJ7GD+jCxxkRboKW0eRdaVnYKWutoYIy54lI7S/AY9dUCdNn+dMyHSEjwGn4JH8HiZCvMMYsq8eT87sCyaS01R6Xf0mAD6gmh6eE1T/wul5N4qjcnPU0GBQvpyJlLAqdQHQhG8BKbWWApToLQSYFDXgIw3n9Z5cffo8RE22w1dP9B3HY8ePcZoOB1abq7e0h6OFNpgV2sqY7HbLUUhuvPj8Yj3nq+/+ZrnL15Qr1c0mzWDd5y6ju997wc8f/Ehuih4e3vHzW7HdrPlzfU1p3bg7/ydv8vZ+RmH/YHzy8c0qw0XF49QyvL02Qdst2eEqLh8/IiqKmnblqIs8THw8uUr4rMnbLdbLh8/5ng8EGNktarp+h5tDT/44S9RflGCkmzQ5fk5L7/5Ct1o6lUFCsZhxFjD08fiD+5HNxVerlYrlE1+6ValimH5d9d3rIuScRihFJtZ7z1FUTCkgnefijbruiYYzel0knmXJGGRKI11JPUybQM585D14Rkj6MycL8jKJam4nHv3SLdF4K+1vuf3HbwTx6cFZpL1I9wbnxIIBEbnGNyY1g8Z06KBnmtqQAL+mIgerVPRbim9AepmBcAwtkSlKeuGsig4Hltub+8w1nJqO7788iuKsuRHP/4VRue4vrnm6vqaw+nE7eGO3eFAWYiLT4wKZQqaqmF3PDIGsPUag6HvTmhb8dnHH2JLCyoyuhEXPKtVw+HQcn55iRslsDl17ZRF6HyXXOPk3Jum5pP//G9greXnX37B3e6Gruto2zb1JlGIq07q1aA0/TgyDCO5+6xCarpMYQmjJ6oBo0WiO/pAoS1KWUxZErWm7UfGoWVwA8Mo9RoheMnyADZCXRWUpTjojN6jlaUsawYn9QdWm1RM7VJH4ZFxHClTgDUMPbYsp+6p+fnlZ/xtjm8N3B/qvmbWYskaz5vNPKiYBmWWxkygOL1AwcwePjzUDGlhBuz5HKTJjZpTu4tJkWmxCEmjx71zy583Bx4kX/JZpnIvPba47gwWp7gha8sX73nvI1iyPDnweHBe96U8SwnH/Pv44ON4+P4MEJdfnU9W61nOgdz77FQQUjQfEwjUJPA5yXLivEgAuRXdnE4U0FpWJd3pIM2TjJHGF8PA0Hd0xyOntp8Ag2go1RTMZR26NoqyshgNlbFsmq1YMxlhJIwRbZzoj5MTgE8TgIVWMQPdBGTFx30JjLjXUEpcFc0M3uKSgJSbmKVMeSxnEJ4X+uXCLI2ZskQpBU9LN5wQEdOfMBkcqJgFFQI+BOQ5li2Rl9kuGUuR4JOmUMJFsTdFEKoGkdgoOzPgCHWRdZSKQFMVDL3BjwNEWDUNx+6E8gHnDVFpNs0KdzgyBscwDpRlzWZ7xs3NLV3XEhFXE11YdJB/lWVFUNIQJMbI7b6lqi11U2PLQjyc12turzocozh3VBXed3TDQADafuB233G9O/H0yQXPP3jM8w+eUBjpEOtGcanBj3g3t5XO2tAQA1VdMbhuYrdmQiJNkJiLleX+Li1hpQPgDHAFSCff8yjF0CpElLES7C7mmciYFNFHvArSqVjpiTFSs8n/O+sUKo1LVMrIzJ+dQYJO40RBOi/mojUkIzB9XHygxU8ARCXiICzWwO/icY9ZX1zLQ+In/yyTTCrdy4ihKDUxuDQXpbOj1xJch0ACj2ryzfY+UFcVdd0wOM/oHM6FROZ44jgwiabSfOzaE27oOSbnicfnF2hriU6KP41S6CSHuLp6i9KKX/21X2f0jqqu2RKpmzoB/MjV9Q2ntsXagqqu6fqBMUkV9vsDNzfi3PL69RuePX8utoplTWHFkaaoLZcXF/z0pz8Vi0iluN3dcnl5RlEWNKuG4+mIMpr1ei19G8qSsqpYraVosSxKPv/kEw77O9HP1xVKKwHORNZr0cIbrXGjo+97adpWieGAtgZSkNo0K5TSIr0LUvwYxwHvI5vNBshklkTgss/M8oO8Ly4BtTx75lq67K6kZCYviaCHY2oZ1M4APJEf8sPFOFvUzv0lgCwN02lvjVHGlvNedM/Me0xIBZVKz3Vd3qdC4ERAWVugy5K6acQrfRhRWrPebKnrhtPxxOgObLbbpM1X7A9HbDlwcfmIP/+LP+fNmzfc7nbsjwcO7RFTlmhbpWZURhofGoMta55fPGZwgbvdHexuqZqK7cUFZS2OcoMb8MFRVTUfvPiIVy/fcPX2ilPb0Z5OdN2AQTGMDmNNet5Q1TUff/IJz549pSgNr16JhGu327Hf7xkGWc9MUWCNFblJ6ig8ji5JVBRWGTEHCpGQMkX50QdgcA5tDa5PqoB+wFgh6EaX5bwQ+0E6ulOJIwzImDFiR3rqekorDQtNwjUuREwh7j7jqRXyVUnvDe99wgG5J8+3X9++vVTGJOYxMW0xTJThu0B1ydgkgJonSYxx9hjPTGYe2DHOADHORUSZdX7foZaWejBNJJ03ungf+KMUPk1asygxF+CjRDsexLP63vXHpAdP7KROTGz67QTCY2JYyRM3fbe03073aaFNz8HFf3CCRyZOfMkMZ9ZVLYBg3rjn+3H/uaj893u/n9nD/C2ZZZ84BUVK8SwLPEkBnHxkSK/TSsZKNNLtNPqAGwbcMOKGka4XqUwIoG0aI6lYWYIF6dinFVijpH21NtJBtazR1gozapIERM1nnq81g2sBrjJu0ZqY21hPTZny4jgvoirBHsnapImbgN0MqCEbuc/B4jKTJNu0SsWIudo8YtMYQhjeGNJ8AoIUCWZgplMgFH2yX0M2GDEldvO3pIVdJWkQ3k21GCqZQIu3vkicsg2gSMm0bJQ55WgsZVXT9x1KGeqmYTNscfsd1hjG4KirkmYYCEQOfU8/BKI2bM7PiAqOpwNj8JA8eYdhxIeByhYooPMe5wK3u46Lc0ezqhlNCh6MlRRoDBgr1ngmRiorzYrGcWC/F6Zmv9vj+o4PHm2pSwEa49ATvKcoSpRzxORtfTiNHI9HmqahTdp4RQK00yYOShkMesqeTVMwr3epADokBK2iRgUwOQO5YNXeBccyVH2cM4sKJZtKqu0gD+eJ0Y/T4hpDkDKOBwB0ClLT/M5SjjygQ9LSx7TGZs93uB/kxtxkJoGb7+ox3f9pgU1r+CRdEKlbtuCb3wM5gNM6vc5YrNZ47WB0KF2gkE6J3rhEFGialUH3PVXdMDixNOz7gbbrKG2BC57gxty3mbsbcXgxaEqtsWWBtSVlVTKOntE7XN/x6MkTrNW8ffuaH/7yD1k1FVe3J7xzVFXJs2fP+NM/EbBV1w11XbFey5/bzQZbWv7gD/+AF89fUFjLfr/n9vqKX//135gKt5WKnJ1v6foT6/WaoiiwVuQt63XD2dkZL1++nKQKJhUqDsPAerPm5lasXJtmRVUWPH/xnJ/+5C8oSslGFEVJXVe44PCjzOvzswu01rTdiXFwlHWJthafiJ/t2YaiWdF7T1nVuHxPTzPrvNps5R5GAfXjONL3/bT2S1G+sPpFIYXEkyQmFXwSQOmcOQMS6M81QEsSZpLTLsaZ9NzQUzM9gJB6mWQFgtGG3JvjPtsOoCfJRw42SeciXTdJchkhBIqqkn/7VNEawaZsoxShluLOUpZCZPQ9dVVzdnZOUzfc3e64vLjg8ZOnolfvekIMHNuW/+mf/TNevXk97Q8+BmxVY8sSFwUEl0WFLUqcDzx78TGffe9z3l5d8fXLb9BVwWazous7bC0BWFFamqLm8vIxf+/v/Vf8w//u/8Pr12/pugEfYLXeMrS9aMDHAPSgNEVZ8Or1K7Zna8q65Pzygjp5+7989ZKrtzdy7YXUSoyjoyzlGTvvBaMpJRnethUSMc44wRgj+9fpSDf005oAsi/asqB3I2L9LAy7VdIR3QXpfooRIuvY9rJXNxUqOmlAWFja0yCFrkZxOBzQSnP56CIF9RFTZHwQ52z8tzi+vY97EICQI4PlF0i0yn2QrdTUnGbCONNAnYFe/v3E3CuSRCFtTNOi+36mPMaY2sAvAG1634ylFgzadA4PdGvpA4RFfpA1mDbJDN7S9y425UkipJTIItIGcM+WMX1mvl/Tyb4n0pquLf07d31NKH/63UPwrx983pJtePjZ02vS+WdmObdpz3uYSg/3nWp7lSBqTOAyAmgKWzD0PcGN1GtJ1Y19T4b7Mca0sMkXqAcBVK6AN0YkGVorrDXJvaROchU13xetkyWmn4KSJUiSF+oEeHMh6/yMZYGGXCQb0nXp9O9Ug4pSNl1usvObxgQzY7cIWtX9N6eATWVdhoxFlTyzpyJaPwW5YuEom330fvFM8ljWZGlMINxjdwVQpqxA0oOofB9iSBpvpk3NKk0U8gU/jJRaE8uKbhhQ2krxjve4tmXwAa0jVVVDWWJXK07dwOHYy+uV3Es/OmJ0qGhYrVa4ncMHL3KCGOn7nr53XN0cWG1rtFYcT0c2Z1tOp2PyxJ/95PGeqirxPqWSR89ud+TrL19ix5bzs5rV9pz1ek3bnhidYxzHxFIVeN9x3O+5eLJGaUVZlIzjMMlV5K5l3/V5Tj1cB8gScD0XhubxEolzYL5cHzIYWAbP6cOiypN2fl8G3TFCQnryGWkBlgB3kb7PpMgy0MhjbDFlJduTZIhp7GWNb1TgU+oyg9bv6pHnttFzS/ow/VxYPZkHGchLMdzgeyErjIgHi6JEWYtCrG6Vlr4TrfPY0qATYBgHh9WGoqwmOeJq1bDZrLm7u6NMrJvRBhMVypb0w8Bms6FIoNT5UaQRY0ddN9hCcTgduLsOmKLg13/lR/yNv/E3+OLLnwtTF0bGweOGnt/8jV/h4uKCt2/f8pOf/ISrqyti2FIZxdl6xa/++EcyB53j0aMLxq7n66+/5pOPPqYsDPvDnsNxRwieL7/6gucffiCdPb1nu33C11//nO12TVFaHj++FLeaqyvOz8/x3stcHgZ8jLgQ+P0//iN0IQ4bIUZOrfhmn12e8cs/+mV2R+nKqYzh8smzFNwPDG7EWMvZ2RkXl5ci1bl6w93tjqZpKIuKsqq5uHjE67dildm27dTXo23bqcAv+FlTnl09ZCrJfPNpH5J1PPcukDmsjZrcWO4PLCZJbjaBAFBK9p+c+ddawGRRSCZDnm/qbE0G+37K1OV1nKgZRy+2xR6ICu8jbdvhfKQfB5r1hhBGxkQwVmWJrUoZ74UA+6IqxZ4R6YiqlWa/33P19i1FafjRL/2Qf/bP/wXPnr/AFJYvf/Yzvn75krvjSbJ0tqRqalabjWRBb+6oV2u0NpRVw/n5Jc8/+oiz83NObUu8vcaUltXZhmpVUlFiCzGp8H6kqkp+/KMf8ku/9EsY8z8yjJ5mteH584/4/LPv8U//x/+J0Wu6rmXwIz5GTGH54udf8s2rr9lsNxSFpShL8Z5vpJHZqe8xyqb+CVb6ihwO7Hd7+r5nGAfaU4vSYtcYIhTWorWSBmPJ1WUYHChxf6nrWmRKyfVpKYcKIUrn5KgYPQzDwHV3h7WWy4szjqOjLisKa2m9Z3SB4+6I1bKmloWlHRzOD0JaBnuvVuLbHt8euE8D9H5MkMFd8qyQwjCdJSCJ5mBmYmdKMyP9mdkRkinJJdTML2cwtpTlPNwUlxvYw5twb/OdrmUGWlMaLUVnEwB7eA8yMDcaXGZQl2zVDOIicW4K9J5znc9FpWucf3bv/uZFIo0dSaeRdPgLtjjd65jAN6jEAKi5CO8XXhNzUW3M3igL3b6e78fD+x7zNSHa89KWSdbh2a5XVIUlDANhdEQ/AEGKvbR4iRPVlN3QIE157OzJbq1BK0NR1FP1u9EFxhQoZabuj6LvFS24FGRmKY+ASAmsBIhEH6YiXAFBEkXnlLo8t+QeovX0lGTMJnaWBJxJgFzPYH0pYVncabQ2+BzETvdftpMJkGuVvOPTGBerI2HSs3VU6jUgbpFq6rYmRcB+8n6XjUD+rYxJdzjvLApCRoRJ5pXYXpuLfschuedIcU5RlZhhkC6cOlKWUihl0IxjoGmgH6QtN0FjlWFwjta19ENPUYhm1qBYr1aSCvae/bHlbnfgfLvFhxPKiN47eCAEAdjGMDpPUVjOz6SZ1PHYEyL0wyit1mPgeLyjWZ0BTM2gjJY6B+ccg/PJ+1gYK2utdCac1iIZByHN34frQF4DFICT4Cgii/L75lYkBUkZ8y/XtxgnX/wseXk4x6Z/u8V3qPutsfN6mLN6S7Z/uTYqpfCIG5WaosD0/hAIWkiHHIwTH65G363jPjN67xfpfmgU5t791np2uNJEHOCGIE4zIMyjEzBkjLiYmHHEFiPeec4uLzgej/eeycX5OVYbTqdT0t9CbBqRiBjD2Hc0TQNK4YPY99XJy31VFxwPO0KEj1485+rtSx5dbHl7dUNdFDy6vODx+ZY/+ZM/w/mRJ4+f4vueuij43ief8C//5b9EK3jxwQc8/+AD2vbE1998xcfPP2N3d83oBlarClto+r7jxz/+Mb/zO7/DdiPX17Yth8OBzz//nPPzc26ur2lPLX3f03Xip22M4ZDcOV68eMH5+ZY3r1+BVrRHCaAvHl3wycefMLiR67tbuqGfijfv9nueP38unZ2LEluWdP3Aq5evuHz6hFPbUSnFuthK8bz3/PSLn4lrj5bMR9d1aK2pKgkAYoxYY1InalIzIpfGwsy6zphszr7m1+RA+B1J1XvH131ZjHee4BddimNMDQpl7fF+gVNCXiPm+dp13TR+nPNEZYjacXn5OK0ZGlsIQKwq2QtX6xJjDbooUNpw7MTmcbWpGdoOqy2b9Zovv/ySf/Yv/mfeXl3zp3/+F+wOB079gFeKom746LPPWK23NOs1682aoqj4+HuWDz54wXqzxdgClBTFuhi4/dnP6J1LAS/c7XZcXG559OgSrSPD0NP3Pb/927/Ff/cP/wdevXzLfr/j7/7dv8f/4//+/+Q3f+M/47/9b//f/PZv/ysCHu8GPAEXHdd31zx//sG0lWqjxUHMGJ588EwMEwaPGwNozfPnH/HXX7xgv9vx8uVLvvnmG66vrujbjowlnRsZBifyYEn3T0Soc06Yca3FDUkX+OAkGxoVg/O8eXtFXVYoIkZBU9c8fvwEtKauCsZx5HA8MfQdGoXrOzbrFU1dcex6ru/uePbsKTF6cUhD6vlCDHId3+L4jypOvbc5vAMGowARxcT0JcQpNz6mEtYoGIgw29jBDHUyGEzvnhfXB4D8fX9f6tny7+4xzyrLHR78fHFty+Me0E4b/H1LwcWp5b2VWYO2PK97Orn0/tyx8T4Tl788fWQSP0vXtOlEmIrMgrRMX9LwZjqZHDy8vwBi1rc+/NJ37+3yOrLsSRQrhqquKQrD2PcE59ienzFJl1AMThqHlFUpHf+UngBsjJGyEMsqYzRGaQpjqeqK1bqhqkoisrAXVU1RVtKACXWvPbsAYJ1cN5ZXlZnnWfsq2QTmBkx6IS+AyZFGPjKBdKUBL9GymoPO9y3ic0QaRUeZ/57nBIm9yWMA7jUqi9kZBDVJYHIpU0y2gfm5ZtCpcgaEFLAkRl2Y1wTs1FzULeNBi13blJmSVLYaIgrpIhmUkXtflFRVwA8j3ejwzjGk4q6qLGiaGjd63NhPY60wluPpRNf3NE0zOTJUdS2dJYeR/e7IxWbLulkxdD3WJi/cIFX91lra2x0oxfn5hmfVOfvqRNv2DM6DUqzXNcf2SN8dUVo8qW1RoHSJa7vUsVAAvfee0c8uWEohQW4m2JZzMc2pSbqX14goxZ3xfc8eJgA4NWZczH+ttQCXaT7L+7ODxL2AP8ZZ/54aAeXfS98ClWo75gxSBgzLhi8qj4n8b4XIoxL7krG8BI+K96xG35njIdEQM8MEZJ15euF0j0JyPIopmM9zqq5rxlGY+8ImLW0/CFg0htoYaBppxkKkrGq0scwdET0RTVWvKCs1ERPH4xGIdJ34TRdlSTV1Ym1TZ09FUdrEQm/QthDQ3B/ZrFesVw0/+fM/QxF49vgRh8OOsW+xSuPdwNlmzeXFGW/fvGJ/d5MvmT//0z9lvao57O5YrRuKsmAc4d//3r+jrgra45GQXHSsgrdvXvHN119xttnQdx0qRp4+eUTTNNzdXPNrv/ar7Pd79vs9h4P4anvnOLs4p1mtIEa+fvmSSOTpkydELeDUx4hHGuiMwfPk8WPWmzXee9qu426/A2XwKG7udpjDUQKbuiZG6XqZ96K+7yf2v0rmBjB3Mba2ILr7dnuTXXCIi9GBMO/x/XKxPKamuaXVVHqUeznI2hofFKbHe5+XAz/vxA4xBpF35M93wct/ztH3A/3QE6O4kogkqklOPWKJSQyTbeapPUkTLSJd29G3rZBnMXI6dlxfX/P2+ppuGBhjRBUFn3z8CT/4lV/l2YsPpQg7FboGF3ny5Al101CU1VQTEHzAdx1RG6LWuBjxUXFx8Yi6tnR9T2kVfhxxqYlYYQ11U+Lfjvz8yy/4p//0n/Av/sW/4N/97r+hqg1dD6OTzIULI6ao6YcOYxVRVaJmGCPOBdabNWiNd5FxlLW0qmsuHz/igw8+4ONPPuH6+povv/ySv/jzP+d4OKCA9nQi9CQCSgI/rXXStSu8k4ZefWo8KH0IpFlhXr9H7yhSkBS15u31dWq+tsX7ER/cZOThlTQLG4aBupbGV8dTCiRSvUyMStaMsf9W69v/qgZMmZ2KsHB/WRThcZ9zzBuRAFHuSU3yL1TexdJmN0Wx6T1TRMzid4s/87m9c54Lln4pIQgPF3iYLCTz2eXU2BKMxYzbFyA35s9WzAAtf38CiSkzJkELJGtJFvdL3ftM2bTln2GBJBRMcpspwMmsYYxSZZukGQIe0r3JX7QAiPcyAulnk2f94vOXz2N5n6NSqMLgg8e7QNFUNHVDDEzpUBL7aLTG6JQa8kHAe2rbXBSWZBSCTcC9sKIvhZDaWYvllbhm5I6omhiFlcDoyapyYtUXY2G+XxoVFVrPQaKaxsGsO0YrMPn18w3Ky/t0P2KYfjrfozDdzAy2xFEkF54qeZ9azoUcYCRXmfQdKukl82QHJdKf9P75GmVs4iNKxeRskpGjJ2KSc4m4omSZTvTisRwTrNFKmjEF51FE+q5l9HJPZJETpsKNIbFCI20/QJCisRDUBJCVEvbicDpyOBxomgY/xrSQW2JwtKeeYRjYrBpevX7DxaNLxkGs20Ly7bXacDi2FNZweXnG5oMnfPPqLYfdkX4YWK9rYhgZXKTvW0YfUKYQB53Yo41odn3StsoTDzmEWixWqdh5oX0WHaxGp/qI3LY8d6BcBvshxMUcmteIafwllwtFKpp/D+kA8d5nkoMAmKQu2Xs9yxiX6+CU9VuO/ekSs5NM0uUiKXej8yKl0rr17azJ/lM9lnNf5+Z5D/aIzKo+XNOm9RE1AT9gKlbL4DEHR7nxjviCS0OePP6ttXgntpHez4FUBpdFYRnGkdxkxzlHQLFarWi7Dp1qZG5urrGFFUeOcWBQYn2qgIvthsNuxzAMlFY0b3fX12gV+fj5C1RMWQMlrhYKT13VRBdkffXiI16W0phpdHHSuTsnmt2qqtK91FhraeqavuuoqpJXr14tsgwBF0Te40Jg9HLPxlSgaKuSbhwYvdjiSdE6wqbHyN1+n6xwIYw6WUNeTBKY7EmerRLbtp2yTX0/A58pu/WeTFbGJirtj1M/k+U8TYTW+8bT8mdLXCBGDCbxKfKzcRyTQ4183nLMaa3BWnHgShLGyeM9zA5h1phk+yhrqU3Bn7VFYtwVRD8VpVdFRWVLQhiJTrrt9l1H1/Xsdjuurq7pOpGFPX/xgk+//3102fDB8w8pqoaoDdra1JTLsD6/wBYlppAsufcBpxymCNNeEFOwb62FCEPXU20aClvgjDgIKSVkR1kYXr78in/6T/8xRM3ptMNohXM9SgWKwmIMrNcrVquauq5SxiJKg6+qxJgCl4wPjMRFFFUFSgq6V5s1RVmy2Ww4Pz/n1Uth329TgXJItpC5R0buYOuDFJfm4taMSYfRoVRkVTd5JxZyaRhp6oqqEZcdpWS9CSHZkBqTfPctxhrafmAcB9arFTGtKaAoyuJdadYvOP6jgfti6MolxFmHLTeAJLtQk2NMlo4stdv32HsWQGsJqBMgzS5tMTWbWeo587G88GXqafHDCbRPV6AWcpfEOk7SHpjYMgHF8hnTZ2t5be5UmEFx5nvT29NGqu6xpFneQnp//sopSLn3WemeZCYwI+wF8FYpWo+kxF9Mqfx031PqYr4PCUBM4Dx9uTYagxLG6MHCFdV98A5KJpG1uK6jMMK6aqXo+oHoA0WliD4QPdJMKCzPIUlijIEIwbuZ9QxgggAUa4u5kj41zJg8eLNuUOWwR8B81q1O55+eRohRmjipVImfwTFZoqXmYt/83Mj3ToEy87ONCEBOvuAq6YInIJAGrdw7ScequJBRKVg6xaRdZNLe5QVZ9PvpeeTrjfmyl3Mln4MStt1kG804yW4iWQudz0ulsUNyxUnSJTO7F8TgGTrHOIyM3uNDQBsL9AzDOGnlYwTnw9Slr+s6qW9Ibh19P+C8p6gqakq26zXH456uG7m5uWOzbsRaL32eT01EKmPYrFcc9id2dwcKW/DkUcWHz5/yWiux34qBqrJ0Q/Jp9wGlLW4MuNFPQbN4zjvM1Dk3Abplq+B0LVGn+x21ZAdVXoPitPHe92/OADB9VJI96aR7Dj4/a/kenYD7Mi3/i7J+ecrLOWSAngmDh9+fQ8u8RORi8ziN4xBko8qlF7LhmOni76vjv5vHEoQppe/PFea1PxcjhkWwJluPzBdjpKDcB6nN0UpJ1k+JW4rzAVsUYsUZRcseYvLh9klIGkKqF5IbbguLMRYbCwG5bmQYBmlTn0wgZD2WLFjXnSiDWCFaI/N7HHrKskYTCc6hQpisc4euZVXX4jntBpTVGGVwMVIYkd5VhWQQXPBooCgs/fHI2fm5pO+TFV6ZfNDHfqAsC8pSgNQw9CgFu92d1CVZK5740YorTYzS+0ErmtWKD54/53g44qJohcvCslqvUUiw43yYMn9Gi62mLqzUGmh5TV1LA522bSXL4SWzr41O98ZOfRIycfaQoEqoRR7FVBSaMm9LsufhgFrMsXewxYNxN2f+c33T7HaznKvz+FT4VJTvUrATY5hsHgsj/TckYyMkgtbiDmatIficdYXCJqej0UGURnlte2J3t2N3t5MGX1pR1Q1Pnz3j8+99n+PgqJsVqign4G7Kkqqs0LaUQswk6wyIra9S2fJyts303suaGRwKKUwmRE7tCa0iWkWq0rA/HLi+vknPzuJCwPsBYxRlaWhWFZtVxaqpKAqb7mnaU9MeFqaO10KmlEnrL/fdUNeGKgV6Z5s1X1YV1hjujOF0ahliTwR89KknTSrOj+JVL8GRBGKjE9ebXKVAkAaIWgXKIJkOGesIfooSVGjAhYgFBufxfqQsrZgi6JTtJoB390icv+z4KwP3hyxQ3vRUXBSIpj0ws4gZwr5vkM9ppByNkrlPsqQhM4M+f0MGr7/gM/+yc/5Fr18C0SWIJbJgtpHJH2Zt6z3gO+PRTLbnL5UNNwO0HATcjycEbeeNJs6BzswEJBZvul/3N6D8p1osQH66gAVYhoWrxLTzTx8bScHXYoHK9GG+TXMkKseYUqOqsqzXksLq247SWIwy9Kmg0Oj8POcAyyQA4r3DRUVI3relNlhlsLrAGCkQQ0nhjCkq0adlNJb4Ra0s2hRoLYtM1p7ozFKnW5rBF+RgT00geM56pL8FFt1yI8QZ3E4jI9/G6ZHnZ74cFGH6qzzjHERmYD0XJE8bSxQv2RRfSEv2hZf7cojF6UVaJBULtj3GMDUPCsFPbEK0BhUj2lQSXCWXppjGuTYFEdGPGqOkGy6JcXESXIyjo3cjwzgyuoBL4Hgcxes6M/IxRlTaXH3bQghU2zNWqzXHw57d3Yn92ZGqrGiPLeu64djtMVrm/8XFGbe3O+72J25u9hgNjx9f8P3PP+Tm5g3HtuXx+ZrdoZOiqKT/7/qerhfNqDXJDcSJN7K2BpSwODpkEI48Xy1AN8qeK3PGSyFwfsbGmElvnosftZ4DaJXGV17LpJvrXBuSwf9DQJk//97vFVMQabQRC9HUbCmHl/lzlhIZLYgcbRQxuGmchGltkzVjWTwumttvp7f8T/VYZh+W69XDoOie1WcGXIv1wdhiAvUxMe4hvU9ATLq/CVgYlDCVSuOc53Q6UVpL3/UYOwcQEZ/YdXFyUkoIgxKRfYxukLKT5HahlDSgiQSaupwYzuhGjvs9q6qkJwcXcu51s+F03Mt1KDBlSWENQ5AOuZrI6EdCCFRVOd2TJ48fMY4jp9MJrKFKQDlGIVGMkXoan5xcMhsfQkBbS9U0qX8HUxfJqqr56ONP+K3f+i2a9Yr1+bnYZzaSnd0d9sQofR201jjvhdixBf0ozGhR1tR1g1GagzviXcQocRgzWk1OcVkGAcjyrCH6BdCOS3A9A/eHh0pNXTIgXo6fCbvExbyZ/pvZcrFqlP1vzu7MnzEFiyAMbvofSth37xwokUoWhUUbyTTnIEnpLL/Ke036IwSGThy2+k4K8w+7O9rTiaau0UXBenvGqlkxDo7CWLS11Ku1ZGGV1KGZshRlQmRyssnn6oIX5y9rpV+GUzjnUCZSWHFfKqxYODsvXUXrylKVls5AjyP4iI9OnP50FDlNZTnfrmnqkrKwGKPmS1MqyYZcsvBcdDQuS8qilPqGTNUpxXa9pik+wihNXVS8KWuur685qgPHrhWpIZl8y1aPgiqm3LeShlO5njN42Zes1nT9QDeMlEVBJIrrDIo4itmE99LoUJKagWa1ousHirrCmgIUDOOIMffJxl90/JWB+z2phCwbKCbFYAKzgtwnu8Qp4lX3Npd7UWfMjDsz8k2veThh8iRaMup/WeT7UFLz8HfLY5ImpPOeWSdh22OMU+FsLvVTMEft9798vtaMxt5zfvkWJaNNpiGXWbPMAizuTR5U70hBMsZWWcs8RQAzyIsplZORhUrPMoHPGGPu/jyV7OS04/LZ5Qh4HKWRktWG1UrSx7v9ER2gaSqUNQx+5NS1YqWmBfBkz/PcMVOlRV46qhXURUFTS5c8ibQtpihRphDwnKJE0ahrlLYTg6aMgOuQmtlIIyY1B0T3n8L956WyLEZN9yWkgDF30Z0zQ/Nzep+MaCmlWcB6IKZgV0GUtJxOYDmS5DPBpc8TjUNII0SlQDaZQ6b9Rk0L9zQ7lU6uBaSdKwG9DMzS3NU6Z0HizDpphRs7QhArtt5HlBJv6WPX46NOMayirBtcC+OxZfQeFyLOO/pBqvKJUUC+kVbWTinGYRDLMK1p6lpY9nFktz/w5PElw35PTlXHEBjHHlNU1E3Fvu1BQduPvHlzy+NHWx4/uhTf5/WG1arn2A7YqAm6EubHaIyBzWbF7tgSgkt1CjleTkFc1JMFqIBvmQs6EwYJfMcYpuAz13lMzdKmNU3u95S1YAbsGbxPtq2LefiO93tm9NNn5LmslMzhzA6npz6BAWGL0hKvZzYu5PmCZlLHBJkYsxzrfgHs/78d9/aSe/9pGQtqrrGapDBqzsxmOcPopGi1LCvJ4hQFq81GOmmiKcoE6pHCN4UWn20jbhvDeKRuGnIfBesdbdeJ1aJ3DEM3jQFh70es0TLmlOwUzkmhtUuBZA4aTQ4WksxiHKTxk9aSUf3hD3/IV1/9HB88RVmw3mxZrVYMfcfhcJDrG6U7cnc8sd1uATgcDgBT99LVakVZV5MkqB0Gqqrm4vKSvuvYnm1xbuDm+oYvvv45ZV3x9NkzIlF08W/f8Ms//DFjkCBAOtUKplhtttTbLWPSIWutUz8CGeMi1amAKMCwko7LeeyHEPBBCtIxabyTg9Nwf89W87q9lM6+Mw1ifq2ezilpLu9hiiUDnR1qBMAL6zoF5WVBGIXYEzcnPWUrM+niA6AFFEuJq6LQmqZpsIX44a9WDSEV5Cu0SIti5Hg8cn11TXs6CqmG5unTp3gUQWkOhz1//md/zuc//CFNVZIDGWP1ZK8oih6dztlIdsSNDF2gKks2q4ZdUdC3R4wqWDcVF+fnaCPdh4mKzXqNd46uPTH2vRB9MdK2UpuAgnVTs96s2GwEtDdVJQoAY6YgJoSId4Gy3tCPXmpIvMyHzWpNkxod5edrikIy/7Xh+QcfsFmteXx5yVc//4qXX32Nu3YUZZHsvJnW5hyM5jUghJAcy6ReIDfKi0q6pQ5DT2gidWL1AQpjcUOXGoQpKR6Ogd1uj7EaW5VJiifjuSjm7/zLjm/vKrMAwPe0YosoM72QSVuZgaCaR39kIf145zvypjbh9ndfAKR2kKkoJEHr90TL+bzJ5/LgNe9LS2vkM1HkPiwT3goT2Jl/pkgSnsWEz+4PU8THXBQ6M7f3zzm3x16emxDz8b6DxOI+vE+7N51bfHhP4hwILJ6XABGdNnYScJzZwjyQ37mvckOZJBZKUdcVdVXTDyND17PdbCjrhhhHKSRNTWmqqsQWJnniyvcYYyTFmSL3uijYrBvWq4ayKNPpG5QuyANLUlECX7W2UkyTpQfpT5V1rTrTLtmBRhgJ4hS7kLVsAtbV9Ds5ybj43cIzO13AMrh8GAzmx5EfzvRaIFWmTOeUm7OkFqATECMVyKBmydg0fpl+MD+d9KVL9UdUEP10tYv3JEiYnnNWfSul6dsDfcjXnLpGxkjXd/SD6AGVMRR1jT61hNS5LiCLmkud/4iiqWexTozOczidiDFK0Z8faE8d+omSVKJz1FVNCCMkjW5d1zS1gJnTqadVA8PQ8/FHj9CqlECjLDgc++QfXWBGyeqUhWXVrHh7dYtP7jhoTUjBY35SMY+tOMtFpt4FaSihResZQyBECbrJPvmLNSVv/EtgnT3Vp3GSZXbp8x8GgPNzTpmqDMxTZsoY6XibM5yzZCq9NtU6GIn+0FmukQKFPLZ0CiABdIzCmH5Hj9yxMh8PWXd4dz8QYGXmAuGkCQ95jU+v996jC0NdlNhxnNyRlLaMw0DspV4k5FoKo/HOc/HoEV03pGzUiDGKi0ePJjDX9z0ow4cffcypPaJOJ6y1EylQp3PPYFqnInxjCh49esRut6MoS5m3fc/d3R1Pnz4lhMCTJ084HA7sdjtijPR9x8+/+YpjexJt9Ri4vb0Va0VbcGq7BRusKOqK3fFAXdesz7aTX/qjJ4+pqpp+GITlbDRVCJTNisvHj9jf7RI7XPHk6Qf8xl/7TX77X/0W/Sj63/XmjNV6S9t36MJi0Fzf7jDGcHZ2RlGJRGaz3SbtdGTse27vdlxcXEiWMEbpwOqhLmpUsmh1o5tIImM0wzBgFqnjJcsuZhPzjh2CS3vAYr2cWS6RpoWAzyA3jaGg7mep8nhzzi3GW7wH4sdxJLhRilSdn1xxTqdTqp0Q2ZApC6qqSUGMzG9PEHlqVU3EQVlK9uf66oq2bdnv99zd3bFZr/jxj37E119/jdEFVVPjI3iliabk5s1rLi4v0WVA20IkWkFca8LQ472TZxACo+/BjVSFoSVSWktTVXTG0LdHChU4FZYQR+nDUghht64bhvWG6AObusY/iXTDiBsDRSnFutYaqqqkrEvWqxX7447oLVobrDaM3kGItMcTbTvgfaAqa549f8GqaWa3P5WaSgafOnkHMb3QhnXd8NGLF1xstjRfNlzf3dKPvUiVPIxunLvvxvlZ3tzcipys61FEjDZYY4jRU1UVF80l+/2Bvm2pSouKUJeW0lrsqqEqS4gidSsKkd8dDke01mzWG5ry/8fAPWsAHy5+SzZbhqRsDLmsMS7ozdz44yHjeZ/FhwW0ffBCpg0ng1BMApC/4C3ZoSEHDwscfu/74T6gFXlIkhqkrp4kt4Ul051Z+KiXzHj+vPvXEuN8DtmDedoMEvsqPwvEDDgXADw3p3p4Act7L4Ws6XwnwJm+fwJkczpYJVQRE4MQc2owfU8OFGIM7zzr/H5jDFaLE0wMAZc2MxDWoz0cURGeffCc2O8o1MiqloWBKLZdhS2kqtp7nBsoC812XVMW4rkqhampeCP66VoiiIzGWKKWTqrkgr+88KYGCpMrCGqWqYQw36IUDKq8uC/HzOLa86L7vizK/eKS/LwWnwHJ2z8/m5n5ngLSBYgmB05JNximKAAy6xNjqrVY9CsICXRmwEfMQXGAEAh+TEXMTHM0pnETE8hWpqCoV3SnE317JI4ZmOrENo6EqOjHkTFIBzvVG5Qa8eMoG2G6bwJiJjPKaXANo0PpnrNNg0GnzqcD280Z11e3XJxtOR5GqrKUFtWFQSt5n0suRbuD46c/e01jPJtVlZNSk368LAoKo7GbhnEcaU8n/OgwSXsZtEAzyerkAJs5yMuEhc8BbX4+WeKS75+4lYjt6AK8K9HfBh9SMfr9AtKHTEWeUw/ntwA1NXctTmejtRJQnuzn0JFIdjFKvvSk2gqlMYop25Y17nIVQaxIFWkMOL6rx0OAPskWHtzXhyRU/vlyHVeTDEaAVi7OHL1DG41Vs04+F6wu3UTGcaRpZOzpwtLU4pzVdid2xyOVFVtVWxYYbWj7HqUt27MLAR3pFEMIDF4cRWLed5Jx2+3ujvVqDSTZhDW0Q8/13S2r1YpvXr+SDzFSkHx+fkG2bS7rCoUSr/AYOD8/x6UeCLkwVymF8tIAab1e06xWE6g31tIUxVRAacuK27s9b95cobXifL3CWsswDPzJn/wJRVVyeXlJ27Yopajqmuuba5z3bDfnXFxcTEx2XTeoohT5zyhN6JwTkNS2LUNyKynLUkD9OFIUcj9HL8WrMr3S/pWdfoJkKWKMLFfs5TjIAfDD3+UAPu+hc1Mv/c77l52ZH47JEMKUuYmLjH1RFBNLL8XMCp3Gbd/38rymHgsy1sqyZBjEXjTEQNv2aGM4TuAz8PVXX/HN119TWCsgcb2iqlcUVY0pIy5GvvizP+X//Pf/a+4OR7pxZNXIWA1YcfBB6j1M2vsckUobNk3Noak5FQVjfyIS8d4lcBrouoGyFKC6qiusuaTvevp+YLNOYxno+h5jNXVTT85Bq2azCHxynxcrhdWmIAaPMQXn27N5n45zdlkhNXTDMEqmwhiqoiRWHuUDzx4/AQJXtzccTj3DIJ2Gh1SbFSA18pLdSzrVGkxajwHqsmG9WaG15sWLFzRVRWkL6qpgf3dDGBzWKIJLmejgsYVhvV6zXq+pqio1kbrvevSLjr8SpbL0NF0OxHvyicxgKkVYNiJ5wETmQfqwmPShFOPeMUU+ol2O6WfqPa+/J6NhHhjLpiV/+TGD5PsTb06hTi9bgGsebAbLa1WopHGdr2X+GDVdz300uNDSx6TB4v49f/fa5/eKjCnrpvMOvbie/DlhbuIzh11MmEInBewE/pOMJDNbgv/DgrlELMbcyP5wxHlJLV2uK8okqSkKA0EWKkXSrbmR882axxdnbNer1IipwBbVBBoFhCYQiQFl7rHtU8CjlOhD9WzjNN07n5oWqznFOV2zmm7fzF4yj+tp8X7fEbPrS168SdFU+oTMrGYeTz1M1yqW4WVm2yZPmUWQGmNEmUXXzFS0PTGp0ykl4Bm8FKx6n1yNErjP4zedd+4m6Z1DKUuz3qKbDd2rK7ruMP3OuZHeRZQxuFG0lHPhVV4v9KRXzQx2Fr/Ja8SHfX+InG9qbGE4HY+sVs3ku4ySgEp7MCpOlmt57MUY2e9bfvKza87Pt5yfr0UqZa2kmJVY8dlqJeBkkMYyXmd/fMAuM14p0FGigTdKE50nKpEwhdS4RwIjvRhb8zObn6f8EYi5TjUFh7IWqMTk+6Q5ztfzXneBOIerU6Zl8X3ys2xRl6VRSavuI6iYuhNrdIyTaUB+bw4aIaWG3z2D787hg2iBVS7pjpPESY77e8U9OUraoHVaN/zidfJznSQYAZRBKZMaNnm0KaTZTpKzaWNTEbRhcB2mSNZ9Sj7n7Pyc6ANte0KjxX2iKPAh4J3HFnUKsGRe2rohOI9LTiVaaZx32ChWfEqJW8Y4eiKKulmhjaUsSpx3jKMTEGttstkrCFFAVkARArT9MM/jNH/X6xXKaAojMh9TlqzKmtvbW1abLYfjQQCOTFY22y2r9YqbmxsxFlCKYRi5vLwEpOGNYOoIw8j27IK721vquprICB8DgYiOIr0LTlhway1Gl+z3e2kCx/z8lFrWd8yWvT4Rj5nMyHUfGThPmCBH/SETX/Ozf2efJUoTpsXPNElKq+Y1PO+PUyElarrGTIaGBVmTg6aQ+j/EGPFBGvCt12uCYmo4lcH9OLq0/4EbPX0vmR2TMjZ1Xc9SKaVojwfa9khRJmtlW6BMCbbgiz/7U3765Ze8vbrGpg6sZxePUkddm/ZjMR8oq5qmMJyvV5xWDXc2kXfDQNdpYiwlI6hnd6aceNXWUFKKWUFRSI+PUq6pLIvJraYoS8mMeikYFdMBkc70Q4+1FWfn51xcXopTWZLGZObdpOdqrWEcB4xWWKMxGqqyZF03bDdbKQgOnjAcUNYQnaUfB2IKnMqyxBjL6XTCJInndrPl4vycoe8lMxGj1Aqg6NqW3c01fuwpjKXvRqJ3aA3n2w3aKAH4RSEuNmmMf5vjf1UudBJULIDgfaEFE+gB2UBCcgJ5XzSq1APf4QdAfJoK0wZG2kDnn78TTGTgrZgmZgj3J+ASBE8/S+e+3ISnn6XvWU54RSr2Yt58Hx5Tu+QYUx+fxX1LYDCXE4Yg9lbC9qf1JEl4yMVvC+ZufibLLWmWLSmVgMJkER2ne5phaFzelyg1ClEtIOD9x4rNzisgnT2NAMYiOSQ0qxXHruft7Y7NtqEIXqL91Ba7MAqVJvXoBpwbKY00iVg1ldRYallkjZLQgRCJmV0OQZo3qRlUL4M4qbwvyZ1V0yiUQETpCdzkhyuqSj1j64kJzfUaEgLlDpn5jfn55cZHk/YtAdUgeiSyjlop7tV/vMvUpDGwYG5UWrimB7F47vekT+n/liy7SuccUlXGHCBGRDsh6c/oHX50+KFLf++lg6ktoKg4v7zgNDrc8UhVlpyGkYgjBslgeDfK4uNlLoyjnzJ1whQnhiouNlYNhMgwjpx6zaqRNHzbthSF5W6/k6JYP6K0xhhLWVT4MOCcFzeFEBn7gd2x5fpmx2pdUa0bRq9hSPkMY+j6nrYdJu2jjx4VHDpqAe86ZxzmgEnGmwQ3UaXUuEpOEShpTqZTh2SfgqRpnKXRFnLozAQaVCRdfH7u7zZ7Wa4N87/ls43WqJgcgmKa5SlgglxLnupc8qgJMbFEemYitQI84uqhJybwP0xs/Kd9TOAs/zsFSnJ98A5zwrznTAE+eb0O77xmlkLl56qzEi958+t5/0h/llWN0rJyhBAoFw2EGrUC9CQX9OMgTL+1mNRfYnQCfExRUBRVyiiBGx11vRLpRJDaizIViZrUcRoiNgSqGCEkIGgsq0aAk3eeZqVxIRC9MNok0sJaK57gxlCVlQBWYyiLkrKq0vjTaG1RyhAibLYbySIkBxQB3AVVVdO2XZISSSFtCJG6LqnrhgnsaoW2Vpr6lSVj6+4/14QfCmvxqTnW0hluOV9Qiugj71Drv+BYbAn3McFDPJIwxT0lQiYpmSWH0wi8N6Xuz6/l2JukWsufa4Mty3vBR97HQbqArlbSkdqNYveqtUEbQ1EUNM2K6APWGHEgGh2DGwmhxTmPMZYxHInK8Du/9S95e3XN/njCFJaqqWmaNduzM6y12KKgblb/X+r+7FmyLDvvxH57OINPd4obQ45VBVYBINEEiW6a2kST9YOepB4e9C9Kpr9AZnrSg2RtLXaTapIgABKoKhSrsjIyI2O6g09n2IMe1t77HPeIArJo/cB0ICoy7nU/foY9fOtb3/oW6/WadrmiqmpMDLS1pa2lMNR7cTxqmzo9a88wjFRWn6xJaIVBJx27xYaQ1nlTdO1GJfthxERASFvN6BwhRtpFy+XVJcvVkrZt5fuUF1loTPVg3gHTHqUQ2WFlLW3bsBpanFsRvSM4z7HvWbSNZJVToWllK2IQWZBK6hFiTCqBEZtqEA4+0CnFOPQo79FaupF7N6BVZLVoy32prBVzjrTGf9+6ov8kVxmRkSSYE2f0cQZ+ZbM5Hajnm9hJe+500ieL4u9krimbY36VLp9nYDYmF4fMFmdQdH7MkzNNkXY8e0+cBeHTwp3+N4O9+TlmBDj7wnJMRdls88/lM1MRYwFfTEBg9hUzsD2dtyp3h7L55INMDX0+vP68wZyfaGEZ0v2YWCdxJ5HNPun9vDQtWLGkrmtijDw87njYHnAhcPX5U6paImKXmupEYEgMAxFqo2mrmsoYCNL10lqb0tXpmrRFRUN2dylNL8q9UWhTkTXZ+f8E74ogBKWLPWO+XJ3vLyn/nBisCairjOimB3A2buZseMgBZs4rFrCc9coKkvONirl6PY8XYWNzOhZUWbQJWRKTzyVf++m4zedU/IDzo03dVSWASCMt6XHnzL7WBmNrdo/3eAXRSsBlO0PbNjSjY98N+DBgVC4GSmPB+ZIKzvKC0l8gzue+nESMUmz6uD9SXy7Fj7queXx85OJig3MjTS2LstG5KCyilaWqDX4csSYyDCO73Q6bmCTnpDjNOccwhtJsI4RQCspDiKi8WSoFSfsuwD0F0TES1Fwml8ZTGpQxxsJQh5T5MHkdElSR461inSvCmuwKc0pWnKfX58Gommu7YkxB6SwgSwFbLmDPI64UpGb9d4x45ZGmZLN15SNExg/tlSUxHyeC5vvOaa1QBgwhiKxJKYVK42QimlRaR1Rawym/B4rMIwdBOWu3Wq9wfsR5hwqKuq7xTlx+lqsVRLGTC96jrcVWWcOewK92OCe+2cJMT0Vzla1QRtH3QwLrRgLgvqeuGg7HfWEydYT7+wfqpqVdtCmIExeQw/GAHz2L5SJlX8U33Y0jVWIH8x4dQmC5WtMPgxwrgfuIFOu+ffeWpm3L3rZaSefrcRxZr9eoYWBI0oAYI5vNpqwVJgUd1trUPVth6loAsRdf8qZpIO1Bef7k+z/33s9AOqsBcvY9j4tCgoRUX8RpxmvKEU77dP7MebBHOX6WByY50VnNxcnYILmepWc2zbsM2qWguV0sSl+UGBODHxHbTcBWlbi+aI22BhtrqrphuVoLNiMV7DqHNwPWV7iUmbK2Ig4jPgT+9j/8tTjFVBU2aox33L3+lt3du+Ks0rYLlqsl1jZcPbmhaVv8MFBXhkVT048jBGl6pbXGDSM+Aj7g01rjgwRutbX4GGmsRWd8qYRsGccxzUMjGlMNyoAbR4bRUdU1l5cir2qahrpthdDTmqBcksLK/ua9Zxh6IaeSbaOOUk/VJAlb8CuC9wz9QNu2DMPAMEofA42iG3rqWpxfgvdsHx/Zb7eE4FgtllJcnDCJNZr1Ykn0juPhADFQ1yKfkd+bBCViIQmU/n7R5e9VnJpB+wQmZlrJKFGJYbbp5CLPtLllR4854M6DWKWNLGZk+ZE944Qlp+xRwGmQIIFFLk5Mu2WIqLONaL4AzZn6vNnmhkelq2X53vS/Z+ejmDbAzK7LZpoAQgylIDO7QZROaTpjQlXA+ul1pxsoPmQCScP0LOagPSnkJ0cRuUPoMLtvcyaBhP8ikuKLsQA6ecbJfoPyYVxws2CJ5L0d2e72XFxcUDcNh2PH3faR4zAwBs/d45Ln108wVYNCNpdj1zEOE8OgtWGRmi9oJYM7WySVxkXJ2lEcs5TociNkSiVGQ4zy/AMUL/v82Rine5onigD7rImbMg1ZfkOM6BhKLcP5eCx3Us2CHXIgKjdYbqkErlEhRZGZpUngPQLRBSJeaiqCBBtezYIKPX9+s2BXGflcOZ0pyPJh4n9UFFAZo2xWgk5jairkCSm1b2xFXcNitWa329Htd4w+ilwFqKsajeJw3Mt3JwvBmACFn0lnQnoA2c3oY9m1GGB37Fk0lqapWa+FlTDWzFLHkxcyTPI9ay1VrfE+EnrH/rhjc7OgrmsOvXRN7fse7+KsNiEWNx8B3gEtfJQ8b2XlbWEO2iS4EeY6jafghdFDEZRA6Ny5N89rSZ+TJGnT5u4T4DbpPsxB5PmaW9YoZu9BfUBa5OU5prV2+mxaG+IEJqdOqjoRLzJW56Dih/g6z3qeBkD5Z1PtS4yx6Iqz3CTPn8roAsBy5+W8Zkv321NGvqoqGZdai27di9vVMAwoQ2qkI3KRxaotINMYSx2h6zqubzb0vRT5+yABxeX1BXXV8u7dO0JItQ3W0CYwfex7MIZh9CgXWCykkY73UcBbPkcUN0+fYbQUsWbgroDl+qJ0wh5HaYC2Wq447PcMo7SKR021MKaqWCwWtI3oe0cnwcKh66mbBc+ePeX+/o7j8UhT16VxVdd1J7aVxhiWy2WpDRjGkWPXYZuat2/fUtc1VQogjscj0TtWqxXO5YxeIiRmpF/i7GTMZ/eXRHzMM85zImaiQdJ4mUyo051TGWaRFuIiyZgTXwqx2lQq7xdB9qR0bvOxKUSCLySH99IZtMh4IngtchhrK0L6fmsqlssVtrZorRmGkSE9z6Zd0HUdt89ecNzvhBWvKpp+Qa0Mb9+8ZtM2qdtsoLINt09u6fuBzWZDNwx0Xc/oRsa+IwwdKJGz7kaHUppm0aK0Zb99xMeIsmIfWWsN1ojLjXM4Jxmom+srvvn2aym+9SHJZyNN0zL2HVWoydmc7I4UoswTrS0+BnyIYAzbuwcG53n+5JanL55z++wZi9WKqChdZI2yQiYFTwyKYISEcW7EO1+61mbKTMeAVbBoap5cXeJR0im4HySgDh6jVQq2I1ZLJ2XpgAvWCIOviCzalpurS/a7Pe/f39NYw3IhZhur1ZJFu0jBFMWGV8yJzjHFx1+/F+M+XwzVNLZl4Te6bBgTQpgB0AxoZwP3XNZyPok+Nsjn783yj5z6VqToeTqrcozz23GeDp4z9RlwyzSPBcyCbLwxaZZLlB8pvthlgz65DemcZBXJmKEUvimmTZYM5DOant0OpVRKbaflQ50VBuf7NAuOhISdJCTnLzVb0KJS5RxyMitrQlWYWMJyZbPAx2hLjFI0eDgeWKyu2R72HLqegGbw8OZuy49fXLJZgkvR79CPOJeamiQHgNWyoTYWq4xU60cBlvhIsFE0ayrrg0W/mIFHBknBBwyKqBMci9P5SgVienY5zQmkKpQCaAR46bJJkawCMyifMiBTZBdzIMsE+qfNRKGUTQ1Z5RpyF9NY2B4NBilkLJNJJZYlooIAbj0D71lKoxBv2Q+e82yeTkFZjtSYuoCGQHRSQRrIftChFEXGcRTtpHMMQ6C2wrIdDgcOxyMRhdYG4jgLpAW0S1p8EtFlkHp+DTFEdvuOzXJBjJGqssIyYfAuiO5Y53RyLClUpaSXwDhWeB8YBs/b797x5JNPpeqfKI4fmAn0R1JX5FjGsVehaEVj9EWnLFMyi8pUkqmE4lYw8W159YmTVWySZamYWfBcMDetOxnoZy9w8nxP9y4fvcz3GFORcyygIQcDOTDNa1M+vqwtAe9jZglQNuWjSrYmB7mnErwf6mvywD8F8rl3w/k1nmQ60q9MsqMTh6qpSVNm5nOQk9lSa20BxPPAyRiDNhP7aowAysViwTAMSd6gWa1WHA4dXddxeXmFMRbvA3030h0Hbm9veXd/JzKIpmYch5ItaxcSrIYQOBw6VqtNMTWQsSpAtO/71H3SlK6vuYA0X0uIkeg9j1txonHesVwui47YGMNut6NtluX7bV1z2bal8LTrOumyuliggMfHR7QW+Us/jhikxgnEZjLGyGKxEEY+zfNPP/mEh4cHXAok1us1fhzo+15cQqqKmJoWzb348yPUqEI8zcm08+ee91SUIvrA+Ws+fnJ2Zt6ALR8/45I8gHz6nPcf2rzmzFCc/TsH79nKVSmNMpYQogROWlhvED18P/Ysl0uUUlxcXkKE7tjx5OkzwihN8y6vb1itNnTHI/vtI3/8J/8YP8qzdqOjO0rnamPEQnPRNCJ/HAduLjYs25rdocNC6abadR3oirffvcJFaBYtm8sLLjYbIvDVy69FhpUsca+vr/lv/pv/hr/5xc95+fXXxNFhU9dgCTwGFmn8guLY9YIN3ICUwSqcD8mVyXN1dcWXX37Jp59+yuXlJUYphn4k5nolBaiQrDela6u1hhgM0sE1MowDMTU0qyuLd5bgKy4/uWC3P3L75AkROByP3N090HWdUDcpM1TXNW2y0ATITae6w57fPNxRaTHusFphdMrUxSiSoRhRKpbn/vust/9JPu6QFvZI0u9OIFbNBn2MJJkAhc1Ral6kcXrcUDbGsyDhbNEtTBM56akKaApRAJsKFE1jAfVnrznoPf9ZAdpyAvIVMTFscdr4suH5PFWmoEgOtNYlTZVBdIhTJfvJdj+LejLrW7okTphcIJfQdifnfwLkY9ZZxhKEzAF+BkpiZK3KgeW5Tsc1aAEOcX6NJaqawAdS2BSUoh+kynsY9jgXQVXC5IaIQ7Hvera7A+PoGX1yalACaq1WNFaL7k3plCbLY0c2z6gV0QigzkWPhooYPbnwKm80KmppJpE3aaXRNlv7iW4+prEkQJ70O3nWJy+tE+g/vX7xfA4T6Z8KAEk1AvPgi8TUohRok3MastD79EZtINYURxAtAVRM7HjI8y3GqWtsXjcSWCgioNkzOwnwQkhWlCEZzUi2geSqo6NsSCE6vBshRMZ+xKeN3Q09u8MxMfnS3c+7QEjsinTgdPgY8TqZ4jDp2+dM8pxdVkoKWbfbAzeXG1aLlsOxZ7Ve4b00f6lsjUIcDmIUdqobBhrlk+e7ONoMQ884DCyWCxQP0lpaqVTol9iwmAPvnJEThkGjUwJHT+cYp8ZhSilhf2I2C8yCLFkPBVBHeYRaxjBaGHk/RrKuXClxhDHksRJl9QgTW1jG4myNKS5ZQTb9eSZU6xzYKkJIzXuSrluVsZICzzRW5dnIMawSOc3H1ukfyuvc6UN+mALt8rMpgwO6sHyQnKoqAY4Z2KrU9TGkzs05V1eaMyUwN2fdIxFrRRoYQmAcPOPokvwOurFDRVVcM6IWIHp9fU0I4g6SLQE9kbqp2R2P1HWWykSRsNQNnhQ8qNTHwhrG4KltLceHVKyvadDUdcNueMQl55rRSbFf2zYitagq2cuCuOVYa9nv9xz7nn4YaZpWsqfWYDAF8Hvvubi4SEWWQwH64zgWIK+MQadMg7UWbQ3b7VakMbU0sem7nrZtcX2HIcsdUlY0BULWaLr+CMT0HMAqeVbzfYrkCJXdQUIqBk8bWJIFpYzu2Vj6KOGlFNE7YgwErYkms+lpXMnQIGcDJXCcZ2Zy124hR0KIeC/+5PggPuFeMt3KKLFmNQajK4KWzHSMgWEYaJcLkTWaqdhWW8PoAxdX17gYOGx32Kbh2dUV+tNPuXt/Rzc6mrahXRrapWO32/L6u9fi1GMtn3z6Cf/4n/wpv/jlz/lH/8Wf8PLlt7x6/ZpxdNR1w0bB5uKab779llpLbcPbN285fP0164sNy2YpPVzGgc16w3//P/wPYk1598Bhuyfgsaalrg3747EQYWM/pmDF0OiafhjxQYqt/ejZb3dcXF7xhz/7Qz7//HMuLi+l8ZEP2IUhOI/Rmqg9wUFVgYvSwbe1FuU9w+jonWM4HkVGeTjikttL3dRp/m559dtv6cfUw8FYlsvkdhMCVWULw26t4fHxgWM3EKM0mmwq2Rk2qyWb1ZLlohXGfbEEFUtWr5gUqJQF/x6v/+Ti1MwKzyFx3rp0YiKKJCZv0ICKp0xbngTztPD8O87Z5DIdE7WpYyzfkyHv/PPT8eLJcc6/9/zviQlTsy6i6mRWxxzdy8Fmv0gTO4FurWRDz5XmWRKRqK3p3p0EKxJ4+LS4TKntfD/TF52sKTPJkMqfyeB6SqmXayQ7ZMTCMM8bFJ1kVz7yPPJxMkvgfW4rr3EODocB7xWls4HSHI89OMd+34mswUMMUrASAtR1RWVMkXPYXJQKRU8sTSZGcY5QBm1EZx+Ux/sB30jxXozS+dNWVWI0FUobglIIlx+IJkXnkRMf7JyyyvFZZuFP7vcMwJd/z8dvGgOZwdE6BREqBwlp8Q7iToHRRDwxykTWKYWdHQciDknPZkmPQPSY7DFV5nhVYnlSgBhClICjBMUT20uMkkVKDZjmc0YpScdW1jHoAaUUbhgYvccPjr4bOY6+zAPvQ+qS6qfnFVTqh6AIUQDQXH8aIyffJ49Cs+s67h8e+fzz5xyOfWk/Lbah4uRRVXI9zos2U1UiH9BGAxL8SQErXF1d8Lgf2O2lxbVJQZjWiQ3XyTUpZimFFDEqghSvxinXJPPaF5lNAcNapaIluaasXQemJmFB6oICanKYKtR80sV6Se2qWWaouDXN17TZczy5hyVjkH8mDgoSaKZxmABL9JGoo7CyWqG8KmPl+6Zt/3N+nZMzon2dgL1JMpjcur2MTTXd13Mb5DlQzwFxbnJ0LgEzWooDDZbj8UjbtgDJv9thkjvGMAxlX+y6jsOxT2yuLd+9WCzI2b66rtK6Jx0Z+3FksVyULADA5eUlMcZSL5JBdaU1gx+ko2uSr3gfUk2LgJNhGErNWr4m8di2hQkOaV43TXNSUCkBxzEx6UkilIKorBvOmYn887qui/3fOI7le4ZhSI2IKEXuEUpgFILHJNAsNSoA0940Hwf5z7y2Ttao/CaB3BLGfUjolc/kY5/h+SxHK+B99vvsNJOxRAbYPtn8lnUCyj0Rdy+kSYSRBocqZYBNaoJUrhsSYQKJpmO9bnBeZDMoyWYK4AdTtzz75ELuh/dUPrC5uuLt+zsuVivRkA+O3f7A5c0Nxlb87/7r/5pf/u2v+PbbVzjnWG82vHl/z9PbW57cPmN/OPAfv/o1/VEaiMUQOG6PXN/c8Ic//Rlt0/Dqm1fsH3Z0xx7nBoauR11sIHrapsWmzHkIjjB62maJU44YJLAMznO5uuCnf/BTPnn+gs16LZ9xXrpJA2N0EDwqBjTimEQquo7e4/uB4dgxHjri6NBR3mu0RqkKFyP7/Y5xGAgx4Iae0fuUFbFoowjJGKGygk+0UQz9AMFTWUPd1KyXS64vL1k0NdZq6somMwWPraR2JWdJSfMsP9O/7/V7Afc5WBNAkUesLmzVCQOci+kokCExegLgPxbJzl/nrjPFvkyoy8Iqzniok8LxmICPFC/qcn7ziZuPnc977hQzB64xCsg9DzoS3CGn2LJjjkqgKVdQTzg7lslZ8OyE30VylH6PksCEjywUGWzOXzlay+nZ7EU9zwbI+yaAGgNEo1AxFA94lX832/TOg5wC/pVco5/pC13w7I4dXScpXB+DMCAx0h0HQq847DvxqM2+1lpjKit2U9ZgrRQhhhjRUSOy40AMjnG357gTb1RjKhweZyqUqWiblrrdU9UVWjcoWycLKGlUgjYo5zHpe1TUGC1ezAKgcrV4CtKUbPQxBkx6TlHnWgaRK4jutfCt0mRLJ0Y9ermj2pCLA3NhslHS2TRku0oiqjCANunzAzExyTEYtApoFD5KCjISSxGr1DXbNDDEaUEmaS67Tc9VKflZdIlt8lJN730Zq/J9UthTmZqmjVxcRAY3cHjYSeGwguh9kucktj9JR4rESkl68MQhp8xBuY95o9IqNRrRwgffP255Ot5grKHve9pFKx1Q06ZubcUwdqINVBKsWSO6Q0eSs0Txp7683nC5P7I/SDdCtJaF3hi0Tf7/EslO8ZeWZ5m6jxNJBcdnWfSseY9a6mJCjAmgp/kfwfmI1lGsAZMNaAghNU5SZV3IQN3Y5AVPOa3SvXU+N+frbVCZ6wuTaxFy7jrIwQMpy5OfDxLYRSWSQ9H7B6JYRP1gXx9LO38gZ1AfJ5Fy0BVTUKuzg0QJK6e1foqHhQzILkrW2gL4QwilwVxVVbImIy4rxhiGPq1PaVxnwB5jApZkjkAAn0hxOrTRCbyLS0wGg5ADRwHbWTeetey5ZiMz1uKuAdoYhkEVljiGNKesLdKXXJwawlQblrPv1hiIkTF9fhhHmqZK1yJt31FgrE6OYbJWReQet610yXSjwwefinIVkTA9B5X31JRpVLNAKmf+yMH1bF9lRlbMnrVKN1e6R4fZnvohNvlgnDDt9aeOvzn4F6JNqfw3pVAyhLyWhNNgfB6AKz29N2R7w4monPfUmIJ3CUaNTY0KK+jHEVs3ECXYGvqearHk8vqaw37Pfr9nDA7nIz/+Bz9DqcjbN2/px5F39/corXj99j3aVqA0V9fXANiqwdQt11c3PHn6lJcvv+HlN9/w9MktVS01bs55+mPH29dv+Lf/67+h63r84KiUQWkLPrB/3GGMRvlISNbQIZ1rrWqGQ0eMggcWqxVPb5/x2YtPuLi4pK2agrmsMkTvRSXgHSr65I42EscR1w+4vmc4HhkOB1zfo4KMo7qu0F4zuJHu2LHf7WTMpzEWg9jjhhBRXtbecXQ4p4q7Xm0tdVvT1FLoulktWa+WVFZ6jxijUumlZGCNyd3HJ4LwI8vWR1/fG7ifEo2FJk6exPkNH+pr8wDPZOXE9J0dP3742fOImbwxZZY7nkpr0hs/PM9Y/gc49Y7/GIMsllpn+scZ8Di5vnQ+qAJ5y3cWNv7smqb7pwpDUD4mc+/kHmW2fR7EnN+jzKJFIGg5s/y/0zV+5P5oNX3n7AQ+BtjPvzOvVCEGVAIElbVUdUPfdUV+4YNnU9X8ZHPDf/nJj7jf3vH/HaWRRoycaP20Fsux0iypRD0SOB22W7755rd8/fJr3Oiom5bt4cgxSkHIpllyebHk6bOnLFcX1E1L3Syp6wW2aTG2EfdDLedlKktMPsMq1S8opZO7gTzXDNSzH1LwqRgpxjLhEo1OzmScjBkQmUScHjeJ9cvWgukCE7s+BQgBJdX4aWz5WWGhZB/KrJq6b+aRKWiaqLMEYDp2SM92KvgU2UzWtxeGqgS/mrZt2KzXbI8D264neAGfUjg6CzZTpFuaiiiFMSrdsgQglErYcWLBQlAoZaiNpjKSpbh7/0BdSbq0XSzLhmZT0xrvpWCoNpqmlmZd2YJulDI7ukPHGBUXFxvev9viBpeeiwTXOjFZZGCTnp1kwSbyIaYxkrPwfnYf8zMuEjgVBciRnpEI0uUYOViPWVY0dVuVKTWxLy56kWYk4K1L06c0ZGbsbg4sdFSYgAQSMd9fuYZAJKRlJ9d9ZJZevKJloQ5xDmJ+eK/T7OUsaE1z5FSbPNXqzAmcGFJgGac5mgPNeUfmKYMpx88e2zko6Pseo7UUZ2rREFe2mhh657FmIUV5Voo0jRY/+G7oCyj1LgV7WnE4HFBaUTdNAbgyDydy6Xg8CsOeGhLpRBYoxCmmrmvGdG45XW+MTl1dJZOZgXthx9O6J0mdRDgIi0HOuCulaBct3cMDthLNsvc+nU+gbutZDwZ5XiF6qtqyXC7Z7XZJHhGojEEb8KNY+Mln0t6BuI6llS39n7iWZKu+PL4z2Xj+yitmAco5ICiE48cJRtmfZhnKGGfNGTMQy3u91C6JKDPfK8p9CyHLZSYNfMnwZ8IlZEmpXG8OLMvvYywBjNIaW9WMo2OxWLLdHSTATCt/UIpmtSJowxhFtBe04e79e376D36KGweO/cDj4yOHYWDsB5q2583btyyXKy4vLlmu1oze8+nNE66ubthcXPL27Xu0Mnzx+Se8ff+ORbNgudCMg+MXP/8FIfwNz569IDhHbQyNkaLcw3FPMAbX91TJKx1EiqiCYuwHFos16/WGmye3fPnll6wvL1k0rWQQ0r1QISbgjjjnOGkEOA691GftD/T7g8hj+l5kMcaIIqk24Ea6oWO/27Lf76V7MDG5xJgShFXWUjc13otrTW0tWikuNxuatqapDHVlaOoqjaOQLK1F525sppxlrBidybzv//r+nVPVafooKoXKDhvZsWXGBpWTKAsj5WQzgDwHzR/7zpMQJAoDVjYdJubk/Bjn4PYklTxb1D+YlDqD0VjcJubM1vl3TdcayyJQALnK0hYo3uty2pmkKdeVXTeyDhOlprqABNoiasaqfeQ6VdqUZ0FMZkOAZI3JCcP/wWsGNk8YvXTCRXOffpZ1aV7JhlElWcqYumwSA1Zr/uEnz/m//NM/5ZMnl/ybX7v8MIHs2CEMbF1XNFWNrWp0VaONxQWPG448vP2W//ib3/LLr77h67tHjoN4p8YQqWxD1Ui0vqgMnzy94unNJTcXKzbrCy6vbllcXLO4vKTWa2oP49gzPo7Ui5bVapXaySuiEp2v7AAiT5EtIS3MEWE0ddIlpztWNMEpLamUL6MipmtU3hetswK0ySy93KsYRAqktBSuhhAYnUe7QHDS7dSnxT/XeLhhENu41GAmxkwRxwSgXdoyZEwFLwMgKCVNTkLu8ihae5POgQwKdUxd3xRNU7FZLei8Y6Dn4KQZRvRO2PBoRCnqRmmZHRXKe3wU2zIfEgidsVITcErnZiNWayojXXd941DGYLQtntRKSbGXNgatI5W1LJuK2hiqusIPHjdEqii2n/cPj1zf3HKxWXI8HPFBrPeidljvi7wlzyxJbU+VKOpszmVGLxe9eTWZj9rcMTYFUzqCCmnTZGJEZW3whOJQwyzuDwV05zUqJNYxAxVZS3On1gQwlU5ZC120wHk+Z9Zo6gQtqWVlZDxqJbrZmM/vh0y5AyWTk4iaolVnsmycCCdKB0qlRPZF0hKr0lgumRCkdSDOagCE8HFYWxcg5pwwwNbaIkmxtirSmNGJBW52WnHe0fU9SimsmYBcjKnAOwjgttZycXEhGUMtcjCTrtFoqREJIZSOjK4fSjfOGGMB8ofDgeAEpONh9GKxGGMsVpXzBkXWVrj0HmuMNNoJgUW9YHDi9hK8p21b9ocD19fXKCXSH++lL0nbttSNwI4cINRVzbHraJp66kxrDD5KEa1CNPbZdWWSORl5FkEytzrbmpJpjhlREbKBxbTv574ShepQc6A+25w/GFfyd2k+mH4441dOXueZEBlLUzbmJMOTyAiRbImtozYWa6pCqJhUwyX1DLBcbtBas9lsOByODMnusGkahmFkvd5w7DpxkAli4am15rdfv0QpeHp7y9PbW/763/8H/sX//C/45JNP0FpzfXODVor7+3t+/OMvic7z26+/5tXr12wuem5vb/nrv/45q82aTz75jLfv3kln17rm8f6B/9P/+b9ld9hz//DIdrfl9ZvXbB/u2T48QgxC8lWWzXIjnbyVwmoLUTE6jxsGDg97Pv/iS56/+ISbJ0+4ur7h6vIqmUqAHwcJiQJ0+500MgoBdzxwPB7o+6PYEw8928dHhn7AjyNGKanRMIZj37HtDhz7nu1uz7v379kfO1K0U4IiHwNWSVbXajlXrRRtXSeGfUXT1lRaoZB9VaWAzWjJhFhrEomlyxjSCbiHmPa/7/H6/lKZ5LWcm/QoJWBjKhykXKRKUXlOMSfXpDKe59HvOWAvbGL5QThhs3UKTXIqfio0+hCEn7PEv0v3dhJA6HyrT89v/p6T21LONX0mXWdM1Gp5e5zefwK2089icglR8xsFicGQv0M6ZiI0yz0sFnKzc4pxKqSbviuWGD4DixOwUrSxp9cWE0s3XxLzM8lSDRDnCqkIl2txzhNc4GbV8l/+5HOe3iywSyMFizEU9iovxI2SdsRaJ4AZZHHqfM9vv3vLX/78b3n15o6HfceopFV7tBWLpsWYmtEFRu946EdePnzDon7NerGgqS3r9YovP33G89tr1pdPuNysabRl7B0QuLy54eL2CVWzwCUdrFUKFTwqWQGFONO5kljJmXZ8Gvtp00ip1xgDGA1amIQYpCmTTgA/xkjAQ/BSmBRSejhZUAWVagC0Zux7vBuJMcgGrIBKghufmkzEEFDBC6YsFn+pAFFBtAacsEAyjLKuWjIOMQVUIfmfA4RRzq0yhqv1Gl01UO3pwgPHwUnjlkI1aepY4RMIUUrs9bqUhZENbpJk5UKtGGJqBhPxRrI3WQag07DTWlp6j06q95u2xepI54aUgo+ggjTOiGIh1izX3O973r29o6pqcjZLqfSd8251eTxmtyqdSxCnOaIi+BiSM9D8t6r0F2a21kySCV/WHBlDifyIgZDmT0ip2wLWU6AcQ5KMlbUiOROhyjzXUYFJ/06AZJLhTNmPks1KLj9i2hROitJL47of6Gscx9JLIgPW8vIivfCEstbpmU66ZIWQ+on8yvfGe0/TVCKjSuNW1jCIeNHAZnu/dLzRD1RVgwserQ22lmLN0Y20bcux76jrmuvra2IUsFvpCuMF7BsrXRwzqz6OIwwqNa4xLNsGEKDbWIO18m83DmgFbuiLHK0/HlKmStMkR5thGADRUbsw0qcmSdLlNddbKKyucUEKdLXS9KPD+wO2rmiXC6qqpqor3r59TdNUPDw8SAbBmALqiobdZPY8cH11w9dffy2OMQnkV1WFWSzwbmC/3ZWAK0t8MBo/CKOaPyMMthTzFocZdSaPDROpkR7s2eiZyXLPAnaVoutcbB4pvFzCQYKJTgk/nfaBFAxncJ8a+1htQCX3leT6FOPUdM4qKYxUVp6FtQaldJJuSCbjZrFgtzukwMcAmtEFjLH0wwiopKmG4B1vXr+jbSqWiyV+HPn1r35F29b84R/+oey5x058yDdrlsslIcD7+wf60dEPDn/3SF21fPGjL9ntdvzlX/4lXddxdX3N69dv+Cf/5J/y1VdfsTsc+PSzz/izP/szuu7I//3/+n/j2e0Tri6viCHw8PDAu3dvkosN9Luu2LI+ubyk6zoe375j++69NINqW66urliuVywXK6qqEm9673l8fKQ/iKTr8f4en9b1GKUPhwSlXvoAOF9qPt7fP7DtO0YiPkaMrbHGl0BJp8I/rRVGSaZEpcyXVSJq1dFx3D3S7SJNU9HWlch+K4tJ+4M0XKqpU30GhJKxU8h6PvK/defUbDNXGCH5XxX4wB99rteSwTrrXBmnIq/y7zmbrRA2PzHDAgTSJJjiZekkOUstffT7Z6+PST7O3jA/ggBm/aHeu6RFZ4FAvvFx/r/qw2v86HlpSX8HNW3WxSf87PwUUdwn0jnm4wbyPVQpwIrF8aewZplZIqX3xZOQnOqUdSTrXpOt5Wxhmxh2SrSImmn6tZKmGanAyzlXnBI+u1jz5e0Vpq7RTZsKQlM78cy0G5E4LJpGJiIR70fuux2/ePmKX3z1LW/vHjFo1osVJM9UHxy2aggB+qHHR09Ukta92w3c7UbqytI8dNxvD7x4/Z71+pVoKpuGLz//Ejc4vvnuHZ9+tuXJs6esr2/QlYAeE8utm21gKWgFkrBc2PY4B6VzL+ykIcZB9k7XmqDlO4KK4g3rPcEJO+5HkS74FPUahbjh2BqiwrlBJB8WdPSAks93B3kOyiR2UP6EpHOPSY9eplZ6qCoECD5pnSMkzXsev9qAURV10IxB0UbD9cYyBkU/ekYHvu+lo6IF5zWj1ngdiVGaJZXOr3PHFPkC2XDTffSJOZOitQqlpfBnGEaaEDgeO4J3VJUlRpECuGTnJTgjMo4ehYCXulmgTcX79++5vrxGKcXoRqSB09SpsMznxMapGCHZeRd2Lm/cMU7APTtEzBi885leWLUyGWUsqRI8fQRgghSOpg0/s6ryyCbnmXLUKKnlqALzcrd8TGl/nuQ0mSEkr7PTwp7liB8hG38wL5uCvqk/xMRwze9xZm49sRQL5t9n9j3P4xyADcOAtRbn3MkekAv0Y5xp3BOglPdLoO9TMGCtaN6zfnwcR4ZhSIFBI4E5voyNDKSNrqQpkhenmKZpuL+/L+eTr50QWTTimV6nAtJhEPC/XC7pe3GsWSwWrFYrxnGUWpLEbucswTiO7I/iBuO9Z7Vayfc7hxoHBjcyJqvIiDD5q9WKrutYLpeleBUo15fvmRTpdjw+PrJarbi9vaXve47HI+M4CGkSJKM2z55474hpj3FOanV0kijVSt6b9x95fyo6DpFoKBbShYnP5KCaiC/BOxOJd/46z8bnKZd/diJRnX8unI6/LDEEhOxKcieVfN+DDzjtpR5BT99lU+Fzs1hwPB6xVY2pamJUdF1P07al8Ffu88h+v8e7kcvLS57ePOFwOPD48EDfd6xWKy5ub3nz5g1t05Rz/9nPfsaf//mfs1oJUB6HUSxlgdevX3N7e8tPfvIT7h8eePXdd7x7945hGFguRbLaHw782//1XzOOA//df//f8vLlS3771VfEENms1yyaChXh1bevePH8Oc453rx9y1e//g1d30EEW1elXqNZLkSacnnDZr2mbdtC8rhhxDlHZTTjOOCco7YVPgYeH+8ZhqGMe6WUNEYyBrtYyH31AYw0Rzsej4VYNdYUwrOymtoKEqutYbNcpMAtSWE0WKVZ1E0qItYsFm2Z00ZlpzJPlllmYuX75ji/fwOmWYBaGKOQt37F/Bs/AKgzVvdccjL3QCVfAKI003H2/vx5+bB8fy7Km4F/OUZikHSq+J2B0A8kOUpYqgxkIEuCYnlQ+ZrO2ff5BP0wIBGMdt4N9vSrp3uXpT/FcSRv8vPzLnurnG0OdAqg1mqW6mMqmCGB+8DU8CffqILII+ejZn5d5VTOF7bZTVcKur6T1sDp90YpPr25YlGJ3jd7mxdmC5GlGGuoK8vt1SXGaFzwPOyP/M1XX/NXv/yKYXA8WV/x+fNnXF9dE4Gqahl85N3DI50b2fRHdscDx2Hk0PVYWwmI1uIy8vb+wOu3D6zXK5q6YlnVvLk/cnt1iXcjd4/3fHb/hs+//DE3T5+jbJXu62QBiE7jQOdrThIU8rjPi/1sPEakmt0LqFQhQtBEJdrVmO6b8yP77Y7xOFK1C+yioTs+Mhw6VFC0mzVV1RCUSQu8ww8O3+0IxwO6ssRhTC3LF0TAqoipLEqbwsT6tNERoxQBxZx5yallhfR/0lgrVnWqMAPSYVGNch/aquJiuWb0itEHuqEjJqciraRwJ9eM5DoMpSZHjpN5iID7kJjhrCVUQAxKmrIcjwCThpgAIVBVmqaRLqrGWPnOZGm3WK1YrC85fvuaiyCZiq7rxck16NOxnNeHGIsTzMkwj0k0pYRl8zH/LP+tp+BNTdpp0jTLNoAxxmIPOwfX+Tvy2qZTMJ7lbuKtHfB4pC/aaQG/kCXTrS2gUimUSXUFKeuRG3PpmNapHISrqZ7jh/zK93ECe1OR5rmUskoM+Pw55H+fN8VSStH3mYkXWYwM2fwckmtIOpZoxGuG4UDdVMRI6uQ7FjeVMXlZZ1eYzIDHEuDJnuicY72q6bquBGFd181qhKYsq7GGgDCNzjm6riuAZbfblSLa/N358xmg73a7YiO5ubgUNj8BuszSZ6eZ7OueX3Ut59g0TdFeZ+edw+FQ7mWWEdV1zW634/7uvYw/L5mnEHImKEvrQim6zYSZtZZcbJ0tI+cBF0y1IDpvoiozMky/V9OefyKF/R1k3znuyFLJ4gAlX1R+Pz+n6ZiqrLnz7xUQqNM81WX9zOPSGAtW4bxHDQNPnjxhcD5JqnypOQpBGs/t9/uS8Wg260KODWmMN80CYyq22x052zGOI/f3D/z85z+XrqR1zd3dHT4E1us1IcS0lnbsDnu899ze3rBer1msVhyPR64uLwF4/foNX331FcZofvmLXxB9YLlYQhTbz8pahr6XsRFEXvvZp58SYmS5XPLNt99wTBnb3e5AVVU8hHd0h12Sj0k30ir53btxEKvoEDBKMwaPcxI09n3POA6QyNlMDuGlzqsyBtqafhADjZTXJNs+11VFZTVWa4yCcRxYLVoqY6hri80BZF3T1FXqFm+xxspnjElj+3SMZRne93l9/+JUpWYALhamjhhSwZU6WdjyyZxHpeeSk5PBHyf/6ZPvOotoM8b8AISXcwPpZwvED2/FOYiPsz9pG00Wjqda+BCFWZZGKjlYkXRffm8B6QUIn05cYmK40v1UxTJOus76ZHlYQHs6x8KS5fshb0jAPzcZmQVNKgcgORhAdLYzoC5Ao9AEBbOUFHr6LumcqifmecYb5itUSpoqyYIrHO8YHJVWrJuGOPaMY8fQG+LocGPqFqh0qltQNHVDWwuj3LuBr77+jr/4xa9R3vAHTz/jR599wYtPPuHq9gq7rKmbFVo3dMPA4/7A7u6O7cM9h2PPth94c3fH/XabpGqy8A99x7GXVtuD6Ric492792zWLbtDQ7ffMhwH0XCuNzR1i7FVum0JFGktBYMqyxJmYGl2X0WaIBuEWLJH0Ol3wRM1jN2Rw+HIGDy73SOPr+9o11e4w8Crl7/m8duvaJsl188/p1patFUMyrB994C1hm7s6LfvsWFEVxXD4FFRMXQ9dWW53iy5urxgsWhpmyWmWWCUTeMglnGPUuioCjBEZRCQxluYbWYq2S4qYRyWbc2262mqmtGNOC9FYyqKhlejMQQc886g4utf1gq5K3gUvXNUgzTzattKArDWooFud8A7L2NVhr5oB5tKGl1kzWCEpra0i5ZmtWBzdQNBmKi2XbDfH/HRk0Fznl8y92IZ5jHN4zy/c3Cmsj46SfliVKkELbHd83UjM2hke1lAZReMqaBv7j1ebP2UsDclW5GC3RgCPgf9JIBfJHMxU/EnjJ5kMzyKycmgPP/UeEyCoaTLP7fP+YG9zveaqpL2633fJ8IoBWVn9z4/Z62lUHP+mgPBE494puLA/Pt8P51zuVykBIF53OceFnbGKJeukSGIZj7G1Oo+F7sO5fghCjBbr9cnRc45i2StxQ1jOa/M2scYC+AGSpY0A3k5Z/lMBiH5fmYmW2stevdUuOpLdkGOn4t087Hzz/L3FwIwBQvC7g/lOrKl74QFst/5jJVWORN1BoI+ko0XoigDfIDzejd5jvPn83Hg/nf9jgSaIaOJPAfPZVjyXnHbyZKqvAfL84viHDQ3b0gZX22S/C7dW2NkX9Vai6NaduSZPScZ/9NYH51jdI6oFO2iYb1aczdIZsVosTSsesv9w0Oxkh7HkcVyyXq95vHxUWoznMOnHgAAi8WSi82KmAqSh2Fgv9vi3Mj24QGNomkXqBjZPjxwPB54/vx56RNAWotXyyX745HVasVms8FYmwwtVApOAl3XFStVgNrKHM+ZnZw19lGyxiEEBj/igi+BpG2qE5LSGI02ImkZlSukpGCtQFvX1LZK7mdp/VXSqbfNrLqRbEjb1iXYneb3jAgszzo7NH2/1+8B3E8rtWEGEmebVD6hMiHSpiFD+HccOw2unI7WZGaWkwmo5gc4CwROjgeUfsfpHObvm09KraY25RlQx9nn8vkVdluOMLuWWB7syT3J9yDdn48+lOyqwTTRVfJdL53XMigkFT/OO8CVoEadRjv5/s3uV2GJZ2+L5dvlJY4V+WvnHz79HHH+37EwAlmr63MXuxjRRrG0MDzcsf3mN9x+8QX7/a64cRAjyihMJTKZRVPhvePhccevX77CKMt//ad/yj/66U/ZPH/O4uKCxapFGUBpqkomhXee/eFAfxg47o90x56HY8/7uzvu7+64u7/jcXvPsNviY2SMvlTMG6NRbPDe0R06rtaXvPrqK8KLZ9zcviALlLQCkktetmlj5vMtz0/kGwIGfdK5Z1ZlCgDRYj/2uH1gt91y7Ed++fNfsKwXHF695v32gf12hw6ap88a3n3zFdHWRK149c1L4ujpR8d2v2V0PYumRinLOIov79gNaK242bQ8vWp4dr3mycU1T69vubi6pmoaVPKMFSCXLcdIvuzCHGXsFqLo/4oP8Tigonikb5Yt225ke+hSRieNJ23ww5is3KSZVmRik+NMYzwVYIPzcBwcx37kctNSW4uNhojmcOwkha6F8dDGYFLQqZWwIYMTFqmuK9brFcEoVuslVV2X5iG2bghDD6SNLHhpl62tNJUjpm6iqZA4rQllvs2CehWTm8wM6MMEIubEhRShkdbEXLszZQ/nWTyTOr7m9WU6tvytU6Mk+X7JLI3RlwZvOhWjF+cZk0RTyeo0xNTvIGm0S7Gd0hMz+QN9ZaCRCQigAHPIm6jJ8c1J99BMjGgj92a+Hs5B2LSnyHiYs9cCLE1i53vGJOmauwBlUOtDKJt7Kc5MvzNGLO7kMxprbAK3U6fFfD7583PwCqJ7z4FBfn/WBmdZTe6/UNeN2Ocm0K202KaCBD7S4TUUCUYep1mCo7Wmsi3eu5NMRz4XeY+MsanBV2QYepG8pYZy+T5LMJDwRQiThSLTnjqfN/m55FqR/HxUWiNK8d+0TZMnrCqs/RScxTn+mGGIc2Lyd7Hyv+tz+byyPMs7fwLonXOp42hVAF+er7nvxPx48lw8ta1omwZTN3RdX55bliuJXGYn+m4n5glVXbNM4Pj+7h2L5N6llchJd7stu91Oxmld09RT19a2XUjjpyAuPyJp7Bl6sVJ8fHigOx7pjx2r1RKD4vnTZ8QYeLi/5/HxAe89bdvQts1JxjVnCx4exFksRhjS2Dwe9imgdTg3lmfsU+1Tdh4KIUiQY8Q5KUQhnmxdsVgsMFUlpgkuYb40MLRS1GaSnKnEiyilqK2hravSu1KkMUjzyHS8DNzzPMvjwCSnppgxwHzN/50j6MPX95fK5FbwWk+0wWwwAtJAJuFlHafNCPhgGzgH3Ods/fx9ZZIwLci/65UHeISi3Yyz48wXu0hyronS7KekhxUJbMXTSVs+e3rditOFPaaNMyZ7v5OgIV+vys4EkH2Xs4f7dMz0X5m1JaYOiBT2nwlHfHBfy11UnN7XFD2qEqzMLioDfD89tyz5OXkuMXmYgxR7qYmtHF1qiKMUtdZsFivWqxV3v/k1Xz0e+Pr9g7iZIJ6+dVNJAemqZdHWKG3Y749U2vJf/fE/5E//5I+5uX1CfXFB3TRU1mCswgeH8kdUVDQKmoUhNAv8qsYNA855xs+u2e33HB7u2T8+8vLVG7769jXv9jv6SrR/zg+8efueTz95wXE48ptXr0QHGWG5uqZd2TQkVLoXEuQUnbAGjUnoCpS2hDAmljR11lRiHyipXM/YjYzDkdffvuJxu+U//sdfs90e6fqRu4cHhuCoq4bLi2v+/K/+iv1hy/XT52gtTMn77Z6+7wCFD5rtriMohXNSBGqjMM6HrufVu8jN5pF18x0v1mv+4NNbXnz+Bc16M+lhlYLEaKkwX0jkIXsvBahByYTxzqGJ1MZCA08uVjweO/b9Edd7XCqU1dowuAEXJ0YhxlwILYxRrqwgBUAhBFxQ7I8dd/fAGppmyRhhfzzihoGqqYnBo9O9rhLYbtqGYz+iVIWtai6vLnkcIutVy8XFBX7oGb0TcK6norE8MaSGQSzXTOqa6hHvfKPNaRMzFdDRJJOc5BaRHHPCbD0QAC6bCTEXl6s8EU9eMUZZB5QEh0oSWFIHk1kZLZ1tjUlNu0IgeHHBUqmRFomFnIMLCfx1ASvZGhClUlFynDY6JQVxP9SXMaIZN7aSguYQ2G63VMmH3DlHXUv30OPxiKlsaqU+pgBG0x1Fy66IpQt3ZrGzBlyIpVlgxQTKtZLj0Gj6QWQmY2pOltli7z1Ka4YZy51BfF1LBssYy7JuGH0gqogxaW9F1tt8PnO2P4+7cRwLG79L3tSZvc0SncyUr1Zrsmzi4uKC0Yu8ZhxHxpm15GIxNXrKbC9I9pQIbhyxtS2NkzK7r7WWpk+NZPzathb3ozA1bPIpixwTC13XNePQTWAdCvBXKrOVp7UhOqXiQvTM+0nk+54D4Ol5pf3WZ6JsFvicAO1TKdIcvJ8H3ufvm7+/nKVSQGrEFBI7PAsEPsboSzDhUcGUbpsAj4+PXFxcoJXILkM/UFV1CQKVUoWFXi5XUhMxiJRpvV6xWixkX7l74Ec/+hFd17Hf7xl6kSbePHlCVVUcDgfevX/PV7/9rUhiFguePXvGu3fv+OTFc548ecK/+lf/iu3DA02zYNk21FbTVFJc3TRVKVS2xlAZi1GKvjuwbBs2m0357hg9z58+5ee//CWbzUbsU6npj49UtkpOfZ4QZL6tViuUUmy3W2KAqpFM0Wq1wlSWvu/Z7ndgJQNxfX3Nw8OD4MA0f2IIjL6Te5+aOGWCtzKG2hrCOIK1wq5bg1KRKkluqtQUTaGpa1vqXnJmSmuVCpD91N08j5Mzgvnvev0erjKz+HXGRJ/8W5EaCiWt7OxE5oN3Dp5PgPRskBYwkTavzFxHPjzuHJSfsOUp2DgH1fkVki+iSm4hE0sj4OT83KZNbsampQ05X+908JR6n1kGKoFwqSgvne9k6fkhO6REuiAM2iTdKUFEOv7HQrWTCX8WNRXwEWdByMnnZvpWNTE6ZWE6+0KJSkOx0hydpJezfWi9WHD95Cnx0y951we++/lvkg4RrDU0laWuKpZNQ5XAQl1X/MGPfsTPvvyC9WaB1mD9gHGgogMXUa6X5+BJdoQSjOhhxAQvlk8xslxERmrGesVn65p/9PSCb7Y7vn08su0Gtsc9j9st+92WzWbDdn/g7v6RytY8++yIritpbaymVLhODE7C6iXDId6uPi34ma1JRZ5aNInD8cixH7l/85rHxx1v7x94+fU3GNtw97BFa013PFLZmndv3/LweMfxeGDoRWseqppqtcGOjuVqmSwkxb/YO89eGwG31uLGnm7s8ePIvdG8fb/n/d2WHz/uePHJDddXN7T1cpagyhpgXZyOCph2I14rRicZFaUMRoGJkVVTs2pbHpsa3RniKF3njDHSAdglJmWe70k2e+KXnTc9acBkEFeXvhvYxR195+ijZt91yQHFEryDZEVZtaLHVyjcGFhfXrDaLFlfbDg+HEGnTaxpOT4+EH1yqslshxL5j0KXDVElZjrm9UzP62pCMhSSbqgKkU5FLQH7XKYSAUxMRWlSjB5TPv2DTOA8l5cDgBimNSqdWyA1X4khaSMRF6+0xuTkKLNrzJK0GEIKRMPpmp7W1xgkC5aL1X+Ir3Ecy7qVJVmbzaak0SVlPXUlzWB5Io8mAKzNxObm92QwlJ9JnifFiYUkKQmwWCzwyf0jyxolI1SXzxpjCsDe7/dcXl5yOBxKvwLnHCiR+SyXS+k+itRy5ULADBIyaG/blv1+z93dHcvlkrZty/syCzgBTFW04TFGttutBBNegom6rrm4uGC73bJYLGjblhAC+/2+6M0zA5+BbAbqWW4k0oGWy8sNj4+PbLePhNRROp87fgpc+r6n6w6FKJxvr/l+50zJxxhvkzooz7FHfn7noPj8v8+PN597+b/nf/J75seff/b0u0+xgo6yVwoposq9HL3c15D2EaPkudVtI6TUKATZylalAHUYHcpYmsW6FBfnbr15zNZ1zbt373j27Fm+YPqkL/9n/+yf8fr1awmk6poXL16waGu+/uo3BXDf3t7yR3/0RyilePfu3YkGfhgG/vk//+f8xV/8RdKj75C+BZrjceTi4oK+P9LUG8ahp+v2XF5ccHN1SaUtPpkObDabMsYu1kue3FyxWC5BKW5ubuiHI2/evMFulmhtyHKIL7/8snxnqcGoKy4uLjj0Hc1yIdaY48DDdktUSrqizsZslnZpralSDZE1wrIbrVgt24THBJharVmuWohIJ1VjsVVdMh1Z6pSVCYpJVjZfc+Zj6e97fX/grqXgTn04P6YBCmXDQgnbrDOrw9nkKmHubGDPmHUSMApCxKXNcXp9PIqdnUgG+R85zxjj5PqSPqojEzAHsjtLeX8+bmGr58ebAFy+rpgmY1IJy/s4be+gEijGyzXmk1E5FZ/uuw66pOrnty/OvvuD65tF//lnCkoTIJ0WCJ2Y/Bw06NnCIgBhpoMu9yIWkl8nllKe33TDC2MQPE1VsVgvWG2WvBz23B+EibFGU2kpYGyqiovVkqaqUdGxWi64ubzl8nKNVoHoekIf8b4XoOI9yotOvHTtNQaCE5DonQCwBL6MikQNpnI0F5rlcslnVzW7IfJwvOLhcGTnRkwlEpKuH3De8e79a5rWotUSrcQnXuQHEQgis8n9DFDJRjCNP+8F7SEyk+gj0Tv6Y89+d+D963cM48D23QNaV/TDSIjQ9x1KGWJU9MMASrNcrjDGiF1iP9DUI21VMxyOLBYLrp/e0nUD796959nVJUZpKiu+3M51eOe4u79ju3/k/eOOl9tHfvz+PT96ccOXL16wWF2gq7Tx6ghemmNJwapYMo5uJCjoB4cUaGqIHoM0l1jUFUZPgMF5T1SmyGdkCIezuZvGuyBJFMLcGS1Fy5XR1MlNwfdS0KetLkWrVmt0hGXbsFpW0tlRO1abFevNks3lBXcHh6kWXN3c8P7VdxwPe+kUCxgz0xZrk57npAuPUbJSRutiu5i155lMSHC/9LOIaXJPwF0Ce69SW+3UkrwEfUzAoOhgU4FvjLGw7kU+GDPAEl/4EELysJb7WrIZKVMnXuS5q7Si1F/A6WfyK8vA/o61/j/3V2bE59d17gPe9x3eCxv88PCQgI4leLnHV1dXxbXEh4A2qoCXxWIhrKE2Yg+a6geMMbgx1zRIQVuWvADYZEeada2LZMeYZShZbrLd7qjrhoedBPJNLWA2f+98T8rMf7a/nLvfLJdLnlzflEJTraXXxm634+LiInVh7RlHR24GZq3lcDhQNTWbiw11XfPw8FC00j5Zu+ZgxihdTBgyQHFhJESHrTTrzWVh6JVSdIej3LdG3GuI4ppVVanp1HGfZCGGUO5dotNCPHGE8WEs1wuJgU+/M/G0++8cLJ3jhxijZI4/CABSQD8L7k2a73mewSkQP8ckRmUigAkfpZdGidzNT03hCmPvU5bHB7z2BVQeDgf5Tq2pKluyFQ6wdY02Bu9GQiUNgB4e7oUQSfKNx8dHbm9vBQgDh/2e+/tHKdwcB1zwPLl9gtaaY9fx9u1rnA8c+4GLq2uMlgByGAZevHjB3/7t33J1ecn7GHn/7l0q0NRsrq64fXLN+3fveP3qO6zRvHn9ii+//JxvX37L0B15enPNZ599xvt3b7m+uqDve3a7LU7B7ZNrjDF89dWvWa+XGGN5fHyk63punt6w32/ZbNa4EBhHR9PUvHn7HcMwsF6vaRcNIDUid3fvWF9eMY4jTVNjK2mE9u7uTtbYHEAqjTZAks5Ya1PAJOYZpP1rtV5nnzba2rJsF9xcXUtG3iQzCGtY1BLQ+CCZrZgwcc6STeAdVCrK/T6v34NxV2WxyMVU84GaQXgGthNTlXads8ENcWb7mIBN/qr8iZiHcsbDvzuNcHLsmH22J4b+/L25o31u6BSTt6vox1SSn89Y/ILMM1CUkwrE4qssjFw6thBl4gkf81XI1UV9GlDIoWdZihjnXydvnpFf+Xxy0enHmIPza46z+8ts4yYHBAoJzkI8PTfU1Bzq9Caesgic4PbE7EVqNJdNg4+OX3/7iv/p57/ize5BgE1qSlBXllXbcLVaYWLAjQObxZKLlejnghuQlNiII4IfiYk1CzrZIUakSYV3xdFB62QLRsRUFRqFS7pKoxWNhTpGLquK8bLhEKBHo4zl0EkDouhGhm5PZbQ02DGGqCxgklRJnoMpzLsBHXHRlwyJSKJC2axDiBzuH/BDT0i2i5v1hu/evKWqhHXYbDZYK82ohr6hqZJ8w1jqdp2YZk+lNRfX1zTLBe/fvuPC1FxsNlxerLHLlrt373h8eICguN08Y7t7ZH/csz088ue/esWvXr3lT7545Gc/+ozr22dUtsEoQ0Q0kF5RAEWMQXTuwU0MrQ8oVWG1wdqJaQwxpFoHAblKaUk7MptTeezPwLtRoJS4ETXGsmlbLjcrgqro4xEzDCgr4EMKjwJWKzbLlvVC/K7RlsVizeXNDbauIQUfx37g3fu3DENPFuholZlTaR9PnIJaHz0RjVamuLcUgoEkV4uF45ai7tmaUxic4EtRHHpaLzOjngvQYlrIs8d4SCxJdsZSRoGS98lNSwFrIRPmwYIqdRgGnfoDZHeb6X1zrbYqpIM0+cra5h/iKxeIzWukfKCwXyqxm9kIJUvGSlZE6eKZnos2SQFsdtyw1sr4R9jdqFSyVfQMvbjCGGNETpKAghvHsg7njTtreYECrLW2xcUlM8ta29KAKTOxJAY1y1Im+Y7MM+ccu1EcZJbLZfmZ1prj8Vj+e7FoMaYq/16v1/gQyj3IQdA8wLDWigRATxr3vu9RKtIsm0mbnbOUCXh2h2MpUM2ZZe9d6TCbC2azlt4n1j+zlTBjtzkdy/l75nPsY9n+fAylVLGKzCTFyUtN78tj5mPgfx485GNnskywzGxfnnFw+ff5+GbO4E8fK2tSlrJJrYwv39v3PW3qvqu1NAtSSnE8HtlsNoVcy0Fk1l4fj0dihOvra5aLBff3dzRNM40777m8uuLVq1esV6vyPMZu5P7+HmMMf/zHfyzPy7tiweicY/e4ZbVasV6u4NkzxiSrevnyJXfv3xODuIENfUfTVEkmVuF9S98PQOBw6FFEhr6naaFpa5bLlkXTsFpJ4KHVJI178uQJ2+02jb2UOXNO2PvRJTlMTAnfqYlhGQ9apU6pIi201koxamUFuIdIVRsWbS1GCEph9WQzayuRaBpr0dZKJiXVD51n5qYxJA4zJWD7Hq/vD9zTPlE00bNXBsLFyjDOfs40YLPdGHlApkKtrJstXSgzlUzJgKTvnIpRZl8+seHhdGIye+8H6SsQGU4W5edJHWOyWVNF15jfP9mlzYtTJfLNevUQgtiuQTnXcn45AOB0EYmZbVSz80zNGXJHrXx+ZfMt8dC02c4XtRL4zK47p+dDDCddcMt1xPnzSxq/GftWznd29SFK1CkRY7o8oxJAg2Vdc7Fe8vB4z7/+1d/ybn/gOAwoBZUx0vrbVrS2ZpkaJBgVWS4atI4QPWMvsouoky9yFA9fhaKPIyEVdGlV0R2PMvi1lUJD5wgElusFxtbExRI1VtDv0d4x+pHoJdK9rGpCa0FpLpoKD6ihZzgeUrtyDbpCxaRn1xqVGkYppctzzkBdQdF6+xBx45hkHuKt3i5bwn5PrRXbfmBZ19SLFr9asdlcUNU1/fGA0RusilTasrq85Or2KaZpsUbS/avLS3Glud9jgqJuaw5jT1Rwc3lJpQ113TDsOnaHAw+PDzw83vPVq5d8/fol//I//Ib32wP/5I8jT588ZbnYiPVcGtN92pSVyT5FIh/wPuaIGq20FEVpPUtfI42ZAGW0RLJxznKVWSpHTdI1g7BaRisqrWlsjVMVEbH4jCrIBjE6sBWrhUHhuby8xmFpFkua5Yp2ucInbazzjv1eugfmAlsJuiZCYpoHSfuezy2mBlF5HqafqxAlIMkZAzV9JqZAON+bmDKQITGGOs1HWd9k+1BaiufifL4rxO9fKWKW3UXRAItMP6fYKetKJKKilmLzFIzHJKeRLNop057rV/IaInU5mtO78sN6zUFjyT4ygSTI9yABJiW1AzFAVdniUz4vNs2FwtrqxPoCSqG1QSc9+fHYodAfZXfzxmxmmuP5PjDJdIRAatpW6jESWLNWGPXiBBNEJuWcwxorpIvO4DaWfTRGShAzd7A4LZozJciYS1BQkdE7jJWi2HEYxDFKSfOfGDSj94QgDk1535C6C3HMkSAmSjYjFb4n5CR7ZiKrrDFyf5UALtLeYo3Fk1xu1FwaiwCtM6lK+e8Z35QzZx8juTRii3rir15+PxGH6VOFYKMsfxnbhNnnP5SUTuc4yQ8nAm3i0PIamYnEPJaLLTGJGZSLENvPdP7Rh7T/RLpOQHn+/DBIDcfFxYV0uS3jQGoxlJEuvDoRUtZaWiLd4cB6vRaXlXEUSZVWrNZrhmGgbVv6rpOCZKXT+wbatiHLIRdtix4Hmrrm8fGethYJmNGarjtiKzEvsMZQWYN3GkXAu4HlciF7QwySpa8qvBfmvHj4J/yZ7RjzfM/BclXXJICWyDKxcbVaMw5DMWrIa0dVVRADbdvQVALcq8omRjwWR5q6stRGdO45W2WNdLs1ST4rP9dl7sUQUn1VGgNp48jk8fd5ff/iVPK05IODC+4UffH8p0pRpCEK0LPodw7wp01cmDbB4IlNypviCVafgVHFxHinBeF8wpyD+XzOZWLH6fA5Ss62Sx8svifXzPRd6fxlQhYyrLBv+e7Eky8uJ1g+Ww6e0+ORJGehRPYZaIjjwYyKV5SCyQzC83dmJkmy56e1AuL4MW1EqATy87NJl6fTZ7LePrmQo5JTRb4kHaaMxuWypVos+Ku/+TmvDj1vtjv60VNbS2PF91SiUWisTAylLFVlMJUhBke32xKco8YQ/IAfByqj6L1jPwxst3vWixUhaF7e37NqW5amxqDox5FuHLm6uqQy0FaGikgIPVZBHQ3j2AMBXdcYJR7qTb1kjJroBsb9gdE2KBQVCqNbCpcSlYAka0qXymA8ymu8G4huIDgpksrFZ96NtKslVmvi0LGqoL5eU9dP0FZa8lhbo4hUVzXtcklVaeqqxi6XmHaBrsQ5QCkjQMLU3F5fyPM1FmxFdJHQH4XV9g4/jHQ+cHu4Zf+45fmzWz55ecuvfvNr/uPXd7jhl/zZnyhurz1VXeF9KEBTNlQ9Y5llPGmtcVGkBcEHjFZJc6iJUd7lsuRDzeUgOXhNc1ZR0tBGa4xS6BDRDsLg8VrjBtHVV3WN0ZaoArW1VFaKlJQx+DFSt0tMZambZdKCDphmRV03aZFMRdnaAKmOBCkYssaUjVkyJgJQdFCTk0Oa3HkelI0WARIxAW5HwPjElkVAK3wUOU0qTUeh8NERo07ZuXSvoiKmYB4FXolbkFJhkuDlxT7LEfNSELMDWHaxkcWkaPrP1kJf1tq8HOU17YcL3PN9zGyqMOqhkDMzJFaIp9wkKW/cmW3Oae0CsqMqIBSUpMW1QSnP0E+e6PPjZzehqrKlQHYOos/lHi6I1AfvkvtLhVZGJCxVVfYpIoxuZLVYJk19LvVOWvPZPjZnyjPjmuejSP98CTjGcZTOj0XzOxZAv1rWRWLjE7uaz98YDUqnQks5P5fuY1VltlH2OwHHoQQW1lrGfsCnAl4Z4FBVhhjdbA1RjOP074wHTmQv6fOZaIhQOmHmvbS8pwQ4CcinuV+caWb4IsbAJDqbmHCgSNvkXkzPf14bMY3N7P8/kRhSqxQ/OJd5TRqZ/Z9hlpJxyPaHqUh46DvaxaqMXeccwzBwfX1N13UTQEVqQo5dh01yJblKWeOd91xeXpbeAyho2pb1ZsNxf5D+AKOQcbJ2a7SqadumyLqqykrtm4oie9FSl6WNyMkkCBQHNkVAq4gRdoOryw3WSkdayUh6Rj9S15ZIIIwSbBhjiMFjdFrTfUhFp7IH1HVD7k4evYyfSmlcChozJsr3pdKqNHeSLIWlrRt8kP4LTdPQNg1tZXFuLA0odWLi89wTq9NTskDInFCwMXEi+77P6/vbQc5YoDxiTmUksRQ7xtm358GVQd/8NQHwWBirDPinSHliD87ZifPvSJ/+6LnPJ82cMc+R/fn7zr+j3IPZ3xmdlvflNHgKxWOcR+6nx/jgXsgPpwtSOXiZzm9+7THdsyJTYlqs879inGUxyg2djs/sR6hpgUsIPv/mpMtirgXIBTP5+s/vY0zL26qu6XdbXn77hu8etrzd7mWTNBpbpdbVSOTdVpJ+UjFSWYOOnjF10Xv17j0haBYWQj8Qleb9fuAw9tzdP3DRLFkt1zx4Rxd67MUCFeGoLO/GkYVeEiIs9YK379/RK7B46n7HotHUlUYNPQEHwWHbCHaB7wJdkCY1MjANthrRwUIwpTZYpQ3cp8JUYsSPI/7Y4YdRtMhaNrGx71HjQOgP2DDy/GojLIeYaaKiMLL4SNPU1BdrMBpVW3RVY2qLrS0ZH2TQUfQ6GpQKUCt8nDzngzYYDHVjWDSW9aJhs1lwebHmr//mF7x594Y//6tf8g++eMFnX3yKRjE6zzC4xG5pdEjMmRLXhxCSdliRLOCk2Yytaqm+z+NhNgdkccxDTBZqpRQWRaUUrbFc1zW3qyXX6xUXqyVOWbqj530v3RjrpqIL4p9rjaZNGZGmbQi+wZqKtlnReUkDOecToAhlClAIg7QxzzbhPDFCLjJPwWxxcsiBcZx20DJP1AkuJGfj8huVyv9O7DcC5DPuDmkDA2HZSwaNPN+zBj99NhXs5ECgrHXJhaRk45TGp6yGDhPY8YiTjSlN39I1fM+07X+Or6xnzzIXYyzD0BVQLWu9WEJqraULaYyFdb67uysNa+afgUluk2U0GeAvFgvW6zW73a5YKWZWbcx+0jO7xjGx2pMN51RbMTrHfr8vXUpjhN1uV+wYs+Qhe6y3bVsKQTODnr8vO+VkRjDLZh4fHyfZTZLFgEhHRDpjCvt6/3BPXdeluBWkY2vXdSc2mNlichg7FqkbZf5d1sf33VEyCOneA4XBz1kIuccpgHKT9j/fq3ydOYjJ9+R0X51n9ZJUJ1Pb5ZXNJU736JBsKWcTj7y1R3363vOMyQTc5/d1+v35epiJi/y7EEIh3hSy7uRr07bKPF/6LoMbx9IZNwSPRhxnjNI0dYUbR1n/k/Rov9/Tti2r1YrHxy0h9EXGtF6v6YceBez2e/b7PVebC9q6kuLXQXqcLFqph1otlrx584bLi3Vi9Xu2j480dc12u5V50S5om4au79jvpcFTXVcYo0sh8sPDA/3hmJyOBrwfU3Fx4PJihUsBXwnagqeuKmK04mXvPVUlcLZp5bvHYYSoqKxYTA9dR/QhZdeShE0p6iSrk+BOgjNrNZvVepo3qVN7u6iBmouVFHtbI6SnianRYQr6shxpGg+TLCxmKRdTv4bz4P3ve/1efl8GkQQUkjkNvrn/qI+TdZZW2TIvloFYhur55EmbXc4ATRqxKG4JGRQy/b6wJ3E6Tj72XC8UY9oUZwHBOfM8j3I/ytB/bNKdAf3MZs1BwUnQkLbWkxMpZ64yjimAPMSIPpP/TNcUxJ1GTRO8vCeBBKX1ZEuXv1ORGNPT51B0Xul/c2tlsbDLIGF6Pjodr8ij1HQQeV9in4PneHjk/cMd++MgaVelqYyiNgabbL3aqqKxCmsURllpbuBHxu7Im/d3fH235dX2gA2RpTHsB8f94SgWiD6y7jueBIOtLX/77Vusrrm5uGTfjRxVZPXZFxzu74jLBU+XC3aPj3jvuN99w7vHPW2jWbWKdWNg6AnDiFpFMA2Dc6Cgahp0ZfFtQx1ruX4R2Al7mxjmMA74cSQMPcGNeC9Fnd55xr7DHfcMx47x2KGip9KgCSgtVl8xeow2VG2LaRt8cBhdE30EK0ysHwaUtuIrrxQ+aUujd1IDECNK1wnkJScL5zAhopXBNrWw1Y2kyGtl+dWvGh4evuNvf/uSoBXXlxcYI5Iho02yEhQXFSnMGRKLYkqqvK5q6qqhaVpUd0ye8Kf1EGWhUkosDNFooLGala24aBo+W7b8gyc3fHr7nMvNms5HblcX/Ls333E0oXQgVTFK8fNySVUvUKbl8bFHa4P3qbmJj4ToMLYmIN1WRd6VZqNicoDKrFwQ0iAHqtl+ThWdIlNTKgW5sM/PpQBn846UqZin0WPmAtUEwLM2PSYQLgy7muZoZlvRk1lAoEglMtOcA4wsiwuEmcMVyddYJEox34h0blEpgvl+m8h/jq+5XaNoyLuzPUd06cZYdrsdV09uEjsozfSy7eFutztp+DPXzZ/sewnU5LbsSknRvbYi1/OpAHUO0vPGPuYuoOnZWGPERFaLK4u4csh7P/30U4JzDInpluswhU3N/z2OI23bFmeROag0RlynbKqr0MYISxkixugCuLMGvqoqlu0i+Y07dkmOuF6vcc6xaBoIgbZti6e7yBk8i8UCneQIfugxxrBZrQR4l7s3PRdjzcSUx0hMwVdu9JMDl7nzzEmGQwhy+c94ijMyqMqkU9m30qto46OsDRORmPCBSwQIzAJCU8aBfFfAhxmBFaWGJR3phPQEUDqS+yLOA5ByOYk5jqT5rKVR3twS03uPIpZagJAkVMoYDoe91EyYzBq3xBh5eHig66QOo6pqlIL9fs+x73j+/DnfvfqOvhtok1vM+/t7yXRXFVUKZo0xvHvzmp/+9Kcc9jvevn3DdrulXSyK5Apgt99x/3BPjDEFoZ62meZC1x1Yr5ciqb1/IMYghaUqsF4vORx3LHSNGIYETGU5Rs8wdlhtaSpLZTSLpM333lNpRd8P6U+PJuLciNWGqDRBiYVzZTSLtmFIgb5KAeZqtaJtGrRWs3oZafy3Xq+xyYaXFATD5EIVmfoPlTHlg0i5mfaY8zmZj/F9Xr8X457TzPnf5+z3XBNW2GCYUlHqdCKdTCo50Cx1MAPQZ+2J5yCgRKVpss819ZP0RBwWSrYg3zRSKjqeaVxnnz1n4U/PWU16WVJgg5aixtk1FcAPpaAxA/ysqyvXoqeCxnQbPrjHKm+waloczjMFOf2bLSXn56z0fAGhOKJAGnwwwQs1BWHzoCV/RKspSiyimhCKdGq33/Gbb17y5v49vR+JEWqb3GRQKeI1XK2XLCpDbaY0ozT5EZnGfn/k4fHI9jigjGEcHS56tBKpxnfuyK/vHljWNf3Y8e3jgRe3t4xDx+A9sfkLTIRXF0s+36xRwx76gaqyLDcvuN/tOOy2jP1I2yjqfqTxYFeXRGMZj3vsfotetLThzB84d2IIQAzgR0LyHg7e44PHBUffdRz3O1x/ZOx76VCaWnSjIyamgiNjRAZjGykGdSPOjQyDpDJNu8bUNegG2zY0qyV4Dy4wPN6B77CmwtQLlBVHBmKSvGBQpkabCqth0dZUz265WC+5ub7gl7/8OdvtW7bbPZWtWK80aC1MjzaE2YIsdQwKW1XiSqEVxooWkJS6VInJnI8dnZhIoyRlaJWiUpoLa3myaHm6XPFiteTp5oKrzYKmsSy04XKzYXN1zZ+//ob3x20C0hFrFZW1jFHz7dt7YtSFidNaUzU12/0wm3NBNma5HWUi5MYmhVGPFCcZhSqM+gkAVKqMhRAjQcUkPaEs0vJZyVao3M+4YA3ZuEvIrBRGmVmfhg+D7HQXCdFPYD58fA2YExJ57RMJf1qrmDaQrMkLISSl3inQ/SG9crHpfN1smoZhkOZdxpjEyAcuLy+LM0dI1qqZTV+tVoU1zR1Fsx3jKgHQvElnwL5er6UNfGpaM290lP/kgrUM3rMcJxepri+vUmOatsgYFu2ScRzZPT7Khm+EWR3H8SQzkI+plGK/35fmOxkUeOek+dw4FovMUqAZY5FRZO/prusKcBbZgxx/GAbxph9HjsejFEi2LctlS1AC/MWPOwohkYKfLBk0xqAA53xp2JTrlWACP8vlsgRQmdXPICk70ZQi69lcOtmvMhGopzmSX+cBncTaHw9az59hPvbpHji9TljU+OE5zb//lLE/JQRPvt8HVGrAlYmREORn0QdUqtMYnWOxbKjahhCiNB9Kz/fm5oa2XbLf71MQtiy2nm/fvgUim82GylqWKfty3O9k7Pc993dSxPrFF19yOBx4eHhAKcXNzZPkWx5xyUAij+vD4VCuv0vjXACrODzhJWtV1xVdL3aPy+WyAGcANzr2xz2LxQLrLaN3UufjoxTLas1iuSTLc+ZzbPe4LcfSWprXDf2Ij4HBe5RR0oxqsZRGfsMgbjLZtjX4UpBdGSGljVZ4pJ9JnuO5XmRee6HQaD2BezjNvpXs5yxo+7te31/jXpDoRwZ6GV+qgGClckMjldjyGSA9izpB9owQpnRxBu5KJT2XOv2eAobTZNWzvQklhTulWZNSTP+pEoOWJk04BRWF7ZoB9/y58+ueAoOJVFOkes6YikDP0s0Z7GRWvmysShNtDiTSwpHkE/OsQPne2fXka8x/x/mWm4+VApQc3GSGrQQX6e15y87dIvX5d5QC11ieWzmvdDPkRwEVPe8PO/7dr3/N9tBxGAQ81cYm3ZiWNsF1zXq1oE7OL7laWxlL8B3rxYplXaPiAbTi4DzDKL7IEdBGywQG9qOnrlfse8/Dt3cY3TOMI9vQcnPzJfe//AteXLQ8bRouF0vojnzetNw8ueTxAe62d5jjwGbpWWNoMOh2SQiR/f5AczEIAxIcKhUU5nunIuLe4SSVF5zDu5F+6Bn6g3R0PRzpDzsUouFTIWCQyD2GSPAjkYDvj7jDgcftA6OHMWoOjztaWzGiaTYNymiun1yz2lyIm0q9YPfN16xtZLVc4e1RzjF4lKmJJLlMswRbQUzBpqlQi4arJxv+SP8B37yseXy4K13pqqZOQaWARfnvXMSjBNhrLWyQNdi6xlhJ41vvS9OZkzmT5kqlFBd1zdPFki82l7y42PDs4oLryzXNQhbJdrHA1hVDH/hxu+DOjdy/3FJVBq1TUWeIbHcd233PerVBVzUozTh6qqqhqnwCpX6aU3k2pIBZlbE8BeI5MC2ZqTgxKSpN1qDlSDpKit2nOW60pEUzj21nntJ57gp01oVMiImkMEYT06Zw0iQt5gLSQDSpMDaKbl4kPdNmnu93CZhULm6VjIFWM3lPsvuNqb+CiqD8dK4/tJcKUpCsTequa6SgUimKnpXEavd9z+g8la2l82IChJlxVlrjQkCZZMuoBWhnP/i5TjiEwCEx0k3TlLVb9POT53j+MwyDWB8m9rGuayLi5AQU2U1dVQxJU57t7nyY3GjySyfgF0NgHAY22Rt+tyvMXowR2zTiLz/LFIQYqbJNXQLR+fyLht0mT+q0LysF9aJNbljCjt/f32OsKRi6SASyvCg78uSCX+JUB6Kk47TMGXlKw7FLloqpn4RPLh2IvbFRyXYzM56JlCtzhokAOwdKGfQWtjTN/4K1y3yNxfJyuo/JWlRPVg/njGnOmMmx5Dhp2z8BdnMWttQdpOeQG0rNFQ5amw8JzhikUZ4fqYyiqgz9cKRPTbyqqi5OSH509HQl6BGbxJamqbm/v+fqyQ0xUsbNOI5cXl6n4HRktVpRVRVv3r6RJkebDQpZX8c0Lw6HfSr81LSLBcZauuNeiJVauus6l+sfarDCikckyF4ulmV8eyeFr1Vlubq4ZPQORid4Ie07TbPGDyMmYbhhcPhUuG2tQV9u0toto0vkbS0ueBoFyugy18RFKiSw7dDKslq0LBdLIaiUOgHoCtLPBNfM8aY8Gpee+2w9RhdiR0WVOmD/b+wq87GOpQJC59ZFkw94GlNkcUgesL8jkJXvCFMhZH4VUPSR7y9nEU833awtnDPu0wFnE3n+nuzOoNSpPGW2aZ+w34ntzgA2Y2mT7IQyQGf+mY+cS5lzabPMgUR5a9748z2dn8s8GJlt1CH9XKeq5vJAmNUk5Osnr28ymPVsgYhRAimdAIpSWjo1xqz3m/RZKl1LRMBHDAJkjqPn27tH7vYHOueobcWitrRNXQBfY2vqukkOAdKO2GgBSfV6gzr0rOoWqxTBefzocYOwXx7pXtnahufPvuT205+wefKCr1/+ez79/IrHd9/yzcs36IsFf/LP/4z/1//zN3zXD3y720H/hs/aGiLcPrlidXmFMhX99p5+6LCHIz4oWm2xTSterMNAcMk7OAax5tNmFlQJw+79yDge6PsjXX/kuNty3B7pO/l83dQiP4mjFNukAp/joWN/7Ljfj1TKcLFpWF9coqoNW+2oNje8+vY7hoc9wUVu33va5SNbd6QfOqrjkZuLBTebBZuqERcIa1itNtjEPPjDDt0uQFtUtUA5sb6sqor15QWf8hnejzgnTImuLFUqTC1V8CnjowTBg5LOopW16U9FZSv6fhBGJAeQszGsleJq1fJHz59zWzdcVQtuViue31xzeX3B4mKFrg3GVAzHjjBuIcJVXRP6nu5wRNXgnGFwHrwGLM1qQ9QWHxU+AKmgtRt7ohKZDGkOZ4Y9sx1RkMDEyuipIyIkYkHLupatXk2akD56fJx5vKdgR0Vh96fM26yAPjH7UecZqqa1Q+Ui0ylILsy/oG2pN4geVHaKkjVs7lgxBeXTehViRPkovQ9iIIZ00l6Ok80BfqgvnxxN5uui9y7pZpG1K+mYhVHLhbxTBiL7otvE2gGgBKBXxhZJSpZMZLatPPc5wTRbU3PglzMAYoc4BbeKSYoxB81aiR53TB0wwwzoZXBFzJk1yToE7xn6/sQdByZZSP5eYwwxBRZZ5iJuNqZYA/Z9z2q9IASPD7GAl8OhS5IcDYjDRtM0BZTFlIHO9zbfq1wsrGb3Kxaf5kiepsMg9xitiV7kl2g97V3IvDhnvj+WKT/P/p3/+/z989e0z+U/U8+HjwXKczXAh8c9lQ+efwekORpyv4zU1fjsvNVsrucxrl3qSZGCUlvJiu0TCZHH1fF4LK41IUmdqkpYY/H1l/s/jiNd19FUdRk72ZEokuaRF/efpmmoUuHyarViqKoy5uw4Yo1mHKWOwbmRQQlZYCuD9w68l7oTJSTqom1TEJvuSWoSFrzUgQkpJAGntkZknTaNL5tli5PELQfI072L0iE7fc5WlspYfAzUlWHRtuU5GS1+7uI4M43lYi87ayam1DTec3Zm/pwKEZbcgOYZse/z+v6M+0cWICIEI+mnvKnE3HI7Rc+Z8c3Mbt7280PXs41GnX3f/PUx5ruw0Cqx0z59b7LVKVMk5vOZiseY+5WnTRkVT84hpB9DlOvSKgFpJQWAKHFjKVHTh+ebzzOz7EFlxlxNBY/wkQku36vK79PAzRxFChrm+sUTrV0eOIl5iGECC3khPVkw8hOJs0r8tIDGFHFFHRMzHGbjIZ17Yuzk/xWkRdnHyO7Qsz8ORAVNZWhSRBvSpljbmqaqhIGtaqqmxSjohoHD4cBxEF/wprKMXjRrzkFtDG2zZL1a8umLL/mT/+p/z9Mvf8Ihag7jd3j3wOVly937mq+/+o/8h7/6l1QNXD+9QJuG99/teIg13/SW/as7vvjRkuvPf0x/3DO+/hqUk6BQa6pmia4anJfFI6EcCCMqWFRMlfF+SBXynuA8wzgmicyBw6EjRqibBaqyRETL7sae3XbLdtfhXOTQHamaDT969gzikd3hyK/vH3kYB/ZVxev+yJNnz6mouHj+JYfjjr/9xV8y9gfc7pGr9ZKL1rLUhtGP3KwXfHHbsaxb0coagxl6TNOCc0RVCRMbhAVYbi64ff6Cd69f0Y+OKkS8MuhUpBvKHBMnGF8KlUUbmp0zrJ46xZ2OUXEsUMmi8HK95I8++5yLZp0yZ5H320eG929w/ZHGSiMWbWvM8oJGa3SUQixjRMNr2yW+WbCu1myun6C0JQKjl+LafogcjuIJnINZpYLoxaPoSLM0RevTjTxn+2TtSHRZPK0fyeK2/Eena/VAVOKWk4mFbKGqs10FAuzD7NxIWusM7DObnlYfyYvloMmJraQDdAhTUJDmuPSakJ8VAialznVeG9OmVjQ8HwEuP7SXMJqqgJ4YY5FZAGmbkjVUZyvfGQDLRZdqFsBlsGtSjUWM4u0+B3BV6mKZQXUG2XPQMPdEz/KRORgkiiSlrurCiuYAwc5YcWtNanKYgbBJjKyirhsOh4MAosQin7L9fWKPbQJpcu1t24pdYNoLjNapaDSDDAlwdbqeIenMTZJvCLtri1NIvk8xigmBsuLCMX+JW8sklc1zCqY9fy4lgXkjtFz493ezlXE2Dv4usC7b/hnxlubUyc9mzzz/vGiayXvqJKU7DSQ43a/TqXwYHHyIg2KURTiqCQvkVwixFGbjBOBiPGkIkLNJxhjGo0ig8ngyJjW8SkWmmczL2Z9ciKwScI8xslqtUQrcMCbwqcszqiqLTsfM86mpqtT4zDOO8/4YfgLWiawM0dO2zSTjCiIr9dGjonRdH8dBgpFEKFYpKEEpVFVjTOolAuWc8hNWad7l8aSNxlhNlQwyrKpYLhYwD3C12F2WMTALnHNN0vw1ZXSmsVfGijmVqP0+r98buH/w8xhR4YzYzVg6pBNKA3zGzVPs0+esjjpVls0n7McvLqNGYcJKAWue5GfHQk3guoB+pgmWmfaTBYNYCi1nRN2MURPAk382Z6DzMSa2PU28fK6ZXcjHirGA3zyTsy+vChMQjwUmnEZ183s0f18BTnNcMLtG8jPMTMcshafLxU4xUkkNhol5Jyb5Tb6/Oi+kgW0/cBwctbEsmpblomUIvmxGlTVUZtKj1XWF0ZoYNtw/7HncbXl/f8fxeMAQU8MDuF6u+fL6KU8u1nz+hz/ly//iCy6ePefRWf7m57e4/YGrZU3/fM3D3T1//Zf/lpsnGy6vbzHVGmWv+Qc/+TM+ubzkq3/3P/OL3/wtX4wjn/7sZzTrJW13IAwHtBW9uWlXoCrpdOs8sfIobUWH7x3RjQTXS1rMB8Zkn9Udew7HjiFGmmaBTgxfdGJV1e93HPZHBheJ0XCxvmJV1+yOR77Z7nh7HHi1PeCAN8NL3rx7x3s3oEzFsap49/4N3+23uL6nVQ1D5/nm4QjB0VrFJ6NDhZGb5UK8eZuGajjSNi22XeFtA6YGbTGmIsTIYrEQv9+hk2A1ik5VBVkcpcBTxq24DWZQGbF1VTaHuq6JRrM/SqFqlp6oIA2q+qHnu/fveLFeUT+p2azXBO949c23vHv9mjp4nqylA6ppF9RNw8YqFnVL1e0wRmPrmubqii42LExL1baiybcVWgfGMTIOY0rHx4R680IapjGcYEPe4PP8Dwn0qhhFGqU0KuTieUoX5giFcc0p9xhE907IsrLZBj5jX4pla8xSmByci2Qnr1PZ2jGvZ5m5LGtL+t75xh/yOYZQjhWZ6lbIgCq3VVbfP2X7n+srb6Z5YyxdZ0PAOU9V1clJIhEiSX89B4Z93xeJy/EoTYPatkXrSD8O4uayaGesp7CTNjFp5zJJWdtqabCViktDSN10E2jPLjfaCjMaXJDxGkBXmu12W46l0+IcgmN0AaNguWyLFl+pCASaRjIHdS2St2EYWCwavB/T3uGBydc9/61VJAZH340Mw8DtzTX7/V7W6bYq4O1ic1GKKvN3u7E/yRTkxkB5zs2NI2IIuFRQn59dloDla507syyfiokAAQAASURBVGTGuO97YvZxVxQ71fw6yRzPAHv53vRHxzNsMcMG+RpUWR8owVuWCs0DirLfx2lrn6uWpwBQipgJH2fecyBE3m/V6TjNJFsM0rk2einaBJLk0uOCp22XAuQHR1VBU7eFJTZal4ZP+V4cDwc26w0uyVhclKzSZrUujZXqyhYdeT7vGDyH/Z7H7SNKRS4vL8UuNBGbWmtWbUt/PAIUV6B8zw4HkeTUxW8dlKpQKpbMEdpIN915bQGUNdylfgODG6lsTWUNJgZQct5Fx59IxlyjkcdUSLVrisiyaairRu4z4mgj87+mrm2af1m/nxyOUpAhWPGM5IaT9SDGmDqy2jI25wW9f9/r97ODPBtc5A0nIzoNRHXSfntKXU1MVNki82dnJ3syoc/B6AzA52gwd/WMaaaos+ue2O583oJefYpyBSNPxaqk4wWVyXCVmPh0TS4Ie6Wk1T1Ko3PkMpvYeTGJ6RAnQUpMvEI638ysZVQdFKmjq6TEs+VgZBqsGSXPUy/nz6cEMDEmLS0pOIrllpdgIN8PxeQ1D0g5HQVclPuZTkxne70wnahS2QlDFpbBib3Vum243qxoKgtB/FONUlRG0dY1OmkX20pkFrVtUNGgo6XRC67XD3z7+Mib3ZZDN7C2DYZIGz324Tvs229on91iN1d88cVP+c3ffIfCcXXR8kd/8ARla9aXl6yvL+k7xfXlhj/9x/+Q24sVn9wu+cW/vebNb39N/O1Lfvz5M66fPUP5keAGVLPErjbJZ15kXcojABCHChE/9Pi+w4+j2D4Ojr4fGLqOAFTtEqUr8WBXgTD29H3PcRw59AEXDU1l8THy9XbHzite7/a87iL7sWF3cIzhDTDy/uW3XFx9zvCbd/z7X/wbkUv4wGaxxFqNjtJG3A6RXT/ybrvj+cWSRV1x3TTcbNYsqo7NJaiFpBVDVUt7bS8A27QLmtQVzvuROHbCRmjEn1xrgtKy2EXRYlfGYNwocpmqwg4D1UKq83e7I5GATZt5ngf96Hk4HOj6r1AhslxvWK+WPH/xCYvg+fT6govrG1TVMqIxQ2BVi/NFZQ31oqVZXdLtRxbtEoWWQi1lGF3A+Zj0mwtCknDl5SCTXXI6sjZltjQz2y744p0+zYzMgqfMHBqNT8H85HijmIo9gdLEKhDFJYik8MmONj5pZqMSII2sBSEXtqo8x0AFCfxCaiwigbmsYyFO7LHK0bdSYi8JMjsjJeXsgzyXECLYpNk0P9zOqXOGHXJtgvyurpuklZa0vPcBa82Js4P4mMvmPCabvPw7EHC7WCwSo53b0YciK8nuFllKo5WiHwb6YZBBF2Kxcc3HlI1bXFwOvbChxeozilTFGPkeAeEUf/WsV394eCjXfjwepd16ctjJjjcA79+/R2tN27ZF5y5a90DXdWmNF6lBBlRVVfHixQu892y3W96+fSvAB3Gdqqpqktkk3/VTKaVK5+A+eF4fsNYzaUFIMr58j7J7jjGm1GoVvFD2/w8B+vmfwnjP3peB+AeBl5pY9wLEfgfDOv/+HKhHpiAg44OT4sQwFUTnWolpjQqEhP6lo2cgT80QQnFPao2VdSVEkUZVlug8VV3TVEIo9H1HHSPO2tRl3BGiZxw9m82K4KTQuKpteQ7L5TKlWfO98eyPx8Se98m2dEHV1DypbhjdUIq3QQLgrjty7DvqupH+ID5gGsNqtaZpKvb7JWM/0A+yf8YQMEayOVIgHpN8yxNcxEcHUbFYCJD3zqd1TrNZLRgTk26sYZHudQ4cswzMLm15lrWtaJoVxsh7pLFUncavTtp1MytqdycZsBBk3hhjCkbIYyxnmefri3OOfuhOxuFcyvb3vX4v4D6XfERBc2XnmzPZ6uyz+TP5VSLGEDM6PplQH/vecpx5RE02Qpgzy78jyEgfiCT2aXbuGTBPgQGlSEx9ZHImpJpwRxYCneQO0sRThY2btlQBKyFO+nI9S7uCgMIM3omBkLhMraf0fNENJyY9s58n5zg/7UhJ+Sul0Wp2vSmdqZUmd0qVTANpUUxRbeo0m+/3effVc9ZCG+lo6Zyk4daLBcumxlQVxli2hy1aUyrHlRLP1aZeyCSxEX0hXT9vrq95ePuWy2+/o35lef2wxdiaQ/R8fXfP427L/d17fvL2Ldc/+xM+aTWvgubw5oEYelZVxfLyBtsu6d5uOR4CL27XVMfvGGip48Af/8M/YvvFF3z98//Ay1/8iqf/7J9y+fw5wVhxWA8RHXxibZPXbhTJB0FY9zA60eH7QEgM3OgculljqxYNwgjHQHQDztTsHPRYFqs197stj92Bu86zd4b26ef80T/9Y378x/8Fd693/M//8v+B0VKd/4//7P/I//I//i8ErdFG4fqR7fEoiwGRyhgaa7jH8d0BfrvrubSaLy4uudv1PL+8INYLVnUlLbJjJBppvaHLgmRRShYUqzTWNKAUVjsqA2OkZFZiCFTGYpV42WfAoiJcrNZUxrJ93KJCwCpDhrOPxyPfPT5yuWx5cnnJ0y8/4/ryivHNO+rjkSe3N2yub1DtktEF1KGntZUUCRlpTBWjAQLL1aoAZ+8D2/2eMTg2q4amXUgnYqWSnWXKXKk4BRKz4DS/TMp4iR2ZzCsp7DSlGdOcfMjBNjnLVYIDWSm0TgFCWifmRfTSJXXSs6vU1l6khFGKkNPbgw94QkncmTjN3bwGSUFxWiPz+poCJ5WXjEQ6+FRjpFwoco0f8kvAnkqPVbrw5o1S/MyFcY8xEGKSSCnwUez0rNY8bLcs2kWxMzZGmrC8efcW5zyr1UrsFbM8ARjGUax8tcYmwDm3h8sONdlthpi6hqb3VZXBDpplI/reDPBC8FhbcXm5mQpKEzA+HA7p/MwJG6iUojscUxfTCbiUTML+AMi1NVXNotFlLc7Hly6cHf2xK8dWWrFeLWR/jqnl/NABky99BjcxCpDMgZROLHlw4r8dvacy8p11XUujqDBIcBMCdVOfNMDKwZHYICamHYqbEyBTMgRhPkMocr4qkUvShXiWkVGgyMWviXgr7clVwQ4nWCT/dsYcz74+/R3LvuuTQ5rs5Za6NlMw5WSXb6q63C9iLE5XKLmnc4cVlYwCMjjc7/cCJq0UYlstuTs3dPJ9yS7Rec9ht8VqTV2JPE5FGIeew1FcgEI01E3DcrFg6HoZZ26YApoAg3P048iTp0/p+yP9MAhRl0D7y2++oa5rqX+wVggFH2iXS+kK7Mbi7ASwXC1ZX2yEWHUju/0Wa+uUGUqBThBrVB8lW3HsDwz9CDiUtYl8CeUexRCprKbSont36rTT7ryWqUhmtKZtJftcVboAdOCkJkS+IJYeIkpJfwFp+jQVM4t8x6T5lPs5OKpa5sYwDEX65MI8P/O7X7+Xj3sekMXsMFL05PmXMTG2koo9TTvnqFU+PUlSTo5/tlmcg/Y5KFdMAFxPnHR578c0YkBxacjynfn7BUBP3uUfaxwVZ9ebiH95pa6JMQZhyxIAJ1UZq6yrT7dOxYg0RUkbdbomr6bNN6e+Sdea5SiKWUe1BK6ne6WnzqcpAMkSnewTnzX5wqKn9uZpQw8qP1eYh1wlPMlYhWyxeaa1C5GgI1FpTJpklTY0VYPVUgCyPxwhBJra0NSVFNNUVWLgTSo+itJsiJalAW0j3kYi4kzQe8VysaBWokX95mHgm//xX9P8y7/i4vKapRu4e/dAGAeUrlDdiFoNmENgPXq6t7/i33z1DV0INKlLmjGB6Af23YHt+7fcvHjG8voJUSmOuwOx61JySWoUBABJxO/9iPdOGi+5ETcM+NGjbUu9vpb0sdVUqzW2XVANlxy/+Qqz3IPb8e3793z16jtGXXPx4g/4w3/0p/z0n/4Zz7/4gu2w57uHX3F5s6DSmpevXvGwfUVQHqzh+ae3KK3Y3u0ZukB37DgcH+kHCWbxgYe94tCK5d0QVtTLlurYQWVQxmBr0K1JqUQBplpXEBxaUZyAQDMySvBCKswNFBBsjRXnICObiEtA6enNDStbc393n9qMS/vsfdfz8u17ll9+wo//+B9wfX2DcRG7XlJbw2pzweX1NbQL+hA4qq2kkYF20WCblm4cGb1n9I5Fs0Qn55DBeekIqPcs2obKtsQwEIOTER0C0QeCSc4WagIeITGjBVhHRarWRmktYCBjbmThiyESdSAqjY6JwVaa1CAw1bXoBOxDWYdy5stqK8HyTDYjG7iCNE9La/aQtPKJeQwxFBATSjBOAqez9SRJAnXKTOQCQtHsprBcid/9D/X1sXUf0nNSk7Qhp8yjkvGUAVgI4tiyWCxEijAjlpxzfP7553Rd1uoKQ9qn1HubCtrm2dDC8hnDer0uBZr58zHGIlvIutssz5nbO3ovblpzD/GcYs/NmM6ZbpEapF4BCRyvViv2+z1ACiAMkch+txM5RDpOVVWFWNlut1LQmPaJvOVmljqDdecctpaApWSv8v2eXbNCgFW2VM73PMbUAyZpr7/vM85AKe91pbBcK6STc0x2th/TuWdCTKffe0KYgbwzAi/LSD+GMc6VAh/Kd4QAm79CDCcFihmLBO9lvmqK9WU+z3OsIySJzO+sEija9SAe/MGNhBCli3QmHWPEB0ff96zX6yLHCiHQO0fwPhUbD8VmdxxH2TOSx37ufqqVohlGLi4uUCqWIHUcZUy7cSQcfamDEqvSrPPO640ETuvVhpBslHUC7pKtUeigcMFhTEXTmpO5JqA61WLEqa4lhEADMzJ16tgLuhRT13VF27blM3NW/YMgLYrsLc7qLpTW2PTv3GE4M/nybCnzf/485yT13/f6vaUyERLwk1cG4ukfshfm/zwD3XnRzBeYde5zHfX8JYNX3ExOyOM0yecREiQf5XQgNXsv858U9in9bMZMxxg5/aIZUP177ksB/Rlyp+sqAOCUlCte6hnwxsjJYjh/cwixMGCTup3yoLO7wPzBa3KjGzlk1szmoKnckbzwxFkYVZ5Vflecfh+mH+WFQ1x8UoFiCiryRPI+gYKUMcgDue87qqSF1kS0ChgV0dEjoulUdKuVNAmqLHUlbH0YA34Y+Pb9lkjEGmhbYb6GEAlR0wVH34su/PLylmV7iW0XuNDz2Zefs25a/HZLIGDaFbu37zG1Zr97h46Bi+sb6sWKiARBURmx6LOGbCZHjEkXHInei0SmHwh9jx8GxqEnoqiWF6hmgQba9ZrVsxeYpqa/f8C0S/oQ+ObVGx73HZvr59z+7E/4yT/+L3n65edcPn/Kcrlm9+rIq2/uUEganhj5F//T/4f9vme1qbh5coG2Dc3yitXqE2rd8su/+Fe8fftbKR4DsIY+erZjz2IXaJWjUYGmgma5Eo2gdyikG5wErZLlkWp6M20GpCZdPmK0wVoKsNDaFg9dowyjGwnKUa8rNre3MAzJx7dmGPqyYe/3B/bbe7744jPoA/vtFoLY1OnFElPVBO8wTc3gHcYoFkuxnuz7EWNa8cRP4zpP5r7rudpoccepasmIRF/mgIxbodGz1VuZCmG2JihVgtYQgpxX8qKWzN8E9mPSPCsEtGu0ZMmSgw9mWhtL1ixG0NIcJJKC/+zlrjU6FR56RNea16giD1R5bZyAW8hAIa0LMUbJIMQPiZNMEcSYV5m/Y+H7z/yVwXcmNWBaL88d0oRUSsXESQObN9aqqghuJmlAZCnHYy91E5kpT+uhSdZzfsbAZ/CcwXtuGpRB0Bz85b/rWpdj5L0up+mBiQ2fgcMs78kvo8VVbO4pnV+5sRPkrOCIUpGmbej7gdENaCXf13UdXdcl60pfmu9lYFO6fCbQVNynZtmNLL0ZhhGd7DRjEBImf1Y6vE51F3MThHNQmxnS85/Pn738PEuk0ryMp+4epwNhIqp8di9J9z73OpmztXAq553PsY+Nx/y7sk/OnrvRCm8ks5fHi0t1YJKdl2tRZ/1UvE8yPq1R6lTaNnRdqi1ok9NKoOsOKFOBqnDOMw6SXdVKYZSeCpO9L433pu+bBS7p/4wxKZiT8xmdKwGUOA4qrK1KfYVLGZjspNQn2ZOtKkKQRofZIVDIB5NISTAhEEJV9plmVog7ZaXCDFhPNT8nri75WedxhJLO0aYRUm6GK8+faQbyphSRM5GkcWq4lN+fg/IYJ5bejYMEZGXcJNm1D0Xa9/e9/hMY92QLmG9wZtGzxCKxewqpcUxzUAackkZIxElLlvefDDRPJgAI+6TlTucCTfnxpBXLL5Ujzhx5T7+Z7b053IoluJg/zOwLr2BW7MrJd8y/P4P9qNQ8sUbJMGidzIbSLxLDoOJ0jiGGtJHm70r3SM+8W2dBxXkkfw7aJdgIxY1CbODCSfGoWNqdFtPEEBOLmvTsyds6V0sbdHK+mCQDefMXZ6HJKlKn83GjK2AgOM/gRno34ryjVjW1sSzbhspYKiKV0cJIlhqBSIwabWqCrllguH4qxVJN3bDd9xyHAasDBljWIjmhqvl2OPL5Z59ze/MMosY2rRRcjY7Nsga7Yhh7mosFbfOEpqkI+gVWwcVmw9WzJ5hqxXDoBaAZDckbWoBUAj9BPNijF+/d4Xhk6I8QRdfO+gJdL6lry/rqktXmAh8cx+B5+c13/Pu//BuWtuHzp89Z3j7j6tNPqeKB0L0hugVKLbhoW55cXuP331LXmudPnzD239KYipunlyzXLV0vsouf/PhLPn36gk+WC/71v/p/883rl5KCN4YQIl0/MGjFMIwM/ZGh61G2oq1bYvD40BFj8qpVkkWqq0rS+Smlp7W01FZEqqpmiCNaG5SPBELZDCpj6EJkHAa6454nt0+pXjzlm9ffMfQDWAOpI937hwde/vYbvnj+nNX6msVygTl2SVuuiUpSxsFYRt/T1pbVUrq0bgdPc9GKy4w2GGvwIXA49gQX0MYyBrFW0EoTi+xMldT/nLH7nRm+PF+TrCwiwVshixIbnvu8hOjQymAw6buypnUWhOf1MK8xQYrFy6agFISI17lbsqwVRkvnyxQhoNCFZcpBL5BY/7SxpA33fC0prKgyxAR2friw/UNyJ/8MpjVc5Iz6ZK/w3qHilDrXWuPxJ6SJ1ob9VhrXCFYSkGJthbVSUJdBQf6+OcgMiYXO4ysD63hyjiKpyjKC/Eyz/OQcfGamfp4NnjPvGfTnf/d9X0B+1uBGQmmo5JwjEgtw994L868hS8bKOYRThj+Vup3ouKdnIoG93PMPGxjl8DEDbNFZf1xGew6q1Gz+yp9cfH4K/M+zIdMxwsnxTlj5AkZnAZY6Be0fA+zn13f+vgIejcYYTSJg5Zkl0KzS/h3Snn5+L4J3KIxgkAT8MSa5nyH3PE7ZjmYhjHT20zcmmUPobCNpcLlxHtN9yt3UiVN2wxiTxpJkbASQKrquS2BVsrRyba5ISkLwhD6U4uvMEWZQHEMgjCNGG5q2KeM0Yz7npG+Ld74Esbk2Jb8nzz/vJyvUeTA9t/s1RmOsLWM2a+LndQn5lTGfSTg4cE4UnAZWEmiE4u9eSJUc+OpUbzQbj3/f6/v7uOcoJEXC0eTtVJGJ65KCKCRtWerkZukk9fAUBndi409BMel4WTKRI4DzdNX8dcKyJxYlb4on70ssjGzCSb4Ss0dzHpxpAZpN3vN0xvSQJgAbmTTnIYPwfG7p5sxDisjkFJO1qORFPwHqQnzPzoccGaZrLNfNNKmmLqycNIkoN2R2X0K6B7lSPs7fENMGN7vTanY+J88jn0+QKw3BF6u9QMRqg1HCOja2oq1q1oslKkqTg+J7HSc3HGMMylTEGEDDxZNnRG1ZXT4y9p34FDvPcOjF9aSu6Lzjs82Km5sb1lcbohIbxhhg9JEwdGIlZaQi/vb2CfVqRVAaYyWd3GwuaC4uceORGEaIiPWbSQGP1mCsMK2ZZU1dF30E27QsTI1er/GmgUpRrxaYqsJ3I/uHR96+vqc2a5aLlojm9Tcv+ebrr0FHVpdrbn/0BZ/89Gdsbj/jdmX57XaHCRVNZXnx/AmmMpi6gqiJ3nF1/YQ/+OIT1ioSV46HqzXddsk2tRsnDtRVg60asDUuKLaHHqcstl5htAOt0Vq6xQUvLF5lbWoXHU7mg9YRnzYMow1Kh1LgmseEMYau7xiGXtpbtw2fXF/z+t07BkBFzbqt0Sh+89Urniz/mp98+SOWzQJtDUpZUAaUwbQV6tgTQ2CxXNC20tjjuO/YLJfUi5YxehbKMA4BNyb7SQW1aYVRJUgDo0QKZJ/kDG4/GNPpb61SQ6Rc30MCPSGiU+p7XlwvbJk07smLZAEZM2cbVC4YTba6MTH4WqXW3LJ2ZDZumpah9D5Ixj5ljcrzPG+8Mc3t3JPhpONzYpen9TSxnL8DiPxQXqfgTLIPWk3PJlsQKqXwQQo4A6fWkUqpEjxl+7/9YV/aom/3Ii3J6fR8bDgld7JW3aSC0Ax45gAhMhVfQgIxZpJEZNZ9HEcpXFWqeGy3bQtMIDwEATQxiJvMOI4puxVp21b8tpPHdlXZZI03FPcW+R6Hd5PXvQD3CZBkGUbWVM/HvE1a+AzWFXL/sgSn6zqBCck+2tRNug95z5IA0zlHIJZsbX6u83ucpRHz4TrHBvkZfAxYJV42ZcgCs48VwC1zf0Zy5d/PAuD5++ffm5/JHPzJ/qzP1pops5ADLEgWnkHIAuccKVIswF4nfCSgPNkPIbIaM5NNDX0PSGdrk68FCf6lg60ASTcMODdSNwKW+65LNQxmWif0lLXKtRoSkMnzdcPIfr9nnZp/heAZhp7j8cgideANMZRi5uPxyDCOaJW78ibgHgNaidaeGE+yT0opQpp3c5bbGFOcY3TCPEIg53s0Aff5Z3WqHSr7mtKpzwPFFWkaMyqRl7E0PCtjKWPZQhgIOeT9SAh5vENd1yUgxoeyHuf59/e9fi/GPc4BVZATKgMyTnrMTD1Pgy9tZiGURiNlzIccYU+R6wffmf4+1XSfRssFVDOB/rwZFtCsKMBcnLLS5jSLmDPLPl8IJhur0w09KkmxlADkg9RZwrxzJqCcyOx6VZwKTBN4jzn6URMgnp/DlEM4vQ8xCvNLZGrvrBCGPx1/viGHApARIEM5vVK0ms9BSbiY/j3JkyagkM9ryib4JPORTUfzZLXim3vRyrVNw6JpWbQLcRoxlXw+SOGJMkY0v9agrcWlRahaNFyYJyxWa1x3YOg6XO/EfnFw+KAwbqBtWiprxBXGKNwABI3VlmA09cUF7bKhWS5pF2vMYglWjPCqpqG9WGNtJeB0jLiuQ+dF7HSFJ0bRq3nnCVFjqhasxdYLdFUTjCHomrqqqeqaAFw8fcGf/fP/A4f3d8T+yG6/o+sHut0etMJ7x9tfvmT76hEX/38cDz3x7h3jesHq02csLp9y//4lY9fR70f8GHm+fsrxb/8d71+/4e13r9ltH1loC41CWY0KhsZaTFVj6gZvWjwW7+BwOFIrWKwvqOuW6CMqerSJmBjEKxdFiE7Gl9JUVlhBpRS1rbA+QEjMSppj+U65wVFpzdAduN6s8T7w7v17rDIsmgU/+eQz3r17w1dfv6WyLc+fPuEC6VppmhbT1BQJCYHVeslytcRHxb4bubi8RllFGHthjYIUv43jSGUr1otVHszCQqcOepAcInSe96dM5slcUcJKC8DL7ObZOkSewzLXxWPdk9nE/JE8bUqn08xP5M/Ouzgn7Tmz9TbEJIdIG1Oe47I2yXzOLl4hkrzzgRik2Vw+l9n66RODL0W8/GBfc6CU166Qt6a8TqZnX9c1/3/u/qzZkiQ5EwM/NTN3P8tdIuJGZORSWagCCksD6AabzRGSI8OnkXmaH8AfOi/zMELhkD3TPWiyG8NuAAVUoZasXGO761nc3cx0HlTVzPzcyEJWS1Okc1wkMyLuPcfd3NZPP1X9dNwfJYTF1+qiFtaSWZLqttstLi4ucDwe8fDwgGma0IVuweYdtGqqXMLk9X1fZBRnBfHmNr+8vMTDw0M5sBlYPB8wrwEhJcZms0JOqYTb9H3AMJzjsN9jGo8A15AB771KBIqu+/ZsU5g+ACDH6LsgiacaW24GSUoJ6zVK3HyMEXd3d+C4LOkuoUQWY6+Sj5zxsNtpYSuCTKkMyq7Mx85Lu/ygMcYp4+3bG6yGoYBkA+tiyHA9zxhgtlADlLPGSDT5ua23Ov7Lc5xRs+3k84+NgSorakYbUM9t1ga0AP/0apnXti3gGmpUiLgg4+VThM8kgrsakuFYi/ywaOgbEedsLwNAyOINJkZMMygQwK3UqIPzoagPrVYrzPOIaRrBGVht1hjHA3KcsTrbikE7iSTqw8NdDc/Ty0A7IDiHs8Sg2/wwhRyZJz0uLp4I++29qjwJTrm8vCzykKLSNMERENTwuN8f4AklB8R5Dx8CUgOmbc53q6GMsyWK9n1X+r81/tr48nEcy7gb5vFU5zkgxlMXakEpy9NYEB8NljRJ1pQSVr2oTEUd83EcSxjZNM2Iysz/Jw+VqSBTAWjmwsy2E1aiWnSCt7ztAuiwylwteN33WLQoslm6ShpLprldu0nro9jaqt8nteEtMcsOt1bcXKx901uWQ/KRF6BZqO3Bz+CSGFb95qcJLWhYN4vfr6oHTfcAysDbc9oFD+Mj7Htu6crJCvgZufaXMm52f4MQrFZ9zXqlhSekpAaxSEoai79gLrTTqd4CxnBlFlamI4cfnJ3h5cUlvrh5h6Hr4aEhGM7Bg+DJS0GreYRzDPJqgQcPOMDBg2iAI0LwEjKR+oC0PUNMwJiiDr4BTLkvebXiMoCUENOMYTWg69cgL3HnXVghrAZQ55FTROg6dNsNVBcHeXbgOMPlhM4TKEeAO1DKyFQNppiTlLn3Hr7r4YYBFLyE6KiL2DuHYXuG8w89/OYMN12P3dvXWHPCsDlD7z18INzf3WPz5ALsOtzc3ePu5gYX3QZPaQt6YLy5/Qq7r7+WOesDEBO+fvtTfMMREyeE3sP1HV5cXSLlhJwjKM44Xw242G4QKOOooLbvxXDabM8wrAYpC+8yOteDKIHnCR5keU9AzIVhiCkhaRxwSgnzJIoITtlKx6LMcjweME4jLvsOKUW8eHoJl6KoEcSE508v8Xs/+Aj/8NOf4t27W5lL2xXw9ArUOcA7IDH2Nw8Y5wlX51fohw2udxn3D5MyTAldN8C7gN3uAWmKSHOSA4mjAIk5KRGAoiaj20VhXYDqmm3XsHgtdD3BJOFsCShrZpDdkcbVsoZbyKq3pPXcGN0pW6Cd3Md5BzguxeOKAa3tSCxSqkkZYrgSkKffVYOEZOJ7AMgEZ25pZvlO4xkxICGM1nLL/j5eLaAqzDkqAyqqL33RZ5+mSWJ0fS0wE2PE0ydXAIQNf/fuXTm4u67Dze0NUs6FkT4/Py8ghLUEPTPj5cuXcM5hnqbCtHddhzdv3uDq6gqHw0Hc/Khg8Xg8ludYe25vb7F7eJCkWe8RshgUNk+HYSihNDFGDVngIvtojL5zrhgQLZt/OBwexY23wLdlr0tirDLvFrKQUkJQsEQkSihOz2KTnSQirNbC6u73e3gQnj59ij50RTGnZVFboAUATnNEFuEPheHPS6nF5mx8nzcNWHrK2jP/txGJxoj/R0xMsyke9WfblhK7DSCjGjKAkAhtGBKghJLzErLVBczjBDiZN13fgyGCAFL4LWM8HPHk6ROErsc0zpjHSep8rFY4Ho+L9pyfn2N3/7AAssMw4ObmplTJBVDmqQFhMyAlXCSh67x4qh7uMOs+PE1VHWcYBnAOIlOpz1+tVnJux7kAXucchr5f5CPFKAm2AIr6ThcCHCpb3/Z3u89bvom9r+WknI75I0LnZD61WFQSy33ZD+yZbdHMeZ6RNFyGiEr7/7Hrdw6VsWs5gQ0sAybOZODUAKnNb5eNca4FXMxd2IJj6LcdJEazsNAKqKEbI5NWIEW7KJsY90pMl04217IYtLWNsI+8Z3HboJXBATR72z4HTTATWJ3JXOoKrhWAM3JV4rHDFQZ6WXIFrJ3afFIjyYC3YwtVqSxdaa9TxXaVdmPksklkHRcrRgJgoRMMwbzVFQQuqhlmDJT3ybkygPokcfFr2goRSDPbHTmcDT1+/PIjXD57jvzrX6JTvVOvhoBnAlJCjhncM/I8I4QO3ndaoc/BQ6qaRe/AQ488J0kAZSCzSLJBjRAmcX+RZRh48RKZR8V3HZwPcF2H0A8gSIIMHMEFgu87UNcjHY+YsxRX4nnSu2VV/RAmSQ4wSfCKKSIhw/mVeBA0tpyDqJCY29WRR+oHpFXGcHaOSSscjtMs7eCI1dCDPGGmjPVmhU9+8gcg9iqp2QPdCkwBD/sdwhCw6jucrbYYD3s87O4xTwd0XmK5PRwCiR7+Zujw9OwCw7BG1wWsVyusN2tsz7fo15pYaka3D2B4JHXzcZbkYSJoLosTIJoSMicQWMtaaxKbGp/eyQZ2fX2Dpx9/iHG3g185/NM/+6d49+4a33z5Ob559wb/7R/+N0hjwnF3g9u7e6xTxHjcI+4fEIYNEALu73aYwVifrdFvtoj3OzgnlXc5Jzgv7b272+H+/h7HwwH3u3tM0x7EEBWAwoa7wk4zkzBHjZqKrfk2hjeljIQEUhlXq2qKR0Ch7n0GwM3YNr63BQmspAKURQcAygKi4SRHyDYpZ1tPZiBIYhkxSvVX1v3DchLIUU2mqrihAFrzZskGo2RBqv3wfb0KeLN1ywzmCkQB4DiOCH2HTbdCnBtjjSqAsoP8eDyKrjUR7ncPANVE1nme8fDwoEAmahKmsHbX19fCqDVA2RjLhwcpPrNarYpkn4Hq/X5fZA1tfF68eKHAVhL/97sdzs/PsN/vcTweFPhLMuJ6vWrK10sow2azbjwsFlqj9Ruac/40DMHmasu4A8Cs7H8LiDJneK8GxDQvNOQ3WwkVipNUpb04O5e6F/pf+1mnSkcg6FkBoPGKtew4IAZtmyzYjj2IQO9RSjr1zLQ/L+uMjeSqe4EPrsR9v491b4HhwmPPuvq/BfWfGgs5i3CucyjhSSWsgYBATjBSSogQEmCOsxpxEkoZZ5FS7FcDGElDsBjH/Q79kNB3A2jVo+87vHt3jc1mjb7rMI4TjvsDugtTgFkm91qIluEoiz8PWsejBcz2u/v7e8xRRBC8d2ASAG+qOVLfQD0eLMx2AqPvN8Vw2e12mKYJ+8NhacDonLB5JENvYTk10dbm6zzPqvrisdlsiofHjFsD9CVfhiWETuaieq8MYrGsU+9F+jLGiOPhKMWwdG4E78Ea7z+rbCwZ4wmgG/r3zonT63dOTn3f5GqBNkHBY84Nu9wAYfkGbNKdMlqn1nH5FxsprAZDE9cJkMaoWTsAylQYKmaUYibVIrJforidzCo0xvnUkFi0q22nMc4KeEmLnMhgtuCeBECiiW8jCJCTD0gZY5GAkXbogV+a2wD2Qm+Xzcn6uP1ZIwVnDL+B7/pCWrUV9UHtfRhgV+GMGShEdlcUA4It2QIWUwgMnvDi4gKf/sFPcIeImBK2oUPnHVKaMKWIxAAnc31JKWQfOsA5kLpOAyvj64XR5i5gtdKJzpJ4KbJ4kpADiLQmacJLnvUwCJ0y4h3YiWRh3w8IvgMjidEVPHKO4DiCpxFp3INyRB88gg8aE0fFIMwxivxjUoPGabILQRerF8Cbk7j9uk6A2IbhPv4Qw3aL3btr7G6vMXU9xsODJsESeufgfMKnv/djHHf7oiKw2a6wHoJm5+9xtl2hcw6HvceqB65vpfgG5YSOGSvvsN2scLFd4YMnVzjbXqAfBvi+gx8CQufhyEB5BEjWAscMBOnTqMk/5IT9BnMB9CLnxQjBlTPJO61BEDx6DNjt97i7v0cAMI4Trl48x6c/+Qn++t86vHnzFR4O9/jxH/wB7t+8xs39O9xdv8Pd3R3ifofMBF5v8er2LdgT1tsz9KsNyI/YrFfqESAQeWQGpmmGdw5xjqIfX5LJsu5VOn5mVOuaade+EQrLw1TWBOnns6oCkK6Z6lFWb49R5mzrTo1c75SAEGUeaqzw0hZUjxxlOSA1UshuKACTqRwAhVUieVpmSaAFUzEymKiIC6DZzxiyt5LWbPi+XgsP5EmMMaDngHkrWBLnScEMIP1tYYDGfJpMo/e+KH4YCGhDUOwzpp5SEjuJVOO5GoEtKzzNcwntMvBq4aHGQBMqIz/PEg4SQqcx7FMzT1ug7co9cs6YJpT4dmuvGRNmUBhbftp/bdy69ZX1S0tsmfiCfdfyBQwAFZlHlsR10yC3okaVoTSc8DhxdDGWCq6sf08mQyGX5PN2hi/P8m9j44mawNQTfJIzn+wN778WBCBKUxbz8tRDUIymZjwX81orjLLmudivLEdMQjUImJUUUEBJEK8v6Vjb/oJI6LoA5jbJ0/Ynh5mrHr+NjzHsnCTPweaSjXe7dxrpIeO0NBIttMUMMXuuKa1UbqR6YYxVNw9LSqkkfhurLYWtUEB627/tuLWJre18b71zADRHqg4g6TiU3CIlYMp8a0C/9Jvs4ZL8jYXRkVKqOZb/yPU7y0HadeoWsE2lmZHlxU4XxOl3TxfJb3tWmch2f/1om7UveFKs5RKnebr4uDJe7c/fZ0QwUMN1uAGw5c+ablrYeP2sqbMAKNrMMnq6GbH8aUlSguRRwbtOAqfgwqSSbCabZj41/V37Xyep4gbXJpjWl1YoUcGIvZMBDUZNZjNmEPrOlktg3xcDV2N2vcR4rvsOn7x4jg8//SF++R/+Cmme4foeHVncmpd7JikXzARQ34O8GjSseuFaOl7amIt1LR4N2WRAGsuaBZwEPWx86OB60a2G78DOg4IHada7c1L+WVIuZiBNoHEGjUdgGpHnCUgZPgyAVbDMQIIk3iQtrmCxl3CQIkZO3iEzI0AAbhwP6FYbceOtZRFu+gFPzs9w926L3d0txoc7TA93ACSs4rkXFnwVJG9gGDymsAb2HYLrcBwzGFKkJwwe2+ESL55scJxGdC5g5QN63+H87BwXTy5xcXGBYejkUFdGi5GBKEm4PjhkngAGEmXdSCXRKKUIQpDhyAxOEtPekYebIuI0S0jANApT5gk5Aq7rkKaEV2/f4ny1wnbF+Puf/g3+5J/9Kf74T36C47+7w28++xX+8P/0Y2z7Hs/jB/j8Z3+PN+9u8OGbV3j6owuMc8JvXn2NfuixWp8jwiGBcPHkEqHrwIAW7ZD52nc94iSxy+N0KAe2cyiVTWWuE6TcvMaDUvVqtXtcSqmwrFaN04ElH8CJOoRzdfNmKk+Q+2R7pk1ni5uX2FSShboo1sK6jh0TkDKgSiPZDHBmpJxQPJJQD5kl0ZbKq4RMesCaASFIEN45pJzkuRYCuNyGv9eX5TLZRWp05ywVFzknkUP1TVIlqwIR5wI4ClPed8t76TxZrVYnxp4AKqluqWPTHNYWSmB/Nx106PNDo/du++9By8ZLe2Qjt58ZYAHqfDWWlpkLwZWs+FCzB5MyihbecnpGL+4bMzLVcBoDiQZyWvadiIrHx0BWjFEUq+AK62kgsNwDFo77OOSlveR3GVkrCRtAgv7824i3U6AsvyxHp54n8kM501mM5IYwKwwFHmOkb7/MYm6/V8NuCnAnAlsIHAsGyKdtluQVGBlZkAgLyDTy1CkxkFOC93I+egW2Mc6YJtUd70RdJkVJKDbmu63oapjJ+t1yEsy4eKT0d4oTyQhBLhhI9rAs9Tm89q3+J9jHzp4kHmRfk3QBBd4aYgVU6UXTwTcstMgTNNLE1+JKbTiLebrK/AVpbhAqzkRdE3ZPuYf1+1KsgJxUlU8plYRX6zsxPL7bHPrdk1Ots6gyUqcWrrA9dQHYJG/BbXu/1lK3f5/+rP2edDhAbGEysoDaTcOeJ4BYPnO6rt7HqJ9av845qbLGKAxYRoYvx68taw0Z4aad2jRWBQndS/QXVNg0Lm2tG4HEx1q7FQBYMpy1m6Dx1cWzXieCM+CtV242BmBhQAiAsSUvzB7UWLDCAg7VPWZ9m/TBjlxtFjf9qaEpnXPYDiukNOOrr78AwOgdoYO84zLbXxOaAVDOWqOGAUqAAisJxiq7XOlHxV8ItvidqwowWraYrFqiDxIXXndLMZC0iE6eZ+TpgDQdJLk1Mxw7dP0giamFAcql3SVnAgzKCUAGkQdyLliIggenSRNmpfAUdR3iOALB4/zJBVbrFabLSxzv7jGPBw1BIRBnDP1K4qGdyIyer1ca7tKJJi6Jnq/zQE4zYmT0qwFD32MzrLA9O8dqu0UXHLzjcv7kxEhJE+S0Oiw5k3+UZ6ckRTxg/c9AnGedo1k1+1WnXIuYELEWn5AHrYYBcTogJsbZ2Tn2Nw/4u3/zV/jggxe4WG1x/fod7m7f4uUHnwLZwSfg87/7a3z1+hW2f/jH2B1mvHm4RVgNgO8QGZhywtnFZVl33nlMU8Kkm7jInonEWcpWEMYMd65F1hwh+6omRVgyQhVUkLDSiaqhawdUmfe6iTeGtrDxVIqzIQs4YLJ7AI7EM5Oh4F+BdJnj7R5mRZnEWtbaULoWdV8kiGGRoKCjNdjzyf2gCgrlZ4Tv6/U+JrMYT6XooZUSdAAc4jSh2w4gkvjvnDPW263mH1SAejgc8MmnP8DDwwNC6GT96PywWPIKmlnPSPEw9X1A0HhwA6sG3odhKAe/I9M194t477YAU993cM7jeDwixoiLi4sSWwyggOlpmooy1ND1Jdyg1Ynnhq3utIiUha7YuWr3EkOTCru5Wq2w2+0K03lqaGQNq3ROjHhLrI0pS/0O70sF2nmcFCgBniw0bVnIyZ7Rjq2QduL1q5AhK+nz+Fw/Be1EBE6pMNIO0L1UDXArWlaAVkbjWltgltOw4pZ01J+8ty1EQAgOKen99btO/zMyIOcIYg/vQ2Wm5YaofnbFZikhl9h4xjQfEXIPpFhYcTAjRglN3d0/oO/Fiy2rQvr84eEBzLUatmGAHGe4ENB6RCwkxqrstqFPaPrb8JEAcxHMzVklIsn2YDVHmu9ZcaMyJwAxOruuqBbZ78FcamaE0JU2mgFJEI94SUA1LMtcjFfZR4UYlHAbDXfWcYHmi5T+BKE1GBekcxIvUjHOnAREZ9Wk/9+vcmqZuNCqm7R46ZolTYXlNvzedloLyIucTgN4W5B/yswXtqQFiQZWNflqadmhWE7ve5/23u3Pyt/N+FCXI2Xj0CroLm1o2g5SEGCf0xVF5XekE9e+VL9vnymT43QMNE7dwpPKfVDVL1rDxJVNpgLv1tsgfzcrV55tAF82UlfcymUhaelV2ywcSUId1DWVUoJjoPMOZ+sNbt/d4PWb1xi6DkPXY+iDAI6UkL3XcZJ+Iak9LgAwAxIuIwYEoAtVNzMCIWvYQSICQZJ0qCTpkX5fQxqIAGJwjrWADhGQIzhGUIrg6Yh4PCBOR6Q5gs21R4ycZuRIAAVkkkU6j7NWT02q6R7BcULWbH5SA9I5B6SMtH9AGNbw/Qo5eDgO4L4DOUIIPbpOy01Pk8SIHo8gTohRwnGcD4g5ovOykcY4Y3zYi/b6aqXjIFnw3TCgWw1YdYTQdRLfn5PEsROVIbc0qJgmVRQis+3q3CRRJmByQIxlLnBmzJNVJUwK2iugcWpodMHDUURMEdM84el2i5Az7t5dYz9NGMeEX/3iH/DRhz/A+vwCzAlvXr/G9cM9IjNu7u/xZneH7YdPMazPAI1nB2qYGxNhnAXszPOIOU6IKWE8HIqLUqqM8gJUMzVrX43eavRzWS/MDI65VEIu4wrWfJysa1sUNqjsLySqWi14lsaAXA2XkaXFFYwzlVA25wjkghZl0b2OdJzKVkga687CoENi4OEE5BMgoUG6nqucmcpRZjFocLLvfN+uUza13RNb5q3Tyol932OepkIKWLG4/fGIZ0+vYHPMQKbExnZFtnEYtkgp4+nTp5hnkcQzvfTD4aDxshlRAXLf97i6usKrV6806ZmLusQ4TWAWlZc2HncYBgz9IGFWynCu12tsNpsCrOzdLf546HvMKg05palUyDRAZWAlBJOFjLi9vS391YbBLEMQ8qNQAgP7AEofMbPkzQw1AZBZ2N9JjYvLy0tcX19LZe0QhHmlWj32lGFtx/c07rr9PWDE2m8B7e38QH0XRlWOet9zy752AtTL55p7t+FUzMu5Wftv+W9ySl69xwiVtuVHz+aybzVhKsxIUdTBAAK8kFvtZ1rk0Y47EWHoOkxNmBgr6G2ToIv6DtUQGsC8m64YveZVaRM0uUkCFSlGoYaSGVKKgWJeGoRlGz0ZE5vLfd/Lu8+ViTewb/KtKUrRJzPMKliv2DNbISw1sEvidjvHFO/UfvOY54xpmkoVVvvMHKdikEv4mr4X+Fvn0un1HxXjbgyjJP4V7vP0QwXAn7pL2usUYOoPi6XTWrLt580ay2zgw54FtKx3a+G1fy7f5XEhp8VnzSgAVH9ZfuyYkOxgL+CVHj0TbVsB1WbWkuPlm1DtUhQVmdIXTbtqHxrFzBVkmCwd1X6WSW9Mmywka0cBA6qbKnhd7ivPUWPDUYk5Mp31YtBAmuEMLEATcFPdBC62G3zw4Uvc7kT27Ml2i+16hVXfIUHCFiyZFCAJB0hJ4v3nAAo9tH6N9DtE35XJA16MB0iYLzw5SIEPdd+1/WjGZBXdgDGv4KxgOwLzhDQdkOZRSjQrixyI4XgCWA7ZnCOYrMhIrocZKyDMek8Lg3BemGxm8DRqEqKD9z2464DM8OsBCUDiLfI0oz/uwSlhntZSLArQaq0OoAy2OFiWghrTOMJrlTryyhClCX0I4oRQlkbYI5I4SXJgD+TYeJkYBdixMnJqQRWgTs6VKolm1HHMhSEK3i08y50XdZ3Vao2sEljPrp6iSxnBAd1uh/Ew4dU3b3A8PODJi4/hvMPVBx/g4esD9td3+ObLV9iPR7y8PIfrV8jkcJwi1tMsRS6cBzmPac5IzHjz6hUe7u+R54TD/b2uG/VwGW63dQstMVEOMCe61dnB++X6W2yvth+RzKdkRg9E9cUiS8UsAkryPkFZ91IWqdrNzQEsVVlrfDMgbKSBgLLXcJUBJCeFg8y+hpIE0H2ohNzlWgykgoJmvXyPr/eRMoDYtI4BkCSMj+OIfljL74jK3mF+5PPzc0zzKAetVux98+o1iIFBwWiMCV23wfF4xKtXbzQxsCuhNVYAibBMqLy5uSmazgVMNADg9va2gPAPPvhANK+PI7brDcZpxP6wL981EJ+S5KJYAR7nvXrG6vzZ7/fCnpqH+qTPQicViRl4FD/fdZ3of6s+fHs+hxAW4Ozy8hLjOKo0X9YiVTLX+nUHYpSk3vV6jXmcVOebSo7AacyxPU/63YpOLbHFKdZYhNuYwa0AGmSGMZeFZyIPzI/nj92/fUYB+828sc+dfruQeDY3qYYQAajeF5cKuLO8AybNg2vfR6+iXe4er13DGCF4kGOEzkmNC/X4WZgRkcPICsqTQ3QOrDKzUqRJ9rBMjHE8YLPZCBjVMJrWyBOnv+0nAAU5m+d5FkzSnh2AeDxcLW7ofFMXIQOBRDgBYEwpFs9N+19JHAZAmixq87LrulpczPrNSZ/M41QMKsMtznnYORBjLiFnzjkEV2Prba47AEgSsgoAwREyOaRpxqTa9TZOfd+DtB2z1ioIVGUr/7HrPyrGnVndrJRL1aiFhfct3wO+fRHIL1EYMwaq+sp7Pr9oT87iumZXCkIRCShhoADb0+e/b8MqRsHiXSorWUC5PseBhBg2JtsAYUnsqgDXDuaCufU7RFQWVkmidVRJeAPPJGEsFudW2AD9IINVVmj5rqQWJaz9bMClZc8FWpiFawd4Bi/yCEhRRUnAbTahsoFTZS+C89iutjh/+gSvv/ochIzN0OP500t4Ag4xSwn63klRnJwUPM8gP+gcyABpcJIjEPkinwRWFE5QCVCJMyauFRFLuWoz7MD2laJJDlZjIUUgR2TdjFIWt5gHw3ndGIMHBScbXpLPcjtX2bxPCT5lgISZppx07DV2X9k9HgDvOsBllMg55+GCQ+69aNHGiCFFEGfEWeOsHcNlLsZf5oxpnsBwKvvHcMjIcwBygqOM3lfj1jtCioyUJJbdpVnDnzwoE5wD5nEW0J6FtcmZkbLAyMwE1oThzBk+eGA21ZzWrQ3EJAU6wFm0+88uwClhGkf8+JMfYOUd5swg/gzfvP0KX3z+G3z84z/B5uISz54/h58POO5HfP3NN3DeY3txgW69wf4wYpwT1psNAEhCs9LazMD93R1yjLh/d43xsEPoPOZJZUNRD8CK5G3dNPsUYbEuNJX9EZMHtRPts5mr95GLd0OZMrW5q21fGRsBDuKwJyIgc/m8reuF+1XXoBkfUt04l6rNp7DGGDvo55BQi7U17WjVOr5vV6ub3f7Z7vOmslWYN8i6Yxbm2yt7veoHTFFCRvq+11hUMZDmaS5FsB4eRC5vvV5rGMwK2+0Wb968ASB61cTANI9S/I0k9GS9XhfjKaUkVaGHAd57XF1dlbCaN2/eyNgUwLlkchcxyFSZ4+B9nRs5l/sDWHynSA0mKVA2ahtNYhIAxlEMmCSdWfrbGNUi1TcMGMexKHZY/4/jCB/Ec5G4njcG0CuDXZlOYJnDduqxt3FtwxMK4EMFj4mzVjk+UY2SF1i8C+lZQSc/b/88/fn7fgc1qL/NCC7nMNHCiDJPSGuoeO81EdUJ6dfMaZsDgBqfjx5Ux8q01UnEkgGgEDDO1ftYA63CrrUrhID1eo2DKrrYeFt7LARryUA3Upa5Kt3VM0JIhPJ9rsaahbxIsSPZtylzaVc71i0rbuGK7V4JLCM8Up6Lh+B0T7XPtGNjxJYRmPadruuQZw3N1L3EWP95lj2CjRhr1nprjJa++Q7X7xzj3k7A1sKy6xQYn07qtnNOOxSuSXgkKskyzPxok7D76w/kPjnBu9AsMGElS2x406YWnJ9a8e9drCmjiQKvBJaBwQJaazwagMKpAwCDkJoyyVoqVd+VisSgTeq2X5R+k33ArG1rIwyEGBqoYyYKMDW+Uw54p4c7YFaE4lndxAB4VxLkrP8r+2dtoboJMoAsGtaAhRAQuq5Hv16j7wdMMcHB4Xy7wbOLC1n4nOCSsrmcCyMlmu1B1F+8MPHC5Lpi1JAtWHJA1xfAaO8hElqWmS/tEnkvEulJto0iQgqXQMB7TEiZkXWTSHFC4Ajv+xLWmNmMpAzOEiICFiOHc0KOE3L0yOSRMyG4AI4JxJNsrKEDUQRH0qIvNpYMIgeCVFmkvkPmAORejJqcEJNk5ec8g5Ttl3d36AcpZuJdp/M2gvOAOE+ScKt5B0QW05nhUkLKGYEIxiVnV5NdmQkpRwHsJNVT5xiREkAugHmqa5CzKM+kXI4F73Rt54TtagBA+OD5C8zHEeQDbvZ7/Pkf/yGGfsDlkw/wP/3rf4W/+ft/wB/9F/8lnl39AGFYob94hikBX717jWG7wfbiGbphjeP1A7wPeP7BB0V6jwFM04Tdwx77ww4gxt27d7i/fQeBtXVzbBUJHDycr4c2I8EUEZ2YQwuD/hQMgwH2BHIeQQtAsYaqSNVoBe66d/hyL/lu1jXs1CXERKBk++Py8Gi9jv6kLaCsbiyN0ycL0SHdTmrcMXlxVbEmKbtc7/9d2Z//HK9v86S2hzw5B09aPp3kKAxezo1ywDLjcNjLfkNUJDm9JzgvFVeDC6q1XlVTZvXUCbDxtYBRE14lSXYiWasJMui6TphnZciN6e77Hn3fS4EnMyJRAV1Q5aykSXNODcAWILQMe+mDAqwM2MtM6roOUC3ttlBN8I1aiDFQqP3cqsYYQ9my8jYGIQRAySfrayKSHCANWwiuQ0QquTenY9v+fQG4yFb5kqSSNVoLMKHSZbrnYtEX7dWC9vY9vg3YF+AHHWwFetL/uZzRpyDxEYuumEIsd8uJMwe47uVKrhWqkLlU+0WzZ7AVPTLjxTX3K/VtajKl7U0WUiUJ1lk12+VeOUcAbcEwEQTwLmCeqyFm+0n1nqiH3xGIFbiHVpueZC6XPuNiUEPzrcTjmwtGLP3oGvJQ57eEotjeb+FdlZxowwztXqdqSiYHmZOQjRLWozUvQJgbJaaF0QFoqKLXeipLw7H9L+bFTv6t1+8E3NsJWyZV8/D3WaLtAmv/fPTd98T2FJlFlrPovQy5LQRGcf/aJmsgVs7U94P3xfOadzj9HQDU4k3187bhFKa/6MLrQkFd6BlcgbwytILfuR7U1LR90TYAhY+1BV1+oRspALSJpg2obyd26R8IZrCKTCfXItHX/sz1+XZwKJlYzBMZFzG8Qhfgu4CEjIf7e3DOOF9vsOp6IGf4DhhWgxxkGQLYXQBCB3IdmEXpxZf3k83GjB2yf6csoAvaFhIQDIvxtRhCLb8NsNYIEInGrGx4jgnzNCEn0T7OmnDpfCfyjk4UOCwpULLLtW3motSNkWMEfAInJ0WZAHCawZPGWGucdSAH15vBaglRDilGhNDVREfnJEE1eCA4AB6cCaakIIlZGTEewXOE7zuJImJGRwC8R86z7dRA1DLfYDjoIZpZw1tkbiYLoSASqbooTFlMUiE2xoRpjpg5IjZzhVnivJ1a4o68qM9AwFIIAVcvn8IzcP+ww939Az7+6Awff/Ih/g9/8V/hL//qL/Gbn/0NLs+fgRzQb89wmCJu9ztsthsMmw2c65CZsN2c4/z8AuSF/R8nKXCz3z1gPB4RiPFwd4PDw10FLJ7MvNT1JcpFRE63doaFUsh8d+/dNx4f3FSMX6keS0ocnHzOKUDPLEWQiATQy9TSRa/sEjVxtycHvbQHTSVfNqGJokTFRCU/p+S/6JjKpNS9SQ8zNSW+M/vzn+v1vsNXfi4ScQYKwOKtEtY4Fak55xyOTcEXK+pXGTvA9laTLkwplSIqKWUcj/L3nLUtsHwj2TCD71SxRs4q52RtGNg1RjOEUPXTy05fPUaO3MJD0pJSdtl7WChLCbtSRvw0nts3c67EsjfvL3uxElRNrPdSVedxezgzus5XVZsuiBFPVU0GrOeHl3Lxp4C2ZShbUHpKHNqf9e/N/IDhlhpf3oKoU5Buvz/92fvmXUsqvg8XPabEl783YJmzGWmQKZOFSIFCUNJzDIQyL+TYy0XmWtokcz5n9eSxno969tedsLbBAHTOqTFGjZWvILUVaCg9ezJWNk4xSmVVNIRFmW8hLCqxm7Ke9UfKWc9jMSiDnrVin5DWJEDV8W8w5WLNljjZRn0mLostneLAMuYpI6dYPA/eVe/y++ZoGwrU4i7rDwutrd/9LROjuX5n4N7+/bcB39YiPQXtpwu73NdAJE4nuoAZu7IWXirfb5w+j56lmPTbDIf3WcnlObooLLGz9S6UP+Uf+nSFcMWg58JysYW6sIJ2K5BEkHfjOrClLU43GjVArGqUhyTSZUDjzzWshS2y1rqzhgEsGABYwmvWeL/aB5KAicKl2KZBBvKBMlFBBOZUFl8mWWxemW/vAfIeswNu7u5wd/0Ogw+4HFaAC7i4uITrV5jAwChSfRJ/L2wgZ4nhpk4KTkisnbjdRNqSNOHGixpHKQsvHKQnMZMSJO6aYwRxWmjhW1w6OOvhmpA4IrNownKKoJzhAiR2PnSAlzZk5ioZxYDPJJ/xSQ3GCM6TvIvKocl4Zom/ywmUHHIcodVz4DSplnwQMy2LAcG6x8q6J5B5JxwBGm8nevVA8p3IeZHICqY8AjnCrK4UZ3CMEBnOXNQUZJqJWgRHLlNYeAoxoFKS8Lg5RsQkii5MQE5AzJJ4Z4eM80AfHGIS5pfhMI0TXnz0IQ77Hf7sz/4Ch/0BOO7xxRe/wac//AE22zX+6M/+GF+9fYOf/fzX+PGP/1QSc73Hbjzibtzh4vkVQi+xxdM0oe97rFYbzCwb+83DHe7u7zDu7pGixCQf9rvqkrQiRc7pweqaec5lbkGZMeecSDF+y6Fua8cAeQlrA6qCjM7NciiDSvXorHtaUmPJ9hrT628Pt/ceLI5KbQa5c1bD0BcWse96pJQxxrnoDpuR6YlKVWTvnOY1f79Bu4VWPCKV2LS3EwSUSHGWKWr58XFE1/clVGW322FYr5T8kYsgoV/ey6mTolQOzjpO4zhiu90Wps+UWTabLbog8eamQuGcKwmc1mYp+56Kq92MAXsXp+vdedkH53mS+dWAcdnLPYhSObdaFtzA+jxHOEvYx0mV0oWRYh7WyiIag+p9Ddexn52dnZU2t8mlu90OoRO5wZhEeWToe+zvH0BUw3UYjBgZXV/DIexqQVLL9L7vOgVSldJq8IQBPV56Duw8tNCLlvn9tufwybpp2/qIdGv6FWqAt/PXMcE5Lgmq71uTi/l9sic55+C03w0DpVTHy9h1a4/tCf7kPYkI5+dneP36NQCrSqqftftzTTi1OW/9Zvdq5T5L2+Uvpb2WpN2GQy0NoTpmNcTLayghl3luz5F7Wi0YLMbQ2gwIcD81zk6jSdqrVaXxKkDhvSvFztB4Z81AFS8nFh4p0563vMPvGp74HyUH2SYgAEvQe7p5nH7/vdYnGksXcniVpLaTZ8s/9N/UtOE97agPqYD1t1nJCwsbEJ1aBdu2MGAuKPmSHObaKAKpq9nas4xDs2UnSW+mliLvY+lszSsq7q8MGNRvUD5F+ntXsX1bM0WAsJSbBy1+AbAaJB5l4ZQFIuhcH6DtaoNsSwsVLMjLSh80z3EKjCYiXN/fY7ffYx16bAcp1+1DjycvXuJufy8hDVzdtrKXZDV0PLjNGSh2noaVGNAiAUmUE2AJoTkLG5kjAFU7Aen9dGzZagmlEpeccwbPEbC4S3JgH8Cuk7ADBf22Ibez2vowJznQXd8hOwFGRfOWNcQmMgQKy4HMXmK0XUrCUrOFjxlDrBsaq76tzY/Mmowjhp0PnRgCzHDdjIyMHGcwGF6NPk7KRnqPzE4MiZxAKQFpBidhInNmjbOdMM+sjHtGlBFChgOTQ+SITBDjR+UwpbqgQyYJNZqmCbv7B8x9h9v9DTbrLT758Pfx03/3BuNhh2cvrtBfrPGHf/Kn+H/+y/8Bv/n1Z7hcb+A3F7jd7XFIEz68vIT3ATEmAf4kBa3iFMFMuLm+x1dffIG763cS+sRU4jol7hK6wXidJ9VVLusuwyvTZQeU7AOVKTl1qS+BdTV22cZJV4uF0ZEacKfxtljc0xa0zfkleC/PzYzkpDpumYuNh5KIEaeImGORGyPvUQm3JqRE228xnN/b6xQo6c9k7Jb71Bxl3jgnZdTHccLr3Q5Xz5/DOYdJ6wD0XQ/nAg7HI5z3EsYC8byFrsPzq+e4u7vDNE0lYdTY+xACjscjkq+FamKM6Pt+wVQDQJyjmMpOZOYsmc6TePs2m02RgASALvQlJMWS5ypgBGI0gO0bVQzCNM3FswBovYUmppxZvEFZwyrKvuOWoCRnicvnXBWU7u/vcTwesd1ui4FdNOoRQMToe0nGu765wXq9Lgm8QGM4Uo2BbsesDW8lA71aBRkn1VFbQBeAYuTY7wwU23/teNi/WwDe5hEAKAIZZPPu1Jhv2rBEPw1Z5gCXScbezp/GiPfwJV+oPW3a+ydIjlRwDqte1Igy7DwSb2rKIpc5TQzf90AhbOQc5ZiQSTypBuZD18FpHkdb9GgcR5yfn5f5GaPkewEoiaD2d+ccjscjOpvv3ITjKY6xuYUQ4JiBEACWBF3KNu96ZI5wxxE5Ry3+J6ICs1YbBrPUSHEC1hNLyGI+Cd2x8S5eAL3akB4bdwPqDlSLTrGJAcha6foOMUUNk5b36/u+VjkuOZekOV9q/IQAJHnP71qs+ndKTj21+oqlaFTsyWfbhXV6r9PPlXuyHHuUICy1/ruwHbYo1OWG33qANp8HiqsTJ787/Xtlp6mw2cVK9rI5UMtUN+C9AOiTtnAW1rU8y0I3WkaAGAwq8Wn2zBYEgJokS2XZ5ADW71obzAgBl9hZ5VDFO9EasCcbIgxcaDEaAciQjTFnBWVU9FFtw1JqsJR1JxId9cSM/TTCeY9VkFAPp7Jfw7DChoGH+FXRS4a6xDJFEAUgMcgz4DKYnYRNqUFRlHQgiUdO21D6jXT+ZJbPkoRDVPeesObEAkgzKfs5afVAzuiCVFeVCoQkITxZEkWRkgBe6+8kCjQyjoQcRJKvg4IlnRtWzZKdbuYxITuLbzdjbJYKhPJWJXyjzCEiOGXRgxdjhEAgbyFELHO16wS4M2OeJ3GyqlIQm/UYJX7ewGSRtISA95QyYmLMmjiUQYhJDgLRn81IGhLifQDSAcF7ZMqSZJtECtKDcH1zg6urZ/j5T/8OH394hR+/fImXLz/F9auv8cnv/R7Cao1PP/0EF+dP8Otf/xJ/+NEPse3OcHt7h+wJ22dPQRQwTTPu73d4/vwKBKl0exgjrt/e4Pb1O4yHo/QxoG7Uym45ODjW+G+CABMDr63xad4sx8XDagaTTnzpK6phBFIALKmsouw3xWEYs+ojQ59NBWQ6R2U/E2MNJfwHZEooy/bJ/ikqTlx+J5NfXLBZGDtVLjB2Psd0otdePYC52W+/r1cbw90evra3CzvojHsBFERM04zNZouXFy/xzetXGIYB/aovwJ3I4/7+HoNKRZ6dXQBclVEAATtPnz4tYNrKqG+3W1GIUnk6A+b2OQPizBnnF+cAalVS7z2Grsd+v8ft7S2AquACoIAke/eWkTRN7VZSsWW3a5VMV4CkAa2cRbbSd6ru4lD60oyB9XolP9MkQgYwzfMCvDk1OEwecxgGjNMRKUvsNBHheDw2WthQMDiXd2oBVKsMsiT15ABeqJUoaM8xSSXtE/R8ahScstbFS9aEXrT9VXFQc+6SGf6VkYaeNWjWV3k214wB+55JF5P2a4Iw5mRAt2lvC0hbb1PUP0PwWsUZZV5JKImcFUJQVLLQCIWcMx4eHrDf7zEMg9QD0Kq7C0DrNEEV4lVhZmw2m+JtIqJScKgmxy77dzoeFwmt1jchBCUkFN8kArzDdrUp86vNxTjFfhlVurIF7CklkcVklFA5+/4poHfOVQwGMUaMcSeSJPPQaTVXJ+tqmqaSsD7rPGZmpLlWeGWS8yRliZGP8T9xcuopy24XO5E/KiEgv+U6/S6w3GABlSa0haiMQQltaO5zyqIwUSmkcsqqGzhtLWH5agOazWo2MEwERwL2qNkgLDnJAHTrIjNW3b3vWaR91HyHFOHbs82YtglqRhEpg9dweQCXOiIKIqgkW9bNoO0BLgZWfW9jrA386hN085VIgcp8AFzew2QEDaADAjzk99a/AmCPKePt/QPWqw062iOliCF4rNcbbM/OMMbqehVZSi5gx4wnGPCyCGQizW9QQ093HSYFQPrW1nfOwJB2cjnMQRLGQh0oE1KcMKeErOxByBl979HrwScFKLxofhPrZqcMTgmTkPh0ZoA6Sb6d51ksa9WbL6CtzCsFhFa4CRYHy6UQkoOyENonxB4kkiAANI68WSkGBnMpHyzsb7J1YhZmngWkJ1sD0nOWOJaS6C1HEBIIYxTgHxmYMyMyRN/dOfAsQKMLAUSi9uTgkMgBKePF1RVu7m6w2+2Q5hnxeIc//fGP8eEPPsbbn/9vmO/usdpe4uJiix//8Ef427/+X/CkW2N19RK3h3t06wGXl8+wXp9hf3uP43HGBy8+1EqmwHyccPP2DcbDAYhJi93MMCYcKsQKge5FarE1oKFesxLawgBrJV5jcUCEbMWUYCm9dkCrEU6AM1u0MG51P7C9q+xnDjKnIWvMk8bIk2jsW8gX4TQswokNTdU75yBJz8ZgGnCwQ58IJfbeFGUALPav9+3X35uLi10FYw6tz+RVXTHgnSOM44zNZgPvE47HPeZ5BBgK5iWmdsd75CzAY7XZYLvdYhqPYAiIjlEA+WazghCHDkQd3r17i8PhgI8++hijykoCKGEw7d+laJLD3d0dzNsavOiaG+DZbrcFkNu9yHIYUEMFDAT3w4BpnhBzVS2aNUwFQKlf4BypogzjeDwsWNHQdeh8KImKxibO84zb27tiROQsSlFdCLg4O8P+eCz74/F41Bh2AE72F4JH13mM01HqS9AyxLbACrLwAkZOrMYxhGwoR7LO2SzJg4WgAxpflJ2BlbHPqYmNJyGBoOBZ1iCAzMicRATAu+LZKGgXKMa7GN7yvKSVMLOGVNpDiCw/Stpt0Ml5V4Axcq5KazlCrXG5g3NFvAMmg1vmfEbkWHFM2ZxUcU3PfGdFJQzgqiFWjEDdk8wrFELA7e2tGGHrdVEr8mooQENzuk5kG62Yoo1j3wUtEOaQFMjaOLe67sXYVgzj3PLzRFRqIrTG1Hq9xjQd9Z4J3gf1Ujj4EGq4r45FcMLOexW8sLa64DVcSEUzZMQsKln2UCf5ZjlnFW6IQJT3SFnnqbYzpaSedtP4AhxnTJMmoMeIaRZFt+9KmHxn4P5oE2dGBJfOAC8/88id2wzS+z4DLBMITGGFlUk+fXxrVQJyyCaZZzIpW1Bt7UAFNYvfmWGghx+DkI3RbUF+cxK0YS3lHRUrC3htf05lArTGj4MAvcxSVW7BdHELvPWZ3unP6oZmLGAF9sa6WwPsnal+V9tqi4PLPaiw/tb2krdaO05+T8teMA1ZJhRN+KQs9pgSvtk9YK24Ft5jtV5hWK2w2WxxTBG+H8CckOKEnHogJ2TWamqcQdkDjqWqJxHIV/kmYd6VRXaa3acLBe1iYEZN6SGwFqFgbWfihHGOmCeRQKQ0IZBH5wO6rtfNRe+RsyawSjw6oMwSpBnzLMy0iz1cSKBpwugC+tUA9KqSo/HsTt3nlnPQnERiPGk8OzhDQnO9bDRpFs+TI5DvSzy8U0k7No+AZuJDDSGZkw7FpZy5fN6qurGubY4Wi5eRSN4y6pikLAeo6M5neB/QdxmYJpxt1iACpnHCOE6gQEhTxNB1+OiDF/jq1Tc4TiMe7iPevfoKT37/GRxnHN69xfnzl+ioww8//RR//R/+V9zud/jUBdwd9thuz7BencF3PY7jjNVmjcunl1LQaYr4+qsvcX97g2k84ngcEXxAPB4xz7EcJGBZe6yJm67kTlgEbN2XzBgWRSOptMvBFTnUDAFJRW4vaVy8urVlPTXGXZmKXJhUm4MO0h7RWVfZSbPum2a1JEo55KAHCoBsAIKXeTlGTGS2v9PCeIAaoxlohOK+n1cytqxhiA3MAsuqoQZKjGETti1JvQHOyBrvbQmmq9WqSOLtsQczCysd+sJuExH2e9FYN6YypYg4V4UWiwEHsGAE+77H/iBMJWdG5LiI221Ls7ekS8uA2vxyziHmKtNon2+TaO0+zgXlCqwQTvXcJZOAhJ6vTfiIva/JN1oi7WlMPSBMb8ypCAvIOS469dKeJWNs92hZ/myEHj8mo6TdFR/YJWetUwCMuhdiCRZb9vpROByWv69gvxJF5bMFvJ9gjfd8rsUxZjDUEAubu1oDJDS4yQybpsqqkS6n49Qc8mAGvBofqYnNMKZfWHLrA6XKtC/NO2LM+aKQEteiUO142d43DAOmaSpkUsuMizeHEFTdye5pSaMWjmJzwntfQj1t3KXi63LetMRwJTQFPCkngpIQDTT302OTzVvKzdlQjbXW82Br0+SSRQde1vY8LZl0CducwE6TbllJ1PDddt3fiXHPrGYuUF5CDpyG5bMObyejfl5ig1VSsLGqgXqwidQfSUEYc0Hb3fUzUuzHLRMNUMV+JHq1Ad3Ao6QRY7LNdWwMTctYGugrjO5i/nMxoBeHZ4HQdgtNuDTj4OQQlr6VQk7EUFhpIeVcAHI5lcESj61xehmm3AFljhswnbkwzcY6WRa2Nry8bMnmpsbQappZ/06ae7d0G9oqqP0gDDDBY4wZ14h4mGY8H2fEeUYXOqz6NShn9LrxpxiVXVjq8TpU9kViSutGUTI2SSullsEjHQ2ZU3IPiQG3FCV2BDit3jrN4qoaZ2FXE8PBo+9WpZCKswXLERolXowi83CYh4CzsGchJnQsyWw8SriQHwb0w1otfVaA5dWuahOdm/61kcjqcUgC6DMAogDMESAx/bIT2MU5gdMkrFS28ZW+iClJ+WXzchSDkJEN36q7cI4RiRlTTJhSQuRs+dWYchL2fVKlDkiM5XqzBQDEbsbb+R2igsj9fodPf/gDHKYRNzc3uN/t8ebNO3z68hbEhMP1NRAj3GqFp89f4NmTK8w54rh7wP3DHdbPNujXa2R43O/2ePr8CmHoMc0zdvs9Pv/qS+weHnA8HsukNdBuwN1pbDu8hhXp2NnhQSScfC4LfAmQoJssbG0zqyqLrmc99DJYCTIZ05yz5rLIHmXzWAdZ1k8CbBeQtdSuSycKR7QEFPJM/SyATGJIk4a7Wbw76Zo3DyKh7jfmgSHvirHiv6M02X+OVwGqGdVwslMr62nBjWHmvag4qWfNWEliUVbyTWEh26u8q4mLzBKbTkDRMzfgfnl5WUBLylkSgDVMxkB/C3DaEAFR0cgLEGr3B1qyaylrbP+ueR0VcAJ4BGrsd4sYb10XMS0Nh5bMatnSqFVQDaQfG8PE2poV6AsLaSBTJASPx1EZ4RpPbuDVnn+KF07/fnqZpwna9vyez7bEYgvaTxNzF0DY7r24R12Tttcufl8AdwPmLfa5GWPrwzZBVkI15LzLGtddQD1kjhrGEBri/ZVmc86g7ES/Acop2jm2mH96Sio4Yp0z3vuF2pDNrUKAJZFVzpbrdxKWanPDe/HOpCQeL/m+eu1Pxradc+07VS963Z9tjbZXmzRtbZeb2258csbac2BzqxnTk8vWGVDzVuTvlWx2Thh/06MHqhFR8h4hns8+9I+e8b7rd4pxZ2bRKdbd3kGVRMzaPbFc7cXKPVBdyva7Ym3pfTixuIuJJGHDvi9Vjsrn0AxW00gA3JQup0JJk3NVJshbeIcOmlbPNPBildWKNFrTwVAdbP2rhodQAV36ZnKAcj2A4ezArBMloh7IjqjqPHNGts0hW/iHJs+p8cCmSqP3JFPKUKBvG4cK0RRDhXzdQJiqHZn1YC/Av/Qtw+g8AiQmm1wDpivTg9RsZE7AaIaTBEbyOIIkoXGO6ILoFUMlAmGxwYlrfDV3MACOAneMSVc41CQZMoR5F5eUusQ1nEfimIO8bbPQEsm7R044jkfZAPWdVv0avbJrwWucHZvHwcF5jXUH4EIHFxNc6OHmSXouVY1wYgDpiDl08DFjtQ2gvodzgE8AsRxqZX2YK8vbyrHkU3O7ZvmV6qNb5T8JT4pissRcXMkuJ7AzeUdI4Skb3ix/sTMuQ5N2ckaEJLdN0yh/qhwkUUDkjClqNT8WPXwiRvAdnl1eYLNd4+btNShHfPXNazhH2GxW8F3Ay48+RooJN9OEd+/e4Xj9DjRFTA875GiKGg5nmzN88/pL/Oo3v8Kb23f4wQ//GGG1xf1uwv3NPa5ePgU5jxQZNzfX2N3fYz4eMR+PGLoeu92DvHPOIEplLUKNOZnHQOQMn5167CCUC3NN4CZ1Z5tLNcs8C8qsm1ykhVDlnJFI+tTrcMq+JvPH1tsCrGVZj5kYvhxgWeLOWQ7Sdv9sWcXCdpVYVYmJNZtftwFhg3QvYnPZeSEO5FCHqna9/6D6vlwtC3Z68MveKftjYaAVdOYkhZe6TkJfClgDiozdNE04Ho7YrDfgbMzihGmUMLGUj4uY21ElJU9VQazs+TAMOBwOpb+Px6Mo/Kj0Y26AbBu7DlQmVBRuZO/3obLbdp0m5Rk4tD9LCBiaM1uNwcxcag60wP6UMXVF0EBAvMW5MzNiioXA2m63OGoIjRBKKj7AtRCT3dveb+FdX/RDbcOpQdEyvpbPcZqjZ96F9h6n+OW7gHYzjMuZrOoaC8DJ7zMyZI3nnEXNi2VNvg+8ytzVKt0KjiUnzUnNiGb8QjNe8kUZm6LaYoUBSRXmmAtRs+hHCxtyDvM0gUMAqXFbE51rrHq7n7U5FWKESfhKYcyZwSz5cgJ6Z3DD1rdka4tPvPdF7hInBq+Np3kGAGCaRpnbXBN+yalxoRLfdna2Y0p2PqDOp1Mjz4wVoJGWVMiEZm7ZvE6KY1PMhem3ekOEmnfyj13fGbhb0qL8JweaAI3SSj3AqjWxmORlVjc3VQsRJU5eWSCVezz9GDmrdgf4ZlK3n7HCR2x+ELZB4NJ+Ksy0sLBOgZ0paJQiPWwsljK31AaH2Maihx+hsPXCenEFu3pIlmxqQDZFZk1SzCVxUX518u7MovWskoKt0WKbtW2y1j6z8EvflzbXk/x0oRGR0nX2aS5/1g2vxsADFTxk4tL3AEBMmClKpcoMrLsV9rs9dnPExKJx7rtOChEhw/cD0v4e8xyR5wh2Ceh1bJ2qusCByUMSTL28Ck4vatot7ajmFJTZrDrEOWfMOWFKUVhoZuR5Ruc8htUK3WoQl5f39bB3JlkVweRAXtyYvusRc4ZzHRwFJB5L6fHgCJwipt09QA7dMCD0PUIYSgUdUrcglellBirAlIFcx5tZfwYCEiPnWeOj1XjNWarPAoAnOTgBYXZUmhGapEoIAAUAxr5HjalmydbPwrbHlDHHjJkZoFnj+9IiVj+nhO12hWfnG3z84x/j1/gMcZyw1jjbcTpiGHp0GbjcbjHtdtg9HPBwc4M+ZeSZMe8PwPqI6fodXGbs5ox//9mvcYgzNpdP4LoBu90t5rmqYjAzrt/dYh5HPNzdi0HofGE1mWt8t839xXouhs+SxbT3kr9IfzsmIIpiDjmPFMQDyKr5n4Ei4UawZFbVWnd2IGroRapxri2YrAe1TYYalmh7UQs8bf0KOWJhPPpzUN17HCTvgGVPrLUyuBr8QAEH39erGDIl+Q16DNsOrbkwJgWq3o+gsea73a5UDL148lSMy+MRw2qloEDi0EMX0A8D+n7AZg18/fXXuHrxvMSrA3Joj+MorPs8inGgwGe1WuHdu3fIOWOz2WC9XmuxGPn+dKw68haC8j6GWGKHl/PVGEBjIS0BNudcwnfaZE9bH8fjsSSWWugLsoQ6WL8agzkMQwm76fse3leGX0IXJJEvpoTxeJC/NyEg1n6Tx2wTa+1zJdxL576BJYnJXoLtYuw24L16FFHjwlHXt633NuzDft8C9keYprmq5wyL81ba3RiNXEEQUQP09RJS5vE4PgL8Nqed0yP9/e0rgBMO3oeFZ4WTGXS1hFs2D3jzzjEmdEOV5WwLcrXzzOZoqwxkP2uNiPbvkjfWFnBaGt3B1znhGiMz2nx/z3gsjao6rlHns33GhiKluMjzqfiLm89Wo6A1fks4muabOOeQU0JURbk4TcV4lTAayRdLjafPZxFPGOcZkya4/2PXdwfu2gklOQIET1TimaXQCy3nbfvSxXJpfqefrQmpFUDmxlop56ZBMBJA4fkE5BI0DlypQ7MpTpkERpFjKyDYobDV0GIY9cA20N70B5lhIBuFI01UcXogNuRKCa+xxdT+vLHCH7mDcnlxSOyWK33Rfra1Rtt+PU3qbduwtJDtu2JjykNy2Vjsc3a3sklmVawh6+46NzgnsPPwvgNnB4bHcZxxEzNuxogcZTP1/YDgIlzXYz9OiOsZaZ6Qu64w42Wjtfh1FworIUmG0nYzXlCOZ40zlBcUz0mu78FzRCJg4oR5PiKliDwneBC61YBuNYD6QRJbnMolwoMa9zjYSUgCRVDn4fMAP0T4aYQ7OqQ5Sq+EACQB7+PuAQhSbdGRgw9S3Kl4r7gCKWfsINT1xgzvoIoA5h5l1V5PonrEqSZAzNLXohWriU5JykFDLX0pAOYAL0mwxuSknJBixJwSpiyAfcoZ7CTx6DhNKuclyUCOgK7vcbYacHl+hmdXV4hjwpef/Vqy94c1xsMRb776EqthA54j+tDjOE04jCOG9TlWT1+Ap4TpzTvcfPYbPLl8An9zjS+++iWG8w2evHiJmBivXr3GZr3Gi6sXGPoNXr95jd3DDtN+L4y986KKAUDCHlIxwjUTpsx5wFWvm9N5zHWvykmTbMnBpxJcAmIgaIhTZlEPKknoENZrQVa0525dkfIczXxyTg4rJiUFSBJcqS4D2RtJwbXOjcLwsITIyNxkdT3n+mwNn2ES7ylIPAlkex5QDsk2HO77dhngtDMkayyvKERJn6QoY9n3PRIkWWwcjxhWa1yen+Nht8M8z7i4vIT3hBgzJpV5DP0gRv80Y55m7PAAhsPZ2RniJEoyTKLMctwfCvg1xrAFxk+ePCkH+6hMdOiEbTewvAAzGo/fsseWaFoYcRJjvSXSTBHE/g6I8gUgMcRmBDs3P4oRb2PiW8PWQH/XdVithhIiNKzX2G63OBwOomwCoO/NWGCEIMmFOUvifnBiyBwOu/I8S4R1utbKFM4ZOScA4vkrOKF4NZYhQOLJVSOAUM8VqomRQDVWrX+ssua3MfF2LX7uaPE7oFn2xKBSWGb5XVHgasg81Gqbli/HSuAJ5hLyRs6hjJSchmdIKEtnOWBAAbvOEZyv/QJCBcXOwTkI4aQA1HkveQGccdjtKovNjDTPgJfw1FbppvWUiGFVVVkK4UeEaRwXzLiosnQwNO2Dyi7GpJWNxSOUcwKrYVCfJ3hF5oGy3icVSm1MW89XEbFogTgRvOLR2NQsaOc9gOKZcM49um+dKyjGa2Xr5Zli4CgRNkfMc0JOgOv+EzPuhc21CVp7xD5QmdoT66eyvu1xZd9HYdq5+WXbqe13cgExAhwJxpw1nxWEowH/0AUrp5KxbGYclO/k2g6rOFbegyqLBaCE8RibZT8vXcF1UpUz+8SaKyDXFmth6KgsjuX7q5IL18+0m3Lb1+UeZlw016I/30upVXhjcVdAdVWK67T9tLx4aWVhBmrxGO885nHGnDJuE+Nnr6/xxz/Y4dn+CD6XWNGu7wWszLWYScoZIVsIgEKsE2PN+tsMNZuixmRw0T2HFu1S91ZMogLhHVKOmMdR5MJilMSdfoDre7hhALkAS6IiUqNhniFu2glIGRzVCAwOru9BXQ/yQWOS5WAEiaJLno9IhwfsxzPABawG6dAQArKaIRIulAE2iTUCqAORJJqKhJQmnJIk7sKAnCWeOq0COk2q+qSJqimbRaYZ9gLcOM1ASqAYkaYZMc6Y0oxjnBGzMO9SVUsOdSnYUzd6ShmbfsDVs0tcPn0KIofjfi8FaTYbnA0rPNxeY//6DfLZhcY3erAL6M7OcP7JJ1hdfYI4Tth/8xpxjnj68Segzz/DlCOunr7E2eVTjMcJ766vcfXsCbabc3gX8Pqb1/jsZz/H/c07hOAxj2PxoMikcHq4SKiVcyJJavHiZDOfAajWP0GVmhyDWWLWoSDEaxEci2sWMWEDBCiHplNJ21MSAGxJT7LG+GS/S5qXUCQb2Zh7WdO51YAvP9bvRkvg1sOZuQJ216zxsm9o/H8D1Akocq/fx6v1Ji5IDjVIa2hI9bxsNhsFQ4zD4SAg33sc9jukWMGCcw6BHDZPnuDu7g4pJQF6voJhk1j03uP8/LwYEna4i1qNsMz7/R593zesI2MaY0mWLQomes1awAmokpA55xI7bmEborIxLZ5rz7DwHSIxDpyTQk6iKCJFpAyUAFX1pk3oPY2vtzb1amzs9/vSpjbB9MmTJwLooyTgtjHTBuIK0GEUAG/hW9ZHLePJSs4AS7BlZ5Zd3rki+2rzotW+NwBawW4Nj3kfgG/nGxlxtziP6xFcwliVGGjfuZ1brB4LCyfJnIuOQJ0HQkqRk33ptI0C8hnwrvSvneFBjTSrqt0y5cPQFfUi1/SPeWvK/NeQDvuZGGI1YdVAe2vctQx51/cgtEW8fEkCt/Ey/XbbL8UbwVpX5zF+af9tLL95CJxzkrTfEJbtHlHWBgPOVexlY2DXNE1lvbTf7ft+Ydg6ZkQIUXA4HEo/pBQL6TdHk9YGXDCBiu92fXfgTg3YZFps/PaSMMYcjyekHThKEKL+IYCrBd7MXEIcCoh0xnLJpKdCxuoChgDvLALJJZa7gGCmBlg/BqwGCpkZzp8kXpKWBLd2G1Alw4qN8YJqhJyC69NJYu9bFiPLSxBoEX4gr6D3ydDqsvUeraXroOxZWd+PAf6in4mKkVTY/+ZFWmnLFrxb2WWdEUUlQD4oxWBYk25jSphTxJzlUPzl7QN++tXXePnBS3T3PfJqDfIekQkpChNmBZJSzqCYgU7fx1nb9XmZSsgIgSR/wTkgW3w/1WQ0pW2EfU5Iqugz7/dIMSIn/c/3IOfhQg/fDYDJLHYdpHqqA6YZOTGAGdbzYtQkAF603kkqviIxHJy0kyU0Kh4OON4/oA8rzAxwSnCrtQB+F2T+egnboTzLAnQARwGfDE08jAlgggudJJqyMlHKtDrNF8kpSjGibImVWcFmAjKJ3BbP2gcJOc6YxgnzHCXrnbxUYWUxn4lks+GY4bx4D7KP6IPDixfPMAwrPLx+jc9+/kv03RrbYYVnQw9/eYnXb77BLk8I/Qr7ozBh+8NRijjFGddffYM4Tnjyox9hx77EeG/OzrBab/DuZo/9eMDvXXyKYTVgv9/jzZdf4s3XX4BTxEGLc1gCqYSEkHhLSDwmZLJormof25rI0Pm72CGsqq8t04w4z+Lq9FWKjSBDTl6MffHEYRnD6i2WXvcpUhWrIInXEtZksY/iUyoHlwMoeFAiGU+9h6hwSbha2RfU22RgIeveJXrzpmaDIruWUcEDkVuEK37fruBMxi/XPRBVchZk4XdyoJITBQtqlKbsT2MUg/NlvsxxxpokwdySlzlLuF0Xej1HhFnv+x53d3cABDga0dEr6170zpuzwYDpqdFhxsBqtVrsy0RSZKyNt82aW9O6+lsCycCEgXS7V7LCbM05afUajPE3b4aFosl3edEmkWjV8AJlcGOMuNdwgKwKWs57QO8PqhVYATlhck6yfzfqVyZQAeBEeKImSRY1kIbdVlbtEQC3c7D+vObAGX6RAnq6yu2Qr49VUGr5V/X31dO+3FHaGHwLZ2tVpmysS5gIOUQbF2t3c6+odTfAAc5qrGRGFXAwcJqQs3ralNQAS9ie5CkBpHF5nIXEGDrxAlqOVMEJjBIeYlroIQwLnGPtDRomZfOTc80Ba8NpxOtsOusEQ4LQ9lqiZ+akY1kjCOz+OdeIDYvhP41Rt/blnEvOHqAiC2ZENeumZfBLuJEaBvZseQ+ox5wxxxniWbI5aFXgZfTmKNKRJgX5Hmj63ut3k4O0/9SSPAWDYl0uNwa7FJMuwK0lgZq7tz08OecSjiJB/BVc1zjFuknoQzVxlnVThmYKaJvMMrc2/ZZesoGrUj3N7/TpXO5Rw02o/RCWE2QBsA18oe0jOT3JYtkJJXvcWH+zSNtJaO9m/VNARvPstg3v+1lhpbN5VpaslRQpkpemxioWA8XmBwDWYg6mAZ4TZo3zSgocb6cR/9MvfomV9/gXP/kDrJ5fwVPAzCTxXzEjTjP6VQQ05CY3fZU5g9jCZjRESUE5qYym2moKlKX9CbIwJc67WvXxuEecJkzHCZQlGTOmVKYOaXEeFzwQeiB0oG4FlzLSPIF9ADrdBCYgI4FcQOhXyKMw5wRhadkRZmak4xG03yFdvUB2WqBhEi2ATqo1iZu0H0CJ4OFEflLJdQnLEAMBOQNZYq6RoYWUGJwJcB7wAaRtYJZKhzBNWWUZsoL+HBMSA3PKmOaI4xQxRcZxTogaRtMPASlHUNZqel5CfSgE9IHw9PkV1qsNvvmHX+By1ePHP/xzfPDkGQIknvDl62f49ZefYcwe+33EzXGH/TQhPuxw2E3g44jL3/sRNh9c4eGbGwGUzmG93iJNGa9evcJ6tcJ6s4Yjh9fffINf/PxnmI4H0cqHGt/OA9lJvHmWiqneB4SuRwg9gu+gA1P3mMbAL2QCMaKuQYsJt6JLABaHr60DQnW/tl42YoCStM9pQnl2amfrzm0yjpUYUCEA6HZmcn9EIM29YGZ4Pl3PXDSLzfsny15ASQE0eu9CAmgc8G/bH/9zvwqNUPoEZc0z28Kun7eEVYMJQHXv276VUganDK+H+OGwFy1rJQAYKAl+QN3752mSqo7G3rLsz61r3dz/lcV2y/OQq7xjC/CM6W4Vb+y/rMnx35ZobODDWE8BHQ5EvACQACoz2DDtbcJoaTsBSFTmNlDPJjMUWhBE+n5Bmc2kIUB2b1HiMAbdAJwSTiQeQzOojTwsfdac/aUvkRdn7qmBUkF7+2/d/31l30+ZfAPG8rvyw29FYqeGlK30mrR50ib9nU8eiVJdz2iAJWfVZm/isa1BVOcUkYwnwRdZW86seuypzCuiSgI4O4N1UaVmvnLOxdPQeoZaXFbm/snv7PMpSc0NU15xgsaLASH/NqzZGFNEyEwiatKA7fKoBvO0/dmOQZ1L7x8um69mjJoB296jrbxqHkzxiluIamvEKHEGCd1N2WqnL5Onf9v13YG7buau0Vc3BMvaQW2ntFe2LZF0W7QDg7kcTNS4iuti4lrNkFlz6eqpegqGwcb2E7JS8gYg7fN2nYLYdhAf3bdIRtpCFFRYDvZcD0ZrmwDcZYxoy3Y4tbjKYVqAsiViKBvoLCSvCVXSLzFzqZJZDCjty5wsprceYt/2vnbASduggKT2qb0ybMjLolgaaLb4nY65g0ikxTijH3pV3yGkzHi1G/F/+5uf4tfX7/Bf/PhH2Dx5Dgod5jyLlZozOEphIOokGcyKdjhOQEB5N0Bzakl6lGKSp9thbfG7KtOY0ixhJM5hGg+IhyNyippIykiZ4Xc7dOs1AIfQJUmk9QRCD/YAskN2hMQZkYEJ4inIU0SKSUbLBbjQ6bMz2LuShBxjhJtG6Q8CaE5APsrBwgzve6C3pNhg/gTdZCXZyHW9gHS1+EVBRhKN5JMZjjyyKe44D0QNjyE5xDIUtOvGlGYJixnnKGxAZswZiAwkEOAJcxLVmuA8+m5AcA7OB3CKeHJxhn5YgzljGBz+/J//OV7+8PexWm/AYOze3qAfAnzo8PrmDjeHCe/u3uHmYY80zvDrDsPz5xguLxCnCbuHOzwcdzKfug7TOOF4OOD58yu8fP4BgvO4u3kH7wgffvwxVv0AJofV+hxwIj85TQfkzPDdCsOwxnp9hn61RaZOSrGnGcfjAcf9Leb5ICFFJHDW5rsjYWltk4f2MPT35FzD2tT1buA9l7AmJTASi468KytNbAhyyJya/cTYcgNCwsSXcD4jPajxMto6zrnUaWAS68D2NQNGzjl4Zd2yas4XCdnv8XXqjcxqrHuLuQNqH5PEwAtDvNRHB1DWhoVshCRrerfb4fz8Ap69uMm1lsV4PAqLbHssUAbZYtOtTRZz3sZSSyVKJY6UkQRQ2Ptlgh0vQNBjJY8oqkYNm9yy8q1+vIEeC4VoAUubiGhgv5BQriakkobnGcARz04FRBILv8JutyvrJ+cMrwl8FiZj/Z1zhnePEzSpjGFeaJG3/QL7T38m90A5a8lpkbKTWGjJC2lAO1lITg1nyKlWXRFAbHkmdVVC5xbpvmCE2OIF9PdlrjRz9tE5TYTQBaQsQgHcYJvyuNZgaoGs7hGtnv7Qd2Xe2dgkrnrkBFqEyuZS8Mg0+6uUafBB65HI7xaKRqa2kjUR37kmxCYgAJIXsdkoE69iV94DnDDPsVRPlf6o85dtQJv3bY03GCjnml/yaM1oSC9oaTC1BqT9Z96xBWlK1Vti874aPGZIyDsn9UpZrh1IQhrNM2b9/Y9d3xm4AxIqYvI42dHiwIG89wLwlj8BrTIplJVlfdtLG1PRZm/rO+n3BbRLCMjSGl60kNWocGgmb8NUn5hTC9B58rsC3htmv+kKAafadkf2Tiig3Trm1HK2/jIwnctpjjIJT1l6GdX6XdTbl/aYgL15I0jvl2GiN81B9J53hbbJTpkacw8ZM70P2hCmU8sVasTUFxaZKoiLjbwHOw+ncQU3c8S/+vxr/N2ba/zXf/an+MF2hfn+KKx7SkgxI0CAZZoinO8Bl0UyKiVQqPwY6YZp6kTCrAO1mqxsGtJHziAZpnHEfBjBSOAUEaeEGCUOfBjWEuLSGIYuMzhPAHvEacQ0HXDYHzDHGXFOSLNkjkuhFYLvB0A3M2EqsridY0KcZiBluKEDY0KOEfGY4OYI9Gs5KDphVZFZFHicV132bGrfqjTkde44OVQU/EXTMFdXcy5IRYBkSow0qVwdsrB0MWGeZsSYMM8JcwJi0jAZyW5CTgmd91gPq8qGOMbVk0v0zgFzwtOrD/Dkww9xdr6FCx3iPGFzucU0v8CwP+DF9gxvjiNeX7/B/nDEsNlg/eQZVufnIAfs7x/w+ddf4frhFv16ha7fIOeIPni8+OADXF5cIMWI9dDhD//gE+TM6EKHs4unePL0JYgcbq7f4HC4A1HA9uwZLp9+gItnz7E+v1AZSfEk3N8d8fnnX+DnP/spvvriHzBPN6IEpatVQp30AAeBNcmsgMETluwR+GsOX9i656TjpnsC1wOezOhk2WtJ17ADJNSnAaQGKpizAgrZ87xTuV6iUhdi4QllLol/p2zlqcf0+3aZsdQy056o7Nu2t2eWpG7vJBbP655uTHaMEefn5/DOoQ8BGRJj3vcSqmIFlZgZcZQDfej6EhsOlljzzgsQTlz322EYQETYbrclJj6lhP1+D+aE7Xa7iLG20BSLI25BdAsmWrBpscwWjmBgPoSAaZqwWq1KW9squ9aWElfcgL4WzLRJwOIJFW9yzkDXDQsFElOUGcdRNeproahJE92LByBlSZSPCa5bGjDShiopaMywzdtibJRtm9WIsOqVamyThF04wylEgHNwjfdCYo9J82Eqq6pDa/SveEdRz/C6H7QV3Q2sM+AB70gFC3Qnp2pgmFLJKQC0vpSKzcr2av9zGTuhzRbnvIaLZkQ4K0KWozitSep+CABfqtvJ+aJeloyyN5FzSKhzijNL9VCIN1jGSiuc5ow5pZLH4SBhYiklxHnGMAwljr7rOoC9hm5asuwBrpedWPIwJgXItQ9kzqMYiW08fjtn5T00fNLGsEhCYmHYWo7J6VW8GY2RZeuRmRdqTDlnScCFrtU8iz0JBjsnhcfmGXMUjfn1evPoee+7vnuMezYWz0YVAoYhg+a+heGvFmEFznZEvA94L1hpZ/dHWQit4H/7vQIiYZ9tGkrLZ9j92wPqfQC+Amf5t6g50Ik1bwvXCg2IvrNMIFuQy/sz13sVOSdo/onG6Jf3OOlPIjloM5EYKRlg0kCSDGSVwSy2A2MZf356L5vpZqiUBWDtNUPDxgyVPiGbF/LvrIuo6PlzLt+0hBfZUCT+2PsOTIRvHh7wm9t3+OjiYyQ9DOY4izxnSsiBkdIMnyYQBzgEMQI4SwEqECgb00HCbDduAZED0/JcnuCC/H7OWcD3fieVQDlLyLhjcMy4vnkH9A4bJ27IkGZQnIApgDMw7g843O+wv9thP0lSlyNzB2f4rocPADnpB2ZRf0kpYY6zaCM7iblG6IA5IcUZU8rwkUGR0Z+dSxVOUGE0yrhofG2Cg1OtcU7V+GNlOLK6jAuDYAw7A9nkN3XjjdOkso+ymcxJ5pTKzwpIhXjCQgjwnUdQltj5gPWqQz4eMXQDNlcfYLXZIqdZJmqMIO9w9uI5xnnG9dev8eGLD3B9/RYUD+g2a/izDdAFzNOMN2/f4W+++BVuDjusLs/Q9QNizOg6j9XK43B40EWTcHmxARHQ9QMunz7H02dXWuTlgGkk9Kstzp+8wNWLj3Dx5Bn69Qad6nJ755GY8U/+9If4i3/2T/BXf/XX+Hf/6/8Ld9e/AVQ8sxzOzpU6DtBqflmNQqn74MrGXETh1eCVtQiQd7oHiIG18KShrl1jajKoSEmSGmcC2maQkwrFQppTLX1uHkHksk+5hs0xdhRAMdoquSHPPTXwv29XG05oCaSkRkzOwpgysCh203VSXyJ0HV69foPz8/MiD5lyRlDWO6Ukh+40wQDKarXC7e0tzs42i7Ps/v6+snYECSsjwsPDA87Pz/H69Ws1BnoMw4DVagUJaVseqm2MucWzO+ew3W4xTaI5fwr2Qgh4evUMDw8P5TvGDLZVZNtQAHtuC3YcKqBp+7QFLVFD9Lx3SHmpdBNCKAo581y1wmOMYnQo4EnmjWBRjhGbeEkELhhVvew8b9toZ1FrcAh770sflDNQwWhrJLV/FgwAI+3kPqdko11tmzku2ySfr+srU81RoVyBYes9KQDRNN8zSrieRJPIHiWc2DJsxcbZOYeghpz9TM4kK05XvTbVy+DKeV88h807mlekxWWWLLvdbrFer5FzLrr9xQvUAGKbsx99/DG++fprTOMRXRDvlyPJ57CwH/E6dSJ/qjU1rMKv01CfVuGlHYvTMWrHw67T77ZseknubYo8GVA3sG4Gbs4Zu92ufHYaR1XgIykISJC6MSAN28x42O9wfX2D73J991CZcqhw+Xf7dwOZpy6EFqwLlaHu2GaRnLqEyvexwIiLz7YLZjEAylhxQZmP2a/2Z982qOVzaA0WLpUGa3sb1hwV3JYt5WRzMaaHIYtf0DdEG7p50cJ+m32gC9Pu51ABuvxIDQIzqFxbcbYZq/dsMvJ86P1qrC5rWFTmmsVvbyMJRyRFflDvz4TSR16Nr5w1Zs7eBQ6cTZM/YZxnPOz2yC4geYdIwByjxoZFAZqBkVOUZDDtnwxI8oyr8n4MaLyotD2xxDaDmnd3BIaDZ6APA26nGcfdHodpxJgB3w0InYTtOEfA04xhtcI8q1XtHHKMON4fsbvZYb97wD5FkAGszOi8B4UAIs2s1807TkfM4xHTNGHTr+QzzsEPKylNPkVhYt0M5zzicY+uH8DwYCIkm/NhWRqac6wnivUDUqmwyywg35GTIlg5I2WtTKixsHGeEGPCOI9Ic0LOQMwJM1MpCAZInDgIlWVzEs8VOl9waj/06IZegCSplKZzEl/uAy6eXmJ62ON5Jqy7HnPaY44TQISYMva3e/zss8/x5e01pjRj23dwoQfIIQSP4Ahv377C2foM4+Ee4FQO5K6TuON5knkQQofVeo3N+Rar9YB+6DAMoTBwnTJWZ+sVnp1t8ezyAueXT/A//4//d9y/+wxECc4B2bkiseo8ART08OTCeIEIBA9KLMXKNOQhIxXgLiEVXrxGqiNEALzT9csC+oW99HooaYIxScKrIwcg1ArKWb4fQigMOhHAMYkyg1IDjOrZTBpOJ8WoJJGwytkt83q+f5cCP8NdZF5IC6OzTZrLn3YI2/nCnHBzc42sGuYrLca23W6xO4wCOCHAYxqPCF2Py8tL7Pd7OOdU19wj54jNZou7uzt0oUff9WAAE45AZjy9uBRQQOKZlO8LUw8sAbR5Aoio3N+Aj/ceFxcXBQx77zEMA159/U0lXQxcKRPY6s2fFtWxS1z4ASnZ5wjOB/RearlYhVQrGmXk1BhnPesYc07geSphNC3wyTmLqleuHj/mDOdJBACYpdBdYwyZ0Wz3sPtYUqqFHtj7imrODOc7OB9KJVygVtsseSVq1MpZEdRT6yXczO5ZDGEj9hqCsBzVejKS9gLneg6V4h3WPu0LmOIXQPS4gJgjD0cZznEtQJSzepBJSBzisi8kMEqFZjKyQJ5VGHAieC9G7TzPJfnY5l57GWYqJGqu66XE0Ot8Pe73mG1uEGGz3eJwPBYJyHmWKuoOcnR98fnnun/3ADO6LiCpJ4lJFL5ya9yQ4LysIbDStmqAWL9ZcbVTbGqfO32/Fhe22NQMW/MQ2TPMW2DSwCBG9h7eiaTrqJ/NalQG73HUIo3iSRphidqr1Qrf5frOwN2SHguTC9ISvFTKbQM1NMEY3pY9spAVNAvQBkW+cwKgjUlSd24bnoGTzz4C5vYoTYC1/5Herx2YdjKe3oNtY7cFJN+u72XvWBb0t7SnWNrVmAAtF4aZOEQKAHWBWfVUYU+N0TcQzwWo2fiYkdVOQCMAPcR9nnHyrvZ92/DaFhGqG9/Gq9mYFkZE867t/WRB2YGpVShT0nLajOMU4YcVZucxx1QsZ1awn2NC9gnkMjhFSegjcd9JuICw0lZ5rQjpk2JZC5UBJOYdonm9Xm3guzXifIeHuz3e3t7h7nAEnMOLD56A8qfC0F0+gQ8Sa08OyOOM/cMD9tMBu8Meu+MRx+OIcRwxHffoAuHifIvLs3P0/apm0c8zDrsRh3nGy7NLdL0UeUFycP0KnBLy8Qg4icOPo4yDDyvkrGoobsnOiuNPNijoXFFIJoaUkyRe1jAKZoneFtZRFE1iSjiOUhzrOEWM84yYSSqlktcDN4inSEECqfFGnjAfR5ytthiGAev1Gv2w0vLYkvAGOwxVxznHiNV6hf3uCJoiPBPGccL+cEBmh198/RX+5u1X2M0jzi8vcfn8BTZnF9gd9yBk3L59h2meMfU7XH/9FWIeBUzEGX61BjvCfr/H/v4GwTlsLi4kudi8eDonqZnv3jus1j0+/Ogp/tv+nyFzxL//t/8aUzyCgofA7IzgIGy9lHaGI48OXsIBvZMEMZZDX7wqhAmS1KippPDOISZJTPIgScIGI5K5cEUFyZNDnDWhL0Xx0Ki1nuKMMc+YplG9HpBsCLKEygQihvOyHjInEKKCfok65MwaG09wzGJg2H78PQbuWb1sObcVLyVUDU7ibksiKABQlRW0Q/ny8hK3t7fouqHspSZ5yOSbPV2e2bK07WdTSnh4eChkSCvl2KkcpLHxRmo5h0XxMJSfu6INbYDUPAXzPONwOEj7mDGOY/F05iweFQPnC6BLNazG2Hdh/cWwTzEho/6MWUQHku7RKadiRBSvYKptNi+qvU8gFAUZS5YMIeB42CGq4cTmjSLx3IpijQ6ukQZNrH9hSuVYhaMl2QBYIZ7HxZRk+E3ooOKQMm/sP+n00o/Le5ix25zvdrYXI7HGX1c8Yd+mapjoM07bKGBVjHaLzWanMfqJkckJoActWHb7k0hV2vSeRSYRDLZ8AjXcLPTK5myL1wogbmUrVTHOjEDLx1iEc00T0hwxoVYZdY0RV3Iuksgyg6tXhzTPT852Zf+TUaBt5MSy/sBpu/UuCzxm8+e9GFD/3SZin+LFU3Ava0OqWOck877rB51nugZzBqJ42VIWr4z3riGJf/v13Qsw2bzlqu5hYLp9V7ZOYlSddEIF97x8cdmwaJHdXDsNgDeXLxaqMN/GkJNaZlZUsiaz6mLQBNNTq6q4VQso1QEpUolLtRXTVZUYUgWreOxJaK+Fa+8kCaHiawW5zi0MDIIB8trGIol50iaqlkrxdDCbYoIaHc3jbQMx0N3+HOAidVeYBDCsqmwRzWJJsgR40QdtIhYgwCYnLRgEFK3tmDPYeSQGxnmWipwqo2QbeU4JLkm2e44zAF8WftYJmjmVOG6p7qvFIZyxHbWgBYjQdx0unjzH/v4BF+wQVms8iYwxEfbHPb74zVcITgpRhGGNQBLLOO72eHi4x7vra/zqV1/gq69e4WF3wMN+j/1xj6F3+OjFc3zy/AN8+PwZzs/PQQSkecZ42KPfnmPVreCySjIqY0V9B55npDgjj0cEQglpkNpiyvxANzNjGdR1Sln+DtuM1H2dlVll7RMzisAyBjFFzJwxzlEKIsUZhwgcp4jce9mU0wTfdWooKgANAeQAD8aT9RkuL59ifXGJvuvgNSafLKmLGJwSpvsdKGf0mxUoZ6y6HokiDvsjbq9v8Wa/x//nZ3+Ht+MBIMLTF1e4ePoM2QW8+vIbcDzg+ptXePb8BX726g0+/+xngDJQ/WrA5uLX6FdrTMcj8jRiNQy4fPMNnrx9hcunV7i8eIr15gx9CBj6AduzCzy7uMR2vYV3HfrB4fnVFv/df/PP8U/++MeIOaFzYhw5J3uKSAMSsso5eg1NcZ7glSVnPRiktpJWZNYF48BIiYoB7ViMqCiLRtew7K1FKkz196V4UMKcEm73B9w/3ON8uwaS5BZMMeE4T4hxwjHOOE4RcZxw2N/jeNwhz6KaNM0jpuMBU5ywP+zA0yjtzqmyiN/T6zSBcwFajEQoe6mRDAIQH5MsQpYYcDgej+j6lWyYqjQSQkCvMdwGaFrvcE38rECBCDgeD4Udtz63RDxTcjGRAyMxjDEHapJdC8at3W0oi5FOYC6JlW277PPW9oX6i51vzZl5yliWYlfNzy0RvwU9zI2sqoUwlr0ql58VQggGdWXMincdKKIDEvPHekbX6xT4hqAJlE5qUch61jY3bTcAaJKQhgs07busa8M20q96IBsYZ2FQOWdZ80WyxJLH9VlK+IqqlBBPFYuIqoopq0BZfuccPHuwV7CoewIa4O+CLwnXZTwKCK/VRI1xY3AJo7IQLPOqt4mc7/XWk1t4FeQ5CTlFOAqSX0PAHOdSJbUtwOSISqhJjLGAIfEAalZlmXdq/Oi7FDxWR72slWIk6WW1fE5+vMCiNv7fNt9bI7r8LFuUhxq1UYG7q4VEU0piwOo53A8r7Me5VNU2TNcm9f6267snpzpDs/VlDdi1F9lEKEhUXVCOVGqNF50i/VjDMyqTa72q68lesIl3fwwyDYRSGfzCjevkdMq62wbYWlvQx0i8urwNwHWDgLEr9b1Lm5t+qH1T/219USz3Yng3AFv/Im2SKm/VSkSxwrOCafm8K31a3vNk0i6GrumzYmSVNtUNomjW6gIpmw0JeDHZxaYzhcHDcrNs3bw2jgwxeFLMmBMjECF0vfR7CDgcR8wpavycAfgEzqqYokA1Rk2Ydg6kVgxDDQFlJ4gY5AOgmzSp2oxZZ0SMs4tzXH30A+wPB6zGCWBG2J5hGid89cu/x+tXrxHZYb3aaF8SxuOE/f6AX3/xBn/32VcYwgrn52v0vsfVkycY1it89MmnuDg7w7i/B9/earJKAjJw/vwlhtUAirO8m3dgKOPRd2LYpATME6Ax2JwZLgy6ngApuCTtcRCjmvV7nJRByFlVjwAEjzzPYDjkhCIXl1LCNM8Y50nKLseIMSbMSea2sVkW9iHDKMxPYoaPCethhQ8++QG2z56h257BK8pgznAIAhhiQkoT8nhA6AKmacZmK2B/2jkcjyPe7b/CT1+/wpd3N0DwCEOHsFrh4ukL7HYTfvOLzzEe7rB/uEM/bPCLX/wDvv7qy7KeXfCqvS/vRwx0oUN/9iX67d9htV0JaO+ldP3ZZoOrly/wkz/6Cf7oR3+Eq6cfwvsOwyrggw8v8cHLi8UB7SAeF6drBJakT+LNKswP6qXHvew3qCSIVZqG/t52Q7uhmdoCFio5YOpWmTPGOdUwJRbskFiquGb9TMqq0ayAfY6MMc5I04zxOOHNzQN++fkX+NUvf45vvvwVxv07AKnuMd/DqwWwBmZSTiXu2sIWNHGgSMTKR+VQPhwOyhSP6PseIXRwDjgej3BzLKEVQA0zORwOmMYRg+qsGxvedRKX670rRnPOGfv9ARtT09AzLThCzkBwAeyWrnthxKs8ooUG1OTL+s4W476ITWcgxhkm32f3tnAbi+e1Eu6AsKfEVICVc24ROx60UJWB76K+ZB6NBSCWxHbS8bAYaWPabWyIVD5X9zg04FUGWPa24nnmeia2BlN7voUQRBpXgbrUQJDwBvNCgdQzqP/poQWCsqGq2lLU7qw95lW0d82yGOVRVMYbzR6hs0/eqgXdrhpqZfewPYFr/oKHSmgmc3DYPZTJBhZjQEq45MwaTljDRFpA2gJ1Z2pTDaZZ4LOchWgAiuiEc1IXJEVJNq0a7RH9IMmX8yTnrNP1kVKSdeUcgpfqr8wMH2SOJU0CJw1hywkF9FJpiil4KapknPR1iwttuGnx52OjfYnlbJ21eRMECX+x55dzV71yIQSMk9R7YZJkZDd0Um17npEYulczpmnEd7m+e4x7AWSnbgguCRv6wwLwrJNEJk172KEwxQDq4kPFlPbyZiExM2Dxn4RFtvijdhZLuAkTIWO2DPSeHKxUrSUJMctahIlUA9wWCzRGv3oKpCEoSaBt3ywsQXmFwvqQ7kEGiK1nqXgweAGsmbWASpNsxs0+BjOiuD4PsC5XAGbjU7BBbZ+ZItWAWqoGlXY4KoUtHo3BSbtbo6gkyOq4SkK4eSk8umENEKFfn4GnEdMcMY4zum6EDx08GJkIafYSohU8nAtghsqBGVMjCahWZVZCOgjGWpEm/yY15JgyXO9wefUUZ/wE05xweLgHg3C+WaOjP8D1q69w/+4G83qGJBUB45ywPxywf9jj+eUlnl0+weAdOn6B9dkZLl98gGcfvQQRcPPVlzjevEOaJSn38oPnuHr5EkPwoDSBWYOYghgYFDqgS5AiqYw4jXAdQ8o5SwgNJK9SNtYkSjhpGpWJSgAEaHMWl7Elolr1NmYJvUh5xqjM7DRPYiAwIWWHBCn7nD1A3sF3HVww5lE2yPk4wVPG1bOnOH9xhdXFBfrQAfNcCjlJLCYDOSHPs0yVSVjMcLZF5AQ4j69v7/DTN9/gehqxOjuD6zs8HPdw3QrnT1/g8y/e4t2bV7h58zVc8Pj8iy/x9s0bjMcJUiHXwc0BbkJTiAiYfMJhyvC7Cb7z6Nw1vAtwQdzNw3rA57/+Be7+62v8i7/4P+LFs5cIzqELJ4lnVD2DkoBdE9ds3chatuAl2fdk/Sz3qqIHz5aPbqCdFlxISX0p+5keVrrWhqGr2MEOd0IB+rXyqoyZwR+GHC4pM9Kc8S/2f4Rv3v6X+P/+3a/wv/ybf4XXX/49XDrg+3wZm2xhCwxeAOScElrrxACRU2+KKVOsVyt0fS85J5qrIlUmByEYFBibxFubwGphN7POezOCTQpyu93i5cuXuL6+xvF4BGCVQiWuPmGpmW1zUZL+JIdjs9lgmiaRWKSaRGqxxKZQYn8nIpCvbTKQa21uNeEBlXacq3qM7Osn1Umbz1scdTyOIreYauVUQHaxFuRM0wRi/Qy0GFbKGOcRoVmDrGeG9b+w9RV4teEKBdw2oRitF6Ad8/bItLPOGXC3eaQA3vrPOV+iMe0+YrqzYe0K8HMG4NHg5AYbyJnKidtfFuOijcC2fISWBXbkQEi6qCXUzcbfAPMChGqhMZtnbby5JRGbwg8RlfAi76mA+lMPioXVLNrVfLbEhoNwPB6x2azx9OlTjOOI/X6P1WpVDMKu6wSLcM0zKX+H4MWYRLGNrJ8ZMBntypZXo+V9URqtQWOMePsZ+32rZGTXIu5fjQPvfQmBa9eZPd8RwXUBcB5zZLx9+xaZCWOKSqpS2Z++y/XdGXdmsdJdzTJuQRsTFhavXWIBSegHoPPZ3HO22BlF3qgFk0srTw4boqYNjXHQsvgLIE7LMBCPGufegnebaNw824B1cTPJbxagGNDYtGyHcdMWbXhlzbkYIuaZ8KQtsYJL6sYU1ZkKCFxjfLC9EAzDN8ycGhUFSEgL7a3ks/qdktjGos1i79z2vx3+LdAX40cO/jLSdSh0WHixyCnJ80zZ0hJ6iZxapCPmnLAKHsl50Q6fJTE1TROcVuFLOUvyy8wq70alz6Gty0mmm/MeLgRl3M0K5zJmZjT4wYNChssZ3XpA6GQjc6ED+efgDFy/eY3DYZRxzYxZi0RdnJ3h4uwMZ5sNtkOHs/UW5y+eY3N5gb7vMd3vkNZbYJrhgsdmvcWTZ5fYrAc4iOwkwQHBAbBKcLJp50yAhkcQzQgU5KDqA5CpbGo8J2DSQ5gIyCzgPEaprGrjkRKyJqPmJOxrjBHTPEtiboyYGZiSKOxkcnBdh6juUu9qbKMn8XgQERISzjZb9Ku16M9znZwpZpCbRbc8CXCPDwfMiQHvcX99g7u7W9wd9vhs2mPnMs6eP8XFk6fYHXboQXj58Y+xOXuC4/gVDoc9bm+v8eTqCq9ffVPVCsp69GKssMnY+aLcpKtV4jHBoCRJ0HHO+OxnX4A88PzpM1xsz+BXF7Im0cZB67ZTlp/m81hVW1vXttYBgHOpTFpuZHtZqwDV7plYXu3v5VZyE2r3Gf0iNXuo7Ru2d4Op5MqAM6Bx+twD6/WA88sNXrx4ht/7+CX+53/5/8bP//bf4P8fLgMvjpZFsbwmKdZqi8LCxyjjasmhjhzub+8AcuiHocQPd73HfIyazFerQhaA6qVyKjPj/v4e2+0WXdcV8GsH/pdfflmSAo19BEgAra8hHAZgANGQ994r2Gbc3t6r0UHo+1VhwSXGvc5jYc0TevIYuhUYIm+ZU8IM2UNMS70N+cmJsdvtiia3964k0o3jWFR7JGGdEUKP3fHwSJ+eiBBInnE8HnFUD0UqTKPM7aB7d85xsbeDUI0TAnJaMsGnoQwVfC5xhf1ZWFpU0MYARA5M/+2UxGMCkYQ0OR+UPKHFPUlvwE7YPMeMzAbozCCSD8l+4YV8gRTAs8qaetPF/D09U0vEAnMJfyQtRsSZ0GneQfueRAR0MmePx6Pmh0lfDcNQwKfN0XEc4UInxxARUgbAmiBvMrUNaD+d/21xL+89ApGcHZPIH5sKm71nGzK1Wq0wz1nnlpzhSbGK8wDHGYCC4oXiGitgfIxTzTCznxvIPjVWrD2tV8LewwQd2jlnkqzmQbL1U4wR53H/8IA5ZXTDCuv1Gg+7A1aDrMGYEkZNOv8u13cH7jlrVjWUvakLpjDsmUvCars4ZGA16Jyaw0qvFui2zTbLSz8k/3aNZayZ5axJKe39rF3s7L7FNCs3WHJgy4eX+CluFg5qPFlwfrnQG0asTGTm6p4xA6WxT8r7EVTOmcrPQaTl5bla3U7bovdY9AUsltbeq5om6eRN7TvFsFAgcYoYhKkSpj9D2buiJ1/vKZ4QltLsJ8D/9O/ZFpS6D10mOBewe7jHcZ6wDh6+7zHHiClJsmRQXV8KBOIMxxnkRCM186wATbuYGOwA5wKcU+DusFAkYBamTTZoUsNE4paZCMN2hZBFwWRYryReu+vw7vVr5HGSGDYWRnu7WWG1GnB5cY6Li0t0w4DN+Rl8cMjjCKQZ6yFg/dGH6NaDuM37AOcdOEqIDJxTOdVqaDrnkVgOFOQMmiMSH4HAYEQ5WIzFYpZ+geCxlCbkOYKSqI2klJCnCWmexPhRAyjFhOk4YR4njOOMwxwRCcKyAwA56ecUi9tYCnx4ZfgnhGEFzhl9H5DiiPnwUPIzssbup3EEpoQ4qdzkNIIZOO72+NU//Bx/9+YbvB4PSEPAJz/8AS6eP0PfdZjGPV68fInnH3+MaZqx2z1gt7sHI6MLHtfX12XNCSLtINHjMrdLZVFlUR2JegpUsrGUdgdjvx/x2S++xN/+9G/w5PIFnp4/F++MF82DYEltVoKbSOpFAKoIJWGAnprIXFngwsPZWFopccd1ZVP1AhJcCVETA66a3o7EWAUcmFxh/b2tOXXjy7tKu50Z73rAlkYXgC9rInhJPh6Cx9mf/B7O1iv8P3yP7+tVCCPUA5iYS5XRFkC3DK1TZQgLC0kpYSbVSCcU9nCaJtze3kqBNVBh4g2gHI/HajA4h+fPn5ekP4sfnucZx+MR2+22nBkG2okIm80GkfNCxhGoAMKY8dvbWwDAZqNhCHpfCwuyZ9p3jGFlZrgiDenBqExq20fBh7qPNDlLoyqGnBZrEk9DxDhPjxhL5oxxmpGiSNA6RwjegULANB2RSsKk7NkpRQWWXEB7IdmasZN7S9ut3XbZu2eqZ3nLRPsmkZOo8aQ1c4lQ978K7mqujyS71fwx24MkJMvb8a8BNw3JZO33LEdrloRqyWuRvf2U5S7tsv+onvUCJDMyRwA9+r4vISiP8hGAopLS5jbYHLY56b1XLLIEvTInlyFRdo+cM4ZhWORQ2HsIu16hZythOmmF4b4ZQ1vLOSepHxI6pGx1C6qXxZj/qAaByd/ac12L5bjWwLA5U59Ti46dzq9v+7t9zox1S8bOOePu4V7UgLyHJ9Gi98MgnrIUMU5RRArU0Pku1+/AuEPYv1N0VyyESkUtgHMDvFvAaOD0kQFQbmsAEWo5kZ2DMjnNtNXQh1MG3e5rzxFQw83DT4AlNBGVZcMgc800sJ+U3X1fAqoUKZA/y4EhyFja0Sbdlv9rzCtnIDuRv4JYtvZ6Vi5XDg5JAinvqf0gn9W2EakE1MI0WmxUpP9bsvJyP2F4UD5XVSol0QJZ3VZk92jGrdkY3+eesglexgckbDijxFR2ZxvwsIZzExIDU4oYALicQSlJ8RmufcC6oIm1kp138EMvxYpCpwosbJOqtDEzI5GFJUkFvVLMzHl0FGClbLbuDNQ7+HWHu1dvMWpyZciMfhhwefUUF0+fYFj18EHiWZEzEk9wnYMb1ui6Dj54uC7ABw/fGBtk8y9L4i2gLk0H5ChygZ6BGBOYj6BEcKpwA0gstyiCQFj1LElSSedWSiIXliAJeiK7Jm788ThinCMSA4kJMUrxDucCQA6JpUqfDx1qKrJIwIm0JHA47PBw8wr71xu486eIWpwGWZR7OGbk44w0Slw1csLD/R4///w3+Jf//q/w929fY7jc4tn2HOcXW3TBYb0e0A89hvUazMDb6ze4u3kDpAQih5t37zAejg3DJoeqFNex5aVgzBLS2GnYW81IKfsPZewfRvxvf/W3uH84YL3ZCghXrXdnyaf6Wfggib4qxBY07tyRBygjI4mUo7INQhAyHCngIAHpBCA7YeiIBZgH7/S7uut4Bxc6OHLaJoInJ4yxDwjOoyMn8yo4hNAL29Z16LoewYuEpnMOwXUYwoBOD2evYR2970Dk4bzD9qzHT370EuH//N/h+3rlOcJ3EkqXE4NZ9ctJXP85M7IWjBFZOVp8rvNBi8ClcrKU9aaH+jAMGEcJn+u6gJQlbOXu7q7MOzsrYoxVkUZBzzRNpSgRAAGFzsN7h3GcMav8ZwsILLxhodISAlbrdfU8OScGHhFmfUZm1dzmWjTJhyBnTs5IMYrcI0MEBMybyoSJIpyy99Cz0VSl0BZThBAOQeP5h068na0B1YbNON0j0jwjZ6nG3HVexixLobr6rJYEgsiXIovTSMkxbs4a6U9R4WJyqjAjClCiBOVEqtYZRrD/qfFrZ3MW7wJ5X6qZC9nmmufJHhJT1MJCUv2ackbMUngwZVM1q99pcQAgOSktC5yySS3be8vfLAfB+jJ0HpkToobbpBgRpxk0GFvd6b0Fu3ShW8pysuRVMGes1oOouuQkrLrXPcxyK8hwkJxfZf+1vmCpqB1ZlODIkrFZdf0zKxlh6oNVwKTrOqQouQ/zPIpalvNYDz0yM8ajvHPXhHIRXDnziicGDSyFhHWJx9iMl4o35ya34jTEpTU6rP9trUaT0lUSLCcJ1ZzmuWDgGCOcd9UgzJJ3h0Aq2SpCAmLsSgjQqOFr/9j1O1ROFeBrcdwit4QKhjKXEAxCM6DmFjTmuaDC6mZpO2YBiAlVi5xIFwpX1tzuRzqR0BgKCrzL/VkmnIXbtM+03/tmQFF+vNwMLAFt0S+2CYHqu2o7y3sboFXQSMa0cwURWVl+R8Kqp7LGuTyH7T2MaSU5+D01MYDaJWVCGkhsEumgE8lUgtp+QCM3aP1BzmloTBOCpO1zREXZ5rRvWqPsNJzJrJM5zhhHSZB0rgP6HsyxyBRGyPsZKNMoa7mvI7gsCgwZjNAHuL4DBQ+4WhynhlPI+6ZsyXs1AclG25NTA03MQSaPM+/g+g7r1Qa76xvEUWJX1+sNtk8u0K1XcF42fO89ckoIqx5usFLZToGdVOaT7UM10J0qeUBiFOVQABAc0ixJnTklmTuJ4JU9ROhA7EApqjdIjBhbHylrkmqS8tSZJQxAJKpmzFOUP6P8XooLyWdcMI8GELqgMoTiMp/nSWOROvzm9h6//Lu/xS++/BX+qzdf4Q8//X1cPnkuxadUoZwzkMYJeZwx7Y54e7fDT7/6Gv/hy8/xOkZQ1+Fsu8F2u5Yy3BoTnzJjnGbcPzzgi89/g5t3b+SwmiPm6ajzXeeuxZ6SzXHxZJDzekDbGADqRqtzW9dOjoxvvnqD67c3wgIC6mmQ93BeYuKzHmpm9GUI4CZGMWoTW2KasaQ63XOtbGpVqM0eEp1iZdYt1pEhIN57qc2gexOBG2DoJbSACM4l+CDgyfW96lU79CuJZV11K1ycnWE19OiHHmcX53j58kN8/PwjPLm8QvAr9SQN+IMfvcT39mL1JGZoRU9hUuU8srwYuYw9LbQo615phcuUjQRnMcAUSJdEbRRaaRHvS0SF4X54eCi62cZiPnv2DPf39zUhkKjs0aHraj5US7ro3w2o2P1bUNGGjAgxtBRzsHjhpMpess7zI2LKmfpKAyjLOVbup/umtRNCphQPQdNu81TEKCA9xagGg3gUqs+9hoG4pq5Aebdcz0Gvnm8zSNrLDCHRZDdpxyWrLmdfqucezKNtbbF3tv1E9gIfupJQaG3zoZOwEo6qzEQSjqaehQoq9PRiCTcpY09UMgjLvkQWWrMkRJf/VuOiGZecpX6JiQqE0JUxT1k0/DlLGFfK0vcW+uJU+Q3aAyYQUSZUGdMlfiuYgcwYVi88AGZNXNb3TzEWfGaMvwByUxaysLCTMB9duwRISBByk+8gY+Ft714YVijzyHDUKSgvxkDTv9/W57Ui+1J5qZ2/QKMMZfuJrq9xf8AUMxLkfWJMmOLcWhy/9fruyanNDcU4Nbe5/R6V2cQSxFUGVicvUbFW2t+38dmw21FduAXi6mOFIeXaANZ7QcIlDNw7jYm3jUfuze8dmFPG2BpS5qTdg5cSkplrXDmD4dhJRdN8MhkAjYdVoA9u1nO1tqU7cwHi0jeAMeu2DVgRAvDSG1KAsR4+Jc7WMDmry66xfbhtj0psmUFS+gW1rTYXbGwz58U8sXacWq7SiKzzANW7wVks/K6D515Ap8Z1L+dC837Wbwy4LiBstuj6HnA2vtYv1UCx+cAs8kzFCCALVZIbO9UgpyClscMwoF9tsD7bYj4e4cDoQsCwGhCGXvu4WDPwyPCkoAAEJHPZZSAErV6qUo46h0ubSIwG1wXkLIUqKGdQCHChk2I82dLC5eBhQX+yQcaEPEVkyDNiOSQjsir2TPOs8ezC7sc5ITPDB4dEEO9GzqJu4U2FgZAmIIEw5Yyfffk5fvrFN/jpV4R//cuv8Wef/D3++KMP8PsvX+DZcAbnezzEiN1+j9u7HX7z7gaf7Ufw6hzu/BwX/SXC/g5nqx6dD8izsHuH3R4pRgRyuL+/x9tXrzHvD5imUd7BKo5CDlUmD5hmvK4Z772w0F5k4KBhLKzqOK5ZLzLvMzgC4zwiWiiKuWudg+uDrIekhjcDDKehWQ5OD6zMuRjd1GTiM3PxvJkBKQelvMcYZ2QmdAC8rwFuYoyQhiCJIW7ha0JEKCvJVeXAFBdkfrEkbCMjdD361YAcE7wHVusBH338En/6T/8Ef/Gn/wyfvPwRhnAG5wibbYfv6+W9r+eRnk1lv1egVPZDZrXzdE9uQOAiwS0z4Hi5p1H9PLPEgVtcu30OqMms5lm0Ykl3d3fFSKsETsYwrAujfgrWLRyl73t0XSdgWJnDU29nKUnfgHZjGlNK8t5UEzkBFJa76wcJ2dNcGKv2nXNlhw1c2ZVyLhK/zKxVmlkSwS3mOQlJEWcJmTEPoFf2n9mSC9uzuIIt1rW3UI3JuTLgtm6phirZf42vVoz1rBW1SeoYLECyaxjY5lizEExYPLYq30hipWipZxYPfvABcRzF+2MA0wabSLS751HWq5JjGVSnbmMsnYZptOeq5TdkDbnMOUl9Bh2TYSV7o9UMcE5ICKn3oCo+StbYvWwtWPHA0+e387uV8bbYbnuOrQ9LkBYGPpe55siVomE5pSKhGEIAqw56mxeSc0ZwJIn1OcLkQ02K0mk/2tX2nSk6tf1rTD3puBg2LTaZgXKG1N+IqRBEBIJJEc9TLPuO4cBplnAZUy8ygZA5RkwxSSgqC8CPKaFfDfgu1+/EuC/Ap73Ye4Da+yyX8jmn7GxqwjmUZWCmeiCaZQOLQ6oucMJJ3HZZbKiWlq2OrNaeWjrVml6+07e9q12M2iZJxF1y8WwTh9VIgA1qXXSZsyrHaGKoNb7ZF0wzvfzbYvWUOTYdemsjgYp1W8bG8CNDPSSutLEYCajGsxaxF2PH7qUbV0H10Ex6ZCSWpBszxdqxWbAzp31qDVPNalsgjoBhWGG1WotF6gN8WIHdDNK4c7Zp7wjsSatSQhaoA4g6+M0KPohbjVPNrtcuEVBHDJdJF691vLlyHQha/VN1fM0l7AOByYEGQrfeYj4egJThOcN7Fs1y7wDywlBMgHedMunyPEuqdmAQz6XKLKcIEIM1/jjmqKBMmkbkECXItBgjmZPMBWW1SI0zB5nvJd6UM2K0AzIhpRlxGjHHGZGzqFZAYuFBDq4DyAVgFqPR+QDqeslvcR4gBvkZPM+4Pezw7vpGXboOX98+4Ovre/zrv/8ML87XeDKs0Hc99sjYHQ9IMYN9wCd/9Of44KNP4cAYj/d4su7h84yu98iQTW23lwTWLjPu7+5xf3eD/f2dvkc7fzXJjwKChTLo3DUAUg549Ray1zVZJVvkT3Wb2xqzfQ7Wp3PUsKU2ITSX4mSW/0IgUFHfqYYjl/WIahyTA2UHGXHVaQbpuMvMzWrMab6bHuQC2uWQk9ALB2XvmJFg3s4sxVmixNWDIzgR5igawuP9hN3bHa7fvMU8H+D/ecAPXv4Y3nXfujd+H65alrzu0y1rx8pEojCvDK/Ax0JZDESapCIRSZgBC7u9Xq+x34kSjCW52jO6rishDaacYUA8ZymHfnd3h/V6XVj6agTwQg/ewJHF15t7/3A8Yq8Flyxh1mQp7T+LWT4ejyV5zgC6GRjWN+Y1NZA1RwlLiymW0AoKHo6lOiax/GwaD+XZRrINgxRB2z0cJCzHhWJIZO/VAK+KIZlqMmPrZSAicEwAu2KMCqiWMS0Ggo6xcw6sZ8apxKPzHgXPtUa5wiAzDDIznK/Fl0wW0aqp2vwg8sX7KaEYocR2M4t3xXuPuzjDhaC1SdBgJvWaJV8KRppkZAsurQ3WP3a+WqhLaqqFMkuI0RTnMv+7vsZvg6R2yTiOiPOkseQSamOYQYz/OueMBFl6WpYYqXhsUBWDzOvSGp7WztDEuDuS0D8HqchrhmnkeVEQilkK1/UhQGq51L6Q50lOIScuycvFloOFHRtqocVYeucW+AUKWQ1b2Xna9z32474k8hIRzrZnOBwO8oxGPak1GFOKGhUgjQohYD9OIJYk4gzGYRz/d1CVaS4dXx0gVwCkxTM9Au0w7EcFTxfQph0Gy1BmlJK2dlVQSos2ZBhApLJ4HVloTjGWYGzrt74P1UFsf7Z4X7UKLFbM22eoHuIMORCKE66d2BYzWCbSSXw/xJWi3ILcTZNRYRKMBUS8/x2MqbB2yM9FscRcjOVdrH+s/ZrYtjAKjE2xgPaC+uVwqT9hUF6Od3uZF8UsWntfOGEv1sHh6uklAE1WCh4OEh8NkkQldoSEjOAk1AQEZTAY8B7U9XBdj8wCTtvkJQASX04CpGx8Mkiy+WEJSsoiENTN2gA+L0lojgndakC/2QpAGke4eEDoBoRh0HAVBrsd8gxwUrd8sfAre2Txkq17UICa6tbr5s2JdZ6xHKJsBVQCiJsDChKiIe/MyJ7Ac1ZNd90Mo2p554wIILugxbBUdcNxWdvjPIOHAZQzur5HAjDniMgJY454d3OD29vbcoAQEeaccHuccTdGOLpH1wWELmCzWmHTr3Dx9Al+8k/+BOMYcbE9w/XbiDSP8JkRgrAZwQWAPFzocZwmxPiAnDKur9+J/i+gDhtb87oOi2VPYkR5SyiTkBkraMBoGKzMKnFawTKdrF3z6HASjWqmZv3CjHrVM2aJUZfn6LgtdeNkjxJ5hvJjY5m896DEci9QYWkUpte2OydpuNysyZRLor4PBqLE8+eMLMiMyLHsl1JYK+PVl+/wb//yP+Di7Ck26y0utk/g/feXcS+qKN5k/eix6tkjJo415GK5h8UYNSSlJqvFlJS9lDOwBfpXV1eFWc/MiyqkVvXU4swB1ORB7xH6Duv1CtMUS+VWAwwm62jKFhbH3hZtMYBhCanU/P40idTAn7HmMc2L+wBZwv+chxX+KaojCrZCCHC0KgmGUdU1AhN2xwPAVY4yZWC1WsFliZeeDgfEOJV6HfNc9+vClJ+cSfZnIfaadzEJR3JNXPEjYhFAu/6/5WrP5se4oHrWJcekemVMVtH6NoSAUJK8pZ9LcrvxY6FDTtUbbHSTaMfXfaJ97/Zsq3Ovhj1hJMxzwnojuQ/7w7Hsla1cpKkOhc4XQ8OYb+c00RJVE78NR2r7z/tQ4tzbhM7WmDWD0BKfWwPZ5qkZnDbXVqsVhmHAfr+XNaOGwOGwB2DhYl7DWlEMD5C1ryE031tcTddDbIpONW1vc/LsZ8MwLJJ5b25uRBlvlHoP5j1IKWFOQpBN8wzyHpmBaZ7BzmN7do6H3QHHUX739OkVXPhuZMnvVDnV62FlDB81i0ogxxKo2guz6Wgb2aQg2DcWrMttOEl1sSwYfBiGJFBiYYoNV2ojNOCmHJBQgGmHH2BEMonLu7XsT5jiTMYSq4tGf1cqcAEyQXjpVjElGtRmISs7VlRZmslT/jRZGIPurB4HK+6Ql/3aunEN4GfCYnExWfy7lLYvIUpchqP2H+rmIKSjsfzyHSY5/BxDw0IakN/2H7O+h4Bz03CvzIgsqI4c+uCwXnVgAr7++hV++OxK+jh4UAYigOQJ7B3IB2XfoUCEQB7IwSnDCak4aqW4lQEFNNbdybz1sLkkiUtSKEFCCVyO2h9e+8rDwcNkuygnMDFCvwJYikflQwSlGUAv46QhMhrIoNKZ5uaLcN42bQay6KGz0h2Zo1EvwiiApeR95gI0DIgwsKxQDHPF1Q08gZEdQeQjRaVh5oRZ5R7hSaqtcgSrpmxiYeFdF5A1xpshLtdJD6Y5Rnzz9q2E1nQBOUkBG89OALDTA9979F2H87NzEBhPXrzE9uIc89trXF09wTTucf3mFeYYEboelDK8gSeW5LpDklLZOSZhhpAWa8eKQVluhvMEeC+5BZpka8KlrPHkDMkhIYIkDZXp6sqmvzTeFRiYWluzxm2dArKh5qy5Cl6Ljll4DEPAM1nMq8ysrIuxys6aq7WuSZOCtf3I+ti2VUoyf9hJwmx2UJ+Wzo2cpS6ABxi5JAYKWUDgGXj1m7f4y7/8t5jGCS+uPsB6e44/+9EP8X287NAVuV0hQRipyMeWZGY0IP99QI5Ii17Kvpy1nPl6I0z5MAzIWbxEgGinz/NcNNJNPrH9Wdd1WK/XSClhtVqh6zph7NQ7u9vt0PcrHI/HBSg3UDPNszCE2l5TizHm3oBPzhnH4xHr9boAa3tXA5WnYJMI6Ferhe66c5qblXNVbGFGnGb1DOTCdjryCMHhcDhivd6UHA9mqRdwHB/QO8LNzQ2I6zO7rkOOCUEJPFZmkpxDZokXL152LoS7SPaWoarhGxVLoLLyLCeHXQuPbIMDZI05gJ1W5gZiyloYldENAmhh5wfqXjRsfPV2AphTROg72ff7DpQ0vCWzrfwyjgDBUYALDJctlKfOTwPWBnJzlnozlFSu1zukJCFIoykWnYkscWbCrF6cs/Nz7Hc7WNgt54w4K3ies+ZuDWAWOUg4erQ+HhlEDsi8/L15qgwXtMWLzMht/22fsXFJKWE67nX/SsLKEyMlmec51dAxM4KgxkDxrjKLZ9x7pDIXrOZLlWydx6m0qX2H4tVIqYwDgMXfTUVGDIpD+b3JbBNY5zEwp4R5ElW4mBjjeMTZxROACLe3twhhqWj0bdfvzLiXoSGzcHQSEukJoqxWAfQWm6bsPOphS7lxu+h/zI8nhTymsiRA+xlqflZb2caBydmZC0MmCWCPre5TsG3tp/YxtrDBtYhKtrbXjaUYKXYfu8np+5xcrvm94muQVUxqDJn2HqfsYBmbxb3M2FC2FxWkl0mec9noUH7fgEPUNpgt+6gtNpJq7VpLSggB1Th6zowUZ6xWWzzsdrhbryWONwSAkyoJSGhMJgacB3sviZGhk0c4UQkhr+xkSsjjhHE6gjsJX3Ek7jNKDKcx3945MBzYe2UkPSgTmEX6kBODvYfvHFxiYJ6keFCcwZSRhjVg955HcEqIWRZk4izu3SzKAlbwIutYshqY4s1T1h1Z4xsTOIsijOn8ETziOCPNsyTw6EHajrG5WAGqITjGIOq/kyZ8xiiqAeIIIImtdHJosHMAE0glECdjddSYm1PGnID73QFvr6/F/ZerrjBAGi/s4L1syquVVCndH/a4fPa0LHRTUPL9gMwR7Ex2jDCPEYdxhl+vsb/f4bB7QOak9Qz0PRkgFqMKjlS6ETDlI+9dKaRmc9R6KbOEXTn9fPEaLgyC5V4jSdiyeMwQBUFrJqmnpjHq5dAQhRjt6ZJEx+REF58JXABMNYYZlkQogJHUeMqZNdFSE1xtPaG6/s30z8raO0e1WAwb26dMg+1TmTEeJvzibz7D6y9eYXO2xuZ8g//+//J/xff1sr0fajiDSGJ/XZ0Tp0xi2dt0vhMBUQuWrdcbDMMKu92uAOqkzKQUYxJwYyExAEpYjV1nZ2fw3mMcRxwOh8JwChCkArCZubjiDWRD22XAfAlIl5f9zEBFG15h77kE5zXG3WQky+8zJEeiAf2n56ewi7msCVLAa8aNteP27hpJDVCChIFxloRCOevqest2plhIS3POmbQfu2UIRyt72PZKy1Cf3st+3yYJu/qL0i67MouhRuRLyKv1r/Vd7RfTSQ/wjpHIgbOdbQE5zUrqqBSpvRdRU4tN9mOiGrZlsegSLekXBbZsPMZxLIaWSd8aSM7M6EMnXg415NtQJTMCQwhNZMOJgdOOR6O4ZHOqlTc8BcQWt24eqBhjmSM2hqvVCp0njOOowFjDRBsPi927GAhcn2FRBlnn7GkbbM7Yvdr11K6VNunbjNfiHVF1KPu3Me7MrInTLJr6zmPU0B44j5hEJhTOYX/Yi3EYY6kh8Y9dv5uqzMnBROX/XA4cnAywxVxyhrp69XeW2Nqsrm8LVVlcmQuIrDHr2jibYMwa62sHE1U1HDMiFFwKO6/sBaEOfjMJ6iOaTb0Bpc0LqAHTuJSUBQcTLHqJMwSInry3MGsoVVVt08g5w/Pj/iixbXCVpWguBwntsPAeoBpIxTvgyk+q6ozKZjJzVelA3Zza9rYup/Jz58WrUQrM1BAg0sc5FkfgdrPGar3Cu7e7/x91/9ks2XFkC6IrxFYpjiwJoCAIENTqtibZPXfuzNiYzXx7v+b9szdjV72+qjWbmgRAaFSh1JGptgjxPrh7ROQB2E2O9TNrpLFYhXMyd24RYvny5cux6XtyUrAVZWDE8UVz4aEhdw1UllPgBKS0okLSyG25h+0GY/DQhha8FEcFB+ep4DEx7TrAhxFq8KAcjmI20yBaDW8moK5JNuBJLxz7Hn69QzRcbe8CrG2gZzPAcMrdE4OdJEUJKFExqkdEcBM1LAKNSXKOofForCEbsxhhWwvdtpg2PcJuhWAVlLEUYCjWnUOTVCLSLPMg7aPzHnSKLLMJES4EuMiPR2voaGEMjSdjK0yT5wZMCspUpKPXvIBGYHQBZ9drbDY7DOMu+QILeyYAWCmgaWrMZzM472Csxu07d2GUhakqDG7CMI6o2w6TH6Fshaoy6AdHDjjeYdpssLu6wjj0nJkAVMFyQWtEBuhWE0AOII0qpfEpYxBUSKOQJpkB2FtdgYubeZyXY1ozoADPGeXknxlgB0XznAgKHvMaKdsCPi/6YtKhxuDZulXl9SVkcoEGNR1PTOEoiaVhrOWeGkmAxjJFTjsbahUP5RPZAGsQfeBC8FxMSX7woKwLFKZ+xOUw4fpsg/C7yS3/Vb5ED74HbNnmUIglDbDcw8Dpz2G60paWu4UmIMJg03v2gxaSSO3vYwJ2xRtbGEVpuDRNU7EFZsBTfm4PVAAJXJVgVTpgAvvBSMkWGmvJcUOLoYGszOx5rbD3fjmW1po6XUMypwyqi+u01sJFkrxQrQbNGyvMNJCA7bDepmcQ+Ti0txT7vnQ3L4AUZF3BPoDcwxwSlKmSJssZTir9zMeg39JLXHzoUsk/3vB3iHuN3Hfq3gkYNi64OWzKrIcbc9aLeZEk2wCkyJHAb0imCnktoWuU7F0u/E14ha+7ZLHr2qQgQgJ4uTZXAFkJwuINMJwkpklK9flkI8OUXBOALF8qdfHyfKSvhKxzWoJpyvtBgffOwO5ppk7PK4aMJEIyzuDz4uVV1BrlfAqc/ad9g+925N/HLB1L18TPWQB4Kecp74PcL/ldjPm+pXvhORerqHOuNhHRc+BnwBkdOp61BtvN79at+vcD7jHunfxeOkr+dYO5ShEe36s9hvbGOPg8Nvnmz8HM1t55sbwksWCQmCBLEFCACiAv5hRNFkFHRFp8c9aA/y+xW1nHpRTJR9IEkhWjAP1yQjL4ZKXYvy65ZpVSpppBGEJMx0mLR3HcIMcW5k5+lYA0L9Rp4aMTLO086fsZkBTHSOf+WwIpXSwYeUxEIAUT+4xQYgcBVJVF27VYrzbY7QZsJ4dhHLCYzSBZGcQUYcArhuEaJL+SCaoVlDIAp8CmfotQWeq4GiMQPBAC/DghTAEmKBgXqEhVKUQfSAxja1jFFovacI0BTSjTtOR209RoqhpRAw7Mpo8jTN1B2SWCG8lv3kWoYYDVFkGDmWQPo/iZRurU6uNI9zsQw0cbIjdh4SLKAEDXNdq6wWAB1/fQegIaC52K8OiuRrZ4i4rZZQaeAuapXkBTkRm3A7HGQgVLle4hsFUm0gYd4ZPFGxQw+AlXqxWcmxhMZ2kbsZzE1LRtg+Vyifl8jrOzM3TzGZZHxxiGCT4EbNZrGEsbzPX1BQCDyQUEz57T3MF14Fbwxlh45yD0sWKvc3JIoEKxGCOUAW20MFzcDAAWslop3rxjJICd7E8Vg+cCAAUf4Nl5A0E22GJOaAVtGdwzW6cA8n3WFlaTjAGRmvSEacsblSIrUoCes85AK/Kc5bIRVHWDuu2w6A5xvDzF8vAI3WKBuqqhFDD0I7abHtfra1xcX2K7uca4u0YMIwUJkOwgM2LF+hbFGtOSxIlSyMQkuRta7y/S6/OAu9RgoWTbAOiaAM7NtVjeK8ehJkvErhkhsCLYxjNCW8N68OyDXjLaWuvUZRRAKnAzdcWuFgL+dWroJJ1Upxta4fJcxYHjJmgoWea0V2mxNGXJJatFxNkrMFARWUPabwKRAzo1PfQJuAtLaqwBPGc+o4LSBm0343sZEjgUdjRKto4DSW1KYMSZpZiPTxg9A0QUe9I+iJf9Lv8OoMLjwPaKQleV+zffEVpehMEV4CqkFYM9eYaGA7IU4ITsPy9NfdaOnE9kPCkYRE1NBSmo4WAQvAfz+dB7dZHl0wjRsY3nPtOvtU6SJ1oPqWbLc+8dU1XQSpH7EJ+3nyYYTayv1IvdzD6FGLhpXX7tAfiY50rJUpcSmXKcatAam8w9YkDwDtZwJgI0Vrwn4sjKvYdK91BxoJH610EIOqoNI8xZBDigLskJWDOgo1v82fkk1y6A/WYQW2awJFNFAD/cuG4FH8jW2rNjno5AiBMRYxNJnRCRmk5dPHuG3+X1e9tB/jbAnQAWGJzFPJlSFKcjFOtDdQQXXaoUVcurjGjK78gBAhJIJ5DC81VGPuRUVFFYQb9SQFEUWIB9Lm7IOF+lDY5814mVIiC1H1yk4wJQ5b0RAHwj6uQf7d9XkEZQ2qBDK9E7cElavmb5XLrtwL6OPAUlii2iVQ5OIgrZTr4OeYYC/KOiZ5W+Nz3/YnOIyEWwWhdNpuhJJRDCwYj8WwOwRqG2Fm706IceMRIz6iKx2LqqYEIgqUkAMYyGALXWljv+VSkw0NqS5MUYTOOAOI2IxqAferhhQNhN6FcbeAc0ukIVFawHFbsYAni2aqCVQV01UMoiOIcwTTBGwWpZoA1M18AcH8GengIGcOEa/nKL6XoHP0zQk0dwI6KbyE++JjtFqIDJeHI14UcQEZLMxzMbQ4SMgwrk6Q7DC0fdoJovMU4OwU2ItiLVrrg5KC5OjZKSk7SpQ9AK0RgETbUChp0XvI/QBggOiE6YHkkPkxRoYutOY6vUtGm1usI0jSkQJCWfpG41mqbGcjaHNRaT99hsN7hz/x4W8wNsNs/hQ8R6tyEP4aAxTh6bXQ83jTheLmFtBa0GeGF+tIapKmAcIF6vlBHKm6ZSmiVQirXFdP1tN8Pi8C501ZIeeewxDD2GYQ0/9QjwMIYBbOBNQRiTtMaw9pwzX2QVqRA0bVaON2Fbt5gvDnF6ege379zH4dEx2vkMWlV4+PFT/OxHf4ldfwHwfCfNtWIASLu2FNnVbYfbt+7j9de/jFdefRX3b9/G0eIQs66Drao0p5yL8JPDrh9web3G02dneP+Dj/H+h+/h2eOP4NyKNkQtmwoNDQm0wGur1grReZqDANVGfEFf+/ItJIehkoyRTbaqa1pnvU9kQMk4yhp+Uy7Q9z2tGUUWo+Y288kFw1rUdZ19zYE92UvXddx0MzPQ8my6rgOQm9NJk6Wmafb21WmasNvt0ueFrZcC2FRMV+p+kbtFfkb2oHVytZEAxAewW0oJhuh6SNJTWP5qsmCt6jp1zwzeY7dd4+LiAq2h76VmcNxdOQTYqkpZQ8bue+Dv5t+ZWd1/lbYJ6Weyt8l1xgx8k5VhishpP5Y4IAVA4oIDMLnD9o2MC5qmIYetIgMjf5wjQK8LAtF7Dx2p0oWa+HiAJcWkJiDiUe5r1lfT/U91gIXMSfbxcRrx5PFTnJzegTIGFdsUBnYu8d6T040jW2Gt9u+1rKdyu0rryc97ifSlnGMluRkDyVMV8ryjImqyKF4syJlFAu6qqjCNU+rOK8FTltLkIKrMhEjwMk78OaVR8fGUUqnwtlwb5JxvzpvsCOP3wLoUfguol+/dmwOKslimsojBYzeMsHVDBGSgurBh11NNzDCialssZnP8erX6rfe4fP0enVNjimaBz04mqXCnpgTykfygCdSq4t8MUjSgysLUfwLAJ2ANjpL5vCI7opRFoQKu91I12F94aXGOSUsmEyqmAUdRnNIK8GR/lfxWo8S8+ZUT1+lgyT+93AKpcE/duD8qWUGG/MN0xJj+r7yh+8/iMwGPsA9yHyALYhH+3AiO9lJlhRuGAkcJEYnBM0oRs8ILnDAzxLiEpB1Odlp83w3EXjFinCa4QGzVOE0Yp4n01JHAurKS1qWHn1ksujat2UNfc1t720DbGsNmjWnTY3VxifX1CmPv4cYJMRBwb2qLShvMbIWgDLw1qCuL1tboKraV9B5uMyCGiLZpSFcJBd3WqEeH2kW4bQ+/WcG5EV5r0uOPzAr7nKIMmu97o7juSUFVFsoAqjJAzcyw5vtaBJLRGNi6Rhh2UKaGrSv43Uh1G+MI29bImT4al4RtOfmoFZSl+oCoNVRVZcZDST+CwMw83XdbGYw+F/VGZnHCMODi+hqr9YrZGGJRtNIIKjLjSJt8U9WYvMPZ2Qo+eBwcHULbCm3XwXuH7fYa40AM0HyxBBCo2DcClbXomhrGO5yeHKDbjuh3O/hxZGcL5sd48NE4MynYoOYxCqY2+Oq3vo4f/tn/hma+xOQj+tFhtdni6ZOnePzxR3j08EOsVk8RpwEBYwLEtD4pnkbEgEdO0VKKN1IQpg3msyVu33sB3/7aN/H6l17DnZPbWMwXqOoKlaXi3V/++hO8/5ufY5zWQHC07mlFUpro00ZTty1eevEVfO87f4Cvf+2ruHPnNmazDnVVcXMwJfgCiSzhjeelcIppfIDvfutr+PTZBX75y7fx0x//BI+f/QYIPQfCLm/2MTcJicLqBUdFy6pctb5YL2s0vJsADuKM1ojOY/QuWTWKnGOzXieNeWXJ+UE2bwDJZzpELmpV4K6pQwI2MZK1n/ce2+0ud6t0Drdv38bFxQXp4NmSsdz0PcReMDOn8/kCV1dXAKjgtZvNEngqCwW1pg6uABKoEKBjKsr2jI5s9SKoBsg5h7Zt03szIx0TcKrr7BQjnSrBa0ZmtoFhmFDXbQJC0tiO3FQqrK7X6LoWMQZsdzs0TYPN1QpG81qBCBiF6BzcSFIbyQyA/zZpD9OfGZNlBjrGvH8BSOdfYoAQClMHt59ZiJ4zhwbwcUJVUS2CgDiINXWISaI5uQmTn6C1TWPCWotxHNH3Pdq2Rdu2uLq6wmKxwDgMGIcBWhzjeN4GxhMa2e0lBAKhgft/DMNA16wNQpDAivDWZrND3XU0psYJcCOgKDgzLJnRWmM+n2cw6j3qpiGgP+wweYfD5QH6vk8QIUQgcsDgnEvgXLKRaSdW+xhO7rlktRQYUzBpYK1OBILW1V49hwIokx2LXjkxIEbPja1I0qoUErEj3yWa+ZmmPUbmj7jSALSGiyxxD4Px96e+CkXAVAbepc2lrLs0t10C9NKh3PuAYXJUbD5N6KcR0ArTQDUEzjkorbDZbnD27Ck1N/wdXr87cBe7wIDMysacboASbKUSgy4Xtge8S/AZUQAx+mXqJBkDF30WDL/QlCXVXH5eWGCV3pxSSrQ+3NC28YKlEyaNzA5zUZNWiYLPEhOyggwovkPRJ4WVVkWKWQAAB4efPefipeQcSDOxj/aRU+cKAlY++5jKlwAxxZGD4N0Y8628yWjsMT9IwiL6kOjyFEf9EkTx/yslZGiesEZpaGOp66Sihj7SLtlHaV5BG9JmN2BwjmQqHAQicLOZmJs2RBCDRu3oueOtUez/bmG7DkFpuBE4f3aFR588wfV2h6gUWluhY8/1qq7RVhX5plcauq7R+YguAIu2w6xboK1mCC7AjTtUtiYmuPcIK4VB2PxpQvSAGwe4GNhNhO5LmBx8IPkGbe4aiAHBaALnlmxBdFMhVnT/bG1QNTW1Hk9sFLX9rhcHsN0CUtii64amhOZxGjUQqII9qsCgXSM62rRhDXSUjZhahg/DAB9B7cn9xLp30MYBChyCihjGAcM04fzyEuOYreMoO0XMvYYiCVTbQhkNt6MivKpuMF8eoGkqtG2F3SbC9T2apsZsNsMmKHjvYJoGtbUwcYLVND5uHR/CeY2uafH48VM8e/4cu92W5rXiQl2WzchOQhK4AFM1eOGlF/Cl1x+g65YMysg6cRzewMXq23j46Bl+/ctf4Ddv/xzX5w8R/Mh1KTLeVLJ/VUYhRmILoagj4a17D/DH3/1DfPMb38CL9+9iPu9gbUVZPE33ZHIetquAqqYZGYpFjVkIpQwODo7wve99Dz/4s+/j5QevYLGcp7bj+8rNfaIgQlGxNCKqCui6GkdHM7xw9wivvfIy/vs//APeeesfMazO4ALVG0gqPM93tqvj+R2L5lFftFdm4ei/8zUigV+SZ5gkMyFmXJ6rTS4wTZ1BvljWSdElUg1NbjRzcnKCzWZDzBwXoo7jSO4eJZMv6y1i0qjHSLrjy8tLAnoMaIRZ3Gw2DKzrVBinFBX7Cbsta7TmnwuYUYo05vP5HFdXV+k7BYwplYtehXGX8xFAun9v454FXtbiZ5CtlMKu38E7Dzd5WCUs5gR4BwQPlRrIFQ38Iq9pMSY5YEks5Wy37P26+P5MYJXFmp4zKkGT41yJBYCcpUl9EzQ5ywRN3ZJV0IlwUwrUiMcCxlSoqgqbzQbee8xmMxwcHKT7RtaAEzYbzxiHRoxzjhytFKAU9dLwQWq2NELQiNFzbVJIzbZCID9yKpKd4Bz9Tr4LUOi6DhHAru+xqCqqi+FxL8/RAeRmpICWsyO5oNUQ6BwGuEDBroxfGedKkyVoCto4KCz7A6T7ygHhbrfB4eEhxO5Rxq+MZ8uNCcVOUaxPK2sS3pmmKfU/EBAtev5xlL4KhmFiLlhOgaoGqN9KSOcnBag3szg39e3yHilIvQn8y+M55wFN1peDpy7l4+TgpOaE53ldWXRtg9m8w26z/S0r2v7r92vAJP8nzCpTocRQKaRmFpzmuQncwYyiaK8jKE2lEgZUmUlmthuegCcN9Sy5kBsl7KvioILubG4nHguqOsa458YhkTr/MqXH6Hcc8SuNgs6k64l8/DJ4YE2xlM0RcFUSS/A9iEkKsXdf0ilmRnvvvksky58zfKwS2afotmAXaLHXKXCQZyBAe4/ALz6XwLt8qQB83vjYVjyBU3ljea+VUuleGG2grUmd4zjrBRU1O50QM+2DwjBStBqtpQLNaSDw6siqMKWDIwEisRSlsWWgrEWzWKI9PIatF2jee4hoL3Hle6xDxDgMOL29wJ17d7C4ew9VN8dw/hR3Hpzi4NY9XLz1Hi7fehuracTxC0folgfA9TX8p59Au4BZNaN28v01WQ5GjTFGTP0Iv+kRVMAuBkxuAExEP3pqxOQcmqpC29SIzPIEBXguCnMhICoPFSNsY1C3FWzD1mugzas9XqDu5tB1hRhJR6mtSe21fAiAJubPQCXlZPTSYlqRM09kaZH3QPDwgQtaIwegAKAoZS8BZPAO0+Sw2vS4vF5hnPJCJ9IzSUvWVc0SG49xGpkJadB2M8y6FtfXwLDbYhp7dPOW3A2sg1MKs1mLSitYOBh4uGlCN+tQ1R0W8wWODg4wXx7g0aNPsdpLKzKvw2xgZN0xNGCNpToFo2BVTikvZi2OjuZ46d4J3nztBbz11W/g7/72r/HBb36GcVxBRU/BURkgK9HwRsznM3z9e3+AH/zgL/CVV7+E5XJBG4aWIF7WOaS5IUEooDizFEBe1wp3T07xP//F/4I//eM/xq17d2CrDLikcCvGMlT+zNXTzzWtya3RaJoDLBctTm8d4z8vj/B3f/MfMV49JkcnOAC55Thl0sj2LqqI0jrvi/ZKLhvS2IXpPa3JQWmvnoADsHFkv3Zen5qqgnO5SRCtnRQMJADP65IxBrO2o+ZhmzUBENSYJke2fPN5AtoAA3cmHtqmZQClkrNG2xLj3c1mBIhYm3x4eIgQyOYRSqFqalhjUDd1CjzEBUcAuTiEkDWjAkCdWa0VSQ9J5mKcEmiXYlp6EQVkDAPYYuCVZE9gbbfluprROzRdB6Uihr7HdrPGer3OgNhndyPpAJ6AU8GuU6ZbpwJRAPDIhZglYColDZI9F+luZlJB864491LPr5QiAwM+NwJiVHekK9Df0BjHHjpQwW9tDcZxRGUt/DRiwx0zBWRX2qSOsQAVYMI7QOmU6aAeJB5GsSyG72nw2XowuQ5BZI2sHGCSMQYiFSbXc5aFamu09jBVhaquyEecGzW1bUsf5cJrydoYk0lZY6o0xkUOIogk2a5yACxrieNaJM1SQm0sXxtlLCY3ps8BJLUxGmhqy2tcRN8TYA/cHVVrkwJqCWDK4lmlgNpWZIfZ95nBlzHDc5UUANk2NDn0FKRliYXKMSaBbKlll6Clquo9BxoXPNVVaMpMUfaqgrEV4jigH3u0TQ2jFdw4YrNZQ/+OhgC/M3A3MbPZEYKtNbOnrBVPoFR+x+NUmFvWWWulU5GmsEbCEuDGoiCFwDejYzBo1CYvqIA4ziikpkUp2oh5AVccaISQAoa9Ip6M5vm8kTzWb0pLsmyD3h+jfEp+VKQXdT7HPbabd3b6Od3Esk4g38F0SPqMjul3IX6WHRNAqxitl6mrfFewN1BR/C4h+4w80rOHykBfgxjayPcqyHdHUMMXx+xKDKjYJow+quEDW9whYgoaz65X+NLdW5jcBKUopY0QclMi0GJAGreQ7pe4ZShjUS8W0MpATRr3X3oRcaRjPdwNeLRdo33wMm5/5XW8/KXXMDu8BdWv0c0Uqq7F8dEJrrsWza07OP3DP4Rpa0xXl3j+o3/E+U9/ge3FJV1xp6FmCzQHJwjKoFcBm/WA3dlz9GMPNBbV8TH8oobbTQjjBotQIwxrDI4kO6Rhp1qEiAAVqTEJrGGvb9JsL7sa9195gOXiEOhamLaCQoBVFRUXIfCcK4JXfoUQ4J0nT3trEb1D6coSguc0LYNN3pzZWIh0p0bRYq+A5xcXuLq+5hSzeEZTkFYZi7quULcNoqbunP04IgKom5pBScT11Qqr62uSaPBCWNc14CKarkZ0DgikD6ysJU/8ENC1Fe7eu4WqnaHtFvj4449xvbkmVwf25RYHC/A4Nbw+RJ5bebZSYKKVhq0aNG2N+cECd2+d4q/+x1387Gd/hd36abEehQSMo4pYHB/hh9//Ab7/w7/ASy+8iLZpE7grOJg8iaKACiqOovbxTBBE4PjkCP/rv/uf8f0/+T5OTk4ovV0ei1lXCbzzcdNsLVYIqaEgQDTrGrz24in0D/4AcRjx93/97zFMlyg9tlP3ZaWgLDtg/RYN8RfhleQkGlAqkM+9ljFfSFMKZl7Ap05tORU3rAmc3rfJei8BPSaIEugDgxBjUNkKSlFBasve6KVW2FY2gRxhBen8ss45OYWY3JQGAAcYVCwqHZmHcdxrYpPlIRkgEUjMTOVN8gfA3vnIHkc67SzDAdSe7KTM2koGwwdPWYBCYmC5KFIyO+B7mLLfotvmfRooYEFBdt38W/bhZIbB+nk5dnrOar/+4TP7Hj9Dw5IYpcBZX0+2uoYdokxMQY4ZR/hqpOCKQeBNp5KqtnAjOROJVCNpqJ1L01kpcCfq/fMqs0QC3APLUpXRcKVH+o17QVvtvvTN2oqDMHa54ntrbM4SaG1Q1TWkfkMCDKS1SySKOQtSOtsIvoohUCYeucFTblqds0wxuKKLsBCYdK8cHzONrRvFr+l+e8f3IBemSxZBcKRgLQHsN++zHF/mTDkvS0en8n7S2GZbSnmQPKbF1U/qBsDnZbSm7uUuYBoHbDdr4MZz/22v3xm4p42P0DKquoLhojsVI4NkKgwLirpeEpBTqekNx4mkh3UO425LD1Wa9aSNKrO2kUq+M3AVuwsB4Io11gF7kajmz2ut0cwWqLqG2VmdGinRcYkF81pDOYcwjZh2PZTzXATCOt5MpX/+DUoBAvK5F+edmo+WmzmQgwR1s/gWidmTRUeAfFpsggQEwgR9diGSWyUBRAIAN57tnj5NHkGOR+jzxULuma2iJhQxy+HlefDCB174oHgxhOKubFX2GOfzm3zAxWqNKQTUDPDpvkTW9E0Ivk4LjXRCZUNM+o7KolJzAAotNI5evAcMA7QDwpMznK2pI6mua9TdDIujA5hQo6k1jKkwe+0Q1o2Ynd7G8Yv3oIyCP15ieXSIxeERhvffg65rTIsl7P0XcPDSy5jPD3Dx/AmuP/wQ1z/6Mfx6DXvnGN1X3wRmc2yen+Pxj/8Ru+dn0McHmN1/EcNqg83Dj3H2+BGga+i6xsb1uBodoqmxXl3DTh4nswVeuXOIN+7fw/zFF4iFtxa6CrCqIX9lH1in/NnnSpG/4+JrDRUNg32yIvSeWGUoYW0MtFUE8NmHfYyUutz2Ez598ghDv6PFWxtUlvTDRpMlnalJrqSNgXLU5rlpGxweHmK5WMA7j+1mh+12g1lHDFDTtOj7kTJvvKDFSM4Hypf1JkDbVrh7+xjHB8c4WZ7gV++/j6v1RQrGZT4QwJZFVECuZNVodkUe6FppWKtxdNChe+M+2u4HqOYz/Ohv/zP69dMEGChjFzE/WODP/uIv8G//4t/h3t27sHXF33djOeB/ReT+h8FTmKYUOFui0Mw6/OEf/RH+5E/+FCe3TlOWRd04WG56VlwDv0H9lmUJIF1201o8eOEEf/7DP8LVxRl++au/BkJPNQwK7KxB64nRprhPX9xXCcaFgVFKpWJQJLCtPpMOFybOe7/3XAVYJtmIDtB8XGH5JdXfti1qU2O32yXAXVVVWkdLyQl1Zs2aWa11kkYoBiwAWFdPUgjNUrqyU6Ow9SINEDAnbGkIMYGj0sddrllAl7DNkdlpay2mcUxjBKCgn/4Oe4Cb+mDQPR7HEcYaOF906xx7yvbJ+yXwLPY4CKWnkNj4xOorrm0KmRWNQhBKbVAkOVwZENEz35fTJEKK9z3aWwDqe6LYRYfqtUJQiNEjcu8FsnONcNOIod8hKo1pZGBHRy2eM0D9WALIyoeasKl0/pk4lDoB8D4roHQcx9ycSHTUnDnwPrCTDLgZXc620Fxm1yD+vNYG1tjEjBvOcBhtYAx12CbGmpvv8Vjx3nOhaWaz5dmX2Q6ZK3JvU9OvOtcHyjMFIipbw0Wf5GnykmsvJTFGa3aVycdP319YqOYALiQnpXLOleO/PIb8kTl381xKBr7MOIkci6AwG2lEqp1gHpaa43Endc2S7BAoEyeypd/l9f9AKqPRHizx6ne/gxe/9ApQKWqMEpmVZ2W0AsBNFKGgYTXZG2pEeAU8P3uGt//hx1h98gR+csmdZG//EdY2pn+mn+9HWzGz5wAg+nit0S0W+NYPfogHr7+Gpq7g04at4BBgmIiJ3Hxnt93i+uIKZ4/P8OTpE6weP8G0XhOAiMjMtoBZjg61nLvKDjCy+DPllxukRNlu87+hVKr6T69yUBWLQBoFEhTw+7QAHPmcbP7F4myYmQ68QOVbmiebRNXpqXPRYXl2cn1sCpSfhyy8kdL1qXstH5/sqYAYPaWSFBhUUhB2eb3BbvKYt7MUudIV01113pGbiTGUbdFc+a5pMZI/wTl4HTE7mCHcvwPfj2gUYGqLTy4vsVlfYRx2GPoNWh2g2g7KGNjG4ujLr8G2BzB1xU2ELNSxwck3voatJdDfvfoG6lu3UM1m6GZzVEdzzA+XaMYB08UF2ldeQPvGa3BaYXb7EGp3BffKAxx85SuolwfYrS7w8U8rXCFidvcFqLbG6sljaAcYXSO++y7mlcerL93HN776Jdx+9TXMDo+hNHvvcqBBDUwCtDKcjQCC4qr9SKyMUobqH1VIfr8qEounjIWyFaL33PmOAytexKE13DQhxIirqyucnZ2nZh5WG9iqgjXUZKmbzTC6ibosSptnAHVVoarJ+lPGSQgBlrXwVU3sT/AOw26HxWIOHxVJCSJn6CLBX2U0mrrC0fEBTu6+BHvnAX7247/H6vIpQuSeVVoDwUMiYaUKZg4iKctAtUyHzmYar7x8C7b6I4Qw4kd//Z8xbM85UARm8zm+/yd/iv/1z/8nAu1VlebhzbmU5wrY1s6ntL+AcGUVvvrVL+NP//TPcHJ6C6poGCXnXq4R+3w7873lPM6QAQLsaX5ENJ3Fyy/dwp/84Ad4/OxTnD99mzKUvEaVTBfhli8ucLdGuhnymisFhSztShZ+SnEmLyZGXQCHAGJb5+6JeU3Pa578EbAu/7a2Qt1klh4AbF2hm3VQSuH8/Bzz+ZxqPDabPWAhbJ9JhZFA3/dYLpepSFHOSRxl6rpOQFU06qRXtsX6SzKDk5OTpPnNTh06fSYFPDyeKlMhMtAzSuRxAeM4IcbsUAM+J21rKGUwjCNCTxLAru1wef4MSlEGz6jUY47XML6nTLApxhJaacq4MijSWsMqm+S4tF9xseLkWOphPgMcKaiKKcO7t//GQE5qkbBACD5nE0DyNxWA4ClLrBSx1mJBO+y2WBweIYSA7Xab1hQJnPrthlzKeP/TitZZ0UOTo0w+V5LIOKqPGAYE79EPI8/3mCSmMTIpEAAXyH3IhwCjqgT2p2lC0waomG1ACWQjBSDWSB2BRlXVsDa7viR6oAgsFbLURLI88iwSvlH5cxKIVtwZdLejYljBfeC9QM5XslMlsx5CwDROMEqhthV0ZVNzJirSrhG4y2sqdtWG+i04n5xvbDGnbkqQZLyUQL5k9fO1qb0/YgUpVqBgCaznc3bOwRWEp9Ua/dBjOZ9jHHv02w3GYfcv3zk1g0agWyzwxte/gm9866toWG8rmFNBkf8qeNNR0uQEMBFQmjwtHz57gvX1OX7z9AzuRpQlryzFKCYYey4TkSs6bEmqSCoEKc1Vty1efeNVfP0bb2LWtrmrJMA2kmLDyBPAe7hhwsV2i08vL/HRbz7Bx7/4FZ5/+D6G1SrJ3alpCbPfOWGQWGIBsEpxkaXYXt64pwIk0t37nE2fLmnvkyj1+HI/xLlFWIU00Ph9Gip3qxUMUDAoCbwrxQXCmdFL4nYU7IQQgIGYDIrqY3LlgVEZg8QywgYAT0GQyYxLjAHXmy2udz1OlgcpmFHs6+p9RAVywQjlpL9xsxSzNFCUSq7aFsuTE4RNjze9xvXVNX7x93+PW6dHqFsLu5ghBAvjDXz00E0N03V7zJipKrS3biP2GygV0d29jaqbQ1uNyU+ougbt0QHaF05hThboXnsdi9NbGIcd4IHlSy/DzueY3btP568dzHKGV/7sh1DdHOvVOepxwKyaAVcbvHj3Ht68cwuvvvICTr70IubHx6iaBoiU/jW1JamD9wjaQAcwOxOTZh2g4IlsM8nLPj0Dpfi91PTJI0IaBcnQ0KaiTqkuwIWIJ2fn2PUDAGK86qpGZQy6rsXdu3dxvVrzuPPwLmAYehht0XUdjo8O0TUtgndQCmjaBk3bUhqdJWSaZTqUhaMBZrhISikGTZEC8mbW4dbpS+juvoLBG/z07/6/8OOaBqSMC4VUtJtXB9mo89iU8alZbtO0FV66f4wf/tkf4urqEr/+yX9D9FvUVY2vfP1r+LPv/xC379xNEoB/Ht4qBiAELqQuVWmFk1sn+OM/+mO8eP9FWFvnOSlny+BdzpHYJ0ebXvTQkTr0WVNDG0vzEKyHT/g/8vqkMJ/V+Mob9/HNb34Xf/1XT+H7CwRHAZ9myzhlNO7cvY/Dk3v/7JX9a30lO0YGcKpY0xCEpWTrt6oCoJPrSylpmc1mcCGzh8II9n3PxzXsEkYgbbfboWlbrNdr0jxz0Z8w7tPksNtR0zIpyOv7PjGK6RhNRz9nmYsxJtkxJsmMorkwm80AYC+wEAcRgPS1QHag6boO220ughMwV1UVdrsdFTYyCxyZ+S27Q1IjttxMsW27BJaruoata1ytt6jbBpW1UMqSh7gmkNW1NXQUly8HICZZa4ySIMtklYArmRwCdr33qEUCxKy4/LzUNu/LVpIAAwrZ514n2S8zoTFyUBcYf6j0/BAVPBMgdd2Qi4wfcXV+hq6bp3oKeSYASyyisJD5eIDghBuSFbY1Hgb6I8SgPA/SjZONpBtHdF2H3W7H10HHrrlOYrlcom4aNA053Dx//jxlLaqqTmuN7MMDW0ZS0EEN38RmURh3rXR6LhIoCiiW+WMUkxV8PrvdDhNHakGIPs7WkhvTNnV6leAAAGazWWbCYwAC3Vc3DmnekSRmRKWpTsS5Kclr5ThSpB1jTO5OYpcqsif5HslKlcBdsEvS8KdnR+PSOcoYuMDSVAARVMdH6CsAIWByEzzbXg/DDv1ui3HsYTTgx8/Hwjdfv7ePu1JUsTtfdjg6mGPeNFBpD5QdCUidz8pjQCGoAB8jet/j+HiZGzrITQBPLQaEiW1mZJykHMUrFRbwglyC3wigrgwOZg2aWY2M7uj/opLom2hbicKPwgFeuH8bX37wMj798mv4+Y//ET//m7/F9uyCUx0ZqeciWKSouZS0iGRGFowUQZZsO/L9ShCjyCqUg+dmejNda4gJqMSk38+gPzf4SQ8kHVP+1qx/1qkTJKV1ot/Xx3PCgb6rAMyGu30WpCHjfll0Y/GdVLkRxRpLK0ze4Wq1grp3L0e0mnTuzk3wziJYk/R2MThEZekaOVjTYLcMBiymqVAfLzHfngDDM/zx4QHe2Vzj43/4MZ588gm+8YffQVPdgW0UAgK8sWTJGPjaJQCyBuZgiagMlK2Quv9KNsRW8IsD6KWGbmfUcCcoWNuguXUMXbVQ2iLGADdOWI8D6jsHiFHD9yPazYhjHXFXazz41tdx64W7mN85QnNyANu20NpQRzlFbLQG1wdo6gwq9o/0/Ay8kbCLCotTpiptKlSsQ5kPxU2i6Jnpiiwmp2mLECO2/YgnZ+e84Ba2eJXFwcEB+mHE9fU1lDWwyvICTyzg6a1TnByfoG6a5BAw62aoq5pZJ1oI68rCuxHXF5cwKqKpTGIcfaFXNcZA1S26gyVO54fwscGTTz7C04e/IlccqZ/RBWhj0Kz25n9mg9I8irTntp3FKw9u4/t/+id49uQRnj/5FY7v3cIPfvADvPzgZdQ16Zdl8dtL9+fDp7lMgXVmaIy2sJXGl778Gr78xpuYtbNiwshf/B9BwQXywn9+8RznF89xeXWByQ0wCljOOxwfn+L0+BQHyxM09QxK3ahy4ilpDHBy1OEbX3sTv/z1z7F7soZSFESrQA1B7ty5hf/z//g/8OYbX8cX9SW1TNaYVP8CHjsRzPAai6puyDZOA9vt9jMdSAkgZ7cVCQbk93VdQRsqPFyt11gsFtj0O9R1DVsZOD/BBwco6iLsY/Zll2OI/EWkNsvlMgH9pq7TfFVK4erqCl3Xce8Az7JDOjdhvUtt9TRNyQ3Ee5++SywLoTUztmHPmUZYbGIszd5n5R6FELjY1KZ5RJK6Hk03h9Iap8cn2O422K43GIcRy+US/W5DsoBAcketPruny0vueQJIkUD6JEBvGkmGEwHNDh5aa6zXaxi+TmstamsxTNMek+5DTPULdIMzSBPgKg4gGlTo6ZXjaydCZBwHqImceyYETNOQzx0kTYkuYycJvl2MiZEOnhrZeUeAUYMCw+16jd1uB8eZSwlYCCCztjwC3nPznxCpEzLLWAQMb9YbNE0L5z2en5/B1BXcQOPLe0+GAnVNTkhDHgMAk6PCMkegrmpYQ92GpZZD1mTJUAlTHri7l3y+qipMbkTbNAhSZBsCXJI/7SsSnKfszl7dA49V5xwOj06w2W4RnIfRlE0Z3URyGmsQXYR3PsmDSqZdglvnXBrXZU3JnlZf1hS+rlJuU45ReU8uAQcmR/NqGCdodhqTwaEADP2AzXqN3XYL53wRpP7Tr99b4w4BfpFSSHRdUnBFJ6sDuI8VvfJFysSIMIgsRc0ODHsTdK9rHy3CAnwJoBUphUh1mlGRU0fp3IJIDiQhkd4R0zTAT55BLbHu4jFP1dFUFLloDGa2wWHX4PhojnZe4ad/+d9w8ekZZREYvQo4zSxZTBFlOeBK0nzvfgKpfa8g4vg5K1kJ2Pkr0+flfpHnKltcstONvIVABIUQmjMhJZOfJC6KbdQUQLpoqU7YByZBZRm7Z45XI0f8ka9DpYr3nHoFB2e5aa2iIkQf8OziEhMDuQAC9MoAITq4aaLKfe/h3Ait2Rs2aujIVe+gh6N0hK4sVG2gmwp20aFbzqEV8A1zgJ2LuPrkCZ6v/wbu/ileevMN2KMTeFuhbg8xQkErKhol3VckwNzMEBHh3AjlSfbgAtl52fkSIWpinMPAiwzpyBWAqd9g2m6wevwEF588wd3qFG3v0Ty5wEuocLpY4tZL99AeLtEdzVAfzmGbmv3ENWxtEwAk5wFFIE0zw64CjFFktekdRI8paVmYwh4tRjpvtjckm8OYC7h4UE9uwuNnz3B2dkYsr6Fusk1dYd7O4CaHy9U5JuegycMVjj1t58s5lgcHcD5i8g6u38BojbZpUWkLoxW8mzCNA/zosVmtcHb2HPAOB4sWt09v4WBxCF3ZVCeijYGtG7R1g4PFAm+83ODrX/82zs8+xrC9IMcnLk6PIWsJadxqAgrqsxruFCiCmPf5vMWbX3qA73z3D/A3f/Mc3/nOt/GV195E28zAVY9JU7uXuUphOvIc5wBag90ZYsRyMcObb34ZB4dH0NIcp5zvPHd3ux4fPPoYP//1z/Hee+/g4ukzbNdrkihajbZpcHJyhJdffRFvvvE6Xn/5TRwd3oExzY10AAGkuqrw4r1beOHFl/Hk8TvQ2iJGyoQoFXH77iHeePUFvHT/Nr6oL1l3fQipuF0zQFFKITBxMgwDFTfHmNhC2cSj/IxriUqtbbmhizd61xFLLuu+cz6xpPP5jJu/7JNLzjnM5/M9//UQCIRP05TTLfxeAe3ECFI3YQkw5OelmwxJLxzKQmQB7jHSekayDAIMbdtSYylrEWJIYOzz9MwA+dmLFZ8QbwTgRyy7A1xeXiB4j7HvsV5fJ5/uqqrhp4GZVZDNaiBJpuieBeiWEg1hXSOIrdz1W+x2Pfp+wDhO6d65aULdNJStsBaL+Ry2onMtAZxkguXZkiw0YwFpyqXYPjJ6j8ga68mPdKzCOjSqItONvCbIeQv+Ia087fukM6f9MTgHxTaSu77n/gExPSNTMPn5WRry/1YF+ceZpajZxncYUEGleokYAltx0nv7gWQkTdfSd0TJxND9sdbCR0cSVHbHKT3wJRCVsSBBaPlH5Dm9+NEXP5dnUkq3jDHw7MpUYsNYfC+DMLqXWqNtqd/BMA7QOiDoABVUCnhu1nWUkphSMrYXKBTAvJSSlZ+lQJuvkXElKRANbF1hO0wsldRAVKirCptNTxsUdxWOIaDhrMA/9/r9O6dqKRbkXTGSdOF6fYX1bk0LGzQXpzJ4V0gtk5VS8Crg/PIc6+tVYqJCcTMZIdIzEZP14leE+bKmOnLgkBZEfp5KwD6D6xgjptHh4dPHePT4IXwYaQMPgI2U9mxnHZaLIxwfHmG5OEBdt5h1DV64fxd/8Ed/hH6zxT/+5/+OfrXl84p5cd3H1XzjhI2j66BpxxaN7MWqFTvwBF6w6IYnJp7J6s8+j/SzmG5MZuqKQKd8fnwvk8xo7xCcGZAsRywKqOQq5DgFkJfJzxw6s7uZhTSKFjpf1CGkYC5SRCXjICLi7OoK680Ws+PjZF+odJUsq6Zpgm0q+BAwOoda0bODDVCBOWe+OF1paG5wpNsKuqnQxRma0WI+7nDPNkAfMD28wPb8J7BHJxjqCvHLV2hPjmEbS6lwY+GhMPVb1FBwiu+FoaZGARrTbg1s18RebQwtjDHADSP8+opScNsd/GaL6vwKr24Vbn30ENUYYOoKiy+9jPb0EPXhHKapYDsq9tSVRdSUGhVPb6LKZYMjAEnOggoeHrvNFpObAGhebMlSi5p3BIaWJJERDwOynWOAr2jMTtOE9XaLh59+mopSyfLNoGs7WGux2mz2mD9X+OseH59w6pL8fYfRQSuNpibZT3B8rn2Pi7MzhOjx6afPsN1sUNcGd+5c4uUXXsDdO3dh65oCIClSqipYa3ByVOHNr7yBn/z8NnbbcyhFLKKOPBYR0xqihHkvGPfy7/weyjodHc/w7W99FZvtM3z7m9/B4cHhPkOfPlMcs8iwAWC5oBAUAOuAcHJ6gldefBVN3UIQ9s14fRhH/PLdd/Bf/utf4u13fo1htYIfHeADotbQVuPSX+PJw2f44N0P8OEH72P1J1f49tf/ECfH97O+WQGiA9Y64mDZ4pWXXsZPftIisB5UZH9GU8Aa1e/G/vyrfCliZmUfKEECUBaGUcfUdtbtMW9COqT6mzR+xFElg/jAwXnTVqyhz8A8BrKAi8LuIGd55Bgl0APICSnEiLqp4FzYAy179o7GwFiTJAq5cDNL/ORmkCNMzk6nTpcS1PJaLPp55xxl6hik0hoobGUGMsZmoGaMSXuwUsDQbzH0IxCpgFNrhbbusLm+yoGuAkgiwoBJqEg+9RBovHq2Eg6B7C7HacA4EjEy9jv02x36fsDQj1hvNhjHCVVdkwc8aCw8ePAK6rpKDfXm8znXBSg0jWRa6IvHcaKuzNak5x2jS2DemirF5NLtlbLdudtsftZUB5hqvYrAx0di2hXYZMBR99TddsP2hUXhIwNcmauicddawfnseiX7AwFFS02fxhFVU9P1I6JuGgy7HYRxpHtEqIHq0BiUpmCD9gstUpeCmabz4e8Xe0q2ggRIwmuMhouR93MpZgZCzDr/XBdIhcuaa04kKJJx7UFNwYaxB2S8IMuqpmli73vCVqbKc608dyKIPZHCcv94TO4VpvK6SMWvATBcC8EELQUFBlPwvJfS2u+8w64nG+bJTVDRoqpo3krBd7/rMfQ9JpZD1fZ3g+S/V3GqTCbvfJJOIFJE9/YH7+LtX/4Kw3ZDgyeSZkyAJOmrZeEIGPoBTz98gmkY90G7vLQ4ymR5h2J9u+jc9zTOCbRLSpzeFxDhQqBBqYDJOXz8yUf47//xP2J3tYZVJrnaKKtRzxrMj5Z46cEDvPblr+C1B6/iaHmEtrK4f+cOvvbd7+KTjz/BJz9/GwjiWkH/JxwMFXdJ0EDfyyZSDNIVN4jJn0rZCbbYilDZog3gLMI+uJD3l6z1TXkOzTkB7UhBwM07rvhC5Hqyup1kGPm7VT4fVWQKAjMXkA6ztAgbbVGZCoPvs6SmON90DYiAogVjtd7iYnWN28fHtIZryt/4AJgABOfhnYNpayiwXZsJUNIuOkQEPyWtvakrVN4jzjvEZSfDBVFTdohqMix0rGA2PdzlBu76V9gtWvgYYDUQKg2HCO8GVFWHdrGEriug6xCtgXce07MLDM+eAzFgu9oijFvMZ3P4wQHDCD+MCMMIoxQWATiwDXQIsMcHaG6dojpdol600E2Fqm3IL76qoLSBsRWUNbk5GLN50qFNQr4QQZIi7yGscNTkXa2l4xxIS04bUkTUJnXjA4jRDtAY+hHbocfT80s8ff48Lc5aAW1TY9F1ACh7g0jsXwgB3jmEGHB0cIjj4xOAM2Hg91VtQzKZqcf15hqT77HZDHj48FN0swbL5RLnZ+dYrSZstzsMPXn83rp7D03Twpo6SWiUVrCVwf0X7+Deg9fw/MkHUMET8w/yr3dS6X8DFu+DG+wFpjJG6triwUu3UFd/jpdevEXPXMYthCBAmlQ6zbcM3WN+NwI8nJtQ6Yjb92/j5PiUMk2RCr11kWqbnMN7Hz/Cv//3/wFv/fJnCBM1bEEIUBoIqsjshYjNdY93fv0RvJvQtQt86xsLLGZHsnjsBc1NW+H+ndto2zk24yVtpoE2nYvLK7z14du47gd87eWX8EV8Ka2Sgw+Qn2tpdShAUWQmm80mbdhizRvBQDoIq5ezegKoRA8uICbELKcByBBgHLKsQF4leC9ZPclvGmMQJsdzSzTHZTfPTMZItqBs356zApElIuIsk4OOGMiIQEDLOI6pq6oxubU8h79M4kion9lJYV+zPhwY+5721hDIa36+4HIWmRHZLYbYf8XlByrNITp3vkeg+g7nJoxDTzLJSLOKCl0VEAL6XU+dMkGZldFNOL+4wG4YsVwsECbqHHtwcIDZbIau69B1LVnZ1jWMysEYASnFYFYKOzOXGEMoJK/7jG7aY/nn0vslxkhOI2AwmGSfBFjHYcTALHOqa2Gs4WPMXer5vhCYFxWGyHZjamA5TiPGcUA9NVDWQDzyvae6J82BZlTSETpAaNcYAwx7sEOVgUdMY5iepYg06dn74KFMxYQt34wo+IeCX+qEWkhQIEYEHDgED60zE58IFQ4QiZhCuo9aK0xT2Cs0VUARcN60f+Q6jsLhqFRLyGcSkAvcwI0HAI17ssmsmgrTyBltDuacI3mZrmi/Kq2KqU5AwU0Txr6HGydYo1mq/M+/fk9XGbUXfWgBeyHg+fk53vvZW1h9eo7gaZvUAAw0M05SzS2xG00AN+XihZv6bc0TRHN1q2L6vtTEy8MpmWCJ3MAT2QnA5t8P04j1k0usnlwRiOHjaaVgtQaMxsOff4CPfvMx1t//Pr75zW/g5OAQXVPhwYv38Po3v4qzDx9hcCuKthWD0XQ+YpEos7vkwrMTTRocwlArlZli3jTkxAWAlwu/DHC5dyjvA99LrTWU1BGkgo/iXD7D8SF9XmmVzluDAXT8LFtfat9zABDTd41+IukGLyomRdZZh6+1glWAtgY+Ah8/eoyX795FrVsYzZNGk3bdB2J1LafjQqQKfWXILQUhJnvKyGy0qSrYroKfNQjDBDgHBE7/RoOoMlvUtg05rTgFN3iEcYCyBqG2UAEYzx8D+gwjImAN7OESRmlY59FsHaL3aHdA9BZutYJf76gpTgywFInANBXMooM+mKE6OUZzdAA9q6FrC1NVUMbAsH623MciDRjaMDj1GLUCgspA3oM0+MFTkM0RG9USaAJ9IVIBjdKgJh7CAlE6dRhHrLYbrDY9np6dJ4cYbSjNvlwsOJ1OjT20z41qRhdQVRaHh4eYz2cYxgHz+ZzT7o70v8pgdTXiybMz2KrDMDhMzuPq08d46cED3Lp1C48+/RSbTY9Hj88x61p0iyXa+SFsZWGNTYucNhoHhzM8ePEVvPPTJcbdJaRmhDaCNFI5kv4sURCChza2mA0E3LTRODqcYznvUDfVHkOfCHQGbgSkZCNLyaR0PO9cYtGUBW7dOkLXdkiQOqq99e9qvcOPfvoLvPfuu3CjQwye7TFpDoYYU+BAw0rBTQEff/AMv/jVL/HiCy9j1i5Tej2mb1KwVuPggLoD71Ya3FABylR4/OgM/5//6z+haef4f/0v//vnrg//2l+lFh1g5zHW3CapC2c6y2K0m8cAwPKNXIineFwIEKc/mcn2yM2PBCA5l51OHNvGtW27910hzemIqqnpWG6/vbp0sMxSHAq2S8lK9uHWiaWngGTfhlKCgPK65DgElJACEgGJyT0GgMhV9/ZhECjxMVJ9gVFJAtA1DS7Oz0i3bCuMbmLAVAIrIRdUIr28YxefkM+FMgxUKGmNRdMAShnEALz0wgyX11dYbbbYsNxk1/d466238fJLL6GuKlxfX+PJk8dQULh1+zaM0bh16xQnJydYLpf5WRWe/YAEfhaa/+1VYYtIVDdj1KLuzVNWh6y9GBdIcMWfG92E4Om7drsxjQkphJRDjdOY6g5yNpwJK0OAObLsUe7ZNI4EILdbjG7CwcERtqyp1kqBbKUDjDVoqgrTMDCJQ2t9VVUpQKACzhxQyM+EWBXLxmEYIGoBeWbp3mkN7ykLrJRKEjPpwloGbAD1CyHFW0jjNnAwKK5qMfg0vsuA2HsPNcUk3ZH5T4shBTU+eljb8PZAkqa0ZnJgJQ9TJGaRpU+J6Y+5qNg5Uhc4rjlwPuD4+BjjNKEfBkzTiIprBMZxSNmkGLC3/v9Tr98LuJeRZPAxbY6I1LIiDA7DpocUyaUOo8VgloGrmC0DPyYpgkiLpwDR8meQiB/UFdIo6RaeUhci74ARNiDry8Da+0ppatAD1vbysX2MUD4Co8dmN+LD1VsIk8LBwSGWb7aomgYHizleeekV/Ob0GJ9erSFtSaOA84SyIHs4pHN4BEgJHqnxQRAgwZ9XxWfT+AVJeaJOIXVaxEXukO6VTOTi4RsoLtYEfOGkkb8r8vMi5hsC1kskHvMiFBARGC3sBxGFJkzgfsxaPLk3Ip8yAHfYDdAIMAiorGVv2YgPP32Kr75+ia4+gYJNizvJOyg16EZKbXuroHyAZj1i8I7PWbYSKnDVTQUzaxB3Qypkjg6AttCzFrZp+X7RmFZRw9YtgqVubpUyMK1Fe6uFmiKUreE1gFlLwdE4ob/ewg8O2nmEKcA4hdpU3CGVx3jXwB7N0dxeApWF6VqomrSSypImUzR/ip9RQIACMWSqbIShJcXqqFp9csmylK2I07Mz2jKAEbCJzJBzbYQyFDitdzusdls8v7jC2cV5ksJUxmLetjiYzwAENE2LMQJqJFCqwDUHAlqcw+HBIY5PThADYG2N2lZQyuBytcGzZ+eYzefotz1s1WDyAZ88fIS7d+5isTzAenWNfjfg8ZMz3L93D7fuaBjbwtiaMzH06uoaL9y9g25+gH53AaOoHTfZK8r6E9LUhCKG28eI0TmsVldYtg0OlgdQ1uY5rCKqyqKuZSzlqQHQwr7abbBaX+LoYInl/BAmTXx6dsLMW8/yHQXYxuDwYAlbUX2CijqxnjGSbdj55Qq/efs3GLZbIIZkJYcYoWW+RapFiBzZxRCw7Qd8+OFHeHr2BPfvvgKjiDVU2A/wm7ZC185S8G4MWVsOmxGPPnzK9+6L+RLQk6UFBG6qqoLj+o9kOchMcznnJCVPhYSu0L4TiIjBJ7cNw5IV5yc0bYXJx+RgIR0euxk5tWhlUOnsMW2MQd/3aNs2FRQqBozWWuxcn8DINE0YhiG51AjQa5oG3ntcXV2Rd3xdo23bBK7quk6uMN6THreu6wTuy2smT+mBmuaBxkld1zDGYLVaYbPZpHOVYx4uDzDstri63CBEaramLAEyN3kM/YDdZoO+rlBVFZbLJVbXF4nEkgCBsgDslgUNJqChQB0xx5GkdcF5VJUFbCTAZyyMqdDNNGbzBcbRoWpb4OwMI+8FXV1juVyi5XuhFVBXJMVYXV2Qe0u/w+XlJRaLBe7evUuBkAetByxVLDMaIYTUNVqY6LS/AnxdkTwYfCAAz+s2NXgKUEYBIBnONI0YxxGbzQZStCxOJ1m+p9k6MjsmRc4GKZY+6dyUgTMPwJ07d3F6cgJT11ivN+j7HrdPTuGcwzj0LKWM2Gw2VKRcV7Am26KWcq62bVDZCuv1OrnNGMM1XNOU5sRNHTiNvwmRbSmleZ9o2H0US0wCxMSOCz7KNplSgDwNI6QeQutc3FoGWrJGipSMsh2yd9J6QPInsqqWDFGCUAVJJnUgSili0AMVSfswYXt9Td9tDZwP7IQmtWIRF+cXqJqag4YKi0WHzfoiyYCssbBGo6n+hTXueUHMEVTSASpJR3CUDnCxZ0zseCKVigOFz+lEuvfvAszv/U5zG3KF7J8OcBFlZpbou0O6eUI2G/YATwx/5CIzBYgOVEHBDQ6P3v4A7//qLTx44R5O6hp1VeHW6QkO7xzh6YePUrERq7vzPaGLyJOZI9L8nRxx8ATTYqGZzp/+Py0IzE6T7lLOna7r5vZ6k3UXDV4ajZFADFnHqVRMAYgbQ35gSROPmO5v4IlSynKAmNh2Avvs7HIj8JIxEEFsKMUjEXUterYRk3Pod1t88PgJ7pwcw4C1XyoCwSFMA7y2mHoGo1AI2kIagkguMyAvHFC0AKtFAxXmiK0FNiPiLkBFAzubAaaCMhQ8RKWhmg4wBj5QtO4H8o83S802hhW5ZAZi5f1EbchNXcFzihuVpUZlIcDXmlj15Qxm2UHPiFm3bUcWlE0FW9fcDZGeAxHEtNhQASEVkIZpQmQmRvSOznk471j7SGNLafa7Z21TjC6B9+CplboPgZqQxYAQFa63O6x3A3bjhKeXF7i8voKk4621uH37Nm2c8KibGuPVNTHvhtxstNXoug6z2Qyz+QyHh4cwxsI5j9lsCWiLYXB4dnaNq4sLXJ2fQSuDoR/QtR3OLy4Qo0LVtDD9CDcNWG17XFxvoKDR1B0qW+0VmNXW4NbJIQ4PT3B1/jHdMx57JTAReQGnuBBjxOXVDn/7jz/C8SziO9/4Dk5u3YO1NWWZ0qzMzDbSPY+4PDvHX//4b7DbXeDPv/8/YTE/+Mz83eNQVAZDdV3/1tRoCAGb9QaXF5fkKhEjb45UeKwQsh+8QhoHxMQGXF1f4Xq9ggselZGM2P76aq1FZQwMFK0FRhct1XmN+IK+hJ2WNcpaS3IzRTamwsaBi1aDz91FJSMaQMRDXWV3IrrHHlGRe0RKvzNJMZ/PMa63xHBqvTf+8vflgkYqqGs/wyZK0NSymxSAxLL2fc/nmQsDY4y4c+dO8hAPIaSOkdcMKuq6Qc32lKLnl+sVYCTgXZh158i+0hhD15YCgFzMSs4yNOdljPXDDpfDgMY2VDMB9sUfelxeXkDxHuIDEphVKmKaHIzhHVyYB4C96svC4ICum2O5PMSuH0jjzUHVetujXSxRtS1m8zkW8wUu55d47Uuv4fLikrMPEU1lsVwusVwuYa3FZrvFZrvFs2fPki2mBEC2QgqoBFRD6+Q+lkCqyiRWyfBqTU0ClaIVxfCxQiA5hXc+3Wth+mUMA0j+5vJcyj1V7EKBbFUYPQWWTVUjhoDz83NAKSwPD6GMxdHREXr2h/eF5Eaad92UmIkL0c3iZLkfpCdHGucxxjQumqZJnYPFclSKxGMM0NxzAZFcYGTOlN9jTJZlpZ9H0djTPinAvmTXCXT75JTjvSfpZAiMnwK0sslhbU8iU7yotoKKg8lpSqUO8U3ToJ9GXlMiBJU6F2HrmlyPAmU0jKGxu9lsEJ1HYBchZeh38rz/udf/I417YF1XYKY4aCAaTR0dlWUXF9I6g10qRPOsgGRvJcA8gfqStRVgC3xmgSHGCcT68nGUUmyLx4yvMEsBxdZLVm/SOZUY72TIkV70OOmY426Hhx89xGq1xdERuT90sxqzwwV0ZaCdZ5BYnLNGAgUqxs80MlFQybc2TcD0N0hmU7heRCHGQyDpB2+ocspRnC32voQ6BAZQZz9xnZFPS7Yk3ri/CS1K9oABoOQlVORheSPoKqKnxOiW17eXCVCKN6MIDY26MqiqGsPQY5pGHvzAbz74BN987RU0M2p6oS3JWTwAMwW4MGHUPQEqreC5y5sKgTZXBDpvHhNaKSpwnAVM4u9qImJQ8HBQHgC7NKimhWo7RGPIakorKO8pHdh2UFUDW2k4HxEuLuGHHtEo0rtvRmpj3VTQTUOsinfQywaYN0BtUHU1SWGshaotVGWhTMUMmIEUwQGRa8ADoKioJQSy0AI30RpHh37XwwXHzylFioCKCM5TtkYZ8mwP1IRlnEZMfqIMlmNNXnDY9QMm73GxusaTs2cYxhFGK1SVQdvUWB4sEacRpmoQlMLALIvWCm3VwmqLpq5xeLjA6ekJjKmg2DWBCo5qXF8PuL7eYrvewbMd2jQOaNsGxlhsNzuYkSwlDTP3fd8jKsqC2Kre0ysapXAwm+Hg4AhKGajInrw+FPOtqOHgenBE8mZ+552Psbl+D15H/PF3/hgnR7cB7kSYRnmxsMcYcX21wt/9w4/wn/7T/43XvnQf8I4Ls2Ni21OsrEDBINubGa1SOrb0sC7nU5gUs45cdG2oyEvFCBVYJ1pMPQkUqFEcnbdhCRgdUsYG/dtHjwA5Z5UkcFJLdHPz+iK9BECI1z7VOdAmK9kj6aRtrSXZBsC1VbQ2WgbRZXOZxLxbCgKtFR9xYtm32y2s1cw4IgW8CrngjcZlTEy5gH/5d80WkKQrzo4qEmyBA1CpbwEf++LiAk3XcsDhoKxBVNRNOoRAckXHwNs5WGsYrMhavt+UT5jWuqYi8GkcAETu3aJIkjPQWkegHckBxccK026LKYDs/0LA0PeYdy3apsE49inwkDlqtGHDBs/zhJ1wALa0pE7MdE9r+rw2aDtmOZmoaOdLXF1fofMdVKTsbr9Z4+mjR2jaFvMZ+Zkv5nMcHBxgvV4jhIDlYkG+/Y56hLz7zjv46te/ntjaME3pGRpjUldTGW9ADp4Jj9Au68KU3Wnk3o4jpmnEMI7Y7bZQMcK5CW4agBix2/UY2JkLQMqSiARMxqO8ykxaVVlETbIaKJK/WGavYwxoaovV6grzdp6CGM91USpKjR3JPWIIZD+syB89BGqsN7HfuJxTDCT3kPlR1zVm3Sxp9aXra8nCe7YCNpZrA3wG6UohOdWI1aQxmhzlHGWJ267BOIyQrrNy/VrrVHvnwRmPkAvBFVTCoG7y8K5HRokxzdGSmCwDcMG/ntdNxWDeOccNDS1c8OiHHj4qjM5xdm7EONK9Mib3kZBjV8aiaf7/wLgTO8usjvdkLM+TXhnShu8t9Rl7Z4CuVNZ+y62KXOQg7DzA7/kcS0XkQSoPJ71HC3OeIgGSZnBxGiKoaFQrgNkrqKwnpz9mTM+sAAEAAElEQVRJ6MHnEXB1vcZ221MRgtGoK4tu3hXsXbo79NlYSlhUXgyLVTHKQ1fFjl2A2whmWtPGL3rzyLZZOR1PGvsyPKHNPgEVBi0o7psAPMXgWmnFA1xkLQLu+b2SfuOgREOVX5e65GoGDlkfmpkquW4Z/FopaEPWSH3fYximxBRDAWdX13j4/AzLF2ckp1HY65bnQoQephSJQ2lUFdjRKLAGUgIWsN5dQzUVdOyAygMttynfjYj9iLEPUG6CHkfoaULQBnaxRJg3ULOWNpmmAVyAGj16HxDGkb2fQEbZjQF0A72cI9YVlNWo4BFbi1BVgNVQtaHzsBWUteQYozVFloaCXEmbR2lhNk2J6Qrec5Gux267pU3VWEhVfwwBUtkhXvxSAS+LKKU5I/kAR7KG7KcRE7dgfnL2HJdXV9BaoeYusoeHB2iaBg7kTLBlJmgqpAZWGsa0Tfa8VprZxMg+visMO7I8Q5RF1WG7Jd2l8xF+nECFZzROnScNtqlqYvaLlGgAUDU1usUSQE5f540Uv+WloGAwDAEfvPcIdfPXOD06waJboO0WaU5JaCzjeBxH/Pq9d/GX/+2/4PmTp/jSl+6jmLgy9ffmJIBk+wXOkpRrYT4lmltVU6FpF8zKy3zRLL2TDoYkO5R1NbAcaNbNcbA8htE2XUHOdakUsOz6Lfklc/pSOivL2vtFfaVMIYPfklWmAjLeu/j9CQjxghnBxY7gwEmZvePmn9O6S04Y9B1iwMAcU07x13Vab2XvEqmMpP+VokyljlIDZDiok06WE6qm5iwT6W2HYfgM6SX/7UNAwx0pBSCQJEX07zlrdVNqmQoPee8wRmdGN3E7JBu4CcoUFCpTQYGCCK0UupbsSdu2pcJS7+AjSRRUjDA63x8JqsLngDK6byT/MlUNHQGraO2Mipyw6qYhcikAfppwdHCIYehRVxW6jro8d12X5BLCnJZ1Eev1Guv1mhn3Cpq7iwJIHvjlGlSywRRAq701KAk/QoCbCOi5aUIMkTLN40B1MFwTIRaDZeZGahLKZyZjJ9kz8sCTRlbeeZJRMskYiyLm9Kw4O+VTF1SS8gYXUrFmKhIt5ovIu8gdTyUgP3FN1M1sjmSZcnCjU4BoVLGe3wDOpIe3iIakKyQRCkniI2O3zEZI4a9o3lPvhOK8KKsk3v77sh45how9Y0zh9MN1M7yGiEGEUsA0OvSjw8Te+padjRw3jaS6jIrlaHTfZBw2TfPbF7Xi9fv5uAOs1/Jp05AtjZJhOtmjKEXNlsTnON441v6mELkCOrNgUj/2eQuSHP/muXkUcVPBInkuVlSRWUwmkqm6GolNjlGAezorqMgpvjG3hDdao6ps0ujTsaRoViVJzB4PLgwcM9Ul9yVfHhUVaWpxt4wsUdG5gBbFgMoBClJzJcUYLxaDOPIklvNRANUeqGwPBtDjy6BbFnDN2ZIAqLAXLElmIj0PQsdQija9dCflPLmQFzz5rVFo6xr90GOaPELyxgbapkJQwPuPn+Dlu2RrZwJlMHQEAt/nELmwzGgYPyFqS3ryyBcU2atWGkpVBloBVilE67mohTdb5RBHDx8nYHLwboBXGtPqCpg3UPM5YCr462tgGhGqCtEYuH4NjDtEeKiDDta0UNEjWkMgXCtitRCh6wqqrqCNhq5raNbYaS44MoY1ucyOIEgcE+CjNK1gAOg9pmmA8xOiMVR0KgutVmQ/hrwBOjdh8hTw+CDSLoXJOUw+YnQewzhhN0w4X13j4uoKiAFWa1Tsvzyfz+DcRG4udYVxs0nAZJom7LY7zOYd3DgCkRvEsGVdVddo2hmabg5jr9i2y3PGS9xuIow1gA4cYBqEqFAp2qTr2QJ1O4PSUrQr4SV53DeLGQU/XiRv+0FyFOBUzE0CvwphjHj8/id469c/w8v3XsLdpvsMsJF/n1+t8KMf/xSPH30CXkqQ4/ji2FKEEwGHQB3zAii70e94/Km0DMinldY4PJzjxQcv4+mn78CPW3itCqtVCka0Nogs+5O5aK3Bi3fv4+7xfQKfspgUa5+PAevdFn2/SYQFQIXLKALvL+yLwaYAihJ4oAjqqNi9tFxEWq/kefu01koAmBlDApCR/1ccNwRmlDlwBmWNiFyiNZWec16jhUmdpikxgpqdJoKAF69ggt1jW8Uhpus6GoRJT5wLauV6JGiQYrpSfpBfN/dZLoQVYOo9r0mUtlIR1Mk6kvxVJJKVNamGRhkNW9UYxx5aUXDveGySq4rfy26gmGsynZTSMCz505o6wShjuZbFQFdEgKxWazRdS/tdiPDThOOjI1xfXcFUFebzOWazGWxFEommrhERUVcV6qZm3TOtw6vrayil0M3mqDU50CUPdd7HAmjfpjUbqX4KSqXmVjKO5Lm4MevXAaReABKI7XY7XFxdQzI21pLrUQgBi8VirzhVikQz+cnjkTX0FBSMiIHqyGKIaOomOdsorWC1Tb090n2PyIGAXEdkievnjBulNEsiKQOLSF2d5XiW5WH0OS6o5bFIwZHo0LNla8lKK05LhuD5e8rak9IUIGMkcZsRjbrWORAuA4NYXGNJLpbzgLJ4EtzL57JjeQTtq+PkMU6OJK0xoDYakyecAR7au90O49ADvD5Z7jHxLw7ck+SB/zt6z2BQQFt2b/g8tlVuqKLdZs/KMXHMip0g+Gc3j1eey+dtLMQs3tCMRnKMCDGyjCaDzASQ0nHzd5bfVTc16roh5itSm3jvXVqgqLLZU3W2Lhh2ntWJwdI6M3+yNkXZLLJ0BwBJjIobrhSY5c7R5P61c4EKg24azLx4hJCtKuXk1P5/S6BB36OTPEeer7RkFi/aGCO7De6zcrIx5OMpfgY8JpRK19I01DmzHydAGZiqIk1eJKnLbtfj44dPcf3lLTo7p2ZMKgOpGKnoRxnywnVTgNEOgMkMRyTAzGETzTJrUiATvYayBrpqEJoJGDzgA7wjz9bgPfy4RVxvoPtL6KYFAm2mziio2pLtUeUouNEWuqkQdExNX2AUEDlF1zRQhjTyqrYwliQfJGmg+0QbOhhc87UGn4LCwIAjpKJStpYTlyEln5XRLSCGGIrRTZgct2Z2jnyRvcNuHLAbB1yt13j0/BkmTqcbrck1x2h0jWgVqeeBe37Gllh0rsM4oG5qmDZvKkaRhZetGrSzJdp2hqpqIE4cyefcM8IFW35FMDmgEZWFaTrU8yWadkb+0VJ5y3+0IimBYRtYAaBpYY4ZvMpYjYpAuzUWRmv02xG/efs3+NpXPsLJ6T1okcsU49w5j48/eYx33/ol/DRAmVIJj3QNRUwOyeQJIBgnj+v1CuPUo+PAIk8i8lI/Oujwza99De+9/QtcPv8QQfFGpABfBCWxAAS2Mji+dYLvfPsPcHp8KwEvRJXldxFwLuDi7ArDbocIAlw0X+g8tKxLX9CX6IRF/yuBsdYaLmYWjZx5cpfEcmMHuAlP8GwnrJKPdcoaamnaoiA9JzwfS/FxqLU8O20YAx0NtCaNtXMEHG9aIic21VJhvliahhix3W7Te+S8jTEkvYkBJuaW7gIEbzLiYilZAhNhJY3JoEVAUQiky+3alsAY75/jOAKe/cW1hoseE38vFVISyzh5T/0sPPUgkO+Ue+587iZL+wvN/RgjtGUwL9kppQh0s8mFsRVgDJQxaLuOMnNKwWouE/cefhyw26xgK4OD5QLz+RwAsNlsUNd17ujctmjaFoFB63a7RVXXqKo6d3qOgRlqLhiPGjEost0tnKFS4Mf33isC6OIuJVpsXwD4GCOur69xcXGBR48/TRKsylJB8unpKay1mM/n6fk559iPnj33QYH/NE2wSmPybi+4m1hH7pJFKFjqEhNmcxOdT2UrGE3k5dhz46SiFiQ/MyJFJaMrUjF5XxmcklbfAGrftlT07+Rxnl19ACpOzo2hfALjMkfF+Ub2gsj3UpzXJJsmWTTPgWI5Lz5vufuMXJBBmUhWiR8kOaKbAhw8ErbnG0DzMMBY2mOCn/DwySOMfU92nCBZHtUCdJ9zFp99/f7FqcwEqkAMLBigNbZC3c1QL5ZJIxgTCFE5co4RbhjghoG0tzEmFiwx1jduYVmEBuSBkF68RybJSyzS5N4TC5DuOblNJE9NhRsbLPJ3gNwxjo5P0M27dB3jNGGz3SGlRrlrZtq9Za+M5dUwA1oM5hIYB0m5YD99C5E6I7tCpAiTRkdmE30G6BSdqnx8MAiK5e/leZLWnJImkuIrQX7kc6XNn4IMfjZM06eACMW182KrgGTlqUF+4pWlLqm7fkKERWVrzLoO3nv0213ytD07v8Kv3nsfy69+GbY2sNrkjEbUCIrvQ4iILkAZYmqj9ySxSJsbg36J3tlYPyhF7G3dwFQV0HggePjJIU4OCIBBReN0dAh+omI2bryk4MndaN4AISBohdjUHICKGwANLm0MwGlNXVkC8DzpJVBV4I3AS3Ym8AYREbROllESMAYOYCLrMhMTRA8EPlDalTYKz+lZB+cChmFEP47oJ4d1v8Nq1+N6u8P1doP1ZgMA6NoWtbGI3mM2m6FtW+z6nt0UPDcPMYiRrM68ixj6Hn7WwiiNmq/XWIOmm6ObLdA0HeqmRbc8wNHJPUBRkOTdACjA1i2MqcmT3k8wWmE2n+P0hdexPLyNpp1xAAPeMDMbSlIPXrR5vpOUJM+hRDjwT7TSqBhoeR/w5PFzvPfRB3jj9a+jqRqgkEkoKGy3A975zXu4eP6cWa1cJEq+VTlULL8rgN2zdMQ0eZyfnWO9W2F5cDudC9I6BXSzBt948wEufvBv8T/+6i9xdvYJZYFCAKVoyVZNRZI82KrC7dsn+OEPf4BvfOO7aNo5n09eQyITCZu+x4ePHmHsNwQaZewYTSzvDWvKL9pLAEFimZkhnKaJ1jhxkJF7nggMWciLNQz4LLOXYkYGw/SlAHL3z8ziq+QSo41NkjUBStBmjz3sug6Tp46qu93AS7xKMg7RWYsjjADxcRyx3m4xX8wxn8/3ghe5hr7v4Z3HnDuwli3WhbWtKpPYSgHwVVXhzp07cNz9NbW3VwRYxU0EIACmLEmAxpGs76whB5+qslhfX5KkoqZ1sqoqDDsL57MOWisKtmxFUq9hGFDbClVdw1YWMSrYWmN2cIiggG42Rzub4dnFGRaHB4gxYtZ1qCsLeIcwDPAnJ6jbFvPZLN2327dvo2kaPH36FG3bps60l9crtG2L23fuYL1eY7PZoOK6GgXFzilCaBUFkxAby4xRkhREq+RQImMihMD3acBut8X5+TneeusteO+x6Xdo2xZN3WA2m+HVV19NdRE921yKw4+MJ9prKRtrtSE3nmmC4X1zHEcYW6VsETHgdG4i1ZSeACKnhKVx5Lyj4EUkWywxGoaBNPQsN5EA2U8ujfu6rtk9RjJRBc3B4ysXTOsEmKuKnIgC710yXsv5WGr+SyIrM+n7kmv5eTn2pe5FiMcSsMs88N7DTx7KaHbE07l2BICtKlhjsetHREwwlSWcDMKRXdugqSuMww7b1RXgHQdGJJNpmybVivxzr9/PDpJuAV10CIkdrK3FK/degvuLH+L621soZqlkkxDWxyjAjwPe+/Wv8fCtdzGst9KxFoLrCU9mHVX5cG++srY5WxgKDhc2HZE9VBm0ip5IUpF7h1V58wSAqBTaw2M8ePV1LA7mPDgc1qs1VmeXCKOnBk6KNtKoVeHbfPPmCfcpABx7zE6Q74+0uUNn/fneKUrmo2TS+L+p+KWMHkUjn2U2NzMnEJKTz03uf8nMU6FxoalPH8zFwgkYCXZPQVYOMBQDd6sBpQNr2qkoKYaQioTSnVIaY/B45+OHeO3eXTRHc1rIFctJFOmeaxMRfURQjjTkkX2PAzvnFJNWa5XsSGEBFWih0NoAlst+g6JC2LpCdByoxghUNS2KWgGaCqO0tYAxCFwQI4ENfCTgDrl2QBsLsJ5dBqpwtYyziR2IPt3XyJ3llM6LBEALzTRym3SlqHIdKTZOdQxkZ5fZBe89xmnCOAzYDcSwb4cRu3HEbhpxvVljYO2lQsSsm6FS1Cji4GAJpRQ2mw2ADnExR1PXxCLD0RwIlFYHyOLKWANtLJpuiW62JPaoqXF4eoBv/Ztv4403vgSjFIbtGpvNJUxtsTy+ha47wLSbsN2sYKzB8d17ePDaK7h774VU7IZiEVbFfEntYRjsiKRNxrgA6dyxWdh5CpK2mx6PHj7E9foCx8uTvUA6hojVeoOPP/kInr2/CbPHAnzLJFDp2LK2BWnU4wPOnp3h7OI57tx6CabqyFJXAnHQuZ+cLPBnf/pdLI+O8Df/8Pf49KPfYLu9QPAkRdKGfJbniwO89OAB/vjf/Bt851vfxPHhLS5+jXmyM4L3IeL5xTU+/uh9+DCl8pUQA+29kHbiX2DKnV8CPEMkhwdAJatSQBjxXHRWs32k8x4epYtJZohDCLBGmu2ERNoQGx8Tq4fiHgrj6diGMnlRW0vrvpKiPGYZFdhhxBZ7EvdJGMnnu9Q2z+dzDMOAbtYl9pGsEve92tu2hQJgtUHL2nfHnZWdG/n6VGLsBWQGTw4oZB0bAemUSXcZVW3Rtg28JzebOHhoAIvZDOM0YrvbwY0T6tompxbxbE+e88EklyUafwHTNKBuOrSzDkICyrW4GLHd7VB3HXbjiDFGHJ/eRsXPbNruEJ3DfLlAdB6zeYuB7QublgpUN5sNdrsd7t+/n8C2UgqLxQLX19eoNRUxx5C9/sURJSi69jKgc25iGTHS/BemOTiHie+3jL3dZo1tv8Nms8XZ+TkePvoUm92A09NTHB6fYrlc4vj4GIeHhymoKzMnSUaiFBouHg0M4ruuQz9O2G63WAw9Amu5K64pq2tNAVQICOyc5oI4+9D4HIcBWjWYJo+aAxcJiruuw9j3qHnsART8TcMAcNG3BBQh5Gyw4my0d9ne0TmHigMJpmHBEwfa5qJngHoWpG6qSqUshvx+HEd0TQurNBQDTI+Y3PgUiOEWogs8h8rnO/K/JStCAZqnLAUihsmhahpoo7Dtd8QdBmAYe4zOM77jTq7eoa4sYqDg5fL8PBFGRpG0UQKU5XL5O61rv5dURgGIRkEjQgefZJOVsXjx9j3cWp7Ae0p9x6gQIYV1kRrQIOD66grDtMb5w08x7noa+IluVGkzlaZGZeRaAvlSLiOFmPwLYrdiTKyxDyIaz8fREvVxnVKJ4KUavFoe4I3vfQ9f+dpXcDCbQyuFzTjg6dMnWD27JHCmkKqLb4YWonHMiKxg1QJoUEVhzJHY03SZKmvhy0jxZraB7kFMGwBUDiBKS0QpHM0fYqDHbOFe0yjk49J99uk8xE1IAHsZCqTPa2aRFRKbpzWlmo3VlC7kTo0oJ7Z8hiIIABrPL9b4zcNHOO1eRmvIhk0R9QwdNabJwQZ+7s5BWy40CYGK+WTscrSkWSscWVNPTCRr6zgNTMy8ZQFboJRWQxo8w/MA3HE0AvS31rCKziFqcoHR7FuqZVxZSquHiFR4qmByyjBSoBD4/cHHlCKXanYwY+dD2OuuC4jjE7H2Pm20gXzvnScnGTdgdCOGaUI/jtgNPVa7HufX1zi7uEA1I223VhUVpYLmZVM3mCaHzW6LqiavZVvX5PCgR5a/RUkC0W30EXXbopsdopsfpI6Ps0WLV197ABNplVhdnWOzukbbdbh15wVU3QK77RbXVxdo2ga37r6A09Pb6DpyivCB9JgC0iNicm+iAmsq0vRcmFtuyurGnOGUCKQjZvARz589x8XqAg/ueWhlZbrAx4izy2s8ffIpgjgT8VyPILCRWLc0oullIrhzIAAYPHu2wsOHD/Hagzcxr1rOVOZ1hOoCKty9c4DF/Ct4/dUX8OnDp/j0yWM8P3uOadqhqhVOT0/x0gsv4uUHL+D0+AhtR9kOOU6+zggVFcbR4f0PPsLzpx9Dc3dEIS0kuDXNAtb8bnrLf40vAQylVZ7INAGwYws1qkkNdAqAbo2BiyExhuWrfK+Ea+D/ApCBilLJ+zvpbQuveGH8BgbiIhvRWsMFT5Z9u5FYcu9ha7KKK89HwP/1Neuha2IuBcQ45zCbzVIAk84tRJYlZIJF65hApYCY5Jk98j7CjfBioGBe3tP3PdxEQYkwtgDQ9ztM0witFQ4PqbFRz1IfQMEYi7bpklRDimiptkpBGQpUtCX22BiDqq4BpWmt56xD27aoZzMordFLUae1VFfTdHCzEf02AN5h1s2SnlqsOGezGXa7XQKE0Dm4sxwICPmRAo24T6TlwlmS+UUmN2Pkex1CYtwlMCL/+B5Pnj7F48dPsFqvsVwucXBwgPl8jqOjoySLMYaCLQGTIYQkeQJoPzEAFDcm6vsetm5I8lhVaNqGsjN9j+VyCaVM4RXvEnNPmnquubJZKmirKo/0GLFerVBzUWtmsdPiytLgHCBDqVT3IPdJnt80TfDwezV3JCmckiSoZNGdc0S+6P2eCPJsqFhc9vxMRI7jmNy8JBsl7HvKFPDYNdbCRgpkpmlMc4JMHWiOSHDetS02/QDlCeDL9foYcHBwQDUN04hh2GF1fUlED+9HtSW2fT6fY9bN8Lu8fk87SI52GdjIi9IEFrWtmXXkBS3qxHorTcVxl1fnGIcdte9Wsuhxda+Ke5tNTmTuT5AMJstXTBIdQBQmdFMDLzgF1wYog2jIHo+iYykO1WjaGQ5v38Gr3/gqvv0H38Gde7dga4MQJpxfnOGj9z/A9fPrzH7qnDYtQUK+b0D2hwdiFACdmfAoFeiJb0YKJm4y7ooDAcVFS+k4QL4HRSAh91kxMCj97lNGJM83SHEI3euyqp8XK10W1/I/QiS2me8jigkroDlG9iIGaQHBbHz5HVEOGEPSxQ9TwNsfP8brd0+xqCsQZs4aOs0tpUkvOMEGausMCNNe3AMhIZUibatSzJgpIADSYIXOmcA3AWy6PmVy+j1qk8CipLyla4jiZkryonbXudhFF+NYfp66wMXInupSsR7JvlDrpLsPnrX4MSaodzOwiz5Qw5LJw40TxnHCMIwYpwmXqzXc6DBMI1bbHS4vr/H4yafQTY3ZfM7nQek/HQHLC6SbJt6UIgUrEVgsl4gAxmHLtR85G6O0QTPrMDtYomk72nR5yDR1RaH9NBEBUNeYdQvM5wvY2RwkbejRdC1m846dbahIFkGlzZ7gu+ZCRC580xpKR0QVUAzvz754IBujYbTB5Gm9uL5eYX19CR8mWNQ8nCOCm3B2foXtmiUmCLBZzwYJXOTQKT2LPO60pkLi9WqD9977AF978wm62QGUodSzlnnIhzTWYnmgMZ/VePHuIcbpSxhHBx89aqNR1Q3q2qCSArVi7ZF5DoADnoAnZ+f42S9+jN36HMLiKtB1t22Fb3zzW/jGt/8EbXP02+7aF+KViR2eV6x9zhlFYtJQzJtEcmgNE8hOtzxe9jrnNTKxJfjMMYBsIiD/LS3SSwnN3vH430op7HY73jeotkVkAQI4yhqyEtyEwpKvBEHp3BRlPsuuoEQwmCSfEZAkDlU3JQYiD5JriDFyvwgkp48YAow20HUNgO3/Yu6UXjc1rCXwGJyGrXwC/VKvI846MUa44KHchKgI8NuqovWJJUFqGHFwdIhppF4gVjOx0EzQ1iIqhbppYetcfCoOQJ7XM23omUkmQoBlef3JGIIn1t7vfCD/yUh1I2SxyC5fzAonCQqA1XqNx08e4zl3p14sF7h9+w5OTk+wXNBa2DT1HvFA1piZfdaCBwCWD+ZzHIaBtO1th7ZpGSQ7PreR12gNFQ20MkmK45yHUuT9j+ApeFE6HdcYgymE1AysnCOid79JulpjoVSeG6Ujj3x2r8EVy3lozvh0POmRIHWSew40XIDqi2JqpbJWXbr6yuck2Cqde2QeyTMKwe9Jc4RknJxjW3RAGU2FqUyokSlizsbUdY1pHMi+0lNn8egcjCKLy7ZpMetmaJvcTfmfev3enVMpJRC5YpZLrkJAv+sRA9DWFbO3zEABpLn1EevtGp8+/BjP3/8I/Wabbmra65h1BrPtsdgEb7Lt5UJHJwcatVI8JIXdnMPIg8XgYHmMl978CmYnd6AVYECFtaaqMJvNcfv0Fl546T7u3r+D05NDzLoaSkWsNit88NGH+PDtjzCue14gmaXjc0iBhs6LOfjaSptEeWPe1LM9UrnhyAKxl1UAEhgWpoyJ68zOayQHm1yVLTdKzpECrBwoyHHpP8ogSild9sNI35PGBYN2w34dgX+v+MKps5mCUTwRYiQXIHY/kW9MYYt400cCvGdXa7z76XPcmjUwagYLCgJiCGQRBSq89JNGcOSTGkNgVx7SkdO9VKy7J1kLFZWxVp8XcXDIGBER+Pshmy9r+WIIgA+sVSe5TAIFbEtqjCVQnoJcElQoRe4pMa+0qbYhtxiPyT6KImUN8IbJjRK4KVOk7Ab/mIIYB++JKRiHCZNzGKYJu90Ou12P680Om+2AcXK43KxxuV3hydPH2GzWuHvyImUklEraO/gAGGqk0c1nqOoK3bxF0zQ4PjrCcnmIEO7i0aOHeP78GU9onm/WoG5n6Lo56rohP+iJbbmUBjx1fA2eWlhXdYu66WBsDWsr2KpB0+SGSwJijMoNvggI5QCGMmqyLqjEeskrz6uYnkosNhSlFIZ+wrOnz/Ds/CkWsyW/C9huBzx68gHGfs2Bn2TJMvMqYzh9pwRoKjucxOjhhgEfvPsh3nn/LRwd3cLh4e085hEgNSpS+WONhZ1ZNMW6IgXrEZG7skqtEA11JVfIkcBqvcGPf/4LvPfOr+GGfs/fXiuF5dEcf/Qn38P3vvsHqOzvprf81/gSACCvDASyr708/+BDag4j+woFM0iZi5trcgK9nJ1VPB4BIeEyoC+PKfe6BPRaLPVCgNb0PanhDcsCJWsgIL0EUALk5Wcl85tAUCidc0ieWAIXJgj39wueIwJUpPgvSx9oN/EcfCTbvcnBaMpYEFjTDH7cnj2fzGfjiR01lgJ5rTWcJxY4MPiX76Qi3REhUuCveM2expEeZ1hSgAaq+/DTBBcCqraBHerU0bbURsdI9tZQlCGRLu7yqqoKpSlCOveiE7n83Dvp2i1BWgACrXciVRTwPgwDnj1/hsdPHmMYJ9Rth9PTU9y+cxuHh4eYz+epa618R/TlM8v5HpFSyjKUg78turbFbDZLEiqtTXIJAiQLSHt8soX05HZlrdRJkP1mzEt7uo+fWVv5rCRAFQBNUrFpb56W4y0W67eMLWurtB/yZcNx3wCXpIp5PouBiMzZMpMvGOtmYF2y+WXQmudV3HuPdHwPzmPyVLgePR2LMsGUyZOY3zsHoxX79JPvvIZKnW6tqdDULdqmQ/Uv3TlVWGVwJO1cSIytcxM+ffYIj548RqWpECHI4hEVDHfSvFxf462f/ALPHz3nVGUivADQJhTACES2rBvA/TNVvvKKxNCXUg9hM5PmDGRR9cr9+1j+b/+OdExaQSkDRJLPtOxs0rUWVUMpowiPq+0ab3/wLn7y45/hyUePqHgxRIToMphVRSr8RqCREvpRODAZcEUxqoDoGwAdEGxbbB4g1j6Ks4sEDao4GhfD0OfZyqkoXy0zFHvHTZMOSWpGARoB15uRdGZ5ldSxZoagmOT8AHnxEhcdYfwiSxwkiJBFRSEqDecDfv3Bx3jpoEFz7y5atAzQSHYDQ63jvXNU9MzLh46UzQhRJUCqNKCjZttEnXXvFHFCC5BTEfDZ6SXw7haV1EmQk4FiR4X0nCNJaLTS1OVSC2DPbKoAKpLCcMASiTv2ITeLiEz/+9EhhmzPdXPBke64fqImJZNzGAeHcZywG3qMbsJmt8NmN2Cz3WG967Hte1xcr/D0/Ckury7RdC3aWYfgybaublrYqkLUHsE5VJXF8fEh7ja3MVsuEKLCwZEAjwDnJ1xdX8FN1FlOGYOqmWM2P0TbzlNXOCniUiCfae8cIiKaukbTNlyAVqGqLOqmQVU3kIZdMk/Acy2o7MYgN1ZAagQ7A4W8VoEBiizAoLiHO+DSgmqg4bcOP/2HX+DifIWmaZhY0NhuB7z79nsIQ0+zlb+3wOj5u2ReAZAqVToH6dqncPb0HD/6yU9weusWvl63aLuscSzFdzK3BSskFrcgLoQASN8ZwTpc+vEwDPjZO+/gv/73v8Tq8hwIgez1DGfSEFG1FRZHM3SdhdW/t3fBv5qXMKW5cC0mWQmHauneyVyTlwBdYJ8kKpeyBMahqXY5ESwxpe2Tvz4/E+rYnYtTpVulSucRoJRnJpoY9HGYoJROkgXnHJbLJa6urj4DOKQAUgC3+IQbY9kJjSQAlSWyQYpRA8sESzlNuod8/SPbFxq2AiylI6rYRyKTeeV7FI99YxlwOjo+MZrcLZb1136SGgDNrCXPZ+JTUqAenINxDtATVNAsVXRYXV1jGke0bQt4j2EcMfQDDpZLRJbG7LZbCoStyc4uBWCT4EjkKdZSU0nZqWV8yPoRQpbjZZvdmIB74OZeIgOKkWQsT54+waNHj7DZ7dDN5jg9PcULL7yAo6MjtKzBl/GRvlPloCfGiJEzCzKGtNZEmsbcs+Pu7VuYL6hGbxhH6l4NcHYjpIZXdG3ikZ/vdQzkiFIGr4GznWVRsvxOpevPWn4JMmPMgUc6lqeuoomIQmboUQSoJfNdBrNJisbBgbynPF+tOSOrpTZl/9/yORkHaf8tg9RI9VvK5hpJAutkpQwhXh3L4jhwnsYB0ShM44BpHKhexDs0Jo+vuqrR1O1eH4F/6vW7+7iXJEVEulEC9K4ur/Cjv/sHrJ9cwFoqy1NQyVRfQWEaJ1w+Pcf6apvA0B5zCxA7qwBF/lv7Xunl+cjCKxsZMpiULY/XUjpXsBRGAYuuxaxtEKOwLyk6IPANljYjwoUJl9eXePvj9/Hzv/0RPvnZ25iutslPWQIMWbxKhivKhq7kjMmSErEE6/LVOXpPoJhQCDFuOgPkcnGVZk/77Dd9ViuFIAOYN/YQqXgqZoSdb2pxK5CeLAMRvo4yui4nB98+tlfLLJSwhcImu0DFcYjybGNijCNvOHunwf9y3uHT58/x+OwE95YLVFrD6iYBEwlenCLQWimVZC86EPulYFJETuySzuNPUZYCLI+RzI9m773gAxWb8maslCLf4Koi8K5tDnRiIJYf7GdfWMxpqZhn720fuLI9cgZL0ybiA28k4Gjee86g6NRWOwMF6VrnUhHV5AMm5+DGEeNAhaeb3Q7rbY/Vbof1doPr1TWePHuKq6tr2NpgsVjAaoP1bkCMxJYbCQwU0LQ1urZGO+9QNTVC0GjZ+eHi4gqb9Zqs4rggVNct6m6JdnaAqm4zSJAMC5+7D45cOiuDqraickr3X9LZo5soGFAUANDPZb5TYbEPgd2baMBqlTuUAhQs6pidqtKc48BdK2pN7iaHD9/7CI8++ZSDVwL6MQCYAqymGp4QHM+/PF9FjsWPlacY12Ck82Od5RjwwVsf4UfHP8KyPcDLD95AU8+KcF7WuZgK+dMqI2AxrYFluJDncQwB/Tji7Xffx1/+5X/Gs4cfQqorArgrq6L27XGKWF9d4fz8GaxtgZfvfuaIX4RXaS1IIBKQTpwp2VKsaZWx3NtCpc26BEwUBOhEXADg+UvZOKt10Qk1n0e5RjrnMA19sq8DSCbSdR1atoR0nhqqaWbVja1heD5IUWTP3SiniZr09H2P+ZykZcOuOD5n5oxVbDNH8w0AhmGXGMV8PaRX32xWkKyV7DVN01AwEeKeRlhY82maUmOctmkxjRPqumYw5HhNpODEi31kQJJ1GFsDWrH0YoAK1IDMGIOhn1JzPqUU9XlQCm6kLtumqlDVNM4311eUtassnp+fI4SAo5MTeOfQzBcwUGjaWVozwaBd5CcC2Ky1FLDznutDhPM5sKHmeHz+PnDNGoNnJfF8ZP14Bn0xBgzjiKfPn+PjTx5i2484Ob6Fl199FQ9eeRWnt05xcX5BQZWtUz8W6cobAmnQpctoXdcwim05Y6BsZqQswcXFBYwxuH//Ptq2g2MCcxgGHBwcYJqkQ62CAjXdc9OY1lsBt5KJEh04jV2bxt84jux9LzbMIgMLe8EQ8Fl5DLHZClpZ+OgQPJsKqKxdp+us4H3uwyCyo4yz6JnUxu7N3ShZiESw5D/ynhLIa60xOQdwYLDZbPjcaZy4AGAkUwBI7yJwFqUg9yWw0AqU/UdIFqBCphpDdRtNXaNpajR1A2v+pTunRomm6N8ueKrUjQLLgOFyjSdvP4ROGuEMRmXTJl0QASCxgVQASR6QTNTIYi9/NQHNwKw6sh0honTckj0tA3gCnFlDLKyZMoyvoBlkMhumFEBtgOCcw2a7wdOzp3jng/fx85/+HE9+/h6mcwHtKjeXEvDqQwLR+buzFpCuAwwAhE5AYo7F1o5OR+X33HglSQZPkvQWIozpfLxP4OSmjowwn5aHlIHy3qBjcBoJ7PgbWk/5W9/YyFKQEgNU4CK9EPl7Anw0ED1/3kBjHlv80sLixIjgPPrdAO1HTKPD5dUFWaPDo0GNylbUxIEbOlABkIcCFY5GHQEdUzAjgaS2LI0pFhUSXLAGP3BwoxVgSBqjdJWaopiqAoxCVMSkaU2BkokUFARutpMWBaUp0yBSnUhBSwjUmMojQjEDHYoFJrOB5Bsszk5aG3KDCB5wHgEE7qdxxBiA0U3Y9T12w4irzRbXmw1Wmx2u11ustys8ffwpVqsVFosl5ss52jkVxkwjbcKVItmRQmDZjEFdGVSVhdEclPAY2mw2WF2viOGzVNRkuxna+QH5rjOTIIvtODg8efoEV5ePMPZb+LFHXbeYr65wuLpEbSqsVytsdzvM5gt03RyLgwXuv/AiDufHxdguigSjgokaOpLjhAago6KCLQG7mrJAUj8jd9ZHYSp5zAXKMEUfWOcc2elJowJ1FkTkrIxGGs95rjFzBJ4DrDMLPnAQKOuBwvp6wE/+8ddoqgpAwEsvvI66m6NsE6XSVRazJBZ/KVk5yzS/BkLEZrfD2++9h3//H/4D3vn1z6nQWhted7nBUPSA0rg6X+F//Pe/xdvvfgCYCt//9rfwRXx9HsmRJQA5kFPI7LxzLu9JSiVXDOy9Ox+bWFeFGEnf6scxBZOpfTxy8ABQMJzZ2CwhEJawbVtyteBNnqz7SHMtTPBut0sg3hiDg4MDjOOIYRjQNE2SRGw2GzRNk8ZkqQVWSiVgWmYbnHMpM5b25hhSgWxdVRjH7OAhUh1i+3XCB4vFAt5L8Z9FiB7eT8yksvUfB8siC7KmRvAT5rwOOe/g/YTF4gBaE2gFkCRPZOnroYJBmCY4H1A1DcLk0DuPWddx7woPH1QKunQQSaRCN5ths1qleyv3o7QKLO9ZGgmK+2lId+7CPlWaDJWZHNLMT3DThNV6jbOzM2w2GxwcHODeC/dx6/ZtLJYLtF2He/ca9H2Pvu9pDCvyeu+6Ds5NTNJkFrjn577bbgAOFjarNSbv8Mbrr6eGTTKGY6ReALIP11WNum1hjMX1OOxJcRBzXUfDbl6UnWFHGPaGL8GwGH/sZ3R4nAe1dz81Idv0ffLd0qHXmExYSgbIcYAo97aUgsl8lboLICYprhxXvrs8rgTC2hjM53NM04Rnz56RQ03XwRiL7W4HpQxMZbFarck6s66go8Hl+Qp102G363ktZptMo1HVhmrMph7T2CN4ypLESE2n2oZkMuTF/7tB8t8rFyopuBjJuYL8K5mZNBqmkoYA7LZQMumBLHJIlwqIv3dykAGgef2IOssKUgoYSWyCTJMByQ6RTjC9M58rNRtJIDoA/bDDdruGFyQdI7SxqRDEI2DX93jvo/fw47/7e3z0q/dx/uk5pu2QpR98LMLNkQobmXETSzfw4VF8BrwxkAZdLjB7wGoj6VW+knLRKBYOzSAjXXfB2JcbVQmG5SXCARZu0ALK5x34oIphg9KKPJ3lfssDZdCZfp506hIAxaSxT4yjzgWl+XCl1IauJctr6FwmN2EcehzOKhwfHkAphbOrc7jgcLCcA02E0RVgcto7cjvidN/TlxL40kyLBg7cclc4kzrhBR0QPZ1bZTVrVG1qIhWJEqbUoiJQaKsapqqp8ciY03oymZNMgp+3PA9yPqIFOUbKsHjvUgDogydP2MDfqxQ1YOK5CO8xTSOG3QAXIsYADMOIbd9T8el6jcvVCqv1Fpv1Gk+ePsIwDLhz6xZObt3GFANs28BUNdx4jkppKE6TakRUhrqnyiJZKbI+g64webLy3O12GKeRgK0xsHWH2eIANYOH5DuPiM12wI9/8nN88O5PEKYRkbvh1e0M7WwBpRWGoYdzPnk3v/7lN/Bv/93/jnm7hAVJHmTYRJ4GIhVQ8jtFUitVjDfJbklgqrkAOR0pIPn/J0DMz09Dp7kpulA6ps7/ljkpZIHMC6LeWLZWvA8R58+v8Ff/48fYbQb8m+9d4ZVX38ThwREq2/A8LSdgfpV1QPIePiRtPufn+NEvf4a//qu/xkfvvsN6S6750BRcgqViMUZsNwN+/rO3oX/1G7L1/X9/5iu/EK+cms/AQ3ERe2XqvXWgBCokB1QQG1nxqi5/HwK1LI8hZ4TL71RMngQGA8JUKqVgKrvnO621TbaNEUCYJvocu3sIcytpfAH2Iu9QiiwCBczHSA4mIYSkj86AJjLo83sgni4OQIio6oplsRnAlo4bpB036fvlHPZ02DGwu4dKlpkSIpM0IrtuBEWBgbUVadJV1iUbraGUBXzka6YOpz5I51I6cQWwtR6tWVQ2RXpncvWpAJC8oatrbNdreB/oM6ZC3VKgEBC4sDBy46vs/EPZBPDzoFsmJgExUjZH9rFSOiL30FqLvt/i+dkZnj17hsurKxwdHeGVV17Bnbt3cXRygvl8AQWFkRlfW1U0TulAmDwVjEZWI4hssmpqjNNIbPo4YrvZomeLy9PTU9RtQ7jLUx2BnKPWluUyDuthQN/3qKqKz5U81ytr0vIiTjjgDCOKn5f1AoD4rOdgQfFzFhymWZ5M92x/7gpTThKYLGXyLjeSulmLohkElkF1GtoxZ9BKPCVEjYbCMA7E0YWATQipydlsNoMPAdM0kquOMtjudkSaRZJsRaXRNjNsd1uuoZFMueeAsMLq6hJudGn90LwOtE2LtuvQNC1ZXRuN3+X1e4sYFYNKirILfa7WIEVCQqR549onoWgTFfAXI4IGd+pLW2uBuRidymTh4yqlMkCOEYFGNP+3kMmUMqd1I0IFcut4cvYMv/7lT7G6uoaOlBpvZzO8+dVv4oUXH6BuTDLYv3hyjvNPnmLqHeNu2bwZMCXAHJMEQNj1/G8G0Drn0OlaQ2KAofiesMe4LA6l/Ec2BALkDKzBXSeLDTwN0JjZfiWrji6KQACKIOUncq+VMPoBAG842qRnrTzNksjXmQrcCpZLnp1S5ImuQsQ+47M/puS5ab4XkQGenzzGvoeOwLxpcNS1OFy2ePz8KRSAtrIwysDrSIVQYM9ka4nZNMKq58lKfvcaMMzGxoioeIHWltuRR5gYoSqTx6QGoKkxiIQ+MYJ08lwcSZ3rctBirCHJkjbcjIE+GcALmafPBNLDkEcyqCBWuvRFRSBeRQUTCQD76Omeio7bOYxDz0yewuQctrse22HC1XaLy9U1zi8ucXW1wtXlBbxzePH+C7h/7z6C0rhYbyiw8oAKEXVtk5Qp+ICmpo01xohpnJg5VFCOUr/r1QrjOJKnrlaoqgbdbIGumzEooW60IXLDoqhwvd7i2dNz+GkiFlhpaH0JU1HRWWK9NMjL/eiQ3svBLseDNKyhGG+p1GyNmlvRXEpSthhT0CvgXUFx4RPL2Qo8k9vdE2Meec0Ty7WACMtZGhq6ubg55K8h9l8D2sQ0b6IPCUCqELG6WOMf/+5nOHv+HN/89qd4/fU3cef2C1gsDqlRhyL3h8RbpKhFxgyNpXEccb26xscPP8GPfvJT/OKXP8f5s6c0HzQtNFo6PAcp5CUgRAV2EdF5GPNb6om+AC9h0kqtenKMYJAh4sZUdKZUWneEqRU2PoFcvuWkA/bJd5yKX0WHzF1aVa4xknMwRQdXARjTRNpnzYWzZdt1gJrTiOyk1DdLil/YdrG+lM/Kfw/DwIynTnU+wqrLMWh9zFZ25VpN50rnH3xpgZoX8T3y5XPqoKS6irYK0ebzZwHEQKA0WfHxuUZPc02DCtAJT2RA6D312FCcnfbOUQ8OxgZaEWAfFdUKOOehtE7BjzY63Yu+3yIi222WAVvOPsgZgwNqtlNFdikpJR7SqEophe12i8k51E2D+/fv4/j4GHcZtHezeSqM1VwfoY1hGU5AUBTwWJHnsORCAXDTiBBCYumhgJNbp7h//z60UvDOw1QSoMa0hlWV5fouGZ9IY4auQ/AA0vXR72hcOkfEkui0ZTwbDpBvFq5SlkDW29wULM+tfemtsPTOOUxjft9n7nMhvVQ3jlFiopuf05rq45Tmhkr8drHEFLccCTaDitREi4NHsiMGfHAYxgGT91SU7RycZNBmHTz791OdyEQ1dHxtTdOiaVpUdU3ym5tRzG95/e4ad57ctDsid2dkZK6tTa4ce9IJBvWxmKWMDYXc2gP36saJl4upaI1kH9XQVE0RQcWEnAbff3gRPrgU2fkQcLG6wk/+8ad4+tZHMIGYsmpW4+JijT//8w73XryNpm7w4v1X8I1/80c4f3KJi0+eILpA36eK4goGzCpdg0oWgYBkEVSyUJRrkgBIfhjLiDF4SOvxtGikm1a8Hxnglr+TbEM5aBUXzcZI1QdIYFkyGfvEHW06NECN0RBNOls+07sFlcTMAKRzKiZj2COcZREsGE4OFEQ7KbZTk/foe/K/rSqLWmnMrcXRconVZo2ry0tUzFRVtoE31FvA1SN1eNMBOihQG+p8LzTbUCYgDwBsLxkMdTfUUFwYo9PJR5D+HbKZK53GlY6BOvTFPE6lOAXIcjCovCFDgldEIPLG7zm4cpmZokCNNyYPuORIQ2na6DymcUw2XuPkselHXF6vcLXa4NPnz3C1usbZ8+fYrFeo6gYvvfwqXn7wIjQUrndbQBFD7wPJRKqqgjWG5yfp56dpQAgz+GGAR0xA8vp6hcuLc0rjykhSCnXdIkKlro4ueJrHIcIFajKjtKI1xfNYkGAIBCRCCFD8/LwLGPse/XabCqhCUaux3vTo+y0kq0EmGBHjNGKzW4NU3dlkVvOzXa2vMMrvFfaeWVrLeNLFEBAVrztKGB9isK7XV2iaDoFtcJkvgFYafT/i7OoZgicmK4C1uhIlRBofm/UOb//qQ3z8yVO8/Oqv8aXXX8ODB1/C6eltHCyWaOqO2EnxmY7kPuQmh23f4/LqEp9++hjvvfMu3n/3HTx58gyj42BHAZ6LqD6vCCooAFazbBF7oPOL9rq5j0DIFP556aZCdoDUZl2khD4EaNavs5gyB3oqg1SlxC2GnWBDRFRcgKdUAv75xYRKiEmxo7VGxWy5L5hEArEButapsI+kdrloLsaYJRWJWaS5ozlrJ7p2WgNz0FCCGSCv954JhsRaFoRRAq5KpIU3DCP4fqVMxN6exZUVShy3YlqXaSkMqYBQlkalOMhKdUpcA6dAjl+eupZTox0KmoTskONKUOK91CpYkk/ysy/7rUiQEn0u5i3HlOI9PggBALo3qXOp4JWYMxYxkpRws9lCKYWjoyMcHBzg6OgIXdehqRu2uaV1zrJ0qiTQFJADQcEEIithhnjgzM1sNsPx8THmiwV8JBc3Ey1jcNp76LgeWlWImqSwtjI5g8t4K3gu+mT8Ik5KABOMSgEcHIGfpzL8rLRKZCaisPA6jaeMgz4rlRWsIjhIrJFVMX+TFIlJSgDsliTjnfYieW/5XYlcBN2fkgQRyU6Ss3KtiI8uSYbpR+SuOHqHiWV2MbJNZAjUNVwBwU0Y+x5upMyyNrkDctXU5HjU1FDGshrin3/97oy7PABG2ipE0rJHHgxRWA2kyEmYZ1kwI/a92Xm/5ZtHjVjK4h+5+cSUgWUnOT0uzYTkGIIj5XdKE5vko1j0gBkuheA8hk0PeAZlqy1+8Xc/xZ1bL2C+6HB0fIDj5RG+/tVv4Pz5Of5h9V8xnK0QuBAhSyCK71O8+Sm5L/y79EfBF6NTaU39WvYCE6S/sT+Ub7xiuh7oPAH4AAzOCxCdJgp764MmBi1eKnuv83uzmjZLjOiQeYArBpBiZQjgxiYluL6IqMtNj0FNBPYdbmJE9OSQMo3UUAExwiiDxjZo2xnu376DfrvB+dUVtNJYziOCJUlGPdbkOlBXafLTbSZmlMaMyCk0pzkDjxlyhMmMHF+3MQhBAdqQ/SOACMWaWGquAzC77hygDRCJuSPQLlCOjxdIH0kd5FxiAQJAi4QnNj7EgBg8zT9hfUCLdWQHHT95TMOIKXgMk8Nq2+P8eo2zqyucX17j4uICZ+dn6PstTo6O8ODFF3Hn7h1UlhqnaK2wG3ZYDyMmR5IcW9X0bFjjPY4eZxeXuLhaUyBmqclI281wdn6Ni6tryhqANtSLq2v88p1f4GyzhbUVdaLk6h0F4OJihefPHkKBtf/K52BSvF1ogNA8hsLz52f4+x/9HX7z/nu0eaSNLUJpg/W6xzu/fgvBDwnQ9uOI9959j/SI3EAk8tygOWlwfn6FTz76NUKY6BTY4k+KrNI6JnNDUeZOR7aPCxEfvv8R/uN/+U9YLA4BXvBdSukbbIYB7737EdarSwIIJbihWYagAKuoAHZ1scZb63fw4buf4Pj051ieHuLw8BCLgwMs5gs0tkqSgPU4Ujfn5xc4Oz/H5fMrbK9XpPsNES5EaMPZrECbtDA+CSDK/WDmSUXA/JPrz7/ul9b0XErm10dPGZmQnS0IqDD4TNkuJHLDxwCtLCSU00qnpnbee6p30ZoZdm6sJMfjcVMCFO9YE817lrUWtq7Rdh0V+u12ydFkGAaa805BJC51XWOask4XIP30bDbjxjDEXBvu4joWmuUS9Ezc2EYplf4ehiFriy2DOMmEqf37Bsg8YccyGcsxwULek2WvAUvlyGJTsnfpj6biVcO9LyKo2ZmAeOmfQcfip6EUdeFEJKmdAipdU5bMkBTD+wilKPhHIFlJjIGZcIdk9YuIqq7ZBIAIhnEUWUbGMbTW6BTcBVmr+VzFpSafJ9KznCaHtm1xcHCAw8NDHB0dJdvFRCSBAxgG/CLHIU2/wbCj52mtpTWOHbk22w1UBE5OTnByckKNpSKt4+DxqKMEPRQAjEOPyorsycFWBuM4YnIs54wBk4tQ0cNaAuy0H8m+KPamAY7lLSQLMiz5pbcg5KCSCJdstSiyF+9zg0dpBEmOY9RZVUB0ib0SeOf7TEEyEXX0CBj3FONfAimZj0oJ645i/yELx4qtKCWKjJ4MEgxnKrynNcVx5lQsVmOkeo+mrkhO6icMuy01DFOESbXWMNYwcK9h6xq6MnvZ3n/q9XsUpzIsZhQaQ4JA/AyzBCGqkOhbxdFpgXH3FgAFxZZ9MQF+GfQlgJfNlICk6DgFZCLd8PS5AmQm4Eqnzt9N5xpCXl6uP32Gn/7tP+DWrRPMu6+gaTrcvnULX//ed/H8+Rne/+sfY9r1KQpN91gGQbpVZTZCfggqZEOe0PniUPw8wWXI2FN71wIhPPY+Xt4vxZEDsWa0qGkwOC785UsWRXEkvRcACDPMZyRFlYqfR+l3mxZoTsPJQiQnHdPYoUXKB7L9UlpCGpXGlUzkcRxpAfAB4zSiZZs0Yy0WB4e4c/su3v/4E1xdk5tJ0wIwQO0mtN5BOU1FtoFsGX0M4LKrtMnKBgCWOlBw6CGyzH2JBRWvplxBzEEp6ZtD2qip2Nhk1wHx72WGIDEyzpOPNBf7TCGQ24KngtXgHaKX5g+K03PUBdVP5BoTPTBOI/rJYbUd8OTsHM+vrnC92eH6coXnZ0/hncPdW3fxpVce4NbpMarawjlaZCfvMUwTrtdrxBCx6GbJz1ds4vpxwHZyCBHop4kDIWCxWKLfDdjutsxc0bVdnl3jZz/6Gd765TtApAXf+cBxJqWsp3Hkgl7Wh2sq0A4xwHBJKbm80Ag5f/ocf/Vf/is3T2HmxnB6ljfmfjfADZ4ZNCq0fe+td/Hhu++DnA+pu2Bih5SBDxHTMGRyUDYGzsxIRksyRdLhVMaGmzwefvgpzp6cpyZIkQMHKuCnwHPiLrZ5biF1CY7M4Ml6BAUEr9BvJzzePsXDjz8l4qO2sHUFy5svAU9ywfEC6BzrKI1CSD7jaRn6zCvNeVk/lHQX/uIC9/wSgqVgDMs1jl9lBkJrTRI7Jj58JHmIfFa6iYqcQHTsyX6S9zzRSyegxS/vfQKK0zShndVJly6ymM1uh9lsBsMFsp7T9zS2qFBRQDYBGJdwh+jyRfdurU3uGCnIKCQD6/UaMVJx5jRNsJXh8zVpj3Aj6bb3GFIGIJbtJqlOIqSgBkACWvLZFAQXchKtNZTJ97eUNwE0ZsvnQ0Gx7OOZFvMBwDRBVxbwDtpYVJYkMdvtFrdv34WbBr7XYqxgAEUF/baqoaqI4B2GIaBtaxhTMTik48c4pf4Roi4oNdcCSOU8SQo1oWkaLBYLNE3DRYh0rdIVVeq/fAzo+x2NL7BJA0u71us1/DRiPp9ju9ng6vISq9UK1mo8ePAAc163q7pGVdN5T5OjWgfN0i1PshutSGos2RrFBfZ1XSe5jdZUTF+xHtv7jBnk/NO1FoC4fIlePeFB3mtDmNIcSrIaRFS2wuSoS6ns0YoxQ5nJkAJgGT+C8aRQujwXKVhN9QoxF7HKOHDepecK/o6au876GKCihuZxbSqydO2HgeoRrEVU1Kyw73vUVUX2mTzOr87PSS6F/x93/9ksS5JcCYJHzZwEueRxljwrK4tXNYAqoAqs0Y3uFnRL98jMn1nZn7TfZrdne3tm0MCCAzXFWVZWJSePk8viRoS7m5nuB1U1N4/3Csha6RFBjqe8fPfFjfAwN3r0qOpROfsoETw86rZFO59nLypNCvn949cnBu6mgqBPjshjxrQwESa7poxF3hyVZTerRUZvYvUYyLMHLRkKG2xj3Qz0GFw0K00OVuTfA2JFJ4hSh3xA4uScsqwSjx/hGAIYUsKdd97FD7//fRxcvogXbt1CXVd46blb+K1vfQOrR09w/xfvIW1FeslcW8ZmZz13VVHJHTY5KEYLhlnbR0WIT9Hn2UORGBaI5vQW9nyAsURjX6EAA8QQ5RxzzapSSg7dsX6HJfsUF0HDFEajjdX1EXMSgr2VMquSpx5zESJknNX4oZTUbW/cnioUJZAsJEiCVxh61OQwb2tIHiijnc1w5do1nG03uHvnHuAIh5CNz3mP2Vw1cCPAVaWJner2Y5kZzlVPbf7EEG11Y7grdYNr7zMjh/uIMWR9rd2uC9/6hBjgJIoKZehLMrYmMVJUEJ+UldaQLCZCiIPqjBNiEFd2UkZm6ERDNwwR59sOZ5sNHj45wZPjMxyvznB8fILj42N4T3jpxefx6osv4vDgAJUm0CFJGNmm67DZdppULkzXeODaOiVs1xuExBiSaNcyA30vIAKQJE/nZfxiAM5PztFte50bpC5M6xtdf2YY6eZsa1SYw9GtD0Ce/7wDuMtzPao4Uu08CF7YD9UKJueQIqPfbDUJjlGRQ2XGaxrBAgGoNDFIZGPHdWFeNE8EVrUrx6QqGtLuwIztusdAIT9PREIiCGOrihhWWCyrCJnudpR+CTEKM+4kl4ZYCmkxhDka4oB+KyAtzzlSl7SyvDC2TqVDnXe69FmfragEOS5hTQZ0IzD5ZHlS/2yvlJLkYti+ygDRWBHUwg3kLJoCd3sfAO3oEbDKS2OVRyNpUpIS9Exa0dJJfQPGCB4yuKexiFO32WZFk6gAerFYZFWYHJPrfQZaR0dPwInR1A329vYQkrDHmfDQOO7NZoPlcpnP1FKbfLPZAECW8nPOYX9/P8dKe68GTAGQRqZy9GQYK2xAriTISoKoVFkh71TPWndWEk9l5cY+sn5ab7dF2KG814U0eY9hBIlik8TcEBJQI1f3XCwWeHD/RIwvzRmQeSJx8SlG1N6LvnsckEgMsMAJYJkTVVUBpMZJIgXvMrmcc/CkuuLDgKgStmDGcrnMBZUMsM7nc21nkO9Twir0vbR5GLDdSqFH7whIYqg9ePAAg1YPvXXrFi5ePBSZxkrCG0mZf19VqLQacwi9nCXOo9LQHPBYcMiMUU6aM0CjlLTpz4vCC2DnnYylxviT7eGcQbUpwgCjEWa43uZbOa9Mvy5XUlfeMISg+KcIwcXUKLR/29/TUJgxL8TWLms7vSvyGXgkQEOMcD5i3W1y+FrUPTgJAkcixRtJ6gNsNZeElCCqqgrddsBqtQaSfT+hqVu0TYu95T7m86UmvY7euU9y/XrJqcwQ8KJyVmwOMflCTwZU0siwGuBjBTKGdnYYjxKs71pM46Y7Zavtp3zQaV6sAWFmhjNZN+j3ErSqpVlpek+N3e7XW7zz4zdx7eYt7C0XuHz5MvbmC7z28qt4+Ltfx2p1jtP37wjYwsg0w+4Phadl+w3QK8jPeQK6MYALJls/n4rXgB3mogDqoB3m275XJ30GRfr9FhKcFLzbN9jhkDfBDKjUwGAZU+IxPGEE7QbLi/Ehk3SkEVxYXxcbf4KNR6VzQhaNuBaHbCAJo2OLVzab5d4ebt66ibPTM5ycncLVXvTPvcNiu0DbNKKHnPtGrH92nA0uGf8ib4GVWfeySKny+mQGMu2QcJnJlM2BiyltoU9W6jpmRoLT6K2Jqs1u45eTWqImCkLXAjS8QVn5lBjdMGAYArpuwOp8g7P1BkerMzw5OcXx8SkePHmM1ek5FosFXnr+Fm5dv4bD/SWaSpWEnDyXfL+0yQSIhzjA9fLUmi+nY6wsMktcqVWcrLxXpqaH6IFXWcdeZOJ8sZ7HuVkmDTtyYw0AnXglUzfdD8r5XsQrq5GBHAahoIEEsNpuldJodNt9vHNjkrW2T2JljR6QuensfeU+VP6s40tEWsV5NH6sI22tlYcX2aGpD5UiY+BB5gGPMmmcWIuujQmDtt4jGIji/tXyA+otQH7Wyfp2TyNzKvYNSyD7NF+Z1AGwe3BLka86q2JMDneMuR5hGHMfDOgY6LY/pAwmgEIDHNhuOzHYFTSX4N/a4r1K5ulrIYiXbbFYZAbRxqzrOjRNg8ViPpEhtLheU5axc3Rvby8nrtr6kZCaUWWj/PnJkydo2xaAhoIUiZez2WzSfgvpqdxY+TXGKFVIU5oA/TLe2/rMz+aZzKjrWiQhlfk1I8jK00+870QZ3FfKbI6/lNEz8A6IbvlyucTJydFUEQfKwhLnZNWmVoEDToAW/KmqRvcrTbDstf8c5X6359tut7kpzjns7e1hOV+MhrL2hXlFrEhSUC+MGT/r9Tqr9sQQsB36nCw5m82wv7eH+Wym+v2iWuPVsCAihBSzDr+FdFWqGEMkOTlUGD02FwfVZAes0msAUhEyyCqVm+eBJoHH0UtSqjgRjUSuzW17X0opGwUSkpKyMWkeKk6WPL2T5K15ACVeBDCKfWCa+Gpz3NpWxrBbuFGufOwcIhh9GKQyqu7pIUXBA46w7bostBA4gbtOPQEBzhmxR4DOY8SASr2YKTGaZoa2naPxDRyJ0ANHwPn/E4B7ZsUBBEpZlsmphUEl0088Mh0Qt4sxlQDAkXPc/G5cdLmBZibbcCIpe0xQScWR6Z42Fhk0soJ3YVQdPFwGlWbFGUhFYpw9PsKPv/09XLlyGYv5ArO9BQ4OD/CVL30ZZ8en+MHxGbqT1egegrVNGjlqx0CYfIIkOlrDDPQqYBEGDwUY4ELBeXrgjJ2kQICdctSULVUm5HLMBsAz2CnYJ6tGl/t5x5javSw2M+qj2m3MGzIBQznoP1sPILb4eprEeUoRk6hsd8TZ6hTbzUY8OCShE2kY4J3GSCvoq9oWh4eHeOmF5/Dmm2/h6OgIfHgA7x3OVqeYzRpUbgkOCVwxkk9IMWiBIJ36CuLA1heqq675ERKrPjKbthnBVSBPIGhylCa4xMKY5RhFOUSTW6wfEkt4BZhUghPotZhFjKoWo0Ca9QAxxiElCTnZdD3W6zXW6w6nZyscr9Y4Ol/hyfFJ1p+9fOkiXnn+edy6cRVVXaFpZHOXiq5avTEkbIeIAIvZTEAIaqQlNOxUItPBlqzE3nPWqd9uN1ju7aOFl/hb5+Eqj7qqCik2zvOCHYsmvi0DdppYboaUKZjrXNkBXNlbp/M6ckJChFeJyDLvwjZQB2j7VUPdlg+PoNoKtCHp68oWjMXnxjVUHnhO14O5oOW5BFTZKs56xsqMj9WWKRtn4mGTOUhgzSuZSu1JTt0IApxz2ehgNaq9hb2xsIVy8KiBvMM8lYBICAz19rgxvObTeJEXFocxHuaT+eNGZZYYI8hL4ifsPZCQTG/z1u5b3AvACHzdaAhJiMKge2GC94TII2gwEGFsdq0udgYysyzx5V5UKJzPmvJtIfFoiinMCYvFAquzMwwK7pyCWmPfgek5W0o8lioomXUlygpfZYiBKaQYcw+UMoHI97BK0nIGlHVURmM8FUwtOYKvKkmCtGTMqsohhgwosaBbtXfj3wbeQKqi06OdzVDV4vGIMYC8FK6qvMtgsaolTEbCYBLapgHU4+TrBg4JbghwTgkY89hWDhVVWqFaE1WrCh7IhZwmc9G5on9lXOq6kf1L+z7pPDTP63bboapc5vnausZysUBlYgx1JUYGWT2PCFe5HJacx5qE+YbNd82BIKI8zkIuhTw3zfgzcgG7+x+EG3mK7eYxfKoUqihJj3Lfss+Nqk7uqb7L81b3VEuYt/saGZbJQJ13ZWKxzfHdPcBrfpLNx6pqAFLjggjn67UkjSZG6HsErfC6WW+QWIo7xpirfEA8MnUOH/Pe4eR8LWQyS5ilcxXqeoa6blBV8se7CqTe/BjiU8//rOsTA3c7KAGZbCEmRIyLkUCoIAeG08lloNssSXE/y3+mwWrSV/YdTx0kRgGNrxZtcoBtrKwybpkxooyRUz+MISLK+rlio4UNKABKIq1374OP8IPvfh97Vy7glRdfQtPUuHnpCn7jq1/D+YMnePP/+CF4swHD5WeQg7VoPzS2e9KRBQtEBG+sbRwZl90DtbSInzUuVg4+meKAhsU4LbJkSwc2ySeGEmlCR9GvzgpplHHzo01WsqeZ9YPFohEYMfe93cMWGkEOLEviYFuQLMbVdrvFsO3G8YAOHZvsVqHMwoS2mePS5St48cUt3n7/fTx+fAxEgvcNZu0GM9dKmIlzUvTAxUn7UxTW1zkSZsGLDJckhCaVGZOkY5cYzilw804KOMUIkzeDuk0lsklBaBoP98gCeCOgAFwSa+ygD8Og+RMaK58I0LAYElcW+iFgvR1wtt7g9GyN9XqL07NTHJ+e4eHxEZ4cH8M5h+dvPYdXn38BVy4eoq3FyHBVJbGOIAzbDgmMXkNlsjswRvSQQ9NBY1W9xGgTj0awc9CEXSnGIazWPpwfMERM8yVonMMgaFXTca3aWihZHJtntsnLpj2udSoKiiROmoOQbSOZfIVOd97ogVw3Iq9TBbjkKOc1FIsVdrsyCVzsXqsS6AxT2AMqAFTL2LxVIGXCtfAIRreuHVxwmsLMdsNxb7QNgljCmazqrmnlZE8GzHMx/Q5PprWcMgtmnj0LGXO+RtV41Is5FsuD3e3mU3NZhePS0BuNJOS8qnygA7Adm220VEq0PJ92r/y7sr85FWBXVEtGcEL5m5DvO95rNA4hbCcoM9tBVUPsvfa5YRhQN2PxIAPVI8gaFTgMVJXeA+ubko2UokUpz7tSmaMEXSmlp7wCT53jxZgQkItS2fnunJaj90J5WXEhU+th6QYdJ9kfLJQpK5cUORm+ckIQWHgFJBxGcIiOiZOQGBEIkH2WfCUF9RKjrhuARRrVOeG4iBnOEypI/yau4HaMn0Yr3to4Zt3xIcGRzzkHIneb8t5i+QqAgDdJjmwUhAsJYp8dhgF1XaGqrBLwuLeOc1dZbILKS9r5LN4ZY5xtLiV+hhEPCasTVrFYW3q2T/fs3IQR+9nveDwPbN48m4yZhlehWHv2pQw8BcLB41raxZJGXJbGdun5SSFmnGp5e30IGZDHpBXI1Ws2xIg+BKkbQzQ+MUstIO+tH8XIXWnemFqecCoHW1cN6qoZ87XwdF/+Y9evx7hjPE9iCAq6BNTM2zluPPcC1l+OSEGWJ7MW9XFcsEKsCi+M7uFjHN+7j6HrAUwXvG1yptVu0kuII+Mlh7Bajva8nkawyqwsXspgQQwNSUphZi1zLyBJQK2wTsN6g7d/+gYu3riKw8U+rl+/irap8dLzN7H55tdx8ugYH//yLbWQSIHNDsNmVC1zLisus3N8VgdkQLIbsyWdrqyFAh5OEnOrsDkvVIDy+rLMA2QwIGiSXRoPdgW+plYiXzXtf1caOqaOAgEKI9hKedHJAnXw7ERffLRFlbFOgCV9gWTDzPdkxBgkpi9oURhpCMQokdi3xPI3QT09voHfO8SNmxGrzRoff/gxjo5PQa5FU82xbGey6UIqxKXAiEFYiMwqKSglgsr96fPo3GISQMdQtRjvtFCCPLRV4WOVUhRd9QirvpkiIwXRQJb6pgkh6IFHQN9vMfQdwjDkcssSUsZIwVzVQRJQe1GNOT1f4/h0hfPVBqenJ3j06BFWmzVm8wVefO4WXrj1HPYXSyzaVkGl1AyoVEFH4jQjtsOAqM/vzMMBRtd3aFSzXhQbtcAJcc5zIDdqZQ99h6Gq0bYLIMg8rus6Oxus5oFXRsv2k3Hzs/2FwKVhSRqyAs7vHZ1NDkQCQhOcjBuE8YaqGgA8Jh0BKlVm4S7Qw4DlIEqSgCSGrc5b87ywLheoYcwsxIW4yoTFdyWgIk28HmUHXWHsMsn3hjCASOOCiVUtR/Isxn1DvVX6HI5J15e8L8SQ1brE0E15n+DiMEzMEooFKSC0WB6gaReYLZbY39/HpQsXceHgIvYPD3Fw6RAXDz+9wF2G0SQUGbIN0kSX3wwtV4QsAchMtqNpQmQJvH8ViJc9fSqLawDTK0C1z0dlNC3sxthXmXNOwzTGUvJEY1y8AfgQAoYwIKaQQ0dmsxmcc9hsNhLLrXkxlq9k4NvCOkrVmZIBNYUUCZ2Q57BqqxZLP+quP91Xtuamqh8qpWp9SGPYg4VcGOMp4RIOTsMWFS3KGndCmtj56PTvlBKattUwxFFpBDBALxrxpGSVhC0SmnYGV0txPec9qGLEYQDToERRmZCJfJa7Svo8sYR9eOfHHBP1XlmeQlXVmM1mWWUmxihzIqnYQIw5ud2MNYKcqbWGWQGcn6kMRbIQmAkLLhYBcqKrG3GTLBDAzCq5t/VLynuNXbtepnKcAYyePH1u56w67WiYlmC7NPRyQqkTKUwzBu1+8h1TCVRj5kdGH5Pfs4VqFe23wlhlWHDQMKKoRlosDNGqqbHptug6idmv6hrdEFQGc0xizwXFir7phx59t8V6vRbijRNQ1arQ5NA0MzTNDM5VsPogRmt/kuvXi3HXA6xkUAHZIC9duoyvf/N38fkv/6YeUj5bwok0nIQFPDA5hGHA+2/+At/5i7/Ck/fviPIGj8yIsGxymE0OduscM8TybzWhrDDQqLDSxZ2u9jo5Tba1jQDQB5M26KBunpzgjX/4Hi5duYL53gIX9/awmM/x6mdewaPf+22crU5x/PE9iekr2pJdhAp+R4PQ2IJMsdgelhkFYPp3Igg40APBVDvYgCZU7cU+A8que3seY0ySgnaoawljN+o4TgsmgC2+ljLwYFIXuibZRdaFrk/nSFgJqCtpYgg4J9nzSAK+eLoZhBAQNLGF9HsIAp5TDAJknMk5Isfs17MZ9i9exEsvvYL+fIv7Dx/j9OwUTVthf38Oqjw8EfptD5BDFQK4kpCOsb8ZeUoTwLrJ59g6ncvMTrwyMUghLk2GTL3oJacYkVJEVKWJMIjGdtCqb10YJKlFtV8jGOv1ObbdVhLbEqOqPMjJoRwHMZi6vpME1PUGp6tzrLcdjlcrPH70BGcnx+DEuHLhEl584QVcv3wZs7lUZGt8pRtnVKUBLbDDkpk/DAEhxMn8AzQOlgf45RKMURnDB48hpikDruPX9z1c1UqGvK5FiQMVQ00S2EV1I4StFFYhCUWSjVQMIiazvDXxxHmNNGJQikbpaBgOgzUxTyZ0UsO4moS4kNeqxFqwysba9hshRAjsPKqqyXGN5DiHvhDEkEmWQOUcyFUitcgpM+Ve8yJCGkTFxlc5TDBpbHpiyXsgJ8DduwqIYuzJhiRu2appQOwQ9KAHpNicqz2adgZOwsRK+2RczHfHmB7k8siMtqnx+S9+Cd/8zW/h4uUbmC+XWM5nWM7maOsKrvIiVfYpTk5NDDhfqYILwJKli3EPln1EaBcCG/ucNYzGsJeSKdz1hNpZVbrnLWzApCLlxaBhdGMYiQMhDkE/r+GkmXWCSL0SiaQcpOjTMAxomibH5ofYS50NbY/3XqtiSnJq3/cgT6jrCjGMceamXmNxxsyMyguzu91uizh9U+AgLBYLdN02Ax/rD19V2ejIe7d66QDxbmSgRSOQhwF5J6Gr3ntEAE5l+IRTcvAegB8LspGeR+S9kHal0VVIrPZB4rWbuskhPtvNRr2jwqwCQN002DvY15wqqZpa17WQKUHOnVwkDwAH8TAmjVdmkrFZ1HWO95e9VYiYHNeNp8NIur7HZrORvY2AbrtG0rCdVmPNZezFW7ZYzEdDT8emrus8FoNW3iUtLJULI3FCCknY+1rCrcwfYWPmK439txh29W5XvsqYz0BtOf+rqhKhgxjz+S2XzoWC2bc5KmM1qgiJ8RNE9hNT5tnqGZTrTuYVFMOYJ2asnA6WUBgqMM1YuVt+FpJMk8p7kV61ddO2LW7fu49m1sJ7WWubrgPI8lqkWBZHgmhseJyfr0UKU8dhtVphs16j8UICWHTEfL7EYrFA07QQydKUPQn/3XXc8wGtLJaUBBdGiUBYzOZor7bgK+bqs8WkcJvNhaMMawjgYYWf//wCTu48BGs4ywQ4GnADJCHLGGDtfGaNBafRHaLNM4pLNsAojAP0pUqZcM6Mm7JlCcJwJag7PeH4zgP87Hs/wLWrV7D8zGfQNhUO9/bwxS99Do+Pj/CDs79EenIC9V/LsaBsMSdlMkkytDPTwyzPCuWiHY0Sc3lTo6yEYQiEd8Th8yDre8o+yP2m7J94H0ZjZUwetri3wmgwY1xPEJGB1HspA8kkfeUZiPpdvoiLFdOoyPKGeGYoRVipeCrkMUOu/DmobKbDWI1S3tf4StkWAXwEy/SvsawIiIyXX3oJ2+0WZ9sV1psWp6cnaOoKNRM6PwDeo6pq1DGCnVR+A/ms/sIg8QpwwcIbymMaw2eiMPOmqJDigBQDYgzgID8PQ48Ykyjk6KYWhh4JyEmem26D7WaN9XYryVmVR2JpV9/3iCFi6CPWG2HZT89XOD09w9n5OY7PzrBebzCftbhx5SpevPEcLl+6CEeEWTtD1dQCIMCoapEIG0LAEHo9ZJGTbnxVYd40qBoF3Rq21IUA32iMrPeYz+eYzecAEYYYcH5+Du9rXLh4Be1sidV6DYBw4cIlXLzyHLqux50HtxFiB1d7XLz8HK5cvIn7t9/BwaUL6ELCo3t30Hdr1G2LG8+/hL39K7h/5y6On3yMuvG4+fyrmC8v4MOPPsDZ49vwbYMbN1/GC8+/irqe4fjkBHfufoiTJ3fhEHDzuVdx7cYLuVCRJ4/IhDsP7uPjj95ATNvM5LAjuMphNmtx9eZNvPzK53Hl0nUMQ8DHd+7ig/d+ifXpYxxe3McXv/Ab8M0BfvLzn2F7egef/ezreP7WK3jw8BjvvPVTbPoVnn/heXz2ta/g5KzHj370d5i3hK987es4PLwKggM7WQehC3jzzZ/j/r1f4rXPfAavvPhFnJ4P+P4Pv4Ozowc4OJjjK1/9Ldy48RIe3DvCj3/w91idPZR9tAJe+/zr+OJXfhNDmuEn3/4u7n38DhL3ao8LgLfDNodD6HzeP9jDN77xNXzjt34Ds3ZP47Mt30bnPsZQjE/rZQluOaY8M6bGsI+AHFBwBDf5TD70i39nY49HsEAkmu85sdNi591UfhE0eluzjKCCCNGDdqrVPqCu61yIx+4xm81ARDlO21RJAOTPmBEdY8R8PseQFUskn8c+k5VEWPb32WwGAJntNJBv1T/NKCiNdcuxyLCKxEA2drOUSrTvEe+Dz201UG3ETWkI1W0LK3tvl3gnaDIO1qa2bdGrp+DC3h4YGNlt71WDW4ynmiSxMCZgfb6F8wKMZ7OZyl/KGWx7PDih8l48NLXEJXsgg1fvPeIQsvJPVVXY29tDo2x5CIVhp5+LSvQQi/jAMAwK6ppJArQltNpr9nlj8105z4yQpDKfwhfzXpNp8XRIbgghJ+raPC7719aRXVnFiCTslCEqRdLWMeTFknetTaUakBkXMUtBF6FSBcQxQyB7cLyftM2u3L9FvLwZHKUogCRtV1optc5GTD8MOD47FWWnzVrmPABfV6JUBCBwRB9kXZlq0Xw+x2IxR4oBJyfHWK/Pwarz3qqxVNUVfFNjttwDQcdKPaSsa/iTXL+2qkwGzinz18iuwMqXuFLeR8J2GCDMZDMBi3mLWdvkpEBh8cZJLXFH4lrjhKeK9Iwa4AXTDYyDmUa3iB1kjhiVE/H7zEhjZJ7HiSyGSeh63H7jLfz42lUcHlzAc9evoq49bl6+gq//5m9g9fAJfvHt76NfrwX8Qw5mzlZrcd+CaQegCZpqABmOzt9eMBNskfJTRt4MD/tVWTXWDonkhAVnQ/HSUQLsi0NochFygp69h7P+u2z+9nnrbyhraf+HjYwy69qj+eHIvCH6cwxBGWe9vxo8pLJ4DoRZVefvtg4jET1HVTnM9xa4dOM6XhoG/OKXv8TR0RE8HGrfoj7wAvzVxShZ+OJyhXOIRIAlnlIRmqXjVM6tGBMoDiAIkyEa7BrKE0WXfYhyIAxJKsCmGBDAKvEY0MeAbuix3pxj6HsJk1G1h5QSujCg08N3velxvjrHar3Gk6MjHB8fY7PZwlU1rl2+jBeffw5XLl7G4XIPXjf6xWIOduKt8I5QNzWQIigF+dsRQkpYdx2GELBYLrF3eIDFYoH5Yo5u2+Hu3bt49OiRMFtR2O+6rrG3t4eLly9jtT7HBx9/hOViH7/x9W9ivn8RP/jBd3H6+DFeeOEl/M7v/wecnK7wv/3p/4yz1SO8/Npn8fu/+8c4XFzBn/7X/wd+5w//APXsEv7hb/8Bb77xHRxe2sMf/NG/wivPfxF//td/i+/+/QNcvn4J//rf/lvcvPYK/vP//r/iZz94gi98+cv413/07/HCrRfgncN20+EXb3+AP/tv/y+sNw/xB//qD/CbX/m6xKmSg0eFoU/42+/9ALfvvgXu1rAVxcxwjcfnv/Jl/PG/+nf47CuvY66H4eOjc/zl338bf/NX/yte/8JL+A//8d+C+BDHpxs8cKf4oz/6Fr70ud/C/Ufn+H//1xneees7+NY3v45vfuMP8cHHp/jgg7dw40aNP/m3f4hr116EBtTAMbBaibTmdniIP/zD38VXvvR1nK0SyM3xnW//N/zGb34O/+FP/gMuX7yBn791G+++/zbWq8dgIly8eoB/86/+AL/xld9BP3i0aYb//fEjrFcPBEBpGIC5i2UNSxw+iDFftLiqifciCzduDaWrduc8/FRdBhCYAHiRcBuShODBOw2fEzKpBDQWbgUDCEoe2T5Z7gP2PRmEoGR+XU5YLcNOmBlMYwGsg4MDDDEgrFb5fiUQyeoXMWE7bDCbzfV94/5sY7xYLDJ77r1HXVfo+w5DlMI/la/APLKSBu4rZZjNIDAtbwM5rYaeGKC3vjJQ16tHwGp4UBq9WCGNBQstDGS71X0+xnxuMCSvpgJUrlZed85hsw05B6ckv0xTeyTBVA0GYjBsttvcl8by1k0j9SMAuFoUcfZme5nR74aAPqwwq+t8Diz29qX6Zd8JOCXxWDhfSV4ZW+6AB1csbSIJjez7Htuuk2qZnBBTQEwQr2yKGIY+n/uyby/yfBJJUaewQQzpXWWe0huU56SRdsX8mGIkzXEBcqgskUcawkT56FmhMaXHoFQnMgUvgkQaphSyh8Q5ApjyGiDSUFAyWeFRXWwYRtnkGKPmAKpno1CWSSnBA9m4zaFWRX4BYxRcKJNVY0x6XkOS9yFJztK3Ei3iXFUkXQs2SAlo6hZV0+Do5BRDr/O3ohyy7ZzDarXG8fERVqszEDOqqtaQN/EoUw4XVqUanb8qP/GM3ezp69cC7mzsdEpI2w7rsxXWq3PUjWz5ScG2M4BfgjgiZYXVFZIihn4QhplGppbz5ELWbYeCuHym8O59x41uYoEzg1gypodug37YwDlhO03dQSpbGmBDZqZya5ixPjnDz7/zQ7TLJT7/pddx6+p17C+XePH6dXzzW7+Lk+Mn+PAnb0psr4F1XSkG4M09l1epgW59LtnQlWFmPDV8mYgvCihZOIwYUlyKxGTDx6K81EkLqNfDFoPdK3+JgXq5iVqhCaJek28OqwhqG0pOBkuFU8DAvMbt2mZShqaYhNL52RnCdqtgXeMHtWx38l4qkdWSuS/JwAmkJa7FoPSoG4flwSGu34jothu88/a7ePjosYAWTRxilgJHta8ABtqqQVWL7CNl3VnpJwvXkrYTrMAIaYExZgg41g2Z9VmGbS8xiylKOEyMGFiSvUIM2G432A4dzjcdzjdrkYtiKZYRkxyE3dCj63t02x6r8zVOT05xcnKK1WoFgHDh4BKu3riK61cu4+L+PhbzGbxXeTbvRUPXEZwVi4F6TFJC5UUfvO8DVpstiBwuXriAdj4X3Wt9thjkeXgujE0cBngihG6L1ekxAsv82t9b4Pq1G6gXB2jnS9Tzc9x47iZefOkGPrz9EPP5HBcOn8e//3d/gldefR3f/pt/gK8Sbl2/glu3XkNbL3F8doqUnuDKtSu4duUSFof7YCIslwvcuHkVVy5dxHxvif2LF/DN3/4dfPG113C82eLh44eYtTWoFuWHqm1w5fplXL58AafnGzw6PgIlxnbb4+Hj2+IRUelOcc87XH/+Bv7dv/43+PLnv4whJRyfHaFpHPb3W1y+chFN2+LSxT1cvnyIoZ+jrhyatsKlSwe4eGkfi719/OHv/x767SkuHB7gcH8P83kH54HlXosLB3uYtS3uPXqEk9MniEw4Oj7Fnbvvo24cLl48xOHBHvYXhG/91teQwil+75tfxQu3nod3DebtHOS0ymVb4bXXXsHrn3kdewd7CD3w2c+8gu9euo7z1UOz5se9NO+UAqq8c9jbX2BvsQTlAlOyh8QUcrK0VC3ugZdv4NN4ZZYX2WGZAW3pheCdswNkG/fI6rkd4L7LPtrnSpECABq1xZM2VQoIZd8bVPJwDDEpk0eJpLCWMKZWxEnGR8JgJBxvNpths9lgo2EgJZiTPBNVjXEj4ZI9ABhj3DvVoS4VY6w9GfhqWEYJlixxFYScDG6xw975XECqU5bfmHY79J336LpOvlf3XOvHEALIeXgwXC0eRAsNNY8Kea8RAGMfei+x5naOjuOiZFAl7DtDCAzK7LO0qW1brM9XODw8FMGEGBQEqu5508LpmiTnUKnGvvURQUgbCRvykz60pFGrFmrMsuRsjZ6IEZyP5/4uOVk+c3lN5qa+Pyu2WL/bZ9im/Gi2jxhqNObtHr8S0HuXJZvLsCm7JmuOLWoi5XF2zuXQpEwMksXAj/ruRk6lKAISZdy7tXtXncbmqPxeDBfvvUg5QvCTVdNNLNV9191GCWoJ95CwLal/EGOUtQyIIhQz5vM5uq7Der3BZruVkLXECL7CzBF806Bp52hnc/iqAtUVEiRsMilRGlPAJ7l+PcZdrxQjju/dwxs/+D6OHt9D3UgyFytYZGV2hOV2qMjnhMmWKxWyZ9z/+DbOHp3qAMm9n2I0MN0wy/gpLiaVfij/mO+TGCf3H+IXP/spVutjuLrCg4cPsHp8DENl+bsMCBcuJEnwSDi7+wDf//O/xu0P38dLr76Ml156Dtev3MTlK5fwhd/8Kp7ce4Cze49HTwMACwcpw1DYNg6wJNQBGh7D+ZnEQubsEbANZXpwGABHXgCWMGj9R+QmiZZkRmfRnmm/ao4AscYoihGTksUPYzQU9Bmt8Bbbc/MIzrOkoe6HExZb7zEMA85Pz9BvtgrAHUDy3UncDgCgRUnmUgRHFV9gm7RtfI4wa1vg4AA3r13H9myN9z78GI8ePkQDQlNVODzYB0WggwMPEWgjeMaoQMqgMBgimWWVbkOUmHzYAahGl8XLMUvcdAjKnHcSihJikFCXJAx7DAF91+P8fI1u6HB2do51L3r1nAL6fkAIEX2M6IYO6/UWx6enODo+xuZ8jRgS5rM5bly/jlvPP4flcoHFrMFMD8PKeQHtyviQI9RVLUVJhgERGveXxPW97Xts+gGVr7LL9cHdh6Jf2w84PTlD1/U4PjnFrGnhHRDDgOgJZydH6EKUkLeUsO22qBeHeP75V3Dp8nVcfe5FLA/2sDhZY7aY49WXb+LF557HRx++j7/+8/8P2tbhrXfexP6FS7hx6yJeeO0z+OjdUzUCAeeS5ndoMqoT43C5t8DBwQGqymO1WuOX776PdbfBB++8i0cP7+HwygKehFW58+gJfvbLt0ExYdtHvPP2W+Chk8NSD/75coYvfPZ1fOallxFiwj989/t48xc/xIWLe1jsH+JHP/0FVqsjWKlqIgBeVGG8/lnOanzusy/hbP37mC3NO6UHiXr7uqHH3UeP8PHdj5ES4fGjM9z+8CPsHaZ8MFdNjVdfvY79wz/GjWsXlf3SxG2W5K3F/gyf+9wXcHBwBedrOTBuXDvEy6+8htt330EMm3wYymLUPYGk4q6rKxwcHmAxX2QDPSXG2XqN+/fv4Gx1jNX5CqcnJzg7OcW3fuOL/9hR8M/3ImiOwjQG3UI3csgAq1Y5kzLwIyDKx4mGKHJxb7umZpKBH2Mfp0oy9n1lOM4wDNmwKOdUSGlC0tj+ZrKBMViSvoSdANAKnU3e0+05LQY811fB6Cmwn+17ynAgY37LEINdcFyCt8l93HiuyDkjJ15KjKp2WeYxk3QWxqSqLKUGtxRLHBMXU5IS9QTJ6ijPFQD5DBQS6um2VZWw5azzv22b/FlvxeloVNmJmntiYZpWwVbmlso7VhW6XupYSBKoGjJePCYWLmpFspJ6YZ2jbIi4wnArcytsjMqEzvJ1+3scG2GAd41TO7MzRsljI/OXdb8AZYgw7dcdDGZzYAKSMyk3YjGbv/J7wWyJxzbYe2zMLRfAjM0U2WBHxnjmUYz2c/F6aVyg+H2IUmMgJlOSk2RomdsyH6QoYspGhHMO5Cv1Hkniatd1k3mW10NV4Xy1wtlqhfV6IyE/JN69BDm/fFWhqhvAkSiZJUiIkLbxv7scpDUQ2nenj5/gh3/9D3hzbwZynIG6jTrnLQLwVI+TwVxLROg3A1ZHK6Q+Pk0x71xPW1J6QyJNthznxug+BMDA8d0H+M6f/y1+ergEeyB0HdZmMOQvsImd8o1yWBDEOj65/wCrx09w5ye/wBs3r+DmSy/g1gsvYbM+x95yiXN6MklURV4UY9+BE1ySxWwScsz5bACgQNk/HcKS9DBxOgi57DtGplw2AVssSZNJZQNLKp2ZcwVQGEiFoWP9IVrQoiZiCagASeiLLjC10SaGFtTpnicL5R6RtqoxEIYBm9U5hs0GiHE0nJTFsE3K1TVqz2jqCr6qZCPHaAjkg0FJnPl8gStXroECoesC7j28j4dPnqBqapmhCwBRkr8QNCQqCqgZDysgcZkFbwcJy2KPMYMyB4c49CIjlSJSGJCCVjcNA7oU0A+iGrNdb4RBX53jfLPBEAP6KG5YTizAftvhfH2O4+NTnJyeIqSIxWyOm9ev4oXnn8fFSxfRtsKsN5WHdx5NVaHRpFDSapEC5h1SHFRzXqXktltwZAyJ0YUAOMJ6vcLlq9dy4pdoxG+RzlMuBnL50kU4PXTm8xbzmUdbN2irGnvLOV577TW88pnX4dsGFw8PMW/nCCnAMaMiwt//1V/iB9/7LlanR1h5wne/+21ce+F5vPbSV3Dr+jXcv91Ick+NDJRCKgq9EbBeb3Dv/j28+PzLeO7GFVzY/008PjpDG+c4unMPjs5BkEP+5Zs3cPXiRXh2eHJ0ioe3P8DHH43GZlU5zOYNbl67hnk7x72jNb79dz/CW7/8Llwj2sxD108BFKSwEZwYl5wY27DGbEb4ra9+XopX+SozaVR7gByWswZffOVVfObFF0GR8fHHj/DOGz9BoEewUuRn23NUDeHVl25hiAEnq1MsZkuAkgAV73DruZt47TOvI1GNN959Gwdzj1tXX8DnvvIV/OhnP8Lp0QdSUpu81qoQ9aVEBEkUAi4eHmA2W2R2eQgRv3jnI/xv//V/xsnjB+i7Dr3Kk+L//n97xm78KbiMTbT9z/YSN2qaC9OmAB8qiYeCNWdV49GCA0QOVJSTJZJMnKQAGtAzhEaOY3zvmNznnJ+CKho1rk0xKaUIctDiTLoHRQVuDIRhEFKsEo+jAcBd5rEMbymTyYGnlWDK4kTl+0od9xitYmmVwc0uSEopSVn4Iq7ZVxWkWKdWjVbgZWNixZKc92MSITPadtRF18yLPKYG8kogKYRRQuQ4YsUC7Jq3Ak5qWRARlsvlpJ8IQN9tQESZXRXmvIKDlLaPmiRfPo9VIzVVHHIiLUwMNdA0J8oM+mxAks4v+hV/MOnfMkzGAH2pzOOcG8/9ArgbDiDYnC/vW+Aq06gq4FGJRex+FmImxNNIPu5+RtTVlIEXqgBcnK0WnjMaccWzq+HpyYEs8dTmJJvoyZQcnX53GkPDTNYxg3zkRG7SUCebW4POB+9Fcz8BGDQPTQxinxPfm6bR/vZYbzucrlaS65UYvnbi1WFV43MO8A4Di+y4aPwje3OsyNY/df1ayak28CBh3c+OTrE6PpOhtopPxkYaF84sri6iHLZhRWqSKnJQAdrL5An73t02yNdw/rsEjuWgkbIufRhw/PAIJw+PQdBiNlqtysFkizh/b1n8KD8zoLHLPWI/YL3a4OEHd/HuhTdRz1qsT1Y5qcJALYo25fvZgrDuKkDt7vt45/kl5p0y0z3pG+uLsu2YLjjD01PPxfic2fNhP6ci1MY2P12brojLZ62i6/y4mcj3qCQiibWZ1LJHkuSp7fkawSoLMueCH4LdbZMRV+P+3gEODg8lRswkq1IEczU+KyS/wFcezWyBw0uX8NKrr6KLAx49uI+PbkvSKF8GOk0ajQmICajaGr5WNsV7oK7HhGEkIEi2PaBFlkIABwkXCgkYQodBoABiPyD0A2KIopMeenTdBufna5ytVjhZrbE6X0vyKkeEFNH1okCwWp3jydETrM/XkijUznD9yg08d/MWrl6+gr29ffiKAJJEqcZX49+q6+u8h2sakT+LEWAH7xv03INVo7YPAefbrTAQIeHOvfvYP7yAWTtTjeEoBUpgAISxt7eHC/uHOHr8EHHoMa8rXLiyj/lyD9vVEc5ObqOdLRF7wr3Te/ho2+NHP/05Ht1+G8d338K151/F9ZdewzY5HD+6ixASmrpFXXmRN2SRNyRIWWjyDWrfoHa1GHUh4Oz4BN/73nfRE+GlWy/i6uVLeOn5a7iwf4jTsyd4+93viAGn7vrT8xNwSnh0dIz15hw2BZUXUvYrSMEmR3BNA3ZSHW+xuIANn2Poz1RyVuN2tTQ3HDCEiA9u30dyG7xy8wU0zZ4cSsQ5SQxO5szx6hTHZ0eIKeG9u3dwvjnDbAE92BPuPHgExgYv3ngO79+7h9Cv8fpLnwWRsPLNvMHnXv8sbl6/BSKSyonzBotZi9deuImXXv4sfnp6G0hBiQEHQOIwnffgOMB7SU6t6xbmYRtCwt37x/jowzvozo8kAfsZe9Kn6bI9EpiqwZQHP7kxMQ6YArwSeeffowRR03vvhis8C+jkfJ0CtIsEYJMBs+mng8a4ZXPlA8jJqdvtFlZ/Y7PZIGmC+S4jOgzDSIJ4p5K1KRd0MsaUWVRlDMhYF9gZtlgssO26DBTlLB7Pa+sDA/99GLLyTbK8JZqq3zAVsdEkVWEH9eBlbwE5RE2utcuYXkukLMMyJiAOdp6MQDClhMiy7yznc1SqonN2doZ9DTl0BKzPjuXeYVCQiCzd2Pc96rZB5es8vpbs63XvtDwqAKIc5DU8s6oER2hycQbhsNA9qYFjrP5Y8Tbl8bTXSnWakg1nRpbc3Z2P43sSgGllZPO6G3C213ZDqp4iFCXOA6RSh+CY329kqIXWGuwoDYryGco6BbY+LNTTavZYvkXWiCoNucIILu9ZJtnac2aFJQ072263Yy4KjePqfIWqrjGfz7Dd9CD2AHkM2w1iSpi1cwROmNUVzjZrnG826INUSh0ig1xAywSqalBdIznCph8wrxrNcwjYbnusN2usTs/wSa5fT1XmqQHTAQJpOU0S5l1WPEByYFGUMBorEpIB6W6MtU0C2REEou4AzWxA5PCMcSJM2moXyREtFn6ES5Z8ZCozAvnUDnzqHqXVaEA1MQNDRAgJJ5tHorlrLIn2hxPcK0oqxWFgrTR5SqvESQmjG2in78VFRzlh1N5jLihThRB96ZQVDDOM3zF4LNnSPm/FqMrJn7Xlx8oysPAdKKskzJAxDkk9KcIgpBQRgiSaWGtSwQbFISANYXQ5MOuYu4IlG/vAkYOv/eR1trmRGKyspGMA5FDVFdrlAocXLuDVl19B2G7w4PEDpDQghIQrFy4jLJfoQsAyDJiFJepGGPfKeyTXiV67I5DNYe37JBZhlu+LqqU8sLBvYRgQ+h5D36NPCetug9VqhZOzMxyvVjhfb3OW+xA6dMOAs9U5jk5OcHZ+Do4Rbd3g+rXruHnzBm7cuIHlYiFKMVVlLhdUzqNW7eamrjWcR5K8qPLwlROD2hOGoYdIQPaIUUo5b0MPcoT1eYfV+hxMoloRQsTQd1itznWNk7JfLT7z2dfw0azFxx+8rzG6ssm9+fOf4M2f/0S0lZNIsW22W2w2EV3f4eYLL+Nbf/hvcPPmC/j5z97G2+++iRdevoUbV1/Cthvw4OE9bM9XWK1PQJTw8gvP4ze++k288sI1XDy4jK4P2KzOUDlgf/8CNtuE7/30Tdy4eoBvfPVf4PDCIQ4vHcK9LzGhIUZ89PAhfvzGzxCGHt16wHo7qKFu7CEjDAEPnzzE+eYMlw4u4V/+/u/h8pU9XLy0j1s3X8Av33wb3/6HP1UAIIyRz95FIETG7bv3cffxW9hvGzx38+UM3KlY+5tuwAe3b+ODOx+DEuP4ZA3yLcA9zB5++OgIH919E8fHT/CTt36Jz750C3jxNaQEhBRwePECXv/s57FcHiAFwqs3b0hoRQVcuDLD577wKt566/vYDJ2sTUpqh0uYAgho2hqHBxe0SqB88TAMOHl8hH7oJS43RTR+lKL7tF6u8pltM/d7iAFVXYtnNI3KMwCmyXN6RghwUSBDKlmaaYKnGb6SQbd/s7wBwBifS0RZIlbkBEcwRiRu9DL5zw6OEHt1yxNiDIj9GBPLMcFV1YQHyvreLLldAGUVDAOtGQjHiEZVcXoD8NrOxEK27O3t5TAGU0RhJFS1GA1DDBMG2ICXsfQle1+qgyQWnexd9nWz2aCdqZwjjzH3JZC3cTPQm8e/GIOsHNS0aFqpWnp2dibKO8t97O/vo/YOJ8dHIhlJwPpsBUAMmqiAf76Yo21m6LoOdd2q0FgSVRgWdSAzvKxtbVuBBsE7KYmqVz90kEoQMnfqpkXl6xxGE5klfnvnecjX8odGXGTPXhqozzJGR8BuIiO2t1MRH5FgrPv4mfHPbtx8boPNQSAbXuM4a7AIFWFBbqx4a96OCTlsrVEDTjwcik20L1glxHOofoERS09I0H6sNAzLCiT2gxB3w6AFEJPINfd9j8pXGPqIqnHYrLcISUB6VTWi984DKl+jqh0SOcQYcLbZ4tGTJ1hvt0ggJK0DMQDowQhECI7QJSmwNaxXWHdy9p+drXBydorT4xN8kuvXY9w5iQyTzAhoHRbtpCnQJSKwzw5EAZ3Gkjtjo3mCUrPkFhRM5ngrmkwSmyAZwREm97F7ictIJ5WFgGAErJP2wlje6cTZZfJHFx0EwCbGQCnfQ1yrmZiGFRLSaLvs2mNwltZ0vPMIJWuSWe5RT71s18T69WpA6f3BDI4pxxvuvl/aIimt5aK0AjMC8vV5GdlgInV9JR6114NuWCWYj3EAkiReiGUyJgE7NjEtNfRsM7AxIOtR6xdJRkkArCIm2TyxpF4AljzqK6lSt7+3B4oR3YsvYei3OFud4u7929h0a5wfXMLh3gX02x57ewPaxQJN2wi7m1gKctQeSCzFtRg57jqp7GMMLKB9GISHTQFhiKLP223Rx4DT8xVOTs9wcnaOrRZaiiFis93gbHWGs7NTnOtib2dzXL54CTevXcf1q5exXM7RNg2c9xK/6pwmkDI8OdROjJSqsqqEHs5XcE2Npm3BsUe/Ptf5LyE/IUrhpXXXgchh222x3W5x584dzOZLxBBgygPMBIv+JRCaRvSf19sOHYlB3syXODw4RAgJjx8+wmazxmK5h8996etw7T5+/tPvgbxHSBtcvLKHb/3Bb+OrX/8y9uYzuLrGj9/4Gd772Q9xcvIA73/wFl57+TP4wmeexws3/wfMZqJZ/YtfvIWH9z/E5cuX8dvf+AZeeeV1bLsA7xOWiyXOVud48OQuhjDkyq6v3LiBa4cHcEQIQ8R3Ll/D//rgQ2zjcQZgYUh467138cZ7P8W/+PzX8fWvfgZf/dKLaNoaMRD6TY8f/Wghhj1LnDjYDhph3odtwE+//zPsNRVm8yUOl5cg4r4AsSRBz+oKX/zs6/j8K6/CAVitB7Tc4pfv/p0UckqMfjvg+9/9AX74/e9j22/xyvNXcyGzyju8/MKLuHXjOWy7AW+9/S7uP7qDqmK8+tKLuHblBXzh1Zfx/RvP4/31EThF+SzJvuvAADEWyxkODy8VYRKMbtvj6PETxKFXpr4AoZ/Sy1d+EsNdgoUyLnc3DtiAYQn6ysu8knZeADt7sF70VB/KKRCikEdWLEmS8aaSlc579N02hyIYoDHg0ff95NmMdbY/ZdXiktlvmzYngppBY6EKzok8XnnW2vcbyVDKN5afjSrXaM+QpRFVjrJpGhAIwxBEOrCIj89yggWLXo6D5N5IW4WcGI0GC6+xewmJk0ZVJaSR5XdCBtZ1NSkIVSoKUXHWVk7OD05Ri1wFrUmRcHZ2hoODA7BWb/WVx6yeYauVbdu2Fe19Zm2jwW85H6tKCj3FQqYzJdHsj3H04Jg8p7W1ZKBh53vxJ6sbOZcNinL+A2O+WjnOMqHNW/70WrLv3n3NrqqqEINW5i3xxQ6rbldW+itwTsm0A0rU6TqtqgrDNmSiGBBjL0g8a8ZE5T1tfsckqm4i9aoGchKTKSdlh0HODSJUOsdDilrPQvLFnPLMddMCgygWWQX0yBGzxQLvffAhTlfn6IOuQS1giMojIGHVb5BOCKttB19XkuPW9VhvNtnb1Pf/J8hBsrGjAOCU6S1p76LjQSPINGo8/zsZlKXsEpSPjFQqp4SEMT574gYjTfJJ+S4TUF1aXkYNEzjrmO9OKDMWLLPcADgru0zQZ9X/mCwGEpN7wMrcj1ZB/n3ENARHmsaghIkazOQZUdymMDSs/RMJqIKlziEz6iVgHS9HY8ED6PdDw06QNOZTQYTJ/0nGc9IMbmEBOJhLV/+OScd32rcWzpK9Fc4OU12kNN1IUPxhNezyeJLoxINYi0IJ6E8xIlKAcxXI+VygyRHBV7JRN/MZrt68DqSADz54H3efPMK632K77XB6vsHZ3j4ubs4x31tiNp+jrSp4OPi6loWrcygxAO/BKSL2HaAMS69yjjEEDHHAtutw3nXYdD22wxar9Rqr9QZbZeJXZ2dYna1wvjpHH3owEdrZDBcvXsKNm8/h2tVr2FsuUVUED0ZbCwh3piGswF0qoTpUXhOiQHAkRXvaxQwMCcGAxs/FMCDGoGEyHfoQsO07dF2PlBjDEAFsUbpmJSSLwImwWm/x8e17ePT4GOfrDYbYYxMCfDvDxeszVLVsbENMOLhwGVeuXMfRaoPAhEdPnuB7P/h7dGGDF59/DQeHF3FyfoK3P3gf3/77v8GD2x8hpB4/+8lPsX94Ba9/5nXMl/vYrta4d/cu/vbv/hYP732IveUS77//NppFjYsHl0FU4f27H+ONn/8Sb735YyB2ePj4ET5+8DGcb+BBqMlhGHps+xXI2E1l3UOIuPfRA/z9X/8tEIDXXnod88Ue1qtzfPTxHXznR3+P07MjnK7WuHP/Hs7XjNXJI4RhwL0H9+D8Pm7fv41Hdx7ju//wHezv7eO5m6/hw4/uoFtvcH56jrv3bmOzHXQRSuXT1brDtjtF3w+49+gRavch7nz8ER7eeYh+e4754QKPj57gvTsf4/2PPkQY1lgubuLo+BjvfnAPf/pnf467H7+LtiV86/e/ga98+Rs4PetRUdA1F3PlZjP4CcD+3hIH+4eyXnRb2WwHnJ4cidHrCN7V4MLD9Gm/StAOAMxRUhRYZOusGNPTAEeukpUf93Tdn0DZg1kmqxnTnkkoA+AYGUtAAYt+tgQcuyoh9t66rrHZbCbnz1TpI4FYEiwtDMUAf4gRpAynxZUbCAckVle0rb1WSx31r6uqyu8tgXfQ0LvKV6h8lc8EY86zV4GlgrQ9o2m3W3+Z8WCgzvSsrR3mObD8AXteY2vLPnVanTl7s5WRdnUF56SNTATv5DtrLVLn7OxPjCENYIwhOLOZhBD23QBX1VitN7Ina2w0k1Qtyd4Ag0nOKREiz2mVOaHnau0rVF6AqDY+n21QL/rEKCNLmsV4sEPAv8wZ8yhCJbSNlZ7Op905ZsQXtAAZ89RoLcNP7POT8BQalehc0e+kDc2YCKOkZRnuU1XVWDwJmLw/E50FKM+hT46yj4C1fxkSjh0LjJRSEoZdJR8zI69ziLxDCgF9GLIaXF23CFH2B2a5Z9gmbIdBn3MMW66bGsfHxxhCUFENAocIVIQKNRgOfR8whBXC0SmYgH4IGPQMijHKeqWn1/2zrk8M3Ev3FAMZVXpzG7od0IzRFQY2QCuXsc8oBn5ySDiJfbPFlMMp7FJADS0MZBuf/Pg0W0Q8unKexY5Im+zBOG/Orpg+iTknhdr7DQRn2UpMrcxsDWcDmUdjpGynDtikZdqWpN/p1f0OIGuq22XyUg5Wyn38fmMROAHRmWEi7U0h5u8gRERGLjaRXXZRJnvgCIoC3MdhoOzqk2HbObhYE1OMr2VkLwoT6RyJBXtlgpWc+4jVpKot9lyNo8QRla9tm8neDUCkDokkpKWeVVhWc1DNoq5SeWyJcfT4CR4+foiz9TlOVnt42LZYLPdwYe8AB22LtmlRt61WX6skxAJJElaTVE7tlWnvh15ixXsB7WfbNTZDjxgl/vR8s8bZeoX1doPV6RnW67VIxfkK8709XLx0CVevXcPVq1dxeHiozImDd4TGOzTqQnbOAQoCoEZaRZJoSeSyZFzTthKvGoN4XIRQgeQcRAwx4rzrMcSEfhhE/spJ4m6ISfRm1eYV55iA9/uPjnB6tkG33WLbDapfv8EDd4Q+yph3XQdHhIcPH+N49V1sh4CzszOEOOCNH/4Edz66jVvPPYflcg/nqy3u3b6Lo8ePxeVPjHsf3MFfnv9X/Oz699Au9xD6gCcPH+HR3XsYug5Hmw3+5i/+HD9744e4cPESQBXO1ms8vvMQ5yfH8LXDX//FX+KHP/2RJDWpp6QPEQ8fPETYnKsHQddmTOjPO7z547fw+OExbr3wA8yXS2y2A+58dBt3795F6Ab84ufvYL3+z1hvOtx9/0PE2ONP//QvsNz7AT7++D7Ozo6xffsY/2X9X3Bw4SoeH53h+Og+3otn+M//y/+Cqp1LaJwXTZGuS7j74R2sz0/x53/2V1jMvod7t++j264RU8JmtcXf/8138POfvYfHDx/j8cOHeONnPR7ef4TTkzPcvXsffbdF5YC/+5vv4Oe//ADb8x63P7yNECTBaZo/I4zc4eEe9hZ7cFTlPWK12WJ1fpqrWsMJyfEJJYX/WV4TN74d8kV8u8nsyV4tsrJPhxWMrvl83xzTjux1NtRjwCV/HjoGBWFiW3cJNmMB9ACIVxPIIScGPiy+uXwm8yDHzCrafkAIcZgALi5CL4zdLpnc6X3HPijDeErgZKDL9isDuiWZZO/XzoEppthVejd2Y6nLcAsJlzDP9jQUaXfMHTnlWsbzKLcfrNLllJNHHUl1WqloLQUCS4Bajv0wDFg0LaDGS9M0eYxiGkk3Qw5EUzAvDHvQfZXz8mRrU/HZnD+hBGnpHbL3e+/hMFblzH1i/6ZprmAJfyZeeGZN6LawoimOyom/ZX+UY+1sv5j2HfOI0crXyrF/ioDU+++qw+x6uPI8tfYA6vWnLGtr7ZWQnDj2sa7PxEmrC4+eJWi/2po2r0SCJR4jh2qb0Xm6Osfx6Sl6S9ZmIWh8BbBziAA6TY7dbLZIRGjbOaqmhqtqCcUKMYub/FPXr60qkwdLwXhympCAcYEkkyMr2AnGsxnxchCMw5hMaLWgDEhArW4ipzFj07iuXeAsxRnG2bq7MSVm3XzH9pTPlzOgNcEMpYXJrM+KrF8rT4u8UbIDNCsTYNJKWZwXIydlpnmccEQEStkEBnSzSQrmOXerTige+8iJCyMngxBMiopz/1mF2hiCyHIVIIaTFBCCMe+2jSjgt0NBqsNqgfDC2pZmJVUGSKouJeEsEjOp9yKJg8+LghmkG6aMiRyoxrSHGBDiyLTLycZKOGg8MQpmTaef8x61X2AOB3YOlzjhVQfcqT/Gw4f3cXZyjM3ZCmezFv5khkezBQ5nC8znLVovYRrwFSrbNGMCs0PggC4MEhqTEsIQ0Hcdur7DarvGerPB+dm5APXNFt0wIHCCrxzado7l/j4uXb6Eq9eu4tLFi2jnczR1rVn0BCIPDwijrvrGxrY7dYV6Mgkx2WGqppGqprb5JpGUS/kgjBreFDEoAzeoTrKxVDJ2QOUrlWEkeDW0NtsO2/VGDRcGMyEGxtl6i+1wlNdFU1VYd2dIJ+cC7iHegdhFPLn3GMf3j1VLXtR8sooFAXE74NHdBzi6/xii0S+bK+thwjHh9Ikkxd+mj/J6TVrEIg7Ax+9+APfhR4gQt7kZjI5VcaGIszRGYeh63PnoLh7cfSBeFmhCU5RZfvzwCOdHJwAkGTkmxvtvf4xEH4s2fGTEAfjo3Ttw/j7YS8LtyfE5zs/eAVJERAJ5gicHJJIS9Cnio7c+kAIgWpSFGYi9eALu334IJKlufPfOfdy/91B2U3aqLhLx8M5jPLpzhAjW+Npxv7N9yCpZLw/20c5msKrFMTHOztdYbzeZIIkcJTTsV5wDn4bLWLWyL0bgbuAw05YThtDOqBxfuyPNB/2Ugb/xO6eyg+W+WQKS8r3muSzBpZwt6lXW14N69gxEi+dyyozmzxegtpS1K98DiG67Fflhlhj2xWIBABiGkEGnfE/KzL31h7HgZaiKfUf5tyMhHLwb47CtcE4ZIlOy+fmMTVJVkrwkqYKhoYEjdDFDJ/f57lzIfxz6YQCTqpRY+7xDv5GiUCkEIY7AWTWMAAH2+exn1G0rNTPqWirKauErk4y1P86Jt1ISW6cSl+KJlhBQ54RYct4hhpj7WnIDpJZAOS+tf70TDXkGaxiRJmGSAWM/+cxonJmxYK/JoskGh0pVCxCfjmk51sqrTeb1bj2D8nO782Pcv4uwHiMWi3sJbJD92rkRJ0y+t/jOXS+F/bE6BAwGIrJ2O+LUSHHOITAkoZstekQIn7qWHAkx8uRcfnjnHk5WZ3BunJfOERrnwM5LHDwDfYzYhgBX1bh68QIWiyUiJwmt3Wyx2WyeMYOfvj4xcN+1wuUxNInR7QyIbYjJNk73NDAuOnz8XDbMxd3CCh7zpqdg1hEc52k1WvVFp+8C+FR8dzn5xucZJagEUCtTqZVNJQ7VBgSoyKnFJlNdtGZlQSQgF3hi2/AJUp1zZ2chQOPFzTK09unkStCiTmkEMWxqAyQMvj2TLd6shyqWgcmEgTQJxaxgCAvLuSECYsbzjjJbZH+yXGLmwnXhkZoJmpycOEk8MBFES0EPDRKpKlmsY+U88Rhoagyp0rHJrOmh0m96UFANdzNikiweThGc/KS/nd6QnKistATsHwxSTTR51FWDe/fvYb06w3bYgv0ZjnyNx7MW82aGBuIyrnyLSt2p4vWQJDeLFx+GHpvNBlstpnR8tsL5Zq2x8QDBo24aLJcLHF44xLWr13Dl0mUcLOdoZo3MVw0jSmDAOzgS9kzCYFw+JFwlxUYkhg45DlQqs4nebErKHKQAYgG8iQW8pQR0/YBtLy49KcNNUsQkQaQuGWpoyzoUkDJOXSnmZL4OQowM0ADnPOqqQuAx54UhRp4zWbsoXpYhjPkstu7A2r8se4qjZ4TRgcBJPANELLr+YjnrbBTdX3BUo9nCxqzh0w263Hg4Jkh0/2jce+81n0KSAeVE9IDTCnxmNGsHpSjr00E3fUg4lUuMgABKDskxKGn4isr4QZPVc86JbAxAGlmuLKGn+QqUGFZX2AwfysSGrnNdv069VocXLmPWzPLY9Cnh6PQMXbdG4qjrScIM6h3P3qfpknlXgZJ4DUOMyqwGBUW2x7ncR/a7MgFPYsZFgrZkgmUICLtdVAJ8Oflkf0ZMAhadz9Uc7ap07TNUazoEzOdzhCDJ0xZ+YiDO2upIxz4lNdiRQ13sHLRQE+eckCmqfHZ+fo79/f2sLFPXNbwfk0OHQQ3ImFQxxee4cgPq3nuRx2M5b6qqQtM0Gh6S0HdSkMh7KaAHIBsHZrQMg6i2WMJsCTBZgSsgoN+7SsGxF+9pkoTRilwG70iU80KEE1K99aqGrzz6zRazeYN21sIRYeh7tHsLrFaSkxVChzgMmRQExDCotD993UhcfrfRqqg9qqqWomxNAw4DvK8AiNerbVucdR1mdYVtDBMJTucrNO2sIC5kn4zMmC0XEmak2MQ50RxnyF5HOtcSMwJLKE6KAVm2ma3g0BQPjdBr3E93jdW69rqClMVm5HlSAm3bcTmxzoFCBQkMpPEzKTH6YcCsbfPYW5iT5UOMCjojDsz4kMdQ4BA0/NbYOf2+ZERVYTiUGLDV7+6GPlfV7bsg6kBO4trNWBMdfD8aAIwcCiXP6IRYIocQEk7Xa/QxoaLCUHAE37SIINRNI8ab92gYmC+WePWznxUZ8c0axycnODo6Qh/+O8tBAlNr3TrD/iYttGOF4gxwgQuXYY7DfUYsul2C8PLIlURHBvZ232KyZZbcESpf6eYiQ5q1U+1zSasEalZ8Sikz33IgIi+AzALDprJa0rnJEuaiNnpu5xj4smN1Fq8z8xjbnid7+RGz9y2G3FgkW1QOSUrVZm1q77wm5zkNczGNVSjr5vK9jHFkTnkzkIOsGGvyOdmJIJtYsfqlzYVzIBdsYrOeHSwPYfJEZknTeG/W3zvSeEPSYhIxoh8inpytxfjJ4JxyIs7uXLLNynkPBqGuKzAYs+U+hIz2qJoZFss9PHn8AMenx1htN+h6kWWSzUJc27WrQeS0ZLiwmkMnmeEpJYShxzBIIaXElNmOuq6xmC2wf3ABV6/fxIWrl7F3sEDbNKjU+PTODh0ZC9J4SVLmqXKESpVuvMa4i42VUFVy4MphqQxcFMOGY8C4sQm4TgxEOAQ4JIh+txi8qpbivDIdadycnIMnQiw2KiCqwZbGtajeDwHhSTdaZPd0jKZxJJMlr2ObF2yjL4aquW1Hl/PI3uUx1jliXhybhTK3JAGaNHzA1lvJwNh9s8GuIUcC7gV8w+YnA8S63qCGfbGuHREqjWEXHWnO1RzFOpH3hiTx1abYgeIgtEBEY51smhtTaZ6l7GmEgKJkHi4lH0xjO3vv5LZYLFtcu3IVbT3LfRX7iCePnqDbniOEQdaeE0Nv+BSHygDIc9uAo8kTlpcBEWN6gREsNE0zYavL/cqup1j24t/2WukVlpD26T0MiNts936sJFpXFRCm+6WFzHjvUfs6z9HJfuokuM9iyWM0N7w8V9u2GTRLG1wG6X3fYzaboVcWeblcAJg+h/WvsbUmUymgf8B20+U92JJIrS3MnMfCmPte5RENKFmSbkopF4cbscdIDJSvmzyk/cxOiCSv4xBCQDtrASUEXOVRVR4h9IhhkGJy0YrsRfjKA5CIgqZpJJk4Ma5du4bHR8fohgFejyOrnlk78RJUlQdBqmwSaQhhYRBWVYXz8/M8/hYCyWowmbykYRbznABKTlLhZdBttK40xh0Ctkv2uWS7S+NhOk81dDaNRF05V3fP2BJfFeXmi8/4yXyZKC3t4LfcD0V7Yogjma9zwwB/GXKVdd+dkDplknRJ6g6DhLZ2fY+oFXCtDXJPGhOka/HMhhTldCThC2NS7y9VgPdIIKw3IifqvRRXksR4l0NbFwd7aOoGrqqBbovtMGC2XODSlcu4ePEinjw5Rj8EnJ+fw39CNa9fTw4S0zir0jqOLIVoMqAlS+LU41joWUCG86nNDvnXlBlXCY+h8YDXQ9AOxJw5bAMIQhwiBhp00GQjioO4uZCiKqbIwZxYYu+sKppNPjkb1aLLlz4PBOaI80qfnySRFqYHzwbcc2dYL2JMQ1UWLQMZa9d045dP8fhx/dsYOYJm2QNATEg0xkhlg4jG5LSy0AIbuHbCYIjShgAKp5u/Me4GoqIC/dxGA1QGjhRggJGLGkgID0RakgAOg7Lt8iBkIQwkPgSkBHYJUlLaCbvCCQ9OzzCkpO4/MwZdNvRSCFpSfFRiYBA8EYg92DGoIaQFo+sThiHiypVr2Ntb4NL5KY6OT3CyWuN0vRLlhWFAigM2wyD64lwUORlsPDROnwhtO0NdN2hmLebLPVy4cAkXL17C4YUL2N/fByqnnhUxDomlYpslJomxIPPDOTE2RtChYEyNGucqtG09yr0RhC1lYZtsLovSjcyJEKLE2a836IZeqi8mQooJlWMdqwohDnIvb65JSShmV2lCswMFcS8Cmtlv7kuYl0FBdJ54xWrKWNtWvM3XMZHK7gXSeHRiPazEuyLr1VYgtHCNH+c3SY6D59JFOyUJZA/T36nXIzHgIgOIgJNwpTLJCcUYGRHhNaQn63EyJuSEGLyUQ+ZKF64B+Mjj4TUa57pPJgapMWzGhBmHwrDr3sXigchhEfaMLPbWlRuXcfPmc6iqWWbB1pse9+7fQ+il0JQz8MQJoSRUPmWXxc5mdzzcZOzL8vPG+JWgpmTEd8+qXQBi47BrEJbvyd5K82Qp8BiGAXXbwFWj0SASkYQhRfQrcZ2bJ8DOurqukSJjG3vUdY3tWsiGuqk1R6yIFychdEBuAoyNhZTvHePeveq52/yMUVhYk5AsnzOHFQwx94V5CGczUVqxEB/7rtlshidPnsBCF6yPTEXFDAYzbLuue9po0v3Ne8rnkY25VbZsmzaHslRVg8gJi/kCfa/PBvH4bdcbcBASz87uEBJCH+GrGjH26IeApmlR1w3u33uAejbDrF1KfRJw1uhPUYovSTGmcf71KYLSmKwLIKsBSQEfwxyyD5rSzuQMJ2jOEgHCL0hMt5IJg0YJGIdZ9lkJ3G0vKw0JmfOaG1YaSSS4IE8SzlsNyk1d7ilzztOIfkqAXjL7u2vE/m24UpI1R0EPR5SrpE5Il5QQQumlKb0K0i6btylxvq+BdUvgF2+GsOzeS9z5ZtPBOTGMRU8loapqbLtOvN91je0wYHW+wtn5OepG5hixQ+U82tkMdV2jbWY4OLig6xJIfIp+iGhnC/EKOo+mnWNv/xCnJ2t8kuvXAu55IhWLdjycLOFLO0xOL/mdDTTrAVZYg5MBNCaYgXy6FwOuDdHBCmPsoR7uIUYEdbd1LAAzxmFkvRgCrg2I5jZYCElO3RknJpTlwpRpTiiswXxg67M+xRTypP32rGbN7OD0p/rGQFB5T+ak/ZPgGOBJ/48WsS1cWYfKYLO50C1eHZlVz4aFLliTZzR2lRPnmOXRiFPQVVZII81ZSFZYacwdYAt1UeY1b8gapwziUbnH+psTHp6cYtNFkK9gZWfl4B0BUQgBvhLAz8x6IJKqUQrAapsG+/v74BCxigHLZh+L5RyXLl7Guhtwsl5jdX6O7XqD2K3Rb7foe0niTKodC7WPyDnUrcTCzxd7ODi8iL29JZbLBRaLBXzjQd7JYWDuwSRhHig0l41Bk+kpLtOmaVDrQemIpPqpc6i9Rztr4b3T2G+dN0nZ7pjAGj8dU1JmLWEIEatNJ4oyerhdvHINq+0W3XolniLv4WHFqRIqVpUeXyGZ7KZYeTK+0YxOznNaCCRNoM2TCZP1ZvPDGOEySck2b++F8RcNTg2rEdNR4sTHRVIc6nawQ1n70YggC6fR75x4+mB4XN+jRmYSCwPmqk1e2TF45BAw1vfo4Uua8Gbls63PyBFcslC3sV0TzyXJ+o0pgvXY8iCtVpyyrJ39LGERAvzt6a2SZw4fALDcX+DLX/oKbl19Lsdlp8R48PgE9+5+KLrE5GRelkbWp/QqQS6zJQXyBJQY2DOgWgLwKUs52frzNR23cRP/VQwlYGE2UzAPIHsCzFNHldfCSmN77e+xQqbkSQyDEFVt24o6RhqlGruuk5yVIgTIzvIyhl9Am8sSleO54TLba2y/PZP9adt2ovQBjEZAydKbkWTa8SYbaeF+3VMFnkYGfqLsU/Rp0zQTMGjPVFVVNjKycQ6S+iExqKeThKBQlj2FmL3wsucJ8VQ3DebzBeaLBUAeJ6cniAmAS2jUu9XHiMVygc36XIrzKYAUj4OGphX5PNb/SfdnX48kDBCeMjydc1IcLsSdcRxlQsUZPsUO5Vy3OWQeGOuv6dzdSRJmViIMeVMwMuJZa8LQSvl89v1mIE/i2YkmbdgF9t4Sbsvv2MGf9j3MIy4BMJl/UjHVPNkVEkvBQ5svtndKn3kRbUiyx0YtvkhEGgIs7QkxoOs7bLadqs/Q2FAiuMqrbKgYXa3mRXRdjwsXatR1C8n986jrBov5ciIB+o9dnzxUhiyxEsJ4e4JLxYDrwE4mjsUlKZvNNIL2XYsvJY0HdwbgNM6osK7MSrIByRsjGCkGhCEgqfuvBDRyFYo4ekCOBoH8Gdtu7kNkAFgiTZfdQgoeTN3GjskMYuyfhTvV7gtl7sjAzjTWrOh4jOB+OuGZAWRrmPJ97LJS7fIS5Wc28JL7f/JnnMRiacpmNjU4hJUwWJQ4AQbseVxY9g6oMZPBm56Exu7b68ySiU3gnEjr/VgC++h8i/vHZ3jh1g0wecgQRwmfyO4yMSJs7nFK4lEwQAnJT2h9hb29vRzm4rxH07RoFoz9i5cQmZDCgDQEhBQxDFEK9oSQx89pgaa2bdHWDZpK3GHOQY2JIkE3AY7GmE3EKOy5cwJQtf99LSyvrxwqLyXP7XD3TY1KY+Wck/Qhdi4nL4o/RCM8SUNjhoDQD+g2W/RdhxAi+hgRorigv/F7f4AfvfEWPv7gHcQwqGHtQeYSdICrJXynInPFShygiy4nbEM9MeIe1Wm5a6xm8qgw5CBsCpwHQ+K3me1eEu9tBiZDZeUAuIJIyPtlMf+EURsT9QSIFyawHj7St7LXSEVnGSwHN6bo6NyxQmcG7C0QDMZwwZLZFOllJlDnZmQ4snwQWxqW/5FyAThWw5g05CeSeDIlBC7l9S6GjPYXjPjQQ8+P4XuLxRz/4mtfwze+9jvYX1xQQxzYdhHvvvcBjo4e5Fh7UYj1k2J0n8arZMBH8oRg7KHtyWXo5+7+a6D2WQDF3m/XsxjF8nf552KPLl8v2dWUkuZATMvb22cswa6qalDlclgNgAkwct7lUdxN0rPXJl7zOCgIVDlH3b8IEhfsSJRd6roWMDQM+Xl3Y6B3mdaybca0l4bIboKrXU3ToO87VJWfJCvujpH8TFkW0e6XcmIxg1NE34nh7Osa4IQ4BOgSz/uYDK7GrDPBeyGCYmQkiPRwSranuCxBLCESFeqqRq/PWlWVxupXGEI3OXcNcBsRl5LJYk6ZvMmZbh4h7YuUxn5OaUoUTghPjPN7l4Wfvnc6fvI5zntrOY8zRyJfOWlnee0y7GU7dp+xfK/N/RhjpjlHiKVnBBdkYB7GKX7yvkLX97pH2+eBMQ9Lb6xkJoNUT13aGbWfTa8e5JAgRcrW2y26Qe4t1eN9rrRaN61KSjeomxbzxVJqpzh5T91oblpVS+4Lj+P7T12fGLgnE/OIKTNQMACK6cYwWlDK7DLDMoJ3JwBoHH0C51jQ3UlQgvaYYh6BxOJGjsMgG4kyooktE9kmsg0R5b+KRmAX9D6rDcAIhicgBOVkmRZKGoGyTVhrB2AJgPY+66Pxa62h9nk3AgPLtLPYaCgweWabpy6xklnSFyT8gcaQGih7a2CA7Bntc/pcyVxT2WjT33GCxUKDrMqtbgbKrOfvN2APZUwigShJCFJK+TtDYpyu1whxQM0NEjOqqoHzFchXmgAVc/86IgFJbMYRYCiPiFBXNfb397HZOPRb0WWvHMH7GuQrOLeUeGsCiCowadwwVM3FOzESIMYsNLkTTsKqiBMcSxU8IsDDZwUjVASqfB5Xr8lv5D0qIlQeqLxotBtgJ+/kjy5Byb207PuRqbb5z6rGknj0UBm7JolBwO2P38Mf/+s/xp//hcd7b/9sBLMssfKOCLP5EvVsH76eg0jivDkG9EOPvlsjakJNVVWgukFVt7IZ0ShPOgw9+u0aST1gORShMCodWYVPzhV4i60Wto4pW5a6bmA/y/+ysW9/nBMvjI5L0y5RV20G4jZvA1shsgjvfF4PSUt4ewPDTrS3HdsYRJ2/hKSGp60X82Q5dgo6EqKEwouRxWLUVWpARD0ovJN9MyXWBEf5nrqW5Ebna1hBGEv2ZmPaiUDewfsaly8c4stf/iK+9Y2v4/kbL6HyNRiSwPvoyRneePNn6Dar8RDE1AD4NF8lUDWSQ+bZuFYMGNieWLJ3vqoyENgFHfbz7vUsoFT+jvIWWYB8HosIZW9yEGbbGOny/cZwpyR5KWbYSzJjPkCRhkFYY5qqtpRJthYvTASkFCEcjXCKknch3s+QlU9IQnuIMiguwz+A0iOwQ8xp+7N3sdivdo0Tu6qqklBER6BkpvE4P0vjwIA7acVKU2gSoyhpzpcWnCIASSpJV5o3ZJ5hkIg+OOe1RgmhHwb0Q9SkRU2StfArlvCfMEgMuq880Asw9L5CSD0AmkhuAsieAeccQorFPAQyWVCc06WBk1LMWMeSnW3vJs1DepYBWRqIu/Oz7M+J0WUg+VfM80wbKE4YQ37G+9n3lX9P1sUzsNfEyMSYw2P3jCGi/NhowIzGKAhiaHEnoaGOMhAHCM6bot1IRUpIjYQwhSTV4F2lYb+kRg4JcN9stth2PRIzYmLUTYOqEaDetDMwCLP5Aou9PSwPDrDpe1R1A5BDVTdS5dx5xMTYdj1C/GSJRb9eAaYC3FoBk6eZjXJgSDXMLSEVtuzGm5r+u3aGY5R5DnkjTSlhCENhYeqxnlLWwExBpOcoM+A65AYoTbcko6fxjwF8u2RS2wJ72oLNeBDlIpgy4vqAk8mVB545/zxaEQ5EqikMe3kHOOeFp0mf4xuL57CkwPFZDODkdpGBFvl5Yk0zw+L1LZ/ASqYT1aphypntI6gWPLncpcxOwJ/cUCc7qWVsC2X87vx8NqYxyoS2bHMvOuPnmw3Oz9do2pkcSH1EPW/UHhPFgTIG1UG8BiAJYSB28JWX0IIkh1ACg0gUBxwRIkPi7FldbyQMN7wVZFIXPBJS0tCuJJuL1xoEjpE1nM2F6VmidTSaLs8ZT4RaD2hfkSZD1ajaBlVTo64FtFt8vMU/M8fMugAAR84hPLKBBURERDACGJ1WAOx6DR8D48mj+7h7730s9+aofIOUoiYoVkiQrP/LV67gt3//T7B36boCWocUItabDc6OH+Hs6DH6foO6nWN5cIDlwQHa+QJ1VaOiCsyEj27fw3f+/r9hdXRPDh1bM0kZaWWpiUcmmyC/B0Ni6w2Ye6eemeLwURvWGHFmzvkA5GUfImLcunUT3/qDf4url2+AKlNPkEN40P3H2TwiQiKLR9e5nWSdBsdSwyIDZs2xAQGIIDILwzxYFm4m5qxjBzhxyxNLMZgMSqIlxrtsmoPFl+Is2bawZxISEkEkL8UqRXKMxWyOaxcOcOWKhG95V8nTMuNsvcGP3vw5Pnz/l+DQgVPQMD9dwDQm238aL4YkG1sC8wRAODkHdsMwjHDKceAFUHoWSJ/u88++ds/EXGhFAWxd14icwGEEJN57dL2Ess1VLcbaZGw3AAx9j4Ec6qrKDKzsIdLmbS9yj/P5HNvtNgNHYddjBjn2HBYmY7Ho0eZrjFm+0Vj1GCO2221unyWF2n0tLKIs3GThPCGGSaKlxcMfHx/nkBn73Xq9hq9cViDZZWSFATXPpcThC3kmQeBRyYuxsJVHXXtUTtTXQhjyGWdx6nL8JZHmIweqK3gF9FXVouuHrBjV9wOqeYUbN67jnXfeQeUJIfSSK+PFe2GFrhw5BP2uqqqw3W5zqE/phSzDmMoiUpMQE2go3I5Baf0yCXd5xjzc/dn6tQS9z2Lty/dP1kV+i+CoXCSqeH9Uz/2v8sqUxp21JaTpv1OaelFG7IPJ3La5KPK46lGFrJE+RIQYIMWuHDhG+HosUsbQcDUaFZt8LSEuzXyG9aaDJ4cQE7bbLVarMw3RlXyKumlQ1Y0QclWDpmmw3NvDYrFAUzcAXFawGrTqvMhSDk8lz/+q65MDd4YyvSO4mlzF+BHR6LIwzy4/PVEmLJHTQxCYTBYbiGGwWHXON0zKClvBoNzOnUEdwS1BT3CMDDtny9A5ysxwfiwq74FiAZEuqjHZc2TMaee1XSbmWYvGDgGXWUJFLOPzKCEgIUeFsWTej8JCJ6JRoIaQgbIltwFjHgIYwoITFICrk73YKNja56YHIWl/+aKvoqDw0ShhA5J6P7gC2Ngojf0jsWXiprWDxZPEmq3XPbpuwHa7Rb1sAPaIUVhSU5ApDUqQgia9t3cOqDzq3O9jrKl3TmLZVebPsVWTBcgDhKjKHpwH0okumdzbO4lRZ40zZmh/AYgpsxHeJBahMeUKhokkpq+dNWhmM9SzVsEHstpQVggy9gG2Eab8uzF2UjRqQ5SiEYmFORMVEmlzU7d48ugxzs+OcXBwgLPT08m4hxDQb1e4ef0QL73+OVTqGUhJGIfz1RlOnjzC6vQErnI42N/D/sEhZss9CT2qaiQiXL15Ax/feR/vro4Qu02xxhiZrEtTMqC8dg+q6RjT6EIHwQqoEABSXXrHDvW8xZd/82v41je/jgsHFzUGXtl+HU+CGOrEUoDDPDa2BkkXVHKAs5wM2N4oz2Nja2tPl67ORU1Ih0raEotajTJsSdkrqfJceOQmhxSNPypJYQXNLEyfIUliArTMMhYjuet6vPHLt/Htv/tLrM+PVDnIi+9ONgCACWk6BJ+qKz8GoMbV+EeAuu0NY7Kpuboph8hIWEoIY8z1P3Y9CwjtAiVTA9n93XK5REopA+z5fJ7PGgO3pTfAgCaIMKjMIBOEQWaJHa98jRjknmW7yuJLRDSJr7fzdrLHF2SQJfuZcpl9xoA4kWq0J9lztt1GteJrAShRgQkBVu8DifH4ySM0TYPz9WqMw06MSgEVAClc5AgmvSygS83dlDDo+9q2zUo0fd+Lys12K+OeIihV4s2NUYidGJHiUHgkE6AEEDmPWTuHr2qElLDebqR4WQISicdiu93ibHWKvdlc5hxHoJK12Pdi4KQk7TR5TjNqcqK6f1r0YxjCpI9L483kb51zKvk7AlXDXqUhmNdFOX8Ko9bG7hkY/Sng/izQbQSXGXX2mXJOledKGepc3nfCljNy3Zsx72H8/lI1Jhs8zEg6F6MabFYngVlUYqJW+/WWEO4IzteIvVQWd16TvxPQxwCfEjgmnG838HWDdbeFTwln5+c4PjvFydkZmBlN02TM432Ftp1hsVhouBRhs+6w3Y7qSXVdY7Va5fyRRhOpP8n1yZNTC8vcNkIbBOccIhlQ19cVhLPKwFnRoN3NTSIhZJAMrOo/86BkazsDP4A08QucwCnkw9UXR6lcJnmoB6LlW8CUPMbJkNvmpA1jfPuUkZeNA/l7jD1HhsYjICxBSGmMPOsMGA0M5O8y1l2+WIZLo5ak7zEFOaVlTZDDlwGJOVbBF0suJAV+SQYMYIkxZ2JhpAUD6Y29htMUCX8MLZRUWP3WdgISF6KY2egawcdUMtP6xp4hievW+kDZs8AOVFUYtluEeo56byYJgMmBHWfXsmqSiHcgyQFBLOErzCEn9uUx0Wfy3mPb9xii9oeNCydhs1PKSaUWMkNejTmWbpLwBwKSJBE6lrmaPSeCwJV3l/bWdYWqrtDMWswWM7HYrdhU1ERoUxfJvSWMdEoJKQorzJSEeWdobOYAZisNTojJfk4CBlNAvz3DlUsX8PJLr+F73/57bDcrwEkOQQw9Ht57gHffeQOvf+k30bYSLhOZUcUKvhaPQuUJw7AFQdy4UuwpIsGj8hWuXNrH57/8NTy+fweP772HGAZpAyF70cZkaTEQXZF0DCJVMyWxk0g8QKxeK7IEcRRhY4nBTsMeXIUXXn4RX/nKb+DihUuo60YNWg1DUyDnIAVWCOIu5wzwiplbznO7JowTbJRh0q1iI9voF3dTQoQp5ToGpTFAxZKxyslk6y+vGXtFDW7ba7PloDUnwNh0W7z59nv4sz/7M9z+4G1w7DW0r2w35/t92i/b1yf6585lsGogtqrrST7VqD89KnWU97Ofp6BnWlr+Wb9n4jzfc5v6IUszmqKKb+p8j5F9le+1tlfqZjcFkmEYskpLiBHeVxmMlntd2cZSRadsvxSXoRwaWibv2l5njGFZ3TVzNTx9RrvK/i9j0Uslm129cEAY/c1mDMmxtnpS1h3I4NeYS0v2bNoW5NS70Q9CXAwRQT0BnMb7GvBiZvi6AjOw3N9DCAnb87V4IzT0aD6fY7lcgpnx5MkjnK1WaJsK6/VGlK/SSDqWoUQWomTekxgjVBYrv6dt21zp08bEJDTH3As5o4jTBNxbgrPNk9KrYs/4LCbd7lvO7+zN3QH6u4w8K4lhxp3JK5quus1DSx7dXRu760XCRgkpxEndA/u+YRhATTWGlqkhVBqRiRnsHKrKA45wvlljCCK6wMJNIKjRI/USUh4DZkbdzlAPvYR5hoDIQLftQZVHFwacrc6wOj9XQQIhXzyJHLnJNO/t7WE2m2kdlyVWq1W+f5kgHEJA/wnZduDXAO5eXdhElGOYJuxXJiFplICzi4Ud3E0Est8ZMBbcqgcSy+YxhDAyi0rSijEmh3RKSSqAGqjeAcTMFh++y4KU4JnygjUmWKf4tK3QgkA5WU6OWdZ2kRWlsTATcvnepZU5JtXZ/Z9eGLllmtk9GhDI42BMtN0kaYvz4gCJpJuyv2yAQ6koyn8XoBmlhU0FuFGwX55ik77R/sa44DPjnsemGH+jBfPnFKHIA0o/pQSTMCMwIjm8efceXrp7E1+4eQn+fIWqadHOZ9I278GOJFEVpNKfAvCsAIiGtk0OdMuTqJtatNp9DRcTwtABhfvcOQ1j0iI5YmTKnPA5hMmYbwXGJGywM7vFOZXvkvAbUSxYoq4bOC+hO5XzopriBPiDGRySGB0285WNSGksAJSgyghJGPUYItIQNCs+IaSIbRjABFSVR9dtEYcO/eYUv/1bX8V8/zrefuuXGO5u4L1Tpohwttrgxz/8EX77W3+EG7c+I6CaSBQV6og0b5GGJTbnoml/fn6KIQa07Ryz+RxNW6OpPL702Rdxdvw7+PH3Io4f3kOKg4DlpKx4rhngNPbPwTsrdS4Z/uy8Fp1RV6yTeelt8tFocJP+rmocXnnlZfzxv/p3eO3FV3NohM1Omf7y4axmRICZWdrBeboaCSDznwG2qHbZIybGtx1EsHWja01vTeOqmTL1BptJw9WoMGqL/VUOb2PmM7rM9yBOcuCEgMfHR/jJz3+Ov/2bv8OH770NU89IaTxAxmsa4vdpuwxMkpc9OEHC154KfdHDwQBPuffa+xKg94H0re2bRXK0dVayUTRPpp0POsYOmAAXC00x8GGgK+nvRqWRUTEl/81i1E8YSLEQQRCvnyVGy6OO57XdrwSGBiYyQFf1I2ibnRN1LMRxz5ncqxyAxPmZkVR4QpOf4xDQ1k3WaY9DQF1VeHL6BPPZHPBjW1OMqCsvai3GvHNQdhd5L9fOByCGkIE4O4ucSxISQQ5D1+WzuKocthvrQ4uDT3C+wnw+x/lqLeEMUUJuqqbB+XoDIsJms8HBwT4W8zlOjh7j4OJFbDfnWMznCH2PoEaNJROLIRVyewVsikBF0rOuHAtb7yUuGI3J8XWpJ1IQhcXYlAZbeT3rXgJ4p4o3zo27EpGXMEdtV0oJXo0c272MxCwxl91LVNNSZsKBcQ354vnKNk6mVEq5uGRdS+hsVDJSPO3mMdACdhCyd7vdyvplUp30qKSlvD+miIoq+KpWRUNZQ8MQ4Lzmtuk5FYYeqD26zRbrrkMXghQjJIDIQ2qfELwXg8GUZCovYhdhGAssbbdbdF2H7WYDjhFt3WCz/u9cOfVXdWa2vnTzGgH8uPGbUkRKCfAaYqKckdNzMUuYFZuUydmV7BUrMGY1BoTZQ95IsNO+MZSl2DAp37FgfdXSNsMBJIemHtjGwDt1r0MnyO5XyiLwQPl6wcawonzamaRmwBhQtvfpKlTtifE7FLXox7QvWOTrvC56Zwlu2j+GVEyO0TmL20153KSHEzz0GTBu0jIwBmyUvd6dH/Ys9pwjEhnbrn+zykxJOSA3egcYwuTr+DoCmCqVhFzjz773Uxz87m/gteszdNsOzWIOdlJSOCvvwBKJFRQpUpLwA1WZ8Rqq5YqiFB5ovYTSxEEYGpMMMwOAYYlMPI4LGfPpwdD6AAb6rC9ASqzIPG+aBk3boK4bVE0FV0l8qndSPEWrSSCazCYMwI0AzYCfGQtJK7pOEnBYosZ7ZX4cERZNgxh6dN0G9bzBO794A4vDRzi8cIDTJzMM/TYbQTElfPjB+/iHb/8lvvq1Aa5qdZ0kpCGg6zqsz0+xPjtFtxG3PFUe870lbt68hYsXL6OpW1zcX+JffO3L2N9f4OHHt9Ft15LjggSp8Fej1mQt1CKj6eVrJEdGRVjZETyrnBsJ2+61PzJBQA5UeTgHXDpc4sufex2vvvIq5otlnqn9MOB8fY4UhmzQkoMWVbHCTSOQziFSLKx8cuP+wQrudUHp/kZmCUtUDkTHt2TL83dkZt5eH6VYVfRfALry6s6+amygriubhzL/Qt/j7OwcHz68j5+88QbefuPnePz4oSgIMXKY4S4bZwnPn/ZrBKvja7tud3vN3r9LRqB4LQPW0erKr+0C43wGlMDe9ka7D0udhDD0+Yxwzmli5bPJnBGQCrCeKqzJw8pnisR+dceXKiwAJjG1JZgTw/dphrX8fjvXhP0dQ0blbJH7SNG6hBQFQE8Mg0Jlpu/7XDgxqYfRey+kHPPU44/RUzCGZdDo7bfnVHYVAOqqQYgBvqnzM6UkyarSB5xxhTHZ3hHaWYvtZg1fNZgv5rrfSE9779B3HTgGEAjzWYvN+UrDRqT/S2lNK/Zocy2liEHlHQEIa03T+Wh/2/M+UxZTMYor5ph5ZifsfJ7OI8aakK8EAG4y3uatsZluBkWeBxjfyzBhjpEULZl550SNBcXcAY95FmUb85wuYtztsjUyho7JLYNJkpokKklfDCGAEmXSbpzTKYP9RFLozpFVxOac3CzF6BJ6I4iZse46bPsOQ4z57HDew+v55RxJnprmdYAZfd9hGPpMGG632/yzyfp2RVjbP3b9esmpxYbzlKvFwFbZwUSTaqqGYcpCR3kT1F8a0Esas+u4UIgZbXjjHQsWa2RQfhVRRHogJzhAXdPWZtuI9fhSVrQ4VGkqTTmqUeQ9Of+uwOvj5CbhaE1D+VmHQ/EU+d+jC41BafIBaZtaiJyfWw0bJKSIzNQZgCjbWb7GnPnF3A55lqd7U9iccQwnv2OW5GD9KpGY48nGAvu8M6MNYxVMG0/WMVGJQQBgIgQAHz86wp9+5ydY/N438NJsjn67haeZuuscUlNLu4TE0EbaYWPVZaMowLCMifPIxhR5RgIhaUIrkiQ5DZoIZSEyQh8lYYq9JQSN3gbvbOOTwSdITSNxEYs7zRY66Zj7qsoFLECiiiNsQRFmU8hjWQwgQ+LwQJA2x6iJzDIGfddrSfGItqlVucbjvN+i32zQrTd4+ZWLWJ/2+FA9XQCkBHeKOF+t8bd/9dd4772Pwa4axVUTIw4Dur7DsN2KvJoW8lgeLPC13/gavvyl38LhhSvwvsK1C3s4/PIXMHzus6K2U1XwzvS0azS1eD1EDUPmhNOqrQx1cTqghtP9RQkAghga0I3dPktA01SYt61UM9TXu37AL999Gz/48Xdwfn4q5AIBrvKSLFrVUqBF3aem8kIkITjOvtT7UdVFDajKSa5C0HnOxKhIvJYJuWwbTHUngySw5kgwNP5Igb0wpz7ZfgRk5aoSEBKp8o2GHw0R67NzPHz0CPce3sfx8TEQTYUowSUWNjSlLE1q2s3EY2jip/HaZe92fzf+nHHEM8HNs64J+VCA62eFHzz13WnKYgPIIF1v+pQh8Ky2C+hJmZDI4FzPi6lHVz0KflSTKVnWZxkdzKxJ+QqQ9HVLWLX3EGkJek2yl/uPcdX2HTGOcdgCJkMOBbEwGakAbbryaRLDXIYK5c/0vQLzkSBiTiIggFJ+0oDxmDNF2g8SwhEmBBOR7LNhGLBcLnByeoamBeZNgyFGLOYtttsO3hO2mzXWeo8QeqQYwGoMsxoqlZvq2pu6FIEQhoCq1kKD1u8FRhiNTHpmroON/dhu5O8o52smTgGUYWClYpGpppSGXQm8x38DIyEm+15Mo4JcnuAZe4zYzNpTep12DcPye23Mymcp8+zMu8xghBDFs26/07aJk4g1r0v3X6Ic3iNPY/9RVq8JmjMQmRG0qjCcKACttxt0wyDJzySEnlPvSuU9qqrK1XYt32Kz2aDvRuBua6+u6yyPasUS/6nrEwP30vK2f+8yxs9ydZjDzEhqNnCsaJKAHEbAKYFzMoMWqsAI/mxiy4YlPhJOaSzGQsJUZZAGWwSUN2fArGGtm6ZgURhga5MALQvtoALgPsVMWfwtkC2vceJSBnqlUs4zOne64RcLcQwvcblgI+dXDKy7qQSeLTKCAu80evBtHIuNClDWE2Yk+OIAycg3s+BEUKa5NJ6s6eP4m3Rodh/rNSa9madGkgAJNOlnm0+2CLMBw4z37j/Ef/0/foD/8Q9+Gy/UNcgTZm0jYH0Io6uc1fOgoUOAse7GXeqBU0m8OCBJfVV+jiS/cw61HV4m64UIqjyYRUvdkTCVVS3ylGAHjgFg2cRJrQlHoiJilravK9FrrwrAmasfSsiHayT7HTFqfJ6MFUVoLoBtPABH0d6PYRBVd2IEDZlwjtBUHoEZbdug6mvQcoY/+U//CUdHA05+/JZsvr4CMaN2FWIU6a1Hdx5jdbJF1UpZZ0oAszxz0iQgkSkT9QB3VIG9Qztf4guf+wqWywtwzmM+a7FczgWc+wpe/1Tej6DdPFu6pkuWk0gSfG2uOdNoJwvnQy4+lPXW89nh0Pcd3v3gQ/zpn/83vPmTH6DvOvgkc9lruBWcgwlQEQnLD2ZUzoOSznkn4VkCAkQ7P3LMhlkCMBh7CKjxJXtRjkOHJFE5O3XVCHeO1I0sr1WVlzrmQtmPPAV0jTvb47SfEsNFYdQTrHS3fHG0CtIa8mSSnbJTKKiwzfr/Ytc4Z6ZFbIjG86vcw6SKqcOuCbN7DuzG7e6+DzBQXAIgDfXsjOGWRPSEEaiV7y3vaeATZO0fwVHZJgBgpJwvUj5j3iP1swZ0LclOzmnJI/NFrHLZR0QSzkcs4SXGLA9DyoC8ZHzr2mMYOqTkIRWwOYN2i4O2cbFCTcPQ5yqjFioBBfQp2vrXviA3iXmuK80VUJA6gmeRDa6rCqnwQhA0X40TVqsVLly4gFMwzlen6Lotmtkcly9fxqOuQ7dZo20aEAjb9TmOosTob7YbOAiYa6oaHAfM6gaDYpcUA5LGuKcEBe9CWJhogPVxjFNQW45rCerZjH0UeIkoexyM6LG5b59/eq4+PYef6W2BGEkxV+guq6kj4weTcQSJ0ZcKqdDd53oKBz3rIg3hglTYDSEozgFCkr0uKimXlEjxvka0mgOQs8FLGdqxDgYjh2VnzfYYMXACnIOvK7SVQ5eShMlsNhii5sppIrP9aZoG89kMbdNiNpvJPNRE1K0WGbNnH4YBYAn9mc/nWCyX//jz6/VrMe5Pb0Lj688abBQDmV3Clhxqnyk/pq8FO/xNMx4ySZKyU4ntcBk/XMbP663ki7UIyzhxOYM52wCgh53wtU6rPtqhqMaGc8okTmMGJ+Evz+gva+EkNGa3r2zzpOkdWPsxv1rcL79kD5sph2KcrO/MQNKXE5AncW4OUW5W2ZYi1bZolY4nFa+UGwiQk+rMSMj+hMLIKVtnccYGvkpXLDOLy9Q0jZ1Dz8Cbt+/hv33vJ/gffv8buDqvQNGhcSNIksRdAb+Z1WYdC9Z4U1YGylEufmCsB9WiGiR7okdNGqJVa5wsS9xfCBE8qLvYC1MK78GJwEMPDsPo8lNVBFcsdnJSZa1yohWbB5aFiXXkBPhrOy2Mwowo80MZ22Jyc8YjhDCoVq2RxASCFwm3qkKoK7z//s/x0stfxSuvvYrVusd7776VZ5hzHkgJfbdBTAmzuMBsOYdLYgBbLKxpnycCOESEfsDHH36MefsD+KrGa5/5Ii7sX1RDRdyKlapfeFXzAI2FN8pZno0Zmy9k056KNSmvT9g52O+kTzbrDX753nv4i7/+/+LnP/4x+vUWKQRl6kXfHCTKSJQIniG5E140ogMPI5jXcTLQzV4AfqKUdbgtKTmwHCJO1TiSZj1n2TZdAxGsibaFAc6MHhpex+JRc17D9GKUgwmMIVkhGq24mlTtoRLlIqvLYOYrY8yLkcwByiF3wrh+MoWDf67XlCUsziNM48ylAJpofZefM6Bq3rLys8/6nt3EyWcx5iInOw3NSbo/ucpntvhplnNKjI1J+MgMbAnYS4BnxZGCyuCZ7KPFz++2c6piMhZ0GuPCq8zEA1K5usSAdr8yobXsl7Zt0fe9Js+PrP9u35chQEQ0YV9L9tgMkKxs48ekVxlfKXpn4ynSlkDfSVE6ghIPmnMjbYgqXxxwsLcEuQrOe6zXGzx++ACb9Vq+Iwzw5DBraszaVhhXfaYYgqx7AOv1WsMYp5Vks0dD9xZmIGIE9TbOdplQRzkv7OcMxHmcr6WhRUST5FDLk8ggP44SneX8RHGvZzHj5biXny3njJGcu/ct52kJ3O0+bGOvr9s4l54YMxBMsafXQoKcGEOMGIYAEKFqG23PiCuqWirs9kEKORIDIXQISZKzRSsf8E2F5WKBOjGOV+dKUmkBLIxJxN57wZHOYblcZKZ9UHYeJOtitVrh7OwMbdtiiFLrZTab4bXXXsMnuX7tGPdyIMtJOAJYAJBFZoViyIA7CR+eiMWtX4DMcrOwWDUJ89DkPIw/G5RMajVTcdCXrjGDh/mQZfu3Qvodq89ThVE1ZbxywqsmHJV94Mipa6XAz4AmLIhVZ8+Sb0qkSRAFS4/y3/o2Ln5vjS6+XzlqGAQXxpwnHo58O1KIbBsTjzF99h6CGz0bBcj35CRsJDGYpcKkxHfTaITsbv7eAJ2ADYlHLtuuY0CjAcWUa63ChosMwBLl8WNIiESICd99+304l/Cf/uibuHrhMogdqNVQGOeEPE5JlFm0gJI0X5gPTqoDrAo4rGXfZaOT0ImklXy9QmRnRouyWI4com6M7BzYk7aTkZwDvAdI3YmuEqZWky9dDhOhLHdoQFMKiYwqFErH6WYm8yNJGLyI3qh8JkcBiSkE9NutWPXESBzhnYDRum1E6g4BT07WeOvNj3Dx8Dn8y3/5+1guL+LoyWOcnD4ZVYj04KMU0G3XIE+iL5+ntLJ4RCJ3SQmIA0If8P57H+Gs63HvySO8/pnP4ebV57C/tw+fGoSqgk8JVSQJ7QFlr0NOzNb72zr0EDUJY3bMdZqLHWk7CMhM+TAMeHx0jDfeeRvf+Yd/wMfvvo0UAjx5kGp6MyDhW3ZQJDUTmDVHWOeOLtR8mOghwQyw17aBQJ5QZQ9iVOA8GtlZiUgNlli48c3LZIdW5IjKO1DkrPMOsvmQEDkiFuoSpO0lrdyYivoRjpxa5Kx605IwXYayQQs4/V/pikY/xDGm1g5/7x0k7KQAGmqU/apqhnZelaDpn2IMQwg5d8BUUMo9vZS2K+9XAhcDQSVzGUKvYU4jOBqGMTYa0PAqAhJHKWLXVJMwFHvukbGeFneSNS75Gk7PZo4ai54GcB9QSiLXlRcgGkdRhqQqcVVVYei7/J39NomHqQjVEDAZUXmJ/bW2Wpx3CAGucGWPz0q5HgQSFIRpmA6AMIh2e0UOqGqEocvVwaUarFSVdmDc/ehDNO1MjFki7O3tgxNjZlVPWfqjritszs9xrq/1mpxaeYd5O8PQ9ZoXJM+1G6ue05qVDa7IIRSSybvzzv5mFvUwVmImlca7jmVpSDKgrPIIrhkopBpR3PufDjd7lvEw8QJgh1zZ8SLtGgEWkgW9TzQMsfPdlnieiu80jCRrSoxJ1rUVwSK7m+zYGFXlQghyzqnn1tdimG62W5BWQiVHksvVD3h8fIQIRt02gPdIUfq3qWoJ1WEpUphYxrnrOrTzBQCPEMR4dJVHNwyYLRao2xZpu0XX9Zgv957Z37vX/1+hMrvWsU2MDBh5fH+GmG4E0ObSL+9dfsdoaZllbe4eFoQidxQ9ZBorywFTtq2cFA6y8HLEyM53i5U6Iu8iECS/vwSedjHK+HcBtBZYPXlKMx6K784/kzEKGjoCyjKEBlJzG0kZ6eLebP8j+4fFoLMaS/Z+DV3KC02/wwaOJGRlyidZP5pxMG4mqiBZLJaxTUnj7KVfyN6UO9KAcW6w/VsstGwEMhcGoipsOHY69g59Ynz/3Y+x2PsJ/uSb38DFPRk5WXyAYxYVGJKqo6yGAFRxQRZYAnOUojg0VvyTvk55LgDKfNvBngsiEaqmzm02LW4RjyFwlDCsLI3mhC31zmLjXH4+mGmg3507GhgPfBL2F3FcCzbm7AgxIo8zQUBfCAOINLnJqSHigXZW4ZUbn8Om67CYL3D65D669WPcunkd226DLvRgDfdIFiLCjH67hYOE95hxbHNT9k0v8dwcEIaAB7fvYXVyivffeQe3rt/EhYNLqJoZXFODK49a5DZAVKlHAloASWLBPZMqclgstgi/Ji8eicqNQN07h5a8AhWHEAOOj47x/gcf4YMP3sfpkyeiEOG9FHwjmox5JFlhcAK0rTptXoYJiEgwbSFEVkUfBkXkPcnBgyo/YQ8lhzjmcDEigJKwPWAex9Ji7kmMT7AlmwPkpMKq1z3LPEaVVnQFq4wba/gDWMN/9L2AGKHWv8r2iy+HVHZzmpPyabsM2AIjcLCfs2EGTMYdKMgCvUpj+leB8l2Ak4HFzjlp5wSPcVs5plva4XLy+S5rn+Phi7AT0r3avq+qqky42GulCk15hluMrfVVfl59j9/xPo4JgXZ2jAaLr1xhaJZ7VIRzoypOGQaT67LA5riwlSFN49mlyilnAGoMdE5oxMjqjv3mJ6yy81I52fpZ2hIQB6nZ4b1H6DukmLROhQdiQuROvBJ6jqUUsTo9gcnhAuKNDDEh9EM+A51zaJsGjoBei0lVVSWVX4t8hlI3vqql8jcRUKnBTDSGupRzuTTqpknVY+Gp8r27ALn0cJSEqdV8MFlOmxu7RuTuXBm/v8QWBaAu1kA53ybelNJALYzU/HyY7kUG1C3B2eafkYX9ELL3ObIUrqt8DQLlPrcEVuc8un7IuWWSK+JQt414UHnEYd0QsF6vMej9ATEYq6rKqnRt22KxWGB/fx/L5RKbbiukjKNsbDAzlstl9kolZpydr3Dx4kV8kusTA/eEMYGwBPAlEwBnsaAKMgpWitn0wpEHKwNiGywaNzRj3iWuGjCrwJimxEljAXeqh+nvM4YtDY3y+4CnJ53+3io55g2NIIDOwAmPiVsp39+YQZX745EphD4DZRDLcjBiBPNQtpwMyWO6SMb2U2bFM86FQfJxehtYZ+bRBW7Sdcxj/3PhkYDouMPuZ4sX42IycObAmoci1m1uoF4sJmz2NGTQowBIgCopiGfNOzBjQzct/bcYMGPCHDsPMLRaJLDtGH/1g1+A+4R//3u/g0uX9nQgAfIOMTISgsQnkxOXaNQqgwTVQhdA5hUAOu1Dcl42AwLIeYmFVsBsrK88iyaCMmsVSimBbFJ+xdQW9RhnYNGSKa1ars4ltVwZkFANU/6wOUi65lJCYosvZ4TEgCfEPgkDT8hKNd5V8C6I1jukYJRLwPnmDEwOP/3JD3F8/AjrTY/F8oLoF5+cImEwrlKmrvcIfY/oKwmPcV7mlRoxmdlV6UYiAgKwOdng9slHuPfOx6pTL0aMgH8ZY0eVhpvoHCcB6Y5J4mgJ+TtAJCEtsL2JM2OfjSQSz0wYBvkTzF0t8cTE1tZRpSarETG0rsFouIcYUdnsIBnbmFRFiMc6CKz7EzKzrvshGCEpfUAQzXhShlDj7C0fQoC6suKayc05XM+2TI3lJwn5yEZGEhdvBLScgHkFZD/wJEDewpt8ApIlXzunakKfLFHqn+uV9zn9U4aTlGfGBHQT6Zp2Qg3RNAHVPmPX7ufL7y7PyPF9RlgYR8HF+8fE1fI+5feUANXyq8q2yA/jPgs9A8owHrvnMAxyYpjxqgykAWcLk7H1YEXeEsbK0QyRY9Zlmb8PSZ/bcfagm7FQPoOcPaLwQoRcFZNIvCACtESm0KvhylG+M1djz55jwqydZbCbicCYQCQFgEhDxiacGufjQj0CmodUecTACL2G2jBL7hIiYkxSCyJFRJY213WNFFOuL0PKvptiEDHgiZCc1/MhZGDMZmQn1rwpRSNp6nl7Fgs+GiT2UJxTYbIsaTGxSkNudy7bHCnXTMoFjKbzvQT0TxGaO8ZCiRPL13fndcYiO58t10q+n9WvIPHup5TQq9FhspVGrKWUpIa4GYtqKO8aRvZd41ksf4unKkmBRvuM9xAIIEan4d2qqnIdFnIeQ4hoo+z5VVVjvphjsVjCe6+VgSv0/YD1Zovr1xt8kuuTF2AquOpdRlseVplCPZBI3XY2OFmLHaRMUkZyen/k0sQSaw4AhESiAEPQvCxj9hXPE2VIMRkAu/fuhCr/VW6q+f3WGDKQqgaFgnfFU5NNUjG3HtMWikOm4AbzPMgzW+n60WqEgjumnb5V/FC2uQTUXPwxIG7/HsVUDPzaSa930e/OLsUJcKbpl+qD2veYP0Ga4YoY9ukiVhg1WYi2AQAJpJKTVuAeeiDYgnFkxgcUZGn70hgHLPJqCdsA/M0bbyEkxn/8l7+Dyxf2wEhwda3lqTG6A9nk7qwwk7CVUe/loItQAZYjJyEwNjlsfAuAx8qaMlscskpHsvRNVv2x7jUGjEa3N1QmFX4MHzJm35gEaJ/kMVNQaIeXxOgN4Biy1N8wDAL+nBajYJLSztqf89kc55sON29exaVLC7z0ypfx9vt3cPfBYxwdaVQ02xJhVF7k67qug/MVqoqyWpLNS9iSoRGUm6meGBj6IW/G5AzgqjFTj8whWEKUhJGWl3zJHup8kWMr6vojm/1wXvIBIqfJfuW9TSXOYVzyx9aKjLGw/oDz+n2iTSqGBGndABBiCtkjR7ADatxfvG7+gbVuqo4VCULP+0Be+6xGJKuh7hwoUmaJoN/jvFOpUAUfGl5k7vOIBKuqaleChtIQ4DQciBOrNr4oLIEIn/IQ96cAYske/uqL1LomVRabgudn/f2rmPhntQU0elUMJOd75DPt6TPWXitjiBnTcNWkcQDMyGvb9v7dwjq5XdmYmXqq7cyW+/scggFmaCg0oAbq0IuiiCgdKUtqXlWY91X2+ZIltofIJFgK8p6YxpA1RMQQ4bwW7LP3pwRf1aJMBWiMPaOtGwxRYppzXhNUxYMG1L5CiLL3JBsJW4tQgBcGOCfAPYWISH1ec7XXvogJ5GtEFrBd17WQKBbHjvG5OI2sMFgNBGatUTH2k8yRseAk8p+kSbjTuVuC4RyqXMw1O3ul78f5Y54Wu6YAfjqXbUyLdz/jM2N7bE4/C7jvzq/ymnh9ilZMDFSeGgSCCzwCx9xVosEvhhbbvCOSHII0Prf0hXiuLRnciB6r7SIsPiQvE2IgmYSjkG0qeJHJT8EGVV2jaVr4qgY5YfqT5jY1bYvZbI75YpGlKhMDQ4gIIWZD4p+6Pjnjrlab04fMyQN5cCgfhIDGAbticFhjQJGHXiX1aJzgBYjPiaekMc08Hk521wyGaYzPLAfcwOqzNt5dFqX8vd2H1cI3EF/eM38Gxj+P7vQ88Whk5kFUtH9kJ83okbuUF02sPjUh8gFsplLZFwByWE0kgkuyNbFaG6O+fOF+MiBodoIZIhnIUwZh9j0ZcBR9ng2e3LbCCCjfA+QnJQMgrM9VjLmpFZSAkUiSRSIHAde6UOxQGAbGt994GwmM//SHv43rFw8QyWvhDIktT1EOG5C42QDZWKEJolCgLBuvhUFppdxs+IzzxDmXmUyFuKjU9cWa+CAgXYG4JsFWlVdbUGSkJO6YQH463uP60HHVvA5OLLJjnLS8uAMgMmChH8QNzCm71r1zqKsKTYxjkqtz8Jywf/EQi0OH9Tbh4YNjrPufoxsq9F0PM2azbZvkYCEQ+qEHNoS2SahqiffL3oOdtZZnNRUJ3Qasciyi9i2Pa8PGgTmOc6kAKnboycauq7FwFztIETKOaQTWk5hynY/MugE7kaBNUlwkV9PT0JGkh7u3WF6YBKOFN1Ge9kz2HElrDIxji5QKT8IYIlgebhbHGa2gSTn/iOwsy4ZS3uecU9f+mC+Ux8PMJ93Pc+EW2U3B4Nwv/zTI/ed7leeT9WVWRRHECzPAyzLxFtJZrvESzJQMYflaeT0LeNvPzElDQySkyzxDpIbd7vn1q5L5njrnIKoY8jvbjwDEiKaZiZGt4S4WolHXNbabjSg5uTEsw6qhAiP7HlOCV++jyOhyJi6iVikVsCShekRA5Z1U4HYCnLrNRuLhC2URY9DbtkWMEU1dS/gDS4gjsawVIusn7QOIfB6rekxkISgk2RRo2laS36sKTV2jbhocJcZ8NkPXETYhCq+YWAxw7fzKVXCV6tsn2XtS1P2SAA4Dhr6H9zVCt0VQQ9qTQzeMFdxtjzEga3kDMUrF1iGIUk5dVeiHQZIkfSXKKMW5ZGA/hYjoCN5r8nIaQamFA3EyeUTOJGg5N3eT/jOmQZGjiBF4y/srRFXL2Z3LZQhgGXLjirmfMVg5dyfguzCqC0wxfg8ygB6NG8OS+r1xrJZamh3WF76WMClwygapRaEOwwAogG8aTQ4nwrbvxbhjCVuMYHRDwPlGkpJTxk5ADHKzqq4xm83QzkQd5sKFC3DO4dKlSzg9O5Nii7NZfm47m2WcpDLu0dERPsn1yZNT2eqEyqbvdjcUFIcIkK0PY1idwVXrdLNQnnE5PYky0wjOsd8E5APJrGTriJJ1zhunIK4sx1iy1VmhAtPNNz+HViQ0NtGSY0WBwOSjkL/HFf+2Q4HUz57Gl3WTLl0yLh+kBloyu2DAlEbQn0uZc9HHxf1RgAp7ynGj1+/L7VRgzwa1hS0x1RMQFclCkA2sKMzCoCwTWZ51nMe+2GC0hbKxUdFGbZeBN5Vfm3oCbFAEzAue0vF28v5EQDdEfPtnv0ToB/zHP/gmbt24hMoBpBHJzldqzIwbBwAkDkBgZWgVtFu/OIAUlDMboCFY/rFJh8ohq0CJx4ITZpjI+9VVTjZ/GUgiK2lWiBk0zNCqp+KeS5rgmEIQF2pSJRstdhZZZBs5pawcBMiGUsPB9YOwuOQlT4CA2Efcvn0Hh5cuY37lOfz261/Al7/4L/D//C9/ijCE3GabU8yiCW9V8LrtRioEVhVcXaFtZ2jqFqWMaLlR77KVpghRStrltUKaxM1jLQdg6urNyZhEIKrywW7rwkLqvBpGbGuRlG0fTaQ8r02SVkJfdD9IKYeRST8kTWhzWlSORknHfHjL/JVDyUlicpKxcxp653Tyj/NQ4jSdzlFKsnpZDThKLPHxSesR6N7IxZy2KoSJk2UR5r4d9d+NLBAvghjChARVP4g7zOin/JowgI6KOSaeDTjSMIqRoR+Tc6fnVKlsUgIaIso622O4yVglEpDE0MRR8kPIS9geJM7WZleMUcIBtYHMrAakz8ydPZM+EHztM1Cx3cpEExwnCT8DZ0KMSBIXa5VZHFRtZhgkadVk9jQWDExO/KHOZxDkxReGqm7BzAhaZMlA1nrTZQUaX3nMFi1SiEIgJTGmATFgQj8ADDQtYbWWRNS2bVH7RqolU4U4BCkpX9cIHDCcd5Kg2rZATEjbDqfrDcIQ4Ota1r3GH7MjvPDCC6idQ7NYgkNEd76GnUdN1SJyEm9lgiTuJiAMEhbjSZLjA3WIfUA1Z3RBpEKrugbxCLiruoZ5HirvAdbYeT272ScAlXosgboS0B1ijwSgrWqszk4UkFda80MrwWqxOCYJ1fDqUQSZ1x6ZEGIWT4BVRN3dg/O8pJwzmg1Iy5HzZGGBDswBpfJS+cdeM2PMQ0iQUWZTCbKdtViuN1svZWy7YJFK5od+Rww2xzlLQAr4jio3OqDvO2XqHdIw5nv4yoNjQgjSltlirkUJRa3GqqUuFkucbdYISXTct32P47NTbLbbrIjGIAH1TubZ4eEhIsv8dJqv4Yng6xpDCFgsFpjP52BmzNpWqwLLWgMnNHWFyn0yQYBPDNwd1N1Mxi9PCxIZs+wyW4ZxUihYcWroiBWZYJUBJ4oy+fecNTYz82qvYTycS7exfJ/LjCmMydCJAwNK1mb5svyMJdNiYBn5PQoiE4MLzVKBxvqM4420QhhkwsOkCSnfqkS5+ZMZpFN+1Zh5a4fBF86g3U3+PbbXPkaTY4e4vJ/+j8ejyVxquQ/02cCsbvux1WyfN0u5HPTi//k/IsDYWO1ggiTEwkBG/hRn48dCWBga166uSEck8d8pAc5ltykH4HtvvYdtSvif/uh38cL1C6BI4CGAosT/eiKRbNRCGQJuNA7SqyGVrFjNACSXxyVpUmmeJKwMeEpZPop1AMZNivN8reoqS46Oc1SZbRtLlnhLTjGHvbCCKQ4WY8ra5RoHmiKs3LQZXbb2mArZuxiKdeBx67mXkOIKlw9qfP7zn8cv3/4l3vjxd7FZr7OxZAYYWKTT7PmZRcYspQAXHHgYkGoJoaGqFoZI5+k4jYs1yCOrZ2uSlWkTjXF5r/M+A3gLj7KkHruns/CpVJRy12nl1BiOtk4YWYKUIYaX1/0oWky6rnnRKhbDz9anJemRWdeQeHhro1nazCweFc0DkJh98yRItHA+AAFEjprxSgqGoqgUpZQ9cgLeE4KFOLPmoehcjLaPOVEtSlHmjPNan0GZJ3IEKrThiSAeKfr0g3YDzGVSn/29y4bvsud57mAailJe/1h4zD8VOrMLeEbWzb6nMMIsjApjuAtpISUknhwlE08yxj3dmF5oovNuMqp9ToDLCJDsPHqKIdUk6Oxx17Wwm6xnRgwADH2PLopHIA1BEsjrFpVKQta+ElCkYWicAISEPnZYn29ARBi6HgSRnbUKk6HvJ16E5XKJOEQE14+KJBqi8PbZm7hy5TIuXryI5WyO+pIYO6fHJwAckBIqV6FqhXXthy2aeoZ+2OYjru871N6jW2/g6lpDqhhp6DGbzxCGhDgEABreR4QhSAJi6CXPxkBkU9fo+60UfYOQI05Ba6VeFdlfUtalN09SLAxCppEAiVY3Qo3QXIRKJkLup6qqRhUeAoima+CTzOPddZNxG09zO572Oj3jc5ieC5nwtYR6IyMs3M3JmTcMoyfDPFqWXGvnKrNILaaUNCl69CaGEETlyNdovITLhpSw6bYYohq8KWHbdzg+PTH0OfYRFUZB3aDxFZq2lWRjndumhGRtsnEMIWC1WuXnns9mT4Ux/arrkwN3kiqOXBx4BjrkDeJutoTLJAhEVRBKkGpYIKmKytPAHfnzNtoQ+b5ncPSCWzQV0xATjQes3YbZYszHQ1kOL6hLbrynLKIx7Ee5UCGvnIKNnQmpsURy+KWib7gA5mwW8QjyzbWeDFAUhoZNfJfZTmTjxVCQGCSyYAwIj5UcR+NGxk3ZO+0mN+LJicUL+1xK2XIHa9w8j/0eoUmwBswsrEBfhzLqOX6SijhuGt2eAkQov24GhTw/wxOP4RIa4gGOYDgwm6QaZxDknEMfAn781vuICfgf/+Vv49Vb10BOfQ+D6nbXDUzJIYWYS1nDQjD0WYmThuhoyIKvAO+lyE6SzSJvHEEMgeSgoTey+UCTokjZ2sjjAiYyE83CRuwg1Hsm1bFPDIIHfKXuPgIjoO+2WTfYSoRbQqQwhw4uQg5cBQXOq4xpTHjv7V/i86+/AE9zvP3W+/jpT34o85jG+ZWgSibEAAfEaNKuZgBLH4WYELoB5B2cZtrXdQvfVGBoEmu29XbCDkj2CmJh2gmjoTka1ZJAmag4YCb1Hvip+wpoV+MgycHm9HVJONMCZjzOv7yOIIdaSgmBJeFWz1g1XHTd2zoEAE9gPRhGx7QYTbWXuZtCzAdc2V7R7Zd9IW8J1j06lnZABfX6eV2vlOcSdK7KfiDx9Q6ObX1zptgSNIcAekAW+8GnOVQGmALkXUBevudZn9m9/n/s/VuvJEmSJoh9oqpm5u7nEhEZmVXV09VV3VOzsxwOdkiAwA5AgHwiH/nOP0TwrxDgvi6wfODOC0HuDpdLcC+92+BsX+qSlZUZca5+MTO9CB9ERE3dz4nKGJAAUTEmiciI48fcLmqqZp+IfPLJ54CYy++10UTLGNl6b/W5DYCpa1yzy+b0taDFviffkbnHLM6Z07qyWmelz2/JNvlFXOECVNkf22+l71iQqAg4zxoYsPeB12dxTPNy7UUKTac5Y7MZMPQSfZ4nxhQLMiT6vO038ApCY0w4JYmU85wxTzNinHHQbpUie2vBGocEaVoEyHs4TqPQdwg4Pe0BaOMzpYaIMk3AHGd8dzzhcP+I3dUOV7srvH33FnmckUvGNE1S5M8Zc0wYQq8gtxPnH0DwwudPOaEgo3MBHoSSCvIsYzd0vURiVQbTk0dMCZ0P8oxmkZ5k5ioLWZq5Ap0nFriUgvoJyXvsrm7O55i9zy+CIWfUMJ1vlpVzStGq27cSqOU8ot7O48v1chkttywl8zmT4TLC/5pjcB60lUWQU16uxd6bpcg85OWY5pzItoKe+r4HIE7T4XQCM6MfNgjdIIpCJglLEswhLsj6jgc5zHGWbYYOc8qY5gSuwh2KBx0B5EHw6IYBV1fX8N5jt9uq05rhlYZm67brOlxfX8v7RJ2GmqlwhKQqRD9m/xY67nK6zpGkzpoFbzfDCqNYI3H2hi71RWRRKvm/8ZpbrrwAkqKFg0WDDfLSrtQFO6V2cmFJelPzO5PQO7+MBjqzoGnWh4CBfKApoIU9IvWwFoqoV6MPSr12cxbqw5oI/dCDGZhVJ9a+aQ5GrQmvF6DgGlj4/jB4Z0fVT3SMTPa1epTF0lSEwrl+w+n42IvCXmVLEZFef1PwQiYbR6gTuBrp+KsGuvNeW2ML0LWiTlvIXPen4EZT14VZQAZQVQn04ObJyP0vS6hRXlgSea/zjaVopTDwX//tP+D5dMT/5n/xH+Jf/JO/gncZLid4BjhleOW1N/6Cvqiygih9IGWu1AcgV8AO0qY9el+Kgk/wwrvzQbjMzpq8mPNSj6edVS0iXgS0m0KBpGBJaDyiMQkqBaUk5LQ0SDHn0qzzHhh6xFG+L225IwhACAIgtn7Az//xv4/nh+/xZ//oF/jP/sv/J/6Hf/M3IDfU+wLdr90CwGg6yyxmtNEVBucELgklzYh+RDcM6IYtHHWVa3n50LdCaa+0ASdV7O2ChGMvwJgEWIuOsq19WXymw2+DQjreAmKd1oI6eeE6cRoLc1WscURSvKnz1VkWj5ogAwPOsrn2HCw6C/xSvwO2ea+cUS7gvDit9hIlSG0Ee+XjF9ZOyZY50Gcu7GXorOxbYyiLpCUK1yEzpRIr6G0dfNi+nEJ3degAbrrX/mlaG2m//HMZ2QMW4H0ZDfwxu3wH2s8v5CDtvVWd8pcAqT4bIfOzjTByc48rYGrWXA2y6HusOiqkknk5Aw19pz1/e//a7y7PjYvJITJEKVGpYsWCKAv1C6oiUwojjTPQqYpLLuicUH2QC6bjCIKpuCSlPwDxNErjoijPNhRGyUnnrxSu5pIRtCur7NO0vgkUZAw9Sw1Q4YhIET4xYpwBT3hOGcfnPZ76Hqf9AUQOV9dXQGEBbIXQB4dcIkzVCsaX9j1yTDA1J6fPK8eEoevBALoQMI1z5f578hjnEX0ndBnDTxI9zyIRmBcMVKPkWg+FZh5WVR517iToV87unQUeLapbpT3VEbD5UWtA5M1Vo/at9v8Ck86Be4v/Lh3AmvFUrNXOtXadvLaW7PzbAFbdd7MNgLOi0tb5ZEalwhR1jqwJF8AVp5jDY42bhK6UkAojCzIHs9yPmCJSlqzl0sVdn+Oe0PUdNtsBwUs9BZFQ0ew5NAw9vEpF3tzcVNDe0ursHn2Ofb6qDCs/UsLOClLPH4D24EFpItgKhOzFLl9QMFdfLnz2wJAoHsNQsDzwLHouPD15wAkXG9RG8VgVkIyaYVG7BRMb3iAju2IB5ursKfVFvD/bzJRjSo2wUROVg56ROAKmKGM3wzmHYbsDPz9hjjbxdL+kP9C5U1NVLho4XWXsiJSWsYCaJZLCy0UysMhMAqyFeMJLL3oMexnoObToDwtutmi9zQeL6JnsYykAKiUg14xK3Q8AZu1QRksXTLglImWRVBIZlDq27KShl0UqbFy8I4AWXV+waGrDSZEhg/APf7jDf/Sf/l9BcPgf/+NfYiCpPocuVHKM4Hs4J02RChXkIvrlzjnhlGvaTCJYDAoORVZ305ynSSkDYKeOSxF1JK/FPvIC1nPNwnleVFnsIUQN5cIyFvISJmal0bA6R6TOrnDeLTKb1IEWMOxguvoCdGUOPD3u8ev/4v+Bb376Ff6z//z/gt/99jf4i1/8HPspwP3N30E6z8rcl7yWAEFz8hy0wIy5cr3tGoo6QKwFV3FOcF1A328Qug4eoc4Fm1SW2nZaJNoqtzFBnj91SjnAWaTRprsWndlcVUfDnHgD4uZEAosjuMD7ZcJ6csjQSDvO1wUAVSxibU7GsFSB1AovuunsGSDJGdoaB5qXn9N1DY+MhOx4WYf6KGSow2CArHVo/FIQjMLwyoUX/jsrOMcymHb9ppYDBgs+sVX56sv1T8Uuo+uX6fozUI0/fq3My/NTfm6Pc7ZlvU/1Bdy8A+THJSLKCiIACxJZYES+U5QeZTBbIuEQSp497y6BVf1DdTZLg5mi8xwyn8BSbNq+d/VMZU1wfYXI+Wk0v1CdR0bbC86plGKxiQpkRpwm5JnqM8gRoaSEHFONpLPW6pBmu9IcJWiRJGDhQEKHGXowk0Sscwb1nTQ1soLL+v6S4AixUg313R+zHMf3AXMeUUrBgQjj4Yjr62tpbgZgO2xAzmGaZ+wPUWmTWr/EgHMBwRNSlmeiSDw69MMGne8k0BIz0jRJ5rGXsaRchI+dkr4oUcHjeX2bjHfOWYIU6qRbNLs2wtIIrd1PuY8NDeWPzOuXkXQ77qed2j9mnwLhS1US6qS+LJhtncQl06zn1SyGFrAvQd5znfgztSUdL4YAc1OKyTUIplSiVLSTcIbdhswSRIO+16Jy3wsYwUk1EMhoOPLvruuw2Qzo+0GkIJvrYRaqDiBZ9u12W7upWkbIaGX/P6fKgJYb7py9Ec4fhmfRB/2/DaI9UJiohgXFsyovvrc4AiadyHUBWlS9kXtZvnMxf+TBJ5PcosvmMbCmVIiWhxwbkJULUvisZ8X2ILPCn/qIq58BzTVA+P4EOa9pmhBLgQ8BpB411Pu1B6nMAY2ukR7LXsA2XpBItYABVx8CzLbdcsyabTCgr0Cu3i8dN1MMsrG1F5UpTlTvQkGQTVaT26pOmDkxTqgJifOydBV4UnXKFIjqi6g6c3o/6u/068Zfto6Q0AeDaczbi8w33FQbTwbhDw8H/Ef/6v+G/23X41/86pdgmmEttF0qSDnCeQiACh6h71C00FMGDCiqpgJX4DgIb94cx/rSlrGsDksT3QAJ9xAKar33Qg3pQ9UQZ6suCg7Oiy4wjDtvijJ1Hug8T/pSIRKwjiUlb2vLHvihD1KHolHrX/7qH+Nrvsbvfve36MId/vznf45/8R/+z/F/+D/+xwL4fcBs3hMBIu6yXGuBOemypmQMAWZT25EXClh4+ogOaZzQ9T26YYth2KALS0GORQ/hUR0Ti6ZBnbw6RxhAMS6/jHnRN2EtZq0vn+UZ5XUu5pyRSkFxXDmIqCNst4806L9oXNdIaGhrWQhwAGkmgzLX+oTsRJO6lAwqDHdW3M0KyFVBA1kBgqt0w/rY0mfAEvGBznmv0nIacavAtHlGBo9ADpygAEwRA0kBb0aq/SdkpP90o+2XduZQN++s9uV6puPMSyRP9wDW+gT7edk3zraTycDVwV1+Z5EZX51D+USjlCDtNN4obtke9dnWdUqRYfmeAWjSE1loBvoLluesOekmGVuvMZxnuxkMxyLFnJSmVx0cD1WUUrqOzps0S7fHGCOm0wklZwTnURJrZNoyArKu52lGSVEyXFieT6FxImpQojBSLqIfNmtHUMgYlTnJOtKMkj03EhGK8p5LKei7Dn3fI02zBCxS0WCN0BbKHPF094Djfo83777CT//sZ7i5vcUPHz5gCpPilwxPQZ4rpeDm6gbPz09a08QI8HhzdYvnwx6eHB4fHjHNs9CATpJZ6LsOdw938g7Qbty5JOVq2xyU++6cQ4Tq5xfpQZL1Ge5cUNqL3F/XrFMJIOm7qKQXCi72jPKtk69zGDKUr66bdh/tummBva2f9r1j87cNGLQR/Xat2X6JSLpAa2Ms+14LaG177zzGcVzAv3M4TSOcdxiGoUa1nT4bRfEog5zXcXRgSAYjWc+C4LAJPRIzxnECgzBOM6Y41/P2mgURyg5X4L7d7bDb7QB9b5rDwMzYbreYpgmmid91HWKM2Gw22Gw28F6uZb/f43Ps8yPu6v2Y4gs8gfOy+F6TrZKbs1QHS2QJYAmrgj0gBRkXD1ZmGDJ2Cs5Y5R0sDVRdAwW4bYTb5N0cA9q3RCPoJM0jDLzrDuqUJHf2EKtHaSgj8plF2RewDt1On9Ya/S2SzlZgnOKMTMtCk6izPoTdORWogm+iCgIZqLrOdYwNLJclNEkGZu30chFpOkadaOZwoDoc+vCgRU5MrOVYcn24GBC3h2YF9grwWr6tnKuDcd3NmRNt9mVxs10zeOEI2xgr956pLC83nEcETBu3fSA4PW8G8N3DE/7z/9df45/8/M9wtR0ALqCcwDFJqhJZtmd1sIxC4DwKJaA4Ac9KveACMIl2ODunXrq+5J3qvnsAziM4B1IVAFMK8d6DfAAFlaoUjgxIBbQpZVgTlMKWZaCaVs0s6jGkDzhHDOcYpSwFOBbJJwL6LogzAgGqhQt+9+3vcSo9bq6u8fbdV3j37iv8N//Vf4Ufvvtu4UMTVOFJI4/NPbfPvAgvCzDx0mCEvE19ri9WibBFzKovn+KEYbMVVRoX4OEbJ7Jo0zDWzJrMFK/jL9SqpbBV6lWkzTqVBnyx0rFo4UTWFw3hLANkEaFOVXFiTkLJaaPaRl8AqmNna1HqCLh2trX4AqCBhAKRyANVfWCANVAvY5lYgx3F1vPiDOuEFzlBeLgiQCtnoRa2qfIgXd5QgMrdtS649nQzh1NeMPIcsWXcPNn+5KwFLZfR9ssI4eU7q91W/wWAXuzn/Pm25EWt8Pw1YOKI6nMQfimQs8inATfb3lfQoftp3i/texdY5OVs2+pgNlz6Gu3npRuprZMaeVdqzRmNpzCSysPCSRYpp4TxdAKiruVZaHjsAuYpNpFlCdAlBdRxkoJS1mxU8AEZuUYczRl15MCewCqhCEALvd35umPJQDpyuNld4enpCVfbnXDWY8KUhHtudUpSylSQyoxyKri+uUE8Tfjh9B0O+wO++vo9vv7JN+j7HofxiDD5GtV/enxEKcDb27c4nU7YbQZcbXc47Pd4fnzEth8Qxwmnw6HKajoQTszIcZb3QikAMagLiNMM3wmIBEkxujkv5Kt7Jl2e+yDUzVKknrzBKpbFleQhSSYaIjF4SWXJkPtl/HrQWZ7xk4D9tTXSgvTPidJfSlJebtse18ah5LLQb+y5C0ac41mRaU6pXtM4jvU53w8DTqeTFIt6j5wLUs6AFmNPcZYIvEqiztOMfrNFCIzn0xHTPCmFpiAQVXaDJy/9BXyHYRgwDAO22y0AWeNWpN33PZxzmKYJp9N4di0AcDqdUErBPM94eHh4ddwu7d+CKmPgCMvL++L3lzcR0JdiA8q5QCkETidM87saNVg8aaD57Gx6SRLRMGPRB6XDKw9fgjgZFXWe/95dAHPAQCHX7U1ZBbCUokTiikXA7IHqJMIrUY5l3FjPv03vABWLyPOQlLtbtWupCb1wBUFS8KvAkGVpZ+jLXXfN7Q3S8yvKOyDtpkZuAV62+CtXuAHFzE10l3W/3o5tCVnLXgDwXqKrZGQY4ZTVlwCoPnAZEIoFmz8meyvmIOpn1XkxUGtj2pwb0XmjEVvErANcCvD3v/0W3//+d/irX/0K5Dw8ORR4ZJ5fzAtWYOhDD+oHUE6gUkQKtfBChbLsgfJMvfegEMB+KTx1juC6oDxneXk470Dkl6wDS5ajMINzQZljfYlm1lyK3nN7yUqFvUNxBSk3wLpk5JyEn6rpOK+NTAiqoVyAX/zq38P+FBGcw9//3a/xt3/zb3B1fa1OQwtKl4iknoL6bnYfZU1LxFd5oWQzQ6lZxUCDFk7FCac0Y54mdF2nEfitvMRsXsCAkJyD6eM7AoLOV3lhLC8OLgUIC93jjENozxkYAFqeCaZ/LMdTyhXU8WeCV/9WnoHu7HHkmuUmGQb7jTq3CoihD35TpTEHmNwiJ5rBsPRTDUzoONjzDMyqcS3ruqgPvrwUW6dcU9RsgRYrmF4ohnX9Oqe9Af60VWWA14H4JZi2z9vvXEYTP7UtgJo9buqaXxyzBe7SDVrpa6ZGpDQsq3cwbrJ9hyBOn4FXW/9sET9bL7XoUakCVoeDlkrRgC0F704j6DlnUazSotDgPVjXtPMeHBMO+72uPwGHnDMOh+PZuzsVSE1QMw6FuRbOc45YMnKMKc6Yjidst1vpWuocMseaEd1ud+j6XrXQJYAQvEcs4oj2fY/tbgfvPQ7jCVOKkn1K4jwwgFISvA/I46kKHNj74jllDLstCjOe7+9x2D/j4w8f8JOf/RRXN9dAlnvYhYDdsMHvf/97DH2HeDrh+eN9dYBCCNjDYZ5msAbtcpSs3jzPCH1AcQUlybzp4NA5B2TFOxak8E7eH8xgziisEecUsdlowIQIVJb+MUG3tzlnAeq2ENV+Ju9BGdLoTzP/RuEiNNx3fR62313m0nnPCZuvZ9+9wIKFzzXeW5MiZZNNpRqpZl1jvluEHDIvRbeZGYkLEhdrv4fNZoM5RvQG9FmkXZnMeZWjZC5IOr9mDXyQd+iCw5QiTuOIp+cnPO+fMc4z+mE4ux57f7TjG0JAzuogNTKw4ziq2g3QdQHjOOL6+grzPOPjxw84Ho8gImy3G3yOfTZwJ7csdhl4e2lj8YSam1U9eTQvVLbE8AJGbVubCPXhpt+VaIOplFAD7Io6BBqJ1ZthWrXVL7PqY5IbVW15Y1XPX/Yk+ypaGFYf5Et8t3FQpJBL3631QbV0sWwJNDj/twKe5pVgoTWJCHh3/hKo10SNrvySNaiLSFMPC6jUojvTJW/eLgICFFqTAgUIb5np8oXW0I1ogQVFHQRHTXEcM7L3kJBrQ3NortXGkuv5cFNZaZxSV39HJNFDLgVe2daKoxYHD0uh7VL8KCDSOY/ggeN4wofvvsPP//zn2mxB5nbou4Xr7BbALQAYuh+h0UjmAqJ0pEDP+bA4IrScw+IsMhyEo+qdvrRsPhsYV5Bu6yGlhBylKAYafTFeKQOg4EE5IyVrw1zAWTiUOSaUkhvql2FfLZIFME4TDt99i/fvf4LdsMPxMCKniG9+9o+Q5t9AWkKrdpBOcK5zwCaRHoAhGbR6v037lw2rgllT5zqHXQGYMzhNiHlGnCbM/RH9ZoNh2CBQJwV1qjRj3WdNHckKxGztVae9iWZcSt/JNVCloRgY58yL4hPrvNZ7RfLwgHXutQyZ9SqAHrtobwYba5OwZI0SmSpTLqzFggogvMyRUh19EuenmUvystah1loPqXXRZxCROoKL85p1bdg6qXUUDBS3ODziMKpTX4Gte1Hr8qdkliJ/LWpo1kaa28j0ZereHpivRR+XDPD5538s4rg4eFZUKPOlLRK9PHeTsrNCunmeJHtCBJelMDSZV6nfK1yQLdqs70J5f0AyX1meL4UUvEOeDZ3zyCUiJ8mMiQRiECWXJFnBotx0ayhkMoVcita9SNt5B3mGLA6/UoZSESleyBq7ub7G7e2taskLJbHregTv8fvvvsM4F1XkuELf93h4uEe/2cgbmJXqwIz94QACkHKqtTXQAAyb08ROdN8h77oYJ/Spr/twKWNyAXc/fMDd/R222y2CDzjmrJH1BxyIUGKsVF8iQjyNcC5Il844AxBucxxngIB5HOW97Bx8F0C9FFH6IIGuYm9YhlBoUlJlHNIaMs3MeVEKkiZPrmZl69xlqsERo8Vczkf7aQkE0hIUuNiO8DJSvhRNv57RakF7S0PLWpBZj61rzZyyywCLnXubNco5I6p+e87L/qy41oI3tVEfS+a063ugSAdV64fgnMPheITre80UyzGOxyOmmDDFueLRrO/TwLwEPRQjOuew2Qx4+/YtDocjpkkabBFJkeo8z2fXk1LCw8MDvvrqK+x2Ozw9PeH+/l6pNj9unw/cS/OgM8CtIPyySvn8i9T8Uy+20eaU/Sw3HY2Xx8tvFkfAHqrNYerLTv+/PCD+2AXpfqDqEKSpdo3OkkpMGkjLKFXnGVDvkwBSzbxzWFpPDDb1LaJt43CGynWhstMCOkCbKpC+eWVB2bqym+81Mlhfzg1Yt+NT+3N7yLpIqe4X0Ki8RQGr02L3muuY1fsCnBX72QPcorw5Rp07DCKZL1URBMbrXiLFRLZoZf/VXap+2/nYmVMG4ExN4TI9CEAWOQqOz0fkmKUlMQHWGALeVSBFIKB4ELGmjYtIO+mD0Gnzm6TFLiCV1FMJK4voWAStRnlZrqpyAe1eNC/oUkoj7QgtyLR5bfdfAHxpdJfb9QEFdd4DPjB8kvPu+w4EkuiG6zBH4Lp3+Oqbn+L27U9ALuP5cERMS6dSnO33fPwZmlkiiQ4RLwoYdn1yC5X+RARXtMsfLbQ1iUBHzGNCmifEYUS/2crLuesX9Qqd7OwkalwLtV+J8ADq4IOaaLVRVPSFRUah07Vqa6IBzEbLsboJIdHYarAIfhOBJ4miurpotRuvOQnMRs2v30/VwVjoPTIvmkJmXo7ptCjb6eKgIDtsgZ/xfE12EqZQ0bw42+dqzkn85z9hwG52OSfsM/v77F1CEoKoXWQr/QpY5gQg96Y9iP7enlENwHg1iGXrofn9OSCy595yrhWYaK2IOVyeCAlSd8MkGVdYzRPL/C5KyRNgJ2tNnGkBe13ogCANlfI0ISahFmSN+JckQYE4R0TIezDNsxahqvyrNoNL4KWjKgmty4poWa/HkUS+Q1CaIoTaGIJHignj6QjvgwabJJo/k/CB5TlZMI4jxnnCaRyxu7mu1BMGA45xc3tdaTvFRDSKUgpLkfdQyfWZRgR4BuZphAsBwenzKM64/yga64cQajHjNI4oqnrjG5BpmMM7aBM8capKEsfBASiF9H1dEDmi6zukkuRZ5PT+Q56lOWbFIgCKvBeMMoVSBC8U+aX0u0ANtlUwCTqjBdq8qvrvBiTB2j14wQtnwLt9/l+sr9d+rhH2hs9+6ZSmtEg4WqAAaOstsOjwk2YkVWVt6YNHyGWhCdo1ZaXVGrYxTCPqb7a+TYWJ4LsexQJ8APIc0fUDnk5jVX6pESLY31arJ893kT3u9ZnbrHdeZFaBpcfBdrvF3d0d3r17J7KpQ4eUIg6HZ3yOfT5w1/+zeusWUWZWfu8FYGpvIBFV6R6oxJ7xxgt4kTNUT0nAWLOfFyC9/bmJHDXbFkvtX15Hu9gUDMFpcSSLD07ty00XQQXT0KiuUiWYDdQ249RMPmItZHXKiwYqnQVolGUAjegtXMnqyOjnBqht4haLXmiKzeoIXAWJS9oU5dyRIaJln5BW7ou734754gTYj6KkU+D15AuJigsZuNGHhyePTBlGvTHQTna+5CSCQMaVN9Dgq6NgYMvMUQCB4VDq2LclY/YHvEhDyUurwOvDnQHEHNFhUBkziS7aXXTOtOblZpNzUuTsnUaAXb0XwaIeekxPmoHph7OF7lR/m6APATh9yOj4KE3CeIpMBA6SBRCevhQ6AizZkyyUE+PKSyTCVIJKLULiLDrenXcYOo9QCHPMyDkiMfDTn/4U3hH+g//Z/xQPyeHt22v89X/736Lwv6kvVys4kULfAkYBFVoishc3INeUqNN7XWqtBul8sTUr99jmZlElloSpJMRpwunYod9ssNtdIYRO+PzOAV5Aq4kiVifT1nc9U8mIFEiUvDrc0Mg5qCpDkFuc35KUC16KOhzyQiVepDxroIIIWc+d3DkgDD6AS6kSeoCdwwLiLtPOrM4J0aLYw2U5X3ZU56iMJyt/t+bEZB950b42aVPrxwFunln63GVA7qm96PNLh/9PxdrxtJ8vJSLPtwNg7yjwMj8ZdX5dvt+WRySf7fflO6p9kS/nZ9s5i3Yq2Gipm9bLAZD3A2cFnWDRntaC9VIKPAdwVgllfdtU2k2xxmWEoscrRELJU6CbY6oBmJwzckxVxQXa6TRrds+KTXOSZmzZCkpt7HiZV/a8FCBW4II8z8wRknWWhS8PoRt45zCXCalkDJsdsr1bVEd+0byX57Bl2oehlztTytKQ7+Ke2Dqs72MipBQxBF/XitdsYyCHqNx+ZsY8z+iDjDNrMKGNIBeK4CQt7J0nLbQt1fGQX0B4+3OU5wYRvJfPjVYonH1f13flexe9vwIuAKaFqrEAB4s/COC3zEwzr1ogzhYU0PfXJXC/XEvt/G2fuZd2JvPdZARsHZh6zKUEZZPE1Vo4dWJZnnGgZc3aNu0aizEqndEwzoIxQugAOKU3yTM2BIc5l/ZNB+c8YoqYozpWla65OEglF+W4L0GTtgC1ZZHEGCulynuPQXn37b0hwhm95o/Z5wP35kWjIdgKnNqUzOUEkQHW1LIOtmEifXMjQ9LGDOHGnQPW5YA2L+vxgfqgAYo9YesDxG7w2cO2AaAOchOyRU5sMdRDLNfcZgfqy9Refhcv3Xo80pS8fpNZz1803RQcNsDYJgbbIxz6kF5AZb2mJkpoVB9uzsEe5rLr5cFy5j1XXGkTfKEWVW+RuY5xYUaxAtNarOiWHbVjTSTgqnjR9Aabj1CPzfoB2cO+3RPZLVTVG3Oy6rU7iLyuLECnY2dSoc45LVQVPjE5GY/gCH23EZys525V4tVpzAL4fHNEbmZDfZjpscg7BN0X+SDANgRxUkyZx+4bW2t5LMWeBVUWMmm0gJwXwE6k2t9J9lHshQXhnxQCJ3mYkyNVfZGHSWHAe0LfE3JJ6NgjjwnMGeMc8fFpwlj+gF/8T/5H+P7jD8jlhOvdT/H+/dcIXYdyPGrEYLlem2e2GBbJwgassEa6rYgXBJOEK9Brctq7oLjqpDI7GAFKUpZSNFzmiHyaEPoe3WaDfruB4wB2AeyKMobPQVp1WJ28+BwpOPci5yXjxdJJ155ZBBRiZF2fbPUGYDivWY5S6kOc+eVcqFFUm5NOoqHKZIL3EvGJtRGczjAFAaRjY2tY1rGuiwouxdmstAio3j8tz5FSCgKkoLbQovbQrlNHtETxgDO1B5mr+JO1S0euBe6AgWkAFpihl6C+7gfnA3EJVF5kgy/2cfZdR2f38dwhECAhEbok82BJxFQ6g0QBk4LfUoMTZZaCaHv2kZNeBTEJOOCUkZNAE+8DxnHWTpJchRHiLDzccZwkmq+0GE+E0/EkMr3QzKB1cPZeaB0KxK1WJHTas8HeF1mlDKESkOSQs+zLmtFZ51YxrYfhjJIZ/TBgu9vCK13Ik0Txs9wE5JxwmOdK24STZ0t1VFlkJ61PBqAUEN+JrkTJ9d0x9D2udjv0w4B5npFixDTPSOMETw6DyfcpoAYpSNcMrPfqFjDXa8qlaJ2TqEDFOaF4iKAApI5GAs/2/MvwAfW5b88ZCRrqQ4FJ3mO+8TKr977Mz3aetvP2HBdp9v4Me6E6AO3cN2D6GnC3zy3ab78PIcgczBYIonoPrChXlNZcjaC3Kl5Gk7F9Fs7NuqYqqThOk0TPtQ+IIw9GAjlCN/Qgl5FLQZylQDfqXIgpy30I0pl3nmfMcRZqk3dIXMAqDZpzQckFnXLcp2nCOI7a+GkZB+89Uko4Ho91Htg8t3GephHTNIGIMCiP/sfs36o4lcgeOrR4fYoyX/PQ2u8x0HCYUb3yAgYV1K6o1qzHQfZrahpgi1I1LzssKifEC39Tz1DAuYGd1gdQkGcyiIsnoAC8AbQNXIcpNmRUnwMy2Re+rb28WwqwrSY5tFuo26RFbeL2g7lxMGwMS8OD1xdz0V1aox+nafqzmLp6GAsN45xGUrMacpMqKK1cyCpJU90lBQ8LMGZC1d8F5AFpp+1MOglAYoG9FucwjnWNQNk4nwEvrueI5ZbBPEYbf6M0nfleeralLOfPmQFkbChgGHrhdHpXVWycp+XGwwCqRkKdq4WVRISkc83MmAAAdKhJREFUXrO5V8SaKVAgBxdkPiviIuX6cy6A8/V6AFoelEUVaWCRDIl2C7gFMun1lLLUTrCdo6bYnZNIuFIoiICkER+JTktzkFSA4xzx57/6FXLxyH6Lv/27/wH3H/6Apw/f4/rmHbbDgAcFGM75ZT5XaM31/JwCXi52h0Q1oSBXXj8gJXlS01AWTrnz8jK1AstSqksq/5PoXponpHnCfDpiPvQYthKF74YNKARZV+X8OeTIVd13Ii20Y4uC6IODF8qMvPABYmlWU8jWNiCtrXUEuOia0wh7EX31DJWf1XUVucBlVuBMoMYpDuSR9dlhRekEOgPPDF6ymwbsbZ1oIxt7bhZ96drvHElBl61qoAWNy3Pa0rikn9latPnzp2qv1Ti8HjFMZ2CkBS0GEC6BfGsvAkJYnIQa3NFntty7Bonr99pztIALqbMlvd2sESGQUtT6lSTzFbIWTfRAFEcIXKhGynMucGeNioCSM8ZxBCB8aZFqPOH5+RmcC/q+R5znGlFPzMgxSu8FfR5m5bYnA1T6UJaoIoFzQkqLjrYPIoF3PB4BiFKKPUdTzuhch9A5nMYDwEDfb+qxvCeAMx7v73AaR1xdXWEeT7i+vsYw9BVIno5HAVZR+Pv2TK5FlhrwIM2shxBA+oyKMQrAmyOO41QLO2t305zhQZgO+0oDjTEujgeRrumCGBmpmUN93wNWnFsW5bBAQTMb8g6SOpRcMVXRZwyyrHRTCmNAMt1EKKyKZ2xFywxiqufUOV9ZDe28vcwM1bAZC23FwHURICUOwyvzvZ2/S23ZQptt//S+P8u2WOCLoz7/wfCkggTN/i+zACklpBqttkJWycSGfnEsSlYqEYlq1niaEGPCNM2IJWPwHuM8gUKH0HUAOcw5Iww9jqexqvdkpem4XgQSnHNIUbjr02lEnGbM86wyj6kqOHnvcTweda0B2+0Wfd/jw4cPkvVOM47HI47H41nDph+zzwbuf////u8/d9PVVlvtT9z+9/+7/3+fwWqr/X9nRIs6hQGH9nMLunzquxXQuwXYt7+/tBbUnP3R37ep8/PsUEPx0n9b5C5Zx2pnRbSSMQNQqRPMrHx048NDAjw5y+dzfgF8UAoOhwOC7zU6mpDiLHrqOeNweqogYhqnmsI/zSeJ5kOKJ61Yth0NosUhMXqJXVvXdaq8kWsNhgFkizpKlDJjv9+j73vkLIozdj69DxgPRzABD/f31TEgEl53akCT1V/ZOUiW+yWdSbooO3gf4LsOBXIPooLz4DxQGOPhiO1GdOGPpxN88Bj6HoUZT09PGIahKrzY/e66DicFbs57LQ42akYCeaVrsvLjmYWWCYjMMxanfR4nEUjQ4ACTRLJJ40gWbmtVx17LGrXzsc6LOj41hnY+3x0tTa2audtSXbJ2wm0LRW3bkgvGONbfS0fSBN+FZZsmA5hzPttPS3UT0C5zyj6PMcL3nc6ZXOuSCmcVlSBpfJQz4B2ud1swi8b6rA2yxumE+4dHXL29lTlDkO2J0A89QKIQ04UOJggRY8TV1RWg88wcif1+X6lqRCTKQioPeXd3h6+++grb7Rb7/b42YfrU8+jSPr8B02qrrbbaaqt9IWYZv5be2GYk2+2ABZBfZi4vJfAKziOS7auYAM2Y1bwSnGtazKsZJzbNc91DmmctIBZ1Dj15JOVLpyTpd6hqUZwTpnHEtt8gpYh5jlL0SIRhMyCnhHmaEadZwAUkCk4AkvLdmRklLsodpPQrkb2VTBmUelMzO81YGuBvxzMlacZmkeykPHqRoOx0TIVq8fz8jNvra8R5RPCh0jYIVIHdPJ4gXOUOQ9dhPo31fhltxs6j60LN3ktWnmrm1oHgXEAXerguVCfjcDiIKojy9S16Ogw95hix3+/hg2xv6nVOhQ6k4Y+r0ViG6u0XAfHTFOG9FDd6zQxbpNg7JwWVWtNDTmpmDOgWCLVSnJ8mmwbh11vGPaWkKllUz8ui4VZXd8aSqJH1T/DPJdV75oTaPbR5a+DZxBmIhOc9hKE6M3WO1z4GYuZkV8otUeWxV4eFlRlABNLaBKuDqHKVAELwwmSA8seVTlpyxjhNiDEjcQY7rZ1yHsNuh8PxiJjzohRGUgTrg9Jc8tLzY55n3NzcVCpMUn349lxmbcjldN3M84jt9hu9/giGSDV/rq3AfbXVVltttS/KLlP6r1E423+/xv9to3yvUwteHtMi7JfbvnQGFurfa/ut0XO1kqUvA4Dao8E6jOackVOqDYeyKsIYdeyw30tPh2zFigXj6SQUGgigMZ52ZKFnBe+FdqNKMQY6Oh/Or5XPmz6ZSo6BMQNvFpmdpkmVZMKSLdC/Y4yYSjwDhPM040iEzWaLXEQxJGvnU2ERCU2FS8F8GsEpSwFp31daZ+tEnN1HAkwjSu6EjM8cZ3Cckfoeh8Oh8vlLzhLRn2eNBJ8XlsM5qSkppfaDIO9xmka8efcWx+MJuYisZb8ZhIsNgOCQU0ZO2kGZABOaKNIqHF7pPfM0oQPXbvBSsCtAjtyibCXXks/p7g0Lox3jS7i4jNG5I7asJVfnbSsL2fe9aNnv95jnGbvdrnLTbS5bpsXmuEgsyhlY1uSyQPNy7dX5knNtMAUCnF+UtEz9jZlVJr9gihGhCwgMzLNIeXrvBbzHJHKqzmGz2eCHbz9inEZQ8NIcUGmWpulvHPxSCk6nk6gdjSNCCOIg6zWUUipv3TJLllUyhzIXU5x52U/oU7YC99VWW2211b44u6SHtCDcrAUll3SVZkev7rulAQCLukULFi8j93RxnNf+Fk52Vl42a7fhUpupncsuWz2M0iRKQZqjNAFS8DAehZ7gNKoskVEBv55II6yNslFhFO9UztRqcEqlmFxmGOzcnXfoSKgzpUincCgHGcyIUTi8iRkjJuHQa2S0MGMYBuQkFBcD+3OcVSBBirazdtF0XiBv8dJEjwHkkkBJwJJlEKw2xM7RGrhJHZPWRznrGisytTmpPr06AbVeoXDtruy1R4Pd3pRTbRLELHx0JqktGMcZV84K700T3dpKG41EJDtF48CpcoacuijN6L2NBeQ9nJcamKJF6UIT4lqjUuegHs+6fVozuzPaVJt1qt/VOfvqWpLRa+fh5VowesinnOIK4BkvaDyX2azL9WZObbEI/EUmrG06ZfNL7n3RYmQP53KlbsWSwQ61Hwo5h4N1viWC81af2DhqvOjGz3PEOI6Yp6kq4FhWoaXrCVh/KZRi98j29zm2AvfVVltttdW+KGu5u/bzJS/dfn6tc3Zr5QKcAC9pM7rBGU3mhQOg21ye42X0HxCwBlUxKrnURkKwpkrkEPoABmMaIV1+O4ZjQpqFtjAej6KGcpoR4wwHglcFjlIYfT+onraAGOdQ1V2mKWLoevha1ArkVMAlKkNHIJ7XAsh5noVHDKMlFKRZgLo0YxK6gPce8zzXNu/WnCbnjJ///OcCVElkZEvJmMYRCBnW+dRUd2zcsirf+OA1Ci9g8nQ6nfGGLdqesjUaW8bYBVVQq70Q5A7Mc8R2u1UFEIACkKN2tHUOnoSWlFJGTBHDdhClKhN2EF4UQMDDw0NTu0AYTxOgTaqChMeVihNgwe6qB66CBSWripvS3q2Atb0+OTeqkX+w3lMdN2poJ68VWhtvHrDK0XOaWJ3nrNrpuh+7l0YRIRI+uUXih2GQiLQLZ2vHaa1Jq0RT1w9Qld5aPr0psoQQzsC9mVe6l3V5bzMLrM4WedGFd1rXEPoOPDmM04TT8YhpmmxUtOCbEcgvDq6C/pwLxnGuc7jtorvZbCoYN1qNXYN9FrRHgPW9sVqMH7MVuK+22mqrrfbF2WUhaAs8RGkC9fMl4sgVKNGywQvAbd+rwJ1ImoNdgHH5u9lei//s5d9GCev+AZCn2ptBwOmSes+5YLfbSWq9FGAgJJ+QYsQ8zxjHCSllbDZbbG7fIiqvHSzKViVlFBF+wtPTE4LvUErG/vCMeX7G9fU1rq6ukGLGlGKNHprMXkuh8J30sHjaHyptwopE3759i/F4wjQJN9+ADRHhL//yL/Ev/+W/xNPTE/7Vv/pXOJ1O+OGHH9B1Q8MHJqBknILD2zdvsAt9zTgY5QCA6GFrU6XNZoOSgcPhgJubmwrcp2mSqCeo8t69cyDlFcecEUiUcLIVMnsCc1f57Z40ch1EiWSeJ/SDKFz1tMX19TXuHu7rOJgTRETYbLfgLA4GHKFE6d9hRZoAwWsUfpylSJcJcCHAw8Op5KsrQbn+FnHPCra14zxEqabzAXOKS7GozlEiqh3krcaAxRM7c0Lbqd9SV86yLeoYmESjRbmt+Nh47QZUY4zISq2qTrM6Es4tKjSWGTFrwW/UOU5E2O12mGNEaRR3AFFSi6p4BCLMUR2KXBCJAOfFAWIpnPahw+Pzs/Ta8R5RefdOM1LyDJHjd10nDgayOkcyt/q+r9QXue+NOhjLuc3zjOPxBOdIVJHmWUXmuK6xz7UVuK+22mqrrfZFWbyQVnNES+QsBKUEKGXCq2669h0gR2et4tsCS+NwX9JdAFPlgOpQmyb24iDkzGDr32EVbwBAjFSk22ZpjjXOs9CSHYFcUJpLxHZ3DThgigLMiCGNYsihH7Z4/34DRw7Be8R5hiNRsjjujxjHCUGj3sgF7959rUA/4ue/+Ev8s3/27+PXf/8bjViLtN3d3R02mw1ub28r8JZoJ/D4+ISbmyt8883PKk1A5BE9Hh4ecTpNcCHg6uYGX331Ffq+x++//RalAP+n/+Q/wel4BBHhm/fvcX19XbnvFkU1JZ2npyd8uPuhjvl0GrHb7fDu/dfY7rZVK/vx8REPT094+/YtpjhK0Z9ziCmCGIgSdoVzHqELoCRSgfAOucQK2r2XzsfPD/f1mFn/rgWb3sP3A/phi8wF333/Q6VfEHnkzEgpgsjjze07PD09IaqUZ84Z/TAgaOfaVITr3EaPjVrFKSMXIJWMTQiYTiN41OnjCPDAxnjYSuU5ag+Ort8IIGykuLkofaOoJKOC8NYZAhimmNuejzPqEQOpMHzwZ2De7p0BVaPExBixGQY4EA6HA7qhRylChRIaSaiAGUAFwaUArnNg53CcZozjiO12AyKH00HmDpyHU3lNcg5pmrTRkqzf4Dw4MI7TSWRZPYOcF7Dd9fjw8Q5dP2AuCcfjAQ+PD1Jw3ItakSled8GLAzuO2Gw26lwx+s2AOUU87/eYY0RPS/8YwHomjOpMELrOY7fbASg46vzvuoBxPJ2N9x+zFbivttpqq632xdmrNJWWqwvUTrcWSbPInnFSDaR+yl7l0Nu+K+1iObzxXc0ZCNqojcvSzMYijKbDzWXpVOq9qI8457Dd7kCAgDQ4DP1GorZFKBzkPI7HA9KUMaUM6joMLgDM6LUgkiHRYGADBvDXf/3fI0cBcX3n0XUO11c3uL29xfZqh48fP2JW4PL27VvElHE8jthut9gOA6Lyff/qr/4JfvvbX+Pm5kZAat/j9uYG19fX2A4b3N3d4c3bt7i9vQWYq4xijBGbzQZ938OHgJQzpumIfrupzZ9SStg/PWMcRzw/P9UI7DRN2O/3eHh8xDiO+OrdO1ztdqIO4zxSVhqDD3BVXrMglhEhdOh6c+gKogJIo3E4L+AwaREweQ/XSeR9UvDZzgdAItHiKHW1YFOaKnncvn1To9DzPEvGQLtdn04nmU/BVypI4YSg2vrOewGgTno1mDRnBlTdJsA7j+M0IurYhK5DCNKMDjrPbV5bxoiZz4qKHS3R7q7rqnIMadbCtqfGYTPQboWaV1dXYNYmVCQce6OEsM5/GYcZoRvOtN+ZGb7rMU5jjepvNhtpruQcuo1HzAm1aaSX7+52uzOnYZomwMkaD30PFzqkVLA/HvH11S1STthtbzHu93h8esaHjx8xp4jr7QYAzrIJdr3b3VacsEqpWWorav8BnGvcixoRax8Zh/dfvZfuvMEjBGtg+slHzZmtwH211VZbbbUvyqp+9Sv88bPPyuvFdQAqCPlUU5RLnnB7PPm8icqTqnFY5SBQI6bNHkDOgZxHcB45C++ZyYE8lLPttTdOU1TpHLbbrTZWEilIqNzg1fUNJi+ccuc80AlP2zsF7tqgBhCgScXj6mYHLgznPYbQYbfdYZol2umcw5t3bzEMAxjAMGxwe30jOuzjJMDGOaFjOA/nA/p+wDAMIOfx+PgsHaMdYbPdoVM6iddr2Wy36PpepBBZ1FNS6rDtenAWByZ0GV0QjfVRgVNhBnmPzXaLa1UWOSnHv+s67DZbAaEKSmNaONndRpyGkqUw0YEQsxRA+hBQuCDHrCUGDN8FZAVplZ6REoZhqODNQGPOCV3osN8/oRSJvjpaotFRsyaZc50XVaklF6HKeA9k2a+op4iOO3kvjidM0lKpJ0QoZHQdD+aMnFS5Reehk0pmyTo1PPBSslCwFES2ikDmxJa8AHRRZYln3HbLOlT6WcNdz0Dtc8ialQI5+NDVdSuFxtrFlBa5UOdc3S8zS8ds4+wrtSqqcgxIou/EBeQIc4y42l0hKW0qZckWPDw+KD0m4/l5j7v7ezw+PkkthK7jUgqQ9ZkCqFPbC3DPyzi0NStFsyfDMNSxOZ1OyDnh9vYG11fXmOOsTktCKUAI3ctgwydsBe6rrbbaaqt9UXb5AnxNrUH47EtrcgCvgvSqYX4B7j/nJVvBPNFZ59pW6aPuqzbLEYBIpN2pIYDMaeRUZB6F85x1330vuuw5JwTjgucsut3kazMai+x78gghN3KP0sl4E3YI3iN4DwdtDOQEyMYYsbu6wrARLe44zbi+vkavHVG5iJ76dtPjeDqh63ugCIgbhgHee4zjBHIOu53sp+s67V4tMo/BB4ROmttM44iUE1ALUoWa4L3HdrMFIBz9UgpSKQg5Y6vAP6UkqjUqmUmqAhLnuXY3toLZ237JtpD+PU+iJuPDwusuyonuh63QW3KCaxRwLFptxZMGbkEsVB14eBWTsUi7gHFC4XxG0QIW7rkVoZZckBiAk/vqWDpzcyzqfHi5n5CGQ51qy8ecZbazZGIk6VJqNqh1aEWX353VerTbtNF1Kw5tgbmtn9pgScfCtksKwC37JaPhwCzylW3WSrTTXzYPs4i8ZKs0Sq1Occ0eAFpAKw6oZymkrnMCEoE/nGZ0Q4/D8Yin/TP2+z32hwOG7VacIucA3Q9rpqsq3jTFqJeF66UstCGTFDU1nGma8PXXX+M3v/0HvH//vnbnJSKM47kU5qdsBe6rrbbaaqt9cVaL6Foeehsh1/D3pQpMC5za5j3knBa10ovtWluOIQCiBenWPMhUUOz7Bv4qXSdKSt55B4vJL01pLNIKjbw6QCPUuRQMuw2GrsfxeKxcaoZELpOqongXgFJUFUU/p4DgpDjvaiM8+RgjTqcRXd8BBNy+eYM5zpjGCcSM3e4Ks2pYM4DNZoNhs8E0Tdjtdoheiimlu6mr17bb7bDbbUHkJPKYM4i4RvpTjCjMiClJBFVuAJxSiYauW5rqEC0RcO+w2+1AjnA6HDGeThLdThnTPCEnUefpgzRXahsHeaVpxJgwxxlXV1cVcDm999McUZi00HKhm4gSz3RWYGkFqhYtbkEuOaH2FGadG0Cgl7UTAgwLYpZiy8IsDZ6Ch+cOXBipRGngRB1KLshghC7Aa/aAGHCORNqQ5GfTDm+BuB23dVRaSlcF0eAX37sE1G1xqve+NlyybWvhuP5s3Ha+WLdznLGozyzHa6P7ZPr5ALqhX86Hl8zA9monDDJIxsS7IA2t+g6ZGM9393je73EaR0zThO31tWa/dAz1HomcpKvZmpQiUipLZL45fwCYpqk6l4A4bIfDAb/4xS/w4cMH/Pmf/7w2vEopYr9/xufYCtxXW2211Vb7ouwSTAMLD31RggEW3srC0a2KFxZ9d+7F9187njWSOfutRdrrhirXR0tnTdt3+/IP/UIJqMcjAvkOObPSFRggh+B77A9H3N7cgGnEaRLwEUIAQQoWu00PnwNCn5F7iWhz0ujeLNkHjoyYE7a7HU7jVCkPN2/f4Hg84ubNG1HxKEDXCx/5cDiKEkvOUrAHYBpH3L59i/1+j91uJwoa04QffvgAZqEPOHZgCMXAF4kyb7dbTOoAOAY22x121zcYNj0AKTKsgDFJtDOmVJ2eGCNSybh98wa3t7eYpxlPj494enpCVrpCzhmn40m3LWBHGBWs9SFgnmZM84xB+c1GZZmUk+290Fz2xwOur3cIQQTXDZRa5H0YBvR9L+BcOeIgh67r4VWh5Hg8woWA0AX0fQdyhON4wjxO6uj46lgwMzgQiASYszbOLV4cHlfkT84ZJTEmQFRLyMEFL9KEBIAzAGmkxUonaedYVTZRNR4mqsoqlpUipeNINBrVWUl6L/q+r1QgU9axsbTizq7rpGg4pqqvXki6zpYiXVFzLhX4u2bNWVR9mmehi7Ho27Mj9N2A4/EoBazBYxzHSnma5wjfdSJPqtmE4+mEyAWH0wmPz0943D+jYMmIbK+u4GuiTOoOWr5/Uce3lam0z239Sq2DzLGc01KoSkGobbrOuq7D8fjbF8+W12wF7qutttpqq32R1haJtfKQpRRNrS9p/EtQXoG0AXb9vAU67T6zUSNsOwiHt41OVuUVZkBB+6V8ZBuRrO3mRXIcgINzy/EzC8Vlt9thVMlDdwF0itIefBfQD71IDo4jOBfEcYILHkMI2DBhnibEuHCpGbLt7e0tHh8fsd1eVWrRdrvFhw8f4Ljg53/xF9gOA8bTCXd3d9UBSSlhs9ng+uoKYMb9/T0A0TOPUQpZzXlxzmGz3Z5RSACoYsjSoTOnBDAwDINw+71kBgoYt1dvsN1upQByEgD8/quvsN1sEELAx48f8fj4WDMf0kFWChjvPnxA3/XY7nY4Ho/SyTUKHWjYbJBKxse7Ozw+PuOf/tN/it1OFFv6vkffb/Dw8IC7uzt89dVXFczudjt8/fXXiCnhcDjV6P7zfi+AervR858xHkYtYAQ2vBEKES8dacfjCcO2Fx57NlnFgG7oUFLGmE8CxB0hjuJ8OEd1+1iKOEWd3D+hoxCKZp2MptM2VrJ1YfKKdg8sCxGcr+Da5qppoB+PR2w2m7PCb9tvjFHoLBAdfOcc3n31Fe7u7jRa72qjK1u7tj4tg2E89q4f4EJAnCNM53+cxnqsrPxyJoILHQiihZ9Khu8CpmnEnKJE2+dZIu3BgzVjsLvaKfBfipDHcaxZAnP4Z60DmecEgOo8lOJs0bE/nY64ubnGOI7VMbu/u0dMM25vbz9bEnIF7qutttpqq31R1gLrSw7queTeso0BlxbAW7Szpubte6g9cCqn1uwy1n9G1bFiwlfoO6zEXiJRB4kxoqSi5yjyjj4E5FSQiwBVthpYXkCWyfuxApB6Dh4g7+AY6Psgmu4lwWWn50QIzDicnoS24ZyCuoKHp0dsthtMUSKYmAnjNGGz2QA54/7hEffKwy6ZUZBxfX0DAHh8fEaKEcf9HqUUXF9fa4FoQi4izSjc+V4ik3OE9wE3V9cg4lrg561bJ7TbKyRyuu0HdN2A0+mEp+cD7u4f8ObNW0xTRNbi49M0A1OECz3evP0KMUXMk6h8OBIVlLe3b7DbbgEifPvd7zGOI968e4tSCu7u7nE4nQAi/JN/8k9w//CA3/52j9AFDMNGmlDFKJz/YRAOfIwgJ019MhecphFPz8+IURo7uSDg+bDf12ZFm91O5igYXrunFpaC46CZEing5NqcK8eCCbPUQPQB5B2YnagPAUBRClJQdRQHZE6qBy/1EyADyIuqizmOBIeuC0g5VlWVYRgqXcQAvf1sc/r6+hpWpC3R84zNtkMuU1130hGXUQA8Pz/XtZmL1HBY4yYipytO1ohzdp0sWSAF1Y5EcSbmImvJeRDJtUwxo/fCpc+qupRSwjQnPD7t8fh0xOmUsLvqa0Q9dB2S0rGk4VI+U56y6wCAolmU3e4a3gfNvPRwjnB9faWUIJG4vL9/RNd1WrCaQXq3XqvFec1W4L7aaqutttoXZ22Uz4DyeVR90eTOTfTbAEtVirgoTrXtWAE/eIlY2n5BBCJXQbo5BBa3JyzqGktBHmmR3sKRXiLuXKON5Dw614OyQ8kJ5Bl5jrWpEDODL4psF04xo1Q1GyfqMEU6ncY5YdhscQta2rfr+QzDAAC1kM6pdnbXdTgdjhIt7/qqnnF1dYXj8Yi+FzCeooDxq6urCoBCCOh1nAUIAafTKAWSBExxVslODzAjk2hj51yk8LLv4Q4H5Cz3cLPZKEdaVGx22211yuI04/sfvsfNzQ0WdZSM737/LdI8C+d+s4VTBZLb21vMcUbXdXj31VfIzDieRiTt8Hp/f4/vvvsODKDrJeIdS8b79+9xHE+YxglxnsEEnKYRp3lCSTpPOinAnVPE89MTnvd7FGb0fQefooBs51CccNNBUmjJ0hNKpCCJ4JxcmzWs6joPSgRPS/fQnDKcZ2Q2WUspXKXgK/iXAlunhannhajeexA75GwUlpfFqvZvm7d93+N0OtX5knPGPAuNZpqmOqcNBMM7OECVj6Rw1TIKtj7qGmFxYquzC3OiCVk17LuuwzTPUkeilBorjo4pwYUOXQiIupamacLhcMAcZ2QuosWepbGVDws9SAp9E0IIVUFI5t6iv2/qNn3foe+HmpGx50xKqUqD7nbX+PDhA06nE7bbLQBC8GvEfbXVVltttX8HrS0Uu/zbotJtd8ZLpZgzJQvdpt1Hq6hxGSUzMPEaz74o0Ac0Ve89gPMof0tJaE5QgX0BVH2D9D+RAHTwnuDoQu6S+Twb0AAu8vrdAjBlUClw5IR6UbI2KnLYbAakRjVkoVQwck7ohw5pjuqskEbdpUMrOon2EqTJTN8P6EKPfTogdJ1wvr0H8ySqKSkp/1nkV0Ty0EsUX4EjOacSmR7eB9EGck5kJLt+kTh0FtElDDcbPO8P2Gx3lWff+YCcEr7/7g8gANfXNyL9yNJ1NWlk9fr6BqHvcTVNOJ5O2O126IdB6BMpVofs4fkRN7e3eD7sJZswMvanA/aHI5zqrTvnwAl4PuyFz36atOOpKK6M6jBtNpuz+ZlLEXnE4MFFZCvxgtKi1+wILjDmaQYcwbMHSaBdCkudky6wNt+bOdzOHZuHJS9ztqV9VQUXftl8CUDlfudGPtKKVs/2ozUgKWd0zoOaOWwFoqjrcuG4y89lOVfyOB5PyyrUuc+lSAG3HYtEQjLGhJRF9WWcRu2+qxkOZuSSz8bDHBmn8qspJYzjuSNy5qQ7qWno+77SfnLO4iTMM96/f48ffpjrWo8xauOoH7cVuK+22mqrrfZFWQsgAJyBbGv6IihAft8CUuAcuJuiRQvSlwjgOTi/BMqXvwNzpbXEFDUK7rRl+zlwt5R8PR5Jb6U0zyKFx6bzrtF9Mh2bcgYgGI0iTQvcyTg2Ami6vlOaCwtAzFJUeXV1hbu7O42+oirUzPMM7xxur29wOhxALC4Lc8F4PIrUZspwsMZAnQJMj2mKUljbCeAchi1SmgGiuq1zTqgo/YDTmJFzgXQ87WTfDLjQSTRatcA3W4nmPz8/YxyV7uA9fvL1N/j6628kQp1mMAsI/kd//nOcDic8Pz/j6uZGiiyzjPvGOaFhsGQk7D7M84w3X73DsNvgeDwipYztZgN87xCGHj+5/gmen/f4nj/g4bBHyTN+/rOfYZ4mzLMUv56en3EaT9j0G1wpdSjliKSSmHAOrJ1DAa41EcVUaiAFnACqOk4IHuSyFFMrbSWoykrwbolO61xnMvUVqRuwIt9zJ5Zq8ahjrhmhUgqC6uK366XNFlnBZuuYuqYAWw7SUtdEFpKbglfhsZN+zraYBdwXrrw0AtCFgL1mfEIIYC3W7Yehcvf7YYOYC8ZpxBylmdbT/lmKj1nWoPOSmYoxIaWsnXDl+6GTot1hGOAO5871OE3q4C7NmKRYd9DaBaHKHI8nnE4nvHnzRtc3YZ5nHA6HTzw5XtoK3FdbbbXVVvuirC1Gfa2Q9HJbs/b3bWfJy8h9jLECYwP8i2wk1egz0aUuvESAnXPwXVCJP5ztG0AtwDMno9WBPssENJFH8UNMixtn115b1QPSaKg5I/mugLNh2KDvO+yf9/C9RCkfHx+FAqLyknJsAWf9MODx+QkgKZQd+h5XuyuMhyOOp2PlPG+3W2y3W5RSpIAvRfAkEVXnRMLx/nGsUVmj5GRm7E9HcRJUsWS32WLTD3jePyEXiYySc9K0JzI6jVpur3aitT1HPO2fsekHoUH0A0rOOB0n0BXhZ3/+j+C/+wM2GkUNfY94OsF7h6vNNUDAcTxp9P0asYiCzma3BUO42cfxhPv7e7x79w7vvvoK290VGKQdUR3++T//53h+fsb944M6FSOenp4wa6Zie7WrcpnH4xEPjw9wROhCp4CcEJUSIzQjj67zCMqllnmcob23ZExIdP/7vkfmghwjPEKldkHlEQ3AszpeRumQubaoLIHEc7T5GJnBuZxFmq0Y0+avRJNR1xMDS/ExAO8D4KhG4k0X3foOzPOs13au5U5E0kjMC+Wnldzcbrcq1SjyoG+ub/Hw/IS+75X1r1mHvoML0qlWpDkLfFBpySIc+b7valdfW0cpJeTQ1eMZVWmaJhyPR9zeRo2ypyoRaupEVtj7+PhUx9WoOgAwzyM+x1bgvtpqq6222hdnlwoxZpcqLm102rY10AxAqQyowARomvI0ihefd1IQfrl3CE0xmsnmGbf+eDyeS1dCqA7OkdBEqArUwQHIVqQqvR1le7seAFH5xESE4F0FYGyRZO/AIBxOe3il3TAXMBW4QPCdw3E8KE1gh931FYiB434vIEW7sU7TiIeHO3Au+Iu/+At8++13uLq6wm63Q+KCp+cn3N7eYhgGbDYbUbnR8TD5yG7oMWw2GLTIc5pnON9pDS5hitJk6tvff4dh2CB0PVLOmA8nbHZbdIEQU4bzBTllpFzwdneFYRjw8be/xfX1Na6uheu+f5KOpnMu+OHuXsBm6PDV11JY+fDwgOf9Hu+++go/+9l7nE4nPDw/4e/+7h8Q+g7b3Q6761scDgf81a/+PRyOR5QPd5imGcdxQugF9P3DP/waf/GLX8CFgNvbN3j//j2+/f3vAQDfffcdiAgxRXz/4QN+8v5rlFJwOEoxbyoZRSO/OWcM2w28N0nTJUN0mmb03KOD8OItal2y3EciCJ1KKlZhxZ7tfgS4B4iYkrDHmcVZ8+SRdc4BpdZ+2HqwNVFVX6RCoe46pSSFnhDZx9xE2m1tWedd77QRGUPqKdzr/HroNrmI5GJwAciLc1uUCsMsHVN9x4g5Y54jTvOM5+c9nvZHRIvuw8FRQN/3IqHpO70GpcloHYrT4tuci0iiMqtqzEnpZRulxeyx2Qw4HEJVjDkejzidTvjw4aNKQB5xd3cn9K3u8yD5CtxXW2211Vb7oqwFvAbOfUN5EbCCquTQ8sotqlmjkBf88xBCle1rG8IYqF+OWSpoac/H1DcM8PfDFp12C22VOdp9SydVKczLOUvDIq6CMtWqqkzjnBSlLlT6Qs5CLfAeIIeoUU6TeOQs15KiiIUHH3A8HjEMg2iyzzOOh70Wtcq+Qt8jzhNiFM7u1c0Nfv+H77DdbnE8HfG8fxb6i/e4v78XqUkCoGPw9PSEYbvBsJPIPBfG8Tji6voKUxR6yUYbSY3TJAWqm40U8znCMGzQdQHOSTFi6Dv4IMWwzjnsn/e4u7sDIFJ+fd/j6uoKoe/hQHj77h2YWZyM7Ran0wnP+z0YwNt3b3Fzc13H9u3btzidTvjJT34CBnAaR+x2O5EhVL3urutxe3uLGCP+2T/7Z/jw4QM+fPiA/WEPU0L5zW9+g77v8Wd/9mf4eHeHw3jCz372Mxyf9zpGSxE1sBQnC+VIIuyl0UqvUonBwUFqAJgZp/GEYTug63uZo0pPccG/UEVqVZja9SNn8XJekdJCcuMYmlSkNSZqFZosc1KLULXYWBobidNa9BhCHTt3iNsalepEN/UXVgTKRX7vQ0DKCXmecHP7FuMUkedZ5vDxhFElHKUgmmpdx9Bvqpxju/YtE3E8HmtTMaPRnE4nPD094XA4YLvdqQxkj+dn6chqBdk5Zzw+PuLx8RG//OUvcXNzI70GtPPv59gK3FdbbbXVVvui7DIC3gIOoCmy45fya21kz4DAj+3//PsQvjcJ2GmN4EDkQVgciZITppKkoJOFx+29NcYRynLlqZeFp26QnU2p5hWwBZx3vaxZA7biXJburGzRfKiqCYGTFhWSg+88PHvMeYYLDr3rwZlB6DAeJzAXUeDgDjmJdCFGgguEN7u3Irs3jrh5c4PH+8caZWcipFIwzxG3b99hnmfMMUH0uD2YgeNJgPF2uwUK43Q0UO3QDRvNFrAqvAwoBegH6Sybi0pjgjBsdjgeDiiZMU8R4CMOhxM2w4Bhs5F73XUg7xFCh1wKvv7mGwV/GYfjCS50et9G0ZcnSJErRAseGqkeQo/iGUMnUpXjOIEB9P1GaEC+Q99JRuGrr97LuXcBX331Ht/9/vfoug6H4x77/V510qVZEcDawCgIhYaodg4dNiJLydoUyJkjySa9qCC7qf9o1Vnkui6KorE4gxmMpJH1UvISYS/5rOjUwC2wcNOtH0Lfi9RiyVz7HFiUnvVYJWfkzCByVVbxsr7Etheal27rHOaSAKV+AbIvc7Kfnp5QyAlYjzMKCwCvtSS89HKQou8lA2bjZWu2dnplrg2nAKG9TNNUZTKJCB8/foRRkJzzkPpyrg5XCFKMnXOq6k0/ZitwX2211VZb7Yuy1/Tb288vrY1St5x4e/legvk2Cvdif8xKPTin5wDKfy9W5KfOBC0RTEC6c+q3RDeGCIUEZF/y12kJlb64zvbfl6o59h2CASIWJ4aoqmnIsUQ5xtq+WzRVOr/KuITOI0fRvA4hIMckTaGudxr5JaHfZI9xnsRR8A65FHgu8D5gnGe88QFE6Wz4rIjwTT8IiCsRmYWj3PtBdNodKydeVGZA0uU0dB3AjJQLhs0GOSU4cuj7HiF0Eu1NGTkUOBdQOCKXgpQzMhd0wyDZFu8RVN3ECi6DD+hCBwZjltazGPoBR3es4935gOura3jnMU0C7LquAxxwOp7gnRV3EoIPCD5URZm+79EPXZXTtGh1Vi11p1KRBmIBoO97KVQGgZSnzVZorACbCKIedDFPCNDiVKpOns3btrC7cJH5oQDe5q0p+bRzzopnq9PMXPnj2Rzb5jtt5svp55cF5su+5fu5FC26lUZS5EgoOET1+uXYhJQzEku33VIYmQs+3t2JAlDWsdL1a9dqzvPlejIVGJNKfX5+rnQca8602Uj33f1+j2EQ6tf19TVyEmnNSRumVVlM0Ivn1adsBe6rrbbaaqt9cXYZYb+kALSf2wv0ErR/CuS3YP61l61EQgmg830YtaU0wMdre3mn0dMzmUnn8GLvpPreSgI2ZRBqKA/12vCJrrFsDaf0fHJGQVHGvERsCcp9L4yULcJYkJJ0gPUk0dC+G8A8wTsPRw5ZZe+GzQZpTjicjnI857E/7LEddnDeCWguBZ3zmGNEVBUO74O0ss8Fh+NRlWY6xCTt4lNOIt1YCsbxBCqEvvdVL7uwSCtut1sFrDM2mw0eHx8lGj5sRG6xSKRWsiodci6glOF8xpwSNtutUISYsd3usNlscDgcEGOsBYsWXU4pVcrDAu6lo23UTqLTJMollDJOp5NEicnh6fERx+MR0zji4f4egAD8N2/e4ubmpiqOSFfOsSrIOEf13sYYMavaUHBCETH6Seg7LeAs1SkU52tRHaLqsL6sBTHw3PLYW/lI+559brUaOZcKzCsFzfbRTOY6N3U7Rw5d58/pasCZE20FzHKOsp/cFNLKmpC5IM5khvcB0zypoyFFsh8+fhSVIcteXTgSOSVk9zKTZbQki7jbeRlwjzFit9vBilGdk5/fvXuHnIRW8/jwCDBqMa8VBX+OrcB9tdVWW221L8qMd2r/Bl5KN5rqSy3iKy85ufrFCqjt85ZLbvYpicjLwti2oYxZSlGjiMp77zrklFDq+TC4cSxKySCmKi1p+vCuOTY3x868gCWjxlSdcEfwziOQgKWrq52ocmhEEZ6QSACbV/oAgVAyo3MerspQMqToUcb98flJimBV8cZRxtt374TOASCnotKHQOg7UWBhh64PoqbjC3gcMQxbDNst7j/eYY4Z2+01bq+v8fT0hHfv3tXGOoeTUHZc6ND1ovtu3PDT6aRAf0bfRwybLeAdEjM8Af12g8RFdcMDQgfV1e4xDFvEKJrdm80WzHJPjoeTAOYxIueC+48PSHNGSgnHJJ1Qu6HH3d0dbm5ukPMTuBCC97i5ugEc4enpCd/+7ls4L0Wch8MBfd8jzjN8J1SYrutwe3uLd+/egci47gkxCj/b1Fes/mKz2WB7tUXf9eg3A3ynuvx00VysmdNGo2G2KH5pskL5DLS307sWdpNEuo2D771HjPlsDaSctZvogKD1FWdOgYFcv3Ribbnz9qdSdMBwXUBOGUU57Vk7zKaUgMwm567FsOqsZqE13d3fI3NBKgWkBd2W4QohgBiIc7QaW5VgXQrZq/LMIEXKMWatx5jOVHJ2u504o0SYxqkWZj8/HzAMW1xfXVfFJcvM/JitwH211VZbbbUvyi6j4Jep/8vt7G/jsP6xlPVll9XLKD6gUW6gNpexfQoIOacASBS0q9KIptZx1jHyLEr5+rWecdztcyLAERz84lC0mQJmoRvoZ6VkTDmjZKEbOC8Nfyy6bKBKZC6laydThOskMp9Z5AVdILzdvq0NlYRakAAGnvd7pRE4jPMEzBN+/vOf43g8YrPZ4mn/DIZEq13wFcD1mwFf/+QbfPP1N/jNr3+N/emI3e5r1ST3GJzHMAzY7/cAZmQWffIcJeL+05/+FN8zYYoROOzRdR022y263mNOEalkDH2HYbdBcB6Pj494vt/jm2++ASCUB2ues91ua+Hr48MDfveb3+Iv/vKXuP94B6Zljmz6Af/L/9X/Gv/nf/WfYjzs0Q09us7Dk8PVzTUeH+6qJn/OMr7v37/H09OjAOhSUFBUbURIIZvNpkbc23k3TRNO4yjbhw5vv3qHzWaD0zyBUcAkDh6T1DIEb7rpXKkfxiuXCLlpxS9F0uZEmlNcpR/VoTO+uMgfns/Yvu8FtA89YjRK1OIMW8S9lOXf5mi09B1TbTlO45nzXEpBN0jXVjsvaaYkTcZKYTztDygkBcy//fb3UgjOrZqUyJBaHwGrDbDf2zXOqvtuXVzfvXuHH374qJSmeCaDutlsMI5TLUiVjEnAmzdvcH9/j8NR5E6nacKbN28+scrPbQXuq6222mqrfVHGRCgSRhRaR9VmPk93G80AQNV/bpUr2KLtOAfzbTHewo031RpN62vHJKMjOJBgBGIwhD8u+1J+fVMgNx5PwofWJjILbUA4tTHOQj9R4GDnS3beCqCEL+wFwBcFQ8pNd85LMaxXAg9zBdlSQJhrFkC0rwGgoIABViUP68ipEVCjHMwxIZYsha6dKp5wwu3tWxzHE+CkGDNP0pBmihMenh/wH/zylzj9ZkRhxvXtDR5/94TNZoPf/O53ePPmLfbHE46//S3IexzGGRg2KBClmdPxKJx3cuiGLYJzOKUDpjkhhIKYGYf5hK/ffQVm4DSe4IcAb1rnkAg5eY+n52fEkkGB8IcPfxAHx6gRXYdxPOK7b38HAIhxBoFx//EDtkOHzIzihUqxf37Ef/lf/GtMpyN2mw36jQD3OEf84dvfYTf0CJ3OG/RgYpGozBGOOgQHwAUE7+GDhw8B0zQi5gKPIJ8pJaYngus7zWB4zBzR+wG+9yAnsoa5FPgQAEhUHSQdeYXe0qHrOkzThL7v6jyfjkL1CV1Qh87DBYeUEwYtzDTOuXfyndB1YMQ6H0vJYCL0wxajcruN4lU115Viw1iyZea0daGX/eQCIqdULqPYMArr+ihZsxHiMHoiHI4jfAh4fnrGGCNSYez3Rzw/H2St6vPC6iTsPELXifJUm+UioYuZ5r6szYTNMMA7gFCQ0ozjcY+Hh3u8f/81hmGozkRMqdF7v8Xd3R0ceWy3O83wfB4k/0zx2dVWW2211Vb7EzFqCjhpKSRtaTP24rV/G7+05YK33NtLwH8ZZbe0flvoWr+j29Qiv3K+LZrf27meXQ7RBRVnoclcFs7afpfiWikmrYV/qthSf3a+/mzjYBFQTQ/UaKNFGOWXUjwLQKUdlS5DjK7TqKUCHAajH3oQMd5//R6FGV5pHb3SZETb/Fs8Pj1ivxfgU0rBX/3qV8gli777doPCLKDLEe4fHtFvtri+fYvQD4g5I5WMzXYHFwKubm7x9U9+CjiPDIYPHTIkyOqCAOZpnlEAxJzgVBLTaQOoX/3qVwJYWbIOfS8R3Y0quBwPexz2e1xd7XB4fpZ5oZH+lBK4FHz48EELY22IWHTyS4F3hBQTSslwBHhy0kEWWnzqPZzOs76T8XPOST2BShEavcp3Ad0Q4Dvf1EgQ+qFHP6gcZN+Lmg8ErDKsrvllczLnHELlkbNSUsqyblS9pp3rNvdSkgLlohkYo+VYh9K+78+44cZXl2j9XJsalVLQ9z2M8uScrzz66jRjyXzFGNGpIyYNsADf9Rolj+j7DeIsDZDinDUrYBkrwAeHruskKxIUyPtFi76l38mfZd0Zp70UoeI8PT0hpYR3796J9GgIYK1/YGYcj0ftvJtAcPAufHY/iDXivtpqq6222hdnogmdXwXHC21kAepWIHbJj28T/q8Vq8r35cX/Gqj/FOf91X3JL17w5Q2Et5SB1wptX56bUFoM7LdOzPl3FIQAcLwU31YASFJs65yBF+FDwy1RfAcHJtWcd06AZQFSTnBFjnM8Fdxcv4GxeLz3lQZyfX2F7/7wPUrJGHoPoKDvO+yudri+vYUkMIp0nA0Ot+/eCG86J4Suw9XtLXJKQjPxHuM0ouSC4B26YUDmAucDio4z+YDNMKhTMIBZ7zU5UZXpe5TCiEkAXvCksn2ihLPZbBHnGXGWSOk0TRg2Q1UjkYyE0wiz8OdTishFHMRh6FG4vJwvkEJeltizRMVVzcV5Qgi+8q6tYy7A8EpjYqgiCi3FolaB4JQmA8vQ1Ii73JDSZG1MItGiwAbS2/loMojt+VuRJfmlMNspMB+nWDnw1jHU9uWcQ1KH0Yo/TYrR6FzmWApHf+nyak53LnJvvAdyzEg5ozAwx1lUgZixPxzw+PSsToYtOtT99ap3L8+CRiJS/7Rrs3127HY7TNpjYJ5nEEkh87t377DfHzAMQ1XVubm5QYwRh8OhXvtm83ka7sAacV9ttdVWW+0LM3sZti/Wywi3ScW1zYlau4yWX35++bPtx8A/0EjXwV70n47YC2iHNluis+h5a/U8mzR+u8/WMWCW6L5JO7bne54V4Mqx9yFIdFZ5vgBq1NQi82RA3rsalXfeg7wHCWdAeNVCZEDmjFwSpmnENI9w1plV5SCdE0DqiDD0HTabAZvNgKurLfaHPW7f3CLlhHEaQY7QDR1++rOfYrvb4jQJ1aYfemy2GzjnEXNGzBljnDDOM/rNgJQF9PuuA2s57dXNDfphg+ubW5D3SIWRigA+IsLHj3eIMWnE2CsNyiPGVIsMQwhLcbPKRjq/jFOBHBckTsw8z4gxalRYorxtkWilZnBW6hGjoCCmuWY+JNouE8buLzmplzCOdvBhUYGxbqINSCYD8XJQVUFSJSFdMwaSretnu76Wmo1ln+0fwjI327lr43U6nWpjImkcJQ6JgWcANRLfruM2G3YWeeelcFY47aXKaI5zROh7HE5HPDw+4nA46BgLaa3SY3TsbA2b43AJ3i+BfCkF2+1W7mkpVc/9dDopz33AbrfDoNe12wk15unpSTq+hoDr62t8rq0R99VWW2211b4oey2abZ/XAlVG5WQDy4u+BQLWyMZd8NlbKoruWaPur8tILgDbVU/gDNADKCzqLJeUhfb8gKVQlUA1unvZ/dX2216PUSLkPKCqK8uYlMJnmQYJzJq0X64Ft0JPeCUb4URDHCyRaWkU1J0DInK4v3+Ec4RxEi3zYeiV8w/sdiK5mFJEVkWO3/3utwh9V7nUPng8HZ7x81/+At532O/3eHx+QpzmWvT3/PyM7W6Hd4OozszzhPn5GdvrK1zf3ODp8RHj6YRuGPDtd9/hF3/5lwhdp7KaUvz4vN9j00mH1b7rEJzHfr+XgtTHRyAnzMrXbhvwEKkqCaHKRb5//x4fP34AIMWfAON0OmCzu8I0jSglV0WYDEZKM4Zuo5xvadLFLLKcjpw6TMu9yzmLjnlxcMHB9x6ORD3Ga6dVBqSbqt4v03dvKSh1vtZ5AUDXQUtnkYgyVUDf1o/Y/nNZirhlhaBGso0iYtrmpmku8y3Aq9NhczqjgMqiiMPMiHmJtFtWwPj6U5yQixSnTvMMWVmM77//Aff390LZkakKR0DXe/R9V2kyAtS5AngD7pJ1KMi5kXPV8zHw7YOvTs/d3R3evn0LZuD6+ho3Nzd1vJ6fnzFNE96+fYvtdoub2xs8Pz++WPev2QrcV1tttdVW+6KsLR5tOx8CLf1k+bmlorSAvJSCosoobXRNvt9GthcKQavRfkllaSUda3hQI55Q0NOCdl+FFhkoDBFibHj6zGeA65KjfB7VN8KE/Ns5OYXWRzij8ZDoygeVGWRmxDhJN1I06Xon5y5In5RyUrC93gqNgRNyykglIs0Rw1Ya06SYhAs+Cih8egpI84Sr7QZDP8D5IKorux3evruF93t89f5r/PTP/gz/+l//3/H4+ICHh0dshg1ubq8xjiOenp7w52//DDHP4FKwPx7gnKh+fPjwAfM4i6pJKQh9h5s3t/j+ww/427//Ozw8PuL25gZEhM1mh/3+gPdffYNf//rXKIlxc3WNLgw4shQOH49HOCJ0fY85zthe7fDLX/4Cf/u3f4vT6XQWlZ7nEd3QKQB26PsOp+mAlGYwi5oMBUJGRt8HOCfUDSLAO0LopOOo7zbVESu5nM21rg/agEoUfozrLmBTMibiUCzKQ23GyUCw1SSQdwAK0hTrdRg/u+0mbADb5k0Gg5xH4HMHlgHtCEy4v38EM2O32+L5+Rm73Q7jNKHrOimIneZ6DFOpMflF75SKQ4QYk8pgCqCf40mcJ9OHd4R+s0EHwm9//3vcP95jnCfJIBGh68TB6rpeu9FeRtcdvGY3yAGbrl8UazSb4b3IUJ5OJ9ze3qILPULo0XU9pmnCDz/8gJubW3Rdh6enZ4QQlP9e0PcOz8/7Oqa3N2/xObYC99VWW2211b4oq8CdUYv7zCqgJcB0sRfliHK2TVbKhQGTFgyf89ihL/hzDrn87hzY29+f5N2jka00kFXOv9/+uz2nlg5k0fLX6DbteS/HLzXCWAtU9Tx8E8l3zgHEtWsrX46vl1+kJNzzoiAnl6K854yUCrzzgGeN3jLuHz7CkwNGxh4CmgqA0/Mz3r69xdPjHb799rf4m7/5a2w2V+CccNrvcbXZgAiI04g4jfjq/Tv8/d/9Lf7iL34B5wj752fkmOA8MHRbHPcHHPZ79H2PzUaaMb25ucXTwyOGvoc37rZeb+EM73sMQ49xPMI5h/fv38GBsX9+xuGwV651xOPjYx17cWQki2ASkQsnPSiX2sF1mzqulXYDRuclSpxKAcoS2bW5ZdHnWiyqMo0lJYlOdwGk24BcLTJmiK65I3NOGUSL81eLslm6i/q+QxynhW+u99M5V+U3K3DXfcQYz5SZRNFGePiHwxOGYbBZLIo+OWMYBs1c0BJB13tgIL51NFwXUPRncg7HUUG7C0glyTWTxzSfMMWIp+cDTscJ0xQRY0LKBaF3r64poMBUokCMyy6vfT+g65ZrOxwOeHj4iJIZw7BF30t3VK/Fzta4a56mM236ruuQ0lzHsPaO+BFbgftqq6222mpflNWoIkHlC0Ui8TwKvRRfWkQZQI1Stlz1RcN6sXZ7aPMhVs1o++5lMZ/9u43eGzg2jjvAAtSJURo6hIGWy0ZRbZS8Bekvimybzy+7UkpI0YtIpQJHOKpqNMQQuUpSboFy8YXzbaCt1Mg7F5GZLCXBBQ/HIkXonAMKQEGk+5gKfJAunilJZNXUa0opYAcQMn7/u99gjgmbocNOOcOnwxM2Q8Buu8H19TWudlt8/PADUpwR4wQCI/gAIsZ4POD54RG/+se/wuPjPWIXELzDH777PQgFhAJHDHDBdDrh7sMP+OrdWzw83iF4Qooz7j5+wOG4x2bYSQEsAYf9HvM04er6CkSE69sb/OGHP4CJ0fVSI9B1HYahwzx7FCb44MFECL3w3i1hwZwRk3UedbUo2HmSSLX+23kZy8pbB0CealMlOKfR+sUBIyf1B8a9d17OK5lTZSpC0FoGWpodlVzguw7BuRpxB1DpQeKkkNaMGMCVotfCi1OYs4DhXIoWgoqcZckZcCTylDhXfqq1ANUZIqSSAU+Y56kW3kq2wKHreqQiGZ+UGXOMOJ5O2B+PmOJcG5E559Ep4A/B16SXHLfNljEITop30TjYvMi0piSSptIRdQSL5qvSigp++9vf4mc//UdgDzgXarYmBFEoSimi60KVxfwcW4H7aqutttpqX5S9oKhcfC6AlpWhci7deFn81tJmWlrN68WsF2D2ghP/cvvl31YnKOx1Ae/sXp7ba9HzF4WuDScfeNnVdaE3mNNAKHUfC4gzqxkIlmguoA4RYYncskrzQRymrutq50kiqprzAFftd6MzgFnkD3sPgu1PHABPwOm4V+6zQ0kzplPBHBMAwv3H7xHHI8g5vL29xg/ffYd5PGH/JHzh56dH9H2Pm6sdjvtn5BiBkpBjQZon3F5fYTwdwTmBc0KKU5VnnGOEd4TOe4Ah1B4/gxwwTxFEQD8ozxui/CK64pq58abyIgozWpyAXJKoxDiR5xRtf5GAJEfwCpolmiwKKgKMBdwCWlxtMonmyLHNJb3/Wg/h27oKvR9Fi4OLEuBrL4CLuWPZqUunEFgaTRUFxEXBqvQIMEcTyMrRL1zQ9d0Zlc3Vpmcy982R8F4aatkxljloMq4yXjkXPaZTHX9pMhVTxGmaMI4TDocjHp+eMacktDPSehNbf7ruZIwugLtb1s9y3ku2ImeJ4APA6XQS37U61Q6HwxFPT0/wXrIsb9++xeFwwG63w/Pzs/aRECfFnKEfsxW4r7baaqut9kWbFHJeFH42xaltRLv9uS02bcH8JYB+qW4h0XcD86UIMFXqOFqZRgIpZlgyAfa3gAjTi9ZPuSxVdfZd5rN9X4KvS3vhABBV4GTAoxatMsORFIW65EQCsjDIWcWjRSYlymonYi3oS+M8yH3IwmKAq+ATmRE6h+C8crcZvnFmSmE4LihxEo4yJEIPEI7Pz7jvOmw2G1xtt/j2t79Gnic8fPwBKUUcjye8ffsWV5sNnu/vQA7gGEXHPEXshgH7p0dwTiK/CEbnHdI8wUlqQfnPHe4f7jDNI25vr3GMM7ouwHnCPCeApODUot2MgtA5oW/ouLUNtWKKWjuxZGK8Rn8tgg0F8ixDXJtqnWVyWgUbNnDdgHC/qAEVsltGNdouWP58ntt9BxZ5Ryu0tWNamWvJRTrmNnPLey+UnYYvDpJMQUuDafnxr9WM9EOPw/5Q6TC2XUoJ3gWdp6XuJ7NE2VMRxy/lgtM8YX884eHxCdMcBdx/ah3U5bBw5JdsGSMluTZHHqU4lLIo2QCEcRwBUC2wHQbJ5N3d3Vct95ubGzjnKnBv1W+sGdyP2QrcV1tttdVW+6LM0vwWIWvBggF0iTYuFBijkABodJy1aPSC8nIZkTyPeBfkfM6d99rExSL8pSwpcddESmGA2QCtFdkRgYpI/5ECei4KLCBFpKUWvjLQRhN5KWD9FFhCdWAEBLVUn1KKSCr2vdBn2IFp6cAqet/mjAgwB0GbIb3MXBAAYqUCOYbPLJQZ75FiVH0ZrtHskjLgPeZ5Vp1uicoHYqVXMOZTxHg44Mk5HA4HbDcb7J8ehHLEjOf7O9zHiHdv3qCkjN55MAHf//73MkcgWuN9CAiOUHLCPJ3gfYdpHNEFjfaXhK4bamOeUjJyLog5YRh6pBTR9wGMDB8crq53GKcTYpxrbUDmhJijcqfVAapA0cC51/ki22iIGAxpFGVA2zkHCv5ca12j8KaIRLRo9HNhZORa0JmJRF2Ilwh/jawz1/oQqfVIQNP0iSCAPitv3wCscfELs+gyYuGoZ0al29i8NlqarVXj0scYwTMB3tU5YXPYzlPUZ5Qq4zwKAw9PzwjdIPKgmw1Opwn3jyK7OM9Rl4d0E16yDOfOOoPrGAHSNdVpHwPh5DNynLVoNgv9ZR6rzrxRlJZmVTPmuaufn3dIJeTMmKbP75y6AvfVVltttdW+KGv1pAGhc2ScN2MiIgS/vALbBjNAw2GHgLpLvntLoUmN8ox99zVagW3THqdoZNms5aZXOo7SGXCxXQuu2/MuRXjDizrGOXXosqBVNNmFZ9uen12HAauu6aRpKiMWCW7Ve4iWa/dN90+jauhNgVNAmpFhRGPnhOrARRwcZpGhDJ7ADZ/ek8T4c9aMgAOICnoPEBeUnAR8gtB3A3rfY3x+Rtd5GCUDBATNWuQUcfdBGkDJuXeIcUQpEUSMvve4vt6pBviV8PedQwhSaDnFGTRPIC/a7CDG4XRCgcg5CvqUcQldqGDdACQ54bGHLshWztffg6RA2Hsv99VoHeDajdN7Dx+CNF5q7hGx8LTJL8XMzCaTiNpJ1+bJWf8AdXxqFL1phGS0DgHSod7/Ot+0ELOqsDRaRG02y3uPGCOmacJ2u61rxY45zzO6rqvzrZSCzbAFQHh63iPlBB8CnPN4eLzHdneNcZ7w/YePeHh61mj7I8ZZotmsmQnk8zW0ZMosS1ZQCpTfLmPU9z1KSTidTihZVadKrk6//F0wTTNCEA7+NE345uufYLeTuTOOI37yk5/g4eEJx+MRzCxdhl+oQH3aVuC+2mqrrbbaF2VthLl9MV/aJa+9jTTbSz3zedGnqX/YdwxkWCTwEiS3P1/y4l+zS5qLRT/B5/uz3bb7bMGTUW3kZ4CZXoD/Clgyg0tEmmd4kwxUZRTTYU8pYYqTRGYVSJo++zTJ53OKiDHiaruDqNR0ek4SnbbQLJ3dCwacdLh0XjjfFsnPWbjmcm1O+cxJQV0Hr/QTuS8yZkMnjkKBXS+hpAjvHOAYgHR35VwAxygZgGMQeXDJcGBcXV3h+fkJ/XbAsOlxGvc4HJ/EsQnAh/sfFq32Ip915JFLREGB6wSgphLRb7qFklJlHums8BgkRZa5ZPRdV+ef3QMmiTzDS1dXUmoStNsnoJH4sjRoOpt/tDhsXudub9KGKSNG0VEPIcg2xulOCUn525cceInQh7PC7VIKpnmuCimVKqVO2jRF7G6uAZZmVDElyXRsN2BHtbqCguj712sAgQvABQi+k/ug3H9iaZw1no7YbreYYsJpnBFzQS6M4/EoVCYmkA/iiDTOCfOy/tt1Lv92Z0768rk0LOu6gJR6AGnJPmmBrWncMzNiSjWa/vz8jLdv3+Kbb97jw4fvlQ4nXVpvb29/9PkArMB9tdVWW221L9gsyru8WA3EUAV79nK+bO9ORFXVon2pt1Fnsza6/aLwlOiV4ysoAF7s95KGwyzyi60TcMnDt89aSctzWcpSQYrt+3KcXKMoYpHx9tpNZ7sFPsa7rtFWjWafjwFgXH0DfawOgAsevVegF1VznAjBe8B7OGZM46lSSRwM2EcwAw7mzEixZXAEIqF5sBa4cmYkpS9FdWAYMqY5ixoOkWVSgHE8oSBjnicQQbnMWqiocoXiS2WIkhCDvH6el6JNy1TAHCmyQmktPmYp2HR+UfCBjr1TlZhKNVLaBmUbV6oAkYi0MFKi7aS0l0oLKwsdyWhZ8zRJ1N85dA11qs7tnEUBpgHln+ouXOlX1alsCri51PHrhh7jOC7rTcGt8edNZ/5yXqWGwlb54LlIYSsRSi6IKYPJ4TROmFPG/nDEx/t73D88YZonZAbA9GL+l8LgIo5BUWEkLrZuz+tX7Ly7rkdK0g1Y5sdCf2n1+50TadHDfo/j8VizbuM44t27d7i6uqr3jYg+u3vqCtxXW2211Vb7ouw18CxvYar64/VzvA5ihRNc4JoXdgtiLTrf/mzWFhC+Rr9pz5Oa37XfOYvcw4pHm20vgHWrdf3aZ7o1BLJqgWuN4Aun3geHGpZnroWSJSergQVa/RsS0FqKRoB1n/Z7GQfAlDoqJQS5XjvbaRGkOFNOUa5DwaLzHl67e2bLbih1I6UkTo3WLTiSwlAlPEDELfWaSj21KgHIKFW1RTjosqELsj8iJwWtvFy5jL1SUiDHdp50HrjqEBYWpRmo02HRc6uvgNYnOAXQBEgxKaFmPoROEgCnRbq19sESMfqzE7UT5xYVpUuHkPS+smZwqpOmRcXmlFXXgKhy5ltu+RJlP89otSC36DUyrP5BotRFOe3tGqjHahxXk1r0ziGfZbYWPj30XhdmhNDhNEfAOcQU8XzY4+HpEadpRIGMv3ULrmurLLUapR67iapXp/C8x4Pp7S9jWyqVyGgz1kUXAE6jyj72HW5ubhBjxPF4xM3NTZ3Dl43i/pitwH211VZbbbUvyi4j1wBUocNB8JOCO2ZcpsHrPrBE6V/jn142Wbp0Fl77+bV/t/t47W/o+V5aBb04717ZOg2t5jsRwIaKYRFn30TWy3mE2Kg5up8QAmI2lRtBsktUVTu8MoRPbUCNHErJCoAJRBpFZgP6Etk15C6Siapjrx1aGQynHGbOGVDdb+c8OEmTILB0mS1QOUqFs1zBI8ORQypZ+faylQMJ7fpMFajUgl/R01/Gu6j/Z0XNNkec0V+sXkB16FNUOUzN7kC/U4qcg3G8QaK4Y8WfUnPgG3qLF4qMQ6OmonSiUuAchCuv3+dSzubf2XponFWZM4vzWRQct9ZSYc6pWi8ViFqQm4tKTdp8weIAt/uxeWtFq23WqOS2UVSpVBRAMjJFMybMjND3iMcTyDnsj0c8PT/jeDoh5VwVaZjTuQJUKfAu1J4EAtq5ZgjMW24ddnN0xAldHB+Lzst4CnBnZmy3W8zzBEZBFzptupSw3+8xDENtRkVEq477aqutttpq/27aJa0FWECHbzWYy9IV1V7OxgN2wFk0rKXCtHxfA69t18PLyBkR1Yhcaxbpu9y2Pe+6rf3fwJKyWc6UQLBQZCwyehndbPfPLdDl8z+t8oz3UpjHMSm1wHTw6QyMVUWRXKpapYEht8iYy/kpV52cg9coJWcZb7AAbRc84AkpRmTOADFcH4DClV7hQlhyACxBdWYBy4A4CUyMrJF39l5PikHOizOjTh1KqUWHwZuiiH6v6PxQDj3zeddaZlY6i6jdmAKOc67u3yLYnAGvzZhC18FkBckvXVHrfjV/YPOtcsxZKDGXc6q9HzW63sy3FtTLd5Xq0+67oUG1UeTLOZFSOZv7Rb9D6vhZxsXmYgj+XGFIqT4mhWhFmnauwzBUag0g5xzjXGlDc4pIWaRXU5Gi0MgFH374AY9PT4gxo+RFoaldV8LB1xoQFsep9hAoy/Z2XBsvuVYZp+ADossIwWOiWRysZNKxBeM4YrPZ1O9P44iPHz9IlohcfbZYzYzISf64rcB9tdVWW221L8oMJLfqLBbRImetzHEmv/Za+r7lvdvnbVTxkmpzCboNbFma/zVKTt23fHC2zQv6QTFtc0XERGeFsm03yxaEted1vn/hBRPUoSnngL09h5wzqABUFn62bdfuV6K6Nh42bk7HXfjIRhNBBYlF+dQCXislwiBX16HEdFZb63wQaoiGSqmJkDodAy6MnAhQBwxB9NQlAuzgu07PKVcetetCcz9tHik1ybeR40WnX7TSXXX0WCOyUAerZkDMWbJ5pNtUjX8be+/awVvAsHOoORPS5kW6b4kcK+gkRmb5TooRLiiXvOmQygB8OHc+8kXEPfgA8uHFvV7ml8y7QcFpjLHuI3NbLG1UMobK68h4lIKUCCnNyHmhixjXPcWs1+50unt4L+MY54y5UZQ5zhP2+z0e9s+4v7/H09MT5pRh/QKERhTq2BMcfNBngHVGbdakXKtJymLJjgCIMVc6kO2v73sQPJ6mZ6SUsdtJ4fb9/T3ev3+PrutwOBzw+PQAZsZPvvkZDodD7ZjKzLi/v8fn2ArcV1tttdVW+yLtki5gn8k/hEoh0a9GBQILBaWNNLaRSItqttHBy2N+inLwKcqMcZBbmkv9/AwUA+yEm1uYa/fF3W53xmm3QjjbV3tOn5KeSynBN8DVHIKaxufFoXHO1bGzczX6BCAgNHROI9+oaiYpx6occ0nl8M6J5KMyVHLOyKxNe4pSbISrUvXXwZUUX8G0s6wECuBF/SP0HULXqe64RNxFIQfot5sa2Q2N01dYTsR3i9zhNB4FjEO6oTrnUIxV76ThUVFOTRcCnPeIKQnIa+45EcHpfgszchFQL8WP3VnWw7S/jd+/cLBRgTtB7z0WeVHnHJJG/u04tr9hGECOkMsSJW/vR42SO382Jy/nts2DlFJtIOS91Cr4pthUfuGke6pen32HmdF1fb3elBKmaYIjHfMpnmUShr5HKhMCEaZ5xjjtMcWEVAp++OEj9sdRVYo8UrZOrOdzzu5DLBnBhZqNMOqNnN8iSxnCkkUzlSW7Vvubizk/wG63QykFHz58wNXVVdVwjzGCC+Hjx4/46quvcDgckFL67MJUYAXuq6222mqrfWHGnGsE1DlL6wuXurBFv62oUIscG544sER7ZX/nvOBLysnL479UhrF/2+8rLccpr/uVfbzGqzdNdOMRe+/RdV0FEG2mwQDfS3DNF04HawR2Af5GB6qgMWfhYlt0lgvIi8JG0UJNaNDbKcjJpVRlErKot10LORTOKIWrSovcs6zUHYk8exbpRik6XegezKyy4FJwzBJoFrCnV+QKQJ7gSeQhnQ+Vs28Nqwoz2Dl0w4DCLPWrzqEPAVzP2S7MgYZhceZU+cVD5A1TTDJGXs4rlSLKNRJOF4qRAcG+1/slajMgAe/eBxToealPkjIj9AGcIkoBPIkUIiuNR3TS0zI/SOPaWptgIJmByrEuhXXchOvvnEfORgkSqkjwHcAFJSWE0GGOs85Lj2maajbKO4es86ICWW1kVQrXrsVpXjq7eu8RfIeSs1CrQEC2Tq6QngGqIBQ6zSoxIxcgzRGjSkLOpWAuBb4f8PD4W9w93NfrY0iU/hUfVeYnGJ5ULhULbS3z0j/hPHMl536pmtR1HYYh4P7uAUutSJI6DGacjiMAhy70IEjxrAH2OU4IXUA/dLi6unr9RC9sBe6rrbbaaqt9USYRtvOIcSm5Kn7YSx2A0DWYa5fHNiJvvwdeRtXPtn3l8zbS2P78AtRj4X6/yAqonRXs6WdtS/pW4ebyPP6YA2H7ZvvsEwin0gvcUoRq/PmUE0DUDBedRZbbpj3L/uQ+AAvPmhRAtdxuLi+dF6X56470b+fgGJW/DSIQl0o90QETAKnOGjkHpwoqTqPpuYhMpdFQuDpKRdVkCI4C2LVUGO1eC6+Sncu45pQBdXAAqrUEIELoOonwmuIOCdffwJ5sJjruC6XICpF9VfmRsQQKC6XDtudSUAA4Zi0QlvMK3qvj87IWpKVAGfcdWvybclInhuC9q02RWuqMSTXudrvaLImcr7UPXqlHXBiFykJnMplUc2JZ6iRsbOo9LQxQwRyF2x5jxBQj5pQxn0Z8vL/HaZwkw1EYTEaNejmv248MtC9FzbpOz4hFtnZFAtTmKhFwe3uLx8dnDQ7I9vM8wTTd5zkiJ+mI23UDTqcJOUsEnhzQdaEWOH+OrcB9tdVWW221L8oWsF5eAmVVljH5t0sQa2byfGg+u+Suvwa0P8VlvywibYsBL499SSN57ffAucZ0Pe/GSXjtd/a9lopzeQ2Xx6h/K42FG0BlUXTSSC8AKfx8xUloJfP0jASc1mOiKuhU0EStawPAMRy7pVhXD2uUHN2tfs+aTzHA0uTJ16yJqJYsCE6034vdEwVm3oVKxykE+EKghlsuiQaJqPuw0IWke606Jd5r0ykVc3SiACMdYqHilUJ2ueSRt/dr4crLfoUWc5HNae6h3R9yvn5eNOpv2RSbJzlnON+dzUlp0JTQhw6TRtttbviqoS71AfM8Y57nmvHRBEx14kTWM9RMTj1+A/7t2qS4NyMXLAXPOieYxInIXBS0J0zTjB8+fsDD4yPmmIR2xAxqtV8/YeYk1XtpjkORBkytIwMYHUuUgZwjuI6w2Wzw4cMdrOtuKQXTNMLq1Y3603U9ttsd7u7uwaxSp836N6rRj9kK3FdbbbXVVvvizACJRYCd/sErQPU1aUdreMR0zlt/DUibtVrPtk0LjF8D0e2/L/f5Gif3MnLe6mq3BXT2+aWm/CWH/rVzb891oRw5FDaHwMG5tkjxXOe+3V+7H+uyyszSMIdNwUadjbKAqPbYCzhWYO8J3lF1IOpxXAtel3+Lb+CUM+1xThNaHD0m1EJTZqkj8M29IUh9gYcA86xSlswG9K3wmQEWKo13XhWAlpoI772AdYKcMy/n0tZUtMC9noM6nwxrHqQFpdRc9QX4dipvaT8bUG856aUU9EOoIFruTUEsBd3QI2bTX5c5MI4jrq6vkVLC8/19bTDU9z1SSuiGTeW+zzFKZoMLhmFYaghKAakT4L2cU8oJKVs9iFx7TBExi+NVCiPGpEBe5CAPxyO+//77Sj+R8zfpzfN52K6lOnfaf5+t8wW0S4Tdoe976cQKqcnwXuZ0ShG5SC2DZRHmOdc1sd/vsdtdYbfbYZ5nbDZ9dSBtDq6qMqutttpqq/07aS1YrUWkTQS+0hxeibhfRtUNlNpnAM5AkR2jtUsA3gKw9nfn0edzgPaaM9Huz6TprGjSIpgGzOy6WwBox/xUpqDd/wKqXQP2UqXV2Of2t22fUkLvBVqYvJ+BJ1MdaY93LiW57OcV6fol7m40BYhSCRdTazGOt0SCF2eE0Pebqt5xqU2+zBE9BivP2SgzrDKKWOgcZBQWCdMKhSkX1ZIn+BDgScbBxsnuozXweZnlsKt8CdYv76ud02VxhNG+WmfQnI52/rVzu+/76pwZ2LZx6roOp9MJp9PpTK6x73scDgdM04R5ntH3PbquQ4wR3vtadBpCkP2zUneaee2dAzEwz3Mt3gSjfmc8TShgzDkJWDeNdVVVyplxPJ3w8f4O333/A2KWguHcdJe1edTOnfMx57MxtNLe8srYMrOeq8nGCo3q/v5Oou86N2wsbb6XkuuanaYJwzAgRslOhG6RyFyB+2qrrbbaav/OWo2iKqBFWXTNndJgHKR7JF8A2JYrfgm2W/sU8H2NDvOak2DFkXSxLzvua3r0ZhZdb8/3UgbSAER7HrXQ9JV9vnZ9LfAOIdRorjkOrVwmM6MLoUaQL8fBgKBZMU65qqlwR+CcRVebBWoVRKF2GO0JLfbSsaGFsuKaSHsxcEsBPmhHUVKngIBuWNRbmIWmYfxqkOzXeNaWeQGW+gK+yKIwSZMm60hqEV8ytR8ZDOHKew/AIaek/HRCCF4ixQ34s/kXYzxz0KpOv9KXvBNwb91crSjVe1+77AKo2uGW+WgBvtGeKtgnB+8dTqcThmHQuVMwzXPd3sBo3/einlKyNLpyTVEsS4Fp0etIKaJGrGnp1iv6/qU6oMfxBCIpmoV1sC0FcIx5LtgfT/ju+x/wu2+/w3GcVRM+wXtRD7LibbtDMnckks6WUWOutQfczLNSyiVur05qCB59PyDngqenZ43Cx1ooTpSrI9KuFSKh1ZxlzbBkyk7H06eW4pmtwH211VZbbbUvytrIJoCzjpAGfC4pJ5fW0k8uQfmlVOMCdF7u5yxC+gpQbkF7G4W28/oUuG5BcQvg288NpLf7aSPOrUTl5TaXDoNzDjEv1BsDeZf7997Dk6tRVBsXGweLNlfHhQBwOT8uL9xtcxw+RSeya7XtCnPlDZNwLer9bBsb1d+rFQV6bNF0vJTubO910XE8q5WgpUjXnAy7Bou6270S/vnLTqUtx739zL53eY/MGSBzLJr7XylOzTlVihRJ4x9bIzFG5BJr0WmlPGlTrBCCgu5cZRy99zidTlW5yJRmBHgnpVRp5qAwfPBNxkEUhZiFdpJSQszCxw+hV6chSLda56oW/2macIoRiR2++8MP+P6HjzicTiqPqlKNWvBstDFnDnKdQxddky/W95KlWJoymfV9j+vrG5xOI+ZZnIXDfNSIOwCSZmMhdEjpuR7j6enpbK3UcYHRtRiPj4/4HFuB+2qrrbbaal+UnUV6AZXbW4DXJcWl4GX0/BKUt9byw3+MUtM6B+1+ayQcOFOUaYH1a87FJc3lMkNw6WS0RY7tuZ6dwycyB/Vncih8Pi6vnRsRSbTZSXMjVtqGjXFhRiCCxTLlHDwIouhSj8cAHJ01uKnnaPeUl9i77Ed/rf9rr7uCbqBKTYIAYtNDd5UCtERCL+4vlF5VMmoIuwHqBtx98z0wL3x0FmqIyI8q8OeitB+nMpUC+i6dPQPubaakvX8SHXZC5pfBAWAdUeV8bCyXe8xncyelBNWxbOYYMM9Rvyv69LnJtIzjKHPMe4QugJxDSvK7pIW/pg4EAgJBAb2uPeLK0xcZTq/HKaoApEXArCo4zMjMSLng48MjPny8w8PTE8Yp1vOrs3e5MfgxYx2yFrSf78RoMhG3t7fI6syYZjuRjG8ter7ImMzzjP1+D2bh5Nf5gqX2w7j/n2MrcF9ttdVWW+2LswoaNQrZgtozaULnXqTEgXOg3YLVTx2r7bzafv5aFPsskvuJ7S9B8WXkv9I2LlQ5XgPTl995LaL/2rUZ2DXgfukAWCS5peRAv+O8UmzIoXJTCIAj5CjKJg4GyqVraxuNds6hxLiAPL1WaPT1pTUKNXIar2cTmkGvlBdVabnklddsAwmglPsjII8cnTWSeu2+lVLAZIWuAqwZpDzsLHNPMwSEJQPymvN0eX8u51ZhqHMlf4wPLkwarrSdGmVunFibQ9akqJ1ThYvQesihsPHMS71XXdfBeSecfu8RU5YBduLAFW2i5Z2HdCJNNfMhDk1Rh8rWlzgcMSdkFm37mITjPqeMnAtizvjDDz/g4ekRp9MoxbBdJ8WqZ5F1PrtW+ef5GlrG0RwZu8dWKM3Nn6Uw1zj8zOok1gi/1FfkzI1jJd/xXrq8ynEXB004/d0K3FdbbbXVVvt313LOSFhezmdA7KKYFMALgAecR8Ftm8sCv8vtPxWdbwFpa+ec7T9ur4G6y4h++3lbOHoZaW8LSqvjcRHVbqOVlwo1FZiydWntIRr5pQFgFnX0FVTbNpyLcL2VPkJECF1QcNPcC1ZgqdF8xsItf+3+iJ/G1Vk7HywZ8PZet1ScswyN7tfVyPYyZpfjb2NxqaNvQA9YGhMxM4JGz60Dp/Gc7Y9RjMzaazW+dEvlss/bc7Btcs6AOy82Zga6hrLUnmMpparNhCCqOM77SpmxqH+MEcMwCLWmyaB0fS98fH+ezZGMQaxzsSj1Jca0UL3s/Igwx4RCwDwnnE4T5iTa7XNMOByP+MMPP+B4PC20L2aUht702jp+zZbtm6h7AZjbjJY4QJvNFuM4VeelXXtyLzOYS3UIiaTuYLu9AjPrmGkX23LuYNh4fI6twH211VZbbbUvyhyAcMERtr8vI9BGVZEmnOfShpeR9vMmQnT259IuP/8Uv5pe2f6PRcIv6Tg/xodvr+Uy43DmgFwcs5IFiNCFroLJNvrrnMPt7S3GccQwbESa73BA12lHzQtdcGbGNEnxIAXSVvIBgSDFkqUgRuE8O5N2LKzdNbWA03uQ8q3r/RAmxpkUJrslCxFjRAgBjkQD3HTXc86gINFusMg/2pwopdSMAFhoLS1Yc85VfrI5Psv9U9oGZzgidF1XAS+KNGbKMWEehRPOjXJPWyBqqiRES1FjW4hsx7R7XNVx9PytENh5oSLNczTFzPqdJdruq2MyDEP9/TQVjKepzifjxUvRrUPR75pDkDgBWaPtzb67LqDrpCjW5pVzHn3va/bBsajz5JLhu4A+9DiMj5hLRmLGXDKeDkf8+ne/w/N+j1QY7NQhMqfrE3PY7uPSHqBZL3xeH2LzXIp9nbLcSZ2q1oE/d5ZMPYaIKvXLe4+cErxb7pUU0eY6X6ZpwtPjEz7XVuC+2mqrrbbaF2d/jNbS/q6NAAoH4jzyfgnAz+gJDbXhtSh+a21U98fO8VPn/WP2xxRw2v20DoJzTmkcS9S4dVja6zKlkjbSvt/vFdQLYK0Fgc332mgiEaHv+xoRjvOM0zzBe495mvTcGDmrukdM6Hpfx9mO23LYXeWIL1FoA/aXANdEcKxw0qK9rb1GWWgdJVEqEV1x48Yv0ezzrEdL/7mM9FfKSBMNtzEGgGEYzqKxtq2BeTufFnTauJgyCwB4bpRVdLv9fn82B9oC58vMgve+Om623xCCUkJypY2Iw+SrE2DnKd/PSGmu52DRdmYgdOLgZQXuhZ0o1yTGOM3wXYdCDmmKeNo/4+PHj6po8/o9quOPitPbrV584mjRuM/Znc3vnDTrEFy9zvb+1mh7lLk3DBuACU/TYVlrJIW7MSaM4wTWmgHRfhfAf/xMRRlgBe6rrbbaaqt9YfY5afJXwbj88OrvXvv+j4H1SyehBYS1APHiOK9F8V87BwNxr+mB23cuZS3b756B08ZhaQFxew0WZb2M1ufM8D7odqLdHkLApCDcQPZms6m68waMTA6SyMO5gM1GwExhhicPIiAJN0ZpK24BkRC1IOlkqUWQqgPCLKoeNmwCqKRRTinGZz93Ti4BWXv9zAAJpASYwReRb/Ci7gJS/jIRipOor4HuNhpOGomvAJELUpwRFPi2DhLg4FxQEGzkqnNnoHUKLouV2c6vuTbWKHf73RhTnRt23w2EX1Jz5N5ndTg8QhCq1awSkZZNaR0JkYgsVZOdtJjWgH0pUujqOo9pjjgcj5jnGWEYcBwn3N0/4P7hEeMckXPRovLzIuQXwLr+VMCvgHZAC3fLhWrQhUITIH0Mzuli8v3WWV3m1TLWwQcUWhz33e4KT08POp5GGxrRheHV87u0Fbivttpqq632RZmBxdYuI5stfcOML7a//P0lnaX9u42oX1JKLs/j7A9eRsEvz/m1fVxSaS7P87VzuKStvEYHeu1v+3PpJMgYW6fVZQzmeT6LRlqEtdWWBwTwuK4DqyyiAVx/MaYWmTbgWLu2YgGZdh12HgKm2uxAUf78y3lxOe4v7znArNQSBXX1Ol4B/OoHwZPIXdq5tTSnlrZk+vHtXLrMfNj4CwXHiiVxdv2v3VcAVbLSqB2X8+E1R82sjdy3c05oJItjQbRQjczsOtrj5Mz1OmzblBKmOCMz4FmKaeeUkFKGDx3GKeLh8Qk/fLzD/cMj5phV4vLlWrlcc5dr5VWnvnkmLGtH9k/U6PGTe7GP9rghdKo5LzQg5zR7Uech4Fw666VgdRv/NrYC99VWW2211b4oe42W0oKbT5ohrn8Lu9zn5XEugfOLbT9j36+Bc7MzxZXGXgPvn0Ojebnvtsi05ctbtPMcjNpxJWps+2DknHRffDbEBoyYtTupo3oPDCh7cvDBtV8CSJRMSkxglVXkKidjIAswcCfA/aXyD5rumkDlviyAvInakiMNujfj1AK5OuZFx8ecDaukWMbJ6C/mVDCkyyiBpAkQzh0qi8y/BjzbKHt7H2rknQkiYbk4OkZ2b8Hq5Rxo99XSZVoHuKWL5RjBjs7O6TWnBaoAZMM8z6IPX0DIJSEXxjRHZAZc6PB0/4iPdw94eHzC8+GoUpPu1R4Ir1k7Dy7Hzm774hQu9xBYFGZK4ap5bwpDVlvBZaE5zXNUR4DquHnnkFSRx9ZGXZ/1Hvw4zc1sBe6rrbbaaqt9UfapF+BlxPjFdhdRZvv3p47xqah6u82nnIhKa3gFLP+xfbbXYWCj3V/72WvygpdR3Arc7HyaojobkheSj8uAVYWaFkAZoAMbuHLoQn8GJjNLk56UEkijr123KJ3Ua1WSimschNI4E9QUhYr8JMG5IMCOCEGj7DFOC0+8GWsovYbI6C4AcYvblyJZBqqCCnTMzoCvRcWhGu3yBR2Pl4WP9Rr5Yo44QkA4A/n23facPmXtvZB/61xBkzm5iFabU9Aey8bYaFJ1jHXsyMs96TpRVJljhAsLKLX50oJ9ACoNaXPf+PsODoSYM6Y5SmEuC3Xq++9/wIcPH3E4njDNsaoRmV2u45dzHrjktp851O4887CMuzphZXHozWFlNjqSQympWRvUZDhELrPreuXzi/PY972C/Fk7wTZqSJ9hK3BfbbXVVlvti7MzzWq8Hp28BNQSmPsjkbkL+zFw/9r2L+gJvKBEopdc9NciofbzJUC5POfLaOcfPadGmaQ1oTVcUhHOufAtnaWNzs9TrN8z+UDT3LZIvHcOwXmM41i13+2cUkq1Mc2l/F57DxdVE6HbJM7VGQAAlyTi3vfhTJbxjLqCLAH3C8cGEJWTKq1o96UZo0v998v7IJ+dR6/t8xACcsnIjZyjcw6+CyhZ+OAp5bMGTEQvpTBfi26fz086OyY3tJbl2ugFcLe/28JM20fMqfmdFC/7TgEpn1N/jB4iv9Px0d/NOYFckOODEDPjeBoR+g3+6//mv8P3Hz7geDphihGxUp4uIu2VxI8aQcf5R2d2mQkzZ4pIZDBtTHIu6DrA+3B2j8XZVbePTHFGvm8R9GUex6oQZDru1UnQ8yOi6pz+mK3AfbXVVltttS/KajT7lYjza6n19iWKVz43+7EI+6e+Z3bJ9yUi4EURHF4onfyxDMJrAL6Nbv6xzMACVrTjKb0s1LR/Gk1A9iXa7LbdpZY42KHkAkv/SzRdlEM2m43I4U1AVtnqeZ7R9z3SHCF8acB7kZqc5hmh6+q+Laq+2W7hnMM0TcojFnWSXApC151JQ4IZw9CDU677B8o51QMBVsDIKGcXXwCwA+CpAjW6pMyoEUmDJbgFBBcwCvIShYdISRIDMacz58NqAWJKFcC3GvLtfbyMxC+fL/4nkdwLiwIvspXn2vO6tdB1GsAdY1QFmKjR467e75gt0ixOmAOAXDCEDv1WipGtWRERSfdZJpSS9QSF807wIPKIKWGeZuSS0W83+Ov/7m/w/PyMOYqGO+Cw3VxhTrN0VgVUyrXpxnvJduOygPZLp9nG6+JZYaC9qMO2zOvLOgKg5EUbP+e5dkY1pZ5SCk6nsY6zAfgY5zpfWsfqc2wF7qutttpqq31R9lrjofZ3Zi/Au9Id2s8NRL8W8X4tOmv7uoyWt5QBA2qs4OPSWjB1STO4TOm3ah+vFT9eFuK2FIb6OzpP759vQ0hpOYbwnAuYXQU0fd8v582AD4sqSnueBohEy5vhneiyt3KNQlMpSDnicDhUsNVeZ9s8qo2gA0Df91U3/bKhTbcZZHte+PQco0ZOAbBoiQv9YSnIJOVkO7dcR/BBkyXLWFcOOr28T+dzSO+NX5wky0q0c85kNtFi61fmoM0Lo/4A1IyPnsvF3Ap+kQCt9CaWhlMtWG3HtaX4pCb7YNdTsys5IR0XapXpyaeU4EMAiuicx5hxOp3ggjhmx9OIOSWcphm/++4PeD4c8Pj8hNM0I5mKjF27eic1q9CMy7IWeYloNwXOrWPCLA6U867y0WW+AsykgFw08CWU39aMAFxkbIwK5cjBkQcwq2JMK99J9b7auIiTKJx4/rzGqStwX2211VZb7cuynFq9ZdK6vKVpyusRcX3F8wLiywUwfwHWYYBP6C5kTgE3JGks+7PtiQjEvBRlXkTcX+Pstp+353MZKWy3/dS517/tjJTc3f5OoqhUW7fLsQnedwrcbTuPkrVKT4tIQxeqmkYtCM3irHQEpJgkNAogZUbKCd5pJFzHzvsOPnQ1MrkAXJN6JAVLouBh93rhk5NKKC7AFAAKK7hyDjHPUG6DqHtwq+ZiDo86MuyQ9fh2mu15vaAjMSo/Q+L0Voy53IeqwV4YhYFSBDizFVOyANSqJFMzQ6RFjR6G6ut9tnN0Tr574bzWe2xzUSVJixbE2rGqU6LOVghB5COdnF8suVJQbE05clUWs5QiTYh0KcjPjNCJ/vs0J8wpwvcD5pwxTzOejyekXDDOMx4en/Dx/gHjPCGXIs4VkdxPKx6A02Hms2LegrKsT+eFVtOC7SUEr+NRpFtq1pvmqTbKSnMEuFRqjg++yVro1M5ZHAleHChxWux7uclmLTQteS7IOmR+mQn4lK3AfbXVVltttS/KUoxL9BmQCGh9acoHC6iVrexl3kbeAQUvymU1qyDoEmDr38yLWoR+UH9vtJT2czTfu7T2ZX4Z+b+M6p6d2wUIOOPmGghWzfN2X/a1hSddGhUM269EpCV6LYATTgGL91J0SKRAz9WxIkdnEfJSihapSiyVnABVBwj3PQTM83SmaCPZitBc7yWn39W/JbjuamQ+pQQuDPICQEsSKskSsxVZQ7l+u+aCRUZRIDjq7TvPqJyPOyvAX8ZVfpYI63k0HlIAKZMGXNr9CLVkuWfNXCRAUT4s0o4L57I9t9aBYY0Qm4pPUXDMes5clixBmylgXghFMIeRi4D2unSo0k/Mf2F1bHMpSDkj5qS0poA0R5zmiFgYx3HC49MTng8HHE8n2Q/ZUuFlfcKWKC8Lr2Wc6Jq/7CYrf3PzBYhTVdQBIBbQngtSjJgA5KxOJeEFXUgHFjkVdc6XZ0t1eJulWOcCLfe+/s41G/4RW4H7aqut9v9p7952G4WBAAyPbRT1/V+yqpSqq92GBAp4L+wxYwNt7yqq/7tJS4ihHJqxPdjAr7IZq9oMxWcfWrVBbF5bbFClZTlJE8WU1nJnHo40nz7KRbf7YtfbS+X5LB/dltGuv5eqU/bf/F7ndTcVluZVgw/Nb5+m+rh670uAZ1sbh2Eo6RH2mIzjWCblWcsRM057qiQtUcTllt5xHOXp6al6oDOlsixVcGQfHLV5+vqznUgoxijidVKjWOUvOxek69ZzrOkS2yC2Pm7tecrvVhUiDersutqT0S6379velKritbM/JSStKgbbIHy9fr2IN9sUyed025uQhmyMZShJTVtqj8fmPnBOxIv46KV/PGTMPWLO+/Tw7TzLY/gQ57zc+ps8v7zI3/f3VPXxTlzuDdDj0FZe7T1g7229du01rcORVmlhknL0taIVl0XmKaXHpDz//H/Br+Pa27kFQki9TtrLZPdlmiZxosdkyb0kdWWsTeH5CoE7AOBX2UsL0eXta/1luQ1k03q5tdX5KuhsWzbtNrdlbFu81dEX9lGKjC2zXb9NiWjfq0aDke2+2MDuKCjVckIIOZVjSbFZbt2c57maFVRn0dSgpwquQijDA4qLpUzJY2NfLpcSfKdtdhJCJ/f7vYxQ03VdNWRhCEGGYaj+tr0hFUPQMebnkgttW2h1/fVhxW0S8meVNacpL5Jaf92yPhCr+xRNK217PdqgfS9YtcuOrgX9bFtpLZ9b0kPE1TKp7yGdEGvKreQu54O319TeNWcOhPT3h/R9nwP5tG/97Z+MyyzX61U+5kmur6/y5+1NHsNQZke1vVdHPU52e3oO23PZnte2N8G5tYx5mkRcmi1VW/Z9WPP/tQKq6S8S2wYDLyG4nM8uOQVJRDPH9v6O7wbuLn7VRAAAAADgx31v0EgAAAAAP4rAHQAAADgBAncAAADgBAjcAQAAgBMgcAcAAABOgMAdAAAAOAECdwAAAOAECNwBAACAEyBwBwAAAE7gP563DG1tGxWQAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Testing: Denzel Washington ---\n", + "\n", + "Match found: denzel_washington, Distance: 0.28\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAGGCAYAAADFORExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9ebwtR1Uv/q2pu/feZ7rnJjeBQAYCSAhDJPzyQAhhkjAPiUTGx6ASZVJUePgcIALyEBRFZBIFDASUQQRkCEgigRAECYNhMJCBEExu7nSGPXR3Va3fH6uquvc++5x7bhJIkL2S+znn9O7dXd1dXfWt71rruwQREWY2s5nNbGYzm9nMZjazG2nylm7AzGY2s5nNbGYzm9nMfrptBihnNrOZzWxmM5vZzGZ2k2wGKGc2s5nNbGYzm9nMZnaTbAYoZzazmc1sZjOb2cxmdpNsBihnNrOZzWxmM5vZzGZ2k2wGKGc2s5nNbGYzm9nMZnaTbAYoZzazmc1sZjOb2cxmdpNsBihnNrOZzWxmM5vZzGZ2k2wGKGc2s5nNbGYzm9nMZnaTbAYoZzazmc1sZj+TduGFF0IIgQ984AM/kfM98IEPxAMf+MCfyLluDnvnO98JIQSuuuqqW7oph2RCCDz/+c8/6H4/rdd3a7UZoDyICSG29e/CCy+8pZs6ZhdffDFe/vKX48CBA9va/5nPfCbm5uZ+vI2a2cxmdrNYnAjb/3bt2oUHPehB+MQnPvFjO+9gMMDLX/7ybY93EbAJIfDud7976j73u9/9IITA3e52txvVpje96U145zvfeaO+O7OZ/STsZ6WP6lu6Abd2O/fcc8f+/vu//3t8+tOf3rD9hBNO+Ek266B28cUX45xzzsEzn/lMLC0t3dLNmdnMZvZjsD/+4z/GcccdByLC9ddfj3e+85145CMfiY9+9KN49KMffbOfbzAY4JxzzgGAQ2LaiqLAeeedh6c97Wlj26+66ipcfPHFKIriRrfpTW96Ew477DA885nPvNHHmNnPpj396U/Hk570JOR5/mM9z89KH50ByoPY5AB4ySWX4NOf/vSG7TfGiAij0QidTucmH2tmM5vZz5494hGPwL3vfe/096/8yq/giCOOwHvf+94fC6C8sfbIRz4SH/nIR7Bnzx4cdthhaft5552HI444Ane6052wf//+W7CFM/tZNKUUlFK3dDP+x9jM5X0z2Dve8Q48+MEPxq5du5DnOe5617vizW9+84b9jj32WDz60Y/Gpz71Kdz73vdGp9PBW9/6VgDA1Vdfjcc+9rHo9XrYtWsXXvSiF+FTn/rUVHf6l770JTz84Q/H4uIiut0uTjvtNHzhC19In7/85S/Hi1/8YgDAcccdl1xOhxonEtt74YUXpvbe/e53T+350Ic+hLvf/e4oigInn3wyLr300rHvf+Mb38Azn/lM3OEOd0BRFDjyyCPx7Gc/G3v37t1wrniOoihw/PHH461vfSte/vKXQwixYd93v/vdOPnkk9HpdLC8vIwnPelJuOaaaw7p2mY2s/+JtrS0hE6nA63HuQLvPf7iL/4CJ554IoqiwBFHHIGzzz57A4j7yle+gtNPPx2HHXYYOp0OjjvuODz72c8GwGzi4YcfDgA455xz0rjy8pe//KDtetzjHoc8z/H+979/bPt5552Hs846a+qkvp1x9dhjj8Vll12Gf/u3f0vtaTOnBw4cwIte9CIce+yxyPMct7vd7fC///f/xp49ezbcn1e96lW43e1uh6Io8JCHPATf+973xvYZDAb4zne+s+G7m9nb3vY2HH/88eh0OjjllFNw0UUXTd2vLEu87GUvwx3veEfkeY7b3/72eMlLXoKyLMf2i3GBH/7wh3G3u90NeZ7jxBNPxCc/+cm0z1VXXbVlaFbbDjaP3Bj7xje+ASEEPvKRj6Rt//Ef/wEhBO51r3uN7fuIRzwC/+t//a/09z//8z/jUY96FG5729siz3Mcf/zxeMUrXgHn3Nj3Lr/8cpx55pk48sgjURQFbne72+FJT3oSVlZWNrRnq3sFTI+hjPPe5z//eZxyyikoigJ3uMMd8Pd///dTr/e0005Dp9PB7W53O7zyla/EO97xjrFjHqyPXnHFFXjiE5+I5eVldLtd3Oc+98G//Mu/jJ0nho784z/+40H76S1pM4byZrA3v/nNOPHEE/HYxz4WWmt89KMfxXOf+1x47/G85z1vbN/vfve7ePKTn4yzzz4bv/Zrv4af+7mfQ7/fx4Mf/GD893//N37zN38TRx55JM477zxccMEFG8712c9+Fo94xCNw8skn42UvexmklGngveiii3DKKafgjDPOwH/913/hve99L17/+tcnRiBOBodi3/ve9/CUpzwFZ599Np72tKfhda97HR7zmMfgLW95C/7v//2/eO5znwsAePWrX42zzjoL3/3udyElr1M+/elP44orrsCznvUsHHnkkbjsssvwtre9DZdddhkuueSSNMBdeumlePjDH47b3OY2OOecc+Ccwx//8R9Pbe+rXvUq/OEf/iHOOuss/Oqv/ipuuOEG/NVf/RUe8IAH4NJLL52592f2M2UrKyvYs2cPiAi7d+/GX/3VX2F9fX2DB+Xss8/GO9/5TjzrWc/CC1/4Qlx55ZV44xvfiEsvvRRf+MIXYIzB7t278bCHPQyHH344XvrSl2JpaQlXXXUVPvShDwHg8ePNb34zfuM3fgNPeMITcMYZZwAA7nGPexy0nd1uF4973OPw3ve+F7/xG78BAPj617+Oyy67DG9/+9vxjW98Y8N3tjOu/sVf/AVe8IIXYG5uDr//+78PADjiiCMAAOvr6zj11FPx7W9/G89+9rNxr3vdC3v27MFHPvIR/PCHPxxjSv/f//t/kFLid3/3d7GysoI//dM/xVOf+lR86UtfSvv8+7//Ox70oAfhZS972UFB9N/+7d/i7LPPxi/8wi/gt37rt3DFFVfgsY99LJaXl3H7298+7ee9x2Mf+1h8/vOfx3Oe8xyccMIJ+OY3v4nXv/71+K//+i98+MMfHjvu5z//eXzoQx/Cc5/7XMzPz+MNb3gDzjzzTPzgBz/Azp07cfjhh28Ix6rrGi960YuQZVnatp155MbY3e52NywtLeFzn/scHvvYxwIALrroIkgp8fWvfx2rq6tYWFiA9x4XX3wxnvOc56TvvvOd78Tc3Bx++7d/G3Nzc/jsZz+LP/qjP8Lq6ipe+9rXAgCqqsLpp5+Osizxghe8AEceeSSuvfZafOxjH8OBAwewuLi47Xu1lX3ve9/DL/3SL+FXfuVX8IxnPAN/93d/h2c+85k4+eSTceKJJwIArr32WjzoQQ+CEAK/93u/h16vh7e//e0b3Odb9dHrr78ev/ALv4DBYIAXvvCF2LlzJ971rnfhsY99LD7wgQ/gCU94wtixttNPb1GjmR2SPe95z6PJ2zYYDDbsd/rpp9Md7nCHsW3HHHMMAaBPfvKTY9v/7M/+jADQhz/84bRtOBzSXe5yFwJAF1xwARERee/pTne6E51++unkvR87/3HHHUe/+Iu/mLa99rWvJQB05ZVXbuu6nvGMZ1Cv15va3osvvjht+9SnPkUAqNPp0NVXX522v/Wtbx1ra2zXpL33ve8lAPS5z30ubXvMYx5D3W6Xrr322rTt8ssvJ6312L2+6qqrSClFr3rVq8aO+c1vfpO01hu2z2xm/1PtHe94BwHY8C/Pc3rnO985tu9FF11EAOg973nP2PZPfvKTY9v/6Z/+iQDQl7/85U3Pe8MNNxAAetnLXratdl5wwQUEgN7//vfTxz72MRJC0A9+8AMiInrxi1+cxsjTTjuNTjzxxLHvbndcPfHEE+m0007bsO8f/dEfEQD60Ic+tOGzOH7G9p1wwglUlmX6/C//8i8JAH3zm9/ccC0Hu/aqqmjXrl100kknjR3zbW97GwEYa+u5555LUkq66KKLxo7xlre8hQDQF77whbQNAGVZRt/73vfStq9//esEgP7qr/5q0/Y897nPJaUUffazn03Xvt15JPaz7c4jRESPetSj6JRTTkl/n3HGGXTGGWeQUoo+8YlPEBHRV7/6VQJA//zP/zx2/kk7++yzqdvt0mg0IiKiSy+9NPWnrWy792ra9cV5rz1H7d69m/I8p9/5nd9J217wgheQEIIuvfTStG3v3r20vLy84Zib9dHf+q3fIgBjz39tbY2OO+44OvbYY8k5R0SH1k9vSZu5vG8Ga8dARsbgtNNOwxVXXLGBhj/uuONw+umnj2375Cc/iaOOOiqt6AAOYv+1X/u1sf2+9rWv4fLLL8dTnvIU7N27F3v27MGePXvQ7/fxkIc8BJ/73Ofgvb9Zr+2ud70r7nvf+6a/o4viwQ9+MI4++ugN26+44oq0rX1fRqMR9uzZg/vc5z4AgK9+9asAAOccPvOZz+Dxj388bnvb26b973jHO+IRj3jEWFs+9KEPwXuPs846K137nj17cOSRR+JOd7rTVEZ3ZjP7n2x//dd/jU9/+tP49Kc/jXe/+9140IMehF/91V9NrCIAvP/978fi4iJ+8Rd/cey9OfnkkzE3N5fem8juf+xjH0Nd1zd7Wx/2sIdheXkZ73vf+0BEeN/73ocnP/nJm+5/KOPqNPvgBz+Ie97znhtYHgAb3L/Petazxhi8U089FcD4ePbABz4QRHRQdvIrX/kKdu/ejV//9V8fO+Yzn/nMMQYN4Gdzwgkn4C53ucvYs3nwgx8MABvGtIc+9KE4/vjj09/3uMc9sLCwMNbOtv393/893vSmN+FP//RP8aAHPQjAj38eOfXUU/HVr34V/X4fADOFj3zkI3HSSSclt/9FF10EIQTuf//7p++1n/fa2hr27NmDU089NYUaAEj371Of+hQGg8GW7TjUe9W2u971rqkPAMzO/9zP/dzYdz/5yU/ivve9L0466aS0bXl5GU996lMPevxoH//4x3HKKaeM3Ye5uTk85znPwVVXXYVvfetbY/tvp5/ekjZzed8M9oUvfAEve9nL8MUvfnFDJ19ZWRkbRI477rgN37/66qtx/PHHbxjk7njHO479ffnllwMAnvGMZ2zalpWVFezYseOQr2Eza4NGoHmh226b9vZ2TNa+fftwzjnn4H3vex927969oZ0AsHv3bgyHww3XCky/fiLCne50p6ltNcZs55JmNrP/MXbKKaeMJeU8+clPxs///M/j+c9/Ph796EcjyzJcfvnlWFlZwa5du6YeI76bp512Gs4880ycc845eP3rX48HPvCBePzjH4+nPOUpN0sWrDEGT3ziE3HeeefhlFNOwTXXXIOnPOUpm+5/KOPqNPv+97+PM888c1ttmxzn4hh6YxKFrr76agDYME4ZY3CHO9xhbNvll1+Ob3/725uGI02Om5PtjG2d1s6vfe1r+PVf/3U8+clPxm//9m+PnRP48c0jp556Kqy1+OIXv4jb3/722L17N0499VRcdtllY4Dyrne9K5aXl9P3LrvsMvzBH/wBPvvZz2J1dXVDewCeP3/7t38bf/7nf473vOc9OPXUU/HYxz4WT3va0zb0h0O5V5O2ne9effXVY2RLtGlz2WZ29dVXj8WRRouqMVdfffWYnNbN2U9/HDYDlDfRvv/97+MhD3kI7nKXu+DP//zPcfvb3x5ZluHjH/84Xv/6129Y6d2UjO54rNe+9rVjq6K23dxakptlwG22nYjS72eddRYuvvhivPjFL8ZJJ52Eubk5eO/x8Ic//EatgL33EELgE5/4xNTzz3Q0Z/azblJKPOhBD8Jf/uVf4vLLL8eJJ54I7z127dqF97znPVO/E8FMFPi+5JJL8NGPfhSf+tSn8OxnPxt/9md/hksuueRmeb+e8pSn4C1veQte/vKX4573vCfuete7Tt3vUMfVm2rbGc9+HOa9x93vfnf8+Z//+dTPJxfu223n/v37ceaZZ+LOd74z3v72t284J/Djm0dicuXnPvc5HH300di1axfufOc749RTT8Wb3vQmlGWJiy66aIw5PnDgAE477TQsLCzgj//4j3H88cejKAp89atfxf/5P/9n7Hn/2Z/9GZ75zGfin//5n3H++efjhS98IV796lfjkksuwe1ud7u03015prdUfziY3VrbFW0GKG+iffSjH0VZlvjIRz4ytno4FPfrMcccg29961sgojGWcjJ7K9L3CwsLeOhDH7rlMadlR/8kbf/+/fjXf/1XnHPOOfijP/qjtD2ujqPt2rULRVFMzVSbdv1EhOOOOw53vvOdfzwNn9nMfsrNWguAk1IAfm8+85nP4H73u9+2FrT3uc99cJ/73AevetWrcN555+GpT30q3ve+9+FXf/VXb/K4cv/73x9HH300LrzwQrzmNa/ZdL9DGVc3a9Pxxx+P//zP/7xJ7b0xdswxxwDgsS66rgFOjrnyyitxz3vec6yNX//61/GQhzzkZhuzvfd46lOfigMHDuAzn/kMut3u2OeHMo/cGMuyLGW1H3300ckte+qpp6IsS7znPe/B9ddfjwc84AHpOxdeeCH27t2LD33oQ2Pbr7zyyqnnuPvd74673/3u+IM/+ANcfPHFuN/97oe3vOUteOUrX3mzX89mdswxx2xr3gI276PHHHMMvvvd727YHl38sS/9tNgshvImWlwxtFcIKysreMc73rHtY5x++um49tprx6QWRqMR/uZv/mZsv5NPPhnHH388Xve616XJom033HBD+r3X6wHAtivl3Nw27b4AnPE2ud9DH/pQfPjDH8aPfvSjtP173/vehoofZ5xxBpRSOOecczYcl4imyhHNbGY/S1bXNc4//3xkWZbcZmeddRacc3jFK16xYX9rbRoj9u/fv+G9igxWlLCJ4OTGjitCCLzhDW/Ay172Mjz96U/fdL9DGVd7vd7U9px55pn4+te/jn/6p3/a8NmNYXS2Kxt073vfG4cffjje8pa3oKqqtP2d73znhnaeddZZuPbaazeM9QAwHA5THOKh2DnnnINPfepTeO973zs1xOpQ5pEba6eeeiq+9KUv4YILLkiA8rDDDsMJJ5yQFhLtGMVpz7uqKrzpTW8aO+7q6mpaMEW7+93vDinlBpmlH7edfvrp+OIXv4ivfe1radu+ffumegI266OPfOQj8e///u/44he/mLb1+3287W1vw7HHHrspg39rtRlDeRPtYQ97GLIsw2Me8xicffbZWF9fx9/8zd9g165d+O///u9tHePss8/GG9/4Rjz5yU/Gb/7mb+I2t7kN3vOe96TqEXF1I6XE29/+djziEY/AiSeeiGc961k46qijcO211+KCCy7AwsICPvrRjwLgQQMAfv/3fx9PetKTYIzBYx7zmAQ0f9y2sLCABzzgAfjTP/1T1HWNo446Cueff/7UFefLX/5ynH/++bjf/e6H3/iN34BzDm984xtxt7vdbexlPf744/HKV74Sv/d7v4errroKj3/84zE/P48rr7wS//RP/4TnPOc5+N3f/d2fyPXNbGa3BvvEJz6R2Izdu3fjvPPOw+WXX46XvvSlWFhYAMCxkWeffTZe/epX42tf+xoe9rCHwRiDyy+/HO9///vxl3/5l/ilX/olvOtd78Kb3vQmPOEJT8Dxxx+PtbU1/M3f/A0WFhbwyEc+EgCH7Nz1rnfFP/zDP+DOd74zlpeXcbe73e2QyiY+7nGPw+Me97gt9zmUcfXkk0/Gm9/8Zrzyla/EHe94R+zatQsPfvCD8eIXvxgf+MAH8MQnPhHPfvazcfLJJ2Pfvn34yEc+gre85S1jTOF2bLuyQcYYvPKVr8TZZ5+NBz/4wfjlX/5lXHnllXjHO96xIYby6U9/Ov7xH/8Rv/7rv44LLrgA97vf/eCcw3e+8x384z/+Y9Is3q5985vfxCte8Qo84AEPwO7duzeUu3za0552SPPIjbVTTz0Vr3rVq3DNNdeMAccHPOABeOtb34pjjz12zD39C7/wC9ixYwee8Yxn4IUvfCGEEDj33HM3AP/PfvazeP7zn48nPvGJuPOd7wxrLc4991wopbYdL3tz2Ute8hK8+93vxi/+4i/iBS94QZINOvroo7Fv374xVnKzPvrSl74U733ve/GIRzwCL3zhC7G8vIx3vetduPLKK/HBD34wSfD91NhPNqn8p9+myQZ95CMfoXvc4x5UFAUde+yx9JrXvIb+7u/+bqocwaMe9aipx73iiivoUY96FHU6HTr88MPpd37nd+iDH/wgAaBLLrlkbN9LL72UzjjjDNq5cyfleU7HHHMMnXXWWfSv//qvY/u94hWvoKOOOoqklAeVfthMNmhaewHQ8573vLFtV155JQGg1772tWnbD3/4Q3rCE55AS0tLtLi4SE984hPpRz/60VTpjX/913+ln//5n6csy+j444+nt7/97fQ7v/M7VBTFhvN/8IMfpPvf//7U6/Wo1+vRXe5yF3re855H3/3udze9vpnN7H+STZMNKoqCTjrpJHrzm988JgcT7W1vexudfPLJ1Ol0aH5+nu5+97vTS17yEvrRj35ERCzl8uQnP5mOPvpoyvOcdu3aRY9+9KPpK1/5ythxLr74Yjr55JMpy7KDyui0ZYO2smmyQdsdV6+77jp61KMeRfPz8xtkefbu3UvPf/7z6aijjqIsy+h2t7sdPeMZz6A9e/Zs2b44nr3jHe/YcC3blUx605veRMcddxzleU73vve96XOf+xyddtppG+Rjqqqi17zmNXTiiSdSnue0Y8cOOvnkk+mcc86hlZWVtN+0cZeIx+lnPOMZY23c7F/btjOP3BjZICKi1dVVUkrR/Pw8WWvT9ne/+90EgJ7+9Kdv+M4XvvAFus997kOdTodue9vb0kte8pIkUxfl6K644gp69rOfTccffzwVRUHLy8v0oAc9iD7zmc+MHWs792qz69ts3pv27C699FI69dRTKc9zut3tbkevfvWr6Q1veAMBoOuuuy7tt1Uf/f73v0+/9Eu/REtLS1QUBZ1yyin0sY99bOw8h9JPb0kTRLeSaM6ZbbC/+Iu/wIte9CL88Ic/xFFHHXVLN+cnbo9//ONx2WWXbYi7nNnMZjazmc3s1mi/9Vu/hbe+9a1YX1//mSvr+FPGp/7PteFwOPb3aDTCW9/6VtzpTnf6mQCTk9d/+eWX4+Mf//hYiaqZzWxmM5vZzG4tNjlv7d27F+eeey7uf//7/8yBSWAWQ3mrsTPOOANHH300TjrpJKysrODd7343vvOd72wq9fE/ze5whzukut9XX3013vzmNyPLMrzkJS+5pZs2s5nNbGY/87a+vj41iadthx9++M8UkLrvfe+LBz7wgTjhhBNw/fXX42//9m+xurqKP/zDP7ylm3aL2AxQ3krs9NNPx9vf/na85z3vgXMOd73rXfG+970Pv/zLv3xLN+0nYg9/+MPx3ve+F9dddx3yPMd973tf/Mmf/MmmIuYzm9nMZjazn5y97nWvwznnnLPlPldeeSWOPfbYn0yDbgX2yEc+Eh/4wAfwtre9DUII3Ote98Lf/u3fjkkf/SzZLIZyZjOb2cxmNrOZbWlXXHHFQUv83f/+90/qJDP72bMZoJzZzGY2s5nNbGYzm9lNsllSzsxmNrOZzWxmM5vZzG6SzQDlzGY2s5nNbGYzm9nMbpJtOynnqmu+jq9//Tv43vd+CCE7cF5BKAEhCVKGSi6QUEJBgKu6tFXeKdSpjtullIAA0FKTF0Kkf/Fv/gUgQVBCQkzuCwHZOoYM5552vLFjtn6fds7xnxJSxFvlARAgCEIAQrTqbwuCFApCiDGF/2ltmNw2zZo2SEzD/hvu08Rn8R8RbWgP39ON92Ty2ABfLm9sPiMK9wHxPgiAABm61OQ9mHJ14RzNPrw/jW2L9zp+Ho852WYhBAj8b5ptaIv3IB+3Nf2Fz9F8xxPBt659s+O2n0Vsp/c+7dNu7+Tz8N6P/d0+Zvs4k99tf+fhDzltegNndovZ7535SCil0O10sDDfw9LCPCQEXF2ByEMpBSJCWZZwzsF7D2MMAEBrDaV4LPG2RpZlEESQAIqigDEmfN/DO4s8z+G9hZQSWmkUWQYA6bhEBKGbYxtjkGU5CAK193CeACGQdTq4/TFHY23YR38wxGAwBAHoFh3kWQ4pgGo0hITA4lwP5D0GgwHW9u9HnudwzoGIoLVGXhgYY1BXJaqyhFIK66srEKLpx71eb2xeEFAwxkBrDU+E2lloIwEhYEyGLMthjMH6YASdGVjrUNcWea8LpRTKqkRtLbz3KMsSOxa5WpCzDmT5PvEYwecUEgAIFMYD5ywEgE6ngHcOdTmC1hqwFoPBANbWMJqfSxiWIIRAlmmUZYm6rmGMwfz8PIQQKMsS3lmAPLTSkADqqgJ5DxnGTeccpJRQSkEZBe89asvPQ0oJY0wYP+I/wIMwGo0ghYKUissRKomqqiCkQF4U6XkIyeNiXVlY8jxHCr7fcWyJfS0+Fyllmj+stchNBmvt2Pjjvee+BUBpNb6NCEVRYDQawZODUhK9Xg97dt/A1xnOBwBFlqMcDeFsnWY5qTU8AEce1no48pBCIctydIoOhoMB6rqGd3w+6xyUUsjyDFIreACD/gDwkqcQIUKfz7gvhHaOguxP/ExrjeFohPn5eaytrWF9fR15nkNqBZNnsN5jVI4glEJdVUC4V3meY//+/VhaWkrvNADkeY7BYAQBgfn5eezfvx8Az73WOQwHAwjyyLMMeZGj6HRQVRWyoovhaIj1/gBVaVHMzUMIBZ0XyHo9kDQ49ufugu78AoTWGNQ1/vPb/4XjjjsOnTyHq2sMVteQGQVJgIKAFIRvffMbKLRBbjKAPG64fjdqZ/mdMwYqM+j15pB3O2kW1pnBXR56+rbGvG0DSq0VjNaQUkEICWoBlgb3RZA3HexsBFIHB5Op7KAYB44i/C2wNVg7FFDZ3n98v/iTms9FA6bSvlO/O+Vawss6zeL2cRCyEXweDAROHmfyMwISUJt2nPb3N5of27f1xzgWPGjbAL63bQAFjB9EQEACIFDrfsdvji1IsPH0k+2Pf0sIHmhTG9ptI8R7zgO/AGEcxG32/Nrnk1KmwbkNAieB/rS/2+2JC6T2ub332wDtM7slrSxLLCwspIkKAKQUEEYzgAnPLoK++DzjJO4cT8SZ1gy4AKjQHyIQEGFMYqkWH8aWjYsUEYBJBG4MWCUgFMg5aKMglYYpcgz6fSwsLiDPC3hHCUiU5RAgggLgnEV/fZ3BT1WlCTnLMhAIo+EA1loYo1N/ds6hKBrQGdsRr10IBsOTbY9GRHDOpb9tXfN3jMHayirmFuZRFAWKANLKsoTzHlopaCXhPN83qTSIuI754tI8n88TnLUYDh3KcgilJAJPAucctFYoOh14ZwDy3I7Wu+ucC8CSgfxwOMTc3BwDJxDIA1VdwSid5goin95lTwRPHg4eSmsICXgiWOcCKJSQkoGY1hpK8L0TkICQIBHmSKUgZDPnMWgWvE8mQbYGPI19zv2Sf3rfLHTiYlYIgaquoKRK7QX4/vEzVBCtMao9ngkhYLSBECw71Ov1UFVVeo5a6/S7QDMGknOwYaFjsgxaNNfvvEv1vKWUUFIhzwsMR0MIKaGUhgIYRJejANY1nJOoqhJ1VTNGkSLUAB+l/miyDM7x8YuigJQSg9EQtnIMbr1HWZWQ4TkIMBjP8xy7du1K/QXg2u/OOSgpAYh0v7z3gGeCrFN0IOD5msKzpjB2SKEw15tDXXhInaGuGQiT8zC5wdrKCqA0dJ5jOBzBaIV9e/ZgeccOLM7Po7+yisF6H6PBANWohK8rlKMKw7qPHYsLmOv10Jufg/cela2hjEa320XlLBY7ndQmqbcvA7VtQCkEr6BkuDlKSUAKQFICelLIsZVb892JDh47nBj/fBJoNUAsDMQTICmdbwJUTAOTWwGyrYBs+pn2CxgmAY8JULnF8aeB1kmbBA98rdMYOYTPm+9FpjiCsgacTQPdbVg4DlY2gs+NgzvvIlq/j9/79j3YwI6Gvafdgun3JQxOG+FiolkbLLs1wEogTPAANnme2N54fVJKEAIv3QJ7kyBx2nna19IGi5Ns5GZ9YbN92iB1Bipv3RbZGCkbBkeCAV4EksD4IjMCFO7LEsIYftaKJ08ADEakgpKSF9ZCQEqFLDOJCSvLsgUaeJ/IbKZxxnue8ML4oZUEgaCVBLIMRZFjNPQwWsO5GuQJSio4snxtUkKAYIoC1toALgSqSsJZC+8crK1R2xpSCJgAVuI1x+ttm7V2DHQ5x4wng2wfGDtm8oQSUFKCvEdVVTAZA1tIie5gAEHsf1DGQAmJuq6hVBzDIwjTIOlBntuanpNitrSueZtUEkJogFwY+X0am533EFKCvUnBs0HE4M5LeDh4T/AijLqhARTYMw+C8wSyBKk1pFIAEZz3zKaRAwVXiVAEJQSU1ukYECKAqQZQQjBoiu1SIizLA0iUQsBP8bDI0DeJiL1OUsLaOgHKaEQeFEZRAcCTD/M0j01KK2Qw4Rk62LqGyrIwthJ7iIjgvUteTfIEIr5X5HkuIw9Aht8TQxqIBkHBSxnvvYCrGRAqSJREUFJAaQmlJPdhYsYTzkNCQSoB5y1G1Yg7iwDKapTmPiEFvPMM2iX3N1vX6OR5824TAsDktlAA5kYbgAScdajrOo3bPJ8BeZYBgW32juBc8BbAQQTyTmvJfUJqCB3ebyGwtrIKoQy6CwswSkGEvkLOMejUBtWgj7KsMBoMMBr0GXhKgdpaVLVFVuTM2EpejEAI2LjAlewRrmyziDuYbR9QRhoc8QWQidgRgbCLjGF7Up8EdWPgagJQtr/T/rmhLRF8Qmz87pTzTvv+Vr9vBJMCQnAnbnkd+BOxNWO1GZg8GIhor/AiAJy+H8ZBegBDPFDFNmLi+6HNrb/G2hcP3Hw65cztY2yEZodmbZay3bI2i9kCg2PfmzzGOLiavM/pnoZL4HvFE3f7O+l+eh6EBTY+v0l39JZXOKUdk9e0VR/a6vOZ3TqNJxuR/gkh4GzN4E00zFYUgo59gSd0m8AUAHhyEFDNQkIStGZGT6X3n5DnOU9SPrhE02fcvyOgBMCTl3PQxjDQIAcQu2JtXcODkBuNuhTIjIaFh/cMNoWTyPMMAgLOaRQmw959e2EdT+RSSjhi925dVbC1hckUiMbHwsjsxWuPzCwFMEZCBJcqA0ofwlRMHsEN/621RlWWyLOc3eJ5wexOAAZaaQjFbmkinxbg3K4szVtVOQrhAx5CKWRZhqqqGASA168CAlLJsZHGE/GzSPfWwTpm0TwI3jeAKF47BINrqTXI2eAuDgtGzYw0eQF4CUceRAhAiBlLpZlp9Z4AyR4XFUKuUvta45UUAlrrcS9KBGiCiaDxsY9Bj2xti//Y1R3a5AElFIMowyDXew+tJYzJUY5GsLWHAFDXFYQQUJLBLHlm/gR4kSUh4BwlV7qAhHMeZD2EdCCtYUzG7wGTxHwcclBKgxyhrCuMRiMURc73xCjojFldT2AAWTvUtoZRGaQSqGsLW1rUtkav10NZlemZI3iypBQQUkEKidVyFUoqZCZL/biq+bsCgBUSWrJXlzzBO2bylVLQGYcPWGv5cwBS1oGB54VIZDIJPgBLgTzPoEzGbKV3WFsfQCoNbTIsLC8DzqOTZVBCoC4r5FmGdQpLH+LzD4dDdJcW4ZzHYDhEb67LLH7G12GDd2AwGiIvOpBSY1SOtj3mbRtQSqn4pQzoJL3KEQBMAYftDjgtrlHIZoKcxt5NrobS9yCghBx/MQKKan+/fc5pk/bkCnla28ctMlL8+1Zg9eDHmm7T2bzploB1uL4Yi7PVd5vtDfgK30BEWZt8M/zPrzkvXsNKkeJxx59nm4nYCKjG/tryOpv7vjVYFBBQU1ofV5oBOY9d0mRoQTxF028BQMLTOHDcjNGdjPPcjL1s/4zAdDO2ss1ax8F8Zrd+y/McSgh2SxPHbAlGFYBgN7UJ7GPbxRjj5rx3AZjUUErBewfvg6szrH/iGKCUBFH4XWsYqVIMHcBMlTEc09h2sQshMBoOIY2B0hrrq2vwAikGzHkPQR5UW7iyBDyh0+uhAmFtdZWZKKUgArO0f/8+CCHQ6eSQEqiqCp48spzjNtdWVpEF13t0W4pwL6RUII/ECqZYPiOgk7ue3w9b1SAhAOcA4dHtdLDe72M0GsKTRxHYIK00QOympMBuVhWDGmMMVldXsWPHDjhnUZVlOmdd1wD55BWJ752zDj48D9FaGABIzzPuX1VVYt0g+Bo8OcDTWAiXMRq1FbCewbW1lsFcYBx1bpCFxa2PwDYw1oggNbhvhZJpjo4jD7OQvDiZJDRSCEEL7DbeFCQ3dLyu5O52VYqXjPNOnueJzVVKBVBXQCmNPBfI8xyrqweQ5zmE0vDSpXskEHIwpAHIoq4ZNAslUVV1bGJY0GiQ47CC2Ie01siyLMS5hhCNagTvagjSEMRxljt3LmPP7j0QAIzSGI3YLZ3nObRRqOoKdZ2h1+thMBphMOijrmsU3Q6qukKe5eh2uylelll5jV6vh2uuuSbFQcfnX5YlOp0ujDGw1qKqKhxzzDGw1mJ1dRVVVXHcbZ7DhzYW3Q7IA3Vdw1kLoQBZW4xqC+MJhTIY9PuoK2Yk4Qn1qEQnK9DrdGGUAYiQKQ1yzMR6y4BXTbCQptKowvm1MdynjcYNe/dgeedhWNqxjJ0Lc9se8w4BUIbYG6XgwmqLY3Bixwsu77B/G+xMunPiNmrP7RMdfeOkC8Tg2uRij4wpGn6qzea1J+hmno7bRBqcJn8XYvxn08b2HZncf/vA8VAAJoOSSbZyOlDdTmzmtCtgo3R/N3wW6bzJ47WA5DRAuRXgBqa7ittsJe+PwGqMH2M6q7eRTZ0EeM15iftuOufGYzZ/E8TGI2/Ap5jSprDOaW2n5KJqW9sVMr0N/HcEHJPXNrNbn2WaY7uyMME459DL8/DoCd4TjFGoqlY8WGC4jOIoMOc5+c0YA6MVlBSQqj1eohm7nIeratQQEFmG0WiUQI7WPHkqFft6EzphbY1MSihjoDODlb170e31QAAnDQgB6vQgpQDBY++eG9DrdFCPSlhXg0BYXz0Aij5KENbqYYqr9JaTXbSQKPKsteiVASjTWKJGr9dFXTGYdt7BwWE0HCLLMhiTQSkGJ5AC1npUVY0DB9bQnevxPbMVqlFIcEqxpmHh5jyM5mSmuhqh2+uhv76GLGOwnec55jpFYpDGwwbCGBBi+ay1iQE0GU+lOs9BIFjvUFceCgJZiFf1luM6IVpBREKgdgQSMrjUBbuAQzgXAaEPxLOzCxtS8b/gOhVeQcZYxjA+kgyL/cBWeufDUB7GekyMxWE8iSEHRBzbFxNsIlBTokl0sZZdyEXR4QWPDcx6ze2uqxLdTgcm0xgNh9BSwVuXxnBrLVQA6wISVvjEUguikLgEdDqdsBAilKMSSrL7WgbsUY0G6HZyFJlBSR6j0QhCaOTGQAkB8g7kCHv33ICiyGG0QlVV0L0u1vt9VBU/Zwb9FkIivCu8KOr0ugACoCaPIw7biX37D6CuLUo/xNrKKnYsLmHtwEqKQ82yDGVVYjQYIjMZFucXMBqNUI1GcNal0EAKbGSW51jsdrFnzx4IoTim0ntI59ApNEYVA0xvLYzSMPMZiiwD2Yrf2cxg/cB+FEUXvW4PVviwSCUYbbC8vIxMG5Dj2GatNeq6xrCqILMcmTLIihzDssThu45E5RxW+wMctWN522PeIQBKjpvkmDIJEK/OIthgMLmRmRyfXDcySpPM5lRQyWdIq7r2y82M5fgA25yP2zZpm7Ggk0Cg/TOClUlgMwkmNwMC08+xXVDZ/Iz/mraMt2s6iJt61C3ON/lZvIeT19JmQ7d3XQ0AavcNfsLjf4+fZ3xxsDFzffLcB2Mz0zUl/Np2uTcsNBCAc/vD8PmGqxTjYHjiBBN/N+2c1ie2239mgPLWazwetFUQfACAMmzzqGtmiGKyBbNjFbvJhYIGUNsKOgAuFRb2TWwmH8s5CwpMUV3XiXmKDBKB2Sh23zbsaFVV4MWRB7wDhEC36ITJjpBnGWxdA5YzhJ3jxICRAGxdwZEDkWdm0DvkWQajNSB4ItbhdylkWgy1F0TMRtqxd5uTF0LMKfnEkjEj5iC84IQcJQES0Eqh1+kCEHCegYgPk3RkI1VI3qirGkobCMEMqa1rTiyq+dxZlgV3rU4samQn2Q3PyTpjKiZCBGDM+0iBxEhJKSFjzKqiFJcW7gCEAKqqhgxzqxCC4+V0k8zkvWemWHDogiBOU/SRZAjJTZANCCWAY2MJ4ZwCSjUL19jWmBwWZ+94zUqpwAgymE2sNgAIQCsFTw5V5eGcBUAYjYbpvhERTAAsNjBf8fnGnxF0ubpGJIoigFSKn5+tHCA5xlEIZqhZYUQgL7LUbiEEqnKE4XAE6yyHJgj2bA6HA4AIEpxAhMBaCwHkhlnNCMRBBK0UhsMBrPUwSmN+fh4gfsckOGxldTAA+SaW3dU1ytFozHtUVZzIRBTevbKEADAajtK911pjWNdQrf6mtYbSBjrMcUoamLyA9bw+KssSUmeQkj0D8IROUaC2HsNyBBeY0JTVXhTQUoK8Q2YMbM3gGVLC5BmUUqjrGlnBoFZlGTq9LtYHQ1R1jX379uHwbY5528/yFhJGaw4KpyDPkjpHBHfc27Zi0cb+3gRMTgN8MrKTbbYz/hv7zuYu483OsdX+8frYJif5COa2PtbkvThUhnJjW+KQMX7NFFwbB2MGW1vH/4zgZAKkUIvJ23icMKgGF/ihsJKT93G8Xe02TIKm6WBr7LN4VDHBPMbzt8It2B0uxo7R7DodsE0793YSbFpHmHrMyeSdzYBlm7GegcpbqzVhJUIIdneDUjylDEkiUjZua04+qSDQSOl4cizzIhqPT1tWaMxlHlgl5ywnZKDJ+I4Z2UKqBEqlEJBGQwrAe5eO7bwDvIckDici7+Cdg7eBNbQVZHjLvHfB/VdxAkRywYcJUQggAIR2/45tcK4ZsyJrpVUkDSYW6t5DEILklwcEEw15kHTx3iUGDm3gJCWUYQ+bDPdMCpGSTch7IICaNvCNjHFMZAExyAX5sZW+kMEl7RygFJTW0NokwEdSACTZjS1lEAkhCEEgUQMQgOC8BBVAuAh/c/i+D58H0NgaDoSU0CEZKMacpjE1zslSQunm+gCkWFXv+dgqAdLYb1vufuea9XVgttndz3/HzOhmkRP6NwW3bbx3vnnWMbQjAkputQeEhzEKzgWXvBIsiSWYzfbOwxQcQiECMJNSwJODtRWsd5yFLQXqukZVlrB1DQnBLngh4MHPkSRn4UdXsPce3nm4uoaUGnnGMkRVVaOsaziysMpiOBymWE4hAGsFRqMh99cA4K2z3LfAbbS2hpSK9xO80BCClUS0UtCa45uLooBQGi5IImmdhednQNahthZG6sS6CyC8LwJlxQx3lI/SWnOIAQhV5aGNBjPkTQa+yTL48MoorZlRLjJ4IUD9Afr9/rZHvENyeWttwoOTEF6k1QqzhI3bcxpo2hRwTYCtqXGN4JcrHRcNkIz7hBSdVlzn9HNOizHcChC2Adv2wcJG2y6Y3AqIbnZM4FDBzKEZx0gCQEhOEY2zhJpxZ8yFctBjiva9ba4hHHVibxrbRrTFs0gEqEg7b973Js4pAFD7Xgc3UCuUY6sEmq3AXfs5TV5HG0BOPs9pYPxgC6GZ3VqsBSaFgJJqTPdPQqAOTByDzOY7FPqj0hLGN6wPIJKOJCcNsEtLCAGhBRASJRgQAQKqAQ3ew1Y1TB4+E4Rep+A4tbqGtcz6VSXHrEVGsygK+KDPKAQnrpTlEIvzCyED1iWmyFsHLy20NMiNgRYNCRBdphF4RImdNkkQ22phw+Tc3DcJkeS+YsgUEQNGbTIYqZtFGPFYpZXmxKC6ghYS83NzKMsRJyLIJilKyeiCrSGCO7sNKF14juQ9amchvGi0FANAgRSoHYNwrTVk0PqjNFHKlIsQrxXw0CbnvyPQUjoAAkAbDWUUhFcBYMo0tvEYISGEgtRNZjYflwFG7DORqURa2ASgCOJEHyDcLwUmNhmkyRg7aZv4/AgoIZCY2RQvGo6tlGJpHClD3KlP7HlcyJBznHjUWjg7z30vyzLk0vDaQAhUVQlbV7CWgevcXAcAZ09bW8PaEr25LqzVEJWD9xZaAfXIwlcVqtEIVV3B2V4TtyklfG0hiJBpDQiJsq4w7A+gjUHRM+h0uoDgnI26LOGsba5BxkWfgNEK/f4ImclZLztgEhAxrSgElNAgeAwGfWRZjkJ3UVtmPbU06BQddDodDIYZauswciXrbGoGxlopEASctSjrCshyRA9xVZWQ2kBIZlLLimOLhRAco1tLjMoRijwPDD2PI51OB2vrfVjfJAcuLi5hVFcoig6EkDhw4MC2R7xDkA0SQSKigQ1jv08Bkwef+DYyd+39IlCN0gARTALjE+7YZN8Ck5PnmxZjuJ3JmAeNEHcy5fvNtfMqcStWa/Iap55r4vOtAOV2rmPqd4GN7dziVoyDLIaW7ec35WjJNgNZ49unuYXjn+P3lD+ddp95VRyPzeP4xEW1wSTGZXcSWJ58xq0zbXXPtwPqm4kTfBWTrPAU9/pm19MOop/Zrc/m5+exvLSEzGhemMA1LkHPcXbGGLjKjzE8LFkT3eKN1I/RrKfYZik5GZEndPhxpk8pBe+Q4gGzoLGHugqsCSX1DoY2BFQlPESjswigGpUwkidQ4R20AIQJrnAEBhQOvV4PJoAFAEljMrrzYxKH1joxrKMRZ5CqkCFNROh2uxj0hyBi17E0EsPhMMS+aZSjErV0CZRmRQEIwPrm3Yn3rEYF3sRtWl9fDX8329pgKLoK2/c93ksd3NBaq8RgVlWFqqo4AUtFUXKLwXCATrcLTwSj2LNnqeKMYQEoyfeprqukzVhbG0BycI3L8bGI0JAu6d0Pz02LcW9F/DmW7Ndyz24ophDGoqh56Z2D0YZdpNbC+masjN9VUqHT6aAoiiToHs9ZliUvAGSjbzkcDgMjHYTFQ9hFjI901oZsduL4SGmYUZMCJutiNKxANEJdc/JXZJlBBOtqDAZ91koFJzoN++vodHpJOirTOjHUsQ8aYzAcjUA0gsly9Ho9rK/1IQA4azEajTjpKLrng+s/SivF95CyjMMcagdreZ+iKAA04QJlWUKF2MW4ODFZhvmFRb6/CJn1QqQ+tbC4CKkNbtizD71el5NOywqDskpZ7KOqghuNMLewiE6ng/5ggLX1kExUFABYSaDodLB3/z7Mz8+zt5mYDT38iF3Yt28fRqMRbrjhBuw8fFdKilNSBmmj7dm2ASWJqFPUMCtM54fpVoRkGdFiKxNQBNrgowF2vHqKdWDi9xOrRCH+iNoZ2YgN2Dh5B4yzGUO6EWBGHbB0lS1A12zjQ4u0cdpxx49/aOBvM5bxYKDzYPtNtnHcNge+G022XMLTFwX83AkbNSvb18N/h0cLVnccB48xLnOTQzR/UutbLdc0TbkVYy1Kg2gbBG8VC0qJ+97gAh8/8FgzY5ensUY219qwBDKAjfG2idZBKA424ZmldZMQG/rMzG49Nh+qwDBjKOCsR21rCIEwobFmoAeluMc2IIgATJAHglRznPSragTvWfcOYZsULAgN8HgZJ37nmbEZjRi49sw8A7E8A7zjhATJWdZ1XcNkGWrLVUik4IxQXRSQQkFpCe8V8szAOgsfXNpaNBO0RANiU8Y0uMKPEMy28LUxw1YURWKpIuDWmgWsPTlIL1AEeZZ4XCE8PMk03mdFDueZiZRKwugOAI6HA+OckIVcsvsWIW61KNBfXwdC1naUMYrtSULUwZiZY/kZW9fwBGhjgMAcs9vQwBi+hyTAYE/yLKeVYZkf70FSwBGhsg5Sac7KDedUYN1LrTWsB5ytuCpdnPvkuNi0cw4CHJbmycPWFt5RcDPzuCG0SO5toQTgCd6F6jdorlkrAwryQ9Y5TjByQehbsAYjEcG6JsGVbxHL/vBY5hGS28O4L5Fl8fkP4eFBJFDbEnmRw3kLDwpSSJQWHFKwdFR0LWdZhqIoMBz1UZY1hxIA8OBYTsYNHHpgawuAxc6zThfSWhR5zuEcAex2unPwJFK1KmstOp0OlFYwJodMix4JFZ6dDZWrIqAUgiWQBIBOrwPvCXWQLuJQCQkiwDoLE9zrMbbT2AwSEiQkRsMSe/fuQ9HtAiQxGlWwjnDY4fNYWFhAWVXQWY7lw3YCK2tYH/QxpzV0JjAsR+jQHJRUUIaTa7z3gJIYDYYg7zC3uMD6kxUvsowxiZmcm5uDVArDUYmV/QegDC8Aq5rZ3e3atgElRFThl0mLS6gIFiObyC+4R9A8l+NAS0CMaVpJNB1OihjWRuH4obPy/0wfxzKHG8Biqw1TwGS0jYBtGpic/LkRkG32e1vaKH7WdlNuxtrGfwdzaW6X/Zq2fQObxp9s3Hkqxgyulg3HHf9iGzyNMZpjbaOJ746fMOp6JsDHPo8p7vRGGzK6rseusf2MJhrNA2e4rvi5mHyWTbsVAtYbA4gTraF43a1TJYgdmcj2XW89ExE12SYqhKRbEeRBRCwFSc1CaAYmb7UWXaJCNpnY1AInScoKmy360EyQ3rFCTtjGiST1mJdISgkvKCXixCxOIdh1amsf2BEGfCCC0SFZph3WEZUEiEDOB1aHWwwIZIG5EzUnwRAAJXSKq4sMUGxn/BmZGnatifR7ZAEj88PZ003iixQClohL3SGOqx5kCTWVLIYNBhVhygAFmSYfEifieZwLsYIAICgJUMd4tm6320gtBQCbnlfLK8ZgPT4j2WxrPXvnPTxanjQp4FxgDUWzePbeQ2odKqqE6xO8avTBra0D+9e0A5vPFy1mEJBpDEIAq21Reyca93RcrGRKw4fn7QNj6MNnJEKVIDHeZ5O+ZeivkWmLzzbOCZHpjf2VAXxgyMPXldasKUlAXVtONpLBbRxczUI0FZ+kkKirOug3qgAmXQjR47hLAgN/pTWEb8JHhBDIOwUguC9LpdDtdDmsQQVPgDGoaxfignW6lvgsmj4dk+uYxU5JcJEKaIUDcCa7Df1IQGgNF+JDq7KC0qGtUmJldRU6y6A8QYZkKakkYLmSDVkLD4/haIiOUtBGoxBd2LpGnueoyhKVrZPwv6tteqZCsDfCGINOWFDY2iLLM7jawlWWH8w27RCzvIO0g0SggsbZJV7nSCi5cXCUU9zhnMkoUudK+06AAQaRbRYrAqzJvze6zieTQMb38Rs+23zfgwO6tm3nO9s5/sGOM+3z7bQz3PWxbRsYuC2PN22/8aNvty03xrYC3ZPPfJpLWEwBh0JMe3EIUYy5DVo3P4/fsn0Aph5HALxYa8UTtQfiJHHkKQHbmaP71m0xjjFKm0QmOsb4eWq0J8dja5vJToggHeNCNRERXZ5RwiQsuKWE0E195jhJJMZLKYAc1wSXzWTXLbLU57i+uEwMkRcC1tfIMhPKlHIbo7swTsKePFRwjQLcp6MGprVRsJvd8tZxpikEx7+ZzIyPg0IkQfA2+LHOsuyNECmDGkRwBHhfstZlljFYDKA0JQUpla5LhqQYdpOyPE2M5YzlKaMgfMyujkAvDmvtMqxCNOAtZtPHbVKrJgwhLP7awCK6jVmaB+GZh+smxaxbcDsaw8xjEvymxueR+g2i5iRSVjWINVBZeo4XFjomGoXKNiAGMs5xfKCQEiAfgHrTL+Pz9Y7VACIwBJg5rOuagXCr/7dDHeL9b2t1xp+xyg1jUi4DyhqsLGreLPhZ+JxVZjS0ykI/MUBIKvOO4L2FMTl0lnNWtbcwJoMIGCayznVdQxoNnRkIz5/lRYFq0GeASgSpJHzFMYzaqDHc0ejG6vA+Usq6T7XtfRQrb0IWZPDs1nUF8gLKGAipoCUzwFIoZAXrda6tr2NucQE6y0BgNlIIAW1YkYCCfNVgOIQucuR5B90sx2g0SjW6q6rEYDDgMI4A/iPDGkNtjDHoAnA1l+e0VY26LMfw2MFs+wwlmqxDIdq1Q9p7TAdhQogNnwkhkvxCu3OlY00Apek/acP2ad/fHFSOi6NP7jMZc7kZg9X+zqZ3b+K+bGUHA4dbgZXt7B+2Ttk2OUQd2ve3G8u3GcjbbN9Dte1/Z3P3/LgbvgnzmHaepi9MHmPTFrb2bfejGKc0XvForJ0TSHjGT956TUsO5ocHCCxoze7IGjGsx3vPk+bEQiL+iwuNyO6kPueaxbALbCXIpQxm7z1WVlZSnKHWBp2ix6468qjqGt45jIZVqlkcF+15zhOVlwStQuKMaMb/5I5UwS0dXGtKKdiKM5azLA/i6AwKal+lDFYbYuggABICOmdQ23b7x/fBOgvvHQg8sU/KDwnFALKuK+RFgSwwONHdnhmdstT7oz46nQ6qoOfHVYKaxBu07p0QXNowxqyWZYnKWlQBIEspIXzjmo2ZzPGNds4h8ZUUM8C5kpGTMoibhwVAWaZ9UsUicFwpM6cqVU8RMnhXCFBRYycYUWT5RFqcerLtkQxCKECH8g9ecJkbwRJDMtxLoSTIcyhGkhVSkvUww6I5sqBCMgMKH/QrjYEyGlIrUMhSBsYJowjo2nXZI6PtnENlHbpzOUwmoHSNtQMrIQkrXq9AbQneC4yqGkpJzC0soL+2DgmBPDfIswKeCIs7lgG5grIskRUFlGL9SaH5XVod9JvYYiEgtcKwHKGsSm6ndCgtS015NO9lbcsUIymFRGYMyrLEaDRI/UcIBa1UCjWoaoJ3NazlZ8aFBjIWKI8Z90LChSpXwmj05gvc9ra3xeVXfB9H3uYo1M5hZW0VR972KIysS0L3SgBVbTEcDGFMjm4nx/r6OkZlGUTfc5TDIVZXV7EwNw9PhDompCmF/nofWnFM7A033ADnKvT7A9R1jbn5H4OwOQ9oUWoirKgS8Ar7hMmvcQWIGNbYApFtYDXuDp4G0iZ/TgNPItDzzTEnf/I+7f2EACYBQjxmu/NvdT/abZq8hvjZWPJQq/2T2zc7/lbnPRSb3H8rIH1Tvj8tpm9amzdnDrd3XWnCnTh2e2Le6njTzr1VPOLk5vFzRMAJRIi3FWCOfS8QVRN/R1YyHmsylIB5ZUoxlTO7NRs/Vw8XAA6FiTcmp3CWsU7MVRp/gubjcDSCEjzhggiI1VgCwxCZnxh7GIFqlmWcKRuSRYQQAHGwf9HtQgV3eGGyULlEwBEzisaYVHFESgmyHEMZazlHZiNWj5JScpiT5HKMFCbEGDNZ1pxwEpmpdnxnt9sdc3fHc7ffZ+89Op0Og2hqXIZ5nnMCSYsxjPc8Ak/R0l6MbRdoYlitq9M50CIRdKinLaL2cgB0QMPUkXdj540MZQTxleN4z7qu4VokBWkNOJ+cbqblzo4Z+xRBntEAJCiEN0SXpw/uzyaGzzMzF1jcmPzCep5xpIhJOTaMWQ1AUqLxQLqgCyoDWGyXxxSCpWYAQGluCzkWI+92u+lekfeoan5G8R5FxjrLsvR3ZDB5H4BCELy1IRRBagZI83MM6qsKZVWh0+miKAq4cI+ds+h05zjZx/HiLTcG5WgEk2WQAcTmBbu367pmRhUApIBWJvW5iHMEmlrnWsbnS5AKgEN65+LUEO9frIjjPccNx+cbF00xCYxZwQy5kegPBnA1l0B0rkZ3roD3Dv1BHxASS4s7uEJPbdEfjrC6ug5IifnFRZg8w2A0hCdORirLEsNR1TCmQmBpaQm3P+q2uPzyywFqisJcd911WF9fhwBQlRX6/T6EENi9ezcAJNZ/u3bjXN7CJ42zONFGxi/8wTE5waWd2MnwX5Mr3oCCzVi2cTCWDj+2XwMU47c42aP5uw0i+W9g3OU5DfRNtmcyHnIr4Jna1j5+/B0N69A+3iQImQbiNgNRB2tH3G8zcH5Qowa+tJ/7xNkOCZQeCni8OWzaomWrfbc6f3tBMhYfuc3n2F7sTDv3dIA83qZpCUgzu/VYLF8oRbNQtb4RHK+qilkdWWMsJkxKiFZMoxSAlk2cXlVV8NbBGA0pOcA/AkatDU8AItaZl6CY+wZmyARxbKQJpXSttYBDiF1nhkQqzbHD3qPodng/71PZQAjAWpeAlggxY0qoMPZLVNbBOg4ZkVJDCGbbIAhaaggpUFY18lA9pw0sKboOjYELrmkBjkclQYFpLAOrxO5FqSTrUAoBEVkwIq6S4mMyRJPwSQQ4R7A2zmchgUobVNaBao7l1NqAyKVnGBlN632KLXR1YJioce2mBB/PFY/YxR3dugIgrqcOsPu5yZ7WzBIKTnaRSkKZjNlCUEqQJcELS6QsAz82okSWjPMQePJzzsE7SiRPO2OctQgJVV0loW0EljK60KVgVys/nzCLk0BlK0jF91UKCaklqPQYDPvQSo+B8jQeSgbCkAKCJLQRyHKNrNNBHbKrAaDodPk+ESBElC9kfJHpHCosQgpj4GMZP98ktZUVg6s8z9M1pzmcO3kC6dYSskxzpaqwwI/lUmN2PIQAPC8SEYCnICbUtNIgw/tXZQ2tJIuKA0kdwFpOZnOWE6ckqfReCfIwMRtdKQAS1ajkGvSekJkM3W4P/cEQnbke6lCWMtMZ9u8/AADQJofWGbIi5xhoHZhSIXD44Yfj+uuug5IqlXet6yq4tVn/UymOs+b779PCaTt2CC5vJNHS9FK2wBmA8MKLNBhGAAnwg5GhYzern3Fg0gZoY6vNCeA2DjgbZmgzNnCatuWkTX5n2j7tdmwGSCbjDShsk5scNw4HCO6tSejQ3ta+jghcovsgrvLi9vaKGkBSwx+TnGjdr/ZA3n7x2e3mU1D3JNgZbyFBBC24yXu71d8HA4zbBajte3MwE2gC2ycXNW3XIh9TpRX1WLxb62d8vr7Vb+PP6fd7I7DdrO8VRZFW/3FCu9ELg5n9xCy+b1opaLXxvYxMJTMGE30BzSJUgNL7jbCdk3viWBoX+uwSZjcpBVZTbugjiSENwMh7HzIiBZRWPMnJqL9oU8KKhwsMoU5xYhQo9hiXJYWEChnCkJKZtDApszSQZikYIAEuIIwgokls8cRSOO05JwVaEUHFMoXUikElCu7xloC34JCAyFqlGMoApKUK7uTIjDmOxRyORqnkoRBcCWZyrJBBSzQ+JaUUBHHCSpTB0cawSIYLyVIRkAfCg92jjbQMELLCBS8q2gVEWFIodoIA9sLNI6DlEmZKhdCMD/GfCwLl8bOULBbZygB+VXgekfiIGpZScv+y1iImzvI4GuIcw9N0wZUehfabBXeoKBT+tsHtGkGvVBJZkaMejdL8wnNXBQKzuXlQBaidQ5EZFJpZR1vViVmE9xiVI0i0K0qFRLAY2+kc6srBh3fUg6WCbEjw8Y5FzmtbQ3qWlIoJa54IVVkGj21TU917rq/NRQjC7Jh0PkOFIedB5OA8gXwNbyuO7QxSUkrwQs4LD6Iao7KC8x7r/T5rSILZa6P4GsqRh8kM/16W4Gz/DEYbjAaDQP0yo87vvU6LnzwzMIZF0h2a5KpOp2ipIfwYGEp+AUKQtAhMoxSIGoFpwGq58NqTnkRTNvFgjOTYWdMxMGX7RFbtlMl1cpKeNmlvBSa3mrinubfRAo+T39sw8Yf9NwNgce92FmQbMEaQ2F51RT2wWDIMaOKJJlfOEc7aJFrL9VGFkOCFWIzp43a0V5exzVKKVks3AqrJa7q57FCO175n6XmE0lsxGDnP8+QebNcVBkTIFGxqzDrnMBqNkgumXQEkZVC27kMbDIzHW461MrSv+Twerzffw+E7D+MXPw3gQIzqELh57+3Mbh6L76bIDEuxTCzW0rurZAKFABIQEoK1f8kTKlul72ZZux62aLxHorUIFEC320VVNokykY2MzI+Uimtsa9b642ocmt16gQGCABwRssCuAKznpyTHQ3IsnIc0mucHCCgRkhs6BbDGTK3zHlnOWn29Xg/Oe6ytrqLb7cKGa4ujYMzyju9rk6HtUtuja956jtEcjUbI8jwxSOTEmASQC1V+ops8Lo4zkyXNPQCwVYXe/ByscxPv8jioT6UyhYAg9rtlJoMnyzI7dc01q7MMMgDDCDaQQhCapCxme/2YWDpfe5OUFC2SOSQEEqIEuM9IkQA58ywbyZUmxo/HkZgssmGMFHGKEglotOcUY1QCJhG0SclC5lXF7HxRFCleNT7Luq7jiimpEPiQZU4gUF3ywiD0Y+tqLsEpOZSj2+vBOofr99yAvNtBZ66HTq+La668CpnJEiPoyENLjfkOxwAOh0PUVYUiz5Ow+toq62Vm2kAKoPYsk+M8xzrX1nKFqKxgGShqiLUyJG9JIRMQb8f3xn4X+5CzlqWHyKdr82Dgm+edlNUt4FFVI0AqOBIYDCv0Fhawb+9eSG1QBHd/bgzK4F4vyxKZNrBRSUFIGKWwXtUYuSEvxgTfg/neHM9foxKL83OYm5sDuSZpbjQYYOfOnSFhC2PJVwezQ4ihbGIEpBAhhqu1khaB9p2YKWPMZFKPb616UjTYRKdH+5jp3zjDE0FresHGyf6tgdzEOSZ/b38ef05jJyfj9YAWszjlmg7F2t/zQWw2tqEdg5RKg4W2tEV5I9jp9/vw3qPX62HPnj2ss6U0AJEC8uPAplSTlccAi7P2lRpPUmpn7sWBvl1Wq30PtsNAtgHYzeXinnae+C/PCnQ6BTqdDseJqGZCnwTNzVPNG4YABGtdepnX19dZBDfcl3ie9iJgs/sRJyw+7eTKiaC0RFYYqAjuA6PVHODmukMzuzktvhd1DSBkIbdLJsag/oAexxYfFIACM3xcZjuCLOccdCifyMcLIEE2jB4ET2ydTifFbRVFEbJxLayNbQsuszyHNoYzk8FsmJQKJudxxIVKJ0KEsnXeQasCUgIeliceZZCbDFIIlFWFwXCYskp9cMvnec6uXBAnRmgFJfMATC3KcgShVdKfqOsaHoQiz9ALbt+1tTX0+/2UGCSVRF07rK+vp/MJYWFtqJCjecFYg8fDUVlCSoUs4/i+Xq9A7eqgEarSsWP4AYcuqPRcontaSglHBEECnaILWBdY1KasYD1iYBXBVBw3pRBQFMfSCJwNsozduTbOpYplcKqay/ZJxTI5JBDAh2zjSSjVMGWxHWk8cw5CqABSKbHB5BuGPMZ/xnHKEyCC6Dy31aN2Dh5AfzREoL7gnEW/Xye3slAilYPkhjBesL5O8cNaKwAKNkjaeCJm2lYdBIkUb1xVFebm5lBbi+GoRm0r5EUH3W4H3lkM1tfQnZtj7cfhALnJ0Ov1sGPHDgzX+1AIMlY5YTgcYthf5+crGbNkSqMuR6gqdi1n8wsQzkE6B+M9lNYYhXrfiQEF32dbcXJbVBUAYrKNAQVwlkIkrAXRAFVdQ4c62xDcTzw51HUJ5x1K5wChoPMcQrFEV5bn0BnQ6fYwN7+Aa665Ft1OB71OJ8kcKa3RH/RRW4/11TVordEtCuzZsxeD0QBSCnQ6nUQ2CSmxtraGsiyxsLCArMgBKVBVI2S5SQlyvfnetse8Q8zybteXDRp7YeDjyVKOTdoMICXGEnFEdBCg+XsChMSfze+Tn/E5I3CMXoFIkYvIvQf2Ji7k4nydPm+d82Cgc6vPp/1+sL+nxUIe7NjNZDMeaxSDfffu3YvhcIgDBw5g3759uOqqq3DgwAFcdeWV6A8GOPLII3HNNddg165dWF5eBiBx+OGH44gjjsDCwgJOOOEE3OY2t8HOnTtRFEV46WWozTudoW0DSk4iqBJ7N42xm7y+aTGNGwHdxnt0Y0BnrMrQ7XbRKbJWvNrB73+zLf0GYzSM0ej1OlhYmMeorLC+vo719fU0wLTB5LTrnrymadee3FLREzDefQP6mLGUtzYbDQaAd7BSolIyCUNPZr46T8mXGSf1QOCEkBMJIzguUkpeLJqw8OMEkVBdJ8tDf2Y3L1d9yRPwrKoqjGWslQcwg1TWNXRgmXSQzSEhgKB9mWUZyPmU8Vt7z9p8VYWmEAEv6us61CEXnL0NgMs61uxmN3kGBB1AFbJKB2HSjWC7qkoEGUZeHGecvFT6Mri7FcqyCpVsWG5GqQDgrIWtaxgYvrayAhGQhwSl0WgEHYTHtdZJ0FoZlaRvqqrC/Px80n6c9Awx+K3hfZRu8uiAmTSpGs1LoRmoRO1RIQRr+7ng7gzPOiagRDmmytYgJWErH9zynEUMIGnRRi9YW9gnSvMlomMiVIw9LSGhiBpiAuTgXRxBxkPYlJDgcp6NO1cQIcsNtGVPD5EHaZMWJ9F1bolZZHaNc/xfVVcQ8LB1CVuxJI13DgoUAB7B1RWKLIMjBwmHjlEYDlYBYpFzW5UYjvohyYfvpZIS3jG4q8L3MrmAwWAdw0E/ZPp7jnt1dQhDk+gYA6orjEYDLrspBFYO7IMSknU6Q2KLDq5mCrGZQnICmpcCFgRnPcd2ttzreZ43CVzh/a7rmt38ugn7GA6HgBDI8hydLEevKFA7Ql50oIwBCU7MI+JnrJXGYYctY/cNN0BKBZ1lKLodLPV6qJ2HpxFXaxoM0O100el1AQmU5ShltBdFAaM11lYPIA/MfsQUc/MLyIsOu+ZDmMZ27ZBiKGWopiBEiI6UEkJwtMa0yTfWd51utAHUtX8fB3GTQtnjE69Ak/EawWbAqg0Yje7B+HkTvTjVJtuwFfAZ+07ru5NAYjLGc9pxmu8krjPFLwIIg2mJ3bt3pwHhyiuvxDe/+U185ctfxnA0wr59+xLAIyIcfthOEIDvXf5fEELgmmt+gGt+8AMoZbC6tgpb15hfWEC328NJJ52Ee9/73rjPfe6D44+/A3q9eQTme/xZtNwjqZQUAb05XlWWZYnBYIjRaDQmDjztPm8GDrdid6d9thloVUqh2+1ibm4ORZGPTdjt7022pc3GTmew4/c5u05rjW63g4WFBayurmJtbS25Ndvn2Qw4TgWw6b8UIcEuprbQ/Bb3aWa3nBmtArvfxGyJVjxSe4HIFjO8WaYlLtZISMBzcL1SHGDPx2y8E0IIEDwcuTRy8PdjJRSeMOq6BktIMkFQdDsQFYd9xIkwaR4Skvu7traVuEIweQZBMXEorHBcdPERtNJw3oZ3ischdpuyPI4IVWPqynISSmTIhExZyAkwWwIQ4tJIwNq6kUeKSS1o3ONAuD4IKM1JEaJ1n8mzTAsUZ0C39ZDjuBZrfCfdwkjlARBScfUi4qQZ8uyidK6GpLAA1zrEujXqDeQJ5CwQYuy0ZvDPyRqB+PAOQlAAeQTHVGWo2qJDbCgFd6QImtOB/XSxlnd8JpHgiR3Ch3P4AP95G7GuFQNDH2I/Q/spsI/SmJDc5NN4pEJdcSIB710zUhGzlt5aQHHfFd4DyoKqKtK8ABAq71SNbFBwgbtIVIRwhHI0ShWJnPeABGzNMbBGSriqgi1L7o9SwpLDSEmQLWEDECZHgBIg51GHbRxnLCDgw33n2EiW72liDktbQyoNoRQQQv/qGKIAD1tVIAMo8qFfKRAJFEWOqrYg75HlOWtNhkWRkJzgrKNerBCpgIAM9dSds3C25n+OUNcl6moEEDgxra5RliXKukan2+MYYWPgANSuhskNMp8HvVhOtqtqCwTWNoLe6NmIWfgQkjU3IWLFmW3Z9l3eYfVjtIGgdlJN6LQU9wIUmK1UYbUcgZwAIeiXBqZyCiBrvwANrxi7fwCJE2BMACK4JBrkE/eRE4cQTY3ULYD3ZhP9NLZp8homf9+M6ZII7ERabQI8srIUhg8ZWoPggtmzZw++/e1v4ctf/jK+9a3LsLxjB667/nqsra1haWkJVVkiy3MsLS4yGxETT3wNkIcMAz0zIwKeHBbne/wS1TWq0QBfuuRiXHzx5/HmN2f4//6/U/DAhzwY9/r5n8exxx2DPCuYqQxu11jhQIoGdCkJSKORZQyuqrLCYNDHcDjkoOYIijzSdbeB3OT9PRSLIr3tikXGaCwuLqLT7aaapJN8Xvt80zL3k04dNvaLcaaZn2m3UyDPDDpFhgMrKxgOBsG1xDWavRtvwWT/am+XUkIJHd650J5UM35rhntmt6xppZIoNYuMh6oYoonr29CHwJN4u+gAe4K4/CLLfTAciLFNMUbaBTFqGcAUfxZZIz4Wh6n4QA5wMk0nxe1xX8oyZpsEEcdWCtEkeATAq7Rmfc3goaJQ3o/AE7UVBCptiH1s6klHwCOD1yMyjXE2aK4vuBSthXcMMLXkzFvOJud60ylmMrC5Udgc4PdNB4aMExJCPJinBJ7SexQXleE+xYQdE5JQvHUJvPF7qRqWjyTKqgRAkN4BsqlnzmUzOSmJE4iC5yKAWCIPXmNwXIOHD2AijGPewzpiGZyiAyEkZGCqPBGDIRHYx6hL2PLUCcSxIhAxoFYMHzOMCH+T9wG4uFRNiLyDdxbQCgjZ8kJwjGrSMKdYHrY963IMKzkXhNU9C2a7pka8AE935EJMpRdwZR2koKogbG45vq8sU9xHXddQRqMajVCEkKXKW/hyyDHAXsA5iUoCgizfV+fDeoDfDfLRTc0VcOL86BHAPIXvEINQay0keShSEIqlnGrnILI8JBsTnK3DO+6hQHCO0O11AMtaoNoYQChkKoaYEcdEFiFBTUp+z4mrMDnH98vbGt5ZzkKvSwwHfdSOMNebQ38wRD0YYDQcYDAYIut2YDIDkizXJTUnwWmXIQuTr4wVmsi3qmmJlE/A2qIilGMNiWHbHfO2u6MMdTqbYPAoI9C8hQLBvY2GkocQ4OSOeKSGDWqYuPGKA+FrrZ98jPi91KZtZG8TUQA/rc9aQPJgbupJ2+xcm4HMSZZz7G8EuQrB2YVxoLLWQmqNAysruP763fj0+Z/CdT/6EX5wzQ9w3XXXIcsM5no9/LDfh5QSO5eXYUNn7q+vQQAwWrP7SRA6eRYyuQhFwcknVWUxGFbsAgAwP98DeWBlbT3EdxhccMEFuPDfLsTRxx2He5308/ilJ56Jo29/NHYs70CeZdAthi6J/bYWBEoKdDoFiiJPcYb9fr9JGEoTzOYs3aG4uimsjNus5OLi4lgSw+QzOFTbqn3tSVNrxUC208G+fftw4MABSMnunfiSTgOnk8cVEONM0BgTH7fN7NZo1tUwmU5jW3Q3tZO42mxY1KUUQiSNvm63y8xiVUIpmcZVa11iFcbjqBFAxXjmMHtPVHo3YjzfaDTC/Px80gg02kAbnUBF0e2gqqqx8JDoHmNvYHh/HU+kOgzp5WiEyoUkGNb6wWg0QlcqSJOlNg+Hw3StSkme/Fux2ZGlzDId4gLZ5eedC4CKgRqkgFK+5S2hJMsUXf6dTi/IDQWw4rl0na8Y1GqtOX6TfKoYE4/HCUzBLag4gdEYjSzL4J3FcH2NE6gEywlRKBMpBY+DXFpYoCLimDvnQM5CoIm5llJCaQWlOH7NKIXcGAyGI5SjEcfSSclZ9gAozBkCgiVsYs3uACMFccY7AzjuB/E5AwjMLEK2sUsAXUtmFX1ayIRzBV9gUxEpjltAVbFwPYWEEK0N6tGQ2U7JpTtHwxGKPCRBeWZFnfcQzqEMcbpVZQHJ7feBNRXhZz0cwTqLUVWh1+thNBjA1TVsiNv01oZFkGSW0qmQMMTPSiuD4XAYmDm+x6srK3BSpiQgKYFOwRVu8lymPprnGZeAFLzc0UoGcsRDKo2lpSXsX10BQmyqqziBpz8cwlkf3lmLyjp0DNf7JnjkRY7MGA4LCZWKjOECAYoIkAogDyUAoSS8s1hbX4MnoDPXQ5YZdKgACWB9fR3LnQKmyCHzDMMDJUZ1CaEkspxjm0ejEbq9HkAew+EIdVkiy0x6fnlewATQXlufYmu3a4ckbB7BggxUNwN+33TiqDtJ7f0nE2gmARcQV33N3805m3M32ybZrGmxalPd0ZswjdO+sxVInXZvNrtfm+/DWWFZlqGqamilYZ3Dvn17sXv3bvznf16GCz/3b7jm6muCQgQPPEtLiywpEAbdcjRCf30dnW6RdKM6nS4ADykNr7q8Q7fTBTmH4fo6JBG0zlFVJZwnmBCcHgd2EGF1dQ1FkGfYs3sPPnX+p3D+p8/HEUccgYc+5CF46lOfgqWFBXQ6BWtmyZhh2jwjfrf5PnQ6HZgQiLy2tsZugICf2mBvMrFnq3s9CS65X/I+8/PzWFxcTElKcf/N4hpvTmv3nSzLsHPnTmitsW/fvlZbNl7PVPA8Yx9/am1ubi71+agiEMv6ATwJA0ixZxHslWGQJ3Lw3nLsJTJkxsBoDUEedc3A0xgNbZpScmOhOYrFx2VwwWrFouNQrBuphUYdJtIowK21hiMGi0oAvraQaMfbMVtWDobpfO33kAnLoEKBWMOb9fZ0ZjAY9IMngd18SjCLar0DBfbTVjWcZ9bEaI1yNIRSnXGFkBLMtkgJEzQbm3vI+pxeSL7fBAjN92NYlQlQAkHmTUl4AXgpkGc5J48kcWqPrMghZciEF3wvnbWJvZXQ0HkB03Jvc2kcD+9Z4JPzbwgSHgjqGSE3JpSAZJCmlELR6cB6B0kGRgh08gx5LgApQc7COgeTy1Z9dYA8SxupqA8dnocQDAq9s3BushJRi5wRElKH+Tr1IRmYWJHiNttjZ/RMOWdRVxV0pwNv65SYuL6+zgsFwc+1rmvkGT/3OvS3suR42Zhpb4xBWXHGspASQiquQtNf50W4lFBGo6wrTiCxNcq6Su3yIPjaw3sLU5kgcRXC9EQZ5hcOGVFKM8NpDCrL76IJFW+E0immV5kMmckDkydhTAYS/P5meQ6jDbwH5ufnMRqViLXXrQ0hJkpDhfjKsj9IEl9AlOsDalvCe0KWMTiuygrCOqhQeKCqKugsh9EaUmeorcd1P/pvdOfmkOUFhJJYXNqBYV1BOoVebw75rgwHDqzgsMMOhyw62HvDDZibm+NEovDe+5DkpjMu0WjJwztg586d8L55D7ZrhwQoeTXMJZqIexMaOj114QQaY4B4/GgcIG42UY6DR/65ceLdLqjc7JyTTNWhgMst2cgp9639vTgAc3ITBdV8hRtuuAHf//738fFPfAJf/epXUZYV5ubmIQSQBQFSW9cQAGpbI7K6WglYYiqcX3KB4agPJQSMUokVI+cgAWRKwQRWNDMGNsTT+FD2bGlhHlleoKprrK2vo64tRqMB8qD4/6Mf/Qh/9/a/wb9d8Fnc9ra3xdOe9lScdM97oNfrsbhwizVuAzmA3U0LCwvQWmNtbR3DUTnm9gM2apFuBSDb3xOCY021YmZwbm6O2YMWQL0pzOSNNZ70DZaXlyGlxL59+3hgQsPQTu4PtPrnT7S1M7s5LYK8GLsYa2vHPq+1hg3xanG/Jp6pEdEmCjGV3sPaKrkTOblDQvpGRzZaPH4ca5L0DhoZEyKuVAM0WcksIB4r74gEQNpZvkJgw3sb362qqgDvGxbUOQjwvOGsQ2+ul87PTGwdjhnmEc+qBnCNVBcn3zR6lM65pI0Zs7ydZ1UKD5aL8SRQdDoQUob7xM8gPpM2qyuFYKYyAJp4v7z3sN7BUCMZFOc1asmKcbxZFtzqLmA8ydFW3jcC5MEV7Z1lF7CVUALIlIQDtxOuxqjvGDxWNUo5QpblMFnGwJQ4j9zWJQhxjpVMTnqCFJpd5sRxpyAA3ofFiR97VtGIYkxjWuWm8IPYp7ytk+bn+NjexOrXdQ1blSwTFICIcy5JBgohcGBlhb/bOpaUAipAEaU1uhmL8/sQmuC8D6xa1PLkLHlrLcrIQofjp+cKHar0MJiNPlSuMsX6lxwapUCCVT+00cgykySqYt/OiwISMqgVsKvaaBNkdjwIzDg772GyPL3vJCSsdRBCQpCHhGyUHYQACFhdXcX8XDcoFgBQkpNpuh1kRYdLQQ5HUFqE+FYHIR2yjMGf8xbC1sg7HXjvUQTpO2dZvqqqOMksM1w5q9/vY643B2ct6sqjKArUNYfKxUTc/voQ7Ilo2Ozt2iEk5dCYLIULHTEyk4Ii8EOKt0ydc4x1jD8bpDnJZjafN1Iq0wDgZizjNOCwFXs5adO+vxWonPx7s+O3V/Mxlqmua/zHf1yCf/mXf8Fll10WBtAM2VwPCMHZVcm6dHVdwTmOHVJKIjMKi/PzWFtbTWWhtGGVeykkC6aShAChGo3QK3LoPIerKtRUQ2sFXxO0lqgtx7YMh3148uh0e6iqDC5kK5eDPkaDPrTW6PV62L17N374wx/iK1/5Cu50pzvijCecgYed/jDsXN4JrSPj2HaLNOxgN5R+U2v9MRf4ZgzyZvd1ch+lFBYW5rG0tJTOuZUo/o/DNnPfSymxtLQE5xwOHDgAmyo/bGzP2HX9hAHwzG5eay+U2ovgdt9svxsAAqgRYVDnmERjMma90BQzEGFSii7oae/PGKsnRNKWjHqxJkyeSmtIYm9G3J8BhQgub554Y++O5RdFvMaoljDBWCKOAUpCxbEZ4ASV4NlioXHeWUTWjRBAjYAQrHEppIQIbCrFY0kJKTWEZE+LC8lEAIKrPG/VCGcXa/SoEABX11x1JgBV50MYEoX5Kc07jbeFf6oxMK2UhiWC844TawBIwbGTPAJHob3A8hKP7Y48lNEcH0hNFSXveG+SMnkEpfKBbZNwdQWpTKBzfAMoleA63M4DkoKHynNMoG+8iQCBPGdNUwSTAbBJIEgSIcwlvB/HwjZ9Oc5hQIijb8nHQYiUJS8C8GX2b5T6jQjXBQAmAGOTmRCXL4IgPYNHoZq+xtHEAtY7rqRkLUQAUSwZBfboAVAyQhxml7XmrPpkzkMaydqqSgEy1KGvq+bZKwWyHlJz9SjG5Zzgwok6mll8YkUGFoHnGMtUErX1znAMcCxIIOEci617CO4/NF6+uilKAhBZQEh08gLGaEQRf66axcwogROWdMZMekzCkkKmuVYpBa8NnGWWNcYmCyHT4gCIpT43DzObtEPL8hYiFJDnlWTsD3GQaAPKeDMa6r1hG9uDXAM6xsHHOPO58YKmsYuT26Ntx729HaCxFdBM9yi4htor4Lhfm0Wtqgrf/e638ZGPfARf+cpXMBgMsLy8nFwFMbW/qmp2i5cVAAKRY0V9CexYWoQEcMztb48fXnsNAKDb68A6By0llhYPRzUaYm11FUWeYW6uh2pUYlCWKHo9DCuO09FGc4yf0lCaEwiqcoS6KvkFLEtw8HiMcXIYBnCpswz/9V+X4/+95jW44IILcfZzzsaJdzsR3U6BJHMD2nC/izxPg3LUydzAOMYBbkqizOR+Usrk5p62/0/KNut7sY07duxgULmylgbjreJCxZRjzuynw+I4F4Pdo8XnHd2ujdB4U36RXZWN5iRXYWGA08T1jYeKtOMHY0hMe5yNEjMB1gIIYXdCBkZUoK4n263ZbQzWHubM74bVir/H8nRKqQRSUoUQwWFtRZHDWQ+SHD8WQ2yEFKm9EICvgzyNYMaK482QWH2AwQbJMIkLiTzLoJSGVlzFxFqL/toaFhaXoIGUZCA8IU1cFCR4YiPBgFApxZnJYpz1igmosZhDfG7RfekcJ+445yEoML0SSWxckOOKQVIAns9X1TW8oMDUUtB5BuqyhoeA1Ape1SidgzKaS2uaDN76VCnFhupA8AQvwTqf1nFGMwl4+LToAJD0bAmAUFxVicFa6IuxzyA+V2byvG8L4ldjbnZ+5gxcYjxwlmWJPUz6lkFWCcTlPyPjCOLa5HmeoQ6AK7J+mTaoHcdiCsHhA4IADUqMn9AKg7V16ACsyHmsrK9Bmyi4rri4ABi3KMV93lsLoQQyw5+VFZedFJ4Tv5RSIQQkAEBtIKViqSuTwZgsaDcbCFnDWZ4nTS5g1/ooco5vjGy7lDox7EpJdLudFGrCYQGO5auqUBnI8/HXB+vIcwkiAecJvbk5GKWB0CYlkIoPVJaZxd5cj9nhGFMLpGS26BUZDvvIiy5GowGqugoMLmuvZnkOkxlI92OolCNCscoxYIDJyW48e3qSQYorveQ2oHDc1ueNTXcFTvt92oQ7bZ9mcKUNbZv8zjRGdKuJPX7mJ1zvzbU2epG7d+/GhRdeiA996AMhXoorSKytrYb4HxFEdwlFYcKqkOUi6rpCZ34eAoRhfx1FnmF5eRHka+y+/noM+uuYX1jAoD/Avn17YRRn2+dZjlFZBs0roK4sRqMSWZZDK4VOp4C1DkuLS6jqGsPBAOVoiE6vh7leF/319eRKqcoRjNGphFucBC/50iX4/EVfwJlnnonnPOdXcdujbgOteSKVsrnv0Y1lDLvAiQhra2vpfrXdKpuBw8nn0ul0sDC/sEGc/Cdpm/XDNmDUWmN5eRlV7dDv9xPQnKyms91+N7Nbr8UKTFLKNGl474PaASVtyMk+Xtd1ELjm5879IyQceELVYjoj6MoydmnF7VFPUQgRKnCI9FnsczEJCEBgJlhzMiYu8ETsElCN76P3PrmhQeNsqwzbYvUXAJxoEq5Vqyxdc4xXM1lIyEErjjuOmYIluQCkJBwpZRN/ai0ATh5ii8DQo9vtBpDHIQOpuo6tGfS1xhdtGjDernQy6XGI4xPQKFvIwIZkGceo1iC4yjXMDgeWcqKHMfBSwNkatq7gXQ1SgPBBWgeE2lmUZQ1PzHxGNY2yBKTSyAu+Vma1wpwTM+BDPC4CW+bBQI+ImFoTIhUWiW5xIYLepAyes8gyEgEyaqaq9OxT2EEghyKTF+PV2wlo7cUNAVhcWgrf90H+qPFkxblhcX4+AbD4r9eZQ/RUEgVwxg3jZ6METJ5zRrNmuRsK8nDaZBBCppKKse47hIANihmjimN2szxHVZYwGSexOOfRH4ywc8cyolysEAILS4tYW10PbnlmRvMiD8mW3I+LTgdx6G6S52RwxcfkuYYYyUyGvNPFqCrhbKhDXpbwFGJKwQsPRzUGgz6WDjuMS0Bah/7aOjwkuoZDHpTmfrq8vIzBYICqrDA/N5dCZdpzdyrJnBKuJPr9Pqq6Rrc3hyOOOGKrYW7MDomhjNR1qlOZACLG3Nxt8AYxOSk2A1s67hhwAyKjtRmb2LZJ4Dd5vMnvTQ4S7bZsdZ72ubbaplpxPu2sTe89Dhw4gHPPPRff+MY3cP3116HX64aJRsFarrhijMfiwgLW19cBMNM5KmvkeQFrPXq9LjKtYOuK41TIYfd1/82gMM9Qrfe5KhHAYsSSq1bYLksvEAR6c/PwBOwoCqysrqJeqyAI6HQKlKMBPCGsxiR6nS76/TVkGQe6O08pUxIQGA453oJFlDN0uwU+8IEP4nvf+z5e8pLfwT1Pumei+WMsljEqVM5QyHODhYUFVFWVkhM2e67TjMIAMT8/jyw3t9qYwzZQzvMcO5aW0jW3r3MamEz3oB2qPLNbvU1WsYrgRkiOh6ytZZAUAJrWCkSeM5qdC5OhBldLUlCBhaotV3rhFIRmwcKakzyGxgk9ZiozQypRB6kcKVjeS9hmPGRJI5UAQF3XCQjHBJXogm8qpjVGRLAB9AkhuApOcCdby8lFdRVjOD2sq6C0TMCZiODrGtHfp5SCzliEvAoA2YWYLiNVKGlIsK5Cv7/GzGoQZ4+C6SK4mgUIWZ5jOBwkBrbtihTEE5lzHrblQXPOpSIN6V30UfaHs7KZbWN2VUsJKAWZaUgBGBWSXDxL4AwGA2YogzSMkQo+iJ174vFaAMhNBkfs3oVz0JmBC9I8XGrTwLpQujPMx1KEEo2CJZaiV8kHj5/UgQGPtZxdLGPpIBXHkmrJ/SAy0KzyQyytGFz2k8L8AZYCSkPGcAMiZliVQtFpMoxJsvvWBaqb2TWeDyiwgiQkoGIZTwmhNEZ1DSXZLS21RqZNCA3gUC2dG2SmwLAcoawtBICi1wUcQUgdlAA8lDQwGSebVtZy4ol3LIcoBSproU2OUVWy9qqQ2LHzcA6zCCo2EAKDUQmdd1CWI1jnoWR0DQe2X2l4AkajEVSsNCSAsqzSO6nDomo4HHHYhmjCYhYXl+BBsI5LmyLEyVrrUFsu/TtY7/PCC6x1u766gtFoCEes4zkYDLG4uARXA+VoiHI0QrfbTSEg1tboh6pBxqgAxjXfI8NJOlpLrKzsR4FjtzXmHVKlnPiSixAzKdG4qnkXjyhNkf6lfdqAMew+lb3kc/HflFwRAlszVZO/T/t70ys7CHidxlxudo5YQ7UdEO+cw7e//W2cf/75OP/887G0tIT5+QVYW4UOxSWs5no9eG/R769BKwUtNbsItEnukKif1ZvroRqNUNcVytEQ1IqdzLRBr9PB6uoqhkN2nUulUXSZISnrGlobaKUwN9dDWVWo1vsQMIAQ0Eqiri28dahGQzhn0bh6gCzjl7nT6WB1rc9BvxmXRatdjeXlZVx11VV4/vNfiN/8zd/EIx/1cCwuLoBd9tGNzaLCfLyMZRf27x8TAp92vydNa435+Xl0u51bJdZqs+FtJrLT7aDX62FtbW2MndzQt9r3AjM8+dNkyaXbYr5EKxs7FR8QTayjUmGcjaAmJCn6UNaPnENVV0kKy08k5LArj2VbtNbQKaFFwQUGEkCKG+TvNMC3DmNDGzTwO9kKMUHjno/XATRJSHGf9Du13/twXa1yrinxw7mwMG0pM/imxGxmDJyUcNYyoCYK46OGDHFmgqJbv/EMxXK/ztkN3oBJdlhKibqqWHvSeTjrUAtOhlRStTQuCZDstnU+vKvOp4QbKQSM4kxu4YO+YYhn5KotDs7bEEYU+gYJ+FaYgIlC2pAsowMwOPYeyogUWgYgyBIBVIexWmt4co0nkBgEs1qIC8yyh4JMIu0QwevYYiLjcwPYvR2fcwPKg9D9RL8iClghMU4CSpsQXsFC8d4TXGiHDwAbgjP2bW1Dtjilf0Lw4ouEZLUDRXysWL2GJMc0StYyFVJBh/rW8CwsboPus5ASRgrURFAkQ+UagiUfwiN0uFyRdBk98XOUQVDeKIk8L1LcaBRej/3fGD53VB0gIoTbFN71qI6igkQTh6UURcFlHoWACpn3/cEAUijkRrNslnfo99c5jjO851oFr2EA83VdYX1tPY0LQigURZFY3zg+VVWFPDfpXRCC8xxkwHptHeaD2SEl5UA0sQciBKYGErKZ6SZmvAYoTp8Km+2bJc1QGlg3+36b3Wl/f1rsJLBxENnABLX2n96mzd3uEUTHF1JKiS984Qt429vehvX1dRx++OFYX1+HVBynoCSr6QshsDA/j35/HYsL8zhwYD9sVaOTd1CPKtTWwRiD0bDk1bZZwMJcD2sr+7F3zw3QWuGw5cPQyYMgujLo9eZQliWsdRiFgdoDqD3BO4t+v49Op8vVKSwLuXZ67Pr23iMzBvPzc8hrFuiGUiF+cgATXGzdLiX63MKDHMsQLC4uot/v40/+5E9w+ff+C8997tnYsWNHUwJOqhS3IwSzo1W1EWAdDFB2OgzMYpD9pKj/NPb5lrRm4ldYXFxAGcIQ4sS7oZ+1/5ghyp8qYykYnkHigqI91iQwJiVs8GSowB7Fak4sdBwygL2Dcza5bpuEn/GQnuheE4ITI+K7IQgw0oT9Yl3u8K4JERgpB2006qoeY1ZNWLACAko1oJHCd9kbH/WHo0wOfyYDEBOCFUIiEIm/R9DC9cU9tA7vLFGQSONkgZjMIYUIblk+XyygEcfcqMOZ5RlrAIb5h0W5AaDR6YwL/7HnYj3LCHkf9BlFOi8CSxWrl3GFGJ8W+yxc7hqA5z0n3HiPWKnGh2vyzkIpzSBLBde0C89UCGijYbIc1lF4hiG+Mcy7CjK51QX5EBLAovgCCOfkuHvyHiKVikR4coFRC7+nxS/an0cgHIrJA83iKN0zCa0F9/c0V3NsK4NTCrXHdYrZhSAQHGrnoUMptpQuREAdRcUheH8ZYnMF881SGwaYimNWK1syRJEKSupA5HgopUPxkEjIcMlLqVg2yzsGqiKEBgjBYQKc3NOEXQjFSWuxf8XSiTrUji/LMlRUim0GtDbIcr4PgAB5jzwvUFZlAI8MVrOcJQOt44SuoihQxezwWMSCiIuKSPZUVNahritIz2UrldYwSsOF8pFcitJhOBwgM1mqL64k5y9YW8PWXHrVOZveRZ7HLcdOxjn1EHIStg0oKayRZASIiFmFG6FeBJAxo3Dys7AOmth/q7NvzADm723PJToN/MWBLG6LPzdLkJjcX4QBuM0ixW3x7927d+Ozn/0szjvvPAC8YllbXQ0lk0p+T0LB9v379kDDo9vpYH3lAOAs5ue6ICJ0Mg0lBbLcYL67jF6vi9FgiNxoDiYuCl55k4ezFQS6qKoSSiosLCziwMoBEBGGoxGE4EoYSkp0sgw+DDKdTg4hAFtznEmRGVjHel51XcFopvS1TiHuwUXt0etyAk4sEyaVQL+/HrT0FP7hH96HAwf241nPehZ+7s53Zt1L4gcvBcGHuJRet8tlpKKLCUhxWqmDtJ6P0hqdTgdKRSaC+8p2rf2oJ7vRJt0g7IzJEN9N++/k4qZxLwKdooMiaBNufqJbLsFoZjfNfEhgi5NuWy4oulNjbJkLLu4s4yGZs3U9qqqERAapWbzaOZskeSLwzIOwc5wQeLsekz8RITGB3Vt5YqEqV8JFECE4o1UqA2VEcLvHGGmDKBlkDMdBIjCTQBDHJgEfxmqpFCQhsDMyJWpEWaQ2c2lrDv2Iov91HcXImfFiBqhmSSEpUWQZ1tfXExD1zkHoRuZHek4m8o5ZNfIN87O2tgYlmzroRQi3ifePwXpwXzKKhJTMEIMkROAJEUBrvG8MMLkutiCWaHOW4F0dFLobgiFWo/FE8AKpBjcY9/A4pkJcbF7AELOGNBqFeNCQ5d8SnXa2TiLunHHNFYa84IWNcw7Sy7A4yMJ+AgjgV4QqSzGkQIa5rCnT2My1CWAEN2xkJCGCTFRYRDjvObzJMVkhpErVZ3gBAk5iyZhhBtDU2yZAiFZd9NYzklLCZHkCgs552KFjls+zizvLMo5FJACSYyo9wAC95jhBqRS0ITiynKFOBEi+tzxHUQDDAnnOCUUst1Mj73YwWFuHAEFqBYMckJJLRQpACgWTZaDgCo9C+p2iwDCEj5BznImummo0MaFXQ6ZQkeFwyH1Hcfa4CGFntfX87hIrtXC0heJqeEphVJbgEp5cG15JYDQcYH5+HiAW1jfGcJiDaBKH6noIa3cgzwqAgGpUbnvM2z6gFApC8kVJwcrtrLgdSmWJgPQTI0kNsJzC9jWfNQB0wzkprnYYnE4DgAcDldOPOx2QbgYmgbDSnHLsZkUXgufDIPfDH/4Qb3jDG/Dtb38bi4uLGIVqB51OAWdZDy3LDEbDAY7o7cRoXUN4i55RELUAdAatedDvFQXKsmZ2WGvYssL6+jrW1lZx5zsej717boAAeCCGQyfXsHWJopOjshbLO5Zw4MABGGOwY8ciB/pai2J+HgcOHECWZdi16zBcv/sGwHJ5Rl5kcWe0toYjD1tbGJNDSQPyhP76GopODh1WiY5qKJ1Ba46XgQjF5ufm8JnP/Cu+ddl38NKXvhT3v/8v8GAhgnsq3FutNYPK0SjV6qWYoBOfQ3pWHt1Ojk6RbVlqdLO+4RNbEQHf2NMe35YOEfb1SKEc6RtbMKGT7wARBVaAxXAHg0ESvA78RKslFMmjgyy6ZnZrtBQ76blGbhkSUuLgDTSlE4UAyrIMiQ4eUnKpWyBkXoc4y+iSihqWEVTG4HqgYbsja2Kdg5EqMSoAu5iNMcmFGYHCcDhk4JlxYYTYd6NMjHNI8eEU3IJSElTWtJXLFRJkSJKIY4oGUpvjuWIsMXnOXE4giTzrH1YsryYhoINrux/K0UamzJahoEMAKzbInQHj7x+7gBs3urUWeZ4n4M0uwYoTp2J4gvN870LZwxh7GJ+ZCGwkiLO7mRHkTPZqOEhjWKYUs0zgLH4XxxmwCz3eS6F1cGUariUOAUgJHdrr6hpaCOiiQF1VqMsy1Q5P2fLRdQ5wZntwGWslmBEMCR7eEjwctDIcixn6bZS4iYuAyGhHi30lxuPFRVI7MUyFZCoRKuWMudHDgCYFAz0fgKsK/TDPx8X6Y/+MbYiLgCZ0JDCs4Czo2nlozVnmQgoooVDXjmN0wWUH4QBIAV8DUhlIDXhvUZYlRlXFbWmxlEqzrFCszLS4vAPD0RCjUQlyHjrPkHWKtNAhAKNyFBZYEibPMBqNMDc/z++RZZCJCMKVhpGK+x5YW7XtliZPEIpCfXoFmSmQkCFTPxA8itliqRSL/6MRn48VuaJUHy9K+fisR+3TeDAYDFBXHJNdliWO3OZ4t32Xd1hlKxWp7vgChFDU1qQ//euTIDBu24oKYtuKNfxJWxvEtt2U7X/XXHMN3vGOd+Cyyy5Dp1NgMAhxDEZyBwNAgmCEQhFKIh256wgM1tewd88eLC0twroaC3M9Vqqva/Q6OazjB74vlPETQvHgLxXm5rrwzqLWCocdtoyqruDCCsQ5h+XlZayurqIqOeYyzzJoJZFlmlkP2UEnzzEsR1B5BimbVT7LQqiQvZfDOQoabya464HBYB15nsGYnMFlXcHVNRYWFxEr9aysrOCNb3wjdu7ciRNPPIEZUevSc1SKhV+Lokis3WYLhphBG+UP4r43xmL3YuDGGYjtsnUQoe5xDPcY67Y37pzMJnFMG4vLxprL0/p6OOcMUP7UGT9PSuxhG9gwU8TJE5HFU2p88aGD9h1XIWPvABGFBD4DIXhSj6Aoxks2FlzTFJg6EoE5JZS2hrcORV5AaRUWpTXyToGyLOEswRiWN7F1jcrWnMAhBbq9XqgJzPMCEUIZWZ48lTGoRhW7lj27N4k4aUUozuL2nifU2vnAcDJTJgXrTQrHCS11zZV0ZHClS7AETRucmIxjRgmNkDwRQcso+u3hTQYtZOAYPZx3sOUIrqoQNTFJqxTXKIIL31oLaB4nneXxQSoWM1ehBLGzFUsYUdSbpCTVErN5ffDecCy6YnZLxprkYSYVLLJto7s6ZORyBRN2yWrN8kgILs8IEAVFbVICWQ8nKNTRJubnwtDiPbvAnbMgRxBK8HeJAM8lNwGWA5Ka43TDN9kL5lj+hmjce8LZ+bE6kuc2IsboirExLjGCGA8Py/OcwWhMmLK2SeARnLvhvIeBRF4E8CosyPJiRyi++1XtQolMBNFwBWWQwHHsJ86z8HztXQgzyKAchZKZ3PcRxmob3fBh0WadC1n3As46KK1QdLpwIWnGegTXfMiSVwpVOWSwG+T6KD6DcM+98/DWg0IYRVSJyLIMECq8y4HJzAwInMQUvRKQTdx1XmSoKxveWWZ6YxnVeF/qmlVmfFCeICJkWrM+K3G7M/1jiaFka1YJkcUhfkFCAk3DOPL+k78328JL0JokN3NFx/NMbpv8e7Pv3hw2ebx48+P98GE1sXv3brzrXe/CV/7jy9h1xOEYjUaoK58mAF4FCigjoRSwvGMH1lYOYKHXRWY01HwvDOCE+fk57N27F6PBALc/+mjccMMeTpABr4jvcNxxKEdDvv/ksb62huWlJdYn8w5lZbHU7cI5Xt31uh1IIbC0uBhW8LFqhOSkGQLEygFobXDYYYdBSoH9+1dQrq3BRD047+BDfAdAcHWNPM+QZxmLCFcOQgILC3MoyxrlaBSY7AqdThdXXHEFXvva1+FFv/2buMc97oZYEYRfEoIxOpWo2+wZCiFSSbvJPrLd5964ooE4SVcVV3eI/xLLkcA0g788NzBajR1jM5Z9s3NHoKE1B0oPBgMWVZ4IB5ETzMDMfnosuqXj42tXl2kvHCY9LZzkIlpjY4hlE2KsPyR3YOuYidWBgLA2xayxFiLHEToRY+XC+byD8E0yQQzlifIsMUa6DoH8kuJErVNsJIAUuqI0J0M4w3BWputjMejo4rfOBg1CILH/QAoDEADgGxH2dJ8C+I6LPt9676VkkXQf9w+xcc561KFySxxryFNiuprjZ8nVG+87eQdApwQhEHGiTZTWAcF7FkiP3pKYDKS1Dkk4jdRQ+7mHX3j+hABXwwG7aEPIQ1mWIIQwBiMhGVWx0HhylgZvTohHZIaM4GRw0QuAku5pBIYOkgQkU3NwRLC1hVcSoCgJFIBO0KAEjc/Z7USOqNnIIL/JBqfgFo/jaUwIYRF5mSKI2vukqlKey4ACQEzj9N7DOoeMohyPhtYuMe2J/fdBszUAQKlkUBFwTZvCIgzOcp+TkrU/iV3ZSmkQ+HoQSDOhFOrA8KV7YFrzGDVxvCnByXtAypAsFeIwA5NvvQ0BtwIEn0Ia2vq1/G4zOxrjZrMsA4WYTxL8dxmq6DE4z1KIAcsONiEqvKiR8L4pksAhNgwsO6HssnN2rM8ezA4ZUMYsb1AQNifZEjgf33f8b35h4sQ7jZ2cZKO2AhSTn0/bttUxboxNnq89kCul8KMf/Qh/f+65+OKXvoiiyLG2vgZyHDcBeNZkZJoA1tbo5hnqcohuEGf1jmMo53o9jAxLMBgp0clz+FAHtaxqFBnLaJDjBJmF+TkUecbyElJgfW0Vrq5R5DlW9u/nWBGtcdjOndhzw/WYn+tirteD0hprASyOBgPkmUGR5+yGKkc8kHlCkWXQWYa6rjHoD2Eri26vx4G9VQlXl7DOssyDZAFm67icmtaGV7ICqG2FbreHH/zgKvzeS1+KP/yjP8R97vO/wh2lVhZ5Bq11o4/VmjBiDE2WZYeUfbb5MyVY6zAYDLG+vp7kUcZ34smjLEuMRiMYo7C0uIg8z3ix2gpWP9T+JoRITKsry/D99ior9rWbdJkzuwWs6Z8cmJ9qZYeEEiFEcC0240hkH4QQoND3CQ0AjW7IOOZo3egDqpCZbENyBBFBOM/SLJKFm50PMXMBAAg0wuoRnKaKHuRR1xUzMUIm8Bb1/6TiwP3ITNY2AASlIJSGMgIxOkwIjpeObmZ23dqgBxmKZVCCkXzXCGHRy+8Ei0HHOt0u3TNQS5JJhNhANMkQnAXMZehickk8dl2PA4OkzdkC/BQECDlOkmucxzhFl2InmZGTQbTchkncGAMvJchxqT+/yaIiun7JI6hqyPQsORxGQHZYhByeK+wk0CxZwJy8bQFA7kPehaQtCqFFgoG/D0k8DLj5XAzUaggXxcBl6pvMcgXwGPp0BC6x/wnBB4/gmbUqBay3QaaGiYgIKL33qYISBIci8EK+BhFrOPoQmxuJm3jPYh9KpTK1hqKG5IoDptK8EPDkoCSzzSy/xGOqS2EfnCgUZb0Qwa6SLH4eF06h+pGtKi6HGj20oQ9Za1HbWJmJQZHnmAZQEKePmdgAhYWRTwQN0ISTRG8Dz0ctbESs35kZA5IKjjhbvlMUsIOQuCWjgoJiF7gUsHXNWfAtMi+GkKRQgrKE8x6LwbPoXBOasx3bvrA52o2M0g/t2rE8OW/ml5sEfNw5tufy3s7xttrn5rRJRiyylHv27MG73vUufPGSi6EUC+8qxcB7VA4ghUCRc0fpdTpYObAfhdFwdYXO3DxnIxKXSKyCflueGUgBHH7YTlx33fXo9HpYXlpCfzDE2rrH+uoKXF1hcX4Ow36fX2Ry8LYBnUfuOhz/ff1u9LpdHLZzB3xVclYkETpZhm7OtUclgLLiIN6FhQXMdXtY2X8AnV4XO3tLcORRSglfcxWDXpGjthJFkWM0GnL8hZIoywqeKLjTuxgOh5DKwJgcEALD0QBaa6z31/DXf/3XuM1tjsSxxx4HpditICXLEmVZNhXcRUAZB5Lt2mZhE3Vtsbq6hsFgkF6c8X7Dg0I7ZqiuS5D3mJ+fR6/XTUD4UC1+jzUINUZlmVij5uzj4HJmPz0W489YwJkSs9KEU4g08cRBnihI+5BP1UXgOM5PKXbHRl3J4XAIEKHX6QCeMNfpYTQaoaqrJF7tPUEhMhTsCtYUkmakhDISWgT3X3C9Cy+Sy1jpDNaVnF0qJHRYACltoLRhQAJmYqC4BB6CLAxBwAWGMsr+CCEwGHE8OYV7ILVJQAhgZ3D0+njPMjjOE0wADhACZVhsRvddWZYQkuulixAnWdcWjhpWkIcATi4lasJa6rpOSUN1XYfkKJMWs/xlH5J8AGUMIJi9IR/YY/DfMrTbWgsZXMUiMr7RqxdAl43HQ5hXCah9jeGwhslMAlAxDEIiuMADg40Yc+2YNRNByxFggJoZg1j/25ODI14YCClY6ogYDLvKw0eGFzyXN2LzBC0FhrYaY8Nt7SCCLiT3Xa4zT8HlL4KL3iOCv5CVL2XIfGcXu0Ko5CIZ5CYiw9lELMhQ7ENJEQIJ+Hn3+/1UzSUyWra2wTUNCM0uYus5XhFwcJ5grQ9xvBpaiBTP6QkYVTWDr+DOFp5Fz/O8E/oVgbxljVVj2ANZ8+cxLtERx8c6FwCz0UBgnAmcGR5jZjvdHoSsEGuicxECxVWBJMdRAgyMlTLwxJ4CKTiuElIBYRGX5zmgJCrHoLY/GKDT6cG5sIDyHgQL5x2HkYQYbG14kQeiFIu9b+9e/kzrJMS+rTFv23uGyUxKzrrljKPJnSJDM51lnObCjtsPxjYeDEAmyQPRFKLf0lqrmINZHNzi4NUuExhlXz7zmc/gc5/7HLLcwCiNPDMhXpLjeAQISnDVhyIzKHbtxNJcB3tu2IP+2iqKvMDCfA91VWHQH6DbLbC+uoLcaNhqiOXFBaz1++js2IFMa9RVCVdX/OJpjYGtMd8r0C0KjMoKyzt2YPcNe7C8tITV1VUctrwDWkqUoxHm5nrYubycMv1MliHPuCZqbjJU5QjeVugUGXxdQeQ5yFkoQciNQjdnOlx4gi1LdPIcmeYA9U7OFXmk5gnEOw+lNdeslQZWiMTUXHvttXjta1+HP/iDP8BtbnMkYiyWlKrRy2sN6nElfGMA5bTH77zH2nof6/0+xzFRq/Y3peE/BdW3bVSWqU29XucmhVpExlUOh4hsTDQRYjbZDYYp79zMbq0W4yKjTp5SnPka2UEO8TDJVe0c0JufQ13X6PU6MJpr8XbyJrQjJiHMzc3xMVuMJTMKzAR5aznLlADnFaT3IBIwmQnxhvz+1Jb7cdS1LMsyKCc0GeKdDpeH80FWxWQtNxzA8uqhPKLSGVS4JikcyHLqiScWu9bJrcsLSK1l8GLEWtrsOlZBtNz5UGEnAAZHHgoqVTKRUkEKBULIWg8l63yci7xP7JtzLlwnP584jsdwJIDBT5HnAEyal5RS7IlpJePESkJCIjFrVUUwYY6QAag4ZzkGVkTdzuB2lAIKfI9rW6fPOQnEwtk6SbkoHV/6MMZwzhZ8kIhhOSWR3O0i3hdwOAPAHnUlZBDg5mN4IRKQiKaEYG1Ixy5whOuPYRAxjCPe67ZEVRk8LMnlHFzK0eXriZVAIjMqIEHOonZIeYgiLCbGYtiD1bYOzHITNlRVFWzUSQ6i/Ol7RFhf7yN6R8k3ScPxWWrN5I8LLu0oNySECBWVXJp3OAY0SDYFZo8JpSb8iUMuBDIIyI4OwK2pTDM3NxdwBIcmRA1nbo9NnofI4sZjMsHCzKZSCp2ii1FtAcUxySQEVlZWgBC/HLUsh8MyAUMBld5xH8IjPLmxJLvBYAAiwtLS0lgbtmuH4PLmld24+63NSFL6KdLMR62/2RpX9+YT8E0Fl9OOs13b6jvxRYovFcBZiu9+97vxH//xHzzIk0NdjYBMo9spMOz3mYquR/C2Rm9uDsPBOpYXFzDX6eKAADq9DgDO3Crm5jAaDuGtRT4/B6Nl6pRaLwT5oBy3OfIIrK2twVZVkBjqoRwNMTfHWo4GQJFzTdD1tVX0Oh2Qd1heWkSv18P+vXuQZTkW5npYXV1jEVXFor5ZxqLnvU4Hg+EQSgoIo7Ey6MPWDtDA4uIiAKCqSvDqnNApclSVQ6YND/hKYWHeYDAcYjQccHkwIcOkCnS7XXzzm9/Ey172Mpxzzjm47W1vG+80pJShlnmTzRefTzt27KZYWVYYDoctuY2xjso9eGLdEfu2AE8+o9EouKxbbMYhWhyUm8ojrb4+ATBn9tNj47F5MsWEARGMNQl9SjZSQFmWhQlXJMAZWb6UrFBbGMVyKBybKVPSA9fktqCqgjGc5OCsBYQKIMcBQkIJsIi0tRxLFhZqBEBqFVypaGLdGrIODgRPHHcWBaiNMezuC7FjQkhAsYuQiKuGgAiVrUHRXao0lA6xplKALKXv8qvGrE2mMp4yJGvx5XmBqqrhHMFLDifijOOoecjH8KF91nrU9SCwMiq4U3k+i0Lqzlue5K0AypBxLIJmphQQQkciDFG8PDzhtEAAeF+lNWSLMUzzZlRCIRFcqKH6ULi5UYAaKorG2wYICwBggAyK5w6uc8f3mVsDCDAAsnWMxxVhSm4yrQkAwgI9xtOzIDzH4AcPP4h8CruIblBOrLEsselkKGzhQl8I8ZlgGTpEACnD+QTrJCqp+HoI6fo9gCLLgsA7M8lEzG56UFBgikLnDPp8TeE5ZiFLXKT2RlAOcOyolJzEEmV8tOTa6AhMuFIqKS04RxDCIw9evNhH+f2qW2EBSMxjbfm+ifA+c4exHNMcyk3GMAsZGEiyQTResvi7ybIUZ+y9g6sdYrIoy38xM6zCyoBCpyzLEkIrdIxGnmdQWqPfHwYFBQbPUYKIATjrn1ZVhU6nQJYZdLsdHNi/H7bmSnhSSJbM2qbdiKScGM/gE4PDdxDNP0QffQSPTbJOs31ywD24BNDkd6Zu3+Z13JhYt8heReCwvr6Oj3/84/jyl78MgN0kw0EFCYCch60djFLwllfYCgQFj6VeF74qsbZ/D4wkzHW78B5p8PfO47Cdy1jesYD++iqk0eivrQNCYO7wwyGURp5lGPbXMbcwD1uzG9tZnmSKPIN1Dkvz81haXMTiwgKUkqlmd1WVkALo5Bnm5nfCh9XkYTuWWWerrrG6spIGh0yzGn9/fR0iBB9ryQyCCeXihtaiv74Krbtwtkav22XKnigkIwmUVRncF7wy37NnD/I8x7e+9S2ce+65eN7znotOpxMAlkzhBJMr1cgO3BTznpJkSbvfTYJCnjwmXOBo4t+qEOiv9Y1tD7t74jW5iWsdi6Gc4cqfKmvi5DbKRhH/ETsYAKQFjZJRwJtjnMhHBqYZt6ytoVXUs/QQMtZH5kkrspRKZ8weOs5CdZ4A51Igv/fMaIIIXjbSQUkjk5p4vPhuOB9j1TipxjoHFzJJRTi2IJWYGAors6q2yU3MUjIMDlNsGgBJTRJPc+8kT7LhvEIpluOumNGRFCq0wCKm84jASPEhRAAfkWVqriexyCGJhIigiZklJ9jNagwvsON85oK+pRAi8SiRVYpxsG1LYSvRsxf2kUJwmcH0hXAPgiC4CxVt4uecFNQIfnPSDHGoEGI8ZKO+4qwNupJNwhUp34xxiVWLMaWU/rbOBSaTmWQhuD+K0I44p0fQo7VK9yZqV3J4qUvMoJIqid8nFzYJUHj2MeEkyzJedFBD4mg9fp+85xhD69idHkmGdhlPEpQYQyJmZUWauxBYdwrgv2EY43zAi4gowxUYzKB0E2vJx+M39zjqcLIHVxnNTzXKDwWQDvJh8cO126NnNVZ9MpkBaoBqjnuNyWSRyXYxASktaVpJdWgTLzKck59NOx5SCIFcZ2P7F0XOZEldIwqrbz8l50ZmebMsRVTOj8xRrJqzvcSarT7fDCxO2mQSxFb7xc+3y262Lb647e8REb785S/jH/7hH5DnObrdLgCCtw5zvS7W1lZxxBG7UA4HyI1GVY6ghIC3nNDibAlBFt0ix2B9FUVnDt1eF4P+AL25HrRWyLMMLuNi9Tt37sCBlRWsrOyH80Cn0/3/2fuzXcmSNb8T+9m4Bh/23hGRw8k8ZJOQSEoCeN16A960HkENqJ+n9Qh8giZ5wQveCA2oGyBA3nQLagFqoFXqqmKdKTOGvbe7r8kmXXy2lnvkycwTkWeoOqUwIDIiI3z7sNyW2Wf/7z9w3O+Z55FvfvOaf/pP/re0ztI4R9e1nE4XiX4KYTMM75uGIQbOp2e+/PILQgg8PT7WRWHiH/yDn/P69TfMMaIrf2vner755jccj3fcHQ6M4yxmq8N5Q2vbtuH+eJR4KAreWby3kvCgoJQkCnZjUNaQsihEc1VZeu/5N//m33A8Hvkv/8v/M00j1kFKPW/X/JbE/odAJ2OMWzF5Syr/7vNeEcpbJP66ua4tlp8ITm7op7TPdEUZ3kco/xhc4E/jjz9W4YDWVyuftZUshUPlCtZ22LpJpBTwtq1oZK7FzNVexVorNiX1OYWbKS3tGBMhROYQWWLAtTusFq5ca4SLmMuq/mYTqogHaiYNA845sQ1KCUVVKpvbDTGhlal84lh/Bdq2R2dBdRSFksXUeT0MSesvbAXaioxtSnQlh6tac1Hqpgs1ueSmeCtJyi9JMTE1Ho+tbamU2hSrm4ivXs/Nq5GbfWCjHST6vt++jzXyVxuDrerbWH2ErTZbsXzly8pakFPaULJSzwwlp81LUrh416jKWx/QknNtUStYVeKlVLFKXQPtlZe3onXa6PcOAqWsqKUgejGX9z63qdftPa4oshYty1ILKBFuOS2fHxSlKsdL0ZsKOIYgApgkWoDVz1CVG9FXXWeNTGaKWlvbV8Q+FVFXE8M235Ra1eRiI1W0HJhW5H1ZwsbzWz/3KrbRxlRLquvhwRhB/des+rZtMcYhBXHaRFpCqzJX5F9JF++2Q6Z0TX/CEFLEercdIERL4DBIG9oYy+Vy2XwlV7uvsIR6eLRYJ6b7t59Hozaer6mq9WmZcb7dqFlaSdpcLKXea4FcqiG70uQs97qqHYm1fa+NqsEIQpuwRjiTcTuI6I0O8iHjowpKdTP51Vr1q9uN9juP/57i7WMLuu+2O9ci8reRpOvC8CHPWf/wQe9hTXBYX1spxV/+5V/yb//tv92g63EcmeeJrvKLHu7uMAX6pkVRyNrw4u7I4bAnzBP7vqdxsgGM02ugME8j4+WMd5bHd2/RiFHu6XTiyy++ZL/fM04LVMg+xEjfdtiXit2uZyhiM3F3OFbYHrQufP7qFa9fv0ZrxcP9PWGZGYYR5yzDcNlOgW/fvKmFnHweUuL48IBWiiUEcgzs+4627bgMAzkl2sbTdR3TMlbekOJ8GdFas28bhmnC1hOXRdr10zwLVpvlRl1v4n/1r/4Vy7LwX/1X/xeapn3v+74BcljVh7/PSNXf7XY+fVThpmTZSCnVhcH/Xu9Jqe/Kcb7nMXzfXfZp/F0drW/AN6ScCVH4SW3XCWm/FhNrC9YYg1t5eRW1zjkS5oBrO5zR4i2bM94fUEYzzFNtw0nAxPN5uLEJ8mSjOY8BNYtvYlYOV1ZkLmCMrSbmN1niWmFjRTqTRKleLiNN09C27XtCo2WcJK1DepayCWmF15p93+MayQ0Wo+iZuaJORmkwNdoux/eSehLgjCMlQWaslY3eallXU0pM0yKbe918U5GW9/r/K8qXc6bZIiOhaIgxM4cZlBQMrL6XSLqJ9e/nmCtlUEqKwNXQvBRF07RVMS4FYwhVEFTRs5RzTStTNV8aUipMYZIStabnOGsxXfcDBZ2YWBtr5HBghI4wLwuUgqmoVlFs/MXVpkhlka9Ibvb6eSQVZkUL0QWlC8N4xhi3RfSllHBWbwgVRQqUJYZKJVgjeC8Yo2mctMhPT+et+Bgn4cmHuNS2OZxHyaNOS9g+p7UWo52YeBfpep4GoSF5p9FWWvDjHKp5upw2uk5EMF3X0tTo4vfRxWptpUxtmSNCJ0Tt7L3sW8MwbCpneT8iIB2GgWUJaJ22zyTdgMg0jbjGAzXIJInqWqSt13CTGCN3vdvShKxr6HrF6XRinpfKGS6M41SFSQo7G/q+ZxwvG/dxnme6XS8HtxSZY0BrS4wD++Mdxjsuw4CzhtZLXnpaEtrZaq1ntujFN2/eMc1CMcg5ExahexmliaWwzDMajVGrB2chhj9CUg6U7TSzeispXcmlrCRbKrx8I27gt4vIH9u4fwxx/Kmb/w+hoLfQ/w8+Wz0BKLWeBjPffvst//pf/2v+4i/+P3Rti6vqQGsM1ihIC962NEbhfc+7d4/s93fEopjngDOWZZmZxoWCmKm+eHFPWAJffHbP5fmZtmvJKRFzRhu75X2rkml8yzCMBKAo2N898OL+FfMU6HuJlnLWcug79l3D0/JM68UMt21bjsc7SoZvv/22cl/AezmV/PzrrzmdnvjlL36B1ZESLuw7y4j4nuUYCEtNW1AGpzVpGemMpt33PA8TnTdYXSglQkk4o9FKiMfeKIoR4rdyFoq0wlEiDvqX//Jf8tVXX/N/+i/+C8lZveHiSqtKf+g54AeHnPav/lq3htM/8lPv/d96uFpPwz8VoVzn4MpTAkH7r1Pz+r4+FZN/XmMVLaQsimNrrfj83fDH27allFw9Tju8tygEKVNFvORgNUJ3qCQon7WeUJGGnAtKO7xveTpfGOcBbQzjvOCbBVM3plB5jmyt7EJRq1DlKmbcda1Y+sRYC1i/oSOCHkWGaartP/HOW9FFZ4SbuWUbx0iYZ8ZhYFpmjvvD5g0ofpJ+Qx6lQItbi03uL0FJ1hYj1Pt3vRu08BFTyRvCn3Pe0shyyZDLhtytfGljzfa5ViRvRWONqdY2paCrzY3VQEWltNYVwcmbOjwWKUpW1NHIaf7a0artemuccA+LFOsQ36NSXTtgq7E5JKXQmA2JbHxDiKE6aBihD6zzo76HFR1fzbnFIkraq1fun96QyvUws4pPtDGSCF5gnEZsLTTjEkhpYRwGlF2Rr3lTDC9rTnURwaq1lqVydAGmZa6vaUEZUAbfNqQsxdXawm0atxVB12JPxGe3nSXplQuSLXni13hTCQ0Q/07n5POun22lGLmq1F47B9M00fc91torb1IpDIpYRW8pJwgB65rq2pBROokIZh7l9Y0lpszT05O4IWjNcjkzThOX84U1krVoSRcKIRBiquhkQsBp+57NVq7rgFBFLHMIhBSwOPb7PdMs94gxBm2dhAFU8MVaMY13zpCyXNMYIsss6n3yde6tf2fsNcjmQ8fHFZQK1KZWk9DFtZ+h1j9SNl+ydVH4oTf0U//+R1vi3ykO39uQb9qm7/38zeO+T32+TkTvPcMw8K//9b/mP/7H/8B+1xNDpGubmoeaSDFgVMH30BrFPI3cHY/YphWrj+EZ7TVhGrh/ODJNC30ni3zjNHkZyMsZ41v290dOw4xtFW3jeff6NW3b0BgF3vDyqy/ZH+749vUburYTRnORhfnheEQBnbM8pcDPPn+1tZXevn3H5599Qd914lNWDVy9bygl0XjLw92OrnEYBW2/54kzISaWmLFGEUuWGMmwcNzv2HWtBNS/e+I8WJQRsnCyhnmeUCiaxtI2jhRmcohYXSe9Aus9OWc+/+IL/uv/+v+Ks57/43/+n7OEjHblOre2efbTx4rIfncOfd9B5ftf6/sPPbL5/bT3sx3KtvtlrSg/lZF/rmP7Lut5yDlHjHmL3URR29kWZwRZSinhXbX00VcuYaw0FOfEVNnayolTGrQiZGnhXaaR02UgpswcIm3f4X0jMa8ViVGo2uJNKCPvy1mDq0hpdRNntYCR0AoISTawaZoINeFDPocILMQqzWzFS04SgpBCIFdLncZ7QccqPWr1rwVBsdZoyISIEaQoEhrA7V6SV2JfHXnJN4Wy+D0KHz1trewNRKg/tqrkU4zSYq4FY065opGKWCrnTMOqwBVuXQH0tQ1ZW7up5Pda2fK56lGxlHWJln2qcszJ1zb8tRO2qtwL5Hh1CKD6mxZIMQkgoauASl5NfteqoolUGoAov8Ua8YrmARsFYW2VllJETHPD/VxV3SGISKggiS55FeuUgjFsjgbSBo+UhiriWaljuYJON3utkkOD0lJTiFdqFScpVTmIqiJ9slKmSrfSVP/IJIViTLnyMYHKKZYi28BNqtq6/q/t7QJbROllGN6rCZZlwTtHiLFSOAzzvBCifGcpZ1Je0WD5PDkHUpYWvory+WOKzJPYHWmt8Y3HKyO804q4e2tJWSz95LPDbrfj+fkZXQU7zjmmZRW2SRserQlhIVFwgK9OKXmdl6mwLAHnPLn6euqKPkuSkNhJGWvo9zuW+XqA+xi9wkdzKJV6P73jh3iMH4JKft/fff+m/tNb5t83vls0/thY/321Cfirv/or/sf/8X+Qyr1o7o53vHv3rk6QBqccd/uWfdvQOU94fsI7Wy03xJnNGM2rn31O3za8fv2WgqakQIwLOi3cH3b8/Of/AKzn6S/+ksPhQMmZ/X7H8XBAa839/QHnPOPlhLOarnG0jRPz1rDQt4Jwjpczx8MeZSS9YoqBtvX0nUeXe86XC/vDQThTYeHp3YQqmbvDgb5tuJyf8dbw8uGO03mAYSTnWJGIQtuJl6Uzmq7vOCziA3YZJvZ3O3aHI9MSOF8GOmNxvsG6hZCldW+spWkErRimCR3kJPWv/pv/hq+/+oq7uztcPWVL++m3T/N/ivFbr/U9c+j3fjvq+17n95vrn8bf3lgLIKW4KQRkMyxV1GGUlpb3yidMoBtPY2vhUqW2ISQa40RJmnMtTBSqitzGy8gwXXg8nXh6PjFOC6kU+hDo+h4ffOWNLZiarVxKxhjJx27bhrYR379UuX5Ga6zR4n2XA2EWxHKpXrMxBBSiTC0U0ngVJHjvyCESQyDFSElJilYjW44c7jMpRIpe01bEVk1XtChXnlsxRoSE+mpRc80/vxaYa8G4FpArCpuq9+dtEMLakjQownx1knCuIojVOmbNmU43vETnhEsoCXE31kKVQrO1zNXVe3A9CQsqWe9pXWMXy/X9rj8vIqOVdiAF5spFvKYT1fm1Ck+44RwasxWxawak0gpd3t+7gY0jK9ctktKaP38tula+4ZrdbYyRcI0iHFdlzMZrXOkSIcSKguva3awil7p0XkVema0XtRWQNR6xfp61iFwnSkx5Q2Zl+sTtZ4DNzeCKGKete0ouJNJ7nal1zsQYhe61XhclXNy2bavBv5J7cInEPFcltxbBWY3Spb7XomS+hmXerIPEGWTeENRghMtvrN48N0thS+uhZPbdjsfHR2zlMzZtKwVlRdVR0ooPIaDrBNDG4XSD0ZZSFlLKzPOCGJ1fRVKmXkMUtTg1HO+kpqHk7X7+0PETCsr3Tzd1avxgy+/HhDPfV5T+qTbP31WQfBdZ9d7zi1/8J/7b//b/xuV8pvES9H6+nDAanNUs80i7a4XL0DY01mANOCfcwTdvXtO3Dm8VuiR+8Vd/hWsatLHc7e9Is+aLl19Ajnzx+Sv++he/ptGKl/d35ChIaIqB3eHAskySDTqdaXzLdHmGtLCMhbv9vrbQF371y19xd3/HP/mn/zv+4i//ipgSjbNcTs8YY/j8sxccDgf+p//p/8Wrz17ibMPz0zv27ZEcI/u+53J65v7hgdx4GmcoRZSlKUaOu13lehZyWHBG0TjDXBMQxmlkv98zh0TIhVTA+oYGLVykriWmwhIju66nIEq633z7Df/9f//f8y/+xb/Aupai/7QF5IeM9+fyH+D54LcW+60J8Gn82Y3bokYpBblUe5lMyaL4zTFtvo0pZQ67Pa1zYqythEe5LIsgaaVgCuwPR8Zxlo1apKuchoFv3rzlm29f8+75mWkOWO/Yx8guBJrWMw4zz6dHrLY463DO4KzGWs2u79n1/ebL1/e9tNuV2JGs7XutBZGbLhdAitJlCqiK1lFRTe8sIc2S1b0s5Gp9k9Jqcr3STRLGNNt1CiGImKaqxzMQqvBi3fCuLWd+ay/aPA9rsSC2MfamuFekkq5iupg2CxgQLiTlfbGM98K1TDHWVuXVA7cEyUNX9bXXimaLAazIMkqhiqBppYgfZa4FjKlvf6VVzfOMrcbqWhmUZRMYiRF1bQUbA1qKR11RS+oBBCrtrKKDqRTKJhq6agFEBHa9HjFGUszbd7T9fY0xFB6j4nK5sIQASuaEMu8XaFIcy9xBiz1UyeWmUBSOp3OOEGoSTTXzbqzbwNG1eFUVvQdBtudZ2uzOOjbLrFm/9x5SShCTuA2oazyytoac3qc9TbNEXMrzSqrRep3WVjv1PYTnZ9q25Txc6PsdzjfEmDkPF0H9tNyTIJSW8+nCOE0iukPRtC25FE6nE9988w1t27Lb7YhL5JIvvHr1guEyYaymqZ078ZW8tuVLKeTKT0YplhjEHWITTYulYb/bb4ImlOZ8OqFqq197zcRU155IRg6X+/2e5+dnsafi42qyn1RQqquD6tb8k8n5/cKcH0Irv6u0+6E3/mOinJ9SZPyUNvwwDPz7f//v+ff//t/TdS0ahXUGoxRN16BQ5Bx5+fIFaR5YlpHxPNG1nsZrYprpW4cm4Y20ffd9x+H+gXFeCEugcZb7+3ue3r7m9etvSTHy5eef0/mG8zySI+x2Pa8ejpyeBG14cdzz+s0bnFGoHNgfjsyzeF7udz27rsU7x/PTIyVGSoq03qGAMI8cv/iMtvVM44Uw73n1cM/p3Vv2XYdRipgWdMl4rWgPOwowTTPOOxrf8Prbb2i7noe7A/vDHfnbt+TKK2m9A2OwFuYlMowTuS5M3nmGYeRyOuPaDmsN8xywztO14jH3f//v/jv++T//5/zj/80/QmVpAyu1tpb/tFXWD4nAfmwuffRrwHuLfSmlWsnUX4Xbbvun8Xd83Io7Vj7XtTDJFZUUnl7TeKyxcBN1Zq2Q6Xe+lY2jGo8tcyZEMLZhmGbePT/x7vnC//o3v2SaFwqG7tBhnCUVGOaFUEQNXLQhKVHL6gIqJZrOY72IWpQC13gpdlNiyRm8x5s1PWdBKc27d29wztdfDqWQ7sgyc0mJMM1QiuQSFwEcFj0Tm0bapjlVtM8zz4IIrZvlbrfbUEVY1fCaNUIRroI6qIiclqSY96+5xhqL8Xrj9K0m1qpy8qbLeStSc84Mw0DftVJkpYgqBk0jbfia+KJq6zvraxs9xgXnHEavdklAEl6hpM8IireE5T3xiDFGPP9qu9tay+FwYKnCp3XVMc5vBWCWoBm6rpcIxirZvyKU4vOoTCJRi8iYiTm9d33W4vD2WltrmaZzFaqYqpcQtE88DEFbR0iltnmlpR0r7y6XfH0PxlKKglwtqpQgb6ta2loH2mzm98LXSjS931T2OUVKmkUNHcNW5OScGYcJ6wW1LxQI13hIcQcQn8+1cHRekVJgWubtuqbKGT2dThsPNNb2vq0Hgddvv+Xh7q4ip/Jz4zSTS2Gen+WQ5RzTODNNS0UnwWhJtjFW1OIFxdvHJ6y71LWg0DQtv/7mW7ruxK7v2PU9bx/f4WvwwFkNvHv3tNFJuq6j7/vtgKcULCHw+PRI1+1onafkzBwWfPVqXdXyuWTu7u+3BLqc83vBCgrZW8/nc723NJJj9OERxx8XvVhvjFUV936x+D6S8n1F4o+hgh+yMf+QKOfHnvf72tu3G/YPvZerWEKKmF/96pf8u3/37zaScIyBtnEs00SKcjpvG884DJgSMa3DN56madntO96+fUfjNIe+4z/7+kt+8Z/+muOrzzmPEzkrlpi4P94LND0t7I8Nd3d3vH77zDRc6Lxl33d89eXnhGXmsGuxxlauSGAJC5+/uMN3O8bZses6tFK8eLijACkuLNPI/Z28Rtc2Er/YeMZx4Gdffk7jHLpkHg577qpR+peffclvyJRl4uHVZxwOe7795hs5FSs4dp77+z05RuI80OhCc3/k/u6O07iwnC6EWXw4lRA8UdoQloWmRlBdLmdBarWm7zqmaWIcJpxz/If/8B/4+h98XRMk1sxT+FuvrNbe0h/0OdenvjksqZ/Gy/w0/vbH97eKylZQ3IoxVv5c37ZVUVyISOFjirQEUwGi3AO5KM7nC+dx5DQMvDudQVsSYVNNi/XIDVdPgbaWGgINWtPtOrxz1TZF100yULIkgwkCJOhGjAshLGgtfOu15bqiXImE0oasMqH6sxYEhfK+WcNQxBuPFSFKm43KGjLw/Py8oZ0pJXIIhCrKud0nbu1xBM2TVWEtJlcfvrXVvYo5chIUc/2M6+a6/sw0TfI6iHm3Maaqn2NFL/V7r72+rzUbXdWCKeVU/TPTZqFjrCiihaeZxb8xO8RY/Jr2Rrl+jhVBvD1shnTlU1ovEYkpFYr4KSEHUFVR3yokUWVD21Y09FaYuH4WQfmqsXpFh4XjuNomiVWUuFpcv4u1KJWDMVUAAqqimNbLPBMhkaqK69U0W/5fmWtrf/v8JWyPWO+dNSIwhnhjt1XeozVYa8WeaOM55ipKEsQy5Sxm+4jbwjCOxJhou24zxF/5oSFDjFfvyWmSDmGuOdz9bkdRmpAi58vAOE6AotT3ap1HGU3MiXkM1+hDY9jtdtUOSDwrx3EmeVHxKwWqsKXbnM9n2ral7XfyPipCaY3dvhtd7+0QonAmc64pcPKY2zlfVNkK6fU7HIdBvJX1+92ADxkfFb2o6klxNfP87j733T32Y1rKvw/i+EPP/2N/f/t6t+/lu4rflQPzn/7mr3l6eqoRRYGSE3EWxGF3PLLb9ZzPJ06nJ3722SspPHNhuJzQGvquQSvFy7sDXiucMZzOF54vI9Z59vsdu92ep+fzhloMs5zMPntxz761LNPEdDmhlRimdo2ri76Yzz4+PdN0LQ8vXlBy5njc8/XXPwMU/8P/4//J8XgkFxguF+4PB0nHAR6OB954T991GAWqJPrG4XWhsZrjvifnSIkTOnu8LpADTdvQvDgSY+Dp3Tsa+xl3rWVYFrzxPE1ndFxI88Su7VGlo+l63j0+CveqsThnaYpYb3R9S86REFbLDMNf/MVf8PrbN3z++edYK0H3dcbwflG5Hg7+tLzKW5Tk964xFZsJMNQNM/90j8tP42951E1bsRaBcl9bazaRwtpSM+aqfM5FVDwlF0i5iim0iBKS+Eiex4nH84XzMPB8GRjmmTlGslIbYqKNlbi29X4yVlpxqopDCqJAXfl4iDAip0xUCqUy1tRkj9qqXP08jK5tZBQpJmKKGFc381IFDjGSsriDOESwEWOsP8d7bczVl+8aZycFTU4JXTc6rd7nc922ZJVSIipai0mtN4RpHe95PRYx0f7u7Spt65qogtx/awu+lFx5gNLqX6kMazFpjNk4e3D1lsylCHK38jxZV6vVx1BasO8VqPr9Yv26J0kRV6pWKpeCWtv72iBdd0mUkYLfoHWp70HELuKLKfMrpVz9IcvWWYoxoRDhrYRbAKr6a2Y2fqukSF5TXIQXvHI7gZobLufiWlQaCclY17qY8tVXWMks3JLLbn6the96TVYF9Fw5urqapG/+kHVtNopNoAUiJnXueljZUn+yXKMlJvI44bwjFgkZ0cYSKv+xIPZSGcUyLaJeV4qkFKlIxvy0LIzzXO2DYJznjZbQtR1LWLb5rkCENtZhTaiHEnFUAaEFrP6nq21VrIiyroKygtoK6e8euFZBFOV6r62IvFaaVNJ2ABJKwA3Kb6qxefpjFJTrdFZcW97fMz5EpPNT24S/L8/y9ud/CJ1cb+Dbhefx3RP/8T/+xzrRFcsybbGGTeNJcWEeYde1ZO95uH+BzjM5ZnRJLOPA3d0d3lniMhNmy+V0wnRHXrx4wel0onEWUVdGvHd4K2Tf85tHVOp5cTiQe8dwuZBT5sVnD1J0TjOfvXig3+/55vVbTlPi5ctXnJ6fUEpMXLuu4+uvv+bN20eWJfJw/4Czjs9fveSbb35D3/f8/OuvGIeB/+znX3M69Hz+2QtyWPj1L3/B3WHHru+kkFWK488+J9dF7t3jI7bt+PzFPZfLhZQW+l2D8T3j5cI0juycJqbAvrVoDYeuwfqW0+VC4z3WNzydTnIaDqlajlhKyXzz7W/4y7/8S47HO7quJSfhCP128fanLyj/0ON7QwE+wZN/vkNJlrJspmpTZYKIOtZ1sO/7zb5mnOeqcpW2dI4J75razlTkmBjnmW/evuUyzTxfLjyeziTgPAxY39B2HU3fk4FhnFjCAggPS0QDbEVfipkISCiLxmpZh8pN3vYwjpX8r3G+waCJKeOsI6fMPIlPnfIyXwtSLISYSBRMru1WJJ1qy8FGOItDRURijAzDALC1KbVSHHa7rYhYi/BYC89blM1XlfoqKDJaS9FUrvGH1lpUWCqSaQjT+N7zhhBovLvuFbXAKRWp1MrWA56Ye1OQgtk3osSGDf18H4GWgmClsKi17W00KmdKlmutKRsdQpayfLNvrdSJutlrTYyCPlrnsM7WhORc04g0xnlJJ4uxUgt07TWKpVKKWex/UiFW/9GwRHQVT+UMFLW14FcULBe1KcJvkc2V3rG2eI0Rc/uCoKVa243jl1Qms14TKZBTnStr4WiM0MrWg8j6PUk6mWVaAvO8vIfgrnMlpcSubbbCERRZgbHVgzFGlNIscRGVtfXYonh+eubu4V4KrCjRn+O8XHmVJLqu43S+bIKiyzxjrGecZkLKFC1F6xIWwlRz4BV8/vnngvDGRKzt+6fThRCiFJpRqG85StFulGK363DW1o5nQ9d2xLyizKWijxpnrQBZ1pLrQSZWDqlS4l+6XreVnpFVLdS1RlFQRW0I5nrAJf1RRTlX/6rv//ffLhZ/qJj8scLu+37+u3/+uPf924Xt73rcejI8n8/8v//n/7majE71NFTY7Xc4rWpagMbZluPDS87nC60tHPqWYjUpx42obnLk6e1bXhwP4FswhuwtYTjxRIB54G7Xcb9reb5MHFvHofXE6UJYFlprubu757jfsYTI4e6Abzp809K2Da9+9iV3Dy/45d8oxnHgiy++4PHpmZ/97Gv+6q9/wcOrz+hSIYWFnDLeeqbLgLeO4j1d2/DFq3+MKpHhPPP5Zw883N0zjRemceDu/o6vv/yS3/z61xQKc2NRWrHMI17Drm+JWdF0jjde4UlEXegbT8gwhYm7Xc+75zPeCv8lAS9fPLCkzBKGDQFYM1V/85tvtj9DXeT+Ho/vouifxp/nWBdmrQ3eN8LLqp61kk4jG+vq17duoE3TEuIizhBF83Q+oZQmZcUcIk9PJ759fMfzZeA0DJyHAWUdRRtc0+J8I3naSmEbL6hnSoQlEZcBrRXeOVrfMM8LRnXMcyTGAaWhbxuct5IRjKBX8/y0iTJWm588hxoXJwry03kQVLDAEiZiKhwOe5bqseecZZwWmkaMomMInC810asmV03TxOvXr6Wt17b0XSfuD4CvnC+QIndF/FbERSkp1FdhiwAD71NGSimVjxe39JG11bfuTeMoQkJrBJ15v5uFtJVhQ0x1vb6xvhfWgsdIa3RteaeS8dqikGKxFPlOVo6lqTSiqzJcAI629QzDxJp7nRN4sya4KCly0awpPeS1GK6FW14oBbxvK5pL9WaUOEoZYsqt6nc+DPNWnIUsaOw0L5uSW5TQKw0JrPX0fb+heAXF5TKK84kXFHyaA00rMaAoaQcbYzaP0aKEayniLeHT5pTp2/a97yfnzOVy4Xg8SmhGTXZaPTTXg4NE404VtZR5HGKsqFg97GlDSAm0QVtQKWGc5XwZtpa3UNzEaF+iGw1xGClahKUxZeZlYZjOm/p9nOT6zfX9hJw5nZ7JwP2LB2zbYLN8zpgi37w+UVLBW4vzhrvDkYf7O/rdjlwUT09PvHr1irbraLuOeQ5oawnzUsVrhX5/wLUi8k3AMM6AGO5vCTvTVNefXIt1sRea1pCEm4Pu+r1sh9APWfM++JGwWV3cFpS3HMorSvT9heUfcnxoMfqxY2233HI1X79+zdPTU41Y7GhbzzwO9I0nx4DVjq5tOZ9OaBxhnrj74gGtCnMMdG1D33XEeaHrPCW7rYB6PF+43zfs+56fffaSeHli33nIM3uvaR8O3O9bDp3jfEr87Gdf0rZtVYcblpSxviFS+OKLL2n2L+h2B37+D/8h7968oet7zsOEzfCzr7/GWE/b75iHkRIWSi5Y57hcTvwf/vf/jPvjDqsKy3TC7nfcf/WFWH/sGnLYQ0k8P76txuWFr7/8gm9fv+Zwf6Rxjod9w+u3jxRdeHW3lyg45Xj9PJCmwLFvmUPi7rBnCJlpWQgxoL0X+5FSaoylYp4XKIr/5X/5X/in//Sf8bOffXltf/x9rLW+53b5hE/++Y5U8haAnHLGWCuq5xpX53RFJ62lwNY+m4YLU1WFKiNGxinDEjPTHHg6nXl6PjOFIMiLlig2Yz0oTVGGtumE113j2chZioAssW65ZM7ngaFkxm6mXTd+CuMgClNrTBUHyHsTeo2IKpxzaESF2rQNpcA4B7SKlJKYl4lpCswp0nc9bdORlfj0DtPENI28e/MWKNx6F6Ygti3n5zNKK4mgbSRf2LmrD5/3Hm8szkoKTVgWYozCVzMGSmacJqwRfiHIxrgsS+XyiXgmTKOEUlSByoqyLctCqrZNSokQdeUyqmporqwDU8snJWiv0Y3wNvWVvzdVhKpdCyNg5dKKrcy0JfGY2v1TRm354sIdNFjrRelbxNw7IzQGYw3Oe0EAa0GfkyCQORVSUuQiJtVa5Wp8vjpiaqEzFWpBXlDakpKgztrUNndB5peWCEjjvLTXs4Q6lDrvhOK+to9UtcvJGGtoux6l9JZvnVMhZ7EpMrb6WysYhssVcUQxTdPGs1VKHFOWFHm+nLcaw3vLPNcEnSTOAjEldrtd9UutBziluYzTZuHjmo45xErbSISU0dbx9Hy6BgIsgYIWXnBN88k503Ydy1xpGsDjSehq1jm0czw9PtZDmMP5huPdHZdx5PQ30rG8v7sDrZmHUQ4hJfL4fBGv5lpozsvMYbcnxMx5GIUnXRTetyxL3BDqUue3rh2CnGEJCVsUwzjW4IR283WNWcSB1tiajkf9vvWWQiQpO2qLnvyQ8eEFZbkWjlpV/uR7xeSHoYffVWz/rsfcDvWd33/X6/zUFvlaDK/Fy7t378QGIy4c715SUiSmiFINvhHStbOGF199xeU8Y7QhxcycAhRNDpndy4435yey0+zaltY7dIyoIMibJ9FZyK1lPD/hnePly1eg7KY2/Gf/5J+gjBCAlxjQxvLq/iXncWIOkf3xnilqhsuFpm3YH+9oux2ff+54fj7x869/TswZ37QMzvHu9Rt2ux1939K1Hqs1rXe03vLws1cM5yeMhnmcxIojBXTOjONASRWnKImX9/fsDgfOT0+kENg1HpwUrr5p+PbdieECpnOMYeHY9UxZUZQkWqQ6n5Zl3iw8lNJbis8vf/lLfv3rX3M8HjG2RqN9Z/5sjN6PrMD+WAeTnzp+G43/VFL+uY6lLt7o1WdRyPK3PC+xBKrtxSJtuGvRKRxtrZRwtmJiXhYxNm8adCmUFMkKXNPimw7XNBvBXqMwzmO1wRrNfrfj7Zs3goYpKaien54IKTMtAe+rlZC2GCsJHkVp5kFEKlotGz/RaL15NRpTTZRzJqVQuXpSBD2dL4RUiKmgZyAjrb15ZppnaV1vzEzhu6XaMk4hMU6SU46CfD5jtGa323F/L8li3jt89sSw0DZNLQTl/cUY0NqjqtjlVoBhQGIPK7oJ3KhdxUEjKYmi1FpB0VWJzcb/jDGgkhSbvnp4rvnjpRQMarP52YAYbviLlatpjaFYS6ycTessa2aMWvmOiLWLKpmMwmiHNrW9XFvh2ujKf1TiOVzTjKz1FHJFVstWzKUcsdaJmry2rmMtmo210n5OEq0ZcxYUtP58qvzLlX+nVr5kqfPD2i0iM+dMjmCSpERphBaQUlVyl0KJCVQGffWEXHmVa7s7pSTuAzVZ6j3UsiLPSwjV21PSj6ZlRtV2e86ZpuvEZaHIFT5fzlCpAyEG5iAZ1kVplpBYgrSm1xZ5zOv8LCypME9ztU9SDNNUD15i6zTNgdZIvnlOiWkaOR6PlYIi6uzdbkeca5SmloARTcE37UZpmJeFy/lcOZnCU43xxsvWmC0YpBThPM8xbcDYSlOY57n6rF4pIChJQlqvYwxx23FWnurHjA8uKEvRWzSX1gqlheQrfDa1Kb5uN8Tf5fX4wWPd8H+gwPyxx/z4037/+7s9qU7TxDe//pW0dJ1jHs+gRLmFgrZtxLg8LCzTgLcG1/RiiSASbGIInN685r5v6b2hbw2azDSNPNwd2bUNp6d3XB7f4Ay8evlSbHTGC1999XOeHs8YHDkbjvf3FK3o2h3GO4oxHO/vGIeRZRrx7Q6VQJXIYS9K77u7IylF/snxH/Hm9WsATm9nDndHhvOJV69eYXXmsOs47Dpab0lLJIZMf9ijMEzDWQi+OdM2nrZxtN5TCjw9P5ODtO2isiwlEC8Dxhi+uut46DwPvec3b594GjO2NTxeZkIOPOw8S255NwxQFF2/B1Q97RvmMKHUwi9/9Su+/Nk/wDZ7QtoYTCJ4KPrjuYbq9ysmy/f8+qkz/brZXNtzt2KfbY5+qi3/rEZKkgMsDgVV9V0PQys/Kaa0bTA13VtQkFIjX4si1fIiJsnyTTnjm4YpBUqQza9tuxoa4Davy5wSThusFkNx4z1Pxm7+mEpVg+iUyMtCSIkmO2YC2iialEhKPAdd7R5QREmrctnayqiagOPExBkKfdvRdZ20HUNiXgJKFWxN1BGkTkQSCoU1Gqs12dQWZNZiN1MLzIwYqitAGUMfo6Tw1A0+zku9zoVsDGVN7qn7lVj7hBp1WbmASQzcv8vFXH35NFCMeHVWXQOSiCjOHxLNqNA1H50q4lCKDS00xtB4T6xF69rezyVvmc965RrW96S1GKoLvU0sX1ISBFNpgzJW0pRcjT5eaWjaEkKiUOrnElW5UvLGY1rkkCImOxv/bi0opegqFTEUHl+qwqpcbWfEZbQWlLXwVEbeR7kRGW3em1sRLSh3vn2d+t3J+6iIqV7FVmU9h1XxTo2rzFe0fBXUrOuvW9Ns1kpci19lqWECIQSwVjiutchceccpJmlVz7OAQBmWEFlCrM4Hs3BOS9mESnq+MXsvYhweY0LrgDFO7u0YsQZB3ueFB+tpVr5uVU8XqkWcsXTek2LANy3Oe4xzoDXjNG3eoFpr+t0e3zQiQrMW3zQobQRljVkoJr7dbIFKucaOplUYV/e/uYp/pe5JmzXTiqBvNlgfMD7cNkhVZZlSbM4t2zb6/nb6oUXkBxebSl2ffVVjrBvudx/6Ea/xff92a0Mhnznzi1/8DRRR+U3TxPF4RGuFriffkoWkO48D98c9yzzTth5TDJensS6Wirv9Dl0SVoHKkd4b4hIgFnqvudu13B/3HI8HQgjsf/YFOSacAaOl9bMsEds1aN+gnENZUYu3vsE4hWt7xiVijKXfHchoMUw+3rEsMy9fvRJh0JcZlCXFV/zsi88I0xlNxvuGxhvevnkjwhiqRcM80zRAioR52NSUSinhhhrL4XAklmronBI5LnhvSapwaAzxbo9xlnfnAZUS+8ZxWSIpZIyC8XJB+5a7uween5+IMRCCKOTO5zOn0wnf9iwhkcvWTfyJ48d/8nfNzT8Uqvm7i9pPVeSf61DK0DQdpbYonTXMc2RcZhRwbA5gNGGpsYIVYYq1cNDGiHk1EINsePMyk4rYzWxNS6PxbbOhMOvcnecZnSGHyFTXtcY1nE7PjNMgm07X0e93IhRYFtK8yCaMvMbKn3LWbVZA1opf5vksh2tnreRKa00h46zlsN/jvaNrO1krqiCp9Y1kCluLNYZDe7c9v3eSefzm9WtBuYxGGcXpcpbr17Qi5EmZYZqxSpOLbOikTFwC9/d3WCM81WmamMZRRDrGkJIUlBI/l5nGkX3fbVF4RgtootEsuYiQKCasbqQli6JkiZIsSWOryMk5MeIuOSEqehFULcuytekFsZto+g49z8QFYhTu5rxMG3oJ1Lxp2dxjDIQ5IJ6KGuscjRV3D20lZGItSFZO6dbudI0UJEVEVt54UjLkPKN0wVhqkXJN93HOMY4zxjpShqISyhj0Gutbf6Gq9Y8yW5EZUxZ+YSosca4FteRoAyQKJStBcLe2eFX/ZymEdWG7blLoCr0gZkEzqb9rbbGrJU6WlnoBnHcSOxkCRSGJUSnXAjZzOl+2wnNa5/o4U7IY6A/jxHkYaftO0MF5YalWViglPppGM0/LxkPMpXC6nCmroCUkUprp+57HpxOH/V6CBHzLb759Td+3tF2LQfHmzTumcaLkiHeOvu+3A07TNNwdj7Rtw5vXb3g+n4UusgT+8T/e0e92FSXWtE3H8XjkmzdvCVna9s45jofDe7ZTlxpIsF23itCnEOte7nm8PG787xjjR6GUv1dSjip8PDL0Bxh/aIuh9TnXz7Y+93pSenx6om1bORn0Pfv9gRAW7g47WmdZxgFnHbptKTnitKLEmVwSRmWOux37TkzNwzxyaA80FsIwYFOkazvu7+/46stXHPY75nlmt2sZLs+0Tc9h3/Pys6/Iiq2F0nSi9Moouv2xko4zCc1uf5Abn9rg0BrftBhjiXZhUZrjsdB0O969e8t5uPD1z35GmC60zmJU5v7FC5Z5YgmRxjt2hz1hmhgvJ7puT997chR4fDUiLzlBKrSNx5TEMheWeSIGUa5/1vUkHjkPF37+5ec8XQL5fKbd7WlDJqKJRbMsE6VkwjLTNB6lFSHMjNPI6fRcWyB/sK/+0/g0/ijDGLPFuIFslOsCnXPm6Xxit9ttqOOqurXWolDiHRlj9a+rEXbGsIwT8/nEMI6Ms9BdjBtBaVIcoQgSeHp6pnGeXTVDXjeUGBcREcwTUSlOw6UqviMpRvaHHTlL0ZbSCdd4Gif8Q0kTETHLcoNQ7vd74jxSUkYreBoG+rbDGfGW7dqWEBYe7u5ZYhTVqnPMwdI1DUsceT6fpChiFb8UShDfxyUEllnai2FZ+PU3v6FrRLTTtx2Nt3z24mVFnnLlS87M43j11bNaVOZeirymacgxVL9OKQhTSlhnKEvN5NaqIqpBQIxSsFoBdlOmKyUhF/LPuSqZ9SY0cs5t4p1xlPai8Q7rBQVcwrzie9v+M88zMYUtU3yN5ZOUHHntYZmqFY8j5gzK0LT91rqkqGpNUzBa4bzH5pt862IZx8tVL6A1pibwTMvMvCwyt4zl3bsT3a6nIG4CXdfhnOVyuTBNI5+9eMl5HDA1blBbQ5pnfNugrBQttnIkx+kabQg31kRArCrvOErCkLEGErR9B5UznItiGkdc46snZiDkhMKgTUXeMgzTWMU0gvJPYWaYZ7z3W0GZ63VLKTNOC6fzhZAiSy71+ywY23A6j8LENYK6osVxASWHulTETuh8GbdWfEY4nSHGDVX12vP4+IwfRvaHHXf7Ay9ePMhnWALn84DkxKsq7ioc93u++vnX/OpXv2KeZ4Zp5DfffsMShJfrvCcB2jnevnuHdZ7dnd/ES23bisXSLDniUqxLgemc43A4MI0j1OjIw+HA+XzeCs6PGb+Hynvtwf9pd/bvMyr/Qzzn7XPd+l7JohG2k7nWpnJToKRMKOIlleKCMxpLwRhorREPrDFjdMZpsAravmXXNagcedgJl3LXtxwOO3pvMCXRWs3p/EzX9XR9S29aXOPwfU9GY6wnZYHIm92OJSThZikDtcgUGwQnj02FsCzsdntOz09oa+l3Hcf7e1m0csB3LUZD4wxGF0KKlBiwzkqbKYOuKKRRohJPKWFQOGOJROKy4JsGsiGUTOOscDKKWHospXB/2DOMI8N4oXMND/ueoD3aFU7jxBgLwzhiFJJBjiASKSfCMnO+nAkxbED1p/Fp/F0dVpuNay5rhHCXhG+YGCfJ316TTqjo/rL63WlB1kR1OjKHID55wPPzM6fhInYuqFqMSXuQArbSdUrNM57niWmqilet6vMLL3CuyRmltuPfPT7T1hZYygWdCkHlDZnSpnZwjBETGq3EZiamrZWvtOYyzILKLonTZcQ5Qy6PtN7Rdx17bTgNJ9S9ETQuLKSYNm6p1grnhcs3zAsKhW879vsDl8tAiJHzRYIT+q6jb9q6bnfCB/WN8ByroOZyPkkRsyz4RlDhHK62PlLMgtWCOmatKTmJGKQSEqwx+LZGRaY1VjKSk9izUdvlCrZ89pVi4Jwj1EzyVDnpVht841EVYUTqZynAiiVzzewW3qHko5fqG5hzoWRwm3n7VDmV4qNJyStvZuOmlso5XD0/AXECoDBOo8yRJJY6RhsxaG88wzRu4o8QI4WCcWIS/vbxkX63k7Y/sje6xnMZR4yxG68QApdBuKzWSWLa1bM0kYsglTllVC6YXHDW8fj4LChkZkt/OU8TKcrjm7aloJjCamWkGJdr1rggopqQAl5pCpqUES5piRstQwzQC3mJlJpUZL1mfzhyulyYppmQIv1+Jx6VNQfdW4dWFt92W5Gbgoidag+euCSKThz2e3JOhCmgjxaUoes9TROZxgmtCikIKjqOA09Pj3z2+WeiiagpU6kIR5tlIZbCHDPen4k5YfWVnz1cLtvcW30oIVcxVELCRpK4C9S527ZrMtdVT/LBa97HLpLyAnojdP59G+vpbT1lvHnzmnla6LodKUUulwt931GoysKS+eqLz0hhRucEccbkzHB6x4u7PV4XVFx4efeSxkrB1jeOtBSs1/RdK6dHBTkE5hjlJrSew+Ee1zRkbVFGbCaWsOCtQeEJIdAajyoR37aIT12R3FslN0xYgpz0vMe3LfuSGQeNSw5rNA8P97JwN42ggiTAYJuOvXdM40CYZ5xWWO8pcaGkWInOoFWpKKVsQOM4UlKk80L+DdNIDHPlMhlSmHg47OnmzGWJKGWh6SmjvMY3796w5ML9/YOcEIHWOmJYGCexR4nVE03rH/8uP41P429zKNhO+GvBlsvV3FpV9EuplccnQofMSr6XQ2xGDoTTsrAE2UymaWJeZkJKZDQqJawWX0iKWLCI0G2hpExyria3uMplyzgvXnRTtVxZT2mrcfUaeThOE8ULYoMSAQooTMpYK4rvNclHVULb2gYtShNyYZkWTFDM00TXNiyhcvNyppkm4fjFuJkoT/OM0ZpGichgvdkLkLJw/ITTKJYtJWfeKLbYRmctIYqtjtIGjVjliEl85ZSFAFrWrJV2J9Zw8yZs2riVm1XQdY+Q+MdMKfXg0Lb1s5eqwK5+o1xBi3VzzlkyxIuR6y42QTXVKF/TblTNa9+8HlMR9BFJ3EFplKotawWpRjs656sfpFw1eZ968yzUxqBzxOQaCarUhtCihC+JEjpFzmUlrFfDgFxpGWx2V8/jxKHyNVfamHWOWDO3pX08o7Stv0uedGrke1+qlRa6Xr+cKKkIr7HUHGwjxXVKwoeU9nv1dt1Q/WrAXuq8qJ9t9VFFaaZ5Ef5r5ZnGEDc+qXBDCyHM9TvTJLS0kL0npMSShJYCbHxMY7REetbiXRsj6PMSMFoM5Y3RUmhbCwVRcU8Tdr8XlNs6+l7LvaAX5mlims6MZpSuZBXced9sFkjaWNAZVSLnYdgoCeKf6bhcLhtiLxZUbZ0PsrkqrhGxVOFXKWwF6MdSuz4qelHumoKpX6zcA9/PQ/yhf/u+x22vccMne+/P8he/9fPrjX2r5v5DCYHWlvf5fGFeZqx3XJ4uWG0ouTCHBV0Srx4eOJ1OpGWi85b7ztPoQg6a+XLi/rhn3zichsZZWi9O+CXJqc9VZeA0i3pTsnFbDnf3uBoIf7lM+J2kZRTERkHVXN7y+ETWitMo5GOdq8GsscRUxAfMWpyxTONAXBYoma5rsc4Sk0S1zSGKR0QBZQ0me8KSNxK4MYYcZ1nA6gk7xQjIaQokUs3URbFYy5KSICxay8nctzitCHnBW8u8FCJSGHpj0EUiIcMgNhFv3rzFNw3WWx6fHjmfTxjXyGJTI9B++qnmOvc+dM6sbGEQpwNuNolbQc1HvYs6x+X3374f1qSJT+PPb6gqxFkFG1AFBkXum7UtaozkIYcqgDB1o4MqVqgm3zFEMSeGGt0m1iIpS3KWtx6FhlQqSgXLPBOL5IK3bUO/6zkPF3Iq+LbBV3uhtaDMq7hkFeBow/PpBFlQLGNMtQmSNcY5R9u2XM4XSpbNbOXCGecxTgqfmDNhmrnEIK3UeWGcJnZ9h3pWW655KWKBklKiKNApM0wTu11PjlFalXHGe4dxrgpzFqZ5ZpkXseiJkuyTi8THqbpvta0oZ4uqoEHOGFVj9LTCVj7ZWNuiWqpH+d7Wgu5GgSy3pSj2U4jVuLwWvvWeXVPlqK341fey1OcKpaBy2rp+65zIZeuwb+1/+RhSUBZCLVplHYoxSFGf1ufSeC/PeUWmzFZ4WmdQ2hNKqX6nknyzFpQihGIzvE6lbJzF1UjcOjEwv3VFsdZWpEu4l8ZaliWIx+g4kUpNFqqUhzXWL0RR+7vGbXzHlBIhStGl7arqlqSp8/ks+earwIVrEtL63Y7LLDGbiAbBO4kLfT6d0dbgfIO2jjgtWyEWciLExGUQNNYYi0nV4sl5PJDUKtpVW6SjsFNEIa5vUo7m6kdpqziLIog3RZT+p+cTTSvIunNiP7j+OabINE0sy8ybN29o25b9fi+Jd1mKbWMd2go4dBkGfNtt88Z7zziODMOAq/zMly9fklKQg5GRWuaWdy3F/0LXCfd79fX80PGRCKXabpK/LYBy/XDvb8S/u3j9bTuW7x96W9jkecdxrPCvZK9mJH1ht9ux817Med89c3fY443BknGq4DqHdy2HvsXpQtc6Ho4HDImcIo2WQisX4Ul4Z/BNR9f1KG1YYmR881ZaTM4JtJ0SMRa6/YF5GJhCIj6eML7FeI8xTtreRaGtCFestaA1mcgUJoxSeGsJy4TS0pZZppm51OKlQE4BVYp434WEKpXbEhMlBEpcyCukrwpWS4xTzuIzt6rJ1ki5xjfonEkUrFJ4qwlRjN991sxKse86nDV473jV7VhC4O7+Hu89wzxwuZx5fn5id7gjxrApDuUL/amz6cPmhvqBP6////veB+t8uy0nt0PSew/8A7zYp/EnG41vqpGy3IfCwdIb8rW2HE/DsKEExpiaQuNpGl+9CwvzHDc0QaxLYr0PwFon6Ti+wRuHtw5nPX/9v/4lh/1+S8rwjefu4YH9/YEQRcxisLTHI0sIxGrivYwT8zyRs/gcKgRZFIBSMU/LxlNbpsDlJJy6tulq27JUlEiUslqJRY8ymnlW5KIYl4VpmXl8ekIh3rPrZmqtZbfbgRLVaspZ1LYpVfTEc7mcGS8X9v2OV/cv8M4wDSMxBN69fcs8Trx4+cBp3dCtwTnZ7prWbZYo59NztaDJNX1ntQ0KeCdFD0AMQM7oosiV/iTxi5VrrzPLMuFcg9FCBchJsrxVbT/Ps6DFq1WQ2+1YloVlknlgbxS1m8I6RkoUtM0Y8QTNFLT1GGsqylY2rm7btXKtVakdrbkiTYgKOEZM9fc0xjBWsakgsakWtTVzPESxDarAgKoFWykisElFYgUBmr7j+XKW741aXGkBQOZqYH86nVjmSN/3NG0rNKaaQCQcToWKmbbvuVwuGGdpuh397sDj0zPWNxu3F20YplvldRXG1vezCnkul7Fa0Rm6TvyNh8sICpxvuLu7F/FWFd8sS+TduyexG9Jmm4Nd12Gc0E/2ezHrv9YJsiinHGird2OKkWUWqlzbeBSKy+nMfrdjGmZBLLXmfB4I6Vfs9nu6riVGT9e05BS5f3jgeHfHr3/5C5YYKKMU6iEEXr76rCbTZe6s5bOHz/n1r77BWM/xeOSrr77e8sLFWSDw61//Esg0TtaVtmlrilDaOinrz1Q2DPBxAtQPtw3adjOB4YWXkPntRO8/zfihIuAPgU7eFqnn87meEjWHw52gUlqLCEdrnAF32NN4x36/Q81nyJl+35Nj2JIWhGsTgIzKoqAMIVZ4XEumLpphGChArG2d+4eX+K4na4NrGuY5ipIuJzrvCGjargNnySnTtA0K2bxCCEzDwESR1jqwrKeTIu0368RaIFezVK01YRpks0pZ1H5LYphmTCk44wQhrMpCVQpKUzlIZTvBU1bTXYeKBVWStFRiRJWCpmAwNNZSsGTTcDweeXuZJQ81RHY7uXGVUjSNFzSmtsRWJOCnj6ttwvpd/9CNc9vGAd7zrfs0Po0fG9IS43r4qXzglNOWOGNqa7lUhMpaS9/vaJu2Fk8DxipAipan84WiNM5ZHMKVPnQ9AArh5hWl+Ef/+B/CjcegMjDNA8pIvOwyzexaQ8yxdlAamqaja1pev37NOE2kXLCwtehr2DfKyhpUinQmljCBqpnWumaYa2mZ2ps4xFKLS0HVFuGi58xcC1qA/X7P0/MT2pj62CwbujHEELhcLtwdD6QQmeeFt4/v+OqrL8Xv0UnxnCmcTsKZ1EqxhMTz8xPHuz06sLWrQ1hqS9BhvUOhMNaI+npeSDEKN5IVKcwsS9oKK60UKksBmpzHKIuyFa2r8YVlFUAYS1bS4o1J2vshBGxVmK9cT+ck9SgZQ6yepaW2RAsSoUfOlCjtf2U0fevFLmaeiMsinS7bo3KuKm9BxJZ5rMp94S1apQjl2rpegkQZai3fa0ZScBwS+Sl2SBpbqRHrGtg0DefzWVJZanHifcPz8zOXy0XEUM6RovAurTVicWXF0mqNkkRLS/o8jHUPkZQbZZ34lkbh/j2fL1hrGeepxh0mrDnLvEyRZV5IOTGNE8ZaoYC9fsvXP/85xRiGYWR8fOLb1285X0aMs9ViyeC6lqy1RIdmQcpjTkxTgFE+/93dHSklxnEk57w5v0yDCErX9rIxeuPTHvd7wrIexqSAb7oGCnzzzTc4Z3m4v+N1iFDElL1tGrquxxhN13Ybiq615tWrV0KRqe/j5//gKx4fn7icnzk97/ni669pqnAql4Qxisd3b8Xu73hE73aUqiZflnkrLDVsqV7rIexDx8c9uqxK6L97MMkfSqCz2WIAl8uFy+VM3/ecTk943+OdkxOeMYQlEIm0WhGVFG1aR87vvuXVyweGaQCn0VZ4MeM4su8atKk8mSyt76IKaZmZg8Stdbsdx8Me6z1aZbGOQPJaGy/q6tY4irE02uK8JSsFxtG0DVpbSlHQ98QlsISFaRgwqtSWtPCgDGLca10j+aOIElADc86UFLFa4Y0hao0uGRUWwpQJQdrzlizxT9VZ32hNqWa5MWW0cVgHRSdpt0O159Bcxkg2Gts2qAz73Y79fmR8fKagmRYpwHU1F04p0TT+t06Gf+zx3cLz9/Gv/DT+/2ekml+NkgTlrYWkxZomVi/GxnnWlk+uIgS7IQYL0zxuHDKtNfM84puefdthnd/Qz/Wgsx73NYARBNMYIxGw1ZPRaY3tOzRgjWMJi6R+tT2HXY83XzAHUXW/ffeOZYmibIXKdwNjVOVVStLJHAJUizNtNDEFtG3kOuSqSG38tqGSNaWkuuFL63ZFdqCQRjGK7poGZ5xw0CrVRpAo4QYuYeHp6QmnhMumK1/OOiMpXEUhNsmF8+XCElYTdysIn5IWtegn1NZ2LhRUhmEYMFpyttVN61uKBVkP1lSRnBMqg9LCJ1RFilBqy9pqQ1FJULXanl55mSnJY1KJGJS0vWu7XBt5r6pSjpzzzMsi35826FIkNlAhHLxlZjFQJ5VkiytonK+m6nHL0F7Dbba2OlQBUCKERCgJqElClet6y9BRuvqZalP5noqYxJD7fLmIh2JFa9uuYbfv8TX7fKUtzIvwGosxPD0+MY7ThnbnVDBWkGKhCkBIijlFxikyTIFlCThfWOJATEKJMsZwmSMuy72RUuY8TkyTUC7mRQCODITLyBqTqmohnUoW9XgVLEGpqGrg8elRDh5ZRG+n87NoBqr9jkFXgYu/5rJrESI5Z6/XW8ESRdirlRIj+qapnb7EVJYquKpelVXEtSwzufSEsDAvE7wFZzXeKkqOPL77lsenNxiV8eLyJXVbCigs8zhQUqBpO3ISFXrJhaIU3jrxYVWyjlwpE797fERSTj2lqo9X/vwxxx8anRS/ssTqRfmrX/2aX/7ylzhnJZj9eIRSWJYZUqRxGqWR1lSMNM7hq5jFe1sTI+pimVK1c5A2gymititkLAXtDPudnEbCdGG8nEQx53tUK15xd4c7UfX5hvM44NoOnR1N1+OaFu1bUKbyMBoWa2iSg11HiQvLNGG1ovUOZRylwvO5QM6B5Jy0ubSRKMRlllOR98Rl3ng11hq80aRZFHsl15ZRXQBXbgnojVOz+mHlUsRnTgmJWtp9IkTQSuF9w3k8VcK5QpvMssyMlQui1R8CHSzvPcePPd93U5c+FZOfxocMseyqIoxygxSWG6FGURLVZsQ8O8a60ZcrXy8maW+XUmp8nsIZTde24unonPjTVlGEUld0zFi5V43WpFxtWuoGobUSpaqWzOoQE1pJ4kjrLDG1LGHBaMXpfBHkJ0ZCKKQYcL6pIplUuxaSxrJ2dHJFACminjb26rUogg9DCgkJ/JMWW0qSw621IlSbIpXFUqdtvEQpKpirwlcrUKpwen5m37V4L7Y3KYk3YYhi5l3qQVocIjKFfLWYUVIo51LqelQRVgqJwhIjrXcUtdUFG4dbWsTCAZVrLx+kVFSQik6ua4gUl1W8hBTfirXlnDcFOEpfkW2FtI+VQhslnobWioJdSbGco3hxaiOCr5IzyzThnIeSIYk7gPWOZZ5Xxdjac5QOZClVeFO2A06pBSRK1fqx1CSaG/vAzbjfSJsYORgJ/28R4YzRWGcxWri8xrqNjx/SzDivAjPhOM7V8zTWolZrMe9GSa52qMbo0xyYFrEAUjFdBWZKrJamJRDymsedeP3uiWURs/KSxd8VrZiWsFlAGSPoaarm84Zq6r4eJlJmmidampUey1KzsIUmIgeNmCI5C2KvquBFaA1CN1CoOhelsLTV3N42Db4akoPcSxIsQD04yuPCIqh+ipHnp8iub2nblhwXLqeF0+lE6xucVZist5rGWU0pkWVON9zl9b4UNFjOX6V2Ff8Y0YtKboKtmFT1L78zvo/T+EOih+00dPPnHyoJf6r35PVGLtsJ/vqqt+9EbacGa4Vz8Pz8xPPzI4fDHkXhUqO/urZF5UxjLMddR1lGSAFTEqUk7u7vWOaZrMFSyFYWo5KE06GVwmhxiHDW0HlP23ic04zDUE+CEnGljcUYaW+jLda3kMEo6H3NZl0mZuA8LkQu+LapZPSBy/mEobbVcqLxHqcNyzjS7wwpw7wEUMJ3dKWKbVLEGU2wBpSc9paUMEgLLGuNLjBXa4SCIubMpjgs9cST1+zYuHF5cpbIRXHIl81JVHpSUDprZZG2RiLQqifZOA6Mw5mS45ZQsU6HlYH4UygYt/Pzx+bZd//uT3GoWu+1ddH5NP6MRkWuQhBRAlATPtKWFEMuWyFYSiFXy7IYI2o9fBnDEmZCWlAajscjjfV4Z2m8qD/3/V4OW0Zi71rfsMRA4/yGYvS2QRs2bheqoLOsNXiHVQqjCq23DMOApnDY9bx48cDrb7/l3dMTp9OZaDWny0Dbito7pcRwWYRuUwo5hi1F5XJ6ltZlbXMLmueEn+g94821UUj0Ys752jZXSvwkl5Fd37PverquYboM5BSEN2odl9Mzhoy1B5KCeZm5y0esNVtus1LSgZFW87KBI23bYnK+Jq/UDVTAvlQLG70hNgZISfiOSiu0hhgCbSPrLko4kJEgbVyua8U8z5vYzlVlMnVvWn9t+oCa3iDIqbTxV6TT17lViogil2URMCSUauMkPqG6cl1LzoS0RhgKx11XJfsqMMp1zuacsa3EbsYEOifGaa570lrg2PdEMKuI9XZcLpft+mqjt3a4cEplH1gqv3KJgSVE5kWSboQ7W2MiC1zGC53U56JmRugUEkcamULk+e0Tq4NCKqt4ahW5SYH7dB6QwIGGpqqlp2G6Xo9cOF8Gur69io3qZ7uGnojvqHP1vs0Sc5pSwBQpDK0zqFSgJKFBUEhhxqpOnA66jrbrcU50A5JkI2b8lMKLFy/EZqlAXGYOhzvGcdjuj7ZrWaobAdpwvly4nE6QM/EmHWkaL3RdJ8l700zfd/TV9iqlxDQMdR5VIZkSKsTK16awRTV+yPi4lne9wJuq9Qce9t0N+rstw/eej5ti8gc27O9DhH6nkOIDCtq1lJWLf73xU0y1rZ85nZ5oG08IshCEdeEwFmc18zjiSkDbQk4LaMW7pycOvQSuC7wt31ZYEjklMdTNGeMtxgi6qFRhCZFpCRgthHHXNOI12XhsLiRAfIQVT0/vaKxiyYWAwR1eUryjGMn5jCVQUiQtk9xYtZ10ypnO1wzyAq7rUEiLIMwzU4kQE6RIVAVtxcA1hYUcFqzKwguNiaIF0S0GitZYo4hhqpdWFkpRbGZSEE6mFiUQsdQFfI0cm2dcRV9KSex2PfOy0LSeHKW15p3BGY1Rusa+Kt4/GHx4G/yH5s8PHn7+Fqo52XhAKbFyev+zffJM+rs+1kUb2Da1pXo+rmM1CDc3ubnrISKlJIKBRRTMOSWs1ry4PxJmyXUuMaCcpev62lJuaNuW437PkiJOy0HsdHomZ/C1/xVq3nZKWTYBY+T3nBgvcnDu21a8cHc7jn3P8+nE8/nMZRh48/atbOYhUJLCt5ZpusiaXouMabgIL00Lt7OUJByz1FKiq90ISwyiXE4pYapFTqzIadM05BTpmw5SYRwGSkny+eaJGBYenyZyWDjsd5JGU82ZpaCp7hNrHGXONE1HTonzacBZESX2fS+bfNswjWONorsmiizzglKCtLq1+EPSrRWF1nqWIG146zzOiWgnhiC2RdpsUXZbcklejaOv+9xtYs1apK3CCq2uj5VQC+FdGm2xaBGyGMF7c5lp2/aqAcCA1pwvp80S5nK5bEKWUgTxW8JSi5u0dYxWDvt5GKuQDEI4bwWltZamkZjf8/kMSIv5dBLjflWpGtLmtuIxakSLcD6fq11UqvxY4fi+ffcGYxxt29Wf9VjvJMO6ov7nYeAyTozzxBKCuK1UG5/Vasm3bkuD0daJ60CS4nK1h0LBMF42CoL3nvP5XD+XFzNzFPM8VeN+xTwslBoWsB4IcooSlZoiOlt2XU/OohmwRuO7Ho0RX+u4ME8FrVrmSYo67yxGKy7PJ/6/b17z+eef89lnn9Ef9sQw03jRbZScWcZJ8sKXGWMNn796yfn5uYYExO07vY1P1EoOsG/fvGW/29G2Lct0Zp4TXb/DaLlHxulSubwea9z7W+zvGB/tQykLXo0lXPvg/PiG+4MF3Qqt/4nGbXH7Qy9bSs03DWJBcblcWIJkyDZNw36/p+s6VE7kHJnCjPNyw8QQCKjN8ynMM4vWJJXBWpYsCqugAqUknDWkUpjmmRIjikLT+i3/1/kGYy3OaHIMKG95fHzENw0pZpZFDH33ux393QF8TyoSyUU1Fp+ngVJP5NM0yiRTmoQYiHutSSgyirAETNHksJBz5UzNmTheyNOFkiJzXPBa6kVlrSCzShaVpZr2hqqWtFZu3lINZnUtGHORYj0WUfhZZdBJ0/cNu37mzfnM5599xl/+9V/TmJa4zDRNW9sv4bdOwvWb46Nm/veM27b23xVKx6fx5z3WCLO1mFyRMpC1ZrfbMQcJELDOUeZJUkaq1940T1yGoWYGCzVFYhYTRhVADqwli+hN5Sgtr/OzqHorpaRrG3KUnOlD31CKp9I7maeJnAQlWcKCrYiJd5q+cewah+obutZx2HeMw8SubYgps6TINM+8/vZbiAFrBSWNOdPV57FWBA8pJ5RzGCqKWQpaCwdUFYhF2nhSlIm4ppRUkVOFdnJInYcLzzHSNg5nDDpnlqwqj9uhtPAed7udtPVXUYxzdU0S65YQAjFkdjspRAUVLnjna1Erjhwrorj2P0q57iW6UndiWmhct6GsJUvLfUUcVxrV5m+ZrrnMxlztfVbwZC1u1mJIstnXHOxr1vJahErRJ0CFKPgF9RX6gMYYS06gtb0iwko8OFNKG5JqtMF7SXlZV9kUIikrUgiQC13b4b3fuk4hBFK6rr36RjG8oriqfs71exjGkdP5vH3eeZkZKxdfFc3+cEDVGMtxClLkXYbqXyqI6bTMTPPENM/yWs7JsXsVDZdVMCr+rmum+9riX+2fQChrJWfistC3LboW2GGeIEvR2TqHckq6k4eesCzYOqekpS4dAV9TmLzztG3DbrfDrbxEFMu81I5TPTBYS+s91shaQcocDweWeeYXf/M3PDw8SM1R2/HeO4aTFOLWinDNKo0qMA2jUAuMqX7NmWEYRGBjLG/fvmUVCa90mdPTE0qJrmGcJkBB9R9NJn+ns/s71ruPWBuvE0a/jz5+988/tBn/0OP/VOND2uaidNKElMXmoJrmQsHW3FZVOTz7ztE2e17sW/I8kEvhchkxZBqrBVl0Fp0rvynnzeZBzuzSMhbfNDgedvR9uy0SWkPJgRQLaNi199zt71G24fnpEVU8GFPtghTkhDNC6E+p0DpH19wTl5kUF3Z9y7zM9dQN4yhKOIzBakN32GMyhMhmqzEtk3z+KJYSU1gwjRPrkigLtUpBcnWj8Khyja1Sim3RyTlLLrHShLgAGmsl+F4VXW8WS7/raX3DPE1ywn4+kXPEuYZ5FvL99xeUf5ixIfCfCspP4/ccMcbt0Kzghq903XynaUKZGhSx0ja0Js5BYgYrcic52hmqiKNtXFVhehrnUCUL6lEkazrVvOKm+ikqJbQXaw3SoFPVN1YTnIMim9tlOGOdpNNYY7AKvJFIPmcNu65l6me0koJLHCkyjdG8ffdWTJWr6rltO0IMV05aSgS9XIusnDahi1rbuYrKDUT8cI2pHPSEKlXxvNrWKeEPKiuqYV3bfKrSBGJYNkRwMwsvVIXtmoQuRVXjpV29LAvWyNqktCIrboq2UkU7ZttkcxI7NWvWVnJ9j6i6bldzchDxA6Wat18pWCV/v9PEdzsn6/tYC9Hv7mcSN7lsqOI0XdORpOixQKoG4escrTzSJKj4WuRkJK0m1uI4hFy5k9LeDylKt6kS+6yVaL+UM6ZydcWOKaFK9SdWkrxUStliANf3PIdFDky5iGCq8ZtdVEpJuKxhYVrEMm6cxew8rQp2uRDbZ99obJqb77pyFZ29+onWYt9qLfPMSNfRGEXbtKIfMIrG+43CpUoRix9j8Y2n6zo5lIyDcCCNwXlP13bVO3JXDykZowzLMovnbIxifK5Wlb34z+Yaz3pOSey8KmVDKyUi3kq3MFqJ04NzaOCwF1P/SKkOCfJ8yzILUl7jT62xpBRZZqDOqcv5vHlb7vo9kFDGVcrEh++3H1VQrtN7vWm+OzY+xnduhO3nf6j1/Sccv+v1jREOTNu2PD8/MU2T+DXFgDVaoPk6iQXRU8yLJs4zfesYLhfu9h1hXmi7trbGDcfDnjDP1T1/kVOiQojmjas3vdv4VevpAoSTofQC1rNzLY1reHj1OYrMuzdv+Obb19jHJ4xv6PcPNI3YXEzjsNk/GC2v1VbB0DQttI34lTlvWULEYvDW4L1lnkbm6SxIY7UBKuLULAR2I4o/XdGGEDMlp83aR9662lp+3ntytaUQcrLHKMkopnInS0Vwc0pcxtPmy2aMYxgGUi3y/xTCmL+NA8+n8fdrxBDksLi2nNYi5AZhGsaBfrfbUJScxVZsRZlSlvtnNZw2RmErH81ZibSztpplVwFPVgFK4nK+oA8HnBVzb61FFAGCrHnnaYyFpkEpTU4ZZyrtpxaLGomN1VrR+Va4ed1CSUEU1Fpym499x6+7hss4Mk4zwzBxd9gzzlMV8Qk/bbEGrcSXMcRISpKQUmpxaY0mzEkKOQ3aGozmajWmdXWOcNUtQm32QjlEMbK2gjIuyyTrdV1LNbLGmGqyp2tbdBgmabU7txWU3tdWaUUOc4hyDY26ch2RRJcYleRp1+uxInISwShpNdKCzVXBfj24Skfstzfs27VnEzPm62HkFplci8BNlFWRzXmea4Sl2ERZIz/jvL+Kb1ijhgElGeMpiQo9xFS9Oa9onipyWBjHURBgBL1tGs88T2K6nuV7appGvE6tqP5Lke98WRYuw7AVu+M4CmeyyIxzzuG8Yw5hi0OU2FFJ1AlJfl8PYtoYXO2M3aJpK5/yul/IL6FAaIwWQ/pUkvDyK21rHCf2+x3H/Y5d36MU7Pc7hstAWsSj2TmLaTva2rX8/PPPOZ2fGS8XckqYuuc752ib5jqfUKRWiuhlXgjW0nciNqJyRFOQA9V6GHTO1kOVFPUpRhovrgfee1z1it3vdrx7fGSpkcnWiG3RWEGdjZdsDORMRopKozXjMFZnAzjuj1A5vtYYQvgjiHJu28RyOmT7kn6fjfe2wPtDbuK/67l+rNtutGaaJ7799rXwKJwjacXhcKg3b8J5K7L7ZscwDMRporWGvtuRYiApcNYRQ8BYXTkpYv3R6KYmXMibMPWLU0oxzwtKlY3Ir7UWIY1XjMMF3ZwIudAe7kXxVkRUMy8LXc4M1nOpijOKnDK7xtN6y65rcQpUDPTGkI1lCAsOR8wLKoMphnE4MZ5PxBwpZEyQzaogkxsN2jpSmCmVoyRea9cWSk6F3FyVrba2/KdplNQFKyfzlDJFGZSRlnsI0uoLS0BVlFSpKxdECst0s0B82Fz4mHkD7/N3lfzFBz/H7zs+Kcn/foy1vbkKF8Zx/C1kqe17iWkrhZIjsQif+GoQXmTTcNfIRNnYkQ1pCbgay9Z3nVj21Pnjjgd5nXpgC+NIjDON89gqsjsc7wFpddrWcjzsWOa5ptlIQaJyxmtoqndg38ivyziIhVApfPXFZ3zx6oG3b594++6R1+/eSjenXEMOxmni0DXbNQhB83ia0IC3mlzbscYoGu/EnxCwStE0ruYlG0Ba976mrZhqpZRyQBeDWNxIa3UcheZz2zq+FZO8ffuWruu4XAbGYaiczYPwFq2pJuCVt60EjVvbvNZ4rDU03qKVoJ2rT64tVopcJWLMotj8LeF2fyrvCT7WNvq6/twWjSvSfBsPvI5SC711bVRKsdvtNkRzRQW1KIi2NcYYU7mXDm0NYUpobZiWhRgSJUma0K5tiLnZTOuvMX5sWdwyp6/zP4TAPM/cPzzgvef5+ZklJt6+fVdNucVrUSgRos53vgErtk3zEoSjWwrPp2eWkJiWwDCNtNV31TcG17B9vnWs12ccR/FDVcIfDPMCSQ4VphaQ1jSoco3X/Idff0kIgUPfcXc81IQleHl3JMfIPIzEJbDf73FWkqM6b6BrabUEfKAKu9bR9b18lyWRlsDz5ULf91gNxlv2O/kc69yc50BOYQOVvHN89cWX2MYzDSM5JRRiJ+ac2AJKnKNhqObxWmua3HA6nbi/v99ssB4fH0UU6GKdT4a27SRFp+uqAEoOJofDAVDkXFDef/ia98GPZFXSrhNRquLvIpK/i0v5Q4/7kGLyd7XUP3b80GvmLDY13377jUzMGGmaBoDT+bmq+aS4ssaAdfR3DSUlpnFk31m6tpMknBBIlJpQIEVRyYXj8Y7VALXkwhRnyIlceRFdv8NYIcmGJdD7liVFLqdHzLLQ7va0uwPtlz/DfPUVRtX8036H7/eM48QyTTy+fstlGCjBcn7zFoeYjN8/3IF37PuOkhc6p3Aqk5cZwkiez7CyaLLGOofvGuYwUVQhRnBGCtQyz8xpIMRY+UFl4xlJrqyo8bSSE9UySGtAceUX+dbjKZRppOt7xuUZEF5U2zb0vSMEWSynWjD/2KHgx8YqKvvuXFj/7b3HfvzT/+RxW7jeit++7319Gn/3h9Z646sZI+3bCt3LUUgLH0s290yIaTswhZg2uohzjv1+L2EElVvXVPV4qa/jrBFkrR5OjTGiEgVKVbxOGYwz1fqmVBGc3KO7XkQ90zyy71piltcP1eg6h4WkwCpo2ga0pjkctvkaQuDl3ZG7w4Gfffk5T49P/OIXf8O+cYTakdHeyIZVC0qlMg97iXiLMZJiYu92jPX9GyPxkRaNMwZvLUbpqv6FME+oktBNw65rGHMSBDZfxTuNb5jnieEyME+S6JOT2wqqlZt2tagJjMPA4bBnv+vZ9R2mdmOUYitMV1QwBFHEttaQlQg2ipL0s1IStvEYJ63HaRxo2+Y9riQA6wGyCBLrnRVPzzpvNjV3vCrRV57+rYJdKRHFxBCqhVPBV1AjJMnTfg+4UWpDn2KqgRM1cEOSdzRaW6FTZLHKSzU9yTtLCAvG2A19n4pQwXzjadsj/W4nQpmUOJ1OXC4XpmkhLosUcxUwSKlsFk4pJS7DGa1tBRjCxnedJ0ErfdNcrwtifTXPM1QhE7ApmMmRxrc4Z0lJ7jVndBVgtWIEHyI5Sidwv9/zj//RP2QaR0rJNE7x2Ytj9W3MGGe5f/GCxhppD+929J0Ih9p9j3s4EqNEJs4hcDk9C5/Se1pn2b96Kd93EtGTsUY8Xqvfsmk9cOTNu7cy73Lh9Ztv+Prrr1Eq4xtxR/jNr37NNE3s+56uaxnHQUIMsiQHjePIOE9M40Df93jvaLwVI/YQN2rA5fSM9Z6Hhxe0tWYZh4vYcyFi2NX67EPGh2d5f3ej+86v3/Vzv8/4kOf4ocd80Ovf3NvXlgKcz2emaeLucCTHxJRE5Xasqiup6EWh2PmeeRzpdGHX9bR1we+cRxW5kZ2z20mub9sNiYxhQVOYs/iqta7l7v4e55tq0irpEdM0gdb4vmffWtAKu2bxxgVVEskasgLbNLRdz64/EOcJ5pnL4zuW0zOX0yPjcKY99BxfviRrKRhzzuR5IceFtnFoowg50biWkhX9fke5FBrvmKYRTSbNE0kJ/6YglkvO+m2hCUGyWGNMJCVIpfNOeEx1g0QJ6VkVKk9EFuqSMjkmhuGC1gbnfN087R+VR/ne+Fss5D4VkX/ewxixJ1nV2lqL717OuWYly1ozrXywWsStCN6qcl7ngTUWVduatyrgdeSUULZyK63FGkvT+g1R29XEjVRfo23EcsdoQeLE4qugrcYbhTESfNA2fkO5UlwYLxHnHRvnU/rpIgrSCu0d5u5Ajp9xOV+kIKhWPOM8oSoS0qzG0BVdk4LHSBeltrOVBlfbyJ0XHmfK0rpPSQyhSRFtnShyS5HW4MZLFMX0bYtYUMRry3lZFkwVJcQYKFoKFFevYykJXcDaytlUV3N2EZFk9OY3KM+jaos3hUhWuR6w84airUjkrbJbkKzCbeb3ljwGG8dxFWesv8P7B2L5VcWR9edzLaZW1fjG06/cR+s8xlpKvTbiK1qo9vjCwVMyH9aC1Dm/FU/eixjlcNiTcuZ8PoGSzxBrIpAozquQCckLH6ptDVr20iXIdzEMIzGLtVbOmZJqmhGicNdK5sc8y2GlFEkCsvbqq3h/OGC9xTpxEpnHaQvfENGMhajofCeFWdvRdS1fvnpRk5ImUgyoFHlxf2Q4n8kxY8m0vuVuvxOIrSTpYmbpbjZdy37XMY4zhVz3RIuxhpKlQAtBRDxQBAk3tlJB1i3nRbVSClyGcVNtr9/bfr/fUN4NHa5rRqiHjFyy0NmWudIxNPM8EwjSydg6BYHWt8KFdQ5r/XU+oXDmw3HHjxblyNpxheT/EG3qj/35H0M6P3aUIlJHdfP/64nwfD7Tti1d13J69wiqcNjtKSXRdi1eQa4w+TBOWG3Y7Vu5YbOXSWQMYZ6Z5wmjpEXQNI2Er+cAuWarauFa+saz3+3R1jOFKCRn1zLHuvCEhWIUw9NbaBY6YxnnRXwtS8YWQVRTKmSE4KwAZQxN4+DFHefHHTlGYi68e3dCOYNvW6zW5CngtCIhZPt2J6kGOUFC4PAUIjplYpDTpq6n94K0UA7743WhNlZQgGUha8Wl5haralGwfoelqloV0HUdXTcTcsZ7zxwmQcSV3BDy57+HxVbl0bz/d38r7+TT+EOMIguyiBpE8boqYEVlKpv7NM81m16GbNxVdWuuCz/wW0XImnaSUybOC7maEnvraNuGtmtF1RzChlyuhuDOe8iCYq12MwoxKpdiUqOcrRy8uBU3IS54Xw91ChGqKGpKSwFVaJzhsxcPtM5u6vZSMsN4Le5WbuOaax5iJCdwql68OmzltTujsUZXcZEl6aqezsLftkaKv1zTS1BSZGsloorVrUOK48przFnszIwgdqIPuL6/EKrQBi1+jqXcFG/6vXVIPr6EVlDE1SKnhFIZaq9B/h824/JyFSOh1PYcxqx+pZmkEtsVKeK/uBaOK8one07lyWlNLlJEXtvp4ikogloRRMUQMLiKdFfvYyXiyHUeKti4ddTPvhaZ6+vK3JA12ToHFdnORcSoMdQoxBhBmSoMK6QsSKL3jQRrVO/ijd9ZxBpOa711bzQKa65UpJJEhKa0QtWutTGGruvY73e4xoISy7yp+kZavYq9YN8JB/LVi5fsdz3OOu6Pe+kajoZpHKEkjn1HWWbmNKMRB4N+14tRfs6C9tdAHO+s3Hu+YYkzmupNWoQ+gKp56VriNFcahtLSPSitx3pPprAsAdRjLdhrxyGX6m+7kHO6qumV2hK2SinERVDp6/ysWeCxzsf1oGrFd1ahaHvQylRLK3sVXn3g+CiEUp73yvFYb6z15Pfdx9/+/kOcsN+FcH53/KGLye97fyEEhmrVkXPm+emZ+8OR8yhS/SVE9rv2Bj2QqKnjfo93YAliLE41BS2F8+mMt5K2I1Fp4l/WN021jVBySup7pmXh+TKw2wuXJ2RQMeONgTRTlpEwWMKSicoR0RwOR4zWhHHGNtD4lowCpbFti8oOlQNEQ28LhII4rxsC0kZumgbTQphHKBE0JKU4zRNkWMaJznjmywWTM8s8VjJzFuPluKC1Y80E9d4LJyQKJ8S6hpQjxii8c8xzwaJIqBpFlrfTubWWHAK+bUUMVL+jp6enDe35ND6Nv8sj1Zb12uIMIeC29U5VFGQW1EqJ3Yp1UkgIMiYG2aZZ0aoEtX0doHLApMU9h5klRUFd2obGW+6Ohw2dS9Uqx1kL7uY9prgVJSCbS4gzYK/3YY7SjjO2CoBqPnRFFwvUYlUB8ve5RB7uduw6iYkLy8ISFg69CBBSSszVLHttrS/LwjwFSmNJUTik62amrKynZPGCpIgLBkX2pRgCTaMh1xZ85TLGiuZaY0ixRiGmWhSqUgvq6zYoa/rV0iXFBE1NNqlLzlpUSg61xmotUZZaBCq5SPfFaUfOAUnUUTeJQAVq4asrEivPK4eEnBOmSOteonllr405S2xuBTy01jV/ugpzoqBdJUu6TK5I5PXfg7R5U5TCuyTyItc3hEBMSdT8zm8cO6U0wzDQ9js5GKQsfEelBEyp12oVDq2Rlc65mrAj8zbnLOriIq1dlSvPt7qmrHnnWmvmsNB4V1XfmcZ75hiY50BRgqLFlIQuQpFYzSq6yjHQNw2vXr7k5csHcg5bklPc95yenyW+OIsP6P2Le/F7fPmSXdcJMg7EJWByg6MQl4Vd41i8hRAgFXa7DmsUzjZSBALOelKIGKVw1tB3PU8nKZJjiIzTQN/uyEkOHM4adn3PNE2ElCrCKsUo2mCcJWWx0DocjwCbOj7FwG7XC5Vjnqt5uXC2fdPQlsLr168ZB0FltVKEMIvv7XLNRFdFczgeuZzPUKjdzsSuayXBq6KaHzp+EkIpE/Rjf/Lv4rgVXsi0UEqJncUamZYz2tmNIN80LSnLY4dhwCrFl69eMJ3OpBSgWNquo5SMUkLQNcbUnM+wwdONM/SNRxWJOlMV3ZOcVsdlCrggKQDaS3HlvBCzS06okonLSK81XberrR7J2w6XCV0stmmw1rPEhUzGO0fWEfCENKOTou8Osii2wvFUJUvLymg5YasMJTCPgxj6RlBtR5pGnHWygOtUNy4gm03BeQv92mr/IQo+T4qanBdyKoQcwAqSEGMkVKumUq+/qNwMIaStffj3UbSyLkzwcUKiT+Pv7pAM7bS1LVXd5EOMm4WX0oplWUjzxO5wuCJ/hW2TXtfcNca0bVvIBWctu92Oh7t7Ylxq+or4MGqtORwOEtVnLK6z23vaRBx1016LypwzvtltyNOyiKn2WiDcxtOtQ9c1K8ZI1lJkJadxSuMaR+sMufU1PlJVOyUpiIdhqGbYHTkXzudL5bBL9F6uHaSVZ7ha/rStY54zylls10i28Y1IZUXvVh7pev1jFTxIweS2z3Lle0srXxu2zxijBDkYo0hRUWIShDQutF6cM8Tnz73HKd1AFaGjkXOm73vmeb4qz/U1Hee2LX86nTcx03ogcN5tBeRQY2hX/qLwO4VmtH5HaypTvCksV2N9jaqWPbGiwwlQuLap6GiR2Mok8yQ8P4uy3ghv0xizWbillFjmwN3dnYgy655njMFqsajSlVZllVyb1aQf2FrWKSbGeca33RbbuPI+j/2Oc7mQi9j3jXFkvIiJuq/v6bATc/q+6zkedjwcd4Qw17mh0I1l5yy+GoQ76/ji88958XBH43xV9Mt37b2h0S25sWgF94c9KidC12GUwRkp0Ha7vtJaMsYbSmkIITJcLhwOkiuvramiW5jnqfJXNakUhvEMRaGpWd7UGOcM1okaf27FM1K6c8Lz3HU9T09P1Yh/4le/+hWfvXxJ07bi2apERLxex4J43iqlePny5abUX6YApVQfVjng7vf7unYk+n636Uc+ZHyEyjsB19aLMbqe2ITiLY8BqtfT72qJlwqvq9/xmA9FIb/vsd8ntHgf2VrTceR9S8unoLJEA6YYJBXGec7jRAwBa/bkpLg7PvDm9WvavkFpxTQ/8/DinlIyz6czvdPsX+xpnGMYLhirGecJbyxWaxpraXxL0zhSFJ7h1ubIYs10Ol9IGeJw4f5uR9A9zf4BZQym6XDzwvDuG+y5pel7sA3aNGhtuJxO2BTpjBILAOWkxR4zKmW8UcQQmJcJ5RuMazBa46wiLkpUaTmhlMZkjVaG6DxLDujGoZ3GLKL01kiLSWtHyII+juNASpI1aowCZViWgC6asASmOQvCWhSqWhMYbcSs2Fl85wnTzBwXyapNgiYYYzlfzhtVYf3m6tL9QXNl+6ly/bVFpN0+i/TFtjl6O4e+y1n6mHH7XOu8LfW1bj2/blWfn8af38is6NBVVbwiA7Giliu/UdCfKD6TWqPQm7BmReCs0eJx5zzTcKFtWnmVFPFtw/3xxYZYei+G4cs0M5cJjaJpWyiFVHtzJddYxyp6WF9vLTChbBniq+OE9564BMI0C6Jqxe6MIqrrnCMxKUoqEkjQerTSBMmepbEN3igx/06ZXetpzd1WmOy8Y5pmYMeyBMZpFKQGuQarL2KK0vlQSpGqQreksnEbU1iqzZvY2IgAUiyTVG2p5hzrn8WnUA6rVaVtDcWK56A2Du9bvJd0NEP188wr+mZIJROq9dFtB289CGglFkiqWiMpDDkLVWDdd/S2+IhXZQqZsKgttlA+VyDn6hFJJi4TpSDejZVX66wIaYxqmZdF4iNDICxLbetrQYZz3tr4YoMkxd04vsY2LSkXYpSOUaWkUooUhI+Pj1eeaFVTL2HeBFPrNbi7uyPlyDSPjOPA8XhHSvGK2i+CTk6LeK7GmGtRmrfUG+us7CMlowrYlOmtpdwcakoROpr3QjXTKbBcTtXrVFrSfdvi7/1WMGmNiNGcxWkRxqUUoRb7KURKzvjWQ0rs25ZciyuhVzS142iIMaOsxDA605BpGMcL1dqSnMXy6+Hh4T2KR1hm8ZGufpdaaU6nZ1IuuKYRMay3GE09NEYuw4UUE69evWIYRjmEodgf7ihIylGMkVTYuK2yz8l3+eLFS3FrAYwypBQ5n8XGKYRqSaQhhoVh+G5k9Y+PDy8ouW60tyjlhxZ93/uYsmaD+PsFYQABAABJREFUfrhl0HuclR/48we9h7KyWtZ/WwtKOVHGGKrCuOXu/o7X376hca5GMTbMkxgNFxTDONB4S4ozj5eRRhnuXh1RJeGMYde34vNoPV4bTDWckraB8BuLVpwuF2yINP0e7SzeWIzzLNMJ31iwjvb+M5SxTJcLISZOj2/wvsFdOu7uX5LKTLM74LuOJQSmaaRpPEUXVFhQMWCiBL4rBW3niMoQcvW5y9fvlZKJiwhvVJSEgqIUxWiKKiSjCEvG5EIpcjM0rRTYapHTGUGo3ULFSJBzVSsWQsosqZARhSRKE8IsRrJNQ1JalK/nZyjgnLQXGn9zYvoDIeXXuf1+afrdp7+lcty2k2CrP3/S+D5E8oeU55/Gn8e4cqMELcpFWpgpS0b3ik6t433BhYa6eUvsnLStjKmCHApt22y2Od46mpq2YYzBaEPjK3KXZV2TlKobT8E6r27Te3Rt+dV3tOUvrwhaWZ9r5bUVtkOQ85ZYVp6bJpWMUVe/Wmck9SvWkASsRmcgSZvQaoPV4qCRc5EWsiooI0IDXcTMOaUIS6rGzQUQGxhl6gFQFZLeIN7tvYvtjkL85q/AyPr5b+2EWD0mkyIlLRzXLIEQWt0CEVcUmeqTuaJzt5Y/6/e7IpNX8afMifXP679prUh55VzWlnW6fhZxC8lbqxmupudrCsuKEDpjSNYSrbSKU4ySBlcKKZVKaxDfySUsUhw5T86lemlqUoZQjc1TzsQUKYn3PJPlUHDtLOmKQJfq/SjoqYA0uaLPzhnmZRE/yJhIMYkYR8kcqHHmGKVpvRPEmoJSZcs210pENp23tK2v3TAoYcFZEXF679nvdjSNp+t6TFWVd20rtkAghxStMY3ncrmQUxTLpK6Xg4JdDyTifbl+L6V+DhHbyV5ntIa8/oxwV309FNwKqVJ1f6Gi70Vn+TklSvAEYumkribmxpjNtL7ve0mn0pq2qs3nZWEcB2JOtY4U9wFrhS8rkZutFN/estvJc1wuYrNlqvF9TDJPrP0jiHLUhuZV5//1btrQvZ++6b2H0qyvd4Nw3v7/b72vj9hs33v+H3i/WgmheZ5nxlHUVdM0MC8jJSn6RpRtb9++FUuKaeFhd6Qkz/PTM62xHI577u7vII9M44TS3CwiZWupxxyJS6por+Rbt21Dfzjgux0YxxITxkLbNUQM45I4HPfs7zwXFOV0ISI3X0BOQSkt6CykfKXAULBUAVEKkCI5BjJarAmgKhYzxIhV4omnkdSLnGUjSVm+55yzqL98Q5pn4Ypl4YV4KxwMjZDWrdYS641CLZFUJN1AfM9X7mSi2Br1pTQxJPk1hxo96cgl0zYN0yI8oD8Vavdjhd6n8Wn82NgKitq6nKuFUOGKrq8FzCq+Maa2x9BiY7OEK+qilNjoWIO3OykgrcXVn5FipqqjWfl0YiiuajGllXqvoBVe5sqFT6Qo7bhV9GDWlmwuxCzG4Qa2amotcJRSqKK2wlWZay65BgwKVze+VIUrphbbqV4PpRVaGbRy1Y5HPnNCogq1FQPuoDIksxk1i6WPAV0oCqEkpSQpXICqwMXWcahF5+2+cxtzuNKexLg8EqMmhig/k7Uki1lD0UaKrixhF0pIaNv3v8YnqpW/oNTG3VuXELmMtZ1f1oJQ6J31Ate1VArKVPcRa9/PBF89KFXttK3fn1YirnLOCnixLMxB1uprSsz7QilUjYcsRdbrJVIKLEHM7o2Rw5HEgQpqbOuhQ/iK18PS5XKRGM16fdf3KSryep1iJOc1ADjXLlFNUMoZksZ6jdG2FrmJomUea6UqF7FDa0Xvry1tyDReDlpt27Lb7wVlrm4hpgIXjZPPG2t30hrNMs+SuKSNuAektGXUUxTKipo/VU6vs1YEOkXVL7XIfWx05TEptNVM04Kr12LlcnrnpUAv9fuu90+5/f5R6CLtc920aKVZliBrgfP18LBaKRWmuYr3qvDPaJkH0zRV79WWvuuJXdi8Kr13ldd7pXpoXTYx0IeMnxi9WC/sRvr66Rvs7U19Wxx+KDrzQz//ux7/Y/++nuC99wwDhBgkPskqcgiEMONcg7WSS/v47onl/I6HznG8P9L33ZXvUxV/tp4ycsmEeoIIacE1nkY3GO/wSmF9Q9Ka9rCnKMv58ZElFtqsycpwHme0XzAosA33rz4XxbS2DDHRqAIx4PqGnBQpZBq7w2pNjAthHChVHZatZZ4ndNPTeMsyS6SaUaUupoWSIkoLKimtO4XK0rpxWpGXhSg9YVIMgu2XjFWaokF5v6UgKK1QRktyQikYNKpEBL+QU3Db7igMeGu45BlRNRpUvVFvbRL+1OMTUvhpfMy4RbCTUtX1wKC1kZZmSiij37MHklaVRNBRwBlDmMSjtm0arLFQEvvdnq7rNtPzMAs1ZG2dOqMpSSJd5T9S1KzIYkqJuCyEMNO24kwRl4BpIM7Vaqcefp1jU1PX+kcUwkYSUKzRlCKFgRCgFCnXDbAA2qCdbGgxLlLgxcSSA75xtI3fxEtqa/9KGomv9msxzFLoUGBJeNOKKvwGgVSqllMlk4wl1rZlQkFOxLDUFqpkXk/TRGY1Pb8mzohw0Gygwzwv6AxLUDir6XxD7fGTkyZHg/YO767uE2sL3xgDpZBj3qgEq9gT2NS56+e/NS1XqnLOq9AGxD80k5nnaaMJWSPzKcYqNio1ylKIm7XocmgjLfGmbQjV7meJmcenR0Bvh4Su64gpSes0RC7jgNaWJV6LxZCiiENqATzNM5krH1K4nWLmX8ZrIX9rLm+NfC4BQTJaFXZ9A8rUa3TNLnfrNcmyW/hqh9V3Lbuuo+06TqcTu0YQN+E2+u2Q4Jyj73vaxtf4TNEIWGsZhwFnHV3jUY1wgb/8/LMtlWaeJw79EeMsOSeWMMstRcZbzZqvbawWzUIITPPE/rCrrX1xYZjqPZNTkhztVoS9xph6vYWzLABPwjqPdQ6FgSR1Q1kgpkzTtNwd7iRUJUUOuz1Pp2cyhcswcDqdZB5Wp4BliVzOZ+Z55nRiU40bpbi/v98oMldvUEGQjdXsD7sPXvM+WuX9Wwjlb421uPyA4u6DHvUjP/8DSNEP8THff9D3o5S5LkxrcPrqs2WtwfuOOS5VGSlIpdKK8+XM3nlaLwvV8+mZRvccWoN3otbU2myFlFKZeR5RqhW7Ae/xzqOMmHeHy4BpTuz3dzhrmUohZnB9h3Ut++M94zAyzxOu6dDWYq242efxwru3b7jMA1989TNCiCy60O07VAqUeUTlCDmzxAXcmd45vHNEEiRJx7HWSpscL5tfXQjWU1rJCVMSvmlxVhO1ZpknckjbppYL20l6tcBADnigFcYZqNFaWikKkqE+zwu26VBFMQ8zIS2scY6yIC8/ubX8aXwaf6qxJjvpyk201jLVyFWlNYpSifViJ1ZKoa+qT0E/0hZPt+s7vJUW5npPaZQkuBQoOeK0cPJKTky1Vd513cbZSknSRDZkq66Jq09hjokxjzcqYqG/nM/nDanUutJ06oHbaE2phUa36+trLcxxlvdlrujlsizEWT6bsYY4B0qxm3iklLIZf6d0FQF5b7k3h61Ic9ZUcUnEVCVyrm3gzZezQSL9UOiU0EmxxABF3CmoIQurgXtKGWfF3y/lmtVdMtRCLueMQazLck5cLhdUbinWgDV4o2Xdqvnjt4KY1XB6nRNbhncthLdiMkneuNKSQrMKblY+H0pXTreiUES8UaMMb9uvK3VLxEUaC2gtXapSms13s2kaxlmSlqZ5IcREUZoOWEJgGCemaWYOEW1F8Z5KqTy9yGUc3xM+nc/n9wrkYRgq+i4HgTUacftM1XmgqU4nIDXtskyAHKbEFL7GJbZuqz+6Woi56mvsveNh36O0pvGO1huMgn3fV29FJ+lLjd/QeescVmtaK8hcqZHKjZNoRKN1jVY8QKpiopJuhFDXa346nXDOkWIWH8glkHUS/m+937wxxNpYW4VnK+9VK4U1Ft1aXBKVfoiRcV5QytDv9yhXaRIpMV0GbOM3zvP5cmG/3/PNN99wuVw2AfA0jDX9KTGcB/YHuUfHceT5+RlvDY+Pj2LQ3vfsdjuOx/stlz1EMW//0PERohzYpA+q+lnJ3K2H37U83GDL3/F871v2/D7CBnlP349ufmx7cuWXvM+LUxijeXx8Yt95+r6n8S373ZHL0xMlJXbHA1ZX3kMRJ3rvXOUD5Y2g772jNdA5K7yhAjqDKeCajss0M5wvxPT/Y+/PemXN0vw+7LfGd4hpD2fIk5k191DtJrvdHEXKlEXJEiAIkH1l68KfwIDhD+BL2/CNB/jCn8KQAEOSBRgSSUuA7CbFpkl2N7vGrqrMrMw8wx5ieoc1+eJZEftkdmb1ySpWq5vOlTg4J/eOHRE73vWu9az/8x8yVjv6pmFXFL7tuXr0FOU7tPMcx5luuWKaRrp+gW06VqsVu+fvE+YjH794yRxGnjx6wpgDvU4wj+RpQOckhsHOY4jkeQRrUGmmxFlaUHEm5kIuurYxqjnviW9EAS3Cg4I4EImp6lQRC2nhnNptJ8JzrvybJFQRabMlsY8w2XDc7ZnGiaKk1ZBSou+719JxSjVuTTTFnadaUb84nfJ1rtPPesynRTUP8+0Xe/3Ponx8Of7ijhCjtDlTYqybp6BoVQBSFZ+vz7uzgXgSU+cTvwtO6yS0jaft2mriLDGny74j5UhKJ3QsMxwNKc5V+BMxWjbO/NoaZ0zlOiuFqrnc8zyKg0NVplJ5fkopUbg6QdlI4mdntUE7obrk6nforKsRkNKSpbZzH36PB/ubmKIU3UafC7xSZH0x1jBPs+w3ShQOjXKVg/6wL52UzoJaFpTSlaumquWRUA9QMAV5TKkWNiDcyBALw3A8W/MYpdFG1VZuxuSM0Del+EjeCZ+cB0RSigN53TMnMstiJ0VmOLc2QahEFOEEShF7utiQQiRSsFVln2vXKFfundCUJKa2AM1rxckpp1zap4JUziFgTgIfoCRJgItZuJGoSMyZ7XZL4oGr2WhDzFBIVVAm6PqJezlNUhiFEM9F40ngpZRY6lFpB8fhSNe1kmhUChrFNE1nhEyhKPYBSVeANQ7rJH3OGgNFqBhdJ4WoMWK103hPiNIGbluP1pZF32KMq3ZAAiF5Iy14SiFM08O6XdFdaYadqAqqquJrAYm00sspGjVLFntMuSJ7Yiiu9YOVknUCGOWcUVEOiRSxZcoxk6lcayVivOE4yPRQqtpxie3VPE7kIntd1y2kY1fRVzmsSsu96xasVmtCiOx3IkwqSZxYtNZM41Cv0YOo6rQ2ndaOE/dbG8U4Ht94zfsCLW85GT2YUddSW712B/BALP90kfjpDVIuzmd//RcZr2/4n9UOP72/z+NQGmOIc2S/30tMURYeE7WdlFLBW02KmcP+IC2nxQJnHYXAou9xxKrkq/5hMVL9WrGqCHHdW1onRsedb3DOg7F4k1BtjReLM03XsOhbNpeXLNcr3OKC3W4vxOhJUIiLiyuKkSioYRiYxpEnj64ZxpHjfotddMxHhQ6TtLBJaDRGFRwFR6LMR0wOUKLYOQhOT0qKmOvJNOXa+irn7NN5PKKpnpQx4dDEGuelK2ejKLENalpPmWSBiSmS44zk8gofpes6rpQnFM2Lm1vmaeRw2LLx62qfIZtK17afzW08n8zfaKZ8Ys6cxuvowafn1afn2L8sLuVZ8PCp+fpwSPty/EUcfwKBqhwz6URW8UXlnr3eKgXOBs9KiWr3gTMsRaWpBZOtiI+t6FypLUJqVB61GIohEoifQPG00mLyrDQoaV3qiiYC1Rhb+G7yoqbyM3V9f+XMv6QUyRo/cRp56Gqd+uQ5l7NKGwSUiDWZxWhB3wQVqTSbunbOYT6v2aWKT2xtt6d8EtzI55OScB8pJ4eEU1micVaDVhIjWB0otNG1EJTNdZonQdzqtTEVLInTRIqgRFLJaYlMuaBPv7fSVVFeCw2VzwXlaZt84D3KF/SJ86oUShdKVmeLulwe0mwo+iykOX0Gp0I3l0ysvHWjheOptRxkPsFlrfOEwpk2dBKspCTFaqq8O+G5nq5bIsV8LoLzSQhUXpvHdR6efr9TLOTr+3wpIpIKc6CYfKYDnOgGqoAi4+pBRit5v75SPZpaOBmjcdqijRIvUGvpmsonttLebztpnct5SO6HgkLjauEo7/+k/j9dJ/mb8/wWEVLCanNGMYWj+uC5WYpgwmGeOSU0nU47OWWKEXHNSXsg91UBqhhLZeleagNFkWLAGIezYhOVM5Ial+V6p1KTgoz9xDwAsRw6X2srB7NhOBKVOt/7J//TplI3YuW1nroXMUZWqxVGSYv/l+RDqV7786nCT+Xax/zT292vn8h/EUjn50Ef32ToOslfV+PlerpOc8AqJa3t6jt12O8waSJ5Q8gThb56mJ3I35xPOcLJgEjl45DxlcvhnANnueha9scjznkaqzjsb7m+umC9WWMbz/G4Y3/Ys9ls8FoR48Td7Q1zlBNo3O/riSKzXqzIOaCF4ISmYFRFYVNdsIzDtT3zMKCLWCyoJOihmAQrmlZc+1NIpCC2HBpDipCtkIGNLqQQaJVDFVFIDsNQk27EH68g9j/JeWLIRBXROWO1IswT3eqCTesZQmR3PHAcjkJ4do5UIMwBZcT+5NRm+Zc5Pqto/PQB50tBzpfjTcdpUz0t0tpZ5mE+I2XGSEzqQ7TeGXI7c5gJga5tzzy/UouBFCOmcrCcMdW79UGMoVDEEAFBvVIuzNN4bq9rpc7KanWWQoiRurMeUOQUCVOgkCjGYG15eP2UKp8TQaBOVisVvUOLoEE+B2kfpFgYZzlIKsR65+Std/LgzRTmmLA1U/o4SLb5yfvxxDPtuk5U4Pm1aMLzKDxEL37ysKiUxAeCtBxPvo0nocbJPumkmzrtVzEnlFg1ghLundJGCto50liHUfmMSoYQ0NVkXdXnOiF1knAi6K5vhG6klVjOvP5frn9izpDjw9qja3FdqKgy5BAJ6YHGcPqc5NAixfpJIRxiOhcdWiuaIgVlKoVYCkpb0jTWw4nkQpesMK7GA+YHM/PT68UoaGcI83kOpihG/CekMqWEd054lsagmwZKoW26WnwliTFsGsnstoa27Vj0C0D2HaM0XdvQNx3DOIgQxXkBdEqm9Q1N42maloJinGZpotaDWVuEwnXidBotpvTzKa4wZXIKaGPQnNDpgDKWFAKlpsLlUuSeA0HytGU4DpwiMSuvhZIzc30PMSW8b88HJRFtnQRipt5/cuVFMCQcysNBQCJtTRVDJY7DQNN2UnCWwjBNNE3Der2uQQHC126apqYoZUkqgjM9xDlBbufhSAiRlGpm+jTR90IfkACC8Y3XvC+W5X0qvnmwV/h5N9h/GS29z2pz/6LjZI7rnDsTZoUzKv5vc4js9weWiyUlJ1bLBdNu4njc8vb1BucMXePOEv1cT+dCiq4mwFZjncF1DU3XoZ0hkutCm+hXPcZqmsbgi2ax7Ngdtlz0C3b7HaiCMRDjzM2rl+z3h0pYB5siVhuG4wBZsejEaoeSmcNISkEW4gJxmpizZtYOba20cXKQDahAUga0O7eGipYECkEYiogDug6tMikbyC1xnCURIsqiaIzCZZn0Rhv6rkMhvC9nElM4SjE8jbQ5s9ks2R0GrNZ4a2i8kyzwnHHeM82B4+FYN5GfS1P2RuPTKPeX48vxRYf4KSIbi9aM40TbdiKImCb2x0P1UOScFPK6EfdJlJHr140WqkmKwkcjF0G+SsFqmEKqKB5MMZATDLdbjHU0bUOKme12T+uliMlKk6N4TYoK10mucyPxjKUAxjIOE6SZGDJhlsKuaWUzCrVYttXCp5BJJTIdp3NBfRo5iufmGe2aIsN4qOIihUHJoThlYoY5RMY5EaOgSEH6rlBg2u3x7sFvcxpHKKcABfG8bbwnhAS5on/UtBCtabw/q6NzCmR9KrAVKcxMWpGiCF7atqVtmrPdjWlkb7DeUXIixplhnmhbyaSewkyYZvq+J0wPkZdzqJ/FOXXIgQbt5HeQYAnYHQ8kVS2eSkEXzi1K6cIq2qYj5oSp6PU8zZLwEud67Qq+bRnHgRIfdAFZCSJorMYVCYsw2nCxWbNImbu7rSB5WrM/DozzhPcNoM4o2EkF7J2gxApJliFlrDJnClwhY40TT9ITIuosthXQRsVMYyytMgLakFHW0XUNMciBpbGWvu2ki1XpCyef1vVydTbdP3MRAZ01ccoUBWGaKaoKQktmGofzfDyLi7OrziLhbNpulJFc85RxBnRO6CLot1KCIlqtq/ArEUuixEKs7WtjDBgI8yxouxLbpWGor1+UAC8pYoxmGsaK+iqZQymKEE1rplkoCdZ7+uWK64sN97sDMSf6vsU5jx9H7u/vq0jP0rZLUkocDuC9JYSeYRgYhoGvfPXr3N/fcXd3W4vOlsx0PiDM88wHH3zAarViuVxyNiF9g/Fz7MifI8pRtbn/s37yUwWg1Fp/zjZr9WBcLWkNmc630nLI0mpSqi6UKaG9ZHAbRHF2UibqqkrR6CpAsYAUZm3j6fqOpu9Q1pGtnMx3hwPaGa66Bms1290N1jsYPR+/2rM9ToSsaPsF99PIdNgxHQeO+wPaetarNbv7A8f9lsvLS0keOA503qEaMTwOJTPOEyUlclEQYbYO6z1hntG64LyXFlBMZKMpUSwPwjyz3+/OC2/JiX69lEK0bnAhBMYovnJt2xLmCRCyuTMG7wwlyeZSMqy6ljAWtPOY2uZ6/Pgxf/zjH5NiwHtbW+QZrRLe+y/k3P9Fxqe5kZ85Pf68zdcvx5/bkaqaM1d7lXTyoKzFo/hFWg77fc2xTnA8cbalWPKVdB9CRHsjbVgjZuLCn9Mo75iGAYVhDjPTNHMcpaABzTQFxnHC11ztHD3RJbyP0AiHTRuJ8cso9vsD3jcUZA1UxhJT4DCMjEEcL6adiClSSeeM7FRO4jvxFBR05XDmpccQxOkiCZ86RkFDGm8rr7rgvCAqIQmX66SSPXEDTfX0NBp8tDSp4KxjHCZKKXVtKNWiqQo9jEZnsdyRwm4+q6mPxyPdcnHuIp2QtBBCzQiXAqGp+czWaJwWNHWaxOewbVq0kiJ+DjNGG7q2RUPdC6oV0enAoHi4jie7nbqZG21ou16s1Qo45FChK8f1zOkzBq8QpxFr8U0kh0RI7mwaT054xF+x5EwsGZ2kze5rAVbKTMgTlIzVms16WQU6gUXX4XxDiIn7+3uU0nhj8b3jMA7S4k0n9FkKsVNnD6BtGrz3Mq8rh9SYk7hLn4VBIG1lmQMRrSx936K1zHPtXD2ISAu9cR7jHOMwYqYZ68QaqPEi6BJhk9xDh2lmnkdKyTRNwyUKox98Vb1zFRVEDh4V0R+HoSbSnXxXFTEJl9c5R0rhTBMoojKtXciaOqU043jEeMcwTsQcUcbgfcM0z+hSuwNaC5qopdOnimIMM/o1839nLNo6xuohWYpiuVwxzkHERk3DcrWmnOewvN+Tvd4pFWccR7quq9HFhsViyd3dLfvd7hNo/LIKA8cvgEyexhfwoVScmjHAQ1H5+sb7hnvtm1gCfVqg8Fkb/BfZ3P+ELREAElVoS4A4ktMsCkRjsCUS54l5Dhgb8U44DaRE4xshqTtN4zSLfoXPk5DlnUNXQrOzoiKLQew0vG9oG4NtPEkZJgzeOI7jzG7YsjsOLJc9U1GSp5sjy2XP+GLPnAx3hxm0xzcNq+WC427LfBwYh4HFYslw2OKsqVyOzGq5ZBqOkq6QPAYp5FJIotzOBd86GieRYZGMUaZmosrNoZUmTRNlhmkYGQ5bGt/SLpeUookpEuNcT++FrMG1rbQvtPBbsp6EN5MTWhW61qKVR+ssKTk5CI8lBFxjaZqOr3z1Xe7uXuFxvNptycoQreJic0W7XNYDjCweci1N1Yd9Pvfxs8Znza3P+///LorJL8vXv7jDGH3mLIEoVVP9t7UGrxzTNJ+/djI8PtvnVM6adCT0mbcu5PlqM1I5bvM0Y620E6d5ItWNbQ7zWTs5TjMpR/KQmOYZN1nJ067PqbRGWysIYVW8xiRpMtOpCItSOImdkMQUpmpEfSL3x7MwRkn6RvUZLAW0eSjYwjyK4hYpKE4WNJLeU4VDVRgxTpMUk8bgnSh2bTWtdtZJMowRdrhSEDNQ5D3GMIuv4Gt0K20MXhuathcxd21BG3tK3H6gd+VaiJrq9fn69dWV+3nK4VZKix+otfQn9T7y2fa+ObdLTzd2UbVwkJ8GJZxyY5xYw9Xnk/asOwsnlBalPEVRMljbkIhCGzCiGM8x0BlbE4bCWd0sQKfirJ5+jVsnPphZjLoRWlSk0LVtPQxVHYFzlQ8s+eXWSOFirSQAnWgIpYiDh7bSYvX+NaP8LKb1WmlUFmSOrAWZDrInOBuJCN3JGClXdofjmU5W6n3T9z1d2zMcj5wU/AKC13kLmOPMNEXZl6v5v7dBopLrQS9VX9aUJJnKGF2V/rm2ogWBFTqBkiKuPj5MQT7X2l6ewoypNoExJZRJ5CjKaVO7f9oI8HSam1ppvPVYZTHOobQhpoK2DuM8uVK/pmmm7SRq0jlPTsKrtNVLMte411LKWfFtjGG/3xNDYJ6nM+UjV9FcqdzQE897DrNk0v/yfCgrO0eJQokTV6DU1AQ08CfFBZ//dG+2XX7e83wR78pPq8qF/qtxOhNuP+b97/we8XBH03oWl0/Yvdhhs7jYz2Gi8ZqcII6RMh8kBWfT0DhHCSMXmwvW/RKnBBpX5QSpg28MlEwukYRhSoqcLUo1oDvmUrgdBj54sUXfHkjxp6xXC1pvUS927A8BZRrQlsdPn7Jab0BrjsNI5z2dgt4bOm8IAVxjMFaRc6SUzDxNUDoa5yldx5QTQwzCCwoT83igXyzJRlpFMeRq2ZFAHcgEUXQXJRFVCnTjyTmxG480RkzORSEpSQMUhXFiV+CbQNrvmIcDlFC5WIWcqmdd60jHmUAGlaBR9JtefPQwrPqW2+NMUo5kGsYk1ksqj3IdsyLrBpQYP79pEfb6HP0s/uSb/Pzr8+5Nx+vP/4nXEijmCz3Xl+PP75BOR/6k6CalKrapIQo5iVivFiwAIcj3tFZnwcZpLTnNtJwSSRsCgtzEOUJRdfNIZ65jOYk4CsKpVFmEMbOgGM4Y2YSqCMM3rQgzBinuUKKcPvkLUtG0XNNpUKred/L+5ilU7pwIaObquVjItb1YPTBTIhYw2jCFWAUunK1UxGJMOG65wDCJ0M8ohdaTmE0jMYbeipeltQYXqmG6Es9GZTRzmJlDbd3We0zVi9B2HdM0U2MVzoXdKS7z80R6cMrO1mLVlERwIddLn70PRYwlbeITN1CdN+9yDn1AaTFiVzWBRRv5WjlddH1+3ofP3AjnrxTca+IunTVJoslEgW8MKohY8ly46GqdYw02GSInzUCW7xmFSarSLKD1nhDluqlSkVzvzvzE04HCKBEF5cr5BUFETbXNO/H2ckpnRLvoEzdUFu85RqEHKIXRM8dpZq4G/7kUpnEkZ3mPp8NMv+jp+xXDcai+rp0IapMYdWulICXutwe6pqH1zZm7ulwmUgpnhJqcKGS8szhnUWRKjnKJUsKkKLQNdBXtIF6PYRZBW5H5kkpGhZlQgz/OvGiQsA4rPqXKgKpJc0WD1RaKuAVY41CqQE2+ykURkiQKGWPxXgRLx3lAKY01lgi1AxDPh7fTv+XAJ4fOWFN6jDGUk/iqmuejJJGqRPFlfdPxhVveZ5X06ab8xCgVsPzswu5PFHylPMh4fgkb6Z/2nJpMmo587w/+KXfvfZfHS0ucDT/66EPevznAuMWECd+smKeJHDKdkfaGMbJglRTZLBes+lbSGUzB1OilU955SZkYZ6xyTJNivx9wTcMFmrAdeHG3ZT8F9sfA3f4W5xpC8dzdfEyOkXEMxCSm4O9sD4R5xiq4ulix8JbLRQeLjtw2uMbRWEsYBhygSibHiel4wPct1mimuinEeSbU5Jmu67HaELV4VO12O/F88w3JOkzbY5xHEen7JevNI/a7Ldlk2q5BlUiblUQ7GkUscvKcciLMCaUsxzFQwsyib1EYlLEoVXAGOi9ttem4o18tWK1WrFYb9rf3hDxjFOQwMu5u6QiU4x3b/Q05J7rrtzCLS1C/uFDn0wehX5YI55clKvty/PkZp7aaVgqrNMMsKFlRgnqFmpxzMjV/3dvOKEHfTiR/aQWKh2E+0VWsOC/EU4u2FNls6oH5oxcvWC43pPwgQEnhhDLJhmOsxaVAiOIH24bAFGaOw0RRImS4vb87o2KlFKZxwnj7cBDTgqItVytU0WisoElKoXB4azDeiNWNKtiS6WrbVaMZx+GshBeaUaLve8mkVoppmum6JfM0MU0Tx2FgOo6Mx0HcIZqGxbJDnTjb1tB5T9t6DsORUpLEUzaeaZoolQ8Yo1jcNG3LXCkJwNlrVwou8VmcQ5B1v/FYK5v8qWh0RpOC7IYlZYqS4vRkh3MqXlNOIvqUnUNeSxWUEysmZy1WWxJFbNWqkJNS0Nqi1EO6DEU4pqf3eRKBqGqvpBDB0kmpLlZDGaXK2XEAxZmzO8cTPzFjk2KeZlTJWKNovWUOCaz4a6pWcRwmtLNMQRB2UYonMceviOE8z695mmq0NTX6MZzx3+M0QqpKdq3JSjFH8Ryeg7TetbZM01T5tfLerTHy2vX/tTVsNpdY56R41TtKUYSUq41TIaeAQ7Nereia5pyIs1ythPahFcvFQjxdncFZg/eWtnG1GyY+ylopjLX1AFepGsYTCszDSJjns31SrIlLqfJ1x1GEca2XP9ZaXOPPh5eTubh0IBLOe5brjVC+UGJZ2PXc7w/kECmxnDmrWtvzmiMHynBW3Oec2W7vz4IgpQTtD3Oo1kYCBp6EO6f3cjoUvOn4uVQN50msqEXhCZGsM/218Vneep+0RfmzaSX+yeI2o3Nm3N7xL/7p77EqO37tyTcliJ2RnHq+dr1k3N5CcuRmQVEWpSQntLEabxReK5Zdg7MKo8TFX8kRRaDvnElRuEMhhLPljzGWUjTKeIbDAMYRQ2bRbbjd7ri5+xCtpcVSaJjCzMK3/OAHP6GkmWXn2b18zkXvcc+eoA4OtV4RvGcaR+6GgcvLSy42a1nUSpI4xZKxVtG3DQrNHAOH7RZVYLneiL9kEch+GAYOwwiLa1aLFW3bgZ7EUytESgikKTCVgtYwHQaO9zeAwrdLaeuHzGEYSSkzDkJgDimwWnfo1qNTIA1yMxslikSHwhvHs7ff4UfDTAoK4+Fuu+fqas37//y/Zf/df8T25U8x1rJ+9nV++1//t9g8fQel3C+E8n2WXdBnIeFfcim/HH/aWC2X3G+3Z4QAZD7N81ztcqCxTtrW5cH4um1bQbw+hV7nWjymULBdK600gCyG5cqE12IVLXOI7Pa7inZBmEbCJC3AOczsDztBBL1jCqGarmtpszpb27GC6MVczsk01lqG+x0YeZw9+dvpBq8l2aVpJO7OlswUZuZhBlS1drG4rmWxWrDqFxwOu3NEYJSgbWlLWkG5hv2Bpmk41gSQ3XZHKXB/v608vsjuOLDf3WOtxVuDt4bNxYK+bdHKkFPhbicG7WiDMmKXtN/vSadukrGEGEWYUzKhWhCFWkw23qIQg+vGW7FsQjiEbetpnIUs7eRTjKFzThBCbSS+liQdnopIp4qKxVQoJaG8pVQFfM5FwiagKu/hhJ6KSCbhvcM31Qy+CDFNKY2xDwbiOYO2in7pSUl4qyVJcStZ77mKJOU9HQ4zq2VPiImh8in7tqm+wYWcwa0dh2nAGF8R7AmNGPPHGNntdlX1HcSJwHspfHJBKUOoNIRMYR6FopERpGaYRsIsxunDOKKNFUFmpW847wWtBEzTnD1Pk3UsVxdYK+1u13QVIZc2fQmBD59/xE/vD+eCdpxGcs0RL4A1mr73oASh7JqG5brnarMWMa2ROGGlDN41aFOV7wwSNKANdrGkNRZdqnl7lELY50zKcDxOHPcjRglPepwmQIzqN5sL2urqcHYzSZm+7RDJnaDgTx4/Zrffs99v5bOrscjDMKGkNmcYxrMdUIxzpeCIUfnJiQClUDHWeSPI5O32vh5SSo0YffO97hcqKBUPbJMvKmIo59bDfzcbtKJgFRzGAz/87neJL3/MtY38+q9+i05lLpzi2195wnB/w3vbI9k0THOiawxOGUlbcI5Fs2DVNjRaYRU4DUYjSmolN+DpJHu/vWe324n6LwTef+894fz4lmIEWdTOs3rnHQ7Hkd3hyPPnL3HacH97S5wmVIlcXqxwKqNjwCbL9sUL9LIlH/diultPqK3RbFpP1oVoClMJkCMg9g3WtYjL/p6bm1ekmGj7DrIYt07jwJwLJTdM6TnN0yfkeeDli59yaAw5Bg6Ho2S5ek+cZ7b3t6RUWG0iWEdIitvt4awEJSvu9zuiMZWMXwi1baOVw6mC1wqrFI8ePeH5x6949cEdrnWU6UC8+5iX3/99Vm9f8WTpGefIT7//RxynzL/3H/7PgV8MpTy3PU7z5LV2+Osb/JdF5ZfjTxtirWMopzbfNJHTKYpVWqD7wwHvKm/xhBoac25FncyIJZXL1ExuaQ3HOh9PCnGNkdZxqZxHCnMMlBIqHxF2+z0li2hlu99JAXoczp3VmAJoiymKok58x4SxUnTGlLAWjmMgpARaoY0hpYx5vsUZj7Me7xtB7lJ1hEBi3FJKOGdZ9B0XmwtWyx4FNDXtxCAOGEZZihLRgm9ajDP0iwVKy6G+aTquHz1hnmfmcWIOMy8+/oi7uxsOw8BYPcKnVopBaxSL5UIiYUOmFKEF+LZ7DdWpZu9KCbqTEtlYARCMFoVuLqyXCykCQ6icbaEYSTEriGSKwrtXWgs31WjJda6+mEobjJXou1LzwAtIUahPsMRDe/514Y61FuO8mG1rMVY/KbBzERsapTgXsVobMhCCFPWg0frBv9NaizZCz4ixRmBq4fBarUTUqURlX2qUsDpZ4swzU+XsnwQgIH6IQo0o5KkwxygG7cZyGA4AaGs57neEWdDhEBPjFBimUTiwKIz1tF3HcrMGVU3kEUCoKIU2FutORv8e27SkVBinielwi7aecZw5HAf2+x2Hw4FhGGp+uHxmlxcX3O+OTNNY8+QhpxmjEZV51+K8pmu8pPC4B1uippGiT6NpvWPVLYSWQWGzXNK2Da5bYBXM84Q6Dix8I79EFo5wZywZOSw+f/GCpvHC8fWepm3p+q04IXQdTdczh5k+JqbxKPxcpBMa50DK4Zyg5ZyrwhoRg51Ss15PpoKa2jMN56+VUlgsFhWX+WJdtC+QlHMqHWWcDWM/+WXgk5vw6f8fnuO1r9WW95vY/7wpj/Lzxp94D4ValYt83zvL977zHRbecv3kKZ01fPXJNbfPHvF8+x774UhWHmM0Mc0svWPZNvTeY8joUlslVC6N5lzlx5gZqmJqs9lIRvgwgcq0TUMCms7TLhYY31CU4d3Hl0wh8gOdubu5ob9coIDWt+gUaIyiMQZHIU0T+zQzGSMm4tbKSXEamccjrVcY5YR4K66tzHPEuo62laJyt/2Yjw4f8PjpE5QRqDvlzDTOWHWgkHn1wQ5vCjlMvHi+E68u65lz4XZ7T8QwF88UM/f3I75VjOPEcRjRStEUSTcYjwOv7vbCDQmFeZo5zpHJDGyWK0oIaKBfLnjr7be5ub8npAmrC9ed46uXSy5bjfeK+TjzwQ9+yEd3I//Wf3Cgv2j/1LnweeP1YvE0Z35Z7e8v293/6o8YAycxDgBe4lpDDIIq1HQNrTRaSWoIUIWOD2taTrJ5CtdM1pQQYy00BJ1QWmx3ChKNGHNmjgmtCyHEqnqGw+FAjIKaTCFSlEYZI8WOUhQy2jnmDDFLMXkcJ1CiYI4pobRs0KG281BaBBQuAQHKEYXGW13RPYU1UgjHEPFONumbu4MkmShN33eycSsta2HT0HpP4y2GQswJaxy+aWn7+m+lMMahlaFpO7x1eN+w294T5pEQM3F3RGuJgEVZ2q4KaOpHfM5Wr0IibTQppHN3SFC+CEaLOj0/mKCf6Vr1mqWUKKaq95tGijlj0dqg0FUo5WsnT1MQ8Y4Q8cTp48SPlESUmlYC57Yp5SFQ4USHeJ0HfuLCliKWUrK/VuoVSjpsxpKzkjaukghC4c9FSgkVySpnQU3TePFPVg9m4HJQeBilSOa5UlI8nzQWJ+SvoMhKM0+BaZ5rsplimmcBJaK0eENMzCFinFALnPcs+gVdv+AUPVlUTXQpWdr8Rg4fx3FmmBPzHDkeB4ZpJhXNOM0cx5FdjYYcZrHtCjHivKfVjtk1jFLF8hu/8W229ze8/PhjXt3eou8PGF1onJirN9Wqquv6s60gRXiml8ul8JKV4mpzxHtH33U4bylZkPTGeakXAO88vm2loIyBoibmnDFAmkbmGJliZAwTbhrww5HmuKc97EErvG8xVqzFyJmSknzWSdrXMchhUlB/KzzM/FA4ppO7BK8J1uph1prK2/4Ce9UXKijl5KPqyUYI5K+nEjwUkuUTP3caf6LtDGfS+S97fLrwVIjCDmW4fPSYKe8pJfIHf/Av+DaaR2+9y7LrePfpE37/Rx9xzJb+8oqcC8f9AZzjYr1i1bU0WtrdcEoQEK+vVO0xxC5EEiEKwg0ZpwllHbYxXK1XNN6zWvVV1ZXRZuYQBv7Gb34Dq3+FMEwcjwO3Nze8enXDsQbBe5YY70hFk6NYPxRdCNPM3TRBnDE8oTEKu+zRWnM8zqLEyxPeWhZdh1Hw4fOPGaeJi+tHAssfJ8YYcWrPx8/fJ84Tj6+uWPQN4zwzx8JcBnS7ZHtIzMA+gLKOcBiZPrrD6MKzp0+I08jxsAO9JGvFYRjJSUxfx2EkAm654bDbsbwOOGNxRnN1dUXTLhkPAe8c68Zz2Tasu5b9OPD+T97nJz/8EU/8+jwnf9758Xlf/yzhzqd/5osglp9rT/Spg1UphU8f1r4cf3GGFJRU82JJxbLWMs3zWejivKuqbh4UxLXYEeFaIqlIMQrKw/yeozTAKDU1RSmMBYoiI4jVFAJKaYZx5HA41FZ3YArhLBTR1uHaDrQmUVA6oaxnPB4ZpsA8RXbHUVqHpdQNPHNztydxSm6Brl2w2vSEU8DCHLm8WFMwpHkmzBNxnikp4a2IHRp/T++llbteL1mvlvgqdOnblq5rWHYNfSuK7sViiXcN1nlSSK91DMQi5unTZ7RNx257z36/5e7mFcfjnlIyJmRyPpKLFu2HUnWNLjinCFEKKuctcwx07UMrNYTXuItwFjqd2vRGGzSZOAeCMuKf2DTs90dpfdas8ZQyXpkqdtJV/V3jLasHpUI4tme01BlULpXf+Yl38bAHV6RRaVEk56pYFjGUrh6MCmNrVK1VqByJUV7XWk0KnAuNpmkYx+n8GXlrGOL8iZdPMZw7lZKQUxiGEd94SVgpBaMtqQRKBlQhhchwPJ4Ns0MIzGHk/l74+ihdfTUtfb8QT0Xv6folWpvz53WiYwiHshBTZpwHttu9UDNCZJ4i4zyz2w/MKTHHxDjPXF1fk61nDomJTLfa4C8f4WzD7AQ5/df/nX+Plx9/xD/83d/lg5f/hOlwwCJo7cnqyRjDr/36E47TxHa7Zb/b4Y1ls+hprfCGL5Y9WhX6TuZy4x1xnml9g1EKZzSr1QrdNihtMdbQOl9tfWqcZ46UMFE0jPOMPh6xzmKso130rFcbmraVxCasgEYZEplpFHeV09DVf1V4xXIxY233m5pOdEIwqeuRPRu1v9n4uVreDxvsp7/zsOm+vsH+eWwNFiUFpW9anj57m5fHW3Q6sN3e8tOffozr1jT9gr71fO3dt7l/7xZdElMMNI2YrzZOvMBUzhQixQmqp+tCl5H20xjEcy1VY9ymcSijhTzeeBoLV+sGZzLOKrq+Z7HaEGJmvz/QuI5l94y7u3v+YH/HwSpWjx9xItFOIUGNYRuOA94aFp0cAO5u72icoXHiAea9oxRpZcVcGIymazv6vsdby3s/eY/tfsR3C8aQaRdr5hQZY8Y1C/ZZc3N7ZEoQiuYQEtPtjqgdyllu7rb0fUeYR+bhyLKx7IYjl8sFy75hOuw57LfVfFdVnk4gAt7OhN2R9f6IanrIEaNhs16zHe7RRrHue3pj0UVzHGc++ugFm8WG9Wp1jnz8RcbPYzP0yx1//u6dL8ebjROHTFUE7yScWS2XtLFljuIPZ92D+ObUMrRVkKOrpUsMGVUipVoMSSpNOaMJ2+0W37TSssy5qpsjN/d34uFX29w5Z7p+IbnI3lG0R1vLME3iMzlP3O/vOY4D0xyYg7QhpxC5vL7m8eOnXD96zP/7H/7uOfotxshYFB6Lah2mBas0/+6//+/zja9/lX/6T36P/+rv/32GcIcymvvjQI4JrWHRdiKWyYWkDO+8/Tbf+953cEbjjME5w7KzbJY9q+WK5WLFarFAFSo1wOCbluF4YL/bY4zl8ZOnfOUrX+H58+dMxyO3d6+4vb1huzsSophBe2cxRtBA4ZhJC1SPGu8Mu/0BZwyLrmOz2TAejrXNWzgcDlxdbjBVQOGcxRuhb9lqNK6UtMBTTmQlm3nb97imxZwOilpL2k61WFMFYsrkWqydkm1KSQ9m2XXpOaXtnNrmYnf0EB0LVOoTUAS4adu28hUNKRn5fhT+eq6G4W3b0hmD92KZF6IYy+eqpj7lo4cUmafpzA8OIYqwRqmqaFb41qFrC/2kFD6JoXIt/G5v7xlGSXnp+57Vak1GfBbbtsU6zzgn7rdbfNtQiIy7PbbxxFTY7XccjgOpFIZhIqaM9y1t2zMfB9njJjHLd77BdT3OWJJtaJTi3/x3/l1+87d+m//iv/wv+cEPfsBisaS/fMK//df/FmNU/PDHHzC/ekkMM8poEhATfO1rX+d//b/53/ODH/yAv/f3/h7/yX/yn+CU5v4wUcJMmmdWfcvlxRpKxGhF37Us+wVd69GAymCtfOaLRUfXtiIwW3QCthlbkdBOaHMVGTXGMI4jN69eMU0TXdfjrK9CNs0cAuMwM9euBEg9Ns8z0zThvKPve7RSrBZLXr16xRwk0/y0Di0Wi6oH4Vxgvsl480fKYbgi8rVwPE3Y18ZJmPNnKbj5eV+rULDe8va771DuP2Z6ObO5uERpWaCXShSVjy7W+A9u2d3eYLoG37Wokll2HVYVNJGYCzEknJK2QqgFWwiB/TDWIHZJz8goLjZywzROs2w8i8ZitcSlxWli1EewDdZ1NP2CFzd3/NG/+CO22z0XV9fiPVU9s0Ba2THM2AzDODCHnST2LHvGcWacZuxBQue1cZhK+t7uduz3e6CwWq756Ucv+e53v8/y4ppiPN1UoGkItOyPkXG75TAGpqwJaA5T4v44ooyIYbyB3VZzdbHiV7/xNVSeaYymxDphVabzht04MYbEGBLHEIkYGpfJIXM8jphYOBwEUbi+XPPBi0zTOrkWSjOOM9/74Y+YQuKdZ++wvrrCt/YzKRhfji/HfxfDW4eviVnjSfygAVVQmnO6x/F4fECZ6tpq9ckPtkYOGkGaMjBX1MEaR8yFwzQwpczufntGpkJO7I9DFdJUFM85NsslTdtjrKOgGGPi5m7L/jhwGEeGceQ4R+53O0JMoGwV6xjeWqz59l/+bf5n/9P/kJv/3f+Wm9s7pjmQS8Y3Lf+L/9X/kh9/+CF/8Ed/xHe+932aqyt+86/+NVbX10Sl+X/+Z/8PwjgRtUF7g29bMJbucs03fuVb/LW/9lf5n/wH/2P+j/+n/wN//IPvc9jvUHNiJnI/DPS7PV1zQ2MdjfOslyu8MRil6NuO29tbjBErnME51us1zePHXFxdcnF3w/39lo8//pDtdo+1Wizi+l5a/1l4rV3Xst/d03XdOSltt9ux6nqMEdGGq2bzJ8UsZGzToNXJ7kla4k3XSuSmEX9P33akXDDOYqxFac0wixr4xEtsu06Se3IEiviGlixm5LY5p/uIOXcmxJmQAnqW8IyTn6ZS+swRrGnapIIgYVqTinD2nG/JOWKsp6CIWVTK4zhKGzoVMXB3nlQCuRaPGfHF1LqgdAFV04zmKC4DShFjRinpuMXqywhS6IY5ME4zxjWsm571asVyuaDr+7Nh+DRNHI4DsUZY7rZ75hgJWcCaUDl/SgmXMWVN7z1dt6BtOyKKxF54lUWU7rvdTugIJdN1Sx4/fsrf/Tf/Lq9e3bHfD7z33nv83/6j/5i/+ju/wx//5AO0bei6FTNHrBVSilIalOfDl7e8+41f4W/+ncz/67/5XXIMlBjAWKxrOMZA2u3FM1VrDvOBF9sdfdvRty2t96icUfsDzU6CPQyKy6sNbeNrNrthtehxrrbOz3nmhhAjx+OREALeWIwq9P2SnBLjMGCsZVUFOGJR9VoXudIifPVLbRvxlKWI6Mzqk/8p53n0JuMLI5SvF2+v79uvt7s/6w38sgrLn7eYVBS0KlinuNysGa8uuTve0NqexbJelPFIjjMlBZ4+umD4+IaSJIvWtT0qZzlpN2JGmlRG5Sg3ay7EDFPMhJgl+SEG5hBxTcEYS+8snXfYksljYDePzCFznLe4fsL1G7Rt+f4H7/OHf/iH3NzcYLVl//0fQ844q3ny6BGrVY/VCJm98eRp5ng8ElOg7zvhnBRpk+kp4hpdVYZQJhjnEQW4xrNcrXnvw5d8+PKPGQNo3+H6Dtu1zKkwzJnDnNhPEe08McNuf6DtWjarBU2JvHX5iG9+9W02i47WrdneviLNE9pAazRN16IzqOPMMRw4TDOHAG12mPZCot7GwHDci73SosGpxHrRsOoccRy53w9sdwcuL69Z9wsuVz0kWYS/rCi/HH8ehve+th3Blcw4jXKg0wqL5EBTUa4TQnZCtkR889DxObU8jdFY5zkeB0ISe5CQM+McGWdBjE6cyf3xiPUOY5ykiXQ9aEesm8Y4B253B7b7gwhZpplQMlPKJKCYGhZgDblohnnm5e0tf/zeT3j3K1/lfn9ApUTfLbjYXPCbf/m3+Pq3f4PV9TUffPycP/7xj/jjn/wEVeDtt9/BuYbpOFSOtgZjKcbQrzbgPEOIzBT+jX/736ZZLvjow58yTwMXq548Txx3e3bTxDFE8t09t/f34sPrGzrvidMsBZ+1NaXFcTiIknW93uCcR5XM7e0rYpxrYX4UZFIpshIbGFu5mNZZUFTuZKbxDc7ZcyEZlMZ2Dd55EVBVlDDGKFF5zqGNFY4fSnivpkpwq6q87x05Qy7CvcdoVDmlqiHpKU6Qx1PKEMh+d6JXlZJJSqGLOe+HWquzUEbXuRSCKOiN1mgl3L+cpN0pbfaaJDRLDnQuoEvCGHd2B8i5kHIhxmo9xMNqm1N+jU6hmUPi7J1Z28XHYaw/J1GQzi1wTtLPbLUwKojmYDohpJkqWsvEnMXo21v6xVJsr7xntblgnMUGyxiHUhrjWpR9ye54ZJoDJSXGw4CuCGrhwD/6h7/LW8+e8eL5xyIyGife+9GPmQ5HDjvppGltqitLPqO0u/2e/+g/+o+5vL5iv99jnOPkLWqNKOYbY3BWEuVSioQ4o5Xh/jAwhkTXiKOAVjDnglGKnKTjKPIL8VldLRc4Y+SQ4yVmsqloZs6QYmZmqhQI8cZsqqDn1FFLORNipO976U5WX0opxpuq9k/n3yGnfBYGfpFkup87DPmTKOWf3MBfb3f/slHKn6uoLEAKOCNCmraR0+pm0UrLNheO04Am41ThYrmgv9syG8Oi7+j7jqbxuBJRRWKj8BIreBwn4UqmLO2iOXI47ik58ej6ivVmQ8kFpxTz4cirj+9l4UITsLh+w7Df8fHdx9zvZvbTkWfvvMXX3/4mrbPkaUKXxM3zj3jvRz8g/3TiYr1ktVxwdfmIfrVC6UKcRvaHA8tlT8qgtUe7Bm09ohNIPH7yCFWkNX4379hsLnj61jPufvge+8OReJhR9/doayjakYwnKYtOkOZAmCeu2oZNb3h6teBrbz/inWdvsV71LPueeRxYqRXkJeN4ZJ5nQgC7WlLMxFAK2wDkSCiKKUSmccYYhSGRw0TfeXqnWHQWnRPHw44Xu1uWqyW9X7Jpl1ytVxj9M6/4l+PL8Wc6Tu0j0S5KESLJM7KJiDbDnFtKOQtqBNJ4ONmxZSFFyWKPCD1CSuS6qaeSGeZZbFYGaVWHkAhhprcW46q9j29IWfwRQ4gcx5GXd1sOw8gcqvmykVST1rlqFZTISkOGYZz46Ycf8rv/6HcZqifkHALON2fU49lbz/jWfs/V1SU/+tGP+L3f+8esu57t3f0ZgeXE96s2Mb7rCbnw/OaW3/+j77C5vuIr3/wGvu8YjnseXV1ASrz8+GPubm+I08hunInDwBREZXw0BhUjVusaV5lo9oLY+RrL13cd5skjlMpst1umaWSegxRcWvKkY0pnlFHEMYIcn5T0VP6kbNLCY5UEF4U1Vq5zymgkZ9tYL6Inrc/+iSfltzIG30hu9ak4o0AxilSivI6qvodGEGtV+aKVWCabf0Xf9Gk/ruk6kdpR1PKT1L3YaEMypv5eWnyDc6Lkh6x0uVan9CAL00TJDx6Hp99d9txTnGY+F5pSkIo49aFGUFI851wjA1sWi/41mgA1djNyHI7MIRJiqUVlgWr2bqxlsV7z6PFTmral6TpW6w1JFEiUoogp062OHGMkak0ZBvJpX55FPJQLfP+73+Hv/5f/BcfjwO72hvFwIIbAsL0XSl8ukCPWitBFKdCqkOLMP/m9/5ZusTj7s2qt0U7QyMZZLtdr+rZhHI8Mw5Hj8QAlC/IfEwU5ANkK+JxM1UMQZwRVc8GP44xWVDN2i/OOxaLnanPB3Ebxay1i55SSxJc634hfqhY7R3U22Nc1eIB6PfMZUZd0K0HZT+IvrTSN/yUUlA/cyKoaUyfroNeLuNPp6Gfv7OpTf78+fh5+2ueqyP+U96BytVbwDcVbLtYrnqxa+r5lP89Md4FpTqhYYBxYNo67mkvbNC1WW1zK6BTEg7KIZ1DSnFMFYoWlwbBZrem7JQrJPP3w+QtiSGyHgSEWpgz7Gd57/kNudjMv7+64fvSEMWb0Dz9itWhZNJ5nlwt++ze+yVe+8TXWq47D9o4PP3iPfJ9pm47L9YrLzZppMDRG0XqPtLwadNMTFISSaa0BbbGqsOo7TCnkOfL4csPN1Z6C5zgnsspyAjMNQ1QcD5IF2lrLYuFrDFvH9dUTvvbVr/D40QWKSEkzVkVWjWE6HhmGA8SI04YxJuZ5IkXZNFvvmOPMdLznuLM0bSOEf5UoTWbRL0jhQDCWF4cdWUceXS1RydEvOlwjxOY3nzN/8mufO/fKQ6Dj+SHl9Xn22YeqLzxeE2N8aXz+F3+UurEaazBWkC0Rx5xSSaRYkEg6QTPv7+9JIVKMJp8KMJANrRacWQVCFd3Eus7sD0du7u/Y7/fMc8AaIe0b67Fe/hSlmVPgfr8Tc/A5cL/bM6eM9Q1dI+KcbrmkYKqo4QBzwGSY5pEf/+RHfPDT91HKiFo3F8ZhIKfI7/2jf8i3f+u30QWeXj/mv/5n/5xXH31Eow06JkoMOGsJ1RuwlKrSNpYpRH7ywU/5v/+n/ym/9d//y1xeXrK62DBOI9dXVywXPTcvnvPi44949fHHfPz++4z7PXEaOIZASJEyjRglaltjFB99dBBOYNuSW0laefTomq5reP78Oe+//74gdVUsmc+t2igm5FGsc/quRSnNNE3kGOm7hwK6VmzMMdK26qywJosiX1V0Sxvx93SuQVkjXpjKYJzwAs1rcybHRIhTTSuLaKBxkuksrXFxHyqqFguompVtKEUSdYwxNXGp/jnbFGnI0kq3RnwBjC6Mc2Aaxvp6ingS9pSMMb6iX5HX6l6Z14BSkXkS0VYpDx1K51qMFSurmDIxJBrnyNlUsY1wJkuS1wkxMI5D5RYfxdy9iLG9MuJ32rQ9y/Wad776Nd569g6L1QrfNmQk9ShUdDinwou7e15st0Sj0Y0n3N3ip4bDQQo7lRTjbsd/81/9A4y2hBAFbTSGrMVzUgMxTHStJ1a9hCbRWs12ODCNR6g2T84JimiUwhvDo8fXPH3yhN1uy93dLbe3txx293TWilVUSoQ54rUWDqqWQ8lcxOdUKRE7zbsDMQWsEe9Tqw2r9YJpiiIeq4eDYZy53+1ZLJasNxf4thPeackobfBe5rC3BqPkzzQPAFVAnLHG0Fbud0lFimjeHKn5YghlbXM/8CjF3Lzk8qmC85OLKtQC7rVv/Dzb72cpaX8hEYUyRFVwqxXJOvrG0zvD5aqlVS37mLjbDhg0Js54DUYJRzGmdC4jbJEs01SSwNfVbkHl6hGXC00rROEQMzEMTNPIMB45TpHtGHi+PfD8/sjLfcI0XqwNouav/uXf4Q//xfcJMbOwHX/zb/9N8nTHH373j2hUoreay+Wav/Sbv81+tyWmCWUU3lla06NzkiQCrfFdy+LyEuU8MQRcCRADIQ4Sr2UNfWNZtY6LRcv9bmQICdM0jLXVcZgi/XpTSdUTx3liCJnv/OH3+f2ffMgfvfc+X/vKW+Q0suo8j1Y9PiU5HeZMKoX9sGWMkTkpUtI461FWM93ecbibWPcOb9eiStRGlPgX13z44xs+ePGKJ77w1rNLilGEAN26p10s5LFvMAc+bYH1syfdw9/yU+UTzyHT7wvSLT7jAPTwYp/3vS/HX7QRY5RQgdrG3mw2aK05HA7MJaAU57YTCKK52WwIITDNcr84JxzMeZ7RRkyGp0nUrfvDkWGaGKeZ/UFMv6cwUwq0XrNwlqbrsc4TYubFqw8ZppkxzIQQCSkzzZHN1SXrzYblak23XHBxdc3usOf2fot7+YqPX7zCOXMullKcmacorXmlyGlif3/D//X/8n/GtguSUhyOR9I0Enc7LKBzJk6jABFVGZ5yQKme29tbNmzoFj23d1uMMXjfcHGxYbNZn9NDLq+uefsrX2N3e0M47rl98YKXH33Ey48/IgwH9je36Cwm2z/6yY9Z9h3eGRZ9z6LtKCXzK7/yK7h6LWKM3NzciAF59fx0zpEVzNNMUAVnNBebtdyVSRTUwzBglCapSNPIQcBVlO1sJ6RMjcmLGO9wvkVbh20bqP6R2orAxVROJlBb0TOd6olhIoSZEhMxJ07wTc657ru5AopS+KY5kCuqXaKIuQQShKQyIQj67Z1EAVtjmMej8B7rPDwBRSlE4iSirHKKZaSABus0NhuJSJwku/3kceicq0AAhNeV+BXB26zX+KYRKyWlaJznGI6Mw5FhHBiqH+KD6FfSYS6vnrBYr1lfXHD1+AnP3nmXzcXV2fKq6Tv2xyOrmuE9z4GgNa7vWRmDaRuGMHN7e4fVktoU44C1DouipIDJkdZAjBOpJGJ9z33fMQ57GmdRCkpI5BTQpYjVUyno2rlsjKVrWzarJW89fcrTR9e8+84zhnHgow9/ykcffsg4jgzHgXma0CjCMFS6i9AahlEMySXxR4EqFGUY5pkwzYR5prlreHV7z2qxlNhRo7nvtsK17HtW61vudluePn16vq6naNf1xQUpRPTxQMqhmtkfzmlVyjspuhFw8O7u7o3XvJ+z5X1qd/MJK4FPC3I+8RN/BuIceQ+fne/9Jx6HIgHKGLrNBt93+NCirWKcRuyiZ7nsifOHDIcJVQolR0zdHArSaioKqTK1QnEiQSMnsaKY5nTeVHbHg5yGc2KYIx/d7nh+c1ftdxR+seHCw91hACtWGf/497/Lcbfjctmz6Dx/5+/8LX79G+/wk+/9Ad/7w3/KP/nd/w/f/fAjfuPXvs03vvUtbu9vaJxm1bUwDegU8W2DbyTrupBpW+EHTftICgEVInEYiNNAShGlipgM60xKEyVpdNMwzZl+veA4jRyOB77yla/wrW//Oj94/6f89J/8M3780cfcRMO9XvKf/+f/GU8ul1z1nneurvnK0ycMhwOL1VoiIEnoUsC1KO1ErT7N2LqYTcOAb6X9VgBnHTkmhv2R1TtXPLm84nZ3T1HgmwbjPagvYhv0OfPiM+fLaU69flqqvSGlqfEYX44vxyfG2fqpTinnHG3b1n/PYl0yTZJkcrZfERFOqOkaMUbxMIwiYkjVImgYR7H1CZEQM3dbSb0RI3BP1y8w1kvSyf5Q29PiKRlTkrhE73nr6ppHT5/y+MljLq+uafoO33Ycx4Hmo4/ZbfdcrNfcb0/ODEApNFbayqdCKMUEOTMOE7G2RsM0UGLEKHBaYZWpqWFa0LUkrX9bEZscIm3bMh4HOudZdQv6psU42aa8cyz6novNinA4cnlxwVtPn3LcfoPD9o7n77/Pcbtld3crnoY5UuZEmCb26o7lYsHzjz5kc3GJ957FYnlW3sckLhzzPAuvrSaiOKOZ55nGewEJeDBBL8AwDGiluLqo8XiVwiBFk/D7fCMdlKIUoCk1jagoA9ahSkGpJPY6KNAWpTPGJEr1Wiw1daVUVb0iV/V+NRrXmmRzjY3UJCKl5JqJPZMRlNBazTQmcoykFNGIxdw0joR5Optbn2IojdbEGs7RtA0qJIZhJMzC1dUoWueJKhFLxmVLyrI3LjvPOM9yoFpYfE0tajvxPp7mmRhmSk6EeSLHQGMNU4q0viUVRcGw3Fxydf2Yq8dPuLh6xNX1IxabDbZtBP21Bu3dmVqQqggtxEhRcBxHxnGi6zrW67W0tedAyZm2bZlGicgUz9HEMAzkksmlFuDe0XWWOE9YZWhdQymIc4p3YDRTDFijaBpH4y2Nt7z97AlPHl2TUyaEjnXfcbFc8P4H73NwjnmcCOOIbWQOULmLJQaZlzZTlD3PNecbSb0yEin58vaW+92Wxnm6tuXYD2w2G+acmVJgSoHtfsd6vabvOnzTYK3lbnuPPXF5lcF5y6NHj5nnSYrd4cDF1SX7rQh2f6miHHhAKEFOR3AyV/3zgaq8Seu7KMhKE1SiWS7xixVu2qLUzH5/z3S4JytPYwph3KPwwm+YAn3byekuRWYS1mSMyhQl2bpaKeIc8M5zceFhe0A7iVja7XaMw8hHL2/Zz2JpoLXh7aePefdrX2c/Bv6/f/AdtkPAGM902LNsLZve8Nu/+av82re+yqrVfPtXv8m7jzY8Wi74F7//+3zwk/cA+Kt/468J9yJOlOlAHge0KmQSIc2EMNPkiLIW24lPVtEQpiMxS7KG0hIl1rWOfnKYxRK7WBEybA9HunXPb377m/z1f+1v0l1cMjvHP//jH9NNhY/uJ977r/8x7fXbjCrxaki81Wy4ePZNbn74A77zL/6YkCNX65bNoqFdbvD9Cm0cTdPRt56SM8fDAaUNjW9IOZFqHGRjNQvXwBRwymD7Btc0+L5H2S9Gojxv+DygmH8eLa6+HH8xx0NBKYeRk/BGDqSQiySExPCwYJ9QLmtt5YOVGtVYKTQ5kXJhGGfGeWaaxdZnDlGsWrynbTuatqtef0fx5QsBEQCLVZp1jqbvefrsLZ689RaPnz7l8vIK471Ymh0adrsDXdMwDiNeG4IqNSJSkkBKStiKaGmlJIqwSNJMzpmmaYhaobL4bIrXdeVPKoPSEqBg9KnzJZ2VRdPReU9jzQMnstQDXFEY1WCS+AIuuwVhc8Fhu2bRdNy+fM5939N4z/bVS+bhQI6BmBPH40EoBblg6yH/ZMejkyIlsVMzxmDra5/ELSd0R2URtcQkyS+q8gdDiCSXUE4Ej84JUuYbOcxb54lFDqAFSVBLMWFzrmdROeznXAuLnCuvTgQtKaRPIH2nx6TX5lRSckhXqojhS0XAT2bnMWe0suJtmiI5xeoOImIdrTSZ/CD2yeXsGhBjqm36UqkcGo/j9O6ddVLAnwU0CWMs3pWziGS1WhHnhHFWEo7yRJhn5nFEFQFhnLN0vsH6loJBG8fq4oqLq2uuLq/ZbC5ZLda0XS/K+poBjlE1iUiLcf8c5X1WakEpkkhktBYRlRKaQOe9tIC1ORuyLxY9c5hqAEGqdY3YSXnj6H2HqyKyKQZCTjSNoe86Ot+yaFvWyyWb5YJF25BiIllN33i8LjgN93f3HPcH4jgSpxFb7cHmaeb6csPt3d05+vNEqyjIUmKVxxS5/0rKzDmhQoDDnqIVbZgY54ZUk4xy/dt7z2azQSnFfFqf6tzTle99EgbmnHFerIiGYXjjNe8XEuWcxl/YjdiIAavzLc43hJCIKhDnmRc3L7kfAsf7Ga8KY4osvGcXi6B6KGJKBJUIJqOUpFXkIAkFOUe8ari4usI1LR8/f1lPZYEff/Ahbd/yq19/h0Xb0ncNl5sN/aKn6Za8e9Hx3vMbbg8zuu0pKfDNr73D/+h/8Dcw85H77Z7ty4+4e/mcNE389b/yV/gbv/NX+f73f8gwz/xrf/NvMO9vefXT99jdPEeXjHNG8mZbTyGjjaFbrUnOMJHw/YKcIm3MZG1Zh8Kjqw2rzQXPvvHrrK/f5u//g3/AW5sNj5884utf/xrvXF6wvLpC/85f4cMPXpDDd3ke9yRbsDpjUuJi4fn2N77Ks0cbfHqXeNzy8cvn7Hdb9jvolhOrTeDq+hGr5RJLRhWB+7UCoxW5SFybARptaLXhcHuPW3bYtkdZi1ssBKH8Oefhly3mL8e/7HHik+k6J0+efZLCYlCqxiwmEWy8HvtpqsJaPP4CqeTzY8ZxFoPyOdSouhlqS8v7lqZtsc4yDmPllD1QKbq+p2k68bpdr3jnnXd49OQpjx4/ZnNxQVGGmCM5I/YmXcdht6dxHpUhkSC/ltaixUaHIhYkGCkyYow0zpDiTAqhmrzn2kVQKG2xVlTTJ6sfZyWJZLNa0TqP0wanNY21pNeKJwUSXdktwbfErqN1Dctuefb6Wy2WfKgU9zcQpwlqATWOkj7SNC1dvzjTEawzlOKIUaLrrDNiZF2XE/GAFP6iswZqqo5YuFgRo+TT5ywinxTT2atSOLSIer6qblNK2EplkFa2FJla8QmRjFJS6FKFN/Z1r8nXBamlUqwqyHPK8i45I8eALGw4pShaUZIYlJcsQiRlDCczfVWg5CTG10Xa5doKgpZzxHtLKUYsfmqRa7MlZ5mzc4xY62kaj28auq5jtdkwHgbmGKkKEkpM5JBYtC3ei7m3sxZtG4kAtZ7F8oL15RUX6wu6fol3nrZpq+2UPntKK6qfJwFjDY33tL6lcQOznphixiiNspYE5CSf9WK5/ITDgvGOeZ4ZJ6GmxRgoFBrf0FhP71o2m0t288TN3S3zOAhXtxdT8+VyydXlJcu+p7GOYgwUaZevGsPCO+6WC3bbLWWO7O5u0Uau8ThMrDcbrDUcjkc5CCqx+gspopNGOUGhrVaSZR/lwDbMMxx2TGFimvyZc11KYRxHKeybpnrYSnehrYKbGOYq1gvntco5J/GhX2BP/cVV3p/io5V6073+uM8bb9qe/kXGz0SgsuSmWtfQtT3HWGiXPY4Zbwxx2FJCxGvHvN8RiqGzLVNOzNNEWrYEMrFkDAWr5DRtfUtfxNTcUFj1LVtvefXhR8QY+Mt/+Tf42rvv0DtLGo50XnO1XomJ7uUVv/X1txixdBePMd2C569usEbD4Z73v/uHpHkgjke2N6/oneN4v2W1WHG5WktO7zRijGG1XpKmPV6DbxzOG+FbNJ5iHSiDbTriNFDCWP/f0lBYdJ6rixXdcsOv/6W/xD/5g+/Sec83vvlNrC6Mdzd89P3IxeMdj5+8w9/9nb+CC/D8+hW3ty+I84Gr9QV/+3d+m9/61V/leHtDMUf+e8/W/MpbSz54dcfz7ZE5RnbbLQa42qxovMWhZXGpajpv6+eqFYbC9tUrmlbx+GpNqJmo3XJV289/+ng91ens1fY5vMaH+XKa5z+LzvEFuJlfYHzWffEX9hD3/0cjhCBoZEWIzrnYlZlxUoa2bUuoheNpY4sxVa5komkaDuNAzokQIsM4VuFB3RhSZrlYA1R/WhHOiaLX0jhpvYKmX69Z9EvWFxc8efYWm8sL+sWKq+tr1hcXxFQYppEQCuvFhuuLRxy2R8IQJQM7iELUOQfGSZqGNYRponUW27SgDSEnWq/xbsM0DhyHw0M7NYtIxPqGbtHT9j2LxYJFJ+bOy67HG0tjLAvv8VVEGJDCSCuLaiSyMCEK9NXa0TUtfdOyXqz4IBdMyWwWC6bjnjhPNFaz2+0kAnAOjNMtq9WS1WqF82J0Xor4eTpvJEJPa0qKlJzxzuGshEToKlXwXlxBnDUY54X3jWIcRlCqcl+twLOV431KtEkpcTgccE37IHDNmURBIrOluKMU5hAgi5WLdvbsedk4f6ZLSI12ymhW0oUyBlW5rmhoGsc0TUCCDBonbe95JhWxuwn14BJCJMwz2lp0LWrnIO1YZVzl0ErRklKi7cSmJqaET5Gry0diTl59E42z3MyB+yoeC/NM3/d0XcNbT57SNg37/Zblcon1HVkkQ3Tdhsvrx7jFCm0dqsCqX6G98F0lJcowpkBBPpdC4d1nb/PhRy+Jw0w8jiTjUG3PMe5JaSZME+Nhz8VmU/PoJb1HZdhsLrAHS4qZFJOg5AnGFMlppl+Db1uM86h6jXMR54L1asVX3n6Xi/WG3ju8q36OMWLVEg8snSVs1uQwo77yhFevXkkE5aIno9iserrOM4XAq7t7lusF2hpiTkzzXK2dNEuzpuTEdDwy1zk31da15KxPHIcjbdvS9z3KaLquk2uiRaRTSmEaB7EpspbxONL3PbnWcqvN+o3XvC9WUL62r51InqcYxlMh+boo59NJOZ+1CX5WfN2fphJ//Tk/822+QctbYsvkb4Nh2a+IrmXZtxRXeHQ1UpTn5sU920PgctkR5yQLtWtxxkhLgcKcIsZoTBZzWm8tMRc674gpoAssGsvjyzXGe1brDW89umTpLdPeoMLMwilMHJi3NwQMql0S94ZFY3m6aiBnrF5gSsJ0LX7VsbKGvm057I6UDL/6K9/CrJfM80CZDqgccRq0LjTe4KxkBldhMkUbcgnS/gmepmsJ0xFnDG3bsF4lmr7lbn+Dbg2/8Vu/wVe++lWs1qgcKTGhjSLutnz9yROu/q3/IZnAPB0Zj1saU7jqG9oSUAz8xlefsr1acJhGmsbhugP3O/EIm3Z39FdrHq8XaK04BVVqoCTJKKVk2ZzyxOXFY7quY5zEv22x3HDKev1ZNlanfxvz4P/3s+db+dS/H4rHU0Fgrf7CwOin5/3Jr5BPF7Rf7Gm/HH+OxomHlnORFqm1NalKEkNOCBK5iPrWOXRVfMr8zLVdFSWbNwn3u20a4UwGibVrnKdf9qKYrnP5RLBvqsq57/uqqt2wWq9ZrVasNmuW60tRyjYtrsBqtSTOwmXu+56rqyt++tOfslwuBf1KiRSjIFi14Ak1XjbOM23f4zsv7bkUWSxa2tbhG8f9/T1TmEV17hzWeZbLnvWyl/XTKN56/Ii+a1h0rYggcgEyrbc0pfLzYiQlQfmsczjvmA4HQYi0waRMejywNI6188zTADnSty2323uOowiZhkn4nnNKNLaj6zqc1Sz7BSVHalWHUbBadCJ6SQmrFc5YvHNoIIRI20iE5Kl4SinR9QtiiIxqIuYsG6N1NG2Dax1Nsmz3e6zRNQZYY4wlp4gq+RNgiNGSBZ5jIpRC4wU9ev0xjTOEZOoeLKLZ0/clCzydEXNvHVkrhsORUpQoquv7d85R0IQklj2FeoCIEYP87gmwSmG9o9UNznlW6/W5oIwp0fZLSWSpFlGiJH4pglBjWF9c8s4779A2jvVqhdWW4XjB/f0968VKuKba8vjpO4Qseey28bi2E5RaabQXUU4smTwFlBVOoPVLMopf/9VfYRpGjvs9OXS01nDc7wGFc6Jef/Hy5uzxOcfAovo+CmdY7HSGaYai0MoQY+DH772P9Z6UM147TIHGWJ5cP+Ltt57y5PE1jbP0bYO1GqMKylniNHK9XJLbhjhN3L56iQJi21CmifvjkTEEmsrD3XjPt37t22jn8X3LaiP37/PnH/Od7/wRzlqMUhy2W+I8yTwJkTBOHI9HlLGgJJt9GgPb7RaKZrkSY/27Oynu26bFaDlQGSUdBqXkM+/7/o3XvC+IUJbXJuuDD+UnEZSHx3za/uRnoZGvF5s/C6n89GM+q2B8cyW4IoaEt5q2XdCvVhRduNsd2B1HEuCajkfdksddx+YYyB+84oNbKdZSzkQFCY0qIsPXSqG0QpNwuuCMkIMvFp7ri2c435FKwZMEvreK3c0rYtFsLq+EK5EA25BzYbff440hTEearmM6HpjHgZIi+92Ow14yei+vrthYzaJ0xHEgjwdUPNI4aWsYlbFK/s0cUNqTlRSEKEVWGuskPWOaxR/rYrNCWc+cRn7tt36ddrnGN51whsYjXunKHyosfU+38IzjHpaOeWEY9/eE4wFnNN4YIUF7z/32noXXfP3ZFbtlJ4k4MXHZGRodialgjSWVSPXEhZSEJO8dl483XDy+xDQenTPHOYI2FD5tY/X5Q9eosdd9Uj9/Tn2+gMd7L4vtzzFOc/7UgihZaBNfjn81hvO+nq5l/swVkcmnbOYqfjgdJrRS2KZhnkPlGhoyijlIYsnJemUOAWc9FI1qxCWh63vatvvEfDpx66yV1nFvDUtneLTsubhYsVqvWaxWTCmhZrFmcaWwaFomP9F6R9d1XFxccJNu6foFoNjutoQq6lAVKYsxMu/uSSrTzh3anIy0E9rI96dxRlmDrS1/Y3QtxBLWGJZ9w5Mnj1itF7R9g2s81ktLXCGbnaJU1DeCO+UMS+KZjpFMwWvNpuvJ9h7bLlBdh7UabTWriwuGkPFtx2K14o/+8A/Y7u6Zpogxka5bSqGWAxqwWsymvXdoLwf7FKQ4VUKGPGsKrPnkwTLnJMzIOJOQFnmKAV2SmJ5rTW81KkvaUFEarRpUDsxBkCOtpGBtGk9Silw3+hikVV2KxOMZYyr/3Z49NMXQ3Jy5csbZGtlYxR9ZwKApz0hGu+wFMu8iqtIZilJnYY61lgZ9VvxrVXDWsFotRbhkdfXFhKbr8E2HsZaYMve3W8ZxJr1msN7U9CajFKSIReOUxSqN9S2+aVn1HUU75izUMmcQ3qOT/PmYAlkLSik535BKpm0clxcL3nnnCeN05I//+MAwBtp+AcaKkn8YmOeEKoUYA+M0EufANAzkUogpMadYKQjCaTVa8tltPUi0jWfZ9ax9w1ffesbbT56yWS1ZdA1d40lB7LWsUnRtR0QTjoqpRFa24X77Ch0jjYJWa5I2FNPQrlZcPH7Ct379N7h++hahuqQU4Nd+/S8RQiFMI9ZomncN43CQQ1/MhHnm1c1LxuN0ppM4Y1HInj2dr4P4kp64ys7V9cI5CrWgXKzeeM37xVreVe2teGgdnsbrxeTn8S1/npbdFzEx/1nIKBWhLEgkVQRc12Mb2Dx5wtxo2B9ZX3o2qyXGGfoX9+zmzN1xxmkjqQVOY6zHGF3LmYy2Gqc8i76tAvCOnBcUxCR2nAJTHDnshZexubxiOo68/9FLCgrbdiw2HuMKeZqYcySNR376kx8xHPaUFGu7QMjB148fsbm4wHlPiSPDMNKqRJlHxN42QwrkFAVFpdSF8DWSN5U3YS2z0hQyRhvxvYuTRCh6QyiJm+2W5x99hCmJ680FRlvSfnd27c9xZru9QedIqzJhFu7TOIzc3N0xTIHryxXKWeZVx/G4kEW6a3HOiLWScRzRGKXonGe0YsewXC25enyNX/QUq8m6kErB+oYvguedTuLjOJ4TJT77cPL5c8taS9u2Z8L+zzvOBaVQ6b8c/4oM66wkoKgHyw7nXCX6y+Z0Sqx4OESr89+nojJm4U+qys0rRUQQbdPgrKfxLW3X0jatCD5q1J2gDKJMViVT5hkVZlxJdAqW1rBsPGYSw2eTEyUEnFG0zkqucN9xfX3NUBNOcs64cWBKA7HmioswJUl7dq+Y56kWlFI02yqqmavnXilShLoam6hLoXWO9XLJxcWKrrpQGKsx1tT1SbjpWilBk/SpEyEAhrGGPM+keaKEgFWKVlus9zhncI2lWEEI11jWF1c8fvoUax1/8Pv/jGE4CF+tQN+15GQwFIxWpKjF9QJFSZl4QrcKNf42n4u/k1RVa0WKUXwYs7S4M5mUE5EiZtnGiIVSLIKGKl2FnYmSQn0myHHGuE64ghoxsa4dG4qIdyjCd7TOS4tdacCi7alrw5mxU+rLpZSrYEyd510usgqdQKFTRGSagxx4jIhctBbaQKlzS9fi0mqZs2jJoW8aT8GIxVw13p8nUc23TYu3VnySSyGVhFEimlFFEFBnDCnM+M4xx0iOhZI95IhCfDkLGbLCGlUFSVBKxltN13qury7Y7x9x8+qlADRdV6OCR8YpomtscaxFtjgiTCKQU6LgrjcsUEgxi8G48XTesWgaemt5vFnz7NE1jy82LLuOxhs2q5Uk5UwT03DEosSDNUTyNENMqBAhRFTKeGNxbYfpViwvr7l+9ox33/0qX/nWr3K33bI/HJjnwHq94hvf+BW2d7eUFFl2Ym1UUj4fVJfrFdu7rcxHJf6VFHEiyNUs3jtxL+iaRtKlGrlflFLMIcihwvs3X/N+rpWSWlDqTyI7Pwt1fP3/f1aR+YuO19/DiY/0Wc8tmsFCUZqkFUkrmvWax0/WOPOYq/kdkrZ0tqcpmduPf8oxFJ5dz/zx+y/Z3W/pu4ZsVC2kBEGQmCxF23iJIrRG/MtSxBpL03WknDmMI8U7xmHi5tU91nicNYwhcdjtuN/tiSUzhqlaFHhSCnSNxzjD9eVjrq+v6fqOpu8AhXWO3huG+xHihEoBY3LNIC2QpV0jJrWKQiGGWVoZWtO4hlkdZDFMYJSccNU8k1/d0K6vcW1HWVzQvdvy6vlH/PS994nTjCqFruno+wUhzNiS0CSO2x13+z0WGIeJFCOXFxsur1Ycj1twHrVeCsoRIo33DCmzmzMpSP6oRXHc7zFGkykcw8jC9CzXS/KwrcR395AW8QbDVC7JPM+VU/SAqr/JyDlLi+wLkpZfH6efi6+JDb4c/+oMW028RSzzoCqWA4zBOXu2rUlVTTvHiDYGosgorHkt0s1KjGKs+d7r5YK2EUFh0zR466RrEhNhDjVO7VSgRKbDgVErpmVP6BpYLnBkNn1HBCJi9YMWReuya7lYrYjP3qr2IZK+03Udc5ggSRsz5yQFq4JxHJnGgVwLvVwK3jeISbNwSK2VDa51DaSMawzrhQgZ1svlWYWr1YOCnJN1l5aiMht9Vi8XQFlRXs/jQBiO5GmSzblpxDfRO0pjUNbjmgWbiyuuLq/523/n32B3f89P3vsR43AgzIHu8oKcDCUnVBZhTde0hFlYnKeOhHOOUjQ5xdeuulCKFHJA1xpkBSukJGKUTCGlQK7tl9M+JbZR4bwWnBTWZPE9LEU+Z0oWIc3Joi/ns5dkSgltRCiknXD4TwreGCJaKYniRcy/BXVTD3xNfQKHTvQzUQBbUyk5qpwRLEoRoVmYGA57nLdQ/Ti1lTQnax3znBjHif1+z/F4ZJxm+q5jtVzSOCfFjhUbpSlB17X1gBJJMXDz6iXri8QwBxG4aMTuT2eUs1itSOVUxAdp2yKCscYYLtdL5ieP2N2/zcubO1JC5qAVWyMNxF0GlXCNJ4UglkEFKTDHUVTl1lGKcCqtMVyuV6z6js45TCl87dlbPL284HK1ZNk15BR5fH1F1zYMhwPv//CHhHFi2O8Zd/JnGA5YFMSIypmubVlfP2Jx/YTlxRWrq0f0/YLVxSXb/RGtDM7CzatbvvXNX+HFxx+z397jquG5zDcZV1dXDIejCOJqjXXc7WsQgcy5ruswZsmi62gbj3MW54UKttvviTF+IW3LmxeUn3rOc9u7fusTL3r692cghJ9XVH7ipT7jF3iTx34WIvknv18Jy1WOn0smo8jaoLzHLzucNqxWDcU0NLal84bhcItzhmXfsuwakkG4L0CMmaSQlJwUpUXhTC0sHY1tyCEwjCMqBVZtT+MM2RSWT68Jbz9jvxsZxnDO/x7nmVjE37BdLEXBVcT7arVe4b2n73pikvaJbxsaa4n7exoD0zDTOYOqmZzeOoyxKGShRmuyUnhrySmQdTX2tR5rLDkJCgKahTLM2x3Ti1fodaH1Pd1izearHePVFfevXnB3c8vxcOD2IDeJMzAedpRZEBFTFFpbrq82aGdZdR6LRytReza+E3sCrdEhs5+PdQPRUOC4vefR1QUX1xf0lxsunzxl9dZbfHSfoFmKOXAl8b4+e35Wsdc0nrZtzzfNm7S8T3PLe89yucR7/0Zz+vNGKQ92Ml+YiPnl+HM9lFK0bUtK4jd54uyKmAHmeZS85rohFYCKCqSUiSlSENRGO33mrPe5OYsZGif8NRCe3zRHxjKSKSy7TgqIlKqaV5Ck7c0rSpwIYQIUj956C62FrmNbx26aMKrQdZ4n9pKL6wuM1Xzve99jmgcKLegL9vv9WRlaEg8RfyenE2CaIiEUWXu0wWpL13R0TSetQxTr5Ypnb73F177yFR5fXdN5Sf+wSqFzIRdJiyHLJq+tpTFGiqIaHIFWNIsGH3v288jtzYB3Gt/2xDgzzhPWNlAm0JbjccftK81qteKdt59xONzx8sWEUYrFYoGzS0GW5olQRY5znsS7UWtCFQsaI5QDZ1Xt+IgBubGiCtdkSqqG4waskT0oV4sd4MzjPqm5T4fVUpXtfd9zPOxp2xZlDcf9EWeseDjGB3TbKCmoUgpgREhTsBILTBUDQUUURUgai/Ay4zSTUsQ4I9x4VHXYkHXNGivIVikiTjkOpBCl8CuFOUjKTr8QDmlM8hzH44EQCsMwsN/vSUl8mVOSVKjNcoE1mvVygWs8hYJxlt3uQAjiu3ocJ16+fCnuAUXyvBebK548e4v15QXtokdbibE8C9u0BmvZOI9Zrmm0Z9mtGMbA81d3TDGSCiw3a97/4Cd4tUDPlnHYozQ0xpOjKO2vLy+wvpGWvzG03rFZ9PRNy6JpeLS54Ne++U2evfWI9bJl7QxL70lZ07UNpm1wKbDuPN/5/veIw0gYZ+I4kUMgpoHVasl129MsVyjfcPXsKyjvMU1D4yyECVKSfbyTvTKlzOXlJYuu5f7VK7qup+RYLaESqkiXY72+wFmHAi7Xlxz3u/OhRSlqVrccFKxzYnwPkpijNfM4vvGa9wUQyjoZFef2ttWWnAUVMspS0oPgg9Nff0rh+Log4k3ENF9kPGzwFY8s53cFSlSAsqRZYjEUqzHeSCGlHAlD0glaT//uOyxuD7hXO966XjMUhbNQVCGiGWLGKUtvHc7Y2tqKlGKxzqKsFzn/POF8izEejLSBjHGsL1assiamQjaWeDLArR5bxhhUyUzDUfhTaJzvcDnTeUvnNCrNHOYjJUyshDxJyhrjW9ANuRh05WaWyokpSqONwzgPdpbkAOspWaPqYoKONN4SxhsW6xZlHUOMON+w2lzSNC2Prp8yHA/shz1hHojDEcIFrVboUv3RjNijKCPioFI6jHH4psU7j2ukvTcfJlzjhX+EpnjNunX8zrfe5mtffcbjZ49Zb1bgF0R1i149Bt8iVvX64Rr/KcMYzXq9RGs4HA4VUTi10R5Q99cV4cYY2rZluVye0ckvSuH49NkrxiwegZ/1vtW/nHvhy/FnP8TP0NJ1HVrrBwugk2m0MWd7jhMa1VYks/Q92lhKVWjGlFj0Pb7xjOORxnm8szRNQ9uI5+Sy73BmlnstJxbLJaRc7V9mDrsDjTfkGBj3B4amZd+/QqvCYr1hfXXF2197l5u7LR+9fInTsFktiUVcHzaLlqvNiu9+93viQWnXjJOkfkzzXFuvclzXWgqL0+ZujMRL9m3HolvQeI+zluvLS7767ju8+/Yznj66ZtUv8EbjlKwbJOGh61KtdFKCFAQ9UyKYUVqJkfiio3QtLXC4eUVvLVebDff3dzx/+YLbw5bN1RXtQqNIbO/vuLt5we3NC8I44rRm0bd0raf1DlUyyXuCcxWtLERr0TysCUJnkFQXY2w9WApyKqrxRIyJlALOO4ncy4miHvZF+YxE5JlrgZiiHCAab3EaWm+w9WDbNlLs5HpIkBZnlOxmABQlZ6Zhj2tanPNS5MVQC3Bpm2sUqhTh1muFQmO0IasofDulUUpcBeY5VJW65E6DILTWWlJ1H5iGIzsUtmmxNU86jDP748Dd7S2vXr3i/v5eBEExieVNTqwXC/l8KThjGcPMNIWaGqQ5jhOmCoFOHML1Yc/Ni49ouo5uIXzY6+tHgJi8n/a2ZBtwHoti4Tx/66//dX74k/d5/uoVt9stXd9iHRz2O4bjgfHYit/0OGAQMZT4o8r8tcZgjaJrHJfLJW8/fsKzJ09498kTri42WF2wcSYeIk3j+N7v/WOa1hPmiQ9/8j77u1tSCDht6DuP7j1Nc4H1FmXFOUE1bRWt9thWDoW7uzvmcWAYJ3LJrBciXg1hxhmNQXF/d1MdAOr9EmeOx1EU32pGIcXjHBPzOMqcMacccshZTNTHo5jRnyJh53l+4zXvCxSUr3N81Ce//Ib73RexEPrTHv/zvManh1FiYUEx9Is1w8sf1g0cTFVGhXkC3eP6BRePrvE/+inLZUuZ0zlPFaWqILAKXHIhhkgMmpwbSiVuO+ckeH4Yafse1wgx21AoRcy7rbEoo1l0HcpKAowEuottxJAzKYtCW2uNbxsWrceUicPuQA4TpiSs1WQ0KSlKES27UtJuizmidUI7BVn8uFSqqsKSUUV+/5RLhflnrCnM84F0+5yVtTRNTykBpaR4RmmUKlgPJTXotIR5Jk0DumTyKYkiRFKOhBxrKkhVfHonaUMpY+eMdQmbQFlRMn7jK2/zjXfe4tH1Fb5fULSBopjnzGZ5UdFmQXO+yNBan4vDYRiY5/l8yj3ZcQDntmXXdSwWi09sKF98nIRrVBPe+QulEXxZYP7FGOKxKOITacedOHmVE1l5uDnLOqJr2yqVQkoFrSqqqGqabsloCn3bYo3BOUPjHK13ONdL+0pLVjM5Sna2sWhtaYzGKfDOUmJEK0jzyP7uFqNBU2i9Je53bFrPzmhIEU3GG4Pte/KTxxAjYRgoKTHMM95bmsYzjIOsN0HWEaUNuoIQYh4u60TbNDV5pGW1XPDsrSe8/dZTHl1esOxavNHoWrxRFEUVUhCvQ2ndi7F7Lomz46JWlNmxWC5JKaAQQYaqjzNG07YNc41lDKNEzSql2O92vHohvrgphpqb7cUmJgZins+Im5wE5bDprJX3kxNZCaVIa1eFOaqu+XUtUiIsVLVVzcno/aTyLw/517nyaeOs0FUNH+ZRFLg5nVXnMUVBOVMVKhlJHcpFCsaMcCuNMYScCfVALCIeXYvWJIKR2i4uRVFqkZFyxmgAzfTaOldA5mTliJ7ed+M9INQNc/qdUiZEcQUoNY74eBwoPpGto+TM/f2WEhPTNIp4VKvq0Zmlba+NcPmUQZ/M/hUMeyl4h4PlsPXsbhu2L1+IwMRZnPMoa/GLNcU6srZkZXjy6BFP/sZf435/4MMPP+Sf/eEf0HvD1luG1hMWHfPxCMsOXZDDGcjzGiPWe63oKt66uuJ6c8HVakHnFK3OpFmiTWOa0UoMzJWWz2w8DuK0knWN+rR4a+j6Dt+2KGOJKAKCNp8M/8fDXqgbWmE0YnKfI8o4Gi92erqIZ/M0CcrujJGaIkGMEvPqa7qV954YAzFJxGsIoSb8NJWfG8TuyUh5+EXyar5QQXmqHdUZNalH0nrTfI4Y9mc/62twzZ+pt14RJZg2XiKagNvbW+7vF9ilQ9n60cRZvCJb4Xy4k6eWkd9doaoJbCGqRC6yIeRSKvm5EGPC6BO0bAlRbux5OKIRTzZjhB8lbaNEa6CUmTInlHbEYUKRKSFCAVutOJrWU3SShZIZ4zUWVTkk4jOWi5yQVYrEMJOQYnMKEeIs8YykSrq2deE5+TOC9w0YhTOaNI+M21c0y4gynqIs8xTJCVSO2BQoMUAOGBLOKFQRFXm2Dq1hmKZqUSEJCm3T4LycrlOecd7hm4KeI3NOdEZxebFmueikiI8R1Xnm4ch2e8fbfQfwxvzJ8xSo880YQ9d1NE1z9iKLsbaJ6mJ6Oo2/XmSexhfhXn56nDic5zbNl+NfmeGcrUgaVfwmnOScDSk9CMHmOXAiA4pa2BBNkrmGxmhN0VoUnDnRda1EwDorm5KzLBc9tvLayBmjCrvtDqU0xmqstizbtfjZplizjCPzcGDYyqHWqMJLb7l88hSTAjZGYELV2MHLRY96+kToO8cjt9sdwzwxh4BvnBSUUVrQRSlKENcCWS9F2b3oO5Z9x2a94tH1FW8/e8rTx9dsVj2tMxgSJUZK1hQNhUwIs1CUghSUJWZClJjAlBMJURqPqyXTfs/xbss0HikhokqqB0QpbIb7kRLz2R/x7v6eVy+fs72/F3QuVnFRseLzGSWK9oQg55SFx2itXA8jXHSJ6TtdY0VKon5RWjpBpkbz5lILSqUrB1JoCGTZYXUuwpkNgWLEbHwOkromymwpIHPlY8rCC0YLT1M+scpfzUWK4hIeCtZSMNrK/pcEuT7t6xoIKeKs2DNpqXqlwLSWUgUl4gUKsYjISOa6R0vlJKhplvdYcpGCWsuBPKdMTBlj5DgwTTODkeScGGZKkX3otKZqU4vTEtFZIjGLUqR5BKVJURGngfGguX/5CmvldRrfoKylWx9JSpO1eKSuVku+9e3fAGP48PE1H3/4vmSRW8XQiiL7uJVC72S+rhERmaLgvWWx7Li8WPPk4pJl10l3MI6EoTAfB8ZhFEP0FBiGQX4nrelaMWOPNbTDWUnXafqOpunAGGKBOM1nQ/qSIvMcmMcRqzVd46X4r3NATOAdyYni/HA4oFF4Y0FlStZM0wiU6vO5o+s6masK9vsdYZ4w1QrrZKZvtEFXncWb2DiexhsXlJ9ipn3GI/LP+N4bPP+fZTF5GqcTnRLn+RcvXvDjHwWW33oX4xzHeUaRiM5iOuF4+MbjW49HkY0CRA2o6oKQciJlOe0BlZ9nKynfkEkUVRfCNOGMQytTScgFpVPl0iVSQW5s0xGjnEAMSjaUrsO2jqbzTPOBTEB7cNqhsyzKRmus9swxUnIkhgkXZoHVKbKQKWQRqJ5rBcSGIWaapj2fuKd5plt6GqeZj1uyzjT9mlQsYRgZp4RRYMKRxoqLfy6JkMTeIlXT2VLAe49XmoKi6xY47+oiIpdF0hgkzaexrRSRWXJnVRaBgdGa/c1LjvsDTbXzOMdavOnl/xTn1hhBfU+k+9c5lW/qe/qGrwwUYsyM41hVv29qePTl+IsyTgvxacPuuo5SSk2rEI+/w+HAyYf0lGxhjMEZR9eW+jyGcTxijZZNqG1qS1JV3rNEBWqUkPP7TrKlR0n5SEXjGs/leo2RE1ntlAw4Y5j2e8I4sru74+VHH3H99C1c06CdQ1mHSi1aaRbG0Fys2fQ93hh++JOf8NHLF9ze39M0K1LMON+ijThgHA6Sc220xliL14bLyw2Xmwuury559tZT3nryiEebFa132JJhHpnjRKqFuKIQ5lGEElMgzYE0BcbpyDxNDNPIcRrIOXMcDgz7A3GcIGYWTct6tSaEwGE4sjvsSVkiIZ13GGeIU+TFRx9yPB5pmobj8REvn79gs1pL0RQkT7uEVAVIUtBJnrZE+3knZuYiwNJVCa047Yn2VJTlSIyzpOxo8Vg0+oQYiujFVBQu5YzKiRRnSJk5DWLYXTLzNNU+oSCFWimoWd/WWpw15IJw9WbJik8VnTwJupRStehL5/WnFIkOxoCurTqlpfDR2ta9QYrFMQQplEshJVnH2r4jhgAorPeUVGianljKudDbbDaAIOWN9zhjQVuWq0aQ5pLIUey1Sn1uo+X9xprNbayt71nXqkSU5nJNLHNOhHEipAg3t2K3pDTKNozDkUeXVzx66ynPLtb8pW9+nbvtPbu+4XjYcdzvKauFfLYVndRF+IQpBqw3LBYtlEQc9iSVSWlmPwe2Qean2FvV4p0kyHzbCjfXOaZxEpNzbbi4vMR6R8oiEPbG4nNmHgcyCt9B0/Zsb29YXVywXi5xTctut+P+fksOsYIcgkCv12uhQMREDsK/dc5VxFw6jpvNBcvlgnkaRegaE42z57a+dBNPaLimb9o3XvN+AZX3JxNx5Ivl560ngU9u4L/0oaCgSUVQA4qcKn//n/8BHTNvv/s2x2FgGg7kaWI5Z8kUKIm29RymeE43UHXHyEqMznMp5AIlK3JVcJaihCybC20vTvUpdUJiR5/flNaWmCSf11hpU4cUUdpjnMU7xWK5pFiDchZVEiWMWBLGiiioEpkwVuNqFuwcBY4XT0pTF0NQaDBGWkzGSFaoswzzUNv0loQswqpkLAnnNXk+kkpCuZ7eWymKQ6SkxDiPlcmYJbaqZJSx/z/2/uRZsiRL78R+Ot5rw3vPPTyGzBpQBaAg6G4hCWKQbpH+Y0kRrrjhjsIFd91cAiCkm4WBbAyNQuUQkRE+vGdmd9CJi3P0mrmHe4RHRlYiGxIq4hHub7Dp6lU9+p1vwGn2rbdWlZ+GEAbhU9ZCTmITVJucYhsO47y0+8nCa7EN5wzp6ZG//qu/Yl0Wxt0oghxdXn7o7Lmdb++6D3w4Oee7H+djxrJIosEm6uFH3T4/jT+w0WreNu/WGssy6UZp9GAVCN6ScveNFBNljGGaZqBSa6CpyXcMnuDFDcE22O9HDvuRw/6o/nEBdiM1F6Zp4v7uyOPrN3iDiFhK4TDsoDncOPL5p59iWuP1m0dZ6y5PrPOZPF3YH4+EKJSbhxefcrx7RkqZOWdiqfzdn3/BH3/2Ca+fTvzmm5f86tdfMqcV64IEXdCYLhM5S+jDECN3+wOfffYpz5894+HujofjgSFaXLpAXcgGUknM84WNkKmikenpxPx0Zr5cWKaZdZqorbLklXnVOMVx5HI+s84zdUm80rtpXVcpNpzlcpkw3Y7IWZZpkZjIYcAOI+enE+uzlRNPggTVIir2IvZrsuY3jTJsYMF5UePXnFjTSq1S1EmhI23sIsRFEbc42TvlvCGFXdEDvXGS8jIOQYpLxKpI6EgSe+msxbSGi4OKe8RjOKvYpzbhQx524kta9PCyqtAzp1VpFFdbHh8C1jndQ4pEUYLaVYnFUFfVhxBItc9XEY62WpguF2Icaa0xXS4M+wO1VfZ7icV9/eaJP/2zv8XpdCKEIMWO84whstuNGBqXy5kh9i6Zio2c43A4sK6LaB+8582bN+QirfGuVg4hbMBMBy5yzkyLRJWWcuHxq1/w//i//V+5f/6c++fPef36kVwT6+WCyYkHZ4k7oS6gvqfWWubzhbiTnPuWZkkQzZn5zUJznrv9jrzO3B+OakKvn3cV78693m8Ay7hQskaY1sp+f2QtWQI+1pXD4cCSlNDRxKJo3O/IJVPSyjgM7MZxM4yXONZ5Q9Czphk5xN4qhEDJmXkWPnarmekiwNVnn31GWlbKuiIweSFoUE1VuyRn/4Zsg/pmV5ucaHpCzlXw8s6CeqN+vf03vN0m/K4N/b2vw7xfUXubhfuh17I9x03/vrRK8IFPPnnB69d/xb/7t/+OdVn44mdfYGvl8ZuXvPrmDcVGkrZ7OgxurRRB4iIoivGk3JE1Z3K2kiahbXXrPLvjgRAiOVe1uzH4EGmN7RSMaYJUhMBSDblZxuAI1uCC32KR1umCSQlXE7Y1ZlWGd3FJt34QIrgUnMZlTE7K8RESs/cRiiHEgXG353Q6k3JiYJCFxlogQ80EF2hG2hCmJpwR9XnBkr2n+6OVZsjNEIYdPgaMdUISj4Mgn0VSGKpGm3VEx+rJszVZ0MoyMy0zpydPa4XjfuTlb77m17/6NTE8E56nEAJw78y5982rjx1dVfvuvPuhaPrt71z/X5mmaWutwweKyfbt++D3evD6afzWo4tuuviwoy49/3nj2JG1TSooQmsNr5yt6D1uZ8nlin4Nw0DwdmvbQuNwOOCMIIPJpC2y8bjfU4tw3WpOTJfKbhwIbhD6jrXc3x0Zx4G0irGzNY10uVCWBes90+MT988/wY8jzQpVZnc4iGhhHBlfvOCz41EiG2tH2hzrsjJNglLGGLk7HjnuD+zGyM5DpNDmlbROoIkf6zIxXc7KJRRLomWaWaaJsmTqmkhppS0rPkhR6IeBOgxY7yBn4YveOd1YBSG6dXJoCnw0wHtLjCO7ncQ/Oud4enpS9bZ8tqWImbnRMEADHA4Rg3DeJdUIXBQkCOSxu2dm511658EKsmYAlIuZW1E3C2lDViO8ULm/jaYnJcFrFJVuJSknXgpWahFx0I1wxhmhdRljtMCNGGOVO5kFqDA9FUUS43KR9mxTE+2OmA/WsKyJUhu9l1I1Xx6keFvWBR+jGnNUzuczsVR2hyPDMPDixQvO08zx/k7oTkPEG4nODEEEITtgHOOV55cL+90OHxxxjYJQOmnJx3HcPHy7/qAWNSDHEGMQAc2ysOZCT//ZG8/gDDYt3HkBUfZmR8na8q2ZIP1+TKs4Z7h7fo+xltwyKWtWeBiI1hGdZz8MmP1+48MaA87vuMzT1oHY0quGgWIzOWUqcuBZlb7RIy4Pxz25QTVNCv4YScu0rR8hjtR+4EDmRa2VtKxiw+QCSWMV5bU4jscD83SRlKngqcVTc6EAcSf8SRFHGYYYdO0SesjHjo8uKPvWpbahW6Fyq6D+Lo/J9/3/feND3/++zfN9Rev1e2yveftZXbiNnhJDHHj+4nPG+U9pl2/41S+/whjHzz77hF0MvHz1yK9+89dczrLYieUF6pcmHKdaC6U1ltQI1pAHJ3Yc1rEuC36IHO6Owhf0Qcx7XWSMkdJECVlbI2XxL7POiGWI9xRr8TRcLVRdHE2tkAquiAF6LZKCMO5GorUUPZlntYGwqkruzFctr6kg5Ok1UTEYHxj3h62ltNvvgSqquyYKcRdkc1urmNuGYHHesLu707Z/FoGTeq05H8FYyfo1FtcqpEWKyaKpEua6ULVaqc3qpE68Ob/iVSh4b3j8xS9FkTcv3H1+r8kMDYPfeJTfN18+thh7n1DshxaT7z5Oa41pehud1B/6UXzMn8Yf1pByQBXA1m7IxXZaQjaeTitxVvOTk/DxvLUQA9lUaf/qQdFpoen1T9CsZWe1UMFjGFnmGVNETdtbWDknWhWrq9qLhXEkDoPwBZ+kVS8cvKqiDcPp9StsEOHcmgr7tJKrvMOdMezHgRQ9qcgmabwlh0AaI62Kddl+jHgqdpkpRXwyWykkI+ppZyxpnVnnabPSak2zi+cFV0WVbGuVYsRbjHfgLBXpDg1RjeOrCCGmadmU9a1BHAdKK1sMYRtFgb/b7dnt9jjnWNaVuQvl9DrVKoIoC5rwKmvzZpWE8M4Kem2NdKSMtXjlXTvnqEXXj9ZuxDhSpG7qZK5FW18abt0mjDGbiEueq2KU02mMIIsoMKGAN1aLSkNjrVUysNs1USmXogVkFis0eItLX4pwNXsrtzUBPIraNgllo0iRWYtguFaKQrS42+/3+GHQ96Iq9hCxirLVWvBB4kmjHgJKyYzjjtaKmqVbYoykUjjcS4JLSonT+Sym6Hv1BW6GIXqMacRRfr42Qy6NEEYR/DhPi5GUFmpw1BI1VrQwjIL+1pKx1ggty1pyKSzrTKmV4zDisLJHG8N+vyelxDzPJP0cQ4xbIbksi1iC1Sr2eKqQX9aVogb1xrqNumCRhKIu/rIKAOW0EgcJ1LBODhC9oKSBd1WiWnPR3V2oGd4H0jJTC5sFUspCVQvOKR3GU3LBWhii0C+c+xvlUF43RiEg969Xfohly3c+13cgkx/6uR+M1jRQJjT9ROeHHffPPqH5xtPTI69fn/jjL75giANjCAQjPl8+OJyR6DNnpH3SKNSshrFq8ltbY11WZiuyfOOFW1NapaZEHAfCOJJKIwyjJO5ghAjstCXSKtUYJYYXtYsQ+xGqCGFCg5qr8CuHiG2GtCTyuqpCS061NkZpSXktaL2cJkvO5LmQSqNgaNYxHg6sKXG+TDRgHAei9zQsuRr1qVREsVW8qeCFOmDx2GrEZX8YwUqaUGlgXYBmcEgrCRArEIToLRtdVcRRlnDvVQ1vLF/++ksuoK2RO5wf+Oo33/DzLz5T+wQ2ccMfWnHWN4WUEqfT6S30CuAP55X+NH4nozaCk02wt0+dsTTNOu6ImXVyGKtVlbc5QauSb+0dtqWN52yQ+8Q7hzOW4ISLllPCRxF/OOsJPrCuK97AYi3rumKs3fhRWYUqWLsVpQwDqRQGPXiu68p0mfA+iPjmfCLlTCqV6emEcbJJ+TiIpUrwDBaqilQyheMQpVWXCyGt4n5RMwswWytKWis0GGvk9bWqQhrlFRprMKWI/Y2xpFa424ttShgCfogUYMmr5Drnwnye8SFIpyUlqoqgSimseSXltLlM1FqJUfw8W2uUBou6PVAkGMKpg5uxRky4tWhED7O1qqWNFood+cMKgtozvvMNqNGUN9vFWdZarHNbEdcL0/49Y2RNFZTVXKtNI4k2XXjTtF0skZ5bb13FXWbjqxvTi8ZGygIAFD1kGNuTw6QwXpZ1U1l3X8sQpCBak7ih9M+3tUQBDsc9FbFnCyEwDAP7EMhVzPdrbRt6uUwTJWesMxu/MzhP0PdXsvqPDpHdYce0ruyPdxt6u2aJT7x7eCaofW2MY2BNM6WI2FLEQIEh7rcDk3ee05MATGhOfAiWw0H8S5d10esgKKy0lx2Xy4UxSnHcsnQgfQhgLfO6suaEHwaGcWRZFgpwmWf2+z3zshB8xDnPmjLrutKMFJPiGys8Veccxov3ZslJns9Yina15HOVeNdtHjXEmipXedxO1VDE3TnHuqhy3VgKVZTnuqYE7wToqEU7IULB+9jx23Mobc8dvkUlv110vm98lxn5h9qJH1tkfvQw8p9SK814Wr8pref5p58Txx3z5cxlWnG1cn79SJoXcpL0CWwVAQyiqLbWgBNLEIdwpOSiJpI3HI9yKlrSyuADtaMOtrEfRjntW+F0umixVsQxrQlfp9UqiKQuMs4pqTzNlJxZm+F+v6fmoqRfWQxTSgy7UfhVxuKCx8UBnMfFoCebhvEez4CzDvQ6jPsDp8c3nE9Pwt/Z7Ql2h7WBXMEar9D4iiWL75rmvGLE8qOSCH4UTk6WElGumwXnMbW3fJsmcSysa2KeF6ZUcccDlcwf/8mfMJjEL//Dr/D3d4Dhi5/9nJdr43/6y3/FeT/yF3//7xA0T/275sx/rtE3maenJ2Zthbzrw/pTG/u/rJFzxlQ55Xdfyl5IliL+rO1mvnZhmLV+KwrcOGC9CjcUVVrXdTPVX5aFYRjeQrZaa9zd3UnRtsFchXXKtHJiCbI555xZUuKw34vPpfdqBTTQ2p79fs80TeyOB6Zp4nw+szy+4bzMHI/31JKZLicYD1QgkzHeMux3IvZJieADwXueHt+IabYicWsTEchhvxP+ecnkZdk27gZY7zjs9yQn0auDRh5SsnjVaqUXxoFUsuROl8IlSlrP4e5+41AOg5hTi9n2qp+3CPCmaZECXJ0cQCxY1nnGe8vgHfv9SIgB7x3LstCUJ4kR5XRVdTPIeu30wN43/HVdsFb8IEsWxXqMQY3pr+uitxKX2IvJHtu5deEAmtkOJX0PvqKYFufYRDS9aOzzCeUFGmOvX29tA43mWbpS3jmwhiUnfPTKmSxUBEHrn6u8N/nsLueLzGdrxG85DrQmBc3DJw+UIsVr2yIfBYAZ9oIUe+95fHwUiocWWPM8M459TohvtPWRpvqHGB0vXnzG69evyblKBKT3YkkXPSCCnctlIgQx8V7mhXVeGIPEI+eUNhukJrokvHcMzjMvM69evdrut5TEVqeWIuk06iPrnMM4y/6wl3ShGJmmiagt4yUlgvIb2wC7cbd93uN+zzAMAp6UzPn8xLg/EMYdtYlFUxhGcsnMS+Lu4bk85jLplNODhxeutG2wP4ycHx/xXkRhphXu746kZSJVifd01nA4HJkukxzmbCN4y93hTgrTUvA/YE/6rQtKuLVpadsb+r49/EN8sP7330sxCcJN6+17azDNsTscefNlw/qBOGSmaeHN45nh4YA1RvJHxx2nPIGRTOxaK2Q5kbcm6RbOQMqGeW3sApQqEWsmeGlNW4fzgZIWGCJpnfHjQSwYrJh/lyI3r+TwNkyRdANA4HJr8SFK/qk31OmRKWfS+cJ6mWhqKQDidWjUz671Uy5S8FrnwFisF6V1aQZfI9kv+BAw2oZaloXcDDvj2Y17jPXYMOIH8buytuGsUgkwuCacxlwTNVuMqlFphpLEQ66TvZdlUdKwFMcSnyWt9T46B837QKtwf/cAWHKt/OKXv+L0P/3PfPL5c8L9M4YblfZ/7gLtFiUtpXA6nTQxov7BIag/jd/t8M5qfKDYnejxWwtDodsYgCqFgW0QvYXdAOg6kKWN6Ny1UEw5YZvY1wRnOex3OO8ZhwGJVRWzfAAUhRniwFdf/grnPVbcwKmlMq2CDE1iKcEwjjw9nbhMC7vdjv3xiB8iT5cLJjoiI0cKd3cP6o0pf0w1+CEyJ0Fn0vlMWxb2MVJbJU0T0sSQliUId6zSJO5N79m622/v03oramxt7QVtIXorAkA5gztccKBBEGvJgkQNI0HvL0vDO8vdw70e0Bs+S+RfKU1FRKJE7/Zg8zRRrFOOqtyrRXlwTVuAxnbaF6xLxhiv7W1FAFv/gNgOENEHfHf2cA0brBiGm07pl+vXAY+Gledp2hZuOn9QIKCjl9r+bv1AoZ7DovCWYrHbAOWcJSFHO+9JW/PdF9OHwDzPUlx7SXzLpW0G12Mc1Bqv4lojIoCKpDutkojkIpfLhVgbT09PNON4/umnzPPKbrcXBNSKnVRaV3Ip2py1hDhyONyRVhHTHO8fWNckKvkqexQ4Xr18xHnLMETuDgeGEMlroq4SMfnyq99gg6QWGQutNL58+hqj2gdrDPP5IvZZy0ItVQQ0ux2vTi/Fkks5oWVJ5MLWovbGsRtGsciyhnHc8erNG6EK0MAarA8c74OI00ohjjuwnlH9p3tBPu4ixgi9w/kB26xwM0MQHmhzpNrwzgnwpWIeOYSpcMl7pdcp/c5YvHe0vNdo0EJthdPjIzUvYsA+BIKL5HVhCA5n5eA3TRMlrQzDwDAEiWf+2DXvo39yG1d1d4fNhRLSi8mbTdJoNOMN+ij3mKBs3W/q+8a7Yoh3eZbf1Qrv338XCe3DGjWBpeKHA3Y4EgdHWS6YsvLLv/4rQv0ZLz55jn14zjdr4+snuWm6YWlVs1pnDc2Kwbd1jlQq52nFGTmFHZ1n9JG8yKkX0yg5EXcDUPQmk1zSZizWeIwFWxtQoImfVq1qgxAHWqlYVpY18atf/idCLdwdjmKtoKf1ZVk5jjsG52nGUYyjGicbSIgYr+hsWnH0CDHJeQ3xTFkW8pKYp8SyZsJ4IOwHmo8UZyFWrJNTb17ydsP2TbKmTHWJZgrWeoxt1CyJF02Vazkl0rwyX1aWOQvXyFpp75eV9uKe15czzVZG0xhdZCqN2Qdez0989f/797x4/gn/5P/4D/j0k+fK+1Aros5Zoh8iukXRxxSbH1/wXaf9tzm8tRYul4mnpydppWHfmsMbH+pbz/5Twfm/5SGm5nZDmW5HX5esFiiCfpS3+FDOWWxlS52ppQhBP60E77YkjyHG7b6T35ffoQrvr5bE4XCgrAmrnDpj1Cy7NtK8bCbqy7pinNh8ueApTZS1k6qp4zgSh8g4DMKpywVyZS0F7wzGempzDDGoQMFirdvi+8ZxxFi7FRK9FdeLmsvloveI7Cs+BNaSsd7jOsLrrLabhe5TTSNXKUiM4SpCrEIvqLUwLYtsykghGkLElauopN+3PRpTOKsiUAnBywFBgZMYvEYjll77kVIDPURgxHrH0rQDdnu/C4po7JUmZjBSOBon/MN398WOWIIACsjaYLQdK071usfpr1wLUFQyivJJm/L6MmDxIWz7YhciOidK/axUg5TksytVEDq0iO2t/C58mpZF8uRTxqiXqgAtssbvdjsphmWLkQJuv5cM+GUlaQKbMfIzpTRMFNHTuibqsioXFc7nC7UUab2vGWsc8yKWPBYorQirbV70YAGDD/I8VedXETsoa9Rr2DnymsSUv0JeBbkc/HC1aIpyGCq5KKooczLGuBXaVQ8Qu92OtpNrEZzaByqHWuZV2C5xKZl5mvDDKJaBpVByEXcU7zak2XunQiTtSdxQJrr4rK8tzonGw/Y5ZpoYoXsnLEXlZ1IrUDHN8OL5MzVDN9CuYtmPGR8vyvkWmqITWZYd0DavTAQ50d02wb9VBPL2xvt9Qp3vGx/7M9vzGAPNCZegVQyGFnZkN5BqwpvGwyHy6zff8Fd//VfkVljtwPmyYK0ITESJp8Tmkgk2YqKhKpenVcgF5rUSB0urFmpVzqHZTsu5FjyBRiWtK24YdKI1sfEByrqypEQxBsKA8ZFiLCYXlqeJ+Wni1Vff8Kd/9AXHuzvWLG3svC7Cw/KSRmPDQHMRGwZRmnpHTQmnrvi1VUwVC5Ldbs+j9bQqC13NC998+RVh3PFskPZTDVK4tpaEB+IC1EZP5vFObCvEN6yRa+NyuVDXhFFvyZJm0jyT10xaKiVBrUZbRYWDEd7n43nBuMrONqJxnJvjm7QylUxJ8Jf/4l8TrOcf/6N/xP3dgRA0JqxqbqndZiNXq6aPGR9b1L3bapc7oNbK6XThdDqRsxDn33IcuPkdc/Pnlo/1rWf6qTX+Bz9abZta9/Z697URo+IOFXY03UCdsxtfsovojLVkmnCUraFVUYFLwkm9omL63L19aFqDWig5Sgv8MkEr+nVB7nIWpXBaKmsQzqMphsXOWC+oiPVixl5qIe52WG+lndg3x9Yoa8aoQTJGXEDWtOKdl3jVGGjNcNgfcJprvqxSaLQmrznGcG2l6qa8ARHaYalqs9OqGC9ToWBYq6TiYKwYYTehHGQtnqZpkrZlbVgjIql36TG38asdPGk0MZH3knrUVdPrKoVq1fovp4JpXkzMFT3VG/nteaGfVwdgjL4OKTLdNk96IdiLhQ7G9KJS5lhRZJKNqvTWs3WoVGN0a72xQtP9Wormtj1XF4VUbZF7zQX33kMurKsWLTfrndduWKgVk9VUSVXLrRbymliXhTjsoBfaWpxL4IdwUZfzJFzBXLZWLogLinNJaVGFWg3rmsnryjqv0ODheKf8YLn2zVRNsNMOAIYYonBJaxUbv9xV8F72SQxpWa5FbankNYnXMeIQ4BTBdU7uQaddRe89wVgKYhVIE97qfr/b7hPvPUb3w9qM6i+uHqE5V/wwbkWiNgCwzm4OCt1d590wDPvW380mvJHrWrE4Bb0E8ZYlQBxZqEXRbct+N7Is11z5720734wf1fLub5h+CqrCm+sT8/taju8ijD90k/wQMvntx/lAoaofYFNtTowjOM/T+ZEHnSzPnt3z7//9v+c8TZjdPeeLtDa2G98aTO0nfmlSbEUCjdoELci5MC8rYfCEKH5ZJWdYE5UFXMCGoPmv1+gpKdAbzXqs1wioOGJ95HI+k5eFx1ev+PrrbxjGPfvjczIRE4QLOQyBcQySdYtsRsY5TBiwuyOtZjmJlSSqxb5w1ABpZTcMLMOI14i3xzXx9etHhhdfMDZLqQ7nd1g7SEKOFWWeN3KjCc9H0iecNzjTyMssKRYK2+eUmaeZnOVGTDmTs6M6TaqwhseXr0jzGw4hcNgfaM7RrOMyr+TasFhev3rDP/2n/29KqfzDf/APeP7snhAle1VnjLQcuUYf/q6H1oDqAiKLxPl83pDJDyHlP43/8kYrVdqSsN1XfQOn9iSq3hbvKIOhFEdOZfvdkjKlVZzSVUqVqDTvZGOmFtZ5Yr87isDN2M1/zraGGcWmKwaxHMrrQk4rdc047zmnrAcXyzJPGOelgE2ZpzdPNCO2IrWW7XU655mmWZS4OUsXolZcCHjjpBBVO7QYI8Mg/Ox5XqV9HbTtl8XaJ+UEBiqjRLA6CypeOk8T1slagho5TylLEIR+dmVNpFqI46BosHAEc66apV1pRbz6vPVSdGohuBl9o6IU2+9R7T4p5zBE8QG12uVQ+iQWQaVM1s6SFfX9GCLijqHzQZG/nDNFFdjeiGBRAEjBNMXksG2IlBxAAav9FSORgNlaUhJvYdMkkrAXlsaIV6W35lqUt8YwjKxr0muje1/KW3FbSpViXdcniyDJomp34kUUDNMygxNqwLKu3N3d0VpjjANmsFQM50nEHWldqc0wjDPYEzEOOBVaWoygciEwDiPni/ivNhQlDXKrDEPk/s4Lz7YkShb7IDzQGsu8crHzhnpSKpfpIjQG5b3SGvNlYhxHgnOsCaopmhwjgRpFrXKMRZNiRPgW+hyx0CwE73n+8ExdVETRvabE3fFBun1onHIpHPcHvHNCo8hyAKhFhLWds7vmvKm8U0qMhyPDOGJDZC0FU51ee6vCME/NWYAt7cA5PWBiROTmvKHlwDpn9TIVmoyziFcncnjN9MQmWU+W6aIqcyuCoHK1tvu+8eM4lFoRVzXulk9bCylVHX24yJPxIVuVHzI2snL7cCH7vna53LyWWhrWNKwPjPsj59NXPLsfaQ2e3T/w2YsXpNrAebw3pIKeBusNtCwtnUaGIsppQwUvZ7FcC+uayFk2mZQK1kuGti0Vqkxg48XP0RiLMQpt116YNgIV3wotTbT5wnR6w/nxkdrgk08+BTeyFEuIAxjDYTeyG6V1blzE2iCRifoHK2rvus6YtEBOm1BATo+R/d0da874GHhmLW8uM9OSOBbwQ5DWv2vSoq8LLTfJ2rZWJzKaESoihMM4UKzj/PRErYJSTMtKTpVpXlnWTFNbCesc6/nE15dvuD804j5SjSM3SzWONRVqaypwskyXmX/+z/8F59OF//a//cd88fmnWOOkwOs7yA/M+/641vh19O71sqycz2fO5/M1DUfbmT8Vk//lj01MAZsC91YgYbTN9nZLSQqAIUasZi7bnRXVdJZI0HW1LMuCDVFaxebqVSgtSIv38u/ovXDgjGEcIvM8YzmQU+J8OmHU0qS/rmVZtq+J0bXj1dOjoDdBOHUlyQbVeWDTNDFEbfshc9/VSggDT6cTi5tZYmRdV+7uHvjqyy/lfTnH4+Pjpg6urXE+nyREQQtwsaZJGPU/rFVeYy7XrOxcurrZskwroHnbwZPXBA28dTgM0/nMfnfERVlbO2opn6OYlEvijai5aYbdcGDwnmAdDqEPNBw7LdR9Twarwt0zthenkiZjnJN2uRUerVPeevdwlIQ0QRJtt7PjqhjvSLZFikZrjPojOlp1gjDdDIl69Bv1AVALnqL7ssNaSftpVdr9RZW8zjlOl5Mo1Ds6bgzrPG+8R+89Nlku8yzqcNhard4L5cAB+1HU1YfdgWHcscwXdvudcvKMCn2k7WuNIOp3+wO5VfbHPcu8ME0Tznhev37NbhyppXK5TAzDwMP9c1JaWdaZy+XC6XIW9NtCrisYEbPM0wVrDIfDAUmEE2qGtxEzoAK0jtoOTBeZExYp1Iq3xBDJtYgjgXcsxvD4+Ljd46fTCYDJngHp0h72OzkULSs2BIYQmfK0KfJrrRyPRy7ztFETnDE8PT2BD+QGxidsiBwOR7H20+vbkeTOw661kvKTzuPGmhPS45RDUU4rRS25vIUhBmxzXB4fOQyRNsQN0Sx5hSaHsNJN9T9y/GiEEvpiqTmeAOa7OY7vG+9Tfn/s73wI4XwbDXpPUWmEjN2MimEwPHz6BX/96/+VagLPXnyGryu1/Jw3pwtPCUB4J9aKdQ5Vbkxr7cabaUhBWUsmABaxnjAsTFOUxTkVWrPs3aBS/ypxW9pioUI1QqquOFwciD7gykpLavR7WXj85htefvM1Q4jsj3cYF0hrZjeMjLsDzhmKqfjgMWGghR0m7mG4J9uBWjKmZawVErwdKm2GykLD4EJkd+do0yx5n+PA2gzzNJPWhB8MWXozYBw+jDiurTjhmgpPqtVCSQt5mZVDUpjnmTUlcmmcp1WKZ6xwUWrBmco6nbEsPLx4wf1hxNiBpVouqbKsZTNCN05aTPOc+P/85b/idHrin/yjf8jf+Tt/xmE/XNsDCjB83PihhZ8cFuZ55nw+M03TW3MV5ATdC4yfxn+5Y7N6UcTIIV61tnPojMFbp5uxtkmMuEYEpzY6rce/deGcVe9GQ14l8SSOo3D5vKWUvibPjMO4oQvOOYyaFLci6TUhek7nM4MzojrOBRcDVlWlVtvWJEFhQpV1KbfEKUkK0LKuTPOE3e+kKE2V4qRIPpVH8bRzThwyFMkEuR9KlYSP/X4vPp1GeGRUMX133uGtYZkKcYjkNVNbIikKW2tRU3EvCmojHDWMmkXPi6SAFOE5xhA47I+bqby0aScpoo1svjlnapbCobcdQwj4YMXSRliaSNKYtiWLxO1CF3jKAbrkAs5JCk6xW/EvfFGUR9hYk1g6OedoFkWC2agEaJBIU05D65QJrtQGgJLkPfR2PtbKbqWFgtO9KWdpb1oMqVu39ZZ/Ttv8NdrUzqWw3+2F27omnBXP0P1uh3OelBMGSf6iNbFgigGPJTdDzZmSksRyGhE/GSP2Q95q+1i/Jl0sCccQIeyAsyJqxYgwKtfCej7x9Pgk79caQowsy0R6epQ6pIq4cxcH4jDQSuHN61cMY2Sdz4TgGGLEeYu8ZUVnc5ZDU8t6pQELS1HuJo0lJUHM1xUbxf5HI8ulXe5FgPr4+g3Be2rJrHo46p6ovQC/OMuSxIy8tMa8LDw8/0SKZ2O3QOvT6UQYRnyMOH/lXV6tpkQ97712IZH9d14mhCxZyWlhN0SW6Uym4QzE6IUSUwpN0emu/jcGPVhdn+/7xo8sKLlO+m2X7vyQj0Mev8Uhe6cQ/RjhzW+D9vSTlzS+5fdzaez2dxAPTKXycNhj18rDwzOMj7z56pUuTkKkFn7CFXFoVZ3m9aVdeVESJWidISlvSHK9z4S4w2tcVSuSkKPnU6xteCd2P7KArpBWCaI/nXh89Yb59ERJmePzB0IYcNFzv9tx9+wBYx25VpaSwUV83FPDARP2uOEIbsCbRpov5ArBGUxK1LbQjMf4iB8qy+XCEAPeQVozD8cjb+aJp9evMNYzHHb4EPDWUtcVfBBFZM4bGVgjHag5U/OiKU+FdVlJmpM7zQvnubImQ9KF1VuDd437YeQ47hjjjqk55mp5mjPzmnFuR2mqritNFbWGX//qS/7lv/xXOG/54z/6GcfjXjhQ3zGHPjSvvstpoH9P0JOVy+XCNE2bsOBdrvDHFJNX1P39z/3ul34CPP/wRueiAdsFM1xRSVkz6jYfa6vULEWJqEfrtjYJR1KNjZWO039/Szpx14OKbWBM2yx6rEH42dYKytUsmECsBTcEaVlnWbvaKhQVPaZzf//AvIjqV9p5/dArCJrVdS7nAjVRnbZ216zmsgiv2hhBDJVAaoxhHOSg3IVJWYVBtEbNlVTTpjiuTdJbqraYGwZMhSJ8O2ukbVlbJa1JBJMqmrl+3pJnBtc2sNynTddyMeqWwpFrhKKB3uPuSKO04/re17Rt3RNyBGBwTm3MTM/YMde2tH6+mGsqDkbb/cqXk6nTE37MhlYKD1fmhLU9pEO4kOia0fR9y2uwGN+pPtLizt2nUudqRzBNt37r9K12bepI0SeG4aZCizI3a61EVcj3NdEHB8VQSmJZpBBe5xnfGs5XcAETgxbN+lqaFP45afKP6jOuKKJh16oUvlavd2lCs3BiyZRTEkQuraRlEbTfGPEevSRMKwTvJIIS3jIIr7Uy7HaCoKvIDZRWkZNeXytzuzYJDbB5o6fI/QBQabWwrsLfLd5tSDyGLUP9dCrCozR2K0p73CdO66kqXUofh22t6HvLRtxzQnGT69d51uJfWdaFsoqV4OAsxTRakYLWWSMUysbNfBOePx0nMt/efz40fmD0opKgYbsBRJknxq6yTthvvYDbFk//3daaxgfeuP/f/NwPKRJ/Gy5mbyc0c40pbMaTCTz/4k94+s1/5D5Wjlb4Pg/PnuG+frPt3H3h7qfU2hSpbIXoHaYKB7IjlzlndmNUH7KKtTBfJp7cG1JpvBj3GN+23FcXRcafUsIOErG2TJk6z5i88OblS968fMnjq0eCU8ViCBx2A8NuT9jvxCdtTbQcYNhRhgNtuMPvHyhxL++3FFJzxLDDtgCl4lS9WEyh2SLWHaWyj4HVrqR0gnXm1Ve/wntPDI5MwQ0juTY9tc6UVNgNHuOcopOFvK4E7zk9PkGtLPNMqY03T2cKlmldyc1RmrbcbKOiZstNVrZkPJdm+frxQiliT1QoYMEi8XO5Nex+ZFpXvvzyKyyNFy+eczju1RrEvTXP3l+0ff+NdJuCMM+LKAhTem/R+DHz8t3fk5biQkfF+8Gt1rdfW4w/6mz40/gbGLkUMTU3btsIuiLWO0cuYmq8FTtAS5JI1VqhNkEpW+toJ7Rm1NDYi4euFkTOOaqqWlF0odaCVw9Iaw05Jyl0tL3agHF/5Y+1WvEY8iy2XWgCio2eN4+PUg45iaqjNYoWMd1fs5RbdbKgm8ZtR0pJJilSfEniycgwRilg9GButPCUNp6gLmlVZbKqZ8W8PGOcvxZexlApLElM1Nd1JQa5JySKztOQA19U38Ce+NITYYxAi+LhWArGSG5166k6jg1hpEnhKi1utqJ124OseCR6NYnvrwPl1fdhVPCy7YN6AChpVU/L6/q0cb+1wNkKUizGiEDD0qBJ0VqR4tY5Bw41Ra/yuVlBv6wVjuiqyUBSSJlbfEgTnuqGhoVRk3SWhEPQ3pwSYRfUkk6KIGeliF5SIuWkWgDLrh6IccREaDXo51LpJFDvhENs1TGlFuFQFo2F9MEpsist8ZzEDD8OEVohJxG9pJxYpgt5GIghQGtM04y3UIolrQs1i92fIH9S9FX9vOUwJlqAOAySPGUsMQSWZSa4QNbMbdHdi0F+LVlADSO0E2ct2fX7txGHiPArEzWtjIe9rPtGQjyWZcbFgIsDRjPijYuC9Kp1UKkZrJeDp2k4L/fhssxCAUOQ4ZYz63ShrDOuFKwNjN6Sa9MkJ4kXlbOKubbSAayc11r7+G7ab29s3jfjDY001zl401q+He/jNn4fMvTu775bmL77O++iSu+KIN5GP68IQEOUgtkEhvsXfPPL/8iUGoNrPOz3vH4S78AYI+tShPOiJsNw5TFY0+MSJSasL3YYw5oydprZtUF4TsHjLcL5SCsVC77h4ohcZD3lmQYl4dTxfp0L0/nC5TxL4Vczl2mi5hXnwISAKUW4Mk7J+97jYqTGQLMeHzytwLzOmCYtedZ6A3031LAf74UnGb2lLokIRANPpzOnV68YhkAbRyEa50bwAWc0c7yK/VArsnBLSylpC0zUpsu6subKtBSMCzgTpD2oJ7kQHcMgPpmpNs6t8XrNnFOhVIleM6YvuLJhyefeuaiGJa28eXzDmhaGITAM4+Y511tR75t7787ZjhiWUsk5sSyL/lnfIr9v6skPzPkPofXv3gelFDVCn+k+cR3lvP3Zn//8i2893k/jP/NQCzBjwHgLauEhh+kqvLohitExUmwO+0BRq46NK5XblqRjGsQhyIaS5fpbix44J2IcsEG8WufpzH5/oGgh2tW03YJoXhbGw0HENNbiNQfaVBHKdd6dXRboSlxtU4+j3D+9cG2tkea0zc8QAuuc1O1CDtuX6YIPEck08IzjjmE/kJbEmsRzcF0yYfA8u38ua11KIlpxYiFWS5YukO9VXMNoobfM88ZVHvYDwTlBNUshlSxtYJA1QftMcRi2vG1jGqUkMbo2ct28KBhkk3cjxgW197GakS6xdpLwol0SGk7X/FLkcay1OC1kO7rkvYiDzHatNWWtsqlre/tSrGnYuHdveYAaAzi8dzg36vokdlDiQSlFr9fDjfdixRTiyLKssrYUifEtRfBn773aPFl5T7kShkFqPn1vzjta1sugpt9efSubMWqfUylZqEzGwOXrE/GLn1OtYW2FNc2EEHBePEbHcactYYls7K9jWRYtSoU7en+8Z78XTvDlcuHx9Succ+xjIGsEYiuZNE2UlCWtSXUd3nkwomsAy2WasEva0NzT04X9Xoq83mVwTjjCGFFcO2d4WgsxiPdoWtUdoD1u4QQpJe7uJB6yFBGr7nY7ahv1vrU8f/Gcx9OZYbdTg3vDWjKUlZoQ/+gQcQ4eH1/j48Dh/gGMx7iq/GxoReqvYIUKkuYVUzNtXSnThZYWnDWspwv3h5HUHEtJtLzqPJfivxnhwZaWJeI1eK7Y5fePj49efE/BZ4zK2rWgFIhUoMoPCWRu2+H2Pe3t79p83yus+UAr/Nut9G8XB4aG3VoWAm1nHCYeqHHPN2++5u6TSFEieKkF7zylJLyThTllMf3skLPrdh9YWsvk3kJA0g+celE5Azmv2iIvUCUiqZSEN4MgelmteHo+6jJT1pXL6cLlsmCMx1ovrv/LQkng4sCULWGqEok2DIy7UabEMtGqpeaGa5VWGiONNU+kdSXYRjCF0oq2iirBe0k3WBNlWVgvE7U0og1Mp5ckfkMYR/xnEk0pJsURaxp1hZwW+YybbGopCVfLGgtlxTk5/RrnqKaBlXzRYiFY8dGKu8Cz53cMPnJOhTe58WpuTNXRjMM0C6bQULPopid9Z/DeaJtKFtWUF1KaOZ8vG7LSSfn937dIg6RD9JZ23VR9WeMvOxfmtoj8XY6+gS/L8i2k/+2i9KeC8g9xGO1Q9GslYhcj/qx6OJG2k7YJvcUUCDFu3ChrpWDrG1VHNftcE0uZooViIaUmHQvnKJpFbG3YXk/DUKquxRWl1EhsbC6J0Y+iEo1BWqjO4mMgp8ya1s242asRePcuLDvhl4she5bDoXdaIEnM3tPpJG1lI6EE6XxhWdZNxPnsk+e44AnqcYnaAL15ehTlrIJn+4Nw+mqTgs4Yw26/Y170kF0yz549kNUr0FrLmzdv9B6aCV7udUnQCazrwroulJqELmAb0UtcoCjpM8ZoYaDtXRBQrbSKyeDDtevRk1OK9g1NqdRVihb09Xbrn6ua22w54SFE2UfMZgiwFZOSyHOlOshjKqKG7EXGOao1tCzILgBq5wTigWmNweaic9RsVASJoCzb4zeDpM6oPc6SEvOy0GkLvZW7LAvWSiqb8x4fAo+nJ1pN5JRprRCGPbVmcpox2YkJdw4YuzBPjsvTibtnz3BGVP3TlDZu7MMwiFfjOvN0eoNzhuAs98cD98cDFxXGZA3JWKaZaIUeYuiZ348slws99lfU1lkPIlfFf3/v/QBgrZUDmYFSRdW9bNZBHmcMQ4iUvG7o5uADr7/5mmE3UpsYvD9//sA0nYnDQBwHXr58ybjbs84S7jHsdkIXSRnXdJ0wcLy7J9VKoZHWmf2dUNqMwuNrmgkuYqjiMxkC83mhpSRCeBotrZAXSgBUO7EuK24Qsa41AuKgqLbM5Y/r1PXxoxHKjkjSmX/vKRC/iwfZF5J3v/4hFOfd8V2F6/U521uPtbUg9DV3jLIaS2uWOBx48fkf8+t/+Vd8OjaOUawWemub7Xdu+C2te5uJr5yY+jpazUJs1vaFTFY5YY9j1AQMKSRLXrBBjW2VwF9aw9Ooy8R6ObGeT5yeTlgbeHh2xzT9itP5greCeHz9eqJajw8Dx7sDnzy75/nDkWGMjOMMwwzhAlWsIFopmLRKQWsaeZlI04U0nTEl44whZ3jzNDM/vWY9nTDWslZ4Ol142N9jbKA0I618NXntyUHy2WhaQ0OLM7NZIkm8k7gENI0TK1WKwFIKecnsPMRdpK6N03nidfGckyMTMMZtqKG0eOSQ0FrbIHzj5PF6S9DqHMi5bYtPXxhvkaE++oLe5+stStj/vuVx/4C5+zGjc6WEy3L9+u+6cP1p/O6HcZbOuetCrKicPCke/dWSw1w3Z6Obe79/ehpLRzdLFt+8HvPX859D6BxKRemrplCVjHNJ2nVDxFkv2b3eY51XoZBkgxtn3ipeAXKWtp1wzez1/eSyrd855+09tlzINSuRs+GCx2Mo1bFr+y2uLzexRhp3o7TvAawljqMe5Kra2DR2h30H5Mi1cD5fRGiiHMXaKqY19uPuLQR/HAaWRVAsKa6l7VurESszZ1mmmZzFLiY4L+bv3aC8NnLNtJKoxeCdJfTNVi6SrAFbZOZ17fBdRNXe3n/czc/2rsOVhw9ND/TWqJfl1vaub/1+75xfD5h1o5FZ6wjW0mzDlEKl0lOUMILPGuukuHWS3BbidT7Vam9ek6ClnX/uW8MV8UyU1B4RUIrP6BXV696oYrrvWNaF4Ct5kaQZP3gpfnUfsEoxOJ/P0GSPEHshafE6Z/DBsbMj02WSeEujARgly8GsNXbjwGF/YLpcWC4XvFKF7OqwDiZ/zUvP6yL3T73h1OaVhohTnLdgPLUUpvkin60Tl4W+/ucklns55c1eaPNKbWxZ2GLaL7ZFKUmiE2amViSL3FqGZcUPA7txT6kNSiUYK+LOKsBXXhNNP+OGiPm80h3aLVO3STewlQwKdDVgmReZY/WaI0/rZk1X/q/MKbb59zHjd+JD2Vo3gJUX8G5V+yFO5LvI4+3X3vdctz/7Ic7b+55LfvR9vn9KBm568tX2Q66G55//EdOXP+M/ffUfCO45l5SpWKbeVskS/fVWC7JWqjUUGllvJu8kYSGnpOKcQr5kjvuB/W7EGuVhIu3dbFbqZImjZJvWkmk08nphuZw4PT2yLJk47qhYTpeFV28emc6PGBpfvln58uvXnE8zL1488Pf+zt/iZ58+4/NP7nn28MB4PBKGPfM4YmLPkBViu2kVbyBNM8vlIkTe2ngzwy9+/RWPX/+GfDkRo6dZzzenifsv/gQXBmo1LKkQyKzrQnRWlKrWCm++ygLpQyDNwp2c54lpWq72BBj5ORe0bZMJwXM87AiaE3teMqdSOadI1iwK03QTbU2z2cEbg/PCNXNbscfWfnofit8XiNt5CV0M8e15CFfe1C162AvP/v0fMzYAXZeJfoBr9eNv8p/Gf67xtkCxr5P9e6CHhJs1aysydKOW7qLZ2rRdLOOsI5tMP9y2hjor6Nzsud+5qBpa1LDOWXBXbh7KyTO6kXgV9lw3mvatlJ/eGlxZZCN6h34hzSrhOnY7HGlfivhBED89nJdCGKLY8VSRyxhjWcuiLXcRXYRB4horFYqhzTNWvXZba6KmzWWjsGwfsRGO6bou+nUpjLrhNlZ8FksRBNLHSHPlpqXctPjQtYAb9b7y5hTYu4Is+sf1KLx3CsrbYvL2ILqh2N34GiMUJvP2YfXd35V9WDoplSZRvVpUNjRyscne1uMam22oIkWQ5KBvwgok2gtd+SN6B6ugiXcSC9iamMY3dScJIWyc8nVdtSi3iuYa1nXB0CjrSnYeHyLe9PkuhZr3jvky0RrsRkf0TvcFMdV3yLWLIVBqkkLKGLLyWTFiXj4Og/hwGr0valPkzWzXU7iqQehfun8L99Jv+7oxMm97XrkxIkqCa4fVGENQ1NmHsOkqnEZzBuXRdiR3UOPyLixLOUO7CrOqClKcIs3iTZuF+oF0EloR4Vx/fue9AHq1bPGcNSdaVYrIVqM1cl7fmoudgqOb4+ax3YvT7SDyEePjk3L05my6KxvTiZx6o/SK8mafe18RCTeF30Ys/nar+vbv7yse+4S/fbx3H+ft5+8buyBh0CjtuljL65eJVluhuMizv/u/59/Ohf/h3/0VdwM8njKvvnnNcbcjeKvcI3HXz2nF94nrI9bpBTZsqshUM/O6MgyRuNuJ/N+IYWmpYoVhKNhWaDlJHFRr2JJI84V5mTlPCzHuCMMO7wfunz/nf/7LvyQ6y5pWfvHyNb/48muezon13/2Cf/5v/hP/9d/7c/7+n/8pnz17yefPj9ztBu7vj5Kc49TOogr3qFjHNK88Pp44nc+8fHPmr9/M/Lu//jWPL79hHzz7naQG7PY7/q4axk6XM4fjEaLFBY/zRjKDHZASddFNrmTScuHNm1diPYSjFJlXOa1C5CfLhtkathl2pZHnhVdT5k2LXLIn1UCxskFYI27/ti/4uoh4K0VtsE44ndaqrZMWZx9EtN+dP22bO1Df+nm2c9/bv3NbSP5otNJw87zQnQB+Gn/YYzMuNpZiLSE4RW+EXlNrVgTdvVWoDMMgrWVFhWrVuDUVEEDvlnbj9H6IKdtzS4FkN+TemEJrZmuXyzy1ePoBS+Zo9yRs2ra+qkmvh+dxHDczZ2kvl82w2zqxhfG1qh+jUWNxiX7MJUknQblnOWewgvo1xLt1LZl5WUhZDd1x2BYUDZNiZ7/fb6+xAc+ePWOZ5LBPa8KNbPA4zVugwG4nXohjlHbyssyAo9a8UQOcMdgYZdNt4rrhrRGOn5NiyjsR1xijsXZGE0e4WQN0fwNULMMGPOgpYft5ST7pwgf9mS0NpQHlrcduWsSLUEZ8L1svNGoFKwbWBrEOMkL9E+SxaCJKA1wRE/tQNXLX0awhL6tE9m0HEi0sc8E6OczEAGAxOZEzWKUQGGNIaeVyOdNzwQsN7xpjGIjeUXIiLQveBUYflVcrVIBWpZgXKoMg8TmLL3HNhdKEGrbb7ShV1nSHEZN3Lfiilxa0M3A4HBQ5FyuoaWokRT3FMkdM90vOWhgbSk2a1pS4+nZei3q0OFyXzj/0DEqBMObGk7pWQrya+EvQQeVwPNJaJeWCdZ5UGuM4Mu5G4jBwmi4EH9gf74jjSGoNfCAMIxWhitSaSbMgoNbJ/mZMpSaJiqx5JU0XjVOV2WGa5Nr3usmoc0QujdIkz91ZexMFKz+3OVV8xPhhCOUVLtEPr0/yXlS+9e3vHXI4/7YQ4Vs/987Xbjf9j3qet36uN7j15NwfCzCmR/QZUoP48Dl/6//w32OOn/BX/8tf8vSUeHq8MO7khFFSpVlZmFHftGDlJJhywamg0jvPMI60mllzwnrHtCwEZzEuU81CdJ6495QkPl81wel8IcZIXSfWaZK2UozMKRF3e2qr7A9HfBj49VdfYa3Eo93f37O7C8wrvH468y/+zf/KL758yZ98dsdf/MlnfPaw5/NPHjjuD4xD1GIukYu0nZZU+c3LN7x6c+Kvf/0V//HViewHdnHPN5czry4zu8Hz9//o5zx79pyaE/vDQM2JWgbyutKiI5tGzQlXJTKrppV5upCXWZMFMqZZrIp9MFcPtVab3sSOOWW+uSS+XCqv28ipenINVOWQNNMdw0wHJXBGTobRX0+M2lMTpPI9c+RdJOHb82jbd98zJ2VW9Ud+X7H624xbtP/tx/ndtNR/Gn9zowtErDEUe6vEv+22gDSbuoOGwdgmIo9teaqsa2+NN+WOOfJqqHp4slb4k85K42tZZkxtgo7QoBVag2W+igxkAwksi3ilCndrZZouujH6zYOuq4ABahaf1f4eWpMc42VZBJ00jVKvP4OxovCeGseHO3VBEDeIw/HI5TJprJyhYrioq4ELA8EaxmFkWRexVTGOOAwMUTiLtQrXjwplFXX6UjJPj6/ZjztyWoRX5ozwuS2s64yzluAtl/MTMQaGKPnd1shBOPgoiFUSkY7Z2tzXK9jpTSLmqRo9e9P2NmjoglE1vN8QuSv6eW0r9iz21qpwC2/8CmVYjZuE0oTH7XwXJRq8j6CCITQ5B1X1GwzOB5ot0DRwxBSMrxLtayzVrJRiQW2cWpFYSecjnivVy9JI2jkL3hEUwTPGcNjvWBfDm2Xmm998ySeffo4xDm8sd4eDHGpSoaVEWWYYdxg9BNRcSEVavrll1nmiZvEavbu/p9HU9WIlWUGHnQ8YJ63p/SiRxT3KFA5ymHAOHxx33nG8P5BXsf9xFlrJIqqcZ/FktuL5KNnu/d4SZDHGUQtmQRRTSoyjOrAsy5a447Qw61TAYVA+c5IDZM+NN0aEqy4M2O4lWgoH07nRUpzWUtntD2IvaKzkqZfM4+ly7WiklePxiKOQ14n59MT56Q2HwQsNjUpeJmiNIQ5b3rhz4s7QaqM1Qy1tW7ekve/wYfjoNe9HJ+X0rNrv2t7e5VW+73vvE9708T7u5feN7ytSv2v0wqFWOB6P/L3/+n/Hn/+tP+Xp61/yP/4//+/MObPDUaw0QayTU2UxVkyDayGGQPQRahHFmTNidO4szhhKSqyLcEIcUSKqlgUXRC3d+VHLPHF5fM3p8Q3TvBCGHQ0hxJfciNHxxRef8stf/Cec9xxi5Lg/YvwOF3c8XWZOpzOX8xv+6tcnHs+v+PzFA38+/ZzjsMN7R6uNMUaaMSxr4s1p4uWrR375q6+4LAv7T16wu7uHWpmprPOZ3RD50z/+Y4K1eAN5WfCjILWlFpoz5ConJXFpL2rx0QSFNIasN8aySopQKQXj/ean1ozlaV745uUjLz6LPNXAY2oszdKcR1ZwMO2KdPf2mrHSPumnw3cR606D+Gn8NP5mh9jRdOGMt7Lkdp506wXHTSsz52vU2bsJS2J3Iwevfpi3FoYhMM+LHvJFQJBWSREBsNZLAo2zYsFTssQSJvGFNFiySVwuUkyWG96XtY51FbSm5MK6LJs46HbdboroYaV9mZKgmIKmJYZhECGNFqY5F0oV7ueas8YINoZhIMYoLhghMI4jj4+PV2SliShnXSYpZFpjOp1UJGG37OgS4mY3lktm8B4fo/CoTTeAblo0yFoi3pUZYyRpZwijFPiNrbfRStnannJ92ibs63SA/ueWhtVaFceMfrjVYryUXjQWRaQ1brPkrVCTD7mKcNHI5xBj3GgF3XRbhtCuQII2sH3tk05c00K3VjA+4H3Ax4pPg1AAFvFnLA1E7KVP38pGuRFrGbOJUVtrWCcAyjAMPDw8iJCwZJwD5wIxDjQMwUuONbVwPr3B0Bj3B7nmzVC6nbd2tKxznE+PhBhxxrDfjfR4TS/mo2IPtGbZY5wTVNEYxt2wHXqaMUQ/UMdCLfkqejWigBfusGG/38udWzvPUJB97wO1gneZGAcp9uXjZufdW9e/21SJUXq4CqVSoaLOAFbeQ0qZcINo99Z9bYJEhhB4+fVvGA9H4rCTOdwqwUKtEkFaU2O1oiGgJKgJSqImif50BkwIm8+tFY6fCp4AI+bs3UprQ2Rhm0sfM340h7Kbd/fTNby/mPttUJp3hTa3X3/38X/I7394aOuItsHBDSSmMB6ofs9paezvd0xFjF0xEJ0VV3udXa0WWs7EQfJ081oouerpzm58JWsNNRdyShjnqbnCnDjeyWnSGce8ir8hwPF4x3maORyOwjWZz2AqP/v55zx7fsdXX30J1RPjyPEhMgTDwxfP4eef8otf/5JpmbmUxP/y5Tf88tUTnz88J2rSRBwEYZimlcfThVevHrE+cry7pzZ4fPkNNa2kZebueODP/uRPOIwDeZ1gF5iXhWe73UaOzssCNTMEh6uVJWXICVollcTT+aKIqFN+iMcVQXxzqay5Ea0n1cbX5siUBlLzrM1SNopCE0X31sJW3ofGY4mS023+Yu/MDr6NU/40fhq/u9E7N51T24uKKydOFhA9F6FVhrarr1xc57w+Hte2rM7xUjqSIS110yk97Wo507sxOa20fI2ELFkyhYVqI0+faha1Z+0UfT20IabRKYli97YF2HlzIKiht9LmN6Bm2SI2ScuKtR4XAjRDqY3L5cJud9Aiz+GC3Sy9QgiEGBmGKHYrpXOlRZ1rAGfEw3JdxOlCvA8FDShJElycM1jnCUHiEpuiMKVm9uOAxNMJD9QFCzXQWtmKdm91rektuNrb3WCs23hynUzZ1/cukJGCS67wVhTr530r6gRkDwDl9Al82Q3tmwqXWjPbGte7hLej72GtIJ6TWkhWI3Y+0vJu0l1zgRg8nZ+LtdT2RNPoRbF90hSnpp9ta3jrMd5tKKzxlp577qwY1j9/9uxqP2TUAxOjxZt6ZZZEXheK0q9CiJhqhDNrjKDbBi6TiHC6CwdGUnUEfa84I2poS6dWaeIQXgooK/tt0HumtKrvtdGqJfig95fMP2OucZXeO2JM+tka6nC13uoKetfFbRvfsGGwNCOOBq13z5xXepv4TuoNzKpKcjFQzxjnROzjHME6rEFQ1NqIVdFFKrUkapG1ZT4/YY0UsZRCdEY4lNJ+lfferlGdBqXaaZwmPZnHoBxP5fSW34MPJdtL0ptCpof09G/27ncLyfe1r28Lv/ehk+8rDL+rWHyXD/fBn5VP+qauUO/AvrDrgo/1EHaYOIIL5ArRgQ+erJYDAq0b8XOqlXkVS5zjbgRjaa1s9hY5FRiVaG/EooBF0MdUFubLhWHcMS+JZdFs2mo4nc44H9nvj6ScaVYMX58/f+Dv/1d/wW43kJOcBo93d9jgmdfMkmbujjuef/aC07zy5nzmcj7xV1+9ZAxS9HZfOuHoOcLxjlIaT/NCXC/sBw8ts98NfPHpCx7uDwQlOIuSrPDm1SuOz57hYmCZL0LuLpplnhJms1CSibykRLPXE7MxTqMXheqeK9hhjwvPeSIIZ8g5OVlT9ZHkEsmhRi+XNYQoRbL3QUj49nauCsrRTfq/a37+8PGhm+/d59K599P4L37c8hurcn374VXmWxdRyN+r8plBUbGOYHb1ZZEC0jnLVTAi7Ueamt43A94hjtZy6F9TUgPzAmh7KxeBlZqkyBTeFhH1P94H0prUTgVybltbkJ4w0xrgNClGULi3Cso1sd9HQhyFu5UlS1uEIpboHd5FhmGUVpsWI846hmEQ/p8WWdP5ST8P4QjmlMjrSjEd6ICSVEShnr8xeBGT2EqiUXIVM2yjxt6q8sbKeit1XDfcbtduXNMCxSCPreiUCGC6960V/qeVIv92L+oek1fu63WD3xBNrkWnAf0MpaC0GDCKft4gnZ0a2Qvb1q6YJU0LSqwanEvhZZrBDyNeKROdx5pqBeeUR1lBTetbA6p6DQcJoCiqJUipaAFsiMHzybMHMfdXJF4iBuWagszTVKpyKieMNYzBS0JR9BtiV4sUniUbsdCzBmsiVKecEIkRJDic6WoJTdOhYb0Xqy49BGxxph0VtJK33of3XpkCluoktjiE4UphcX7Lj++c2BDCZi9U6tVySURBKnJp6s+6VkqFHqlnTKNtaVdKH0Dim9OahDLgPZPaa9ERRCNoOeUab9pK0utaiSoG3qgYxmoogNQ10vVA57ZVTYfuYFaKXRFkffxa96PjNfqpu6mP4/u+Dx9oad8Ukbf/vx3fhzK+T8zzMd+jFyDvfLHcnCq3u3nzkHTc3d9Rl9eUDLYaakpY6/BGbjJM20jKxmqBVIoUU82QjSEqb0ZaVFYSYLA4K1B6UkJ6LY3LNDNdJs2rNrx4/pxxtxPvM2dJbuXhk2f8N8N/w5/+2Z9i/G47WaeUePPmDW+ezqRmmTN8+fINw/6e9LAyP75mmSZWLdRcHDgc78Rvq6FRkpX9YDhEx2cvPqWWxMPdkZ9/8TmH/Y5oLUOMxCEyLbPk56ZVWh0YTpczNS8i+qFR80ouktYwr2fYlKmQSmEpDYYgMV2lsRjDUhzFRYzRFkQDY7rUSdSQcooR3aX3gtbEEAjh6iv5Q4rF982d3xZl/6E/+12/82OoHD+N3+/oSKCx4jiQc2avauXb7zv1dOzClt46ewvd6q3xZmjuqkBtrW2b1xCjUkrA+2Gz57l9LBki9khNhAjByWGtUBk1jMA4S8qZeV5UzHCR1+odMcaNH2mdZXADxiQ92IlVkVP+n1VKjQANchj0Qf0djWO/3zMtvfDzDMpTE/jP6OehmeelkksipRWPcg1zpqwrZVmoOStCKihhXhcRZCCm8neHPQ1R8gYLfjeS1pXdbsDgyVkK+HmZuTvuRT2cMzkXqrbsvQuKdgZ6xnbfnJ0TpKsnpK3LvBUJXm3SQJCvWsqGUBpUWNOQQ/iWNNeLz2sR5Kxw9aXYFFUvrftIms2GxyEJYnR0zBiasYoQS3uzWUlDc3GQ11wKNiXiOJKLeGj02MZqitjStLoJsnLL9MzzWiv7cbcJoJxqCZw1dC9fZ2AcItWI4Tu14S3QEuvSaIj1XZFKCeu0VWwsdwdxPUk5M08zwR5JWYs/YJkv3N/fk5YV72AIAymtBGfJJbGmWQ4Hu518jqgYzYoKvaPpy7puQjRpXwtyKUKkAefF6qg0OYTIZy4lrI8CzEj7WjjQPb87p0zJWdTnzgra3sRBYdZ5WkrhfD5zPB7l8tdGzZmpTVcBcyuktDIMg3BBWxXhabCsBZa0SEQkjV3oJvwNWqGkvHktCxJpCS6QsgCBovS2Ylyv35e1629C5d1PJzf/vnJ7mmZ9Shvxtmi8Xfi+qzh8H5r4fUXA+9Td7z7e+752i4LK6+qn2nYVcHT8qiHcESOg9W7wlKUq2iYXy6qZO7XIjdvA+kDOhWQMg4/kdWZNYvNRYuR8mdjvAm1ZGBixppFzYU0XCkYD6D0XjfMDI63uECTPtoF1njiqqjJ4TPTMBYZxkCisGrh7fsfd6ydSMVyWyv2zT/nqm9c8vnnFs8PA61evKEXUeEFj2oZx4OF4p6T0lf3gaXnh/v7AYbfjeNjxcH/Pfr8naLi9c45x2DEvK6VJBveyJqhZ7CaAZZ2FY5kzSyqkUmg1s+TGmqR90Awsa2LOBjdaKg5nPFSx6bCKhBu1VWlAFTdzjLFqHC8bllAObmxE3p0HH5xZv9/xMbSQ933vR6vHfxp/w0OUuMY0tRCxW2FgjBSZ1prrxm3tW2tTX/+WddHHu9rW9Bg659xmeQJsvL11lTSbdRUOs7WO/Sgoy5oS1CLCtbFz+kQxXmoip4qt3Y9S5uYwhI3Dua4zMUrhKf6N5cZqRN6ncAWFR9b0987zxLA/cDgcCCGwzCv744EwDLD9nld+nlV0RFJh5mkS3tuamC8Xkha6tcpGOThPNUlEeF6sxCyOcRy2P+oAuh1Dayk4ELTTWlVvw36MUgxYSxhG5mUScVJtlCQZ0oVKz4CWLGahvQv2ixb2In6yXqIOU5ZDdlGktdvOOGNoinh558h5VcrAFX0rtegB39CoW0oRuh56H6R9S9sQ0t6Cbronl5RwwQnnrjaSttfFpkiSvlIDnGd/uJP9rCQupxO1zhjrBQEM/q2EOGsELc+rCk11L7VaKDtjwLnNHUDNBnW2yH0CmZIN0+WMD5FgHSEIOECzhJ0KYnLGOzHPWZeZZRJ09P7uDtcacb+j5swyT3zycMe8zFRtATvnyLMIQkHoHuu6cjgclXpv8Opr2lqTWOJSsMVujgw+BOI4bKk7Vr1ZAZa0SlHZNAlLPZldzzdH2rfjfq/lghSQu3G3eaKODw80xOoqDIEQPfOy4sMg7iVGUm28FWHWuszyWsbI6D1+HEkrIoytWeZO0WzwKup4NbqS6+SsoOhWxKqtNuIwsqYV0PXoB+yUP55D+a3C7W2U5X3G5b/N+BDa+DE8yY9HdXrR3LZ/y8leiklrIHpHcoa6JkyQzO62ke5lDMNIyZm4G4jRk5ZZHkuj2E6Xid0Y8NFSFpiXhHczIQxg3Ya4Gdc24m+Ikf39PaW3yPUmdurSX2rFxx11mcBb0loYh4HdbofxYrL+rFnicOT144mvfvMbpssj/0FbFt57jscjx/0BC+zHgTEGSl4J3jIEzzovfPr5p+xilJg2Y1hL2uwGKo01rUoq9pxOJxyN6CwlryzLLLYhtZCriBKmecH4ePXBwlAaYiFhJXPU1aaIZJXFSFvcb3WNTafcGHzw7HYju90op/n3ZMubH3CTfMz4McXdu3P4faj+j32On8bvf1xzuq/m1bX0jGI2GsYtgt6LRbi2nIEr6oOIc7r6txeYgEbW5e0x13XdHqu3waVwEoSrJz51En7wjtP5hA9RDrFGLElEkHP1o1yWRWMcjb6PdyINncWHIClVTjoHrUGpVYRB2mocxlGj9GQdEwFdj63L0sbOlbKupHWmak63qeKbuy5iRt6qrAsxePHhK5XgHc5Z7o4HduNA8GrD0xCRSpM/qWTlIppNVZtTlphCzV8ehiDZyL1Vbd7xgzTiVNELfLuprs32frbvKXhR9bBRSsH6sLWK+3W3XeJvpZ0eaFTTQQxROFvctl+1ImItQTONtC5rwzhpyzfjyKWRasU3RPnsJMWodOaQc+wPB1ZjMa2IkKNWgg9cTk/klARZxWKdcAS7fWC3jupzr1MCTOfjKhWuObsVvtKXU89G72kY1uUijzlEnNFiumRyEkqUMTDEwJtXLxX5leu8zmcMRlXenhgcLa1YGrsYMF2n3hrOCi+wFQE+0rIwDiNOYwaDj0JX6Nzg1liVYlaLaB7ibqCWKw3Ce6+NTGl5t6ycXLV6aUaU/TlndqNEL9IkjckaQxwlblmsxuT+rLmwVrnXLtMke773GKWFeWuwmmC1XC6Md/eosTXGAU28O2U+WbCQclYhlSDXuVZtdYttlHFWvJytUjuMJcbfk8pb9n9z7aToierd8UM3wo9pM77vZ9792nfxL+Uv8npvX//12fSGVj6Kse5K7lV+TG1OxDhIS8ZYi6kiyy9WsjxrkfxZK4HWCj+L16X3Fmc9NPHpWteKC4FpWcFabBREAWf59Gc/w4eA8Y51LYQYqEDJlXEcaGsihMjByIkx+KB+b4HRBcbxwJoqw7Dj8y8+5c///I9Z0sKf/tmf8urVaz755AUPDw88Pb6hrCtB7mS1OqnkdWFdVrHqMHC6nLm/v2cYRnIunKdZrJQazNPM4MWOYFkWUicHN+GO5FwptZFbI+VM8FFREk3TaQ2cfLbCY+3nfqhadDbMxu0w6AZhhCcTY2Qch82e4d250SMmfhccym9b+Xz/XG+du8t13n7I/eDdf//U8v7fzuicq85xa02M9zv61BXeN4CNnpHMtaV5u7aZ7TtvFaC3XMfeIu2Rpr14ba1jVfocRo2ZTVeVyzpYS6F5UZf2l5VzUmJ+oAtEknrGbhFtaMFphGPmQpDc6BjUdFmEB3GIVATBcd7TikSs9se1VnhuIN6y1MIyT6zzTM1FDZ0z1EJVjlwXyHhvSTmJfaTxeO8Yx8gQA9ZIPrnp3EHTpL2ahYfelHfjnRMOnkF/zijnD/0cxcvvtkMno3Pi7fZ3694+LDjnoFxV2/169YNB/9r2/z4/QClP7fo6asWo0rzpvxtiat79A1ufT1rA2wY4J9fDyvsUxb9wLZ0VrmmLRRBsa8RwvgjVaJ4uwsmrPZ3FCNNI6WtCAb4W20b3ut7xw7Ah0P26tSZt1eAdtUHKmv2dV1rxUhwBrTQqWeecFRuosuJsxBkxN1/XWaxZvCS25SK+rd7L3l2KKJ5Nq1AylLwh/B3RlsQZ4Rwa2BwCvJNkou4I4KzBW78lwlX9GUE7hGIg6G2PxrSbUKxf02bEoD0l5T0auQb9uq850bJQREpJWOsFoa7iZBCCAxtEkJRXvS8yphX1p6/c+psaK8WiUZGUxJrKulKbdJmdk4OHIJMy2f5GWt7vG2/dUDp7t8lzM36I2vrHbJIfEvO82xo3uoi/r/G5PYS5fqcpYlgarKVSEaRxrU14kqWRC0RrOQTPOi0a2SRE9Bg8tTTWlLQlAKdpJoTAfnR46yi18vj0GoxlzUXaDndHgf9DoNTKmjMsiVwbLSU50btAKhDHPeenM6MLzMuMVWGecQHrLYlGagnX5JSMhRADP/v5H/HZ5z/j2fPnzMvM4XBgnp4wtVKWmRhEhf1yOhOGKPm7KRPHyFISgYgNgbyuLJeJUqSV8Pj6NS1nLJIa1O+1y7wwTRdKrUzTgnGBaZ7JpYGX95lKYzEZkwvNj1TTqHS1nKV7Sco1lNaKq7K4DTFyPO45HA7EGDb04Vtz5QcB+d8/337gb9LpIR96vI9pcf+EWP5hj6vNT19zBKHESRhAK1IUtHI15jBNYtRAEcp6oxCvbYvb29rDXAuT6xpXKUn+HbXouIZAVFrNmoYim1Xrm6JapAjFRx73mlVfJYLROWIMzPNMCFoQIEIR7yXKT2L8BpxzDLuRIQ5Y55nnWdv+hVxkgzPOEJ1sqimt2AapSipJt3a5nJ9k082SDlJKgixFgSB/qkjtRQ0qzAtCebFOnTdaVgRTUFynJuXj0K2NRNHrQmCeLxrl6ukZ6Vijq8/7bch6MSmH4m6rp5u2Pl/RgtJgNosWuN335MBRSt42o2/tnwK1ba+hcZ1fUohuT/nW8MHjhgEXIg3hMZZatmNGwwqS1oUhiqbaGBkOB3E/cZaSisRQBqt8z4atjprdBslIbVm2DpvRAitET0oNW6FWK1CBkQLNqfvBskiQh9fizTuheeWcqcbgh8Dd4cA33/yG3CrRGXa7PfPlLPtIzhRjMVY/jyo8TIkg1WjElGhZHEmM8ZoqU7DGkJZZ05tULZ8zMY7UVsRrOgSoRSMUhUu5Liu7406oDEhbmiYiIufUfcGK2Tp6r3pr8dGzTBfmvOK9iM/mtMh9XzKlNuaLClzVlsnQ5HGNFIY+gN2NpHUSUQ56/ZUush1SetBBU+TcOYz1lFYppWEptHdNzPvp8yPHRxeUm4jmnaLNKIJ3+6TvIi7yrZsNtF1n/A9pWf9YROZbBea39mN5jf2kt6GTHQ42nlKlpdBsYM2yAKXacK3gnWMpKw+7kS4aMcGRVuFWDA6m8wVnITgxNzfWEr2c/C9r5jItcoLwleZmjveB4zDweDrx8Ow50zIT4sCaM2uR52ylMUQhW9smRuph8NgQBdqusKZ1422kthDjSFqyktIldSLGkcLCugRaWQg+sC4LT+cnwhCZL5N8bZ7l5FgrLq2sKXM6nZUwvVBS4vz4hrvdHm8M6zJr7JrhMk1My0KjMc0zw078uIJ3pFzJtWJMxLpARU6tapmlYssrQik3lujGg6YqHHYDx/2O/W4kBkEpvi3K6df+uwu49yGH3z2/3v/1t+ft+wvJD/Eob+6ivkp/9Ov5afxhjFrEu3HwAdPkkNlKxbtRRAwatbeJdG44v7fzotTNoQ+QgqVtnG+2hBtprdetSOpzahzHtxCwUgoYEQL19ngIgXldGMeR2hrTLAKA3W63FZcxRmKMDMNuExN5Y8naSnUh4LyIj2IQ/8HQ/ReR4tZ7zzhGLpcLSZEiZx3T+YmcxWy6FulqUAu2Clez5cSiucZi02KpxZFKYn84EA874YU5x24/qEdwpmm0Iq1tmeOlZkL0mxCqpwStaX7Lv1aUu2nzlgzWbUKorfXtrj6E/fPt77XcKniVktC7Xb3QkiEHCECtpMzmUXp73frhoRes/ZBB48rPdHINuv1LLZVKxVvx+BVrNmlFi/G5jDUVUi5QRE3drBSaPkTiqOlu6ivaStoOH9E58jLjNe6x5IRpTqgSnT9cK85aevaSoNEGZz3jKMr/lJKKnxt5XaRIjgM4S0mr7AEE5stEVGP76fxEWWZMa8KrrLp/A+MwkLTBvuWvmI7Tw1pEYHQ+r2LJEyOpFvZtr3tnk9Q6ryb6NdGq0ryUKhI1hKAuM3EYNvU6rUruthPRWc7SqVzniyYu+Y0akGuhlkZOFgc8ns7ytda4nE8cjvfiaWkNBiegzDpvOeveGkoS38/bTPlhGFjSSlZ0X0zOpVC21qpozuGscEbn81kcVnKWa967pB85fguEUk4kxr7drpO8STl815q3PXNrAci/tkeRe/vDrerb0Z/jd1VYXh/4re1anl8tO3pp2XOrDMjN0l+DFdJzyklJ9YboLW1dyDVzGAe5qawlO0tuGazBxUhLhVIMa6r4UMl5oVSYcuNUDGnN5DIRTyf+LHrqq8r+7p7z+UIqjbuHZyQ96cboGWJkSbO2lBvVy+LsAFZVAabKOO6wxWCKkNnrsgg3JyWe3rxRsrLc6LnJyaukLJYJFHKDvMxYZ1lywjnPaZ55fDqxP96RHk88Xi5M5zOmNJzNGLUMqUuimUJtlTk35nlmHHfgBkF5c1EvrgDVYvBYE2k10Jy5qf9k/glRPWGd4f7uyN/+sz/hiy8+5Xi34+7+jrvjUTiUutD3eWNuFuj+/3memef5LUPp326uCVbzvT9lvl0X3s7v9z/uzV+3A1l9tzb9afwBDW8DtVS8MQQnhUtwcWtf55w3X70+F1NKmxl4L0IsglrWyuZ7Z3tLzYnPa9Ov1VqFFmIdNactDq8XkJL4ETebkzUXQhgIQe59Yyw+DmLubAyHLBtUjML7kmSawqeffi4m7dpKHwc55Fo1yrZ6GHUxqB2Qxe932/3UMYbBOWiFmmXTffH8nukyMdnGfMlczhNlTaRVkn8oFVOlsPW2Z4WjaSSGOIohuvUO5yQD2bSm6mm1WZKGEwZBcHPO1FylTWmMdGlmWU+d9zhnqO1qVi7tSy22bG9vOv0jHahu8AMo+iuFfVXlvQiVCiCFrTVGY2FVRKF8SEGZncZXSgszlyJRh6ngg9mKxpyEm96MxTWj2c8WYxzNXLm30DR1SBOWtCLtSGE2DhusCHAsWG9pxeGj0LNME9FXSYlahMfaXUiggWZHWwxOKQqlSIpRCEFV1fJZlybiqJLFcsdby/1hJ+3vUshpprbM/nBPCH5rwYbjkXVdOJ1OrMtCG0ZaqQwxkktiulzY7fekdd6oAs7aq52PF67luixkTYFqDea84oJnOj1eb2RrmE5C6arA0hohBto6yzxTH+ecE3XtMZWZkuTvSYs+jCHNi9yPIWBCBOdI64VFFePRy15urRc7IGt4eP7A/nB33R+MmNrnnFS01jS5LzMOEYwcYtG2d0clSpNQkVTFLiy3lXoRsCuMI8GKwjsMox765D7+PYpyrqXi9wMnSty++cqH0MnfeeH4gfH287ftBr4+d9u+11oj6OKf6Yu3fNS5FVUcZg77/eaP6J3FBQeucZkuCv1bUl7JtbJkaWGVXDDGYeOeSuOrb36Dc/DpJw+sSXJMl/rIq6czPgy4YYfzsuks5wtNT2ZDFEuG490965IptRJDAITXhDWsi2wQdU2ksmKCxyp3Ys1J4iLtNau20bDecb7M+BixxrDMM/M0s9vtmdLC6/OFpVnO5wtvns6UlCgpc7ksjHEQDqkxrOtEM/JZyek5kIv4nKWcNItWFzbnqVZ89aSOVBq3EQ6ULOKV4CN//+//Bf/df/uP+fyzFzjfF0p7Ixb47nnUN/Db3OLfhqu4ofUfNW64Ut/zHO2mkN7+VkWk9FNB+Yc9nH3bVP+KaplNBWpuUEa4Hi6uxZdyJ43A9cZI6+z2cNQQhXBHsMQfDxVw9HvqerDqPyc+rdISNMaoSETaesZ2cY1HYgHl93PO7HY7vPGbEMgYy27cqerVy3rTGtZJlIPwwthMmAFaqaTpQo+M9N5R1pmaFlpaKesidkAlKTdMDlFGixDj/fa5+OAYhkAcI2GIhBhJeZFlvfUt8er32RC+dlfFw5XvKK1vjWJUoc4tGglSyHehjbkRUvkbRW/nz8nn/T5Ky9uvy3Bz0ty2ngbmipR2Q/DuaSy1cnfIEK4/6s/ZgzasFo5W/87G95TOWys34BAGaz3WCM9Uzz7yWZirXVFXubcm6n86/Ssn4cs7R8sFoweipopzmszJjryaxraPdv9SYyRFzYIkA7VG6yIh9f1stWFMhLYnxYAzVqI31Z5uiGGLUtzQ4iJ/t8bQioJGtYgFH7qUVgOF7f4xRqyYSsnqiynXqaxysGE1SgOQA1niiiKXJHn2VfPQWxM/ZrloEdMK2cgxwqltVClZry3sdoOIcXc7cW7JZZsHKQmVLudGK2JJZGiaSX9FKGuRQ5HxAdvkGnmndBOr/sx62PjWnqcRnvXm6983fmRBqSfEfjJpPRHAXFEUzTbaUhf47s3zdtyiSO9+/foafhdt8I9svRv50FvV96KHUIOIRy7zQjAGH4NMDCNE8FILPgRSkuzVcRxlUrYilg3qnz6dznzz+szrpxNxCOyWldM0s3eeEIXIv+bCb755KTeqtdzfHWkY1pQELbViwgoySYy1shDIikCthjgoSrJI+znVhdKEVH9/OBBGi2uZpWbSUjk9STvbW8eSVw2Lr8xLZlpXXr45waMQoqdZWlJvHh/Z7/aMRYzPx+BZphlqJoYgragmk7YiG40LQTNx1faiCSLTqlGrg0YzFZrF2radDH/+85/zxeefE6NX5Pz91/Ldr3UUKITw1sZyOzc+9Lu/6/FBdPLdYnL7uZ9a33/oo6un35o7NwdW55y0v807Vmm83Za7LSx7m9D2OD1jsLW+hcR3NNIYI2Q+nTO91dt/pgHBh61tDUgMXC+iVEwgreCq/oqK7jivMZLXzcg7rwWl/KneXYukKr6LRX0KadBKIc2TvF9nqdUyrwvrvLDOE2meyOssxYhy/cTYXBS6OOHsWaudmnEgxCB2K0OkzpmWC11T3LmsfRPtBuXXA6j8P5eiaBgb+mb9252H3t7uv59z2faQTSjF2+vGbTG9TQd6E6x7F5orZ7ap5Y9eZ6PG9sZIMosIE9U6rfZIWykm0b9fy1bxhDTWbnuy3QRE/ZXIpbLK+bM3BaUU4HWbw33/aU3Mz2uuhBBJ66IpRpV1UqTNGKjXpJxuzWesES9nq4+Jeuwj19gZwFqaaVRFMK0TG6JmwVmPMyPZO0rOuCb3kzXgYpDiTd4VnSPsrBO6BJmraX13TJDXRFF0WC29TBG+biu9uhbnhqItaWikRfLh+/0taLTsUVU7A2LMX1U5rgcj/eRdpyZU6SC0hthd7XbCR7ZGDN011UZSdKy0yasYkAtloqp4SA86WXijzjlcg1wFGOvcXmscqfZ7hLdEfrcWZx87flxBuanzvvUd+SN31HXvM9cX97FCnQ9ttD9E6PP9z9HbkO9XhPevXM4X1nWBWtUH0rGskmtrKoRxYM2FMQRSKRgnpqmX84XcKrVJSyGOI3LWhrSuOO+oxjCdLyy50BSdM2FgyY1YwZRKzivj7sC6LuJTFQL7IXA5Vb2RxW8urxJaXyuiOh92+BDYjQdilJZBq41pmcUiIwbGGLk7HgjOEZzB1xHSAmUQMvZl4nI5SwxclY3HmMZvfvOSp/PE3bNnpCTWRY+nCRN3vJ4XXM7SVjLQalNDYgNNbTR8kLD71k2Y1YzVe/X07D5Y3Re0I8fdSNhx2O/wwdFTr4x5W/n6rg/lu+NtfuXvZ7zLi/rQuP3O9vMdqf1p/EGPq4r32tKuymOiQVozVCiUrfgMinA56wD1tLViRG2s2QQ7153+7UPPLT3IWksrhZKvPMpbusc4jGAVjTQidIvRbebYCktJBrMiSQAhaGHq1C4FsTipuajiVgj+UZG7/tylFtI066FcuYWtsBtG1mXmcha/zXWaWddZ2pFqoN7UJ3Pz3GwFYwRhjUNkf9gT92IaDWw+nZmybdRy1qw4/IYc98+itkKr4HzkuNtr27JQSqOVIjGDvI0e3x7ujLlmrYOYRHfxj3SBxbNzCF0xrmih63nfV05ha93iSP6kLK+t71Ne17NSCqZdQR3voyp35UBunac0I4AFDev89tk3oKmc3Zg+L6AnOsnhxUkRSmHN4vQhNAB9/tbLUEG74hgFwdXuScuSgmOqWOB1bmTUgwk0bQnf+m2IQARdt72xEngxi7l3bFEjdfu8k+eY55nBB7y3UriVwn4cZN+tRV9Swan1T8lZBUEOayU7XZwKPMVIa148KUXl7VohlaoFvMHHkZSuB4R8uWyo9RWRhpZ13uhzCo82kdSloBnAepwPGARt9GEn7z04Fc5Z5mWRz1lpG94LJ3VdVnJaJTu8iUsBRue/6TZOanjfEL6yDWKn1w+71W4G8q1BMWbr1nXA5WPH70DlLX9vrW/5chr6fgSlIn713x6/r5b3h8a3n1cWjNPTE+uy4krFUNSaQ0jeKa2kXIiaMOGDv7aVXMBaQRFzyQw+bvB2A5ox+DBw/2zAjvcM9yspJ0yIzKXiloXYMvM8sywz1jpi8NiWWc6BYPZQMy1njnfPGYcoebkYxjEyjlGJ1gljHU7jtrizoqwzcsIPxjJaR00JUyotZQbnGO+O2JJpyXE4HHg8nVmnifO8Ms0TtTVev3pktz9QamV39wzfKo9ffUm6LHz6Yk8yDasWDRhLiJFx3DOnzLIuV0TGig2TKOnFmgk9QRuM1pNXGw4fvVgZtYoxsgn3a/ih+fM+5PH2Z283i7/pYvNjRT9vI5O30owrevnT+MMaW0tU51OM8SraqG27bEVtWZxz2BA2PmRvk3aPW6OIWP/53ib1PuJcIbiIONTJhjjPsxQWtm2/c/v7tVasFwTS+0Br0s7exB4dqdDsbm9F0V1rJQZPWhZAzKCNevjldSHfvP95loQdayQTep5mjKnklJimCYchPn/AlAKaFW5qwZSMqQVHA2dZFhHqtAb7/R6vPNBhHNnfHfn088/INHKV9eT0eOL+/g4THMU0qm2iEs/tasp9c+9LAo78u39OYfRYRDjl4lVUdMt3vqKU4ukpqmEpKCXFpq9JlVYySTt1lrYJVdpNu7EjnCEEARH0WrXezjQWFwK1FUquGk955SQKqiT+iC4Ead+Wus2/VAq5ZBoWi8M4t1mubeueaeS8Uqq8Hx8cYRgpTZJ5jPfiFGDVtQDxEm3WYXyglUzNMhNTrngjc6e1Ql4zLUg6lAKTWNfpBRYbPE79Ufv944rDqeK55JXzuQhIYgUYcdYyhMh+HJnnGXlFRnj+QdwQaJ4WAm3zau0d04qp4lAgGoSMaZUlJ7IXBwFB+pK0opvcr+RVLZq6krwyxCDey2rifr5M2i6X+RZipFZJfsolk/IiFDYfpbg3Fu90Xg/Dhkr3NSNG8dJc04IzlrwmgvOE3l1rvX1vxRbKeY67A1gvvOoKtog5u49BrL2sxSllJZfCvK5Y6/Ehymtz4iTxseOHF5RGnPp7sdRj/qRut9sp6gqlK0zfOXnqtySjF6Df3uR/m0383c35lrv0Lvr49vPdvr33e1caY3jz5g2lFoyKccJeVG/zmnDWsqwr0YNxg7SRkDZQrRO1yY0tFgiCojnvGYYo9h/NsV5Wwtg4DDvmZaG0wlIKZplZFvF+u5wvHPZ7DuMDrhWWy4mHuz37w5G7w5HByWTsvIcwRFlcrMO0jAGiD5Q1MVrP/tknrOsiC0ItrOcLy3ThfHqEUmWylszoHW0c2Q2RcRjwPvLXv/6K/TACmV/95huOuZJS0xxYQ2qWZAxTyvghEMYdLJMskq1xOp8oTcPnjUz0QhNvTwO5GaoRgnvHJWUyiSm6MWIT5Jzd7ELeN953Ld83X96dGx9C09/3e+97zO/mRX5bhPPB4nJ7nLdzwq85zj+NP8hhlJOo7emcM86EK38MMft2igBs1v1NTaOVfxhCUEPinvfNVjy0WsGqV2Lt80SK1RhHQSdJUGHNgto1Y2SzL4VAJi8JZxwhRMYgooZSK6WJSbizAaNt56o8sMy1KM40HGCckxaeHvaWy0LKSc2nPTkvpOmsrUYYrWEcInmexHpFPQ43AZEWFrWwKdB723O/3xOGgTBECY9Iizx/TpjW2A8Rb8ANA8VZcjJUY2lO+Y6mggZSOB+kcNhQxn7vas6zFZrNdnsqkFKLbOC11m5mJhZQBuV9SqtfuIJivm7QKF7ljNaqHDer6FC5FpfeSZs65cyiJvnWy/svRfaQ3rrsXHda08cpuFKE24gcx7vg1BkrPsBrwkUR7cgy0vdno9YyBpxQj4Q+pXxga6VgpoFt0rFqDZszeV0kizt4XIj4OKi4x2ARSkTTVq8cRkTc2isIGrjgJYqyNPEebTq/rKEgGddLncheLPdiCBxGEXyJ/VQi1STi0VVV9cghTbpiwu91WrzPF6Vd6O1TtTVfUyKlRs/X9n6DNUQw08E0hB9c1hVvDK0UlsuFYMV9wLsgWeFGfD+bUT9l57HRSydz3GmMpPgrl6pN6Npol5nW1w/nCN7TsqwW1olv5bqujLu9dFCNFbN858AFcYKwjmAczQmfslknEZfGXr2djcd6Oci64LE+yjX/SNADfmj04jsbmhCi9Wq1d/4PtGbeKtY+xFf8mPb1Dykwf5uC9N2CwN5wQ41hO9ks88J+jMxpFnK090zLQnWW6DXjM620KFm6kjqzY8oJV43mwoJTn6zgBikAbWCuhsfHCy7usFXMvNd15fWrlzhrKDlx3O/4+Rc/4+5wR/COzz//gv1uTymZdV45zU+i3KtVNi4ni0cvMJ13PDw8EMMBawbujwcOceB8OfP0+IZ5ujCfJ371i18QQ8RZy+n8mjh6rHF88/VLyX4ddjx/9hw/LaTXT4QQ+Orrb0jFEMc9uWVev3lkHAeCj8RhwNXMmmVhHcaRZmCaV0UXDc04GnaLMKuwEct5z+V0zhKiV+PaHz5P3je+r5h83/he7u1HFKTf86qkxa33ltnmpS4EP/jxfhq/j9GLqc5D6vzr0srmN9nNwOk/Y4xi0E1SVUR9o5xGI+bDvSDtiu5eACl6D9oed1fEvq8lrQOj+pjOStawtDfdlehfy6ZIxtkNTaulQCkiUugLfmvCzRqCvD8aNVvhvbWGqdAQEYNF+GMgqKVp4mubloW0rhRd93LnnbW6tfudFqY2SGfCBae+kWrwvZlDG0XgBMjo4phmypaG0rmUvZDsnEixW1Ixk3IMsW/TuszNZ1qrvB/nvKbpaAGj7d0mlR/o3ody7jBXBNtaKQoE1eyilevzbWKVjn7WIpz3Xojqz93+v+nn0foFbyIOMd5jjdHDQsFmh/FG+t+m//b1s3Heq5gqYY2WC034mo2m81VazKWKy0jPYXc+EIcRgxiKOwPeB1JaVYcgFYVRbqe18pm3JnxbY+R7rVZyLVIo6RQvNVOWDD7iorTArXMMRRxmXNZCe1bLHK48Ra/Z3RsXeVm0TS5MfessIXhpi5e8eZyKYlqK3laLfsY3+0WTuZZrpeSCC9plMHoABFxQfjGNaiAOIy5IDSBtb0mz2fpOSnmoXAEIj9N7qNEphzKHPdZJip7RTh+KVAoXVUJZvI/d5gDh4SqX2Bmx/yoNY72Gubzfx/lD43fQ8rZX9Eg/vG1RM7cUn45Qvo0I/pjxNyWauHIg+kUzROd4enzk7u4OW6SNk7LwD81kSbmIy761vHl8xDf49OEBamVNiXVZ8MNITvLvmjPjLlK8F+6jM8Rh4P4h8DitG8y+rInmAqd5IfrIs09/jg17TlPCmcz58gtSSpRcOJ3OEgBvLXEcGOIga4SVQna3E+sPa3/Jbtjz/OEFf/vP/wyzG3l8/Zpf/fKXfPXll0znC/v9gdP5ifPpArYwzSfmZSUXMV2Puz1xf8CPe5JE8vB4fklujnZZCDGwG/bcH/ccxj3H3UCeTnKzB6/Gv45xtyPXidKq3Gi1O/RbRSeV4/PuNUJEBjFGMZGXGcF7K8+PHLeF37ucs9u58b7fu76q93/vQwKzj3hVWii0bcGXh7iKK34X0aY/jd/9WJYFt99L9Fq/7g1pOdZK0HZz6ijWTWEpXK2qXR+9xnrGdVqkSpHXBMmpUkxJrdaVyXLoMvit1d10hxOkw+FwpLQC3QzcaiTjSlF1arUGfBD1bskK7pWrb0cTnhnVbYrTtRai91LUtkJNFWPEhHozWK6FZUnUAjmtrOvCmtJmAC7tW6OiZRXBeEccBkGZjBQiXZAkPouCknYrnp7yYgCMcOTQe7ELj3rBaRXtMwWsd5si2jqnBY7ZWv5ynaTrVEsmKh2gW4957+VArNcW2BJS9FPjlp8moo0qe0GQ1PHtZ625Fs1cC47YhVO6AVflRm5Hzlq2+rU1yClttAXTuZS1YPAY7QN1Zbfz0ioWtb+hJBG2ND1UWOtFLGPkOaweGnrx3ZrMz2EcNRpTi0r9jKUQb6RV9jrruxtCI2fxcPRGvItNaaQtFcnirWEtchAxTQ5Y2XuGENiNAzEG4euWgrFePE2riIaWeSYO41upPmGIrPOy3R/Re0KMdFGTFLaSsS7G5fIeaydK6vxx3kKRz6M0oSjQlfE0MI5htyOOw3Zo9GHQEAAvxTRiHn/VAMjP5Zyu+2CTaM63UpiUe+19VF6mHog6Imus2gZZfH9vrW0RyMZ0JwMt3+RN06M/P3b8qIKyk4j7BGr0k1n/CBuSo2xo1YBtv7Niso+37DW+Y7P/2IKz/1zVJInurP/lr3/Nr371K9L5DC5TiqQ57MPAOOw5n0+knDlfMndDoCHfj94TfIB5IedMUpK80TbJEOSm7XypYRjxubHkldpgWmYezwuXqeBsovAVX339hpoS6zxhkYUwKA+qqrHtMAwcDnv2405NiPfMCaASo+flmxP7/T1LSpzPJ16+es3pMrGWynA8cpoSl2lmSYWUFtbc8GFPIfObly85Xb6SNIIwUtXb6jQl1roSY+QQjtztR54dD3xyd8fdLnAumbbfEZzwI9c5C6fTO0yTCV9rA2+uJ2+zHVduryogOakhaIxU63q5jx/vooYfFGUZ86159r6W9buP+e5j3P77x4x+T8FVqf7T+MMbfSGupZGpOBc2U+8YAzFGnp6e2B0P15/t/L0QNksfQUS0wKpa4KAZzbVuop6OkmwbkRpYW2sIPmzz7ja/Oy0LrUpW8rlk5ukECLJXShFP3DSTvRp9o44MzuIUtUlZrFAupzcYDCVnpmkix8huN9DFSM6JGtcrP7PkxPl8lvjHjkgql/S6UUrh21HSEALH41FcGfpnbGHd3CdELDmMUWkGq1rACIeQhhSk+viCqkkxZbXQtqFv0MjPK+cdLRLSsm73nfhyZuYqpuHrOkuBccvH1DZzQ0UvtVJppCSiJoumxNxwEvt+0FXc3WKqqjgJc2NjZK4ImQgtum1Q3ZCuogXYQNO8a8QfNIhApqgoSYpmiaV0TpTvDag6Z0oRE/yOrDatWK0Rhbp3HtPUUB+2Q4DEEyYJxPAe1+Qap83IXUrajtxaY8W71Fly5orct0apDYchmSQC1WXhdHri4e4er/fVbr9nZy37fWGaZhWRGnJK2wG8FEEg15QJ48iw39NKkTl5nnQOOnx0cugpPTpVDwi2C6JgbZV1mcTaBxFE4SVr3fogrX8fGA97jvd3G7os9k2OZV3lUNYkgKDfCxsqqZhBq5mKREv2+wQg2ADWEIIWq01CBa4ghqDKfUI0Lc6HIerdLutFqbKPXm2lND3pI8fvKHqxb/q3fe/tpzZw5W8CnXzfZvpjNtjbzb63eb788iv+L//n/xN2OfEnLw6A3ODdbHYYBk18WPHZ0Ma4FZw1ZXb7HeM4MOdCDJEpzVjnlQwvLYiqqMKcM9459vs9yVtev2yc50wiUpaVX/7rf8s6Xbg/7AnWMYbI/f0D9w8DJlWaErnbacV888R+vyeGyDhEXnzyCWtaqeWkNj7/gTePb6g1s6aVtCYen066+DQus3A2m7Fiyp4zuVTm6rhky+unE1N+TRj2GB+Y08rh7o5PXrzgk7t7BgP3+wP7EAlGTpJjHIRQXqtujOKVlUrBYFhygyDXr5RCe/cQ0tu+Rloyomr7MEL4uxgfKjTf/b/chB/+/XfRyo945g+8nuv3rDUMw8er8H4av78RgmxuBmmD+VKImhud1gS1CN2laAvYSoux6qLemhidB/f2Mv02Kv02vad/3asYwGkh5p0jaHBBXpMmqlQxqa7d9DyzrkVsvTDaBkyYYrgsZ6KidklVpQZRbpeS8dZzuZwYovARx2ipZWGdBYlqtdGsZZpnLZ4NKUnh2cw1UzioYECrEaxz+N2wFTAhRg6Hw+a92K1+uqq72/9gmkY9Xj8zrCUOceMVijtHj5zsaJ+uPU0sZnp0a1dGW+fY7XZsGgJFOI0axvec8rcQZ64HVngbtFjXdQvMeHddEL6j2ZJwzGZ3JK3mzfKo8z87p1LXwawFycaibCJq6fGIrUErYtu28djjQLdVoknLPpd1Q++672i3WZPXGLBWDM9NlWSjVrIY3cszY6zTNrE4eHTlcXNWfIvr1fBd8NkqKLUqQmKMgs4W4Wl677m/vyMvUuAvy8KyLKx5ZVlm/BzY7fdYH9nv95RSWZZFePwIOmusZdB7VFKlMqlksJ6wk6Iup0Sak3TPrJjc+xCE29uaKrsdwQhNIw7i1+qcCp6MU7BHCkgbREPRikRbOi/0hqpFeOcKv+sLeeup3OfILXLY1wTn1U7KGMIwkEsnKqqOAkWItUOwodwNrAPjxejeaVtcrLrepjp+1/jh0YtoG0JPDNbdLGwItbZvdnIjKYza/319RHiHY7k9zzvjdjP+ro39Xe7kuxYPb/9ue+dxrs/TSbgpyans//U//g/8i3/xz/iH/9Xf1Z8LQMLSxJ1+N+KcJa+wrJU1NUZnWHNmXhdCdAzBMSnil0sl7kfiGGlGMkolmrHRnGNtCzHsObUKJhCd526354//+C84jDv+v//mXzNPM3fHO467IyU3ljURvGPvR4yF169f8fr1Kx79E+Nux+6w583jRK2FYdxhW2Y/OF6+OeGcZZ5mLhchxzsfybkyzwvztJKbYUmJZsT1P9VCKpk5F44PD2KknhJuNvzZH33GZ59+hjOWgGE3RmK0tLqCpjx0ON4YxxAt0/Sk/pOOqTiGeM85G4mgrJWettRbvsao4bDVU7TpCsUfdmB5d059aG5pV29rN/T53NvRbeuLdJrEdU71uXb7dWNu59+H/n/9XbSN2RT9N9rbNK6x20XuH3Yf/6Z/Gr+3sayZYZRI0N4q7cULRjZ8WwvBu2+tXZ1fd7t+WXNFRK4oeX3bt7BvLJvxtgpNWhPBgLmKHkqpRNpmAF1LJeWs9jZRWtaKWFmaoCNG8rKbcsuqRiOqNkgST5pjNwTWtX9PPG8agl7lpJ6S+j6TemUa5+R+dk7Se2IkDCLUk+SbzpWzZI1S3FSwHWVrjdZkTYjDQEqLoHnuxrTcus0LUdahuiF+9K/bG/Nn56QYUy9BmhQAuRSh3mgBAKI4NlVslG4V/r1NbvXQac2Vl9oLtdvr2C2a3lqbblDJiu55XH/uOn9UnZ/zJpJqiIl4K1m1W/I1iUhUJbjprgRBuatS0KW8borsZmQ+O9UYdH5nq2Wbj1Kd9CpYulHURjVysOrCsNLAxUhuYjHUmhR51LJxcU1fd6uYhFsjhWhtSHZ8bbTi6QlI6CFsTULPiuOeGIetrX68O26Z4T3MIq8rrRWcM+x2Hu8Hdr2gzEmKbWsI7WrtlTSuVKKBpUgmZ+FnKkLso1j1bTZLKsCrTfypa2uEARH7OItrWkp38VTn18Jb8+O2TukHjI5OS5taUWrclf6rlkA+BEGMc6HlQspZjOWtFMJGnWusc0qBEKP7jx2/FUK5Td6mdhCKzgiyquqvm5/dioE+4bcC8+1T2bunuNuC8N0F993f+S7E57u+/10FrXOe169f88/+2T+Fmng6PZGe39N8oBaES1EKtjUO+1G801LlPAmqcNgN0DLn8yOHw5EheIwNxGi5zGfenAuff/KClBINizGekhNpnhmcZ78/8Lf+7C/45PE1b169xKwXnn/2jP/+v/sn5NJ4+fVrxmHP/fEZ+/2RTx4+oc0rg5Ns1F//+lf86le/4j/94q8ZDju++KM/ojnDZZ74+stfc3p5EhWpDxoF1ijJcfrmjcSmGSseZs5jcDgXabYwDAEXPbvjjvuHO85PTyyL5WcvHvjbf/Iz9vsj07wSQ2AXPftRFOzGKH+0WVwcGIKVbHPTCN7y/2fvX391y7LzPuw3b2ut9917n1OnqrvYTUkkDTOy6Nix5VixjFiBJTixFCC28yGJBTiBvyRwECRAgPwPzv8Qf1XgOIpsATYJxpJtUhFppLspUqQoihfx0t3VdT3n7Mt7WWve8mGMOdd6d53qPlV9UTdTs3G6ztn7vazLXHOO8YxnPM+xQhn2RL9jiaZvDI3IYqp6kNI8YJv7RyPQf/bxSfOjY5+GPq9b8tGQgM06zscDwscB5Cd9w3d4TZXOXzRjtBZ208DNzcg0fc6h/GEcuQjKUp1wx2rNPfmQTV7Krf5REm00cX9MszBaYtuuUdv1rzxCEmRDkhJ3K0FWkGAJFQXHMYzD2lWdlx6UBpUDSstMtZLEyDwEKcs2TchKJeOtlIBrQVArLdmir2ugQgtwMVLSzkmkxMSoYMKFwDhODOPIMA0sOUl3s7VyHfV/TejdOLEJTCmuhbJqNXBp52v0MboEHqRTWq9l22ecE4cfDeLWe9JuEFoiFF6gt5ak5d/2ntwSZ+id642DWVuVhbWm8hj82O6h1FaKXvfBhnpuX9aahWQbznJ/FOmV4wBMgX5s0pG81e0tKak2ppTlqdJV7ZsWobVCPzDrOtjApaY6IJfcaHCDoNN6rSVolIaeAgxhwOakndVgatFYVNe8Xt3Ui9bW/EJH3gkibt/vUBWLycKZXKUZxquXvAtBegsUpeNwELUCI8i2HwJxXghN9k+DtaTX0qpiik3iBtSQ3RAC5Mw0TYC46PkhMF1f9cSBGMXKsErZPuWMcaq/7JQrbBrvdnVi2j7r24CyJUBoIG9cQ9jlTzWreH2pUgb32vEtF1apFQhFxiqK2Rp429Sy7gfEoWyIUWWjx2Qev+BVNcD26zUo7L/aII6vwzX7TrzJx4jldyo1tiy2ed6+//77fP2P/ghrHMfjmfMSYT9gHJBV1y0tXO12HA9HDvFELobTeeE4eN68uWGwYq8IiExGMeQsSv45ZbG+CtA4OQYYhsBud8XVtOfLX3jG1/9QFqaHu5dc7a95660v8OUvfpEXL+6Y55mUAjdPr7DXN1gjWdQ//+M/zv/4y1/ixeHAu9/8Ju9+8B4vHu6phwfC7T0vPnopJdNgGIfA9f4GZx0310/JOfPs6VOePXvG/mbP85cv+Nb773KOM2+9/Tb76x3GGe4e7lgOhS//yS/xxS9+gadPnnA8L5xOZ4J3YoFVEqfjkcPDQSD9cRAOSa1CFPaBtCSyM9gQRIA3Sneb09LaY2XTVurpxOTvU7n7+zVeNedfPdoz1HbKQkVQ8Zsne66uRnUH+nz8sI0QAkuUIGcMgcHbC/Fj2TxKb+RoQaExIn8i7jQijbIl4F+ukZff2da3mJJyqGzfPFvpVCAyqEWeoWm3o+RMXKQxxiLcvqAdvhSRn5HYMavtHRqwCEIanFOZI0HN5vkscmS6gUpJUTZKEMmdVKUpYXABHwJhGBl3e0EjrfhxG2cZ3EDz7BYEZ6UISIewIvab9T6npBa54rTSgromPSTyLBLWrIUEpZE4uwpnaylUzn9FIQGKzYo2Ilq4+duXBr334qGsbkFNl7RVxODSCvIxYn1R7rStYcR0+0LXKHJbYIbNDqwoHwjiKqVWacqxpskNJWrxNO/x7ffXulaHWkWoXbZahY9ai/IptSEEaq9iNhRcmk6k8cYNgVAEQaxJLDaD8ZBW33AUwa2KSDtr8ej18KLqGWplmWd1dxInnYLhfD6RSmEYRnV8yoQwdI5smw9F0cNxv+N0d09SusiojeCEzvMAAQAASURBVJ/Lssj5tWvrPWi3trWOYRCpvnGSxtek1Qg/DTjrBXFW8XEqWC8BXM6ZeZ5FxNzIHp9LIfjLBHF7L/o6YFarSpBECExXR5HfKQcbfX6RudIQUDCkLOLvzhhscZd8SmNx7vtQ8n7VMPT0gUb8bCe8PXHNS/u7tp/QxuNN9TFH7dsFgp+GM7l+3qt/772XZpph4Fd/9Vf5uZ/7OY7HmZv9xOkcOZzOzNeDZBOqJxaXWRpRdnte3N5jmAlu4niOTH7GjAPOOtL5RF6y8iUt53Pkvfc/YDfsmDL4cU9OWbS51K6QlHE18xM//iVevHjBNI3EdObh9iO+9KUf5yf/1JdYlsLptPD++9/krS/8CZHz8Z533nuf+/nMn/hTf5J/9l/47/FTpxNziry8veX9d9/F5szL5y8wVHbTxH7aEedZiNDLoiWehbvjLfu95Sd/8kviSnG9J6bIw+GB5ApPvvw2b731ppTW96Oeg4GamecTczwT44JzhlCccm0yp3lhcIaYYamGh9PCv/yv/Evk3Zv88t/7B9gQBKrPHw+YrGrvObXH2Vp7/jCPT5rnr/qdjCZuCyktYDLj5Hny9IppGqR8yus/8J+PH9yoFZEDsWKBdnc8456+gRlWjcG2sLdgsmtUbsqboM4XtWIVtZfuVgtGpVvqyqustRJzxnl9PqzHe4N3wqEsyiHzvmKtl1JoMjgq1zdPCF7ctmLOeGOZpokaRJQ5ZTFYgNqd64yzhHEUlIRCSYnj6UReEl63mFxkk3VOdO/sMLILQcrJPmhzXsBNA9Nup/Nauo5RuZysSJZzFh8GLfsJ7SUmaXJMy4wxwrkzRmwic85kMsaJlp/oBmqQ4yw+eCTCFinPUiDmRh0IUCvSHF4lUI0zJYkOoYWVwv0okCsKIjT+oTXi4tISiFqledKYplXabBxTR6ba54krTlE/c23C2MyT1gDbLBJr1cBX7W0xYAajAad09sp9KWCSot9yMkkdXNpyNKo17RrIr0lBrQpEeoctUspucYF1AWgIdtXObohZFAlacmGDx9ZMLlaQZe8FSS1ZA1/hqMYW5BpxNLIY8UbxtSctErAZ2q6wlIjXLnOj9LLj8b5f28ZZlFI1nE8nsIZx3IlMYIwkRV2lWCeJ1nmZMc6vKgPD0KkPtVZsrTgnXEtjpcnLucD9/X0HtkLwpBy7lFVuCY2GTCmJzJfbdGDLWQHGkbNW7KxVAqRo1+oll9calJqify/SWd+4n1JUayVyqTI7F0glk4uI4J/jwvSaa953h1B2iH0TUNYGhcsrStlqOl6+T6rg31lK5XUCxm0J/PF7vt3vHo9ShLz7n/1n/xn/xX/xX3B7e0sII8ZNpFJ4OM48nM5cDVLKEaFzKDExhZGb6xte3r7E1Awl4axwOp7s9xIcFUHdzvPMfI5km7F4jI04abiipMz5dMQZ+PLbX+R09xIzWZbTA9ZWpiEQ08xH73+LP/knf5Ld6Lm+vqFUh/VwmA+E7Bl2nofzPb//B7/HtNsRU8J5zxIj11c7vvT2jxHnmSEMUDLLfOblRx9yOjxQysIQHGYYyNXLA+zFpm0YB5YFyrni94FpmHgyBcLgOJ+OpOUMObHMmfMysxtEmiTnjLGGIQykLHaRyRiygVOGJ2++zf/oL/0bfPCQ+Ie//02e3x6BinvF7TLK92mE9NedJ/8kxifN8ddB4LViiHUVyIyj5ekbV+yvwkZhwfAjEEv//91IKRFjAu9xxuDC2BsxirOM40hKM7WK25b3nnGa+qaUVNh7N8pyvuVIAj0Ybc072/nfpHS2QWnfdNEEzLaNTDiNxnnCZKkpi5xIqRi1shuswyDnsds7TqcjFW2acU4Ep3NDMquIJvtB7e2MXgMvWnkV4Ut6acCZ9leyoRmx+5v2O2oVNCtn6SA32rXcXEekKTL1c5W9REqf7RpP0ySBt3an55SlXCkOzZvgrz0/rRKwllmT2vgVo2XcKpaMJWe8t9IEmcQXegWAJYAoKUszRgv4tUTZgsWWRDTf9VU2JwlX1Np+z2j3DNXjVHHuqkhhSeJtThUZqZrF4rOfm1Zx5E6rQovzlCWS0yJ7E1KuT8aqELe8Zlt23cor5SSIpIBvGkwaOYciixbdrFo5md6KkDlG7UUreOOpNoOXeVGr6DhSK86KZ7eqzWugatdysMJxBvBPn4rYfMmkkpXveAalCd3f32OMJHlWUf92nUttUlBWm2mEq+mMoNy55Itzb6XtrEhejJFpt1PRfKFh1GJIywwpgTcd/MiqeOB9YBwHYk6KCCulROdC2x289Rrg1061MNaLukIRqohv3f7O4Z3FVumgD84qf3jVRO3NZ1JmUMkmT6mVJSUGJ1JRPgSMX52lXmd8ioCybv60J6f9X0/RNjD4emFaN1yDzB/zJrfjcVDwWdDHV/18+30Nrlf6QbuuADw8PPDX//pf57/+r/8r0ZFzkr1WHMfzwgfPX3C1M0xv3VBrZdFAsmTxlfXWkUthjomX9xFvDfZqj5sXESRWtKJox1uuhlItYRiJOelGsmBqYTkf2b/1Fm4/8vzDF7z59Jrz+SSE88GTS+Tl8/d4+8e+xBtPdyyxYsNAKZWbJxOGHQ8PD1zt9izzAjkTnPA+h2FkmQ/y8BbxaZ3PR46nW3a7wNV+L4b0pWD9yE216jwwY4lAZHKV0QZubvY8udkRU+V8ipwf7plPZxHRrZl5TpzPM3FeMDaQ60xcEhkjQvDZ8OK48D//d/4if+Kn/incR/f89E//NF/9td+gFLNm/pupIJwy4YjUNj0/xXidYO6T5tAnvV/B+n58n+Y4Pvn1Rks+CecN1zc7rq9GrC2qh1YloPx8/NCNFhi2phS/6eAuKtjcEKbWcNJe35rNHvPK2+e2f1+WwuhrrHVCn2nyJJ3z1hY92jOEPDuKkFlTqcYSiiCCKUsQkGor/6oOoR9oCnuotEyqUY9XgklK1QBBvm8YB5wT+zjrHD6MkqS2gFl/3tiW1SByMtqAIyhe8zq3oo9ZKykuPTBrgVIDN3JS9E2PtfVAayVVXpPXRqlaBXG0tjXUFFLbyGuFok2bKs9WtcxLrb0b9jHnv93Tban+MbWrlbRBdSBta9qpVCObuu2uc2bV1qwr0layXrlaxU4RpPZpZJOrej5SKrdUK0hhyUVF040iiTov7RpINvkiqUuugt36I7mWxrFyQx3GVmqWX5piRKS/5I4O1yJqB3I95LwqhlgEqJF7Zcm1UDUYl2DdYVBErmnPAziHSRGygSL7wzCEPm8NknD0m9+agDa0PaP3xXuHSCYZEfHXe1NVaN8pgi5UVHlWl7hoAK97FhKUieD9pSSW1dK9tRaHUwDOsrmkcn5KP5Fye7sPeidaE45+Z9Xb3YPFdp+rXiPlzfYufl00ao/V5WfzMmvjnsXWVfngdcbrO+VYXaxkKkg2aMC5RhDOgNMATaZUrZel6xbIdej2YjH85IPeZuUXx7R5T3n0MH/ieRizOZb2dyvllFL4+Z//f/N3/+4vUathnqNKCsDxeMbbwu39kfc+tOzHwD540nlmDDvhShnH/mpPuB84Hg6MwTGnynFJoo3mPCUlvJMO59N5YRpGYi4s6v+dUtIF0xCXmfl44Go3cVSLscP9HVUn7zCM2BI53t/y9OmNSJCUmVoq8yHy9OkbsLPUfOJ6N3Cz95hqSIPBN1/XFInzifP5wHw88OzZDkvh4eGOYdwRAGMGMKJxGZzcs+eHO4JF7doclkLNkfPpQFYRWkF7zyQDx+OJ+Xximq7YDTvm+UD1jmwci3E8+9IX+Zf/1b+AcYEnT5/wUz/1E/zKb/ym+seu80SsytzKn7TmUweTnzQvPnHoA/nKX202523M+6qk6duhlJ/YNEZVYWfD1X7Pk5trfF/npeZozeuTpj8fP7jRSp1NQ1KQkNq3jZwzbtO93FC3WiveKaH+FWvlqoG44XSBBA7UvvktcWZ00r1JtdrMtTZgCNrjdBOSQFOqZwHnB5Z5Zj6dsMr9K1XK1ktK7PciFSaJcZFzSplqClg5x1pLLwOWUgk7sZdrSGQIg+gSOtefcRu8lhglUaxGy/1ulcmRcq6gnk3apQVVbhjWcrHy0VwL2GjXsgVyaMNI0XKzcPtqla3dasm4WLEGlA5vCQoSiM1ia0rKrYP/sjLWAt2GQj6mg7W97eLcGrqMuNBYa1cEWptcckqbffayS7wx0SjadV2NiusbQeIqQJIfWwspb46puZOxOgy1kmld3X5KRwzlT1aERoIl2b8oUK2h5kI1BUclLaXPz3Ztmgh/RSwHc6M4mZaoiGC6QRpnhH9v+rJvdK41XuGKwokznCnys9EYMNoZXzO1tOfL9HMEKeMHfAecYo6EYdTnuAmBg1xoow01nuP5RPBDf16NC9Lco4mHgAIOjyDH26bkhk43yktLQo2eS81ZvrfRQJBGo+aKY1R6Sm5L7c+YBIwrPxdMV4qQ3WWNr1tiezzrutH2WH5AOpSXm+wn7errpN/+W6LqunnIX+0k8r0qY24/f80G188fhoH/8r/8L/lbf+tvEWPk4eGBYRhIKRH8SEySJcdqePfDW6wx/PSf+jK1Jo5zYj8EYo6M08TVNHG4uyMaw+39QcnaljIgpeVl4bwsFIwKgp+JFcIy46cR6wy1Zo7HB+7vXmLrlcoNVK72e1JcqMlQ4yK/t4b7l895+uwt7l/c8XD/gB8C736zcn31hForu2mHt56nN28wWsv5eEe2IgFyOt1zOtwLZyNZbl++4Pp6TykifWBzJS6zLCQxMs8zdYkEYxisEyQzJ87nExRxGnhxfyDsdsxx4bTM4tIQhHR/PM6cY8Iay0NO3M6Rf+9/8W/x5pf/pGjFDQN/4stf4q03nvLu+x/1zKlNeqvl7sah3EqpfO+Hdii+IqJ8zH98/JpPmtPb0X7/6tdIgFBqYTcEbp7spZvQpM1rPu/w/mEdOWdijPhRGgKcc9i6ohTLEvE1473riWTl45pzUd1jtvNkWw5dNevWilBKrXs0iCzJI9RMmll0g3EG51X+JScGH6AUQhgZhwlqJi0RM8mcHnOm5MRuGATBywmDZX/zlGVZtKFIAoVJmxQ6OuddLwODBJDbYZ1Y0+UsZc+YkpQ+3Vq2b2XtcRy7/mQpeQ3cNtew0UI6MpzXY0E7dkMIXVhbgkihK7iq2pfOQxZXmawlVZHgKWsg1+/N+n2G1alnW9re3tvHAMhFMNlRwfV+S7d+7bTpUurH1qE2L0w/T6tJsVrr1ap7UmaYAo6l81OtEw3Qxl10plluavvS5lgb4gXrMRgrgUwvk2dLrlFLukL3ytqNb4xRZQBBYWuVynbwgwh0V9GzlC5spTYokmpVZzUXfVMpmJQpm14No+/Z0g7O57Ooquja7JDudXFUrNK1TSUlp6Ym0iArUk1y/ZclYRvw44TLOsej6HlGoZV5H7D671ae994T59SD/iZb5IdAi58exye1wmmeWZZFUHOrYIoi/MZKSdtar1xhdB1wQjkRSzpN8KQJyGnHfm3z3DmV8pN9bpom5pSYvATES9zuN99+fJfC5rqJa8bxncbjsqFUJT7Z7u7TBAiv89pXlS0b2fjdd9/l537u58T14Hym1tp5OIuSWDOZmEQw9BvvvuBmf8NbT3YcFMn01mAoXO/3vAyelAunOWKtp5YD3OzxBuL5JDc5jNwfjphauXGG7A03VxOjcn9MqRyPB0qRcie14oeBkjJBCb4fvXjOB+99wEcfPuetL36Rq91eOuVs4OF44g8/+IDD4cDTJ0/JMWNxPHvjDd549kwekJI5n48cDwesNVxfX2Et5BL5wz/6A3G6KJX9OGIx3N/eaTogKGnMUhJy3nE+L0oRiIzjyJzEhcAZS7WO8xJZXt5h7UCYdrz//CUPxfKn/4X/Af/KX/iLGD9KZmUyb775Bm9/4S3ee/9DevqqY/uANv5U3WR73814ZWD3CpRo++/1Oy+7bh8Hk9/5/a84HgrOVfZXoo0mgavj8i3fA4j28/E9H84FMQlIafXfzglDEI9vY7R5BCmlldYcYYDcrQejLuidwwWb8rlIm0iZdi2lts3KmBO1qOuObx2tbcaofJDRVKhq2dtLI4qxBeM8cT6xu9nhVbqnVjifjoQeUEZiKkzjyKSoYAv0DKucTKlVjQjk+4wxhGGQZjM+Xl0qRYJcrw02OUUpNVtLZ3XViqEwBN8rIyJIsyZa63MnKJCxpvP9jOr2KX1tE/AKbJNTwlpx/8ktoExRRJd6IE9HxaxrmqOKSCIlzXbvHgtWt+NrPLX+OiPuPVVLlG0t6faZ1lyoA4C42RhjpAu/0Ks3JYtHeKYIX07RXllDJYAXFK1STZL9ilW5Rc659IQnKYS5zl1oipgVcVapGhK0PvqCBH3eePGyV74rpnRtz1rltblWggsStJdKqZG0JHxQ3WtjGNwg16UWioaRVVVXMKY3cvnBdovJlIQSMY6hI3+lNtvLtZnJWEuOi0oqKaJXsmDmikzWLIGjpYg9cM3sph3nJQp6DIzDoBI8Gx5sFa96edzW9d/a0K+3dQGR9FHOc47dTtE4q5JPco0NBqNNNdaiQb+lKli03RObK1RhVQ0YfJBAWhUAJBh2HO9nraCU7vr0OuMzcCi3Q26aoMY6s9hs/tvY8VVojSKUrwoEXpW9feyIGiT8mkHEx7/Dqo2U55d/6Zd577332E076YSKiXEYhBxsKhV5eGOBORnGsOcPv/EB9k+9zdPJck4R7zy2ZK72IzdXV3z44qXYLOpDXmvhyX6H80LExTuKNZSYmWOkOEtYZsIkiIZJ6l6RHMEN5CVis5ZxnGM/7TgMI7nCfD7z/re+xVvP3iQMYuVorXRoNhL34f7A7YtbvvWtd9hPOy15iR2VsYanT59AycQUub17yRACDw8H4SstkbRElvOZIQySWYVAmHbMy0JV/bJ4ioQQCEPh5YuXYByn85HldCJYj8Uxx8T5sFCM5+mbX+Tf/9/+B9w8e7N3CBpj2A0DX/6xH+O3fvv3KKllnVoeUIecFlA2esX3Y7SP/XYcys8ayH4n9BKEUnJ9PfLkZi8dskW4k5dv+zyg/GEcHWkQc9xe2jNaetvKBwmXWUqFsqm4zqETG0bf5/slSik8p1Y22zatXJLp183LaNmy5qLC10jpzBislWe7ldwArB8oppIqWKmP48aJYirGSFBSbaLqZmcruCA8wJzFZrZWsctzXsvKjXdYy0WQtW0gMqbxJuXwvfOqkSjPmwRXolvYePpFOY2pCPLSroFp+5OiW0YrG7ahMwjvsCGE1sqa3ahQVaImDEIxESqK7eXJ9j0rvWV7zS3G1kfntnbxX1bM9DWorFHVJLX9Xv/vVevNWvJW9Ne0ZpMqyYKz/eeNHxrnWcr4Vkv+pvEoJWgqVjqvS17F6KuW0PWAaWXuVkI3RpzfqMIjFI6hA3U1si5hENS5kLFV5IswVpp2UiRlCeCqfkdFxOSbV/16X9fvTErLkCha+aI94i36XKz0IAn4V1S/d2hrYpZShBbQ19jvQS0qPh5EUN1Uw6DNqtY5UpI9elkWDcIVgjHC/6z6GVC7M9bjvaUHkxrghlHkh4z1qy0xplMRQJHIWrtVolyjVs4vvfqxnqdDpn/r61DUMi9M6qoVY9qUyL/zeP2A8hUbn1lnd/uJvFT5AY9effGQtSJia1B9RQy6+Z7XQyxftUG/Kujsi5exWOP55jfe4Rd+4e9wcy0lm5JFRFoucEGczyrCDHKkAmWRvOiPvvkeP/7WNaYmhjevsRSC9+z3O8LDA2A5HE/KjZpIy8LVNOAG5SQOA4dFfLPf2O+wzkt3mXMiE6HKrklLJ16tknJKDNPIkydPMFZM53PO3NzccPP0KUtMPBwO7KaJabdjmnY8efIGP/ZjM2kRjboUF+7v76hT5cs//iUtKYAPntvbW87nMzlHakqc5wPDMDKOOwwQgsEGz7JE5iUKd8k7pp1nOc7c3t52TgxYYhLZB1Mz1QTOMXEfI/+bf+/f5if+6Z+mSVtQpUzlneWtN99gCJ5FEYw2Wsm7SYY0QdjvxXglr7dVsh4/A2uFq72DbXD3GHF/1XdcvK8j9uuG6p3h5npHCNLp2Ep45mPf/fn4oRsSqckGrRuayHgUTLE4W5SsL7woMRdY/Zll1O7pveWR17ZNWYOta8NjC1hbB2t7X6dWFKVmtDmpHLtqssj5OH/RQNISuFoLuTbVRqPJTaYFysEIP1TAId089cE0m8+r/U8DEzaNS3rJZIMVvpizGxkaK4FcVD9mKSvXfi6rH/ornrWKPjR2gyY6DS5td35prlzSdV6wxpJK7mikxHYWKGtlTu9p56e2c2znoffycUDZrRN7YtHuC53bVtphNxRZkSqrx99t8cyjHbetE9ZKOV5nIlrhoDa6hAjeOyfHKV7ZQg+oRkrO4LV7Wq61s57V63kD/BiUOoA0ZEk0KNfLsTZHWdGnNNqYZp0kTqYqnWEjxG/0/1tQI0g3opdqnWgnms38llfr/ZJ7pHcUq+X4RiSoFZw+L6W0AK5oVSDK+6voWZLregx1VbURswKD9UH2Re8xplBj6klOD0SrBJDiHV+gqu1iFt5uSxly1meiKmpum5qJ63O25ArNshPVnexzuDUTZYz1K5JuZL9M6VHyU9R4wMi0liRW0NWSE858X5xyHJBpy4EivytClPRBq4DdWFl9bBjWwHOzBfeAsW3C6EkXuWH2kxsPXifYzDn3rL2J1uaSiDHy3/w3/xUffvQ+Nzc3VDKlZpnzpvSMzCBNSMbTYWPnHQ9z5JvP71hqJeyveHvnMDEyTgNhCKJnNg6cc8KmiJ0GzrXAsnB+OPVjq0Y1uKrF5IoNhoJlyRlfCzVKxpZrxQ0D55IpVPzoOR2OfPj+u1jr+NY732J3fc1uf8XV9Q0310+Yl8jx7kCMC1/84hf54hff4sXLl+RU2D+9xntHbKbzRfibY/CkxbAbPN6AGT3n88Ki5GCM4fRwwBjHHCNvXT/Bh8DxdOLucJANrUpw+jAvgCdMI7lY7o8Lt3PmZ/6lP8df+Df/TUQ9ImGqEPZFhiLw5PqafQgsp9jlh70Fb2AMjiE4pRnokyd35dvOg283XoUWthlpLibr5vf6c3ORLH2WofO3ZIxDaQ6OZ2++yW6/U1J93RzQK9/9+fghGm3jEaRLStAWsXEztZKN1Y1RUTgjm2l31tDgyjvTg662cZaSOpEfGlpZFLGRTWgcx87X1KhHECHneyADwqPqjW8aGG2lbVZuoAaUtWKxSOuMbF4+DMS49PKsvFm6YU0xmCxVnyYHIw0fspFbs+ojGqQBQQCtqsFsa1wR1LCVegHVAbS9g1aOWfaMFujUWlUUW8uciqgZ60TPUgMNgyCqRTLhTbDKihipRE0XX9IArKINTsonMMjG7P1lMrlNCtrxFbQZQzvtq/IvV5cZCcIU95OA0nvZkZvGpbVIl7XpAZNYLKrVI5VYhbdOkU7h1N+ruo9V6BMlieRPwWBMwhpDScodtWKaMQTfA+DteeRS+/VyRrzIsU7AG6q49Jh1LqVScEH0VLvmpFEjEE1Oaq1452kd6M0S0XtPdR5vGydX5o9c2wZIfxwJ7s+loreN9laKoWhXet6ssxZNArHqga3PYalr13U2pGXBDyPOGLx1vUmJ1mCmSU+hasKkT29GkTW9LkXkoIo+d9YHRZdVysgHbe42vfubKhzJV8VPwgs1okWrzWxrRQDmeVFQWzaycQwUNrzsT7G5fCoOZQv4OgL/+Iu2OgLtR/WTuW0NiWmf3TZM6X7aok6XGedjtPExB3M91svXdK5Jy+qAf/z7/5i/8//5O+z3+02mfCnV0TJuaxp/QYLnQmGpYFPh/ed3BO958ie+wM7JYrXfX/Py7k7Ok8p5XhhDYLcbSDEJudc7+awKh9OZaTeKw0WF/W4kp0JKkWAdpQrp1jmHHwfIibpYfAgMQ+DwcAA/4r1nGicO9w8iSWCt8Lic5XwWP++YI8ZbhhBEHiQlcNKtF2cpI6VlxiI6VQAheByrjdM4TaRcISVZnP3APN9SShbXAj+yxMT9/QFnHRXL7eEEfmIh8+/8L/9d3nz7i+SUcMrHAqfovWE37dhNEy9uD3oP5UEMwTOOAyGEjlDysTnz7cd2znzS/Onz5uPT8GLqv6phZzu+PTq5/fCqfBW1VtyPDEPYbNDrRv35+OEfSYND6x3TNCqCERjUFSOnSEq1v07KbEkcdhaRIJH5F4G1YcM5R03gXENa2n+LbpqNU2UfrYMfP8YcJWBw2n19ns89MBPHmIChEGPRjVl+13T+cinERY4/pQXfkFRFPp1TncSGhtUqTMaSWVLpAWwvK2fReawlX+wPOWeK2usFbSpo5eY5SYm+NVGKE4jdNOzIpuq8hayBuDXgHcY7Pf9BAJFFuHNyzJWqYtxilSdcPFWKEStYRV8bLSGnpOvX2lVfNntgaxDZ7kWFda9xikBVBFk0GvTpHWG7CLXX94RBx+OmjqKBWEkJOw7q0S3cxWEY1L85k7Kg0HLhDTVHEYQ3FoE3wFvHqIg5Zg2UcilEirquyPl66xiso5llFiolJqF7ISL9pYpAv7W6/iGl6oburQ5JdPvORu1oJWsZcg9aoLWd6mYzhy5jAfmueZ4v6CcNdbcC2faA3TsPBlrri3Tgy3UoJTOfj6SUu5zPbtqzxLi+hipo9+a+pRjF67sDzWvjMEbvtm1VDn2G6+Y+V9NRflipBqZWQnDkcpkQzfOMH9ZGOZFGdPgQyLUwx0jwlpyjnq/QAl93fJccysvfV70q7Rav0PC6gV9yIyVAXffLjwek7eePP+d1AsnHnxFj7PZLtVbu7+/5m3/zb3I+n7m5uQH42CLc/14qxYoCflU0qujvl1xIceGPvvU+N8HzpTevwUBQ0nJO0hGdUuL27p6UVefLWaLadQVrWVJmjklvvlgyBYsQho3tpfAGt5diGMaRFCNX1zd84Qtf5LhETqeZB+6wxvPyxQvZLKzh7S9+kd00cTwedNEX79bgLLtpIqfI4D2n44HT6cjNbkeMC8s8S6bmnASGWbJwgfAdbzx7RqZy+3BLzkn4GLViSuHu4YElF2rKnO+P+P0NH93e8+//7/73/Pf/5T/Xu0FbVr9ed9jtRsZx0M0JjPLOhiEwjYN237k+LT8Lj/EHOb4TX1IWEkWlfOD6+ophCD+go/t8fK9HR8hKZVmizOMiAuEiHWZxrqESua+D4gMtHcjeezHB0MSm86uyyLRJ0FV6mbfx/7x32syjaIgxNJ6k8OwE/XKt1FRFx/B8PLLf70Way6Dd04tu8FKNcq45ahgNJAUxdVbeY9SSkSIWkFU3wpKjNuQWDYYsJde1eaAW0AYbKacjPt1aWSoldfmlLk2mCJE0Kxia4KaUASveBYz1WEUwM6Jc4YYgG3mzgixCLxJBauXTtT91RbvQQNEYxN8cqwhOQ4i0r2CDAG+FpFvyIJ8lwVLJWvUzFeubWL3pfudddJu6irur13aTdpGhLkoNiStF3FQ0WPfeC35XJGDPJVG5FIW3RvaXjKC8ZEMmgibycs3oFrpynRsq29yfdK+urE4tpUgDjVbWJGat4K3so1b82J0Vq1GMBO5W952kTU5Or2tWQX3XKAUF5Rau1IT1QVTJKG20akGwHiWowH+7V0Yrr9VAIZEX1Vd1DUVcn1OnslzdRnszjsejBMBeq/zGkKseZwvGe0isnXKadBSgdTa1gH1bpRWHI9ODzAJqR7lqagp1zGONJFRZ1R+s1URXP8d4z7LMqrASmOeZTMGUzdrxmuP1A8pXwDQyEaH1dzWMWOKty83zVU05r0KUWlbeLuSrTmbNyC/RzW/HtdwSuVv284u/+Iv81m/9FiGEjgy0LHIrLdDSgpa9YIzKDEh3Vq4RF3YcljO/+/VvMU3/FPurkZIXcbmoSTrQQuB0Xri9e2AYR/X9lMX9vCQKR5yzBGd59vSGYE2XK2rZSEMPhmGgOstxeZCr5jyxVNKysBsHzvOZnCveD+zsjt205/7ujuPxQXgUOeNc4OpqR6FyOh6YTye8swTnuBonco4silhUZLEpqBZkGLCDoWpZ/ny4hwqH44HlfMYaw3GeOZ5O0untA6kaPvroJX/mn/+z/JX/2b/FMIy9e62yIn3GiFWbVScctCTUOJMheMZhIDj/qSb764zH8+hxIvNZP/M1X4msE4bdfmSaRuXFvO77Px8/TKMFFZVKzEndLKR5gFqUb9WQEil1OWelkc8Z5ctuk2XlSZmqjQGrph9s10Pd5Jyi9tZKdaUK0rFN7tFgTsrymebYYW1QBDB3yR0pn62VqtXhRVxTnG/SRqWXbXO32TMXAuDGCrpkNHCp+r21WEII5NQqYbI+ittN4wy251P3j2p7QGOUiy30TtHoE03J2iVWXAgiCdPEzDG907ghiilFWpdCLXJdGve0IM0hLYiXCpPa/W2ubWusWsuL4pRWQStxl4FnYU0Y9I7q60x/P8UIytUaY3T+iI/6NrhENHw3oA6IiPtWUFsPRatvPawSGR6dH0X5ddLBbnrHfmj7vQY11nqsb3MKBR5Ut9FCzRKwWyNIn0gMIVQrqW/3BKIoBzGlImYcaLBn6PNJg48ORhgFJnqTip5LbWXpdg9q7UFuQwO3MUstTf9RbIKzFQeoS+pI1UQgqW+2BSfPmSg1WFKhB4dNt7NWg2+gUJXGmKrOQehe6LxwVptEklBkVDJoC3gZizGld9Qb2rVvVYEq876tQxU1T1gpIVveL/p89/uNzs3NnPpO4zPIBj2u+7WocLOoKYL3eptwy+okur6E7z95I/0swWQrfzjn+K3f+i1+/ud/XoXLV0L1MEgpdZ7nizO27Tg1C6ztYaNizSC8nOB4cTrwj7/1ET/5J99m7HwdKY8777m+HjicFuYlU+qitkhycz2W++OZ6+srjqczhsKgwvGlVnKMWuZ1jMNIcFfCkTydebh/YDeO5CdicXg8ztQiZfQG6Q/jyPk8471jv9+TSyWeZ3HtqEXLTB5jDUuUru5pGKnVSBd6SRRjpTBhhCMSQuD+9pZqDKfjgYf7OzCWlAv3D0fOc6RUQSqSddgx8B/8H/9PPH3rC5KpFZXH0OyiJSm9zODFq9o6T/CBaQxM08Q0TSLV5Jpfx3befHfjO82n7924/GwhqWdC8FxfXYk+HuVjSdfn40dntM1LKjibrmDA+21yrHMe+X0xmVpXXqSss/oHQSXXtXPLC2trpjyj0hdj1mCkFs2JdV2qrVlHy4ybLmpjjGyaipyslRH5WbejM7ZziGtpMjClczzFgccqF622kxVf6ta5WyX4EKQ2rIGYIm0r5Ujdu2ge9mtQLHKFUqqstspGjAq7NxTUe2189OriI8edFY0MRhtQklg+WqDkRFE0yiABR0E5eBoY6R3SR9q06H9FhJFgJrX7abYNLXS2WKlVup43e58Ea0YDZLVDxFFMUQBGSqxyL0z/nDbv1vkBqa4Wgn4jcC3NXXKNmq54O8ZatcNakx5MoRgjzSRmbWgxLhB8ACfoaomZkqM697S5rpSIJr7txFSkWiN5gUCSoEhxLiq2b6UDXWeZzrUqlpj9cFtH9RoXsCkJXyRS8Oh50WlJC/T0XmsjTO0bk8bIet9yLpiSwAl6a+wahFmkSSeVugnuWVHSIjJa2bTg3fREBG3owihaWtAEqKHd/azXpKMnH2unvjFFnz9plhpCIOWV8tdAtsbRzynRkG6r5/JpjNg+Zcm7xYq1Q8vWqX8oK5zMJ2zI2yDw1Rv1JbrZJvP2+z92VJsJ8RgBbWNLxgV47733+Nmf/VnO5zPjOMqF1GzbOSGzz/Pcyd8yL40sgJvjb3lQwZByxbuB4crx/st7xt3Ej3/hCdUIed2FgDEeGwI3fuLhcBKOj4Fp2jGnyN3Dgf1u4nRe5GEvCXe9I3jx7fQqgxGCLLjjKOr9wzAy7a/Ev7WKtVXOld3uCmvFNzzGSBgGrJONYAgDxjimMRCXRTeChCmZ0/GIwWyalwrDOAq/Ri9vGAcKhiUJByTOM3f3d6RSsGEgpRNLzCxFODipwAcv7vk//J//L/z0z/x3JZtEdN+oVS2w+o3sXZONMG2dSBwNw8DVbsc4joTgL2QgNGF+7fEqqsSrEMpvh5K/Cs3cft4nvU/2ysfPhghzjNPAOAWkfPH5+JEd1jAvM8MwsNuNLEtkGoaNGL8hZ9kwTdupbBUZHrgMJkHRwq2ridMmGNcRkFKNbBhGdQ3Vei2VKp7AGi0Ya0Qz1lTyvIg2nXNc31wTozSmmEI3ZTDI60Vg3JJLxFRLzVCMNBvkGCnq9OOspWZp3nF6nMVYqdZ0jceintge7wytoW6Zz+Ij3NCxLAGf8A9F4WIcJpaoVBwrTjIxivOQDwMei0iAG6py8XKSjlVjPcZ5rHeU2LQcpeQMhZwWakkq9VbJKYr9HlLSl59nOccKOSuyXDUIAOUSJmxolJVKqeIx7ZyYQaAc1KydzlKyNZ1K1QKeXAUsdRps7MYBazwpR0XkEHF5K7aWzZkI46ThURtZZt3PIkW5ml7DD7vZ3SVQss1VxUhTSE6JWDIJsFUaeeYUZe7VyhIz3noGN3UpnKTQma2NzqBzxVpyLuIXbwJ2HHo3f8qRpQDGY73K4FCkeaohi+qKk5PwEasGyDlloNlIqlC3GgUZmrtUW6sbgrcGzZI3Wao2rsVFBfr9QIO9RVnAivi/NSwxaVf8OqpE4HJlnWNwRl2mMjlVPU59/mle2ivyWHrIbHQfHiip9POngHNeeNa9ikdTxIRW8m70DCsJwRIXbqYbQUg16IwxEtMidqVGEgHvLX7wCvRkXQNeb3zKgLJJP2h2VutFWUYytktphH6B+fgmuw0WG6m0v8Ksm25tIOi3O7pH3/E4EGjd3cuy8Df/5t/kN3/zN9nv9xcdgyCL004leO7u7pTP1rJ2fY2ik01fSiBjWQhitRg78I33PqKWxNvPrrDDjpIiXjNIP4gp/PF4YEmZ8zzjh5GUCw+nmY9u7xFry5F9gZoS8XTiyc0NKSWxGhvGbsdVNSMeph2mZIL3lCoPzzCOjM5y5W/6vQNkIimZfhhHSkospfBwfFB7SE+qkSEMDPsB60Wo3TqxRjsvCz547h8eWJaZ+XzGO092heN54ThHjuczMYv92kcvXvKX/s2/zP/03/63GPc72cA6dL+dQ3JtvddSN8LV8lrq3u0mrq72jOpe0GV0Wu3ju0ApPz4/Xx+hfJzIvKpkfknVeBysCkIcBmngkM3zM5/K5+OHYPSE26CZP8ScyAYCjlADuSSmYDsXLOfMOE3EtPSGj2WZ2e12vblk253tXMU5eRaksWQtoYI87yL/UahurQRUFC0E/BAu5qm1q96l99K0J97WEkz2oVp6BTnOEuOqe6icr1qLdG0jHMoG9LRA2WgT2va5lWdFkRUrQXdbp51zuODVjUdlYeyKygr3ENE8NCJYngvSmGFESslrh3KJKgSeEyUJCllTZAiOTFD5GvneoNJJKWUVvJbgwyl383FQIWXKBjysiXhL0i/uU1gblxpnrdGMTJVGllYONnYt60vwo/JixnedyXZ9x401Zdnc71QyuRZI4sA0umbpJ+hXsA5Xhe+Xke8J406QXu0m914CvKydznKvPCkVSs1S2vahB+SmCt8zR70QVuY8wHT1RM4zRWJKxGoZwoQ3kmI4CikvMkcUNStzEpDBtDK/Alq929lsaFKKYGdx66l1tbd83KizCpBX2mTNHZlXLqs1Kp1v13J5oy2UsnqqO08uIhRvjCgi2OA70ltrq3zqvrwB2lr1rtQqzWvtxrLuld77R+ihfqZdecdVO/pNlet2Op0EtVfXoWb1ejqdcD4w7XdyPZBGvZQy9/f3POX1xmcseeuk6Ih57SfTfv84mGzj4wHf5ebaAgqjN/R1EaOLI3wFatne8+u//ut87Wtf4/r6+qLU3d7XIvvdbsf5fO6WR/2zQOBoa7GqGdO+rXEyrvZ70vnA+y/ugcrkKrZErsbAMDisqex2E95W5lgoxpKqYUnifX08L5zmSHCWORX208A4rULetVRSTDjrubraY5xjGAfubm+Fa+QDUxhYYiLsJgazk0y6ZGJaOJ/PzOeZwQVizsRTxjtLLIUnb74p3YBAzhFrLFHgC5wXyDyfzsLtbNeuQpzlOqVSORzPHM+zCCGHgayZ2P/wL/wF3njrC9IjVzdb0/Z2mjaP6AiBs5YQHLtpZL/fsd/vGELAqVep6dPxBxeBfTsE8lVz/7V4lEa4sSt3UjfnH+B5fT6+d6Pzk7RycxHoKWfRe0dMEfAMQ8B7JyXXXDC1BY2etkauvMmWyBYgK6K3Ka+qiDrGapermtJtqis5594BaxTJXBGc2isE1lpKTsIlrO37i/aUGDBudUdRpFWCruaPXbvXtdOyrQQ98t2N196OG7OqbYCRTdkbCrJBOi9BJc5o+d0wTrsV9TdGGwwGkSrSddlpI4fvSF6mGllLc25ak8J1b+fau7i1E7oFD9KBrJJ55ZKP1zywLWIo0WFE1j3GGCnHG2qnYsHqYIORLmBboTVadFRLdUuFwimBoPcW48UisuSFeUmExtWzDh9Eakj4fpsg14BQI+Sz5c4aqazVQq5gqwQX1gctuzrGYeJ8OtP4eFh6k6lFglKvtpq1IaZUrJc5bq0AITFGEb6Xbi28D4QwYkomZUFFPcI1tFq5Siniw6A771rkbWL83YHGqvC/tf21tUjQKAFcexob5a5VIxvAaLWbBm1+csKf1GMzWWxHc5WGI+ukKcm61v1uiPMiDj9WtT9zkiTINMtE4cSWJOXp1tku01hK7A0Ma4Lqot2pAXDdaMay7j8tOO5INyuSb7Di2PWY31vFHTD4kePxpM+i6aoKrzO+O+vF/n+vHt8p+GtIDaA3UycCjQtR+88/qbTYj+UVJcfH/37nnXf4uZ/7uf4Ab7PEXl5QqYkQAtfX19zd3ZFSlm7BtjjWIhC6Eu7blEazg3nJeDdyjAfef3ngrSd7BmsJpbIrhd044Cm8+cYTPrp94LQkvB9x3lMXw3lJHM4Lzhqmw4lK4cnVjvM8Mw0j006aeWqtnOfI1c3IEjPXT59KCTwM7HZXPHGe/dU13osMCVayxJSSlJtiwnvHMos8UE6JWgrLfGY5nzBJpRMQS7ElLqQqZO9SCvcPDzjnWM6zyCsU4ZzEajjHDC5I6aNk/tRP/CQ/9VM/JSU7J5yfntPXNYiUxES4W020V+6HZ7+buNlfMY4jPgR1d9jMr3/Ccdc2MfmkMvmrkMyWoIn38dgf4Fb4+Cd+Yp+PzzzaOpRzxodB0MG6Ngm0hb/Uhi5c6j9Kp7bpZcx1/vRsvm8W2zJp86WW9U07YzebDSiCajafcxGw0gOk/p7agIPaKHA9nbbGqIuNaDVmVLe3oaFaml7dgmRtv0CE9LSqrqW9xEcVjlcL+Iw0h8hmL92xgsisSE5b2401EsxWKfkLSKGv0/NNcdHEWIMFBFFuPtxtQ76gbGmD1epmU/tnbr+/BTPb18j1bHxaQWnbz7quM2uCXGnxaEOoNv/WY1n5dZWWqrcucemgNn3uGWv1+iq30DXaUFMlQErJxmqAZiQxsU5Lo6sgvGlxmR5/EThYdkXrcR5pzilqY9m0qqvpTflFrQpbzU80J9F9QRraBue6iw/GCWWhqSgJyiMIa0PIdf635ul2bbSpX+93abeLxm9s97pdO6s8W692pLUUbDbi5GNEN7pxKmuL0XUqOCO2qcZYqpNkTSoMQkUwmI4oXjwHkvlJAG2kurCVOpSAeNXTXitel45TdTs39R7KM70CItKcJc210oyWJOiucg+tWzVpX2d8VwElZrvVrUhj2yAfl/zaf1/Fq2yinKZHqa+B6GzGJyGZ2w38F37hF3jnnXc6b3IlRZueiQJ9IdjtdizLwv29ON4MrW2/ZUCI3lPLKCSplhTHhICzew7nI/X2gbduJiZbSTFCsOQlMtfCF998xrc+fMk5i/VUxXA8zwRntMtbvIDRbCTnJKipLj6lVmJKXF1dseSE9Z6lFFwpmBKp88y1H0R/LCfJ3CdPTploLNM0MowT5+MBjCXFBR8GzuezyMT6II0CwBxjt32qCLeypsQyzzhrWWLk4Xjm/nBkThm8J2VFT6zl7v5eJ60Kyna+x+MHAebzwnvvvSc81xCYppGr62uur/eM4yASGCpT0oL5H2Tg9XhufaeS9+PfXc5xWYSHMDBOk/LUPt38/3z88I0midUT1dF2FKEa2xd9WEueDWWz1ikaI92ubc1qo69d1m7K0fq9JZNiUUUECVK3lZg+L42gOJRNVWCDoLVRS1ZLSClw684rv9tUpIyhN7TknBRhWwED7z3B2/5ezKVIeaXxvjT4YSOnZAzFtKfGdH5kc9hqDi3tHJ1u7q2bt3Wu1looKfZvLDmRlkVATWMoObGo9WR3GKmtXLoNCDfBu3IgQUO+zV7XTr6H7Y8qZjnnLiFlrZQiyyag7sENbYnbVvjWjuImMo9pKKfv+7PIva3zzTil01TlsZq6WZMk8Kq2yQmBiJwLF1aQU9GPbJQEKl1CSa6J3hdEfcQPFUplPs8EReSskf4BC5RlFj1mRNBc5n7tpdv5dKRaEQTHiHQd1kogXGq/FiKOXvp+Yo3waPWCiYA9TvaznCh5nYpNI3W9R9CddaoI9zcZKfluoYE43eOaWHkDnGoFF1qDV+rJkcg4iaSeVV5wGIeO0regtj3bhkqOohN9EUC2OdQepYauXuw7tbvumI58Che6lbzl9ZLgRT3W4/nI7mqP9+rKd2Hh+u3HpwsoddPWx2WTI7fFpvaI/xM/4tEG+4kNDz37/Xj58HHZ/GObO+t2bRC+4C//8i/zd3/plxjGcZOVr9/3KlTJe89+v2eeZ+ZFmmJEg82o4GrrSpab5RQqN9ZyniPjODLuPQ8PLynpAf/sinEIhCWzn4J2XGWe3NzgYqGeZqYCh8Mdtw8nai244KBecbPfsxuFHBzjzDQIUXoYRTg258z19TUxReISFYnM5ByZlxPDMCFk+kLKlfPpzOA8p9NZM0exs1rOZ/H2NpZx2lFqZT6fe0ZurBV5IgznGJmPJ3HIeXjg/nDktCzcHg5EMxLPkTll3ri64Vvvvc9f/xv/KW7/BsVOop+lemgrQiOdezFG5vPM7//+7/P+hx8yjIGr3cjNfmK/nxiGIKUFq5sxfZp8D0ZDAV6FJF7Ove9+KOJDxlAJgxNKxCu5AJ+PH70hZUznvPCaSyEVoY20cmQpMARpEMEa5nlmv9/L1q46lafTiePxrJp3rapSujjyNpgEcNaLiDdC3pfky1I1OC2bQCnmtvlKA4DVzl/vRYKlKIfQKl9PxL5FL7IFU7WI6LWUqrVxqBRyXMhlRUK899iK8BBrkbJnyrjg+oYoKBm4EOS7gDnN4szSAi0D47hT6R7VWAyBeTnJ9bbiJmLDgEfQWqPIa4wLvjm3GEOJC3E50xxu2pX03kLN5CiUg2ZXB1wAD4/XhYZ6ot9LsSL2bpQTbpsbj9AVci3Yol3cmO7A09HJFZ/RrmatpLWqhsoVWWtUTxGMq7gwkvJygVJVDd5tNWvZW4NyY1RJpBrsIL7RYClG/uQKxSgKCqQliUONNpRlqdlhrddSqVM7QOH1YrKCEBVSgipr3jiOLOeD0BG8l8DXe1JH0lSXN7iuIJCz0BiM9Q0mF+QxSweOEZ0eMBbrTEeXK5VcpJkKxIKxUT7kP5cIvvMqL2Wka7vURWIcg3BAQ8D6iuuB4oYLbOgNtLmu5gVNB3uJC3muXF1dYVV7+mLLMSgtwAJJnJv8iuBtebbtuLHreUKhlBYUC4ezde/HFHFVOa254ocBY6SxTC6kqDI46+X862Wfybcbrx1Q9guuT7ShCrcCMX4vJQnCVi4vzCchku13ayC3BgdVyyWYlZ+43Vofo4vtZ61E06SBaq0sMfLrv/7r/K2//bcZx1GibUUk3YbT1EoUrau4VhGCDSFwdXVFznekHIX4Dkgm17S7tCxkjXalqf5UrRQMYXfDeT7w/u0JGwZMGEmxUn1mMAUfJgZTcEvB2sgwTJxPD9yfZ8bjmeAtu5cP2DeeSEebt8Rl5snNNdZk0nImlUQxFa/yD/PxKNlTXMjeMZdmD6bQ9hKJ8YR1ssHVUrWzURb73W7H4eHIvCycljP7qz1hGDgvC/eHI4fjWaSPkEV6TpFM5eXdHac54qY9KYOxARcGxt2eX/5v/78U/wQ/PhEiN1kRhKqSbw2eV6TawDB4nl1N3Fzv2e8nxjHgncHYxh8zunQr+fhTBGGvCg7XzflyXj3Oex4nH6/TvHOZAWv5zkEtScvdDqku6Nm8Isn5fPxojUapyTnjresoXjLi094qdIIvib1tjFGaD5S/6DUYbeVraSTYFglz/67Ha2Ij3Tu1W9vOQeucusK09sI1mSqlkFNimReMrQw+9NW5Awm1YmshV23yUPSyZkFWDS2QDL1sVquujcpDK0BwHuvUQ7oKpcahSbu1xFRIWfRwQwhYL/zwZp3ovGc+L1w/faPL/2CED5bURceA2LQaQ82ZVBJohWVwnlSTKEsYQymJ+STuIM0KMKV84af+uPHJmPXeVg0walXTht7Vz8eqYdv71cwgmkNJxWDKSjvo9CygdWM0ZCuEgG2IY1YB8Uzn2sndlcaikiWQlXK7ZXSjlLWL3APTkE7nCS6A88wxKaolvLqkUj+t2aQ5dzb0S+apOn9pgD9Ne84Pd+RlIcWZmhLmWpqcqlnIiqyO08Sw38k8TJEKLKkweOHA2uJZ5lmuz0bQvqRFkV2ZijlVjLcrQlwloDRYDdhEZSTnxBBcj0c6Wig2Ph1jaLxK5xxZ51VrlMs6560iuNY5XBCE1SQJpq0XRFNkkyxZ+cqn00nv8YaeUjT41+pCzrknIrkUvFnjlO1aU2slJpn31lq8GzTwhKRNaMscWVhUlzWIyoAXDrYzhrDfc57PnE7CaR3H8TVXu88gGyT/2eoYgYhMFcQB/uPozmcZH8v8Hv388WbbOUTyS3KWhfkf/aN/xN/4G3/jwt5si2p+rDzRz8v0jALkwT0cDqSURJC7XwLJ6lsgYloSYdvibPB+xFJ5OLzk/ed31FKZvCBxT64tYfIMfmDwwDQQLFATh8M9d/dHRmsYjWTe+zHAGPDO8uL5c26ePuHp0zc4zgvxfMJPO2opHE8HxnFkmvbExeGcWkJVsWFMcWF0AecMcVmIcSHHRYVPK+d55v7+nnlZmK72LEvkdD4TRjmX48M9zntO5zPGWB7Oked3D3z08oHqJs7nmWod+2nPw91LKpV33vkW7733PtfPWmYvfq2ShbfrpS4a3rLbjVzt9zx58oSnT59wdbXvOpwXAq+befFZR1t0Xz13G/J++X2fNDdfNV5VHm/NDQDjODBNkxLyzeoRTkMSPh8/akMQMemkbQilCHqLgHBEdOoqqy2cs1JOtLQOZUFdGg1ny5UUCZGCUR271gFstIGgbUBG/7Tu13Uumgu00qCmBVY4zCUXqJmaodrcq0bSEdxSONG36KofVlAhWsBitNvWCDKSa9HSnQIATp1OMLTGoDXhkjLqOIoUzUVZ2KpcG8r5cw4bBrVKrFKizwlRyxDNxKye5U47aNOycJ5n7aZVhNI5DEZE6NF9hTXw2wZ2pW71ItVOD9M1G2tuCa9R/h/r39u+o9xAieEulSDaJ/f7rprFq/7FGlDmnKnLok0bUuIMg+3Xv5fYSwu41O6wObbUFUnWAqFsZooYBowcq3LtGvWplSSlDN38q62iyYIo55RFqFttdY2R7vWcI8v5DCVJ/GCEYpVSZNhNuGnADoGhTqRl6RUyZz2uVHBrl3PBkBEkHY1JStG5b9bAtzba2mZJFcrIhrGqcy+XImiqtQJiILQKseBckc3GfW37mLUW1/jC0DUgWzJhjDS6hMZp1P/VSndFSjkj1qXyHaUIXW4FztQ9qjkq6ZBEUGIfmTdBHYpqB9qc1y50I9qeWRuimsNSjNKZnkthWUTX+vq1VrxPhVDW9YK3K8ljBPLbI0Tfjue43Yu3+/R24368iRflIGy5LK2j7/7+nl/91V/ll37pl1iWhWEYxMowhI3dX310/Hws6GwNOk1iKMZIyaveWK2rgGjr8Gs6WM3gPVfR0Rp2V9wdH7DG8OzJXhA6jtwYz95YrqeBM5XgAtZesywzD4cTg4XBGAY/4Mw1u3GkFCO2himKpeQ4Uqtk2yEEBmsZnHghnI8P5FKYxpH9/ppgLSZ4vJVyjLMGUwuz8jPneWYcJ0qtXF1fkxUDzLmQDgeO93ek+UQtYr31cJp5mBMf3h6JJshkXBLT6NkPjruDoKXn05nzfOaqFH3Aant++7xqm643YgN1dbVjv9+z3+8Zx3HjXfvdjc8agH6Mh/YpP/eTEqUQguqLSlDbtpPPg8kf3WGM6UhdbXqqijxVRUsGE/ra1d5TG4WolytZN2law2IrvZoeUAoD5LIE3vQpTVE9SSO+w8BFd/K2ccTgKVqtaDXXUjKrDnZL3Iv+aYU3TaiNNNEllTtpKB/KCW2OJ61xqFf7DFL9ss1STtbhadoRpp0eq5YyMeKv3dZf7ylGGkmMaZWYsgluCnHO1Cwi1KVK8+H5dAJQjqEKSiOBZRcJL4JcbhHeFtC3ewMtMAFTpIGIKmhV83auVYTAjXXrPtmiNw0q+30HtvuiBIa2I51Yv5kfeh8VzVu5tcKPlcBCKjki/m5EOLwKl1euv2SwzqlxRas362f5QSSjShVtUussqOc5IKLvTi0FO6gkJ9QatYyetdXzzjEx54wh9cDU2IXFWUqJTPYau9+JRafRa1UF6fNB6F+llq48UHS/Fm6hUjMerbO28S6bQsujGKRRSJpBWS5NpL81IWnzas8jVOZJLStbMG9akNrii/aMt6BYewBaP0RLRBrwtcRMKeADvaIayypxFLhcH7ZoZdM2zaUQhgKFHlCKlavrcyTlS1BN1geV0ypVOu1j5HXHp2zK2fIN9DloZQQuy9Kf+AmPgsnHv2ufLPfgsrHh8fu2HdqtxJ1S4pvvvMMv/MIv8Lu/+7uqV5ZZlqXrTnnVaNp2CW/5MO0zt1yZaZoopXA4HIhLxKvm2/pHFzLN0Bu/I5dCacR0P2FC4u6cSPVIfXJNLAuVB2qK7Hcjjox1hnAtTjbvfvght/cnPGCdZ5p2TEumlpkcz2ptZphSpFI5Phy5uXkiwReQ40LQTKnESFmED+kxUMQMPudIbvZimj3d39/3klvSDCelyPl44OWLj0gpcZwXqhs4LpnbU+aDuxN2uiEuidF7rqeB0+1zhsFzWM44Z1jOc89QV0Sw9nXVO4cPjv1u4vrqipvra25urpmmqQddElReJhrfC4RypV68enynEvTrBpPr36vOGdfPqx/P58jkj/xoFJyW+RcNBa0xONtcoHSD9q4jGLXWjjBIAlxIUYJAR48wALB2DTqsL1L2zLmXulPOKl0D3g/92D7WXb0ZzjliWmQzBRX1FncUo8CTbJKlbwZt/ZTA02hyJGXn9ty05B+zInvGWbESZBMI+YGcxasaa9hNe/z1FWkR965cqybr4qRCrUzjQCwNVS2UbMjLQomLNAnFhRwj1Mw55945u5zPOO/x4yjrZLtmGzS4KHojVoCp36OiqGRDg9t1MMaImLqec+Owpiz2ja3CIpdupba09SflRGtHFuC04mgd9HrfKd11qCG8VFaNTS3HliTOWxXXy6bO+o56JpWvqopABh8wNmB8kKYX6zBa6q4FzKY5SY698YSl87o1Rol9oZyAt47iHDmLbnKpgrbN55M0kpqCVzNsoQE5cpoxpuINpLhANRTEm94Wiw+BmDIpC+XCgjS6eY/TQDnGKGg0AupQqgqSF2pGeKGpYKkU5cg2mlthFVHPVchV3gdMVVFwA8ZIYtBkonJxSv2QeCilxDCOUh1IhRRFO5Ou1y0Jp8P1uTUv4mo3L2IFXWvFNj3R3LRYBa2vdQ2K8+a+tPnU0MVtNS9nQYt9CGqAsrDf77WcL3NwGAbu7+97krftMP9O47vQoaxaAnkUSJpXbYLbn716Q368WV/8W7OXxyXqbdBXSuH58+f8wR/8Ab/4d/4OL1686ItyCyCbsHkPSjaf85jb2dDJbYmjcTAXVdBvXVcfPzfTSwbWWnkYSsH4AT9ecToeyOeM4cgb13usnRmDZ4gRSmZp4q7DxJObZxzvX/JwXJh2iXMqPJwipxoJStBelpk333zGMARwhfPpyDLPpCUShsButyPOs5bIsupZeqzajAmUXjC6mB0OR2qll19rtby4fcmLDz/kdHiQrnfrmDNUb3lxd+RbH7wg2xFjB8I4EEqCtFDzwvXumpcfvsA5x8PDAyVHsM3PdJOk65/gJKB8cr3nyc01u92uuwOtScQrp9EPbHyaAPbxa9f5VrFGnAmc3/qSawmsIwefjx/F0b2uzVqyrgjqYQwMpolcq5tNKtSaFUkYNHFyQGSeZ3JxeO+0bOUZhvU1sg4sXfi8BRVgkcpdAdLFM9SCjmmaoEpJOMYIpnXKFpqFYtUgwNSKGYVvlZMIlbdkXs5FQt7zHBmHQbnkMEfd8LpGH3JsGWIUXrt1DueMNjOMSgWQc4iHmVINuViWkkm1EsaJQYO1JYnFa6mF4B27/Z7ji8i8RNIyk5aZ08MDY5ByeylZg8BCcAZKIqfKGAbAgmpUSgm3kmK+2BcAxmFcg8BUOJ/PPXiUiyEl4pTFLaaXvzuHz/SN35rGoZO9rmjw2eSeME0kXy0PNYiidWhbmW9WJWyKNoQYL8hkzoU0S6VOaLu5l0qNWRVKemAraBG0JLeI8QLA4B3ncyQvi4AA3mNqYTkfe/BphBzOfHjAgnRf58jVfkckc4iR25cvKenMs5srpO9D7XbNSFnOxKMjOhh2e0A4gDkuonnsA8M04caJVIU3aPR6NxQw5UUadDTYBnXEqzJP/eCoWh4uRVH2XBh9kABVEdgGbi1xES6ksWA9MRWGEDQAjhjr8Z7eUT3PM8YmxDdb+J9ye7wihpEmbYQ+RyGMQq1rnMlSuH7yhFYad8pprBWslQ7zlrjGnHoC6wiEYHo1ttFFAJwateSS2e12gEoXVVGMKdVwdXWlVUkB4153fHoO5fYntSXKdfP7VULik8GcFZ3aQvptGHP578YDagFcI6i3ktLt7S3/8B/+Q772ta/x3nvvdUh3WxJoi944jh+LuNti+CrCdfucRgifpokYE/N5UT7l0F+3BsD0z7FtcicNQocdPheW05Hbw4y1UnK+eziSo+NqNzGEgfNpoRixVSy7a473L3h+e8/peOIn/8SXud4N7IdAnhMlzWANT588IWeoWR7y+yUyTQNpEV9y7z2Hh3tZsP2ANStJOKZZkAxTCYMI2C5zIld48fKODz56wd3dAw/3t+r9CdU4Xr6845vvfcT98cR080wkKfJCsHB6uOXmyTVDCNw9HGgWcbWIpElTWWpDOKuBq/2O6/0Vbzx9yvWVyAQ1Z4PLebIiOtt79mnHioRfer7qt/Cquf9pPvtVQ45XGqG894zDoOWsVj6snweTP+KjNdM09CGofFZLhGOMVK/rU3W9SXDVa2xrj++8LPu4nI1wuCWoWOk6bb0TvuPacLit6sBlWR4UnVTZHKv2jMYYUlx66a5L/ZTVZ34Yho8l/NJA0NAqaQyyWEE+Fb3LJeOCemtrkpkrBGMIw8jgArZUUtF9wDqud3uSATeMYltnLCOVh7s7SlapIN2Qc0rSQJEEnVzmrI06IjzkNZELPuA1eGql7pxFoB3oOo5s9pWSc0ef2/4wDENvDG3X6XHzRLsfbQ9ryfJ2z5KY7nKtayXctj+2fbBX19y6DwUVun98v+WzdMfWhpKUBTu3xmu3ewY0CC6FUhfpci5tzljSPBPns6Cf1nI63JOBMIwioA6czzODD8ILLBlTJQDLrQRfEof7e3bBri5yzlAtgGc5HcVd6f6Oabcn+EGqilZkf1KMuHHEOwFGGh+3VgnqhmkHtqGoFYsjxlmEgzRhLzSHItODsUY3ME6qCI3aUNR1RnTcXb+OuVZSQ/iscpmdEctG67pBh/jQI9dVaQ7yvIgeada14vE6kXMWMEvpFcKndRfP8LoerHNgHMdeIRDKQ9vrVjqD2DdaYky95J+K/NeHFcl+3fEpA8o1o+k/65Fj+/3jKPLxz7alzk9CK1vWJA9iCCoqugn8Sil89NFH/M7v/A6/8iu/wrvvviuRtDGEV0Sy2w7Ix1yYx1Dx1kFnjfA33ta5UPLaQSnQND2zq7QgWLkXtRCcVyJyZpr2UCvxdOJwXhB5Cs+yeOaYGceBlCsxz+QiLgXj7orD+czD/QPTtCM/e8r5vDAFiyFzev855yWzU6u0N589YxgGlmXh6mrf9c6G5qhhxQnCG0POiRgXnLPc3t4SU8aHkRgz85I5zwvPX97x8HDkeIrS8Th47o8PvPfRLYdzlMXdiKNGmWdO6cTk4OrqmoelcJozxo3EJRKcEH+FxyP3pzUuTOPI9dUVT26uuL7as5smWew18H2d0vRnHe1YLh/Uj6OL6+8ev//Tl7wxbDb6NZT8fPxxGFvcXUvgul5ebAKNe6ebS0vI2/qzrZa0vYgqHLFqVqqO6f9bgxZThbNnzVr22q55K6WodrSxCX03hGxF5pxWXRrXWZIiEYFW15fmK6ybsHQF69VQtxBMC4wsxiKcbivc0pSycjvl/c66bkEnxyvSNeJ9LRInTVjENEmlKsLkgvBsA0uRX8k5dcQveAnknWoJNxpKl/aptQeNW5TksooFpTbeotPARo9L9zCJ9+3mvdq8ote1bdwtAbFNSJOqgd+64Ut5+dEmbwzeyLVux3oRYIDq216uMp3f2n5eqwaUUCmYKq5N1UjXNggPsRYVfreQjSHpfMhGpKYq4hGfNTExSHBac2uakr0oxoWHhwO7MTAGdeIpGTKiNVqSlOKtw5YqwurOYdiKsa9zdEVXwRso0qojx40R2kNL5mvVikHRZiy5jl0Q3omjD1Xmo9OER7in8u2if2o2c9tokCrJT+NLr20CTblGn1QFnKwGlaDxRk8Om/yXW99fhRq2Bcxa+btdD2mMg5gSPm2ugT5nmFVBZ5kX/eiWfAj3uCGT4tT1euO7sl40Cts/1nX8bkZ7qGJMPZBrtljWisvL8+fP+a3f+i2++tWv8v7771/wIit0YuvWMqgtoI8FzLf/3S7ybbFonVHtOLz34qubK8fjkRhjF9mWEjFKyG6uE3KhrDEE7xFv2sw07XAV4nLi9jCLLWKBc66MS2YcRnJWZX3nwAV8MGQcf/TN91iWzFvPnnD/EBlHi7dw/uA5X3hyw24cubt/IHjPOI7c3d3htYwcgu+Q+Xw8S9AZZ8I0cjgemBcpHd3ePRBToVTLux89570PPuBwOpOKZSlwePGC27sHTucz47Rj9F7ki2LCp5ldMDx7+gbWOt5//iHHKD7gx9ORuxcfcfPGmzRbV5AHZhwG9rsdT55cS1f3fs80DqI7+Qp0pWVw3wsO5avGliu0nR/td9+OT/nJn3X5uQ1NWPmT359g+fPxgx/SrGd7abPNGalcrBt4QzVEU9r097byt6BeGgxqVefjm4lsmBfYujFY43qlZEsRkoCRjri1OSeJdKvgrFJsxhicl43cUDEm9/UxF+WEmSqdvhWqEZakD0FpLasGYwugpfwnskIFFUUv0jeecsbEhDGJWqVsjzY6xJj7d2CqNmYIdxNrMaUI1zJHchGEMkXhX9Yk1RUfHOMQpCzfjQRWzv4qdL1y1Yz+ni3iq2u++DdXKU9rmVUaM+nX0zq/KcmsycYaXEpw6pzV72/uSGLx15pBjTHNEfAiMeiAiVkF3dd5YHSNqS2PpSI2lhU0KFKRe1Q6yNaeuAjiKlzL4OU8DILSJiqlGjyQlllC1SrTIS2ZIQiyWHLW3xV1PtuRc+b+/g7KHmcqgxupJeuzUSjV4Y2hpkgsFeeygBch4DRQ3hpjtACtrc2u8fI6cOF7gF1NlkBZpvp6DXVe2nZ/SxGFQC0Lp5h0rqxInzNOu/sVCNN9u2gw2RDO1g0uyVpDxKUkXTE4dXWym8pCQ9GNfk7VJqStlBB6zKYnW1J5SKmwxCQItCYtubZ0wmgD0MI47qR0rzFLCJ7j8USMievr1+3x/swB5fpf22+g3sxP/4EXowVzbYPtgV2tvPPOO/z9v//3+bVf+zVevnzZH37nnJRtdEJsPSwfw8CfBN82RPJxYPI42Ky1SnlHaB08PDywLAvTtJPXqOA5tQqdtBTpfqtVO6y8eJF6h9vtONfC+Xzk7hSJqXK1G5hSpVYn4se5EFPGBg8yt8k18813P+BwOvGFZ08oxnO1GzDe8fzFLTf7PU+e3JBT4e7unpxFlH0/7bi+2bPb7fDWk+YoAr7WcDydOJ5PVOt4eDhinOfhcOb+eOKDF7d8+PwFqVjm6jjOiZf3R5aY2O12OC8i68v5RC2Zq8Hz7MkTnt7c8OFx5oPndxTjyVVkVL7x9T/kn7l+gvFDn03WWsIQ2O933Fxf91K3f4VE0OPxvQwmvxMC+Tio/DTH8ioupYUN70pW+u9HcPz5+MGPVazZ9IpLX4/s6lxRSyXVpOLiLVlayfbCeXZYZ3pwern5XZa85AvM9j8Kdj0KQC0rypiFM9lI/Fn9xIs6dGzLtACOgq1avi7KE7NNj9BIJ3UpvSLSAqOaMtZ77WyFWCKnOYo6BxVrHH4QWtJxPpOPZ8bpGmMcXhGfeVkgObyWGUUkPGOreIVjKiXOLPPMfDoRTyfiMhOXhbzMWG+xbrqg0TS+WhOevkhaY1ZU1PXATFCktWG06RenlCimVbjoVaztGvaqZKDd6zZK0S7yRiGzBlulilHhovO2oZy1FtEbZf2sXm3jUT1QS+pOpYBMbeX8AkYVUKqoEngVTW/AjqkQjHiH55yoKTMOASjM85mo57zfXzOfZ0gL2TpKTAzXe4ZxYtrt1Ws9k0T8SUT0ayEl1/coUwt5XjjXKjStcUdQv2yAPJ+lMQujblSqmVirYu6rO1XJGeul0QUtW1cTMWK2TbUq5F4FNReEWdF3Y+R1OVPJgpoazxoPiQ6m8074l3pvc0piSarWk0PwHfBqc8aalfcpCVMEpDLpgzz757h0+kg1BqcIfAPRnKLt7YHPOTPPC+M49PkNMKtLlFFU3HnPNE1d1qrN7adPnzKOE4fDkXmeX7W8vXJ8RuvFls2t2Y+ivXwvEBa5APIgnM9n/vAP/oBf/dVf5Td/8ze5u7tjt9v13z0OFGXRluwe6F127XPXkqnpJOPHvLxts03PqtuZa9mqSQk1fcpeGmJt5GnlBKMZRc1JXB4GfTitY9xfUa1lmU8cYmbJZ27GAaphHwKUQqqqDVfE2zdME2mZeTicKSWzmwb2U2D0hjf3I89f3vJwPPGFL3wBMJznhHcrX2aekyy8JXdZo5Qz98cDqVQqlpgr9w9H7g9H7o5n7h/OLNlwu2SOcyFWw253hQ2OeTlT0ww5cjUMPLu55mY/kXPmNC+cY6a6USQ9rOHD99/lC2//GE/f/nEB/q3IVYzDwG63Y7/bMQ6jBpOXZbe1RPfqhfl7Pz4eBH5ScPtpjqHNQUzt/safFvX8fPzwD0luhSPWJDtqkQYYY2UdKSVjrZTOXNNatA3VoAejtUI29SKwaxvDmpSsG4qgVVHYY8bjrFeAbFO2rbJWOmeoZS25bvUpSykEDSo7OqrUHuM9g/GUVCSx1I0guIHT6cSyFXu2TlBFtZVcloVqKgaLH0Sg3ND8rQPa+0AqsNtPekyG/dUNx/OJpI5g3luGccRPE8eXL4R7F2eudhPz3UtO5wMPd3eQhPbjiiPlTMyJkfGi8lFK6Yog7VzlOtseBLQ/OZfOq/PB45WHuZWUo5U8exl/vX8toNiuayVn7V7XG69BFb0sb5WLV1SlRETESxVnlKZ92TqQsY3nuq6ZbHiCObWucrsGTkbpRQiMbAHrAtMg1TeDYUkJbw3BNrWTSqmJQc8r54xJCyYtzPMZa0Qp5Xh4kGubM7vdNW+++Rbn05GcZo7nmVIyN1d7wOKjdKgPw4CvhhIT0cz4EBiHkXg+qjmOxQ5BkOwmSg4M0yQPUC1Ks1DtTFNBk7xxv2fcX5GUEtGaYYwTJNWUwhAGmYgYdWAKLPNCTKXTPIYwqv7rRu3AOlwQelwpFesy1gW8IokVQ5bHQQJPIIQBbHNTElTYuwGDhdpoGNIA5kIQ7rFRlFuBK0Gn5Zb7cdD7DqlWTPO7zwXnK+M4EaaReV6wtjIOA4fDiefPnxNCYBwDpXwfnHIuR8u0ygW8LFGlBJtNRHfLWWwQ7yWXsWh2tZYbRPai8MEH7/Erv/Ir/Orf+3vc3r2Upg3ttI4xdt5D50FYiw8DeV40wBWOTeuCLKUFJZeE1m3m2ALQbaCyDWi8Fzkg6wy+Wnb7iXk5syxSPja1cSPompfWOJqbi6CvMvFizXhrmSZBes+nA7lU7o9ncYe4MgQvi045HjVgrYpwyq27Pc68fDiwGweevfGEOc94A+aU+PD4Ds4IofzmZs+Y4aPbj4BKCJ7dbo+xluPxRAIeDifOUTK2l/cP3N0fiTmRi+X+NLMUwzlVsIHr6yuolTTPlOVEiTNP9xNvP32Dm51YOR3nM7eHB+aUqaPrkz/lxLvvfJM3vvBjDGEQA3pTmQbH1U4m8TB4hsGzWs3R79G6sWlZqW4aoj7LbH40B7Z/l99fvnb7u0/7Pf19sqLjLHhfMCbJZlEB9bWnbwSfB5k/iiOltCYLLTGCPqHapm7dq9EroNst9nXDrXPVaCWkvb6XsxHR7a0MVeXjXHEBAyBGcSZrm2FUaRzDuva1NbEFm1KiX2VzljyLLJKznUsoXdemI7HAKjlkxD0l5UipVe0Dtfydkc22qjtJGOX6+aAdtgZKpdRMjplsDZO/wcSIzZmaIufWXYyoKHhviSlifcCHoAGg741T7Rq2hiQZDSgxK0q85ZQaKQsLFtbun17tKtSE7V7SgvzOvbSWqj9r99NYKzZ7TpMDnTu11i5F1P6IHJRVzikdCYba76VtZW609N7mi86Dwnqu65+GoGtgXAQBNi0ZqSKzU5Ufaa2RAMpIGdxbcdArMULOWG3KystMUsR9CGJr/OTpMw7HE/vrG0wtYoKhUka7aRJRcJuJZe66ztY5rBf3HucHnHdyPAaqFc/2XCuDrp2lqVtZJ9enSuBdVQXBOysWx85TY6TajFEks1QoxuJVtL3dZGsdNKqEEUmwVCtOr1G1yvX1Tq6dKYR2TzQOyipdVUwhJkEl2dzjBvYUJCBNOcnxazXYayzTn2l9hoQvnAFD1DWovabTNHQdijmtdEGd/20uNiDt0+ytnyGgbCGc6UEjH/tCuVH9HVomaEK37WfboG4r//ONb3yDr371q/zmb/4m9/f3DEPQTL50TuOopYltaVtKTIFS1g5I0WlsD/LKjZQly3aUtf281rWLcVvOaMcpF1fQWR88oWSePn3C/f09Mc1Mbi/nk0tfjDR2kJJOlYfeGs8wBOlUc5VhGIHKfDqQMRyWhXNMTNOANzA4wzAOpGWhlILfTYJ8GMPxeOB0d+T+tHC13xGClGbSslBT5OZqz9XDicE5ShLLsRA8V9cLuVbmeSFjWVLmxd0dx3khFajGsMRIyrDkgnMD426Sh7OIV288PeBqZj863nz6lOtxwFtLzJnDsnB/PKldpO/yBSEEvvWtb/L2l/8UP/mTP0GthdGLc8M0Duymgd1uomX37dp/8nxsC/n3I/D63iCfHwtAdeNxTvya29zsbO/+os8Dyh/5URvaWMjGrFt326A2weSW+3aBRLaqh/148tQEyi9/vq3GaKC6CTj7e1UeqG44W62RxJhNx3mDTLWU6DTg6BIx1lJqQ1jFl9xY0SZsItmtfIjySl1D1hTV7EmiXd1WCgYzjtS6UgSo8twspzMlC1KW5hlnKiUupGVmPp+xRpLvxlOViy68wRDCpslyLXG34FL2FuWkWXsZTLb7ZwxOKU6PS9rNJcg1Hl0RCkHzX27i9TlfUrK2964tBUYRvVb6bt8nmQrr+7fVNL3eVishLYgELpxVqs4zzNos0pNqJe3VIhIzLSmpqv3ZflcqlJJE3LwjuoYlZvFQ1y+K89zDV6+al288e5P33n8fHwYMgsQ+HI/KozRiy4kG9Cr5lFJiOZ9JpeCsNLuWlKlOkrNi6JI3pjVtVRVtr1bL61KxM9ap5qh8DtZhctEgWTKaLpiPiOXL3m40xFGqgL5ma/9S0OqtIojeiUtd0zTdJoI5FzDg2nPcrj/07u/cEG6lX8icabeirvdNb08IgbRa+q1zoD9v4ojXKr6ND931cbWrvynZvM74jAhlP8TteX/b0YI/5/xFoNYCOGMM3/zmN/nqV7/K7/3e7/HixYvOH+qLcc6io1VWRfn2EK6ZIzpx1oaN9vvHpVPr1/c/Lqc+/vnjsUUsm9TGw8MD1vjOp2yI59Z7t3FaMJoFOodt19GCNVXg9GUmEcnHzG4UbbT5cFT5JEeMiaibhLWOq6uJZZl5/vKe4D1hkM54U2C+PfDR3YHBCRHdOQvHBV7eq3grgohq1+iSVTC2yGT2YWA37ADLkpKo8EeI8xFfC7vdwFtPb3h6fYXX5GDOmeMceTidcX6UzUAiUbCGJSa+/vU/4u23v8Cbb76JdaZzzjBCKN7v96+87p84Gzvt4ns7tp/7acvS20DyIqjUOPGyw/vzwPGP02hlaGsdBitqCkVcV7xfO3tlU9YgrtL1c51zF3I89VXJRW3RalW5Ffpr7CbZr2XFoiqslaUiJUKM8NLa97ZPaRWaNuT3so5jZRMtgHHy3LaqUK3gwyBC2UjQm0lY9Xo2VoLS3i2rwVXKC2EY8NbJd/hAsQEfBrFuzAlbYZwGbl8+xwDjNHK8eyD4J8zHA6eHB+IyMwbH8XTkdDqJRJMV+8ed2XcB65iFi9ay/gZMNFeeFR3eSJa1PcVIJ7BT7lqjJfS7sAEpBA3M2rwBqH1fSs39pCG38l25SkULI5JGkbjK4endTbmFLQbxfvfdYahKeIYy+oDSE5Y2nxq3smmFSmBIb0gyTe7GQI7pAj13xoKzlCpOMs5YnLHUmmiJsK3i9Y6RHohlnhl3O6pWGI01fOHtL/JH3/g6S5qxpnLzxht865vfFDqDsWJZmjJPnjxhv99jnCeWwjzPcr4pkYp4zoGnFDkuYxBnPD/24B7jpJmplN5w1HgVZhjkHHKglEpOEVvafZMEAStNsktMvRG5J3rOqTC+xDrixS1C9A1Ywolw/hq4g9HnR/EFSQy9JmSKseecZT5UaCYYQSu14nq16RfRgMwrNzI2lYNSqEjcFPszbZg3CKY836arw0gFzf+gmnI2wZYxjzbcj7+rlZof6wbmnHn58iVf+cpX+LVf+zXu7++7Qnz7fSt7WmsZx7ETnS9KP6yo5/qnBZQVY3zPgGttUg2PMv26loIe/3lcLmrfF0JgWRZ2ux3LsrDEBe+DoI8p9mvRRMLLJgMptegi7qUc7zTwdR7rrLr8JB7OJ8bgtLsOchRKgLPCzZL9RFDPEJxA48t6/dqEuTsv1AfhszhXsTVRsjxUa6emVT1Kj7UQxgGMiLQ22YiiEzlYuJkmnj254o2bK7yTbsd5WYhUTktkSQW/H0jGAKUvus47PvzwA377t3+bP/Mzf5ovf/nLvPnsGTc3Nzx58kQRyvW+PA7kHqMv399xuZF/lu97HEy2ebnVn/t+BMOfj39yozcKBvHsHsMVpmRKWTdno2LetdiOIG4DuFZ6KlpVMJqEbNcm0C28J9CyvrVnrc29YRgunpmcM1n1JSv0hH2chP8cl4U5zvhhEEcTRSONqVRdO4u6rIQwYowIi1dkI5ombXhJqWtPTtPYzykuQk2a9rt+TGLR7GWdxuCdxw07Yk7yFBojAQyGMXhSnInnI94a7j54n+V4oKYIJbIskZQWUo6kLFqbT549YxoGQvA4Yzmdjux2u349Sin4DlRcdtp2rqXcGECQVvS10sWrzTveiauNUQ1l1INag9V2vi2JLiWJhaB1uHHAAalk+cwwsmRxXGvBY3CORStpRiaNlN6dw178rK3XqfcMdHDFil98ytKl3SpppRQWbQyhCmhinHZp63zqFIiUqbngnGGZT5CLdH6npbsKjcPE4Af8fq8N8NJNHucF7x2D8xzOZ1LNDIPj6vqGh5e3PH9+x3KOvPXsDYZhAXsU04xxEo5k8MxxIZeZ3dUNxlqCc7gQwDvmJRGX2GOOaMVhByPOVC54Cah3ApZskYPWke0VLKpAqoVUJLizXiyG9db3ZA0rygour4igUSUco5S9qPKGDWxqCUtFnqtBqXIgSVYsqVNLnA8M48g4TTz/6KMeZFpFFZd5JqaspfRVH9ZZy9XTp9RaORwOPQbb7/edM9y0cU+n0wVq+fDwwLobf/vxGYXNG4rXNvbv8M66vr5NxhgjH330Eb/927/NV7/6Vd555x3GUQjSj70jpfQgn9HK0Vvh323QJxfYYm0h5zXYbIHcVhIo5/qxEtKWy7n9N1x2greL3VBKYwzX19ccDif1DPcdVV27AtdOObQZRdZlg8nQfFpHtxMR4PlMjAuURMyJ4+FI8IH9OCmJNzP6QM2FZTnjXMA5j0M5TFTJelA+Bk4WDs0+pavUUIvB+1Gz9kGy2yzZ83KOmJo7EhKjuGPsp4H94NkPnqvBs/PS5LPkTKyVZBx3p0i1HutC40FjjSEbkZ6IOfP+B+/ig2OeZ37mz/wZ/rl/7p/j+nqPddJ09fz5c/nOR8nDJ8/R709U9p1L799+bOeUUKO0dLWZx5+Xt/94DeO8BHkbLrnOYtDKTDdG0IYLYy3Oul4SL7WQ5tS7xauBlJMISOsm014nOaHpAWJMSStybb3LnTpEVeFmK/xuDSeodXUAq+oCYr00nPTpa2yXkqEhmtpdbbBqLenUas5irMcG8aJOao0owbQXnqbXTvCqjSvey3sNYIW647wiexXpXKXw7NkN89FyPkjTjaOynE8siwSROSfmeSbGKHaKxuAU8aNWzqcj0xBEO1f5bN6J17O1uj67Rotak79cCsaq/R1VGpLCwDB46XQHOU91QhIUTAI7UyBnmQetUSt1ZFOQ7CVJqTZX1URcEs6FHtAKEiVoW6/AeUeOWeeE6feTKiVSihdtx3wptm5UN5MiYAvOYavZ6Jtqd3NKgMVYsYE0xlCTzCc7eCiZuJylCqV/jBaAU4zklJXbu0V7K3OKXI8j8XziPEeWcyWEiVLvmWPGnBbCcMKFgeqsNoG1AAyqJmfegx1EQ7WUTGBgMFL+rk4Ak2WZhV5kXefS1mb5mCtxETvIadzh/KAJkjY4WSkl+2CxLghlwwW9jlmaa2TCKpClzWUGNSNo/NbS8GJBgg2MG+pFSRkzXFZMlyXKOmEthSImJNEx7ibiEtVvW5rffAjia1+qJHkYMEIribElFI6m81pj4nSUuCKEgSlM3N/fU2IhhAFnPbF8n728MahX03aRXGF1NHB41SZca+X29pZ/8A/+AV/5yld47733elDWAodXlZ9bZn4h/mo/XrIuuhh4v7bnbwnR7bXCr9CiwJYIu+FyysVfhYMvj8dcZBelFHHhyZXb2zuVEpoutDCpMrmqLvrFVA2yUbskWYxjXLDesw/XLMvC+XSUznLrySlxOM8MThx2DqdZrN0MmByZBoN3Duetlk0EGTUKXxtFI3OOIuqrm14TBE5ZSuoVQUGFbF16aWw/DuyGAWcKgzNcjZ6ryTN6EUJdUqS6kTnDYU7gByml5Ix8RRa5DSMo5cPDPbe3L4hx5j/6j/5vfOPrX+ff+1//Va6un7LbTSzLwsuXLy+6IV/ljvPdgpSfRG2gc4Y/ebwuYnkZVGqSYpoUjHzNK8uan48fydEaUxrqU6t4E9s+1xqHak3OrZaBzWZVbT/vn9sqHPpGr125mLqybhUtbM46F2tYK8Fmse/zzvdjSSlJt7UGUx2N68+G6FGWrPxGTYhbckR7TjdzWLSKZauxRY4LK00FKYskTwHRA7RGdPIa/1JL6bkIetR0MktasAYG7ynB8eJ8lM+LkZwicZlZlln0J6M0KbggqJqpKumme1dcBIGyxnT9Pzlt28uZHZiokIs0npgNwADgXJCsuaoEziZhpH+fBlTKrytV+wDWELAHIqWgUjEZHzyY1tQlPtSNU2cAo05CYv5t+nwCpJmHCmXbpS9/d0ZoV8Yg0kHWQW0azLXPQfQzDFLaplaqkQ5yo3zFkjOuVV4awkurMGVq0UpdydJNXQohiD7y+TzIfUsFawPjuGM5nzkvC4eTNLw6baQahoFhw/WVeRsZQxBHp9xE9j0WTxPy9t6rzmZdNwyZ4KK8UGqfZ21Ot8RuDeYNVYPC9mwY9VmXfo3NNdM51Nbzx7GKdWszcotrQCoNLTFsVVRp7pUPTqmy2JUbbHEbfrQ0/Qg3X1HPIgFlkxkStL2u1EFdS7oDFmuMlNMqdfY64/UDyos9rm2KWk62oFrwCqWjdlvrhbJWygu///t/wN/9u3+Xr3/9692OrB1w12Wyq2tAC9jWBqvLLtxtENBI6630cDoVcpbSN1wGDFWleKCV1S95Qo+Dx23Z9TFa1o65lMK02zHPIpUQQujl+/YdW74CrN+78mxkYapV3CqGYSSEgXk+EecFg4i7L7lAEu7K4EXSIKfEsswUL9IYAFkliyTDMh2NkG4vKS0VjJCPs3IstPEn5UxNGeMgOPERnYaANxVL4WocudlN7McRbwwz2lRg4eXtkaUabJjIkkrK95esfB3p/GuQ+jAMnM9n/tr//a/xrXff4d/9d/9X/PRP/9Pdlqxdo1VIfn0AXw+9/OSxTWIelxu/1+X07eay7bwFDSbrZzuHz8cP32jUlq0uoLFGrAZtKyHWCyHjPudeyQ+XfzvVQ4wp4Sp43yg1tXv7bpPjbTC5/l2qJ8H5Lngt6hpJymdGm2O0bJe77Z5usMao3h700rDzEtnUdcMtm0qInL8ERXJp1FmrSldu1uqVHEOQP87jreE8z/iGtKaZfD5ja8JSpNkwR1IVD+uSZR2cz2dyFkcXtOxnMOv2ZSwpJmLKYnupAbQ1Dmzt3eqi7SioUm0oql6MFuDJNdcyci2Yop+l90ovhvpIa6BSIS0JG6T03Cps4u1naB+eS1m7h/W4O5pbS08e2nG0gNQ320PByHuQUxR5FO1BqwichH9dGcVKk2TVdartHzIhjZodGahFZI5SEu9rDTBdq/yZujkv8MYIr0+tiK/3N5RxYDeOgiSnGWMc025PTonzaeFwPAn4oZqMQY0uMJlaBPmMUXzKs/ptUzJ+mFS0Xo5lDEHAlKpqBRowtT3aIEmgXCPpubmglrS/I89WUVDDIKhzSkmlnNbXO5UJoz8n9OfAsjbcNL4sCM/XKz2l0S1SSj1ZkQRLn3Nruy1om0Pt2WqVihZMApzPZ/b7/cWaIhaNsVMJ2/6acyGn1w8m4bvkUMolaht5y+AKVlKanpWnlPjGN77BV77yNX77t3+7k85baaVJNwAXHqTthJ2253eYvmeqH+dRdkKxMcpjTJ1oLAl9BaTcXeyqK7YNJnrjjP79MghcF+jWVATrol9K4ep6x+3twnk+4oPvi2kjwjZ0wttVh6zLPBijqJXdiOIadjtHCNLdxjxjWH0+j4sIl4fghS+0LOTmzmC1OaBtVKa5dzjxcC2VXBJdUiILhwhjCBb8LuAE52QaBpw1OFPZhYFdcBJgOkuKkXmeMc6xpMLLhxPFDTg/UFNSmCaLEC7iBOG92LgdDveMY+Bqv8fg+Lmf+1l+8Rd/gb/yV/4Kf+7P/Tnefvttdfeprwwkv5fj+8/HbGOL4bR/fR5M/nEavXu4rolJyZUauAgy2+bUgslpmkTPUDeunJrYePNNEF6zcP7U4k2DhJK0y/fRyr7Vl2zrdSmFalv1hp68V9UAlrLuyq2CFS2V9c6uG2RDXFBkLWflcklzRfcpN56K1eB1JtVCyML3ks9xiC6mF1cTaJ0i0kRZhaNd40KOJ5x8GdMwcri9Ayo1Z0pMUKqUy61lGieur64Zw4jzgQosMRLnmXHa6/VAER+ja6TXUrOnVA2gjVEUtfSmJysbHjkvggIaFGSplBxBPYystRS9lwZW2kCRbvkWMFvvsdqMmlLqFniPO/nlHrjNPWkVrxUlyypYb1o/gZGyLDSAQXoKjNEOfSfn3IKu9h6v+1HOmWIK3ohWKqWqNaRWANUHXA0IOwpsjaFa8YTPWVCxMAS8dZhSmcaRmDLnOYEVJZBhHFmWmZcvX5JL7FxEML36aBUYKUskh4Uchbu5zJYnb3hytWR9RkYv3u9O+aYpzqQs4Ii1niGE3mzT+M/rvi5ao85a3GCoyg+12huRO7Vlo8Sgz0kqReZLrViVRGoxSkqJVFdZqZQSNS5c2dWWc7+XJpk5LhrESj+FsZaUMillhOvq+rEvJTFNE9a7HpAeDgfmeeZwOIje817E5adp4sWLW+GKakB5PB4JfvhUHd6vWHY+xZDkg+6fCjJ5dEK3G/P1r3+dX//1X+c3fuM3OJ3OhDD0LqJtBt6CuEb2bYvbGqyuJc7LRgZzEVjCyq8MIVxIAHXXgB5wDhe8yAYH91M0a3n18fh2HMthGLi6uuLh4YHDw4GrqyvlWcp59u5PA5nUY/RW3pKFVLLWBjtjDMGP+KsBH84cj0dqzYRplIw8LiwxsvPSGRq8dI+mOLOkhNOqVc0FQ8Jbj/eVlIt6jiPyCV518zTzc6Ywec9uCMKBrJXgHIO3jCEweCceqZqBWmc5nyLnlGHYk6o0DTkLFinfVGt6V2tzOZrnmXEce4aXUuJnf/Zn+eVf/mX+/J//8/zZP/tn+cmf/MlX3u/v3XhVMPn9DTC3vMrPxx+v0Sowba6O44inapIrun7LsjCNoa81p9NJEmwNPLY6hpJAyud618pwplc/mqA2rKoY26rKthLU9XZzIqXYg8THEml2o3O3RTwbItdGrZUUo6A++ud8PvckUCg1luABJ7p9xUg1Jjb0xVhSzhJQjyNWHUzISRoScyQmkQWyJbOcTizHA8vpSE2RHBfpRi6FwXpSmrEFEByOq92+X5uUEsfjkVJgd6Ud5awBRLdDdWJVZ0rp7kbOh945K9JPFsvGlc2pnmZRpLbtZ95TlatJFfBl2E2cTqdezqXtR0XQJ3/RoLH6uoPYWsprJWBxKm5tFYWtSIVO7qUDpw0cRqSLmqtRrivI0LiJW7TcKFrt1PFFgswi/EVFG2Oaoci8tlScRJFM40BRC+Gci/IQQ59DL+/uGAbP7mpPMZaH45n7wxFjYJxEgu/29pa72wcclmVeeHh44AtvPcOHwDSNDNNESZbT8UH3zcwynzl5z9Onb4lsKdKA5sOIM0iQp8/HshialWibH4/lunoA25B7RRgfVy8fO1lZ53CbOOXCJlKfxbqJfZpiTItHaq1Yp3PASO9BCIMkGzGSUtZrK8HoOE7SiIPcr2WRSmeTyXrjjTf48MMP+7mBrEFBqyZyPRbt8paAdmzuQ68xPmVTTr3493biyb8FWjcY3nvvPX7t136N3/iN3+DFixcXC2trVGkNOK278HFZeVvmsXblsWxLN2yOYRtwtkh7+++yyaTaDdsuktsy+6u4Ddty6Pa7239bgCST6ko7pmacc9zc3PTXtNI8tayG87roGWu7Z2sIAyJ4nS8W8WHcURGNyHk+qy7nFXGJPKQZmxLOGLy3jG5gCAODdziLZFY5440Q50cn5QyZ1JBzpFawweG9FYcD6wjWEJxlDELANlRBLM2KvvjgSdZwfzqSrcU4T0prhgpSZsCsshwhiAzUsiycTieuNfg+HA7s93tevrzl53/+5/nKV77CX/pLf4l/8V/8F3nzzTcvuiV/NMdWkLrd28/5k3+cRl9HdJNZlgXTqh212ecVnJUu8N70kZsIir9Y15rQ8ZISNFcOtsmsfjCS7LfAoiX9fd2sVTl8VsWyt0HjKrzc5mKzIxSEc+V9Ni5oRUrWJQliKtw/KRs2nUqrGrTN4g2jriPWaUDTlDekCchgpITamjCNnEelUlOUTu4s6GTNiTifcUiQlrM04bSqcXCBaZhwxrEbd4ImVfF1HgZBb7w2JfQraIy6+Kg2nwtaxRFuqWzwm70Ho77dVYLFIk1SrUwOBVcKJRXCOArlYMkYK13uba7M8yzSeGRp0XEe14LTFqCqFNBKQ2hcV6t/DEa7tuX6a8NIFa6sEaE6LCo61K67tSL+nS/7E6RjeLVDLipjYzZrmLVWqlEli7NPLZgijV+1JCqCMLdyfgu0Xc0Yb3HVMO12vPmFL3A8f4uUowAiBao1nM9n7o8HjAHvLHcvX7Lf7zAlY2pF+9nxYWBQTugyz6R4BiPPRlSE1QRBgIcQhDNqLSUpkovRZjKV9TIOZx0ZuZ+kAlrxNLVKuZktyLVeM6giPq7BZ9HAXy6B7L/OOaKCay2QbbFSA9Ma+DVuyvFxidqlX3usUytCV9N7Ok0TYRgwiqa2anFTe1iWpWujbgG2fj7Yi/jndcanbspZ5VFXXmvjhdVSeHl3zz/67d/ia1/9FV6+fKn2PaMGW15uhFkXQIFUKzknOgm6dTwacwnhb4K89u8LMusmGN1mxttAdhtUbrUst6/ZXtSWnWwRsW1W0ktZvVGkLYyFq6srahHewjiOKl4u/KWUxJ3CObVhUqK6POwVaysiS2CUpCvEdWoFA9NuxzBOWCuBZS5CQvZGiN4pZ+Zz5D4d2A2BJ/uJ0UsHozHCcRmsiPxaa5jnFmjKOU6DZxwHLIbBOYJO/nk+YWrmyc0Vw2BXNLMWrB+IBe4PC6Ddq6xcwaocS6O6e6WumWCMkWWeWZR3ej6fOR5PGDOzmyaef/SS/9df/xt87Wu/wl/8i3+Rn/mZP8P19fXmvjSy9cdn7WMw85Oq2rLXvvqX7TM+S0n8k97TOGYyj7ZqCQ2ybnXAV73z4ug+9TF9Pr7/Y/WFZrMmSZmxlHW9etxkWIp6UnP5GmuhqH92q3RwMWcbp27Dx2RFWXrZOxewLRiS9bbx3IquD606atyaMLf1uLmxNEOnBjV0yMGYRrbUgMirjarrOogVVbgwos1nXaMfrbrDbX2VDm9Bw0pOLPOZUHNPbJ2BJWXQoCvnTFoW5iVKYu4HxmHCWU8II2WZMcaqvNuq89mvP1X5iEgDj1nvHy0gNxKQr0iu6QLtaCCA5NB6f2Tta8FUYzZiLF41g9se2NbI6gBjpdnHZDCXjaJaZFVuH8hqu5ayMQ7TrBeNWDeuFRE5RosRHUbbnHE+XgGqVRu4GkpZq1o86qprhCvqvKDQFJESKqoOKXrLEghVUzuPFmBw4gGeKzhv2O2vmfZ77u5vSVmoIMM4cT4dhUfrpDJGToIQVu2Y130sY7DeMwbPvCTSIpzMqpzRUjMWCag6GgtyXxqPtRRNfOQetoBbUOUKRSwRnQVTVopau1brcn9pOFA3Iv7tOoPIZLU3XfRzbO5BN21pNIiUcGK53tHNnIrKayn9pRSGEIg1dgeoUsSvPqWknFX59zaIHQYtddcmvr9aT3+n8doBpdFFEFBpBMnIrA84Gzg8HPlHv/V7fOVrX+PDjz7sC1szFpcFbe0iKiXr5Fz5cM5tIWN6MNl0KLe8hi0s3Y9xg5a11wzDwDzPXfMJ1kA05cywWcS3kHcLOBvHsr1vG0w+jtw7RxKHdwYGS9lDjLecz2uTTuNkdBcJwFnJQnNJWG86IisP6ijQtkovWC2zlFIw+z32dGJeFrlOtVBwVO/x1hOt57wsjD5zPY1MY6DmGRMXTBQYvRhHMGC8E5K+tUzeMXjPoK47uWSOy4lUM/tpwHkDNeKtNAJQKs5f8+HLM6clMEwTMUWcMWThRpAq2GqUnG5IS4JR/EOb+HCMkXEcmaaJ81m8yg/HM6nAOAz89u/8Lt96933+2X/2Z/jX//V/nZ/4iZ/g+saQciEoQrO9T3JfHvMthUf7qvH9K6c/DizF9kxABi98NWTBXRtzWhS7/nX7/lf//fPxwzKmaeJ0PEIVNYkmpp1y7Bvafr+HqsLDm8S5iYyXIk4jstYYjF1f08aWH9m4lNvEGtagEujf1dbc9vr2uT3RtharJbDGl3z8GNX+vw1SKr/qm2AIQThfWt7LLXCtUvYO1uv5CjrZqlaABguWFGdqjMzHI8eHe/bBUTWo8CqzlLX6UlJmmSP3Dw+88cYbukGOQiVS15+GyowqEN3OX2R8mnOOXMvmry7STOK85lRlo7kAWSs2ilUJlA3lrYjAd9v4rbcr99U5QaydFycc6xlHz5IWrehY0TXEi+5nKf27DMi6u7m3tbRgRnFM68BrAG8MxnouSq7W4KwH2/zHVyCmpygNMKmVi1VpEzj3SqWVvQ9jqSZrYoAAHQ7meaFoJQ6dn9Nux/l87MfonOHpsze5PxzIdSFj2F1dc39/xxIjpxME50je4Z3t5zMOA1bLxcM0sRuvqLkQ51mO2Fpx2qmOgkjX1QrVREl6gkgBZaGASiWNlR+7GpRo/JOLIrxcNNA1ZQVpDqY/v/JcrYFZrZJgpJQYxlGCWFW5kYRr3bO2WtJWE5ncOJzWKt/YUbI2nmlFIKWEHwLzPHM6nTo6OU07kpbIoXRaTaOqNLqHtY5a4HQ6fWxt+6Tx2gGldJFpxJraCVpePP+Av//3f53/53/yn/LRR7eczmfxm92UWF7VNb39e3vN4zJ3e03779ZPdrvxb1HCx5yGllG1yH9b8jZcLswX8L37OHeIV7z+wi+3irZUMap9bwrOW6Zp4HA8EgaH89c4Y7BuDZj13VhLX5gb36Kdt3Oe7HPnRDT0dBxHWdxOor9mjdPOsUqxjuBF1+4cZz56cctbT6642e8Ypx0mS7NMqUXL0hZyZhwcu2HQDjlIKYocUKmMwTMNgWBgcMIdGkJgd7XjnRdnXtw+aGZsxRfVyLmpuIU8xDnLBpDlfMZx7MTh3Ce6PMTLHMm1cDyc5IHxhru7O77yla/yO7/zO/xr/9q/xr/xb/wlfuzH3maeZ6ZxuJhDcn2bW8Q6p74T0LhFPj/LeIxKPg4m2yil9q5LzGOE9bs7hs/HP9lxf3vLbreDunrknk6ZitibPbm+IefY5WxyqxUjfGaTzUUntrH0Nc2gwtnI7C4pk0qjEplLHlaR7uIwBN3sVg66lKjXSk1L3GEtaYsE2r4HGuLstUE9twiGUZ6ZaVq4RuV/AsZZXLDStKl/Uk5dPqVWpMmjl1wlGSQn0vHEfDpyPjxwfnhg2I2YHKlZZIJSimS1/xM6TGaaRvb7a65unrLbX2m1pz37qwbx9fW1/ky4kwGnjVJrJ6/zBrI0eDS9ypyFWmSt57wkUhH9SOsMVe9VxXRXoL5XGIfRBAEA1aYsRUqXxgaKESFtcu6NTGjQhmqDBm2WSjnjjSWzRZL0Hmi5vADiYdMoB0p1sPKnlaC1jk9ScWxBklWpoJQVndXzzyUTUyLFCOemuSw2g37aycqrVZjJDpzrSdA1HwjDwJwy51QJ40gwjhoLX/ryEw7nE++99y7n0wnnPFfXTzg+3HKOCX8+Y6aBw8ORnFYpnH1NEqTlSDUF5wcOd7eg1IEwDvhROJTlnKmIaH+2nhyjBsKCgMaU1hy+FEwICoRUpF2ODjoBF/KAa/yg1QWtjMqWog3GmpyUFC9jFms1cVglElNaNKmT5yQuERQ5lP0yU3Lpijm1ZGLNLCkKzYBVQcd7L3O4GoyTYz6cToKYa/I4hsA0TWsvynDZlPztxuuXvOsqLYB1fPD+h3zta3+Pv/bX/h/8/V/7TUq2GMQWqNSsJYNXy+xsxzaI3MLG2+wauAgEH2tQbgm02yy//awRXVsDSA8SN9/TPmOrddnGhY/r5jjb97Tj3Tb0lO6vC8M4cDqf+iQT6ZtwcZy1gnWGMYz9fHNOvfzfFjvvvQj3btyChmHQc1w4Pty3IxPPVWvwNoCpnOYT77z/nDdurvjis6fswkRNEUeFEinxxBQCgy1YpGyRS2FOC1jLMHgG55mcY+8dnsJ+tyNMV7z/8p6705HTfMYNO5G1yJnauoE212sbzW07ths60oTiZeGy1CIP7ul8xHvHbrejlMz9/T3/+X/+n/O7v/s7/NW/+lf5V//VP9+5aA3ZXgPLNt9ePb0bKv69GJ9Y4t783BgpOPWmq1o/r1z/MRuNFO+dXb2jUxT3FyP88aurHfMyYxDOc0U2x5ILqaqOrm16gzJBUkrktLqstI1kbc6RNaOR+hvat+3YlNcndd+5TMybVFcrmQdtDCnKPYy5dB7WmpytpXnRsHSEYezoitGK0OiDqoDo95W18bEdR/BB3HVyYsmRuJyxpTBYg58G7PUV6XQQ2aBa8dYyhMDpeBQZoChSRPurJ1w/eUOcVYyRBhsD1Rq8HQhDYBjaxqkonaqAtBKoOJBZKlZs+0xhiRkfgvzXWAbncX6gNUa15MA4LXtbR7FWJeykhC9oYcV4R8xFuILq4mZUxFzQS4fxHptFE7iUSknCyy3Fgh3wVpohc42C8hrTYEShBNhGBdBwUiN1oxzchqK1e9L2sRYApxjXcm+V5KTkJGKY1WJtwHvRAK3Kw8Q5fPCiIlJbo1bBjztwIsw/ThOH85npKnCeFzCVqydvEMaBf+q/86eJtXJ7eGCYRsZxJKaF5XwilsqyJGw9dwqeMbeUWrl+co0Bzocjw5h7BzemssyK0hWxGMY6dnvh1JZcMUZcq/w4sMSFvAi4scTI1Rtv9HK4XNkVtWzxyDAMiCi+PDsxxotAU+ZG7s9jpy4od7PFFkuSfR8aBXBNkppkVVBlHBcCzcN9WRYeDgcw2kEfPCnl3uzTqrUu2L5uWCsGIsuy4L3n+uqK25cv+1rivf9+NeU45vPCN7/5db72ta/xH//H/wm//uu/gXcD1gSF+gUKNpuA9nHXYBtboert715Vxt7+7nHX9Rb9hMuS5Zbk2rNuuzbeNJRsu6A+Dn5bcLPtEN8GvKsX88rR3B5ve+00Tex2ux7UPrZ9bJfmcYBda8YY2zPG9lmtU7FtGnIcI84KonA8iQablNQrxgSCNdS4cH9OLB+84I2bK57sRnKeMSkyecsULM5UTMnKx5HFyw+B0Qc8hp01jAbGIXA17Zmt5SEuPH+4x3ixgUqqSfb4usoPoOTSg/y1nFD7xO4QvzXEmFQ6io5gOmfVkSjwe7/3j/kP/8P/K3/lL/9l/vJf/p/wZ/6ZP80wjv27tyW9fgDbf/X5891FdJ+ESr4qkWqISNEOvUfv1GNpUM7n40dxdItE1o7N0W0RQrn3KMvB1E1SzZqsrmtK6+ouXQasJczy+YU4L+SU8C6s67F+4NYj3Gi5sgd8rZRq5POh9mYea033iC6stnsYoeb4ADEqnalWofwEsVhslJ5Sq+g9+qoIK53rtS3DKsMU4yyxQI6RMs9QM7VmSkqYUqhZpM5yyeSUdC0Uy8CYMjjP7uqaME2i6df4cs4T7A5nZG3HGLXRU9zJSMUgp0RBNJWxTgIQAGvxgwfrqTZTsJTGc7QWrHJclyId8kZKuSA8QoF4/YVLGuQutG6d7jfGdMSsVr3+xgpFsRRiLptSs0gNmVIlwNigYs554Zaibmes3fm5VuHUuya+XRUFteJJrVzd2vbgIg4wVak63nmowvvHBXGXsSuyXaolpqgWlBJg5lypFqpxFBxWr5vHUbEU5zFhZNwXht0OP4xUKw2i425PUVH0uW7QUr0np9OJcTd1Dc+cM8EPGKs6kCVTMCK9Z6VpdDmfsD6IokpNRBaxbmy1wioNP2meVUhdQBbnhGJgBWUjLqqU0Cpym7X/kj7Q0Hvb0XTDWsKWKeZU7kkod9OkSgAOVjoL/T47YAhBeilyFp6ygdELpTD4QKMzhCCSUG20gHFLc2k9Ly1J3Qqef6fx2gHlL/6dX+Jv/+2/zS/8wn/DH/7hH2GM4enTpxyPZ5wVNCoEr9lc6eXa/x97/9osSXZdB4LrvPwREfeR9QQBUiAhUeILRBOgSMpGD2uNNN2fpn/FjNn8u+mWdY/UGmkkSlS3RvogNkUCBN8gqlCoqsy8j4hw9/OcD3vv4yc8bwFZPaZmwSy9LK0y743w8HA/j7XXXnttAVBb4NhuslvA8VSKfJvGbt+7/bvcDFkoBaAI8JIbpJ747BbMtYxoCzrbFH37edtzCBDNOWO321WkX88J+RxwZLwC1xZo5ZzhnL6IhkSPKQ9c+qZ2zsE5apU2zQsJk2NEYW2LcgY5JUw5ID6c4UPCwSkcuArcGA2DteJYKS7IsQZOa4zGYDAKO2ux343ISuE4T7g7z7g7T4C+oeg5Fi4kWsu46n1WBBSFPZHvKs9FUhjSJ926tXhFWJ++J7ZFKsTHccT/+D/+T/j3/+u/xz/4B/8A//D//F/jb/yNr1HK8ZXjkpFZn9mTQ///70PGzFMHMdnC2gqI3BxvmMufyKNKbnJG5l7SumO3C4rVGIit7CPAaxKd4GItI5SpyFLGqrrgt/6SMUYgAtmyNoo7f0jwLONwqxdv12UpulkBj2LdGDErxpgq01BaPAolMCdAUkFnYYCWRTOW6oYqujmugSHgzQbZ5J1boEqGytQZp6RIRughAAL6YkQIlBJMMdGmWoBuGDDsdrB9B9N1UNpwD2YLrR2loDUXZhrHhSK8+ZeMrDIVkDCTlTlLVFtjag2jqJsPjIO2HfepZuyiEwwXIUn1tbYGqqy2M7UBCBQYexKgFOJEkWMKVfdzMQsDiQSWKDHwVGzAriVLxmluI2xkARXo8LOvGaScYaw4D9D6IzKcnAtXAXMRjZA9BYAm5k+BPlspBVtAGnCsWbcEqrbXhu5biDOUcSjaIkEDhsB+5wYKJZRG0aQrdcOIfrdD8Av1X+8HbqV5poIspaBDhDYefewxzwumea5d2LxfcHNFgJq7X5JuPQa+J9x+c7dHzuTZmTLgpzNLAmiPt8aQfKuw7Y8qFU/UrlUs48pNQq7imAbDABSEGUOBmtaaWmJC1T2O9vW1UK/OJcge2jiE8DMUtlFaGldcUwiLCbYgS7J1vRD7sFiDsoRxHDFNU92fxQf1dY7XBpT/9//b/wMhLNjtdri9fYYQIvwSYTSzkxA/NKBgBWDbBUsWRxEWt2xeXWQ2BTfSOkhu6JYpFODWAsr2/QLAzudzNVGXRfuimrAxKm9TsdtK8BYIbZnWS1aJBmDfO66QntnviXqqWkspFqUvAXMFIEVK9xVnKS5NveU+SuFQSoYrIROsLdjtDPq+wAeq6EpsMO56WjpzWHBaFjjtcHOgqu1SfK24FIfezhDDkIOHVh0O+z0OQwcojSkEvHw849OHMxaYashbFL1nvROoz3tlJuie7/f7+rxEkN8+E1vUuvGylCKE2KTwFLynDjr3Dw/47//J/4D/6Z/+v/B3/+7/Cf/4H/9jfP1XfhnjbmQQSwuH6ENl7NBzXcd7e5+fApqfBRDb3/04hlJrKnZa/IKC3Sp8r/mnz/yIN8dPwCHFgJ1z2O12MFrDqpWR08wGWvF+ZQYpc0pO1jH5u8yLVhICrGtquxYC4ABNV6cNJSx/TIgg9sM5U88rrfaUpspjWW9CCNBN8wkAKwgBjW/XdWQYzQCHUt/S85vSetZa6k1+4ZqRK7OTc8J0OiFFalurFdBbSjUHz+A5kN9kZyweTkfE4FFyhg9U+eo9ddkZdwcM+z2s66j3srGwRjrAcMBuFKAjlO2ZCBGmmAF+KQRENS1oUtRDgXmPDoBxDpZ9/0ogdihDQdseynbkXyn+kFaaXJS6S1AVPe9BuSCDgKqwj5Dr0gxKtYZV1BbRduxRmjIyFIzr656WC7GilQwxunYsMoZ0egqlZpEyBy45Z8QQ69pVq4tTpHS6o/Ms80yWd5p0v6mSLiuzDQCddbWlZUoJ/jRjd9jTeCqEvrXtqNJdKSwpwaeMrDXGwzVunr2Dj37wAa5u3sL9yzukAoRCmMDZgiUlwAd0IQDG4P7+ASkn7A8HTKczbvYHFJWglULvOiw5MjCn+7pMZ5ZkWBhlYDuD+XyG68kA32oDZ+mZhxgQc65933fjrlpedV1HTiV+gWkkLt57Mkx3jquqY1PXwV7MIK9HyaQKrpBgcp6p9SR5m5aLPbJlD90w4O2336Z5EMiirPqtFpZyABh3h1qYJxXd3ns8Pjzg8fER77Atn2g0z+fza695rw0o9/s9UhoQQsAyk1ZDKWHRm37EWDfTNuoVpN0Cv1aPuGUoW2Alg7211ZB/C7Bz/MC2BTStvrHVI4QQIF9AIv2WSWp1k9vrk+t+FUwC0gqLBgUBIGvdarfQsKxkoVRgjNuwrmBNx5qaF43SFtwCa9reOQfqkxphLLc4zAV7TpOFGBA8VVIH70mrYwxOwePlyaPrD+iHEdRVt1CUGyOiD3DGYLAGvaPqRm0pklwmj+ePZ3zycEZxO5jOIYQ1hdvev8K61cSldDImRAMqAJKqu/Na6amoC0DObfWq6ExN3WBLKViYvSwF+Kf/9J/h3/ybf4u/83d+C//df/d/xS/+4i9VQE/akvWZyDmeOjjI/JHH6wDM9pC0U86xLjSdMw0b+ePS8J/BZr45vjCHrFUyTkvOcJ2rzIdWIglaO5JIX2At4K9kKE6hOuegWVKiyhpgeu+rphFY167z+VxlMzlH7HaHumatfatlnatXXTVZsiYuIaBTshZSX+3OUlouS5qU2SW5hhAClJb1HoDSnEoEV3qT7Y/VBjkmUOcSj8eHO/KW9IFsbpLH6eVzGJUp/R3JOJvWyIQQ1vlTYKBtj24ccXV7C9P1KNoSu6g0nHFQ1sBYx38slKSFAWZKaU5Zzd1imD7NpcD2A3XZUQow7GFoLf1RGgoeVilYgNeigFSoDbCVtKNe+3srEHj380LdfUAMGSkb2FOSq8VNm47WFmFZoDK4wpfbPVpHqW4F6iQBblyh0LS/VEiFWy5KeYnk4tXqKUpLFhWZImvqoGalxoE49WIcii6ATlQ81FEvc7LNU8ghQvHep5VCiQH7rsM47JBBHWT6rmdfVWoTmZcZu90V/DLjcPsMby0LXrx8CR8Trm/fQmcdTo93+PAv/xzTNOP25hrdMOD+eEIuxOaGlPDweIIzGufzxPIyhcIWTYfrG0pzKw7wUsbYd3BdD2iDaVrY4ygTbVwKQloAxTrnQvP6dHyoe7k1mh1RukpWWWMQlYIyVHXtsO4FwkACVJg2jONFS+E2WBTbQekCqDVZLMm8IhKcnlXKJNvQ4i1NYASdseh6Sp0nlstJQ5GbmxvSv+aMse9xd3dHe7Im15fDbv/aa95rA8p5Xvhv68JSrSyYxaFO1JdtEdsUMvAqcGx1kVugJK9XwIV9z7Yopz0fcMkQrVTzque0bE1RjWIbNqx+ZnPNEilsGactS7r9jgL0hElrU070eq56bs4vqS2KUC/TxNv7sjVuJ+uACMuavJwLp6koGks5rwswf//oF+SwYCoRH72cMO0SrnoLVyKSn6BLxtXQodOAU8Bu6LE/7KAN8DAt+PTxhOfHCcmMGA5vQRWFJZxRGAC3SKyJN6ofXft9MlP3SpEOtN38VFMsJYBSxoJE96lQmmlZPLSOGIYRpQD/+l//Nn7nd/4d/tE/+kf4b/6bf4y/+Td/HkO/FihoTXrMrQ3U+qzEl0+9cs1tELIFjtvXX/xOwoQM+IU6HnTO4oLh/nEo9s3xhT6qXhFkltx3HYgxtEChjWIcDXLt40xOGsTg2SoLEUlIux5p9WoXHVkX20yGzJcQIh4eHqr8xzlXjYzbdVRAq1SlW0cAqhQ20lYgrZ6hCm5Z/6U6XJjSUgqCp2wH2NxcXpdQgCTXnTBPZ0pvg7pwhRSIxc2Fut/EAGOAHCMV6xTqACZAksAvATjb9djvrzCMO9iuR9cNLB0gk3GrxFbFEjPGALpIEWMhYxtAUQcxUBNBVQq062EcZWaK1lR9rRRiVsglElPJALrkAm2Boi0BSGOpRSCn3Ssbo0jDWQPunLmNHzOlpZBPoWJVn6J2g8aJ5Rx1HYspwUIRSYFS98scI7OtbIVDaouVnMFlYarR1FgDQJWupZTQNUE7sc/k7UhaRAOdMxUQccejwrY5RWWgc1DGwKoeefYo1lGAAQ1lLQZhzLhoK5QE2/cY91fYX03oxxHzEqCNg3U9oCyub9/Gcj7ivCyIOeFmv6dK9pQRIqWBr68OOJ8nTi9TK03FMgdDExT9sEMGMJ2P8MuCfhjROYsQyZgdOSEnat+pLLcWjQmG2URiJT2Wecb19TUcM5Vi1TMMAxEzct8aTKQUsbbLslRirK3HkHkvWYLAtkKtXKViHH5PAckLOueQS8HxfK7jJ6WEw+GA45kYz3EcMc8zdbTKuY4BIeeo85L5L+NDmYuqTdQT+21Rr1caesCa0tz+adOZsuDJgtsuenK0QA1A1SnI71qmTn4m4M00N2CbApIJIQ8uNv1pt5/dXoMwaSs7Vi5e3zKWEsVVTSMv2sKetpNyTdmuIFMq7i6whCprurgBL+356vfjGJuissJGWZRkKYoqIm3fA33PmxALnReP6CfczQtmP+Om17gadhgNgPmM3vZ4+9ktbm+vEGPAy8cjHpeIj+8fMUXg6tl7SGZAmE4VLKpmAxRwKYuZKauNhowJuUdiNjxNE91zlke0310eQUqJIm1HG1ZIiaJKxCo0lraX/+Sf/BP89m//Nn7zN38D/+1/+3/Br379Vyo72kouADz5jLf//lFg8rN+Rj+n5yHMs2yMQI8VUL4Bkz/ph+L/tNYwnKYUNnDtOJN57ZB3tfOb/k3DSFVmM+fCFcccTEqnJYhP3brmibQIhQopZG1s5T11LAO46KoD0uAJm06BFUuCSqn+e1LdLL6I9H4O/GUzNwayjBN7QjrAnBO8n2E1adU6a+GniJLYcixnSFcxxfq8mAJ3+Uj1PsVEHYSG/RX6cYS1HWV+qpsGAL4OrQ0zgNIdhsBdUQVIDIhKhgL/ntcbpR0VnxhLBtrMbJZCRuRQxIIVUKqcTMMV9+bmgDhRwRB1JyP2ix4vayoB6FJYLkTV4uwtz2sG3QNbJQfyTArpS0ui3ulK15S93IDMtSnEdHIxTckX+yO0ZuYaQKHvQtXEDJZzBhRJHpRiM3QeY0msBTU/aOegS4ayFjAs4XAdEq/p2tD91HLuROdXKZId3ZAw7vYYhx2ef/xDdFqtfbmHHebpTAVkMcOnjJgytGJNcUrghj1QRsEaSwSDpXmocqF2wDxXpvNEXXGMoU47LFeje1rQDwNSipUAKtzbm9LOoTL61lqyklIKi/dwxiJFMqx3zsEojZjYoQV0XUtDkGjpnFcuZQdtFhUQMEmOCiI1iDECKcI6smRCKdRrHBTgJPB8SSQBKGq1PVKlrU9hP0tFjP3n2YleG1CSbi3w4nIJ5lZGhTfCol8BfHJcpGqZkm2BWrt5f9ZG3oLE9meyQG8/q015S2Xx9jO37BSwMgztItwC4va65DraLjytpYec63ITkcpx0hkZQ9VmaJhauq5C3p7q1ZR3e49WYM49eBWgbfM6ANTcdk2nWtshKw3tBpQ4QoUFpiyASWRXgohn11d4/+YG3djhfDphiR4+Jzz6BcfZo5gByg2YpojEzGINACQzW0r9WBoP6zVvPUKF6ej7vjKVrVRAKloLb5Al+8oEK0URuwwbsVeSIrHz+Yx//a9/G//23/4b/P2/93fx9/7e38Wv/dqvvfJM22dLY+hVkNkeTwUaP/IgCgIAsUfeB/6O2xcVfJYJ+5vji35QekxrA8d6Kq1N7XctwG2V+GhoyAYv2Yu1cIuGKG2IWWfkQpt/ZQe1hpUK7lLY9FvOTR05ZI5JMZ/tiCSg4hFekyWgxuqPaJyFEmAFamphTdM/XGnESIjFmEbupDV1MTHSqWftR52AuiFrQ32yndNI3iMx8FQlo3cGKZAzhujPV4kS+DqpV7R1Hbp+4O4mljXJrJ201IlHMaAUIEfFNLRQFb7HYJBsLMmICgAY8mxUroMuCtpRhxtiFlW9JsXMjgKZUFtH6fUCfqBsowSdgRhXf8dCAMcYcsmIOSOX1d1DLOTBz2NdF0FMqjiBaEAVjZzXriulrBX3wlgorYF4CSiVUrU7kviJ5pSg2cqJmFthqEkbqoyBhiY9a/0ADesMlFqD75wz6fpkDFgL7RydxxkYS+07bddT3+0uYRx32O+v8L3jn2Ex7IFqqPjIpwLFmtPzHDD2tIay31MN4Kx1GIYRt7e3OIeF2h/yvEOhz1ymCUppjLsdXNeRprdIM5GIrnMIMZDOnbsZjfs9FRypwvPJE6utFHXqmRR8wz72zPZHT0SWWPl07IggFdet3ARoMh0ckNCeya41HJxU15dM8hFjqKWpdMVJOUEX4HQ60XfKGR7A+XzmrjgF1hiSgSWQCXwWT9zXX/E+F6CkgZ1rpCyp7joYazSMGnmpOllRQV1NNedMqYNmM9+CJVnYNJ9H9lv5f8qZujAoVWllo3UtcKjpcX4oy7KQEfc44pwLYqCbXSN/VaB0psgGEcXRAppiRtcr/mSu7gJqZJEhmosV/EhKSgCS1roCpG2BjSysRjuSzrD1Qc6cioFE9wLUV1Z2BZTcnaAU+k5AYzBP7IMUAAEK1mmkDAZqFikBygIpK9wtR4Si8Oynfxq3g0aa7uHnR+QUUAAc54wX54IzRphuT4vJMiGlsD6fslavVtAN1Ohb7kHLUKeUqn/XqneNnMLPcM427ArftxSgI0kIjF07+0gFWxvdxZhgDKCUxj//f/9L/Pa/+R388i//Mr7xjW/g5//G38DV4YpMjOVJF0kdrpXpLchsD97HL+fNqzOJX0zPip5xxrIsiCmj0wYk61cMgt+AyZ/kg1KZhS1MLM6nE4n0tQZ14VA1vaxAXrQy9oF1/WrTYXJIxsdqYjDaIkEAdb3RmkCNrDetp69cozUUgLbrVS6rh+UalJvaj5x8EyUF2jhjgM7TcfeSdo2SAgOUgpIinNUYx54tacigOSwzLFsHSWu9lJh1Kk2jDHYUiTFjiRl9N6IbRkpLQwNFYZ4o7W65MAkZ0JYKS5ATEgqyEi5ZVnfAcLcRU9O4nN7VJL8xBSsoYwu4cKLGEpoWcORExUi6MMuoNZzpwQsQVKGCK+0CshewgpU4uFhrVF07c87UtzxnYlyNgQGwxDMoRZ3h2fKnjjVFhVOS2uQHeAFaWhJIwJ82vGcnsmcqhWQJUGToLsFKLpmLaS2UIp0v6Q0L7Rk8jufZQ7sO0klIKar+LnQRsN0Afz5TEZXr0Q87XF/fohSFGBJ5bmoL1w8w1mKZZyzzghIDVM7oncV+HHG1PyDMHqfTGUop9MOAyAVh3kcYG4FC55qnMxe9WKiSEP0C1/W1jacyFufTI2KSVpIGiW+h1AAAVIQXF19/No5jrZAWLWQppcq6JAuntanSDfKottjtdnW/kXPsdzugFIRlwel0ItleihzMCPjjrlGJu+BFct9JueB8mkiTrdamLbJmiH8zrQ0aMQaaCznjdDrhS6+53r02oGy1MfJvGYhyw1DAVXTNxssToQJQoEZKLYMoX3D7M2BNpctr2l3bMCipmgPRjjSaAGG1Mv+Zpgl93+Pdd97DPM84nY6koUvcuL1oZCVVWNwP1pHZMAqQdYHRhRGEpDwUYDX3tS5UVclMqvy/vZ6WEW2LjZRmqr0lfpl1LJyyaH0+23MQA0sbV/tzeg4ZOSsoXYDC9yxnSO9VZGpWDwUUpZBcxn0K+NPnj1C3I951Gvk8YdcZxAg8LsCLScObPZIyyMsMmwN3Y1gPCShqahgEbJEufUW3zKtUyPZ9j1yohedWOiDG5aWQsFlFAKq7GKvyWml7pRT9LESFjs/9u7/7e/jOd/4Q777zDn71V38V3/jG1/Hu2+9Q9S1rgnImY15Z7FdmvmUl6Ru/wk5Kyuri5/ScxZplWQK8D3COquSFEaU035vjJ/VYwSCnvovo0+igTMYKFou6fP9FRodZxXZDkvVHgKDMJel0IcGXUjTeJXPS9z12ux0W72GchcE6Z2KjUyYZj0XwAdkUWAsCTZrToQ1xIJXZ4FStc66mTBOv0RU8F9Z3W43D/oC4LIjLjJIj9rsBnTFATgjBAzlAgQoEgyf9d8wJOckaTUF/P+7gbAejHYwhb0nvQ32NMwEJBYNSKJkAMwXYqoKuAkBZagRRckFS3E7PSntCIg5E86d43Qpxge0ccgJipi4lw7DDsixYFo+YgeH6mugeTqWWEKAYeEv7xZIi/LLUfVP2N+tc7Vgje4flwhuVIvWpjoH2H6zBdgJQjKka9MLru4BhrSx5B+uGbU607ihDetNSgOgDE1YKMRV0RkOlWBkzDoFRNFs9lQxk2uc0Z2JKzNQNJ2Xk5JFCwugG8sLUJJmYpxmHoUeJETFQ0djhcIXoE5FZ1KAPUBq3b72Dh/s7zOcTunHEcZoRggEyYIqGu9rheDxS1XVnoR7ZsJ4DpRA8BowYxx5aWxQo6pBjA1QixwLjNJzrEFKgpiNKkwen2NxJm84CjGzkH0LA6XTC4XB9EZDJetCsDkRYK4XOcZAFKpeilD0zFKxdXs5nQFHXpaurK7JQShEhxspGW0PFX1QUx5kLZ9D3HfqejM2VNlVOo7RFaeR33nvM5xPu7u5IHtdYFr3O8dqAsi04adPObX9s+b3k7S+0GU8cT/2+jUC373sqdV5Kwfl8rhu9CEqFmWoZKhGjf/zxx9Vv6a233sI7776NaZrw8PDACJ0AmNKFJ3CCSgUFxALQ4msukBNhNsMLvr1gC55Kkbf6xxZQbe/NmmJvugQ1FegrNb4a1rbMXxt5Vm1UoW4NMUXk1BacsOVEyjCmQ9EKD8cZf3J6RHx7h9vhCtAFJ2S89CdEN6CoAfPsueJzDRq233f7PNvn15qzyxFCwDzPWJYF/bBbC6nK2snhUgKREALdgxagtxF4ey1FqarRdLzhf/zxx/iX/+Jf4H/73/4TvvWtb+Ebv/oNvPvOO5Qu4EDpkhl+cli/cmwnZHvd0m7R+wC/eOzGkZgXeQ0U3kDKn8yjcBrJWEMN1woVWGjNTBiP1ZQECBK4sdbW18t5WkE/zRn2xOM0aimlsoFtKr0W++nVykTmng++rg/tPJE2bJfDdk2rIRc4lpeIFqvk1YcSQJ2TaNaiUgozZoqVHJoZFENFHLx/Dn0HZCogXOYJMSzEioECrZjIsHqO1KeZ0n4Bjlu41uxRSuz/Sbq+khN5CqaInCMiszEFlDo0sk7nBOn2o4pIhApgAZUAxMBWObSOamthOR1Jfb+BmAt5Z2bqCV1SRJzOMJ2r7GyKATFEYt0KEycMWKlSmmsPYkCxhsBQ5uwTOwEoJjUAArgoZGCeWWsUBfRqll84YqKUtQDk2XO/aTaJL5ELgVAINBcqDrJKxkCgTEqKKFwrkEFdzWIJyFqRTtS61egbnIJm707Sz2aoEADLa2Ii/WT0CqYUJO9JJxkCdrsRwU8ASM6UC7fMzAlIGefTIywA0w/QxpIMogCdoeKUxQdoG9ANXWXOtTGIIbDzAt39td2whzKWMoagVpvMF8AYi5jW/trEnDeNDBoyozUJlzV9WRZiZs3KFJJ8RCRxCefTBJF4UbGUQYjUdjlLCpzBZdYGUUXoyq9nKMjakuDnBVpp7PZ7tjdaXViE15K53Rb+SIai7bD1447PlfJ+6t+y0NVNfpPC3IJFOdrft3/alGILUp86RG+XUsLt7e2aUmdwsixUmb5NDfd9j3me8fj4iPv7ewzDgLfeegu3t7ccUS4Xn1FBSDMwRIALrAyjsA2tDU4LGGWBv0xTX7Z4rNqO5p6VDaQQjdX2Z6RPMhfPRD5T7kHdbIyG0gVJZWSypyR2VlkkBaAkaFDng3PQ+KOPT/hr7z/Du8+ucL+ccOcnlGGHEBSWVFDYsqFecwMiL9PE63XLtUkBk1yv9762rFqWBT6kWqgjm9NTR86FmUyRG7RjRcCrbN48+XlBnaYZWgFDP+AHP/gB/tk/+2f4/d//fXzzm9/EL/3SL+Hm5galECOwptyFm/lRkK9lMC//3t6L4COmacH1dWbBfXrlGb85fvIOAl3is5hhpZK/ZCqeMNQTmWRAmpmpZm0E6wSLSCyYpSrCzGUgsfiex3MNpoAaPBGKVRhYo5UzyT+6XlwlVvusKk3BOpflmnKm6mtJBa+BbawgBABQyAbIMPOCnNk7kIGKrHOZO7gUqnAGa9BSEbslKq4zCuTTyBIgsuEJoipEwUpkyNwsJYGqtgFkYvA6a5BToA47DASKVmQpxEBEZUL8RRvAGtJYmgSdE7JJ0JnkRTkXqEI9XoxSlCq1jh9UAWKAyglQhlKp8xkGPbf6I7AbfQDV7ihQdQJpXw0/aQBAjNTzWdbySF6K2egGeFJHl8x6TK5oQuQCDChFBT7J0TMoju65Ik1kAWpVfclKiFTuBgOANXuICTl4hFKguY92BZSW1lIojWwMkonQZiUOMgqZyAMQkUGcJsCRX2ouBToG0mwCSPOEMJ0Rg0fnDDKR29Dsc+qcQ9/1mCyRSF03wBoLa+w6H4xBAgUhwlQbQybwSiukEEg3SKnTatdFEpLCGS0yv0+ZgJo1Ggt3dJP9SPwhZZ+XeW0rcFfrvcpJZhdUVVOsZEVKVKSp+GfGdJTh4GcYY+NQk6lQy2gNo8TjGZUFzzEigDv+QWEYeqAsNCVRkFLgtSDy9RFBOAwDOcE0e/frHK8NKAUYrALytbq5/T2a38lA2oLKzwKZT/39s8CkgMYtUBOGUGtgGHoGfiujd3V1wO3tDR4fH3E8nnA8HnE8HmuJ/9tvv43D4VA/V9JMAiSdWz0jpYoYWFNbw9Bf3BP5XVt0IiL6Ggnk1cSUesquizellta0vwBC0Uy0YBw1HdKyBHTu9vPo/jEwU5xCZ2eAjEJ6q6QotZMsklaIMPijj+5w56mFmt5d43FJmH3mmIi0JSiXFgNPDcZLZnFtIdmCcK2pBZS1FqfzhGWZsdvtqn/WNiARFiGlUnVj7Wcsy5oqp1SgJm/O4JEzMddUmbdwqsnie3/xl/j+9z/A7/3e7+Gb3/wm/tbf+lu4ubmBdBJZP/d/P/DLWTRiCefzRJE0mxADrwYTb46fnMM2AEdpjX7o4ToyiS6FvSC1gjOW0r8FUEUhxzWzUbVmmjbIVmihtK7pV2scVVk3a0zyHn3fE9OmFUIM2O13VInMEhApAIBCBWSGs0w5FyyZK1JV6w8M6jYCIGuqnM4xwHW22YAK5nnCjgt3FKgKWVuSH6lS4Axt4MEviH5Bih4lkuUKMXuy3gIqFyx+QQgexujaeznnCO89gZ+S4OMCFx1GNTAg59aWsSBNGdpZxOQRMxXDSPtW2w1AcVRgIwUovFZAKRTuRGOtRbEBISdAaSAYKOthlEbxM0pHJupGOuzkCGUJHKYQoZxCOJ/ZnYKYODDYIpu3gN1uB4WEkng9TwFxzrCWCqjCPCMrjVwSnGX7J6PRs+VS3QMy6QGztHnMCWE5A11HrK4UcCnF1jIaSAnOOKqyT0IOaSQ/o3DRD2LC4/0detsRyOciyIXN640xKFojFCreqmSRVoC1bCFFhVF+OiNl6t8uGTfXD1Q5fT4DywTEBSnMQE7QWrHvJuh6uE2omPdrTYVCtu9grEVMES5bFCUsLZMdOQNF8fiR4hZq/6iVgnG2grwQAioM5udlFBVCFWaWUTKm8wnjbl+1+1QvcUlmxRga/+MErQ13fctYvMfpeAJUwX6/X/dCo6A0MI5UpEq9t0PFEaUUqiMBBVY0jiJOx6V+dgwB0/lcAXMp1GnqdDrCe24koCmkSTnj2bNnmKYJ5/MZ53l+/TXvdV/4SrqyrBGtLEy6YcWAV1PaLUjcMpiflRZtQZe8bn04sT48ErdypKaJ3XKObI2k3WIpBcPQYxwH7Pc75EwMGIHKR7x8eYdPPvkExmhcXV3j6uqAvu8JrXOLr1pd1aSVCCgCwzDCWscgZfVUbGlkSce7RiTfft82NXtx38sKTCXV1aaI64ugKh3eWim1mlcC/iLI5WpOZh60YRPawikSBcSikY2D9xEfPH/Eze0NlkTdKVAKnC7wJcMYhRSb4GIzbrZjqQXtLas5DAOk5ZNSCn3fsS7lSCkzRZpJAvE0kWKi3uMKCoEZTmld6b0HCn030wBNo0mjo/leBWFJoTBNM2lyncWf/Mmf4nvf+0t87Wtfw2/91m/ia1/7Gna7oaZJfhRo/lF4s2V/SlGYJo9pWtB1Dsqo2sb0M979GT9/c3xRDhkXKSWkGGCd5s4Zlsctaa2P4QGeg6qe7byEoRfmHkAzbg2va1RZLeugAtC5rqa1U0oAA8lSCq6uhovUm1IK3tM4FzApa4ZlBsdB1WwMZV4o3TfzJiPFktZaJGbbilq790iHFaMNTN/DKo1SInX0yhQwzdMEy+zpEiNUAVm6lQzXdejcgOSJSSGsqvD803uq7AZgbYd+sLi6uoLrOyhdcDo/Yr/bQ6sCq2nex+Dx6Sc/RD/2XBmbEOaJ/SbBQL8A3te5GeS+a4NkLQKnjxUzkVVCxHozlei5xZwA7dANPUwGclaIy4yQEywAJ/ZMiYAjMbjcp/rxvgb7xCACyhrk4MlncZ4QMxl4G61rkanSBcmvBTBQCjonjvYVOg2EkuAUP7ccOfVckJZ53Ss0p2ULYHh9K9OZwFumzjj+4QGpkV7FSHtclPvFdlGo7ScVjOtg+gEZEhhRXUBIBcHQGNHK4PHhAapkeL/Az2fE0xHZz9R3WyuoQmlrZzUOux06rbDvO8zTCbYzKKpgXmZ0nUUOBQCN1c5RRySrE+k2mR20iirByWeS96TYaOatrVlLpTVMJI/jJZBrg5BMhEHW1tBd1+Hx8bESUcMw1PbLLYbxYea5FylGCcIW5hrwtSSJEETDMKDrOmI9JTuY19amKSzohh1i9Eg5QrrekNRmJeOcc5hnev6yb7bZwK1k70cdr1+U0wKdhqmUvOJFNK5W4WurE2hBRruoPcVgCrPU6hAFkW/1cLvdjlG7x+Gwr1S0MIsyUQBUUEcMp8bhsMNuN+BLX3oPp9MJ3nvc3d1hWRbc3b2soPFwOODq6upCMyrXCKaSu040SnxzGdBovXYJEla1vR8tAJcijFb7qdUqmCe2gz3E+Gjvl/y/3ZAyi26F3WsN3AXxaG04SMgEzDSn3jJZDy3LjCUXfOXLX4KfZ/hA6SSdycLHIKCkVce5nn892qCh1cm2Vk5yzbIpzvMMZy0cBw0CyI0AY0nXFClM4PcWIIVYJ6LmTYXunCLrDU3VkdTPd53g8kwyFx0YTRWj3/n2d/CDH3yIn//5n8e3vvUt/OzPfrX2FG8DnVa+kTMJ+p88CihSL9yGL2acTzOurvbQ1qAgPf2+N8dPxCHrjxgrEzBznC6NtYqUMhsDM4XkL2ftwM4LqQLGtcVqQm9ojPeuw8BykJJzNVpWimy0/EzBlMx5KnbrapBezc01sYUyZr33tXiy6wgAl1KqdYrmgEcCKmnfJmyn0Rr9bgfpilUKpZfnsFBQXihU0qoQ06QB8bmU9Zp0YMTqRG43l3JCigW7/Q7neUFJxKC5buCZTXM1x0SWLYFSflLo4L1HiL4W3MnvUyLdolSua61r1bdS5B6RgqeMjtboxxHGWO7MEqlavFjESKCEGOTI34+cMUqMlKJkJEPa04wUqWtQyZkseTQX2CCL2BYpaaRCgXMOnnrcFErBqlQQJlqHtaIe5SrTd5X9UhuDog2C98jcTx0KvDbRughNHXGgLYpfiNlVCvN5Qlhm1mhyUXvyWOYIGiJUrTyOI4yMU2WJbc9gM3rAho4Y0wwGlQqArr2nqcc1GYZr7lCTwoLHh3t0zkJhINLKuQqkrdFwhtLQoh8V8qAU8opEKYg+wi8eFgrJaKBwSlwVhOMR476gQ0/WUpaqoimVT6AzZ2qzqbD2tE8hIKkAYyxcR8TTMi8IzB4qratUS/blde8HALo/fUfpdMuB2TzPa+agcMZQa/hlgWY7PWFjPQc/Q9/j5cuX0IZaZVrrcHt7i9lHBpvcRWiesL+6qnPbaXeBG+Z5prnCP6vr0mser29s/hlsY/szOeQCWuDX/r0FQE+xlm3BSouQ5e8SRQOo6U9B7bSYohbgtIVDT92Y9vzDMGC/3+Pq6qq+T4Dq8XjE8+fPMQwDRm6TJO8VulgWYvk+rxqRrjrMdnC1GkzSXThISl8x0JBbnHMm4be5LFwSQb/QYa3WsE0jr2llskzQKpNgnQuRwAseUerU8vA0nfHB9/8SN1dXKKQYovOVDF0iciJrDJGvPxUktOOk/Z3cAwHBLVMJYNV08XiRKm9hxwUgO+fw+PgIrQ26fkCICwuK+3peYq/BehTyGUMpZAYMXcHpOg5pI5SUtFIKL1/e4z/+x/+I7373u/jGN76BX/qlX8LXvvazF4xze71d1yHmdDFfLg95ZgTmz+cJ03lG7w4o2PpSvjl+ko42wyKMch0FpQ2wJJ0MSEGWzIl23KwarAyjcaHPolNeNj4A1qYQEkhTGnhNX1MLt1INkltCgEys1cV4zjmTgTWdHCjr2ibfoZVpXDCiBVX/hcrOk11Qihm5kD6wfu9C3Xn8PCNxhXfwBE6MoZQmNX+kFCUUacyyFNIUUIqysV2LMSBn0robS6bTuQAqZkgbOxQFY1fZiVYKNq2FS9AKRhVKjeeMlIkJjsTPAVBcVV0Ql4zUAO+oL7u8qQLkGImpZEBYNBiEEhjPmZ5hZpnS2i6S/p5DBrJGipGCZMNOK2ylUzKQExVvGAaxhSFdLlKEyc0+oKAS+Qlr0OeGeUJO1PZSAgFVEnKY6KYqIMcFKWiUFJC1RjIEUrPiVo6cglcpIqVCbYGZzvYhkr4RxAQbYwlQKgKjyFRwZBQRHSiU/nedQwwFicd33/dIkUB/AXk1Rk2aVK1IL+n5mRrLVoJaIeRYx7nrydJIgT4HhWS+KCuFI9ZN1q7uMXLvffDImSUETCBtM6/i511ZwmrDRHuQsI6llObcq3WYZtP6tSEGrzdtSr9Q9sNHspgivSUXKRfaxbU2SHkl/pRSyInmoLiqaAbFr3t8rqKcFhA8laKW38n/zYa13B56cwPkfS0gaWleAWFyE0tzU+d5ZgbuGs+e3cCIpYJCo1kAgMIajDUX2aaHW2TeppuoKKPUqO90OtXG6lu/w/pwGhDefp+WQm4LZyg1fwlKaECibkCUnuKFu7l38m/nKCJqmdSWDaxG7XxOrchwt6h1Q0gxwTq6xhfPX+Dly5ewmtoT/vEf/ynefvttjMMIo4DzaaEFhTuB5HIZeLT3od0c28Bi6z0p0VlbgUqp774ymm3hUWVUlIJzBDLFB0w2c9pX20mpqFKTNx+Fy2ckER0y2ZV4FmFbR1137u8f8Du/8zv4vd/7PfzKr/wyvvWtb+FnfuZnKjiQ6/MhsLgar9wDYVPW/VdhnmacTmcc9iOoEccbRPmTelQwWRMBtJlTK0JimKgwRQr1DKAk0LwsJmwDVAk+aW3ISAmw1tXmB8BlsaRcRxuIr2B3XfNknW2Df+l6ZS2vKznV9JrRtKZKNkhr8nuU4D6ynYl8dwKfCQJ/qTqWWgUmLiAoiZi6nCgFjJywsH9fiBExZerNDZDBNaggxIj0iqVNUKRZdFJAV9bKZdoz6N7ETJ1WCld70z2y6Dpb11SrFRKV3fO9AxYUJGPXLEZnETMzk7LOWCCmUNkoozWiitRlhgGmKmDrHdbQGoOIgpw9pKgoM02WxZBbEeBVrJ8l+zeLtHgUrVGMps/Imaqlc0HMZEgz7PYMVhh054zoPfUj5zES+dlrxR1wlhmKLpS62dDgJM1rBUIZKXrEwkVBCoAUmWkyP88xwriIGFkvWgizLSEgxlyBJhmGc2CTycMzp0Aaz6yQS4IxA6zRSHEdz5SVo8KulCNCBJA1LGtag/dU7JMEoGk4ZzAHYePZ4B98/6CBQvuh4QyehEsrNqDiNj/PxGDKfAUQqv80BxlKMre57kciNREwKeeV4qrIGEewBp0fCD7AS7aA95u+7+veKDIVkh2wrjKX6oIjnykZkL7vCRuoVBsv1MInTtO/zvG5bIOeSlHL0f68jbDlvW3k2y5gVdPXHC3ABHDxegAVFMlrBJDM8wRrNa6v91CqrxW9BPC27cbWNkeSApcbvNUZCRs2jiPO5zMA1AKRUkot6JE081Mp7fbeyN8FfLapfQG7LYA27AUm59IsyJbztUd7r7bSgfY5KelXqxQy99Gl35FtQUn0vaZlgrMau+GAbtjh/uGIT5+/hLMaz26uMO4OuL9/QILhqXbJTstnbhntdgxtC58E9MnEWMHw6osl38cYQ8Lh87mmAgR4tsFIex10Xw3LOMS/T4qZuKqWFxcF1FSE1pq0NTHBGIWcFe7u7vC//C//K/70T/8Mv/Zr/xV++Zd/Ce++++76PDl1/tSzWg/F6W+LlBYcjydcX+2wPwx440P5k3vEHBCShy6auqBowLkOIjNZZTiqgpdlIfnHOOyg2bB8WZY6L1Y99GpkTpkNqjSW9DogwVyBMZayKNZUgCm2XP3g4JxF5zoY6y4CUdk4aa5NxApxK8MQQk0vSkFC3/cwdiTPxpRQckLvyBevZAKQ1hhYTRt1VoksgbqeNs6UoJ2DLmQZI0BLgcBUPwxwg8LiI2IGIjKUNeitgzJsc1JlBmy5JS1oFQBkuL4DFgq4l2WBj4kZNEp3+xhgjEPXO247Wagy3KjKdFmj4M8nBMXZDq0Ri6EHzCAkKqA4kWdR8UZS1JnMlA6lADFmSkE3sizlDFXexgBpqkBjhMCddNJRMQJchMWoHkgBRG8a6nbE7xXnlZwTkl+4U0qCRLLRe8BoZLVKfowxZH3UrL85c3V6TFj8ghi8yDyJBAiex06mjBc0n4dWQGc7dMNAKfwCTiuTFEBl8l/USuHuxcc1C1hKwen4gF3f43Q6I5WMrncIfiENctdh/+wZgIK//N6f056eC3mVeo+bcQdtgJIT5vMJvbMwijpXWWfhnCEfx5iwLB6pFCyzx7jboet7kp2wRCDHCBhAa4ccA3dYou/vo4d1BofDHgDNr9N0JqZbk9l9KTQnd7s9lKEA5nw+o3NjLUytG32iPvJWG4QSERYqsINaJW0k1SLQPk0TzQ/nMM8Lzucz4ZLdHimI9E/j448/Rj+OcF3HRWbdBe7JOdeCIAGngnle53htQCmLTDvAt4xTCxpbINPqCLbMZgtUt0fLbrXRelsNDNDgJ3ROzvgPDw9wzlWA16Z7BQTKueXnLUu5VlKvnRlEXyCHLOZiFdAyk226altt3AKk9jPXPyu7VU1RsfpIAlRAI5GK3CeafG1PYDraVLt8V4p+uPpSkUBE0qtikOq9x/39A26ur1FCwN3dAx4eP4FPBLain/Fw9wLvv/c+9lfXuH88wViFHEF5nGZMbFPe2/Ej90Y2TRncANh/cuGqdu4zaqizj5yu6yy03mEc6Y9SqjLJ7TOR81tORyhFOjDSqa4mxbLhkwAclbmQeyiFUSmu1/nhhx/i7u4l/vAPv4Nvfetb+IVf+AXs98wGqFe9OZ86OBmJeVpwPk8Yxo6vY/UKffp4Azq/iIcsyp3rqNBKKbihZx9ESjl67zEOXe3HvbLqqBWd7TpWdZkaiM16KEcbnNEa2Negtx8HXpsCFBT6wYGIEequArWO58zpbpGTlLIymWKLtmYF1szCMk9106tzJRMD6b1HCgGxFGYhqfPJNC3IMSIFj+V8JieFkhFDZFshoOt6UGdHhd1hxP3xhP31LZLIYEph821OpyfADT2Cj4CilH7IZD+WCvkzppwRUsZpmvncBEqHUSN7XsdTxK7vYPXa+9kAtd2rNQZdZzGokXw1i2RKGSwpC5n9BYAeqItXZtBDulDyIIUx0KSOJLa2JFpLi4YWplkRsM0MQKrIKWcYrWA5Va+Qq+2LUpoLTwymx0cCrMw0Ds7BaQWEtGZkChU7SaZIac1dXniMFeqeYq1t2OTMbNm6/4l3o2LU6RWxaqKzL4VM8gUo55QxLxF954AcsUxU1Z/CjMe7O2hrMQ5syB981dLLHPjSl76EZTljns6YTifE4MneR2sY3dVC1hUcZxSrMY4j2QaljLB4hDhDMpiuowIxLft6iEhYMO4OtB+IH6TS7C9p4FyHvu9xqzUZj3OrxWEYoJStwDxxhuLh4aHO4cyFM1bpyvInZii991Wi0I8jANozpLCmDQbGccTpdML5zLIEAAlldTOZZ3Jr0QZvvf32BU54eHjAMAz13/9FNJTblG3eIJeWcaTBsoK97f9b5m8LKuQzfhRYlXRoW2ACUJX1NJ3w4sUd9vsr7PcHLIsHCa0VYhThtURi6ZXP3n6XlrFc00wrQJNK7tYwWM4hFZvAqt+U73/JIqwp4ZRCrb6mn2X0/QjyCF6BLxRYFE5po5TEFsjUxVzoc0lHtWyotYZZMfIZE3uSkDLmecLx4YShGxA8ndsNHVxOiPNCoFMVTMuE733wF3jvvfdwdXWNh4cHSp/nFUjL/dvKAOT5OudqsY1sTqJDlfcqZZr7DlAXDNFeJnTdAOcKnLNVrAwQiyJjRRadWvzD58vC9JQEqzTAVdVUCAVk7q2sNHmVZdY6Asxn8uakAJzOE/70z/4CH/7gh/jPv/9tfPOb38TP/dzPYr8/1MIhbUxlB5SmTYfS7dSNRymDGD0eHs/Y7ffYH0ZsAaOChrjvvQGTX9yDtGsFUVERym43YFkWsuVRa7ZCgAHQ6hFJBwbmt1Mpjcm2Zl31GpRaawG1rs8y30nuQam1YRgAcBvDTBqzrhso+GLgQJqpvtrlCKhUStJjgdYMbWowLGkx731N5UoVrfQNLinDagOlMnwkdiv5AM+q7Hk6IywzOmPI3oTZqpDY3iWtqdscE1nzOAtVU6cFqRQCCYkYJ2uozS+MhioKqVAVdViIpYspYwkJx2nBHCICN3lw88I6PrJQCiljPzg4o2A0pSFV4R7HOUPFBL0E3p9Az0FppOKhdYK0P1JKI4mchuVBWilAGmikjOjZPk2AMQpKjmzLxu0YFdnArKnrlSmlgD5DBF05ZdKZFgLjfp7ovMxYzmGpUoy6z3HgkAHuJqRxmicUlgHFlHCeFwCxBkIyljWTEilF7MYRpYhmFCg5wIifJYgQIS0o6vVpY1FKgveBcVBBCB7jjgzLNRMOCroWoRGps9ZRlFJqP265X6w6QMypkk2G+8tTv3kLxWxfURHWGRijiE03BtZQX/dUgBK501GmXutSdFsUEPxCbX+dozHkHIAFkYvlSqH9vTDIdo7YVl3YS9KRDVRcFrJOiqzhjxGm79E7mpshkaxLNJASAEoBjtYa+/0eIWfusKQQU4ZXxOqalKB05H0nou8GZndpnnrvazD5eY7/XbZBLftGg2EFhltmTli8FkhugZe8rz1/e1459zZ1KSCjLY4pJeN0OuLTTz9F3/c1el4RuKoAEHgVdLQV4m2aSa6rBWUX0U5evSTb1mgtuAMuTdDbe7C1BpH7QoSZFPIodF1fz12LlZp734LVtuin/TddM0Xr8zxj6EcAZBXhvcfjwyPeeecdKI66UopY/ISYIkL08J40KmLX9MEHH+Cv/TWD3W7E6XS+0GsJoN0+u9bSSO6PvE7uTcsiPxVU0PsttJZJVaoW8ym9ZTvWWg/T1tR1ZajTBSvYRmptMKA1WX8AgGIGOueM3//938eHH36IX/iFX8Bv/MZv4Etf+hIx5IEryjPpvIyx1PO3kSQABtN5xuPjCbtdD2oELMCRxwXUG3nlF/ygII3AQ+LgNcYIzTpcyRBQz/ZtUQyBR21YA8VtOqkO5lWzYRrTazZkBZTMYDQBr2ENds4rC1UAsgniDUTxJryuYZzKLKKXrCV4F3O7zS4459jAOwOZdWjWAJ5AYQqRinIUmaDHENAZg2VewBJ4pETMW0prCBVTBowDNBWfOIgf36pRC56ABhVXFMoEMyOcUkIMCcsSMPmA0+RxnGaclwVLSAxsNJwx6DuHm8Meb90cMPQWzmgYVcj+SIHnbkTJVNlewCymtSgRsJZSHLKWOGsYPHHWwWhIdXsBpYFpzReDctTMFgkdAJWkr7bsmQWUwCG2Lyt2skBjycZjJEVPuk0GfbHZW+lzsujBkLhZRSoFZ+9R2KNw8QFLiLy2stl8KegcFdOQGX1A1hYlxVXzn1PtRKMYUMp4SyxD6voRnq2PZH/3fqExa1bpmHMdVZHzPClFQZoAiDwKmaQX/IFQRlfG1VhxTBAzct7nuWOTtSSJEt9LYlEJ1Bf2VVVajMS5VaWm9pE5RZCNc4Ebh+oRSb7HFHjQPUatiZBnIPMmsjsJLGBYy+rEustapJmBulFQedUwV/xQOJMrBumKvGVjXl1MOkftJiV4UaDv59wqfdlmQH7c8bk0lG2qVj5MbkS72cvP2sVtqyPcCsHbTX6rt2vf0xZqtGyhnKfvO6Q04HQ64eHhAe+9994KvPKqjdwufNuU9JZJlXuwLQaR77VlweSz2ofSfufWZb+llluQLtdZ7NrBQqra6b4woMnsTVnWitH2ddv72f68bQ11PpNc4Etf+hI3tg+c/l6QcqyRHZ2v1H7bKSV873vfw1e+8hXs9/tasCT3uAX07dhpNa2y0MuzaIHjVn7Qfg8Z+MIQn8/nWpDjJNprwLscbYHCli3esu9tQNE+m3Ycb3XCAPDw8ID/8B/+A773ve/hG9/4Br7+9a/j2bNnpIlV5HOmda6LIL2X9DohkuTgcBiw3w9NIRlYnqAqtHxzfDEP61zVmGnW12ktRQpsdcJm1qKNA1ZgVgqlqMBsoGamJOe8pkAZOLZdOiSlSMUhtloOyXxd09gF5/MRAGDYG1cKDVKiFGhu1o5t5y1jXA2OZa4vy1IzI7vdWAN2ScmStpHywkpRd5fAzQTkmiQlKCyc0RopFSi2i0kxISiNBAVrHTpnUOYFUMyiZdq8veeMUuKiw85i9tTL2KeEx/MZ96cZc0i4e3jEy4cHvLh/xPE8Q2tN+rz9iLdur/CV99/B9eGA3dBjcAb7oUNWBkgZSBGL8uikc5ox6FwBcoTUM8j6J4GusI8pxspWMW1NqDFTQCuAXdYZOVKMKKDWnkqv9jFKkU8p1Cp/oMEA5ByAEtljcZVGyNqTS4H3Ed3QIxcgpIQlJsw+YMkJRSn4kHA+z0goOJ0XhMBeiTnjMA4M/iNS9AhFI/rl4rn33PpRgqOYVgcWrakr0bQEOGNgs0XOXAhbMmwhIOm6jrJ2zBACtD+muBBTjoKw0F4q90kx+yeBk3ij5hwr7lBak85Y5qta5XIERMlLc+g78gA1lu9bRogB2jgKGPj5nJcT9qCCOUp3K9zdPfC5+QZAAGRAYNazWoQJtuB93jb4SIB413VQWmOaJhSAu6wRYeG9r9sDZR6osOclXwO5JNB6Qx6aBs5ZeE8pdiGYdrvd6695r/vCFri1A7sFTS1C3iLcltF7Kp0tf28BlrwfWCdku9nL9cgDoJ9lDMOA+/t7EqD2Pa6uri5YwpYFk/c93X0Fr4CGtuPMNvUvg08qz1vtU3tfqo6vuX/b7yt/z5lsKRy/vvWkWxnKhFJeLULZ3n/5vvI6qR7LJeM8EZj8yle+gpubG0zThK5ztb+npNvXzxCvzBWIf/TRD/HlL3+Fwai/YHDb62rvs9xPeY3Y77RM93bsbYGyXJfcF7GPkvssNgxtIdd2DLf3qQ0oqN3Wei+3799eV8tsAzSRP/zwQ3zyySf47ne/i7/9t/82/vpf/+u4vtpz+zhVK2lL4fZohlLuy7Lg5d0dnHsLu3Ek5gJNey2A02lv2Mov4lEAMtoGpauNMbCGxlAIAcFn7HY7aJjqFIFM+rRW3x15ngrQk+pbmScyt4/Hc23EIJkMmVsAeQ62czLGiGkhXfioR3SK7EG0VqzXKoAiw2YBQjInHx4ecDgc6mYrRsvGCDMWMJ1OUEq0wRSAlpSRYgA4KAqeWERhRU6Pj+g7i8z6sRgjNBwbkRekQlXd4/4AazsM44i+7zGdJqTZ4+U04TxNSH7BPJ/h+g7GWRhLljaPpzNKAebF4/7xhON5xsvHEx4ez3j58IgffPwpXjwsHOQBxgBjr/DO7TXefusZvvTuO/i5r/40vvzue+iUATLpNTtVcFrO3PrPYA4JBgqRAQL5zKY1W6dlhABhEX9L1uY7afNHUhjLRVsomYAHnyOlhKTISscYhZIjpvNysSbVfa0U+GWu+xkVZTEI5XQuoJGUxhQiYlFYYsYcE0IuWJLCw+mIu8cHPH95hw8/+hjLHC/WO2cUrg9X6DoC/teHI4a+Q2cNMbtaAecJu56ApwIwdECI1K3IWGA+nsj6yXWYvUeMCaajQq3d7grOutp95+bmBufzuQZKqhBbakxGNhn9aHHM94g5I8SIcbfDze1bcJYkQzEnKG3JoSQlWK0wuIGAfkqIKa6gUinkrFFCQA4RJ/bd7Hhe5FqQpCE+pH3f43h8QNf16IcR/Thitxvw+PhIgVDXYzqeqDCINf8io6otrKFq8DhzsAYAu8Oesodl1XHmnJFCbLBBwfF4ooJhxh593+P29gbnM8nM+t3Iqf+IlAMQmaXm6w8h4NNPP8X7r7nmfa6inG2ByTZNI8dTesSqsdBrwcv25y1j1KaI2+MptrClZGnu0EI9TRN+8IMfwBiD29tbeijzXCPo9pwt87k9hHWU18lkvuhIAbxyPS0wbQF2C2hb9q69d5fgPFI/YG0vtInCFMYQOX1KC7d8v8s06qWEQGvy7RIz9w8++ABvPXsLu92uvo+q30lvaYKB1hZGO2gdeAwQCKqLW0r49NNP8fbbb9cNomX/noq05f62QURrwSTAtw0s2nvTWlO10gVZ6GQStazwJcu7MkLbZwdQGitvxkd7/duin1LW7lGy8Mum+yd/8if4/ve/j1/8xV/Er/1Xv4qvfvVnMQykj5V7wGs/3d8EPD6c0bNhvjXUDow+X1RSb44v6pHYf1QbDQONmCJyVpWdUYWMxo3WtQVfG4zIWDVcWFMK20FLBTOPSymSQV6rl8UKpJXgiDa5XeMOh0Mtrlk1y6IJp04npZTKsKREhtmSgZB1ZBxHzPO8rpU5V12fAGA/z/CeWuhZraA6C50tpSdLQYoBwRF7GnKhSma+D0o7qgo2GsNuh1gA2/eA1vAxQhmN/fUV7u/vkAEY2yGGBYmUJUAGFj8D0JiXBdPsEVKGTxmnacH96YyH04QpMGNItxMpAf5cMC2PuHuc8PGnn+IvP/gQX/vqV/HXv/Y17MceVpEXYm97+JwQUkanDIauw3EJsCHBWuq1vPC9JiZRw1h6LtqQ528GEGqmg1oDhkDtGFOkVPLiF9xc3yKmQJt/Kohx9Rrd1iJk7ltOdjDUcjKljJDIb9D2AxAzcgF8yFDWQXcdlpRx8gF3pwkffvQJPr17iRd3d/j4xQu8fHGicyeSXDmnYDUwdA5D32E3jnjr5hrPbm9wfThgHDqolOEUMPvIhTIaMS7QBrDOIhequO56S11olIbSCtHH1euZC8h24wHOORwOBzJUNwbBz9CaKqOTc5jOR1xd3yCnAGsM+nEAtIJ1HTF5ClxslKkpSWd57KwElewV52midHDXo+93uNrvieFMCRnEFB6PR7iBMmPaWCw+oKSEHAOip2Ip6WKUc65Wh84dMAwDNSVYyD/5wAWdkSvQvfcXdQaPj4/w3sP1PRzbCaHZI2Wej+OAUoAYInKm72OsgzWG+oIvHlNOAFQNDJ0lWl0kgyMXAL3O8bk0lC0oaBem7ebcgr4nWZ8GgLXvEbDQHp/F3LXpTzlaQbqUvp/PZzx//rymQNsUdVvx/RSg3IKHFrC019RqFVs2U77ftmCn/V3LxLXfv03JUsGNhtPUCULu5fpeg1yoxVlKee1p2gDPFhDL53g/IwSP7373DzHPC66vr3E8PaLvempF1TAZKSVu+UbtssiUNTGwdggh1gXt+fPneP/99+u/t8xe++xaTWrLIrYsqly7pGjk2bTPpwWWtfAG0iP7XDfJlrGU7ydjQVj0V8Zscz3tWJDn3I5TOZcwpnIeCSCmacJ/+k//Cd//y+/h13/91/H1r/8qnj17qwIGiSwlPep9wOPDEUPfkyWFQtVHVaayrBX/b44vziHzTysAbBOiNQEJKRgAqHAiqgylyHOPNiRKY4ujQymFOz3RWLLculH0lCklajHIY1/WHNJ5gTSYT8iWtF3nYyliZUZ6NqXpmsdxvHiP+LzK50jlqFeKU/yq6vm0UkCRFnKRmDoSZ9Lna2qVKkSA5e8tHXmU1vAhUgtAwyAXwDjuuJiO7p+Ggus6DLsdpmnG+fERyKCiHR9QFFUnLzHAh4TIBT4+Jszew4eAVAqs69ArsUunTEyMEblkTD4g5YhpDvAx4bx4vPPWM9xcHXDoO9wcdgSCFBWAFpORYobVBQ7A2DlMPnC1ODF2Ool3pqogvOs60orGhOBpDBh5jimh5Ijj8RE5i9acgQJ3M6oG6BdEQkYqiWySWDMLYxBB1dVQZDSeNN3TtEQ8ThOe3z3gg48/wZ//5Qd4OBGj+3Ca4JcIY6kIPycgFaB3CmmJCDmSVRBrg0kbukPnLLIikGw0fX9nLHQGlArQJgGKikeyFDeBwTfb/HAuH9oYeJZ5WGcZ3BlY21GxKQpubp5RxXYmL0iZSzFnICkoDWa+M+9zGbkEbmlO16K1XqVewFp0VmTeRaRSYPjZ5RQRtSKrOaORM+uVU4L3VAVuGhLJGg1qZkIstuYslOwtorvv+g6mdlxTQIq8V7GMRpF+U9oIy37jLLVKFVkCzd2BZRkW87wgp0T3VxtAUwDiw8IM/QquX+f4XAxluwG3rIwM2u3/BRwICGg9ztboKV9sxvIZLTBoN/8W2D6VGneOLGQEIKSUyJjbWrz//vu11di26Gab2m5L5VvwsmWpxD5DNI7b9GzLCG71eZLebb+/vHd734S1cq6/WCho0GmEQAarsqjI95cJsSxLrcSkxvWkj/j93//PuL8nm4CPPvoIKSVcX9/g9ua22h8Q20jXuWotVDVA1dzdoBRUPdeLFy/w3nvvVVDYjh/5ji1obu/T+p3LxVhr37/VqG5Zbjla9rOt2AdQmR2RKMjG2V5HO57bQGLL1LdjZctKb89RSsHLl3f4n//nf44//MPv4td//dfxt/7WL3J/eTK9zXkNBB4fz+j7AX1Prc0uUt4ogLoMrN4cX4xDxkdKtLm0GQ6tFFShjiXSglEB0G61tcqlkGl1cz7NTCOBqcJpvlxBnOUNoFq1GV1Bpaynl6y6MJgCKLkiuFCnKCiaJ+0cFi2lfBfFQFI3oBOgIgxoWieCD8iZ5D4p+Pp9Sylst8Ltffn7Eeih649LQGapjwDf3W6HWKjym+IrYvv2hyvM04y7Fy8JhHHxSi4F2hrMi0dMBTGRIXiICSFGKobRGsM4wBaumePvE4JHSQFgu59pCfjwhx/jPM145+238d47b+P2sMP8zts47PforIVis3SVMlLRKKrAFkrxWw3SFWp2lSjs9qAEBJDUaFkWvjcUSJDZNoBScDw+wpr1WfplgTFcIY62sBG1uCrmTJ2HMnkSUrWxQchAUQWFbAIwhYjHacGnL+/x0cef4s8++D6+/+EPscSEkApiAoxVMI58OpWiVpyu57oABcSScGQ9u+bisMN+jwySnWpQoLUbyKM15QDrDFzvsPjAHV3WrJ/oe5ViZxWjEFKEVRYKazc1sjJKyMng6vqA+4cIBUtjodANiWz3RsVCEqQlHgMJrjPVlFx0vcM48j1V1HM9AsawgX+KiFrDOMvV+glZabiug/iBlJIRggc5lKg63ygTlVB4HzeGMgF+XmpwlktGx2JckSusRaUyp4m8Ae93qx0hwCOgMtQxBgyO2lwuiyf9NnffI7mG5+uloqstcfejjtfv5W1W259tEcMW4MmitWWRWjCxLT5pwUALFOVoX9Oer/09/Wx9rXgp3d3d4fnz5zgcDrWzzbYgRhbItlinvR75nm3qeluUIwxmC4baz2m/h4C+qoPcpMtbAEX3l8+TC9lf8AJL5088MbjTDV+HfLecc01Rka8jpUW+/e1v49NPP62g+PHxsRmwGtfX1xiHPVLK3NMzVrFuiYVE+THUtJpnk16tybfs7u4ONzc3FbxvWcr2Wcv9aMGcLBCymcnYa6vA5RwCoFs9rVyLFA5tP0vSgluA3gYD8vP2fC0wbN+3HbftWG2/d87U3qrrOvz5n/85PvjgA3zzm3+JX/u1X8NP/dRPcaqSOzrlBMDi/u4E5zq8Y29hHdmv0DnXtn5vji/WUdcCpVHyumZlYaF5TFpLKWIfPJTiwhQeY11HY0HWnoxywbC3zPtuGC+yLmKFInNCgGg7Ts/TGbe3twBXo5OdiqmZBctOEK1URET6bZDmNjKfEALm84nSZQXEvoG6zsw5IsQFOksnmQzxZcwpVHY1M7K1ziGkRKyPc7DjjuecreyUXwK0Ba5v30IIEZ98/CliDJimmYCKs5iXBaUo+OCp3V/kFriK7lEHBatYT9gUZTrnMJ+PiN4jBg+/eJSUcJ48/vL7H+D73/8+duOAr3zlp/DVn/lrePutZ9gNPdIMOK3QKSqSSNNEBR8QE3oqVBn7vjK4pRS4jjq/LctSn0MqiTWqhloWKqBohSToX2sUpZCVonR2TJwGDog5IWZi/YbdDmkqyKkQQDYWIRX4kPk1AT98/gLf/8EP8cNPX+DTFy/x/OGRO+0oKMOp7bGHVhnarU0x9jvyADaautMkH+BjhGcgGkJCLAXOFBTuupNSQWctxrGHYlb8eDpiHAYyw88ZvaW0a84FXedwdXWN4/lc5VkxRiwpQSNzBxyLpCPO5zOc66A14KzBbtxRNXkBCncoKwXohw7TPCOFQO0b0yWTH+rPE6/LBeQNXKr2EUbD5oyr6xtqw5lIe6/BEhZFTPt0PGE87NH3lMIXP09qdUgd+lzX4Xj/0IBGXbMCMsdKKZjnGcoYWEeNC6Q9o3SHOh6PiKztFGnMzc0NuJ4bpZDvLe2FshZZuLrGEPsv++/rHJ+7ylsWEvli8v/29+3G2763BZLtBr/92ZYlFI3eNnX69HUqKGXrOfu+x+FwwPF4xCeffAJrLfb7/cVnCADbgtwWHLTaTwEsbSVmmzIV0PAUwyoTQB6e3K8WnG5B7QpOU9MHdL2elFI1TpbPkfcKSBU7nXmecT6f8e1v/wE+/viHAFArBIVBuL+/r9c+jjtYa7Df7y/Aci0cUJZSGHYFcfJsXr58WTcgAXFbgNU+X2EK5Tm00oB2gtcNp/ld1ZtkAr8CIuXetiCxZVdEPyavl59fMM1oA5ZLW6wtc9mOmacCIzmstZjnuQL0f/fv/h2++93v4jd/8zfx9a9/HVeHG06vENiY54D7u0cMQ4er6xHWkt0IkFHepLy/kEcpVOHpnGUWcA0idaOtTWntkJELVZKqnMniWqnq04pCqc/WvSClDK0SMXYpI3NxXoFGTAU5LAhmBWla69rvOueMm5tn7NW7ru1SzGashVFUDDDsdheyGe89VRiDwGJpArFadJjFsqWQr5+y8DNpxGKISD7g6vqAow9IKQJY11IyNKQii1RyU1xjuU0cFVMoJSl91Cqa8XCFn/rpr+DP/vSP4WNESBE+RF5vuao4Z0pzhwBnLQ57g73S5IOoia2hCnligst+pArmGPDw8Ijz8Ugbbo7IKWKOEd/+7h/h+x9+hPfeeQdf/Ws/jS+//yX0zmKvNWAs5hDhlAIi+SZ2zmDXdfDVY1ijxIjH05mYPKUB66gaVxfMPqJkj5So4DPOgQv6qEmPtnLPCDxGSefHhAwC488fTuRpbAy01bg/TzidJ6SiMPuA5y9e4oMffozjacYSI0zX49mzDrajHtdURU/p7IKAvndw1tI6WgAUrqA2BqorcNZg6HfoHflIKkllWw1l6WlkpbHEjAyPVBI62yN5klhd7Q74mZ/+CgByTdBaIyYaNzEkZhFp7+mdwzxNUFrBOoOUI3KOsEahd1QZnqKHn0hrqbXG8XgEsAOg4Zzl1LPGbn8NxVZZIQQ8PjzQHpZIw3l9fY1SEoAM66iCHABCWAjY836aMqB1hnMdrvY77IYdQgrUsQgKA2f/rCJfzfPjEdPpjHG/q1ZPOhlkBTyejlStbgxCTmRUrmjwnx+P1HYZYA9LYlh7Sz7PKWU41/M1rsTPuNvheAwgawEKdCkr9ogirYA+x/G5qrxbNnLLSgKvAsxtKnB7vqfYm226sf289jXy+1cB5vqzVk8EUJuju7s7WGtrtNdeWwtmWgDRAuZW+9heQ5sKkqimfW2r72ztcrbMbHsP13spWsYAGM1RV+v1uNLc2qyFQvJ5LWv48PCAP/qjP8JHH30EYbZa3V+MEdM04f7+vrabPBxusNvtuGqdF3kGgMQgrtY9bUpaxMMSHbXaxKe+q2g15d+t7ZDcxxYQtuNHmNXWfqgtsJHv5tnfq+2kNM/zxXueGs/tGG3H7JaF3Opw5bm2DKZSqpKKAmi11nj+/Dn+xb/4l/jeX/wlfuVXvo53330XNze3GPoOWis8PBxhLGDdW9jtR2gtFbRv0OQX8aDgKyOyFsxyypLSgqSXIo3UWqghLGJrh1U1wYVS5wK6LPvblVKoctSwmbLWSImsb1y3vr+y+1Is0wTttbVoI9Og1N1adNcGvDFGqGYOC4vRBuh93yOFyIUgZDtznk6IIUCBmFnvPfWlVpZbLa5rZjvf9/s9TNdDsUxov99j8lRoQJ1kDEpMZOuy2+FwfYN33n0fH3z4AbxfoHOGsa6azSMTSzh0PZSy8IlaMErFczesDRIKs4BGa2gAz66vcD7POD4e2RYp4jgdad1PEc/vXiLlhMfHE955dotnNzc47HbQAHpLrSd1KUghUA/pGOGsIRudQDY3JRe2t9Hka+gp6CiJXD+GQlkrut+ZWxKu0iilNHzwyLmgKDKp9xmYloglRJRCS9DpPOMHH3+CeSFvyWkmjaTSBsO4x9466sNdCoaBJDe5FK4SP8FZA2sMFj3z+JBWkwVWUxehfhxhe7L7iX7t961QAOOQ2AVBZUBHYD8MsJ1G3/UYhp5ahHJdgDXU4lKY/XW8p+r/GVMimQJb6VnbwfK4gdLo+p5N0WPtZpYLdYsLQaPvxc0FKFhlatZaOKVJA8tzKbNONMcI23UIPlS9p19ovybjHxnPoFoEI81WIgUtuSDndR/0jXd3zwVxrTOM9N7W4rMq+yp3LZIgr+OU/erWstp+hShjgaQ1mbtZuWHAfk8tJGNIeHx8fO0177UBpSw0T7FH8iW3wE8WhjopsW7K7Q2SRWmrT9yyQAJUhP1r3yt/V8yY0ecpjt40DocDQoh4fDyyVo4ikhaUPgUm2+/UXnPr6SbRgKSVW5DRvnebFm2rKrfsb6tboC4AzHBqMuBehbu0eMi1xZDhHLEfxlokZjEk0vrOd76N58+fQylUfYSwrqWQiSx95/XZv/tuxlvPqHJ7vz9gmmY8PNxX/WlMa6GQgEwBj0opPDw84Orq6sLzsr3Xco+JYUzQuqv3wjmLGC9bP7Wgsw1e5HlJqmi326Hve9aMepzP58pg5kxVdkpRmkHSei0LLWm3p5jqH8+Uv9rPvQ3KiFkSY941YDudTvjd3/1dfPe738Vbb72F9977En7u534Wv/gLP4/9YcDxeMZHHyV85cs/ha43xFQ+eQVvjr/yQymuFM6IijtqGO6Sokg3tc3etAEZsCkyYyZaRmNdH7m1oYJBKa1tCBUDZE3FOSlnFv7r2hWnDdDataAFj4YrQutnglvlNVkVuVYUcNvEgB1X5pZMqdkQI5ZlJl0SqKgs58TFRqBKby6GkKMoYqasI2ADJe4SgKyBgILSBmQopGCsw26/x/XNDZ6/fFE3yyjrbaGiGKsMOgtAaeioK6C0ncPAgFIV0laWQh1EjKZ7M7gJvTbwkdoJGkebN5mpA/O84MXLl1CFXDim/UQV0PyHZACUalRKYegcrDXVpizljM4QCJuXCSkTWKi6dcftGyOB+5gjEiRrQ16ngUkCJg6RUTCHhMUn+BCxeI/TacInL+4wLZ6KUgAobWFdh64fMPQDxv0eKUUClMYgpkS2cmKkDwBZVS2u7NECKBUX+hQAqfagJz9M8kEEjO1hLPXY7qzDMHQY+gF935FHqbXouLtNKoXGhdjnKe7oUkhPSxrSwPrAQh/QkCzWWMQSuRhmQAgeSlLgzX5MHqyEI9gykuZps+CScX6rBdZkK6CI3UQGsqKuVMQMcncg8Yqt/xW+TDq5956tlMgXVkHaDVMgIYAycycqay3NvUhM/5aUI0kLdbqCYBK+5q7voZVGBgFNzeSK1gYK+sIR58cdn7vKW/4uG2NbjHL5BVD/3YJQrdfKX0mPtJtzCyJbplHO22oNt6lpWSCNcXVBlocAaFxdXbM/5acUtdi1IEcGm0T+LdPUXk8LduX/Kxjzr1yL/F2+r6RmBYxtGdithtIYg2XxABRR2qUgpgCnqECHIqkCpUwdOIXTDloZaGfgw4LT6Yg//MPv4MWL57DWIAQq/iAj7cIgda0IlHaOWgPWOFjjcHV1BWMMdjvyUNRanl1BjH710mueu2yQ5/O5Vtq3BUNyj1ajeK4CNNQ2TjZXAper/YmAylafKhWnwhCXUmoPVLKHoMhO0oXy7632Fdg4EOBSxrFl5tux2+pnZVwJWG6Br7TD2gZgikXUi5/xw48/wseffIxvf+fb+O4ffRu/9Vu/iZ/92a+g5IwX3R3effcZrFIoSFCfq7zuzfF/xCHMHhXXJJRiobVlZqlQWzdcAkQBc7IOyN/pXFRgEtOlHZdxhiQnmSp2JUgSix8xwk8ls+9suXAuaOVEJJ/panC8LAv9XTwhtcbY92QDxJrpVoJitQGKwuIDQr12ar4wTWfEQBYuQGFtmgM4IK6tBXMm8AgAORO7VAoUF+AorXA+nqHY1BnQlS2V/WG332Pc73HDdnHT+dyYf2tYbVAMaQmL4YpuAJrTnp2xkL7Yfdch5QxnSa+JooCYMVoLHyOW4LHf76qVi7g15JRwPJ0Q/ILHY4+r/R6HXY/OObZ4ipjGAUPfI+QBHdvZaKMQYoYzFqYfEZcFYMPwWDJSUVhSqSxTCNSiL8ETeJZ2lMBa3AIFpQzOU0DMhaySHh7wcP+Ix+MEHyNyAbQljSIUESS73Q7vvPNODWwg+1wIsOOhMtLFAuMw1vW6gjdLxMLiPbRWiDy+EAt8WpCCBxS1Je2HAYd+wGANduOIkddqrYFxHDDuBhSArJe0RkfRABVTDQNQCrrUQVuDlBOm6QSlwRm1DJVl3pCVVal7+OoKorDK8sCFaUpRZiBlclVQoEKimnHjeXh8fCR5Fwp88Oj7kSrKi1jYUVGUcx0USOJg7crMt8WWgceqZZskrRW6fi1cE+2/5/XFOYcUqZIcLDlJOSN4GhNrlysyYKd1xsD7SC1RHd8DtWZJKH5T/2WMzbdHG1Fv9YLbjRZAZfJaPZsc2+KaNkLfspVSdVUHONbNHnha3ynAV5iph4cHfPzxx9D6fQxD/4poffve9u+y+IrHmzC34rvYMpTyegEY8jux3Gj1hi2D9WpK/zLdTyDn0tOxfQ4Cpmgzo2v69re/g48//iGsNdW3S9LWLRvaalvX4h6qJhuGAcNAUeNut8PpdIJoUeQ6xK5JNhu53mVZcH9/j8PhAGnHuGW9JW3dMroA6ubWFhy0XTWk2Gjt4oMKKl+8eFHf2/b5bi2stuC0DYLaTiFybFPa23G8DQqeel+hH1wEFO3v1zlBm8Mf/MG38dFHP8A//Id/H7/4C38TRgElJbz//tvoh+7J63lz/NUeJAUptKkVYObUdikJRnO2I2W248LF/G1tqUQ+gkbeIKnudo7txoHnCK+3ydcWc5qZHCloa/XFEgSKNEW0zDK3xHfSh1B99FpPS2H/lZKCDIO+p6B+Xs41VTtP5woYQ/A4n494fExsht3VNUnWJZoPmtcoB61ok7PWri3iCuADpYONpVZ/CoDVFv0w1u5dL148x/NPPgFArSeF3AAUEBWASAVPzsBag97JHE5QoC4w4gVsrcM4DOSVA4WMgnNYsHiP4/FYWcrj8RGOu49IWnMY9ljmGcEvyDlBaYOiLXyeYW2s2ZLT6YSh73FzfYP9gTJqiz8hZEAbh49ePCBnspMDgGWZ4SJZPCUknKYzACDnmdjJAoRY8Mnzl+hch8V7PDw+4nSaUBSB/s4YDPsdhmEH15GX5G63Q+do3OhCDPDgLO5ThFaWNJB59S2W/aTrOlgjWblc7a5SCDjlyAU3ND+GoUPfUwea3W7A9W7PbRzBYHLkIIbmzH53gHUOj6czur4ncKU1AjuYiIuCnxfktPD4S1UaZgeHFMgaSSQLdR8tGf7e43A4XDTI0EOHmDNc1+Gwpz0MCpX1hlZ46/aWCZ+EGBN0r+Dnc3XngAKOxyPL7SyMsSwdmGvgaDtXi+4Ct7fsug7TeSarqb6HNdRsgOZeQAyhuriMux2gNTIAfz5XQC/kCe2vqB2t9vsDE1fkIFFKQfABd3d3df2RYqDXOT6XhhJ4NYXb2uvIsQVicrQ2OS1r17623dDb37UgUw6JmLfnbK9XzicL525HlkIPDw94/tzgy1/+co2wt6zaljFsN/xWayQMZQtw5ftsgeKWhW1/vk2lrt8LHGGA/7AFgI5c2b3eP6qGWwt/zqcT/vC7f4iPP/64vj8l0iAJqJMWS+2zFkBJqf0z7u7vcHV1VdnbrusqLU4bAVlDiDbRcfpnWZZ6X733mLjDgDy/NuUvn7m916J7bNPowvq1AF3OU/vDNgyLvE4YyVbPKd/9yXR2zjVF0I6rzzpaILwFlBdHWePRLZhsx4NSCjEEOGvwySef4r//f/4PePiv/z7+zt/5TeRCvcDfffdt9G8Yyi/cEULihVojZ2CeJ3SGLUwyzc2us+gcLdjEpIQ61iXgca6t6jaIMSMpXkv4j1Kc0ja0gZ/OR1hLfw/BI6XA87IjY3RF/nXWEOumuHMJFAGuUqhoUDH4AFA7crQ6T5lDYjytFaUNw+LROYcciDWJ3iPEgBQjb1yAtR2W5YQQEkpZmyWEQDY+KWVOS3bQNsPEgqIzVMqwbQpSLGHYAUOVgqIsrq8OWLrGzi0XCjBzQYZCVtTVxDgHWI2CDGMUrq/F7F3DuR2BbE+Vvs5a9F2PkkjDZy2n4y0BX5HVWGvx8u4lpvN5XfcLsN8d4CxlTbxfcDzNmHyqfdT3ifaRfn+NUjJePD7i5fGIfuiBAsQU4RcPaA1le8yLx7wsULpgenEPa091HVuWBcoYZjEjlhjw8HCEVuThOE8L2cVoi2FwlZG8urrC1e0N+q6DVoBfFtxeXeN8PmGZZ8RE2sOH8wkxe4QckUIEkLkLTUbwZ7ixB4pCSQQgUzawWgEpobcWw/6Aw2GHm+trHPY77IcB+77HbuyhsZqAE6DRdK3QiCHjeHrAzbO3uPUg2TFdX93wfgP0/YjD4YDzKbPmUa33BIWkYtbAxwhnLWcQMpSmgGWaJhij0Q+0x83B014SAxWp2gO0tlDNfmQaUkn8RG+cRc60t7i+x+HAY8EYqneAgi2mmrgXJMSU6XMDpamd1ShJI8zUaapzDiWSNISAKrHr0Bq52W/63UiFSHWeZpxOE0bTo7Md4YEEsmBq9uJ5npBl/gNIDTb4ccdrb0NtKnNbeSt/l6MFOAI6peihPcd2EwVWdqctyNimGmXBbcvZt6nINo0sDKWc7/r6GgDw+PiI+/v7ynhJdWLLPLbX0Z5T0tbyXbetHFt9Ufu+9u/b+9tqQ+Wc7ftKIX1MvSZuZyWeYvJeuS8PD/f49nf+AMfjsQGyGn0/VAd8YyzmecLd3T3mebq4l/L9l2XG3csXxD5Yh7fffhtXV1d4eLjH8airhkQW0ja6owE61+uS+yoakKeAeltEQMz2JWvaAnVJEW5TzeIhJpYPV1dXlQGV88t4FAAunT4k8KmShGZMbxnwdsx/1lzYjnVg9ezb/nwbNIFZH7q/CdOc8c//+b+Acx1+6zd/Ax/98DlCKPi5n3/d5lhvjv+jDhoPmjV/qWZB+q4DdYcBNDMVxDiSnRTw6joic18pGWtrIBJ57HedQ9c5SCFHKZn0WljHZM5t4YaCKkBpignF7aAlDToJ0OLa3UvWS5kjSlEFtAK3os6JW/OFqkszxiBt/CxForJwhxCa8xZQGQXUUhZK1zS9VL63s0aB7E1KTtTvWCkYrFLMYRhwc3NDkqaUcDydsXiqkM6KOhlptfq7khaOtGrCzooPotZEN3e8RmilSN/X9yjdgLEf6PlpKrK5N2TdU3LiAjrNYJ47j7ElEhIQMxBB7hnXV1ckK2DW74BV11egMJ2Y1XIWbtzjxcvnKAUIXGRB+sqIgojARR4hRSwpIkePlAqKIlsoZFqPd7sddrsdrq+vqSsX31saG2zKbzRQNBZm/lCouMZoIMYFRpHOUVtNBuTWoK9jRWHoeyAn9K7Dfr/Ds7duMHQDhrHH0HUYrIUx1O1GYXUmoDEMum7QOCxVE0trrPh2ytrddiwrWmHgZyPpd83PODFTSlhjJSq0ERxzaZeYM70nxFUqkmOGdWwSD1qzc6Tvnwt1Kcox1eDNWBpPBYBNKwyrUkJjqC944bS8ouyE5r8P+z2O9/e0X/AY1JwOzzmzSb+t847ANGf/gCpXE9mENEiogaRaC/c+kxR54vjcvEa7oW4BZQvk5DXt67ZFKNtUdcsqyv9bkXq7yMpi1oLMLXDbbs6y+MUYcXV1hRg9Pv300xqZiRlw7SHbpIK3BTqitwRQdaRP6fq21976WLbfW65NUr6tRmrLvObcsMVaNMcreI+ROin80R9/F4+Pj9XMXTa0nDMOh6sKYgGF/Z4Kfeb5XFNh8sxokZrwyacfY7fb4+bmBuM4Yrfbw7l7+LBUwCOg0jlXC2LmecY0TVX7KOmxbeW36Krk8wHR3V52rtk+DzlaZlKet6TB5f9VV9bcd5lAUpjTnlMRPXzxrLbjun1O7bj7cROxZSK359i+jgAzsT9TSPhX/+q38d577+NrP/c1PH9xj5/7kZ/05virOC704DnDdQber0Vr9LwN67aIZUu4DE6Adc4r9lyhOcGMeib/QIDBYjZQmjqDtGz+CihZq1UDlcsmAhJMt2tr5xxiJv0VjW2DUkwNikjHWBD5e+ZETE/y4ivLhYPZIsl6z9fsuCNXTa33HXrbU8V2AWAIUBa9sjoX7hysAig5oeQE7Rz1jJbMWSmwxmI3kkfi+XxmLRylNxEJyFPnGoOiyFvQ8V4g+jbXAPOUEzrdIYW0rjW8vvasLy0AdvMO8+KJnYvU0QygIEKziba2DpnbPaaU4c8zBbbW1azO4j1gXC3g09rg7khM5NX1NWxncTwv6IeBTfIpXUrAIlcJQ8zEfkXPHqPWERBOGeM4Yr/f43DY43A4IHGxlLGSjTJQaoSzFsETK+qMQbaGDPqVQkoFnbPoLPUzLzljvx8xdMTsKg3sxxEoGZ2jbOGzZ7fQBXBdh76zGKxFKat9m2n2dTLaJwCltWHADC6aKliWee2ew/jAWoOQSR8KnlukRSYN5RrsqCrfEtJBiJKWlNKaghvZF21bZa4VSS80jdkYAkmTeKzHEIjVVGtmAQ3Z1c7XFNlVQQqtCuq/Sy7re8paVAee54mN/Gm8XsriaB9syUAphOP7g42zxOc8PleVd6u1EeDU/r8t0JFNtfVtbEGCHPJ++vKXVbFbTZq8XhagLfDaLsTtOVowIA/g2bNnePHiBZ4/f169KZ/Secr3kWhawKSgebnGFkxKZNCm0EUXJK9rtQnttcn3ac8tAJc+c21FKJ50VNtGUdrd/R3+83/+z4iRNDkAqi7DWaroujrc0EJTIsbRXDy/8/lUo/vVlJwiz5d3z/Hw+C6e3T7Dfk9V1Iuf6/1aluXiGe92O7YeIi/Q4/FYTdQPh0NjGEvPqU2Ry31uU93ys5Y1bu9p++zF9kh6psrzEMN76Y8qQFQCCqlUr5+xmQst6NwGMFRTc+lhqZtx1L5PFpF20WoZ13bsroEXjcOPf/gp/tX/59/gyz/1M3WxfHN88Y5SWRwOdHgzkvZsOWeEEolZ0+qVtW6rPTeG9Wl6Ha+J1yUFqijWOledcpvh2erDpRVtqx0WeclaoEY6xt5ZGMVZhhgRwUUJZZWppEQdcRSAYezI7JwrvmXt64cB0XssPmCeprqmCuPZDT3PC8kM0ebsXIduGNCPI1w/IOVSi5M061RLZsCcC5Jo35RGYoYIQC0w6HvqvVxSxMPxkQBN38MaTYUv0UOBQGb0CyIWdF2P4jrAWPhgEIKHFN/Q/tDDOOpUsywLEt+9XAoS2yQpazC6ATYEpJJxXmbkTF18wIRCjBH3D48ostlDY/F3UAzyQ4w4T2dYa7Gwgfk0L0iQ/aZgCZRZUkrxOueRS4R04LLaonMWfU8FWNeHK1xfXeH29haGdXzyx1oLowqDtgXHh0dY53B3d0d947koaBieYTeOLOmgNppf/spPwZChI5Qq2I09iDnn9bmnwlKjCZR3fY8UiXjQygBGIyyBDLhTJmmAtQSacoKfPXIplZwwXHkORQTDzc0NUiCdYfAL4xHpMEMayL7vAeSaSahMNO+BhjWLdS5lGtORvWHp9ZSeFn1vATBPHjonGOugeN/qBqoHKNkjx0jeqmYtMJb1/3w8vULYKUVFTT7MCOxFqgsFR0IkQSnqRY81ayoBqPgzPz6cKnaxnYMya6G0MQZqmuo+hg2m+nHH5zI2b+nTp9LebZVsSw+3AK3dgFuj6y0z1J5jy2JuWU4BS2sRyaut89rXt0D1+voax+MRz58/x1tvvVWLbdqIvq2CXBf2NS3bsqQCvAWcyiHna0Gm/Nleq/z9koWTxR0ARNAsDKKvG9EHH3wff/Znf0bRJ6dqKNKT1DEqG0AV8NRlZxjGy8UnS5o5M3tCDMU8z/jk409wc31DnXTGEQ+P96BWUlLNli6eXSmlspXOObx48QLzPNcU81MgqwXnxuiL+9L+adlAeU4CECX1L3ZFssG26QtZwOUcAjC3AYUc7bW2x5ZV3I71LfveXveWUZfvLvOpZUPpngQobfCdP/wu/uzP/wI///M/jzfHF/dQipiL4BOGjgvSZBM1BqokZvRpAxcjc9H80lxdPWydc0COdRMRWYczGpb1yxIctmtLu97Kz0UL2UpmRGcumkAJ/uS98lrKPJwxzzNubm5p0xo7YtGnCWNHaWEfApZp5oKcdY9QStVNTjIIymjWIfJGWQAgYzSk/3TWwhgNHwMSV/vWOak1EZpQUGLp1rn6WRmlAsrKgBmD29trPDw+4HQ6ITaMjjUOXddjmibs93uczyc8xgdocFCagf1uD2MMBtauJ58QUsB5mpBygnYW3TjAlQ7DOOLx7p4gutbYHfYwPekzp3kms/hScPvWM/iYUHKBVgbn80yVy56A+cyattFYzJ4CiH7cUxeclOmZnU71e6ZCdkDGWOx2IzQD5a7r8FNf+ilYa/Hs5haH/R6mc9jv97UA01qLh4cHvPvu29SPelnq76/2B6QYqbVmCOi5Ql72q7Ef0PUWvevgrAEUdUqyztQ12AcCi5oBZeY9RIIdAFVCFUIEFFU1izF/yrlaCEnmqU13AyTTUgXU9pKN8UleErgT1bruGkN7OBX6UADfkiSCg87nc60HkPtE1efy/dfOU05TURwcOZgEH6pMRSmFcX+oThA553rvpQbhzC0s6zjOGdPDA3W9YUAp96sylSjwXCtChbR0zmmaKmA2xkAZIk56BvZS7FPlhJ+TpfzcrRdbRnK7abY/b9O08nv52VP/bpm5LTKX/z+1CYsNTat/lNe3bCSwdoQBJE2daheX85kivrfeequ+Z8uMAaumUiaEABn5Pq0ljWjxtpYxW0ZNQHqrH5SjcGSniB2/ACSkI/X1sz788EP8xV/8BYZhwH5/uPjMnAusXYHZsiy4vh7qwOlcXwFxCB6n05Gvj8BrCKLPAfwS8Pbbb+P29hb7/Z43BIuUQi2EacdLG33Jgv7w8FCr22SzInYy1ufZjrttKvip8bFqLlcdmjyPlr1sN1cJIEQKIPf2gvF8ItDZMovtNW3Zy5aRb8Hl9pxtcLX9nBZYeh+x2+1wPD7i3/9//z2+/JUvv3K+N8df/SHPfmXbhHEnO5qYMkKM6DtLTIVzZP9T5ywVChRmQSynAJFTDVxFzqIUF+U0rPd2PZRAT9Yskae040xrjWWZmMGhIFZrYJnXjagU0iv2vYPWI4iITDDOQnFLPYMCz36wMQRuIUpgdWJmcqgtB6XAEcgxwS/UoABKwboOljsNyWYJAF3nULBq6woKtKbWe0qxhi1HSj86YqMKqTuRc4TWiiyLkBFigNJU0OiDx+OJsihTCDifT9UUW1KOKSecTieM4w6Z3097C1kzSWceZTSGceT0eYY1Fs/eeacGFMTYjuj6AZY7Zi3LgtkvOOwPUKwfDzHBcmtbpUj3GGOmFDfA5zZY5oWkDIY6mwnbvN/vqJuMytiNPZx2BCidw/vvvYfb22cc8BP5MI4jlNawjsbc4fqK7W/I79M6h91+B8VMHbGR1H9+YdmQtQb73QhrdNXLx+TpeWDVz6YUsNsNAErtad/ug9asOttUyHZHqVIBMf2MrfiURogBMWWU1GAFthZSWmOaxICd5ugwDIgx1D2bzMWZfDDSgztcrMESiGzt/6ggFlWXGEJCPwxs3m8x7nc4n2Y4q9E5sjwKOa9Zi0TgPOpVzifXeKFlVKqSaCJfATPggBAYgNUGN1w7EL2vcptx1yNFStlnZrhPp9OFO0zHllwp0Vh/3eNzaSi3aeMt+JMHCFwamrebcwsAWlCwZefkXC1Q3V6LRNfA2r/6Ml2zAtHtYiqLZykFh8MBj4+PuLu7Q9d1uLq6uqhI36az22uUgShHywJI6rRNbW/PKUzA9vu1TAIJ8ld29fK+FCxLwieffII///M/x83NNbvcU6Xbwm2YYkyVGhfwJuev90MR4PP+CilF1hRSGqAA0MoSsNUFxyN5bu33ewx9j2k6A9BVf/oUTS6AjyJSjZcvX7L1kOYCIY0Q/IXFDy06l6xkywrLeQW8yXepaYvN528ZVKXWKnH5Xav1VUpdWAc9NQ4vgqcnnqH8fQt+X9WK6lfmRzvG2/NM0wm73Yg/+IPfx2/8xt9+5V6/Of7qj8vAENCGdFVKKWiroKBJF6dQKzXrWqfWYrEaVGTyvMu4DLABcNpwZcPbdeKpoAfAxfhr12LaKOX8NB6l88iaJo9A0ZSmdA4pZqi89jbOmQqMMm+YRusavCpFRusAjfu6YYMq3WX9yAXwPqAbdqzT5CKlUmCUQxH2H5cBF0qpwbfSmitxSXpCesoR1hjMy4KrwwGn86myU0DBwBkNrS/t7CglbsmsOmc4Z6skJqUEbRKnYsnrUlvWqWbStCmtCOgoIJWMklIFwLLWSf/1fhygOKt0dXVA4iYU1NFFIYRINkkoKJnXDpY6wFE7xBADhn5A1zv2tyy4vjpAFSp66fseN1c3uL6+IhZPUZrXcrUyQJX90jM7JI+YSS9JoHKPktJqVM/fTVK/ZIROOlltFKAdSqKASsaZdfZiTKSMaonXdm+y1sKVAlOk2NVSNyFFJvUpJ1jT6N0zeTAao6hAymn0fcbp9IgYKe1Ne7CkvynQCCHBOSaSmn2lJQbk2tpubBV/sEG4YscT0T8qpZAjB4J61R47Ta1QtdawsEhlTVW3e1ktEC0cRinWlmpaN2jOrp3qSG1NbL011LozJNZHa8trS0BI+cLyUNaONlPXynB+3PHagFKq3QQMfdbRpvieShluweJ2g27TwNtUcAvEtnZFAgbktS1ge0rzRgBxLd64urqqXonDMFwwW1L5KECg3fjbc7egdruYbwt45Hu2A2XL1Mr32t5HYk5XcHV//4Af/OADvP/++9jvx7pwez+DbH0cSlbVCZ++D5krt5pEpShyvLm5rvdmmk7s00+VpSEEDAPwg48+wjCMeP/99+H9jMUvtVKz1XsCl0ybsL7WWtze3gIgtpQmp62p9q0zgNzrFmhtWcL2M+QccshzeYV9bH4vPl0toDTWVk1k+zy2FerbjXs7btufEcu4WjHI9bRBzzq2NKhmFcgl0QKqNWL0GHcj7u7v8Lu/95/w5vjiHWt2gDZapRViTjCFNkTbaMtp3lDlMY2jFdzVsVyob7vB6uagFFAy6ep049F7kc3huYtm3sgf6shhoZtCnpRWuQX4XLHpwOGcRfAB3i8rC1uIdRMLslKooEVrTWlqRUVvntemkgtmvxArWD1rUTtTdV0HHyPmmT4DWlFXFe4Yo61Ue9O6VpQCshQjlAqutVYXVipaKYzDCK3JJeRwONQgG6B5ebi6AlWaUy/2ZVnQd1S00nd9rSqmdcxVTXsqxBZpa2ALAUrbdQSQChWT+GkhP8eUkEH3SRtiC7u+J0380AOKOsIYo9F3b+F0PnGqtyAmuk7Fzxe8l/WsfWwD7qvDgVpbakAZhWfPbpFCgjUWYz+gdz25hTB4iymhoCCmSNXvmtL7gV07qF88Ac1utycboJIxnc/Ufah3yJm9moee22rS+ue0w5Ko4CVlMjvfH0aESP3UtVIXgYNSioOwSHpOReNDKw2lDE7nM12j0dyhfZ07SinM04RxN0Jbw8Bdo+9H+GVBgWUGn/d0o5ESmJ2zPPZpzrbyEZkzsle2bD/tPbRfaa3RD6Tf18ZAl0yfWzJ1CNIFyhhY18HHgK7voJRD1LrqNWUPbDvPyZxOgpMUaXZJ9sLkEFALw2KkbJYzBipQQSwKBSTU4jFeXL9ggRACClALll/3+FydcrYbZBsFy2va1z6VotwCzjaa3oIp+axWG9lGLoKiBYBuweqW5Xk1Yl/Ty9Z2uLm5xf39A16+vIO1HZzr4H2AuOVv2Uph3LbfT+5N20GiBeFbdm3LXL0KylvbIArCxICYKtI03nvvPXRdDxpKoglcNw9J9VDaR7GAPUB6ocYY0fUUpXYdpcwJ+Cy0CSjqgZtLxjx7AEd89PHHiClBKYOf/bmvYX/4BH/6J39cbYLoWhVHSmuHAucMb3IKt7e3uL+/x+l0wn6/525AgNa0ySW2YWhTcltQ2T6LdrOsEZ1eI2K5521apX0e4zhimqb6+yTWTfJ9mucnQv9Cu3/1AnuKnW3T6S3T3f6+ZWBXwFsqWyVepLLpx5hhjcMfffePX/m8N8df/eHFiB+kD6vV08xQdYYqLsUBwRoDoygtbBjgtcGSVloImOZnCs4aKJTaSrYNxLSsHbkAehXvr2xERM6ubloShMm5DTnoo6RARSL4ur62AAEAAElEQVQAzsEjl7VFo1YKMXgET0xk3xEIu9rtaC3IGdpaYgNPpxrMp5TItk0bKrLhubbb7Wov46vbWwIEZtU8KkWFMMiqtpDcEhGKwa9i1shoDas1Jk7DoxQc9gdmFDPsTIDu5uYWpXD71hiRWG6QEyqDCLRtcQ2klV7OGa6nYqSiqDhid9gjo9S2l7vdFR4fHhBTQZ4WZCiqIOfn3A0j9lcEcjMD1N45zOGm6gh9WLNa0n3seDzWv8u6JuB+v9+h6ztMCxEM18+u6350GA+USWPt7cBrl7YWSmmkomBcD2iLbkjI0JjnmVgtv6AYMsxPCnjr3bfrvTufT1hSxLObG0rjBo+cMtzQIwOAVrCdQ0iR+qlrMilSRUEhoesGKnIyDk6LlZMmg/YcoHXiXufUCtEqwGgF3dkanI27gcATg+Su63A4HPDhwwOUX1CQ4dwVXOcQUkBRgLYaIfCazw0JiEQZqp2U3O9W51kKeZzKMyBcEjGzsbmQSspasukpgNIWxrLOePEXWuIWa2itcTweebzRPKBnSR6imjtNZecqEaSEGc8k5xMj9bHvcTrPfA2lkoSn0+mi8DrntSf4f5HWi0/pwJ5i/tqj/fcWOLXnkvduQVa78cqDTCwAblPS7WdvU0Hb87S6wvX6RI/Z1SKdvn/A22+/zd8ViNFXVkq6AWzTli0TCazp5c9irbYsmyz2F+kbrBXLAoRk4ZXrEcNxSmPrSn0rJelUaseIqsOk1Nn5fMbV1RUosltTFUopdF2PYaDCHyh6PxkvJxzzGfPicZ4mPDw84Otf/xU8e/YM3lPED9AkdNyekTYpBbJhAGfR6DmIR+T9/T2maeKKOyl2omcj97Zl76pXWDNW5F619xR41RO0ZZq3Y3UL9toitJZFLu3rNsHR9nrb4pqn5kN7vDruLwvJ5PpTokgXReGjH3z8ynneHH/1h/Tj1Zr4AqVwwbjHmGCthm4WcfHBIzBHG4x466Fkss9hiUhKCYpZGdEjt6wJFUqsBYvd0NdxtYKzNUshdikSDBv2uc2ZNHLGMotZyGYmhoAUIiJvTGK7JfNLXCYUaC2kjc3wGrZqJ9MmQ0JAClBs5aOMQy4ausj4z1g8rcHKGChN9jqHceD5Sr27rbVQBYglIvO9MY07h1IKj6cjrq6usDvsa9cSAeTksLjOXwp0SbsnbhRd36PvBsRA2knSHjoYZwFr8OzttxFLoi5DhTf3zuFwfYXD1YECawZhUoEs1eOKwW6MAWPXAcOAmDIWv6BjMDPPC0LwePedt4g17LpqtXN9tafvw8Bg3I1kws6gxBoCX632zzoHbQyGroOx1Id7CR45kjZexkjJBV1PGkmlgN3VNYpW1D/bGjx75x0s5wkhU2X/uN+j5IjHhwfWTNJzLylBG2pHSrZX7C1sbH3+nXXw/kiECIPsyOMlhsiG9KZ2i1FQQMrYDyOO5xkxUN/znCk7/8477xJb7hc8no7oFuqXTTgAcAxKQ/QQ1rMlGWSOiGxMDpFp5VIwLx7H04TdgeRnuWTYrkNKsraTPvM8HRECEQXG2toyVfYP+TypFSnMUktjEspg0fMWoC/7TN/3KKBCW3ntMAzQ1uF8njBzrYNSCtfX11WuBqDORQHHr3t87ipv+bCnjs/asLcbZ8syXaagLzUrLUgUoNACwvb8LQBrmaet5lDO/ZRerdL7IeDly5ew1uL6mjoWGLN+97bEvj1nCxqEJm+/71OsbTtwRHO5TX3KNcrC1hbuiF2CGHNvrUeASxlBC4ymaaom72rzO4nGJbVeSobRtjK3fd/jS1/6Er761a/i7bffwccf/xB3dy+rDZBspi0Qomtp9ZAEYp2jPuHC1LQG6HKf5V63QPJVJveS6ds+/3Y8yf+372/HlLyulVK059o6HnyWFOSp5/4UmNxem4zzpxhNqU7vuo7SGG+OL9whAWbWCkb09HZtRlBKYZ1bx8bm1D6Qxjj4D72RnBpUTeVWxrsQUy69fSXlB16zYqSOL8aS2bnSawcSZx2UFv9cSu9RAJNIL401KDbWVM9Law0Cb0amsxRwB0/m3VoxjZ8xLzNp/TRboZzPcFXyUyitG2NNcytFusngA4AC6wwVhjjLWjFi+gqker2w0TP15lZK9IgGWlPQSa+nFC2UuHNoBlUakStxY4pwNqLrBsx+Yb2qYjIhkhdkIS9MYx1sItDrug6262CdgvIBrh/gOgdjLbKhNH3X9eiHARkFxllmdANQQBXSPmDHQDrFiKIKeTzmhMDG8KUkWG2pU4+z4FUVu92AnHtoTbrGriNAkVkbZ62pTKe2FsNuRElSwGih67JCus/OOXTs+EG+n/zsPDlLGOuAUuB6g5wCXUehHuAwBq4boBTphW3XQRtiHjPIf/NwfQMU0tUqp5F1xOwD6x/Jf3HoewAaKWWEmNC5AQWKsj9NUMGXDQBIMUNrCuJUof239Y2kuZZgOwdtCSSHFOFgUTggk3aYWu9qa0hhga01UIq7OZUCx0UxhlnwukcoRYwsZ+4oza0ApeFSQt8PHPBlpByRo4JhNwHNzzznCO/XjlkpRXi/1GxiizFSpKKwEAKNRU1tF2NKXPxG9RvSr3xZFsxLIImMUvWeicxF1pWV7baoPkSvcbw2oNyykbLIbUFPyzbKRnjJBoK/4Ku2QnIO+X27oW7ZSoky5T3t5t9eQwtYheG7SI08wYxSYYrH/f09+yhSJZhoE7cRipxDPrvVw7Xay/betd9RWM+2mKUFO9uiE4lUJOXUtiCMkdnA13ymwmrEGKrvmZyXnh11nyggcbMxJOZ+99138TM/8zM4HA5YlplbNNJm4b3H3d0dLWimuwBJQOFolITy8nMpXHp8fMQ0TTgcDvW7CaAU1kXAXDsO2/HXpozlNcIqy2vb4ET+TSy1q6C+jQrb17bjsP3cdhy157xMYV8e7Xu3jPtnBW7tZ8g9enN88Y52vZFnrDXIX08DeOL5FhY/iWaxDai0QmUkZR6QoTdZjdRAixVURmvEHKFUqWMaZV1bVHONkr2gFoyFL22VG2mtEBIBAa0cQlhAnn9kABmDZ+NmBnWKGKjpfKrpthhjrb6FIrAmeEaptShJ0t1OEdsnrFkpnF3JioEpZ2+MYYPq9VxKG0AyA1pBQ7N1DksJNOnmxPJFBwIGHRS0lSIF0Ul24LtV9w3XKzaB7qCthVUGRZn1etmbEEoqo6lCPaWEtBvhF4Po2QO3rGtYCAEZiTvxJEArhOChjOa0P513YcbTOseOAamSCyjUBcdYjb7f0b1WlL69urpC9BHgbi7IopFd90RriZEylgAlVQFP9PdCBS/WdeTXmVcgFVKufqpQYE/RhFQKcsowWsFZB7/MMErB2Q4BQJhm7iykURQxloBivWZA32coo0m+wQU7iKxLVgqqiBuLRkoRWml07AdpnVuvEUDnBvjgySDfWmJCNbcojRExUGvFvqf9iKyb1rW2BXMhhCq5kL1Za9K+yhj3gSRzANk3OdexNynjGqVgDdv+MDstgJnGu0KMqc7HbaZL7oe0Qw0+VImFSCTIPlBXnLF4D3pkive3XGUwLfkENlF/TThB9+V1X9hufC1bsmVOWuD24zbGFvhtz9WCKYAW2BZAiiVGC+ZagNb+e5sC3YK6loGSSXV7e4tpmvD8+XO8++47EBd9ALWln4A6YC3I2YLctvx/y5y2IEPOswVQcr3ynbbazPZnBCjnV8BUC4DWNC/pKCXNHILnFlTr+9YKdmId5P37/R7Pnj2rFD9AC9X5fMZL/RzUqeeI3W6P25v+lTECyJi4bM0pFeDyHNrv2QYVLZu9DTw+i31uAag845ax3coXtox2+xza32/ZUuDV4Oup62mZVDna79Ay3O0zvGCn8uqJ+ub44h3WUgtBsHQjxQiZfkordI7SjsK2KKVY87ZHYA2fs9QiVcCjwtprmEBh4Zaodl1r1TrOhKWRrINIYUrO8GGGKZbPTZuQrD2vMPwyFzSxGjKGJU0m9iJKkYxlv9/Dcwo251X7Hv1a0Q2sXUKoUhtIkdLDPaezresILGtbu7+QjGDtNLRmZdoAj+4TrTL08xTJykdQrMx7AkoEwlIp2Hfk/bksCxbvMe72sLXfOssH2HeSzq4BY9AbC7o5BGQU+4KmkhAX8hX1i4fl/WNeZrz97C0YtQKVrusQ4gLHgEZz2lmcKAgsa6iYYJxmLbrG2HdwtqvWMzQOFHb7PXkQ54zj+cRBvuMyS7JpIg/HgBhXfa0E1sauzUy0pkryXOgzte2QwoKcKaB9PJ6x3w3oXEfV9MOAh8d7IjwKSa+WtFAKf+gxjGTZppWBsfQeBc2Oy5p0jSGgcwHWdVCV/Ca5jzbUrQmFG6jwmIB0ilEG425XM17Wso3c4+oiAkVOBj03u3jwHtM043A4IOuEGMgSKpdYdaZCuMj4l8ymrPUyphZPnaViKvQ5UWGa57VhiTVw1iFFcipoDymEERKFGoOcakbPakf9xjVJU9qsIxRICqKoL3fdlziYVAzMU0pYZo/D4QDPHqeCY6gOgkik/yJFOS1QAl7dXGVCSLoTWHU6ks6VgXmJgi9BaHv+NpUovzfmab/JanOwSd22n9FWYW836K22UtipZVnw/PkL3N5eX7Tvk3MCuGAM5VxbdnH7mfK7lpVsv0MLyuWz5F7KZ26ZOLk3LXP61DUBFHnlUnA8HqmbThMsyOfKMysUKtX3UgTX1+voe6oE22ocT8cjrg7XrwQUcl2xiYhaZq4tHGi7M4mvZAumW31iC+7a+yabkNzj9jUtsNuOwW2nka1kop0P22P7mpYx3x4tGy3jL/PmXn8u9795RjlnaEOsyJvji3eESPNQxs2wH5CZMbCWxr/RBiWRBY21FsHP1TaL+v6um4V0cqGxsbZtRCmsH2PrF6xBa+t4IODSdWvHrxAC+oHepxKAvAbxxmgMnWg1pZCOZCrjOGKeJgIvQGU/dsMIZwg4Wmux3++pmI+ZyUkYMd4orSWrlJy5cKhQBe847jGwXZAyGhncmxjrHBeAXNOBTkAmsXORGSQUSrEXUHoxhIDMBuY+JIQomlGHGKjPdUwFxnY4dAOWhVKCru9gWV5k7CXAJK6IejpDKUAr7K+ucPdwTwDAWTw8njD0I1cSD7i6JguoYTcSC6bofP04gFrm0TiKMeLu7g4AOOVusetHnM9HMvsuwKB7hMXDWg3FLObucAXruKGEBmznagtJz+0TRQ8qhae0xyUcjxOGccSOizPn+Uzfo++QU+G9iD1JCxWE5ZyhtEWGQoZCP+6gj0f0Q899qTNKpIIZrRSCT3D9gLe7oa6L/TDgdDpWaxylFRJI1iAOAdSNhsC7FJ+kGBDD2m5TK+B2IH/PaZ4xs0b14XREP44UWJzO8GGmVsC6wPYd3nn/PTjea6xzcJ3D+XSGDx5dKjU1rIy+CORbmx3ZE2pDjZSQmEEPfoHRCl3fo+t6uGHEDz/6BPnxAa7pTARc7i3n8xmlZEp/hwUhRR5/bHK/6zGMHbreYlk8lpl+vh9GnKYzHo+P0NpiHAcY15E3Kqi4R4po2+IbqYFoccDrHJ+ryvuz0tPbDXzL1rTv2TJF8p72dxLNlrKWsbdM39YyaLt5b1OZArxaELE9BLC0HlCHwwHGGJzPJ4xjXxfk1hanTcW3wGD7+QIAavpKv+qX2VZ4bS2I2jR6e4/l75QCIy8zAfQtuNs+p4I1XZpz5moZ1HsuBVClFKiiKuCk8yU8Pj7COUcVqdwOThZAua7H4xHv8Oa4ArfWtmfVj8p3lmfQPut2vG0ru+Xn7f2Ve7Ot4m7Bo7y/HY/yWtlot5KO7T1s7/FTP2sXhPZnLfO+bkh48lpKKdUi4iLY4oXqKb/NN8cX4xjHkaN+Co6WZQFygVoW5OyoOttImzdiAZ2juTLPMzsiOHTO1iA6sX7QWkfpPa3gXFeDMNnUWvZcjqekR8ZyEwdrK9MDSNEboGUdyOL3mCmbkahrSuE51/c9rq+vkVOu8pKHhwdqacuFLcJiDsMAZx3ABQOK044ZGcvsMe53UIYYyr4fSR/nHDjrV79XOydSikAgLbi1BlaZ2ppR0vzKGFhm7gBi/6yNWMTFolAfZGccey+yV2LfAVpzqpL8fdEEr1AK1hgcT0egqNpOT+ZwiGTBYhupVOI9ZLffYXAdTqdTbQhhO3fZ3StGvPflHcD/npeFCiqsg3EdUApO5zPdV9dTZ5Suh+sc5nkmX0vb170hhYQUt17NJJXKOWMnDiLe44xjLUwyhqQaBGyIR+w6ZpBVuVzLI3VdGXd7YhZTwrJ4dLbD/jAA/BqlDYaupzmSSe9qhwEl0vNSAGIuMFzhnXNGKh5FaeQkRucAjIFRGqWQJtUHvkelYGItrzUGznZYFrKpMs4iTJFS1DFDWYVh4JoE76GY6e4HslaKbGPlQyD2WV82N2nxg2QKpMhLaWor2fdDBW4xRuTzCbvdjqQmPKalmrzFUQBqFpJaO65zSgKBaZqgFEnfhn7EixcvyNweClaTV+fxeMSzt98h/NHsh5ar+tu9UZwfPs/xuYzNt8ARuGTTtqygDFZ5nWye2xSsUMftJiqgrQU222uRhygMVMseCqAAcHFtckhKeZtWrGkFpWqafRx3OB6PUErV9JOAGon85eG2Or3tdwLWRX0LbOX3cl3yOznnFhRWTVRzpETaGOnjK8xwy2S237dNqxtrkUtTedkMVjG1kgV2niccj8dGAkDXstvtL5jUwOmCbYHSZwUk7SbRPke5nu342wL4LQvcMr7ta+V3MpG2soT2WT1lmbCdAz8KdH4WK7kNqrbzRL5fbsZOe075TjJH3hxfxGN9btLSDaAWazopWENOBl3XUaKPGWhaGxJgpLhvPSOtlQFVh3whcOIx08zdmhZsrqhdd3KOSJFaFWq1jqmcM2Io8LwOasi6TsxotVLDGiR1Xcd9nSOkTSulWC2zXDOsJaukXAo0G3fnFMhmBwQIqfXcSOnAkqFgkAulRpUCIhcNtfNdvpsC6VDlexY2LIOiNK0xVKRSUAANdH2PrKiIoeQEzTpxKY7Kgeag5h7R2lgqyGA7oQJaH521OJhrJG4ZKfO273tKQQoxwClmStUWsnpT5HfrUMiEGtzbG6j2OoqBcQhkLu4aokZpjZHXCqXJu1FbYqILiGkuIA/OZVmgsTLQSpGlFRV7gbxQU4JzFjFFzNMZShv0XQfeBEjLyUFQS5y0lkVaKbpPKUErhaQjsCxVEqAUoC11HSoAQqI0te0cOj2SX6ey1PEoJBSlOfCgFHXgCnG6FgNtHYxSCJEC8BAjlhhgQIVekP3cOWRPLLJxllpanjMKMnS57NaXS4HiTJ5lx5ICKQaiwhqlVqzjva/diZyjgjfZqxU/b8XnV5AGFRNst6N/54KM/Mq+I3uEZb9YmvK0RlwGVYJnFJxRGPoBuayyOKU1egakgrnWvUXDGAKm8zwzU+qeJFV+1PG5O+W0f99q/OSDBehtWZl2A966wbeLQ2v+DawsX/vZgsoFcLWgTX7fIu1WcCpgU8BNi8Lb77K2UcyY53ONrlvN3BYct0CxnWxtxCHXLN+1vbctcGpT1fJ/uectG3d57Wu6vmXyZJNY7/P6TKhvMKU65HlcFBPQq6GqADjU/rYE/hPGkYTMvZjzcpQ7z3PVRb7K7gGt4rcNLNoCKODSmHx7PAXg2ue41VbK/WxZwhZwt9HZZwHC9pm147v9vPb62rHVjokWSMrzl99vx1c7/9rv8kZD+cU8iPWhVFeN/gt54okov5RChQyKNJJU2ELFENZadBwslFIAHlsLe9DFGAFTkJKsA5frAwDolAApsgOBinZcxRA4bb5mLCRAoRaBXASn1jlhuGgip4gsm69sgtyWsRonew/Vkc6QbIRGWptSgtbkIuG5i5fijbjrOuzGHcCyGOc68nHk1nIxRlh12Tayrr+Gi18yAZQSUy34oE4wlI7OuaCkhN5R1a8qGcgk51FaVSP1mC+JArFRSSVzVS59jrYWh/0OORX4ELFwcYUASpm5CzszoFCK39mOtKyO2m8qpajKHKwjF8kNwB13LKwjoBibvXO33xNDJWw3iCTYdx3E81P0eD1bWZFHcIGxq4fvNC2I0aPrO+QlYZ4J2A19D+8XoBT03AozYyUeRHdpjIHrOvR9B60N5vOZnoumKvOiyJ+VincMUk4IOSMkKgzrrIHVDsGnqjH0ZUbRGpoDr1Iy4hKQcoZT1GHHcio/l4BcqAd8SAkZkdsuFvjooYvhe0vjRe6l/Mk8louS+I72t77rMI4kc0gpUXeeRPZXtJdwBfU8N/tyhrG2dgMKbLOllIZy5LlJbRmH2vUplVX+1a7vdU+p+mjUP2LBJa8Li0fWGUPfY/bcbCQlONY2qzq310yrUqhV5NLvW7pZfZ795XP18t4CxNbz6LPYo62eUQDcdjMVxlHYSTnkhrab9VOb/FbX+BQz2AK+z9qwW42mRBuWhfHe+6o5bP2ZWqq/PbbMGICLFOUWOLbaUDm27F2bQpfft1rTUtbXiq5DnkN7HtXck8fHRzx7dlvvuwBK+Qyp8tZKNhO63/M882esAYAASgGEx+MRz549u2AmKwOr1u/Yfl/Z2ARcC/hvpQPynQWQt6yu3BMBp9sxIZPvswBbC0jbaLEFkNsxvw1otmNgew3tWNxex1MAdnt++X7CRL85vnhHO2fbVLLuOihjqhvHNM3o+46KTXjMW+dgNOnGXJMiS9HX9HnOGZmZReccTqdT9Y5rsyZy5Jwv2sCKtKPruqp9lzlnrUVEgWeWMabVK7Jqm8uqk68MpULtkCM665yp+ne/3+N4PDGzRwWBZKXjKjDLHOgWTWlkBfKYlCIVYM0iyNjv+h4h0d+VJjnI/P9j7892LUmSbEFs6WRmezruHpFZVVlkXTbIS4JPDfAH+vMJkO8kGg022ehu9r1ZGeHu5+zBzHTkg4ioyTY/keVB4HbFg1si0t3P2dsGNR2WLlmyJK4oaMisBfPOI9UC1IJmKnIh381SG1UuUfPJmjJMYVBcpGLYjGEa4ULAMA0ADO7z3OcYKldIIVgfPKbTEc0A9/udwR21k2ePYOccJn7nMS39me7zo49nWfdijJgOB9zvd0RlLXc4HLp5eSkFP//8M5XCHIYeSRu4jnhKEW9fXynha1lRKmUOx1JwPB772ns+H5FLhrcjAq+FFLJtsFzG8HA44Hg84jHPKHzflNgTeb7j+tqlYM2pJwDZMOBxJ6lU4mzs8+WM1gosyFfTsb+mGzzZLbHpObF6BAQBYI4JNQIFoIQfnnILAOMDRue79tZxW47ThC9fvmAchm74b63HdDyi5AipqkSlEB2c2/h/Gkeim02by0Inn/wTS0trGFVEMrzmJ5BB+/1+xziOmA4HHKYD1bk3VKVo4YpzUv9c503cH4++HrbWusRB1mJJao1rwjrzeQ6EVcD3mnOGKY1M3C0l2C7L0se8tbb7jeY0ozX0cfw9x3cDSulwe4CmF/H9AqsPzbBpkKV1k7J4ywQsiFvOL4csqDKx7XWM8lltJyPhXQF/Gpzoc+sdvoCYlCKDpIzX17e+U9UATPQTmn3UQHp/b51BUMzUvgi9BpuantYJOTocLmFmKgfme4ko/X56G2Jj49Z17bqiffu2Rh5WZEQuzGx90jbGmHA4HHA4HNETBfjZ5uWONa40iK0GPt+yu5oZ3bOzVUIt/B433SVVHdB9jP7u4JyYure+29Sf09eXPiSbhGVZnvqn3jXu361+x/rd7t+1/H2/KdJjZX9f8udeAiD3rPvbj+OPdRhn0EpDMw0wz4kx0v/necaHC5kfxxhReWxD+UVeuDxgq9TXxWOvlNJ1j4fDAeN4edqEyUIv/UMWQd1n5N+iwWytIfF4FT1XrRXBbRKbPpdyOD6XCmeI2agl98WucXWZ1ohFWZYFBwYvpXDI2ABfXt9wPJ5wOV9AOagOy7xgGBuGw4haI5l9s9F1aw0xRQrfmWfpiDyTcwEwDmjMqlqHafIAKgPKAuMdtR+oKg3xdejzuzEGSYpIMGPTWsU8P3A4n3A6H7EsM3ltBo8H68rDMOBwOuArrxWkRywIhyMxr2q83243pMossWlURcwYMjVn31DvLVot8M6gWMMJExatZjgLeGeAZlBLgrcDcoy4xhWXywWVqwx5Z2GdQUwrYBqM3ZItl2XuYdllITPuhoph8LDmgK+vr3hc3zCOIwYXgFqwrjNyTQw+MpwPiJkta9CQKlcaa1t0MaPi5U8/EcPsHAZmnsfpBM8WTbFWHMYBhzP5Ixdj4MYJx2lAyYXlFBmffvoZ8/JAXCNqKWiGiA9jJ2BsaLXidn/gfDogxoSYYi/xWWqBbeTpejgdsaaVSocyMJs4N2BZFqwc/i0xYV4WgA3Yay4YxpF9MSsya07HcaQQfy5opaE2IBu202rogFOsmXJOsG7EMA6wvKlbHvNTf5YQtCYfWhOrwQWVvVQtSFLhLBU+kGIF1oqhuefcB9oYGWuxRgKT8h6NMbzxu2GNkbLpf8f68v2AUoE8gR4aFDlj+8L9XnhOFl0dLtYsouyS9+yRrohD2XHDEzjUIWzgfRZJDj356FCJZqOMMU/ax8q7FdEILsuC2+2B4/EM5wRwJlR24df329vGbabc8jvpIHqS1ocO+2qDcPm7ZEjKd+V5qK4sFbj33nKCzreaP2N4vkWB8wY5pw6KBXBJwXk0C2M3llgWRMu7YdoFA86S6JnMzxPWdUFKEY/HFeP4CTCWfL2s6YznXke63yAQcCLAnLO0KVi/8iyHEBPWlDKq+HjBdDD5tOhY0pxKqEYDNOlPInLeM4Z7MLhn2vWhNybyPdG47jcO+lo9BM9vT/dTvYGJMXZz+h/HH+uIkevCl9KNpgVIeeeBKpnGpIl0RhL+DGAtGw8TUJOqNTQ3btIUy/1iXVdM0+aA8OBQ4ziOXUJUSkFDpbrSpaE5u1mg1QrTgGkcedymPmZk863ndHKTiP1nE5dMrUU2xI0YIk7gqLXidDnjfnsQ29lAOrTG82sl1vB8fsF4mEDG52xPQxMVMYqGAHNODLyN6ZnwuRa0SqFz512PguSckZERWMtJJfxKn+to09iARufy1iKx4bqsS85zqNRx1jmzveNIhtTSJtY7vmaikONKVW2CD31uk3mmh4p92N4Ll6qV94Xc+ppUC3mOllLgGVhvhMyCkguGY+jro4RdxbZJ+sM6z0gMrl4uNHfImpJzpoo7I9UEp4TAjMZrG9UKJ2/MIQy9Ypj8J/PcPM8AgMPphFro2YjhHVDZtiZXyX0wPTMc1iNm6hOtUd3wEAJsGJFrRDUVsA7DYQKsg/MLUowoJWFJCWTKTxrOeV0QBnJR0PM6SQjI6JzYwAHBO8Q14n6/IXfvSDJjr5WqICE3Vp+y9CvFvlkxMBz+Tj166VSEorXWIxJSySinjFQLjseB3gevf+KYoqVX3nvkUpBLfkq+ozWHMMDj8aB5pQGtkfa2JRDQrwU10+fWFDEwq14rVb2i9t4qWkl/RsM3FYH+3vG7jM07K6MWwc7gFOURqFg26WAaOOgwiQZu+lr78KjeZesQrwaGwDOQ3OsR9c9lQdeDQBpRM6nPYM3jcDjger3ir3/9K37++ee+45D70TomDXjl3qSDaXZT/txP4HLvGnzs9X5Cs+s61fKcojGtDOL2gEeHzdd16ZmF8l8HORJyeNoUPFsExRhpt8khb7sKe91wu117GUtJHEBD997avztpt5VtLbYKGN/6isrPK098pVB4iT5HC7nzri++DaRd0iyOtLsAPVlo9n1o/5/eUEmf0RumfZhet61+7j1Y/K2x997v9gv9j+OPc9RSoXJtuB/Tn7ocasmFfM5d48WQ9JfN0O+XdcVhGsmnzxAjSBEF0TfTWJJEGWDboBTJ1rZWXBqJZWlAznSaUjJQyc+y1wXm73u3FQLQ0RtjTE/+aa1R8kMl9gaNwqmtUe3v1hpg2Aw6JzZ+pkBorrXr/qSaCukpSXhYMuvVaqVMc9MANgyvjbSopZKNSy0UMjetcQSGNmO9XjdXjTGNEgxroXNaAZTgTakxBCAMJa6USlm6UhVFV0ax1iJ4CWNv7WcADOwX6oJnTSFt8OkNAWi1gx9YD9caSiMg3z9jKPkDllrMGqP+ZFbOe9SybVxl/gMzrAJgDBt+JxNhWVfqeL2opfSEsBQjvBeChiORMt+yaXnOCSEMPVs/JTJjd9bRO2CNIc3N3EkNycdSln5T4YNBrtwfnCeSgfWp4HmvGodUgeY80BpqM4ALCAexDnJIySGVB3JNPWGotIY1RTqPYAZve9hc1uGJxxbZwVLoeU2Zyo06h1ZpDW2NNY6VknhKrAgBVEgcQhxxFSiWnonBuPRp5wKTBK1HBWurqLmiGbK88oHWocR6UXFQsdbAVik7aXtSkOUCA72aEFuJQZj1ShEBU7kSV808nivrJkXm156wEfUH7hvfefwuDaVmeDTAaTxIDU+AksGkPws8AywNFGXh3oOrPdOpxan7MKBmoPbZvTokqRduDQ406yRgQ84tAAOgTng+n3G9XnG73fDhw4f+2T0A2YNEDYr0vch1dIKRTmzSwE8DRw2s9O5XzruJ1p9BkQY6ci5iOKZv3u/+e5uu41twJ2BSLAiExbzdbp3tlOQEERfLc+nr6v5B5zcduGtdmH4WuQcqkbl5aQqYhAzgRgNb2noPsuWaWrer22N/z++BuT041P1t/xn973eB424c7X+vpRA/jj/WYQ1pj5sBhQJzoQWlEpPnjOkgqRSqyz2NARZAjGvvhzlnVAysLwTWmKn+css0tltFGA4MKGnhkc3hvDwQsmfrrgyPAAP2xisJ3li0LDWBQUk4DZTVbSxpD5mtlLHXN9jWAbURu5IZTBoR+BuUwtXMnIGpxMTmUgCO7BhYtELA2joPHwZUAPNMc1GtDXFNcNNI4R/H7KP1cBPrSmtFSQmDG2kxB9BKQU5cj5vlBvxQXFJPNuUWMSaMo+PIicUwBJQGeJYglVpQaoFrnsGaZ5BXenUSilKtHUg6YxGE2UornAGq9zDOkYazFqBR5ZhpJCuf4Ec4Z5FBkSkLAqrCPFlLJu0WbJAPAwuq9+697+UtAQLLwg6nJWEcBvo9/2/wHiNn30fW3lkDBG8xuIB5XmmeBHq4dJnXvqmQeVj0t8EHLKDNf8wZzlgM44ScMlANnPUwpiKuCZfzC1pdUAqFxk3cCnl4HxDCSLY5zsM4epZUK+K84ng4wA4erS7IoD5urCP7pzJShnTLDH4BPw6IOVG9cADBBVgL6gt8iItCMwbGOYRxRCuV+pGxaCA2mxB97aym9w62ARUGpdJG8HQ6knF/BVLO8IGy2CUySesNldgU1nEMlAlfaNniNT722u7GkDk9seETA1+eB9aIYZzgjENpwHQ4PuGWZV3hHVUDso3kay4EjMaziX3B4Xjqm13nNn3y/X5HSZuU7nuP313LW4dZNBDsCzs9zjfM5HO49Jl10Zo2/Xv5ntYL7hkivcBrICiTsTSu/LkHSnLo88jA2Z9TGMvWGi6XC263G0IIve4ltY+BcyTe1eX+9uyiBn5yXRlYGjRrJk0O+ZmcS0S8XSyv2o/+TgylbksBodLm+j3u9bL7e5Fn2kLN7omap3bdNhEpJby9veHTp597m1suRaWfSd+b9CfNHss9SAa5POemhX1ua93/3gNvAPr9aoZag0VdoUl+9ltSCQ0k94yknFPe5R487u9PfrYHrvId3Vd+HH/Mg/oPJ7Z5caRoDN4IwDlPejnwpsdaKmUo3yeQRlo7AngOh8PIFjzMpqVExselsv7P99Jxet72fiupWiR0NpGptp5bZYMp/ZrCnLaH8kS/2ZgVE/BnDFCZnbTWI6WVBf9Up1mSa1IqyLnCcsi9wXJm8NhdNHKp5EM5Tbjf7ximETFm5FRxPg+kMeXxWUsFokEYD7DYIibEEFEJS2DbfJVMz3U8HvF4PLr/ozF0j40zyWHI+iYMA3rpyFZxPJyfdKgpJfztl1/wpz/9iWoy203zPjiPlbV48nyaWBCSwLQGC9M39fSuNqJDgF+tlQCPMciRNLF+mvDp06eepFRqwcLvT9jFljPAUZ9SKUnKOYvj8cg12k1nI9u0zWW5kHehs77LrCauKnO/39Fa6+Ur53WlOZuZvZwKlpgwTRMGR3KPL19eud2EECF2szbAOEqmORw3/b8PFIpdlgUFZL/lp4ner6fM5eEwoZaIEByGacT1esX9esV0mGAxIi0Las6ApRKVQfVzYwyWmGFBmw3vBiyJvCNrA5wpWOYH0rpCYgGAhfNU8rLUilYyjuOEnCuGYUJKEffbHcZR0guFlGltSrliEP1/Lsh5xsB2e8u64u3tDSml/h3we6DEqcrEzYQKWvuWZYV1ueuqjRGHg4rz5YzXr2+cVEUZ7dZaOAtYW542CCu/O8khkHC3AbpLy/ccv7/0Yq3dKgJQbF4VjQ4xQHrR1oBIf2+vzdkzj5pV1KBTAJ78Xu5tz1zp877HEu3B5R7YCsDRQvc+qBvpO798+dJ1nTSAv2Wxeoiobmbacu869K7ZOWCzX5J20u2hQZe0r35mYMvOyvn2BL7lEPZDvqvD8M+ACJBJeX9IJ5T275nqHOaTPvDlyxd8+PCRdVHfMrSaNRUQKjtgmehFdqDbVgM4Ac175ne/uZHwtn73+80NgF5FYs8s6vPK+9VA9r13rxnOfT/UoPAbthbPY6YDctV/foDKP+aRKyUpOB6jsKbbjaBSfeIQBqCIJIXGcUqUfGNAYdwMsvWiEoPPjHrwHrZXKbHMHEXcblecTicE75A4ecJx7WoR66eUUAJnl3N/ejwePblQNmpaq20YyAzDgGY2fdg4Dt2rl8KpHkMgsJtLQa5kX1QShQ9zIesXA4vzyweEYQBgie1xFoE991qlsq4FDYbtihqzvZQAM6KUipgyXNjm1162tahE0EpMjGywAUAiK+TxZ5Fz6V6Ya4wduAdupwaqSkTjeJsLDodjP7e0WSmlM8WS3Sv6N5nvqM4ybTa0Vo2sfp7nCilYEULAuq6UeFGpyMTr6yv+8pe/9JBlLRUDZ1PXWtkXkhw/QpXEJmKoAVA5RgMulkAl/KQK1/F8IXA8DHCBGNzhcOT+WXF/UNJIKhnBkl9lqRUvLx9wnx9dz/unP/8Jb9cr+YuyRVYuGYfjkefGStn0hwkvHz/g8Zhxv9/hXECYRnKA5P5R/aYTrY0st5a4AtZQGcVacb9dMXoKszdLyVG1JPgw8vNnLo9I0oFcK+6PB1LOiMtCbeY9pmnE/X4H47seqhYMQP6eEW9vbxsQtI7BGQFs8rCkNUOyqiVJtVeiqQ2Hw6HbFTrn2KR8RIqRpC7gTYhUtDKcFJRj95CEochcSgmn04nGc21ovDnMSerUNxij6nazxCSljPmxbATT/fHdc97vqpRjDBnlom1hgw5oxNfQbqyNLISawXkv+WTPWmrgpEGABqGaNdwzjnsmcn8dOZ8cms3U5fbkc0Lx79knYQUfj0cPLxuzAULNlgLYdvZtS6rYM3M6Y1uzbBpI6Gd5j0nVz0OfNTBmYyf2zJ++tgY/W1tWCrnwdWWXKrsiuafMAFDekX5/9/sdy7LidAzbO1YgWp5FnvGZKf02RKyvIWDWOYtaxSpIJAgVrRVYu8kR6LkAY7aNjpxPh/B1/9hvXt4Dru/9TP/u731Wjj1T2RRA1b+TfqL1uD+OP9bRmHWstLMioGN5XPNnaq0U+m5UOST3+VM0TAbGO0hJRdEWb9dAX6jI97Kvd7Q5I7EegOfQlcxrcp/at1ZYea0np/Oy7MVSuTuxrMk543Q6PyXUSV91zm+VniotWPLvUgpKzbjYjQncDsXMG9YZGg6Bqjm6cchRwLQc8mz6GTat2PO8Sl6RBrVRYhDKtgmUcS/JkFLNJaUE74YOslPOBEbNFjmRazvn+lohiaVabiPzv9yXnFMfeoOq1wPJ8qeCE0vf3Eu4OtiAkjPNI5YsfboXaW2U4V43uxtnHVKKlNRYARRCUb2/GGBlYEtzZqXNQk609oMSJksrgFkJBBrW+ApAqZs1Vl9f+blqy3CFfBMb/29eZmKuDcswYFl3i66VJdkihfn9EHB0ZzKBZ09Pql1PDPNjnnv/AwxiTuRZyebqrXHI2jk4AIk3GWRQT9ZJVS7MWdXOkkdq5Wz1Lp3yAbZwgiiPs8wSE+s4xL2sBOYr1bEflHRM1tcYI8AbllIKjKMSy8Za1gAb5Hwluyhr+niexgORUs6gGYpKLjMl01lnuSQkbbxqq8itURlQbDI8Pa7+reN3G5vX8qzHk5+rrg+ZwPaf2wMAzRy9t0jrc2sAK0BFg8X9gr1ftPUEsf/+nkHUDKTcnwA8rf0spWCapk5TU5KO79ff69tkkhP9iQ4zyz1qML0Pdes2ke/qdyC2IMBzxRUquZW+kQ3sdavyPMIG7u9Hv0uZJKn04gZe5RrMrW0asFpxu11xPl34HFuba3ZW2ueZMfy2ZNx+w6DfoyzkAoZLeQbY++/ptu/3v2MU9+9hf997Bvi9Dc6evdwf+nrSDvWdsbD//A+G8o99lCqLtqeEiWIoIUO0vFwTuRTZPFPCCRqVnDPG9sQVYrsiOys0XvhrD3UKCN2kLxJd2eQgsinUm9JNNkJ9UwBG37A0ILdMIUe7lRB8PObuJCGFDp7PZXgRrCi5ch1tgDK/wf2bFmmqRrIVXqi1oRkKKepiFzQfiJ0XtbHevBpLiStU4cbBltIXTsv10XNOfSNG9cQraqo8b2/zaI+IWAPT9JhGb2frHHxO/f40KSBrnkiCJJTbs43bt9GHPcmik/3kZ/tDZAo6amWMgbeOfDZLRbU8R/VIDoV5RZq1rY30Tkpt3cZqGEb6XduMvSO7ZJRKOlbJhK+1IteKui7wQyDdKYDI15HrhWHAKO4uPH9677DGVbV/wLLEnlzkLJnzO+d6glBFo02Fc2S1BAPrB0yHI26RKgvVQvfU0JAeM0fRGsZpwpoS1ZHnqji5NpRGyV258PuUKjmGAFzjXJFSKPM+jCNl6zd5ZwzoFBhrjZhbgw1cwlKBAMm4FvY/BGo3SsQTDENtv8YV48QJXpZ0vd57PLj8plS8yikjuwznqbZ7M894yxmShPTNHc8/4gzx/0/063eFvAFwltxzSJd2O9xZW3vK3t0v3vpc8js9WPaDbA9W9mzPfiC+B3Y1SNCaOj2I9ADXbKXck97VyqIvgO9wOGBZFi4zuCWuyO5d368Oo+s2lHbQzJzOhJfvyfHe94wxeDweT20mbKJ209edSoMnDTifZQffAiA5t2gupF064DaWQl8dwAKvr6/485/+sWfDWfcMuPbPtoG05/4mv9OgWYNB+ay8472uUl9r3x+EWai1qkpJ72dYt3fGwf7d7K8hP/+tMaH/LeNJgMQePO6Z0B/HH+yQJJBCtZOHIWCQELMBbGvEorQKsq0h77wQPIL3BLDcVh41hADHGbYyT6BZBM8SkXULU03jACoaI/Prt3IeYwxKTN2eSA6ZP2KMmOcZ5/MZLReUlJBWGh+06A3wnqphieZS5oB1XTncVtnuhDRpyxph2AaoloLj+dLNvkupOB7PmJeFM0sLTAZKLDgcjz00eDqdUQEkzr4t7DASRgLZuWzgfBgGFAawMWaU0uACZfLGnDqYpNrUFiGMaEh93nbMaj44TCl60NPxvAFSR6btMm9L+7y9vT2tOzKn6DUnclhdz1ONQbYxmwZddG4Aadre3t56NRP5nnOuh+jF2Hye504QOCsMM9XkNsYgc11rTfZ477Hyd8D9xQ8BMRc4C0zjEfM848vXr4C18FxrPgwjSiY2TthgkV0V7gMhBNJagsCHCwFvtxtvuKgu+F//9q8YxwWXywWn8wmea52Xyo4AjozPPTNxOWXENSEMA8qyYmFbpMv5hHE6IscVgEEYyM0klbStb6VS2LsQhsklIa4ESu+PBaXcMY0Bh8OEmgtKyUBrmCYORS8re2MWkgNw5akhjDCOJBSPx0y+p87icrl0sJZiRF4zvBtwfrn0WutUb51srrxzgKGSz7kU2uwwWXM+H5FyQYNh+69X3O83HE9nBpYOuVUkBujW0nXHw6En5YwjhfNz2ooRVDQczyfkmLr85XuP32UbZK3tdWH3yLXT9SqUAmyLp9aVaK/D31rc5buahdPATp9ff14GhwAyHd6VHaMGDXI9abQubN2xh3IfOqysGUAA+Pz5M0p5wel0fNqpaqZ0z5ZqAL0/r34uabc9YNagSrOne1AunVh+tn830g57ltba55qtG/jeQJpMQvJ9mZxC8Mh5A5TLspKR84cPACQj9Xkh088izxyCBqbm6XM6dCeWUnuQrYHuxoY/A095fj356/65Z4P3/Vt/Zv++98dvAcB9vyemd+sXmrmUn/0W2/nj+Pc/OjNlHaqjPpW4CEDwDkbGGBqVXWRQZe3GNGq2IIKsaCZOVLlcLgw+HaZpwo3ZSLSGeX7gePy5z3mkm4yctMOaSWZslmV5Ys8FuEmyj7UWY9hMxEVXXFR4D0DXhjnncD6fsSwRMMx0VcA4i8N0wu1x56QR4C//23+BscT45Jrx9fUVIQQ8HgsqKsIQEMah6weto2S+SlQYnPXdS/O9ecxaywCeJAHNUGWiGKkayDRNuF6vGIYRgZ/RWMv+k+r5DJEp1gAhUEhSwtgxRrjge7RG2k0q0EjkaBzHJ0JBrzM64mSZQZWQp7wfmfdijD0xsfC9ybUFwMm7kGppA29inCMf6ZxyN9LXzGoB1xfntiZ2kTwWY4xw1mHwI3lKsiZT2vzxeKBwfpmxBsfzieZn75Frxe12w08//aRqRXvWJtqeLDRMY9f9PR4P1Frx809/xvV6JQDMrFmMtFbTZo03/algPBzJl9TOgLH49NPPuF3f6FzG4vblM7WxIYunXBqMcSiVAHSDhfUOwY2wzqMUqrR0f8wwaAjeIViHUrlsqbNwnDU9jiPmSM8zHQ6AoTEUc0YuGS1t5JO0m/ceOWUsjxklEGP56dOnrtOV8oi39d4lAt57BrcFwzDRxiRn/If/8B9wvV6xLOT1GvwmrSildnZ8mg5YFjIyl37sbEYp7G89cBXA+pyz8j3H79JQAuhGy3tAuAGOb7VjT0zmjqX5ewviN3oRQA24TX+oF2jNLupFeM/oaTCyX8g1mJRJSoTT8j0dyojskF8rVVE4nY4cJtgSSjQ7oMGgTEByPOv8ngGOfg7NxmlmQA7NOpbS+gSkq+fsgaOc45vykPa5/YX1PB6P/Rk1aOvfKTrZiXaub29vZMRtnkPNGpzK/evQt24H+bzoUfTz6sxnDaD37OW+jWWTo3VP2i5q30/3oPw9hnX/eQ0yf5ORfOffddcG8vv9s/w4/lhHM42SaKxFVeGmUkh3FRjslJxhHODZMLsBZIfStXQW3lPSAvnmUUa0MRTWlazmPga8wymcel/eNsLMdjGYlPExTiNyTB20CRsmiQEpJThlBSdzntTrFias1gofBvITdAEwZGCeGLwcTkc8lhnLupKptR+QasXoBxjrAUMh09vjjpRICuBkLQEAY5BLw3q748SJHBUM8oZAFXvcVmtcNqWtsV9lobZ1jso1UtIJGUbDmB6u1dGkZkSCgw7EtcZUxrS0lR6LYu5NbeoxjlMH9UJ2CJv5zdrIyReysZC5T57nwWX4psMBwzR2oCn3LXO7zM9y3pRSN/oupRC45HcoxuzrunICEjoQHFaRARjMc8THj5/w8cMnqhbjLL58+ULaOwXCv355JSZb6novK+73B2fMF3z+/JkLfDSM44QwkMzieDxiWSPWZcVjXuHfXnE4UpnJZshn+HG/YzqMHfSEEDDPM8bBw4UBB1jktGJJCfMascYEYwAfRjIubwbGGeRS8ZgXunfjCDQOgWzWm0XNDV/f3nCcBq6lvs3Fzgcym8eWFEwVcKjkZ0Vl4GxhOAchZ6rlbmDYL7VxJMKgtoKWG27XN1oLlQQhcea+6ZghUpKfJTeAaQyIacXxeMQaKWrQRooyyEYpZSqzKRupw+GA2/UGA4NxOqDU0qOq1hKwHqzpThXfc3y/bZAjw9FaWweUehnbAKJl8fS34dnOeOF5wdR0+3sLrQyS/e80a6UZJc0k6kV8D8r0zzSoAZ4r3mgrHh2SBp7LIB6PR1yvr7herzifzxjH8UmP2DMP62YdtGct5V6knXR76bC8BkiagZTzCwCmRYMSc+i8EtZwbGz8zHZKZqK+9jPjZznU/ZyQI/dHc86mX6RMNgHMFW/XL1iWnxCG8PR+tL5INEMbkN4SlPRGRIeJpB/pvqXBpfQJaR9pS80Ga9Cqs8k3VvNbSYX+93t9Xu5Hf/49hnJ/Hd33W+PQN8Aer7IZIAua9yQJP45//0OkP1yhml6hYdPy6mCl/BoAYyycgbLtkIoe7AlpPVBTX7y6TVmtVLM6567Nao20gxrAUp8nMDR4j2Ztn7typspSckj0RoOlXErvg4BY86Ru2gxeHMnIuWDlOtn9Z7VQ9mxOgDXw1hNzVQpGAXO8PqScURplUZfGkg+7VbxqrXXwZzcLcE6KsT0TXoBfn2N7cYdG4EGs1NSm8ilaAaACSn9pCay2yvIm3+eVuKZeaUbGu/h3kv8uJW3oDbuOtADbGpRSpFz21pC5rTWDKe9UV0vZr0t6DqGNRwUKr7XcjgY7mzQ2hRd7oIqNhSbPTfJsLKVimhaczi+YDgdY5/D6SuF9zWUJe2sdbY7EYQCQZELCE9ZSqcCRmVGZ6ayjDcbMyUZWIo6yaWiUPNMqFa8w1qI2MQcf4KxFWWY4H+ADhcZdCEgxkR6ScVJrpMOU8WO5r8i9NDSqFc8Av5SC5mj+Bfe/2hpMZ5Gpok3h8pNQa0+PkHICVK0V1WxaZ+qrYr5OOuKUiLkEKLkoN5n3+a21ilbJ89IOXDyBc1kMpLiBjthtemJZQ5wj3KajuD16+DuWl+/XUBo6M4mTnzWNgOyqvk1A0CyfXlTlT73YAhvI0z/ToEWYKw0GgG/rJ++/L2BL/0yupxd5fZ337lP+LpPu/j4OhwP5dnFo6bfAg9zz/tp7sKsZPPmZZrk0k6rvRzOPIjUYBqLwRUu5VdZAn3yJAdkGPl2zwTnDxrMBh8MR4zg9gTma5IQRpAoTrYlIuaC1iFopFPd2/Yo//ekfAGzWRfpdCPiOMfK9Tk+M+HuT8J4h3ADubxngP28wdOh9v0HZs5tyrv0963ek22Yvm9j3+/059uejDFdDIUqeLAxrVMnYWGfH/jj+KEdrDCUbs5KGDKRRyUvwm82FsX0z5yxlNlNfIlE9MSjPpWZrrWiVS/g5NfbrZuEl0RraROaug5d+er/f4aztWkbnHBmnKzCac2IWhzSNWRILWwWsweACEl97jZEqzVQKHzeOa60xonAJPmsd0CxyLShoZKPEY9M48uIUkGmcHq/mSZdHgAScSOOexpkAMRlnkhgj3pTCAhrDfoJ1Y2IkGa6pDahspr0zeHujOt2iiWytMWu7hbclDB8Cb9Y5ojI8lc3b3DVCIHuieb6zuwPNvZRV3RACXSuXzQy81toZJ5JXEMRulUrTJi5R6SxnV4OrAQFAI9spAaZoQEm5v8NmDBrYaqY8R1Du9zuG8UA1qyFrl4XY0BhDVVpyzijM3n78+BE31kvKujTPM7ch5x3kRHrJsmlR53lBrSuGYewbrQP7Z87zisja0mEgy6LWKHHneLrgUSuOhgzgX798gTGWxmSlTZ4mXzQLHAbfN1nT4YD5ccNxmgBrOeHGke2SZFhXSrbxsh5xNnaMEX4IJBED+WDO84xpGGDZ1aCzxQw8RRpB36c+5IzDNI7IpWBZVowTeUPKuhRjhHEO8/yANVu/nKaJ2EpUDGHsa15KsW/QaL2jdysRCb1u/p7jd2d5086GL7bbDfUcfvMtE6MXbPmOAL0967ZnzTQQ1N/Vk4X8fL9Y70PMwLch4j2QkzC43L/s2DSokMGsAZwwB48HeW8dDocn3cx7oFRPfAJC9K5T34dmLuU+dKlAfU9aEiB/juPYrT72Old5dm1Bs92H+yZDVCZnYGOYSXi93YucL4Thaef++fNnfPz4qWcOynMKiNT9TTRIEuLT7aBDPDoTUtpLnlP+Le9Ja0Dl5/pPfQ5t9ST3pNtMfrbfmMj97Pvt/t8avO7Bqv7OBnD5el0L/H6I/cfx73+UljH6gOAmmMlgvlPySguBRP934cBkYi9w00D9tFSujFIBb2DdAO8crJFsbp7PWkUtBff7HafD1PvTumQ4F7AsD8Vu6Zq/ri/YMn5qa3DB43a7AXhm32/z3JPwnPPECg2B2T0gDBNaplBbzgmoVALOVIvSgGYt1kgAdHAOwzjBWrIUmpcHzyceFQ2Xjx9IQ1kkwgGsS+RsVgfjLHlSVkq0yZnG+TQNxF7x3FRb68UnhmGgcCWHKGOMWNeIn3/6E2KLCJ7mIDLQJmJAohQpJeREWerFUqU0SXYR8CgJFfIuJaFJwFwrDnFdYEFgI62UeDEMA1rNFN6EwxAcxmHoOjtD6JBKOF4oMzoEj5QsYloxOQNvB5QU4QywzI9ndgmU+GIN+SHebjeMIQCNZWEpITBTrJ1XSq1wISCEgbSNIP9E5zw+fnzpIf51WbkyjSRzUvZ/Sok1vuxRLNZFQAfi4zgygCm43x9oDfjw8SMejwdSIlbyeDwCsHh9fYVzgZ0APG7LAx8+XLByO7++3XA8HHA6HdAALJGAqW0ZJUXMccFjXXC/XgFm6EpruD3uOJ/PcENg3ead3vljpU2O4cSuPCAMAVMICM6ipIhYG8wwdBCZUkIsGeM44nw+Y02kg2TBL3wIyDEipgSUTSct7GGtFYsqhiLZ3vfHTO0dfP/Z11eSEwxjeIpc3pcFxjiMg8VhmvCYl75uCN5Z5xkhDDROvEVNBTGusAxmpeSx3lB+7/H9gLKQf1VpresI3C5MDJmAIP/cmB/NqMmh2TVhpWTB15+Rz+0Xcbm2ALw9C7S/rizKAiz2TCiwhbU1iNOgTe5X7yr290SC9AWvr684nU4dlEgoVbeJTrTZM2Ka8eovjMGc3KucZx8S6b5pZfNWFAEuheE3/aIOl2iGUJ5ft6vW/WhbJfmcwRbalz4gFRjE1HeeZ1yvV/z00/DEHGtALdeW59RtID8XMb5sAiQLUsCu3hxoxna7p82jThhlGXQ6u3s/QUuby6E3AZq118d+g6XD8RJmeO+8GqiKlstwLWPXWYEfgPKPeKzrDIOK7KjM3Th4pCVxCNti4I2W81sd7NZo/KSVFmrLFXYejzuCt/DOwloq7ycLj3e2Z9FKbeZSCpZlUUbm8WlzqecgHYaV70giiJ4LSUJTOvM2TlOfq7++vXKyDG8C14zj4YR5fiBnZhK9AzikbWzGNAWyTakVt/sduRacjmfY4Kkam/cAGoU8x4FAUCmokYQApDMz/d5l4y+ejMYYruJDLO04jng8HhgGmYMb/vrXv/b5TJ5Fz8vSZofDoc8FMq8/Ho8uKxqGgc+9FbloramSea6Xt5Xzb5vTbY2Rn4dAPoPLsgAAfa82pJgAg56YJVGc1hpOpxOAbcN9vV57BMg5Kj7inKPKQuA5qGwlJEfxAp0XWO9gyCgRpTUMYULJ5JN4vxPoGqfc1xECfuiJNLJRESmG4Q2MJPJoydHGxsXuGJBiQh6J3LhcLv33rVHVGPoZMdbeBxgALy8vKIXe2zhM+OX1K2wlL1ZrPE7nF9pIPO60sWi1z70iVyilciKOhx8HGDTSZh4mznVocG5ifWmBbxUOvIY2Kv0ZU+T68aWvRbVWXK/XXimpNTovPc+J+gu/O5FTSG5FT3hVWOgwTRilPOmysk7VIq0r+b2mzPZMDs5a1AasjxluCHj9SvdxOp1h+dwiU5QqPbPaQGqS5986vhtQ9qolMIB5Zhz1pPMeoNM/18BQszJy7Bmg99g9+dwe6OjFX0+Ycugd92/p5zQQ0uBqH2rWjJgGXSmtvRNRzU/fTUqlM2iQKCBTM2Jy35oG18+wBy36XWiQIgNVt7UAymVZe0fXWcPAFv6WhcbzzkgyTvUgkfPKgJQMSQG01EbfllH8/PkzzufLzl/uWfeogbJsNOQ/aRcB9vpd7+9L95kNPNdO8+t3r4Gn3ItM6rrfvcc27lnK93739/q63nDtmfenP7lspd4Y/Tj+eMfLy4U3bwXNbkbGFG5tFL6uBYBswAzmdcE0DJAuVGpB8APZpaD2TcUwUbWR2ig87rwHqmivgAFAGAY0EMOyyVhIQtFA4Myske1IOOHQ8GbFeyoNJ3oq53oW6P3+wHg4YE0JgTeQpZE9kBAyDQZLSsi1kml0bRhYd51rg2vEhsIarDEBMHA+IKbEGb9kxzNwpRkDSzZMjWyBkESLJ3M3AFB42DpHzwlLmk1wQsrjzpY5HGmyDqlQNSNYC9cq4hoBnsPk0HOBdp8obE/UGnDw7mnzWitVqjkeDuxP+KzrrjwHTeOA4B1aKb16DBolEYFrRKMBlkO9MKRhrO1ZJ7+3cEMjaYyzDtZYSgBpJLsg6xmu/GYNGZi3Rl6NKXdbGmM409taGDQcjxPGQn3TOmV6bwzAIJ5kT43nV2IrPSf4tNaQG8vFGgAUWOeRYkYqCTEXlMY+iGFAjBmvr28YpyN8GFBYs1gbur+mDwHjNOHr15nKdRphWDPGcULLGbVEwNDa+vLygv98vyHnRB6vluQOqXAmdqskDSiUJGMA0i8awxpNqnqUU0RwDrkUWGPgLZU2XFZiYlum/ihjuDViinX/aNwWqWRmkDdyhyRqWzKTtSQdMQDGadryHAxdJ/Om4DAdeEwI1iL/z14Zx23lFdd1QZ4bzuczRQMMWUo1tJ4optfX7zl+l21Q10hWykDqOw0VutOgbB/G24ecBbTIZ/ZhS/lvb5ejF+29FlKf/z2GVP7+W0ySBocaWEhIV449MynXlUmFtB9zR/q68oRup31moAZT+nz6WXWIXO5Fn0N2N/uQufiZjeOIZVn7OfX3ZbemQ9wGz8ykAEuxpJBdFbEaG9u3+XhuIX4B2bfbDfM84+PHj09MiLw36cj0HKenNpHNjTwrAfn0TbakTlTS9b9pM7GVttwnYAnrKQuI3gTJ+9mH1/f9Xn923/90P5Y234NR/eezuwBPRnjO/v9x/PGOn//0E/71P/8reyoS22atgbNkv0YQUkUgDNm5JOt6csMWvbFolbVfDbS4lUK2KRzKdnaLfjjZwNUMy36Ael4j14XG7GHtzNg0TZ35qY0SAqhfbnrqlAt8lWz0wjpJAqgAZUbDWMzLyh6PBbVVuDYgWKq01gzpEwUgiolza1QST5gvYy3r3TghDZQk0/JzYYfCYe9cCxwTHqVVMsTmNWpeFpxOJ9RGQJSALyfftIpWGmImVkcTGI0BniYVKAu+9DYZD2MPE8rYHYcRQ9gkBbLJp1J4hWu4VxiRihUCcjAAOPnVW9ezsSX6R+222dUBeJqvqeM0BNZUWmynlWQfoAHN9pB8rdzXmOGz0tqtwVnKEB6HgNpAnoWO+jO1B5AzsCyU1U6M8bOkSCrfrKlgHAFw5rDzHg2Frt+IAT2cTrA87y1rRCrA+XyGdbQmxJRhQODOOQ8fAgonrwwDzeVxTZjGA4qLyIkS39CY6aXmAWP1LXmuNb5P6vslU1g68GbKGEpuWlNCXFZgGuFyhjG0OfHBw2bX+2uP/rHOeBwG1LQZicuReENgYJ/WBPA7F+bdGEOJRY6q6eSyVaPLOaE1SvapFmTVxeeIvGk0xsIlR7IRLgEb03OVNcPjS0Lf/8UAZU4JJRC1jB0AyooVNKIZaVsoZQ8KNbjsD7JbZOUQ0Cqf2TN6eoGXz+y/L5/bg1J9zvcYVflTJlw5j0wOetepngRSAeN0OuF6vWKeZ1wul6fQswYQYju0Z7E0kNRgRNhV/bxaR7k/j+xk5Z0QCDTI+bnOtDyXrrgg1wsh9P/EMkg6mtyf9oLT329tq+Qg15HQ0cvLS3/WfZalfk797PpeBYxK2EvOoXd6VvVHOYe0k3xHg9o9ENebCx3+1uB/37feYxj359uD1P0hfe35fLS0ynP93gH/4/hf7/jn/81f8Osvf0OKGc0H1Fbgg8cYBgxhgLcU+VjzttFxzlHShaewb+2SFV5sBODUza/1sdD8EnyAOC20QhtIa9Crcml7Muco5G4aulSktdbL90mIcV3XvrgYZ2GDxzDRv49H8tt9cOhu5QQQw6Xpbvc7amucQWvQbMQwHSg85xzmZSHbFBv6HHs6nVArsaphGAhk14rQSNcnYb+YIpvFDxgGqiN+Pp97NEg2W9qiR8K/wuqJTnEf9RA7JDoXbYzXheoZy2cIUG7jNueMy+XS9YOtNVRlqWat5WdT8yNMb2MJ53rWzpVa+lyWc0ZaSbLgg0cYBgzGMPjd1lHSOFKIEwY9GtUak2yWSl8G7zfcWkVixuFj1rF69o5M7FKScyXtr8xZJcNyuUEBlgJ6hmEg659lheMNeqkVlcVwKW9lPs8vF7jgcRgHBO9xmCYCmaXAM2nw9esbjsdjb4vH44FyPGJkix6An5WJkBQz5nnF9NMHsuMKDiUPWB4PMn4fRvpWrSgpw3vSppZS+lrtnEFcK1LKfTPhHMv5asO8Lr3P1FoRG/DhcsJ0OKKW3MPd1jtYbLrRbFOPmjUAsWSY+hy9k3WW2ir1tcp70i7f3q74x38+b/1ZEW8pkRbSWIcbe3dW5jattZhrg/c0trwP8H7oEgU0yjuIOeHDhw/frIPfc3w3oJS4vmT/NUIJ/fe9Y6vJTgNIDdw0Ct+Yl63+td5J74GTZCHpkLUGGfLZtrsPzfTtgeB+gZdz/FbYUf9cZ1tu50KfpES3c7lc+uf3hufAs/2QBkB7MLlngfeMrW4zAVnCBGuAdjgc8fZ2fQJDcuiwr/wn7Scl2aQ/SN/oEydr+iQsrhlQPQCttbjdbj15SQNseadyv8JWyLPJc+lFQmsx9bvX/URLHKwl7dKeNdyzwZpBl5/JO3mvv7wHKPfgVPenff96j3HXY6HV1gG6LhTw4/jjHf/yv/sX/M//0/+IL+0LDGsjXfXw1sE0bDYzDJRqrQgjJdKsJXdwATA45JBvShHDEHhMeYzDAffbDHMEnKO69RbcT2tFSgWtkf5LNHwCTodppESCEGCNoaQN9tQVgLksCy4fPyJnWnBLKRQSr41DhQQ+h2nEvKxY1xmlNozTAbf7HTDEplVw9jSXkjTWYZhGoDIzmwuu9wfOpxc0WMSYsa4JwxCwJgKP3hgs60LnIXEcYA3COGBeF4yHCYN3QCE/S+82+69Pnz71SmIyb1+v1z6GrHW4XF66NjLFDAOHkp/HOm3EHVrbNns6wmEMJUuiPQOtWivSOm//Lg0rJ02Aa7fnFHE8HRAfK9Zl6dGiI1dKqa32n7XybDv3eDy2mtwCotkSxloLcAj3ME5U25q9Ro338JbseMLgkXLBr58/o4HCtImdP6ylULe3BrkC1lgMhwnNAH/7299grcXlwwt/1iLmSAlgnpJ7rHcAZ1lTG1gskZLHwjjwJmLE+eWCdV46uJkOR9wfc2ezZZNyfdwxjSNcoP9++eUzhtGjFioFWRuBRQPAO4PT5YKUVvzLv/wLXl+/4Ndff0GNDV/fSGvaAIzHA+a4wpiGtK7IKcEXh3vOMK3Be4thCJjOF6RSYWqDccDgHG7LisM09Jrixnpcb7fOMF4uFzhrMZ1O9G5zxsePH3G9Xsn/sVAJyvP5jFKIQiUjfeB2u6E1w2TOCZ8/f96cGCqVXz1fLliWlUpVLhHjFFBLo1A7yFbLhwGHw5F2F8bCs0Z7PIzEsFqLFDPuN3J+GHzA29fX757zvhtQekeO7nX81rbGGENhDg7FdHremG/YH8307IGnMFd68L73PeBbtkeO/SK8B0zvASh9vr32cg8SNECRSUI+T8+J/izCBj4eD7y+vuKnn37qO4lht3vV19+zuPJvfe+bPvFZPyr/ae1pSqmHp/X1p2nqIWh5JgFmT7t21u9o4bqeuOT5ycF/837bNgzPWet0fsu1gB995y7PAmyMshiteu96+8h/8lzaQkP3i/370kk/0mV0/5F21iFoAa1/r0/pQ/ff91h43a/fu/6+b3/Tx42h7Flstim/Zwf54/hf7/De4ng64Pr2hviIMMOE1gpqK3DGwnvW3GUy54bZwoYbE1RRUeG8FAcgOY1ENay1aLy5iCnCFcshdd6Aqr58PG5gUsAiLfge4K66sVoMhkJArlw+ji2HPn76hMdMmrUiFX7QsMaMWsGgoaC0BsubTvD8MYwjYCxybcgtAdFjHAaQF7kBsEUMJLydW8VJyXi8I+bner0+jfmUUmfpZK6SEVfrc4UZYQaFFSW2xvd5meaYzcUC2HTpco+dXMEWBteZ4cAmWZHr15w4hG0gk5C1FkOX3VSsy4pWSAcpzK0xhiqlgGyDNKsM4ClqpDV6qBWtWnhrqToT21FBSIJCFlYNxFFG1q+Ow4CYMuKyIteCjx8+sI6XQvyA5RD1igbDUomCx+PR22FZFrzdbhiHEYcjcAgHwBj4QGCyViCvC6bjCR8+fEAIAeuyUKg7ruR0YCyAgre3NxhDOQCXywuct3jcqXrMYRhwOp2w3B9YV07GOhw4K9xhXWcuu1kQhonlEQHDMCKngrosAK/V08sH/PKvf0OpmfwqW8PlcqKSjXHFGhNiSvhwOZO21LIhuiNj8TavQON6896hQkoeFvztb38jTS3LxMZxRM4ZZ046kvf2t7/9DYfD6WkjcjweId6TpW5lgSX6YIzpjLsUQIgpUXnURjZKzRicjgeufuURxhHOTbjdbjDOdpukVqksauY+/OnTp++f8773g9aQ4eq6bobW1pCg1VqLZthYk9KFnphG4NnqR/6tWSO9+PbJtG4aMb0Aa2CyAblv7Yb0wq+BgAASYGNEdQhJg4g96/lbDNYG6rYwv9zv5XLB4/HA/X7Hhw8fnljNPQOrQfOeCdPPrtk2/Z9uW30N/UwErOxTuFcO/XfNcO5B5l6/I9cvtTy1jTzHns1rrMm6Xq/4+eefvwGS+7aQf2vNqbS7MHXyGZ2ko9tX9zF6b1t76aoiYnWhNVOasd33Jzl0n5R/62fWx3vf1fe8B7lPm7e2LVT7d/bj+OMcpeRel3vFilwyfPOotaAWCxc4GYc1kNaRFYz0cwvDFV5y16xJ/2wl88KuZDF1qw7mrWEtJGnxDNc91vIcGf/S12Vz0p0hAAKALOrX/bkBgCECwYISRXJNSKkg82cTs35S3SOME5plHXDv/1SD2XoPWIeaKBEIhWyMaiOT6Z78AfJrdJ68/SpX96BxSWbTJRdUX3tmdGUGJ8a1l0tsrXXg2ZMPVbZ331iznrIUtnnxAd5bVGP6dxP77zZ8K90S2YqUCEStlDzC7S9Viyy/o1JoE5BzRi3laW7q8hf2z5TyfLK57v2gNVBGfGKbIjLDtgYYbOiET/BkvdQlMw1do+udY3lB7ZsNy3OPlLCstQCNDeKtQXADUk59rnLesyVRJgsl79BguawhySKCofdrqPA8SiMtZJZ3ZB3GwwRcrxTid5R5nnLB6/XG4XOqUOO8h0mOypjmgmEkOce6RmRmS6dhQE4L4xaHxKwgLD1vqaVLK8iLtKG0CsP3m0tFQ8V9WXA5nnjzBMSckFNCa64nQJllpfYDZX83YxBz5j5MsrNaGwa3lXsG2KaobESczAfOcRg8JVgez2uKvV9IYQCq001Ru2k89Kje8XCE1CKvVRLL6M91XshBAA3OhSe5mGTwf8/x/QylZDqXCjuI1qcoYAMacFZKWD0vxHtAqcO7mqHTbJAcmsHUJRD/LWZHgwgNuOTv+xC8ZgV1CFWDOP39PaiVdhCQJtojseu53+84HA59ktDGu3IemRyB5/KK+j71JCMLiEySe/2QBs9y78RUot+TBt5bCJlEvCEMPWtbdoiHw+GbdpfvpZhg3VY/XJ5HA356l9TJRWMqnVaDqY2N3N6DZhmFldQ1vGUgCBjeA3Y5v2Yv98ATQF9U9bvRbbhn0vf9T7PIewZR38P+0JpI3V5bn6ugtW3rgzGu35znx/Hvf8S0UpashJJShvOSZGHhHVmLAKRp9KKdYsmMacQUlJbhG5VYc443hkbqQDNobJS00uUdcFjXCDKCNkBpeDxmnE40zmQjBnA+SMmoeduglEKJF2EcUWFgTO5hs2WNKKWhcfYreKHNrWKZI0qpcIGyuafpAOc8nHcIw0ifS5Sdbq1FqSvGaeol6tZcuab5Nv5C8Ig50WLlDTzomt55pNqQU4H3BP7QGNwyg0gVfSItsimCCi7UzhCFEHohCmDbRNO8tZEPOUZiXI2FcQEWBs5YwDbUxht/Xvtkfi6J5vfC4JDmAmxJG0JEFNmEG0iVMVlDnLEYpvFJ1iNz69vbW79n0cERSGVQI/6GpVBFpQIY7l/WWrhAGeDCSMMQMGyNNiGDYUIBlOAh+ly00rW8AOjvAMaRNK9yT5IVfbvdyQR8jew/SuF1A4ND8Mi5IqYESfiCiShSdMNSXezD6Yh8vSKVDURdbzcsCzHnf/rTn1BBzgEpVszLimEaMN/vqIVss+73O87HA0qJQMmAISBeWU+aSkFaOGGKN0u1FszMektIGgDu84zT4UjAunH+AGfoG0Psc84LhoHdXQyVNxTNIzKNgcFQf5Q1wTmH0+mEr1/fCLi3zfrOe0oOypG00dQnUtekbtFGkmXknCmyzOvJ6XTCL18+w1mP2gwKW4BJtAIAu0KMT9ji90TAvhtQhsEj14JcCwbZgfTs50ZA0zpQKQ9SABtDoZdSCnLMJGplJG2AHjLQnl97xk0vqhpEyaF1bR2pK3CgmTx9jW1X/swG6vMISNKgSICRzv6Vz9ME7bg6gQdgEcLIvwuoteGXXz7j06ePJIxVmdBaQK6fYf9CZaLdM6ty/6VsDKG0q/wp9ymhUgGH1+sdxjhY01BagzEOORG7MISJFgTOhu5MZ0MfODVTCK8VNriFBZpF8ANCSKi1wNrS26TW3BfY1hre3t66h5q0ud5wzPPyDStIC9DGnMpzCoiuu0VJb1jEn6tWqSDiFVtJ/3lvoUuD6az5PeO636jsWUq9EZB72Es35O96DMgNGQ6tVGZtGuoWnmgVKf0AlH/E47rOiLVQeHEIWG8Rx+FIPnElY02kE/MhEDBsFZ8+fMTf/vY3lJQweI9xGHkcOHhPmytZ8KnP04ZqDJ6JpK2vUT+iaimlZEys554mSnCY5zuOxyOFvGQOyezH1yqQM2LO8CEAhuxaCvfLCkPJD3GhBdcGXO8PLDOFTMMQcDyesawJYTAYfUBrButCpsneeTQAb29Ut/jDhw+UeAEaB2uMpH0bPG6POzIqLAgsyaZcxnprbQvdYxuHxAzShivnhMBJCEDu65fMwTKfSmKGMWRAviwLxnHENI7E9OXt9/f7nZJkJkpoqLngwRYvh8MBhZN75H2EEFB52pDZw1qLiV0zaiWvwpYLeZRa/j6zrJK1CwDBbhZBQiZ0i7RGmsxhGHA+n5FTQs6p62qF6RarIZ3RK5nyFYBzQAimM8M5JdJVOgcfBqQKKutXG44TvRNrqBrMuq69fT99+giAWMjj6YJ5XTCvKwGqacS6khwrW0q4AdCTPyUs/Je//AUDG74LuP7Tn/6Ex/1GQMo5fPnyBZfLhWQapZCuGAYpV0Rea26PB6ZAoCvVivP5wmvgFaVWHI8T5nVRHssNb9c7mc+rOf8yHZArSEfpLIZxwts8I/ZxG0iC4i2tkUBn6l0ImB8PxGXFp0+fmFWMfV379dcvXVKm17V1jdyXaKQfj0dgntn2K+N6vWIcJhjrYJ3H6XQiAsl7GBhcr1egVJRW+2Yq19zlCQBtBK5vb7i8vPQIxq+//vrdc97vqOVtEYLH4zF3LYrhXRXt+jQ7qMObZMQrFSHkMzq0oplKOTRTJf/eM5H7z7/H7GjAqBH3HrDtGUDNqu4P2SHq+9IgRq63Dydb65Az6ZFkgZCMLv1dfQ9yPU1BA88WS7rtdAKKfi7dzpr1GoYBzi7kPyZsa6GJ01qeeNwW+pZrDyEgsfeVTOrDELAsW1UZAWPUBjoURMbiEqp+fX3Fn//85yd6XwM3qXO6taPtu3hZGPTPNSCT6+t+QM/5LKXQ72nPWJcSv2Ew9wy6/lP/fA88dX/7reO959ifT7Pmv8d49sfxv97xn99+xbWsuNeMJVdcLh9RmkUtGa0ktFgQfEAqBc0EGNtgIzAFMlTeNMokoK+VNhAt07gdJtJB11ywrjNQxdu2Yc4rhmlkZszB+4BxGsFCdwoNV2CNGSmLdy2FGHPLPbzWtX+1cbYuma3nmpFrQ6kGtZIhekoVuVl22CSGcuRQdmkN93mG9wGpVCCvPUR3nx8w3qFZg8NhwpevX3HiJJTb444wDDgw2wVUNAu4QKXvSi4opWJeF5hoMNWCIlrTOoCKFwApFTweC4VChwHe06ZOIjRS4aXWitDNyXkurAUTA3vTGnJcqQylA5ppyKzJROP5uVksc0XNkeRfFmzsbVGxyaHEbi+3hspzmWfPSm826yfJuJewfwAnyRqLZg2sIQC7LivJByyBmNPpRCF15+FgYE17qjhWaqEEFrVmpZQoH4KZTsAglcwSp9Ytm+AaWqb+66xBXhc0A7KuCo6Sh2KmsoO8eSil4tOHn5B++RvmuGKNEeuy4Hx56bKMw/GA17dXWG+5j2VcTuTnOvgAO1HVndfPX/DP//zPuE8THvc7/va3X/Ef/0//R/wP/5//ASknTOOEr1+/4qeXF1wuZ1hzRikZr6+vmIJHivSuLz+dYLhd7rcrlnnBP/zpz/DeYVkWzI8HbeStR86xs41frzc4H4idNBkOBrfHjONEjH5i2cf8eGASBt5tzirTdIR3A2KucCmhsXyltYTj8cxzuoExDs00GBf6Zg4AYq5opsBYjxBG5FQxDhQ5DCFgOpwwDhMlQDmyNPI+kGn5Y+VkParxHZxBMgYpZayl4MOHF4r8xfSEOb7n+F3G5hsjyVViauV0dPd0UUHQOvRMIIFKGcnv9jYx8ln9p/6sBg7AFhLe6wn34d49oJKfyfP8Fq2r2cDnsOPzIq8ZKwnJa5ZThz8lzEt2F8fOgOrzaKZKnl+DQ83K6lCu3LPOrtb3uWc/ARJzT4f1G6sgYGOhafNgnnbxraED4YWF1PO8AMpXrzAQlKw/AH3SlmeUn12vV3z8+PGbfgCAwe234W5pq675as8SAN1O+3bUfUbrYPXPhRnaJx9Jn9ifc3/f7/3+vX72W/2v97dvfrNtoH5YBv1xj3/9/AW32x3LklAykJxBzbT4GOuQSwJy7CVI5SichEYhV8OgiKrCWGvIrLlW1Gq79UvOBagSlrQ8z1p4p8uByqZ8c4GIMcMr+xXZCAPMcgJIMaLBkLcdJFEIqODEilIB41BBpsgVXNWDCkcS098y0AyGYasnLOMtjJtli2izl7QSI2fQGSfvSK/3WGaYRZJktvEpc0qtDbfbA8cj4D1rAn0AYLGsK2qr8Jnqo8u6IloySTySJBPKMh96JK3W2kmATa5EHop6PFprYdvz+qA38jqq1DeHbbMxI49LkjO01iiUyqH+zObvgROIjCF/wpIzHIMXYwwZqnPY3HgDa3nNAHhDUeh7hSJMck8pZ6rCBcrkLsw8esu6XgM4A4xcBtPCwLrA5vaVbGr4+7UUApnGIpaEWgrGMKBIaUtrMA0TRbhqRWIrJJGDlVxwOZEdU0MjRpiJjXVdcZgOGIcRt/uNrZ48R5gcfvr0keUEDoHHk3e2C4AN2zadzyccD0fWrkryau2VAGEMUoyUdc3tl1IkQNaAai0cDMZppAIDBmhomI5H5EjWWKRdpKSzeV6ARg4Np9MZcXlwmU6D4/HU+2Jfy3c5GfyXzioKtpD37gMVoBF9r7CdsoZaSwmxqSwIwwjrLI0tcintiT7LQhpdsfb7nuP7Q96su5Mdq3OOdsfU158eWDRvtSoh8S7suA8P6knmqeH40KHMbbHf9IWazZPvvxfu1Czle4BSg9J9coQGIDIJCGunSzPKc2gPTpm0WiMN4/X6huNxevr5HuB0gb1/rputQRG187dJGXIuubZuZ2ovg1rpPsdxgHVkY6GBqLCIngfJM+ityOU5XCvlwqStp3FCbbkDTj2RSshb2ur19RWfPn16CuXTALAoJT/1B/283ww09e7l3HsWUtp0C/9vYF+z3NqhQL6vz/ce27i/D72A/BbY1H1Sf24PKPX3pX/+Pabzx/Hve/zP/8tfkZcMRIvQAko1QGVQCJIKcTYGAKpYUsB9gUOcxWYOcxe0ZtGa6ZsJHX1oDWi1kZZQbby9YrLfm/PE/YEOsmUppQJm0/wRM0ZJC7mSyXfOFE6m4iWG12h+Dmb8+n21hlYbYkw4yWeBXpVHpDSiA6PvcaaskAGloHGiSE4JtRCwG7i2OMB601JgmunM2zY+DBdW4ASjGnu7SHnGWslgXRjBnAtiJICzYvMEpcSFEc5t80DwBPolUYqKf2wbeyuRBbNJWJxVCYSVKuNsBIEqhdv/x3MBg0rvPfuVWspnkDmW372Rdc5aOGvIKYbQL2V/F7IhQ5PkG5JUmEYhc2vJXo2AJFVqMobOFZwDVXAk8oGSiwxK4+Qla3uVn1YKYBosgOUxo9VC1lmBtjajqrQka6tsDIS8MMYi14LgHaZpxDCOmJeFNhyearwv80Ig0JM11+XljPv11oFtqxWtFFRL78E5qkVeigCy0C3s1jWxiwGxsrKhAW8gnKP8AFMbmnNo1uJ0mGAMyBDegPTSWdYOauee8AWK3HaD/dZQSuOwtvLGNmQBJmuVxiP79X8Djh5g43LjbB8Xlk3yLffbkjM5xBqRKNL73EsQf8/xuyrl1NqedH8wBq2WDkxogEpHfE4E0QtrB3CNhcAK9OnjvYlQN6JeePchXX3f/WFVwooxprOue+Aof+4b9D3wuQd4mr2Sf+vPSMKIZH2TiermTSk74afM6R0Yk3vXLJ+wdjoUqtk6fT4J2ae0WRuF4PFID+jQNLUTJQzIexLdjSwUz+Fh97SYDcOAZc1P8gB5Trl3Yanv93s3S9aLJckE6lPbvvfO5O9biP25H/3Wv9/rK6KrFAZ2XdO739d/vgcW5fy/FfrW390zx32s0D+e7nd/zh+g8o95/D/+n/8dDn7Ch8NH/HT+GTC+L4w1V8RccRgGAA61GjJarpE3mZQcQJnSKyfrEOvTFCsttbudc2RHpMaHtRY+DECTTN7aCyjEGDHPZKeykQCNmSDabG5SEcsl8iL75VWsKQMgwOncgMh2LdZaWoDZ0kSXap3ZakgkUaUBjs3YJelvnuc+/oyhEoqP+x3Dx4+UJQ2ed3NBXCMSG5svy4KaSG84TRMOh9PTRlDmjhACHM8767qVVLXOwbNuj3TbM6QGeWsN0VKYu9aKmBb44LqnZysV3pLm2hkDidA5Y2Eag0gQkJON7LapTpt1TyObJrrn0ucDZyisXRq9d8/G5HGNxBwGKt3YakOJCZFNrN3ACUIjze+NQ9y1MHhtQHAO1Rh1D8REttpgaoNzxAq2RppDNMrensKAJZLpN4FSwJgGi9ZBV2XwnBOZq0+HCdevX9hDFGiG8imcAZvJJwLbxpBXInhjXysOpxPmz59hasV0POH8csGXL1/wmO/wTG49bneSGBjAW+DD+YzRe7x++YzH/QFrLZZ5weFwgHcOzo5Y5jsejwcau5NcLhf8+uuveDxmLAtpnKWcZ2sEAA0ziY/bHTUUjMOAgfW5pSReJynZKacMx8xhqZUSVr2HgMbPnz/j5XLC5fLCZU3vfZOjSTTpK1piJ/pS6d+Hw4ET9hxqJVnEy/mMkguWeYHUjB/C1Fn3OSaq5hd4c+IcrAs4Ho84HCiCOs/zd8953w0ohdXSVRSo8z979e0fen+OJ0CIjVF8uikGfjo5QzODwBbulclTM0lydIZHAT4NPvT9yHl0woRmD7WtzB7Iymf3gFnuW4NwYcGmiQTy4zj2koFyTzpDWa6t9ZK6feVehGETPZ0GHQIon8NCIj/YMsvWlTzH5H326ju8IMjiIAyltLvczzRNXXtijMEwDkiZGEutd/SetKSivZVd+v1+79U39HNJKEmDYll0JFtebya0DlPek+4nAJ76kmaDdb95j1XU73sP3vdgT/fL90CoHhfy5zdsed2qg+jvyDsUhvXH8cc7/tv/9r/F+XDBP/38F9h/9BgxIFRgdGR7M9gjlQdMBXZwHC6jTOI5RZRCxszNEYNnDVkLmUZjQuxDPAMlWDzNHQCwcljMGPQIgmY7Ukqc5EIRCRknsplKKeHl4wesMcM4B+M8akmIqcB5iyVG3B8PeDdgjSsvurV74qWUcD6fcblc8PHjR9xut6c2kko3cs+ykZO57MEaNDlkbK/LrfvQynyT1hWn0wnH4wnTdMA8zzidTk9a/WkamZHb5oT7/U6yGrfZqm3foc/eb/e+BizrowNkmYMqh45Jk267tc/+EGJEP/9yf/Rnk/l/GC4qQz3jOE1YFqoyk1KCA7GwTbR0tSFYh5oLmi3wo+fqJzSH5Jio1CPQQ8aVWdH+dzxH8WTOt95hnlcUlgS4mJjhCyi5IuWCYZoQGPRSwqCFBffDxjxmJg1qKwUGDiE4wFmsy4NA6jByoswZJYvHacPXr19xOp269+J/+ut/xuXDR8SU8LjfcXs88Ne//hVjCJgGtiqKFf/9f//fIziLdVkoxBuJsMhxRWL5nTidSBUcAVBrXNEAhHHE2fr+flJcsSwzhlqxLgviarD4iCMzm7VGDN7hMI2woPr1jisM5hhhjPQtAuHBB86QH3E8HnE8HtknkhN4vO+hdok4ttZ6Uo2sLwQAKTEqF2I7X15enrxVSym4Xq8IfoVTVkXGGHz5+hXee3z89AnD6HG/3ztLLIlS33N8N6AEtoVWg53935/DwlumNHXY54W3qdDNe6yfHHrh1yBQA7r94r9nhDSY1OBNXpQGEHI9nSXcQxM7tlWeTwCjDMj9ZCLACBB21SKliC9fvuDjx4/9nO/pNbUmU+tx9O9DCH1ilf/2ySrSVpINKMAQMJimrT43meibvkseh4HtBIYOfp2jXazORAshYJ4fZFfAwPNwODztcDadJtckVu/t7e0NHz9+fHo3BNy255H/rLV9c1Nr7Z5wOoQt70v3Ab1p2CdB6XevP78Hm3rj8h5T+B4jut+I7MeK/qz++54Ffg/k/jj+mIcLDqlEzMsdj+WGdH6BKRbBUcJDcAE5JrRG4e9iKgbvKXliGlEyyT2cp3BlbRXIpInT8570pZUZRGEvhmHg0Dl9dpoOvDgQGDgcLNY19X5IpQQ3fbK1Fn4YKZmlct3vstly8R3AWo+UE4v8KYnI+oA1ZZxfPpD/pLGAdWiVNJHDQP/FGHG93Z9Ku8aUsayxawnHAWgVyCWjtefiBkI8eO8RphG5VsSccDDHnr0qz/d4PFArRX9SinjMDzjrUWqFsc+Vp4hVtTCoVIzHGVh2KRkx9uvKPGEblTXMSICnGtpeuWLoTaVU0TEwT8Ui5KB3S9cKnkpwRpYm1FoR5xWHaYJl4Bt5k3CYpg5wiYGzQJ+jwRV/bDdVNyxXIMZzW88k+iXzTM2lO3m4MCA4T3/3AWEYO+DJlfWwjfSZKVX4gepsC7OXS2WmlSKbh+nIdbMTYBzGYYRpwBACSnNImTLGj6cTse28boIJixhXGENtejpMpNsvlASVc8Lnv33B8XDANI44DgNO5zNutzfc77feH2gcOdSScX888JgXtGbhPUkTfCAz8co+mN57fPnyFdN0QKtbNM05i2k8wTsuv1wpiW2Jkfw+c0FFJL9HQzZXtjk85nlLcrYWhkPrtTWY1nCYpq6X7BpjsflpW+RSsvVlfRHW3zMobTnjcj5jXhYmeuiev369YRwHhDCg8qZok/QZ/OUv//Tdc953A0oNJgVEEWtEItg9SyKDQg5axAFrt51YU0BSs2f95pipBJ41ivKwGojKPcrn96Fv+T3wDAL0blSzkxpEajsKeTbNeOoQhg7X6vvbAxwqhzX10Pf5fH5q5z0jpQGiABwBd7rdNCDfwtOtJ/7IPT2zuTTpUP1VSqyxFoBpG0usQFCtlcIkbQvjSxm5vrNyDimnJ7C1B1z793e73bAsSxfE78G9Zic1oNb9YR/y1hOjBqVyTukD8j3pB/qcwFbaUD/DHjjK7/X1dV/Q39f3t2cxNWNqdizovh/t//7j+OMc/9X//l9gSsNlesHlfECqCyZ/RJPNlLXkU+nIyqWUQgJ/bxF8oOo5ICbDGsCCQonAxro7lpl471F8QK2bvjvnzIBE+rKFc5v1mmxEdelUihwIc0FjeVkWlAbEmLBypneDhP8swhAQ75mAQyP9lWQbO08ZvrkUhNaeEkkkqpLyNr6+Ga+eslP3mtF9It2yUCizVAIgs5/7mqI3mlJhiEXhPeFHxrwAclmMic2s8N4RwFRzUmDmCY2y4+Fc//d+XdDzbR/b/FldCEPPbaKFzDlTmB4UPg8hYBpHAEA2BqXRZsOCwtWDD5RVbB0x3rIWMm6lx/pWRiPt3z2nmd0E/95zwlfwHob7rRNDcWsRc0JpgG0NtlLZQOd9D23nnFFqRfAEmCy3V84J1lGSlKHyQLDM4lMt8MwRUTLAH6zFGhPCMGI6UJZ/Tom09iWjmIzitkpUlNxD154fD6SYsK4RyzLDGOByuXQ/x8Qm/rVWwASui05MO9kukWVSLm/chhTKXpYVQ6BnqKWh1gxjKjAE5Axmigtqimilkr9zIKJmWRbE4+F5fQc4oz53kKhJLN1X5e/CZlNug+2bo209ozUv+IBcMjsekBxCNj+lPsv29n333zp+V8gbeH6gFCM8Vyx4LyQng1hAjVi1vBeeluObkJ+aYLb7+PY77zF3ezCnAaDcgwagelDra+nzyc9kMuwDr7WeKb3PAJZzPYOKjYG73+9bGbXdd3SYV9+f7JABbMwin1/AlwbV+7C77EL1+zgeJ7y+uh42d85hjQtyKT3sJKHiGGOv2y3gln6ufEJV+8vnZKMhdPp+YRCT8+cQ8gbUBRzribqXalObDB0C14xxa+3p2fUGZf+e9MK1B8F/b7OiQd+e/dYgWDPg77GRAG/Jdtfag9QfgPKPefzX//X/GSgVgxkxtBFf/voZdjqiUeoNj2/DCynIX7QWkGbRwhiqjlNKhYFhLR4dEh7WrL3U4JZ5OsZICRXOgSBr6xvowuDKe495njsopb7E48HQAipm4ZHLzhnrODmHkouMJX1ZYUBqrUXgcniySCFnlFIxDLSY6YVLzKLJkHztOkYauw3OeaQUt0WPyYwux2kN80y1nlNOHGI1OLIOL5eMkmkcp5S6TtE5/9SG1lCkReqn0yxNkTTJ+LWWAFVtDUMIaJVCuMF5eMMbbwUk5TxWzfl9DjRbVArYyWHatikVRtgaQ7WgxxGB2VS5Ls3HlCwzMOC0xjwRARtQpSxssH2bnjdlkyH3UWuD5yzgxlVxnKPsbscg03tPlWRAukuUClhKSiEHd0sbkFJh0BCch/Ek36i19nK93lmyxuF79NbBW4t1SFjWBQc22rfG4j5/xWEMOBykJGHDl7/9KyXflILYGj58uFAUq1bM84KatwRRssSpMIY0t7cr6R2lshIlr3iY1lByRlwjlQjlDZlzZHRuuJ1SXCDlgVstyGmF91t7m0ZkWkkZ1hgM1lJ1KO6zMSZ49nvWEVgh7nR42xiDcZyeWMqUMhv0k8dmbZWrBAkm8ZyUtuL8coFtFsZQvzqdTpSn1aRQRuzhc7mH7z1+F6DUi6mAEvIItE+L9vad5xCxUKxyvvfOKz+Tzr1n1HQIUl9vzyztGZz9DlBfQzrIftemDw1AZBenE0z213sPlALPGprK5rPLsnRmTus25Xs6ZK3bX+5b/i7/7ROYNMjR7JmcV9rNGNtZSrnOPD+6dEFAtHNUssp59/Rckpko5w0hwLot+UmejRIAKJynwZe1FrfbDR8+fOhAke59Y4vl8xosa0CqgbXuE/J7w4uGPodmP/dMIn33GXjr+30PsO77zHv9cH/f773nzkyqn+01kxpY/jj+WMd/89/8X+DtgJYMHl8e+L/++p9QzAPeDnAm9I1CaxTpCd5z9mwFWoGzVJkqpQIHAVLUdwX4GLu9f+8Hzi42CIGMnud16UUAIuvbc8kEslqFaVuy3TiOGMeRtYEBxpCn5MvLR3x5exOEBesc1vkOw2HteVngfEDMmeoAt4bHvOJ8+YCUKxxXziq14bHMff70IaCUjMvlAkBbYXFVF95QrylhHGlD2wAY5xFGGnfjNOJwmDBMY09qQHsgl4z7fIdzrkt1AGB+RJRb7R6P60pG6+IJOfB8kVMiEA8Kv9ZGBRyMNzhwYhMAGGco6QKAN5usSWeum8aVjAwwhiCVDPvcA2y5BNu7dKhl8588HA5UPISTOXJi3bgh+YSfDjifz13qEEKgeddw+UgAMVPCVwhDn7fWx0LJRKwhlGgTgVrAWg8/DvCu9XKI1ti+0aAknNZzJ6y1cABKJlmXdZZDrERKxIxeSc16Cq+HIcA6eh9DGKSTMatIesH1nmA92USVUnE4nrAsDwze43g6IsYFp/MFcV0w3+54PMhGyDbTje2J8TUoibTJLy8vuF5fObpWgGYQ/IBaAecCvPMwDXjMC7y1JP1qVMLzcDzjdr2yD6dDaQXXG3maOkv61pQSVZ8y9LNpGPHy8rGTJDnTOA9hQM4Jy7LJTWjcp84wyqZP1oFPn36GJNmIhO719YpPnz6xdKMismMCveuClGj9uF1vCEOgsqrG4MOHD3i73QCuXie6ajGRl8p433P8Dg3lM1v3xPqhdHDgLJma1roZnm+7ZjwtmNY8syx6EZdz67/vF+h9CGTPVOrv7RdsaThNM8uxZ9T0dfbaGT1xiKZPPzOFy5llMAKyn8v/DcOAeZ4xTRNeXl76Tlrf/3vhHrnet4BtC79Lm0mlFzmn6IUEdEmnOx6PuF6p7JNzFjlvbST32lrr5aYEiFO70H0NQyC/t/r8nALCaUe5PYMMCmFLUkocltr6XmYDY/rOQKGF+mxmv2dltZ5SgzmtWdIbFw32/97mYt83931WA8Q9uy7n3ddVFuCrWUu5D2FP5I5ySmSGrRmNH8cf7vjLXz7AuxEeAelPCb/863+F/+X/9Z+wxoSCAA+Hl+mFwoqtwDQKVz4eN1hDocycE7zxGKcRtXpaGI2hzNRGuqzG/WUMA4wjv9+cMz59+oTH49FZDulf+t+yYEj/dc6R/IbnmpQKHuvKNZQtSgEKCkozWOcFsBZhnPD29kZuCI0qePzDP/wDWms4n89PEpNxCk+SoePx+MSQ7udjPX8JMAbQyw4uy4JaC87nMx6PRw9vA5uNigCsx+NB1UUqJ4rsCBJpA0rciMSoCbMIKknnveMQN7FuzhB7FywlRkl4chzHPh/Tc/mnOUoTFMYYjNMEGIN8vRK7vFLpx2EYcLlcuIQvaSPneaaEDrclioYQuh7z6bmsYx/EgrhwgiRrVZ2E6Ln2YAWzUUVCnmQhVDj5qa9D3gPOIcYV8zKjAGgwGKYJfiDw3WqlpBsAh2HC4DnB60zPUtkK7jhOuD7uGJzHwB6SmehMBO4TuTV8fHkhdtIHeFi4Qhuq4En7eL3e4MKA+fWVS36e8PXrr5jvD6pEZA3WZYF1tCHwbsA0EYv+17/+JypXyevuy8sLJebwu5ymCSlRNnQplI1ea8Uwjp25Dhjw9vpKHqbDgGHwcDZgWSPGaYSxFktcYe4GH18+QKyuUA1vNraxKXkHklAj40jWKOccVk5AezwenQC6XC4M7InVPx6PPYyfM5UnPZ1OuD3uQOL+zxXiKBGON2zW9cpTW9Tj+47fBSil6o1mSUrO8KMjw1BqIUjIpTUBdfl9JlKxPYK2NLsnhx6Ech4BdTIw92W3dKhYhxT32b7Acyk8OUQPKOfUk47+rC7JR1oksYYQ4Cweh6LR29gwmUyGYUCMkVz8OdzzniRgz+qKeHwfYtVgR4Cc7DYkWUbaQLOXzlkMg8fpdMQ8P0AF5Asejzsul5e+IAGgXbHbLErWvhsC+53RzlXqEvf3DDCg/DbjHkC/Twmh031tNYerVAtpHCrcnUO/n01q8Zzpr/uRvP/9u96HovcMtV4U9+0ubaKfW9/nvr/KsWe19Zipv7GZ+sFQ/nGPDx+OsHBwzaMGj//Df/wP+OV//ivKUoFaUDIlIxzGAywMUAuW5cFlCinD2DTL+qtKwJMPmXdIU0dsxsiVO0otKCV1Gc1+0yVZnyklpJpQCp/fUqSVwvGWTMplbFmqxe1zw31ZABgM40QWQpF0lTAWzjsY67CsER8+vJBmbggYWRcNjlw0NKRcMcEg5UIsrCNjagBPPrErO4rksulDLev4USkb+P54dILCGNNtgIJ3FHo1xPo1kEWSNZbAINsINYr5EYPnPPywlTqdhgEpJ9KjOouSMqq1GEJAcMQqA5w9LXM7M4MkVZBEGAn7ortK0roSqPIOh4Odc4iVNZTGYXAB8Exom4bj4YjgOGOf36tpBG7FqqiyTKKkxP6hZFVlLIFV8fGUfhXzlglfc0E24uFpENeVGEm+Vi0VbU3IjdpHTOzjGjEdD6SNNIYlAOwnWissKMkkWIcidaoBnKaxa31ra5hCIMshF2Cco3rtwsR6jzAMqOwLitaQ1hXDdADe3nB++YCaMnKMOKaIZVlRuoyEyu2W1nB73PF2e8PlfEQpFeu8dKurZig07x15M3rvkFPEtqU38MPQyxSjNaxpgQusF64FphjAGpwuF6Dxul+pYlPKBT4MCN4jLjOPY/GB3IrIbOtJ6GQNySZcD2UL6NQMJgHTzdNTfEhJ91w3t4JlQSo0H0hyVeHIo06qFnLre47fnZQjYFIWRHl4mbh0lvOeodmzPgKqnkJ9tXYvKr2gyyQjn/sWpLzvZSm/k+to5lK+r30egecKOXJokLaFJfzTs/YBWTejbH1v/QXvgAaA3imu1ysul8s3AFqfW4MIDU7lHsRjSq6t349+F3sxuNyzgFoBySJk188AzqxLXHaMzt36z4VtkGe43W5PnXlv2yOHVBK6XC59QZH70+ysMaTbEhZAW0xpllgL8zVY1HoUaQ/N0mxAcqdtUvcpGxR97j1Y3QNS3ef0GJFBu2fW9RjQLP3+Gj+OP95xOo5AMbDNoTmDf/qnP+HycsS9LqhrY/1VhXdUgUQWd+cDSmHtlaVMXcoMbWJtvVmJ2W1+yLzAytgX9wkZ6zJ3bNZfDQh6jDXaRErmqrXbRh+AdQEuFJiYura3NbaualyhwxgSizGos5YSXySD+36/91C/hLdFS50L+iZRy4liSlhz6skv4zhi5DmOgC/pJJ3Z5pOGBucJ4EoyTRgCcqJEJbH28WoOEg2iM4YKWVuqquKsQ0WGAZlzg+day9/RG0DvPNvmADVXyv1pzPRx+FtGqwXNoxagd89AlARBPO4z6SSb53mkkj7RcxhSAKq0VckZzSp9f6nsFVmJCas8J6GimoKaM0rKWCPV8raGbHaspcxwuVlayyQpzKAZ0szWRlWTCjkFodVKGlVOTunzGW90nPVAqzClAaiwrVFZSFDOEEkRDJp1MM5sbc23Yhq9g3GaKLLFGejTOHX3gDgvuOWMYZxwPJ5QS6b/Gm16KHmF6pujkXl9XMkWqbaKlFaOPMr8yqDYGthmmTGxMJZkHLVkKtLRgFQK6UwZZBv29GwgpsU5MucvpcJZYhItQD6QdnMtkDENAMNguq61lAogd0spSbzVdo00JmvvA46TqSqv55ztR5u1lTamwzj1qIRtEk39bY/w3zp+F6DcX0AyACUcIR1HMzjAphV5L5S8/xzU3zXbpBdrHTLQgAh4v8zenknSzBSw7fb3rKbct9yjBg56ByHXpxfXnkDMngnTIECuK989Ho94fX3tHlNybgHq+sXuE390qLW1TUhba33SRO5BiW4veU7R4azrSrvlNT591nuPuEbkkp8kAMaQBmVZ5t6uug2kTeQ97TuqXP92u/Xv6VCd7gME5DZvy6c+tOtz8m/NTEu4TwP/fQhd3AzeGweakdQyC/19zWTvNwLyHnRSwG/ZB8n96lD6fnP24/jjHYcwoLpGi5Cz+Phyxp///DPq8gtmXgwcg0nvKEu45a2M6DYHUuayAKRaqwqBbf1bEjMkcSLGiGVZnhYdkZLInGMH18PEMtfJ5sZ5DxcG3ryRVMX7AYcD8IgJ87Iipsw2MQ1hGFFK7nNIrQWn06VndocQ8PXr1z4uaqXEIL3pksxTSbKxjsL8S4q9qs8/HP6hg2VKXKKkF70pSykRODGS/MjjtDYcxmmTlyQOj3M2uXeum5E7T/Y4kuFrCmkWx2mCZ2BgaMe5ESkggFQBxIVYKxcM0GguGZwnwM75BI31dq1wZK8Bhc3mC5dfPBwOsDnTgg/aKByPh40t5HdWSsGaiEkN3iOnRMx3o2QZL4DBUFnIlgpqzFjnGQ+2ews+4PX1FcM49IQT76iQhYBJgMzNcysEKmtDKhXWO2J5A9WdzukzgbxxgHVUzcc2KscpMg0zFJSUYGuDGw2G6YBSaZNVQYm84zDCtoZUK2qKSK3hcDqhsc42OI/DRD6Ozli0zEk13uPDh49Y5gfmxx1rInuex+PWo2mvr6+0DsigbRQl0/kYuogIWfts/o0xR8Q19vFjGYiNw4BmDOZ1RXDcB80GDGOMaKXgcjqj1UJrPpMU1+utX7ew2bwet7LeijuDJOQty9LPbwz5Qve139LG6PF4IIwDr1sOrcVvcYPdXA5+L1nxu3woNdOnmSBpbM0g6QV3z6rI7/VC3m/cPLOSGkDKJCgLvV6g9Z/vsUIAvjmvMGY6iUWDEH1eDRB1Y+vFnO7z20QL/WL27O0+VO+9x9evX/Hzzz93J3z5DPC+EbwGzfL7PeDcX0e+J0ksAqxqJZf+T58+sY4ksk5p013SDndLTNKLgehGNRh/L/yrtVJ7JloMjUUMLIuhfH8fUu4LoApd6/P2LEm71YjVIFC33b4P7AHrvl/ousd7hlJvTuTZNAsqk9B+o6PPr8/9W8D5x/EHPRoweA80YuzO5zP+6R//EddfH0iPioM9wFXXS9ShEqhoPcN323BTAg5I61ZJcC/Zn4fD1Mf3MI4AGub7Df/0T//UDcL13CX6y8PhgDsvrmgGjdn445Gys1POeMwLigFgHFzwCNYi1Yr1egMMsY+pNnx5fYO1Fj//9AnH0wmpFJyHCbfHgpBowVxihh84gxvE7Ih2XBbMlMiPkLw5K3JJeH19xenlgsOBWKPb7YbDMHZGz3FI+XI6c4WbDOst4rzAThMBGN4Xng4ThbSdhxu3sZhT4nrYCalWnE4njKwzrCXjeDo/rX8AgVA9j8cYgf7qiHHOa4RpgHcVJSbM2EBvc2Sf420g9ss4MovPC0ylCjnGemL92EnFOYtw8Gi1wYKscSwMvOHa8LUhx4RbudKcbZTOuxm0VLEsj/7cpRT8+ssvvWSu9x6oDctt7mvYMExP0TVrLZbHStIIa3qZxbJG3OqNKi01Wke+/O0XTFxfvLSK+5dXHE+nXvP6cX2j9hsH+HHAcDjChxF+Kmgga0EH0q9aa5BKwTrfcf2VtI2mAQ4V08jVaqyFOV+ABrx9/hUL6/NlLbrdbsg5cpnKisC17l0guULOCcfj8Ymoud/vvfDHmjJioRC6GOuXXFAqMLJVkwEwLyvsYcTgB1jrEbyFNcBf//pX/PTTTzgeDhhY93o5H3G/3rCW9FShxjmp1EbhbTEYF+P/4/GotJ2lV5lyLJsQGRpp8AkMf/jwAfeZxv8wDvjz6YzPnz/jfr9jGEeKjnqP2+0GYy2GcYAL/4Vsg/TOWTqkxNh7FZW2hVw066V1iprtkn/3o1FIQF/HWvuNj+Jvhb11cg7wvgWQXF+HRuXcMmF0PUVrTyBOPi8TtLCMcm3N1sng06FqAW3yPc3A1Vq7c7+YfGtwqo/3GCrNAAKbDvS9dpF21W2qE4FeXl7w66+/4u3tijt3ZMlIb7wrt6JpYUsDoCGm+ATaJOlG+opub2nr/btqjUoxHg6Hb3SQG0NH1hsa8Ol3Ic8n96FF5V2HxROktI0AYd2eli1R9uF5zWBqUNoHsGrb/TiSZ5V3+F6f3W/KADy133sM74/jj3UMPsBYBzSKvNgB+PDxA2kbzQNSoq+UBus22QrNLYweATSuS000EfWhgaMI1PfR58f7/Q5jaHH78uVL728yDqgqCI0XARFG2DhLc1NpjWxh4DGEhiUXGOvIh1JqXCf62RIjbo87jHP4x3/8R4xDgAse40C6zo8fPz7NdxOHKg0axuHwxOLLvZJtGSXfyZh8rJR8I9XaRk91vFsjLdhhornCclusy4LjdIAPrmd0W2txmCZa5FlrKPOLg8HoAid6EIirKaOsCYP1HCquqKho1mJ+PDBwJMk5h/WxUMh8GGBAc1FcVqScMQwRwdOm2DrLekmg8EYhG1CVMiYPxnEECpnI11KQDckHyNvTUNlJqVbDYA4hoOSE4BxSTHi73uBYK0p2OBVjGGEAPO53VF6/aq143G7bxlc205V0nqYZpDViGkfU2pBXdggoBWEcOotorEUqGaezI99QGKz3Byzo+zkmIiGc78lBMAbDREkfxjm4IWA8nhDGATAO4TBhOkyUKe0DHPtQHp2Dbw0tbmuNNwYfL2fM9wccGibv8LdlRisFY/AowePz44HXr5/hvWPtoYf35GoAJpbGcULDxtYDwDgdMc8rYMgiC2VLFMuZrIYAYE0ZzRuMg4cPDtfbHSVFXM4neDsABjifzwjOw8LANmDgPn44HpFi7KUXhQCRNX2rXLN5ru6x1fl85kSiDO832QitvRYx0VolrgXkC0r3dH/M1McC6VZPpxNyKcq39fuO3xXy1gueBkkA+sIKY54WQfm8UT+XxXYf2gE2KlwDD/0ZDRY0ENMhYc0I7RfmPbDU4WT9M/2i5DNawymfk5e+MWwbS0nWOA3ENACS6Q5YTjTZmF15JtoRDrjdbjidTt3/UXbAOotPOrVm03Q7a2ZTf0bO914ovdbarYMulwt++eVXfP36VVn4bAA5+C2rUdi2nDJg0NtQKHp5Fzp8LdfWPpIADYC3tzf8/PPPT4BTQnYEUDfNrtyTbATkOaVfyPXkMLs+quUOGrRt97SB8n3oWpvv63PvD82ya1C639zIz/X55HmeNjftWdbw4/jjHdY61NIANKARkzMdJoQhsNa4wBtPQKWC5k41Bqwl9qkY1lS1wsklvnsxUv/ZSYdACZFkaE6JHcHzvOlUxIT7I80xplsfGkOuCtLfXANSJS1jZGNzYw2BCYCea5q656Fn5g3GdHJg78IBFfEBnrXGSYVqKTGQKssER6xWXCJwkjHayA/xYNEqVXMZvAeGEbUkhGmAVL0JwQO1wDtKXskpwztLa44j65e8rqzpMz1xpmaq0CNHrWSk7aylMoKGEiXu84IwBDKlt2TztD5mpGWlZJ5SiIUUIqRWjKz9kwSgUhvmlGFb69rI3AoGY5EWmv+HcSTAWzf9JFqDaazDzfRfAQDbEJeVGFiX4H1AK2Q7lFMmKyAq0U3sdyOdZs6VTfdpfltiRKuyllIiTk6ZE3AsUqQ63OuyAiZ1zaRs+klFaBBtJBKXOiYmsRvyxICnmODHgFyBMIwYphHWe4zHEw6nE8I4wg+0CSB5HegttYaj94B3aAlYW0VwFsYFRJBjifcW3lquIEQsv7ek2cw1IxdAbLksA7AYE5znpBhHme/WWszrwvZLbN0DA3DpUnJDoJKU7nhACAPCMMAbwFtuDwGhywLnqC+UWnvFqQGNjeS3ZOD3CAddpU+kamS7tZV9BtB9XwGKYuSSscaIdaZylM47AA3z/IBhz0prbZ9vvvf4XYBSHkZrCXVYUYfD9WKpQaGcax/m64viO8ybjvHLfehJ6r2wnwZJe9CqF299Hf088u89WBOQKYyWtqnoLK16TjnPc6IHAcv9fcizSoLO2xuFAyTEvgclwsqJNYbcz3shVs3+SRtoBlM/q+iaTqcTharWiLe3N7y8vGyAS2n+9jpCmeXkPsVTSwM//S51u8uf67o+MY6afZX20yFBuX9t4P7M+Dy/kz1TK+9Rvyd5Bt0H9hsPDfS+3Vzgm2vJsZdZvMdAy38abBtZpBXz/l7//3H8+x+1ckm51mBgYZtHGIjRN9YirwkIIygBmCMf4EXJkhbSgDWRIHAJwwUHOFJAbMa3SX610IaP5mUH52hu8FIpp5Gps7VUsq0WMkfeWBEpc+gBFGROvlvXiMrhs1ZJWOeco4SXnDl5hwywCaBU9rbe1gUCW7R4ykZd9+HGDCkA5ESRImsMhkC6vpo4QS+TZg2OWLrGdjdSHrDVDO/I6JvqnXss88xrTCMAYCisCsO6x5hgKyc9MZOYViqdZxgM5JQJLFU6T2tUk/nONZiHQB5/aV0R2Uh7OxykgksrFXlKXS9vrUUz5I3pjelG17mWXhfbe49hnMhbsj5HbtAaZaCXAgeSDKCRcXhaIwoywlD5GQqWZd2IoEZg0rDJfqkVzVgYRz9flwiu1QQAMI7KKHpLjGtKBX6wWOeFwem2sa7c3obn6yZrhOH2tqTXtd7BLivgyP+UNLzE8p8uZ+T1BdPxiPEwoQ6sa/RUpScnIhkcKmytMCVhCgHGNLQcydM1BJyOhw2IlcwkjUFKpc/FAOB96Ix8gCOvdkPBBhiq/HQYB9TaALDzCXurWgC1ZFhLnp/eeXgXMAaLwln23NExzzO7ojBR1xpyyTCJZVi8pgHPcilZOyTsLr+jeucFtVLEwofNxqmTLJ6y7MUrk7SzNOfEFFHWSEUJHDkk/BcBlPtw8x4k9snCOVi1GG8hymdfPh2+lM/KdQRUagC11yLuwYhmPN879MDTYEH/fn9v+vz7a2oQrbOZ5Xfvff+ZHX025tb35pzrxqIhBLy8vDy1pdy7JPLsAcv+Pel7l0NLBjSDCGzhsXEccbmcMc+ft1A3NisitA2M6fdUan5qYw34dMKSZmY1WygDfl1XKqfGQG8r9/msI933Qf1O9yzy/j0+M5Ebs/oem60XP7047oHmnmHc9z3dzvr+dd/b368eL7VQpZP9RunH8cc6lvtNMfsOplJUYhgDxjHg8VhRa0EIh74I1Uxh3ZwTismoFWiZgOA4BjjvelRAmP2cN39YCicbuMH2LNAOVhrVsw7DQFYizmE8nyns68G1koHHY4YtxLo0UGh8WSLmecFjXVHh+qaxoaGxBLQZoICYp8PhoJiTASNvkmVxKjn1pD/xwdRzlLOug1jZrMmG8Xg44jHfcBhJmzey/Y01hssOBnhvEZcVFgaDC5jGAbVmDCFgvt/hrMM0UgjYNKA10iH66YDH7Y61zn2+WucFtdS+CKNWwFmkZe1M7DovuHz8gBwTrqVQljnP8VISjxKVtv5hAJja8Ci3ngQkXrzdBog3F8s4kNNGqLh+/Uo2dNz+AOBAgDqtpA/0nODVaoNrBq4RazaXmTPqS0/k6Rtm/v9pOsI4z+Cm8EYi8ZolOtsjGhpiTGggs/y4ZN6UEIu6ritW9k2VOS7OCwb2ZaytIl2vGKcBPhAwLLViXheczxcutejgvMfj+obb1y84nk44f3jB4XiGDR6HiWq2p2XGV3YQSDmh5YjjSJuoaABvDKZhgHu54Ha/wbqAAQHzfMc8b2PUs2XO7f4gIGw95nWFM5az2hsK60PTmvB4PDZShyUQplVU03A5f6KxXDJKcQjHE0pMXXtbS8U93hCGDT/ogik5Z1RjMY1bKWLJ+RBtp4BK0UXTeKfoxuFwoPbg99xYIy3VgFpr3b2lSyq8w+dfv3IY/tAlHd97fDeg1Bqy93R9W9bdFk78LZClgdEemMohAEUOnS2sP6uB5m+BSeBbhu63FuH3FnLNUO2zgPf3rdnU3wKjlmn21p51pJoNEzPV2+2Gw+HQrXwEWMluVYeN9/ek22Xf3gJcNeCTn+njcnnBr7++sph5Y/7knezbnViKZ3sj+fs0TT1BQAMxXcJSbyyu1ys+fPjQWVp5zpH1PPuqS3uApWUZ+74kzyHXFY0nsCU0iZbtvXepQew+5PzeZkv3AXkf+p1oFkPf9541fw9w/jj+mMfrl1+6hY4xQMkWjzXBDQbTccD8tqLZhvv9hmkYMA4BxlnkWpCE4XABOVN5ttoKh25D33BSv9nkL9K3RI8nPxMvQvKcoyo4OcbOUBi2QQE2TSVKRa4Nx/MJb7cHgSRHCTNrinAukH+d9Uj53lky6ZWHw4GuXxtnUW+ynRAG1FES4Rpao/ldyq6itg56JXFH5jbTgNPh2KvYXC4XHA8HtJzhrUVgk+zJDxjHQPKQuHJiSKZqNcag1YKvv34mwDzPZD8zTVjnFd7wvJoy4rpgHCb+d8IyL7DeoeZCz2pI5zrP8xaCNlSRhTb8DqZZzPdlm3/RgAbMN86uDgFhGDAOE+7XK2rOGIeAwzQhlYLpcIA5t+47WfqmNKPWgsZApNRK4fPaUGIiDWbOMAbw44B5WbCsK5oBbKASiMZZ8h+tFCq9zctTedrgPVLjevKGrKqu8wJvDawn26ZHTKj88Dmu+Hx7637CVFaRPDzH4wGpZLq3WmGdw+OxwEgWPoA1Rjj7QKs3ztYmTV+aH5hvV9zeXnGYJjRDmyAfBvgh4Hq9klaZy42iZuQUEdeZSiM6g/mxoqTY/Y6thMC5+o+1Ho+FdMIpk4VWbcBxnLCs5GlJzJ/FfZ45cWVE4iieqSe2nqL15Xg+4OV8gjfA9XpFiQnn0wmtJNzuxGjf757HROhj5Hw+9z6fY+pjWtb4+/3ObGTmDd+CL19eYQxt5i6XSwe5tZKbQkqU9LOsRA6F4FEafX46HOCCQzMGf/7zn/lZay/D/L3H7wp5yyInKFqHuTW40OyXLKo6JCjn0/qzva4SeM6I3n9XgyT5mV549bX/3s/eA5B78KC1n5r10kygPEMpbROkGIPayFtN9CdiriuDF2jf3JMAimma8Hg8cLvdutG3hGbl2pru1u9D7kfuV55J0+X6nepMag3Kfv75J3z+8oZff/0VKaUOCtHwlCEu95xLxjSNHfQKczKOY7cxec8odb+BED/KXhrNbolZNLgSBMvvn1szj6Kh1EBVM+zSNzVQ1wy01s2+B+L0RkH/7r0+qsG8bAhEYyrMp0zk753reeNlAPwAlH/k48vtvv2jGVgzYF23fmEtsXe20LxAGcWFxxNpIaHet+iiRNqiN/HSf7uGmEsVyrigUDD1tzXG/vPDcMSyzogxojZ003P6j7Kxl4UWlVrYPy8MsJk3YA0whmp003U8HOsEZU4pnFyivTBhKBy3rJS44r2DDx7NWKQc4eDQakHKm6XbOAwIPsAHqk2e4oJxHHGYJpyPR8qKNmTH4/ne0EA+n8Z0GQAxn5TVjQZcrzekmMh+JxagVNzWLeEDjZg4AzpHjAl1jQC2sVxKwfF4QPADGgh4hjAgpgxr2arH2qe5r7WGtEbEmNHag9naI4J18NbDNAolF7UpphrUBQdzZK9HrnzEz+KtRXUOMA2F1+raGnKMmJc7bvODu5MBSkFpBYfjGWuOWGNEKeQjWdqWGZ1qQTVUuhEgw/ZlmXGYRthKTOMSI4yzZFgOMKBjb1S+3hQ8n4N0txICt56y3Kn9M0pKWGBgnQGMBTID+2Vlj0+Dw/HAGcgBPgT4cUDJmb1PHYxxiDUj1UzenK1y7Wtao2sDhd4teTA2aRNDyWe5VGReQ2ojWyRjLVxn5kVXTzrWMI4oKZPfpLVwfgtBxzUig+b7+9uVEsNCIEDHiTLARspJHW1K+Kl9XZBD4w+xDKLxNm5WZDy+hR03hu0A2V4p5kxjL/KmyFHCUWsVMaVeVvlZrvFvH78bUMohC6WunSzZ3o7DcjrECaDH8SVMIDta2XUxJ9uvsWcj9bVlcdVAYb/o7hf/PeuzD7PsgcZ7APK9EKYGw9aS7qgDYwMAFcbK7g4AVf7qbSPflzqlhhkNa6mKwvV6w/F4xDRNvLMIHTBpwAN8axek/60B197GR7Oj+jmnacI//eM/4tdfP1NFBdZ/qCAtvN/qeOeckNKzob0Oq4jeU++ANSjT18+ZbEVEYyTPKQNk/371fWt9qL72PryvNwoa7MnGSd+fBpXSXlpTq/ul7CjlGu/1U/38eyZ126zQ5oS6EidOcIzRgDwK0X5oKP+Ix9++Xll8b2HhYNuKdK94zBG5cq1jY+B75q+AOEoHIY1wQ6fB+KD+Jj+jz8SU4B3pHWstyIXCu42LDVhLC932/QbjDVuMeORc0bQ2HoZiwXyMhwlLKUiyCWMbm1qo7K6z5KVpYHqyhPeBEgRqZhYSWGOCcypJzhiqslMrWi5Y4wPOGeRGC7W1DjCUIEIZ0AHDGGCbwRAcBu8xeA/TyBC+8XriretsXW5kL0TgkHwG0xqRYkZcIx6Ppf/OIMLUxgxWARqBwVrJm7K1htwazYOGNnV9jVgjWpOiDwUwnNAp5RlDwLpG4hqw6TFTzlzmsaA1g2kcMfnABT5cDy27EHoVmpIz+SHmjBwTvwNHCUTcZ0ojnWbKGTEXruXeurF1Q0NpQCwFsRSkQmxcLYWtcChkXmGQKmle0UgruOYIEw1XyuFwKvc7Y9kvVa/xlTYjtZB+NxcppctJY85zuJoSheoaKdzNzOXjMW/1yy31+XWNpPELoZeulPapAFLJSK1iTSvmZcHjMXNVH5K/5kJjoxpOYANpI50PqKBEMCKEiPG04Mo/lRJ0whDgeiKb5I/QuBXvVRlvQIX1HtPhgBA8hiHAWYNsE1sv0RxfS+HEGgLz2ZDPpl7H9Jrd+P68N90hgDZspF9e17itKT0iR+4GMAYlz6i8eZDNa0NF8ATQGyexfe/x3YBSJyvoZBi9OIrBuSyytZJAVkCkTE8d+PGEwj98YiffC/fJy3kvI/e3wKRmETXI2Z9T/0zr5+QcWsf5WxnlGzChgfL0OQC9nJqhXV7OAlRoK72FPimbrNaKEMhg/JdffsE///M/Pz2jZtLkHfXFgs+ls601+6rB7J4VFpsfOcfpeMSvv3zG4/7Ap0+fMI5ktUA77tjbTnt66vcg7JuwlGJX8m8xx2KX8OHDh77rknsURkf3FQBPfVOSmQRcyvNqP00N9nQmvwa17zGTe3b9vb77Hjup//7exuWbPmUoY1e3EYEOAiSwBn3b/OP4Qx3/33/9StmyxiO4AWUtyLeMcs8oC8kpKOwnHniFQn+wgK28wFB+LLpDBDPs1hGAgkGtBSllTNMBDUBKEaVVCmWioRn6D71fb2Xeaq3wLqC42jNPqf9LP6bFx4aA2BpirVgWSpKJKVPWdyGG3XPIstaGzPWErc2opqKBnmdZFgIcPNYcJw41ADFnPO4zPnx84Qxsh+EwoZYE5yjM6HkxRqkYhwOFF61FjCuMAVptMN4TgKwCXLZFNceE+f5ATlRy8svnr9h4Evbi5GSFVql8IVWtofJ1tFADiyQgGaqW02DwmBfkCgL2BshsG+StZasW8icE1HxXKkppnUeRMpb26Oh5nUcrlEDjhwAfSDqQYoSxND8lnlOtpaxz8F2XUntyY84EFp0n0/FmQPao1mJOidqJ2bWVvRX5RtFawxJXLksIOC65OMdINnGlUGieqyxZa+GxEUjNWJhascQEUyn5a+VkkhA8TGnEiMF0o/yWE2wmiQdpKwnkOmsxTgNyYuskS+UzUQF4BpOtddnIWguWuOIxz3h7u3b8kHOlOtvGwuUCH0jTuC4rVY1xCbk2AOTr2L2VK1V08j5gnA6wXLEtxggXPOI8A4YKfDhTUVJGcBbB0vd/+vQJ3llyGrCmy1KsYAUmQ/RaUT05r8iGDaB1bp5nUJ0lA73hBBO7KUf+DK9RzNIaYzEdD2TybhbkwuVNhSSxBs4aVA6QuP8SgFJAiAArDVCAjWURxlIDub+nV5Q/NTD8e8BPA8e9hk8DjvcW9/1598BnnwSkr7UPbwPfsoH7+33veeV8WgKgNX17EO2cwzRNuN9veDweOJ/P/XeS0Sz3tL83CffK7+Tc+vkkDCPvVIMt+nulwTOOeDwe+Pnnn3sYy3uHlND1GTHGDkgLi76ttR1Iyu96ZqG6V/md3qgAIF2SYu72TKL8bB/i1rpMDap1O+37w36TtAH85yxv/V0tP3gPIMv19O5SS0T2h+6PshH7rb4kn/+RlPPHPP67/+EX5ESsk20GZm3AWuGLwdgczm7EGiOqoaxcayz8MMKxtysakFNBgfRz2pSua8I4Hvrmp7XWfelkvNVWkUqGtwY5i3UXjXmqxEV+i7W2XrbNOYfjdEAqBSVRZqybHPKSKJxoLYyxmGeqAJMzhRNrKXBhoDDeOGKcDl0aI2NonhfAbMwIrIULodcgXtaVKv1YS8yRpaSTNUV4x5pOawGLrnkzOaMZsmMKPqAVGqklJXz98kbVQYzD9XrF9XaDdw63240SLFLGsqwwxlFIvwnQlsgb1V+ularYfHl9wzgS67SupHGrbM7eqpSxrUDOsN7jcDxhnWeYSmxrjivWlFDbtn7mzO/dWQK4ucC5gAqD1+sN94dUOXI4X44w1qFW8en8tgCD+Ek65zEOEzGcDLiMc1gfM9YYAWc5M97C+ICyrki1cqJf6ZViJKHr9fUVcBZLWonB40SqVAo9Wy24rQtbSFF49rEsALgmOyIMKMnoOB56XzPOYYkrBucQWf8ZG61Xy7J20/SUSAP6eJCE5Hg44Hw8wQ0e3jm4NeK+kC+osZS1X9DwertiXiPe7nc85gdijPj69SvCMHZiIRwOxN6Wipgibrdbt98hJpNKZj4eD9KxGgsDAq7DOBEDz2uwsxaHwxHOGizrgtNEGscPl484TSNajgT+c0IE4B3lFUg9bgMgruSwIpndsn6t6woMA5x1PTJ2Pp+hS5cC5Gfqg4M3JBm7vt0ZdHsMI4XE57iigBJxUuH1eJeP8Hg8uqbzflfSnX/j+G5AuQ93ywKuF3MxAxdmSBpEGkWzV/tws/6ZLND6HBr87ZNC9oc+t/6OBqzvLcJyDaGb9YQt96E/qwG2Mc9VZwRQaeCoGVWdGa2Zrn2IWq5zOBzw17/+FYHd9eX5NbDRzy66PH3tnmGpmEv9PvS9bEyfRWsFp9MROSdQGbgIY4CcN3PwrZKNQYoE6IK3sNbDwMEajyE4TGPCMlMtVeD5HvZstDEG8zz3hUb6GEC7Jvm83ixI2+sNh35HG0h8DpHrz2mwTc+2ZX5rpn6vaZVD95n3wKv+nBx6LMm5AbJ/ae05g/17Ni8/jn//4//2f/9/k7ULg5K8Rvjc8DJM+IcPn/Af//lf8HI6IgCwjSLMpSTEuJA/ofewDkA1nMxGCRgFDWE6AM4iuBGjOaCx7x5Ada1zZG0ls3WtAesauViAAKOVSt6xDqs1LvfWaJFcU0aMGbECb/c77DCQCfJ9QcyJPRQHZE4aobFD8513rjtDUN1ixywTadPaGnG/P9AM+ec1Y+CHAcMw4OvbG8ZhoIh7K/jp4wfUChg4oFmsMWFwVCrRAii5ErhLVP2k1UrXKQk1FczLgnlZEOcFbqCNZi3k+ZhjQY4ZuVSgsgTGkCefDNlSKhoMUqkYQsCHjz8RWAZVtzGegPJjTqhLRKkga6UG1EbsJRqFyS+XC9Z1hYHBOE1YlwXLEim06weUWgngcam8UDxKDQijh1sW1NYwjB4WrbOSMl/JxsCajJJrf8elVqRC7bCWBAcuq1gb0poxxxVxjaiV5Eu3x4xSMqyxbN3jqbqKISJwjRG5NrRSUFJGyQW5Nnz49EJhc7Vxjw/KKrfG4HQ4oEyWtJYc9m7W4bascJlqbc/zgjmuaIkYduvIzznnFaXR/RVn8Pp4oC2N67I7NNtI+wkCgMQkFtzXFa/XK+Z1AazB2/zAyOy5ywXpb7/geDziMc9otWI6TJiXFaXSGlhZMuL88DT3G1gsvEkyILlHjCtezhdYNNSa4Y3HcZxoA1MKUKlgCGpFyZG8QWPCEte+sQrMhoqWuTUqxznPM5yxqJbe6+FwwDiO+Pz5s0paI1/o2grbghnyXmUpTePweKvUd4yR8ouNx7LvicCXy6XnP1yv1++e83536UU5fosB3LON0rH24GsPHPZh3P21dE3lvf+kBgp7gPH3NJbye32f+l7239vf7/58ey2ebjO5p/cMrGVS0BpGDYpb28zOv379io8fP3adhXxeGEnNtMq9yTNq/aBm9zS4ls8Iw2fZwPjA/l20s9sqbdC7JuAZwsDCZ3AHpjCaWBYAWz/JXId7ry/Uh7Cnt9uth723DUpFCP6pnbToXYNk6XuyodmbkUs7yJ/PSVfPGkrd9zRI1dfas53yXd339xsuue6+b9BaRBoccQXQ7fYDVP5xj//xf/q1A5xWCkwpmIxFnCICAq4fF5zDEblV8h20FL6ljZMKuRqD1ti2hquSSGbwNhdReFr3zZQSUMuT9YdsiowxpFusm7er/LeuxEQZwx6yS6TEhGVFZv1VtWyFZF3XZom/Zq0V87J0029iykhfbRqHWxtAoM0+yUpijLher4hcQSR4h8djxjSMWNeIVhsO04AlJWAIcPwcOSXUXFAzA5yccX/c4a3UNF/p+/OKxObVxlqUSECSamKT2rW1DGO3bHV5hloqGjIqFtSSiQU09BylNZjgUUtDzBn18YB3ZEAvJvXGO6ysmYQx8MbC+oDBCNFAYMhZYtisNYCziLXgMc/d37OZipKknCbdX+IkC7pfi1xpzYA1iDFjXlc84oJYKmwhI3djLZUmbBUzh7SNERDnqMzhuiK0ggayg6NksIJWWtfLlkZJK9VYlFbQhFRJGfMyM+DyWGJGfnuld28J5NRW4MOAVMkIvRqDJSXkWKgcpeXYvKX+kVNGrA+YZuCCgy+0RrVWAbugoiHmhDVFAtK14vV2xbLSukSazwY0qpEdANyXmfShMDAxIeWEsVSyiGLGd/KO9KUy54oOEejkUfABwXucTwecphF5nklLaW3XQddaYWrtjHithYzFOYms1bplxrMXqkQHJPI2jiNut1svrSjEl/hHi6aePmvUGBR7qMbylkoVe1i61lSCcD8XNrLqe47fZRukw77678LoCWgRDZ4ce8ZGAwD5/Z590d/dX1+HiveA6O+xOBos6rCvBpJaj/ieT6CcU4Mg+b58Rxudy+ffAwD7f/eOyRY5+kVaS3U4397eeofbJ5kYs+kFNdDaa0S1F6QO2epribZDaoqOY+BnIJsSYT0Li/IFXGqvMvqP9CbGiH2FZXG6o1qwu03BHlQ7R1VzxD5Ib1b2rObeBknC95p51efW71BfVzOOlRdk3Q/3elz9Xd3v9sBSj5t9H30P2D/9Hq0natDzfZso9+P4Yx2v15mBSqEqLmgo3sM1g+s44zYviGfyjTQWsK1SveXaSBBvacJ3wwDOGIG8//1G2Riqn0yrtcr6xmZRJXNUCJ60WKUgg+dubBrLzGyRsa4ncFhjiFmsHI5zFmRSUdFgUVvbFk9w5TRRbPCCBkO6RstZyLlUBO8J6PX5J1ECRsiYxhHWTMRajQtqbT28XCMZxntjYVrDuqzIa0TJpWc+3253WEeh+RgpmzqXjKgLH8DCVINWiCFusuk3ree6Oe/I1xGUNJHKAoNGPokMqoypgKO636VU5BZBSTYFoQV4ksWjcNYtAGRuSwELmTWIxpEZtQX5euaSgQjYdUEzDaE6rPMKYVEJ2BELSUcFMgG72gjgznHFI66IpfYsbOMclpQQhgGpFqziGzoM1A4NSLmQHpcTRnOtKAz++hwESmxZc+73YCsolJwznCVNaY0RjWvQk2l2ANAwWU/sdaFzx1QIdJOFAAwsnN/mUFm7h8rm84aeOdeK0qgCzLzMnJ1uMC8rEvthOue65ALOohqQGXyj+XXNtDGxLoNTwSGVgQwnlsk8LbY9KbHswRJbehgPuFzOuJfSHQZojeHoI3iYMqiU8osEmGn9l0ik+LFKsRMBlF++fOk+1VuSLhMhLE3xPgCNyTWz5bAAm5OMbdQmMRIAH0eSA2jHk/eia791/O6Q935BB7YFWbNh+0V079n490LOeiHVD6S1ZxqAaHC5Zzo146OBgj6H/o6AErneewk/8n0BVfL3vR2ODl9KuFaDaB12lmuK+Fezi9ZuHpECsMZx7D5VmpXVTLDcl3Q4bS0iVjx7cKM9GOXIOaE1wJiC2/1K+qHaUKKUpAzIefOplPe+3wQIq3q7kQ+nwVZ+Ussh9mBsnud+bmlTsa6y1vbnk3/rTY78GUL4ZgOyHyh6U6Hfu7SFvi99Hg3qtLTjPXeAfyt0rfvs/tw0dRvO7q6dHfnBUv4xD+cGtEY7/wbanBTTsNaMR15xiwuas5imA2xtaCkjJWJ/JImlyRjicWJAYcd9P/Xe90XTGtOBimMGSzb5wzDgOE1AA1VQaRG5JEhSoN5cpVzwuD+QGPi40aI0YFkyHBrmeaWqMaXA+oDz5aWHXUMIlE3N5uohBGZWHrCOXEDmeYUbRlzvD1Ql2aGaww7ek7Xakgt++fwVH19eyH5nXlDXhLRSdrlIBd6+vpJ0ABSmzoU8PqXsHAHXitJAWcw543K6oMQMU0lv6T1QOXO+AcSkOQd4z1nRFTVXoBaYNfJYrrBDgLMesVW0VmHhEJcZ1hq4UmENW541wyUJQUknOcMooJRLQbXMOqaIOUUYw5rS+Y45LgjBcWZ3YZcAyiBvZnO4iGvCvJJeMqaEOSfc14gH699hKCM6lkLzubFwYQCMwduNPA7JzJ3asdbNpq02at81RRhrKQPaO3zm0Gifw0oF2GQ7t4blviAE3y2qjKWQ7D0+a+qXJaIBlGXeGkW+ZlpbZU63MIiRMvkbKnyguvKP5YFlWbDGBTFnYtRHKn04sH7XOI/AWuWUaFxI9SVrgeNEjKFpNJacc1geFFYehwFhGrlowIB5Jubbe5KhGUNuN/N97uDMGgfvSOfrnQUKaTZbaxiGEWnNaIVkXBLqFtZSwulaSihezG9vbx0viLTO8cbHwGIII2pZtvchOAe0TsUYAZPx8vKCJa7d4knsvmQ9lfLP33P8rqScv/c7+b34o2nPMR1yFGshoW/fW9Sl4+i/A5uXpdZv7r+nz6cBJ/BsNyRA7L3PaCCiwbIcGqTu703X2xZQpcNNe2ChNYg6FPvMqpluePry8oJffvlFVeDYgOO+1rduoz1zaYx5qqQhAnrN8slnJcSdUsI833E+n7vtj/x8SzxpDD6l3QCgdcbTcNaYsaaH93SoVzYNWicbY+z2QXpjI8+pgbleZOUd6X6j20XaStjAffY+vYcGa9VEpgDie2NAg0W5t33/0Yd8TrOXevOi3y9/AzAMNn4AyT/0cb4EtGZpI9AoLBsqOV/kuuI2v+G+3OFqwQgHDwPHrzRnKo3oPW9gDFmaFO7/ia3JtIcqfY8SGKwJfdNB4voACbnFmHpJtxwiXDNYlqXPB855MrF2VMZwjgkHH/D17casyAhrLGIuKOuCZVlwPIeeeNcahc0fj0e/pxgjfAjIpeDx9kqLfS3w4wDjPObH0hmX4/FM460yScSJKLfHA7lUjCEAuSKniMEHjCHgdr3CGKpYI+N5Xhdm7/5/7P3LjyRJtuaJ/eSlDzNzj4jMyqrqO/feBtgAZ4Ygd+SKC/7/G4LgLDhAD4npvo+qzIiMCHc3M33Ii4sjoiam4VGd0cDtzkUI0pHh5mZqqqKiIp985zvfQaIhgA+1zjFo45iXKMbRaIwGS/Ht7Byp6PEyio/PL5u34Lp4DsPA9flFDNs7x3S9bHZoILrQoWhVQ7kQaw2m71DN3P1yPuPnBWtNmfsSS/AFSFkBYMvKy3TlMAxS7cVopstV9LDWEnJkDhLdEhJb5pHrIpnA87qwhoBXirXOR1oRyEQUn88XMTbPNcSJkAVag+0I3nM4jGTEOijMKxE4r+JdGUpVpZQjTtvCrjmpq+4MSwkfS81rCCX7PITA8eGBlBbqVJZzJoYo3pAZfJRN0jIvwhSW8XU4jnx+fpE+tZrnywXvFxa/siwz3q88vH3DeDhhrKEbBh4fHni+nOm7odhliXbYx4BfPUvR2uasGIYDVpstd1oZmf+XdQHclhBbQeP5+QWVNTkr0e+GwN/9D39mubzQWcNh6DkeRi6fP2NcxziMKCTRqCbU5Sz2gimlDSxaaxk6KV1cdc51vWt/H4ahIT5EJqWU2nSQNbkIIOayhgLzNDGOo6yRDREyDMNdwu9vbb8ZUO7j6O1utqVG6wm1PoBwn+naWsC8tji34GIPwNqflg1tGc+6+Ndj7MOULWjYs5jtgr5nslpmqia51Izm/TH2Ial939VjVCf6ej0VgNxf+33VlWEY+Pjx47brr6Bu75vYnnsFrfX866Tbnme7MN2DYrUtVMuysCwzWlsw93ZK3kuyTvXUMlqMkVGy84OENgpjFZR9VDsGvnY/UpIsu7dv334BPmuf1Z1dvc8tw9iCwHas7RnryuK03p5KtXrSezC5Z+r3QLBNwnrtOtv7sx839+OlMpntq7n8/O3N3vf236/93/6v/0HCXbqEtFGomEiLx8TMQXVc/YW3h5HOdtisCdMqJtqqesVqIllCkOlm6TXNM4fDQditkvwnC0CpnFPCV5SNaUrC6hgNSlYc2dBlmW+6sjCu68ph7EWL5sVkWmvNvCyb0H8NnpiFBR0PBygylqenJynraKSEHsUWRVHLPs6sPuBjJmeF1hZjO7lmH5jmhWlZ8T4WD01Q80JvHCFEQjhzNROdtczTTFc8jxXgl2WTpsjGdyIrhV8FuFIW4BQzy7RiteUw9kxrwBmL1kXSQw0NKmJOEi4OK8Y51ig1vBOwArrvWXJiWle0sTxfZ9HROUdWlk8vV4w19M5hjGZZhSE0SouJd0li7Z3jsgibm1E4K3NHVBDI29yb84IPorGLCWIWG6QtPEmZVYs0IiQJd68ZPIoliN8kJAGdeoNLEo4tetbTm0fZYBTTbjsOTKtHGfGsPC8zn88v/PXDL0wlhK2UARLrvKKVYuw7BicgypSEkBQFvCulsNYUDaLmH/7h77mcL1yvV8Iq0bPOdAzdQFaZeZp58/iOdZW1pxbWOIwHyDK2LRptLM4Y3j480g89rut4+8OPjIeDsLHB8w9//4/iuZpzFRCJhtKuDLbnMEgp4zenhw2wff70CbLCOSOm+oUFrARHJTHW6JmuE84YoOPjx4/0huK0EJhn2TR1ncUdD4zDwDAOm0RD5v7M5XLhdDqKxd68kMfb+nErcOLpuoetUMg0Xek6R0oC2FPKPD8/o40kVtWKb8uycJlET1pJqGVZUFoz9D3dIKUmq7uKUmqz+fst7ZuMzetFta/VDm0tfPZZxPWzLahsP/+alrJtdSGvQLVl/yqTtwcje4C5by0L1l7fXlfXsl370GTNsmvDxC3L1Yb522ttv6v2X2tW3n5HC2zr+ZxOJ96/f8+nT5/405/+dMf+1vOtmeAtwNkzcTUMXLPR27/V85CHXrw1jRFg9fLywsPDm80+qIJ3OY4uE0gmJX3LNCeLOTE3/8iWwX4tFF2vXykpw/j4+HjXD8bc+r7t//09b1nfPRit4cK279sNScu0t5uT2l7b3LRA9rWx025u6jH2m46WkbyB43vJSP31O1P5+2z/l//TP8pkXgClUYa4evx1JU6eNAXmj1dCWgnZYpQrmwbRVoGYfvsQ76IHKYlFyR2DoMTOhpLMobklvqQkBt/aiB4rh7zZjyitCTGilb6ZIsO2SGol4eFlWTZj6Vz0WT6I6bctyQkyjhM+pI1RaYFOyhllDGFd8EGe1ViYE2UN3dCXxBeKFlMYO08grGI9o4sTX4xBdIxa9I0pBFyoxRUCqxevxFDLIwIxr1vdbmFrVVEma9AGyjwUCnCPScy+QwpYYF5n0fZlWFO6m3uMNnLPYiImzxrEG7RTmkxAx5KoEiI5CfAPoYQdtWbyoVTVMWSjcBlxBsiiG+06R8iQQyTiSSGgo5ixh5jwXqJTNbyfcxZj8ZTFlDxlvBhRkpIkZqSYtxKf1hZSIGWWKAb2CckwzimBlepks/dcloXPLy88nS8SKk2RHBFj8zVggMlaemu5vHRYU4G/ojNigyfMsrC4D4cTOoHOilWLJ+PD8YHD6Yg2mr/+/FcBoUrhjCH0PV3npC+zhLxl7Gb6sacfBoZhwHUdw+GIsU4SjRRY58rGppQchVLm06C7+zyIFsPUZyzlLCU+C3kj4Fh0jWGdSflmNzVNE9HIBk6DgF+ELVyWWwlirZRsJsqa4ZxklIfi6rAnM5RSDSPZl8Iidf3SkG8FQIyypLIp1FpAfLpMm066rnV9uR5fvD2r5V87xn9L+68Oee/BVQuS6mJcb0hlfGqYu4LPqvPZg8F65D0QrBNoG9bds3F7pmcPAlrNZfuZ/fftQ6stsNsm9eY89gxf+z2vfbYOpqpXUEXgXAHY3ty0/r/rOmERDgdeXl44nR44Hg/lHDXW3ixv2r5pJQbt3+v5VH1jC4rbh6p97XK5MAwjSiuSv9evppwwmC0Bxxi7LY7G2O3/9cFtwXI7ruq9rcedpmI/UViP1o6p3uN6vq8xh/uNRnv8PYNYjyf3KxeLo9cN7/djrj1u+z3txqkdW+3/63ffv67Kz5cst1K5ZBLwvf0O2//8P/69LDwKUBmtLH5aWK4ry3lherryfgl4P+OVwVm9sXqVfw4pocozWXCbsBzONs+njFfxD9Q4a8glg1SDJETkm8xF5WIJYwzKyEbdOL35zi2rlCZMuWxUr/O2eaxD0jnHsk6kYju0zSHpZh83DCMpleQKyoJuXQHJQQzClxUfI8ZaxlI/HNiYzZQya5L62XXxD95jrRZW0jrGfoCcWYt3ZC4JD94HshI9GShWL4bsg+0w2pIi8n8Mkk8vAFN8I9fNfmZZZ9L1ymWeWLzY63R9j7Ia6zo62+G04eF0YimAsV5DUgIWM5nT8bhpDzdpQIyYEFlTxqNwRhPrmpUhh4RRmt4UNiyD9+L/ySpZ2SklZh+xSKTKhyCAWxuMscXkOxEy9LYjlcpEZDEZN4oyHixWG5YYyUqTtZb+UKWEYFiZQmBOicuyFMZT/DSD96SYKCY1BB/IwePnhd529CV55HR84OHxkbEXPeIwDhy7AXfUDLYUvlgDbx8fefvuHa5zzNeL+Gc6K8lSSK6YyLQkIiZj0vDwWNhJ5+gPoyT5BKneczqe+Pz8RPCe6XrdsuJRpQiGtWhjiPO01bI2db0QVTM5SmjalipUSimcdTw8nLieq9WUqKZjCEyrL2VKMimKi0NObOuZMZqh61lXOZeaGyEZ7pqkb/7QdbME0HU91+uFrpP3ixvKBV28O3Xe57touk5zOBw4F0AZGz/oisVW7+mG/m4t/JYI2DeFvPeZ26/Z9FS2Zl3XDaS0QKkFCSFGdPt5pYp4vSSzNGBP74DQLSR5YytbfWALOF9jiVpgsUf/FRi24Ku9brg3NX8tXNlqK+vvdeKtwC6lqqWhhItbYFt/pEqD2IKYYlKcGMcj6xr4+PETOcPDwwN978j5BuZbxq1eW329nlcN8b6mZazvqZOWlE8TgON9QFGBby2HJdokayRxxBqH0Y4UpZ4uSqEwWOOkOke8ma63u7A922ethOKuV/HHWtcZSDh3vGOp25rY7b1rGcAWvLUg+Wv3sb6v6sNeC2+37Gb7PXs2/Wsgsx2r7XFuzHtlVW7fe2NbpfTZ9/b7a/+H/+GNJBfk2/jWHJkuM9N5YT4dOCjLh//8AZ2TlE87OlZtJGSbs4TCGzF+3RjWMZezSCKsdUVDrVF02OIv5zq3zb1+WTgcDoQ1svpV2BQkKcNZWVCstcScsN4QYtHV5cjQdVgLa8wsIXC5XGROAoiJw/HA+XzeNomHYeRyvvLmzRthT1fPcrniesswHtBGNOHv37/fNuZGa46jhBxvNkBR2JuykMcYWKaJdV449AN0CtKCsxbvF7ERylJj2Vpbqt6I/k6KQig0WqoXOVmfXNdL5ZZl3eaP1SeWZWaaJ95/+IVpmni5nrkuE7MPDKcD4/FI3w+M44E//+EnQkZ0jYXptV1HBHx5Vr0yZA1YARhGQ3c8CjOoFCYGXN/JXFbcMjSQleZ5Wemc22QKMUNc/JZkmXOGEDYrGbmGWdYXY4SBVRpx4RFT+b7reOz+SM4Z4yzH45GffvqJj58+cT6fWb0Yxz8+nnh5eUHHgM1wMBb3/Ez8LJWgUkxYrRn7EYPYIXXaiAcjcBqOnA4HHo4nDuPIOI48HE88nE4YpVFZ8ebxCEoxrQtP5xfGvoMYiGviD+9+QILBcv99CKKfffsOqeIic+fxJFpE2znGscc4J2H8nIghsk6zMMjrQo6BFANPzy/84aefGMdRfBhLtn2tgb4sM5fnZzLiIdl1DkXJAbCGLMn9HA6PaDLT9YIxmseHE5fnJzrXsawL3i8MzvF4OnJZpqIvtbjOcr5etvW2lhvWS5G9IXNB3/dcLpc7/WSMkb6/JePU8WyNJEK9vLzgmuTddRUf1IfHR6xzzMtCiKF81m2ysblUv5MCCO7fJuRdETLwBcDas0Ht6+2i2X4mpXTLOmrAXP29LvJtxmxbErAFC7fJ9XVtZAsC6/taQLhnw1p0vj9G+x17cFGFul+7pv25tUBnD4Dr8ep1p6S31+rfT6cTHz9+3JJkQHZp+3KBLYu3Z9P2QG6fKHVjVxXG3JJg5mliGA5blZybPtNsTEfOt7B/tUy4WQd1xfvrZtG0DwXf+kVA1vl83sTCNckH2CQDmwB5F9puLRDqObQMbTsOKmv8NRa7fV8L2ts+rL/Xc6jHaxnhunjDl/ZRr43HdnOwZ2a/t99ne3foUVpvoJIMPiZ00phkMMEQ3448/Qz+MnFJmcfuLUpn+kG0UrLIBU6nA11n8at4vS6zv2O8r9drGRclklNAp60gpIybaZpQWaqkOOvohgMxljJuZV5M5FKUQLEGGXfjMHJdFuI6s64S+hyGI51zBK2Zr1cpD9d44r15I7KYeVmFHSzP7DIvTMvMvC6y2FkrVXas+EpGH+itQ1l5nikZr+sys8wzzhj06QFS5jgeOB4OLPPMoRvRSO3jugD3JfsWpBye6zqqZtBYw+U6M56OhJwkG7qYRFsr5TCvlwvzZeL9x1/wScoCJuDlfCEgBuZuHFli4s8//Ejf9xvLlLOwWuN44Hg8MowDzjiMFT9JkI22hB/LphaY5ysUQkUrSUh5fn5iXRZiDOicCXomGYMdRywiN7J9R59vRvXWOQn99l2Z1y1DP9KXc/NetOfXy4WMrPHjOPIf/sf/idV7nj5/5uV85u2bN/yv/+v/h+fnZ67XiY8fP+K9Z7Qdtsso1fH24REVEm9PD4zdQG8tvbIbkDwOI8PQ07mOsR/KtWl+ePeuJIxE1gJuxnEkKakZ3g0df/rznxlPI9M0c7m88PT0xOVywVoxoAdZ97pebKu63jGMUtv7cHpgXhYul0tJuJG690vRfj48PAiAs/I8LgV0XaarvCcE+nFgmic+ff7MOPS8ffum3OOx6IMTOQb+9KefeP+LrBvPLy8Y4HA48PhwwhnNMl2BzMPDA9EHgvdQnFLmWRj4sYy9ZVnouk4svsrvdU1q17tKigjhciWlRN8P9MMo46tYDNY1Y11XUoyM48jxeOQ6T7x9+3Zba/qhRzu7JRt9a/smH8q6ILYLaW0tgGozvfeh3/b9e1amPc6NHZOHyu9CzHBbXFvAumclWxDVMlf12PU9rQ6z/Xf7ufre+tl9H7x2HXuAXf+t1O1798drmS+lVAEeNxBdP3c4HLhcLrx//34T66Z0C5W3Xprtde2Bbu2j9nxa5q7r+o0Nqed1nSa0Nnf3KiWpPV6/p46TcRy36xNQLJmAar4d77XNSj2/GG+LYR1XbZitrb9dWztGKvis72k3E21/t/3bsrUp3Vfcacf0HgS3x6z92Sa0vRZGaEHj/vMtw9mOyWrl8F+Tife9/bdpR3eQkmZKsi5jjkzLTLaG7AzBKYbB8PBw4Hk9M10udKqnMx0UmYiMs8D1OhX2UcKTXefwq5fwZVbFQ25gXRdCuEk/QggoayW5worRtkL28lpJ+Fzrqkzkpgu3teKN4u3jI9MayncryDD0g2x4UyJH0aC5GsEqDAqou1KL0zwTo7DqdcxLaHzY/PQOfY9fVozWGKW288o5Mw49PD6K3dGykn2QkPcw8OObt8xnYX6csXTWMWBwRlgXspiWu74HpVHGYKzl8fSWP//934HWXK5X/vlf/pmcE4eup9canRJxXvDLwnm6sgSPzolYGLlxOAhgfHykPx356Q8/8cMPP/Dm7Rv+8q9/IZLoXM84Hnj77g3DcMB1tmj66hyQxUOUDAnO12d0FrDZWYd1Dl+qheWcWNcFv6xyjCxz3LIsLIWhNsZirHiIHsaDbOZViQ5Z8SAVTaNmniYSMF2uzLOALPvhI3/605+Yu4lfpw988oH1OhHmhbwGTMw8DgeO7wwqJTprePf4BqcMYwGMx2FktA6nRDN5HEceTicJqy6raHa7nkPX03U9i19Ygqc/DMzRM4yj1Jvue5RRjMcjzl0wpoR0jSZEv0UxxTrIobXaxlKmWN6liFZgrcKfV5w1dJ0lLpHL9cLhdCTGQMyRROLl/IIyYpyOSsToGQ8iq7ANKVXLi67zKjXUoxQbMEqRUsRqTYyBeZ5IpWLV9VossnImxcS8Llgjz4utSWbNulF1t0obkTmU57g6uixL9VkWWULNntfe8/DwSMy3Yhtr8KTgUfrepk/qe0u/2WDFuWAjYmTT9lvbbwaUbb3nuvC2AKVdDNvw6T2Iugcye3BT3we7pJodkGoBX/u5FjC8potrWcE9M/Uag9h+/jWQumeu7rSEDVPVttvvkujSXkNtLesqdLbU3G0BTE3CGceRZVl4enpiLOXPbqzirW/aAbrvs/a+7T8rGwE536qFqkD1ehXjYIXaaPMKJKudSb3mtu+sdXegcH/f9veifq4yKa0VTx2L9fz3Y66Gndsx0I7bdoPQ3rvXNkz7cVNfr/3U/r7fSOzvc3serZfpfiy2z1Z9b5uF3iZFfW+/r9bbsei7MplIzIEYVrIzJGdYrTgeHB8OTGcJg8cUUK6XijI5l81MydKuuQEI2Ig6ShUeJHHC2o4YDTUNJZdFK+kkNY91KQcYSwAxtxs5CRVD2ajn2xzXuY7ZB6qHilYU82Q5Ga0U2hq00kWrCcY6lmWl63tJitC21OueRRdaFrD2edcKqX4FGCXVVTprN11mVyqHpBAJ/UpaA1opetfxcDgyKCdJQkpjlcFFRW976YuU0ZQEIiN1wZXRjA8P/OPf/T394cB1nlAZPv76AZUyvdLYnLEZ0hp4vpy5rgtz9Cw5MvQHBtfhtKUvvobHhwfe/fgjP/z4A58+PxXWzWK7jvF45PjwUCoXCaiNd3Khsmb1RnSTrmMYBsZhIANdAUzBe9EUUqrrBKlI89JYzVQD764wsiJPKPc3lgopiKZ2XYTdWuaZnDIvzy/onDm/nLl8fmKZZ8I0YxMcXYd7eIPVGp0iVil6a3k8nhhdjzOG3jiGruPQDdKPnVzHocgZzpxRStN3A1YbsUMaejyRVSfWFHl48wbrLFnBtCwlW9ng+p4xJ2IKrOtStPSKEDzD0IPKAqZLW5a5yAJ8GfcJ6yw2WtS64v2K1idyTiLTskaqA9muJCpZQlyxnaXvOozSaCoekBB8jAGNVCtyVspippikzrzSBB9QKYm2OaWtJGnOt0hpJd+qvU9dl2KMBRhLAlZ9Jms54raJrnktz0u8W4NqhSBrTEnYk99b+8S6Xhoj5RlT8crU9rcXVPympJx2wWv/vQcMbdixXQz3wLFlgfYh6H0izX5hfY1xbL+v/Z4W/O2P0b6v/X8LYOtxq/Zwv/D/rX5KKX1x4yvrFuMt9Nq+v+1XqKUm74FhBW7WWk6nE+fzmfP5zOPjA0qxZXy396Tto5bZ3etS2/fWkHHVabT9EEKQhzffGLUayq19Uz3oahj8Fpp32zFe6/sW5LZ/v1wueO9Z13XLIm37uA0np5S2ftgDwhtYbzPkbuHw+/HCdh9qa3d4t3t0k2js+68da/Xe1VZZxtdAaMuMVyAvpeTm7yHv33lzdgASWYmXockQtEU5yF1mthqt4XA6MIxXLnaSEnM1D4tG/tJZAYOhjHdlcKUClV9v48c5R+cK06Gq/hZQUtoxWSXANkVizIzDQESSD7QqhubeSw1yxD8x5FCymEWvaayW0qlkUEYW0RKtUFlK8tU56HA4YKzDGsvz5czlcgUFpoRj6zpglCIbAYtGSdh66AcO4yiSmnXFFaZ1SQv9eCB1cdPsaeCHdz+golQ00RlcgEM/CqgOkc71m54wKog5c+p6fnx4ww9//jNZK3o0/++LhP+DsYza8NiNPPQHLsvMtM68TFc+PD8RlBJdYsgQk1jiJEl2CcWcPawLuhM20lhHV0LRtiaAkDFabRm9AAOZzjoO48jhcNjmQ6tlM+k6w3Rd8EF03TFEsIbVS/Smc92WmCLziIwBhSaWexu8Z7nO+Hnhw8+/cD1fmKeJ+XrF+8D7f/pXnLXkGPn08QNvHh552x941x2EwQJ0jlvm9WAHjmPPYHtImbh6hr4X+UHXYawtUgrL8SDJSdtz4hzHxyOqs0wpYA8Dh+OByzTx+fmJxa/kWW3khnWW4+nAEAcZ61ZAm7EaH+VZCGWjPa9LqZIkc6brijZS6y25TCmx9qo1tKW/a+lHw7KIef7pcKTveihz8/l8FtYwZVzvSD7TmVItya9gjYSQsyRBhRAYx5GXl5dSS1vxxz/+EZVv0YTqbXkcx00zXZnHYeikYlUIrN7jvRzPOYsPgaEfaLX2nz9/phv6bXOhtNQAn67LFrHrx2Hrg/osVpazBa+/tX1TyHvP6sGX2sCW/amAp13I28+gbmHB15JqWvYoNrrA11jD1xjD9t8tGKyvtYlGLYBor2fPgrUgsmX8XmNB2/YaoANXAEzN0K5aQjG1lXCt28BDC2La/jkcDizLwufPnzkchrsM6Aqsbtnk95nMLcP1mp1PvY/3YE9YkzoQXecK25G2fq1/a8dMBXf1wa3JPvv7te+ztipOFZ3vw8b7e1CtkFodat19tVVzWvlGK6m475Pb5qf2ae2nCiLbzUf9Wzuu2rHXJnztx8n+s/U6K5Bs9aDtM/O9/Q6b6YAEWaqhZCxGO7LROIu4HmipgrPGyGVeUHHBHY90tpOQr4br9crl5UznOjrXMbiOGDPGQI6JZZN1BIahF4nQMmOj2ViHFCPd4WYX5nBSUk+Z4srgSVHCaFWT7RtXjZw8nXHkXqGUZ1o8ueii0dB1roBgt81VfohiZD7NzKWqzPF45DpNAFtigTOShDPPM6fxQELqLGuVcEYxuhEOY8HYmTj0fP74SSrEaEPvOv70wx/odSe1vNdIWDy9soTJMxiL6wZZ+LuBkClayMT0+Zl/+o//X9QSePfuHX8YTrwx4t8ZrebQKaaoefxxICkIOXH1nqfLmcu6sMTAmiPLy4Vn4J8yXJ9e+OGHH6WW9dMzk1YkH/jzT38UVlVbtM4oEkPfoRSMfSdG0/NM9GK0HZzMkVo3vs1Go41D64BWksXdW0VnHU8fnyApNAaLhSDyiLB6gvfEmLi8nFnnmeQDYfV8+PkX5o9PXJ5fWK4TyQfGsWf+9TN2PPDm9MAf/vT35BB5fCdgModIWBf6wsYpBU5ZDn2HVkYApRZLguN4ENssY3BDz1RKPRK8ZPePjuwU9BbTd/TZopzhlw+/SDxMK2KOrLEUxegcQ+foh66UPvTknHj7w7itZQIer1ymKzF4eQ+Jw1H0o7/8+qskRDnDw8OR03HEOil3uawzWoldl9WFNRx6cR9IEaPBWbm2EAIhR3LZFNiu4zgMkALJOx4OIyrBw/GIM4Z1mVA5weHI4/FErdWNVvS9aH299xyPR3K8yawqwJumdo0UR4KYMhbNOB55fn4mZ5Go9X3PXOqzpxLFCDFzPDzcES1dqfqjlNrY7cvlsgHrbyUtvrn04p5prK0FOhVIVEBZ/94yYlrXmpNf2q68Fpat/25Do3vGdB8ife08W2B7p9P8Ski8PfaeRd1f/55pq/9uwUnLzN6AW2XTKjsGICymUjeD9rpjqcCwBTfDMPD8/Mwvv/zCv/t3/27rnwpAahiknlsFUhUUt39r2dlqqiugRurUSn9IvdB6PVoLsAz+xmBWFrICzNr/N+b0yyzpeu+/BrYqWGyZ7NZqqWrAKuhs7ZlaFnYPAF9jtVt5wmvgtQ2PtyC+HZctu96WpvxaU+pW3aDe62rZ0m7W9pu07+332PL2U+9nCLEYWgdS1sSoeLkuYBynx3csTyuzWekOZcMVAtZYdCehyrB6Hk4npmnZ6u/WcTqO/RYiOx6PjIdBbE9yhpy2WsDo3UanMI9J3zRVMrYUruuY13WLpvR9J6Hi04llFe/EmCKHfuC6ziULWdiboWivYojF8qcWIXAoLVnnukQztBLPxHm+8sObtxClzrDVms4U5wYktL+GxPFwwCiN1QZnbgmjzjk644jGEc1KNq4cxzC4TtwpYkSlhI8JpxXTp2f+0/U/8peyiB5Nh/czOWuGbuBopGpOSOIL6VPmx4e3XJeZy7pwWWYufuLw8Ig/zzwtP5POM8vqJbxvNMye/6T+N96+e8ubd285HA64oZdkEKNxfTGsXleWiyRXeKXxrseOIyh51tfFMz2fCavMgZV9XZeF6dMzvlRB6jvxJ4w+SLZ8SpAVnz9+RCXxlyQl9OR5ND2uiyQt9j7kzNB1jH1P3zkxXYqilTRA1hCVpTcOZ4TZziEyKlv0kYpD36OKN6ftOrSzZK14eHwgW4N2Bm0txlkxj4+eeF5Y1gXdSRnRkBJJwePjI9d53mQWOWdcP24JPFKaOHE+n7cQeEK0fy/Pnwh+IcaEzzdfYaM1Yz8wjuLdGVYhIB7GAwlJ8jFlHfzxzQPBF/2iEvC+BomSaaUw2pCj6PmlepNmPIzkGLmuM8ehY+wdSg1M5xcpa5luftHzct1yA2rSqUY0kX3fb2TIPM/bGG/XtrrGbHIoYPESwasVsGQW0pKo1t/Ya9d3fPr0iXEctzWlRhJbbPBb2zeFvPdJA/B61nMFKhX4tZq3NiRuXgEP+7D4awv9/jzaz7wGSvet1d+137NnNdtr34fXv8amvdZn9Tvra3vwWgHna3q+PZiuO4l6rcBGi0u1imd++OGHm46GW5Zx1V22Dv97xve1RBI5p9s1VX2k97V6jiw2XddBDnd0eXttLZudUsTamw9p7ZfXNIpVW1Rfr5YqwDbwa8Zb+7BW4NheYwte93rN2pcty9j+fT9u2gdtz3C319tm/rf3cx+mr+daffwqcG6/o+2H76Dy993WsACZnAI5eUJYmRfJkp5mzzyvXK4zT89nrldPiBnvE9FlYSABrQxDp1nXTExy3+d53myClFK4Mh9U3ZQ1N01ziqLRU2hCsXLTWjJslWk9YA252BuJuXiWkF8Z185afMqkVCqddWJsbq0wnDEFUkwoJUC0bvB8Cc2l8gx3nSMkYZL8Gui0QmwbxT4tFYZpLBmuAig1RpfojVKcjgfx4fSSKGS0wgfP4CTBw6AJ2mP6nrxEcgGnzjh8DNhsMMrQWYgxkxfPGhJxklKNOkZcVlQb9awllGqUwinojVjRDNpydAPzcGDNgWwVyYl5e6cMnVEEAikBc2D68AmmhfXpjOt7bOfQ1hTmrActVUk+Pz8DcDwdWZ6vDENxC8iZXELcoRhhC6AU0Pj8868SdgessThrxKY2JnKSykhu8TJeUib6iE6Krht5UCKpGDqJZHWdxRlbAKNYFHXaFP1gxAwDGnBG9J4xg81sFldGa/F1dPKjOovuLO54ZMmJbhwYH064vuOf/uWfiVHM91e/QlhxXTEjR+Y955yUBiwkRNe5jZCoSWZVAmWdY+gHzi8vm4TCWENKsC4zBhi6ji5n1pg4HQ+iUSRva5tzlhQjKSaMttKfvehRxZrHchhHlpLIVJPItFKlb315fsW0PDgrWti+Z/WeFG8ez6ls9to8hFQ2XrawodbaDUhaa7f3y5oBtZyoc1ZKjea0Vc8TzSYbG1kJGF1IJEmgk1btheDeM/u3tt+utuQGFOsXtSHDdhFuF7mWqWyBG9zYu3bRr6+/BhRb/WJtLdNX22vM5NcSNyooqDf3NSDaAq76vlZ7V4FECwTrubXfXcOwdXdxX+Lvds5tf7R/a0Fm+1Mnb7ER+sCvv/7Kn//85017sQdR9Rpa1nBvd9Qya5SwhgCfm6eogK8meagwgcCWfV3vb/3+tl65teZVy6D9/WtLT1ZQ3PZry/q2n29D760pfnsf275tmejKBu8lEe1nWnDfssHtWGufhRYA1n7aP0/1e9vrq/emPc7+XL6331+b1wlyIudIigG/LkzzxDStTJPn5bzy9Hzh46dnlnOEVUyPU4J1jWinGZzFGkUyYUuoWZeFw7FahggBKaGxVSxpbCu0T5LVqTVrM8dpbdBGkyJbsgaUOSsXZjXfNj7OKpKPRBLVSL0+K9pIIkMFO/X1qZR1k+dXY42V0N66IhVAopSGzJJkZAoT6f3Kw2EUQIQk6PTW4hEWdRhEO7fOS2He2DJ0ldESCo6ZsetQPeQgwEBnhV6Lb58Soeq6iKehRnRyyUuChbubw6Uet1XF09FY1uDpbM/B9iSVyU5zXSe6ri8LNURgXhbxNoyJNElZyeeXi2Txa4Wxloc3AqyyUkzLzHOpS34+jFwePmOdLXOBEv1eSpsWMie5XyrD9fOTFOLOUhrSaSOavyRaWGsMb4YRZ6wADhLoDgYLvYAfa6QijjaqVHcBrTJeR3ptJIM5Q2cE9FhkbHWFtNg0iEo0sW7oC5h0uOOAHkfxCx07htMB3TmWHAkxVKGnjF0tErBcAFfnnNxbLck5MlakYlLO4rfahVL9RksC0qePHwX01vUqw+xXOiuZzFkp9LLweDqxLIsAPTJDiaz5AnIpLOShH4kpcb5c6EaHs8LIhuBxRsoMW2MhChngOjFLF+9Mz6M9EsuafCfDcnrbHFb2UML0kjhDugHdykIC2/NfQ/2yhkpN+hzFHulY5HCZvK3HFWjqnAkxbCzoHpt9LUr4t9o3Aco9w1hfqxNIu0i3DEpbvq6erNZaxKpwd9Iti1N/f+3/LTBswcCeuWzfX8HcPVj68tra1oKPfV/s257l3DOz7fG1lsXDWIeqtq1JHPYV9dwk7J1yRCkZMBUg1Wuq/VvBTd/3PD098fbt262UWu3v+sBXBrH+v9VntuUkq9ai7gbr90nlmNvvlXEsNYLutJgti1dZzHodwzDcZbztQ8W336FaqAB3SS5t6LqeS9VKtmNrDwTb82r1kRXEtWA1pftkpdc2Pu24+doGoR17dTLZJ+R8jfneb5jafvrOUv4+28vlBaCI9CVEdp0XLteZy3Xl/LLy8/snfnn/zHoJ2OT408MfJYy8nElDT/f2Ee8DfTeQTCzsSMfz8zMPDw90HVyvE5fLpRg532xkusVJZniWZBkoSWcUhjIXRiJ4UpIF3Vph/kKMspDZ4igRVsnAdnCZV0mG0YpUMoikRrPBlzB8VopE2XBVeQyZeZlLtrZkGacQsVYxDj3jKDrHvuswWixXlnVhdCUUfTxKOG9Z0Er0mHWDHGPkOk34EOiMxWmH8oq3D4/CqlW5gFHgE9EH1nnBlCQop4VVy7YwbjFK4kjOWKdQxezaWTGQvqQICCjEaLTTvOsGMTU3mpSFrZr8SiITU2bxK3OQCkQhCUPr0FzffwIlXqWr97ihY/Wey8uF6/uPkuRD5jiMm47cWSvZ7KW6jQIetAUl1YZyjNisOSqLNgploDOWH0+PksSlI/QWbSEk2aDLXBewh6Mkevh1y/zuXCeWPWVsz9MFqyVcrLAcD+JnilLYoWc4HJh9oDuOdMcD3XHEHUc+XS7YoQOjuSwzn97/TFSwJmESHx9OOCd5A0qLAXuIsk6t3pONgEfIm67eFoPw5ycBcRbxXn14eMDPl3KLpFTt8XjkMk+EGMko3jw+CpOuFDlF1nnhx4dHWbutxWmpu953HTneFwWpeldKRnRMgbF3aNORtdjjUaOH1m2MfZsHMM8zsUT4KsG0LAun45FMZpkX1rImV8BpjOHx8ZHz+VzIlVtOSi7P+Oo9tnMYa+nHEV+SY4/H4+YdDaLJbSN71ev5PF1LSUqN6dxvnvN+M6BsEWwbLm0X431osa0RvQ8d7lvdGSvuM6XLH78IZbeLcHuMv8VO1u9vQWK7YL8Wbq3fVdmq9tzqYr4/TnsuLcvYMl8S4qnh3AIkVQWJdZdGCU9Zqo6vveYK+trM5HEUs/Fff/0V55yYxKYvM5j3G4ONiSjh8DY7Wj5bGUAlwDffV9tJqfSHXBohBnTWG6OoVzEzP1hTQhdiH2S0eGzWft7fJxCz9MrapZS2qjV1Ick5bYLi9n61WsrXGO96zXtGtgWT8v+0fQ/oct9ux6jHbTcM+3Ffmy81ZGvft7rIdhzvWci2b9qx+L39ftuHTx9RWbSBISSul5mrh6eXmZeXifPLzD/99RMf3n/GRMtj78go1iDG3j4nzpcrjw8i4M86kfFM84XD4bCN1ePxwLJMUnpRdSjtUIiuqx9koZjnmcNhIEZP1AqdJMS8+rUsJnYbV2vwhUGX8J7URe5ZQ2KaF5L3RGMlo7tklR4OB+bFk0MgZymxaDrH+XxGaTbv2evFMc0LKieGzvLw8IDVhr5IdgyqJD5IydaUEhh4Xi7YYERPajQk0NZAkqSmYRiYpol19WRgOB5YfOSSFpw2UihmVAzjAbVE1utMiAs5w3AaJLSdhBHSBlAJrW7PYdcJCM4xMK8rY+dQDUGBUugShs9evBJDiJxcyYC3mugGliRlAGNOhJwkzO09IXpCigTbE6MnoNHWYK1hmmahGa7iF3hUiugXHh8eiw2MoivZ3SpnctFVGmPonBNgkOFoOoY1kq4zOmeM0YSQODjxOIwpkhQQxDtRG83Yd8ToIYnONudEUonjw4npesUNUjt7TgndS/KTGXrMYeTHhxMv05VVl0TE68QSA88vZ7JS2L4rfbbSOysejzmzrCtZK7HAmSfGsScEqUVvrIIcQDmRSORIDhF0pB87tDWsy8JluhBTwFqN1bLWij+rl1KmOaGN5nToWRZQ2dKZgXwYOIx9WWMkQ94ZS9d3rGuAJFZdz58/S5g5Jfqu5+HhRF8YVJXiphHz3qOyMJ3LurJcL9v6JwBc5Am2MJmfP38SR5RC6mgt5RJDCJtTSkoJtBaNadFMV0Lp6fwi1l1oktKcX37lcDjQOQlr18jkTSMpmunFixNL18tzvvooyUk54V8uv3nO+82AsgV49eS/lq26B2yVjv1ioa6vFSDZttQA1bvP5PwF8GgZmz1oqK0Ff7W1C3PdeezZnz1Q3Iez95nj7Xntgcw9k5ShTFiZG1BXSkxaK/Xfdkw9z/b79nKBrnMcj0fO5zMfP37kj3/843b99Rz2jFjt5/tQ9u36hKG7r//dfm99f63lm1JCN+WpVNFrWCeecsaW6jnKEGMihkSVSd4zfjWhQVgQrW/+oq2UogqxJfx+yx5tAWKb4V4BXQvQ9+Hzltk1RuoiO1e9MyNKmbsx8VoYuvb1/p61AHT//LSs4/6Ye7Z5vwH63n5f7f2vz2hlSDET1sw0B56uKy/XlefniV8/fOJf/uUT68vCgzPQa3xImFQySEvoMIRAdLeKU9a6cu/TNpbFOUGYmxhCYy+isEYqp9z53iqoo6ZNXAshcDgcWMvzMhTdVYiJXDSFRmtqffuNVChh8L7vSRkonpR18bperyWc15FyZpoi0/XC28c3DL1UULFaE4NHa7sBpZwTS81UzbLAGy0+k9s8pcR2RxtDtpmscjH5Nsx+ZtVaSt1ZDYimVHeG/jRilUMpyCERfWQ1Evp2nYUi58kx0quOm2IvS8lAJeHYHBLH44GQUil5KTKdzkmChMxeWeyZlBE2EoVHwLBWimwd4IhATFInun7dyXbFlFrAjNJgXM+paOoUSmQBdc1CwtJGKxxyjioljJayg8S46Q6d1igSSkmmslFKnAdywDoJr178LMREjGRKQmOMHN9ICT9jLabU0+7GEe0cXoNKEY9IMcJ0JWsIZCim+Spneus4jIOEoLOw7dZZQohYZxjdgDHCVqNFcmCMBi2VfmTezpxfXjgejuJMEG/WcUYbUvSkCNpo2WQ5C0rYOZUS1gjbbpwVhpnE8TCSYiZlMfFXSkFeCKkmOMk4rGH46AMhK2IJqQ+F4e2HvoDDW8b0bZMi/pwphS2y4Jzjer1urKFSYtszDMOdNGyd5y1Uvcn1rMHPEyFK6NtHKePooxQA0EpJMlh5zlfvsblEN4tGVeRVtwIFWhu67t8gy7u1V2kBR8tY7hfB+recbwbTcp43G5UWnNRjv9baBb8FAl9bTF9jh/ZMZf1/y5q2i3RrVr1//9e+v9Xd1Zu/L+VXP7f/bHt+Xzt+BRt7kFJDwzUEbozh+fmZn3766S78W+/d/rvuQ7z3iUQti9ZKHapGsfa1hG/ZgN7tc/I9la3sOrF88GXSt9ay+mX7zhvIurv0u3tfdYUC+Fot5C3rutUnttez3yy0973+u5UBtCC0/t3aex/K9j60TH7t2zYBqv7e9m89ft2Vfo313p/vnrX+3n4/7f3HMyCsfVgy85L59enCZfI8v1z5+efPvH//Qp8MB6PRqojwYwFrKeL9gjcwDFakcEmqUc3ztcwnBWQZYbPEQzJtm59tMyJ0Djk3UpzivZdSKqFLacYaKICRolOb5xVlpDaytZbrspCUls2eUttxc1mEtJG6yLY8h1UzlpOYrDtrWMo3WmOwRpeMdKn+oqnzbFkTciZSdX6mXHd5ngq4I4NyUmhBfDITWkmFnKw1OhmMUWgrfd1ZQ++kAkoKkbgGlDOEZW0MoBNpDdAVvWIqRvIxCghK5TwAUsIZh9KKkBOmVCbKKZITaDJaW2KS6yGDsqLPk18gCWVVAH+NXBnWuBK96E4V0HUDfScsLigMCLsLoBVJi6ZPthgIeszF8FqEszLfWC0JU6qsbUYslYyzWGel/GHf0Q1ibyR6XGEPFZLB7fqOru/xMUDZBEUyl2Vi9itLDITSb8oaOu3QVsYfOQmgzjXqVwCtymhTwtnOEoJkbtf1xHuB46qSMrFWGpJxbIzGFYmCj2ItpJXFdAa/hu3YWmuICWdlLLtiiu6MBqOgmJ3HlO9caW7a+jI/p4QxjrCWcsLWQgwY6zCqdn/atPM10XQYe2JsJWI38kOOf0vEbdeUmG+m6HUNjUVzmZIk1VES3FJKBBfoXce8zKhiVUaxw+u6Dmtk8+O9Fza/rjn87QTnffsmH8p60S042rMr9eLasN4+yWCP1PeA7W+BxNeA2J5taxfbes7t99d/t2DgNUZy/+82jb5lJtuQdqv9q/9u2bH6udZPcA9K9mCn/fee9bwHerfEla7ruFwu/OUvf+Gnn34qFRNe1+i1rF87aFuGb/96y5bWvokxYd1wx/rVcFHOMlirx109bt/3XK9XMQIut6c9bj1dOe8bI9oy3vf62Ns17XW79Tgtu94C1PY4rwH6eswqkN9nn++1jHtGvu37/T3eA/y2D/fHrWPkNc3v9/b7af/01yfIihQyfoV1zvz88YXLdeXlZeLD+0+cf73y4/GBfHAY2zOOR1b/hNWySC3Thc5kUuyJIRFjKuHdukmn1DRWsuimmx9s3/d0VrK3YxBwl7MwEwIiFOPYb/qqWEyVQ7ox9Guxp/FekoK0ESZjWVeS0rJg2o6wSkiPwnZ0vYTak9Zbgp5oyBbRT/c9WbQ9koVbwpKm6/DzQs6pgKXKCSZSzGRdstfLtQvAtFv9Y1dsb8LqWVcviT1KwFWIkd51YCzKagzgOikLS5AwsfOB6/MzVhXbGAV5FalQXD2xZFSvKUmdZCO+i+u6yrUUTZrJaWMwY4xbtTejDTF40WZqi9OWgISSc4nG6FI2kcL6KaUZcKSQoBy3GmxL/yi0kmo+Ois0AoZ88JicJcSKsKY+SeJJVUMajTBapmQoG6nE0w9iO6SN4TQ8oo1hPAy4wrq6eWaZV8bDgePDA4eHE9frlZfLWeZSMpdpYS3MooCYkp1t5F6jYF6mm7xKa7qhIwEGU4AlRZeqiuuFzMHzdN3KIUrY2RG8lxKLRpOMITnL4iw5WXIB4iIBu2z5Blpr0hLpSxlRlVORgESMccVdIBBiLmNS1lcHW8haLkXT98OmSzZa44ZBmNuybsScOA5DyaQWY3q4Wf/lUjXpcDiQcqMRLWCyrgXee3TJ3q5rfdf3XOepyC/iVuWmZTWHYWBeFnRZ42xhKmUd1KSY8GvAdrek45Y8/C3tm2yDaquLZwvgWrBRAVebKVtZnnqsFhDsv6f+vQUWry2sr+kpW7C1ZyRbcNECoro4t+xf/cxrjN2eGdzrENuM8RbYtAxZmxSyZ7ba97XfB3xxg9v70F7jWJz2P378yOl0kooVDZit57BnxlqgVVvNDquhtXot1S+x/rTZZ5WllPt+Y+fae1Gv85b0dG+MX9mXdsy0Y2OfsQ33lWvae92ymvX1en4tW7gH9O3nWt3ifiPUjv39mHhtA9SC2RYctj/tsdtjtBul147/vf0+2v/zf/nfiWskRchB41fFy7Ty8jJzuS4s0wxL4Kgy+Y3BmR5KMkcMK9pqDmMPOXG5nMXvLsOHD+fmWb2xJDnnTVw/TRPn85k//uEHlJLav5tGcl3wfhXNYQgMw7B9/vn5mVg0yShNzIFhHHnXj6QM87Lyy/tfmeYV1w2oYvWzrKsYpSMMy/r0hHM9MQRhsIrms51TlVL0RSfoyrO4XCeUus0Jkv2tCKFmgpeaxlkM303NZEbm52EYxKrFrJzPZyk35yzOOkkwUbBE+bwxBmvgdDhgjYRHDYqXT0fiGkQPGiPuwWyAU5Xn9fPnz1ICEmH5nOq3518phVUCcHO5QQowzqKUVLxBsWWDm5y32ukpQyKjncE4i+ksGkNInhQK6OosOSHs2+pZlpUcg5hvl7lEknaEta1VeUIMaAtrEy3B6qJnF0Y75sTgLP2x3zR7xomGH62IhdmMRnH6wzuMsSSr8TnyvFy5+oXFr4QYsa7n7dtHpmWWOu4pscaAsxq/BgnFOkff9/jgiTkTCmA+Ho8iTdCKENYC5JT4i6eENkp8VbXZvFZzihwOUhmJEFlyyf52UkpwXT2HYSxRNWE0l2WRqkrGSNWdIiO4Xq8sQaod9f1AXH2pTuMb7X6WcLbWaJWx1mCPR1JYmeYr704POGc5Pz2xLjOdM6hx5DpdNmD68vKy2QE5Z0sIPLHOCzRrw7JIBM8YwzCOLCUMXsebL44KxhhMKslVBXTWda6WLZ7nmcfHR04nSYBa1xXUDEo2Q9M0cTgcUErC7efz+TfPed8EKFuGsSJYuAHMfaiv/dkn7+xB1v59Lajbs5dfCzPuQWr72VYr2Z5zy1S2YfkW2NX37a2PWhBRW8uK1e+qN7RlPSvw/C39/lp4s4K2/Xvbv3ddxzRNfP78mdPpdGdx0/ZPex9e07q2O5XXEoHakG5N1qnWBBW41VD89XrdKtVUtrDve0L0zPN01z9y2XEDlTlvWuftwa76yfa+1b5p71M95mtjpiaPVYDdloes513Nnus17e9n7af6e2uHtf/ur73eugnsF9729Xo/2te+t99f+3/9L/+JGDI5AEmjcWTTc70uBB+ltnQ0JDQhgQ+RTGQYe9ZJSvF570EbEdnrEgRVWczJrdijbJsio0gJVBk38zxzvkz0w4CxHT5OJYSdtrluaTJIKYbQdROVKdU4CsO2+MAaIg9v35CvM9O8EEMQs+ucy3N9ewbGsWdZhD3LxRbm4TDe7FLILPPM2zdvJDxpDL21nF9eRF+voHeu6N664q0oP9N1oi/Z30rVIgmqgBCN7RyHwwG/rqzGlLCyGD5nDCiNihnWmVx8OXWpn20PA6ZPxQA8MV2uGG0ZTwe0UizzzOnHtxJKTxLKVIXVrXOHtRbVy1zh/dqwcNKnqBLdz3IvkegqBo01Cj04MBplpFZ5mD3KCsAexp7LZWINcs+HoWOZI91xuNWAJ9GNPdF7YipuEhrcwWG9hNi1UTjXY5E5WGnN7BeGcSysojCdgYQPnukigHwcR7rTyOQDfpmJJQM+K7BDD71FeU/OMIeZpDPu0OHKWhlTwnaW0Q3M84J1mq4/kMiywRkHYoosXpjqt49vOZ/FMSGmiPcrVmkikehXQplTu84R1hmtDYehJ6wdRp1YlokYAsfjiOhfhZWNlbHuSiJQShhgXRbGcdzKG6YUMEbRd5aMfO50OnG5XEipSMiMgL4YIkZlems2g39tNIeDfPc8z+hizSQJmp7r9caY1rV1OIxlnk/k4h29ei8Mddm0Lcsimw57K3W8lihB11mmad50mNbajWSqa97Ly5nD4YhSmnleQNUIc0fOCu8j6+qJ8d+AoayArNVS7pmUll7da9jqZ2OUWpHVr+qmKbgHnXvmp2X+WsbptRBuyy7V1oZJK3NYgXE99h6QtqH6lm1sAWT7vfvP13Nv/Rjr/yvr1QKGljltX9/7b7YAs72WPTPb9z3jOPL09MThcODHH3/cjl/BU8satDKF19jZFlS2rN0G7IzB+7wZo97ORxFCNTbuNiblcj5v16eVvvuO9jtv9/6mz7w3C1cFwDpSynf9uNeB1vu6v576mbpja/vydQ3p7R7XfmgrDFQQ3d6bFsh77+9e37ON9bVWcrBnKV9jsL+33087X6NkeQdIJVEmKcWyBFIUdkPFdGPwy3zUWcVyfSHFQMqGnEuxgVQNxzVrASkKwIqVmDaiJ87WbNZj87Kgyjxb9VWqlHqNZSxXEFSfy2prUmg0YpTqPiElCZvGMvdS6FFUEfQX/VjVdBWNp1JadHKwaSljmbt75yRD2Ur98QCSEJESuibAlM1eBZNKSfm79rmpVmHbM6YlS9okSQScl1lqmZdkSEo/ohVJUXSNkjHbG2GwdGGRuuMomdR9qTzkLHmaxAw7g1ZiL6OUQgW/sZ8HY0vyw4pd12L/YsgFvMgzfKsYVtfD4TCgh46shK00WtPRic2c0WhnefPuDX5dhfnUhsc/vJNKOUVDmxNMfpFrVkWeYzV26FFWQrfaShlHpcu8rEATiVqMsVMI5Jjp+o6oMqowlT5Fkl9ZfJmrtcLnVOqkg1JGymnGgA8SFlZaNItQmdrKqLui8ZTQvXOWYeyY54Vcxn4stkEpSebxMAzEdb1tzJPcz+BXSAYtIgL6wdH1hr53+HWVn0Z+JutnWQ+1jHVjNEqJJ2hl/2OSDZX3YfNZreuRMbfSvFr3aKswCrTOzPNUKucYGYvasMwTXedI6eYdWXFN66+8YQKEWRUMcqs3njOcz2fRSC4LOWcOh4OsjeUZUwqc6zac0JIo8rwXp5R0i4yaGpmI9fy+rXjGN2V5twkdFUTsgWAL2upifA8KbiCpLph7FuY1Juk1Vmi/UO9D6O251M/Xc6yT1K3jvjQQb8FqqzN8jTVtgeYegGyeT81n6vXvz3kfSm1v5p59BTYQ02Yu1785J7v0GCOfPn3i8fFxM05tbXXaa6zXsQcsNcS9B2prSaypNiNB3cL9VfJQ8U7dfdU+q+7/7X2vf2vB1x5MtSy2XMetP1p2snpu1vvfhsHr+bVlG/fyhDpxtBZK+3vcbpz25S1r2wPFdmPwGrO//9xrgHG/6frefn8tJsQjUAMqk2uySJYFsL3vVfNkjJhHa60JUSy6JOu2yOhV0RRWcAiiDew7KvgCtoWvLqCp+PxJRZD6fMbtmWw3VJTjoySjW94jC09MWXwyY5QkBV0VjhXU2W3RC2WNqAlDKWVyrAkp8gz2Q0/nXNE6ilm267sCliVUrLUuir9cwhRiK+RDzf6WRV8V4JRzWZDLnBWKB6jue6k1DRuoRCkB6iVhScWA1ZKoIlhZ4UapvmOHAWvEOD5oCPMsgFIbbPHqU7Hb+rJq1ggO7TvyVMrRLqJXTUk8hmtSClpJNZmxE9CqQBU9rO3cdk8iiePpRL5CjhFlDP3pyHqd8DkQvdyPJQV0ZyVVRzzoUJ3F2rI+GSPheKPBGQkbG8WagoD/VBwEBsk+10U/6WOQik4po43dnDwgE4v8QpWSkhEp+1fLS4YgpUTr5sZ1nSTzUD5XwJkiS0UfVbSgxoBqSi97WXfIkqAiY8cTytjKWSyztHYiqXCOSSnxV+W2BjtrWRapdFP3R9ZJQtlG2KgsOsrgZROmapImW3QshVumtcqSPBVDKPdPbWNy9WtJiJKQu9YaXTLAc3mWu0Z6BhI59cFLFajyPA3jwHWaWOZVNNEpbetznR9awq4+09W30hiN0uWZzDLOJeHKgDYEP2/rUdUy/5b2TT6UW6HxHcDbh07r4l0nt3ZRB26lfxrg2IK3PaCALyvl1Mm3vr+2lkWqO+V6DnCP/tsFfX/+9WevZ9y39vP71/dJOvuQevu5FrDugWMLNNrvaU2xbwzll8ziMAy8vLzw8eNH/u7v/u4uVH7bbd1ffwuK62vtwtPeN6WqUXcEdQsJV7Au1iHS/7X0Y19E+RWEKX0f4pXvlMVCdvHye8sU789T/v3ldbUh+1auUUXZLaPaAr9WN5qzMK913KV0r8m8ff+NNd6Ppz1A3zOTe4C430C1rb03Xxub39t/32YVOFtKHFogK5SXrNYUJZnAlsoW0a9MV6nhnHVmOBzxs8EvM72REFTXdyijuFzEh7Lruu1Ztl3Hcp3EO5HM6tfN+Pt6vTLPmj+8+4E5LGW8AUpv0aJ2Y3XbIMlCHEsWsPeeJQRSVvRdR0hsyQOX85UQE8ej247VlblHqWbMF4+9dV0JIYih+dDd6nEbTYpSeUSeVU1O8p1LWAnabPo6jMaTSDmL04POBdpK3WqtFUM/MCvRj/kQcF0nuDRlYvZEvbLEVCIkJQqnQFl5PtecUGRMJ+UDlXO4oWPsLWYpej1BFqgk5TIrCxs6gw+QtEFZRe8Mp5No04L3TNPE09MTvq4hZJSKxGVieVnAqC0TudZg98GzTiumt1zWK2FdiSESf/2Fh8MDi8rMQQzJT6cTyplNo+djJKqEtlJKIyWpxqKyhI9TzgJIk2SoK2c2Vt0nSZDMiOURgLKSoGWcxQ1id6MUm5XSMAz0o9SmRin6cWBZlvK7MJXG2U2zm8isy8LnXz5xOhwZR6nXfV0XqY6k3BbhBGFVV24yp1DGgtxgtoo03dDhOseb7h3j4cjz508bJjmdjmU9CYQoCWtZgXHyTIhnaOZ8vor7gdIsq/SRJOkIs25cwTlKkbwnhYXDMIgso2RUhxDEdmiVZBpbnRjKZqqNcs2XC+MwlPuumOaZfhgBxTTNuKHH9R3XedrWub/+/J7T6UTfd1t4u8VdSokmsutHuT4nFl96I2HEbkoXylgwr9o0yr9pzvuWCXKvs9uzh5tAtCks3rI/9aJqx7XsXtvaBbJdZPfhw/q97bm0zCjcV0Gpx6tgoS7mrf9kfU8b1n+NPb0HMeqL19twMtwsc1qw0Z7PnsVqj9sOivqZ+n1tWL79XHvPKmj79ddf71jK+l31/3uQs01kzbH2bG4dDzmLjkQ2cOpuPNRTr8xo+521b9qEl9u1gVKyw5OEnbwtTi3LfGMoVZnb9fbw7NnWer71+2t4uwLQllXfA7b2vVpb4OYBWI/32n1qs9r3379nJV97Fl5jLWs/fmsW3vf23679z//TP2xVaTSaGGFeApfzxOU8cz5PGJ+BVCx8JKzVjyM5RaL3YBSzn+lUx3JZUEoxjuO2MFsrQn6Ax8fHrQpG3SxRwlnee56enu42/1tt4ObZa+fYlDPX6xXrJMTWdR1ow/P5grFaADIUJlHdJQQpdUussFqAidaay3qR6y0/vesIq0e74oOoYegP2zMYG0bJr5IdDXAcRvlbvi2Up9PpjqQ4HA5EH7YoyPVyKbq5HpR4KRqUlAK00hcxJeI8N3NhZF4XTmTWHLG+mFDnSHccBSokAaQpiSVSTAnmWVjGaCV0nDTKGS5x5TAecL3DjL2EtrNEQWLZsMcYmdOKX+Q1X+6zK1VSFPDP//ovd5trrTU9Cd1ZRndieBSg9HKd6JKAKjsI8ybJXZmQY5FDGKkQZAzHgwDANXiRAQCDswxGjN1TzqxB1jG/SkUlnyNrXL9g/xa/YrMtadC3kG69H0qpbfNhnSHmyBoX3jw8bs9QGwkDNkCZiiF/+/Px40dOj0dxM6jjJ3hJ+ImZ8SQZ/Y+Pb4VtjEKC1HXZ2g6lNU8vz/RKGDxQ+OiJOZFjBgyu6wjLIl6Z2uCcwdmOz58/8uPbd3R9R06iX52nib6TTdl0uWKsXPc8z4QQts3cPkJQpSfruvL27VvJoH952VjHkGWj2K4/qmycRGbSbyTQ6XTCGMM8z3TjwDCM2FK6UildkvOEBQ4xcL1M25yyj6D+l9o32QZVcLjtCBqGbP8D90kpexbsa+zKHmy04KQFkK/p01q2cM9e1o6vgPc1drM+zO33ttfRAs16XW16ff17C/b211jPtQVPrWZxr5dr+7RlW1sN4z5s2k6q9djOOZZl4a9//Sv/8A//cLcpeE1yUPuwPX7bL+1Y2O5B2bVRbDBccedPKW3ltCpIrZqnrf/Crd/ruQszKQ+19OctNFLD/NJ/kgEo++d7Rtt7zzAMd/2zly/U/9cQ+T5svWd0201Ce9z9OG77rd0Ate/fPzP7Mbnvk/Ye76/ne/t9tf/H//3/TN/1Ek5Lmem68nSe+fjxmQ/vn/jrXz5y/XTBRDGhtsYRfCK6Er6SQDKXl2dQool2XYexZqucUZ8FrTVrapIaiwXIOAxoLe9XRmpu3zaqCh3Lc65kPC2LVMwwxkiIPiXxHLSuaPNE2zhNE/1wkJKCs9TxNlqTUyQhoGGdZzpjUJ1UROmcIR8GhmLxsvqVvrOk4CVb2jkO44horkPxkMzEVMq9JtGt5RhY1omcpTiCKdEL7xdCWNHa0nU93i9YbTFGwp4pSu3w4FeMEoP4rlyrKhmuw9CzzDOygY34FDFkXq4XjBFPxG6Qyi22lKBVIP6Tm3MkKCO1oF3X0w9yTSklXp6fOJdFP+dEiAGjIWlFNhKSNc5wOBxY5pklQ1cKNdTqKQrwCLNklYQqFRCRspUgACzFyHA64uo6pRK6c0U2oXBd0XkjGdKkWLSkYteDqtZR4kGay7jpXEcmY4aiyyVjnaw5FVQaY3B91aOLVCOEdQvLQtWPQoxi6ZRSkIzrzuJLacx1XrDO8vnz55uco8ioni8XOifsYyQzno6ElBCvVIf3xXmgyDCUMnTDiEKsm0LwrMuClDdOEIuWtnKKORNSZJpmUJIpnoo8orOO6D1ayWaqRmS9FxN1kpRbHYo1T1hX5nXhcTihlcJ1oIxUj3Ouk7UtC8ADZFMiTAnTsnCdZ7F/UlKiczqfuVwuFIEqsvbJOc/LwhI8RptNUqCMkec1K8bhgCrrh18DShtiWCTzfhWmdpon+n7AWLOB+d/SfjOgbDWClc0REXYqg0Lc9pXKGAMp3W68sEql9mmly5uFvAVuNZmhApW9dq2+7zVdZv1bbftw454VrAO/tj3IbRfsFkS039OGll9j+er5tX9rP9fqK/fMK9wY1grgWkDS9k8LpluA2r6373uen595enriD3/4w/Z6ZfHWdd10ja3ese3Peu/rebXnXXdcMUIMK8EX3SWW6ihX6/fWPtBaM44H5nmWxBrjmJep9P89ENPVABgZb1Xf2HWujD9ddl23+/e1pK86AbSMzX2iT702Mbw1RmGtQymN97Ewp69bArX3vx2r9X699rl7IN2Evkv4IcWi8ULKz8lxxJLmO578fbb/43/4owBKJWX9rpeVT88TD0dH7zQ5BH4NCa6hYd6LnUxKUtrPCuPlU6BDFuPQaIjr3BhjBJW28ea9aLzakrmr95tWShJkEkrf6+ApnKO1TgBFkOzsXNhAsoTqAVKS14zW9J1UwKmLm/craFPekzZdlzOGrDTWaDonxtMxBKpFjClhblXOJNdNWdlgmgKEZa4pYB1YfSBFW8ynUwFrmRyLJZpS4oGIKlYzVY7UbJYRX8van0ornCnJP2QJvftELHNQmWxQRdpJSoQic1JI6FcrTS5+igkBmpS+iDlvXovKapS2ZQ1VmFyYUBcFFBSpkNalAlEj3VJKErK0koQdXcwRtZWKQ6JxVCRSyTCOpChehSlHlNLoXPobqSjjnL0bY7QkRyqMujPFCUASnXSzEbdOzOqDluOhJDGzEgWlA2U9yRGCjKecE+s8Y62TjO4Q6PUt4lfXIB/Fwsm6vI3n2k+CVJUk2ajCouuaqDrQmVJXe11IMdEPIylHYhQQ6FwHqDL1arSxpHUh5yKfComu6zerq5Qlc1zIkYgum5MUYjFv16XCj9lkFVYrjLVUV4KcZVy0UazalzGlzTsyprSBdpE+Vp1l3CIECdlQ1nKV0zwToxA8ta82bFPvV/WJDUG8U1MqxQHuC7L8l9o32Qbtw7hVVHoPaopjPZWpyhswqA/L15Iv2u+qC3AFMG1nV4BVW7sIv6Zd225MvFmttCHq9sF5bbFvtZAts1Q/vweCLdhq37sHlF8L4d+DqHtPxNfAZgsojbm/7rY/Khv4+fNnfvrppw2Qt+xtvc9tH7em3znfjNpruKJezy1Jy5fvDlgrVhtzKRVV+9IY2fnIDq3aC4nWcgu5pVTAUts39/e87nalL+8ZwHasthuFdoPSMu7tvW83Cl0ndYJTyiX7UEyj63m0m5j999djtwB9v2lpAWh7z6Xfq+5TkXNJZMtRsjDLs/YNmunv7b9h+4d/J3WqAVLMrEfHMGqMjpCEgYnTypKuGJ0JQaxWrLOsaxA9k7YoY4lRFhJTo0JJatpbY28AqMnOrJujeZ7vxqSEocXsvNVYhSC6sL67JZXUrHN5VgNJ3ebfztptEzf0PVlppnlGGU2IUTwCDwdQBakUDZkzRrSBRqE7AUjZOgGdSkCFtfo2l4RAqsBJ6wI4Tdn8SuJHCFIRpDqHVHCecyb4sEmsrNEYZeidANEMhMUTU8ZYyNkKCCybd22kEoxUDynh8JQI84zrOiyIRVMW4BrL3FWTFIW9S6ggiUgpJbST80hJ7GAUVT9ZIIwWR4DqU+lKjfN67ShJXOpck+WOgLnOdgIsjWFQnSR/JMnWV0ahTU1tWggxiIVSluiRQvrXatmwdr0Yp1fLqOBFK1qN2p12kjxmjLCPG1sHaDZGVusy15ZhkFIqSKjmUGQBt+K/hHiuXnj37p1U3j/HBQAAU1VJREFU5ImRZZo2QFvXHe89qpRiFJAkm36nJGs85Sxsvha9KjlLFrs2dIeeFCOzEU/Wh4dHQvDMy8S8SrnE1YebDncYOJ+vskEq65+1bqsSl1KUGvNlLTRavEJ1hkzGFoN0MXPXUjpTVTB6c83Z1ietN/unuh7V0ou+JJhVSYtSRb4QIw+nkzzHBRBWt4brNLEsK0OfcL0ryWxFQlbWTuccqJt1Yi2EUsmQ39q+Kcu7/XeqA1XdQJWAgBZ03SNtGWDmbjFtQ7Tt97wGHveMWAvq2oW9BU/tjfra9bSMZQvO6sK///xrLOhrYcf2by3btw/N78FEfU/bry1Qba9pD35bkLkHe3WiO5/PW9Z3fa0N87YgtP7enk+rgWl/6vfXzcBazFatSfT9cAeeW/ukCrra69n/vwWD+81N+95WslDPfZ8BX0MT8CVDvd8ogNquowX3tb/aDUZ7fXvmtu2j/Qbhb51v3SDItl6SDlK66X9Rpezb9/a7a//w0wkQkJRiYPUa2wXIPTmOrNOR68cnzrPFmExOHrR44mnY6lufHjznlxemeSVn6LuOaVlK0sAtk3uap+25HQbRwqUsIbmcwYfE88ulFDkQQOVTZJ1v4y3MM711eP+CdY5+vD23KUZyyozDwOyTWP24Dm0dcwmVp5xRqswf5uZykWJEqUz/+IZxkOsiy3wxHDuu1wvzLElF13XmeDzijCIZRfCB3hmp0awUnTVczwvT5bZOhLgyzRcGBpw19LZoxlwnQekUJcMWYQ6HfqDrenKS/kwpb96HYgipCSnipwvDMDAMQ0kkEiuVGALn5WWT8IzjSNRKtHYJSPK86mKZBEqyan0gZDmHkCOHoS+6dGENs5LShzEGtNV0rmeeJAmlMlLaGpTRHMbxNodoxWEYZaNZOB2x8Sn5BAWIzVsUyvLwcCKs1cECKGUMyZlU5tc6z3Zdj7FGQHgo4WqVZWNgDFYrXN9htSr1tCMhRlxvCV7K//WdOIFoLazbunqm6SpSriwlIa2C49CTg8doRecMv/zyi2S11/Wn63jz7i3n81nm/JToh5r8YzZHAG3FA1VFhcoaZ3vef/iVx4cjzgigM85ycg8sywzlvCKZGBd8iIhs0pCzggbbtOudsJaeGD2uaHunq2foOmKQ5CtjFMfTkfP5XDCTzBE5Z3K4d8yp62tNAq3gThtLpy3Gdrx//74k1PV0/cDh+EDM4PqRvsi/uk4Sb5ZlkU1BSoy2I4bEsoq29MZwljnAyAbxcrls2KDNo/gvtW+q5b3Vfd0o0Ew1ya074xgDtTzSjaG8Bwd7ALkHBBWQVHBUw5ZVhN76ILZgs73Re91ffW8LRuskWm/ga6xgCyZb8WwLZlpAWD9T31N/34OzCkBaELTXidb378FIyzy2TSkJY+3Puz3mMAxcr1c+fPiwZdHV76nvraHg/XnWnzqJtp9rx8j+/S1YrExlfUiqAfrxeNzE/FsI72+0miVamcL9de61qHug9ppWtX39vr/v738bRmz7upVBvDYuWtBZ+2t/H+v1t+dSk9za7/zefv/tOAiQyxFCkDJ3vcsMPRwPhsfHnn4wxMHRKY2x0PUa6zRW25JQsGLtwMODLmHnm2NBSqJbrDKV7Dpik6Wt1A1s1kjSOI7l3xnvJTRew8j1uZlW0Vk6Mtoa+mHgOi3MRW/mhhHXGciKdZlZL2fG8UjO4nuJUrx79w6/TLIopriFpjVJwEbOUrLQz2iVy8JlNhamVvgYSqZrSumWUY3oSevrIUSGviNlCZl6v0r5wH5kXQRAdc5xPIi0xmzrT6YfeykfqW2JQMxid7NJldjmJUmIsISQcFqTjWjuYhSGVGnxxxRLlmajSyVPgpRVLFm/2igw5W+FQQNAIVm8RthCpTXOOraZtrzPdqJrjUmkYspodFY4Z+i6YTsv20lCTYii5eud+PWuqwDVcei+mKvQGY1o00MQprF6h3ZOWC4p6eklzKs1KQaMVkSVWZe5YIVFMqdzKtpTqbyUcybHQEwBlzPEKLY/MfLmzaMkivhA8IGx73BWwuuyN4j4cl8rY1n9g1MJDxtrCF6uTxdmfVkWjsejrEOrmPIvZWM2DD2uc7ih5+n5mRiz/GSp8/7w8CB6w97g3rqCeUTHrJUipcA0yfjPxdPUB4/TWmK1MTNdZxQGScIS1xzvFww3osNau7HtVXpWi4EU/zFyzrx580Y2ayGWSIbmdJLyl36VULXWessXibEky2nRl2qjsdgNtFbWVzL1haFc13U7l9/avsnYfM8Can1LSNmsEkIE0t1C3IKS2nGvhf3aAb3PXt4zhS0z1gIduGcA9wxa/Wwbzn2NwWw/0wKF+lM/2yawtNrCPQu5p433rGoFcHug89r7XgNC8u/7sPqeOa3AOSUJK3z+/Jkff/zxThtbW/sdrfygHrOCnDo2an/Vh7plZr0OKFV9LG/jpQLTLzYP4aY7rGNhz+rF+KWFUe2/ugGp96rVRtZ7UROb2v7abyTq541x23lUpriVT7w2dl5jkisYbcdR26/tObTsQL2WFkx+jaH+3n4/zSktGiSlhF3JCU2ms4Zh6DgcBobBMdtJtHtWI1bWAj4AXNeTvIRTRTMrCSpaW5Z5wetA7ErkB4gZQkpEH6iLTxtpmabpzlR/Xb2UjLNWFusgbCpl/Mck9i/OOfqUWdbAuixkIxU1dAFdl8uFufj0aWPw0eND4DpNdNYwDgOn06lkoVKSYTQ2Gbxfy6KfCaEmN0ZS0s28WMB5gpQjbqtvXJNLIkYVv8pcq2WFMrdJn0VviuxGSAmUkrrlWZNThiy6QIVIDYQYKS4NIWKcRimNLVO5thaTTblmJSFYK2HpmGNhhkVHqYzesqsBNBrl3Lbwi85TFAIxBjmfEs5+ePuAUuZO+ybzmAIsthA7qc6HWpNVJqss55PzpufsCkjJOWONEf15SXCU8XYjCnJK5CjMYYqBmEST12nLkgIxQs4anTUKU6qJZXxY8V4M9cMqn8skpqlWNyvJPqUm9fV6ESVmLln1syQtxeiZl7mAVinS4boe6xyu1JzP+bae933P9XoVdtcoIRuCjNeU0lZeE+419UqJXU6mElTipGB8EK9Na1h9QCF6eq01h8OB5+cnavRI1i4rAN8LS6yUsLWqbBaWNW3gznsxfTfGkVNEGyvMs9aySSknVO93yvWZ1UUKMcjYMqIzXZaFfhgxVmQbfhVib/WhbMocKMFr8zzjq14yCpMZkzyvoYwj6gZHK9H6/sb2TbZBLbt2W9jjtquUBVCqI8iDc5/VXSe3fSi5/r4HmftFswVmr2kL4cvQaMs87hffFjDugdxrx/3a7y2wqCCrBd4tGNi/vz3XdpC3TGELflvg0fZffV10Tfd9eNNY1YEvGde//PILh8OB4/G4hd7/Vjh4L09owWD7HfXHOcma7tzNwilGEQ+3IvP6/01b6b/UFbYMqvTv7T60pRPbMbr3zWw3Ra3Jee339pr3bGIFeHsGdn8PWzuq2urv7b211m477Pac9npMYeM9cLNMuh9D3wHl77XlIJm8ubBrMQRoWUXrykQPW7ImGa0QNq5onLSWSlIxy7hPMaGdKaFXT065ZCC7ovO7WWy180rd8NXn1VipJV0cEMn5Xt6SUiKk+l6Hy46EIvtAlMEIZX66XK6sMZC1wiDslzBkCyo7+q5DqZtDhTWSmONMqTNOrRwWy5ivmzfRe9aARR32op2UjaoxGu/rMyYEgdGil6zG7DFJlRPX95vurjJ9IcpxtDJoo1G5rlfyhpstS0kKUqIT1VqhEWNqZZSwelpYNGJJpIwiHtQlOSNTULE2BejFTWcox1akZCGLprZGYVIlZ5KAQ+c6yVovLaZVgK3WqJyIsW5Gc/GaFIDijGHxQbL1jcIazXxZqQ4a1WUyFnCXYiqbmFIykUTGbdn8kmirySSWdZJkyRQIyaOzbBaKUGdL0p2XKzllSbhRA+s6o7XaAPj1ehEwmBM5RUIMkEVb2zkZt33fYWKgTpe63nMj40WVOTbVjX+5Hsn2L2sE94myNUMfRDeptcdH8eQMPmH0TXZQ5+666ZJ8ASPAVMsY0kqTir8nKREpHp05kzIopbckGW1MMYnXhCVuhQlAHrOcJfFG63KuVkLgWjQIrOvKNM/YIkvIxR1B1tyaMC3PeIiRZV1Z/UpOCuucuEJ4AZQ+Nv7KzXPyW9o3hbzbhbJSvi0btdcR1t1DC3xaQNICnzabeR/ibcPaLQBogVj9exsqbF+r3/ca2PpaiHv/mXoNe1C9/3nt+vah+TbU2QLttgj8/rrrd7dJMvXetFKB15izTTBcjtv3PfM88+HDh01cXI9fv7Nl0Or1pJQ2UfCtvNqX9kephGFivCX8VBZbKbWxg/UaKlu5hS30vTVU25/tInnPmN8YjX3ftoCvBeYtQN8f+zX2s9W6VPlF7f89M94WAthYCH2zTaogsj2fFsDenqdMBY63W1umjfyl9OF7+320yozEKCzCNK9SYSQqctKkVFwEEiSkrKExBmcNIZeIzxowWkK2KQYSIhFZlmXzda2elKdT1WzengmghNb8VitYGJnMEjyH8SQm1kZYLZK4BlhbxmFMpIKRtNH0Q8d4PHFdFpbVIxIzLdq/GIghE7QmZgHO/ThwGAbGkklr3cBWRcRarJMyh3eJf7vNlXOOaZpwzkn1lLLCpqRLGUmZ86/XK1p7jBH/xj/+8c/4pVTrSpnsCrtXvACzEp2qaNysaA6533iKflASlbS1GGNRWRGyMDnaaJwxaCtsp6y/whJ25do0kgkOuTCrJeKSE8FnSWapm84M6FJMASPJKkaRCuOstMYoKyC2ZD/Xud+vQbSPWkOZ03PORcMpyT5GaYhJamCT0DmzLhPCxmamq9/6pp1/Uy4ZyzjW1WzEEWhShJAiMXrWeCOVAmLNU+vDS0a54Xx+aTbZxZu5mAiQMrOfUEV/OvQd6zLLJit4VkB5zzCMstlSUBFPCEESxIoNkhRDynTOEZRinsRfcZ6X8hzoze/R6pKUWp5diaZpWMRfU+QWCAtdQsl9329h4WokH5P0n+t7lFJ0Xc9cynTKhspjzI1MWJYFoyvZJkB2WZaNcKkkSdd1zPNcpBWaNSROJQmnes8+Pz+XddncEmaV3thIY24124016GhYvb9bc6S2+JWu6zaS5lvaN2V57//9GkNzHzK8942sAO5vhVbra3sQuAdyr53Pa+fWMnz19xZ47pnM9rz27OoeMN58EG8MVPsdcA8c92D3tX5ow897oN1eVysbqBOKc5aU7kH6nkmt51ABzufPn/nTn/60ZUhWr8j9+VZmsQ0rt9de/e0qA1rLsOUcuVwuPDw8UjWcdfGo/Vcfrn2/78fHfctbJYSWmdxLK9prrsep2pR2A7RnEetxRUSuvwCY9Vpr6L8dm/V49bv2LGcrF3jt+upitm/tOH3t79/b76spZQo4kTBoJhGisGnzHDhfAuuqidliupF+FCNw7xfJSB4cThsUlmsIBaBIGdWh64kxozAMvVRfeX5+Fi2iMZDu56Ou70TLpQUMGW04DAdh0VIslWkMa1qxnSTXaK0Zxg5jHJfLpWjTJES6JQ9E0dENQ8calmJvVcowdgLA6iZUaYdfPaoTVtaYajHkscbQF91WKOPbOcdQFmajNWEVQ+u+mC6nFCCVggvFb1aeQ9lk/+Uv/0JnxQJGoTBK0Y3ClBpzm2OG4tWpy/1aFk+thWycZg0LShl0iqAUCs3hdEQrU0LzNakikoL0zeo9qfNb+UlrJPtcQpHCMucojJnOAoDEtUFKHEYjLHTvComQA0ZVg3jFMl23+TeGQA6Rvhsgi8Zwvl6Bmy2dUYpOW355/zOHw4GcxV9yuV5QGpZlLnrbsg45u4VyA5DDepubjZTWFD2o9LXo/CwYJLkHyS6+mxcNxJA3X0NjDMuk+fHHH2WsJkm6Uirz8vKENhbXdfz0xz8wjIcNT7jeYY0qxu/iO+l0x3y9CFDSIi/QKB7evmVdZvEWTZH5epH+SjeP7HEcebm8sDSaUus6TqcHYkz85eefORyOnK8Xgg8oLQBPkttEeqC0OH88HA/E4EVDGkRHGQrxJt91YJomtFGi85yEQZQogCUl6PuRYEKpNa/puxGlNQmFj5kcAn1vpALWsorvpA/Ysow4d+J4PElEwvut5nfOAWUNy+xlExoD2hheLmdqBKwf+20DImSF2Taqv6V9E0MpX3KvPagT1g30se3A9gCtApm/9be9tqz+vQUAX2MR6/taIFg/355v/e4KEtrP1GO0ALIFBHtguQ9vvgYQ9ufRXlNt+7B4Pf+aCNK+p+4cWsavAviWYWxB5B6417Jt3nvev3+/7Ujq99S+aNmzWimm7pb21H8bLr+NF8W8LhhzLRUN+s08vGWu6zVJcfubaf6+X299dDvP/Tm3ILgFmy04b99bz6F9Tz2/PUBsGce6k2zBbxVTt+9ty9m14LMd83vA2o6dnO83HK89Q9/b76/FWOaZLD/TGnm+rHz6vPDLhwt//ctHfv3whF/BDB3O9axrYLSWLHJKARN+Qde5gI6Hh4di/K03P8VY5Bgyr4jf42alY2RhMsYQLuE2HnPm4eGNeMOW8d33Iz6sMv+UjdSyLJIR7gM+Jmw3EHMs+rhcytBlnLF0vQUlFjuQSCFK1rKGrjuWLGrRRFpjJFO8ibRUOYwp330uJeicc6JFTZFQGNd2zpQSkfcb71j8Fq219F0v1ViiZ1knfBAAKSyQBTQoyX4V4CIRgJiSaP5Swq8zQRW5QmdZS2KKPOOTeB4q0cqqFIl+LUxqYFklHN93pUpZTqxhxWCLnU0xKFcKpWUNpUT4rFGsWWqw1+zxzkpVE2JEpYgPK6aoEIKXZJxMZrlOAqaNxiPm4ucXGQOrX7FWY03xXMwSClVKy7GVvC5lPE/FnzASY8YP4onqumqCH1nWwKYBJuHXBVu9EVMkxYwv2ve13ENnLUpnhmGk7yT5JgSPcQ5tJZnocr6QM5ulXB88fl0bvZ+QB31XIz8RdOS8zOQwkOOtEpFCZAu5mWvrelSZaNGTynqac2YYDiV51Ih+0UmSSgiSPDYXI/yn52fGrkc0u4EcZfyHKIlowhTGra6991ESVJ0rno+K1Ud8iKyrlHHURmO0+H7GhNSXSklkC+pWbSiWjVRGwtTW3So/jeOINoZl9UzXuYTONZ3uSta/2G9J8lpT6jNnGdPfsMx8k7F5/X+7qNd2A5WKlL4sSVjf0/r97cHa/lhfC1u+xkJWULMHd+3/X7umCji+Forff74F1HuQswc3+xDt/lj7cO4e/LWgUzWD5zVwvQfd7Xm9xv7VQWOt5cOHDxyPR3766acvwG8LSpWqhsLdXZ+3soeWtRTT8QGFMBTjOG7HDiFsGZzzfMvu3jPHr/Vz29oQdKvFbXWSexlABck3FvJ2L/YSCJnE2JjgZVlKiMxswLwtn1WP234H3CcW7Znp9l62myp57f5623HU9vn39ntsEkaOGfHTS4nr4nm5LDw/T3z+fOF6WTHJYLSjc5JxnFGkWKSVyqBUAl0qR2XJ+q0m0lmBMhoVVclUltBlVJmMEnG/poDGXDJlS6JGEpbfdR3W6M3DUOf7UoyLl4owVedVx3fKstlRSJKN9x5jLRmFX1eMLc9deQ689xhFqXwT8LFkmFeLt3xz3cg5b6bLMQpYjqVOeUa0aO3DobQircW4XanNFD1p0eXJ+yWkl3JGaYPWFqVhLvKBzsmmOviwHQPqnB/KgidyhRk2QCm5CxLOtsaIRjIFRDVXjoHo6MI6kaNkRnu/4tTAmopXphGj61zuFVS9nkHnhCaikdrb5IxKAVIkR08OKz5HYigJH8UiKZQNfvDgldQCrwk2Uhwik1zRchcouMwrqFz0c0rO0zlJtCrh33m94qzF+VK5KYbCcIp8I5Z+EcsgsRAKIWxj12pFIDPPVw7jQDBiQi6gXAC2UWIxtMbIMl/leUpaWMZ0LpVjJIoUU+RYQsBQiwNElmuReMTAuswYLeBJZBUC1IZBNkhbUhNKzM5TIiwJ6yyZTNf1KKXphwFjxM6odbgJfiEstTyv+GsaJRrlRO1fqaNey2z2Q4cyFpLY+qRprgNaChjERNdpeX6RZ8f7QK8Nl+u0yTRizhgtEhIKM7lhAaRUsLMwXYWFVUaSj1ICHyJojc5ZkpC0JOdZo3HW0rt/A9ugPZMHUDVAWhu0Fl9KKBqhDDVcmMuDqLXZFuJ6PLgP37ZsJ9wvoK8xjntg2oaoX2M09yDvb7GgLRCsgKLVy+0Z2q+FKWvbg6J9newWELfg9GtgWYD2jZmUrD/ZweZ8A/y3axB7kLtdfbGW+OWXXzgejxtT2YKVCoo2J/6i6aihrJzztgjU66o2DjknbJlw6obDWredszB8ZtNjttKIen/2fS2viw3EsiwbW1sBYQuaWza6zW5tgesetO61kvX9xpjNnL1NzmkZ0Na8vALn/SboBvprtne9j/Fus1LvZ73+eq57J4HvTOXvsykjRsiBwJoiS0xcFs95Wnk+Lzy/TMxz4GgdupQIdF3Plh6QxQTZWo3PoLJC6bSxELHonzICLAVkFlazVMGJKaNSAVzFiLxm2eacmeYZbQ0GyXpGqU2XWEvNhRgATe+cZHB7WUTRtxrCznbMZsEU54+cEkYVC53i+jFNE48nsW2JpcxfzJJ9S67SyLxFT1SqldMiUAA0VKR9z9SrWvr1JglKKWK13QDhGlZ0iljXCSupIETNdbpgV0fsR06nIynKnEQDhlNJjMsUcLZKdEKeU+isIztLLvNgDGth/comvjz/q5fj1DnDKlj9XMCozCnK3Cr4KKWINblER5Jqiz5IuDsFT4orMcC6etbVE7wvmsR7EmhZFmK5FpQSzSV9mZ8EUM7LRFI3cJVShKtmCUuZexQxesmEXmfZiGjF6tdS0k88NiV7uMibYmSeZyEVlBSycUazzgGF+F760l9aa6S6UkKh0Srj15W+H4DMOot+11hb/I0N8zzROVu8KEsVGmCNCWtlDfPLQrYWhVThEfN6g+scSzGZB1BajN3X1YMKGCvh/yELhukLY17vQUqp6KUDa1gwRhLFUkp0TsaRMgaNKeboCR+ChLqdI6+hgPtA9GFbg2MxPe+Kh6lUwgIfgmTHTxOu7zBa42PEuQHjxF7qusysy0LfDwQvGmKjLcFH2fTlW8JPjAmTEzEp8EH6PmXsOOCcWCr91vZfnZRTQSIIqLS2usbXzLtq6yCVDLyPBVDevvK10PVrwLH+ew8M9yxe+74WLLRgpLY2AaVl/WpYcQ8yKqDcL+Ite7p16q585P7c22O2DFP7PXtAu2emZK6LW/ajMfX4t+u6v/7KOMh75D7Ibq7ve87nM+/fv+cf//Efyz27hZwrONt0Uw14bq91z1DWvxlnCNEzL1ceugdiCvTdIExKjBuwqt5XmXjXB/V+3mtU1VYJoHpRVpC332jU/9ewej3X6r3V3r967nsgW3WjrjAxLQNaP9f2Q/v5lrm8HbtNxNmDwpqEo8tuXX/xXe3G4ztD+ftsYlKd8CmxhMg0r5zPM08vV56eLzx9OnO9zJze3jRtOYsNjtWaHBNh8QQvCysabGc5nI48ffosrE+8PSuddRsQ3MZEATNaKZLRHPvj9l2X64WMzO3Va/Hh4YHL5VLYGPnbmzdveH65cLleUVpzPD3ApPCrF7ap8c7LWWGd5Q9/GIv7ggC9WKrZwBFKeBdgXhdcTXCzlhAj1phNNiIbR383L0/TRF/qW9dn0TlXEi7mhhioPwKAPn78wHA4cjo9YJ3BWEjJo43ChwXvF5Z1ktKMxpBLZv7mYpHEzkej8UFK8akCjpZ8q2ZS5/0qiWkdKGq0o25aX56fNqK1vl6PU8tR1rm2K2HM27oatkJENSJymSbmeZGs32n+QsozTZOE19Ut4nQs9dMzqWw6FEu4SQq89+jz82ZbBGXeR8gCrTVZlcSRaRKmrxRk6Pu+sGpyvOv1yrqu23x6Op3K3CxA9Pn5mXfv3t3NlUopOmOQItlS934YZM06jCOH40iMnuM4cLlc5PtzLnZOutSnvrl41CpIXd8zTRPP5xd5vhScLxfmNZBQuK6nGwapqQ04d/NIXZaFcRxLQs5SrkFYbnIuRIqmBAjoup5hGHj//n0hT+SeXKeF6/V8V3UOrVFlzHVdhyuRvIwhJvAx8fnpRcqyzuvWRwmx9UoZrDX4EJmnF5kfUFhtWfyKzRlbEryyUnSu29YRo6V6kFUiSRn7nt79G/hQtqxfC+T2jJ5StrCVtW80Wos/ZWWx6uTwtxbCNvxXj/NaaPD+u780LW/B5F57tjfwbo8Dr9u97IHEHtS25wD35R7bh6Q9l1ZO0ALP/THv/63ugN+ekavnVvuu/X3bjWaZvKr28ePHjzw+PvLmzZvt/uwB9P5Br+fZsoN7Ri1nkRZUNlOputevjLLbssb35/9aCL/ttzop1qzr9t91Em8BfRuOblnV/eamsg/1GO193DPGbf/uz7cFmftNyv669vdoP/ZacLvfRH1vv7+2rjM+JdZ1YZ1XlsXz8nLh5fnM+Xxl9YHDOHIcR8ZhoO8cioRWjrh6NIpx6Jmy6JV9SIQgvqhaW1KSiiTRJ/q+K75xGq3BaMPL+YXDOEqorHgy1me1JuGtwRcAKdrfv/71rwBcLhJOs84SPj/fxn/OnM+yAKJzYZ4WFHKsvh9RSkqtiibSSehssBg78vHjR/q+ZxwGSJmxmFyHEPDZE1dhvvL2vOzK0inxCEwpbYmANQv8dDphnEXFhG2kKzVicj6fuV7O5FLm8XA44FfP0DlSsZOJMTCVBJVcmNbL5crxcJBM4xRZFk/XicG5JLOsHI9H1g8rMUQyZd6IojlU3OZCbW56ca018+W6JT3UZ3wY50Zjnut/hbmTPq/XDBTTcvHmfHo5b0kv10n0fWJrEwl+Lfd8LZpDYcMvy8Q0XeXvVTuuisVNSqAKcWLEssdZh82WQfUi1zAG1xmmddmM3uMqG/aamKOUukvqVEjy0OV8Zl0WHh4eRF9qLOfnF3744QcZF7HY8aSEtR0xJtZ1Zi7JTS/nF+YSpapm+KHKK8qa01acWdeVZV1KScuOeV6ZFs/xeMJax/H4wHjUXC4XLtcF6yyHw1HqdWfFvCycz+c7DFA3VV3XcTyMzNPE8/Mz1t6ImLB4Vh8xnUQFTeforRQZ+Pj0ER1vJUJHLbkoYQ2sXjwp+17K/y7LwuJXXN/dSo1qXUzxDYv3+OilEhXgSwQyp1ySyGQ8jwfZAEEmJDm/ZAyUhNrhcMAVPSWvRF6/1r4JUO4X3XYhuy12lhYn1sV0n+TQfqYFci0Q+RpI2x/ntfOpu7j677o4t4zOngltQVnLLn2NHWoZsPZ4+9D3vt/aftlfx2tA8/V+Eqq6BZHteWwTmP7SHLztnxouHgYZsD///PNWuaayehVcVZAG3N3PFgjvAWdKsggqpTavUudcybKr537P9taf/ZjY3+OaLd2Wh6rnvD+fCsLq4tKGovf91t7HW4jnluBTd7l7UPi1MbkfM/v79Vprx1577a/1w/f2+2zGKNbi4xdTQmoDW7QS65kUEjkUDZ4uyWllg6Rz3hbyujCSxYw6xMgwSilAv66sMZLIoLIk6RiNVtCPg/gubs/hzZUixiim3uq2MW0lPbZY+nRdvzFNElGQcJ0dHM7Je2KMrEtNtljo9ci7d++YJrGjiSHgV08/OJzr0FrMnZdlEQYL6PsOrTSXYulSPRYrS9rKo6ptUo1M1GuoiYK62OnUZIv2GQzBM12v4mU49mg0yxqK6bX0jesMyzqzzJOYx3vP6TASU7wxf2bkepUayTHKd02zhK5BwpLerywlwchai+3cBjy0FwnCuizFaidtm9whDCVxR6QB28a4eFBSgoNVLqSU4joLuJznldX7LcSsy/zt11UM64FcmMUlio3QMs/UsotxlrB1yklCt7aRPDkjjHH0ZKNI64yzjk45ahmfmrgTfNjWjHYzfZMJSG3yEAIaRfSBWJKj+qb0n1KK1QsjfdvAG5SStTynvI3rauUjtc9v1fTqvOm6bgOTxhrQin4YUCXDWhmNswalrYBUpTBGSIp+GLbNjFLyXS8vLyVze8CejgAMXYc1otNcVxnL1dZHKUU/3MocVzxS31PXscWvIoGxcv3LskpiWwiiK9YlUUaXIH3RE/t1LQb2EI3GGVn7u64jBNn4JbKQSNYQiVKtSYGxFmcMzhkMjsM40HcdnbV31ej+S+2bjM1bZq0FWW2THeV9GO618GXtyHaBrO9rQVIbLqjnsAeYX1vQ98xdBQUtiHjtMy0LWSfY176znk/bP/V9r4HgfWj8a6Cg9kt9f3v9bd+n9GXSiZzr65Y7e11mPa+6aFlreXl54fPnzxtz2bJ0bZikbXtmsgXsEiK+gVmxEHogBFlg5XvNBlYlY83fHWfP3MKtDGK7GagLyD6DvPZPWxmnHYd7BrA9vgDg/otxtwe7e1a2HRPfAv7a7/itn3ttw/K9/fdvNbQosiCDMR1GdwVQlqobuSQglAU256Y2e9lrVUCotRKD85S2DeC6SpnB7H3RbmVMklBbDRsDm3+e/MIW6m717CklyTTO+ZZxfMeKizG1GLLbogcri7wphthJAAVQmCXISZIgUkoloaYk6RSAoQvTYstzG0JNgClzGNw02KpUomnOvT4zUjbR3IWAK5DeQE3K+OCZp4nzyzNDLxm80QRJqEEW4MpG+nWR+thZyl5WnaH3q2hNNUQfCXNgWiZylsV3WmaWZeU6Txht6JzDdiKZ6cv8GX0Jxc7TLWpiLf3Ub8C0rmHtNYCYU8scJud8XWYxpw63BJh5XQthEASMxABkmW+zJeSMyuD9KoC+6k6thpjJWslPkoQsZW+1wUOWpJYEJJWJFE2oKZuFkmWuNoImEoK/zZ+I76crQEY8/TNKy1hdlkXm57J5FyJDlzXFEmvKBmzr3fbcqWIzVeNgasPgAur6QYy/c8Y6h+06cs05UGIxZUtymWhphbypAHkcZYMwT1PR/5YqOWUTqLSYhccUSD4LeEuRdfWYoLFOynzWkpUo8YUV+UoipITTosHWShNL5neKUbK5KefjG61vkn5QVLN1D1lqkGst5umb8X3xMEWpsnkIcv3I8zcO4h3bFR9M0fL/tvbNWd57ACXj4HXgVMFP3f3uF/o9SNyHtNvvrj/7hJG27YFBPae9z2HLIO4BXjtR3UK06otQ92ufbyfmFuTtGbb2vPcAogUgLVD7kqm69WELNutD97oc4T6cXsNg9TiVufv8+TM//PADp9NpY/VqGKVlAG87xnvApsqEX69nY1iQurhv374lZ9UASrtlSu/vXR0LLWCT71QbYK3ta+dVj1HZ1bsFZvdT7117jOodWVnQdry3XpevtT0ovLGfrzOW7cagfv9rx9vrbr+332HTYgZurcNZAXhGX8tEL5U0rLFYLdnBRimCD3T9IAk3uWRn59zo3qQCjO0t4+EgZdf8SoiBZdVoHcW42Ace3eOWBFLD3NumC8CXuRUkVF7GUT8MZXFUDftzSzg7Ho/yTFKSOpLopNUqtaSrfOZwGLZENvqOEDyXaRKdmTGoAgKHvtuAd2WabNnErn6lHzop01eJiOJBWzVmVepS572aTLS3VqtrB0l8F58+R/Kj2K2sS7FN6nqc0dgC8pWSe7CuC85ZnJMqLes68/btO6bJEoJniSuphA9TTqzB42MoNjySsJKvMgakNnLNus/41ZcyeBXw2VJf/TavhhC2LGEFLH4tzJFk8secyUnASBKxI2sIWz9prYh+xVnNoHoBikg2ryugyjqD6eT6Wqsz2wlriBadoc5aLJpQpVxfwAdhiB8fH0kpMa+LODEZjUaYy2VdGHvRhxql6KzlcDigUcU/UkpXxijAsxa5EL/KmdxD1/eSGKkda6zrjczXteZ0KlIFDcSSwJVzZg1CVAzDwOoDyzxjjNhGrYuXjZAWvy5tbKmok+n6TnxYd1GzznWsVpjf+pxUOyTvpXJRiFK73DrHsn7ichVz9Uwi50T2YKzDloS0xXv6cRRhbgGn2jpiToSYCVEysZdlJS95c0rxMfD28Y1srKYry7yQoqPFAyiF7XuC92gMnTUknwg+EFIGl+iN5ng6MZbjAsTiFPBb2m8GlO2i3oYL2/AgyIJZ6d09EKuL/ZcJFveMzD5btn53CyZb4NCyVXAPRtpQzx5U7ne47XW2QHL/ewsKX1vQ9yxdG0Zv+3PPZNXPvBZ23+sB5fV9lRpNzZ5WSn0BgFrQVK+hhlkqG6e1Zpom/vKXv/Dv//2/3wBVDVfUc22BWv3sfvIGNk+vChbr5Ni5fpNmVD1UnWxXf/O4rCGS2m5jJKOUTJjH45F9WcR6r9qxU89nP47b+2hKQkCdzGrIuwXobT/Uth8ne1D92jXsWc+v/W3/nNTWemZ+b7+/1h+OhLyi13Urq6joyNGSk0HrjuhTyegWvaDOBj8v21y3LEuxjRFWKhPFVxK2hIacM8/Pz/gYSF7Get0MKqUKwxcJ1yvH47GYGkds121huzq2j8fjVnxAl1Dt+XzGudt4PJ/PpJQ4lQXMe8/x4cT55bqVNaxhcyh1u7Xhcok8Pj5uLCI5lfeoLaRfmyrarRQlUeNwONy5G5wOR67X68bS1rDhJvEJYUs0qvMSIPrLHMlrZppk/hrHsfR/xge4XDLWWIahI6eRl5cXnp8/b/PTOI6MY48plYMe3pxYPn6W+ccaVNbYzpGz9GeV5oQUWSfPy+VMTVD1MZLjjVX063ybrwqjqrVUHPIllJ0VONvzfJ1KX0kW8cvzBdvdF5yghMStMRzHR1IKPDyctjnj8fERcqQrCYfWWg6HgaenJ2G/y3xZJVC+bAqUEhZOWN3M9SrJMNM8Y7TG9d02dx/Gkb7vi6TjxpLX8XkYD4WlS4TVc3rzSDBxq2gDbMRGxQ7jeGD5/JlsFd0gGvzrNG0souscKeTtdyhzq9FgxExesp3hOs+AIubEOi+kJHNr3w9YJ6b+SqnNVWRdV3788cdt7u37HmMbDWchINZ1YZ7nkgilt3Xqxpz7rQJUnderF2b1eo4h8vDwBlPxg1aoqFjVgtaGZV0l0cZans8vm4Y0piw13os9X3VOSDnTDf2WXOvDQgqeHKNUxNIH+l603EZRvE1/e4TtNwPK15iWloWsrQ6AlqkK4csklteYxJbRa9lMYANU9e/7RIh6zJYd/dp3VlasBWw38HBbtOtx91rHPSPVgoH9At8CtX1/tqCyBSFt336NTd1f100uYL/4e3u+tz6XkE7L3tWHI6XEx48fefPmDe/evbsLZe/D2rXfWoDe6jblOm6ZyjFGPn/+zNu3P2CNK2MnbzYM1Ruzvr/253787cFxfa09l5r12d7L2vaguu3jFjwKoE7bxuS1799rb2sffY0F3QPD/fe37bV7vn/9O0P5+2wpa7J2pc6zYVmvfPo88fP7J95/eGa6LOiYiSGj0DgjGkOxPFFoU9kJqZGtVaMNThLzs9bRDyNmmvFBmMocPCHFzS+2uiiQEp+enrZw6jLPdN3AsgrAzDkT4gveS5WrGrJe18Cy+A1gOnNvd2aMVN8wRd+p8o05qcyj957rdeJ4Gospu9SRzgqeX14YivbNh1Jacl3RSnE4HpgXAZx1Xl3XlTM1SeXmJ3xHdGgBCMnfl0VNKWGslkolWnO9nLmcn+msQyvJzO66Hq2NJPYoYcykKldXwv6xkBhSO10pOJ0OPJ9fpGZ4jKQUGI8H+pxYSzWTuMyM3bgl6ZAVYboW9lHYPNcNiB70itGarnfbfPL27Vu00SxeMv/Hw6GE45OUhdSu+AsWsGY06+qxVjP2PT88PuD9SmckscZ1Dmc1ne3Lv+WeHw4HrCmVWOYrSqlb2U4SwRTfyXkhO2HXu6KlVRlyrEb3JfkI6etuPJCixx0GOtdJwpa1uE7srUgaa5WALCtZ0RUMhRBY5oWc4fHhYWMa0fcOJDHGTc6Rs2S1ZyRxpu8GFLr4bMqzozAswZMzKGXE81GL9CtEsZj68cc/cL1OhcSQzcEvv/yyme9XltZayzQJk/n4+Ibz+Yz3cYsEvn37lmEY+Nd//VeJhBqHznB+uQDCXmtlUBg+fXrCFDu9Wgoxo1hDZFlmlHUlJ0GM+K2NoFecNVBYeqUtw+i2pB1tDSlKRANFKQNangmt6TrLYeg5DKOMCyPG8tXT9Le0b9ZQ1kX4PszKBoZiDNRi97eQbOSWgHE71v7zLRDcL7ot89SCrRZItkCuBVAtyIEb6K1ArwWntbUC9dcW/xYQtyxtHdj1nOpgb9nQ9vr2LFXL+u1Bdwvq9tmPe31m217TIFZg3QKg+nvXdVyvVz58+EDXSWWO9j7Ue13BVAXoFTxvg7SMgbqhqBNTBXkVADp320EOwyD2HaU+cXuNbT/sx097/XIMvzEUwGZbUe9R6zLQLjYVCO7Zx/pd9ZrrTrKOlfYetuB1v7nZ35fX2mubt6+9Z7+5+d5+P20NinVNXOfIy3nl48cLH3594dOnM9fLAmgRwWtdQIZ4+tZyclQNpqr2MbcNi8wDGWMk9N1dLqz+xuhk4DJdpaxg2dTFmMhVd210qaPNFhKs41jkGHXeu+mOtdab3U/OmctFbIdSSihdFkQjurlqr9X3PdUivJWHSCRSS/Zs0XhVY+n7Z/w2v7UsTi2wIDpHv81JFcRux9B6q5O9JepEWTzd0DPPwh5FHzbtaggGCEQtkoQ6J1QJlNYCcIdh2LRvNWt6Kf6U0ieKsATQCtd32JIUY51FKdmoWmvle+t8JvFqhqErZRZvSYqn0wnrnITT11iY4KLDVIrO9WKTEwLTNGM7yzgMKCWej84Y3j78SCrA21ojmbxK4bQRuySl0FlJxZcYxaonZ6zSZKPBJHyRTGRbzbElUWgcBowSxjIn0fx2ToC6QrK8c1QlMdJu5EElDYwVfbAPga4kadXxfDgcWFfxmJSsbmH2dbnX67oWX8qemKTiT0pFehAk6arrBnLKzMsi0gGtcU4Xj1ZRWTrnisby5um5rlLfWrDAzUKOlPFK3AAS97kGNSdA1jtZc2qp4KoNTVH8J4dx3HTJzjmOx+PmkgBNqeBcvZtD8yxplKrkhyEE0TJLBS0jzzjF9zWETd8cisQixYDRitM48ubxgcfTCWcNzoq3qEYJSP2N7Ztree9BUAUiN6D1dXDTLsgtWHrtO9rvaUFTKyL/Wshw/364F6C3zN+e4WpZptdY1P3/236o37kHFi3b1X5239oQbZudXK+37aMYU9kt32sy9/36NTa1fl9dROoArWCrJug8PT1t4Y72nlTKvC2j2Ca9tH1RheNtH1wuFw7jcasJrvUtuw910+G2Ye97EP/leGqvsS5otQ/2G6C2r9oNQXuddRy09++1cVDfvx8Tr43h29+/vB/7DVX7etv23/UdUP4+27wkrlPk5WXh46cLP//yxC+/fOb5aWKZAwaDsz3GCMAQlqREKYxG5cJEKgExbTSiVsqpTPw4jkxNcodSSkzLjcUaYfJiYSm995hs6QdHKPOiLDoJVwT4GbFsSTFRCw9IFMOiS+brsiwbCDRWNotW1SQk0R0aY7ZkG1vmjBYsxhhxnSS95WYj1857sWxOY1ks+6En+FDmL4kchBgLcJUfsQYSZiw3826MkZhAqUzX1QiJkqSfnAs7eYs2+CRzSGW/6kZ6WVb5LiVAWFsnzGe4AcAQgmRaW0lAqUB4IzmMxjm7McntOQ4F6Mm82KGUZhh6qfecMynKmrYGfwupZ/F69l5qVWujOIzHkqQCvbW8e3ws/r2xAE0HZKxWWIVkDxdg3ltHdl1Zx4pu3ViCcSQtCTq1/3PK9K4TL1Ru47Yvn5dzMLJPatbxnGXcdUZM81WRTHTOoZSQMTUDWimDD76E1QNZgSl4IxSmUDT1aot2KW3I2Yt1UhZZ2Oqr+bkrbgqSmAIIc+lcKTV5Zp5m5mXh2pATxhjZTJRr98GzLPMW1q/3sbKoOUsSVwWlsvHS5BKSPxyPjP24SVmqsfk0zYTgcV3HdBXHhDrvp5SLobzZnre2JLKxMqfUzWLKou+tz0VMsTzfgc4aTscjj6cHDocDzpoq4UQr0Xj+1vZNIe/6gO9BUp3opAyd2ya/PVOz/9mHhltg2ILSVgPXAqv604KFPQjcA4j2+HCzpGiB5muhytdCzy2ora0FHfU4+8SN18Bne80tkGxBe7qbcBVimXo7pxaotG0POOr3tedVr3EzIy+C9lqW8c2bN1s1mz3oac+rgsA2zB/CfW1wCZHNPJweSyhZHrLtYdC3Eoh1ga1M6G38yaJwy3hPG0NRQWYLKtsEp1ZT046hFsC2etZl8Xfjrn7fXsbQ9slr/96P8dfantG8MadVk6s3MC0L57dpXL63/3bt6cXzcvZ8+DTxr3/9zP/+n//KP//zL8zXRMwGv3gGIwsllDGlLNqK1kwpkaWEuJJVwljLVuWmPnNKwrtv3rzBx0D8nArQAzK8nM+YUkJNa70xYCF5fIi4QRI0xAI8o4zBx8DghsL8BOLqORwO9EPHMIw4JzYk3eBY1oXrdSIXuxdrRMN1Pr+Qsyy4h8NBEiYU5KSwTp7jeZFIhcqQS0YpZR3JtRDglowQNhbRGEffj5zPZ4wxjIcT0zQVq6H7yJQyojkDtmeblLgEzzTN/PnPfy4heLHECSHy8CCenH5dma4CJN6+fcu6rpumGsTOxZT6zquvWjkBG845Pn4SHWJaFoyzvHnzhvP5IpZHw8DDw5Hn58jx+LDp7qoWnAzH05G3b9+gteZwOGyFHCQRyXG9Xjfz9HmauC5xs4t6PBw4X17QOfPm4YGH4wEN5BgYnCXnMpfGSN87rDJIcFoR1wWVIlYpjoP4hF6vV4zSGOtQg+hmfQwytrTDeyAk+oPbWEfvvYRNXVnLYpRx3MztLy8vPD68leovOWO7jtPpVGyoBOQ551iWpQA/yY5eF0/It81O1/d8+PBBzM6PR46nB/FTdj2rX0sd7bB5N7qup+tHAd/kAg5rLXNLP450/UCurOUwiO9pKdU4TRM//vgjwzhgnx3//E9PvH37loeHx007CaLZ7fuOabry8eNHYhYdJLAllZWiRaiysfnll184HI5iUO89Mdf1gxId64ll84lYk+Jj4uR6YhTGv3NO/CXnqdT8BuNKNTrvyUmyxpd55vjuLX3RVYIA2nWZyqanbEh/Y/smQNmyNXtg1jJHqghub+HPjHP3/oK1fY1haY/ffm8bnm3f9yUDdL+At2Ckff+e3WxB0musVtuU+rJWeQsIX7u+eswWILe6xD2714aO71krMTBOZYGo/6++ZH/rOkEYzhaEStWHm01R/VmWhV9++YVxHLeJQtgH0VVUkFmvZe87Jv0gFZR02dFaa/Cr1LOtpQwlPDBI2bAY0dcJY1yRUHxp2i7XELcwVgvegZLMcG8ttO1a1b2+sQWL7YbixqTnAl7D3fva93/JBJcsvrz//UtD8q+x4Le/qe3+aEUxw1CQxUS5ltH63n5f7fNT4pf3Z/7zv7znf/v//YX/+B//hefzika8GG3nGMejsDKm2l0ZKRGYQRXfIMm8PRCDhHfhJt7POROz2Ag9HE////autMmO4zhmX3O8A7sQIEO29P9/lB0O0pbCEg1iiX3XHH35Q1X19Bs8UKQRCvHDVASDi913zNHTnZ2VlQU/L50ztNbsgZcxKzKtpkIYB2QgRI+nxhXrH4CkIcY1LBfR5TNutxtnLog58t4jcfX4fr+HNuQN2WmZOyyOx31J83nvia1JGVpbKJWgteeCmlw2Romf6aZx5Ry6rsPpdILKVCwjG8e3b9+SUTVbzKQohtYaTUOLo2bPmMTM7PF4JGYmJdQdqowxpcpdGD8FAg8CiJ+fnwGQplTmnGmeMYwDXs9nNJ3DMIxlnmkaKkxpHekV53nGbrcDQCnHMxcbibRHvuv19Sd0zkEp4HK54MOHD2Q7ZMhTcrjecJpfiYvVGo2llo+/e/s7QBEblVPCu+c3mOYZjXVorYXjVL2z0h7S83mTxlL0iuN4Y+Yw0r1JGcfDEchUle+nGcfjEfM8s70U4GePp6cn3mgzQ9Z0GOepAOwYI8bpVuZ7ay2en5/RNB1JPrSGa1sCosxaC1EAoPSU3+8PmANphFO+l5q9/PSCy+2GZx/wej5jd9iX/tbTNMHHhK7fAVCY/ATpBQ6tYRytfcM04ZmN1VNKRfJ1u93g/YwUaHx8+vQJ+/0ex8MBf/zjH/H582dovczf0zSxlRU9j2/fvsWnn15wvV5L1zUNRexjTHBNw6y1w+02sJSB1gDBUhkAtMZOquUrJ4NxJCN7o0jCAaOZPOGOUUo6OI3QWsFqjb5pcdjtsWs79F2LvmuQoqfiqUyFQ2llE/hz8auqvIUpkqgBlCzAZG+xtma5X0QX1mWZ+OpFvf48ATDy3ZJqlUH2CFA+ivr19XseMU9r3WQda2a0BgG11qh+fR2PmNaaqV0zX+vX1+e8HOICBteSAPmOdVV9fd1rUCUtM2tgeLvR7sqyRkUGt9yPdVq6ThXT6xRiZA6E/ctC9LhcztxmjMzPY8ywtoGznuwcNPekzfep4/V31PrZmqWuwXktIajTgnL9y+Jc6SHrqtLMO2P5POC+93oNKOl38p8ck0gU5D4+tgN6NNZy0nKXZbdW7jvPMF+8d4t/fvz14wXf/9f/4s9//gF/+cuPOF0nKOWQkkEMGdkTS+ZnX6p5FagVag6kXdM6Yw4jlJqZyVDomnax0TEGrXEIOaHve+ymHcgHkECWmKPHDATvoUCbR80aqytXoGaQibPWBlnpYrsiKTVrqa3iPHvOOBhYSzYt0tbu6ekJMZGmkNK4Gl3Xl+eo66gDjuUq79Y1uA1XTvnTHGYd6ehm78ls3Bg0TYu+31Galhf/lDLmeYRSKB1QRFcpXX9CGKlXMlvr5AzMM3fXYf3e7Uqm2QnL5pxcHSgL1DQNfv/hA263ASBnQnRdg5eXF06D5uIMcTpdyuZX5pG+p/MPPsA6i8aSH6VoMrXWMJrYZ2ssFBKOuz32u570h0ZhGK5IwZPtFOsh5xyLnMBai+N+BySUoqAMYvbePT3RYMyZ+oZbmutIK/iEFCK8pwKoFAPCnAHxSGQfxjlGYocVeTSKTGnX90gpM+iIiCFCWm3O04S2adFYB2e4TzkUTH+gYidreGMys7UV111YCwVzb7SfMqwjNwBiPmd0PRmJG2Ytvfd48/SMiQmJ8+XCzHFgyYGGdS3EYkgXfaxBysBuZxEi2VRJgZeM29r6MFeZWSq68aXLG93zRR4iOkjv57J2tK6BM5aIgMiEFW92qK94g7a1SHmgorIkafUAL6l63rwJUFbaoGkpA6E9FemElIAsWYzMZEbEfr+n8R6J7d/v99h1PRrXUFYkZSRFBVVKcVHdr8iA/b865chiLBcWWICQtQaSpxdwti4+qAFjDSBrALT+WR7SWmdYg4b17+V38hlrFnINOtZsVX3eX714tuq/WV2LL1nb5XjqdOtaS1KDyRp019d8DTzWwPzRfaqv7aPjqz+TmNzF8gMgMP7y8oKu6/D+/fvyoBveMcsOSl5bX/P1d8vxOedwuZ7R9zs416Bp2up+SRtHICN98V5hVWtQL9dOwGVd9Vmf43pDUETSFSMsP8u5rUE3Xet7YL6+jnWs2eH63nwtlvsowib+UQFZZWKvFPmRAumrn7PFPy/++88/4rvv/oa//u0TPr1c4YOCNg1iVgBitbhRYY5WLFxKq+eVNw4K1JNbGWDmXstlzGewNcwOOVWLYBmzlM51hhZOlcngOs6e9FyJDNV19dzknJCih7VuJUFiP0QlRuw/nwWRYqIYyYpEKdLTWWPJnzFlanQAhYbBVowJ4JRnrYUH2KAZS3s9KepbClhMST1rLYVE5PFJrKviTI7mDd5yjEqpInkxxrAHqGjEeUOYSZ86s3l3RiJt3zAU/RtlltydJZs1ls2iLZLJZd4saU+QxRKMRde2aNsG1hrcrleSOEgGpm1wu15oY6lJn7jrWkSfkJJC5syMsxY928WEQJuWAogYVCfF9nMpA9XmmaqEuSiIGWkBsFIFrjKgdAZ4/OaUoNiKJ0XaEBkeNxqAYSBqjGGjbdJ8is8qT/ilLa+Mg6yoIrvgCR5nIQRKwcuzohRc2yKNI/WjblqkaUKTMywctCPgL/rCzOPdag0o6p+dkGGNK98vvbuv12thCCUTJsdA41kxCxuQs2bA3pb3ydiSlHtd9Nt2bbVuWfKRtQYqkAftzIz57KU9I1ssxYAUl3Wp6zoopUHpDUXHggxjudVlyqyJ1shRQStg1/fouxatWEBlwJiljbI81780fhWgXBcl1AyQvEYmkFrAXC/i8rr6/49+/hp4rVmkWoNYg61HC7WwdDUzBXxZwVu/d81APbqwNcio/S7XxyOfWzOt9feuz32dRn0EfiXWad36/V8DLjXguz/GRVJQX+9hGEpje+oBugjIa2Z2PQgFeNY6WPmuGKUoiGxKhL7XeqmSk7S1jKV7UGeK7qiu8Kzvg3ynvF/SWWtHABlPa0mGTBrre08vuV9Iv3Z/FjZYdI/C2t9/T/3/OsQEvR7vP/f6LX4b8R///hd89/3/4PPrFWPI0HoHZRqoRFXRtqECgK5tOZVMz5+fZk5FomzujCEjcORlQStZoJSIgdIG+92emJl5xo8vL9S6z9IGKydAN5xNSICMRZ0zMrN/WmsM40SWIikjhYSnp6dqA0yMZQZ7zMocA4Xr9QrrGl7MvmxXOwwDWsdspJTQKA0fZmgVkZE4A6WJLUu1Bdcy3ul70928CWB5L3/f8Xgs0hejNa6XC4Pj5biKeXNcWk7ehgGWWUelNV5fX6GU4r7QHvPkcb1doaAw+RnDOCIkXzV/IMBwOLhSWCPZnSIbAorWvGkaTJwq3715w/fcwGgC3sfDEbfbjYGLhu0oRRwDsYjZEhBwRkO7FkuHpowcA6KnTI9ID6Q6fppH2qyAUucF0z3YAAtwck2DrukRZo/A1k7KGLRNQ6BRaSiVkap1QECsZLMM2w4lT3pQz+0ljaGWicR0EqAhZrGhXul8/X0kvek4T2hzhrUOWQHjQP3ntbWYxxFOE/BSAmJzRtt3MMYhxITgqfWgcw1izjBKoWN7LgF94zQihIDL5ULd47QqhWgCDpEzxmlG3/c4nT4jRvpb17U4n89QShVdrLUGHfeiF7C62+0gOnmlFGYmMqAUdZ4q7guRKtLpwSk9umNMd403ZMzNPmMOE1o0XGhjMA0DnOWCV0NSh75t0bXEnKqc0HARTsEIv2LO+9W2QWswVldP14u2GHqK6ewjFlIG3KPflcFYASVhntaL6s8Vs6y/o476e9Z/X3/H3wPDj1jCGgjL9Vqzko++A0A5z5q9XL92zWCugUZ9DI/O+1EICBNgJtc8pYRxHHE6ndCy3ibnJTX+yCtyfU41QKcdGXVXePfuAKWAGAOxJpH80ARQSmGNfN49C3LfflIWmdq+aZqmu/cIky0TvRxbfa3l8wSAyvVcQG26u69f23Csj3kZz7wrX12XL9+7/LzeOK3v+Ra/rfj++x/x+bOHTw7WNghRYZxm5JChIrXxGwdqyZZTIpCVgbZvkHzgTQelao2hgonMi8c8jIWXFiay60iz5lKDDx/+Fa/nCzSDJmMMQquhXQOrKQvhI22U+rZH1xxgtMY4zTi+eaLUeCRAOU2kj6NnYcbT29/hNs44n6+k4WsbtNZht9thnEbElAo7Q12xctGTTSNZmsg43u97WmBzRIoBp9MJfd/DGAuAiQlP6XwfZszzVIpTpIjHKI0PHz6Qubv3VMATKb0nqcdpmrDb7XA+n2EsWcuM4witAF11AZP5Y5gm6gZjLf7zu+/w/v17XC4X1tER+ytauK7vYGDhPVn5SNFHiBEDm123LWkCx3Eo62TOlHpWKWG/66EADLcr/vSnfwMyAaTz6YR93wMp4cbdWrquK76QRivonHE7n+DnuVjxkIaUC0IBtI1F0+zu5lOjqfrfsjTCe4/X11c8Hd6QG8A8czvApQ1xnibEIK01LUTCRP6VfZGkpTbhfD7jOg54enriNGsE2Cg/A4Up7HvOTim2eTKkC46Z2gzKOUFpJGj4gTrYIJFEy1oLTKRxnL0v7xmGAf3+iLZtcTgc0bF+9XK5Ypo9YiRAC6OR4lL0QveMqvadM7hezmicwTze4ByN88vlghAInFvnYKwpJuXTNOF2u+H3v3+Hp6cjxmHEPE0IMQCZmN39bg/rLE6nEzkmcOo/jIsGdyFNImWjDLVZ9CEgpQwvDge8sfz48qlogY1aMIb3M5AtdfaZZhjVYN93OPQ92qZB13ZwxsEo8Umg9T7kiIQEo/8BtkGP2DZB8fVrhHWSqrUFXX+5aNYp3prVW4MhAWryINYFNmvQJGzWGnTUIO9rIK5mgNZ/k3/L39bM68JCLQUda7BXD5S6m9Cj71kDyTWLuX7t+m+PgOvXgPY9OL/XFAIooDElmiSapsEf/vCHwhZM01SA6JrlXV8rOf8YM9to+HJduq7l64KSFlmD7LVutdZDLimvRZMrqfi6ynvNGNfjqL7uwtKu9bo1E1zf53tQSVriepGqx0HO99Xx6+fry3t6b5l0v8HYAOVvMT6/TojJ8bggf0lKuZJOLcwztczLAdJv2ex7xHGilospY/YT9vseAOvSeTHf7/cYxhE5RIRMpsXBexgotM4h+Iin4xtcblcqHBlGaOdwZaZLnp2mJe3XldOq0n4VAFSmFLu1tPBJNW0IAcfjEcbZQhxYa/Hx40e4xlGbOQZwAl5k8xZmD+NMeR5vtxE5Bu4+08F2wgRONA9oUwqQZB4/HA64Xq+04VUayip8+vQJTdOQ/pQZ1+v1CvECbNsWw/VG1i7WwICe7dvlDNe2GIaBKsUZmAvbKJva2+3GzzExWgAY5NACL6+VjjcAGBgvGRKAnnM5RvkOgDhfxYz0NE2ktWP2moo9aF7z3uN6vSIFmrda56C4etc5hxQDVeZHj6enN9X8tMwz1tjCYg7DDbvdDjkmmEahe/ceM/t6mmo9XIoZSQrknIUPkY9blXOqwzmHf9nvoa0pDHBgFtjwf845xJLizqVwStjUefY4nU44nc/YH47EkGsF8gzSOF3OSDnDNQ7QGofjESmR/+Su2aPnCvrT+YQsa1Re5GamIXeBeZ6Q4lJMdTqd0LQOh8MBHz9+xPPxDSaWOQhgDMGXrlHFEgqkP8054+XlBc/Pz0iBqqlTIraf/EwX1vb19Fr6c4cQ4GPEOE1o+w67/Q7KGPz0+lpwhc0ZSmkM47AQPpnW0xgCZu+RYkTXtGi45an3gTwlHQH/w26PfU+tURtL2Q9Zz0TykTPJHpq2+cVz3q8qylkDhVqzKEUZMYbSnkgW0nqRX+v3ygO1AjlycjWYqv9dM6OPFuY1W7kGn4/Abf3zmgVag8eapX0EVOT4gaWwplRqPTjH+nh+DtDKdz46tzVTuD6H9e/q67qc+9IzXI5NtKI00c94fX3F8XgsLdrWx/5oc1CDbdl4kLh4xDDccDy+KYuPgEtrNYScfHQuwobLz7VVUZ1eF8G0gOLa/Lg+3lr/Ka+tmeL6Pgiok3/X11MA4Drux8+X5yXXfM12KiXXdTlv+vwvK8e3+C1FC60TYtmAaChoGA3AZCTN1doxIcVAVh4pwBpNgAGJtbqJzM65UMRasrQxWiFBl00gMlkIIWcknantXwhcSBNIM5fIND3lBB8DlM9FP6dYlzzPHlppNlynIjajLYy2yAk4n8/ERGFp7yosqDyT8sw7Nk/PCXC2QfRi7bNsMEOKZU5vXcuFfzJfLISAVhpJGcSY4GyDxJpAkbCU+TdnpAzqi85pSXmWqQBnMTmPKXH/7cWeTTJrWmtOD6eScm6aFtpYZAW61mqZS6VIIoSIlCIzYJSGByjlH2PEExfK5MTtGCdAd+x2oag45jSMZRTlDFyvN/RdDyWfz3OdZ50c9Rm3gCPtudYGhuUF0m9dKU3jhq+7tRZWG/hpRk6JLaWAmQkChUVrqRVpUY0CjQ2jkHgeI52qwvV2QxTwCRRfSV3Jp7SmIivDhTI5k66Pd9+lMl7GiNYGxlrqWT9NgKKU89ObZ2C4IcaEFDy8J8eQtmtJ66oUs5KHYkgPkP9xiHQc2mhcr1d6X9MUA/OWK81TJs1s0zRo2I1kmicME9nboVq/YwpoW0cm54n1pIpYYNFTyhpzvV4xsm9lBvUnH7kdqueCtnEcOb0fMYcI6xzGcaCuSIadb3Km4j1Fll8ASkorZepdbhtauxX/DiDv0cZaNMaicXRv5Xk3WpGnq1JQ4IYD8R+goaxTg7IQr9OMKaW7fpf1Alsv2AC4sT3FOm1Zg776PfVn/dJ4xGLWWrz6NRI1yKvZrnWswWMNlolqXnQNwJLGXrOs63OrwU7Nhq1fJ5+xTofLOcm//17V+qP31AyngHdhI6Xq+/3792VHJ++v08Byzl8CJOrSIOd1uZyx2+2qFHSG92T6e7vFIhK+lzM8Bvz1/ZDjqK+r/L6u4K7fV489+fu6n3jiyUJ2/Y9Ydvrb45S0AMpH92QNML821h9tErb4bYXRDVJOQKR+9sYqAoYMphQA5yxSJE+4nCNyTLDaYEYAkGG4+AsMCIy2MEbDQyyyqEuJ1hop0mKvFBB1RN/3mOaA2QdMnlNjmZiwDFpgYqR2eZImCyFgHCbSeFtismKMaPqOCihSxjiThMTwRlPSnFprtrG6z+JQoQVYvzgTwMz3m35hpFJDhSxS8FdnuQDFrRCpmMPZBikGlGpW/s6cMl+Hqj0ss4YCYOX32tA5Iy+WY+M4rrIJuXjkxpRgxDOzmitSzrBas0tGncXg+xHTXSW6NVQQlFLClGiOI5ACTNOI25Vsm5x1QFYYhwmaK4i10ghl7aD7aWFLEY1UnRPb7JFV5qpiYj+p+4lFbhrklEirGlPROqZYFWWy3CIRbqHPtwZKZ0RN56aY7YwpUaFN5gITbUuBDeS9ZrGkUzy2NHTpXGOtYQ0haXWNMXAM3uieZTYor9bAjMJ8KqVYM2lhjC1tNGNaMqWAzMF6uSdOJAlj0eWDCx+dI6DYttQJ6Xy9oG1bOGt5kxbhwwzXOGTO0KZI7K2ffdnICCs9zzPylDFNM3UE0gTcpKpbcMI0U+OAmOgaJ35wfAiIie2hcqJVSCn4GHgzlcuYjCnBGtbHgopJG2fLsXdNSzpY/ruEbOAyFg3/L4lfpaFcbsS9jkt2lyEE9j3zd6lIYCnOEIAWiqv9MvGs2bqaOatBlnzv34tHYHL9efes0v17f8n3yHE/Yj8fpTvkdWuQWrOC8to1GFnA1GM9Z339HqXK689cM4kLg/xlKnx9jUIIOJ/POBwOZecl370U1ujy81pyUOsc6SGe7gppYoxl90qANJTjL1WCmXSMlBaZi5+lXAcZa/I9dUHZeqMjn10/zDXru2af6bX5C1B4D/qXRfNrgLK+L4/G989tnB6B4C1+a2GB5KGUhdWAtgrX6YaQM1QKyFGYrKWAkSEQLd5QgFqqjamdmi7PirMWKVKfaGstUmYPWa2RMm303r59hnEW2Wj8+OOP0I1jPaaGRYKFBhTppAxX816nK/q+J9bSLM9MzgRM6nlNs9edLMzdrucU4ryk4xQBn1JcpITBF909+dQiZ4xmAUQ5Z8zTBGQUfZowa/M8Y7/fAznBs65SGhkoAH3XY7/f4zZcl/nGi48sKuBFukoBPvM8s3G4LbUAzrliTTQMA0JMOBwOBUjLM0uFK/cVsiklzNyOUYpwyNe3wzOnpC+XCwB65p3V+PTpE4wmfaH3HgY0j76+vqJtW7Jn4qryrmthDDFarVtY2qYhVuw2XNE4h7ZpcDldEWePOUbMmvqWRx+o6wvfX7lHxYrJezg4xJjLGt51LRYHM1rbjDHFp/Pu/jEe0Fqj7bqSDk4pAlmhazuAx3niFoHECtMTlAEYcPcYS73Th2HAjy+f6HibFp2jVsGTnzH5mUG8xjAM2B+fKBWcImbvybvU05iLkVhNOs/IVfwZP/zwA835mjZ8+/0enz9/xrt37wCl8NPrZwzDgLcf/lBqCU7nz+QBqQ0gsoecSotOuZ4yvqZpwnC7UStETRXZiq/dPJOecgozVbljybqFEHC5XiFLimEGGECReMQQkFkfmlJCthrKaBhoWKvRtqTBbZoGh92ONxvEska1bAGo05D+gtT7uVB5oze22GKLLbbYYosttviG2ByRt9hiiy222GKLLbb4ptgA5RZbbLHFFltsscUW3xQboNxiiy222GKLLbbY4ptiA5RbbLHFFltsscUWW3xTbIByiy222GKLLbbYYotvig1QbrHFFltsscUWW2zxTbEByi222GKLLbbYYostvik2QLnFFltsscUWW2yxxTfFBii32GKLLbbYYosttvim+D+rb7FwGcVYnwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Testing: Emma Watson ---\n", + "\n", + "Match found: emma_watson, Distance: 0.41\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvIAAAGLCAYAAAClXnbYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9ebxtR1Un/l1Vtfc+5977hkQS0CAQAioEFQ0iNoQwKGEUiAoSBwaRfBQnVFDbX0Oi0A5ogw0NRvg0dAsBG0EFlUkFQRBaGxRNKwYZGkQlCcl77957zt67qtbvj1WrqvY594X3EMHEs+DlnrPP3rVrWFX1XavWQMzM2NCGNrShDW1oQxva0IY2dLMi84WuwIY2tKENbWhDG9rQhja0odOnDZDf0IY2tKENbWhDG9rQhm6GtAHyG9rQhja0oQ1taEMb2tDNkDZAfkMb2tCGNrShDW1oQxu6GdIGyG9oQxva0IY2tKENbWhDN0PaAPkNbWhDG9rQhja0oQ1t6GZIGyC/oQ1taEMb2tCGNrShDd0MaQPkN7ShDW1oQxva0IY2tKGbIW2A/IY2tKENbWhDG9rQhjZ0M6QNkN/Qhja0oQ1taENfcHr7298OIsJv/uZvfqGrsqEN3WxoA+Q3BAAgolP69/a3v/0LXdUJvfvd78bll1+OG2+88ZTuf8ITnoCdnZ1/3UptaEMb+ndFL3/5y9fWyrPPPhv3v//98cY3vvFf7b37+/u4/PLLT3ldVqBMRHjFK15x4D33vve9QUS4293u9lnV6UUvehFe/vKXf1bPbujmQ1dddRWe//znf6GrsSEA7gtdgQ3926Bf//Vfn3z/n//zf+Ktb33r2vW73OUun89qfUZ697vfjSuuuAJPeMITcPTo0S90dTa0oQ39O6af+Zmfwbnnngtmxj//8z/j5S9/OR760IfiDW94Ax7+8Id/zt+3v7+PK664AgBwv/vd75Sfm81muOqqq/Cd3/mdk+sf/ehH8e53vxuz2eyzrtOLXvQi3OpWt8ITnvCEz7qMDf3bp6uuugp//dd/jR/5kR/5Qlfl3z1tgPyGAGBtQX/Pe96Dt771rWvXPxtiZiyXS8zn839xWRva0IY29G+VHvKQh+Ae97hH/v493/M9uPWtb41XvepV/ypA/rOlhz70oXj961+P6667Dre61a3y9auuugq3vvWtcec73xk33HDDF7CGG9rQhk6VNqY1GzpletnLXoYHPOABOPvss9F1He5617vixS9+8dp9d7jDHfDwhz8cb37zm3GPe9wD8/kcV155JQDgYx/7GL75m78Z29vbOPvss/G0pz0Nb37zmw8023nve9+LBz/4wThy5Ai2trZw0UUX4V3velf+/fLLL8fTn/50AMC5556bj4w/+tGPnla7tL5vf/vbc32/8iu/Mtfnda97Hb7yK78Ss9kMF1xwAd7//vdPnv/ABz6AJzzhCbjjHe+I2WyG29zmNnjSk56E66+/fu1d+o7ZbIbzzjsPV155JS6//HIQ0dq9r3jFK3DBBRdgPp/jzDPPxLd/+7fj4x//+Gm1bUMb2tAXjo4ePYr5fA7npjqzGCOe//zn4/zzz8dsNsOtb31rXHbZZWvg+c///M9x8cUX41a3uhXm8znOPfdcPOlJTwIg2vOzzjoLAHDFFVfk9e/yyy//jPV65CMfia7r8JrXvGZy/aqrrsJjHvMYWGvXnjmV9f8Od7gDrr76avzxH/9xrk99UnDjjTfiaU97Gu5whzug6zrc9ra3xXd/93fjuuuuW+uf5zznObjtbW+L2WyGBz7wgfjQhz40uWd/fx9/+7d/u/bsyegz7ScA8lr8d3/3d/jO7/xOHDlyBGeddRb+03/6T2BmfPzjH8cjH/lIHD58GLe5zW3wy7/8y5Pn1XTpf/2v/4UrrrgC55xzDg4dOoRv/dZvxbFjx9D3PX7kR34EZ599NnZ2dvDEJz4Rfd+fdj9/JvrABz4AIsLrX//6fO3//J//AyLC137t107ufchDHoKv//qvz99/53d+Bw972MPwJV/yJei6Dueddx5+9md/FiGEfM/97nc//N7v/R4+9rGP5XG+wx3ukH9/wQtegPPPPx9bW1s444wzcI973ANXXXXV5L3vf//78ZCHPASHDx/Gzs4OHvjAB+I973nP5B41WXvXu96FH/3RH8VZZ52F7e1tPPrRj8a11157Wn1yS6aNRn5Dp0wvfvGLcf755+Obv/mb4ZzDG97wBnz/938/Yox46lOfOrn3gx/8IB73uMfhsssuw/d+7/fiy7/8y7G3t4cHPOAB+Md//Ef88A//MG5zm9vgqquuwtve9ra1d/3RH/0RHvKQh+CCCy7As571LBhj8gL3zne+E/e85z1xySWX4O/+7u/wqle9Cs973vOyZkk3t9OhD33oQ7j00ktx2WWX4Tu/8zvxS7/0S3jEIx6BX/3VX8V//I//Ed///d8PAPi5n/s5POYxj8EHP/hBGCNy8Fvf+lZ8+MMfxhOf+ETc5ja3wdVXX41f+7Vfw9VXX433vOc9GaS///3vx4Mf/GB88Rd/Ma644gqEEPAzP/MzB9b3Oc95Dv7Tf/pPeMxjHoMnP/nJuPbaa/GCF7wA973vffH+979/Y0a0oQ39G6Rjx47huuuuAzPjU5/6FF7wghdgd3d37WTzsssuw8tf/nI88YlPxA/90A/hIx/5CF74whfi/e9/P971rnehaRp86lOfwoMe9CCcddZZ+Mmf/EkcPXoUH/3oR/G6170OgKxzL37xi/F93/d9ePSjH41LLrkEAPBVX/VVn7GeW1tbeOQjH4lXvepV+L7v+z4AwF/+5V/i6quvxktf+lJ84AMfWHvmVNb/5z//+fjBH/xB7Ozs4Kd/+qcBALe+9a0BALu7u7jwwgvxN3/zN3jSk56Er/3ar8V1112H17/+9fjEJz4xORn4+Z//eRhj8OM//uM4duwYfvEXfxHf8R3fgfe+9735nv/9v/837n//++NZz3rWZxReTmU/qemxj30s7nKXu+Dnf/7n8Xu/93t49rOfjTPPPBNXXnklHvCAB+AXfuEX8MpXvhI//uM/jq/7uq/Dfe9738nzP/dzP4f5fI6f/MmfxIc+9CG84AUvQNM0MMbghhtuwOWXX473vOc9ePnLX45zzz0Xz3zmM0+rnz8T3e1ud8PRo0fxjne8A9/8zd8MAHjnO98JYwz+8i//EsePH8fhw4cRY8S73/1uPOUpT8nPvvzlL8fOzg5+9Ed/FDs7O/ijP/ojPPOZz8Tx48fx3Oc+FwDw0z/90zh27Bg+8YlP4HnPex4AZN+zl7zkJfihH/ohfOu3fit++Id/GMvlEh/4wAfw3ve+F5deeikA4Oqrr8aFF16Iw4cP4xnPeAaapsGVV16J+93vfvjjP/7jiWABAD/4gz+IM844A8961rPw0Y9+FM9//vPxAz/wA/iN3/iNU+qPWzzxhjZ0AD31qU/lVfbY399fu+/iiy/mO97xjpNrt7/97RkAv+lNb5pc/+Vf/mUGwL/927+dry0WC/6Kr/gKBsBve9vbmJk5xsh3vvOd+eKLL+YY4+T95557Ln/TN31Tvvbc5z6XAfBHPvKRU2rX4x//eN7e3j6wvu9+97vztTe/+c0MgOfzOX/sYx/L16+88spJXbVeq/SqV72KAfA73vGOfO0Rj3gEb21t8T/8wz/ka9dccw075yZ9/dGPfpSttfyc5zxnUuZf/dVfsXNu7fqGNrShLyy97GUvYwBr/7qu45e//OWTe9/5zncyAH7lK185uf6mN71pcv23fuu3GAD/2Z/92Unfe+211zIAftaznnVK9Xzb297GAPg1r3kN/+7v/i4TEf+///f/mJn56U9/el7LL7roIj7//PMnz57q+n/++efzRRddtHbvM5/5TAbAr3vd69Z+03Ve63eXu9yF+77Pv//Kr/wKA+C/+qu/WmvLZ2r76ewnz3rWsxgAP+UpT8nXvPd829velomIf/7nfz5fv+GGG3g+n/PjH//4tTrd7W5342EY8vXHPe5xTET8kIc8ZFK3b/iGb+Db3/72k2un2s+fiR72sIfxPe95z/z9kksu4UsuuYSttfzGN76RmZnf9773MQD+nd/5nZt8/2WXXcZbW1u8XC4n5a/WnZn5kY985BrvrNKjHvUobtuW//7v/z5f++QnP8mHDh3i+973vvmazqtv/MZvnIzd0572NLbW8o033niT7/n3QhvTmg2dMtU27qp5uuiii/DhD38Yx44dm9x77rnn4uKLL55ce9Ob3oRzzjknawgAcbr63u/93sl9f/EXf4FrrrkGl156Ka6//npcd911uO6667C3t4cHPvCBeMc73oEY4+e0bXe9613xDd/wDfm7agQe8IAH4Ha3u93a9Q9/+MP5Wt0vy+US1113He51r3sBAN73vvcBAEII+IM/+AM86lGPwpd8yZfk++90pzvhIQ95yKQur3vd6xBjxGMe85jc9uuuuw63uc1tcOc73/nAE4wNbWhDX3j6b//tv+Gtb30r3vrWt+IVr3gF7n//++PJT35y1qIDwGte8xocOXIE3/RN3zSZ3xdccAF2dnby/NZTt9/93d/FOI6f87o+6EEPwplnnolXv/rVYGa8+tWvxuMe97iT3n866/9B9NrXvhZf/dVfjUc/+tFrv62aFj7xiU9E27b5+4UXXghguu7e7373AzN/Rm38Z7OfPPnJT86frbW4xz3uAWbG93zP9+TrR48exZd/+ZdP6qT03d/93WiaJn//+q//ejBzNouqr3/84x+H9z5f+5f2s9KFF16I973vfdjb2wMA/Mmf/Ake+tCH4u53vzve+c53AhAtPRHhPve5z4HvP3HiBK677jpceOGF2ZTpM9HRo0fxiU98An/2Z3924O8hBLzlLW/Box71KNzxjnfM17/4i78Yl156Kf7kT/4Ex48fnzzzlKc8ZcIjF154IUII+NjHPnYKPXHLp41pzYZOmd71rnfhWc96Fv70T/8U+/v7k9+OHTuGI0eO5O/nnnvu2vMf+9jHcN55560t2ne6050m36+55hoAwOMf//iT1uXYsWM444wzTrsNJ6MarAPIbfnSL/3SA6/Xtqyf/vSnccUVV+DVr341PvWpT63VEwA+9alPYbFYrLUVOLj9zIw73/nOB9a13iA2tKEN/duhe97znhNn18c97nH4mq/5GvzAD/wAHv7wh6NtW1xzzTU4duwYzj777APL0DXkoosuwrd8y7fgiiuuwPOe9zzc7373w6Me9Shceuml6LruX1zXpmnwbd/2bbjqqqtwz3veEx//+Mez6cNBdDrr/0H093//9/iWb/mWU6rb6nqsa/1n44D72ewnB+0Hs9lsYv6j1w/yhTqd/STGiGPHjuGLvuiLAPzL+1npwgsvhPcef/qnf4ov/dIvxac+9SlceOGFuPrqqydA/q53vSvOPPPM/NzVV1+N/+//+//wR3/0R2uA+lQEiZ/4iZ/AH/zBH+Ce97wn7nSnO+FBD3oQLr30Utz73vcGAFx77bXY39/Hl3/5l689e5e73AUxRnz84x/H+eefn69/LvnhlkgbIL+hU6K///u/xwMf+EB8xVd8Bf7Lf/kv+NIv/VK0bYvf//3fx/Oe97w1jca/JEKNlvXc5z4Xd7/73Q+853MdC/4g566bus7M+fNjHvMYvPvd78bTn/503P3ud8fOzg5ijHjwgx/8WZ0cxBhBRHjjG9944Ps3cfA3tKGbBxljcP/73x+/8iu/gmuuuQbnn38+Yow4++yz8cpXvvLAZ9RnRhMjvec978Eb3vAGvPnNb8aTnvQk/PIv/zLe8573fE7WgUsvvRS/+qu/issvvxxf/dVfjbve9a4H3ne66/+/lE5l3T1V+mz2k4Pefzp1+mz3k89lP2tQhXe84x243e1uh7PPPhtf9mVfhgsvvBAvetGL0Pc93vnOd05OSG688UZcdNFFOHz4MH7mZ34G5513HmazGd73vvfhJ37iJ07p/Xe5y13wwQ9+EL/7u7+LN73pTXjta1+LF73oRXjmM5+ZQ6WeLn0u+eGWSBsgv6FToje84Q3o+x6vf/3rJ9Lx6Zh53P72t8f//b//F8w80cqvRiM477zzAACHDx/GN37jN95kmQdFe/l80g033IA//MM/xBVXXDFxWFItkNLZZ5+N2Wy21lbg4PYzM84991x82Zd92b9OxTe0oQ19XkjNJnZ3dwHI/P6DP/gD3Pve9z4lhce97nUv3Ote98JznvMcXHXVVfiO7/gOvPrVr8aTn/zkf/H6d5/73Ae3u93t8Pa3vx2/8Au/cNL7Tmf9P1mdzjvvPPz1X//1v6i+nw2dzn7yhabPxT6r1LYt7nnPe+Kd73wnbne722XzpAsvvBB93+OVr3wl/vmf/3niqPv2t78d119/PV73utdNrn/kIx9ZK/+meG97exuPfexj8djHPhbDMOCSSy7Bc57zHPzUT/0UzjrrLGxtbeGDH/zg2nN/+7d/C2PM2snFhm6aNjbyGzolUom4loCPHTuGl73sZadcxsUXX4x/+Id/mITEWi6XeMlLXjK574ILLsB5552HX/qlX8qbX0112Knt7W0AOOXMrp9rOqhfAKxlvLPW4hu/8Rvx27/92/jkJz+Zr3/oQx9ay/x4ySWXwFqLK664Yq1cZj7wKHdDG9rQvz0axxFvectb0LZtTqb3mMc8BiEE/OzP/uza/d77vJbdcMMNa/NfNcoasnBrawvAZ7/+ERH+63/9r3jWs56F7/qu7zrpfaez/m9vbx9Yn2/5lm/BX/7lX+K3fuu31n77bDSrpxp+8nT2ky80fS722ZouvPBCvPe978Xb3va2DORvdatb4S53uUsW3PT6yd4/DANe9KIXrZW9vb19oKnN6v7Uti3uete7gpkxjiOstXjQgx6E3/md35mEiv7nf/5nXHXVVbjPfe6Dw4cPf1bt/fdKG438hk6JHvSgB6FtWzziEY/AZZddht3dXbzkJS/B2WefjX/8x388pTIuu+wyvPCFL8TjHvc4/PAP/zC++Iu/GK985StzFkGV8I0xeOlLX4qHPOQhOP/88/HEJz4R55xzDv7hH/4Bb3vb23D48GG84Q1vACCLNCDhsL79278dTdPgEY94RAb4/9p0+PBh3Pe+98Uv/uIvYhxHnHPOOXjLW95yoAbj8ssvx1ve8hbc+973xvd93/chhIAXvvCFuNvd7oa/+Iu/yPedd955ePazn42f+qmfwkc/+lE86lGPwqFDh/CRj3wEv/Vbv4WnPOUp+PEf//HPS/s2tKENnTq98Y1vzA6Bn/rUp3DVVVfhmmuuwU/+5E9mcHLRRRfhsssuw8/93M/hL/7iL/CgBz0ITdPgmmuuwWte8xr8yq/8Cr71W78V/+N//A+86EUvwqMf/Wicd955OHHiBF7ykpfg8OHDeOhDHwpATBjvete74jd+4zfwZV/2ZTjzzDNxt7vdDXe7291Ouc6PfOQj8chHPvIm7zmd9f+CCy7Ai1/8Yjz72c/Gne50J5x99tl4wAMegKc//en4zd/8TXzbt30bnvSkJ+GCCy7Apz/9abz+9a/Hr/7qr+Krv/qrT6erTzn85OnsJ19o+lzsszVdeOGFeM5znoOPf/zjE8B+3/veF1deeSXucIc74La3vW2+/h/+w3/AGWecgcc//vH4oR/6IRARfv3Xf/1AQeuCCy7Ab/zGb+BHf/RH8XVf93XY2dnBIx7xCDzoQQ/CbW5zG9z73vfGrW99a/zN3/wNXvjCF+JhD3sYDh06BAB49rOfjbe+9a24z33ug+///u+Hcw5XXnkl+r7HL/7iL34WPffvnD6PEXI2dDOig8JPvv71r+ev+qqv4tlsxne4wx34F37hF/i///f/vhb+8fa3vz0/7GEPO7DcD3/4w/ywhz2M5/M5n3XWWfxjP/Zj/NrXvpYB8Hve857Jve9///v5kksu4S/6oi/iruv49re/PT/mMY/hP/zDP5zc97M/+7N8zjnnsDHmM4aiPFn4yYPqC4Cf+tSnTq595CMfYQD83Oc+N1/7xCc+wY9+9KP56NGjfOTIEf62b/s2/uQnP3lgaLQ//MM/5K/5mq/htm35vPPO45e+9KX8Yz/2Yzybzdbe/9rXvpbvc5/78Pb2Nm9vb/NXfMVX8FOf+lT+4Ac/eNL2bWhDG/r800HhJ2ezGd/97nfnF7/4xZPQeUq/9mu/xhdccAHP53M+dOgQf+VXfiU/4xnP4E9+8pPMLKEBH/e4x/Htbnc77rqOzz77bH74wx/Of/7nfz4p593vfjdfcMEF3LbtZwzHWIefvCk6KPzkqa7///RP/8QPe9jD+NChQwxgEory+uuv5x/4gR/gc845h9u25dve9rb8+Mc/nq+77rqbrJ+uuy972cvW2nKqoTdPZT/R8JPXXnvt5NmD9o2D+ulk9Vf+WA0letD7TrWfT4WOHz/O1lo+dOgQe+/z9Ve84hUMgL/ru75r7Zl3vetdfK973Yvn8zl/yZd8CT/jGc/I4ZjrsMu7u7t86aWX8tGjRxlADkV55ZVX8n3ve9/cz+eddx4//elP52PHjk3e8773vY8vvvhi3tnZ4a2tLb7//e8/CQF9U/2m/VzX598zEfPGW2BDX1h6/vOfj6c97Wn4xCc+gXPOOecLXZ3POz3qUY/C1VdfvWZXv6ENbWhDG9rQhjZ0U7Sxkd/Q55UWi8Xk+3K5xJVXXok73/nO/y5A/Gr7r7nmGvz+7//+JI35hja0oQ1taEMb2tCp0MZGfkOfV7rkkktwu9vdDne/+91x7NgxvOIVr8Df/u3fnjQU2y2N7njHO+IJT3gC7njHO+JjH/sYXvziF6NtWzzjGc/4QldtQxva0IY29G+cdnd3D3Taremss846acjGDd3yaAPkN/R5pYsvvhgvfelL8cpXvhIhBNz1rnfFq1/9ajz2sY/9Qlft80IPfvCD8apXvQr/9E//hK7r8A3f8A34z//5P580+dOGNrShDW1oQ0q/9Eu/9BnjsX/kIx/BHe5wh89PhTb0BaeNjfyGNrShDW1oQxva0M2APvzhD+PDH/7wTd5zn/vcJ0eD29AtnzZAfkMb2tCGNrShDW1oQxu6GdLG2XVDG9rQhja0oQ1taEMbuhnSBshvaEMb2tCGNrShDW1oQzdDOmVn14seeDEAgAAwpQ+JLAhMBGbJhCEJOgkMQvo/iKYWPMRUysoXAQLVRUuBgJTFWnb9jL6glE+QugCx1DO9iIhSljIGYEBkQAQYcK4Ll9qn2lAumbWRUnsAQCSqvnO+fdq0Smai1EZSSSoipCoSAyaVxZO3yHOGKb+fwflHrQJP3k25XwiSdlnGxyB1EFa7M/dg7mheu05kYMiUXznKe4jLe0FA7mvAVAMn3V+9mXQ8qt8RYcAg4xAjEHM7p3xkDEDGgMGIMSb+0XoqH5zceozIVL1Q8RBNR0+/FkM0nnQexdKWydtIxkuvycjLzSbVtX4iko4vgzkXmrknINYMkeealgxi6SutnvIDmdQfsSpXalDziJYr12Jqqal/yf3A9bARZR6ctDbNczKc1wcg8QNzeoNyDWWGn/ZhKG3URWNyT+KxVM2og8Sl3ia1MY9f4l9CzP1f9xe4utdQ/WD+WPirbjNQ1h2CdjURpfpxeoYOXCdy1dP7X/Oq/4FbAv35f3sGYkx8bwy6rkMEV/OUEUKAMQbOOcQYYa2B9BeX1PGQ4bfWwhiTxyDm9UT4hFm4V/nerKisTLpQ5rl8t9aByOS6Msv79TsZm8sEYr6uZZIta8WkfGY45+DHACIDay1ijGBmGGNhjM3VJ2NgjMnvjVX50zpTLkOv1/dYa1P5pfHWWhARvPcYxxHz+RwhyMZqnUVAQN/3MGThXINhGGCdAxnp17btMI4jrLVo2hbGGCwWCzAzCIS26eQzEaw1cI1N9QGYI4ZhwPb2NkIIuQ76GQTM5nO0bSvtjhEhRgAGJo2/9z61J809ZiAGzGYzxBgw9Es0TSN7DxiRGQyLGBmU+KXvezRNk+adLGLe+zz23nsAQAgBMUYYY9A0DWKIYAaappmMn/ap8rH3HkQE5xwYgA8+8/TqODIzOAb5HjnzG1iusQ/gIM8tFws416BpG+wuljDWCnYhoG0aIMq7Qwgg15Q5k/io7TrE6FM9GIBP0EnmHnPiLWbE9M56nikdOB+MQQQQo6AWMhbW2txPIcaEPeQ3eU5QljFW9vC0Ji+XA8ZhhHNu8n6tQ9M0ACR6z2xrXvi9cQghYAwBIFTriIUhEohCBEOE4IXPx36AMcJfxlqM45j52hizss7I+/f392GthXMOQAQRIcYATrxCAEKIiBzRNBYgIAYPMKNpGvhln8uM0ef+LPO9ms8gHLn7/fGZ6LSj1kToZsMJcNbbdk0CURTZ14CKYJC/JrTKxBnPcUIhBb5UaJWm78jEFeQlRfxGQEsF4jPITC9WGYDXyl2FuLKpyPIw2XontRSBg3OVSkkx1T+3fvIu7Staey9KPyvAW4P4psgWuSK0dt5CkxtWiVb+1u1W8Clt58hghMkGUTc494GiGFa4xHlMKSNNBvG0/kQCxjpr4QGwYZiqyjEKsMvv5whnjAhDaSFkLQhYr2fVdzwRDg9CVqs9VlVEx5kpj8ikazPSrRmBoQOTerO0a/X5DOopCTIsggcpGJxUIzcrA1Iu784CkP44cY0R/ptwFBOYbBEyGAdyj/5uCNPFvqoQp9fVvM1MVQkRhhTIiEAonVF4cpUrC34u7VJMxUwg4gLeAQCxzDTSllajqoJB4gdTiVgKTLh6l658VLUUK6VS6he5FqXNFY8jla1fsnCkZa8vBTdbqsEmIICMaR18AsggLi2XU6G6+k6fsYOm4EOfuannYmQQTQF6/ZzMP5pcV/6QzRlpeq2vsdKm8n4F61o/ZoZ1BXzVraj5sC4PwARIGmMQQpi0u35H/f78jC3KmTGM8psRQWBrayvx73T8QozgYRBAn4AVAFhj4b1PYxgQok/tlO8qBKjglsFLAnp93wMQsGaMgOp+HNF1XQZXXddhHAVkyxoZBbwiCUveI0IAtmsahGgAlPHMALFaB6QPTRayFJDrmLVtixg4f9c+r8dkfZ8BAM7jrG3VPsjjkO4hQyBmcIwYvfSVH0f4YcwgfTZj2MZJG5yDtQbW6JgkUMgMJKFY/xX+tQlGMSIbWfeJYK2CcPmrQrWOkQoFq22UdkUB/9D+EEWhjrHwhQFZm8vjxLuRCUTSp6Zp07sMqG2z0FbPXRXymBmHDh2CcTbzgXUCxIWXOIN470VgMdBxlOedc6IhJMrCs/KGjhMzo21bmR9GBPz5fJ7bX9dR/1HCJgRC4Jj3zjzeeTzqdaXiJY5Z4DgIDx5EpwzkWdFutaFnbWCFAan8sAZ+6m1etW+iteeV+6f31SBb970MOkhBVAG30zU0bd8ri+86rKWs1Ke0g7Cq5bhM+LohAslV5aYSSXUDMybjkIAcq3SYLyuQp9wv0/4qFc1Ny5ppeedEE6+IpAIOE/C6UjZXt5gKaJY264JDcM7CWQcQYRwGxAhRbqokzwxR3uiJhkjrZAiGBLTrRsccETltWjwVkBrrMJu1OLFYAmly1HVd1ZhLVxcNngCktEBra2qEhfqUYILmD6Cqx+ou5bpHy2anGtc8rhkMK+yLFf8jXdE6Jm40Aqbz9QowcyW0FgG5moS5TeWrnnIUqhGltD8LQMqjJHWmpDmvgb48Oim8+jWNV54LWr+qhLR2ENcgoZSS2Am5JyfDs3LqAW2bAsICtMErz+a1g6fVq29YmSDTxbSsXSsSTS5vVaCZFF/0Cgcs0ZwFHAWxtxSKMaQNDElQj6n9BvWCXW/+cnI0BZ5CctKTaW0MlQfKJqmAqt44ayonIdX6Ub0zP5c006xCMnhSJukCnIWzAvIBiBa1ahOnPYL1XVo31msFyNQNrvmjBmurdV4fh5jrouBMTxi0ntZaAV4JsIpWuwBWa22pLwR0c1rHOU7rOlWsJCBIhBA8QhSwaJ1LGnfptxgjogodxsIYzprREGLq/5hAUxGIdFUYhgGRGU3bwLmm9ENqYwHxyGXRynhljboCMzJgmt5X+GT1WT1N4bweRE7gkhk+BFhrCjxI+2HeE9LgxigCig8B0fvcjyLMuIlgGIIKGC5rtzNPpvqvUbUfqrCl1gq6bingXtXK537Ayv5dr30KbE8y5zKfp2cNy7yyxsLQVPCtn1cg3zRNJfQTiFzuM8EhJBpw7xFDUuQYWW/0NwPKGnDmqaDCzAgxYvQexnLuQzKlHtoOa2zaM9NuwZznSOb/jEvSqXHkwnvKCASYej4esEscRKeukc+AIQ2Cbsw38Z4aKrN+z9wrm2w+/U6MXOAcoQC7Wm+Zl8/Vyq3cgXJXhXFWQX+NYhVAlCJpreTScgU/U+OIKQApVWMSEFYKp9KnWfJab5MKGSpT0KRBSEMgvaayxGSGZsZaa0j1qrq8lYW46gUigjMGzgmjjSMQEeFAaTMRaV8mTcxtMkQw1sAk9aSxukgBCDHLSQySBRyEtnEyUff2q7pR3iMVJmu7dGKAGZQ14aopriCmbtDV4jbBYxkU6CCugri6OrrhlvdNFd1lQ14j4ryhy2JXvSWrhxVyrldFwYncX4FVqiuReGqtDrT2twYmCuRRXSlMvbIY50ucwRXXPEorN/P07UXWXJ3hJ6MV1Kb9UGn4c7N1HFkWxFIvAvLyXa6o+R6bat5pqasaUp3XB9Sw1tIxdN6S/ljum5S92uZTW8BvLhSihzMuAbOifaLKhAso/aygrdZcArrJrYCKlb6iincFnMo6rYB3nWQeqslBYXXKf2uNfKzWl3XwnN7M9bwtZi7WOnAspgnSZojgvtJWbZcxNCkrCwXmYJBU16lu86oZUH2/rkNqDqF9oJpyMknbH4GmbSfva9sOMbJoj6PP5RMRrCv7KhkHdAL8Rz8ixAhjLdq2yRp4Zsb+/j5CYJAhuKZF03ZZWIg8Yhg9xrG8p0la2Rgjgh+xXC6ToC5aV7IVqM2nuAWIh+BT+6XXnXOgBPQIApJj5AloHAafedXasn4Kr4lWW0GbsQSfnovgJMB0qRrCJzHGvOYqsLbWIloHdowhRhgS8xHbOFjXYm9vD3H0CIl3u6ZF40RxFtIpRcLYuU4KgvVVkcUSwlqTeSBtsCBDiD5OzLcm/II8DdJ2NQXdq0A+A990r7UO+XQ5zWsDFSgpa8drns4afWYMwwAfA0IIsM6hnXUIISD4AAZgmwbWOIzRIwQViiK6tkHXtmi6Np86yNgmU6wsRBpEMJZDDz3NED5VFuIs8CnIYmZwiIipnsaktnt5h/cehtOJZIzIZrZWBNzJfpKxxWem0wPyWY1cgXiq7JexqjmjImio1MYKaGtGUIBUaWUVnOT9udpUJ/WqUXMql7V6ukFOF/oMkZnzPaxmrba2e52SCiIMJOVfLBBO25E3J0LWsOtdK/t13sizbQ8JY+fvalesZkdU8L/WqWprBiQZjHO2UVa4P+mqNeJKWNBLhZVkkYoI3lc3MYgYzll0aUFeLhYIvggQRAwLMauJFAXQA4hBxsBYk7QYAEIUmz9rskSsWgVtXzHPSQshQyZF1vLJQkVMQIwga0s7kv0WQY+j9Ujx4N4pQkDhXzn2kjtDnAJL6ZbaH2LVPEyek+cpS+OrgJlWtNwKEGreVA1O2YT0+QJRievFgQ74pB2ZoGwNOEnAb1StYQXCFcwUDUTpAFJu1DlY+69kkFX3RzE1gvL5BJ6VNjHTZC0ohWTkXrqhbmsG1rSG+6dr0eQy1OSt1kjKvcVHJV+daKNSi7R8rtoMlA0z11Emci2on+qx6s2BVjXdQAF7qyBh1dxklQqPIvNl/Zv+btJpoJa1ai6jdah/V5+Zg7TZp9bOlfVz5d16rK/giJmTlpDyvcB07Os2KThfBUurpkP1M6t9WJeRNbAVgPHBg8jAJiEgsAhUbdeByE40kcMwYLnsJ2Wr0MLMiAFwrYWa1gBIzyyz6YKamug/Y63oZGIxcQohwFQ214cPHwYAjOMIk7SaIYjN/Ww2A1n1MwAaV2zqY9VPOvbeDxiGAUQGzjXZfCOEgBgivA9o2zYJE3JiNAw+t7XrugnPhiD21z4GGEPoOhF89L5VYKug3af+EMWX9HfTtkCMGPoBMcZcBxF2AtpG6htCACWAGDnCOJfro6ck0Qdks9wETMVMdsqPgAhbpGsqY9I+oF7uTYZYhpIgWvmd1YK4muuI4MJJACrtpwTah2EQcJ74qD4tmtQNAEVTbNyNwdGjR+FDscff29vLfe+cE+EnRiyXS+zu7oKIMJ/PYayFs4Q2vSPECOJYnURQViAMw7IIN0H8PsQUzaBtW9jGZZOfcezTnAoIo9j9zxoRICIYzsqJQZafUrtijODIp7wDnDKQl7ZMtiLoCKqtY4atWctygG0yyWaanizoQBETCwig7ABJEKfUg5t00LFj+iEDJKk852oXiFTvAAnQZ7C9Wm7RuxIgzo0k9vGxBuJ1/1AFntORbAHzlJqsm32FkrKKWv+mrqMKbNa3r/WKMl7SfKU+UC2unn3ovaVvdbLG1GWlTQQgMCOMAWAPpAnojAFxRBhHDIggBFgDOY4ignMmgVYPcIQlyASBOCAyB/jBi2OUc4AV3ogxYLG/hFFgmgCyaNGLgAMwYgiI0cOSgbUGIcZ0KkDgEICmSRs659YTFd4jShtZBMSXwWSAnXmG1fkNcM7COocYA2Lo0/DYlfFPvaYgfQISGUAyMVIAp8+q1yxTsuqOZXqsDHRmpQPGPg352rPKa/q+/P6a5xPbxVjxSLpe+r3UItvvI22QuhhBuQ15zLSsNNsm81q1U/mK3limQFpfKv7NVSxzo95qVNiZ9loNlNZnT14jaFpS7j8ufUfV+CrYJxTBiqj0VxYOJgKB/pbMJTIflPffEkhOtGPiKdVsNlkIVec4Bbm1bSyAwjsVv6jpQvldQXQyb5i8v5ifcBqw2nGVOalluMzFUoek6ElaMxUTyrzSnUFnsq7tMc9usGq0k7Orc1IueFKHLA8esN3V5g2rwKq+Z6rtX+ehGrRPiMTxsKn6LsQIl4BH8BGjHyrhRwGaL46NpbC0/juQAUIUs0rRYDbY3gZiCOi6Dv045vaGCNGExoAQpJ6uceAgmmxgav/vxxE2naCN3mNIQoEz6dQ3DhhDTNpdB2NdpQ2Vudg0DWazGbwXDXZM+4chC9s6OJcALgMmmRC0tmizVaNbC1tt26JLztoheESWvyo4wRoYaxCD2MKP4wiOQfiGjBiJprEzybE4hAAYQogRXVc0+uOY/BrU2TVGuCzkoez9zNlsw+rJAZCcixjM5ZTDOZfeV047isM5i2kcEcB6kqDr1sp6zrq/UFbg6cIu2vWyFvKKMKHCTm2eVk6j5O9isUTXtTBksLu7h+A9XNuKuZYx6OYzEQxiRBgHjMEXh1SGmI2y8GKxd5dmqHBAJimm0ibUpr4H0vjHWC1ABgEs/cLFNMhZNxlT2SdrfFyUhNO+OzU6PWdXLuNE9TVQtosu7y5mC/XGXMMHpI1Q1sIp+DhVUaQAkOpNrKBC6xirBbjURZxheXrpoEavvzBP7Aw2pjfd5NdySTcNXfAVnJRFfQ1k1c/XC/4BY17bfhEnTf9aXar2p7Y51yCGdDhZqWENhPnIikOYgQdxRJuON11DIBMxBsZWI0dWhgUwM3sY04A5YrEcAYj249DWDMZY7C0XcNlclkEQzfxWZ9GPIyIAaxy6tsXQ9xjjAO+9HOeOIzh4WEcgjcTCstDGGGCbBm3XiZaC5LhwiBFN28E2LkvcWdDiFCkiMWMNEgiAJYKtNCqiJTp4DLSPqRYU09hkO01dUJPwurI159E8sGRGtViu/77KHrV8or9PoW/ilXxXtdDmT9PFurRSzJp0va5wOGiVWQ2wyowT/UM+aqp7g/J/c9dNBJyTDQCX3mOa/k3C7UGC0qqklFi5atW039YfobLmcWVqUfXIwTW+5QB4paxEYKxp/3SjXzdTqU3PprarZOo1soCFXBaKsDcRZFMdmMWBvkQqW1lfaSo0cI4WVupXnNxWfU+0PbohF0EkxihmNKq1nLyW8/O10FLm7kEgafrbTQGAdeFIP5f+k4g9IQudqITtUJmWyFompjghlPYr6AMja5Zt2jc4mRlYa9E2LaKNEhknhEn9BaQZEImtvLUutyvGWBxaY0QIHoBqZY2A/kqLqwMv9Y4AFd6r+U+EJFO1N51WxAp8VXxqjCne9VVf1qchNik+I6lyipMwGzNozI6+rM75lBfOeryts2kvKr4AdTvUh8AYk0G2KkbAxeFWFS3aRrH9L4Bb26AnH+KAu3JqVq//NYMp63Lpj+y0XgsHqb/rea0CjvKXmtXUYL7mgTImMsQhBAzJ0dU4B0onKjBlvIwxmM1mcNaBADjtOz29KINZTglM6UdmpFOqypQKYg6sJjmcTkb0gWy/bwgWxRFcKz854Vid04ZOWZdzWkBewWut1QB4qm0GIIbvZdOuYcGEiBLAZpSVIzETy3/qjXHNTiu/AeU5QjWBKTMpaZ1USjWrzKmLOud2ZKFDe1PNXVL7ScPgkdanBivyLFXPRojNVMYwXOsvkNudhQQUzek6rJoisjLnp4COk4aJiStzgnXu0H5ziam13pakvtZGbM0cGulVcDpuDaMHxYDWAsF77J1YYm9vgdmsg7EOkWSSjX7MC7L3AeKzJJKqa1owMWLanJlZgHKIGIYRMAZN06K1gKWIvROfhh+H7KWfRAxwsMIznLTuRh2WIsa+h/E+O7twkPeJs1UDk5xVYgh5UsUJX0p/GBB80qCEFOYqJq993exFisdkHMp4F5TLk5IrXsi/Te+oRrXihRVAuAo+10Y6PUlpLqendaGqv5cSTFXStD7leL5w/xR6F9OiCSxJ8xsASgSb6hWTLzVgrrXxPLlDp/20Pzg5zumz2v7SvrJc0Nrb6nLB5ffV9Yyoco5XEFdesUYFY1QzO3cgnfzBmzllLWMVqaas5QUMFY3xFNzzAb1feinZzyNpzleAb0wRzAoQiuKsnwZL142aVENXL+01mJNNuTxTfiMAApIEwMnvkRmGi721vqMGWhOzmJW+q9sUEgCuAXptx13fX79Dy2IALpmxAMX5P6Q10FR206uAUYBuCfGnZWtISQKlSCW6vtanGeV0QW3Ji7mPaEAbYzNAUwDok8Nn07ZivlnZS6sWvG0cFotFMekggmu63KbaLEhBYQjJztomrb0xiCQa9HBAGEYiMTPVoc+iVyV4qokNSACZM2peJPbTAzOsMYXvEs8o0NaxUC117ecggsAoJxRJYGqaBs6WEKZ5rDlm3su8owKBmjBSMnEhi4iQ/SGw0qZcBonZGoCJNl73zfyS3N8s59XKi0QgK2OaTd+SCawKauqnoGXoWBPR5HPTtrmvp86/AYvFItvBN02Dpm2xvb2dHV9tiqKj7XfJbCkmEyBr7cTXoPjmVAIFKIPzcoJSwL6GMm0aJ3bwPpntrMxhoAgDeb7SSZyUD6BTB/KVdFvtwfLTyn6T7c6rHybRIQ+C9TT5k4F4Dq14Mk2DAmgq8IPBuaCsSanljFx+IQEyUz1k2TJW6pt291rHNlnpq+cEP3AGGCZV5CB4NnkFFantpOBBUUb1Wz6iTW+nql9UUz3VPpVS85FpDABHWENorEHnHKIfMLdAQyqVtjAE7PklQvRANClyIGPse1hiuLaRI60QEGJAv1wmQdBgDCHZyTWYzSOsMyn2KiP4gHHwsGSxt78vwk+WrC36xQIheowhmfiQONpa08A4K040RmICM2kEFZGWoXZvcs4FDiHlAZCjNGsIQfuPdah1EIqGI+pxWkZsBXyF6GFiCrllkg2hrH4lrCJTteYdIFipoJmE5Xp95BSnMo8vJeEqj2cBromZ0v0rEDUz4dQspXhbIPNLEcbX564uRDoPc4SbykxBimTUnKxt4lp4Lq8tPVrFCNdlKAsdFSDPEbA4D1fmdI1iMN1mpoBaFQBlbq7O5ymMpNKZUDObyRoDTMqqe64o84rZUhFMpF0nMye8OVIIY6UZs2JyZ6goXsAIfkRCPgBKTPepcytVhykmX9PxI2MAY6rxTRsvKId9A7CyMcs/UwHN6alAMeiogXYB3HTw3oQC0qwTYKk2zkVTr/NGIl8U97eqvMzPFZiq/q5q2dcUXiv/NDwfMwPGIY4pTwMREMQeXNYtCf+o0UG89/m7vnsYhkl7u65L4fqoqg+JkiRqjHU59bVWI69IHH1KgpGF+kwl0MoM17ZwatLAjO2dnWSWMmBv90QONdk2biXCipgoOicqKDIlhr+Cr+CHJJBwbqd1FmQcrI0gTmExbYDE/E9hrSnmN3D0st4ZDfmYwDQYISYgaywaY9GpYAOxaR/6HuMwgFqXzK9iiopI2eSjDtkZY8RsNgdzcuyMETF6xKYV8GcI4rfmEIcE+Ct+iFHnGuAMZSEE1uTI3ZmPiGCcBUK9F1IylWMB9DoHlBdVuZb4Pa+tyo/V+CgoBwgGJtvH57CVSYCqY+LXQth8Pi9a/KaRkJ2Rs0kYmGCtKOrEhIYx9AMIyFGJlBekX2dgMvCRMQZR2DVNk/8BYiZYm/ww1e0o81DNpnQOO2NgSCLyKFBHCjerAoO2W0/HTpVOA8gnkHjA9VTzlY1Vf683xgOKVU0CqHqey45eIfBKlkC6S8qmvJQDmuAlbfT6buFJzphrtaxcZo3N6hfVbUUNnOrG1fWun6cMyHVb4apBVRcmIDUVETj1U55IqxU+qN9Rt6MAhFWBgIAkgSctQAggBBhiOEOYOWDeMAIzWgpwhuCsaFvk6DEm28JBoGII4OgxjhEhjBgTgztj4fsRo/ewTgC+OKUs4YPH9tYMIQxAWqwWyyUMW5w4fgKAmMhEDnBGwl8O3mPwkmTBpmNVAysRDtoWtmlhXAPrGlgqnSHWRSkJCwHgIE63EJtdY2wWkCjz0ZQZ6gUtdWDqb7W15yIwcTmKzgLnJHnNycW59V9XRm+VT4ED+KDa7PPpkPynBjXVD+VtB1w/2bxRHiRIhJAJEFaTIVawqwg7c77uEtOG0Ur5KH2i86fg+HrGxLrG+am1IteavALDSbtMG11FF1rtg7xRVZicqmZyEpAyP9Xvoskn+ctYO6m4GVPtvAYooFBnMmSQQiRzWY/dFZRlJUOayxlAo+aMimreQOlbWhlAPdLX8GmrGki5ZjJwOYgUkAMlvCOn7H7qQMvgooFM7c3OfKi03gqiKk11XaebCqEJrJ90qMZvouVnFc1VcxsSMCWMw4huNoMlEbTUcbP0VTGXAEQbqWBKQSZQYrUzi1lbrWWWWP3yWRMYKbBRwKaaTG1P3/f5/cvlErNWQKtq7WOU09t+uchmKwKqHVzT5f5bHScR3jQkJ2e/IL1f7M2n4T3rUw/V9nrvEaQyk9+JCDAl1KeeLCj/130l8yCmOPAxJ7YCCqDVfh6GPoVVDIlXggSKSO2OYwLyXGw+c6Qi1gRYBMCVExYLIBYeqfnLWCvOskkhUgtKWkdGcuZWRRMRmqYIdboGhBjhxwHMgPcxxcOXMKdt0rAzcwbadV3EKVlO2re3tzGMY/ktOQtHiEnX9tZ2jlgUYsQ4+qysjTFmh2EdG+U7SnxYmysxM/q+xzAMUB9CPQUaUx3qnAree0Rj0M06OYHzJR6/SZF2pI0Wfd/nEK9KMkfV+f4z0ykDeZUQKYEATqC1bDwV3q02MNK/rNo+1e5JFPa0nFQNqMF5jVR0guUluVRubVPVPzXc1o2Rc6VqUKJ8OREUtDIZlpj1svILq5273sBTZVRHFHOZug1V78pA/uCmlakj7ZrWvQJsBzyTv+cBIRAzLAHWpYWKBXw3ThJEOGJYeNDoMSMGeQ9ykpwoREZgYBxG9MMgkyRFfwm+R4zAMHiZqNZiPpvBhIjFYgGgBxnx5F4sljC2Ac76IoSxh0GUDdCPWOyP2DuxixA8fJJUZ22Hpm2wt1iiHzwQGdYkLM1A287Qdi2atkXTzrCzfQjsDMg6OGMBJnBgwBpYks2WE5hnBpwrIFQjLQkfKnBIi0rS+jGnqBOVSY8xLj0TEq8oyE+coJU92SDJQAo/ZESoteIJX00Fg1LgurZf31/AvMLbVU3fOlVmbFzKW618viuBcpO/6jxnMNdtn9ZFGkyl2mnuUV5Q9EWrIC2PGEiWv6pQ7b/1BTHPp3TfdOrofFSAzmvPlZxVlQY4HzOk99bLBK+XIZ8ZK8Nc1euWQdnRrWpTDapDiHndVMe6GnhqXHHB3axhn1D2AgWKB3TagcA3cf9EUIOYCih4SFpiIgPD0/CNWn/V2Ot+oKC+zJNpncoJQA2USFO0TMpVUq3hQb9N+iiWGPHrfVyBV1NCaBZBCmLGAa1/RIxTYUDK0/WrAOODnGtr50+As1mMCiO1RrxOwKRl1AmXNJoLUOLc67gaklMAubc4ZcY8/6b1ZyBrSTnxEZHJ4SylvT4LMSH4xAcl0k8Imh1b9oOYQt7p/qchVlXZQyQrk/oO1KsXAckkhmQfUlMvY7L9urUOzjWp73JPIwSTlFGiJdYEQoq0YpSQleRMNlkhQga6ZGTtjFBTsBIechVA11rrGpZJPojkhJplBs7jFVLM/PXFTEM86qhIcBTrrOpMKtO1KT+RIQmNmYT/2gwHKGZkyueKrbKWOwkjhoHRB9hqTuVTBErlx5jrHmOEDxKJyFoH6yx8iOnkUMbaJ0sDTif2MabxNeU0RXMCAMihTdf1EHRAn52cTsNGXsHBulaCUI47QVQ2P1WVs2ot8gPIJVHSqkzCSyo7KqwtC0LZ36vrq50ABV0H1VbLKbFz1n7lg8HNaoKS/D6qktFUogMRUOxqdYJNYUwlJyR7fi21RGehXFhqG6GURtOFodSp9Jn2it5pUtY+y4zWWTgnK/k4jDh0qMPZZxzB4tiNGPslgh8R/AgGYQgSo1ePv4yzYDZYLvext7fAOHrJ7hYDtuYz7O8tMPqYQ0je6syj2Gkcrr3xGAYfUrKFEePosVzs4bCEMgBHj6ax6Bc9YhgxjHLkrjGBGYCxDmCP0Xv0ydegcQ4hLEEGsCbCxyWODfuwbYcmxaWXhBkWbduha62UQ7IgjX6J4AcYJ5nc8uZRSeyc5E45nVKQH/MikdmSAILL5jmFIQBa4crpnq9Aov6BURJs1UgocUTWIMrLD56nBUDob6J8inVhKzw0BZY1Pyl7Uf5chHrFr8L/ilAJuVpJgMqNX1/j5d4S13YF+E4BjF40ULWASYBk6oFc6qqRnEoVdJHSucZJWJ+uImlsUHpRhfuJpfREG1BdqpesgzQH9RjRAVFFbsYkG/TUVyqbejBLGvt0DA/G5ChdNNWaTCqVEBWEKVAqNtFadnnRtLzJD3IR9TyqOYaohKmtn5+C6XKqUNdZQJvJc9Ykc5UyzZNwolyWilwNL1nb4KoP0yrpiUYtAE20wlXdJWpHFdqXTNrDpuE4WUFxNiMwybSkaJf1b625rLXzzjnZW5JPkUvRRFQjqRFSxnHMYD/GiK2tLRBJlB+fouIYY2CNQ7vdIMYg85WBra1teD9C/LYc2rZBP6YQmtZKqMiqT9VcQt4lY79c9nDOZJt/aw1CGJNmNYg5kaXk+KnOlxGMiH5UO4CSvs81BVxyFE11yXJqoRGNDBFsMvHyPsKSBSwEZDOLKYazEg/d9xnYzmYdAAWMgHUEE1MkmoRTYoywTiK2Df2IppG9TmO0g2IGnaY6LdM5oPyp4wlWu3AkGYnS6Urim2p+a2CNEEYAKR48Fb8NtSG3VnkmgJxEncvhh6n4f9TzzhgpaxiHqjwDo8KHFQGcmTEMfUpIaWGMm5TnGlFKqoADMGzTwKUIQX0KkdpW8wlEaNoOXdfBNg1OHDuGbmue52nfp9CZJiHYMcB0s9wvfd8DfszzJYSEIqo9TvnUrCqwboJOGciv6BAnC/LBh9aFKWRtpgN+Pbi89CDyzlcD/+pavVZn/EQFdMXP2As1SF/5ZVIhNW7WNqkEW0uxUoN0qpRBUC2erFW2qoUKL9m/AOIcO+1nVALIymZ10vYV4GWQnFdNgjoxgMcBcQxw5HHYRGyjxfK6ExiW+yACZl2HbnsbNx4/jsXeCQHsXjTky+USIUSMw4B+9JLEI0Un2N3bh2GxTXTWIkbG9ddfj9t+6Tk44/AcJ07sY28xAiEiRI/jN94IjCO6xsI1knhkOYjZTeMSCHcW4xAwDiOGwWc7v6Zp0DYNGuvQdQ1ms1ZSTnuPxXIBXi4kFFrj0LYtXNvihk8P2NrawaEjh7G9tY22m6FrGuzt9/DDIgF8OSIP3otjUjr2F2s+2QADQpL60yJT82pa8fRa8u9NWtupvfYEe09Oe/Seg8S1whX5G9faMeTN8uDnpvx0sntWYXTGS9UcVTvf+u68MZQr06JrNL1C0x7g/JbplVR6Nt054D36vUgWKLNV20D5WoXpq6bXE7Z+B02+q6BFlPwstDAF74byhpE3pgMafvKxvnlTfcRem69oqEgicX4va7j0sbU2x8XWcsT+WHhOFTLF3O30eo+S7SqACWg4mZZbaQou6nwRPLlnMgcrrXcugwjFPG96ejAxK+Jpuav9oSB59Z5VM4n0VGWGU4XnZNXSmwyG1FwgySZZYOi6TmK2J7AXY0TbtgCmIRmHZOPdtm0C1oOsw6m+J06cABGha1sYa7G/v49hGGGMvMc2syxIOCt8IM6mQfyzEhhLKBYA0LVdiloW0bTtpF9qgSPGKJHPvEcIYhKhGv5aABqGAcEEURKkfpVnPZYnTkz6PoSAra2tEnUlcPYtqJ18F4sFYgiwZDCfz/M4ERGGZY9xHNF1nThoJtMhBeF9n5IUaW6XIDbhHCMQgRBSuEsggfSA/f29bEarp5ziKhaxXA6QVVXWMUtFG555MAvSnPzbJCLR6gmRsTYpCB04IvsVhMRbkiOg+Ikoqe9FZM75FjJIT2Mm5mmUA1kYY7NiEUQpHv8gyrrkr9EPA6KXUJrGmOzDEULAWWedBY1+5BOeuP7660FEmM1mOHLkCPb397MwrWY9aiIlYUvFwVvj/M9ms+zk2zqLE8ePwZHJmv9utoVhWObnAWD0Qxb0lOeiTrhToFOPI58kUB0s3YJ0q9YTkrwwyZ3I9upU280Wx7tUa0zsR6laDPPmq/enY72c2Ge1LmnDV9t8BjTBvNpH4wBBpyx2lQCB5M1t5L1FQ8lghGq7nW7oQEzavOSoS5zBmzahBm66FSlTT+FP5WRYjSslzc7kwUx1fYSc0dPoCI4DyFrMOgKGBSgMaA1jZzaDX+5j98QxkEmaiv19fNozdveOY/CM3b2lhINMi6Alg635Nqwd0A8jfOB0lMbwoyQBsc5gPmsRosWnP309jh49DGO25fjyxD5cMGi3GjkZMAyQRPdx1mLRD9jpHKwz8MFj0S/hrMP2zgxusEkjYNGkbIT9MMAHn8CzdJgxDj54jGOP5WKAa8Q+fgmgXy5xrGnRzWbY2d6GcRJOLRoHGAt1xPIjAGNg0cBE0RAaS2gaiUbggzg1gUVYIs3GWA0F5X9Fa65aRmbOTraZC4iyAE0VSM0gdoL+qYB4osJTJPwvJwcJDpuaZTRmNEGSsCnXxVQ/wnTCpDmSmZXyzxkr566vG5TKqYGxFsH6Uyqb1qF/MW0pm2tqKtTkL6Z610JUfnvelLXf0zN6H6304UrNlWJeBKbJs0vdZawsAZFlc1GNS57AK5iqbhlNPp3iKn6zoLTxppMu0cKKbXaMEZEJwUroUpccwCJE+IGZZmTNQD4nnqnBe1m3y0+isS+nVrqQGpSZomAhTpZTBXy1aUm+rmszUYmGVQvphIkmWKiY5OVj+9oGm9KUojLFCviL+d11X+jfWot/U6R79FSYSieeuvtwzABUQareU9uLq82y1tNaSomexI64aZoSuztpw7tOosgoQJKTUpsjmCiozdlUWe3R5T17e3uwzuQ5RZExIiCGgDB6hBiSgCFrm55iFOBY/A3UN0xObMp6rHbPs9ks28CL9prT3itWCM4aHJ7N1k5jakdKVajo7957EIDWNojGVmGIk829c4guZlOOvcU+Zl0H17SgiqeNMej7EcuF9OO87ZLmW0xfRXtsYW0jUW5CQGObfLoxjr3Y9XPCE1TWP+0HoIoaEyJimovW2SxMy/wSh/CaN8Q8jaB5I7yP4v+CggUzz0J8H5QXhI8kJr7hwv+jHxARYWPMJyuAKOmK87TMIz/2YlKbcjbouKsdPBHh2muvrZxZHfb29rG9vZOED8Lu7h7m8zmaJmAYhtTnIkSpHf0wDAAZuFYEWzlt8ghhxGIhjtRN8r3T/jXGAQhZQBA+EdxACSDGdCp2KnTKQH5qiA9gxVa9BqF00IZVHbtIcNbEKNkxbgVg5z1dBYOsh56CgaqG5VPME7b+OR+KVwld6nt0oc9yytp6WG3IVWvLlXWwkWUDMJiKlX0G8VqvFeCjAkpU0JGLVWBVFmA1A+GVCguQIzSWJLMqxbxRHuoazCjFWQ0EywCNPRa7uxiHJbwXk5blEDB4YH/RYwgRw+jhY/LQZtlkZ1onY4FkX+icRfDJSSrK0bnaL+rRU9s6dI1FiA6ztoWzJtnrS/ucs2iTRt+mTdYSoW0s2saKBM2QYyxCDsnlR/Gql3e0k9GJQY5qZ50Dx4ixX2Cxtw8iwrG2wWw+QzfrYF0LMpJAxNjkMMVADCOY9OgOsFbeE0mFxnp81ZNfwXr1Ywbb9bJW8CdVk0HGkacyZkUFoEx5R/5f/yZvyFg1vWc6k6V+K6+YzDmdiSJ+myww1ABcH1pp2Yowqna2Md87qW/m+/TeqphsWpa1/gd0DHTtKF9zzfLtKpgUE7h8ypb319VyK8it9+QlIXkEUDE1Ih3KJDhUxofTGct6zHpLAvBCfvRiUmCKhpoopOg9CgYog54M3IgmwzrR/uVxoGqMKk5eMU+aCHOJadc14GbCMic79dQyaq4rnHtAGMnCIPl7mZWqndRChX9iNtlLs26trGL3rnWd2udP2zB5nlmyNmfHTM2knezJUxjI1Yghqv0V85raYVnKzpr49L4YA0zKEkvGSCbWZPusYLQ2BwKQTW9KbxVBRTTTA1py1XOyDlmb4qIPAwpPYaVPpuE6a37TvlCba/0XQhCz0coR1jknUc5SGxaLRb6/hOjMbzyQl4goh3EMQZRiYEh45hBAxiJGAZC1YCDtlXd577Fc9tLPDDnpaBqAWEIepn0TWA+haa3NpjklvKUydzlFyuZt9WlVMsmJyTkWQRIsibMt5byGdT/EIMIdJ+UGZwWu8JtSPvHgqdNwjadqvrdW/TZSpl9nwYkXLRdBQU4HDHz0SRgp46xjoCMWQsByOSbgH3J/qBmYPpcdXVOSSJ8i1Yhw2Ei0NBjxP8mO7yQJq6JBTHXRdmclxQHz+Kbo1IF8NRHKtWqTSj/pZ1PfsAq4p6pnAGpjX7b9QlTP5uqhYhLAk+eKa51eo0pYKAvvdBUm/bX6Xv0n13di5z75SUFOKU07qcSn52w1IZfqLWDSISgCS9328gYF/sQS5jBSyp6HYl9lCTDOYtYQEAKMYTTOYNa2OOoAF0aEBKz86LG/XGJ/sQtmxt7+Aif2FthfjvDRoB8Zi3FE5FDAKQyYgD5GtK4BWPS4rdGkTAw2jMABYZTFaTbbwdiPsI1D01i0rRMtvi4wqYUxStY/PwYYSOgmaxuMwwhnjYB+khMfUdREMIcCpESdB2Mg0XGi3MdGNkhjDDgEhGSjL1EHIrquxfbOtkS+MQ2MdbBNi+1DR9B1c/jowYZhYQEYcPCITJK1UEeRGUj28pMDKhRNYYEgZdjXAERKTFU0ZxmBgFHM3dZn5pRW524NhRQsa64wriuTmbzw82RKqAY/Cwx6vX65MjxX5RXAUh4oMJ60rZWZXF3lMl3KTM8wbiKkn6xDCtAr5U0FgcmeW52myXJGK89M56+GD9Tj66KlVaFBq1HGpVpVRTMDFSpuGTSm9OSAzgnhK+Ef0ULVGkDr3ESbHTmWmMpEyUS+fJ+Owwrgz/On/k3fW59CpVjqRJOeP2iO8co7isPnOoiebspJQ4t15+rsgMrF9EPX8rzXVQoceYonYOcgh9zaZGMCxkiBtyh5Qgx5nIwtoFTt5EMIoAR2jZHIX8wC6hVQ17bvCnQMaYZMk+3tAeQoHwUcFrvxHLUnjW8B5WIGwVFsyY0p6641lEAdVYCVRDtd9ce0L2KO1S7mEet+Bt57DIOfPF8nLNJ2ilNqAvGk8eAFZK7G9ucQ8zqiY21diUrjvfiMRC6mP6qhZY5oU+Kr4CPGwcNYKqcbRk6qmqbJgJZIQn7qODGnHABBnDJrx9K6nTW/MaY+FDFImEwVhkIC5yaZnkYOa0A8L5tI9vmglMmWMrDO5afEZHnMjABmEcamkWVA4oTsvZfs8fq+KHuomOsw2q6VkwUGrGPMZ/Mc6nkcfQbRfd9juVxiZ2cnaeIpCwwy7qJwFN8KcUY21mK5XGIcPWZdi8Y1ouALAd734KA+I2IdAUOIQ0zlhmlf801He1yl08vsirLBHbTJcBkl1Ft7xt9cbLCmWhZdoKrlskY8UBMdTiYfekC5XgfVtE2qos9XQFsX0VwKya+VBXqq23SjXtGjoGzMtHJvDYsUbEQw1CmEMAkHSPV2Xp7VBazCgrm+9UbgDIGjLI7WAI6A1hJ2tjo0BiAOcE7sEOdth3Y4gSEOCDwkk5Meu4t99EOPyITdhcfxfY/9pUdgIMBgkeLBc063LU5SIwcshwBnDNqmARqHxf4ymYqkxYEJQzr2HD1SzN8WbTNgHCMoJU6JwYMM4JzBoe0ZFnsLIAY428A1DZbLHsQSzrJxDsRBYsUT0Da2aE0gEz8GSfoSooczBo0zcLaTshbL5NnPsJYQvURIuOGGG2BIym9cg2bWwiBiPmtASRNBhtC2sgktlz3IJNveBDpk/HTR02PhFH6RJ9xTgL2CPl34CEDUxFSraH/FxlCvU23/XXOsav7TfxUEsWr8yowtc0dNF2oq9yiIz98rPKtROKZzRG7KmtcaAKdoNkUYqt+px40FcJW3VlC+0nJmYHfgSphqFXlFlq6FjNKg6VpRCSZVbXTqrypRJicF1XSv5YBpD1ffTkMj82+dmqaDc20GDMyEyASunEEBiDbPWTnsy78lUIXiSQQggyJAN79qzU4CF62yb35R+k8F6gFks5bJg9VRWz0ialcfWaOYSJk1GKnjQmsJRLqum1Jm9b6iecVEc5+rTlOmYa3jAaTgQMwghPREtTidyngEH3IyHgCIyWaYkwOo2ssrWI/RQ9ahCA0Vao2RY8qqHTFGBFYzCyTTmwJaVLsaY8Te3h66TtZna2wKtThk4Oycw86h7WxPracLEooRWUMco2hqJbqIyTbMMYYcHUfraNPJQ5vs6vvBZz8A0c5bdK2Fmp/EKGZHXIHUQzuHc+jQEAIcGSz7HsMgiqLt7W1YPfUIjL5PfgKNgyUSv4CxRNcxzgHWwNkWxjlRuGWcIfHWm8blMIzOOXAYi0Y+hTj0QU9QXPZ5YE5ef5q1losAloWnqn+yQEfFxE2FpcY1YE4nCij7gu4/4zhme3YySCEvJZlWSMIrISZ9j0l1rf1NgMAezGKj7xoLl+LCK0+M44gYImzT4ugZR7IDs20cAJMdrZkZO0cOI1RRY/woSj4RUiyck1wFTdNhZ+cwmKP4FpCFc20Oxdo04jzbtkW40bk+n23BELLCcBwHEbDaDsYQxn7A4AdwlHDawlcM5jCd9/8aGvlVIlTHlnXCGcpbXV4jV5eiwio1dK234Bo4AwUIl/8CukitXBWxvXpX/e4EV7h+QOusi2+6M0t103eWl1Xvrhbp+q9RPACJu941DqMPCEnboGBBtQ7qrV2XlK9RLUKkakPCK43eo2sMdmYO87bFrCHMHGGrIdjICOMCs7kMtbMBO3OLhR+xu3cMbdvhjFvfCmwMzKeuxd//n6txfG8BMh2GACw9YwgBkVQaNYAlidnuHACWCRklM5vrOjg7x0AeZAFjCW3j4Iw4iOz3I7oG2N5x6FqHfp+wFz262RYMmeRIK2m3d/d2MYYB2zuHYMigXw75KDP4EcQBYHF2atpGElrAwIcgx2TMMGQwaww8ubQIGIDFQbe29ROQb0HGYldtN62V6AW+xw3X/SMAD9fOYYxDdA2It8BkED0jxDGZ4KQssSxOmJw1IAoK5WQg53ZLAlwxswHEPlX+Cv9ofE19RMqMHCbXSIVBBhgx81Qx6DoI1dQwvxZE6/vj5L56zpFmq6UEtCahMDnnP+AJYtWydHeqjl8zMK7c6xX1rmWeqzU8nPF3BgmrzdDrOjFRAyVa6R2Geq7nftWys+AzuXuyghFLSOaJOUe9MGsVmCsMR2BK/gwnA6A3Y1qNoqIaTf2r5gowNicfUtOLEhayxHDmeg9CsaEutL4RlnVVnaQp4Xiqylqlkw+GAqF856Sc6byvNeMZ7BBlnk2GVdOyoXOuAHKtUr0f6MnCqtnNJJINcwabdV2N0dPDZFiWQLtGmZm8t6qb3rdcLqHx1G1K2qS/tW2LEBg+gUoAE8fPVQ39fD5P9vLlNI5AEwFDTUr0uTYBbgXpzDyJ2x55NdEO5ZCXCuRze6LEFycisY12IlAogANEk628qSZGIYywrgEMJrH3NVKatRYEwJI4CWufGiOJwLa2tqRMa2CbJptcrI6h8s1ifxdN06BrO/DOIYzjgOg9rE0ZQVNEFLG7l2ARIZbwo4QEspMCtXa0BCRsYh0PX0J6hix01eZUyoTqt1fzhppnaV+rGZeYoxgg+RwgORHXoSPFDGaazEps4g04itY819EYOKRkZzEpBRcRs62dDOKJCMu9fTFZS+Xv7y/Qtm3JPWNMHn+xf+9x+MgR4aU85qaYeKW497r+5PwJycRMhUmOQbDNOKh9pQhXpDkT4qTftL2nSp81kJ9SrUmTxUITqXACynm7XAW9E41KMYvJGve0cQpNJbVpDfT9SIu+XtOoMuaAu+WXtRKpXC9gvX70YMGifryAbVmgtmYNnAWW/bgSqg6oDHarMqbvL1Xnoj1KzNlYk5xZIyx5bHdbODxv0DnGOCzRh4j9vV1YAwRL6Hevw4kbb8CJveM4vruHfgxgNjCuQ4RFpBb7ywGjZwQmsLG5xSYBRmMZrknOYtHnexaLHv1+j53tOUw0ojm3DtZJ6uLt7W2EQVIeN87h0M4ObrjhBFonobF8QNaqIzJmXYsxhRbr2hZHjhwGR8b+3gl0WzPJ4kqUJol46VsDBJOEsMjoGicaFUiM4GEMWC6WGEOANTZrXtpWFmJnCY1p0LVt0rpHLJc99o8dQ4w3ApDwl24+x2znENp2C4YcGCz5NGwEWSd2/VBwWQ2hxhvW8TU5D0diYAYUiE+HXBmmEvDWQWVmPCCfAEx4K98coXrwiZCYP3H1D5M7KFWsFrTzfFdRI9bP6YTU+VaXq+d0U0MZzVmhgmzdA9O3HrQiVKJ2dsidQvZ4oMYju6gfXFoep/TW1elP07qV0+p1hUI2Ccu/6kndAa+/BZCytipIal7T35hljREtmQAR4iIgZt0RM5hSsiHUNu4FzK6djqxc4MRfB22Y69qwUn59z+qmOy2rnHbp3CANmWkM9MTOABXALqdsCmwOpGrLqNtxU88cVFcB8lPfhNoeWiN6AClM6Eo6eg3XCJRkRxPTFH0GyGBfNfL6/mEYJJxfBuQRyTYyg87oA8YYc+zwmsYELsUcRzWrah9ey/Gc21nHltf+JGNgk9Ag7Ynohx6Na5MpF6FkGi6mk8ZaMbFMDqbWujQOckqUnZrTEhjTukkmRUEjA6ToOhokwfuAtnMAMSIDTQXkZayTnT+pMJF4PwIBcRLxLgsumAqrEr0OYC6hMfPYp8pyZFCKUY/Kt6EOS5rjptspXylz63fvVRAgIAu0WknOp9Z1YrGaytwWB+gQAyRzq81meGIGY0UPEyLGBPZBYrojgh2n5FmUwnjKWDMlP55qnmhGYCQht1G+SuuTTeY0IAmLaazgDI28M8aQA5MDkq1alDXCdDGGxKcESUrJ6a+uGp/jhFAnkw64Ypii7ZjcgApVr22mYAE/qp2grJXWf1U4PY2+kUvJtZu8sA56Azpom6+v1QvztDwRtFQbWYATMvChA4B9dbveEiMWi0HiyaJ6Xp34tHRTvbfe6Kj8EVAoG35SjsMaBliOtuAZw2IPi+hAM0JjAdu1ODEu0e8vsLvcx2JvFwzC9TfeiL1Fj35kjBEYxl0c399HHxkhEgKJDbyxsiAR6WKGkqWPSzY8EIFjxHIcYSywNW9lglrC1tYczMCZZxxBDBGNsxh9wHIQz/QxM3QyvYhAiAF9P0poSSdHkGEsx6KS8nuQWKzEcCROp23TgK04qXiftCNUNE7WWnRtAzMS1MQkjCP2/YitnW10sxmG/QXGlMXNWELrHEIEoOX2A5gDLDGij2jbORwE9CNamNGDGoZJmiRjbbJzBOqIJwyG55TXmDN7pfGuIHrWztWau6n2L98zYUQFP/WcAtShsoLlmbdWsSRnHid5jpOwnOeB6unLN+aSxCdrsyvBgLTKdfmkrV5bUco3rktKvJIfl+dMll4oh6LPk5tk46LKbKi0PkCj+HDuN9WAVvb4XASffG8lbCRr0gRaqyPSAxbK+pKp1liGBHC6pRBzAetqtzwFjsnHx3C+j6nwO1j3oNJHmr1DHYvlPZz/VkszVk9z6rIUQB8E0pV/699qsFtfW9WIFw0qpSykiccTIGQyk/vr997Usbq2zVR9p9dr51M1nalNfWq/gwwWjMlhG+u2qRlJ8CFLUD4593G6t2maAuxZwjTO5/PSXwqak2aybdtJ4ifVrpdoJWJOw1nzK30XQwAHSWW/qhXOwoO0AGrmk/eTBHRj5JTMqQAoY4rJniEDsoy27TLYH4YRSDkKNDmY/BNDksyrEPBNxsClnAnZnpxKFCM5bU2ReAxJ3UiMbruk3fXeYxhHNG2Xki9GgFJSpYQnRCssZimGUjz3tO4GL+aYGiseSI6t6nSZ+N0YSSilTqCAaIclhGWpfz4xrk5wskNyxa+1lUaOgkOVKRlN55uCeWVgid0f0hglQcNa6MlbrbHWMXQpCo9GKJJINpT9Z3yKNa/293rqwszgSNg5tIW+HxFiRBhHBDPNFdR1El4SLGK31ShDchBTzNMgATZmKXGX+MBwyrfj0rQn2LZFSOVJ+FRG27p0sqD7svZjvRfeNH0WGnla+0PTXzKtAXsdPzOVkmX/NpUWvxIQVgrlqEfRPP2RAKqi1ZR6GTDiJO3NFNh8BqoEEKoXXkKN/CuxQGEBgRCTUMEIkM0sT0YA5egiaajq6ug6mIWXqv4Qm3hDDGsYzjA6m0xpwEAY0C+WwBDh4DEse+zv72Lsl+j7Hvv7+2IHv7fEcohYDAGLIWKMQGADH6MkdlKwHtMZAhOiJnpgQowjGmcBZvh0ZGatBYzB/nKJbtZkeKSxoWed2MYPw4Dd3T2c2NtH7wO2mOF9xBCkrDAyOAb4ABjD6IeAEHsQeThnKgcmcUIxlkByHghLhJjioZpkJy+TP0VHSaCf0ikAgOQUIxnftuZzhH6JYRzR+xEgQkOiqWmcResMrAGMiWgwgnyPCGAMI4xzyb6xA0cLDpQBCVU8XQM4CYMovGISf65OZAUzQDm5qs1tanCbeaWeQFx9roTpGqTXfFeXO2FJTjNTtUoHYW6aalOmJXB1gaZ3ca2h0RpW7ctzW2B4rVFn7chUFK2VDVBVWU2aohk5JyAu/U0KtklJ0xpVkYjKVC73VeMu9xWziFUhRdqQCqiElVsKqdOgUkgaNwskZ0nkbI0xhYcztg7dyBmgTbXuqkGc7inT0xbOc07YSkE3JuNeg+BJqEeiImQlFs6mPbrpU3l3Tbn+grz1YtroxeFPzclWTxJOdlKQtZUkmsc6I2v93tpEYVUTq/cImC7lWxACpplVkUCsmhQoeNf42cYYuOR0uFwuc3Qytctv57OsrT927FiOi64RP/S7AnLnXB4/IhKbeefAAJZDj+PHj2M2m6FtW8xmM/TJFIJTGcuUyEf7fjbfmvSLTXlNsg18mtU+aYI1xr3ue7PZPAHMkPvDppCGatfPCCASkOc9T/o/RzqpbKlrUKsKj3p+NG0LH3zWTocQUr8HBO+xtbWNse+zwqJpOhBJkAj2I8IwoJvPQGpmEiViXSTRnmvGU58Sa6kQxWkvV0FEAehEuGNGPwyCQ1KoyBAlJZYPIQs30uEM6yyca1IUHQkTHTiZ2kHAOsggrviT2LQ/cywCag3kpT4SMYiZ0XQSBlSETTON0mPEDl1PEnRc9vf25HTdNTDJZKptmzw2AHKyMfns0TWNKAANwQLY2tqSgBkp6ZeYa1k0MwdHBsEPJacRUXUir4IwT9qk72bmWo99k3RamV1r/VO5pj8dsDGdrIjVy5VteLqQ33LgIyybZk5rTZyP4XM2xhVULFVMnaSyu66/FTavQVYNz1crcBB+yT2zsgArbDpQbmDK0SvE8UMneGrPCr4iSJzyxhAMRRiKaAxjy1ls2QgEjzD2GP2A0feAH7C/t4dx7OF9RD/6bDbTh4h+YOwPAf0YEMhIJrgoEmPZGLPeU2GJhJTkiMaWTS6bVRhxMOmHUbQcMNhvRoxejplmXYNh6LHse+wvevgIjD6iHyXMVwg+C1yRGXEMGIOEMXPOiUkPc4pSYCX0ExGGMaCA34jAB5ktSN1N0pzkGP/GyJyJAZwcwMZxRO+9OE4RYWvWgdDAOYvGGhgLNBRB8KIFCQYxONjYgjojQJ6A4MXJSmLEWpnUFajM3M+x8IqsYLIApe8nt+Y+QINHRUigIr0mAD6dXfV8qMuczCD9sTp9wYE14iSw5ltWSqtndJrE1S+50ivCK1eXKP9T++JSXP5z0FyrKQsw6StPfshv1vfSSpKuLMRUt0+LVKHtpgF5EYqmFtK0WvjNnIy1ORINQ+NNyyZOzoEDJ9aSDmcGXA5LZ+BcOeHQo2hGSdNOxiTwlzgjRazSeREh2SuzyUelCCCShFCiQcRkfkqyKBkjMtNMliGkfJ4rpwurIJo5InBIoF/ag1SmrAvyve8XANKaZiQUYWNdEgQ5RRiJOScJReEx1T5mQ7cYEJNtsSUB+pIF11SzUP5nU/QNTkJG5BSdBQYajSYbAqS+Xi6XACRfSNs2GJZL+CR4Oada5QCQAVmDcVyK7bBzwDCg7/vJejWfzyCOfgEx+pyASoUUSk6vSKD+8OHDaBIg2z12LAsT2UQyxanXMTbG5Hj3wkectJ8qZInSigzn9dJHQAXv3f19bG1twRAlB9LigGvIoOkaDGNA14k9fYweXdthGAYJdzxGtE2T1zFLQNQ47BzhQ8pC60yKUiNOxG3bIHgCYgClnRfJBnwYBiBp7zWzrpi9iOqvHz0OWYcQxuzs2TSNhJ9OfBy4WC9QZLiWEC2B2IJc8mFIpijBFwFO56iCUEAUYGOMK2EyxRcsRjmtmHVbmU8JDPaF90mDQaDsEDGd5ChFZsy6TvK8xAjrCG03h0lacGsklrw1BcCDJBiFH3vwAMy6eToJkTVhDB7wAWREcz6O4jAskXAYYz/ANQ5AMiVKcewFOxJ8FPOydtaiS8LY/l6PrmvhXAOOEg3JQE4JVIgr+6lgg8CC9UzjQDHkfp64nN0EnQaQX9E0VB9qJfXkCV61P9RIGTGl8FXdWimeiavEltMNvag99GfKoy7spJKOmWyqRBVzVPeA46R+E4AzaVRZyKqKTiBJ3R+UK0hFoMogpECfDCwzAOHcS6oxskY03iK8yPtbZzBzomm27NFyhPMjEJcwYw+/2MO4VNMQYLkcEGLE4Bn7S4/d/R5MFkNk7PUjPAOwBoYMYhglJ1MaBzlQEuBMsmsgm06k+KpN42CcSQ4yMhln3QyL/QGA+AUs+gHzrhFQGzwWiwX2F72MhLHY219i0Y8YvEeMEmfepSRPMYH4rmlgbYPFcgQRUuQa0WYHHzEsB8y7DrZxiEzwkTGOEQ4MWQ+SNtcAQLJjh0EMHgwJgTmOA6771KcwBp+kbLHDHdPm6f2ItnFonTjrjjSg6xxaK6cYPowYdbKC4WgmDp9BQIG1NZ+lP8lWsYBtQMOiWdgq8Q0A5onglM0CMg9XTJnY0OpiGDknUlNO1KN/hTulUgeBSJrysQrSeWmWx2ptmgB7+aE+CePqSW06lYmQX8d51GrS5FlFABEtULK0z+YsJauutle1IdO1pNZKqsGGmBFJ96YIQrmf0qOVPFZapMWmWNpVPSciQqWRO0lP3+JI7XA1w2dM0lBMGkLDeoSf+qfqI6AWNBNoznyxbtaitrtyd5ZmoT2r9sv55Gv1aKneF5J2zJa4HOmW6SgpmMomGxXp5h0iQ85nV34zJRZ2rcXPbUoniqUF0+c57RE5zCsVU4gI3Ys5R1qRW9VEoSTRUc020toiTqNFI1vHbhfstXL6ljTMYgceYWAxjCMiM5wttty1A6QA7GJrL1pVn4QmQtOWTKt6L0HCLlMCXapB1n6X6DoxA91a25nHIl1vmgS60/vrkJjKP2NKqBRU45x4iiyJYo2abOMtQleQsVLhruKjGGNeT/IKmgC9at9FULDJAkH4PGhbQkCAZBzXuRBCyPb2xBp6smT81bfVqIUAEfDU/6QaGw0HS8bAVOM0mS+JV9Rkq47tXs8JpRC9YLOqPNnnqrmXytUkXTaF2RS+QnYu1rlS+2sAsr5HFK294KuYFX4hhReVfSrk7LDGOJB1SSAsITZVSFQzL9c4BI4po63JQml98qUCTz/0sCTx6iXmfnLsNUlARXVCQAYH7gS0OtsPptNICFUvIEl7RPWv+c35uzhSIO3/lT0NKEm+akazUka1nxcWK7/lvTEnoFEWdcBKiRMxgOQot1RcF7R0twoFNNWM68ZSGCZpL1besHIIoPg7/1aH9yuOfJMScu2tsei6FtHLUZraic0cYatj8NijoYCWAmbkQf0+hv4EeBwAjmisQbM9x/7eEv3SY78fMQQxMermHQCLYX8BZyVkZNvN0HQdFik9drblTwkMADm2E8enZGvZOjTWgUNE6xxMI1nlhjGgHyXurUaSGEPAuPDovQfv7WJ/uYQPIwDGfDbD7kImRGMIMC4tfCLmbc3nEo5Mo8j0Hvv7SzBk0jXOANFjHCL2hhF232a7uciMAREtxJFJmWc+c8lRpYe8MjmxDCMQgflsjtBJRKBh9LJwBo/lwOjHEc5YzLoOO1stEHtsbXWYdy2scxgD4P0+mD0Ce1Azg3EdCMDQ7wOUUtEnrVtO/Uwu+7AyUoIrHyQ5VaWZYGXMivMzPFUQBJml1hJudeZRHLvxuByZogbuKqcqX1YmaVyE0ElWVSLoycEEVGQ5owZTWCEDYKw+T+urkoDYlHL2JKi1EkVI1gdqwJUbNHkr5wVjfaEsi2f9mzhH5fChqISn+mggv79WPkzLzgI7qnFTkHbA/M/lMk5ZG3NzIDVXUc1pjpSCAv5UWXCQSckBJaahpgxa9T0FeAJ5jTVl/S6gsADnvOdkwW5F0FoBKbWSalUTv24PPJ2TsTIVqAGqtdInxlC2W8/Pl21N2l5viczV32kb5dmKyyuhSIFrXQeVfJVXM+BKzyswJHBKcpNsqdO8E4FMwXw1vpHFLBPT7J81EKvttCVcZDL5iEGCGkAAkCicPAxRNoNRsxQF9TYpgfQdSjXYVGDeNB3GZEutpxCTrdwY8eNKjr7FXEM1yRIcgZgzsNX6TBSFCuKZcwSZ1ev6OZstkck8HXzICZw0I7LwHGUwLaNg0KVss2pKJNfzyJY+T9HBJtFS6rZXPF7z1DRJGGsmqYoHZZ2zyXk3RkhoabJF6ULFxIzUUZJkZqspl45jMTPR0zZhrpKAjDJA5jQfRftd5mXrGiz6XhJXQhSAyj/iq+DSmKiZC8o+SwCROGtrRCKilD8gmYJRCGjbDm3bYhwHySDrJBhJBOfkUBJOk5O/IRU+UCGw9OAp02nZyE+2sAx485BX//Tu9LeEscnXGVQ0cJnWo9KcrDFJ2Jq8Wuqn5ZcNc4papq2plr5aPl4RIKamC9nWOZdQaeoUZ6zVrdhH580C670GIGsdAHEuAhjOGnSOsNMEGO4R4eHgQWOPZb+Hcf8E4tDDAOhmcwyBcXz3OJbLHsyEaAhN04rzCBMWywHzeYc2MMhaGGtgOIIbi8ZZhJC0Kqk9ITKYDMi1Yo9uCGCCH0MCHDHhHzH7obZF21g5amQJFdX7EZ/81PWYb81ARJjPt9HYEf0wwBGjafVYLGlMmNE5k8MFxhhFaGgdjNnC6GVx7fvU7q5DYDH5CT7maAxgBgcvzirWoiWL/f0Bs64RaBnFdMdZAweGh2ScNMaicwaWLCKlqD4pTbdoxoGh9/BDwN7uLogk/v1sNkM3n8NaLw40tgd1c3RbO5L8AQxED47SjwYMYxoYo5NYeKNtHYJnsB6tGptw41S7lD5Ui07RVFpDWCz2JWJADpI91eCvwqa8aefvClQKiJ6CTFph+qokqvXpdcl6yhCruVL09CYD/fU1gYgqcFJfX7u1AHWO0x8OWConfaqnfbncFQCff06mSgzU2z+j1C/3eNrkppZDKwJEWg1OZxG/OVDbtsXp3IgdduGNOnRkGYMa6JZkUpw1hSGm3spAWGMymwwoBAPJYClwK+WnjZuKP5AueKva/XrO1VQreA76HUAG7gBA1sLaAmalTh7EJmuljZrzGBF+bD6Rq/liCjZVkwtw9i2o67haPxVyVp1j1Q9BwdM4jhn41O01VMxVjbPQMIAcGbPZDARZvwHgyJGj+f3ejxnc63wYhn4STlLAWYlykzW3ktBEYocPsi+qNrRt29xOjRnPac4TiUlO6aNC8s4USSUJSDF6jD5mU51ZcpRU7SkAhNGLomFiViVlWmvhh3HSr3X/E8lpurZ5GIYcYlKF3K5p87irL44hC7KSCIujT4BxhPcjZrMZxqTRJwLm8/mkT5lZEiPm7yHVTcbWew8zohIoipBX81gtwK5qw0U7G7MmHBDBSKGYWGIIeI8cYUl86IyRU3Idc4YoD72P8KGclAgfpuSRifs1+AWZFN4zx/4nxKT4G9Jpyv7+PmDKuoIIcIjoQw/JZNzkNouG3WE2n+dQqUSEvpecMSAJkTqbz7G1tVXWFgLapoW1krXVWYdhuRATLGfghxEnTpzA1tYWnGsweJ8EY+HXEEJqZ8LH8eA1ZZVOHcgnoMA6uAkQsI4fFdwsnFIAg0gaqHbaAzZdqr+kCwdszHotWUesbIgTl9ZUhjxcx54BMyxoEu0AhHzcVadInwLs9B7W+tU69pW7c1r50k9TYFCXuy4OjeOAMCIdCwGdA7ZbQksA+gUcPIwf4ftFMqURB5/gI04svHhKG4um6bC7v0zhIY0AQ5bFvmlbeB8zwNPJTQCaJh1dpY0tguGaDqi0XZEDDFkMgxyZAcihtsbRwzUGoABiFnOWAAyDR+OG1I9i5x5jwPb2LDtHxcgYBw8Qi119PnZOacuDTLSutTAGYj6Tjs6WywVCiCCy4vgLccBxEOfgwJwXvMXo4UzZ1IKHgHnXSGSBUZxcGACbmE18NN04s0TFIb0GCWO17JcYvUfbdiCIZjsai3FvG1uHz4RpZgCJgBNGybpnnMUYh8RWSVCilMG2EXvcwGJLCbLV1KgO5FQSVS9NAMEH7KYoADrHTOFIrILGqQhN9UwSflgReydazzx/kH9T4bXMAgONGKOa8lwT0l/kjZFKPdcMgEi+q1As76gF76pNXLdV+I4OnIuUprdU2FRgvgB/WVOkXZwlmjpBnQpi2jW5rwmVjn/6WmSgLy0UA59TCz12cyBrLdq2TetMiuZgbPonvC5EGZzVwGcVWNfjpp+LBk4TEcncoqThrrWk9Yava8401vi0/gedEtTZOk9WT0DjhZs1Mw+N1DLZ3lTzKckm8rUSoWb6T4WB7ExMagJUlZmElfX+o+o75bpmrfA4IoCTAsjBuhL3XyZeEjqsmCyIiZSszSlUdhYGNA5824rZgTo2Sr+I/bpkUB0m/T2OIzqrJ6yU/RHErp5zvoGuK5FmiCjZ8SNrdaniOy1/NptlB8/ZbJb7J4QAm04eTPL3YkHSub9qE6PcRmNgU+hLTjHzNd64ml3pPKiFVBVC6ljx7JpUl5iBbLbR9x6GVOvPWchtm7aoD1JbrbVw6d2D7/Nv2gZrLTgJOCGkfSUJ2KtZWWu+r2OzZ2GFC7jXtkqiLjEb8t7DmnSy7pzg1QBxUo4RfoyAl/0NZEHWSFSa5PQqAjGSM7zYpqs/RS1c6DxXv4DWNUCKow9KpnwVDwyDF6Ezxix85nKM9GPbtpnH8nhYi0NHjuBE8tMgIpxxxhmCa6ysa+MwiHlQEGXhGDwOHT6CcRywXC4xn0lUHK6AfBY2Gae8A5yejfwEp5bNqd7vKB/T63+mRZTPWUddIQU9zgCqPbl6afljIJodBrJGmNKvZVALuEBVr2xGmLVCKHVB3cx1gM51N6xqYFbXegX+CWRoswgQW2Uu8GDaDXrEwnAEbHctZg5oyMPEEYZHuDjADwuMiyX6xQL7+8vUTo1kkDTGY0A0Bu1sjhDEVEROUtKRlQLNKAmUOIom2CVHlnEc4ccRMQKLMFSCWjK1iYD3DGvSppbHLSD6mLMIAgaNc5jPOrTJy52MRde2WA4SljFwlLCTIcKHCDJICSECNJxVSGmbm6YT8ExipuKM2tpqJ8YUVqtEYhVFesjD1PuAkcSR1RoB4yFG8OjzoIjAoiGpDDi1R0xddFIn7ZKlnB6bk8beUATFIE4yi4DgLELTwzQzkE3JLRgIQfqADIkXP1uokxsg9nli7lJpBrkGhDz5o/zESAs3VWYzEzpACE3fV3/Jx4100BwBNERpht71fflzqkUlfRRQLfaaMj9oKnBQKl/B+KTqNQjWl3GaR9N6FoBddxRNn0URVKqVbe3W2rZ0vTdq4SW3dOU+3XTXf7+lUR1FRDMvarZejgwYPQIXLWGOXJLWlLCSOdUaSsGRVAlRwHTRhCKDYvXbqONlW+uTKYUmuysgJ48J1X4WmLxnNcGVOsDK2ljs0UPydzHGoG1cBgkqsEi5Imzn07RUB7lHtLLGqEa4hBAU058oyXo4p5mbgH1DU766KdOl6AXUqH9B0zQC5LOSRceByyYfy9gYYyVgQUzmUsZgNu/ymAjAjAjJTEUzc2pbSn/K7BnHISXZUxtkJIEI+RQAQO5PFRpqQCmATsCyAj91ANVn6xMfiTtukhBYMI2eFGdzksSTlgwGHxAMg4nFlt0Xp8ambdJavbIWVDxGCTxzRB7HHCVH+U7vS4JmbYqjjrOaSK9fLuVEPUYEqjGRAEbpL6k7pTpw1HdgTfBbFVBVeDRGk2shR+iTRsTsKxGriD+epT8Ni8aa2WonyPgaSQgHEmFQnKZD/t0iBaVQIRmi3BPfPDVllFP8YsKXTLuSAKtWAjFE+FF4wFkJET2GkvXYOgfXtYh+zDb23nt0amLHjN0TuwAIXTdLoVNjyvgc8/z3fkxmg8l3wafTGmOyEqrey8op+6nvCacZfjJDA0xeoYC1fJF2akxMZdrMDIk56aYWFdXopXdS+Zy3z4KoS50KUs6/EKpykJiWgWwio4vnmhZmut9zLrOaXHVdKpCfIQDpdwI0dObKezTsIUlWEOixljWMzhEOzxxa8oj9EuR7WN8jDEv0+/tYLJZY9gMGH9B2MxgjsczF09xjjEA769DNZhiHIF7kkAVQsu0lEShroRiNszDOgdNiO3iPcQT6IMeiqh1njhiD2DLrYiETSDbaEAKGcQRYNoRZ22J7a4bOAuMYEGHQNC2cbbC3XKbwX5wzs1kyiCy26cwC4LMjpUmZ6pCOqZklQQSqzRARliRhVLEKEShojEEA4AOD1dbRWsQxIiIKsFewPgYgMGxjoQlSmAnGqYNKSvqR+K9E1dDkGXLKYwyDxgVCHEFxhGlmMG6OSCQAQMGNFJIW9ohIIS1iBLBoDcp0Stq0gndRf0klJve6CoVPAO5JAKkKvCTAmGN9dz2XeFLWZH6mn0yaP1Ie8t88Z1JdqzWsGq0yD8t8LMdxlcVPaXeO9b46Rzm/V8rTPll5cRLycx3ypjsVncp8r4WG6akeqid0pZpeXpOOpuN4CyCfj5CRTsxqcCFadLlWbOhVUK3YG/WnfDI8ATjlXwbKJA7zNbgFZM4RxPmMEkiswVENsFQ9XgOrWpOd9zHlxbSGERXAaa2DMxaei/OjrlWRKQExaayCj9w/BhnICh0Ul66ayytAbNJnBz1Z9Y2aVEIVHLYoJ1bNK2ogKSZB6eQhKVUsylhkzTaQwx8KIBTNsbEWpup3PVWpTWLK9alZh2oyV81J6vuca4rZRYxr99VtIqsgHsm0U6MVCY+O45gBt6V0rMsikPkqMok6SJb3JaFvst7oe5FDLVLaE7QcicyEVA/KdfG+aIiDD7BW+mhVoJFTkpLAqfwria5qPHMgm6yAee99iiCHkgMlt0PObn3w2W/AGJvqEMEc4MfUDmshUZLSPDRJK58Aer2ulv8iKQAAVVzKnkVZqNCssuqgDBY+MY2FgfRH3w9wbQNnJUQmq4Ce+LmZzxGToIkqJ4jyzND36Lpu4qvBFFJfybwYBgn9aVOULnWgJaKsrFCUmpg88/qp0qknhFpFpko8TWQCBb9pUSwbcg2Aq4v6Jy0cso7Vkuv0vfXGmdW/JmZpjLWuUKCQhADduLUQg2pTrSs0daA9oCeqcmh6vdqQqb5vIkZUb6qwjszRKBrfBFBbZ3FkbrHTBNhxiXE8gbBcoF+cwHKxj37wGLyA8Xa+he2tLfTDiN39BYbRwzqHQ0fPRDtrMfQDjCU0aCROPI/wUcIvOdek2KmM4GVBXAz7WA4j+n6QY+co4Z2MMYgQ+0djHDgsE7CUGUUBsK5F1zZYLgc0VlrorMHWVoO2dZg1LQgSnnKx6OH9iDEIUIwhhXMD0BgJyTUMjGEMKeIDsD3rYBkYg4eH2MxF1XjESno3IpmbUGxlJSW2JMZIAe4RwRhiAI9icrXVtbCkkS0YMXqEsSyYYm8YYMnCUBWmLXgsFz2s9SBjMAxLtI1Et5nNWmxvz2Fsm04y9hH7AQgexnUIJEwZYUGG4GBFE5iO3tX20aQFl5Gqn6eHTn5AREOZHzX/TaRM6Nyo4GjG/5Q1BanbZHxNcf+s50IWYmuEXEqZrAFlrVJwXAPtShOKmrSUVdvxut48fSjPrQoFrkzAifxRVfSm18+6E6WFFcxbmfcHva/uu7r/NIrKum3qLYEUJHofENgn2+cSeQIxgqzNYBrABAzVshazJL2xGqYQ1XrLdebPBPiAHBFEypXkRHVSsNrx01QqeI2lXWcpXgWv9XtDckasBYpswsOMIdk0j+MI2zTZfEMAh891Uc11agWiiei6LvGFAuuQ+mUanUQFoezUyZwB4GcaI2tFKaJgPoxefBFU8Kr6phbitf9cam92uzQGu7u7OSMsEeHIkSPSFh2lKCfAzIz9vb0cTlHNTiQCjQB6t9K2Sd+HICGD+x7b29vZIVPDT/pkpqmAS81uJA74OBkzDS5QO8fWJin6PiKCa1LYy6YBgXJoSrXv90GBm5mUkQVZCChW59lVDXiufxxhlVdikPCUqR7W2uyEaZ20W+3kJckTp7CWQk3TSHx+YxPQFoGx6tZ1/kBZtfQkhSMj0tTPAmCEoMKVF2HGObRNl8xeCOwDxhjgXIShDsZZSYyYQTShsR1gykmJT0q0Yjfu8xw2Vk73QpAEkMqPhw4LH7gk8J84cQLMlMdnd38ppi8ERBJzHQ1na4xBTP4LeuJljMUw9MlMrIVzxTdD36mmVBr9xqVcO5xOASREpwqjepoyFbi1zadKp6eR5/VNLmss0n5Zvzvb0UJB9UmLTR9q7VgFzHN5K/enckVXWaxpAcrHPEVIOBiWT6+qlsPgZHef/FnFA5o1Utqf656Ex/KIhK0SsxDA+x4RQcxerMGs63B4RtjBAjhxHIgjGj9guXccN954gxRkW1CKWxvGgBuPncD+MCIwQMahaWYw1uL47h6G5YgYBDwFjlj0S1jXYmtrB8aKScnQjwjew1iHMUTZSIyBayxM8Ag+YgxAiGILL6m3o9i5gyWMFAOggH7w4BRPd2drjsPbW2hbh7ab4/ixG3MGt2EYEWKAowhYA6RwU34YpU9Yxrd1TYKnadIkExlDRk4EWI6cNcObD6IBGitNzrxp0LkGZIBhHBECw8KIpiNKJAHbduh9hB8l4YUxyTXTWPSDh7PpyJUJYQhgwwgkcYJb14Jtg/3FAq4JGMaUvS1pA48ePgRDwN6yh2dGpBEYPdr5IXTtDGzk2JDDCB9GuG4OazqQEWdjWScY4BItglRtVPGiWvsQyglQCXdWODdHsJnMWeFdC3UE5+RDoXOfoVk6pV8B8ITTUc9YqUOay5XgWkxmeDIn9IYy+6fCttqiM2x1XUFKRnqrGDk9ntQ3qs1XP5ZayM/1rkV2FbUB5E8lqk+9RtXqgdJB9W+Y9l3VZ7LXiDP0Lc3MhlwDz6VvxAwuZkHaqTAcY8rWHIBs3+yyokfNXmIYc1QUMa+bgu/0CYAoSIqNdQFkYwyS/AgW1qqtLaD8lMHrARvsQaCYmVPoxqm5TW1T7JyDNQ7USKLC4H05EcwcnUxlUujB0Qd4+BQWMW3wlfO27C2iVYWhtbpl74Pq9OKg/Y1ZknFBgTJRcrZPQpaR51djYWu4Pcm0LUmdDBkgmSxtbW1n4KJC1tAPYk4YIxDFlrlxDluzOcZhkAhbKWdA10k8deaS/VPHEQAa5zBLzqw+BT/Yms8n5kC1o6qGP1Vn2GHosVz2Zf4RJOpL8psYg89Ci4L/xjrYqg/VIVIFPh/G7PaRT6NUe4wIa0pGXGYWm3rNahwjEBkuOR5LcqE5hmFMvIdsZtV1HWazmQg5jawdwY/FHyOKc70kMyx+Gt5H9H2PYC1sisYSY0nmJKfIanaWIk5lPMcgUkE2jfXEnyjxIgJc8oExZDIA134WB1cx9w0spzQm5XWhyDDBI1a+M4as1MFSUqZFDMMCTdKGWytJwzpTwpFGZox9DwLBWCfKR8hJv0ntA1PKtjtm/q7DScoaIGuHMZLt1TYSoY6T0KBCTNt1sNZJX+oaB/GnIwCz2QzLvV1wtRaKhr7knpicOJ0imD/NhFCFao10HZ+hhgplEVypTL6pHHNq5k8A2Z6oKA5Vq8ZpciStBBVnTGemFqiMekErkSMIRV5gmBx+adUGTLfnomVUc5z0ftUAr0ko5f5clj6XfiLSzcdgq7OYdxY+eYwH70EccagLOGQHHHUeZIHF/oAbd4/h2N4e2Hbo5ltYDiOGcYD3AGyDwAHd1nYOdcRE2F0M2F30GIc0SQkgAzSzGdpGorwslz3GYcg2jYYZgcVOfQwhxRhxWPgeY9pAEZPmKAZJBpIkUGssNO/zbD7H2A/olwvYw3N0TYsTNx5H34/wMcDHiMEHABIPXhZW0ai7zgHkRGCI6r0v2fdGHxDCWIQzFnv9Osxa1lCnMTeGMKTU10SSkc41DRqbjvDUAbbfQ2BKsW2T9gTAvG3QNg5+HGCNQetcjp5AVsygrJENYzY/jP3lrmweXsZ0uWR84h/+CV3KGjff3sa8FaeoYe/TsHwIdn4IhixmsxnOPOMorj++h96PsCT2eZENOKRkFMRZC8yIuaXe15ss5YVfNygoCCADq7FrdR4zsOJBnuE0V9/VBCbmubu+2GTzJqLKn6YC2Fm9c8C6kkZbH8vXqoyxRWhHnlxFQ5hOA+QoIW8/5SkDiZBDE4EFqpQAT4uuIL32UCWK5Ds4Ly7pC1WqjLUFOZkOVmtU8RnSXr7lULbXNqZoWHlqYiJ/qzjOMSJSMYNQDeukTECO1c20f2szCaA4nOreyGl9lHswWf8FKJlJGatmNLXWtAbtbNMcWXm2aNkFyIodtvKFqKFGPybtfd1GIMQg2Z9jTEJ0Mk+IPtttS0WQ37Vm8oM03SYq12rHrI7CNMShAHrkOPSc8lDUQIOZcfjw4QyUYy1oEEvekRBTsiiXwbzWsW1bsB8RQ0AfAswoEVgsOCuL/DhO+n8cxxyO0qcswHVfq8Y8mwFVACkLGoZAJCcl4ziiSeYv4pw6om273H9iHmlz+cvlUpJxUTF7AZAziAuADBOemvBt4lc1NSoRjHRlEeGkrrOrvivviGlN0bLXzteqWdZ1RwTJ0id6MmEqHlBH4jIPpg7WIkgnsyj1AcmnTZCoQhyTzXqyW2f1z1K/MU3URGiMRWA5rTfWSJjn6EUTFSTkKKWsr5R8AACGSadpggW8JJurwmESiYZeHMlj0rAn+3QCmAtI39k5BB/lJIeJcphr7c8azNtkfiPR8wS/aD+VU7XkQ5eEmRgZiCWUssad135WPz+d07WAfDp06qY1pBOlSPYJz65AV108TP6RsBKqaKWiascrlDbI9Nw030Qd+LG8S0A/Z7A/ub/WeunCCwBQD3G9wtnWNiatOkHWojK9Uku5/qpOLDwpq9bgrUIVAiVPXIYzDRxBwrGxR2cj5iZix4w46hidJRw7sYtjx45hd38fAYSmm2FkSS5irMGsdWhn2xjSIrUceiz7Ef3oEXqJrGJJFnGyYqflQ8Bi2ZfJS2K/tlyOCLEHM9JRVgQPHtYkLX0yf9Hsp6QmLNp2IvhxROusZJ9tDNrWwdoG+8sF+mGJ/X7AopejTiZCYILllInQUJakmWUxDxpVB4wY0iQxYhslm3lEyj+dgRORagtEe5/BGaWjzMgIw4iRvDjOkTqOCTcKv0ukGyKJg9+2Lbq2FWDe9+iaVo7hGTnGb4wBDTkc3t7G0Hv0sUeIDGKCI4tx8DCW0C+X4BAk2g4BcbknfNHM4Y3F7u4eRj9iHCLALZwjOEMIRnwaKO2TmeOS/aNJixgSiFUHJivHCIkDU/guqgBPNXUEpBd+nQpFlAGrSQKFPLvqHFvboh8E9MudurboO6YLSpmXWoxgn2pWadNYIXwdpad6IZcaTtYcFQSQsi7mR1bBdG2viQqIc15ntJ6Cl8p6U8WxKWVq+8oD+bdawLolkW6INdhUkk14an+twHS1DKDiqsQ/ekJV/57BPtfJjdKJQAbcNSiXAuvjcp1bea/hqZmd1olIs1yX+8qmfUCb1C/AUAXUBdxnPkiOsmKWNAKsp0q89n5lvixwJk103Wf6WYWXEjd7MhCypkZkp365R4C6+gll058a8NRxaWtQb2rFXAoLCYkSFtkhxqECqcnuHIAHZ5MjQyYLdtIsnvSnfI5wzkqYy9TvTdPAJCFiGIZJmEeNBlSDNy1PThYACulkJcSUfNCLkyjpqU1uLvI+w5jwzISHSf0mRLmm9RAzsAJE5RpnDXEZHgnfKEAx5mRQNUA0RJlvwOpvkfo3A+o01jofKjt+3Q9rhRDrPOGy9plqvqlDaQ7RrKPMpsyp9Dwo1RGczF3lN/WB00XYaUCTdGCv6g51ZiXyabwY5Irwakw6nWLKydaMNTBwImOqMNG1CMulRAdCwjOVUKAzSttaTthKaFP5JydQYRzyvlHWC2ShfRxHGJ3j+Vk5EchmoHmiYGLSd1N0GgmhptoHoNp0UYP48kTZlJCBRe6gSluWt0sqi+lkC53MlOmClIvO4S6nG/zkgy7aAGrYkZkz/yobSkEUVS9UOGO1i2XAopYqLavAEWXhRAbSWIO2kdBdIXhYCtiyjEOG0UUPXi5xbOhxw7FjOLG3j+XgAdsAiZmss3CNaGvbeYvxhMc4ilnLMI4YvWhw2qbJ3c8MjMOIMURxOE2giEHwzAhs4SNDoyhoS8bkMCKMl5J7cOqrOqwDxM6yMRaNMZjNZ2jbFjGyOOUOHotlL0KGOnMx54RMWpYKjYZsjjohSWNQLQLa7+mZ1L8GMtGzZE7qMKuLlJiqGFA+ChffOp2wZeGSgzEp3/sA11gRInxImhwr4DGKiQAhIvoRrm3kCNA5icBDmtADcLCIXk4yOKqGPQLDAoAIdXscEU0DDh4+AU/Yag6mI8hs6GGA4BXMIIObMiGrUynK8DEDmelOni7lOZxA/8rcynMeND1ZRcXr1dQtz9egaZUUtVd3UzGy04VNNTwlBOQKuFuhWjao38tUytM6Tw4YVis56aopaMlvrwSD3PaCs6DRsqSHp2Yat0DsDgBZG0uUkgal8I9AAbc6P41BCXGIFUCazDtq7au1NqeQV0f8cRwn63kIybyBij2q+psIgAnZSV3HoI4uYythQcMkdl03aaNqIYGpMCJtKrHts30sVEAAHFk4Mggp/rghyS8xphCDALBY7MOQxMa21qBpHIAiEEnEHN0DCYxpPPnarl8il4zJLIOzMK3mPFr36ANgHZKlTY5/HkMAWOx99/b2smmDs40oUIyMgw8BxloBwTEiRp+zjoIj/DBk4CVrf0TfL3J2VQ4ezNJ3AQC8hqJUvhJFUVDFEgFt2+D48UUGwE0jUWOC9xj6HoZS9s0KzAfvBdglu/YYA5yTPCjLxSKfSiBpWGFTuFMAs5lkhtVnNYSmvt85N9G+Cw/JibI1Bi7xRmQvygQ1l2XOmV37vs88pJnPVZMb2YPDVMjk4KEJUxXfaGhfWYci4lg0+MPgoSdiMnYm2d6X0wJKigdAhA9nWzkZIUKMPguTKWgNnHUVYJW3y+kFCVC3AbXcF1kSRlknzq5yutwg+BHMgOu6tK+JonU2m8G6RvwHgkdnKCsqQaKIpGSqDCKMMcJaA59M+siI07JgBIiW3ftJ3PgITkKb8Mk4lhCy9dqmpM+njs8CRQgp5KoKiYnvctI3powzJGdCOuFZUWKcjE4vs6sihAM2m+m2xZXdabFdL2Yq9YYr5dV745r2oAIjqLOunhS4TypdfayOr7NGo9qYFZhmhKKaCm13LMiEEoaotRmk7S5lKHhAmgQEQkj2UmRkIi/7JZgDZg445IBDiIjjgN3jN+KGE8ex1w8YfASzePbHNFtUq0BJGl/sL7AcgjjApjCNliyctQgcEVP4yeVyACfb6pCk8cDJut81Enc2yBEXExAgZilZGqbkCFoJOoYUCBFmbYO5a9A2NsdK7ntxbu0162ssx+nWUEoiokKZbCBELKY6KKEug27CyeQuxgS0CWA2QJRjNAF6SNEeCByT134ar6gaPCDfq+NoSQS2StQDGYt+GGCpkU3WWfhxhAmyYLECXYZk4x36tCBIrH7vA0Y/ooER0J9AQiAxPXG2AWEBiwhmjzFEoNuRaDxeIv+wS5kHrdY3HTUaES6i4byFAwmk5jT0lRycQjyqlW0B61MRN4vvE4FgXfDWCUwqmWNy+xq4LkCheke+Oa0WrEeyCoIpz+caFBd0fsCLtL3pXsqh1ngtz4byASD8xIrq80RXgaG81NABbcuN15NC6RdG7t5cqYkgSmUlO8gs4uZORJKUR0E4ILkyCnBQmh7v1yR2uiYd9qpQXrSiGlIvP64ZL4mwtbWVHRz135DN0IpPlNqqTsaAp3VyyayOiDLQL2NVA3jk+gGqlS2mKa6x2RnRGIPDh3dw/PhxcUJ0DsOwxKFDhyRc4yimf2qPLkB8mJiRrJ9wlJOErO02JTqJMZJivm1biMZfkuaJkEGAEVMDl9qjMbadc4A1Obxe5BS/HQQ2Yi6Y902W01vXNmAm7F5/DHZna2LioY6wnBRopY1S7nK5lNjrybyFqEqYmJ5djWIjyiMBQeoE6pzDrW51q9wftQApzqYlm6iWDZR45IpfNG69Aj5jJG59jtuehNa+77PpT32Co+0exxGBAxA5j4G2T/krcEgJrpBNRSR+fzNps/ZJjCkEKbnkVJn4LaR8KFUf1TwjfO8gdvEyb0qbUeYCLFQYlZM1hp6Aqv8CgFz/tmtBEOGj2JJbMY8hEj+V4JMtOeDHPpWdMq1Hn5WqkT0YhOX+EsxA280x29qGi9LOcRyxv78vYSPbJmGPEkWJSbKkRw4gjilXDsHHAOscmq7D/v5+no9S/y45z64nHlPe0HdrX2segnzi45OPgCkgHqj33ul6kdcNY9YVbCehUwfyWbJCroTu7/mgmnWTkzv0HuTtLDFE+p/M9QoU6IYMFJCYryWtQSUV5uP8qq2cnilaNe0YoOhWY8IeXCnRakRQtxnluJBL/NC8oTNN7hOgUICkVoGqt4Mg3ulgLBb7IAo41Bl8kWMcpgA7jvj07o247oZPY4wCOpyTMI1sLGKU2O0+DGLRbCyYBlx7/Y0iISeNiHEW1hj0Q4/eewQvZjEhMsgB29s7Yqs+jhi9T5pjwLUtwpCiJXACPcxACEkzgXw8ZRKito0IDNYatE2DQ9tzNK1D3/fYX/QIQbT6kl0u5tBQRIT5bIZ512HRpyMuZrCRHgNEw8EsqbmdFRMgNUeKBmCIRE0wGD1nMBUA9GMPA4ZLWhw5qowpOkDIm6xhgMmCOQAMdI2FczJi4yB2+d5H7HGPLjlmWRsRYkpso5piK6cwe/tLHD3aYN418C5ibxHBPoEAQ/CDxOTX4/5F6DGbNdhiDwfZFPuhAblWnK4g2gUQUrgaWRyT5JsXjjLpEqi3JQveVN2rjuAJhKwCb4MstJJuyKS2f2XG5FmWwWs9n9J7MvKeTK8ylSZEGfjmutQfSCsXi79Mmnv5tIxrMxXpi3o5qAXQPDnz3ZXQktF3AtvaTp3/qpjgqlmq7ABKXi5CeSaNlxRa6lGLSaVvTm0RvzlQ26bMmj7Ah+K4WWu/VYubiYtnA6kGXfea5MvBSbdirct7jSoDDJkcAlnBLqho09S0QYBTScBTg18A2fRFNJPFB6WOdJNtkjE1qZE1ThU7BXASldMlSSKUThVcC46AH4PEJ+8HGKLkfyTgOQYvmtjA8KNogsVEpYQXBAhkXNbcio23lXwdCaAaI+8OQc1QuGgbiYBoMzhBWqtNFm5Nvla0+KJ00ESBcvohADKqYsmYHFc8xpgiesjaZohgjfgdNY2cnoBRovUwYEi09H5QvmEJFcllL0eMoljKiaBS5lIjTpxDOvVwrpzedF06zUnCX/DFXrltWxlnUFIuyTj0/RKGDLquzSBaBYs6eZA6mCqfO+fQWIuQIsbkNSqKBjZHGQJEWAKn0xckoO1gUiJFMpI4Tvgp5Bj2lggRHlk9UfFkzd/ZJMzUZkLltEvrHGOUXYmQeC+UhE85C6ybhP9UYcUQJVMYyV4OmpqehZD82/KJhZykk3WixSaNJMWw1mE2EwykAqQuwIGDuE4ms6vIAWHkjFOIxL/CNQ7MhH4c0HUz+FH8AJsUIUnHTee7dF/EMPiJWaCWW7dXfRnqUy1GwUrWWlAowjzpvKqUGXWZp7oHnGbUmhXtWdqlROsu4IPyGXsBEzW8z0Wlf5NILlSBjgpY61Fh0SFOKpGqosA5iwjTSLusNa2qPiGzsuFO2z19X7UBi+JiehyPNIA0rb3USUw65CiVYAGc4Sxus83Ygsf+ieO49vrr8OkTu4jUYOmXcG06wmLCOPZYDIz9fsT+IJp6NY+59dm3Qds0CMHDhxEhRPTLAf0wiuNSEiBcY+Fah75fikYMJE6fJN72y34EB84hl3xkxIAUp10ZrtgmOmPBwYMMo7UtWgIaJ2DYD7L4kjMSem70ufdCir4y7u3iuhuPwxqDxtmcQZBDxP64lMg1xkh6c2Mkeg5PT0Ikk2BMseeTrR7HtPiWhDBFAyibuDcMSuBdXekWXpxw563DrHForUNDEb6RBYyDBwM44+hR3HDs0xj8iHnTpRCiAWgseACO37CPrXmLprWYtwYhENqmhSFOglOotIcWPgCL5YgmAE3LGHkJmp8hCxpGSSQx3wbZJlmTCBiIKbxZ3mAzz6bFGZNLE06uSRfXdV5PnxOYL88mxudyd5as1+ZXKSpr4m9qjTro+UzTB2/y1sl6okB6pQhVCEzkjdIGOfgoQvja4jH5KquarkCVKFRBdvmmAtH6mnbLIwbyvMza2vr3A5iB03VmRjRV1klKQj6LmUyMnEDZdPPLNr0oggJDzQaFHxSEGqPgpShgMlBH2YgV6OpnBcnqDBljNR9yXcv3WvOm/SCaOwM/ihEdR5b428wSIswWfx/NqaFaeVFOpEhaQIrslcBa8NXcT5rnUaN4AXIyJ35Imf+rxFvSPxFEUZRUpHxc2qCmlpT2zsgBYInmZUxxEFWfADcBhxJ9BpziswPi9LpcAtxlrW6jycFyW0QgVIpaF+1XTWwEFbJsUnqoudSYtM02gU0xKSnhH4FYjZuOrYYFBqujaUBARAh24og6zRBcxnzyl+UUO6bfBQBHbSD8OE7My/TEW9d0Makp7yma9wCOAWRdMsvJnbZ2KlDPuQIkawWMOsDG9D5ZIDkWIB8qTbtGaNM65VMPI9llkepJmM53MaEKuW0idEg0oxC9ZHdNc5eQhHZL4hwbQlWOOFWrUBlDACqFobSnhCoIMWRfPBUorLXZNAoEhGWcmADW/afAvRbuawFFQbwqy3KsfjbiYxijnDqvrBPaf4YIPDmtPDmdMpA3pJBUWihLQFn0DImmSZfQvF3V2umVPSvDdq6UU1Tg+zqlOmimzTqBLXPW0zBXgEQXTn2a0mLH6R1aMdWuUap9usyRMe3KaiNS2/AE2ku/QLSnuR/KJgOkTKJgdMQ4owFufQg4e8vhun++Hp/+9PU4sViim+1gvx8x32rS4sMYQsCiDzh2Yh+jF9EpJmeTtnEYRw8/9kn7QdlxY2s+l5jxFPIRnYStHERqTaCXmTCMAtxDij0bIeYrMSbJu+ov1Wq0zsFZkxxcDeLYI4YGs2YH7aFDEi++70Vb0Hi4VuLDSqbUCEIAd0hJmWTCx5TtsTGdmPUwpw0MAIkdvkZJiAmIhRDBPqVlVw1x2uh1IieZBxIliZWVoIpWnXwBhN2BsTeMIDBaIzarjTVokm+Di4xD8zl29/bhw4iozraBMW+7HOHBjwwyjHnb4MSxXWxtt7AgjAHYXS6wc3hHBJwYwdYiBEY/jBJTv+9hd86AaToAEf0ywjVzUCN+BwSx4bOJb4vJSKpLjCkknclyag3F62mWBWHWzTppivJsrBbfbOJWC+6lDFVY542/7Cirs2kCfNKHdXir92SzilTXLGvoIoK8kKPui3qh5PIuzv8pAKWWOPQEsNiyV2XRiut9ZatPVTH6Uc8aamUCoTgWry3muOXQ/v5+1kiptlLBQwECmpkyzcMYJwBu1eSIjMkJdPR6DdzTsWH+res6OYFMtrDWNAB8Aish2eI3lS1ysWGvI58AJazkbDbLJo5qp6110ERK2p5in17NoyB8GmPMiWL0/nEc0TUtgg+IJKaGkmwIEJAdUor5Acws9u5c7J7HsTiQhhAw+BHjGDCfz5PGO2W6TTZiRbNKukgCSfCRDLxlPGst5EQoz+BFs1xkkQAEwLXpvT4ByeSjZElMhPb29rDoF/Deo21bzOdzgCXKmKzxBbgp1bb/mQeYU5I+0eiLeUpM8eT9RAuaTZOM7JliOiURR+pIMLYyu1GzGu1brYOakqpGu46vXju81u3Q2OfW2HyyulwuJ06X3o/ocohNCU+s/Z9Bc/B5Dk34LIN2znucjHOZV8K/U3CvfnKclm+pv5jp5Gytee4h97Ge8HJkOCcnHTECIYwT4Ve11/kUKJnR+hDAqtm3Ds41MAm4xzigaQ1MigPvfRk3QtGQa/9u7Wyv8GrEOPZgiHAsfm6SXHJ/fz/3sdZpOfQ4evQoiAyco4nZl8xxO+G/2q+Gkfg2CYFEJAnP0knGqupC98KyP8ip0qnQqUetqUB8/Ue15Ixamw5IOnmpHoCsqc9gqtosU63lXuV1c9A2psC7LJArtSplTsrFZIsWwYKTc6I+WYfdq+tGUEfavDtPMIke5a5u3gLfxTdLe0LeZg2w5SLO6IBbb1t8UQcc//S1uOHTN2CvHxBSWjnTNWAfsdgfsBhG9D5gOXgEJnTbMwHzKYlD6ww49nCNpEuOIcgGwGJiovHaWWBzkZBTb1rjQMaCTEQTInokB9dYJEt1BstdC028ROgah66xmLcOh7bn2N6ao+taLJa9hHcKHk3Tif3+6BG8mAWJtl1i5iIaOINk4y4hMLkybWBmhOQEZIP0qJxGyKR0Vo571Vs/sgxA9GECFgmUYhQn3sjHm2bKm7rwgTGEJChyRDAMn04rtroGO/MZvNcNXk4SlsMA17l8bO6swWKxhLUGwzBia2sG4yz6E2KyEyNjGAa0TYOuMxJ+jD1MWIL7E+A4IroOHFtEBlpCCp2awoFxRNOKuYI4OZeFWrQnVC5MpkrRkhAhR8/IjucoiUwUQBTkq0C+XpLKfMsgPj/GRWLSqZSzvRLWw1iqwG4rYYGntukriLkUT3mqChvQRGio61gLIuWJ6qZ0OXvYcP0+k9tYyyqUoy2UnZA0BNaKTLN+Uqhr2y0Hypfj7anWCiggNwvbKxrD2q69PoJWpYkCLnmmAirV+4xJ9tQo2reuna+BfwUjehSfgVgCH+M45iQ8WcvtfX5ObcXJEKxrIcqCpDiq257s3YP3OWHSkSNHxEzRWpAB/DjCj+KcaYz45VCyKQaJXbVJJncxBiyX+/A+JidcwjgMWCwWBXiQZJnu+wVCcJjNZhJTvPdQ8yBSwJkizZhc56IBNmnvAABGSMoTFXDl5IQi8h6rpiQAY/fEcWzv7Ej+DhKzkRA8omFYZ3Hk6CFsjbMKZI/Y308JxJJWVjSnyFFElIfUpj2D0aQQ0LFRPmvbFt57LJfLzFPeexGqqJiciFNvhDUOi8UCYTbLZja+H7JdtHMOlIA7g9H7EYvFUjS5RAiIGWDqPBj7FD3HGBAiQto/QgzwgWEdASSnFj5IgqnFcm9lzqAsxzEijKMIA5YARAH7zBNhV+cIkOacUeUClYBIJLw6hEF8UgBoFJsYA0AM4wgRybQntWm5HDLvmgTmNZKMmumyOqsbmlhMiPAVYIzL0Xq89zAkZmZgQvARrrXohx7Ge8y25hiG5CCLlBGajaZDBBHhxhtvzHbtGsZzPt8CM8SvwUfMd7YlPGojYYnn8xkAyiZSW7O5xKP3Hvv7+8URm4vJngr+q+NsnAOPRiLi6Bw0IsSEJCzXOFk+cdliVrfEk9Dp2cinTTvroZKUl1V9JXBbkdDzbxVMzmCeq91UOWil8rrQFgVBXavyeP5cBA0FKFVh0D0e+kp9lsuFkqmWVvqxBvEyWaRKVMkdekVMNSZiBAuIn7cWRzrGmR3jSMPgoceNN96A/WWPwAZwDXyUhCX7+z12Fz36UZKXxLRw6GIz6yQrq2MP6yTKSwRj8BH96DEECd8YkrMLGYmdHcXqWuL+JsUVpck2jl6ypoaItL4k723K4BEgid/qBHR2rcP2rMWhnS2cecYRdNZhmTRFnDRaBAsyDRgpnXaMCCy2mizRmwTYhzIxxOlDNocQY86cyKQ64wQmq/GjlBuAkujEZLKmSliNS72IkvMJZyfUibxGUkrgEh5K7AUBHweAga51sFZ4wJBExPHBg4LBCC++A20Dgx5tY7DsJeGNbSwObXdY7g+y4IeIkSKsi7DpFMGCEcaFLKB+BNwcJkYEAoxrofkX/OhhjEXjGkSS8aoBbuSYksbUc4Cgjq+rtmHCD7T2PfuoKADXbs/TjvPnVXhfDdGBQHxq2lNp/FGBZKrErHr5QWWfv4J/J+J5XTcukXzkJ13feFpPrp+r15RKqJ288+DV9//n7k+fJMmy7E7s9xbdbPMtPCJyr727elAAiBkKZ/iJ82eM8N8kOeSHoQiHPRxAAAym0eiqrqzqyiUiY/XVNl3exg/3qZq5R1Z3FUiKsEpFItPdXE1NVU3fe/eee+456fG1jNfwIBlSh/+m7z/On+I2Ilkho+FjufqYb36sE/9gMTRmarw7phGM3cOj7vzxNspQHpfB27bFFHYK8IUj/5A7fHj/QXWEJI2ej3nxxy6SozOoMWZ6Vo7l/MiBw1R1OQoCxvcppdjtd3lOyg2qxMzBHjWxXUaa0/SZNr9XAtMDV78oCmKQCgQwBZojUjwGuMdc6IeVqiNE+njty/fn+2gj+tE4EP0ToU5EITYTndCDxoBRa6F3qpQmpHdC12PE2nI63nh+McSJ5Tmuh49pVOroexq38XrGRtDx/dM15/MfA35Zsw9OsOO1en/k7Hrk3Hto6MzvV9CN7qCPnnHy5z3mWo/P2UjxGJ+N0TF0NG8apY8Pzy+H94/KSBlIGPXzx/v44bmkSfJynNdCCIyVFLnuh5Sh4+dlHNty3/V0H707NBEfJ+IpJYYs1QgcJWk+mx9KL5stq/wd5iQ7GywpnSs0PmY5RyCKxrxWanLLLWwhlb183s45QKod1hiRs06gkgCvXddSFBUxf96Y9I0qW7vdbqoojsng+LwYYzBFkRPKNEmVhtxcSxKlOZWdqgUEPa7+PZS0PV4v/6ntj+LIT2HztOjkBy+Ni9MHYe8x+PYgEp9C5DwYHyyEYzw/vXZ03DEL4OHfjsvt0ynm4HT8oDS++CAxeNj6Nl7PGB4kiXUYaTnjmn4cPIzBy0MmbJr4/4czS5Q2cTYreVJGTq00Nu62G3ZdD7bEKouLiX3Xs+9btruOYZCgWxmNVaJQ0vYifzavS5q6JPqEMoa+DQxDpB8C236gHTxgMtouTZ0RMqfdMOrUCk8y4UOi7zoCMVcicvCes0dBaLIGv9FTKbIsLLNZw9npKU/Oz4ne0w0SoBprKRJ0nScpLf8IHDilKvdvjprB44Rt0IYDtzUyTSyi2zre83HBflgaHuW2lDETvy/nu9MzMzZYaSXBuk+HZi+tD7rQMaaDnNc40cXE/X5ggVREjBK9dmU0Ppu4eOcIRZZm09K85Y1hGDy11Tw5W3Ab7mmdVAhiigxOym6iw28wMUBs8W4gGQ9JegRMmTC2QCWTDUgiusnXzMNgaJzrDqHx0eg5ClKBXAYcF2r1Qa0qHR1lItMdDaAx8eboPcfRsFKHIBwlPRTHex5+Pvw+BtBS2XuYIjxWojqKlR5f6ZR5jO+aqm3fd19+3/a4Afb4M8f35yrW8TMKidy/9+AyJ8rOo9NN6R89iz+pbaQ5jNtDpZrjIPKoMpMDBqMfIvGJ8f6mB8HB8ZZSmqqJAtRkx0Zj0GakOqQH+4+ULJGH5MB9ZbSbDw+QzUltJQflUyCf/368b4wSuJjsYEuSSpk2htEdcwy6hOucGPqeojAUhQGkKXSU0U0k+j6ra2QUfZwDQxDO92Rec5SoXN/esFquqKoSY6XsPzZSen8I1EYb0pipLyqj8MfB+5RspnQYAIcRMD3Ro0Z6DIHCGkZi/Ai0jFrk48+jSc70bKSEijEn2uN+D8fL4fvjwXeQUkKFo+chry3HTY2H5IzpOsYkQHxSDFVVMtG+4oG2Mwa0xxScY740+ZkYn4/pnFR+5hk56IeEc+Rpa33ovwhhDPQOINWkMZ5gVDA7ngqNFiQ4hgNafEzFeTBW8jkZq5FevIPsacwJ1vgsMMZC2VhQ7snIo4+ZKygnEhKoFElkmhGHhMeHQ3Ik8d54L2VuPSRz4xjOkowkqUAkocKlfH6Cv6hJUz8Ej7H2MM6VksQiV5h1noy9cxhEEjeEgHg2pgn8izHmcfqIZJ3ngPG5E9lL+c5jyDQkwvQ9j8aIIY5rw/g8M4WlE8j4h0bwefvjml3l7BmX7yl7z4N5nIhh/F88jOvJEOLhgD80u6bMu5U/Sb/KuPCPi+3x4D2+WH10WIlYRs76YTHMPL/x3I+SkPwh05HHxklyE8/IxZ/GeZ63pHw0fth4jnIN+uiLELq8oio1Z7PIJ3PNLA2oYU87DAx+wFQlF6sn7LvA2/fXvLu5IcSAtSVVU0iQ6QMhCBKzmC04P51jVKJtW5SCzWbP3bpnP3iGGPEkktKUthSZSRIqgknCtQzIouCyBFqIAZ+5i6JCI4nDiAiM3+f4PXsnHLlBKdSsoq5qVvMllxeXXF1fizW30tB2BJ/wfo/3Pb3vCZnfDlDYUec+HQ12+R5cSBAPDVpGGQbXo+zReSkpZZMkgI65eqS0hhCxRgnFKMj5ayuoWQhyT1MQmUurNYWxOO9yFq/k0cqT1miAYrTORk6KIUVu9x2FUcyLgmVR5JIvLObVpCtrbYEiEfzA2WrJtu0oNTy/XPGjzz/iP/ztb+kGkebs+5ahl4msaWpOVzMsCTUMtEOfs3oNTpQKtLVoa3Ex4kOQhtrcgzDRhziYbI1mWuPzOg26PNbG4OUQiB62CWHMi/CY9ByPafnxaDxxOMbx4j8h3+ME+XsD1+MmdzMF7ocQ/NH7HslEHq5xUuqd3nJc08sr4lEocjj0gyD70SsJiU3GCflh8j5eWgL18NNkhw+PfDivP5+tG/pJVtEoPQU3Y+BzUDEZFWgOAdExt3wMmsZg/sA/TpBVUmKe39TEcRa++kglmBDZKZY5TlwPnOeRp621mpBi7z0kWfRHTvuIkh4v6uO1SUNgZHCOkKRplJF24hNVbuQjSSNqaQtCDAxDz/39PfN5kxtBpS/IDVlPHGi79pAUozDGZklP+Vm42qNxkKwTv/xPf8fnn3/OxZNzFstFXtNqIBHCQeZQ6ZTBk4AxQnsx2h6CwKNxMoJhElynoznh8AyPdJ1ZUwsqOk4u6VABH1Fs44QGGjLfezRxGu9tOYo/cIg9joPgkSoz/rMpyzAmUYQZjzUG1n3XTUHYqKZ2CPrl+FVVQhQ1G5/lgMcqUd/3E+WisMXkhTKi4FUlOvPjM+G9z2uBm2igx+h+URRsNvf5OjXWGvq+y89wVgAKcXq2pZIdUToBsq5qFFUp649L7sFYgaMKVP6qooqoqNCqIKmED45EFo3I6DTIGJG4R8AjnQ4UE9T4DB31EeU+keAP42H83mKMGLKEZYqM1WWl7MGtNQf2MCbsavq8MDiWqyo3jUry6vyAjjJX+OCnxE3lZy1klD5ET+881pa0e4ctS5r5TO5/adFBcWj8ZgL9rLUTyDLGlodKBJAr+lKh8ELbVeJDMa2rWcFpnHNQso6PPSrHc/9Dj57fv/0Rzq5ywDhyPvVhMZ0uliOE7viv6hFFJaNUB9T8YZf4g8CChyH7IVUYX318ofIwy08fLvgj9pWOdz8+VQAVDzf6KHlQiqn8pNN4DjonHjJRjTJaktHJ+7RSlFazLBOfN5ETNhAGBt/ROYeyFbpQ/PZ337DZD4SkqOsG4dZrBhdxPuFcwAeoCsuyqSi0wruBbr/ndttzv3O4pAlILKO1piorCmsJiVy2CsQkC9LgRApupOyIKqcEqaUtBblS4rIXSKALtFYE5/BDT1k2KAW7rsNosZWeNQ3Pg3DapnuX8n1UmrqsUbqgH5wE0VnlYUSMk0poK4ZS3nuqepY78Ufmm+iod30H2ZDjQcI3TVjC1cumcixnC1xMtF1Hu9uhrVQSamsRUwaPD6C1obSWwXkxDrGawiq8gr4XCS4fEjF4qspiyzywY2DvA30KqBiotGG774GECy39EMAHCgzeDZwsamazmuTlqk5Xc/b7lmEwOBfpXcDFwHazZTmrOD9dYo3m5n7NdthjY0llC5QR2S2fqzbk5iFblBS2nJqAQjgeRWmaQMZgXPEhSgqH1Dk9Hih5CxlFyId7sM8DlP7B/9U07n9f7H5szCPf63gejxthR6MS9ehY6sG5S2yRDq+rnGqPqjtppCM9Tgu+J0mZfn8YzP+T2/dOVweyznQM9Qce709oW86W+XvK9zh/WVNgng5mZikFcXPOSefIa/dHvHQ50ui6KoGbHXWvZeLGaEtZCjd7v98zm9XZz+GhDvgY1IWsmOKcI3hP27aUdkS2A94PuMEBEsjv99upIbOqCvb77XQt3nuqoqSqa5wb6LuO1fJkamQc+p7lQn6/vb1ls17z9OkT/v2/+3cs5jOeXD7h448/5ttvv+bu7oaqKnlyecF6vaGsSmwhmt//6T/9ks8+/Zyzs3NI8M3X37JcrVgsFozGTM71kpykyI9/9AMWy4W4nzrxuhh6MaJLmYrh4yhbKBLGCbI5keh7j5UHScb8tM6N8btc/zBRjkpbUZZF7g8apmdChl1CRam2+nzPTWGp6poiB8kmVxaOm6K9F234MXgf/y7J4CERHP/2QO/fGLrdHm3F7ZNETtgOaPWxXOR+vxeaTI59lEJkM5EA1BjFYjHLfHKhdVRFSUQCTuccccT8spCEtXqicRZFIRSOwTH0PW3bcro6wVhJAr1zUwBJ/h4A6U0weQ73YWrkHe/BbDabTM98DCh3kBkdaVVAHitaZFwzF36/2VCWpZz/4Ojadro/RVHQNI2svWNy7T02J1CSU0t1WQc9Ve5jjJP06VjtcM7T536DqpKeFaMTxkhgPvRu8m0g95dZK9VtNwzsNhv2bYvShssnTxncMCUdRVXS7va4EKQ/MML5+TmbzQZRurIkErYQz4HtdouPge12O5mbxTiwXK5IztN3PUnBftdOSV5pC7a7ndxnG+naltIWYOU+++in2EdrqdiPwo4S+OdqidLorHE/UW2OAKd/avujOPLTz3IGqPSo1HA8OBmDgHGBlQBbtGHzQj6WqCcUMO8/He0QQKijf6jc4PfBWUo54wAGHlbN46Uy5QE4hflTxEA+X5UXU8HvxzZelR94pZTIB6VRviy332YXUtKB5mE0VIVmXhY8qwMXTUQ7zxA9vY/cbgfaoeP1+/cMLqCNpShLjDGUZcFu1+K8uLSaomK5aphVluA9t3cd213PetcxRIUuK1SI2CNkAiUDKmWbaW20INHBMRY4FVAYQ1FZKWuRZDF1wg0dkiIq0NaK2521zOuaqqrYb3dYWwCaIST6IdDtOz775Dlfffs1t3d9ViIY6Pqefe9EynJ8WNOhtyESiT5CnyiMxRpx1Qtjs05iquzUZZnRjFz6i6OijpTxYxTjhaQzZWa/YzlfcrJaUlrDvtsTg6OPI1dNnsHBDdR1QanEjTD4QKEMJ7MZrXEMztN7MWza9wN1tGIsoWWA+pjwLhEs+F1HaTSlTcSQn0ANJkZi15GSx+jI0PUkN1BbTWkUqbZEFDf3O9oYubq+I4TAyXJGU1l86HHdPUYnqmZJUcxJyjDEQO8jqMjoGBeiUKRyMVaezSAa7EpblLYTd/7xOB6TaJRCJU0ag+Zxh6PvTfEwcT6Mu7EZ9OhNjAv+QTaPB6P+4byRpqf0URSsxjnmKOlPedyqQwvpcdEgZZM3aTyS4x/F8odPSQ/PKKWHc6Bcw8Pfvy9On/6i1IMPeVDN/J7tz6nRFSC4KKIUOdCLWQlrDOCtNdP8pIwmRFFncT7iggMUg3cSXmZ1i6HvKYsgAUdK9K2fAkxlrASYUehMzWxOP0hirTUE50khUlgJ5kOKtPuWIZv4pBjp25a9lXMbegdK6C4hBEKK7Hd77tf31HXNs6fPREGm73CDYxh6OmN5cvlUUNpKEVyky6piWhlJFgYBYlzfcX97x7OnT6nrirqu6YaBoqq4unrP/t07ru9uuTg9pSg1CotSiXbv+M1vfsfp6Q0/+clPKItKXKOHIUv6JaxRWFOAgqE0GAMpOrouUJUrvBtygJg4yPNmipHPDq5FiTElyXsCQnGIJlIUVrw8MuKdYga7coyotaYoLeSgVpk812SkTFtDdNmvhHE9UiKZjFRNjZaoQKmReikNqArh0EfvKIvM80+ydo3ru1aigqJVmrjahzlFkFJTGKJ3+HRIBkSlR2YQrTV+cBNA5/0oDSnPs9ZagnNTZtAkZkO5A/0z5kqOApFrjonoZT5NSmgiXdsKch8jZ8ulCFRkEEtrjc89EVIF6MQsMZHlcfWkljNuSQnAGEkUVSFNmzEnFvluW5X5/Qj41rX7DOwktIrs+z2uH1ApipOrlhl/6CSwD8BI6bJFNTXt6iR+ATEETDIoa4luoO8d5IpRUpph8Oy2WwbneP68kWTdCn1XcxzHiLGXUprtdkPXdaKEZYQ6U1iLyWDMbL5Aac12sxV32ZjQSRKHlN2PYxRjzDdvXzObLSiriqIope9MK6JORJNo6kZiEpXptSSsLhjZxkaJuEjwAT84lNF0WRYzppD7d9JE041RJLLJ9+3AZJFt7McQlbn0e9eHx9t/ViCfoSzGovmhw/ZhcD0ifcdI3QGFV+MPPArTPwi/Jz3mxJHj5jFsJers+RMO751QvDE9eBhijEHKxOZLB0KM4oAaHm9jI5EYGIw7HwVBUSajmBTWQFUamgLmpuPJPD9sSdH1nrvNjqvbDZt9Rz84mrpBG4Mymrqp8S7lAHggoahLRVMb/OBYr/eiZOMiPglVJCKT0tj5DYl910kglwQpiFHUbFBG0KJhAFJW10Fcz+BwbeMEnSAFjSnLCfHYrte5JCYNqWO5sx96bm+v2W7u6YcO5x3D4IhRkiLRGs5BZQ63lFKYrGmfsgOrCwEVI8aIq9+IimljxfAiN8eqpLFHjT/kbDakCGEMSCO7tqWwFmUMhbUQhTvuY8RFuQcoLZJWR6VX5wO7NOQGIU2lLcp7Bh9xXjr3zZiMKpmEBi9GFilBSNJ0XGR0sTAFhdUEHwT1Wy6IPmBsgbU6l1MtRhneXt+TlKJte7RKLJcNVSGmEn6/I7qArT1FNc/OmVrcb7O6RUo6m4YJwjaOyxgiOilMOvBfxyg9cQCqVf45HoXph+T6qPH0wQgeh0V+x6OgeNxTHUfQ05sezCDfMwZHPudImzvMIwfE91gH5oge90EwPmYjKn/UIUtREySR90qPZ4IxED98psrUGZ0+nDjU+DlHrwg4pkgqTvcug24ShPwZBfPSnKqPAnlHSvFA/ZoQeTVxU7XWU5Iucntyf0cAYOiHzJ9VoDU+o87S76Myn1bMgcqyoO06ysKiMPSuRwFt2k9PyjBK5PpAjIJw3t72glL7QDOrcIMgfiOqr5Viv9vx6rvv+NGPf4x3jhjDFFTttltsUaKVoXft1GRYZht3pRRVVRJ8xd3dnTwHucE3xkhRlqQEXTdIP5K2aFNgrATWi/mKl9+9YLvd8fHHn1CVNc71bNZbvPPUTTlJZMYk9JyUEcoYI0N2Pc0jkqHrmc3nk6O2UPEUKXqiB60to9BDUiO9cpzHE+Qm1lF73BgJSGLmOU/SiPmej1FEZpxnKoGaEmf5fzw6x/xvqibGiaKRT1jeFw/GW1orQlY5k7VOVFP0EYgw0nBCHEURDj0URmtC8GIwRY4lMtWVlLCFGBclHYQekkaZUJlXR7roOJpHmcJREUgrRQwy3qVRUygg4lkSJwQ+ZvqNVgpCro6MkY06qMeMiO4wDFMcMIKXIUqSY60RME+rbCiV3VeHfA9jwLuEH3qCd/kajns+AiGQP1/m8aD1ZOwkNNZ8DzJiH3KlK8bEgMtx0JCrNKJKM943Y+QYY28KmfY0DB373Zau66Zm3hilh6Lb7zGlKEEppfHDwBD7idppMjDoQ6AfBtquJcRI13eSAEaIvRew0liKIlIV1dQ7QgJlhAbnBllfm7qWwDwm3ODy0Eh5SlJC48nqQTE9hLpG8OsgTXpYV8en9Q9dAv54jvx47HFxVscBbT6JD7KI48f48ZFGqIzvP+nxzxlFG5fZSW2DMUgfc+z8cD1coyVY/57zmj72aPGd1tt0GCTjOYyo5vH1SOCb8j0RFFtrmFUlq9qyKhNnNnBSREww7Hxku2+522xY73Z0/cBsNmc2qyXzS6IQs+462sGREpSFobEGvGO3bzP1IhGUQhlRORAXTwlaRjTWaC268LlkM/LQjbUSdBxBrKNOrCQiU/Q1JVuJkXcmWa13gwSwRcFs1jCbNdKI23W07YbtbkefF8eUJ65Jdzb/J8X8gOvRXS6XJ2N+KJKgKlprJF+xoDRGJQyGkJIo64wJYgKlDnzwmJukUkr0ufQ4uqnCqJhwaMZLRJwnL0CH79154WwaozFG0ZQFRstkPlZlpn9aEb0YsJokni4xc+wLEoU7SNs557OudSCRTcKMwmrF6aKhbTt6L8iac56hG2iaCuMjnUt41zPk566y0g/hgnzfMWi0lsVTjdH5NKnnEq2KOTt+GGqPW1Iybh6n2CkH2eP/Dv+OE/sxcD4E1TwaN+OrDz/3e1CIB8/i4YXfy9Enj+4P/nRIVhjPFyZaVjq6qDGwT9MFPUopUvrgNVI68pT4/u1hdWE8xnHS8Pii//S3MUEZt2EYJorC6BBZ1XVG4YWbbqxFp0xPyIGzBNVxUozwPpCSwpZFVrYIpCSuyX7iM8esJd6jZjMoYLfboRJsNhv6YaCsyqyckmUovXDRr29uaNuWFCMfffIRMYpSTdt2/PSnP6Gqa96+ectXX33DF1/8cJpfmqbBucD7qyusLZnPFnRdR1nW1HXmDQfRga+qiqKsePnqO4LzGUEV6k9V1tT1jKoWOcNXb94SUZii4mS14NNPP+Orr77m6uqGd+/ec3FxwW63Y7NZMwwdZ+cnnJ2dUZYF3osKx9AflDa26/VEXVBK8e7Naz766GPqpkZpoY+olIjeSeDSLESJJiddIql76FUSycSDAoe1VtaMHBTrnMiROcUxSoPkOAYfNhWOc/jDRlaTA2pgovKMTZCjQs9xwl5VFbudSDeO7zc2AzUZgXfDkJ8lKMrs8kp2DYW85qks7iBJw6iLLi0O4zWL1GnfC49e5bXWZHrJuBmtSFZEFgpjSSFmff8C50Q2tCgKFHltCgfKRUwCiJmcGMcx8klZktgI4Ljb7yiMfLaPnugP2vN1U7Fe97g4iBGjPvRXkBLBeYYu4IZOkmxlxVE4jgCXyko+8l2MXHrpPTl4IhijJDmOkb7vQVu8CxLAu0Db9VR1zaxpGHqhXUVtspzzgHMDQ65EnJ6eslmv2W62pBBZnZyQkqj5SHAmymztTpLzCFxf38j9z/OMy+e8b1tu7m74wQ9+xL5rpfoeIrvdVqhOVSUJtOqompHbDvV8hveB3XZL27VwdipSkt5NFCHpc7BYW1JWFUOfHY9jnJqsp4osKTfsuumZPUbo/9DtPyuQJ5/Cw4WdvP49WnyOR9yjwDllxBI1Btzp8REffF7M73tweDUuxmMwclCxUJN00lEUcLTuj0H/+Jua/vj4RqZHP0pQq3KULyjwAZXQKrEoNU9XNee14bwInJWJOGzxWHZdx/1mx2a7z9xOy8nJCp1NKEIIDH3PdreT5sXSMq9K6sLQdh37vgdTYbLqDBFRIMilo4l3GrOmcHAkH1FotBakN6bIft/J5JOOrL2VmCHFTM1QZLtkJWiy2FLnhk9t0EBpLcvlXHiCGjb7PURHP4z6yh6jwSpLCHtpgFWHwA/S5Bo7ftb4fWiJ9uXzrIHC0A8BRcJaRYgJnMf7mHsm5WEyyOTi4uG7TYAPuQHKapmntXSviz+U6Ln7jOgLQpK16ZGAPERPpSxNVVBZ6JzDxSiocxpZ1qKEI4mTludcCQc0Keicz0G/OB22vSNE8MNxyTPRlDUn85pd1+VHWzG0Hav5DFtKQ1rnAkPo8b1C64LT85JgNJ1XDFKumJrpUkpE4oNFTpLQ6T/yjTygmv2eLVNXIg+PNf4bU4YJXh4/gpH7fly9O0oivmcIjqj3NG98z7Acy9bjHw5BcZ4TUnw0QaaH7z+6hgfI+ZE858PA/RCAy1sO6cg4r4yL4uHAh08Zj8mYMH9wrw89Nn8Wm9HTM5FixBSFOEcriApsVeKCn3bv+x7ccEDpQ6KpSkKKuKGn7wdev37LYrHk9FTT32/ZZx3roiio65qmmeOU8LibsiH5yPu3V3Rdh7Wa09NTxjVhu96y3W6namPbtpyenrJve7bbHV3bUdQNT58+pe0cX339jVRKtWKz3nB1c8u/+1/+Ax999BEAbdvy0bOPWG/2tO0NMSY++eRjXn37gs16TbvfURQFX3zxBZeXlyyXC376s7/k66++4u37K67vbvln/8U/py4LVqenDN7x7t07vvzyt2y2LW3n+OSTxEfPnvPjn/2U3/3DP/A//vVf83/87/47+n7BMPTs91u++fobXr54SV2VLJcLVqcnk2xlWZbUtWjOSzAONzc37HY7Lp5ccPn8eRZSUDSzBfPVCpDGz4QiRKiqgrbtc0VFURSWvu9zIGOJPnyv2oeKGekPok+vMnXB+eGDQEaNjY8w8d3H52KcYkQq8VCte6CuM/2cMvLsM7VLEN9RvrNpGqwtHkilppQoioL9Pkzr6ng5MXiC9zidDQwDJGPR2lJZI47oSHPq6FwryUlWAhorvs4xDB1lWVIUBmMqQY6dkypBEBOvauSsOwcpMOQgO8Q4zcPWSo+XSgkVIjF4nI+EJHRQ2ceiycGlyw3aVcX67o6yKqZE5cXLF9RVTV1V6EoRtRZTNS888rqu2W13gKIoC4p5xa7dI8mMoe8H3r15K5Q2pZjPFjz/5FNSGthsd7x89TrrwGvqqubzz38gPRtDQKkBW1hJ+HMz77t37yTxzjGIcz1KGfphoK4bLi8v+df/5t8SYmI2n/P02TPubu9YnZxR2JLSVhBhv2/p+p5CF1yeX/LLX/2KfnAsFkvqusZqg9UWq7TQ3eoaUsL1A0VhUMpgtZE+vn6g3e4YVYOkP03iq2EY2GygKA3aFpCEUmz1gf5LCnSuQ0FmI6S81kgMMjbA/lPbHyk/eTS4eLjefS+YnrP0Maz+UOjxaKCNf82KEw9BtscI1hiwHz5ZTcc5LONqDLbHwzxYGB+fC+OcPp3tFHSkA6Kkjk5MIU2vEniIbEVhDZcnDZ8sLB+dr1ionsIPRNdztd3z/nbNu5t71ts9LiRmswUnqxNms4Z92+K88Mh2+04WIKtZLmqsMQzOM6Cpmzn7VkpT1hbUpWTuN5uN0FsUuQyoafuedvCUo1KL8wxhYHBD1s9N2R1V/oUofD2Jv1Se+LJ8ktaHfoGkcjOoaMgbJQmMRrHerFnOG3zI7GmlpIlVGbQxdM4xlpTKwqC0Zd/2DH2mzWTb4xg8ZUYUNGJiVVYVMbV5gTCCOCODwwfp2C8yqjNWFaQkOTYh6wk9KMuS4HyWHJEkzNoSawQVHB1vQ5RnsyoLfAi4EKALrGYVp9WMznm8k3K1zyX5uqxQWrP3HhOgLqW/QJFIStGHSHSQjGKGYbGYsWul6UwlQRPXbktpNdViBlrMsLpdx/5+zXy1wKSEFWgfoxKKwGWtOZnNuN17vr1t6fpEVQsv02fnyePnX9a3MCXUZHnTHGn+3rFNyol1psd8L4edLLc4DbNRnebD8fZwXB4NuqP3xZRVJDhC3I7mi8RBnO0wT0ynwgjeHyg40ww0naSUPw/HOz7hxwnIQ5Dg8MoBHng4bz0EKSa8//ilw21PB1eOP4tNZS+G/E9MdLLSSe7p8bmEP5rutH03oahaGXa7HcMgND2tRdPZuYBzge1ujxsCtqykGdQWPH06qpc4XCcl/OATMSTevH/P61fvRB0lNwq+ffuWZj6jySi5rTpMUaFMx+36PWeXntdv3tL1HcqW/OZ3X3N6dopWmqqZ859++feYoqIoSzabDd+8eM1qdcJsNqeqK375699ycX5BWTf0znFzc8smB0J1XfHzn/+c5x9/wosXL3j77i1/8zd/y8//6ufYoqIoa3b7jr/4y7/i/fv3fPmb31JWDU014/TsnE8/c2y2W/7Nv/23fPrxx5ycnOYKJ3RtR9f1wiXOLqeS7IgxToxJGmK9Y7ZccHN9RUCSrbppePnqFUVRcnp2xvnFU6rKgxKVF21kXpNgdCAEL74m2bVzbDKdmooThEypGjnC4zZ6BhybbY0NocfSiQ+ACK2EzjpSao5HbX7/fr8HxqbSh+pCB/UWoUa4wdObTDdSBznRfERkHGdBgXyNkoR4fAZzjE6UZYGKCR9yj4eSyvBEp9GKlELmbB+SjTFZKIoiG1+Zicri/agYFKcEYKx+qFFyMQViyCoxwWeKZZj0zsuyAG3ww8CsquiTGGZ1XUciu8Z6l4PQDUPf05cVVVVxcnIyNRyPjbCju7L3IqDx9u07NpttNjcscU48I+q6JmnD7776mhcvv+PNu3f8/Od/xbNnZ/n6DScnJ9zc3GXpRkm0vnv9io8//piyKvm3//bf8/nnn1JXoubTti13d2txNI6R7777Ls8fBTFEvvrdV6zXW+bzW8qqpigrzs/PCDFibUHVNPyf/0//F5TWPLl4wvxyxn6/Y0CTQpJAfRi4eveeqiqpipK+7fjmmxeEGCirisvLC169esVqtWS1WtL3Pbt+T9M0khgWBSmqTBGSuaguigxcJsqxN4ijVSM/D8cSof/U9v8BIn94tL93m0ptcAgIHqJWQC43KY5F6n5vaSEjWA+L1g+XVb7nt5hX8GlJTUyOodP5PELrjgP2Dy4rn4pK+ZpyFiW6r4L63mx2zMOGVAYMHtf33N5tuL/f4nyirBsaW9LUM5pZTdd2DINjvd6y3bdoazg/mTOrK7b7ls2+pQ+gi4LtZkeMYOuGpLUoLfSCXokSTZAGD6UxtmBhpIGi63sG51EgAytrDocg9JYQR5X2wz0+JEXC/UvkrmsNdV3yxafPmM9nLGYzVoslVVHy1e9+w916i3OJEMAF6F1gs92Q0wORv/QeXRQsi5Lz8yVdgF030PYOsjlVHwKx7/Fx5C9q5o3wRsX50KGTlCV75+iHMIkVWmtYFlboKcNAxE+LhVKWYXA0tSUG4eOlAJ4g9y1zVFOKU1m4Gwb0yIcH2m7AaCdKMYiObG0LiGRVm5LR2KLrE/Oq4PRsKcZOGcXvu8g7d8cXn15ycX7CMAgCU1qDUYnt5p7T01NsYYCAvlhS1iXfvd1wvprjosf5wPmq4Zu3V7x40bI+OSFqi00JG3u6NrBarahLi/ORfe+nZ7kfepQ5LJKTFrI1R/7JD7exQflBsJ13/GDqSY9/+afaOB9H90cJx4PjPETxJQpOHIzhj04q/+0wFX3/rPWQBvQHblPEP6YEYy9CPpZ6mAwpOKIeZU5wTB986gcswD/xLaSDAyJI/8qoXKG1NLeOa4bwVRPe+ZzcKJQxbLc7nBMOO2jafcdu27HbdTSzOWVZMzjPdndH23VUVSOUur5jv91mPq2na1vevXvLfr+f5nnvPTc3NyhjKKuK5XLB1d2dzCvDwHbX8fU3LyjLgqIsKOsZlYt0fSAlqQhWzZz313fMZjOsLdjsbuh6T1VtKcqSq/fXGC1BzWy+wA2e7XZD23WoNcyXKy4vL9DGMpstePnyO1ZnZ6xWS8pqxuAiF08ueX91w/16zbv3V8zqhrKqmM3nnJ6d8dXX39A0DZdPLijKipgELe6Hgc1GzqOqK6wVt29jtPhWpIRRmqZpWJ2siDFydXXF5198MX0/+/2efnjN6dk5dT2jKCqpniZ5roXrLZS+lMEArYB0WNsn/roa6ZOH8TDJI45B/Bicp4Mm/4HmegABBYw6mD4dXpf1eRQ+GCsDoyGZQirLOldMQ0hZdljmKZMVbUaNcsariKJbPr4/5jUiZbU76dcrchqfIEXhwCtFVAdTxbF6PsYPo1zhWCVIMWbFtkAczy2K2yuZPx5zUF8oO01tKgMeRmeqTYqEHJyTGoFFUmQ2m00JgRsG6qbCewnq1+uNSKo6oUUJ6Heo1CfE7EkoMApi5JtvvuXt23ckoK4bQkSqVl3Pbt/R9J5Xr99wc3uL84G6bkRcIyYSgfu7e25vbhn1+q+uruiHnrdv36GNzmo00igbY+Dq6h11PZO1OkSur6/ZrNfUzYyYFNvtFtBstzvSdodSEjRfXV1RVTVPnz3nl//pl5xfXOTGY8W7t+84Oz+XKoQ27PctZxcXLOZzmromKcV+t50Movquww2iStWVhShepcCgTTbMtFnpSWNMgbbSTzEBRlqC/KSVsA/UYXUbPYz+kO2Plp8cobuHiNXRQ3687/iWo78fL6ZpWrQnODAP1O85+7EMjUgy/mPXN6Lz0lgZHwB84+HHc3nA6c1nm9toDpd7/NeUqwUqkZKYLY0HiDHge8fWdXzybMHZXKG8p2179vuBhMEWDRWOwXti9PRDKxSJfuB+s6X3nrqpWMwa6tKSkkJ6JaQRsu0HirIS5Dx4aUgJEYym7ySYr4wBQ24ujbTDwL4Trn1hC6rC4kLurA6yaE7mEurQaKSmSUe+Jw0oK1QbU9iMGiTms7lwL31g8C2L80v22zWbXcuu6+m6QSSgjuIkhSRY/eBQMRKiZTGb0VRzuiFwv90Tg/DCYxD5xJh7ZE9WiwmtMKrKDUEwqxuMFWe4cfIPPkgGb7XId3pB8EZubopKGrhQhOClvHW0aEjDUhKL8RgnCSlplEoEn8Cmiebkg2c2nxHcgCZSGk3IVYDBB+7ut5zMG6zRGJUn95R4f3XLxekJCVFqCG6gtJrnzy8JQ0dlDEVZ0/aO6GE1n9PUBcpUuCjPz0cXZ7y66/ju/RqMxZQl5WxOiB4/SLCji5KExSeoyhI39BwbfaQkihrEeCCmpQMKPirCqEcBakopO+UeXg3xaJxNYyyXDfPO6uiPKo/vlAfeATV7NAYPODpq6tFJHPwcOALZR3DgsM/Ry9PzeGi7zg38R5OCGtFDjs+TI+qMmj5PfkvT5+kczI+nGI+R+BykknXCD9KKOVP+A8uqfwqbD46Q75sGkauzBpPtkPu2z83aYkYzejxI4AQpKDb3m2yMoyZkfrPZk9Kan/3FX7JcnnB1fcPd7YbXb9+yWp5Jz0675+3rVxhj8a6na/fc3d1xf3svqHWmznnv2Ox3xJSYLxaQEmdn55RVifMDX7/8e05OVjx58oRPP/2Uy2cf8+rVa3Y7kZ38yU9+yosXL1n2gc8++5SqnvH69Wu6Xhpmi6IENM+ePuXy8pLCVvgY8DHRDz3/8LvfcX1zwyeffML5k6f86le/5je//Qd+9rOfMZ/PiUlRVg1FWRNi4uV3rygLy8XFBbawXD57yi///le8efsWYwzL5ZIhK2y1bc/NzTXGlnz88XNSFBm9orB0vcMaQz2rsQYWi4+5uRHO/Seffcbp2VmmdHi+/fZb+sFxdnYxof4pyneqjZ2CQqm/2yO/AEAdjKtiSCiVXXDHZnvGXyWQ0ylNSh+jMso4F8QM6kCen9IhERgxxASSScSEMSrP156+6zCz2YS4W6VEXpkoMpF5Dhv7/YIX5ZhxRohRqsVm7JaNQaq6GsZG4JirCpM8bhrlAlT2E9BHJksSyMej5k4VbW68lnVaYaThOEojNungVQBkyUapXI29ZjEbbWklwNJ2s8489yD9JnUl3O6uY7PZcHr6GZuhY7fdcvX+PZ9++im3t7dHfHebzy/iQ8xylzJHhRD427/9O3wIPH32jCeXl2w2O/bXd2y3W/p+YD5f8NU3XzObL/jo408oypq7u3U+RuLm6obNRpxTY4z86le/4osf/oBvvvmWYRg4f3KB1pYQI+1+z8uXL/lX/+q/ErWowfHu/TvevHnDbL7AWKkYXDx5xu3tHft9i3eBZjbnb//27yjLkr/4C8er717jvSjtvXn9hpcvX/KLX/wCrTX39/cMg+cnP/spy8VCXNNJzGYz6qrEmoMyjnOO9Xotz1MhoOfQD6TMmqjKkrKssHXJ7v72KBBVuOAxSWf6VY4lJwj1D9v+CEQ+B7fTinwc/aYH+30/Rv7oHUcL+/HfJj6s+rD0PJbvx2DieDtcdkbDkqDLicf7PT6Xhz+Nn8vIqXt8FdNimxURENqHVjJZFNpwOSv4eG4o6GmHnq4fcD7gUxKnzpAY6QxF5qPt9sKXNwoqKxxsYmTwEUwBceyqT4SUJROVJvpIdOL2WZc2JzzSmKO1wvmBrhPZprIwWCMBawyj9ON4PYf7DIdkbGzkNJOUZTpYGisDOdOs6xld3/H+/TW7/Z7SSGncuSD8bwERJi7ZqPWeUhIut/PotqUqS2pjMIuKvi642+5wubnNB9FW9ylSGUtpDUVGWmJKuGEQGbs8+ccEfQqkKG6BpjLEQhqiBj+gkeYXkRTNetFeZMamOzIuEDngLLSmMBqtROlAW5F9lMRHFGeIEaPl2CiNNgqTskZvlEZncYHVVEVBUxV0uW+iriqKwmK0Yte3nDOnyQ6+Rhu6duD1+2vqpiFGoSJFFG3vWC4rjFGIn4Fo4qco5TvX9ygUxlYYZbKyTTwM5zQGrHk0haz+MSZ0euxrOHDVRwUq4MDnTkeLaA6OH3ThT0EuU+B6cOk9oOKHcXv0IY+Q+SNT1gdjeeyXGak003Ce9nisOX88ZR7kZw/78+A+JSUTrlD5FNM8McX1Y1IxvvF4jjmiBkxJTzq89me69TkYUEqRRnRUMZks+RAxQRriSdA0M7abLbc3t2w2G05OzthspKJXVjXL5SlffPFjrq5vefPmPX/9//zXnJ6f8ez5R3z2+Q/46LMf8Nf/j/8R5wbKsuDk5ISTVS183GbBD3/wU+7u7nj9+rXoRluxV196Tzf07No9trDcbffYfmCxmLE6OeP91RWv317xD199I6hjbq40xnC/2fP06TOGkPj6xSvquubTL37E+/fvefnyJXVSvHr3jqvbO+qvv2HWzGizPndRFMwXC7a7nv/4t78kpciTzLH/7T98zXwxZ7Y65auvX1DVM84uLvmbv/kPJAUuiT72fHXCj3/yM96+v2Kz2/OLf/ZfcPn0I7763e/YtT3aVtxtNvTfek5WJzx/+pT1ts3X4Xn7/gqjRFKyaRp+8MMf8fdffsnPfvYzQoj0neMHP/gB/6//6X9mdXLKD374Iz7//PND8KgF5IGE9z0hDJRliVImm3N5XAZgpLobxJwvywiPksTj/RznnTGwFzUUP42VUYZ03I73HXsdxsD42JV33PegSe8n3r3WZprAjrXrrWZar1yUvrVj7XqU0DUKK6pu0gRr0FgJ9OKBY58yYq6yrGaMEe+8mAzm6+7aDkjZ9yUrtxUa5yD0Poc4Y5Ur0naJqqxIUWczoyT8clJWMbqj3+/Z3N1TVhU//vGPubu5lYqxk2rU2dkJb9685fb2lrZtcyA7ZL67y/rrcv+kkmYhDbz87jt++fd/T1nW/PN//s+p64ar93f89/+3/yvWFpydnnN2ds7L796ALjg7v+Ty6Ue8fvOOWT1nGESi2vtIu9tydXXN3d096ET/5ZcYY6jrGu89L1685Pb2mhAcH330EbaoaGYLnN/w4sV3fPf6bQb5CmbzBffrPW3biqJMUiyXS7q2Y7vd8bvf/Y4vPv/BpNHfdx0//clP+MmPf4xSivV6TWErIon723v2ux3LkxUpxOzEHPn1r3/NT376U0giD2qM4dmzZ2ilpZeg7fi7v/sVq+WK5WIhzb/Rc3KyomkqQpCkimktPMRef8ya8EcE8g+D9X9sG7nq+ZejwJgM7h6ONb6sp7+NPxwF+GpE0jJSlY8wLttH+Nyj9CJXD0ZIPqNgCVlnD7J4Dy/psSqefrCK5yw7n7vRibIQrrbVMC8NP3wy56Ts6TtRN+j7gRg1fTYjCTFM7qBFUUig70RezRpLVRYYbdh3A14ZoTnkrvxRfkrSKo1WZClFT0pMZcFENrNoexIIjz3z8nwQpZWxdPk47zsCVcevMOu3C4JqlDS6FtZydnKSlQhiRlETfbcnZPRDSqRiHJQyGjGirfJP3Bh9AOciWnlUAbXV1GVBItJ1jt55XBApyO2uI1UlWpXZjVV43aHvUClikMA7KJFbC16gYbnfok8fQrZXF5hUAn2jc4CaJ/KMMk/fvxpbZkWqUtQbRMIxZt1iQWlDrhlpod8rUSESoy1JsPwQiCphCo1XYHMjMtmFMcWEsRbvI0Whs1ufJHmDCxSVJ7mEiWBswXLWEIceTTg870kqGpUt8THQtXuUHtC2BG0zgH1QsNG5ySZGdSiBJ6mACaB26BmZIvajMXw8Fg+huMrJ4tEU8DgJTw+7Zx4H2ce/q+Ps4TiofxC0p0fvPUK/D4c9JBYPnvejY+e56pFc/BS0P3jbePTHx2EM5A+aWoc57nArp//lIOLPLbAfnSvHQKssS2IIuOBxgxPjm1zBIUoj5Wy+IkZNwuIDeJ8YnGO769nvPPu9UBFvbu94f33D26sbfvvVt5iiwIdIXVYkNG3v6N5dcXV1nV1CNc8uL7m5vRHtdGPxMdHtWwEKYsQUJUM20IkJ9u1ASImynmOT9Attdx2o7PZoLLfrPZv2JbPZjMV8zr5tuTg/p+8HjC3Z7lpOT04yFU9xdnFB9+q19DH1A8aIYknIVL9Xr99RVSXdcIW+ukFbLfTFqqKo5zSLE+63e3739bfcrbf86Ec/wJQ1PsLt3Zpff/kP/NVf/RVVNaOZDVQxUpSGvu/57tUbXr74jr/6xT/D2BKRhSzYbtc8f35C1Qgt6e72nlffvSYmoeJc2pof//hnvH37lv/4v/4NJ6sTzs/OJBmPKauM9JSlpawKRI5STU2b/eCZLxcZjEzT2j6KQJscgI8V1ZQSdpTClCYuASlscWRKFT541oDpGGPzqvSjy3j2WXYzpXTwe04CghlMNhDKYJ4xgARupCwTqTOi7r00jYYgM69MNZKgIgopprB5TZBrDrnSJtriFnSSai+5AdcN+NxroLXw3Ye+mz4zRSEQTolxVCLLnG8nWegieocbeuG/+0AYBjlPp1nf3VE3c9quY7vdEpzn7vae3WZHDInT0zNubu5YLOaURUXb9pmaYsRtvrJ4H/j1b37L+/dXaGP5xT//FyTg2xcvefHiO7744Y+5vb2nbOaUzYKo1tSzmqKqQRuKasb9esvt7Q2bzZbZbM4//O4rdtsdMUZOTk8wpuDi4oLFYoFznq+//h1aK1YnJ6zOzvn6G5Fevb9f8+btG5pmTj84+sGxeX9F2wsTQfpgHDf39xMzYbdrOVmccHJyQkqJfbtnv91DkObabtehGkU9m8GsycIeBTEErt69Z3ADs1zVMFaSyK5t+c2Xv50a7uerE0pbZMqUZzZfUJZLlJKeDAFWjyqviSylrTiA1//09p/JkX8Y1E+LqBqD5lGx+niv6dymYCCN6Nz3ompkfP2w2h0wswMyz7Tf0acmjv6WxHFtSiCOkDeOF+JxNc1KIw9W6lwBSPIuk4NpH6CwivnMolKkMvB0UfKD85J+s6bre9quxw0ebWva3jMMPSRFVUlTVlKJzdUGEhgtJlBlURIjbLuAbUqUTkJnMRajAjppnBNNWKUVTVVDcGx3O6ISU4GYoB0c+96zWs6pCsPgxNAoz0eMOrkjJWBKehRieZy/q7GECVBoS1WUNE3NrKn49OPn7Lcb2t0WFJys5nTtjvX17QFHTQdkY6TtkPJEpiU5U0qBNoQIgxNVmtoazuY1Q2nphsDeBdpeUJ3eOQornePJGuqmAiUT3ii/mUhU1tIHT5+1XAsrAX1dFrTZqS0xlm6zLKcXMxqV1NRgOaK0Q24YTVokImOKWKvxfpQGg8JqtIpUhWXwImvlVaS0lroqaJqadtcSQsJWJW10LI1lvlhCivRdRwiOJxdntL2oFAwhMm8qmrrk4vwEZTUqCqVnNqt5ennBy5cvUdETnFR7E5qAw9gCrQ3tMOBCh9KGppljbR5HKSsfpJA5nwHFaNZ0RLWK5IROVqsxwYmZ83oYQiNsc9yXcpS8P5oUDnzXB384orOkQ2Cdjvc7GssHnODB39IYQE+DXT1452H3Q7p/dAbT+JDzO3yIPGN5Fhnj+iM6TkqS+ESOKhd5LjmehtLRf49OhscJzJ/6dqBHyEWNtICYGwK7rqOua1QSPen1est8tmAYvMi97VradqDrpHEzpTXtXmiLIscr1crYDzkpCJyfnhOCcIqNMTRVhfOiIX11e8t+32KNnTjg3ntirrK4XP0EASEGF0gKbFFNyVdpJEAU74+CMHiSj7TdIAlE22KLXeaEa2xZom1BTCOVcidznxZzqPV2S1mUhJiE67/dslIrtBJFFiG7GXZdT9/LOPZBKnxK33Nze4/Shno2Z7/b8fbdFc8/XqOLkma+ZBgGZk2FMSWD7Rn6nlevXhNCYrGYUdgSHxLOR/Qg3OjZbMnd/UYCUlOw2WxZrVZ0nRhn3d3e0dQNdV0xmi2RIs4NpBQglVgrpkzSEOuZL+aCSGfAZZSXVCABaEoPnpVDSiy/G22m3orHTasTQn70WlmWgrjnyKE4ShYkeFCMSIlgVqKoF/PA1WSePORKp5ZgOo3ATdamT4kUJdAWsGjssQpH4FV2OI0BIhMop3XW98+UV5ObV8nN4d5Lg7KcQ553UyIlqTYMw0BhDCGoPG8DKWVJVnElHavaKcF2u8OW0vgcQqSqaq6vbrLIRgAlzdHeJ7QWQ6q266mrRvoAfeTbFy+5u98SUSwWJyhl+ebbb3j//or1esuPf/pTvJd1aLPbo23B+cUl9WxO1w/c3t8LvU0pmtmMu/t7fAgslpKsiplYSUriyL5er+n6gaZp0NriXODq+pa379+x2+2lYqI0zgcGJ2o9w2QsJsCl73uqqpa1fOhFnpbc36gN9/f3fPPNN8J/7yXJGRcGhWK/3xFCRGmFLSynpyd07Z623eOCZ7Pd0jQNJ6enmbsfWMwXUm3RhpRBQzEOFddeEcYTao1smoMK2v+XA/kDi1a2f2yNkY9XOSg+LIqHdfnDJTMzU4+Okh/WvKg9BPHM9PcD9UZNC/3R8JuOoSa31odoniDJGejniPs7xSXp8HoOtq0eB5Og8TFEmtLw6fmMf/Hxisrdc7vf0/YD8qVY+t6x3e1p6pKmEdkvpTTr7Q4fhMfYNHOqwhKjZ7sbiKjpoYwoTFVD17FdS7NFVclD3nd7eUCMuKHtB8eu7+kHz8lyzqop2bUdbgjErAMbvJgwpMwZHnNCbUbFkgR5oY2Z2VtVlrIwLOcN52crzs6WLGc1i9Ly3es3vLu+ZtfuUKhpsQo5EDYG+sEzJkXjBBhz97/VhsF7ktUoY3Ep4ts9lTY0Rcm8rllFuL7dsu4GBu+5vluzsZb5vOFcK5rSUpgK14kmsM4TWWkUtigE6Q6eED3zqkQb2Oy76R6kGLFlJeYhKaJNNrDKqjXWagYPnQ+4FFnOpIdBRXKymI4WD5FeOzld4KPidrPj/bYnKUNTa5bzSlAoDds9XLU94eqO08WMqhB5t+22pe87ygIuzlfUQDu0fPbJE4r5irv3N/ihY9EoPv3Y8vlHP+G//5++5Hbb0QWPdh5lC9FmbuaYspQStw/EMFDaBc4HjAZyp/6Y9GojjnWTg3L+f4pjSRgUmetO7rF4EIirI/fUx/PDIYpND4Lf759VJiWrfLzj93zfsce086DPc1QV+GDmOuDkkrgeUwOPUPbjaSPJjHVIU1Sm24y5gjq67qOIfQQFeKiudUij864T9/7PZzsOtLTSE+82JQnk9vsOpSwKjesHXr16xenJmSzi+5bbm3tGWcjNdsd+3zEMUqFzQagZtrD4GIkeILHbtzlhiDRNTVWfkPICvt23KKVxokMo81xMmEJQ5DZLWRqjSUoTkzxDZVGCkqbO2WxG712OBTVFGdHaEEnsug6SYjc11CrqugFj8M7JNb55y2qxkKAkBdabLU8uLkkp4LxobDezkM2cIm23JyXD4HqGoRfKYZaYbfuBN2/fM29qFqtTktK8+e4Vb969Z7lYUNYzXEiZY9+QcrD95Ze/JiTFs6dPeXJxjtIFbSdO4grF2fkTXr78jqIoWa0a7u7uaZo5FxcX1HXN9fU1ZVlyenrCfD7Pgg+awfU4J066SolfxjAMdN0gztIZvJn60fK6G5z/Rxr8RsWXQwD/+BnjiJ4zPnM6qyIpBE0viiL7C4wAwsNjjYG8yhQghcJNAZ+oKg1Zc32i8xyhpykFrK0AJ1RYL4mYyb0YCqZqz1iZB0l2RidXW4iR0FgVDUcNuqOBUIxeGk6dE0nGHJAqpaSnC1nTgpcG71FZxvvIft8yX/iJCdA0M37729/K+SlF2/Us5gu6biAEmM0t+12H0SVKefre8fe//i3GFjSzOcvlipvrO7788h9ou47lckVVNyyWp9yt77m/vmG5POHs4hJjDJvdnm9evKDdtXz88cecnp7xzYsXVFXNxZMnLJdL7u/u0Eaz2+8ZhkE46EWRk2nF3f2W65s7rm/u8CFwefkUF2TcDM5jCxHFGEEDY0ymeqnp+W/bPW3biFRqDGy3G375y18ynzXMF3Patmd9f0dZlizmS7SFth1YLBecXZzh3Yzrq2v2bcuu3bHZ7fjss8+Yz+cAdPuW+XyJNRK8S3XFUTcV2ljarkMbhbW5n0GD0gaVRuDjD5tf/3BEXh0WsUfD54C+ZypCXuIfBP3jIjcF86PL5AjeTf/5J07i0e8HhYicLEwfcnSi6fi3I6Q9n8u0iOf/ap0NkfKOxyQBPYYHCQoDQ/D4CP/iR5/wVx+tmPlbfvfyLdtdT4iJxXJJPziuX77m+cUpVV1QlJah99xv9lzfrhl8Yrk6kQpbbiRJSKC+H3oiis4Fdl0rck6lOAOGMHL7oKgq+iFwdb9mGDyFNTw/XVJo6AbH4IMkRUo44jpnhyFlp1olja0qZfRBM+mfxyBd/0YbZnXFctEwm9do4ObqilldUxjDvKoIQ8f9esN+t2fvnJicZe6hsWbqemfU1c30D1spZvOaFINMmlFTWI1PiegcOgiX/fnFnHpnuLrfE5TChcD13T332w0XJwsuz06wtUZ7j/UBExPbtqPQBU0li7DPZf55Nj1p98Llxxic85S2EO1bH7FaUWlxrHPBUZuCoAx9CLzfDJzOKuqyEOOnXPYsjMagSDpJhUBZTpqa1bzk9fWO+82W81nB05MZz84anp5f8G7Xs76943V7S1MZTpZzVIzMZgtEp69icLC53+OV4i9/9GPurt/Ttnu86/jtlwN/9fPP+OnPnuL0Pe9uO/oQUElhjQIN2lpBD1E4lxcJDSqKEg/GTIMlHTW7fjAKk8ZqTVVaBu8I4RCc/vHb973rD0MhPtxPjnWkkXG0h/pgvw9eP1rQH1JyjvdND3ZXORlJiayElTgK6adPU9ME+jhG//D6R1fKP/w+/P//VlqbVU0ivRNjIgo1qWa5IfJ+dzMF9vebPe/eS/CuUqLvxGhFGtYVwxCIShMUBBJFXdFl+dqyLnFtiy4sp+dihnRzc03vBoqypJnNJlrG3d0dfS+mNN3QY8tKzHfY4IMEVHU9Y7lcMYSBvh+kFK6EHjM21YUYefrsOTc3t2JUFT1GWWIa0EbWlN1uR1mWnKxWnJ6dc3V1RQiBdi/0yydPzlidnMqYjpHlakVRVnjvZX7SlvV6w67d0w89IQSub+/4xS9+wdnZKd+9esn5ySnz+Zz56ozP64YhJl6/u8K5Ae8d640ghm275/27d6QE3716x7519C5JhXW/pevEZEdbw83tRhBSI8DR3/6nX3J+ds752Rnvt+/567/+a370ox/ys5/9jNNT8UOZF3O0gsH3QKbtxcB2c0+4vBApXjWqoCCxQw7CTQYRxt89ajKtmlDLKGi1VEbsA2Re2+LQYIsiDIJmt23Lfr+nqiq6fTt5Doyo/SiO0GXt+7GCDEcNuLnxfZSdNlqji5L1es1sNqMoRO2s79uDiIA24g7r/cTJDy6bM1kLxohTaZbFNNaSgscojSkLFIn1/S1KyXnK2g/7Xc9+t2Poeqq6ZLteT0nLKOG637e0bU9Z1uy7e5wTA6sYJJjft102XDJ88+1LUIrVasVnn33OVTYzK8uS/b7n+vqWJ5eXJBS3t3f0Q4AhYWxFRPMPX30LquCjjy/5+OOP+fWX/8Dp+RNCUrTOcV7XvL+9JcZI27a8efuOZ8+ec7/ecHt7z2y+pG87rm9vuVvfs1qtWG/F3yGEwPn5OUprXAhc3a25ut/x8uVLzs7OWDYNm+2evnfs9y1KGWaLmrv79fT9VXXJ84+fTz0AohYDt3c39F3PZrPF9dLXsduuMdeGum7wfiA4h+965icLPvn4Y/a7HS+//pqX33zDd29eo7Ti7Pyc/8N/+9/SNA11Vck+337HJ59+xtnpKbN5gzaGr3/3O54+e8rp6cn03HkXiCFS1SVaW/HY8J5h8NR/wPz6x1Fr8sA4+kW2iUMs/5mC9kfrkJr+q45eSUf8+EM4/UDI7phzz8i/PWTxjEibGrG348XycG4TE3fkxWXKyFjiG98i3OnjmoGgi1l/RCzYkQXEOc/PP33K08bT37/k9ZsXtJ2YLV1cPsH5QDd0FJWhqQrK0uIjbHctd/cbusFRlxX4QFlXhBAZ/EDvA9pEotbs96I640KgLAsWTYkbPCrTbWIQ3vjdtiXpxHxeUxUaqxMGPVkMj7ocWksVwXsPRk9ln5giPkhJWbjrB5USrTVWaeq6pGkq5nXDaj7j4uKMvt0zqwtcb9muRR7OFAWlSvggHNOUgJgIwQkfk6yfqjRRR/Zdj/eJWVVQFRUkj1KGgDgdqgA+iLrD2WxGqTW3+469C/jsyna77kFtmdUlpdEYqylTYq41Q9fh+oA2GmsspiwY+oHKGOysoXeetusAhU9e3PBCpAsRD8yNpsHgggTqldUMumDXO1yI1EVBZTVGSzNLVVaUEWLSmbYiXM2npxXr/cBVF7gbttzuHX/5aY2KnvPTFX3Xsm/3vHx7zecfP2G+qAjBMeQSqCpnfPfulvrL3zCrK+YfXZJCxPWef/+/fIM9O6OqLFWp8G3EGk3yDpwnqgLRiQdrxbI+GTG4UEhZMsWANmM/ymG8jMPI2lKswFVeNEe61Dj+VG4WTRwbxh4l6geFpGP1m+OZZQx9pwRajWj9WG471Pkev3N8/4d/GeeK9OgPh8/6IMB+OE1NRz0ubeuHQvlMzfbHZ5AOY29MMA7b0blPn/HnE8CPmzXF5IIsQZGmbaV8HwM45zN6FnFDwOiS1WrO3d0db9++xyjLZiMSksYY6tmMejYnAS5Gum7AliXOewbnQKWsFDVgS8sPfvADrq6u2Ld7UIrZbIZvPbYsMEXBMAy4EHG7HcoYzs8vGAbR6XbOs93vqOoarU2mKziUthnRlObK6+tb8dBYrfj8+fPJ/VE4zRGnFW22lh8b8GIEWxSUZYVzgbbvMEXB6uSMqmp4/faN0BJzFdgNg/hG2IJ+cEQU766u6YYBpS1vr24585G6FuWPL774jFfffcfQdoQA54sTjFHUxnChNL/58tf84osfEmPgf/1f/4b7+3s+/ugjlNIMfc/ZbElVzri5ueHt2/f8q//Nf4kxcr4hRJ49fc6vf/0bfvvb3+Gc55/9s59zcroSPe6+Y76c8eLFS+q6BhSbzUZ6p4pERBBiZYosmag+ePQPogsjyh6noPr4dfUgCX8ohuFzAA3i8qqUyvresgZOmui532HUvgdysC8o7kh78d5loYDDOJ7NZtNnjUmAzgj8B1Sho6RjpAJJNf3wNz/2cCVpAC/Lkr4XvrsxhtlsJu8NAR8csfUEJ67CVSW67/f3a0BTVQ1d79is90JbqWvu1jv2g8/PYse791d89dW3fPL5Z5T1DLBs9z1NqQlB0fWBerbk5as3dG2P84HlyYrV6hQfAq9ev2O+XPLm/Xu+e/WG65s1+67l9n6LC+KvcnVzjd1u6DNvv24aBucobIk2mn7o2ey2fP7Zp1xcnPPVV1/Jtc7ncr+1Zptd7UEzm8/53/3X/3tevnjBze0tIGBaUQrbYRgGWYOiPDPWWt68ec1+v0drxayZsd7c0u9b+m5g6D3z+Zx9u5162u5vr5nVDU3doK3h/vqa1y9eSPKeIknB8uSEzz7/jGcffcSrly94/tFHkBJVVfPk7JSh3bPVCjd0RCJlUaKUuFvLv47r62uUgs8++4zV6tD3IePmD5hf/6C98vb7lpexMDyWlR+3nE6/fVC2Tgekf1qXc5vccW7wYG3L6Hsil9rHHccM/Thw/773pnHZZmziG/d93FhweFuEmGgqi1YHzfUQHefLGZ+dVpR+h3NbRhOsiycXGK15f38rKEg9o6oKjLVs77f03UBKiaosKLIMW0IkCnsfSEbQ5q4d6LsBhWJWlxTGkHygsFZoN4Nj3/Vs2gFtLaVVlFZhFKg0ll6VUCLyFYaYeYkj715L0O5DmPYf75tGSqVlUTCrC+ZVwbyy1IXGKJXlrCJ+kKzVKKirAhe6SYd8nJ8rK6o5PpexY4zoQlMUgqjEkOi9Q2vDoilELi6MDqu5OTZKd3lhLCezinLwtIOn95JU9UNA60CyCasQtQHEnS9fODF5iqLCKI3zHoWiNAZVVfTOEXyisgVgJtlIFQKVFfdDq6C0mpkxVNrhUiQER9CWwooR1zA4TC5zGq3QKlEWBX3vmDU1ykYG57je9Xx7dcvl5RlWRepiQVmWXN/d8f5mi0mK86UM5n6QBEPrkpube06Xc4wW5QWtDeu1Y1kNPD2d471ju73HB82sWNL6HqVzIJ9EMSclaUgWbX2hr4U0KrCMi83RCFdZzhV5noJPoEahLI4GMoyW5uP70uFgh5nhERit1JHs69H4O66OgSC0iaO5JHeYpYmyN1LxPlStOk72H57LwyqeOiK2f/++RyG5Gvcam8yZPn+q5eVr+JA2MAb6ckMO1/R4vz/tbRjEuyBk2bq61qw3W5GXjYn7+w37thOd9aohxMTV63fc3t2xXq9ZzpcCCoSI95GkO6kypoRPEW1slp2NGd2N9H1HiI5+6HFuoKoKisLm4HwQv4ayQmmVS/OXtF2bgYgxoJMVyXsHXZKyt5IxF4KfeOEhJ8DGGlKKdF1L13c58BSJW601upA5wXk/yWxaK8omNicrIM9YU9eiKhIjBJG2FbT6oCaVkuLm9pau71mtlmy2sgbVfY21hqvrGzbbHb0TB/HOOULnUEBRVFxcPuX2/p5u33K33vDm7TtQme4RE6uTU07OzvEhcH1zw9//+kuePnvKMDjafccnn37McrFit93x7bff8vnnn9LMauHDuwHTagpr6dqOvu8ZhoG2bTFWkgE9Sk/mZ18f6dLD2FyfJklg4BGNjwdB8vFrxz8fPAwk+C/LctJlnyhfegQWspJW3ndM1mI8eCGILPOh70OkmMekInfsZerYqAx3fA4PjK1ShjDzOjyesyQFWeo4X3KKCRcGdjHQdx2DE5530zQEF7Kpo1Q5vv32JavVCXVd56bwe5oszbjb33G7Xk8KO23fY4qSsmqwRSWKb4NHa09IMgeHsOfq+oZ+cFhbMF+dsG87nPN0najjCYXK0XWOpCEpl43FaiJIQ+lelGRmsxlxv4e0Y3SzL4xls9vivePu7o7VyYncK4Xw0L0nJU1ZlZyen0/Uujgmb1pzeXGBMZa7+zuGrZP7FxD6kRaKcIqR3X4DaaDdtwQvkqBGy2Qcg6jj/eDzT7k4v0Arld2kX1FYTV1l48okaoXEgOtE6ScGz5Mnl5yendM0M4auo2t3WCsAhHMOa7XMM8YQfJReHWNEhS6lCWR+0Aj7j2x/uI78EZD1cMhkFP0oWE4cyckd7T0ulWpC8Mal7zEKlR58yHTso4a6w355QsvHGZOKNMrSPL4OpLdFDpUeHut4vwntlwTBWE1dlSKh5QMoaTT8+GTOqY0wtLi+xxhLVSVOz8959eot+8zBntV17lBO9F2fA0jB72zmpbd9J82NKaGNZRikmStFcYqryiJ3nQdMYYRH2Q/sO+HT14WhNio/jJHoY5Z8PL56INv/2uyAOgbxh4lITf+MHptDLYtZw7ypmJUFTVHQlCKRaZQSRzg3YFDUhWYwkLwi5okYJUovVhtxTnVi8JSimCGURYFXXvihMRCxGKS3wWgjzb5aZxMl6eZsSkHBK6tph8g+yzs6J/r+UY8JoyjtaKOIUTFEMaOC0TlQtOGx4n7q83cjdCJB5vuYiCRKrbAmK8gYha0Me5/ovDTY+SBSk0EFlDKYKXmUzo66LNExYWxisIau63lzv2E2r5iXRvisZZnL83Bzv2dWGKwV5RqjNMvZgmFo2be9PDsJ0J5m1hCdYzFrOJ2XXNWWu64lRY9GGrJF6s2AlQTDe58t0g06zwbSwPfIVj0/PTGGqYEzpdER9+HwOYTEmXIzrrt/QHB6aDJXjxbnPJ4fRMKHwP1wEnkeeBQxqwkRyHs8QMfS0b9HCLnKqjWZ5zwq7Iyff7i2Q0B+KMfnY6TD53KEPUwf8nurCx/OX3+qm5gPidJF23bEqNist9JHExK7fcf791cURcXZKez3e7598YLddk9KUBa1uFYnGZ/7XUtkh4+emGC+WE6yvNYatBP02vlE2+64u73hpz/7CaUVtZztdjvxj1MCFxznF6dsNpaua6VyoCBlKkX0nm4YqLP+OAApUlYVCQERtNHMZg0Ad3dCsbHWUpZFNoVRFLaQ9SpTDEc1F288czufJP9SSjx9+nTi14fM/Z3P5xMIopRCG8N2t6frB2xRsNlKM15Td9RNTduJHb3WmkVRcr/dMnQdpbWslks++fRTvvz1b9hutmgtajf9IPTCuqo4e3LBfLEQzw/n+Ju/+Y/8y0LAHwV8/MnHPH/+Ed988w3v313z9u07mqYhIZKi213L6WrF9f6azXqDz028Njfgl2UpFVvIAfshSB+XjpQH2UMu+2H1/sccMI8dU+UjRJKyzk2UD6UpFaNtijjGpkk//zjRF+BD53Euz4/OxpbjzylJYyuK3Kt1cKsdjzFeY77IB9WHKfCPMgd5J9QyHxPeBXadyFW7QRTvFovFNEeBxofE19++4LNPFRcXJTd3azbbnQS9wHa/Z7PZUJRlbvYWQ7JmtkCbkn3XE4HByffofeD29p7NbgtKMZ8XOB/ZbO8YudxXV1eyfgZJcpURY7CirmlyBaFtW3a7HW3bZjPQjr6TJI+YuLy85OrqiqHvcc7lKpgmxkA39ChtUdpQlCXL1YrvXr6my1UqlBCtLy4vsdZwv7nHeUdVWlIKtO2O2axmPluJJOfmDqsizok0c2krFAFrtGj9k/jJT37I5cUlbdvy/v073r9TrJanlGWJMQYXPfuuo2/33F1D14tPhTVaqj8JBjfQtR0JOH9yIf0VWQFutVxhtGG5Osm0qUr6Ia1IR7th+IPm1z88kOcInTtGy1XGnY4C4zQu4MfoWjogWwdpOg57HSGBh0GjOG6MHY+rcmPhkUUiPDhiXlRHh5rxeMfIXR6EqHFA5uPo3Emexk9MQKQuS6zV9AMZlUysmpLPlgVlaEnOE3wkJM98saSoam7u1mhlODtZUJfSxCpNWi6bQQTc4KjrksF57jc7Ahpb1sSk6Dop7dZlQVkatIrshh6FYd/37LqOrneQ3U5VjKisOJKSdJaHpHAhHaEeh6C6sIYQo5S+Rj1kLY3Eoya6NQprNKU1zJuauihlki8LThZzrElZwUXncpSi0olFYdERFIE+iKQbgLaGohC1GeeFLuPcgK1rysLk7yaxax1NKTr9ymT+vhJku5nXbDYtZWGYVZamNOx7T2FFTz3FQPCgrSYqRWHF/l0ZgzEK7ROD6+U6xwk0JVL0FEZDVKQYUEqkLRMK5yKdi3ibQCuMjqgYKApNmUSXPaREN3gMiaYyU4IZg1Br4jBwulhyt9tSaMPMFrjS8u72nm9fveWTJ6fMZg1lYVk0BbPlCd9995aruw2LWUVTVRgUy2bONnr23UBVllhr6PZbfvjZJ9yt73F9y6y0fPTkguvffcd2vWF+eg5aGpeTEp68tQbnHaIuIeVHpRXRB5SKUxBB0qTcdh7TKHAqCVJMatKQV2Pj67jwyot5ZCmOg/Djrvyp1MxRgP1BYj3NOEdNrIdhf6gcPHr/FMDn5q9psMtnP1TMeZwkkIP5x5jAIagX63WRLT0+/8eB+QM440in/gFmoRMq5YDgQ4/cP+mtqsR5OUSFNRXfvHhJXTcURUVhFWfnl5AM79695+/+7lfc3d1xsjrl7OycmKkzRa4e2mwYUy8qyroCrXjz+h1lXbFcLaibhsVuR9d1IksbAvd3d7x59VL44/M5F09OeffmPcPQyvMbAr/61a+Yz+cTv/jy8gmbzZZdRhAnuoW1FIXJvHGFsQWzZsbN3TXPnj0npcR2u0G0qCXQMVoW9iH1lGUpDqqLFbvdjr7vJ+WR3WY7fc7d3Z00kBqTaWrS7GuzW+QwDJwsl7ggfUXv3r0/oN59ReOGXDkQQQEfEt1+S1WUFEXBECI//uEXPHlyiTGW7WZLQvPq9VusNSyWc67/5xt+/OMfMZs1LBZLTk5OePv2HUPfk4LQBP63/9V/xWp1wq9//Sv+h//h/85/89/81zx7dslsXtN1HUV2wZzP5/Q3t9ze3k7r02K5BMRMSmlxrz6WKR233+v2DkfVie9H5sdAfeTEay20Czhoz4uWv83GgQ7vAsfJ/thgeqiGjA23Ml5FaWY0FpT4QIJ5NR1jPL/j6xNw5ECvAcRJtSglqUmRFCL39/dcXFyQkqyXZVVO1+i9p9333N+vOT+/YLk8oRs8gwuEpIhodvuejz7+jJQ079/fcnMjjaNX1/f0w5BV8UrqZo4LgS9/+zt+/OMf8/btW9p2hzUFN3f3lFXNyekpz5495+7unvv7deaf19zc3lFUFbaw2LJgu9vJlJ/ZBm/fvj18l0p6RkTrnpzkWm5vb6U3QIvL8P39/ZS01vMGZRTDMHB3dyeN7eGQ+DjnOD8/F7fktuXt29copZjPGoxR9G2L9wPeD9R1xReffYIfHLvcr1eVJe1ui9aa5WIuPSDv3vDVb77k9vaW9f09l5eXnJ8u6bqOu9srdvs9P/v5X4o8q3M8OVtJv6M17NY3xEFkTk32zbh6/5rzi0tWixmny6VUpYxIlNojNSWd1ePGatA/tf1xHHn14H/jSJGFaFwI8+I2Vp9lHc0P8VQwSzlTld8OC/n3IO7qgNnLr2r8WMb88zgtOCBj44I+/pwPnB4vrFPpgESktCUpSUZJEqnJotAUhaHre3EhS4nKKD45a1gVA08WNfu9Y5sSKmqWiwWv371HK00zryhLS9/vabuBm7sNISb2+z0+Jp5cXqKN5ebmLdYWzOqGpA3vr9aEkFitZjRViXOO3U7UaYbkWbcDYeRXWkuKgnArI1cXAY+SshhMroojAlCVpZgoOS90iuwqZvIge/AtK5mcNps9MSchxohJxvnJgtmspnh6ybyuuL295vbmGtd56sKgVaIIILdNEVMguUBpDHVdgtJ0PjJ4B+iJy1YUBYPrqa18fyNiYktDaTXRV3TDQCIya0pmCtCGWVUy+Eif1X68UyxqcRD0yWO0oa5qWTy99DwU1qCtIQS4vd+hjM0LZ4AkJl9RS/ITQmTnI27QLCrLzIA2iloXcn1R3GpDEIpTVUgZbxgcQ9eymFU8WxTigpsiA5bnZkU3RLZO8e5mw7wuKKuaFDyn5yfc3FzRuoFF3WGBui6ZLeZc31wzDIHVfMEnzz+ma3uqsmbwnrKo+OjslPvzLd+8uwFbUs00uswIn1IUWky1UlS5c16uu/Oe4KVxUKlcU4iJOD4bOag4OL8+nB8OwerxeD6GosfkXD1aoFWW5ZLk+fj1h+vz9y3qBzRPKT2N/pEhE6NnnDEO1bhReWZM5tMHxx4pMxMNcAq8DwG7lHWnoTL9/GHD6hGUMc59HEt0IlWO8Rz/fAB5bm7vaIce7zwxJM4vnrJeb1jf3HB7e4f3EWMsZVnx7Nkz+mxgVhYlTV3TZ255mfWZ61nNfr8lpEAIicuLU9phoC4LlrMZhdG83u0oCs2saagK4We7oaM3iuVixr/4xT/j+vaG+/WavhzonSN6Rx+EOrDdOBbzJWdnp6QE76+laTSR8hxl6PoOpRWLxZxZX7PbbSX4iiFXUGtBF4cBo4WiGKPQCCpbsFzOWSyk3P7+/XuaWrjWIUa0FVO55EXhZz6f03Xd5Gp9enLCZrPJ66+aZBZjEtqe6o2ooxkxq3n99g2Fscwu5xhj2W23/P3ff8m8qVmtVpRlyavXL/E+YIImEFjO5tzc3bLZbgg+MJsvRA5039G1Le+ur/mb//i3GK05PbvAuZ6//9WvGYaBjz56zs3NFRdn51irqKoopkNv32YZPktVV1hbSoVUhckd1uRq8TGf/EFPjWTNeUg/HCxjMDQG4tbaB8cag+ZxenK9NEE77xjcWJWW5EMpcREeE4KUEtYa+lE2MKP3boiEbPLoM11T6ZD7icbqtp4oIBLsH1AIhSaGRIxBKFSZ4y1+JQrnwkQF6rueb77+Ss4vX9d6vUZbSc5u79fc3t9zc7fm5H6Drea4JH4nw7Zlt9/z+t17zs/PWW+2tF1H3cz4l//qv+TN2zes7zfEBF99/W0+Z7i7X+NDZNnMMLZkvdny4uV31FWFKSzDfs/gPc1C1FratpWksyzpupYQfFYL8vk7S+z2W1EBzE3Mw9CzXC5p6prCWJx3lGUhfXs50Y3DQFk1lGVFaQy9HwhugBBYzmbc3rzn+v1bvJexXNUFMQxiYKkjs7ph6HZE11LXlcR3FqyxzGbSmzdrZszqisJEtvdXuH5gXhlOPrrk088+w1pLZRPz+oLl6sd89sUX9MPAZrtju9uyaCpOTk9pmoZukAQruEhRVnzy/Cn/+l//G14//4iPPvmE5x99QjVrsL7EFoU0ys5lPogxUs//f8SRfxCMT9vIh320oqfDwhaP/zSi+Ok4CM9vOF7ElbimHpa/x0H447ODiW828fEzEp/S0aJ5HKRmzrxKeaK1tF17tFeQDvskPEgQHl9jFM8rzw+fP6W9v5dmK1txcXbO7WbHm9ffcbI8wRpLCPKl7LYtMSjeX99QVA1n5+fMFyu+efGSaC1PnlwQlWKzb6makrTvOVnN6NuBvnc4n0hKsd73pARVYVEqEXwPSXjbRWFzd7zoHo/qQUYpWRxSoilFZ77vRDrNZEvnUQuXJI1IKko2HwGMISWfB5AiOk+737MvFKnvRPapbdnve548uSRxxWbbZiqCotCgtGS9LiS2bU/XOYqq5HReQiwISU2mWa4PrJZzum6g7UWxpigMJhpIcLKc4e4895uOzbbn/GROYRR9jNTZ8bXzsGt7bobArLZYq/AxQHQUWlxpxRY5oWOiKGrOTzT32x0+6smxMMVIYUWf1hpDjNDHhO89PikWtaUgYRDZxtVyxpAi6+2eWV2ymjeslnN22x2u23P+7IKmKmgHx/vNnnJ2we7tPW/vN6x3mkVVUJcls7ogqUQfIoMTmtRq1vDlV9/w6fMLaVhtB97e3JFs4mQ+Y73eUlUlyg34OPDJ02e8ud/R7bfElKhixDYKnyJdF0UdwRQ5wRMkyRpDP/RirGUPFasPWkhTTrRjPArIjxfUcayPrx07MR72Vw/mlLGD5SAf+48FtQcA/BA0HwfDh1M6VAAen+eHPx/vI+MhZe7uWC2cEPxHCcAELhzQjX9kO64tpByXHAUqf0bbzd0aAb5Ffu391S03NzeCOCVN1+UKWQ56VsuVBAnKoJBeohAkMEpRJFMLa7DKYIuCk9NTbu/vAUUKjroqeHJxJtVTlajLJcYovBNN726/5+72GgUsZjOM0uz3O5SWvqGiEOOkvm9RSpokC2vxGck1WuOGHu8cWguNp6pEl1vloLrregkilaKuKuq6ntB3Mq1mVM+pqoqzszOGXIUdg79R5hDAZbWfmLXKvZNm89GBWeegKCDHjm0r/uM5EIoxoJUWybumYbZY4LqOmGTMN02TF2x52l14KwABAABJREFUxlNKdEPHze2NcOYTeCeKLk0zo6kb7u/XrOaLrHGemM0WbDb3dF3PbrdnPl9yc31N09SYrFRzf3fH+dkF2hiGfhBa36QS85AGY62dfj4O5h8E+ABKHcbk92wjyjlSSWOKh6b7ER0/os+NQfuo+/7YNXai8+RAvihLYpBzFGQ+mztljw1jzAdDWmQrD83/kwZ+Tuid84y+NcYYaRYPsrbf3d1xcXGONQUoTd8N9PteHGC1Zbvd4yO0vWO3bxlcwBYjfKGpZ3N672mHgd55qpnmbr2RnjRrIUSMlapP3w/0bsAWpQTTcYPWmrqu0UboqP0gkoxa68kpN2WAsLAFTd1MTb/OO/HAGdeOrEiUgghCVFWFNUYaxU2mn2W/Bu9FBGP0DHK9Y+jbzJ2P9F07LQpNUwnzoDBYo4kBTk+WRO+pyoLlcsGrly9FHCOrAcW6pKkthVWk5CmMwVQi+1laS1PqLPUpvYBlYbi9fpd7JhNNXUL0bO9v2a7v6IdetPsR+vHdjeH5s2ecnJ1QlSUheIa+Z7vdgRI9fWVNDuTFz2bxB8yvf1Qgn5ewo3Xu2BXxoTujvPwwoB8VGaQErw5r4HE5+sEaKsjyKGk56nSTvdimkH/60Jg1I/KiOgUA46CXrEIzqnKMiYNMEDY/uOPAGhVb6rIk+IEYHVpbFqXls/OS//K/+JSiH3i9vscWBYvViqKe8f6rl8yaOefnJ6SYuL9bs1nv8QneXN1QVBXz5QJlNG/evaf3jqfPngrNJCaULigLx+nTM9zQZx1aRVKabpAGrKosUSmIVGRMlFaC5ZR/T1GaXrwLIvuIoiwlYOu9o+0CCZHTUkeT6PhdGCWva5M5p1nfNCRF7wK27bFakzwko6jKitMTlQNdT93M6HrRv1da1CqUTlSFZjGz1LVlsx/Y7jo65P1GCe9cI0Fz33WChSqFMhqlNF03YFSJ0YnlfIbCsNkNXK07TpYzjAbvReHFAou6onOB3jsiBqs1hIgfvAykGCFEgorYKElOqko2vcN5D1pTVRb6gZAfNaM10t/iWbeieqBt5k+nSAyestRUp0v2Xc/dds/gHPOmpLSGu7sNcV5TVyXP5jPebB3L2qCo2bUD6/WeQrd8fnmB1lBXM5L3xBDY71u0VSiM9Bco6FPi9ZXQuAYf8bFnlETEeM7nDdebltAb+qQEsZ+tSEYQv2FwGOcpY0JZ0beFQQLiFJgC8AfQ8eHHcayMuzycB9IhcX+wHScDY5KtJpRNkQ6UnXFuSY9D34eBtcqVgJE+JrH9mBCM5Nd8ro+ABQ6PPseKWCNSPxqkHV3V0ZuOrnhE7aep7LiBVU2/HxqKM3qYzX4evuexrd6f7rbbd9IcFgL7fcfrV6+4v7+nKEpOT8/Q2jAMwxRAnSxXzOoa750ge5nyF0PADYGhF6nU0hbMZjOeP3uKtZZtLtdbYzg7OxF1GCeScmVpaPctQz8wDD1X799ydnFBU9cE52Xc2lLEB4yeAoMUY25YzwFZklRTGnWFHtnud5RVlYErlQUEAlorCltmxK/JtA2HzxQJrRUxSiBzcnLCtbs5PJ+ZNqAzPWgYBs7OzkRKMgb84DBKC10uJYgJnV2rQ4wSMJEIfmxuFXRzs9tijObk5ETomDDRPYw10jOTGzz6oed+HaVPSWuiT9RVxWq5ZNbMePPmTW7aFb3+qrQsliucC2w2W7744nNu3r3m4uKMxXJBjJHtZg05eRj6PquMHGaI36dEM27jWvUh3UZN9/+YN3/cWDomAccGZSOlRWmFxmSVm5DdunMfzDEdRmmMOVCAFaJNPyQvzuLGTJSmlBXwpnM4otqIsZSM/ZTIPWOHuSl4SdiCIgfITp4f77J6jTQSJzRt7FmvN9TNjKJuuF/vMLbMTuh7nIs4F7Obt2a+OOF+c4fPlQFjLTe3txhjJWBP0nOxa1v6YWBwnrKs6fqB2Iq62+XlJV3f44aevu+ZL+b4/Cz44KdxUBQFZVWy79rpPjgnkqAxjC63khhUVUlhLUoxmTWN1CilRb7WOyf8cedww5CrVJ7oHT56cXC34iwcgsMaociiFfNZDSEynzWcnp7w8puvmTVLyrIgxURdF9SlfD4xUBYlupBkvLBGmA9+EDqMNvih4/bmSmRqm4blyQkEz3a3oe07gg9U8walspt8Clw+/YiqadAauv2OIkZ2bYcPkbbrmOVxMurcP/8D5tc/2tl1XPfy0/gA4R4l6BI8UIiblqUjmow6OuBDBCsvc3mHOKJUR/nDg+Gbf1GjmkZ+eUoSGPVx4tEB1PEnTRNZQpQBQCYOoxVlIQ9FO3REEvNC83xV8qMnM1ZW8d13VygFzaxBacXd+g6jNJ989ByjItvtjmHoCSHx/uaOZj7j8vIcZSz7tqfrJZNt6orrmzWtDygjjaU2BTrnZMEISTJRDXVpBF12Aa2Ec65xFEYx+JQ5k4EQE8bKJNVUYog0OE/vUjawOXLUOypFqrxgKS1eeD6IvfSeHmmi9ZBlGLuhp64MUm7W1HXB9e1OdOoRvdoQ5Amwo1Rf9MwLTbkoKbVi3zmGvscWNquyyCKYvEi8CZKX5LNDIIQOvawFRaqFIrTpeu7WW+Z1jVJSZYhJqichRXxU03dvi5KgvBhQxTgFgaKvL5WZ2loUgZDEVGq5mGHajmGIhPyQFYVh8Ilt5+g0lEZTFyZrZoMiSm+ED3jn6Y2CJD0PMUSC85RFwZNlQUqeyjRoFPcp0Q6Ob97fcb6omGeFIGUtSSWGYeDmbktT2ymR7XrHzf2Gk8WcwQ1oJRJrbddzNq/Zdz2BCNGjgiN60cxOSJUiOofWPUZJT8Co1zw58k6xakbQ8wviE3AYZ3kwMqLrU0AMHOTaHtbFHgT901xwTD85CqITTPxxNU4eR5oxhwj6KDFV06l8qHf/PXD/cYAw1t+nHp/EowMwBuMcLfoy6x1eOxz2aPY7Ru2P+33yZf1jvOA/te3k7Jz7+3v2bU8/OFanZyxWJ4BCa8Py5JQyq5uMvFjvRcqWKAuctRby67f9Vsxd5nNCaVnf3oD3LGYNsam5W99LgSkGjAI/9NR1iW5qqqIQnrkyzBtpTu27PRenJ0QFIUVRmTAqK4kEdrstSsHZ2QnOOW7v72iaBuWlwW17tWaxWEyo/G4ngb2guxCCo6wss7pk0NLsv2/3aKPZbrf0uZF1uVwSoyj7xOSZzQTFd04qAb3vZV3K5m5D3zFCbDEJ1DAatqWYcH4QXrjSxBDY3N9RFAUuNxc+PT+jKkoG17NZr4nRU1SFVAyCNP0PbsiIuYEolQGjDUVOoqwVNH4YHFfXG376s59wc33F61fv+Oyzz2T9yoG39Dt0U8LWdR3z5UooF1k6EA7P/uOg/jiIP/6//A2mueUIsZ+45zmATEkMkMb3hjAqKnlckL8ra6ZxXuhDVUA04nvKspiSgRCgQE8NzLKvKMOlmCZlsZiH/sHBU2YJNyIWj+YVrTX9MBD8kJudO/pOmkWbssI7T1GI14HWmv2+ZegdfTfw5W//gSeXT4kJbm7vCUn8ZHo3TBKZu31HWdXYucUWBWcXF7x5/ZbdTrT2b+/eUtcNyhTsuw0hScKSlPDUQ4rs2/1UZdrtdwAinz30FEWBsYa+77I3wshoUBTGkrI/zSij+dHHz5nVDX3fs9/vUfleiTa/yH+OjeMpJfa7LdvNBqUloSkLiwoRq7U0qodAYQ3dfoc3mvmsYX13I14WXU2KnrPVikUjWvHb3UaoPbMCEqLopqQ6VpcVdVmx3dyzWCxQSuH9kL0hBJkvrUGnxKypaKoCH2cMwVOU0gOJUqxOT/ibv/kPhNwHMVuc8It/+S9p5gtJwo8anbfbLV9//RW/+G//6fn1D292HeFtdSiFT2vSuH5zLOymHkXs46sH6bjjP8l6OS56Y9B92ENN2YE+HOdBcD8t5aTHH/pgccy/H8lUSuMKWcUgTOdeGEtTlhldEZT6fFbw6XnDxyc17XrDdrOhns+o65oheHbbDavlnNPVgrvba9r9nt1uz27f0fvAR5dPWZ2saNueECR7Pz89o+t6uqxlXCnFfN6wu71j6B2DCzkQzY05BlL0mGwrLIPCUxhoBwnifRwTImlY1VozOEfvAj4iaPt4d9KRevXIhTqaCGOMBDQOz6AT3moSotbg3QA0KAKaNKmo2EKkNtEi5xhiIiaphhilKPIALRaC9u9aRwyikmMMVFYTAlMQH1IkapkY+2HAGM28LrFG09QFPkbWmx1aaeqqEM5/CEKZUmnCZLXSmJzxd/s2a4GTEeDEvk9YXYgTmwIfIz5GCc7rmm0SV1lZIBQFoh7kSAQryU+VEnUh5lh1YUhGM/Ri7kBKnC0a5o3osfsYmTc1KTX4KA3GkFgDu86T7iNpbpnVBWVRiDOli9zv9oRYY6yQz2IMbHYd89mcmKQMaaw05YJiXlt2QyREB0Hj+xZbzQ8oWJJjKO9IY4WGLOensgoUR5SSEUk+KndPrz8Y7w9RtQfvJwf3SU9h7/dE91Ps/CDXz3+Qis3DtxyAgQP+zTGClwPzD6aJR/PFtK865tA/PL9DcH644kMwf8SDzdc/zp8fJBPjPRlPSx0nPn8Gm7K07SDSdWXFvu0yjUCawe9vb4hRSutlUbK+veXkZMXJcsn56SW3tzdE7yiKkrJcoJTQHtq25frdG7x3fPb554QojftPL3/Eyxcvef3mDdvthvOzU/roqOuaeZa33G42UgWsap4/OaeoK27v72m7lllVCNo3OFAC6GAM+80dznsqo1Ax4NodRmsuTk8oK8v93VoC7+BIoWc2m2dXUSVgUwoUVlPYihQV++0mG9TJs7S5u8uPp6IqS0wOUJwXVRzRr5a5rDTSkHp7c4Pre6qmljllcJAiVVGIlF0IREQzfL5oSCHi/cDd3Q3DfsNiPoeUGIYOpaBvhVpqjEEraWQc18TZoiElRTf0vHr1itlsRtd1nJysqOuKFy9ecPb+lKaumTUNv/3ytzw5X2XTK4ePgR/84EdYW7Df75nP56hjelBuzBUOu2JUFZKqsJmQaaUOwfmEzqfcY8OhAfL3bV3XTYF8SgcqzwgilkX1gCJyTM0Zk4uJppPR93Ebk1CtdTZUPBhM8agiIKo5jkJbXAy4YcjUDZWpXR1DL4nPYn5Kyi7Gd+s1F08vAOj7ns1+x3a/wyeJr968ecPP/uLnvH13xdt371FKsVidUFYVPkZ++fe/ynSoSDObcfn8I65vbrnNSfTq9IT7+3vm84UAgMPAF198Qdu2ojCDUIzkPsLFxTkpJe43a4w2rBZLTKGZzxc472j7jidnZ9zf30MKKKunJGs+XzCfzfBDz9Vmk2lPcQLDmmaG0UZ6XLxjt9/hvYgMzOtqwmpSGCiNyVThBMmBTxADWltMCsyaBhL4YeD1yxdURcnr725pZg3n52cCujpHYaV/ozAWozR910nvn3NcXJznZ6ennlVcXV0TYgJlpAE3weB6lIKnHz1juVrRDW4CzX7+Fz+lqGqMLVG2xCgIQ0/M4KnrZW40wMXp2R80vf7BgfyhcSuH4tOqmUPocQGKHNal40h/Ws/U4Thq1IQWa/gJ8WLUp5FmEtLDRV4dlv3x5BjZXykdWPUHQCuXD8ewIpE1OA7XoHIGZ5QovdiMrs7KAk3EKE1TwOfnNT94MuOksbx5+R22sMyXS9Exzh3YZ+cnuL5lu91xv9lxc7fh3c09Tz/5hJPTE9rOsdv3xACr5ZL5bM43L16RtKEoC+qioDaGd7s9+9bhUIgYkugJK6MI3onBlM3W09YS8fTOZZUaCfCD9zRVzXq/Z997XEh5QlRYY+n7fpoIzZgRInbRcv/VZFVeFYaqsNR1Sd2UFJWVACmK7XpC0IflYkbfe9r5DB8jLkb6bqDrEzFYqqoiJFAxUBeGp+cNN/ea3V7K21oZ6rKEpBlCJIQBFwJElTmhcLveE2Ji1hSUVrNaNHgX2PQdymjKfC2GhI7CBU8UkBdTk0ubIeRmXwRZbgepbBRaUVhNiaYfHEM/MJvN8SlBHzN9RxJCqxUpaWLmJMbgOD05IXrRktdaY5KiHzxWiWTm84sVSWm+u7ojhcTT0wXKWGwBSsliP58Zvn11RVKBaBQLazARXIQhwd2+E0pVDuZd0txtNlS1RZOI0bGYV7y7uWdWF/SDmNCkjIDYeg6mzIpAAuOF4IDc5Jqygc/YY6KUBLV5nB6lf3moT+E2x0j3QUc+j2z1oSLLB2h3epwYHD7rMK6PCT0j6n8EwqsjNHzcJx2dM2MQwIPjyqU8SAsyun/01vHHI0Qww6CMCfQY/H/YP3A4tnr06gG/eNzg+6e9ffviO7abjfRplJGUhHJCigQc52dnKFLmhidUmBHDQNtuMDqwXDZYPcvOxLDbbXhycQnqBB8Cxha07QaV0eqT1ZzVX/2MZ88uuLu/z5U8QfiVVpyerLDjMxIGOufoup3MccsZwXt20VMXjQTTVUXvPK5NoCS51SpSaIgEku/xylEXhkJX+KjxThr+i6JEa0PXtiwWM5SSpnnvAsaU0gzrPSkOOCdNgUVRMPoqWKuxpsCUUrEgyfqrdBSwqS7QOmYQRFOoCh88ffBCKNOGkC3pjRUr5xgTfb+nsnOGXmga1hpOqhXb7W5qtkNLolXXNWVZsllvWCyWlIXF5yrAMPTsdju0ll6A7XqDSlKxvH7/lo+eXTIMDu/b3AypsgzhnsViySh/DCB2HwGddG60FAjGRy/rMIak5LVjNP4YJJhoK0foeGbBkJB1D3Ws6z7uHyc54rFiYIzBFlZihry/sVKBTtm3YJKKTCkj8Q8TA5Se3NTFL0V6JKTXQVZ270RtiCT9IG3bEryj3e/ZrAUp1kr6s7yPVE1NVJC0zJNdnxFwLQaQ6/WG7XbLMLh8X0uqSp6Ltu3ECKuusbbAFJYuJ60JUWEytkAbEfhwzmcZ1ZL7u1uC88zqht32nrIQYYq6EsnkqiikuymEDDCJ8/ysLlnMZ+w2G6LcEsa+vKayzGcVQ98TfFYTGhkSw0CfDSr90EvTahKVvMIWExiAymqDMUxKbipFytoSnZO5BY/L/Y8xiDKbLTSFl7hmVtfSC+mExhpDoF6VPLl4ggLph1Ga09MTQojUsxnz+YJPPvsUtCVEuF/fs921kxqcrSz1XBpYlTbUTcUwtMwXc+bLOUoXKJ3pcUFArf16TVEWEEMWafintz+aWpNXSI712FIO4tQYECWyXfm4TI0LsDpaq8eFMRsvjKiwEuR5OvbRwpvSAfM/IIByrINc2/H+cjKiOnkchIz7ybmOSG0kABZDFMksrdApYjU0peWnT2f89KMTnp3UEDxFU1GZgvnqlO9efcfN7Q3GGvbbDfjIvu35+ru33K73PPv4Uz779GM29/fsNlvatqeqKj756Bl/+8u/IybNYr7k/GRJUxpur29wSmPqGt/H3C0cBflWlnndUBcKo6Q0qFFc33e0LqB0IU1iKXG6aFi3HfveE5KYO2kFdV3g+oODnVJSRmachMZvW4lEq1YJpSOJHFj3ewYdcdRs1oqmqTBajE5U8KjomVcl0dein16UhJRYr1tu1y0n85J5VYhEZu84ny+Y17BrBbkJMWILCZKLzFcVJzWDtYV0g29afAiczEsMcLJsUBaGTGUxiWyjLrJmbSdl/fmspq4qbGFwefJNGbmypmBwA8kYSBqrFJWRpti+a5lV0unetlGafLzcqVllSSR6F9j2it98+4pPz2ZU84U0PHvPrGo5O13RDZ63Ny0Xq4a//OQJt7s967sbbDnj+WpOU1h+/c1rku54clKz3vdgPEkZCiWSnWnXYpRQphpVYHMm7X2kTGKu5VNgXjecnCxxQUMypG3HTdujK0MxDJjSSBCvpRchJZHVVFqLXnUOTI2e7L0mdHzUaj9ir4A6qENM0pMPgmc1/Xek6GQcjGPuuhqDZwSdlAD9YSR9xKKZAvopwU8jdWw83jj3HIf+h+349+PrSUm0nD98x/FL4zyXxjdNlKTjeeoxwn6Q3mV6vzyLR/Pln8n2+rVIzxljhGoXpIFdK+k5Wa6WFEaa34IfaErD/f09SkVidMyaObN5I1b3IdAPLavVgnpWZ05y4ubuDm00VWnROnF6ckLTlJycLLi9uWUYHNvthhgTi3mDSmL2M/y/ufuzX8my7MwT++3hjDbc0YfwGHIicyBZorrU6m4JEiBBkCBAr/pT9aBCS62GGipBVVQ3u4rMTJKZycyI8PD53mvjGfakh7XPMbsewapMoPTAtEC4+7Xh2LlmZ6+91re+9X3jwDg4UoqsV1cUZUHf96QwUtiKohRFie1uT23FlVrlIiCWYhqnjSIGR1OWaF0QU8l+v6cuLGVpQWn2mx6zakQdymhSaQjB0KmI6gIkT1loilLokikpImCsdAdtaYlehn9JEIPDaGibksJC9DIEXBmD81kEQYvWvAswJE9KZu5AytUXCGFEK4strGjAx0jXMRcNwQvfuSpL7pzwlo3VaCUKPEOm95isnT0OA64sScHkz32czZS00oQQ6fshzy94ylxkTesopkic5kXOBm9TPC3McyDvfJmco/ATpz3NuIEAQVobRFnvVGTLrMIpRoWMok8qaiklkpeiRms9SwpPw7bnSjnn/PyJFy8FmkZNxUNGnUky1j96j3cC/NjC5qIi0Hc9282W5WKJyp/dMIxUdZXnB2XfHoaBtm1JMEuaHg/HbFom3Yy6rnnYPND3PWVVorTQL42xdH2PjwltDUZbfBCTNaH2+Hm+LngHSeYkHh4+0LbLPJyqhCVgFESNT4GAzIsZYzBFMVNejBbFQqXAGkVpNFZDn5VmtDYyE0ckeceYnemjDxhTUOTuhi1kplGKavFFSSlQWREtMUYU3oLVYlxJxI/9HJcLoykLg9UNi7aVAiDPmKAkVq3WK25ur6kriTOFlc/EjZ4UE6v1BXVTo00hw673C459L989kW7oWKyWucOkSSju7zc4L0VLip4AjE5mFm1RMfQdq/VaVAWH/8Q68h9vZOcNYpU3oMfKNY+wOfkzKcjYsrzqbFM+l5tL53+dv+/0HA0pJ/sqD7pNOs4fnaeeNOPVdw2OTe8QUUmQx1GEO1BI1XbsBQ//9LLmh08bnqwKVHLs9nsW9Yrd/sDLb17ivBPNX8APA8d+5Od//zs8hs+//z2ePrmm2z7IhawST65XVGXJm1dfM4TE80+ecbmqsQT6456u66hsyeEsSColzqGrpkAjCz84cTXbjZ5ujGI4gsJqGYAdxpFtn1thWnTeS2vwQQxOxOxYguM5d6+0FmslgdWIq+3lcsGiLlm1FcumZllXLJpaKlklw58kKKzlw/s7jr1MxJOgLGQS+2JdQpIW1HGMLOqCRVXhxp7KWMplyVhZHnYHum5Aa0OhNMaKHv4QPIMXLuhIwh17+nHkuq0JrudqsWQYPbuu5zj2tGVDjJ4m02360XO/O1D1I1cXa9qloTsexT1Xi1X7ZALlgwxPF1qxWhSUBYzuKBq3bcOx66hUEuqT95SlZbmoGEbHcYz87sORw+D55PaCZ0+vGd0Vm/s3XDQ1IXi+evvAr74e+Jc/+wHfe3bDL798g+s6lsrw40+f8Lu3H0g+kYLY2b/uRlaLimVhwWqslYjovVi4O+doasNhu8NXFYu25e5uT1mXuK5nWctAzsIlXn04kPxAshZdVOj8XY/jSGkNIU4W4ZwV7WrmeYqUaObjKlmbKekzRPlx0voRmJ3vy4pRSREfPeOEwsvcjRz3lMx/+/ing56/y6P0PJ84pwX+qKHwOHKof4p68yiofXT8R6ekzn5Oj56v5w7CBEqcYuQfEwp/fosBqqoAJVSAw26L1omqsCzaBpVqaX8XFtMUNNU1N7dXuXNo6A576qZkuVzS1g1XVxfE5NEGmrbi9vaWHxY/pOt6drsdX3/zFb/85d/MnR3vvXQCJwWxw5amWbBataAgusjyYgkxMg4jG6NYVCWjF0lBpRMpjNSVza6OksC3rQzyLZZL3r17l/nThrZdYQjUlYUkxyR5Xr38iuVyyc31NZ+8eMHbt2/RwVMqCCQ+efKCfhjohoG6brKOdGISelhWxeweu987jE60VUksDH4c57a8jpG2EDlZZQ2F1Siq+ZK01lAWlrHvKaqKSGQMHqsNTVXJ0P444lPMKO4RSNzcXjN2vQAkOVE+Hg9igFM0YtS3XGJyYaM1/PKXv+RHP/ohT58+4Xg85iIXvBt5/fobPiu+wOcBW+89ZVMQo6iTTEk0yP6kDRn19jPyrvIwfvwoiT49rsScJyft0/zB9ByQmQWt1Sw56Zybk3gQSUk5Bz3TbYDczZwUZ9KjQuJ8oPY8wRcUOc4xbQLLbNZIPxz2lNbmotVzOBxmhaNJQx0d5nQopMjhcODzL37Abrfj1au3MtxdVeJ+HCMPDw88f/EJwyj89evbWz58+IA2IiQR+x6MFdW7EHnz5g1tLVLcKWvsx+BkrSpFXRWkGKSzZQ3H44HoPX4cpItLlv0kopLMyt19eIfC54JdEWNgWS9Q0bN/uOf+/gFIksNEkW2upgQ4gc9dl2n4NJFIeSjbGEVTlZMvFIVOLNqaMA5ynzGAnqVbQaSiy8KyvLwSSdu65vb2lheffiLOv0kce/v+iDWGqpT5F5SiKEpCiDxsHvjdv/9SOh9KUzYtn376KYvVkmbRsli2eD9y7Hr6QQqAxWLBbrvh7Zs3vH93z+gj/TBiioLbJ09Zr9c8ffacoigZc1HwH7v9ARz5bFPIhBilR6XwlAye9rNvb6KP5etOQ5azzByn18eUF9l0tX8rRZ+OFWeE8NFB5hMRpPHRQ0zdgZTReFlIPmTkWwnyjJIWTlsUvLiueX69wI39PMCwXt6yP/YUKbFYNaSUOO4OeAV/9Te/YD8GvvjiOU+fXDH2R6qy4OFwZLlaUtlChoO2RxbrS5ZVSZECwTnGQaq9ze4ofEgFKJGDulyvKJSjP45YpVDGEH2kH7wMW+Tgo5Ri9I5974lRVG7KQlKI0UW6QWYBtJrHfSGl2cnVFoLcQBKH1RBJPhFGz6CgULCsShlGI9HWLaRI3wlKPg6OfnAch4EQI0Uh8msxiFutj5EQtBgpBc31xQqtxD1QkVgvaraHgd45MYVSCqsg6MiQxF1UFrNi8PBwdCxrIyZaKev/G0s3DrRVhUJRF8J3Ow6Oznn8hwf+1//VvyRFx5vXb/nm5TuhG42OGR3K1+hxGFnbBp0S5E1n2dbcb3bSotcy+IpzFIViVRV0Y+Du6Eh3O7S1vPj8e7x8u8H7jidXlpt1jVYLXLnmzjs+/ewF3ic22yMPb97z6dMnpPQebRTvtz2bw8jdtiMtakarcFZTqsi6Kfj0e5/z7v0d+8PAopXvZbvZ01YlgUHQnT6ANtTaUptI3x8pjc1UpprVssENBfthIKbJKl3N64i8aufB6BSwyoKainLZldLZGntU2p8t4JhOUWLC+lM6X8tn6HxMhPkQpwT7RJ2JZ+9yQtXmPD1lGdbZ5/wUTWbhKqUeKdNIx+GEzk/35gbF48/h7BdTZ7FqBjimU34EHZ7+eZ7kz5/XDIz8cdxubq44HnaEPCRvNKQQcWnkkEQyNqWIVqLTvVwuMEbRti3L9ZpPXjwnAU1Ts2haLq+vEHECh/Mjbz68paoamqbh6SdP+fGf/TjzcWXDfnh4YLcTo5hxHIleZIVBKA4uevqhkyHxuuCz608pjOVwkDmaoiy5vLrCZcWQ3W7Hh/t74Ql3PdvNBqUmcQSh3dzeXAGKtm5ZtkIpiSmy3WzYbLcc7t9zs2456MRu6/E+Mhy2lGVJu15gjcWXYlAUQpDW/LIlKVHMwQ8s2wqidGUHnYiFJJZThrjvOwIyi2NU5Nh3gEInkdxd1AVWgzWZh64idWWwukanyG6/J0aPHwJ99NxcfsbLuw/UVc1ieUFVFrR1Rdf13D+8Z9HWvHn1FTfXN1xcrLm6vKA7HPjqy9/SdXt++MMfcv3kmq+//pp373b86E//hOCz1J5WBGuhksQtpgRGM8/ZxPPO++PbTJPJCLjOOvTGGMqiJERxLp8oM3BC0XVWVpn48pNm/8R977puPpZSGq15xImXm3r8ryRxLaZTrJveN8YoROKJoZCScMJREo8LSeqL1YKv3Mg337zkJz/5U7abe46HQ/anqen6HrRGaTGimvTk3757S1kW9H1H33eMrsd7x1df/Q60om1qXr19Q0qJRbugqiv2+z37zYarq6u566wRR+MYAoVRuHGg748EH/DDyLOntwQ30B8d/dizWraoY8KNjuA9yUfKRqhpCtjv92KiaA1FVQn1RMksmwFu1hfE6IXuk7vYxDN54roSp91M27HWUhp9mqcIgaooZOhVgx976qpAZ8qZMZbdbsti2dI2LYt2yeeff07bLijLKrsNC2VHKz2bT1VVQ/Ce7XbPMAxURZlRfbi4uOAv//IvKcuSoizBWHGtNRplNF13RGtF2zQsFktRE/QJ58Ux94vPfwBaho2VUjgfaNqWEKKoy5nvAqC/ffv9OfJn/zptkSfo/LsQt8dP+SgRP98xz5EygHSm+Z6QDVZNSUU6e/eP0P9HTq/fHip7BC5quUfcS6eqOlfZKFRKlBou24KrRcUXT9ZUyhNGh7Ul7WJF1x8ZXM/66lIq9dFjbME3r9+xOfQslksuL5as2oqdHxjRdMPAuiw4DgMPu44Rw8qUrNuSMBxF01dbxhDBWhbWMjoxfzLGsGwsh+2e4AKoPEyTQGklg7mZ7+xCYAwRnyKV1VwsahJiVuR9IBFFYi1/HEZDYeQzVFqh8yKzSlEYCfBu6FBBQxT60d5o9HJBCqU8XxtUVeFC4PLyAn+/wQUPHlIMuCGbaGjN6H3WuzfoZNl3jrqUdtnCGJQaicECgRTVXNwVWlEaxZCtC0QTGHrnZbo9t/NIgvaF6OgGT5kkOFqtaKqCoRsYxpGX37zh2e0FF+sFd+/vcFHhTTxRIwCU4jg4qrKisQVKJaLSJG3oqxLnQr5s83UahbtqCssQA9vO8fXbDZ5vhHcYDO82Hc4Fnl2t0OMerJZB4HzVjs6zaBZcrRbYQoKVsYa3d0c2h5FVa0WKTwW0SmwPHbas2O4P1LXN8nmBwY/oCKvVimPX040DY+wlQEePdzWlrSBFiJHFomHXH/OylOI9pSAJrLbzmp4ccSdr8tkn4iNkfcpi1XcmplOB/9FdH63t8wnQdHrZd9+mJDs/7+NEnPx9nnjt6lFcke9QOLDnBcxHfrLnJ4pS54Sdqcr4+PVkw6rzeYEzNP6jOJkeAR///G+SM8sAW1NX1MUN3o9Ya2jrWlQevDgVLxbCIy9LoXoslgvKqhTHSGOICmxVUtUlkAhRBsl3ux0uBkY3zg6o1mauuYblss2oKSeTtnEkJjEC1FaMkyb98qauBa3ONIM2J3fCCT/y/JPnxBTpjkceHh5mk6jJIVlEEhRudOx29wQvw7wK6UQmP2BSSVta7Don+kFmBHTweD9SFiV1XRFTYnAjy7rEBYdOCrWoWa+W2XAKSi3I8TAOJBJlJcPwLoh792ClgCLlIUs3Ui2WFFnfXamANaBToCoMdrUgRk8/DHn4MGGt4mK1zJ+taG2jCvl3FHk+78ecPNZUdUFZao7HHW/fOF68eIaxClLAaEVdlXgvc1oaDSlkCoUASSlGjCmy6svJAXWmzaQTTx1OKLx8BzonR+6s6Jbbx2ZTU5dA1Ej8rHQzJfmzxjsnFZwZcY+nGbO5oAiT2dy31/C51Ob5sGyKIRcSgmZL8aZQKtL1R1RKDEOH8yM37TXHvhMjNZuos9rLZvPAYb/j2ZOnIpyQpGiomxKjFe1iQdNU3D/cE6bE18is2/WVOIsDDJ1jfzwQnHwXZSPDqBr5vMehI4VKjK1SorI2zxiCsjrLGMvMRAwyn1FZA9kzQGdzLJJHIfMQ2mpiNFn33RKtwQ2jyECnRFGUFLagQmisIWvuG6Moi4K2uRBamjUoLddmXZUioW0MZWm5vbmiLCqapmG1WnO5vpipc9YU8zG9F/nRYejz/ETOv5ZLrD75HujcsZnEPXonfhLamuzInHNKLR0BUeiRoXtjLIWt6AcnDtQxihxnDBRWnF7rsvzW9fOd8fX3ehYn5HzaZAR4ypXmOZT++JJ9fIz5nlM2/bgomDSgQaUzvYuJez8jf9NG/x2L5Oz+x2n9NKCbt/kEiji7iklCKEHUKkVbGtZNydWy5ulFxdOLBr//gEoaqywpwJu3b1A6UdYlQzdy7AcO/cDLN++pq4qnt1eiToIk53svRk4hBPbHnl0/UrcLFlVBYxX7LuYhJkXvA3XbYEGGlIymrkoKFRn7gZgTWRcTgw8UxlCXFo1m9BHnIz7IoFRTWFZNRTc4huhQWlEbi1LTYpKCpi6lDWwLTakTpVJCa8nDGERPihqVNFolUgxYozAkCqUoC3HQ6/c76qpk0YqyTZ+LB+89YUIiMhoRfGAAtoce5zXLtpKB2kJDbUlEnE+4IMMgRikqK3rG/ozf7iP04i1D9AGtBGGqy4J9NxKHRGmFE1dZS20DnY/84+++JviB9aJmsag4HAOpEFe5mMROKwI+Jo79SNmWNJXFFAZlLENf4m0khEkDWAKdUYrSIFbqIbLZ9/T9N9xcXWKN5rDr6AdHVRRU1QN1UxNtQUyK6MWoaxgdy7ZGm0RhJRDFpPmw6ehdBANRJVTv+ObNBy5WSxksdmEuUFMSitCirQkx0I2jaPhqUXsJfpQOQwqCgJRVNgbjhCCnSIy5jZxOSbBWJz+H3OCaE9t56crAzD8RVaaN9HydnpL40yqWY5yA61OsORXrZ7Egx49ZS56zzsJ3KMGcePVnAUOdR4+zQ6t/YnOeok0OZ3POMM8JnJ7zT34c82vOuw1/HDdJUkLmWlsWzRIfPIU1tE0NMRBCQVWVrJZLtBFH1qZtqFtRY5lt6VOirErKqsQY2YtiEtRZ6kUxPSpsQUyigd40DYuFOJpqNVFCjvTDACmxaFsZCB2dbKYKqrKibkZZ25wGKEPwDMNISgkXRg77PatlK9QPpUlEMQ9MiRgTx0PCDR3BjbOTdNlWjP2Aio5Cg60Kqrqh70aCD4L4hkBRlUKhU0CUWS3rBV0vdcmyqRgUOC2dzXFUgCfGJKhuIdJ3RVRUpaE0Ks8FiMlckYENlNAfSqvnfbGuakIQaunoHEpFUvSs1y1a5WQseNw4yKBrXUASCd8Uncw2tDU+OIZRJD3fvX1D29aUhZnpNWVhT0svhVzwmdmgcJZzPUPQH0lPzgPmpySeM2+UCZSZr8UzEGKiysymT0ZiWjibcbHZkTTOJlGPDamYzzGv23g61+k5c6GRn6OVygo0Kavl5YHZXCyIso0UO1Vd4saBURmcGwnBs16t2e0PRBuxVtbAdrPhsN8TY+D5s6ey5qKYSmlNHkw1qIAIORSWKktEagUX65XwzvuBsT/i+h6FzGhUhSEGT6E12ppZVSZmipCYovXZhVhlHfcSoxQuBFSKNHWJ0ZPakKjBgajYTaIQKYE1orQncqdS4MSYKIymqAopUJQiRBlInUykVqsVxipRmNMapRJlWYhruTHUVYktSzSasqxolwsqW8oAvVJz/JVcUIyoyPmaUYLUl1Upc5Vay+u0nge1p2KzKkp0dt3VRoCuKU9JSuaAtLWijFMWjE5AteA849gzDD1101AUoprz+9z+gEQ+nJq/6qOtbMrF57WS2wFJMwFxirMhygmFOkPg59uE+E3Hmtrd6dHDws/l/GXnG+np6I+R+6yIgCT8MvgizwhhMpyXJPbF9YqrZc2i0jy5KKlwvD/sWdRrhn7k/bsHvnnzmj/96Q8Zuo77hz0f7ja8eX/Pu7stT5/e8OnzK7RKHI8dg4s8bHYsl624tIZAU5dcXq+4aSuCGyApQop048hx8DxZ12y3G0IILBYFV+uSmDXpldK46OmGQDd46spSaHAh0Y9ejKNQNHXBbVuDSvQpSpunLrCFGCD4vOFYY2jLEpsiy7akLmQ6PIaE9zJAK20rw7KtuVgtucoymwWwbFrKqmZ3OHD34QP32102PdBU40g/eIbB836zwRRWhmfKgrGXjct7w2H0RBdZtCVVqWmqgkCkH06BjgRWa0odIEyBWtI/MYkUupRKkegCq2VLSIH9YSRFkdy0yrCu66wJ7Pn1b19ysap5/uyWMvQUJtGpyHEIDM4jEp6Grh8gBLRuuF5WVGXJYacpFg0+wDiIQQWTZKP3rKqaiJIOTDeyf/WOT29XkCK7AX7zvscpxXXd8+mLT6QaV4FlbXm/3XNzc0FlCkwp/NgXT6/513/zks3uiKot2grq//ZuSzeMNIWl60cMinJRU1UyyJSQYbW2CSQM66Ki9/C+85gkPgHSPtxgtcl7Yx6ATprogySl03pUohIgt/hIxerbcHli2mhPd6U5jqQ0P4NTOq/mf54A+fStTt4ZxnZWQKSMiKuPTkXN980R4oz78i3YYaohUswhRc2a+UxxRWVgYzrcDBJM2vvTBv7tn+c4Nc3xzJMCc/Djj+U2dkeiH7PTaeLqcp03W1mrwzBgjHCCH7YbfvzjH3N9LSZCdducEi0tsxwosm61JHalLXjx2edznHDDyDiO9IMDZH5JBvskkXDOU7UtVdugkI3ex8DVVUNVVtI1HMd8vIBzI/v9PqOyVlDyGEkEri8v+OKzT+n7I4dsSOWcUHDcOPLk5pLPP3lGfxTb+hgDIQZ6IyDNxL9eXV/QWkvfT0ohYs8egtAT21LTFhqqGh8Mx+ORQgWaVU0IhSjHEFguL/Ahst/tIYCOgcZa2uWK3e7A/eYBFDIorCLLRY21hhAC1pT0w4BCPC6e3KyxOrLb7en6nuP+gSe3t8JdjwlFwevXb1guWq4uL2iamt32HmvBmsjV5YrXr19xc3VBSpH/4b//K372s58QLy/Y7LZ8+dVv+fM//wuE5CTcd2M12qjMd5aO4CkucNoLYE6qBcHPg6zIOpyeY4ydk/oQQp47EIOs6ZoKQcz1tLUsmobj8ZjdQlM2/BPgK2Vk/kQvlHOKZ8m4FGH5eeeL4DxxVYqgJuAnzcn95Mo7KsXxeMAYxe3VFSrJEHhwDp3g+fPn/Ooff4OxlrY13N/fsd3uGAbH1dUFn372nF/+/a8YhhFIbDcP3Fxdc9zv2R/2hHHk2SfPc5cqUmiNVVBqzRg8m7s71us1RmmqsqCyhqgCSVl0XVFVFcvlkv5wpB86+v44f2ZFWWJbTVUa9pstIC6obdvOhmoheMZRhqOnz/QkDyzFmdai/V6VBTEEqqKkWTZYayiKgna5oD/2LJcLrBUFvqI0OU8RUEA6NxFrDVUlrARrMnUmQQpBiJk+EpKTGR1jZt+W9WqVfRMkkQdyZ0iomjIjprLaEazX60yF80Q/dXSq2dRK5EYDse9xw0hnOoZRjL6GYeRw7Hj//o5msaBtWxaL1e8VX/8Aas3ZBjTfZnz+LLM/3xHj6YtRQPZdFa5b4nzsazrSnOmfw2Nz9n8yppEFfK76wLTb57Ul73k2HotSUjmJxa/CKEN0UUx/prYZic+f3fC9Z5csSk1B5IdPLukfXhK9oR8j2nhUZfniT35EXa/4x9/8A3fbI2/v9nz1zTswmqfXa+pKs90euLvf0w2Ri6sritLwm9++ROmC64sllwt4frPk/WuHqQq6feDh6MQaWCu22yPLZcnVumRZJo5doCkrujxgabRivWwoCwlw99s9fQC0pq4sV4s6c9ITQ5CNJ0WFG8TAQ2kkWdeaRiueXTaUKolyS9KUtuRivWS1XLBeLlEpoJJUx3VpqDKCsdvvMV0vko9GBlv3mc9nrKWpCgqdCGlJ70ZUEjmuRVuTEvTdgbqQYBxj5NiN1FXN1eWKD3cPUmgpjfOCmukktJ+kJRj6kBgGT9DM/H4fI36z52a1oEgiKasQpGOxqrhaXjF4z7Z3dKPnqzcbfvT5C7YfPmB1oioE3RpGh4teBnaT58ODSHtdLGu+9+ln/OarV6gsHWqs4XjYU+mEri1aRUpTsGpXLJuRb+4PvN+NlDpRF5YqBe66yN3dPV4Zfvwn3+eTTz7h4tUbjr/4Ffcf3mPLKicyiZXx/Bc/ec6//puv6EcJFm2psGXBrnc4H4ECrURLOqUaEnz11TdUVSU9tYS0PbViETQhOoLrKTIar3RGDXQ2BkOUgEIMU88MlMqOwSc8XJ0W4VngyNSV8/x+Ws9zzMib4dT1O4vnp2gg6Lp+NFAfppV9dl9GyT6KISll98a53j8lBqf7pj/Co9/lMQo/JRPyC03I+YwfzD/I+U7FxWOi30mh51S8qPmc5Pz/eFxdAWpruX3xgiJvlFcXK+7v7ykKy83tNU3TZJ6pbMAXV1e8efuKh1cbEkINCymxWCy4WK8pioLL61sgzUOG2rn5UxuLkauinDdQa+08zO99wDmf2+VCWyuKinXTSBLlPWEINFWV0Vp5j7Zt5eA5+fJ+ZBwEIY0xYI3h8mKdn5IIo5sdT1MI7HJXMyYNGJrCiMxgRvSCH6jrlqYuclIog6TeiSzhxeoaCBmMSBQkbAwUylI3FYu2FspEFCObpi4Y+p5VW1NWFVVVUmvNuq2EOtQ0vPzma+I4EJOlaWrW2ZxpGAb6oaOoK9qmpCzWxLikaVoKC8aIDHL0kUVTopKn7/aslg1Pb67Y7fZstxs++eQZ3//eZxijORwOfP1S8f/4v//f+J/+y3/Ji+fP+Ntf/AI3DhRl9tXwnroUBZBJ/nHMg6fy/ek5if4YGY8kyAXfuRPrRJWZJBTL8nRd9H1PSom6rlFGKHWbzWZ+fkpJCqaioC4rjNb0eQBRdNgFMwhB9uMZ6VeZRpEySS5N8zKZh5+yA29O7FIS5Z6uO7I/7MQbJolKjlLw7v0bntw8xXvHOPbsDzvatmUcB16//ob9bkd3PIieOfDm9TdoPHWpKYwixgKSx+pEXVkuVkuaQiQOgxcFqbHrGPL19uz2mqdPnqIQDfndbofRmov1iqqsQGlcd6BtauqqYKhkVmK1XmMLi0bhw4i9WOV9xEqy2g+UZcmibbi6vKCqykd6/d57opfOh3xf1Zl6kJk9BsSRHj777NMMDohqzmK5xOTvX6mU8wnxaTjNDwr9WPY2Ma5UWlMbS0RR2oKJujNdAzGISdv0/tMtZjlbYy1KK7rDkXaxkNwjSCe77/u5uE8pUVWiXGW0SNPWdU1RlKDEO+DPfvoz6bYkWP6nTuSn27c3IDhteHOc+whZV+c7/Xw77e3q7D41b9yPn5vRtHkw9qPUIT1uyJ+f8clESpJOrR9v/7OMU0qsmpLr9Qo3BopS8+l1Q6VG3u56YjSEpDFFxWq54tkXX/Cv/9v/ht3dgXebHQ+7I2Upi+T6+pLVsmHsI6WVhPmL50/4H//2H0gY0UEFrpZLwgiry0uOdzt2+w1d3/PZJ7fc328x9QJjJdl2vbR4lRI1GqWFDlOWBYUt+YffvcFFSTzWTc3TiyXvP7zHKUtMEtCcDyilCW7AWnFFbQrLuq24vWzY7w8MXjYlay1lUbBqG57fXvHk9pZSa0G7vSMEsWe22rAbj1mLVgyTvB85dD0xRIq8acj7SqAGckvRU5Ul68WV6L3qKYEz9N2AVppF3aDRDKOnsgVVUfKw784SQqFFlROnO6YsWWiJiFHSuq4ZomcMwn07brcsb69ZNEUOoIFj7/nVr3/DatGSNGgDFZrC1uwPPd5HikJnu/ICaIgEPn3+gg/393TjMHMpk9EQEsuLJboo8CHw2WrJi6e3vLvb8HDoOQyewT2w2294sqp582HLtv8VFxdrnt9c8Z//+Y959+EtX77fsh8jPmj2xx1VafjPvn/Fyw8Hdr2oWigl0qHHrscChdIURrPbd7TZ/bYbxHbbFpa7uwdiUph2gSKg/EhwA6Zoxd04gVEyk4BSpLKkGwaIUWy8jc1D5B/3vE7ttHTeWZuWYn7JlABPqjXh/AjfxSmZB1FP7ylAQG5dzit5eqPzgHM6x5SYh7g/DkopTZHmlIw/OoVzwCh9R0Aj/16PypuTbOd33c4nfvJ43Hee2z/32yfPn0lbX8l3VZUVVxeXlFXBer2mrmu0FvpM3TSEGFitLlhdXGIKK/E/q4okpdG2RJtCukJKYltRlAISxYjR+RpNJ8qbMQrvhce7aFrG0ROiJ0WwphD37CQAjzKKYRjFLyIrf8QQQJ++Ta2y43I2/lHpxKOekv22bQhupO8dTVOiVSJkLnSKQn2MQYQHqqpC5yHzmJPDVItIQYyJ6CWh16XFas2irVEokQZOYmHfNiXGNoDCjZ7j4UBZ1rNSh2q0mN5EMT9cNhUuSGu/O+yIzp9RkmDdtnSZqjSOY5a8reZuStE2aJ3Ybbd0hz3p+pq2rQhhzFrdISPiUFYFL148h6R4//4toxu4vFzTD51IIdribI2dFeYxirhBTubnWSQFsl7MzHGXLydhkGRSaYUqtHRBgp/j87kohAs+o7JeaFRJ9ttJErOqaspCFFxG70Sq159LT8p3FUOYr7VJQSchnUvNiY4ck7iDT+c0FQEpRoZxYL/bc311RWENVVVQWMs3r17yydPnFFYTghOqzSAFhSjhKdq6ZvQeW1ie3F4zOlGQCSFw6CKFVSzKhmowbO/uSTEwdo5E4vpyhUlwd3dHSpFPnz2lHwb6rid4j9WKtm0oC4vNg6NBJ6ZZh+WiJTOa5vNxXroZE5hR1zVt22bev1BjQoxooyl0IRSWQqhvRksnICYR3zBGAEGjdR5KleH4RJK0UCu0yjSVEFFK9P6Nku9GKShsQULNcSjESFkUoBSTKajLyXpCZFeDn75ThO6dFH70KK0xebZEKyNypEHOZRgHlDJCHFfSiNHaUBRCdZ0KgRADuJF+GBgzGn93f8+zp5+gjRFTsuo/sfzkYyT+fKM530CZVlLugs8Cc/mRqS2v5k31nP/2eJOWpD2ms/eeWlkqH2PioE3JfybpnhxL5XlSx5ODXjYOeMRfi6QUKbThydUa3JEic7yrCl5985rRRUKA43FPFT0BxV//1V9zf7fh8vKCV5sNPoxcX17wyfNb6sqwvd+weXhAKfjsxVP2uwfuHg6sL69YNSXrRvS/j/2Buqro+pGkDYtFS6kiJM/lsuaiUjRW0L2isCTl8FGkJgsrdsJv7rb0XrhwF23NorJ03ZGEDJiMQ4fRmkUtLdFgDGMILBvDqiqojWK/2zO6QFOWedjCYK1GJY/ve/AjSYuLrFKRm6sb+s7x4e6OzW7D4DK3ux+IPrBaNHMFHIK0o9ranigGRqN1rni9QxmpomNKWWrMMowBlKjuGK3ZHnpImqbSDC6gJlqHAhcDxMxjZeI4AtYwBDenSiFEqrLk/v6BuioILggtSQdCVIxOqEopyHOVMbRNJe3AEIiJPImfePhwj0rSuVFW4yKQjTeassxc1YJFs+Rhs+F7n31ClRyFTtwfE8MYGZ3ibjMyBEXVRx72jof7Iz94saJuLU+uFpS7ke3BsekC3SCDwVdLWS+HXoJhVVQcu0jvHGZQaCM0sZRGitJiSEQdMVqoVP0Q8McjWIeJCWVLGWiNUT7H3DkT/qJo9CotyIMsuCjVTi6mpqhwwpLPYsa3clI1x4cpNqSz+CHFyRQLztRkJmqKOqlZJCa9+GmVn+vJnxKC+dkT9J4UUjlOz3icuH9HOXF27v/046f3T/PvMSX/8yzB2RsofQaITMWpOnvCH8GtriuhSiDolzWGar2mqkuWi4WY7mixgDdFQYiBdrGgqEQNYszAxVT4KG3kqtAmm9bJMBohkoJQGHTeccRAKA8lovP1bEhRof10LYN3WZJQ3kFMjJxooE/mP5PpuMyMiqEP2dSHJAjdDCnFOF9zMQSM1TLnElVO+MW3IWQ0sq5KopNEUlZVQlUFKRWkPHiXkry31RpbFtKdVBOwhYA6WQGjtIUoBBmRJI4xYnRBoRWjHxmdo60rfLT44HGjE+pgpiAVytLUJQpJzAZrKMuSpq7mc1+0DWVpIHi2wRPcSFkULNpGEufg8V7NSdh6vcI5QZ6VUTx7/nxWklFZGSaeccpjPHXdH3HNp9jOedIfRZ1qTi6YwcQTFefEs58HXmOWMsxrz2g7y0kqBaYQVRjnPSHrop+7s6Y40T7T/P85/Udn2g+5xBcOdjgb4A1zASgeCeIKOnksaK3ou070/JH7xn7ADb18ZtqgVaKwGq0LyroS08aqkO4T4oVT2Gy7GT2KgHfD3PVoygI/jKgUMVqzbFsO+x3BjSilqOuG5aKlmBFxTVlUuDyPVZSFaPGfyWqeuigSB40xlKVIoIYoxcs0w2K0keve2gwiGqqqJPiItSdlGumUlPOcxHl0jykSnc9UtYSNhrHrKLJplVIa5TVah7Oujsm/jxwj5O94Wr/T8PtMLomJ4APa5D0od15FTymijM5MCVA6OzoroXcZM+0Bp9zVB49zo3Ri9nu2mw2r5Zq2XZBsFKru73H7/RH5uc89b6nnD+Y/JyHD6bnTX/kDl4m5s2357LhnxzpH1tX5/SkJMjcNlgCzKQ0nAG0eJlPM55OUDGQYreZFpdCIc1airgpeXN9wWWsMPRdNy7ouKFJiM4wiaViWuGFgHB0x7fny65c8ub1iu98z5qGdm6s1nz5/wnjccf+wJYTIcrVkfbHkH37zO5pFS23hellztW5IyucTl1aMMZbWKAg9ZWkplWZRWQyB0XkUhtFJ1WiNoLCjD2wPPVrD1aqltoYYAoMbxQxkdFhjyTMiggaoxPWyYlUbdETczJJMn5dWnM6K0spgWl1RGs1w7FClGDIU1mK0JcWRw/5A34/EJMiSHx1GCe901nvNigdVnhD33uOcICCBRPB50Dd/dyHkgSbZgua2uNWGbnDolKiMwqAZibNygMvJZ0IW3TS46WOazaWsVuIGqaDrRhIyQKtNyTB6nHOiZIQEEJ8VG4wVo5WUUradFjy4tIbKFhilSBG8FpfXmGcSiIGhPxKj43jYklKgrS22vkAXFX4YCcPIcezpfeTYew6HgaQGri8W+CSBrSk9Y7Dc7zqIUbo/TYVJjmM/kkozT7+7kBiDDLwd+4EaxCgnJsiqPlqpjFIlYtIkXdAUBUZbAoEYHDEojJFWv1ZagpPSJ0nXTCU5JdVqXoDnaPyj5Po8JuR8+rtA+PMYk5J6dLyp1j8l7N+RWp/9qGYVmVOBPyfOc5yazurxxq7U1DlIJMHWZvr9fErq0ZtlX4sTWDDHyI9OUWQsT5/J45LmjyeR327uhZ5Q1ywWC5RSrNZLFouWuq5xwVHW9Zysl2WJLUUJ4jRwKBKMxhrIiBqIBK/WRjZY8lyHE33t4ATpLErhnldlJaYuTvwiqnYBStrf0wzOtP/40eW2v1BkqtKeBhmJdF0nxeyEvqZEP4hzZJHP+3g84MYBN44YozKl45TsF6V0Dab3ij5mJ20ZBrVWz8euqpKYBHGcENhj3lPRmqgQN++MPAcXhIMcJLm0RjjelTUUpqLMamRlVWWVD6HzTDzmGGUwt2gbLlZLkTqOorwz0SGqquD2+pK2rri7azjuD1xcXLBer4DEMAw4N9IuWrQWKc2maYSKaKUb44PodZdFKRb13oGIDkuXJNNpTpx3k2NBXqN5Jgk448LHWYUu5gRZa4MxnA0tSx9w0hYvyxJj7Ey5mRL9EAL7/Z5J6U1rIwIQMUpnI0zmUhqlzx1j5TZLXk6FR4xzQi9FgCS11pzFuBjwKeakMrFarbi/vyOEwMVqxWG/ZRzGjPrL9Ri8UEtW6xX77T11ZemiZ4yeurRUheHd2/dsNluauqLbb1kul1SFwQ8924cNy7YWU6+xhxS5WInhU9028h2VpSS4o2O5XM7zHdZalstlNvkSr4a2bnBeuuzG5JkTkhQ2RlSFZKhZZ3lPm4smCCnhUhAvGyv7mnMOk9V8ztWLhCIjLIWJTgXiF/D11y958UJ04YF5sHmiQHVdR1VVFEWJtTKsPY4d2kh+M44iUDKZinofHnH5nXNgtChqFUZ491G6bqg0z2codVJZOvc6AKFoXVxcsFiuuLq6Yblcz7Stcfz/m7Pr/DsI2V89VleY98iU5iR7emTauKfbtLnOd+W9+BF/lameO9/UzpIFeLRo5vdSgsno+b2l+poMjmISVMYHR1EYrlZLvnh+Szp8oC4068pQk0iD6JiLfFJJijA60UjXOrBaLfnVb3/LODpWiwVPbi65vljym7fvOBw62sWC1WpJPzi+fvPA937wPco4sm4tF8uK3RgossMpBAoDRhmCj5TWYJSeA3CMER+E41lXwqny3tN1I95HFrUkds55Bu8JudpNKcrADlm+S2nqWvN0XWFQdJ3DhURRGOpCjKCqUlRw2qbiar1kUdXSKo1iWV3ZgugD3o/i3ib9DpGUDPK+GojeE/L3I26AShxdraYHhjgwzT7MAS6qbCku1b4i5kEmnYeapB1eao2ZEY7MhzurkFNOkryPKCsuuIWRluqhG0BZfB7itNbIxkZiGAMhJHGi0wqDJxEwiNxUyG32ru8plKXQImtZWSPfmfOMHlzvckvc4b1D49hv7zFGHHYv24bLm6csSsVvf/cN/YdRpOK859A5XHSYag1JEfyQN1Zxx/MBlFe0ZUllK0gHdkOP1TLt76NicKIJ7UKA0Wd0QIaajFZYLUY9MQYZth6OJL+gqC3OB2kve0FBQoxMjnuZm/KoeFbqVMif39T8x+nReT3Plfe3osscY6ajTEj2qaX++Lmnf5+OKWn3dzwNODnKpm+d9wToTb8X/8TvdfZu8+NnPQJgQpDPip0ZaT8DRB4BEGefif74Xf/53p7eXNOPA0VpWSwaka+Li3ljM9pCkha0zTx6Ncv8yWdibZlb2dJFMdpAEhAiEXO3LUGMWKUZ3MAkeRl9oLQFZCnGlBKuHxkZxEFx5mHrOZEzSuPz2vXeo2MgpqyikR0zRcb1pE1u8nesEgx9z0SVKozF+/GU8CHnFHyg0JaqERR9jJ7JxCgFpBsx9CdJxKQyAAW73YGqEmpM8AGM0HMsVmJgQY5ZUrCmEFA2+x8gyXO7qFFW1MF88KRMh0gJQhR1oHEcMdaIQEKS5Hy1aCjLgrdv34AX4Obm6pLVoiWEQFlIB/VwONAu25wkG25vb2nblvuHTU7yHd0wZv3sBdc3t5mLXEBGeKWIz2WzmjjyUnQJkKrOuoCZ3qSZE8TCFFhrZf5hHOckaUrUy6Imhkjne1CKuq4p62pGbVOI8rlmNZRxHOjHcZ6vSKjM8Y7z8j2Xo4yZOjMp4pAE5BlHGUS1ZcG7d++4ulxTlqLadF4see9p6waT0x41UXViwA0yl9bWFauba5q2xRaF+CUcj1ilWdQVKgV2D/ekMLJoSlarC45dTwqBMAzUtQhYrFaL2eyoeHJLU8kgNLkDoUkooynaWgaSkQ7KGDzdfveo2JIPIn/O2oIODINDKfkstLTR6EaZM1mtLvBRaJ1aQXKKoCJjkDygrmu6oc/UVoPyItRxOBzRSlFkbx6bFWu8d3mgWXjyQy/fvYtpnv+S4l2G2YWukyhikRNvlZPwqdgw4sWjIEWP81GMrUJ+vdUsVysZdCaRVMyJv87/y3Xi06lYn65DbQyVKbi8KjG6wDmHDwFtT3z8/9DtD3Z2PbW2Tvd9l1Ramp6rpk1QAtxcmM4ZAI822X9KyjJNh1DqtFhyujZXuvnPE4//nLvLaVo8V+fTC9eLBS9ur1kVkaOKvLi6oIyOftsxpIAPke1uj+09wUdGP6BN4i9++hN+8Q+/4/Xrdyzalic3V7x4coONkTdv34O2XN1cY2zBz3/+G/ohcblsWZiautDE4IR7Z6VSVngqE2c6CP3AcimW2SkqlCrY73fiuloVDM4zOM+hd1S24HrdEvwgA49KU5cV/TCyarPea0xYpSmrkh88X4Af+HA/ojEs24JEoC4E8aoLS1sVrNuam/WS9XJNf+yxVqSlrFGCCheG68slx0PHsevYD/Gs/avwCXyQQcnkIXhBycqqoLAKRcHoAmWl8VkPevSelDTOBZx3WG0kIBAoCstq1TJ0vfDXVKIwhpgUhEiRh3czuEZS0PsAeuKnWZZlDWgeDh2lNbKhjo6igiermrvdiLJlDs6Bpq7RJBlirQqIBufkdzp0jhTFsvrmYsF60bI9HDmMid+8esem71k2NRdtzW7ToSsrXRLvCX1HHQf+V//lv+D1m2+4WNR0g+PQO3ZD1meuWrresznsOe57tDEUGnTVcjgMNBqur9Z8+uI5//bf/5Lj6ETSKiVCP1AWBaW1uDESvBhxLU0r7nK7AzqeaHAqecLYUTQNJkVCTITkGCIELdrY8ry8bBWIossZdpwT5FxhSyA8o8OdFmrivDhXeW1PNuxSeJ9Q8VOsOe/SnaXY851pvlelabz+bJD08ZPlfaYK4fz+dDrdqX93Fnjm3+H8TOYXzueR8u8zof0fSQUo9dEx4tkZKki/XxD/53ArMhd1SobW67UkHVYMxZTRlFOylLmn6FPVNuVIKaVsQgeqmDjKSaT2kJhEQpDR4LMEX26jQwaY5Lp1o6iXTHzYpLUY1fnAmGd/Unb9tlrNNu8kcVI+HnYzMjsNwnkv/NloEy546Urm3so4+owGC2JrjSXGfLUnhJOfdbu1luTBOxnoNtrinc/cbkn6fXTZaTlzboN0baf9jwQqm9uQEeiyKPHRC5KspHPgYyCSMEqDyast04/qssIam3Po0xqR5ChycXFBYYS6YK2dB/qsMWdJrZxzVVW0C8NiuaRZLEkoyrICXQAKHzz3d3eUdUVVtxRlnRMxO6OgKUmnRaccH8imhrnCP5kvSQEwIe4fy09Of08Ds0opjBbkd3p8Qn41atZ1l4HWyfE1zYl6jPGRqNZpiDWdzi+duPNCtxCQLaZAPw4ihQqUVYWPouQE0DQNwUny21QljVJsHh6EahWECoMxXFysqWpROjru93JdRaF/qSSAUllYdG2oq4I6u91OBY/KLsryWYg8pZ50342Z0fcYY/YrcFLcwdwtE366xLqpKxJjQPmQZ8wKlDagNDEqXO/keQm22z3H/ohCSQe6EbW9wlpsIeASeYZBKS3FsXPz4OjQO5GbROG9Y7t9yG64eY6M9EiNqrCWpm7ke8kD64Loy3c7dahE3lPPKochyHczDAMKJbx+YzIw6PPeKJ9BTAqU5B2QP+N00qGfOgPGFiglhYT3ngQ52f9PrCN/uj3efM556nOyH+V5M+50Dl/NSFhO7JlfNifiZ3fNbzmxUifESxaGykf6SOYpHyZNz0MoGUKzkM1SKyvDk1XBqimoGHn48MDtYsGLi5J+uxc1AWXZ7Ds22wNtA0VpuLhcsLxo2W4O/ObLV5ii5Kc//Qk/+9M/4bJp+c2vfw1K8YMffoEpS3738g2/+N3v+Bc/+RkmBpr1gkO3Z7PfsV5d4kvD4AKlgaaUDe9uOHJzuaRQmt1hwIVIRGMKS1OV9M4JNcVHSlvQtA3Je7yTdmhSwvUOKVFohYpQVoaLZcPTmwt8f+CbdwfqupLkSCfaquFitaJdNLP7YmEsJikqpamWLYU1md8WsCbRlCWbFClLgzXCofMf7qV1arRYsKsKEJ5oSOCdY+h6YsotpoxQqZgwIFrGWsxU+j4x4qenEWLCB481mgCzEVGZ0XA9OAptcSkx+EjnBanrRxn2iZ1I0l2uLwkBDm6k0BqjoO9GblYV1VXNZtDsvOgnB+9YtS1JGUIAq6GtLNZWuACb7oC/23LshQrz2aef8MXlLVe3N/zmq5cc9kd6lfj0xXO++uYVRb3Ah8Sx7wlfveEX/1/L//n/9F/xf/lv/x0f3m5pCkdhe37z5p79v/kf+eL5M+qmplhqNh/ek1KgCB0ouNs+8O7+AxfLFVerlrjr6AdB761RqBS4XQl6glaMLrDdHiWIGE1weXHGiOt7vDlSrS6yjXbCuZHRO+rFUjahIMFOmanXxZwknfZKxaMFqaYR9inhPzmxfrxulVYzJJ6YEnc1H+f8NWdYwvyPc6rKeRCZ7jt/6FE6n9J8Hc5g+Nn7qY9f9TEAkc51adL8uczdQjUlbPJZTAWJUvkaniqj+bz/uFRrbOapGit/T1J0Km+OaU7GgJzYqkd0qfzvTEcgQVBxLtjU5AosWToqCVAiIIjIvql0OnaKJ/5pSgmXr2tm+UBJiFOKQKbPZHWR6X43jlDIsPzoRlAwunE26HPO09T13G1MSU++azI7U2ZENw9WulHiuSIPdUYxMzLzLFHIn4PQ/pROhCjlX4wSG41VM8d8pjWmCTdT83WqM89S0P8oHdWZcpr/0yducswo/ulnUXZaLVcE72c1mKlQs1rQTuecOHtbMdwpqoKyrikrAVOMsVRG5+HbdJLni2drR76l/N1JITUXK3mWfAbs8+8409kyDUrpyfWcuesycayn99XZRXZG4vP/EdE2j14KvmkGYRqcnY51kuNlvkYy83Cm/EwShNbqufggyOOjEzRZBkSZVXDqumYcBuGll+J6+uH93ZzEF2UJCqGIGJERNVp8XWKIBCUa8tLhKWbzotJWAmjm69NYO/8+GjJi/bjwSWkqGJ1cKVoTE4y5yAxx+p7EUdmHMBcwx64XGVirQMv8mcvrBZUIYWC3287xQhTwFKMRg0NtFJUt5wKpMJYUo3R/jEFlw6VgNOMwsNlsubm+ypKjCU3CGUvfd/KdF4WYXWY9+GloXQqt6drLbAiEthejDKd75+Yigvlai/hR6MwSshQJI7RuNQFhKjNRputDzYPo02c8FXlSPBS/X3z9vZ4Fc6o8bS+TjvtH++j5P+Z/pVw9z8icnpQmzp4zvejcCIp0friMUuVUIMWzxIHMX+Us6X9cDOg8SAnkAdGIYqQwJbUNrEpP02hWheOw+SAT+FGa89vdjrIssIVitWpp2hbvFH/363/Ex4E/+eEPeP7kCX4Y+dWr13z96jVPn9+yXLX83a9f8o9fv+Hpp0+JaU+9XLFsS0yq6LWmXq9F/tIL8hLyQlEJnlxd8NXXr6jbBSYkDoeexaImoDluj5CgqUpKm3C+AyUW4UpPXHFptRpE5vH6sqGtNN1hz7s3D1ysLwApZhZ1zaptqMuC9bKeW6FGWypTUFvDYtkyjiM+KuqyJJH48P6OpqzYHIesIxu4XLbUjQSfoijFjTGK1fUQvAx8BQmEIRtD9GMgKSW0HiOSUFVp6YuebvD4kPAx0XVHyrLEGyNosxHHQ+ccZWlZNkKXCRFqq0h9wkcl5lEBotYEFG83Gy4XLUYpjqPDh0hdlKLdflnw4xfPebcpefn+gX03cLfb0VQNQ/C4GIWfHxNXqzWmbeh3Ox72PaNz7IaRp9cHPnvxHPv5M968v+P+Yce+G3j+9Jb7zRHvRIFoNw78N/+fn3MYPX/50x/x6+prXr95x4tPLvje58/5q7/9il+9fMN6vWBZVzht6AePGhx1VeRCC3bbHV5BbSsq0zB6T+8cmyHS1olGSwu3WSxompr95p5gFM5Jd2pSgxiOB7r9AVu1xCTt9ogSOk5R0g9OAlCMYgd8tlS/64dIQp8g+kePq9OCzXdlrwk1FegpI+oTVYWzrPoUfdTjP85Q8dP5zI28+aFzp9Zz1ZvJ8fHElyelnGMrpqTu9NpTFDuPYbL9n8ljJkDF+edzys05oqHy6Uui8gjO+Gd9K7P2tM2OhcZoghdzutKU+CiOqSaamRevtXmMpKq8l2SH3DAEJi1nmzu/c+KOIoYxJ/4RNw6COHNK3Mahn5PGEOKsRS4KKrJfOOcErUuJlBVGJrWRSeM8RM/opbV+HHqGfpCkzBbCB0YRvccWNW4cCD5l+mHA2gIfHN4nnIukCFVVYE1FPwwMg6OqyyzbWQqYERJBBVRO2pyXOBoTLIoa58WtdtJ6j3lWyBTSZSyzTK4yGh+dUEbnzzgSg1yJGjWj2UJfjHOyPskFLtolx+NhRhgniUehPclRR+/IkL4UHD6eKY8kGZTMvOWyrDCFpaiq/BxRcppoulLnTZ3401TezLk7LUL5Pw+3GmPBaFKUa8q59OhaGIYBY2WPl2uPx/SYmYkg9AhNnBH7aXh2AhrnZCwbJ6UQs9HzhPJGoYDl41lrWSwWuGFAF5a2aWZIQGtN0zSMrpfyLSeewzDIwHglLqVlXWGUxo0jPjjquqSMVhDxkAhJDBWrupFrzvuZqibndEJbpfSR/WlSXQljzMOp0mF3LqCNZXSiPNMPI2VV4XzI5ogeY/TcVUgx8frVW65vbqjqBm0t3bHHZ/3+aZXfb4SeY60lJFgsWmKUgXOl4PriEu/HeQh12S6FBmstdVmx2WxQKTGOPZvNhpury6wVL52Bow95jiURy5LkHFVTU5YVRVVLHpbGeRZCqUw/DYGII0UPSWcJbkPbNEIBQ77Xoe9mKUkpDuTyjFP3NX/esqcoUo5JIUqXoSxLyqo6K0x+vz3g90fk5832lHo/bgMzU2nk1OLcFp+DsTq/WKa79Lw4v/VmuWWfCzZOm3dWIThD2R7jV6ehkZjEqdWok+mC1oZxHNFKUReGRWVZVIaSADj2+yMxo9vOC52jNJqYxK7aeeFR90PP5cWa50+fUOW2YlCKetHw9Nklr98/8O5uQ4yJZ08vqQk8u71l3B/oXYCipFwtePPlNxATTV0SYsI5z+Wipe+OrFYrMBrX9aQUqIuKu92BGJNU3CkSogwlosBrCKOXlpAWPfWrVcHN5QXROw7bPd2x4+bqkhgCdWG5WC64WC1ZVKVwvfMEulXC+162jSRkRLFgVpqQEl3fCe9cKSprCYW0tYrCUtUVVXY6FOvyhlXT4IIjZhdRkcP0uBDZ0dGHrAfvpfXbVJYn1yuOneNwHDkODqNrYgKXtWaN1dnRVtDzuqrELhpwIaJ0YNN7fJL2WCKJ4o9WlNkNN6ZEl8ThNATFfhe4WowsCrhoCo6DyJCFILJlJicUo/cEN/BsuWAXS8ZBrkk3BHaHA5vNhqap+OyTWy5WDS9f3dN7KbYMMHpxV6yXC37+61fc7UbqRcPl9Q1v397x+fde8Gc/g5//6iX9MGK1wiXNmAx+6Igo2lK0dlMaM+9yENTTapQq6EbPcQg0C3H27cYHykMh5h+2ImY0BqVFESlpusORCkUyhQwfRRj7kWZh8l4pgUhHxezkMkWGCXlm2tZO2Ps0MHt257S6z+46IesnjnkuzadB9/m156z7KUk+j1UZgNASP6aB2QkQmCLJx7Hp46JE4k86Pe9RqDol9ScEUZ39T0Zf5DxSLipUOtE9ZMDz7Pee4tofTx5P1x9EnUeVJAJFtcYUxZys19mg7fEtfxdndJgpaZM2eRS++hgY82tPymWJkDf7GANuGJARSrl573GDyPOlmAQVNzJPIp1D4c5OrZMJIR0GQfMmVNbHyOg8o/P0w47FakVUhn33wHHs6MfIsm1ZLZb5V9H4IMm4jRKrt5s9282WcRx58clnRDRd74gRVutryE6xPnjqopSYmWeRkgJrC4wq8THQDcOsS0+MglqCrG9rCYiCWIiThJ6efV0SoJUlqTC3/YdhONGf8vcEghhOyGhVScd1oqpMCi4KRdu2rMtKOL/eC53HGCmeksgNphAyvqflczUnieMYowABWotbtciFAIGUIMaT4+55LJkpM/macM5JgZ2mZFwoTNaYmcIjVIj0aIBz4jHL8KuisEJHicGd3jer1gQvxj7TsOekq5UyLC/ylNN1ykzlKIqS29tb7t5/IATJMeqqoKgr2dOd4/LykhQj4zByPBy4urpilc2KhmEg+MBx7NF5BqyqKkJIeOfnYqyq5LuLKc2DopPc5lSwFEUhbvJBEHYf5NobRocxVvIfJ/uz78V0LcZERBHjlmPX0fciCFKXleQMxoijsim53xwx+1GGilN2bFdyTl3Xsdk8UNUVTatRu56HzR7nRorC8MUXX3C/30u3NIrpmzU1RaGkmM5CFfvtJgtWGA7Hgf3+gLWGtm2IXmg2WiscntIW9N3IOAbs6CnLCmshRpOVsGTgXAEpBPreyXpJE8gTIErxb5D9JPhR4pXS2CJAloYmU6CmnFg8dgxlXeO9UAOnbpGPE8DwMSj13bffX35ydmI6bbXnHNcZvZr/Vpy0n2WDEo1pzaPtbqp0+Wj/PH/v07PzO+XgOrXGmFA85g36HMCTL0TPaNck91QYLXQMZDCi1KLm4b2nMIXQCkbHYrmgdyN9N2KLmpQCx+OBlCJPbp/w5PqKQht2uz273Y6L9RJi4vX7B0k+jUb5yNMnV6isVUtOcK0xuH6gKi3topHBVedp64rdcYe1tcg6RpGeRME4DlRlCSoRMlc7JEVZFPgg7VmjNW1lqUrDqq1JbuCwPzAMI3VRURcWZRSLtuJy2Qp3v6og89CnafLCWEojiDYpUWaDhNF5kneQEnVZQhsotNgV6zx0pWox+bDGUhQliShGU0EknmSQR9DzRVlyGD2993SDY9/3uHEgVpa2rpARZTgOYvoyuCTceqUorKGuKnzo6Efh1FstQ52XjcitHXwgJi0LLSpciByHkdJqaqtRyciAT1EQY2S7O6C1YlUZqmcXPOx7Dr2XTV9Lta017A4dTWForEZFK+d+HClK0YWt6orSljSVZ7Vc8Xq7pSJRa2gLhTWKqqkJEV6+u+PKX1A1Dc3qgofNDpUil8uGruvp+x5bVCyalh5R7RhCvqaVcG9REFNAK5OvF40LkW4M6NyW9s5lm2uDUiK9Kl37iDGJ4EeclyRLGwtKlHtGP4q6TU6BFRGVSbWznBcwVdGnJHtCl+epljkuPF70p2gxO7N+/NB3PX2+PY4951BPgrkjN+vEz2eksoTpdMan956KkBkY/hbaPyWP8JgaI4UDE7o+n4e0VCcrPGY1nQmt+ad+2X/et/XFKlM1dFZfCegkg4IRlX0tsrX6XNbEacuRzyXmxDp/r8GPGSGLaHVSNpHhwjFTE+T1Riu8c7iMkIacPJrMw48pMg3MyqSd8MonOpnznmEc2e93JEQTe3ADxpaZWhDYHw5EbTkcOt59uMcUJbfXC0LS7I8D3fHIopGOqk+aYy/J5OTEXZY1u0OX9wVLYUsednsmtTatNDrIWSZlccHxzZvXXF9d5g5oT9PUcxeApGb+cczXvrT4ZWBPZzURHxxKSeKqyYOEWpITnxHVSSpxGIbZkl4pOHbHzBeXdWC0FgGBJO9VVSU+DBO+jMmUSZ2pDBPymDKCKUPFeZjZTHWUDC+qXLBnvHC+TSokIr6RaZrzGkxzYTMNHcp1ZuYEc+Ip++zGOr14GjR9TKWRwcvoT5r0c5Gfi4TJEErl+1L+7PKPQE6ckyDFIQbhoE95SVZuscZCId0UrxTBjdR1nVF4UX6aFGBiLlgn6tOx65hU16bftSgr8UQ4G9A+8dijgDZGk0KUoVTI3G0pf3f7HYeuxzkZ9NwdjjK3YaSDYnRB3Sy5uHpC07QsFwsZ/kY6UNvdnttnz7K/gwhHjE6UdiKJ/+u/+lc8/+x7lIWlaiqePn3Cy5dfsSoL6qqk94Hd9kBhBaAch571pcGlhA8Rayzb/ZH9oYeUWC9rulGkspNSeJ8oy0YUedAYW6N0ycuX32Ct5cnTpxhTyvxfjkBD1zPknzQiUjHPOGiDc1ndyBjQ09CzyE1aaym0nQdWRWo2UwCVRuk4X2fTzhRCEF59jku2+E8+7Dol49O/z67Ks03qfAs/IXTMG+VjTXl19lM+oJqOxOMjZSRsXg4f76cpnfi1eSPOucNsYiAmD4FENgzI6GoInmHw1EbaRNZoyrJmdImYxNVtezyAMlhbEHykH2XjeXZ7zapt6Y49h8OR/X7H89srXr37wMN+EM1xpcAFLpcrgnNZljAHsRhI3rNspT02Di6b7hiSEiMLNzoUiqqu6Z20NG1hGJzDeRnGTcqijMWPIwooC8OitjR1hUqJ+3tBfKqi4GLRUgDL5Yq2rVguGpZ1xbJp0FnBRStpy5F1brVSEIRHh1bEqCiMoQ9Bhta0oq5E7UAhKhRlYbPV9iSnlhiGjjiOxDCpv0hUXjYV3TjSuZF9P1LuFfvjkb4baBtDVRpCzMNUClKy9E7aytZE2qbE+8DDsRfZKq2prKZpStplSdmPuKBwSTFEzSGMHAZPaUbqQlMXhlFBW5UEFzgcRwoDi7bik6slhQbUwDjkNnsOkiEO7A8ddW0pCktEc+yG+f+F85KsBFgtW15v91AYFJ5KJRZFgaossWp4+/Yd/v6BdUisL694+fJL+iFw0ZTo6Dl0AyoElosWYzT7Q8fgPZ7I5BiojJ6/N4OmLgq6MHAYRhqrsQg3UdwSDVUx7ZaC3mhlUFl6klCKwYexhCS8SJJ8/0pLe/G7Us5v57W5eza1FTmnqpwlwqcjnOWy6nTffOyp43YGJOR1P/HPZf1PqEmaMnmmHt+30/Gz2PEdj51DFqckYXrN+TnK+6Xp8VNkO537VMzMhcX01icwZOL8/rHcbGFRWba2rMrM0c5FnkqZQz7p7ecXhbMPIQEp5qFXlRH3kRQzmlvk+acQCN4xZmRaJIc1xJNpTwxRumtKhO0nHfCYIvOwdsqmQDHMmtcyBCucb0ETA2IcIUNtEc1217Hb79kfBxbrmqQsg48cx4Gx70iIdvQ4ZHMnrdlt9xwOHWttGfcHikL8QYweGfK8i3QjElUvNJiYRLL33fsP0oovCrzP3OSAgGhZ6nkqsGMkx+PT+pl4zForTCIDFJLEa6uxmTvONJcQBaEVhR9Rs1JTJyVBijlpRtaf94FIdtbNaKR3fnZyjTOlSV4zdUxE1jaikgYVT0DgWWfskatrnCQFeXQ/qBl9nszjJhrM9JxJhjKmOKPVpDCrJc30olyEz7/u1GlL0xrP6/msEzD/rGYS0EzdIxsYxnyeeqYjqWyUZLCkrCdvcEqSQRIYnYGT7OkhxYrNBYfkP9romZKks8LTzAVPJ1T5nL2gc+wiiTN6xGeWgGOz3XHspYuljKUoS5arC8qqoqwajJHZl6ZdsFgsqcqS4ORaH4aBlS65ffocaws5L62FAtvU9OOANiXXt8/w3qFUYnlxSXV3x2otEph3d++o2gVNVZFS5Dj0+ClCJHGqv9/uxYTSWHxSdIMTmhziO2OLEqVE1WkYA123ox8ctZbiIkW5ZlMuwGYd9yS7gDGKaR4iGkNKYZ770TZfNz4PxKtIDDoPictcTIgTEG3QJpGM0K+U1hmEi+gU0UrWy7mc5n/o9gcYQsmXPu81Z7d5+nt+KH784rzf5S1rRsPIv5TmtLWeNrfT31PrT50d+3Qi86+atcTPt2qFoqkqQnBELzwxTMRag8roZAqiR678yDgOrG4u0KbAWEl2tvs9u/2RP/2TP8WNI+/2Hzgcey4uLrhe1oxu5M3b99zf3dOUBhUS//ByS1mtGfYDNnlury/ZHXd874vP+cffvsSTKI1mHBwpBFarSzbbDX13hBQYnKapW3bbAylG2Qit4cNuT1mW7HZ7hpAYQyQkTVkUMuQYIsumZFmXWK2JzvPu3T0peK4ulqwXLQWRJ5eXPLm5xthJOtHSVDXLtqawBu+TOLtldzetDKrSpOBBC7KxWiw57ndiMNRUaNWIgYUSY4Umt/JQomGsFPQq4Uh4BzFqdCntzMIoFqUiBItbNPTrNe8edry+37DdbClLS1uV6FXDbt+xvKjZHkd2x4HN3tPUJVfrJUmpLMcZ6KMoAtxerVmnAhcSvU8kF9F1RYjwcBxoSyOf2WJBacQ0iVTjg2cYPWHoeLpqqGzFYRh52Hcc+pGqNHzv86e8e7fjbj9wc7Xih59e0R8O/N0/vmLT1NSHI+vlAmUM3cM7btqKp9//IXdvXhMPGy4WDanQ7BlZrVr2246793cE33O5WvB2PBLcyLptaMuSNx/ucWMBLmCI9DHQh4AmYRRYE3PrN9F7R2FETq4fB7QP4o6pFFGZnJhLF8IYTVJaDE9I4ANROVKyqFKuvWnYjySyrnqCSs821ceBQVbgZIujzta2mgrtj17wiK43R51TtJifl9GvU5qcQ0tGuE+QQzqLFVOSpjjXfVdTcSG/1el1OdlRc8KePop9SZDb6fTO3+tjquD5z2fPnZL90/C/fJ7nhc4fwy0EMZorq4oi86zFkREgZTUIkfAzWpBXrUTCdhI2SNkRNUYIRMIo169WCowhhYzG5+QBkMn0JJ1Lcc+UxCsEQeCnJND7SMzUuWnjHYZREMwk6liTOttEByyqevahsLagade8fvuO7W5PNwZWtsJFRdf3dPs9hTV0D1v6oafvOhQiXXfsOtw4ok0hlMiiwGjNMAoCG0PAjSP7w44yq4RMid/9w5bLqxvahZizhSDa4wox0SsKk5PqrLyhT+6okvDJkK0k9xpTlkghqfJwZZnBgSxdbKUDd6JmhDmJBmY/D5WvX+ccaHEJ1xnVHsYxo+FZG7y2kngi4gpJnwZvUwzEfLwEJD1FA1l30/uen4PWkz24XEdl3oey5H+mBE3XZSQkh7ZmLrSttcSQHunNT9KkkrfL9ariSTEn5tmMR4OyUTIWk4uHpAU5ZzrGzE6QeFY3NT7TcnyYBotBaUWtDWOhccOIy6orZSlc7BAjznlMjtEyTGvn8xf6GLjosYUYho3jSAiBoihRSjrpLs+ATJ+BHweOXc+YqVwPmy396CjKiovFiifPnvPZZ1/QLpYYU+Rr0qKNvPcwDDzc39ONjsOhY7W+QNsCnVXjhtFRtjXb45H3799TL1dc3jzhzZs3bLcbXoRE2Sxo15eUZcH49i3f/8H3Wa8WDEPP/X6HQ1GaguAD99sNb+8fuFpfUhUV/RjwsWNR1/IZDw6dneG982x2O96/e8fz589Yry8wef31/ZjlKRUpG4DJ7I2X+TSksDJG5kKKooC2obI1VkNIHu8cIQgFaxrsjkkG0pW2aJuyG604qCMhbp79NEb082cZz//I7Q9A5HMizwk4epxs/8demS9Ypi31tO2RKQE5rf8njqcevUijH+sun90mTQydoNCaFBLeidqAseK0Fp2jqSuulg3Xi4Kl9fijo7CG3fZAjDuhhRSaV+/ec/PkOWVZcXf/wMNmT4yap0+fMbqesl5mKa+StrD89suXtOuGu7stPiXquqVdLKgajapL3m6PXF5dslhd8P7de2xVstlt2e0kUK8WCw7HI1XT8v7DA23bkJRif+wZBy+tLx/YDh4QR0/nI10/8uKqpTIKYqDbj6SQ0DHwyfOnlEZRW8XtxZpPn93SNtKmM1rPn6s1Ij1pKkNbFfRDyTA6ur4jeEfVNNgi88r7wPXlJdF76saK2ZORgFeVlrposgqBhxiEo1mVjGPN8XAUtGlC/KPQQ4KGYKCyChVbaqsYveM4jgze0y5LLhcl7x+OXK9LFk3J/Wbgt1994MUnNzy5uaIfBvbHnkM34KJns+9xzjGpYjQ6q2g0S3Zdz9g7hhEuWktt4eaTG1QKvHv/wP3DnvcPB65XCjUMtMDismKg4Xcbx+v7nsv1BcPdPXfbDrTh8ycXPL2+JCaFC4IKqDhyfX0t12d3z9PLJeOi4mH3gDqOfP7imh//Z3/BL/7xG/72H77kzfsHbi9a/uIHz3n5/oGH7ZEUI89vr3hztyEmlZF40NoSY4AUs3CWjFmGBM6PmAxbjNmG+lR0y/funCcmRdVUuBTxfY+plKhruEDykWZ1iVIWF0fpIml5jUqTe993LcWM+Mwrf1rJkxijEHRkl56iwVmyPkcN9Z0xYQIQHr33x8Hp/KQEBv/WiU5oviT3Z2jd3P87dR4mRPjRW8wHP5MEUJwG8L/r3OdY91ExcjqheRDqj+FmCk0kEJMHXeKiSD/qpJFBC+ZkT+UIPqc5KRB9wo99HqST8nBC9rzz+NHjvGjCx7loUlnNJTB0YmdvJmR2kld1PssHyvU0uDEbFmv6rG8ds0pK13X4AEaX6KJAK8uybXAxMoyeOCaSqjgOO169uef9w5FnT59ijEhXWiW/49OnT/jx82dUZUlKia+++oqHhwf+j//7/wPv3n1gsViwWq0oi4Ku72WosSxZrBZ8/eVXOOe4u7vn3/ybf8tP/uwvMAoe7rdsNvccdlvKsqCqShZNy83NlSibWEvT1qxty6E7zjzwm5sL+YxJUswnMehLSYbUlRKUeBr8hFMSP933SN7xDN0NMfOz0ficaMp7MXcayE6YE0psjMOnExA4vcckb6nzIGGaFOvO0PdzBJwYSEq6POO4nx3GJ0rrDDlmvxIVA2VZURaiiuKdmwUfvPccDkLpmFxCY1ZpmWLXNBA7u9Rm9D5/svN5nRceU+ib7i+ze7nQdSJEnylRaVYAct6JDwLw+u2b+bMhX59T13McvSjSaUP2jRRlGpM7Y3UE51CTcpSCQiuOx6OwEmxJ3/fsDkdQoo/+05/+lMF5qqrh6uYJ68srLi5vKIqKmGCz2eKSyB7HmHj27BkvX76iGxxlveBHP/kZ64tLtCkIMXH3cM/F5TWv/ubf849fveR/9l/+L9lsHzg6z5u7B17/d/8v/hf/xf8clxQPDxvuD0f+7OKKctEQrKVeXfDjP/sXLJcr3r//wC/+1X/Nkxdf4IeBw+ixShO7gDEtpigpdIWnJIyJ3e7Iu3fvef70OXV7gY+K+4et0KLz9USKxOBYZrU+bSuCV0TvsFpYD0VRyHohEoJov09UpeSTzH9oTjue0ihl5o7TdN1OikdyPY4kpShyQv/73P5gHflH29eJOPrtx85v0ulhqgLmxTfj7N/1uvPUfzrIKdGf21ePTuFcq/kkcTd4kQYja9+OfY9yjovrlnUZKVIn7pqjp6otx+ORshaFjs1uz+hlsPM3v/0N+/0AuuDJ8xsubxYQAu/ebegOPWVhWSwb/t3f/4qnP/gh78ae5aLlyfUly0XL8yeX/O63LymKmrJoGI4D79+85ZOnT3l794Hb62sIkb4bMRj22+1J7jFGfAhU1uJVxCUwpsBagzWK3a7jxXVLSWQcAgqRnxqHjuuLFdo71k3L0+tLPn32lKt1g1EiZ1nlAGayDJh3jtJoqqaibRqOXS8zGkmQdZud1pQCbxWlkSS+qirK7FSoiFS2oDA1MQbGPhsaLVuCL2jLjArEIIXJOOK8k+rfiZa8WVQ0pQxGHYeBbXfkMA5gDM9vl9xv9/jouV4ZLi+uefN2y2Z7ZL1a0FYNTWFxo2NwboKBhaNrDP048HDXM/pEUOAxfLMNVFZzDIHvPb/i0xdPuLxa8ebdPdtjz+XlEm00Y4gYF/nBbcWrt1u++bDjqi3RMfH67QPRG+qqZr1eQAwctj3ODbjB8b0ffIEfOrpui1Kai/WKsTvy8y/f8+KzH/LT73+fulzw3/31Lzg48McD6wLUuuXh6Pjw/p6b60tc1PR9T9f1DM7hQwIDyee2K1nWMGXKLwjiiBat4BBwTGsxEfEwDtiyYAwjvouoIqAKQAk6UzYLDCIxFqZhKK8odTlvSucxQEHmhp638dSMOp8W7pTM60w3edSyk2fNL4nzWp/iw+N3PAsHwKMB2I8eUcyMAekqnCEFwpM/vU7iyhnPdZLRVTO8MSOlpzeYDp6R/EctCEVMwlOezyhNHlCnDsMfy81ohTUaYyaKRMCagkTCuwFrS/w4yACYNiKXmj+LGCLjMDCeua9qrTONUKgi1gp1IIaQVTXcjAzP9IkYicjzhnEk+Yh3E1+Yec2kCHFM3N3f0WfZv7pt8VnFzA2e42ZLQnHsBgbnGJ2naFpunzzD2D3bfcfnN0/40Y9/xmrRoFRi0dRYq2eHzEXb8Lvf/Q5dlKwur0m2oFwsScbSh0jUiaJpqauaorCMPrC4vKSwBWWz4Or2t/zv/jf/W5q64rDf8vd//0uic7hR+Ph3H+74+uU3MkNUV6zXK7rjkaouckED+/1hLqKF8oJQ5zL9YAK3Jy1xY21uMJ0cTGdEOqUs0ReYFs+UhgTviFEoNYt2ITMHw8ByuSQ6n5WK9Kx5PnX5tNKcJ+siCa1QKYnqzdljkwJLvmP+TnXuCMwSInCiLKSEUsKvnu5TStE0be7+xJkjPw2zTkUOnELEuZurGDYxK77ETDea6VtM3cSpKwcphixlGInRn7j3GV/ouo6+k6HWEEQBriwrvPccj91M15HzkBkOk4eKT6o6wscmFw1VWcta8ULRHfqBrhdFmBA7dvsdN0+esL64Yrla0Q+et+8/0A0OHjZc3j5jDJHjcGC33/P69Vt+/JOfUqxK+n6gd5773YGYEsurNUWz4Je/+jWL1ZrrmycoW/LNu3d8+fIbvnnzjh/86Y85DKMo7iktg7PO8+H1B47dgR/+yY8ZfGLY7Ikx8tkXP8LUCz487Hl/t6VZXvDsk0+FVucEOT/udvQ+0m/2pPuNcOv7jsJaLi9vuLx5IrN4LlIWlsOhF+8aK1KfChl0HrXKbvUqz3mkWY9+YhykqAluFKlTdYKDpCCW7yehhL4UPcEn1NjL9RKyvr422EKc3H9fWg38gYn8uWDbvCDmx6cN+OOkfOobIBA5p3b5lJBrrbMZg8rSXmFGpc4PPw+kqQktmzbzU4vtvDWvtCjkTa2weZF4z0XbUBpFpRI2ilpNSg4SLBcNg/P0/Ug/BBksGgMPhx2DTzSLFbYu2R8ONNWa9x/esGxLqsqwGY5QlhyPPSrB8yeXPHt6DSnSVBW7Tce6XRNHz+ZwoK0XVGVBXRTUhaEbHcMwUtYVgxtpqop+9KSoMMYSfIfD4pKmLGRQ140Di7pmHEZxnFMyE+DTSFsVrKqC28sVz28uublYsawstVYsFy36fPDHakaXqItWAirCg18vF7ixz07gJjuyKapk0dFjdBIdd6PFDdUUlFYqV6XEMbYwNW70MlxmpNr02fLce0dblxy6HtOLTFxlC2rrqa3HhUChlajjFJZjPzJ4x1VTsWpqxpQYfKD97Alv77d03REfDItWEJXWarp+lI6D1hSFUEguly0RxWGQ7sZDN0CIQvt4+Y7VsqFtSp49uaYuG47HAV0U2BAo9YgNkScXNT5FMXBKwmd887DhxbNbumGksgZrNUaVaBJfffWSxaJBhq6y3J0xVHXN//Dz3/DFs1uWTcW/+NHn/Nuf/z3f1JZGg1aGpjIsly273QFrCwoFzmgGKfRlWCsJj29q+Yrz3rR5yMbiSZRK432U70sJcuDGAWM1hdYMIZCCR5uIVRCDE6UGpc/oK3lpzhy/b2PUUwKreUzLEw1niQX6/Pkz1C0BMJ3fPyf98sCkniMvOfHYT2rwfJTmP077p6PPbfsZAX6c7E/PnYk/M26RqTFqimfq9Ap1eu63WDVn0IWcfv4t1ZnHRgKlPlZx+ed7M7lgVEhSP3OLU5yl3WIUACJpKy7QNp2Styw/d5qNEFECrSAlDUm48aIMIgN9j25JCtkYhV7pR6HfeSeIu9Ia54Ncx0k04I9dz7HvUcoQVUHSovV9OHY8bLbYsqKsG6q2oTYan2B5cUn5sGVwgYBiub7g6uoSq2FaItYayqKkbhp2hw6fFPViBUWFrSUR8+SCRls8kILI/5lCDPRcjNw+fcrq8pJF21DWNbcPD5TWELwn+JGxH3j99hXbh3vGcWB/PAiYpSKFMdm5WlQ5yJ+z0pqiKnNnRNaZ0XmoMserpBSRmNN0AUd0nudKIea9VhDphMTEEBOEhPYQQkVw0pGJGcE005BzEnlRlXn8UzI7UUSUEuMh4jQ0eOKfz191kqHX/EM+1nmu8Fg2t8gcZ6Wz02bOSfykjGZMpsrEbDb4eFHP9JVHnHhQSQqOMHULUgYu8zUshlZyXNL0v8RispFSCpHghSrmRifzHTHMTr5hKkbzsadcaqK4opDOKWJ4FSZFIU3mqHtJ4kdPNwgSbMoKiwJjuX3ynMurK+p2wf7Y8/bDgxTB2olz+NKiiCSlefLJJwSlCM4zBM/Dhz0fNhtAoYuK12/f8/L1W/S7O5rXH1Ba8f7+jm/evqUbR16/f8e79x/YHY6MITC6wGZ74GG7x40jZdmy3w84P6JItG3L3f2Od2/fstvuuLy+pRs9q+UFSsFxf6BoQpb/lFjz/u1r/DhSVyVFVfPh7gGIYgwZZdB1HEeKkMFKRI3IZiBCVwUo2bO0luskeEf0gah9pnenkwldLnJV3qOUUZACk3NsDA7vDCYhbBEtuYmOFpMmK7n/+O0PHHadNjv1H3iD0yDbPMo6Vyc87myrLAeZF44ULZqoInEqGz4m0n6rla4e5Q/n56XUxOONEBUpCSpjreZi0WCUQkePSgFh8ubFSmToR4bBI55QhsPxyHa3J5mKookyYIqiHzw+BOq2RpvE3dsthS15//6e5apltaypCoUbkOHNvufi8oZhGOiGjqoUWsRqKe6haFBWCVKdkixKBR6RH+u9pw+a0pYYlWQC3UesTXTHAZ2iXCwqYbTiom15ernkkyfXPLlas2xqCi28eDP9bUVNQBuDihnpyLJwEx2lLkrE0VD0h5NSwlc00ratyyLLVhom9QJjCkRtQWGsFR3nJBuAUQobLMRILApiFBfEKltTxwjHvoPUCZKHQidpNRXKMHiDiwmXEmNKFFaDKfGxYbMT2+pxkMBXWENbV1l2TWyiU4zUhRg8eZ1YlAVFW3E8jBw6x9D3HAbHxbJlvahYtAX1wtL1g8hOhoxAGU1bisRbN3p6Fwg+st0deUgDV8uWRVVgNdR1Rf+w5XgUPmSls44v8j10/ZG3H95zsWxpS8uT6yv6rL9f5GGxulD0Sga0rS2wOWi74CGpPEyTMDonTArEhOhkWORjFG3/JFKcVSEIQvCRoR8oqxKVZII+eYf2Hl1GYvAYW+RETGUEWWf5ymmtP0adT1EjL/wzBPwUU04Ldh6MPYsdZ0/glMwrpsrghNZ/tP7npDqHingWejhL3KdQMmfp03Du9OAZtWY++rkiF1Mefvbo6f0fndF0Smdh7HRO50DHo1/8n/1Na0UKgRSCuGuTiNHPSYwfs1Y0EHFS5JYlKYnNucj02YySyiYpaLoUU2M/8XtzkehDpsTITfTaI8EF2XS9UBVG58Twpyo4Dh0mK2oM/ZilJWVYMx1HlDVstgc22x0Pmy2X19c8//wTbp8+Zbla8fbuA5fX17x6f4dPSQYDlcYUFcZodrsHnBtZLZdUzQIX4MPdhqQ0y8slpmxQYzbO0xqKGpcCbnCoJAINVmtevX3Dbrfj+aef8ub9e1bLJaREWbWsli11XXFxseLFJ5/wzTdf87d/8+/48svf8vbda3RhOQ49mkRdVCcOPaeiqc77gsyORApbzaY501LXk6argiJTZmKMDN1Rhv6z1r6fXLUJkgSHyWlXaEZukEJJGYOKFoIk8zrX6+JXE4nqZPRW5D1GEiRRfDnn5cufEp9STCh7Quon0E8pdZLPLGqKqiJkzf0JUJxec04jUjPqHecCIqbHiLycwCQIAErL/EXWwAUmlJzMvQ4oZC8PzskcWhT5VO9FUtGNDj9OPgYyqN0dO1KS9++6ftacL2yZ6T3ZtdVMxY0MZ4YU8T4RcfSjYxgc3TgyjI7lakW7aKmqBluUXN8+oV0s0cZi65GQfsvgIkVtOXQ9t5+0FEpUmH7253/GX/33f812tyWkxOtXr3j9/j3eBz5sdmz2A4fjkQ93D9xvttRtw/3DPaYw1E3N3//qV2w2G4axx7kRHyJv3r5nyF2x7abL9KKRlCJleSCld7x5/Q1aKX7605/xq1/9A3/202vapuHuYYupGqqiEB8gY/jy66+pixKf4M2793z48IGbq0vatqFvKlaLhmH0+JjAaHTyQruyRkQpopG91xisLanLiv3ocIPPCsgKpUQZK+bP3I9i7KWNmGSmGPJMSiQFh8uIvTEanQxdN8jPWs2KN/+x2x/EkT9H4uVfEzXmDJdPcDJqOLtNCg0ZVf8Yu5+qlkmL/rTDnZ55ak+czgmmQTFB3OdH1AnpSjGSVJoXTFGWLGqLUVkrOHqmifjgYQwD3XGg70dCSFSlZrfv6MZRJJPGgBs8xpQcDx2LpfDGu65jtz2SImx2ez779AuKQgsSXdS8fvsBbTRlqUgBnFWUpWZ0IxfLhsP+gNbiwLo9CN9NbLkNyUdZdFHhfGRRFYzDyOgF0XDjgBs9i8JiSJQqsaoKnlws+ezpDc9vrlk2EriNEoQshkDSCp0kkVfpFCQnWS6SJI1NWYrsmCIbemlicpRGjBgkkS9RKIZxhJhEcjIPSCok4Md4SiplziGii0RwgozIYHLMTn+BcRiojM2a+AnjDG1Z4mJgN/R0zmGyw90YAjermkKLG+6hHzNnLbBYtBijRP+/E+UfNzpiFOWEylpuLhf0iwXv3mwYYyAcR/oxsN93+GR5entJOgaid6QY8AgKV1uDKWRmox89Dri/33DwI4MLXLQ1TWG5Xjc0dUU/jkRvM4cyt1+9o2kq9scd+8Oe5WLJ9z55ytv7La92e6wLtIXFhMCqLtiNkrRYo6mspXeeCbJMSY4pcq9pRmCmZRVSEh6qEnOPsrSiTAGSNCiDMlbQoDSgTEHNYk66VFb7gHwdEUhR5esiL/eMek047AlVf5zwnmgp53HlPJjke6bh1HT+vFMsEGT//KfHSfwpMKT5/rlemIqLj9Lq6X51/v4f3WaA+Cyrnxg1U8GiUHNXUD164fTcj0+S/CF9x/3/TG91UQov2nlcP6CsmZ0ry7LEIEiYc45+7KnrCj/IQKjWWuRv8y1G8c4QRF5JBy3rwk9F4GSQ5L0kPsZ4hm4UtDdJcauVRWlBug+7Az4GxoOYMHVdT1nWHMfI4DzbY2DfD2hTcHH5hJ/95X/OF9//Ae/vPjCGROcTL774gXCMMRR1Szd6vNKMSRGiYnn1hN12g64WeAr+9m//jtd3O5q2ZeEi+yHwu29eo62haVqiLqmqgkl60Wh48+41v/ntV/R9z1/8xS3/77/6K376k59we3uL04o3H+745JPnbI8dr/76r7m8XPOX//Jf8uf/k7/gzZtX/P3f/ZLDbsvQdxyGDlSirao8uAdlWTK4ER+DmD9lWU+RUCQn4DLYaIx8dymdjJGMUfRDhzEaY4RvLoZQiBIOWtw8s4qQSF5qkpeCxRQlaNGrt0UxF/IqAuqkTmPOYk0IJ9nFSfpxcstMmR8kMrmPh/J15rXFGOm7jqpuqJqKMWvBT8ectPRlqFpel4ITc8Q8Y1GWJTGYmX4zFZ8oxAV7svRlAhAiQjyQRF4rJTMgzpF8oDseAei7nu54xGQTqElpZhwd4zh9rpLA13VNVVcYa0VjPc8CTEun6/r53yGJ6tLgHAFYrtZYU/H5F1+wWl9kiUnP7ZNnlHXN7nCktQ394Cnqlp/9i7/k9dt3+CjDtnfbHb/81a/5dz//Gz7c3eG8p+t6vv7mG8ZBNOhfvb+Xmbmsj/5hu8X5kXbZYuoSPwx82D7ghgGSOLb+5rdfslwuaduWX/7dr2bzLu89tjDc39+htWKxWIApcc7x7u4BpTb89uuv+dMf/QkXtze4ceSrL7/ENgu++N4XtHWNG3rqwvLV119y2GxZ+AUvX7+hsJrVouUiLoljx5ObS7QVCeZ+cFij0EnkLPf7I+PoAZGnRSVWC6HgyuyYou97mqahKkvquuZwPEhyr40Ml0cvlByk+CtLS2GNdDE/Zqb8E7c/QLXmbMKahDrbvCae+1wRn22W0zOmvyQ3P22bMVfWcsXn1ygFMUuDkTIAl9t1nJ77sW41mSM3G62QmC21VcpTwtlUInlKpTBKBktS8LjBo0oxaBjDgWPX4WPkYr2ir0pSZznsOypbUWpNcAMxjHz/8895+fIb3rx9h9KWD9sPPLm9ZNWUsn51yeXVLX/9b3/D93/wGRAoSs3V1RprLHd3d7T1mv4o+qcyeR5ZLFd8/dUryqLEu8g4aIpyTVn1mBAZ+iCc8mFAA21RYFWisZqrRc3z20u+9+lzPru95GZ9QWGyZUEKmXqhwUcCTiTEdMBqi7WGGF2uIuWCjFiKZBjGURAZo3FDpKlbrDFSPSrpICRrZx33yPR9JMSQQ1pdZIMmsWb2BO+xhcUWhmQFLT4UmmVbZy5g4Nhb+sGTksfFwKKp2XY997s9YeiEdx+BupjRnG6AcXTsuy1Xly3LjFhttgd2u47LyzUuefb9gHvn+MEPXrAoLZt9z3bfcexGDp3n/f5L/Ljn6e01i8WSfhxxfaApK+5NhxoHLtqSUlvutweGmIja8nrTcbcfuWgb+hC5bAraZgUE/DAQjCZ4UR0Yhx6SIWE59Btur+Enn95AHHi439N3DqNliHXZVhy6EaM1y7bCE7nfd6L7iyh8OB+wOlu1T859KoGWdm9VWLwTWcu2LrlYNsKTHB1FnfWYoye6ntomgskIczbm0eqUojNRJf5Jes1piZ8/qh4/cw4bCqTrk2Ys/+xZU1mQE+M5Dk1Qw6k4OA9FWpE7FKcjTMeZkLJH4evs4PM7plOsm5L1c+T9lO+fKgXRt+YsiThH7vLv+lG8/j3j9z+bm/hJmHmoMY45viglSVycbM9HgnOEPM+kFXkIE1AycxFCxHuHH938vcacCE48aBcDPohsno8RoyzHQ0+hpTPonBP6S4qMwbM/dnhgdJG+H9nsDjy5XRBNSWEblqtLvri64mGzJUTYdCP/8LuvGd0om+/geOgGMRsMoKyoanVDwCVNwvDrX/0jf/KjH7G6uICUeHe/JRUVumqgqEm2olpeSMdPFdw8/5TN5oEvf/dbDrstf/InP+S//n/+a7747DM+/8HnbLqe1dUV97sd2/2B7rDn+ZNbxhBQwaBsQdSabnR479BlxU/+7M/48O4dwY1UheHd61czyFIWhSStWcygHwbaphFePGS+eJV15kW5TFxGxaHXGJ0pUdnWPgYqFNr7mY6SogBIIoOp5yFRgac1Os/AhOBPq9gadDKooHIyDkVRzkh5jPEsjuQBwuzQPCX9WitQJ+lFrcwcq6ZzkATRgVYZ4ZbX931P27YZyEDMo/JQcNY+koQ8d4CU1mj0Gcc5G3RlBF8jQ8UxqyyFIMl0DJHo8zrwDpdlG8dxQGVFsfO4sFyuxTwrv4/RClsWmOz1EoOYESWQwe2U5mHwELNfjrUUGVr75NNPefL0GYvFEucjm51IMw4+MbpIURo+/9732R07Xr99x9/+/BfcPHlK1TQMw8jf/Pzn/MOvfs1mu2UKzC6r3KE1D7utnC+yngc/iG69FgOq4+EoYKFWKAw+Ba4vr+X8hx7nvRiWaYMuFCEFbFHRZNGOh82Orj/gnHQs9vs9H+7uefnyFX3X0fc9f/7Tn1C3DWVVsrq8Yug6Fhc3DH1H7wOmajFWsR9GHl694nqxoDrK/KNVkIJjvWgJVhGSAm2om3amxLz78J7Lyyv6fuDYd2gjcrveO/peyfWlsipZ3jOnQj0lobdqW+BHoa2dCO3/4dsfxJE/8c+n7fQRtPYdr/iOO9PpqY+H3pgmvbLC5AlR04rM2dOM3j96Z9k807yDztd5kvbdZD45vwUTXzdBiujkMFo22pg819dPeNgeeJ+5YOv1it4NosPuIOBIakDjcAGeP3vB9mHPw3bPw+7AoRtZX1zy7GoBY8LePKFaXxHDSLtaUeiSw/YOaw1V25J0weX19QnN7h1952nrBZvdgZBgc+xx0aCthaGnKEsetlvuHg4456isprKKIgUuqpJnVytePL3ms0+e8OL2lqtFzbKpZ+6i6NQLgi1tTD0b1MgQRhALb0ST1lrL1eWKEBP7/Z7Rj6Ai6/UKo61wOZUECK0i7aLMEpQBWxh0toUIMcpzbcpISMIHTUomF1dxDoikxNXFFZdrueid87Q5qKXohcbiI4UtKYylLiwuBHrvqLVmWTdcrWvePxxIynK3OfDu/YE70/HJsxU/+uya7W7HMB5ZL1su1hV3myO/+NuvuLpZsK5KVlcN/bJg03kO3chvvn7gzbsD62XNclFjVMIDViUKa0kpYFrFi+tbQlRshsQ3H7aiXa8K/uHVA00BX1yvuFktSNGw3R3RWob5rMoujHhCVLx/d4d3geuLS5ZNQ3/sGIfAh4cd2+1RWtZJWtXLuqJqWj5sdgyDDOEYJQOV0xqal1aEkKlXqihwwXMYBkLwPL9ZobuePkvNGaMJYcT3O6gLdFnOyVLO9Gcu+7z0pgJ8yuK/Cxw/S+rnMdOZCqFOf5611E9RI3Lio6tHj8gaP/9ZPXrtoxOdSoQcXwQo4CyZ/yh+JSR5+aicOPUfp9RDPoS5flEfH+u8NMm/qzoLhZnS8MeEyAsNzZy4yinlmA6i+JCNnZiGyTLVMSW8l0QtkmZ5Re8FCZ05yCHgvfCnldKzBrjSooF+HAacyx1IIuPo6XOSP3jH/tiTrAAFISnW10+4ef6C3e++ZBwDq7JmfX3LEDUP2y2v3n/g5onJmvKRcDiiNzsuLtZCr0PRdQN3DztM2ZBS5Bf/8GsShsWixXvPly+/oR+kc3gYHEOAu/sHtNEsl0K1efvmNa9efs3xsKcbHR8e9vzkZxc8/+xzxkGG3bvD4f/H3X/9ypbleX7YZ7ltwhx/Td7MLJfVPdPDmR7L1gjQgySSIEfmgQD1n0l6EAjqXSQIQRAhSNCLBiRG05xpN9NdNstkZmXmNceF22Y5PfzW3hHnZrFZJVEPXQHczHvjhNknYu+1fr/v72vw4yCaFlvhU8LEhHaOrEScn1HU7YK2cqVg9FTOMA49Q9/L+WcNrvjuT+ejNqbYDUuhaKwhkWeqgBSSom/DKFIKaOtIUTQKrpKfi31lJoUpjOuU3lJoKFPhbQ0+eHRKguKXJliKQDX7/s/+7NOf07UgTzaYk2Ukc2Ge82Rfezw/FSUoMidcJSYS062qjhRIyjkp17Ucky5g5NyUqKNG6cibn9aU0v7nIxqfy3Mp/5/O7XEcS8BQoaFRYNScQWm0s7ODEEoRk2Qc5CDgZaQ0Tznjgydl+c6MUhCzuNMZEQEHH3G2omkW1M2CcOio6kbyEXxkHAODPxBiYr/v2L6943G75Seffoo2hre3t+z6jvsHqZustRJkWT6jpGT/T0EmuhkldpjGyVQgx3KMhU9evqvIZMigiBlpnCfgJiW0sShjiIAfRSi7PRxQWQTt7+4e2O92hBCoKycaxHHEWcuibdBM2TIyoa9rMcjQKuNcA65i1404H3BaoXOibrJsMjGjvEwVc5Kwy81uz6GXyYnShhADjEd6FuTiN6/IWixLldElRyHLdaMUMcg1l9Rvtgf8xoX8pLBW0wac5WKZwxMnvurMAwOlhFCXp51xeg5HdOoIYOWy+U1Yejq50krYcbmgn4rjOKJa08vkIksr1Ys0rEJ9yFNToCCnAasyKolQigy77Z6f//Jz7u4fqGsZG4o38MCYDM3CsTo/4+LigpDAdwfevLtlGD1ZafphZLVa8vLFM37+es9H9YLVouHxV19zdrbCpp6L1QJta5J2EqhUiZ98X04ArRQPDztSlgJ7Qi6GEOiHnu12x8PmQAyBSkNjoAbOnOGjmzO+8+FLPnx+w7Orcwl/UhBKApk1Fle5oy5hQg6VfFDOWjm5lCzAKA1aMQ49xjkWy5YmNVKI58SuO9C0a5x15TwQVwFrHZWrygmKLFIT6lncAGIRlxmjIVXzeDZOi1icUtM0kMhJU1nxq18mobEs25HVouVitaQfPbt+4H73iE+RdVtzvqi5347UtcU6zf32wGdf3nO/cry8ueBsocjJE1PgfF2jjccPPffdyGJRcbZuePG8Zrsb+OWbLe8OA7shctl71quGIUfGQSYMRisqq4k5sWpbKhPoe8vdYeDxsEdl2A2BT99tue0j69pSEbBKRsM+JYmGp4xvyfziF5/jKkPVVCJ2jnC2alDWsjsMcwEUxp5uSKgogWYTPamovUtHq1G5FPc5MYRMVZA1HyPbPpLf7vjWyws2Y2CMMgLN2nC/2dIkR40RLm8JktIqy+ZxUqAd0fdJcPZ+GVs205L8rIozhUyfk5g4KrnqZ4Fpae7VEfJmdrx6al0lvtNzH3EsmMX+S3zhVWkI5sWs2A9OzYGg6CfvNQ0eJotJxVysT4X6E91QQVzUyetJEXDySTxB/t9f1H63IPmU0uzFfdqZTaSqVER4RouXeU7ibR4mkaeSEX6IsWhoQnFISbN/fIzSCCitZgtJcVlSHPo9BscYRbDoxyBUxSAF/a4fqBaOPkJVN3z4ne/x7W9/h5998TWP3QNnCagaclWzGwO//PIr2vNLfIr0fS+prjnzQUxs9h19SOx7z6++esPj7kA/9vzbH/yEt+/uMVr81R8e7opWRXjOf/YXf8mu6zk7P+f66oovvnzNuzevGYr1708+/TnXFxesL6+5fv4CUuT1m7fs3t4ydAfOz9fYuhFKUUrUriGj5sCnpl1gjaZZLEnRU1vL5c0zNo+P4tyRIovVmpTCbFkpotJ8Euqnj6FPpZi3lSv7vBgX2IIIT9d2ZSaRaCIgnO9cvnOZxss6Ma39bduS8ijCzeJmo2ye96yJFqrUsUA6tXacbnKfEW3MSV0i7/X0fSev/InuWNf1XIRPFptJSZiYFNLM+2fKzNz1eTqgjk4+ed73JtHrsXCXYl4YARQKU/Ci7fLez9aesdBaJ068NnpCOKXoNQY/eGIIKMJcBJMTMUroF0am7cZYbFZUTY1zFaDoDj3D4EFZlLb0g5eAyZTxQSglPg3cPTzw5ddf8/b2noziz/78Lzj0HZvNhtXluaDQ2mCsodvuqOu2fBYZpTUxhLKGSn5Mzpl+6Mm9JNpmVRo0LTah3dAX1yZHiopuODBRpBRQlWOc/PeNlX00hcjgA29u76ROqhyrpuXzr76WZHOtaOqam6tr9ruOcRgIfsSTGbs95+slVzfXWKPY77foUZz8GmcYYkYbVZKPPf0w4v3I0HfsdgceNlvW6xVN27Lbbem6Tmova4sbUUHbk9C9dQlEQ0GOobjfyLQx/Q/tIz95Ks8Q0zwa4DhFfoJ4qbmwPr1/psCXv6jjGwB5TmM9uVM6UgX6RNg6o3jzI/Px0MrrGi0c4qOnq3hu19ZRW0NrPctGwZjoBs8YInePO+4eHnFVRbtYkpRlcxhQxmK14ubqkouzM2KWQIZ39/eMfiAlmRRYU7Goa9BOkjjDAZckrEnFTLNcs931WAyV1VSpI4XIdhBxh/ey0C2XFd5HxkEzFCefMAZSgEMJPLJafOFrDUujeXV9yXc//oAPn19zc37GWdNQG4NR+cT7d/qT57TblNMc5CGBKLJgY/QsbFXle9PakI18+lM0cc6SGOisQSF+vzmIPaExekZbDQo/dhI6pC2mMvhR9AmxjF51QYZA+PVKyTFoLccQgoR0qZgxraWqLHVlaZ1lP4zF2s2w73sOg/jZWiIVkRfXS5aLitfvdmx3A/vDPc+vV1ye17S1Yhg9ZwuFKch47wPdvsOguLpY4pyjHzKb7Z794UBUmvW6pl5Vc1qkj4HN4cBm11NXFReLitpqHg8Du14xBBiiaBt2lWVdWa7OGhHfNse492Ec6clgtNjbxSBIY4TFouGsrTlbCFrwuD0wdJ7WWVnks8IDQYl4S4w4JtcYVaZPit5HqkbOC11Grt0Yud8NNAsHGsZQVPhKScPreyg2gtrY8t3mgqCqgtbDsYM7Cun0DMOXRj8f0WhpXKZmvCz0J8WsKuvNVGr/dYkT6b3GIYPQgCa9QFl/JleOnCcyTkHX1fH5M5JWhH06n7yoOn2fCZ9Xc0mfnvDq1dPX+8axq3kNPN71u1PMWyXWtj6K3aO1lnEIc+gQMTH6AYVMCFOQYjEEj/cj9uT8MEoi0EUYGAvwMAEThfM8joQIgw+Sg9F5nj+74fb2jsfHLTnBYRSruJgVPhtubl5w7lpCUnx1v+PV9xpoVozmwOvNBvX1a968ecfrt295/fDI45//ufjO51zEuI5f/OpLKewPB4xx/PGf/UXhykqRah82eO/Z73eMJR18vV7Tti23t7ckFG9u73jz7o4f/ugnLJdLuu5Af9gTfeB/8c/+Q+43B/7NX/2E3eM9X3z2Cz799Kcs24Z/8kf/lPVySVPLdemHgWGMPDw8oMicn694+/or+v7Axdma7377YxKZpl2x3Txy++4toew1GY4pnymSFSKAVRpX14D01tZonGlFixQjyjhiBuMalFKMXUeKqlhAaqxJAnqlNLu5KCLZFxciLdMIYS1oXGWKs41CFT9d7yNZGVIWxzU4hjwpzex3nwvqbayb7TOntMzMictWkKkzUXjh++5AWzdPGoTp2Gzl5tAkpdQcFCbWkRlCOCYIp6d5COI2E0gFNFQkcTkpa4H3kkjsx5Gu6+bGYBbqlgbCVpZmsYJCH9LF9Qx1FPBaaxmCOOD5GDF1w3J9xuPjI74beHbzjKauOT+7QBvL7d09n/7lD1meX3A+jNw/bBhD5HEnrIDlcs0/+Ef/hL/80c+4f9zx8Ljh/nELWowsXF2htcVosZUeB19CqdRsVxxCFvQ8Shp927aE5KGI1/fbHXUjE3ZbrE6dk3MtRMkEqJoa78XYoW4rNKoYWIzs93vathZf+xTZdx37fuD8/BzTNgwp8fbhgUWzIMVE9+6Bt/dbusMeazSLtubdbotVMGZF0He8evGcs5sXqBRJfuDQHTC9JysLxhJDwgApKTAVq7NLRp8YxwhZ0fdDaU4XgOQn1EomCaAZ+55GW0mzLUYgrjRpWmUBRn+T9fW3XpHfu31zK32KOJ06Q8wD6HxE5J/cTsdQc6+Qj51oKdJPd+qpmJ/3VyUFg1YKo8FZEdKAhIFUzlJXDnJgWVuaynDoOw6HDh8zPsmif362wBjHofccOk+zEHR5vVrRNg3D6DGuYYiKXdczhkhIwl++OD/j089e09YNrVHEYc/hsGPVLhl9YjcGWmtxKpH8QPSJfdfRj0PZ6BKVymST0Vbju4EYxAO878UzXCEBDrWGhdNcLxd899VzPnpxw/X5SqgW1mKVuNJYO33VqnD4pFvnhL+ryyjQGPEzRU8LmUaXFDPh46mySGaJYT5JRNRKC8dS6WLPdKRNAKhsxX1GW5SCqCMqZSLM40jpwjKqJPJN0e7WGIZhlECvstlU0eKMWF8aY9BG0zYVy6blcbdj0w90dkSod5nWKS6WFSkGtp3n7kECMJYLi9OKpoRaKQ12hGHMxJAZ+iD2l0uHs5m6UQw+0Y+Zxh05msJBFH9pHxOrxtEYiM5QWUsfG24ft+yHgPeJEEAbz9IVylG5YqyryGRZiHNGFzcHHyJZPCNo24pFY/CxZghJgrmsQidkR4uUcJU8j5enyy6hBMlICaMUTht8EiHS474HM4275XsxSp6b4ghBFjGjDFmXF02y0Mrr61J0n1itna4JairMVTk2uXq1MTI1i6foeHmNqUs/AQBOcV04rjXH9ebkQfr0OE5XjMnZZ3p95jXoWHznbxTf77/3hOQ//dnUcqiTf0/3nnYb02I2Pfb0N/nduIUgCYnWOrSuGINw5FOM9Id9sc0r3OoQRfzqh6MQMISTYUWZD8dSCJVT0Mcsp55SZIy4lYSMj57NrsOnt3gf6WPm3e09Sluunj2TNT1n6vUlQ8jsdns+//prHv7r/4YvfvUl+8OBh77nruvZbHdsdzt240h0tqTAKkJK7Pc7jBE6S1U3eJ9KaJp8vxICJHxhbS3LuhaUEtgdOmKechdkPa5cxf39ffFWlwTJn/zkU15/9TVGa/bbR8bDAaMV6+UZXT+yWqwZvYjSY4C3b9/QNjXGajbbA7ttx9X1BauzNYPPWNuQs+L88pqz83N2uw3D2KEQV5nlopndU0JMmDKJk7XB4ENCO0mhVKX4mqwQc8rgHCofk1FRWRD3JBSbcRhIIRJznBsi7z0JoX/aKRAn6VIARBS28N6ngv0UaS92kYWHLVSTglCnJNSSQheaEXqlCqWmom4aYk4YpZ+g7Ke++bNuZ7rvBImfALOUJiODyf2m0GhiIKdQitfpufI59F3H0PcMwzCj8TFGoayWybTYRDtcLfo7pfQcJqSUKk5kkRyZWQKuNhhbse97qrZlfdFwdnHJ2foMPwZGH1i0SzbbHa/f3DIGEcO6pmWJwceEj5n/y//1v+JHP/4Jd/cPdIOXUEUntqwpJXaFwnJ6zcueMFGcApW1fOc73+Xm5hn/7b/+Y1n5xPaHpnaQI2GMZK1pqhVOl+TaEAi+OFZxzAE4dB3DWDJqKgHCur4DFE0rwWqm0L8SCuMaOi/HaOqW7eBR2or4txtQJCpnMAlM7xl+9RXXF2su1mvOVue4dkkOI13IxIPQ2cahF5oqmcN2y49/+inf/va3ePXyBf3gqWpLTJF+GES3QMbaLCm7VcUw9JgUJRHXOPwokyiyw/8PTa053t7nrD792TEZ8bixn4D0qCd36HnLUhyLezVdKBO2NaH5MFUAMwduouq831FopbFGfMOHLMlxzjmaymKtIoaRRV2hgH4Y2R06jHMcOg/IhuNT4nHX4UPCJPFKrysnCaUxsut6gqp43HYSeZ9E6LM6O+P/9ac/5t//n/5PWC8X9Lt7+sOOy7MzHh+2gpQqWRh9L9y1bvQchoGYkwhJy8mWEacVH6S33x16tBF7sEpRhK0tH7+85pOPX/Ls6oxFXVEbhysiH2MEkRD++aQ3oKDwYKbwgeJQMNFppo5KK/GwnyzIMoKAhGEoCHh9rGO0Am1wiwbhvJbvt3BJrWlBC7c1l5Gvyqp4GheBc5kf2sYVpX8mI6Eexkqyn0pRgrKCWEE5a4uXuXxOi7qlqWrqQyeex6rnYX9AhcDZwmBUjass99uew5uBpnFcX6yw6wqlMo1T1KuWlDXbfeDubgcK2saxWFWcnZ/xuB95864n+U7GgmRShqqq6bqRYRihxHsbpbhe1iTb0g+e/SC2U/sxM97ueXbeimZBSbruYtFSWcv20BOSnMfiEJM5DJ4QRmKscXXFonHsg+Lx7o7W2ZKKawpdRZB2leW6mhpjSj88hEjrnFAXdCbmQDd61FZR1w7rDFhpgrQS9COFUZA37dBRlWKmOEBldUSSZ1GsXLcz4k6pxzmW1IIiyTlIRryU54uecm4+vYsslJ6nAMGTR8yryJMiO0/ve5zrHXuEuWs40v9OKDLT8av5P8dJ5TSgfLIWTceTj899ojWap5JPRb1q/l1+N24pFseOnEgKgvdybilNDFG4oTnPNBllrDTrhWo4nSPyIuWTmtK88nHfyVnkYTGBz5neR/bdyP1mx8Ej1nIh0azPWa0vaNcr0JrDZsdwv2HXj9xvtnz97o639xu2u704O8XE3o8yKQsjycAQPQYzgw9j8DglWi4pdo+IrtGKyrVUlStpjcLJtVpjnXCyl4sFj5tHCcoLAZ9K/6mkiL+4OBNBai+o7ebhAT90rBYLNpsd//bf/oBvf/gRV1cXtK0kdoeQUcoyDiPvbt9QaYMxFVpZCrsDayuUE4Q4xMBYXLnQ0pB0xTpRlW7eB7GhtVYdr5mim1FKitMJGTa22BZP57fKuLqeffFDEJQ6FCGnJYsOikyyZkZ1VWnEmYAmOZnkvVKS8KPiLzs1TDM/XR/FupTJzVSlQKHITCLsJPvv+520hCuluUA/ZQZM5+bp6wEzv30q9J9Qbcr+Nxk9jH0v2QbeF1FraRKm91IyhdLWipgV0YxoZFqapKoXHUlKs8BULhdNJHN+eVlQ7op2sQJj0AZUhJAGnj1/CUpz6AeMc9TGoU2m3+/41Vdf8/PPPuP+cSNi7JTmcDDKRDaEkkpKLhQsYepTwD9dmqPucGC7eSyOdlLEa8QBLRY9jFKKsR/Isaya8iEXb3zZY/w4zG5s8zqTjsnOMafitKfQVuOahiEU+9ninJOyZLTI1Bq0EqvTMWb2Y6AfYtm7NNbVPL+5YvdwJzUQsNtvyTHMu0PMkDGS6p4yPgTaZUvMmcEL6l6rhpTl/NfGyGuFImRWWvRyKWEdZW/977/91oX8NNx+8vI5Hzc98oyKz4+aN7NT9Aqm0JT5i3ivQ5hN6dTJ35Hu7hS1mu6ftkeVE0ZlmqrC+56YozjNFLQ1+A5tPStX83h3z8PjjhjBNY77hztW6zXKitp/LBG9+2HgfH2NRlG7iqpp+PGnvySPnmEIdDnRLhZ859VLHvea8/Mb/vbvfZfUb3h827NqK4iex80tf/B3/hZx6Nne32OMYdk2PO42RVhaYV3F4XCADJvNgYzhEAL3261wH3XGElhYw7P1gu9+8Iy/88nHfPTiiqauqawUZqokrE4xv0KpKUhCEZRa64r1mAZlyok98ePlm1ZKYZ0raEuaF7t2uRB039VYVwnlRYHSGeNqyJHkvewWGoge6ypQnhxE4GJKc2CccMBBQkK8GjCuIntP9D0+egTgqQhJNjabwszHTBkRAystNlA5sawrzi/PWS0bfvXmHW1d89j13O86Ghe5qWuc02z2YjP59e2BTRf49os114sFtXP4kBkGj1GBQ0js7kaabc/lecO3X12ybhpu73pi9FK3GsUYItbKceyDFLdaC8WkaeHV9Rn7MdKHSO8jd3cPdLdbzheVjK/J6Psdz86X1JUmD+BDJKKpm5qcI4+PB7LS1EEWcIvBVY5+9Czblqoy2BiIMTAEQaZiEjqVs0dO+ugTVicqI8JWL+sWYygTjwSV0lhEvJNj8T1OoXB7y7WupEkkgdIlRl2dlL4FbZ4nAzBT2ydurDWSnodWSF1XiuSpuJ5R8glJyyerxNTgc0So5hVCir58lHQfV4583IzlreaDeoKLz2vU6YEDs7T2yYhgmkyc3jkd69ObPj2e93743w2Y/M27yQStbJ5JkM6qkiKNVKz1Yig+46mkHx4jCBW6nGPzLoB834LSaaPF7x2xehxDpg9SxG8OPXePO1ZU7A89aMt3P/42l1fP6b3ncbvl9d0jQ7xl1w9s9h33j4+AcM2VNkStCEOUQolEtpoxegxSRBol2hid09RSSEGoRGTprKZtG5q6RgF15bi/v8cazbJtWC6X4qs+DkTv8THgfaRtBGxq6pqPP3yFM5a+6yRQKUPwgXGQxOd//a//lPu393zyyXe4ublm2bZYW+PHWJI33/J73/0OCkNOkgURo7y20pmUPHWzQO93hJQFQ5HkoCJUtqBM4bgbtFVyAit9LOQnAT7ChHZGJq85BqHf5YyrpJBXygiVdBxmvnQGhqGfgadBa5wz8ommRE4GV1XFUjqSin33BP6IcFoomRPwp4o+gxNUXX50OoFWMwLvdCUF4Vy0q3I8J3z3cv/0Zw4447iGTEX88X2PHPyUpGENIRCGkaEfCF7W61R48cdGREAu45yYUBgzF6hKZRIFqRbcrfS2ClM5YsnOyNrw4tWHs+i4rhrxZzcGTKb3no+//W0eHrYc+oFaGUwBOF+/e8cPfvQj7h43BayQxqGyFTH6Oa9BAD7RP0zXxIy4A9ZYsYd885r7u1vZSwrFUSmhLaZYQgozDPsDwY6lRrGyz5QmLmVxpGoWIiT3J6FYsvKLwHd32NO2LbZypfY4oIyRKUjwM4CptUY7g0IEz2OCOAScysTHnSSna8sHrz4gYEttlLnf7WkrByUjo64s51fX1O2ClIWee2GE8ppCwCihjOWciUkSqI1zpWmLoCUvKIPQa9JvVqL/Vq41cjueyN+8HTG3fPKMX/tw9c1SHEqRCfPOOQ+mp5GW1k+OZH7u9IYx0C5q1m2N04rXm62MgIwhJ884RCo18up6xbDd8Xj3yDh6rHNkoB8iF5ct948bDsNIREkAQcysas2LmzVkz89//iWX6xU/+/QtzfklQz+yXLa8+vb3+Jf/5mf80f/4nxC7DXdvv+Bxe4fScHa2JKfM9cWK2693DIeOi+tnjGEgJ7g4v5Ti73BgGD2LtuX+fs+oGw69p+sOLCpLGg+sase3Xz7jkw+f890Pbvjg8oxVU4vFG7JwxuCpaoNWEqoydcVTi2+cw5gKo+0sGvJJNiuL1N8+yWSgWizFCaJYeGmtaOpGRqoUZwOtUVb+SLFjiwe+pC1ODYV4vUgXrKzEGtvKysY0ynELNUqTnSPlgFXCs7V1KyNerQA3c9NDzly6hnaxlDCo0XPoOjZ9x83FJRrN2/sH0VlksJcX3G02VAoWxrAbInufGUPkRz/9iu3jkk++8wEvn12xbFvWZwv2Q+Cw7xnHwOgTb9/tOL9wLD+6YLPpGEdPzLkk8Xpyyvgirksh8bDZ04ZIZS1rq1nozGMY2RoYU+J+J762beWoKstXd3usUiwXFY2T5MTHxy2r1YLFouXQ9/hgcdYyDgeuzs459IHH3Y6UY+GvKtl8wyR6Eq54ZUtzpwtykUVcShaf6JiiZBQImEzrKghi7zeJswxZUPEyNTlftCzqhtv9yDRgTahSb6unSPXJeiGPyXgvPFQBWt9bZ54U3FOBfJrQeHx8zvqImKnTV8kn68uTpeh0BTquKlPHcVKQHwv+00N7f0U6PcpvrlYn7cEE1stnVehE6huNyN/8W84ZgwAIMQQWiwVj3wOy6YdRLHTluxAxqFi6JWKcNtzyeZVxvTGakKT4GWOkG4Og/VnxeBgYfGJ7GNn1gRFDvT7n7NmHuLpB1w2f/upr3t6+43GzlbTW7Q7b1CTkelRKUbcNWcF+lGPV1ohlZUkmFYAwk5Whrmsp+Ip6VRUwJcVESJCtptJnLNdLmrbh2c01m+2W1WpFVVX88Ac/oOs6cog01lFXlhACV+cXPLu+4aOXL/nlL3/J48ODhAHFiDGOYfDEmNHa8id/9mf86Cc/5vzsjA9ePuc/+Pf+5/z5n/0pXbfn449ecfPsA3IciUmRkkbZGmUsIBNTY2uevfiA7WbD/d0d+8PAen3GZPOYQiAroY54H2gWLaOPhOgBzfn5BWkYsK6W/fSwl5RQbVEFPCoKEgyKtm3Ld9nh/UiMXnjEdY3JhuiDFKulGDfWsFgtSTkimlsFWs9C3Di7FR33OsUJb54S3hSP3GNjjGSoWEntDCnKelOuwxCOYWNyLlMmCMfi3RgjDUVB3mPJT8kcC/kQvCQOpxKCVtD4Kfwx5XgEL6DwpCWISluHrZyEcgGj96xWK2xJnd3t91RVTV03VI1w+X2WJqCqG26ePadZLLm/f2QII03rsE6x2+zouwGUI6aBr16/oetHXrx6xb/4l/+Kr96+5dD1oDVNu8QYw+FwYLffUdeOcczyvQUPCpqqTMyVKkLacg2HVNyPxAFII7oCZ4xYzpY9f1FXQrUaR3SWcC7fBzzCLAg5oa3BOsdy0ZARem9VSWbBvjsgX18m68x+v8day+FwYLvdFmFsBGWkgJYznxgjPorAtK6d1BBhJFrLw3bL7cM9X715zWa3ZdUsWNYVTsPDbmDxYo0ywlDYH3peffCCqlkwxszD5kDVbrk8P6epW2IYpVGq6/m7CyFIMyGVVGGbIGGg/0OLXcn5yeb13/fYaRry1BTq5CHfuEc9/ekT3tvJQ1KeHTIURRw7pUxmoSVoBYP37EpqH8i4zlRGbBp1RgdPN4jvb9O2KKOxleH73/uI+4cto/eS+pkV+26kbWqWZzXeWfox4ocRtYykppaurHYsKw3jgbOzhpfPb+i2r3n37o6+97x69TEhKT744CUPD49s9nuiQqyc+o5IxiDq8d3jjrZd8W7reRgiMQ9iiRQSyUKl4dvPr/lbH3/At1/e8PxyzXkrybApBqyxQlNwcrJYU5T/ZZsUm62MVk7SV7UmIRHERmlMLVScECImalxVUdW1NFVKlbGdQTlJOdMFlVJWk4ugNoWCrBWLQ5WkoFcosk3kPIqTDaJLiEOxkguBFPMcZoHS2Kpl4sWiVEnDTZA12oJ1YIprhXUO70expGwqzrnAJ0EDnK1wriK9e8eb+zsWrqapK1bLzOIw8uZ2x24AXS346n7kdvcZ58uvefXsgucfXLE+c9yqWw6dIiQYY+D+1lO1nraVycZu16PILOqKtqnpDj1dKSq0kdHiCMQkC/TZosFay/1u4DBE+pBIBBnz6UwXI6kDHwx1ZTm7uBC7OCJVbckJej+K7/52g6sanNX0PjEGQQW1ylTW4imcz5jIxV6taWoaqzFZor4ziiEVClaB2O0YJTlTH6Bpiu1lJoRehIpJxoyxjNcqZxjHdDKlm8rXqVCdrvGnq0FIiLCuXNL6pAp/imcfEfhySpzQXZ+WyqcryxFjV09QdaG4UKYFxyng05WrlNXlPwIqAOg5s+Dp+vX+ETxtQ46Y8snvpqanyl/Sk/f/m30b+gO5Eu9vq6fNO5BTJiBTO2VMsRaUSWGMUaZcuUwLC2VCaY0PEZXgcBjZHzps3RCVoRs8vU9gKt69e8d239H7QHt2yfL8hs2h4/HNO7b7Aw+7PcPo8TGSUCTrpAkHrKtJMTL4WDzSJUPDFs2PNaYYHMTCVS6NcBQ3HWUNOWasVtTO0lRWkOUcGbtenDSamkXbkgrd4OLiAl3WQK0V69WSRVOL/exiSbfb8fD2LV3fA4r1UgSPh+6A94H9QUAG1MDo77l/eMTHRO0s11cXrC+v2O17ScHW0I/C2T4cOlShzjWtw4eAqxfcPKsIfuDufkPT1CwXLaYyuGbiuGcpiExCW1W+FxGXTu5Vy8U5pEAq08FxHCUlczJekE+wFLCZGL0U0n4gJI81loVuRYtjxC3kcDhgXYN1anbCHccRY63QhAqarcoaElLCFBAQwKeIRpB4Ywzj2DPpv5QWOs+hO2CtLdSeifOei+7LkKKabSKPgVQiepwoYVNGTi4aMmssPgmlYnKpSSkxjqOYSgx5YpKilKauG+H0WztPSLRSWGuo1o1oAcr7tG2LLnu5Mpa6XdCPI027ol0scc2SzeaA0pblsqFqVxzSnqSt0Hyz59/827+kG0Z2hwN/9ZMfs9kdqNoFddsyek/TNOSccc7StjWr5YJtCEXzYRjKY5SWyatzjpwgKo0nMUb55aYJx7JdEIPHVjWqcsTgSX7EIM+dE3h12Y8MmCTfuSIRx47V2TmuqtHaEgH1IBkAU9iYVxHve3wYyCljXCUThBgJQQLInHNCEXZWLDKnxgoJarRVQ4qBzgc++/Jrbi6vcAoMmfPlCkyFsWKvm6xlTPDLz7+g7w+slguytvQ+kVXAOUfXB3xIYkFeVazWC4bBC5Bl45wuHQtI+Zvc/n8Wu75/m9GtE0j+OGbmyVY8l/n59EmliJ+L9eMTpufOm+18OyJhlbOoLPHdoYhcUzHP1klRGcNF00jU/V6Q+BiDBBf4zPXlGV99/ZZhDAwhk5CEOkvk6oOX9Lomq5GzsyX3j3foqkKnwMX5Gcu2Yb8/8PxigRu2eD/SVg1WW7Sy9EPH8+tzvvjilmEYsXVDyIkxRBaLBY8PO4KPNJUEHLz98mu6kEjRE7wo/VXKfPjskk8+fMFHz6+5OV+xqitq53DOzuWB1NpGgi+gRGofPXTlTj13zyhVIoUVpoiIrKtwtZ4DWcQT1kph7gQdyGNfxIlTcVT+pDLTm753gUKIYYQYxPu/uN4YY0u4y2RzpmaO4LHCKqPMk/Lq5OXJWVyElBa+vA+eMXh8yjhb8/yFZXF+SXt+jmpqur7n7e0jqrLYumLdVuibM243Aw/bAxM8eBgCv/zynsfDyPlqQVM52kbT+1H4tlkxbDoWC/nsnLWgMuNB7DqXbUNlLN0wko1hexgLumNISFS8VYpnZw27PrLrBnwIHIZM5URkOs4UmUATE21dMXS7+brSIGPqmNDe4zQko0T8lwv3MGfM9NVkCEkax2EMNMaKwDcZdEgMMUi2QOE2ppnmIHZZJPHzHkePs07CXUrGw7brCRFJYpw8td4fzZXLfO7B57r3tPotuRUnC8bMY3/v0TmfrCXl/J8KZP1kwZFjOTWDOXrjnK43QsOZD70U79OvkaZHzuDGE4z9eFL+mvajECFLL5GPmMWxEzn9zfhduc3WfEoaOeHFn9rzCb91KmLkrJY00ZhzaZZKaA4Joy0hJUI2RAx971G2YghZmthxJGDA1Sgsg498+faW7aFje+jE1Wr0AtjkDAVlnr4H0YMUz+tyrurjCYjVhphjmTbJOH5yLhF9lniruwIspRhQVtP3HeMogn07DozjCIgP9Xa7lZ8phTWSct3vDzymzLDfE0PEjwKAOFeJG4dxhDdhdscIKdNa8dbuh4FPf/4Lrq8uSWTqpmGzfOSjVx9Q1TUpT0JCAVGcFW6vtRXWOLJLDEoVLrEE4LjCi7baYZ0mRHGrmgrzyfhgKnyNFvczkGZXoYv9rVyrWenielKTyYQYRDhYpsYTlVOVay1GoSMoLXxxKIS54yICcDyvSuGrihmDXHhHkCEV7RblGtSZE2OI402aA6GlTK8/FZoTJ356z5SlqDPJSAJ4lMZsorPKpEmQfl8QeT+di8XzXxWOu+jSzBEE0Bqlxf9dFa6/tQKuWetkfzYWZS2rusFVDdo4ada0oXYVWhm6biAEAQuSEuODd7d3bHY7docDd48bmSYrjbaOmAUkOz8/w1pJsN083DN2HTnK9HnVtkc9Q9EPqUKtSigo1KVp+h+LfowkrnlaIXoRXSiW8zpv5q82pkw2CjQoo1ktWhbLNbqkm+8PB5mEe48PHlcSWXPRG8yfr9JobVFkofIUnYH34xxCV+lafoeyLqWY6H1gs99TW0ttDNUY2B46GidZNmdXKwlt3AjYd3Z5hbE1Slt8lGt8uWjkPmUIMc801tnuW00zq998B/jNk11PCqbTkxtOt873iu/jI5/untPGe1LsU4SY+ckrnb532YTLYvr+L6jILJsKaxWhFOapFJOiucuQAiZl1nVNCj22siJ8CCKKcFrcRg79yBAiMcuFVFvDxdrQLlcMEXKS0IjDrcdHRd3ULBcLtDZsd1uePX9Gv7llHA7UtaNta7SBdrWgOxzoO+GmVVXN4dDNvDCJ6ZWCFODhcYePIiJJ0WOAZSWUmlc3F1yuW5aliDcTeqAUsdBhjt66k7SnfIYT/31yppkWuOkxmVJgSwjVtDhNyP2UCqu1JZULVUSKChUlkEK40oKoZ0rwgYYwDhLQVZD9nGTjyFEqGluEt5NQ6MhNPlk01fHck9k2ouRvxLNWVw4VK1SMmJSlY64r2jPF4vyCernCD4Hu8FN2Y8dYxD3LxqE0pDjIKLxYKYaYeXg4sNsN3FydUddGkBmjyNGWiOYRa2Uzs7rw0LUWIY3SZJWJWVFZI99nTuQyZa2dxRnFutaobDmM4GMkhCzuMaXcjEVkJJsKqFSszcp3rICcE0aBM8IxDVGcGiTRFSbRZYqinejHwLp47BubMWMmxYzSIqVSWoHOKBVRTCE9CWIi60wKgcpWhUMKg4+SIjsh3ifX7nzxlwnaDIqXDIlcRIxHjunxJU4LajlNv9nKH/ntx/vTfBhHUelxzZhP9/nuGZ2f3v9kQzmCD2W9y0eU/sl6Nf9Hrif1Htl9YvUfxZunP5TnZJWfrLW/CzcphJgLspmDXP4ryLaaz6XpnEgpEbw4LIUkr7FYNIQUSMqQtaPve3KSbIQ+JLb9SFAyNSR7tpsHvrrf0Y+eMQQC4GMS4V4uSH+5RCQ3bxIlltMzFxHjbNNbrsvJqhEwOJQSmoczWix2lSYWC02jlOh3KOuiFjcwZyvIiE1kyjR1hVGa2lW8vf+S7cN9aQgEpVOIFWTT1NR1y929kyI4BGkyjRGxsBq4vb8npsQwDOy2Oy7Oxd8apbFWk7OXqa3WEv6ThDIp6HigrmX/KXUYrkxDrSkJoiZiKLRKNFofXUtykj3DKGlUdBK0PqXwpHG1JY0aKB7f05Uj/5UgQWkOVJICMKaIKVoLo4tLTj66y6gCRinEHnE2b1AKnfXT4hvZ06cLVxrO+bcoh3l0aosxHhs+rdG2oPMTrz6LQ14yhhgkpVYoJnHm5Ecv9BgfPDlD1/clKEuKdW0NpVoFJYm5UMA5Y9Haoq0R956yT1snQFbWmpwV7XIlossQGQbPen2Gq2pizOzuN+SsJMl4FDrm3eO9MAjGEbQUwN0wYGLCVo7lesWHH3/E5fkZVmv+1b/8F3S1IwVLTp71coEPY/lcFKOP5FIf6GJHnOc6T37/qnJM9MxKa5w1lIERkz3CRKvLWYreJG+AcpbVcsHF5TnGVey7nv3+QOUcXd9x/yDJxJRU25wz49CjjMVYJ8DWZMiRE94nxlGmzE7bOUcoeA9RGquQYN/15LpGN4Z9P0BOnC1bXLWkWizxfYepapbWcHXznJS85BQEz+NmR9M06HIMKUZGH+bpkPzWqjhvncJAf/3tN/eR/2teb/6Rmreu4x3q6Wan3n+tslEe7eaYL6jTjVaV4m1ysnmy9wG1MTy7PmOz39H7KGKQmGbqrCZD9JAUlXb0hx2rxZJd/8gwejSaZdPwg59/TTeK3ZKyBlNVOJX54NVzUkhUWRaRPgQiFcPguTq7EN/WcaTrDjTqGbv9I4fDjvP1inZRkVTi/MULvvzhpxhlaKoKbfQcdpIGQVqMlqbncOjY7jpiFERWp8TCGV6cr/jOyxsuz5Y0zmCLf7s1Bq0tlDAIQIJv9PQdTAuSwVQiHtJW7Brn4J6CuGeyvJ615QKCrGXElycbv2khM0YiubMgHTlG8ujRtmIKrCAqgdOMJuUsiH9ZmCfXBCeraZkiyAaei82omnn5Zj6BVD5e4ChJA7R1S8oBUPPx1yiij9AdaCrHUhmWq7Ug2CHziy8+52G7Zex66iZxuW4gthz6RB+k5Kobx6Efud90+JQ4WzcsFkI/ShiMdgQfi9ewoqocTVMTUhGAkTFGk3xkWRkGEn0U5bzKsokMvRcv20oamW4cGX3CRzBGXC9EwBO4f9yxWjhMmiweBTErIBaKEtdtxMoNo+W8ypqsE7pYn6WsiUH4u0ppnAVnQAeEc1ssUJUCqxOFBSrjYpXQSuGDZ6krtNVEND6eCL9yGWtMHftct06FfT6uHnO9/F5TOTX2BV0TnCfPPGlZm05e58nzT5aYJ/ccy4TjMc2PfrJIzTT5b9xO33u6p2xWM8w+95lH1PnJMRRk78naevTd/13ykXdakUPA50ycBPOTiM8YrHbA1IxpdruDoMIYYs487vZ0w0hdiQ5mPwSUqejjyLZPVMtLbrdbdl1PPwYCmtuHrWRBDJ539/f0IeFjkqAcYxh8mCeCEzLoRw85U1lHXbeFBpHnTTbGkcl5h5yJQ5DrdtFSVxVNVUPh4SbvOYwjKUXIie1mQ9XUMs3ykQD80T/9p7x48QIN3N7fkf04J6ZWVUXOmaHr6XMUf+myJvpxIHyeWa7WQGKxbHncbIgp8u72rQBQbcOzFy/ZPD5w//iASonrywu++OIL2ramqWtevXzOH/27/4T1egWq0AnQYjjgE0ZXZCX2fmPIqDFRNTVjjISuZ3V2JlOFJCjm+vyS3W4ne48qTlRZgBalNM7VDN1h5oOrLLuPLU4+IjikOJrIuRNiQGlXJiLqeJ4UlDTFkRwUxgr4MGkVJjtiskwQJ4R7CucBuf6MUieNZZozYVIShyNgPldP14KpEUVN1/HTazmGME8ofBjFjSZlklL4GCSlPoOrHK5ypEHoP+JiNBkGKKH7uLrQf0qirtKszlaEFPEx0qzOAMlCCUNguTpjuTpnv+8wWvHd736P7jCw3x/Y7Q8c+hHvA/f393z55Zf85V/+JT/7+c9ZrtZcXF2yWK15/e4WH0UXsjpb80f/9N/l5voGlROPd7c4a2gbh1Uty9ZhtWHdrqVgHkeCD2x3W2m2rQRR+pTxKeBHSe3dbDfUztDWogsjiCiaQgdVSkTiVSV0re2hE4QdBdawqCuuLs5Zrs+IWXN2cc5ms+Ph4RFrLMtVK/78xZuflMvEKDJ2O1AicDXWoo2mKam+WkkDppRMTkKKko8AhKzpfCQxYFcrdqOnbhuGmPn0F5+xubvle9/7Dp9879tcXl7w+HDP2HeA4ePvfhdDMY5QmqotmQyFNaJ0FLORso+l38xG/reh1pQS/WTzPFV/H0kPE+514jIzv8LRWognP1MoZcqQW82WhXDcREWlLq8/6eZUQYozmZfPr/jWy2f86Q8fhOeYKeO4JGI6FamMotaaMI7orNjt93z1+g111fLBixdcXZ7z5l/+ALQleBFZRSzaZK7Ortm93vDqo1eMyvL69R2drlmfL7k8v2DoB0bf09RaRIGu5tC/o2kq6lQRU8JWlq7vOVs25Ojpu46mbbm5WfLl55+jVcYYRT96vnh9y8P+QLYNKSYqo7lYtXz75Q036xVLZ6m0wigZSVXOQZai32hdBKxS3GckiEG0quJuMo34cmm2lNJkrahq4cEZZ2cE3jmHaxdkZ0pxLlzCDBiE+y7IVeG0mQiGI8JQvqM8eJrVCoIgubkgG9KoTf70RexYbAylWDezRdi0Us4SkKlRVMJnS8X2VDct5uqKGBI2BFRbEwbPcDgQ+57vf/JdtDVcXZ7zxa++5Ot3b9nsN/je4rThfK1ZJo1PYiM1+gFrxb7uzdsNRisuL1a42mArw6JqhVpy2NMNHSqBsprFYolFPu/KyQSotobKew6jp+tHEfIo6IZIJBFL8djWjsMo1CujoDaK2gmP9+uHgXVTrCYV+OgxZKrisaxK82oshChcU3SxxkuSEpiSXJHdGOlt4Lw2LJykW276QM4BnRMVBqMtTuUifpUi0ziNHzx+HGitISvhiT6px4vu+VS4KeXC8dqX733u33lS3HNSVwu/S5JbOUXRTkCAghhMrz65d81e8RO4kH5dWX9cW5C+9Hgs89/ye6uTevLT6a/51/z0feHrEec/LdhPSv3fOUReGhyrNNEcKQniEX90NAJJH93tDoWhp5ElRhCwXe9ZrS+JeHZ95LEbeXj3QBcD2tUkZfj63S3v7h7wUSzhMI7gByhARTeOVHVVqDOCWDtTUqazHFNlpTiZpgR9fyD6Urg3DX7sxAnNGmpjCV3H424njTRauLpJLHatMVSV6HeUtlRtg0Hzb//qr/jLH/ygoIWjmAwMIyl4vvCeZlFztl7gjIS2qSR2i94H9t2e9fkZy6phsWo5vzzn3f0dm+1G1oNoaddL9v0BnQI6Z97d3bPZPNA2NWdryUT54suv6Pu+FEyWvpfiaXV+IW5WVpxzjJX8Dp8iKStQlmH0jGPEuQprLJvdjtrVWG3FQnMcp4sXKEWosRDK7F0ZQaWjJH8bUwECCKWc0FmRjpeEUD+LocO0pmhdnM+MhE6JlzuyxpGPkvhSs0zUn1OLR+99eb5FKTVPxafzVmtdrCHLFGCyo4yJ+QDVkRLqvWd/OJBiEM3Svp8y5VCJMjUQtLwfevpxLOi+UGMSuZi9KDFoMCVwSmmyElDN2ErSblMiomiqBVUrzYoEKWlWqzUpZXabPS+ev+Sw+4L9ds/YDfz8s1/yox//hK++/pqu23N5c823vv0dslL84Mc/wdQtf/j3/y6ffPJ9PvnkE9Zna4xS7DdbAYhURueMVWCcpXaV2Jf6kTgOxGGADOeXF5xdXfOjn34K2grdV0k2zDgOhJQYg6etHXXlUCnIHpUTtTMYAtOmuF5WJAwT3aYyhpurK168+hDXtuy7gddv3vL27TuWyyWPm3uW7YKMTHse7x/oOjGmGMnyOZLJ0eMjc8aB+Pj7OdW3fL1kpei9J2ZDRnH78MjZcsH99sChH7Aknn34MeurG5RrAFsc/aQJrJxFI3a7+0NH391yeXkpjaWSmbct9c60Pv4mt9+KI//eNPuvf+z0hLLRPuG7nmxxqdAnpn163u5+3XtNC4I6vYwztTN864Mbvn77lt0gY5Qp3l0hHDJDpjaaxskXF0LmyzevOewHPnz+AS+fPePPfvhjdkPPGBX7IWKco3IVq+WCx8cdVy9u+PKrL3l43PG462nPbvC7O/ZVImqNdS3r1RUeTTcEnj9/BcEzdJ7V+ZLu7RtqFzEqoJxBWYvPmhBGtBIuXAyB7SHw+esNAQ1RLJDWleX52YJvPb/ionZURlNZJxxlq4/1QJRRoiw0U/OlMc4WSkv5XnJmomPImEd4dbZ41OZCt9HGoZYrgtGSrqun95KRKlAoKHkuYLSrgYxOGYJkdCpmsT45S5OUkmc+V42BWISYOR0nCCmDiiQFZkoNzSJAO4KwJdQnJbQT7/k89MT7O8LlDQaFaRq099jFgma9JkTFR9/7Pk0tG9rZFy2/+OIzbjc7vI9UdY1Vopq31vLyxTU5w7t39+wPkWHIbLs7bLXDasPV2ZKzdcOz63OU0nSHXqKbx0CI4AP44LEqYYxlZVvapmZsPbtOEK+mshhtCFmxHTxjFBpYHyQNM+bMwWdapwlG89gHzKhorKGqhRY0Ro8txZLTimwN2Uvohy4JudZScgkkbGfXj2iVqKsaV4REOUuaXlCZGA05a87P12w6T0gBkI3OuoruMJTRrsYqy/jNC3cuT7U6afiP+/uvXVtmSt1UdGdxGDhSxY7Pf1rMP10ynrz2k3r71xTKOR+bismvvBzH+4/+Jgnw/Z8fAQ31a57/3/XMCcH/TceqfxNuE1UO5PuIScbuUAolIxuZKp1fmByTEHu4wUds3ZB8lCJ28CQMD4eBN487HnZbuhjJ2hIzvLm7x/vAGBIhZrIWdHMMAZ/Euk+KqSwGCimAseJ0giJrJU4c5fhICWc0bbtgtWy5urjk8fGW7rCX9SoG4jhirYGcSdFTO42xbt6vsAZiobCUfazvhWZpCodbikaDNuKWVhlBto2SIkCcfzKxclR1RQ4DxrUs12tuXjxn8fVX4no2jIX/H1ksW87WKy7O1nz52Rf0hy3DOHDYKx43G37wgx9wcX7Ozc01f+v3v4/SlowIV2tXs1iuJa3TD4AiRKiblrqu2e52NO0SBYQQGXpP5WpJfS55JKlY1lJ45eKDnlERlMoicFcGqxwuRnIRx040jJjEG10Ves5pCJPJCW2OMOLsYY9GIzaU2hTwsOgzZitJKPRHxMGnFOJTqNFpaOUpH356/kSxAslZ8TmTtZ4fb4xGK4uzk2VinAudlPOcmu5jAKWwVSX7sDYFiFRQrKB1mQhN1BqlNSGLk0tVWUxVUVfNvBcq44ghi4BUeKL84mc/56uvXvPm7Tve3d7yVz/8IQ+bDTknrq+vqWonltLG8nt/6/epF2t+7/d/n299+9u8+vhjghfWQGf2pCTucqQ4TyKsUoQo1tI5iNbh5uKSv/eP/jF/8Pf+kP/Df/Z/5O/+g3/I2dkFISb++I//mP/kf/Of8LOf/Jh/++d/KhNtkjjUaXCmAJWIpasuYFRIeabDDUMHOeOcY7lY0SzWuKphtVqzXC7ZbB/Y7/YMXUfXHRgOldidGo1SgvLr0vCREuPQg9KzNiOVxnmyAJ0S6LOPpJgJWgESKpmoaSuLdjUhZQ79SFMHFss1/WFPd9hz9+4d2feFh6+oS1Kwq2qh+5ipiDf//3GtmfpadVKPZ4pB/4TCPxlxA6QyVZ8g9CMGN4+u52e8J2Oc9081FwHvb4VKKSrrWLY1D9uOX717JGe5MEkJkqSaKmQEV1lD4zL9YcfYe/bbgY8/fsFiafn8y8/58U8/JylLHz2urmkrx6LSVLVhdXbG5uGeu/sHfARXL9hv3qBCIOsLbO2onEMR6A97KpVIEfp+YNE6Ls7XfPWLzzBomsWKjGHsRva7HdfnFww+4mNmcxh4c7fhftNjdI0zBsvI5aLhxcWay2VN7SoWTUtdi+LaaonkDlEKUK0VIYgLiasMVdvgy+Kki3A1hYBpKjlBjTQVyllwFbZw1MU6xKKqWniX5dvSMaJiJGtBdpU2qKyKz68U4SrLZq1nNLaUNUGEStZVZAXJB/neS4KboKliMyZ2KEleJ4vYiJyLI04GTRHXFOOmCbGoCqIREiZmcgTTWJK1aOtQxqGzYmXXaC1irhgi1lnqr77k7v5RwhusobKaIUV2m1HEPqslTVWzOwxsuo5xGMBVfH37yNe3j9SV4+Xzc15eLmjbmmGI9EMgZ4MxNYf9FlnXxdN91VZUJtMPgcFnBj8SM9RKg1Ok4DlvHD5KrkHnI72Xzaupa1JKDDFCUJjKonVVePTglGZpLGOIzOmkSaZfSklXNZXEg49su5GbZYUbPEYnYoKIJmvDZnsA8xZT1SjTTspDnK7KMnK8dlMK4l4kwP1cuM91sSpFsJqu+3LNn6LmJ4X6EblW8L6Xi3rv8cc7T16vTHi+gXC/j8qr+R/55P7jdLGg9pNZsyqFyMkKVU7g4+uevOWpC84p2q+O8P+M6sETc82/8bc02feV7z5FocBNRW7Kx2JJKc04eHKWIj4j3NTGteLoFHr2vSdr2Bx6bjc7HvZ7uiL2HENks9tT1S1jlFTIlGXaGOKIjwFbV8QUMHNDmedJlaIIcmMo/uPi+b1ermnrmvP1mpurKwyB+xQZho4UAiolaid0GI/83VViwxiTUGnQIkqPRbSbUWgjAMqQZJJsrMEaTQ6CZk85a87YYrurAM1KWzaHPZrEoq349rc+plrUjCFw6Hpu7+7Z7YSTu1oueX5zw+bugeB7UvDElNg8brh9+4blcsGrV694+fw5z58/l2I+SRCOq1vRE3Qd1jopul1DVbf4+0dW61pCnYrrlQRhSWMimqBAKg4vIE2byfLbCygjYkOtRXMQg9g55sKBTzkTU0bFhFZxtnfUZvJll4Vm4q8rHZlEg1oXr3Kty1ROrujJ2EEp0TqZbKaT84l//BOf+JN/T/ao2pgySTAEFeaJgdYaZx05xznXIqfJnYe5kcuIAHOi1EhDKwWjEusy8U5XBq0lqNI6Jzx4ZTGupm5abFMX2+BSeBpH9p6xH0vwmOXTn/yUN2/e8e72jl999SW/+PnPqdqG9fkZN8+fYa3BuIpmseBb3/sezeqMlx+84ur6hma5ZOgUhCA00WIjO6W36yy2ojmKExIpYrRiuVjw0Ycf8Xf+zt+hrmv+8O/+XV588IquH/jTP/1T/tl/9M/4503Dj3/wV/S7Hp0jxhbKncpFiyIuQ05pAeantVNrQfSj0OGsqyTjp25ZLle0iwVDf+Dt27c8Ptyzfbin30tRPy3MfT+gchIP+5Tx/QCl6Qc5F2JOqGwwlEY7Hycv2WryMJxMhCyH0fO4O5ApdLO2YbvdsXm44/72lhwGmtqJULfYr1ojKbnG2Pn8mQLlfpPbbyF2lY3wCUr03/cm5eQ/5b/LPp2fbGqo46aV81NsbS73T/f2nDHFY1XsJjV3Dxu6wU/XdDnWhNFO+L54dIzkAQ77vaAKC8PzmwvGMfD5V2/Z7HsCgj5WzkpUr1bYSsRE79695TAMJFVB1Gwfd1ysavbdgcvFBZXVjGPP1dkFfuw49D1tU7NetoTdAQU0tWPbJw5jxvtE6yyDF8utmDL7buT2cc9ujJhaoVVmaRXX64bnl2uWTUVlZbJQTdx4JVaRqJPpBkARXkmdPCnhZfEwTUVSwk2cxDK6adF1A4PH1BXZGLJz4GoRdobAHDlpjNAmwohKk00cM/1FZaTYLwKkY6roMekTbdBGyqScJQSDE0SDrEmqiDuhiIzSk8V2agCVlouelEhakYwRBOywA8TCCmPkGK1BVRX0A1VdcX1zg0oSIjap2Pd9TyziOsbA1api1wdyStQW9KrCWIUfA32IRdCqGGPkV28fGftBGsHWcrG2GF0TUNwaRT8EGaf6EeM9poxyjYNxDMKvzRBTICCLTKUVqtLiU+8TPiQgFDpCphslKbi2hkILRWWorKHSGp+m0I48F9PqxNs95sR+8DRWFpXaZQ5jxKdMKI4Cu92BdgGmcegqzYKkpBR+2sSVOUG1p+JZHXv5cpHPaPt8lU/Nuwg9Ty5+nhbIJ+Wtem+dmKpm9fR5sqb8mklfPnmTcuHkqbBjKtKnFSifXFjTgakj5K/Sk2Oelsbj8WWOy+A3NT6nS+nx1/7NFvG/KTdTnFym+cyEwh85tREJH3KIBsKSkICnuloIl71QbB53e6hatv3Ithu43XeMxZo4ZQjaoNEkJXRAq2WiWDUNhiSivJwhFR2kLqFVSYoxV8J36qqispLVcH15iUqylm0fbqmd5WK9Yq8R69fW0VamWBE2aK0lpTWXgiRLSE0qSKv3EpCXUuIwdAxdR+0cVRKaIznibIUQHJM4SyGWvsYYnHXY6oxuHAljhzOZv/MHf4usNN0w8vbdLX/yJ39CHAPbzZb721s2D7coMsvlkovVkoe7Ow77HbtNxdgPPNzd8x//x/8x37u64eLinHEc8MGjjGO5OgelqEgMPvC4FRtPPSOJhqvrc5oSO+9HSf621jImaYZSiGUfMoKqR1nrrBbk3BbrSqUt6DjTVmJpAhSCmGelyUU7RaE/KW3Q2ZWiqpg0pEDIGqMmuopcXdOQT2uNLc5upiChE5VmcleBUtCFMKO0s/uKnqx4w2xHactE3FqL95HD4TDvXUcDCmbRbkTslrNSJzDFpP+SRjZn0Npiq4aqbanrhqwV7WrFYrHEk4khkUloDU3T0IcObTzBd/zqyy94uHvkZz/9lM8//5xtsTuNhb5qncXHwOXlOc9evuSjj77Fxc0LqrZFa7FerZsaFYXPn7Po6JarlZBcUqTbH8S+GoXOCac0v/rsM/4f//f/G3/yF3/Bz3/6KT/4y7/il599zuN2x7t37/hv/pv/mh/96IfsdjuMD9hGXOsUiTAGFlUrotQUCIMv17PDmBpb1ei6JiVphpy1KOvQVnj9xlk08NGHH3HYbXn7+mup/1H0XSff6RgYxlHWYKPnqQ5KlWuw5A6kLPk1xgm7QYljEClRL1rG4Hn38MjhcOD+4Z6zcn3dXaz54pef0u13OK35zscf8vLFNefrNevlgvP1mrpxuKqai3lOgztPeWV/ze03L+T59aPeaW86xbaeiF2fPLLcl082xtMNvvzjFP+ajOQEJVFzEV9Xdi4IYsps951YYamjSNYYEQ2kHKlsRqeR0AWGYUAZy9l5g3OG27str98+iuNG8Ql2RlARpcQSaRh7Bj+SlSbkTLffzwJHSFRG0VSGnDTNoqHrtqAVZ+dr1m1Nv3kQdX723D/u6IIU4W2t2Ox2jDEwjpH9YWR7GOhjZmVkPLisLRfLmvPlgtqKVaC1WhYeBRP3z5jpUxSvW+XKaGYusAuiYEoYQkwoa4oAyMjiqWSQpbSBupbCXmnwozjPuFIgFzqN8l5SzTIwCy4Vx9jOgoKkeKKvSHOxN51Zc692Um1JMt5R7JjlqoIoNmVWWSnSUhKSUEG6Ka4FCi0bM/qYMJtLIaHrYt1lWV9eSjM0dPNG+bDZ0o9Cj9GqY4xJHAiSfH5JyQQiGoMNEp4UsljljaPnMFTEMOKjZ9E4Vm2Dq2pWyxZrPcpAN4yMo0cDzpb+SGsweXbwGBWQIxmFVYpFZYgxMcSpmC9XT86zmKpyUgjknNA6SrOXxHLy6K88ffbla8owxsxuCDjjcMagtCBh0iBoghcxoHYBQ2kOS7EbCuKqjVjMzWtCngri04nbycIBTLqHadr3xM1qfvgJev1kveHk/nzymnzzppjXkOOapeY16Inz1nsuW8f6vTzr/dd/D4CYQYcn/87feJ/p/vzeCz6lIv7Nv0269FwSFYFCyRMnlr7vUQhHXWvNMERiGtG2IivNLz77jJevPsbYmoxlsz3ws69+RhcSY4akLPtxL5+jlimSz1li6LX40wfvy8QrUzdOotWNRqMLGDKUFElxpVqUiWdTV6zaBctFxc3FFYu2xVnNF599hu92VAbUskEpZF9CkNemcTgrSc+D94SYWTQ1g49EH2iahg8//ojNdsv9wz3Pnt3Q7bZ0/YEhBc4axzgk1m1NU1tiGFhUlZx7OZB8wiiNJeF0praa67MzmuUS5Rzf++R7/K3f/z5/+id/xue//Iy7N29YLhYsqpqLsxXPr6+pvv99uv2ezeaR29tbvv76Df/Ff/Ff8v3f+z3+/t//Qz75/veKb7uhbuti3wcog3UVF5dXLFergsBJ0bHdbsW+r6oKxzjjnFx7XkmRh8lMUxCtLDmLo4uyBh11oYZaUhJqxREl11LbxyAAlZZU8Ll4dm5+30QplrMvCDjzdWatmS/BqegmC2o+Ja7KVnbci6YifKI7nNIeJqeb0+J/aijquqYeRQQt0wQpHrte8gRcVbFYLIhR1uc87dcINUvS3mtcVTzPbUXTLNBVRQS2fU+zWKCcJY2yT1tX8+72V/zsxz/li1/8ktdffsVnP/8l3dCjreHjjz5EOYsqQtZvffc7XL94zvWzZ6zOzmkXa2zdFAcksbEOQ48PnhBE+9YdDmANldFYrQTI7ANk0XShRWuxfdzwsN2zWi75kz/512SlGYJ83/+n//w/5/D4SLfbs7Aakhh41FpjNeRxRNlS71gjnvTKEAs1jpAZhoG+H8Q4oyQPpwR13ZKCZ7Vc0jYNpMSz62t0Thz2+/nz7/qeMXjGJHtlyFNwXRa6i3XEycffOLFijVFE7CGUPUsmEZvNBoXsl62znLcVvttydX7G9fUVl9fXfPjhx4RxeBIylmIgKQXFPz/nXJJvfzO1628ldlUne8+TlPJy8k33madPmyt9cdg4KdLKz2cteCkuJkeUIx7GfFHlnGlrR9vUDMNIiLnYK43SuSaxE7JabABTFDRjWVtM9PR+IKZIXTkuL8/Ydz1vbh+5e9gxxizWR1rNcfFTwuh2t8O4Bq0N/jDSdx3rdsEYRtbLFa2zLOqKerEkao33kYvLCy7Oz3AKHoMUY/0Y2G0fUa7FugX9MHD/sOMweHb7nt1+YD/IiLhyFpsiq6Zi3ba0VYUtKIQqx5ZzJuYgaFWxOlRaY5SZnV5iSuQpHU8Zaif0EoUgyRNKn0MkhV44ejFKZ20sKkTibgfWoGwraIpS5BhRKYkl29TqxVwoFPpYV+VMDuJIk1IsJ+jkIZ0gR1RW8/hdFaXSFLYhC7aUh9P4NAYJvtLoeXFU1pXHIUJaZUiLmuzFhjKqwp8cPUoZsU2zDldJiMXF4YoURpq2oW3esdtvOXQd1hre3d1zvjDC1lOWMYqzkHWuiGr2dOOIUTLmXq2XDP3Am/s9Ke1YNDXnZ0va2nG2rFg0FfvBs9keGPqRfS/JdkJSUWidWVpHFSVGvfeRmBIL50hBGq3OyxRHKYUz4kAjNBrIWhNUYoyBVeUwWhU/XZi8vCld/6yQz4p+zCgnDYJWioik0wJopYVvWWwv9YQuTeNq2WFRRsatc9laGrwnAPv8P1k4/rvq7zzfmY/F8vSeWT1Zhya9xelU79gATD+bflJK/5y/UZTP/1bH9zy+UZ7fQ6njGnZsAPj1N3X8fed19PQDydMk4gQx/B0q5IWKIAJGH4SyMlFMhmHksO9xVU1VZyqKIBLxLg8xEZLCJzgceh63Ox62ew7DWAr5zL7vSVkVjrIIokHNKavaGFQSH3TD0ba15FLLhNe52QbOOSMhSKsl69WSy7NLLi/OeHFzw7JtISf6ww4/7iEHrIGcAjrL9acMwhWO4jGrcpa/F1tYyJydrflf/S//1/zwxz/iL//qr/gP/r3/GT/79CfsHu4xOfIHn3ybP/6v/zkmR7SWcCmjT08MCXyzWfY6cqZpGuq6wVS1TDzR/MEf/AGvXrxkv93y+O4dvu9QOVMZjTMGt16xaBrO1md89sUXvHt3S9/33L57R3fY871PvkfbtFRVLandpXH3IZARr/himofRhqqqKOZrxBiwVqGN+MVrbfBjoTOYBNmhEJBAPOwtKQZMtOTZQ14R41M0nAQ6H0OXUkqomIg6HrUP5RzQ9mQ9Ks28Nnp+Xgih7Kd6Bp4m3/H3efITPx5K8Y5QMmQd0VD2GAkzK2J8rUgxlyK/rE/5uE7N65EuvVBW85RBGyv8aVeJELY4t8WsqKsGq0RvobIW04kojcjm/oFf/uxn/OgHP+CXP/s5D7d3WK1ZtC1V09C2LdWipVksOL+64IMPPuDi5pqL6xva5RJtKgKUgEehS9V1TRgGUBLYVFUVOXiSEhcWYwRctFqDlVqkzoYRKVQroxkPB2IuU16t2T/co3JitWyocqSpDJVGLJS1RnBDcV2bkPKYAx6ERo04TrnKoYw5abTkezOm8OC1Yb0+4/L8knFyr1GKvu2KPWiCCGOQjJuJcppSEOcmhA6VUkBp0X8Yo+bmbPKnE0Q/S+K8isQQefH8BS+e3XB9eU7bNFhtOPQ9OUfszc2xcM/imiRUhzw3hr/J7bfgyD9FxI670HsoW0H51LT5lp+n9zZUdbKzpwIsTh/e6f417+Fl03RG8/zqit1+JwKDmIRrfQJ9aaXmsb8i0ejAQkMaA+Mw4CqFc5rrq2d88au3vHvYcRhGxmRYtE0RWYBWGVcEWV++fitFbPYyEjWgXIDouDy/ZtEk2kqxbGt++dVbbhZLnq1aGHu6EFHOcvvVWzZdx7PnN2QFfhzJKtP3A4dDZnsYeBxG9iGB1dTW4qJnvWxZLxoRT2kZ+6YsSKlKsmIqfEGSJLBDaSVetEoQ3BRjyeBQxBDFhcRaDvtOwiTqGu2FP1qvLqnqVsJ0hp4QPdrJKEmPvniIK5IfyMMgnD2QkzpGkg9ibSkqkiJMKkW5ZIDOBZVwqCXNUTj1cl/MohyHjNYZMHJSKYWpioVmRhoDZMPIPdR6mhhkyAE1KlTn8ShS28hKud8TNltS1aJqR9LyWouzM/Z3t0Dko5cf8OVXin7fc7M+48XNFV++fsNudyAkT20sLy/P+fp+SxoTzy+vUToyjAfuN3u2b99yfnFOe33Jpht4c/vAD7945Nl5xYdX55yvFiwrR3u5ZByMeAr7gA+Z3ke6bsCHzGrZSPMVE93o2R86LhcVKwz3+8RuyDItQIRPPniSjzgDlTYkFXnsPZVVQqUpDZQurkPTgqEQ7veYMrY05brwXEMGHzK1gI0leyFgc0KVhVQVexjxdY5YBSihAh0vzUxSp9j8cQ05/u1pwTwh54rTdSEf750h/NPC+ATNPoXJn6APx1eZkjnlDafj/fWI+Kw1mI9u+tWOzcrTd1HMuzcnn4Uqv/XU9E4/fZ+++Dtym4qbqZBXhUbgfaTrejbbPdp0NO2S5VLhmiVZiegypEREs+sGDt3Au/tHHrZ7xpAYQqSPgnhjHSAUt5TyXGRRHEKgILFIUS37hBTzVlGAALEmrJua5XLJ5cUF5+fnXF1e8+zmiufX17R1RYqB+9u3PDy8I/gBjSBoEjUvrjXRewm/KzazAunlMhkUasJHH33E67fvWC7X/MN/+I/RWnH39jU2R/7RP/lH/MWf/DGh20FJz9Y6nVw2BmMnEwJpliSNVBK7lbU0TeKjj77Fq5cfEP3I2y9/xePdHd1uR7fbMRz2c4F3fnbGfr/nq9evuX37ltt3b2mbiuVigQLOLzSrdk1WYHPGlWI3BIm211oMCRon0/IYY8mx0FjKZCSL6F9ljc4GZZFCPQQJBLKaEMqUOJaJclRFT5BmIEfbY9EN8v+URRCbUpJUapXnIvRU7AqnjX0iTWETmjkI79RLfkbYnyCZx/eewqum94jFEWeaTEtZVGx0pqJdlRAiJdbN6Ul+YnlcocNqY0UIW0wpjLFoU+FshdKqaAgiKkTyODIcOl7f3vLpj3/EZz//Oa+/+pL+0PHy5UvaxZK6bXF1RbtYcHZxwfX1DVdX1zSLJU3Tiq5DHTMTJuCnqip6I0nxVVVRVRUhSFAlWWjORkkAYdby/ThV9vacqRTE6AvPXBoflQr9s7K4DLUFi3jSWGukFjPSTIRS78WcCeRi/Rww1lLVtejqlLARKACfnifTco5fXV7Q7bcCQubEoqnxQy9gIhk/im5m+p3D5DOvyvaRpNgWsFS87JuqQmcRzFuyOL0VRH65qHj54gXPr69YLxcQAzFIwjFZLJy10gKCJmkgVaEmTyDyb3L7zRH59+p29WSfU6c/eq+2f7q1pZPC4enrqxOk/6nHQ6Z0yUpxtloQfGCz70TUkVXxfZWbRIDL+M6PAW0UtVb03QE99qicaGyNc5bt9sDnX7zl7mEvwhFrGX1AIWPXyjZUVcW7d3dsh0DbujIilvRTPwT+3X/0D3h+c8myDRy6LT//9FN0Mhi3JGuFHwf63YHDfsd+t2P94jm9F8cXq2tijtw97NgdPJvesx8TY5SNwObIwinOFzWLRlDVyR4rFuGPKSLUbggs11eykMQon6EWj2RZd6T4lwBW6f6VNrSrs3nBUFaxrM8Fr4ojYdeLSluDrWWTTMMgNBkSWmn6YSCEnrqqMdqSYoYQULkS1/EpPENBCBKKIor3IMFDWSY4EjxVktuy8PxympJ5SwGqsnDp9XS+icuFKZaaMSbSOICqiFkTfUAnUNYSjUFXtqSbLgWhNg2+l4sYrWmW57z61nd49/WX7A87Xjy74Xx9zsNmS8oj//Df+QPuH+952Oy4e9zx9vaB5+ctu84Txq18yjrz0fUKj+Lrt7f0Q0Jrw/Ol5WLl+Pp24M9//gZjFMvGcr1uuVo36JRpKkVtoXWOde3wKLpDj8ZTO8PVsuZiseR+O2D8wFonqoWhT4bdQeyz6qYIz2ImpYi1JeQmllAONDEWH9uUCgWnXGU5YYA+RNGHKFkgsoKYjtdszIGQPFVBD1RZhFK53nNIaO0lUl2JxelkdZmn7+6kkc+zCc200cm/nxbvauYNzraMKr33nOn+90GGfNwg88SZTzPF5rgUfbMMP96mIuDXOeb85rfpoz592rTWibx7smM9il5/F262ssX5ZGQYBrwPVIW2Z4yhH3q++voNdbPgxcsPaVZiMemaBWhxcXr9y8/pBrFsvdtu6VEMKTGmiHGWwCTohhQzSUlCsTKK0Q8ltAlUybuwzs2FhzEGjSD2TduwPj/n8uKaq+tL1udnrM7OOLu+olotsZWINS+ur2i+bOn3W5QHVBE8piTIfBSxfkoZlTKVEcu6MUMaI+/evOM//U//M97d3dMPIz/56c/56qs33L97jSHw+t1bhtBDEY9Dxugy1S6TVFMbiIas4Pb2FhCnFK0saEdVa5T24gJT19y8fMH5xTn9bsvD7Vv+zZ/+KWH0LBYLbq6u+P1PvsvZsuXNmzd8/fXX/It//s/59Ic/5O/94R/yR/+jP+L3//bfJmtkeuEqTOWKFbEUTU1V0+32J42rpJhqI92GnNuGnIXyaKwm+ow1NVmX0LmCjIMqtnwyEZz8xUMIuLouNJtjUugp/7wUDcfaQUyoS0GdSFMjZ0RDMe+ZSuOcK5jRROcV1yWVlQRShShp7RQQzTlB9glEQKWEqypykqTQEBKL1Zn458dUBI1CkVGquDPlkjpaePcpJwnWS1Gm8nUtNJ2mpV0sWa2vAUG6iZE8BlxKbO8f+fLzz/iX/+Jf8MO/+ivGwdNYy/mLZygDrnU0KxHHKmtZrNecXV6xOrtgDJ6hH0kYtHPYWgKmdEHZdYLlomFcLVg2LW5KkY2eOHqatkWlRA5CtyWV06Cc/63SeASkswUB10ZhEpgIq7ZGJS/ngJbwMVPeH0Tnsj90RGXL1D5hrKZpKpq2wTlHKIju1JDHMFLbGo2IVj989QE5eKyG5AfOFy3J9xgV6YmMOst5qhQxixOP1B4a6wTxTzGQgwAR56sl33r1iuhH+sOeOI6s25ZlI1P3ZW24vlhRGUsYPMEPbB4eUUBVOYa+p67OBJBMklrsioPhb7W+/rYL8nv+DPNtQtjk8v1mkS6iJtnqdRlxwREJew+vYhZIcrygtMp03nPoRwmxodgOlh1fMYXjlD8F5a+sQkVPVlLYG2sJIXJ7e8/Dw5au98SsiDmSkoyEUhJeXUiB29t7rj94wa4bcNZKsMk4cn11waqtqSvFZrNlf9jS1JaFrbi5uWC73RKGkTDK5pVSohtDEagq+sHz7t0dPsv6MgbP4AMhSVx2YzPny1oEjEpCgbQB70dc22KMLUpzS1sKdqM0pnJzqEjKGe3cjIqL/ZfBKCNFs4qoIghTWRc/30gIHrTGOEF28IkQvXTRxTIsRc/m9h1+7Li6foZd2IJKToFR6ckfZ8VDVTTompQ9Kcpos9KLGQlNMZFjlqCpKF1qnHyHyXP8ufAdBY1IIR8TTLNQiHRdo4wjWOFLKl/SfqPEZptVRbayIKAAW+GHirP1+UzdWa3WvPjgJa9fv2a/2+BwXCxXnC0XfOfbL7l7GPjVV7fs+pF9P7LZDfTjyMXVOdeXK8YxiO5h3wOa561lY6GLiW0feLd9xNktZ4ua80axrsQvHmVISTEGsdnyOeNioHIaVxm0a6lypomZNmXO2opfvtvQe0NjDFklSTj20DgjqYxGo/Q0HfHSvE0bXkHhUYIs5Kie5DAMIdO6wn7PkHMgZ491QumhoJtMG1/OmFxyI7Ke1wdVUPFcmrtTbH6KLZtdbqbC7Mki803Efl4/MrNGZl5PVPlpnsaX7y1N761j33jACVIPU9NzMk948vByBs/wvi5FujShc5jN+8d9umLm+Tfnd+l2VoKDvJeJZtd1KGOJUTbYZ8+e0fvAV1/f8cOf/DGucdh6Qb1Y07Rr7jc7bh82jCERC82GtiEEmbLqykGWsXvMAgyIJkk+26apyVEs8VTOhBRRSYAQpwxWGeq65tmzZ1xeXXF5dc3N8+fUC0EvrXMs1mdUtUMrSaju/Ygx8jybM2nsMNnM4ISqDIc+gAHjDD5rbjdbUlRURjj8v/zZpzNV8X//v/vfokmE8YDKnp/9+C9ZVYraGRGCOk1dFw64dWRtScqJ+K9qRd+lNHXdUrdLtKvEcUOpwss+0LaObr9luWo4v1hzeXXBv/p//zH77YbHx3u+++3voHjOqxfPUX/v7/GTH/2In//iF/zZf/vHvPv6K+7fveVbn3yP9cUFi9WK1q6oazufrdoadC2ZJkZJYT/0h3lCr5Ri9CNW15Ai0fdiKKAgp8zQC3WjbRckFzl0e2IYhHKTE94PTHkEE720vPJ8FcWcUCnKrMV8s9OewqKAcjGq4vMta9ssXE1pXg60Fh3FKUd+osfM06ZJmDjtS7mY5RpXwgINUQkNWK4FEbtmKFN2ATpzitTNkrpdiLjSCOVrQsGtsRx2DzgjzUKOAaPg9vWX/Js/+3P+zV/8BZ9++imVc7RnK7QT2sni7Axd17hly8tXH3Hz8gMurq5pF0u6MbI+O5/pO5N9aF01goaPkheis8Zoh3OO8/NzHseBnCPOWmrrqOsKUsCPMIbI0jmqDGNM7PqBSimSltWtrmuq2hWTiYQqFLWmCMzThE6XgWZMibZdMKIZ0eRsOL+4YLVe09QVOQaGwWNsjXOiJ8BorMqEMdB3B6y1nK2XRH8BYeSwvcdqWFSO1lmsEs7A4IP4wltH0jLtSVEcpSKZqnIs2gXPr674+IOXECNxHGmc5dXLF8KBH3sWjcUpSVvXgFm07LYPrFct69WKytXzeTk1kU3TMFlTnPLo/7rbb5fsOm2KT7aioz3kjMzn0w1SivbJTVlPPynF/XEnfOr6wEkRf7q1ey9I7hFhe4LZyUgtT5w1Kf7Fi7T48xau+OgV3WGkH7wkaCaFdQ6nDeSIM9J4DGOgblq0dXTDlr4fqLSmdiKuickThp797kBWmpvnz9DdIOi5tvg8MI4jfT9gq4o+yoVqrIwY394/ol3D4WHH47ZjXzzF67amrS1OC1fMKo3JoJQUuNZMoRBu5h36cWSxWOGmhSZlKFQcP3oZO+ZCR9IJtCnIhBYfexTj0EvnmWVcxtRQxYjJxR4yIdZkUbyVjavQCCXGlOhxsvDWJaFPUHljDJESolG+6xAD2hy/v5krNisepwtZ0PgpZMqokgBYkGQ5H2S0Jjz9jNKZjHDsjTFC/cnScSskSdK6qhR8gtroylE1C5YrzzjKpqGN4YOXL7m7q7i7v4X+QCZiK8vixYrsE5tDx912T0qevo/stwecs1iraWtx4QheFoRFlu901NBpzWb0vN32bDrFyimWlYig18uWs3NH8OIjnzMMIZJywCgjo0cLdWlaX65rbvejIO6KgmyJKNYYjc5HQdY0zZqu1eOIWq7EOKXGljslkU+oXKrQp1LwzNHbBc0SlwUZg8/Xebl23zOYJefSjKXjOnHyU3meOpnNfaO2nX6WZhB+mtIwFdDH5WRuFI/L0rG4f4rMP/2Hmp9/KpL95m2eA8xrUp6nA+LDcAJUIAeUOYpvj0AIc+Pxu3KbaH3KGKyCmqKd0EkSCXJivV6x2R5wTpJL951HbTuMewRTQUolCyPjs0zfdM5UtvhuI+N6awRpTRP3GXGA0mRymswMLJW1VJWjrsTOV2wEJWuhKmmbTdNQNTW2qlgulzTOkmPAD8MsTlRQCkrhrIuvdioFTtmjciLkzLKu6IuFLCoR/CjCeSXoa8wBo8FqxzgMZCvFuM+gagnHCzGTSNjaUNUNylTYakFbCr8JxJk8x3NGClrdYBpHUzvGrmPY7/He88nv/R63b9/yeHfHmzdvZEJaNEnXVxek8CFd13H/9g1//q/+FZvNI5/8/u/x3e9/giFJkY14vcc4Yp2er8NEKpQH2Zd1KUiDl8TbybYvF69/5xwhTraTQifKWkuhHIPsI1ZEsGLbaISxVC7gJ5x2ffR9/8b5eDLZmygxTCBA2auOU7Gj0Uac7JWnuiaLIUDKlH1FNAMpRXTO6JS+MV0T73L5bpCzEq2MTKKVKk2oFaejYm8bUyAEhY2GFK1w8MMIKeOHgddf/Yqf/PjH/OJnP+f+7pblYoE2hma5pF2uWJ2f893f/322hw6fMs9efsjZ1RXL9RnNYkFVPOgncafSDmOqE9qRiJt1SrRty/nFJWfn5xweH/DJk4F+HOSzMRptDU3liEq0dCHDoqlwtQhHY5Q9vjZqbrYrYyWpvnDiUwLnTKEe5dKQRjAGZ0QEfHNzw3q5oiq22dYYqUhTgCT2zQLoZhZNQwyjaNG0om1qXr54yWKxKJOTiKsqeu/Juz19N0jIVc7FIclS1y2HwwGnFa4wP/r9jov1inZ5zu7xkce7W5miJc94iLSNZdk0NFWF0ZqLiwvqypTzuCRcG3EDCFEAOFsmXu6k0P/rbr8dIj/vgd/AsaZJmPiJk4+PnXbBJw8uF06hekyveorln+JtpZYnF1rA/ID3XlerCS0scwFVXBKVoLg6G0gSKJKt4v5xT9eHYg9mcNaIeCQGCWeKkXH0VG1NygrvE9GP6NqxXrWg5ITbbzfkGKnahqZpyDGijSEXdDkEEQYp1wpqlBJJa0JMPO57mtax63oe9wPdKEmAbWXQOWOUxhVV+DSZkIu8iF61RilNDJGMcNF0ykwWb0qJwEgpCWRJKREJRC2ofC5CHU4CFjR1WVgy2XsRg5TumFhoEkmmK01dE6cY7OKtSxYUXbyDp2CPY7EyT0wQBMIZS47FIz6Vwp8sVJ0iKEIJx1tBSfwTJH1akOfFsyyIxEg2gaQShIjRrZwyhb9n7JEiIcViFqGFMti6YUHG9h1j3+O9jJ7zxblsznvLMPakHGhqy7OrFXWtcRasFmRh10XiKCp6qzVtZRl1oh88jc1UWdEYUfpnldj7zGGIDKNiN8IieLJ1LCr5riVwMotTTZJmZhKuWg05J16c1cQYOXhZOJVWmPJ9jSTRQii5X7QL713HOc/FdSwOFBPqHEsxr1NCh0jyEYo/vfDGTzfD0mKV63CiwEyo3FRu5+k9y3dwXFbK8/K0yR4f92Qh4lj6quk1ymtO6H4B2crLnawX+TgNmF8nHwWzxw5gfqXyHtPaNkELv+6Yjpj9cQNX80Mm18+5gcpzz3zynnxz3fwbfMvAlCysFVR1TfCCRppkgYG2bbm8PGcYR6Ea7sTMIOeI0cKllXAgCCnhU5CRv9aMIaIREaNShXN9uk/lhLZSZGsFlbW0dYOrLHVdsV4upcluGxaLhvPzM9pFS7toC//WzYho8uOMzk6o7LTPmaNKjhQ91sp1mqII4hZ1JeP55BkpibaFH+3KhMJZQ+Xkmhcf60gqeRc5a1KSSbTJUnglZBTfNguxqzRlzdeqUBYL59aAIWKNEke2nFmNaz781rdoGtEP7e8fWNTVPCldLlrM8+dsHh95fHzkzVdfkZK4kjR1xSsDa3suTmhK9h9VrKG1ErGxsSWAKQm32FVOfOwnsE1rYvkMlBb6iuwDeUbPYwkUU6gyMRehtHy++URCpY77RQEXZsqNelroT3vHlLpZFhzgKDKcCnmttdC1puK/UASFtqNgmlRPU4IIKsb5PacE2XktUWJEMYEJSpVjUBprrAB1xXVP9rk0hzAFI/TWnBUhBHbbLT/96Y/4yY9/xOPDI5nIctliqprl2RlnF5fcvHzJ3//H/5iHzY6HzZYxwnJ9Rr1YUDWtIN3DiLWV2L8qjbWVNAx5oi+JWNdZx2q1Zr0+466uib4np8AYvFCClEJZQZc9ihQUDvFfPztbA2JX3HUHamslvyFBZcWpRpepukLqn3iyT/sQUBphIzQtN9fXLBcLKuew1lCl4maTIjkiTjtJnHRIQkPSKlM5x2q5oK0q1uslwzAyjBJluNkf8D7iG0/dSAZPlE0KWwp4p0VXk6PnsH1kYTWNUaQwst/2KIReRw4Y3VJbLSFU2rFer5j48VOTp7WwIqapjCpOSqcJw3/d7Tcv5GfojveQ9MmxBMR94ulQeEb6mMQjE/JWjMdzBqau+bQAOCL+5VsEJUVJuYZIpdiYNmRJ+5wOUhbVyqiyCThy9ox+IIeEUY53d4/0Y0AbS+OcCEcQVxVfPtSYEk1lihuIoYDLRYVvOFu2PL79FWfrpViLbbe0lcU1jv2bPePYk3MJ14kJE4VfDxqfMochMYwb9gfPdoiErKidpTUw9h1ueSZ0CqfR9pj4JZ93YipiXN2iVUIZcamRAlhjdCpBHXku5EEVNOPIlY5hlOf6AQ/U7QJyxo8jIXhMEdqmmMSvNmVcGfGmEEnjWC4ycVQxSpNKUMP0ncwoSIlFz0W5rpUhjJ6US9Gf5I+zGZKIpRQTuiKpsbk48cRYfldtiDlj8mR1JxtpMgadRKg7OVkYPQmaMjEMzMhpzKgEyjnxU7fyWcfdjr7rcMbx7PqG9WrFbr9j8/DAYbdntWiwOtE4WLaWRWN5c/sgFnqIw4DwcLPocJW8ty8bw3VjWS8UdztPN2b2Y+QQApu+56yquFw4Vo2EUymjCFlSe/uhZ3Jg0Eqxbh0fXix4sxvYjWU0bBRjzIXqkhEfC2l6Z/3KVGCWr2p2TJmrzURSQpexORUqU5RmKfkZaVcgzgtZvq+cIOt0UmRPBvdl3Zhr4kK7mzbheQUp13V+uqbMS9IJXeVIfTmhpSikMZnXhKe3fPLfufTOx/I8n6xB85KXT8GGU8eb8oAnL3eydU8b/vz7nFjslOed1u3yXfxmHsJ/E25KKfF1LoI1rQ37sGNyDdrtt1RVw4evXvHhhx+z6zxv396LW1OG/WHk3d0jow+iDzKOg48kVZyVxoGsNDpbMorDfs/ZxYUgu1Fs5VrnytQQ6sqxalsAnBZawOpszc3zG56/fMF3vvcJUWmqpkVpI2tbViUQSRw86ro+FmIIJVHnVGYvkRgG6rYRcCuXECMLRluMhvtth1bC0w85k4JMTbXJmGyxaOLgsSLsoe9Gztol2gnqnlCgDF03ELNhsVhSt41QfZwT601j5JpEk6OmP2xlWuwczXLB2WrJ3e0tTVNzcbbmi1/8Aqdg6Dr22x0GWC0XrJcLXj1/zus3X/PV55/x9vVX/PAHf8m//8/+Q773t3+f1fmaqpXpxe7QScBgsRLVSqYjgrArnDWMWmqCKRhJLB9HAdFgdplRSqySYwhMHa+EDhULy19znk3Luex57/MF3nssT51BJnpMmgSrJzfZf54+JxWEXi7yNO+z5Q3EiKO8lmTFHF9XT56s02sbg1LiOGeNoS6pwDmLY5FWEMPIkAMWaNqWfr/n9u2X/OTHP+DN669ZLJbc3FyxP/S8+vAV68tLzq4uefHBR/y9f/APqZuWr16/4b/4L//PfOuTT3BVhS7UU+dqnBXNQ1KiF8nF518nxTiO6HL8dV1xeXnJ7XpF9D2+j4Qc8UkE7aJcNjhtMZXDxYpd13N9fUVdN6QQefP1a+qqIoaBMPaSl5CkcZ9quxDk+k8FPBl8wJmM1YblYsnL5y9Yr9fUTiyTdWMYR9HgRT9w2G7Y7R7pD3uG/sD5ckldGS4vzsjrFYpMPwrV6XDoGIaBEEXbtVotSVnsY3f7A7vdnjiMaGNwGqzKxKFjN/Z0j/fUzvHRBy+xWpUpeqCpLIumJscofHhnqCvHOI5kFK6pGWMU5ywlNOmqaTDWQpmc/ya335ojD8y0lZN7ZJidU7n4vjmAnhMe1XGDmgt7nnJCvwFETYjcFI9bIK1c1L2ntADIJSVQ3lSFgK4kUMF78UBtmpahD8SUefbsmmFMbPedRChboQdQ8JyUEtFH9v0jOQTqyqB0YhgH/vYn32GhYasddbOSuPr9nuvL5zw8bvGHXpJJY+Rxu2dgxFaRb330kpgCu/2B4bBHpcS26xlCQiuoTcb7kWhK0aXBOXFSUEYiyHOC4L10rq6isrV8ilHoJDlGYgrUuYWciQWdMMaVoiGTilWaLI6yrDbNQsaFxeuZImICCEHcALTKZC3/jzGU9FZVOkzwY0+guAdpI2Mjjt9TDJ7ofXGOQGzjciSGUSwoJwuiSampCpqRC22ivJ8gqIK4pNIkZAKTQ9vkQ++qlqiijK+zoGPJTzShfBybxliyBnpMVVEtWqrlguW5iMMeb2/xw4BRmVXTkhZe1OcpcX11TdN1xHzPixvHerlgt+vYHnpCVmRjeP3uDqwl5kRdOVptGMbE3cOOVeNozhZsh5HHbmQ7ZPYRhmFg03lqq1hYxXmjWS4qCZXRRjaJIOPboetZLRqMbUsKrGczBHQ0gBW/X5VRKZJOL19VNj5VWC6ZQg+RB6Usdn5TFHeKkRA9KXjy2KNUK82TnqYbulzNUdAWJSidUTJqzynPHuKCoB0R76fLxhEBe4p+H9eXeRmaIe2nKp5pTfjGgjIlsuapBcnzc45b/nRcion7f5pxcTyqp2uhvK+8x9NXOnlUPr7f6WvJefzrn/M3+WasFKy5NEMpJYxzsgGpxHK5ZLlaM1FH6mbBYrFkGIX32vWey/Nz7h823D88CkJ26PExkZTi4uaa+81WkGFjWVgjZZVWoC3OalQInJ+dsWwXKBLBe87Pzri8uOTFy5esz9Y0K7Hju7xYcxiDJGErBUqQbRJY41gsV5ytz2mahq6ktQrNwmOIQuesNDoHKqWxtSYnT049Kiu01bSXS3b9yOATMYOrKypXAaJjycGjtdgroxStW/P27S1100oo0EKTTcfoM83CcnF1KYWZ0XNuSAiBqqlQOdOHkaZpZn1MXdUcNhuUtizX55ytz1itFgz7PfvNhs39PeO+Y9x3s+f+Ry9f8NHLF9w+3HN7f8//87/6r/j3U+Cj73ybqxfPWS0XBGfRTtxVQjjh+CrRp+23W7TRVHVFd9iXPU72iHEcsVazrGsU0Pc9WSmqyhJ8xo/peLmpYzE+r/9Toz0P594rmstan2YbXs3p9TtNDYStjEEAAQAASURBVCdLyQktlyRZy2R9myZgakLxFUABxVIoFBw5kKyEAx99QGEwxhFjV95PKJLWOjJCsThFYZumFs50SnRdB0ZTmYqz5YLd5oEvfvkzfvbTT2ms5g//7r/DtOZV9ZKLq2vOr69Fz3B2UfZx+XxqV/H5z39B1ci0KQPr5YqzswtpCJuWcbuVia8CsodxFCGwteim4fe+/32G/YYcRn71eIcfRTNS1ZWIz72nDyOTjeZqvabrOrquJ0exSrVKYamwKIgjiozWFTlDN/QcOsnuyRnGlKlqqYGcrXn5/AM+eP4BbdWQfaAPO7YleDPGSN8f+MkPf8TLl885X7XYswVVodylGAlEXn/9ms3jI8Mo1Jq2bvj9Tz5h9IH9fk/IiWfPX/Lw8Mhnn33OZ59/QfSefhgY2VAZmZxdnq2pqhVvv/6c5aIuVrGKpBw5NEJfck6uPTWZljA3eNWipWlbbOVo1qsSl5OJJ0Yuf93t/6tCfrqddqzHwv633X6e9slH9EzNPy5bI9MYPXNUtQsqllkvW1KM9H3PNOK0WqETNFYTDj3DOBLJ1Nbx5uvXOFdx2HfsRs8QI+v1kjh6CYPS4q4yxiiiImAcDqzXC1arBTeXaz5+cc3rr15TX5yz85ExdpzXNWH0dPuenBKHfuBx13EYE+3NFT6NQOD+7p43b+9o2ppu23HwuYz1M2QJyTBWKCCm+JbmDD5EjIlYXWhAZWogi74g8BklTjPqGE4hoE5BK4wq3rmaum3mOsYaidNGidtORtBjpTUpRPwwiqetEZ/glAJj1xG8nzlsxliq2s1nQp4nOUV0FWTcZA0kpfExkOIoWoYybTj6k8urHM+z4tWb5XWPXr9aNhpthdKTY+GQO3JdkfpBiipjyKrMYGWsQpbhiJwzJFLSNHVDNhBSEPs6oD0/wzUV+82WbrMpSW2Zq/M1+8OBbt+htebm4pK3727pomdRG2IyDGMgAd999ZJ917HperyPhBCpLDy7WbHfD5A9NwvL1dKyGyIPnWc/BHxKxCACvz5E6j7Q1jVtZXCVEcTcRxFMdwe00rRGYZWjrmq23cBuCAwBolY0xTor5uNmM5WU6T30e/r7bMuM9FnBB/rDhmp5Dk1bGistf+bCuHzWSEOlzElhO6NW31wDfv3tKXJ+XC+Ojb8pTekRCX8fUJhWEpjoN3Lf6Wb+tDCfwqyeHkP5Dd877FMAYmqQ5wEkefZBnpxv8sSpeHJTkCfvmt+dmy7Ce/m6BYF1VVWoE5Fnz65RykjYSio+2Q2SE+ITh27EmA0qJ4wSK9amrvEp4WMixMSLq3N8SsV3vuhlQMKgwv+Huz/rkS3bsjOxb3W7MzNvTxPtbZnJZGaSSRYpAVIVH0hBDwIE6E2oP6ffIAF6kCAJgkRJLFSpILHJIpm8Xd4umtN5Z2a7WZ0e5lrbzONGJiMFFlC8Fog4J9zNzc32XmuuOcccc4yFm6trNpsNzlqWeWa73bEdNnTOQQi0rtimdx05J6xShBhACSc3FSBJo2ldy26zpWslfk7jiFMINQThNndtL3G0qEE1Wrj6Qi/KKGcxyrG4JLQ1q7CmcqoNc1ywSpBp4fWaNQn1SyCqkagN2+0VNzc3XF1dyeumhMrCP48higSmEuqOJlJOCBSi7gOyH2OONF1HioFN3tG5Bpvh+PDAMo4s08jxac/Dwx0WuN7tOEwT/92//Jc8PT3y/cMPxZipdeioUQjSKIocMudDltmlOtOiS8JDMrjsIHfy3FwFEyTwxEJRTSkVaWMZPgWK3KQ+dXyprqx1gLXSRwv6ryrNr4KOeu0Maf1cKz5/I3xkng8grsm+Kb4pSq2mZIriX6DFtbai7iZntJWh6KquorUWoK6cfSFGlnnGGI1rpICwzhSPlMBh/8SHd2+4e/+Ww/6JF7c33FzfEkIihETbDzJrEIVy1lhDmid+9evf8qtf/4YcFpKfmMNCTInxODLvdsIo6EWCUtV8AHBWkOX9/kl8elRmmUca52jbFm0s87KnbR05ZRlqD+VMVkocyccjMYnanUimZ1pTqDU5YXVx46WETuPw0ySdjIzo2kfF5abj9uaWzz//vFwjgzYe74WWPI0T8yT/vrq94Wq7oW0sKchsi59nlmVmGkcePnwgpVykJDVhHNk/PrHd7nj5ve/xuN8T5pmbiwte/tmf8fL6mq+/fsM8jeQY6RtXqGoKZ+DVixd88vFr2kaG4mOMqBwZ+oG2azFaSzevE0XExjlCjnTDgC7uujHlomxkCnvjP/z4G8hPfpfD9tse1SoinxlF5fW/qj4nJ04Hpjr7L5zaziUw5yIlVZ6jjSRt0xLqXkUrRaMVrbZYk/FFmURljV8C3s8sAR7GgM8y9Ki1ZvaerjGQgwzmuJbJR1LwNM4wdC0vb6/4/JOXKAXtZsfu8gIfZlqj2Aw9H96+F45WSsw+cfSJJWtshJdXFzw9Hvn6zR0f7h4L706sqckLIG0di8KicFYcaoUPF8GBrsmoNqQMiw8YA41zYnSgNRi7Brrow0q/0AU6VVav77EOFpGlMvfzIokxhavVdjTWobPQODISLFL0oIRilP0p8TdKeLAhp4KwFwMn61a+4GrsEQFVnGGLhm/lLMpwE2sABaFTVXQ3G7UmQkKLytK+yMW4IXhoHbRt6awIB06X4bishcBaGqLS1gbRobcGGxPoJBJbKHSM2Fcv2V5dMz098eHdVzze39E2LWmemaYJHwK7YSCReNzvaZsGrS0hJlKWjs6Glkl7JgLBS8u47ywhCqqttaK3hsYY7vXMHDJzTKKjW3K/kCaWRdE3lq5xWNty8GKsZQufPqZIjNBZi3U9T+MsiiEx0FnxF3i+x1m7XyKAqkpzROgxc5SAJyMRWag1Ma4olkjHGUnIUqV9nZJpo8R0qiiasrahlXRanpszPUe+T+j6GQq//l2v6FgtHHN5vrxu8S9Q6vwFT0VM7d5929eryo60KZ7h9b/b9Dz/bnmttQaVr+ssut9VEq9+bx1+zbm0laVD9vvy0FaGzWvik1XGOVtobgHnWpbFExPYLO7ZjTWEBN6KJGEMoQACCf14YNNZIuBj4ulwwNiG2Qdm78lKF4qhDCjqpBi6RpQpiinUtu/pG2nJV1UJXQqpZZrQ2lHxD1cG9esgq9GavuvYbDY0TUNMicYpIa6VAtlaK53Hch9doUfoXGWYE9rJ/FNEqBJVKSWlhE2NaI2XAX8yMiOmonS0VMA0kX4YuLq6YrPZyMxA/SxKwitRinyrhbOussQ6snTXtNJyHb0k0MY6dA/KOjpjuRgG/HjkuN/zNkTG4x5jDL0CdYT7t+9ksN8Yrm5uuHn5AqWKKU9OqzIWxeDJGs0SpJCVWC9dX2MMOCcKZfk0h/XcMEf2yGmItVDnSn5wnkPINRMQIam0oumSaD/ny9fHCYUv+YU628P8Vd2yiuyX11ZaYoWq6EcBSiqlU+s1QatCE5CxRjxganc45YQLhpxaoVw4I4VQTPh55v7DB8bDUQYoLy+42G6LE3fGGMeHhwPLODGPI8TIV7/+NT/92S/4zW+/IIwji5FCblk80zii/USeR0bXkFEMm+3akXDOYXYbvBfU3CrFeNjTFvWaF68kH3KNI5HxYUE3LZeX1yij8T7w9s1bPvve9xmPE3fv75jmkaHbsEwj03GWIVdTNNUR5oVrN5iS62jnaIct19cvefX6Y17c3pJixC8LSgWWWQZbj2WIWwObrkHnRPKhqCR5MZpcPNNhZP+0p+8HnHNoa/DzTNv2XF1ecHN9Q993fP31G5zWbDcDP/7+93FK8fT4KGBA34qASvQYndn0DVcXW7q2QWvJdZZpEoWe4jisSvHWNA1t29EocF0rcuWpsFpKTmut+07x9W/k7CoL8gwbVzw//EqLSQ5QWeAVklo30flpvKJ8ubSt60GpTod1rvjec3TtxDiVhT9NM4sPK6KvcsZkjXOCgngfCD5K4hym4kynmGMiK0OjZPgnFS7/OlSrFPMcaK04rbbO0DeOoek4jhM3F5cQPCYnrJHFgM4c9k+ECHdPez48LehuQ4yBYWj55dt77g8zIUAK4mh3nKUydoaTo6yp6LQY7tQBm3Nu3XpFStsw5oTOCpVNASczORWJyYLuKI1w31LCa72CmCEj7mi68JszkLIYfhhpBcUqy1UGahUSFF3jSjsyEb1HWVHEyakM6uSMTrHow+dC79doJW1kSiBMKSJ0HlMGjETfV5fPRz4FYEFOClUmJrSTzkVNRlOIp06E50T+DoLGn69V+RxFLtDYMgQs61aVxJ/qmuss3XbDS/sRGjgcj1R92eg9CcXVdifPP44wL5AjSwhYIwpEjXXC/7SOwziRSVh76qCEJFq7u0bTu4xPmiVlZl+KIKTVmBbRjO8ah3h4yLS/MSIz2pCZQgCt1qQlBk/OoSS8NanM6w4/P6RUvX5ASBlf6DU5CTVBIwOvsWrKl70u9yZRHX4pKkKmrKt16CvJ+llb1Ot+L4diHfxc35V6VtitB/bzHP30+CYg/wwsOIsz69fOYkw+L0Pys789f3FZSPV9nB5Vvk6tCWFG9KGfj+6ekvh1+PXbPst/wg/TNJiSnHnvhQKjDdoklBFecM5iLGSMLgVikaINHqsS1xcbOewVLONE03YYK66LziDzTiha2+Calsf9ER88kUw3dOgYMCR6Z7jdbQAxHGqNZjeIWcsyHlFKkr/t7kr4qs5hjCUiTta1qBv6jhe3t+zv3/Hw9iuUFqUSkih2xZhFB10my8kJWtPIsG5MLMmLGpnWWNfwyacfs9/vGceJxQfazYYYi7FSCPh54XA4CJrXqzKYaLm4uOD6+oah63G2FCZaF6xHEYv7pikdAZtzmYuSxMYZ4UQf5gm/zGz6DqU1Ic/4EPj8k4/RKXF8fCQtnqvLHU/7J/aHPdfXV9wf9hwfnvjlz37OzfUtQzdglUU76ew2bStxGDmLnLPMkzhqVtNAaswwoiiWoqfOS+maeBcwalkWNtoUeoIucboi8BWZF9ADkKKlFAQ1Np0PwZ747nHls0shUmMVa9GgUKtKz/r9hJwdGQEznoFP8jOxuJ9XKo8+S+Tz2jWgOK3La3s/E6MrM36F7pvEAHOZAh/evSXHyO31NRfbHV3TCpKuLcdxJocHHu/uiSGy6Xv+1f/nX/DLX/+Kp/2eF7cvmR8f8N6TUpJzQQWm5cgxZfbHI68/+oTt7gLrGmKYeJie0FoRvGc8jsTgpYP1ve/x+qPXvHv3hkTmOB55fHrCtS1/8Id/G9u0HA4j/+bP/w3/6//yv+RnP/05/+z//s+Yv/qC1598xpdf/JYPX30NKXNxsSUEoSa1Xcf3f/gD+o1IcV5cXfPZ599bdfiHYcNxPhL9QoqJefa8ffuWnCP90HP94gXv33zN8VE+39D3KKXobEO2kZwy42Fk023KtWvw88Lf//t/hrWW4/HI7e01xMjXX73hL7/6ij/9kz8hLTMfnGH/+Mgw9AQ/otEYA+PhiYcP7zg6i2tkb/Zd8TyIJ0Dz8XHPOM28eNnQdB1Za9kG2mBtg7Hi5Kv/4yfylIWbT4dmaV2uLbBvoFHqW766VrsC3/LsBF6NXM5/6lwzoiQaZ25UGUEvpmleqRamJvJknNH4ZWFZgthAR9E0zyWYxpTRpeWfQlzbGVElQsziKhgS2gni3XctjTX4ZWEeIy+vriUYOo1VCj8vpJxYwsJhDNw/HtlPmYtNg9ECGD8cRsbZA4JQziGxnxdBGpQuJiVgrbRTq2145YPXq1vDRLkVnHSyM7qGGgU5RzGXUEqQnDpQWiQiRdVGFzfE4oamJYkiCxc/hyjqAkGSc1Cn4iLrcu/Ekjjg5f2sgz1qlVeqCjYU1D5nBP1f3395/hqgT2o9a+Ktnn92UKUIEvN1WWel/EuJVIoCoVFLUDfWkayVOYFc1nC5LnLmnFqkIAWOdk0dz8JaQ3txSfK+cCel76SVZg5RuhRKobTFmpnJLJhlwTQOawLj4llCxHg5pDMQs6A2MWUmn5hCxGlFZwBtCCjGJUvnqRwYKWfmkMhIx0ihV/8EozXaZFETCAtKF4kuK+3Pishn6ui5OlP9XKvsdTNXtaKklCQCMaKSR2dxln0WBdTZD9Zifj1MS9s8Q0XTn9/bb0ovZr7xautzlNyqsxjyPAadEmZ9huif69UAZ/SZvHYe87rOnr+Ps8KiDBY8e69ncpunX3KCHXKlLp0je/VS1Pb/72EiD4gDdFk3XScDb6q0mqfjLNTGmFhmT6sdh8MRv3hSkIJwWWZInk1n+fzT14SQePvuPW/eviOmzHGZVznex6cH2n6g79ui7KW4vr4uHh4aYuR73/uUq+sbtput8HW7pviPyIzD090d/XaLtY6Yoel6jFErojt0DT/43mfY7JkPe95+9Wv5+RQIPvMUJi4vBhQyc+SswjaNOHLHxK7vSGh8kKRz3D8xH48oFK0xhEX4wSlGiNJuv7y8WgGZZfJ8PGy4vbrhxc0NVxc7tDVleHAk5kzbtsSwME0Th+OBq4uLU7c1Q5pG/LxwHEem45Gmb9BKvCp651Axsj/s+c0v/pJf/PSnfPzyBa9fveT29obFL5jW8v7+vnDm7/nf/+/+t/zT//n/jB/++G/x6vVHNK2o/KBymaXKpCiARrZWBAlywjqhOcYpiCSx0igjZlGZIh+MI4ZIP2wlHqYMSeKvRqSP6zlTk/V1H9VCeXWBzs/27emckXjknDtDxkt3JQogtfpvVDCtgBeq0oQK2h8AZRK2aQVdp0MpoYBEqkhuFXEQKkVKcoY2TUNvG3a7LX0/kLO4r/gYOOz3/PKnP+PwdJR5kG7D65cf8ebNOx7u9/gQOB4nfvbzXwjTwFj+q3/+z1cUeOhadFwgLnTGYKxCq4jyR/b7D6A0lxeXtHnB+CMpTMxL4P7+npQyb9++5ee/+AX/5J/+E7yWYrFpGj7+9DMuLq8IMbI/HvAh4LpeXMoj/ON/8k/5+S9/TcjwP/3H/5hXL14yHo/0bcvQ9SglMxHOOZwTxbp58RxHAWkpuVCMosX/+PDAOB559/YdH+4+cHf3nh/+8Edst1vyotl/eM/T3R2PDw9YY3n54gVGS4KulGbTb/n01SdsL3b44Pnw9h139x/4b//r/4bXr1/z6qNX/Nt/9ed89vlnbNueu7s7vvrNbzgej+icGdqW4+Mdlxdbhr6lbSxaZ66vLui6TjqORlLsvh9omlbO69nTtJLAJ6SIV9YWOpGlH3ar+tY3c+q/MrZ+1yB8wqJqEi6H2HNEnlKVnj3t2YlVn3zOTQMKsnuOf61PLYmdUmeb7ozmUw/ALJ62649XHldjNMtxYZmLk+gqnWgIaaHAAeQc8R4Z9HCuJFOB0c8rlaAfei4uLrHG8fDwgCIzjyNt3zD0HSonnu4fOO5HUJZ3Hz5wmAJZtaQE203HMi3M0yQqMSqjjOXpuMfHVFqvonBidcZZReMamqbFWleSWwku1lh530qS0JwzIUZZOCUhOG8RCiXFFEdXaQErZVYZS3Hdy4XLWBHvkpwtgSXOpfWnSiaVyv0Xt0K/RIJfyFmQ5ZCicPu1KK3omsSnWAJtleWC5JXIW1JbjYKsLH7BWVPoGhWnTaWYqwC7Kki5tBNTSpwmLzUqJrLJ6NZhyOI0GzN2GPBkjLLiwOgDeJHBSjGiWieT4wpUzBjTwMYSF0/Ci0xUDGwvLsoQU8bZhn6YmeeZu4cHhqaj7zZMIXI4jix+xjYtISc+PDxy/7gn5cxu22N84v5pJEfhwh9C5sEnto1lC/RW2nEXvWH2iYfjXPaCoJZLEG7dprPytQQhawyKxmmWKXA4HkBZ2q5jGAZCPIikHXktfMqmK9c2l+IrF6RchorrjGhMiRxn4eRq0fsln/tKVEm20ulIFQGrg+tQ1Yty8T5I+ZsxID/7s3Jb9UqnKe+TGnTKz6/Z8tn3zkuN7xQfzw96+TVVPUH++9e9iFpjm7zF3wU71s5EPvv/fJJnzWdX8j/1R9N14lypoO16/Lyg9amrqrUY8cTiO6FLsWW0AquZJ0+Onum45+lpj1KWd+/ekzJc7TaElLFTQTcRMCSrTOu0uGxmICzs9ws5JbbbHe/efM3dhw80TcPlxSUfffqptL0bx7DdCu0kSBxrnGM6HkRCTik8Gaslzm43Wz777FPG/T3z8YiPCaUiIUV8NGgth+JwsWO/P5JzoSq4lv3jXlazMTw8PHA4HGnajqbpmH1AF7fsVDwwjDHCFc8Z2xguLy7ZDgMqZ95+9TXKWuliIDNPB62J0ROCZ5kXfv7b3/Dm66/xy4LVmvfv3/Pi5laMfLRinmBpnMAhMYpnxDQyLyMvXt9yc3tDt+lQWjHkHuMs26sLXs2v2R8OfPnmDW+++orrq2uur65IKaAbhzLS/RJOcCIWiolWJYFRmRhLF7pthfIZoWka5mk+8yEQ5baUM0ShOJ0MmuosjhJqha7nm6rZNiDzYaaABiih+hljToZ4+YwHr+rZlUvYKJ08Cu2wvqyuUqTydel8a9EKtw4TQjGICiw+SLdAyUyZbRqUKvr4Syb4yNXlFW0rmvsqS2fHF1+TakKmS1J7d3fPr371/0QrWwzXoijHaaHixBjZdF0pboDgyX6hcRZXO0JGZgKvthtRr4ueoXVAEkWXpz1PD3fc3d2TM/zh3/oRXdswzTPHcWScJn7wox+yLIFxmjmOC68/+oiQMvf3e7744kvu7u7523/4R1xeXIOC/eEoMWFe8FEkIe/uHsq907x69Yp5jvz2i695/+GOfhhEzc5Zhr7n9ctbfv7TnzJNIzkEGmP4+ovfMvzgB7S7LU4bNv0gnicxMR1HoasYS04wjzOffPQJs58hZ3abDcFP7B8faRvHbrdht9uyf3yibRturq/44te/5oc//CHLPPP4eM/N9Y5N34j/hAJVDL+89zhn2e0uaEqnpGllaPnq6rbMTVhc22KbFu0MaI1D1k6xABKTy+/w+BvIT1YUtFa0VAE11oMxnw7aU+L//MAT6kN9rTOt6qp7viJX57+8Jhrl/1ZoDU4tLHloBTZn4TxqI3QQX8wZSnAPYSF50WEV0wh5jUji5nrLuD/StC1ThDAeaHqHbhourq7RGcI00VjF9mLH5GdSq+m0IvvA0+GeYbPlp7+44/3jhM8iv5Six+TM/YcHlqejqKZkcdybgpdhT3NKcBtl6F1H1/c0bSODLmUIx/uA0ZLgagU5RYIP9P0ASYaWkoorFcdUJL9QX1JR0qnT5DkX/dcykAoaY9SagBujMboheI+xdlVGmOeZkJK0/poGZ03RCi53VCm5D4oyBCbScKot9zBntFY0LcRlLp0HMcmIXgJpiAGDKp9Xl7Z3AudkrZS2aeOaFakSKpJQiZQ2qCy6tVXXOPpI3O9RTqONA6VJ2hBNpGkMOWuSlWtryuGRlULHJOoJKhNKAegnL3QmY3DOgsr0XUvft8xzxJPZpMSu7zkWN8iUE1zu6NqOcV54OB4IDxMhHtjPC3PK+KxJynA/BfYKNgG2TaIpSk1XnWXyiZCEw9jbhuAj+zHQOUNjFOhEnXnftA6jRdry8bDHp5ama/HHqdCcRFmm7q2U82kENGdCEkfmXK6F5KWJ7Ed0WqAOKsUE9jlyXuH2EMEYwf9FDlT2XaZkyOtgj6rb/rTNK5JWD9NcB0epQWD9jafwcErezykuzxPqs0T6GfJ/+v4zqc7zqHRWKMuLnPSocz59lW98rX7q+nvW+Q9Og14y9PX7g8tb15CyzKgYVdyAoVAgatyRP02Jc8ssMydiCCPc7HE8sMwjSlmMzvRtT9cPpZD14hKKkkR48Tgjms8pJvw0EuYFpbRIuZLJMRAWGMcjj/f3LD5gneXmNuBjIs6etu8ZdjsInhTrGhOAQLqxjpvrG66vb3lSmrF0nOdxZAlFLjmDmiPjLDvSJEgqoE0jdKMg6OPF5XXRkoZhu2O72XE4jEzjBEqt9M2mcWx2O16+fMlms0Gj2D8+ihM3sn8l5sHj4wMpBVrXcH/3gft3b/HLgkbx4f074jRxcbHj8upCAJTZy1kRAsRAnCdIEdtakkqMy4hrLM41GCcmPNoKpbHfd3z19RseH+45Hva0fYdVGYOVOa3ShtVKYY0pRavQ8CRXFzOvSBZ1H2NBzSWW1zmvOvRbQJ18mr2ojyqzXCm9p0ZdVa2JKwq/dl7PtvdpTZ4orfXvcpSegQFruDqLE/X9ajnTrHGQY6GumrXI0MYWY6iTMVDVEO+6DmsFxKqKcCmJYZBzjt3FjmX2+NmLwV9xTEUJcNf3PbEAod1uV9xn4+qj4LTGaSl6U4wkIkN/iWsaDuMoM3BJqLJ+nkkhMB4O9MPAxx99ROMc4zgVoQvpKoBw/q1xtG3P4e6uzIHBl19+xUevP2EYNmy3W+7u7hnHka5pGXpD01mS0tw9PHI8HJgWz2bYMs+eefZ4/4RfZpwzpMsLPn79ku0w0LcNyzKjcuTx4YFlmsgh4PqBi+0WjcIvSwHpEl3fE3xgvz+y+/hTwsMHmal0juurS+Zpxi8z4/HIdrtjv38iWUNXiqGh7+jahqYxNM4SgxiAGqMwWjpOkAuLwtD3A23b4ZpWhCiGjawtrdHOicSt0ZUAIbl1WQP/PXDkTxuhHs+/+9XnA2AnBoxk+JLj6xOKzglEl2Pw/PFdDrF6GJ6OZqNA54RWMjH++HiHn4+iL46giOPieTyOJNNKPmBlMrxvZKDh8WHPHKSy0ipzMfS8fPUaFTLZBLR12EYsgGMObHrH3Zsv8dNI71oOB8+/+9mvaLYi+9Q0HUaLy+nbtx+YQyiDXQltLTEJLU5EAsWJ1hhonaa1CqMqwp5AGRLFoTWf2ohOO0xJcDJCgyCJM15VAFCiVopCYytHPAl/kxSJ0dP1O+GDhoUcEkEpMWBCgkjyiyTXJenOObHMM33hkoqMZCRrJyYRs0eRhWqSFNbZgt5KEmO0wucF0zQFaRFHRO002jbr4qhFhjWWbNX6uXNRuaAkoaJNL0iHdo6klFAOdXGcNUbaWCGgkYE4AZIVyrXFjTaI5Fa9RloKw2xFUitHOXRyTqTFlw6KRrlmVbdwpmEYBNleYuS4LLS+I6aEj5kb64pOrOfNu7e4Lz4wTQv6YBhDYgyJwzwCiojmaUrsJ3EcHpwhhYnGmjWRzMrQOHEIXEJg9MKJdcagEhin6ZtycJGZp4lU5h6UTN9J8lqGBGuXS66lZopyAFDa18ZINyX4yKBy8XBMpNJCX8dcq46zKjJ+OkHR/gdVHHoVCV3W83k8qTHg5NIkfNQaMc5jxDmSf4IRvsmw/9YoUtD7CkKU37QWI3/dD590qgtl6Ow1z6PTX8EUOnudkoic6Qb/9Yj/f1oPUzjNKcrAaNs0RA8heJ4NL5bbOo4Tj0/3YrmuBbm6+/CBGGMxhkr8+Ec/wNqGBBzGibu79xL7raYfRMXMKDFoSyGIsoxr2GwGri8vubl5QdeLA+Y8L3x4+5a3794SU+bVy9c0fYd1DcNmy82rF/SbAShc6hhQVhOWBQ3stjs+/eRzPjQtjw8PPJlHljniQwUf4N3DBxonXcN4XHBu4fs//CH7w4G7uwdM0/H3/9H/mC+++JKv377l+9//Id/7/Af8+te/5euv39A0DdY6Xry45fbFDa9ev8Jaw3a7RQHLPNEidJplXnj71ZcYpfnZT39CjJ7PPvkYMry6vkSBuH3HhQ/v30FYuL7csu16lrAQcyQrmRlrGsc8ep4OR5ZlRCvYbAZ2ux0DHYuPTPPE437Pl1/+lnGaeHy64/7+Pdf6hpgTTRYOckoyCKk0uMaIyspSDY+E9prI5XyTOCJxvsSAJAlvLEZhZJGVtsX4KpfCuybx1Q20OrWe9mde/1S6Ghbqs4S/zkid1vAzUyn9vAhfd+v6fY0qcurGOHKTAI9zDU3XE0Na6bKgUAUlNsbSD/0qd2mdxOgUvch5xgOHwwFlNR998jHL7Ik+8uM/+EPuPtwX1ZrI3cOjqBuFiFLiJjqNBzICTjVOlJsaa8k5cjgc0U7jnGGzGTDO8fj4QNMO4lybEo1zNI2j69p1yNtay+XlJZvtFmMsXTfQ9ZkhBBSKr776igR88sknfP3lG/79X/wFTdMIzcUY3r9/z+3tC25evOTq+gZjHe/ef+DLr9/wy1//hn/wZ/+Ay8sr+m7g66++4jjNLGNA5chx/8Tf/7O/R/AL93d3/OSnAT+OTIcDh6cnri4uuLi8Ymg6ybdi5OHhiaHrOKaRaRyx1pQBd8mxXr96yTzNpJwZDwdevXjBPB7JUVT7bl++YJxGdtst19ef0HcNv/3tr2lbkZxuOodK4peAkvPx+ubFWrxtNhsm7wvt1ZKVoe+3xaclrc71XdvRtC3tf2xDqN/pDJ8VpJx9qx6Kz5JydXY6FyTznEN6ws1Yq3JB4M/LglMn4PmXSg1cNl1OYZW0ijGSZhlANEo4yD4kfMiialBb2Cljtebm4pLxeCTFyHgQV8HWtSgyx6cjunWotmUYHDeXF7i2YXu9o2stqTHkGfb7kTfvxrKZG5aQMS5yObQsPnD/NHIYJ+Yi66TXAd3Ci9cKq4RTbq1GZ0m0NWC1XYPUmqxXAMCInKBcv2pcUapEIwZCks/KAlKwIho+eEKKRb0lEVIogUQ4abnMDrRNQ1yRj6K7rqSFu8yLJIWquA3GigVLIUAxgalUAukQpCJ3yTqhPS8TwS/Y4rSbMysXPFFkouqtVyVoK6F16CInmckiGwcoY8Cq1W0wZ1DeM/mZ3LcrPVpkLRU5LZjGkI2V9m1OGESTeo3sVlCHHKHtBuHJg8h9lWQsZYVtRDPex0RfWuPTEpgTTDHgY8CEzIvrGw6jJ+SIfXPPh8cRYxIPx4XRR8ixoDqapCXJj1FxCHFt9yoVxYiMWKhgghqFKCi5SmX+Q2mGxhJTXCnZGrXKqdcENGdVhF5kbxgjB2ss+7nOuczTjJ9GUtuQXUGRsyhh1OVJuVeZjEUOq5RD0YjPmNKhE7DulMLnklg/WzM1CFQuuirPPjeH+sZjReifoednj2/9sVMZIGHmHMEvX1Xnr12S8bI4/+rcv3y2dIp/maKDTf358nl/fwB5SKLYI0OWoXCKDc6Jt0WO4UStSYIm/uEf/gHeC+ixzIGXt7dURHWcFklYfWB/OPDFF+/YDG2JEwpyYJkPGN3TtY6+Hei7hq7r6LqexilU9kzHR5Yl8PS4Z38cudhdiApV8Lz/4gOvP/6Yh+ORf/H//m9o+o4//MM/4Ob2hqZr6N2Gtm+ZJzhMEz/60Y/58Q9+hLOWpnEc9gdSlljkw8z+OJJyWNeh9zMvXr0khFjEGiKXl5d878d/JNQI43j58iVXrz7m0/cfuLy85vbFNdPxyP7pka+/fsPh6RHvPW3T8OrlS776+mt+/KMfcXlxyfV2y/7hjpdXF9zd3fHv/vzP+Uf/2T9gO2xkaDEs5GXik9trOXOXiWUf6YYe7VpIieMxkqJn2HbsLnuUyjztH3la9jy936M/qELlkAL/9acf0Q8DL16+pOkbfFyYp0BCRAy6rhPJzppIO4dGsSwTvqDk1QUVBWjp24eURWghBlSIWONwtqFrxQCrJuzTNNP1CoikHElZowrlUuUsdC6toQyz1tkrbcoZE1mBoPqQeHja2yuSn0GdS9eWP7RW6FxyGAMkjYqWhHSXjLZkJcg7Ss4N5xwpJox1dN2GoWukQ6pEunVZYpltUPR9z8VuR1w8Whm0kkJ0uLhkmRfm2XPz8UcscxB99Jiw1vLi45clpojTx7IshHnG+wXTt/S7DUfveXz/npwUbdujXYPK0PWZn/z0Z1xeX9P1A2/evOG/+KM/kiFeY3j1+jUfffIpMWbuHh549/YdjXNcbLb44EHBq9sb5sI+2GxkX2qVOewfefO1xi8TWms++eQjnNX8s//b/4NlHLm5uEIPG9599RVP93fM80hcLjBa8XB/h9WK1hp+8NnndFa6NTF4Dvs9L65uVwlp7xWvXr3i4e6e8XCQAeIUCctM11guX16zxJnvf/9z5qJCtz88gkp0wyCDv71j029wxUnWGINyDVkbojJkDJurSzabnrZpyRmmeRbFwRhhnum6noxGGcuw3WBcA2Qc4DrNKhahNCFD+x3C699AfjKfVnX9y1m5+ldhR88kniryxTcq3frzZ2dxPvve+d/lCwU1K+9pRcKyJAXWaJTJ+BDEiSwmkhZ1FKlYM1krlpBZYqZtNUPn6FvHh7s7oV8kkTxrnLQ2pmlm01o2Q8d2aLEW2tbStS1hHqU1lWCcPG/ef8DYBrSTVnmOqJx4fNhzPM4cp4WURCJzCuKIqguqazins8hzRA1XlS6GJLPSHpTEO+VMUAZrrGjTFh65NmpFWbVZrzLrXSgIg7YWp2WIWBtDiEIVMWWhZortsVaoUlullAl+kfdaW4/FpMhYR5iOpaAQ3mpGjA9yyEXXWK1DaFqZ0gr24ogW0ynQloRJo9d2ZaqSOlkWklb6ZDBkRPYsrwtMYZSV4aLSZk2l1VoT2NVuvSTbCg3p/Gol4XPGMncAIneZBEF01kGTUCEQimSlVdIqM8qIdFaW4VLjWnqlOU4T4zwzI+ZfV7strAPHmQ+PR1qjmZZAzIpceK9aa2zryEtgXkJxfivD2gScyjhdZg20fH5dfONzEvTJKmSYbgWTVTGIkkMtF0nUpOWeKi30LGIuGt/luiPqTjF4dCOHtcoRsqyZnE/IvGxb6Z5UGbY6cC1FWJVbPCXP+Uyh6HQ3zlvodV/wO895ts75ho1TZkXvnlm2n/1Xl4S6HuL14D7h7Geyd+v3zn/1X5PK50onKj97BmqcsvuKUP5+PCrvVWuhjHk/r7KKFS3NhXKBscQYACWyhtaS8xGjXVG9CbStYxwPhCCzOcsycnV5KWowPpCyEnM0o9E54oyjb3rakvi1jeX+/XtxhE5ZzF98ZP/4yGQdWmsutluOT3v2hz3T/okXt1ekZeb4+MAyWawSo767d+/5+c9/zu3tLddX11xeXtJ2A7vdFdMyY1OiZcPuSqR6C7u0oM6ZqqCyhMg4joSUySERpxFtHnj/4YG37z7w5t0d293fk4Fea2X4MHiC9xz3e9589SVd1xHmmRQW0jKzHXquLy/46OULvtwM/Povf8Fnn34iuvPX13TW8FjUS8hJZoYI4mgfI1dXWx4e7jHW0HViOjjsNoCUpDkLt9s5h7Fu3dvWOVCZJSxoY1dFmFRUaARISKzD70qv8pOpao1ridHW2iJCkEkKVNaFainJu/d+RbfrWoJ6vFWZSlY6jlFqXYvnqjWnzpl+FhdqIpjPgUyq4pU6+7fueY0qtN2cEbqFikKnseVcdRZtCkVI2oy41pFJzH5hs+nX4UfXOMbxSAgR6xwXjSPGSDSGisC01qJ1g+s62hDIaKZxYfaBaV54eLgna+iLfrnTosaWEJnMtrFsdjvaAvhZ0wjIlkTDXzeW7e6CTz79jGEYSClxOB6IOdM5i2sbHh4e0AVsvLy8IKXEZhhKIq+4vb3hcDygSDw9PnB4euLVyxeIEpDBGc3DwwPTcSIsns8/+0S058PC7vKSH//ge8Rl5N27Nygy40GcofuuxWpN1ziuL684HPaQEn6eeHh4oG1bhn4gNFGoKoWF4P3Mfv/IMLRkEssy0Q0tKIVzQpXdbDZ8uLsT1bdhoO0HLi8vpatWhvZ/2Dis0UWCVWZSEoolZbpuYNsNchYmAT+7zQXGyvxgQjEHAVFRWozritFjSomYPJvvEF+/cyL/7CCsf/2W7F09+/u3p/fqr/phWA/P9cz9Zh3wjd9QETJVKBTWGYwBcpRKt3w/l/ZQTGIYknNmjpklZYzV9I1BpVDaKkL/sdbSdw05LUQCrjEMvRN3VyU2xSYHjvs98zgzzYHDuHD38IQeNsJxMhpDJiyeh/tH5sXLEJMSVOAwe+YQBYnXWrhWBZmv2rpGi455SjW7lL+vjNwsvDntyjR9rnzC06CE1rooKkSgDLhSEXSDVkXDNopyiykmFSDFhE+RGEXvVuQjZaGFFGmLPJsqPHbKoaxKYaBUcSmLQe5DTGsg1dpAEunGEPyqHa840w0/S9hRcsAUjkUZZpLfmzmhLboM8FJlyVRFX3IB1Q06ydAVKHF4zZGkNSjLyqtUSoaJz9aktGjVqo8sSbMMtemC0uRSmMjEinA7A0IhcMaSnRMJ0BjQQO8ceeiI1ztIQSTWGsNhFBQ8FOtro+XAdNoQUsL7tOqyjz4SlAKnhSNfdogpDsF1OFQr6IxmRBAoVOl6yHcLQiz/5kz5THJPYuHLpyyD5BnprGjEUCsXmlZWpZxcFWHk/cSKNpcDPBfdbBnAzsVd9pScnx+Pz79SXneF7r7tOd/44bNeef7ml56hBaxdgBNF5vx1KJx99XxdfPN5z754mj94JjGZz3+xqr+5/N7fH0jeWSd7F/mUUrCHdVixGspJgqQAe/Y1aNoWshIgoKA+BYdAaxg2PZuhZ148GXGhHoYOslAJjILGWfrWSdw2muBnMpoQI9PxgLUNViu6xtEPA0opjscRoxTf++xTbq6viYtnHx5xjWXoOuZD4u79ez68e8fFbkfOME8L9/GOvhtAgXMN2hpmvzBstoCg9CnJkLprG7Qx3H39li+/+prd7oLdxSVaZz58uGeaF2JMvP/wgS+/+opPPv6Iq6trrq+vOTw9Eq1hVjAeD/h5FkGBJJTHzdAxdB2dc2S/8Bd377m/v6dtHDfXl+wuNhzHPTHK/ELjLK2V+aJkNU3jxKhIK4yzGGcZhn49P3JOuKaVRN7YdfaqDueiFTHWs1dimK5yylmvxUAVYUAVZDzVWFLGl5Uorildk1eJAecJ+VrG59NaWhHC9Xvypy7nSe1cn0Q15FUqR74qwT0r+AWKP63XItpx+i1q9XARj7yidGMsxiaMCzjXlPM2lnh7cotNJKGilsIihCgKY1qvbANlTmAJKKzSaNWgm4yNMlOojMWGhGkXJj/Ttg1tL54wxIROAde2YmYF9JstSxAvHuda6ZxR/EZGTTf0XF5dMmw2+GUhkWlaJ0UbME2jUN3WsxP6vsMsmhgD15eXOCeqeU+PD2w3A9Zapmkm+FByJYQSrBWff/op4/5ATgGroXWG68sLDodHlmXm/u6O169e0VgrXRBa7M215CteKK/eL0W/XWGLi+5m0xP8zOOTZp5HNtsehSZEjyvO6yLd7KQYA1AK0zhxv91diGHXIuozpnVYJwPxzhiOxz3aKJxzNE1XOj1FSjUmlHVCJS6gqTJi9CXApinzfUXTSH3rqfI7j78hR16tB5OqC7p8SDivR58v/NJ3fnb2nr+989epyPqzg/iv+zC5KNZkkedqG4eKiyzCFMlluIOC9khLMbLExBwEeXRG0Wip8FCKEIRk0vUN292G+w8jjbVcbDtICzEY+mFgu93g93eMT08cx5n9YeHD3YHH0dP3mqtWNGCNEtTg6TDhg0haNlpu1BKEYtBqMQYRlzCNMxpnDW3TYksLLhMRWy1NWGa0a2isJHbkuGrDZyUUCpWr3CQoIipnYoSkMrZtsEVVpg7XxSA6p3XwNcXnSUyKcUVsY4oYo/F+IRVFncq/XuaZqkKkAWW00EKSI8dMbmrQrNq/qZi3yDGvy0JOKa90GFLhX+tMjJ4cY+FqWzSCPqdyiBhr0NaeDpGcUMqelrAzmACEQG4amRMo3Q3jWpRriEnagRpENSBkQeV1SUCjuBVqIwl1KG3fekAcjyM+BjJSzNhGgsI0HWlsK1QXRCJ107YcD0d0DlzvNmhtOB4XHkfPw3HGezkUZb4DzGj56GbLkgI+RZKXYJAoFI2iTSyIl9DcrLHrPogxSUcqZubMajKVVB2WEjWEWEBjU143ZSlqYkrEpFBWLpAg9gV9LwmosN7rYVrjQyaCBDSSDKBT1lI2OFOoOwgaLzruufxklSOt0Yf1NU8B5ZtxQg7cbx7SZ4FpPedPKbR8fUXfV6zgG1HrPIM/+1J9x/Ur5ZKfGppF6iJXseln7ME6tJdKd+L3J5HfbnZiwpdmfBk4zymhrYKUS9IuQAEZuq5nWZaiYpMZNgPTNKGSIJ3RR4bNIJr0WvHxx6+JQZIhcbRMbIeBFEUv2iBa823j6NuGnBWN0cw+4OeJ8fjEzc0tV1dbbq5vubl5wc9+9lNyDLy4vuFP/uRP+HB/z69+9SvGaaTtGi52Ox4e7vjw7h1+Wbi6uKBvW8bjkS/v7+X1bq7ZdB2ubfjq66/ZlqHD/f7AHDzGWWzbkrPiJz/7GT/5yc/4u3/vz/jsez+ksY5/8S/+BUophu2WX/zyL/nJT37Cq5e3fP7Z9xhax1/+/GdF7GBhOwx89cUXUArqaTrSdw6/zFhjuL294ebmRhBNlfnok1e0ncM24kBttGIYOrquxRQVjXmZRcEnJ1CZfrNhu9tinF33tSTxDlAc9nuZHSuJuHWOp6eDCDCUf3NOuGIOuJSEsFZlIYk/RYxBAlPKcg9jKop4hqwkhmktv7tt23UWLIWAtlVjnrKnzudYChqvdFFGOs1WiVfKSRkOavqhVwoOFIRe5/X8qoVFXvmJZexdSVdTxBcsxgo44kKiaaOIbqRIVuIbkpaINmCdxTpHTBEfA/MslLO2lY5ITBHXduIGvHYUNFo5bOlMBy8Jo00JGzq0s4UOIp3QcX9AWUu/FdAqxMCw25EPB3F914pu6Nn0WzmH7w1t39JvejbbgWWxuNaxyQPaWEIIJxnlch7KYGgLOTKGhdubK9pOTBgf7+/5/ve/TwiB9+8/8OQ9VhsphoOIk9x8dM1f/Nt/K8pJITDu91zuNtwPPXd+5uuvv+ZP/+RPyDGKV4JNDP0lWmnGcVznD7yX4l4UYDL90OJ9R9NYvB+xphfQNYK1mmVayDmijcJHiS/KiBzq1e0tfdcTYsKVz5u9qAj1fU/ftZi2oe97uq4nxsxhPErhEyNtJ7KpVmuUtVgrCb/QqAoAqmUvVjnU7/L4G6jWPP/Lc4WH86OrfOUM/fqd41N9SzYPJSk/FQU1qa9n9DnCL6hVFRuT97DpHM6IrXfOWfjlYSnte3kRpUS7fcka7zO7XrPrGlrXcjc+kRJMk6drehSWp/1IzIqh78kx87SXYZ/t5opGGZLrGA9BhqXuH/jpF+9oN9e8uL0kLp7DtKBVYjdY5iVwHMcyPyBKBd4HnNFYBSonrLJ0zkm7ylja4hCWcyIkjVIBmxJoGbqKEZSSio4k8olZ5zJUGVFJnFWtbsRRMAZizjS7LUo5oUOQSEHc4pqmkaQT1g4GcOoMZIg6UqvF7WaHsmZNbIxI1KBsC0pQ6TR5aZ25DplZkqKBVDoTJcA3bbfeY9E5TiuCHMpmjdHQtA1RaWk/xQyIxr1e10tN/hRYJ38WWbuaXNE4bNOKLbR8WNKyiJ37OEEj7VtjZWh2nOS+OWXk2mRFMhqCEqMYlUX9qBwcJwUgyCnil0jMkui2bSkegBA9OQY2fU+MgaQNu0Hx8uaS4xx4Gj3L40ws7d3ZB+b7J1TO9EPDZttwGGeeng60rThdHueEN5rWaRkuRdx9zdmeykrRNw1jXORwKJSjXNRgsqq87ZOTbjWDiikRI+XgEsRGx4gyoryU9WkPyyT+uSl8QdxlWkwKgBBZlpmcpSgVw95MkvHtck4mTgFDOgeVDlXXSE2+a7J/knys0eQMRV+/Vud1csEbzkCE9Xmc/fw3vly/p373G+cUIFkHeV2ZpTo4/UQ+rflU5mJ+nx6SlCe0tux2O/q+xy8zIfiVG9+2rUipFtv1YRgKWplo2x7nHN4HYpCif7fbcTweub+/R1uRb9xseobNwNPTgRyKR0OGrhHJVZGf0wzDhpwSb9++JwUvB7BSbPoOZw0f3r2lsZZPf/gjdtsdy2Hk699+gR+PRTIAvvj1r/DBozK8vn1JWDz/9X/1z9lsd/z4b/0BH3/8kfz+GFmmmb/8+S94+fIlrhHqzjRNhEPg1evXfPr557z78J4vvvya29tbPvvsM9q2xXvP12++4ssvv0DlwB//8R/x5usvuXv/hj/6w7/Nq1evePXiFmsNX/72C37xs5+w3+8Z+h5nDfv9Hk1Gdx1t0/DjH/8Q6yjX0vN0uEcZuLy55GK3RSXFsN0QotB8mm6gM0IJ0VpznA8SU0vCq7XG2G6ltGwvLkuHRZK5eZ7ZbDYCRBQEHa2wzgm1dJrW51e6QoxRkPhczvzS5U1lv8SYcEbAo2VZyAr6vse6Rug9ueYGsu/CsoAuoI+uyXzZk/l8T590Z5597xnqWL6Q1XmDj5rA52dxQZf3UBT5KtqvWIUaMiJRCQgSixzjh3Gi71usbkhKpIdb50QdSEtyuuv6Fa03xkA2a0H84sUl4zhy9+GeuHiub244Ho9MyyxUSK15/dFrnHPM08ivf/0rQpi5vNpBhvE4kXPi6emRECLzNNJ0DU0rUqJL8uwutkzzBCrTdo7j/YHeGdpWiqvD4cDT0xOHw4GUEp9//jnmnWaaRsIy8fbrLxmGLdPxwDweubm8lPsZYumCJ64vr3h8lDmQH/3w+7x9+5YfNz/icDxwf39PYwzaWaYpc3/3nof7D0zTjFKaYRj4cPeBzfaCnoHOGlIKzCFgDLx8dc2//4t/w83tjq7v0brjOI5E76UYbBqWmHj5+hWmaViCFASby0u8jzBNNI2oTlVRCIzF9RvmGJkPI23Xc3nzgqrSpzRozFr4xBgJSWRZjdb4FCj27uSzNf8fevz/oVpztnC/5WCryNY3uae/sxfgzFThDNlX3wS71Dd+rqorZ1GmQbSGnVJYCzEuqBzle1nUAgTZhRgDfpHhypxA68zl0NIYxXGcOMwLGUOIsOk3pBS5v3+gb1v6yxfooccvj8xzYB5H7r7+kuNhQinF4yHy9oNnXgw/+tFLbO/4+V9+xaZvGVrD27dvSSGw+Bm0I2TFEoK0Vo2h1Wq11bYajBIzK1u032srzyhdqEN2VY7RppBslMY2oh2bCUVvXoLkPJ+usXGW+TihmyQGRa7FNkDR6LXKEFOAGLHqOZKpjMaiiVExTSOtE35aKkNsy+zRxtD2A9pabDU0KYHVWC0cf5NZ5oXD/onGGbqhl8C43veEzkaS73JgYA0xSdcAZVZpprqEjG3IRhd6TkZZizKijBKzaOtmJQWQIqOsY5kX4eynLGhfo3CDHFSR4pI6e5zSZGdJ3otuOqJNn4N83qg1KRa0G+HimXLPUk7iMOk9Shvm47FkngmrDVNIOG3obMvT4cB0OKBj5GLTsLGwaRQowxLzahj1dJzFXCZF5mURp9c5YoqcaqwlmtI01tK1mhRk/kDoMYlQWqA1kY8FTUexuhOSpQ3dWpgWGZBNGCKKEBN9oR4lP4NxKFlIZGXXHXuOUuey57Mq6ZAyaCsDdT6KqKfRWnTiy1yEvIZe48MJxk5rF+8sJQbiN7Dsb8SqZxElr3/99llZXRL8ipCfCpLv8qjFRf7WgKzWJ6UcTm3801v6vXk01hFgNeRTStE0TmaBCr9ZUFQlVA51ujYKQW6V1jRti2o1IQYeHqXFnpHEdBgGYkwEL+Y50gkU5asUo6RVWeThxlHcmC+vLjHW8tsvvqLrOuZ5IueM0Zary0uMFjUY7xdUinSuoW1bLq4uefPuLW2/5Wn/xJdff8XXb75ks9mwHXr6rqHvGn7xi98yjZPIYqbA7eVF0Ws/cnx64jgd+cuf/4ynp0dIid12Q981aA3LMnF1uWXoPuNqN3B8vOPx/j2vXrygaxv+zZ//a66urtj3om5hjOH2xQuWZWGcJq6vr8XYKEUyYgxnG8fV9TWH455f/OXP+fEf/lhEFbRI94YQUdYJ9cNYQpbZKOOc8OS1wbphTdy7rsMaQ/ABH7wopXgvrr3aYUxie7FhmidCDEUJJzMtIykmxnkUGmIIooG+SIKjKdK/5cxDi7qISNxG0T63VlxjnaQxKUVylNzD4IjppIJlKyugPCp1RpbZiQ6ac6Ww6BMVjpqEl9mr0qiTbu0KDQHnib0uP5nKOe1IieLlYiVJK50I7YrijpYE3zhDBuZZ9M1zKgBJDrgsRdXkBTV3tqFtrUhSK5ljypTZgRDQRtOWBPw4ZrbbQe7XNPP+/Vsp+Jzjo1cvpdO1TOQMjTPEKLlJbixtY1j8LVdXF2hjOIwHvvzyi2LGlTiM0omBXBJbkaS+vLrCNg3zNDFNk+jfq6Llr4RK3LUtKcgso7OOzTAQQ2C/35Ny4vLygqurK6wVEEBb6RR99dVXhSLnySlxubskA8dxBGC73TIV8yVtFSEG5nlEZZGZvr6+xFpF0xisLTlM9KQUMcVvxWnNsL3Ati22bfEx8sXXb2iajrbrME1LDqHME4rjb9tvqQpHMSUejsdCU1JsNj22DLKKc6stksOFiqrFRKpKHuf43QCdv1Eif46H1QVdW6HfPN4qWs7ZBjoXfqh/nCsznA+P1Q3xzOy1Ylm5qOIUFNQZjVOwLOIy2ViDc4o0R3zVTtVaWq8p0zaOPE84p+gaQ4qRffDi/Jpgs9uyhAXvFzEVaRuudj1xOdBaR98PGOs4zhPzPLJEzdf3I3dHz8XFjs3Q8+7+kdY5usagcmSaF7LWxdUtn1qBCRonclAqR5zRdK1l6FratqXrReLJaIPVBmtErm91KFRqreSNdTIYFENJVgWtN0aXzSXVv3EikWi1oAU5BkDT2HYNANL2C+vrrt2SgnakmDBlqDiEZXUJta5BofDTgm0bnLMoK458AKkorch7MUViyQGmyBtWJKbo25aAqLUmxSI1uQ4SlaHBjCAua96nJBgbR8piUR6DR7ctyjq0keIiBY/KCWWLC2CWIaRsVVFtkMQjZQk6OUaylutPzOiYCDGilQRnbcVJNQZfkOgyyJTF06BxskusE9/dQClCnRQYubHE2MqBO45Yo+kaQ6MVs4JYDbpSYCmUgq5piSkxjYuYSlAHi6WAzSlibEJ1ltZarBXjnVAKmNu+IWfDHBP7OfG0xFW6MgMhwhIyjTW0VrHEJK9bcmClhFUf/Qy2Qbkk17fsVUmh1bM4IImtIFMKI/Am8l5FSUnWh6Kq4KjngaKiX+fB5Fn0qYdoKSTOvlXb7OrZfys6d/YSnM1oqNNz12BUuf/5+fdOVJ+z95XlWiRVje+KyuT6C0vHMJdr9B1RmP+UHqIbLjrkKYWiXGMkQSmnR8VCdQEfnl/303A8SuNMQz4eiTkVTqulHwb84iHPWGtojFt5zmEJGFOHyfSqnCMJoaFrG9rGSVcsWXbbHbvNRvZ/CqQg7/L66pKm+GhsNxuhQISAs4a3H97z8ccfc3V1QWMtwS/4ZWZZ5iK7GYl+QVsjnZew0FrL/uGBaRoZtjuRlM2Z5Be0McJxbx1Ww/e//znv374h5yiyeVoRopeEL4lL9/X1dYn3ooTS9x3LPEkcMEJPu7y6xDXifqs0ZQC37Ckr1CRtDMoY/BxoG5HhtM5ibFsQcomVTduL27dAGyt1pc5YVaqAMkZctrP4VcTyfkMMYl1fZgbWbVu6Y7KVTvuhOraudJfyqPKtiuc/lzkNU6uz5+UyY7VGqDPDqPp61LeyUhzUGs9O/9T3SmnMndZrecdiVmitXNdyhp+HDuksJjlHSpyMMYqjvFZFKvokHCEOs4W+YwqN1Edi6fgpxUpVrfdWVPBEvMJag2kbjDXlPYkSjgygyz0w1YelUEVb1/LqxS2Ns6ScaJwpkpi6AshkBJWW2yLFR9M4QmzIORUqrtyPOgOoc6a1FvoWVfTKTZkVHI8HtFZ0fUffd3i/4Jyjyy1NIznJ8XhEzhMpAlKKNGWQ1DmHDFJLQSV5oCTHIqSQ0AZi9MToS4xRuLbBNU0Z8O7YbAdc12Nci7ZCYZXrKfQyV2Q4tdZSoJTCUtYe4sdQh7MRQRZKAalUka4uX1Nn67UCO9/l8Td0dn3+OB2GJ+Tt2RqGUxL/7AdPGf15+2p9pZxLsODZAV7SNjEYQmgclVeu6wblfNNXfrUkVN5HYsw415DyyNA2dE6Qw2qT3Q1baDseHh4JwdM1UiH2rWH/sKcdbui6TnILa8nG8LAXCoQyhpvrK/zi8ctC6xSaRPCiZnKYI6M/HVBVEjLnLAl6KtPbzoqEWVFPqMi7NWa96aZISOrK01OUg07QC1Nw0Dp0o7VZg7MEkGKKERMp6RJEjBhepVT05eW+xBAlIACxtIn9MtN1TQk6pwPYWEt1R5VDVeQp6+CsWu+7DO5aJ9QVP8+nTVwWcVqVvcohjgzzphDW1mjlVkrSHEXdZkU6hV+bS7Cqa4isZH5g8ZKIaouyjaDE2pBJksEW5+KstXCby/CsdAnEZLsqIdSAn4vMYg26a2GqLUpFOTiNDNihNaptpWPBjO47EuBjYrt4HsaZXd/SPi0cchDPA+RQyUTm2TMYmdbX654qSVGWJHgJiX2qCbfBleGu1jl2rQRbn8qh4BRXw4Z90rx7POBXWlWmBZry3EJdleuekngOIDQ2VSTk8mnrIwcl5FVd6nReJ1UGwZImEc9ocNXsBUqm/43k+VlAef61bzOP4xsJfX1f9e8rAvxtT64lSV27ZwWCkve6QhkV3KBQfHJF8VZl/eIOe3rtbxtqzaXI/315iHumxZhMCIqFpRxeVccZcVhEENVYJPnWhq2WRFCufcK1LW3fMQdPnGeca2i7jvF4JMZA1zUM7bDSr0LrIWsaJwfuMS5obQkFgdtuNzSNQ9B9w+31FW3bMx6OTPNcVHfg1auXoBTv3r/j+voKkLNofPGC+4cHPnr9mtvbW6zVPD09YkzhCQP7/QP7h3tc10IURbWrm1ve39/x9sMHPv9+izOa6Bem44GLiwtM1xK9h03Pj3/4A96//Uq6umrDx598xNPjI6Eozviw8PLFC0EUixyxMbqELUPbNoLyb2TIdXe5kWQ65GI+06C1ZfYencSteV48m+0OZ4W2YpzlOI6owhHXxjDNMzHntdCSpEZEDrISZStxc5duorNiAFUTdz8vZeg9i3khnIrfnM/ue00snye8uSTD2pxME6tEpCjAnTmYczKQqgdcJovXhqnUW1YanJw9Z3G3gBdK1071KU6ob8TgmtFoncsZLgWqaMOrlconylsJq0tnIQT8IrNYjXPlZzVN0whvPgTEaKqAeeUzeH+SGA5BCiNrHVqLOEbTSEIdYqB1hsvLS6ZxXEE+kEKJXM0zKe8fmsax3W3KPJina8VDJuWE1dC3DdO44AqaFmNGKTGLdFaTGitOsMeDiHk4J5+9AK9Wd2gkP1NZhrWn45HN0NM2FmMUx/2evh+Ks2vH1cWW+7s7+r7DOdHD936WokHJ9QtxxkVDNpJvtJ0jLBJDpvmIMZp5mXCLo3Eya9ENXUHLNZvNwGYzYNsO41qystji1GqsJcbE0PcYKyBa1f/3scw+ti1N7f6AgKNlPpIk4g62sCpQp07Rmi+dn0N/zeNvhMjXaq+e0mf5ePlDVvk3vvzsob7xnRWoWyvab/+500/L4Wu0KtQTCnKnUKXVHmNCETFnh3gIcU3km0aCzLaVaWYZJJTAtLu+5mEUR0ENDF1L3zZEv0D0UjQYRUgRpyypGXj7+JYlZjZ9y+XlhsPTAXLEahnqWmZPjPBwnJlCorWGmErCXC6WMRqrZcDVWnHLc8WswCj5f1s2qST3WlrF5Xqv2rYpF1UAQTSVroh2SeQriq8og8CmKD3mFcXXWpGNQQjtZbDIyIBQWmQQKfgAbSvJtcry/eJklpHhsuhFGo0kOrbKnAJwSnENuJSDO4Yg1fRq7gGmoquqJPNZeOWiAlA7EnXhnK2cnEjJlzVWpLYUUqAU9YNcZg1WJ9jiKktM5BAkATMGrUU+TbuW2urMZ5SjNd9SWYZ5UwZTDoCkpAIv16kebmJupXHakkIU19yi0+9TZo6Rt/d7LoeOoTlyP3oxQSmFmTGacZywRhB9ab3KZUhli9XdMsWMWhJWBTojQd8oResMUwjEKG6bV73h1cUWfbHj3/7qHXdPoyBmORNzElnXMggu+0UQbnGJzKjoIXqhgiXWw3dN27M6eTuV2xU5tdDXBD8nEMHQ9V6u/LJnSXWNCRVFS8+/9wwt/zbkvsxRnH3/rPb4xu/4tmT7+euu3hi/g6RUzLkUnCXYKU5JvNy3fPqn0AJ/fx6aWM8JpVFWDnKUDLdP40zT9mSyUCuUwbRCnUspscSAacwKarRtx9PxSDv0NF0n67ltefs2cjjuefnyBctURA9U5mKz4enpwLSMZGCZA027oe9lgPDh4YFh03N9dU3f9SgNw6YlZ5FV9cFjnEZbOS988gxaZoBsY3j1+iX7454XL2/Zbjcsi+d4PHJzc1MUZCbCzTXOaMI0cnh8hJC43GxZponDwwN3b97w+vqa+bDnlz/7KX/8x39Mtorj8UgIgU8++Yg/+IM/oB862saxjDMvb2+kyFCZFy9u+fj1C+Z5EirDeMS4LXkWqplpDL3tCGGBLNKASmWmaSQCTdNhbYMPURBgY+h7kexEGxYfST7QDwOL9zw87Ukottsty7IwTxPOSDHkQ1wL3ovdBfMs72eapmKqFwjeM08TOQWiD2VuKBOTqBmJQ6hmXJbiH5KJIa9nSAVPnLHrOqmqOdUESmtDDBnbFlW14oieS2GhEOCmJul1TRotgBiIVObiA1XKUroClEQ2r/FWRvdVEVQzZbhSkZOiOryKfKqiaRrpesdCXXQt5FRwKYWfRna7LeTMNB7ZbrfEnFi8x3vPdreTTtO0MEfxrdEIhc3Zhqeng+y6MhvQttKFCsGjioustZau78llnm6e5xVUdM6Va1iomtGT5ij0qJxpjRIZb8CkQJpHUYGbU7lOIrOJzWgMjW04Hu65utqwzDPzKDSbxhl0maX78P4N2+0WaxN9rxkGQ+vA6IBWHpTn8ekdfb/hYjfw2ecfo3XC+5EQYNGnLhXKopRFsxB9wupW1u18FLCwzHy8ePGC3W5H07QCsBgYtoO4sDpHvxlohw6tHVlVOVxdugcyy/H4cC/sia4T9oQxpYBNxCCdAijFYLmubdPiymxEHegnC+B6/viPnsivSdezZOl3/6qeHY7PXuFU4bLm7eXNnj2rAq1rr+r576yDjK1raI2BHFm8KIw46VgJtSEukAM5inrGEqIMhqRMzpGuUfSNkeGpFGUAtG3ZXez497/8FSlmrjbS1iR7Prx9y81lu+qTYuFpzPjdJ3z5/mc4o7i+GmibzDt/QDtD9IFlXJimQIiZcV5IWZDzKuOnlGjHq5xpnRP6gy6qNWvHQZJ8W4ZeZPBUr8GNEohQCCqtpVJXlIBETfQlwa+HIRTajBbJwVioDU3riFGvqLx1uaiuGFRpRbPNKCNtN6cUlIFc4cDKsKRr3CpVGb1IO6WYSUlkKOsACAjHdRmPLCmWzm1BtCsiDyg0SclwqS6DwYJOU4oUsxaSKUtSra1BN1ZQlpjAIK0v10gLO0QZEIrCoddWkSOiAmM02YgiQBpa4eB7URpIxsCcwIquOySiT0V/Xp9an8iwnkICpPe+DLAUBEkp2rbhcJDCzhjD0LX4GLjYtITQs+tbmuMC8yJDr0rLYIz3HI+ZtrU0jWGc4llqWLiiqiTzITPqQEwKXxSbPkyaFOCya3m563lxNbAzmT/54+/z449u+ckv3/Kbrz9wPx44hiDSl9JDFXOoJIVRCF5MzKzsuxQ9mJac46rBvHYM0tm2Lu80pprf19UsrWGtxH23ylGeokDmfJr/eQuyxqnzyKTW59Uocv7ns3z87Hf87t/gJH13+o6garl+qPqmWJGJ+txcP7P8W82f1nqjtPwrdSn/HmXyWZ1FfS10wFTUZVJMRQVFi318V4bnS4FuHehc52Hk531cGDY9rhXFjBRkYH6zGdDA/vEBY4sCVipKH40pcS6X7yWyUsKTbS2N00AkJaHh7PePHA4jPgRsa+h1x3E6oo3m6vqC3W7Lfv9Ei+Oq2RH8QlOG/bbbDYffHHG2IoWZsMwcDk8YI93W7WagsZoX15eoHPm3f/EX/O0/+jtcXFwwbHv2jw8Mu4EYPH6ZeXhMPO0f8GGmcY5lmvjk9UdCZ0A6CWGZUSrjGoNSnVyT7VAblyhEElAKJulGDENPpWz0mwbbZEJILEEAmGXx2EYoBCiNc608PyWmZSE9PYmWfNvKua3EiJCcWbx0M1ShIKQQORyfZM4oZ5yxMufjxXnTlgRLOPa6SBnKm88ID75+mApegcSXk368WtVcJLET5N4UGeCyIEkxk1VEFbQcWDusIbF2HVINEDpLxzVXVRtVYpn+XQpE6SpXkC1nsNaQklnRea0NuZwNuoBU8r4heSlulD5Ryqoqm7WWeZpK0XKSknYF5V6WZe3ke+9ZFjFPyzlLUVbkH41SRWQg07ftqv6jEPqlMYqYAr4M1LZtQ5VezjlBjjgjkq2mQBQkQZ1jiiKbXFy8U8pYoyF6UpjxywhhKYaXkKJn//CAqROQIXJ7dclXX32JtYqYPPM44VpHjAsxRJyz9ENXZK0jSktXSoQ/Esf9I1olcvIED8si9L6YJBcUmdTi6mu0MCCSdJ1s42g7AQlq3qN0Xdeyj4p4KionYvDMs3R/plgN0gyuaYg5CbhXOkHWWjIiKW1Uld9N6/kkgF9Z1/o/tmoNrJsUnuNa549vAmbneNc3sbTTXHl9xre9WP2hkvQpsMaJlm2K+CUQy2JwGmII6JjlvaYF8lLw+jIwUhKIq82OxXtCQZO7vufm6oYvf/krlqeR7dUNXdtCisyHBxbgB5//GOtEuiylzNsPD4SDYf/wgU8+fknXdzzt9ygnqi8hJqbZc5wWjoV/b40Mr6aYSTGjU3GhDQvt0DC0jk3bsh06+rYRDWTUilpWYDIladnVCyiDvcI7zDGR1zZjwhorlJdSE4UlYlrhdwUf0UYWslYabSt1xwgqr+TrIS4rsp4QJYCU89oV8PMk+vPGErMEgsaKY2MGtJMgPk/zqhyQcyKFiDWyEbURdD1l0CnL/2fh48/FgU6rjDE9WrdYIwYkK/dYncsfckJxS0otrJKi0VrXsbNiGOY9kFC2A6vJfS+FUhLKjgViDqILrBSkjI6Z2Yv9uyS2p1ZvJhG9FC0KKTTGeRb1GK3LLIHMDDhj2W0HHp72ZK1pWsc2ddxcXnB3/8jVpuPiMHN3WJhzQtdtoWVgKuZM2xj8kshZF5NzeQ/V2jzmzCJxlhDg6EV55n/y2Sf8Zz/4lD/49BW31zvefnjP43LP/+If/RH/q3/493l8f+Rnv/mC/8O/+lf86zfvJA8vkqW1WMpZEnGrEjov5DijTbtuabkXzyNGrh29mrxWuUUlnGlBb+VrWpk1Ac5Vo6p+vxb+6rmKRH3+7zBk4Cxgru/ur3icx6RvRjLK+6hl0wlZJ58H39PzE2k9BKQLmc9eqTJuvx39/0/9kc4+k0KogSLFKahm07b1m6uBWSjcoqqdfV6HpRQxVoMSWdWsNcu80DQWlXvm6bC2pnLKhNmjdBlGz1lmd3QuiZGm6xzOFaSNjDGap/0T8+xF+7zE7RA9rWvZbTbkHMtBK2fT9fUlu+2Woe9Q2tK0lrZ1gC0DdhbnJBaL4guQM23TMAw98zSK9KORuZ4QPTlFuq6hacUk6+WLF+sCUjkXrrBco65tOUaPNlZmBAr6Z8tQsVyNWKRkizqSUsW86XR91+QGSsekKESVTmoIksQaK8o3rpg4gSSiqYgsPP+5tHZhY4xrIl+HV2Os4gzVG0T2QUzxRGPJktjowvXWxojQg1brxj+ZqEURLyiJdsoRlTQ6F+2uszih1enn6nuVnSj86pQ5dQzzyXm28vWh0mTK8lyD0AnUjOWaZgQL0BUQy0mGkQuolcp6VUrhy4C3cfbkSVI/XUVx1alYAKG0yvstmvOlQFmWpewlDVmKtqZrMLEU1IWG0xb6zcHvWZZ5LYraRqi9Qn3MpYNY6EhQ5tCidDvIpfNdgN0k8pHWtOJOmxJGAVnm1HIW2VCj5XWku5AZuoa+a2mcxRpFcpqcAjkFFFmcWXMqVC1hAGglWWVMkTAt9F27dllSDKgyW1LXddM0NG2Laxq0cXTOFepMI8pKpSCqbIbqIVCQFqpCXYwRVHjWDXIFvFBIyiHCK0KhSjERYgYjUqmndXMW+9VpXf+HHt89kS98nlrRPj/OvnH8nHNlUKfFdtoeZy98QmoqYvC7j1qBy0+2zojFewyEQgfJ5QKFFNFKFopKwrnOOaKMAiMJsA+io/7wYaRtHRcXGy4utmQi797f0/cDQ9dgtWyYlOHlix3zEgRBiIl5CQQsb756R9sP2KYjZMM4wzzCxWXH4TAR0Swx8/B0IKYkertFN5kM2ipBH5CkuDWGoXG0TcswbEQO0soksyAKemUnpCzdBnEIA0sZbFmNpIwEbF2qP22FHqMTPi7FXcw+q7JDiJimWRdVTglfWp0xBpboiYtMibebLWnxhGWRQZli9hHKkI5pG4wWlCCXxN1o6RIIZ12Tyudqmo6mOtZF4ciJta2GJMNCQgdKWCsKDYJWiHNryhHvBaXQxV1Wu6ZM8ZeNjEzGG69YlMY5QzJGOgvIQFBGkQ8iMZeVuJ8mEmbxqK5BlwqbgiK20XGYJqFtpUzSpegqhxCwKhSo0tKTAC/BWltNSp7NZiNzFKO42hlluew3kDN973h1vWVKip++fZBqX8leSrnKsZlCE1NoDJUDqpURtDgrIkLTGjrDi87yn3/8Of/4j/8W3//oBdcXF/Rtx2cvb3nikU/+7A/p6Mn3gT/9wQ/4kx//kP/N//n/wv/rl1/wOAdSufbAipiRIvgZFWeheCEcmzVOrKdd5dBnRMIyYag0sBIjMqQcEGnRUoSexYozQtMaQr5jzHsem/6qeHP+1PMvKfh2eZvaCzmhh/LDJ/78KUaWvfVX/XbFekj/vjzq/VbUJKbIx+aE0omu68phWPihKpEWX4py/TstZ3JGqyjovpWDVg5y6XJtNgNhEWqddBYjPkrCkKEkLOVQdprNILrSwifPOGeYlrGYBwIxFCQtYQt39v3794ivRWQcZ3a7Cy4udjRtiw+BYehEp11rGmfo+45h6AvlAkIQ8MBa4Q9bZ4TqkxPTNHKREzGF0vp37PdP/PAHP2A8Cm8/bvyKkmqtaduWeRkxqiLUsH96WrvpWmsiadXnp1AstDmZ/1WnVKGeSAfDluHBGCPTIomXaRzWOpbFF8pIZFnEfMeXQWKtT1zfEMTkrg63qlyQzCKuEEsyCRTutySlIXgMej2jMMKvNjWJL9ziSnXJqZglmrofM8Y1QhtNugw8CuoNNQYVs8J8Pv+S0VmX5LvuX70+J3MWz35nnyrOB2ESQsXNWRTDMqCMqK7lnAhL+eyr7KwUad4H6YCTmedZhqRVBcHyWijVeyvuufJ7TSkw6xDmfr+nbeSsT0Ua2TpHJhO93JO2iFOkKBSfaZpoS6Lb9x1V938dSldV9jfiC+PBlAFzBWWeL4s3TQzkZEuRlHBWqK1iBBlJMZZZkgLKaYXRVmZV+o7GNVid2R8P5OxRStM0lpQWGtcCGj95OcNzKgWnZ7vdrjLasXgh1G6I1pphs6Hve5q2I2vNdntBLrLTtszTmDL7p5Rm8RGj87oOfqcAVFKEKyCZsOYAdZi15myx0MDIp3mOde1wWoffrqT2u4/v7uyqzirN8shnmPq3LOX1WfXd1CE4Wcn1jaq1ModS/cMz/UxBU8sBHwOi8lAq41SHC09KFygxSrDWgjYiR1gOx5iKqnXO+Bi57DbsNgN91/Du7p4QArvrHYpEyhrlHGGeub26QMUFa3tUzozHAyF1TFkx7HagDMdxZjzOMhSRYZ4CyxJZQmZeIkkpTMpQ1AMSuUyliymSAayBxmpcGWxtrC3oRgmMSq9mE6d2qSRsqDrYUwciRSGggH/iLqbk+mQyJsusQCKhpIwv+VgUi+yC8ucUSSpDjNL+0/Ju6+LUSoZhUpLr65xZJcnWxCXlksCLKUO16M5Z7m32rMFUoURrWSmRpSrobaUP6VJUhBSLK61inkdijmjtShBXRcLQY1yWpL4isiFCnEi6ow6+KoRa5KeAOh6J8xHddqi2R1tD8DMmJygydCDBSSFczhxnUpFP1EoksdbELYmOuswtVM19dYbICl3FFJqVUbImLKKPfIiRoXNcb1u6D6LnnsueylGGKVWZUYjh1J3IZchbF4Uf7xNbrfneZsuf3N7wjz7/nO+9uOXm4pLtbkfbd/Q60PU9F3/8j+DpiF9+Tauf+DuffcL/8n/0D/nqMPHvvnovpjtZAqLKgmqpnGXYNUUiEaOr2hFQ125Bt1Ynw5REk78m4mewq+jIJ2S4uCTIklXJWi1RRq2Xs0adcrieXadvRqdz5L7GMfWN59Tvy1++neay/sYCtYlkpiSIksKrM9WNE0IDrEOw8ncZ/JUgXgGf359E/nz4sNIg6jCrUiKjp6s/RU0qLeUgzGsyWh/GOBmmR7qcjXVoFPM8s+SlDPJN4psRQ0FXhd7gfSDlhZubF8zTIg6NbsdmaEV9ShtQie//4Hscj0f8IvMp8zzTthZIQpGxhYaxLEzTxMcfv+bp4Q7rHK7tuNhtyTmhrWXT9EzzgRAX+magbS3jtKfrHV3X07YNf/anf1pmsAxKN0Q/8fQog6x93yNdPhm63Q4dm/6Gw+GwJhHH4546r2QKl7vrGlKMzLPwnXe7HbrQ8nKuPHKhsIQYUCpJjFIU1Nkwz4soeRTjKmfdOnN1cXGBUqx+API7O3KSgiHnxMPDg6CvKQh3/3jAWSczYEaQ0koXTYVeKIo/C/M845Rdi0CLJO/SbaacT1KQ5JJfVB57XXe5IOiVQ18R0Pr9lM6LG5FNdO7bucrne1KGNesTOEuCCr1Usn35PMEUWisYEzBtL+9zNvK8JAZRULrKRXUoJuGud10ntNWyX2KM7IqT8JoUolbarNGSND897fFe1IwaJ74C4/FYHFUX8a4xhm4YIGeOx5GcIkNxNk5FAW+/39P3vXTqc3XelfmKXM4zpRWuEVpv9QXIleacPEQjfiUlp4ghkCgKVsBmeykKTGcw8W4rxnCH6Yi1mm3XMs8LIWUuL3coskgX+4VpHqHkgs45Li5kdiOkWIa9ZUA1BFGi0lbWr3EN2jlxKO6ENqaNLY7MjYB7ZaZCavDzOGTW4W6tDV3f0zRNTczw80LMSeIehR7VdsWcy67rr+7D+oin9vFfH1jL4zsn8oKSnA7AohQkeXp5znPwSj3/fyUV7QqEnXUNVDpD9tafWPGtFalXKpMNGFs38fMAn3OZDi8tMZ1r26smNfImU06Mi8dYQUmc1YIqT9LKarumtA8lkLWt0C+yprSPMilrjnMk5MxmkOEo7z0xJS6GjrjIUM+8BOZFRP8pg7WSkMpo20ldRvjwzmgap2kbcWGrN3gdcFWqSGWdiqs6mZ8RLhoVha3366zqq+ipUoWeUxEGBVo7jLWkdEIq1hZslGChc17Rz+g9JymvcnHLPajV5yoFmCRdysQVPanIqOi+C79frvlJeikGX6QmebZGUjGLUkkqiRA8qIwyDVXtJEap9JW2KFM8Q7NYYGt0Qfz8us5qwUNOhOOEDkW9wTWQEskv5EXWlsq5uLvmtRWcQ0Xha2eoahHndb3qNR+Ue6WVLjJpRTnCGFyUzkVrHUPXwdOTtOZVYuM0D76833KNUsrFg0Cf7TrWxDeVA2drLJ8MG/7o5oa/+/FHfPbqhpurSy4uL+k3A7Z1eH+k7zcY3TDP90yHJ+K4x/UDf+ezz/hbL2/54n7Pm/2RubSAT1q30kbVMWCdwdhWEnap/mSuo2z+lE9uvjGJjrxYy+eyjFS5L+LwK/2EjCrUKG00dfhsRalK9iEKGEIhqDEiP7ssam2v1oKgokj1Xq3xLNeh3t9NJuvaz1KV/07RoApgsK7bAlrU+6Lq70pJlO+rM+QZnv/78qjJ0/l11NpgrZwtIYYSl06HmbEOlaSdX2kFdYZAqYw1olutSxnWdUNRxrFM08h2txV+uReFHOMMepyxNgDigwGKpnVoZSFHyNLBnZcJ2zY0jRMaDooYRTtaKdHBVthyQAvVxzUi5xcSZC9OyF3XopR4S7x69YK2dWQSPogxT04RrRE0fmh5+eIGHwLzsmC14uJiS9d3WKsZlwwpkoMnKlUQx0G8IWLA+0TfbATljIFpmsjAZrsFJOka56kkMars8aWo28iAo3RT63yS4vr2lhgTPorqW9N0aKMJxWzr4uKCcZ5QymBt6aQliEEG/UBcZ2MKpagSacvKa24bsbb3VMWOIjUc5ExrnKMtyD85F8dLgCLtm1SRUJT8JCtKgXhCrpdlwrkGpTgb3gxnz1G18Sug+NmeVYWKsqre1L2rn8tf1ufLrpe9rEryIs8vr6UyJlkBy5Iu191C0gQ/i5RnEufreZ6lKHOW4/FIU3juKcYykyad/Wou1PebkkAvZFNoHNaSM9zf34uCjHP0Q08oRZJ1DqtlPft5FkNH4PHxEecczp0poqlMiF7kL5MURNWNXRVzrmk8nuAVJUaO5CTc8iJnnVKUMz9GbBkgJ2dCmMS3YZmJMYhBXEpoFbE2E8NM43r63pFiZvEjMYgynqynpdxTAyRCFHqaUMvKkKrWtJ1QyaRD7gTxbzpJ5F273uf6iCEKQcDk0qFSa6FslEgtpxQFnBwl/4mlO9I2Uvy4Kk8Zg8jRFnndpmkkr7N67XCDxeRTrPxO8fU7PYtTIo86HXoKiiPkicxfUcYKOgqEWqpkZYrax2k4TIEMkVS5p1xQsnKerQmoRgY/bUvXtiyzFxytDEilJA5+1lpMSqjCOxO+siIG4fNSLtBxWhiGjmHopLIcJ5IPWNesN5l6QDSWw/7I5dUV4ywT/yFp9rMvJgYWozwpJrQTvuXd/QdiCMyLZ/KeXAe8EmStVslokO6D0SKN1jpL0zi6XtpcpgxNVKS9JvIr0l2QXm00PogRkkWVQVTWbog2Z0lP+X7VOOfsfiktvL1UksuUE8EvwuMvQa6qbSzzJMlqjKwc5lxpEakEgFyuoyx2yOt7qMhoLvQlSOXziTpBLvdV5TKIRAnya5EivzNlSeJsQSKUkXUmrbsorx8Cp2ar3Iu8LCSkrZlLCz0ZJ3SieUJ5j/YBbRuctSwpQpaWoSkDwj4l0rpeZNPnLHqxOZ8xg0thobNIVJIlia8D2iRxd1uslecpQ991bLpOkt8YMDmyay1PpcisSXoqe8Zqg1dp3YNSAMt1GIzh84sNf/Tymr/z0Ss+f3nD5dWW3fUlm4sdrrH4MHMcD9jLK55++Zc8/uY3TL/+NXq/YMPCZb/j8+srrrqv+OLpwBhzrSikUEtJ6DVZ2rRtt5EDRwn6bLWgbjXAxySHfYiB4GdS8DJvUFqhOZY+VUX6ySKDagvX2Jxa7FppcZTNlXMb1wRHHPSqsr0UPCeObdlb5eBR5FM3sASkE8/3eVIvHb7qNFq5xVUTXoAHXdaGMrXgOPGGhUtaFJx8AM1puG/9/b8fj2dIZvlXZnGEzx1CXAfzzxMpkc6Ts0drRYwKhexDV/0tshRMUthZrM04l6T1XxMwIKUGrTXL7GXQsRR40lXT67tTZLSBaTriGlfa6gVtNBR1lYhSUlSkLEi21kpUqLJ4SSgjg66KEruNkkHa4h2x2w04Z0R1KmVyCjirsbbBWXk/1ggvOPgASXjESUvsXvyMtVqSq+ARNLLMilTJWVs6RJxmDyqqW88NXUwjvJfhSdc0kiBW4YJ8FquR7a7K2V6TRQqyCIW/nXKJ+nUtlxmu4OVcUIV+WAoCWQtaVFXq/sh5lZQ0Rq+gyTnIJ/c1nfYoJ48WnSs3X5KmSvURRLvI/BWKpi2dmJTq/jvRkap61gkEO6GQuYBX8gR9dq7p0tWQ/9fV2JESdwppWoAG0fSdp4msM5lIDBHvAxaLbeTaxhDWmN93/Ronq3xklZzMOUOjn6H08zzTbcT8iSweJs4V00Ktyt8VOUYxAcuS3Gvn1qH8EyBYZgpsEXIoORggCXp51DxR2E9CrVUg3i0UsYyC7aaYmI6HMvMRIEdykpxKIQaZaEHfU+lCBL9IzqUlF3DuOehpjBLvA2NKcl4GgpXEY1MkV421JT7XOCMjt7G2Rk9L+FlIrt+qQFCNH8boAmKWnCglUlSn61fzHK3W61lVa05nRN1r/z0k8sqITJ+ooogiRiBL6zGEood9jqaXlr+VAR+jTJFHVGsgkP+mtSiIUSobctl4yE1xVuTyri8vyMDd8ojRGUpQU4jRgY0JlSDHgF9ksDJkWJYgerZK2huzj3z++gVD265tvBQCTdsxzwumDAClEEGLe6bpLhif3nPc75mCwttWPm0I2EYkrow2LNPM/f1DkU2LLEUzXBtHyJHVC6aitWSstnRNR9f39H3PMGzpuk4mnwtSK2FRldpIPbvpIRaEuvKMC1Kbc6Jp3AlN4IQcaGPXQ06AwVyoS1J85ZTwy8zxSeYGrOslUcqRnCLTMmOUEZTE1AAmnRdVhthyFkczLYIQwmkt3EtqkK1rzEhynCJl6DXI5q+Fi8qs520Z5slFfUApi3ENq5QkBeEvaEMOHmxJqrQhh4gxoEks08RynMSxV2nmeaaxpqhmiHyXa1qWONFutrSuoTEO2zT48SiIXw3euaAQRuNjWtGMnJOYYmlT5jqkA0M5LLRSKAONswTvSSnRDx0Xm4HO2YLOK656+PXDHdV8JSNdgBDFjc4aOSBS7UChcNbwg+sdf/b6hr/z+iU/fP2Cm9tLrq4u2d1eoa3l8emRN1/+lg/HBz6/GfjL/+v/iTd/+Svyfubl1QsuLq+4fem47GUgW2WYw6mTEFMkhSxGImiGbqDvN9iuWWVJZQ8IlSrEE68yhoRfJsIyE/yE9zPL4pmJ5GRBRTIiI2itph16URSwrSBKZfhN1mw1U4kFpfQixzcvKwdbpF0bXNdiG4srcxpK1f7RGfWmBFIpUDNC68vrLEdVhfBFQjQEvw5UGq1xrikmbBIDnbEndLl2JGJkmmbmacLPiwy2/Z49Yjlw6yNVql3pqqS0SLKWxWQtr9miKgVpoUuUzpZCFE/kkJSuYaoqYMbhnEjmaQOuxopU+fYzYQnlfZXhwqxKgomARlazH48YuxHUUGmcs3J/UyST0FrcUlMKKF3ondbKmo4LRheUn4RSktTHGDBOUNjLy4tVOhYlxno5B9q2o20s8zJDjgR/Gmy0xpKMKGsFPxMaK7TCEEUHv3KslRQBKOF/g9CKKthSzwBjrBgDhYgPC13TSyckpmI2tSBInMxyPdO5VjJE2XTdmnQYbZiXWdhlqg6gl5ygqJdZfTK8CcXRtSlzWetgbC3mOBV9z4ZaqWPv548T5WOlf5RX0YXWeaIv1AylKp4pMKdO7pqbnHWJqmeUDM/+1QmWLl4ddf1WA0NVwKcq+VyBHqWku2udKyWD5VjWWWUV5JzwPkABs7quK+i8fN6mafBe+OY5ZaxpRBq1eNEopRg2MnMVSnyprr9iutQTtMbPs/xebUTcgYLTFNqRKdKLp7goMfF0MBcgo4CIsqflGuQK5JHK0aqLXr10yZdxlJyugIUxLKTECmCi6xC4gECi4mOkGFBSAFegRJWE3jWm5BzytaZrRTrZWJq2EcGMkgelGpesrBlhU+r1tVSJP2viXfaZFCuSX5nCr08rSMB6T6S4sOtnOe/qVE+FyslXWn9jbf/1j++cyBvn0NoWK1q92qi3CkITWOZFeGbeF9lnGSgVkX136lQURPyc4qE5rYMYoxgoFd6Ucw3WiiTfxbZnN/TcPT4xDNJClNbpjDIGjRfJOpXK/tG4tmE+HMikleURy0LbbRriMhO8oOyJiLWK/fHA9378YxpnmJ4+kONC5xqYPjA+3XEYZ5IbRMrJwKevbxmPTxwPe1QM3D3sISuOs2cOkZghZ42PknDrUDRGM7jy+RunsU3pLkRRJnGuPdFNOAtq9d+z9o9SdWi2VLjFcKMWWLnXqySl1eUiKEhOpBnrkEzTdieUNUv7tR8uqMOFlSISYsD7habfrsh7pRooXagNSQJizqKnT/kkugzYAmUdCZISQhn+QNYPlMQspxU9iqmoDMRaqITye0Q1Jihp5dVCKSuFDx6UKPTE0qlJWQ51YzXH8cjj0xN3D098eHximcXIIebMfhz58HjPZjPw2acf8+rmit1mw9D1DJuO1korToKmZbPd8DSOPDw84KyjbRuMFl5hTqLN0nWt+AEoMb+itF6NgqFzkDyP+wNt13NzsWE3dHx4fGJeFjadYTDwFIU6JlKXiXEJ9I10R6yVNneM4ii8bRr+4ONX/PiTF3z/1S2fvnzBbrdl6HtinPnzn/yEP//lb/jN/T27fuGNivyr/+9/xxe/+C1NgD/64ff4u39suOUVu0Fz0WnagpT6mNkOBX1SCmkKB3qrubgY6DZiJqONQTtpLQr6qQuinUpL9sA8j/hlxs8j4/GAOi4sUehZRjdCO2taLq+uaLuh6BA3WOtwjS1rEEHJoxixLcvMNE3M0yJSaGSJTcrQdRvaTlwC12JZnQ+qUtZvjV25rOskdAMfWZaJw3HPVFrVyyK0A5EVbWm6VgbGXCNt1NLJkUBYkKUyCHgcj4zHkXEcGaeRNP/+yE9W8ELXjqACVHH81BrXFqQ1xVVtpmYEtRg2RVVLa0cKUSR0VSLmiNIiu5eSzCm4pmM5eEmilKXpGqZpwjagTYPeKA77vTgYl+IPpbDOoIwmEtluByQ5DNi2xTjNvMhsT9c1OF3k/bxnCR5tktADjOXyciNrN4spTUwz3aaj7eUs9H4pVJyFwyExL4sUCSGQnCRQyzKvRkDaanz0MjRYhkWttaIeFgJGKbqmOSGyWQqUeRlXuUNbUP7VYNA17Pd7khdqyna7BQTIUEqcMZd5phu2RTJZOla1C5aB4/FYCteSQOtIY2xJ0Bd8WCCL9rkUKnW4VMAgVfYJsCakVQu+8oe992uhvcoWh1BotqeBRIkURezgTDVHHM8bjLEoJV3xc1oeFMYAhUajzvj1tb1W13EWmlRF3c+TreoW+4xyU2IciOBESlFiEGdAvhKDv67rSY0rCa8YFqVyvUQuMa6f1Tm3KtFYbejbjpSmsl/0SksxxYG0aS5Fvz9L8rnZbbm/v8dZi7PS2fztm7dcXV7gmpa7+wdev35VAKggxWKMRC9DpNPsyzzJqbvpmkQIp06GMYawiKyoyknU+lIZeC/7O4bSadWw222EIptlENovnrbrS6chFi46mCwlWNd09P1QKM1xHQxtymc/HI4Y19IVTroxTnTzhSJS2AdgbVG/y7LnMgrXtAxDI5LTClSh7Bnj6m199qjXgMIEqB0m8ROSYk2ta6eUkDkTK+O3gghKBmFXb5Xv+PjOifzQ91IxGBH6F4MiVyr+SGMcs7FMahTpwa6l6TqsdRglSACqtCXTqTV2qkBKZRIjwYYyjJMxxrIZWq4vtlzudozjSNsIEhe8Z1nKUGcKDG1DGBPeH8AvtFrJpHpBMzSVUyzuaikG9k8HCZauwZjI3X7k6sULhn7Aj3vGh3vaFrruhofHPfvDTFKGbugxbcft7Y4YFg77A8s8Y53GL4IuSbIufLpGGXF11bogSFkQSq1wgFHikOasoXOOrhVuoNWF810WS86Z5ANK25ILCBJlsrRvBVkv0+9K6BaqXFcxLjVVh3Ft6dfgb51lHRKMEsBs69hc7ViOB5bFi3qj0jgcqpPCIMdUfk4SeJ9En1iMpKrLnyL6hZwV2rGi5mEJJC19iYpoZyrlJ5eKvGjmK4eymmWaRHvaGmJO+CJ9ZWIkYkoFLT+vlGLxgeN0kIo7i6fAcZ7Y7yc+PDxx//TI0/HIYZZA6H0iYZhDYpwXlmXm+vKCn351h4qZzlkuty0vrrd8/tErPn71Gj+OkAOudbRtvx5mM1kGW4yladt1ncdUJuiLlTvYYgOvMEZQlDBNdM5yc3HJ1w8HOMwYlbkZGg5PdZBY/hsLT12hJFkuRYpL4rVgtKJpLLYpXOUYWaYj//ov/i3/x//2X3Jne/7uf/5f4N7+jEa1/IM//Ydc2Eve/Pq3PDwdOY4Lh3nPi5uWT14N3Lx1fP3gidEUJK5KuyZUXHBWMWy2XFxd0XV9SZIF1ToxuiqHdWGaB47HI/N0ZBpbrNHE/IhL0jkSxSWF0bDdbLi9fiFIt7VY5+g6GcCjIGo+BIKPLPPCtIzMi5cuBbI3FIrGtXS9UPXapqFpWrSy0iM7G25VhUJQDZvEEE2ci8fxiHWWZpyY7MjcNKQsdLumuI06a2X+Qa/2ZiekK2dSDDRWfn/XlPczthz2++8cyP+H/qi240qJclJN1s7VHiQOsSZY35x/qn5ftbUflniix2iNNQ0YoUBNfqHtN/iwyMCeMrimo22lq+jniWHY4RcvconlYF6KXbsy+qSrrRSCNCZRuorCyW2szFO1XVOEC6RTKhz4BZTBNZaqiiJSlHL3K1e761oBVNC8eHGDtVrEBUrRmLMMQepUE8Six60gl2K4aRoUguhXekVKSfwcYNVmjzGu6kAhBMZpLt8XRY4aa1MZgGy6nq7vedwf0cbQth3WOeaC2qIUbevW+1f1sCtHPefEMh8Bma3SWQnYkip1QvaYNbrQciTJPE/kQXIG45wMUYYgsqRZwK26Vpxz5ZwXkQtzRqmqyi3niVF1gA1FwAG5w9KZ0VromQXxrjMEKNmvIcj5a62V8zRXEEutLQKtcqGnCo3TGo3OiZRkKk6Q5VQoXtIGcm0L2QlVNWe2mwsWL0CEFDhh/QxPT08n9ZXSRd5ttwWprtz4qnd/mlEBSaZjlCKgBqOsDNvdhZQYCm5evGScZuqcXESd5gysw7qmdJIoCWkEZQTNzrXXAbZxoGSerrWntaKVdMjmaVrzlazEr0a8JSQB1lrc7uu17dtehtWTFLKHw76AJe3KOABRNrp5+YIQM9Y2pXPbgK5UG3FxF1qYls47pnROZbC77VpQBm1coUad9N7XWFbWSUXtU5ICRBmNNVaEIPTJAd7PC01X40phB5ypv8nHrNRLiXff0Ov61sd3TuT7rluDrFT3ZjUgELF/K6R9LVJLzVoFVXMiTkgpJXErb14ksKRCScngrBPnsxTpGsft1QWbviNnRVSatu8LsieBTZEhWYyBVForkrQljBKraaEgFe69UnTGMU4eXT6L0gqVEyEkLq8umQ9PzPsHsYdWjpgU4ziBtjRtT98NtH1L28CXX7yBLNrEVQ9XGYuP1QFTFiM+rrQCyGWwRBZo64wcDM7RtT1dJ8i4s04+Xwki1a46lfZT3YsyMFjufD6xwakc7ILSCJVFsXiP0YVes7YrCycds3Y6YgzMR8fKtS8bNxVOlyiKFCQN1mS8auxKwiIomzRDCyqRJJDHVJJ9pVFlEJbyMVBqbXvKIs/4EJmnSWYCfFwPJYAFSJRgl+W5U/AcxpHHw4HFR+YQOUyeD49PvH068vB0ZPKeKQSm2eOMLYOYEMmEKNbXbw53YiaFwmlFazUXm55/94uvubz+LSYHLoeGj24vuL2+pNVVT1cVNCrQdyKjlXOW4qcUldWcq64Fay1D27MfRV1gM/RcX+zYTzPv7x4YnMbqjE8V25HbO/sgFu+57jVFYw2t0Twennj/2HPVipGaRrjZbx6fuH5xzYVt2ew/8Pmrj7i9uGVaIu+vrrh//4Gn/RNfvX3Lj/7e3+b11fd48dv3dOa3ZDJTmW/otLTfo06oGLBGs90M7IaBzbDBrfbgUsLH9eBWxH5gnhvapuVwdMKDV9KJyRi0aeUaZWm3GqVFhaHpZL2UYC/8T0oSU5Bu7xnnbjXiSkXiLWeFK4NmXdeVZL4th5U+44We4lUqtLJKB5inGWOqUobBOksfQ9nbtgAedj1wjVIrlzTXTlXOIoGqhAaRUvuMGvD78qiuu6rYqJwPKZ/+1af9X+h4J758oTwoVqqFHKhVyhZyoVlWHwXRcm7K9QVM0e2OqdA9Czq8AggZ8YQK+FhnauS9WmvKvIUATFrrQkHIlW+BSBueWvt5/dySoLpiNS/XQ/4/FeqhMYq+7yQulu5n2zjIJdlLhc5SE9KsVhRcq4rwncV6isSgredypSLKtZXrW91GhV7hXIMPkoij5Izo+r7cF/m9Kw/79MvW+4PKWGsYp6NQ24qsZM5B/ETqZytdXdm6qsywlDOx6N3X3EAVpFKMoJLQOjlRGZ7TYLScaSXpqhQF6TaLQEYVsXCuUFbqeVqAPtTZPCCFKbDOU+RnMywxyntZRQ0qBSdlIsW1vazplE/dhGoWJBrv5TpqhNZaztmmaej6Xlzkgy8Fll5V6JZlKcOoukgu1kBVlJRCWE2g6paqEp+qnDFd18uPKMWyeFzbFf462LV7KjCizgarpHeuyVjEmdaUQkaUhxzeS/KvsqaMCaAt2CzgnSmgXmnIgdJSaEdxzoVMNokQFPO0rJ4Bgv5LPmAAlUT4wLVCXdRWcojSzpfY6xqWMvdobCPMEGNLEl+Sd+PKnqr8eluooKdZP6Xr/KbcP+8D1Rm3Ju8pynpXZZ+pEuvrOhUN+kLcrAUqZa5MnfsR1PlBVpDiP2oiXzlZqihGVJSpLu46NKPLoIlxDc6YldQPyDg76llwXisbq4ryA5AyEeH+Xu0GLrdbtNaM04J1DdYYTPBillSGYFNM4Eep3lwjZhphlkArMsLCGdYSNBtr8MGzHXpJfryHlGhbh1ORw8M9fjxgy80NIihOtWRWaDqnGY9PHA4j202HNZppFF3dmMCHVGhGak0CdBZXV5WzmCKUANxYQ1MGn2xJAIQiU1oyKZMU6Jpb1OBdLm1MCUIZooA1EYmIoUYNviopkk4syyxITpFRyUhy6b1HEYl+IZbp8RQ8SgnKUQc1K7dXF23/VFDOakBRqTr1LeYSr3I58AQVkEPB1Q1Y09LaZioW2SoL2k/MgqZPo3DdyudeQuA4zhy9Z/KSZIUYCTFz8J43dw88HmYmH5iWwHH27MeZh3lmnD0rSz9lIJT2qQxWopT4B8RM5wyNKborKfM0e8Yl8GY/Y3Jk0zm+vn/k6uqBy7bjetNwsd2JMpKzMpCdmlXBQGUpbSRQQQqyATRl+MhbbJZO081u4Dht2B+OdC5gFYRy30pqgw+JphWn3dqZUUqGgFMMPDw+8cYaGqMxZOZloe0H/uTHtzRtS2cdLy43KKU47vd4f8QnjzeQdhd0n7xm1zq+98u3fHT1a3754QumEAlZeOfWGaJW+KJK0LctXdPQFftqkO5IzkiSXtYMSuFsPYBLopLqPIhGmQZtpAPli2th2zRstxtJmLI811bTs4TIm6WIXeQQjG0xwjkbSJWhZXHW7VppwXZtJy34U8ZNLYtTmd9ZvNBoNBX9lySkadwKUOQktC6jzvi561BYLnV1RqdMVFJchFiUfYqkmWua7xqe/wf/qIl8rgnSWQJfecsnLfMTrQlOaiYVNMolMVb5xH1NKRWvCk5JphJFDI10pRTI/AkZbR3aJCygtaD9WSUMFhM9cYqFky3xW9Bmv+pCW2OlQ1PWsIywqXJemLVVXzs7SivRuK/rVcsgXizJv9aqJPYRolyLtm1lvifL/s65onX1ogIlsdTlLKW4hZIUrIpnp2udioeJ0oamIPXzLAOL1jlmL9rhIUo3qxYtK82lJN2qjmIVTXKUOJMqoxnHo9A51xkQL2o7OZWktg4CIjNly7wix6fCoGijay3nX06sDqsU2gJqdeisICNG9MelwJMkcF7CWjzEnNfny6+T8zfHTNYnpHVN5MvaXfn2inUOrSLe/z/u/uRJkmxL78R+d1JVG9w9ppzeWFVAF4pdjRaSC0oLN+SGwgX/Yy64oDSFZLPJRoMCAYjuQo1vyMyIjHB3M9PhTlycc1XVI6uALBEsgGdV8SLSBzPVq3c45zvf+T5paq5rEtqcvBvMJu9RV1onIOCV08ZQK7FPahxyDRKlggtu0aTRWU0Qt/PXu03HXPqCNIEyUqlplM4WhG49Do4QNmfTJUZC12uMps9GDZFa2CkgiUh5eyceNS5IsilJYyciBaXt68q8sOC8Nr46twbF1hj60JFiFFlVJ4pRtcgY1HnSNezXqlJFKXb6MAavgbLd3ICtd5qod2AiPojZE9bjQhBAURAgrJpKtsTKIHQ/0AbjarA2S2XlhavvBjK0PUrMntToS8esBfrNHdaWHR2rbr0ebaY0RcIVit0+4t/7+umI/OGwNni0g0bMluRQdl5I/qGZCRm3bi5rF7iKRa+bW1swVWy4RaZE/i4GDIW3rx5w3rPETDWOYRAUzlknsklW1DBiqqT5Ktq0Q4+tkZRGqIUcsx4A8nGdt/TeAIXDoccbwy2KXu/D3R3L9ZHb0yM1Z7pjT3OrM0Z1jVUiypvK79+/pyILz5CZZ8lsx6cLsZHxMcQo5gAr0FeVpl6lnNetShx2a4ypwtlCs2SRqFQa0hYna1Asne+CDrZGyF0TRYxb4mSdoCRV0Jh2PdUUippm1BzXBVob8l6SIvDy2TmLNr610ITAix4qTX6p6UZvDVZWkQGh3pRa8EVQtEKbF4oAIa6tKIJdS5WgfZ6JVBKGMWcebyO//f0PPF5uPN9uPF1vRG0wvsbM33z3A7e5suRCbAi+cSTkcLDGEqxo96ei41QrvRF6inGG/tDz0AUG7wle9WR1RU7TLOj/PPPhMuLeP3HfBf74i3t+8WXlS+cYDr0cJEmMZdq4NOlQ6wypRNXNlwMvhEAslWPX8eo4cLs78un5xDgnemdYqvQFtBOm6IHXByn3RS0Ly+bnuI4THx6fxDYe4V1+8/U3fP3VV9ydzjLf4oUfnr7j+fk7lnglnHvuf/aOL//8zxm+/oJ7Y/kn3/ycf/qzn/Hf/9XvWJJsdt57hs6TjSj3LNOV4LeEX3RzA84n9RdQrqsGNYJU2rXJp6ZK57zIovqAsQEw5JgE9SmFYei1Kog0PCPUMQkgsqKHMncLqhil2vog0q/WGoITTd8udAz9QBeCrsPWCP5S5s2icrY506nKlGmJqCIqS1xWRKs1dK6mRruGPGvk0C87JKbtjd79FCzmP4+Xd5JkWbNXiHn5aoH85yYrLfHKTR1Lzw2jKkU5RaIG2BgwzuDxSlsqVMQgcN1htGIX+n5Tu1EwIddMKok+DnjXjPHkWg6Hw1oJCCGsvO01kEUCNIwkLKIc0/oBtgZBUUuxq9nf9p5OXVIbL1qAjk2JQ3m4ayeUXNs2x+Q6TYJSdkorlLVyaZVaYJUn3zTKjbHMS1I6pOyFxjhwHkxinmdut5vqcCdEeMDQ9V7054shJbNqx7dXyYk0i/a91eDc6Fnc9r7Gi69VGqKttaoPL+cHoXlVWLxy9UUlahunw+EgKKzdxrO5nzbnWaFCbNrdfx8HudFt0DnYOOqliASqQfdtpRHV/Twtaa1cCHosqG9D0TfOvb6MFbS3qTSbrIFbwVjhY5dcKLaoAIhZwbKWEMYolEGnVM5GyWh8+HbWLMsiMdzaXD9tl6Ex2uF0FGBiWRhvI93huNKOjJVxpnG6neVwugN0nmZYcsH6bl3DMc7i2dLmoXOb2aSizbKwC9WJzJJTda/Q93wx9Ovvtv3Sa3Vzvy6LrnsRjZBKqHV+7Y3ANjd3J3Gpc4gSkSQJkoQE+m4AZxVkAqp8PeeCKWmlAzfqWLvPpGe6D2Ed01b9SLWuBmkYQ66FwWvV2ToKatRW9s3Zuo+ZrdH6P/T66Rz541GcsRCUqTXQgNjh1lLWSW+M6qWveueSnaGqMevmR3tAWag1Su2uVbjDx96Le5w2hnZ9T98N5JooOigbsh0p2ogWuoBj4DY9M48LMU5IdrQdqs4kjseTasRnCqJwcn888MPHJ5aYsDUzT4VDMDgPT88TpVgG7+k7T4qZ33/3A7/4xR/RdZX5NpFT4Xwc+Kun365l2YRhjkkD97xOvqbFHxw4VZaRQ0UnSa3M000SAEVWh74XueOUaOpBNJRFSxrOOO12l/dfpplSBIG0zuI8eK9Uh9QWlEyeaowgKK38rchHWd3Z5FqcdTjr1z4AqwF/iVERIE9JE9MyIY1TBz3AmwygPA+KIS6zbohZMnAnEpKCzgvSEJcoyVAtzLny/YcfGFPlNx+f+Te//Z6//u33UB3XODHFCMbifeDTNfF4G1edVqP3ZTGaDEoFaSmZMWZ6Z/ji4Z5pHIXD2jm+PB754v6MK4nDcKAWmOeJ63QjJrEVH86DqGgAY4zEmPk0ZrqnK37oOJ4O9N0gqi7tUFAepxwsEHxHrAtJDS4OhwFwHIeFfgz0neN8PnA3zgzdjUmTsOaPgIVYC2fX0anW8y0lbvPELR556A5cl8Tffv8Dt7Tw7v4VJRXSksgHqUZNt5FPj9+ylMyv/vSf8udffM3Xv/4Vp2++oly+Y3oc+QLH/+Krr3jVd0xZKFqrekytJFuZLu8pyyyKP0GaSUMXCF0QXem1JC77hytqquGtbPIJcj9QyoILPUbVFyiF6XrdmouPR1HTyFKZcd5TUlQXyY2H2+RXq8pkGrXyxhpc8Cr5J/SeYdCqX2t+1aAgpcSsh2XKicVKCVcsxGV+WWsx1eAXkXxbg5dd4Fmz0cNCcZes2tACJyuKVv+QjF0BXprnsCFaey48sAZauTY1GnleaxXHbA2bbQzdHo2nouLu2GbgomPrvHBSc7OGrxuC6FVtAlTG2LoG2FIx2BBwKUn1V19NXlAKAEpf0bPNtGAOua4YI402A1qJ0+9TIfSd0CN3qHBr5mymTabpk+/GqknrSQYMRpn6Vek1MQrifjyeBaWkroGw9R2hH7DG4UoRJa6WaBox2GrJRqOnCUgkdz70vXCWc1rljFOcdZ1VUQ6SeFZGoTR6J2ty1syYjEHEAZwj6aZmdM1n7VExxojSkBr09MGzGHXw3UGYpq2jujXQOmNFoap5pZj1yQnCr4CjMtsVaNjNVfUskWZZbSreBZTr7/49CUK7vpbjFPNZQooVRDyLcVZJUYNRSUQLmZpEUa4WTUpLodi6Vr9b0uednM0NQGnJ0rw0DXihOEo/g4Cyfd9zud7wziti7Tgez9JIqiacXTds66vWtUKJ9fhePEJa47OxSmPW5hOdmhoDrVsABosPnTRTxwTWCapfK85LIG+dnNspZ3LeZICtTqy2t4qyjFfRBbMCnBatSlmh22igo1LoUsEBy5ISwQYVxZA94dgPawWqJVDebwH7i6A+S9W373tM6/soFadgAcas55E8s0xVNa4GCjS6llnBn//IgfzhdJQNV2FtY0R7tZVJamUdTKjEuFCr6qoaYG1gNCqlaDSbmclqCBWLNDE473i4O9EFT8URbJbyRkNPqsWGTlA+U3AUnj5+wB06KGL6kJ1jeX7mevsg2ZoTTV0XZIPu+o7DcCQukbSI0s7d6cA8j1zHG9boZh4cLnTMy8J1nDkezry6O/L6vudv/u47qh14ePUA8xNTrnSHA2PMfLpMUrZxjpIKs7qyaaJH2xfAYk2nyJBk+tXA49NHSBFrJAByThqxlmsUxzEjPQHBycItFLBOsmAjAao8qwreMseZsRTE4GpA82ZZTOpsWqsh5iTcLudU3z2t5VNThavZJq4xte1964FbctHmYUkArHXKKb5wOp51I9ASa6ksS9QNSErC1RTIBeOET3d9Xni6jkzzwpIk2P53v/+Oabzxu08X/u7xxve3yGE4cJuvjNOiMnJy8MdSuL87EJdmXoXQnmpW6StZtNYY7vuOL+8PjLkydB3v7g98dX/i1eAZvKU/P2AJUC3Od9w/vOJ46PGusswz43jlNo1MKfPx4zPOwHUa+d33iel24ZdffS2c8SHgbMBaI5xO3eSMrdrY061BjneWQ9/x5uGOMS389e8/AnDsO256ALbeDzlsE6Od8V3HwTtMLcwU/ub5E0MnBismFf7u/Qd6DaqNMfT9geF0JD19x2/ffyQf3vHl69ec7zo+/uZ/4r//v/yfeTVF/uyP/5S+O/HV8czboeevL7J+SjGKeBSchfe/+w2/+du/4vzqHQ9vXmtD0iBGUcaQYiJG4SJjYRqjHJ5U6qFC1QSvdJKUBdXzBk7DUXoLMAz9II34wLxIpWxJi/D1ayFGSyw61dsJsqtoNYTYWyuN5n2gD0HWWAuQpLRF8gUzz6SQiH5hdg6LJQSHMaJIYzArraAZfckWqJUGKtkq9UEDhdb83gzMSm6l/D+cSF64oDICDQ01L4Ig1n+vyPX61aJVwVb217ODqHuP6qej1UntwRF98va+ErC36let2sOSmzmXESQPS61OD2+n9BnWaxXXzLoesBsohZTk16ZKCRYaHYBaWeUPdRz2zXItCJPKb3MurSsS32gx+lZ6X+KITPM3MNtcKrtrtivdsUBKwg9GQBuvTpdCG3YE56XKR+tZkOu1ODzsxtSCKVwvF5GfVQfd0gLaNQETChEUDWKMKMxpBWqlmmgStNKsjFR3JZHe5kpriK5VlrHznt7ZNe740XzSudcC7cbPXr9pGqK+RZimlBUZNkZUYVJKa+C3/qoxKyK/e7u/9/XSs0XntwbwVJHZxlSqsZCg2k3ms/UytNtaqzw6GRoyH0KLkQzW+nUtrfPLWIyX+d308htIkXNhWRJ0Zo1DSt0qTDknrPfEuJkZWeeVtimyqnK2bkaaFtGKNwqg1pacaX5UNWjFoC7sbhUhyblgvREzppVCZ5SK6tUQ0KxUO4CqFJlG15Rzo6HxYnK2ruV179FYrIiKUku8W9WwBdNtrjYEvn1dEh3tjZGSGPOytCtaZVhN4+Qbo3OuUIvZ7fAtC385g15UcP49r39csytywDYUwisiLI2XgnqFIHq50yhorWiFmhX98MoVbCWxlCT7yNr855yhC6KZ7rwnhIElRi0hlZVaE+OCd4beGWyJxFsgeoOtHus7lqJd6N6ozrWUDL2TjXEYBmpMJB3UEKQ0+fQ0kxHQtDdWu70zl+cbKVUOh57z+YALno+PzxyC4fb4XppQETOS9x8+YlTZJ7cmCp9JOeFo5Tq0uxSM97iuA2sY54n3HyPXroNqmGPkNifGWRQJ7u9O3B8Gjv2J0EtJPyXRua+18u7NK+5Ols4pqhUXhkMg1SKqMywykWzLDnfbjz6Tvg9K8dBg0liwQm9p1PdaM651wuvKNDQeZiJlxHegesiioBBTFLRFeZatzFdqoRsOlGqJJRPnREyVYizfPT7y+w+fmGLmljJ/9f4HPjxdibHyaVqYc6FUw/uPT1xVH7fpUxtFxa7TTNLxqUCqYIwTR9+c8bVw6DwPvcdZw7u+59dvH3hzOnI6dJyHwLu373h1f6/oRk8fAtaCC455jkzzTIyviDFyHSe+7z+CMZxPR05Dx7Fz+CCbtVF781ZiBPDBSwNqRbJOH9QdtuItDM7z7u6BP/ujP+b7j/8jxyFgbwsmIWZderAZDGMUObrgDAdvWKrhGuHbp5HOBL6+O1LzwsfLE++fP3E3vubBiOX1V+6P+ePnC7/59lv+4l/8D3x6fGQcZ9JT4n/zT39NTRE/ZIbOcBwC+bnyOEbupgnXO4bgsblQl4Xvv/stP7985Eu+YjgOdOFA33mZLkH4tssSyVUMsEop+JzpQqAeEt4b4iLzyXsZd+dV1SFlgvcMoeN8OGKc45gr4zTik3LNdTPOVNX/LisnlFqxVZFd5TX6IDx2r46GjYfbNtS6LPjsVhRr9dNw0tMiTW9yUDvl95ZWIlWZ0NYX0bSyV5lYVdqJOa69I39Iza6wD3LqCxoR8CLoaEGS7Cf/0GGmpX6Nar1vPUUIWljyai4k7yW9XM4o2uUE7S1WOLlUs2tyqxiTRE1CqWtGhQmkrC/zptEtG/puNOiqLao2CDfWoDrSoiCjmObavFdU9ctap3/L+5Ra1uBfhAO2vboFJK0JW6oddZ1TEkRIwOK1ciESfVXdhlti4gRRr5XQCT1WKLBi4EgbU5QKZg3iriyo/vPzM6fTiVa3iMuswhVb9aTp/xc1SEMDeWpLDMwayLe5IGNn10pHq1Jtc8G0/9eKwYsvs4PSdzQa8+O5VLfEUD7T6H3WNelyptFotgBwj7q34LnWba5+/v217G30uNT7A6N7Ql0BUWyh2KZq0vTvnfT7IV4qLYFsn9PO1AZ2GrM3w9I5rcgvNOpLpDVMN5qSUKvkfIoxibOrMxqsenKZ1RNCaKdtjMRl11KNrDnrPTXLOdtEUMTHrazjVGrrATQYp3Tp4MnGYkzGeksui8p1atXEaw/EilRL82Ndk0u3VjpoCbERkMlYJ3O6/a6Od23TRfcaq3LRbZzMGnw3Oigvxn3dp3Wck7IWJE3ThHjti5Nrawlg2/9p+8g2c39yEA//iEC+C0EGiRZ7yAYhebBw2+RAc/pwPIs2prXubMlkJFtLOVOzaoBXKXevjTlVuL8iL+cIbLzvrutaCkXnLd4V8pLpvaXznlIM1oherOipDszjTAhqDADSDJLS6hrXjCbEGRVSLBx6T690gdrMdWrl7v7M4XzHnCzjbeKbr97hrQRn3gVczizTRPBuDYxjqropS9JDkYPFIMlGdsIv++HpwvPlijeGruvJpTDGyJJhibLIwtMNMHS+59R3WIsE+xnGacZ1Pa/PR96eBx4GzzJNHA8Dp9MdtUSsyRzHG+fjCVOL8MicFy6ztSQqNamJk05ETFmbS0Rnl5eTXMtsdXXFs/pvTfC0eaclb40jX7QMJw2EkVgKU0zc5oXrmLiVyl99+z3ff3riumSuS+bbT8+kCtdxYUyJrLlIk/ICVuqE1SaimMWToG1+ThdhMIb7Q88peO77wMNp4OHuyLvTmVfHA8fjgaHvGLyBlJhvN7oQsKVgsyBTZhFJNW/Ad57eO459z3HoccFz6Hs6b3FWqE9d6IQfpwupUqhGm2tqS/IKphTJ5gtrE08XAt988ZrDEHCXWRAPpYhsbGpxvp1yIcTMu1PP2RnGKfI4TxynwMPdgTfnO1JJXOcb1/HCvEzgLXev3/DrX/4R18uVvxl/w/sPV2oxvO4PeCxGavI4pNeEWlli4TrNnI4dx77jeOhIBsbbE9fnR+ZxlEqZKsuYaihWNjtrRB2jAl2nkrKKnPngV066t2KM1vVBTKLyDgm1Vn83U7qA1cSy1EKXI30UqliJy4pApZT0ABA+pnoNKuq2V0+R1x7ZlZ18J09p5Hdb23hLzlqjWPu+NXZLXssmY2aDx2anLp2i4GX04PtDefkdgs06Wj/uAdgaVdVWbneWtaDZahNqUXt2+YYcZdZKKd4VCSZb0HE6nV4gac3NtToBnKQKsjV2WqXJKWal+xyC7ll5Pq5dv2xyetaJnF1roN/kKyEAjTZUtEJRsRrUGawPBOO3XoGUtAdJdbpx6/xtwW4LTteeEx0Eg3DKcZbgxSgqLwv9cNw5gCJVhCQqTiVLhFlQqheFh4cH5ikyTRPTPCF9ZQdF3DMttj0eDhgDv/vdhZwlYHdGAp2UwZhNpaoFjLUUFq0INpGEGBuiq7dXkWdlRdZzNSZS5HSJM53tyRltNFQVEVVfsyr00Pf9i8pES1IaDz9rpajkVi1qiKxo5jvXAsSdKpEGgmkXcK2Jo3kZsLVA0SCVECswtFSglcaRm867FQ3/lBZFrdWMs9p1bNb+Q52gzaBOPntrymxn7/l85vlyW5OmrlNfBaXVDMOgdBQBGJxzPF6euFfwKpbKEALMTssh2quQN/Cp63pccOtanaYR6XtqGusCAEqVhDWOa0u+Va+MQ30OAsapcEkthE6qpPO8kGYB7fKu39IbS96Nf62VcRzp+oG+7zkeT/jQi8dIShKDAtZ7Qujouta0LPHpEiO3220FbdBm6NBonrsKSUwJkiQ+h2FYg/r1nNIYs4kotHlRa2WOYh7XuP+Olvdt1Yb/0Osf4ewq5Z1mVwzaOCIFTTEe0ExOGj82HeBmtNKQEQzYolx5q4oxRhAKQVUKTeXAWksIm9SPb25+LmKtlo2qLMYu9GJXrceEVb611bJ54y42Dtaa+ZT2Ho6cZzCGw9DTdeJQ6m1Y0Z3Q9WA7rqMEB6ch4J2iFBianXbnHbc5EbMha5OdsxL0rYYQCCgfS+bD88jTteAVQen6RCyZ67ywZKGDyJyvjCnhjOUYAt7KRpJd4DbOLEUccO+HwOujx5bMEHru7s4EB95mOmc4HQ4cu0AInkPXcxwGjn0vNsdZDi1vDJ3Tg0YDSn2Ccq+NK6rB51YZkgPYaJJmjcU46YVYNY5bg6tyKVNOXOeFp9vE8zhznRMfx4W/+vYDH58nrkvkGjPjkigYrvNCLnUtN6Zd2VkOuZXpiKnaWGU0SFL1kLvOcz90nDrPuQ+ch8Bd7zl3juAMzYmxWMc4TeQU6fueGBdm36geckCFLqi5lZjKeH/CB6/NOSD0gLSuBQx6MMnvtg2hVlF5yCkqgiAJqvg2JHpXuT8d6H+4ijMsimq8aIoxxFK5xUTMgftBKGcpZZ6WhY/jzNvTwNA5MpXb7cr18kSKC8P9a87HM8EJhQiEX3k4qGlLLtQspluuJXTAEpt6C3SdZ8ieOF2Zbjfm20icJ4bhgEGpArLwoFpytqrUYWi3ITr7VpHBdlfqHKuBDxU15FkI2nDa+mCc0gT6riN2Uv6MOQFCX2mSoNVUfAh0XS/a86r8kIzB7lUsNFnNWdxboza+JpWbrW47PBoP8nPDGNGgjozzJPrVSKIs0n+BnEWDvqnr5JL4Q3n9Q42FP/6e0ecI0OgWLXYwqxCAxWD67b2tkWqeoOsSiByGo+xLho2bvGp3C0IutEK7BoYtUfDek8p2bUVpOWsQDRhTBQRs6J8TbWpB1gzVWu31kfkjVMTdmtV7aRz0Rg/Z82INTb7ZrjQczKY+Iz/Umm4Vsa26RhTdH+dppVaM4ygN5FYqT69evWIaZ+Ef1yqgh2m018zT0xO1SGD1cP/AvIyqeBY4HAaeL5+Ypxvj7ZlSszS/poS3Tnm/RfuqNAAuWxNvyepwHcIacLfxXZFSFNVc58xWqSpF/TOMBLIuRvq6yfmqmCHzPIqkJkIhkcQh7GIS1h4vtKImVJGKdXWt7MncNC8Sj1pRVRijhWmJBYxpJ8NW/dhN/B0ysAvs5CO0L0AaLeX8BJOkKTYXVaYpBdcUWzCrQo1cm8yn1uR7u914fn4mdAPNT+B2u61zr31tWZZ1Luacebh/RdLqYN/3a+Av81D9Aup2d3ERJ9YGdjQ/lK3HQ2gyNGTbOHGeNa3yJoF+0b2hIEG2V/5433eUXBmOQcdqGzvhuqszfClKp4KHVyelexnGacHFbS5aI5VsMZIr1CpzouudSnsGpiiN1Bi7Vi329L8GTLYqroxdWalUVs2nqlKrWyXealXK6pzK2rOw6suvwNF/5EBe55iWSUTeyRkrO6SRC2iur5IdNvUBteK2zR666CLJGCMH81Jm5SZtLmj7spBv2TCiq15jJDlUlzavQUzf95Dspm4Aq0OW914fMrQIRMqEIneWSxUd3TIyHI8Mhx5nIiUlwunANE8SLLjAFCtP14m+7wjNcd0KzyrGkVQKIXjiGEmYTZNaw74WyBdkIt1i5vcfLzgKvcpO+UUC/KcpMsW4NvhgHWMVNDEYlTvzjj7IeMUCH28Lv/t0ofNIZYGAdx85dI7OgSmFrrO8vTvTOcOx7zifjrw6n3l7f6LvgvCPneMQHL13ephWXSxWFBmqPmOlLbXufN0N1yayxncsWYIfTTYpGsDnUjDW8HQb+f7xmcfryFwqv/vhwnc/PHObMtcYGXMG51jUEKJl8SAbnG96uopWNVSnGQU5p8iGMfTWcHKWzkhpU9xADfNU+VQyMQ+4SZLT5XCQpMZbTlUoIc4tdH0nh0UVWcnWUV9rEAmsquirmmsZU7fmHyvcyErGqnZ9UE3erI7FPrQEFHofmOPCnGbePZz5299/pPcOYzKpZD00JT00iuxPNfE4Lrw+n+EwcJkW5pj58Hzhq/PA21dv8M4zjleePn1kfL7Qv/pSGpiVnnPoOg7DgeBFG7k09FJR5WZrn7P8UbAGZ2Car6RpYp5GxuuFvhNVGN8oDNaQtc+iSdU1iK/pzGtOJk7CaaHPwxrMl1KY5hF3FcqctU2FSX7XGkEjuxBYUsQlRzTSsBeXyLyMwv1UmbpOlWu64Km1SCWkHRYahC/LzDRP4harf+eS8UECpSqb10tajNGDqWTGaeLp+ZmozXfCx/fqvtivJ3otRYxz/kBemySdWccD3QcpZS13fx7v7znirT9aAnlEq1rBmZILyzRr4FExzoqjsG1N7tJo32iNLejRd6LRVEyt6zlX06YuVFtVxbkVPHBmSyxW7wGQfRpBkrEb5cKarSE6KM93n8yUVdVNkxnnV+R4zW5KoVEnVk43ZqVbtDEVPKXukh+rPGvlrJuGaEeiIrld1wn9BsCI5F4LgjBmbRhf0cgKp+OJabyu8sMW1B9F5ru1bICLbvxytm+gzsZH39aaAB8qnkFDuBH55pUih1Z0JaEuVZoSuyDoewN9rRMltiYs0P606ouzVmhU2QBCP6pVnkPVZKHtrdStqrB/L2PsGjzq8af3sZ/vbR/YFHBEEUtiCLuj2mDkTHV4eVS2korUDcmbuolhqwLU3dgaUzBG5cHL9vWcN+43IOeUE7bCYRi296mFJc7r3BQOfgtUEzEK1aaF0lVjAVFuETBD+kx0zjjhqhs9n1vT8wunZwyuUYJyJmrPUKUKXcs6QLn+RvcSKSLtEP2KbXuLMYTQ65qXurXRqtleZKIl7+3eU1J/CFhdtwUAlq/1oV/nakvqaqksSxJQRoPxRntrlNdKa/QWPf6t7IQmN61h2bx4/5/y+smBvHDsopQUrWqdm8YlUtMM54Q3ZUQxIwS1Q6bplkKMiWW5McdJeavCkfbGkWIUfpGtpOxUJaVgNLMDyTKXGDEFQS1NJTjHiCi/SMnfk2fJwDEJr8oFslEiZQygUWBNkclUcsXS8Ytf/orrD79jnCcOnZcyyxL54qtvsKHj6fmZ77/7nvP5bg0ca87M08Lj8003WI+1SsNAjC6a01tr3qkYlly4xSyNst6y1AppYvr4xFQNc/WqR69qDd7ih45KIRZDzZU8Tfg6MWgJyBlDxnBZMh8uVzoXMBYGDcqdMZQU6d6PBNsMjhyHQ8e7k+eXX77h52/ectd3TMFxdzoydKKDLh3xMoa1GoqSEmSE2+aUxaDB+lUlxFLFMTVnUmmbi0gzLSXRWcPjbeLD842Plyu3OfHXv3/PnHTueE8E5iwBVgjrcQUG7vpAcIZGcABFQHMlITz2WiGlQiqVZAzTtGDMDecMwTsOneNsK6+OnVYnAn3oOA4DnXPcHQIxCYdbAgzL6XDAO9lQgg+IrG7GV4c1nZhEGJFA67puPaB96EUVo2wSZijCZ63HdBIAOO+wRSybg/cM7sDXb9/Q+98wBEewllsRybzQqGJmO0A+jgsPl5m3D3cYLMuyMMfI8yxKRs47Yko8Xp758OEjr74povoSZ2ot9F3g7nDk6BLeqUGXlUNylkYICpWUi6AK2kMTUyKniWWZmJeZcbxRqQyHI513ukYkA85NurRsJUV0Q00pUUuEVFV5wnM+ncXKW7AzKfFTOQwnUt5chWstuGronKf3gegjy2xWas3tdsMFaYy1zuKDUvm8AzqK8ysaWGpmjgtjjNymmdt443K58Hx9BgxDYYfqslNokdWRa2GOM4/Pj3z8+En6ZZyj73oOh4MoHShokX3A+0QIfzg68q2Jcx/4rkkLsEbHGowKaPkSsa4KBGlMp/m60iVzZplntWvXKosfhP7pBNE2Fg0C9yjXFtwVnYBGUVFbyxZIaMIgVbL1N7HOqHSlJJ+lNl0PsyUuoAmMJgPaN9b6heTbhloTxrh1TBpyt1aPV5RX39dtzZtC91hrpfo1+eMVmcUYvPGErqeiQYr2jjQaa80y/nLdShargBGQrQXAtRZyKqtEqgRSKAop1cZaN231RhOQ51ZXw7Y9xWyPdG9gX3vCGkc4R42RdZRNXde/XFOktKpdrRilvZaSxf18J+m6VkGMVO+VuSINzsW0uF0FHLTXYReQt+SiPd6WsO3NGlviuX9tnHm2ykNt4I4kMRiZa07nngSzScaVlsDJB38eyL90xt1/tlkBhqbAIpQRoQp1avAphE/LEpfd88gClK5Pe5PwXBMuu1VbMyqlKQeeJpL2xf1nrci0K3ROY5OSySYRc9azoam+2DUpbf0FcjkyXy1GqEpsAbZzQde7VEqqMdqwLqDbfi9oIIxUfVj7JZrCWmsg3zfrt8+R8y8jdME29tKX4vT5tUy/qe60P6yJzJbovaBo/YTXPwqRr2ybKVW0TtsHOWdpDnJyoVJWU5aYXpzw15a4sMwTKc3Mc5TmhSKd16lknJfDvZXqmyGQbD4LqSxUKzbEqNNiG+QUE6Hr8IcD5Xzi6foB76o6SmoTpHU4qyUo6/BOM8iUefvuLR8/vKfcrgSTKUXKkUsuPHz5NdOS+PjxE3m6cf/6GyqRvhMO4jhmnq8T3gVuUyaEjgmRTTTGrI1TJVes6ojGErlMSbLvmPAp0TlL3/VcxollGSUo7tzaqV1TWTM3Qe/E1XRJCe+KZoAyMUuFxQC5MudFy1uZV4cjz7dIitIw1jvH/enAb76f+YvffeLPfnXlF+8e+OLuTKqVtw9Heu8Qb1O7zQhj8cEIOtbix6ZBjKLVVVDSUoUCE5WPmpXiMJfEHCNPl5HnceHxtvDx+UIqMAxeFtEi8p0n36FxszY7OvogFKjnMXKZFy7jwpILGGkiLsDbb74BF7jcRt5/+EAC+u5AipHedxQtoy0ePn5IkGa8U11bKm/vTnzxcOQ8PHF/HLg/DvSdY1kmjocDh16Sq2JEAtHExKgSd10XaI6OKErgXMBpb05aRLJTbNCPOBtWuc2Vq6mb4PPjE6SF49DTdTMhGEI0xNQOWnYZvQEHv3ka6fqOu0HQ6XGc+fZy4avLjfPxwMPDPd3xxNPlkenTe5Zl5nYdRau985yPHQccp9OR46mnBsucK7dZu/WLYVky13Hmabzhewk+nCnE5UJKI8bAPM88P36SpCR05Iq600r5ugueeW6azJLkTfNMTBPWQB8SwTtOx6M2ay0atCdiStydsjgq1jUelH3HGq0K2pXb2kyd6jIL3U1/qQXXzoIrWUqjVVKGaZ64jTeu443n65XnyxNPz0+q8FAIoRNKwaqcwHohpWTmZeJ6uzHP07pvztofIEHWZlUvCiJ/OIG8VD5aE3pDmVsUo1HQ/tDSvWSvvy+oIjS6Qk6Zasqqkz1N81omDwUOB+HIy0EpMnQli5Sh9OxsKiklszbjW2NVsUNQNYfBuyBumuoCXkqhpAzY1eSq1GZYZahm11hrDUbpCE3+r6nSpJRe8uidyO9lrU6tZXwjlV1JlGWuehUbaCaArNSdhvLLUA6uI6bI5Xbj7u6w0l9BgnnrxQAtq5yg916uXZOcdp3LMosQhZE+sxgXbrcrXS+Nv0Xfq9TWwCqItjGslCcUCU1K5Ugp0Q89Ifh1TOS6siLLrNUDw0ZNsi0xqpmai1LrNCGrmRp1ALQCEmPUyltY55L5bL5Jn4ITo7e0BerNAlLTFfnxzxB2AY3E5brN8BfBZpvT67/r2rC57tWtEoFci1MfjYKg31652dV5TBGXYbObI+3M3dPARH1L9uMuhLWa0Spdbe4655jnaW3cx1pRD9P3awlne+/z+SzyunYbj2BbU7XKR7pNSrLoyK1Jh15DezUqUG4Ur5Ll2qz2iBgHKjkqz91sFRbb3oM1WG49m5uhlaVaSTKsqjFZRfjR8RYwSfYWkUJ2HBVEXhMJY4hzXBvRmwCLTZloMt4HAed0XPeN0GuA5MzWd2GlUiCMjq1/al81+imvnxzIN06RbbjrumjqOsdFv1Ml/nJFKdJAJeeFiiFlySpLzYLALzN+8ExxYo4LxjkGLYmmFIUHR8WKwDxlydRYCBZCH6jFcrtFDocjt6eJOc4Ebzn2AfNw5vF3WbI12yaAVQt4kWgqOeO98AVHA89Pz1yfPnEKggJTC8ucOJxfc/f6Dd/99jdM48ixD6R54ngo3N29Zp4nSs5M44RhoJrE5TYzZqjWMISOmEbd5C2pFtWKNmSgo3IIjqN3HIPndOh5dT4ypcKUCnMpLKUQlUs1LcuKzBhQTqK45FkNjFDJp2WatgMT+edzmema1JK1VGdJJXMeDsx54X/+/QfRzC5VdNIHR3BHcjXS7FirVIZsw3/keLXGqPFPoJSoXGtHThEbRXOWksAIilKQhS8HnHCvjal46xl8wfeeJRe6IiYl9/2RoTMU66QZrGTmlPj4PPLD88JSHc4PDOeBw+mEsY5pmbG+J6ozbMxi7jA4jynQDQP3d2de3d/zX/6TP+Lb737g/adPXC7PzOOEy5nfXia+HydOHXx5d+DrhzMPp4FxvhGXmXgYGIaerg8EG/De0A3digiCyNt1XScSjFbGUcp4suGkRa3Mc5XmwE4MQbz3dCWs1BsqPJx7Do+OQ/AsnSS4uVZKyngc3ll8W6Nkvnu60YUTdwepNHx4/MSHyzNv70483N3hu56hP/D73/6Gy/MPPN1GaoU+iH59Xypv7h54ePWWT9PC8zRzmRaMlqAxjpgKk1Y+uq4jpcLt8sT4/ERJieFwxzjPdONEn1U1RMvEBtSUS8q187KwpMiSZ3KUypuzsr+kKiXbRuuiWEiJ23ij2oZ4CupZFF00axApr1qqJpXLOm+D8xyHI/NJmuO7atY+hFwyc5TE4nq98Pj0yA+Pn7heL3T9gLVeDpGgVK4dWCR/G6hWSrkahFgjVczWPCWceunVcSavAewfxEsDoiYXZ22VWp6Oj/fdmnyttXJV7GvUBotI4uUsjWquIfsGvA+cz2fVnm+DLnK2VRE8YSZu7sEvKDYWdbqWtdr4sKx854oL2gBbWpm+USqE4tECb2NlrYNUItbzh8p6LtdCTaKcRK7aQ9XQQ9bGtwKqfGOlurg6wb5sHm4xYqOLgHKF0X4z6zgcT3I2Fwn6ut5vBnVNGrM9g1JUBjBrYlpw6gJuTaHaireVPigVpAVZVcznJIuuQuP0Vml5AgWWLKZuuSTu7s5KYZPktyGywXkyQuMwrXKO2QVoXn7eBanaNYU8tzUzt0C+vSRQSjgXpFdJx7jJSraKUSmFrleQ0hh1XBVFvWYUJ1KfeaUNicmdWccx54zVYL2qAMFGL2qJq9AumtRhM9ISKmilmELBUlpwb5T13wwid0Cq/P4madoCeentyyLJncXlWhzLm3GVFbAiV+0b2OiyDqtrwqwBZjMTzDnjFORo7xOb6SRNcMSA1epBlVix6yTQzUY8Eqr66hjQHibAWlzoqMbKH2Uy5FxFQtzu13BdG5R9CGA2ZbJ5jnSdY6Pu6LQsW6IrqjpupblETU5KqxiyJWRtvzi/ei0VpWXBUIQxUVkTKXD6OVlpOeB8WIFs13XUKo3duRRVBvIrda7RZH8aFi+vf0Qgv5cMEw5V47HKpJMGVoxIEeWmLarfz0V0o6WbXNVQtGwxzxNLyiwpYXJWeaxK3x9Yqaa1UpI6pwFD1+G8oWRD3/VMcVnLOFCwNREMUIu4c6VKTW1zLiQB6Ekx4XHSbb1U4nRTS2ihwjh9QK/uT1AWYpyxFE5DT3ASjIZguN4SS8oYF8hLxFnUvt7SOYuzqjZZK5mKyVK+s9bgneGhC3z9auDt3YnX5zOv7s+SoRrh0c8xMS6JMSbGJfLx+coUI0tMLDGSU2FJhep6qMoTM4aDb1mnlsOqoINZCFk4awle5Cq9AW/FMyBOmU9PE9+GZ87Hgft44JAypSzyO84RjKN34jRYVTFmXWBajrQGKFakx1zGuoLV8lVd55YEWn0wDB0co4VToAuWfhg2jpsGeilGxkXMVeYl8jQuTNlwfvUK53sKlgyMS+R6e2TJifLpiVQKMUWt9FSe8jMVmOPCbZyZ5ojzlh8+PRO1qjTcnXk4Hnh8fOL7D++5zK1fQZKCh1NQjWw0UQS6qoFdXcvoIIZPIQQ6bfARYQ1tEreWAuRaqTmuyKxYkAv61nc9h75n6D2OjKt11T8PzjIluQ5pJIbqJNO3WMY58XyV5G0IYnzz8TZyGW88Xp8Zho4+BG7Pjzw+PfJ0uVBqoXcdpkLnHOfTURqALiMfbxPPMVGtI1PINbMkwzRFYqpiXLZcmK7PPH16z9Pjew6newxiAJX0oGu0gVrVPt02E526NlqlVakiazNqUeWhus4dKRGLeo1pcwolemVW6bXgPV3X0XXaiFVag3HeFJVUgUn24z3ypuZkUWQz53lmTgvG+bUBzbdGfeNWAGZDOpC1WOW/Gz83BFGNEq1l1SzWJPcP5VVKohm4bBFNe23I5MoZ/4wS0BBeCREN1RZsLVppkQDKe6FBJuVfO23M26OG++axFvTs+ahNOUpl0tdr2vO1W6Vgo7zIPYigzZ43bXafvam2tM+SJHhPG9Cf1Vm3ono6fQxiXua0Ua7kjN0Fqvt7W/9dNRGQD5WKRm6qXq05sFFUFJ2EVTlFzjdHyvIMs5qtGeQ9nJMEuZi60tmqgm5UETioqem/S8DV+PEt6ZH5UdbgpVVr2/WsQgrab+BUVtDqmqpKP1o59k0xrYGPDZVtz7+ucbScVyoRivbM7VHQul73DhmtZTWuNKZRq5orqyKw7Uf1f4W2temYb/Sa7flt1Jq6BvVGZUCNaf1XFXDYZihUW+K3gXJ759d2Fe3627lS0fNZq7ZSLNHgVZum7QqW6NoplVQ3KpjcR1mvfV1LsqFrQ/c2biH49bm3a826t+93A2Pt2tu4JqyY9ZyUEo8RoLLuaUSgkSUtaa6lrdGiiZ+YP23vrZQZrcBJZUf6YLbKRlGlG+0Ls4GGOhzOZxlPTegKqOJQWqsf4oRsce5lbwbG4Gp9OQ32+wc/PZj/6dSaWtegXIwlMtioG0RByHUeW50iJtKc1iZmKYVlkWYkZ2TgcipyKKYsaINuBHERrfPTWaQJS3bUkskxYrtezCuMpaRE1MHNWnb1PmBJlDQLx566bjS2ScbVVkrZJo5V848SFxyCMpYCxRhC8DhjmG/PxFkoB857Og9d8ARv5Z6TNC5SJ4z1Egxaaf5pZhhFN7m2wJ2B+8PAz+4P/Pqre75594YvX79WzfKWyVeWmJmWhSlmnseJH54PjEtkWiQIvY4z1ylSq1sNadD5UWqmHY21QkYSmZgSzkqiEaw0zvbechp6lipSnLdp4TLNzKkIJ9oVQJpfXYVStInKtI27agCrWbBmsTKRnaLKQs3KyjN3xkHKnIaOJUtn/flQmVOWZhXlteZSWXJimZOiOplcDb4beH0+0B2lYvB0mbhcR57Gkds0suS4doWjyEvJiayOh8tcmaaZcZr5eHlimiLeB4Y+cD4Id3kslWQ8XfCMtfLhtojkmT9xOgzkalhSAZPwXtQqrCo3NITEqatgCEG4eDnrwadawUHoSdJDsFCSPkcNbkPwDF3Hoe8IIFURqmrGW6ZYVl6fUJlEIs9qyfD5ttB7S39vOA8d12nmeRo5Xp4ZusChHwjG8PT0xG2acMbLxlcq3lVCsJQaebpeeP90YUwF18m6yVU2uhjlz+EwyHXkyDxduDx/4s0yE7qOVAq+SmNh0zGuCH9ZkKeN0kRtkpyVGPPOQMyua9c7KTt7L87HzVFatq1CxJCcII/BS8LShaBOnnnlybbDaoszt4Cz/WctVSTXSl0pEFJ9bEGMvg91K3trIKbV2w0/NRqAtv4JDFX5rZWmB/6H8Wo0CdOoIWwo9g5UlPHRYGeF6+U7+n3x+6jVYEoLXKwi2BZsgmwVSd4C+Rdc2BaUmy2BMBhZO3n/bLbAf1OIMeshvDqqouX9FtS1y23BDqI40oJxOahblYYX1wUtzAJ2wWOj16yHvJVEYBWRkB/azjSzJQktcNgHXu3Vvve5Oobcotn+1vSiqj6/3c1noXgKMPHymSnfujQzqA0Jld9xa7Ddgvg1INdg0CCB/+c0jDaOLeDcf6+2RMyoA3mjuu2e/ZYw8iLY3M/FFnRKUrj9PpS1smYUUZeeiu0N2hyBdisvE8jPX+v97362VQmqbQaNFtCko4psxv457p9n+/e+B2G7f5EbtfIgNEEtGJyc47trbIF2e7X/3ubUNrdWuk6t1CzVj71YgFW38aoDbazBFNvu+uVY7P7Ic9qSsqp9WELRQaswZjf99f4bmq+Ivji8ajXBGZyrklw1sdgiG7UzdnXetsaSS1pN+gTsSStg6YOoKGZE1MJoc3l78JJ8vbyvfU+Ite5HY7yfDz8Vy/nJgbyUL6SJQeTuCsWq1XLTkVeLdDE3EcSKWtYJmlJimieG4IlLYppm5mUmlkKpVjMf4de5LhBzJsWFhYLJUurzvsMHkTqal5klLsS8iNJHKdLMWRayNtlVzdotrHbYxVhcJ9JJIfR434Fx2uBS13J4qWIpPITAOM3cHp9YxolUDJFArYn785nOa6KRJbFx1jAXLSU5i7cQp/gSjTGC3vTW8M35yK++uONPvnnLz7/6gnev33E+nYhxZp4mci4sznLwsOREbzK9ObDkjiX2jHPP83XiaZqJsRKjlJ7RTHOJrJNy1TN1VoIGK4Ggs6L7G7pAZy3DqZcg0TvGJRJzYckJbz2epj5UiSAluVWdQYIZKZsVas0r/cp6R4e41BqjB4ODmh0LC+fDgPWe01EaYmMqxFqZl8htnJnnmevtxnVcSMaTqqU/DLw+33G8OzEume8+PvH4/MQPl5G5gHGBZZrkwHOORkcq6lAoyJKBUrneJj7ebloyLDhr+KCbU9/3nA49p/sztiae5ytLnLg7DvzsywHjA0uRsT8cBpwPayDhnFNbZykFOx/IanBWUiZj6DoxSjMCgqkqzCIUBF303jp6L4h+cF6oM7pR9d5xYd84V1eX3WYdP8bE023i3DvePNxxvd643CYO3nPsD9zfzdwNB2kazBnfDXjbYXJBqKWZebrw/uMHvv3hB5Lq5zdUT4s8LDERVZrUO1EqmOeZ2/OF/nBgXhbRCDYbhaG0Kl8WbeoQHN5aFr2ftonO80wueUXjGsrSdZ30TPTDqoTQlGJMFU5u7zMpJDp1hQ4hUFDNa7spDZiGoO9eu3CehrBXI1SZUopQOsrLIGEjDcmZ7rQqoMeQfK739P3A0PeAoqxN9/4PKpBXXjhbwl/bvmAlOJLXjheqwZz8JQFA2Y0vKDChFJwq8h6ITKlS/BQldG5TQluVQ5B9MauCkARnVoPxhkI0JH0L5FFUUDj0LWbXNntN1Fa1F+1jksDS7gJQlPPewI/GWVfFNSuulA01r+zRZAlem4rIi0pGSxZrXTuZGhVHmoa178yYXZKzOZ/aVXFmMyoD1C1XRResUTt6qWxaXWtt1VStWsh3NLltgbxSmJoMaOfDWk2BLVCsWpmvVShwK5oJVJ0fpW6o+8Zn3+7Ze7/+Ybem97Sq9t/yj5Zgbn83mokpFnZy1+39WsAuPRc6f5xbP4v153nxWf9QMN8mxsqvt0Xch3FU77HFUIphicv2+aBNnWm97s8Ts/3XNw62gCloBde4/ZhoL0MSGc4QwrouW/XycDiszbBF+7O8D+t+nSd5PqXW5n2poIZet20JeEsaRBu+racXSLvO/bIKm0lgXkvFOq/rt4Ci8GgVotStwTdrBWOa4spvd3oum1IwKZNqwfV2nS3WOPGACUq/HqXfrFZtsJ8mbPDMS2SJkcPxKAyJkrHecToMq+KPc+ImvcS4gjgigCETdyPI7RK//9iB/LJEpLyTd4MsCiYNgRLlmkCmCl1mmWlKAKVWas7aIPPMOI6M4415iczzQqlGZSMLPniRxUoLl6tY3XfOMfQ9cRlxeC7jjUXdQlNccBRqjhyCIceFZR4ptXA+nZmuN2IpGC+LrBojAcU88/r1W5zzjLeRZY70h0F57mU9HIa+I2fD5flGdR32cGJyJ777+Hf8+Z/+WgLOJRFTZEkTpVSmJUMVzp+pRgIb1RhutAALeGt41RleHQ+cj0e886I1PY7kJUoDVxIe+LhELtcbc86M88R1nJm0KXKeF6Y58vG2EHNVNKOKTmrMDQqkNWL1wfPQOzpj6TpPF5xwoUPAW9HGd1Y4wsFZpmVi7kWiL1RE61+ne04JHyRAFUUg+br3nlqsJDkli4RU8JTSyc/6edX+vWpQE7rCMRdiFs34j5cr4zzxdLvxfJ2YbguP1wk7HPjqm5/z5u1bQhf49rtv+e3vPvAXv33P4zhzenjDH/38lzxfnpj++iaot/MYLw1EKY1YA85kuq7jeDpxOt/z6frMw8Nr3r//nvEqlC+TC3McmeYJC7w+Hui7O663J3734ZFX94FX93dgPNZ5vnjtpYu9RCp+PUhrzXR9JyYWRptejV31yL06CGLksKulMC2i3VsAm4VPV5NomnurPfK1ELoNlXBerWoUGXHeUbTz/xYr3z0ufPnmLa/OB56frwyx525ZeLxcuTucyClRrAGrxmq5MBgpOV5uE7/98IHffPxAE7jIRehiqUo/S4yR23USOlsWidnOd6Q4cxsv1HkCKsPhgLOenMT1uDXEWaQ8GXzAuwwdxDRTSiZmaWgMgyfliE0yrj74lVsYQrc6GKaUWGIi+I7o0sqvbNURV7IgPcZDtUJ304BLi0to9LQVOlX6z2BUfSOu1JpVuUQRVDRod9YQ+o7T8cQ8SYNt6DuOxyOno1R1aoUUF2bl4P7EPfw/m5dQHMzLgMJuKuH7AOofavKyrTkMcUNuDynr766Ul7rJBLb325fqAU2u5dUCeaPJfmoo8gvw5bPgQq+1ERcbFardm/R5SaLYmtU3RL69r1uD82qQBF/vxYPK5bIGP3t+/I8aNpEAbI/UAtro2agyf/+9NIOnGAvWtXkte3ZMC2hytESh1AhdWxLxXBNrqqvrpSUHtYEVyjO3rq7ASMnbc27Xsd5TbQosaVXQck6Se2kQ3gLGNiaSTLV5oO7Z3mON9DZIn4xvD45GlzPrXDT7IsiPg+EXKL7b0voqlXljRdazonK8Ddxoc/BHz+rlf+fcGt03B1ZRNUuUKnKqDRzLMeH3Ep3GAC/XTAuydzfwInlpzf9tTb681W09tffaK9h8rqzSOPLNqdcYw3A8Mk/Tev/jOKqZ2D6R39ZXe//9qGyIfFs7rYG29SPEXWLGLltoQgd+NQOzSqtxLmKMJXQdTSq2VRPQtbKnwHivcpXrmSJ7fSoZTyXHRSW0Lb4XgQKbBcB01jHP8yq77byjU/WfNk6rVPEK5LeE/XM46R9+/eRAfprFKKlpeFrVpTVGNJ7bpzYe5DwvxGVe9aZzLVBELeJ6uzLPEylG5iUyLc3tS8qvzhTyErldr5icuTsexK43J5Z55nqtauYCUubKzPPI4CyHvuMyiuKF957705E8T+sGjWqdT9eRb37+c/ph4PHxkU+PjxSgCx3LIk5ixlg6DU69MyxLwhmHSSP2euM8GLpgef/9D1wuIzHKAxFuGPRBhndJiajydKY2W++Kt4bjQTjP1QmV5DbOmGKIPlJy5nK9EnNmWhLP48TT5cYUM0tO/HAZ+fg88nyZSYD1gVuVoOTUdzzcHegOR777/nsqQkEwpmmjzlySTCyTKiktjHPlOPQ8HA3GBbyzdEEOknnJTFPCmQWKo3oxPqrGSmbdUHlFmSQIkyC+VovHi7lSbWevbem5uPM1nX9EXz9hWHLkMiceLyPP15lxSsyxcPfmDX/6z/6U1/cPXK5X/vpvf8P/9Fd/zV98mqE/80//yZ/x9c9/Tjf0/D//2/8rvbP8b//3/0cyjst45fn6iX/5L/4lhkrwjs5bggFXM33X8af/7E/55quvefz4icePj3x6/MS8TMwx8/sfPvLp+Yn7Q8/P376iBse//t2FL58j37x9zTdf3FORgyX4QN/19P2Bw+FI1wuq4UPYtH9yZhpvUgbM2wFcUb64VedJXdHeeV6f7xg6kVDNuTCnRInQBcsci1h+Kzc/Z9HHb66HBrilxF/+7nv+1//kayZvuc4zH54vHLqe+eFBmqrnhUt6pKuZ+9DTe9nwf/PhI//z9+/57eWCD05BNnmOpYoi0bIkvBuZpoXnyzPXizjHJhIWuF6emaeR4/mO+/vXoCYxOcmcp4LD0XfDqk0fU9BgvvB8eeLQDapXLevfGjBOvArMDj1ay/aaIAhWr26DOySkaqlayrV1PTjaq1HcjCbI0uCXyWkhG7OWXkvOkpgYpxTAdhCJvNvbN28I3kv1sBs4n87c3d3Rdb24QDetbvOPYUj+p/9y2nzMDj1eAwlr9BRW6kcjra73v2FVdfflqvtH+55zTuQGVdd5H9RLX0sLuaXnZi1xoxQBRc1pyC+C/prPkdv1qhCn4/a9FlBpxXWlbDQUnzb/zIoqtgNbYWuNFbUR2ntC18mYtWRHa0YYNqWNur8iaFWJqjex8sWtxdqNoywIrqMqsi5BRV7vs9FnilbVMZVaElRVRlvRVKWLmibX1wJMXROaBBsrj7VVFjaAQ6hXMk9aYLdRN6z2m4jKoFX1FqfniABK64ptz8hqo7BWFlrTq9CS7IrIl1LWnzF6ALUxaJSiFmzVdQIie59Bz7BtfhhjdBzkfcr+e1bna607F/Q2l7WJ1ZgVkdYJs6K3ihFTiji/N8Wu1nQrfRpG98XWMN3epBmIbbSOF1WYnRpMux/ZQxV8bEG2BtzGOVEoKpunSNZm2HUMSlH9eKNAbqvKsQavVSaoVrF2t9wGZjcfjTFYRTjazzhtehb0XGl6uu5FWeald4Axlr4f1sQ4pc3JV2SuDTmJoVMpFd/JJ9kqe0IXepGw9A5npNoTU8LXlkSzmprpVdF1LZFQ/5O1YmLEIIuNktfuYw9q/JTXTw7kr9frbjMQiSLvItUYchXpxtbEYgwaQFR1PRMzA2kWW8ipOS3mF4ueXTa+LDPzNPLm7oyzomkarzdqrTgfpKxvgZpI80ROE27oVLIxYRGTmLkkDNI0iJUO7VpFveDu7sz37z/w/HyRiYvsuQY5S4bDmYdXr8nLiPMZY71ytiM2Tvzs668IoWMpi1oFmxV9W6ZIH7pVY9s5q4GEbDmNztKkGU0x5FSZl0TJt3VxXG+jIPJL4jbPPF+vvH8ceZ6SSACmwljADSd++eU7xpT4eLkwU0nW4l1lUqSv94VgxRxDLgKZlGpKYx2kvHCdm222bBoxFZ6vE52TXgGPqMpUo/rMrTmkFpyxHA4Hhq4nagnJGCkp+SoKAIWC94ZSLEuWTcR6g9MO/agKIe8/Pgkiv2RKtfTDgVfvjvzxn/wx5+OBj99/5Lvff8/7b7/neaz8+r/4r/hnf/5nvH33jr4feHq6cDgcSc8/8Jf/5v/Dkj23mBnTJIeRt3hTMSUy3yLj5Zn+4UF46G/e8epwYn79wPR8z+OnH/jweOGWMkvNPM0z5+eR8HCHdwdOd/c83D9wPh7puo6Hu1cMXcAFsZruh54udPi+Q5z/oMSFZbkBgrCXLI3g3llK9SxlwRrRQGZd/JWYozgcV5TSIedLsJZomjJIwThxxSwpgTr/NdfQ908jT9eRwxAoBa5x4XG+8TRdMEgSmnIm5gV3HugOgYnE//h3f8e/+vY930+ZLnTY2vh9iiIoBaYWj3GWabzx8dMPnD68xw8nTucHrBUvhts4UVLm/vhAjAvTsrDMs8rSyXryoaOUTEUUFWrJlCSKVz5IkjNPQkE7HA/EFLGLo2hSJCjRQs5RTL9qIpUkvMd2gAPFbZSLXKSpVoCJ7RAsyptk7fGXA36JkTkuhCjKQtllXBEgoBqUdyobchc67u/voUpS1nf96lyIkhHawfT3ld//c31t9AetUhilRDQktcAuql0rIGtBpGma6/ttSFYboxb0AVWqjmuz3i7A3X52h2ab9rUNDTPGYBqiWSv7JyFxt76nUqXadZj1Wdo1kVjvnc8ReaE3bJQsoUg0dZ2tUVdOjRX9X8dyu6KXvGr5WdtcQw2r/OpGpdn1c9SX447+Ux5Va45syetuLNr6qFuClmGtwregV573bj6vCPLGc9+oOebFM2ug4R6bNCofuN379lGSJGlgqs+p1CJut/q91guxfm/XgGmoawAq08Jse+/ug0rOQtVtvWGlYEzZqKtrILHN162SUl/M4x8FazpOLeEBRdeNZVW2Uffa1qi88a4byv7yM+X7m+zp+v4aFTtnyWsBqiUCL8d9bYbWtVtr3ZlztQfQ1qyOp9XnVyvGBhkbtnm65/C/GIVd5r7n+BetcBr9ntMeEWozXGOVGCbvFIGKGBo6ZzDqgZPVy0DUbmTsvBqaGqzm3ma9NlGmVPql7l3OuTX2g2aGmtfvY0SxxjpJlIR10sZ4a37e+nXWx7/uRT/l9ZMD+ds4AtJY4L0nuCAC/2azc04pknKk6YaV9cCTSZNyJuW4crhzyyQr7eiS38uVHAWhm5ZJEIUicj21VmzKOrENNUXyMmNUznKeJkpMmFKxVag8MSY1e5LFlVLi7nzk+XLh0+MTy7xo+dPhfcVU0V/t+h7nLXGKlGK4f3jgNi4sc8RXUc5wvgNFJtqiLPpEOueYctMcNUi/QDvE1GC21lUF43K9UUumC9JgOC8Ll9vIEhO3eeFym/jh+cYP18hSDP3Q47sOQ+LTbeJhmrmOEx8vF1JO3OaJSuXpNlNzofeB4ISKUKkMi8VmeU4H4OgCx+EkSGMVHX9nLCaINOXzOKkDHYRglZuq6JNrnMQOF7wcgjmtYYlsbAWScL4xFVccLonMZ04F6yqmiIfAdZx4vF65XqVx+HQ+cDge+fLLt7x7dcfH9x/5+P49T5+eKNnw5Zc/40/+63/Oz3/9S06nE94FTsOJL7/4mut3f0t6ek8qjpIqpmReBTh4OHhDsJBy5VYMX379C7764mvmT5/IZPBHUlfxZebVsaM/DLguyPNbIh549/qeX3/xinf3R+4OA6dhYBgO9H1H13cMh4G+H6hFgs7heKJaS9FynzWVErNIh1qDs7pJ16qHadUANkERdFM4i5p8VrSMJ1StZrZVdMOVNVW2RrwKU8z83Q8X/ujrV5J4l8K4LHz34QesejtQJQnO1hBOZ759vvAvfvM9f/3xylIqvUecheUjpNyoNLN6lE18mSdu12culyeenx95fPrI8fwGYwzzOPI+fod5Ay50pJgYp2nlwUt4pBi6sUJNM9KMVCp6n5LwjuNNfRasGtVsVuPzvBBjZEmRmERzfkmiopWSuPHl3BpXpaF2CQu5buY/1Kp0v7wpaijimHIkLgup60jZY3LjWTuVPlzfRJBi1V6ppelzR1wtos29RJZ5YYnLqt38h/BaVUYQlFuCeKeHnUQ8rZS80j30d7fmWO2r0cOv5i0g+HHDo/ztndf4TeDplfKhiNg+cAFU5aKqF8YufH8R7AkAwmcBSLuf5luwBa6sv7dWhfTwbs2TtYry2+F0REF5jGtBNysi3wLRLUBDf7+hivbFWACUvDUK7qsUrT9gDeLZ5DHbpecitJkGAogfRkOVi1Jsts9qaGQLQuXZwBoQ7aoxL4Nzo4nbxs1vgWO75uZQ2lB8mQ+swV4L+GzwL87jXAq+ndGrx4YGsqUZKLVkUxoiVwUWY6ikNSEDqTqnnNR1VRMRpcDYqhi2cQ1Ml54rY14E0S0Y5sWYtEbWqjQbNEA1OBvANvOrFlSaHUd9L0vaQt3twZgdqr49/01T3lqrKoS752EM3reKiQbsbA3UMcY1aG0c+vZzpRSJA1oQXwp9P6zrb00qd/NlraLS4kGU775/1XX+lZK0NyDv3tOspl+tepB3DuspZZwT9F96uRJH63FePrFRiIwTGnYu29wvReRfRUtBgNmkny3zpFJiJNeymkYWWIN48T6JOB/wXg2pKi/m+Zafv6Tb/IdePzmQH8eRYlDdY08OWRvEtka0GMURsijvtD2S9kDESnkn81bKyouV5ke07CILNsXINI6yOKzIAC1RTDuOh55aoOSFnBY6W6hFmtpqrdhSxDxKnf7amDTO3ukwcLteGceJnCR4ls1OrrfvAtYWluUKZKzteXi443b9jrTMHA6yiEsFY702VWxIkXOW4gw1idqKZJAq+4UgGdYYTIV5SYzLgrtJabPvAhbDOE1cp4VJg/hP15HHKXNLlYTweauBpVYu08LvPnxiWiYu2iB7HZWbZWQx3pyo1FiFFEfrqLkyxcQpRpw5cOwHQtfjlGbQmlQKhjllrkvEe0vfWY5d1kYWCTidd9LU4T04kUqTaF+Ln1Y0aKVb3pEBp+5+vjpiLZLxGkMshVwlmx0OJ07nM69f3fP1V2+Zrld++P49nz4+MS2Z/njP17/4Y/7kj/+I+7dvGPoB7wOH4cgf/dGf8Lf/v3+BSTM9IrGZbMF7J14EVuedtZxOJ/6LP/kn/OKLd1xK5JZHxkWMN5x1vHt74pdfveE4DBLYTSMmRb5485ovHs6cDz1DF7g7Hjkdj/SHga7v6LsO58W5WKTtjJTsrce5gCVjPJScKKlQnVR/VrWGKvrwWRuPTDX0nSRlYtyyzW/vDKlt1AXNFnXzLlUTBUvKmW8fr7x9OHPuxcjjMk6EUhmqbDzBictpcY4UOv7Nb37Pv/72Ex9u2mhVZRyNbnS5iiTnHJMq0FRyjizjyHi9cLte+PjpB3ADuRSWJXK7XLFY7h9ey94QI8syr/bexrstENLDvgXpuqIRvd4JN4mEY3Z5k+grlXmaiVlkWpco8nnzvLAsUTZWpbOktEiT/jLTeYfLTjdWCdpmrRbEqPtXzZTS1HQkWYhByv7JSADknMPURu9RZ1H1kGj7IhhcFrWvZZHrkqQh/tTt+T+rlyCIRbXDpeTeUK69RB97F8sV5WzBmND71gO/1i3YrRVqphazcfBb4N4ELGVD5h86KfcoaUNj69/z/bUJFV64hq4/YzRZqA0pNqy29aq13SpBrmxygo1CspretHO2btzkrAo7my62US+XhvfJy3u/VgX20oRVq0mmBeorUp/XMQexABSMTcQN9O5WDfRSxM8jpURclg3ppckulhVtryv/WMOVkqi1BZmVJl/ZgsG1qrEGqaJaopjf+mrUl2oMg9mkEKvef9AG9+YSbMwWnNqqlUtrMVbOxhag1rrReBvaLWwIMbwUcFANhvYSj2uCKXGQVDTkWi1Ge5YU+dbrXPPG3dzbKhJ1mztGjIQsAeMNHvERkWBc+9GMwfmg8VULFLcKiDjnQq2ZUiAlqx+7ofEbEq7VSB3zUosqvm2uy+LPoGpj8oZ6K9oz9Pc0EusNrve8fs9spMLmFyDbfdszBZhq7tiyD2cwbQ9QTwG7T+YtGLcaweUipnsmejVxqkzTsiWDVjwJlpR03oh4RVKqj3NODAD7gel2wziL816agBvlqGRyrnShxwaP91arKjInfpSjrM98ew5t3P5Dr59OrRlHqpFF0RzCXDM+KVUPocg0T2Lta4WTvWl1ihFEKUUkI9sDXhGJ7bMqhVoccV6YbiMOQxc6SqlcxyuHfoBDkLL5PJHTTA1G5PKs1fJeomhA4JynrRQppRfOQ+DydBUUrjZjHktJWaQlO0dJM9dp4TgcOB2OnA+BmkZsWXg4nxiGwDJPYuqUoVThrj3eroQ+iHIN7aM3eSSr2X9DS6+TIO7GaCf0EoSeswgn/DIufLpMfLpFcugwwRBj4XqbWYrox8dS+bsPPyBuurIXRJVzcE7UamKpLDlLkE5lppBr5brAbbZYMkPoeLj7ghBEuUVQdSk1YT1LqVxjpJsMp67j2G8Nfi3r99pQGroOFEkWzWOLM50sNlMp1uJiJOVEMIGpSPBmfaAbBs739xyq5XA88erhnrev7jgfen7zP/8F3/3+Pbe54Iczp7df8Ytf/5r7+3vu7x4YjmLNfjgc+a/+/J/zP/53/y08fsdgEt5WCiJH1vRDxmIJ/ZE3X37N//Kf/op3R8/5buC3nwofnj/x4emJ4g6cT/f87PUD5z5Qi6H78guOPQyh43QQjfe+k56H+/t7+mEghA218c6COkNaI4caxpJL1H4ToyhHwodODTx6as0qgZWhiBpNHwJD5/EOeeaKfEhfQml7t+4HG2Il6I6BarmMM+8/XQhv73HB8HS5YVLhaAOhZu76nuPhgA2BH6aF/9tf/C1/8/HKGAs+CL7qFHYqUskklsISM/M8Y5TGFeeJ2+XCNN14fHzE+KMgOsvCPI3M3y8CEoSOVCIlR9ISwVocoirQJEtrKbjQJAfNWlpNURRtrLFEk1TfWpqHp2kiUZiXhWkcmcYb4zjqXjVL74CpzItjnEam6YB3Bpvcig5VKtM0MU3TGrSnFAXlWSLLPDF30qDrVv69BH+NH16RpL6UvAIYLbApCnAsu8rBHxoivyLUpYpbZXVUNYppe+QeSNwjx820R34fsCIoZ5R2Ues2VluSt71y3iRL9xSTtWSvainGKjK8C7D3r42OswWjrUrg1eJevi9Vsr+v12F9X7NxhuuP8glJjm1D/XcI+oZmb0GX2Sc7+8+gCmf4s/HUH1pVaNpnSvDbEuTW85Vf0oMUuTZIgJ1aEK/NjnttfmrdPEXUhGmfJBlNtltloPUJfZ5IefUEaP9t1mfQqFmbjG17Po1nH0JP13W4NR4BY+uqjy5BuwTbFrM2Nn4+Xm16ymdbqXQqSBW8x1rZq8Th9bOYplSqfYmQfz4OWwLEWplaq1haeWnJaBcGcdBtlYnVkEv2lqoqP8a25FiBHdMSYwdsyYpIKr5shm5j3RJZ6+yu0rLxwY3Z6DLrmCF0rmqgtQXXWkXEoW6VFQmsG/Ck1J1/T+y6jZkg8qUmTSQlAXTOUqtdq1ZiIuVwrlWlPBWD82Jy6ea43q/xhuCDUMiMJBTW+7WvsvlTCHgrZ9syz/gQNrRdXZNbQuBUHceWskuOt7XRkvrt+W9rcZ10P+H10wP521XQMO/JXaD0nTYayCslQZHGeWacJih1lYRbFSTUuSulNtFl4mo8K5NVFwZZgwEqKUZC6MBapnmm85ZpqszTjeV2ocYJcz4w+F47/gvkSBonVSao3BYtoxs4Hw88Pz/x6flGzInOBbouiAJOXhgGmWw5ZVKqjGXhz/7kNc+fPlDizKHznA8HTqcj83zFGdFg7boD50PHtx+vDIeB8VmcL72TMVhSxBq5X6tNKRahNFyuIyUlUhdYurjKWV3GmW8fbzyOkbmI5vSYEx+uI0uRQLxkKRVVK4mEKQVKpqV8c4y8+/JLrHPM08j18ROHQZKbagzVBRKGbz9eMbXycD4yvHqgH3oZ/2kidKKh7pxMuOu08ORHTseeoU2/KhQQoYiA64aVa2jV7dBWiEn5kLXiug5fCyXOuBwIJnDuTvjTaw6nC9d5xlvH64czh77jL//yr/nv/vv/L9gDX37zSx6++hnDqzcYW5kf32PuetK4gO8ZwoH/+s//Gb/7P/yf+Jf/r/8H86dv8US6IRDnROgPPDw88PDFl7x5946393d014/8zW/+hr/73W95/PRErfD1Vz/n7dc/w+QbtRT60PHq1WvuXz1AnRlCx/35zPF4oAueFCcOQ09wAeuDoMrOYodeEKfbpCh7YplusCwMxzOu61S9RcwrQghgpL9ko6DJJtIHz6kP9F6TkgqVLCVYLxxxUyEYtyXNpUCRDa13luw87z8+cnfoCHdHUil8HEfoK0cDXd9xurvDdx3/w1/+Jf/vv/mWUfmj8nlyTRbwqKuzIuTjOIOThk8fF+bxmWW8cThFnh8/YZ2nVKnklXmGb7+lOxwEwcmJnKR650u3NjS1kl10UTdm+e9aZY+oxazum81engrXeSSmxDSOXG9XLpcL43hlmkaWZcI7J8GGddzGK7e+o9asSKaibFTmaeKm3gTTvBCjUInmZcGNDfXr9MArFB8IRRLWvWJFXcv5RvdDUXqISUq90l8k3P4/lNeeptJ4zHImt4rsSq58oeutv0z77vZ/n7/3Hsl/GfyuwXopaxBs1ExmRb5QB1lr18bI/avROYwmrsYob7kqWqnvvaKx1lBb0C23yGbepPdiXx7anwfKCplujYEtgG3jpc2Tqz/BPkDXn61qXoRpErEv+d5rYQI9d9sV1Zf/vV3XhiJbsx/z3e+1gKWqlvcesd7dozwz5eB/Fsy191rVUXaUoY1nvF4ZxojpYjW7Md4F8+099vNCf0QDL03calH5YbmWRmXZVwXlb0Xma12rSWZNQltAtvV5vKBp7e6Pv/d7db2ntibkmrf7bf4etVahEVsxZlSSeJuo65yTplihQm2mZa06ZT7Pe9lTXUDnv2Ht0bCfJWQvAnGzkzaVrFsT2n3C8vKe2vNp9B2ZOztfBmDzQJCDwNoGxUnVQWjNsiYtdk1I5dt7eePm7eLpui0JBLSfxK2BvGlJsH6sdc2nR3tbSsKqcZrkzOJWvgHY8rulaIP4Z94Qbd/Yj4l12xrZj/G/7/XT5SenmUrFO0dOgRgXfOjwemNJkaR5WURlIyZSjDjvlDstpYRaZFLR3NpaI4tBUJVSVbWkUKKUTHKBLotFtqGSU+L58SJo3jhS4kxeZuKUMCbh5mf8PBOMTKZkEs5LA6EzIj35aZyJDSnuerousKTI4RjIMemhWjDVcDp01JJ4epxJCYKFkiIPd/cMB89f/sXvyYsockzzTDKVoSZMWkSL3WpTTFugSIHXsX6Jj9eJJVUuUyQEx5v7M9d54TZFbgmes+ExJabbIxXtF0AOvTAETnd3/OLXf0RaZr7//W+4Pn0iOIP1PT97+7PVAMrkgvWB3lWCgVgLb9695d2XX4lT6PUHfnh8pJTIF1+84d2btxy+eEdcJjprsFW61GtOXJbMFBPnQTYzyfYLTRvWerdJr9Wd7XCw1BgpURw+XR8gR5zv6YdA73uOeN589Q1/91d/Ie60Bn7z+/f83/+7f83rt7+i85bzMTCYG92UiR9vTD/8O37773qc77BGbLwPD6/5L18PfPO/+28YY8RYy9D3LLcbxIVxupJz5PbDd/wP/+ZfMU4z//zP/jl3pyPHfuB8euDnv/41f/Wbv+JkpboResfpFDgfA69fvWNQB1vRrnZ0h1dUsoyDD+A91UK8jNLsGjz5NlFTIvQD1gpSFLoeiyEloVUUKsY6cXNMWTj7uulmCs5Kg6vDkBFE3JaCN5ZihTfpLBx84BqlD8QBrhaK1ZK5szyOI33neX0+8vT0xNUaDt0gHguh41IW/tt/+9d8f41UKwdmQwwbk10UX/RgRBUI2p+cMHFkuT0x3o7c5oT1vej/WouzhmmZGKeJXJSPasU8zcyjBlfNndHQLx3H40G47eqgJ3NuFjpC84vQ6sV1mlhiZJpGrrcbz9cLz9crz5cLyzzhgyMpjclbz7MLlJS1bKxyclV4+JfLhev1xk0RfTnopTn/clH95FI4HA5S7fN5Vfpyu9L75txocEWqMUsSlF/6emamZf6p2/N/8q9NiUGCgM3FVA9xrZBtCPsW5EgSp4HZLqDbKrp1DSxaYLh/tWBeKhxGwQhEFGFXKUhJfDWMRWiBsAaCXv1RsBsn33uPKVnOEY2Wa900zOVe7RpEWLsdt8aY1XOFXWLi/VbFTkn50LtAo3G9MUpdrHVtJsxZz8+qmt7OrvQbUBA5qRx0FkO6loywG8tNIwc5l3cBnXfSd2KNxVtHjBGv71FLYTGqglLbz4vj8so3r40m01RnoPGBjT7TfR9DKWXVmG/P0Rit4tSG1jcqhFufW0uejFZGSq2qMLRP8BA/lRYEaj9CO65rEZdnzEvK1EbzkquWJDBDbcovrOhr5fNgdOODr2i2Mev1gFmrqWZtztbKyF7WxTmMqWsjYtc7AQSsSA8bq/05TvbNXLIY8dmNr78OVHP5VZrfy8rPFphHpexsPR5mTV6FKl3XAH4NTnMDLmVNNFp1m88572QsdXwaAGmc25pVd2i1qApVhiHg1FW+AcNSvfNrYua1Ii73FElVzlTvVaLUSpKZklBoY04chmEL5otZx9AYQxh6btdJF4a4lLfrd1bWRKly7RjDFBeM9h9UxFy07uZ4ziJ//SKZeIHQ/7TXTw7kcxSXVHHsytjo8UGaO9oFpZLXByqDX1RLOhFjywD1AnUCGrMtrpVLpwOTUybFRMWSK/iSCBaWOTHNI8s8k5aZmiK1ZJzxBDczlLhmPymJHB66yA2G2xz5+Hhh1kZPSsVQCA6ccTxfJzkQCmAs3aGTRW/Fmcx3hv7QY43hep349HQl5SSZlC6GUqSk4p3BG0vOkJwl5UQrmBkU/DGQqkj3xWJ5Spnv5wsHF/j+eWYphlsu3OaFOZXVDMd5z/nunnfffMMvfv1H/Nmf/Tl/8W/+FdPjR9LlSbTgvePrn33Dp8cLc1ooNXH5JNKXDwfHUgrHzvH21Wv++Ne/Ynz8wMff/YbbeOG77x7JS+ZP/uhX/OLnv5DG4jiRloWUFmqOLFGpUkVUV3KWTDd0gxzKpiFsmvlq06Kznt5YSi3E+YqxMs74DlxHxbPcLnxx6nn75hX/01//jn/7b/8Saxy//MUXDF3ABydGVs4ynN6K9nxcsLUyp5mn2yfy40c+3RaG0x3XcSKlxOA9vYP3v/+e6zjhg+V8OvDLd1/w6TKS48Ivv3yNrZWKp0sLv3x15uOH33Ie3vLqNHB/7Lk/HzDiP66OwhVSWqVsjfEYI3PLFClRp8sFfzyuiIpRZ9Eco8hzGTmsi0nCdc9FpA2r0Asq2kxdqyaDFU9lMUYMlrWEK4ihbIIOOKpzsQQ6whsupRAOPZcpYs2VQx94/eqe50/PlO4IxnJdIv/uwwf+5ocL1luK5hLOGKypspHZxiWXG0+lkgt4LxJkMSbG68jzp0/MBGo3YcOA973wD52lV934qFQrze2JMUnwpABlLpW+69Sl1Yn5Rs4cDke86wSlVD39kkVN6zbdWGISU7dx5DqOXK8XpttNEqYScMYxuUmcIK1TepM2LOn+No0j1+uV23hjnkbiElf6S0qJaZq2YAMoukHLgSGqTO1QquwQLCuIfM55DeLnOHG5Tj95I/9P/bUd1PqFUlcRmfVLpSWDdj1ToClPWHHnQ0WDapWv7RSBNirEhuo2FF4oFoEm4zdNE4+Pj4Ag613X0Q29Bp1bALNHofevUsTroioy2DVajdU1qgFoQ/Kdrau5zsZxb8liayzcqB+f0y4+/xq1khehBcQsOu9eg1ivFaBG1bMNuceABpB7FPzvu7+GKG8ft6eYbNzxz6+v9cvZndzoXrFoj063QDDo2GUN8owx9Kq1Lf1mn+uh6z63e0YvqFu7cTOKvrbAcguetyRN5GhhQx6237fGblZlu/d3mqA0zr41u0ZSGtdfP8O+DMo+187/hwK2Lbjffq/RVmR/D2AK1WQa/cgW+Rmvgb70xLVgvHma7CtBdX3vspN8fUHB0p9ax7hu63iPvletUrX7ypootveKUXqS2vOSJGCjjFUNihudKKUkpF6jlQUtH3mvjeu5kGvGWAidW+d7Lkn6BKw8e+96rJfnlbIB69ZnIGIDCxhD6ALDMMi1l0JcotxnVSEPvc+uF2GGaRZwe6UL5cw8yZ7tSsF5zzAM2my7matZa3EhSFK1a/598cw1EfysNvkPvn56IF82dIBsMFZQ+FZz2HOjtt1as2ojALwENY171gJ5WWylSoDaOLwiYydShXVZJJuMluQMC0WaanMSG/ucRWoyJUyJGCfd9QWhJORccc5KNaFKU0NKhZQlqzdWNvlSEympSYQxOCtZW0PmxvGmmWBPP/TEHDUDdBQWDIKCOO+Za6HYTXc/p1aB0KYTHR9rDa0BMaYMTnizc6xcx8q1GqacucXMktU11Vj6zvPw9i1f/Ozn/OyXf8TXX3/Nu9dv+P3hRPAebw0dlbSM/N1f/AXXeSEW0b0OWma11uKN5XQ48Pr+gXdvX/PsCmWO3D4KyjKXgR8+3fjmi7ec786k6FnmkWk2xAVi+UyCSrm/sohbZtkWvRMlFS9Ikssq1VarNH2GDhsGjAvSPDwlfvb1FwxD4PX9iV/97B1ff/UVP/vyS5XLVDQgFZUBLRyWBd/1TDlDd2OcI+Z55u1hoC6ZyxyxZDpneDgfOfSSpN3dnfjZ19/wdlqIOXIePL2XjaakTzyETPdw4PWp5+504HwY6CykZaQ2FLhKtcnUjGlfa7XrKihfas2/1lKtgVjAojSTReMSCd5zFqOklDYOYAsqG0VGGnaF2pIUBq9VqDlOS6yxSldANXXVerc4gvMcg+M6Zz5eJpx55r/89Vf0oeNWCj/MI8wTf/n7D1yTbuRZkm1rpRs/V0SjvdZVvzgp53UwgaJl6lWR5XKlhoINCecXQgh0vWdZPEPfa8UuU8g4IwFX41DnKjSjrpOmtWM/EFXdZZ5nQjfIRqiBfCqVtCTm+UbMhWleuI2TmtEJEFCBbLI00U8zTU61ULdADCgpr9SaaRLX6GWJii7JIxYEdV4Rq6aEI3x9KwpQRrbHRnWqChtaYylqfjMtkxi+XW4/dXv+T/5l1n4hRX1Nk5zUI8RsZ4YB3UfM9n02ukzbX6z6CLwMeHYBUwsgdbxb5UhQecfxeFoRfqeqW1sz5g4Va0ip8rg3syPVPndOnazFJRtNIqWBWoNaDR4a0tnQyX2iEWNc0WfQNWY3xFaQcNZ7zTnjvFslD50RFL/sAgFnBb1ug11KEnCgCPhiLJiyG7f2HOSh0P5XgguprFqjpfUqvGABcGRsvA1SNdA3qTlDEC38tWmRFiK81DTPRvrbmhiE0Wng2BxfjWmusrtES9FPrDYS1kp1bQxfBqa17hVzNIjVf1bzMlg3GkCWsgWxe2rRSmNhU4vZF4NeIs0vv75//Yhio28jzaXyMI1tIGGLonWfawmSxk9tLKXxWvUkjbqGOye5hzGr++l6TdbiduT0F3SutmkZvdYqga5MCYnfhA6yKVNRtzqTaWegVqhWsJZWqZOEx3q7fr8lhfuO0EabK7VClabeqjrwzlnlp2c56/SP90LhlF7YSsqqRU/GmKQoeZOfNOSaVbrY0HVigjgtTRI50Q29eO9Yi/VuTU5EZl3oqM55oRQbu5q7Se+g3ENKhbIsmii2BuZtTlRlq/xjXj89kK91NyFlYyjbcm173XqItYcpD79tiJXKTp6KNs92UjtmK1VJOaJtFplsLdmiD1Gk8VYuuHUsOROqyBhaA5GyytS5tgizIMgYSylxzVCdd4QaaFbctVac9XR9R9cFaoXr9RlrC4dDzzAMpJJxFUV5WIOIru+4liq69Voqzlq2a/0C7XatEbOe4BwxtcZRKMXyvERmA2PKzEU2r2AtJx84H49889VXfPOrX/PNL3/Fq7s7eue4u7vnMBwIzuJJ1FR4/O43LFVcXq2BwUmAOs4ZFzqOxzOvHu4YvGWiMnSBejhhjcMHz3ibidPI3es7am8YXcWSmSmQ1ZCj/rj8RdHy3jYVZPJqOdPoQSW+BIaiB6ILHVSDOx95fXcmLhOvH+7403/yK2w4cBiOa0As0p0JrKOjUo8DoRtYaiUMB8ZxocbCz9884I3n0XucKRw7OAaRF80lMwwdb1+deZUzT8+f6G2ldxVsIcaZwTseXt/xcHfi1Pd0zmFLxhc9JLXCVHMi1UTnhAYmO3IFozz5UEC9A6gNlZXNueadHi8N9YpCVSua1WuQX5G5FKyhc7BUs9pfr+tRViN5V7oGRbNMpRs8vTOMFa5z5H25crlNHIaOOSa+vzyzpMx3jxeycXhTyKZoMbltfHrrBqw+5FJFataadg0Act3LvFASmFiwXqS4htwRvCMlcdyjVkrNeGNIcSEmKQunXEglMXcBYyzxdBb5uBQZp4kwDGsAVashZUFVlmUkFZiXhXGamad5RfJZkfC47W/GkmvRBjbl5SZpbBq14XXWjb2V46mGmqXpvBZBZbK6vkrlyK4qX6JYUJSDuzWKlxyZ4yR9RuPE7Q8okJd5sO0PwIt9oR2kcuZvwWSj1sgyEsWmPWi0nkB1h/S2998jxVX2mn0AGbpuRRMbslj0DV4g8RpYtQY6eb+m1vVS1lGv5kVl+cU975KE/Wd8jna/0OxeEcSX3P8tobFrc/UadLOj5OyoKqJWovvNWqHb+hPq/lrqHhWWIHwfX7TrLPuEdBckS6Bn13evbLtBA/na+LTP3JB1Q2td/fvQ4c+mljYpt29u9A8wL2gipbD7zPICAV6fdd1x81uQ3J6ZXmvd3clq+qZ7rzWGwob208a7Taf9z392b+3rLytBLZjXZ7kbBWOMqrxYyYBaUrYGZEbXllur//KLRROA9UN3SL0mTJ/1K9T9vxVUsqq3XqvbnljLCalKOdM8y9gX8c/6pPRzndk9B1XN2+UFawLDLiHLSul8OW47frrOS4M2uZcWc2zVhfWeSiFnAV3bmrZu25cqWjnQz3HOvaAJrZWIJBUBQf49heYsLfQvk3fAtxXDuc/X1f45/JTXTw7k0RtZP6OqHbKOddnGfPcg2w7IGqDXfV2mZU5Vq6wWCpI9VQ1WSpFMilKoNkt1tWaMBhTNsdFat5b5pfFBOpqNa4tFUJKyIqIOiILsqvZ28IFaE9ZCShUfLIdDz6EfmFNkHG/cHQdOh57j8SD3l4ReZBBb71Irx+OR69OsSIyYKmU9IayVCW+RiesVjfdeNMWfl8R1zsLjtJCjJCoOCYCPzvPm0PP61QNfvnnLF29e8erhxHkYCMbws29+yd++/ZLH73+HmZ/wnSf4IsZURf6IDCE8XjOv3w7cnc88nAbydCU+P1LHZwZn6Lxl8Ia+GB4/PTH86kuC6wlGm2mBvCyKTDQEQXJhpyVloyUxUyo5zti+l4VRZQMMoYNSWMqEoMgie+iC5+H8pVRjUmXoD3zz5QE/HDEm8OnTs6C1OUIRZR1nKt4HumAYjCO4gXToGWri3YM0or46daSyEGzl+njl7v5IKkmoPVZ6LIajxdYEEayDc+/pO8/5dOLu7szQBUwp2Gw4dAeKaYG83FOOC2ao1JQF7fIOAtIFHwJmkWpSLVmkyFKUeWzMWg3yweOTZV5YUUDpFykrGuS9ow+O3hnmDNXJpl1Uwo+qhzGQqbhqcEaSuVoLg5dNxFNxtRLjwt9++y1/9utvyEviw/PMbU7MOYmKS7Uku9tPVfWhKtJMe/4VYsmrVJ6GB5J45SSc4ZTBJWlGL4nSd6IF394LcAivOKW8SjKmEnExkFIhx8ih66BUrtOIXySQb0dzzoVpnsTjItdVflKa7fU4bMgTgrA26lJMcUd1kPFfpkWkKxdJBKTBtoFGOtAUSllErSdF+r4jdF7fy6m+uNefy6uBSC6ZJS5ihDcvzOPCPP/hyE9+fth9HuCuQWBlleb891Fb9Fd+/DX0yNHfk3VTYcdTRoPeprDVgjznnAYfn4WKuo+1n1+pJXUfbKta1O6zV5rBOv3rKgW5D1zbqwtBtKuTNLzv0bymS1+rNFjLPBcgY+h6CWpK3FVBmzFbUzETlQ/xTdikBVsi1A5yo+GYBDYtkG5DVtd7rEWoEHuFjr38YlNm88GLRlqLCYxZf2aj9mxJUKPZNBC4Xd3+C5UWn34+N7bEqyVjwKqkI5/bxnynKqPyjtZtFND2TNt7rp9l5KBrwFULXhsIYDBr0LYpu7Qx48WU302v9RntqULbrWhCUcpKr9y/1murqAP4BuS0P/J2RgL4loi0vbk9G7ulNEXjqs2BdUuo9hzvPT2rYjC1jZd83OrY25S87E5BqWz322gkL+YFhs1iWRLPLWiXKhprD0ir8DXU30AW+pfznchN+4ChYJzHWi/OtClt4isI0tnkz0ttcZfsC+i6jWkRLXiV3Kyl7pxbDeM4KnbnGE7HlWrePDOcAqmwrf/P98e9tvxPef3kQH7LEtZpt+6kLdPcAbL7vBtW3de6fXOdiy28N7vK0dZws+8abmhKu2Gj2a+3QctKlUPncGWmqowkNoOz68CIIoSsqL7vMUZQilIiLgQ+fvxBGmJPR3zoEErNyGKlmfF06DkeeryDEqMYIHUd9XIR45maOd4/4B9nHKjcofwuZbtmZy3ByZ8uWI7Bcew63pnKmAu3JHKWxjqexoVlUVkpMue+41dfv+auT3SX76nfF7ovf8757h2nr77ihz/5U8ZPH/irf/sv6XzBGTEL6joHJmBsoO8GHu5f8auff8lX9z3pu7/hw+UJWyLHWnDVUa5JDBGOd/y7f/e3/PqrAz//+mvOhwNUkcAcTVIaiBjaZJtEraOTKod2RgKJabrSWUM/nDDWYX3Ah0yMSQUhqx4OEVcN47gQLxeWlDRYMizjSK0zebmR54k8R6FXlQhUFiqz8xilqxgcR5sw6cbRZmwXWXLEUzmeA5WILVGQheVKnm7UnEm1EoIjuEDvB87HM0PfcTodOB6PdL4TKliuYsqlXgHWOVzfSaKYogR1zmByR+07WeA5Q86YWgRlSZW0LGsHOwZKkvnqvGw6FVn8qchm04XAoes5dB29d7icJaE0QgnbuJpi7lVrJVbpjeispXMGZyrjFPEGzp1nTInff7zx7uHCwXuut5lPt0g1loMvxGKI1q3GIVX5jTZA33nplykZTCbGwjTN+CDKNTkLV76QKLYKZS4XUhSFmmWR4LdRGZrKgXNOTK6qzP2UEjFV5qWwjDPHYSB4x7iMlOtVDtjSqoeVJUVKgZybg2ZrHdsOw5KrBtVSEZvmKPQ016gwkpSUXCmxqlaz/PffdzjXypo0jNO4mow4K4iMBKzSNJ5TIsaFOUWhvsXmXLsZ4vwhvGKUPgBjjfbMiOJWe1nrfqQWsymONMUYs9JIeIGJbqfS59F9Qw+dE/nCdtqI5KEels7JGebsi8DkRSKhKF4LzoViWnbnSl4ROjSIT4skYq3/duj6F8/UeyuiEcq/zTmLR0KjdxWp6CxzJrvNdFCAEknSs5E0nVIpMamqiAbuOa8CJrUUklLBUOlWq++1VTcEIBAu7DayL5FhAS3E1yJCFfpaC/IVsVK6i9BOWnKwvQeInrYi+bWZDe2CyfoykDH6bHIRPfMWMIJIhwoyvfX/7INMAQRloa5BFaz33uZTo420efMCEa5bA/CKpLeAxVrIGYnT5NltP9dmpyLp9WXyobv0Oi6GLTFcR2sdOkXX60s9oTWRtJaa86p6tlV/XryJjJNSI4sCey2IXYNsALeZ2dUi1J0XLq58nkzV9Tm3tSv9fALE5rIojURZCuzGtG4UXWqL/T4LJjFrgiTL1VH8FvQaLM4GlSSGqqj+Mgs44v2MDyIoIXSzBMapcIJW2qjYXvuiihiYSoK/jXl/PG6JYVxEjdA6grH0fcfhJE72bS/ahqeSY/ys2lO1j2XbW9jRz2vN/LhD5MevfxQiv02G3TTaTUqz+675/OfYsv3Pg/htteyzcLP7iboqqLYk0qCd0EaaSeOycBoqnQWyyvWpBNHxeKACKRWs83Q9XB9vGGcwznA4HXn15g3j7UaKhYrleDyRc+Z2u3I6vOP6fKXvBg6HXoKWppihdKGudyzV8nRdyLdI6AM3NRIK1tC7RKzihobucZKEQHBw7APHzmNt5SwQEH1/YM6ZOfWUYlgS/O3HZ8Z55u9+93d8ubymp3A6DJj3f83t8j3D8Z5/9s2JN//N/4q/+OYdl8uN+7sTh8MgVQwjlCFrPH2t2HTlaDNdSeLKa+D+eOJ8HOiCbPg+eLx7xbE/MoQeFzqi9hdIglbWAzbnTF4i7vAZWuI9p/M9ppMmJmsdLnSCzBbw1lMQVKvEhUU5l1OKfHp6omDo+gN9OHC9TczjSI5RKgNVOZ9J3IAbUlS0qct6z3W+Mi8zMS4YCsVbjAlymMsJwrJM1BrxwdN1gcMwcDoeOB0H7u/uOL96wFuRXiQmjHN4dYRbzxVjMd5vwUIpYJxy4QwsgiRbqszO3JQSpImmGRWVIo1kOWdp2I4LizbxxJJJcZF50xnOveEa4VYqnasE68Qoyhp8ED+DH56flZctm2awRvwH4sLgPaeh4+wOfPvpie9+uPKrb94RhoqdCrcprWtdzoS6omQSRoj+crBQjWXJEqTNS8Y4T8qGaUn4OGNCh6mboVMpMM+RWgs5y0qXx9EOtoXOW06HgS4M2CoNuDUVrrMoV3nvqKYSk6x505C7qpRAa1Uka3cwrFuZWX+2qrmTpZDmBZpJXYPbFCXaA7bbjrgd+kYDglIreV62YHRVFJFdrdSiJliSDKeUVkm5dsD+obzaIdUC+UJVa6aGsL6UBnwZSLP2GrELqjdqBvJsdg2PrYFsDVLN/nSS+RVsEAEEa18E2D+ivuh1791GV876DjHzQoJdA52N/w5tcgTVnG4Bf+PNNx37JkXa0P/9ZxkjfS92R5TvQ7cmrdZa5nle77EFlnsEtZS8urO214vA7MVTU/7zyjOXQLn9kCTGZaWYFaUYtiqHMSJYYUNYqxDtOVgjlJDPkd12PXW93vKj78mlaSBE69sTLXgMa4Pliqy7sF5/Q9LXRty10vFyvm7zagvIpanVrJ8toYwwE8QUT2MUJGw3Zfu87T23StH+VXUP/VECuQMvP38f+dZnMZYxq2zj5xUtGS9R4iu10cEydfUh0THafd76vHa9I62hudYfq9TsKz3eIGehPs8WpDf0ozTFpt1zbEZ+a2WgpJeJjjG0iojgYRrcW4N3Qb1Xds3EzmlTsFYMrLynQfryoK6UTpkr0s+yepYYQ9f36isAMUamaVoD72EYtNlV1otV1D2mpGak8pxbpWlNGEoz1HJ0fb8+x7YHrvPi84n5D7z+kYE8GxgPL+P09RDTb7Rsdj3p2uFPgwz2v7ZO+G3T2+XwitCvUTwyjYN2xueaqSVxsI6iGY/q40CRkmVKmaz2z3NMTMssqGboVFIrcnl8wlqnNtmWJYozqjMV73ru7q0Y/CAKFMUZHp+uUKKolxjJzp8uFw6nI/niKNVhjUzkpHxoby3BOoJzeGvpvaMPlqFTzX0jqGEXPKfhwGHouU4Lv/3hCWscX7x+TVom5tvIt7/9lg/f/cASF46nE/dvXmOcI1bwxvBwOtK5yjJf8aqicXn+xNcPrxlC4HK74bPncDry7vUbvPe8fnXm4XzieOjp+0DoLN5UjsGRqcRZpDtzFkQm5yJIohOprlQzU1o49h1r33WtGJVfk+4K0T63FXEKjpGc1OER4XBXDLcpkpWaFNPEY75i1WJCeKoFbKXzHXNqCioGTNZri6JspPrszZOjRmmkdtp45rzH+UDXycLsQ6APHUMfOAw9rh1SLugdFZUTlEZOa2XD2NwdFV13QezeK+THixpjgVFORi1Zeava3J1F/Seq42JaopgsJekFSFXkFptCSgiOY+c5ucyjgTllQoBD6Oi7Hqxjvt0ksK9GDY6E+jQuCVOlQa73mUMfeHs6cJ0mphQ5HgcKhuv7R2KUIFaUmXStWovJAsItSZqbnTE4HEuJJEXccinYlNekSdR0rB58W3As5eOmRNJWuSWmQlwyJliCd/icSVkO0Zjy2vhYakPQt+BcGoIdS+tLQA6CdW8yuwNxBRHWDJXatqq17Lj9tRNHeYE5vvhbD0JpLlSOZW19Qk3NQA58yUmVf8qPubP/Ob82NHkfKv4YPW9fX2WJ9c8LNLSBPLUFrC8DsRaDrSX7Ha3mZVCzD5rs+t/tGvZn0haE2TVxt3YzmapV7N+rzik5Ize3z4a8ltqkR+suOdyuS+6prvfsjFHevgYJ5aUrsDhbyu84K3SDKnzUNWC0DfgyUhl2O1RzReHbOoT1ezIMdQvwSuvP2eYt7ILwvyeo1JsSgGMXMNcVXa3reng5F1D/i5eNfy+pWeg47sftZRDUkriXyUBZr+clNWcTutiqQLCqGOn/rsE/DVz8LP0xZq1WtutYg/ItB2s/vV6z0QRtC5m06rQGd9tnVUW613ssRZ+bPs91zrd5zib5WsFQ9GfKLimq+21wTWLYjWpbT04DUmeaS7Foxq95lv68VB+lP6CZ4K3f1Vhx23+1qt2uRy50o9qt/9tAoKqJk6GZw237RhtnswbhuWTtz0PHruizMlq5smtC3e7XGrPSydqzty1RrxLLeetIOWvVOWoV3a5rswEz1m771VYhVhryZzGxWe/zP3Yg/w8cKjLYdTvoFE027Pj0+u/9ut4m60uenvzcZ5JYtd2cPmhtjjQamOeiSHMBbN20y3NRBYtCqRIwiUV7Wt//7nzG+8A4zizzgnOGw2FgVKlCC+QUcS4wLhO5ij6wQRKMkjNON0iDIIzLvHC4O2KDw3mHKxlDIeaWYBhtfpOQ1BlDH5xwu7tACF71dOHV3YnQSePkEDx3fce7+xPWHOmdJ6bM5TaSSsUySq+AsSylMsWEKYWHhyPWd3TeYPFU23F0llenwNm/wplKHwKnricEx2noOPYdh76j7wLeIS5ooDrXiWWeKCnKQaNIT06ZbBODP+w2uqqHj/Y0YKWkJZAlrN63FWqmJKQ8aCw4D1gOhzMZoUmkSZHKKlluUMk1i1GJx2bx3SQxIzmmHXKmizALT9p7MdlyzmOcJ4TA0Hs6K6ZLve/ow4CpBVvkGkHmskWYWyDKCqZkahStaaylaU6bdZFWLWk6TAaqIFk5icW58E7bgZlfcBZb4hKjjDOInFjnO/qgsqveMpYm2WfoFfn0JdEZpFEcuTzvxJExq9rBEjPOLnTeM+fEOM4c+oHzceDUX5iycPNTtiRrKHk7fGqFRXmxg7N0zhLzjmuYM8lYUsx45fjLI5TNdENzWlBtt2AbCZiXmNaDbd0vqhxopRhB3HdAY9W9yRrRDXcV5bPXl/vjtn+u4EQ7+Fowv6Jiu5L2WhBfD7r9d7b3prT73A72toEXRfGqLJH1o9rY/Iir/Z/xaz9OrZQvz9uslJrGl95QUrM91N3Z0X4WWuOaPFBjfqxe03ocWrBi7PYMU5Mw3NKE/RXvEEa0mdJKcK7Xt4o9VCnDL0vcOPT62dY4MNK8DeWFZGN7/0a9ak6sZRfwNOOlhtILBa2sQZGBrVRvHZ0PFE1apWyf5D2QoMPiVZrQrAhhC0wkX7XUfcObKdSUtRFQm7vZejv2COK+OrH/WmkA3a460MZYEN68/l5T+mnzX/j29sX3N9T3s4Bil8DtLuTF9WhXns4XfY56H6vevBEH0PbT233t6Soakeh/twbI9eu7edrG+fPrazSpdh9rRclsz5S2D5m2J4nM0Nr0zUYtcY3KJJnh2kS/jobOYd06Ze9E15k1W9NlZZ3D7aJrKcJgMBr0VrfeV/uMTXhq63FoSaoxlmq3Pa1RlV4kWbWufQD7sZTP3zZpq2dryZX2aPaJ/7qf74L6UoTG6UOQHXpH69q08VGVOG0g91JtiEtczaFCCHRKg5PzjbXHslWmDhrEOy/VPpHcROec9nPmTUfeWrsmWU2pZxubl0niP/T6xyPyOjRVL2yL1fUBGV4G8Z9lqy+yMNaE/8WPVf26fFBd30aCeEOwHktSt7K8btKUTLBG6A+68RijwV1RKb/pTtldAAEAAElEQVQoD8opleF0uqOWyuV21UUqtO6iplXeSRNtiYUYJ6BX1FUCUaM/I5xGka+suYiOdvD03mCTSHVJBicTZg3+TVkDK+8MQ+84Dj0GSDHx5u5ApZJS4OHUc50ib46B8/lE5wPXccGYZ4wNDKHjcD5xncXVtsaIq0UC9OHIXdfTW8ubw4HBGx4OAX8SAyxKYQgW54CcKGmhREvS4LP6jkWtuJdFmv5oiEGtq1xiTrJhrQ3KQJMqw0DNQqMwVsuOGuA3pJiiqj1a6pPS04FqYE4R73vSkkjzLI1doI1fBnPQpltN3JpkY14WqDvjCYMGw3WVnbPajOhDYPCOzho67+m6nr4fMEVUVIyarZhqtJzrcEYUwmsRioR1FoIH0xqvZVIJrUQbYxU1kTHYSsnbGmmlQDnoWmCaUl45dd4Hhl6asTs/cnBVmniMBhc5YSkcrSF6R9Sx9dbivaVGkWBNGOZUqCwMfS9o/TgTT5G+6zgfep6mhHWWlC1LMiSzj4crUdERZ2DoLC7uAvkiSXVOSSob+ouygaMbeFV9cN28q1k3v1pRNL81z1oZx91rC3q1IWxFXeTrzhiZy+vhsJ60u/He7W//oRh6H/xvv7WOR/tLDo12HWtWsPuX3q5+X8k8LwL/P7TXdl8VQY63UrggoG3zF0UsquwOWoDXxKfoXi9yv3mJL95fKh/7IFN5yxocY6WXxDgPhhfrat/U6rSJbS8XmbL045jPDJ6WZVl/r1FCUl5wxuKtJZWyvmcLyht9ZqXbAGtI4ppYwqYMs1JsVO5249vCEqf1vSTI0sY6pSmu92Pti7nVkPKV3+12iVetFNuSLNEmtyaQray/GOf1PkIXxIyuJl1WQrortWIb+rkL5PdUkxeVklpfrCSv9Iz2/TZO+5ddufHbV9qfPWXDtiSGbeza96v2PEhgvtFFnbM77wK9bmO2GFtBPGPbnrXdB5/93v7PhtS//P66b+yej9xSAxaaXGFax1Kuu+6SjC3AlzHejNRqtdSa2H3Aeh6ZmmiKMfvrbKhyQ+T3z6S96m6fa/LWNac1+dHhklvRNdCus9F1oqqJOefUYySQjSGTMFX1+9WPyNmKNZ5W0RFsqXXHSmKLaSZrhZjS6stiVFZcEHfteUqZfuhXUGWFjLKy+XW5l9iScQEE4473HtR7ZD+fQwjrGEmz+edrAJrbd1yE5bC9x0/rk/rpgXy7sBfP7rMHyZo/qS/SViAwZpeFtZ/70TlV18+ptW40HRpyA84LLWWeFlIUpDsEhzdAWejDQLCOkjJRAwDZLIsOlvCEsfDw+hW+G3h8fOLx04V3r4/EFFmmEUrGqTSiMZanpw90wXIYnDSNaj5rkaaLRi8QPV3DHCu9dxyDoVThNgs9CKw2nzaZcWOMTFIgGMPgHME7wunA3UlNZUwll8Q0XrnrDfdHz/Fw4u54EBUV47m/e+DN27e8f3zkh8cnUkrc9z1f/vwr5gw9cAwW3weunz7SG7C1EGzF2IpjocTClGcCFVszNQdq8Fyv0rzX1FNiEtfeskQwWn7KmWItyzThcXivHNRW8qqFOE3iSucU8ShlVfBx2tjcAqtcMn3wdN6AmracT4FliUzXCyUl4ryIyZa19MMgZXZYESljVMJwWdQXQOZkzlWbGcVIJYSAD4HQdfTWMDTXUecIXU9rk2u26LUIt84PXrLXUvWPVhisocHARXYgXAhiGDU+r/qxIKXuapwcfHrYuFpJRQKNOE7kpJuVlu8M4EPH4XDi7lw4Po/045Wj71lKJabEc4z/f+7+rVmS5EgTxD5VM3OPiHPJzKoCUDXomZ3tJWdHZPeFz/zt5BP5QpEV2RVZkRkhZ8m5dKMB1CUv55yIcLeL8kFVzSxOJhpV/YZySKIy4+Lhbm6mpvrpp5/iLhLeHY+gPeMpZxRzgBIzwIwMlUbdAIADZMvgwLhcN7y8vCAy4fHuiB8+vSAmxjUbCtqG3q8/stpEOekEpEC21mxcSFUzxOS6WpcR1I60QzatQ4F9QyObD/6OtKJ0O9XHm4xJ7B02h0kh7dDcxhkmNx62JPu/Z2de/60UL2AEFo5YjV+5regx332gTHafHtiM88KUnnwAzFHF6Pz6azmEbBza4IcCUNshgrSEaaR1+dQm3ceY+c0CYIlhgAWlIsWIXItugtCuqWXaLJmAmIL5TLaGAbRSdOawdkpljt0xQ3DaTsN2vWhATTpbdI9Vx1qBIjFqpJ2ZxNYABlpZKzhGLfIuVdvIyxS0icomdxRVFEVku55iNtdpWWp3mjr85qw14/V6cNhq6U6mQOujABj6y5bNnjJQgM3V2hFXlxD0DEOtVdefCPK+Y02Lquo0QZZNgargvOkCEaNBeFDdAfaBgPt8SCkhhIDz5Yxa1alrQTvydpTXwBqIjZT9W5rqe8eQkNLa9bkd8TT/265hOM3NACoPrkvV5pIEtq6eZOOhAUSM0VTbFHCQUkEh6P5Hjrpyp8wNGqHTtWoPaDy+j9H2kT4yTi+7dZMGHCC6MDjo90PsgZ3PeV9fXsTKIakNFgGHCKcYaY2Z0llBLgfNyEWdekD9ru6cAhgOpoO2ft/du7N5FntGKUaf79NcA+B1GMuiuuxOM70JeJyiSzT8qKjPzzsmK6Us9vmsWZbWAzcRwfF4xO7F2dXAXhjLIzJaLgjBG5Rpp2f2wKoIhJWOqo621vkJaTF/yQVStfhbg3U2Wnfp9TXeQ8IDIa8z8Uy89y7qWaA27WX/zPEvQuT9MfwlvOgGcHmFQLVpr3bD/RrXGu8C6nUryrmkhCUy9m1DLirCHwMhxYBjaggQXLcXIGpBYmuM8/mKN28edMMADP0UhET4+3/3f8Kf//EfcT5/hKAiLAvwfLbmV5YOY8b5ugFEiHFBSib1VTNW5xtysIYvaoBba4giyFWwx4gq0OJNoyB5rZKq10RtMECMxAlLTFiXhNNhNf581HOWhocl4u9//xtcXs7A9gJhYI0J3zwmEBPuThVf3xfcHU/43buEtlXl/B+A5/MVAQ2hCtpzAS4fIWVBaZryZSYQRwgI4XgEQQsES6nIdQNtZNXgTTMUnoKEoumOqqIZzUYa9u2KRAc16LkApSBLRqmCuBwQUtLF14AUk0bx3jGPdGMX4675pOEIPJwe8JGB6+UKDgFpXVBKwel41MZAKSKlBTFE7PuG1k7IdTdJNGvOY+hJ3i4ggha3HjUTssZF0XYIlO6zqUwikxUKEygALTRAKkreEJdFaVRQFKD5ZPaUZclAIkCU7oWqzSyG1J5mfsSMVGvapKhKACwdCij6o1w/LZS+O62oIvj0/IT3zy8QadqRtmgDsTUkJCJ8e1iR0HCuuom3sgO1IjKp4y8qp8k2fwUF58sFb+6P+O43X+P7998jtwyGpiJjVO5jd3hJ08u1Nlwy47CsuJw3tCKANWgTommvGlwS3ZwrCK42oAPIrMWqIG/BrnS6qsvINkavveG+sYtbJ9LAy+kMRoq6sVu6j9ErZ/7Wsvl7gilu+KLrT5ZhVJsF3Gx3Nyhjd+CsAMyBjvlcf9nC/u0dc5HoXETXgQxCDwxFoM+OHBczp4fGiITJK+v0BTjHe3xQ5Rjngs3XGuH6ObLAmnzYzVEXeBO20r8/0sVW79DUEQoh9AniOQS2Eyp1zuyjqbQwTYg+pniUbLYoDAw1ggYKNGuYVhukCJI11zN/Fl0ip59zIMU+1vqm7m3ogeV0HQTLjL1aB4agD+TVO7NGm616Tey/Z3PanarZ6RtOzHAIHG2f+fYzF/4WALbz2d/9+YUY1Ubz6A9wM8YTWu3670yEItpbxiUSO3rdGsToun4qpz3KiDKnjJsOIHVJ3jbmtIfsbb436deP+Vo9uPGpLD4KGHU7ds/snwc6J9uzL028lgETxQPj+ZF3dJXxbKcnbz8zwSjzfMDN85x5/NTH1kd+jP1Mmem0KzuUYqbX0Skuk+57X7My6EpeSF+rU3j9Yetg6XwaBbtd/pEG8YjggQChdT0dmQQH1A5Jm5+l0kY5BgXjrMja5xcRrHj2NgN2Y/9s0aurQL0h3XjYP28P+GWO/LB6n731hZe0ZT1eFSLZeW4mSrecr04oAjSNiiJpS/htz2ilgNBA1MBCquktGt3vW0UkndzXbQMA4/YRYE0TBBV/9/t/A2kVHz9+wPmygUPC9XxFq4IYEtb7I/Z9x+V6Rd61ECoyI4CQiJFCxIdPH5GWexCpM3c+X/Fy2RFCxCFF7JcNIqbQEgKQi90n9wnWxFChVhDCCTEkxBC1IJYYwTaOu0NCSo/YcsHzmnC+XFD3F0Q64HQ8YNs3IDMuH96DiBGrankTInC+Ytl27HlDrgUBgoiKy/mKxdFo01ZdlgUNHugL9ryjlB1v334FEFDKrs+kmepKJLRSca0VLQYQAffhEbmotOICLQyuEIRIKLs6acEoKa0W7PuGfd+Q0qJOaK0IyZuzaL2Db/JoO7gGfP3uEZfDivPLGft2xfpwhyUt2BcrNIkRIUREqGTjiVXdgQxlZ2skwXfHbhRSCmgtgwSWIhv8VIK2xPb5C2iRCpixxIPNczcKhoBVgVj3RBYCRFPyYVmArAGCtKKV9Lkg7ypF6AiYiAZSej5GI/Qq+MCKAB2XAJIVpzXiFBnPmzoAiZWrLqaSckgRX/GKY63YRLSrcRUkNAgTsgi2UhBpwZoYeyZsW8W+ZURu+OrxhB/eP2MNAXsQ4yey1p5YzQIAVGYUAZJJbTapSpBgQm0FuRZEqWBRxrF0tAQ9mwKXalMszMyBBpIE5fTu1biEhpaIoa7OOB2uDN/863OzOD7PgG1qs8P+BbPkhku8CH+ca94Gp5BiOEjAuAiZ/kCdJzFvVSXmfj2O/LyRzQ4WT06TfdKcidmBazcoPvFwFOzkwzmHbbG2kQazvU3QizV1E1ckb6aQzHQIACqlKtS7KccYe+AFJqvHGXN/3oDdRVCpO1fsaN3p14YxnvFFtx0dooWusWA0TncUc86K8JUKyQ3x7q47xYMGcUuNcCfeCzz1YqdpaA6YBxFehNodTOkT1ILPar8xEHSgGV/49rnrc3BZPUe2RyMpD4CcI1xy1ufnzijfiu/1ugIP+i29TqSd24NRJP15jKY9zWyEdQOvRXvfGO2JrSCSQNoB1Zw9V8QJ3j0WJjXq80Z3S3UgPYAxLrrW7Q/H7rUm+KAWGff/5nX976ixn0AAfROAAlMg3YPj3JjSwI9atKaKCNj3ve9r+vyGEo3PmYZm89Wnia2o2XDRq/U3PRe/nz737GtzcKYOtFNtRkOnzhcn6lQbPZfu5cpFHxTU2YaQ1QdUqIod+pyWHjg5Cq6BvQcywbIkSg8OQdkcvc5tCpIJZME9uh1ozZ1oq8sErDOsdb+1ueP35BQ68iDCgt25wNcFD2xg8XOOn+3I65Y6ppM/oB7P+Av9feoDiekzuvHebqn0emK48bCIl1kf3p6zdcki5SjLXEAiKNuOdTXuYC3YrxekqFJAnkKMgRFTwOl0wB/+y39G3XesS9K0E3QiP9zdQRqMY68OG1V15NGUa7WXAA5JFUfajtIqchMUAUgqStt1WuUNIg3r4YBLftLmOUI9NclkxT2tIgYtsDzEiCVGRNJCW5Au2ENQ89VqQOIDamkANVDesYLAraBsZ4DUKLAQWDJybkAt+rCtYIWZ0YJKMMWofzhGhCXhzigqEI1uj4eTpohaNVUd6g9f1EsFoGh6TIqsH9aEu/uTNTjR1GVxDjmFbkgbpDvq6iyrwRQ4bx5gqd0YhBDAUtD2hrvEOLw5opSkWvIiQCAIVKe9tR2ndUVt6EXPsMYuZBv9KKDW+ohIqjCTeEiogWBlbhOiLALxNCURwGmK7QHioMVwIQAxQkKyAliBvFzBtQKtaufWfUOKC/bLBefLGWDC8e4eAkbez2hiMpQ5d2oK7JpjiEAiHGJSuS/S+ouUIg5WJN1aRTocsfCCY6l42TZ8er4grPqsYq241IqtNWy14LisiFbdf942fHr6gIejIuznXPtSZwJSJEgW1Cb6PKmhCaNYoTm3YSukiaYfW7OnK1AUnRXN62veXWK9diKl/+Rqr7dmcm+3gMDAFqk/BwVe3AwrmiKY0vl6Cf2b/rc+I/vFD0uoc9/tWwNuruL2GJzf8faXHHQR9FISVyH5UiDxt368tvWORHq34ltH2p1s/6xL05E9WHSHpjvi9nfn2QYiK9Kut05Adzj03F6Hos98OPR1H+tNuiKVzpuyZyv2s7oT+zvbtJFa+qat3T4NLYV0+guxzTUCWIKqa5nTo/egRX1V1AHYdnXkIYJIrJkuo5MxM5YlTR2HzfGuPu5ARe1Oa5ViDgwwz12/p87b3fbxXKRiu15BAJYYtZN1zlD1kxFMeOGuPTh4QObP3Ln66ugP6VF/4Lo/6nXVOqP6eniNloI2CY7IAwo2BUk9SCx1t0vxIt9q16z3mtaTOr1ibrk5db5O3flyBN5lRh2VF1SlOEXtzeFHIAUOX2uvj7nPIyidAyb4nFSEeMR4Y+6y9zyYMl3z73QZUw6Ia8S6rrju25i/YOx7VhWjwAghQkr14R8Fl/b/0p1jfSaaKZ/kOO1+PPhzWlDgIQUqnoXFyIoOJa9bf9DrSPwZjuzFyLLpfWr2MwSn70SrofCQh3rgkayQWhWJdA03moMQbdjmajg9KwMAU+Fsr2uxsWpWoPuZwZbxHG/sntku6jUP0oUxnH7eB+hVYPyXjp/fEOoGecK87m82Jrp5e9qMJqM5f9IfD/Ux75658ZF1w2/SgDZvAlqQ4uIWAcrBXdI9CNqQpdWC4/GAPCGGMQTc3y1gArbzC1ptWNOKZV3RakEMCYd1wfl8hdRq/O0GV0YotZj0YtRmSXWHmKBiQ4CQOp1NGkJgbUBlsoiujyo+HgylSERT1mDlakamXgyrEeOIsAUNp0NCKayFtYZeeYtm9bN1MAUC7tXEQZ+GR8k2tCElpfcELVa6e7zDEhe0YkWpgbEsqzmI5rzDHUlTJBAvoEwIIWk0b5yv3fRUW95BphTD0Srqa0M15zrGqDx5JYmhGQedTO9WO6gB3BoiqsmSRQQmpCWhxYBaBQHN9Fu1q2pIOo4N6ghQsHEsosaXhvIFafSmRZlRx4a7nCVeGVqbh7WiEVnKXI2C03CwLtrVNUQIe9qdLVAZp5FmyjX220KKpLAV67hEZW/9bGhYJOUytgasy6L8O+O/H5ZkjcsY18sFuRSlbK1JVW6I8LIXbFJRoPUZgTSsadJMjahhyxnnyxXH5agdJOkMl89jYqCJScAaBcEdFuO8e0pajCPbmmYCwOa42dxV4zXoFLDrADTYK44CTvZG+h917oinF/szIreTugz65LfH2bModl4Zm9eXrJWgn8Qt13S+AVp0e2kcq7FZTF91NNf+9CK/m03z13HMKKMrtMzc8NpGTYujV9JGHUVfh0B3YITdgRjjKzKpnbBptIum6W87do49R9P4g9cKWMNIex2wgjk33KaFnwxJFugadr69KyWpGrGjkg2o2p1cHTgFoVpx3r2rX9QeYHRkE4aVhIB1IaxpARNhieqszsV2c+GwnnOk9W+pDbB4dFBG/L3uyANorfSaAcN2rHDU75ORizqIWgQZuhysUmw0IzqKdYf2+HwtcydL5UnbJYpdgyO8RJBaTWDCtb8DmIEUAtb10JF2ptd67QIxEYRglCTvvl5rVfTfrotj0Awgq8LW9Xrt9qMr54hDkhVAANtrYoURxFpnJVYofTN/ZTxfP76k+vP6ubhZEmk6f9uY64FDL6zMOSOlpIFYznh+fsbhdOxOtWug15rhohABWoQqNvfpM7tmAYNx6mcnW536z71Obcroz859mek7PKgn/hzm8ZgDPHfUO0gzFYgD6Pfu48hMRq1t0+8AQDBqLYM53swRBQOsWZ9nGFh9K7KMRy1F69iYUWEBmNsfo/BpBkH9tblugVkpy1/KaEz/sIvBJGf9zx+/zJHH50HHX3pxYq99dtH6gTlaN5Ssb5eDHwaiLldGBDCMkwbdI71IklFV/u6woObNFAgIKa0o2wZPdaYYcby7M6k/RdsPhwXLYcXLJ1XtAAGlaiDAHh5Zo4RSW1cBEFEHo0F1zqtt2s0i+8iMkhv2vaA2KJrdUTkdt2AGSGXGlK7ChF4Auq5L3+yaCLgBd4cVOVeUpCkwfVsjd6/K1yF2JCOMSLi/p9F0WrQLaeCAZYk4Hg5gsSIRTuroxwA01dNvYh1JRRVfqjSIBFN6SD2tWUtG3jbV768VBO1QVls1Pn4wTrUiUjGkwYWzjaPafbOhn0RiNKpmUXUFGquXFiOEtXspQ1CKD7JoDUJtRgvVDaaxF2Ap2h7MeNVaIaWgUYCEaJJbX5i3PlM9IkfrzqxW69tmHYIieczaRMoUbKS6g6mc/X276ibOo5EK3BhIRpenNCUm5w4G1jRhiupUrBFYomrfnw4LUgqQmrFdNxCAh/sFbx5OuFtW/PHHH0BgpWA19GRnNYUeEaX2bHvFIWlfAzGHk2CcPpsHpXoDLO5ZMzE+fkdQRaBFr7rxdfeYJpk0W/aOtqtqiRY+qoaJzwfAheT0HLffH2tsGEWPacebfpYJTMArcza8/9uv9SnQd9b+fsetOhKvrw5EDd34mwdvnSqnlCrkCz/2t3zMfOhBd9K35Et/RefDYjjpg1/rkdmrn/F5YEez7I0X45OrvQgsgHRip0rRzqhYkzHXZocDYnPJinGZPK8HDFFKGFrq4InNsqYLzW2yFvF6sDtR+QgQ/jy9HoMX8w2aSHf4CZiLpOn2/z7bh82qzjWW6KvKxl2/p9UHGiibQ2kyv67yMwdhzNyvyTOWze6D7PxevOy/qW9Ll7UEJqqTjLkjMI56YAW7+r7D0AyeMZzJa2emIEbsmQi6bLG5GDrH7CnqOTVQAJF27TYn2vn/s5Y8+jPjfh+wa9DaudADrRsKV7dZ07/JKXXUH9Jnz80NVveyhs/kn3RQiHgUVw41I+7/dr/AKVQ6l5UqpXPYK4t0Hqhoh9nfbpMx/DW7PueWt5uAtCMb072M5m6vHff5M0Tj796h+3Ze041J8edBPbjQz7SmkCts3yy1jjo1M0vMJm1hzxkGTtXmGvNkgdrkp/bI0027z9kvBNB9yxgX7POTBLegxvj4P3v8Ah356RqItMJ5GqLP/yZw2yXy+l0/pYzzAX1CzDwpR3wJBBZ2mAANFVUqEkWlxkhGWhLWdcHLrgoD62FFigmX6wbAor8YcP9wxLbtkKZVzMvpoNFWbTjd3+N8vmhxky9OAfb9isNxtcgMqjyTkqINQtj30jV+G4k139FCk2suOOeKJS3Iu/LkR/ox6Bi0Zg6yUi6YIlJg3K3aCbU0jaxzbrg/3iOnos1wRNCEbZH2VQMAhmgKYlimTZTQRKPjlHS8vG3ysgRQ04xCigExLYgpoUoGoJ1TJe9oJWsmNaDfR/MFBnWUcy2g6w6Cpu1iWhQZv16QDgdQXFGqAI6+EIHT4CEyE0JMZhXM8FuBknglPUivqwIQQeIEihExqmKAp+uXJVmH1AqpqkscQ9AGYbVqcGAOZxPBYV1BZMVSzHDjo5cyzXtRg1Bz1oCHonL8iVGFEGoDEiCBtM1dFe1T1aDUHgtIUoz4+OED9pYRVs2QiMAabmEgkLbAUwy2ec5OoSIqd2vA3d2Kw7qqMg0K7k4BP1yuuO4b7ukObx4fEE8nXM+fcEcReD5jP1+wlYZIgMUQQGsopeGyN9wdVCbUNfxV2o7QiuC4MGoFiqhqTW1Nsy5efugburlNrRRQ1MyLBsoFpJp3fVNFq7cmf/pHpT6V3WrALIRxUmeO9disnbICoc/f92/9JatJ07bpno/NzZnN7uexu5h+0776apOSfr2wee2ovJ/h13GIEzPF1m+PqqbnQKRjaxKk2txtKPjMxXR9c5kO3/gahhPZx9szWUZrVLCl6JyxeReNruCCDGJZVacQMFGvUXG+PXMYjgwcadU50aSaJ2O/oZ4klE5m9trnh+0JwdBwEHrTnTGIRkM0p8htr+6ZI5PhozpUnYY70IMhcxrGdmHv1zLmb3fOYTZ4jLM6U0rTCQi4Rb7H+Ctyq7eoznyzIeABCnRwSTtNz0GBjzWmp11rBVPo9Q/JOmlLayi1oDqYIg2QoMoz9nxa1ZU/d82FKypNjnwI8/ukykCvgpSe9SDLCphT1zpvX5099uCnP8bhtL8GCbolmRzX8f5wvJ3m6dcCGaIT3pukkAJ1MUYcj0dseb95PqWYYosVg0ttpn4ECKagFS5sgSHta/NPOu0J8IZH3acV6frrgV0e9BZhn+cKcIvCz0j2vJ61duE2I6Cgko/VGDOeaiyGg137NVbRzF/3x2EKQOa8h2BOvZgqHwSgALZAVvrTMOcetg9WFa7wdXkznzEHsePhu3/R1zUASPtZ7JpfwJH3v3w+WK+vyBLdn33ms23JjBgbV8zTXEQu3SQ4LAm1qhauViSbpnYD2Ir61iWiXnZ8fTqobFlRNH1ZjrjsV4QQsZcNaU1I64Lz5ar8S2IshxXnlwvOlyt++/YR9/dHXC4Xa6kLbJs6rhQC9qwan60WnK9XpPWElBYIReRGqE017BsB1ARLJOwcUIRwLRmHuCoKTtrVtFVBLQ2cAg5xQckF1+sVhxhwWpfexCMaMos7wWO+QwNQOaDEhtI0danSkEAxR6BnMDiBOKA6rzIFHNcjYkhYlqWjUESsgVCKqHlTRz6qGs62K88fpcJlFltrqBkoe8F+vaIE5XcyAyndqyRZDOCwqJELBAqEsFeEsIDXo9YbbFfkbdNFEBgxaFARk2q4g6hLUnFU7t/L8wUPDw+KUBPAIVohZENiRm5NN8LgaVdCChEtBuOYq/b/GtdOaYEoTriux16coujPDkDl7ABF771xk+5QmvWhFAFmCAfUZcVyOkFKU/pVbqBGkFwgTDqfsqrGAITzdUdcIlJNoKBNJGq2wMkK45pYt09Sw6u0reY4A/a6ASS4Oya8ezjheNAA8HI5g9DwcLfgWiquVlj83buv8eH9A2AZlwrg/PHJMsuGK4pgywUfn684LQvujycs6xWc1ajVWlABHJYVuYh2c60N+1ZRc8H93RG17oqwsSAmts3Sg1a2ArThgDVTUVIT6So26M1KXLnEi8hUU1iL0ZtvOgYiEIbDHojA3Ewisw34RbeybtoGhdALaR20MHTVkJ/uRppDqg7n5JeJZ3tebdD4nDOr+ZzhCLlz8Wty5OdjbNADwbyhVE7PY6aIaFHl2FfmzX2mzMAcOf/MjIR21Fg0WFRvljvdw3Ws3SlelgUu6+jXPjsYYiCGFuRq63dmAJ5iZ+7Oh3LhDZgwaULiUezbWkFgbRuvKfmBgrE5TtR0roioHQYUqAgehHRQAkBvQKUeRuf911FMr3NtPAdHxf1g1uuqVf+gCXJRBbDgYNs0n71AtMdPTdBa7p1gnWJCHCdfQjpXeujkW2a3I/S4ucY5Q+LvEznlkDt4kHMGKmFdE2611IfDpHvCmGPembPX4BD6/PC+AvMc7M9QPWmf5fBsgssVDpTWlevG3NRrav28fm6/Vn/f/x4JZl+0TqKiIsTYO5MuRrWsrSnqLMr/dp3zfd+n9eH1StJR5t7sywxdp3jxmGezIz4XsM9OOG7uaBzz+3OPBN97bwKl6Zn53Jp/u2dG+rh9/hvzvAHYgsDU6XIa67otgdVklY7KE2nvFc3o+TpWp5wa2bg5Zc/up1Qg3nYQlubP//aeXPihryXSwNkLdf/a8QuoNTZIf+F9evW5L33AJ31g7mhBR1msQLg2q+4X63gXg6VwWt/IlZvGSDHhtEasC7C97Pjtb/8VyvkKlKabARPKlqEaoco/R2l4ebngcLhDWldUYexZI9i4CJhVDWddFzM+FcuSkPdNVXikYMs7Sqk45IitXFFrxCUTttoQloBstRZMhNwatlo7wMZMqj7ikaV9LrJzKgPSorq8S1TOc4DuC4ED1pN2cwWtukhbtUY/CzisOF9VmaaZsxJiQowLzucLmBmHwwF3d3c9+mO23w8BMWmjncSEdVHeoUjDGiKu2479uum1JE3L7TmjSUOMCwDpyhA1F6T7ByzrwXjetnmVhgLGmlaU2rBdLtguF21ClNTJNhEAlM6DVKQMrnxAhKdPn8Ax4nR/r7w4973IBAwLoRg6U2rG4XhnLl3TRh8QsJBq4YeI4KoDxscHkTZwsmfmgJagWCEMrNkEGVpDVsiqjcFCbpBPL8D9PZojHdeMCIa8PIOLFq26egIFIMSIdVmQS0PeCzZrTlOrNsnIRQuFHRlzlYZSMl6uF7z/+IwUI06HA+6OK46HxQLeipfzFWuKKNBmNi/nZ8ibt/i//Lt/j3/46Sd8vFzBqFhYUNHAElRWixV9uV4zzucr3j7c4d3DCc97xfWlAEGR+CqiRVNMyBUoQrhsG+6PqrfcKQZWXFdFVJefzGCZifDiob57ulFpzX0Wc6DHe2RGVW5c5c/tVGACQ5V/Chp2mVF7Q0TtmyN7Bfu12xT2jTJf/4dnbj53wAd/2wDZvjFPvG5Pc89Bwq/wmDm6HhQplUWfKRODg3KKu6MJVYxydK071XKL2M0bdzBElk3X27XLmSyQdLTMlrtqie/KN5dmjZ2MHsHuT4+Awx3MGJUHrQCOyqyqY1pRc9bspX5THa2GTjdrTQvT+zOvDQUqsOC2R6C1Mk7zYNZCfYFmvVz1pnkxb2tGA3mNBJprP03e7ng4Gk+CYJ1hYdmFEBi7CMqekfNmdCJRYYSgut9+eGZgPmJ0+dce4fZsnjtoWoisTQmDw4DeTC5r8OB0yyaaFWy5oIp+Lh5Tn1sacDSElPr9oVVIDTrYROAA1LJ3Gc+Ulj5eChxV1HoFvJZhyox0qg9pwzFtXGeBngdFPFRKFPF2N4v6aHfnnzS78SXHyiUsaVLSEs+y2KzqIgEQSNMO4dUKpnMuiCkiJg1MXs4K6sSYkEJUvXxWoEvcv5oDFCKgKc9bF4+h5ebk60uTo0rUG/PRK263iIohwOzwfLtzMPM6UPagwhxIhJjAbdhNadSVzxrcrph0tSkieSCt8pKmbiMK+BI8cAC8WLuIoukz5V/fH1ct5sTLK7w8BFVWczbJXKvTg7CQpv3LmAUiXTo0MAE+Zz6D7r98/GxH3ovFAIw0gk/um0+S22dzrsbLIFiXOx/4/iktkJwMt9MJrteshZOik70BvXvcukSsKYBbxel4h+PxgA/Pn1SuMmiDBaGAUgvWVTt2XbeMPVfElLEeVjydM0ppWJakKH6KkMMBex7Fda4FrI0KMmqO4MiQVrBfziiVlDvfBMkkMoVYUedz7mJ66twbl08EIowghBS0SOjudML96YTjuiAF6h0BvQanN6iKVvwpmhrKraHUhng4qHEtipRyiJYiZByWxZDcYLxqtmJisSJTwpICIit/G6JNdNiqtbMVjQDmv0JQyo5aC2I46GbmmvfWGKGJmNqLBW6Rcf/2AF4T2nVXbXVDTTgGgLg3V4kc0SDYLxftGBhXMEUEIdw/Pqpx0h1Y56NxGMWcBFXQMdm6Vs1JIGtEZcaiabde3ZwYKS26YYTQETWPwLwgqC8GkNFuzEGzpkNK/RZoN0poAxYGgIa6b6jPz+YgEIAGSLW3DT0m6qiIOhXS9XEd6VWOqhqfbdvx8eMzXs4ZS1pGcxbbMPzvITCWlgAw9i3j0/kF37x9xMPdUZ0PEhzXBedsC5GozxOIYNt25LLjtFi3YqjzZSqQWFLCXhr2XBBMO9m5w8pRVsqYo9aecg/MKnlmWH134tUIAGiduy7U8XZFuWjUfEBIqU40PseGfMHkvDg4iADUIiiWir2xa37Mvvz0uvSg0TdUuyYz/sNJmgswR4Aihkb4azP9Y/6+9P/7dRyv0THd8MYtetA4Hv3nSiV+fAlldwUUf78XJE7vz7+v6KZSsaQjaIA2/dE9zNFBAN0hmDu3difG6m6UaeeUDldcAnzzE6M/Em4LG9UxNLyjeQcp6oBWMwlZAazQUAt4hYaj4vc6Col1HbvyjY6Xnro5eDYPrU9QcqfCMxCCWlQWd9s3sDn3lTxgaYjpFuV+TZnw63J6y4xQ9tHpwditQ+fIbwzDVXG0GIbizuiwO/PEwROmlnWGzbYG5ohqfWj8eppAnczukMLsNPqYzlKpI+tgNBeQOf6w/U6zNFrGpXvUDDXcIMk+XnhlD9wpdqdvrtivY3ykaeApdl6fE4DNPxunGGZ5Svdr7Den50L2o8wMYRU0eI2Qj07aNn18H/TnzXyzJm8QcVv4M5AxpuH4+w3KP2aK/ZbcfGYOBvST1O/Jx1BrPajv33Mmj0gd8xA1wCEi7QvU/1hAR66UY0W7lqVxoQufF25j1Ecfe4IfHviRKIjnz97v0kfVefl/7fhF8pPTP9T56JvoSEGRbca3TvxwiqQ1VBvkZlwl5+w5KtYncmsQqeNcfeLpX5cUkJjQSsG7h0elIVRdNGyO0J4L1hiQ4qLSXbUCpEWkh9MRf/7xzxBpeLw/Yl0WMxrq7MA52Q2qEUoeiekD1GYLGa1p4wUrAVREICaEmHSTdwk+S8OLqDF1dMFbaWvDq9h5kt3wmeY2G5cdLNapj8CICBDkoqo+a4yd40XO9WpqvAhTapnZJpBGgCkGxCUCRSkjTQTWjhBoRVVsFCIC4BXjQ37RAwSfJ/t2RUgRjRigUcAbY9RzNy2aDaxc8H03nidMmiwqtxEtgWKCWHEsR+2+qnxX9SIV71XtX6fJMciMOSuFhakjJWgqF6bOhCkNGfIhmBbcaw9MdNzNKvQujz4xRJrKXXCABHUSWAQCNYjE2glO6ToYqJvA3NgRBDMrnawUy65MoM1IbwrO1w1Pz2e00rAcF3AYTkNr1rCCFeVMDci14eW84b/8+c/INaMQY28VKSUcOaJiRymtIxBs6yHXhuuewRyxRmAN3J3qUhsOSRV0CIQZNOr8RVvdvllzGI6aB/XGInZTMZkbGUXaHUUEZshkmHvqvy0255SOowiLdtGF1ih0eUMa63N6LuPMXozqr0tXy5r58CLTjU/3MTjHt+ecnfk+3cZP/KqOwd2mvjncDhX1cX+dTv5MnhDznjH+/doJAKZulJPTcvNvQ0NFGmqxWTg5LPpZvYZeyA61A4EUzdQuzeg4o6/n7nAYauuRiq7Q4czB7htkNSj9PJ6BszJvAgilI3fCt87QHNDoH3dyh1a3UtHGodkQc0LEsw9+TgWn9n3THiR51x4tHI0CJz0oeX0ds9Pi1+RFlrfHLeVJKQUa8HhAMr/f2lBB8Xnl55YmELYxbwYTstFLSccX0zy4cSB7AM7dV1andgRyc4Aofn6QBV807EcY+4WYI+3Ge56nHlyhO6aTCydOX9FTs0Ulfctxx9ECGe830B35ab1J1cx9NFUXiKBrO5sdug2wVH5T6zF0MG7WETNoppdhsmEYgXSIESi1j1Ufb/+PO772vjvUs7c5r1MZX+xjMTeL6m91eysQGXZmzk75kx/BmXQ74/vQ6GuCvu+r39p6UODZMsKcXZ2kQHmM2xzker0bg3pARRj7INw/nIrX/7njX9zZtR8+622Y52GSyWj5gDRpWnckmhbSG3B0gD8/9auHoINVEQOwBCCqbAgeTieUXYswHfW+bldspeDu8FYfgi2uQISHh3uAGdt+xWFNeLg/4XiIKMYDF+dNm+ZWDGQ9AoxbxRFVqtJvGvodVtEinnU5ILJKXLVaJ0fDHDuQKnFMDzP6pmCGgiwIEFP1CN6trjVzJDVKVBlCbQ0cY7IOmgwKAbU1NBpRH2EU5mgnUpiOrC6iYi29GW7cC/btjFZzj9T1OcrNc1HVSO4Te9uuWNbFwOlgSg2kxVSlgmpVNgqrxnPerhbQRL0WJnCKWKOmSKU11Na67FjZd+U9GzcUZFdNBO8uK6KtqMEBdoHdRBCpzrkWs+icgqOGFnB2jXASqMqEj6DNarE5y8E2YTVaypckKMSHzqUPDNDxhP3SLJiASeyNBTKCVzUKqrsuvrD6WhER7KXict1w3XaTnTSjIMrPq7UofShGhJhQG7CXjOfrhvfPz/jTxw+4v3/AXotmpBqwV4G03BetqxM1AfbSEGPBGhmnJeFcdCxzqTil0BU39D6AXMW46W7EgMgB2Ta23kBFzFG+2Vhs6HyDHNH8SJb0vc8QJXs67o7PBtzfZ/ZuzHKjUjM2GnvWrw0Qbj877af9urrls/NIm9F2/5Lc/Na86Xx+0Bde+xUcohmlObBpdTg2vcmOuMLG1MjIjuG8DIdgIJGmVkOjGcyM4M2oanckxGsnyCT4dFslXtX+kIIQl8ulN65x3ro69iq/W/asPTLExBBK1vuw3w/sDYkqiGOn8EAEUps5umpLatbaLHfics4Aac1UiME05G/1w4HbAGFZFuSslAvnzmtjnMGVr3aOJhVk1HWGgmLPz894enqyItSKuKzDcRKxJnqfOxszBWkea39m8zMBhqNMZA2XmNAqoWSzg1aYiSam8gb42nHqQmuCKDrGPKmNtVKQQkK04thqOvt+DTlvANu4i+7n67rqPABMAW/iuENpruZv6ThS6/a51ArUrFx68mBpXI9nOcV8J4IjtBrwKbUCtoeNGoReeNma3T/Dm3flnEFWK6ZywLdZMMioG7FRAdCstoxQiiCmaA20Cs55hxDQip4jJQ0UvOZjDoy98DsEk2KFCh200iy4Zd0bbS8USA8ymVTJTinMS69NlKbBBPqz1cZiuieE/jy8wFY57AmtNeQ8JCe3l03pb6ZLX0rRdY6B5nvH2xAZ+7ZBSGmzKpbRet8AkIqO2AxXu2DAg8pRemfiwSAZDcmm9SkO2tHwD31u9OcF5e/Tz9sDfr4jbxNOgEELHf4Fbjad/tcRZU442oisvO1Kj1KH5I5/W6yTIxkfTURlHu+PCxYWBGpYwigeJVIZvipKB6jE4BitQ2kGjC7z5s0b/OMf/gxAcHd3wOPjHZA3bNsGA2gRA6PGAIYgZ11A67IoTUeUbrLvVSu3RYv03Dk/LQekALTaUIt2Kq3NxosDpHdQE504PnSiBU1gWOWzR7jm6McAUFDKhXhH0kXH9khoRNhLRbZiYQoBcVk6ghg5YEmLjq9UQ1GBVguu5zMIhBiX3uSj1IynT5+wb9oVjmxTYQ4IcUGwcWJow6y06LlzrshbhhRF/CkGpMOKvF0hFYA5/QJNm+btgq1WVbcJjFoSaF2Q1iOkNORyRStZOaUgbDmDmJA4mWZr6IUkrVSUfUdrGXE5IMQFPT2m1hYxELb9RekdKWoDJ+flWsFl97CbgGJUB7+03gxD1DMEwahOCEr1CXpNdS9olC31ziBjx3Tenv2GGktdSbU11Dyq6rOpSKjZhenp64aT9x2lVnBgHJeENUQkCoAVdOaSUavSAUJasBctPNv3iq0RziJ4qU84JM1mBGhmKEXbnG1TK1VwOGggWJtgjQkPB8L2cgUD6igswd3sHsZft4xDItu0ZOhMO8zkwblpzGugPWwLAAvAbJOHqVZBDB3xfwrU6QrdqnjJfcUEPpkz730aqrh733GXWzsGmTzwGfEdKfFuq8QpNpZZEFdpkTGPXLkFFU590O/6ZgRM9v5Xd/Q12JUrRnaQMLTlQXTjcAPzGNEXznlLs5mddj9mJ3/+7hwMkBi/vKNoWvfQDNmbVTJCCJA6oZICtKIOp2YqvfeIFVGa8wHW/aw7cT6HyO/NUD2xIs5aAXcsWlMpYL1geDfXGa0GYM5MxuVyRq0VKa1qu2+c61fjyNqBO+cN7tC2UpHLBkGF84e7CgcArR9w2ooHVHr9rwtUfRz8OmeqxWt0POeMPPGgXz/z8Ux1ZSunH/1317haYAAAI9jIeUcpXz4XAz2LmZIpxeVsDnTsakXz/ZDZMDElJA3AWgfumqG7xPoMHfEFvE5Z33egwwFOpXIPWt78rLSsaNBL5hndsxU274NlF0C4eR5+7Q688bRmZjqTAmFslNwItNKdUv9+HwcMKzqyCdRFS/r5pfYxaq0iWWGx+jFJGzqViiKmEW/zzfd4ryV6vZb92eufYVu9m+tcwM4m4eo+Z8+2EENJyWabWAHEXIrKgUdCiquJMvg96rlzURpsjBHLuurzF8E1X5V+ZhKgIUbky9YHi+BUselmajO2is65n+Ok/yJE3rnePT06/PTJNQduJt70/VsU6+ccpgZAlqKyDbQC+O43X+FNrEC+KM8ZFW+/eocP7/+M67Zh3wu2vWA9HazKXh9cbdbAhwn/7b/+I+4fDvjq3SNiCvj0dMFCQDysOKZ7LNcNL8/PvalOjKQPc9GN/flpU8mrvENQ1WGzETgsgsu2I+dRFAM4AlJV3o8JBUoPiRwQrfCELLK/5ozHaBQY0kXg6EzigJXVASWOvXFAFuuyWdXRX5dkPhP3qFwRLlWc0UL7BkbDcV0Aiii5gFmLfl6ez/j++x9xOt5hWSyqrRUlF6OREDiyopyk53JuRStakBVTQoi6KUqpKK1ZF0MtjN23K67XF9W0hxZubdcL+HRCzVqQs6wHSFRFHQqM0/2Ddjsk1i6J5hi0WiwIC6pvZHrFroQBQxDKvqls5BL0PoRMSQGgbnxal30k0eYSKmEatXCKI8BkEltKB7LGAMCygvYGytfeOKRcNtT9giUtoJCQTSKza6Zb8Jbzbhkf48U2VVYATD0BwJYzSt2xLhFfvX3Eymc0UbSqiapD7KVa4MCmDCMAV6SV8Zt3XwMx4T/9w3/DJWc8nE44nY542jNiitrEy9rT7yXj0FZzaIBlDXggwaeXHRGMvVbsregGBDKEYUEtgsro2Rrt6qs0q9YEpQpil35zFNYCFaA760TBnp5mpwYK3l3hjpwP22JOunhxrRlfNok58d6y1PViZmN6Y6Pks1c++8wMQLg3/topb4589G97eDa/9sss5N/K0arqtHtLeQB9s9fXAHfsAX3tlg7jnHTfdDwIw825uiNsdMLXxyjG1OZE+nndz/Q6PNgf3Ud1H9IAf67LUGbXUCCptb565oTAsWuJa9dql7Obrt82Rh2L26fv9+40IaVXOihhwBU8UB51IyQKIpWcVc42RDBUUq9ZRpdpOEbkgQQHiFR1NGnwncnQZXeQHSlm4w0POlKYHCmyrMhohqQoZuvJzzlj4hlzNpDEnbVqTbmcMuucdSJtENSz1yK93g1OfyDuTb08EJmpGOO3nfcMQBqKNeTzfbU3rIRmgXMv+ByARA/MrIbJ+fbStPMnYwSCUgd9kcwfQZdFFDijYtBv6NZUYASxMIlsR40FRpEaUwveP8WPQCos4o2PsgF3HtjOWRcbpO7wzupCsPPDsj3e86UbOj9HB8VoSCm3ZsGw2kXyz/mwGmjlD6A1Z1X4R2j4on1+cK8FiFHnbHOxEXvWZM8DoiCUy0xrHdXQ24fofAbr/k5gq+eL4zueObQ9ikA9Y0c0AIRq0tfSnE7NN06834sG8bUDaT/3+EUNofrj8f3InXjfxBxRs/du0HWxFOSM7Bs+FV6hA8MYtmkCOipJSCHhq7sVa7tiqw01sjZ5ArDtV+X+1ootF9ynBSINFYxrrthLw+nuDtfrBZf9gu8ev8bdcUHLO6QU3L19o8WxhwigYr+qA0SBQIFHxE3qmBRrGpWYEVFRa0bkgBQZ3//4otKNtmk3MBIpRzjEA1KKqNtlIBSk91eFEEB4PN0jUkArGdV49AEBxKFzzRVFKBqlB1L0WBpCAOKSEAiQJliSpnAFglY2tFrx8vQJd6c7pBjhbZqVa68pt8oBMS74+qtvLIggo49UiFRUVERWQ7q1onzuWpBS0q6DXvhphinnjLgkgBnX6xl5y9rGWrST6BoTovH7tssV+5/+jLe/+xacklJQLJrer2ddWKIoLYWELntkhpADa42AFXqhFisotc2DgMPxBAqk/Hvo9wmWIiVLeVPtiE9aDmqLSkPbM3gFKCzd9+rFmEXQytVUKpxGo0VDgQLyrp1uW8lgaHvpvO09AwOOKLYG2AxOX1bE4MjYXj7hejkjhYTfvvsK5eENnj49o7SG87bhuu/YSkG0Iuc97whLwru7b0Ax4nLe8R//6z/iw5ZxWiI4F9B2xd264rpnNOG+pqVWvJw3lS49rjgsASkFvL0/4GOu+Lg17MXk8kw2r1jQnAsggRBjQLGNfWFBgRbR7c2oDBaoapLCHSoGELo96Bun4+2iNqKR3FiQIePWbCMBcmsIFaau4+G2GbN+Vv8391/pxs6vge0zorCCyupTR0+c2qP/HBudo6xetMwCtEYqXYbBlzeYBLelcX/7R7+3zxx0Ra56YZl9/mbfEOnoanfiRYPvvgf14MkUY2rtTX8AdKcTtgcZ8G9zVgCxrJrNMZHJUbJno7zwQVsxH67PsXHhYzaydfdURF4L+ocj7zdpX53v/1V2Qc/lTrx/zqiC4jz34RB01Fw9u2k8NRPMYHNafP5TB0BU9lIpmcxK5endZ3ut2MQJnrIhHmyNyx5jMdavP8PPn53Wkw3EubWGsiu1RQOhV1KOUKfYaTDdIZ9+KZfRRG+um3h9Tf4oAaV1EE12QvS6tAmfUlZpmis+L7oajc0nkNFQe6Dga8DGXb1fMJymMaQ73Zb4s53/TqzOP0uwfcfXyBhyR/r9765z7zNHkeXW69369fEIYqW2/ozjnFHw7I/N4xHIWZbEEOtgi8SITGOc4RRRK/okmF/BPZiDKRb29ec2tvfx8GfTYxhrumlONGvxcbW51vp808+6POdcc6b0pRGIclcuUpWtUgoSB1OMGo48+lwY9RPgEXTWrP0NyK7f17GOO/V1jD6vbVx/5ibwixB5sv/vy8BnjtyM6fSajM/4yzIV9bkN7dH7OG1HYWzm9u22AfenBJSMa75iz8qtujse8dMPf8S+76rfKUCKSR8OR5TaOhfqd799hw/vf8L9/RGPb05IASjbZtFXRKSAkjWNxDFiu17BBNNzj+o0W8RUWgXzgiVEMBVcWganhCUucMaYau7qvXLQyVOF0ChCKKCi9qS7z0jXLq21IqAZ/80WSWnIbbcx0kmmmIM2skhRC2CJreKcCaoUTh09EQTcn+5UV9YWVLFxE6naebTptS9LRCm+kQmIlE9XzMGtVnRKaKjcsK7Atl9QW8Hjwxt16gHANNRLqdgvV+R9B4jRatHuq8EnNIER0LIi/7QqYttawRIYcVlNLnTR4KrbJ3Pg1VvvMmXEhFbtvZ5u10l7Ixtm3zPCrqJephLkhhwi3UBDdLxoCSOQqFBVITSgVFDVwIiqoO470BT5aDWjFJWV1EZfVWVDG0Ggz702YK/F5LB8AaqDfDm/IG8b4iHisCyIp4T74x0+Pj/hsl+x7Ru22nA4HnE8HPD09ITv/u3f4+vf/x5hDfhP//E/YP9vf8DWBLxXJMoIaEjL2hGWQAGQhly0ngDN9NhFt5j7U8LpUvHpWlHyxE0nTam2QN3RVQ6Tdn0NZrRbA6qQdroFzCGYVAi4P1gMRZuxaQy7ZFvD7PhY0OrqQQJgrwCRYI2CNTK2WlBk0K18B71F5s0RolvHWm0UwTDO4XaT27Rh75Rm08A6PQBxqTezfd3A33731+TJzxQQP5w6wObMDPtvq3kucMPr5y6jsyLQM65zGt95xcCQi1SKzOfX4f9k48PPqikz7YE59i6fBJgson2XVZ8aIqgV5hgYfYFDt73Dqdb7GHPs9h66VjoI3lRqvj82tFed4sH59rEa3OCJSjAQgc+eB4BeNCnSwGLFqalCxJDaXj7C/RzN0NlOORK5oWCgd1PA9Joer1VNvH4g54xSCrZtA5rgdDzeIMIjW6Jcfu/GGkn7o8zX4U7ZTL9wzrSOkSq7BQ6qImIiCLlk5JxxOBxv5pQjrnC03MAOtUGD/+yOePdEx9DfjAFT9JYZmKlHQDDfZy569jlEFngKpBHQtHEQ9/koI0vQV4z0eebP2iljRDIVIksHr4Yym1hTxTIFxb4lyTStqAckWgcSuqPnzjMMnK3Vmh2ZY67+me67MbDSWZutRRGUasGTIp43Qa760g7gqFNeitJhyHwqan7P+t91XVXBMEaUVru2vth1xqj1dbVWazcRejBZnYIUvKuwPUsbFx2vBgSbT4JeP6dB9Mh8OE1vnq9uW26rRv/y8cs6u95MCowNyHcvP+j2a/oa9UjI3/BvfYkHp9ExGWoyjC03wZvjitYqrntBq4JTYASpeH7+eBPBeeFGjAGXbQeEcDysePNwhz/+8U94+/io0bUVyizLiiYN98cTLtdrNy6lVEMr2DYM58GZ+qo0fY8JOTesxwXLErVrmEXK7mxEIuytQaohEhxQbJF6Kqt3z7SxgacDrVhTIH2Tc4ksaQ1pSTZ2qifCIqg16+bkD8LmOokgJW0IBVPfUW6nBWAiaGVHyRtENP3jUbsbKY++GdbWmlibcYiglqyFMb4hAhApWrRqzb06EsAE9sItaA8AIm2uJYZem21UjmlaIFULTIgdibdKe3YsUwCpqGVHiIvd+4SM1GZGUFFb4gAKETdV4rqaVCfedRYZSsEBlL+qqx7CrGiC6k+CYEUwjtQ4ylWrIVZubKq2ZIY6hr4xABogqWqNLhaG6yhXLcppqqqUImM9LFgejuAl4sePH5RakwsCAaeFwPcr/u1//3f46ve/x6fzE9bEOB0T3p83JCIsBEAatm2DcIRLa7ksJhH37EBrDcTAYU1Ylw0EQTa1KF3qgioVTUg3GYtCiANq014NEFhArPcaXZ7OCordebnF2sfGoYtqeneGo2b6jfh/GLVp87QVhLt1waWU3vOBZD7HtOn5j7q96gtp9rJtu6aBpkxnuXWgBDbPb51UN979Y1Ng8Ws4oqWjfd6z15bQLRceGE6dbQI3KOANMj+hlwDQrKhTjOveqTu2We77jlqlO7mvf3tkClRpnmQ8byYx4GLK/LGiwfNTUh6vccybFuN10Ndsq3gUMB2DUmRmRWYesq+LvxTbEWiqs+oBEqsjn0ytZJZqnOfykLA0Xi7p+mZR3vKgLqoj/zrYQPZ1P4ID4tDXwhxk+R3MQcnroMnvnUjtg9YuDaSTzYkftJPheIWYPgt4kvGktQjRM2cB0brCBo4qDmFKJDln3c+MW//8/ITT6dSd904rMVUT/ZmmiDKRdeym7rAzae8YSLMgflZTGjxz7ZPA4zm47yA0PfcpE+HxwTQp+rqZP2/7Yav+BYLQVKRsDqTOiWpT27ILE+TAUPpvA93w6G9mogFeqm6Em+fp6ixuA93Z7WtaBNtWbV1GLCoXqM9aVPaxlqmvgt3LULlyVbSpVuSaR0DDhFq9rsPrmfQIrI59SLE3LfP9oFM/q2X2bP9p0N1+zq7NwbFiX9I58sF8uLqrH0SkjSoBzRqVXoTdur0M/MpQ/IXjl3d2nSCnLvVHGJMK02b32vG/+Yefxuk10j+gAywIHOAVwCYogMSEN/crctmxFUEkwspAvjzhernoAyaGFuio2xsD47rtCDHi4f4OITCu5yu+/f1vlMNeBUsIiEHlGJc1YS8WnbVxoykGACa76AUtogYymuPZGvB4PCBFsQIIQzOhoG0EUHyDaACHaFxu6Q44pnRT50Vy6LxRNuS6TdJcyo9OKK0auqcoYC0FFIyGIno/zbSKUzpoeqlU1FJUWxeu6KBqNZeXZ3VcjftI1glRhXosOOGANURtagVoqpMC1vUADqbSAONKWhDDZuhKKYiLauBWo6CEyCBStERKhmwbyHXjiYBgsk89PAJQnUfuvM+qaKkZFg4asCjiLkAtkyMPILjCjSsKSPcXiFmNIDTLQdGKz2w8GYxqHDo29ElTbhaBiz5Ttu+0qvO5iRaPEilS3aQOy0yqh1xK0eDFipKlVpWl3DJc4SAyYY0Bp7sTKhrWlADRwruyZaBecVgD7u8Zh4Pg+WVDQsHXdys+fbrg7RLxsAZkafh42RHXYBtb6MGMkAayzdQEgnERD4vWdWgxmBevW+trNwpiWvYce6EQuX0wm7Asi1EiBNXpNVNnV99MCLA2HJPjjokCAaOpkM+O8ZkmygdtANYUsUbGpU6b5Gd/+ZLbZFcjsOdMGIijYFi01h0+6ptus+sfzpaZ0v5n/h3hX48jP2/6t8i5F6KNotPpSzc+yUyzYTZVCRmOYbUCOkB619HXDqN/dv4vvvAbmkXlqSYD9rrT8xoCueKVfHZeDxA+42OPm7v5m3P/mVipYjS00ScvoWchXp93uoMRfEwFhK21GzRVmqDCO6IqIuvcdh3fgSw6d5k0tjZw61b5ZR47p4fo3hT03ibnaj4GtcN4wU16d91adZ9yNRPnw/Nko5nRu5V6Nm/mKCsANXeqZUPiUw8UqgFV6pgr+hs5wLNlKaZ+X77f1lrBYuCaDYx4kN6a9g+x/aNrp0NtAFod9Rt2kWwcbXdGPejtjo8MnMGDYZltLNDtHU1zwLOBRNT7/szZk77XYQB1nSLUHW4Lsug2e+IAyLyeG1EPkEdPAwMq/bpkrNuR5TfKY3egdY6BmvovkzXvASEpjMg85t1cgOsBu4hm7xQF15o7f4YiDkyNYvbb3gyq+CfQR5FLBsWoNS9T8bY/nJt6jKD1jX69Or8nm9WX7G3ROvpz/Dxj9peOn8+R7yecuPKT4w2ge/Q3sm7TRRO50oT0DUwjS4t4pjOzFX6WfUTqJIT7U8LDMeGnnz5BasX9KeLhEPHhp++Vc2xpjto0+n44PYIAXPYd79484vHxHj/9+AExJtzf3eHH9z/hsAbcHVagFdzfn7DtF+SSAQhSipBlQb5ecDoe0VrDtm9q5AXIWVQiywpZEhjfvrtDkItJdikH2lwJkGiVOAMgVsUWgaUmzQEgGK0BiniEaMosvaBUCzlca1ezA2SfD1hCQGsFuWyIrF1bxYp/IA379QIOjDUtQKvI+xXXyxkEIK4n5Lzj+eUJHz78hPPlgrdv3mlBLetdCMyJtaZEiV373gwPgNPphMe3b7vDzcygCsheQPACD3XuWyVIA8ICc7jVGaoiQKugmhFItBALGj9QZHXcrTkDGkC2GTSTB9L0maZNfe5CqkpgioA4GqNGjYeggWICmkBy6QFlF0b36NgkuYQYUpRvKmRjXLVbHABwZFBpQNWAgYKq9PSq/Ka4bC0NORfkrAo1ZNfiXRO1fiGYzVfUYtsLlpTsmTekRCCp2M/PiCg4LgHnPeD795+wlyc8XTc8MeP//D/9j/i7f/0dfvfVPX57tyJ8c8JdVEfz+5eC0kjlQQMjBQLHiGVJ2PcryCRKu2xka3izLjikhPNe+7PRJazoe62EZmBhTAFCEbUpP1fnlK6Hw7KACNhywbabRO2wPobGyaCGiUdZxjntlmlQFboVMgdfja5gLzuuu61XArI7345M+GqaCIqdline6dANmP/yFPxNzqhe6+TIyW320R34V9LpeupXaNff9OE4TQd7/M9w8AYi/iWlEjHncHpFZodllmEc4+aOo2+wX3asnZc9OMpOkVFnYaCr41pU63zsY2OPc2eAiU0OcKoL+GxgqO+H6pxMErl2X/4lC1mtcP0LQ2z3/ppe4+jw/J4j3EpRoe609KB4uhcHN/S1V+d4PZ/tct25VTRViwt78Ep+N+O6OyJfR8CheycjGTXIHT67kP59p9mwO8BON7LnVku1e1Fb4fcMKHhE0ICAhGBbZHc2lV7q2R2Bd9idMxs9Y2QDoLKK0oMgCoNr745sIN9zBkWJJhR7nh/OHfWMPWhkLlzBjAi9VnEOPOesX39WYnsaqM9vFSMoY6KJ70PjOXtg5dTobp/EKaqwviUKfmkDRu+sSrr3ygimR1Ez7Nlivnpbsww2ejDgAQ71e2GmztiYgxK/7zgVRgcOkKDPE/D6mNGbAOwNrGhSrnLKJlC7gtV4RgOQkR7Ui5idYelzErMK07TGHJnvgZUN62wLf87xL+DIf/4Pmf9pXNovYwVfPp9AhUOCLTwtKIE5c61/mAPw7u0RT88v+Hje8e27e3z7zR3eHQj/+cc/Qxrhet1x3TbUVrEuKx4eHnB5eUEKhDf3JxyXhP/jD/+E3/72dzhfNpyvF5xO97i/O2C/XPGvfvst/ss//AMulwukCtYYgMh4OB2xcsKWr6ikqD1H1W29iuBlu6KUjHf3B7y9XyElYdtzbyISSTXvGwMSgNIKtm3Huih9QKlj1mXVeWkeHZt/LA1opajjLtW6ii1YlgVVVALJN7taK0rOYAxJyJIzctYW1sfjSce/CSCM3jTDkePaEMKC4zECGG2cwWxI9EAcm1SUVqCJwbEwGUAKhpSIctwMn1RnulWkaNQme8aa5hQg6FIspQFZO+pK2xAikJYEkoC270AtIAhSjECrVj8gqr8cFhAYCBGQrJOMCBSi7SUMCuu0aFoXElGDroFEM6+SDMlSbX9COBxg4uwIVbrSQpOKXCuWyGilAFULhPer6ts2YuS8Y9937CZ5CSiHf8879rxhrxmlFoQYuza8FxBdLjvOW0ETxnbdcT1fcVwWoBCePr4HRPB4ugPFA54uBf/1hxe83zLiwzO+efcej8sJ6fQG7948QC5XvFwznnLF067PoeaCY9TmUktkHJcjPnzIes8xYFm0A+71eQNawbvTAmkbttLMIVVj28CabSINJlOIKCFoAawZZY6aJt1zxemYsDRGDQ17FcsqDeDAwqpXtoVuXpHXb82eln1/r4KnTetlGKZoA1j6m/p3fVtsr885FbL28ME3kmnr9IzP7avjSsVrY6bNp39OvmRB/3aPVpVzrUEX2+Y/bW5UbSNzFHeU++r7I0PZ0+I0NkTVSQc8aFd+69Bs37YNy7IMJ5vZxl7tpTdfqUWBFKagtVYjtrPnpOiuthdxRJv670JUro9jNM6yOQ12mhnB1+/aqxNq16y+h0BGQdSRiDFaxKcXXfsY6LxpnS+v5x/0E2+sNAcjmMbQHB+6RctnlHAOEvx7HiTM0p65ivVdGr/TQEqzA+t+/oVgF4DRLjMcwHaKJRFh2y+mSKLoe0xpOPA8FH0W43mXVru8s4+837Oi/+M+AyvYw6z2X/XGqxXgC/Ztx3JY7dNGT+JBZZqPgW43CGnX7mh9WxqGYzzum3rgM6vK9MC0wRrbDYpWE88KqA0ZdzeZjZs58CrQFYCp3DxfggoBQNCz9sQa4Gh9B6O2YiAZ9bnoJpZc+rnqNSPo3PU5YpGG1kEBiMwAJytE9UDBei5YTYlmZrXnDJHyykOMuAF8HbxxJ761ieIIMKcxnrUaACsj2ITz3c3aFEJIS68vERHLLuuw+t7n9QIhaGan1NEnYVnWHmTlfVcQzkBuZ2LM1+S/NdbrLKfa8OWZdnv8Ao683mhv6wvMexlaR6zGG1MseHsqwIj8XoAzFhsbXSAEwr5rcyJi1YK9Py54vFvwhz/9Gcuy4pvHA94cAs7bGZetYTMtT0AlFg/HE/aa8eHpI755vMMpsRYJ1h3f/v53+A//8T/h9999g68e77BGRlpXLPGAyAuCaNFeDAGZ1Xm8bBeUqlq+qTFiWMAUcDwJ+KlgjYQ3X78BALx/OuOStZV24NHEpkpBZELJBZ+2F5Q14Ls3b9GqccAaFOm1lK60BphknrSGbddMQRPVtw2iUWsWQQxR5fxAQFAOqNM7fGMIRBBPFUHdkBgXQAi5qI7+up7w5s07HI9H5LyjVqCgITCjNNEGTkVR04UJ+3ZBJECmtFTZr8j7VakfMYFBqEVfF7KNBbohclSUP5eMS63YY8ZyOGAxxKK8FHOsRHWUBQisC4WkgaCbQxWAQkAgTSeWfUeMKyg0MzjS1UQ4RtSy68YYku3mtukZMlG3K0reQGAsx3sIiUlPsiJMTbSAk5r2AjCkh1oFtguIFrh0pGj1m9UHCLzzXgysSkEdsRpIEETTxq69aysQ789n/PnjE94ej8phFEUK7u8ETQgVjKa7EHIt+Kdrwd4Y55czvv/DH1D2DXz/gJgivt8Lfng+I1dBCguqaGxyMn6eb6oxxb4haAE2I4SEbX/B4yGhVcbL1nDNgq2pFnKtQCXjCcKQsRXW34lBHBFCQhPGtey45wNOR1VheL5e4CoCBKUyqZ+thlqVCxznatPf+RWyM+g7MNSqESM3QgoAgm5CLFrE2yn9/nk3coI+hwDblyazRv2P2BVplrH33PBKVkwojn+3n8svtOG1zfw1HJ+jTDMPHEaJCNpYpq8F/WQII03uc5A59s2vNd3s5/MRKUiw76oMwTbf2CibmhGnPrdKqcibfjZwBAUMNJ0InibSrtwDSbsNJOUGNe92dg7Wbhy520PQADKBgl74rWfVQGdQXgZyZ50TTNddnfbaHTdvUqPjV3vWGnKrADOj5QP4NiSzy10ShKtyenMBeFCWfBzm5+yByfzc+54v4/kzM4qhsKUU1FLARFgWA6qqUiLW5YCcs9pDHpr+I6DT+ohqDYf8evx+WlPKInPrBa8693RfjVFpiblsllEIOBwX7Hs24CxYMa0VEJM2XwKs0JSDUYLtaft9Mvc4SWSmTHgAFW4Ckt5Iq4+b+1QWeZLNro7yat0NiwMCUADJ6FL+nHW2mhPcC1aVIXDZN0QeghD67MY8EAMlO53EjmbBQYihX+v8zPvlwoIEqV3pSLMlev5lWbS4GU6BIkAYpTal3UJMitssrQzgw+cBxwgVxqi9aFr3LlOcWReV3eaAZV3RqljpG4NcjAGaWfCCbY76PGtruF6vOJyCBRu+5xAWp3dZxoBZ13I2NT/GkE71Ggyn5njNYJ8P8Mxg6/vJXzt+ISI/pRv8Afaf1k3MPyPjxT5pu9mi29QgdfFcUR55HIKUIQYwCdYl4LQmnC8b9lLwr795h68PCVQzfvr0jJc9o+asXGYyDnktyLt27Lq/OwCtIeeKr969RYwMDg1LYgRWh/B0PODl+Qk1Z6QY+2Aua8KlakewKrDiE0I2nW4t6gPWlPDVmwegCc6XrTtjZGiut8peKUBIcJWKaxHkCpTWsGeVzIwhaCdZG8iRQhalydhEdnTLlVdC0gkIK9yJMRr6rfJcKSXloeVouucRNWtkWVsFWJtL1ZK7wY9xAWBNFiwqL7WhmDNamyCCIazFH8qAUaUEWMTpziGkesLGNgj9hzBBiFGaUh9qKSj7DhGnHOjz5EBIy4IYVzTZNY0nFYkBCWy886JZi6bGM6YFTvdpltGQ1hCh9QnuQCt5XSC1WupN06hM1ghKNIuAYAo1RleSmHTWMwMxQpiBLEgcgFq1JsDRWjPSpZVujB0JKMUMB8jQntG0xYMPstqPT5cr/sOPG357Av6uNm1GJoI9Cz48veD5ZcOnlw0/nXf86bzh3ARSVTf7fD6jfF/xgIh/8z//X/GPL/9PfNj/K/Llop2ApaFBDWdTHEiDxqj9AyIBtWhh97omlKwdKo+RQRLBVCGbGl01tGSSqkARQWyi2R2yhcEMCEGqYM8FlIxbaqhZiMngeOk2SNHzmQFP/Tot4sOMrPdPGXIpraFxxLJG1L1C9tYzB92VduRwPsUwX3DeJbpTTv1/nSpheWPpG65txOKBpdEObCOWfm63qr8iVN4cZ98QiYLRq/imUyNmJ8HHgQCA+zirUw79HjkXOsCpD05RUJWlgDUpQpZCUlSwaSEopOjnxZzuht4ZkwnjmuAKMYZqwv0oMvvhy5n6vGsyijw7r7o1c2B8TEZwp9OW0Frpv9kEaqftN2oVpWnSyEx1xBy+DuxcltWthkwrtqOCBCJehB964ab2zIBKGNtcbbZ+2WrHHDBo+gMgU7Ua+gA6771RFgBt9DY1oHLnXmutdPwCm9a7WM1U0MZ6TIwlakdWWNDSabZTsMBRRQoaFD1lgTUQkv4cfM362mI2oQSzF15Aa5suBM2+51QZY2n7XiDDvgmpNLR3ERcxX0jMHlSVcBADB2+XtT9JzzoNKp4WwiqP2wt93a8im58ICqKKOcfN5hT5PBP0cSJ7HjA/ze9nzNchOqD8dDsB2cwidFplP68/2c8oQTLmQzOarGjWWe271e/ZRNfaBKUU+5iFJalUs9WRpRRURCOkEWyIUy59XrmdYHgfBBgdiphQrfliayrssC4HONWXiSG1aM1E0H2Yg/7RfZpwPB6tq6+OXzC6rC9qsWyNWLCvqL3OrUAjQCoWqK7WyRakGYy8Z5SyW2BAk4P/zx8/v9h1Qg/6AxPpjZoGIjVjSbcRYD/X9Hf/Pmxj9IYNXpBJhmanwAjM+HR+wf3xhO8ej7hbgOuW8XTe1amucytc0SryCjzc3yGmqMWagfDV26/w4w8/4fHhBIGK9fO64HR3wodPH1Fa6QUWHcFoqqPuD6wJkFuFkCBnbx6xgIixXTOou0HSgxnl6AkCMZi1W15pDZs5uwVArg25VLQWboxVqxXVImsK0fa3brotLVbhhS2AqKyjTWTtc+IcQWsg1djUatQIsKXLats7MqDRpVhG2e9fn5eq0QiY1NA364iqxUiGfuRqCLxoyog09drLA9UiaWUAazMjV7bJ5QIwg8T4j8GbL8RuXBq0QMo5ht61UMcpTE7g4Pa3WkE5I4YDpqlsBkrgXVk4JhAplQhMkJLRagSxIvhNd8fR1a8WoBIoWzDQakeemhl+TZe2bpHFNoYmrX9GN+Ox+eg/TTGh7Xi+ZvzDc8P7bcNLaXjZC766FNy/7NhywYeXK3543vCn5x0/bgWZCY9LxGEJ2EvBn3+4IO0Rd/8d4aUQGgJAEVU0XQ/SwqdWQ5eG5BDQpMAl0QBgWUJ3bpJJmTVRCtC1QAMCIeXKixh9TouHKs1pZh3vbcsgc/Qc0ey248aE2IZoG+VwEgbyM6ySTC4x9YKvJhp8BS8sFLpls8jNf24CiS/RZKj/v/2mSP998+Nvrr+fRaY/PxN9+Vs8fEPSYmfjrEbqafTO3ZUx5x28UDtsRdLdOeZp3AzU6KDR+BMcIW3atMV9Z80HM3pRBzlYEG4yqH4dr9FlZjYq1phzuk9MSh7kTrHbn9vDHXH7lYFU27siw1Ef4+EAzq1DSHDQwykYZpPsf87LVU6xURzpFjkVEVMP62ar/56vI037+z4ihtiOAj7/4uBjw5Sp9PtNZkd8aNDPYw3RzHzXzCfqwUy3h06pYdP/bzoeTZo5WOraONjo82bcZ0TvUss8ofrqVPpqBrzOQp3+2fmd7ZdmYfS5VBs3NnsjrZkTr9KLHQjQG7FzDdUvTM9KzJ52bSQazrOyFQzgqbq/+mNgTGvBn8c0xxoR2NKPDjT0ejDYXg1H7M2ZJw02PPjxeWezDr0Ob57pPuYWgIUYQeDuE2jrG7suc6bVr6iIEvXaCD3IaVWD72D3DQ+ARTN4fXQmsLOJBTBi86Mr6xVgnTK2oqCnkEDrFDXY1bWj47Asy7Q2Rm3NFNKgN7KafPABcA/b5nx7H0exSG22YD/3+MWqNfPG5mb2s+KbLok4Xhrmyf9izjsGahHMiQd56lInmRaHWhS1Z/ybb3+D394lBMq47AUvV+PCiaLGw3ip7vX96ai/z4zDccXj20f8L/+v/x3//n/+e6WONCDFBcu64Hy92OIIIGpAEdS6Q5ogpNQR4lqrIvSoyLmo1mw44OWSse0Zh5URSVvB+6IL/m8ySontXdc9K1fMjEBRfo2bAjMGFUUETIosdRnMpohGCBHeeZBIFW1y3iEcsKRVWyLLoGyo7KZgu2Y0KF0ohIgqBSEmNWatYu4mq4Gj0keYsiqVsPPlSkffUzK93mL6q6BuIDpT0BaWF1PV2gwJb33hX7YdMSVECiAK6G3LCxCWBSEFkKXRWgPWRaksMS6IKSlCortH95OszLhz11WRhXqw1WuuBRrMhWCLTJ1yKQ2gCoFu5MGzU4b0QwRURRtN6TKxdG5FqQVl27Xz7sRXVCR+bIAuyegKW8RkKTulyjxfd7zPgu+vFR/2hh/OO745XvH2eMbdIeG8Fby/7vi4Z2wCPKSE37854P4Q8bwX/H9/eMHlhw3n4/+GP/zjn6wAOSi1SyoiKz/YVUGU6mbcY99AYcE1kfVySEiBUSpjScAuTddHU2We2hSRT2S0pkYdabKFjn3L3SyGqJ1t1dTcOi22A9p8pGGPbDO4dZAAL3ogcdOrm0fJrnWN2/NPpvnGenlrdJvJkIk//8oRH47poFIAbtCpG20vqPV/zzd5I4X6N37MTmp/PnTrqAKwDXNwsufvz+l8IkXtnJYBKJd3HO4MKUJXW8VoOGFOGY3UuJgtYtuHBuJngd8UfAPDievZ5v5fv8Nx3SIa1M6fA8QSe07z0Tqg+EpurlanDJmuNVyxZii3dOfWxq2ZUslwrNDvwQsF9d7a9LpMv3d7T/3znfE1ZDGJmqndTAWYU+DjdAzti1F7NtYd61orWimdxqD89GJkIWDf9666A7s/Rzi97b2/Ns+NQcGY72nMK2Z35NH/7s+ho6tmk9W3GNmQwCOD5LN0zG9Hu7XmTQBjCei0u5nvBtYMcFBuAlmfmyAe+v1qNM02uBqOmJCCAEYzpR5gWKBQCxracKhpUIL0A+pvlbyPeds0k6P36lx766L7F9zM22ufVjC5yzf2fu1SPgVXNk9yzrqPm86/68jv+641cyaNrBKhCqp19TnPnAC9DqZl3V+dFhTZLgjoKkjOBFB1Hn/6ghQiqtWxiZ3TO0JDMKQqmUEBCCkpxdb04Jew9Dodn/sxRZWEtb3eefsEYF0XhHBALcY4YMbPOX4BtcajVf+nGUrg5pE6b8mjmC8+VKAjYzS940WRragT2ESd2CVFMAG57Lg/rfgfvj5h5R0fLzvePxc8Xyu4iWlqJ5SqXTKRIh7u7/FyfkFIEW/fvsXbd2/QiPDDT5/w+O4tXp6fcBcXHJYVHz58wGE9qqOBgP264fr8hG23olErWim1YduVI7hfNjAivvnqK+yS8McPn9AIuCfBEgjXoiPE5hyuMYBFt5JAhCKEy55RmvNBGT2N7EaTuCPrAm2qFNcVtSolRtCwBC8eTNqMpxRQU9lCp23o5FepsVIrQAE/vn+Pw/GAN+/edpQppojaMlrZoHkCN0gAI6gRMCQ8JW3E0ao9dxmoWc47WtUFl6xoU0C6MFpVrWIzitdtN4qSIz+CfduA2rAeTwiGFJEIatYMTFo1/QTRLAYIWNMCTzWrITYjWYsi98yIywLNXrjzZxuVjVugYFXm5jgEdTRDWqGoc4NIVdqRC5HnDJcKE4JSToynLrWi5h0l77hcrlpnYR0SS224XC/gEPv1NNGFz6TGp4gpJVQtVH66ZDQBdiL8kAU/7Q3xqeLdkvHv3h3x1THh24cDvn1MaBC8uT/h64cVf/i047+8P+OfnndUFPzf/u//DxwW4DcP9zgtCdkkV3UwNKMjVYuMUiAESkhJOcyBGFR1vb1sO1rzQkVCmehtYpkLrVluSE0Q3Ja3ps+FtOtxq0CKaujWJSFb8VPvtmm2olNYJvtS20A6vCnK+LwhOmaTGoBdKl4u1TjFaoe8+LFbOd+UXhee0isn3ubaQFgsMjBHlcHmXN3aQs9GegDiKI/+BN369X/jh4IL7uAJljRJABr6pwHiX0gnNxljSFr46UVo/TFNaNdNIR95ZN4MGDHUFoajqc+DxbSbfRP3Y3aW2To8gtA5rvrwtAZoDr680M+pe04dYla7DJjjaH/mLZvN3rsT6nzu3KrJr2Kce4LJRvw4UPFZSlLvwYCZNhrkiNm0Zq95AKDfmRB3u1eCgHj8hgcI81j17zNBDBzr7jZZIGV0B9XRdp1+R66VvqOccv2m6+KTaa4TBdTSEJYx1kwBWlgJjOyD9S2wrHgMqUt5CnHvY9IDELNbXrDMFDvNAjyCoblGQn2fQb3Sa9b9qYnSSJSycRuk9nFyJSTQzbNlkqFqRWO+2z8RyOyLCVG4M9/P68DQfF6RoVIDZTgSMVoxmm4IeicCUJvoYHrWvme6rZvt7Xx1nWZoh8p2Svf/5vsfsqF6jfu+YwmH7mdWmYrHW4NIGYGXKGtBAa+R3T6sJ2TkMSenoVcHXmtiWjMfwgZDRH2k0IsETIEKhCK1F+qTzUlpDblVrb8ImmUMRqfRhp8jmwcZz7HkrH1xvMjdnnmuFZCGSDM48ZePX8SRf328frY+jXU/8qKfce3zf8eX1FD4xBex9IYVIkUmm/zAMQD//tsHfH3c8OFywQ9PGR9fNuSqTV6Cp1uh3Nrj8R61AR8+fsB33/4O3/7uG9w93OP//f/5/yGlBdueEYnwcDrg8eEe1x8uiCHgcjmDeYGUgiYNMSRgqVBFSDXyrVXsW0Hed7z77TegkPD8tON6veCb33yD8/lHrIeEpTbspaI1AkfGMSWtZKaKyAoKv+zqxKojUdGEteW9aPCSeIWwGi+SBm0f2pQ/bI7idrlgvTspvagIAgLSuvROYSGwGj92w6Na8Pf33t1VkWleFuw5K6/RFk6BSiSWUhEWNZLVuJzrYQEFdehWLAhgrOsBKcWOmgQKCGAralVUXgzdAAVUEHgRkOj9lVpQc8GSFlW9YQBkbZubopj7fkFp2htAA4XQJRyTITUxRnWQmwaH7g5yAJbDCRCglWyqMgLUphvsnlFyNsPLQGWr1g8IxyO4byQ2i2m0XfceAG3Phua0XhXfihZsaZBazXjkboR0DZvhFbHf0DHRfgWapXh/3rCJWAENgKDMpx8L8L9+f8XbNeM394zf3gW8PQQ87zv+j//8hP/2seDjppsUB8bdfdAiZQiKSXLCDT17MVHr/RFi0IYri6Wht1xQqioPBU9mdPBcR9sVmEot2K870pohlFCgBd0MQojmwhAbl1Qb6XQkHd32mYNBFihItzsdCe3ze7JS7jC/8sczAG4VBJ7s0ueb7Ovjs08YxadTEG7e1AyjpQOmM9i1OdTjzr/0EPTVffxtH0SWWSQa2tt2dAqNbcjDIQe6e+CDOiHevul7wdjMaffvdGf+ppurpdU7rcZcERpZkCZtrIHpPGz8WABAcKUaq3WZ9LFH86uhqQ6IUUc1sOyFl6T85JRiv26N7W714nsGgGyntfHpCDrr/ktCCuKw3Djx41pg4+wFxB4UaHAx/6ZL8w1qypDrI0j/jTmImp355rZvGpdB5/FMRDFHPkOKZoedLrmY4ppnXmKMmm3lofRR2tB417nGff1oDdkgrnDPtjsnniZ50NbHc0hNam+QG5prG43G1G9h89e1xklAoKjz3ZVf3N/sGLnxwtELj8e8vpnvff1YkXVzNL4NF5q8+WXzsmc4NOHzHbD3bP1NSOEI9sTpPpZ5oBGw+Lr0Quk5sJud/M8KjJ3v7zcBdOeezIbPWQrvLsvmr/T3SMUIalUKsAIwt0W3nYJFvmfKzbzs3P9+fSNY0tpMtqDOsv9NJaD1OesOtO87OCYA6g+1VofEq95UDx7d9r/uX+HjwUSA0ZyrOfG6Hho8C/fX9iI/fr6O/HTCyZYCwJDumd/399xZJ8fR/IS33wjQqm6BpRtY/55SUCd+ifjuIeE3a8PTtuH9C+NlJ+QGcCAEiogtolWTPUwRD3dHfPjpeyzLgseHewQmPH96xp//8D2++/a3OMUFaUk4nY7gqEjry8uGVipiysj7hu2ildy1FmybQESLKtEa9lzAacGbN2/w4/srXp5fEAEkAd4/72BqSIlRxNoLR0IMgt0MhgbmDXshfLoW/K5UyFIhorJ9W6uQrBE3hYBkGuutVRTr2gk9BZo0bJcNizmZyiHUAqlWshYEtaaVMUxIKaG0hsf7B1tYDYQAKRWt7IConBvHhJLVyDYRW9y6MNZ16c0yPDJd0wGPj2+tzbmY6sABIUZVgKlFGyw1l10MaGAc7+9RCdj2DXW7IBDjEEOfO31mub6zCHJRmUdmQksJxY3H4agbhndenTqIgtUgXi9npLioQW3FHGc1cnnLaDWbYTC5KwHAMvxCQ7H2UhBTtPoM69pqQYMQoVqU7pF/iAHR2n+3WtWRDSrLVmtD6d0XuXcdhq2JXCsuOeOni8qMsqkZwTb9wITKjPel4fyp4fuz4JiAl3zBVjVQdCMNK9BG1AZnWSxV3AQUASHjtVexjoDN5PNNUowZJWczeJpiR2DEFHAUwn7JaKRBV4MXhFsjmlzQYoJNMN1UyfWBrWOeBe/Ooe0bzI1Ngjo17uP5Rt4/5dAHbpEsP485JnMr7DohSDcopP3WbO/o9qQY9TDDEe1hMw17WGTYSyaYxrbNHUc8X23kf+tHNTWR8ZyNN9udL8vGdccZPYD7jJrkG7Bt8O6SuLTdl45Bs5m57taA5qahF6DrTd+XKcjygGDMB+c3v3a63OlzXr9yf11XXW/stlbGaRd+9Mw26d8186oUCv/N1/Nepv/3mqFZZcT/OHcdmFV+/Bx1cuT9WThXWrOWPr/VnIxgql/3a6cet6/5d3V8po6u0H0sBVXqImbEmFSxxjISXlPR5frYNdrHc1HakTl/RtX1e3UlGuKoIIE7dBADDXTMlWPvz51vzg9MfH3qZLleHKzGxgQTMJw23U+G3RAP4n3dY7Zd/afGvPDCTlczsUXi77Mj8m3UJxj60emluldLf1nHy2p8JuRd5VxvaR392dJfQuBvPjzWqd+KX6sQehoMqrdOU1BKRhUehSoeNs7/svGfzu+Uz/4p0vvwvgKEsQ60YHXMR4KCWw0q5EBGw8uuXKNSNhBRIQsH7ZplCnuwZ3ZMn2+bnrHbALs6D2yJUEo2H8EaBjbbYwGIjKzJP3f8YkR+Kn/oG5W+4hvr7VTs5QcyujF2O9K/aWltj1zsTwwqrHUIjLcL4etV0w3vnxkfr8DLVdvQi0kNFVEZspgCDkuCtIzr9YI3b9/geLpDzg0f3j/h+fkF/93ff4t3j/eIVHFaFxBgDXkYkSLYaBGtVeyloBR96CGowc+1YNs3LId7tEbYrhvyvkEEKCWrrmhtiIGxLoR9y0hMiImAq23WUBnF1hp+eLriuzcZpxSROKCJ0jM4EK4mydTHuTddMHmxZhSMvSCGCCaNwJWbpxxyCKtersJBZuQIEjQt19BQc0XghMjR5Lt8Mrb+HUcEmKhr9jKUN5jigrQcAA4gDlhPK9KyKG+MgJqvYAJCWhCQFMlOR/Dbr4HjI8r5GfLTnyEffkILu86eqs0z2NKwzdRlFFUwFYWqk/GYoiqvVJVH001InflAmi5WPf6GJtqZsXMJLTpVmU5BTKkjMiDq0lStZEXMQ+woD9UMkqIRlVixJrhz/XyTug0CbtP3rXp3Q33VN/wKN9SK7L/sGR+vhsaQG0ubF45ymOfYmIBIKNk3Ke6oEInxdq1A1RGBPs/MolejkaWgtrdWRfUiDVpdrc3oMBGHEMBcsJWCa4b9pjoUwkYXYUIICYgLOCRIMNTL7QC0CdphaXi5NiAI3Nny7e6zDcQ3yNcvQj5/XdwGWX2OAGQqUbXcjsENdUGm+qXu7w9n68bptAfyGcAxI5aGvHpgqojY2LB+Tb78njMOh4Om7A1JKzmDOdimRRp4m0PtDqKIcYf7I9TdoVYxNNVfpslvGcGB/5klCoGJ2xqC2Utb+z0I84ftTlKwXzf0FZhqwGyeTb83I34EMn71kMp0WVqtN6I+h7wbJtBMJpF7QM3MOKZTny43vwPp9Ea9XkWeZ5310WjJw1B3+hkm4d+dWw1mag8IhjNZbf4a698cY+2q+WVnnoAui+jPoonuT8oqauP1rCofaACR7iOqumYCDTdONUHASCm+euZGlyNVklE5U8+aObXJtL1Jz6NFlBb8BEawJnnmX46ATux+NeS3Za4Z9y78YWo+Skny+gvdb73+YoScg87nlNAb5Nbf8//ZNblmOabPa+MhQFh6N16r9LTaO6XJMoBoa6d/F9rV4obWsiwYyPB0iHQZcsutTCvz9nM94AEsOwvzEf2TbEBKA0yqsZoCUeQIV/BxdL0U3c/F0PowjRUTUMQVkqyushbcSNPCKw91BTh1jazuRFo1cIcRKGLL2tdATKmwtgrKm80FHeNas2YBiHu9BQx86xm6KagGvJeB2rvn5+f+/JZlgfdPAKRTRv/a8Qt05O2/ff7J/J/b9zC22jl261vfq2sTMQ1UmodYnYXIwJuF8fWR8bAClwz8dBa8ZMG1qHQiWlHlGdKocl0TUmRs1yuaCE7HE5b1iG3L+PTpCU0avnp3wmFhHNKCxIx92/qkS0kLkHQhWtEmNHVFpoHuTuTx4StsWZsxqTRZRLZCBVXJCYiBQTH0Atcee5PSr1sTvH/Z8LxlvDksWGPrBZKNQtcsb6UZIsR9g3MD43xDH2bniYFcX9ajd1ijCzsXoZ+rlB1x1eKRbcvK6zM+vQBajW2OBzMhxgC2VsUxJsS0akEwCGk5IJ1OCGlRtZlWQTECRXpqnThCDivqYQEOCW1nuwWBMCGFBAoaPXMwnnhpqLloEFJal9sqrQKRQSF12SdHH6Rp0Yp3x9Uq0oZcdmtC5mlAgMkUU4wn6n6WhfcQ76KrBH9d+K5nL55CJjO2tRcX2V1p9qSjY8ORa7UavcYQD9KNQSvgDcltDZdScc7G5eubq/5ebYIENZhWQ4wUzOjyhBb5IrRrbeJItEm1WbDniKLOI+6KMlqIHkx9iSFQ1CAwIQZCDoT70wJ5ydCOx8E2Tp3LFCIoJNPvNykv64wrRiNCL+7buuVQ10Nu7MwIwoYjPzjuszGaoigNlezZmrqUFVChN+jyIR7j1frW7fbNHCeRmw1NpiG+Qd7Gyr8J4m5+0D77mmv86zlmiosejsD3Twyo8GZsZtQXUEDjtePs4/3amZ+/d3M1HZEeRZ/9WhxtnZzyV56KrZGhxPL63gYFQ7Mutbbp2VohJcZ132YM7J5pWup9bgznANZ4TAvqhjhBDzDdkTI+vP8mk1MXcIMc/rWDaOj8/6VxnV/vVJSJd7/vGblk1FKw71qbQwDW4wEAOt3THdZkOt1eFLtbIMZcVfsdsKAwWbAkCo60DMleDK22KC1KIyUK2i+AlDIl5M+kIMSljwnBM0h2lWSdf+1e+vOyTHiwAEEBNKMJL4vZZe7Bg6qqaQbSn2sP/mZn3v4+F/S6Tj6bHVO8KYy5qywpCEoXuABZpo8+f9DzM6y14nq9orWGlFbEOM9h+WyO386N28+0NvHJbazJ5o7uHZOTb3xwdjoi1C8JzCpJOl2rA3EzvY6IIMXCHiIT0ajdDyBSKllKPkdc0nMAKQq+iclcxz7mcyM5goMCpGrUNPZV8S7CUeeCB88zBYinZ52sT8JNQ6imfm0zH/TnHL8YkZf5/+V2QrgLc+vcD0qNyPjunH4cHMnpN0h5t3cL4zd3hG/uApbE+PNzw/tNH4Bz4zTl0dAswkxRm9e8nC9IywGH4wExRDx/esbLywuOdwe8fXuAtB2H5QhqwKUoF761M+KyaPRqLYVbE+PU74rkQCuNY1xw9/ZrfHr/Z5RalNclAXm/apV+1esMIWJdE0IrQPWC0KHUkxvw4bzheSu45opTmhp5BJOL5AhPuzuvUUVjlK5BzOAl6fNogJgWOAdWOgp5OlD5W7VmBF40SAAZUm3ap63ifLlAWkaIoUfDLsUEoi4HGaNq04eYDDEhSIgIhxM4req8e6HTeoDAU8rmdrWC8tMfUejPyC8XXJ8+Ybu+oEIQ1lXToCmaCgGjkRe4aLq5NDH1H60VUKSebjZlsYYLsQlSTJq2I8b1ekHk0B18XY9qOBwl8fmoOssClx1y6bKcd80yhGjoTesbEBOhYE6xKVe8tbG4WzMUthqnzzbtXu4xrZNSG665Yiu1CxZQvz411u3VmnSdcjE0x9/qHZPt+w1u7EJ3BIavr0GbbvitO/yRA2LUGga9F1UGYRI83h1QCmEvTYO9mMAxQZjAKYJiglCw+7UbNt6vKgiYs8GzY66D8xpT8IBkOMezw0Wv7I5/ZTxb3efINlrrTogx7uO3/B92Eks3zuZOpj/j+466ASJ0Q+To2Zr5WU7/+7UcvnGSKT7NSLFucmU434APDgD0wNrXZE+HW+GgxuWtb8yA9Loc6QgdDNUmjC6x+llVd/GmUnoFr52Vzu12QKQHxJYOl89mpSKwIXR8pRaXR3ZnCmbn1Z4RDYRQnRx1+kJgQ/QnhRkieO2FGIDQfMEaVUJ9AEG1vhXeUMo57t5QCxjgwu3m7VSAAeB4DZzP5daKoYuji+pQ5DL6lKAX+FLgoeBVislHKl1S90PTjLf5IQStUXPtboY2/XPHlAbvOQSzw2I0SXuOIWlXVjIkPsZF3+ORcRUZBaJKXBmCCdGub5573iNAIL3eSb81HE7X2weZhjjZT2jBkYFq5h2JTq0++h7Qw30jn7Cm51MNtfWsgoPdIKA5Y0KDGaVwGvVEumUbdpE0OCPoOhLbu8Rsutw037t1+rtf5+MC6kuAoA0BezM8yw40abefB8yum/Nv07hBM8X6NnVnWqme6EGS2Pv+7P3H2cbaaTtSVVmvec8A/31XqepBvVgAwlZ7MDVxFCAk3Zw1WDTqnDWPa16AXyy7YT6a08BAANleD9FaHTJ/gklln109h5h63cxfO36Bjrw9RIyH5lE/gL7A+54LN8izgRsP2bct56Ql12WEGQgAS2L823cJv3tMWJeI50L4hw8fsSFiYeOeN+WapxDR8jOOhwVgxl4qqgi+evsWp8MBZbvi+ekTcs349rvf4Lvf/Q6f3v/UqRUgxnJYES5n5LxBWrWI3oorAnBYE/a9Gk+QcH9/j7QEXC9PgChyILnhcj532XVd4M2iLm2kNEZIf7uK4GmreP+y4Zu7Ax5PgtwqijRkAbIAQQQsOilLaaCgxYcwp0sLMKYFLIqcMiWkqAY3F+efqV5DKVkDpmh6vH7NUrGkiGI0gxASAJcG1D+Nrf7BUoYaeSqPc318BJIGCyAgUNQwlFVBR4ryz6lsKC8ZP37/J7ycz8gCFLHmUUTYDgccjyeNomPUZhUClLqjtYZcNegIrOmy877jTatK5bFmPDFENGiNA6HYpquR7seP77HGA06HA5a0aHFbMHS6uawaYTkc0FjTuhrtKyJVtytSA0LS51CbzrlgGRtBRTMFJZNSVklQR7IwnFQKztcdSwW2CbrRqrXictl1wwx2hrmC06xqbSohSYaiK0fdPjLRAdTAQIvt4HODu6Sm8zFbbViWhMhW0cBADIQUFhyWBNCGLTeEaH9Y58zdUYCtADGAU0RcF/0NC+6qzychVClGMVAe/b5nIChXvtpG0Z0sv4XZ4OisBG7eu/m0vd63MX3fNvFaSz//2HHRHfXPshl9FIf77TRCSAfEht0k6Q/hSwimv+JBhW9Ov5ajI3Td0bx1lpWawdPzmhx2mxfzawCmYGByHv3z/DnRStfdQKHdidev0Q0veEbxZ3TffgEd/Z/ubyDhUyBN1H9nBIOGvndFjNv54Kl+gfXNMCTZnda+t9IU9M333q9BX68WqMToMouagRpoozpqvm/MGRHuCl5ys5W/znQ46to571PxnmA8k/761NLenWqCZp47ak1kmTyvRXAHf1BK5sLcedxdonPOuHAICFYo6Tcy78Z+bxC/Vr9Zo/XRBH68WsJie0YTsyBkxYwMwDMfsDnTnelhPW78q+7QNvgTnjX1yehMLp855rPOJXGqWJ9taouCDPvURNx16PNyBNUD/e+SnBjZgs+OjvjAGAPjfpxOIzIapEE+t4E+J2+Qa2IIo//ul4pGB4VLa8YcvCOoY6x9JPxzqtTT6nB7taGTPwR0apsXYfcsrwyqjPt/BH3GLhtK/drGGsfcxXe6d/+Ur4Hgc8wfo4Olr+oU/tLxixF5n4AjcsRnhuj28682RpqceVEjEln1wKsteg6M41LxP3x9wHcPB0Qm/PB0wR8+POPDVXB3WLHtO667dhmNTbCQUhOO64p921Fzxul4RK0b3ry9w6cPH1ByxuPdA/71t9/h5eMnXM8XfOSPSGlBaTvOl2eNihpwvuy4XCtYItZ1xb5dsB5W5KJFlESMu/s7vP/DPwK5qOMrjKc9W8AdkMAIUBQI1BS9DkCgvfOLjfKN3Cp+eDnjm8sR7+5O2ErB8+UC7W4XtTjQuXeiy9u184UJYSHUvWjxWFReBfXulhoySlVeIpM54HFV3d59QysZAsGWd6A1nO5Odm06gfdSINuGXAtqy6g147oLlpCAJVo76ILtekalhvX6goCgSjQAAOWEMaBBUivIecfL5Yw//fATtmwNr2yDSSli23dz6qXLdYagRaCl6gZVRNCKtlXmxEZfIr1/WwjNEKNiEmtBFPVZ4xEprmbYG7RAyRBha8dOxCj7DnAEYtBzlWwT2DbXvaK2q7YXb5rqVecwY8/ZzuVV8LsaLNs0qzRIVSeQCYpOGTKn/rvWJxQInrcN//TTE/amfvytozcMS0dVYM03TIrNU4yDwiZ96WqjMkXTCWqAozlJbmCCBQoxBJyOBxyWgNNBC8/2UrHlhpQI6xLx4ekFYVlwWFe0kEDGISQ6QFoAc0MgoIqnHrQuwdGQUgsiG0ezo2H/vHPrxnEcnxvBm/1jAhWkaYCse+dr5982C7jq0jDMY+P17VJ6NlT38YGUzs1p4LUTk3fU+vn+sj392z58XAd32OeX+kGjg+b8vPs6bq6WYggcO1VuOJH98zQFxq+vggZVxjOfAG60zHVKurzlHCzapk2DQsBAR5CB2zlGbuSNSgCog+ZOgTtmZM7GnMJvVmdDNDj+uSN4t0ox/b4w1FT8/qQ1A3w+P0agoPdTDGS5UcvpTurkSDGDBcoNF/8tdYDqRBPU4EDHxJWAPHjW5819zAlA2bUuwAfRHX0fq2ASkAR11jU7TeM9u26X0CTmUTDvwQehXzPZGDQMRsAInFyK0lakOVde6N8dxonCofVkPsc0G0mButMsNs/JCy4xBYeYxnsK+/qYw4MXArpSir1HOsjeMVsL6DVAUwe5gkwyGmhgkc+cRGJSQTxStSDPdPyleTNf1815bJx7oMbcn7UrJ/XvTmvF17ifWxXvbguio7Et5jU2U7hez3VXPfJ5WWsF1aKNCW1N9XVSq2bjoZSg2tRn6+5qUyQ956wa9iEipYg97/0zHYzy5+jrcG5WKnKzRtd1NYpu66o9r+mGf+345dQaj+psU9cXZ998TMubTYkstQ9PdZA5DAEhAnkvENH09t3C+NdvAx6XiiIFL+eMH5+u+PBSEeMRe864Xi7Y9wypltKKwOl4h+te+qDlmnE6HfHw8IDnpyfEmLCmhHePJ5T9irvTA5gjnp/PeLlccDoecEwJL09n21SVtoHWsO8F67p2J5oC43B3xD/96QcItGMZV0HNGaVqMckSFLUOEViWiO16xXI8YokRpRTsFumKaOOcp0vG++cLPp6OeDhpMagb7xILRBYETgBXlNogrBsfo2rhmCFG6hQyAgOXy8X4Xgs4erRpE79skBZRsnZ3jSkhkKHiIh1jFGoq+VUypCkXe98LLmVHyQWnw9qbXwUC6Pkj9vMFIa59wgINTgZstSLXgvP1ig+fnvB03UEx4JoLns4bPr3suGw7Aiq+uj/i7eOdOY4L1iUhckIBsBkfLcWINQXcP5ywrgdDzoZZ5AC0PUMaARK6AV7XAzgqN7JAECBK0yIrHBLf3IoaYxLV52dNSwNQfjyj1wxQmyTwjH5Frai8oxmxy/UCbWphRWqmYOHt2AHdWCIYNQSAAdmBy5bx/dMZudpmY4gc2ZNyJG5s5i6LNy1gRyIh0+ZigYQ5KdFQDC3OAjgoHYGZUbOu2eO64O6YsC4LTssBl+2C3ASVGPePb/B0/Qkk2jSqMaNCeZ2P9xGPp4gMxlaAVjywJ+Ta/PIgJhs3LMW49s/93AEOdKBBBhpFN+bqVtlETN+XQ8CSEmJY8PR80e+6Y02T3es2jqaxBCBWXOVPzz7f6DYu6JSZydF6fSv69q+JWKP85WAFhrUXc+4TMuwFfTqvvWU8JkceAEg8Ga+gj2bNdIPftg2BGIkDCFoY56i9j3XOFoT75JicYTbAyR08tsLHGyfQwA13/p3mMl+jBwf++6QnRW35FWoMxBg6zuWBiH63ABy7Zrr080p3uoGGdV2Rc+5OTskbnPLqhYIpKrWk7BVga+An6O3jPXtbrZC1lHLTbMkGQ/trSMC2bVBfMqA1H19Ga4R927Bdr1C6kmbm3NGtrWE5LHZ+pWK6bOg8TwDCknTvKLkiJbZxsIwoB9PRR7/XYLTOKgUpJrNXnm2A1nDFpOppk6hAgy5Q1fU3exMCqkCLh8ULVYMteXWU47pAjFLDc0EiCcQEMg6HI2B0D1EP3qYdgYI7wsoJn4vo1V4pzahBnfN5HmugpN1p/UuK1QVQKYBkUADKtuteRRGtZmiXdgVOSssIHDzxodcCbXrlFCwA6hN0hxd9fn+p2NYRc79Wbexl1BICaleC07lZ9nxThO4F6MuyjLXUmim7aRa3B0tw512vnEhpKfYl1CKmWmedYqWZYx4NOIbKdteqEtMwao/tBcFq8nKuVvQ7ZSMEymOvxWhaYr0BGi6X65QxsUadUm18LQNQXTnIatvmJlwuLWpLos1z6585foH8JMzoWXGMPkF/smPH9MM2pMF/V+REX5ae9uBAqFULzAITTmvA22PCfdQC0qcz8PGy4+O1IiMqf7VW7DmraH4TROhCCSmoRjsTgsls/P5ffYf9smG7Zj3/ccUhJXy6PuN0Wru++MFkKD99+GSqJ9rgJ8SgHTyNK15qQQgR9w8PyKVgzzvW451yONuGtl+Q7REthwWl7oConCYT4XrdkIh1gbSGPY8mPJe94tMl49N1x54125BNp7s21RynRAhwVEGdbHjxkW82OgUAmDaxCGauqEfwtezgKGaQKmohrOuKxkEXhT07Dq5MIF0icS8Nea/Y6xkv2xULB0QLHpYrI1DAuh5NT34s9FYKWhNcc8V52/DpsuHjZccff3jGP/34Ad9/vODprPSTb+4Z3zyu+O3bB3zz9gFv3zzg4e5eO4da/cGSElKMuDuuWA5HJCt88kM3qIKa9alQBEQcBWI0a2tt2WUQ2BaqwEnlvXGI8dbAqjcL3+QAdcwDgcmKWOsOEi3AbmSupECDtlpBQUBiikHNClLdUYVnFQiRgEqCUgVP1x0/vWz9N90P6e6uoReh74tiG5QtT7qlGwR219MXrDskuhYDOZIFqwNgoHktgW+kQIyEEL0BC8Ah4nBIqBloAWiBICFol+EQ8bu7BZ9Kw/sm2MQaJsEaenQLQaqH7f+j4Xv1uxuQrv5HpoHxM90Oax+XW29eEeIAwRoinjH/lpjc+OsLmB3tjpsZQsbGLTVuvAz+p8B5xi4BZy67x37T2V77+H/Lx7ZtcHpFbc1AEXUOqiFhSsPQ+oRRFCiAKM/XHWZNQ7Ox58Ygzbz7+XnPqDvg9g+dZnbD+Z2cdkcVBTCFGe7NyQAvHvVg75ZqQtO8dOev//b4tfF9O2aOPHxMrGbD1+JMsfDfmzM7wLj++b5C0JoU5fyO+SU0EMsZ0XZH3pFMlR/mjooSpCtz1apgkiP8XtSr4D3162JgnHdCX2eHPFiX0ltqlSP5vu79XkchImiomzSRXlRJ7N1zC6Rowb4YWs9EqnrW17NRGoh6XQZ8PopgpkooYKZzqc8Fu2YOI+vTalUHmwUgRiPWrGQL5tjqRGGTNWxVejGru/5iSG2XT7TmZb3OikglEplBIVqgw5adhUpSTzaJWTvophA6gu1j3owHWoo3N3oVzE5z/zXd5fVrM1XG6XNwBPzVZ28CldY++74Xm7i8o72IvgOSU4zGtfjner6DNBskE1vBaaW6hxsQZ6cve765d1fYqoagt6IOPZr2Nzgej9D+dmOsnDLk64RkzgaoHv1tMNQ6RemLVKYvHL9Ateb2hDT9t2NcswGDo0/+udvvM5kklyFikQPWhXG/BjwshEiCIoznS8b7c8G5AJUi8l5AUk09A50DHK1TJjofMOCwRHz97h0+vP+A7bohRMZ6SCi1IOdqA6zc2BR1UZdahsa3FRtUANhdg7TidDzg7Zu3+Ic//oQQGcvhgFy0SyWjojR1kBaMwAUiSCGg7DvEZLRCJKQWUKRiF8FeG563gqfLhm3P+mfRLpdNVEc8xIapP56f3TYETxU2GCPDFgc01WlPwvmIMJUQookTZ51iAbFoXpHjEFtHtLYt47JlvJyv2MuOEFT9Z4kBiQlrDEiBccgVMaqqjXIONRCqVbBVwSVXnIvg/bngj+/P+KcfzvjwcsFeG05LAHNCaYyXy441XcxpXyHQZhAxBawp4LgmHA8HpKjoz8zLq41QWak6rpPrRoSso2Sfw62hUTNURYNPNqfB1W/M6upYT2k5X5S1FqXNqF5pl1W96dxmnqUjOr7xjnXmGznUmSXBXjTI+3hxLjdunBU3Yq2J3b+66FpjpajT7NR63HDrSFDPVrgkniJGSuUJpIXVgTVQTVG7+go1xKh0p1warnvGsiRcc1aDFiIoLRDWOo7TEnCVBm9hPni+Y0N3lFLgF2qO+fDdu6M9kIVbh7p/yAOPGxsm0380IqnV6iI8Qpl9rmHlbqzahFj0TfL18Tr4kH/mszeX9Ss63HYy1AEYm6pY2t3GpikVI6XYEUT3oaivPWA0SxkUnMCT8sPrwfVAiXDzHF9/zmUCdQo0o0xg6N2/krHsf7c547ZYX/Md0KsePj8mXwOA9jLR7tvqWDgVoVMpe7BtY2HzV2z+u1zg4OqOa5ydLUAprJCx7vy8fq75s/3vfrs3z1X5xGrbzQGtKhRxo5RDQKtaL+NrYOYBu22aHccblRcavGG/Vg0OR9A3nMMuDmzopnOWR7nuCIqmeUD2pMjoRoA6+qYx749aA0EGWGyeumyonjuQX5Pel9PChCxwqhm1sI1706sNbqyMkgcZFDyuVhhrwQOm8RmzcRo3DYhcZYw5WJNHRyMmSgl8XYzg0xkJs7PtqjI+9qpmJze/PT4/xtjnue8nMHDs9dya99J5vva5Z+vcFpnPwPH7ribT9+Uxj29n7Tg+y8/afB6F0WHyJ9SPimxd6vsaG9ceiNB4vNYln23uVhOfKHX88hAb1Pmpe9UYt59z/Ms6u05GsR8dbR8L0vdYTBNEL5wM5YVqrTMjBXXi7xZgpQJQQAsLPl5f8LILdiE0qth37YSnhZZ67iCEdU1oeTOjL4iB8dW7N1iWiOeXZ+x5w8N6QkyM5+dnlGpVx26wasPz8xOul6vymCGqjX1cUBvw8vKMWtXQH48HPNzf4/LyD3i4PyIdj7h++IRSMtYU8HFryLkh7wUcFMkkESwxgBqhldol/dZlgXDG9VpQRHDeMz69XHHedpyvV6yJtVhXBNy0uHOZHpvaJumTr3MZ2WQeTf6vFJOhIoBFeYbBqvFDYNVshWgxZlNkVD+jDy0FLXLcth0v5yuezlf88P4Tns5XrMuCu9OK47rgkCIOMWJZGNecTQ1GjWIIjNp03AsxChg1LNjbjoeHN/i7kPBtK0iR8PZ0wMP9HSANbT8jBlWdqFVn2LosOB4S7k4r7k4rDmtSR5MdMaLORSQcEDkg59yVIzSFnMExabRuBqRRNZRe1PixoU8stpBNtYUFzNGQZN2wSs64bhc1aIasNdEMRi21p/gU2bPAiww5sTXlBZJdGtQCgbOh8Z82bRzuTq2vq7GxDlKR8ztnU29YtxWQ3W5gEP8uwb+lnHqtUWAoRSyxajMc1hX3dwfkP/2IZBSB2go+Pj3j/nRCRYZQBKcVaTmgCiNXQYb0ok4Q0PoqREdK3JHq/FQZd9DtiYeuk189u9j9jt3/mIrA5kM5uJpGrW2bGgvZZ32D8SfUARv9wQ5aTIjcK/cdM6ihn6P+Wm/Lbq+Qjc2Nff0bP8a9SBexcKe3tYbqAp5NkVT1OahTKqiri/j5dLw6Xte0V0TXt26Dk+7PCPC9qdlnBkqv5xQXMelO/HDkefCuXwUKek79tyPCnv73+eNB8+0x1r3A6HxN1NPrVVTUA9XWKkLgm2BlBAIWeM9ZiVfSdZq1tbEzRZ1SSneQ3EarcAHdIKP9+/ZH4Qe9eB+nklVKstaKahltdcSta7U5nuuS+jNk4kHhEQBN+fKMoVKikiDcqYczF76PxeyE2b27LXPYy59Fd04g/Zmr+og5oxgdPrWYsSpq7Q6kZyrh4I7KTBPgSg1KxTFb5hlpD/ghFS2raC/XCqKgVNbgzRzDjXKaSIP2BfIsgnbAdoUVYuq+lvRnyYhp0UxW06Ll3WnI3UFzB9kCQLjGv9VS1REc1da6x8nkVJQpwB1xo60dc2w7/UYtXM/OTHxDn1OeNfP5dlOn4Y480w0g0xXhyDrTB1M9gpMTqQux+L4590Wo1oRQmkBQVcO+QVXymHE4rJb5UKpeyQVxCX3uKghqfPfWUEvVPc0C8MDRnhmsBE+vp5QMaU0bXx4O6JmQHlxaXcjP9OR/gSN/A2XYIN68e7NR0avX5lRjimxKI/r6mgLWIFiQQXtBFQLff42XveB5K6hgtAbseUduFdQqAO0KuEbGXYxYuOHSxoa7hIDHu3ucz8/KAS8DKdi2K756+9shDWSTd7vugGgn1ZQCljXhcEi4XHYEANv1jOV4AMWA958+IpcNd2/vkWvB5XJGzlcsS0DYqgYeEBzXFWkNphQmQAsoKCjXjOuuBZbH0wHnXafaOe/48Sx4fz7gsCakM+PucELiCBJNS5bWEEGA69CKqtqAgEaaQoQoTz+kBGlKfSCoE+oTWzVoNQ2KVmzf0AkUIisnDdCNTyruTifQ+4+4XK/4+PETPj2dsRc1QoUKdgooIWFvDfSyg5qmkbSgmXtwsCwHLHcHLOuCSAHv3r3D4+MdSqnIWdO7d3cnhBBw/vCE54/vkbcrAhPuT3f46us3ypcPjDUxlhSxLgtCjKZtbgY8uGQZWZraEKRaFKmoFdSKFs0hWCdWz0bAV57x3NRJ3fIVINKusItSJmopEHg6VFSX3JQRWi0oeceeM0p1TXZMSEgw2So3Nn0RdQQu54L3z2d8//GMS1Ft+HlNSe+UN9ZaE1V0EjBiZOR9OJONNMtbWkO0zT9Y9mE29B74pZjMmResKSDaXIoE/ObtA6ohVsuiG64qRzIkLVhOd4iHOwiveNlUejALoyGBSClGMyLpta82FUFWqOsH0yDfvHaV3SaN+pz5aD0wmh1wmNMsQqoo1bI5bq9ih/4f8i9N/3VnXJ2DofLQXTH4Jk4gbbgm1dSE1LnqkJWMX/kCgPQ3e6zr2tPJIQzeKjqS5x1HNeunDqHgdDopDcdQ+a4kti6vZoAeTmlqxoftTsG0eb1O689HLRWNvcgVpucMwBz5MDkBX1KU+GI2AOgyeu5ovv7MTC3wz7lTFqxb001wghEE+XeVj4+eUXCKRB+bCdW85fMPezI0w0fg4c/NaU2ChlpKL4zNeeudv6t1uNaMnireINBNABKJte+H/eayLB2dTyEZKKIKYzElgLjryM9jOCP3Mw1H+f0qMQka40Y+zoLuuMKcSw+kiC2TOZ0f0M6ykFkcYHK47LNaTjoKppsFJmRdQfWL4hNCrUXQQEBqxXXf4c3zONwGO4DuJSotacXfbHUcxLD2XGq/oYFGDAEtREgp2qV+3xFYlDY5BaxNYH1mjNoErUBhZlTv1UJ6D07/KVPRtU2kPp9GoIReMEtmt6sJhbgj78GiU7JmNH5eE/5fR7Z9HvhvitQ+013hyQ0ov5ojoWdwbn1YWySIHCCtYb9ecTgckI3yGaBc/ZKLgoK14u7+TlF4u54YGNfrrh3co7IAVGlqKP/EGDWLVY27X4fNek1LqrXiiL9+/MsQedziTb5ACMBQXnj1eZsMgfUPwWR8IKhZizczV6QloMYDnrPgj+8/4Xmr5kQJdjMSVJVvljjgwIIjaySkGzIQIuN0f4evv36Hjz99j/c//YTD4YQUF0gjCKtUIBpwWANqrrjsikKIqEh/JDUorTR8+viE7bqBmLGsJ4gEfHp6wuEQsC5HfPpwsa6wAuaKNRCe94xctYAvQgOC/XrtVdGAdltDa7hcztrCEwF7BZ72ih9fNnz3GzVIIoTaVKUl5x2ZGXtrSMYPd+4jMYMjacFlrWhFQItSjrrOMWlkCtHAiJ0HKNKRr7QeO2LcukMpOB5W/O6br1GtEVdcI2JcsaxHfP2b32A9HHDdNrz/+BOkLDi/nLFfr2hNC0oCAXfHI755SFjXCGLB5fKMvQie8gYixt3pgIf7E073B2W/vQB0f0R8vMfxsOK4rCCqWCNwd1xxWFYklxRjMW6mU1WGcSdYkZd5cKUq8irXHVk23agtCg+sY9pYwK2iIiuXkDR973y7bJu8SEPelFJDHLRLYM2o3qmuaQ3Cvu0AszVfog626TWO13y9NFEkvJSCT+cN7182FAGSP0caDuQcBARSSVZpAIcE4qIbTDPn35EbEaXv0MS/ZQKjgZoW9wYrPvTi5xgIDG0SVlrDb9+9w2FZ8GnLSDFgWRL23JBbxZt3X0HCok3BOKDUjNYKni8F1+pa9mJ2g6Y78Du6RRZDDDisC7g1PF+vQH8SHcyzo/XX+zl9g3iNRuivQ5PbmsGavtX/3rHbLxg3+cwa2lW0EW5Qf2BatzG2uhEAuCzpr/G4dV7NiXbnkFmdPuiaynnX+ZWLIcQncNRAvDaTOmzSHTB99kMHXcSyrdQ8sgOFoQbx+iHOjn1IQTXogxYJsnH6NRFoCC6NepT5fCEMtQrPFTBNnODp9+ZxIXN6Y4za7do+q+vX5iRRd/KAeSwN/YVOL9XxNhRX9P1+j020cHKS+VN02xq9Tc61U05qLSjFWtG3ChBbO/naHY3OkXfnDqzOqzl8vaulOX3+2VxLd3r1nqf6BNvLpQkaai/A7Xr+5rxSEwW5iE31i/r+JhY8F6mGtBsf2gMxd0Q5gGUg8hWiIJaZJHUeQ4/89d/aUZxgQb8QxLK1SqNRd7i2hrrvJqAwOqur81whrSgiXyuIovVBCd1pBQUQixayEqzvC1QTHQIxgEyg9Bm9Hh2/QcESvJzPCF5rIqrN30qBJAOcjFIb4I0Qxag5AjSn6BIo3GaDfTNxH+L1mp/t6KBQkVHbCSAGNZgUK/Xg2+f3HKD1jCcPRSqvKVEVqDbUeuxZwoMDmug8BtJo/QsbsFBRSkYuBSkplbnVBiyriljYfWqDKoJElf9stSEuS1cnq0V773QOPJo2xBSCN/kMBLCMusnWiomTUB8zSzL09fvXjp/vyNNr8zcOtRfG34JtqDef77AVIIxcao9uWRqIBQ0NnLSxUAPjw9MLtixoQihVu1pqo5iKAMESGXdrwl1ooLJhy7uiomi4f3iLr7/6Bsuy4uOHJ+Rc8PVv75HWBQgBj2/fIMSAWq7Yd20LXUrtOuACwmFZIWi4Xq9IMaEUweGYwIhoVVSSUIDIC66XnywaCwgkSBq8q0sgTTuQRi3KRSBk0aJAEt2MEhEiC65N1VPOGfj+6Yrny4avjkcUaShSEUQnRq1FkRGxFr6WHgxVHCroBSy1aAQceDQr8IkdQuoqG+rg64MrpQDBCqCaUmpCZLRccUgJX3/1DhQj/vj9D9j3gtMacAiEhYF4iFj4LUoVvI8BT8y4XC645l2R6pDw8eWMl+sZNe/YrjsWjvjN1+9wPByxECEB4FoAIbx9eEB480YzOCRArQhxxZIiFuNoq9bw4GuCyOxlx1zApFxuDgGBEpII9vwCmGKDSEXNTceKWtfbjzGCW8EuQDocEOIyydoN56sDtE10DrWCnLf+WjPHVa+HOi3MzmJrzD17MmRF+frXVnApGXutHUXGhJj1pQUY71xrAwIR7o4rfvp0UaNkC1mEUI0e4xteTz6S1pdEvXANMAgAJ+R8S0XgEPD2sODxtCA3QVwWpGXBni+47BkPX9/hWlUHnqnh7hBx2Te8f36BUEIRgnVxA+A6JMNwaEZgFASSpRpDmGsdXpspc4zJaDeYTKE9JKIZsZ8dekeDbIi7RdUMRvOPye03X/9rLnbVOenPZzTuaRiv4eY+OuHmc7Tob/iotd5oU4+1CQCiSFcpcPk+dmqZI+ftVrbus+3N1pmef9pvMII3d7p97vT0NdHNif7/3P3r0yzJceaJ/eKWmVXv7fQNAEGQnOXO7kqaNcn0/5tJH/RVJq3JtJrd4QxJAN3oRnef23upqsyMCNcH94jMek+DZK9pzAQkrHHOqUtWZmSEh/vjjz+uTrDVBlntlXR0e3s2La2v57DX3UbzeI0UX1Ov9g6z738qu8ZQOTFKkV17k0Vs8/4TjrR8Opf3R62iNtBvjbhi1EZ2rjpqvZad/GSAsSC0BSb2bLyh1cWaJWKBqs7rijbJawHbbj3v0NdglIic8yukHW22aPepXTl1XNTR1yC86ca3IGfjdbv+vKup1bTMyp53vYkNuD6O+qw2sKCP7Sc24HWtQgucbM46c/YpOJsjOjbexCqyqS9ltAt2tMDTgStgz9x7D0H6nLBJaH+tG81FQyKr97BnXQrB7y5a2n7f/tv9S6qBUgY6us1n6GNq99ipH645+62nwKZqczWLxOiDPWiz03Ya8DafXxfS9nm5C4pfZ7eU9qUdb9tYtGe4ZVBa4LAVeYOKr0jAJJw1cJ3nmSTJaDQWAHpvAY/D7+Uw+/re1oe3TFTp/p5vH2YDT9ucku5bNL/iT0novj5+RrGr/WEbe9vf+1u28+miYGv20t/bdBtq3XiSOC10aoUrWYSyZi6L4FykyEq2idUKEtMYuTkM3I6JVC7kPOMwPrDzvLm/5+H+jvPpzIePHzgcDqqMQzIHcEBcYc0LgcGKdQqXy9yr7YchUUvmXKoVPjpFx8EkJjPjeFDjY5X7iCICU4LkncodVteN3DEFVrRQV6r0+1aFEFNIqLBk4eMp83i6MD8ULrkQSyVGNQJVtAbAWSqwGe5i3/cW6TUNXd90MmTbDLWY14o2bNIHp1xBcwk7QqJRfaC4SopROfulsiwLHz4+Irmwns8EhBADhyFREJZ1YF1WQ6UrOa9c5oV48lZcDDEOHMaBYYiMY9TmDSVDDsQ0Mh40IlZucoVaCDGqfBlg1ZwdGfLGo+xrHrFFKx2t8eLxMZGGibVeKKty47wHVyvim34xlGZEfLAMUjFEQFPMVLFAwVNcUc68PV+HN9krU1GwFHlwfkfdaNfa0o3NaHmKV5rBy3Lh6TJznpt+fVs7O/fRHHl8w6OFis4rjze0Wn/LN4eWHY2mBXlEGnjMrmAaMGrQZuzXdeX+duTukDhlodoczqVQXSQTcKa9v+bCmCIlWIFvULRJTYPriAfsOf7QCtEENbrrukIUUwOSbQBkt9066RuojuW1Mbwy/G3zhr7hIyiqtd+sWwS1/+4WevyJYysc3K+9HiB0J36n3nH17b+c46pjqaidaM9lU6gwWoIF0VJNKYldypkN2VU/ZnOO907z6xT93pF+7Uy3P5vjtv9cp61YANgDX9nz07fPi3dXjoZSPeXqt15f557G4YPHVQ0GvDOlkoYENn35ukP7m1PF1q9gHyK1Nd+vD7n63ebE7mk9dkd932vX2npysPtUKWWrSSrZarRKMxIgVXt8+I3+g/27NbzahBYqedmQ9/YsGtLfaAnBOtJWUbpj2fH4YZtHnWrUFFZ2soXOB5y9FnbPpCsh9TnwaS8BqjMakYlFSAORtnnR9iN7UN2+SS3N0HT7oWpf6hd5HxQsCoVqmRh8wFd1jFt9m2awxGq7toC3+YTOVYJ3VG8dq12jr9nMqOWqCNjBbl1Z0BOvHXG3myMdBbeZpmvEmboUW93efp3txnMfhHaHHn+1Rtr4OxPc6PNYL/tqLTcqjdicqy2wqFrPZhHbZht8q2epXTUrNnaDNBaCyne3gLf1LdBHqv5VjLEXEbdraf2QwHTsneugrUURV/OpNaHq4/rK/vxbjp8hP3kVgtpgv3qP9lBk/2ZHIXvk0k+jAxy8yhZWgXlVGsCcAxVPrpvzgOjDOR5GjuNAdMp3znkxmUW4Od7w2ZsHpnHk+z9+y9PzM7/59W+4LDPTNJBSUs3hdVUZIO9NGWTtOqSbYbFCrJJJw6jFI6YfKsA4HZiXRfmBu6r0IcJh8J0T3dDVEAOl+F7QtStnUgC9CCKOLPCyFD6+XDgvmcOwWgAStVjUm6Ph1eNqrneViquGHPpdkY8ZjTaIUulFT/bQ9HNOnZOr6NAFy4IpapYSDKVwGCIPNzdQKstatAp/cXinWtzewXFM5MOIB8aUmJcLNW+NloYhMQ0Dd2NiGBIpWrGaCFJUfz96p0GLc+aseXxQKo2Ths6Zw+Q80TSp2yJ1uG5w1UlsCFBktCKTLAVZ1QF14rGuGEpVqoKYIait6j8ExF87BM2pFkOjFL01WUWx4jAfr9ZPc+AbGlT3xGyn66pI4fHlwofnM887R17aA7N/bct9XwSn6UGh8cy1ql7tmLty5PtKbohKELqCB67TfNShFtY1M59n/Oc33B4Tj3PlvCo1QnAUl1hEG6NRoeQKEQ7jwDhEsovU4jtX1Bv6drVfcq32IbWyrpu6httRV8BZkWjzlnUOb1P8p7nL0gCIdg630dBk95m2Ye1dHbfbVLYfpY8/NAdy50C4Zg0bKrlzImR/7X9JbrwejS62+Zk630opSFFVjeAc43QghMAcll7sqp+29d5Qu7p1ELUHpw5FQ7ENqX3NZd/Pg08UUrxcRVCdWx1cP7eIUs12MSBizhzmVDbnyduH6k8Gk57WjwIA5wgGmIiJFzjX5JlbILEvumwFJRs67tgXt5vTbI6LgsnbdTStb6AXyZa6Wh1Rcyw/5eTr3zduryEA6ugZPUdbzpuWdhy6kwRWL2COVqPZeKOIjONoEn++84ubJKXz5hPklbEXHgcqjmqc99iFFfZ7m+/XXs2H6LzsuhXU146JqZPfCoEhsJa8lSGZs5hbQa+zcctNFUZ7ZjQahzdEGHPw2tIuRczHUOtSpFKdt+aMEZzHxUhIqmNepFCKA++IYVC6qjVcklooRoHBbXUVwfpjTIeRl48fdFy8Yy4Lh2mAKlbMuwXWAoh3PbsNxplns22Nf+G89D24zznZBCV0/+iwYFfPq9027jY8uOrPIH0nVVDMEBAdr7be+re3eS32jAQ0sMTWCJaN8VEDIfGszPqbUvFes1Pa0RWmYaJCr89wzrEsC+tarGllop6054hTnoxRjoce2MFAXlfWdaHWwjiMfe63DW9dlr4eXzvu/xUc+f1wby/skQdQh8/tkDJn0Uh35vvXKyrkq6o10YxKrkIWyFUoaEFe/10HIQ3cHCaSF9bLQrlc1HgGj6ueL7/4iof7e0QKb9++JefC3f0dz9+fqFUfSggR5so4jAxpRLywJtOMz5UxTuR5ZVlmalHu1OHmhpQS83yhFjUucUi8//iBnFtVPgjKBX84Rt5+XLUwKziSZcoad8q7LW2iqcEdiixwKZV3zxde5pnjODCuiSVGbVAQA5mCFw/FwS61KFKQIloLIFpYrBO7uWH0CNx7UyZoz1J3I8SZLKPxGsXoAdF4piVmcgzcHZTicros5HVBXLZ1p072IUXi3Q23VjCy5JXz6YTDk1JkHBM3h5FDDOqs0zR8lbcvZdXi1zBpRLxrHKMbW1MscKqd67TQpZa1czhjSIpW1dKdbOe9at6HgI8Bgqe+vDBflP6jFfqmeOOqFRhpQXHAUGTbCEKISkMqiu5UqvJ5F3YdDZsj6AytMH4wm6JPcxSbcyNikb1U3n144YcPF57PhS6Ctnda92tTrMhN/RqWRbvNNsdDW30oUu9aBaF92dE2a93UtDnIlkZVNQndYJd55XQ+U0vh4Tjx7qlwWbPO95hI4w25OqJz1tCmsKyFN/dHfnF/4OMC60Vg1cFxXtFXdSDUhWcXWDrbbYtUqgRS0AzJ5jTL1SbZN92mVCOvnflrt/zKe3PbmPSPd8f8FXCxc+Itduif3f1j+93Xn8cZYrM/bwtfPg08/lyPrkzCvv37DsUqxaRufXfcvFdFD4fvvN8WqCrCvznQ1+jep0ju9lvXKPMevdfXQg/m9O8678TonT1IUD+8X4NIazYlpmLx2lH5NJj85PdFwBwodbC1ENSVbay2DqK783j6e/tCvrbbZpOC9NYASMQywdaQaY9UxjioHQvacbo5L61bqzrWXgUDipZ3ns8n63SqtTMtUHMOnFflIR+2wmPNumjNUXf4nPLXezazs0d29LTaAha0m7cX6/YdoSpYVWnOXpOLroRh2EACt41l/y/rvbfmbaohr3auSRYXqVsA1a4ra4AVA0guvUgneE9h0wZv83C7F+2XUIzO22iP2rQx4kJCqCoakB0sF3wcCAZC+hA4XWZc2KilIkJICQi4oPUkropRJZWF8H5ZcVKIwTEmz7puRcjLsjBABwWv6Cxus/8NiW9BgvO6n1XrM6DfMVpq0Ey6AwPd9Jk2+75HoZ0FmXvnvHX93a/Pxnygbp2Yt0Lv/To2+9rXFjTKGz7bBBWGGDtoJpb1EFtDqgIoOjbDoMAfQowqowzKkVfJ2ETwes/ONv1SC+f8opr/or5JcM5oVHwyP2CjJ7X3f4qe9FPHzyt2Felaplcv9xcqzSPwuw9t0kaK1mvLeh0K7xwRfUDzWliKUCzlnjU0pBW7OR84HAfd9MrKfLlQ18rNcIPzcHs88OXnD0jN/Pj2HT98/wO/+qtfMoxaFDqNI9M4IrKo7rj3nJ9PgFeqhgs4MochcrmsOOM0U2EcB6Rki3ybtJguRO9b8OKw7CLH5HlO2tiiijacqoZ+pGEgZu201x0spzJ/1Qo1qlQ+PJ55PM3cHw4sWaW9luAZiqZg15wRp1XWTZrMaMVq2Hfyj871R4Pzjmw0hebg4ADLNqgRFqu0b5uC3p926wwcx5HoPGMpTOPIss4s66KTshVSiTbpGmKw3/OM3unYAkEqgUr0keSDdVyzFKAUHKF3ZPOixYg7l1h1i6txL4M6P2vNqmxRKkXUgW930AIWhzZ0UARn4O4mMQ0Hnp6eeH56prqiUpeiUpSDn/A+ag1FqThnHSODx/mCq+r8l2rdW3VV0JzyNs+biRLLpDR5tY5yYZxS2jNU1OsPb1/48XlWhHsPLnbvfwuPW+DgBFapvP34wpIbbWZvUM1YVPBe0ZamJOW7wyFdKtahhb5jSiQPSDGZusrtzcQYTwAUAnEYiNOBxrUUNNvwcpk5TImv7r6kPl74eF42VJpidQw7FH3bVnAtU+SUivbm/oanpxOny8xSi1H+QvviNoZgRb7bPe8xy+B3Y7O51tuX3K5wjp1jf/UQ9Kiy0SCa09GcvP7Z5lG0KG/3/Tbubf58+lt/vkd3Ypsj1NOsumGrrGtz1PVj2hU0ItIEAnq0uZ3jlWMOG1XJYel/16iF23grcmlOr82XUgqxdWT0Dmc9JAA81rekOTZ6pd15cGCSgWqndC9pmcKN5pGLKbrslGiaE52tadDmvGgw0iVvnTPneXN+2n02VHSvy95UtDSubL0h3K5ZEWb/r56U8ZW3ca4NXECD7ZKzSRRrN9z2byyDnZIW0JosnVEKrqkC3S5iKjGyjWNfi3ZdIURz6hw5qyMnlo3TPVMLNX11ELQ7aW1r1gm1ZlrU1fnldqhDXmkKbToFK1Jbl1AoYt1n62aTFDuompWr7VJ1QGvZZDBbFqrRnqTvSdqQsWnvxxitk2ym5AWlsjqcj/iQlEZIQapSPMR5oqcXA+OcqYdpAFodmqFC/a9pnJimkTxfkJpNHjL24KRaoNZq69R2bevOmU/SfDfvHKVmU+PT51isFkK18t3VerNlYJkKehDX6iY0QFDxE/YIf6sJMbEPnZBimbidOEDfSK4hkEbNaZuBSDX12WaP6JKWtdkOdA9SRrHvLAyWuct/2leJw0C2jrU9wC61My5EI1C91ioUQ+KlmmqXaKHxNi8b1eznGf+fr1pjzrwOBTvUqsmtWSLJ1b5Y2wUeDkeWVRFthxAdxKAyjcs8s2RUatIqxnW8dfH5oFrzNS+sDnJeKDUToyMmT4yOL7+443DwzPMLHz6+5/Ry5m//T/+B77//Iw8Pd3zx2T2HMSK14D08v7zwzbffUkVIIfHyfObh/la5fmJ0kbIqhzt6TmVhpeBiYBgH5vPMMAyGeEg3lFXAU5gmyFJZcyXGkRATP/zwnloKQ1KpvsZ7Dk6IwFKFWQpxDLzMK9+9/cjDNHI3jcp5d6p2U4rKUUlo3G5FKmJMDaLBNcfQbU6Krlt9/Uoj2JxRfb9Yh1S3cfmd700/RLSIIyaL0POqUkSoDm5pRWda0auOTbZzirDMiwZJArSxC96KhZ057Y5xGszXsaIqqwdwNvGC1wmvi9NQeq9yYISIq8L5fKGuSr1y3rjpRo1y7f+cKqLcPjyQS+b5+ckoV0ELk+VCKIXDYVIuo6huspe2lWlBZ89stGpvO9oGi22GvbW2c7TGG2CF4n4zfc4HfvzwzD/9+JF3p3kvanN17m0NYmliZ46L41R0o4x+C5y9IRDeZoQ6LiYx5wXIqn5hJ00pWLfYTEADN1xkXVeeH2eVNw0wRrQ/QBi4vTmwotKVWrBeKdnxw/OJb55m3YhSQGbt6izFOtJa4baq8WgGwLFRU8CxLoV1ycQUSDVSZpWshV1ss5kdekDVPZbdBlBdd4yC8wxRHbo5052BzaHeNqZOjnGWPRDXHcienWT7+/Z1ub7Ia1/+Z5rvP9OjR7StKM9boWQA36S4hWDgikhDyPd7jm6GG9dW+p9tgw/mkFazQ/qTuxF2GlCrD7AF+t4FQogoXmNIWWsIZDU5TZ+m/eFwxBANFQ9d3Qqao71RSZRuEq0vxtZNVUQphb51NxXptE1QGcJcF1pHUoW4pOt6B99AG3MKnCK/zRFrY+RDUyrZSQ+2sQk2B52HUHvBOV5rbYL32tSwtiw76riWremd98liJOPet3PXusvG2CUaPMPu31uAq2s2hQh4pGqWMjhHddkaQWEZZFGAhLopzFiwU2tWnjlhZwMsJrTrR7ZMZ/EF57YsT80ZglJw25pvFgCAkntMqMolukc2hZlShVwtmypK1Y1Bm1FWU/JyFqRJthpCn/Sa07Db3wt1XXA+kCaVbgajmnivqjnN5vSaRK89P6aJ2+MNLzWzLuum2c7OwS3mD+wzR2artCNz7gBYm8uNnhy8gm49S27vN7+wnSxX/UxjI/jd37MFT42SVWsleF1TDURrlJSNruj3l8kesWz1at5vNFKlm+qeXw1oCRL6dbbMvUOzDdrPoDUKzYyHA5iqj4D6KMtGbev1Ky1Aabux0QALGkhLUxCyteGcPt9SMsfjsb/+UxK5P3X8b5afxO0Twfr/DRnQSeo2npgtyDUvmoKj2VDtFJmlsORKruqESfWIGQCHEEO0xkRCcHB/nHj/7my/FQhBOB4mbg4Dpay8f/ee56cXfvmLzzlMI0/PT/zir77ieJjAosCaVy7ns9JL1sxSFNFOMTIGKIs5t8WExKwgtlmvZSl8fMqE5NWJbEiGd9S14NzAzeQ5L9V0xT3TEMl51QZB1uItmZyTbg66MJqjXqLj3dOZp9OFy+3CMg6k4Fi88ryCc6rhbnxKsc3IITib6GteCUk5hw0R0M6lpRdQtY1SI2RVLyhr7s9THGQRMPnB6iAXrwh6EIp4SrGCXePEIeCGgYY6ZadcyZoXvGTrvDswpKRDWgQXVZIpRm8FrhoVO5xuNtVtck0+mqyTpeqybChN26hKxnkhjsl4b9KNVF6zKinstKYdwt39PfM8KyLjnVJvHGRZKTX2xQ+a3hXxxJR0uUrVOof2PJojaA/YiaLb3XfbO3PbwqKl+ZDCHz585OuPZ57ncm2ymp3tjuFGz3G7c64KBDFG0+N1u+87+sbfnKTg/YbOGyoR0CzMYIFqihEXYJkvzMuq2s/ek4Lj4D1lGIghclkzl2XtRdnDNPFyufDbHz/wd199xmc3I09r4eMJgovkKqb3bQEnhp7sFSa8RvgfHl90joh1dS5KxdtwjT2NQQ2+ypK2sdk0bVoa1iEcUiSMiXenmbUp/bgWpH2qdnPF4u/naQz49oyabyJ7qEgdWTFU0uiIe/rF66Dtz/lY17UXiq3ryuFw6MhazpnoUw+CGp2ho3vANhpbMO96IA/7TNYnFBYcr1ueC2jqdMdL7dxscZsv2Y+tmYw6CaUDWPsP/pQW9v4zKSVa7Ur7/P67IanN3Kg6VkhoEpMtg1dM+laR3NrnW6PYYOMQY9wVXioIEdx2nd2xRtW2wm6K4hwuuK0AEC2WPB6PrMvCfDnz/PzMOs+sJviQknZODyjtI8ZouuzQumX6jlbv6BFOgZmUEnlRyqzgLJhDu61XdfIyUC5ngrc6K6M86AmFTNmev3f4FNUJt31OwYxNl77p6DehC4OMqaacRCm2x7f5s/U8aGvaObeBHx1Ea/O54oFlPltgVsx5bZKphfl8wjnt6ZJzZRgPxJhUdnrJHG5uWeeLdhsdEnUViheaTKZPAzmDyxnnIzUMjMPQ14duQToPpaq6X87ZbH0w/ywTbP9sKi3NFUXoc2xfeIxgDdx20qU6Ua0GQ+lmV2vM9pxSiq6jXXDV5m8rNu1T0Xu8PVPvnNapmU1udUfXTq/rwRFYwTPXBd32MZwF7j04aQXJbM3O+p5fq3XgtX+X3NdpW7dg+vkipBCRrFl72nNo97GjA7aC8b2mvNKGXl3vnzh+niPfB1zaXL9+GXoxU2zOlGgbX82uWeqloRReeUNlWSlmQDZVDP1TFQwUaam16qKt2pErOEXipzFwexy4mSbysvD8/ESVwl/96hc8vZwYhpG723tiiKzLSoxNurH2KFqqaPopBijZ+GuACziEy/lMWTPjkKgucLoUnl9W7u5VDkswKUgRTas6xxhUkzgNCZVr1ZoA5+ip94bYaMMRLb6hCmsR3Jg4r5mn84Xny8zxMBKDBi8xrzhrY16rUNiQb2NumEtUoRTLmDWEXh1ekUKb+624RMR3Y1btIXcOt+9QmiJSHsATiqJBuRTECktTGglBgw0R7UgrBNYQuD0eerFIMAMYDI2PIZBiVN12xKJ3rzaoCgSnqcyg86g2qSzn8dFrP4Gqryv/XykSBUVW2ntSqo55i9jNEQ4hcHNzw9PzRy0CImh637me2msZgdZFtdaWfrYxtk2lOQOdx934ZtKAA8PsvNsZLg2ytDti5eu3z3w8Z9aiQWw7XhukHejRDYUYAiJVGMKmoNIdZXEGMDZ6V0MuXAMr7W4qwScNOl2rY9C5dVlWJmv2g1NN6zREcs1KbSoFL0IKns/vbii1clmUgnQzDXxxM/J8Wbp0YGts0uOVHrDYTdpf1qwoRggmrVpzLxrbeeuA3/76E+PVAJyWAp9zZhoiwaliUenjfO1Wiynj7CUuW+D26bE5/R32cLtgrP3FbTfs5NNn/Od87J3GUpbuzDiPig0EQ3ZrQ9qFah0++66zQxr3m506S9kc3s2R7w61KXeoM7ql1HF09bWt7f2uuPNP3MvV6851FLJa4xjYePvNyQBhXTLDMJjiSWbJq/HHA5heveTSOb8xqiQnzuab027j2sxO6TZpGvvmH2Owei2jn7hrZwGU+71P47f32vJyLvSsa3uvXYtU3UtwW3CxLKr534KFIQ2sudj6EAsGdjQm7xsB1+7LEVJktGzt5XJGclXutgMpC6soqKSMvoXgkxYPOvCukEOzG01dLvZMpwC+lq7wAw4pKwGh+oCIUzlse5aYQop3sQeA3oMP/sqWb42MdL/uDqxxo5U6pnut0lSFfDlpR08R1mqNllq8YSpptSpiXLxQcyElT0qe9XTpWRi36sRV0Ytm8lWHPsRBQU/RIkoXYs9MtefpWgG3aPBSDYlPybLwtj+pY+z7ftd48t3Jd67bKTEN+m1NOPP12NZpP98mf1p3dvW1ig2ICZBsNraxHlyf240iJtYMcy9t6ch5F9D3MkHX/YCa9f592NSwlp3oSYgqkFKMojak1FWGWtChkqg6t5ZlIaDO12v70Xn7u3/34KEH/Ww2TRSl/7cc/9sQeXMWmgG4ftmq541rqA6NOk2tsKtxBLx3hsgUQ0EaT20LFMKOs4VzHA4Tp5eP5IpF/IHDmLg5JKJzvJzOLMtKiJHb+wd+/OEH3jy8YRqmDeUwqs6atZhSZc4ih2nk/njg8cMHldDDEVOilMLlciGEyDROzBnOsxmwbNz/qg4d1YqKvCMGSDGQUsC52pVmvNPUbJaOowBC9I7kVbVmLYI4z1oLT5cLT+cLD7dHxiGyFlVYCV47cpZacNVrYEK1TnNG80GQLNooyhqFIGJOZe0BU3feqdfOvWkq413f9Nqz0UVsSgm+dQZV7CpaABZ9wDuhSKAUyDGSbm42dQmpOI867zHZf5EYmsOzuVBKB6K/vrmkOwPlm9JQ7U5sRfl1xVosl1pM/1bvKwTXObExCsM4Ei6BkjOlZlIarltR2yNzNqdrqa/WQUultcFtz1idueZkfIq4WgBg1z+vK3/48YnTopX++7Twn1ya1gm167/btXTe6xUaT3tFkRkb6xiaQyR9HmgWe8ddtFqONWcO07HzNlux9yqlIyAi2on4kCJjiqy5MC+ZMVWOQ+I4Vk7nWREzpPP43S7lv/N7dczRzFVLfercq9tctofVDOfV0HVVrc2BEbTp03nNNBWQPqbOPtkdb3tU22OlC8PTw6Tdf+1RuI5O/pSP/qnj/pfjyAN93rciy9bWPoR9gdduI6ONcVVVDbYx2m92DjYlmx0q1jZKv3POW4Dd0Mb2uXZsiD7d8MjuuW/Xtq2v9h3n/b7B8qtD7YsI7LWr95u3974LCrTPhND6ZBha57f1UOt1MNNrodgWdhvzHlT4vcOwSYJiQVK70TaGSm/QZ1adI69aBNbH8GphGZXBXWclahHwgu+0HbUdGjxXExCQ7pyFMaikc6dSqF3rdyYFkUwVR82ZZbls1CvvTOJxW33KkXcbOBgTDi2Sdc4rR961YEOb4WlpjHrKe/uhz8+EE2wv7XS6bruL0Vwa/cOoP3mhrlpXVKRlkhrAonLQLae3nGdFynPFl+4yQQy4GslZcO6g876xALxCpMJOLQkFPV0rSK3VfLcNVujrxBzj9lw36q27mkttXtis3sCHHaK8D9xbAWe5Cm53s2Zn9zYn3fW10tdX/8x+7m0iHu29zWPYxEU0C2bqT01kwsC/Rifq37Ggz5vQRz+vaD2I1tu63mBqG5etVqVT/14VrwI7EPfTMWjPomXBXitu/anjZzWEgm2tt2Wlm+DuogTWXJFYDeFztqE7lU60rEUw3tI6L1p0iaeKtyIJHTkfwEensoDAYUoM48AP359BtBhqSIHDqI1vzi9nHj8+A57pcEMVz/PzM3/73/97W2DZMgSKPLy8nDifF2JMTMPEzTTxxZt7Ht+9NbUZz+gci0LA3ByPpPHAy3zm6elCirDOMylGiojSg1YhpS0lPERHSnoPYUgEH6k+G5oAuYLmM7VmYPAqW3kplaUUjsnzdLnweHphXu6ox8kkuyrBWSFn8LgCxSYnQYMlZ0YoSzFZLn1WtS80/8lm0ApBfFcVUHMUnRZybYUsWmC05KxOrlPuVzLExyFQCz567fjpIiULeR3ACcFF5TLWSvWZlCLDMKkTH5068r51OewYji6OELsD5n2wLrQmbeUdpRpnvRpnUUQbfllb8aVkSs7aNMJralGr7DW48yEwDCOXoulHN0JraCI0+StNQVY2zl1bAFqs6yw7pchEUz2olpb1ZpgaT7V/255DqZWPpzPfvP3Ikjdlie5B7pzB14ZR08cq3TlGz2XJPaXsekfZujPm1n4am4NRneJetGeObJVWNKibRfTBCnvU2FU8WRypZEKopBC05qUKy5r5+PKs9QUivD8tZAn4lHg4DMyXi9K37NzNIDrXuspuG7NzqqqTbZyjM95vbfQqrGeAMxTHnL/dOO1Dr6arX0WDgzpncxo9m5svV39tyE57EN3xFLGz7zYXNqqNjp90uymvPtuzN82Y/oUcLUPWHAYtLN1QsGqoZkMDtzHZHPwtkJJtHBtC139pczbab7XulrtYbPteixD7+fd0mP1ZMY1xdYQqFb9LkV2f7/p5Xr0HnUvrm6zuzjEJwXeKR6mVmEy20cGyLOwlIZVDv5OmbFdtgBHOXTdYaqla++7+Djta2IJ8dk6KjYnfPavmeDS1tL3zF2O8CgqqNGnmn3BgbCyqFQF775mGxLMp5ajN2nS9QXvUVKOr1OKZ5xYUgQ+OWnznz7cJ1XTfa1V1F6XxDL1fwebIqxNXDalqjvU+it9ThtsYVnPcalGeswYHokFHWQ1gKpptzcVsXQvs9DKDU2Tee68Bkyu4WHGlmpBFwaWIq4mlrkRf8Slp4bQEVU+zgMJFB84jRahV9+NN516LSltA2jvvuoaEWzBLk1jdHFB7d6N+sM1rbF2rXv8WyLX/yu7f+znb5uN+LfU/d6CMfZBOkWzXuQumdL5u39nWis6zYrx7b2yQfX1KEd2bowXOeE9e69Vv16KgswJjm8PeMwuiNOq9T/X6aE3V3O6+9/WKba29HqN/6fh5DaFciwz3EUxDSGy62/+teSVvb2PTXR3WoFH6Ipm6zDS0HWcceds/U1A5xXVduJkmPr+/Y7m8cF4qD8cbplG4mYT7Q+IQBr758DXnZeUw3XB7PFLyzN/8zV9zf3eHo1JrZoiez+4f+Offf8P5vHJ7e0stqos9hMDp+QNrnhmmRF0L58uF83JhGCZu7u54f555+3zitKwcjwPPJ+XyxahKMOc1E0NQB9k57h5uOR5HPjw9cT5lghfEe6qzindBJf0cJAfVa1rtEoQP54W76cCchZfLwtPLiYebIzUEqihtgmLTNhdcXXBoatFH1x0YBM5lNakpVUtwFHVUZOPHF6k4H81htadmKc5cVe7Nu4hIJRehrMpKrgiIBW5DAmBdF5a1kMINcRwY00Qd1JisVqUfnTpflcI4TBxvbhlSwnuhSkZMGnPbNGyie0c2aRZViRFiHClUgguq/NCQeQCvvNLsYXWVuWbmdSbnVTMBPpBi0rT3qktySAEfPHkpLOvK/d19n/9mK80xaEiWNzrMonPcD2zNjNSDcA5Luzl14HY2Sn1JSw97T/Xw7fvv+fbxRC6V3uSq/SZ7f+GVUbQ/vVN610U25EKooAA97VXdQHV8D0MkGmKtCKEV1rWxN7R+DAE3HVnWlZIXLTwdEusaKKbyhIvMa2XNWmvyw4eTYlTO8f60cForaRi4ubnh4e6Gj88ncm3uresZgs6Vbo6Y5Ugbp9f5wJi8BpUiG4XJsXUeBFqVZXNiDFfpaJcmMTTw2FS3pDvu1ybZ7SQjHVoAZ7J5Zee6txigz5Vi2Zr21p5P3yOE9gT5SznWdSbnRaXwhgGh4PzQnb/m5JuR6Qjr/nB+c+JxWLuH1n3V9U1cA/zr7qAdoDB0UZFEusqUF9+Dg80R2Tn0vjm3rYC0BR/w2mkBd7VBt0ZO67r2TToNqTvdwSQFl2Xl5eXUNdfToK3i8zJ3rm60TpLN6cp57c50V9ywAKkj8bbYa3dEpKtJAV1zvTkO0SWaHElL++sHrIg4BlVcsyBBqXa+27tWdLwtIfNWnUNM1awFUE5ActY6LxzUSpyODGlU0KHCumYtDq6V00nVsRodE6dotI4BkPUaUtoKW0MI5FJZc1b5zHUghYDUQrSaBOccPqQOsHjMCa8KB2jtWQvcdw2AmlGyuoX2nBAFEErNzJcX2uzTuaGApqrGKWkopVH3wqLza0wJyRkpF0qeSdNEzStOAl5WynxhlpkwDPhRpSnDWClF7bEbheATEiLEqPV/Q2RdAlI8VG2I6WtAgnQE2LV57DfKq7N+KOCpJmzTHc2+h5mN9k7F7hAFWop0hBnnOkLdVX16oO56geuVU4vWNKpUtqHjipWYHbf53FR32GyyM0S8jbkTBSRbDaEUYS3sAhzhcHPsCL36dcE6tWsGZohjl2jNpVLX3Hn/audWirReCp9y8kspvdcCzlFNFGafodsHJQAD//rxM+UnMfvWFn7jTDcnga4E0jddEd1Md1Y5F+3+5qRcVczLrhmHd2p913Vl8J4pRsiFP/74Ae8Tx0PiOMzcDNp46OXlhZfzhRgSd8eB4wDr/MQXX37JfJnxaGolS+H773/k44cXSnXEUTcV1pW6zrw7zQyHG04vL1aQpIWcqgDg+fD+mfNp5uZ4IK8LpTrO68o4BKITpFSWRY3dMIz86pe/5OHNDfXr3/OH734kek8hmyTVNqz2XIkOxug4OMdaKqUIrjpmaxD1xbIwJI9fLggJUGWHKt4iSlT5QNQ5ixaR5rxSisOHSAwJnx016P01ukdT3OsLxq6p2Gar3WAz4rw24aC1oq92PxalW8BQirbvjmlQuoqLeCLzPHe9aBeCKpY4T0pJPxeccgmDadxLQyo1XRnSYMo4Sj/SDczhgspcuuDxJKXVWFFYEc1+FPFgHYNfLpngMtpmRI3ZOB1IIeDdaOoSgZxX47aqOVOpyfbw2p/WoTgm8ppNmnFDMFqasbaAFrrBcLUhzqpuMOfM88uFf/jmLR8vYpvChrhhKPAOJ+pH410GFOFJrilbbElIMQfW2TpzxmXx6PzrGqb2/jhEbm8mLpcLh8PE3e0NQwg8vWigO6TEw/GWj8uFl1zIBAZDyrMTLeR0DhcTS2nKFcpzz3Ul12eOxxuVeF2XPratbqbtn84cMNcRAzqHWuc6XbWnY7S7cavb6F0dzp6jNDjSfnszWX276eMn5hhpEGXnafu6tE87WrpeQQpDc5yneulzpyE77Ub/FJLz53w0vrc2VNH11DbrtompuszmlHd0XrbW5c1xFlGFqp76pyH016hfQ8bg2rkHOprdrk+XVaUalSGYSlYP+hplRFpJduU1ktmOFqCs69opMq3wFFStIw5W4FuFLBnvHcOgPGWlX2xBQKMqNKfIe4/4eqWV336zzZ9OK7Ao9DVyuel+v6bItIHe0P+eRXCRFD01F/PNA0NM1kAJcLVr/Aen/USGEBG3IeTOztc6bqtQlklllsq7+a3a7qZbnwY+++wzShFeXlYQrQnT1VcoFsw0FsJWKNjmgd5bNDWgYEXXUgs1r7QvNn8F8eoZGQ/OO0fpY+E6ukv7fNXMSHPiNVvgml4QaZi4zLPN9cqSdd/1zvTILWA5DAekFtZ5hnnm6fEDy+VEWWZidFojF6OKV4yJWkZCSvgh4YeBdMy4OODjoPpiPlsxdKD4wHx+YZ3P5LwQHES3zadWiN7GQcSyxxYc7+struht5gRrwLoFTu0IMXRq21UDJ2eAo+1lbX3uj7bG+9+vEPYN9Ni/p69v9J3XKkn7DJn3Hh8HBc5srkmp0MAr51jXbHuj6zUh1eaFBnJOaxEsqz8MQ1/3LYhvx9ZM7Rp4a2PRs/G7XhH/FRD5zSnpUl79ve0vexUH5ZVubsM+hVwRvDRUUjc311rU28U3WavpODEkz3m+cFoKb26PHAbHcYxEL1wuM08fn7hcVm5vEqUWcnZQPZFIzQvLOnet8afHZy7zqqkeEY7jyDBOpBB4Ol9wKTAvmbWovmculTAFLsbnp2pTBfGexarMD1NSGWun6jtLhuP9kTA4Sl0U4Kj6wLLPOLfJJ+UC3m8bUfJwdJ6zVM5Lpo4DaxUe55nH88xhiASwoMCRUTTVDdroyDlvaGZDDejSixrvV2rVolFvndnEKZNPCzxNLrHl/KwAqNqCLVWlmGrJeILqNAvoAtJ7CkGbmUzTQSkzw5EYEkUcqsmuyFGKkewWYkiEMOCcTui6FFxoiKqqx/hgCF4IpDFYJkfnU85qSMq86GLwQk0DcZhYzmdymZmXlWVZWXLhw8uJp/ePiFSSd4wpcDgMEB0pHhEnpCFqAdlizU+atKU5Z6oss81/5zZ1E2jt5bf3WjAiZillt1KqWBO0Csta+PHphf/594/Mpcl/bo67GtlrJ74td0E6sqxdXLdAo4OM6MahPtNWwBospeic61ScIUWO08iQEqfTM/pFwQUYxoQ8CSUXUlS1KnEC9nxbSr01DlnLdTagOV/LUvF+ZhojziUuS2bNGzLvELy0Obg5LU3uMZs8WR9nGuawjXBtA2fRaRuvptlRaY5+c/d9Dwd6Bqadz7krpF+fy/YE6H9TFKfaqpNXn5b+r7o7U1u3+6f653+kqFKyGuQWhuSsJ4PJPtr6aIh6tUyb2Fj4/f7TnozDUuCG7roW7TmaitRVyv3V5gmfbqrNQagtfa9Rnv2y9N/RedZQb9cDiP35StGAv5p2dqupcYZM9qCt3ZdzJuGnDkzA966u7ZobuK2Su0q/yUWR8WEYrwMY6M2p+n1bttVbUaZmFT4NRpoCWBvnNu7NWWqBVowRSWkb6yomSqD3V6sW6fsWfItoVrKYw1+0iVyxrqgpJvKy0ooiUxiRGpjPmVwKeb0eC6FSizPhCunBfl43EYNSNUjy1gk1xagZRisgttpQddbcppbXHHtVbaldOKHWLZuq91t7oNNQ+gaoKGbsqC5oEasoABac7i01V5Z54fHlkX/68S2X8wtlmSnLhXU+kZcLNS/c3Rx483DLeJgYp5HjmwcO9Y40DoQy4GXUDOUwEQdtpBbiqJKc3lFyZZ4vzPOFkleSKQo1v2Ob5e3exerLqkoSO6Pb9jGxv2JUHafZ9hY82oan9YI2z5sTrr1JrIlVt8VNanGrHyt134DtGtz4qbX8GgFv1BzZ/bs9337Oql1dt3XtTOPdstWNeoMVsNu1aWF+a5zpOsSDbL1r1IWyQtbd/vBTlKL9nxv4IOxu5188fh5Hvm1m/9Im02TU7KLbxV9dkMUCW8VzMyLtWzZY4nDOczxODEPg5eVMjFHT/14lCctaeFlWnk4XNE2lCM9anCmfbGldLQiFl9OFyzIzDiPROUYfGJuUoThenl7U0TdkUqRyf3fP8zyTS94MRgiqICDKt8KjBT3Oc//mc27vbhAy61oZksqExeA5HgdydVysEyAElHO+bfKjB6LnvGTmmlhq4TzPvJzPlNsDElsTooqvitz7UvACEtTh8W4bd11c6hoVm4BSBaLJNbpNnQboaE0zat6Q+1qr0qYs4tRAYI/qWKQbPGkYGcYjKR2IUaU/h+nIMKDKBqJdfX1IxBCRUjm/fGR9eWL++BEsw+BS0K52w0gYtfudHwckRsvz2cZNk9LU54g4pDpKEZalkJfC+TTz4eMTX3/7HT++eyJGuL8d+Pz+hmEckFKMtykQVRVJuYEFHzTJJbbo9wYC0eyA8+ANzdmnydxuTNsiaI59FaVl5aLFvOc58/sf3vFPb18s1GsFNFiKb++s7taUPbDmfziaMdqe5L4YTymh6sQ3Pn2MhtuLBofBigVbDUGIXgunbWOstbIsi8pURo8PSimrUrei9b6+xfyVpmjgeuBzWVfiEElR9btzXi1YUcRO55cWE9adgS+i6g4gnWPbNlAaqCBX5kvfEfP59qI2/S+uO5bbS277QEOQOlAh3dnff6ejRrugrdESrwKBpk/dLo5GuPk3WvE/g8P7YPUWtRcf5k6n0c/INnA0Slqj/fUNWuhAT98t7eg2yNbmJwh03XTn9+jeduiqaT9V7Vq29W31DOaUw56vvjV2aucuRcwB0AAxhDbpzGnf9ZsQaVm39hkVeliWud9buzbNmJpTb1lr51SYodUfNKcoxA3Rb+PXkHvtCv5aMWPfWwRbCvY/u+7rbqQRCZEaTGmriRGwZQiCx+zO5oSXUq0baqHmzDovem1JOFmTRh8jQxq5zAvrqiDHfMnKIw9o1lnAEbT3i+2dITrWVYt0fVAaiQ+O6FTUQmlV2xxTP13XnweKltx3wAUremx1b03Npc/LsiH0Coo1Z1Cff65QiVQpXZVvzUJdZy6nC08fHvnx++/57X/5L5xeniCv5PlMcAUvheCFz9/cMr/ccjweOd7eoPuRIHUiyMjgtf9CCxh9XHAuIDEg1WuNSl6twVghxc0px9ZKdQ3YoI+NBoz6AEOMvViW/rnN+e6Iu81f7Yy7OfuNOuN2dTKuO7ZWdyfCXlXJOX+1htld37ZmrwPz7buvDYsF/m3/FLF5Y9fcBJ6rgKvaVKuh+7aHb8GeKhN5bxCOiHHl6RSf3sDNQNR+De1a2bjxP31vbXz/9eNnUGscey9gS23sNiW34zxxNX7tW/2mFaG2jX7ncMrVA1Fn/DgNxOB4FmEaEyk40y7NzHlhyQvLWhmsLXCP0CzquywXvaCiaOd8Wci58HAbGYInmcOScyFXeH45qbF06sSFELi7v+PHr/8AUlS32hCMJnek+4txqvDcP9xzeztRS2HJK+MwEJxnHAK3w0StJx7PGXI1R2tD/5wI0UNIgbfLwlzElGpWns4nSnmgSuzFG96QGW8FQL4/L7dzxA12cFBbA40q1tRICxv3E6oVNDapSt3IXKfS6ELRiFOLRrZgLIRETEmfBdbGOK/UUgjjSEwjIWrxsauCqyv1PHN5+sDp3Y+c371l/fhIWbJGuyloofAwkKaROCbcOMI4QYy4oO+TIsW4rkVUDrRmVRw6n8+czhfevn/in//wPf/09bd8fJq5uYn8+pf33B4mNSBCR5ccikLEqBt4CME2DrUE2lHPAtJ9EOO2iv9aFYXeV6rvHT0txq3W8ELIVXj/cuYfvv2R718WNR5XEfz1kux/bUvQZqPbfaE30qIDJTicdhPGKDhe23ZHr9Q3MJS+fQFVFgpBg7StUE8zYn4Ybf3B0h3ptlna7zvNELR22n2zdPqb87oyRJ03MWRKNhTb6axu91arUH1zZsyDRpQS5Z1yTXfO/NXGQ8caNuUiO4fbvmH+9O55NQRw52zu7ZrtDPZys4LbM3fdkhtlZO+3Y5ZR9oVaP2U//3yPnDdJt2EYunKNpp91G2rz9LpQrKlQlb7h4+hOgVJImsa7jvFe7m4PNzVJyIaaN4oK9l3N/igSvC+G3q/lJhTQNtgNLd9+p507BHNwZHf9rxyOHuzT5O48ueQrGkJKqevHb/Z5S9U3Hevb29tOkcg2tu1anLtWFNlTFPYooO5hW4Czd5gcmonMa9GMbC2qde4Xa+ITWAvE5K+Dh915WtOhklfqugAVL0KolXmeeXr7nu+++6N1HgUh8PiycHf/GYfjDeN05O7hAXGKuKcUOBwm1mWmFGueJbovhegZnGaHy1qouVKWShkrcUhEUc40aIM5qYIEBVNC0O7y4ky73/Y/QYUTmoPZkSP2YJbxrosq0+VidgZn2YnK199+w2//8Z/44x++5Y9/+JYPP/7Y7fAQHDcHVW67OQ483B05TJFyeWFhJfrCer5hfkmUupLKyjhNuJrxUvFUyBkXCmVZEF+s3ikwjiOIdrnfc7tFmhy3s/oKTFXOgh57jsr/lz5vqeVqPhXtVEljAszrDKJjeDxO1s9Ff+9yuZCsEeQ+APW7cYwxXGU79jUbOqVq39O2AFaPEALjOPQO5H39uG3N97Uv9Kxup8sJLHm9CtCdo9ewtG7Ny6pyuoLTupYdx/+1tOT+0FrDnf5+txvNh5X/Go487La4nzyutrb+j4YNtp1rt8H3Tc+c2IaktI1QhHFIDKE1qfEMYwRRje05z5R6wWdNz6VpYJomDmMkRu02VopwusyMhwkn2hXyfJ5Jw8AQPINNJKXQZC7ziqDFMoKjVGGaJuKQOL+cCA6mFFkLOMnqhLvAuma8Mx3dUvCycjPdsc5n1iUzjkcebm/47OB4c3PDZRbcuzNQFDlvA2jIpQMOMfDonKLJU4DgeXw5MS8LYzS01CsSX0IgmRNaRJCiKkC6d2izHHUKvQVOGZzH1wBFedIuemQ1bt+u6r+W3FNEVVRtIcaRvLZmCIqWepNwDHHEx4BcLpyfTlwEk5SMDMd7ONwpT7EK62VhfvuWj999zfP333L++IHldKLmisxFUQxXu1GVGPDRa8owDfg04lPSph9TsnSipa0RyjpzyQuShR+eM//4/RP/8+9/5O3ziZsYiO5AIDKNB4Y00ICKVuCpiI5ma1zr1ug0CGptIDoFxLUUeyv8MsKGbKh8QwLaGpE9OlArL5cLX7/7wP/0u7fMFQaHpe5aUTLWca4vpQaAbPNnh0qq8oN91qksWaOrRh8syNPAMfbf0Y1Ki6O9ckmbygi2pXtH8BACzBddT1MMTMmxLJaiJOPEJNwcV/QdEaV2iTiaBOnL+UwdRQuQh8BSrOsrXrMZVsOxaYJvjgjO7jV2+M+C0WsnHrfZqQr4HWKkAavfghCzX7oMNtduC8h0LmhdkFGOLJjdGhTpA5YW8O0NptNrbMjv9rJe919Oqeu2OaomeSLGZEiyN+ezORSAE86XhfXxWe354Yjy7DaZvKaOUo3uGKKqTbSOo96rPcdtfPl2vHb49bVgvtanzidsz22vABNCK85TcGMYhv69ZhcPhwOXy4X5cqEiXU65nXOfccg5b83jXDD1mh1AcOV8A14dhtt4R8sQFqkdGNBiSuFwc4Nznnle1JFjWzfjOHZHpwUrTTVnu/0toK1FVd9U6SSAFFIaqEWLJ7VZlb7vAv2+mkJICIG8zFAzUjPL5cJyPvH89MSHdx/4+vdfcz7PPD+eNCte4GUuhmg7ijjuHt5YYz0BKl988QW/+uVX3N3dcDwe+atffcU0HjQwLPosqqhcM9Exz8/c3N12l8Ql66Ehen+lVkRKV2Nr966/pt12U1L9/lo0q1yrBjgtYzqfzwzjpA2t0sjtzT3f/P73/O6ff8d/+o//C//wH/9X1nmmrCt1zbicOU7qk6QAx+B4uL/lMCXGFEgO0mFimEYVEiAzRq/SoChFxcdArSvL5cwURubLiePxjhQi83LmfH4Bm4M5Z4Yh2gCox7WuSw/m0pBU6a8WsIxsLStdkEEaWcSyvKX2pkZqT81BlWC1EFsRa5WqRc1R+3a32oJ9cO1tzVbJqvdeq9Fnw9UabsG9c61ou+3D3grMZ1s/0PINJW8Nw3xsVCDfg+VmG0AFV3Jp1DilBK2XsxkS9VkPh8kCa11TRfTz3numSQOJ1u29FaFrjYgQ2+9e7VTb/V2hdf/C8TMc+bY5bqjV9o70jzi3fXZz4rdTqNveloVsxYyhq0DT8hBVtLVwcB5EHYllzdqtcn3BDxmksM4XhjhoQ6dpIq8XqI6HL+44n16YhiM3hztOpzOn0yMv55m/ur/DWYMq1WINuOAoVdNPx+OBApQ1c7y54ZvvvmNeFu0yaw08FtO+H4aoTmO1TqB55iY5kkReLoXLmjnejvzNL97wixvIWbHFUoToAyk4ckPvBOW9Wzr2bvCseWHOERcStVTePZ8YxkSoBV/UWZes9IY4DTull6pFw2aPqtDlDwF8FApF+epZrBLclCNoqK6q4+Rdl8Hg2mLyjOOEovAR77zSIi6Zl2++5/m3/8zlwweWZQHnmUYNiG6O90yHI+I9p5cXnv74A+vLE/lyUcfNOQ2aK5oOtOZCxTlWYCnCvGbEVCucdxBsXrb7lJYa1PuvPvGf3xe+fckU4L+/G/jlQ+I3/+3f8pu//w1f/fJzbg4DDkXBUwzafMs5pfBczeUWam7p1OBDR8k0XQjKctXPNSlKJ2pIqgW11U65lkqWwjfvPvL/+f2P/JcfzoqGt/Ui0INzuf6zIRyNz9qkMkPwFGrrSalr10lvLNIoNdMQmYZIDHRHKAZP8ELw2szJ1UwKnnXN2tjGB2vI5vm4nElyxzQM3B7gVEvXBq/ekVuBlw/dcAsmNWv379GgYl5WpMI4DMhQeZlXHcFarTlLIMXAvK7slX+80BVxnKaKegq82cQNhthMZu4EHte0SHh9qDO1dZ2tZqlcc86dQ6W2Xj0gk4DVjW/32KQTaa6upeUu+vETKM6f67GnHrR1dE19qbtNeUOneg3HJ4j0a41l6WohfT3skLA9T/7TdPZGG9HnuwsQ+zVv57Sf2/3+Ju23v0/vo3HXhytk3L7enfge4KTI+qp4tb2/pwY5i9w3BD32c+zveTtH+0V+YtyvKQtNvWR/Lw14A7axsfPpWpZuGtVxbzrugg+RMHiTvrQ5HjySWyBVyOuiDv18puaFINWABf1MdMKcF3LWRomPouettbKsK6enF96/fcthHJmmkT988YbPP/+Mhzf3vHlzz83x2EuEgjhwEXKlYA5W23d9teBErKurUwWlJo2KOvIiwrLMHUhZ1xUpGlDWsvUPkSrkZeVyOfHNP3/NP/yv/4lvfvd7vvn913x8+56ahYgwWX3RIQVuppGbw8hhiqToGKIWEx+myDQNDAfNSgfvSSkSh4RPSYt2o0o7OywgEeVr15q5XC4sy0JK0QIqbxmqYM9sVXEKv+f6W4XSFRJ+BUVcrStfrG8NYrV2MKaR5vJ7CyBakbNzG3e8zbeeRbpSndr28v16+Kns0k+bTOFaslLX/P4e3O78rxVk2iZT+1oxG2bXV8xudb9LZPfZtg63mpir7ACarXS7hlTQ7OV/JUT+muP7J46f/EgLfQFDyXq0K7bZBq0M3jZ3RQ+Th3mZWZaV5/MF5z3nfCHkSkQdoOV0YXpz4O7+yLrOJOdI0ZPnEzUvHG/ueHl55Me3H/jweCKmkbysHD67YzociHEgF2HOwpxXQorgVWXhshaOCT5+eGLNQgiOmCIpJCQ5HB85TAPrujLPWhR5d3fL/ZvPeHw5cb6slFo4vzzzd58dGOuZbx4vnC+rcvysa60HqnkG/QEjHA+B50tmKdrd8/PDkY/Pz9zdjepsmTPmRCUv12xKCl6LogKC81U1v/uCUMRdqlAk25irQ1xq0KgxgzjpDXoqUHJmmg7KjS6aSnKgRmy5cHl64cP3P/LxD9+xvn8kn05KqxEhmyH1VRHm6D0peqKP5LWY4k3bXCuIptxLFZaqnfBWO8+5VJa6bYaqSFO7Dnm0eTPE7Vmdzwt/c/T87z+/56uHW7744oE3v/4V46+/4vj5HeONdicty0wtufP4VPowME5jH1MBXXgxQqmKSJlyDz6odq8ZQV285v6JzevotbGEjaAiso7TZeE/fv2W/9fvf9QshmsLfUsfvj4+sVuiEpfJQXTCUlpZ7OY8NgdyKYXkVed/HCPDADnrJjmkxJAss5W8Nc2KvQEJAWrJpCEQx4CLgUBiSBBCYUoDpVbWdbGUvsOhyKvbFRw1io0KAeiczGshuMJxOlCrNUezYMY7YRojQrUaE0VTGg2jFCu4ArR8227Y9Qz4lbFv523OnLTvdPL8NmLtRMqRbEGiLo6NDrIZaD7ZMDZ+ae1P4dOd5xqb+cs4RMTqGvaFX/sN3NBub8X6lmLeqDA2fnxa0NaULTbZ0H0zm+vjOqDYnN19un6fEf63BFN7h6Odv1N2MHWOlkloQdzOMcc5o6sFyFsWYe+cNxqeE0y/3nWUsP/Xx9WayhgFoN1CG8/G2ddx2pB3RRG3+/Xe79ZHU67ZNN2dZcHczrFvR3OGomVSGmW2oLx95i1w1bdU9eswDaxeC3xD8ISl4FylXlbEOqbmdcFnrSmal4W6zDw/PqodGxIffvieL7/8gi+/+pz5l1/x61/9mhAdPkXEKx2IKpQ1907gzoE3R34fLOE9LjTnzayBazbZ5l0u1Fw0k1FUBCEE7ZFyOV/4w9d/5Le//R3/+J//Cz9+/wNPHz7iCriiykhjcNwdDtzeTNwcJ26PE4cx4VwlJdXVvzmOjIeBNCbikChhWyM4VXmLJeNDxGHOoU9IUW78+Xy+cnz9rplRC4K3IHNTTmmTp9bSKXD7eod2KJWtKEd8J9G6b8jmnGV0rPYN+2ybt+u6sCxrz9w2Ct6VCX517NeRXG2Q+iXneGUv2J4tuyAdQHY2HBSEETEfbRdMN/03t9tZWw8Ce701y6y1rWE60Ncsv4CBn7VTLdvnWpb4/+edXf+0D//6DXf10jWqYTfZ0qjeY10CsLvavi+V42HgeIjkdeE0zyxLIUSBRZvNzGsm5EL0I8fjRPCOOa8cDhPTOGglfAhcLmdeTi1VJ8ToqFRSTIRhpDrPZZk5n2el6KSkA+g843hAEOZ5BaeavzENOAKnlydynYGJZc1clkwKkc8eviBOI29/fE/OC+MwcpgG7u8P5OeVp+dHLvOCd1poKmS86O2X3eDlXBnGyDR4XK1cLjPDZ/esl5VlKaxDpkpUw486i7lkvHi8IetCVec5Sl9sIpWYkiIjYB1MFd0sqBrPMCRVuSkFV7VgxztUO37JSF6Qdeby+MTl+ZnTx2dOH184fXjh5elEXTe1he6s1K1RkkNVd8aov1st0tWNQ9FPL8IscK6Oc3VcMlxyYS0VJ4EQHN5b51Z0oxyc5xgDxxQ4jJEx6tiNNyP3Nwfu7m+4/fKBh7/+NYdf/Zp0f0MYLfABSgyUtVBq3jathsRJQ6O0sBbxtqnaZxTEoFhBkBYYKUpTumSZobvNgDgUwZLKb7/7kf/1mx/55v2LZvltDy329wYSdT9xAwev/q2ojBaJrnUzG3v2vAO8VEWoRKVFc1E50WEctEFX1AJXj7Z/tzoha5YSSOlAcC8cBs2auaq1FyFu9SOCWJoz4EIkl9aY6tqBELEueDjWKpRZW7DfHEYu88qyFkuvOmZTtWjzpgm9gaY1XWkoy4b4t3vej1PPdPQxMYP8yqy14Fedfdgrc+n17/j6O9x/CzJeJU6l/e52Xnts7DMCf0kOfWDb0EVECx2vnFq91+C0EaCm/R1Y/49cjNYHiKhzu9dld8YXc6YBKiL6KF+h2m0z3nPj9S/YtVlzF+/2L//E0egzm5exRxRFrAjbS5fazTkzW2azOfAppd6oqTm/sMsKODroFRrvz45oWVAxBRqR3I2Ej0lBnh2fNw0D3kejTFSE3O1Zm7c9IGU3/8QUeIwCkbPeQ4yRuV1ne35N7o9NyaVzr52+M8Roz0YIKTAdR0o5EnxlSI6X5xPT6cLlsnA6L8SoNKHiKhLB1cx8yZSqbKiAw1VIznMYBsqS+fDDj3x8+yO/+8//mf/wf/gP/M3f/YZxGlkujtv7O5xPZKtfS0PU5xCqFdK2ezDAsUkg2ji1rMVqlCQpTR+89r0rBk/NK9//4Vv+b/+X/ysf330kLwsyz6Qq3N4MePvsGCP//t/9LTfH0eghwpA8n33+hnGIhOiYphHtveA165+0JiFnfSYpBOq6MsQBh7DOM3cPR0CYLzOnp2cO06h1Tn6PDKtyXUqJcRh64NikWUNKlnm0jGRbT21PbJGYTSEvJrBsZqxkpcYC1LJerVldI/pvqcL5dOLp6QnnHCkN3N/fM40Hm5ua/X1d29H+frWWafvkdR2Lvq6CDZufavwQAy1b92HX3qkKgmomz5mUrDUYs7VSS1YBjqABe3S+Nz/TP0tvRqYdrfU+QhcAaPa/gVVWDN5Qw3/D8fMd+Z+ybO012X+wvbBDXzpGudtUTQ7LHsXVqW6mAe9Q5ZbFKCBFcKL63rJeEGAcJ4YUkJIZh4Fh0FRjFmE8HFguF2rZ1AgEYZoS0zhQneMyL7ycTqzrlnrSjqUBHxLny8Uk0wac1yKYUgqn04nDNFJyYbYg4TANTDcHxCla4J0WwDoqx3HkwxM8ny4sy6qGzbVCU9Ns3YJF1lLINaiyC5AXRXGHYeKyZJY1k5MZTKlop7gtmnbBE7zeb3MPKpautEdVgVI1HZpLYSkFlxJrbQWx2rK6OkdynnpRY1TPJ8rpmed3Hzh/fOLl6cz8sjDPqtIjGD2GVgoMrqXqzMHLIhCUqlPsupWCot/KpXCuwlqFDFQXOAyRB+dI3jN4RwyiRWU4hhhJzjPGyBiDOaL6+8chcXy45fjV5xx+/UtufvkL4t09YYza2tqcieI9q1tRArypM1hUv2UN6IgRYtKHfbPb0oaWa+tzW7hOE8K2+b/MF/7Ttz/y9ftnTot1Ldwtr9fLbnPaafFxf72lCXMHgHeGrEX+XjNeMUCwFxvCF2MweTItHo8xMg6mWGBZIxwmLeaZhgnxAS9C9IUpalF07TzxVpuxbYj7NGQL5JvzULFC5XllHBOHacS7lcuq/RfmZSUYnQC3FSYLmp3xbeQMpWwBSEOfWgeo9jyuxmeHvO0d8uaed6ffHPG2GejPORvHlpJ9xdHfIVyun0t2P/86EPjLOS6Xy8Z/NU4xfqObxOiIMeFM4m6aJta1XH1+T7VpuvTtaAWfMShtQH+LXvy4T8HvKTnbnKCrkvxLR/u8Lqst6Nprvfffqo1qp92j4zCo0llRW+ucFtg52YKMztmFrbkQXGUn1GkUK8Tf9KfXVTXR9yj+uq69iZJ2Mm3rZrMoe8oPsjWr6cFN3fTya85IjOR1ZS2i9Q2+UkrEzXQ9dec3p35dV1WMiVpjFGJkPBz1fkrGHSamw5H6+QpSeHz/yPPzSamwLxdeXi4M0488v5yZ18Lj09maLmpjyVwKVEjec3cYubu75fz8jHfCkCK/+8f/wrff/I5f/dWv+Ju/+1sOYyIvi8kfO8iF5/OF8XBgnA6UnQ/TClylZypUkWaxzrNSKzXbPHWBFCLjMDCfL/xP/4//J9/8/hsGhL//m18zjSO1FE7PL0hZeXP3wGEcGVJgNNBkHAdubo48vLnj7u6WUlbm+UIctRFjqYUsRbPBlnVJKTEeb5lxuo/LjPiRaRxZlszL6UytlWmaLKtcyXm151MRCaSUNo67yLa2rFZO53GxzFprALZHltSW552WPqCdUW3dqEbIVu+hTnG0fRSWebbvSt9j2yTcO+2vM237jNrro+2veitbhsucjM1GN9/VvZaxbIi/79eylxm1i9K93l+DBO162/edU5pdTHGrjam7zBxbMHKdXfjXj5+nWmM35kCRVWgwkjkTezf8J1Idry/OGT9ddluYTQwHTENiXdWJV11p9D3vtagtK0VjmgaNgEvh7uaGELTox4fIdJyYLzOqTqEPL8XA3c3EdJi45ML5dOb8cqJKYRgSa0N9vQcvPL/oBLuZDurE12IISuZ4mHh51oJWsSYfLmlH2lIrwziSUqTmleQ885J5Pi2suVjnVYVaA47VOuA4Q9iXUplz4RCVP5xL5mWe+eX9G9b1wrJk1iHrubwj+qCSVILKenlFwtq8NcgKnOkV7xExqawlc1kWXBXq5aLPWvRZO+fJtVKfT6zPzyzPTyyPTzx+fObyMjPPlVVFeHQ9qMCBua86L3R61/68A4KUyhgDc8UaZUjfRFab5N55bkJgTJH7w8BdihysACh6IUUhRU8KSR23zq9TdZUwJIZpIn3+GeNf/ZLDX/+a4e5G0buwBRpSVVKwxopI1Ou0IpXO0bNABKlaNNSl2EydohYDxYK5pDtn0Gmb7WaommJNroUfPj7yn//4jrcvF4qN1VXsvEeWm/1s7qDb1p63tuIi0qXg7NevgwGnaV0dN6VneRuz0Jwhp1zFIVq3X9mn3q1A2mt9hPhAcsKhOg7F87y0oMZUdxqy6HeOfBW0n8KmrtQuThGvwmXJ3B0mRhRdv6yFXCrO1x2OuLMr0mgrzSGXXizc5DDlE1u1G5QWdjkQuRqxTz6/+3Rz5bfZbmpQr4a8b0RqQ6WB83qmpt71CSDy53+UqvKAuNBl2VQaVqUoe2dJo9fEEGg9F0RUdEDnvaJcrjnJzl39B3uak/148zVc03w3p7R1QrXiO7dTd0LYIbHQsnI9iyI6/9vz7Io4VayYvCmZYde0BcuNojpOh0/GSZM7bUY4kwb2Wx8EsXXvHS5Ere2yL3oLLpvT4K0YXTNjKr2oWdrtfvaZCtgUsrZsEdbsT/p3tGA5WqOkwuV07llddRKzStF6R5WCrybfWFUhKueC84E0TkAlOsfhVtVOSl4ZphtuLwvLZeZymTmfLtw+3PP49Mzj8wt8+z3LRdFkRNHjISYO48BhDNwfRyaj/jVqQskLH96/wwfH4TgSx1H3aoKplagK3rrMVGdj6Hd7pfd9fpQ1k9dly9aiIFUKEWrhw/sf+fq33/D+7Y9EB3/9q18q7SclEMi3B0Qq97d3HKaJwzgqqBIDKUXSkHh4uONwnBARpnXhPJ80YPGe4BIuKLgWg2Y6z/MMaTRuure+H5eu/jNNkz3flkVWekvLQIjTvTalCM73+rOemXIO5cwbQGGgROvz0uZ5MJ+uZZGc0wL0KrpHN9uHVMQENNoaGoaB4/FIU7LaBxa9RkHoKolNAnbvxL92+PeO/F54ot+TfVbsOXbwzH63O/WNAiStGaSuKReC7ZuKvNciSOsf0wCH0nYJbJ5Vq10Qurzl7jq2JlafBi1/6vjZxa7uahNk88DbX5uh6V+pmyFlH/i47nTlXKG2DdfpQvJqtF9OsxXKqePRNm+PKL/MR6YhEaMi5SkOlGUGhIc3twwx8fJyZslZaScOPn944O54w3Q48PzjR9bzBUpR6chSybU9rAp15Xw6k5fC8CZwni94n7i5veHmOHBZFHkXKYZsaMpNKgQXmQ5HDtMI8zNlPvP4eOJ8WaiiDYxU3sp0tZfaUVFnjticq/KYPWQpvP34kb/76isudVY6z7wyxUTwkH3Ah7ahGcop0hcjDuV2E1iNB16bk+pAUD36ebmwLos6q4CrAkuhnp7h8ZHL0zPPz2dOp4V5FeYCa/FWTKsbr/rIzp4VRqdQ9J+gUoK+wKkKYxFOSyGjCyd6T8QxhcovjpG7FDnGwCFFbo4Dx3HgcJxs19MN2PlIrU2SThedC0HbVz/cEW5vufnrv2b6xVeEu1tF6yTTquvVmXDUbB1OTRHDFTMkeFNZ0UWs89wcDeNou+BJ3iOGouV1NdnJtgdbMY0ZgSIqK3paZv75m+/4/sML81q6Wonb/dnwANm96MQCrR3K66AHbm3NOVMq0nqzaifRIHiIiTFFxhS680RtIYIZMCeUdSXEpGvQ672rgpFjOa8Mw4ExJm5c5Vzg6bJ2PrBzrTti491qkbi2aSiYfow5Cpp90pgz8nKa8aKys+OYtHlMozxVdrKOW6hSd2OyjeOG2jekp8/OVgnXXOpm0zZPvQM47ND+Pr6KYqjde+38i12b24UA/R8tV7b3ODdqw1/Sof0SwFWbWT0z1RxyKMWbNr9KC+JazUGjAhQNHp1YmnvfWbUFAxuv9CoWcmZX9wWhRsHCKVfXi62y9qy7U3t1I32uvHYKOr+2KgCkz33LxLErcMNtwYvs1kk1iqOZb3yI/f3OTfftOl3/njYAcp8EN9rTo/Qg6accmf2x5xrvqUidN9yyDXavzm9OXVOlmecZV6B6R1M7k+qhOnO8i3ZZNdWUMcae3VyWmTgeGOesqmiL8qanm1uen595fHwmhMDLswJZtagDPqXEmBI304Hb24kyRtZ1YV0XcI55mZnnMx/ev+Px4wfuP/8MHxzZGUUCpZiKKPzSBC3aOLhdh9JGM2o2pNVSUSvLPPP2hx/443ffIqVwPIzc3x1JJo2tTt+BEAKH6cDhMHGcDuC0GZYPer7x9miBBoQxcalr9wtwSnWsAcQHKnBeFsagDQ2dD6SYmC8zYg2LxnFUa9ccbWuBp70/mpLYvlDbUHNp9EhHy0AJ0m2sdn5tTjtbYOMcmHJMRed+m++IdGnYvRPrvWccR0TYyTDq4m2ucJ+7DTpprs0uIN3P70/obq8EEDpY1zfOa8vrQzAlIkNYzKkX+/F+Hrt3qYXitiB5AzS3H5Rae+0gsMsS8Mna+7ceP6vYtSntQtvOmlHbXtlaCnC1Oe5e2OGUrnPr2qHGwnM8RGJyfHi0amowLVR9CEMsDNXzMB345VcP1KKKJ5fLhWDRXRX4/e+/plR4enrGOXhzf8vd3cTtF7+gDiM+BULy+KyI97rOrFmbK/gQFNIIntvbWw7TgBagaPRvwAiVwjBFYhyoFd6/fSFJJvnAzXjkzc2RwxGcrLwsgWpOoxJuPIcUWSs4ycpFc5v29yULQQmAeO94ej7z8fTMm2mi5JXn+UJKpj+cV7zfdIdxajRFFL12no6+l4ZqepN1s0lcSuH8svL08sLp5cTp+cz8dGaikNaFfJpZLoU5w6UIFzDkt26GAoevMKZI9N54nsJgkep0GAmijjwFpCwco2NIAzdD5C4F7gPcOLhLcHuYSFH5nWrorLFHCDYrYc0r1pRWterjQEgDTAeGf/cb0i+/It0ccSkCRTvtmTY55hA3Dn9bPyFEajC921J6DYei3Rt1hN0mLSJkqw/IpWUfWubDJOJK1S6uIiy58P279/zTN29ZV43QLdztK6b9q+GFLXPXF7q96WDrorj7TjtPb4KE8uejcwSvvMAQPTE4hjiRazbEQK897NLK43gghqRotfO44ClrVinXcaBECPOCDw7Jop/BugqL/vZmEwWpreB7dx/uGsV/usxccukN3gIWENJAg9de97XFacHx5szrR1smo+42iGtDhBprdo516z7dP2TrqieTtk+7loGoAnKNfrbPeOe6rGjj2GqQ9lN38+d8iKHvQik6ho2L3FrExxi6cwr0LFCrLVHUe8sK5Zw7LaSdo+SV3BC89ox3zulPpeHb5xqq3hx+verNqd8XA0qbRHa0dHpTy+pOd2iv23TyDofW7eScO4XBh2uajKBTbRiGnUPdNv7GMd50qkMIVtt13WX0dabi9euvsxmNjnTtxCuiWlHOuIuBsq7M8wxVOb/jYSIlLfA8nU7q6FrPCKraEHHgfaLkrIh+SOAdcRhJQwQRinuBkHE+E4ZCOlSOItzeP1Cyyh3/7X/zd3x894HHx0c+fng0oCFzHEfe3D1AFS6XM3kdOhr79t07W2eZb7/7A9PNZE3rbB4GfSbOio0l1Ot8avYdKc3rqlkjUyWK3hN94Pxy4v3793z39TfUdeHLzz/Tpl7nE/e3nys/PSrSfHNzo52zx1FRaFE03Hnfnffq1LnOCMN0wJXMmldKyaRxojgFhXLWTusDnnGYGKYbxmni8elEiNpssdF7NbBz4ALO6R7qgzr+dUcFa+NWqlbtxZ00Y/cB6wb6tCXV90TAvVJAKmVTgXEG2jXJx2JrYRhHkzbdisMR2w986Dr2diE0kETX8d6Rl87T78Bm/4wBR2z+UA/yBfZOdGjBjGxqMyHFbU30MdmCWbHzUlHFPjvPRp8xlN/6nazr2gvi9/fwXwWR36e9G3L007vNNshq616l9LF6HASsk5fYIDQEMIbAm9tbyrJaY5dWhe9x0WvTA1l5uD1yNziW85mynpnuHzjPM+OYkFx5+vGRp8dnvB94Op346vPP+fKLL8gUePicP/7hO85Pz5QqSFDk/nK68DKv+DgQUXTVR6UeROdJKVGAx+cT6yqkMBBcYJgmhmnCx8T97R0fHt9zdzyQvOOzm4m/frjl+e23/PD2LUglBUWwPXAYB/J5ARRtalrDY3DMWZVHms4twfHPf/ie//P/8N8yRk3lXZbMcao2sQpSVcEmBI8zpZG2IXlrPdrURLzT9tbrsrLOhXVZOZ9OPD4+8+OP7/n47gl3Ee58UnSkCEWCPWVF7O+cZwyOMXjGGJhi5O4wchgiAS2AiVLwXot7R5cUsLLNUFYhuUgIQvLKmY947j5/oxJb+lPgHOOUDBEWclaevXg1TCRNV/s3D3BzizseGd7ckT6/x8dEo7lJ57A1FNjKF0XVFbyP5igWRYyd53K+ICGolvwOqaulQN20lxV8EFqmQLni3W3TNuNF09Dzmnn7+MT/+3/5B96fL8zShA13WibOaIoKAShacu1amvNrygtuM6oYeuNQGlMroA3OMXhv65ANIQmOwxjwPlFFA8cxJYaUyHUhhMA0jYyDZoA8qp0cAqTkKB7qqvfnA+qgO091AQj4okHfVrnvEXEUu6YqECqt/5O2z7arz0XndrKNDpHuxG9O1YZw7IZmQ0MautTea86LDdVGyTGD25D0piQl23f2RlYsQNkHXfaD/XtXKLvsnu9PxA8/8fKf/RGDY1lWlrwo5zdqsb1vyhulUkX1xp03/nML1gSKqXGFGLXWRmA6DMqRbkhqrVsxf4ya8dxtiJ9uijY7XFsINPalOv9ut3c1sGMXqDXq2P7coeula2dX75oqlVIXW1DZGg4lk6Zsh0/R7sMK5mvTktfrVf6yZnMPh0k10i0oaH/2GinvSa+u7/X1vh6TWqEU6QGJjv810gmasWQYuZwXlmVRmoR17xzHkWya42KOZ0GIwHgcKc6rXHGIVByXqrY8+EA8PkAujDcNlNB9bz5fWFdt5HjzcM/nXzxwfnnm5fmZFAMvj88E57kZj6zLSghfcDlfeH5+NmE8teMpDdTgWPKivkSIzDnjqxbkhxBVtc4JeV3JpTBYAW012lcDbnJdcM4TGLTb+XIhSOXNwz1jitwcDlqz99XnOIHD8UgaFGQ7Ho6qoiPCJWuONqRAMOf1VFarA1lYl7nX/YlArsI5L4QUtbZMHDd392A0Gxcia1HRAu8CHs2GpDHhLZsqogXl1eaA9oZRd7CaI9yys972nLqzfVJFM/Vm11oTqT0VRiGpHahRBan5KlBWP0SFJVqQY3B3d4jVhtq+1xBrmhww/Zq2w6yw0wXdiuH3za9ap1lsbdZqAYHt2TtjTatNqE2pSLZdIvdGb0oTVU347TccARCjFurrMQz0Pi1tT9/Vv3gf2KtJ/VuOn9cQagt9rvGvZhSEn1SJuMYG9R1NoQc03jTajFFqYtBPn86LyvO4jPOqhpHzQgoRTyFaOuh8mbk7HlSxQqDmypILl8vM4XDkj398a80k1B+8ubtnvVxYThfmeWUYtEHJ5fu3nM6Z07JyvFFEXx+eFvV4K0gpubBcVnCe0/lEGiM+KrcsBs/N3YHf/f4bpt/ccJwC9xNIXvjh3ROXee4THoQYdFzO89K5jMoHFW36VBSVzAK+qHP+/unM26cn/vqzzxj9QF5mbeZgUXyTgPKiutvQ5MA2/vN+E+tuS/Acxonw+cDxeODLzz8jz4UwV16++5HT2w+Ude0puOgjx+S5TYEUPIPx2IcQGH0i+KAqFAieyphUv3EcD4DXFOU640QILuAENXRGa7m5OZKmA+SCrBnlpQfEV+vE1lJcgXQcERfxtzfELz7Hf/ZAuL8jHgatUnfqEYtXBMYJ5vWqE1t6kZe2kZeqereCOoa1aFMkqZtTsAVOhuSJdrF1IqyGZLRCZNW2VxnRXAtrKXx4eeK3f/iW7358orho9QVytVKaY94ceO+aI9seYTOUuvE1wkgPNUSpW4pMWyfX4IgeHAXvE80ZFlFljJvDqIWGTjn0mnnyV/xZTIVkSgN5yISAdjHMSm0IIRC8o4ohkOYI1X36snu+VV+3uhsv22ecZTFsa7Gus+3rO2PXnPkd+gq63luO0HkLhl0DdWS7BoduVv27jTKwOXZqxHd0mPbRpkXNhjY1CSM9vaGaNnL7DaoRa/aBWb+ln2PJ///82BfRFUOxpLhetHwls1hKR+oaMrfWbFJ00mkN3is1w3sY00AV7cxda7Xi112X711wB21s3Vbz0RyQ/gFdU1fwlTn8e4T/uqmUzg+32wT3z7DdZ6MNLMtCGMe+ieecjd6z/UZzykXonGFV0yqKiFNxbpNMfD1n9sV3jb6wv572+uYwGT2IjVLRssOI0uMU8xClDzlnzpc31Q1hnEbqpbCuGVkyx3HAlUJdF+WWu0iJGrTFYYAQNTMcVPo4WJOwaDZkjIk0XliWmXVeuJw1KxmHyHgYwQo5pWidwHAYkFKJKXI4HrjMM0TH+TKz5pVhGFnzCovDx4JPkXVd8V6LNGMMSFV9+3Vddc8vBfHemjBaLUTjm4t1ED9fWOaZISVuvvySFBMpJaZpZJoOmpFy2mxpON6AcxSpxFg5Ho9g6i5OsOCnap+R4CmYqkoMDMGcUh9V8tEJ3qlkttZmOWoppEG7lW91Y94oy9q1w4VI8lpAjtnZjjD7LTPc1FZ64TioU86mXtOUu2rJJgqhgaQWsHvLIrkelG7ZHus6Gz0pabOyUpR60tbLXtrX7Wx3p6TJK1vprv6wtbGf741qo59q9hgRYogGbMn1epJt/WhGRq8thS2LKG2NtwCYLZvrd9l8vQZtGiXsg4uG8F/bjH/L8fMc+Z0/3ooP9u+1Qe2735UZ3I5tUBv01qIadVy8RxftuuK98spi8Iwpcjmf8TFyPA44r05RtWg255UxRNUBRxiGgXUtXNaZ6XAgDQkfAjfHG17evgMplJLJ1omulMolqxbqvK4UNDrNuXK8P4BTSowvpbdpzmVlHFXCMsbA7fHI03nh3YcT/+7vPDeHxBgd8+nM03mhVDFjoIURTc+1FURgzoRHGJMnrpp+yaKOWqnCpVR+ePeRr+7uub05Ep1uXKVoZXhvhtRl+fYIoy7QEHQs9rq5PgYOgyHSTeW8elgqH++OPB1Hlo+P1GUGKQQnHHcV9ykqTzE6RyR1TVvntIvocRpYL2cON7d4H8jrynIG7wLBJ6QI6TASB+0U2GgizjmqxyJ67Vy72nMXH3FGoZFxwn/2GeGLN8T7O8LNAZ8CsbUzhV6HAXT94EY1wri1tcpWCNfQA6k4+/3aHI7a9HAbNcLSb2harxqPvFoKTVOIhVwLL+cLP7z7yNd/fMel6P21KPwTB6IFXM0gVUMA9gsedUQVdbfP2cLs30fHM9h5VLXGd0PunWrKv3m45Xy+UEpV+UkHPsauANScVVW0CcSYSDGRrQOuiDAExyWIvoZ1gaw7FLsVdu4Vc17ZGdn/Qx9/R1k2ZP1VUMDmpLXXWy+EZmjb682Xl9cn2MwyiNsCAJvLsvudqw3ExqXNCZsZDWBqfn7/heYu7cIW2oX+JTnxsPG7RbBOn61WQrrKDLT16Wk1VA1s2Duj6lwURc7M0fTeIUWDJ02BF0Brp66Ucuwa2lraH7pGNHJWWdOGWu8/02I2RSrFTti56dBT7mL3vXVr3dZhpxg0IGWPmNv/98/RKIvWQNGcmJIV4GoFvM12bEdzzLc52ex/f7//2cLJ5shjQUu7dra12gslVQoxpKS2UwpBInEYCHnRzGNWtLWgiGReFyqaMSEkqBUfdrbKO9ublPbhgicMI4ML+DQQ4mJt7QUXgoI+OeNjoqyZuqoEdM2FJGqHJXiODqpz5FMhDQOgKKkUwUdvdES9N80maIGsZlz1P63z8Iay7iaDVNZl0aZKVQtjb25uTaEkaRHn7S2Xy0UDqxRxKWnhahUIhfF4w5rnTlUp5tA5H3BBEFf183jr1O0pKHoTHBrMeaWamqEjpth2BEKMmtlt4mEu2D/0O81uN9Ppd+COBtdWNGrBrsJJtc//dg4tMDYVPQNvAo0GW/t82q0oWxdbx9M9FK1dk/XZaH8Xtclt3nZXebcNtP/TraLVc8BWA9A+JBYE0+e9/l4DZTSg2lMhGxXHV5WY1IDKxrwF9EK3DdIyzOzAgBaECAoamh2stk73mb5mN/+142dQa2zwXm2SuyFh27HafvTakd+jjU6LBNuZTT7RGeI4zxeLWpwhg4EUAmsWDkPg4W6kXp7IRRgH7R7WWs03ycAxjfz47o+4FLm9u+H29sA4Dgxx4O2HH5jGAeeEdblQrMFEBsQHLutKrFXpKXjubo/My2yop1ByIaZIiJ4UR4oIhzFxd3fLP3z9I6fLwvE4cJwG84NpJgABAABJREFUnFSen184nRelbkRPqJUqzho1WScx781Z1JEbg2eK8LyqGkx0jqJN8/jx/RMfvjjxcHPg9njg5emJbDJYIXhCi7AF1Vz3WtCik9h3/WLlmCq/cgRr6pPwsaH5njIX7g8Dz8eJ0x9/YH18os5nKAuj1003BO00N6RIEK9Zk9ZAwgXSMDAdb7QyfpxIMVJChLxammlEaiUNI2kccVJZXp6R2Zqo1KwLsSgqVKQgIcE0wvFIvbtF7u5wn39GeLglHiZ8DL0qv6VEdcHoGNaqCEmtRQ1QUfWfUjNVWsdCQwXEnHnMIW98Oa+tyBuK0Dmq5lDolkM3lKVU1lp49/jItz+85/t3z/iYtKnIbtF24FpoTH42h9ftHEadj81Jx+Zn48O3xei9V148WMfYxouPNN64tzb3Dw93OFR/WLOGjpDUaW8BQvCeIdnz9YFxGCglEH0BcSTv0F5nGkS19KM6sHtTIbvrvLY4tM9dOfNXXr4OkdsKrnoqd/f/Tcdax3X3Z0Mgd3aqoUsbpmKv767m2vC1yEv6OVuA1VH/q+9dZ1zahtGymdKClF0w95dwrLngfMSHSp1Vvq8V0BXvqDEBGvCHoFkignHki+pcbxuqIOJVLjhGQkrKjc+LOo7Gpa4lwzQxDAOwBXjNcfAmF1dFoAopjpq1s8962RQkenBmTWKkiulAe1N1qZYWVzuRK0bRU0qHBoPOOm6qUxtjtOJFnV8xbPVlApZir50/u+ZFa5ucAk/RO5UjNIpHazzT2B8tXGR3373hmd4VZjCu7I3u5Ttb5G3Gl0YRqPjgSWGkNUDLi2ZSXAzEITFWVUk558K8rtqJtGr9TGVlSAlJkbLouSoF5wLBqZqN2k7B+0gWh08HhnRgGCuXWbP4YnPFlZVLgVIcboiENDA4RdGXecaXwuQDaxVWEZW+jEb8kIqUzDQdlVYhwjyfe6DkBdNGt6C9KPiXphFVXgEpgaenJ6oIIUVqFkJM3Nw+aJGp97gwMB4He16V7ONW/1AK1Uecb5k+odbZ6sAU7PQBqstoX2ko4shrJg6JmJJCdj6aXKbVyaWIQxH3YRjM7bZsenSqNFTE9oeAID0zVgwRd6bJqiBTVW6kQzPbvke1+r9SzfFtxdGOnHtfcUoxqVOjKO3rOXIu5HwGMGlLfX+eZ1JKOv/XWWVYu/a69eGRa25+o9x4r052o5spcOqt6HYL5lutTi6F5bx0uotzTqnVls3QOsS8UZCq9n/ZZ8SqUW2aH5tLtitqe4oGQM6FLTtWrRZBRH/DOPMA67pJ7P5Lx8+Sn9w2vE+3mI50ScOammX4ZNuyfVh65Kgp80xA5QOdV/WB4APP88zN8UAIiWWtrBX+6s0tn03w9vSI4Lm7uaVcLnz+2T2lLCxzpuTK6XTm+x/e8Ve/+Wvubg7c3hwYp5HTaWaIkVxWUgpczgtPLyeezhd8HFiWrXGUNpqKHA4Dl8vJuLuKMtzfHfFSeDnDMMLxoBqhH55nDsfEr798w83gmU8vfPjwyPuPj4hzXfbPe0eMnpyX7rBVk1dDtEX1w5R4XlfmLFo4Ko4UI0/nhT+8/8Dd/ZGH288Zx4W1rLgMypdOBJ9wvuKtcn1DZVzn4jkHwTYBLZK1lKZRKkouSC7cf/nAOA1MD3ecf3zP+u4dPD3i12WL7Zqd6JteUd5j9AwpkGJE0EYu0beiTeVZ17oSgmNdFmqtjEnThmU5k0sxQ9WcNfBphMOBcndLfvPA9Nkb4uf3Wsw6JSR6xNoea7G0GUzrSKsqCRt617RkcinkutLVI+x3I5G1rOY4tg1zj8gVU1OprLmoDFjLjFhQq/rRldNl4es//sjv/vgDL8vKm2kkz5lsyH33E12L7nfgj60v50zJxrVIvzn0uzQfmqGJTus7PEIw9RrvYBhGvG9ttQ2t98I4qHpCpUJ1FBFSDBwOI4IYV/7AYVIOZymakjzExGHMSqUShxcrdJVu6skiVn/gr+t6XQ9P7C5+wn4IYI07wCgM5kwLCgT0jzfnpDvV+tlOn3iFqEobcIHtwnYm7cp+bbauF7e2B+TQeoM9wupUy74X+zpnhdVtH9zClcap3678L+PQ7KhqVx+Px46St/+WZcHhKRlCaHQQ3wPpfkjLemWGpLrkVKHIqt0snQodTNPEXqe+NaIJwXe6IWzPpgeOYjmSXb+I1+nt7TzOMqHZUOJNbUP12n3vjdE2+Pb99veStcVnQ/Gb0x683nvOSlWodv5kwbO3TAROC0wFsSzE9W+08W1o5747+3Zfu0ZQ0lDQZvzQYKuU7sTrdzVgmI4HhmFgmRfWeabkBRFVVQlBtc/nlxcl35OppxO3t7dQC2VZiCTKPONMYtmPgpTV7IDK+zpMCtd5XAgc7+6R48AynzmdnpnPws3NAxw1IBuSdjStVhRanSfkhTgk7u7vSSkxz7MVcla1A1KQjNWWBZUkLepgzZfT9Xr2Hr8obQSpPL48ElLkMEzmdAaGMBCGEeKgAxWT2hwig3PEUdF6nCPUSkgDMSbdo7LW6A3jAJYhyHmleqFB6mXNXUse7/ExMR6ODMNEHEZ8Slov5g15945oc0DM9nQD1G2wp/VJaWuhO7RV+92ogmg1mVXXakaNfrN2R94K+oBKlYKrrs9BJ0BR2eXX66FPLjvCLrjt/Q6kKTu5nmX7dE7r9eddY8q2Ftp7mkWrFkRak6a2pVQxKq3V5vjQ6196JratZ8u6NfBuf08CkAvFV6MYmbRkLVQTmlZgUDb777Y6g/39/0vHz6PW8Akm9RPvNrzN7T51vSWV2pwUsSptk+9Dq9s1nR9Yl4x3wYrtCi+nE5+/uee/+5tf8s0//SMxDtzeHhhGz1oiIU58eDyRfESk8P3b9wyHGx6OR0UivUMk8/j4nilOzPMZBOZ55fHpmWVdOUy3vLx/JoZAupu4f3jDYUz44LW75CpUCUyHAx+fTvgQKXLi89s3HI83fHxZeHy68D/8/W/497/5Bfdh5uPzmVOeOa/aoGJdi8n4qUOY0kAM1RoLWQjklNf+xc3ExwXenjPPSyVFRwwwRM/bj8/84Yd3fHF35NdffsG7Dx9UOnM25AbHOCSqIUClOAseYo8266pdyZyhS60RkDq6gncV8SCuMt0O+PQFw8MN5y/uefzH3xHnhbAuxilXtCLEgcu6aHFwjNrcyMG5ZIITXFm4PJ8tDZe1MdQ6E2rAscKlMndJQIuwDWL2YSAcjvDF58iXb/APd/ibG/xhwg+aXl3n1e4lUYuNp0mGSVUjczkbKpaSzlqRbTP2iRjoSAFVx9JHbeTgqm32luItWT/XOsFWi2aE2rsollK4LAuXXPmnb77jn//wlrePZy3sc6LZ282HM/qLOhkhmvRllS4/1lZVc+L135bK9HTEPgZPAJITXVfeaaOU6DhOiab16JxyU+9ujzw+PnI+n3GWuYkh8vkXn5O842U+UVwFL3inBvDmeKsbRMhMU+CzhyPiEo85E0yWtPmrzQB3p7lF9nsrYqajY9d7R1q2FwrVUs3Kna4dHNg+u9l16a/VNr6yV9Daj+j1FSk30l053U3L+LWzLRiVQnTDl2Ip2yZrY99oRZDuVdOonzrnX8KxOZSpI+QubMhXWVRP3jnAbCM7fm+jxlSrI9krqnRuffu3d0SfcEJ37tsG3wL0WquqqLT33ObIb4tqa/Cy55MD/Tf1cLvf2O975nzs1vVrytT+31cOd60E68ra6S5ijFq3UXjwvtd2KN1o4xbv7/v17752eFrQsuf8w/b6/r63sWwBhQYvNQSQwDCOimjXSloG8rpQ1pWaC2GM1uXabHEVKEVVe5zHFe3T7Xww6T5Bm745pXuaTn+xRkPDMFrtkFPa4rqqQ+yr0ldkAhc4nZ+JMVOHQi7rrmOu0gpz3hzCANZTxBTXLDPTbJdmSjDnS8i1IM5TpBLEnnnQTFFMCXwgDIliKLUPW2MgMPqERfqNUhYGpdKUminiqE4pNjRArqhcZUyJOIwMhyPTdCAMg6kBeWsupqyHilJ6pTaY1dkYoECG6F7RnnkLmLvju5vze7valbau5kcLvI0kJ/a57kTXXuexZe03R7/NSe0hY/O3itp5XZV2zTud9z+xpqTt3c73TMAntEXRfi5NvUZpf5q7ul4LJm3ttnoewTL0YgXiIv0cbdx03erYOqe+Q7dh9meTuKwCMWkAp/vvv81F/5k68hvOXi39pokC+nvuagvcvrk/+iecw7lk2b+FGLz9p4jf29N7RSaqdiKrOfPvf/nA88d3vLusfPbmiPjK928/8j/+u7/j2z/8XnlqwOU883Q6cXd/T8Bbs4eVIQ0cpxvl1rnC5TRzvmRO55WQEqfzyRosaYHjelmJOHLNXFZhHBQpvlzOVHF8+PCeN589sObCuw9nLhLJeeUXn3/GLz6/I14yH0thniveBaaUqHVVaogpLqSUelMhLJ3lnWqMT8lxfxx5XB2P5ws3KeCWTIoDp9PCH3/8wMMx8cWbA7e3t8ynszl8mh4rVRVvGi/VV08VTd2kNDTPqu8/bTOqFmx5476vVdt/x+ipYyQ/HDn8/V/DxxfKu49wOeHzgisqzUgVVrQwtubMcj4jXid+cs6al5h+L1ooupQFRNNVvqIShpbW9CHgxwlujqQvv8L/9Vf4+3vi4UBICXF6rjBYhzrvyWvGB1248zKzyZc6gqXydT56vIuGsDcVG3BoAZaIyjF6F3BSCGhAtDaKTWmGyVx456lUclYqTS4qrTXnwnc/vuU//fZr3n48U2tkSIFAIMtCF53dGakhJg0JnIBvXUylg8YahJjD78Bbl1tFsIziAr0hSQy6EWgnTSu+A82CeVWRkKp1Cz5p3YcPcHt77MiU2la9Z8Qx3YxW4ATT6PnyzYHTJYJ7Bu/wovMJM5ZXTr0dje6Da1x/LYTvvq9gyDc96wBCCI5k6iTLYhsTu1oD2XOhNw9/r8rR3905XC11a2bKrrfvXj9h49r5do6cvOKUekepOqfr7hv9HBbUtN/7S3Lp9xtcl1m0hmJKrcNQbnP4G1d+5zhudSK+O7bt6M68KCrrd04IbMWusnN4talS2P3GLpBz23Xrb10Xy+4d+YaMb9emCKX3u2JRk5zbI4jtHK8RybbJe9kXp+4QYfuzinSZVl6tp/25Xl/36/c3BLZ9vjOCbQraOmBXr2DjLPa698EKl40W1oKDqvb7fDpRFnWgl2VVe+uM5oBp3eeCBOVEd/o2lnVwKoermYktgOv0JDtKrVpAWze6oY+RirDGhZoz5ayNlZztd8oHr92BVTRW92NF6zcnSwMJAw7MAU/jqDbYeP0hJkJKpGHQa3Ee3+oIvO49MQ0dYVbqqHb6bXKQekcVyUJF+djio/VMcfgE4+FATAMpjRxub0nDqFx0qz9ptJxucGGzUo5e+9XmewcrkKu5tAVybR7s5kttn7fiX785s6/nWSuG1suxzEC49hmdATyva4/U/Q3/otN+fa32mz3INvvRbvb1ITrXW08AMYe/KdBUy96o5G3a0PZ23a+uoXdr3QXS1/e/8eT3NqHW0jPGskFZ/+rxM3Xkt820hXN7XErQKNfJfqvdv3s9kEKjEmik5B1MQ+T2eFB9zbqSomfNmZorhxT54kb4/bd/wIejUi7WFamO9XTiPM+sVSUU12VlnEaOU2ItmfvbG5WOzJVSIEblPL2cTpyXBXGeeVm5LIU1Z8Yh2WVmznNm8Pfc3tyRkvB0OjOv2vijFlFqSIaMY5HKNET+7q8+I9QTL48fePz4wrwUdSKDI0SHrw5XlZ+lxI9qTrz0CFnMeTnEwOCVH5+BAVjWwhAcT6eZ3333yK++eOLvfvEFbqqs84oW0FZ8LlTv9FHvjH4plRAEkQJFqFaJvxVaKHqrlQem1hIcLqiDHaNnurvB396xPNxRn56RlwtyXhWxvpxhnakoJ1yKOqNVhFCdaeoqB7+idQO5ZGpVJLtS8aUiUQuDwnEg3N8SvvoKubkHD8cAOKHWrKwKvymrVFOiqXNhSIPOu1pU2ch5vI8W2aPohfek0MZAufLVg2tq88VTJeN+wgXraJbN6caFbyj/smaWdeV5Wfntd295+3xhts7BIVgKXXQDShQoGTENer0WW0PNGDX0gw7O45wiSR4ITkxFyJPMUA4pMgyxo/LahIyOgBIcxcG8ZG4PSrnR5+wYxsTN7ZHL/KKOc3SEoIFYKYXLuhDiiHOBgCP4ymlZueRMTInggmaz0CZn0uk29BiS5rR0Z83hjNbTcU5n9kd2tqQZxGajuoPVDKGn1mZ31Oo0tZv+LddoPdcGWc/FNQLVHR/Z/XtnlEXQ9LRKmPWNqaH0+F4D0x0o6HOnTSgn/EUdm9LMTjta2muBIWnRdKtnUQfWsQ3JtdO+7364T51L3WgqbjeXGsq2P9+2djZHfhe+9b/pPvtp8KYUN0dwwVTXNlpCQ7ZDsGLbEDqH/trRacHiK3qBnWNfHIe8UqGBTwKDNg7b3N0hzdaQqI3k68Cin7QXoF+jr7gdPaEK1Vkw5TSDog50RGIkBAWKDoeJaRoJ4T2nlxeVOr7M1nfBONnBfq/xCmPA+UINgRCFaNxvpSCohm2bAyKOatKb6kqoNnsj5zkH080NWSrzRVVlWGZ8GpT77nQPbrTLVue05mza394EMQrZaJniXa+LCz5yd39naloqqzlME9NwYDweiVH56z5FyNnGKalCS5ubOPKqCn2aidVC3pxX7f4csvVIcap3HwJjGrm5uyUaJedwe6dgDGqDinnrzf5QdoEwWIG0SiVSVflpT49uFKw9Qi5uP8c227jN37YmrSGj29Zor0my81vURPME29LcUP/9/qrz0DeFtr5pfOrI7695v/5hl0Fr4958BTG6qdkmXaO1n6vRkaQK67qSktYUeEP4Qwi2F2/qPu0aQtxc7LberD/u1R70U2t/x1P+V4+fTa3RK3r9wjWa0VuN949uUWB7iK9jjRQCKTiGpEb9/eMzpRYmM4DRex6OE9FVPjyv/PVv3nC+PFLnhbth5ONlRvzA6eUj8+WCQ7g9HhhixDsYp1E3EENPQwh8+Hjm8emZeV7QwgxVqHHO9dbYaxFyhduHiSCwrAvLCkV85zzP84JPI1kylzXz+cMNf/93X0I+8/z0wtPLhXnJmlkyI6k8dXWUV6u+dIY+tznvnGfNhTFGDkkdryUXbgdn2veOJRfePZ74/Xfv+NVnDxzGEQTyooVfOThEjPMHqLunEWothVozxaksY6yRUPcFU6E/WQFTHWloiSdNAz4MuCFRjwfKy0w5zYqsnM/4y4zkTMmFsmZKLaZdLxTTjHU+UKoqB5Q0kKtoMVAp2rBqmgg3B9LtxHB/xL2551xhfXmCITA5pccEr4GXVr1n5bHzKjq2fytKZMGC1yYQztA5sdRXS+u6oCOWETWGloNqfFPZFSdrYNqaXyjNaM0r65o5zytvPz7y3btHLot+NwYt7Gk7zjROrK7AOpNltYDAeK8bYK3Przm49lYwREV57ta1NXiC18ZW0zgwpti7CSev6EkjzIsKvyvv02Rgg1flg2FKlLpa8Bd2zSuKFm8tC9NhJHoPFXKBUy5UHINTZ1w5tpsDu+fgbsH+Hu2pm3Fv7zeH2GyKA0XPTLatj1Fz5rtT0pz0vVHaIz47562hNlfFSe28bS9qjs7exrE551f2UR+QNAff1vcmUSj9xB0o2V/rX8hRTDpXhM6VF9kc9baBwrUDi+wcAQw5DA4t4guIg7VYQZh3qoDl9s9M/974uA3tDy1QYNv4vbfW8sD1Q7TZ88qWdLR8H3za15sjn3PG14rbUVauKS+Yk1D7uWJSSk0phflyps1LpTtapsJv9mzvuOxpQI31cOWktTuS1zSa3ZrswfGmMtI5v86oY97RhF2Vu64TX2U/IbpASIPapehJ48DxfObDj28hCOuSyc8n8lq5vb2lFlX0cuJwQzSAz+HjTDUHuAfcRcUJVHxAtbqHNCBRkEHAWY8W7/FWJ3W8eyCOE/Fy1g7iw8yyzOS8GqAQVIQiiP6e2+orWOz+vUpMD8NIOhzsWSWO97dIdaQ0EIJKWQef1HkPUYUmYsSb4EQcR3xI/Vn1eSeQm+PoAiSV+A3eU21cQ4qkIXE4HDgcDyYYAnhPda0Tqy0Ut4k8tBS78x7fA196nZFzrtdhXAXGNheC1+4lTf99j+Q3f0LnnBhgAT5gwVnBeZ2ItVrPBxGzi9W6n1vQG4JRf9qa/3Q9/im6WHvtp15vPpfa5ya+4K6+I6LqRIVtDwl92VgAZ3WEYNS2oj6NtPM13/FPXFetKim6/b5l4dlkZ5vkLAJS5p+4l0+Pf7Mj38pX3X5gm7G1G706OgK13zevQri+aQowxEQyZzWXzNPjE0JlHBLLvDINgS/f3HC6FCTccH//wOPLM8tS+fJu4qOAhImX0w/kdeEwRuV7e5VGHMeJWoW8zn3yvXv7kafnC/OarVGNugfeq7OCCyzZI0QOx4mVwvN5Zl4BHzlfXihFuMwrx2HUiGxZ+Zvf/IJ/95vPuXzzT5xOM+elsJaMCw6c9AprVT0InJfZOsRuQ6cOs2deCuMRbkbPmDzzWpAxbMhSFS7Lwm+/+4G//82X/M1XXzBMCTFJrFKqNcQQtC2QmV/nWHOmSMY55aNmQyG2BaxUEXW2tk1VkQ/tZuecx48DNSXKNLHcLNRcYL6BS4Y5U5fMOi8seabmFUomm+ScD5G1as2AxIFVYCmVVQoueuLtkenuSLgZkWmAlFheTjw9PeGiBluTU/66tj4WSiuyNXnNloJu4ERDtvS+zMmrDREGH0N39r1DG04poXZzPEVVDRq3TXompfaovDnxl2Xl+Xzhux/f8/Hl3Hn72i5bV0BwjsN4oARN+V+qFgHr4rdAwx56d0G6E++IJkMWvSMFTwrqzAfvGKeRwyEyBtV5q4jqBwf9fXEOQiDGgcmauYhUfEgMQyKNiafnJ21EE0020JppVVHpUzGUvAq8zJXnVXrxUC6FJWeaQlVzapsZAHel907LbojlPvZ2pkHbO9tSylZ06upucLqzvQXPe9u0W23dfl1Zs/7dV5J9PbptAVy7kS04UQ6qrRl2n7Pve9nWe6vZ7fe2ffIv5uidIq1m4ObmxignOvZXXQ0xh3v3/T0FpQENbR2/Rr9fU3Fw10VxP8Ud34KFtq9tn90f/9q/f+p1ge4k/dTvXjnTbMFCd7Rd23fdxoHvOoK7gGI3Vg0IUod05/TvMkjXnxdDUnft6Gnn2cZT+vXTf7tWs6Ji9rShPTiyFMIwMIZIHEZiSCwn7eGSl5Vi9sM1eUPnCTLo+Z3TjLJlrlvzsFpXFX6okNdMLWpjtDtuwrW9QK8a5yNpOuCT8tZdVA3/8+XMPJ9xFWpeMbdKA4Va+twZDwdTEdH78jExHCbSMCji6tV2hpB6kXPwsV+z6uNHq/1xG/3FO6XpOE+IKolZq6jUpQl+xBAI48gR14u3QwzEpLKfWmZQKaZO0/iBzgQZPqWaYMBBtbHZprwqRm7ztmXOegBqcq96CqOeFB1j+hTc7OA+wGyT5iqb7ADR2rL9fLpG+ZtsrAZxTRXqJwPQn1pPV3bj02B2uxZ91nubu+ft63+NNrQVldOCZws092vspw4Robpm33T8RfQZNqx1X7Red31T/qXjZznyXmw43YYb7S7R/v/6BvonGkIGvWPeXibocDwQQuU8Lzw9n7nMMyFG3tw/8PL8xMMh8sX9yD9/8z1fffUldX0m+oofB0LyuMM9b9/9I5d1YbJGEeLUQay5cHP7wMenZ17OT3xmOtmPT2eWLOTiVGmkVkoW1qpIhC6YgXS4AaectMOlcFgqz5eFP/7xLfcPD5zXzE2IDMkzLiv/x//xb7lNiXdPFy5zpjrlz+G0QU5eT5SqvGXvPWVV3Vrn6fqtDkfynnWtHLxwO3keJs8PT4VLFoahVdjr8/ju7Qf+4fd/5P7mwGe3Nxx94EWU9uN9VQmcihVVKo+9GoXOB32+JWeyVVZrUWftXd00Ze2sEZOu/BiTIgC1UmumUgjJEYeEHBJrLpS1si6Z9bKQy4ElL9Q8K9ptFJeSs6Y3fSSj+jF4bfhxuLtlHAd9jrWyrJl4SKSsaMRaCiFnZJ7xqzWgwFGlsNZqsnVm2HabPDjt4IeOh1K4ZZuwKvzeG160Zhg9lK3myDs1YmIRj6sORFjzyrxqhub5cuHtx0d+fP9ovErRpifGCZZSwAXGwwGprqd6YaE0xKg5qDvOhaOh76aCRGWwOpNWTD0MieOUGNLWyTWEyJCGjhzUWvsmWKX0jJb3njQMpJR4+vBCjCOX0wLVMfjIFHVTudTVLrCyZOHbjws/PMPdEBijZ8mq0x/jyGIbZkNb9vzIUqtlFbQ0KF853FdmZjcG5uCYu9y4mq6hHew3st2m0jeXHTLTLJhAy0VpeNL+3IAMc3MMcaI7P24X9NI+Y07/9ruiTj6ymcUrZ27vzv9lHBtyLL1BGrir59EC5Jbp6kXd8mkQ1gLnlv0C62Tt2gasf3orqKX6n9jgrzn4u6vd/eaGNu4R9/282jvne6e3Hz/h7O+dq+tz1F3Qs0nZfYIeVoGwv/ZG7bHaFTs6RWlDfmzO7maXjWULTPdHW6H71zuVzRZFrY1KoXQK16jZonVCaZh6k68YIicXSCEpuLPMVJwWtRblIIvVFGBos+TVICgNGGoDmKw4UX/P1nGP8tTYiXMU469754g4Ju9I42o8dlWTKeuie5KIdge2XiJYQDEMiU17XTMM0/FIiEm7qA6qEOMsgAmhIfBeuere41tH9JZNaXMeBVIcaJZUAvhKqVltjiHBuI0m5rUgCo1CfL8u14AGAtKgAkdXS3EWILeGS6/n90/N0U+Pbe7qVKp27Zvdle707s7ltnNu0uu1r2epbPusveZ7ELtxOJqd7xRK+fTa9H6uzOrOqe8v9D/tMfc53cajBSxXcs+vgtnr375ez3tZTD65lpZVd7s1qfUZzgZoT437l46foSOv/78tp70b30ZArj7drr5zmkR259D3vNNUqQ9eNTNFjbLKTypi+Ob2yP0QWVfH128f+d/9/d/yj//4n/ji4cjDww2yFuIl8+79ew7HI1NQjvB0GFiWE7/46leE8Uh9vgCOcYh8/933rDVrtzURkMrj8zMhTkgtHA8jh2kkpsDdTeIPX/+OX375FT5mSp15/PhMXtUBnnNlXivTGLi9Tfw3v3zD6e1bHp+fOa+LChs6LSJUfv6Al4YiNi6VVyTbnPiti6ZKTSUCD+PA25fMKQs30Sn/WcDhcWnk//4f/5nPbybS3/6Kz+5ueXhzz9PjC8tyYS1ame2zaoUPyQOB4AekOspaWPGEJKaVqkYnGzeMCpWFKl4zF1XIXiP0Ja+GYqg7FTUyIEtFgsCoBoRFi36cqCTkkrUeIZNJ3nMYI4Nx59MQjIdXuSwXax3mibEwjJGb2wdVVImtE1umilfjHBUVcRj6QVvUraDp/8vdnzTJkiRpgtjHsqiqmbm/JZaszKy90NXVjZnpE0BDNATCCfjruOIEwgxAPd3o6a6qzFje4u5mqioL48DMIqLmL6ojiHoOGZoU+dzNzdRUVURYmD/++GNIgazOROGpO9QyaJg4ArPDKMUmPxddXNJSOivFxoKjos3C0l6w7wUv244fPj/hn3/4EWvKKEWCtcl7TCEgOBLFGwDFO8TTCbTMqATw58+ogYSPqpmV0eUMjjBFRd9JGm9Mk4cHVOLUY1qiopcMVq6u90FTsRpQeynMissiSFGVGpJlmTDPUQ2WbCb7nqT3SxXNW+ccQgWoSkHv88r4w+cNHzbg6/M7DaqyBCox4Lp1B+1oJxShbv6uGnyo0TMbcmeVzAlumaL2uwbGihi+/mS3TyN30hyAJnEp7wBZ6lP/v5kzvWYeEV+gzyMYgqzjqJ8+7j22MXYJwF+bIw90B7Co4ge5FsU0h7Dd/9Ddd3R6naJ/4jx2FJ+ob4QGULtgSjmCVN47z8DofOiGiu4oAKRc4n4tncMr40XkD/PyS/QZ0DFYuOemjxKRJXdtbWbWzPCXEHdu88acRxg8Rsd71ItAo5vd/6058mhrs4XZRLokGGOBsaCIDE8BuQr1wluGFr5dQwUQo0PaNxQizPMJtTCwnFFTwfXlCdttlzWrQBfnKgGY06BOGwGRAhnM0hDQkyLUMejal2wAkwM8GsqaC0tgTh4UCFMIAEtjqCUtAFfkfWsUp1oKqAI5pVbXEGZB3EVJpsKFgDgv0gwrZ8zLgibdyFLQSla07YU6Q61hHkS8wJ40sxTfqpNtNq8m1+ZHPM3H+eW8JvCc0GDFIzyOd7NWUkzOLN264Qglpz5H9VK8H7uocgskAVlvHgMNzfyTqkoubc5bwCwBtvfU10yVXgHC0+9ets3cWjNq0SfAAh6GKcBEAxhDwSiPDRn7utQJbSvr8EjG4LwdjRZ7Jx2pdsNZYKjBs2W4mAVIZRsT9S3sjmzdcLa8UAcNhF5pEQ6aKl9ta6tIcIb/PRx51YTrkfhxq6GDNTNHv/YoR54QdJ6rYWCwdirbc0bOGoERgzxjmT1enj7h3/7NX+LxPOP7D5/w7vEC7zK+/eYN3iwBgTw+vRR8fvmAaTqBygYfCadTxOPljLolvP3qK3z+8AHp9oIlBnBlvLw8Y73dkHIBA0hFpKsuD2/hgyCcOWWkvUqjp/OMJQZsKaCwcC7n04yXl2c8vv9KOHlg/PVv3uDvv52Rbhvgo/Dut4wAhzB7PN9WBO8al3rbE06nGZtqiA8lkwCswMNhniIeLwH0wwtyBfYKLMGhAsg5wcWAjYH/+T/9M+ZJVFveXC54fHvB85NwF7lWsBaplCpBEtXSjB+VglByG0lblFwkwNjSBlZuKpF06mQ/bMAQmcktmQHoHQJdILgKRIrg6hAKI4SCWCscnSHpSHXekbFvK4IPrYjJeS0MrQyXxRBMk+jdT1NQNM5rB0STb1SjMmykAlyIssC+XkVySyk11sGT1bBqNy0wV+n8q+hfLbVJJALcirCSBibbvmPbN7ysN/z48TM+fH7CbZfeA5ULgpdrnyapV9hTQmXlYzpBrR7fvgeDkNcruIo+r2nweq4IxMJ5V7AuksMUJjiS0unYnouNpVe+pdQmVOcBEtQmBI+wBLjo8fn5BlcSlvkEgJFzgidpwhWnCbiuKJVRmOEmbWpCquKTC9atYisV53mGm2Y8XVdckxYHQRUgoIatObTN/IFBqCScf08k0qT6V1bj0+enhTXcggDzU2jokHqoj2iGURGPhmCRNOxpNSz9fKSflY/0jaQf9W4jMcfQ7k3fbzaToLKTw0UPn+tP5Nd1kK5NCkG41NQ7W5MLzXEYdd7tc4A53d1fCWHkg+fmgFhBaLW28gCcC8M5RMVL0Osjr/zn3schKOAjmvkllP/nop0sG0krvPPei6hDZVUai+1cxQJYpUkYtciayQio0BvKvEYUj9dggYz+9qVEwpevv8XBmjUtKq9MslpzBdgJpQUgnB/fAUXUzMg7nM6MeZb72rYNe06t8D2rTGUtAqBwFsdnmWNroFVqbaIZgNAUyfVGgKSKbXJXALii1CT9U0IEo7TsJAFAyQguYt1uUhwLGQuj0lQA5AMoCEo/LREuTihJfAmvhdu2d3WwodsgJrJ8oWQkBNFsz3GKEXFRr5/k1qTg1WyIFG+TBk+lJsmJKmjhlA5Kuq859GZFNn6yn9Q2gMHFFkQaT9vqBMz+6Ye1Bw01id1aLLBUp3so+KxVEWb0WpSx0zKR0EJTZaS0t8xGySxSoi2osHl3pIf9NL1NRnQsPpV7Ut/AxkUBSNbgyu5f1iB6PZzec85DUzWSNWrlPmUEA/UfCzgcVJVLvF+MGQvLtJg8rr1+T5v7qeMXd3ZtW5U584yhAE2vf0j/G5onajYDKiIva3TikEvX4nRUEZ1HcA6uZFyiR8kFP376jL//27/E9fYJbx5PWMhhXzNuqeKWpHXzFBzOpwmnSbplkpuwbgmfP39ETRnBO3z+9Izn602cBpYGNcyM0+mMaYpIecO2Z5RiCAcjeJmIt+uO7SaGYXk44bvvrvj9X71VB93j3/zNn2OqGR9vK6R5U8Q8TaDCIB+Q07UZ45Qy1q2CQkQtV9FKBZpsFBFp9z5GBOM0A+eFsCVWVEuQfCLCumbQPOGPK+M/flwRTlf8tZ/weJlxeTjj+rIql7mqdC9DSjhF7M9pUaDfEmjxKDW17qDei0avsbNtBEsdWjRrpFmy8Py4Vm3HDVVvyVJYROIg20J0LeAVKUeZHqIzbIZOImMgOJHC9E5lJAEYscxpcCGRshW2kYEdavtIkQ8PQe68BE+lKIVGFAGIWe/X5nDfLMF2P5LCzlmawaQsygYpi0LNbdvwfLvheb1h23fUytYUDyF4zFMUFaVSpGGVk/uSotMANwc8vgH24JD2VZ6lXqfniiU6RG+dVjtHnioaj9J50UF2bYOPiDFIJkHRL2cbHhFqyXi+rXh7lnbf83LGw+Mb+Ojhtw0xinwOV4ha054EiVCJs1IKUpIi14dlwZqTrMta4ZxvyAXB3znRaDaBWZpJsc4na29vCELnDOumpc5yUyBqKIw5eHfIL0YJ3e6oN+vWjKhr7x9t2T1abrSb1we1wi8wd2lLvV9bF+0eFYFmvbljZ+w//SPtgqp67xGm0JFedXpLK7TT9YYCR4PTqo4Fg4EiTq3Uosj6jnEWmmKtSCUjUEDwodmZnJNyfjWMdE7PqQEi+QERk8+Y3v1YDNv/bly3Cuv2avrZPUtgXaGl46WtAaH8yNx0GjEya/dlRSsN8Uyqiz5F/0qNQ766S1RWrmLL1L4BFd5Tcw5Gx6dRdLhLOfZDZnjVuiFrjCPfbw6xOJ/SuFYBpSLSed5LqlgcTdeeOci3zDQprXBxb1BTgSHtnghzjboXMCIEpGlZEqsfKNJOx9SLRJVI9iZhZ1RV4u6hvyO1K8wQt0qCJgETpdNpLQUuTki5opADYkRQ8MMpt53ICS2TfAOFyAfpacGsfgVaIaqZIynSloJsQVjU8riuO27OcakVrVW3Xq/ZOnmJ9A7N4wuC5juzTr3mg0tFqhVcVYkHJHvHAMwSqQymTQESaU+v12Xr0+uakk7KRv2xvVjuVmyYKJ61SqAqc62SNkpUTXbZn0mBPAKxawCMJ6CkHQb7GCpuc6vN1p9w6M0h7xQiQ8El2Bgx5p6FO36+1q19llQutXJf47VmuAqlOWngZGdkefbj+ixJMkG2HsUuSSOufr09yPm5xy9SrRlv0+YUN2TLXsT9u4aHZQ+yRxz28Ky5AgBUJgQfEAh4e55RSsZ1T0il4C9/+zW++8fPeDxfkNcde84oIBQWve54mXBaovDLbzviHPH8fMN6vWl3T4drzrht4vg355FEPqvUgm0vqOSxVyDvmyCpJHKBucr1xRhBboe0HY/wbsdXby74+7/5c9yePgnPib048vME5IIkwDaC9zIhWXj4BSqj1XhSYuido4ZYAYwpeCxBUXKyJSITbC8J0QXcKOCfXgqmjzec5wnLEjAHL9fAgt5L0YYiHPAtNUelIqUMH9Xh4ipgtevNLIhc4/aBGVzGNJFwlXMt4CLITGmFIkI7MZ30w3yopd07k923OO/NcCp3X1Aq1//Tzc+RbTCsm7Ok8uBcTx6Ra7xF2ziLUocIDB90U8qG7um1m7NNhAw0ZL6UgsKMVDoav6eEfd+xpR23bcOektCTWLRoPUGkIOeIGDz2XQxa8Kpd6xxYN4zldEKgis0TkveSDq2MwAXTZKlsaogGVemqGrxIq4pig6UDA6Z5EsoUawkAV3j4VuC17xlUpPGGDxFxmgWFJ8bjwwXEKulZpQlWyYNzRaIfkVl0j533uO07Us4AC1e5wwFHq9I2nGYoGMRO+ZcddR/T+uMMInRHmXQecrM/3Iz2yMi/d5H7ZuAG5g/p3Bm5nhpgtKt6fUajXnzhVgdjyMM9C8WOxzfSF8zpn/AhThhEJladKec6Qm4ImKFugqrz3YzRSKqNhbxma6Ct5zuH3Na6ndt+745sRyl/Cq22Y6ThtJ/b3/q9jp9nHOUw+7izztmO8Nt11aK9BtiaEenmTtIXYnTMX01BCxAPDvo4P82xPz6r7gf15zZSLQ4IolxtW/v2DcMpugdLFujo7wasQJw3UZmReiTvpFcHxmyKF4ojrNcK0BrzqeSY+h+KEA9XKGafuuoNAcxC/5FfNANORkWRhVcrg4IXypAXOU35s/DtfYiSxXYi2GAdVKuufdYxHUpw4LxrTjPs+8gcWdv/9aptrmiQPwg12mzTgE1+Nh+hO606ZmLoeyDGCscZUDDYOvvF5F/vaWfdyRvWF2wtoC3P/vilZgK19q6nGWBfB9UuaFZMbKtxwxvYop19Zaz0Pq0E4s5AfmnNjgFSmxOHGpGOeP/Umpf3DvYDR3q4PMfa/I72bMzWDO+tKo872ojxvQJu/ss26EvHz3bk7zcZW6lihOxPfTc1E8eHE/BxwowfU3TN3hZDRCTGb79+xHVd8bRueDhPeH8OeFkuOMUTfnzecU0ZlUn4ycw4q+OKWpHXjBAZ1+tNChMBFCRcb6toe+9Jr10Q8AqRkty2AoQTSi247VeUqojnNIF9BHlBNtO24uHhAbc9481lwd/8+df4y999jf/4//7fEM6P0mXTB0xTRAFhTVvjXuWyo5SCaZmxXWuLaEWWyThnJscmaE/wAZEcEAHH0nksM+CZUImQSfRtf9wA+rTiNDm8vUz46jwjhgDMgk6mPWkXWQcmB88MeKF95CKpIynEUF525R40qDNv41ZZJakYalSBypJiLMzSA0BRc8bQqp6oTaNairhEBBBJK+QYQ8tOWFc2c9pjEEUi+TeoOk3XfrVnydJqSowC69WTdgFUhQSxT7YhyowsOSv1SbIOuVgQokXBxoUvGaVK465UCraUsO4bUtqxpSROvG5IJsEYvMM8BcxzQHAOORc4L3z26h1K44ISiAL86SxIZtikIKsUuJoFANDUOxEBWZx47wAfnfRJUM14JinsnecJzhHWbVeZVcAFL825SsFWCxbl0c/zpHUrO1Le8e233+Ll5QmpJHiElm6s0LH0AVxEv7gyifKQBjFGeYJtBpbqMRvRnOjup8lYAVwAK65v6i7gXlysH2xWZXQ07IXKulnq72qF7TJGe2mZxv75wXxhmCu6if1UQMBm4HUD+qm6ABjSZAGRbq70xff+6R59Q0Vz3NvcBUkGTu1IVQfTuy4tKlSLjlJJ18djx1VzNN3da/b5IxJ9DLzA3Um8/+yXaDJHDvzr+z0AVXYe/ax1eyabfFrgXavIu+Ys9Sa5FoQQWtdoVltr321qHv0aRwfLnLT7e+B2Luly3a/5/plwrV0xittq0/vp8p22ruhwHnMsxWHvXZeV0qnXYpwEQ2KFAy1Sf2T1WUToGk/6HVVfcRB5Rv0ur7x02L8ArKNnHy7p50JKA0EVR96DNIMgHHmTXPQutgDrlSNPTn7Xzq/U5leXcySlTJDdu9rBpmJj48kFYGnk54w2pvajaoGUPVpyR6UnCQIE/fVKFW00FGhAXBlM2rSw7ZUaYGlMYxmBvjZt2I5r6t4JdXS/CES1y5mSDrrClGNTeulrSP5m6xw9KGC55sZdgZqBYWzbnOPjGnGkNXJmq5vp5mFp3M2rYQ30QMoCR1ORsmDR9g8F/YbN4J7OM66zw+v6bymdIz/am5+LzP8CR96M0Rh26c3Yuu22Qv9wb+MkmWNbnXC4nBQ+QQpejW+6zAETZXzz7oT/8sMVcMDvv74gvfwBv3l/wfPzZ7zcnvFyW/HxacPT0xMu3uFNnEC1Yt8T4IQmUUtGTjusYGffV6R9BzNjigtKAbYtYdt3nM4LKnvkXdDoeYqY5hmn6YLldAHTRyQt7Hv6+Bl/86/+LX58fsa/+4e/w//xH36PUq4oheCLA2pGralxNksumpbRlu0k2uF/+P47dYilCyYg3PhSMrwnbNlhqsCi6bPgnPKHK0qSdFmIC+AmwEWk6vDdc0auz7gsEadv3yMGSQeeo0cOoTlzUGNjTjiIsaUdwUtRLJxXSgjp6JMiIRYSK87pxAAFZnBg1YFXQ8eCRsQlwDlNk9uYqwNea4VXxD2YzFjOgrZrIxPvPU5TwHKa4UPApMWuJg3mFLVi12kwzksQxEDTfLfAgkj4jKXWFoQmpYIwy/sKCzJWq3QXzqVIjQQYuYg6TdrFgV/ThrSL3u+6Z2x7QcpVsjgQdDfEgGWZpMMvA4UrYlzAcUJW9SAe1pgPAYs7Cw0n7eC0gcuuG5gsX6497TnFgBCkENY72WRQK2L0iMEDLNmRnAumaRZNZAcQF92fM07LhPPljH3f8fz8hJQSLg+PeHnZsO8Zy+zho4OjiFQYLig9olZVf2K8rCs8JI3uPCF4RUthCIUqHqCjfNKFVa578oQtVzCMbmVOD9rYNU4fd/ske22T+NHN3IPACGqPCoBs6X4z7g1d1c2PB+fIgj1DFfXfwhjsmV3XUerQxlHdmsPYioF8bU9lOf56nHg7GqVw25pjX0pBThkAoaid6Ehj31TkpY6efYmHziw2xbd6jO5wCEVFiuCDqoUZ2qyCH8IrhgxHqcKjFsBB6IeGUI/XIFcpUaF1fx1RzIYqq4NKVRUqStVeJTaHZN207pUktJEYozQj0g7gBCint921BjAjl1aBIH2EDmNg0Z309p72rO2Q4r4yIJcd/bfcUYUbuoYa+AB0TnALIkAdlWz7hn2UwFbHY8EAeyAXsWtGk4S05iucAbCCFL7RBitXmDKZPXvWvbY54T3c159V9QUVlQnkgtjUmhAgRZZyqa4BTwIweHgfdT3LvRQ2z9w1Co3sS6yNzxieREeeYbRAtTXVZJ418HEmhKFPqdVp+e7cQ5xLsx2jOlHlKmIaLPsdaQBltRNgoXwAaLRi5NqKeW2Y7g9W6WzZGwkgkQKVR2RRUqeGWR2gOdIG4krcbHKLrIGd+hfOt7GzoXLWWMrWlbPbYFV3g3nU6sIMedLSKbLkenBSNUvwpYD91e/jtJFPH58LF7Scr34mZwFqu2pez55X1mvS4au1IhdZVcGH1rSyVMaeMn7O8QuoNfebzbAwbKP9wnH07bm9Nv4OSDEd1wpH3DjNpwfhpREDMwiP8KjXKwpl/PD0gn/+8RM+frpi3Sr2VPHX7y+IDti3DeuaACa8/HjD5fEdyHmkknG7rfjx40fkXbi6pTD2XbrBEouzl8lhTQWn2SHEgO9//Iy/+vPf4uPHH7HfnpHWFdeXDT5OqAB+8zDh3/3Fb/AX5wX/+L/+R9RSsL58RuGMpJ09AY/rWnG97ZhLhvcTfFzwckstI2EpKuHGy/MJ84TbKuepYDyeJ/zh8xWn8xm1ivY754KH5RFxfkRWq5iZ8Icb8P/499/jTB5/8c0bLMQIRJjmCSCPlHeIEotE40xApapKPl0T1Xuv6ThZXVUd+OgjaulcSue8oGheUoqx+KbfHoJkPaapb0ZQ41qryG8GH6UASY2OV6NlTYhiiJiWABccQmuooXQZkKiD0TEZH0NUeo2iT4qqwH6EoGGGjggKL+o0RTvBpiJZhZzF6cg5I6eCLSesacdtu2HdNxCAOEVc1xW3tEuwVMRYOGb4SJhnj8fTjBgDrmtCSkWCrMlhc4TiZC1An1F1aEWq5KWolh2kHTgAVOn+54MUiMYpwnsN9pwDuQjnHS4PJ7x7e0HJ0nHVF4e377/BPBFK2lCybMzL5PBnv3mPOEU8vbxg3RKmecGnT1eUlBH8hClEkc60uTLNzSculZFSgYfDNE+og8O27wmVqqS12ezAfaiv/09a+kpDxu/ODLHxk2Gb4p0NGhptMEGbwykVqghONZrkjhIeT8Xt3xF1PP7lkB6VMAWNeMN353SuqS8A3OoAjLSj8fQri/unfGRtskOklC7vIX2AxdmN0VQ5ZN5bQWqTiDwUfYnNmaLDPS8dwGGztsPAFKPYjK9zFdtmBab3KW3CUd1m/Oz9Maby7TMNnWOZF/a+liUAmtNjWYbgA0w33BD08XvHZ9IDBxyeRaPW3N+vOpZ2d6/WWL9rAHfODtRRchKASL1V6c+HuhLbl4h07TUDO8kBXFttgDiV6tip7KYjFvUuvbdasoAyRh+5u2pT6+x0GQxjN16TBV+sIILuvT5K5lj15GsRMMI6vTITciogL3VIzhrkddZo+04LnEop8CRqbgwpiuwBFgkwQ04cYvNU783ZOP8sSBzmvPqyHSi0u9Q9vNXhcEXNBObehVRoQK6JmpB+jofvcySBl+3JsnasgaTUa5kUqchqmyMt8zDEAMt+GdWHITVRUgfnWn2bOLhCE7VAtd+93Uef4/cz7VXGDXK/95kFoNdZAGKnRsRc6hWPz96abL2yE9Rrb6ReLGGeZ13jElQVLdqWjIFTShapqpJQttNe2jWVIRD5l46fryOvqUcV9TssnqqoUueg9sKMcSLAULVW2KXvYZKCNFJnSyfNn//2W3z4vCLOEbPzcNVhLw4/XFd8/2PCh88Zt02M38My4S++moG8I1cgVdJOccILD3HCnjNebtJlVXxH4RZb4QWBkPaMEM9YlglAxvNtR3gMiEGcsceHM/z3L/jw8RnL4wOe1yv+7//nf43fvz+hri+4Pl+RcsHj4wm3bUPSbnV7Kfj0+QnTMgPE0tLeTbjdrpKJIK2mVpQjlyrV9wACAY4LCAXvH0/47sMLUBmnaQJPsyDmyxlumlF0vllb8Kc94//5H/5/8PgdfvPuDc7zDAJjWU7w2SOlpBtDR0Yri9yegxTtIFdkYkF51UoS0FLB7LpT4r0iG9UJsq4ohDhIwvl3LEYMpEXQWAAmTHESRFkLckKUNt/NvSMHCtIR1+sCAPWUuaEeztA6FU4nL3PHHH/ZOKFFVKK0I45gBecCFCvYZdTMrYhzT7nRaPYi1Jl123DdRB6THKGUjKfnF+wpC61EuyUwZHHO84TLw4MgMqsUiy6Thz8FXF1AQgDDA1w01WqcPAacyHc6so0jA0ndYWZM8yxFrs5UfkSZZlomICzSrASShZpBuJw8tn2V1uO1IlDFu4cHTNOClBNqrnCQZ/358xNKSojzCefThBgI27YKqlZJ/mNCYYc97zip7jGz1jx4B5bbkvmCXhh08NMHKGaIuXT8qW0W9nlDeIw2pe9EiyzsvJB0vbzTyly/FEYMMMMICxnNjblt1uO1m19uqLDYSjR7RhYtKwzDej+OXEONNEelttGoNr+OI4SgzjS1QlVzxg7I2OCgFu3uLJvjke9t1C5/HMDDhmt0TaKu6GKOTBvDlomBFtT1Dbl3bkUHkgdnuQFTNsY6oe294pfJhyzbZNf/CvE0NHFEW61+h3oxZEfGX2ck7DyNFqM2l1x3KKsVDXMHjkwwQG5JI062YsDjbu+o/9ay84bwOyst7VErEbV9xIJU440zoPQ2pWwO36ieOMxhO94zadMpvQpzODUY8tx7BhwcsDZYkKyy3m8XbtEBVjCJqbOhiU2AwgQfqF2nrXcb2+HbYE7s6JWbxnp3wtFswvGeexDm1Hk8HNTPU7mD4hactTFtU0MBBl07enUa+TQIodm1Q4DUnr3aXqUqkjrykn3v6IOBgLb+em2IEQg7lVCWvdFnan+MNh957LJNnaXIwPHJ9u+2a26vDXdja6GvgaNzf7C7Fgyz2KpOYXvtyFuUxlrcXoqAft7Uk9QOjZQquUVTcoP6JiZp/YWb+4njFxW70mFzPDrzMGeoE1mPG7Rtmm33G7dBibo755CwTBO+enzAj59FMnIiwp53FMz44emKDy9XbKmgQjqMvn+Y4F3FdU/IhQAXUVVthrmg5A0pbSglI4SAPUs6V1RrVCUlRFRmBA94J9kBHwjkPM5v3uD24w/4/LTh09MVe9pB84SH84R/+/e/xeVM2K4vIOcwzVEHp4qMZQZenm6CUocgUow+IBdx/LZthw8kEbstAEiq0IMRnFBtCIy3D2ecLxeERRxy7wPm6QSeL+Lo6fMThQCH6id8fPqM/+2fvoMD8O37d9JEq1ZM06xRcG7RsRVt1CqqAMxoHL+kP3vqvHVQl00iZo3aHQIkhTyiYN747orAOHKAk5bqpnsuMpIyz5zziH4ySweGOqj6fTDuoxMN+FISGFUKkJ2mrb0Dw4E8Gk+bAJU24D5XVau9GaIqTYxyLig5I20JKUuH0j0JDWvdVlzXG6pWpueUcV1XXNcdSaXIuH2nIDrLFLFMAbd1Q60J3gHnecJ8WvApM1ZmZHVMnXewzrEypAQmkeikVqgmPMQYHeI0awEhCQdUlWtcjIpAs8qoRVzmWdQRim4CzmMKDg/LCQCppJuk19d1Q0kZzksGqOr3biWjZTTASAwkdoBzoljAOqdoNKqkj/24UZm9GPai5hTz4PjwndGx8zPQpEe78aFuamAqS4TeLG8s1O4+DOj4RdR+H3YQK5Lr+/HBsFvr81a3oebOrN5hszSvZnCbhBL663Lk930Hq1BA1oJyAA2xBNDQLktBUxWHoRRuKFXT26/j5no8LHUudsRhmqYDOs4sVIIDgq7OIQNH2T1A7MqBvsL6mjnw5riOmVX1kSC0P/t+OqwHyP0yGhpfzRFnRkFuxYcj33/kJB84/9wLVJvNhNVaVeVtDw5kM3gAakf77bXmVOvRHR9bweMC0GyDrcIhSDK/uz8qc9p11tt7WWkZw1iM9+OcQzV+tdMaIDubziNyTgpmXQed2nW3JczNoRbhicElVKNBLBx519x2ceatI7Ejo1wRuIzOH9Bsk97b0WHU7AwzyNR99PpRVdoYBS6osgzza0den6cFwrWKho3VkdlcM1/YsjpV0fCilCM4+W6ZT0PNSXO01X61Jl0GtjIcpHEhEVqQDFLqDaAKhK5lSMA9w2MKOS2YNN/DOuqyKdV0Ck6FBrRVn6c+CPNLrTjcnvVoX6C/f8lWHN6HPkVslgLq1pJm1FpRq6yu9jOrVeACVuW9lISe57WmwXuHOmQR89DRGJDaoeaTMjdZ1P/a8QvlJ78c4fTX7AduN9/+QMe/yUllGYtKif1ZIr7LZVEnUxxxFwghOGzV49M14eUmSKIj0c1dZo+cd+ypIheHyk4K8LRAqpQMzln5U6QFRoRcpJixsjS1KLnCcRHKgodSCBiXyxkv33/Ah49XfPr8IhKEueJvf/9n+MvfvkN5/h4v6wt89Ehbxca7OOI+gLHjuu6YVTUkTBG5ElJO4JJRctbiTtcCAEdkYyuyTLrtPzyc8ea90D5y2kHewc8zYFJpXFEhRayVtHNqJXx4esF5Ee1d//at0lcc4hTB1YsyixZxmnEWzmYVGS2WgowYAKGzuF5wQuo8qvNJED+ZQG0T8s4hTgGOPIKzhSjGI5CD86J93pubQDfhoJsJYNWJ3qvmtJeueUQOhSqsUZNwJ3WDdqEVoZAzNEWVELQA2ox5yV0C1ZRZcs5IOSOlhFRr04jftk3rDLJkKZix76llfFKWZlmMngIM3uE0T6LLnjNKLgiOcF5mXE4zTjfgKTftBBCc9IVQ40YQxSBHAGcZJ6KOvrsQ1Hmg1mQtBNGPz0WaTi1TxJs3HrfqkXJGUa6jd4QpAJflJGnTUkUvvop0KJgBT9IkJQsnMA90MAajMCErciXOfW2bsSBHPXjnwRYcCpZGa9IyfQAPxmQA6Pq7R/t8sNV988xFsm4Cxg2OyOED3bHpAURnwpvaA5vhNoepbQaDibNbsLOOIIZ59oe9uQc2MmfwqznWdW0ZPOOri9OlCmCqsWyeXgMH6LUj1OXZzCGlw792jBQT21CPc6w7x0YVcAOP1t5v12HBRuPWD9dks6JawSCNhbVQ1PF4fUY3siPGqABTP0oRGV6TiB3v894xMXT2nlbQOurWoxN/iEtsssLW2hf29+Hcr75X712CLdb5bSIHUMesxdSt/pt5zIToeZ3XPtGSmW5BHqQAdZomlS02pSLAFGZNUUzquES5i1nooGPBc81DZkLP3p5rMfqR8LNDQG9WV7l11BV/u2LPm+wpba+zLqpixT0cpkkCNQzjwVrgSI6lCFU8WzBBdO7RpUUPeuJfcEYt8wHo/ERXJDpkczRgsWu1Z9JpQOOYAtafwZ4/6fXZcaCqtdep/c0AWpaTwTINzfFnzZBZoKFr0DkHQkCtGSZGQv7L7mrX6z865PfPhxpt7jh3bX33gIlg4NMhANPPpJRe3TvfrTvvPaZ5xjyLLC5DaTKk1LNhDGXNKDugSsNQeR04nU5fvOf742c78o57hNlRMB6oNmqwei/5truaDyYPwxY5tUXttIOrtUYmMB7PC55edumeWlacLhMe3jzg5fOO5zVj3TI8SfHgPE/wrmC7ZaRK2LOqHgSHyhlwhLpLCo2r8NMsrZ3zJtQCvaKcK6ZYgZpbVXrwwBwEsX16esH1ukqURYT/03/3r/B2mfCPf7zi5XrFebng5eVJ9MjhUEHYFMk9nc8IitinW0baN4loQYi6+IsuZu9U4QVWBCyL4fHNA97fHD4/fQKzR3UeBfL+OQSkUpGr6LVAF6cLHlve8cPHzyAwovcI7gHBOyzLAuc92AeUXLDzDqMZKU0fxlETFFsCIENCzElzRCrVJU5lyUUXpG/c0zhFBB8aOibUlSrtt6kOurWKIJWii49aYCNqDw4xOHCwYIIQrM2CRrGWTpZOg3ojzYFS55Mkaq5VHPeqQZ2g8dwQ+C0V5FKwZUHh13XDum1IOSn1xCGXLKo1ityXUgEvahzCiwNi9Dgvc+eL54LoPS7nGe8uC86pItgOpuvKK9otFrbqWlNaAXQzAzWNYxCBPYHUiQ8tsJICpeW04PHtjD98fMF3LzeRenVO5mUAznOE967dgzR/qoh+wl6gUqGCdNYqQYRdD8OByaOyUAmafaiQjpUFfU5RTyWbHeiInRYkUxXFJJOTVBm2juJ0kzy6Uza+3fqI8UlF3Xd15AUdov7l0NcPjlD3uc1ZU0P3GpPAyDWu7Wr6FVrQA0A5n8SivT068P39B0/rT/pIKYmtcYSUEk6nE0rNQBWnyrI9YitkNRttDsCwyR834dGxHB11IknBlyLopxWOjufz3jd9+oZEV2rytPZes1/2ufFfvZLhZzq8JoX8kIY5w3U3Z45tPhtYop1Eg2jtjw2dDo6oft6p42zuyfAtw3epI0z9bxJ0dIfK5i+RBaPcHRtQlw80ipBu6gQM9KZ+BbbniwMnO0V7jXDgYld9XYJ2VsRaxo2YQZWbSosLTuVy5dn1oL7bBWm2q/QPBQmDFTMToRYjdXTn1BST5Dtdcw4J4pCToffq2tRSwB5o3VsBKbL2vgeaWRohea9Nutiy1IBVQlnwZd9j6B0TCahUBdSrtbbMih25CsBCJL1JAIhsKUvTQssyGUBAbOISAvJ5b+frwMJoV4kInFjnMMv9tiBbudvOKntkQzA+uM1XcGlrqQJCpSWgUQjr0OOAK3JmEGWRQPZGu/FwLiA4qCoQWq+iMVi3SX4Az7TAtzKjqgM+zhkffAP4oGNwj4HfU2/6a/2ZGYgooh0Oc/AoTihLIFaRDV1PzmwJmnqXIPhaFxCGRpbuvzEib4HMsKfpBNGNU51264woG/RPFCLoCpfFJoUkRJJOIDBm7zBTxadPz1hTwmWWxbLnio/XFzxdN1R4TEEco/cPCy70jLQW5cdLkYrgPOJUVCYkJmyFcdsT5hhFvaMkcTi0SIFrwePbr3CaFtXABr75+hF0+4C93lCrdEj1PuJf/e1v8X/5H/8OP/6H/wW35xWlODw93bClBFQpTLzebriuNzjvcVnOwvn0UD68bXCzLo6sqWI0o1SY4UMUrVo/483lAY/xGZ/zBhdnwC/I7JDXHf4sBYaeBS3NhYGSQQ7wgbDngh8+PaGWihj/Ei54YNswhYjoA8Ii0yGl1A1nQ8mA6IJKctkE79G+b1rvDsEF+OAQYlSnXzID5LxWoBOIPMjL4pX54yFLSFAL6+TmyMHalzJb8Ynr6Bc0xUkMN02yZ5i8WZWSwzYDm0qAyCRKBMwt5Sya8qJ4VJmRasaqzZ0Axm1dcb1dse27NHIYEJB9zw2JrwzpGMhVkW1peBIcwYeALQnnnkg6EL97POPNacb8tCNYADX4l86RpkbVOdZiHGprUBpJsQjhy/ryHtFHSDNcyR7tmRDnE755/4g//vixOReOTIe+ouYNt9uO67YiF2lidU0Zp9OEnKpkdaYAJpExZZUFK1Vanz8uQvu57knUbSxATaU1EGGI9Ckg6dCauTUeMUkyc2okRWtGU5zbkadoE/HAhdXiKXmXuTbSl4BBg9qDa4CEbetqmtv8tuAQeq7Gx7VXDo63psrVCB+oNiQUhwoGOZln8roEoBI/8OG2jg7in/4hToBkiJhFM5w11S91E/19I9VFXgOgYNGxMVNPp9sx/s61a1gf39d5513GsaN1o3N/j7CPR3cg+uy5P093jI/X3Wk9mlavVamFPZA4ZiK6vRmpJnpSuyIc3HlFPO17iPDqPgyNBfhwn6Nz1PFeW4e6fxMdxs7GynoZicLjeJ7xWvUsDQaGSnNq/YTWCADQwkDXKSatC3e/B2usdDy7FkqO4OEQkNs4GA8akOwHeNDQb5mbft+wuaxN99iugaF7kyAyVDUYlGK8bo2cafAPe+xQk+G8b+d0NiZtTAfhhmGc7bPkRCnORmt0wF47oq//Ztc3vl4b5UdO6HTtwg39GGqfa+P1ksUJujy6xRzmtZMgupRNnHcU+FABdvDenHaPWqhxzO97Q7AqF2EIXu4PW4/3SHrLuKKv9S89l8N8kVcOge/4ftdsllKfbEycP1yaAAryXjutzePeW+BfPn4RR/7LT0YvFseUy8GY3Z2j15JzO2VVTvIcHE4xgq2FdtkRTu9xcxE/fP8Z3394QVpXRO9wngPengLeRsaSCp6ZcN12Qdx1oU7eYd12pF0a9RRVL5imiG0bCvp8VOfKiyN/iUifPmHfb3i4XLDlgM/PL9jTilwSlhjwf/uf/i2m9IwPP35CToJwPD09SxSoRZfX24p1L3j//j0eTjNcAPacsK6COG55xzSdMC8T1rWCtPDUBtURCZc9zqA4Yd02YH3CFCOqO6HQpHRdhz0D1YmkooD4BbUIQiDyjTJST7cb/tN/+WeEv/oL8ImQC2OOwON0xsNDwMv1ilISDFV05JsRlkmpRt0JPcc7r5G1FkQrl1t4n5qx0eAqzGewcs/t8M5hmmdBI5jBpaJC5ChZkX5WBN+4xzkpFzJAfX/d/IMT+9Y4zMMGZ9XxjrThStGui+JkppREYjJl3LYNW0pS9FkK1rTh5fqC7bZBmlSg0bZSLrhuK24poUBSeL4Ce9JGVyz3uMwRtVQ8f35CzjumyePNwwXvHx9VE7/CE+BqxdDcu60TcWPliMQtbel9QAgRIJl30cu8d56QS24bxZoqrreEdNpE3s15BHKIgbAExsPsECbfOHu5JuypgithTSJZ+SbO8EGLo/RiQohYc0bhgDlGRC/qDPvKCKFoHGbdKiuKIeyNKyjIv6SHnTSdYm4UGCOWyfMoAPtueKm7LtZkfUTsbbOzjBUzsOeC1AwkNUm4u9hA7JKeo+NO3aZ1+86v/jWXrgkFcnfEwAp8GBpnQSqZDR12u1/J0TW9u7JDjCIHmXI+YI2dd3587eCgs2xyRLWrTn3hMNrc2NioOXWk1D+SdPqoavFT57LC3HZdaFugbvJ27u7MmKNg9vFAeRBDCjBEN95P/bssS3DvdDSn4bXzMFysfnfV5zTMaZ3nrKCGRrhH/3pw2E1WkdSBGv8jIpHWtK+lfs3t2bx6kMO3DMMs96xZFN1P+jqnVjBYah1sQl9XHS2uQ9Bgfz+i2V8Kykjv1eboUdFFycXUVVq87xTOgno4ryG0gNYdODqo2jgnDfSsWyi7EbHWPQ99LcjcG8bexCnUVLSgU+1Zm2f3QdlPOKg0/G4/32fDakPt5bqF2SC8dxOHGJ3i9kyBw2vcvgQ9SFTbV1mzHSx7s+HjRNSoYQybC5qlMks70KEssO4B8fj7MbCQ7AXafL4HCIwaZA67b115j+vx3plnfd7t+elcJIskyMZXZFCJ+lxudJz8WhnrS8cvdOS5PaBmCNrIQJElW2DdIGpg3pAnW+UWtddaUfYET4xT8FimgG3fUao4IUwzXtaC7z4843pLyJWwTA7L7DFNAFFCdRWpALnKNup18JwTHvyaMvZcdDKIM19LRVU1BPIQWVl4zLPHbV3xst5ALuOrGeKEuwnXa4VDxN/+1e/wP/zD/wE/fvdHlAzcbgl7LgjLubUQv25PSMVhmmZ89dUFVDJu+xWVZty2jJeXG+YpasMej/IiSIT3oosbpygJOFVfKaXi+XoVxZvTDIYX6bQCsJ/AIWKvDJdyo1yQJ/jqtQgGWqAacNt3/PN33+Pbr9/jojwsfyO8fXzAsszYttoakYALQoxt4cFBsypS8OKdQ7YOibrIQ/BA7UpG5AWd9UOkD53EzosBC0pGrCS659541lYABwAkHHiv2vHUGkUolcboZwxBd1Jq7cCNDKTmFWnfUbM0drKmT6kU0YTPO3ItyFyx5YTnp2est1X4JMNyYDBySchaMFyrBQz2FvlO5zymaUbOUgDjIEWuby9nvH14QKkF53hFcIwKr+3FzbPkLtPLcu2+JrCr8CEixBnkIzhEBK6IBKErsSlhAHEKqASs+47b1WGZZ/itYPYeKCvACVNwKFxxSxl7YtG/1w3nuintjaSHgSOR04zzDB8Izwl4LsCtAtPssSdCyVI47lwQZ6kkzZC4NgaWq24oCUsMVsZNXJ0Kbk/UxmBw8JkB6vrjDfHWB+cABJIaCKOzMNBStEbxkU1y4MSyQQ+1KW+Yoy7o+72DZRave0Yt9WzqC9wDs8HP75PKvuOnfco/uWOaolDjSsa+d1qBocEjzYW5SsOyVtDoDhvkgTNNHt6F1jjINvhcCpwPCJNx250G+17RROn1YGo2DEmz80AFGOk0nWOvsqI2OHeDZOhvszQkc9CTKbp0mUYjb9gGHlzUueGag2jHSJHxfqgjAtAR9+7QSgAjGTDvmjFCs5m6h+fU71f45qxyv0LnGKk9Vuzb0v0NPuzXUosqmVU0xxOaYQAL2CVSiFD7KcIPXIsIAzhCSbpW1BkqkPoiUQWTZ7DnfbhuoSG5Sprd9yDtsSHjGEVZ39wP5wEq6F2vvZ7LgxywbRucs14C6iAHVV+zfiuq+8/o2vVS6Ik2N1tjIvU17FlaMyQHY0OK5DEg4+6cEwtJNNiFI2VEtmGPigpUbjZmnI4pJamJ06AkhCAqdaXAO9/rTFiaSzaKkUyqwWmV+bfvCc4dKV4NCZcbG4p+dWxI1lQuXdaxXaM8JAWoZHxO54vWYdn7i6CT1aHmTTjkU4R3BEYBalU5Uqsr7PWWtVYBCex6lQYUoxW56xrIEoY5rZM5UPSgGUQAtRW8272jrV17Rn1Nytwdm096qw0cfCDnHLZtUyBL6j9yRe9Y//P8+F9Q7NomcHtlcNglpfxq37Eb1Hcd0t/6f0IbkPTqNM/ShKhmeDfh8/ML3rx7B84F+23H9Sba3OSA0xQwB4foCMEz0lqxptKuodaKzBXBBbBVltvEq2LADBVmaJUwJAV2WiY8fbxh3TPmSHiYJgRifPh8w7oXfPX+Ef/93/8l3p48fvz+htttxb5nFACOAgpnbOuKp6cbiBwu5xlT9EhpQwwB28aSHchZ0Muh+xggNIPgI5yP7blxrchViiuzm7AjIBuyqbwrhm/oJjMgTYOEnxeowDupIvdEABOu64oPnz7J5H24wAeHNe2Yo0etE5h3aWIFa96jajaZAC+8PHNkSDckMIT3HpTaIN6SbiIOpSp33odefFql6FSCKifd2ETuQfiKimTBOsERwSHo90K/W1N8hWUzrgVcMmpKqJkwzTPISTGwFXDu66Y88KJFUhVZZSa3PWmha2r0KG6GT+eYzu2cC0qRwlCLvCU1qs40CQ/dOa8BakUMAcs84XJeECcP7BlzAKJT4hADYydLB1UWcBU1W/FpBPwM+BnshJYkcn1G8ZDPBOcRohcN9ZSwbl6d64o9JYSa4WbG5AnrnrHmInUWLPe0F2DdK6bgG39ZVIKyKCs4QmbClhmpMubJY921Oy6LIQzeg5EGB0atgiFnYKUTyjoQyhNaMNMQlQalmFExR79vEAekTYcrkErNUt/02P44NJZS294cbmo/q53TOT1uqkc0pl1EwzRHZEYuu337sFE3v1/vhQ6//6kf27Yhxij68doXYuR7m5Nzj7yPxz2iLrK9fbxTSuo4y8Ztjd2Mcy7fJVsykdd50/cG5yJKAVibDt2j+F7pDnadr6kux7+x2ts2lxpSrZ/DsKVSp3UZUj4+B3Oyjnxd+/dYfCuAQml6/HaM9zM+0+Oz7Y2yWjOrkWZx57hUNvTZ1t+RPjQ6RuM12kKzazT0uxaZB1XvzREhqpBDSlmUyZiRVQAghNDmkxQqW3Gob4pmssccCwxJL3h8pofAWoNLZ3KBwxh45zo41OBdqWBiMnQcTVnofm5YobdlSlnnhBVaM0MaNjmjCEotmDXQE758z2DW1gDPbCW1cRvXWB9P34vNaZiDwzHOE7vmMYNq2aXu3TkQCqzBY3Pn+b7xkkU6Ms/tDJW5UazGzEotFakmVC6YMYFcQCkJuSQUrlimuQc2yskXv87EHrRp4hfujZqD0ufGgcZm+7zO8To8x1GNb7QPXbJW7M++76L054MCCNyKZQFqinGsWXjpGN8D61eZtp84fiEi3x7FYfTp7k/9lZ6KNoadzMXaNmZAJi2BtKOnA5FQY16uN3z9zbeoOWNXykwqBSBgmrxUroMxOYdbksEQZCeLo8EFtXpxRKGOF0OLXFWhRYvuKlidS9HaXveMfa+4TAsezxdwueGf//gB0xzxN3/1G/zrv/szULnhtq5Y9x2pSHU1kSA2L9cX5b9POF0W4R9XRpwj8sumXGpx2qcok58IokLjA/wUsBdp7IMKVGQwRDpvI4+tABmQxeWCOvLqalSINjpL6jn4gEAVgcT4eZ2AtRbcbqvSOgK8d1j3HcHPvWi1CPJQKsOrMSE1VAwvjS1cbci7q5BI2Xs0WoSsVDAJak9OHHVyvqEygKAtzncj3PDPZoCUmwdWv+oLm32pKDW3roC1qhJNjJBAhJGKKNHsKYkjr4o9XFmlJRO2bdefN1zXG3IukuRrAZdcd66sTq+MTda0rw8evKHNfUuVrlsCIEod8zJjmSdBFwiYvDjyHnzY5B3ECXUwNYIqHfDCDAqTOPEknFFBTOxZiVRoCAEUHIgEGbluCRnSwCTtO6ZQsXhC1DqUPQkimiuQGdgzI2fGssg8ETnSJM/ER91kCKmITGDQAlh5XEqkM6+WnI6n7SASdOh21S3HgNhBgbD2xzvb05z80UHBsG+rQ2CFUiOy3pR0Bp+eu6FqJ+qn5uaUmzMvX2FoPGPcr7onDx2jEf4w+sMYMAzv/+IW+6d5HJD0EfkD2qZt6J9tlJZrv1d5MKRQNr8KR1UUXxRd5srquFt/jN7oqSp66Zx088TgaDZHx0CB4bWjUy2z1Tbx431WReqoT0ITfSCzkv0+7DOG7I1w2D3S9/q7XgeS5hQfHPYvOJSAra3uxEqAavc7AG9DgGzBw3g4pwW3LNQi5j5cP0VVMvM9OkwAWodzAWTEoHnvVJbP+l7z4dz3NBC5N1unFcTSVfrwGbut+/Xb7tsQZUK9c+THwOTVTQ1+DuuDsE6jJgtJX3gulu2pbPehAaljOMeQgBNdg74bNwFZ7Tc+zpeq312q0HYlM2Lz9Bhg3B82/9vceuVTilHvU536tVkQh76/23v7d1kGQ07sDK32nUOeqzWtLKq0B6DtFH0ntvs2Gk3LnDZpJm5zYBw7qzcYA3PYfaD/14Ab6vsElA5l0t02n8RiSaDglc4pwJQEqYUZMU6yjyYtStYiaa8AYGgqVf+NHXlJS9rN2+mNewR1MEgf8jCxqC9afeQA2Qam/1cygnjl8IEwRULOO9atYIkzrmvCnjY47yUFBFGkYU0rRfbImXE6n1D2HVvNLUplAClLRXCpEjVLcxLlO2ojBOcI0yJ0lZw23NaElIEYJrx5e8aH717w/fcf8bvffIP//l//Jf7yt29xW5/wvK6iFFMEnyXn4Dzwcl0RosPlzQXzPOP2fAUAeBewpxdJ8YcgcoLOoVZWB5sQYgR5h33bEOe5FWwxiXO8A0jMTVWHlePZGjCoM19QUZFBs8cUI6RxeUVwHs5VeJUb2LeEF3cFQAghwjnCHINISXon6jFajd0Mn6Jo5AO4cG8QAdbW0LpgNe0qqW+VslRGhSGzshHYBiQKQsFFcbjUGZc1Fjr6UUXD3DRdJSOkxlCLluVwAKQzrquabktaL1Ey9iJdfasqy9z2DWvase4btnWTf9OGbg46fUKQIUHgxYkXwxlDQJwm8PMLwFpM6qk1lvJelJZO84QpRgSBEzB5h+gygpPzybqSDqqOGI7l+VRiVD/Dx0klVgXd8AACtGFW8NKBVdO4rHTcUguetw3kplbge/KEhyipv8RAShUpF2QGEksNBUPoEVLoSlIszATvgAJx+EUxyeRSoQZRqG1wKguKgdbCAGnWgRDUeCmthlmDAAxNaDSdacZlRPZ0aybz7Nt2rxgnQwvANWOF7sD0zXdEzXtY0R30g5c97iNorrltEgM1wN5D7VzjKfp7RKXKHs7PNeF/Oke9c6bsZ+dca1Bj72tcUmimzrvD55xzyh8tYK0HcYVQTCGFAHBt1JyG8LXx4TbHgB5oOEVBZQD6xn+4ruaQvx4hQ/q6Cs6gDHL3Pptvkk2srQByRInHQKIFOMM52rnufjYnbuytMCKsckVfou+YJKb9dzfN787TkUOByr7k4P6U0zsG7ZatAL1eIz545JLVd9DvHL6/FzJz+yybTdD6AGmQNThsB2e43x9B+claL0HSGKWNidU1jHO5yefiOCMYaHxo5uO4tsxTm0ncEHezQNA+CFXntGWOwAyin3bd7se5uaND5sh6KbRg8+6wzwqQVw/XT+CmpEN3n7kPctq9KJRLZqf1TkebSI4Ap2psGmOWJLUrpjTIgAh/WMFoCzYkwO56+xrEtSwC2j2MmaZqQSANdNjDfB0gNRs733voMHeiJ6Nnx2xOe++Rc21IPlGvjQg+oJSs80qzL2SKhTq3X0dPXzx+ESLP4z3ZlGWI0gp3NGEc3OYANSdThtE2XHkQjEAOt3XDY4w4e49tu+JymnCZIz5+fsaWE8I0YX96xuMyIXiP6DJczdjXBHYeby4nPKWk08SDuALwItDPxp1jbdIj6VUr6vSRME8RL88JyzRL6iw6LBeP85zxgRlfv3/Af/cPv8ff/91vME8Tcim4bgmpiESe9x4hRuwlSxByOWOeZpFB25PoqDNwuxXAzzg/TqgpY55nPD0/CYIaAsh7bFvqu7o2RSjeYS0MUNSUn1ONdx0PMrdFnWp2cHBI2waOHiEG8au5IsRZZAeDOMe3bcf1tkK6zr6XVKUPCAHY96s00nIO7Jw2iiIgMwoY1WtazPnWdKnUDO+8IqmmQiLNIfKWwEEWUKkFLgSEOmwOSbiJJWdQLZDaEqfOoyJ7zOMs1DkmDSWMi1yr6AeTjy1DwxDUpyjik5LIj+ZckEvFVZs8reuKbduEG9vie6ApT+h/VRH5Pe/IJcE5h8vlInzOJBQYSbkRUhJe50l148/zhCVMmKPMkYmAiSoCCAlxuC/ZYLkWcM6ocCAfEdzUNv/CGUQVwTnRLQ4Bp/MEAkm/AZa5sWXGlgvenAmOKh5mjzcLYw7CK9654rZnZCakythKxZYr5ingYZGOrlUl9UJY4Ai47hW3HVgTo2QJLh0RMmQKy7NWmg8BGd0xh0rIFRT4IJtmqbU5UQCavjLYNkC1LbYL3G9EbJaotrHaa8Fe0WlnZsXMoTDAof2tNvvW7BeODokpasgvyp8eDHk/qKFUckrdrM0p1HTDqI2OZk1/HUcIATnnhsqb7FrnEPdC0xGdt03Vjb0n9MHUWpqTde+86C+6mQ7OPAPjsDXHnEgztP5wjvHnEfk1P/7eQTUU7Ugt6Siuja858vJzRaMGKiD2U8ivOSH9Il4fX3ScXx3dobTPGMgh9qo3xLLGfp0OBYxrQYqXhQonohV5OG+Bc2EYn+MzY2aRg+RO0enIah83G2OTWbR6CkLnjg9f0JwzzefIXMAw3or6ynN28J5QVbZaaCcjvYsbbYKIGtBg/HkYumDA2nBvY7BxyDh5r03RRKkI1pPDKBvWz4Bs31F02aEVxMp33I3q8Lf7wEG2/u7Mt4zB3ZwZg5YvIfVNaQtodRsG3NxfiwESolLnYXZVvRToLooWRpH4Z+Q8AhGy2o2qNJWUEuI8I4QI70LrTK/xjawPk8ZmBohF9W44xkyD3S+IDuN2WD9DAzA3/N3e4/W+mIWOCgUIKrM0Dm1rH4fnbapxpQg1l6GF3jpHxI/636XY9TUKIf229G9fgpyGwjT5r/afWYpjllkoBlwT4jwhTAuerjf8/ttHRKrIIGxVFoirDsvkkG4r3n99wSUUfPr4I5giPnz4LMiqJuoZUqzIBEExTYYMgGfpspq9hwvCIV5vL6g14ruPn3F9fkL0wOUc8OnDB7y8fMa/+Ye/xHkGal4xTQ7/+B++Q3QBVXlNlRnYEtZtBzuH88MDvPMo+4YpEMJEeL5uKBVIieG8w5999Q7rXnE6FWS/Nwe25AoHLVRyDsV7bH5BQESFUmn4zoDRcWmAgIkJkwNK3lFdQIgeUZFa70zwUcxd4oz/9E//hApCefMG52VWRZ+AlHbcsAlNx4kqDukGnHYGQpAJrAYyeF2ArBFnCIATVDyXCuQE7wNinAAG0raDXOd3OkcoeQMqEOKEECd4z3BOOvKWLAgN6QKz7rPj/VcSZ4s14EhJilpNcvKWdqx7wp6kE2suBbd9w+16xb6vbVG1uU5oCg9gQbf3XHDdNuxpF2WUuOA0z/jh4wekvYBZjHtlIJcMHzweTgveXE5483DB48MZwRG2WhE94xwYpwDsSVJwBJZuBLrRVaqAmxDChOAB0VwXI7AEyWjFKBQ1lCKUmNOElBNe1ootyab85gR8ffHwVHAKskbWCuyVcC2yoSTO0gOhEr5aHvHmPGGOBNSKlNQQeodbTtiqx1qAawYcRcyB1GmuIq3FpBkkD0dZzYQhRlUDDnGE6ysbMozB4LcfHKu798iS6PYqqylik+xox/D5V19Lw+vcKF7cvmNw8gxpMqSNetAnQbaTwrThzHYOPrwqm5l956/lkMYyogPvVW64O24E1AwSoWoAR7S11gpXXStctg07qGNUasZtuzbEzTZWae4snRZLSQ0NkwysUyNZYal6AwlMAUvs6UihMecDsncNTXfsml8FewM6KGh6zxT3++zZHwtABYXt6OHImW1UB/qXnPYxALFnNsaTcl1W9GfniTG26xZKA6vkrzmDTteoZFSZIY31NNshMpG+rdFSKlywvUquq0IcSrDYrpSSOuVSW5Srih3cOZLHn7uz6b2XayTpamP2o6/+Hgjac3EwdFnfyTgEiZYlBgGkgQwpGk+mvz8g3uM16Rn6uJHQe03mi2sF/F3zQ0hAZ8aLrHDfAkKjiTUb4Ybi8MFJNEeebG5Bn2vQ+Q1peFVZqU19xmQ9HyCgpHcOziSNmVuxptThVaRatA+OOrPMRv7UWibc0XH4MCrjcchA6VxxTnrPAAyXJCtTSoHToL/WgpqD1AAqLTuVfAhCxegPmdHGYdfgq7I0D1UIFCTr2lj+nnwLDG2/YfRCbqv5MXUoVO3MWrSXDAjTNEHWWA9uSi66l0uBbWlZBSnetrE/hiA/ffyCYldL64wvKm50BK/65FADwmCIsGmbhu3v3hF+++1X+PHDJ7no6pCzcLrOy4KPT1fh9Bq30RPybcfl6ze4nCaEekOqBS7M2LcdMYTmgBE8Uq7Yqz5Y7imPzBWZC8IUGmd83yvIRzw/r4iu4N2bM968eUTKFdEHUEkI4QKiCdfnHf/5P/8R0xya1juRQyo7np6fcHm4YJkiyr6DasHpPGOrBVsqmCeHuDG8Z3z79SP+X//ff0KcTTLJKrgZJVt6z4PdhOqjIJwkvL1KfaG0ZElrwqV0IecRSbRYnZ2fCDG0lgytmNTBgZjxxz98h7TtePf2EQ+Xs6qtqOoPO7A3BYYKD7mOVt1PwmM3hNKaiIABnozHL7tK4Qqu4txyAVLee4RPDt5ZCr2AeUduCFtomrUEoEBQ4jAFSfnpBiHSkhW5FpTKgrArIphzlvqGtGFPCXvOIju53lCyZBNABJR6QPB6jqmisNBJJD3nEXzEPC9gALfbTRa+E2m8wtJk6vEc8XCacVlOOM8LphikyIUrJu+xBIfFE56KA0w6jqsqrTDgIwrFtv4sbAnEiNqQxFDwCgiNZ4p4WVdtbCVc+FQr3kzAAmBxokKzM+O2F2T2yHtCKgWZGT5M8JNc6xwjdqW6Tc7BuwjghApgKwXXXZr7LKcJOzLELkvGCsQgT6DiWgMY4T8DRAE67RtS6Roxnr5g+vtcb8no5qTonw1x0c1YnA98GetmCJeVuXFibVMbz2U/8/A5xvDF7BQl1PobVgqFbRKa/je2r12NUSHExtYejP+KDqvb6Aj6wCcHAHUMf4qeMboAhsbqL62ZlP2tqPoMg0EVyKxFlDDUs8s8dmcearMUjQQNwYMWypJsZYKY9evryCdgjvGBd4txDvHR6cLxGdzPuft/7bjnwh/P1c8zXuOYWbJAqevZmzRoD7THzID0gdBggo5jAaJWkG8OJNBRZosmaAhOuD1X3a9dLyCVRoIaXBklSu9JHKjQ0XW9DyZonxKo4+vac/LKQR79GLtuGO/cbJI+T6/F1J4sO9RVaUYnvgXxQzBv//ZxpcM49d4FHZDowUYPAPUXNfX6TTQqxvTMj+nokwUmOg6OjvNQ/jzYsy/MsUYNa2/qvlO/RxzugQfK9Oj0WtYE9i+Ps7NT2VwDO7rl8z6Ao45TQgvsizrzpAHN+FypkNZtcZOwHp/poWgcLFl8Yo3nXfOReBjnMTi07wJ6IXhl2eNBBPJaB+YIU5i0a3R/3k7rdRgiRnJQMyLSOtF7u/AvHz+fI982HrkdevXT4c2vf7R5aZ48i1FcpgnblrCuOy6nAKAgpRXBO8zLgh8/rdJlUuV5nAOWSHh7XhBIELwQJuw5w3uofJNGop5QCmFPWRxLOOXqOmQWhhbJTIfxz6L3WJ9f8LB4TN7jdt1wW3cUZmzbjtO8ILiAjx8/IzPBaYc550T6qlSpVv7q8QFp31BSgicS+synJ+0uCUyBEWMFIaHUDKpkjwQatIGU9lJBKPCoJAUSxBYQUX+2NBp6NYYELDHgRAFei76EM8kqfWU0EQnGiAkOHjkXfPj4SSLgWvHVu/cI04z9dhWEhVTqiYGkBp+otvGRhkui/GDIomg5M0ClOSslF6HsKC9fkJnanXXyEnUzA1z0+j1yGormDKmCoD8Fw2JXyktBRUpS2JurOJppT7itN2w5iV58SsIHLFXUeMBQDhFQO9pvW6TwwqWxVKnC/44xwgePbduwbbIZOh0frqL7fl4iTqcZp2VuMlhEUosxRXHkJ28qNUBFR0lEH1XoVM5D1IcUSQgEMGnxjb6fHKFSlToApX9VSPfgwsA5eCCp8SVBKLdSkarDVgiMAB8IPi5gR4heym2TPlsXA9ZUsZaAvRRsqWLdE8hXxBjEKahFAk7qqCRRN+0yi83QHnEC4y+3h05W2CXhLu4M9GvnifT1IdXK6nOThgfcr2O0V/bMR0R1NGYHZ/6uLuhLoBMRta6GcAD1Ngqq98D9s/1rflXHODa2EYvu+lHphBld1UMPHjZSNSl9Pxqe98HBgSFp0rvA0tUOQcZhmD90sJ99Lo1ZH2a1Y+akaQfR4xbYnbV+v4PzMwSHh0/Zd9Owt47xYdODd+1vtWWXxrlHzeyyPijTPj88H+gbSFVSmkNlaKPcQ1DVFkFzNQy2k907G/a81KaR/o2H1W7P9v5wgxNvVER7AC1Y4e7E+oZoq4mu2kDQj5Sg7oyOVBELwrrd0fEenFibe87oLPpMBHQ4jl+bj82uoH2nIbAgtMJTk9FsVBvmdv99PhwdfQCdBniwPX1cpQHiUWUILODByA3/gnnqttMyzsNzsXs0sEHG1TVH2j5wNxMPwbatwx4w9WfFbc4b4i+ZK2bh4jvv4fV8KWVY5sx7D1amBVWgFGp+KrX9YgAJhmnb1oM+awbgmNCBUPQ3jc+8ze++tu25iAKNE8lvZlAhVauxwEuev3dSfD3uNcYskHnw87q5jscvcOTt0MllCxVokRi1N95twC1CHB1/icBCcHh6uiLnKnQNSHHFw+WEEGfs9YpUKkqFFGg6wsM54BwJXEQ5A+RRyn5IPZojSyz8Paftj8kpSgpI5JRZJg7J4jo5ScWe5gUEh5frDgYhpQwPcYw5J3z4/AkuBk1vyWQoqu7ifMQyz/i8XkWzNQRUBl5ucq5SCmIApgBcV7l3BFsg+rwcwQdVWgFU2so1+UjSJiL2LO1RH9BGAiYfMDsPx0JXcc2Z79G1RduoaAtp23ahIrFkGx5OZ5D32szJ5A+1+RJcc7I8May5gWya5iCJbCKDmqJOLQU5S1pV9P6zLl43oCdVOXNCyyBUcKmK2IjurgcDjlpqsGQp4qyVsaVNtOC3JB1ZawEcYd92rNuKPSdVr+lyZiE4aR+v6NxomM3pMiWfUkQiK4aobbiB6/V2aHhlxisGh4fLCedllsLR4JRqEBBCFkQ+BsyhSuDFjKzYbbc+8lymQJ36x1LkasvP6iRMLjpnWT/iwMtaLIUR4LCVguJEgi9XwlqlwLXAIwSPKXrpLEwMHwTJz4UBePgw4fPLhlsKyIWUPlS12U/UjoTicDknVKRgGQ3q5oHunpP8uW835miNdoiG+z0enUMvcY68r6px4maP+GCq7HfblPXd+qd6eE2us1/J4P7f2bzu1I1BRnMO9e1luAvb2Jo39is5iAx1BFgl4sTh8ALAaIpZ/RHknA8cemBwNth8PKOdaG5REVMrjNM/ioOJNhX0ZWpDdHTMegDXnIUR+WSAlM/szfGx75EfDufr1z68TydZ92cJh0sYrsUCYHMkicaC115mN36mqs2wEitryGb/q4pgqpE+UNlSTs12ea06bJemD56Bw7iMgU5W+UjbY1jRjNpqXkS4wZrz2TNqev7MWrfFLWvV6SKkqnJDsZ76FrUoa8ILzUOuQ+ylUalG51+fejuPoLoSqBxqNIZna/PL5mW/dzoGR8BhPK0jRrPj9lz65XcnHWZjjHuuIKPaA9sLbR8YKSk2LodDz9+yfbA5aZ/Vuh6qADl4LaJt/vbgY1SGNP/SuRRCAJPVq1lWRZ45qjny/TDb2bINjNbvBxCWBIhabw/W75QAyQmdmEg04/WcMRq6XcEoWg+D1oNC+kJARUUItWalrvQMiWXlKjuh+GmdTPNv+6M8BOi2Ddh/pLQykUOdpOZkTWAea3S4BbxVjJUEpurPeDqO6889fhlHvjkTfZNpAMO4Kw/72vhvj6CrqAwEIJeE63VHCE6aPkC6W3779VdwFJALkIoUFAYiTMHjshAcdqSUse0Zu/KlwV6KH7hqYwAxFhXW2ICBUmEI3RQmrGnVVeSQcwJRxsP5EfOyiMpFrjg/XPDh+094//YBARXXpyd8/vQRU4xYt1U4UVkCkFQypmkBqfGgIAz059sNLy8rlsuD8Km9pI0+fbritiVc5gleAx2COPE0z/LITR+XJa3b4ldGa1fcp1p3nW2CRO/gWdVMnEghStMJ+5iTGoK2GAEPj7Qn/PjjB+wp489/93tM0aPmjFQySnHgaRKdb7bJV2WjISB6N4QXMlFqTcL1JrTF4n0EULWyW2kHDoBSYlrhlwN0O0YpFVOcUbiq5KKMH0g2qaJqLLVU0YRPO7actMFHwb5lbLvMnz1tzYmfpwnzMgu6szOq3g/0qZpCUFHKiQQKgrzHMME5jz1lvNw2DVw70uNAuCwL3r95xGVZMAWP4B1iCAg+YAUQncMpBJxjRqSMWlnqF5xcQYVrRdVL6FX78pTFwXHci0BrqZh8hGOPXKV4tShSVXNGzqKB71Uu5WVn3IpsEi4GzJNHDGL0JweE6JFy1qBaegGsecXLngEKQkcCkFLBeZ6Q0taLNZwED47QFYXIZuy4sVEDBEbHqznYajDN1A9RVmt0M24UbcNtvre5624wYOOPg1Nkm/L9NXzxotCDg8FBkLEZPyR/a32owE0BUzaa3rjMufFzf/rH6PyMRZsWyIszMjhGzLhH5c2hHWkIJv9mhZqjTr2hhhV0cGCEjnB0Qvd91+D62ITqQD3pQ3sAjYa7xDhJ7Hr7+0xdCxpIjFmmL5/3fmMfefNfQrflHH1NWXbj3vE+0jjk8N4CKm7BjH1/MIGFu6A053y4vmD1Uk1NhvSeu+Nke5gFSjFGMDOu1ysul0uT6vMhYPLWk0T2cenALd8ZY2xUBXs2RISX67UFBXE+DYEQ+jMdwY87p9PGv5YqdECi3jGUSGR4SQETBlLJ7TyVTYbzSJW5D+Qt6ze+rhc3BAJ0iOnN5qecWjB1oIkMa6avnT4PrJDZObQi0k5V6fdvVBCrU/DeQEv9DgWVnBhvGIoevNOxl3kBzeKYDTwWmVKPAWwvcBLEoSrbvlYNDsRmx5iwrSu2fce+71im+Vicq2g3AYhxwrruUtj8hfXDLA0tzSkvSs+TgMs1H5Lbg6fm4I+HzR1itMy+9DXodsS+c1T6sb/P8yxz5dWZf/7xy3XkmXH/fW2BENAIpugbWEOZbTd1hqgoSk0QA8rS4OnhHPH1V2/x8cdnUYVhBnmPefIItYL3FcubCWvKeNkyrqUgkiiv2EIO3sMHh7wWFIg2t02+lKRKeJm0uYOT6PLtm0csywShMHjkvIK5IJMDBcK33zyAsePpZcW6bpjjhJIZ+y6SgoWlc+bl/CCdR5kQfACDcbvdcL5clCtdMU0znAv48OlZ5rEjEEtzHUmxMEBBFIFINyUWx66iIrPT+U8DyiNPXZ42wxOwzA6z8/DZIRCaIy9v6uoA3hN8CFj3TSalcyCKyKXg+x8+4PPLFX/313+FZYpgFke4VhZpQ0kcgCHoYrQCEddjOxC0eEoWtjVIELWDIl0fTVGEpZlXLYISTEGcfSk2lG6mexVdYakFdmp4CDlvUiys9I/btiPVglxrowqVWrGuG7ZtB1HFNAVM04R5miRwYkIdmk9JoCIOZGbh9udSse1J5sEUQN6pitGGTRs+yLooICeKSO/fPuL9mzeYHDBHjyVG4chzBZMY2dknnFzB4jdcky4Sr5QYAMwOs5fMQOUCx9IcJMEEE2XcPem/YKwgXAtj1zkSHeMxbsh7RdR6h5eU8d0NYH8GAfBBCp0cOYAqHi/AaQ64vSTUnEGckKvHLTHWBCA6hBjgY0TdGb//+h2u6w+onECa2iUWbe9Kopfc0VB1dwe9bdaCT7Z5CjN0R0ep7QBW8cGK3g+0nAO+0NZKM6fozv3RptlyMiKQvYvb51s4cXdupWoMqDvQUUk5n6Gmo/PPzS7y4Rr/9I+cc9vc7mUoxZlIzaGRhjWuB6rU1Rts87PzyXk0BU9atq/UCeG/SpGgFO1JwC+BhAkZi8MFJlVE6YoWXXteinRJkW07tyHLbgwYzdjp0Z0GagGLva9Zau7zb3TojvQctGtpqCbZ+835H4qpGwJ5V7DP9/OcD+PASitpWW3XWrIN19qP8RmNTmTv6tqd1ENgpku5shZI6roNUxzWktY+kHZmJc1MswIJKmVMDofMycvLC/Z9b0i/BY7OSS0EDTaAiOCDFY5KYaT3vtVYWfatN/uhNp9lnknndihSbPdYq2QhAUgmPYQ+P4ugxwdMgDXbMwAZdZgTFghZUWSjBQ/jHfQZmCNpwY5kfS3DIHO3cFdxE7qujYGcs9FB7PyO4JXqyjxwxkmVgXQOS6d1a4zIQMsoqdAIjeAI6xyArHP9HoJkk0spcJrtl/eK/rrQVIWKe1tXzPMkkuJcRWJ7oFB573pROlvhes/oWJ8JgECVkWuGIynWJjhwLa2pWHt6er0yNZQ1YGu+qj+S+1wYn2MFmr0Ys1rQuVxKhqeprVsrPv+vHb/MkR8iWoBVAUAfyUAhPeAT1J18Q5BjEA+v7AXCXS84LxPgHHJlbKng06dnfP/hA57WhMoOU3A4eQ+uhFP0WKaA589XXK8bdgbmxWnraqfS5YKwrEma9ViRn/MVNRfAAVtKmOYA7wm5Frw8b7huGX/7t1+BkbDvG05TxCM5fPYe15Lw8nIFp4IpRDx9esanT59AzmE5nwESg/LNN++wLBMIrNQfhxgXuCngD9//AOMjlkJ4XguWecaby4S0i2Z3YbLRRpVSTnVjxI3P1cpMR1TBBkA+54gRPeHbNxd85QpuTwlUqjYnkk95J4QMo9DAES6XC27rKptUleKhmWa8PN/wv/x//j1++2ff4t2bR0zTjG3dEELEre4opWCeJiyYpNNnrnCUW8tpAslEVQTAe8CRGIXCFXA8yPmZcyYO3Z6SzjOCcwzeNsyn8+ACidGRVsdFu6MVZHXg9ySvpSyNoErJyDkjRo/zSWku3jcdb2sm5QAE50GT62jLnrDvCbd1x9PLCwDp0srM4tjfbkIhGjbnGCLePDzim6/eY44ejiui98qR1w6TWjuxBI+HyWMhwhXCq89wKCrvGp1DIMaWEoJTRSamNkeC99Ih1guashfC57TLnKmMJRC+XRx+/zhh225YJo/nnfG8M9ZCCE7m7CVE1fuviIHwOE94PF/w9OkzGEK3WgvhZWPcUgF5qRdAFQpUTTtclblrXXrBGmx4aYQBhsqVAsReG171QPTO5bizLhbGSqDV/zaim/dopWHd93bq/n36qiGIX/zr8ZPcXB37juEvhgZa0MCl8UJJn0lVVLY7cUMw8Ss47mkq/g4lM+fDUG9riGKhGwDco/i9kZIUJhrKbmawh15k7SyaAymf1SwtC9onji8PY2DODI8mqV8DzKEXysGXEHKjC5nT2CI7dSb5/nN3320/j0en+WimWf9s9rM7Yz2rMDrb9+e09zlHSPko/SkOER/uezyO2QJxilrm5O7vh6Ck3Yt2keXaOMIMAYhQqSt66KPRcBejTKid19Bl6RFSDn+3NdiuG4auDoj4cE+9l4UqofExS1KKNZR0wDS/eh4942YceN8WNTlGLYY1CEgxZqPk1R7cjPSdWu11r6/Zc7dC5TKMW23BB5FRTSQYcMYt1wVEcIBKIEpQ3INA1msU/vwApwwIrjnyjqiNZ+WqAUJtCkjAOJW6rRR03KiY0GBB56d+BxEjhKjBvaytPe3wQUQeCLoOnWbnNQA3+rOUXbyWqrXp6xxJR11yw0igBRnyswSDZmPA4/6gXppm7WutDWyAxY51CKYP89ehOgaXPl9/CcXm56vWjL8MaFFHv8zVuvvMsKDNsFqxIliKEriKTjVZtMke617BwSNbgw8u4FLhqeLrrx7BuWJLBYkdyItT4oo4E26KCB7IexHZM3Ko5GEItCPG6bSg5gLKBS8vG67rhr1UvP/6jG++ecQ//9N34FpxWSI+f/qMvO8o5ERKrxKoAj9++FEXii0KoQctU8SnDx+RUsKWMlKRhjlwCSlJ5F+qNEfyIeDh4YzoPZLLKJVQWFBQChFcczPu7AgJjFQLiKdxMHQclB2txU3OE95dIr5Z3uGH/Yp93SQCtckDOi68JLjvNM1IaUdBgVOZqnkKuK0r/vEf/wnXlyu++fo9zvMJad+ROKNUaeBUSoXXjTMG0dUX9N0BTA11l26+KhMp5k6iWECiU/TNpyh6FkPAPM8ISwATsKeMlBKSKs5I9z9p+mOb2lYS1m1TJKPLe83zLJ1KR5mzNo3FaYaiGeQEETTN2n1PuF6vyGnDNM2IUSLonBJS2pWDKsjiNHlczie8fbjgsswAF3gX4LWTrvOEnFjmBQnvPYIRWY0tArT0VQwuVQRHrauxsG5s4yg4hQlTIL13xo0r4AIKJzhUPAbCN4vDtq0ACaf9lgh7lUB4LxmlOmm+xgAy4xQJ59OCWoHrmuHJw4WI65aww2FjwBfpCptyhg8OcAFTVBWhNlPl2QfnUFxtUvGSaXF379LZMdgac6vNttnGPnY2bHAW6QZ0qHBScEe2Dvk83WvDdIR+dKYaNx44vN6+drwE9fh6OZO697qu0RA2XYe2IQ6OQtsjfyXHiMgD0M6ryjVX2mOM8bB5TZN1Y66NfpU1SJ7nGSkL6hpj1CZ/VbvIDwWNdzQZ6+Rozmo/xgBwcMjM+W7v4sN7RkdZfu5pe/vXKING+wHMEcLhXKMzeWg4NEyETi/qzvV4rWMa3+Zwvw5Zc63gXKMbo8RZ0DJ+xtDXIzjX/24OC71yko4Bhd2TOZzWkNHG38bWnM8gkmXtug90iOCbQzRSr0aU07PpsbsBmUejkUx+hs2TWrLyl3tGRwJCc6aG8bD7M4UYfeaOtYsntL7DCZKac8GeM6ZpgmULrYPn+DxSSoAFljTOuHZ3vVas9rllz5VZ9uneHIsGehmw7zvmeca2bcg5YZmnuzmOwzkBamorNgZEfe44UKsraN1mYXOstgwHQ/oKWKBeVK7S6flLKbLPqnSoZUBYg2ur8yCCNp2M8Opmc63Ytq3Nj7amBwDG1p8E79ZdWhxnAlDY5q/UTwSV9TZbLKwBC45c20+I0PT8rYcSo9uVcW6Mh3Ou9U0QIy/z1wdqzxzoGSZT5PmvHT8fke8wB8yCjCjHQWHC4qxma6hFL8BRysci4svlgtvLc0vvlJqxJsa6Z1EDIYBrwRQIl9MZ6+dPyBWA8yDnkRPgCiMDmJRTXUoBqjzkYnEluUbHYKoisVesCYfHw/kCZoeUKhwFXM4XzBQwOY9bruBKKLkib+IgxmlGDB5RqRngguv1ipeXGxiECoe9JNzWhPPDjHXbhf/uCKUkcMmIXqrjK0vHTJFTBFBZJ708U4Ioj+zlC47LgBqRRsbRezyeZrx7dFg/LyAzuk75xLp3WURIpIU+jqRegSQByFWVBLxHygVPz8+y+N8D0UctWAVqqcg+wxGE1jPNKEzwnls0D5NoYsC2hwIpfC1Z043mSEMMYcrSVGGqVdo3x4B93/ByvWLdduQiQQAg/HnhxwtlZ8s7dm3UFKw+wDvEKL0DQvDopA2lrBC1hltiAyz9q5z7bUfepbPsFEV2NOck2vbW2EODutM84eG04HKaEVXL1zuhdJnx2vckG44I38OhYPHyDIsLclU65N4BwRPI0r5wTSprCoRJOe17KbhlRiIGBQJqxTkQ3syExTO2vCNEjy15XAshw8N5wrYqrcB51JyEvkMzvHdY912KZKNQz277hkIBJp6RMyOVCvIez1sWyVitR7FOgpJdi6gVyCjNV+/98QZzY5HVwccaDePoZA3ZwXEtmGLNnTmT99W7c9PxDWbrGvwyXB9hsG93n9XfXJvj3OYztXMTGjd6cOJHR+j+nH/KRwxBkTVB2ErOSiXoXPWUUnMqYowo5daoNEYVcBDnPDiHLZFuhGIhxSmA2A9mELyCCoMjCRU8YFN9amGdOOmtUF8ojGPQKOtspPh8SV1CxntEgxsX2K5RX2fSgn1rdkXoxX2w7+WDM3D4XQGRkYJRitjAEdGz7McYBCi8Jnddc19Fh4CiBxYjGv06sDhKFVbOgyODphN/zMTI7uid9HER+0CYENWB6XQMkxYdv8OHqAjucXV777EsC/aUAJIxCyGog9RRe/ge9HABvCeV7lUBg+Ge7Hnb2B1qLQA8Pz9jWRaUPbf9SwIS4aLbf0b/lOU+ZhG1CPegQ2+2weAa2VPkHnGXcfBg7v1R7JAAVqi8pZQWBDMD+54BkxLVew3Bt8CssCjTsdP5yOYYV6kzrL0YFxoc2zCQc/BThGNGyQnsSuPcN844ZN/PLJlkJid7b+W2D5Px7zGaaaPgOIRpanOr1qKMDEN3+nd5T3hNRTLwROc2CxUqhijKOFV8Eke9mZllZ3omZ5h57W/uMAbGNBcAWYK2nXP7YKPfaLAha6Y223JPjfup4xer1rSNEsOE4/7zXdZguLjh7e1P8voUI07zhJdn+ZsUyxTcbgk5VyyzcH4rM5YpwEHQv9bxUc9fwKhwoqZCJlUUlFfHrSENOWqdBCsD5DxiJHDKeHs54+X5hpwqpinidDohOI85BNT1BbVk7Cnjtm4SSBRGJOEHz/MEzhlPz88oXOHjBKoJhZMWw8xYt4LT+QznxMB5YgSnCigsXVMroJzQiiBANojkGaACWQviuBnEO+OvG8kcPN6eF7y9RDwtJ5RdrsMRqUKNDZ1udk7xJnXmJQIVIBGuCu8fQlt5ub5gigFvHt80NKWUguSccrQJDIdQTRLMxlxSX43bD0Eus/LaQSahKO/OKSPlHQBjzwmJC9Z9R847nl+uWPcsSkGQwCOl3NCeWrPIH0LkEEEBzhNicAiBBmca2h+C1Ph77SaL1oiJakWuFeu2a31ARfSxNbQSKc0iNQ1e6EtT9DgvEy4naRIlTTOk0Nsrx7NqUVCcIlJJ8neuWAIhOEJ2ocVpDoyJgOBEicaCYGhjr/MU4B2wpoprYmyFgSA8+dkz3i8eb2dCdGKoAY+NHRK89CZgYEsVyySymJkZ4ArvZazW9dZQmVqBW5L1xiQ1TalIw5HgCB9ebrjuuc1LMUiyhifnRMpSi2/Nobi3OLYpvnZnzf5w87HN8R2R7LbRsTlroyXrJozZNk37M6NVYA2fsPN9qWHVK/RlQDEP7/5iQHIXkvyaoHg9Gle0VrBROUjAAUNM7fl19bGjMzU6waWUVrRP6K3kQWQgV9ukudamJQ2gBe7tdzKea3sBIKnpOSBrzYED7p28/lFur98j27ZpG1LcWsoDzeFygz76wfEeEH47mFkkcKtynalTTg40li+cQ6QsjTpxfBbtKTU+/3E+jvd2oOs4ahtRp7uUg9PZMw1oz8TGrlZRvRGn0jXUezyfIdiOOrhx78yHENS+3V/78OyG4Ee2Ii0QJQ9yBSj9WRO9LjA2lRGujEKWMeiOIaiiFjnvFKJes9gn4d736zKKTqPJ6t43/q8C4AENvkfSJRA4zrlx7G3N2Hwuqgo1+mzjcwaOdo6UM1+LtlQz2wrbnrjVCAhgU6RgVTuSC7KfD9c3atUfM55Qu08HtR0CJNvNQsG0bJwFfiHYPR/3AEdO0XN3mLtCpVFqMSqoWtDrur3hpIFB5923oLIFN+O16zMaePrjcx2VFS2wlGyQggxEh/qKn3v84s6uTCNfyLbHwZknGRZxDnkoFJB0VUMs7AFUxuV0RuWCbU9Y5iDKIWXF9XbFFB2il1VfCuM8T1ivN9HFNlytlo4ieAd2DpWl62YuHhUeVLnpb6ME7ClhChOc95icQ84F67rh7cOMf/ruRwkalhnT7PCSbvCekPYb9r1g2zPWPUO6cjmw8tVzzlhfXrCnhPP5jBAjrkkUVHwI2HYp8ptPJ5S8IdeKh8sZPgTc9r0HIbUCLKiyTUDx1yq4enBV6g1INeUHGIeEqkIEnKeIrx8f8Hj2OM0z1nkCEqlyDLcFY58TxMzaKDOC8yKxWbc2Zt4L0uy9x/V2gyOH87wABORaUXNS6odkGJwr4sh7Q+HF4HUVBZkDydJfECc+VUnZ7Skpvy4DqPAvDuWWUIiRCyNpmmqeJpSSsW0bGIqCeMkshKiOu1dEu2UcoE4gaZGNGmpla3uCNn9hZK2pkC6uYpDmZULwXrv6muibOPLBEZYp4nKacVHdeO89apaOviHI95eBKvD88gKYOpMXdH2DB+ci40HAyRFIWzpPU1SZLSmefZgDKhc854prlhGLEEP1fnH4zaPHmwmgWjH7AOciyE2AE6O6l4qUK75+c9ZNRQyKjx61EtK2YfayiW5FePW5SGGSrDWGyb398PlZirrIDLCm6Q0tVEWA1GxLd+WP3QBfH9ycbRtAKGJqb+huMR1skvnpr8OG/sdy9PXptbNm770PMcw5Qf9m9JMdAwhTNIIhp6DDJvNrOwy0Me1zsjEZkON7tZQQpvb7l4o2nffdOTK0U43IPdXE5OcUO0CLjm0OsQEg7RvE0RzG72AvhnHqmzj182F0grkhkvfHl9B2C0pB9lp3ltu7uTtDRik0icVGnRnuv40DUXv2tb6eb7qbNADuvi6h39PxmgFo9qu2exaAR7K1XoMX+/xId6pFONS1MmqRbLL3EQ5OGj8hwXqgyOfvvRz7PhunI0XBruX1c1c3WaWI5N7veclHR3fMhpjH6EYlH0hQCECys44bdUn2xKrKYfJZ6zTdupG2O2JYp9pmz7qQfHek7/51Ay0V6MESgEY/cU4AQ0Py1Cc9ji8RuBwLcsdjDEANSDFpSKmDKxIID4Ge0VNsvVWu8D7o+A3ZH9i6u6OR6WdGmxFiRNp3CWbHtWRntQDQ/mA/2xi38bQGkhp0sqD8XAk+BlWr6gberqkFMebVQ67Rsa1fQ0z7dY1He+4HIKgHXz93P/j5jnyLtu0B9K3SnvM9dCblCzTcv3yoCSTKzo63Dyf88OEJW2FU57DnhG19Fif/cgK4ItUKrwvmZS/YM2C64iklzORBTtAeeZgAk0NGRSCCyOM5hFDhaEZKGfMs3WCL6qKfzhNKBT5+esK7d1/hfJkBz8jRYX8Wfvm2J1xvCfue4acZMc76sF1zQE+nBZfzhDUzrrcNtzVhmgK+/+4jlmnCPHm8JKGsnC8nvNxWLWmNqOTAzsOFgrQlCKfWCzevViRdqGSIA4vD1nVoxUDHEPHbd2f8+ddvcELC5XLGVXXtxetRZYEq/D4mofXI2Zw8QCfDHoJHKAGJd5iWLjlpPcyoSGlrRhoV2JTrvm4Z3ofW4MMWEONojHMRbXfn9TlCNOG3fceetraRsVaypZSQalE5Q5FxXPdbK0CKMWAOESFIASuB4Zh750Gdqt6pFrQ+Oe89vKYXnSNNczP2reJ22/D5+YptTQA7xBiEVoNBXovkuXjIeR/PJzxeLni8nLEsM8AVwROWEOAhCEkqBfOyYN/3lvoMzuE0eVx4xucXGafoCKfgECKQckHwIlsZncMUgIcTYc0Zn9eKHVJcSizFshEFv3uc8P5EiFSRMqE6YC+MrTK2WrDmijUB07IIjWaTgGyJQTMbjLTt8OSx54qPe8HzBiTI3Ek5o7AUvVauSGuB90ofkamLCkKtJOcOXvsFZDTB+zszZ85fR8/6X8zCtPiVuj0i6o7iYXMYnOzDX+4QPXl54LjfXVpHkfr/m2M1XLz8w91ejt9qqJoo29QvGu0vBhB/sofTeWApa49cEqqXIsdkDqn+W0rB27fvD1xRd+cIyhAbEkgIIbZn5kyOVuuRJHAMPYhCbQAQhv1Igvpj9oa0WFt8kNe8Yrum47/moDl1po4OTS1K9iRqzpX3XiWAx3O3pvfHx0mCHguFiHR/YMFhcAxkRlqL811VZjzs3pmMloQGtt2/b/y3c7LVqdfrLOqc325XzGEGRSc2T/9ujnbOWZ4F2zqUok85vdMC2CDCDObssFEwZIzMQTR1FKtFaJkeVJSCVgRJ3kmDSQxqR/b1bcx7cWl/nj2wzykJQGU1GJVhOvtNmcmC0FzgtMkgVwYV9aOYu+lR/fXjrOoqOaTD2/YqkL2gGftuQ8dxs2yQFJv3gMNbjUobWDQ6Ebl+HaPkJEG5381mqmNNCsyoGIepAzIbjdfrFffsViUR0yDzEQfryNAGS1V6xthzrzrWXoNyMMFNrvWBKWBtPojR2N8vm/6v3RO6Q73vO8I8ibkqjMoJQVUDbR7YLJEswpDVItJrNCEGVckBN+ZDO4cFbWxBx0+AA/gSfe/18QsQeUVx5Yq/sO32g7pCuS68cZH0YMA5YDnNmKLD05qahN/TpydQegHFBRUeJSWAxaFMacfmgUKCAKeckfcKH2QZlFqQUxUEngmAofVmQAKW6QH7Jlq0OUtnVR8C3rz7Cu7db1DdD/BUMAfg4bzg3cMjvn9+xr4XrKs0dTo/nHFbVzw9f8Q3X30FgJBLFQQiMj4/bWB3UrqMw20teH6+4q/++mucLw/IqWCLCSEG1HVTd1Ac8gqCp4BabvCTBzktCOWKVEbppzYyMDeBINzqt6cZf/vbb/C7r95j+/RHvH37iLSvQCmieOKD8M9r0knotA4BAGpLq5ZahWpjKEfmFlSAKwKCLmwrIiGEIO5tThnruqNooCfSUB7s+oQFSSEpV2uhLpt9KsKxLkXoMayGsZYin1c0gyA0luCk2czpHKWQ1NnyRNOAN4FGa6qlk1Wcb+dVG1iCmEpS3Z9yxZYL1j0jbUJLinPEPE/wQSP1YlkDhtfPn+aIx8cL3jyccZpnOJL5scSA6ANsA3LOwQeP52cJkogI5zni9+cFTx8K/stTVYfaYQ4E5iwBiCdMnvF4cjhPHre94N9/v2I5XXCaI6hk5LwDXPDtacJv30R4Ktj3jD0n1Mr443rDSybcqsfOHhWEQBJIO19x9h4nL1kJ7z34NAGZ8PKS8OHKKFiQEXDbpai7UoWLUhCei7VFN3Sj7VjgKt2YHTuklDUNfkTBxHZ0JOMeJBiP5oQ0J87GnFTy8c4etdXyBQe+XcFrx8kAi2YDqTfd6Rf50853A9ba9Qh9zrbf7ozwT+1Dv4pjpFO0JkAxYp5nlFKw7zu2bTu818bY0OZt21rxrNDLXHu/pezvu1RaUVt3TiUAkP2BIJ7FoC5C3WlvDV0Uobbv+JJja4dz5gh1v6Lfg/SksKM5TITDfY6I93gY+msFjY37bQ6Q2pb7Z9eKLIdrHsflHgAcUdr7e7VsQXu+nNrfcpYxfHl5QZkLpmlCiAHQZzhNU+dL1170anPAnqXdR/++sfB2oOyiA6bee6Fa2phBefusWUjI3mEBgyMga1dxK1Ye77c/m+5sbdvWxrHTLgRZP51OqKiyBzEjbRsmWhpNRJxhh2zdaJ2XQF+RWUFn7Q7FLhRIf50eTWjn9C8cDG5N0SwolgZrc5snbX5p7ZIbnPdxvvAwn4Yn3eZJ8BqgMKPUHaXk9l7nvJDEWbLrIXr1uXIb83Vd29i3/aJNQsloHBxcqnDBw+u9dTpSp961mpB2tfrc8Lr4FGTF3gSuUhQMNtpOQMpGCdWGW0olPSLw3ae174fTxpeWARh6CpA3VRwJI9o8gqxjU7qRIPa/uSM/dIPjhpG1l45H34iY7VFrxEhy48E7TDEgBoen26pygKJasKaCR+8xuwlPTxsIjMsc8fZhRpwyUk7Y1l1oFwyQDyhKvQghgEEoVRDVAEZygohUZpQSUMhrMCv8X2aVw0wVNQOeqnyXBz5/fsbL9YplWXC9rqrKMSPECL69gABcHt7gtu3Y1pt040w7QB7rumLbVtRcEHwEiHB5PIM8g3yFc8pvdAE5VxG1IA8HD+eyoJbeJNmkOEiVVSUKJkEZPEi1yAHAIXrg3cOM33/1iPMyY39yiEEKL/dlUq1SAN4hVwIXVlRQioTNYWmBgRf9fk8OBZbKLoLuR52sZFE1ABaeNc9CO0k5Y08JeS8ouzjmRdEbMZjdoFQWjdvUqtmpcSWFq64LgBzgdYckO5eHhNJqCEkMTfQeQYvKnJM0A5EgCE7/NeNeUZrxylkd323Hy8sVSZU3pikixC5/ZnJnzFqW5AhvHi54c7ngfFoQvAPXDILoJFvXOeF5ynzJOSMl6UcwTWIszi4hkCApQTu91sqI3mOJDg/nGc4Bn7eEf/qYcE0OD48ipVlYgq+3k8Pv3sw4TYxtL8glo1bgmoGn5GUtqBFjBtjJBhoXD1CSpluYMBEwBY9Pa8bzWvG0AtfCyFSxbkkaVVGAp4ot7x3N1iGyDZhRkAuhlNzQq1SKzJxmSO4NijkOX7ZMtunKHOSDcRfr2znKap2grrPS/Xgw9sN5uzVrwTJU2cI+T4Otu0dBATPyhsjIUe3s7f3jtzoYte3XdJgDaYdtuua4k+9NXZZl0XdJnQtAA5rI8N5JN+zhsKJIoG/qvq1zHfOqSCA6NaAjulon1BA0QRl5bJSn+xfuxtu+c3QSxiDAZtKovDJSDO39TWnnDkkfz2mH2WA770jtAPrcNWWQ0WHuDrg4nrJE+nXeO63jv5U76m7FqCKBaYCdnHsM1GKMrRFRCF7oj0OAMEqRppQkQCPf6CbmiBoi3MbOHKlRsWS8TptvJk3KFcRVUE6Cqq0ABdptdrADNhfHZ2vfJWDVBJMWDV5UZ0idLtOwR6nN4SNAszDoI1RUr82Z/fI657QwbgC8DBy1fLLVfPSxGP9VOU/X11SM8ejAc9fLl1t2Csax3r9+ryHtGo0aUl7YeP2akbbXbR+0OQNqPQAEsVY4V5F/DGvClK0knjHqr6D80PuS7vS6blj46GMvg9aMaZgP3Zqynrtfm60RQLLUrpqsp4xUDwrksxJzcTtXHWwBgzU4cwdIx7JmY7BhAZkV4pudIHLwLjSUflRl+peOX6Ra01MfBgWPEXw3IDzeRfuUTTwpMgjqXOVSsO5i0E/LAjipZL5czvj0MWsRA2GZI949zOA9oVSSwjoAcA6Ogi4KlVOs0kzIO2mClID20AtrGZvzABeJKA29r8Dt0ydEx4ihN9TYasLDElGKoHuC6hQQMZZlwbzMuH28Yc8JD6cZlRNqqbhuCVtKWsRZEaeIGDzc5BG8usoMpCr68RUsjYh8gA+qquK8oDRcwXAohkiY4sUQxUMd6fM54jfvLvjd24tywQnBE+bJY5kj9hRlI9SJVMm0jjFMKp1Iat+7URAepGnDVhYClbNNhAQFcxZkeCAGwhwd8lSRSkXaReNdEApZy0WbDDgAjp04yuZ8qyyXGJGCWoRnCDW+sGfCtoEKhcY7JxQUJwi8/eecoiggbf4gz60MHF3W7yolYds3bOsK54B5nhCjNrZhIJcdW9pbNzk46T785vEB59OppXa5ylwT1RwvhcNEqCkjpYys3LwYA2IISDnhEoHTJPPcaW2K8w5T9LgsM4gcXvaMD9eMaxIERBpeSULuFAO+OU94c/KoZcWWduw5YyvAD6vDtYamTuTU1goHUYpRS6lIJIXCOa1ATritBde94poZG3sULthTbagSV+lyLE1GzBCQIg5SoC5FbVXUnoLDlkVBodsa+1y9c64PGMvdz6ORprZhEjq1QUwWD6caXXW8ihQOQIs2DUJD8W399es60i1sDWkIQL2Au1tC3ZCpDs6h3f8rdORP+hid0vE5tVR7qaiuc3iP8m2MngCHoppGdegOweiA9iBOv88CuarkFeqbVLN36jhVFkce6hBacMhDkDhe/3iPx8M259cB3vhMDg4z9XOONQP338NDgDwi1/19x++td7ZtuLy2hxiV7f7+Op1AP6/7Tr+2MezkNi7NiQ++FXt6p/ttqS0j4V3ndd8HEfaacZfd3bM8Ps/+PCzIEadSePik/TYMEZfbuMt4tH1M5tvYVGt8n3NefUuh9QiH3wChCgzqJZ7Uade6r0IiLcxV+7fApIdZQEXS+W7TXp3gMVDTr26B5UhN6QMrP1txdU69YaaNj72ngS1WX2HAGfqcZGZgcEQbtcT2XwzzTZ+Vgzm56IWrRDZY7SoPQWbl3hpEb3YEFW2dOu/Fz1PaUikiRz1NUwdmSLrv2PPqUsXDHkEy3sRyTgu+ZE2F9n6b1zxc03guwEDqwT927cmgBQiv7J8GUiCAJLj+uWo1dvx81Zp2zeNGOaaA1dj1vRHNuzqeqXGmLQojb2kEByJBhpd5Qd5/AJHobccgVIJrziA4ZNXuFMcyoNQCZ1X4qmvqnQecxzVpEptV09ppZfuWNZrr7eNfPn/CFHwzAPMcUR2UvwwErUAvVcr0LpcHeO+xp4xcKqZlRlmlEdGWBHmuzKgpYV5mkT4MA1exShMOcXCUW+UEWTZpMlZntVYWh7c1j7GUsES4VSfCV48X/MU37/Bn79+oQy1UjBA9pnnCnAvK9QZOLPxAp89s2KhI/2+caB0Z7zw845FbkZAjM4KuLWIKAQgBPIvKQtqF314U0UmlisKQRd4EkAvyjMiMlH4fgJISctVOr3Vw5pm0EFf0YGMQ/nxom4jT/3zfFNDnsxiRoQtdrailiKZ+yZhjxDJNbbEzV2zrrr0BOofwclrweLlgjtKqXJx8brKeMUahVFVucmeCJHjMk6BXpRY8zgHvl4rnxChV6CKSWQlYpojPW8LHW8bnTWpLIkHpXUB0wMPk8c3DhBgIz9cd256wlYpr9vhx80guKJNAGm05FuUZr801UhXN99M8Ie031JLxslfcUkFiQiEgZWkgFaOiIlkbYXjfnR6dgyaxVSEqTYGlHqAZVyu+G/xlpqP96PbGnB99n/5s/vYQQjQ0pTuC/fPoLzeY4s5cyfdwd2bs4tp3Dp8fzbatS1srB2ddr9DUkqyWQC6NX13Gn/oxSksSkbYlVxUX70V5SpVUGALsTJP0yrhvcsPMslmTa06/rV+jj+TcBIfbd9qalnIv1/ZT21yl58Hw4LkXLtr7Ou/1S467OYXmeDt7tc19N0gMlnpU7hidq9FRbQGQ2Xp1dgDXqBLMVkgIGJ5C1DMP1uzq7nI7bcIy5y146k58Cw50DRk1p10LOqDnnFHE5BksywKP+wZTFUURdniHQE7odUQNva+FG03D6CEih9ibGrUGWMNzKYWRlDMNIjjv4FmAA+cAYgcXRGoXlVS8QwOMht16EFkejoUOxNaHBO07WzBQCVPsTaHAABfJujhVtKu5AEUAxlKyIMZMKEU6jvsYQD62jDHIg61ITf0Ycg7aTkQaF6FqHZsKJ5gjDdasvjJgIYIF+yaiFTZGWZ8pACTNZgXdH2UNZRgTw+ZBrRXk5T1FJaNt3ngfEELXjTeE3TunohFDRkqDdxDaupxiFCEOGFBv/HPNljh5lhZEBueRnTE5gJR27PuOZVka5QxO9/gWJNr6AgyYYXXSof5dzgnWJDO60O0L+vqs9bWZtmLfFvSQKXBpzQ6oKRRZYNKjYOtl0wMtC0p/zvGzHXlNBILYdefRtJ+HCN/0yduF6jvFOEg7+egmMAN7zhC5nozL5SKRpXOYpxklZ0x+R3RCv+FasD4/o6SEOJ+wM7WbZwAJQaQaW9thWfQhEHjXQjuSiMwrsvp8e9ECWNI2z4Q9rThdLqhFXNE3F5Gf/O6f/gCww2mOgHNY94xaGJeHB5ElXDdwKYguYi8VO0cwCoIvqK5i3zNO5xneB2mIVaX4KmXGXmuXs3LiqFdyLSXVhKkYqBZIsTjMzFqUCWmGdZ4d/vrb9/j7P/8dvn3/NRxvqtIyIYQZcSo4VYhTt8vC7qOkxaDN/zJCgaHcUiAKDlJsAgJzAZSaJO+R63I+iONP1GXCHGEmYFqE2lQ1yEmlYN0ScknqSOtcalF5bYgEyIO1UMfUfQDJCoCFsuWcUx65w+SlK7DxzQwZEpRiiIzRN2czLKwbbS4ZIXqczmdJexnyA8a27bJBsjooIeD9wwXnZQaRXp8iHY4c5nnCNM+AcyhJ7lf49RWnSVpNM4lqw/uzw++vDv+l3LBCjMISHR5OHilX/Piy4jkJr9eRFHAxCLkCzjEuk8P7xwkpb/h0XcG1IBWHz9nhVjw8KnLRMXUE0vudp4iUE7g6zDHiMgdwuoLdhKe0Yi0EQAz0hopcCqbZCaqqm7UVFtfhWcljkjldSkHRzFxzdMeZSGpXBmPZ3OORpwIr9B439U5+AUrb8NtXvPJn7lC58eyG5h5WCSCrslu5o71DixPkNoagA5Biytqvh4hkoyO0jQz009f0p3hw0VbnOk/Xdcfl8QEhSNOZolKlVTOj5CNy1uB2nhvlQornpb5nmtThEg052dCV7woA0iZA54XXBjSafhfudIZpghuoBKu/YenuKegtgaug81VrrsxRlpvjZuM62KbXZc6V8vXNpvQHA3HUTG1E6Rji7HJzYJ0jQBu9kdK7umyjOUgVrGpmcg5RjemdWo0rLdmzkgu6sw4wCnLtzva+76rnPyiCkKiBGeoapoiKAu88gptaUzxB453I8lbhMjsi5D21fholZVB1WC2D58XJbt9Hmr1nQvRRDXTt9kTXbSAnYIkGAlyq7K/eI7iAkgvmEJWnPyHlInt1mBDniH1P2G672GiTQXWiKCa8d6dzU8baKx3Jh9iCoTmII19rRcqCHNZSAGIQPPJtVc+PQbUCKNi3DXtKSCnhtCxwUwTFABci2ElNldOmiiAHDh7khXdetw1xmmB4MwOITmQ3i44Vk9dElgBBPs6Csjsg+EnsUDGNd9LrZ9QqvVJ6NkJ9Ep0vINJi5grLHjJLzxc4zToHhvcFtUiAIAXBFXm3WgQ5vAbjDfCoFT5GOEfYthUUSKlWsmdsuWjZLFBq0no7HesY5XkbwxboBcHqLMP2fs2isPad4aIF0wByseyuBMomi21roPAQ5OqYQ+u8ooKwpPsXV1XUcjKPQoho9VB6ebpZit+k3HoBpKiLiPxXjl9U7AoYYnHcYMwQtEE1xIrvPw+cTos6SxoGVGDyAcF77HtCnCO8n/D08Q/45t0Jn77PiBThII7/w7JgTQlP646FCmIQ9JcRwagovIERUQqhFkaoWST2snDBc8rYXMUSHKhm+BARQwQjwDmPzAl/9u07UMniHO0Ff/zH7zCTx9t3b5U3nVBSwcu6Ic4T/vCHP2JPCcs0YU8FL+uODy874rTAuQofMiI8Hh5OyCnju++/R0oVwUXcyi4ogxNHk0tFqhuYinDSc1Fk2cPDy0YHB6IAboUXgLUF+Ytv3+J/+Ku/wD/8/ve4XC7Yn6/wQarUg4+Y4wQiIJdHbFtCTsY91AWBEYVRtIUJmXJDr8lJajF4UYFgpUwQLLMi7/RaQNMAHVNyMOQeklGYOCB6j21z0pyrvReAbhiGVkmg4UAqPSfXLk2SxHgqj87L6xYEBXXc5fpEhtINyBU0IGS9Lujdi74r483jI+I0IxnHP2dc1xU5lVYIMzuhvLx78yDpYkX/nGYCpumE8/mizW0S8r5h3W64Xp9FnlKRH+mXELGEgG9Pz7juBSs7+EBYToQMxh+eV6xFQhhmKfwuDNy2hBoJ354DfvN2wsNE+J//+QO2xAh+wlo9PiagkBeN31xkg3AyFoGAZXK4Pmdc5oBT9Kj7FSBGLh57EccnkseqGvjiaEg2wDZUgEGeZCPnEVVQ97pW5MpwwcGT0w7OrlkWHjaX0d7Q6MQToJA2GNCCZwcoqiubrE0jo8/Y+Da2Jv6l4+D8U3+3oDGSfhdUnr94qpHCYV9n1QIN1QMDZMjWeEm/Hke+0T7IgAHpEQFGK3IUJFWdlxAwR98KWg1llQ1YHGxpFETNGW9KIXhd1FZrRYyx1cdYJraj3eqwKZfBXu3/yVyw5k2AWkdDp+/GTE4rVMyWsdGs4fhM5Gu0xb2BCMPpus0j1CIdbsHqn7lj8xkJoGlQMUHjedvPo1NuY1KLuMU9VNZxok7BGGk047mFj64FwE273XWfQO2f3dC9rra9bveIKnajZSOqUBwddU50rXvrPwFH8MGjFimgNNLypN1+ffBgqzNjAlJB3jfNF4v4wuQD/LJoIyjtbcHQ3iSySovWiBGJbfIxSvDGjJorEu/tfhxDGialCkZBKhWcpEdIy/DmgpykiWAtRZoWlgX5pgITwYNClGZZPiDMEyIm1AQNLgiuluZAMgGFivhUpNalPV9GTpodCL1bMmcVkdBByLnC+z6+PRsk416sRq05w3RQuGm0Ru7dXXNOINb6riyA1bjDWqaaSAJ6guwZWQNVa9AI7xqYx9Z/RDn9kqEp4tiz8dAFsOVWLGpZd/l5zII1BNzAQO0SzcxNbUjRlbZ2mNH8CTt/O6/tNfa9XDVYqg2MrNr7oULXlz5j76QpWcOsfiaY84t05EW5vaNisg0Jp+t46f3/DdMFWLSzPWFfd/mk82CW9Nu23nBaLthSwX/+5x/xtw/ARHKjRlsIMeLrrx7xj3/4AbUAlRhwFc4DL3sGAvAmSkdOdoJwlZrgq0NwAQzRyvYJeFguqOSx54LzecY8z7heb9i3DVQKbusKQsXlFAFk+OiwzB6f9g23fcW2J5HEnAL++P2PeHO54N3bN4IwMWG9SmdXclWMxeRwPp3xfH1ByhnbnrEnxloYIZ6atjsjgzgjV8KJPApn+FpRiUQPXw2LSZLZMiRH+Ou3J/xf/82f49/97W/w7buLZCeKFqXW2gqMmSseLxesLzd82j9L2o9ckycj2HewzlgdQxIahHGqHUlEbU5wrYwCXQCtCUNH84lUfQfNe24OkgMweY9Kwhu2dHStNrf0e50UVXKLiqFBA6ldN4oPWsQs2Y7+XoYYW4KkXrsUZudnSjo3S2ZomjDPJ6SckFW2LuWMdd86YgbCaYq4nGfh0Kvtcehc0YfzosWtGfu+YVtv2G43xDjhfDoj7RuYRYGHnEPaM2YPfHuZcKsBGzzWwvj+mvGyAakQ1lyxZUFhvPOAB756E/G7h4A3U8H3Hz/gthXM04Rr9nhKjL3YxiuIAYpo1Afv8BgXeCn5xTw5nGegphXL4yN+fK4oQjAW7fgN2PYK5710u9W23ABALiAXSXW/5vjKIBhK4rU7cJsMZum/ZMOov81MkY1xDIr4snaMrcP3tK8f3aSf6SgfnHk5GbcXVI71555Dnb/jH8broGE+/noO1gFz5KQuiY32YmoffYNs88WCawyOnx6SehYnpv2OwTE/bNA9u9Htg4IgzcuGOgpqH4b59aWjgRP2nT8RfI2UqR40dGfJro+ALrk3fElzcBniEPCwBNSMOjVs3hvvu5p/1xwf6D2b4y7OmIdRDowSAKeBZXO8jWsu92ZZTSl41OfKpN/XAwRnPGbnQdxrGCobp1yeROfE94ZIbdAt0OKBl2xOMonfQUxy7qpShcwIwWOyHgNZQBd5nJIVrSXDUUClJOINVR202r5Arl2dNwucPFkzpQSq3MQiAzlQbRcsTqtId0lGFxlcErhU5JKQ9g0lCf2kagfbwgVZn0/OWZD5aRJH2Tmc+AzHVaiTpWA5nVq3etaApoAky+yc/Fe1ZhAWhI5mUOlZr0wg3c3N2p5NT8ocwa5DoGq+gNbQGVUVVSg3Y3Bh88x5oU/ve+88C6hSGmtG1Y9Bqdw1qFMY7YdDXYmjlmFhUJtPFnA0Gicda0Okp4wDNCM3Bp/jMyJdoy2Agdmsoz235yT1Z73HQfN9dIzJSQfrIpB/Ywf8nONnO/LE/aHZZY52rvGYzenCnXNPwDRHbNsOIkGYRbEiIeWCJYg00rbvkvaKEevtilojBHWU4rt9XbGvm3QFDoLgXbeENXt4ME6O4anI4idJs0aHlqKoEO5vR7UrfAyIk8P+cYd3E/aUpPKcKm43h0oF5/kRed+w7zvWbce6Z5yWC/YtISXbJMQInJczXEioJWHyHpN29SxVUEvyHgwpcCyVkJ04sRJdKo+zqOObxakqTqg2YqtFd7mqdN3sHb59dPif/v5r/I9//1f482++wjQHcBHZzrxn5JThncc8LZDNc8Pj4yPWfUe9XqUDahV0Q7qO2kRiqVBnGVNzkDEsdks/NxSfWTq7IYjUo6lHODMm7rBgAYAi9QVHUH3tgSKhkbzIVAV9Tt0JIiidUBE6r1xZkSIb5m7bfKxWQ9POeh4p/GVNwctCvswzvBe6iW1QTXNXpSwn73GaJ5ymWaN02SyICN4FTFFoMyWL3OdtvWHbd5AjnE/nxpV1zuoepMvhEiLeEoN3xtOa8ccNeNoIz2vBWqSRVoUpbhDeLITfPzp8dRIE65oIzgeslfCUgWshFJaGaQyIE+9kMzoFj8eTR0oJDoQlEmZfUWoBfMDLdkWBNBPZS8EtCffU1BuYGZ48MooUrdfSDS/JmjOHgEGqPLI3m9Kco75jHA2OvUjmrNm4E6JzCNBGYtwLq14DGj/lvB8jhyOn3Qot7x22e+S3DrPxDk2h43ePvt/gt7RnMBZ3/hoOQcklYzdNs8hHqkqZ8edbkauuMelNcFTfGAs6nQboMDQNgG2yY1Ok5szKhei70BxXCSx7IZojbl2z2/XzuJGjn8QCxbtg9dX9H1I7X3idrT5neE0dkRY2Kt3P/MvKGnB4ASRClCK5Osj7ieMkTjspsJBKBpETKobVAil9QKiT3K4t70OzRSLlPCs1p61vcX5sCMZnD4iTL1TKqlLr5rhDgzHJghCMXsStzq1lrfQ5kwIJbtiDOBWgFhCLWvnkPaKT7qX7uuLlehXb5AJCiPAhgoITucR1R9qFs+6dBzlvEFZrYlVrRYBI8zoS8Yy67XAhisSk0nlqzp2SmRJqyuAsGVzU3BD4kpOM0bAXccnYtbFX5QpXImrKAtQR4Lmi7jtSLthzRgSwmyNPBB+jNLwMHhSUUw9BlMkJQMcsVBqQUVp8y2IBQi22DJDZWAZaAysGDcCdZJGKBj/GeRd1qd7hlRwpxU0ceiLN3Oj8rKSOfHDgTWg+ljGL84xtu7UVYwpMDpoZgwTeplpkSDrQA3lTyyotEOlOvFDe0NZUsxGOtNb5y4BKsx3NDonwhQEPGP7fut2237kixrkFtd55yRTqeMg9WEAjmYafc/x8R35w20cTd0zJ9VfbT8zCyQrG0yPMs9E7suqditO17vv/n7t/a3IkS7I1sW9fzQC4e0Rk1qVPVde5TfMMKcMRkv//D/Bh3slHzhme7q7uysyIcAdgZvvGB9W9zeCRdTqLMhRhFVIiI9wBGAxm+7J06dKl5JKJTi7wdi8YxPfV6CS7LYkt99SJpD3uSWQFCUOqVm9Co2LxyKRuxlI0sq/GsKQE1jDFmWkSB5B13ZhjJOUsHWCpbGljniMgjQdyVgDe4Ol04acfvxCCIwTR8W+rNJ9oRmwF53giBI+xli2JB33aCjkVZSutuujIYlWrIVUI9CYZVV7T5DtYvebWCXg5OfhutvzD3z3zf/vPv+Pvf/296LNpo1gzpzxYcu8cLURpiBUDl9OJVivLujdekpSZEbajtxxmZ376GBipV7MD+c6+qzhMNsoewytTLh3uZGJVGRR7dEuHSHu0LDdUmjsF5zFOQY5Ozr6Nix/8DuStdcJS1f01jX2jHHUJh98VMpsuStZapkmyNSlLAaf8PtM3ns72zzFwmifxl7dmZDcslhCcFMkaYbi2LJaWokefxJJtWfX6SGqtLy4hRs6lciuZ1hL31LhtlnuqbFUBkn4x4+G3LxO/fQrMrnHfCrlZjPXckuGaYSlNi+za+N7i9gTBwRQsX9eN2VvO3hCNpDHXZriulWojhcqWE1k3ntwLyxAQZlTn26ro4k0HsQMYC2gqrUEpWnys68W4Sft6sq89/Ys+rkq92Es2QckMDRD/AK5+HhgPAuLwmXsmUcfnA/Xz86Dszz12DPdza6ihF3V9+/jzwPCv7dHnkjFmFMHdbjdANuhuOVmbuFpN04Tzh+ulN6AbAkiQvvtcdwarWxb213ZQ372Zjw4vtvvQYyjqGmZ6+sY8fi4cSIDx+28jzf8emAdGceH74wG6hmqA2ImFqlnww+tGsaBeux7gWA2WdhlMZx334KfPPWHaE922s59HLnk/3qHwtmcKit8bMx3/fv/oEh4BX7uO/7hvHN/V72GX//Tvbd2eRUCbQFn92VlLVBAtwLKI5vlWyW0hbRvLsnC73YY+ubgAwF0DuFaFxDifn2jeK9OkZ6YOKS1XoherYGMMk3FseRV5nTFktR+W2jchu3KupGWh5oSphaaOKrQui1FQ3WWHXZOvBGjdNnwUPXWpjc+3u1wzZ3HBc2uVVR1kfPBcPrzQmqFmC1o8noYDnsfPkwSFwx1FExA9YLKSVa4571JI2cgFvLu9V0Gte0DGw3xolCJjqqg2nprFnCJJXwFrmu7NluAcOW9cr0n2bOeZTxPdRnJb73R/+5YrqVUuJ2kQ2tT++ii5bSEfGscZKh0vWaA+zN33Y7bvF8aYsW50W8tdhrcHoX2raGO/eDxeH99DT684Q469CzvtmEN93uzF70dL1X/r8ctda3gP5hsiqeG/a7JgjMgeYvTiw60saSmZpBHsNAVyEbmCNdJufk2JVC3R+wHOrHMCIOjsK5Rm2LJMqGIaqVncQyWZYy/PVZbewG1daMZwPp+IIZC2RMmF5qVAaJo81gpICSFSGqIpz0V1tyIJ+OHHz5zmQIxSwLOkxH1J0Ao5bbQqRTC5ZCmyMZ51zaRUByvXrFWdH5QsQH62yjIMMKssRhOGPEwzL7PjNyfDf3j2/J/+8Gv+4e9/z/PTBecA1c/19tf9Lhqtog8xiK5/jqIpa40tbRo4VMCphWDDISlJZ8zwr90XY9XVa4SsNRui5fwmGt016z2tZTG6mBTaYcMSdqzthal9Q3aHIlVnukS6X6K9mLUHGEaA0p7O7cynGWnizvzTekZEJnXworP0IZDrQvCBUhrG5AG6o284ZzjNE6fTxDxFgndSgd/Z+hCYomR/Ss2s60qp0p11nmdJQZqKWF0ZSUO2bkcZMK4wpUp0FkthTZWt7CDeaLB8jpbff5h5nqDkjbc14cJEwXJLsOQqtq3a3LdiKFUYF2ONOOYY2Tg+nR1nJ0xQqnDNjWuCbBypNrZch+ypVLGfbLYHYLJS7S4ZZme4dcHv46jWpvJHM4K6MVY10BOliXkA2gekJQskB2ZFF10NUXQ8PYLldjxW/+uwkD2uZ30DQJnB4zkcwdyBzuhj6uHz5AADVDX9zL46HcHaHs38TTw6MzZcZpSN6k17lmUZGvbuPCPZNQV36vBkWxWzDsswAxiFa4frJ97mDFB2lNkIaaDhW6vfXOW+1w0rPg53ovUxZsST/CBP6ESGvOxw1NYeRgn0vbQexomOnd4V0hzPkT1+NSorQGtClDRptWnXVOkzgXc4qxa3XdZSM6bb7bZKzpuC7IP0qK+pvfhKmJI9eMhZJCBaBNhaU+/vHQjJG/pn9mJB+c79uxwlGUdgb0AAuxIAnWWvpYojVikCBAHnLcFYkjLcJSXytrGUTN42sfVVjEF3MrKJWhgFt61ptmBJY7z4GHEuME3qIJYLYZYajl5rkZeFpkDvdr1CbeQtUYvsB2DJ20pNGXLGUEfhJcbQioD7pjfWWLU/NkJIlSJa/iFJ8250KK7O0VJizUKgOO8oW6LSiPNEmCas89jgxz58u18xTjIS1nukPkAbDlnNmpTEMDAx4uS3E2wSKNbSBovvnOtDFGjaVEtrxmoleMu2ZmreaDXhbKOkbdi/ZhgstPGeSiPnvjdLoNWdq4Rw0jGqwZYde4gUFe91OFL70IE4OpeHgLY9kivOeqBShnnLPi4fA3ct2h3ZpJ/L+AJjz5GDdelMQwPcni0ADazku3Z3JqzvUYPYVP+Cx19gP9lXEj1VY8YXPm4/j+8R3e0UHFMQBuZyunBf7gLiW2MOgafziT/+8Y+0BucYmD38+Hrlcj7xPM+E4HTBalgXsSFg/QbszKIxhtRgrWBqIxiZUKVASxsmBIxxg5dd1hVv4DRPUAvL/UYMHucb27ZyOj9jDAK+qxRm3deNNWVN0xgWldl89+FE8FJdmWvl7X7F6gqRU2FdVlLNzHHi8y2xJWVFW6MYBy4yz5H7baNgqcaJj/2aRvTamSMwpFJ4ioG/fwn8w3eB//LrZ/7zf/gDv/74HT5K11BawWgxSNVbVVtDcpOW+XTidrtiTWOePNaeMDf5vtJCHS3yFncd5z0u51Fc2/3YO0tvTdelK6A23eKx/7yPo66D3wcT2OZGs5FRNIWCd00NWiteu/JWLVbCaBawYShyXkfQV97NNMMA+NKYadcktwamFFKSAk5xOQg0IyllGmxZ7LeMszhv8S7gneFymrmcZk5z5BQDU5xopQobPwWcs6SaWNaVbVuJMTJPM945rmmV1KDzAkarSGaMdXhjIRsuE3zMluf7xn8rou3UZQxjGlMM/KdPkd89BbZ05+uysebKc4BrgntubFniu96ZtDbpX5BKwQfPd58+sr59wVrLyykQTKGkTCqN2z2xZMNaM7ctsSbpionOvaMG0NrOijNY6Kr3Yw+p+wU/3JixoBxhbNuf+xmyU8YTkqpFnXEGZn+vV3x458Nf7389CNfRjvV9FVAba+KDtvdwGCE53q+OO/jvTU9MM5gKtVvXNJUm/sz3/Wt9DCCtgDDnTJxmjNkLMMeGZ9pg+1rrbK2C68EmVlrOIxDoGytUBGe0IadsMIKIfmeMeQzImjmImfoYYB9y78O11nZA/ee+L+yfsRMauzZ3DLEBbHc7yi6V68WG+3FRYLUHDkOecRi73Zqzs31dxuHVTq+znnLtzXifO2Q0mrLw77MSJWftV9Gv6Q70uz5epDNtkFW79FIBzrgu/b7qD/UwS+TGgXGKtitNmW/TGviKq431dqOULGA+Z2pOrMtKLQIqrRFZbiVTjKWWhgkTtLYXWBqRPBprablQXcKWSFVradcqyyKNK+d5ZrkvI4DZrjesMaRV+sdUp1r8LNKamjJGx5yGb/Rsu44IrVtAa3vE1nFEhRiqypjEjU+I0Fx1jHvPUqs41mwTdZ7FNS44XIgY60gl43yEWLFZug2L00sUJxyAklVyeaxRkZNupQ5izzQxlZDf9/HZpWHClrda5DzTJjUBeZN5nzbFAyLNcc4jXJrUyqxLwjnpzt493I9SuR4EGtph/B/6C/TRo3VmdGJJ96V2GHdjXht9bszrb8f8kcXvO9Wu99ePOMx/mZLt2/ceAgKRdx+KeFt3qXLjPB5w0n/n8YuBfF8Sd0H/f//RB23QZhBvbze8DeJWo36q3nk+fXzh69evLOsqVo/OcE+ZL3fHf7pMsHzBuieojXWpGGeo1RK8x/lKplCbOGN460gGHOIWEn0Qy71tweQN4yNYR0E6Ok5u4np9o6aF5b4wRYM1hVwgbVIcajEs60rKUj1dmx3R4bqsRBehNpb7CqzabbZCK+KGUwu1Zk5T4O228PmtYKTCEGMa3p3xzlNLY8mFiiVEhzGJXDa8g1FYbB22WX798cJ/+hD4h0+O//zrF/79H/6ev/vd73FT1HxZoeZEXW+UvIg3asq6sKlXL5YQJuAm0hBlH17f7uoAoLp4jSStc+K/W2SAWifaLuvUGs204ZbQQZDzCuYRZr2zZCM1JRQ6YCi2QsmDte/V4FZlF6brK7tuTVZ+HZOygTfAlkKzxwLWd4++aak1pnN7kVwphZtagoUYlQ235JIJ3pFSptYMreKtoXn5opfzzPPTmafLzGmKTMEPpmGKkRActVWutzvL/c7lMnM6zTgrVqS222IZRzZFm9Fo9bye2zlYfnNypI+RH+6N5XWjNFkQzzHw9y8T//Cxsi2vfL4nSkP0+jiWLB1de/aiIYvxmgsUQ/Ce8zkynx1vXwpnH5htpZbMUmFrni+viVIMy7ayrpkti2ynU2xdIifuEo9sRV9cmwaYY3EFqG2kYY0y/AMEg4yrEbYcodUO86lNtI7GMMxuxgL1b61UfTiZB7DeP28QN7RvDrXLbx4Z1/fM/r4U7wFAo0lx+/iyBtOkmLxaK/F2+2X6yL+GxxHI55zZto3T6UJDOmFOk2S/jN293EstmLZv4jsD2KSPhHZxNMZIB9ahj20jezeu97gfbfzuuEcet8u+HvysbKTtd71+k+X59vUdODy6yxyJmf11RaVqHRy/Dwb6ywf4P4CEIcMcx9z95fuwrbXCwZVkeMgfzmG3qtSmPopQ3r9H6rvqA2M6GiCpJMVUI8TBAYi1UodWvr/P7yhqPNcLSVutwmBWIWVaVgvDksnGkJ3nfn2TYt12yARvCWqTJoDesK4rtdsKAq7IHK21CzBAmFxLrlDtBkkkH+u6YlLmdr8Jw3/O3G43gvcYDNu6EpyjbJtIgKyl9kxvkYCz0V2RhEHunUd7cFqKNIwspbKlQtUGgv31NenYcoZmKusiEhIXJJhIaWPNibxE8nQHI30+4nwiTBM4h52kd0GxkjmwztNiwQUv3W9rlixN1WP7OILJ2qrUFqDrdJH1S3zkRU5EbWKGWaVPQGmJtNxYlzspbTpOteNyt7ZsBecM1Uld2bJshDAxzTMxuqF/d4o3Ul6lhlCBvO2MY9v7SdBxiDUYhOlXiCDjWVK/D/NUzFc4SHP6/BLNP/3+dfLGaM1P3wLNTgjWysPcGxI6DdAbnUwU21lgHLuTGu9ld//W45dr5B2qme72XL2ITTfXsWD0AoSmdnrC8ubSuJzO3NaFnAXEn2ZZBL58eWMKkeg8KRderysVx5IrFwzbspJ9I3hPKaItDk4md8s9ii+YZinNkozHtIKtlfk0Y0siZ/X7djOFQMVjg6PUJO4aVQOPYHaW35qurtIynMqww6iGRsF5ZKBq2+ktZxowzRNvX29UKtZL+utPP3zBTE/QMlBVmuFwc6SqnlkbSCtLoteySdHuJRr+/tML/8P3n7jYz/y771743W9/w29/8zueXr6Tu9my2F5lSS/mUvA+4lhJJYNpmCAD+TQFlmliWVfpoOs8T5cTaUskLcapap3UqqQHLTJ6RRvupEDmCJx0QIsjUQfaZlRS9AW6S3H6oxftiBvB4Xg0ie7NHkWjXrr0o6s8oUfFpYl7gdUUWE/DjU32sNdWFXGXUsVPeBGmJcQoll5VNiwQyVUuRaVKUtjjneP5PPPx6cRpmrVTqkx054W1l8ZRK8v9jveOy+ksi7e6Gsjk7ilwDUJjwLsgzbIMWJ1vfzCw/Uqu3Q+LLHLfnT2/u0C08LokckVtwST4mmZPvUsmqVRxPjDGSY3FHPhwmsjLxv/6X/9RbFKdwYg/DxlDaoG3W6U5T4gelyttLWxJCqeqTgn5vprmrW13zjgCd71rA+ge78UDYGkPmL3RZQtNR8vB9gwFNnWv2HkniOB4sJ1DArDq3X5Mk+4yAXMcd/vpjIBjL2/S82vvXthfbw7/MP0d0JqsMPvPO8Vj/oYo+W3b6HI25z2Ttazayv50OtGU8SxaxC9NXSzWC1sGXRoiLOHDddKN1/o9lV7pQL2D4UptMnc7cxysHdm53uvnePu+sUrkEEoe2PPj8x37HtPy7zdkqUVCdhUFzHWABcTfm/JAOuyRyCG0PJzDODYHgG66h7c/PF8wtq+ZO4CQfztpEuQYLKHrjQubZLuyMvlGs5T+Xeq/B2rHRlUcJUqts7YKVKoGrkoOGqO/UxGxsNBusNstJeq2QSnkCrmt1FTYtgVqValmpeSEM9KnopWKSUWLVcWphyTZxpoLNk54bcJXW2HdxBZ1cwrsc8Y3g9OMxmw91zVxe7tTFXhlzQr1QtFS0/jOBsu63bVxkchmrBc39J10tyrZNXgn3b1zKaOA1liDt1KjlfMKrUrfieJpVuv3aqEFTwlBxoE1tNMG8wkfA/f7naxLr3OBOJ3IPgxGvtnCbbmTVb40ny9SkG6drFBbUamuEjfTJHMSiaBsln/nbWO7X1nrxu3tC3lbxPhjmrCINHithXVdAXEtnE9nlf1EoA79e6+r6WtIqXlkX713u47cmL3mRUF2VXkPrWrtga7Wh8CxzyM5hNu5xcNUq+rI1C2xf4mn2CACrNNgyOh8tmryUBXD93VMatmsfwzefymY/+UNoYpIMszoPAUC4I+Ln+xWVS+QsX6A+zhNpLSNwsngBQS+Xq8Y6/HO6ABpNKTg7/P9zukiGjWKFIpGLcowiGNG6jryJuClUlhFRomzjSfrcPOJ66vYSRojldd3Y7AxyvlYj/fSmMoZYWAlZpFNPpWKM46SpQDHuSA3x1pyvmNrxnkvhX8pETRljGmq5zZsW2FdNi5THX6sUqwvAULrKQz9GSvnZ8lY73i6BD5+OvEPf/ie353PlHXlN58+8qvvvuP5+Rnj+wCS/3UgO8WZlmF1NwEftWlkKotODEGLbqVQxDuDP83YlEnana0/x2Fjs1YWyeAeA7mD0vEhqvyGqdLhYgbYZ4A9s//mgc0cqSyNqLsvfVMGX5ZS3QEMcl37GZl+jH5ULRLF6OIonrdiFSm2X6lIYXOrsK2ZZVlEj6nsjzeGU4w8nc7M84novWaihD301kCrrGnjtlwxBk7zzOjI2xggHiq15bHxeSPBkpyw1Dn4Wpm85Q8vM1uBf70ljLW8nB2/eZ7I5U4qDW8DGcPXJD68pYrufSuFVZ1unBN7zBgkEGsNqIbZWWa3YJqhGENCtPWlRTb1hJdgoJGKuChVBdqYQ3DW9fFGdcn9hvdlY2B2yXT1e976FOhjoAcCOrg74O4qiQfJVmMwH/rGh/H3XqZw+JTx6zFixi8VrisANxo1HDCivqJ/J1kQOzc6sH230DPyb1nB2hirpoNTjRwMDGbob+Gxd0Tcew10EChrTBmZCul2nDSod4Ab4Lt7lIMU+VknhfO1ZGXnrTKUaejrpbO1Ns7pHXoPrJfUe/VrrXvagUk/OuX09/a/vy30bA/n+HPXoL83qy1iHxe9q2dDpTDavEnqjvY6k+O576BdC0M7aFad8P55+3nUWnepjfcDmEu3ca2P6nMIBCD2QY4ZWZDjPT1mHHqx6sgYgLqemd4TSf6nFr/iNyVgNUZp0NQO2n3ro5BSKQn4ThlTmshscsZhaJsGw86KExdO5K250oyYXvR5ndQ5T/CnEIL3+1VmvuqvvfN7ATFGtO56r26vb9KlNSVabcQYqHnvn5Gb6PWdAksQia13QVGgXNvRsVhZ5dGTRJ2amhb8uh58aOBjMETrhDRsWYg1bWhka4OUxO3EGnJrtC1RWsPPszjmGUuqd7awSFMrDFvJ+CgsdtRMMupxX1F5v/Vsa9LMjddC31VkPiWxXL8Ku14zKa3iHpgSLSVyWinbJvNQQXFwQvjN08T5PDNPMyGetfbFEqPnAJQ00wOoi55zuztSH4shiCzHeScZBxA7cgAnrFOrB6ANI4jstsCyvwjGSWlvgvXzGbcu/bNgd7lPxzI7uSC/M86N41mdo12ujGbEuovXMcv1bz3+Ao18H8b9se9ivUDCKDhqiJQiRDl800rdNSdaEweb3jWsFmHajRE2O+exLYpHdg2YUoHMZix+8kjhRSU1cb7omyvUYafVDEQtSo3TxO0qzKhtGZrFOyjW4IoVm0An6VoDWvyJgsNG2hKTVnxbKzZUwv5Xlm0jukG30VXAOW3UVhBTTENJAqzTtmE7hdm0YVLJOOPE7aRJcbDzFl89oTbOp8CnlzO/+/VH/sff/ZqpFq6vEy/PLzw9PRNiAG0+YnRTqyXLwFB/bSkQ0bRP290TnHME3zVZPQizBLyyumY4CghLyBj8Vt1ZehFT17h3NqePm46fpLjv3bhi35zM4XdNAdXYCAag02ja1B1BmR1yPTBW+p4RAHQpw+GNks4SIF+KTCRnHaXtXRNrhWXd2NL20C7eO8s8RU7zzBwnnBUtY888GGOlZ8C6sm2JKUa1zpT5YXSxrqaDuZ7k3aVFzlqqFu64Ugmu8TJZ/vAif2MMMVim0Ph6Uwco60hVpTNIIJpzZUsyZ5oyQd4anBGbP9MMPljOM5xsxWiJeMWSqyGVbkWKgvhKaU7r9XbQXEob7Oa4MRxA7OMtGkh3gJz+nIL9PrOM4eH5nuJsf4a1/lYK8+eYjW9/v+uzj/KL9njKh7cdIN44r+NxTH9nvxwWRuEKfXM4vE/nyTFj9df+6FevYzgYS8qDk0yXydVapbFO2xljAdWG470YkpJ3t/HIVvegqbuz9I0Us4PmzlAfs0ftz4yZY2avr/ronEY/yxg7vmh/ea3S0KqfX3/f+OR+Xgp6x+0/BKumg/i+oBqVOTQZNPZwIfr3r607/dgh38FIBg1aT7IfPq8NVzHrdlGtLO1m3Le+qHfpQVPyqGcVW//OB0KnlaydV7Vp0LZhkA6+1ljqlgTgH3zWsd26sUjPk1opqQ5NvHFe6roAEFlal1OZcX6MegqLNh9qSiSMxkh2v64WSiqUrH7oQeyIW6tSN1XqyJiZJpKhMZ6qyHz3+Wv3P02cSUTa0wF907Gx76NjQKtHvzFyPuPXDWlwVaD735eSwVl1S5POwFuuGLtinSdtCRci1sn3b3YdwV5uFR+lFq2EALlgnR+5QsmYS60BDarJlGVR7X4m58R6v2Hpma/MPd1paWPbFrZtETvl00yIHh89IQRCnJhiIKh9ZLdi7H1txlTrwanOoW41Lc9po65Wcc7TnXl6LQptJ/Dk+7a9jqodpJyme7zreqPP9eLa/ni/lsma/yiv7DKfoybeqCNd/9zaGqZWdeFjH6O9z8a+1P2bj7+oIdT4ImOTe9xd981bJAXTFJBWz8p4loq3kjYC2fSdWgS2Iqn63maeBhXLPcHUwLRKbRvFe632hYoU7BllLXtKpjZhtLdm2ZrFOynYbLXQSsK0yuS1uHJIWIz4xhqjjXKqgC0M67JymScpRlTA3Kohr4WUElOcVBMoWrFWC6t2IvReCgxTKmKxebtzCtpYiaqODIngJdsAhuAdlxmcCbhU+PQ08fvvn/mPv/6O3336yPXrj+QYOJ3PTKdZO+HpeRVpRlFypqnGdAcR8u8BJkb61BEUoZQiA9j1QgwMuRS1/6wYZU5kjsiG1avDjTI9Dx7OjyhbQCSPspo67PcegYvRghXT6jshhRzL6P9bD+I0tDVm9Nykd6wFtDHKPoZNlc/ORbIPoq+2ypYpq1Tl3+u66CZYB3sWQmSaJuZpIoYo3691v1xpWrWtG+u6STdAH8ZG2IGrNPHQCawLmGCTOgq1nHP46qm+AQVrDd9fIs+zaiiBWxbpjHNO3WgauRrIkNJGylW75hqsE5vOGGQR31KCYnjygUu0xKo6d2NpxlGANSWwjlwqW26krHIAVUJZjkyfAOwjq3dYIA7/UJ2hBv62CejoC+SeRenASoPJsQ4dmO8OfP8M9n1IUWpUcaz06f/qc/7oo2weh90ITB+GYwfxCnjs4USOJMjjitmlO3sA/BC9/A099q6fqhPVayV7yW73JsGZZv8OIP7IUPXuqg9FsmZvVPS+26kEXk16g1iLOzDKXdpi+v0ba1dfYeRx1KP3P6X7nvdzHIFIBw4cxm4l56QOGWZ8bzn2fvwj+JdzZJx/reqSA3Kd+lpmtGizGZUByAAS/sWI5tk5gvMsyzbOywcvzYcO+/gu9ZHP88br3rYDFlnH+1rb6xAkQHD1keUUO0sne2+DmpIUyTbZJ/O60rB4e8IYSEkY35qFfd/WRGqydkttXcNhyFseXVFxTddLaDUPdxWQQvjeD8Qi1o/BB7Z1G7FzqdI3AwXSDfFZT0lqiwDmqQ3LYGelps1oZq2WdmDk5TrFU1RXH+ge4WC0RlDIowEaqxgshCDsOLovDUKhynVPKY/5UxT4A+rWVUnLSnNeM1WGlDNZihQ4nS8s6xUfonjOY4Wt7wucMdToh2vU5j0+Rug6biOy3953pRaRwoXodKxlakpsaUF80DNvr1+wys6v68KSNj68vGCfz0whEJzncppxIY5mW9KVPYhVptbPjR4FxtCKND4TrNaDS50QlNG5dl83eiE89L2kmYaxbSgMqhK4uyynaSG4FnsfMnJiw7rLMIfjU9vnKYe6nl6sKt/HgRKDsiVUlTTHsccYu89LWY5+WVb2LwTyu3ZUf0Sv1oHFkDPyPigDkElbJueKNV4rvdV2yDkMogMrpZCygiRnEOtFx20rGFMJpmHZtX/GqkrfSCBgah4Xo6qrzIbncwEokn5SgF5qJoYLTq9+0S5krqdnVCKBTvx1SxhnCZOnZo3Sc6YWcc7pbcQlJSY3875m3bBkcbrdN9a8si2ZOcxYBy4Y4jxRWiOGxlM1GBM4T5GPp0q7ZW6vN371Qdj433z3QrCFnBamaSZOEl0P/S1aLV41mjNGgootiZd81TSeLsbHTclah9cod92kstw5A8ZTamBNae/+14FxU69fsztN2GOA18eFtTRrRNuu0f0OxwzdvWNMPp1w3qlUpe6ZAH3BYawpcOwbKAY3XBgei16PaTGx0crUVrU3gMhoesDRPdKLFjIv6yLNL5DJ5ZwbbcCjesGLDRaDuUpJfIxzykPPF0KQVGypQyPf3YHiFEWnmivLuo0vK4WzHX/qNXaW2QQqsKTM67LgnSW1xmvOrNVRceRlY90KRRG3NSIt88ZwPkXS1jcnw7OvXNxGbhJgWOvBONayseTMNAfe1jvXNbFpc8XOwnUgJED8AGg6AaFzbZdeddB9oJjouZj9RndAszNs79ejngPjYQz97OMBIGsA339lRHc/6mAMwuTo5xw/tn+Xvuv/+U/cF/z+ieMbH9fQY3GsAqBvKOa/8seQqPTNtLUBInepSh1LxrpuhFk8v7dtG3KOzuA75wTAmMfr1AOCLt3pmci+3jV2KcgO+I/BZnv4UX7VDmNQ1027M/2P0huzH+fwfpEjOG2vofO+9SzEDhKGta5+l32v1bHe5Y1WNv23t6s6fziyBvP9PLqnftU5taXtG13/e43/uq60IsDDOTd0zMeOrhZptlSKNGHq9Q8Gwz2tI0gyxhCdJ1gndVfbRt42ond4K5nqVBt5W9hKISFFqa1WwQm1km93qIz7ndZEKns3ZYt0Ue9+8vdtZYpBbH1LZVtX7vc7z8/PpGXjur5yuVyE2W+9z4V6h1spAI3TzMeXj9yXhft9oebM7e1KSVL7U1ImaFdcQKS/h/HTqoDcqqSkc4FgA2lZwRhCnAbbb530OLCTZdu2Edxt6yo1WNbhjGG5r7sEqkua2m7nWmrh+fTEljfpTm+kjrG7yi3XG1Tp0bCx0Owe9BlrwFnSHZ6eLoQQKPeNH/70I/PpImOrFlyYBIQ2CRxzzWzOIgrQSquJ1y8/cr9fSeuCdY1tWXBWZHCnIL1USipsayLMEyFGpvkkEh8jzca6REwLRuhsPNZC8A9OYMe5Ir0hpC5MJERCag3XvgrvbYj7exlr0F5w2mfz+z3l/brRdvgrPx/nvz6Rcwaj6xaCMa1z5NpUYri71/Rz+v9NsesvenaPxk+nifv9xrIkcpJuplbZllolajFVij6NdcN2ERD3Bt0hM4ZiHK41KIlaNim+aFIM1BnhUAS4BWOpRopXU4Gvt4KfIRIEqGrXPtMKLitzYbrNUqMghaoxBKmmV410mCKv11fRXtVGSUn0fMHTjFhU5ZQotRGjuCvEGDE06ebZpGglRJG/ROeJ00SxllgLny4zv36yXGLgaQpE2/hqKz9sV757OvPpcmbyjm3bSGnj5dOvOF1ecHGmVaPXvkGWjEMvnsi5y0Z29iflDE3A5E4vVgXvjvPpJIUl2tjHWYs37NcJsZ/sPtCjcPX9JtitlWxn53dQLcneUX6C1Kx3EP8IupUvE0/hHXnxAJSUeTdGJVHvjjGOpZipNSm6SWkbDgypHKQ3TZiclBLruuibjEhQnGOOE6dp4jRF/EjHiUuCcZ55Dnz+/IUtr2ANYZo4zaKll+tRFOo27WTsmSdPrbLAdm2lwWAbe0FSbaJntEjH1m0jLSsOw2Qtr4vhViyb2ohKHYkhREexkLKkPucQCAaWnPEGnqLh4yRsV/VRLCZz5jVnfrgnTtMTP75eua6FVA4XEwmEcY+FQiJPK/QFqt+mLplicN1NakaA1uVS4/CNKt6SP7vWyFrR4T8PC/wj+D8AfR2mP89zHCUau6beDLPkPYj9848/9/xhPOsY24lQWcdaa1gFbJWHS/FX/3Bj4nYJgjColt7NlQOIVcemLIWXXjs6dg18v1bGHa15H33kvXfiDLLTcbtTyGBO95S7/Hy8JwKUHsA0DG25qYgNLfu6c3wIoG5qs8fIHKS8g4Q+qt7f6b4+WVR7C8K6q2zBGNWapyp7Vs1jDmVln7sZATRs09eXqoWTWi9QxZnKDp2u3J+cMq46rAncbzfOpyfx79f6tty/QxMjCumCLtKdoGDf6H6zrgvNOkwzRATAXF+/yhWvUlNmMaSUBwjOSVh41FaQiniy14qpRphgZV5rabhmsaUH1WIDaatmcEoR9zrtFkuFrWclEGKjAd52f3ADBZbbnfv9zrIsIni0Fmc8zkHJlWL2seGswzgjqoFa6Na7fUjkmkQ2VLQZVLOs2yJrlDXULdOMOM8YRM7kjaWkQjaSlc09U6EytBikkWXOhfuycr294bX3AlaCRRclU9WzL0taKVXMOIy3lCwOLcY5bPHc1oX71zecc0zzDDS2dJXnvSMthXyQseVWuG2r1nYV/vTDP/P29oWUVrkOrXA5z31r5nw58/T8xPPzM88fXojnE9Y4rHFyP62AW6sg/sho93lrrRUi67B/jOetwxujge2hjqN1IwXBd7bPVytKkJFVqtr34JAhHQ20DmSR1+Lx2hq5ry3Wi6zHmnH/W5PaCGvV8a93n93ykLhlzaILr9U73u+E4c9hmJ97/HJGXsGTwqdHNg3dIZEFWxo8baxLkqYC1mCNFG1iJYVu+3HY01lNK9ZL0V5cDXJrrDS8M0zWU5YFzhcadRQJ1Frx3rHpQmyMOr/USm6VJU9sTJysYbaZ2UlKPrek2iyxldzShjcGUmWKM6fTibzeSXml1kTNhRAD3slEMNbinOV6vZE1Ku+yIUm3Fb0sjWkK3NZMXhe89XgrJb2WjefziX//8sxlnricZ6bgWO5X8nblfpqYp5l5OnOaTsJebHcwDuO8NndAUpHLQllXBvStRUB8LiPAaq1bRlmVibR9nCroCUGOuW2JUpJ0Y/MOVwutHFivQ9Rsx3jY9ZroZ3bNOFTpxvt+cPaBy14Eit7/TqiJLu7IYh42QmMwyGTolqFyOlpwhbrm6OeIk1mlFNG8iydyn3yqAQRSKWzq/FP13JxxTD5yijPn08z5dMIdInqZ+JVlufHl+kZrlfPpwtP5wul0Gicu3vxyP1yciDFiraT9bG3SKt14jHFS81GKyD6cpLl98NyXheV+p6TEKXgo8GEOpHtmq5klZaRY0OJs1XCoYG3jfI7YJkHq0wSfYmMis9RAnCa+vG3cS2GrDkegOsdP14VitGkV9WHRETZV5kOIDmsj2yqdDDssFYeWriHu91mcdKTt+34dd9x7WGP0Z7lPx9Vo1xnrcBggvr9ngPkRUYwwimOqdP8sBZ10wGf2tz2M3f0tj6/p44GHMT2WznEd9F8jCSB1CYZvmaO/5kdnc49slcEMIA5d084gFFqtNCvzPnd/cbMz+u8fRxnOeJ1e8B7Q7YzmI4gfxzicX388kApt19Q63bc6abB71Y8jDQDRH0cnnP73+C696cYhq3ksrN2/s4xXaU7kSUmLRvUay3GPoEBlfKWM98nH1G+OV9XxpakzSCtVSbUuQTKiea9NKyCFaECzDM2Jw4yetBSjOj9sQ1sprLfb0HW3WvHGyl6pxy850/XjBuEDmhZ3iXOzZNUN2qjQWmpW158B3uT8upVl3kTeaI0cvwdWWLtnqnXfbk1ev24bOWcsDh8jRo0daqlSX6BjoX9W0waMJWexe7RKSJZGNXVss6VkLf5F64kkQLMaPOaShRBS5rs2qRlodW/CZZrDuSCNo7KoHmzUYLY0Si2PQeKaVDIl8tCaepO2QsuVZitk8ZDP0iWQOM9UilzvlMmlimuRAt7bcuN2e+O+3LgvV96uX6h1I0TP6TQTfcA5j3cW7x0vLx+YTidCnAghMs8nht+7ulmN7rM9gH6HFXqzR4nPH5u5SabMHYri9+NI4FhGd14z5hS6BnfzgcfHMZDvNQwPa4bRnzpZ1XGyvmTvNG3G/B/kg7W4vm8c5vt7W9hf8vjlrjU8xj/95OXD++IrGqdcigzqwWiJ7ZPoA2VjF7tH+cLdt5TDwgi9iYO4GGClOM8YK5rqKgV5xopuynunHu59gwZaxRlDqhXbrAQQDbxKOWTSG4zxoi2v60ivYT3NiOmft5Z12YYDglG6TCZROTSuEF9yZ8WTFaSznrSH9sxT4Jakctsa8bufXePTeebjZeY0eS6nII2paiI6S3SOEBxxCoR5IueVpoyVHQDSaKMGaVFOE3CaU2ZdF7Vt6q4QnaQqknLVQdYnfXdccM6Lvr9J58/gHSVLOlSCWbt32LPHgVg7yqIX9/Tgyhq0Oyz90wBD7lvjAeT0Rwdso/kUhw0b0w8+WpU7q9rn2i3eKha3y43QVLNucE59eZupuqBKUGp0kymlDKBogCl4TtPEeZ45zWJbJnZu/fwMaUu8Xq/UXJnmmdN8Fustr93xqizWUjjlmcJFpIh6P1sz1ND15gbJrghb66zDW+lyuC0rtWSCA6yVcVsa1yVzRfx6xXGgUgs405idFOk6A9dbwrXMx8lz9o1bzjy/XKg4bpvhnqGaRm2W27Ky5EYIElxZI2npUeZekfTqmPO6eJlxa8ed1T19rCY9yHx36w/32ozR0sdTe3y3jmAFT3Ufcw/AT3GLOQadA3CbkdnaB+LhZ8w454cNsp/nwz/aw+/72t+buPZNYwh3mlrwmH4+fWb8ZYv5/z8/BpAfnUt719beuVWsAI26YVlnaeqj/x64P8px9tqEY91Wl9SYcd/YN1BjhpvYuJetB1z7+H2vTz16Qz9mDB//1rNkHyuM9bG27nx2cJTR//eMQX/tHpC+39z3382nSEr3ITfax1QbDZ366/e51EF+HScgILSIW4z+QWU06Gu7i4qpbfi6d4vpWqQRUHGOnPIImEtKFFcHGVFyIt2kWVMHs5WmNo7gjNNAQ4KtWhs11dFDoOaKa8JWG9NwQTLcWf3MvXMEK8WvtDYCiC0lrFELxyZgu1krmcTaoFn5LAymiFf9qNeh4YOHoRSQzGvPztQin91aHcB6rD0gQQ5NpIq1SkMrSUfptRVrY+89LRe2bWWOUTImVc41bZtkVJqsHC0voGRcTlkCmWBGJ/de4Nwbf+VcCHNU7CX1GvP5NNyBjHZ49U7u57asBK37qrWRSmZLUvuXUmZdN3746Qdut1febq98ffuK843L00ycXricL5xOEy54YoyczjPf/ep7whSI84wLgRgnCmBsUGIryB7W+6pY0eUfx/3DvKzoPq/zzHTnJlUKqCOcZCWa7LEoYXhYP457Tyce3z8ewbyi4R4M6qPWnr3dXxuCuEL1z5J5GkawMTpds1tmHuf6LwX0f5FG/rj59A1UTlj9b5HItGKGxU+PkHuKrB1YUsyxgMnqGirpFJngDNVqt+EUpkZkAwCmCdh2AzP0EEnPVyecATKWDUtshckZidDH97HSfEQHQ6WR1EPc+qDenxq1Vy2qrcIyiltJUgmXGyy2tYi3qTM4Y7icAmULaoUmYNpTOXvLKXq8g+Bg9pbstSDWMs5JbJUi1nkFrOzAQW2phi9wkWKgbVtJeR2pHMEndgx+Ic872BkHlGDES5V1Z0ydlWs9UlzODvcVY3t6ylCNRPQ7tNrhFuzpTJos4oyI9YD4eqvF8TzfsFUjah/nor68Dx9qeqzzAP6s663KGxXtFGh6cCld+WRStdGu3FqjEpjAPAWmGIaURHoOWFoVT+Pb7YqPIqeZ5pP48SoL1otoMQJaRmrNqqe5A+cKrS8ARkFIq2KPagzrfaUV+dk4i/UB4wJ13XjyjdWLLOW1NLaUqTYQvRQOy6ZjKLXy3dnwFKRIO2kfgzUlSnOkKqnUAtzWTCmNGC3W9ELjAa8VMOmmVOqoN2kDIHU4vM/N/jhKX34eu+p60Y43dj/KrrvvoPwRxH9ztJ/5jP13HXGP4XZ4/mc4G7MD9dbn18PT+3q0nzWjCL09PNlXPZA0698OKy/2kmUw4+IOpesHojsW9tbijJBB0xyxVuyAu4tT7QWEsAOb1rR/w864H50mjIGcteuo05b0ralMQA5mVdbZgfx7p4r3IL7r8KtWrtWmriT9PYcAtI+Zoaw9HNfooK8NHNBbzR8/ux1B/GGS7MGRAFZvHS468fjWY4tDSz2MTTFZ0H/qqSpY1AZIvvcAaTBNUXzbQQFnE6ZVr7spjXS9CqgBcpN9UCZ+w6bMcrsPWU8rBd+kwD7nhDOWLYvts8Gw5U2Y4qMbVUEbARpsgSlOrE2kJqZW3l5vYv0LrDWJHLcktR11pHXDekc1YgJwPp/ZzDauobOGgjjHULSzLo2gjf1Klv4pQlo5wjkMm+qcM0Utifs4qTlRaLRix/0D2Gqiy5do2vBM663WZWEzhqIOMGXVbLF+BnR/CkPFcL3fsLeFvTCzSMGtkyBVvpfo97Nqvr9+fe0jigasS1JCUxpL5VKZTifZj4rh+uWNzjTn2ljuG//6p3/lp8+f+fHzT/zzv/6J+eQ5P5348PEDzy8X/t3vf8v5fMJ7S6Pyu9//nvk8i0b+ciaeZmm2GIP0iMAQpxNxmmX6HLq5Yh3uMPfc2PZlnpfWwBo1OJG11Fqvf3R/B7Vvt2rJ7TV8P2SUdS8WNtrgNNB936OhP0bRseKOPt270cO+/1hijNJXoe0re+tF6TStryhaDCuBq37Ln/3sP/f4y11rzL5AdWAmqQmZ+KU0mTTUASxH6jQrgLE9lYXq5WXjYpTlKEhoTeUzMtEyRnTrSLHpsclKr+IW26vuQsD4HNknPcUaklk5W9hyG/7W4+Kjk6WKFWapGRsCxngw2wDxMsGKZBkMo8Wy95bX1zveW2meEzT6qoWz9eRZUk2NKtrsvOFtk2xDEx+E4CzOS+V6t1iioZaekaBNE2iMbpgjsLFWF02J8lPaKCWPtKoMQHE06OS53MO9CrzVfbPyNEp29NbboyjD2aFn6xIjgGqbHlcOvmtIe6S7Qy/lwPvAekA6B4ijvxJmYFwPZAGShUv9k3XMmMOmZ61EgMPdRnZinHfaOERGVt/ohlNPzlo5XvtgxHtLjIFpisyzFq3WopuvILpaC8vtRqmFl/OZ8/nCNM04L45HEgDu7GBfCJxG6NU0bBN9qy1iTdnnswTFwuqt6zYcbYy1+CBsxpYTLxFhl1vjnispF2yMTMFhmzRoK6XxFC2/e4kEpBOs9RPrmvm6rjTjyRXuRVK0W0oaU6lu0EggvAPoNv7fNKjULWu/7nrP9wmp97aZB6eR8ZKfA+E/85um16Zb6PTmX5KylOBKVqjWB9fhSDtju5/T+2jwEdSP35tvoX3TgO/460Ew6PkOrEcPTDkQDh1uwTderX/Fjw5Gjoz5kT0WFyg/WOhOSPR/WwXfxyCtHe7RscCyb+D7DWsPn9036b6ZGwzNyuc4t7vK1PJtwycrBxrH0U8fxz++tktYaBaqjAvvHrdc2bNUpqEooO9B/TOOAYowqIznbrcbBksIQb+TVRAjDeG65eZRdjSCAj1QKYUtJbZt48PTs4xhXVvyug0+hdbIa6G5LHU7rYnbVt5rrWrOYmdLd4CCuqyiq68VC9zvC45GsFJ4L7bMYi/ZKjTvWZeV1gzTdMJZx7otuv7YkREQtr0y+aDBSKHlwnw6Y2pRYwrRyPdOoiUl7uZO9IFaCimtbFX6DjgnrHBVKWp3yTHNkLeE8QbrBVOIxbPIfaQuyonlc82K6vZ+Cc7Kfj+yhqZxv6+0bt7RDKVltlWy9SF4ltuN169fSep+V1pWb3u5t6UaYpxQ5EWcIqWI3bXBsKaNLUk9w7Ylvr5+YTrNQiR1MtX0LrwCel8+fGS5rzoWMjEGmjFs28bnL1/4f/2v/xtbTkPe8+///e/49N13vHx45vnjE/M5ioHHJNKaDy/PhNPMfD4xn8/EWRzeusS61MppmnBBmlI1RIoyAnBdA/pa8F7i9s1DSb3hdudEaWH0P2s82IpoteQtR5PQPveOc/PnmHvvHX1Lq6XQHYmOGT89wgiOjREyN4RALl0Xb6Do/O74qe6F03+JvOYvAPKdke4sg56AspWtVX1F/08nHUDNY5EBYT+6e4o0Wdo9VscVkq+i0g7I1VAKNCe2lnldVAPXAwjxbk25MCrFdPM1CFBy1mJtpFlPLl9pziPWGxIVOe9JpRBqxdPwWmCEs8TTiS2tmkKUlOJWN6zx3K4rpYgvb9LUU3czmaZJdOEps253ordMMZKTNLi4365YIwWxXlld6zwhTlgjRZWW7g0vfrvee1ISr/hWRTtXc4aSMdYqu7KRctKFXC2y1H7RWXEGGgv8AczTRBeJc7RRhNCGb+tg1HShl25q6rFvUPdxQ7VJX2vHxlqp4qtf63DnOMJ19T45YCCJkveguWFx46nupGDVnkq+i9x8wXB2OEWU2saYMAqgK1LwOtKwmqlY1oXb/b4voqXIhhEnLqcTl8uZ0/mMd5aSO8C15Lxxu175er3x8uEDT08fOJ3OyuwgWvtScDYORk/OSTIvBoalmRT7yDLtnKGUPQzakrgoxSCbUalV2ApTic7yfIo4t+FMotbMNVnureCNBKwrjZwX/qdPjtk33lZDs46nOPH59ZVrdaRsWHNhSRpMGklR1tIG+9HnKOwwHg28e5OMB0kEh6n9M4+mLJ4eZgczh//3z+yBgoxbYWascyPD0VOXYKWdu2683THkuEaaMXb6WVZd1HtweQCCbT+bh5HaZAQPlG4enQ3M/s8jWSsv74Fajxk7Z3po6PPX/qi14HxvyqNjhUrvAyBEQLcyFA1ybeLVLc2NZO94L3kZkr0uqdPb2Godc12Afq/P6LdQCQY5iP7ZNbVV+yEoItVU/b65tv0EdJk6Mmgd0LfBT7TeF8K70dV0rL+H95sHILB/Rn9+D3eNOruI5Z610oHUiBfb2IN7h8xxxDHHDgWDSn5YGnlLlJKl8LNBWlf88N5utCyyjK49B1R/XjUr3Ejr1i1CRC9euz6/SSOj+4I3hmoNSed693I3GIo2WmpNjlVdeKhtaUkc7VByxxvVuVcB0Hlb2TbpVm6M7P0590xoJeWEf3oSPXvKShIVCahUW+7MXtPhrFoa1kLJin7KLh2m9ULmTO5Fu2pmgDGDsMoqLWutstxvYOSaihFFY12lANZ7z/1243a7AlL8Wkum9FXXQtoKactjHN7vVojBIrLNNSUJHoxk/9dt4azafmetNk4yhCBOabU1YpwwzkuTorZxXxberlfudyn8tdby4eVF5KKnE0+fnpmmifPTmeePT7joiLNjPs1cLifOlxNuCkynE/P5hFOfeGOtcBS14KdJJWVGs/NaXGr6PDrO8z5/25izxphdSznwRi9QZUjojutFb85nFfjDz3Mm39Sp0GXF0gumBzS19jrQDubdTkIcMne9I+7OMyqW1ozavte8k4T+gsdfAOSV8dKvNC4qByZBv4h3Vlpt16O2r1ttMdiOppuf/K4izRuU0bM7k5UrpNLYTMOXysl4wjRTqrDqpTasDQTrKAZy01RGE8fDhpFTt4ZmLckEvt4L3313wU8TLSVaBTs77rcrYRJmM0bL8/Mz0zzx+vY22N7oLc/nmeV+o1EoVYIAWuXr1zcZKDXzcjlLcay1zP7Cv/wpsZpKcAbTHKVkbsvCv/70I7/6/lcYDDlJBO1coORMjBNbTtzXOykngvfMPrLd7izXN9XK273YKIvVZOp/ciEn9RDvVI5r7zZGWdtL1/43hOmvjZa79lQ3m8Fo9urvzv70MaJ1BxooDAK9Ny85RLgosHzPdPbPQtmMrnM0fdNE04fusOn1RdWoa82Q+1hyFVmIHl20lr3IVRlno/UX67JxfbuSchJ3giKuKt5Zni9PvLw883SexZkIRysZa8RV4cvnH/np8w+8vHzi++++J4ZAb0hSqwRpLjiin/R6l90Ozgpr17NY3lmK6VdUNoKSE8vtRt0Sl3lW7eKmtmWN89OF8xSYvGN2npPbeIl35gj/9VUyAVjLc7T8NhYmA9lEfJBgqLTG56Wx2olqgqSHFXU6a8EWWk/V1+NNa/u9o0M02JEQI6j+syuLsRTK4xMPaJufjQS6p7i1jjhF5hiJYdbGIPKGnBPrljSdv0HOj5ZxHMD8v/n4mZNoIN0wH37BcQP5JcfbQSWY2rWYfxuPUjPeONk3FPD1cLCzbn3j6lmNlHevbGudkkH9Z9HQG9MzMCDET4Oe4bG7He5uQ3sgDnSTEcBlBzjY97W+5u1uXePRpLamr1P7OfUdeSc9JEaQ++msZKs7sB3isJ5RGJK0NvZK2EFFnwfGiCzPhCjgyBgFwpbubV2r9BOR7rBmNBoaAXO/diq3sxg2tX9s1kKp5HUTtrRJMGZLL9bc0UBJ6ueuBFdZt0E8LcuCd2HsPc5F8rLSjKEYYb2dOcAQg3q3y3qY8ka1DdcDsYZICmVjl/vs3V6nRmNbV5ZFZCdG5ZDrto09JOXMHKPUKqWkdWVNXXzEQtg4B61LIJvWvVV1MtIAhQ70Kt4E8iYZcO8dtC7z1IJVI+uQdL0t3G/XseZ02eu2rgMv3e93cknEKXKKJ2w1I+gX7CpZFBn1qIVyZdHvvuVMrokYJ/Gnt+BDJjSHCRZrPXEKzHHGWEfKCWM9wXqsCxgb+Pz6ytevryzrigE+ffeJT58+8fzhhQ8fPmCjI5dCnANPLxdwhsvLmcvlLCA+WPwcidNEnAWw9zoQGdWiWOi9U9BeOENqeRgTMl8Fm/QDNKxIuq09kJHucF/AqBXyt6JHAf29D0pvZnmcbx2Aj8AB2aelpudAbB8C7U4gdVWI2K1LgCn1Cpmm0p1OVu01Pvu5/VL/+P74C4F82xumjMWgL2RyYs5CLhsplf0LWgtVbbhgTI59bTKHTf9QtmZEt96opNpYa8GXRtrAGyd2dUaSVikXKpXgHMZ6tlrI2j2tdsbGGEqToMAw85wawWnxkfdacOF5/nDh+TJzmiOmNX786UdMFsbCu37j5PxokiFY14WcMzFaxBKs8vr2hafTmdPlwsvlxOn89/w//x+vQ9PVB8W//vSZP9yuzB8/UEzj7X4XkJkqLx8+EFzU6yeLfvCeH374wunljTCfmGIUezBl02XASBFMyYWsxTbdPcS0RimHQaeDbKcKGcxlqUX/7GyCsBOa6pbVdB/TvfC1M1J9Uih/Y3rU0B6L02DHbcdJ4ZzIQWTQCxA2w7ce3WKFTes5H6sbdzNGCqYVdDr9vUEkYOLKUxVkGkoqLH0xrfukts5xmiKXOXKKUWzwdNMWd4HMDz/9idv9znx64lff/ZrgZRxwWEaMtXIvEelWrVk2027f2VmIvrE7i0pwSWXjvt5Z1htTDEzTxLpuJA12ZGNr+K4Dbt31x/J7k4ksvGZpkDJ7y0cP/uMnXPAs1yvLsvG6ZP54rdhY8MFpoRFsKWO8I1g11qCz0XLv3FgeugNVGwyH4Tiv95XqmMQUv/6uc2QHVw+AeAyOAxMv38+HQIyReZo4nU94LyyTyG0qtUbilli2lXU1bKu8v2jnWxmOfdVph0/8OZqmD9a+bj2eX//ex9obGds9vNlB535AJ89ZekJJxvV7Zvav+CEtFpyyfx2gGyU0G922zxjJFm7bJnI0BTgXH0eToiEzaTtjNhxXVO7lvN9ZXH10+ZJWE41NdgB5dgmQGBS4oVevtFG01j+/tm/v0WMwKN/P2N7ufdeud2lQLnVouZ3v9nXqc99BBfv3FO2w7L8pi7tJl8/0R0rbWPsF6Hpqf13PMLKDhaodVEU2imT6cmHLK8E61utdgbrslSJZkQ6tp3mmpjwAz7olRuZKrSHrmsb53UqWgk6Vr0whsqwL5rAiyPlZDaAspRXu9zvGWE6nM9SmPuuO8/nMl89vnLSeompmoBdWGww3BcXOOrzzOAtvb28qOc2cprOMIVOozhFCxLhKU2lOy4XT6TQIhzkEEjsIXzfJQGzLImy/P6lsUu8bEGNgWRbBCSlxu10ppYy6jdfrGzln7ve7nptYr3748IH5fGI6X8QKOWdKzYQ48XKJoIHbonUMz0oEpFZlDvUaLJUxpZzIRcwYXPxEqkDJXG93brlirXz/6TSzpcT3v/418zwzzzNrWvj46RPnpzNhmli3je8+PBHniI8eLPLcHLAhEOaACYGMpaXGKTjKYU11IQh5aPsod4944DCPTN8bO9lLN+bYA+hOVDXFeab1oKcHr7pzDbCOANbajRQeFwyRF3uwRc9P5WZZG0U5S3BBC9f3aKOPZYktK8Y4yZq5vn7Z8QWlCRjqKPT/PXHzi4G8XmseIgdz2IyaRKYVbbLQBGwNZgPFbwdigR6FafqnP9M0xWL06doaxYpGvnvyGmdxGLyRL1GNZU2JGmTRDMbRWsE5y2mK4h+PpDCssfjzM9VWiWo11W6bpVWtegaW+8KmkX1wgZo3YfmtEYmLcyL5qdIBrtWC653HjCOviaXdcAqwvvvuI7/5/ns+v76KmscEYcxz4e36xsvThThNGCu+sTmL/tpoJqOUhjlFTJi4Lq9crm+cn16UAWjQBHhv28a6LqzbxpYzvfslh2ssYFzvj96jo1vAXlylb2n9BupEMgcg38eE6ZNHgfwBlI7f2T1lZDrrZDpokoMMi6meqhrH6Jpyo4BSBpbRqHiPBOR69aZLI23NDkJ7MCVFSXLd0laUaTlcKWOI3omdVgijSK9vVs4aXl/f2FImTieenj8QpojzcjHa8CaXFuQd2qMLUK9FkE1Ig2OkxXlnL0oRCVqpDe8D83xShlLcoZyz0sTswCZYZ/HN0UzjEg08GS5bllS0s/hgqU4yLgZDxvB5EbvJtiZs1vDDisdzbE6Ke33A2EozllTaGHc9pMLswH5PHfaY/50W/vBoMGQFZizcegyd8wN0oWPVirTLB7HMnE4n5tOZ4KNeW1lAWmv4IHIk3efU5m3XSh5jBTkhs4/9Pvz792pd2NNJDEatx5guzT7yHMf3j+M3Be37mJWOgzo+3gHRv+6HdMqsWn8jOlG5N6Vm1SfvhWMygY2yeJZlWWUzNBZTzchegawdKVdijOgh2NaVOM+6hgJGtMdF/bgvlws+BDaVzxnT/de7Rr7S5aN9QxYf+x5iNpVcgHyAZP+cd/t3MIbWish0tGFeaZ0cydRWBFh6h3Oark8KGow0bet65qEVNhWDBwWRuWbt52HEJrAkoGJtw3kjFtCryMrSlsa6WmtlyxlobIvoeEOUBnGmaLfXWrkub+NaO2OILnBfF1qWwOun1x/V2UauitPgv6QkUlDnKd3FBSN+8nZia9IPZbtdRZqpG4gUeUOj4KxjniPzPGORxop5W/ny5TPzdKa2xufXr6zrnTXH4WpmrKHmPJrf1XUlBC8s9iZA2jn5mVaZfRgMvrWO0+lCTYnr25X77Y4B/u63v8U6R6mN+9cvtNpY0zYyuknNEayzpGAHs19qYV1XUk1cr1eWZWFZFl7fbqzriveey+WCC54wTcznM7/5u7/DWMt0mjifT5zPF0BAXzNGlwev402kMLe7HM90IgdIKrX13jOfzyK/HTybjOvlfmddV9z5Asbx6fvvCCFwu9/5n/8v/1cxgkCCaxek34ALjjhHTpyYZtHAn5/PFMQr3liRrfopYoIfmnVs0HPTTJQSmeI6LPd/d5RrO3fD4Uedf9K3QAC7BPRi+iCS3c6K9+mp67VKmfou0usJc81aLiJSo02bXwIy59kljlvJdKmfSMt175K0G23sg7YnlQ7Za6PHEoJOpIMiw+5rTM4FHyZxdTR7J91/6/HLGfm+Gb3fXNrx76Ztks3weO/dER+wv+kH3N/cL++eapRnapOukzJgK6kkUq74GPAWYm1EUynGsZEwtRKdFzDfGj4ICyR2f23sEiFONJvZ0kIrhdb1rcaQq+V+T5TtTtpW5nmibiJP8QosMQyrplKF5Wi1knOvZpYFLFlYVsvr9cbT05mXpwu5FpYtSforV7Yt8/XrGx+fX5iniTjFUfZb1Kaw21A1DPF8oTbpHrcuK+fTpLUChS1trOudZbmPpk6g2Y8R7XaGRyPBEbHyOGuUdTRG+HRrpRhzsI+DMdrHRx8H/U/XtnUQb40T5vE9kFeU0xmrAd5hgP8OwhqV3kSnf69eNA1il9lTpX3AWnvY+GsbmQZhv4rKaFTqMjYmWcDmKXI6nQhRHIcEzLXxWeu24UNgni+czmdtVNPZg7qfi0biRlA8vdDNqXduLYnatCjMQHCeVd0kahMgEUMgusDSAUjrDgVu1AoYhOV3Tha15oXd8iiQsuKKlNaFWgK1QaqW61ZYC4ioNauzgMOVKlmJIM44LleMzVKMW3qXSjOAvx33enelKqXRDqBkaIPRomqvVq3HRVI3/+N7iupccylYLQyLMTJNkdNJmKPgowRbdh+WUszWnVLE2jblIh7PHMa+Bvpo8XSXc+lSdiAg+hwwQ8u9r4lt/3uM7Tbmn+nHGgc0j1NTn/tmrf0rfnS7xc4qy9+dtXRCRgC0zpofvnzj259rOxS6ixPE47E1wFKm2Ec3PlNeo43xODDTVRoX9rs0Uuv63AgO6cHgfk5jTNfHeFDpBqj7N+ikhDG93fu++/XP7efvjNOgQr5XaTvQkcJ3Jb76/Mhp2Ei2Umg5U0tj2zbu1zvTFKXxjc5d2AvyWpb9o2Xtct4aaVmZfJQuqTlTzcb9dsMah7ceq4WgVTuKeyOS0VZlzVvrKm5ees4GtYtMWd11hCjorjalNKZpotZKQuShX7Xos9/XdV0xRvqaYPaaiWFr3MQuERq2QNo2TqdZjq/WmNuQ2sBr/cr9fh+Z27evr4IZUtLAqvFPtT6ME+8d25ZIOZFK3seSc4RXqYHKWrjonOV6v47szul04vnlI+smFo8vLy9Y7+kss3OeZiDEKA0onWOeZxk7WsTpTBhgr4HUDj49jbGFMWxJgt8wTcyn6VC8zThWqz1jLaA4xAAGTuuG80blQJo9doAV3bePAePFlWU6n4inE7lVbAxqPNFwMYpEySqBZyWTTSfhrOwXfcaMRm9/rodGBwuHOSc++0Kj2MN37wvpkTjqJB5jDqHYSusH6eRLD8w5/Iwa6YmcuIOR1nbciN6L0VCqMzeNfU4ftomxvxzWhL4XdundnyO+3j9+MZA/LEOMXe9wUTurJFFV96bouxJjc+t6wza+nLxfrHu6HgmdoEa8uKMnBilK3daVm6nE08QpeAyGW9ooGFar7EmTAhjvvBSG5kJOCUMbPTeshWKcNpiQC59bwXrPPTe29U7b7jjbmD5MfLm9SrrLG00DF7GarKIN7JtLyZXmjbKvZdzYddv48vUr52ni04cXbsudr2837mxs68aXr2+8vrxxOklRSKsV550szDlR0iYtrnPi+eUjp+lMThvLciWnk2ILsZtc7nfWZaWkfBgwesu00UZTMDJ8S+vujtCGBmpMsQEWq4PhO6uPsZD2cEyiObnbfV61niw1A8g0VGxg9vE1GHzGFriPwaYWYWiWxwVoPT1c+9EEyLOD7bFB2g7kexSuDgMa3/VAzwxKUKrL53lmUq2fdWacl7WGpSSMcZwvJ6ZpwvZ5jRR1YyR1N9yaGio/crqRdJkA1Jo1WJMNwRnxpF9XYYVOpxlvPTUVcrrTijBI3nv1sz/c7AYgC3WhYU0lOkN1snhWoNxWmtoa6VkAANMUSURBVK0kHEs23DJsvYqeSmhSeEU0WB84nc4YK12MrUu4nLXAqtGbJnVGSDIp0H2MSykklQDkUnTdkwxLjNNIjVsnrI013e1hvy+1NbF8S2qV54xsJPPMfDpxPp04zSe8l4DL9UJoDLkIYxt8wFlPLSJNyG1nX4yOEattwnvfiB5cjHWutbHIVv0+Hch0ZmlYdLcuIdwdaYDdghUNVK0ZCc6R5/qFi/hfw2PXqB9+pwGMtU4MAWjqmHV40ZjD5uG9MiaEVLEY6TrddrneEXT13/WMY0/F986Wx3vR0yhH+cuuOa8jEBjncHjb0Mebw3PG6npSx3WwagPTg49G0z1LA/EDkJdzMIPMMXTSQrOsh+9NE1eW3uSnpETaxLN9WzaW+xVapaYyvOLFgUW+c7JqjpDFPtZgyOtGxNNSJi3i8LKtKzFEfBQP9ryJlWQrlWI9Zdt0DTKDde6AUTJsSsQgXVFzFrOGkgtJdd9ZiTGAddtGS/sRsNQCVe7lNEUtKoSeRalVHceAXNUmskhjpeC8mBToGMzbleW+DCAvzZ3EatIa8Wa/Xq+yJuu4mqaJpCTLsq2UtssnXQyE4KWxk/Ncns6klLlczkzzzHSa+f67X7NsKz4Enp+eadZq9kWCs1QyPvghJzs9PauOXRpBeT/ruitExDlETA+GMTRj8dsi+vQ4idMKbZBqtEYIAR+CuOE4T6lVvkvJnJ8BKimtapqRqCZjHLsVdnCEaSLME36KYt3pvGTNjcGqBHVv+mSHiQOgOs13ZKAxw0DlccIfXtS6gkCah9bDGtGZ8T6Hx9x4d6h9bahjDgrhts+/ppi0E3CtY5Nj35xODupc7fvUmP5HkqY/DnP8WA/Q+w1Jo65HP/l/6/EXdnZFWMb91MeTu2RCZRnmcZFDWeH3Io/xc7+Yh6DFGIMLHh89pRXWZSVay1vOnLbMh/nEHB2ZClthyyJ1qVWYC2eddL3bBPx5228CZGQ9ce6ErQu2JC1+MlzXAstGrJVztCzLgvFQc+dN5Ay9d5hNdGXOB9Hql0IojdoyU4y68Arr++X1jegdT+cZawzLItFuyY3X250fX984PT3hQ2BdFqL3BI3OlmXhfr0SpxO/+dVv+NWvfsOPX37i+voTT6dZmzdklvvCsmzC4tIjPjPY735f+iJZlZ2R6237hafR2aIqHXf7/bC9wETZTatylw5umujrReOr1duqaxWwV3eg0gfH/sO7ONGI7An2AEDOGoPcQ2qXYAkC6Km5AZreTSJxCRApFAaVtXggS9q9VEqTjsDWijPMPEVilOIg53aJjkHchD58+CRpPbTjoBWW0XSQYHsAYvfMQ5PvJCnjjZKzMEC1DpZxXRd+/PwTznsulzMxRo3UJbMRFfwGH0ZxVrdh7S5N25q5XV8xVpuaGEupjUvwTDZyb4U/Xjc+3wo/3bqGWxakUiuugfURQuDp6RlTYbGbFEYhukQp1tLMjdlrG3Y2XjZokzYqbQBs5xwxRi7nJ87zLI3Sgh+FqtLnSgGZnk8qmbRubOuCcWLnJV2Yz1zOZ+Z4IgSZN763+zYO4yzLcuM+34gxgjVsJXHnBpuwfdaKnjRMkRCkEMs7OY7TAiYZsgLuSi1yPpuwoDkluY/qGzziKWVe9zBW5pj32s1Q9dj+EBzXJtm4v52H2cd+Z8vLfj3RTpljnzhswB0gDQCt17KzVn2MSNx8rKEwu26aHlTt+5LlkBq3u+6+tTZ0xaVIfdGxELef1J5plOLB4zma/TZDqxrAiyuPzAnICiaP1+RYbNfnkHznLuZyw5ygFXVIKXlkH2sRG8ecEsvtzv16VX27NFRc3q4YI6YK67IqcPCjkZG1lrZlvHVY4yhr4nZ7G2teWlb5HCpb3fj8+TPUpgWvFe8rJW0c29RvabfATFsihqAmDY5as7qYdKcmy7/86U+SRfGe81ma6T0/P9Na4+3tjfPTk8gXdX5fLpcRMFtrOZ1OIgVRS78//tM/U5KYQFjjCNYR4zS6sNZacbER9JpH70VuoszIsqy83W/M8zyu1VbE7cZ4x+xOGJWAhRCYzyc+fHjGeacdTM9sJQtw9h7rHc/PL9yXhaJAsWI4n2aVTDaut5uAY2TtC/NMNJBLJeWG8RGMeOrP6iJzX5d9Tvggo0bJkJQOvvldN68/V2BdkwQCGlSLvOYNEzxTdJzcmdKySMRUIeGiw4eIj0Gytw3wch2GvaIF47RvS89CK7CXTLyoDDqbPSbywAV9/O+40+rC2mqfjypRtV4DZfOzxMG+JpjdOQq0KF5Y+NLymIsgRfpGs8295gzbjTf2YLsbbxjjjrz1fqxhI97XuANx+p48aIUH68Vf8PiLfOSVWNpXqZ8hS3or7eMv5V+PF3aA9f6s6isKTbszCxhZ18IPX8WiMVipQfbGkzLc1wzBMFnD2VYWD0sxpFLZasHVDgClyUXwIDbBArjXXHFYYrP4WjE1EecTy7IwW48LFusalManp2d+WDZaaapni9R8o5QF7yO5NW1aZSi5knImeI/TCrZkCvf7lf/8739HdI4tFYyxpFrJDday8Xa78vr6SnCWdbsTguN0OtOqFK5cb1dePn1iXW4Y71huV+6vb/hq+fCrX9Fq4fp2464Fm9JEpUPfwQk9Do0Du5hLJvig7j7igtCo32ivMbrxuYOzho5rU4+BWA9mxz/YJTzHAI5dR2aQxQKV5NCGJdgokOvfSux19ohaC9D64JTCVh0B1lKbAK9NnRzEj9+oZWgia41HDwKnEDjPoo2fwyw9DKqAslIz23rHO8s0TzQMWYunWm57jwPrcF70rmNu9nSgvt5QVY7jcU686V+/vvLl6xesMTxdnqR2omcbbCGVuwAOf5LnjBkdBTHCYn19feOn11emODGFqESFYQqO+XzhvmZsrrz4yq98ZjnB1+xIDZrqL3ESpPoQuJxOWLQwPGXJaPUKzW9oB+jF0bVUkcNty2BeJUiKzNPMaTrrhi1FU+KXbKUJi/qH16aFZWnjfr+zLhPGMPTx8zxznp+4nE5MXovavCeGSQIYB/f7xPUa8U46P67bijWWHPPISDnv5J7P83B8CMELE2e0NkTZkqys5raKley2bZIRWxfRxaqbUOvrnxX2OITANE+EaSKGQHAimXJBluPOwnV28m/hsbswPDJlfe05/t0ffWOz1g097ftHf9/Rv7k18QUfmS3nKKXgvSdrTZL41ochp7NG2LCSD23fx+fbh3Pu30McTJSFq+yWsg8PsW/1ThoPDTmAsomdne/nfWTr+mdVZeP7wxlZ51LWtbFVWZeq1PvUnMVBZV1ZbneCE039tq5cX+/SOAiz+6ZvUt9lSiV4y+3tqzZBsszTxJfXG95YphBprXG93UWy2aRbqbduZDWX2yLZMmUisxITtYljx+0qXWg/vLwQY+R2vRLVQcY5x9PLM/PzhVYq1hj8FIkhcL5c8N7z8dffSzbhQLR8eH7RIKyOQt4trcM++Pvvv2ddV+nDopbFz8/PQjBsiWgDRRn8pp7y3jpKzmqGINeh5My6rHz9+pXnjx9GsDXNMxhG8bNIUIsy+A7rPBOMbKX3gSVt+PnEpIH8fUv4EFV6YjjFaciBnTEQJCM8O+lpU6oh+Gk4tM1PF/zpiZRlf8spcX4SbX2jcdFhmbT/TS1F/dxFz7/WhZOfiFECgForYT7hCGDEAjm3LH7nSlD4yUtxqZM/TuWRIv+xWse0y99kITC7Y4J5zFO+n/tdZs3h9/J9hkhWmOwRTPfatT0zc1goBoYY9Xr6/LE3TU7lQQbYAx/1Z5H3DOmntAkTsuhgeWnsOOYeiD9+P5nPgoVGQX1rEkzrXB99e37B4y/SyI+TGYznfgH21OKBie9voqeX99f3Zal3TOvv7MHC3oenymLhLN5BLolkKsl6MpbSGtY0noJYS/5wF9CQSyPTmDVyFeAJTjpZsOYGSDGgDydMcJjtyhQtt1uTYo5giGRq2Zi94T/8/t/x49cvao/l8NYQnONO0ug/ULFEZ8h5Y103Jo3Cvfes266rjCFwniemELibjckH7vc7P339TIiOyzxzu93p7grey4LQEJeB0zRhGry+vlHKP9O0LmBZNCrv6aUmbPDQC3cPVSe+uLVK57dSJZXZasWHSE9zWWV2k+n3WIeDRsuS8tUiqmaEwbVizzSyFz0y/7lhpfRS5956iovWO99pRsFKRNwnb9MJ29PWjaa+wcp6HiaxOEHod2xVAjEf8NazpTTSWDQkUgax+ZxEex2DyFxKLvp9e7MomM/zKGL1mt6lMc5b2HcFA66JhtZYJLVcaaWzBJ4QIuu6cL2+8fb2ho+RyQvzVLS4rNTM9fqVdV05nZ+IYcY7WWyNET3oj58/8/VNCnAv5yfJHNFG2s55R3SW5qAU+C5CfDK8uMY/LpV/SZYVj3GO4DzTNHM+PwnzMwXiknBLIhunuseHRUDZc2kKU9QNI2TpgTCFSJfgeCdtus/nM09P5zHOvRMgbnV8tNZU057x2zLqCoS1Ewef8+msf2bmDsBjZApRiiiNtG8HcTJaljtPpzOmCvM9HKFi4DSfmOcT8zQzTZPOYTf0nV1X2Wolb4Vlk4KxdV1ZtpXbunC73bi9XcXPWhfm6Pxgz+bTSethZuZpJqoets/vHhj8rTx6NkkeFnhstnQEykfwPOSXet1hZ9Wk0OD9qiKv77InSwcFj48O7OUdfW381oVm3+ztKGzse9wgCg7A4L30Zt+77WDxrbOYYrWd/E5ygMg5jufQs4u9Yd/uLsbOCja12NNs3JAE6GtKTqRNije//PQF06z0K7GOm7+Jl7oGssEFDAwNva2NsiXWLfNaXjU74kc2Yts2Ehp8lsK2iTywll3SVJo4Mjlrmc9nPry8yPfEcDpftKAQkaGcTrypNaOzDh+8BtOBLqmxweJNkKyj9/I7py3vEa9+H8PIhOctScbESP1L027VxnniyRN9xCCWkiVnYZm1rk4aBsr4NczS+TQGnp6fZT9ByITWmmIMYbNzKzuwNHtWESM4xYcZa/0INIOxhDgN6UnLFRtVbmgcuRWKcWA93kdmPzPFWeRCVV4bo4WUaDkTTyfJJGkWqGv4m5PPtE0KN2tTQar3uBgBuca5FdG742RPdBDwGKe++K2NQMA4R7NOmx4CpmdYGt5KNhSnkhljpJN8l6e0g0ZjSByPjwMx3OWKnZ2XVBq91mxIfDt4PpAFx7XFHGbx8ffyu3qYj20E592t8ZgxG/UI/Th1x79jHTCP7wEONYH7dz2SBK1p1oFv160/9/jFQL67DfQvKP/v8OvdYjp+3G+COTwxLqPejaox1hHOSQWvfKmomteG+HFXhMlesrjWTM4wWSkOfL1v3PSTWhPpSPRSWGSOZ9IQdxoDhUxujhAnzLry67Pn09PEh/PE5Ay3t6+k9c6nXz1TWuH1dmNLmxajrOO7yI2GNRUup3BoSiIpWmcdP/74E5+enyVKD4FTDHxpavWYK8t94+vXN0yFeZpHSscYcUSoJbOuC84FQpyp7StfXr8yv37hcn6ifXN99U6o/o6xuVgBy60dKsXNkEL0TmNoBfiu1VSdt9kn4F7/2ken6OPkTu65l2rE+aB/9hgMRrrNHqNXdZSla6/Ft1nvK2j1uXZO7JynHvsxwm/qIS+T1fsAxuCtHwxOKYemUFicbYQgso8YhcGVz5Eouha5tvN0Jk6zWgb298oFkcYbe3Mi6/R7VGhaDJSTFGGiC9H9duPt7VV1pWEA3qz2cFmL0d5er3g/MU8noi72pSRe3175/OUz6yoa1fPphGQ4G1Po+nAFFMjGGoyh+YCZLN4UnM2EZHklsCEOSaezAE/vPR+en/A+UVjIRlLHdFWEBmEpSwMmg0q3dEw554jqG9yLegTIX7hcTkMO47QeQ2JJZSqS+DbnWoihjLoOaTIiXtrTJEz3PJ0kCxHl99YZSslsPo2GUSFE5jiptEw2ZKsSnHmKnKZJOvhO0tStN3YTbkLHahEGZU0z67pwXxbiuuCWoMBTGNaSMsZIGvzp6YnLRYqiT/OJeRKnnWkKqo2UYyb1g/5beXTQvG9qfV15ZKr641v2XQmJkZWzh2CZceyjtpzD5rgz3IbOOB4zAAatDTpkDI6A+bj37TSWHedzBPzHY9SRodT3d3LEO1zxD8c/avsfHqZnJ/d5NqQ36opV1UXCaav3Huw4Z1m1bur2duXr5y8S+DeR1xjQJkYquzCeeZokIM+FumVKkqzTtmyA4fn5RR18tGiUnqWSgNuFSGuJmotmQ2StiVPk48dP/OY3vyFtG7VUqQk7yDyC8xTEGc46IbGsFiBnlbMMG0mdy7lVvOnXUfXbw/GrcK9XbO+o27PPteH0+MYFcfTUPc5aBXDV44Ksvc0YfPB4I1r0+XQS3X0tVCPEo/VO5Hgxai3efs9bA7S7OsbiQ6QhINh4j7MeOxh5wSQ+RnyIOOt5u72B9Vgf8dNMjCesC7RchJAzKu9qeq1j5MvXL0PGlNsyYl5rwTvPcn2T+WccpokjWe/NgKl79r33gDH1EHNWTJCOucZZlRZ5yRgbzei3JkC/M/K613cwj5E5NGbHgxy7Ha7dMXyGwbij4tQOqHUO1TYmyjjW8Y/VNbzjnkdwvjP0tbaDvG03HxhkdpcpN60O7Bk6+vPfkgIiZer9Lva5XzV7rZdlkA+P/Vr+/OMv08gfz6sjqsOP/UvJTdlv3MNC9jOHbQoMd/BpoDZdaDo7g/h3NqOe6oYtN1YL0QlbEYxMaHv8PAM+aBTWmtZgCqBsRop6XBMHmvN04ZxWPk2GX18in14uzDHw2cMPf/pnSt540kY8n7eMC4FpijhnRItf1OGgVLyLtKZRcK2j1c31dieGwGmapVAnij1TLhVnxbP7er3jjOFFdYFVAUEv0kppozZDnGZcCLy9fuXt61emcNrxcZOh2qvuxDyl7sdjt1bbwX8PfqTphTHajKlPvodXmqEB77d7f6qnnfSaN3Mo8tw7vQ7cPw5wSGsPCwIGeDKt//qwqerzXUKzSxn2541pWiTkRoBimjCzPbVeDxPaGtEvxyiOKCEEhgtNlYXAec8UJ3pXvKa6/X5NnNPFuQP5XvDjdJLWhjECTEqp1CxM/Lqu8p2cYbkvuFSUiWoqC8i0ZplnAda1ZdXBX/nx80/c7jecCwpixerLO9VgO2EQjwuYNUZS417BSSsY13gCbhg2Z3DREKPo1i/nCWMsa6qszYgLht78fv2tS7jkBuBtral+VvSl9gDkQ4icn86c5kmzJN1ZZg/6a5FCUlsKzrjhPlNB/+30eJK2Ft18ZIqTBGG+sxyd5e332DPFKBIJRN/YgOBFThOVCYwxMEU5vz4WZaJIoWsonqg6Ub9ou3F93tRG9mKFN00StDw9P3N5unA+XThNUgA3R2nslrWeYPtZmcZf92Ow2q2vPTvZ0H8POwAachJjpFHuAewOh5kDyBaJjBlFY+1w/WKMLMuidRCy7XVN+BE8W9P1sG3vj4F5PJfOljXZjwSk2G/YvT7W+p9aG97L2tAzTUMOB9qF+j3jN3b2HdDUnuHz5K0Ni0DjkbGn2dWiTk3LfeF6vbJuK/f7neAK67Lx00+fqZpZlCHdxI7WiKzVW8fz5QVvdtDcCsxzGgV9uRTRmxuLc/D0cuL3v/sDadtEZ67aaB+Eqb6cn6QBnbG6DuyMZs6ZdV15eXnR+hDtmKq1IsZaTuezfHcNWoIP1FYIkxAarfTar52ksYcgstYmUhhQzXoQi+uaFVBbSkrScbTXNGTJ4FUdW/E046aAjZ5cCltOMkyso1krHVg1e97tH0WDbrUOz5KrFI0aH/BTlBoDI2uQtRbjDfP5mfl0xvvALWWmeeZ8vnA6nVm2wvV6w/tAnE/cU4KWRb7nHDjH27Lw6+dnPnz8yLTc8d7zen1j2zb8PGPWuzYTg9utUi1YG4h2ItrGtq04J+5flUrK6yAmnQv4Kaj23WCcAecw6rCENRKMeS12NcjfMp3k2jQe1rj3dSLfgEzFhrV3b1fA3aU1XYf+Xgb3eNy9dqMH8vvrGHUMx3ncM3F1FKeb3Uijd/D+maX6+Pk9OyNjF4xmdYdISOe9HwQoo57vlzz+QvvJA997uAmdrRwRC2CaAMFBgjx8UQWSxy/bdhDWQRu1qS0d0iApC7Dvrh+pVbbSKDhKKyx5lU1dW4DJ2JHF0zQJDoraAHpnqWQm77k4w0uMfHq+8EzDrz/w6eT5dJ6JU8SYytcvP3B9e+PDyyde5jPrfaOZxnyamWLgft+kqhzVRyn7K0VZopMsWpB5WxbFp5YQ4qhOb8aSS2NZEzGsWO/UWYABNE2Tgpeci0gH5gle4fXrKy/Pn7DeDju92sQn1ygj0L1Lu6uLOxSG6R0UoNcqphqc2YuYGcOrp7rt0K321O9Ovu8TRxh1NCBzD7p9wwGvH37oVn5t6MjsWAD6ZB7DSTe5sRF1IG8YYHBUg6uGr1a1Haw7M9dbKNcmGlSv1oZT8MQgTUSgKssknss+ON2kLaZPSoOyyn44nvSOjV0LR2vUlmTDLZV1Wbi/vbImsbG01nG93fj89bOwZzDOzYfIy/MLPnhSllbkt+uVn376wm1dmE8zMQashZI3AbQhDI2qQVObhlEgZ2g4A8EC0WFs5YWNt2a4WsOKw1phDOYgadn7mihrI/hHVrHpv3tx6KiJ0PEg7JnItYyC+fPpzBQD3keC0/lrGAFApo/DvuaYMQ7NGI8yDqwzA5z1gt++1uyEgmaWrBTTu7Y/19AiVG3QM+Q+Wrgmc1E3kgq2VlwVH/8+xqTHBbRSsA0NXgxhmrhcLjw/PfP08szlfOE8SW1A9LI+bSnhDFAr299QseuRAe+yliMR35vjvAfmINeYY0G9/t5bh3RylMd4zog2vn8W6F3vJNPPPgy7/u/RLag7xuydV3e3GTlX+/Daviag8hVj1OKULv/bde8dyB8zFjuT2y2/9Ef1uscaTJN1l1rJZCEqfMUO42IDpYqt43ffcT5fKDnzX/7L/5G8ZcpWyEkY4mVZWRfR01+vV1qRDrHWWNZlIW1SOzXFiXVNuGmSfct1IivK+NfA14cJYz0+TJp1C6PWROqS6giGu1OMFNvuna5P5/NwqfF5Y5omyWw3cZ+q2lCq1z8Ia2+ORnqSFdXAPmcpSk+5YF3AxzCypc04qGKBaUrFxyiOMAq8GpZ7ycz+hJtEfoKCfgtYtZ9sDYqew+TDXlthDPNF6phqbaRcSDkxxwjOseSMC5HgI1su3O4r03wW2aKRGqWn5xeu1xuNhWosIc58+v4T67JyX240a5inM8u6kLaFEAOVyn29Y14N1+uVeZ5FFuzAeEM8xSFZMptjLZnoojh2OYM3bUi/janUuuGDyJ2sd7i4O9T0ukaDOgsBPuheb8aI3MezknLjdjV0HjXp06HzS5Lg9kG2oh+m89Uc5ogSiD+T4TPCIQ43sX2+7qx6rYVpmsbrnbMqO3JQ2ft62E4gSFDWDRVQc4/d/EhsMXsm1+jvHmU0ZXe5MTse6/K4/93tJ80A8rAj885gdjcOhYLjhL6NrISJrY/PtiOokzvclPF1Maotnzpj6Otag1QqC417Bhc9t/sqaTxjCdaStegVPBbxSc2lUlvmPJ24TBO/uQT+7uz57WXi+48f+P7DB/75H/+rLCDWEJxhMvDp+YW368K6bljneTmf+dcff8R4y/PTE1sqbFoMczlPrDnz5KMGiU393OUcllWaT3gXiSEyxYiLUcCMtTgvaUgDrOudOEXSmnnjxuQnYphISZtJnC6cpzc+f/7Cl9fPnJ+fZEDUJm0MDgFX6WAV6fBJ9wHvrHSVgWeqITqH8R2o7kUlTUG8NQcJRFNo3X3MNeCg7WmvfXMSlsIowOsDuPb2zHIAsVB7SANpVkUR/U7+y5joXH5rbXfrMXZn6Kw00GialSnaDKgHkyJdyVArLnqRVng/CtRAHSwqwtSHqJX5wkLQ0/TNYFWOhLJ2tUir+NYAKxmbnNQqdLnx4w8/8uX1szRbMnuh6vV+4+X8QvCehiHEyMvHT8znM//6r//I/XYbjikAL09PUhyqLjLBOby1bOtCqWgHWF2EnZF5WMto9iaWj45LdNRSmOuNF1bWVkg88xqeaTjmOfCxWgoLl8ss18A43aikv0F2WVdPvUfW4oxlyUmuhd5T7x3nOQqT7ie8F+1wX+y2bYOsE74DMdWny1FE84pmF2yT4P2A999lisxYe2ToicxJf1B5gR2aSBl3cp87kHNGgHyTZ6jFUVxWEkGzDUpMTEG14Va+68vLMx9ePvB0eRGtfJyZZk/0jrQlQDZ75zP+UIT11/446uA7kDdmz7zU+m3QMjY882gnCeqUtCWcq+9Y9R486gjT3y/3+15Upmxt37TlXeJQ0Z3L+rg9nsv4DDMOf/jMynHPFfZt/97KNchaVSWo7sWYXQYigP4QmByYfflbm8BpUG9oNGsVWFicER95Y91oMOR84HJ5gib7dDCO2/XOuibSmimpcNoSadvY1pXvdE8wGJxxslclOXNnLdN0lgylkc+0zmKNaOatkS7LvakTxhDnWbrJZsnETcFq993+fUVnLx1F7Shu91oEmg8BXs8SzKcTaRUf+GMA1KrIbnp2p5MKxgjxgrEYJ6DZGJWD6DgsxWBMxVhp8uf1hgnwymIPacTW0XmrrjAKBJ2n5gKq2Q9TwGnHz+7OQrOEKKC5rZsQGiGAtdqEUI7pcXgvRB2a8ajLSowT99s2ru31eiXOUhBbYRAqTcfXuq2cVA5pjCHOkWYa00kKlr98/YJ14BGf+ueXJ7aU8MGrAxs4G9iySIdD8EynmWokqHZBQbzrSF8+W0wlRPZonUiBR6a7BzZ9btLXYw2KMUoQHyblmFD7PNzn5U4YvpuQ+5gYr9f1p3eGPZAC77MCgwU3Yi4xsmKdhB+LAIyd7GBR3LSbfBPw9Q050deSIatR8kESBmqtaszBoOTffvzyzq621yLs3JZ+V3a+Af1o9/B8X8J2KH/YoAYL/3jfxntLFZ9ZdaBprWK8EyCKY62Nt9XgfCNME75snJxUyl+zZauWNTVsq7RasAY+nGb+x19/4H/4zTO/eZ6JpjLZxq8/fuDTyzO/evkv/PFf/sSX11e+fv1K8I6/+81v+d/+6Y/c7hsg7cOfXy788PUnfLBcLpNo5nLhy9c7/+4334s7RstSYY/YeW1LJnjDvW5YW3AhcjlPvF1vxCngnWwA1jk2bad8sjM+CJh7e73iMbgorPH5PHO5nPiXf/1nfviXfxGgOU9YJwuPxQytfkODpYosFLVQStJB/ZgKqtYpj2kVyO8TUNvjKsNudoeWwWz2jqUHsNQ19yNok0ja1G/vu4wyu+vxjFpWjcKSx9ceBDmjsRAHttYqk2P69zzsuK1JkVNKG6UWnDGcTjOneSZ6j20N0zK1OtZl4zTPko60qknEkk2lqV7XWqfOJg3jrDTtoLtyqJ96ymzrjdfXL/zphz/xx3/+I0tayLUxxSi+vyHydx8+cA6zNP7aVrb1xr/+8b/y3/6bzKE5SsFTZw8uTyeen5+hWarKcMS/vWiRdw9qnNiapgRO7nNFi8GzdK5rwTA1raFoiZx/4nK5sN6uxNML59MzeJF2VdS9Rq+nBJJ1D871frQmOlKaBrZGikuDF1nKNImOvztQbNtGsVJoXbWeIeVEKTIvxthwTmRHW6bM0gG3HhZrGftd49hGcFe17wP0YnywtVAalCq+yvJ1FHDq0jds1PrirOC961uxVsFWFbcL9aL0wfJ0OfPh5QPn04VpkmzeFIKwXG6loTabf0OONbAzp31jPQb2kqUTGdjx9SmLlauzj0x932h7ADtkYs7qHN8DgP6enDMhRpHnaTDRN/HWZPTmWsb9ZbDqsmYMZwvdzw57v2aeJCDumKI1O17X/4zn2AHXAyGhgfRDZvHwvP4D+nnVJkG0VfLEGkxtWF9wrRGaKJCDdWrF6jG54uPMcl9Z7itlK0yljN4MRq+vqI+tuL2opXNrjeenjxo4H8gUVBLUxMIVkKyUEWvcpEYCreymAiMQHhndbltrKUVsIvsl3t2AxHbXO0dVtv7oStRqozfe6s2ujEqppDGRSF+sFW239U7lWWIG0LTbslG5HjoXc5HrjHVYH4btb1Z9ereP7HKnMM3yHZ0btpRpK0Onb0uVrIDuI5327hn7ECJrD+pLJefGdJoZdSVYak1s6zpksiC2z7TdKlX6mkgG2ocuFxFCb1nvPD2dxFraiqd8bRXjlZDTIEbOSRwDnfXQpH7OOmns2Af3mB4duB7+je7DP/cwh/93MuYBhxyKtnk3J3bU30mX41Pv9e8/8+GdFe/HVwK61F0m+xg4fHv2+3p2DLi12dvhZI+g/b3kx+p+0c+3FJEN9sDolzx+MZCPcRJv8i53YF/YjgHR+8Kg8XdrytDqmzhcZP1jsTxy9ZByGotEM+CcVImntOGsyHfWDF/eNqItBNcwtdBKI1lHro20VZ4nx/Ps+f5p5j/+6iP/h+8+8ve/uvD9x2do4m/rfMD4wGwt3336hLGWH3/6idfXVz59/I5/+I//gf/3P/2RH376ifW+Mp9nZh/56csrJWW8t5ymwLok3l6vBDMzn0Rek7aNGALTHCk5E6yk7Le08XS5iIVdqUyz43I+EZ1jXVdu94UpnphnsTkM1rFuGyaDFGtW5vnM5fzM9XbFfv6J8+XCNM/SlOIYSeoEk8ZVmdbK8GlvujDXmgneUnESjWoAJayXE4Bmdx/aRhuT0fSJZTSSNI/uE72BC80MkG6c+EnbkdZWsN3BF4zF4DjmxiRUxqUvYHuzBoPI9pwutOJgIDZtjGg8qfc3VWy+QnBElVZY/eMsrOtKjLL4Wid+7K0hvs2lyEZvFcxVAe3WGS1UlU0m58S2LqzbRlo37veFdck066UjsHM4F4U1t5a0rvzp81eWdZOGMd5p4eWJ6XTBWwjeMs8TT0/PTPMsLkVllwt1K8zSpJmSMUa7HUsRpuyHqguuldIlMYJkqIilrM1v+Lf/Rm0rOd/J0zMhXMSurSaM8WPRiT1dqwtx07HQmQhhIERuErVpSAjCyvsg7F4nRUotkrnYNtbU7R03tk2Arq/iS1+1g2UtPWDK5Opk/21O8bUZ3uH93qdt3dvXKZAyxuJ9v4ZFtbaJUi0WGU9OQQcGbLXUujNLrUGJE1xEKlNbGyDlfDlrB1rJwMUgzjrBSaFa8YXNJlozQ3bwt/Dw3nO9Xh+YcGHuDDjDNM3aiVqK7c7nmTVtynBG1nUd75PXmMGA1SYM5uQmsQBUgG6cG2Ddes+6bcQ4KQO7Nx8ajLkG26Y1cCKRy1nAfYhe974dmBwznaUWiUVqB+/HYrgujZNApkvz7LqMzfqYseh/nNaUYESeIeDeii+3MSIvqUYsjhEZhDNWZTYZHwqmFbxxg+101nC2AR9XrBMbSWc9JRfWdSVvYtvYo41UC974UYfYgVXfx+Xc3XC5SSlpgzqP9ZbgHEaDc2tkHxTbT8liCNj32nuhSmdRdvbSNJjnWU9H1+w1Cfi1ss94p4RSbbTSiyBlX7DOczpfhFBIidwkK36aT7K+NbG9pGobyyo1RaX2hklWavMwhDhxvjzx9HRhSRt1XSmaLZSGZOCMwYXAtma9to45RG73N7yO29oaPkTiNOND5ITh7e2N69sVp433usFFq/K9SirQxO/cW8unT5/48uUnUNC5rne6xEtsqyfu60JKG9vWxFvfO15fX1m3hRg9J3W2KbWKzEplgwbZN++3Ow2tU6iV1gphUgcvJ13eDeoo6WUMl1q1C3yvl5LAow+oo+ylZ8eNEelzyVncrSjDyrPWNuS7Teffnm0ReV0v8O4Wxa0fu2OETuApurTGSmbBGHC7dt1aS2l1kE/iLlX39w+g3oMVM3AH7HU0VqU3tomUVDoB+/EZvTan79EhhGFpfDxvqxjxF62vv+hVQJxnGegpjxM2GokdO2vpLVLwuBc0dWzfWbH9T+/eqEfQiziKAFpPUYCxhhAEtOW80m2OttpYTMaZhYt3zNZyso1lu/NM4HcfLvz2eebjHPjuaebf//qFv3u+8HyeucwztMZqnHjBt0b0kfOpqleuYYqR+33hOQY+Pp/ZtoUffvpMq42XyzOvrzcSWSaxd8QYpANlKVgT8c4Nf2LvxdKv+1J31ubydBYdrWqya6ksy0pr4tjRSlX9sKWWTE1FGS7wLvLp03fc13/mfr+NyLK1KKmUfnfGTRB5R6v5wBApQ27Q9toKCFHrJXVAqHofnJU7V2uTzeMI6VsbmnCrwGinZ+X7Nh0dSmAqEOKBsZNOgAdd6yF7079Pn4Rd89w1icYIaMNq0a1+p30dEWCdy75o9AKsx0Iz9cpvjTjNklJVnWxt4r1fS8XboEGSSHRyTtRbIaVVtJ/teE3FBWGaz7g403xkTRlrpMHUci/UJiDdYWXB925YKnpNl89zJEZHVIs26xyUPcVhsOAFwFYLtYqDiw9ei+E0BdiMBuMKXPVcpS8ChAauVEpdqctPkBfq+kqdP5LdBfxZvITbDor6HDZqadND/yMLYe1+/6zKUgyPhWrbtrFuC9u2sG6Smbgtd+12a4hRHK1yyYNB6kXMWS3XnJX7lDXDlbJ0Sd62u3R0pDcdE2977/3oCVC0e6P3VqxqXcCjjcG0q64UJcnYlsyB01T3hFMmrPsRn+aTZCHCbrUpkh0FBJp1SGljXf92XGu2beNyuZBz5n7XHgjKphpjuN/vA8h2PbpzXvo7ZGmm0/cd5xwuBpp2B22tkfI2uoiGENTRRR4NBgMvm6j7hunqhbISIDACz0cw0A4soATA8nffwME5M8Z1f4wit2qo2nBGfudGLUcvBEb90e3ByYWxDrWHro9Ypwy4rJNSW9FoCgxaqTQKtkmH9G3bWPtaZD3hdGJ2nlYgbYmi2Qgfo5JEjZMx2GaHdKY1Q8tVA+b9WlgNnMQha2LUxhgeigcvlwvX63Xo08GM+girUs2SCz56nBer2pw3ISCcx0eRtPhD19A+PlptlFaoOZNKlb00RjKNbZUGiS5ESkr8+ve/p9XKcruRc+aHtzcF8U5tH5065lhO1jKvd6q1LCnhS2E6nXHTRMmFkhLLlqTTay5sqZBK4cPHj/gQ2NJGPAloLzlrR9hC/fKF8/nCy8sHGdNKEHjv+f78RAXSJtmSbAxPlwspJXEeur1xX5dBEjy/vJCSBH3GSm3Dcr/LvXGOlBKzM3z36QPGfmTbNuIcR2CRcqYZWNY7SfvQGG84n86yxgbHti1U02gOjLfSV2W3rNMkxGPNis4Q9gZNxx18f5jDOOnz9His/TP6fzxgxKPg/v287e/rxygH5vl9XU6fr4w1o2f3Op7xuzW6aXrOypYeQO6+vuz9KlIS9cP9fh9mD+5ANmCMZHmMhSLrirH/OwP5+TRTa2HtUQM8sOtHsvTw5Lhnj2VGj8DfHH5vjk9pq95BKjcZEMtyJ6+LDKQGactYU/BmYzHw/WXiFC0Xl3maZ/6n337gD9+98DxHLlPgu+cTl9Ok3VBlMFprsVrt76M4ktSzRG/zNPFP6Y/UKqny5/N5uAB8ev7A0/lMzmU0gZqiZ9PudnL+8j1G0VuIYqfZ6mgfPc9ROs0qmMk5k2slRj+u3u6TinTvK1lYbmt5enrmfP7K7Sae1ihD4KNkBHYtlzCSfWN7uBXacKs0Sf8ZqgJ32WyF3e4BnAZbx+SLMuXNmOHf3DfHztTv6ugDx27kDEdAONiefuaHDFA/3bHp7rKH9vDzQQ89WK5+qgK4tm0bYM86LVwyEimXXChO2MHaik5kT21IilgbUaUkTcK6s1DOAj63tFG2dVimWScNqKwT+ZTRTdhgpeDpfqWWpJIY+dx5nsUZx1h1T1ErTGs5nc6czzMhOKzTGdIkcLFN2KiqtmEGGVe+O7sET05J9dv1kFFrkonpYwO5ps0YfGmsuVDqQl03WrqR050cP2DOv6UaQ1Wt7L7A9v8d/uYwJzgWW8tJiINQJSsQTymxbQJsU05sSZj5dV07byffJyexglMwXHImWxk9xRhSzqxpE2Z/W1nWO/f7jfv9Tmk9DS8FmN2pKOdE9p6UHS5ZHHkEjLXKXHTOYbzB5iOQL5Qgxc7ukBruftjDkrQHzkayJWvauK8L9/uN2/2N2+2Nv5VHrpWsAAFj2FJisnaIMCtSOG2q0b4Wwr51sNub7dVWSaVQVXlk7d4xctT5KPlTaqXruCXL0m1kRfPbmTNQ7f2hicsx1X18jLWMTjooiAW87+yefKMu4DPdEtcaWpUsV7eqO7KB8n0UWPAt3BkBga7t43lzXEubfI9aEUcNWQ8wFVurML0VDEU91yN5yxjvCC0o0590bynM55P0upClRKx3g8VYKQwVwsQd6lbE8Uwnv5A1VthlYy2lZukxoZexB/8yJ8y4N0KKyFw7+oOXJE2Jci44B854QpjG3hqnmVwbpci+Zb12aFZHqFwK03zm84+fR4bVOM98OkNrBB/48OEjb2+3wbKL27CYV0zzzOX5WeWOAsxOpzMfrZVC4Sa9LbIGOwTDNJ8o9zu5CLMvTSe/cjqdh5sSoHVx4pqzNcPtfkfsNCPr7UbxaeDV2t2/dOws91WbCTZqTlQnmRanxf8dEKaUMFYctHLOrNsi99palZJUqe2wkvEoJZMyNFMliLJGTRwM6L7zUJNy2HePhZqPRM5RC98enu9A/r12vfEooR2/V7JJzuObp8e4+bnnrf02UOgZgI465a1VM6SaabNusP593TmaMUhWdte9v5fTSIdgXdcqbKvUtQyJYHBa9yJ//5LHLwbyl/NZ09fCfDX15u7pX/PffffPFb/ycKP2lUlvV9sBgRScSDOezThur19peSV4sZu63+5Y27hEz0/LnZbO/O77M3/3cuL3nz7yf/799/z9r75nnmacMViK6OBcpNauW5K0WJeH+DgxaSDhneNX333HmjYgcTmd+fjywv/6T/9Ie3rh48uzNMbIBYyTCDpntQyU9GDOGYww4TZKqtYY6ZZW1ePde6cWdAoGUuJyOkmaUlNAlO6uohuNghfrAh9ePpC2zJYypS1UDCejDiKtDqbaIBO0qEyqd+EzDaoRmyVLwSJMbmepraYz+787aD561PdNzsAoYrbajlh8eu1+vzXA2YdA21NWxsiGMMIQ+Z3VCTYifN3BRDsor+7d8UzHt/VY3yEbTmdaS85gxDe+e5fX2iQYolGqpF2Dj6yjU2cTCUurAuR1vSpF5Brrkkh5xWhqMcZInCfO52fiNItVV//OajHVfv0r8raRk7AAxhq+++4jDaOblhtOEcJyKZtrJAARJwtZ1YTclcUkpwTqojfAvHPkLR1S0vs9KDQsTXyAUdmStWQni1WqFZMzLm9s+U6rC/jIZgA70/DQDi4ehz8dqItVp5zrrgssZJOltqM1kcaUTEqi86/6fUortCbFcxUBXz4lUkkCyLsbSCmQpDaiNbHuXFbpunpToHy9vXG/L5qRseqaEwabX6oEyzYnzGYJ2sWvVkerXpkXtRo1mv7VcVAGyFGu34oFqPPaTEc3wNrEQWlLidfbK1+vr3x5+8qXr58ldf438pD6hvyw+f1s0Zm1GJWqCCiQtHnPyuqWvAPs3jJema1OFpTaexcge4nZpSvQG708dmwdG3vP/L1j9o5ZOnlf97V/BNmMc+wafHGBGSAGabw39LfHfVAftTYxwuhsPDx81k6iMYiQft7DfacDHGPlGngvzhu6FtYmOvGWCziDQ3pXFHXZMbUSQ6TmNjKa6Ny11tKsOvk0o9nGfp7yueOPQXTVBi3OlP863u9gVLJSe90CGijR9u8ue540iWxN9tPgA1XNJFA5jXVVrX+9/IwQWLYhxbIpSeG6eqE772lFOtWGGDFm6chTLRatasM9zvkxvkSqGHBFMj0N6RdRC2MMSR8SdVPR14uMUqwGU0oKzNX7PmdakU68IUYma1hzkv1bAx7JuEgjLGcsy5qwkwDQvvd2G1/TM52aDTYWinMs213kbLWobaUEzMb2DIvcx1qzmiV4BfLs++vg3B9BfB+nAzyb3WoRDkN+jNk9GHgInsecZY/8DmHu2Fv+zGOf3988I+B7fN4xA7cTpjKz9rHXZTI704/2vDlwmq2flRnH7Y8hC+xrCOpX34MnxVVN1Sbl2xP/2ccvBvLn01k6n9VMrYWtJtE38jjJ3l9W0yOmd+fTU6Ljy49/9AIj6Q5ZS2XbFnLeqC3jveHzj59ptXKeZDO9Xe9E53CXmSVXfnpb+O4y84f/8D3/83/8A3/33TNPp1m8tVWioEXh2jWz0YpsGtM0C+va2tDwWuB8ijw9XaSj5ulEPE388PULf/yXP/LhwwsfP34gTBNfr69QN1IWPXktaCGkyCp+en2lGHj2jjlGLtNM3gS0xFl8rbum3oCm+sU9pnep68C5aAMOQwNvmJ+e+FAyP31+ZVlWkhY7TnGSxdf1Nsbi+EOTAVhHxWkbFm3VCsSnOXorcmvt0LKPqHxMrn3gAtpV0exFRdaoNr3P1/66Mjre2e568+5Yj8WG+wToRaumoWya2e0yx3mpDaXtaXsBWtuWRWddK7FbTIag8hoDVJZto94zNYuHb3171RC7aaRdSHmjqZtSbYaiftcxBE6nk2rapcFQnE843xnvnfWegufl8gyXpr0SGqdT5A9///e8vt1HgydxczFklV6UUsUoyDrEWaXPLeiMoLNSqQ9a5KlMQG0NFxyu7kVlDfl8SxxZEKNBnrj3SFAmrlCVWBox39iWf+TeEql9T4nPOt73M+n3oQN0+TdY27DNUkslqV++q3sjl9KbdKnu17qA9xlvhU2VlKawGrm28R06Kw6NlqG0Is3Wbnfu1yvX25Xr9crtemdbpSGXC4EYRa9rrdWCZi0E1iZNIN1oa2jaVFQcO4Lzg3/tIHMUVLIDwO4g0b9/qRWSAL7X+5UvX7/w5ctnfvr8Ez/99BOfP3/hb+XR3Vl6kHTcM0SKlocGvl+78dDloK9BPS0tNVNOezYIWWJ0nmcNGsQ+cAfi7x/vC89gL6h7YBQPoPso55P37kBmP4Zs73tCqoo1qS5Lpctj0HXU7kHFAIgHaUH/TNHMo+ehwEsjnKqLa88Etx6kG12HXQDrsaWQNfDsRYvGiTd4tRpqNPkToqdpHVMtFWsUcOr3GjUnWax5S4drfUuwbUgXm7FsW6YhWbf+Gu/8cDzrHWY76LXOUdTR6HjdYwg0RLLl1Pu7VnG5aggwdz5okasU/xvriT5wuVzYstSuJPXa33KR81f7Z7TWyjrLHDzOyeelklkWlbR0eZAVe8dF3WXO5yfJdJQsBfVa5B10/pdSuJwvZK05NMC6rHiVEomzXJXsfgjE4FgdnOeJinRkzbVxv92ZJrG2plbyJk0qxVpTHGda1cDRNChtdI/+8vUn1rRKR2ln2Yr0psFLHZs1krkFhvNORZpWisTZ7QGytQcD1v2xz4fDvDNjQtBHEHRb2ryThtY+bh/HQLrVYfH4WND6OL/fy2ven1vX3tdaxu9GIX3tDegeIbLwzbo3Gt3vD+fR1SpN9y3r3Vg7uqxmlxV6rJFiaB8CzRgkZjZKXBUKhV/y+IsY+W3d2EIih6yp7B7J7MUM314xOAg7vnlaWyhRs6bmhjXXRk0r67qwpkUXZln8ylZwFjyTFMZV2FqjaUor4Vhr5Xp95fXLj/i/+w5DI20raZNW0PN8FksyZwc7NM0TxnmxpELSV5tuCM44tnVlipHTaebpSXxu/+//y//CmjdagxAsH55OtJK4LhtUsZE8zwFDEf/4JoW125qEKa/IzbQ6IRWk946TqSSmGimpkJZNFkBl5GsVSXRVx4RUE3E+8XSR7MXttvDa7uTamOOkUiRJdx6xVlM/z/9Pe3/WZFmSpAdin5rZWe5194jca+0GekCKzIBCET7wicIHPvB38JVv/HUUDmVIIQE2gBk0phtAN9BVWVlVmZVbZUbG5su99yxmpnxQVTM71z2yoiB4mExxq4qM8OvnnsWOLZ+qfvqpwmYYby7mCMok5bCtMmnzYplZZSRlcutuWzY7UrBDzuuCykCUSnlmOBiyf5Pd6TSUB9jcl8I+LL+U6+lCA+hkbo9nS86u4NA47JwTgnfou07lJMUa7vseRIxlnrBAuPHeB6xKxUlZzjFPM+ZlhvNKfekGDPsRu/0e71xdYTfudUGSMR46D/POls53gO8z0kzgGLGsk4RM/U4iTeSx2+2KNxIA+i5g7TrxcqhR5Z3q9yYus8pD5FtlkRTOqHck8nIa+SBfw/k5Z+QUQb7xTug7DyDsQkDUvIDoEqJL6JkAipjXFzhhwQkzpuEpEo8wb5xUZM7qYTeVpFwSfuT6DoROVSAENBA5jLsdnPcIc4/gJ/EKZVI6UxYAPo6qT109lJbgK55CxjxNOBwPuD0ecHc44PZ4wnGaQeQw9AN244iL/R673U4M9WFAryo6ve/Uq0ZlbnIW3yRDkpKcRqoMyJeEJuYCQit4Va8bElaWolK3t3e4fv0aL19+h+cvX+DFy1eYpuUNs+KH1+blhL7vMYwdLsJOwI1WSDbDqe/7AsCD6vIvy4JJPZPrkgSU6MbcdcKXTroRw9XxSkRwnRRkQxMBaHn4QoWRYy25vXr/IE4lFhCeSSMGXPmvZqS9uZkFAl0X1evGIuxg6ky58e6at/uh8xJJ3QOLIBt10a4kyXhnperVk8bFa5PVEy33472Hj5oUDkLOEaEPklAbFLA7iVaH4EBDB45NMZ0IJGQwZbBnQOmhCZqrgqT672LUhiEAKSO4oMowKAl9zBIJGHQclGeAGeiyjoUQcDwd4VxA3w2wWgJdFzCMHq+vr2UPdx4pMW7vbkRNRoUKYgaiFr7qhx5P3nsfp9OC5TQjp4zX17fYX4yIMWKZF3jv0A+iA+9Dj4vLJwiLaO6Dgb4bsd9dImmi7fF4xDyvOJ5O8MHj6bvvIi4JTy+fgnPGq7tXONze4Z133wUxY54nXF7sME8LYpS9cBxH5ASs84x5OkEqfK/qwEpY51lq5HhCHxwcqbRljkirUoUdSkGmeZkAENZpAYPRjR1cApZlEkZm5yQqEySHqus6iVykJPTfFOGzL/RaKcjmtmP1oeR8Z2pUvIWH6iyTlythgAzAikYKLuFCJSp7JkMjK0q51X3qTfPwIZWYs1klHndulaic3oLMJ00E1fuUCLlTaizrvZmzR6iX2idKa23zgfb7fZVH1fFOEOpnZsaakhhOOp/fzh//53DkxxHjOGJeZsxrB5odUKwFKZ9+v4vaf3FZtEQppQmpxwVxVdpOkeibEddVKSCpLl6QMKEUInClNkDMGcdpQYwZt8cTXt0xTvEKN4cjvv7mG/zTn/8M+3GEAdA1xaKMIjKC8q4yRFs7eMsylpK/XT9gWsTCDsFjN3T48N338Yuf/gzfvXopHGgipEh4+vQpbo8rjncnnOYJXSDsdnusKRXddYNya1xxeXmBnDPm+YjjIpU9nb6au7sbUNKy1J0kyUbOqhKgGec5ASmJ1GVMIE/oxwFryjjN4nnIMWMYBuGGeq0w50TW0xzqBCgwNt6pU5zdTBS2REWj1ehKbyBe37aE4XzxbEA9RwnVcyTHmve8HTE2qYwKZFEAk6ozL7yTAA5R2StNDseSW4qVnMUAMo3XpLw2KxpkCWpEkm2+LhPiqlGRfsC6rJJ0Oa+lmMuyRngXCvgbm79HTVBtwZ2hceObEpqKljkhx1VCol7D1Uzohh616+1ZIAo1DuXZiEgKTCHqxq3gWDn/KwkoNCpc6HpR2GDTtJW51XVUPNolh4I0EdgDnkX2NKaE6BNi1qUoL6DpFdxyhF9ucfTvYg2XQCfe/ZRWLMuMdY3lHsTDKFxFp/dqtBwGEFwAdUZfkQTSvus0QZQQ0yqbeT9i7McSmm6GFxjQOSKJsDlJQbQEACTRuVFB/OXFBS4uL3F5eYlxt0PfD+iDXU+UP1wQT2kLCKFeRAdREBHuqlS2teJmZANUNyBmIOk8XuKKaTrhcBRazc3tjSi8NB7hH3rr+36TcLosCzrXlTnX6sNP0ySJwbsdAJQoSTGMINWJ2wJTjCpTaF7bUnW6WZsA23jrBi+TUsF+OYqaDUw920493qiG2QY0N3/LemnOrRp9EKItF+MlRokI2VjyZiQwI60r+r4vHr4Yo3hU3wBMqIQGmg99AMea11ZgsR1HCvYSoBuP+liMdqO5A8zFeICH9GcGEBieBQQie7AXcOmDBydRhJnWWfoQqtWvFI5MWXKSzJGjf/vgNWKREHMS2gtqEmTfj1iXKBFvn9WnK/U3YkoYd3vMqxTJ6oYBO3IYxhHLumKeF/jQFU/8uqx49fy5OOmGAeMwKhgT8MXMOB4P6Ia+UGYtYXuaJhjFcxxHzPNcPLoXFxeq8EMILmC/vyje64uLC+kb50o9gSNrxMNJderT6Yiu0+JM8EgqFe1U8IJV2hYQQ8A5j91+r/klCWmdQZ3UEIk5wQWPZZ2F1knA4XSAC+bIEfDuOw8Xqlob1EFE7OBZ1kpxi8laGqjmmJTh1IzJ6giydS9bvKbuh2YMN7jC1gKL5BQlOiIg1XO0KPf7vPKtR/7+/QF1rnOJBHBTLDKZlCkcQuOhl9vJxZjZ0O8gjuCoe4M5dsz5ELWAmHWPJLcTKAFd6EVtMUs+0Nu0twbyXd/B91K50HnLltfwNYz/VF+SAQwDH9Iha5HrM++7JKCswr/PUj3SFq2kVooYc+dgjxBjrqFEIpwWyW6fYsLdccXtccHu4gluTwueX9/gfRD2u514IpUTlnPVlSZyIhWYcuGNWzi4Gwb4aYKF2okYY9/jJx9+KJsui8cg+A7zumC/GxHniJgYp3kFBsJ+v1eniEw2qwIYY8Iw9FiXDosaMoQVIXikNWF2E6ZJlS46kecSx7wmd6VcOcQpC/fRB/TDgFkLD5V3gQE9OpBvGGs6mO9FTdSjzfoOzMtuCgbC1eMiNdmOcKFCWKKNSVfK5HVkqjrKfYcxY2rsxoB/vRH9UBcAIgI7qpdtN7AGyckjVE6PUS8yi0qF6RizhjMJwDIvkgSZVgnL5jusiyRbFinBIElW47DD/mKnmuBDSaCy5K2iRrIxXsq6IbSS+YQctcBJ18m59ns44282yTdglvCn94oLdcFJCSDVn2VW75yG47OFsmWeOi27zVmTqMuCKhuPAciyOKEJ43PWxCjAZYJPGasaeyGv6OMCxAkcjuDufSzxCpEc1hwR1xXrKsm8sll6dJ1QDsTjLaXFi3oIGFbsxuhVvknKkrwT4bYPvRip4p2j4j2xaAjQJNLrgmuqFuMwqhG2x8XFJS4urjCOA/pOKlZ64+9qPwXlnArFStYsy+hxRJKH48woqYK69h27Pc6Vy500H0D6J5dN7MfSRFEo6RAWjWtOAg65AfG2iS/LIpEY3W9q8lvllbZgvGzkStHIOZdEWtufck7wPpS1J7NSCR00EkSlvoXdJ9ueo8Cc1bPIDKXxuTIPCyfYwAGqQWnHiHwvinFq2t/3Gut9U42OGaVwe1y9J3PElPVarqzJtdycWjyB1gdwpGugOBGSGqAOTvuIwKqiwUApE8MMVZTW/BxXgZcHAO8QuoAlx5JAKDLPtXiRJI433lAnBi6Da06XOVrUmWd0KftKiqlU/s25if5rf4VO1uTMUmDJlmL7kzUHqe97DIPIbC/rDNZobs5aTVZzN+ZlbuoQiDOuAFJoQqnRj6jy+Jd5ARFKtWihV6bqtbWK0s5hmvV3BJVZFaoFs6myAaHTSqI5lQqtrPMsKed+XVeknOFJatoQWx7PgjCMen7xxDvvC77zGsnyzvZr30SQ1KtmKPRsfBWDEu2YKztY83Ezp1Ajw20rNNk28qTjHO3fZ/fw/a2dm9t1tmCBbMpnlnjr4I22+4aIWak1ARRqWkxxw6n3qiBUDAwWCo44Jsx4cciImJcFr29v3+qJ3hrIhyAVIV1wBfTKemHgGzB+gwF14wLbZpXjLHrMJutTPGRRLf76ImpCJ8omaRVdqzc7FUlBF4A1RuEaZcJxznh9NyP0A3zwuL47FrmfXquyOaWaiHqM6IgL3slITsCGcx5ISYCEWosxRjDEGn169QTvvfMu7g4HzMuC4B2W6LAbBiw7KRC1xgzGgqv9Dp4YXLSpZWNb11UsNVJNXhbu9VW3V69txDxPCF3AkEctLOGUXlO9p8wsXj4FyKEL6DuhBC2mx2re9OJJQplYXHra5AgZQrup1cg8kfaFgVTx5NrexTA6DIqXVTRsBNRYsYSsm49CRvm/M7DaGgVQMKYvv5nAlvTFZXWg7TjSsVO9BXp6zlqwSFQxwCL7yFnON80r5lk0dMkRlmUFM5SbK5tT6DqE0GO/34uk4D01kkaVBNDkWKF6OL031oTmOE/glOBDj9AP6Pd79OMooW1SA8reTZsUU7qOAPUaeB90k5ZfGi0pO6dJYk5LRusGCgA65uX96Shg8ZhVE4pKMTECgz3BZ4dEXCQvmTKABFoXUJyR14gUjmDqEJmwsseiMng5yYIV+0G9TFqAjLsqyUjQKrn1fZscH2c1CPSZey0sZbzHjTPUHC6bYSUqMsMwYBxH7HY77Pd7XOwvtVhTp97/UHI3DIg5BfLmdJCCb2oMNcNWIlYNsdAcHHqMGQHi1BDagKw/ChALBeuH36b5VMdxJnz00Ud49eoayywJ5EPXlXWJIFrL87wAcOiHgLjOAGyNcMLZdqxrjZPEP9tglS8fWCQq5YtC7WKS+hLMta6CA4OyRGZB5j4wlQqNADopjGda1jATuMjVAoDTfJT6PQODZV1SkF0dI3o1A63FsyeRiGKoM5fKoJXKUEP0dg5Zuw2h2jrYuGhIgT107VUgDxCIM7qhB8+L5tcowM7Q9FQgctKiVdCCVCjOOvuZSD293sEPAV3qCzUtcxbpUOWGBwW4zkvEKyfGvM6AzgHnvVQu9R18IPiQS+8bJWqaFvTjiBA6+NDj9nhApxKY6yrSlGuMcN7jYn8pwFYj7t4HcbA5j6DKIRIVEnlbkOCEcRzLPnw83hWZ06wUXgPUKSXc3d3Bq0a/8wGn0wkXFxe4u7kFEXB5eYmcIlIUQBdCwDAMJaIkn0kuVGaJSEg/Z6S8qnFCCJ2MUZc9xrHH3fFYlbtyAkfbK4B5mRH6HjGvyMhwnkQRz8LDToCV9xL5d0FyJ0zxCU6LMyXoOmwYxGa4GhiAqKYBINJxosOVLeEXRfJCPtfB6UiimAbcTbTCDDI5R2sHvBnE208WnWsNfsOuNj+9esPNQx/jqiA+1XolPmgeieRc2NSxaGIbncs6N8SjzzVCqOuTFS/jZr+Iq0imLjEhZBEGuL65xm9//yn+D/9n/Mn21kDel/B3w/WEVY9cVVdWrE/xsK8FtKcsyWacY8MPQvF66KpWFkRqOkn+bSNBwzOaeJfNw6HAM5N0DcPhFIHnNxNubg/42T/5CxwPr3F3OCAQ4enlFbyXEtRd1wldaJrQdR124048tskgpvwvatW7uMbiJYhJChj87Kc/xfPnz6VQ1DLjYrdDzoyLiz3WWcpfz/MMB+Dp5Q7OywK9aEIrkcdpmtBWYLXy3QjiQYoxYpkmeDhQYAX86s2LokDDYPW+CoJxzqHvBzh3QuKMNa3wyaPLAYmhKicogMf6W96tgpBSwS/DN2XqRcCGG8xNxXElYFaeC8Znz1JZ1ZXLSRKmeUnrhtZw4YhgVWWpQWLkXCnkAL236oFRD1LjDXDkwJRQtq+cQakC1sRWG0E8OqfTCWDWsKZEF/phh/1uBx8cvEo49kF4vX1ZhCEbEKqx2W6qSfM84Lx4YJcZcTkhxwjvO4y7C/ihR9cP5f16eDVmrYv1HeUsXhEwnBo4pJuhVa9kyB7tnBfym0ZSjBoCL4m/wmGHhFAJYJcAOBC7Mi+Nzwd956QGVCbAuSRJcE6l95hBcQXic/D0CpE7zNhhcVeYM3CaZ1HCII+wrKralLHLCTzskLmDdw5dEEPL6FUG9BgoBjUgnqSqpV9MHl07KpovYV2Isdn3HXbjiP1uxMX+AhcXV7jYXWIcRgy9hLi9D6oZT6KkE7WaKMwbL7ztpAo8xZBmld5T47FcGBDgbn3K5hmFJKZpAi/YwdPbSY/9EFpQL2yKCcfjEc+ePZPEOZKiQVJwTSpmBu/gfKeVJEUZqlMPoVM5SQa0uq+sR1assO/74gFzrNEsokLn6dXtYJWmjbvqfUDX9UKvLPuStAqyFcwruHYAuDG2WkC98fJR43HWiVO+34JsqEKbUc/A+PbbP2KaJaHzl7/4eSmgY2udJUuWc7+htffjnXrbScB1B6V4KH8+9B04iYNjWaQYHbysDesqVE7nCL4Xzfccq0EKUAHEWdVvEAgRIpd4+eQKx+NR8ISu48dpwjAMWpVb1ylYESvpC6OsxCgezn4YkFPG4XAQqs26YE0S+R2GAf2w16qsCU+ePMHr62vhNsOh341YJqGjpJSwTrOIWIyjeOSXBe8+fQ+Hwy1O04Rx3BdqL1DXn5Ym5r0XhSsv0o7B97i7u8Nq0XAVCSECjofb4pU1h55zhJubY5kr5CR3qxt6hK7D7e2tyNyqo8KDwHEtMpGvr18COq69J5GNJgBOE10zA16Buvfox6Eq1PiAMPRwoYMLQom1fT0xgyAAPhMkekrm1a8RtJZiliFCF/DqbGqcF5WiW6A2arbRdrwaON5E3r5nXNv127nQUvdq8roZ49vv2diyZPr93mNZos4xM15Q9kOJooSaIKsbtRQ7E+A+9t2mb+7u7pCWFS506DTJmyHY1e51miZc3x3whz98gb/+63+N/8v/9f+GP9XeGshL+eOItC5SnXI+4XS6wzLPwidOSWgdSaXhshak0JfIBhw3EAso3o3mw+JgReuJ5803C30HAEjpNRkITl7SmoFntxN+//XX+IufvIcnT59gmSa8eH2NlIEPwjtwlOHVQuucx+lwh91+h6AZ6iCRnMLKQinIGdN0goXzvfMYelFR2I879H2P3/zud0gc8c6TJyB3h9u0Yl0SggdiWjAvAV3wCNmrWseCy8tLEDGmZRYVGhZP5LIsUlhGvTB+mUCc0I8XiLlmVscYETU5MHNVWzAP2DgMYjQwg9XS9N4hqIcEepwG8FCwJxkgZfXYqmqEc3Akx0lvizVfvIgGXtQRT05D2Ax4YkQnL9WxV8oP1PNRreLWQ0Xq2QSj0C7YeHNgAZzQQaYGgvxbjAegKK4VQ1Ey5SXZJ+eEUgoaEoKXfAIJyXbjgN1wgXHUhFg1eLwzjWoZg4BIP9qAp4wSRbLPOEkhqtPxTooaEWtxkRFd34s/nIG8RFD2YO+AIEC9sMdZE9OSyfkJ3aMCCYDgmjmSy/wiNXW9ej/YEVJW76Ken5wHm6wlUVlkY04gdMWoYmagF6UZ51eERAhJ3tGMFXldcJkX+HiAX1/jtLzEbepxYEDwsCjRTOuMJa642K/Yj6tsqH0P53rJX/FakIZVRi0IJcarCoTIagZQ8PJ+cnUQUBlLdT44p1EV8grk97jY7XExXggI6Fyj+R7UeDB6Q62am40GmAUgmHc+aWLvZuuxv2w86OZUdM9tLbP/qKzij6WJd044wOPocTqdMHQ9gpM54wB0QRSU0hpVFUu/rBSE0PfwpGuAd8gcq5MA6h1LCRHA5X6vYgJJhQMyhq7XqKvIigq9x4reqcpQA+TN48qcxWtviapkEc0MThHsjF5TjceYWEGVeOkZURNqhb6ZVGLWa3E2KM1KEu7lwVNK2O93GMcRpsHuFCRLjo0BpcYpQ2rIq9udiAuVUap2yvyXzBaTgZV1z/j5PgjFzRwCEUp7TQSXzMmmfzyQ1qQgnkFwiJzKer/mGS54WGXbNUP6wwmwZGSMu6qrDaUckd6TaG2rA4G55AUN4wAwME2TejgJjCj5bPo7Tox1WXDUAlRgIMWM+XRCXBaAAJ8DrvaXyEHEDObThNPxKN/PEgmIaxKlKo3QiKSlBzmRN93thXYDHX8pRU36JVCw/CupGGsr7aD5EQ4OnXcAJ4l26/PHGBHGESDGsogUMulYBFCEHrJK8/rO6ZqjXmwv0ZPglQ5NkgshHHjJaeiGQWmWSnU1hyi00rqOLQCV3mSbe2OAWtI1kThzAVbVOpRjXLtnQC0IPZcZbGyONjXyZGyyzi0dX0TFgduKNLSGd02MbWS66y0XyGn7gcl/t+eqdDaj/NRike0+m3OukRT92TmCmde1/oKs8+KI6NUZKuddUtKgthgLTB4xZhzuTvj2m2dvtb6+NZB/9u1nePbsO7x8+Qqvr2+k1O90Ug1ULS+bK++u5e1tNqhNq/5f6Xc25zA2wEJ7zRL6ACqTuz01M2OaF9G+dR7XU8Jvvv4Of/HBF/jnf/VX2A0jFiK8eP0K5Ag//egDcBIdZysCdP3yJZ48eQfOhyI/B2bEVVROUlwBEHJccPn0CZY1Ic4rxtDjpx9+hAzg73/1a1HC6Hvk3YAcVxyOM7rQIaYs2tEO6FVGb55njKOWS1YrfV0XjL2oNiDU15QTMC836IYRKUlp8pgiYgY632+9Mszo+h77/Q43r19jWhakmJE61dmmWpTErEJVUlfgKc8uqkRyr13odEEyHfVUiruVTQXQrG+ZzN48VKSLBBGoVEwjUd0xCsg927wdJ9hMwnvHsUz4goWyPYrcR2ZJIrV4IHMu/H7zEDEzrvorjOMoFTiHHuN+j7Ef4J3wGlkXVNvMYGPRkfBNNWKhu6csInqDcZ1xd32Du8M12BOunr6H8eIpfN+BnJNckZgwxRk99whMyCSebtZIlBjVGcQmPynSbhkM70PxgtjGlZJIvhWPdAH1UtJdcomzqlDJe++8JJhJ9Ridi8khUjUS5YlkgyEiBJ9EzpIciDOC77EkxpAydmHFiBP4+gYvXx/x3WHFzA5dv8eTp+9jPk1YLyZM+yN2O6G6XF1c4eoqYPR9WUCtumTOUuAG0AiQVwMT8g7Koq18IJvPLnj40KEPAxjiwR3HEcOwQ9cNhTcvsmyhJD/lFEtkzRKcwMCqYJ+oJl6uKdbEybNxKvbcBuLLHMu5oC+LJmS+PxN+qM28VpZbE2PU55Rn995ojkoLyECC5dioB1oLs7CBvKZvqfF0AzquYRtyVjDRespVGUnvQlRpcikCBFRnkc1zO0/18unvc9a5uTXOiB2oM8NXdjaJUioIdhWIZyQFJ1z3OjUm2uezWWeNmv/WG28/NyBk+6WNMYuG1n2aFOKTAjZJvFfDIZPKWfoiEWn1ELJrohiaxS/OFBWPUOkRA01eC2cZV993DUUJmsOjThvvvXr8G7og7H3ouzDBAzK99CS0oyySknFdC00XzFKAiZNw0kkwsVArZUykVea6UW/necJ+vwMDxctvdQicqn6lnARU5yQe8RxV6c0hxhWEHgZai5c6y/ot0SoDjYTgnea5af9yhOycSQLKzCDIe8jmAXcmgcsAHNhp5Ck4uKAOSedUkcgh5gwKTp0hDok1wqtzTShqZJNLRq+CM9Z33eKyGlFn86fVY8pwJR1jFeVt9vbN5y1krPOhfKPBOTZPNzSaspaYF17exb1GZ2syNzUtAAAmBEHl99Yn9rNFyGrUzW2f0gCAzTOjK7FEPESyWu/NiRPg+voWz5+/wIvnL+7f8wPtrYH8//Rv/xqn44RligJek8gIcq6VIUs31x/ubWK1NZttc4QabiprqLxc0qQLR8ixfWG1k8q+zaKvHlPGiTO+u53w4uYOr65fw7/7Dvp+gCfG3eEWr28Cnu4v0YUOxGINr2vEPE0ywFV1JcWEaZ40MYXLhh0XURnJeUWKUt75Zx9+iK++/qp4P7og4ftaxrtu4s6J+k1cIw53B/jgBVBpiCflBEqECLHYOROoc+C8SDlmpRkInYYQcy4KG0JzEF3soJXrEjPWKCWsI0EroZq+vPDEJOJMpX8rrBButVENxNtN4CxhU0YFd2Wzg5hjTlVtMnKRkyoRNvXO27uz7xernWwM2PEECroxlPtjUQ6BbUbWx3KftgF7IrCzCqdBE8+ohBudqgjsdnv0nQBrqcja6UKStaKdB7N5wF25XiF0eAIcRFIVmoCUIubpiNvrG5ymGex77PYXeHL5HvqhL+CTyQGkEqQpgzwrt1qSjAzomN3ACjwcZdWTdzCJPvOSZQuFWzhbO9/DwYoqiQIUqwdEc2Cy+O1g+RAEUIwFoFr4QTSVGZQiciR0IcO7EcuywqWMLjH64NU4IGA5It0d8dX1hO8WxvMXz/HOex/g3adP8eTpEzx58hSgdzH2o1QdpCpRl9SzEaOvEYOS90GVv2urDJGEgpnRDz3GcYeLZQVYvFni2VcKjXrPihym9lNWzuzN7S0Op4NK4FVZUMuLgM5F04cGoMmTKP822kQZ8M2mI/etG1FmcDxfH3+4bV3XQp0Aaq6D5EoljH2PpP2W1XHiU0JQWUrztjMzXG6jRdLOk0JNJcI23ir5Kt9z5IrEIQCkpGCn4b3X4i31Z++17kJxBnABqXKeVOijQgeT9c95Bfqo9NSyj+k9tFxeuWdZQe35nFxIIqfqoCADOYAaFiXrqMFEvPlT6H6CtAuQKXQ8S34FxPAlSFVYp6AoVWPee1+ivFkkyWTfVASXAcR1QR96uOCQYkLog1Jx5R5Il3p7L9I3UsjQey95OQoMU5KHimlVIKsVR+EFmIeAu9uDgOq0IucV4Ix5UllfFzCdjhj6gOAlD4Y5Y54n9L5H33VYQlAPu0hAH48HvP/he2AI/WJaUJSzMlNJjp2XCWBG38v3u9ABSFiWGfv9CDbD0TuscUZMMidC57S2QlbqI8DkIeBdjC8B867QaR31WKLKUaojBt5kmLPqwHcypr3ky8E7+C5Uo9jmkHcaoTWQSUVCsSRKN3PLxlWb31HH2VnjZhg+9HvUfd/MSWiys9HGbIxbUa3Cxd9EoWudhbb+Q72/CiIqU3uLTh/6Xinkhcaw9x5mrZT1uj2TTr5i+EANX5Y52oVan2TN6kz0Uq+IY8Q0L/jy6z/is8+/wIvnLx/ss/P21kD+229eFPqKhB/Ni2SdsrVqillWuunsYVGesng3oV4C8T7IzwCKbWBanrkNtbUe6HI+s1QJxzXhMC+4O55wMe7gScLwAOPu9oAAh8vdBXzwqlW8YtVy7+aKkX1V9D1DCFq5UbjpBMEzkTOQCUPX4ycffYBn330HTxKu7LsOnEescZXk+iyLsVcOe1oluUE2K0mQsIISzBE5AckzuqBdwhkUuU5cJnTdUEJNJn9nWfBETjz+zKBpKokwyWQOtZ8dhQKBi8UJVg+YdbG8N1M0cC3/EwbSXfNvUgtVtgaidoDbtVwxyAgV6Rc9VjuunJuUMmOBPv0OS/IbivfGNjuU9+T0HY55ADkuP3udnDFJ8lPwvvSLL+OxTsq6wVvkyO5bb0VcVJIzsi6YpyMOd7eSfNUP6MYd9vsLDONYEjtjSqXPnGsMEhYONRXLXiQyZZ6QfYRWLrQuLnKfQTdF8wKSvHBQkmdRNVdJgFVvczGo7V1Axp50fU1uImIkFm3dzktIWfjLBIoR0Qn4AgjvXTDieoVpXnE6nfDy+gYvb25xd7jDzfUTvPP0Hbz73vtYY8TYD7i6uoIjNJQmBVROZesI5X3UcVIHJJGB+4Ch74RmttuJzvwa0fcDuq4XI7oo06jfTOd9jCvmacZpPuJ4koSy4MXQG4dFQKcW70k5b6o+ttEBMwbFE6okh8YJUvNN5H3jLaXHfgjt8uIJ1nXVOSrydvM8S9G9vgcraIBzCM7hcDxicA7ePNzgMkdTSkqtg67PdW9pObGtMdd1Ijm4xlQ+T4mlUqc5bLRSphiFHus6l9wXA/Kt168fxVveGhCkY7U4ICBrgWVWwGdVSVMdatakch0HVldBmjlYquMDKTc/YIPYuXhk7bNtv7RAhhVgsIL5Qk8gCBAHZH9XKqU4PVIBUkUqcI3wfQ/XsXnRtG/TxohiXSMiS54cNdV2LRfJwfIIjRKhyiFrRN+Hui4BYCfrVNckEBIc+i5g3A3wASIyESM6R6DdgLisWJcjxsHj/XfewbwuuLl+hZwz9vs9mBLmlKS44n6QgpRIGHY9Dqc7nOYD4Ak/+dlHWOcFd3e3iDFiv99jCMAaF5HQVgC+xhlEhP3FgLjOZc2aTyum40EpRAmzk/EzL0el8Q0g73E4niBSyVK4Cl6NmZzRIyC7DBfEKZWY0Y86j0j2ROqCbXpAcPC+08RZAqnAB1IWlS3vsbvYFyBsXmnyrcRkMTk3ANo+s7nwp1obTXno+BYcc4EiVK/7wHdaPn3L2yczQsQslWM3uOK+AX1+T7bP2lpjc90M35RSpSfpDVfbRK5pkZu8asSWNTZGXo3dFRnAmhmfffE5/uE//yd8/sXnePruO3+yP4E/A8gvS006ZLDQaDS55Rw8lJfcAG3zNpXfk0IwBeymoFFF8O2/huI1BKHA//4i1QwqFkudyWOKGdfThLvTCVenSSrADgGDl6ITh8MBBGA/7uBDUK5/RErqYyGSIlHqKZAKcqsmo2rFOQWPKUbAET549z0c7u7AfNIwsQe4h1jKFj7Tsu7qdDGZyzVFKZwRPObjguwgJbMVnJpcJpDAyRUvRt8RfNmElGrgzcNI8GHQYwnT6Si2pIaqddqDnZBQ2CxNApgJG4Pp3Po0g8vwk/IcDQyV7YPUM++Us108kwrCci5SZmZA2cZYjrN/sXGeUe6/gH8CkI3zJxuos02MsiZRBgQQyJJ/QmgAokevChpVsrGcvox1K3QFnRN2owRdODSsu84LptMRx8MdpnnCMOww7C8xjjtVKjAPIEBZzusoSxIdKxVJjUQxEpSrhxq9Akg9+TWSYv3lHJRu05Slb+YXGtUNuQdUdRoW4GnXJZIoUp3HokAkxoQYbD4QGF6d9fYOMygJsBqZcTn2uBoCdh7I64zbmxXH2xNub25x/foa19c3OJ5O6ELAbtxjGDqZM6Er+keNbVWMdzPgqxOhgoVOlSF266qylUAMCV3oiuKQORNsjREDXgtgxRXLumKJizoSpDCIAffWe182QicRK2vFg1T3Q3uB+k+u75MZOf94XPKLFlPzziMMmoxKfZH+jTFWnjSA/X5f+jTmVBJ/rcusfwGUNQ9AOUfr8QaAeZ7hu4DgZb+KWSLKKWd4VTER1iZDdN7lvlu+bLuJW06NRRBA231I1Fbk2pkz7FWKYpTcr9FWHDnk5rtbqkIF5AbybY5LEq1v5nzT9GvMqTxHu2faZzFGVa1SqNN5MZKYS4GeEuXMUjE1UdT1jpAdAZbDQkKZzDkDycEqT4tMsfQ1HGFZVxkHpAmtkOrLmUXxhJkl58WpxK4WXmFkRF6F5qP9Jrx6D+9EUvHmesKyrAhdryB6BCFjN3SYOCEuGU8u97i9fS00H0dSX8YxyJM4PDqHrncY/A4p90iIeP+D9+FeE07TCes6AyT7mPPAxeWIm9evASQ4D+zGDusa4XRPmU4n8fSvwqe+uBwR16NgPM9IecG6rOg64a+zy5pLEaWoHQAKkN2MAPIM7hgeXj3uEHlQD0DnAnkHFzpx1ojeKUAi7QkIQBeZA4n4SuThWOZNMdTQrq2Vp25jswXcmom2GV+2K1YcyJuf67FldlcMgNYl045t2nxe6MFnYHyDSfW/7XU396R74Pk5yuEGM3RuFyCfce9Zzs9v1BsmgAIhRUbUiAg5h3lZEfoRRIRlOeHV62v88Ztv8d3zFzgLEryxvb1qTXB1g9PkI6kiWS2RzSZlz5ZtbzoLQTQdfN7hhS7RNLYENn3HVlRGFjNXN2HdBJEJmR0Oc8Szm1u8OjzF1e4CY9ejC4TBBwy7C0zzAbe3N1jWGbtxB+cYcc0lXO7ICsAMSMsCYqHaLOsJ+/2ueN6YM6J61vfjDj/54EPQ8++kSI/y+oEAMGHQssgEwrIugCPsL/a4ub3VQlW2gUV4JrAncJGY7Er2ABQEZhIt267vihfeQv0ghg+SnBu8R3AET1pdNgmJPDOBkMBGGSHjYovnwxZNUnBmoF0MulwTVl0tyGLhMMFTkpAJQDnOAtqZCaJPgGZyVvhPDgqm6d6ErpMEir0IXiuSepKE14yaoEsQD3IigLIDd+qJDm6z4Rsn1QwkgAsP3cazed11ZqNQgKB9khLiuiBOMw6HOxyPR0zLhNCNuHr6nkhLarILAyXJzBGrCobKQ6YKEr2r80hCnxKVIPkiTN0FjdFleQfyea2gKnt6E0rX98QktKWszyGDQFC9LXKVG0sF0Dq5mJiAlmjMQY0sBfIuSQIQr3h1vMU3r1/ju9cHHE6yuca0YpoW3N7c4sXLF/juxTOcpiPiumCafokP3v8Ql5dXGHxf6HxJ+AUSFeLqKTXPva0LomQT0PcDxlEKumQGchDA0HedGr3Sv4kjXAY2ImlUvTpOC/qUOWZrlG145hViFioYzEts/W77AheDGbZ2skY8M4qj4MfQmLmh8TlM84ReucHzsmrESCOCDIzjDqvK83EWOb5cNlbSImgmA7oFFzafN/xYJ3xgKaKXCme/gOLG075VuEAzrqonr12RzJBvdbCdWcYw418XDpsT5h5gc1qIUWweeHMYND0ImXPtzl6L5xRHCjf93TjODMifP6NJINuD3LcxzWMiThiZ/yjgvzhdFDCSAzx7KLIWrnsg5JjgsnHjc1HBs/WUi/67OWVQ8yEdF1lPkP6b1CmkyefEQrtblhV914M5Cs8chJQcsGZwWtXxEMVjYfsyR6xrhkeGD1K7Y0kzAonBuaYFoXPKec9IaUFOGVLk1CHFBeCMLsjeti4z1riiDz04C6XS0Q6lsF0nVKvMqfDdM2WQk7ykFFfAmXGj+2aoyd1MhIQoCcmeVBbRwfcecF6Sr+2P9+otJs3/4AIgy7yx/LRcq22XcWPjQPfn6sgyB187Tg2TNeuiYYUzJ+/3NW7OY/O7/W7lq6McB+AercbmuO0H5hy0Nbh46PScpsZWlDGwNQ4Kpjm7p9Z5ZhjA7s85cZiWtUMz+4mVFq1zKGWRnnx9fYN//Mdf4dXr10hcq0j/qfbWQD5HSVcvRYhy0kXJuJ3SSvjFPHtlZfn+87eLsYF7wLpTrkMO6PtON+L6QizBQiaFdTRhXRNW3+HrF0f8/OoO+26Hoetwse+0EBDjydWVaBZPM453Rwx9j/3+sizKRA5d6OBTxpFFTzyliGU+IS4zAI8lalY5JPkz54yLYYfL3QWWeZFkFy9cw5wYw9jBk4RNu37Ay+troQ+EAFpWKZxDC8RLLGCbkeSls2onk0OgvnCXOTPWVTyMgZwAVF+9O95rQQP0IN5h8R58PCLGrGFtldhUEOydKwuEc5IQ45Su49RT4jjqOzPag4ZIqb41CZlutj3Ae2TykvCay1wSpj1DJpxSFZAZlJvpYftKXe9RPMoAAEn6FCdEqxdrNgUhOyfVcPVnwePihfGahEK6udeLyMAkVdYx1QeZrWbAyH3kFHF3c43pcCvhe+dx9fR97C4vMQ4XuukpNb2ZF6QcTgeRy2SOguqUeZQhRljpS0GeQg+y8epIF38ziQneQ9UqReWlFMjShyoV9PSP6PnmBtB4AegOGmY3j5jcsxh1QnuwuhLBOTjPCGHFGiOwANMc8ezFC/zNrz7B3372Cl++WnBY5Z3pAEDMCetyh+PtHW5e3eDzzz7DL37+c/zyF7/ET3/yM7z77vt4+uRdjMMgBkdmlUgj8Qxq1WLzeIKsRDgUtA8YB02mVJZC33l0yo8HWFWMdBxAqDnDMOJqf4U+DHIuzX3ZDWMx/kxBogWRKdUwr9dbqY4NqN4wimFlsUah9PyIgDxJZCgE4e2epgn91RPknHE8TdiPIwJz8cjudjvEg6igkY7xyBmOxYAS/izD+VrptFwLWnERKHMi9BJ5mdOCFKPW7hikr8GaX6IyrApwq0Eg48T7ADFMsQE8AmDve9LtOJgyUVbgrhKjGvCTdVNpNqZKY1XQzz3z5rm0n3OOMIqfHOhsA0Uh9LBFX1sQ39Qy0WcoimAFwOneAqhnvhBgkCERR8uzMo8jSLW22YO0uGIAQYjfpvRVqWtCKXVA4gbMAxZ6E0NX/ojTQjn13vZ9xmLe75yQOOHi8ilOp6NEgdYEj4xp1r2TGMt8RN8FRJLcjXmOksCaB3SQXKOT5skxM6bpDjFOCuBX5LRgmmb0QWpMHO6uAQa6ziPFjLu7Gxk/+z1ySpjnE7rOYxxHdTZlwGXEZYFjhxCE5skkjps1rUguS2EsXWNDUP1xAuAcMq8I3oE9QF6cg2HokXUvB3kwa+Kw9+p0caXYVnBBBBOsimsDGi1SwyzKSyIkINHcVtWlesEbsHvuGcfm1/fm6jnFRQ7f0nXtd8XzrrhBnAP19+16yczFyWqqMsVYzwauSSMWpLjCjGts5vK5oWILghk12XLJ7FhnTh/oHJUxJYo1YuQ6yDhIa4QLHvO64vXtHb78+mv86//x3yADIgP7X9sjv65LudHKUzKP3Xmvmye1fkQ6IB+yyOoLLISB+r3yfYLvPPpBimIk4+efX9oWA2JQYsCPuF4Iz25mvHtxwtPLC6yR4bqgoIgw9CP6bsRpOskE9hOurp5IxnxipCjJgn3fIaUIr2BunmdcXjwVeSgh94tFTx4xiXTkxW4PBuMwSUnkRFmAqXpfdv2Ap5eXePHiBYJzGLsOnDLWdRWFG/UaOAVgxzThcrcrxYacVylM7+E9IeUVawJAQZQ6SOhABv4JHThJAS5/dYWDFrKS4jrC+xV1FgFwpQACCfczBCneIxashk+5GbbixpfF3bVceejgZ4BEWcUbzQa60TcLRDEEHCmFXhE/Oa1ISs25jTeqBp+s+HKPSE3RCpQRVpLldGFwDqJ2pBGGTGhULiwaxTq29T5B8K4DICFTzgnzccLh7hqnk/Adx90e/bBDN6gXHnpeiNuVkQEfZAOmqJ4oAmWb7ELTgfNlwwSwoQ9YtVOxm2NxzJUqlykXg9DpggwPKXdtGzDO+sgRmOtiZiAXVrGQRWWlRG8KTcsjw6miDMMTkBhY04yvvvsG/5//8Cv89cfP8eyYMSuQ4YJubRqJEXc4nHB39xW++fpb/PrXH+PpO0/wwQfv42c//QV+/rOf4+nTdzGOF+g60fFnokKd6rsO6PsCyDIz1rhKkRXNRQBkE9SBCwAFPKUYwQ1No+8HPLnySFHqSTgvOTWmfW4bnFXZjapgISBRSpybHzbrcxbHCK9gJDWCxIBro5Q/lmYba5drcSAiwqgRKntXg8rlWk5HyhmnZS5UlLKpN3PAmjmBytxQ/flpmgrlcNiNCH0HF3oFs7LeVnqVtBaUPAQ4crJkRGhUTCqFEymdRr3EIAfvOmRUYG4c8pQSLH7e8u8NsJ9HG7b30HoFW2697C8VRal5SAboc1Hc0SeVhPFODf3m+fUCBaQTSOQkwYUyxN7VaqAQB4hTEAhmpHlVDzwhpoRuNwrVJkYgSb2OqADTMEKEVinPUjCSk63HDDhC5EWfz6EfpfryMjOWOOPudI24rPDkMO5ENYjWCECcYClnTPMsz+IFM0jdxxnxuEh17d0IcATnjIvdgD9+9QXu7m6Rc8JuCOC44uZwA+aMvu8wHU+SRweg814TWCdkZuyfjEi8YlqBKU7INxEpy1iHB1aOiHkVKqPyBjMxQh9gKmh93yOxUsdCwIIM6rxamAA6jdzr+HG+k6JOrEWbHAmYFP6qVIjnqPKTroxFiRh0ZT4mThvHxDn1pO630lqPeAHGZ/vLg8Dt7JxyBDXrYJ2HVgjTajGQGvaW4N4aJK2xwQ88Q9vKPDND8w3HWqE+IiCwGAOs9QUAQBVDGqNZax05KusBNFF6iglX7zzB6+cv8cXXf8S/+tf/RguajRK1yW+3B7y9jjwD4Jq4Zdx1jQw0C1D1FpjHHvZ7DaOdd1z5N9nrs2vY3xYulwIVnGXxY3PRNqEM6EcEWR+XFJEx4LRETEvEGhPmGJEJCGphEhFC1+GqvxJuHUT1hkpZYllk+6EDiLGmC8yLcGaFTyeV4yzBqus94kToux6Xl7LwpZyx+hV9ZqxLBHmHzneymHCGJ1n4vSN03iGpDGHKGcSpUHEKsG+8xc4BPghEyBlCe2LRBCMSSOuVCpC9Rw4eKRKIHYauB3LGovefM6tPG1j1Xfaqb45mkVfUKOuI06RbpXh47+BUuk/oSbYIO0TddCzU5bwvHmTXJo427xWAVIXT31lWuP4EgpNy77qBSYJLViWbmmBbN0gU69gSPMv5Nta5jHlHwoXPhSeG4iWURK2MOC+YDkfc3d4grguG3QX6QUC873pN1FI+bOHesxo8TZc2C1bwDhHJJpgMaCdKM8Ri3HmCqAg5Sd5k8+I5VwyVnKGGgHoOId4ZccqfvdfmDah6evHOOS0gQ4CAdjXiGSyJUzofSXmDjITIwO1xwpfffIe/+fUn+De/f4FvDxlLZmQ1uFgnL1GLPUhDkIS4Ztxe3+F4d8DzZ8/x5R++wIc/+Qmurp7i6Tvv4Z333scHH3yI/TiqStQOtjCZZyWlhHURLmqMq/DeGfCRkIiQmnA0s+XukL5/FG8pdfL8vshdouiCp8RIUUDhsszIOcIyLBw5RKW8GSVHXmnCmlZEVf4wAQHxDv94kl37fihevtM8gbzDNM+wAk9J+UQdEULf43A4lGJOzjmRudUlj7NEDNt6GedNNnAZxeLRhFbkroaw5RTZ+C/rCt8HJHVvq/PTJEgB6JjVSKZ6+WptCpXDVKeA5fXE2O5hpPO6Bdj3w+pEdQ8+b3LPVWZ24w5tllPnAAQHooAEiXiaWpOcRwC1GU5Sr0JOYpCKnIOzwluQugtB1V5KUSunzpi+OkBygu4PMtcys1RjXyF7XhIliOJccFQ84xaRBmelPQLgjNN8LJ5W54T6knJETIxpOSGQ1xwMh66T/SZqRCLnLPUCtJIsiHA8nBDXSWQyXU1y7gOQWDzwzgEprrqWr4jLhK7v4MhhXWekKCA5A4g54+LyUh1+UlH1eJzQeZGC9J2T2jXEgHfofC8FHp06Y7xDBMsaT2LYJJLn9VrvwnUBrgslR4fByHEFUVC1Mq/+OFJQD+HYm/FHkpcn+4XlCaZqwOkcM4dFjeDW8WfGgI1fSxq3cbttZyIZxREHwS6Nc9AGsEWVbAIwGEkNvPbY83VB5q44Ssyh3NLkREmi2fdtymwerjGidY+tXngo9au9XjVAxCEhuTEpM9YcwYmKdvz17R2++fYZPv3sD/jHX32MvhsR+gHMUufmbdpbA3l1nWmrIL7tuHpos7rR+aqzfeDzX0nxDOtEVi+GA5wsBHFZNZyuSRvNPbGeWnVNAAaWNWJNHaY1Y4kZUTXjY0zo+05ukYRC0vUD+n7E4e6ugjTd2CXbW1QOUgaWNeFwvAMIWshHNwo9X3AOu90OfZbCUcuy4PXNNYwb6byUQeac4EnCcuua4B2Jyg0YS0zgZCWALZyrCX1UWJal78woYfUKJg2zcqjREcHbHo48Ul7hiEQmiwirVh/1VoWRGXGVnIDCJQUVo4pRLXJL/vTB64KgPztNuPUOBCkKY54sUhBHCuKdkSLVS858tpnqt9qJRmUs1jFXvK26MWcQyDaXkltRffrkXNkYnBol5u0jXYyynlDsFwXiREBOmJcjpuMRp+MRy7JiGAaM+0sMw14jNGaEcNlQiSqP1ir6NktD8UgYXUc461AVmep5Y/WMIdsG34yKMtUsxOoaowaA5g60K6r1J1C9muIBMduASpEtNIuvg3iR5LwAJVlcD8cTvvjmGf7jJ5/ib377Lb6+TVhYaYgtCCIz/GuyO2XdKFjVnBJjXWehwU0T+n7E/vIST995Fz/5yU/w048+wtOn7yJePS1GSpGFVDrFuq6Iq1RjTADYGydZZTTNo1OwFKsRScVB0BZqSjqWY0pY14h1XTAvE+Z5knmjvWqA1RMVzyVn4WuvacU8L0hr1ArYbxlP/QG1aZr0ublIUZrHLSlt07xt5hlsOa5d3yNllXVUO9UiaW1j1H3FPGLW5wLIfJXWy1zC7paYWqJuOZWIVAUE9wHC5tqN97z15JeK6M13t44KXdsYFfw316XiNGmoLxunGe5ds7hC7NjiIAAAB5FBJriUyrnlHNDCVNWxUdcVFFBXcgDsms4V5aFajkLP4T1YKWa+U2oBOVENywkUPEjlms2YKPknzPDktOiTVXVnjUBKHy5ay4RUflYKeyVRj9Hod8xRBAGSSAFnqGyzKrgZNVSumRHXDGbb/zNydjomMpZF9umUohotDimvwJILEJbqzZLEnMBYOSFrMnsiRr9TlTkvAJzAWtgpIPQd5nkpUQ4XQhkpooi1Ijkx/FwvVDUmBejQ3B1HKgVKRfiirUvBnCViQjZryuAozfZCNGP6nK/uGkqZgfgWSL/Z+/3gx5txKKOOy8GlbgNqHowoWPHmu+d4tLaKPduPbE2puFR+sQHyhDMDGdXxpHtzedJs+4lEWJ3zZW8j74CYyv7kQ4/nr1/jd7//FL///WdY1lVzpBQBuLer7v1neuRz+xz6+ZtCwFRBPEG4yNt+ePAiCiF0jRDqhcj/ySIfk3haswKf6iJoXxCVdTKuCdOScIoRc84lC1wy1qvSQQgBw9AjhAFrjLLQNHzw0PVgsPD9yCNmxmmZwCzeJhnMUhiCWIo8jJ146pkZu3HE69evACjVxQdkFvDvg8d+t8OBJ7AWkugoAIfa98w2eYyTZY9pWeesnkPWsGUq4fuYIkJUiky2sAhViohz8NQhrRJlSApgCVo5dl0FsORqvNX3yGWyWSjb6BsG4A3MAw5ePTXIFXLLxPSiamOA3QE519/LlQoRp1jP1XFDSCyeagHEVCaaYzEMLNpMzQYEYKOv3obsqWiKU1kCBLwDzFIAJMYZt7evcDqekDKj6wbsrp6i3wnlwyx80+1lXRBcc385ZbiSJGody2qUutrT+r4sGAM02tE63usGqOA/UwHkjmzrs7Gji4v172ax0gVTf0xtUjPQGOgGvPXcJAYaERBTxrMXL/Grz77A3/zmc/zqjwecYleex260vsWzxmimsiuXTTHh9voOoCNev77Gy+fP8erFM9ze/AI///lf4gNVlGIFByYHGddVSrnbOOeM7D1SjIghSDVF74sHEMxglSitXGAxMMQll5CQVNfeQPyM03zC6TQjaji/RG+C8CQ7rTJpmtAxr5jnGeu6ICaRvs3mlfiRtMPxiIuLCxCElzwMA4LziClhniZxMHgvnOlpwrgbMd8tADNCCOiHHmmq3j7hnbJ47yBTx9HWqC8Sek6iSQCqJx2ohX2cRC/NWSHrnAB580oDNWlNziPz1rzvdj1n1D8DsW7rtbR72Ib9Ub5fHSMVSLcgvv3+dt81XfYWyLe0hGo1u0KbMzpPUkMiIyc9N903FEzBxppzrhYrNCPMQJQBMj0us1jvoRNQSs6DmOFyEIcCe6kVU/Y5u10W+dgVyFo/QOpWuLqO6zvwSjOcTxOYssxVlWxkypIxkBnzOsF5meMZGTEtQhfVbhKHWQSiU/EBaSml8nzsvSSfZpG5zpSxLivAQOjEaDd5LUceaxIuNDlCcoT95ZVQ/MjUZeTw0HXoxx6RSYQrtLp41jUhzjOWVYQDGIQerKIJ6vxxTtbsJprlNAIS16iOEUbOIvRgTiOZN7m8N5snpm3xfTiveudbFRvFKa7SUs/Hr33fjgcemCtlvMnvc07wmuvl4GrNBqp5KxY1MIdJmRNl3tj5NsOsMXzls5ZORLYRnX8J1Zlc3gF0v8+5Oh8YJQpFpJx6cgi+x3fPX+Djjz/Bp59+hm4YcZjuJFHcefjQP9Dn99vbA/mScCgbXImkv3kbhgHGjbXypzYnZoBYteqlI3NiVAghlrwHCuCpW15rKch9xQQc5wWHxeEURc5JdFMd+mGAJ0IIknTadSP6ccTTzDidTrIIhSC/74ZqDYYe7DzujkcQSSKcAdgYV5WS6rDf73E6nTA5oUkAMqB24w4pC03IE+Hycid68vEV4nKQECMnCdWnDOqCWPcM8e6qZ9kFqgl6MYHIKkxKUSwL07uwSKVNBdgm35kg6VBCx1HgwlIpNiCoF10KeizLgjUlDJsJreWkOaKsgvoCbDNyzqx28baL5GZQ1Rr9hlIaHKiqE2SlMuhrNe8dcgaMi6n/ZTDIZYjSWt3ExIAULeqIBqiawcgZHkFLp7c64rDZKOBVZFlKtUL5PCEuE25vX+D69hahG7G/uMLV1VPsLi7hnBbesDOKrSOh82aoy3RKyI1RUv7RfFBnDYNYNJMlDSWjKjc1CJ8t2zyVar2yWYtRDKcgnQteLpBeHtGMHTGMnPZX1jC8RWZ02MByF8wAYQDXt7f49ad/wN98/Af87Rev8WoN29lvF6P2B72P5lk2CiL2RfKSuLxkHJYDDre3ePnyBW6ub/HLv7zDTz76CZZ3T4jru9hfXIEVbMdZxnJcVixxxUriJRFKmBSt6ocewziAU0b2xmXdJjTaH1P+EHnKBdMy4Xg84XB3Qowy70hpXF3Xw/mAhaT/cs5CAVhXTJMoGy3LLDz+vC07/kNv426HZV3hnJP6CcMIAEU7njNjXhbhLhPwLr0Lr0XAYkq4ffEC+/1+w4ePq8gHeidAh7Tyck6y/jILJ99l2eANlEdLsMQWoIj33gGeRH5YQXTOEcuSJIpApGoqZ4BFDQ4GF08qsdAfLFkTgF67GhObapRNMyPENxEja+f/3kQu4QqwyEpFEAdEXZ/bfA7mpMni9kiMTp8TmTUqbXlBW6lVACrYVX8ueQywtQOAFhMEM1alqcxJo5qhQ2Yg9JJEbp57i0qJE0XoNo5l30NK6tAREYjdkz3m06TVSYEwduDgkGPS6r0OKS9wTpI7hZ6iOSkiIVCEA5gzTqcjhmHQ+Qk1UsyFJH3oQwAn0vXXoQ8dchf0d+LJD10vIL2TxHyn+0zX95t8D2Yoi0rQ/MrAcHlZDBR24lRc5xkroI42D99p0crmvSZNrO6GIAXY1PmQOWlFXQW13hfnEmCrvOG8Oi6zOkJKxWR/7iHeOvfa54Kdr1n0LRJWv5POIk8OltNBpAOsXIPgfQdTBGvv0/5dgT1tx6nOpXmWfEbn/GYtadfzsvfrNWNM6pySa3WdgOtqEFDJibFaQ3lZgJwx9j2WKJTXBKlFtCbGElekDGS34uPffIJvv/sOp3lB1w8YxxExVdr627S3p9bAwI+F6uQhm5246ZTGwikfNod+3/5U7rwCHtMvNW9j3wX0ocO8LKKIUc4nFyj0CxIL77RkPL+d8fJuwmGekVIEOY9h3KELXit99uiGAaCAcXeFrr9ATFGkpUCA81KhFYRMDmEf8fRwhzgfMPRPMfTCETydTsg54+nTSxA8jsejgGww9mMnBUnSKt4JEPrQAwws6wzA+NgO4Ixh6LCsK7hoHhI4mwybeuKjhBDFs8QaznMgTUpMlBDnFS4D5AWEibcvK3CrHp8QeuGuHg9wOSNQL/QfyljWGXFZkfqI5BSQK5DP2bLr7R1AvVe+0mV07IghWgQ05Vk0JGiGmXG8t4nPyoFsRnZZhAiAdwjIyDE3Rl2l/0hysXyeM4GzqGFkZngdqxooKCfPdoacy9U4J6zrhPl0xOHugGVZcXX1EZ48eYrdblf0i21iGWVDELNRnKhsdsbtBKD6tNoH9mzN3046DJlT1a9V57A4xtTTJiLw+k0LFzuYFv12YZUfpUBFvW4J00OoWOx4M5kL0NZ+snBiyhmRGXenCX//j7/C/+vff4z/+fNX+G7ShN4zreG22cLVejk3lVA3B1cTXrS0HY63K371j7/G1199iY9+8hF+8QtJin3/vY+w210A7DXxN2olxgVrWrQfCOQC+r7HfrfHPu2xdouoQPmgpcxtwXewiKF56QTEzzhNJxwPBxzujojpBE4JIAcfOgzDHkPoS4RHPPJyL6fjHY7HW0ynI5ZZOLY/JiBvihKca7EsWXOkz9d5acDrtuoqEZUEPBsXVVWMzqQkubyXvh+RcxYNee703EEAlRMidowRHGU/CCEU8Csh8frOASj/O5UcEDtP62k0ICWRs5aDXyHTm1vj7rLxrwDa+MHnXOMtH1eL11E9B0MrQT9ANzCDQpZbdUSteQOCDBza9U2isDVm5Vwo7yWXPhCvpCW6wom6FgNg0ghfVvqspR+R0gm97B1ej/ecCmV0OSUEkgiMdx3GfpBcK0sgXlah2QQPp7l0njpdywhhN4gCERlvP+neAjh4DG4sz+a0D5NWlHeQsek6VygTRA7D3r4jghDOOVDoRFJSxQzIBxWlCMWLXt6Dt2qfyk+HeNrNs57BQPDw3CGo6EHKSSh5LPTe3uRbYVWJMzyFolZW9hIqKAmt4wV5O7YE6G7R5Ln3vf25TTIt52Dc++z+NbZjvo7tChffuBaac67pSzM2DNjb9Vvq2fY6XOaZePqpXNNyRaST5Hvt+sVQOW3bHjXp1q5VnAYisyS0ryQypzkzbq/v8Nvf/hY3tzdYU8R0SHBBBElkP3w7JP9nAHn1oJ5JXDzoj2+MsArL8f1rWPm1Dpz2Oq2HAYy+6/HekyvcHU+4PRyxrKseZBxr+6KK7sPh9pTx8vaE14cDVnEDASRWc9f1IovmHKgLWHmFI49xHEDhCWJMmI938DHB9zv40MH1Ge9/9BG++vz3KifkMPRaNXTsAU6YpwXz6YQcE3bdiKdP3sHX3/4RnhI8BS0NT+h8wN3tHTrvcXkhxsX14RZj32HtfaXAqGeAFeysUTTqpYKZWOqJOqkiRpoLsK7wJBnSMWTVr1WPD7NqkVeA7WgAjyxhTkfgHBEXBvpR6ANxRfAEp+XWk1YCdc4hBNFqNvk/02+3WqLkChwtb5ty5acxtfiTVBIOJUtdonQVzLMOSgvLIWTVOG645kkSLj28aMurEeR9MMc+SDk3nIXXz055oY2nKiUxwE7HGxxPB6wxIvSX+PD9n+HyQirBAgAn4b+x94CnwhOtUQAF9RrKz5xgIXvWjHYD6Ab4oDxsyf8k5YlKdUuT+pRJL+e2omqcJZc+5Qznqo48DIOTAH/WvAuGLFxOuX0wzzcpWNaEe5uLMi41QY4IMROWmHA4HvGPv/sN/h//7h/w7z+/xndHm5apLgQW3bhnVcgzmDNAwv5ltNTjazxz8xtmwvWrG9xc3+Hzz77E06tLvPfRe3j//Q/w5EoKcXXdAEIn0bOoFBxHcJ1H6AZM0yVOpxOGYcDQ9ei6Dn0nUq/kqUiWImfEnDBrxGpelgrkj7dYlkkBnUT09vuEJfSyZjrx/sUkibGn4xHH04RpnrGuK3LMbzZifqBN+KyueMUNGBpQr4l0dXN9CDC0wOHc60am1YoGjDIjnB0viXyao2OATVWYbD0qzqSy9lYuf6XcPLzZntNe+GystxSEAjIYAmohg9+dPxuJg4c3a0n9/dkd2ATC1nPGzX/Pv2eiEnUvFrCdVA1Oz5dVfk/XGXO8WLTCEQFZc2v0WkkxQfHIAoWu5jSKYECeiGr1bzMUNLcBziOkhKBrn3ME3w0IAFjpnxKtVC9y1irQDmU9D9mXtdWBQckrLUpZ8snU1QQwSx6Z5H8REbCuQJBiTA6S3+UHpde6qt/ufBAOfOjBmjNmnuAK5KkYi5XlIGt5lfaVseN8gGPAQw3QDKnzosmaZYipM8joUpZbUN871QRPLi8Gtjffn1PV832f4mXHtU6OFjS3w48K4C3R8Xb8kYF2c2XVDuHiuGlGq60PNr8YRVTCztqquxlOQZnjrPfUkmIgHj22858/J5U1i5xFC9oouyTgFryWM1wwY0zzMnQaTdOCz7/4Et8++w7H04SUJIfTFYwkOVRv0/4Mjny7ILyBTkMaoGn7e4Pk/8Q17MzWaQ2vHqjXX9aEaZnLQ3JzfipfZ5R35YAlA6+OE57d3GFeI7zrtBqmB/kO5PtiqPhhBK+pLL7d5SUiZ5ymCQN59EESUMbLJxj3V3Beii2lFJGXjC4EnA4LUtKCM32PmCK6MMBTrRJro6PvB4z9KJ6TTjSq53VBzhN2Y49Z74XVk74be/EeJXFjSLVAsfZSAXcooZ6UMiKJJViq+CWuRaast3TCj+Og7yEDSHAs+rvrOmOZjfNeM96li2VBFo9Q1fF2ZXKb10FlCtk2US6TKherlwEynXJJhBJeZ6sogjLZWKUQASm1zkojkY1RhpB3qq9b6CEe3m83VCo90W64YmHP84So0Rzve4TxEvuLJ9jvL9AFlbpkLmM2Nxsp56q9yyk375L1UQmAaDKDDEw0nL4c1Zuklj0DsEINLJ7FlHKhMYlxo4uKbsYlTkFCrynAAChA3jo1KwPTfrJzlS3eFtzM6q2TBWpZIm4OB3z5x2/wL/7Db/Dvv7zDy1neq9usCxbSpTp3SbeRUh+Cyx3ozAbIlvdmUdkk0+v6Q7JRLfOCF/NrXN/e4usvv8E49Bj3I/b7C+x2VwgdgRAk+ds7dH1AP+wQ9xHzOKPve/Rdh67v0PkOCAZ0XKkuGTliWWbM84J1kUTX4/GI0/GgDgbRH+/7iJyBoZeqmGLHqEd+mXE8HTFNJ8zzgrhEoRP+iIB8WyQrRk02Vs9WCKEA+Zy3RV1aQN+C93MgvwUfRpPQ7wJlPbLPU0qAZ13LJIdHPvN1oycIcDZHQ0M7aAHNOaA+D+tv5vsDYL48p31mnnfmanzrcxUv9hmfufyx27a1UYUSDFEVyMHtfTWyhXaHutdwlpw0W8vKutDeu0ZYrR9rNM28orl0hK1p4thRAG/3zc171P4qK4XmXHkPBE5Sp8LGQejgmQFvhouqu6WEnDxC54Weqn1HmptiKwkFMfY8QehQUXTl9cLwIaiIQyhAnlXNCjoOwzgWhMJEQBcAH0C+Q+hGFUuwJF+nQgPynNrTiLo3CNW0Ad5qVJADnGM4x0hpUfTcSrByMYSscKAV8LQcowKilbtueNkiMxvHygNjut2XymuC2Xatp74qNm2N2iqTUbZ7G0f6d25ug2ze6fZhzwYdKzZnbD8h8uXagCjqbe7d1RwXK9JW1huH4nws0fJmLjKbQVPHM8CFkWDz0VSOinNOR5qwwmQ/TCkJ9fTj3+DFy1dYVsnJYW7EAEhkkN+m/VlAvlhzD6Fzav7xIMrfLnZyzvNzbHwBYHAD5lkxnnCW7g5HkXzLG0JAARzU3A8zEAFcn1Z8d3PE7fGEdY2IWkWVnHDkzCvinBRa4FxfZr/bI69Sqh2zQ0+E0PW4vHwqL9hLWfp1sQpjEq4MoUMXIpgJQzcgaHElm3xWObYLAQTZaLx3uNjtRGEj+GKpsQIXT4TgPKxQk3dePRcZwbvCYYZa5DknaI6wTB5d0MAsXHoANfnJI3g1NmT4wRMjdAEprZimOgR2TZKvvcmqLHB/4zUOOin4ZAO/RAbjC5Aj4q1kG209VzaAxIHrGglJObY6fB2cUzhfNhCCRfTYNpJmUbSNIMWIdZkxnQ5ScpuAbhjhe5GH6oedVv3VkcYVAFhfIJtus4CYAtAUlLoyD0QloTgpzCi3zYdQ/pR5xvZ+6/wz+3DDu2UF77Z6Qse69cHGyjYvZLuhWnK1mTg2f2WjSMxY14i74x2++e45/sNvf4d/+7tv8O0hYinh2gq6uTmHfG4LqM25ek/lXux2zsBQPVKXXwMDukGlnJFOCcsccXQnhJs7dP0N+uE1+t4huB7edwidgMlhHHG8PGK/v8A4Duh78ch754FOFUj0BXOWRPIYV8khWeXvaTphmResa1SgmvS9E+KqnHuNaKScsMwzpllA/LqKBJ+op/54gPzhcMDl5SU4Z7x+/Rq73U4SXi3JuK8yda5sttukTgP+tqa0BZOcc1oo0CJLJJQab0Xs2mqvEgEQT7LsD2sxunwFC8jthANwNq9QQUp7H/dpPwS4Ldf9nCpwTpHRkz7Yl2UNfPjXdhQqHaecsIAUc4IAppBhQF4cJrKObO+xNZpa0GYVQ9uKuCll2VvYblS+awClAJWUgFxlC+39+sYBZPk9BdT7IJ+Q6jcQwE7oJ8wE7jwIHl3TRZ2T50wpo2NWdRDJZxg60ZrPKSKuEfl0QkCTmxMCur6Hwo/CkbYogXMOvu8q8PMSmfdKrSHXyTpvzEpLgFYt8RRFM3+eZwA6Bv398Z8han1JgWSnibCh67ToU9Z7ag1J6bnqbbdx0LhIyBXs0bacszrGtu9+M8rODG2i9swV6L+pndPF6pgjGIoBVTxh+3SrIHU/z0Q95UrxKvddIn4PGCtOHI3yb3cmA4tiMHjvRSaYWRXkrODTNqfL1oCUEjh6MIAEkToGHG4Od/js88/xL/9//0pyLb3UHyr9/kBff197+8qusNdP6l8z+7N5UvOGNe1hbtN9Q6B0MNWfDXsV6ocem1LG8bSoJSvnk8vXu2QorcFC/2DczREv7ma8vjvhMJ1wmvfY7S7EQ8tqn3PWjGH1TTCD5xndOCLvdliOR8RphgOhG3tcXFzheHcriUGacCi0WPm39zKhQwb24x5DPyjVwUq8a7jPKV+eCD46XOz2Ime4rqo2Ip5k697Oe/ShF86nc6I5axNKQ/9SAlo9Ms1GUbiekPCnqimqJrpQYYLzmkhG8EE08VNcpWz6ScJ5AVJ9zNBnCZWDi8VvAJ6a90KKSEknqC30jqvHiCAGFpO+5DIBbSCIR9rEXggETg6MJIU1zCgj0gINLEVFxB0BgErfSGa/yKKJFZxEHWCeMU9HHI8HOBewu9irPvwOXrnOEup2KKx/84RkiXjAuJ3mlc8o17V+MMt+Y+xmgIgbKcIHjGcFk4wkwIMykL2ebrsQEYtHQFOKFSw3SXK0lZljQGUmGazc+iLd3MyvDC2wssx48eoVfvvll/iffvN7/PrZAackeQ7nyxFDxyjkGckBIXjN8m/Bfl3Ut8/+MM++se/UoCI4b2uW6OnPc8I8H4G7E7wnBBcQQq8br0c/DNhfXuPi8gr73Q7DMIpH3nlAedpO14WknN2UkhabikI/W1bEmBR4OuQMpLxgjRnLuqIzfW5VNViXBcsyC7gwrxzTjwrIx2XBMk3o+h5Pnz7FPM8bj/qyLBXE+aoRD8jYtFycUlSq68TBEaWA1jD0JVHNkdOqoypPyYS0LprHIwn/MUriLUfb6HW9zxEGBCQBH0rzE0qI1dqQyrChUinMOZUZia3Wh4KjMseBsmM1Xk3AxqwlrasTRH+3AblUecVsYJu5iBWcUx+qB1GvdU8OegsYfJM8ac3OUUG55nfk2nfmiXdW5dozAldKUQH5GkXPUR072fKzgvaDGm3qpDGNcKtB48iBPLAbB6mLkhOQAApSF0n237VcL+t4gXPITiQhRbyi0zXNIViCZgxwPmrF1rY4lywoNh+dySur0cfMiGQg3cF3AVkj/pYV5IhEelCdV1nBi051wBH6cSjVdnlNm/mhI0GcScHDjaMku6pzxZxFoihJAMzDa+NKx75GvAtFmhUnNXKjf6q1oLn9295haxCUWWx7PvT+bKyW3Lj6NWpP4aC5XU470gEcYTUK7BnALIwCsuezYoXNHnj2DPa8VhuCOSnluCaEQ3FXSdClrhi52YqrsdCUncJphtTxYUieBOAQc0ZiiEjK6YQvvvwav/v9p3j2/DmG/YUaJ1KnoO+7mlzcvR1E/zN05GsPt755+9Wf1/js77Pfsi1K9ZpmKJi9V0H8mR3JwhEmAEa6JggoWRLhdgJeHmfcHI+4vBsxaLGe0UkiFJJMfpGEUstsjcgkWsYuMeI0YTncIecRw27A8e4G83SC14zl/cUFjseTeHmcE/49HAZH2O12OE2zcO6IpJT0uoA8oR97dKFDHzNiShiHAYdpKrJqOSV0Wi65Cx2GQZN2AIQgXHtbKFiTInPKqlef6ybDVvqcFfDry2ULcWY4sID5IAtfH3r4YcS8iEzeYb0GpxVXV1eapNmp/57gcn1Dknzpy4bnYXuabjje6T3U925/qseAynPJP7lieR1HRIBxOG2xyHoO20cdqfdIr+2d8vmLMUQSdTjc4HQ4Iq6SgBdcwP7qHeyeXqAPo27QevEklniGWui2UKck4CELrzZDLW0FmVaZt8yEDECLP5m+vnB4NbHZwDczoDo0gG0yMitzBDJpErPOnYofdENU6pEYAVvPWo2UkS7+9QZtw7D5KXckvL+VM17d3eK3X3+Nf/eb3+PfffYKtxwkVG0mfzPVqbHKJTnMoR88lkXDRmawsvE+6/iss5/K2R6wFPQdoxxvoWXX7BKcgDWt4jnXX5Jz8NcOwzhgN+6wG0eMuxH7YYfQj3DBolWWrJq0AmWqSX4WVWDb9LTYE2a4aRL5SaBopqcYFXxgI/H6I8LxICKsqlrThaCerVi8V32wzYshycvbh2/VMswIco4Qo1B1pOp2rZbJzEVzPOcMUucMqdzZukZ0qs8thoKpX3Dx9iGLfB6VeddePyHnSpEsHmwbopB56iy5s377wfe6wfpNn9n1aogfm/FuBnidZ1uPY7t2bhs3v0eztmxVogAUWuP2cxLJXFSDgahW1ax3oNQDpUcUI0Wjs3x2H/a8AIoGOuCQUGm0zMC6Jphim+wjvvw+s/KhmYXiwhqBzQz4LFQcX6kz7BxySkDQKHkn+6jdk4Frsmf1tU4KaUTHNOslj6ZDhoMnL9x4621zpNm+5KrHvQJLlGcqfWKflTVN6X2a72QBy40Xnu1vgoBRMYIsWqULa/OOhLJT3m45V8tuwOZ+vw/0b4YbbQbs/eXaDCQ1YpnOHDVmrNheZd+xsduModZAPjdq28hBvW7FonW93nrE6zNDDEf7Dtfvts+hpgSKBz+pncFSb+T5yxf4w+ef44uvvgI5p37KOj/ac73tJvBnJbvKivFm1Yk/40T3PikPUD4o/2mP2iyIVBl9m3MWGpABPn3niQnHNeP53QkpEU7HBTf9EUweDIfL/YXMCk7I66qeAPEMpDXCDwOcA7qxB0WHOM+gFDEMO5wOB6zrit1+Bx8GDAlYl1U2iRBg9JMnT97BaXkG33XY9YNUn5sXXO53ajx49EPAe++8i7hEvL67k0I+zsFRRgg9LnZ79F2HELxQaagBpmg8NizyWraSWNJoTAnrIomrMeWNJ8zOE4Lwhh2pl9459P2oEQzhjB9PR6yvXmAcBlxdPpEN2nl1QrlmsfObydx64hs4VnlmTOK50cH90Nhpvyd2Q2G2lWuIV0s3JwWfIC3OE1r+vvRVnBe8ePkML54/x27c4eLiCvvdBXzoEYYB8FQrCjZ3wBEA5c3YlNCbFhzRaxOnkkvADMkAs0WXzfABMlLlQXlsiq8w6+Ldzg4imKctcRLPlVMt46bXMiDUJ4sfnDtDyOhVdbyAJIpBZLPPKFHWp4zD8YiPP/0Mf/0Pv8Vf//qP+OZ0f7EuSGUDdOTCOTPm6QHJRX2stl/P+/7eANENqjE79G/LKaBKW2rPRQC0WFlOwDovOF5bYTiPYehl/CvlJnSdFk5rCkptgA6j4EFYDgeQY0KUL4j4nXSkfKOofcjv37xN/vCaceANvFvY2YD80PXqeW4rjG6910XhguV3XrXA5Tw1cbZSNCof3jmnwFx5sSmVYmDQY1Oq448hEVbhGCsYaJ6nGAhERTZX5rwZli3VAAXEFceCnsfA2X2czecjuxgNLYix+zKDpP2sfk+uY7Q0u48KIKvzh52OyQaoOdckUjb34lDfC1EFfC3YE6dGLlPfoiuEBpBhC7pawNUqoVRDQwo91jolzZixtbbw9VEdEzmDEkDmcbeu1sg0iEDea7GnrHlgBI4ReV0FPhf+uu1totueVSVG7lmKRrJJAmsz0Qq7luVclGcrAPmssxmwSO+2j1D2tHPQX5wV4FLXoBTXLIdVPLU1JraOHTTHtGv0Q79v6UDf790vcHf7mDZWHwCw5xjxPKpVGB1cf/4vuUebExvDQD8zFZxyHzpG27EMNa45C80q5yj8+Mw4LQu++fZbfPaHP+DrP34D33dIZY0Rp2lq9pGHGS3321sDedvo3/S7dkD8qfZ293YfxOu35Q9JON6RQ04CTkGyWFE9arPlAxmHecIfvn2JlzdHPNnvME8L+jBjN4x6jAMgPCir5OYdAc4jThN8J4tA5zv0ocfxeCveIpKCRGtc4UMom5R5IuwmfBCt+aQcuqsnTzBNJ+QEUK8DNTP60OHJ1SV2/YDTNIMgxSKGvsd+N2LoO5X1kuTT0HVFSYGsk1mJMgryHDPYiQRY33WIaYBVvjMsSXAI3sG7oIki1YPgnUPfBxD1GIYdxnGPaTpAEiIlIdZ7GbAhAN6zSGKyFLMQD7gAe0vsaPDcdgKbQoP+kiAgWsp6sH0oh5ITA5Oc6BpnA0510lmpaBlBFrZmxLTgdLzD3eEOh+MRS4y4fPoeLi+fYDeMCF0H5wO8CzAZ0IK7C2BM1dsOqH60JlNZ8asM0SVnyGeEqplf3lelPgnoADwFKTgC3TxVp43UWLIkJWFTMTJcQeKFakWuhHVtCrWLocmBGg2qjCPLAbJcBSKwqoIYN//udMSvP/kt/uV/+AT/9vff4fO7DG60rGXN0A3rAaAhCbNSN8GMP9b+sIW5jOc/1QraMKTEqN58+dn4wYSqCLG9q1zOxZCKsDFGLPMMTwcc7u4wjCPGvdDyhnGnY2t7f3a7prQFjXLJ/5WmYazfBvDkDYXhxwPlP/jgA7x+/bqsi9fX13j//feLtrMV8AJEkaPVT2cWKotEhSSi1BbMIqJCzdkME5tLZFQcNRy8xzB06Lq+AJOoHPlixZbSczJISHmw5km2eyvGm3n+bCXTn60qtyXSs+1QbMBDNvC2FUdUY7wUUMLGac+gQofYmq6b8zAL3YKoJk+r8djmGAAyVtecClgpiavkVYFGnoGaOQ0wUqpg3twZOXMBqt7qgZRJIXk1BmytgqoBd5OwBFDupRhN9nu1DBhAzJqoqv1JPqiijmEFNYDgVIVXJKQrINWiTHqobD1aCRby/C5I/zqoB18dfI5lb/GuAb8kwhdEgPMWfRAHTbZN4mwM5ZyR4lr6V957FUkAJA8P3Dg7SJ1v3sF5Hfsixid9Y8OYSHn5rvxxFLT/dI0lo+HY34blKjmyBfLnnu6Hxp39/qFm80RuUd611XnfnkeOZlu/Dd+cn5fqZ61x0BZ1elMrBkAB/mbANnNPJbIlebUxhvRdGVBn/V7OGWvMiHPEHCMoBCwx4Ztvn+HXH3+CT373Kb7+5lt4HzAtM4gCQugAR1iXReV2pXrw27S3BvJOPa3WzjuGms/vhQf+nPaQJWa/gi0fwrHdDQN2wwBkxovXN+rYqi8uq0KHjGsCEzBHxjev7vDls+/w8w/ewbLIJj0djzh1AUO/k6tYtnfOgAta7IM2YJOcwzBKUioTkDhjWhZ0KWGaJ8UVltgm4eHdbgdPHqShrjB2WJXCkTNLkgtkMDrncLEfcHfymBdJzgneo/eyCTmqHiWb/CwrfZmUwjWHbJJc32UgQueh4UsBySkxUpSNxzvpNwcFkOzRrovOOwy7Ed3QIadUPJQhOByvr3F58T6CN01h6MKSgODLOy5zUfczpxO2ncAGtYongZ2C9IYDrmDUk0eORm2oOvkZ1ZshlnJGWhec1qPIBs4LYkwY+j0u39nhcn+FELqSx2Cen5zZnKcFnzoof06TWpEzyJK8ikRi9YcxQ3MkmvWcLUvejD/ZIAgk0pMGxhlyTlJAah5127SkE8XogZO+0u8WpSQAxo+sIWJVLCDZvF3nAZaogciTKgwh2ZCZMzhlzMuCz7/6An/9Dx/j33/xAt/crsiQSIcJv8p7bzZ+Nr6mhkuLYk5drG3+AnWjaOk4zWLR/MWlLwUs22rRHGOGH9vbqIsyt+crZ68/M5OAj3kqVVzXdcUVM8bdvrVXyvg2fWH9jz6r3GJWWbhSaIbt90p7YpTf/Rhazgl932GaEl6+fIF3330X8zwV2kJcFnGQdEIZfMhTG2NEpozsnCiBKeAPIWCe543WfNd1yBzLzxbmNiqTcw6neEKvxXlMt144+ACIawGo5vukuQstQGi3LJkf2LxX52p0wNSsWiDUts3PbGuCAd6ka36bwFrHjl2/+Q2YRQPdvm/P0iYBCq+99U7aA20BXIwJRFUfv4K4BmyakANRoTiltawGckalrHq9vlDTcskFCEq9suuYEVdAr7pizKgz7f72GHt3lrdmaotOHRXOhXLP0jciLyoGg0c/DqUriHwZO8yMrgsQURwx0skFeOKiD0BEmE4HBC95FNx3UkWeTObUHCGMmnvA6PsA5qwqP3kTjci6v7TGjLOqxI7ECQAuOQpEhDU1KgioHuaWNvPw2GvofeogFUNwWxjqvPjTQ+D+wYJn7XwhA/V1LFN5JxurvP7TeRAcPGHjIS8GoOYGOLedT+fnrBGebC4e5cg3qjdecs7EIVqNm3YCeu8V4MtZHDk1ijNAwrKIDNwcjvjHX3+MX3/yCa5vbjRA7NAPI0ASpVpjLOtfUXt6i/b21JpzA+gMrG/Cem+wws435/+yRgXedd7jajfAe4fXtzfIq1rpzaRurV8wIWXgZk7446trLGtEGjKWZcXpeETwBLpy6EK3ueecuCwKJiFtfeJDQMoZXddJstu6IK+y+IauR04JcY0QIUBC3w/KZZfF3ityz8VoMPDlEVTf3ivQIlYpLOfhfaeLAmCJLrVPG8pK4yki0feqOu/eJL1ETjJnIK1J9JLVi2ELR3CuWNGyKIhB0Pci2+l1sqcUsS4Tjoc79P0A52RRFtWbjBwjyFuSjro/HnjHxjGr444V4HDjajCQb2FdB2QpiGXJn0RUCjpJ5CZiXWcgJczzSb1JAbv9Hv0wot/t9P2oV9sWGvVwlOJQCrRNeUSKikj+gbEiC+hneSKLF0m4HgV0G3KrhV+oGI1yYTXtbKNA7QcJh9trEXeMJZLamLeNlYoKkCQ4eatuZx4J5hIupiJzCb03gFSLHwzkRDjOKz7+7Cv87aff4ovrCYcIHTfl0sVRUqciSZIgAZwyotEn0NLmHhwSf6JpP265OA+21mAg69fynfrlMouozifZfKVIG0OqYHZ9XyhldgHB783GoX0oILAmSnEL5PUYG2c/JiDPxPDBY9yNGIa+PDsRlB6o74JT8UwGXSdyFm7pfr8T7y5RpScUwCBrj3iRTf2hAt4Yoybj2ZySaEsiV4xJ1yTQcYZWBYU6ClSBApIkL6AWZe3JWZwJSQvNkcoA2xs0EF/ORxoVtLWMAYKBEB0EBfSVk1TxAjR+gkYWE8xFWhHt2qJGZE18rNfPKW6oScLIUzodoURLzo0Hu6ZFVw1weu9hlA4DScVbDgJao4GoihPAlieJ0qWs3myV1DWgpHdQzHRHKgVpBg7pCyQTXKj9V8CaAVrDCiCNHtvX9eyNWkqtHaCRXztnmeP6njkpW6BiJG4iffLOUgGFIlteHQ+ms5FyLO/BKsiWHf4MY5nqF0EAoTBqxaUjWv2tkSbrJNtSyYrJyAZVdZxU6dNKX7IXZRSse/QWoEQhKt8cqJ6UbfzIRD/qaXRfb76iX0QxGhka1QHsSW2DtDm5iULZu9RnZv1epUNaREXcl2W9Z5TzZgDQSE5OYpxK6oWsH0mVyOA0N8IT1gyszLi5O+Db5y/w/OUrvHp1jXmJEN6sB5Hsue15N2o7b9H+PI7897SHrLFza+j8OPv83s1uNtbtx/otzfoWacShl9AS1lSPaC0vV141mAkzE17cHTAtK1JmrDHhNE0gYvRDjy6ETYKPVeMKnddsOeMMCv/Je4++H4pc4bwscJ7QDeI1SjmDkngpvfNi0Wcpz+6zepg5I+cICTN2sCIyBlRlEjmpvqqFJYhQdH5TTGqpW2Z67cQS7lUPs/dB6TihepxJnpcDkDgiNxrzwXcIoZFVc9vFzbmgck1RQ9SMw90d1iFi6EcM4wCiIOG/LoDGEZQysNoGxirNtTVEClfTCknpOxcUXLZIwCl33TLwnUPdNkWhJ6UV6yLFd9Y4Izg5vutH9KMo0XRdJ7ZAjE3fyX9NCx62ADOKAk3OUZOJswJDpwulLB4y4RX8kxkk8ghE1VNvxv65TGOdHkITsHReizo51WErnM2NIYdNIloB80rLct48azoXtQpjm9fAnEGJQeyQnTzTmle8ujni7z/9Iz7+7oibReS1wI1MXJ38ZS46pXUBjMir3mM1NnV3LOO+/H6zHtRxcg/hN1KVtd+MzmBzoloaTFmBhJ6vSeBj29Bg4EaOyZC5Oy+MeZ6wjwmuc+U+ZSHWypWlC1iBGGv57eqJswGR1TNYQNGPCMiDGC6oVn8IePXqFaBRM+edSM3C7EmJhkK9pqb6ZNEjQNYG8262NAwDW+bBZAUpxJLoTs6X8S7rplZhLEYu6itpPL0E2QtIaR1CuzRd+gZoZqnk6xRQGUgzCLrxiqrSTFn3yjmUqmgOnOa2hC6oY7l8rRmzxctoRgwXqWFJxjRgxuW7FsFkpR21XlsiYM1VNed8vjlFneZVt7neUkbs3kCwbHMbFPJfR43EriBk8347FgGJ9rIK5+rP1K6RBiJ1gS4auxW1sr5Hy/kpYFn3EDRjSowDX57faEX2Ltv+t+twZl3j2nfHTf0TA8tKKXG2/pvqEkQRTD2yzqyGjROmgup6Xxa5FpDtdM+/73QVa+UhjzfXy5T7b8G8jbFiEN27B2zexTZx1Nb52iwyCzWQ9VN5x2UvOPuWzXtmtDda9tCNobDFFKz9YOt91YTXY4gAqnVh5Fd1ArZzzMZ40j85s6gtAVqPQhwIx3nGs+cv8MVXX+PZixc4HE+ISZy2RE7WJetbHfcWmfivDuTbzfR8EtlDPQTcHyrB+9B3NhOFseUPb5q8PAfgOM14/jpjGEJjvbX3IX8ntdRNGniNGTeHO7y6vsWT/Q6dJywpg48ZF5cz9rurUmbZ9ImXeZJFznfNhi2hEA+G905k6paA6XhChwBiIPgAHiw0GRHXVLSTBSiTqMosK1JaRcM9qEwVMlbVug8+AJ4QfA1dppQkN0A3OaFl64anPVA8sZAFI3jRie+CV89o9bPDOMrclUVYwJ1D3wW4ThNgXf0jlnD1qnoXcPnkHZ2FInm4zCuYGU9++hO4n34Iev99pJevkb75DunmDkRBFs8SxjNN8aSbvZNMdpbPzJizTYOgCaApASmCOIGRkNOKeTnhdDhhXiYsS4RFRcJwicsnl+g6iRqAgMxJJCrJ1VGuXhtOAClYZ02uQxYePgECBm3/YK1gmqmG7UgWUFcGYjO39IkcXJGUI6dGSQNG9Y3qhlh57dBwMQXJQfC2kUHoM0GTrUsRL1KjzsA6ueI9kh81oUvnbsoZpBx2T4SYGIdpxW++/Ap/++kf8WrW+zK4wg9vchbVQpYFVNIKHgbiVB/hDDs0BnrZAvRvo8yoB2WzEej5bDkXZQSn85jrubmMrrKhOQIuRo/OSyLSHCMWNe5NsQbogKbuBBTUsPUKqydej8mpAfKsQAq20UAjPz8iIA+hDhCAmFb0Q4fT4VhoECEMZQ8wGbt5nosTo+/7zc/DMJT1qaUdpJSwLAucFzWklmqRs0bLHJUkWwDlPcSYEIBSjKcFJwUE6edGLdhQFZRD2Op4Sw5S2wv1POdR6ftOrQaonB1n99d+Zsoq7e9SyiqD2yQLg8p9mWMGiYvR8/C9nIM1apSEzikbtZ/+FBA57wP7jlEyNl7g+99uzoOyVpdfsczzlGM5Z3s+e++keTQSFawgvcUkbXSNmWGsh4c84+f5HTXfoj0OYgBahASoRrz2n52n9qOzi1apR2eLJQA06kGaP9FW15Uq8KJp7ongfE3AlUrebdS96detF2XT2vcFVNlGo2pt+7vt9+33re/aPm7X/3NKjOQaVMOgzCc1xCwKtKH/FKN8ex8F2Lf4tMyFGrnhNmrlPYJzWGNEjJoHRbYEaB4gMpYY8ey7F/j1x7/Brz/5LX776WdYYpQ913mAPHKuUqPbYnNv7vfz9md65L//5O3kf1tLop65bqDfe51mX15SxHoXgbv2/h44d6EaiAczZofr44Ivvv0GT57sEbp3sKeAnBnHuxP2uwnO7XRSBt14JfnVsS/UkByz6EvnFTkn4f15Lx5oAMs868vlQmFZwKWAg/edbigeOXRYYwS5Fb4b4TuHw+01puVYvNxd6LDbjUBwmNYFKcYSOuqCDjYyIGQFp6RvHUSJRjZNj9GK3IClYpwuFHW+yESpXDxFNDbgjAupHlzYguACvOsQ1ODJSWgneQHmNYO+ew68eoXAhLzMOFy/AhHhyQcfIS0Zec3IeUXCgtz18MOAeDiAlwzAg4IAXlGRUw5gzliWBcETYpxxd3eLaTpiXRfM8xGOHbphj8uLS/TDHv24R+h6kCd440gryCte2DKRzIBl5LgIb62Y/m0Iu47bdi+BQTk9jKrFqU5A5aLrHODszTkgAisGQNXA8S4Ilvd25wLKvWQXa8TFFfpU8TCEDlY6nLwZemo0afKtWcNkm4M+lnMEVk1sgsPd4QYff/EV/vt/83f4z388gGhoDG/azMLqB5EQOjIwL4smgeJs8/0+EGMbgkY9IKbuZtMpiwNXRNz0d11Tzt9Z+7vtHXTB4YMnI/6Pf/URfv7OUxzWFS/vTnhxe8KLw4wT9XAe4KTJcc2GbwmC5vU03W2hYZmXNpdaAeYtsvH2Y2rB1b7JOWuCa0KMEdM04emVFXVjpCSUvRStoFZA1GqHQN1nUjJBgrppCyVjxeAGhKARUY0uylqb4bysJc7p9sdcjOvMGa5JvrTr2d/moX/IQSXf5+JVC6GeI+s7JUCilwQ0i209f25pkhp1VcBp1Bk7kxkM5/dXwJR+JnsCFfm+9noWeTItc8A4wwAasH7Oi2cGYlTqIpkyl3iBLc/nHA/cB+XVUG3B8iZq0dzrphVeEcq9UnOesmzrdcSB0YBqW2TtJM3fbZTn/HObo953mzFyXtCqgvjGAWPPq0vehgGpRgtZ/7Pkedh5hAK55aS3fVevUc9X3r09qeVJ8fa7xVhpurU4oZXqec+oa65jf9dj6nu8995sE+TtO2/bQ59tn1WMLqKGMqR9bTkOzdnQ7sTnz626EhvMZE+3vQcq57ffOX3GmJNQaVxA7z3uTkcVqBBH5rfPvsOvPv4Yv/r4E0RuHHR6/kBOc+L037oXv6ELHmx/FpA3ntdDIP0hj/zGQj/7zr3BWMJh9zv9PAR0/oDn+16NBghQkkEq1i9I2OovjxHPXt/hnx4nPNkv6Eju4Xg64XC4g3OEziqXOgcHLuAVqkbjnCjmpLLwCj8zhA7Be6Qs/PicUvl96Dt0Y488R2SFOUM/gvod7m5fY1lXMJ0Qc8Tt3R0SS7gGkEqyfd9jmibENYIgoC0oJzED8MZ/J9HO9SDAO/ShR9cF8cg7Qt95ONKEoGZDyOoJJKeATxMcXQiFQwgYUCTJmDcA4wWEOifVaokBdh6so+z4/KVsyJCkHABKdU/wYPA8IwYP99GHuPhv/ju49/4JfN8jv/oU69e/x/rHr0GHCZ0DToc75c5mzPOCu8ONSAR2g3LnPJg77PfvYb/bS25Cp7r7musgnoqkb0GoSw4M5ISMymEEBHylmDT8Z+QWzbpPtkE8EOJtwB0BArqdVYPVjRPqqWcnCWJkC415uKtngIjgNBnMKrXaGCUv71c8M83xKgFK3oOC0hOULwgz0KgB7w5mZaAY1SkB7HB3POLXv/09/uW/+4/4V7/5IxZ0cGDV0Jf7UbXijUKD0521zNVCc9F5yRoOLUlj1ODthvZQTBD7b3PedkUo7+Fs3bEjWfsbgCnbkPJD7ZF7cvjl1QX+9//sp/g//Xd/gXcvL+BYPPLHKeL2tOL5FPHdacE3hwWvp4zbBZhWTXQyfqby3aVwCIFzrIaG/mlBQolwOY8fS4uxekX7XtaxPnSY5xnH4xHRKC4w45YL0F7XtXjQrfriqs6NFjzJ2gzlkW+BY26NpfKpGboon74JQGw8hc05BbSZPdoY8Q0otYgMm8HQOD42RkDeAtt6Pb73eXuNtlnk14xDSxo9fw5AKEFvqpDJqEDrfB+vnxV3QAFCBRSqMX0Oyrc4wBwf8rcAq3x2DM5AdT1nJSzpZ6jJpPasWyOrGhj27lvvpz27GVPVI6t9h+04OPcSn9+j/O3gve2vtv4Ykm+PPY8QVQ91GWfYjhXZUxrFMbqPs2zPkfvfzgfSNb999/Yl3pyhtvMoRSv5WqoiYztG27sp0+178GD998Pjvp07m3f9gEHQKv+0TJJ2HpzZNmdN5+HZvWQWOnMGSaVhluiXKGLtsKSEZV5xfXfAf/rVr/D1N88wLQv63YXK3EpH5BRLLaA6Xmtuz/nYf1N7ayDfvuTvO+ZNIN864G1bu5BtFy/gzKQsgKo1BOxY4wJqxmEZtNe6EZ/mGeu6Yg0eyARgweF4QghS4KjrenjvEFVdIWSRIYzLqtw+2aBjTogpQpQB1GLThUUmKGNdZi0Dv8ey3GJdFwQ/wPsO3gX044iUIjKvOJ5OOJ2OmhmPkgQ7TTMWlsWz6zoB0c5Dkijl+cU75eCDg4dwDId+0FLzku3tnSR2GPAH2eRmCJ/dq2ShAFHnPHyo3hhbNHUZl75Qa9uSxgxgQhf6PkEmW8MdhvNI7HBzfYc4L8i7IDzaX/4VqP85CAzfd6Kk4mac/vFXID/geDogZbN6GeNwCd8JmN11O+xGIEd5nhA63dBUv9jGo40T1IVA+LgRmaMuGBApsyTUHlf8wQr+zsB7ARAM6T82zmtWzmJQT5rcgQF8kHnCleNuG6NruH86jsV406Qc24zU226hVbuGqTZY2oTcryTF6k5bxtYGyLcTXd/3miK++OpL/O0/foz/+eNP8eKY6ibBzXfa/tBnK6ul2SV2XuK6QTE23ye0M71uY9voHddzt98o5zirQl2u3d4rVYDVXO/dqx3+2c/fxf/uv/kp/uL99zB0Dp3O7ZQy5jXhuEZcH1c8O57w/Lji2WHFt4cFz+4m3J7EC5+5ForKklhRwV3ebC/YVOHMCT+WlrNQswxwe+fgg3gYl3ku80D6NiLnhHH0aihvE4LBjBjXDRA7r4J57g0s/85ZC0S6wqmnwnHH5vsPtjOQqx8216j7lgEdGX28OZ7OxjzD1m63+bneUB265d7YuPDb9aQAUYgYQwGIuarH2Jkl18Byn+oxbT+0IHz7bwV/NoeAcv/t9x+ix9wH9PUdtcmotQvqdZ2rNMbzc7Ygs73XAuYKPYI1Z8zWh7oPvNEbrPubtXuY6NxoOadomaQyt29B12NwAdPluanZR01Tsrk2M4uzgMrl5ftaSR1AI54h3ufzVfW8/9qmt2BP/kawe244vS3Oa+fQG733rZeG2s+pwD1bE2ywCES0saSz797N3zcsBRts51k5bWM8mMGZMkulYHXWpczIlNGNI9a8YJoP+OzzL/HJ7z7F9e2t5rERcmTNXXDFaEbph+ZBuX7+p9qfn+xarMot2D7vIwt9lA46GwYPv+z7n52/4O3PVP5LVB1g7QuoA0UGBLFMimNMeHWYcDhKafQ09HCOEBNhWSOWGBFigncJXsOKnBNytEJRESlqMpSTzP4YFyStXmiFpMok0AWkcw5d6OV+cwRhFDpOP4DpAqfTAdPpiGmeEOOKqAo4pHvNNC8IJCWm2QBZ8Z7KZuhIqs8F71X7XUB8F7pGVtLUFZokVu1Dk9tyhYIhC7Rkzefa8wVA5WYRQ+FbA83CRlQiAFLa3jSz5RTzEgv/3K8zXDqAaQVyAPUXoMunwG6H4+kIGntJ1nRCNXHOI7gARZzwFJTGobQFvS/mJoGwADibNJUraHQHLl4T6fyy9Oo4c/r4tnDamHYKvsnoBEQQD7gs5i2Qlw6wRD5f+sxKeovmPpfFBCSeSueDvr9tH3vhSTXvw8YHKqA2T2Th4TdA3po+gxkiOWa8ev4C//HjT/B3v/0DfvvdNSJEtm4D4oFSFIfYOKMSBUgpgVPljZ/nCpSxVfHQg2sH2s8E/cnz6H0Yzae8YgBWFMY+qCtIPd4MFiag7xx++cFT/Ld/8RP8r3/+Id67uoBHRiBdXzKL8R4j3tsnfDj1uJ4WvDjN+OZ2wh9eE754teD6tOC4snDqtWqtwrrCT61D0DYd4+1+Hz/4h9YYXSfSs9PxgBRXiXqljL7r4UHo+x6A0hSy6GqTE6DVBZEDtIhFBbBb4Gx7DzNjWZb7jiA5GAAKN1V+sEktf228w2R5M9ushfbaRXvdFLnIVWk8WydIZWFtXSxnqpKj5VabIW+m7jlQqsBM/sh+18xvyFpuXr68Oa3OIPKFeiOedAC0jWi0etptK8/f3rAaF22S67lM4fb723M+dC3pu4Y7TASiLTug/Z30Suuwad6TRcag1AhA6VIKeL3TqFmua2J7DVRDoXkQdXrJv20MubImPdS2QFLek6+GvHItWO60cWPUfhIVpdr1phhUgT9UT9+u2ADE5i5IOgeVkUIb5TPSvSPDxly9hzdFItqIVDXIbLxweT/teLb5ct9xW2/ajKAivW0G8hkAb4+VPRVnTZwm0u8ogJpVp/T8OcywAtWK8SDAd0Hok6rTv6QEjgnHacYfv3mG//t////E5199DRcCunGHJSbEnDEOwtyIMSKn1inhwKmJNrwdjv8zPPLbXn3QgmqBe92Ize5sT4QCPO81wubFPPQc2zCLfKcLrijQYOMZAURBJNuIBIOwJMZ31wdc3x1xmldc7BmdVYKDTSB7kZIsta4r4jqXW88pYVlXdH0nhWPWFXGNGMYBkWtIJ2dWDp3cslWcI/131wXsL/bwPWFd56JRnbOUEk+J4bwMoCUm+F60SUF2j7KAs0YdBOAKQA9dh77vtSy6euDBqg+uqiXmJQMV46OcwyYimomhwLis3TrQixaxjXIFcwVQeY8A0hzDFYg22TWi4CFA7+6A/OwT4Oc9gEsgZeT5hHXOmGZg7D3G3ZXw80OoUpzGhU1CfDMwLRPUvKJVDo2ksyqeZtV/thfFFcAXCchinKm8HJvTwyQeZdMpXgqoVxzGfd96baSPZPO1xYl0Y5DcBA9brKSPCd4iJkCRubPJUjdHKQYGBerOgLxWVWBHQKieHjaA22pGQjxYKTEOhwM++d2n+Fd//zH+/vNneHFMcK7TAl2oDm6zk7QLO+/R9QHkHU6T6M9T4wyw3oTKOQLG1dTr12VBneZ1Y6orNyoK4mb9sclhhzYoyVYqqf5cFxvb2C/HHv/sJ+/jn//yp/jF++/g0gUQZymuo3cWU0ZKHrsx42rX4YN1wM/nAX/xtMfPrga8NxzxxesDvrub8fKUcVgS1gass+7CvJlHXCbWmzyDP8RWvN9A4bs7uCKBSrkRBIgR+/0e0zxBqAkBjioopgcSClsA6Jwv/Ptzaok10ZzegnzhgW83cbkklXUVXD3ytbXAw95dKqBHanX4Ymjcb9ud7h5tQys+23MysxoWpmpjwF4AeN/3G4BrVK2WunEeJTdPPpC361PzvfZni65sQv9cf2+Asuu6ghXqNZontzWnua/2fVodktawkHvzqlz8Zrpv3Yvq94m21TkN/Bo4JHKgcKa2U89YAHKbr8EPvtMqu1idPIo/yrvd9msZH442Po6N17h5r1KI0hVRgnKebERbFOOt0l7QrINn84dtX6/4aRNhQOMQK0nqYfPepN/qGvZQo+bc7T08eOzmnuUY34yN1hggpdTZWv+m8z70WYtnz39/rlUvPxNAHiky5rSAfAfX9RiHHZgc/u3f/DX+3//ff4H//PEnGC+uBLutEb7rsR/2yJrXB2CTuC9jlsu1/qtTa/CGDmlDWe3CZ6Ev24D53kTbdtqD3v3modq2PZbhHeHJ5Q7LsuL2EJG4qETeu1fWF50y48vbA758dY2ffvAu3n1yBfQdnJewbxcCui7AB0vqDACJ9jhBEk9TSliXFWAWz3kS7nxaRUaK1erLWawwEBWpIgklCzd6v9/jyTtXuD0w3G3lxaYsFWu1+CpyhijN+CDKC/pcnDPgvRSmMBqJqioMw4C+7xGc101KKT/6X2rBOgnHXkCqFIUqkw6ma8uK5V2Z9AwL+zVASdE7K1AhFjafD0F5irpYqgqNgCkP5Ax3WJC+/Q790z8g5gVuOSG+uEX87hV2+/fQdyPAXDy9Au7UmjdMVhxESo/Rd8HnICknhY9yF1LwheDYNHt18XJqGGTA1H3IOYHnjWShFH+RghUpr0U2zztfqg0SbOGwcSkbiFPvABzggmm8A7WUtiQZezKvnwFSV7ufSCX2HJicynHiTKUG6rVXY3CzUZSZCQfR6j2djvjsy8/xP/zbv8Nf/+pzfH69IHKAeMXqO7dbqQarw34/Yhik0vHpuH1Hgo+cflWrLpYb4XreTfGGBxZ8bv+umyWBN14Eo2/YOlA3B9tY5LKZGe/sBvyT95/gL9+7wpOxR0+WOF4H1wgxEBNL/sS6Juy6HhfjgHd3Gb+4POHb20t88fqAz17d4fcvb/HN3YrTErfe1CbcTmpc/JhAPAAgM+Iam2hdIxMI0c5e1oikyavOSYE3ZhYDPdjnvq42zbkyJ4kAqaPBKqoWtwxZmF0BG2wO5mqcm/GqsoXVGGcgN55YquF1i0Le9+AJ99vAJOs68Cbnl4zZCpxsrIIIxEr/YGhuFukavN1T7dwtzUjuU+aQBOZUti8DdbbZc1dngc2JCnTv33MqoK2epo0zFIClLD7k+0bB/f1eveH6Hm0xr89kwM4O8eX+H2x2T+IdkHMZmG48AhZ5Kf1nEUk7M6MBwKqhXvYSlLHzUD/ZHmua5I6cKF3ZBfQZTRPdWW0Z263I8qhar79Et1p5ycKfREMlQo3+bJ/p3JjjUo+gBc3t+DQsh6brqJkLddxrHln7vppj6zrdGr5vmhe1se557RwrxzbnYX0pD42I7fys/VMcQFa/2OBBE5lnkJ5Xi8JZNXLnASeO5OPxiK+/+Q6/++wP+Pa75xj2eyRoLh0z0hox+q7cdzUMaswlc4Kn8MZ+eKj9F+nI1wWyAuQ3tvPe/BP3VRax1qPQTJjzk4t3lXG5H4HdDvO8qNg+gBKqqtu110HtANwuGc9e3eLl7QE/XyP2uxEgKeohlpCD971agHI/MSWkdcVKq1T7TAl30yTGSxZ94Xk+YRxHxMRlEeq7HiuvMmdzAjmC73t0Y49x7LBMdzhcv8RyOqq1NuM4LYip8pxzBlLMmLEAUH58cHB9D9/38F3AMO4w9L1Qafoew9Bh7HsB69oRpBZm8GpRk2q4snwu0mrNxNWCKV7D3OJ9dhUg6aJroc0t69f+Wxct5wkenU6MterBZhnMaVrw+tNvceE8XOdx/OKPmL57DSwJl5dXxYCgzIBFWhjbP2VBy2WSWlJJWzyrhlBtIjM4scg4BlHrkeMtdE5Fq1684zo+DSQWDznB+V7lBuvYL4ubLYZGy/FqUDn1spX9Tj9rwHEZwEVukUHQDY2ASqehcrzowjvRtw2+4cVbVzULLgCLJE3TCd9+9wx/9x//Af/D33+GL24ZMyulRu5OknNb0qqeKvQBoIxpnjBNSwFSACxFq1m+mscqP6Xyrz+9nNmm/zDm5+Z32uP6a1fuggw8IOP9pyM+enePd5/sMAwDAgidaxLLQKAMMCfEnDDTBCLAe0KfegwhYtc5vH/V4y/f3+OfH57gy9d3+M2zV/jd8xt8cxtxuzDWxJv7LDf7RvndH2Zzzolme6N8UsPJ6g1PmqyoY9GRMZFYS94TOJMaqIwW15icKZwTI5wZIUg0SwwFj6xJxhU0mB68hNhrJFiNfgMLauEREVrT9RzkmkfVDPSC04oh+n0GGjXfq9c1MF/vW6OYjLLOnjvSzvdkanjgINRCVRnF4GlBhTlppF/ruVovtd5JfYdQQFuM4q1X//yzrbfUZjypzV7XFgHZ9l3bh3NV/mgMnzc1ZwYUVwdTzupsY64AWPvUwLGtg21tivKum76ns9/YGt+OcTNS7DvObelHVtF5c3xO28XPOPdAoW1u1JWyrWzVKLX1qq5yZ31ORjvhQiuRz897kVHcerpX0gN9fx5VNIz9toD0Tx9nv78P/I2us5lDZ+NiC+LtMx1rLCwFPjvWjmEWoRR2laGQATGqIED+7u6A3/3+U3zz7Dsc5wU+dMKlL5Vhm/tt5q3lcpJiFm6Lw71F+7OA/L1OLh7Bhy9Geoz8YN7F+y/gT1tjNrhaUEQiQsjC3725uRPeuHpfrKMZrN5gFM9zUk/KHIFvbg747uYOx3nGu7gEM7DGFUtchUunpbVjWsGcEbxDWhnTPOFivxe4oYoLpAgsxRXrKpuGJR5JMRGtQMcZfddhNw64vNpjt+/hKSNe7LFMJxzu7jAvK+Y1ou96aDHrWimubE4SuhyHEf0wYBx6dL386fse/dBj6INUSISG65ghCZXKcSuI0cF0zr03jXh9tcRwJcTTWtqs6KvqKVv/thYyFKByGSrigeuC1806g1ktU5Z3i2nF9X/6HTIIWBM8OXRjXxYdW2RNf9s8BSiTl2GLjyzOTYiQXMlZgG5K5T9cPYWsPGXS8smMjCLhZQuuIzjDp4Sqv26LtG+Amm70irZLwQ5THTIgWV6JvqsaQq8bmgMBvt4HmRilQwHom7AkkYAoBfSFflLGlB6qXUdMmJYFL169xief/h7/4h9+jd9fH7DmWm6qsU90U7RNQdqyCk0CrJtEG4O2W2M2BlN5r/bo0kd6aOkTg9z2jhtjoK1KaI9WjDqNhVAdYvYVak8NoPfAL9+7wIdPd7gYBwyhQ++DRKjKZis3mVYCr4w+BHgiJJeR1EZyHuiSR98F7LuAd8cOv7y6wH/74Ql/eHXE56/v8MX1Ec8OM+ZZ1xrTcn44Xv+DbeM4YlkWEQxQTXczNEMI6DSCuPqIeZbjDFQ67zFNE8ZxROYkeu8hoHeDUmdk8zMJQEDekfdVhcWokYBuyFqzwsLm3leFl3tgAPV1MADnHZi3NJWq/uIKWHyotcBA1sGtokwpQGjJqg2/fAt+Ze1oVV7sd62jQmpIUHOPFjV0TfXI6sVn5sY4yZt7a/vWFLmMRlPu74wJYJ+VqXhmZGxAIKzWgspFNriiAB8QitqUgXx4kLPICsr37DrO+ZLzZOd2eu3i1uMarSftlBo1vf/+WiO0vs/WzKt30koWcjEm7uOcNqICL4mxBsTPjbMH6/MoT9tU67b360pOjhxrxsp9w8qigkB7jmqEmNF373tnWK4aX2fPeAYXz42+FmQXHHGvn7b3Q5BbtjWgnQv2nXtGZLsRtGMNDX5sjE0D885JQU0C4bQk+N5LvZw14uWra/z6N7/By1evQeRwOE0I467Q0Xpd5+zelmURmhab+Qpd96ox+DbtzysIhTqonYOG/NAMTl0wyEBJxVbKfP2e8/4Jz74c1aCGcgZkEG6PM7xfxQtegMaWNuHIFuqs1j/h1bTi1XHCYZpFtiv0yq9cEXOSYlIAUk6bQZJixDKLlrveWbEAM0MKRTkv4ZRGzooZWJcVnBJCH7Abe1zsR8yqe74uq25iYpBLVv3Wcxmcw9D1GMcdhnGHvh8wjiOG4NH5gE614r1TiclW3QQs3l+7aTTjmbzSB0xpRmklbJa9VcOrIApoaQoNgCpLIhcQClc1X2ydcE68bDKm7L3KAsApwzPB96Fo3RNraFmrAWbU27EeclDPjkYQmFkVBKpBaEZoKiF4WczhMjys/LR+RT3i1TtHsOSr0n+uKThChAwrr03lu3IZ64wKzI2vWzwX9mcziev8M8+9GUhlQT5b9AiQzckFOb6l6jRAupzYXisIcV1x/eol/vD55/i7//wb/N3nr3GK8l2y8cgMSXRub7WZw1kClfecy+UQPvus2Ui4AfXtBtZ8XW6X6/s7E0EmM+pZxhhVa68YCrVxWUzf3XX4qw/ew4dPnmA3jOhCh843xhIAGE1LC7pIkrGdPmk1aQdHwgUPcBicLOS7ocN7FwN+/nSHv7g54vNXR/zh+TVeTRFLEk6wnfvH0srmxJJbhMzIKgzQK9gUiUpgHAbl1BtYSOj7Huu6SiGWEMBIOJ7usNvtMHYjUhKJS0DA7263wzzPhce76rVC6EAkRf6CVt8ECN4Tco7wJPzylhcrS6GT63eqpMMRXkPkUhDMNLq5ATpUTtCqjrQGbwvEsybnSwS323BkqwevctjtOlvAUVsN20Ova39Tme4goXzklDf3JMBDjKSU9IsGypqqzxtub3MNWZtEgtaZR5vr+c2+Jl8lFi1i1/e95gvJOWNzr+RE8rkk+SsQr1RPAs4SYRkQGWR1jHBKcC6U36eYVQra1l7XAFB1DjTgVZ6Tm9/rcg0qdSPKuClQuYJKp/fiXIt9uO4NOt6soFlSqkrW/cTR9j7kXNYHdU0r1ZCV79g+g1GDtphru7ISgEo9A6jJ4XpTs3FfmBBssszNd6jFb/ex3yaxt+yVde+udSFk7XV6HEOcVWZ9WXE4Aor4hxjvda81uVJWoJpSKjkHG7pQuR2hqiWILHgGwJlxmk/47uVr/Kt/8z/ik99+ilc3N1hTRtcNANUK0DExYorl8SzHoOIkwhC6AuRz+FOYWM/zVkdp9+qjND82L77g52bGAsULJj9sF5uWPlOt1TfdeIM69Xp2SWbCGhlrigW8GDdaLqBHWufkaqXerQmvjjNujxNiTEgs/m8D8yklKXKhqhOtt2PWZAXSCWu8bwZhjQk5yDOJx9l4l035aRIP/TJNuLm+xuF0xLwsWFWphrkG/UWlJYh85TBit7vAbrcv3vhhGBAIomFf/rhSrMm8B2TJrpABaHrDUCAqlJoKNktU0RLByvvWCU7WAQ2o3Vj05r1s32G1bgFb7AiVTCmn63wAQPAlRJ6LEkrOajAyzuQMbQzq387Slm2cldEHIm423PKgik9Nhq2sYrIgmrpBWZy0Xx012vtqrpSNhup0ITtXOyQdgNyENuu5BVw2z1PsdjtZu2HZw5nHXTcl52vSCDfnKsaKgXhb0BJOhzt8+80f8Zvff4a/+91X+OpmRWaHZmqXmd7sW+UdlNfNzVdo+932H3Xeoni9m0WlXqyMpfN1pi4/JQhoo7X9TrEi7Zg6PpgYjhh/+cET/LOffID3rq7Q913x+pYzFi9PM/ydk5oN9iYKX9Vr4TGSYh/eoe87XIwdnu4GfHgx4if7Ee/0Hp+/PuDlYcbtEnGKjPiW3pgfSitrEGT3bQFpARlsdRma7wHFe2zN9gsD6PbHgD4AWBVdA4ry2Rawyn01IEuVQFpaxJv2pNYT2Xyoo2lbmIZ1QpgvwDy4W28637ve+X2kVPW/236w+3iTB29LEygWe+1jPV9bWbJNOCUFmIz63r7PW7jtkroX82axoOZ4qXvCXKuT2vx1XI+x+yhrWbmQraky52wxKr9u3xURLMoKoFRBLc+tiaHnz/em57VrtFtceSbSyCtVr/qb8gTSGcayZ3Vcjy8VQHHf+70538aw0nnQXLZZzTYfbjzcJPjNTt32f9sTD8+Ph+eMGfNvGjlljJ59n8p1CDVSxJtzyTwXTMO5JizbfM7cRvK5+Y5KS9s7170/t+dgwCo0lswSjezcnU64uTvi+YsXePb8OY6nCcsaJbcxaFK+YYazBNaCgW0/YxTnIyBO6rdpfzZH3rg8xrey/7LexAa01RVLJ4+N+Puv8VzK6CFwr4bWmfUGxWBUAVK7uEHBmwNMvSYlsb+dc5hixvVxxvXdSZNLIzrfIcWEtEakNQLqBWBVROEsPLoYky4CrLzD6umMMSJnefFgW5CbQSSIAOs84fnhgJevXiBlYIkR65oQIwMUJPFSk1iHfsB+N+Jit8PF1RWGocfQ90Kp6Tp4Ft17+RMElFunFVYyCog3DxA5UbOxJFnBdbXsMHThcAWYKlCRVR0bcHnPWLNXzkBSKkupaglJgNp8pcJUMwLrJDaKiQOQ6gJjv29QZZkYm4kg4N3GkCyIrh6tWuKcCVzRnyFLEIthVHICnIB7AfHqHS8bYWi+6oq3JdtmXW5JB2dTnEW6wRZNLRvWJLwCpPLBrF7vjJqJqd9rKvFC+07eA1WkrWOjPKr+vMQZr1+9wKd/+Bx//9vP8Q9fX2NKrnqQ9L/imde8Ce33oo7T6KPz5p3W756/c6AxFAgNGG6PsY/qOZho+3sInY5J3qlECakaCKQgoAU0+k76jvC/+YuP8Fc/+whPry4QuqAyrNJnZECN9d2TKXgornAGSBiScyIGPOn88uwRYkIXOoxdhydDjw92PT64HPHzl7f44uU1vro+4o93M27mt1Ms+KE0G/fGWT6PxrZ0hRZIka0ZZ6DcijEtyyoiAEQFzLeA3a4BGGDfanYTUfHylrod2CaNyn3cB0zVmK9zQ8DCfTD7cNtAomoZYst7b51ehqTqho/NMX/6mvX47fMZgKM6T5p/m3H9RmcbUfPMFRC297KhBjUAsfYENedp4aZytMmhJtk3fc/NflG+W9ceu15Z+y1KDVkjxHCw31H5Tvt+HuxPqnd+/utqcMkfK4IoHnmN0INhXGjSQVP6Wy/gqOKgMiYNQuh1y7hrb0t7wKoKt/e39ZCjOV89rry/ZuwRUSlY2PbLm37e9gk9iOA3kRM8eMjm2Hv4Ty9kwiIG5N/kGN44kKHyo41BkJt1pgJ5wyKk2xupqmDCq1ev8OL1DZ49e4bnL15imhdhYUDYE60s+nkErdxLi6VKp/G9MfWm9mcA+bMNtRnATW++5akeXgi+L2QDA+QtKLh3SyYJaH7sZpHTDowxgUtSPCFmxs1pxou7IxIylhwRoivnzUk2Y9EWjyV8K5rHM+ZlVotbOeBESFEKmlitBrNiiQgxLgAycoqYThnMixznO3gCciZMS8QSGRQ6dK5H3w/qhd/h6upSeLvDiKDSlUPfwzmHjqpmvHjWZdNS+XINyfHGKNGelfvUWWQWLKjk12h3MFJO2s+u8JYbeK/vyBbYJjzVTtHiSSF7EQBUV591wW611lH/FkMsamJsPatrYSK3I7FdmGwsyD2QC80wVhAPFJbGZmEk6cTWK1FKvHtLSJZnyWQXqWPPecsRsJurY4Jtg4IoGZRrOpKTM6o6Qb2hOvEhSTpyx0Kf2TirNm8ZUO5G7VbOJTrDOePu9hW++PJz/PtPPsPffvYtvjkmkAv1ts/7pv1JjT5TVGr7fQu1efu9csSWRtbefz283ZHUuEN9JmqGWbvQ17G2va4t6ESE3Tjgf/tP/xK/+PBDPLnYYwgevkjxSO5HXXRlDIQg9AqLogFAF2RMupTgXBYthEzoyaPvRFZ2iQ59IHQhY+iAjy46/K/e2+Gr6wN+9+IWv31+eKAffuBN54/3qrqx+ZUaw5pEykrHISJwkjyklioy9hciWbmK6gOAAuRTSug6X3jvrUceoOK1NyGDAuBTkrHZghcQxHuOMmeBFiRuPzO1moeAREuFqHsaUMej5MQwTHqRK5+bZJ3YHn/evW/eW+9HELbe4e1yQRUr2yZANte3zeaOLIoPXl6PY5iZZOtuy7UmUInKcQFsHi43a4lon5U7bjnYG5OoMQTKBdVRoULLsKiqo3OASLYJ4p6D5aHnKuubgbAKxABL4DUjxP6uR5TorbrMS9TBDKumzzdecQaQ6z2fmYQgUtpU2XfP3z/qpr95rQzAF+fj+XfMabr5xgNO2LZt+hYPQEDSuWDW1vk1ie79aa/NYKnzk5NKT9f1wI4/V19iNt++4qQzL/0GyOve6iGGWIwJ87Lg+u6IL774Cs9evMTX3zzDV19/gyVxqcdDcGAW3RoTwkib/vIAUlPEiwGr6A7AY3vPb2rEb8umf2yP7bE9tsf22B7bY3tsj+2x/S+mfY/9/Nge22N7bI/tsT22x/bYHttj+19qewTyj+2xPbbH9tge22N7bI/tsf0A2yOQf2yP7bE9tsf22B7bY3tsj+0H2B6B/GN7bI/tsT22x/bYHttje2w/wPYI5B/bY3tsj+2xPbbH9tge22P7AbZHIP/YHttje2yP7bE9tsf22B7bD7A9AvnH9tge22N7bI/tsT22x/bYfoDtEcg/tsf22B7bY3tsj+2xPbbH9gNsj0D+sT22x/bYHttje2yP7bE9th9g+/8DNpTy+6tjAHIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Test queries\n", + "test_cases = [\n", + " (\"https://people.com/thmb/cS-3Y34QFwEbRO_x50acJP3MwbQ=/1500x0/filters:no_upscale():max_bytes(150000):strip_icc():focal(734x348:736x350)/Tom-Hanks-That-Thing-You-Do-110624-NA-tout-d517a235093747949aec98449b8b9245.jpg\", \"Tom Hanks\"),\n", + " (\"https://github.com/serengil/deepface/raw/master/tests/dataset/img2.jpg\", \"Angelina Jolie\"),\n", + " (\"https://m.media-amazon.com/images/M/MV5BOGY5NTNiMmUtMjdiYi00ZmZkLTg3OTgtNDQ1OTVlZWUzY2IzXkEyXkFqcGc@._V1_FMjpg_UX1000_.jpg\", \"Seth Rogan\"),\n", + " (\"https://media.hugogloss.uol.com.br/uploads/2023/10/Kristen-Stewart-617x347.png\", \"Kristen Stewart\"),\n", + " (\"https://aaregistry.org/wp-content/uploads/2009/09/denzel-washington.jpg\", \"Denzel Washington\"),\n", + " (\"https://static.wikia.nocookie.net/littlewomen/images/a/ac/Emmawatson.png/revision/latest?cb=20191221175400\", \"Emma Watson\"),\n", + "]\n", + "\n", + "# Run facial recognition\n", + "for image_url, label in test_cases:\n", + " print(f\"\\n--- Testing: {label} ---\")\n", + " query_redis(image_url, index, client)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BJFOee5mxQ1F" + }, + "source": [ + "**Nice!** Now try to find other celebrity images (or your own) to see what is matched. You can toggle the `SAFE_THRESHOLD` variable to adjust the restrictiveness of the search." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "D_eiWikCJkED" + }, + "source": [ + "## Exanple 2 -- Authentication via Facial Recog MFA\n", + "\n", + "This next section demonstrates how to build a **simple authentication system** using the existing facial recognition dataset and vector search capabilities of Redis. The goal is to simulate a **multi-factor authentication (MFA)** system where users are authenticated based on:\n", + "\n", + "1. **Password Validation**: A hardcoded password is checked (because this is a Lab).\n", + "2. **Claimed Identity**: The name provided by the user is compared against the database.\n", + "3. **Facial Recognition**: The user's image is matched using VSS, and the distance is validated against a configurable threshold (`SAFE_THRESHOLD`).\n", + "\n", + "## How It Works\n", + "1. The user submits:\n", + " - Their **image** (via a URL).\n", + " - Their **name** (claimed identity).\n", + " - A **password** (hardcoded for demo purposes).\n", + "2. The system:\n", + " - Validates the password.\n", + " - Converts the provided image into a vector embedding.\n", + " - Queries Redis to find the closest match using vector similarity.\n", + " - Checks if the name of the closest match matches the claimed identity.\n", + " - Verifies that the similarity score (distance) is within the acceptable threshold.\n", + "3. The authentication succeeds only if **all conditions are met**.\n", + "\n", + "### Here is the function that implements this simple logic\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "id": "UPZUdQ0WNo7e" + }, + "outputs": [], + "source": [ + "SAFE_THRESHOLD=0.49\n", + "\n", + "def authenticate_user(\n", + " image_url: str,\n", + " claimed_name: str,\n", + " password: str,\n", + " index: SearchIndex,\n", + " threshold: float = SAFE_THRESHOLD\n", + "):\n", + " \"\"\"\n", + " Simulates an authentication system using vector similarity search and a hardcoded password validation.\n", + "\n", + " Args:\n", + " image_url (str): URL of the user's image.\n", + " claimed_name (str): Name the user is claiming to be.\n", + " password (str): User-provided password (validated against hardcoded values).\n", + " index (SearchIndex): Redis index to perform VSS.\n", + " client (Redis): Redis client connection.\n", + " threshold (float): Semantic distance threshold to determine a valid match.\n", + "\n", + " Returns:\n", + " bool: True if authentication succeeds, False otherwise.\n", + " \"\"\"\n", + " # Hardcoded password validation (for demonstration purposes)\n", + " valid_password = \"mypassword123\"\n", + " if password != valid_password:\n", + " print(\"Authentication failed: Invalid password.\")\n", + " return False\n", + "\n", + " # Generate embedding for the provided image\n", + " user_embedding = generate_embedding(image_url)\n", + " if user_embedding is None:\n", + " print(\"Authentication failed: Could not process the image.\")\n", + " return False\n", + "\n", + " # Query Redis for the claimed name\n", + " query = VectorQuery(\n", + " vector=user_embedding.tolist(),\n", + " vector_field_name=\"embedding\",\n", + " return_fields=[\"name\", \"vector_distance\", \"photo_binary\"],\n", + " num_results=1\n", + " )\n", + " results = index.query(query)\n", + "\n", + " if not results:\n", + " print(\"Authentication failed: No matches found.\")\n", + " return False\n", + "\n", + " # Validate the best match\n", + " best_match = results[0]\n", + " match_name = best_match[\"name\"]\n", + " match_distance = float(best_match[\"vector_distance\"])\n", + "\n", + " if match_name != claimed_name:\n", + " print(f\"Authentication failed: Claimed name '{claimed_name}' does not match the best match '{match_name}'.\")\n", + " return False\n", + "\n", + " if match_distance > threshold:\n", + " print(f\"Authentication failed: Distance {match_distance:.2f} exceeds threshold {threshold:.2f}.\")\n", + " return False\n", + "\n", + " # If all checks pass\n", + " print(f\"Authentication succeeded for user '{claimed_name}'. Distance: {match_distance:.2f}.\")\n", + " return True" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "x8qhDNlzOEOG" + }, + "source": [ + "### Make sure dataset is ready to go" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "e99k-ng4ODyd", + "outputId": "8dd86a25-ab23-4a9b-9462-ac323f777855" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "18:09:49 redisvl.index.index INFO Index already exists, overwriting.\n" + ] + } + ], + "source": [ + "# Connect to Redis\n", + "client = get_redis_connection(REDIS_URL)\n", + "\n", + "# Ensure the RedisVL index is valid\n", + "index = create_redis_index(client)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vm_yD9_-vVdZ", + "outputId": "8d7a2794-025b-4990-e948-96eb9e65d610" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Redis already contains 258 records. Skipping data injection.\n" + ] + } + ], + "source": [ + "# Check if Redis already contains data\n", + "indexed_faces_count = index.info()['num_docs']\n", + "if indexed_faces_count > 0:\n", + " print(f\"Redis already contains {indexed_faces_count} records. Skipping data injection.\")\n", + "else:\n", + " # Inject data into Redis from a local dataset if no data is present\n", + " dataset_path = \"kaggle_famous_people_dataset\"\n", + " inject_local_data_into_redis(dataset_path, index)\n", + " print(\"Data successfully injected into Redis.\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Gc4t3Z6KvVdZ" + }, + "source": [ + "### Authentication flow simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "TA9qBJ10vVdZ", + "outputId": "bf9f92b1-0089-45fb-d962-9ba664100d69" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "🔍 Authenticating: angelina_jolie...\n", + "Authentication succeeded for user 'angelina_jolie'. Distance: 0.39.\n", + "✅ Authentication succeeded for angelina_jolie.\n", + "\n", + "🔍 Authenticating: hermione_granger...\n", + "Authentication failed: Claimed name 'hermione_granger' does not match the best match 'emma_watson'.\n", + "❌ Authentication failed for hermione_granger.\n", + "\n", + "🔍 Authenticating: brad_pitt...\n", + "Authentication failed: Invalid password.\n", + "❌ Authentication failed for brad_pitt.\n", + "\n", + "🎉 Authentication demo completed!\n" + ] + } + ], + "source": [ + "# Authentication test cases\n", + "auth_test_cases = [\n", + " {\n", + " \"image_url\": \"https://github.com/serengil/deepface/raw/master/tests/dataset/img2.jpg\",\n", + " \"claimed_name\": \"angelina_jolie\",\n", + " \"password\": \"mypassword123\"\n", + " },\n", + " {\n", + " \"image_url\": \"https://static.wikia.nocookie.net/littlewomen/images/a/ac/Emmawatson.png/revision/latest?cb=20191221175400\",\n", + " \"claimed_name\": \"hermione_granger\", # Intentional mismatch\n", + " \"password\": \"mypassword123\"\n", + " },\n", + " {\n", + " \"image_url\": \"https://static.wikia.nocookie.net/littlewomen/images/a/ac/Emmawatson.png/revision/latest?cb=20191221175400\",\n", + " \"claimed_name\": \"brad_pitt\",\n", + " \"password\": \"wrongpassword\" # Intentional wrong password\n", + " }\n", + "]\n", + "\n", + "for test_case in auth_test_cases:\n", + " print(f\"\\n🔍 Authenticating: {test_case['claimed_name']}...\")\n", + " success = authenticate_user(\n", + " image_url=test_case[\"image_url\"],\n", + " claimed_name=test_case[\"claimed_name\"],\n", + " password=test_case[\"password\"],\n", + " index=index\n", + " )\n", + " if success:\n", + " print(f\"✅ Authentication succeeded for {test_case['claimed_name']}.\")\n", + " else:\n", + " print(f\"❌ Authentication failed for {test_case['claimed_name']}.\")\n", + "\n", + "print(\"\\n🎉 Authentication demo completed!\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "l1c1Rc_TvVdZ" + }, + "source": [ + "## Cleanup redis data and index" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "7H_TI2irvVdZ", + "outputId": "51bf5000-8706-4c6d-813f-726f2a6f8da8" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Deleted 258 keys\n" + ] + } + ], + "source": [ + "# clean up your index\n", + "while remaining := index.clear():\n", + " print(f\"Deleted {remaining} keys\")" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "gpuType": "T4", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/python-recipes/feature-store/00_feast_credit_score.ipynb b/python-recipes/feature-store/00_feast_credit_score.ipynb new file mode 100644 index 00000000..022fb1ae --- /dev/null +++ b/python-recipes/feature-store/00_feast_credit_score.ipynb @@ -0,0 +1,3747 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "_MCo747t9dL2" + }, + "source": [ + "![Redis](https://redis.io/wp-content/uploads/2024/04/Logotype.svg?auto=webp&quality=85,75&width=120)\n", + "\n", + "# Redis Online Feature Store with Feast\n", + "\n", + "In this recipe, we will learn all about [Feature Stores](https://redis.io/solutions/feature-stores/) with **Redis** and **Feast**. This guide is an adaptation of the [Feast Tutorial](https://docs.feast.dev/tutorials/tutorials-overview/real-time-credit-scoring-on-aws) that uses [Redis as the online feature store](https://docs.feast.dev/reference/online-stores/redis).\n", + "\n", + "\n", + "## What are feature stores?\n", + "A **feature store** architecture makes machine learning systems faster, cheaper, and more reliable.\n", + "- It centralizes feature definitions so ML teams can reuse work instead of starting from scratch.\n", + "- It ensures training data and production data stay consistent.\n", + "- It scales feature serving easily for both real-time and batch (offline) predictions.\n", + "\n", + "By reducing errors, wasted time, and technical overhead, a feature store helps teams deliver ML models faster and with less hassle. The typical feature store architecture includes both an **Online** and **Offline** store.\n", + "\n", + "![Feature Store](https://raw.githubusercontent.com/redis-developer/redis-ai-resources/main/assets/feature_store.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "xXeKcMddDMf_" + }, + "source": [ + "## Let's Begin!\n", + "\"Open\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "sBIoQ08FI_d_" + }, + "source": [ + "## Environment Setup\n", + "\n", + "### Install Python Dependencies" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "pf1wE6aXvofJ", + "outputId": "cf0247c6-03b0-4314-c389-96867b60fc1a" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.3/5.3 MB\u001b[0m \u001b[31m11.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m81.6/81.6 kB\u001b[0m \u001b[31m3.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m119.4/119.4 kB\u001b[0m \u001b[31m6.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m94.8/94.8 kB\u001b[0m \u001b[31m3.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m167.3/167.3 kB\u001b[0m \u001b[31m7.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m241.1/241.1 kB\u001b[0m \u001b[31m12.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m62.3/62.3 kB\u001b[0m \u001b[31m3.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m85.0/85.0 kB\u001b[0m \u001b[31m5.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m101.6/101.6 kB\u001b[0m \u001b[31m4.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m243.2/243.2 kB\u001b[0m \u001b[31m9.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m459.8/459.8 kB\u001b[0m \u001b[31m17.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m12.7/12.7 MB\u001b[0m \u001b[31m29.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m71.5/71.5 kB\u001b[0m \u001b[31m2.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.0/4.0 MB\u001b[0m \u001b[31m45.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m452.6/452.6 kB\u001b[0m \u001b[31m7.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h" + ] + } + ], + "source": [ + "%pip install -q feast['redis']==0.42.0 ipywidgets pandas scikit-learn" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "uEjQ6Z2DH0Nl" + }, + "source": [ + "### Install Redis Stack\n", + "\n", + "In this recipe, **Redis** will be used to store and fetch ML model features through Feast. **We need to make sure we have a Redis instance available.**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "wojUwDA6H5GH" + }, + "source": [ + "#### For Colab\n", + "Use the shell script below to download, extract, and install [Redis Stack](https://redis.io/docs/getting-started/install-stack/) directly from the Redis package archive." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ZYmnw8E16UvK", + "outputId": "db7b19c1-c9d5-45f2-92f0-caf045216234" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb jammy main\n", + "Starting redis-stack-server, database path /var/lib/redis-stack\n" + ] + } + ], + "source": [ + "# NBVAL_SKIP\n", + "%%sh\n", + "curl -fsSL https://packages.redis.io/gpg | sudo gpg --dearmor -o /usr/share/keyrings/redis-archive-keyring.gpg\n", + "echo \"deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb $(lsb_release -cs) main\" | sudo tee /etc/apt/sources.list.d/redis.list\n", + "sudo apt-get update > /dev/null 2>&1\n", + "sudo apt-get install redis-stack-server > /dev/null 2>&1\n", + "redis-stack-server --daemonize yes" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "OdWGcmVeH-Oy" + }, + "source": [ + "#### For Alternative Environments\n", + "There are many ways to get the necessary redis-stack instance running\n", + "1. On cloud, deploy a [FREE instance of Redis in the cloud](https://redis.io/cloud/). Or, if you have your\n", + "own version of Redis Enterprise running, that works too!\n", + "2. Per OS, [see the docs](https://redis.io/docs/latest/operate/oss_and_stack/install/install-stack/)\n", + "3. With docker:\n", + "\n", + " ```bash\n", + " docker run -d --name redis-stack-server -p 6379:6379 redis/redis-stack-server:latest\n", + " ```" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "nBgAPO0UIFGd" + }, + "source": [ + "### Define the Redis Connection URL\n", + "\n", + "By default this notebook connects to the local instance of Redis Stack. **If you have your own Redis Enterprise instance** - replace `REDIS_PASSWORD`, `REDIS_HOST` and `REDIS_PORT` values with your own." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "id": "vhPBR4sS6We9" + }, + "outputs": [], + "source": [ + "import os\n", + "import warnings\n", + "\n", + "REDIS_HOST = os.getenv(\"REDIS_HOST\", \"localhost\")\n", + "REDIS_PORT = os.getenv(\"REDIS_PORT\", \"6379\")\n", + "REDIS_PASSWORD = os.getenv(\"REDIS_PASSWORD\", \"\")\n", + "\n", + "# Replace values above with your own if using Redis Cloud instance\n", + "#REDIS_HOST=\"redis-18374.c253.us-central1-1.gce.cloud.redislabs.com\"\n", + "#REDIS_PORT=18374\n", + "#REDIS_PASSWORD=\"1TNxTEdYRDgIDKM2gDfasupCADXXXX\"\n", + "\n", + "# If SSL is enabled on the endpoint, use rediss:// as the URL prefix\n", + "REDIS_URL = f\"redis://:{REDIS_PASSWORD}@{REDIS_HOST}:{REDIS_PORT}\"\n", + "\n", + "# See https://docs.feast.dev/reference/online-stores/redis for details on Feast connection to Redis\n", + "REDIS_URL_FEAST = f\"{REDIS_HOST}:{REDIS_PORT},ssl=false,password={REDIS_PASSWORD}\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZSEHUJSVIICm" + }, + "source": [ + "## Load features dataset\n", + "\n", + "Below we will make a `creditscore/` directory which will be the home of our Feast repo. We'll create and store additional files there down the road. For now we are loading dataset files into `creditscore/data`." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "v15le9QHUDx1" + }, + "outputs": [], + "source": [ + "%%sh\n", + "mkdir creditscore\n", + "mkdir creditscore/data\n", + "\n", + "wget https://redis-ai-resources.s3.us-east-2.amazonaws.com/feature-store/creditscore/credit_history.parquet -q -P creditscore/data\n", + "wget https://redis-ai-resources.s3.us-east-2.amazonaws.com/feature-store/creditscore/zipcode_table.parquet -q -P creditscore/data\n", + "wget https://redis-ai-resources.s3.us-east-2.amazonaws.com/feature-store/creditscore/loan_table.parquet -q -P creditscore/data" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "aPN5iDBmFZvU" + }, + "source": [ + "### Creating feature_store.yaml\n", + "\n", + "`feature_store.yaml` is used to configure a feature store with Feast. The file must be located at the root of a feature repository `creditscore/`.\n", + "\n", + "See [Redis | Feast Documentation](https://docs.feast.dev/reference/online-stores/redis) for the details of configuring Redis as an online store." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "rpL-6kwUWQbN" + }, + "outputs": [], + "source": [ + "feature_store_config = \\\n", + "f\"\"\"project: creditscore\n", + "registry: data/registry.db\n", + "provider: local\n", + "online_store:\n", + " type: redis\n", + " connection_string: {REDIS_URL_FEAST}\n", + "entity_key_serialization_version: 2\n", + "\"\"\"\n", + "\n", + "with open('creditscore/feature_store.yaml', \"w\") as file:\n", + " file.write(feature_store_config)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "5iIlkheBMAFj", + "outputId": "e6fbefb8-4661-4b31-dece-53a3c172a491" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "project: creditscore\n", + "registry: data/registry.db\n", + "provider: local\n", + "online_store:\n", + " type: redis\n", + " connection_string: localhost:6379,ssl=false,password=\n", + "entity_key_serialization_version: 2\n" + ] + } + ], + "source": [ + "# Print our feature_store.yaml\n", + "! cat creditscore/feature_store.yaml" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Xbl45OPxGbFY" + }, + "source": [ + "### Feature Definitions\n", + "\n", + "A feature repository can also contain one or more Python files that contain feature definitions." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "W_9xklCQWsQI", + "outputId": "4ad9db17-c6bd-4406-a724-0a5a73f01733" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Writing creditscore/features.py\n" + ] + } + ], + "source": [ + "%%writefile creditscore/features.py\n", + "\n", + "from datetime import timedelta\n", + "\n", + "from feast import (\n", + " Entity,\n", + " Field,\n", + " FeatureView,\n", + " ValueType,\n", + " FileSource\n", + " )\n", + "from feast.types import Float32, Int64, String\n", + "\n", + "\n", + "# Feature Definitions\n", + "\n", + "## Zipcode Features\n", + "zipcode = Entity(\n", + " name=\"zipcode\",\n", + " value_type=ValueType.STRING\n", + ")\n", + "zipcode_source = FileSource(\n", + " path=\"data/zipcode_table.parquet\",\n", + " timestamp_field=\"event_timestamp\",\n", + " #event_timestamp_column=\"event_timestamp\",\n", + " created_timestamp_column=\"created_timestamp\",\n", + ")\n", + "zipcode_features = FeatureView(\n", + " name=\"zipcode_features\",\n", + " entities=[zipcode],\n", + " ttl=timedelta(days=3650),\n", + " schema=[\n", + " Field(name=\"city\", dtype=String),\n", + " Field(name=\"state\", dtype=String),\n", + " Field(name=\"location_type\", dtype=String),\n", + " Field(name=\"tax_returns_filed\", dtype=Int64),\n", + " Field(name=\"population\", dtype=Int64),\n", + " Field(name=\"total_wages\", dtype=Int64),\n", + " ],\n", + " source=zipcode_source,\n", + ")\n", + "\n", + "\n", + "## Credit History Features\n", + "dob_ssn = Entity(\n", + " name=\"dob_ssn\",\n", + " description=\"Date of birth and last four digits of social security number\",\n", + " value_type=ValueType.STRING\n", + ")\n", + "credit_history_source = FileSource(\n", + " path=\"data/credit_history.parquet\",\n", + " timestamp_field=\"event_timestamp\",\n", + " #event_timestamp_column=\"event_timestamp\",\n", + " created_timestamp_column=\"created_timestamp\",\n", + "\n", + ")\n", + "credit_history = FeatureView(\n", + " name=\"credit_history\",\n", + " entities=[dob_ssn],\n", + " ttl=timedelta(days=3650),\n", + " schema=[\n", + " Field(name=\"dob_ssn\", dtype=String), # Add entity column for dob_ssn\n", + " Field(name=\"credit_card_due\", dtype=Int64),\n", + " Field(name=\"mortgage_due\", dtype=Int64),\n", + " Field(name=\"student_loan_due\", dtype=Int64),\n", + " Field(name=\"vehicle_loan_due\", dtype=Int64),\n", + " Field(name=\"hard_pulls\", dtype=Int64),\n", + " Field(name=\"missed_payments_2y\", dtype=Int64),\n", + " Field(name=\"missed_payments_1y\", dtype=Int64),\n", + " Field(name=\"missed_payments_6m\", dtype=Int64),\n", + " Field(name=\"bankruptcies\", dtype=Int64),\n", + " ],\n", + " source=credit_history_source,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Go53F4ZOnkZf" + }, + "source": [ + "### Create Feast repository" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "8Ni6sGGjXDks", + "outputId": "d51d4097-2945-4ab8-ba29-813fff333d00" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/content/creditscore\n", + "No project found in the repository. Using project name creditscore defined in feature_store.yaml\n", + "Applying changes for project creditscore\n", + "Deploying infrastructure for \u001b[1m\u001b[32mzipcode_features\u001b[0m\n", + "Deploying infrastructure for \u001b[1m\u001b[32mcredit_history\u001b[0m\n" + ] + } + ], + "source": [ + "%cd creditscore/\n", + "!feast apply" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "nZseuwvTnqbH" + }, + "source": [ + "### Materialize features into Redis\n", + "\n", + "Load data from feature views (parquet files) into the online store (Redis). Use `feast materialize-incremental` to update online store with changes since the last `materialize` call." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "PH8wOOLUv75g", + "outputId": "18cb39e3-e037-4ff5-982c-55d86bfa3b22" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Materializing \u001b[1m\u001b[32m2\u001b[0m feature views to \u001b[1m\u001b[32m2025-01-24 16:57:10+00:00\u001b[0m into the \u001b[1m\u001b[32mredis\u001b[0m online store.\n", + "\n", + "\u001b[1m\u001b[32mzipcode_features\u001b[0m from \u001b[1m\u001b[32m2015-01-28 17:19:20+00:00\u001b[0m to \u001b[1m\u001b[32m2025-01-24 16:57:10+00:00\u001b[0m:\n", + "100%|██████████████████████████████████████████████████████| 28844/28844 [00:02<00:00, 12728.58it/s]\n", + "\u001b[1m\u001b[32mcredit_history\u001b[0m from \u001b[1m\u001b[32m2015-01-28 17:19:23+00:00\u001b[0m to \u001b[1m\u001b[32m2025-01-24 16:57:10+00:00\u001b[0m:\n", + "100%|██████████████████████████████████████████████████████| 28633/28633 [00:02<00:00, 10716.44it/s]\n", + "/content\n" + ] + } + ], + "source": [ + "warnings.simplefilter(\"ignore\", DeprecationWarning)\n", + "\n", + "!feast materialize-incremental 2025-01-24T16:57:10\n", + "%cd .." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "e1L8uAaKuoge" + }, + "source": [ + "## Retreive feature vector from the Redis Online Store\n", + "\n", + "`feast apply` and `feast materialize` initialized our feature store, so now we can request features from the Redis online store with `store.get_online_features()` call." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "u7Yo-3BBgLFy", + "outputId": "872bb552-bda4-4ccd-f473-6ddee6c692d8" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{'zipcode': ['76104'],\n", + " 'dob_ssn': ['19630621_4278'],\n", + " 'total_wages': [142325465],\n", + " 'state': ['TX'],\n", + " 'tax_returns_filed': [6058],\n", + " 'city': ['FORT WORTH'],\n", + " 'location_type': ['PRIMARY'],\n", + " 'population': [10534],\n", + " 'hard_pulls': [1],\n", + " 'missed_payments_2y': [0],\n", + " 'bankruptcies': [0],\n", + " 'missed_payments_6m': [0],\n", + " 'credit_card_due': [3343],\n", + " 'student_loan_due': [44375],\n", + " 'mortgage_due': [378847],\n", + " 'vehicle_loan_due': [11506],\n", + " 'missed_payments_1y': [0]}" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from feast import FeatureStore\n", + "warnings.simplefilter(\"ignore\", DeprecationWarning)\n", + "\n", + "\n", + "store = FeatureStore(repo_path=\"creditscore/\")\n", + "feast_features = [\n", + " \"zipcode_features:city\",\n", + " \"zipcode_features:state\",\n", + " \"zipcode_features:location_type\",\n", + " \"zipcode_features:tax_returns_filed\",\n", + " \"zipcode_features:population\",\n", + " \"zipcode_features:total_wages\",\n", + " \"credit_history:credit_card_due\",\n", + " \"credit_history:mortgage_due\",\n", + " \"credit_history:student_loan_due\",\n", + " \"credit_history:vehicle_loan_due\",\n", + " \"credit_history:hard_pulls\",\n", + " \"credit_history:missed_payments_2y\",\n", + " \"credit_history:missed_payments_1y\",\n", + " \"credit_history:missed_payments_6m\",\n", + " \"credit_history:bankruptcies\",\n", + " ]\n", + "zipcode = \"76104\"\n", + "dob_ssn = \"19630621_4278\"\n", + "\n", + "feature_vector = store.get_online_features(\n", + " features = feast_features,\n", + " entity_rows = [{\"zipcode\": zipcode, \"dob_ssn\": dob_ssn}]\n", + ")\n", + "feature_vector.to_dict()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "tqDuixcKuvYL" + }, + "source": [ + "## Examine source data\n", + "\n", + "`credit_history.parquet` and `zipcode_table.parquet` contains data that would be exposed by our feature store as both online and offline features. `loan_table.parquet` is used only to train the model and contains historical loan request submissions and target value as approve/deny in `loan_status`." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 617 + }, + "id": "H2qtjYqQx01b", + "outputId": "c88c250c-ccfe-4a42-ebf9-41528367589b" + }, + "outputs": [ + { + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe" + }, + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
event_timestampdob_ssncredit_card_duemortgage_duestudent_loan_duevehicle_loan_duehard_pullsmissed_payments_2ymissed_payments_1ymissed_payments_6mbankruptciescreated_timestamp
02020-04-26 18:01:04.74657519530219_51798419918032232815078010002020-04-26 18:01:04.746575
12020-04-26 18:01:04.74657519781116_77232944741165251528605033102020-04-26 18:01:04.746575
22020-04-26 18:01:04.74657519931128_57718339765223300021733970002020-04-26 18:01:04.746575
32020-04-26 18:01:04.74657519500806_6783593615535234895526219100002020-04-26 18:01:04.746575
42020-04-26 18:01:04.74657519620322_769215751067381950115814110002020-04-26 18:01:04.746575
.......................................
20332932021-08-29 18:01:04.74657519621030_8837904511061442576013826852102021-08-29 18:01:04.746575
20332942021-08-29 18:01:04.74657519810914_5886506513768732059413948851102021-08-29 18:01:04.746575
20332952021-08-29 18:01:04.74657519491025_806173827353224113159021012102021-08-29 18:01:04.746575
20332962021-08-29 18:01:04.74657519751125_4615344315347924313316294462102021-08-29 18:01:04.746575
20332972021-08-29 18:01:04.74657519960703_344919281197324242084691140102021-08-29 18:01:04.746575
\n", + "

2033298 rows × 12 columns

\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "text/plain": [ + " event_timestamp dob_ssn credit_card_due \\\n", + "0 2020-04-26 18:01:04.746575 19530219_5179 8419 \n", + "1 2020-04-26 18:01:04.746575 19781116_7723 2944 \n", + "2 2020-04-26 18:01:04.746575 19931128_5771 833 \n", + "3 2020-04-26 18:01:04.746575 19500806_6783 5936 \n", + "4 2020-04-26 18:01:04.746575 19620322_7692 1575 \n", + "... ... ... ... \n", + "2033293 2021-08-29 18:01:04.746575 19621030_8837 9045 \n", + "2033294 2021-08-29 18:01:04.746575 19810914_5886 5065 \n", + "2033295 2021-08-29 18:01:04.746575 19491025_8061 738 \n", + "2033296 2021-08-29 18:01:04.746575 19751125_4615 3443 \n", + "2033297 2021-08-29 18:01:04.746575 19960703_3449 1928 \n", + "\n", + " mortgage_due student_loan_due vehicle_loan_due hard_pulls \\\n", + "0 91803 22328 15078 0 \n", + "1 741165 2515 28605 0 \n", + "2 976522 33000 21733 9 \n", + "3 1553523 48955 26219 1 \n", + "4 1067381 9501 15814 1 \n", + "... ... ... ... ... \n", + "2033293 1106144 25760 13826 8 \n", + "2033294 1376873 20594 13948 8 \n", + "2033295 273532 24113 15902 10 \n", + "2033296 1534792 43133 16294 4 \n", + "2033297 1197324 24208 4691 1 \n", + "\n", + " missed_payments_2y missed_payments_1y missed_payments_6m \\\n", + "0 1 0 0 \n", + "1 3 3 1 \n", + "2 7 0 0 \n", + "3 0 0 0 \n", + "4 1 0 0 \n", + "... ... ... ... \n", + "2033293 5 2 1 \n", + "2033294 5 1 1 \n", + "2033295 1 2 1 \n", + "2033296 6 2 1 \n", + "2033297 4 0 1 \n", + "\n", + " bankruptcies created_timestamp \n", + "0 0 2020-04-26 18:01:04.746575 \n", + "1 0 2020-04-26 18:01:04.746575 \n", + "2 0 2020-04-26 18:01:04.746575 \n", + "3 0 2020-04-26 18:01:04.746575 \n", + "4 0 2020-04-26 18:01:04.746575 \n", + "... ... ... \n", + "2033293 0 2021-08-29 18:01:04.746575 \n", + "2033294 0 2021-08-29 18:01:04.746575 \n", + "2033295 0 2021-08-29 18:01:04.746575 \n", + "2033296 0 2021-08-29 18:01:04.746575 \n", + "2033297 0 2021-08-29 18:01:04.746575 \n", + "\n", + "[2033298 rows x 12 columns]" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "pd.read_parquet(\"creditscore/data/credit_history.parquet\")\n", + "\n", + "# zipcode_table.parquet\n", + "# loan_table.parquet" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "dvNN9L0wlEdF" + }, + "source": [ + "## Machine Learning Model Training\n", + "\n", + "While our feature store at this point already complete, let's put it to a good use and introduce a `LoadRequestModel` that we will train, using `get_historical_features()` and use to make predictions with `get_online_features()`" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "id": "vpclM_myk3g_" + }, + "outputs": [], + "source": [ + "from pathlib import Path\n", + "\n", + "import feast\n", + "import joblib\n", + "import pandas as pd\n", + "\n", + "from sklearn import tree\n", + "from sklearn.exceptions import NotFittedError\n", + "from sklearn.preprocessing import OrdinalEncoder\n", + "from sklearn.utils.validation import check_is_fitted\n", + "warnings.simplefilter(\"ignore\", DeprecationWarning)\n", + "\n", + "\n", + "class LoadRequestModel:\n", + " \"\"\"\n", + " ML model to classify whether a person should\n", + " get approved or rejected for a loan based on a variety of\n", + " input factors.\n", + " \"\"\"\n", + " categorical_features = [\n", + " \"person_home_ownership\",\n", + " \"loan_intent\",\n", + " \"city\",\n", + " \"state\",\n", + " \"location_type\",\n", + " ]\n", + "\n", + " feast_features = [\n", + " \"zipcode_features:city\",\n", + " \"zipcode_features:state\",\n", + " \"zipcode_features:location_type\",\n", + " \"zipcode_features:tax_returns_filed\",\n", + " \"zipcode_features:population\",\n", + " \"zipcode_features:total_wages\",\n", + " \"credit_history:credit_card_due\",\n", + " \"credit_history:mortgage_due\",\n", + " \"credit_history:student_loan_due\",\n", + " \"credit_history:vehicle_loan_due\",\n", + " \"credit_history:hard_pulls\",\n", + " \"credit_history:missed_payments_2y\",\n", + " \"credit_history:missed_payments_1y\",\n", + " \"credit_history:missed_payments_6m\",\n", + " \"credit_history:bankruptcies\",\n", + " ]\n", + "\n", + " target = \"loan_status\"\n", + " model_filename = \"model.bin\"\n", + " encoder_filename = \"encoder.bin\"\n", + "\n", + " def __init__(self,secret=\"\"):\n", + " # Load model\n", + " if Path(self.model_filename).exists():\n", + " self.classifier = joblib.load(self.model_filename)\n", + " else:\n", + " self.classifier = tree.DecisionTreeClassifier()\n", + "\n", + " # Load ordinal encoder\n", + " if Path(self.encoder_filename).exists():\n", + " self.encoder = joblib.load(self.encoder_filename)\n", + " else:\n", + " self.encoder = OrdinalEncoder()\n", + "\n", + " # Set up feature store\n", + " self.fs = feast.FeatureStore(repo_path=\"creditscore/\")\n", + " #if secret and (\":\" in secret):\n", + " # self.fs.config.online_store.connection_string=secret\n", + "\n", + " def train(self, loans):\n", + " train_X, train_Y = self._get_training_features(loans)\n", + "\n", + " self.classifier.fit(train_X[sorted(train_X)], train_Y)\n", + " joblib.dump(self.classifier, self.model_filename)\n", + "\n", + " def _get_training_features(self, loans):\n", + " training_df = self.fs.get_historical_features(\n", + " entity_df=loans, features=self.feast_features\n", + " ).to_df()\n", + "\n", + " self._fit_ordinal_encoder(training_df)\n", + " self._apply_ordinal_encoding(training_df)\n", + " #print(training_df.head())\n", + " train_X = training_df[\n", + " training_df.columns.drop(self.target)\n", + " .drop(\"event_timestamp\")\n", + " .drop(\"created_timestamp__\")\n", + " .drop(\"loan_id\")\n", + " .drop(\"zipcode\")\n", + " .drop(\"dob_ssn\")\n", + " ]\n", + " train_X = train_X.reindex(sorted(train_X.columns), axis=1)\n", + " train_Y = training_df.loc[:, self.target]\n", + "\n", + " return train_X, train_Y\n", + "\n", + " def _fit_ordinal_encoder(self, requests):\n", + " self.encoder.fit(requests[self.categorical_features])\n", + " joblib.dump(self.encoder, self.encoder_filename)\n", + "\n", + " def _apply_ordinal_encoding(self, requests):\n", + " requests[self.categorical_features] = self.encoder.transform(\n", + " requests[self.categorical_features]\n", + " )\n", + "\n", + " def predict(self, request):\n", + " # Get online features from Feast\n", + " feature_vector = self._get_online_features_from_feast(request)\n", + "\n", + " # Join features to request features\n", + " features = request.copy()\n", + " features.update(feature_vector)\n", + " features_df = pd.DataFrame.from_dict(features)\n", + "\n", + " # Apply ordinal encoding to categorical features\n", + " self._apply_ordinal_encoding(features_df)\n", + "\n", + " # Sort columns\n", + " features_df = features_df.reindex(sorted(features_df.columns), axis=1)\n", + "\n", + " # Drop unnecessary columns\n", + " features_df = features_df[features_df.columns.drop(\"zipcode\").drop(\"dob_ssn\")]\n", + "\n", + " # Make prediction\n", + " features_df[\"prediction\"] = self.classifier.predict(features_df)\n", + "\n", + " # return result of credit scoring\n", + " return features_df[\"prediction\"].iloc[0]\n", + "\n", + " def _get_online_features_from_feast(self, request):\n", + " zipcode = request[\"zipcode\"][0]\n", + " dob_ssn = request[\"dob_ssn\"][0]\n", + "\n", + " return self.fs.get_online_features(\n", + " entity_rows=[{\"zipcode\": zipcode, \"dob_ssn\": dob_ssn}],\n", + " features=self.feast_features,\n", + " ).to_dict()\n", + "\n", + " def is_model_trained(self):\n", + " try:\n", + " check_is_fitted(self.classifier, \"tree_\")\n", + " except NotFittedError:\n", + " return False\n", + " return True\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "aJMddzepop_-" + }, + "source": [ + "## Initialize the model\n", + "\n", + "Now we need to train the model and make a sample prediction. After training is completed you'll see `model.bin` and `encoder.bin` files in the filesystem." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Nw99Ey_0EmZ0", + "outputId": "ec762747-da85-4f93-cc98-d165b33258e5" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model not trained. Performing training.\n" + ] + } + ], + "source": [ + "# Create model\n", + "model = LoadRequestModel()\n", + "\n", + "# Train model (using Parquet for zipcode and credit history features)\n", + "if not model.is_model_trained():\n", + " print(\"Model not trained. Performing training.\")\n", + " # Get historic loan data\n", + " loans = pd.read_parquet(\"creditscore/data/loan_table.parquet\")\n", + " model.train(loans)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mKhKRnCcLrwo" + }, + "source": [ + "### Make a Loan Request\n", + "\n", + "We will now use our trained ML model and feature store to predict whether or not you would get a loan.\n", + "\n", + "While making a loan request, make sure that `dob_ssn` and `zipcode` values do exist in the source datasets. You can examine source datasets with `pd.read_parquet(\"creditscore/data/credit_history.parquet\")`" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 127, + "referenced_widgets": [ + "d9a931929d2b4eda8790379c157d7060", + "e4dbf90e7a1943d6b513ebbaea4620fc", + "70a1a976057f4a7bae49c65b4aed9f4e", + "be98a638e1de496495281282d3b5afa2", + "580c994253f6470a8e140f2cc8370328", + "259feb51fc7a4291b8a0fdeb757dd0af", + "2a017fb94aed4714b39cdb890a72c364", + "3c8eebe78d464e4d913a89628fe1c5dd", + "31603e43689148acad80127c15e2b711" + ] + }, + "id": "28yr7TDhlOfa", + "outputId": "de0b7e4c-26a9-4197-af47-4c05e18bb372" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Select amounts below:\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d9a931929d2b4eda8790379c157d7060", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "IntSlider(value=159000, description='Income: ', max=1000000)" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "be98a638e1de496495281282d3b5afa2", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "IntSlider(value=5000, description='Loan Amount: ', max=1000000)" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2a017fb94aed4714b39cdb890a72c364", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "IntSlider(value=16, description='Interest Rate: ', max=90, min=1)" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import ipywidgets as widgets\n", + "\n", + "# initialize loan request with sample data\n", + "loan_request = {\n", + " \"zipcode\": [76104],\n", + " \"dob_ssn\": [\"19630621_4278\"],\n", + " \"person_age\": [63],\n", + " \"person_income\": [159000],\n", + " \"person_home_ownership\": [\"RENT\"],\n", + " \"person_emp_length\": [123.0],\n", + " \"loan_intent\": [\"PERSONAL\"],\n", + " \"loan_amnt\": [5000],\n", + " \"loan_int_rate\": [16.02],\n", + "}\n", + "\n", + "\n", + "slider_income = widgets.IntSlider(loan_request[\"person_income\"][0], max=1000000, min=0, description=\"Income: \")\n", + "slider_amount = widgets.IntSlider(loan_request[\"loan_amnt\"][0], max=1000000, min=0, description=\"Loan Amount: \")\n", + "slider_int_rate = widgets.IntSlider(loan_request[\"loan_int_rate\"][0], max=90, min=1, description=\"Interest Rate: \")\n", + "\n", + "print(\"Select amounts below:\")\n", + "display(slider_income, slider_amount, slider_int_rate)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "yFhF1XpWPbTG", + "outputId": "dc18d87b-548e-4097-ce63-d76d97dca85d" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loan rejected!\n" + ] + } + ], + "source": [ + "loan_request[\"person_income\"] = [slider_income.value]\n", + "loan_request[\"loan_amnt\"] = [slider_amount.value]\n", + "loan_request[\"loan_int_rate\"] = [slider_int_rate.value]\n", + "\n", + "\n", + "# Make online prediction (using Redis for retrieving online features)\n", + "result = model.predict(loan_request)\n", + "\n", + "if result == 0:\n", + " print(\"Loan approved!\")\n", + "elif result == 1:\n", + " print(\"Loan rejected!\")\n", + "\n", + "warnings.simplefilter(\"ignore\", DeprecationWarning)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "dvWW46znVObR" + }, + "source": [ + "Let's inspect an individual loan request payload." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 332 + }, + "id": "MI6ggOO1pH65", + "outputId": "92368c70-3244-4d91-9bef-c246e81d7c85" + }, + "outputs": [ + { + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "summary": "{\n \"name\": \"loan_request_df\",\n \"rows\": 9,\n \"fields\": [\n {\n \"column\": 0,\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 9,\n \"samples\": [\n 5000,\n \"19630621_4278\",\n 123.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}", + "type": "dataframe" + }, + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
zipcode76104
dob_ssn19630621_4278
person_age63
person_income159000
person_home_ownershipRENT
person_emp_length123.0
loan_intentPERSONAL
loan_amnt5000
loan_int_rate16
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "text/plain": [ + " 0\n", + "zipcode 76104\n", + "dob_ssn 19630621_4278\n", + "person_age 63\n", + "person_income 159000\n", + "person_home_ownership RENT\n", + "person_emp_length 123.0\n", + "loan_intent PERSONAL\n", + "loan_amnt 5000\n", + "loan_int_rate 16" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "warnings.simplefilter(\"ignore\", DeprecationWarning)\n", + "\n", + "loan_request_df = pd.DataFrame.from_dict(loan_request)\n", + "loan_request_df.transpose()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZOUteI-NVVKG" + }, + "source": [ + "Let's inspect the feature store features pulled from Redis." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 582 + }, + "id": "fg6ZFHF7uMr2", + "outputId": "c230bc1a-2cdb-485a-bb52-b6cf7974524e" + }, + "outputs": [ + { + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "summary": "{\n \"name\": \"feature_vector_df\",\n \"rows\": 17,\n \"fields\": [\n {\n \"column\": 0,\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 14,\n \"samples\": [\n 0,\n 44375,\n \"76104\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}", + "type": "dataframe" + }, + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
zipcode76104
dob_ssn19630621_4278
total_wages142325465
stateTX
tax_returns_filed6058
cityFORT WORTH
location_typePRIMARY
population10534
hard_pulls1
missed_payments_2y0
bankruptcies0
missed_payments_6m0
credit_card_due3343
student_loan_due44375
mortgage_due378847
vehicle_loan_due11506
missed_payments_1y0
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "text/plain": [ + " 0\n", + "zipcode 76104\n", + "dob_ssn 19630621_4278\n", + "total_wages 142325465\n", + "state TX\n", + "tax_returns_filed 6058\n", + "city FORT WORTH\n", + "location_type PRIMARY\n", + "population 10534\n", + "hard_pulls 1\n", + "missed_payments_2y 0\n", + "bankruptcies 0\n", + "missed_payments_6m 0\n", + "credit_card_due 3343\n", + "student_loan_due 44375\n", + "mortgage_due 378847\n", + "vehicle_loan_due 11506\n", + "missed_payments_1y 0" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "warnings.simplefilter(\"ignore\", DeprecationWarning)\n", + "\n", + "feature_vector = model._get_online_features_from_feast(loan_request)\n", + "feature_vector_df=pd.DataFrame.from_dict(feature_vector)\n", + "feature_vector_df.transpose()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "V-ZxTMF9VuX_" + }, + "source": [ + "Join the features to see the entire input sent to the credit prediction model." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 802 + }, + "id": "RbTQfP0ytpKm", + "outputId": "bf08bcd3-3085-4330-e23b-54d0f86c0c28" + }, + "outputs": [ + { + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "summary": "{\n \"name\": \"features_df\",\n \"rows\": 24,\n \"fields\": [\n {\n \"column\": 0,\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 21,\n \"samples\": [\n \"76104\",\n 3343,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}", + "type": "dataframe" + }, + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
zipcode76104
dob_ssn19630621_4278
person_age63
person_income159000
person_home_ownershipRENT
person_emp_length123.0
loan_intentPERSONAL
loan_amnt5000
loan_int_rate16
total_wages142325465
stateTX
tax_returns_filed6058
cityFORT WORTH
location_typePRIMARY
population10534
hard_pulls1
missed_payments_2y0
bankruptcies0
missed_payments_6m0
credit_card_due3343
student_loan_due44375
mortgage_due378847
vehicle_loan_due11506
missed_payments_1y0
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "text/plain": [ + " 0\n", + "zipcode 76104\n", + "dob_ssn 19630621_4278\n", + "person_age 63\n", + "person_income 159000\n", + "person_home_ownership RENT\n", + "person_emp_length 123.0\n", + "loan_intent PERSONAL\n", + "loan_amnt 5000\n", + "loan_int_rate 16\n", + "total_wages 142325465\n", + "state TX\n", + "tax_returns_filed 6058\n", + "city FORT WORTH\n", + "location_type PRIMARY\n", + "population 10534\n", + "hard_pulls 1\n", + "missed_payments_2y 0\n", + "bankruptcies 0\n", + "missed_payments_6m 0\n", + "credit_card_due 3343\n", + "student_loan_due 44375\n", + "mortgage_due 378847\n", + "vehicle_loan_due 11506\n", + "missed_payments_1y 0" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "features = loan_request.copy()\n", + "features.update(feature_vector)\n", + "features_df = pd.DataFrame.from_dict(features)\n", + "features_df.transpose()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "fiV0HSXNw4MA", + "outputId": "71bff765-0448-4242-c931-45d8a6446faa" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loan rejected!\n" + ] + } + ], + "source": [ + "result = model.predict(loan_request)\n", + "\n", + "if result == 0:\n", + " print(\"Loan approved!\")\n", + "elif result == 1:\n", + " print(\"Loan rejected!\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "c9LUGgDZIN7l" + }, + "source": [ + "## Benchmarking\n", + "\n", + "The key advantage of Redis as a Online feature store is it's ability to very quickly retreive features on request. Below, we'll retreive the same data from Online store (Redis) and from the Offline store (parquet) and measure execution time." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "id": "E0yBnM3VV09H" + }, + "outputs": [], + "source": [ + "store = FeatureStore(repo_path=\"creditscore/\")\n", + "feast_features = [\n", + " \"zipcode_features:city\",\n", + " \"zipcode_features:state\",\n", + " \"zipcode_features:location_type\",\n", + " \"zipcode_features:tax_returns_filed\",\n", + " \"zipcode_features:population\",\n", + " \"zipcode_features:total_wages\",\n", + " \"credit_history:credit_card_due\",\n", + " \"credit_history:mortgage_due\",\n", + " \"credit_history:student_loan_due\",\n", + " \"credit_history:vehicle_loan_due\",\n", + " \"credit_history:hard_pulls\",\n", + " \"credit_history:missed_payments_2y\",\n", + " \"credit_history:missed_payments_1y\",\n", + " \"credit_history:missed_payments_6m\",\n", + " \"credit_history:bankruptcies\",\n", + " ]\n", + "zipcode = \"76104\"\n", + "dob_ssn = \"19630621_4278\"\n", + "\n", + "entity_rows=[{\"zipcode\": zipcode, \"dob_ssn\": dob_ssn}]\n", + "entity_rows_df=pd.DataFrame(entity_rows)\n", + "entity_rows_df[\"event_timestamp\"]=pd.to_datetime(\"2020-04-26 18:01:04.746575\")\n", + "entity_rows_df['zipcode'] = entity_rows_df['zipcode'].astype(int)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "EwZW_IdvWPMx" + }, + "source": [ + "Online feature store retrieval benchmark:" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "khcx8l4WWFST", + "outputId": "29280860-9f59-41d7-9ee2-df094c69eaf0" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "18.3 ms ± 4.24 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" + ] + } + ], + "source": [ + "%%timeit\n", + "\n", + "online_features = store.get_online_features(\n", + " features = feast_features,\n", + " entity_rows = entity_rows\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "stN6hs52WRWo" + }, + "source": [ + "Offline feature store retrieval benchmark:" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cMXzXeJxWTxI", + "outputId": "f6856e54-5bf5-4caf-8681-de6c37372e47" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "4.06 s ± 874 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" + ] + } + ], + "source": [ + "%%timeit\n", + "\n", + "offline_features= store.get_historical_features(\n", + " entity_df = entity_rows_df,\n", + " features = feast_features\n", + ").to_df()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "9RvUwM40W86O" + }, + "source": [ + ">Note: That's more than a 100x difference. (typically)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "8vGFAJh58D7I", + "outputId": "c3fc6d99-7f6f-403c-f0d0-054c1815862d" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019700708_3658creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019770709_1366creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0034112creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019820223_6526creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0053566creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019740104_7765creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019631107_1473creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019831223_3715creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019560526_9481creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019520419_3326creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019490626_3291creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x004941creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0065723creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019971207_9765creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019470128_4382creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0094920creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019501210_5531creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0066968creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0052228creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0020716creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019930213_1001creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019511213_6264creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0011582creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0057279creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0024134creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019510722_9524creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019781218_1026creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019710313_8778creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0099158creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0077504creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019490908_8583creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019811219_7627creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0091358creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0025039creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019460422_6318creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0038473creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0060173creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019910211_8227creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019491106_5381creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0020188creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019851125_5496creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0080866creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019640523_7088creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019540304_4206creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0033558creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0085309creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019930907_1785creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019480102_6626creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0033620creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019630516_9412creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0095968creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019581126_8792creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0017921creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019670609_9521creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0045820creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019480611_4023creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019811111_7723creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019940701_7343creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019750101_8862creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019600727_1225creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019831017_9350creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0027924creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019851013_6440creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019560311_4709creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0099143creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0089029creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0037774creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019820630_8741creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0095132creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019880301_2182creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0061024creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019780204_9000creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0064463creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019901229_8140creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0047977creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019650412_2278creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019610713_4963creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0099506creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0047974creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0034108creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0094126creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0093543creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019791213_6708creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0021102creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019560116_8257creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019950720_4987creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019770221_5327creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0068360creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019460401_4248creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019660430_8376creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019770906_8986creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0057033creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0037909creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019570108_7950creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019950629_3354creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019770927_3885creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0025165creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0060962creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0075928creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019491212_6101creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019650103_9417creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019530923_8398creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0095605creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0077327creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019761015_2701creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0039603creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019570906_8068creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019980313_4381creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019780813_4300creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0070518creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0093426creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019841205_3604creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019851203_9052creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0063101creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019780230_2685creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019681120_3945creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019560515_7659creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019751209_7771creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019880425_3691creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019840109_2887creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0049038creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0033949creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0062060creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019460127_6237creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019870519_3289creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019660611_1564creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019550819_8793creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0070531creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019720911_9567creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0039703creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0028110creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019550930_7119creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019931028_6580creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0068783creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0072167creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019771028_5875creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x002163creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0054950creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0062624creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019740927_9521creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019770605_1916creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019900111_8289creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019930224_3700creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0027107creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019580716_9796creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019760718_8610creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0048307creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0039827creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019880608_9893creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019530909_3976creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0016053creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0022038creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019480518_8879creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019610111_5280creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0040370creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019950102_4471creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0027828creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019510713_7054creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019820716_2584creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0098926creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x001440creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0017020creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0046766creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0048607creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0048760creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x007419creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0076454creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019540418_2227creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019510119_9702creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019870709_8204creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019890211_6405creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019650618_9839creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0039323creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0054562creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0054232creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019830128_5145creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019800908_1294creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019820104_1239creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019970726_1557creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019610611_9265creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019640125_6629creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019980218_7106creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019700404_4053creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0025567creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0068461creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019910701_9871creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0012538creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019710603_2888creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0055337creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0053719creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019920309_1874creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019860708_9389creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0060160creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019490506_6154creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0085607creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019961025_9506creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0013120creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0032774creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0054515creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0085266creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019970619_8314creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0030411creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019700730_6870creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019771009_6339creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019740712_6408creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019670223_9503creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0067846creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0033880creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0074442creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019621218_5700creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0031909creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019730822_9539creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0057260creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0023103creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0015537creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019570322_2344creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0038673creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019900616_5171creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0072045creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0045371creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019731004_6263creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019550108_5590creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019740318_9261creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x007005creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019461028_7247creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019760127_8601creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0077713creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019900330_1524creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019760822_7338creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019870706_3677creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0060612creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0065608creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019900220_8810creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0029718creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019500913_5936creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019630524_1364creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0010307creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0019711creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0097202creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0078403creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019500615_6768creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019741030_1232creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0040313creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0054409creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019451027_8648creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0087021creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0062684creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019610815_5300creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0015942creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019521014_9749creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0080035creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0054856creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019780901_1846creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019800507_7833creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x008551creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019610930_2381creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0064658creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019771215_3642creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0055941creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0078758creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019630514_8143creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019800404_5387creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019621105_5492creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x001830creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x005770creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019950803_1342creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019561020_8862creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019870711_7724creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0093258creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019801012_7097creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0050667creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0080011creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0014885creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0020000817_7398creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019811027_1147creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x002574creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019501126_4258creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0020010927_1119creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0046939creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0020010724_1838creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x003462creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0078852creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019610113_3129creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019680513_1895creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019800416_1721creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0079114creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019760518_9240creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019901007_1549creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0037321creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0054902creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019790428_5911creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0092196creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019941203_2697creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019690920_2961creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0036759creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0036567creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0028754creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x001038creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019790103_7031creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019730402_9289creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0044021creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019720625_7734creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0018616creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0046573creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019920205_8085creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0070762creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019541126_4345creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0095618creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0039060creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019891012_7651creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019920421_2849creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0098943creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019910926_9370creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019571129_2436creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0078207creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019801228_4058creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019520911_7309creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0098857creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0080467creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0074079creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019960307_2307creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0015333creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019720825_5622creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0036124creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019800129_6103creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0048218creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019451129_9541creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0075495creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0022553creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019611108_8688creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019521007_7946creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019451123_3854creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019540224_7834creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019490527_1080creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019781019_2559creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019751023_5464creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019510215_1764creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019850123_6090creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0018038creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019600303_5603creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0061038creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019500327_6839creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0036362creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019790608_3414creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0023237creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019910330_4806creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0059487creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x002771creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0029487creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019781116_6144creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019970926_5544creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0058059creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019960621_4198creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019600426_5457creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019650912_9337creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0080736creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019850302_2892creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0053924creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0094070creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0055307creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019980207_8569creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x004101creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0091785creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x008066creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0015461creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0076712creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0050001creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0062208creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0073521creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0047022creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0029842creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0094710creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0049238creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019590513_3858creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019600514_7427creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0093280creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x005039creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0079371creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019961127_5966creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0092061creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0084094creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019941019_6808creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0048091creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019631105_9757creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0091008creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0084041creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x003752creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019840122_3358creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0041776creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019480805_7838creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0022408creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019740906_5824creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0021161creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019600724_2753creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0034209creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019681202_9762creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019761021_6510creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0032668creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019730627_1218creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019850717_2977creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0042450creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019891230_7813creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0054305creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0031625creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019650510_1847creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0046219creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019850919_8169creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019671130_9883creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019500406_2189creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019710308_7806creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019520721_9849creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0040701creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0034638creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0078009creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x003102creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0020000824_7433creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019590825_4197creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0060429creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019830326_8401creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019690320_9863creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0025621creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0067443creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0053821creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019591122_3279creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019770626_6124creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0092659creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019781125_5030creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0052544creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0019070creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019840122_2502creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0018612creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0016820creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0013495creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019550129_8509creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0033951creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019620314_4629creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019891202_7630creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0015014creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0046375creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0050263creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019811213_8037creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019970817_1449creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0099324creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0054150creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019850326_2656creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0064740creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0087571creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019810412_5596creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0048111creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x002539creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0062932creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019740506_1650creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0095962creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0040212creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0033071creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0052216creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019761129_7141creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x007677creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0099612creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0034683creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x004628creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019570919_4732creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019650617_4799creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019750417_9151creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019640128_3080creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019681220_9403creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019570729_9831creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x007754creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0020010110_1542creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019481214_2015creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019900112_5430creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019750301_9015creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0015542creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0075762creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0075180creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019610708_2808creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019500817_7383creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019730523_3723creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0087022creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019970309_6359creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019760703_6100creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019930717_5997creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0027518creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019891225_4642creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0027604creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019860808_4246creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019690929_9595creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019490721_6590creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0070374creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019721114_6499creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0020000116_1654creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019970405_5816creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019780711_2036creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019481215_9587creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019811106_7581creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0020000606_9315creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019690505_5406creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019860125_6275creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0012790creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019580916_4720creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0027243creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0032456creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019990725_5391creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019740306_3818creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0083832creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019660122_3075creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019620824_3060creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019510219_3240creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019700215_8709creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019840102_1039creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0093704creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0053057creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019770125_6022creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x007748creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0030171creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0085543creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0073065creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019550108_4220creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0032007creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019890216_4786creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0054527creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019870308_7912creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x007108creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019980807_3406creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019730520_3988creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019550414_2433creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019820920_5095creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0093445creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019490428_2669creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0042633creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0012726creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x002767creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0058012creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0054155creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019870529_8418creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019590218_4523creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0097305creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0089028creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019970622_1631creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0038676creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0082003creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019650512_5440creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019500523_2557creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019630315_2696creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0066849creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0027949creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0070639creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0072132creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019840511_1888creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019620621_4359creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019850307_1167creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019670802_6166creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0093270creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019930409_6121creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019990216_6234creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019581013_2739creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019921026_4571creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019470101_2557creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0027970creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0083707creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019760823_5942creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019900827_7584creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0014028creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019761021_9740creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019550809_6074creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0058730creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019480326_5471creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019920417_5573creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019480608_6979creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0026238creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0038361creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0039066creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019600218_4585creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019830904_5678creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019940811_8910creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0052804creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0093234creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019900309_6253creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0016421creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019810502_4542creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019800114_3250creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x008215creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019621026_9608creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0080126creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0078066creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019700129_7575creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0029410creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019590729_3199creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0025521creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019481028_1851creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0051022creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019710222_6590creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019610802_2963creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019810409_6982creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0065542creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0037711creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019920813_5763creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019801224_4952creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019501129_2904creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019600204_2868creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019870614_3909creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019881221_4807creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x007878creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0035974creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019650116_2658creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x007740creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019951219_1182creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019530828_2170creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0040152creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0095690creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019860713_9798creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019790724_1156creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0018702creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019960629_7239creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019881225_2566creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019690827_6556creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0020000530_1192creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0055043creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019570412_4658creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0062954creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019451001_6728creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0096151creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0060157creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019600815_2349creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019690530_8292creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0055736creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0070355creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019951225_8083creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0020010213_3127creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0011782creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0093443creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019560125_3383creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0065732creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x008759creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0086507creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019690718_6062creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0035622creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0095951creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019590312_6666creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019900123_5190creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019670526_2591creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0040517creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019890126_7407creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019500407_3433creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019881128_2931creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0053911creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0017931creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0040047creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019490223_5161creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0090717creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019941202_6139creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019901118_5278creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0070397creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0077010creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0071361creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019860315_9379creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x003768creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0078124creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0062634creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0020000722_2464creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0013321creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0083606creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019630927_9393creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0017821creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019700502_5252creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0024246creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019540929_2990creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019780505_2307creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019900522_5797creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0015010creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0033587creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019810811_9001creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0025313creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0048048creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0059472creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0046540creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019710621_9286creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0061418creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0084340creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019930604_7306creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019470824_1527creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019690906_5278creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019911104_1480creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0091225creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0013682creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x004654creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0061080creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0043977creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019500330_4454creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019790326_9945creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019510118_7439creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0055038creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0065648creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019870906_6908creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0020000319_8725creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0091010creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0010928creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0017235creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019541209_8671creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0018074creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0036551creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0060963creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019990117_1263creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019820807_2710creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0052777creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019510925_4989creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019900319_4412creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019490915_7646creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0044050creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0096127creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0019131creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019640409_1164creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019611219_6862creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019860202_4617creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019570520_4213creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0045071creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019811121_1559creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0027959creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019460302_7045creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019650305_2772creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0025262creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019661225_2990creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019960116_7931creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0048631creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0040203creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0055765creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019810307_1214creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0059022creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0035206creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019920801_8348creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019770118_2579creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0032178creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019750523_8073creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0020010823_4247creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0020000921_1021creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019450627_1908creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0097215creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0065759creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019990302_2102creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0064439creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0046235creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0036528creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019611117_8274creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0024520creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019691212_3646creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0014213creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0011003creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0062454creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019740314_3147creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0062540creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019820425_5987creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0068801creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0095127creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0011691creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0029692creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019741011_8933creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0088210creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0028619creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019701215_2199creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019661009_3453creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019531110_3670creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019771216_6405creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019760827_1221creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x005743creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019831011_2467creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0033774creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0055044creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0072863creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019850220_3708creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0068654creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0021545creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0012157creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019480512_1930creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0010457creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019500202_2810creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0033615creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019520603_1982creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019700526_3873creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0028510creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0013340creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0011716creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0083705creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019501112_4467creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019760918_4204creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019860922_2269creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019940604_8847creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0048098creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019860724_3113creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0060554creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x002126creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019930609_5165creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0038230creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0073072creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019930506_7017creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x001451creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019470522_5603creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019580102_9178creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019940725_6865creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019651226_7797creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019680504_3777creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0068856creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x004460creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019910715_9877creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019870325_1137creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0023442creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019580923_8975creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019791009_5043creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0089074creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019500221_2732creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019490420_2676creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019891007_2969creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0020010713_3540creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0080920creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0078751creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019520405_1198creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019530503_9126creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019611122_2605creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019880717_4375creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0055031creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0045432creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0027007creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0056367creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0011738creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019720628_8725creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019520714_1309creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019960625_1585creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019661223_1313creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0039663creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0056572creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019721221_7914creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0039209creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019840722_5288creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019550728_8932creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019470216_6696creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0053058creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0064481creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0032658creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0054170creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019630611_3661creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0038760creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019570128_4342creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0049827creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019710621_2165creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0056323creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0020010518_5775creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0065686creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0055952creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0011951creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019541124_1206creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019620127_5338creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019660522_1565creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019781211_4697creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0094574creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0061944creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019670919_1391creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019921128_3278creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019830630_8239creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0073139creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019570614_1864creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0055723creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0055992creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0041255creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019580619_3744creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019590730_3779creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0015061creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0032448creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0019046creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0046706creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0048616creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019481129_2152creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019800201_1358creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0072773creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019990413_3287creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0019090creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019820915_3280creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019470610_4090creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0038573creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0046394creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019670626_6256creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x007481creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019510922_1792creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019530429_5299creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019701123_4498creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019591114_4878creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019960329_8318creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019921122_6221creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0099737creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019921028_8664creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x001082creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x004929creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019480901_7786creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019660219_4269creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019461118_2114creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019611127_9426creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0022967creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019800827_7446creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019490418_9512creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0054903creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019760306_3330creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0022656creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019590612_3618creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019560919_2757creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0049436creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019710220_5280creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019920612_1273creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0078333creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019490112_9394creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0059601creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019950628_7285creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0031030creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0020010125_3481creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0035228creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019741109_5016creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0026032creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0089118creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0040601creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0075217creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0076550creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0020010325_9396creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019730507_8742creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019560128_1008creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0032164creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019700113_2978creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019560415_1712creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0056221creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019630929_6832creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019460324_1049creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019640825_3358creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0038167creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0047106creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019550316_4272creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x002643creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019991228_7925creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019740609_4875creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019820924_1126creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0042303creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019871226_1226creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019590818_8005creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0051466creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0020000319_6455creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0093584creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019911204_8105creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0086403creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019790323_7676creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0092342creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0071742creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0089043creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0046774creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0047807creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0091042creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019530105_9941creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019800121_4411creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0038668creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0030006creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019990224_2613creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019690403_1557creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0061319creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019610703_1330creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0093608creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0023609creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0047244creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019990503_5880creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0081141creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0068818creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019800413_2593creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019880505_1690creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0091203creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019500511_7145creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019670203_8936creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0032060creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019831003_7385creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019651104_2938creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019790704_4149creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0059802creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0013865creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0011377creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0016827creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0016201creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019510305_7529creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019600707_2475creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019510225_8060creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019710511_1417creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x04\\x00\\x00\\x005069creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0027559creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019571111_4225creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0035051creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0061802creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019500919_5275creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019600215_7725creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0019009creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019500124_5400creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0066202creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0058335creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019930811_1809creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019480210_6097creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019700515_8374creditscore',\n", + " b'\\x02\\x00\\x00\\x00dob_ssn\\x02\\x00\\x00\\x00\\r\\x00\\x00\\x0019550528_9708creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0084711creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0071082creditscore',\n", + " b'\\x02\\x00\\x00\\x00zipcode\\x02\\x00\\x00\\x00\\x05\\x00\\x00\\x0027964creditscore',\n", + " ...]" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# retreive sample of keys from redis\n", + "from redis import Redis\n", + "\n", + "redis_client = Redis.from_url(REDIS_URL)\n", + "redis_client.keys()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "yaoQYnpgEPzm" + }, + "source": [ + "### Cleanup" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "id": "EKqGsgQGEIDP" + }, + "outputs": [], + "source": [ + "%cd creditscore/\n", + "!feast teardown\n", + "%cd .." + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.10" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/python-recipes/feature-store/01_card_transaction_search.ipynb b/python-recipes/feature-store/01_card_transaction_search.ipynb new file mode 100644 index 00000000..2b9bc7e3 --- /dev/null +++ b/python-recipes/feature-store/01_card_transaction_search.ipynb @@ -0,0 +1,3394 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "![Redis](https://redis.io/wp-content/uploads/2024/04/Logotype.svg?auto=webp&quality=85,75&width=120)\n", + "# Card Transaction Search and Analytics with RedisVL\n", + "\n", + "In this recipe, we will explore a dataset of card transactions generated by multiple users, across multiple vendors over a period of time. We will showcase the power, speed, and flexibility of the Redis Query Engine for search, filtering, vector similarity, and complex aggregations using RedisVL (Redis Vector Library).\n", + "\n", + "Transaction search and analytics have many use cases - but primarily this data is useful for building realtime feature stores that can power fraud or anomaly detection machine learning models.\n", + "\n", + "## What we'll cover\n", + "1. Loading transaction data into Redis\n", + "2. Vectorizing transaction data for semantic similarity search\n", + "3. Search techniques\n", + " - Exact match filtering\n", + " - Vector search\n", + " - Full text search and fuzzy matching\n", + " - Hybrid search\n", + "4. Complex aggregation queries\n", + " - Calculate average transaction volume per week\n", + " - Identify spending patterns\n", + " - Generate user spending profiles" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Let's Begin!\n", + "\"Open" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Prepare data\n", + "\n", + "Our dataset is a list of 200 credit card transactions (fake)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# NBVAL_SKIP\n", + "!git clone https://github.com/redis-developer/redis-ai-resources.git temp_repo\n", + "!mv temp_repo/python-recipes/feature-store/resources .\n", + "!rm -rf temp_repo" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Install Required Packages" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%pip install -q \"redisvl==0.6.0\" sentence-transformers pandas nltk" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Install Redis Stack\n", + "\n", + "In this tutorial, Redis will be used to store, index, and query vector\n", + "embeddings created from transaction data. **We need to make sure we have a Redis\n", + "instance available**.\n", + "\n", + "#### For Colab\n", + "Use the shell script below to download, extract, and install [Redis Stack](https://redis.io/docs/getting-started/install-stack/) directly from the Redis package archive." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# NBVAL_SKIP\n", + "%%sh\n", + "curl -fsSL https://packages.redis.io/gpg | sudo gpg --dearmor -o /usr/share/keyrings/redis-archive-keyring.gpg\n", + "echo \"deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb $(lsb_release -cs) main\" | sudo tee /etc/apt/sources.list.d/redis.list\n", + "sudo apt-get update > /dev/null 2>&1\n", + "sudo apt-get install redis-stack-server > /dev/null 2>&1\n", + "redis-stack-server --daemonize yes" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### For Alternative Environments\n", + "There are many ways to get the necessary redis-stack instance running\n", + "1. On cloud, deploy a [FREE instance of Redis in the cloud](https://redis.com/try-free/). Or, if you have your\n", + "own version of Redis Enterprise running, that works too!\n", + "2. Per OS, [see the docs](https://redis.io/docs/latest/operate/oss_and_stack/install/install-stack/)\n", + "3. With docker: `docker run -d --name redis-stack-server -p 6379:6379 redis/redis-stack-server:latest`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define the Redis Connection URL\n", + "\n", + "By default this notebook connects to the local instance of Redis Stack. **If you have your own Redis Enterprise instance** - replace REDIS_PASSWORD, REDIS_HOST and REDIS_PORT values with your own." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import warnings\n", + "\n", + "warnings.filterwarnings('ignore')\n", + "\n", + "# Replace values below with your own if using Redis Cloud instance\n", + "REDIS_HOST = os.getenv(\"REDIS_HOST\", \"localhost\") # ex: \"redis-18374.c253.us-central1-1.gce.cloud.redislabs.com\"\n", + "REDIS_PORT = os.getenv(\"REDIS_PORT\", \"6379\") # ex: 18374\n", + "REDIS_PASSWORD = os.getenv(\"REDIS_PASSWORD\", \"\") # ex: \"1TNxTEdYRDgIDKM2gDfasupCADXXXX\"\n", + "\n", + "# If SSL is enabled on the endpoint, use rediss:// as the URL prefix\n", + "REDIS_URL = f\"redis://:{REDIS_PASSWORD}@{REDIS_HOST}:{REDIS_PORT}\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create Redis client and test connection" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from redis import Redis\n", + "\n", + "client = Redis.from_url(REDIS_URL)\n", + "client.ping()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Optional: clear all data in Redis if needed\n", + "client.flushall()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Load Transaction Dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loaded 200 transaction entries\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
transaction_iduser_idmerchant_iditem_nameamountcurrencytimestamplatloncard_providerlocation
0txn_0001u_002m_009Headphones1154.59USD174618255127.584806-71.730465VISA-71.730465, 27.584806
1txn_0002u_013m_018Dinner501.64USD174697095128.831898-104.441434AMEX-104.441434, 28.831898
2txn_0003u_008m_006Laptop1359.33USD174684135146.087128-102.099503VISA-102.099503, 46.087128
3txn_0004u_011m_024Gaming Console157.54USD174700335127.226349-115.753846VISA-115.753846, 27.226349
4txn_0005u_010m_014Concert Ticket718.00USD174543375145.108103-79.409905AMEX-79.409905, 45.108103
\n", + "
" + ], + "text/plain": [ + " transaction_id user_id merchant_id item_name amount currency \\\n", + "0 txn_0001 u_002 m_009 Headphones 1154.59 USD \n", + "1 txn_0002 u_013 m_018 Dinner 501.64 USD \n", + "2 txn_0003 u_008 m_006 Laptop 1359.33 USD \n", + "3 txn_0004 u_011 m_024 Gaming Console 157.54 USD \n", + "4 txn_0005 u_010 m_014 Concert Ticket 718.00 USD \n", + "\n", + " timestamp lat lon card_provider location \n", + "0 1746182551 27.584806 -71.730465 VISA -71.730465, 27.584806 \n", + "1 1746970951 28.831898 -104.441434 AMEX -104.441434, 28.831898 \n", + "2 1746841351 46.087128 -102.099503 VISA -102.099503, 46.087128 \n", + "3 1747003351 27.226349 -115.753846 VISA -115.753846, 27.226349 \n", + "4 1745433751 45.108103 -79.409905 AMEX -79.409905, 45.108103 " + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "# Load transactions from JSON file\n", + "df = pd.read_json(\"resources/transactions_200.json\")\n", + "print(f\"Loaded {len(df)} transaction entries\")\n", + "\n", + "# # Convert timestamp to datetime for easier manipulation\n", + "df[\"timestamp\"] = df[\"timestamp\"].apply(lambda s: int(pd.to_datetime(s).timestamp()))\n", + "df['location'] = df.apply(lambda r: f\"{r.lon}, {r.lat}\", axis=1)\n", + "\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Let's examine the transaction data" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "count 200.00000\n", + "mean 747.57135\n", + "std 426.08199\n", + "min 26.63000\n", + "25% 373.06250\n", + "50% 696.15500\n", + "75% 1130.19750\n", + "max 1499.87000\n", + "Name: amount, dtype: float64" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Basic statistics on transaction amounts\n", + "df['amount'].describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "card_provider\n", + "DISCOVER 54\n", + "AMEX 52\n", + "VISA 51\n", + "MASTERCARD 43\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Count of transactions by card provider\n", + "df['card_provider'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "item_name\n", + "Plane Ticket 15\n", + "Hotel Stay 15\n", + "Groceries 14\n", + "Dinner 14\n", + "Headphones 13\n", + "Gym Membership 13\n", + "Bicycle 12\n", + "Gaming Console 11\n", + "Streaming Subscription 11\n", + "Smartphone 9\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Look at the most common items purchased\n", + "df['item_name'].value_counts().head(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "user_id\n", + "u_013 16\n", + "u_012 14\n", + "u_008 13\n", + "u_006 13\n", + "u_014 12\n", + "u_018 12\n", + "u_007 11\n", + "u_011 10\n", + "u_010 10\n", + "u_020 10\n", + "u_009 9\n", + "u_002 9\n", + "u_016 9\n", + "u_001 9\n", + "u_017 8\n", + "u_015 8\n", + "u_005 7\n", + "u_019 7\n", + "u_003 7\n", + "u_004 6\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Look at how many users there are\n", + "df['user_id'].value_counts()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Vectorize Transaction Data for Semantic Search\n", + "\n", + "We'll use a Hugging Face sentence transformer to create vector embeddings for transaction data. The text we'll vectorize will be a combination of:\n", + "- Merchant name\n", + "- Item purchased\n", + "- Transaction amount" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13:15:47 sentence_transformers.SentenceTransformer INFO Use pytorch device_name: mps\n", + "13:15:47 sentence_transformers.SentenceTransformer INFO Load pretrained SentenceTransformer: sentence-transformers/all-MiniLM-L6-v2\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Batches: 100%|██████████| 1/1 [00:00<00:00, 7.46it/s]\n" + ] + } + ], + "source": [ + "from redisvl.utils.vectorize import HFTextVectorizer\n", + "\n", + "# Set environment variable to avoid parallelism warnings\n", + "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\"\n", + "\n", + "# Initialize the vectorizer with a small but powerful model\n", + "hf = HFTextVectorizer(\"sentence-transformers/all-MiniLM-L6-v2\")" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
transaction_idvector_text
0txn_0001Merchant m_009 selling Headphones for $1154.59
1txn_0002Merchant m_018 selling Dinner for $501.64
2txn_0003Merchant m_006 selling Laptop for $1359.33
\n", + "
" + ], + "text/plain": [ + " transaction_id vector_text\n", + "0 txn_0001 Merchant m_009 selling Headphones for $1154.59\n", + "1 txn_0002 Merchant m_018 selling Dinner for $501.64\n", + "2 txn_0003 Merchant m_006 selling Laptop for $1359.33" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Create a combined text field for vectorization\n", + "def create_text_for_vectorization(row):\n", + " return f\"Merchant {row['merchant_id']} selling {row['item_name']} for ${row['amount']:.2f}\"\n", + "\n", + "df['vector_text'] = df.apply(create_text_for_vectorization, axis=1)\n", + "\n", + "# Display some examples\n", + "df[['transaction_id', 'vector_text']].head(3)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating vectors for transactions...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Batches: 100%|██████████| 1/1 [00:00<00:00, 8.56it/s]\n", + "Batches: 100%|██████████| 1/1 [00:00<00:00, 13.23it/s]\n", + "Batches: 100%|██████████| 1/1 [00:00<00:00, 77.89it/s]\n", + "Batches: 100%|██████████| 1/1 [00:00<00:00, 70.84it/s]\n", + "Batches: 100%|██████████| 1/1 [00:00<00:00, 68.89it/s]\n", + "Batches: 100%|██████████| 1/1 [00:00<00:00, 68.21it/s]\n", + "Batches: 100%|██████████| 1/1 [00:00<00:00, 76.25it/s]\n", + "Batches: 100%|██████████| 1/1 [00:00<00:00, 82.86it/s]\n", + "Batches: 100%|██████████| 1/1 [00:00<00:00, 87.50it/s]\n", + "Batches: 100%|██████████| 1/1 [00:00<00:00, 72.29it/s]\n", + "Batches: 100%|██████████| 1/1 [00:00<00:00, 74.83it/s]\n", + "Batches: 100%|██████████| 1/1 [00:00<00:00, 70.85it/s]\n", + "Batches: 100%|██████████| 1/1 [00:00<00:00, 72.97it/s]\n", + "Batches: 100%|██████████| 1/1 [00:00<00:00, 83.08it/s]\n", + "Batches: 100%|██████████| 1/1 [00:00<00:00, 87.37it/s]\n", + "Batches: 100%|██████████| 1/1 [00:00<00:00, 85.30it/s]\n", + "Batches: 100%|██████████| 1/1 [00:00<00:00, 73.55it/s]\n", + "Batches: 100%|██████████| 1/1 [00:00<00:00, 77.35it/s]\n", + "Batches: 100%|██████████| 1/1 [00:00<00:00, 78.44it/s]\n", + "Batches: 100%|██████████| 1/1 [00:00<00:00, 79.18it/s]\n" + ] + } + ], + "source": [ + "# Generate vectors for each transaction\n", + "print(\"Generating vectors for transactions...\")\n", + "df[\"vector\"] = hf.embed_many(df[\"vector_text\"].tolist(), as_buffer=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Define Redis Index Schema\n", + "\n", + "We'll create a schema that includes both standard fields and vector field for our transaction data." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "from redisvl.schema import IndexSchema\n", + "from redisvl.index import SearchIndex\n", + "\n", + "\n", + "# Define the index schema with fields we want to search and filter on\n", + "schema = IndexSchema.from_dict({\n", + " \"index\": {\n", + " \"name\": \"transactions\",\n", + " \"prefix\": \"transactions:entry\",\n", + " \"storage_type\": \"hash\"\n", + " },\n", + " \"fields\": [\n", + " {\n", + " \"name\": \"transaction_id\",\n", + " \"type\": \"tag\",\n", + " \"attrs\": {\n", + " \"sortable\": True\n", + " }\n", + " },\n", + " {\n", + " \"name\": \"user_id\",\n", + " \"type\": \"tag\",\n", + " \"attrs\": {\n", + " \"sortable\": True\n", + " }\n", + " },\n", + " {\n", + " \"name\": \"merchant_id\",\n", + " \"type\": \"tag\",\n", + " \"attrs\": {\n", + " \"sortable\": True\n", + " }\n", + " },\n", + " {\n", + " \"name\": \"item_name\",\n", + " \"type\": \"text\",\n", + " \"attrs\": {\n", + " \"sortable\": True\n", + " }\n", + " },\n", + " {\n", + " \"name\": \"amount\",\n", + " \"type\": \"numeric\",\n", + " \"attrs\": {\n", + " \"sortable\": True\n", + " }\n", + " },\n", + " {\n", + " \"name\": \"currency\",\n", + " \"type\": \"tag\",\n", + " },\n", + " {\n", + " \"name\": \"timestamp\",\n", + " \"type\": \"numeric\",\n", + " \"attrs\": {\n", + " \"sortable\": True\n", + " }\n", + " },\n", + " {\n", + " \"name\": \"card_provider\",\n", + " \"type\": \"tag\",\n", + " },\n", + " {\n", + " \"name\": \"location\",\n", + " \"type\": \"geo\",\n", + " },\n", + " {\n", + " \"name\": \"vector\",\n", + " \"type\": \"vector\",\n", + " \"attrs\": {\n", + " \"dims\": 384, # Based on the all-MiniLM-L6-v2 model\n", + " \"distance_metric\": \"cosine\",\n", + " \"algorithm\": \"flat\",\n", + " \"datatype\": \"float32\"\n", + " }\n", + " }\n", + " ]\n", + "})\n", + "\n", + "# Create the index\n", + "index = SearchIndex(schema, client)\n", + "index.create(overwrite=True, drop=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + "Index Information:\n", + "╭────────────────────────┬────────────────────────┬────────────────────────┬────────────────────────┬────────────────────────╮\n", + "│ Index Name │ Storage Type │ Prefixes │ Index Options │ Indexing │\n", + "├────────────────────────┼────────────────────────┼────────────────────────┼────────────────────────┼────────────────────────┤\n", + "| transactions | HASH | ['transactions:entry'] | [] | 0 |\n", + "╰────────────────────────┴────────────────────────┴────────────────────────┴────────────────────────┴────────────────────────╯\n", + "Index Fields:\n", + "╭─────────────────┬─────────────────┬─────────────────┬─────────────────┬─────────────────┬─────────────────┬─────────────────┬─────────────────┬─────────────────┬─────────────────┬─────────────────╮\n", + "│ Name │ Attribute │ Type │ Field Option │ Option Value │ Field Option │ Option Value │ Field Option │ Option Value │ Field Option │ Option Value │\n", + "├─────────────────┼─────────────────┼─────────────────┼─────────────────┼─────────────────┼─────────────────┼─────────────────┼─────────────────┼─────────────────┼─────────────────┼─────────────────┤\n", + "│ transaction_id │ transaction_id │ TAG │ SEPARATOR │ , │ │ │ │ │ │ │\n", + "│ user_id │ user_id │ TAG │ SEPARATOR │ , │ │ │ │ │ │ │\n", + "│ merchant_id │ merchant_id │ TAG │ SEPARATOR │ , │ │ │ │ │ │ │\n", + "│ item_name │ item_name │ TEXT │ WEIGHT │ 1 │ │ │ │ │ │ │\n", + "│ amount │ amount │ NUMERIC │ SORTABLE │ UNF │ │ │ │ │ │ │\n", + "│ currency │ currency │ TAG │ SEPARATOR │ , │ │ │ │ │ │ │\n", + "│ timestamp │ timestamp │ NUMERIC │ SORTABLE │ UNF │ │ │ │ │ │ │\n", + "│ card_provider │ card_provider │ TAG │ SEPARATOR │ , │ │ │ │ │ │ │\n", + "│ location │ location │ GEO │ │ │ │ │ │ │ │ │\n", + "│ vector │ vector │ VECTOR │ algorithm │ FLAT │ data_type │ FLOAT32 │ dim │ 384 │ distance_metric │ COSINE │\n", + "╰─────────────────┴─────────────────┴─────────────────┴─────────────────┴─────────────────┴─────────────────┴─────────────────┴─────────────────┴─────────────────┴─────────────────┴─────────────────╯\n" + ] + } + ], + "source": [ + "# Check the index information\n", + "!rvl index info -i transactions -u {REDIS_URL}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Populate Redis with Transaction Data\n", + "\n", + "Now that our index is created, let's load the transaction data into Redis." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loaded 200 transactions into Redis\n" + ] + }, + { + "data": { + "text/plain": [ + "['transactions:entry:txn_0001',\n", + " 'transactions:entry:txn_0002',\n", + " 'transactions:entry:txn_0003',\n", + " 'transactions:entry:txn_0004',\n", + " 'transactions:entry:txn_0005']" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Load data into Redis\n", + "transaction_ids = index.load(\n", + " data=df.to_dict(orient=\"records\"),\n", + " id_field=\"transaction_id\"\n", + ")\n", + "print(f\"Loaded {len(transaction_ids)} transactions into Redis\")\n", + "\n", + "# Display the first few transaction IDs loaded\n", + "transaction_ids[:5]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Part I: Transaction Search Techniques\n", + "\n", + "Now that we have our data loaded into Redis, let's explore different search techniques." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Exact Match Queryies & Sorting\n", + "\n", + "Let's start with some basic exact match filtering to find transactions with specific properties." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idtransaction_iduser_idmerchant_iditem_nameamountcard_provider
0transactions:entry:txn_0002txn_0002u_013m_018Dinner501.64AMEX
1transactions:entry:txn_0005txn_0005u_010m_014Concert Ticket718AMEX
2transactions:entry:txn_0006txn_0006u_017m_016Hotel Stay1232.8AMEX
3transactions:entry:txn_0015txn_0015u_001m_018Clothing114.86AMEX
4transactions:entry:txn_0032txn_0032u_013m_002Concert Ticket585.69AMEX
\n", + "
" + ], + "text/plain": [ + " id transaction_id user_id merchant_id \\\n", + "0 transactions:entry:txn_0002 txn_0002 u_013 m_018 \n", + "1 transactions:entry:txn_0005 txn_0005 u_010 m_014 \n", + "2 transactions:entry:txn_0006 txn_0006 u_017 m_016 \n", + "3 transactions:entry:txn_0015 txn_0015 u_001 m_018 \n", + "4 transactions:entry:txn_0032 txn_0032 u_013 m_002 \n", + "\n", + " item_name amount card_provider \n", + "0 Dinner 501.64 AMEX \n", + "1 Concert Ticket 718 AMEX \n", + "2 Hotel Stay 1232.8 AMEX \n", + "3 Clothing 114.86 AMEX \n", + "4 Concert Ticket 585.69 AMEX " + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from redisvl.query import FilterQuery\n", + "from redisvl.query.filter import Tag, Num\n", + "\n", + "# Find all AMEX transactions\n", + "card_filter = Tag(\"card_provider\") == \"AMEX\"\n", + "\n", + "query = FilterQuery(\n", + " return_fields=[\"transaction_id\", \"user_id\", \"merchant_id\", \"item_name\", \"amount\", \"card_provider\"],\n", + " filter_expression=card_filter,\n", + " num_results=5\n", + ")\n", + "\n", + "results = index.query(query)\n", + "pd.DataFrame(results)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idamounttransaction_iduser_idmerchant_iditem_namecard_provider
0transactions:entry:txn_00611499.87txn_0061u_006m_004GroceriesVISA
1transactions:entry:txn_01111471.73txn_0111u_014m_006CoffeeVISA
2transactions:entry:txn_01471462.78txn_0147u_018m_003DinnerMASTERCARD
3transactions:entry:txn_00191462.52txn_0019u_012m_005DinnerDISCOVER
4transactions:entry:txn_01681450.52txn_0168u_016m_014GroceriesAMEX
\n", + "
" + ], + "text/plain": [ + " id amount transaction_id user_id merchant_id \\\n", + "0 transactions:entry:txn_0061 1499.87 txn_0061 u_006 m_004 \n", + "1 transactions:entry:txn_0111 1471.73 txn_0111 u_014 m_006 \n", + "2 transactions:entry:txn_0147 1462.78 txn_0147 u_018 m_003 \n", + "3 transactions:entry:txn_0019 1462.52 txn_0019 u_012 m_005 \n", + "4 transactions:entry:txn_0168 1450.52 txn_0168 u_016 m_014 \n", + "\n", + " item_name card_provider \n", + "0 Groceries VISA \n", + "1 Coffee VISA \n", + "2 Dinner MASTERCARD \n", + "3 Dinner DISCOVER \n", + "4 Groceries AMEX " + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Find high-value transactions (over $1000)\n", + "amount_filter = Num(\"amount\") > 1000\n", + "\n", + "query = FilterQuery(\n", + " return_fields=[\"transaction_id\", \"user_id\", \"merchant_id\", \"item_name\", \"amount\", \"card_provider\"],\n", + " filter_expression=amount_filter,\n", + " num_results=5,\n", + ").sort_by(\"amount\", asc=False)\n", + "\n", + "results = index.query(query)\n", + "pd.DataFrame(results)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idamounttransaction_iduser_idmerchant_iditem_nametimestamp
0transactions:entry:txn_01901413.99txn_0190u_013m_005Plane Ticket1745570551
1transactions:entry:txn_01451382.3txn_0145u_013m_024Hotel Stay1746927751
2transactions:entry:txn_01031360.17txn_0103u_013m_015Coffee1744911751
3transactions:entry:txn_00671311.19txn_0067u_013m_010Headphones1746715351
4transactions:entry:txn_00651231.32txn_0065u_013m_012Plane Ticket1746675751
5transactions:entry:txn_00601094.44txn_0060u_013m_001Ride Share1744857751
6transactions:entry:txn_01501075.13txn_0150u_013m_003Plane Ticket1746812551
7transactions:entry:txn_01251032.48txn_0125u_013m_018Shoes1747143751
8transactions:entry:txn_0058916.96txn_0058u_013m_024Plane Ticket1745523751
9transactions:entry:txn_0113733.8txn_0113u_013m_001Software License1745566951
\n", + "
" + ], + "text/plain": [ + " id amount transaction_id user_id merchant_id \\\n", + "0 transactions:entry:txn_0190 1413.99 txn_0190 u_013 m_005 \n", + "1 transactions:entry:txn_0145 1382.3 txn_0145 u_013 m_024 \n", + "2 transactions:entry:txn_0103 1360.17 txn_0103 u_013 m_015 \n", + "3 transactions:entry:txn_0067 1311.19 txn_0067 u_013 m_010 \n", + "4 transactions:entry:txn_0065 1231.32 txn_0065 u_013 m_012 \n", + "5 transactions:entry:txn_0060 1094.44 txn_0060 u_013 m_001 \n", + "6 transactions:entry:txn_0150 1075.13 txn_0150 u_013 m_003 \n", + "7 transactions:entry:txn_0125 1032.48 txn_0125 u_013 m_018 \n", + "8 transactions:entry:txn_0058 916.96 txn_0058 u_013 m_024 \n", + "9 transactions:entry:txn_0113 733.8 txn_0113 u_013 m_001 \n", + "\n", + " item_name timestamp \n", + "0 Plane Ticket 1745570551 \n", + "1 Hotel Stay 1746927751 \n", + "2 Coffee 1744911751 \n", + "3 Headphones 1746715351 \n", + "4 Plane Ticket 1746675751 \n", + "5 Ride Share 1744857751 \n", + "6 Plane Ticket 1746812551 \n", + "7 Shoes 1747143751 \n", + "8 Plane Ticket 1745523751 \n", + "9 Software License 1745566951 " + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Combine filters: Find transactions for a specific user with high amounts\n", + "user_filter = Tag(\"user_id\") == \"u_013\" # Specific user\n", + "amount_filter = Num(\"amount\") > 500 # High amount threshold\n", + "\n", + "# Combine filters with logical AND\n", + "combined_filter = user_filter & amount_filter\n", + "\n", + "query = FilterQuery(\n", + " return_fields=[\"transaction_id\", \"user_id\", \"merchant_id\", \"item_name\", \"amount\", \"timestamp\"],\n", + " filter_expression=combined_filter,\n", + ").sort_by(\"amount\", asc=False)\n", + "\n", + "results = index.query(query)\n", + "pd.DataFrame(results)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Vector Search\n", + "\n", + "Now let's use vector search to find transactions semantically similar to a query." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Batches: 100%|██████████| 1/1 [00:00<00:00, 10.19it/s]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idvector_distanceamounttransaction_idmerchant_iditem_name
0transactions:entry:txn_00570.5002093911171201.71txn_0057m_011Laptop
1transactions:entry:txn_00980.497323393822503.01txn_0098m_012Headphones
2transactions:entry:txn_01700.500393152237374.23txn_0170m_010Headphones
3transactions:entry:txn_00400.495004236698159.33txn_0040m_017Headphones
4transactions:entry:txn_01690.494512319565153.22txn_0169m_008Headphones
\n", + "
" + ], + "text/plain": [ + " id vector_distance amount transaction_id \\\n", + "0 transactions:entry:txn_0057 0.500209391117 1201.71 txn_0057 \n", + "1 transactions:entry:txn_0098 0.497323393822 503.01 txn_0098 \n", + "2 transactions:entry:txn_0170 0.500393152237 374.23 txn_0170 \n", + "3 transactions:entry:txn_0040 0.495004236698 159.33 txn_0040 \n", + "4 transactions:entry:txn_0169 0.494512319565 153.22 txn_0169 \n", + "\n", + " merchant_id item_name \n", + "0 m_011 Laptop \n", + "1 m_012 Headphones \n", + "2 m_010 Headphones \n", + "3 m_017 Headphones \n", + "4 m_008 Headphones " + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from redisvl.query import VectorQuery\n", + "\n", + "# Search for expensive electronics\n", + "user_query = \"Expensive electronics purchase\"\n", + "\n", + "# Vectorize the user's query\n", + "embedded_user_query = hf.embed(user_query, as_buffer=True)\n", + "\n", + "# Create vector query\n", + "vec_query = VectorQuery(\n", + " vector=embedded_user_query,\n", + " vector_field_name=\"vector\",\n", + " num_results=5,\n", + " return_fields=[\"transaction_id\", \"merchant_id\", \"item_name\", \"amount\"],\n", + " return_score=True,\n", + ").sort_by(\"amount\", asc=False)\n", + "\n", + "# Execute the query\n", + "results = index.query(vec_query)\n", + "pd.DataFrame(results)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Vector Search with Filters\n", + "\n", + "We can combine vector search with exact match filters to get more precise results." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Batches: 100%|██████████| 1/1 [00:00<00:00, 70.97it/s]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idvector_distanceamounttransaction_iduser_idmerchant_iditem_name
0transactions:entry:txn_00420.533764362335742.36txn_0042u_017m_012Groceries
1transactions:entry:txn_00410.511252999306612.59txn_0041u_017m_003Clothing
2transactions:entry:txn_00080.563050031662564.91txn_0008u_017m_022Shoes
3transactions:entry:txn_00180.553927659988462.71txn_0018u_017m_013Dinner
4transactions:entry:txn_01950.5286039114429.52txn_0195u_017m_002Groceries
\n", + "
" + ], + "text/plain": [ + " id vector_distance amount transaction_id user_id \\\n", + "0 transactions:entry:txn_0042 0.533764362335 742.36 txn_0042 u_017 \n", + "1 transactions:entry:txn_0041 0.511252999306 612.59 txn_0041 u_017 \n", + "2 transactions:entry:txn_0008 0.563050031662 564.91 txn_0008 u_017 \n", + "3 transactions:entry:txn_0018 0.553927659988 462.71 txn_0018 u_017 \n", + "4 transactions:entry:txn_0195 0.5286039114 429.52 txn_0195 u_017 \n", + "\n", + " merchant_id item_name \n", + "0 m_012 Groceries \n", + "1 m_003 Clothing \n", + "2 m_022 Shoes \n", + "3 m_013 Dinner \n", + "4 m_002 Groceries " + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Search for expensive purchases by a specific user\n", + "user_query = \"Large purchases\"\n", + "embedded_user_query = hf.embed(user_query)\n", + "\n", + "# Filter for a specific user\n", + "user_filter = Tag(\"user_id\") == \"u_017\"\n", + "\n", + "# Create vector query with filter\n", + "vec_query = VectorQuery(\n", + " vector=embedded_user_query,\n", + " vector_field_name=\"vector\",\n", + " num_results=5,\n", + " return_fields=[\"transaction_id\", \"user_id\", \"merchant_id\", \"item_name\", \"amount\"],\n", + " return_score=True,\n", + " filter_expression=user_filter\n", + ").sort_by(\"amount\", asc=False)\n", + "\n", + "# Execute the query\n", + "results = index.query(vec_query)\n", + "pd.DataFrame(results)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Batches: 100%|██████████| 1/1 [00:00<00:00, 14.38it/s]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idvector_distancetransaction_iduser_idmerchant_iditem_nameamount
0transactions:entry:txn_00460.681029856205txn_0046u_013m_018Hotel Stay588.18
1transactions:entry:txn_01580.68172955513txn_0158u_015m_020Hotel Stay835.78
2transactions:entry:txn_00480.690501689911txn_0048u_010m_012Hotel Stay588.93
3transactions:entry:txn_01910.707059979439txn_0191u_001m_014Plane Ticket912.33
4transactions:entry:txn_00580.725707709789txn_0058u_013m_024Plane Ticket916.96
\n", + "
" + ], + "text/plain": [ + " id vector_distance transaction_id user_id \\\n", + "0 transactions:entry:txn_0046 0.681029856205 txn_0046 u_013 \n", + "1 transactions:entry:txn_0158 0.68172955513 txn_0158 u_015 \n", + "2 transactions:entry:txn_0048 0.690501689911 txn_0048 u_010 \n", + "3 transactions:entry:txn_0191 0.707059979439 txn_0191 u_001 \n", + "4 transactions:entry:txn_0058 0.725707709789 txn_0058 u_013 \n", + "\n", + " merchant_id item_name amount \n", + "0 m_018 Hotel Stay 588.18 \n", + "1 m_020 Hotel Stay 835.78 \n", + "2 m_012 Hotel Stay 588.93 \n", + "3 m_014 Plane Ticket 912.33 \n", + "4 m_024 Plane Ticket 916.96 " + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Search for travel expenses with price range filter\n", + "user_query = \"Travel-related expenses\"\n", + "embedded_user_query = hf.embed(user_query)\n", + "\n", + "# Price range filter\n", + "min_amount = Num(\"amount\") >= 500\n", + "max_amount = Num(\"amount\") <= 1000\n", + "price_range = min_amount & max_amount\n", + "\n", + "# Create vector query with filter\n", + "vec_query = VectorQuery(\n", + " vector=embedded_user_query,\n", + " vector_field_name=\"vector\",\n", + " num_results=5,\n", + " return_fields=[\"transaction_id\", \"user_id\", \"merchant_id\", \"item_name\", \"amount\"],\n", + " return_score=True,\n", + " filter_expression=price_range\n", + ")\n", + "\n", + "# Execute the query\n", + "results = index.query(vec_query)\n", + "pd.DataFrame(results)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4. Full Text Search\n", + "\n", + "Redis also provides powerful full-text search capabilities." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idscoretransaction_iduser_idmerchant_iditem_nameamount
0transactions:entry:txn_00043.246753txn_0004u_011m_024Gaming Console157.54
1transactions:entry:txn_00133.246753txn_0013u_001m_005Gaming Console293.8
2transactions:entry:txn_00333.246753txn_0033u_008m_021Gaming Console402.54
3transactions:entry:txn_00363.246753txn_0036u_020m_002Gaming Console758.65
4transactions:entry:txn_00723.246753txn_0072u_007m_003Gaming Console68.88
5transactions:entry:txn_00883.246753txn_0088u_011m_015Gaming Console26.63
6transactions:entry:txn_00963.246753txn_0096u_014m_021Gaming Console1393.99
7transactions:entry:txn_01023.246753txn_0102u_016m_021Gaming Console697.55
8transactions:entry:txn_01093.246753txn_0109u_007m_020Gaming Console43.49
9transactions:entry:txn_01273.246753txn_0127u_001m_021Gaming Console508.48
10transactions:entry:txn_01403.246753txn_0140u_014m_008Gaming Console884.5
11transactions:entry:txn_00122.435065txn_0012u_018m_016Plane Ticket234.87
12transactions:entry:txn_00582.435065txn_0058u_013m_024Plane Ticket916.96
13transactions:entry:txn_00652.435065txn_0065u_013m_012Plane Ticket1231.32
14transactions:entry:txn_00702.435065txn_0070u_003m_005Plane Ticket1000.78
\n", + "
" + ], + "text/plain": [ + " id score transaction_id user_id merchant_id \\\n", + "0 transactions:entry:txn_0004 3.246753 txn_0004 u_011 m_024 \n", + "1 transactions:entry:txn_0013 3.246753 txn_0013 u_001 m_005 \n", + "2 transactions:entry:txn_0033 3.246753 txn_0033 u_008 m_021 \n", + "3 transactions:entry:txn_0036 3.246753 txn_0036 u_020 m_002 \n", + "4 transactions:entry:txn_0072 3.246753 txn_0072 u_007 m_003 \n", + "5 transactions:entry:txn_0088 3.246753 txn_0088 u_011 m_015 \n", + "6 transactions:entry:txn_0096 3.246753 txn_0096 u_014 m_021 \n", + "7 transactions:entry:txn_0102 3.246753 txn_0102 u_016 m_021 \n", + "8 transactions:entry:txn_0109 3.246753 txn_0109 u_007 m_020 \n", + "9 transactions:entry:txn_0127 3.246753 txn_0127 u_001 m_021 \n", + "10 transactions:entry:txn_0140 3.246753 txn_0140 u_014 m_008 \n", + "11 transactions:entry:txn_0012 2.435065 txn_0012 u_018 m_016 \n", + "12 transactions:entry:txn_0058 2.435065 txn_0058 u_013 m_024 \n", + "13 transactions:entry:txn_0065 2.435065 txn_0065 u_013 m_012 \n", + "14 transactions:entry:txn_0070 2.435065 txn_0070 u_003 m_005 \n", + "\n", + " item_name amount \n", + "0 Gaming Console 157.54 \n", + "1 Gaming Console 293.8 \n", + "2 Gaming Console 402.54 \n", + "3 Gaming Console 758.65 \n", + "4 Gaming Console 68.88 \n", + "5 Gaming Console 26.63 \n", + "6 Gaming Console 1393.99 \n", + "7 Gaming Console 697.55 \n", + "8 Gaming Console 43.49 \n", + "9 Gaming Console 508.48 \n", + "10 Gaming Console 884.5 \n", + "11 Plane Ticket 234.87 \n", + "12 Plane Ticket 916.96 \n", + "13 Plane Ticket 1231.32 \n", + "14 Plane Ticket 1000.78 " + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from redisvl.query import TextQuery\n", + "from redisvl.query.filter import Text\n", + "\n", + "# Search for specific items\n", + "text_query = TextQuery(\n", + " text=\"Gaming system, plane tickets, and hotel rooms\",\n", + " text_field_name=\"item_name\",\n", + " text_scorer=\"BM25\",\n", + " num_results=15,\n", + " return_fields=[\"transaction_id\", \"user_id\", \"merchant_id\", \"item_name\", \"amount\"],\n", + ")\n", + "\n", + "results = index.query(text_query)\n", + "pd.DataFrame(results)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Fuzzy search is another popular technique to help with record linkage tasks." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idtransaction_iduser_idmerchant_idamountitem_name
0transactions:entry:txn_0032txn_0032u_013m_002585.69Concert Ticket
1transactions:entry:txn_0058txn_0058u_013m_024916.96Plane Ticket
2transactions:entry:txn_0065txn_0065u_013m_0121231.32Plane Ticket
3transactions:entry:txn_0150txn_0150u_013m_0031075.13Plane Ticket
4transactions:entry:txn_0190txn_0190u_013m_0051413.99Plane Ticket
\n", + "
" + ], + "text/plain": [ + " id transaction_id user_id merchant_id amount \\\n", + "0 transactions:entry:txn_0032 txn_0032 u_013 m_002 585.69 \n", + "1 transactions:entry:txn_0058 txn_0058 u_013 m_024 916.96 \n", + "2 transactions:entry:txn_0065 txn_0065 u_013 m_012 1231.32 \n", + "3 transactions:entry:txn_0150 txn_0150 u_013 m_003 1075.13 \n", + "4 transactions:entry:txn_0190 txn_0190 u_013 m_005 1413.99 \n", + "\n", + " item_name \n", + "0 Concert Ticket \n", + "1 Plane Ticket \n", + "2 Plane Ticket \n", + "3 Plane Ticket \n", + "4 Plane Ticket " + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from redisvl.query.filter import Text\n", + "\n", + "user_filter = Tag(\"user_id\") == \"u_013\" # Specific user\n", + "fuzzy = Text(\"item_name\") % \"%%tickt%%\"\n", + "\n", + "fuzzy_match = FilterQuery(\n", + " filter_expression=user_filter & fuzzy,\n", + " return_fields=[\"transaction_id\", \"user_id\", \"merchant_id\", \"amount\", \"item_name\"]\n", + ")\n", + "\n", + "results = index.query(fuzzy_match)\n", + "pd.DataFrame(results)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idtransaction_iduser_idmerchant_iditem_nameamountcard_provider
0transactions:entry:txn_0004txn_0004u_011m_024Gaming Console157.54VISA
1transactions:entry:txn_0036txn_0036u_020m_002Gaming Console758.65VISA
2transactions:entry:txn_0102txn_0102u_016m_021Gaming Console697.55VISA
\n", + "
" + ], + "text/plain": [ + " id transaction_id user_id merchant_id \\\n", + "0 transactions:entry:txn_0004 txn_0004 u_011 m_024 \n", + "1 transactions:entry:txn_0036 txn_0036 u_020 m_002 \n", + "2 transactions:entry:txn_0102 txn_0102 u_016 m_021 \n", + "\n", + " item_name amount card_provider \n", + "0 Gaming Console 157.54 VISA \n", + "1 Gaming Console 758.65 VISA \n", + "2 Gaming Console 697.55 VISA " + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Exact text match combined with other filters\n", + "text_filter = Text(\"item_name\") % \"Gaming\" # Full text search for Laptop\n", + "card_filter = Tag(\"card_provider\") == \"VISA\" # Only VISA card transactions\n", + "combined_filter = text_filter & card_filter\n", + "\n", + "query = FilterQuery(\n", + " return_fields=[\"transaction_id\", \"user_id\", \"merchant_id\", \"item_name\", \"amount\", \"card_provider\"],\n", + " filter_expression=combined_filter,\n", + ")\n", + "\n", + "results = index.query(query)\n", + "pd.DataFrame(results)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Part II: Record Linkage Examples\n", + "\n", + "Let's use our various search techniques to tackle a simple record linkage task. Below we have a \"fake\" transaction without a unique transaction ID. It may or may not be a duplicate of the data in our index already.\n", + "\n", + "Because Redis is fast we can perform fast record linkage techniques and serve transaction search clients as well.\n", + "\n", + "**Record linkage techniques in Redis:**\n", + "- Exact match & fuzzy text search & timestamp range\n", + "- Semantic search with vectors\n", + "- Bloom filters (probabalistic data structures -- not shown here)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "# Create a duplicate transaction that's similar to an existing one\n", + "fake_transaction = {\n", + " \"user_id\": \"u_013\", # Same user as txn_0032\n", + " \"merchant_id\": \"m_002\", # Same merchant as txn_0032\n", + " \"item_name\": \"Concert Tickt\", # Same item slightly mispelled\n", + " \"amount\": 585.69, # Same amount\n", + " \"currency\": \"USD\",\n", + " \"timestamp\": 1746765800, # Very close timestamp\n", + " \"card_provider\": \"AMEX\", # Same card provider\n", + " \"lat\": 36.173155, \n", + " \"lon\": -79.595479, \n", + " \"location\": \"36.173155,-79.595479\" \n", + "}\n", + "\n", + "# In this example, the transaction is a mistaken duplicate charge by the vendor" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Batches: 100%|██████████| 1/1 [00:00<00:00, 14.15it/s]\n" + ] + } + ], + "source": [ + "# User ID and Merchant ID must be the same\n", + "exact_matches = (Tag(\"user_id\")==\"u_013\") & (Tag(\"merchant_id\")==\"m_002\")\n", + "\n", + "# Fuzzy match on Item Name\n", + "terms = fake_transaction['item_name'].split()\n", + "fuzzy_item_name = \" | \".join([f\"%%{term}%%\" for term in terms])\n", + "fuzzy_match = Text(\"item_name\") % fuzzy_item_name\n", + "\n", + "# Timestamp range - create 60 second window on either side of transaction timestamp\n", + "from redisvl.query.filter import Timestamp\n", + "\n", + "start_ts = fake_transaction['timestamp'] - 60\n", + "end_ts = fake_transaction['timestamp'] + 60\n", + "timestamp_range = Timestamp(\"timestamp\").between(start_ts, end_ts)\n", + "\n", + "# Make transaction vector\n", + "transaction_vector = hf.embed(create_text_for_vectorization(fake_transaction), as_buffer=True)\n", + "\n", + "# Build query\n", + "query = VectorQuery(\n", + " vector=transaction_vector,\n", + " vector_field_name=\"vector\",\n", + " filter_expression=exact_matches & fuzzy_match & timestamp_range,\n", + " return_fields=[\"user_id\", \"merchant_id\", \"item_name\", \"amount\", \"timestamp\", \"location\"],\n", + " num_results=3\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'(((@user_id:{u_013} @merchant_id:{m_002}) @item_name:(%%Concert%% | %%Tickt%%)) @timestamp:[1746765740.0 1746765860.0])=>[KNN 3 @vector $vector AS vector_distance] RETURN 7 user_id merchant_id item_name amount timestamp location vector_distance SORTBY vector_distance ASC DIALECT 2 LIMIT 0 3'" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "str(query)" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[{'id': 'transactions:entry:txn_0032',\n", + " 'vector_distance': '0.0979611873627',\n", + " 'user_id': 'u_013',\n", + " 'merchant_id': 'm_002',\n", + " 'item_name': 'Concert Ticket',\n", + " 'amount': '585.69',\n", + " 'timestamp': '1746765751',\n", + " 'location': '-79.595479, 36.173155'}]" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "index.query(query)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This kind of search op for entity resolution can be very fast!" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "479 μs ± 19.7 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n" + ] + } + ], + "source": [ + "%%timeit\n", + "\n", + "index.query(query)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Part III: Complex Aggregations\n", + "\n", + "Now let's explore Redis's powerful aggregation capabilities to analyze transaction data. This can be useful for feature store workloads, anomaly detection models, and even basic realtime analytics." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Basic Aggregations\n", + "\n", + "First, let's look at some simple aggregations to understand spending patterns." + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "import redis.commands.search.reducers as reducers\n", + "\n", + "from redisvl.redis.utils import convert_bytes, make_dict\n", + "from redisvl.query.aggregate import AggregationQuery" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
card_provideravg_amounttotal_amountcount
0DISCOVER661.07148148135697.8654
1VISA717.11470588236572.8551
2MASTERCARD800.72976744234431.3843
3AMEX823.31115384642812.1852
\n", + "
" + ], + "text/plain": [ + " card_provider avg_amount total_amount count\n", + "0 DISCOVER 661.071481481 35697.86 54\n", + "1 VISA 717.114705882 36572.85 51\n", + "2 MASTERCARD 800.729767442 34431.38 43\n", + "3 AMEX 823.311153846 42812.18 52" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Calculate average transaction amount by card provider\n", + "agg_query = AggregationQuery(\"*\") \\\n", + " .group_by(\n", + " \"@card_provider\",\n", + " reducers.avg(\"amount\").alias(\"avg_amount\"),\n", + " reducers.sum(\"amount\").alias(\"total_amount\"),\n", + " reducers.count().alias(\"count\")\n", + " ) \\\n", + " .sort_by(\"@avg_amount\")\n", + "\n", + "results = index.aggregate(agg_query)\n", + "results = [make_dict(row) for row in convert_bytes(results.rows)]\n", + "\n", + "pd.DataFrame(results)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
item_nametotal_spentcount
0furniture28793
1camera2700.875
2laptop4597.796
3concert ticket3771.986
4software license6070.978
5shoes7181.089
6coffee7959.159
7clothing5670.879
8smartphone6312.799
9ride share6462.659
10book7423.419
11gaming console5236.0511
12streaming subscription10386.9311
13bicycle8212.1212
14gym membership11243.3213
15headphones6981.0513
16dinner10573.2714
17groceries10242.8414
18plane ticket11890.2815
19hotel stay13717.8515
\n", + "
" + ], + "text/plain": [ + " item_name total_spent count\n", + "0 furniture 2879 3\n", + "1 camera 2700.87 5\n", + "2 laptop 4597.79 6\n", + "3 concert ticket 3771.98 6\n", + "4 software license 6070.97 8\n", + "5 shoes 7181.08 9\n", + "6 coffee 7959.15 9\n", + "7 clothing 5670.87 9\n", + "8 smartphone 6312.79 9\n", + "9 ride share 6462.65 9\n", + "10 book 7423.41 9\n", + "11 gaming console 5236.05 11\n", + "12 streaming subscription 10386.93 11\n", + "13 bicycle 8212.12 12\n", + "14 gym membership 11243.32 13\n", + "15 headphones 6981.05 13\n", + "16 dinner 10573.27 14\n", + "17 groceries 10242.84 14\n", + "18 plane ticket 11890.28 15\n", + "19 hotel stay 13717.85 15" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Count transactions by item category\n", + "agg_query = AggregationQuery(\"*\") \\\n", + " .group_by(\n", + " \"@item_name\",\n", + " reducers.sum(\"amount\").alias(\"total_spent\"),\n", + " reducers.count().alias(\"count\")\n", + " ) \\\n", + " .sort_by(\"@count\", max=20)\n", + "\n", + "\n", + "results = index.aggregate(agg_query)\n", + "results = [make_dict(row) for row in convert_bytes(results.rows)]\n", + "\n", + "pd.DataFrame(results)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. User Transaction Features\n", + "\n", + "Let's analyze spending profiles by user. Probably most useful for feature store workloads" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
user_idavg_transaction_amounttransaction_countstdev_transaction_amount
0u_013882.147516423.525319582
\n", + "
" + ], + "text/plain": [ + " user_id avg_transaction_amount transaction_count stdev_transaction_amount\n", + "0 u_013 882.1475 16 423.525319582" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Let's look at some user spending features\n", + "\n", + "user_filter = Tag(\"user_id\") == \"u_013\"\n", + "\n", + "agg_query = AggregationQuery(str(user_filter)) \\\n", + " .group_by(\n", + " \"@user_id\",\n", + " reducers.avg(\"amount\").alias(\"avg_transaction_amount\"),\n", + " reducers.count().alias(\"transaction_count\"),\n", + " reducers.stddev(\"amount\").alias(\"stdev_transaction_amount\")\n", + " )\n", + "\n", + "\n", + "results = index.aggregate(agg_query)\n", + "results = [make_dict(row) for row in convert_bytes(results.rows)]\n", + "\n", + "pd.DataFrame(results)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's analyze a user's recent transactions to build a feature for fraud detection." + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idtimestamptransaction_idmerchant_iditem_nameamountcard_provider
0transactions:entry:txn_01211746312151txn_0121m_012Furniture1277.46AMEX
1transactions:entry:txn_00261746214951txn_0026m_016Clothing1166.55DISCOVER
2transactions:entry:txn_01021746168151txn_0102m_021Gaming Console697.55VISA
3transactions:entry:txn_00091745919751txn_0009m_022Ride Share259.34DISCOVER
4transactions:entry:txn_01981745797351txn_0198m_005Furniture1042.48AMEX
5transactions:entry:txn_01681745462551txn_0168m_014Groceries1450.52AMEX
6transactions:entry:txn_00821745228551txn_0082m_017Streaming Subscription1320DISCOVER
7transactions:entry:txn_01161744810951txn_0116m_024Clothing350.8DISCOVER
8transactions:entry:txn_00861744670551txn_0086m_005Ride Share528.52VISA
\n", + "
" + ], + "text/plain": [ + " id timestamp transaction_id merchant_id \\\n", + "0 transactions:entry:txn_0121 1746312151 txn_0121 m_012 \n", + "1 transactions:entry:txn_0026 1746214951 txn_0026 m_016 \n", + "2 transactions:entry:txn_0102 1746168151 txn_0102 m_021 \n", + "3 transactions:entry:txn_0009 1745919751 txn_0009 m_022 \n", + "4 transactions:entry:txn_0198 1745797351 txn_0198 m_005 \n", + "5 transactions:entry:txn_0168 1745462551 txn_0168 m_014 \n", + "6 transactions:entry:txn_0082 1745228551 txn_0082 m_017 \n", + "7 transactions:entry:txn_0116 1744810951 txn_0116 m_024 \n", + "8 transactions:entry:txn_0086 1744670551 txn_0086 m_005 \n", + "\n", + " item_name amount card_provider \n", + "0 Furniture 1277.46 AMEX \n", + "1 Clothing 1166.55 DISCOVER \n", + "2 Gaming Console 697.55 VISA \n", + "3 Ride Share 259.34 DISCOVER \n", + "4 Furniture 1042.48 AMEX \n", + "5 Groceries 1450.52 AMEX \n", + "6 Streaming Subscription 1320 DISCOVER \n", + "7 Clothing 350.8 DISCOVER \n", + "8 Ride Share 528.52 VISA " + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Example: Get recent transaction history for a user\n", + "user_id = \"u_016\"\n", + "user_filter = Tag(\"user_id\") == user_id\n", + "\n", + "# Regular search query for transactions, sorted by timestamp\n", + "query = FilterQuery(\n", + " return_fields=[\"transaction_id\", \"timestamp\", \"merchant_id\", \"item_name\", \"amount\", \"card_provider\"],\n", + " filter_expression=user_filter,\n", + " num_results=10\n", + ").sort_by(\"timestamp\", asc=False)\n", + "\n", + "results = index.query(query)\n", + "pd.DataFrame(results)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
daydaily_transactionsdaily_total
017446705511528.52
117448109511350.8
2174522855111320
3174546255111450.52
4174579735111042.48
517459197511259.34
617461681511697.55
7174621495111166.55
8174631215111277.46
\n", + "
" + ], + "text/plain": [ + " day daily_transactions daily_total\n", + "0 1744670551 1 528.52\n", + "1 1744810951 1 350.8\n", + "2 1745228551 1 1320\n", + "3 1745462551 1 1450.52\n", + "4 1745797351 1 1042.48\n", + "5 1745919751 1 259.34\n", + "6 1746168151 1 697.55\n", + "7 1746214951 1 1166.55\n", + "8 1746312151 1 1277.46" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Calculate transaction frequency and spending patterns\n", + "user_filter = Tag(\"user_id\") == user_id\n", + "\n", + "# Using Redis aggregation functions to work with dates\n", + "agg_query = (\n", + " AggregationQuery(str(user_filter))\n", + " .load(\"@timestamp\")\n", + " .apply(ts=\"format('%s', @timestamp)\")\n", + " .apply(day=\"SUBSTR(@ts, 0, 10)\")\n", + " .group_by(\n", + " \"@day\",\n", + " reducers.count().alias(\"daily_transactions\"),\n", + " reducers.sum(\"amount\").alias(\"daily_total\")\n", + " )\n", + " .sort_by(\"@day\")\n", + ")\n", + "\n", + "results = index.aggregate(agg_query)\n", + "results = [make_dict(row) for row in convert_bytes(results.rows)]\n", + "\n", + "pd.DataFrame(results)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's analyze transaction patterns by geographic location." + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
merchant_idtransaction_counttransaction_totals
0m_0171352.43
1m_0111515.01
2m_0121588.93
3m_0222607.55
4m_0201835.78
5m_0212998.04
6m_00511000.78
7m_01921130.5
8m_00411420.3
9m_00931738.16
10m_00721788.59
11m_00251922.51
12m_01432060.54
13m_00332105.87
14m_01343129.86
15m_00843357.49
16m_02433394.42
17m_01654135.16
18m_00654463.77
19m_02344858.47
\n", + "
" + ], + "text/plain": [ + " merchant_id transaction_count transaction_totals\n", + "0 m_017 1 352.43\n", + "1 m_011 1 515.01\n", + "2 m_012 1 588.93\n", + "3 m_022 2 607.55\n", + "4 m_020 1 835.78\n", + "5 m_021 2 998.04\n", + "6 m_005 1 1000.78\n", + "7 m_019 2 1130.5\n", + "8 m_004 1 1420.3\n", + "9 m_009 3 1738.16\n", + "10 m_007 2 1788.59\n", + "11 m_002 5 1922.51\n", + "12 m_014 3 2060.54\n", + "13 m_003 3 2105.87\n", + "14 m_013 4 3129.86\n", + "15 m_008 4 3357.49\n", + "16 m_024 3 3394.42\n", + "17 m_016 5 4135.16\n", + "18 m_006 5 4463.77\n", + "19 m_023 4 4858.47" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Group transactions by latitude/longitude ranges to identify geographic clusters\n", + "# For simplicity, we'll round lat/lon to the nearest whole number and group\n", + "from redisvl.query.filter import GeoRadius, Geo\n", + "\n", + "\n", + "geo_filter = Geo(\"location\") == GeoRadius(-71.730465, 27.584806, 1000, \"mi\")\n", + "\n", + "agg_query = (\n", + " AggregationQuery(str(geo_filter))\n", + " .group_by(\n", + " \"@merchant_id\", \n", + " reducers.count().alias(\"transaction_count\"),\n", + " reducers.sum(\"amount\").alias(\"transaction_totals\")\n", + " )\n", + " .sort_by(\"@transaction_totals\", max=20)\n", + ")\n", + "\n", + "results = index.aggregate(agg_query)\n", + "results = [make_dict(row) for row in convert_bytes(results.rows)]\n", + "\n", + "pd.DataFrame(results)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Cleaning Up Redis Resources\n", + "\n", + "When you're done, it's good practice to clean up your Redis resources." + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Clean up by deleting the index\n", + "# Uncomment the line below when you're ready to delete the index\n", + "index.delete(drop=True)\n", + "client.flushall()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Conclusion\n", + "\n", + "In this notebook, we've demonstrated how to:\n", + "\n", + "1. Load transaction data into Redis\n", + "2. Create vector embeddings for semantic search\n", + "3. Perform various search operations:\n", + " - Exact match filtering\n", + " - Vector similarity search\n", + " - Full text search\n", + " - Using search patterns for record linkage tasks\n", + "4. Execute complex aggregation queries\n", + " - Analyzing spending patterns by user\n", + " - Looking at transaction volumes over time\n", + " - Analyzing geographic transaction patterns\n", + "\n", + "These capabilities make Redis and RedisVL powerful tools for building real-time feature stores that can support fraud detection, personalization, and analytics applications." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.13.2" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/python-recipes/feature-store/resources/transactions_200.json b/python-recipes/feature-store/resources/transactions_200.json new file mode 100644 index 00000000..22264ef5 --- /dev/null +++ b/python-recipes/feature-store/resources/transactions_200.json @@ -0,0 +1,2402 @@ +[ + { + "transaction_id": "txn_0001", + "user_id": "u_002", + "merchant_id": "m_009", + "item_name": "Headphones", + "amount": 1154.59, + "currency": "USD", + "timestamp": "2025-05-02T10:42:31Z", + "lat": 27.584806, + "lon": -71.730465, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0002", + "user_id": "u_013", + "merchant_id": "m_018", + "item_name": "Dinner", + "amount": 501.64, + "currency": "USD", + "timestamp": "2025-05-11T13:42:31Z", + "lat": 28.831898, + "lon": -104.441434, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0003", + "user_id": "u_008", + "merchant_id": "m_006", + "item_name": "Laptop", + "amount": 1359.33, + "currency": "USD", + "timestamp": "2025-05-10T01:42:31Z", + "lat": 46.087128, + "lon": -102.099503, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0004", + "user_id": "u_011", + "merchant_id": "m_024", + "item_name": "Gaming Console", + "amount": 157.54, + "currency": "USD", + "timestamp": "2025-05-11T22:42:31Z", + "lat": 27.226349, + "lon": -115.753846, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0005", + "user_id": "u_010", + "merchant_id": "m_014", + "item_name": "Concert Ticket", + "amount": 718.0, + "currency": "USD", + "timestamp": "2025-04-23T18:42:31Z", + "lat": 45.108103, + "lon": -79.409905, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0006", + "user_id": "u_017", + "merchant_id": "m_016", + "item_name": "Hotel Stay", + "amount": 1232.8, + "currency": "USD", + "timestamp": "2025-04-16T12:42:31Z", + "lat": 37.649799, + "lon": -77.058366, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0007", + "user_id": "u_001", + "merchant_id": "m_013", + "item_name": "Bicycle", + "amount": 654.41, + "currency": "USD", + "timestamp": "2025-04-20T19:42:31Z", + "lat": 40.320478, + "lon": -85.333857, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0008", + "user_id": "u_017", + "merchant_id": "m_022", + "item_name": "Shoes", + "amount": 564.91, + "currency": "USD", + "timestamp": "2025-05-12T10:42:31Z", + "lat": 45.336203, + "lon": -86.563822, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0009", + "user_id": "u_016", + "merchant_id": "m_022", + "item_name": "Ride Share", + "amount": 259.34, + "currency": "USD", + "timestamp": "2025-04-29T09:42:31Z", + "lat": 38.300888, + "lon": -72.732838, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0010", + "user_id": "u_013", + "merchant_id": "m_019", + "item_name": "Book", + "amount": 29.38, + "currency": "USD", + "timestamp": "2025-04-18T18:42:31Z", + "lat": 27.115775, + "lon": -87.557584, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0011", + "user_id": "u_012", + "merchant_id": "m_008", + "item_name": "Clothing", + "amount": 800.34, + "currency": "USD", + "timestamp": "2025-05-11T05:42:31Z", + "lat": 40.33122, + "lon": -66.476, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0012", + "user_id": "u_018", + "merchant_id": "m_016", + "item_name": "Plane Ticket", + "amount": 234.87, + "currency": "USD", + "timestamp": "2025-04-20T21:42:31Z", + "lat": 35.667998, + "lon": -80.404291, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0013", + "user_id": "u_001", + "merchant_id": "m_005", + "item_name": "Gaming Console", + "amount": 293.8, + "currency": "USD", + "timestamp": "2025-05-02T20:42:31Z", + "lat": 44.173333, + "lon": -84.271951, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0014", + "user_id": "u_014", + "merchant_id": "m_001", + "item_name": "Coffee", + "amount": 928.29, + "currency": "USD", + "timestamp": "2025-04-22T00:42:31Z", + "lat": 33.521475, + "lon": -118.850244, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0015", + "user_id": "u_001", + "merchant_id": "m_018", + "item_name": "Clothing", + "amount": 114.86, + "currency": "USD", + "timestamp": "2025-04-14T04:42:31Z", + "lat": 40.242235, + "lon": -122.310061, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0016", + "user_id": "u_009", + "merchant_id": "m_016", + "item_name": "Smartphone", + "amount": 1127.47, + "currency": "USD", + "timestamp": "2025-04-29T12:42:31Z", + "lat": 34.937718, + "lon": -122.620049, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0017", + "user_id": "u_014", + "merchant_id": "m_003", + "item_name": "Groceries", + "amount": 561.3, + "currency": "USD", + "timestamp": "2025-05-03T18:42:31Z", + "lat": 42.858736, + "lon": -76.164098, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0018", + "user_id": "u_017", + "merchant_id": "m_013", + "item_name": "Dinner", + "amount": 462.71, + "currency": "USD", + "timestamp": "2025-04-15T19:42:31Z", + "lat": 43.538835, + "lon": -107.110697, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0019", + "user_id": "u_012", + "merchant_id": "m_005", + "item_name": "Dinner", + "amount": 1462.52, + "currency": "USD", + "timestamp": "2025-04-21T17:42:31Z", + "lat": 27.86959, + "lon": -114.3255, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0020", + "user_id": "u_014", + "merchant_id": "m_002", + "item_name": "Groceries", + "amount": 684.84, + "currency": "USD", + "timestamp": "2025-05-12T21:42:31Z", + "lat": 33.388952, + "lon": -73.477522, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0021", + "user_id": "u_010", + "merchant_id": "m_014", + "item_name": "Laptop", + "amount": 242.07, + "currency": "USD", + "timestamp": "2025-04-29T22:42:31Z", + "lat": 45.913472, + "lon": -94.14629, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0022", + "user_id": "u_011", + "merchant_id": "m_017", + "item_name": "Coffee", + "amount": 820.46, + "currency": "USD", + "timestamp": "2025-04-28T01:42:31Z", + "lat": 30.397703, + "lon": -90.929251, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0023", + "user_id": "u_009", + "merchant_id": "m_017", + "item_name": "Streaming Subscription", + "amount": 308.89, + "currency": "USD", + "timestamp": "2025-04-30T01:42:31Z", + "lat": 31.349166, + "lon": -121.504568, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0024", + "user_id": "u_007", + "merchant_id": "m_017", + "item_name": "Hotel Stay", + "amount": 1138.38, + "currency": "USD", + "timestamp": "2025-05-13T01:42:31Z", + "lat": 29.659919, + "lon": -91.25178, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0025", + "user_id": "u_020", + "merchant_id": "m_011", + "item_name": "Headphones", + "amount": 515.01, + "currency": "USD", + "timestamp": "2025-04-20T20:42:31Z", + "lat": 28.203223, + "lon": -72.35043, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0026", + "user_id": "u_016", + "merchant_id": "m_016", + "item_name": "Clothing", + "amount": 1166.55, + "currency": "USD", + "timestamp": "2025-05-02T19:42:31Z", + "lat": 42.130318, + "lon": -75.962909, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0027", + "user_id": "u_011", + "merchant_id": "m_013", + "item_name": "Streaming Subscription", + "amount": 1261.31, + "currency": "USD", + "timestamp": "2025-05-08T09:42:31Z", + "lat": 39.634021, + "lon": -123.654283, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0028", + "user_id": "u_011", + "merchant_id": "m_023", + "item_name": "Concert Ticket", + "amount": 187.86, + "currency": "USD", + "timestamp": "2025-05-11T13:42:31Z", + "lat": 33.655497, + "lon": -97.275834, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0029", + "user_id": "u_011", + "merchant_id": "m_012", + "item_name": "Hotel Stay", + "amount": 1156.58, + "currency": "USD", + "timestamp": "2025-04-29T03:42:31Z", + "lat": 44.475051, + "lon": -112.836735, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0030", + "user_id": "u_013", + "merchant_id": "m_002", + "item_name": "Shoes", + "amount": 566.13, + "currency": "USD", + "timestamp": "2025-05-02T11:42:31Z", + "lat": 44.904586, + "lon": -113.857037, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0031", + "user_id": "u_012", + "merchant_id": "m_003", + "item_name": "Gym Membership", + "amount": 187.88, + "currency": "USD", + "timestamp": "2025-05-02T11:42:31Z", + "lat": 37.06791, + "lon": -88.883813, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0032", + "user_id": "u_013", + "merchant_id": "m_002", + "item_name": "Concert Ticket", + "amount": 585.69, + "currency": "USD", + "timestamp": "2025-05-09T04:42:31Z", + "lat": 36.173155, + "lon": -79.595479, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0033", + "user_id": "u_008", + "merchant_id": "m_021", + "item_name": "Gaming Console", + "amount": 402.54, + "currency": "USD", + "timestamp": "2025-04-25T01:42:31Z", + "lat": 38.506396, + "lon": -104.044904, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0034", + "user_id": "u_017", + "merchant_id": "m_019", + "item_name": "Ride Share", + "amount": 509.08, + "currency": "USD", + "timestamp": "2025-05-11T17:42:31Z", + "lat": 29.37294, + "lon": -122.845091, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0035", + "user_id": "u_005", + "merchant_id": "m_016", + "item_name": "Dinner", + "amount": 68.93, + "currency": "USD", + "timestamp": "2025-04-20T16:42:31Z", + "lat": 28.397242, + "lon": -73.512899, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0036", + "user_id": "u_020", + "merchant_id": "m_002", + "item_name": "Gaming Console", + "amount": 758.65, + "currency": "USD", + "timestamp": "2025-04-18T03:42:31Z", + "lat": 43.583139, + "lon": -107.254806, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0037", + "user_id": "u_011", + "merchant_id": "m_024", + "item_name": "Clothing", + "amount": 345.23, + "currency": "USD", + "timestamp": "2025-05-11T02:42:31Z", + "lat": 45.918092, + "lon": -107.464638, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0038", + "user_id": "u_012", + "merchant_id": "m_014", + "item_name": "Smartphone", + "amount": 912.55, + "currency": "USD", + "timestamp": "2025-04-22T14:42:31Z", + "lat": 41.170477, + "lon": -112.502033, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0039", + "user_id": "u_017", + "merchant_id": "m_006", + "item_name": "Bicycle", + "amount": 1260.26, + "currency": "USD", + "timestamp": "2025-04-30T20:42:31Z", + "lat": 36.996129, + "lon": -73.176784, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0040", + "user_id": "u_010", + "merchant_id": "m_017", + "item_name": "Headphones", + "amount": 159.33, + "currency": "USD", + "timestamp": "2025-04-17T15:42:31Z", + "lat": 38.079073, + "lon": -107.800637, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0041", + "user_id": "u_017", + "merchant_id": "m_003", + "item_name": "Clothing", + "amount": 612.59, + "currency": "USD", + "timestamp": "2025-04-24T15:42:31Z", + "lat": 27.662753, + "lon": -90.939557, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0042", + "user_id": "u_017", + "merchant_id": "m_012", + "item_name": "Groceries", + "amount": 742.36, + "currency": "USD", + "timestamp": "2025-05-05T11:42:31Z", + "lat": 47.310652, + "lon": -67.337246, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0043", + "user_id": "u_008", + "merchant_id": "m_007", + "item_name": "Headphones", + "amount": 608.46, + "currency": "USD", + "timestamp": "2025-05-12T16:42:31Z", + "lat": 25.262947, + "lon": -85.93962, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0044", + "user_id": "u_002", + "merchant_id": "m_008", + "item_name": "Shoes", + "amount": 1049.74, + "currency": "USD", + "timestamp": "2025-05-05T20:42:31Z", + "lat": 32.300431, + "lon": -107.612217, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0045", + "user_id": "u_007", + "merchant_id": "m_017", + "item_name": "Laptop", + "amount": 1124.25, + "currency": "USD", + "timestamp": "2025-05-07T06:42:31Z", + "lat": 36.181491, + "lon": -99.971276, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0046", + "user_id": "u_013", + "merchant_id": "m_018", + "item_name": "Hotel Stay", + "amount": 588.18, + "currency": "USD", + "timestamp": "2025-04-22T14:42:31Z", + "lat": 45.842571, + "lon": -107.366423, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0047", + "user_id": "u_004", + "merchant_id": "m_005", + "item_name": "Coffee", + "amount": 692.86, + "currency": "USD", + "timestamp": "2025-04-28T17:42:31Z", + "lat": 38.243205, + "lon": -122.989491, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0048", + "user_id": "u_010", + "merchant_id": "m_012", + "item_name": "Hotel Stay", + "amount": 588.93, + "currency": "USD", + "timestamp": "2025-05-11T18:42:31Z", + "lat": 27.537447, + "lon": -75.877372, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0049", + "user_id": "u_019", + "merchant_id": "m_022", + "item_name": "Book", + "amount": 1105.52, + "currency": "USD", + "timestamp": "2025-04-15T06:42:31Z", + "lat": 29.942826, + "lon": -101.711559, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0050", + "user_id": "u_005", + "merchant_id": "m_016", + "item_name": "Groceries", + "amount": 1277.78, + "currency": "USD", + "timestamp": "2025-05-13T13:42:31Z", + "lat": 28.901584, + "lon": -77.946765, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0051", + "user_id": "u_002", + "merchant_id": "m_004", + "item_name": "Groceries", + "amount": 332.51, + "currency": "USD", + "timestamp": "2025-04-25T10:42:31Z", + "lat": 47.487041, + "lon": -85.644273, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0052", + "user_id": "u_002", + "merchant_id": "m_005", + "item_name": "Coffee", + "amount": 694.7, + "currency": "USD", + "timestamp": "2025-05-09T22:42:31Z", + "lat": 28.223914, + "lon": -121.611648, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0053", + "user_id": "u_007", + "merchant_id": "m_008", + "item_name": "Streaming Subscription", + "amount": 1178.24, + "currency": "USD", + "timestamp": "2025-04-29T05:42:31Z", + "lat": 41.118064, + "lon": -118.814622, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0054", + "user_id": "u_010", + "merchant_id": "m_011", + "item_name": "Clothing", + "amount": 521.6, + "currency": "USD", + "timestamp": "2025-05-04T00:42:31Z", + "lat": 44.551653, + "lon": -120.638602, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0055", + "user_id": "u_004", + "merchant_id": "m_008", + "item_name": "Gym Membership", + "amount": 355.54, + "currency": "USD", + "timestamp": "2025-04-20T00:42:31Z", + "lat": 44.022969, + "lon": -78.470695, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0056", + "user_id": "u_014", + "merchant_id": "m_018", + "item_name": "Furniture", + "amount": 559.06, + "currency": "USD", + "timestamp": "2025-05-08T05:42:31Z", + "lat": 45.316075, + "lon": -73.144982, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0057", + "user_id": "u_012", + "merchant_id": "m_011", + "item_name": "Laptop", + "amount": 1201.71, + "currency": "USD", + "timestamp": "2025-04-22T04:42:31Z", + "lat": 43.212439, + "lon": -86.496966, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0058", + "user_id": "u_013", + "merchant_id": "m_024", + "item_name": "Plane Ticket", + "amount": 916.96, + "currency": "USD", + "timestamp": "2025-04-24T19:42:31Z", + "lat": 45.642569, + "lon": -81.460941, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0059", + "user_id": "u_013", + "merchant_id": "m_021", + "item_name": "Headphones", + "amount": 291.56, + "currency": "USD", + "timestamp": "2025-04-28T12:42:31Z", + "lat": 35.256912, + "lon": -96.109774, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0060", + "user_id": "u_013", + "merchant_id": "m_001", + "item_name": "Ride Share", + "amount": 1094.44, + "currency": "USD", + "timestamp": "2025-04-17T02:42:31Z", + "lat": 41.139183, + "lon": -78.754213, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0061", + "user_id": "u_006", + "merchant_id": "m_004", + "item_name": "Groceries", + "amount": 1499.87, + "currency": "USD", + "timestamp": "2025-04-17T23:42:31Z", + "lat": 27.433476, + "lon": -116.967174, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0062", + "user_id": "u_012", + "merchant_id": "m_002", + "item_name": "Ride Share", + "amount": 544.92, + "currency": "USD", + "timestamp": "2025-05-03T00:42:31Z", + "lat": 34.857944, + "lon": -87.97746, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0063", + "user_id": "u_018", + "merchant_id": "m_004", + "item_name": "Book", + "amount": 433.91, + "currency": "USD", + "timestamp": "2025-04-16T13:42:31Z", + "lat": 45.794633, + "lon": -66.991026, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0064", + "user_id": "u_015", + "merchant_id": "m_008", + "item_name": "Laptop", + "amount": 144.89, + "currency": "USD", + "timestamp": "2025-05-08T23:42:31Z", + "lat": 39.863625, + "lon": -69.926886, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0065", + "user_id": "u_013", + "merchant_id": "m_012", + "item_name": "Plane Ticket", + "amount": 1231.32, + "currency": "USD", + "timestamp": "2025-05-08T03:42:31Z", + "lat": 34.297999, + "lon": -99.90915, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0066", + "user_id": "u_001", + "merchant_id": "m_014", + "item_name": "Groceries", + "amount": 1205.4, + "currency": "USD", + "timestamp": "2025-05-10T05:42:31Z", + "lat": 29.191642, + "lon": -108.53245, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0067", + "user_id": "u_013", + "merchant_id": "m_010", + "item_name": "Headphones", + "amount": 1311.19, + "currency": "USD", + "timestamp": "2025-05-08T14:42:31Z", + "lat": 43.989609, + "lon": -101.166057, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0068", + "user_id": "u_018", + "merchant_id": "m_023", + "item_name": "Hotel Stay", + "amount": 1313.17, + "currency": "USD", + "timestamp": "2025-04-30T12:42:31Z", + "lat": 39.338714, + "lon": -78.511394, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0069", + "user_id": "u_001", + "merchant_id": "m_022", + "item_name": "Groceries", + "amount": 465.63, + "currency": "USD", + "timestamp": "2025-05-05T06:42:31Z", + "lat": 35.247421, + "lon": -95.145348, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0070", + "user_id": "u_003", + "merchant_id": "m_005", + "item_name": "Plane Ticket", + "amount": 1000.78, + "currency": "USD", + "timestamp": "2025-04-20T07:42:31Z", + "lat": 30.33704, + "lon": -75.901229, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0071", + "user_id": "u_019", + "merchant_id": "m_007", + "item_name": "Clothing", + "amount": 856.17, + "currency": "USD", + "timestamp": "2025-04-25T06:42:31Z", + "lat": 42.067385, + "lon": -69.542388, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0072", + "user_id": "u_007", + "merchant_id": "m_003", + "item_name": "Gaming Console", + "amount": 68.88, + "currency": "USD", + "timestamp": "2025-04-20T23:42:31Z", + "lat": 47.219621, + "lon": -83.324229, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0073", + "user_id": "u_002", + "merchant_id": "m_005", + "item_name": "Bicycle", + "amount": 152.42, + "currency": "USD", + "timestamp": "2025-05-11T15:42:31Z", + "lat": 45.098806, + "lon": -77.76401, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0074", + "user_id": "u_020", + "merchant_id": "m_013", + "item_name": "Book", + "amount": 994.55, + "currency": "USD", + "timestamp": "2025-04-16T08:42:31Z", + "lat": 40.788461, + "lon": -67.492872, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0075", + "user_id": "u_003", + "merchant_id": "m_002", + "item_name": "Hotel Stay", + "amount": 232.59, + "currency": "USD", + "timestamp": "2025-04-16T07:42:31Z", + "lat": 28.262526, + "lon": -83.05635, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0076", + "user_id": "u_012", + "merchant_id": "m_017", + "item_name": "Shoes", + "amount": 1060.16, + "currency": "USD", + "timestamp": "2025-05-01T16:42:31Z", + "lat": 34.863386, + "lon": -113.326341, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0077", + "user_id": "u_001", + "merchant_id": "m_019", + "item_name": "Software License", + "amount": 1065.32, + "currency": "USD", + "timestamp": "2025-04-21T14:42:31Z", + "lat": 43.213399, + "lon": -69.274885, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0078", + "user_id": "u_015", + "merchant_id": "m_021", + "item_name": "Streaming Subscription", + "amount": 942.25, + "currency": "USD", + "timestamp": "2025-04-20T06:42:31Z", + "lat": 36.505616, + "lon": -102.44351, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0079", + "user_id": "u_012", + "merchant_id": "m_021", + "item_name": "Gym Membership", + "amount": 1251.08, + "currency": "USD", + "timestamp": "2025-04-19T18:42:31Z", + "lat": 48.944844, + "lon": -86.169174, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0080", + "user_id": "u_007", + "merchant_id": "m_006", + "item_name": "Smartphone", + "amount": 565.47, + "currency": "USD", + "timestamp": "2025-04-18T19:42:31Z", + "lat": 27.323892, + "lon": -77.47086, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0081", + "user_id": "u_006", + "merchant_id": "m_004", + "item_name": "Software License", + "amount": 113.89, + "currency": "USD", + "timestamp": "2025-04-19T07:42:31Z", + "lat": 34.208669, + "lon": -116.123841, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0082", + "user_id": "u_016", + "merchant_id": "m_017", + "item_name": "Streaming Subscription", + "amount": 1320.0, + "currency": "USD", + "timestamp": "2025-04-21T09:42:31Z", + "lat": 36.940728, + "lon": -105.7124, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0083", + "user_id": "u_009", + "merchant_id": "m_011", + "item_name": "Camera", + "amount": 268.8, + "currency": "USD", + "timestamp": "2025-05-09T10:42:31Z", + "lat": 42.4911, + "lon": -75.243374, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0084", + "user_id": "u_012", + "merchant_id": "m_002", + "item_name": "Groceries", + "amount": 225.02, + "currency": "USD", + "timestamp": "2025-04-16T02:42:31Z", + "lat": 29.013773, + "lon": -84.218267, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0085", + "user_id": "u_018", + "merchant_id": "m_008", + "item_name": "Bicycle", + "amount": 1429.46, + "currency": "USD", + "timestamp": "2025-05-05T23:42:31Z", + "lat": 43.52706, + "lon": -95.817588, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0086", + "user_id": "u_016", + "merchant_id": "m_005", + "item_name": "Ride Share", + "amount": 528.52, + "currency": "USD", + "timestamp": "2025-04-14T22:42:31Z", + "lat": 37.11829, + "lon": -98.551549, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0087", + "user_id": "u_014", + "merchant_id": "m_024", + "item_name": "Camera", + "amount": 597.48, + "currency": "USD", + "timestamp": "2025-05-11T18:42:31Z", + "lat": 40.308861, + "lon": -73.842162, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0088", + "user_id": "u_011", + "merchant_id": "m_015", + "item_name": "Gaming Console", + "amount": 26.63, + "currency": "USD", + "timestamp": "2025-05-12T04:42:31Z", + "lat": 42.128628, + "lon": -103.544356, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0089", + "user_id": "u_008", + "merchant_id": "m_023", + "item_name": "Dinner", + "amount": 1043.94, + "currency": "USD", + "timestamp": "2025-04-19T19:42:31Z", + "lat": 36.426513, + "lon": -79.418672, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0090", + "user_id": "u_008", + "merchant_id": "m_002", + "item_name": "Plane Ticket", + "amount": 194.37, + "currency": "USD", + "timestamp": "2025-04-24T15:42:31Z", + "lat": 29.855991, + "lon": -84.724093, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0091", + "user_id": "u_014", + "merchant_id": "m_021", + "item_name": "Laptop", + "amount": 525.54, + "currency": "USD", + "timestamp": "2025-04-16T02:42:31Z", + "lat": 47.299312, + "lon": -108.388258, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0092", + "user_id": "u_018", + "merchant_id": "m_010", + "item_name": "Headphones", + "amount": 522.26, + "currency": "USD", + "timestamp": "2025-05-11T18:42:31Z", + "lat": 27.834422, + "lon": -116.544803, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0093", + "user_id": "u_020", + "merchant_id": "m_016", + "item_name": "Bicycle", + "amount": 633.55, + "currency": "USD", + "timestamp": "2025-04-22T11:42:31Z", + "lat": 26.538749, + "lon": -113.070724, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0094", + "user_id": "u_008", + "merchant_id": "m_011", + "item_name": "Shoes", + "amount": 1106.98, + "currency": "USD", + "timestamp": "2025-05-08T19:42:31Z", + "lat": 34.502058, + "lon": -103.173666, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0095", + "user_id": "u_004", + "merchant_id": "m_007", + "item_name": "Ride Share", + "amount": 139.01, + "currency": "USD", + "timestamp": "2025-05-08T15:42:31Z", + "lat": 33.836531, + "lon": -112.978767, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0096", + "user_id": "u_014", + "merchant_id": "m_021", + "item_name": "Gaming Console", + "amount": 1393.99, + "currency": "USD", + "timestamp": "2025-04-25T03:42:31Z", + "lat": 47.788627, + "lon": -82.551373, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0097", + "user_id": "u_002", + "merchant_id": "m_004", + "item_name": "Gym Membership", + "amount": 1420.3, + "currency": "USD", + "timestamp": "2025-04-27T00:42:31Z", + "lat": 34.034171, + "lon": -75.039266, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0098", + "user_id": "u_012", + "merchant_id": "m_012", + "item_name": "Headphones", + "amount": 503.01, + "currency": "USD", + "timestamp": "2025-05-05T21:42:31Z", + "lat": 27.906234, + "lon": -98.225217, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0099", + "user_id": "u_002", + "merchant_id": "m_007", + "item_name": "Gym Membership", + "amount": 477.54, + "currency": "USD", + "timestamp": "2025-05-01T13:42:31Z", + "lat": 28.640963, + "lon": -88.91177, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0100", + "user_id": "u_008", + "merchant_id": "m_018", + "item_name": "Smartphone", + "amount": 925.37, + "currency": "USD", + "timestamp": "2025-05-07T03:42:31Z", + "lat": 29.991755, + "lon": -110.038073, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0101", + "user_id": "u_018", + "merchant_id": "m_008", + "item_name": "Gym Membership", + "amount": 1366.36, + "currency": "USD", + "timestamp": "2025-05-06T20:42:31Z", + "lat": 29.725257, + "lon": -96.026107, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0102", + "user_id": "u_016", + "merchant_id": "m_021", + "item_name": "Gaming Console", + "amount": 697.55, + "currency": "USD", + "timestamp": "2025-05-02T06:42:31Z", + "lat": 35.472585, + "lon": -71.016793, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0103", + "user_id": "u_013", + "merchant_id": "m_015", + "item_name": "Coffee", + "amount": 1360.17, + "currency": "USD", + "timestamp": "2025-04-17T17:42:31Z", + "lat": 45.263733, + "lon": -101.799395, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0104", + "user_id": "u_008", + "merchant_id": "m_002", + "item_name": "Plane Ticket", + "amount": 1045.76, + "currency": "USD", + "timestamp": "2025-04-22T01:42:31Z", + "lat": 35.659498, + "lon": -88.648183, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0105", + "user_id": "u_010", + "merchant_id": "m_006", + "item_name": "Bicycle", + "amount": 359.98, + "currency": "USD", + "timestamp": "2025-04-14T00:42:31Z", + "lat": 35.013838, + "lon": -81.283235, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0106", + "user_id": "u_019", + "merchant_id": "m_013", + "item_name": "Dinner", + "amount": 99.45, + "currency": "USD", + "timestamp": "2025-04-23T22:42:31Z", + "lat": 41.661238, + "lon": -69.636419, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0107", + "user_id": "u_012", + "merchant_id": "m_023", + "item_name": "Concert Ticket", + "amount": 196.89, + "currency": "USD", + "timestamp": "2025-04-30T19:42:31Z", + "lat": 34.982872, + "lon": -114.702068, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0108", + "user_id": "u_020", + "merchant_id": "m_008", + "item_name": "Software License", + "amount": 1225.65, + "currency": "USD", + "timestamp": "2025-05-01T03:42:31Z", + "lat": 29.590469, + "lon": -89.543112, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0109", + "user_id": "u_007", + "merchant_id": "m_020", + "item_name": "Gaming Console", + "amount": 43.49, + "currency": "USD", + "timestamp": "2025-05-07T00:42:31Z", + "lat": 43.520622, + "lon": -87.8863, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0110", + "user_id": "u_011", + "merchant_id": "m_002", + "item_name": "Coffee", + "amount": 368.85, + "currency": "USD", + "timestamp": "2025-04-28T23:42:31Z", + "lat": 30.172612, + "lon": -113.864311, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0111", + "user_id": "u_014", + "merchant_id": "m_006", + "item_name": "Coffee", + "amount": 1471.73, + "currency": "USD", + "timestamp": "2025-04-21T10:42:31Z", + "lat": 26.217393, + "lon": -85.889865, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0112", + "user_id": "u_014", + "merchant_id": "m_005", + "item_name": "Streaming Subscription", + "amount": 1009.49, + "currency": "USD", + "timestamp": "2025-05-06T12:42:31Z", + "lat": 35.813565, + "lon": -116.584942, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0113", + "user_id": "u_013", + "merchant_id": "m_001", + "item_name": "Software License", + "amount": 733.8, + "currency": "USD", + "timestamp": "2025-04-25T07:42:31Z", + "lat": 35.364947, + "lon": -89.141154, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0114", + "user_id": "u_007", + "merchant_id": "m_008", + "item_name": "Gym Membership", + "amount": 1117.29, + "currency": "USD", + "timestamp": "2025-04-24T23:42:31Z", + "lat": 37.138476, + "lon": -66.617477, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0115", + "user_id": "u_006", + "merchant_id": "m_017", + "item_name": "Plane Ticket", + "amount": 352.43, + "currency": "USD", + "timestamp": "2025-05-08T17:42:31Z", + "lat": 27.266694, + "lon": -87.567325, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0116", + "user_id": "u_016", + "merchant_id": "m_024", + "item_name": "Clothing", + "amount": 350.8, + "currency": "USD", + "timestamp": "2025-04-16T13:42:31Z", + "lat": 44.216702, + "lon": -78.011064, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0117", + "user_id": "u_003", + "merchant_id": "m_009", + "item_name": "Ride Share", + "amount": 844.69, + "currency": "USD", + "timestamp": "2025-05-02T10:42:31Z", + "lat": 30.665674, + "lon": -115.214701, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0118", + "user_id": "u_007", + "merchant_id": "m_001", + "item_name": "Headphones", + "amount": 618.03, + "currency": "USD", + "timestamp": "2025-04-30T21:42:31Z", + "lat": 48.450893, + "lon": -119.881776, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0119", + "user_id": "u_011", + "merchant_id": "m_017", + "item_name": "Headphones", + "amount": 656.92, + "currency": "USD", + "timestamp": "2025-04-30T13:42:31Z", + "lat": 27.300297, + "lon": -97.848452, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0120", + "user_id": "u_005", + "merchant_id": "m_009", + "item_name": "Book", + "amount": 195.24, + "currency": "USD", + "timestamp": "2025-04-23T20:42:31Z", + "lat": 45.416751, + "lon": -117.251359, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0121", + "user_id": "u_016", + "merchant_id": "m_012", + "item_name": "Furniture", + "amount": 1277.46, + "currency": "USD", + "timestamp": "2025-05-03T22:42:31Z", + "lat": 48.388609, + "lon": -68.319947, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0122", + "user_id": "u_009", + "merchant_id": "m_019", + "item_name": "Bicycle", + "amount": 142.94, + "currency": "USD", + "timestamp": "2025-05-13T09:42:31Z", + "lat": 40.454142, + "lon": -103.888266, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0123", + "user_id": "u_015", + "merchant_id": "m_013", + "item_name": "Groceries", + "amount": 271.69, + "currency": "USD", + "timestamp": "2025-05-06T03:42:31Z", + "lat": 40.56738, + "lon": -104.724346, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0124", + "user_id": "u_005", + "merchant_id": "m_022", + "item_name": "Dinner", + "amount": 369.56, + "currency": "USD", + "timestamp": "2025-04-25T12:42:31Z", + "lat": 33.925645, + "lon": -114.66281, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0125", + "user_id": "u_013", + "merchant_id": "m_018", + "item_name": "Shoes", + "amount": 1032.48, + "currency": "USD", + "timestamp": "2025-05-13T13:42:31Z", + "lat": 41.964321, + "lon": -110.604425, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0126", + "user_id": "u_008", + "merchant_id": "m_022", + "item_name": "Software License", + "amount": 348.21, + "currency": "USD", + "timestamp": "2025-04-18T05:42:31Z", + "lat": 33.253319, + "lon": -77.253532, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0127", + "user_id": "u_001", + "merchant_id": "m_021", + "item_name": "Gaming Console", + "amount": 508.48, + "currency": "USD", + "timestamp": "2025-04-15T06:42:31Z", + "lat": 26.29976, + "lon": -122.674529, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0128", + "user_id": "u_009", + "merchant_id": "m_006", + "item_name": "Camera", + "amount": 277.54, + "currency": "USD", + "timestamp": "2025-04-15T21:42:31Z", + "lat": 46.908017, + "lon": -109.966729, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0129", + "user_id": "u_006", + "merchant_id": "m_021", + "item_name": "Ride Share", + "amount": 1175.93, + "currency": "USD", + "timestamp": "2025-04-20T10:42:31Z", + "lat": 36.385901, + "lon": -101.862841, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0130", + "user_id": "u_009", + "merchant_id": "m_023", + "item_name": "Book", + "amount": 1191.61, + "currency": "USD", + "timestamp": "2025-05-10T14:42:31Z", + "lat": 30.572501, + "lon": -79.398727, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0131", + "user_id": "u_003", + "merchant_id": "m_012", + "item_name": "Plane Ticket", + "amount": 1446.89, + "currency": "USD", + "timestamp": "2025-05-01T22:42:31Z", + "lat": 47.576226, + "lon": -97.47794, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0132", + "user_id": "u_020", + "merchant_id": "m_002", + "item_name": "Smartphone", + "amount": 362.56, + "currency": "USD", + "timestamp": "2025-04-23T23:42:31Z", + "lat": 43.443214, + "lon": -110.714027, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0133", + "user_id": "u_002", + "merchant_id": "m_020", + "item_name": "Software License", + "amount": 1369.37, + "currency": "USD", + "timestamp": "2025-04-27T20:42:31Z", + "lat": 48.443181, + "lon": -116.386725, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0134", + "user_id": "u_008", + "merchant_id": "m_001", + "item_name": "Headphones", + "amount": 113.24, + "currency": "USD", + "timestamp": "2025-04-20T20:42:31Z", + "lat": 37.099213, + "lon": -92.823366, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0135", + "user_id": "u_010", + "merchant_id": "m_021", + "item_name": "Hotel Stay", + "amount": 489.81, + "currency": "USD", + "timestamp": "2025-04-27T01:42:31Z", + "lat": 44.339275, + "lon": -86.365949, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0136", + "user_id": "u_007", + "merchant_id": "m_002", + "item_name": "Bicycle", + "amount": 1323.15, + "currency": "USD", + "timestamp": "2025-04-17T01:42:31Z", + "lat": 45.744648, + "lon": -107.780895, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0137", + "user_id": "u_010", + "merchant_id": "m_005", + "item_name": "Dinner", + "amount": 1229.72, + "currency": "USD", + "timestamp": "2025-04-30T02:42:31Z", + "lat": 28.033281, + "lon": -115.147526, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0138", + "user_id": "u_008", + "merchant_id": "m_012", + "item_name": "Coffee", + "amount": 927.33, + "currency": "USD", + "timestamp": "2025-05-11T09:42:31Z", + "lat": 42.097804, + "lon": -122.800478, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0139", + "user_id": "u_020", + "merchant_id": "m_013", + "item_name": "Book", + "amount": 985.31, + "currency": "USD", + "timestamp": "2025-05-06T11:42:31Z", + "lat": 40.248008, + "lon": -76.23493, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0140", + "user_id": "u_014", + "merchant_id": "m_008", + "item_name": "Gaming Console", + "amount": 884.5, + "currency": "USD", + "timestamp": "2025-04-30T13:42:31Z", + "lat": 29.864244, + "lon": -104.826713, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0141", + "user_id": "u_019", + "merchant_id": "m_023", + "item_name": "Ride Share", + "amount": 1366.72, + "currency": "USD", + "timestamp": "2025-04-23T01:42:31Z", + "lat": 33.858566, + "lon": -90.105201, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0142", + "user_id": "u_015", + "merchant_id": "m_016", + "item_name": "Bicycle", + "amount": 102.06, + "currency": "USD", + "timestamp": "2025-05-08T02:42:31Z", + "lat": 28.462585, + "lon": -98.776259, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0143", + "user_id": "u_012", + "merchant_id": "m_013", + "item_name": "Camera", + "amount": 967.88, + "currency": "USD", + "timestamp": "2025-05-04T20:42:31Z", + "lat": 32.884941, + "lon": -111.848094, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0144", + "user_id": "u_006", + "merchant_id": "m_020", + "item_name": "Groceries", + "amount": 396.84, + "currency": "USD", + "timestamp": "2025-04-25T05:42:31Z", + "lat": 28.28319, + "lon": -90.22848, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0145", + "user_id": "u_013", + "merchant_id": "m_024", + "item_name": "Hotel Stay", + "amount": 1382.3, + "currency": "USD", + "timestamp": "2025-05-11T01:42:31Z", + "lat": 42.73012, + "lon": -87.270315, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0146", + "user_id": "u_006", + "merchant_id": "m_008", + "item_name": "Smartphone", + "amount": 1294.97, + "currency": "USD", + "timestamp": "2025-04-29T05:42:31Z", + "lat": 33.099471, + "lon": -85.020744, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0147", + "user_id": "u_018", + "merchant_id": "m_003", + "item_name": "Dinner", + "amount": 1462.78, + "currency": "USD", + "timestamp": "2025-04-16T02:42:31Z", + "lat": 43.588713, + "lon": -67.228994, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0148", + "user_id": "u_019", + "merchant_id": "m_014", + "item_name": "Plane Ticket", + "amount": 494.3, + "currency": "USD", + "timestamp": "2025-04-28T12:42:31Z", + "lat": 37.84442, + "lon": -90.129741, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0149", + "user_id": "u_006", + "merchant_id": "m_014", + "item_name": "Book", + "amount": 1167.11, + "currency": "USD", + "timestamp": "2025-05-09T02:42:31Z", + "lat": 25.44261, + "lon": -122.931084, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0150", + "user_id": "u_013", + "merchant_id": "m_003", + "item_name": "Plane Ticket", + "amount": 1075.13, + "currency": "USD", + "timestamp": "2025-05-09T17:42:31Z", + "lat": 28.176308, + "lon": -86.449934, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0151", + "user_id": "u_008", + "merchant_id": "m_007", + "item_name": "Streaming Subscription", + "amount": 666.33, + "currency": "USD", + "timestamp": "2025-05-12T05:42:31Z", + "lat": 26.680286, + "lon": -111.39278, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0152", + "user_id": "u_018", + "merchant_id": "m_005", + "item_name": "Plane Ticket", + "amount": 1104.57, + "currency": "USD", + "timestamp": "2025-04-22T13:42:31Z", + "lat": 42.805229, + "lon": -90.308427, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0153", + "user_id": "u_004", + "merchant_id": "m_014", + "item_name": "Coffee", + "amount": 694.76, + "currency": "USD", + "timestamp": "2025-04-15T15:42:31Z", + "lat": 42.818599, + "lon": -74.853567, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0154", + "user_id": "u_005", + "merchant_id": "m_015", + "item_name": "Concert Ticket", + "amount": 802.42, + "currency": "USD", + "timestamp": "2025-04-20T01:42:31Z", + "lat": 28.357563, + "lon": -111.068094, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0155", + "user_id": "u_003", + "merchant_id": "m_009", + "item_name": "Software License", + "amount": 463.11, + "currency": "USD", + "timestamp": "2025-05-03T11:42:31Z", + "lat": 30.63969, + "lon": -84.48075, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0156", + "user_id": "u_012", + "merchant_id": "m_004", + "item_name": "Streaming Subscription", + "amount": 773.57, + "currency": "USD", + "timestamp": "2025-04-30T11:42:31Z", + "lat": 25.338644, + "lon": -120.319205, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0157", + "user_id": "u_003", + "merchant_id": "m_022", + "item_name": "Bicycle", + "amount": 979.02, + "currency": "USD", + "timestamp": "2025-04-21T18:42:31Z", + "lat": 34.514126, + "lon": -102.671221, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0158", + "user_id": "u_015", + "merchant_id": "m_020", + "item_name": "Hotel Stay", + "amount": 835.78, + "currency": "USD", + "timestamp": "2025-04-23T01:42:31Z", + "lat": 25.929198, + "lon": -78.622702, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0159", + "user_id": "u_004", + "merchant_id": "m_004", + "item_name": "Camera", + "amount": 589.17, + "currency": "USD", + "timestamp": "2025-04-21T11:42:31Z", + "lat": 45.137628, + "lon": -93.296632, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0160", + "user_id": "u_018", + "merchant_id": "m_024", + "item_name": "Hotel Stay", + "amount": 1443.17, + "currency": "USD", + "timestamp": "2025-05-07T06:42:31Z", + "lat": 28.102495, + "lon": -83.485704, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0161", + "user_id": "u_020", + "merchant_id": "m_019", + "item_name": "Gym Membership", + "amount": 1283.26, + "currency": "USD", + "timestamp": "2025-05-11T02:42:31Z", + "lat": 47.372771, + "lon": -73.897498, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0162", + "user_id": "u_003", + "merchant_id": "m_009", + "item_name": "Bicycle", + "amount": 120.46, + "currency": "USD", + "timestamp": "2025-04-26T06:42:31Z", + "lat": 40.977427, + "lon": -77.550807, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0163", + "user_id": "u_011", + "merchant_id": "m_004", + "item_name": "Groceries", + "amount": 699.56, + "currency": "USD", + "timestamp": "2025-05-07T21:42:31Z", + "lat": 43.794934, + "lon": -66.623264, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0164", + "user_id": "u_018", + "merchant_id": "m_024", + "item_name": "Dinner", + "amount": 1353.77, + "currency": "USD", + "timestamp": "2025-04-22T13:42:31Z", + "lat": 40.184985, + "lon": -73.553351, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0165", + "user_id": "u_006", + "merchant_id": "m_007", + "item_name": "Streaming Subscription", + "amount": 1176.3, + "currency": "USD", + "timestamp": "2025-04-24T09:42:31Z", + "lat": 32.550425, + "lon": -118.573451, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0166", + "user_id": "u_015", + "merchant_id": "m_013", + "item_name": "Streaming Subscription", + "amount": 1050.55, + "currency": "USD", + "timestamp": "2025-04-30T14:42:31Z", + "lat": 32.736235, + "lon": -80.030938, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0167", + "user_id": "u_018", + "merchant_id": "m_019", + "item_name": "Dinner", + "amount": 1101.12, + "currency": "USD", + "timestamp": "2025-04-21T06:42:31Z", + "lat": 27.5808, + "lon": -84.386804, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0168", + "user_id": "u_016", + "merchant_id": "m_014", + "item_name": "Groceries", + "amount": 1450.52, + "currency": "USD", + "timestamp": "2025-04-24T02:42:31Z", + "lat": 42.344951, + "lon": -116.958872, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0169", + "user_id": "u_005", + "merchant_id": "m_008", + "item_name": "Headphones", + "amount": 153.22, + "currency": "USD", + "timestamp": "2025-04-18T20:42:31Z", + "lat": 47.384434, + "lon": -104.403664, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0170", + "user_id": "u_014", + "merchant_id": "m_010", + "item_name": "Headphones", + "amount": 374.23, + "currency": "USD", + "timestamp": "2025-04-19T14:42:31Z", + "lat": 42.994319, + "lon": -72.553889, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0171", + "user_id": "u_012", + "merchant_id": "m_014", + "item_name": "Smartphone", + "amount": 396.59, + "currency": "USD", + "timestamp": "2025-05-04T06:42:31Z", + "lat": 32.054904, + "lon": -85.132955, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0172", + "user_id": "u_015", + "merchant_id": "m_003", + "item_name": "Hotel Stay", + "amount": 330.74, + "currency": "USD", + "timestamp": "2025-04-14T19:42:31Z", + "lat": 29.042974, + "lon": -73.84691, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0173", + "user_id": "u_005", + "merchant_id": "m_011", + "item_name": "Plane Ticket", + "amount": 428.5, + "currency": "USD", + "timestamp": "2025-04-26T13:42:31Z", + "lat": 33.555802, + "lon": -110.347239, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0174", + "user_id": "u_006", + "merchant_id": "m_001", + "item_name": "Gym Membership", + "amount": 758.12, + "currency": "USD", + "timestamp": "2025-05-13T11:42:31Z", + "lat": 45.606891, + "lon": -111.128267, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0175", + "user_id": "u_006", + "merchant_id": "m_010", + "item_name": "Gym Membership", + "amount": 452.62, + "currency": "USD", + "timestamp": "2025-05-11T09:42:31Z", + "lat": 42.423968, + "lon": -110.307526, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0176", + "user_id": "u_008", + "merchant_id": "m_001", + "item_name": "Smartphone", + "amount": 549.6, + "currency": "USD", + "timestamp": "2025-05-07T17:42:31Z", + "lat": 46.006509, + "lon": -99.448649, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0177", + "user_id": "u_007", + "merchant_id": "m_015", + "item_name": "Plane Ticket", + "amount": 38.08, + "currency": "USD", + "timestamp": "2025-04-20T05:42:31Z", + "lat": 28.546376, + "lon": -115.57471, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0178", + "user_id": "u_002", + "merchant_id": "m_003", + "item_name": "Streaming Subscription", + "amount": 700.0, + "currency": "USD", + "timestamp": "2025-04-23T08:42:31Z", + "lat": 41.048977, + "lon": -69.073116, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0179", + "user_id": "u_006", + "merchant_id": "m_023", + "item_name": "Shoes", + "amount": 1309.75, + "currency": "USD", + "timestamp": "2025-05-09T18:42:31Z", + "lat": 25.594526, + "lon": -83.796834, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0180", + "user_id": "u_007", + "merchant_id": "m_021", + "item_name": "Clothing", + "amount": 902.73, + "currency": "USD", + "timestamp": "2025-04-29T03:42:31Z", + "lat": 42.842689, + "lon": -90.572094, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0181", + "user_id": "u_006", + "merchant_id": "m_007", + "item_name": "Gym Membership", + "amount": 1180.13, + "currency": "USD", + "timestamp": "2025-04-22T11:42:31Z", + "lat": 25.453649, + "lon": -74.808704, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0182", + "user_id": "u_020", + "merchant_id": "m_016", + "item_name": "Dinner", + "amount": 692.55, + "currency": "USD", + "timestamp": "2025-05-01T17:42:31Z", + "lat": 45.090152, + "lon": -77.454249, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0183", + "user_id": "u_019", + "merchant_id": "m_016", + "item_name": "Book", + "amount": 1320.78, + "currency": "USD", + "timestamp": "2025-05-05T01:42:31Z", + "lat": 33.906415, + "lon": -82.116657, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0184", + "user_id": "u_010", + "merchant_id": "m_016", + "item_name": "Shoes", + "amount": 58.12, + "currency": "USD", + "timestamp": "2025-04-18T07:42:31Z", + "lat": 44.630922, + "lon": -69.218753, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0185", + "user_id": "u_015", + "merchant_id": "m_008", + "item_name": "Hotel Stay", + "amount": 1282.87, + "currency": "USD", + "timestamp": "2025-05-08T15:42:31Z", + "lat": 38.628489, + "lon": -89.03014, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0186", + "user_id": "u_004", + "merchant_id": "m_021", + "item_name": "Hotel Stay", + "amount": 300.49, + "currency": "USD", + "timestamp": "2025-05-04T10:42:31Z", + "lat": 37.60722, + "lon": -75.899307, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0187", + "user_id": "u_006", + "merchant_id": "m_009", + "item_name": "Shoes", + "amount": 432.81, + "currency": "USD", + "timestamp": "2025-04-15T16:42:31Z", + "lat": 42.932298, + "lon": -113.147075, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0188", + "user_id": "u_001", + "merchant_id": "m_010", + "item_name": "Dinner", + "amount": 394.58, + "currency": "USD", + "timestamp": "2025-04-15T09:42:31Z", + "lat": 26.964914, + "lon": -105.076442, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0189", + "user_id": "u_014", + "merchant_id": "m_021", + "item_name": "Concert Ticket", + "amount": 1281.12, + "currency": "USD", + "timestamp": "2025-04-19T12:42:31Z", + "lat": 32.450397, + "lon": -96.881517, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0190", + "user_id": "u_013", + "merchant_id": "m_005", + "item_name": "Plane Ticket", + "amount": 1413.99, + "currency": "USD", + "timestamp": "2025-04-25T08:42:31Z", + "lat": 41.126811, + "lon": -102.944164, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0191", + "user_id": "u_001", + "merchant_id": "m_014", + "item_name": "Plane Ticket", + "amount": 912.33, + "currency": "USD", + "timestamp": "2025-05-09T11:42:31Z", + "lat": 30.321647, + "lon": -85.547224, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0192", + "user_id": "u_019", + "merchant_id": "m_006", + "item_name": "Gym Membership", + "amount": 806.33, + "currency": "USD", + "timestamp": "2025-04-21T13:42:31Z", + "lat": 36.445358, + "lon": -74.416482, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0193", + "user_id": "u_010", + "merchant_id": "m_010", + "item_name": "Gym Membership", + "amount": 586.87, + "currency": "USD", + "timestamp": "2025-04-15T21:42:31Z", + "lat": 26.537991, + "lon": -120.527613, + "card_provider": "VISA" + }, + { + "transaction_id": "txn_0194", + "user_id": "u_009", + "merchant_id": "m_003", + "item_name": "Dinner", + "amount": 330.0, + "currency": "USD", + "timestamp": "2025-04-21T01:42:31Z", + "lat": 48.171873, + "lon": -66.261223, + "card_provider": "DISCOVER" + }, + { + "transaction_id": "txn_0195", + "user_id": "u_017", + "merchant_id": "m_002", + "item_name": "Groceries", + "amount": 429.52, + "currency": "USD", + "timestamp": "2025-04-29T11:42:31Z", + "lat": 38.11713, + "lon": -108.200041, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0196", + "user_id": "u_018", + "merchant_id": "m_007", + "item_name": "Hotel Stay", + "amount": 1402.06, + "currency": "USD", + "timestamp": "2025-04-24T05:42:31Z", + "lat": 48.421763, + "lon": -109.737807, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0197", + "user_id": "u_009", + "merchant_id": "m_014", + "item_name": "Software License", + "amount": 751.62, + "currency": "USD", + "timestamp": "2025-04-29T08:42:31Z", + "lat": 31.832108, + "lon": -82.46585, + "card_provider": "MASTERCARD" + }, + { + "transaction_id": "txn_0198", + "user_id": "u_016", + "merchant_id": "m_005", + "item_name": "Furniture", + "amount": 1042.48, + "currency": "USD", + "timestamp": "2025-04-27T23:42:31Z", + "lat": 32.759203, + "lon": -92.10264, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0199", + "user_id": "u_020", + "merchant_id": "m_024", + "item_name": "Smartphone", + "amount": 178.21, + "currency": "USD", + "timestamp": "2025-04-15T01:42:31Z", + "lat": 40.125231, + "lon": -90.035775, + "card_provider": "AMEX" + }, + { + "transaction_id": "txn_0200", + "user_id": "u_009", + "merchant_id": "m_007", + "item_name": "Bicycle", + "amount": 1054.41, + "currency": "USD", + "timestamp": "2025-04-15T08:42:31Z", + "lat": 42.611433, + "lon": -109.501848, + "card_provider": "AMEX" + } +] \ No newline at end of file diff --git a/python-recipes/finetuning/00_text_finetuning.ipynb b/python-recipes/finetuning/00_text_finetuning.ipynb new file mode 100644 index 00000000..224df6fb --- /dev/null +++ b/python-recipes/finetuning/00_text_finetuning.ipynb @@ -0,0 +1,741 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Fine tuning text embedding models using sentence_transformers\n", + "\n", + "If you're building an LLM application your system will likely include a text embedding model that transforms written text into vector embeddings. These may be used for classification, routing, document retrieval, semantic caching or search.\n", + "\n", + "One of the key measure of an embedding model is how well it can group semantically equivalent statements together, and similarly, how well it an distinguish between similar, but not equivalent statements.\n", + "\n", + "Because embedding models are not performing logical reasoning, but instead are often used to perform vector similarity calculations, we're not guaranteed that every pair of similar vectors will be relevant or equivalent, or that embeddings that are far apart in vector space aren't relevant to each other. This is why using the correct text embedding model is critical. Using a text embedding model specifically fine tuned to correctly match queries for your system can improve your overall app performance." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This notebook uses the [sentence_transformers](https://sbert.net/) library to fine tune a text embedding model on a custom dataset.\n", + "The training method used is [contrastive fine tuning](https://arxiv.org/abs/2408.00690), where two statements are assigned a label as either being similar {label=1.0} or dissimilar {label=0.0}.\n", + "Training then proceeds to minimize the cosine distance between similar statements, and maximize the cosine distance between dissimilar statements.\n", + "\n", + "This contrastive loss function is well suited to applications where we care about the metrics true positive, true negative, false positive, and false negative.\n", + "\n", + "## Let's Begin!\n", + "\"Open" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.2\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m25.0.1\u001b[0m\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n" + ] + } + ], + "source": [ + "!pip install --quiet torch datasets sentence_transformers 'transformers[torch]' redisvl matplotlib seaborn scikit-learn ipywidgets" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Select our starting model and dataset to fine tune on\n", + "To perform finetuning you'll need a dataset that ideally is specific to your use case. For the type of training we'll be doing - contrastive fine tuning - you'll need to structure your dataset as a set of pairs of questions or statements and coresponding label indicating if they're equivalent or not.\n", + "\n", + "An example of what this looks like is in `sample_dataset.csv`\n", + "\n", + "| question_1 | question_2 | label |\n", + "|------------|------------|-------|\n", + "| What is AI? | What is artificial intelligence? | 1.0 |\n", + "| How to bake a cake? | How to make a sandwich? | 0.0 |\n", + "| Define machine learning. | Explain machine learning. | 1.0 |" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# select the datasets to train and test on\n", + "# we've provided examples in the datasets directory of our public S3 bucket for what these files should look like\n", + "train_data = 'sample_dataset.csv'\n", + "test_data = 'sample_testset.csv'" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import requests\n", + "import os\n", + "\n", + "if not (os.path.exists(f\"./datasets/{train_data}\") and os.path.exists(f\"./datasets/{test_data}\")):\n", + " if not os.path.exists('./datasets/'):\n", + " os.mkdir('./datasets/')\n", + "\n", + " # download the files and save them locally\n", + " for file in [train_data, test_data]:\n", + " url = f'https://redis-ai-resources.s3.us-east-2.amazonaws.com/finetuning/datasets/{file}'\n", + " r = requests.get(url)\n", + " with open(f'./datasets/{file}', 'wb') as f:\n", + " f.write(r.content)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "from datasets import load_dataset\n", + "from sentence_transformers import SentenceTransformer\n", + "from sentence_transformers.losses import ContrastiveLoss\n", + "import copy\n", + "\n", + "# load a model to train/finetune\n", + "model_name = 'sentence-transformers/all-MiniLM-L6-v2'\n", + "\n", + "model = SentenceTransformer(model_name)\n", + "\n", + "# make a copy of the weights before training if we want to compare how much they've changed\n", + "before_training = copy.deepcopy(model.state_dict())\n", + "\n", + "# this loss requires pairs of text and a floating point similarity score as a label\n", + "# we'll use 'hard labels' of 1.0 or 0.0 as that is shown to lead to the best separation\n", + "loss = ContrastiveLoss(model)\n", + "\n", + "# load an example training dataset that works with our loss function:\n", + "train_dataset = load_dataset(\"csv\", data_files=f\"datasets/{train_data}\", split='train')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Define our training arguments" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "from sentence_transformers.training_args import SentenceTransformerTrainingArguments\n", + "from sentence_transformers.training_args import BatchSamplers\n", + "\n", + "args = SentenceTransformerTrainingArguments(\n", + " # required parameters\n", + " output_dir=f\"models/trained_on_{train_data}\",\n", + " # optional training parameters\n", + " num_train_epochs=1,\n", + " per_device_train_batch_size=16,\n", + " per_device_eval_batch_size=16,\n", + " warmup_ratio=0.1,\n", + " fp16=False, # set to False if your GPU can't handle FP16\n", + " bf16=False, # set to True if your GPU supports BF16\n", + " batch_sampler=BatchSamplers.NO_DUPLICATES, # losses using \"in-batch negatives\" benefit from no duplicates\n", + " # optional tracking/debugging parameters\n", + " eval_strategy=\"steps\",\n", + " eval_steps=100,\n", + " save_strategy=\"steps\",\n", + " save_steps=100,\n", + " save_total_limit=2,\n", + " logging_steps=100,\n", + " run_name=f\"model-base-{train_data}\", # used in Weights & Biases if `wandb` is installed\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Split your dataset to perform training validation\n", + "While our model is training both the training loss and validation loss will be recorded. These are printed to `stdout`, and also logged in\n", + "`models/model-base-all/checkpoint-/trainer_state.json`.\n", + "\n", + "sentence_transformers uses the term 'evaluation' rather than 'validation'." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "train Dataset({\n", + " features: ['question_1', 'question_2', 'label'],\n", + " num_rows: 41\n", + "})\n", + "validation Dataset({\n", + " features: ['question_1', 'question_2', 'label'],\n", + " num_rows: 11\n", + "})\n" + ] + } + ], + "source": [ + "from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator, SimilarityFunction\n", + "\n", + "# split the dataset into training and validation sets\n", + "train_dataset = train_dataset.train_test_split(train_size=0.8, seed=42)\n", + "\n", + "validation_dataset = train_dataset['test']\n", + "train_dataset = train_dataset['train']\n", + "\n", + "print('train', train_dataset)\n", + "print('validation', validation_dataset)\n", + "\n", + "# initialize the evaluator\n", + "dev_evaluator = EmbeddingSimilarityEvaluator(\n", + " sentences1=validation_dataset[\"question_1\"],\n", + " sentences2=validation_dataset[\"question_2\"],\n", + " scores=validation_dataset[\"label\"],\n", + " main_similarity=SimilarityFunction.COSINE,\n", + " name=f\"{train_data}-dev\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Train our model\n", + "This cell performs the full training for the number of epochs defined in our `SentenceTransformerTrainingArguments`, args. Losses are periodically printed out." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "aafb575008c049f391e1d074a59e91dd", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3 [00:00 0 else 1 for m in metrics_before.values()]\n", + " precision_after = [m['TP'] / (m['TP'] + m['FP']) if (m['TP'] + m['FP']) > 0 else 1 for m in metrics_after.values()]\n", + "\n", + " recall_before = [m['TP'] / (m['TP'] + m['FN']) if (m['TP'] + m['FN']) > 0 else 1 for m in metrics_before.values()]\n", + " recall_after = [m['TP'] / (m['TP'] + m['FN']) if (m['TP'] + m['FN']) > 0 else 1 for m in metrics_after.values()]\n", + "\n", + " from sklearn.metrics import roc_auc_score\n", + " y_true_before = []\n", + " y_score_before = []\n", + " y_true_after = []\n", + " y_score_after = []\n", + "\n", + " for m in metrics_before.values():\n", + " y_true_before.extend([1] * m['TP'] + [0] * m['FN'] + [0] * m['TN'] + [1] * m['FP'])\n", + " y_score_before.extend([1] * m['TP'] + [1] * m['FN'] + [0] * m['TN'] + [0] * m['FP'])\n", + "\n", + " for m in metrics_after.values():\n", + " y_true_after.extend([1] * m['TP'] + [0] * m['FN'] + [0] * m['TN'] + [1] * m['FP'])\n", + " y_score_after.extend([1] * m['TP'] + [1] * m['FN'] + [0] * m['TN'] + [0] * m['FP'])\n", + "\n", + " auc_before = roc_auc_score(y_true_before, y_score_before)\n", + " auc_after = roc_auc_score(y_true_after, y_score_after)\n", + "\n", + " plt.figure()\n", + " plt.plot(recall_before, precision_before, scalex=False, scaley=False)\n", + " plt.plot(recall_after, precision_after, scalex=False, scaley=False)\n", + " plt.title(f'trained on {train_data}, test on {test_data}\\n Precision Recall curves with finetuning')\n", + " plt.xlabel('Recall')\n", + " plt.ylabel('Precision')\n", + " plt.ylim([0,1.1])\n", + " plt.legend([f'before finetuning auc={auc_before :.4f}', f'after finetuning auc={auc_after :.4f}'])\n", + " plt.show()\n", + "\n", + "\n", + "def display_accuracy(metrics_before, metrics_after):\n", + " accuracy_before = [m['accuracy'] for m in metrics_before.values()]\n", + " accuracy_after = [m['accuracy'] for m in metrics_after.values()]\n", + " plt.figure()\n", + " plt.plot(list(metrics_before.keys()), accuracy_before)\n", + " plt.plot(list(metrics_after.keys()), accuracy_after)\n", + " plt.title(f'trained on {train_data}, test on {test_data}\\n Accuracy')\n", + " plt.xlabel('Threshold')\n", + " plt.ylabel('Accuracy')\n", + " plt.ylim([0,1.1])\n", + " plt.legend(['before finetuning', 'after finetuning'])\n", + " plt.show()\n", + "\n", + "\n", + "def display_f1_score(metrics_before, metrics_after):\n", + " F1_before = [m[\"F1\"] for m in metrics_before.values()]\n", + " F1_after = [m[\"F1\"] for m in metrics_after.values()]\n", + "\n", + " plt.figure()\n", + " plt.plot(list(metrics_before.keys()), F1_before)\n", + " plt.plot(list(metrics_after.keys()), F1_after)\n", + " plt.title(f'trained on {train_data}, test on {test_data}\\n F1 Score')\n", + " plt.xlabel('Threshold')\n", + " plt.ylabel('F1 Score')\n", + " plt.legend(['before finetuning', 'after finetuning'])\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHcCAYAAAA6I8WuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB77ElEQVR4nO3dd1gUV9sG8Ht3YZfepCMCYseCFRtiQbFEgyaKJYolaqLGgibRGEXsXRN7NJb46qtYY9RYgiX22GOvGIwK2Oh993x/8LGvK0VAYIW9f9e1l+7ZMzPPlJ19OHNmjkQIIUBERESkg6TaDoCIiIhIW5gIERERkc5iIkREREQ6i4kQERER6SwmQkRERKSzmAgRERGRzmIiRERERDqLiRARERHpLCZCREREpLOYCJUQV1dX9O/fXyvL7t+/P1xdXbWy7LLi2LFjkEgkOHbsWIkt89GjR5BIJFi/fn2JLZOorNHmuZdKByZC/+/06dOYMmUKYmJitB0K0Xv70I7n5cuXl4mEbvPmzVi8eHGxLuPp06eYMmUKrly5UqzLofdXlo6HkliXDxUTof93+vRphISEFNsPx507d7B69epimTfR24r7eC4oJkL59/TpU4SEhDARKgXK0vHARIgKRKVSISUlpUDTKBQK6OvrF1NEREREVCiCRHBwsACQ7RUeHi6EEAKAGD58uPjPf/4jatSoIfT09MSuXbuEEELMmzdPNGnSRFhZWQkDAwNRr149sW3btmzLcHFxEYGBger369atEwDEyZMnxZgxY4S1tbUwMjIS/v7+Ijo6Otv0+/fvF82bNxdGRkbCxMREdOzYUVy/fj1bvV27dgkPDw+hUCiEh4eH2LlzpwgMDBQuLi752hbLli0TNWrUEHK5XDg4OIhhw4aJ169fa9Tx8fERHh4e4saNG6Jly5bC0NBQODo6ijlz5uRrGYcOHRLNmjUT5ubmwtjYWFSpUkVMmDBB/XlqaqqYNGmSqFevnjAzMxNGRkaiefPm4siRIxrzCQ8PFwDEvHnzxNKlS4Wbm5swNDQUbdu2FREREUKlUompU6cKJycnYWBgILp06SJevnypMQ8XFxfRqVMncfDgQVGnTh2hUChE9erVxY4dOzTqHT16VAAQR48e1Sg/e/as8PPzE2ZmZsLQ0FC0aNFCnDx5Ml/b4U2vX78WgYGBwszMTJibm4t+/fqJy5cvCwBi3bp16npXr14VgYGBws3NTSgUCmFnZycGDBggXrx4oa7zruN57dq1olWrVsLGxkbI5XJRvXp1sXz58mwxnT9/XrRr106UK1dOGBgYCFdXVzFgwACNOkqlUixatEjUqFFDKBQKYWtrK4YMGSJevXqlsY3fjsXHxyfP7aFUKsXixYtFzZo1hUKhENbW1sLPz0+cP39eXSev4ygyMlLIZDIxZcqUbPO+ffu2ACCWLFmSZwxv8/HxybYeb36vUlJSxOTJk4W7u7uQy+WifPny4uuvvxYpKSka88kr7qzj7O3Xm8dATi5duiTat28vTE1NhbGxsWjdurU4c+aMRp2CnnPe9uzZM9G/f3/h5OQk5HK5sLe3F126dFEfV0IIsXv3btGxY0fh4OAg5HK5qFixopg6darIyMjIti09PDzE1atXRYsWLYShoaFwd3dXnzuPHTsmGjVqJAwMDESVKlXE4cOHNabPOsZv3bolunfvLkxNTYWVlZUYOXKkSE5O1qj79rlXiMzv26hRo0T58uWFXC4X7u7uYvbs2UKpVL5zO7y5Dto+Hu7evSu6desm7OzshEKhEE5OTiIgIEDExMRoLGPjxo2iXr16wsDAQFhaWoqAgAARERGR73XJzcaNG0XDhg2FoaGhsLCwEN7e3uLgwYPqz/M6h6SlpQlLS0vRv3//bPONjY0VCoVCjB079p0xFAUmQiLzx6VXr14CgFi0aJHYuHGj2Lhxo0hISBBCZCZC1atXFzY2NiIkJEQsW7ZMXL58WQghRPny5cWwYcPE0qVLxcKFC0WjRo0EALF3716NZeSWCNWtW1e0bt1aLFmyRIwdO1bIZDLRo0cPjWl/+eUXIZFIRPv27cWSJUvEnDlzhKurq7CwsNA4CR08eFBIpVJRs2ZNsXDhQjFx4kRhbm4uPDw88nVQZ51cfH19xZIlS8SIESOETCYTDRs2FGlpaep6Pj4+wtHRUTg7O4tRo0aJ5cuXi9atWwsAYv/+/Xku4/r160Iul4sGDRqIH374QaxcuVKMGzdOtGjRQl3n+fPnwsHBQQQFBYkVK1aIuXPniqpVqwp9fX31dhfif4mQp6enqFGjhli4cKH4/vvvhVwuF40bNxbfffedaNq0qfjxxx/FyJEjhUQiyfZD7uLiIqpUqSIsLCzE+PHjxcKFC0WtWrWEVCoVhw4dUtfLKREKCwsTcrlcNGnSRCxYsEAsWrRI1K5dW8jlcnHu3Ll3bu8sKpVKtGjRQkilUjFs2DCxZMkS0bp1a1G7du1sP4Lz588X3t7eYurUqeKnn34So0aNEoaGhqJRo0ZCpVIJId59PDds2FD0799fLFq0SCxZskS0a9dOABBLly5VLycqKkpYWlqKKlWqiHnz5onVq1eLiRMniurVq2vE/vnnnws9PT0xePBgsXLlSvHtt98KY2NjjWNm165donz58qJatWrqWN7ctjnp37+/ACA6dOggFi9eLObPny8+/vhjdfKSn+OodevWokaNGtnmHRISImQymYiMjMz3PhIi8wfL09NTWFtbq9cj6w8ipVIp2rVrJ4yMjMTo0aPFqlWrxIgRI4Senp74+OOP1fN4V9yRkZFi6tSpAoAYMmSIejkPHjzINa7r168LY2Nj4eDgIKZNmyZmz56tTpTPnj2rrleQc05OmjZtKszNzcX3338v1qxZI2bOnClatWoljh8/rq7j7+8vevToIebNmydWrFghunfvLgCIcePGaczrzXPI119/LZYsWSJq1KghZDKZ2LJli7C3txdTpkwRixcvFk5OTsLc3FzExcWpp886V9WqVUt07txZLF26VHz22WcCgOjbt6/Gst4+9yYmJoratWuLcuXKie+++06sXLlS9OvXT0gkEjFq1Kh3bocs2j4eUlNThZubm3B0dBTTp08Xa9asESEhIaJhw4bi0aNH6mVMnz5dSCQSERAQIJYvXy5CQkKEtbW1cHV1Vf+Rm9e65GbKlCkCgGjatKmYN2+e+OGHH0Tv3r3Ft99+K4TI3zlk4MCBwsLCQqSmpmrMe8OGDQKAxh8+xYmJ0P+bN2+exl/NbwIgpFKpuHHjRrbPkpKSNN6npaWJmjVritatW2uU55YI+fr6qn/AhBBizJgxQiaTqTP6+Ph4YWFhIQYPHqwxv8jISGFubq5R7unpKRwcHDT+Gjh06FC+svvo6Gghl8tFu3btNP4qWrp0qQAg1q5dqy7L+uvhl19+UZelpqYKe3t78cknn+S5nEWLFgkA4vnz57nWycjIyPbFeP36tbCzsxMDBw5Ul2UlQjY2NhrrPGHCBAFA1KlTR6Snp6vLe/XqJeRyucZfZFmtFW+2AMXGxgoHBwdRt25dddnbiZBKpRKVK1cWfn5+GvsvKSlJuLm5ibZt2+a5Hd60e/duAUDMnTtXYxt4e3tnS4TePt6EEOK///2vACD+/PNPdVlex3NO8/Dz8xMVK1ZUv9+1a9c7T0QnTpwQAMSmTZs0yg8cOJCt3MPD452tQFmOHDkiAIiRI0dm+yxrW+fnOFq1apUAIK5du6ZRXqNGjWzfz/zq1KlTjt+ljRs3CqlUKk6cOKFRvnLlSgFAnDp1Kt9xnz9/Pl+tQFn8/f2FXC7XSJaePn0qTE1NNRLD/J5zcvL69Wt162tecjq2hg4dKoyMjDS+d1nnkM2bN6vLslrqpFKpRgJ38ODBbNsjKxHq0qWLxrKGDRsmAIirV6+qy94+906bNk0YGxuLu3fvakw7fvx4IZPJNFpK3kWbx0NWi3FOVyCyPHr0SMhkMjFjxgyN8mvXrgk9PT2N8tzWJSf37t0TUqlUdO3aNVsrWtaxlZ9zSNa+/e233zTKO3bsqHE+Km7sI5RPPj4+qFGjRrZyQ0ND9f9fv36N2NhYeHt749KlS/ma75AhQyCRSNTvvb29oVQq8c8//wAADh8+jJiYGPTq1QsvXrxQv2QyGby8vHD06FEAwLNnz3DlyhUEBgbC3NxcPb+2bdvmGPfb/vjjD6SlpWH06NGQSv93WAwePBhmZmbYt2+fRn0TExN89tln6vdyuRyNGjXCw4cP81yOhYUFAODXX3+FSqXKsY5MJoNcLgeQ2R/r1atXyMjIQIMGDXLcrt27d9dYZy8vLwDAZ599Bj09PY3ytLQ0PHnyRGN6R0dHdO3aVf3ezMwM/fr1w+XLlxEZGZljjFeuXMG9e/fQu3dvvHz5Ur1fEhMT0aZNG/z555+5rt/b9u/fDz09PXz55Zca2+Crr77KVvfN4y0lJQUvXrxA48aNASDfx9yb84iNjcWLFy/g4+ODhw8fIjY2FsD/9tPevXuRnp6e43y2bdsGc3NztG3bVuPYrF+/PkxMTNTHZkHt2LEDEokEwcHB2T7L+q7k5zjq1q0b9PT0sHXrVnXZ9evXcfPmTQQEBBQqttxs27YN1atXR7Vq1TS2RevWrQFAvS3yE3dBKJVKHDp0CP7+/qhYsaK63MHBAb1798bJkycRFxenMc27zjk5MTQ0hFwux7Fjx/D69es862WJj4/Hixcv4O3tjaSkJNy+fVujromJCXr27Kl+X7VqVVhYWKB69erq7zDwv+9zTueW4cOHa7zP+s7s378/1xi3bdsGb29vWFpaauwrX19fKJVK/Pnnn7lOm18lcTxknfMOHjyIpKSkHOvs3LkTKpUKPXr00IjD3t4elStXLvR3dPfu3VCpVJg8ebLG7wWQ/Tua1zmkdevWsLa21viOvn79GocPHy7y72hemAjlk5ubW47le/fuRePGjWFgYAArKyvY2NhgxYoV6h+Ud6lQoYLGe0tLSwBQn2zu3bsHIPOAsbGx0XgdOnQI0dHRAKA+iVWuXDnbMqpWrfrOOLKmf7uuXC5HxYoVs50ky5cvr3EyzYo9r5MkAAQEBKBZs2b4/PPPYWdnh549eyI0NDTbSWDDhg2oXbs2DAwMUK5cOdjY2GDfvn05bte3t2HWCcLZ2TnH8rdjrFSpUrZ1qVKlCoDMZ/nkJGu/BAYGZtsva9asQWpqar6PgX/++QcODg4wMTHRKM9pv7169QqjRo2CnZ0dDA0NYWNjoz4287u8U6dOwdfXF8bGxrCwsICNjQ2+++47jXn4+Pjgk08+QUhICKytrfHxxx9j3bp1SE1N1dgGsbGxsLW1zbYNEhIS1MdmQT148ACOjo6wsrLKtU5+jiNra2u0adMGoaGh6rKtW7dCT08P3bp1K1Rsubl37x5u3LiRbTtkHUdZ2yK/x39+PX/+HElJSTkeK9WrV4dKpcLjx481yt91zsmJQqHAnDlz8Pvvv8POzg4tWrTA3Llzs/2hcOPGDXTt2hXm5uYwMzODjY2N+g+mt4/PnM4h5ubm+f7eAtnPd+7u7pBKpbl+b4HMfXXgwIFs+8rX1xcACn3cvr2M4j4e3NzcEBQUhDVr1sDa2hp+fn5YtmyZxna+d+8ehBCoXLlytlhu3br1Xt9RqVSa5x/Z+TmH6Onp4ZNPPsGvv/6qLt+5cyfS09NLNBHSe3cVAjT/0sly4sQJdOnSBS1atMDy5cvh4OAAfX19rFu3Dps3b87XfGUyWY7lQggAUH8hNm7cCHt7+2z13mzxKEnvijs3hoaG+PPPP3H06FHs27cPBw4cwNatW9G6dWscOnQIMpkM//nPf9C/f3/4+/vj66+/hq2tLWQyGWbNmoUHDx7kO5bCxpgfWftl3rx58PT0zLHO24lNUejRowdOnz6Nr7/+Gp6enjAxMYFKpUL79u3zdfJ88OAB2rRpg2rVqmHhwoVwdnaGXC7H/v37sWjRIvU8JBIJtm/fjrNnz+K3337DwYMHMXDgQCxYsABnz55VL9fW1habNm3KcVk2NjZFuu5vys9xBAA9e/bEgAEDcOXKFXh6eiI0NBRt2rSBtbV1kcajUqlQq1YtLFy4MMfPs37c8xt3cSrs92L06NHo3Lkzdu/ejYMHD2LSpEmYNWsWjhw5grp16yImJgY+Pj4wMzPD1KlT4e7uDgMDA1y6dAnffvtttuOzOL63bydWOVGpVGjbti2++eabHD/PSlbeR0kdDwsWLED//v3x66+/4tChQxg5ciRmzZqFs2fPonz58lCpVJBIJPj9999znFdxnKOy5OccAmR+R1etWoXff/8d/v7+CA0NRbVq1VCnTp1ii+1tTIT+X36+QG/bsWMHDAwMcPDgQSgUCnX5unXriiwud3d3AICtra36L5acuLi4APhfS8Wb7ty5887lZE1/584djSb2tLQ0hIeH57nsgpJKpWjTpg3atGmDhQsXYubMmZg4cSKOHj0KX19fbN++HRUrVsTOnTs19ktOl0qKwv379yGE0FjW3bt3ASDXJ3Jn7RczM7P33jYuLi4ICwtDQkKCxonp7f32+vVrhIWFISQkBJMnT1aX57TPczuef/vtN6SmpmLPnj0aLQO5NZE3btwYjRs3xowZM7B582b06dMHW7Zsweeffw53d3f88ccfaNasWY5/KOQnnpy4u7vj4MGDePXqVZ6tQu86jgDA398fQ4cOVTe93717FxMmTMh3LPldD3d3d1y9ehVt2rR557q+K+6CbCsbGxsYGRnl+B2/ffs2pFJpthaW9+Hu7o6xY8di7NixuHfvHjw9PbFgwQL85z//wbFjx/Dy5Uvs3LkTLVq0UE8THh5eZMt/27179zRa6+/fvw+VSpXnk/Td3d2RkJBQJOe0D+F4qFWrFmrVqoXvv/8ep0+fRrNmzbBy5UpMnz4d7u7uEELAzc3tnQleQb+jKpUKN2/ezPUPwSx5nUMAoEWLFnBwcMDWrVvRvHlzHDlyBBMnTsx3LEWBl8b+n7GxMQAU6AF0MpkMEokESqVSXfbo0SPs3r27yOLy8/ODmZkZZs6cmeN11ufPnwPI7BPg6emJDRs2aDSNHj58GDdv3nzncnx9fSGXy/Hjjz9q/OX1888/IzY2Fp06dSqCtcm8tPO2rC9SVtNo1l8ub8Zx7tw5nDlzpkhieNvTp0+xa9cu9fu4uDj88ssv8PT0zLEVDgDq168Pd3d3zJ8/HwkJCdk+z9ov+dGxY0dkZGRgxYoV6jKlUoklS5Zo1MtpuwDI8SFouR3POc0jNjY2W/L++vXrbMt5ez/16NEDSqUS06ZNy7b8jIwMjWUbGxvn+N1KT0/H7du38ezZM3XZJ598AiEEQkJCstXPiik/xxGQ2U/Bz88PoaGh2LJlC+RyOfz9/bNNm1/GxsY5XoLs0aMHnjx5kuNDU5OTk5GYmJjvuAtyLpLJZGjXrh1+/fVXjctBUVFR2Lx5M5o3bw4zM7N3zuddkpKSsj07zd3dHaampnl+b9PS0rB8+fL3Xn5uli1bpvE+6zvToUOHXKfp0aMHzpw5g4MHD2b7LCYmBhkZGflevjaPh7i4uGyx1qpVC1KpVD1tt27dIJPJEBISku37LITAy5cv37kuQGZSHRERoX7v7+8PqVSKqVOnZmvpy1pOfs4hQGYi+Omnn+K3337Dxo0bkZGRUaKXxQC2CKnVr18fADBx4kT07NkT+vr66Ny5s/ogzEmnTp2wcOFCtG/fHr1790Z0dDSWLVuGSpUq4e+//y6SuMzMzLBixQr07dsX9erVQ8+ePWFjY4OIiAjs27cPzZo1w9KlSwEAs2bNQqdOndC8eXMMHDgQr169wpIlS+Dh4ZHjj/WbbGxsMGHCBISEhKB9+/bo0qUL7ty5g+XLl6Nhw4YaHaPfx9SpU/Hnn3+iU6dOcHFxQXR0NJYvX47y5cujefPmAICPPvoIO3fuRNeuXdGpUyeEh4dj5cqVqFGjxjvXozCqVKmCQYMG4fz587Czs8PatWsRFRWVZ8ueVCrFmjVr0KFDB3h4eGDAgAFwcnLCkydPcPToUZiZmeG3337L1/I7d+6MZs2aYfz48Xj06BFq1KiBnTt3ZjspmZmZqftmpKenw8nJCYcOHcrxL+7cjud27dpBLpejc+fOGDp0KBISErB69WrY2tpqJCMbNmzA8uXL0bVrV7i7uyM+Ph6rV6+GmZkZOnbsCCCzD8DQoUMxa9YsXLlyBe3atYO+vj7u3buHbdu24YcffsCnn36qjmfFihWYPn06KlWqBFtbW7Ru3RpPnjxB9erVERgYqH7ydKtWrdC3b1/8+OOPuHfvnvqy34kTJ9CqVSuMGDEiX8dRloCAAHz22WdYvnw5/Pz81J0435TVgpBX35Ks9di6dSuCgoLQsGFDmJiYoHPnzujbty9CQ0PxxRdf4OjRo2jWrBmUSiVu376N0NBQHDx4EA0aNMhX3O7u7rCwsMDKlSthamoKY2NjeHl55dpPcfr06Th8+DCaN2+OYcOGQU9PD6tWrUJqairmzp2b5/rk1927d9GmTRv06NEDNWrUgJ6eHnbt2oWoqCh1h+emTZvC0tISgYGBGDlyJCQSCTZu3Fgkl6JzEx4eji5duqB9+/Y4c+YM/vOf/6B37955Xlb5+uuvsWfPHnz00Ufo378/6tevj8TERFy7dg3bt2/Ho0eP8n3pVJvHw9WrVzFixAh0794dVapUQUZGBjZu3AiZTIZPPvlEPe306dMxYcIEPHr0CP7+/jA1NUV4eDh27dqFIUOGYNy4cXmuC5DZ38zHx0c91mKlSpUwceJETJs2Dd7e3ujWrRsUCgXOnz8PR0dHzJo1K1/nkCwBAQFYsmQJgoODUatWLVSvXr1Ax8F7K7H700qBadOmCScnJyGVSjVuPcb/P1AxJz///LOoXLmyUCgUolq1amLdunXqWzvflNvt82/fWpjbg/uOHj0q/Pz8hLm5uTAwMBDu7u6if//+4sKFCxr1duzYIapXry4UCoWoUaNGgR+ouHTpUlGtWjWhr68v7OzsxJdffpnrAxXflp/lhIWFiY8//lg4OjoKuVwuHB0dRa9evTRuZVWpVGLmzJnCxcVFKBQKUbduXbF3795s83/zgYpvbyvkcFtpTtv8zQcq1q5dW70f3542t/1y+fJl0a1bN1GuXDmhUCiEi4uL6NGjhwgLC8tzO7zt5cuXom/fvuoHKvbt2zfHByr++++/omvXrsLCwkKYm5uL7t27i6dPnwoAIjg4WGOeuR3Pe/bsEbVr11Y/4GzOnDli7dq1GnUuXbokevXqJSpUqKB+UOJHH32U7XgTQoiffvpJ1K9fXxgaGgpTU1NRq1Yt8c0334inT5+q60RGRopOnToJU1NTgTceqJi1D99+4F1GRoaYN2+eqFatmpDL5cLGxkZ06NBBXLx4UQiRv+MoS1xcnDA0NBQAxH/+858ct7+1tbVo3LhxHnsoU0JCgujdu7ewsLDI9liKtLQ0MWfOHPUDTS0tLUX9+vVFSEiIiI2NLVDcv/76q/rhrW8fAzm5dOmS8PPzEyYmJsLIyEi0atVKnD59WqNOQc85b3rx4oUYPny4qFatmjA2Nhbm5ubCy8tLhIaGatQ7deqUaNy4sfohq9988436Fuk355/bOSTr+/i2t8/BWefYmzdvik8//VSYmpoKS0tLMWLEiHw9UDE+Pl5MmDBBVKpUScjlcmFtbS2aNm0q5s+fr/HMtHfR5vHw8OFDMXDgQOHu7i4MDAyElZWVaNWqlfjjjz+yxbljxw7RvHlzYWxsLIyNjUW1atXE8OHDxZ07d/K1Lm9+Z9+0du1aUbduXfX6+fj4qB9+WZBziEqlEs7OzgKAmD59er63f1GRCFGM6TrRB87V1RU1a9bE3r17tR0KacnNmzfh4eGBvXv3FtklYCpeU6ZMQUhICJ4/f17kHd9J97CPEBHptKNHj6JJkyZMgoh0FPsIERUTpVL5zk7TJiYmxXoLK73b8OHDsz2Yj3Tbq1evkJaWluvnMpmsWB8PQSWLiRBRMXn8+HGuHVyzBAcHY8qUKSUTEBHlS7du3XD8+PFcP3dxcXlnx3oqPdhHiKiYpKSk4OTJk3nWqVixosZzm4hI+y5evPjOoUSaNWtWghFRcWIiRERERDqLnaWJiIhIZzERIp2zfv16SCSSAl/jl0gk7M+Tg0ePHkEikagfiAhk3t5cmGFrKGcFOWaz6l64cKHQyztw4AA8PT1hYGAAiUSCmJgY9O/fP8+hK0qjli1bomXLltoOg7SMiRAVu6wfyqyXTCZDhQoV0LVrV1y5ckXb4X3wspKKrJe+vj5cXV0xcuTIAg0JQ2XL8uXLNZLPovLy5Uv06NEDhoaGWLZsGTZu3JjnE/aL0s2bNzFlyhR2RKYSxbvGqMT06tULHTt2hFKpxK1bt7BixQr8/vvvOHv27DsH7itKffv2Rc+ePTUGys2P5ORk6Olp7yuzYsUKmJiYIDExEWFhYViyZAkuXbr0zg7ZVPrldMwuX74c1tbW6N+/f5Eu6/z584iPj8e0adM0BiZdvXp1tnGlitrNmzcREhKCli1blkjr06FDh4p9GfThYyJEJaZevXoaY5Y1a9YMXbp0wYoVK7Bq1aocp0lMTCzyv0ZlMpl6gMiCMDAwKNI4CurTTz9VP0V36NCh6NmzJ7Zu3Yq//voLjRo10mpsH6qMjAyoVCrI5XJth/JeCnvMFkZ0dDQAZBuTTV9fv0SWX5JK+3FBRYOXxkhrWrduDQDqQUOz+jYcP34cw4YNg62tLcqXL6+u//vvv8Pb2xvGxsYwNTVFp06dcOPGjWzzvX37Nnr06AEbGxsYGhqiatWqmDhxovrznPpbXLhwAX5+frC2toahoSHc3NwwcOBAjfnm1Efo8uXL6NChA8zMzGBiYoI2bdrg7NmzGnWylnfq1CkEBQXBxsYGxsbG6Nq1a4FGqX+bt7c3AODBgwca5efOnUP79u1hbm4OIyMj+Pj44NSpU9mmf/LkCQYNGgRHR0coFAq4ubnhyy+/VD9I7tWrVxg3bhxq1aoFExMTmJmZoUOHDrh69WqhY87JuXPn0LFjR1haWsLY2Bi1a9fGDz/8oP48t34cb/dZyboEO3/+fCxevBju7u5QKBS4fPky9PT0chzN/s6dO5BIJOqBi4HMUb5Hjx4NZ2dnKBQKVKpUCXPmzMnWGrJlyxbUr18fpqamMDMzQ61atTTizkm9evXQrVs3jbJatWpBIpFoDNS8detWSCQS3Lp1C0D2Y9bV1RU3btzA8ePH1ZdM395GqampBT7eWrZsicDAQABAw4YNIZFI1C1OeW3vn376Sb29GzZsiPPnz2eb9+3bt/Hpp5/CysoKBgYGaNCgAfbs2aP+fP369ejevTuAzIF3s9Yra6DP3Proubq6arSKFeT79vaxdezYMUgkEoSGhmLGjBkoX748DAwM0KZNG9y/fz/bspctW4aKFSvC0NAQjRo1wokTJ9jvqBRiixBpTdYPeLly5TTKhw0bBhsbG0yePBmJiYkAgI0bNyIwMBB+fn6YM2cOkpKSsGLFCjRv3hyXL19Wn6D//vtveHt7Q19fH0OGDIGrqysePHiA3377DTNmzMgxjujoaLRr1w42NjYYP348LCws8OjRI+zcuTPP+G/cuAFvb2+YmZnhm2++gb6+PlatWoWWLVvi+PHj8PLy0qj/1VdfwdLSEsHBwXj06BEWL16MESNGYOvWrYXZfOofRUtLS3XZkSNH0KFDB9SvXx/BwcGQSqVYt24dWrdujRMnTqhbjp4+fYpGjRohJiYGQ4YMQbVq1fDkyRNs374dSUlJkMvlePjwIXbv3o3u3bvDzc0NUVFRWLVqFXx8fHDz5k04OjoWKu43HT58GB999BEcHBwwatQo2Nvb49atW9i7dy9GjRpVqHmuW7cOKSkpGDJkCBQKBRwcHODj44PQ0FAEBwdr1N26dStkMpn6BzgpKQk+Pj548uQJhg4digoVKuD06dOYMGECnj17hsWLF6vj7tWrF9q0aYM5c+YAAG7duoVTp07lGbe3tzf++9//qt+/evUKN27cgFQqxYkTJ1C7dm0AwIkTJ2BjY5PrKNyLFy/GV199BRMTE3WSb2dnp1GnMMfbxIkTUbVqVfz000+YOnUq3Nzc4O7unmt9ANi8eTPi4+MxdOhQSCQSzJ07F926dcPDhw/VrUg3btxAs2bN4OTkhPHjx8PY2BihoaHw9/fHjh070LVrV7Ro0QIjR47Ejz/+iO+++0697oUdifx9vm+zZ8+GVCrFuHHjEBsbi7lz56JPnz44d+6cus6KFSswYsQIeHt7Y8yYMerR3S0tLTX+gKNSoMSHeSWdkzXCeEhIiHj+/LmIjIwUx44dE3Xr1hUAxI4dO4QQ/xsdu3nz5iIjI0M9fXx8vLCwsBCDBw/WmG9kZKQwNzfXKG/RooUwNTUV//zzj0ZdlUql/n/WcrJGWt+1a1eOo3K/DW+N8O7v7y/kcrl48OCBuuzp06fC1NRUtGjRItvyfH19NeIYM2aMkMlkIiYmJs/lZo20fefOHfH8+XPx6NEjsXbtWmFoaChsbGxEYmKieh0rV64s/Pz8NJaTlJQk3NzcRNu2bdVl/fr1E1KpNMd1zpo2JSVFKJVKjc/Cw8OFQqEQU6dO1SjDWyOkZ8Wcl4yMDOHm5iZcXFzE69evc4xBiMyRynMa+TowMFBjhOysOMzMzER0dLRG3VWrVgkA4tq1axrlNWrUEK1bt1a/nzZtmjA2Ns42+vf48eOFTCYTERERQgghRo0aJczMzDSO0/zYtm2betR0IYTYs2ePUCgUokuXLiIgIEBdr3bt2qJr167q928fs0II4eHhkeN2ed/jLbdR6nPb3uXKlROvXr1Sl//6668CgPjtt9/UZW3atBG1atUSKSkp6jKVSiWaNm0qKleunG37vDlSfZa3v39Z3h5dviDr//axdfToUQFAVK9eXaSmpqrLf/jhB43jJzU1VZQrV040bNhQpKenq+utX78+15Ha6cPFS2NUYoKDg2FjYwN7e3u0bNkSDx48wJw5c7JdKhg8eLBGf4jDhw8jJiYGvXr1wosXL9QvmUwGLy8vHD16FADw/Plz/Pnnnxg4cCAqVKigMc+8buXO6guxd+9epKen52tdlEolDh06BH9/f40nQzs4OKB37944efIk4uLiNKYZMmSIRhze3t5QKpX4559/8rXMqlWrwsbGBq6urhg4cCAqVaqE33//HUZGRgCAK1eu4N69e+jduzdevnyp3k6JiYlo06YN/vzzT6hUKqhUKuzevRudO3dGgwYNsi0nK0aFQgGpVKpe35cvX8LExARVq1bFpUuX8hVzXi5fvozw8HCMHj06W3+U97n1/pNPPsk2DlS3bt2gp6en0Rpw/fp13Lx5EwEBAeqybdu2wdvbG5aWlhrHmq+vL5RKJf78808AmcdMYmIiDh8+XKDYsi5nZs3nxIkTaNiwIdq2bYsTJ04AyLw0d/36dXXdwnrf4y2/AgICNFols+J++PAhgMxWryNHjqBHjx6Ij49Xb9OXL1/Cz88P9+7dw5MnT4o0JuD91n/AgAEa/YfeXqcLFy7g5cuXGDx4sMYNFH369NHYFlQ68NIYlZghQ4age/fukEqlsLCwgIeHR453br09Pte9e/cA/K9P0dvMzMwA/O8kVbNmzQLF5ePjg08++QQhISFYtGgRWrZsCX9/f/Tu3TvXO8ueP3+OpKQkVK1aNdtn1atXh0qlwuPHj+Hh4aEufzs5yzph5vUo/zft2LEDZmZmeP78OX788UeEh4fD0NBQ/XnWdsrq45GT2NhYpKWlIS4u7p3bSaVS4YcffsDy5csRHh4OpVKp/uzty5mFkXVptKD7611yGt/N2toabdq0QWhoKKZNmwYg87KYnp6eRiJ+7949/P3337kOqJnVkXjYsGEIDQ1Fhw4d4OTkhHbt2qFHjx5o3759nrHZ2dmhcuXKOHHiBIYOHYoTJ06gVatWaNGiBb766is8fPgQt27dgkqleu9E6H2Pt6Jazv379yGEwKRJkzBp0qQc5xEdHQ0nJ6cSjet9ps1KpipVqqRRT09Pr8w9a0kXMBGiElO5cmWN23Fz8+aPOwB1J9WNGzfC3t4+W/33vaVdIpFg+/btOHv2LH777TccPHgQAwcOxIIFC3D27NkiGx0+t7t+RD5HuWnRooX6rrHOnTujVq1a6NOnDy5evAipVKreTvPmzcv1cQQmJiZ49epVvpY3c+ZMTJo0CQMHDsS0adNgZWUFqVSK0aNHF/tt1G+SSCQ5bqM3E7M3vX38ZOnZsycGDBiAK1euwNPTE6GhoWjTpo16mwKZx1rbtm3xzTff5DiPKlWqAABsbW1x5coVHDx4EL///jt+//13rFu3Dv369cOGDRvyXJ/mzZsjLCwMycnJuHjxIiZPnoyaNWvCwsICJ06cwK1bt2BiYoK6devmOZ93ed/jraiWk3WsjBs3Dn5+fjnWfTuhKIjcjoP3Wf+S2nb0YWAiRB+8rM6atra2eSZSWZeorl+/XqjlNG7cGI0bN8aMGTOwefNm9OnTB1u2bMHnn3+era6NjQ2MjIxw586dbJ/dvn0bUqkUzs7OhYojP0xMTBAcHIwBAwYgNDQUPXv2VG8nMzOzPLeTjY0NzMzM3rmdtm/fjlatWuHnn3/WKI+JidFIHgorK97r16/nGa+lpaW6te9NBb3E4+/vj6FDh6ovj929excTJkzIFlNCQkK+Ena5XI7OnTujc+fOUKlUGDZsGFatWoVJkybl+cPu7e2NdevWYcuWLVAqlWjatCmkUimaN2+uToSaNm36ztvlS8uTu7O+l/r6+u/crnmtk6WlZbYHiKalpeHZs2fvHWNBubi4AMhs7WrVqpW6PCMjA48ePVJ3eqfSgX2E6IPn5+cHMzMzzJw5M8c+PFm3xNrY2KBFixZYu3YtIiIiNOrk9Zfc69evs32e1aKSmpqa4zQymQzt2rXDr7/+qnEbflRUFDZv3ozmzZurL9kVlz59+qB8+fLqu5bq168Pd3d3zJ8/HwkJCdnqZ20nqVQKf39//PbbbzkOw5C1LWQyWbbtsm3btiLrz1GvXj24ublh8eLF2X7g3lyuu7s7bt++rXHr89WrV3N8JEBeLCws4Ofnh9DQUGzZsgVyuRz+/v4adXr06IEzZ87g4MGD2aaPiYlBRkYGgMynL79JKpWqf/xyO2ayZF3ymjNnDmrXrg1zc3N1eVhYGC5cuJCvy2LGxsal4snitra2aNmyJVatWpVj0vLmfs16ZlhO6+Xu7q7uW5Xlp59+yrVFqDg1aNAA5cqVw+rVq9XHBABs2rSpyC89UvFjixB98MzMzLBixQr07dsX9erVQ8+ePWFjY4OIiAjs27cPzZo1Uz8H5scff0Tz5s1Rr149DBkyBG5ubnj06BH27duX63AeGzZswPLly9G1a1e4u7sjPj4eq1evhpmZGTp27JhrXNOnT8fhw4fRvHlzDBs2DHp6eli1ahVSU1Mxd+7c4tgUGvT19TFq1Ch8/fXXOHDgANq3b481a9agQ4cO8PDwwIABA+Dk5IQnT57g6NGjMDMzw2+//QYg87LXoUOH4OPjgyFDhqB69ep49uwZtm3bhpMnT8LCwgIfffQRpk6digEDBqBp06a4du0aNm3apNE5/H1IpVKsWLECnTt3hqenJwYMGAAHBwfcvn0bN27cUCcjAwcOxMKFC+Hn54dBgwYhOjoaK1euhIeHR7YO6e8SEBCAzz77DMuXL4efn1+2Ttpff/019uzZg48++gj9+/dH/fr1kZiYiGvXrmH79u149OgRrK2t8fnnn+PVq1do3bo1ypcvj3/++QdLliyBp6fnO2/3rlSpEuzt7XHnzh189dVX6vIWLVrg22+/BYB8JUL169fHihUrMH36dFSqVAm2tra59qPTtmXLlqF58+aoVasWBg8ejIoVKyIqKgpnzpzBv//+q342laenJ2QyGebMmYPY2FgoFAq0bt0atra2+Pzzz/HFF1/gk08+Qdu2bXH16lUcPHiwSFonC0oul2PKlCn46quv0Lp1a/To0QOPHj3C+vXr4e7uXmpa6ygTEyEqFXr37g1HR0fMnj0b8+bNQ2pqKpycnODt7Y0BAwao69WpUwdnz57FpEmTsGLFCqSkpMDFxQU9evTIdd4+Pj7466+/sGXLFkRFRcHc3ByNGjXCpk2bcux4m8XDwwMnTpzAhAkTMGvWLKhUKnh5eeE///lPtmcIFZchQ4Zg+vTpmD17Ntq3b4+WLVvizJkzmDZtGpYuXYqEhATY29vDy8sLQ4cOVU/n5OSEc+fOYdKkSdi0aRPi4uLg5OSEDh06qO9C++6775CYmIjNmzdj69atqFevHvbt24fx48cXWfx+fn44evQoQkJCsGDBAqhUKri7u2Pw4MHqOtWrV8cvv/yCyZMnIygoCDVq1MDGjRuxefNm9cP28qtLly4wNDREfHy8xt1iWYyMjHD8+HHMnDkT27Ztwy+//AIzMzNUqVIFISEh6tabzz77DD/99BOWL1+OmJgY2NvbIyAgAFOmTFHfaZcXb29vbNu2Dc2bN1eX1a9fH0ZGRsjIyMjX8TN58mT8888/mDt3LuLj4+Hj4/PBJkI1atTAhQsXEBISgvXr1+Ply5ewtbVF3bp1MXnyZHU9e3t7rFy5ErNmzcKgQYOgVCpx9OhR2NraYvDgwQgPD8fPP/+MAwcOwNvbG4cPH0abNm20sk4jRoyAEAILFizAuHHjUKdOHezZswcjR47U+lPoqWAkgr2/iIiI3ptKpYKNjQ26deuG1atXazscyif2ESIiIiqglJSUbH3ofvnlF7x69YpDbJQybBEiIiIqoGPHjmHMmDHo3r07ypUrh0uXLuHnn39G9erVcfHiRQ7oWoqwjxAREVEBubq6wtnZGT/++CNevXoFKysr9OvXD7Nnz2YSVMqwRYiIiIh0FvsIERERkc5iIkREREQ6S+f6CKlUKjx9+hSmpqZ86BUREVEpIYRAfHw8HB0d8/W8rvzSuUTo6dOnxToGFBERERWfx48fo3z58kU2P51LhExNTQFkbsjiHguKiIiIikZcXBycnZ3Vv+NFRecSoazLYWZmZkyEiIiISpmi7tbCztJERESks5gIERERkc5iIkREREQ6i4kQERER6SwmQkRERKSzmAgRERGRzmIiRERERDqLiRARERHpLCZCREREpLOYCBEREZHOYiJEREREOouJEBEREeksJkJERESks5gIERERkc5iIkREREQ6i4kQERER6SwmQkRERKSzmAgRERGRzmIiRERERDqLiRARERHpLCZCREREpLOYCBEREZHOYiJEREREOouJEBEREeksJkJERESks5gIERERkc7SaiL0559/onPnznB0dIREIsHu3bvfOc2xY8dQr149KBQKVKpUCevXry/2OImIiKhs0moilJiYiDp16mDZsmX5qh8eHo5OnTqhVatWuHLlCkaPHo3PP/8cBw8eLOZIiYiIqCzS0+bCO3TogA4dOuS7/sqVK+Hm5oYFCxYAAKpXr46TJ09i0aJF8PPzK64wiYiIqIzSaiJUUGfOnIGvr69GmZ+fH0aPHl3geV39YzNMjA2LKDIioqLlXKcVrO0raDsMojKvVCVCkZGRsLOz0yizs7NDXFwckpOTYWiYPbFJTU1Famqq+n1cXBwAoM75b2CmkBRvwEREhZRw1hjovx1waartUIjKtFKVCBXGrFmzEBISkq38jl5VmOiX+dUnolJGJQCTtBdwkUYDG7sC3TcAVdtrOyyiMqtUZQL29vaIiorSKIuKioKZmVmOrUEAMGHCBAQFBanfx8XFwdnZGVW/DoOZmVmxxktEVFD3ouLht+gwVhssgXfGJWBLb8B/BVAnQNuhEZVJpeo5Qk2aNEFYWJhG2eHDh9GkSZNcp1EoFDAzM9N4ERF9yFKgwFjpN0DtAEAogV1DgLMrtR0WUZmk1UQoISEBV65cwZUrVwBk3h5/5coVREREAMhszenXr5+6/hdffIGHDx/im2++we3bt7F8+XKEhoZizJgx2gifiKjYZEj0AP+VgNcXmQUHvgWOzgSE0G5gRGWMVhOhCxcuoG7duqhbty4AICgoCHXr1sXkyZMBAM+ePVMnRQDg5uaGffv24fDhw6hTpw4WLFiANWvW8NZ5IiqbpFKg/Wyg1cTM98fnAPu/BlQq7cZFVIZotY9Qy5YtIfL46yanp0a3bNkSly9fLsaoiIg+IBIJ4PMNYGiZmQSdXw0kv87sN6Qn13Z0RKVeqeojRESksxoNBj5ZA0j1gOvbMztRpyVpOyqiUo+JEBFRaVHrU6DXVkDPELh/GNjon9k6RESFxkSIiKg0qewL9PsVMDAHHp8D1nUC4iO1HRVRqcVEiIiotKngBfTfD5jYAdE3gLV+wKtwbUdFVCoxESIiKo3sawIDDwKWrsDrR5nJUOR1bUdFVOowESIiKq2s3DKTIVsPICEKWNcRiDir7aiIShUmQkREpZmpPTBgH+DcGEiNBX7xB+4e0nZURKUGEyEiotLO0BLouwuo3A7ISAa29AL+3qbtqIhKBSZCRERlgdwI6LkZqNUdUGUAOwcDf63WdlREHzwmQkREZYVMH+j6E9BoCAAB7B8HHJvD8cmI8sBEiIioLJFKgQ5zgZYTMt8fmwn8/i3HJyPKBRMhIqKyRiIBWo4HOszLfP/XKmDXUECZrt24iD5ATISIiMoqryFAt/8fn+xaKLClD8cnI3oLEyEiorKsdneg538zxye7dxD4TzcgOUbbURF9MJgIERGVdVXaZd5erzAHIs4A6z8C4qO0HRXRB4GJEBGRLnBpAgzYDxjbAlHXMofkeP1I21ERaR0TISIiXWFfExh0ELBwAV6HAz/7AVE3tB0VkVYxESIi0iVWFYFBh/5/fLJIYF0H4PFf2o6KSGv0tB0AERGVsKzxyTYHAI/PAb98DARsBCr5ajsyrRAqFRITYpEQ8wKJsS+REv8KaQmvkJ74CqqkGBiXr4laPt20HSYVEyZCRES6KGt8stB+wP0/gM09gW6rgJqfaDuyQlFmZCA+5gUSYl4gOf4VUuJfIi3hFTISY6BKjgGSYyBNi4Veaizk6XFQKBNgpIyHsUiAqUiEiUQFk1zmnXFXitiazWBezq4kV4lKCBMhIiJdJTfOvLV+95fA9e3A9kFA8mug4edaCUeoVEiIj0HcyygkxkQjOTYa6fEvoUx6DVVyDCQpsZCmxkI/LRbyjHgYKONhrEzITGYkybAAYFGYBUsy/0kTMsRLTJAoNUGy1BSpeqaomXwBehIVkhJimAiVUUyEiIh0mZ4c6LYaMLQAzq8B9o0Fkl4DLcZlPqG6kLKSmvhX0Uh4HYXk2Gikxb2AMvEFROJLSFNeQT/1NRRpMTDKiIWJKg7mIg6mEiVMC7qwN8JMEgrES0yQJDVFsswEqfpmyNA3g1JhBmFgAYmhBWSGFtA3sYLC1AoGplYwNreGqYU1DAyNUU4qRbk3Zp0SbA0D8IncZRkTISIiXSeVAh3nA0blgONzgKPTgeRXQLsZgFSaY1KTHv8CGQlZSc1r6Ke+ev+k5v8TmmQhR6zEDAkyc6TomSLt/5MZlcIcwtACUkMLyIwtITe2goFZORiaWqqTGSO5AkbFsY2ozGIiRESkg5QqgZeJqXgRn4bnCal4Hp+KF9IAuDqnof3jRcDZ5Xj21w7oqdKKLKlJ1jNHmtwCGQpLqIzKQWpkBZmpNRSmtjA0t4aJlR3MrexgaGwKw+JYaaIcMBEiIiojVCqBmOR0vPj/xOZ5fKrG/9UJT0IqXiWmQSVymktDfCwdhgX6K+Gg+v+nTzOpoTKMiRAR0QdMCIG4lIxck5sXCf9LcF4mpCEj5+wmRxIJUM5YARtTBaxN5LAxVcDGRAEb0+o4Iu0KB+UTGJrbMqmhMo2JEBHRBygmKQ3NZh/B84RUpGWoCjStpZE+rE0yE5zMJEehTnKs1cmOAlbGcsikuXWIrvj+K0FUCjARIiL6gFgay6EnlSBDJfAkJlldbqrQy0xq3khkNFtyDGBtKkc5YwXkehw0gCi/mAgREX1ArE0U2D28GZ7GJGskPQb6Mm2HRlQmMREiIvrA1HQyR00nc22HQaQT2H5KREREOouJEBEREeksJkJERESks5gIERERkc5iIkREREQ6i4kQERER6SwmQkRERKSzmAgRERGRzmIiRERERDqLiRARERHpLCZCREREpLOYCBEREZHOYiJEREREOouJEBEREeksJkJERESks5gIERERkc5iIkREREQ6i4kQERER6SwmQkRERKSzmAgRERGRzmIiRERERDqLiRARERHpLCZCREREpLOYCBEREZHOYiJEREREOouJEBEREeksJkJERESks7SeCC1btgyurq4wMDCAl5cX/vrrrzzrL168GFWrVoWhoSGcnZ0xZswYpKSklFC0REREVJZoNRHaunUrgoKCEBwcjEuXLqFOnTrw8/NDdHR0jvU3b96M8ePHIzg4GLdu3cLPP/+MrVu34rvvvivhyImIiKgs0GoitHDhQgwePBgDBgxAjRo1sHLlShgZGWHt2rU51j99+jSaNWuG3r17w9XVFe3atUOvXr3e2YpERERElBOtJUJpaWm4ePEifH19/xeMVApfX1+cOXMmx2maNm2KixcvqhOfhw8fYv/+/ejYsWOuy0lNTUVcXJzGi4iIiAgA9LS14BcvXkCpVMLOzk6j3M7ODrdv385xmt69e+PFixdo3rw5hBDIyMjAF198keelsVmzZiEkJKRIYyciIqKyQeudpQvi2LFjmDlzJpYvX45Lly5h586d2LdvH6ZNm5brNBMmTEBsbKz69fjx4xKMmIiIiD5kWmsRsra2hkwmQ1RUlEZ5VFQU7O3tc5xm0qRJ6Nu3Lz7//HMAQK1atZCYmIghQ4Zg4sSJkEqz53UKhQIKhaLoV4CIiIhKPa21CMnlctSvXx9hYWHqMpVKhbCwMDRp0iTHaZKSkrIlOzKZDAAghCi+YImIiKhM0lqLEAAEBQUhMDAQDRo0QKNGjbB48WIkJiZiwIABAIB+/frByckJs2bNAgB07twZCxcuRN26deHl5YX79+9j0qRJ6Ny5szohIiIiIsovrSZCAQEBeP78OSZPnozIyEh4enriwIED6g7UERERGi1A33//PSQSCb7//ns8efIENjY26Ny5M2bMmKGtVSAiIqJSTCJ07JpSXFwczM3NERsbCzMzM22HQ0REH7CUYGsYSNLxbMBfcHCpqu1wdFpx/X6XqrvGiIiIiIoSEyEiIiLSWUyEiIiISGcxESIiIvpAJSfG4+H1c4j694G2QymztHrXGBERka5TZmQgMuIeXv5zA0nPbkPy6gGM4sNhk/ov7PEcFQGkCn28Gn4VVrZO2g63zGEiREREVMyESoVXz58iKvw6Ep7chvLFPRjEhsMqJQIOymdwkmQgrxRHIUnHv5H/MBEqBkyEiIiIikhifAyePbyB2H9vIS36HvRf34dZUgTsM/5FOSShXE4TSTJbfJ7KHPHasAJSzStCZlMZZk7VYOdWExnLmsAGr0t6VXQGEyEiIqICSE9LRWTEXbyKuIHkZ3cgefUAJvGPYJP2GLZ4hUq5TKcSEkRKbfBC4YxkUzegXCUYOVSFtasH7MpXgptMBrccpntenCtDTISIiIje5fHuEESlvkK55H9gr4qCs0QJ51zqvoYZovTLI87YFUrLijCwrwLLCh6wd60OR0NjOJZo5KWfUKnwMvpfPLp5qVjmz0SIiIgoF0rIAKSj0et9/yuUAMlCjmcyR8QYuSDVvCL0bCrDrHx12Lt5wLKcHSy1FnHplJKciKh/7iDm6V0kRz0EXj+CQUIELFKewE4ZCWtJGuSpxTMQBhMhIiKiXFyvPhoG/xxFsqkLJOUqwdixGqxdPWDr6IaKHOw73zJbdZ7gxeM7SHh2H+kvw6EX8wjGSf/COv0pbPEKLgBccppYAiiFBJEoByC+yGNjIkRERJQLr54TAEzQdhilQmpKEqIi7uL1k3tIiX4A8SocivgIWKQ8hZ3yGawlqbDOY/oEYYgoPQfEGjghzbQCJFauMLKrBEunKrB1rgT71DRgtnmRx81EiIiIiN5JqFR4/eIZnkfcQXzkfaQ/fwBZbASMkx6jXNoz2IqXqCARqJDTxJLMzuLREmu8lDsg0ag8lBYu0Ldxh5lDZdg4V4VFOTu4S3N/znNKalqxrBcTISIiIlKLff0CUeHXEffvLWRE34N+7EOYJ0XAPuMprCTJsMptQgmQJBSIlGW26qSaVoDEyg2Gtu6wLF8Zts6VYW9gBPuSXJl8YCJERESkY1KSEvDs0S3EPL6JlMi7kL1+CNPER7BL/xdWiEOOF6Akmf9EoRxeyh2RaFQeGeYu0LeuCBOHSrBxrgorG0dUzKNV50PERIiIiKgM0hi6I/IOJC/vwyj+EaxTH8NOvICbJPe7sKJhhefy8kgwcYWwcoeBfVVYOleHXYXKsDM0hl0JrkdxYyJERERUSmU9Yyc6/AYSnt6G6vk9KOLCYZXyOO+hOyRAHIwQqVcecUYuSLd0h9y2MszLV4e9Ww3YmlnCtqRXRkuYCBEREZUCr8Kv4HXEdaRH34N+zEOYJ/0D+/R/YS1JzvlurGxDd7hlDt3hWA22bh6wtHaAWSm7jFUcmAgRERGVAg0v53AbvyRr6A5bvFBUQJKpKyTW/z90h0sN2Dq5w01PL8ehOygTEyEiIqIPWIRJHdgkHMMLWCBavzwSTFygsnSHwr4qrJyrw96tOhwNjDh0RyExESIiIvqA1R/3K5IT42FtbJrnAwmpcHhxkIiI6ANnaGyq7RDKLCZCREREpLOYCBEREZHOYiJEREREOouJEBEREeksJkJERESks5gIERERkc5iIkREREQ6i4kQERER6SwmQkRERKSzmAgRERGRzmIiRERERDqLiRARERHpLCZCREREpLOYCBEREZHOYiJEREREOouJEBEREeksJkJERESks5gIERERkc5iIkREREQ6i4kQERER6SwmQkRERKSzmAgRERGRzmIiRERERDqLiRARERHpLCZCREREpLOYCBEREZHOYiJEREREOouJEBEREeksvcJMpFQqsX79eoSFhSE6OhoqlUrj8yNHjhRJcERERETFqVCJ0KhRo7B+/Xp06tQJNWvWhEQiKeq4iIiIiIpdoRKhLVu2IDQ0FB07dizqeIiIiIhKTKH6CMnlclSqVKmoYyEiIiIqUYVKhMaOHYsffvgBQoiijoeIiIioxBTq0tjJkydx9OhR/P777/Dw8IC+vr7G5zt37iyS4IiIiIiKU6FahCwsLNC1a1f4+PjA2toa5ubmGq+CWLZsGVxdXWFgYAAvLy/89ddfedaPiYnB8OHD4eDgAIVCgSpVqmD//v2FWQ0iIiLScYVqEVq3bl2RLHzr1q0ICgrCypUr4eXlhcWLF8PPzw937tyBra1ttvppaWlo27YtbG1tsX37djg5OeGff/6BhYVFkcRDREREukUi3qOjz/Pnz3Hnzh0AQNWqVWFjY1Og6b28vNCwYUMsXboUAKBSqeDs7IyvvvoK48ePz1Z/5cqVmDdvHm7fvp3tclx+xcXFwdzcHLGxsTAzMyvUPIiIiKhkFdfvd6EujSUmJmLgwIFwcHBAixYt0KJFCzg6OmLQoEFISkrK1zzS0tJw8eJF+Pr6/i8YqRS+vr44c+ZMjtPs2bMHTZo0wfDhw2FnZ4eaNWti5syZUCqVuS4nNTUVcXFxGi8iIiIioJCJUFBQEI4fP47ffvsNMTExiImJwa+//orjx49j7Nix+ZrHixcvoFQqYWdnp1FuZ2eHyMjIHKd5+PAhtm/fDqVSif3792PSpElYsGABpk+fnutyZs2apdF/ydnZOf8rSkRERGVaoS6NWVtbY/v27WjZsqVG+dGjR9GjRw88f/78nfN4+vQpnJyccPr0aTRp0kRd/s033+D48eM4d+5ctmmqVKmClJQUhIeHQyaTAQAWLlyIefPm4dmzZzkuJzU1Fampqer3cXFxcHZ25qUxIiKiUqS4Lo0VqrN0UlJStpYcALC1tc33pTFra2vIZDJERUVplEdFRcHe3j7HaRwcHKCvr69OggCgevXqiIyMRFpaGuRyebZpFAoFFApFvmIiIiIi3VKoS2NNmjRBcHAwUlJS1GXJyckICQnRaN3Ji1wuR/369REWFqYuU6lUCAsLy3UezZo1w/379zUGeb179y4cHBxyTIKIiIiI8lKoFqEffvgBfn5+KF++POrUqQMAuHr1KgwMDHDw4MF8zycoKAiBgYFo0KABGjVqhMWLFyMxMREDBgwAAPTr1w9OTk6YNWsWAODLL7/E0qVLMWrUKHz11Ve4d+8eZs6ciZEjRxZmNYiIiEjHFSoRqlmzJu7du4dNmzbh9u3bAIBevXqhT58+MDQ0zPd8AgIC8Pz5c0yePBmRkZHw9PTEgQMH1JfdIiIiIJX+r9HK2dkZBw8exJgxY1C7dm04OTlh1KhR+PbbbwuzGkRERKTj3us5QqURnyNERERU+mi9s/SePXvQoUMH6OvrY8+ePXnW7dKly3sHRkRERFTc8t0iJJVKERkZCVtbW43LVdlmKJHk+YBDbWOLEBERUemj9RahN+/UevP/RERERKVVoW6fz0lMTExRzYqIiIioRBQqEZozZw62bt2qft+9e3dYWVnByckJV69eLbLgiIiIiIpToRKhlStXqsfsOnz4MP744w8cOHAAHTp0wNdff12kARIREREVl0I9RygyMlKdCO3duxc9evRAu3bt4OrqCi8vryINkIiIiKi4FKpFyNLSEo8fPwYAHDhwAL6+vgAAIcQHfccYERER0ZsK1SLUrVs39O7dG5UrV8bLly/RoUMHAMDly5dRqVKlIg2QiIiIqLgUKhFatGgRXF1d8fjxY8ydOxcmJiYAgGfPnmHYsGFFGiARERFRceEQG0RERPTB0/oDFTnEBhEREZU1HGKDiIiIPnhabxHiEBtERERU1hTZEBtEREREpU2hEqGRI0fixx9/zFa+dOlSjB49+n1jIiIiIioRhUqEduzYgWbNmmUrb9q0KbZv3/7eQRERERGVhEIlQi9fvoS5uXm2cjMzM7x48eK9gyIiIiIqCYVKhCpVqoQDBw5kK//9999RsWLF9w6KiIiIqCQU6snSQUFBGDFiBJ4/f47WrVsDAMLCwrBgwQIsXry4KOMjIiIiKjaFSoQGDhyI1NRUzJgxA9OmTQMAuLq6YsWKFejXr1+RBkhERERUXN57iI3nz5/D0NBQPd7Yh44PVCQiIip9iuv3u9DPEcrIyMAff/yBnTt3IiuXevr0KRISEoosOCIiIqLiVKhLY//88w/at2+PiIgIpKamom3btjA1NcWcOXOQmpqKlStXFnWcREREREWuUC1Co0aNQoMGDfD69WsYGhqqy7t27YqwsLAiC46IiIioOBWqRejEiRM4ffo05HK5RrmrqyuePHlSJIERERERFbdCtQipVKocR5j/999/YWpq+t5BEREREZWEQiVC7dq103hekEQiQUJCAoKDg9GxY8eiio2IiIioWBXq9vnHjx+jffv2EELg3r17aNCgAe7duwdra2v8+eefsLW1LY5YiwRvnyciIip9iuv3u9DPEcrIyMDWrVtx9epVJCQkoF69eujTp49G5+kPERMhIiKi0ueDSYTS09NRrVo17N27F9WrVy+yQEoKEyEiIqLS54N5oKK+vj5SUlKKLAAiIiIibSlUZ+nhw4djzpw5yMjIKOp4iIiIiEpMoZ4jdP78eYSFheHQoUOoVasWjI2NNT7fuXNnkQRHREREVJwKlQhZWFjgk08+KepYiIiIiEpUgRIhlUqFefPm4e7du0hLS0Pr1q0xZcqUD/5OMSIiIqKcFKiP0IwZM/Ddd9/BxMQETk5O+PHHHzF8+PDiio2IiIioWBUoEfrll1+wfPlyHDx4ELt378Zvv/2GTZs2QaVSFVd8RERERMWmQIlQRESExhAavr6+kEgkePr0aZEHRkRERFTcCpQIZWRkwMDAQKNMX18f6enpRRoUERERUUkoUGdpIQT69+8PhUKhLktJScEXX3yhcQs9b58nIiKi0qBAiVBgYGC2ss8++6zIgiEiIiIqSQVKhNatW1dccRARERGVuEINsUFERERUFjARIiIiIp3FRIiIiIh0FhMhIiIi0llMhIiIiEhnMREiIiIincVEiIiIiHQWEyEiIiLSWUyEiIiISGcxESIiIiKdxUSIiIiIdBYTISIiItJZTISIiIhIZ30QidCyZcvg6uoKAwMDeHl54a+//srXdFu2bIFEIoG/v3/xBkhERERlktYToa1btyIoKAjBwcG4dOkS6tSpAz8/P0RHR+c53aNHjzBu3Dh4e3uXUKRERERU1mg9EVq4cCEGDx6MAQMGoEaNGli5ciWMjIywdu3aXKdRKpXo06cPQkJCULFixRKMloiIiMoSrSZCaWlpuHjxInx9fdVlUqkUvr6+OHPmTK7TTZ06Fba2thg0aNA7l5Gamoq4uDiNFxERERGg5UToxYsXUCqVsLOz0yi3s7NDZGRkjtOcPHkSP//8M1avXp2vZcyaNQvm5ubql7Oz83vHTURERGWD1i+NFUR8fDz69u2L1atXw9raOl/TTJgwAbGxserX48ePizlKIiIiKi30tLlwa2tryGQyREVFaZRHRUXB3t4+W/0HDx7g0aNH6Ny5s7pMpVIBAPT09HDnzh24u7trTKNQKKBQKIoheiIiIirttNoiJJfLUb9+fYSFhanLVCoVwsLC0KRJk2z1q1WrhmvXruHKlSvqV5cuXdCqVStcuXKFl72IiIioQLTaIgQAQUFBCAwMRIMGDdCoUSMsXrwYiYmJGDBgAACgX79+cHJywqxZs2BgYICaNWtqTG9hYQEA2cqJiIiI3kXriVBAQACeP3+OyZMnIzIyEp6enjhw4IC6A3VERASk0lLVlYmIiIhKCYkQQmg7iJIUFxcHc3NzxMbGwszMTNvhEBERUT4U1+83m1qIiIhIZzERIiIiIp3FRIiIiIh0FhMhIiIi0llMhIiIiEhnMREiIiIincVEiIiIiHQWEyEiIiLSWUyEiIiISGcxESIiIiKdxUSIiIiIdBYTISIiItJZTISIiIhIZzERIiIiIp3FRIiIiIh0FhMhIiIi0llMhIiIiEhnMREiIiIincVEiIiIiHQWEyEiIiLSWUyEiIiISGcxESIiIiKdxUSIiIiIdBYTISIiItJZTISIiIhIZzERIiIiIp3FRIiIiIh0FhMhIiIi0llMhIiIiEhnMREiIiIincVEiIiIiHQWEyEiIiLSWUyEiIiISGcxESIiIiKdxUSIiIiIdBYTISIiItJZTISIiIhIZzERIiIiIp3FRIiIiIh0FhMhIiIi0llMhIiIiEhnMREiIiIincVEiIiIiHQWEyEiIiLSWUyEiIiISGcxESIiIiKdxUSIiIiIdBYTISIiItJZTISIiIhIZzERIiIiIp3FRIiIiIh0FhMhIiIi0llMhIiIiEhnMREiIiIincVEiIiIiHQWEyEiIiLSWR9EIrRs2TK4urrCwMAAXl5e+Ouvv3Ktu3r1anh7e8PS0hKWlpbw9fXNsz4RERFRbrSeCG3duhVBQUEIDg7GpUuXUKdOHfj5+SE6OjrH+seOHUOvXr1w9OhRnDlzBs7OzmjXrh2ePHlSwpETERFRaScRQghtBuDl5YWGDRti6dKlAACVSgVnZ2d89dVXGD9+/DunVyqVsLS0xNKlS9GvX7931o+Li4O5uTliY2NhZmb23vETERFR8Suu32+ttgilpaXh4sWL8PX1VZdJpVL4+vrizJkz+ZpHUlIS0tPTYWVlVVxhEhERURmlp82Fv3jxAkqlEnZ2dhrldnZ2uH37dr7m8e2338LR0VEjmXpTamoqUlNT1e/j4uIKHzARERGVKVrvI/Q+Zs+ejS1btmDXrl0wMDDIsc6sWbNgbm6ufjk7O5dwlERERPSh0moiZG1tDZlMhqioKI3yqKgo2Nvb5znt/PnzMXv2bBw6dAi1a9fOtd6ECRMQGxurfj1+/LhIYiciIqLST6uJkFwuR/369REWFqYuU6lUCAsLQ5MmTXKdbu7cuZg2bRoOHDiABg0a5LkMhUIBMzMzjRcRERERoOU+QgAQFBSEwMBANGjQAI0aNcLixYuRmJiIAQMGAAD69esHJycnzJo1CwAwZ84cTJ48GZs3b4arqysiIyMBACYmJjAxMdHaehAREVHpo/VEKCAgAM+fP8fkyZMRGRkJT09PHDhwQN2BOiIiAlLp/xquVqxYgbS0NHz66aca8wkODsaUKVNKMnQiIiIq5bT+HKGSxucIERERlT5l8jlCRERERNrERIiIiIh0FhMhIiIi0llMhIiIiEhnMREiIiIincVEiIiIiHQWEyEiIiLSWVp/oOKHSqlUIj09XdthEJEW6OvrQyaTaTsMIioBTITeIoRAZGQkYmJitB0KEWmRhYUF7O3tIZFItB0KERUjJkJvyUqCbG1tYWRkxJMgkY4RQiApKQnR0dEAAAcHBy1HRETFiYnQG5RKpToJKleunLbDISItMTQ0BABER0fD1taWl8mIyjB2ln5DVp8gIyMjLUdCRNqWdR5gX0Giso2JUA54OYyIeB4g0g1MhIiIiEhnMREqI1q2bInRo0e/93x2796NSpUqQSaTFcn8Cuqnn36Cs7MzpFIpFi9ejClTpsDT07PE4yis9evXw8LCQtthEBFRPjERIg1Dhw7Fp59+isePH2PatGkluuy4uDiMGDEC3377LZ48eYIhQ4Zg3LhxCAsLK9LlFGeyEhAQgLt37xbLvD90QghMnjwZDg4OMDQ0hK+vL+7du5fnNFOmTIFEItF4VatWTaNOZGQk+vbtC3t7exgbG6NevXrYsWNHtnnt27cPXl5eMDQ0hKWlJfz9/TU+HzlyJOrXrw+FQlGqkmsiKl68a4zUEhISEB0dDT8/Pzg6OhZ6PmlpaZDL5QWeLiIiAunp6ejUqZPGLcsmJiaFjqWkGRoaqu840jVz587Fjz/+iA0bNsDNzQ2TJk2Cn58fbt68CQMDg1yn8/DwwB9//KF+r6eneVrq168fYmJisGfPHlhbW2Pz5s3o0aMHLly4gLp16wIAduzYgcGDB2PmzJlo3bo1MjIycP369WzLGjhwIM6dO4e///67iNaaiEo9oWNiY2MFABEbG5vts+TkZHHz5k2RnJysLlOpVCIxNV0rL5VKle/18vHxEcOHDxfDhw8XZmZmoly5cuL777/XmEdKSooYO3ascHR0FEZGRqJRo0bi6NGjQgghjh49KgBovLI+2759u6hRo4aQy+XCxcVFzJ8/X2PZLi4uYurUqaJv377C1NRUBAYGCiGEOHHihGjevLkwMDAQ5cuXF1999ZVISEjIMf5169ZlW354eLgIDg4WderUUdcLDAwUH3/8sZg3b56wt7cXVlZWYtiwYSItLa3Q6xkcHCyEEAKA2LVrl0Zc5ubmYt26dUIIIcLDwwUAsWPHDtGyZUthaGgoateuLU6fPq2xHubm5ur3WfH/8ssvwsXFRZiZmYmAgAARFxenrhMXFyd69+4tjIyMhL29vVi4cKHw8fERo0aNynFbCSHE/fv3RZcuXYStra0wNjYWDRo0EIcPH9ao8671EUKIx48fi549ewpLS0thZGQk6tevL86ePZvrcnOjUqmEvb29mDdvnrosJiZGKBQK8d///jfX6d7evzkxNjYWv/zyi0aZlZWVWL16tRBCiPT0dOHk5CTWrFmTr1jzs0whcj4fEJH25PX7/T7YIvQOyelK1Jh8UCvLvjnVD0by/O+iDRs2YNCgQfjrr79w4cIFDBkyBBUqVMDgwYMBACNGjMDNmzexZcsWODo6YteuXWjfvj2uXbuGpk2b4s6dO6hatSp27NiBpk2bwsrKChcvXkSPHj0wZcoUBAQE4PTp0xg2bBjKlSuH/v37q5c9f/58TJ48GcHBwQCABw8eoH379pg+fTrWrl2L58+fY8SIERgxYgTWrVuXLfaAgAA4OzvD19cXf/31F5ydnWFjY5Pjeh49ehQODg44evQo7t+/j4CAAHh6euZ7PRcvXozJkyfjzp07AAre4jRx4kTMnz8flStXxsSJE9GrVy/cv38/W0tGlgcPHmD37t3Yu3cvXr9+jR49emD27NmYMWMGACAoKAinTp3Cnj17YGdnh8mTJ+PSpUt5Xr5JSEhAx44dMWPGDCgUCvzyyy/o3Lkz7ty5gwoVKuRrPRISEuDj4wMnJyfs2bMH9vb2uHTpElQqFQDgxIkT6NChQ57zWLVqFfr06YPw8HBERkbC19dX/Zm5uTm8vLxw5swZ9OzZM9d53Lt3D46OjjAwMECTJk0wa9YsjXVo2rQptm7dik6dOsHCwgKhoaFISUlBy5YtAQCXLl3CkydPIJVKUbduXURGRsLT0xPz5s1DzZo187UtiEh3MREqQ5ydnbFo0SJIJBJUrVoV165dw6JFizB48GBERERg3bp1iIiIUF/2GjduHA4cOIB169Zh5syZsLW1BQBYWVnB3t4eALBw4UK0adMGkyZNAgBUqVIFN2/exLx58zQSodatW2Ps2LHq959//jn69Omj7nBduXJl/Pjjj/Dx8cGKFSuyXSoxNDRUP8TSxsZGvfycWFpaYunSpZDJZKhWrRo6deqEsLCwfK+nubk5JBJJnsvIy7hx49CpUycAQEhICDw8PHD//v1sfVuyqFQqrF+/HqampgCAvn37IiwsDDNmzEB8fDw2bNiAzZs3o02bNgCAdevWvfPSZJ06dVCnTh31+2nTpmHXrl3Ys2cPRowYka/12Lx5M54/f47z58/DysoKAFCpUiX15w0aNMCVK1fynIednR2AzH48b75/8/Osz3Li5eWF9evXo2rVqnj27BlCQkLg7e2N69evq7dXaGgoAgICUK5cOejp6cHIyAi7du1Sx/rw4UMAmf2NFi5cCFdXVyxYsAAtW7bE3bt31etGRJQTJkLvYKgvw82pflpbdkE0btxY49knTZo0wYIFC6BUKnHt2jUolUpUqVJFY5rU1NQ8n6J969YtfPzxxxplzZo1w+LFi6FUKtVP3G3QoIFGnatXr+Lvv//Gpk2b1GVCCKhUKoSHh6N69eoFWrc3eXh4aDzp18HBAdeuXQOAQq9nQdSuXVtj2UDmE4hzS4RcXV3VP+pZ02QN3/Dw4UOkp6ejUaNG6s/Nzc1RtWrVPGNISEjAlClTsG/fPjx79gwZGRlITk5GREREvtfjypUrqFu3bq6JgqGhoUZiVBzebHGqXbs2vLy84OLigtDQUAwaNAgAMGnSJMTExOCPP/6AtbU1du/ejR49euDEiROoVauWugVr4sSJ+OSTTwBkJpPly5fHtm3bMHTo0GJdByIq3ZgIvYNEIinQ5akPVUJCAmQyGS5evJhtuICi6IxsbGycbXlDhw7FyJEjs9XN76Wb3Ojr62u8l0gk6h/D91lPiUQCIYRGWU5PFX5z+VmJZ9byCxpvYY0bNw6HDx/G/PnzUalSJRgaGuLTTz9FWlqaxnLyWp93deouyKWxrNa1qKgojY7uUVFRBbpDy8LCAlWqVMH9+/cBZF5WXLp0Ka5fvw4PDw8Ama1hJ06cwLJly7By5Ur18mrUqKGej0KhQMWKFQuUGBKRbir9v/Ckdu7cOY33Z8+eReXKlSGTyVC3bl0olUpER0fD29s73/OsXr06Tp06pVF26tQpVKlSJc/xl+rVq4ebN28We4vC2/KznnK5HEqlMlu5jY0Nnj17pn5/7949JCUlFVusAFCxYkXo6+vj/Pnz6gQxNjYWd+/eRYsWLXKd7tSpU+jfvz+6du0KIDMBfPTokUadd61P7dq1sWbNGrx69SrHVqGCXBpzc3ODvb09wsLC1IlPXFwczp07hy+//DLPebwpISEBDx48QN++fQFAHa9UqvmkD5lMpk4ms26Jv3PnDpo3bw4gM+F79OgRXFxc8r1sItJNTITKkIiICAQFBWHo0KG4dOkSlixZggULFgDI7NvTp08f9OvXDwsWLEDdunXx/PlzhIWFoXbt2uo+L28bO3YsGjZsiGnTpiEgIABnzpzB0qVLsXz58jxj+fbbb9G4cWOMGDECn3/+OYyNjXHz5k0cPnwYS5cuLfJ1z5Kf9XR1dUVCQgLCwsJQp04dGBkZwcjICK1bt8bSpUvRpEkTKJVKfPvtt9lac4qaqakpAgMD8fXXX8PKygq2trYIDg6GVCrNc4iHypUrY+fOnejcuTMkEgkmTZqUrZXpXevTq1cvzJw5E/7+/pg1axYcHBxw+fJlODo6okmTJgW6NCaRSDB69GhMnz4dlStXVt8+7+joqPE8nzZt2qBr167qfkzjxo1D586d4eLigqdPnyI4OBgymQy9evUCAFSrVg2VKlXC0KFDMX/+fJQrVw67d+/G4cOHsXfvXgCAmZkZvvjiCwQHB8PZ2RkuLi6YN28eAKB79+7qZd+/fx8JCQmIjIxEcnKyOsmrUaNGoR73QERlAxOhMqRfv35ITk5Go0aNIJPJMGrUKAwZMkT9+bp16zB9+nSMHTsWT548gbW1NRo3boyPPvoo13nWq1cPoaGhmDx5MqZNmwYHBwdMnTpVo6N0TmrXro3jx49j4sSJ8Pb2hhAC7u7uCAgIKKrVzdW71rNp06b44osvEBAQgJcvXyI4OBhTpkzBggULMGDAAHh7e8PR0RE//PADLl68WOzxLly4EF988QU++ugjmJmZ4ZtvvsHjx4/zfPbOwoULMXDgQDRt2hTW1tb49ttvERcXp1HnXesjl8tx6NAhjB07Fh07dkRGRgZq1KiBZcuWFWo9vvnmGyQmJmLIkCGIiYlB8+bNceDAAY31ePDgAV68eKF+/++//6JXr154+fIlbGxs0Lx5c5w9e1Z9x6C+vj7279+P8ePHo3PnzkhISEClSpWwYcMGdOzYUT2fefPmQU9PD3379kVycjK8vLxw5MgRWFpaqut8/vnnOH78uPp91jOIwsPD4erqWqh1JqLSTyLe7kRQxsXFxcHc3ByxsbEwMzPT+CwlJQXh4eFwc3PL80eIqDglJibCyckJCxYsUHcYppLH8wHRhyWv3+/3wRYhIi27fPkybt++jUaNGiE2NhZTp04FgGx36xERUdFjIkT0AZg/fz7u3LkDuVyO+vXr48SJE7C2ttZ2WEREZR4TISItq1u3bon0RSIiouw4+jwRERHpLCZCREREpLOYCBEREZHOYiJEREREOouJEBEREeksJkI65Pbt22jcuDEMDAwKNBDm+zh16hRq1aoFfX19+Pv749ixY5BIJIiJiSmR5b+vR48eQSKRvHPMLSIiKp2YCOmQ4OBgGBsb486dOwgLC8P69ethYWFRrMsMCgqCp6cnwsPDsX79ejRt2hTPnj2Dubl5kS2jOJMVZ2dnPHv2DDVr1izyeZcG27ZtQ7Vq1WBgYIBatWph//79edbPSnTffkVGRqrrKJVKTJo0CW5ubjA0NIS7uzumTZuGtx9yf+vWLXTp0gXm5uYwNjZGw4YNNUaT/+mnn9CyZUuYmZmVquSaiD4sTIR0yIMHD9C8eXO4uLigXLlyRTZfpVKZbcDPN5fZunVrlC9fHhYWFpDL5bC3t89zQNEPiUwmg729PfT0dO+RW6dPn0avXr0waNAgXL58Gf7+/vD398f169ffOe2dO3fw7Nkz9cvW1lb92Zw5c7BixQosXboUt27dwpw5czB37lwsWbJEXSfrWK1WrRqOHTuGv//+G5MmTdIY6iIpKQnt27fHd999V7QrTkS6ReiY2NhYAUDExsZm+yw5OVncvHlTJCcnayGy9/P777+LZs2aCXNzc2FlZSU6deok7t+/r/4cgMbLx8cnW1lwcLAQQoiUlBQxduxY4ejoKIyMjESjRo3E0aNH1fNat26dMDc3F7/++quoXr26kMlkIjw8XCOe8PDwbPNft26dOHr0qAAgXr9+rTGvAwcOiGrVqgljY2Ph5+cnnj59qjG/1atXi2rVqgmFQiGqVq0qli1blue6CSGEj4+PGDVqlMZ8Pv74YxEYGKh+7+LiImbMmCEGDBggTExMhLOzs1i1alW29bh8+bIQQqjj/+OPP0T9+vWFoaGhaNKkibh9+7bGcqZNmyZsbGyEiYmJGDRokPj2229FnTp1ct1/GRkZYuDAgcLV1VUYGBiIKlWqiMWLF2vUyc/6pKSkiG+++UaUL19eyOVy4e7uLtasWZPrcvPSo0cP0alTJ40yLy8vMXTo0FyneXv/5qRTp05i4MCBGmXdunUTffr0Ub8PCAgQn332Wb7izM8yC6M0nw+IyqK8fr/fB1uE3kUIIC1RO68CjIebmJiIoKAgXLhwAWFhYZBKpejatau6pebZs2fw8PDA2LFj8ezZM+zZsweLFy+GmZmZ+q/2cePGAQBGjBiBM2fOYMuWLfj777/RvXt3tG/fHvfu3VMvLykpCXPmzMGaNWtw48YNjb/4gf9dUjIzM8PixYvx7NmzXEeeT0pKwvz587Fx40b8+eefiIiIUMcCAJs2bcLkyZMxY8YM3Lp1CzNnzsSkSZOwYcMGAMBff/0FAPjjjz/w7Nkz7Ny5M9/bDcgcpb1Bgwa4fPkyhg0bhi+//BJ37tzJc5qJEydiwYIFuHDhAvT09DBw4ECNeGfMmIE5c+bg4sWLqFChAlasWJHn/FQqFcqXL49t27bh5s2bmDx5Mr777juEhoYWaF369euH//73v/jxxx9x69YtrFq1CiYmJurPTUxM8nx98cUX6rpnzpyBr6+vxvz9/Pxw5syZd8bh6ekJBwcHtG3bFqdOndL4rGnTpggLC8Pdu3cBAFevXsXJkyfRoUMH9bbYt28fqlSpAj8/P9ja2sLLywu7d+8u0LYgIsoP3WvvL6j0JGCmo3aW/d1TQG6cr6qffPKJxvu1a9fCxsYGN2/eRM2aNdWXd0xMTGBvbw8AMDc3h0QiUb8HgIiICKxbtw4RERFwdMxc73HjxuHAgQNYt24dZs6cCQBIT0/H8uXLUadOnRzjybqkJJFIYG5urrGMt6Wnp2PlypVwd3cHkJmIZQ08CmT2bVqwYAG6desGAHBzc8PNmzexatUqBAYGwsbGBgBQrly5PJeTm44dO2LYsGEAgG+//RaLFi3C0aNHUbVq1VynmTFjBnx8fAAA48ePR6dOnZCSkgIDAwMsWbIEgwYNwoABAwAAkydPxqFDh5CQkJDr/PT19RESEqJ+7+bmhjNnziA0NBQ9evTI13rcvXsXoaGhOHz4sDqBqVixokadd/WjenNE58jISNjZ2Wl8bmdnp9Hf520ODg5YuXIlGjRogNTUVKxZswYtW7bEuXPnUK9ePQCZ2ysuLg7VqlWDTCaDUqnEjBkz0KdPHwBAdHQ0EhISMHv2bEyfPh1z5szBgQMH0K1bNxw9elS93YmIigIToTLi3r17mDx5Ms6dO4cXL16oW4IiIiIK1NH32rVrUCqVqFKlikZ5amqqRr8iuVyO2rVrF0nsRkZG6iQIyPwxjY6OBpDZ0vXgwQMMGjQIgwcPVtfJyMgosg7Xb65HVmKYtfz8TOPg4AAg8we8QoUKuHPnjjqxytKoUSMcOXIkz3kuW7YMa9euRUREBJKTk5GWllagu/uuXLkCmUyWZ6JQqVKlfM+vMKpWraqRQDZt2hQPHjzAokWLsHHjRgBAaGgoNm3ahM2bN8PDwwNXrlzB6NGj4ejoiMDAQPWx+/HHH2PMmDEAMluYTp8+jZUrVzIRIqIixUToXfSNMltmtLXsfOrcuTNcXFywevVqODo6QqVSoWbNmkhLSyvQIhMSEiCTyXDx4kXIZDKNz968xGJoaFhkHZ719fU13kskEvUdRFmtKKtXr4aXl5dGvbfje5tUKs12J1J6enq+lp9b5++cpsnaDu+aJi9btmzBuHHjsGDBAjRp0gSmpqaYN28ezp07p67zrvUxNDR853Le3Ic5+eyzz7By5UoAgL29PaKiojQ+j4qKKnCrW6NGjXDy5En1+6+//hrjx49Hz549AQC1atXCP//8g1mzZiEwMBDW1tbQ09NDjRo1NOZTvXp1jfkQERUFJkLvIpHk+/KUtrx8+RJ37tzB6tWr4e3tDQD5+sGQy+VQKpUaZXXr1oVSqUR0dLR6XtpkZ2cHR0dHPHz4UH3p5G1yuRwAsq2LjY0Nnj17pn6vVCpx/fp1tGrVqvgCRmaryPnz59GvXz912fnz5/Oc5tSpU2jatKlGS9KDBw806rxrfWrVqgWVSoXjx49n69uTpSCXxpo0aYKwsDCMHj1aXXb48GE0adIkz3nktMysVjMgs0+YVKrZPVEmk6kTSblcjoYNG2brp3X37l24uLgUaNlERO/CRKgMsLS0RLly5fDTTz/BwcEBERERGD9+/Dunc3V1RUJCAsLCwlCnTh0YGRmhSpUq6NOnD/r164cFCxagbt26eP78OcLCwlC7dm106tSpBNZIU0hICEaOHAlzc3O0b98eqampuHDhAl6/fo2goCDY2trC0NAQBw4cQPny5WFgYABzc3O0bt0aQUFB2LdvH9zd3bFw4cISedbMV199hcGDB6NBgwZo2rQptm7dir///jtbf503Va5cGb/88gsOHjwINzc3bNy4EefPn4ebm5u6zrvWx9XVFYGBgRg4cCB+/PFH1KlTB//88w+io6PV/YwKcmls1KhR8PHxwYIFC9CpUyds2bIFFy5cwE8//aSuM2HCBDx58gS//PILAGDx4sVwc3ODh4cHUlJSsGbNGhw5cgSHDh1ST9O5c2fMmDEDFSpUgIeHBy5fvoyFCxdqdDj/+uuvERAQgBYtWqBVq1Y4cOAAfvvtNxw7dkxdJzIyEpGRkbh//z6AzMu6pqamqFChAqysrPK9nkSk44r0HrRSoKzePn/48GFRvXp1oVAoRO3atcWxY8cEALFr1y51nTp16qhvkc/yxRdfiHLlymncPp+WliYmT54sXF1dhb6+vnBwcBBdu3YVf//9txDif7e854e5ublYt26d+n1ut8+/adeuXeLtQ3PTpk3C09NTyOVyYWlpKVq0aCF27typ/nz16tXC2dlZSKVS9e3zaWlp4ssvvxRWVlbC1tZWzJo1K8fb5xctWqSxrDe3U263z795q/bly5cFAI1HCEydOlVYW1sLExMTMXDgQDFy5EjRuHHjXLdTSkqK6N+/vzA3NxcWFhbiyy+/FOPHj9e45T4/65OcnCzGjBkjHBwchFwuF5UqVRJr167NdbnvEhoaKqpUqSLkcrnw8PAQ+/bt0/g8MDBQvb2FEGLOnDnC3d1dGBgYCCsrK9GyZUtx5MgRjWni4uLEqFGjRIUKFYSBgYGoWLGimDhxokhNTdWo9/PPP4tKlSoJAwMDUadOHbF7926Nz4ODg7M9OgH//5iGolCazwdEZVFx3T4vEaIA92iXAXFxcTA3N0dsbKzGZQAASElJQXh4ONzc3DQe3Eb0vtq2bQt7e3t1h2H68PF8QPRhyev3+33w0hhREUtKSsLKlSvh5+cHmUyG//73v/jjjz9w+PBhbYdGRERvYSJEVMQkEgn279+PGTNmICUlBVWrVsWOHTty7cBMRETaw0SIqIgZGhrijz/+0HYYRESUDxxig4iIiHQWEyEiIiLSWUyEcqBjN9IRUQ54HiDSDUyE3pA1bEJSUpKWIyEibcs6D7w9BAsRlS3sLP0GmUwGCwsL9YCbRkZGRTaeFhGVDkIIJCUlITo6GhYWFu8c046ISjcmQm/JGlDyXaOPE1HZZmFhUeABZomo9GEi9BaJRAIHBwfY2trmOFI5EZV9+vr6bAki0hEfRCK0bNkyzJs3D5GRkahTpw6WLFmCRo0a5Vp/27ZtmDRpEh49eoTKlStjzpw56NixY5HGJJPJeCIkIiIq47TeWXrr1q0ICgpCcHAwLl26hDp16sDPzy/XS1OnT59Gr169MGjQIFy+fBn+/v7w9/fH9evXSzhyIiIiKu20Puiql5cXGjZsiKVLlwIAVCoVnJ2d8dVXX2H8+PHZ6gcEBCAxMRF79+5VlzVu3Bienp5YuXLlO5dXXIO2ERERUfEprt9vrbYIpaWl4eLFixpjMEmlUvj6+uLMmTM5TnPmzJlsYzb5+fnlWp+IiIgoN1rtI/TixQsolUrY2dlplNvZ2eH27ds5ThMZGZlj/cjIyBzrp6amIjU1Vf0+NjYWQGZmSURERKVD1u92UV/I+iA6SxenWbNmISQkJFu5s7OzFqIhIiKi9/Hy5UuYm5sX2fy0mghZW1tDJpMhKipKozwqKirX53fY29sXqP6ECRMQFBSkfh8TEwMXFxdEREQU6YakgouLi4OzszMeP37M/lofAO6PDwf3xYeD++LDERsbiwoVKsDKyqpI56vVREgul6N+/foICwuDv78/gMzO0mFhYRgxYkSO0zRp0gRhYWEYPXq0uuzw4cNo0qRJjvUVCgUUCkW2cnNzcx7UHwgzMzPuiw8I98eHg/viw8F98eGQSou2e7PWL40FBQUhMDAQDRo0QKNGjbB48WIkJiZiwIABAIB+/frByckJs2bNAgCMGjUKPj4+WLBgATp16oQtW7bgwoUL+Omnn7S5GkRERFQKaT0RCggIwPPnzzF58mRERkbC09MTBw4cUHeIjoiI0Mj+mjZtis2bN+P777/Hd999h8qVK2P37t2oWbOmtlaBiIiISimtJ0IAMGLEiFwvhR07dixbWffu3dG9e/dCLUuhUCA4ODjHy2VUsrgvPizcHx8O7osPB/fFh6O49oXWH6hIREREpC1aH2KDiIiISFuYCBEREZHOYiJEREREOouJEBEREemsMpkILVu2DK6urjAwMICXlxf++uuvPOtv27YN1apVg4GBAWrVqoX9+/eXUKRlX0H2xerVq+Ht7Q1LS0tYWlrC19f3nfuOCqag340sW7ZsgUQiUT/4lN5fQfdFTEwMhg8fDgcHBygUClSpUoXnqiJS0H2xePFiVK1aFYaGhnB2dsaYMWOQkpJSQtGWXX/++Sc6d+4MR0dHSCQS7N69+53THDt2DPXq1YNCoUClSpWwfv36gi9YlDFbtmwRcrlcrF27Vty4cUMMHjxYWFhYiKioqBzrnzp1SshkMjF37lxx8+ZN8f333wt9fX1x7dq1Eo687Cnovujdu7dYtmyZuHz5srh165bo37+/MDc3F//++28JR142FXR/ZAkPDxdOTk7C29tbfPzxxyUTbBlX0H2RmpoqGjRoIDp27ChOnjwpwsPDxbFjx8SVK1dKOPKyp6D7YtOmTUKhUIhNmzaJ8PBwcfDgQeHg4CDGjBlTwpGXPfv37xcTJ04UO3fuFADErl278qz/8OFDYWRkJIKCgsTNmzfFkiVLhEwmEwcOHCjQcstcItSoUSMxfPhw9XulUikcHR3FrFmzcqzfo0cP0alTJ40yLy8vMXTo0GKNUxcUdF+8LSMjQ5iamooNGzYUV4g6pTD7IyMjQzRt2lSsWbNGBAYGMhEqIgXdFytWrBAVK1YUaWlpJRWizijovhg+fLho3bq1RllQUJBo1qxZscapa/KTCH3zzTfCw8NDoywgIED4+fkVaFll6tJYWloaLl68CF9fX3WZVCqFr68vzpw5k+M0Z86c0agPAH5+frnWp/wpzL54W1JSEtLT04t8gD1dVNj9MXXqVNja2mLQoEElEaZOKMy+2LNnD5o0aYLhw4fDzs4ONWvWxMyZM6FUKksq7DKpMPuiadOmuHjxovry2cOHD7F//3507NixRGKm/ymq3+8P4snSReXFixdQKpXq4Tmy2NnZ4fbt2zlOExkZmWP9yMjIYotTFxRmX7zt22+/haOjY7YDnQquMPvj5MmT+Pnnn3HlypUSiFB3FGZfPHz4EEeOHEGfPn2wf/9+3L9/H8OGDUN6ejqCg4NLIuwyqTD7onfv3njx4gWaN28OIQQyMjLwxRdf4LvvviuJkOkNuf1+x8XFITk5GYaGhvmaT5lqEaKyY/bs2diyZQt27doFAwMDbYejc+Lj49G3b1+sXr0a1tbW2g5H56lUKtja2uKnn35C/fr1ERAQgIkTJ2LlypXaDk3nHDt2DDNnzsTy5ctx6dIl7Ny5E/v27cO0adO0HRoVUplqEbK2toZMJkNUVJRGeVRUFOzt7XOcxt7evkD1KX8Ksy+yzJ8/H7Nnz8Yff/yB2rVrF2eYOqOg++PBgwd49OgROnfurC5TqVQAAD09Pdy5cwfu7u7FG3QZVZjvhoODA/T19SGTydRl1atXR2RkJNLS0iCXy4s15rKqMPti0qRJ6Nu3Lz7//HMAQK1atZCYmIghQ4Zg4sSJGoOEU/HK7ffbzMws361BQBlrEZLL5ahfvz7CwsLUZSqVCmFhYWjSpEmO0zRp0kSjPgAcPnw41/qUP4XZFwAwd+5cTJs2DQcOHECDBg1KIlSdUND9Ua1aNVy7dg1XrlxRv7p06YJWrVrhypUrcHZ2Lsnwy5TCfDeaNWuG+/fvq5NRALh79y4cHByYBL2HwuyLpKSkbMlOVoIqOHRniSqy3++C9eP+8G3ZskUoFAqxfv16cfPmTTFkyBBhYWEhIiMjhRBC9O3bV4wfP15d/9SpU0JPT0/Mnz9f3Lp1SwQHB/P2+SJS0H0xe/ZsIZfLxfbt28WzZ8/Ur/j4eG2tQplS0P3xNt41VnQKui8iIiKEqampGDFihLhz547Yu3evsLW1FdOnT9fWKpQZBd0XwcHBwtTUVPz3v/8VDx8+FIcOHRLu7u6iR48e2lqFMiM+Pl5cvnxZXL58WQAQCxcuFJcvXxb//POPEEKI8ePHi759+6rrZ90+//XXX4tbt26JZcuW8fb5LEuWLBEVKlQQcrlcNGrUSJw9e1b9mY+PjwgMDNSoHxoaKqpUqSLkcrnw8PAQ+/btK+GIy66C7AsXFxcBINsrODi45AMvowr63XgTE6GiVdB9cfr0aeHl5SUUCoWoWLGimDFjhsjIyCjhqMumguyL9PR0MWXKFOHu7i4MDAyEs7OzGDZsmHj9+nXJB17GHD16NMffgKztHxgYKHx8fLJN4+npKeRyuahYsaJYt25dgZcrEYJteURERKSbylQfISIiIqKCYCJEREREOouJEBEREeksJkJERESks5gIERERkc5iIkREREQ6i4kQERER6SwmQkREACQSCXbv3g0AePToESQSCa5cuaLVmIio+DERIiKt69+/PyQSCSQSCfT19eHm5oZvvvkGKSkp2g6NiMq4MjX6PBGVXu3bt8e6deuQnp6OixcvIjAwEBKJBHPmzNF2aERUhrFFiIg+CAqFAvb29nB2doa/vz98fX1x+PBhAJkjgs+aNQtubm4wNDREnTp1sH37do3pb9y4gY8++ghmZmYwNTWFt7c3Hjx4AAA4f/482rZtC2tra5ibm8PHxweXLl0q8XUkog8PEyEi+uBcv34dp0+fhlwuBwDMmjULv/zyC1auXIkbN25gzJgx+Oyzz3D8+HEAwJMnT9CiRQsoFAocOXIEFy9exMCBA5GRkQEAiI+PR2BgIE6ePImzZ8+icuXK6NixI+Lj47W2jkT0YeClMSL6IOzduxcmJibIyMhAamoqpFIpli5ditTUVMycORN//PEHmjRpAgCoWLEiTp48iVWrVsHHxwfLli2Dubk5tmzZAn19fQBAlSpV1PNu3bq1xrJ++uknWFhY4Pjx4/joo49KbiWJ6IPDRIiIPgitWrXCihUrkJiYiEWLFkFPTw+ffPIJbty4gaSkJLRt21ajflpaGurWrQsAuHLlCry9vdVJ0NuioqLw/fff49ixY4iOjoZSqURSUhIiIiKKfb2I6MPGRIiIPgjGxsaoVKkSAGDt2rWoU6cOfv75Z9SsWRMAsG/fPjg5OWlMo1AoAACGhoZ5zjswMBAvX77EDz/8ABcXFygUCjRp0gRpaWnFsCZEVJowESKiD45UKsV3332HoKAg3L17FwqFAhEREfDx8cmxfu3atbFhwwakp6fn2Cp06tQpLF++HB07dgQAPH78GC9evCjWdSCi0oGdpYnog9S9e3fIZDKsWrUK48aNw5gxY7BhwwY8ePAAly5dwpIlS7BhwwYAwIgRIxAXF4eePXviwoULuHfvHjZu3Ig7d+4AACpXroyNGzfi1q1bOHfuHPr06fPOViQi0g1sESKiD5Kenh5GjBiBuXPnIjw8HDY2Npg1axYePnwICwsL1KtXD9999x0AoFy5cjhy5Ai+/vpr+Pj4QCaTwdPTE82aNQMA/PzzzxgyZAjq1asHZ2dnzJw5E+PGjdPm6hHRB0IihBDaDoKIiIhIG3hpjIiIiHQWEyEiIiLSWUyEiIiISGcxESIiIiKdxUSIiIiIdBYTISIiItJZTISIiIhIZzERIiIiIp3FRIiIiIh0FhMhIiIi0llMhIiIiEhnMREiIiIinfV/5X6U8E1ACbwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHcCAYAAAAqQ4tyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB75ElEQVR4nO3dd1hT1/8H8HcSSNhDNoosF7hwIriqYrG1to46W7edWm3V/qq1dbbaultn1Tq+WqvW1aF1lGpduMWFAxWKg+FkiKzk/P6IpEYCEkwIhvfreXhI7r3n3s+93Nx8OPfccyRCCAEiIiIiMyE1dQBEREREhsTkhoiIiMwKkxsiIiIyK0xuiIiIyKwwuSEiIiKzwuSGiIiIzAqTGyIiIjIrTG6IiIjIrDC5ISIiIrPC5KaM+Pn5YcCAASbZ9oABA+Dn52eSbZuLvXv3QiKRYO/evWW2zYSEBEgkEqxcubLMtklkbkx57SXTYXLz2KFDhzBx4kQ8ePDA1KEQPbfydj4vXLjQLJK0tWvXYu7cuUbdxq1btzBx4kTExMQYdTv0/MzpfCiLfSlLTG4eO3ToECZNmmS0L4NLly5h6dKlRlk30dOMfT7ri8lNyd26dQuTJk1icvMCMKfzgckNQaVSITs7W68yCoUClpaWRoqIiIiINASJCRMmCACFfuLj44UQQgAQQ4cOFWvWrBHBwcHCwsJCbNmyRQghxIwZM0RYWJioVKmSsLKyEg0bNhS//PJLoW34+vqK/v37a96vWLFCABAHDhwQn3zyiXB1dRU2Njaic+fOIjU1tVD57du3ixYtWggbGxthZ2cnXn31VXHu3LlCy23ZskXUrl1bKBQKUbt2bbF582bRv39/4evrW6JjsWDBAhEcHCzkcrnw8vISH374obh//77WMq1btxa1a9cW58+fFy+99JKwtrYW3t7e4ttvvy3RNnbt2iWaN28uHB0dha2trahRo4YYO3asZn5OTo748ssvRcOGDYWDg4OwsbERLVq0EH///bfWeuLj4wUAMWPGDDF//nzh7+8vrK2tRfv27UViYqJQqVRi8uTJonLlysLKykq8/vrr4u7du1rr8PX1FR07dhQ7d+4U9evXFwqFQgQFBYlNmzZpLbdnzx4BQOzZs0dr+uHDh0VkZKRwcHAQ1tbWolWrVuLAgQMlOg5Pun//vujfv79wcHAQjo6Ool+/fuLUqVMCgFixYoVmudOnT4v+/fsLf39/oVAohIeHhxg4cKC4c+eOZplnnc/Lly8Xbdq0EW5ubkIul4ugoCCxcOHCQjEdO3ZMvPzyy8LFxUVYWVkJPz8/MXDgQK1llEqlmDNnjggODhYKhUK4u7uLd999V9y7d0/rGD8dS+vWrYs9HkqlUsydO1fUqVNHKBQK4erqKiIjI8WxY8c0yxR3HiUnJwuZTCYmTpxYaN0XL14UAMS8efOKjeFprVu3LrQfT36usrOzxfjx40VgYKCQy+WiSpUq4tNPPxXZ2dla6yku7oLz7OmfJ88BXU6ePCk6dOgg7O3tha2trWjbtq2Ijo7WWkbfa87TkpKSxIABA0TlypWFXC4Xnp6e4vXXX9ecV0IIsXXrVvHqq68KLy8vIZfLRUBAgJg8ebLIz88vdCxr164tTp8+LVq1aiWsra1FYGCg5tq5d+9e0bRpU2FlZSVq1Kghdu/erVW+4By/cOGC6N69u7C3txeVKlUSw4cPF48ePdJa9ulrrxDqz9uIESNElSpVhFwuF4GBgeKbb74RSqXymcfhyX0w9flw+fJl0bVrV+Hh4SEUCoWoXLmy6Nmzp3jw4IHWNlavXi0aNmworKyshLOzs+jZs6dITEws8b4UZfXq1aJJkybC2tpaODk5iZYtW4qdO3dq5hd3DcnNzRXOzs5iwIABhdablpYmFAqFGDVq1DNjKAqTG6H+wujdu7cAIObMmSNWr14tVq9eLTIzM4UQ6uQmKChIuLm5iUmTJokFCxaIU6dOCSGEqFKlivjwww/F/PnzxezZs0XTpk0FAPHHH39obaOo5KZBgwaibdu2Yt68eWLUqFFCJpOJHj16aJX93//+JyQSiejQoYOYN2+e+Pbbb4Wfn59wcnLSurDs3LlTSKVSUadOHTF79mwxbtw44ejoKGrXrl2iE7XgghERESHmzZsnhg0bJmQymWjSpInIzc3VLNe6dWvh7e0tfHx8xIgRI8TChQtF27ZtBQCxffv2Yrdx7tw5IZfLRePGjcV3330nFi9eLEaPHi1atWqlWeb27dvCy8tLjBw5UixatEhMnz5d1KxZU1haWmqOuxD/JTchISEiODhYzJ49W3zxxRdCLpeLZs2aic8//1yEh4eL77//XgwfPlxIJJJCX86+vr6iRo0awsnJSYwZM0bMnj1b1K1bV0ilUrFr1y7NcrqSm6ioKCGXy0VYWJiYNWuWmDNnjqhXr56Qy+XiyJEjzzzeBVQqlWjVqpWQSqXiww8/FPPmzRNt27YV9erVK/TFNnPmTNGyZUsxefJksWTJEjFixAhhbW0tmjZtKlQqlRDi2edzkyZNxIABA8ScOXPEvHnzxMsvvywAiPnz52u2k5KSIpydnUWNGjXEjBkzxNKlS8W4ceNEUFCQVuxDhgwRFhYW4p133hGLFy8Wn332mbC1tdU6Z7Zs2SKqVKkiatWqpYnlyWOry4ABAwQA8corr4i5c+eKmTNnijfeeEOTkJTkPGrbtq0IDg4utO5JkyYJmUwmkpOTS/w3EkL9JRQSEiJcXV01+1HwT45SqRQvv/yysLGxER9//LH44YcfxLBhw4SFhYV44403NOt4VtzJycli8uTJAoB49913Ndu5evVqkXGdO3dO2NraCi8vLzFlyhTxzTffaJLfw4cPa5bT55qjS3h4uHB0dBRffPGFWLZsmZg6dapo06aN+OeffzTLdO7cWfTo0UPMmDFDLFq0SHTv3l0AEKNHj9Za15PXkE8//VTMmzdPBAcHC5lMJtatWyc8PT3FxIkTxdy5c0XlypWFo6OjSE9P15QvuFbVrVtXdOrUScyfP1+8/fbbAoDo27ev1raevvY+fPhQ1KtXT7i4uIjPP/9cLF68WPTr109IJBIxYsSIZx6HAqY+H3JycoS/v7/w9vYWX331lVi2bJmYNGmSaNKkiUhISNBs46uvvhISiUT07NlTLFy4UEyaNEm4uroKPz8/zT+uxe1LUSZOnCgAiPDwcDFjxgzx3XffiT59+ojPPvtMCFGya8igQYOEk5OTyMnJ0Vr3qlWrBACtf2b0xeTmsRkzZmj9d/skAEIqlYrz588XmpeVlaX1Pjc3V9SpU0e0bdtWa3pRyU1ERITmS0kIIT755BMhk8k0mXdGRoZwcnIS77zzjtb6kpOThaOjo9b0kJAQ4eXlpZW179q1q0RZeGpqqpDL5eLll1/W+u9l/vz5AoBYvny5ZlpBlv+///1PMy0nJ0d4enqKbt26FbudOXPmCADi9u3bRS6Tn59f6GS/f/++8PDwEIMGDdJMK0hu3NzctPZ57NixAoCoX7++yMvL00zv3bu3kMvlWv85FdQqPFlTk5aWJry8vESDBg00055OblQqlahevbqIjIzU+vtlZWUJf39/0b59+2KPw5O2bt0qAIjp06drHYOWLVsWSm6ePt+EEOLnn38WAMS+ffs004o7n3WtIzIyUgQEBGjeb9my5ZkXl/379wsA4qefftKavmPHjkLTa9eu/czamgJ///23ACCGDx9eaF7BsS7JefTDDz8IAOLs2bNa04ODgwt9PkuqY8eOOj9Lq1evFlKpVOzfv19r+uLFiwUAcfDgwRLHfezYsRLV1hTo3LmzkMvlWgnQrVu3hL29vVayV9Jrji7379/X1JIWR9e59d577wkbGxutz13BNWTt2rWaaQU1alKpVCsp27lzZ6HjUZDcvP7661rb+vDDDwUAcfr0ac20p6+9U6ZMEba2tuLy5ctaZceMGSNkMplWjcazmPJ8KKjZ1XWnoEBCQoKQyWTi66+/1pp+9uxZYWFhoTW9qH3RJS4uTkilUtGlS5dCtV0F51ZJriEFf9vff/9da/qrr76qdT0qDba5KaHWrVsjODi40HRra2vN6/v37yMtLQ0tW7bEyZMnS7Ted999FxKJRPO+ZcuWUCqV+PfffwEAu3fvxoMHD9C7d2/cuXNH8yOTyRAaGoo9e/YAAJKSkhATE4P+/fvD0dFRs7727dvrjPtpf/31F3Jzc/Hxxx9DKv3vtHjnnXfg4OCAbdu2aS1vZ2eHt99+W/NeLpejadOmuHbtWrHbcXJyAgD8+uuvUKlUOpeRyWSQy+UA1O2b7t27h/z8fDRu3Fjnce3evbvWPoeGhgIA3n77bVhYWGhNz83Nxc2bN7XKe3t7o0uXLpr3Dg4O6NevH06dOoXk5GSdMcbExCAuLg59+vTB3bt3NX+Xhw8fol27dti3b1+R+/e07du3w8LCAh988IHWMfjoo48KLfvk+ZadnY07d+6gWbNmAFDic+7JdaSlpeHOnTto3bo1rl27hrS0NAD//Z3++OMP5OXl6VzPL7/8AkdHR7Rv317r3GzUqBHs7Ow056a+Nm3aBIlEggkTJhSaV/BZKcl51LVrV1hYWGD9+vWaaefOnUNsbCx69uxZqtiK8ssvvyAoKAi1atXSOhZt27YFAM2xKEnc+lAqldi1axc6d+6MgIAAzXQvLy/06dMHBw4cQHp6ulaZZ11zdLG2toZcLsfevXtx//79YpcrkJGRgTt37qBly5bIysrCxYsXtZa1s7NDr169NO9r1qwJJycnBAUFaT7DwH+fZ13XlqFDh2q9L/jMbN++vcgYf/nlF7Rs2RLOzs5af6uIiAgolUrs27evyLIlVRbnQ8E1b+fOncjKytK5zObNm6FSqdCjRw+tODw9PVG9evVSf0a3bt0KlUqF8ePHa31fAIU/o8VdQ9q2bQtXV1etz+j9+/exe/fu5/6MMrkpIX9/f53T//jjDzRr1gxWVlaoVKkS3NzcsGjRIs2XxLNUrVpV672zszMAaC4gcXFxANQngZubm9bPrl27kJqaCgCaC1P16tULbaNmzZrPjKOg/NPLyuVyBAQEFLrwValSResCWRB7cRc+AOjZsyeaN2+OIUOGwMPDA7169cKGDRsKfbBXrVqFevXqwcrKCi4uLnBzc8O2bdt0Htenj2HBh97Hx0fn9KdjrFatWqF9qVGjBgB1XzO6FPxd+vfvX+jvsmzZMuTk5JT4HPj333/h5eUFOzs7rem6/m737t3DiBEj4OHhAWtra7i5uWnOzZJu7+DBg4iIiICtrS2cnJzg5uaGzz//XGsdrVu3Rrdu3TBp0iS4urrijTfewIoVK5CTk6N1DNLS0uDu7l7oGGRmZmrOTX1dvXoV3t7eqFSpUpHLlOQ8cnV1Rbt27bBhwwbNtPXr18PCwgJdu3YtVWxFiYuLw/nz5wsdh4LzqOBYlPT8L6nbt28jKytL57kSFBQElUqF69eva01/1jVHF4VCgW+//RZ//vknPDw80KpVK0yfPr1Q8n/+/Hl06dIFjo6OcHBwgJubm+afoKfPT13XEEdHxxJ/boHC17vAwEBIpdIiP7eA+m+1Y8eOQn+riIgIACj1efv0Nox9Pvj7+2PkyJFYtmwZXF1dERkZiQULFmgd57i4OAghUL169UKxXLhw4bk+o1KptNh/nEtyDbGwsEC3bt3w66+/aqZv3rwZeXl5z53cWDx7EQK0/yMpsH//frz++uto1aoVFi5cCC8vL1haWmLFihVYu3ZtidYrk8l0ThdCAIDmJF+9ejU8PT0LLfdkzURZelbcRbG2tsa+ffuwZ88ebNu2DTt27MD69evRtm1b7Nq1CzKZDGvWrMGAAQPQuXNnfPrpp3B3d4dMJsO0adNw9erVEsdS2hhLouDvMmPGDISEhOhc5ulkxRB69OiBQ4cO4dNPP0VISAjs7OygUqnQoUOHEl0Qr169inbt2qFWrVqYPXs2fHx8IJfLsX37dsyZM0ezDolEgo0bN+Lw4cP4/fffsXPnTgwaNAizZs3C4cOHNdt1d3fHTz/9pHNbbm5uBt33J5XkPAKAXr16YeDAgYiJiUFISAg2bNiAdu3awdXV1aDxqFQq1K1bF7Nnz9Y5v+ALu6RxG1NpPxcff/wxOnXqhK1bt2Lnzp348ssvMW3aNPz9999o0KABHjx4gNatW8PBwQGTJ09GYGAgrKyscPLkSXz22WeFzk9jfG6fTpZ0UalUaN++Pf7v//5P5/yCBOR5lNX5MGvWLAwYMAC//vordu3aheHDh2PatGk4fPgwqlSpApVKBYlEgj///FPnuoxxjSpQkmsIoP6M/vDDD/jzzz/RuXNnbNiwAbVq1UL9+vWfa/tMbh4ryYfiaZs2bYKVlRV27twJhUKhmb5ixQqDxRUYGAgAcHd31/xnoYuvry+A/2oUnnTp0qVnbqeg/KVLl7Sqt3NzcxEfH1/stvUllUrRrl07tGvXDrNnz8bUqVMxbtw47NmzBxEREdi4cSMCAgKwefNmrb+LrtsUhnDlyhUIIbS2dfnyZQAosmfngr+Lg4PDcx8bX19fREVFITMzU+ti8/Tf7f79+4iKisKkSZMwfvx4zXRdf/Oizufff/8dOTk5+O2337T+gy+qerpZs2Zo1qwZvv76a6xduxZvvfUW1q1bhyFDhiAwMBB//fUXmjdvrjP5L0k8ugQGBmLnzp24d+9esbU3zzqPAKBz58547733NNXely9fxtixY0scS0n3IzAwEKdPn0a7du2eua/PilufY+Xm5gYbGxudn/GLFy9CKpUWqgl5HoGBgRg1ahRGjRqFuLg4hISEYNasWVizZg327t2Lu3fvYvPmzWjVqpWmTHx8vMG2/7S4uDitWvUrV65ApVIV2yN7YGAgMjMzDXJNKw/nQ926dVG3bl188cUXOHToEJo3b47Fixfjq6++QmBgIIQQ8Pf3f2bSpu9nVKVSITY2tsh/7goUdw0BgFatWsHLywvr169HixYt8Pfff2PcuHEljqUovC31mK2tLQDo1emZTCaDRCKBUqnUTEtISMDWrVsNFldkZCQcHBwwdepUnfctb9++DUB9jz0kJASrVq3SqpbcvXs3YmNjn7mdiIgIyOVyfP/991r/If34449IS0tDx44dDbA36tsqTyv4cBRUSxb8h/FkHEeOHEF0dLRBYnjarVu3sGXLFs379PR0/O9//0NISIjO2jIAaNSoEQIDAzFz5kxkZmYWml/wdymJV199Ffn5+Vi0aJFmmlKpxLx587SW03VcAOjseKuo81nXOtLS0gol5Pfv3y+0naf/Tj169IBSqcSUKVMKbT8/P19r27a2tjo/W3l5ebh48SKSkpI007p16wYhBCZNmlRo+YKYSnIeAer7/pGRkdiwYQPWrVsHuVyOzp07FypbUra2tjpv//Xo0QM3b97U2VHno0eP8PDhwxLHrc+1SCaT4eWXX8avv/6qdSsmJSUFa9euRYsWLeDg4PDM9TxLVlZWob69AgMDYW9vX+znNjc3FwsXLnzu7RdlwYIFWu8LPjOvvPJKkWV69OiB6Oho7Ny5s9C8Bw8eID8/v8TbN+X5kJ6eXijWunXrQiqVasp27doVMpkMkyZNKvR5FkLg7t27z9wXQJ0oJyYmat537twZUqkUkydPLlQjV7CdklxDAHVy9+abb+L333/H6tWrkZ+fb5A2cay5eaxRo0YAgHHjxqFXr16wtLREp06dNCeWLh07dsTs2bPRoUMH9OnTB6mpqViwYAGqVauGM2fOGCQuBwcHLFq0CH379kXDhg3Rq1cvuLm5ITExEdu2bUPz5s0xf/58AMC0adPQsWNHtGjRAoMGDcK9e/cwb9481K5dW+cX8JPc3NwwduxYTJo0CR06dMDrr7+OS5cuYeHChWjSpIlW4+HnMXnyZOzbtw8dO3aEr68vUlNTsXDhQlSpUgUtWrQAALz22mvYvHkzunTpgo4dOyI+Ph6LFy9GcHDwM/ejNGrUqIHBgwfj2LFj8PDwwPLly5GSklJsDZxUKsWyZcvwyiuvoHbt2hg4cCAqV66MmzdvYs+ePXBwcMDvv/9eou136tQJzZs3x5gxY5CQkIDg4GBs3ry50IXGwcFB09YhLy8PlStXxq5du3T+Z1zU+fzyyy9DLpejU6dOeO+995CZmYmlS5fC3d1dK8FYtWoVFi5ciC5duiAwMBAZGRlYunQpHBwc8OqrrwJQ31N/7733MG3aNMTExODll1+GpaUl4uLi8Msvv+C7777Dm2++qYln0aJF+Oqrr1CtWjW4u7ujbdu2uHnzJoKCgtC/f39ND8Zt2rRB37598f333yMuLk5zy23//v1o06YNhg0bVqLzqEDPnj3x9ttvY+HChYiMjNQ0dHxSwX/6xbXVKNiP9evXY+TIkWjSpAns7OzQqVMn9O3bFxs2bMD777+PPXv2oHnz5lAqlbh48SI2bNiAnTt3onHjxiWKOzAwEE5OTli8eDHs7e1ha2uL0NDQItv9ffXVV9i9ezdatGiBDz/8EBYWFvjhhx+Qk5OD6dOnF7s/JXX58mW0a9cOPXr0QHBwMCwsLLBlyxakpKRoGgWHh4fD2dkZ/fv3x/DhwyGRSLB69WqD3AYuSnx8PF5//XV06NAB0dHRWLNmDfr06VPsLY1PP/0Uv/32G1577TUMGDAAjRo1wsOHD3H27Fls3LgRCQkJJb5tacrz4fTp0xg2bBi6d++OGjVqID8/H6tXr4ZMJkO3bt00Zb/66iuMHTsWCQkJ6Ny5M+zt7REfH48tW7bg3XffxejRo4vdF0Ddfqt169aasfWqVauGcePGYcqUKWjZsiW6du0KhUKBY8eOwdvbG9OmTSvRNaRAz549MW/ePEyYMAF169ZFUFCQXueBTs/1rJWZmTJliqhcubKQSqVaj9HicSd+uvz444+ievXqQqFQiFq1aokVK1ZoHlN8UlGPgj/9mFxRncXt2bNHREZGCkdHR2FlZSUCAwPFgAEDxPHjx7WW27RpkwgKChIKhUIEBwfr3Ynf/PnzRa1atYSlpaXw8PAQH3zwQZGd+D2tJNuJiooSb7zxhvD29hZyuVx4e3uL3r17az2WqVKpxNSpU4Wvr69QKBSiQYMG4o8//ii0/ic78Xv6WEHHI5K6jvmTnfjVq1dP83d8umxRf5dTp06Jrl27ChcXF6FQKISvr6/o0aOHiIqKKvY4PO3u3buib9++mk78+vbtq7MTvxs3boguXboIJycn4ejoKLp37y5u3bolAIgJEyZorbOo8/m3334T9erV03Sq9e2334rly5drLXPy5EnRu3dvUbVqVU3nfK+99lqh800IIZYsWSIaNWokrK2thb29vahbt674v//7P3Hr1i3NMsnJyaJjx47C3t5e4IlO/Ar+hk93spafny9mzJghatWqJeRyuXBzcxOvvPKKOHHihBCiZOdRgfT0dGFtbS0AiDVr1ug8/q6urqJZs2bF/IXUMjMzRZ8+fYSTk1OhLhZyc3PFt99+q+lE09nZWTRq1EhMmjRJpKWl6RX3r7/+qukw9OlzQJeTJ0+KyMhIYWdnJ2xsbESbNm3EoUOHtJbR95rzpDt37oihQ4eKWrVqCVtbW+Ho6ChCQ0PFhg0btJY7ePCgaNasmaZjz//7v//TPO775PqLuoYUfB6f9vQ1uOAaGxsbK958801hb28vnJ2dxbBhw0rUiV9GRoYYO3asqFatmpDL5cLV1VWEh4eLmTNnavXp9SymPB+uXbsmBg0aJAIDA4WVlZWoVKmSaNOmjfjrr78Kxblp0ybRokULYWtrK2xtbUWtWrXE0KFDxaVLl0q0L09+Zp+0fPly0aBBA83+tW7dWtPhoj7XEJVKJXx8fAQA8dVXX5X4+BdH8jhwogrJz88PderUwR9//GHqUMhEYmNjUbt2bfzxxx8Gu/1KxjVx4kRMmjQJt2/fNnjjcDIPbHNDRBXanj17EBYWxsSGyIywzQ2RkSiVymc2LLazszPq45j0bEOHDi3UGRxVbPfu3UNubm6R82UymVG7OqDnx+SGyEiuX79eZCPQAhMmTMDEiRPLJiAiKpGuXbvin3/+KXK+r6/vMxufk2mxzQ2RkWRnZ+PAgQPFLhMQEKDVrxARmd6JEyeeOcxE8+bNyzAi0heTGyIiIjIrbFBMREREZoXJDREREZkVJjdEZHAXLlyARCKBlZWVXkOaEBEZApMbIjK4NWvWaMbl2rhxo4mjIaKKhg2KicighBAICAhA165dER8fj/v37xc56ripPXz4sNjx44joxcSaGyIyqIMHDyIhIQG9evVCr169sG/fPty4caPQciqVCt999x3q1q0LKysruLm5oUOHDjh+/LjWcmvWrEHTpk1hY2MDZ2dntGrVCrt27dLMl0gkOvsK8vPzw4ABAzTvV65cCYlEgn/++Qcffvgh3N3dUaVKFQDAv//+iw8//BA1a9aEtbU1XFxc0L17d519mTx48ACffPIJ/Pz8oFAoUKVKFfTr1w937txBZmYmbG1tMWLEiELlbty4AZlMhmnTppXwSBJRabETPyIyqJ9++gmBgYFo0qQJ6tSpAxsbG/z888/49NNPtZYbPHgwVq5ciVdeeQVDhgxBfn4+9u/fj8OHD6Nx48YAgEmTJmHixIkIDw/H5MmTIZfLceTIEfz99994+eWXSxXfhx9+CDc3N4wfPx4PHz4EABw7dgyHDh1Cr169UKVKFSQkJGDRokV46aWXEBsbCxsbGwBAZmYmWrZsiQsXLmDQoEFo2LAh7ty5g99++w03btxASEgIunTpgvXr12P27NmQyWSa7f78888QQuCtt94qVdxEpAeDDL9JRCTUIyG7uLiIcePGaab16dNH1K9fX2u5v//+WwAQw4cPL7QOlUolhBAiLi5OSKVS0aVLF6FUKnUuI4TQOSK6EIVHgy4YFbtFixYiPz9fa9msrKxC5aOjowUA8b///U8zbfz48QKA2Lx5c5FxF4yC/eeff2rNr1evns6RlYnI8HhbiogM5s8//8Tdu3fRu3dvzbTevXvj9OnTOH/+vGbapk2bIJFIMGHChELrkEgkAICtW7dCpVJh/PjxkEqlOpcpjXfeeUerRgVQ9zhbIC8vD3fv3kW1atXg5OSEkydPasVdv359dOnSpci4IyIi4O3tjZ9++kkz79y5czhz5gzefvvtUsdNRCXH5IaIDGbNmjXw9/eHQqHAlStXcOXKFQQGBsLGxkbry/7q1avw9vZGpUqVilzX1atXIZVKERwcbNAYdY339ejRI4wfPx4+Pj5QKBRwdXWFm5sbHjx4gLS0NK2Y6tSpU+z6pVIp3nrrLWzduhVZWVkA1LfqrKys0L17d4PuCxHpxuSGiAwiPT0dv//+O+Lj41G9enXNT3BwMLKysrB27VqIMnw4U6lU6pz+ZC1NgY8++ghff/01evTogQ0bNmDXrl3YvXs3XFxcoFKp9N52v379kJmZia1bt0IIgbVr1+K1116Do6Oj3usiIv2xQTERGcTmzZuRnZ2NRYsWwdXVVWvepUuX8MUXX+DgwYNo0aIFAgMDsXPnTty7d6/I2pvAwECoVCrExsYiJCSkyO06OzsX6igwNzcXSUlJJY5948aN6N+/P2bNmqWZlp2dXWi9gYGBOHfu3DPXV6dOHTRo0AA//fQTqlSpgsTERMybN6/E8RDR82HNDREZxJo1axAQEID3338fb775ptbP6NGjYWdnp7k11a1bNwghMGnSpELrKajd6dy5M6RSKSZPnlyo9uTJGqDAwEDs27dPa/6SJUuKrLnRRSaTFapVmjdvXqF1dOvWDadPn8aWLVuKjLtA3759sWvXLsydOxcuLi545ZVXShwPET0f1twQ0XO7desW9uzZg+HDh+ucr1AoEBkZiV9++QXff/892rRpg759++L7779HXFwcOnToAJVKhf3796NNmzYYNmwYqlWrhnHjxmHKlClo2bIlunbtCoVCgWPHjsHb21vTX8yQIUPw/vvvo1u3bmjfvj1Onz6NnTt3Fqo9Ks5rr72G1atXw9HREcHBwYiOjsZff/0FFxcXreU+/fRTbNy4Ed27d8egQYPQqFEj3Lt3D7/99hsWL16M+vXra5bt06cP/u///g9btmzBBx98AEtLy1IcWSIqFRM+qUVEZmLWrFkCgIiKiipymZUrVwoA4tdffxVCCJGfny9mzJghatWqJeRyuXBzcxOvvPKKOHHihFa55cuXiwYNGgiFQiGcnZ1F69atxe7duzXzlUql+Oyzz4Srq6uwsbERkZGR4sqVK0U+Cn7s2LFCsd2/f18MHDhQuLq6Cjs7OxEZGSkuXrxYaB1CCHH37l0xbNgwUblyZSGXy0WVKlVE//79xZ07dwqt99VXXxUAxKFDh0pyGInIQDj8AhGRkXTp0gVnz57FlStXTB0KUYXCNjdEREaQlJSEbdu2oW/fvqYOhajCYZsbIiIDio+Px8GDB7Fs2TJYWlrivffeM3VIRBUOa26IiAzon3/+Qd++fREfH49Vq1bB09PT1CERVThsc0NERERmhTU3REREZFaY3BAREZFZqXANilUqFW7dugV7e/vnGlmYiIiIyo4QAhkZGfD29oZUWnzdTIVLbm7dugUfHx9Th0FERESlcP36dVSpUqXYZSpccmNvbw9AfXAcHBxMHA0RERGVRHp6Onx8fDTf48WpcMlNwa0oBwcHJjdEREQvmJI0KWGDYiIiIjIrTG6IiIjIrDC5ISIiIrNS4drcEBFVdEqlEnl5eaYOg6gQuVz+zMe8S4LJDRFRBSGEQHJyMh48eGDqUIh0kkql8Pf3h1wuf671MLkhIqogChIbd3d32NjYsCNTKlcKOtlNSkpC1apVn+v8ZHJDRFQBKJVKTWLj4uJi6nCIdHJzc8OtW7eQn58PS0vLUq+HDYqJiCqAgjY2NjY2Jo6EqGgFt6OUSuVzrYfJDRFRBcJbUVSeGer8ZHJDREREZoXJDRERlWsvvfQSPv744+dez9atW1GtWjXIZDKDrE9fS5YsgY+PD6RSKebOnYuJEyciJCSkzOMorZUrV8LJycnUYZQIkxsiIqoQ3nvvPbz55pu4fv06pkyZUqbbTk9Px7Bhw/DZZ5/h5s2bePfddzF69GhERUUZdDvGTEB69uyJy5cvG2XdhsanpYiIyOxlZmYiNTUVkZGR8Pb2LvV6cnNzS9UHS2JiIvLy8tCxY0d4eXlpptvZ2ZU6lrJmbW0Na2trU4dRIqy5ISKici8/Px/Dhg2Do6MjXF1d8eWXX0IIoZmfk5OD0aNHo3LlyrC1tUVoaCj27t0LANi7dy/s7e0BAG3btoVEItHM27RpE2rXrg2FQgE/Pz/MmjVLa7t+fn6YMmUK+vXrBwcHB7z77rsAgAMHDqBly5awtraGj48Phg8fjocPH+qMfeXKlahbty4AICAgABKJBAkJCYVuSw0YMACdO3fGzJkz4eXlBRcXFwwdOlSrN+ln7efAgQORlpYGiUQCiUSCiRMnAlA31N26datWXE5OTli5ciUAICEhARKJBJs3b0abNm1gY2OD+vXrIzo6Wms/nqwVKoh/9erV8PPzg6OjI3r16oWMjAzNMhkZGXjrrbdga2sLLy8vzJkzx2C3GYvD5IaIqIISQiArN98kP08mJiWxatUqWFhY4OjRo/juu+8we/ZsLFu2TDN/2LBhiI6Oxrp163DmzBl0794dHTp0QFxcHMLDw3Hp0iUA6mQmKSkJ4eHhOHHiBHr06IFevXrh7NmzmDhxIr788kvNF36BmTNnon79+jh16hS+/PJLXL16FR06dEC3bt1w5swZrF+/HgcOHMCwYcN0xt6zZ0/89ddfAICjR48iKSkJPj4+Opfds2cPrl69ij179mDVqlVYuXKlVjzP2s+5c+fCwcEBSUlJSEpKwujRo/U6zuPGjcPo0aMRExODGjVqoHfv3sjPzy9y+atXr2Lr1q34448/8Mcff+Cff/7BN998o5k/cuRIHDx4EL/99ht2796N/fv34+TJk3rFVBq8LUVEVEE9ylMiePxOk2w7dnIkbOQl/wry8fHBnDlzIJFIULNmTZw9exZz5szBO++8g8TERKxYsQKJiYmaW06jR4/Gjh07sGLFCkydOhXu7u4AgEqVKsHT0xMAMHv2bLRr1w5ffvklAKBGjRqIjY3FjBkzMGDAAM2227Zti1GjRmneDxkyBG+99Zam9qF69er4/vvv0bp1ayxatAhWVlZasVtbW2s6TnRzc9NsXxdnZ2fMnz8fMpkMtWrVQseOHREVFVXi/XR0dIREIil2G8UZPXo0OnbsCACYNGkSateujStXrqBWrVo6l1epVFi5cqWmZqxv376IiorC119/jYyMDKxatQpr165Fu3btAAArVqx4rtuCJcXkhoiIyr1mzZpp9YESFhaGWbNmQalU4uzZs1AqlahRo4ZWmZycnGJ7Y75w4QLeeOMNrWnNmzfH3LlzoVQqIZPJAACNGzfWWub06dM4c+YMfvrpJ800IQRUKhXi4+MRFBRU6v2sXbu2ZrsA4OXlhbNnzwJAqfdTH/Xq1dPaNgCkpqYWmdz4+flpEpuCMqmpqQCAa9euIS8vD02bNtXMd3R0RM2aNQ0Sa3GY3BARVVDWljLETo402bYNJTMzEzKZDCdOnNBKDADDNNi1tbUttL333nsPw4cPL7Rs1apVn2tbTw85IJFIoFKpNNst7X5KJJJCtwJ1jQz/5PYLksmC7esbrykxuSEiqqAkEolet4ZM6ciRI1rvDx8+jOrVq0Mmk6FBgwZQKpVITU1Fy5YtS7zOoKAgHDx4UGvawYMHUaNGjULJw5MaNmyI2NhYVKtWTb+deE4l2U+5XK5z6AI3NzckJSVp3sfFxSErK8tosQLqxtOWlpY4duyYJulLS0vD5cuX0apVK6Numw2KiYio3EtMTMTIkSNx6dIl/Pzzz5g3bx5GjBgBQN1W5q233kK/fv2wefNmxMfH4+jRo5g2bRq2bdtW5DpHjRqFqKgoTJkyBZcvX8aqVaswf/78ZzbC/eyzz3Do0CEMGzYMMTExiIuLw6+//lpkg2JDKcl++vn5ITMzE1FRUbhz544mgWnbti3mz5+PU6dO4fjx43j//fefa2DKkrC3t0f//v3x6aefYs+ePTh//jwGDx4MqVRq9GFAmNwQEVG5169fPzx69AhNmzbF0KFDMWLECM1j2YC6oWq/fv0watQo1KxZE507d9aqMdClYcOG2LBhA9atW4c6depg/PjxmDx5slZjYl3q1auHf/75B5cvX0bLli3RoEEDjB8/vkwayj5rP8PDw/H++++jZ8+ecHNzw/Tp0wEAs2bNgo+PD1q2bIk+ffpg9OjRZTKI6uzZsxEWFobXXnsNERERaN68OYKCggo1ujY0idD3ebwXXHp6OhwdHZGWlgYHBwdTh0NEVCays7MRHx8Pf39/o3+xEBXl4cOHqFy5MmbNmoXBgwcXml/cearP9/eLcbOViIiIXjinTp3CxYsX0bRpU6SlpWHy5MkAUOgpNUNjckNERERGM3PmTFy6dAlyuRyNGjXC/v374erqatRtMrkhIiIio2jQoAFOnDhR5ttlg2IiIiIyKyZNbvbt24dOnTrB29tb56BeuuzduxcNGzaEQqFAtWrVCo0BQkRERBWbSZObhw8fon79+liwYEGJlo+Pj0fHjh3Rpk0bxMTE4OOPP8aQIUOwc6dpxkYhIiKi8sekbW5eeeUVvPLKKyVefvHixfD399cMSR8UFIQDBw5gzpw5iIw0TRfiREREVL68UG1uoqOjERERoTUtMjIS0dHRJoqIiIiIypsX6mmp5ORkeHh4aE3z8PBAeno6Hj16BGtr60JlcnJykJOTo3mfnp5u9DiJiIjIdF6ompvSmDZtGhwdHTU/Pj4+pg6JiIgM7OLFi2jWrBmsrKwQEhJSJts8ePAg6tatC0tLS3Tu3Bl79+6FRCLBgwcPymT7zyshIQESiQQxMTGmDsXgXqjkxtPTEykpKVrTUlJS4ODgoLPWBgDGjh2LtLQ0zc/169fLIlQiIipDEyZMgK2tLS5duoSoqCisXLkSTk5ORt3myJEjERISgvj4eKxcuRLh4eFISkqCo6OjwbZhzATEx8cHSUlJqFOnjsHXbWov1G2psLAwbN++XWva7t27ERYWVmQZhUIBhUJh7NCIiMiErl69io4dO8LX19eg61UqlZBIJJBKC9cFXL16Fe+//z6qVKmimebp6WnQ7RuTTCZ7oeLVh0lrbjIzMxETE6PJSOPj4xETE4PExEQA6lqXfv36aZZ///33ce3aNfzf//0fLl68iIULF2LDhg345JNPTBE+ERGVgR07dqBFixZwcnKCi4sLXnvtNVy9elUzXyKR4MSJE5g8eTIkEgleeuklDBw4EGlpaZBIJJBIJJg4cSIAdTvM0aNHo3LlyrC1tUVoaCj27t2rWVdBjc9vv/2G4OBgKBQKzXdSgYLalLt372LQoEGQSCRYuXJlodtSBevauXMngoKCYGdnhw4dOiApKUlrfcuWLdOMlF2rVi0sXLhQM8/f3x+Auqffgn0DgJdeegkff/yx1no6d+6sNaK5n58fpk6dikGDBsHe3h5Vq1bFkiVLCu1HwXdwQfxRUVFo3LgxbGxsEB4ejkuXLmlt56uvvoK7uzvs7e0xZMgQjBkzpsxuBZaYMKE9e/YIAIV++vfvL4QQon///qJ169aFyoSEhAi5XC4CAgLEihUr9NpmWlqaACDS0tIMsxNERC+AR48eidjYWPHo0aP/JqpUQuRkmuZHpSpx7Bs3bhSbNm0ScXFx4tSpU6JTp06ibt26QqlUCiGESEpKErVr1xajRo0SSUlJIi0tTcydO1c4ODiIpKQkkZSUJDIyMoQQQgwZMkSEh4eLffv2iStXrogZM2YIhUIhLl++LIQQYsWKFcLS0lKEh4eLgwcPiosXL4qHDx9qxZOfny+SkpKEg4ODmDt3rkhKShJZWVma77T79+9rrSsiIkIcO3ZMnDhxQgQFBYk+ffpo1rVmzRrh5eUlNm3aJK5duyY2bdokKlWqJFauXCmEEOLo0aMCgPjrr79EUlKSuHv3rhBCiNatW4sRI0ZoxfXGG29ovj+FEMLX11dUqlRJLFiwQMTFxYlp06YJqVQqLl68KIQQIj4+XgAQp06dEkL8950cGhoq9u7dK86fPy9atmwpwsPDteK1srISy5cvF5cuXRKTJk0SDg4Oon79+iX+exZH53n6mD7f3ya9LfXSSy9BCFHkfF29D7/00ks4deqUEaMiIqog8rKAqd6m2fbntwC5bYkW7datm9b75cuXw83NDbGxsahTpw48PT1hYWEBOzs7zW0WR0dHSCQSrdsuiYmJWLFiBRITE+Htrd7v0aNHY8eOHVixYgWmTp0KAMjLy8PChQtRv359nfEU3M6RSCRwdHQs9tZOXl4eFi9ejMDAQADAsGHDNCNjA+q2QrNmzULXrl0BqGtqYmNj8cMPP6B///5wc3MDALi4uJTqFtKrr76KDz/8EADw2WefYc6cOdizZw9q1qxZZJmvv/4arVu3BgCMGTMGHTt2RHZ2NqysrDBv3jwMHjwYAwcOBACMHz8eu3btQmZmpt6xGdML1aCYiIgqnri4OPTu3RsBAQFwcHCAn58fABS6XfQsZ8+ehVKpRI0aNWBnZ6f5+eeff7Ruc8nlctSrV88gsdvY2GgSGwDw8vJCamoqAHUv/VevXsXgwYO14vnqq6+04nkeT+5HQbJXsP2SlPHy8gIATZlLly6hadOmWss//b48eKEaFBMRkQFZ2qhrUEy17RLq1KkTfH19sXTpUnh7e0OlUqFOnTrIzc3Va5OZmZmQyWQ4ceIEZDKZ1jw7OzvNa2tra0gkEr3WXRRLS0ut9xKJRHPHoqC2Y+nSpQgNDdVa7un4niaVSgvd+cjLyyvR9lUqVYljLjgOzypT3jC5ISKqqCSSEt8aMpW7d+/i0qVLWLp0KVq2bAkAOHDgwDPLyeVyKJVKrWkNGjSAUqlEamqqZl2m5OHhAW9vb1y7dg1vvfWWzmXkcjkAFNoXNzc3rYbJSqUS586dQ5s2bYwXMICaNWvi2LFjWg/7HDt2zKjbLA0mN0REVG45OzvDxcUFS5YsgZeXFxITEzFmzJhnlvPz80NmZiaioqJQv3592NjYoEaNGnjrrbfQr18/zJo1Cw0aNMDt27cRFRWFevXqoWPHjmWwR9omTZqE4cOHw9HRER06dEBOTg6OHz+O+/fvY+TIkXB3d4e1tTV27NiBKlWqwMrKCo6Ojmjbti1GjhyJbdu2ITAwELNnzy6TzgM/+ugjvPPOO2jcuDHCw8Oxfv16nDlzBgEBAUbftj7Y5oaIiMotqVSKdevW4cSJE6hTpw4++eQTzJgx45nlwsPD8f7776Nnz55wc3PD9OnTAQArVqxAv379MGrUKNSsWROdO3fGsWPHULVqVWPvik5DhgzBsmXLsGLFCtStWxetW7fGypUrNY+AW1hY4Pvvv8cPP/wAb29vvPHGGwCAQYMGoX///ujXrx9at26NgIAAo9faAMBbb72FsWPHYvTo0WjYsCHi4+MxYMAAWFlZGX3b+pCI4h5XMkPp6elwdHREWloaHBwcTB0OEVGZyM7ORnx8PPz9/cvdFxG92Nq3bw9PT0+sXr36uddV3Hmqz/c3b0sRERFRiWRlZWHx4sWIjIyETCbDzz//jL/++gu7d+82dWhamNwQERFRiUgkEmzfvh1ff/01srOzUbNmTWzatAkRERGmDk0LkxsiIiIqEWtra/z111+mDuOZ2KCYiIiIzAqTGyKiCqSCPUNCLxhDnZ9MboiIKoCCXmezsrJMHAlR0Qp6nX5WD83PwjY3REQVgEwmg5OTk2aMIBsbG4MNMUBkCCqVCrdv34aNjQ0sLJ4vPWFyQ0RUQRSMKv2sgROJTEUqlaJq1arPnXgzuSEiqiAkEgm8vLzg7u6uc5BFIlOTy+WQSp+/xQyTGyKiCkYmkz13mwai8owNiomIiMisMLkhIiIis8LkhoiIiMwKkxsiIiIyK0xuiIiIyKwwuSEiIiKzwuSGiIiIzAqTGyIiIjIrTG6IiIjIrDC5ISIiIrPC5IaIiIjMCpMbIiIiMitMboiIiMisMLkhIiIis8LkhoiIiMwKkxsiIiIyK0xuiIiIyKwwuSEiIiKzwuSGiIiIzAqTGyIiIjIrTG6IiIjIrDC5ISIiIrPC5IaIiIjMCpMbIiIiMitMboiIiMisMLkhIiIis8LkhoiIiMwKkxsiIiIyK0xuiIiIyKwwuSEiIiKzwuSGiIiIzAqTGyIiIjIrTG6IiIjIrDC5ISIiIrPC5IaIiIjMCpMbIiIiMitMboiIiMisMLkhIiIis8LkhoiIiMwKkxsiIiIyK0xuiIiIyKyYPLlZsGAB/Pz8YGVlhdDQUBw9erTY5efOnYuaNWvC2toaPj4++OSTT5CdnV1G0RIREVF5Z9LkZv369Rg5ciQmTJiAkydPon79+oiMjERqaqrO5deuXYsxY8ZgwoQJuHDhAn788UesX78en3/+eRlHTkREROWVRAghTLXx0NBQNGnSBPPnzwcAqFQq+Pj44KOPPsKYMWMKLT9s2DBcuHABUVFRmmmjRo3CkSNHcODAgRJtMz09HY6OjkhLS4ODg4NhdoToRZCXDTzU/Y/Ds6hUArlyB1jZORs4KCKiktHn+9uijGIqJDc3FydOnMDYsWM106RSKSIiIhAdHa2zTHh4ONasWYOjR4+iadOmuHbtGrZv346+ffsWuZ2cnBzk5ORo3qenpxtuJ4heFNnpwIJQIONWqYpLAUiEJeJ7bIN/7VDDxkZEZGAmS27u3LkDpVIJDw8PrekeHh64ePGizjJ9+vTBnTt30KJFCwghkJ+fj/fff7/Y21LTpk3DpEmTDBo70Qvn5Cp1YiORAjK5XkVVQkCZnw+FJA93d3wL/9qbjRQkEZFhmCy5KY29e/di6tSpWLhwIUJDQ3HlyhWMGDECU6ZMwZdffqmzzNixYzFy5EjN+/T0dPj4+JRVyESmp8wDDi9Sv+70PdCw6JpOXf7vl9OIPXkA2xWfIyR9D5L+vQQv35pGCJSIyDBMlty4urpCJpMhJSVFa3pKSgo8PT11lvnyyy/Rt29fDBkyBABQt25dPHz4EO+++y7GjRsHqbRw+2iFQgGFQmH4HSB6UZzbDKTfBGzdgXo99Cqakp6NX2NuIk/44bi0PhqrTuPfbbPg9eESIwVLRPT8TPa0lFwuR6NGjbQaB6tUKkRFRSEsLExnmaysrEIJjEwmAwCYsF00UfklBHDoe/Xr0PcAC/0S/RUHE5CnFGjqVwnyViMAAPVStiLt3m1DR0pEZDAmfRR85MiRWLp0KVatWoULFy7ggw8+wMOHDzFw4EAAQL9+/bQaHHfq1AmLFi3CunXrEB8fj927d+PLL79Ep06dNEkOET3h2h4g5RxgaQs0HqRX0cycfPx05F8AwDutAlC3VRfES/1gI8lB7O9zjRAsEZFhmLTNTc+ePXH79m2MHz8eycnJCAkJwY4dOzSNjBMTE7Vqar744gtIJBJ88cUXuHnzJtzc3NCpUyd8/fXXptoFovLt4ONam4Z9AZtKehVddzQRGdn5CHCzRbta7pBIJbhT7134x3yO6vFrkJM9DgorGyMETUT0fEzaz40psJ8bqjCSzwKLW6ifkBoeAzj7lrhonlKFl2bsxc0HjzCta130bloVAJCbk40H04Lgjns4Wn8KmnYZbqTgiYi06fP9bfLhF4jISA7NU/8O7qxXYgMA288m4eaDR3C1k6NLg8qa6XKFFa4Fqp+2cj+7BCql0lDREhEZDJMbInOUdgM4t0n9OvwjvYoKIbBk3zUAQP8wP1hZardnC+40ApnCGn6q6zj7zyaDhEtEZEhMbojM0eFFgCof8GsJVG6oV9FDV+/i/K10WFvK8HazwjU+Dk4uOOfZGQBgcXieIaIlIjIoJjdE5iY7DTixSv06XP82MQW1Nj0aV4Gzre7ejP1eG408IUPt3DOIO7Wv1KESERkDkxsic3NiJZCbAbjVAqpF6FX0YnI6/rl8G1IJMLhFQJHLefpUw2nHtgCA9L9nP0+0REQGx+SGyJzk5wKHF6tfh38E6Oi1uzhL98UDAF6p44WqLsU/5u3cfjQAICR9L24lXNI/ViIiI2FyQ2ROzm1SD5Bp5wHU7a5X0eS0bPx2+iYAdad9zxJYtxnOKhpCJhFI3DajVOESERkDkxsicyHEf49/l2aohUPx6qEW/CshxMepZIUeP4lVL/U3pN1NecbCRERl44UaFZyoQhMCSDgAPLqve/69a0Dq+SKHWriSmoErqZk6i6oEsPZwIgDg3ZbPrrUpUKdlZ1z7ZxICVAk48tNoyGvq18bnRZfpUA0P7XUfL5lUimYBlWBvZVnGUVGFoMwDrv0D5GWVqnjC3Ye4n5Vr4KD+I7dzRe3mHY22/mdhckP0ojj7C7D5nWcv17AfYO2sNSkp7RFem3cA2XmqYosGutmibS33EockkUpxt/57CDg1FqH3fgOifytxWXOQJRR4KWc2UuGsc35EkDuW9W9SxlFRhfDPt8C+0t8O9nv8YywXLYIAJjdEVCwhgANz1K9daxZKXjRsKgEtRxaavOJgArLzVHCzV8C3ku6GwpYyKT5qVw1SqUSv0EJeGYyjCQdhn3lNr3IvOk9lEpxV9zGm0j9Yaz+w0PyTiffx14VUXErOQE1PexNESGYrJwM4skT92qs+YGGtV/G41Aw8eJQHhYUUljLjtE5Jd6hulPWWFJMbohfBlSggNRaQ2wGDdwHWTiUump6dh7VH1Lecvu1WF21reRg0NEu5Ak1H/GTQdb4QLvwBrH8LXVU70XXQbEChncB8+NMJbD+bjKX7r2Fm9/omCpLM0snVQE4aUCkQeGevXk9FXknNQPvZ+yCRAH991BqBbnbGi9OE2KCY6EVw6Dv174b99UpsAPXo3pk5+ajmboeXapT8lhM9Q81X1F8u2WnqL5unvPO47dKvMTeRnJZd1tGRuVLmAYcXql+HDyt1dw8RQR5mm9gATG6Iyr9bMUD8PkAiA5p9oFfR3HwVlh9IAKBuKKzvLScqhlSm/nIB1F82ynyt2Q2qOqOpXyXkKQVWHkoo+/jIPMX+CqRdB2xcgfq99SqampGNLafU3T28V4LuHl5kTG6IyruCx7vrdAWcfPQq+seZW0hOz4abvQJvNPA2QnAVXP3e6i+ZtOtA7NZCswv6C/rpyL/IzMkvNJ9IL0IAh75Xv276LmCpX1ub/x36F7lKFRpUdUIj3yLa7ZkJJjdE5dmDROD8FvXr5xjde0C4HxQWsmeUIL1ZWqu/ZAD1l44QWrPb1XJHgJstMrLzse5oogkCJLMSvw9IOq1uQNxkiF5FH+bkY/XhfwGoa20kEvOuxWVyQ1SeHV4ECCXg31r9VIQe9sfdwcXkDNjIZXgrtKqRAiQ0GaL+skk6DSTs15ollUo0bW9WHExAnrL4R/GJilVQi9vgLcDWRa+ivxy/jrRHefBzsUH7YE8jBFe+MLkhKq8e3X+u0b2X7i8Y3dsHTja6R/cmA7B1UX/ZAMDB7wvN7tKgMlzt5Lj54BG2n00q4+DIbKTEAld2A5AAYUP1KpqvVGHZAXVD4sEtAyCrAG3vmNwQlVfHVwB5DwH3YKBaO72Knr+Vhv1xdx6P7u1vpABJo9mHACTqL5+UWK1ZVpYy9A/zAwAs2XcN4qlbV0QlEj1f/TuoE1BJv8bAO84n48b9R6hkK8ebDasYIbjyh8kNUXmUnwMc+UH9OvwjQM/748v2q/9Le7WuF3yK6LSPDMglUP2lAwDRCwrNfruZL6wtZTh/Kx3RV++WcXD0wktPAs5sUL9uPkKvokIILH3c9q5vM19YyytG2zsmN0Tl0dlfgMxkwN4LqPOmXkVvPXiE30/fAgC8a+aPe5YrBbcOz6xXfxk9wdlWjh6N1f8x/7CvYvXkTAZwZDGgygOqhgFVGutXNP4eTt9Ig8JCir5hvkYKsPxhckNU3miN7v0+YKFfe5kVB+ORrxJoFlAJ9ao4GT4+0s2nifrLR5UHHP2h0OzBLQIglQD/XL6NS8kZJgiQXkg5Gepb1EDp2t49Tqa7NaoCVzuFISMr15jcEJU3cbuB2xcBuT3QuPCYRcVJz87Dz0evAwDeaxVojOioOAWP6x9brv5SekJVFxu8UscLADSP6BM908n/qYdacKkO1OigV9G4lAxEXUyFRAIMqWBt75jcEJU3BZ10NeoPWDnqVfTnI+qhFqq726F1DTcjBEfFqvEK4FJN/WWka0iGx7cJfzvNIRmoBJR56u4ggFINtVDQ9q59kAcCzHioBV2Y3BCVJ7dOqftKkVqUaqiFFQcTAKi/RDnUgglIpUDYk0My5GnNDvFxQlN/9ZAMKw7FmyBAeqGc36ru/drWDajXS6+iqelPDLXQuuK1veOo4FTxCAGcWKm+aOjwMFeJ2FtpyFeV7pFdCYBq7nalur+dFhsFRwCxlSKw7XAmgIslLnvz/iMkp2fD3V6BN0I41ILJ1O8N7PlafX79OgxwrKw1+1unh9hmkQT5YSmib+hXM1dAJbHEWffXkKEo+87YfJxt0LOJT+EeboUATqwA0m6Uar037mfh+v1HBohQt2S7YFyp1Noo627q76K7pjQnEzi6BMjNLN2Kz299vIH3AEsrvYquik5ArlKFhlWd0Mi3Uum2/wJjckMVz8U/gD8+LnK2LYAmz7uNm6UrVvBVN/pmK8TeuFqqdfTnUAumZWmlHpJhz9fAmXWFZvsDGFZw5S3leQIAqn+j0Tfv89Kv4Dm42ikQEeyhPTH2V+CPT0q9ziqPf4wpImc6rgjDb2XJvmvY939t4OX41FhP/3zz38MBpWVpAzQZrFeRhzn5WHNYPdzHuxW07R2TG6p4CnqR9W+t7iDvKdvPJSE5LRtVnK3hYG2p9+qvpmYiJ1+Fl2q6IcC15Pe5D8ffReytdNy2D0Joo5cQqveWAWcbOTvtKw/CPwKECnj0QOfsew9zEZeagdLUDUqECk1ub0FL2TmMqZOLFJsazxWqPi4mZSD62l0s2X9NO7l5ckDHgJcAtyC91nsy8T5irj+Ag5UFqhihXybfjBh4PbqM6d778bvfWIOue3/cHVxJzcTKgwkY++oT+52dBhxfqX5drydgXcrak+rtARv9ym7QGmrB49kFzBCTG6pYEo8AN44CMjnQdSlgX/iDP/HkX0jNz8GW7uFoUFX/kXMP7b6M76Pi8GuaI7a+3bxEA9SlZeVhUHQUsvKVWNWlKRsDv+gsrYGXxhQ5uxJQquRVY6MAzm3C+5Z/Ap26PM+a9JKclo2W0//G0fh7iLn+ACE+TuoZidHAzROATKH+XNm5l3idj3KVGPLt37iXn4t5nRqgWX0j3FJNPAIsfxkNH+xEw5dm6fzcl9ZfsSkY8r/jWHskEcPaVoO91eN/iE6sAnIzALdaQOfFejcGLq18pQo/Ph5qYUgFGWpBFzYopoql4L/L+r10XuAysvOQmpEDAKV+uqBfmC8UFlKcvpGGI/H3SlRmzZF/kZWrRC1Pe7Sq7lqq7VIFUvDI+blNpW7jUhqejlZ4vb66DdHSJx9nL6gNDemtV2IDABtP3sC9h7mo4myNV+oYqQ1R1VDAJxRQ5ursg+h5tK3ljkA3W2Tk5GPd424YkJ/7xFNOH5VZYgMAf557YqiFRhVjqAVdmNxQxXHnCnBxm/p1wRMtT0m4kwUAcLWTw7EUt6TUZRXo9viisrQE/Znk5Cux8lACAOCdlgElqumhCs67AeDXElDl//clWkbeaaW+7fnnuSQk3s0Cbl8GLv8J9YCOuj9XRVGqBH58PMDr4Bb+sJAZ8StJ0wfRj+qGvgby5Mjvyw/Gq0d+P78ZyLgF2HkCdbsbbFvPIoTQ9KHUL8wXVpYVt+0dkxuqOKLnAxDqvkjcaupc5Nod9UVPn7Yyugxp4Q+JBIi6mIq4lOJ7o/311C3czsiBp4MVOhmjSp7MU8EYQydWqdt3lJFang5oXcMNKgH8eOAaEP24wWzNVwHX6nqta3dsMhLuZsHR2hI9GvsYIdon1HwVqBQIZD8ATq0x6Ko7N6gMVzsFktKy8cfpm//VZIW+B1iUXa/Ah6/dw9mbj4daaFZxhlrQhckNVQyZt4HTP6tfF/wHp8PV2w8BAAFuts+1uQA3O7QPUt/2KuhISxeVSmDJ4/9cBzb3g9yCH0kqoWoR6oa7uRnqrg3KUMGYZX8fPwdx+vETYcV8ropSUMvwdrOqsFUYuQmoVAaEDVW/PrwAUOYbbNVWljIMCFcnE8f/3gykngcsbfXuYfx5LX18LeneuApcKtBQC7rwSkoVw7GlQH42ULkR4Bte5GLXbj+uuXnO5Ab4r+OsLaduIjVdd2+0/1y+jSupmbBTWKB3aNXn3iZVIBLJfwnF4cXqdh5lJDzQBbW9HdBd/AmJMheo0gSo2kyvdZz49x5OJj6AXCZF/3A/4wT6tJA+gI0L8CARuPCrQVddMPJ7h7THo3c36g9Y6/9AQmnFpWTg78dDLQxuUfE67Xsakxsyf7lZwNGl6tfhH6m/FIpw7XHNjf9z3pYCgEa+ldCwqhNylSqsik7QucwP+9R92fRu6gMHq9K18aEKrO6b6nYdGbfUjYvLiEQiwQfhnugr+wsAkBs6tNjPlS4//KOuZejSoDLc7fXroK7ULK3VfRAB6ltHonQdderiZCPHiNqP0FJ2DkpI1YPelqGCWpvIYE/4uz7/P2cvOiY3ZP5ifgIe3QOcfIGg14tcTAiB+DuGuS1VoKADrTWHE/EwR7sa/MyNBzh87R4spBIMbM6+aagULBRAs8dfoofmGfTL+lleyY+CsyQTCSoPbM4K0avstduZ2H0hBcB/DZTLTJMhgIUVkBQDJBww6Kr7it8AANuUobiQXXa1Nqnp2dh66haA/8Yvq+iY3JB5UymB6AXq12HD1Pfdi5Ccno1HeUpYSCWoaqCOxNoHe8DPxQZpj/Kw4bj2cA8F7Q061feGt5O1ruJEz9ZoICC3U7fzuBpVNttU5kN2eCEAYJnyVSw58C9UegxXsuxAPIQA2tVyRzV3e2NFqZutKxDylvr18/Ye/KS0G7C9rL7VtSS/Y4melDSUlYfUQy008nVGI9+yS6rKMyY3ZN4u/gHcj1ff+27wVrGLFtySqlrJBpYGeiRVJpVgyOPHRH88EI98pQoAcP1eFrafTQIAzWOkRKVi7QQ07K9+XfCUjrFd/B148C+EdSXstGyLa7cfIupiaomK3snMwaYT6r553jVVLUPYUAASIG4nkFry8duKdXgRIJTI9ArDORGA307fQlKa8cbKKpCZk481h/8FYMLjWQ4xuSHzJcR/F/smQwB58beaDNmY+ElvNqqCSrZy3Lj/CH+eSwag7g9DJYCW1V0R7O1g0O1RBdTsfUAiA+L/AZJOG3dbT3yuJE3fQbdQ9fAPJa2pWB39L3LyVahfxRFN/U00oKNLIBD0mvp1tAFqbx490DyxZtd2FEL9KyFfJbDyYMLzr/sZNhy7jvTsfPi72iIiqGIOtaALkxsyX4mHgZvH1V3CFzQiLMZVTWNiwyY3VpYy9AtTPya6ZN81PMjKxfpj6ltU/E+LDMKpKlCnq/q1IW+16PLvIeDWSXW7lSbvYEC4HyxlEhxNuIdTifeLLfooV4n/PW5c/26rQNN2WBk+XP37zAYgI/n51nVipXrkb7daQLUIzZOSa48kIiM77/nWXQztoRb8K+xQC7owuSHzVXCRr9+rRF3CX9M0Jn7+J6We1reZekiGszfT8Mn6GGTlKhHk5YAW1TjUAhmIZkiGzcCD68Uv+zw0n6vegJ2b9pAM+4uvvdl48gbuZ+XBp5I1ImubuJbBp+l/QzIceY4hGfJzgSOL1a8fP435Ug13VHO30x6SwQi2n0vGzQeP4GIrR7eGFXeoBV2Y3JB5uhMHXNqufl3CLuHjNb0TG/4xShc7Bbo3Vl989ly6DQB4t5U/h1ogw/Gqrx7pXiiNNyTD7Us6h1ooqIHccS4Z/959qLOoUiWw7HHyM6RFgHGHWiipgtqb4z8COcX3JF6kcxuBjCStoRakUgnefXpIBgNTD7Wg7kqiX5hfhR5qQReOCk7mqWCohZqvAm41nrl4dp4SN+6rG/8Zo+YGUHes9dORRAgBeDla4bV6HGqBDCx8uLrdzYkVwG0DNZR90oNE9e9aHQHXaprJNT3t0bqGG/65fBuDVx3X+fRfVk4+/r2bBScbS02ib3I1X1EPyXDvKrDyNXUHf/pKPqv+/dRQC2808MaMXZeQlJaNHj9E/zdauIHk5itx7mY6rCyl6BtWsYda0IXJDZkflQo4v1X9utkHJSry790sCAHYW1nA1U5ulLD8XW3xal0vbDuThHdaBhjsiSwijWrtAM+66i9cYz4WXjCu1RPebx2o6XH7SmrRA1P2C/ODjbycfPVIZep9+X24ut+b0lI4FhpqQWEhw+AW/vjmz4s4lfjgucIsTs/GPqhka5xr1ousnJxhRAZ057J6cDxLG6BqWImK/PeklJ1RbxVN71YPvZtURfNqpfgPkehZJBLgrY1A/D5AGP5WCAB142WfpoUmhwW6YN27zXDrQdGPP9vIZWhbq5w90dOwH2Dnob5mlJZ3A51DLQxp4Q9/V9tCHXgaisJChnZBz25PWBExuSHzc/2I+nflRoCsZFXBmsbERu623FZhgRbV2YiYjMjeE6jXwySbbhbwAibtEglQs4NRVm0hkyKytqdR1k3FY704mZ/rR9W/dfx3WZSCDvyMndwQEZHxMbkh81NQc+MTWuIi1+78d1uKiIhebHonN35+fpg8eTISExONEQ/R83l4F7gbp35dpUmJiggh/qu5MXDvxEREVPb0Tm4+/vhjbN68GQEBAWjfvj3WrVuHnJwcY8RGpL8bj29JudYEbErWtfu9h7lIe6TuRdTQvRMTEVHZK1VyExMTg6NHjyIoKAgfffQRvLy8MGzYMJw8edIYMRKVnOaWlB7tbR43Jq7sZM2OsIiIzECp29w0bNgQ33//PW7duoUJEyZg2bJlaNKkCUJCQrB8+XIIIQwZJ1HJaBoT69HexkgDZhIRkWmU+lHwvLw8bNmyBStWrMDu3bvRrFkzDB48GDdu3MDnn3+Ov/76C2vXrjVkrETFU+YBN0+oX+vVmJhPShERmRO9k5uTJ09ixYoV+PnnnyGVStGvXz/MmTMHtWrV0izTpUsXNGlSssacRAaTdAbIz1Z3puVS7dnLP/ZfY2I+KUVEZA70Tm6aNGmC9u3bY9GiRejcuTMsLQt3kubv749evXoZJECiEnvyEXBpye+48rYUEZF50Tu5uXbtGnx9ix+ky9bWFitWrCh1UESlUorGxPlKFRLvZQFgzQ0RkbnQu0Fxamoqjhw5Umj6kSNHcPz4cb0DWLBgAfz8/GBlZYXQ0FAcPXq02OUfPHiAoUOHwsvLCwqFAjVq1MD27dv13i6ZGSFK1Xnf9fuPkKcUsLKUwsvBykjBERFRWdI7uRk6dCiuX79eaPrNmzcxdOhQvda1fv16jBw5EhMmTMDJkydRv359REZGIjU1Vefyubm5aN++PRISErBx40ZcunQJS5cuReXKlfXdDTI3adeBjCRAagF4NyxxsfjHPRP7udhCKjXegJlERFR29L4tFRsbi4YNC395NGjQALGxsXqta/bs2XjnnXcwcKB6qPjFixdj27ZtWL58OcaMGVNo+eXLl+PevXs4dOiQpq2Pn5+fvrtA5qjgEXDPeoDcpsTFChoTB/KWFBGR2dC75kahUCAlJaXQ9KSkJFhYlDxXys3NxYkTJxAREfFfMFIpIiIiEB0drbPMb7/9hrCwMAwdOhQeHh6oU6cOpk6dCqVSWeR2cnJykJ6ervVDZqgUt6QA4CqHXSAiMjt6Jzcvv/wyxo4di7S0NM20Bw8e4PPPP0f79u1LvJ47d+5AqVTCw8NDa7qHhweSk5N1lrl27Ro2btwIpVKJ7du348svv8SsWbPw1VdfFbmdadOmwdHRUfPj4+NT4hjpBVKKxsQAn5QiIjJHet+WmjlzJlq1agVfX180aNAAABATEwMPDw+sXr3a4AE+SaVSwd3dHUuWLIFMJkOjRo1w8+ZNzJgxAxMmTNBZZuzYsRg5cqTmfXp6OhMcc5OTCSSfU7/Ws+amoAM/f1feliIiMhd6JzeVK1fGmTNn8NNPP+H06dOwtrbGwIED0bt3b5193hTF1dUVMpms0C2ulJQUeHp66izj5eUFS0tLyGT/jf8TFBSE5ORk5ObmQi6XFyqjUCigUChKHBe9gG6eAIQScKgCOJa8cXlGdh5uZ6gHfWXNDRGR+SjV8Au2trZ49913n2vDcrkcjRo1QlRUFDp37gxAXTMTFRWFYcOG6SzTvHlzrF27FiqVCtLHnbRdvnwZXl5eOhMbqiAKGhNX1a/WJv5xrY2rnQIOViVPzImIqHwr9dhSsbGxSExMRG5urtb0119/vcTrGDlyJPr374/GjRujadOmmDt3Lh4+fKh5eqpfv36oXLkypk2bBgD44IMPMH/+fIwYMQIfffQR4uLiMHXqVAwfPry0u0HmoJSNia+xMTERkVkqVQ/FXbp0wdmzZyGRSDSjf0sk6j5Cinty6Wk9e/bE7du3MX78eCQnJyMkJAQ7duzQNDJOTEzU1NAAgI+PD3bu3IlPPvkE9erVQ+XKlTFixAh89tln+u4GmQuVCrhRMBJ46RoTBzK5ISIyK3onNyNGjIC/vz+ioqLg7++Po0eP4u7duxg1ahRmzpypdwDDhg0r8jbU3r17C00LCwvD4cOH9d4Omak7l4HsNMDSBvCoo1fRq5rGxExuiIjMid7JTXR0NP7++2+4urpCKpVCKpWiRYsWmDZtGoYPH45Tp04ZI04i3a4/TnQrNwJk+rWb0dyW4pNSRERmRe9+bpRKJezt7QGon3i6desWAMDX1xeXLl0ybHREz1LQmFjP9jYqlUDCHba5ISIyR3rX3NSpUwenT5+Gv78/QkNDMX36dMjlcixZsgQBAQHGiJGoaKVsTJycno1HeUpYSCXwqVTy4RqIiKj80zu5+eKLL/Dwofo/3smTJ+O1115Dy5Yt4eLigvXr1xs8QKIiPbwL3L2ifl2lsV5FC25JVXWxgaVM7wpMIiIqx/RObiIjIzWvq1WrhosXL+LevXtwdnbWPDFFVCYKam1cawI2lfQqeu3xaOBsb0NEZH70+pc1Ly8PFhYWOHfunNb0SpUqMbGhsleQ3OjZeR/APm6IiMyZXsmNpaUlqlatqldfNkRGU8rGxABwtWDATD4GTkRkdvRubDBu3Dh8/vnnuHfvnjHiISqZ/Fzg1kn161IkN/GaJ6V4W4qIyNzo3eZm/vz5uHLlCry9veHr6wtbW+3/fE+ePGmw4IiKlHwWyM8GrJ0Bl2qFZitVAsnp2ZoetJ+UpxS4+eARAN6WIiIyR3onNwWDXBKZVMJ+9W+fUOCp9l5CCAxYcRT74+4UuwoHKwu42HLAVSIic6N3cjNhwgRjxEFUciolcHy5+nX1lwvNPv7vfU1io7DQfedVIgF6N63KhvBERGao1KOCE5nMhd+AB/8C1pWA+r0Lzf7hn2sAgN5NfTCta72yjo6IiExM7+RGKpUW+98un6QioxICOPi9+nXTdwC5du/CV29n4q8LKQCAwS3YYzYRUUWkd3KzZcsWrfd5eXk4deoUVq1ahUmTJhksMCKd/j2kfkrKwgpo8k6h2cv2xwMAIoI8UM2dT0IREVVEeic3b7zxRqFpb775JmrXro3169dj8ODBBgmMSKdD89S/6/cG7Ny0Zt3OyMGmkzcAAO+2Yq0NEVFFZbBBdZo1a4aoqChDrY6osNuXgMt/ApAAYcMKzV4dnYDcfBVCfJzQxM+57OMjIqJywSDJzaNHj/D999+jcuXKhlgdkW7R89W/a3UEXLX7tsnKzcf/Dv8LQF1rw6egiIgqLr1vSz09QKYQAhkZGbCxscGaNWsMGhyRRkYKcHqd+nX4R4VmbzxxAw+y8lC1kg0ia3uWcXBERFSe6J3czJkzRyu5kUqlcHNzQ2hoKJydeSuAjOToEkCZC1RpClRtpjVLqRKahsRDWvpDJmWtDRFRRaZ3cjNgwAAjhEFUjJxM4Ngy9WsdtTY7zycj8V4WnG0s0b2RTxkHR0RE5Y3ebW5WrFiBX375pdD0X375BatWrTJIUERaYn4Csh8AlQLU7W2eIITAD/vUnfb1beYLa7nMBAESEVF5ondyM23aNLi6uhaa7u7ujqlTpxokKCINZf5/DYnDhgJS7eTlWMJ9nL7+AHILKfqF+5V9fEREVO7ondwkJibC39+/0HRfX18kJiYaJCgijQu/AQ8SARsXoH6fQrOXPK616dawClztFGUdHRERlUN6Jzfu7u44c+ZMoemnT5+Gi4uLQYIiAqAeauHQ46EWmhQeauFKqnqoBYlE3ZCYiIgIKEVy07t3bwwfPhx79uyBUqmEUqnE33//jREjRqBXr17GiJEqqn8PArdOqYdaaFp4qIUfD6hrbSKCPBDoxqEWiIhITe+npaZMmYKEhAS0a9cOFhbq4iqVCv369WObG9JP1j31WFFCpXP2w/0LYAsgsWpnxMbnAUjSzMtVCmw6eRMA8B6HWiAioidIhBCiNAXj4uIQExMDa2tr1K1bF76+voaOzSjS09Ph6OiItLQ0ODg4mDqciksIYFkEcPN4sYuphARtc2ciQXjpnN+gqhM2fxDOHomJiMycPt/fetfcFKhevTqqV69e2uJU0SXsVyc2MgXg3aDQ7Pi7D3EnMweHLZvB1TMYhZ/PAxSWUnwaWYuJDRERadE7uenWrRuaNm2Kzz77TGv69OnTcezYMZ194BAVUjC6d8O+QMdZWrNS07MR+e0e5CpV2DQ4DB/5VjJBgERE9KLSu0Hxvn378Oqrrxaa/sorr2Dfvn0GCYrMXOoFIG4XAAnQ7MNCs1ceSkCuUoWGVZ3QiIkNERHpSe/kJjMzE3K5vNB0S0tLpKenGyQoMnOHHnfKF9QJcAnUmvUwJx9rNKN7Bz5dkoiI6Jn0Tm7q1q2L9evXF5q+bt06BAcHGyQoMmPpScCZx+dP+PBCszccv4707Hz4udigfbBHGQdHRETmQO82N19++SW6du2Kq1evom3btgCAqKgorF27Fhs3bjR4gGRmjv4AqPKAqmGATxOtWflKFX48UDC6dwBH9yYiolLRO7np1KkTtm7diqlTp2Ljxo2wtrZG/fr18ffff6NSJbaPoGLkZADHlqtf6xjd+89zybhx/xEq2crxZqMqZRwcERGZi1I9Ct6xY0d07KgenTk9PR0///wzRo8ejRMnTkCpVBo0QDIjJ1cDOWmASzWgxitas4QQmnGi+oX5wsqSo3sTEVHp6N3mpsC+ffvQv39/eHt7Y9asWWjbti0OHz5syNjInCjzgMML1a/DhgFS7VPv8LV7OHszDQoLKfo2ezE6hCQiovJJr5qb5ORkrFy5Ej/++CPS09PRo0cP5OTkYOvWrWxMTMWL/RVIuw7YuAL1C49BtnS/utame+MqcOHo3kRE9BxKXHPTqVMn1KxZE2fOnMHcuXNx69YtzJs3z5ixkbl4cnTv0PcAS2ut2XEpGfj7YiokEmBwC44TRUREz6fENTd//vknhg8fjg8++IDDLpB+4vcBSacBC2ug8eBCswtqbSKDPeHvalvW0RERkZkpcc3NgQMHkJGRgUaNGiE0NBTz58/HnTt3jBkbmYuCoRYavA3YumjNSk3PxtZTtwAA73B0byIiMoASJzfNmjXD0qVLkZSUhPfeew/r1q2Dt7c3VCoVdu/ejYyMDGPGSS+qlFjgym4AEiCs6KEWGvs6o5Gvc9nHR0REZkfvp6VsbW0xaNAgHDhwAGfPnsWoUaPwzTffwN3dHa+//roxYqQXWfQTQy1U0q6ZyXxiqAXW2hARkaGUqp+bAjVr1sT06dMxbdo0/P7771i+fLmh4iIz8OjudchPr4cMwBrZG0jaeVFr/rXbD5GenQ9/V1u0D+JQC0REZBjPldwUkMlk6Ny5Mzp37myI1ZGZiNk4HWEiH0dVNfHFcWsAV3UuN6SlP6QcaoGIiAzEIMkN0dMy0++jdpJ6rLHTPv0w0NNP53Lu9lbo2dinDCMjIiJzx+SGjOLc7/PQDFlIlFbG4EEfQCrjcApERFQ2Sj38AlFR8nJz4Be3CgCQHDyEiQ0REZUpJjdkcKd3roQn7uAuHFGv43umDoeIiCoYJjdkUEKlglPMDwCAy769YWXNHoeJiKhsMbkhgzp/8HdUU15FllAgqNMnpg6HiIgqICY3ZFCqg+qhFs66vQYnV08TR0NERBURkxsymPjzR1Av+xiUQoIqr35q6nCIiKiCYnJDBnNn12wAwGn7VqgcEGTiaIiIqKJickMGkXozHvUf7AYA2LUdaeJoiIioImNyQwZx9Y+ZkEuUiJXXRY2GL5k6HCIiqsCY3NBzy0i7hzq3NgEAcpsONXE0RERU0ZWL5GbBggXw8/ODlZUVQkNDcfTo0RKVW7duHSQSCQfsNLHzf8yDveQR/pVWQb02PUwdDhERVXAmT27Wr1+PkSNHYsKECTh58iTq16+PyMhIpKamFlsuISEBo0ePRsuWLcsoUtJFPdTC/wAAKbU51AIREZmeyZOb2bNn45133sHAgQMRHByMxYsXw8bGBsuXLy+yjFKpxFtvvYVJkyYhICCgDKOlp53esQKeuIM7cEK9V981dThERESmHRU8NzcXJ06cwNixYzXTpFIpIiIiEB0dXWS5yZMnw93dHYMHD8b+/fuL3UZOTg5ycnI079PT058/cDOSdu824la+D3nug1KV98u+AgCI8+uNMA61QERE5YBJk5s7d+5AqVTCw8NDa7qHhwcuXryos8yBAwfw448/IiYmpkTbmDZtGiZNmvS8oZqtCzuXoFn6X8+1jkxhjWAOtUBEROWESZMbfWVkZKBv375YunQpXF1dS1Rm7NixGDnyv35X0tPT4ePjY6wQXziWN9WNt487REAEtivVOtxrhMLXxePZCxIREZUBkyY3rq6ukMlkSElJ0ZqekpICT8/C4xJdvXoVCQkJ6NSpk2aaSqUCAFhYWODSpUsIDAzUKqNQKKBQKIwQvXmoknkWAGDdbDBqh79q4miIiIien0kbFMvlcjRq1AhRUVGaaSqVClFRUQgLCyu0fK1atXD27FnExMRofl5//XW0adMGMTExrJHRU/L1K/DAXeQLKQLq86kzIiIyDya/LTVy5Ej0798fjRs3RtOmTTF37lw8fPgQAwcOBAD069cPlStXxrRp02BlZYU6depolXdycgKAQtPp2W6c2QNPAPGWgahua2/qcIiIiAzC5MlNz549cfv2bYwfPx7JyckICQnBjh07NI2MExMTIZWa/Il1s6RMOAwAuOscguomjoWIiMhQJEIIYeogylJ6ejocHR2RlpYGBwcHU4djUnFTGqG68gpONJmFRh2HmDocIiKiIunz/c0qkQoqKzMN/vnXAABV6rcxcTRERESGw+Smgrp2eh8sJCokwxUeVQKfXYCIiOgFweSmgsqIOwgAuGlf18SREBERGRaTmwrKJuUEACDPu4mJIyEiIjIsJjcVkEqphN+j8wAAl6BWJo6GiIjIsJjcVEDXL8fAEQ+RJRTwC25q6nCIiIgMislNBZQSuw8AEK+oCUs5h6YgIiLzwuSmIrquHiwz3a2hiQMhIiIyPCY3FZBn+mkAgE1g4fG7iIiIXnRMbiqY+7eTUFV1EwDgx877iIjIDDG5qWD+Pb1X/VvqA0cXD9MGQ0REZARMbiqYR9cOAQBSHOuZOBIiIiLjYHJTwTjeOQUAkPiEmjgSIiIi42ByU4Hk5mQjIOciAMCjTmsTR0NERGQcTG4qkITzh2ElycMD2MGnGm9LERGReWJyU4Hcu7gfAJBgXQcSKf/0RERknvgNV4HIbx0DADzybGTiSIiIiIyHyU0FIVQqVMk8CwBwqN7CxNEQEREZD5ObCiL5ehzccQ95QoaA+i1NHQ4REZHRMLmpIG6e/QcAEG8ZCGtbexNHQ0REZDxMbioIZcJhAMC9SiGmDYSIiMjImNxUEC73YwAAln7NTBsIERGRkTG5qQAeZjyAf/41AECVei+ZNhgiIiIjY3JTAcSf3geZRCAZbvCoEmjqcIiIiIyKyU0FkBF3EABw076uiSMhIiIyPgtTB0DPT6hUuJOciPy8HJ3z7ZPVjYnzvJuUZVhEREQmweTGDBxZPhrNbvxY5Hyvx79dgti/DRERmT8mNy+4tHu3Ue/6GkAC5AhLiCKWu6oIRs3aoWUaGxERkSkwuXnBxf4+B2GSHFyT+sH/i1NFDohZu4zjIiIiMhU2KH6B5WRnoXr8TwCAu/Xf40jfREREYHLzQjv95zK44gFSUQn1OwwydThERETlApObF5RKqYT72SUAgGvV+kGusDJxREREROUDk5sX1Nl/NsFPdR2ZwhrBrw03dThERETlBpObF5TF4XkAgHNeXeHg5GLiaIiIiMoPJjcvoLhT+1A79wzyhAx+HUeaOhwiIqJyhcnNCyj979kAgBindvD0qWbiaIiIiMoXJjcvmFsJlxCSvhcAUClilGmDISIiKoeY3LxgErfNgEwicMaqEQLrNjN1OEREROUOk5sXSNrdFNRL/Q0AIAn/yMTREBERlU9Mbl4gsX98BxtJDq7K/FGnxRumDoeIiKhcYnLzgnhyqIX7HGqBiIioSPyGfEGc2b4UrniAFLhwqAUiIqJicFRwA0m7m4Jrx3cYbf3u59RDLcRX6wcPucJo2yEiInrRMbkxkKT4c2gQbdxhEDKENWp34lALRERExWFyYyBWto64YBlstPULSJFVty8aO1Yy2jaIiIjMAZMbA/ELagyMizZ1GERERBUeGxQTERGRWWFyQ0RERGaFyQ0RERGZFSY3REREZFaY3BAREZFZYXJDREREZoXJDREREZkVJjdERERkVpjcEBERkVlhckNERERmpVwkNwsWLICfnx+srKwQGhqKo0ePFrns0qVL0bJlSzg7O8PZ2RkRERHFLk9EREQVi8mTm/Xr12PkyJGYMGECTp48ifr16yMyMhKpqak6l9+7dy969+6NPXv2IDo6Gj4+Pnj55Zdx8+bNMo6ciIiIyiOJEEKYMoDQ0FA0adIE8+fPBwCoVCr4+Pjgo48+wpgxY55ZXqlUwtnZGfPnz0e/fv2euXx6ejocHR2RlpYGBweH546fiIiIjE+f72+T1tzk5ubixIkTiIiI0EyTSqWIiIhAdHTJRtjOyspCXl4eKlWqZKwwiYiI6AViYcqN37lzB0qlEh4eHlrTPTw8cPHixRKt47PPPoO3t7dWgvSknJwc5OTkaN6np6eXPmAiIiIq90ze5uZ5fPPNN1i3bh22bNkCKysrnctMmzYNjo6Omh8fH58yjpKIiIjKkkmTG1dXV8hkMqSkpGhNT0lJgaenZ7FlZ86ciW+++Qa7du1CvXr1ilxu7NixSEtL0/xcv37dILETERFR+WTS5EYul6NRo0aIiorSTFOpVIiKikJYWFiR5aZPn44pU6Zgx44daNy4cbHbUCgUcHBw0PohIiIi82XSNjcAMHLkSPTv3x+NGzdG06ZNMXfuXDx8+BADBw4EAPTr1w+VK1fGtGnTAADffvstxo8fj7Vr18LPzw/JyckAADs7O9jZ2ZlsP4iIiKh8MHly07NnT9y+fRvjx49HcnIyQkJCsGPHDk0j48TEREil/1UwLVq0CLm5uXjzzTe11jNhwgRMnDixLEMnIiKicsjk/dyUNfZzQ0RE9OJ5Yfq5ISIiIjI0JjdERERkVpjcEBERkVlhckNERERmhckNERERmRUmN0RERGRWmNwQERGRWWFyQ0RERGaFyQ0RERGZFSY3REREZFaY3BAREZFZYXJDREREZoXJDREREZkVJjdERERkVpjcEBERkVlhckNERERmhckNERERmRUmN0RERGRWmNwQERGRWWFyQ0RERGaFyQ0RERGZFSY3REREZFaY3BAREZFZYXJDREREZoXJDREREZkVJjdERERkVpjcEBERkVlhckNERERmhckNERERmRUmN0RERGRWmNwQERGRWWFyQ0RERGaFyQ0RERGZFSY3REREZFaY3BAREZFZYXJDREREZoXJDREREZkVJjdERERkVpjcEBERkVlhckNERERmhckNERERmRUmN0RERGRWmNwQERGRWWFyQ0RERGaFyQ0RERGZFSY3REREZFaY3BAREZFZYXJDREREZoXJDREREZkVJjdERERkVpjcEBERkVlhckNERERmhckNERERmRUmN0RERGRWmNwQERGRWWFyQ0RERGalXCQ3CxYsgJ+fH6ysrBAaGoqjR48Wu/wvv/yCWrVqwcrKCnXr1sX27dvLKFIiIiIq70ye3Kxfvx4jR47EhAkTcPLkSdSvXx+RkZFITU3VufyhQ4fQu3dvDB48GKdOnULnzp3RuXNnnDt3rowjJyIiovJIIoQQpgwgNDQUTZo0wfz58wEAKpUKPj4++OijjzBmzJhCy/fs2RMPHz7EH3/8oZnWrFkzhISEYPHixc/cXnp6OhwdHZGWlgYHBwfD7QgREREZjT7f3yatucnNzcWJEycQERGhmSaVShEREYHo6GidZaKjo7WWB4DIyMgilyciIqKKxcKUG79z5w6USiU8PDy0pnt4eODixYs6yyQnJ+tcPjk5WefyOTk5yMnJ0bxPS0sDoM4AiYiI6MVQ8L1dkhtOJk1uysK0adMwadKkQtN9fHxMEA0RERE9j4yMDDg6Oha7jEmTG1dXV8hkMqSkpGhNT0lJgaenp84ynp6eei0/duxYjBw5UvNepVLh3r17cHFxgUQi0Sve9PR0+Pj44Pr162yvU0I8Zvrh8dIPj5f+eMz0w+OlP2MdMyEEMjIy4O3t/cxlTZrcyOVyNGrUCFFRUejcuTMAdfIRFRWFYcOG6SwTFhaGqKgofPzxx5ppu3fvRlhYmM7lFQoFFAqF1jQnJ6fnitvBwYEnuZ54zPTD46UfHi/98Zjph8dLf8Y4Zs+qsSlg8ttSI0eORP/+/dG4cWM0bdoUc+fOxcOHDzFw4EAAQL9+/VC5cmVMmzYNADBixAi0bt0as2bNQseOHbFu3TocP34cS5YsMeVuEBERUTlh8uSmZ8+euH37NsaPH4/k5GSEhIRgx44dmkbDiYmJkEr/e6grPDwca9euxRdffIHPP/8c1atXx9atW1GnTh1T7QIRERGVIyZPbgBg2LBhRd6G2rt3b6Fp3bt3R/fu3Y0cVWEKhQITJkwodJuLisZjph8eL/3weOmPx0w/PF76Kw/HzOSd+BEREREZksmHXyAiIiIyJCY3REREZFaY3BAREZFZYXJDREREZoXJzVMWLFgAPz8/WFlZITQ0FEePHi12+V9++QW1atWClZUV6tati+3bt5dRpOWDPsfr/Pnz6NatG/z8/CCRSDB37tyyC7Qc0eeYLV26FC1btoSzszOcnZ0RERHxzHPS3OhzvDZv3ozGjRvDyckJtra2CAkJwerVq8sw2vJB3+tYgXXr1kEikWg6Va0o9DleK1euhEQi0fqxsrIqw2jLB33PsQcPHmDo0KHw8vKCQqFAjRo1jPt9KUhj3bp1Qi6Xi+XLl4vz58+Ld955Rzg5OYmUlBSdyx88eFDIZDIxffp0ERsbK7744gthaWkpzp49W8aRm4a+x+vo0aNi9OjR4ueffxaenp5izpw5ZRtwOaDvMevTp49YsGCBOHXqlLhw4YIYMGCAcHR0FDdu3CjjyE1D3+O1Z88esXnzZhEbGyuuXLki5s6dK2QymdixY0cZR246+h6zAvHx8aJy5cqiZcuW4o033iibYMsBfY/XihUrhIODg0hKStL8JCcnl3HUpqXvMcvJyRGNGzcWr776qjhw4ICIj48Xe/fuFTExMUaLkcnNE5o2bSqGDh2qea9UKoW3t7eYNm2azuV79OghOnbsqDUtNDRUvPfee0aNs7zQ93g9ydfXt0ImN89zzIQQIj8/X9jb24tVq1YZK8Ry5XmPlxBCNGjQQHzxxRfGCK9cKs0xy8/PF+Hh4WLZsmWif//+FSq50fd4rVixQjg6OpZRdOWTvsds0aJFIiAgQOTm5pZViIK3pR7Lzc3FiRMnEBERoZkmlUoRERGB6OhonWWio6O1lgeAyMjIIpc3J6U5XhWdIY5ZVlYW8vLyUKlSJWOFWW487/ESQiAqKgqXLl1Cq1atjBlquVHaYzZ58mS4u7tj8ODBZRFmuVHa45WZmQlfX1/4+PjgjTfewPnz58si3HKhNMfst99+Q1hYGIYOHQoPDw/UqVMHU6dOhVKpNFqcTG4eu3PnDpRKpWbYhwIeHh5ITk7WWSY5OVmv5c1JaY5XRWeIY/bZZ5/B29u7UFJtjkp7vNLS0mBnZwe5XI6OHTti3rx5aN++vbHDLRdKc8wOHDiAH3/8EUuXLi2LEMuV0hyvmjVrYvny5fj111+xZs0aqFQqhIeH48aNG2URssmV5phdu3YNGzduhFKpxPbt2/Hll19i1qxZ+Oqrr4wWZ7kYfoGInu2bb77BunXrsHfv3grZgLGk7O3tERMTg8zMTERFRWHkyJEICAjASy+9ZOrQyp2MjAz07dsXS5cuhaurq6nDeSGEhYUhLCxM8z48PBxBQUH44YcfMGXKFBNGVn6pVCq4u7tjyZIlkMlkaNSoEW7evIkZM2ZgwoQJRtkmk5vHXF1dIZPJkJKSojU9JSUFnp6eOst4enrqtbw5Kc3xquie55jNnDkT33zzDf766y/Uq1fPmGGWG6U9XlKpFNWqVQMAhISE4MKFC5g2bVqFSG70PWZXr15FQkICOnXqpJmmUqkAABYWFrh06RICAwONG7QJGeI6ZmlpiQYNGuDKlSvGCLHcKc0x8/LygqWlJWQymWZaUFAQkpOTkZubC7lcbvA4eVvqMblcjkaNGiEqKkozTaVSISoqSitLf1JYWJjW8gCwe/fuIpc3J6U5XhVdaY/Z9OnTMWXKFOzYsQONGzcui1DLBUOdYyqVCjk5OcYIsdzR95jVqlULZ8+eRUxMjObn9ddfR5s2bRATEwMfH5+yDL/MGeIcUyqVOHv2LLy8vIwVZrlSmmPWvHlzXLlyRZM4A8Dly5fh5eVllMQGAB8Ff9K6deuEQqEQK1euFLGxseLdd98VTk5Omsf8+vbtK8aMGaNZ/uDBg8LCwkLMnDlTXLhwQUyYMKHCPQquz/HKyckRp06dEqdOnRJeXl5i9OjR4tSpUyIuLs5Uu1Dm9D1m33zzjZDL5WLjxo1aj55mZGSYahfKlL7Ha+rUqWLXrl3i6tWrIjY2VsycOVNYWFiIpUuXmmoXypy+x+xpFe1pKX2P16RJk8TOnTvF1atXxYkTJ0SvXr2ElZWVOH/+vKl2oczpe8wSExOFvb29GDZsmLh06ZL4448/hLu7u/jqq6+MFiOTm6fMmzdPVK1aVcjlctG0aVNx+PBhzbzWrVuL/v37ay2/YcMGUaNGDSGXy0Xt2rXFtm3byjhi09LneMXHxwsAhX5at25d9oGbkD7HzNfXV+cxmzBhQtkHbiL6HK9x48aJatWqCSsrK+Hs7CzCwsLEunXrTBC1ael7HXtSRUtuhNDveH388ceaZT08PMSrr74qTp48aYKoTUvfc+zQoUMiNDRUKBQKERAQIL7++muRn59vtPgkQghhnDohIiIiorLHNjdERERkVpjcEBERkVlhckNERERmhckNERERmRUmN0RERGRWmNwQERGRWWFyQ0RERGaFyQ0RlZm9e/dCIpHgwYMHZbrdlStXwsnJ6bnWkZCQAIlEgpiYmCKXMdX+EZE2JjdEZBASiaTYn4kTJ5o6RCKqIDgqOBEZRFJSkub1+vXrMX78eFy6dEkzzc7ODsePH9d7vcYaNZiIzBdrbojIIDw9PTU/jo6OkEgkWtPs7Ow0y544cQKNGzeGjY0NwsPDtZKgiRMnIiQkBMuWLYO/vz+srKwAAA8ePMCQIUPg5uYGBwcHtG3bFqdPn9aUO336NNq0aQN7e3s4ODigUaNGhZKpnTt3IigoCHZ2dujQoYNWQqZSqTB58mRUqVIFCoUCISEh2LFjR7H7vH37dtSoUQPW1tZo06YNEhISnucQEpGBMLkhojI3btw4zJo1C8ePH4eFhQUGDRqkNf/KlSvYtGkTNm/erGnj0r17d6SmpuLPP//EiRMn0LBhQ7Rr1w737t0DALz11luoUqUKjh07hhMnTmDMmDGwtLTUrDMrKwszZ87E6tWrsW/fPiQmJmL06NGa+d999x1mzZqFmTNn4syZM4iMjMTrr7+OuLg4nftw/fp1dO3aFZ06dUJMTAyGDBmCMWPGGPhIEVGpGG1ITiKqsFasWCEcHR0LTd+zZ48AIP766y/NtG3btgkA4tGjR0IIISZMmCAsLS1FamqqZpn9+/cLBwcHkZ2drbW+wMBA8cMPPwghhLC3txcrV64sMh4A4sqVK5ppCxYsEB4eHpr33t7e4uuvv9Yq16RJE/Hhhx8KIf4b1f7UqVNCCCHGjh0rgoODtZb/7LPPBABx//59nXEQUdlgzQ0Rlbl69eppXnt5eQEAUlNTNdN8fX3h5uameX/69GlkZmbCxcUFdnZ2mp/4+HhcvXoVADBy5EgMGTIEERER+OabbzTTC9jY2CAwMFBruwXbTE9Px61bt9C8eXOtMs2bN8eFCxd07sOFCxcQGhqqNS0sLKzEx4CIjIcNiomozD15u0gikQBQt3kpYGtrq7V8ZmYmvLy8sHfv3kLrKnjEe+LEiejTpw+2bduGP//8ExMmTMC6devQpUuXQtss2K4QwhC7Q0TlDGtuiKjca9iwIZKTk2FhYYFq1app/bi6umqWq1GjBj755BPs2rULXbt2xYoVK0q0fgcHB3h7e+PgwYNa0w8ePIjg4GCdZYKCgnD06FGtaYcPH9Zzz4jIGJjcEFG5FxERgbCwMHTu3Bm7du1CQkICDh06hHHjxuH48eN49OgRhg0bhr179+Lff//FwYMHcezYMQQFBZV4G59++im+/fZbrF+/HpcuXcKYMWMQExODESNG6Fz+/fffR1xcHD799FNcunQJa9euxcqVKw20x0T0PHhbiojKPYlEgu3bt2PcuHEYOHAgbt++DU9PT7Rq1QoeHh6QyWS4e/cu+vXrh5SUFLi6uqJr166YNGlSibcxfPhwpKWlYdSoUUhNTUVwcDB+++03VK9eXefyVatWxaZNm/DJJ59g3rx5aNq0KaZOnVroyS8iKnsSwZvOREREZEZ4W4qIiIjMCpMbIiIiMitMboiIiMisMLkhIiIis8LkhoiIiMwKkxsiIiIyK0xuiIiIyKwwuSEiIiKzwuSGiIiIzAqTGyIiIjIrTG6IiIjIrDC5ISIiIrPy/+MU0jlxTty4AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHcCAYAAAAqQ4tyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8YElEQVR4nO3dd3hT5dsH8G+SNt0LuktpoYyWvUuZMrQoggwBAWUp6E/6glZQENkIIsMqQxBliANQhijIsALKko3IKGWW0Ql005U87x+hgZC0JCVp2uT7ua5cTc68z+lJcuc5z5AIIQSIiIiILITU3AEQERERGROTGyIiIrIoTG6IiIjIojC5ISIiIovC5IaIiIgsCpMbIiIisihMboiIiMiiMLkhIiIii8LkhoiIiCwKk5tyEhwcjGHDhpll38OGDUNwcLBZ9m0p9u7dC4lEgr1795bbPq9duwaJRILVq1eX2z6JLI05P3vJfJjcPHDw4EFMmzYN6enp5g6F6KlVtOt56dKlFpGk/fDDD4iJiTHpPm7fvo1p06bh1KlTJt0PPT1Luh7K41jKE5ObBw4ePIjp06eb7MsgLi4OK1asMMm2iR5n6uvZUExu9Hf79m1Mnz6dyU0lYEnXA5MbglKpRF5enkHr2NnZwdbW1kQRERERkZogMXXqVAFA63H16lUhhBAAxOjRo8V3330n6tWrJ2xsbMTmzZuFEELMmzdPREREiCpVqgh7e3vRrFkz8dNPP2ntIygoSAwdOlT9etWqVQKA2L9/v3j33XeFp6encHR0FL169RIpKSla62/fvl20a9dOODo6CmdnZ/HCCy+I//77T2u5zZs3i/r16ws7OztRv359sWnTJjF06FARFBSk17lYsmSJqFevnpDL5cLPz0+8/fbb4t69exrLdOzYUdSvX1+cPXtWPPPMM8LBwUH4+/uLuXPn6rWPXbt2ibZt2wo3Nzfh5OQk6tSpIyZOnKien5+fLyZPniyaNWsmXF1dhaOjo2jXrp34888/NbZz9epVAUDMmzdPLF68WNSoUUM4ODiIZ599ViQkJAilUilmzJghAgIChL29vejZs6e4c+eOxjaCgoJE9+7dxc6dO0Xjxo2FnZ2dCAsLExs3btRYbs+ePQKA2LNnj8b0w4cPi8jISOHq6iocHBxEhw4dxP79+/U6D4+6d++eGDp0qHB1dRVubm5iyJAh4uTJkwKAWLVqlXq506dPi6FDh4oaNWoIOzs74ePjI4YPHy7S0tLUyzzpel65cqXo1KmT8PLyEnK5XISFhYmlS5dqxXT06FHx3HPPiapVqwp7e3sRHBwshg8frrGMQqEQn332mahXr56ws7MT3t7eYtSoUeLu3bsa5/jxWDp27Fjq+VAoFCImJkY0aNBA2NnZCU9PTxEZGSmOHj2qXqa06ygpKUnIZDIxbdo0rW1fuHBBABCLFi0qNYbHdezYUes4Hn1f5eXliSlTpoiQkBAhl8tFtWrVxPjx40VeXp7GdkqLu/g6e/zx6DWgy4kTJ0S3bt2Ei4uLcHJyEp07dxaHDh3SWMbQz5zHJSYmimHDhomAgAAhl8uFr6+v6Nmzp/q6EkKILVu2iBdeeEH4+fkJuVwuatasKWbMmCGKioq0zmX9+vXF6dOnRYcOHYSDg4MICQlRf3bu3btXtGrVStjb24s6deqI3bt3a6xffI2fP39e9OvXT7i4uIgqVaqIMWPGiPv372ss+/hnrxCq99vYsWNFtWrVhFwuFyEhIeKTTz4RCoXiiefh0WMw9/Vw8eJF0adPH+Hj4yPs7OxEQECAGDBggEhPT9fYx9q1a0WzZs2Evb298PDwEAMGDBAJCQl6H0tJ1q5dK1q2bCkcHByEu7u7aN++vdi5c6d6fmmfIQUFBcLDw0MMGzZMa7sZGRnCzs5OvPfee0+MoSRMboTqC2PgwIECgPjss8/E2rVrxdq1a0V2drYQQpXchIWFCS8vLzF9+nSxZMkScfLkSSGEENWqVRNvv/22WLx4sVi4cKFo1aqVACB+++03jX2UlNw0bdpUdO7cWSxatEi89957QiaTif79+2us++233wqJRCK6desmFi1aJObOnSuCg4OFu7u7xgfLzp07hVQqFQ0aNBALFy4UkyZNEm5ubqJ+/fp6XajFHxhdu3YVixYtElFRUUImk4mWLVuKgoIC9XIdO3YU/v7+IjAwUIwdO1YsXbpUdO7cWQAQ27dvL3Uf//33n5DL5aJFixbi888/F8uWLRPjxo0THTp0UC+Tmpoq/Pz8RHR0tPjyyy/Fp59+KurWrStsbW3V512Ih8lNkyZNRL169cTChQvFRx99JORyuWjdurX48MMPRZs2bcQXX3whxowZIyQSidaXc1BQkKhTp45wd3cXEyZMEAsXLhQNGzYUUqlU7Nq1S72cruQmNjZWyOVyERERIRYsWCA+++wz0ahRIyGXy8U///zzxPNdTKlUig4dOgipVCrefvttsWjRItG5c2fRqFEjrS+2+fPni/bt24sZM2aIr776SowdO1Y4ODiIVq1aCaVSKYR48vXcsmVLMWzYMPHZZ5+JRYsWieeee04AEIsXL1bvJzk5WXh4eIg6deqIefPmiRUrVohJkyaJsLAwjdjfeOMNYWNjI0aOHCmWLVsmPvjgA+Hk5KRxzWzevFlUq1ZNhIaGqmN59NzqMmzYMAFAPP/88yImJkbMnz9fvPTSS+qERJ/rqHPnzqJevXpa254+fbqQyWQiKSlJ7/+REKovoSZNmghPT0/1cRT/yFEoFOK5554Tjo6O4p133hHLly8XUVFRwsbGRrz00kvqbTwp7qSkJDFjxgwBQIwaNUq9n8uXL5cY13///SecnJyEn5+fmDlzpvjkk0/Uye/hw4fVyxnymaNLmzZthJubm/joo4/E119/LWbPni06deok9u3bp16mV69eon///mLevHniyy+/FP369RMAxLhx4zS29ehnyPjx48WiRYtEvXr1hEwmE+vWrRO+vr5i2rRpIiYmRgQEBAg3NzeRmZmpXr/4s6phw4aiR48eYvHixeLVV18VAMRrr72msa/HP3tzcnJEo0aNRNWqVcWHH34oli1bJoYMGSIkEokYO3bsE89DMXNfD/n5+aJGjRrC399fzJo1S3z99ddi+vTpomXLluLatWvqfcyaNUtIJBIxYMAAsXTpUjF9+nTh6ekpgoOD1T9cSzuWkkybNk0AEG3atBHz5s0Tn3/+uRg0aJD44IMPhBD6fYaMGDFCuLu7i/z8fI1tr1mzRgDQ+DFjKCY3D8ybN0/j1+2jAAipVCrOnj2rNS83N1fjdUFBgWjQoIHo3LmzxvSSkpuuXbuqv5SEEOLdd98VMplMnXlnZWUJd3d3MXLkSI3tJSUlCTc3N43pTZo0EX5+fhpZ+65du/TKwlNSUoRcLhfPPfecxq+XxYsXCwBi5cqV6mnFWf63336rnpafny98fX1F3759S93PZ599JgCI1NTUEpcpKirSutjv3bsnfHx8xIgRI9TTipMbLy8vjWOeOHGiACAaN24sCgsL1dMHDhwo5HK5xi+n4lKFR0tqMjIyhJ+fn2jatKl62uPJjVKpFLVr1xaRkZEa/7/c3FxRo0YN8eyzz5Z6Hh61ZcsWAUB8+umnGuegffv2WsnN49ebEEL8+OOPAoD466+/1NNKu551bSMyMlLUrFlT/Xrz5s1P/HD5+++/BQDx/fffa0zfsWOH1vT69es/sbSm2J9//ikAiDFjxmjNKz7X+lxHy5cvFwDEmTNnNKbXq1dP6/2pr+7du+t8L61du1ZIpVLx999/a0xftmyZACAOHDigd9xHjx7Vq7SmWK9evYRcLtdIgG7fvi1cXFw0kj19P3N0uXfvnrqUtDS6rq0333xTODo6arzvij9DfvjhB/W04hI1qVSqkZTt3LlT63wUJzc9e/bU2Nfbb78tAIjTp0+rpz3+2Ttz5kzh5OQkLl68qLHuhAkThEwm0yjReBJzXg/FJbu67hQUu3btmpDJZOLjjz/WmH7mzBlhY2OjMb2kY9ElPj5eSKVS0bt3b63SruJrS5/PkOL/7a+//qox/YUXXtD4PCoL1rnRU8eOHVGvXj2t6Q4ODurn9+7dQ0ZGBtq3b48TJ07otd1Ro0ZBIpGoX7dv3x4KhQLXr18HAOzevRvp6ekYOHAg0tLS1A+ZTIbw8HDs2bMHAJCYmIhTp05h6NChcHNzU2/v2Wef1Rn34/744w8UFBTgnXfegVT68LIYOXIkXF1dsW3bNo3lnZ2d8eqrr6pfy+VytGrVCleuXCl1P+7u7gCAX375BUqlUucyMpkMcrkcgKp+0927d1FUVIQWLVroPK/9+vXTOObw8HAAwKuvvgobGxuN6QUFBbh165bG+v7+/ujdu7f6taurK4YMGYKTJ08iKSlJZ4ynTp1CfHw8Bg0ahDt37qj/Lzk5OejSpQv++uuvEo/vcdu3b4eNjQ3+97//aZyD//u//9Na9tHrLS8vD2lpaWjdujUA6H3NPbqNjIwMpKWloWPHjrhy5QoyMjIAPPw//fbbbygsLNS5nZ9++glubm549tlnNa7N5s2bw9nZWX1tGmrjxo2QSCSYOnWq1rzi94o+11GfPn1gY2OD9evXq6f9999/OHfuHAYMGFCm2Ery008/ISwsDKGhoRrnonPnzgCgPhf6xG0IhUKBXbt2oVevXqhZs6Z6up+fHwYNGoT9+/cjMzNTY50nfebo4uDgALlcjr179+LevXulLlcsKysLaWlpaN++PXJzc3HhwgWNZZ2dnfHKK6+oX9etWxfu7u4ICwtTv4eBh+9nXZ8to0eP1nhd/J7Zvn17iTH+9NNPaN++PTw8PDT+V127doVCocBff/1V4rr6Ko/rofgzb+fOncjNzdW5zKZNm6BUKtG/f3+NOHx9fVG7du0yv0e3bNkCpVKJKVOmaHxfANrv0dI+Qzp37gxPT0+N9+i9e/ewe/fup36PMrnRU40aNXRO/+2339C6dWvY29ujSpUq8PLywpdffqn+kniS6tWra7z28PAAAPUHSHx8PADVReDl5aXx2LVrF1JSUgBA/cFUu3ZtrX3UrVv3iXEUr//4snK5HDVr1tT64KtWrZrGB2Rx7KV98AHAgAED0LZtW7zxxhvw8fHBK6+8gg0bNmi9sdesWYNGjRrB3t4eVatWhZeXF7Zt26bzvD5+Dovf9IGBgTqnPx5jrVq1tI6lTp06AFR9zehS/H8ZOnSo1v/l66+/Rn5+vt7XwPXr1+Hn5wdnZ2eN6br+b3fv3sXYsWPh4+MDBwcHeHl5qa9Nffd34MABdO3aFU5OTnB3d4eXlxc+/PBDjW107NgRffv2xfTp0+Hp6YmXXnoJq1atQn5+vsY5yMjIgLe3t9Y5yM7OVl+bhrp8+TL8/f1RpUqVEpfR5zry9PREly5dsGHDBvW09evXw8bGBn369ClTbCWJj4/H2bNntc5D8XVUfC70vf71lZqaitzcXJ3XSlhYGJRKJW7cuKEx/UmfObrY2dlh7ty5+P333+Hj44MOHTrg008/1Ur+z549i969e8PNzQ2urq7w8vJS/wh6/PrU9Rni5uam9/sW0P68CwkJgVQqLfF9C6j+Vzt27ND6X3Xt2hUAynzdPr4PU18PNWrUQHR0NL7++mt4enoiMjISS5Ys0TjP8fHxEEKgdu3aWrGcP3/+qd6jUqm01B/O+nyG2NjYoG/fvvjll1/U0zdt2oTCwsKnTm5snrwIAZq/SIr9/fff6NmzJzp06IClS5fCz88Ptra2WLVqFX744Qe9tiuTyXROF0IAgPoiX7t2LXx9fbWWe7Rkojw9Ke6SODg44K+//sKePXuwbds27NixA+vXr0fnzp2xa9cuyGQyfPfddxg2bBh69eqF8ePHw9vbGzKZDHPmzMHly5f1jqWsMeqj+P8yb948NGnSROcyjycrxtC/f38cPHgQ48ePR5MmTeDs7AylUolu3brp9YF4+fJldOnSBaGhoVi4cCECAwMhl8uxfft2fPbZZ+ptSCQS/Pzzzzh8+DB+/fVX7Ny5EyNGjMCCBQtw+PBh9X69vb3x/fff69yXl5eXUY/9UfpcRwDwyiuvYPjw4Th16hSaNGmCDRs2oEuXLvD09DRqPEqlEg0bNsTChQt1zi/+wtY3blMq6/vinXfeQY8ePbBlyxbs3LkTkydPxpw5c/Dnn3+iadOmSE9PR8eOHeHq6ooZM2YgJCQE9vb2OHHiBD744AOt69MU79vHkyVdlEolnn32Wbz//vs65xcnIE+jvK6HBQsWYNiwYfjll1+wa9cujBkzBnPmzMHhw4dRrVo1KJVKSCQS/P777zq3ZYrPqGL6fIYAqvfo8uXL8fvvv6NXr17YsGEDQkND0bhx46faP5ObB/R5Uzxu48aNsLe3x86dO2FnZ6eevmrVKqPFFRISAgDw9vZW/7LQJSgoCMDDEoVHxcXFPXE/xevHxcVpFG8XFBTg6tWrpe7bUFKpFF26dEGXLl2wcOFCzJ49G5MmTcKePXvQtWtX/Pzzz6hZsyY2bdqk8X/RdZvCGC5dugQhhMa+Ll68CAAl9uxc/H9xdXV96nMTFBSE2NhYZGdna3zYPP5/u3fvHmJjYzF9+nRMmTJFPV3X/7yk6/nXX39Ffn4+tm7dqvELvqTi6datW6N169b4+OOP8cMPP2Dw4MFYt24d3njjDYSEhOCPP/5A27ZtdSb/+sSjS0hICHbu3Im7d++WWnrzpOsIAHr16oU333xTXex98eJFTJw4Ue9Y9D2OkJAQnD59Gl26dHnisT4pbkPOlZeXFxwdHXW+xy9cuACpVKpVEvI0QkJC8N577+G9995DfHw8mjRpggULFuC7777D3r17cefOHWzatAkdOnRQr3P16lWj7f9x8fHxGqXqly5dglKpLLVH9pCQEGRnZxvlM60iXA8NGzZEw4YN8dFHH+HgwYNo27Ytli1bhlmzZiEkJARCCNSoUeOJSZuh71GlUolz586V+OOuWGmfIQDQoUMH+Pn5Yf369WjXrh3+/PNPTJo0Se9YSsLbUg84OTkBgEGdnslkMkgkEigUCvW0a9euYcuWLUaLKzIyEq6urpg9e7bO+5apqakAVPfYmzRpgjVr1mgUS+7evRvnzp174n66du0KuVyOL774QuMX0jfffIOMjAx0797dCEejuq3yuOI3R3GxZPEvjEfj+Oeff3Do0CGjxPC427dvY/PmzerXmZmZ+Pbbb9GkSROdpWUA0Lx5c4SEhGD+/PnIzs7Wml/8f9HHCy+8gKKiInz55ZfqaQqFAosWLdJYTtd5AaCz462Srmdd28jIyNBKyO/du6e1n8f/T/3794dCocDMmTO19l9UVKSxbycnJ53vrcLCQly4cAGJiYnqaX379oUQAtOnT9davjgmfa4jQHXfPzIyEhs2bMC6desgl8vRq1cvrXX15eTkpPP2X//+/XHr1i2dHXXev38fOTk5esdtyGeRTCbDc889h19++UXjVkxycjJ++OEHtGvXDq6urk/czpPk5uZq9e0VEhICFxeXUt+3BQUFWLp06VPvvyRLlizReF38nnn++edLXKd///44dOgQdu7cqTUvPT0dRUVFeu/fnNdDZmamVqwNGzaEVCpVr9unTx/IZDJMnz5d6/0shMCdO3eeeCyAKlFOSEhQv+7VqxekUilmzJihVSJXvB99PkMAVXL38ssv49dff8XatWtRVFRklDpxLLl5oHnz5gCASZMm4ZVXXoGtrS169OihvrB06d69OxYuXIhu3bph0KBBSElJwZIlS1CrVi38+++/RonL1dUVX375JV577TU0a9YMr7zyCry8vJCQkIBt27ahbdu2WLx4MQBgzpw56N69O9q1a4cRI0bg7t27WLRoEerXr6/zC/hRXl5emDhxIqZPn45u3bqhZ8+eiIuLw9KlS9GyZUuNysNPY8aMGfjrr7/QvXt3BAUFISUlBUuXLkW1atXQrl07AMCLL76ITZs2oXfv3ujevTuuXr2KZcuWoV69ek88jrKoU6cOXn/9dRw9ehQ+Pj5YuXIlkpOTSy2Bk0ql+Prrr/H888+jfv36GD58OAICAnDr1i3s2bMHrq6u+PXXX/Xaf48ePdC2bVtMmDAB165dQ7169bBp0yatDxpXV1d1XYfCwkIEBARg165dOn8Zl3Q9P/fcc5DL5ejRowfefPNNZGdnY8WKFfD29tZIMNasWYOlS5eid+/eCAkJQVZWFlasWAFXV1e88MILAFT31N98803MmTMHp06dwnPPPQdbW1vEx8fjp59+wueff46XX35ZHc+XX36JWbNmoVatWvD29kbnzp1x69YthIWFYejQoeoejDt16oTXXnsNX3zxBeLj49W33P7++2906tQJUVFRel1HxQYMGIBXX30VS5cuRWRkpLqi46OKf+mXVlej+DjWr1+P6OhotGzZEs7OzujRowdee+01bNiwAW+99Rb27NmDtm3bQqFQ4MKFC9iwYQN27tyJFi1a6BV3SEgI3N3dsWzZMri4uMDJyQnh4eEl1vubNWsWdu/ejXbt2uHtt9+GjY0Nli9fjvz8fHz66aelHo++Ll68iC5duqB///6oV68ebGxssHnzZiQnJ6srBbdp0wYeHh4YOnQoxowZA4lEgrVr1xrlNnBJrl69ip49e6Jbt244dOgQvvvuOwwaNKjUWxrjx4/H1q1b8eKLL2LYsGFo3rw5cnJycObMGfz888+4du2a3rctzXk9nD59GlFRUejXrx/q1KmDoqIirF27FjKZDH379lWvO2vWLEycOBHXrl1Dr1694OLigqtXr2Lz5s0YNWoUxo0bV+qxAKr6Wx07dlSPrVerVi1MmjQJM2fORPv27dGnTx/Y2dnh6NGj8Pf3x5w5c/T6DCk2YMAALFq0CFOnTkXDhg0RFhZm0HWg01O1tbIwM2fOFAEBAUIqlWo0o8WDTvx0+eabb0Tt2rWFnZ2dCA0NFatWrVI3U3xUSU3BH28mV1JncXv27BGRkZHCzc1N2Nvbi5CQEDFs2DBx7NgxjeU2btwowsLChJ2dnahXr57BnfgtXrxYhIaGCltbW+Hj4yP+97//ldiJ3+P02U9sbKx46aWXhL+/v5DL5cLf318MHDhQo1mmUqkUs2fPFkFBQcLOzk40bdpU/Pbbb1rbf7QTv8fPFXQ0kdR1zh/txK9Ro0bq/+Pj65b0fzl58qTo06ePqFq1qrCzsxNBQUGif//+IjY2ttTz8Lg7d+6I1157Td2J32uvvaazE7+bN2+K3r17C3d3d+Hm5ib69esnbt++LQCIqVOnamyzpOt569atolGjRupOtebOnStWrlypscyJEyfEwIEDRfXq1dWd87344ota15sQQnz11VeiefPmwsHBQbi4uIiGDRuK999/X9y+fVu9TFJSkujevbtwcXEReKQTv+L/4eOdrBUVFYl58+aJ0NBQIZfLhZeXl3j++efF8ePHhRD6XUfFMjMzhYODgwAgvvvuO53n39PTU7Ru3bqU/5BKdna2GDRokHB3d9fqYqGgoEDMnTtX3Ymmh4eHaN68uZg+fbrIyMgwKO5ffvlF3WHo49eALidOnBCRkZHC2dlZODo6ik6dOomDBw9qLGPoZ86j0tLSxOjRo0VoaKhwcnISbm5uIjw8XGzYsEFjuQMHDojWrVurO/Z8//331c19H91+SZ8hxe/Hxz3+GVz8GXvu3Dnx8ssvCxcXF+Hh4SGioqL06sQvKytLTJw4UdSqVUvI5XLh6ekp2rRpI+bPn6/Rp9eTmPN6uHLlihgxYoQICQkR9vb2okqVKqJTp07ijz/+0Ipz48aNol27dsLJyUk4OTmJ0NBQMXr0aBEXF6fXsTz6nn3UypUrRdOmTdXH17FjR3WHi4Z8hiiVShEYGCgAiFmzZul9/ksjeRA4kVUKDg5GgwYN8Ntvv5k7FDKTc+fOoX79+vjtt9+MdvuVTGvatGmYPn06UlNTjV45nCwD69wQkVXbs2cPIiIimNgQWRDWuSEyEYVC8cSKxc7OziZtjklPNnr0aK3O4Mi63b17FwUFBSXOl8lkJu3qgJ4ekxsiE7lx40aJlUCLTZ06FdOmTSufgIhIL3369MG+fftKnB8UFPTEyudkXqxzQ2QieXl52L9/f6nL1KxZU6NfISIyv+PHjz9xmIm2bduWY0RkKCY3REREZFFYoZiIiIgsCpMbIiIisihMbojIqK5duwaJRKLz0bp1a/VycXFxePfdd9GmTRvY29tDIpEYVElTqVTi22+/RXh4OKpUqQIXFxfUqVMHQ4YMweHDh01wZERUWbC1FBGZxMCBA7W6WX+0+eyhQ4fwxRdfoF69eggLC8OpU6cM2v6YMWOwZMkSvPTSSxg8eDBsbGwQFxeH33//HTVr1tRIpIjIujC5ISKTaNasWaljkvXs2RPp6elwcXHB/PnzDUpukpOTsXTpUowcORJfffWVxryYmBiDBi59WkVFRVAqlZDL5eW2TyIqHW9LEZFZFN9KKourV69CCKGzOa5EIoG3t7fGtPT0dLz77rsIDg6GnZ0dqlWrhiFDhiAtLU29TEpKCl5//XX4+PjA3t4ejRs3xpo1azS2U3zLbf78+YiJiUFISAjs7Oxw7tw5AKrRk19++WVUqVIF9vb2aNGiBbZu3VqmYySismPJDRGZRG5urkbyAABubm6wtbV96m0HBQUBAH766Sf069cPjo6OJS6bnZ2N9u3b4/z58xgxYgSaNWuGtLQ0bN26FTdv3oSnpyfu37+PZ555BpcuXUJUVBRq1KiBn376CcOGDUN6ejrGjh2rsc1Vq1YhLy8Po0aNgp2dHapUqYKzZ8+ibdu2CAgIwIQJE+Dk5IQNGzagV69e2LhxI3r37v3Ux01EejLK8JtERA8Uj/St61HSyNPz5s3TGJVcH0OGDBEAhIeHh+jdu7eYP3++OH/+vNZyU6ZMEQDEpk2btOYplUohhBAxMTFao4YXFBSIiIgI4ezsLDIzMzWOzdXVVaSkpGhsq0uXLqJhw4YiLy9PY/tt2rQRtWvX1vu4iOjp8bYUEZnEqFGjsHv3bo1H48aNjbb9VatWYfHixahRowY2b96McePGISwsDF26dMGtW7fUy23cuBGNGzfWWXIikUgAANu3b4evry8GDhyonmdra4sxY8YgOztbqyv+vn37alSOvnv3Lv7880/0798fWVlZSEtLQ1paGu7cuYPIyEjEx8drxEREpsXbUkRkErVr10bXrl1Ntn2pVKoe9PLOnTs4cOAAli1bht9//x2vvPIK/v77bwDA5cuX0bdv31K3df36ddSuXRtSqebvvbCwMPX8Rz0+ZtilS5cghMDkyZMxefJknftISUlBQECAQcdIRGXD5IaIKr2qVauiZ8+e6NmzJ5555hns27cP169fV9fNMTYHBweN10qlEgAwbtw4REZG6lynVq1aJomFiLQxuSEii9KiRQvs27cPiYmJCAoKQkhICP77779S1wkKCsK///4LpVKpUXpz4cIF9fzSFA9+amtra9LSKiLSD+vcEFGlk5SUpG5+/aiCggLExsZCKpWqS0r69u2L06dPY/PmzVrLiwfjBr/wwgtISkrC+vXr1fOKioqwaNEiODs7o2PHjqXG4+3tjWeeeQbLly9HYmKi1vzy7HeHiFhyQ0RmkpGRgUWLFgEADhw4AABYvHgx3N3d4e7ujqioqBLXvXnzJlq1aoXOnTujS5cu8PX1RUpKCn788UecPn0a77zzDjw9PQEA48ePx88//4x+/fphxIgRaN68Oe7evYutW7di2bJlaNy4MUaNGoXly5dj2LBhOH78OIKDg/Hzzz/jwIEDiImJ0as/niVLlqBdu3Zo2LAhRo4ciZo1ayI5ORmHDh3CzZs3cfr0aSOcNSLSi7mbaxGRZSluLj1v3jy9ltP1CAoKKnXdzMxM8fnnn4vIyEhRrVo1YWtrK1xcXERERIRYsWKFuol3sTt37oioqCgREBAg5HK5qFatmhg6dKhIS0tTL5OcnCyGDx8uPD09hVwuFw0bNhSrVq0y6NguX74shgwZInx9fYWtra0ICAgQL774ovj5559LPR4iMi6JEA/KZYmIiIgsAOvcEBERkUVhckNEREQWhckNERERWRQmN0RERGRRmNwQERGRRWFyQ0RERBbF6jrxUyqVuH37NlxcXNQjAhMREVHFJoRAVlYW/P39tQa5fZzVJTe3b99GYGCgucMgIiKiMrhx4waqVatW6jJWl9wUd6N+48YNuLq6mjkaIiIi0kdmZiYCAwP1Gg7F6pKb4ltRrq6uTG6IiIgqGX2qlLBCMREREVkUJjdERERkUZjcEBERkUVhckNEREQWhckNERERWRQmN0RERGRRmNwQERGRRWFyQ0RERBaFyQ0RERFZFCY3REREZFGY3BAREZFFYXJDREREFsXqBs4kslqFeUBOSplWVSoF8m1c4eDqYeSgiKjMslOBovtlWzW/CFl5hUYO6CFbOwd4+lY32fafhMkNkTXIywCWtAaybpdpdSkAqbDFhRfXIbRlV+PGRkSGO/o1sO29Mq/u/OBhKhdswuD50WET7qF0TG6IrMHx1arERiIFZHKDVlUKgaKiIthJCuH4+xjkNTgKewcn08RJRE+WnQr8MV31XGYHSCR6ryoAFBYpoRTCNLE9oJCaN71gckNk6YrygcNfqp73XAw0HWzQ6uPWn0LsyTjstnsf1ZW3cOjbCYh4c5EJAiUivfw5A8jPBPwaAyP3AFKZ3qvu/C8Rb313AnIbKWKjOyKwiqNJQqxvkq3qjxWKiSzdmZ+ArETAxQ9o2M+gVW+l38fW07eRAWccCvsIANDq9lpcPLHPFJES0ZPcPgWcWKt63m2uQYlNXqECs7adBwCMal/TZIlNRcDkhsiSKZXAgS9Uz1v/D7Ax7JbUyv1XUaQUiKhZFS+9MhLHXLpAJhGQ/xaF/LxcEwRMRCUSAtgxAYAAGrwMBEUYtPrXf1/BzXv34etqj7c7hZgmxgqCyQ2RJYvfCaTFAXauQPNhBq2akVuIH48kAADe7FgTABAyZAnuwA3BygSc+G6SsaMlotL8txFIOATYOADPTjdo1aSMPCzZcxkAMOH5UDjKLbtWCpMbIktWXGrTYjhg72bQqt/9cx25BQqE+rqgYx0vAICHlx+uh6s+VFveWI1Lpw8YNVwiKkFBLrB7iup5+2jArZpBq3/y+3ncL1SgeZAHXmrib4IAKxYmN0SW6sYRIOEgILUFwv9n0Kp5hQqsOnANgKrURvJIa4xmzw/HCecOsJEoIdk6GgX5ecaMmoh0ORADZN4C3KoDbf7PoFWPX7+LLaduQyIBpvaop/F+tlRMbogs1YHPVX8bDwBc/QxadfPJW0jLzoe/mz1ebKT9K6/6q0txDy4IUVzF8R+mGiNaIipJesLD9/NzMwFbB71XVSoFpv96DgDQr3k1NKrmboIAKx4mN0SWKC0euLBN9bzNGINWVSgFVvx1BQDwevuasJVpf0x4+gbicvPJAIDm11bg6tl/ni5eIirZrslAUR4Q3B6o95JBq/584ib+vZkBZzsbjIusa6IAKx4mN0SW6OAiAAKo+wLgZdgH2u5zybiSlgM3B1u80jKwxOWadx+Jk45tIJcoULTpbRQVFjxl0ESk5dp+4NwWVQec3T4xqMO+rLxCfLojDgAwpksteLvYmyjIiseyq0sTWaOsZOD0j6rnbccatKoQAsv2qVpUvNY6CE52JX9ESKRSBL66DJlfRaC24hJOxPRFvqv5xpIxh2Snujhf9Vmd82QSCXo3DUBtH5dyjooshlIB/D5B9bz5cMC3gUGrL/7zEtKy81HD0wnD2tQwQYAVF5MbIkvzzzJAUQAEhgPVWxu06tFr93DqRjrkNlIMbRP8xOU9/YNwtMmHaHlqEprl/AXklDHmSuzXc+mIVTbXOe+XU7exfWx7uDnYlnNUZBFOrAGSz6haOnYyrOuFK6nZWHngKgBg8othkNtY140aJjdEliQ/Czj6jeq5gaU2ALD8QanNy82rwcvFTq91WvR8G/8U5kGkXTJ4f5WZ5/1rqJV5CF84rsRX9Tsjx7aKxvwdZ5Nw8959TPnlP3z+SlMzRUlmlXAY+GkYUFDGrL94vU6TAKeqBq06e/t5FCoEOtbxQqe63mXbfyXG5IbIkhxfA+RnAFVrA3WeN2jVi8lZiL2QAokEGNm+pt7rSaRShPcbZ2iklV9RPrCiM5yS/8O7uZ8DgzZo1Id4oZEf+i07hF9O3UbnUG+81CTAjMFSuVMqgW3jVEOfPA3fRkCLEQatcujyHfxxPgUyqQSTX7SOpt+PY3JDZCmKCoDDS1XP244BpIYVQ3/1oIVUt/q+qOHJUb+fyMYO6Ps1sLwjEL8LOPo10Gqkenaz6h74v861EPNHPD7a/B+aB3mgmofljuVDjzmzQXVLyc4VGL4dsC3j/94tEJDpf1tTqRSY87tq/KhBraqjlrdz2fZbyTG5IaosivJV9Wnu39M9P+OmqpMvZx+g0QCt2dvPJOLMrQydqyqFwC+nbgEARnXQv9TG6nmHAc/OAHZ8AOz6SNVU1ztUPTuqUy38dTEVJxLSEb3+NH4c1RoyqfX9irY6hXlA7EzV8/bRgG/Dctv1tjOJ+PdmBpzkMozpUrvc9lvRMLkhqiz+Wf6w+/XShL+lKlV4RFxSFt7+/sQTV21VowqaVvcoa4TWKfxNVcnN5Vhg0xvAG3+qByi1kUkRM6Apnv/8Lxy5dhfL9l3G6E61zBywiSiKgL/mARk3yrR6wt1cJGearrfrK46NcdT9eYOaUuvrmbpemp1dHlkOZN4EXANU78dykl+kwKc7LwAA3uwYone9OUvE5IaoMlAqgCMrVM/Deqi6YNfF0QOIGK01efXBawCABgGuCK+hu2KijUyCQa2sqym3UUgkQK+lwJdtgKQzwJ5ZqtKcB6pXdcS0nvUx/ud/8dnui2hf29Mye4k9uRbY90mZV6/+4GEqLdN/x5nryfhOobvp/tP4+fhNCAH0aOwP5N4F/lqgmtH5I4N6E35a3x9OwI279+HlYoc32ltX0+/HmT25WbJkCebNm4ekpCQ0btwYixYtQqtWrUpcPiYmBl9++SUSEhLg6emJl19+GXPmzIG9vfV0TkRWKO53ICMBcKgC9Flh0Admem4BNp+8CQCY8mJ9tKpR5QlrkMFcfIGei4B1g1SDldZ6FqjRXj375ebVsCcuBdvPJOGddafw25h2ljUqc1E+8Nd81fNGr2jcmtPHb/8m4r9bGfBzd0AdE/QL5J6bgLCkLZguX4tmTTog2a2x0bZ9LjETv56+jfd//he1fZwRenqBqlK/TwOdt4dNJeN+IRb9GQ8AiH62jmVdX2Vg1qNfv349oqOjsWzZMoSHhyMmJgaRkZGIi4uDt7d207UffvgBEyZMwMqVK9GmTRtcvHgRw4YNg0QiwcKFC81wBETl5Mhy1d/mQw3+Jbjh2A3kFSoR5ueKlsG85WQyod2BZkNVfZNsfhP43wHAQXW+JRIJZvduiBPX03ElLQeztp3H7N7lVw/D5E58q7oN4+IP9PgcsNX/x+aV1GyM2bYPSgFseaUtmgS6Gz8+IYCfh0N2djP6xE8A3vxLlZAagUIpkJ5bgL/j0zB1zXasK/gKEgB4djoglRllH/pYtu8y7uUWopa3M/o1N2zEcEtk1l59Fi5ciJEjR2L48OGoV68eli1bBkdHR6xcuVLn8gcPHkTbtm0xaNAgBAcH47nnnsPAgQNx5MiRco6cqBwlnwOu/gVIZECL1w1aVaEU+PbQdQDA8DbBVtkktFx1mwNUCVFV7P4tWvWl+oC7oxwL+qtKDH74JwG7zyWbK0rjKrwP/P3gNkyH9wxKbADgi9h4KAXQNczbNIkNoLp12HMx4BUGZCcDG4aoWhcagUwqwRevNEU1DwcMzF4DiaIAosYzQEgXo2xfH7fT72PlflWHfRO6hcJGx3hw1sZsJTcFBQU4fvw4Jk6cqJ4mlUrRtWtXHDp0SOc6bdq0wXfffYcjR46gVatWuHLlCrZv347XXnutxP3k5+cjPz9f/TozM9N4B0FUHo58pfob2h1wL3msJ11izyfj5r378HC0Rc8m2qN7k5HJnYC+K4BvngPObgKyUzQqd7cFEOudjZv37sNmgwT/2pet5+ICiR1+cx2AK3ZhRgpcf3V9nPHec3Vhb/ugVOLYKlVfLm6BQNOSP4t1iU/Owi+nbwMA3ulax9iharJzBl75HviqE3DjH2Dnh0D3+UbZtIeTHKsjbVFry0EAwHcur+O1cvwhsXD3ReQXKdGqRhV0CbO+Dvt0MVtyk5aWBoVCAR8fH43pPj4+uHDhgs51Bg0ahLS0NLRr1w5CCBQVFeGtt97Chx9+WOJ+5syZg+nTpxs1dqJyc/8e8O961fMytLoorkj8SqvqD7+MyLQCmgPPTAD+nAVc3681OwRASPG/4ikaB4XknsYL+XOQCMN6rn1af11MRXZ+Eeb0aaTqQXf/gyoBHcZptdJ7kpjYeAgBRNb3QYMANxNE+5iqIUCfr4AfBwBHVwABzYAmg55+u0Kg1qm5AIBNinaYfEQGn7pJeK6+cW59leZ8YiY2nlDVqfvwhTCWzj5QqWoc7d27F7Nnz8bSpUsRHh6OS5cuYezYsZg5cyYmT56sc52JEyciOjpa/TozMxOBgYb9+iUym5PfAYW5qsqJQW0MWvVichYOXr4DqQR4tXWQiQIkndqPA3waAnnpOmdn5RXiYnI2lI/ctjJErStr4ZFxDr/5fYO/2q6GkJbP2FV3cwrw8fbz+PHIDbSqUQW9czcBOamAexDQZLBB27qQlIlt/6p67333WROX2jyqbjfgmYnA3jnAr++o+iryf8rhMS79AVz7G5DJcb3+u8DxfERvOI1fopwR4mXaTvQ++f0ChAC6N/Iz3W29SshsyY2npydkMhmSkzXvOycnJ8PXV3e2O3nyZLz22mt44403AAANGzZETk4ORo0ahUmTJkGqo0dWOzs72NlZb1t/qsSUioe3pMLfNLh/juJSm8j6vghwL7/mqATV/6putxJnuwDQPdSmnu69ACzrgKr3TqH3na+ByI+fZmsGyc4vQswf8Zi16Sh6OH2m+hLp+IFBvegCwGe7LwJQfSmH+roaP9DSdHgfuH0SuLgDWP8aMGqfwWM3qSkVD/ufCn8TUV0649Cdf3Dk2l28ufY4toxuC2c703zV7o9Pw76LqbCVSfB+ZF2T7KOyMlutI7lcjubNmyM2NlY9TalUIjY2FhERETrXyc3N1UpgZDJV+a4o4y8gogrr4k4gPUHV4qZhP4NWzcgtxOYTqh6H9RndmyoZj2Cg1xLV80OLgQvbym3X/9e5NtrV8sQA5e+wybsLZZUQg5s8/3crAzvPJkMiAd4xRy+6UinQe7mq8nfGDeDn4apOCMvi9I9AyjnA3h1o/x5sZVIsHtwUPq52uJSSjfE/nTbJ99OjwywMDg9CUFUOmfIos96Wio6OxtChQ9GiRQu0atUKMTExyMnJwfDhwwEAQ4YMQUBAAObMmQMA6NGjBxYuXIimTZuqb0tNnjwZPXr0UCc5RBbjn2Wqv82GlKn59/1CBUJ9XRDOfm0sU1gPoPVo4PASYMv/VM2bPYJNvluZVIKYXiGwXaxKqH5wGIjBUhkMKVeM+UNVavNSY3/UNkG/NnpxcFdVMF7RBbi6D/jYF5CU4fe+4kGrqw7j1E3/vV3s8eWrzTFg+SH8/l8S6n60AwadIH0IoEChhIudDf6vs4X2ev0UzJrcDBgwAKmpqZgyZQqSkpLQpEkT7NixQ13JOCEhQaOk5qOPPoJEIsFHH32EW7duwcvLCz169MDHH5dfkSxRuUi5oPrAlUiBlm8YtKpCKfDt4WsAgGFs/m3Zuk5Ttfy5dQz4aTgwYqd66AdT8vzvGwDZuKT0x5TLoZAfu4n+LfWry3jqRjr+OJ8CqQTmH/vIOwzovUzVL1Fhbtm341kXaDlSY1Kz6h74uHdDfLT5PxQolE8ZaMneebYOqjqz6sXjJMLK7udkZmbCzc0NGRkZcHUt5/u8RPr67V3g2Eog9EXVr0sD7D6XjJHfHoObgy0OT+wCBzlLNS1aegKwrL2q8nL4W8Dzc027v/v3gJjGQH4GdobNwZsng2BnI8WW0W0R5vfkz9ShK49g38VU9G1WTd3vj9nlZQJ5ugeV1YuLb4l1jjLuFyI7v4y3vJ7AzkYKTytKbAz5/q5UraWIrML9dOD0OtXzMjT/XqNu/h3IxMYauFdX1R/5cYDqVmb1CKB+L9Pt79BS1fAC3vXw7MtvomPOcey7mIrR35/A1v9rV2rl2ePX72LfxVTIpBKMNXepzaPsXVUPE3BzsIWbQ/m0ZqOH2I0hUUVz6ntVEbl3PSC4nUGrxidnYf+lNEglwGts/m096nYD2o5VPd/6f8DdK6bZT+5d4PCXqufPTIRUJsNnA5rAz80eV9Jy8OGmM6VWnl34oIVUv+bVUL2qo2liJAJLbogqlqds/r3m0DUAwLP1fFDNg18eVqXzZCDhH+DGYeD7/gb3i6SXO5eAgizAt5GqQjOAKk5yLBrYFAO+Ooytp2+jUKGEu6N2SUVeoRIHLt2BrUyCKFaAJRNjckNUkcTvBu5dUzUrbdjfoFUz7hdiE5t/Wy+ZLfDySmB5e+BOvOphKp0+1Ei8WwRXwQfd6mL29gv4/b+kUlcd0DKQiTeZHJMbovJ08xhw9GugKF/n7KyrR+ECYLdDJH75WfcwJCVJzsxDboECdX1cEFGzfLvkpwrCLQAY+Sfw3yZAKEyzD/dgoI52B4Uj29dE9SpOuJSSVeKq9rYyvNKqumniInoEkxui8nJlL/DDK0DR/RIXcQFQKGSYntQGNxMTy7Sb4W3Z/NuqeQQD7aOfuJixSSQSdGvgC8D04ykRPQmTG6LycCkWWDcIKMoDanYC6j6vtciuc0k4cOkOCjzr441WHcu0Gw8nOXo04ujfRGTdmNwQmVr8H6rERpGvKs7v/63W6MkFRUp8uDsWaYoCLH+uOSLLYTRhIiJLxabgRKZ0cRewbqAqsanbXWdiAwB/nE9GWnYBvF3s0DnU2wyBEhFZDpbcEJlK3O+qEYeVhaqehl9eVWLX+D8eSQAA9GtRDbYy/uYgInoa/BQlMoUL2x4mNvVeAvqtLjGxuXE3F/svpQEABrRgSxIioqfFkhuyTvnZwP27Jc6+m1OA/KKyNaW1TzwG911jIFEWAQ36Ar2/AmQlv9XWH70BIYD2tT3ZaysRkREwuSHrk54ALI0ACrJLXKSKEXYjGvaDpNeyUhObIoUSPx2/AQB4pSVLbYiIjIHJDVmfUz+oEhuJTOdIvgUKJZTKksfHeRIFpPhZ0QEuwZPRp5TEBgD2xKUiOTMfVZ3keLaeT5n3SUREDzG5IesiBPDvetXz3suARtpDHAxedhBHr93D4kFN8WIZ+oxZsucS5u2Mg/u2OLSv4wsvF+3WUcWKKxK/3Lwa5DasAkdEZAz8NCXrcuu4asRkW0eg7gs6F0nMyAMA+LnZl2kXozrURD0/V6TnFmLa1rMlLnc7/T72xqUAUI23Q0RExsHkhqxLcalN6IuAnbPWbKVSIDlTldz4ujmUaRe2Mik+fbkRZFIJtp1JxI4SBhLccOwGlAJoXbMKanppx0JERGXD5Iash6JQNaAgADQaoHOROzkFKFQISCSAdym3k56kQYAb3uxQEwAw+Zf/kJFbqBmKUmDDUVVF4oEcSJCIyKiY3JD1uLwHyE0DnLyAms/oXCTpwS0pL2e7p+5Mb0yX2qjp6YTUrHx8vP2cxry/4lNxOyMP7o62HGqBiMjImNyQ9Si+JdXg5RKbZydmqEbsLmt9m0fZ28ow9+VGkEiADcdu4u/4VPW8H/9RVSTu07Qa7G1lT70vIiJ6iMkNWYf8LFWvwQDQqF+JiyWp69s8fXIDAC2Dq2BI6yAAwMRNZ5CTX4SUzDzEXlBVJB7YihWJiYiMjU3ByTqc/w0oug9UrQX4NytxsYctpcpWmViX8d1C8cf5FNy8dx/zd8XB09kOCqVAiyAP1PZxMdp+iIhIhSU3ZB2Kb0k1GgBIJCUulpxh3JIbAHC2s8HsPg0BAKsPXsM3+68CAF5hRWIiIpNgckOWLysJuLpP9bxhybekgKfv46YkHet4oW+zahBCNW6Vi70Nujf0M+o+iIhIhckNWb7/NgJCCQSGA1VqlLqous6Nq3GTGwCY/GIYPJ1Vzct7Nw2Ag5wViYmITIHJDVk+9S0p7aEWHiWEeKS1lPHq3BRzd5Rj2avN0KdpAKI61zL69omISIUVismypVwAEk8DUhugXu9SF824X4i8QiUAwNu17B34laZFcBW0CDbGmONERFQSltyQZTuzQfW31rOAU9VSFy2ub1PVSc6+Z4iIKjEmN2S5lErg359Uz59wSwp42DuxMVtKERFR+WNyQ5brxmEgIwGQuwB1n3/i4qZqKUVEROWLyQ1ZruKKxPVeAmyfXEE46UFlYpbcEBFVbkxuyDIV5QNnt6ielzLcwqOKS25M0QyciIjKD5Mbskzxu4G8dMDFDwhur9cqD8eVMn4zcCIiKj9MbsgyFd+SavgyINWv5RPr3BARWQYmN2SZru1X/a3XS+9V2FqKiMgyMLkhy5NzB7h/V/Xcu55eq2TlFSI7vwgA69wQEVV2TG7I8qRdVP11qw7IHfVapbjUxtXeBk527LibiKgyY3JDlictTvXXq47eqzysb8PKxERElR2TG7I8afGqv576Jzesb0NEZDmY3JDlKb4t5Vlb71XYUoqIyHIwuSHLo05uDCi5yWTvxEREloLJDVmWwjzg3nXVcwOSG5bcEBFZDiY3ZFnuXAIgAHt3wMlL79Ue1rlhhWIiosqOyQ1ZlkdvSUkkeq/GkhsiIsvB5IYsSxlaSt0vUCDjfiEA1rkhIrIETG7IspShpVTxgJlOchlc2IEfEVGlx+SGLEsZWkolZjxsKSUx4FYWERFVTExuyHIolU/VgR97JyYisgxMbshyZN4Eiu4DUlvAI1jv1YorE/twwEwiIovA5IYsR/EtqaohgEz/ujNJbClFRGRRmNyQ5VDfktK/MjHwsOSGLaWIiCwDkxuyHGWoTAw8HHqBJTdERJaByQ1ZjtQyJjcsuSEisihMbshylKHkJr9IgbTsAgBsLUVEZCmY3JBluH8PyElRPTegzk1KZj4AQG4jhYejrSkiIyKicsbkhixD2iXVXxd/wM5F79UeHVOKHfgREVkGJjdkGcow7ALwSO/E7OOGiMhiMLkhy5AWp/pbxsrEbClFRGQ5mNyQZSju48arrkGrPezjhpWJiYgsBZMbsgxlvC3FkhsiIsvD5IYqv6IC4O5V1XMDb0slZrKPGyIiS8Pkhiq/e1cBoQDkzoCLn0GrJmWwd2IiIkvD5IYqv9TiysS1AQOacxcqlEjJUvVzw5IbIiLLweSGKr8yjimVmpUPIQAbqQSeTnYmCIyIiMyByQ1VfurRwA2sb/OgMrGPqz2kUnbgR0RkKZjcUOVX1tHAOWAmEZFFYnJDlZsQT1Fy86B3YiY3REQWxezJzZIlSxAcHAx7e3uEh4fjyJEjpS6fnp6O0aNHw8/PD3Z2dqhTpw62b99eTtFShZOVBBRkARIZUKWGQauq+7jh0AtERBbFxpw7X79+PaKjo7Fs2TKEh4cjJiYGkZGRiIuLg7e3t9byBQUFePbZZ+Ht7Y2ff/4ZAQEBuH79Otzd3cs/eKoYiodd8AgGbAyrFJzEPm6IiCySWZObhQsXYuTIkRg+fDgAYNmyZdi2bRtWrlyJCRMmaC2/cuVK3L17FwcPHoStrS0AIDg4uDxDpoqmjMMuAI/2TsyhF4iILInZbksVFBTg+PHj6Nq168NgpFJ07doVhw4d0rnO1q1bERERgdGjR8PHxwcNGjTA7NmzoVAoyitsqmjKOOwC8Oi4Uiy5ISKyJGYruUlLS4NCoYCPj4/GdB8fH1y4cEHnOleuXMGff/6JwYMHY/v27bh06RLefvttFBYWYurUqTrXyc/PR35+vvp1Zmam8Q6CzK+MLaWUSoHkTI4rRURkicxeodgQSqUS3t7e+Oqrr9C8eXMMGDAAkyZNwrJly0pcZ86cOXBzc1M/AgMDyzFiMrkytpRKy8lHkVJAKgG8XNiBHxGRJTFbcuPp6QmZTIbk5GSN6cnJyfD19dW5jp+fH+rUqQOZTKaeFhYWhqSkJBQUFOhcZ+LEicjIyFA/bty4YbyDIPPKzwIyb6mel3E0cC8XO9jKKlWOT0RET2C2T3W5XI7mzZsjNjZWPU2pVCI2NhYRERE612nbti0uXboEpVKpnnbx4kX4+flBLpfrXMfOzg6urq4aD7IQxaU2Tt6Ag4dBqz6sb8PKxERElsasP1mjo6OxYsUKrFmzBufPn8f//vc/5OTkqFtPDRkyBBMnTlQv/7///Q93797F2LFjcfHiRWzbtg2zZ8/G6NGjzXUIZE5lvCUFsI8bIiJLZtam4AMGDEBqaiqmTJmCpKQkNGnSBDt27FBXMk5ISIBU+jD/CgwMxM6dO/Huu++iUaNGCAgIwNixY/HBBx+Y6xDInNhSioiIdDBrcgMAUVFRiIqK0jlv7969WtMiIiJw+PBhE0dFlUIZW0oBQNKDoRfYUoqIyPKwJiVVXk+R3LDkhojIcjG5ocpJUQTcuax6XobbUkmZ7J2YiMhSMbmhyin9OqAsBGwcADfD+i4SQqhLbnhbiojI8pi9zg1RmahvSdUCpNo5ulIpkJiZByGE1rzM+0UoKFJ1J+Dtyg78iIgsDZMbqpxSHwzRUUJ9m1Frj+GP8ymlbsLTWQ47G1mpyxARUeXD5IYqp+sHVX/9GmvNupdTgNgLqsTGzkb3nVeJBOjbrJrJwiMiIvNhckOVT1E+cG2/6nlIF63ZBy6nQQigro8Ldr7boZyDIyIic2OFYqp8bvwDFOaqhl3wqa81+++LaQCA9rU9yzsyIiKqAJjcUOVz+U/V35BOqvtLjxBC4O/4VABA+zpe5R0ZERFVAExuqPJRJzedtWel5uB2Rh7kMilaBVcp58CIiKgiYHJDlUtOGpB4WvW85jNas/c/KLVpWcMDDnK2hCIiskZMbqhyubJX9denAeDiqzX77/ji+ja8JUVEZK2Y3FDlcnmP6m9IJ61ZBUVKHLpyBwArExMRWTMmN1R5CFFqfZsTCfeQW6CAp7McYb6u5RwcERFVFExuqPJIjQOybgM29kD1CK3Zxa2k2tXyhFQq0ZpPRETWgckNVR7FpTZBbQBb7dG8Wd+GiIgAJjdUmZRyS+puTgHO3MoAwPo2RETWjskNVQ6PDrlQU7sy8YFLqiEXQn1d4O1qX87BERFRRcLkhiqHhMNA0f2Sh1x4pL4NERFZNyY3VDk8ektKx5AL+4vr23DIBSIiq8fkhiqHK8X925Qy5IINh1wgIiImN1QZPGHIheJbUq2Cq3DIBSIiYnJDlYB6yIWGgIuP1uyHTcBZ34aIiJjcUGWgrm+j3Uoqv0iBQ5eLh1xgfRsiImJyQxXdk4ZcuJ6O+4UKeDrbIdTXpZyDIyKiiojJDVVsqReArMQnDrnQvjaHXCAiIhUmN1SxaQy5oN05H+vbEBHR45jcUMX2hCEX/rutGnKBnfcREVExJjdUcRXlA9cOqJ7rSG445AIREenC5IYqruIhF5x9AO96WrMfrW9DRERUjMkNVVxPGHLhYX0bNgEnIqKHbMwdAFkxIYDMW4BQ6pytjN8NKYA7vm1x/16uxrwbd+8jsXjIhRoccoGIiB4qU3JTVFSEvXv34vLlyxg0aBBcXFxw+/ZtuLq6wtnZ2dgxkqX6ZTRw6vsSZxcXK0b+IkPaL3t0LhNeowrsbTnkAhERPWRwcnP9+nV069YNCQkJyM/Px7PPPgsXFxfMnTsX+fn5WLZsmSniJEujKATOblE9l9lp3XZSKAUKFUr8qoxAlo0H7HRswt5WhldbB5k8VCIiqlwMTm7Gjh2LFi1a4PTp06hatap6eu/evTFy5EijBkcWLPE0UJgDOHgA468AUs3qXzN++Q9rDl3H0IggxL3UwExBEhFRZWRwcvP333/j4MGDkMvlGtODg4Nx69YtowVGFu7a36q/QW21EhsAOHzlLgAgvGZVrXlERESlMbi1lFKphEKh0Jp+8+ZNuLhwbB/SU3H/NUFttWbdzSlAXHIWALCyMBERGczg5Oa5555DTEyM+rVEIkF2djamTp2KF154wZixkaVSFKn6sAGA4HZas49cVZXa1PZ2hqezrto2REREJTP4ttT8+fPRrVs31KtXD3l5eRg0aBDi4+Ph6emJH3/80RQxkqVJ+hcoyALs3QCf+lqz/7l6BwAQXpOlNkREZDiDk5vAwECcPn0a69evx+nTp5GdnY3XX38dgwcPhoODgyliJEtzbb/qb/U2gFS7Gfc/xfVtarC+DRERGc6g5KawsBChoaH47bffMHjwYAwePNhUcZElu/6gvk2wdn2bjNxCnE/KBMCSGyIiKhuD6tzY2toiLy/PVLGQNVAqgOuHVM91VCY+cu0uhABqejrB24WDYRIRkeEMrlA8evRozJ07F0VFRaaIhyxd8n9AfgYgdwF8G2nN/udKcX0b3pIiIqKyMbjOzdGjRxEbG4tdu3ahYcOGcHJy0pi/adMmowVHFqi4vk1QBCDTvvz+edBSqjVvSRERURkZnNy4u7ujb9++poiFrEEp/dtk5hXi7O0MAKxMTEREZWdwcrNq1SpTxEHWQKkEEg6qnuvo3+bYtbtQCiCoqiN83VjfhoiIyqZMo4IDQGpqKuLi4gAAdevWhZeXl9GCIguVcg64fw+wdQL8GmvNftgEnLekiIio7AyuUJyTk4MRI0bAz88PHTp0QIcOHeDv74/XX38dubm5poiRLIW6f5twQGarNfuwur4Nb0kREVHZGZzcREdHY9++ffj111+Rnp6O9PR0/PLLL9i3bx/ee+89U8RIluL6g+RGxy2p7Pwi/HfrQX0bJjdERPQUDL4ttXHjRvz888945pln1NNeeOEFODg4oH///vjyyy+NGR9ZCiGA6w/q2wTprm+jUApU83BAgDt7uiYiorIzuOQmNzcXPj4+WtO9vb15W4pKlnoByL0D2DgA/k21Zhc3AWcrKSIieloGJzcRERGYOnWqRk/F9+/fx/Tp0xEREWHU4MiCFNe3CWwF2Mi1Zj/svI+ViYmI6OkYfFvq888/R2RkJKpVq4bGjVUtXk6fPg17e3vs3LnT6AGShbhWcn2b3IIi/HtTVd8mgvVtiIjoKRmc3DRo0ADx8fH4/vvvceHCBQDAwIEDOSo4lUyIRwbL1E5uTlxPR5FSwN/NHtU8eA0REdHTKVM/N46Ojhg5cqSxYyFLlRYP5KQCNvZAQHOt2YcfGU9KIpGUd3RERGRhDK5zM2fOHKxcuVJr+sqVKzF37lyjBEUW5trfqr/VWgI2dlqz/7n6ILlh531ERGQEBic3y5cvR2hoqNb0+vXrY9myZUYJiizM9ZLHk8orVOD0DfZvQ0RExmNwcpOUlAQ/Pz+t6V5eXkhMTDRKUGRBhHg4WGawdnJzIuEeChRK+LjaIbiqYzkHR0RElsjg5CYwMBAHDhzQmn7gwAH4+/sbJSiyIHevANlJgEyuui31mIfjSbG+DRERGYfBFYpHjhyJd955B4WFhejcuTMAIDY2Fu+//z6HXyBtxfVtAloAttotoQ6zfxsiIjIyg5Ob8ePH486dO3j77bdRUFAAALC3t8cHH3yAiRMnGj1AquRKuSWVV6jAyRvpANgzMRERGY/ByY1EIsHcuXMxefJknD9/Hg4ODqhduzbs7LRbwZCVe7R/Gx2ViU/fSEdBkRKeznYI8XIq5+CIiMhSlamfGwBwdnZGy5Ytcf36dVy+fBmhoaGQSg2uwkOW7N41IPMWhNQG8fJ6EElZGrN3nk0GoLolxfo2RERkLHonNytXrkR6ejqio6PV00aNGoVvvvkGAFC3bl3s3LkTgYGBxo+SKqVzh35HPQDHi2ri5SXHSlyuNfu3ISIiI9K7qOWrr76Ch4eH+vWOHTuwatUqfPvttzh69Cjc3d0xffp0kwRJlVP2JdUtqdOSUHg6y3U+6vm54vmG2l0LEBERlZXeJTfx8fFo0aKF+vUvv/yCl156CYMHDwYAzJ49G8OHDzd+hFRpeWf8CwBo1jYSx5571szREBGRtdC75Ob+/ftwdXVVvz548CA6dOigfl2zZk0kJSUZNzqqtDLT76C64gYAILBRRzNHQ0RE1kTv5CYoKAjHjx8HAKSlpeHs2bNo2/ZhC5ikpCS4ubkZP0KqlK7/uw9SicBtiQ88fVkPi4iIyo/eyc3QoUMxevRozJw5E/369UNoaCiaN384wvPBgwfRoEGDMgWxZMkSBAcHw97eHuHh4Thy5Ihe661btw4SiQS9evUq037JdHIuHQIA3HZpaOZIiIjI2uid3Lz//vsYOXIkNm3aBHt7e/z0008a8w8cOICBAwcaHMD69esRHR2NqVOn4sSJE2jcuDEiIyORkpJS6nrXrl3DuHHj0L59e4P3SabnmHICAKDwb/GEJYmIiIxLIoQQ5gwgPDwcLVu2xOLFiwEASqUSgYGB+L//+z9MmDBB5zoKhQIdOnTAiBEj8PfffyM9PR1btmzRa3+ZmZlwc3NDRkaGRh0iMh6lQoHsmdXgilzE9/oNtZswASUioqdjyPe3WXvdKygowPHjx9G1a1f1NKlUiq5du+LQoUMlrjdjxgx4e3vj9ddff+I+8vPzkZmZqfEg07oRfxquyMV9IUdwvVbmDoeIiKyMWZObtLQ0KBQK+Pj4aEz38fEpseXV/v378c0332DFihV67WPOnDlwc3NTP9jJoOmlnFMNlnnVri5s5RyWg4iIylelGi8hKysLr732GlasWAFPT0+91pk4cSIyMjLUjxs3bpg4ShI3VBXCM6s2MW8gRERklco8tpQxeHp6QiaTITk5WWN6cnIyfH19tZa/fPkyrl27hh49eqinKZVKAICNjQ3i4uIQEhKisY6dnR0H9SxnxZ332dVobeZIiIjIGpm15EYul6N58+aIjY1VT1MqlYiNjUVERITW8qGhoThz5gxOnTqlfvTs2ROdOnXCqVOneMupAmDnfUREZG5GK7m5ceMGpk6dipUrVxq0XnR0NIYOHYoWLVqgVatWiImJQU5OjnoohyFDhiAgIABz5syBvb29Vl867u7uAFDmPnbIuK7/uw8NH3Te58/O+4iIyAyMltzcvXsXa9asMTi5GTBgAFJTUzFlyhQkJSWhSZMm2LFjh7qScUJCAqTSSlU1yKo92nmfv5ljISIi66R3crN169ZS51+5cqXMQURFRSEqKkrnvL1795a67urVq8u8XzI+dt5HRETmpndy06tXL0gkEpTW559EIjFKUFQ5KRUKBOedBwBUCW1n5miIiMha6X2/x8/PD5s2bYJSqdT5OHHihCnjpEpA1XlfDjvvIyIis9I7uWnevLl6VHBdnlSqQ5aPnfcREVFFoPdtqfHjxyMnJ6fE+bVq1cKePXuMEhRVTsWd92VUbWrmSIiIyJrpndw8afRtJycndOzIfk2sWXHnffY1ws0cCRERWTO9b0tduXKFt52oRI923le9MZNcIiIyH72Tm9q1ayM1NVX9esCAAVrDJpD1uv7vPkgfdN5X1Yed9xERkfnondw8Xmqzffv2UuvgkHV5tPM+IiIic2LXv2QUjiknAbDzPiIiMj+9kxuJRKLVSR877SOguPO+cwDYeR8REZmf3q2lhBAYNmwY7OxU/Zfk5eXhrbfegpOTk8ZymzZtMm6EVOHdiD+NIHbeR0REFYTeyc3QoUM1Xr/66qtGD4Yqp5RzfyMIqs776rHzPiIiMjO9k5tVq1aZMg6qxNh5HxERVSSsUExPjZ33ERFRRcLkhp6KZud9z5g3GCIiIjC5oadU3HnfLYkPqvpUM3c4RERETG7o6WRfOgwASGTnfUREVEEwuaGn4pRyAgA77yMioopD79ZSZJnuptxCwqoRcCy8W6b16xZeBSTsvI+IiCoOJjdW7tLfG9Dq/uGyb0ACpMGdnfcREVGFweTGyikykwAA/9q3gLLlyDJtw69uS9iy8z4iIqogmNxYOWlOCgAgp2pDRHR5xczREBERPT1WKLZytvdTAQBSFx8zR0JERGQcTG6snGPBHQCArZuvmSMhIiIyDiY3Vs65SNVKyqGKv5kjISIiMg4mN1auivIeAMClaoCZIyEiIjIOJjdWLCcrHY6SfACAB4dOICIiC8HkxordS74JAMgVdnBycTdvMEREREbC5MaKZd25BQC4K/UwcyRERETGw+TGit2/exsAkGVTxcyREBERGQ+TGytWmKHqnfi+3NPMkRARERkPkxsrpsxKBgAUOjC5ISIiy8HkxorJclVDLyidvM0cCRERkfEwubFidnlpAACZK3snJiIiy8HkxooVD70gd/czcyRERETGw+TGirkpVEMvOHHoBSIisiBMbqyUUqGAh8gAALh6cegFIiKyHExurFTG3RTYShQAAA8mN0REZEGY3Fip9FTV0Av34AK5nb2ZoyEiIjIeJjdWKjtN1TtxBodeICIiC8Pkxkrlp6uSm2xbDr1ARESWhcmNlSrKVA29kGfH3omJiMiyMLmxVg+GXihy8DJzIERERMbF5MZK2dxPVT1x5tALRERkWZjcWCn7fA69QERElonJjZVyLlT1TmzvwaEXiIjIsjC5sVJuynsAAOeqHHqBiIgsC5MbK1RYkA8PZAEA3LyqmTkaIiIi42JyY4Xupar6uCkSUrhXZZ0bIiKyLExurFDGg6EX7krcIZXJzBwNERGRcTG5sUK5d28BADJlHHqBiIgsD5MbK5R/T9U7cY68qpkjISIiMj4mN1ZIkaVKbvI59AIREVkgJjdWSJqdAgBQOLF3YiIisjxMbqyQbZ5q6AWJs4+ZIyEiIjI+JjdWyCH/DgDA1o29ExMRkeVhcmOFXIpUQy84VGFyQ0RElofJjRXyeDD0gotngJkjISIiMj4mN1YmJysdTpI8AICHN4deICIiy8Pkxsqkp6o68MsVdnBydjNzNERERMbH5MbKZD1Ibu5J3SGR8t9PRESWh99uVib3nmrQzCwb9k5MRESWicmNlSnMUPVOnMuhF4iIyEIxubEyyqxkAEChg5eZIyEiIjINJjdWRpajGnpByaEXiIjIQjG5sTLyvDQAgNSZyQ0REVkmJjdWxqlQNfSCnTt7JyYiIstUIZKbJUuWIDg4GPb29ggPD8eRI0dKXHbFihVo3749PDw84OHhga5du5a6PGlyfTD0gmNVfzNHQkREZBpmT27Wr1+P6OhoTJ06FSdOnEDjxo0RGRmJlJQUncvv3bsXAwcOxJ49e3Do0CEEBgbiueeew61bt8o58spHqVDAQ6QDAFw59AIREVkoiRBCmDOA8PBwtGzZEosXLwYAKJVKBAYG4v/+7/8wYcKEJ66vUCjg4eGBxYsXY8iQIU9cPjMzE25ubsjIyICrq+tTx1+ZpKclwX1xXQBA/oRE2Nk7mjkiIiIi/Rjy/W3WkpuCggIcP34cXbt2VU+TSqXo2rUrDh06pNc2cnNzUVhYiCpVqpgqTIuRnnoTAJABJyY2RERksWzMufO0tDQoFAr4+PhoTPfx8cGFCxf02sYHH3wAf39/jQTpUfn5+cjPz1e/zszMLHvAlVx2murWXbq0CjiqFBERWSqz17l5Gp988gnWrVuHzZs3w97eXucyc+bMgZubm/oRGBhYzlFWHHn3EgEA2TYs5SIiIstl1uTG09MTMpkMycnJGtOTk5Ph6+tb6rrz58/HJ598gl27dqFRo0YlLjdx4kRkZGSoHzdu3DBK7JVR0YPeie/beZo5EiIiItMxa3Ijl8vRvHlzxMbGqqcplUrExsYiIiKixPU+/fRTzJw5Ezt27ECLFi1K3YednR1cXV01HlbrQXJT5MihF4iIyHKZtc4NAERHR2Po0KFo0aIFWrVqhZiYGOTk5GD48OEAgCFDhiAgIABz5swBAMydOxdTpkzBDz/8gODgYCQlqQaCdHZ2hrOzs9mOozKQ3U9VPeHQC0REZMHMntwMGDAAqampmDJlCpKSktCkSRPs2LFDXck4ISEBUunDAqYvv/wSBQUFePnllzW2M3XqVEybNq08Q6907B8MvSBzLf2WHxERUWVm9uQGAKKiohAVFaVz3t69ezVeX7t2zfQBWSjnQlXvxPYeHHqBiIgsV6VuLUWGcVOqkhunquydmIiILBeTGytRWJAPd5EFAHDzYnJDRESWi8mNlUhPS4RUIlAkpHCvyjo3RERkuZjcWImMB0Mv3JO4QWZTIapaERERmQSTGyuRc+c2ACBDxt6JiYjIsjG5sRIF6aqhF3JsmdwQEZFlY3JjJRSZqt6J8+3ZOzEREVk2JjdWQpKjSm4UHHqBiIgsHJMbK2H7YOgFiYuPmSMhIiIyLSY3VsI+/w4AwNaNzcCJiMiyMbmxEi5Fqt6JHTz8zRwJERGRaTG5sRIeynsAAOeqHFeKiIgsG5MbK5CbnQFnyX0AgLt3oJmjISIiMi0mN1bgXoqqA788YQsXVw8zR0NERGRaTG6sQFaaauiFu1IPSKT8lxMRkWXjN50VuH9PVXKTxaEXiIjICjC5sQIF6UkAgFx5VTNHQkREZHpMbqyAyFL1TlzgwN6JiYjI8jG5sQLS3BQAgNLJ28yREBERmR6TGysgz0sDAEg59AIREVkBJjdWwLFANfSCnEMvEBGRFbAxdwBkHGlJCSjMv69znnuRquTGsQqHXiAiIsvH5MYCHPp2MiKufPHE5Vy9AsohGiIiIvNicmMB3G7uAQAUCBmUJdxpjLdvgPrVapVnWERERGbB5MYC+BQkAACu9/4FtZu017lMw/IMiIiIyIxYobiSy7iTjKrIAAD4hzCFISIiYnJTySVeOQMASEZVOLm4mzcYIiKiCoDJTSWXefMcACDFrrqZIyEiIqoYmNxUcoqUOABArktNM0dCRERUMTC5qeTsM66onnjWNm8gREREFQSTm0quat51AICjfz0zR0JERFQxMLmpxAoL8uGnSAIAeNdsYOZoiIiIKgYmN5XY7avnYStRIFfYwdu/hrnDISIiqhCY3FRid6//BwC4ZRMIiZT/SiIiIoDJTaWWl3geAJDhFGzeQIiIiCoQDr9QidncvQQAKPTgmFFEpD+FQoHCwkJzh0GkRS6XQ2qEOxFMbiox15yrAAA731AzR0JElYEQAklJSUhPTzd3KEQ6SaVS1KhRA3K5/Km2w+SmkhJKJfyKbgAAPILYUoqInqw4sfH29oajoyMkEom5QyJSUyqVuH37NhITE1G9evWnuj6Z3FRSd1JuwhO5UAgJ/GqwjxsiKp1CoVAnNlWrVjV3OEQ6eXl54fbt2ygqKoKtrW2Zt8MKxZVU8mXVgJmJUh/YOziZORoiquiK69g4OjqaORKikhXfjlIoFE+1HSY3lVT2LdWAmXfsg8wcCRFVJrwVRRWZsa5PJjeVlEi7CAC478oBM4mIiB7F5KaScsxUDZgp9apj5kiIiEzrmWeewTvvvPPU29myZQtq1aoFmUxmlO0Z6quvvkJgYCCkUiliYmIwbdo0NGnSpNzjKKvVq1fD3d3d3GHohclNJeWZnwAAcK7GysRERPp488038fLLL+PGjRuYOXNmue47MzMTUVFR+OCDD3Dr1i2MGjUK48aNQ2xsrFH3Y8oEZMCAAbh48aJJtm1sbC1VCd3PyYKvMhWQAL41G5o7HCKiCi87OxspKSmIjIyEv79/mbdTUFBQpj5YEhISUFhYiO7du8PPz0893dnZucyxlDcHBwc4ODiYOwy9sOSmErp95SykEoF0OMPD0+/JKxAR6SCEQG5BkVkeQgiDYi0qKkJUVBTc3Nzg6emJyZMna2wjPz8f48aNQ0BAAJycnBAeHo69e/cCAPbu3QsXFxcAQOfOnSGRSNTzNm7ciPr168POzg7BwcFYsGCBxn6Dg4Mxc+ZMDBkyBK6urhg1ahQAYP/+/Wjfvj0cHBwQGBiIMWPGICcnR2fsq1evRsOGqh+iNWvWhEQiwbVr17RuSw0bNgy9evXC/Pnz4efnh6pVq2L06NEavUk/6TiHDx+OjIwMSCQSSCQSTJs2DYCqou6WLVs04nJ3d8fq1asBANeuXYNEIsGmTZvQqVMnODo6onHjxjh06JDGcTxaKlQc/9q1axEcHAw3Nze88soryMrKUi+TlZWFwYMHw8nJCX5+fvjss8+MdpuxNCy5qYTSE1QDZibZVoc7B8wkojK6X6hAvSk7zbLvczMi4SjX/ytozZo1eP3113HkyBEcO3YMo0aNQvXq1TFy5EgAQFRUFM6dO4d169bB398fmzdvRrdu3XDmzBm0adMGcXFxqFu3LjZu3Ig2bdqgSpUqOH78OPr3749p06ZhwIABOHjwIN5++21UrVoVw4YNU+97/vz5mDJlCqZOnQoAuHz5Mrp164ZZs2Zh5cqVSE1NRVRUFKKiorBq1Sqt2AcMGIDAwEB07doVR44cQWBgILy8vHQe5549e+Dn54c9e/bg0qVLGDBgAJo0aaL3ccbExGDKlCmIi4sDYHjJ0KRJkzB//nzUrl0bkyZNwsCBA3Hp0iXY2Oj+X12+fBlbtmzBb7/9hnv37qF///745JNP8PHHHwMAoqOjceDAAWzduhU+Pj6YMmUKTpw4YfK6RkxuKqGCZNVFm8kBM4nISgQGBuKzzz6DRCJB3bp1cebMGXz22WcYOXIkEhISsGrVKiQkJKhvOY0bNw47duzAqlWrMHv2bHh7ewMAqlSpAl9fXwDAwoUL0aVLF0yePBkAUKdOHZw7dw7z5s3TSG46d+6M9957T/36jTfewODBg9WlD7Vr18YXX3yBjh074ssvv4S9vb1G7A4ODuqOE728vNT718XDwwOLFy+GTCZDaGgounfvjtjYWL2P083NDRKJpNR9lGbcuHHo3r07AGD69OmoX78+Ll26hNBQ3cP8KJVKrF69Wl0y9tprryE2NhYff/wxsrKysGbNGvzwww/o0qULAGDVqlVPdVtQX0xuKiH5PdWAmcqqtc0cCRFVZg62MpybEWm2fRuidevWGn2gREREYMGCBVAoFDhz5gwUCgXq1NFsPZqfn19qb8znz5/HSy+9pDGtbdu2iImJgUKhgEymirFFixYay5w+fRr//vsvvv/+e/U0IQSUSiWuXr2KsLAwg47tUfXr11fvFwD8/Pxw5oyq09ayHqchGjVqpLFvAEhJSSkxuQkODlYnNsXrpKSkAACuXLmCwsJCtGrVSj3fzc0NdevWNUqspWFyUwm5514DANj7lf0NREQkkUgMujVUUWVnZ0Mmk+H48eMaiQFgnAq7Tk6avcBnZ2fjzTffxJgxY7SWrV69+lPt6/EhByQSCZRKpXq/ZT1OiUSiVc9J18jwj+6/OJks3r+h8ZpT5b+qrYxSoYB/0U1AAlQN5oCZRGQd/vnnH43Xhw8fRu3atSGTydC0aVMoFAqkpKSgffv2em8zLCwMBw4c0Jh24MAB1KlTRyt5eFSzZs1w7tw51KpVy7CDeEr6HKdcLtc5dIGXlxcSExPVr+Pj45Gbm2uyWAFV5WlbW1scPXpUnfRlZGTg4sWL6NChg0n3zdqolUzyzUtwkBSgQMjgF2T6oj0iooogISEB0dHRiIuLw48//ohFixZh7NixAFR1ZQYPHowhQ4Zg06ZNuHr1Ko4cOYI5c+Zg27ZtJW7zvffeQ2xsLGbOnImLFy9izZo1WLx4McaNG1dqLB988AEOHjyIqKgonDp1CvHx8fjll18QFRVl1GN+nD7HGRwcjOzsbMTGxiItLU2dwHTu3BmLFy/GyZMncezYMbz11ltPNTClPlxcXDB06FCMHz8ee/bswdmzZ/H6669DKpWafBgQJjeVTOpVVUup2zJ/2Nga3tcCEVFlNGTIENy/fx+tWrXC6NGjMXbsWHWzbEBVUXXIkCF47733ULduXfTq1UujxECXZs2aYcOGDVi3bh0aNGiAKVOmYMaMGRqViXVp1KgR9u3bh4sXL6J9+/Zo2rQppkyZUi4VZZ90nG3atMFbb72FAQMGwMvLC59++ikAYMGCBQgMDET79u0xaNAgjBs3rlwGUV24cCEiIiLw4osvomvXrmjbti3CwsK0Kl0bm0QY2tlAJZeZmQk3NzdkZGTA1dXV3OEY7PAPs9D64jyccGqPZuN/M3c4RFRJ5OXl4erVq6hRo4bJv1iISpKTk4OAgAAsWLAAr7/+utb80q5TQ76/WeemkpHciQcA5LuHmDkSIiKi0p08eRIXLlxAq1atkJGRgRkzZgCAVis1Y2NyU8k4Z6kGzLThgJlERFQJzJ8/H3FxcZDL5WjevDn+/vtveHp6mnSfTG4qGe+CGwAAt+r1zRwJERFR6Zo2bYrjx4+X+35ZobgSyUy/Ay/cA8ABM4mIiErC5KYSSbqi6qUyFR5wdTdOb5RERESWhslNJZKRcBYAkCJ/uh4wiYiILBmTm0qkKEU1YGa2Sw0zR0JERFRxMbmpROwzLgMAhCdbShEREZWEyU0lUuX+dQCAkz8HzCQietSFCxfQunVr2Nvbo0mTJuWyzwMHDqBhw4awtbVFr169sHfvXkgkEqSnp5fL/p/WtWvXIJFIcOrUKXOHYnRMbiqJwoJ8+CluAwC8arClFBHRo6ZOnQonJyfExcUhNjYWq1evhru7u0n3GR0djSZNmuDq1atYvXo12rRpg8TERLi5uRltH6ZMQAIDA5GYmIgGDSxvEGYmN5VE0vULkEsUyBV28A6oae5wiIgqlMuXL6Ndu3YICgpC1arGa02qUCigVCpL3Gfnzp1RrVo1uLu7Qy6Xw9fX1+SDQhqLTCaDr68vbGwsr8s7JjeVxJ1rqpZSt22qQSqTmTkaIqLys2PHDrRr1w7u7u6oWrUqXnzxRVy+fFk9XyKR4Pjx45gxYwYkEgmeeeYZDB8+HBkZGZBIJJBIJJg2bRoAID8/H+PGjUNAQACcnJwQHh6OvXv3qrdVXOKzdetW1KtXD3Z2dkhISNCIp7g05c6dOxgxYgQkEglWr16tdVuqeFs7d+5EWFgYnJ2d0a1bNyQmJmps7+uvv1YPJhkaGoqlS5eq59WooWpA0rRpU/WxAcAzzzyDd955R2M7vXr10hj0Mzg4GLNnz8aIESPg4uKC6tWr46uvvtI6juJSoeL4Y2Nj0aJFCzg6OqJNmzaIi4vT2M+sWbPg7e0NFxcXvPHGG5gwYUK53QrUF5ObSiIv8TwAIN0x2LyBEJHlEAIoyDHPw4Axm3NychAdHY1jx44hNjYWUqkUvXv3VpeoJCYmon79+njvvfeQmJiIrVu3IiYmBq6urkhMTERiYiLGjRsHAIiKisKhQ4ewbt06/Pvvv+jXrx+6deuG+Ph49f5yc3Mxd+5cfP311zh79iy8vb014im+nePq6oqYmBgkJiZiwIABOmPPzc3F/PnzsXbtWvz1119ISEhQxwIA33//PaZMmYKPP/4Y58+fx+zZszF58mSsWbMGAHDkyBEAwB9//IHExERs2rRJ7/MGqEYDb9GiBU6ePIm3334b//vf/7SSlcdNmjQJCxYswLFjx2BjY4MRI0ZoxPvxxx9j7ty5OH78OKpXr44vv/zSoJjKg+WVRVko6d1LAIBCj1pmjoSILEZhLjDb3zz7/vA2IHfSa9G+fftqvF65ciW8vLxw7tw5NGjQQH1rxdnZGb6+vgAANzc3SCQS9WsASEhIwKpVq5CQkAB/f9Vxjxs3Djt27MCqVaswe/ZsAEBhYSGWLl2Kxo0b64yn+HaORCKBm5ubxj4eV1hYiGXLliEkRDXYcVRUlHrwSEBVV2jBggXo06cPAFVJzblz57B8+XIMHToUXl5eAICqVauWup+SvPDCC3j77bcBAB988AE+++wz7NmzB3Xr1i1xnY8//hgdO3YEAEyYMAHdu3dHXl4e7O3tsWjRIrz++usYPnw4AGDKlCnYtWsXsrOzDY7NlCpEyc2SJUsQHBwMe3t7hIeHqzPVkvz0008IDQ2Fvb09GjZsiO3bt5dTpObjmn0VACD3YTNwIrIu8fHxGDhwIGrWrAlXV1cEBwcDgNbtoic5c+YMFAoF6tSpA2dnZ/Vj3759Gre55HI5GjVqZJTYHR0d1YkNAPj5+SElJQWAqkTq8uXLeP311zXimTVrlkY8T+PR4yhO9or3r886fn5+AKBeJy4uDq1atdJY/vHXFYHZS27Wr1+P6OhoLFu2DOHh4YiJiUFkZCTi4uK0igIB4ODBgxg4cCDmzJmDF198ET/88AN69eqFEydOWGSNbwAQSiX8ilRvYvfqlnmMRGQGto6qEhRz7VtPPXr0QFBQEFasWAF/f38olUo0aNAABQUFBu0yOzsbMpkMx48fh+yxuovOzs7q5w4ODkarFGxra6vxWiKRQDy4JVdc2rFixQqEh4drLPd4fI+TSqXq7RQrLCzUa/8lVZDWtU7xeXjSOhWN2ZObhQsXYuTIkeoirmXLlmHbtm1YuXIlJkyYoLX8559/jm7dumH8+PEAgJkzZ2L37t1YvHgxli1bVq6xPyo/Lxd3k2+YZNu5GXcQghwohQT+NTkaOBEZiUSi960hc7lz5w7i4uKwYsUKtG/fHgCwf//+J64nl8uhUCg0pjVt2hQKhQIpKSnqbZmTj48P/P39ceXKFQwePFjnMnK5HAC0jsXLy0ujYrJCocB///2HTp06mS5gAHXr1sXRo0cxZMgQ9bSjR4+adJ9lYdbkpqCgAMePH8fEiRPV06RSKbp27YpDhw7pXOfQoUOIjo7WmBYZGYktW7boXD4/Px/5+fnq15mZmU8fuA5X/zuE0N/6mGTbxZKkXvB3cjHpPoiIKhIPDw9UrVoVX331Ffz8/JCQkKDzh+/jgoODkZ2djdjYWDRu3BiOjo6oU6cOBg8ejCFDhmDBggVo2rQpUlNTERsbi0aNGqF79+7lcESapk+fjjFjxsDNzQ3dunVDfn4+jh07hnv37iE6Ohre3t5wcHDAjh07UK1aNdjb28PNzQ2dO3dGdHQ0tm3bhpCQECxcuLBcOg/8v//7P4wcORItWrRAmzZtsH79evz777+oWbNidVFi1jo3aWlpUCgU8PHx0Zju4+ODpKQkneskJSUZtPycOXPg5uamfgQGBhon+MdIIEGesDXZI1fY4Xp10yZPREQVjVQqxbp163D8+HE0aNAA7777LubNm/fE9dq0aYO33noLAwYMgJeXFz799FMAwKpVqzBkyBC89957qFu3Lnr16oWjR4+ienXzDEj8xhtv4Ouvv8aqVavQsGFDdOzYEatXr1Y3AbexscEXX3yB5cuXw9/fHy+99BIAYMSIERg6dCiGDBmCjh07ombNmiYvtQGAwYMHY+LEiRg3bhyaNWuGq1evYtiwYbC3tzf5vg0hEY/ftCtHt2/fRkBAAA4ePIiIiAj19Pfffx/79u3DP//8o7WOXC7HmjVrMHDgQPW0pUuXYvr06UhOTtZaXlfJTWBgIDIyMuDq6mrkIyIiqpjy8vJw9epV1KhRo8J9EVHl9uyzz8LX1xdr16596m2Vdp1mZmbCzc1Nr+9vs96W8vT0hEwm00pKkpOTS2zy5uvra9DydnZ2sLOzM07AREREViw3NxfLli1DZGQkZDIZfvzxR/zxxx/YvXu3uUPTYNbbUnK5HM2bN0dsbKx6mlKpRGxsrEZJzqMiIiI0lgeA3bt3l7g8ERERGYdEIsH27dvRoUMHNG/eHL/++is2btyIrl27mjs0DWZvLRUdHY2hQ4eiRYsWaNWqFWJiYpCTk6NuPTVkyBAEBARgzpw5AICxY8eiY8eOWLBgAbp3745169bh2LFjGl1KExERkfE5ODjgjz/+MHcYT2T25GbAgAFITU3FlClTkJSUhCZNmmDHjh3qSsMJCQmQSh8WMLVp0wY//PADPvroI3z44YeoXbs2tmzZYrF93BAREZFhzFqh2BwMqZBERGQpWKGYKgNjVSiuEMMvEBFR+bCy37NUyRjr+mRyQ0RkBYq71M/NzTVzJEQlKx5S40nDTzyJ2evcEBGR6clkMri7u6sHQHR0dDTa+ElExqBUKpGamgpHR0fY2DxdesLkhojIShT3B/akUaGJzEUqlaJ69epPnXgzuSEishISiQR+fn7w9vbWOYI0kbnJ5XKNFtJlxeSGiMjKyGSyp67TQFSRsUIxERERWRQmN0RERGRRmNwQERGRRbG6OjfFHQRlZmaaORIiIiLSV/H3tj4d/VldcpOVlQUACAwMNHMkREREZKisrCy4ubmVuozVjS2lVCpx+/ZtuLi4GNyOPjMzE4GBgbhx4wbHpdITz5lheL4Mw/NlOJ4zw/B8Gc5U50wIgaysLPj7+z+xubjVldxIpVJUq1btqbbh6urKi9xAPGeG4fkyDM+X4XjODMPzZThTnLMnldgUY4ViIiIisihMboiIiMiiMLkxgJ2dHaZOnQo7Oztzh1Jp8JwZhufLMDxfhuM5MwzPl+EqwjmzugrFREREZNlYckNEREQWhckNERERWRQmN0RERGRRmNwQERGRRWFy85glS5YgODgY9vb2CA8Px5EjR0pd/qeffkJoaCjs7e3RsGFDbN++vZwirRgMOV9nz55F3759ERwcDIlEgpiYmPILtAIx5JytWLEC7du3h4eHBzw8PNC1a9cnXpOWxpDztWnTJrRo0QLu7u5wcnJCkyZNsHbt2nKMtmIw9HOs2Lp16yCRSNCrVy/TBljBGHK+Vq9eDYlEovGwt7cvx2grBkOvsfT0dIwePRp+fn6ws7NDnTp1TPt9KUht3bp1Qi6Xi5UrV4qzZ8+KkSNHCnd3d5GcnKxz+QMHDgiZTCY+/fRTce7cOfHRRx8JW1tbcebMmXKO3DwMPV9HjhwR48aNEz/++KPw9fUVn332WfkGXAEYes4GDRoklixZIk6ePCnOnz8vhg0bJtzc3MTNmzfLOXLzMPR87dmzR2zatEmcO3dOXLp0ScTExAiZTCZ27NhRzpGbj6HnrNjVq1dFQECAaN++vXjppZfKJ9gKwNDztWrVKuHq6ioSExPVj6SkpHKO2rwMPWf5+fmiRYsW4oUXXhD79+8XV69eFXv37hWnTp0yWYxMbh7RqlUrMXr0aPVrhUIh/P39xZw5c3Qu379/f9G9e3eNaeHh4eLNN980aZwVhaHn61FBQUFWmdw8zTkTQoiioiLh4uIi1qxZY6oQK5SnPV9CCNG0aVPx0UcfmSK8Cqks56yoqEi0adNGfP3112Lo0KFWldwYer5WrVol3Nzcyim6isnQc/bll1+KmjVrioKCgvIKUfC21AMFBQU4fvw4unbtqp4mlUrRtWtXHDp0SOc6hw4d0lgeACIjI0tc3pKU5XxZO2Ocs9zcXBQWFqJKlSqmCrPCeNrzJYRAbGws4uLi0KFDB1OGWmGU9ZzNmDED3t7eeP3118sjzAqjrOcrOzsbQUFBCAwMxEsvvYSzZ8+WR7gVQlnO2datWxEREYHRo0fDx8cHDRo0wOzZs6FQKEwWJ5ObB9LS0qBQKODj46Mx3cfHB0lJSTrXSUpKMmh5S1KW82XtjHHOPvjgA/j7+2sl1ZaorOcrIyMDzs7OkMvl6N69OxYtWoRnn33W1OFWCGU5Z/v378c333yDFStWlEeIFUpZzlfdunWxcuVK/PLLL/juu++gVCrRpk0b3Lx5szxCNruynLMrV67g559/hkKhwPbt2zF58mQsWLAAs2bNMlmcVjcqOFFl9cknn2DdunXYu3evVVZg1JeLiwtOnTqF7OxsxMbGIjo6GjVr1sQzzzxj7tAqnKysLLz22mtYsWIFPD09zR1OpRAREYGIiAj16zZt2iAsLAzLly/HzJkzzRhZxaVUKuHt7Y2vvvoKMpkMzZs3x61btzBv3jxMnTrVJPtkcvOAp6cnZDIZkpOTNaYnJyfD19dX5zq+vr4GLW9JynK+rN3TnLP58+fjk08+wR9//IFGjRqZMswKo6znSyqVolatWgCAJk2a4Pz585gzZ45VJDeGnrPLly/j2rVr6NGjh3qaUqkEANjY2CAuLg4hISGmDdqMjPE5Zmtri6ZNm+LSpUumCLHCKcs58/Pzg62tLWQymXpaWFgYkpKSUFBQALlcbvQ4eVvqAblcjubNmyM2NlY9TalUIjY2ViNLf1RERITG8gCwe/fuEpe3JGU5X9aurOfs008/xcyZM7Fjxw60aNGiPEKtEIx1jSmVSuTn55sixArH0HMWGhqKM2fO4NSpU+pHz5490alTJ5w6dQqBgYHlGX65M8Y1plAocObMGfj5+ZkqzAqlLOesbdu2uHTpkjpxBoCLFy/Cz8/PJIkNADYFf9S6deuEnZ2dWL16tTh37pwYNWqUcHd3Vzfze+2118SECRPUyx84cEDY2NiI+fPni/Pnz4upU6daXVNwQ85Xfn6+OHnypDh58qTw8/MT48aNEydPnhTx8fHmOoRyZ+g5++STT4RcLhc///yzRtPTrKwscx1CuTL0fM2ePVvs2rVLXL58WZw7d07Mnz9f2NjYiBUrVpjrEMqdoefscdbWWsrQ8zV9+nSxc+dOcfnyZXH8+HHxyiuvCHt7e3H27FlzHUK5M/ScJSQkCBcXFxEVFSXi4uLEb7/9Jry9vcWsWbNMFiOTm8csWrRIVK9eXcjlctGqVStx+PBh9byOHTuKoUOHaiy/YcMGUadOHSGXy0X9+vXFtm3byjli8zLkfF29elUA0Hp07Nix/AM3I0POWVBQkM5zNnXq1PIP3EwMOV+TJk0StWrVEvb29sLDw0NERESIdevWmSFq8zL0c+xR1pbcCGHY+XrnnXfUy/r4+IgXXnhBnDhxwgxRm5eh19jBgwdFeHi4sLOzEzVr1hQff/yxKCoqMll8EiGEME2ZEBEREVH5Y50bIiIisihMboiIiMiiMLkhIiIii8LkhoiIiCwKkxsiIiKyKExuiIiIyKIwuSEiIiKLwuSGiMrN3r17IZFIkJ6eXq77Xb16Ndzd3Z9qG9euXYNEIsGpU6dKXMZcx0dEmpjcEJFRSCSSUh/Tpk0zd4hEZCU4KjgRGUViYqL6+fr16zFlyhTExcWppzk7O+PYsWMGb9dUowYTkeViyQ0RGYWvr6/64ebmBolEojHN2dlZvezx48fRokULODo6ok2bNhpJ0LRp09CkSRN8/fXXqFGjBuzt7QEA6enpeOONN+Dl5QVXV1d07twZp0+fVq93+vRpdOrUCS4uLnB1dUXz5s21kqmdO3ciLCwMzs7O6Natm0ZCplQqMWPGDFSrVg12dnZo0qQJduzYUeoxb9++HXXq1IGDgwM6deqEa9euPc0pJCIjYXJDROVu0qRJWLBgAY4dOwYbGxuMGDFCY/6lS5ewceNGbNq0SV3HpV+/fkhJScHvv/+O48ePo1mzZujSpQvu3r0LABg8eDCqVauGo0eP4vjx45gwYQJsbW3V28zNzcX8+fOxdu1a/PXXX0hISMC4cePU8z///HMsWLAA8+fPx7///ovIyEj07NkT8fHxOo/hxo0b6NOnD3r06IFTp07hjTfewIQJE4x8poioTEw2JCcRWa1Vq1YJNzc3rel79uwRAMQff/yhnrZt2zYBQNy/f18IIcTUqVOFra2tSElJUS/z999/C1dXV5GXl6exvZCQELF8+XIhhBAuLi5i9erVJcYDQFy6dEk9bcmSJcLHx0f92t/fX3z88cca67Vs2VK8/fbbQoiHo9qfPHlSCCHExIkTRb169TSW/+CDDwQAce/ePZ1xEFH5YMkNEZW7Ro0aqZ/7+fkBAFJSUtTTgoKC4OXlpX59+vRpZGdno2rVqnB2dlY/rl69isuXLwMAoqOj8cYbb6Br16745JNP1NOLOTo6IiQkRGO/xfvMzMzE7du30bZtW4112rZti/Pnz+s8hvPnzyM8PFxjWkREhN7ngIhMhxWKiajcPXq7SCKRAFDVeSnm5OSksXx2djb8/Pywd+9erW0VN/GeNm0aBg0ahG3btuH333/H1KlTsW7dOvTu3Vtrn8X7FUIY43CIqIJhyQ0RVXjNmjVDUlISbGxsUKtWLY2Hp6enerk6derg3Xffxa5du9CnTx+sWrVKr+27urrC398fBw4c0Jh+4MAB1KtXT+c6YWFhOHLkiMa0w4cPG3hkRGQKTG6IqMLr2rUrIiIi0KtXL+zatQvXrl3DwYMHMWnSJBw7dgz3799HVFQU9u7di+vXr+PAgQM4evQowsLC9N7H+PHjMXfuXKxfvx5xcXGYMGECTp06hbFjx+pc/q233kJ8fDzGjx+PuLg4/PDDD1i9erWRjpiIngZvSxFRhSeRSLB9+3ZMmjQJw4cPR2pqKnx9fdGhQwf4+PhAJpPhzp07GDJkCJKTk+Hp6Yk+ffpg+vTpeu9jzJgxyMjIwHvvvYeUlBTUq1cPW7duRe3atXUuX716dWzcuBHvvvsuFi1ahFatWmH27NlaLb+IqPxJBG86ExERkQXhbSkiIiKyKExuiIiIyKIwuSEiIiKLwuSGiIiILAqTGyIiIrIoTG6IiIjIojC5ISIiIovC5IaIiIgsCpMbIiIisihMboiIiMiiMLkhIiIii8LkhoiIiCzK/wOJU70zlxrBcgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "display_AUC(metrics_before_training, metrics_after_training)\n", + "display_accuracy(metrics_before_training, metrics_after_training)\n", + "display_f1_score(metrics_before_training, metrics_after_training)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Every use case is different\n", + "With vector embeddings we always have to keep in mind there is a tradeoff between true and false positives and negatives. You can cast a wide net with a large threshold and grab many seemingly similar vectors at the risk of getting some irrelevant ones, or you can be conservative and match only highly similar embeddings, and risk missing something important. You can control this tradeoff by selecting the similarity threshold that makes sense for your system.\n", + "\n", + "Where you set this threshold depends on your own use case and system, and your tolerance for different types of errors. Choosing the threshold that maximizes F1 score or accuracy are good places to start. Ultimately you'll want to optimize for your specific use case, and we have a [retrieval optimizer tool](https://github.com/redis-applied-ai/retrieval-optimizer) to help with that when you're ready for the next level of system improvements." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Choosing your threshold\n", + "To get a sense of how the choice of similarity threshold changes cache performance here's an interactive tool that lets you change the threshold and immediately see how the tradeoff between true and false positives and negatives balances out." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics import precision_score, recall_score, f1_score, confusion_matrix, precision_recall_curve\n", + "\n", + "def compute_metrics_at_threshold(\n", + " scores: np.ndarray,\n", + " labels: np.ndarray,\n", + " threshold: float,\n", + " high_score_more_similar: bool = True\n", + "):\n", + " if high_score_more_similar:\n", + " predictions = (scores >= threshold).astype(int)\n", + " else:\n", + " predictions = (scores <= threshold).astype(int)\n", + "\n", + " print(predictions)\n", + " precision = precision_score(labels, predictions)\n", + " recall = recall_score(labels, predictions)\n", + " f1 = f1_score(labels, predictions)\n", + " cm = confusion_matrix(labels, predictions)\n", + "\n", + " return {'precision': precision, 'recall': recall, 'f1_score': f1, 'confusion_matrix': cm}\n" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics.pairwise import cosine_similarity\n", + "\n", + "q1_embeddings = [model.encode(pair['question_1']) for pair in test_dataset]\n", + "q2_embeddings = [model.encode(pair['question_2']) for pair in test_dataset]\n", + "cosine_similarities = np.array([cosine_similarity([emb1], [emb2])[0][0] for emb1, emb2 in zip(q1_embeddings, q2_embeddings)])\n", + "labels = np.array(test_dataset[\"label\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "663bbe8f3bd34492a26b59566de2a926", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(FloatSlider(value=0.8114206194877625, continuous_update=False, description='Cosine Simil…" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import seaborn as sns\n", + "from ipywidgets import FloatSlider, Layout, interact\n", + "from IPython.display import display, HTML\n", + "\n", + "\n", + "def update_plots(threshold):\n", + " # set a pleasing style and update global font sizes\n", + " plt.rcParams.update({'font.size': 16})\n", + "\n", + " metrics = compute_metrics_at_threshold(cosine_similarities, labels, threshold, high_score_more_similar=True)\n", + " precision = metrics['precision']\n", + " recall_val = metrics['recall']\n", + " f1 = metrics['f1_score']\n", + " cm = metrics['confusion_matrix']\n", + "\n", + " precision_curve, recall_curve, pr_thresholds = precision_recall_curve(labels, cosine_similarities)\n", + "\n", + " # clear previous plots\n", + " plt.clf()\n", + "\n", + " # create subplots with a larger figure size for better readability\n", + " fig, axs = plt.subplots(1, 2, figsize=(12, 6))\n", + "\n", + " # Precision-Recall curve plot\n", + " axs[0].plot(recall_curve, precision_curve, color='blue', linewidth=2, label='Precision-Recall Curve')\n", + " axs[0].scatter(recall_val, precision, color='red', s=100, zorder=5,\n", + " label=(f'Threshold = {threshold:.4f}\\n'\n", + " f'Precision = {precision:.2f}\\n'\n", + " f'Recall = {recall_val:.2f}'))\n", + " axs[0].set_title('Precision-Recall Curve', fontsize=20, fontweight='bold')\n", + " axs[0].set_xlabel('Recall', fontsize=18)\n", + " axs[0].set_ylabel('Precision', fontsize=18)\n", + " axs[0].tick_params(axis='both', labelsize=16)\n", + " axs[0].legend(fontsize=14)\n", + " axs[0].grid(True, linestyle='--', alpha=0.7)\n", + "\n", + " # confusion matrix heatmap\n", + " sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', ax=axs[1],\n", + " cbar=True, annot_kws={'size': 16})\n", + " axs[1].set_title('Confusion Matrix', fontsize=20, fontweight='bold')\n", + " axs[1].set_xlabel('Predicted Label', fontsize=18)\n", + " axs[1].set_ylabel('True Label', fontsize=18)\n", + " axs[1].set_xticklabels(['Dissimilar (0)', 'Similar (1)'], fontsize=16)\n", + " axs[1].set_yticklabels(['Dissimilar (0)', 'Similar (1)'], fontsize=16, rotation=0)\n", + "\n", + " # overall figure title with metrics\n", + " fig.suptitle(\n", + " (f'Cosine Similarity Threshold: {threshold:.4f}\\n'\n", + " f'Precision: {precision:.2f}, Recall: {recall_val:.2f}, F1 Score: {f1:.2f}'),\n", + " fontsize=12, fontweight='bold'\n", + " )\n", + "\n", + " plt.tight_layout(rect=[0, 0.03, 1, 0.95])\n", + " plt.show()\n", + "\n", + "# add some CSS to increase the font size for the slider's description and readout\n", + "display(HTML(\"\"\"\n", + "\n", + "\"\"\"))\n", + "\n", + "# add a slider with the new description and custom styling\n", + "threshold_slider = FloatSlider(\n", + " value=np.median(cosine_similarities),\n", + " min=np.min(cosine_similarities),\n", + " max=np.max(cosine_similarities),\n", + " step=0.001,\n", + " description='Cosine Similarity Threshold:',\n", + " readout=True,\n", + " readout_format='.4f',\n", + " continuous_update=False,\n", + " style={'description_width': 'initial'},\n", + " layout=Layout(width='80%', margin='20px 0px 20px 0px')\n", + ")\n", + "\n", + "# add a custom class to the slider for our CSS targeting\n", + "threshold_slider.add_class(\"custom-slider\")\n", + "interact(update_plots, threshold=threshold_slider)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "redis-ai-res", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/python-recipes/gateway/00_litellm_proxy_redis.ipynb b/python-recipes/gateway/00_litellm_proxy_redis.ipynb new file mode 100644 index 00000000..5116a6be --- /dev/null +++ b/python-recipes/gateway/00_litellm_proxy_redis.ipynb @@ -0,0 +1,1347 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "47c3fefa", + "metadata": { + "id": "47c3fefa" + }, + "source": [ + "\n", + "
\n", + " \"Redis\"\n", + " \"LiteLLM\"\n", + "
\n", + "\n", + "# LiteLLM Proxy with Redis\n", + "\n", + "This notebook demonstrates how to use [LiteLLM](https://github.com/BerriAI/litellm) with Redis to build a powerful and efficient LLM proxy server backed by caching & rate limiting capabilities. LiteLLM provides a unified interface for accessing multiple LLM providers while Redis enhances performance of the application in several different ways.\n", + "\n", + "*This recipe will help you understand*:\n", + "\n", + "* **How** to set up LiteLLM as a proxy for different LLM endpoints\n", + "* **Why** and **how** to implement exact and semantic caching for LLM calls\n", + "\n", + "**Open in Colab**\n", + "\n", + "\"Open\n" + ] + }, + { + "cell_type": "markdown", + "id": "06c7b959", + "metadata": { + "id": "06c7b959" + }, + "source": [ + "\n", + "## 1 · Environment Setup \n", + "Before we begin, we need to make sure our environment is properly set up with all the necessary tools and resources.\n", + "\n", + "**Requirements**:\n", + "* Python ≥ 3.9 with the below packages\n", + "* OpenAI API key (set as `OPENAI_API_KEY` environment variable)\n", + "\n", + "\n", + "### Install Python Dependencies\n", + "\n", + "First, let's install the required packages." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "47246c48", + "metadata": { + "id": "47246c48" + }, + "outputs": [], + "source": [ + "%pip install \"litellm[proxy]==1.68.0\" \"redisvl==0.5.2\" requests openai" + ] + }, + { + "cell_type": "markdown", + "id": "redis-setup", + "metadata": { + "id": "redis-setup" + }, + "source": [ + "### Install Redis Stack\n", + "\n", + "\n", + "#### For Colab\n", + "Use the shell script below to download, extract, and install [Redis Stack](https://redis.io/docs/getting-started/install-stack/) directly from the Redis package archive." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0db80601", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0db80601", + "outputId": "e01d1a40-f412-4808-d5f0-4d34fb2204d7" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb jammy main\n", + "Starting redis-stack-server, database path /var/lib/redis-stack\n" + ] + } + ], + "source": [ + "# NBVAL_SKIP\n", + "%%sh\n", + "curl -fsSL https://packages.redis.io/gpg | sudo gpg --dearmor -o /usr/share/keyrings/redis-archive-keyring.gpg\n", + "echo \"deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb $(lsb_release -cs) main\" | sudo tee /etc/apt/sources.list.d/redis.list\n", + "sudo apt-get update > /dev/null 2>&1\n", + "sudo apt-get install redis-stack-server > /dev/null 2>&1\n", + "redis-stack-server --daemonize yes" + ] + }, + { + "cell_type": "markdown", + "id": "b750e779", + "metadata": { + "id": "b750e779" + }, + "source": [ + "#### For Alternative Environments\n", + "There are many ways to get the necessary redis-stack instance running\n", + "1. On cloud, deploy a [FREE instance of Redis in the cloud](https://redis.io/try-free/). Or, if you have your\n", + "own version of Redis Enterprise running, that works too!\n", + "2. Per OS, [see the docs](https://redis.io/docs/latest/operate/oss_and_stack/install/install-stack/)\n", + "3. With docker: `docker run -d --name redis-stack-server -p 6379:6379 redis/redis-stack-server:latest`" + ] + }, + { + "cell_type": "markdown", + "id": "177e9fe3", + "metadata": { + "id": "177e9fe3" + }, + "source": [ + "### Define the Redis Connection URL\n", + "\n", + "By default this notebook connects to the local instance of Redis Stack. **If you have your own Redis Enterprise instance** - replace REDIS_PASSWORD, REDIS_HOST and REDIS_PORT values with your own." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "be77a1d3", + "metadata": { + "id": "be77a1d3" + }, + "outputs": [], + "source": [ + "import os\n", + "\n", + "# Replace values below with your own if using Redis Cloud instance\n", + "REDIS_HOST = os.getenv(\"REDIS_HOST\", \"localhost\") # ex: \"redis-18374.c253.us-central1-1.gce.cloud.redislabs.com\"\n", + "REDIS_PORT = os.getenv(\"REDIS_PORT\", \"6379\") # ex: 18374\n", + "REDIS_PASSWORD = os.getenv(\"REDIS_PASSWORD\", \"\") # ex: \"1TNxTEdYRDgIDKM2gDfasupCADXXXX\"\n", + "\n", + "# If SSL is enabled on the endpoint, use rediss:// as the URL prefix\n", + "REDIS_URL = f\"redis://:{REDIS_PASSWORD}@{REDIS_HOST}:{REDIS_PORT}\"\n", + "os.environ[\"REDIS_URL\"] = REDIS_URL\n", + "os.environ[\"REDIS_HOST\"] = REDIS_HOST\n", + "os.environ[\"REDIS_PORT\"] = REDIS_PORT\n", + "os.environ[\"REDIS_PASSWORD\"] = REDIS_PASSWORD" + ] + }, + { + "cell_type": "markdown", + "id": "redis-connection", + "metadata": { + "id": "redis-connection" + }, + "source": [ + "### Verify Redis Connection\n", + "\n", + "Let's test our Redis connection to make sure it's working properly:" + ] + }, + { + "cell_type": "code", + "execution_count": 132, + "id": "f3ddcabf", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "f3ddcabf", + "outputId": "162846c8-4add-4de7-9ed6-69e8656ec102" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 132, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from redis import Redis\n", + "\n", + "client = Redis.from_url(REDIS_URL)\n", + "client.ping()" + ] + }, + { + "cell_type": "code", + "execution_count": 133, + "id": "AZmD8eR1lphs", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AZmD8eR1lphs", + "outputId": "0aaf4533-d239-4ad9-8853-e7192abf78d6" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 133, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "client.flushall()" + ] + }, + { + "cell_type": "markdown", + "id": "ce052678", + "metadata": { + "id": "ce052678" + }, + "source": [ + "### Set OPENAI API Key" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e21ac07e", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "e21ac07e", + "outputId": "3a6d5465-35e0-49af-ce1a-54df86898cee" + }, + "outputs": [], + "source": [ + "import getpass\n", + "import os\n", + "\n", + "os.environ[\"LITELLM_LOG\"] = \"DEBUG\"\n", + "\n", + "def _set_env(key: str):\n", + " if key not in os.environ:\n", + " os.environ[key] = getpass.getpass(f\"{key}:\")\n", + "\n", + "_set_env(\"OPENAI_API_KEY\")\n" + ] + }, + { + "cell_type": "markdown", + "id": "5X9nFyFkPdkV", + "metadata": { + "id": "5X9nFyFkPdkV" + }, + "source": [ + "## 2 · Running the LiteLLM Proxy\n", + "First, we will define a LiteLLM config that contains:\n", + "\n", + "- a few supported model options\n", + "- a semantic caching configuration using Redis" + ] + }, + { + "cell_type": "code", + "execution_count": 234, + "id": "pdeAixSUPxT7", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "pdeAixSUPxT7", + "outputId": "9cbff8c0-7fc8-431a-e93c-ba05698d217e" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Overwriting litellm_redis.yml\n" + ] + } + ], + "source": [ + "%%writefile litellm_redis.yml\n", + "model_list:\n", + "- litellm_params:\n", + " api_key: os.environ/OPENAI_API_KEY\n", + " model: gpt-3.5-turbo\n", + " rpm: 30\n", + " model_name: gpt-3.5-turbo\n", + "- litellm_params:\n", + " api_key: os.environ/OPENAI_API_KEY\n", + " model: gpt-4o-mini\n", + " rpm: 30\n", + " model_name: gpt-4o-mini\n", + "- litellm_params:\n", + " api_key: os.environ/OPENAI_API_KEY\n", + " model: text-embedding-3-small\n", + " model_name: text-embedding-3-small\n", + "\n", + "litellm_settings:\n", + " cache: True\n", + " cache_params:\n", + " type: redis\n", + " host: os.environ/REDIS_HOST\n", + " port: os.environ/REDIS_PORT\n", + " password: os.environ/REDIS_PASSWORD\n", + " default_in_redis_ttl: 60" + ] + }, + { + "cell_type": "markdown", + "id": "4RqOqBoAHwVD", + "metadata": { + "id": "4RqOqBoAHwVD" + }, + "source": [ + "Now for some helper code that will start/stop **LiteLLM** proxy as a background task here on the host machine." + ] + }, + { + "cell_type": "code", + "execution_count": 235, + "id": "8mml7LhvPxWU", + "metadata": { + "id": "8mml7LhvPxWU" + }, + "outputs": [], + "source": [ + "import subprocess, atexit, os, signal, socket, time, pathlib, textwrap, sys\n", + "\n", + "\n", + "_proxy_handle: subprocess.Popen | None = None\n", + "\n", + "\n", + "def _is_port_open(port: int) -> bool:\n", + " with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:\n", + " s.settimeout(0.25)\n", + " return s.connect_ex((\"127.0.0.1\", port)) == 0\n", + "\n", + "def start_proxy(\n", + " config_path: str = \"litellm_redis.yml\",\n", + " port: int = 4000,\n", + " log_path: str = \"litellm_proxy.log\",\n", + " restart: bool = True,\n", + " timeout: float = 10.0, # seconds we’re willing to wait\n", + ") -> subprocess.Popen:\n", + "\n", + " global _proxy_handle\n", + "\n", + " # ── 1. stop running proxy we launched earlier ──\n", + " if _proxy_handle and _proxy_handle.poll() is None:\n", + " if restart:\n", + " _proxy_handle.terminate()\n", + " _proxy_handle.wait(timeout=3)\n", + " time.sleep(1) # give the OS a breath\n", + " else:\n", + " print(f\"LiteLLM already running (PID {_proxy_handle.pid}) — reusing.\")\n", + " return _proxy_handle\n", + "\n", + " # ── 2. ensure the port is free ──\n", + " if _is_port_open(port):\n", + " print(f\"Port {port} busy; trying to free it …\")\n", + " pids = os.popen(f\"lsof -ti tcp:{port}\").read().strip().splitlines()\n", + " for pid in pids:\n", + " try:\n", + " os.kill(int(pid), signal.SIGTERM)\n", + " except Exception:\n", + " pass\n", + " time.sleep(1)\n", + "\n", + " # ── 3. launch proxy ──\n", + " log_file = open(log_path, \"w\")\n", + " cmd = [\"litellm\", \"--config\", config_path, \"--port\", str(port), \"--detailed_debug\"]\n", + " _proxy_handle = subprocess.Popen(cmd, stdout=log_file, stderr=subprocess.STDOUT)\n", + "\n", + " atexit.register(lambda: _proxy_handle and _proxy_handle.terminate())\n", + "\n", + " # ── 4. readiness loop with timeout & crash detection ──\n", + " deadline = time.time() + timeout\n", + " while time.time() < deadline:\n", + " if _is_port_open(port):\n", + " break\n", + " if _proxy_handle.poll() is not None: # died early\n", + " last_lines = pathlib.Path(log_path).read_text().splitlines()[-20:]\n", + " raise RuntimeError(\n", + " \"LiteLLM exited before opening the port:\\n\" +\n", + " textwrap.indent(\"\\n\".join(last_lines), \" \")\n", + " )\n", + " time.sleep(0.25)\n", + " else:\n", + " _proxy_handle.terminate()\n", + " raise RuntimeError(f\"LiteLLM proxy did not open port {port} within {timeout}s.\")\n", + "\n", + " print(f\"✅ LiteLLM proxy on http://localhost:{port} (PID {_proxy_handle.pid})\")\n", + " print(f\" Logs → {pathlib.Path(log_path).resolve()}\")\n", + " return _proxy_handle\n", + "\n", + "\n", + "def stop_proxy() -> None:\n", + " global _proxy_handle\n", + " if _proxy_handle and _proxy_handle.poll() is None:\n", + " _proxy_handle.terminate()\n", + " _proxy_handle.wait(timeout=3)\n", + " print(\"LiteLLM proxy stopped.\")\n", + " _proxy_handle = None" + ] + }, + { + "cell_type": "markdown", + "id": "8WSEon9JIRn8", + "metadata": { + "id": "8WSEon9JIRn8" + }, + "source": [ + "Start up the LiteLLM proxy for the first time." + ] + }, + { + "cell_type": "code", + "execution_count": 236, + "id": "jrw2Gu6uPxYr", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "jrw2Gu6uPxYr", + "outputId": "ae65f321-1d4e-49fe-9282-d418f324a5cc" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "✅ LiteLLM proxy on http://localhost:4000 (PID 63464)\n", + " Logs → /content/litellm_proxy.log\n" + ] + } + ], + "source": [ + "_proxy_handle = start_proxy()" + ] + }, + { + "cell_type": "markdown", + "id": "zzOSmL0_IzwF", + "metadata": { + "id": "zzOSmL0_IzwF" + }, + "source": [ + "Now we will add a simple helper method to test out models." + ] + }, + { + "cell_type": "code", + "execution_count": 237, + "id": "9rbN7PiMVAmA", + "metadata": { + "id": "9rbN7PiMVAmA" + }, + "outputs": [], + "source": [ + "import requests\n", + "\n", + "\n", + "def call_model(text: str, model: str = \"gpt-4o-mini\"):\n", + " try:\n", + " t0 = time.time()\n", + " payload = {\n", + " \"model\": model,\n", + " \"messages\": [{\"role\": \"user\", \"content\": text}]\n", + " }\n", + " r = requests.post(\"http://localhost:4000/chat/completions\", json=payload, timeout=30)\n", + " r.raise_for_status()\n", + " print(r.json()[\"choices\"][0][\"message\"][\"content\"])\n", + " print(f\"{r.json()['id']} -- {r.json()['model']} -- latency: {time.time() - t0:.2f}s \\n\")\n", + " return r\n", + " except Exception as e:\n", + " print(str(e))\n", + " if \"error\" in r.json():\n", + " print(r.json()[\"error\"][\"message\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 238, + "id": "KEdfst47VdjN", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "KEdfst47VdjN", + "outputId": "0898a5da-b907-4231-c171-ddf6a1043911" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Hello! I'm just a program, so I don't have feelings, but I'm here and ready to help you. How can I assist you today?\n", + "chatcmpl-BUdDxEetmH0k6yJkaDLeSshRZmGnz -- gpt-4o-mini-2024-07-18 -- latency: 0.90s \n", + "\n" + ] + } + ], + "source": [ + "res = call_model(\"hello, how are you?\")" + ] + }, + { + "cell_type": "code", + "execution_count": 239, + "id": "XJnkyMUDI9xu", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XJnkyMUDI9xu", + "outputId": "bebbc826-60e8-4de9-8ddf-425d7c087cfa" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Hello! I'm just a computer program, so I don't have feelings, but I'm here to assist you. How can I help you today?\n", + "chatcmpl-BUdDySZjzxB8tCTLkuYDTyPFfKo1P -- gpt-3.5-turbo-0125 -- latency: 0.65s \n", + "\n" + ] + } + ], + "source": [ + "res = call_model(\"hello, how are you?\", model=\"gpt-3.5-turbo\")" + ] + }, + { + "cell_type": "code", + "execution_count": 240, + "id": "79nkkD6cVii2", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "79nkkD6cVii2", + "outputId": "c4ee9d21-3a81-4453-e412-2bd17d4a4372" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "400 Client Error: Bad Request for url: http://localhost:4000/chat/completions\n", + "{'error': '/chat/completions: Invalid model name passed in model=claude. Call `/v1/models` to view available models for your key.'}\n" + ] + } + ], + "source": [ + "# Try a non-supported model!\n", + "res = call_model(\"hello, how are you?\", model=\"claude\")" + ] + }, + { + "cell_type": "markdown", + "id": "fc65bfdd", + "metadata": { + "id": "fc65bfdd" + }, + "source": [ + "## 3 · Implement LLM caching with Redis\n", + "\n", + "LiteLLM Proxy with Redis provides two powerful caching capabilities that can significantly improve your LLM application performance and reliability:\n", + "\n", + "* **Exact cache (identical prompt)**: Pulls exact prompt/query matches from Redis with configurable TTL.\n", + "* **Semantic cache (similar prompt)**: Uses Redis as a semantic cache powered by **vector search** to determine if a prompt/query is similar enough to a cached entry.\n", + "\n", + "### Why Use Caching for LLMs?\n", + "\n", + "1. **Cost Reduction**: Avoid redundant API calls for identical or similar prompts\n", + "2. **Latency Improvement**: Cached responses return in milliseconds vs. seconds\n", + "3. **Reliability**: Reduce dependency on external API availability\n" + ] + }, + { + "cell_type": "code", + "execution_count": 241, + "id": "eup_Z0Z_Y493", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "eup_Z0Z_Y493", + "outputId": "d815413e-acc0-4108-8b47-87dfb35cd59f" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The capital of France is Paris.\n", + "chatcmpl-BUdDz7ZsNbR2PTGbnzgALezkkVvh8 -- gpt-4o-mini-2024-07-18 -- latency: 0.63s \n", + "\n", + "The capital of France is Paris.\n", + "chatcmpl-BUdDz7ZsNbR2PTGbnzgALezkkVvh8 -- gpt-4o-mini-2024-07-18 -- latency: 0.02s \n", + "\n", + "The capital of France is Paris.\n", + "chatcmpl-BUdDz7ZsNbR2PTGbnzgALezkkVvh8 -- gpt-4o-mini-2024-07-18 -- latency: 0.02s \n", + "\n", + "The capital of France is Paris.\n", + "chatcmpl-BUdDz7ZsNbR2PTGbnzgALezkkVvh8 -- gpt-4o-mini-2024-07-18 -- latency: 0.02s \n", + "\n", + "The capital of France is Paris.\n", + "chatcmpl-BUdDz7ZsNbR2PTGbnzgALezkkVvh8 -- gpt-4o-mini-2024-07-18 -- latency: 0.02s \n", + "\n", + "The capital of France is Paris.\n", + "chatcmpl-BUdDz7ZsNbR2PTGbnzgALezkkVvh8 -- gpt-4o-mini-2024-07-18 -- latency: 0.03s \n", + "\n", + "The capital of France is Paris.\n", + "chatcmpl-BUdDz7ZsNbR2PTGbnzgALezkkVvh8 -- gpt-4o-mini-2024-07-18 -- latency: 0.02s \n", + "\n", + "The capital of France is Paris.\n", + "chatcmpl-BUdDz7ZsNbR2PTGbnzgALezkkVvh8 -- gpt-4o-mini-2024-07-18 -- latency: 0.02s \n", + "\n", + "18.6 ms ± 3.59 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" + ] + } + ], + "source": [ + "%%timeit\n", + "res = call_model(\"what is the capital of france?\")" + ] + }, + { + "cell_type": "markdown", + "id": "GQRkOghoB9-Y", + "metadata": { + "id": "GQRkOghoB9-Y" + }, + "source": [ + "Check response equivalence:" + ] + }, + { + "cell_type": "code", + "execution_count": 242, + "id": "IbfUylGGUhP7", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "IbfUylGGUhP7", + "outputId": "e56853a1-61b0-4916-fb2b-c1695d922e8f" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The capital of France is Paris.\n", + "chatcmpl-BUdDz7ZsNbR2PTGbnzgALezkkVvh8 -- gpt-4o-mini-2024-07-18 -- latency: 0.02s \n", + "\n", + "The capital of France is Paris.\n", + "chatcmpl-BUdDz7ZsNbR2PTGbnzgALezkkVvh8 -- gpt-4o-mini-2024-07-18 -- latency: 0.02s \n", + "\n" + ] + }, + { + "data": { + "text/plain": [ + "{'id': 'chatcmpl-BUdDz7ZsNbR2PTGbnzgALezkkVvh8',\n", + " 'created': 1746640319,\n", + " 'model': 'gpt-4o-mini-2024-07-18',\n", + " 'object': 'chat.completion',\n", + " 'system_fingerprint': 'fp_129a36352a',\n", + " 'choices': [{'finish_reason': 'stop',\n", + " 'index': 0,\n", + " 'message': {'content': 'The capital of France is Paris.',\n", + " 'role': 'assistant',\n", + " 'tool_calls': None,\n", + " 'function_call': None,\n", + " 'annotations': []}}],\n", + " 'usage': {'completion_tokens': 8,\n", + " 'prompt_tokens': 14,\n", + " 'total_tokens': 22,\n", + " 'completion_tokens_details': {'accepted_prediction_tokens': 0,\n", + " 'audio_tokens': 0,\n", + " 'reasoning_tokens': 0,\n", + " 'rejected_prediction_tokens': 0},\n", + " 'prompt_tokens_details': {'audio_tokens': 0, 'cached_tokens': 0}},\n", + " 'service_tier': 'default'}" + ] + }, + "execution_count": 242, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "res1 = call_model(\"what is the capital of france?\")\n", + "res2 = call_model(\"what is the capital of france?\")\n", + "\n", + "assert res1.json() == res2.json()\n", + "\n", + "res1.json()" + ] + }, + { + "cell_type": "markdown", + "id": "e121e215", + "metadata": { + "id": "e121e215" + }, + "source": [ + "## 4 · Semantic caching\n", + "\n", + "Now we'll demonstrate semantic caching by sending similar prompts back to back. The first request should hit the LLM API, while future requests should be served from cache as long as they are similar enough. We'll see this reflected in the response times.\n", + "\n", + "First, we need to stop the running proxy and update the LiteLLM config." + ] + }, + { + "cell_type": "code", + "execution_count": 243, + "id": "iX5F90uWCpuY", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "iX5F90uWCpuY", + "outputId": "6ba29c04-a9f1-48f0-ae59-8fd059419fa7" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "-15" + ] + }, + "execution_count": 243, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Stop the proxy process\n", + "_proxy_handle.terminate()\n", + "_proxy_handle.wait(timeout=4)" + ] + }, + { + "cell_type": "code", + "execution_count": 244, + "id": "MpcYlHdSCvQE", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "MpcYlHdSCvQE", + "outputId": "666254d5-4d3e-4af2-e003-60a0c70ae29c" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Overwriting litellm_redis.yml\n" + ] + } + ], + "source": [ + "%%writefile litellm_redis.yml\n", + "model_list:\n", + "- litellm_params:\n", + " api_key: os.environ/OPENAI_API_KEY\n", + " model: gpt-3.5-turbo\n", + " rpm: 30\n", + " model_name: gpt-3.5-turbo\n", + "- litellm_params:\n", + " api_key: os.environ/OPENAI_API_KEY\n", + " model: gpt-4o-mini\n", + " rpm: 30\n", + " model_name: gpt-4o-mini\n", + "- litellm_params:\n", + " api_key: os.environ/OPENAI_API_KEY\n", + " model: text-embedding-3-small\n", + " model_name: text-embedding-3-small\n", + "\n", + "litellm_settings:\n", + " cache: True\n", + " set_verbose: True\n", + " cache_params:\n", + " type: redis-semantic\n", + " host: os.environ/REDIS_HOST\n", + " port: os.environ/REDIS_PORT\n", + " password: os.environ/REDIS_PASSWORD\n", + " ttl: 60\n", + " similarity_threshold: 0.90\n", + " redis_semantic_cache_embedding_model: text-embedding-3-small\n", + " redis_semantic_cache_index_name: llmcache" + ] + }, + { + "cell_type": "code", + "execution_count": 245, + "id": "9Ak-jWcXC6dq", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "9Ak-jWcXC6dq", + "outputId": "eec709e6-075a-4c23-b6d4-c2ed59a4fd02" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "✅ LiteLLM proxy on http://localhost:4000 (PID 63528)\n", + " Logs → /content/litellm_proxy.log\n" + ] + } + ], + "source": [ + "_proxy_handle = start_proxy()" + ] + }, + { + "cell_type": "markdown", + "id": "4sf49YkOnhww", + "metadata": { + "id": "4sf49YkOnhww" + }, + "source": [ + "Semantic cache can handle exact match scenarios (where the characters/tokens are identical). This would happen more in a development environment or in cases where a programmatic user is providing input to an LLM call." + ] + }, + { + "cell_type": "code", + "execution_count": 246, + "id": "c08699fc", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "c08699fc", + "outputId": "1ef29ae8-6fd6-4cff-909f-0da1874dbe60" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The capital city of the United States is Washington, D.C.\n", + "chatcmpl-BUdE8A9yQyijCBN4Agg5QJxsrifUJ -- gpt-4o-mini-2024-07-18 -- latency: 1.35s \n", + "\n", + "The capital city of the United States is Washington, D.C.\n", + "chatcmpl-BUdE8A9yQyijCBN4Agg5QJxsrifUJ -- gpt-4o-mini-2024-07-18 -- latency: 0.37s \n", + "\n", + "The capital city of the United States is Washington, D.C.\n", + "chatcmpl-BUdE8A9yQyijCBN4Agg5QJxsrifUJ -- gpt-4o-mini-2024-07-18 -- latency: 0.53s \n", + "\n", + "The capital city of the United States is Washington, D.C.\n", + "chatcmpl-BUdE8A9yQyijCBN4Agg5QJxsrifUJ -- gpt-4o-mini-2024-07-18 -- latency: 0.47s \n", + "\n", + "The capital city of the United States is Washington, D.C.\n", + "chatcmpl-BUdE8A9yQyijCBN4Agg5QJxsrifUJ -- gpt-4o-mini-2024-07-18 -- latency: 0.36s \n", + "\n", + "The capital city of the United States is Washington, D.C.\n", + "chatcmpl-BUdE8A9yQyijCBN4Agg5QJxsrifUJ -- gpt-4o-mini-2024-07-18 -- latency: 0.24s \n", + "\n", + "The capital city of the United States is Washington, D.C.\n", + "chatcmpl-BUdE8A9yQyijCBN4Agg5QJxsrifUJ -- gpt-4o-mini-2024-07-18 -- latency: 0.39s \n", + "\n", + "The capital city of the United States is Washington, D.C.\n", + "chatcmpl-BUdE8A9yQyijCBN4Agg5QJxsrifUJ -- gpt-4o-mini-2024-07-18 -- latency: 0.28s \n", + "\n", + "379 ms ± 94.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" + ] + } + ], + "source": [ + "%%timeit\n", + "\n", + "call_model(\"what is the capital city of the United States?\")" + ] + }, + { + "cell_type": "markdown", + "id": "mQTzCNvCFHRJ", + "metadata": { + "id": "mQTzCNvCFHRJ" + }, + "source": [ + "Additional (or variable) latency here per check is due to using OpenAI embeddings which makes calls over the network. A more optimized solution would be to use a more scalable embedding inference system OR a localized model that doesn't require a network hop.\n", + "\n", + "The semantic cache can also be used for near exact matches (fuzzy caching) based on semantic meaning. Below are a few scenarios:" + ] + }, + { + "cell_type": "code", + "execution_count": 258, + "id": "v5lkpxafr7ot", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "v5lkpxafr7ot", + "outputId": "c00f3c88-e72d-4195-fd64-84bccf2ae185" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "As of my last update in October 2023, the President of France is Emmanuel Macron. He has been in office since May 14, 2017. However, please verify with a current source, as political positions can change.\n", + "chatcmpl-BUdHNxLLb7HBmnTUUHRQpxWBVhGAI -- gpt-4o-mini-2024-07-18 -- latency: 2.37s \n", + "\n", + "As of my last knowledge update in October 2023, the President of France is Emmanuel Macron. He has been in office since May 14, 2017, and was re-elected for a second term in April 2022. Please verify with up-to-date sources, as political situations can change.\n", + "chatcmpl-BUdHOz7UCsO4KKKcDfx8ZGv2LJ6dZ -- gpt-4o-mini-2024-07-18 -- latency: 1.38s \n", + "\n", + "As of my last update in October 2023, the President of France is Emmanuel Macron. He has been in office since May 14, 2017. However, please verify with a current source, as political positions can change.\n", + "chatcmpl-BUdHNxLLb7HBmnTUUHRQpxWBVhGAI -- gpt-4o-mini-2024-07-18 -- latency: 0.65s \n", + "\n", + "As of my last update in October 2023, the President of France is Emmanuel Macron. He has been in office since May 14, 2017. However, please verify with a current source, as political positions can change.\n", + "chatcmpl-BUdHNxLLb7HBmnTUUHRQpxWBVhGAI -- gpt-4o-mini-2024-07-18 -- latency: 0.60s \n", + "\n" + ] + } + ], + "source": [ + "texts = [\n", + " \"who is the president of France?\",\n", + " \"who is the country president of France?\",\n", + " \"who is France's current presidet?\",\n", + " \"The current president of France is?\"\n", + "]\n", + "\n", + "for text in texts:\n", + " res = call_model(text)" + ] + }, + { + "cell_type": "markdown", + "id": "-akCGqYkqGVs", + "metadata": { + "id": "-akCGqYkqGVs" + }, + "source": [ + "## 5 · Inspect Redis Index with RedisVL\n", + "Use the `redisvl` helpers and CLI to investigate more about the underlying vector index that supports the checks within the LiteLLM proxy." + ] + }, + { + "cell_type": "code", + "execution_count": 248, + "id": "RntBqIlipyHA", + "metadata": { + "id": "RntBqIlipyHA" + }, + "outputs": [], + "source": [ + "from redisvl.index import SearchIndex\n", + "\n", + "idx = SearchIndex.from_existing(redis_client=client, name=\"llmcache\")" + ] + }, + { + "cell_type": "code", + "execution_count": 249, + "id": "tHVIHkXCqU7V", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "tHVIHkXCqU7V", + "outputId": "f68ad535-0f9d-4467-e0c7-bbf9ca271915" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 249, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "idx.exists()" + ] + }, + { + "cell_type": "code", + "execution_count": 250, + "id": "8mNvmr7op-B-", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "8mNvmr7op-B-", + "outputId": "ea0535f7-e6fa-490e-8a8d-288572d7170d" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[32m17:52:13\u001b[0m \u001b[34m[RedisVL]\u001b[0m \u001b[1;30mINFO\u001b[0m Using Redis address from environment variable, REDIS_URL\n", + "\n", + "\n", + "Index Information:\n", + "╭──────────────┬────────────────┬──────────────┬─────────────────┬────────────╮\n", + "│ Index Name │ Storage Type │ Prefixes │ Index Options │ Indexing │\n", + "├──────────────┼────────────────┼──────────────┼─────────────────┼────────────┤\n", + "│ llmcache │ HASH │ ['llmcache'] │ [] │ 0 │\n", + "╰──────────────┴────────────────┴──────────────┴─────────────────┴────────────╯\n", + "Index Fields:\n", + "╭───────────────┬───────────────┬─────────┬────────────────┬────────────────┬────────────────┬────────────────┬────────────────┬────────────────┬─────────────────┬────────────────╮\n", + "│ Name │ Attribute │ Type │ Field Option │ Option Value │ Field Option │ Option Value │ Field Option │ Option Value │ Field Option │ Option Value │\n", + "├───────────────┼───────────────┼─────────┼────────────────┼────────────────┼────────────────┼────────────────┼────────────────┼────────────────┼─────────────────┼────────────────┤\n", + "│ prompt │ prompt │ TEXT │ WEIGHT │ 1 │ │ │ │ │ │ │\n", + "│ response │ response │ TEXT │ WEIGHT │ 1 │ │ │ │ │ │ │\n", + "│ inserted_at │ inserted_at │ NUMERIC │ │ │ │ │ │ │ │ │\n", + "│ updated_at │ updated_at │ NUMERIC │ │ │ │ │ │ │ │ │\n", + "│ prompt_vector │ prompt_vector │ VECTOR │ algorithm │ FLAT │ data_type │ FLOAT32 │ dim │ 1536 │ distance_metric │ COSINE │\n", + "╰───────────────┴───────────────┴─────────┴────────────────┴────────────────┴────────────────┴────────────────┴────────────────┴────────────────┴─────────────────┴────────────────╯\n" + ] + } + ], + "source": [ + "!rvl index info -i llmcache" + ] + }, + { + "cell_type": "markdown", + "id": "00bd3fc6", + "metadata": { + "id": "00bd3fc6" + }, + "source": [ + "### Examining the Cached Keys in Redis\n", + "\n", + "Let's look at the keys created in Redis for the cache and understand how LiteLLM structures them:" + ] + }, + { + "cell_type": "code", + "execution_count": 251, + "id": "46eb6aa5", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "46eb6aa5", + "outputId": "bfae071a-b8c4-44bd-8672-0bbddc170027" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Found 1 cache keys in Redis\n", + "\n", + "Example cache key: llmcache:e4e4faaeea347b9876d03c4f68b7d981234a3a7a4281590ab4bc0e70dbdaef9e\n", + "TTL: 55 seconds remaining...\n", + "{'response': '{\\'timestamp\\': 1746640328.978919, \\'response\\': \\'{\"id\":\"chatcmpl-BUdE8A9yQyijCBN4Agg5QJxsrifUJ\",\"created\":1746640328,\"model\":\"gpt-4o-mini-2024-07-18\",\"object\":\"chat.completion\",\"system_fingerprint\":\"fp_dbaca60df0\",\"choices\":[{\"finish_reason\":\"stop\",\"index\":0,\"message\":{\"content\":\"The capital city of the United States is Washington, D.C.\",\"role\":\"assistant\",\"tool_calls\":null,\"function_call\":null,\"annotations\":[]}}],\"usage\":{\"completion_tokens\":14,\"prompt_tokens\":17,\"total_tokens\":31,\"completion_tokens_details\":{\"accepted_prediction_tokens\":0,\"audio_tokens\":0,\"reasoning_tokens\":0,\"rejected_prediction_tokens\":0},\"prompt_tokens_details\":{\"audio_tokens\":0,\"cached_tokens\":0}},\"service_tier\":\"default\"}\\'}', 'prompt_vector': b'\\xccY/=\\xbf0\\x00\\xbdd\\x0f\\xa2=X\\xa5\\xc8=\\x1f\\t-\\xbc\\\\\\x1d\\x1b\\xbc^\\xda\\xdb\\xbc\\x02\\xfc<@\\xbc\\xe8h\\xb4<\\xaf\\x8bn\\xbc\\x91Ad\\xbcP\\xf2\\xf0;}$\\xe6\\xbc\\xf2V\\x11\\xbdk\\x03>\\xbc\\xe6l\\x91\\xbd\\xaf\\xcc\\xe5\\xbc\\xaa\\x15\\x17<\\x90\\xc3\\x05\\xbc\\xb4\\x83\\xe7\\xb9\\t\\xaf\\x14=\\xe9\\'=\\xbc\\xc8\\xe1\\x0f<\\xf6P\\x1f\\xbb^\\xda\\x0e\\xbd\\x8c\\x8a\\xe2\\xb9\\xfb\\x07n;\\x7f\\xe1\\x8c\\xbcts\\x89=\\x95zT\\xbb&<\\xab\\xbb\\xe6l\\x11=h\\x89\\xd6\\xbc\\x9b\\xaf\\x9a\\xbb\\xfe\\x01/=\\xba\\xf9$\\xbdSn\\xa0\\xbb\\xad\\x8f\\xcb\\xb9\\xa7Z89\\xbds\\x0c<\\xa6\\xdcs<\\xf4\\x93+=v0\\xca\\xbb[\\xe0\\x00<\\xbf\\xb0s\\xbc1\\xa8\\xe6;\\xda\\x80\\xc9\\xbd(\\xf9\\x1e<\\xb6\\xc04\\xbdSn ;\\x91A\\x97\\xbd\\xc1m\\x9a;\\xd2O`<\\xd8\\x84\\xa6:xmd=c\\x91\\x10\\xbc\\xe3\\xb1\\xff\\xbc\\xc9\\x9e\\x03=\\xdfx\\xc2\\xbc\\x1d\\xcc\\x92\\xbaQ1\\x86<\\x88Q%\\xbc\\xaf\\xcc\\xe5:ts\\x89\\xbc\\xc9_!\\xbd\\x8c\\x8a\\xe2\\xbc\\x82\\xdb\\xe7\\xbc\\xa6\\x9b/=\\xe3p;\\xba\\xdf\\xf8\\x1b\\xbc\\xef\\x1bY\\xbb%\\xbe\\x99\\xbc\\x9f\\xa7`\\xbd\\xbd\\xb4\\x03<\\xb2\\xc6&\\xbdc\\xd2\\x87\\xbc\\xc2*[<\\x85UO<\\x18\\x15\\x91\\xbbL9\\x8d<\\xe9\\'\\xbd;aTC\\xbbN\\xf6M={\\xe7\\xcb\\xbc\\xf2\\x17\\xaf\\xbb\\x055z\\xbc@\\x0e\\x16<\\xb5B\\xf0<=\\x14\\x08\\xbcc\\x91\\x90\\xbcR\\xaf\\x97<\\x1a\\x114=\\x13^\\x0f=\\xdd|\\x1f\\xbd|\\xa6\\xd4\\xbc\\xfd\\xc4\\x14\\xbd\\xb4\\x83\\x9a\\xbcO\\xb5\\x89\\xba..2=\\':c\\xbc\\x96\\xf8\\xe5<\\xdc\\xfe\\x8d<\\xb9:i\\xbd\\x1b\\xd0<\\xbd`\\x97\\x82;\\xd0\\x92\\x1f;\\x03zN\\xbc+\\xf3\\xac\\xbb\\xe4\\xaf\\x9d;\\xeb#\\x93\\xbd\\x9f\\xa7`:\\xb1\\x89\\x0c\\xbd\\xa5^\\x15<=\\x94\\xae\\xbc\\xb3\\xc4\\xde<\\x1c\\rW\\xc0<\\xb0\\xca\\x03<\\x9c-,=\\xc6\\xa4B\\xbc3e\\x8dS\\xb7<\\xba\\xf9\\xf1\\xbb\\xe7\\xa9\\xf8\\x12@\\xc0;\\xb3F\\x00\\xbd-\\xb0\\xed\\xbbJ\\xbd\\xdd<0k\\xcc<\\x7f\\xe1\\x0c=\\xc2\\xeb+;_\\x99\\x97<\\x16X\\x9d<\\x83\\xd9\\x05\\xbd5\"\\xce\\xbb\\x87\\x92\\xe9\\xbc\\xd2\\x0e\\xe9S7=\\x8a\\xcd\\xa1<\\xf2\\x17/\\xbc\\x98\\xb5\\x0c=9\\x1a\\xc7;\\xacR1S\\xb7<\\xead\\x8a\"Open\n" + "\"Open\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Environment setup\n", - "\n", - "### set cohere api key" + "## Environment setup" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%pip install cohere \"redisvl>=0.6.0\" sentence-transformers" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Set Cohere API Key" ] }, { @@ -139,7 +153,7 @@ " return response.text\n", "\n", " def remap(self, context) -> List[Dict]:\n", - " ''' re-index the chat history to match the Cohere API requirements '''\n", + " ''' re-index the message history to match the Cohere API requirements '''\n", " new_context = []\n", " for statement in context:\n", " if statement[\"role\"] == \"user\":\n", @@ -160,9 +174,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Import SemanticSessionManager\n", + "### Import MessageHistory\n", "\n", - "redisvl provides the SemanticSessionManager for easy management of session state." + "redisvl provides the MessageHistory and SemanticMessageHistory classes for easy management of LLM conversations." ] }, { @@ -171,10 +185,10 @@ "metadata": {}, "outputs": [], "source": [ - "from redisvl.extensions.session_manager import SemanticSessionManager\n", + "from redisvl.extensions.message_history import SemanticMessageHistory\n", "\n", - "user_session = SemanticSessionManager(name=\"llm chef\")\n", - "user_session.add_message({\"role\":\"system\", \"content\":\"You are a helpful chef, assisting people in making delicious meals\"})" + "user_history = SemanticMessageHistory(name=\"llm chef\")\n", + "user_history.add_message({\"role\":\"system\", \"content\":\"You are a helpful chef, assisting people in making delicious meals\"})" ] }, { @@ -210,9 +224,9 @@ ], "source": [ "prompt = \"can you give me some ideas for breakfast?\"\n", - "context = user_session.get_recent()\n", + "context = user_history.get_recent()\n", "response = client.converse(prompt=prompt, context=context)\n", - "user_session.store(prompt, response)\n", + "user_history.store(prompt, response)\n", "print('USER: ', prompt)\n", "print('\\nLLM: ', response)" ] @@ -272,9 +286,9 @@ ], "source": [ "prompt = \"can you give me the recipe for those pancakes?\"\n", - "context = user_session.get_recent()\n", + "context = user_history.get_recent()\n", "response = client.converse(prompt=prompt, context=context)\n", - "user_session.store(prompt, response)\n", + "user_history.store(prompt, response)\n", "print('USER: ', prompt)\n", "print('\\nLLM: ', response)" ] @@ -346,9 +360,9 @@ ], "source": [ "prompt =\"I am vegetarian. Can you remove the eggs?\"\n", - "context = user_session.get_recent()\n", + "context = user_history.get_recent()\n", "response = client.converse(prompt=prompt, context=context)\n", - "user_session.store(prompt, response)\n", + "user_history.store(prompt, response)\n", "print('USER: ', prompt)\n", "print('\\nLLM: ', response)" ] @@ -422,9 +436,9 @@ ], "source": [ "prompt = \"I am also vegan. Can you replace the butter too?\"\n", - "context = user_session.get_recent()\n", + "context = user_history.get_recent()\n", "response = client.converse(prompt=prompt, context=context)\n", - "user_session.store(prompt, response)\n", + "user_history.store(prompt, response)\n", "print('USER: ', prompt)\n", "print('\\nLLM: ', response)" ] @@ -507,9 +521,9 @@ ], "source": [ "prompt = \"I changed my mind. Can you give me the first recipe from your list?\"\n", - "context = user_session.get_recent(top_k=5)\n", + "context = user_history.get_recent(top_k=5)\n", "response = client.converse(prompt=prompt, context=context)\n", - "user_session.store(prompt, response)\n", + "user_history.store(prompt, response)\n", "print('USER: ', prompt)\n", "print('\\nLLM: ', response)" ] @@ -547,7 +561,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Semantic session memory" + "## Semantic message history" ] }, { @@ -594,10 +608,10 @@ ], "source": [ "prompt = \"Can you give me the avocado one?\"\n", - "user_session.set_distance_threshold(0.75)\n", - "context = user_session.get_relevant(prompt=prompt)\n", + "user_history.set_distance_threshold(0.75)\n", + "context = user_history.get_relevant(prompt=prompt)\n", "response = client.converse(prompt=prompt, context=context)\n", - "user_session.store(prompt, response)\n", + "user_history.store(prompt, response)\n", "print('USER: ', prompt)\n", "print('\\nLLM: ', response)" ] @@ -634,7 +648,7 @@ "metadata": {}, "outputs": [], "source": [ - "user_session.clear()" + "user_history.clear()" ] } ], @@ -654,7 +668,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.2" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/python-recipes/llm-session-manager/01_multiple_sessions.ipynb b/python-recipes/llm-message-history/01_multiple_sessions.ipynb similarity index 87% rename from python-recipes/llm-session-manager/01_multiple_sessions.ipynb rename to python-recipes/llm-message-history/01_multiple_sessions.ipynb index d9d29619..1453dc44 100644 --- a/python-recipes/llm-session-manager/01_multiple_sessions.ipynb +++ b/python-recipes/llm-message-history/01_multiple_sessions.ipynb @@ -6,22 +6,36 @@ "source": [ "![Redis](https://redis.io/wp-content/uploads/2024/04/Logotype.svg?auto=webp&quality=85,75&width=120)\n", "\n", - "# LLM Session Memory - Multiple Sessions\n", + "# LLM Message History - Multiple Sessions\n", "\n", "Large Language Models are inherently stateless and have no knowledge of previous interactions with a user, or even of previous parts of the current conversation. The solution to this problem is to append the previous conversation history to each subsequent call to the LLM.\n", - "This notebook will show how to use Redis to structure and store and retrieve this conversational session memory and how to manage multiple sessions simultaneously.\n", + "This notebook will show how to use Redis to structure and store and retrieve this conversational message history and how to manage multiple conversation sessions simultaneously.\n", "\n", "## Let's Begin!\n", - "\"Open\n" + "\"Open\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Environment setup\n", - "\n", - "### set cohere api key" + "## Environment setup" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%pip install cohere \"redisvl>=0.6.0\" sentence-transformers" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Set Cohere API Key" ] }, { @@ -136,7 +150,7 @@ " return response.text\n", "\n", " def remap(self, context) -> List[Dict]:\n", - " ''' re-index the chat history to match the Cohere API requirements '''\n", + " ''' re-index the message history to match the Cohere API requirements '''\n", " new_context = []\n", " for statement in context:\n", " if statement[\"role\"] == \"user\":\n", @@ -157,9 +171,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Import SemanticSessionManager\n", + "### Import SemanticMessageHistory\n", "\n", - "redisvl provides the SemanticSessionManager for easy management of session state.\n", + "redisvl provides the SemanticMessageHistory for easy management of conversational message history state.\n", "It also allows for tagging of messages to separate conversation sessions with the `session_tag` optional parameter.\n", "Let's create a few personas that can talk to our AI.\n" ] @@ -181,16 +195,16 @@ "metadata": {}, "outputs": [], "source": [ - "from redisvl.extensions.session_manager import SemanticSessionManager\n", + "from redisvl.extensions.message_history import SemanticMessageHistory\n", "\n", - "session = SemanticSessionManager(name='budgeting help')" + "history = SemanticMessageHistory(name='budgeting help')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "#### Here we'll have multiple separate conversations simultaneously, all using the same session manager.\n", + "#### Here we'll have multiple separate conversations simultaneously, all using the same message history object.\n", "#### Let's add some conversation history to get started.\n", "\n", "#### We'll assign each message to one of our users with their own `session_tag`." @@ -203,7 +217,7 @@ "outputs": [], "source": [ "# adding messages to the student session\n", - "session.add_messages(\n", + "history.add_messages(\n", " [{\"role\":\"system\",\n", " \"content\":\"You are a personal assistant helping people create sound financial budgets. Be very brief and concise in your responses.\"},\n", " {\"role\":\"user\",\n", @@ -216,7 +230,7 @@ " session_tag=student)\n", "\n", "#adding messages to the young professional session\n", - "session.add_messages(\n", + "history.add_messages(\n", " [{\"role\":\"system\",\n", " \"content\":\"You are a personal assistant helping people create sound financial budgets. Be very brief and concise in your responses.\"},\n", " {\"role\":\"user\",\n", @@ -229,7 +243,7 @@ " session_tag=yp)\n", "\n", "#adding messages to the retiree session\n", - "session.add_messages(\n", + "history.add_messages(\n", " [{\"role\":\"system\",\n", " \"content\":\"You are a personal assistant helping people create sound financial budgets. Be very brief and concise in your responses.\"},\n", " {\"role\":\"user\",\n", @@ -246,7 +260,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### With the same session manager calling the same LLM we can handle distinct conversations. There's no need to instantiate separate classes or clients.\n", + "#### With the same message history instance and calling the same LLM we can handle distinct conversations. There's no need to instantiate separate classes or clients.\n", "\n", "#### Just retrieve the conversation of interest using the same `session_tag` parameter when fetching context." ] @@ -268,9 +282,9 @@ ], "source": [ "prompt = \"What is the single most important thing I should focus on financially?\"\n", - "context = session.get_recent(session_tag=student)\n", + "context = history.get_recent(session_tag=student)\n", "response = client.converse(prompt=prompt, context=context)\n", - "session.store(prompt, response, session_tag=student)\n", + "history.store(prompt, response, session_tag=student)\n", "print('Student: ', prompt)\n", "print('\\nLLM: ', response)" ] @@ -292,9 +306,9 @@ ], "source": [ "prompt = \"What is the single most important thing I should focus on financially?\"\n", - "context = session.get_recent(session_tag=yp)\n", + "context = history.get_recent(session_tag=yp)\n", "response = client.converse(prompt=prompt, context=context)\n", - "session.store(prompt, response, session_tag=yp)\n", + "history.store(prompt, response, session_tag=yp)\n", "print('Young Professional: ', prompt)\n", "print('\\nLLM: ', response)" ] @@ -316,9 +330,9 @@ ], "source": [ "prompt = \"What is the single most important thing I should focus on financially?\"\n", - "context = session.get_recent(session_tag=retired)\n", + "context = history.get_recent(session_tag=retired)\n", "response = client.converse(prompt=prompt, context=context)\n", - "session.store(prompt, response, session_tag=retired)\n", + "history.store(prompt, response, session_tag=retired)\n", "print('Retiree: ', prompt)\n", "print('\\nLLM: ', response)" ] @@ -348,7 +362,7 @@ } ], "source": [ - "for ctx in session.get_recent(session_tag=student):\n", + "for ctx in history.get_recent(session_tag=student):\n", " print(ctx)" ] }, @@ -358,7 +372,7 @@ "metadata": {}, "outputs": [], "source": [ - "session.clear()" + "history.clear()" ] } ], diff --git a/python-recipes/recommendation-systems/00_content_filtering.ipynb b/python-recipes/recommendation-systems/00_content_filtering.ipynb index 1a2f0c22..a8dd15bf 100644 --- a/python-recipes/recommendation-systems/00_content_filtering.ipynb +++ b/python-recipes/recommendation-systems/00_content_filtering.ipynb @@ -49,10 +49,20 @@ "metadata": { "id": "HSWpCEdOzHyb" }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m25.0.1\u001b[0m\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], "source": [ - "# NBVAL_SKIP\n", - "!pip install -q redis redisvl sentence_transformers pandas requests" + "%pip install -q redis \"redisvl>=0.5.1\" sentence_transformers pandas requests" ] }, { @@ -125,7 +135,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "metadata": { "id": "eKDuyN0ky4oP" }, @@ -168,7 +178,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -180,15 +190,8 @@ "outputs": [ { "data": { - "application/vnd.google.colaboratory.intrinsic+json": { - "summary": "{\n \"name\": \"df\",\n \"rows\": 23922,\n \"fields\": [\n {\n \"column\": \"title\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 23922,\n \"samples\": [\n \"The Graduate\",\n \"Ayngaran\",\n \"Acting Ka Bhoot\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"runtime\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1526,\n \"samples\": [\n \"\\u20b93,500,000,000 (estimated)\",\n \"57 minutes\",\n \"$21,471,047\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"rating\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.9521543600532218,\n \"min\": 0.0,\n \"max\": 9.9,\n \"num_unique_values\": 91,\n \"samples\": [\n 4.6,\n 0.0,\n 2.1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"rating_count\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 107222,\n \"min\": 0,\n \"max\": 2600000,\n \"num_unique_values\": 1681,\n \"samples\": [\n 783000,\n 959,\n 3100\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"genres\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 741,\n \"samples\": [\n \"['Adventure', 'Comedy', 'Romance']\",\n \"['Adventure', 'Comedy', 'Film-Noir']\",\n \"['Adventure', 'Comedy', 'History']\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"overview\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 23485,\n \"samples\": [\n \"A young cavalry doctor, against orders, treats very sick Indians who are forced to stay on unhealthy land, which could lead to a war.\",\n \"An ex-policeman/school janitor (Billy Blanks) shows a new student (Kenn Scott) how to defend himself from a martial-arts bully.\",\n \"A socially-criticized, financially-cornered girl becomes an outlaw to dodge the situation.\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"keywords\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 21132,\n \"samples\": [\n \"['dream', 'husband wife relationship', 'african american', 'uncle nephew relationship', 'teenage boy', 'teen angst', 'cynicism', 'midlife crisis', 'unrequited love', 'regret']\",\n \"['bare chested male', 'lion wrestling', 'man lion relationship', 'male underwear', 'briefs', 'blood', 'experiment', 'human animal relationship', 'home invasion', 'jungle']\",\n \"['thailand', 'evil child', 'tsunami', 'jungle', 'island', 'burma', 'boat', 'disembowelment', 'feral child', 'rape']\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"director\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 11405,\n \"samples\": [\n \"Franco Rossi\",\n \"Jamil Dehlavi\",\n \"Andrea Berloff\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"cast\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 23736,\n \"samples\": [\n \"['Leo McCarey', 'Mildred Cram', 'Cary Grant', 'Deborah Kerr', 'Richard Denning']\",\n \"['K\\u00f4sei Amano', 'Nozomi Band\\u00f4', 'Shigeaki Kubo', 'Shintar\\u00f4 Akiyama', 'K\\u00f4sei Amano']\",\n \"['Robert Sabaroff', 'Jim Brown', 'Diahann Carroll', 'Ernest Borgnine', 'Gordon Flemyng']\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"writer\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 15276,\n \"samples\": [\n \"Cris Loveless\",\n \"Anand Gandhi\",\n \"Mike Flanagan\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"year\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 134,\n \"samples\": [\n \"(XXXIII)\",\n \"1975\",\n \"2013\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"path\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 23922,\n \"samples\": [\n \"/title/tt0061722/\",\n \"/title/tt7023644/\",\n \"/title/tt17320574/\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}", - "type": "dataframe", - "variable_name": "df" - }, "text/html": [ - "\n", - "
\n", - "
\n", + "
\n", "\n", - "\n", - " \n", - "
\n", - "\n", - "\n", - "
\n", - " \n", - "\n", - "\n", - "\n", - " \n", - "
\n", - "\n", - "
\n", - "
\n" + "" ], "text/plain": [ " title runtime rating \\\n", @@ -553,7 +347,7 @@ "4 1914 /title/tt0004457/ " ] }, - "execution_count": 4, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -592,7 +386,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -604,69 +398,6 @@ "outputs": [ { "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
0
title0
rating0
rating_count0
genres0
overview0
keywords0
director0
cast0
year0
\n", - "

" - ], "text/plain": [ "title 0\n", "rating 0\n", @@ -680,22 +411,23 @@ "dtype: int64" ] }, - "execution_count": 5, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "roman_numerals = ['(I)','(II)','(III)','(IV)', '(V)', '(VI)', '(VII)', '(VIII)', '(IX)', '(XI)', '(XII)', '(XVI)', '(XIV)', '(XXXIII)', '(XVIII)', '(XIX)', '(XXVII)']\n", + "import datetime\n", + "roman_numerals = ['0','(I)','(II)','(III)','(IV)', '(V)', '(VI)', '(VII)', '(VIII)', '(IX)', '(XI)', '(XII)', '(XVI)', '(XIV)', '(XXXIII)', '(XVIII)', '(XIX)', '(XXVII)']\n", "\n", "def replace_year(x):\n", " if x in roman_numerals:\n", - " return 1998 # the average year of the dataset\n", + " return datetime.datetime(1998, 1, 1).timestamp()\n", " else:\n", - " return x\n", + " return datetime.datetime(int(x), 1, 1).timestamp()\n", "\n", "df.drop(columns=['runtime', 'writer', 'path'], inplace=True)\n", - "df['year'] = df['year'].apply(replace_year) # replace roman numerals with average year\n", + "df['year'] = df['year'].apply(replace_year) # replace roman numerals with average year as a timestamp\n", "df['genres'] = df['genres'].apply(ast.literal_eval) # convert string representation of list to list\n", "df['keywords'] = df['keywords'].apply(ast.literal_eval) # convert string representation of list to list\n", "df['cast'] = df['cast'].apply(ast.literal_eval) # convert string representation of list to list\n", @@ -731,7 +463,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -743,14 +475,11 @@ "outputs": [ { "data": { - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "string" - }, "text/plain": [ "'The Story of the Kelly Gang. Story of Ned Kelly, an infamous 19th-century Australian outlaw. ned kelly, australia, historic figure, australian western, first of its kind, directorial debut, australian history, 19th century, victoria australia, australian'" ] }, - "execution_count": 6, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -783,7 +512,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 6, "metadata": { "id": "Dyxs5dyWy4oQ" }, @@ -826,11 +555,19 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 7, "metadata": { "id": "fzfELmSjy4oR" }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[32m14:50:33\u001b[0m \u001b[34mredisvl.index.index\u001b[0m \u001b[1;30mINFO\u001b[0m Index already exists, overwriting.\n" + ] + } + ], "source": [ "from redis import Redis\n", "from redisvl.schema import IndexSchema\n", @@ -889,7 +626,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 8, "metadata": { "id": "Z45nA5Zoy4oR" }, @@ -914,7 +651,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 9, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -927,11 +664,11 @@ "name": "stdout", "output_type": "stream", "text": [ - "{'id': 'movie:345589922cb348a098930568d5e7d02a', 'vector_distance': '0.584869861603', 'title': 'The Odyssey', 'overview': 'The aquatic adventure of the highly influential and fearlessly ambitious pioneer, innovator, filmmaker, researcher, and conservationist, Jacques-Yves Cousteau, covers roughly thirty years of an inarguably rich in achievements life.'}\n", - "{'id': 'movie:5147986e894d43879f4d90d6ed85dfd0', 'vector_distance': '0.633292078972', 'title': 'The Inventor', 'overview': 'Inventing flying contraptions, war machines and studying cadavers, Leonardo da Vinci tackles the meaning of life itself with the help of French princess Marguerite de Nevarre.'}\n", - "{'id': 'movie:da53156795ab4026b51e9dde88b02fa6', 'vector_distance': '0.658123493195', 'title': 'Ruin', 'overview': 'The film follows a nameless ex-Nazi captain who navigates the ruins of post-WWII Germany determined to atone for his crimes during the war by hunting down the surviving members of his former SS Death Squad.'}\n", - "{'id': 'movie:3e14e33c09944a70810aa7e24a2f78ef', 'vector_distance': '0.688094377518', 'title': 'The Raven', 'overview': 'A man with incredible powers is sought by the government and military.'}\n", - "{'id': 'movie:2a4c39f73e6b49e8b32ea1ce456e5833', 'vector_distance': '0.694671332836', 'title': 'Get the Girl', 'overview': 'Sebastain \"Bash\" Danye, a legendary gun for hire hangs up his weapon to retire peacefully with his \\'it\\'s complicated\\' partner Renee. Their quiet lives are soon interrupted when they find an unconscious woman on their property, Maddie. While nursing her back to health, some bad me... Read all'}\n" + "{'id': 'movie:01JR93QQKR98GVEAZ9WEACJCQ2', 'vector_distance': '5.96046447754e-08', 'title': '20,000 Leagues Under the Sea', 'overview': 'A French professor and his daughter accompany Captain Nemo on an adventure aboard a submarine.'}\n", + "{'id': 'movie:01JR93QQM22ACE1NAYHMFQZ5JM', 'vector_distance': '0.364912927151', 'title': 'Captain Nemo and the Underwater City', 'overview': 'When Captain Nemo saves the passengers of a sinking ship and takes them to his Utopian underwater city he discovers that not all of his guests agree to remain there forever.'}\n", + "{'id': 'movie:01JR93QQKV8CWP07V3MXXX04DD', 'vector_distance': '0.451630234718', 'title': 'Adventures of Captain Fabian', 'overview': 'A sea captain becomes involved with a servant girl in early New Orleans. She sees him as a way to gain access into wealthy households.'}\n", + "{'id': 'movie:01JR93QQSA6TMDG5C3555JYJZJ', 'vector_distance': '0.469480991364', 'title': 'Intrigo: Death of an Author', 'overview': 'One solitary man at the rudder in a small open boat ploughs through a troubled sea off the Dutch coast.'}\n", + "{'id': 'movie:01JR93QQSD4JRAJNK8MY55KPFD', 'vector_distance': '0.473049581051', 'title': 'Le chant du loup', 'overview': 'In the near future, a French submarine finds itself in a crisis situation.'}\n" ] } ], @@ -964,22 +701,22 @@ "\n", "Production recommender systems often have fields that can be configured. Users can specify if they want to see a romantic comedy or a horror film, or only see new releases.\n", "\n", - "Let's go ahead and add this functionality by using the tags we've defined in our schema." + "Let's go ahead and add this functionality by using the tags we've defined in our schema. For illustration, we'll use the `Timestamp` filter to show recent films, the `Tag` filter to narrow down the genres, and the `Text` filter to make sure at least one of our keyword search terms is in the description." ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 10, "metadata": { "id": "wcRNJ4evy4oR" }, "outputs": [], "source": [ - "from redisvl.query.filter import Tag, Num, Text\n", + "from redisvl.query.filter import Tag, Text, Timestamp\n", "\n", "def make_filter(genres=None, release_year=None, keywords=None):\n", " flexible_filter = (\n", - " (Num(\"year\") > release_year) & # only show movies released after this year\n", + " (Timestamp(\"year\") > datetime.datetime(release_year, 1, 1)) & # only show movies released after this year\n", " (Tag(\"genres\") == genres) & # only show movies that match at least one in list of genres\n", " (Text(\"full_text\") % keywords) # only show movies that contain at least one of the keywords\n", " )\n", @@ -1014,7 +751,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 11, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -1027,21 +764,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "- Wolfman:\n", - "\t A man becomes afflicted by an ancient curse after he is bitten by a werewolf.\n", - "\t Genres: [\"Horror\"]\n", - "- Off Season:\n", - "\t Tenn's relentless search for his father takes him back to his childhood town only to find a community gripped by fear. As he travels deeper into the bitter winter wilderness of the town he uncovers a dreadful secret buried long ago.\n", - "\t Genres: [\"Horror\",\"Mystery\",\"Thriller\"]\n", - "- Pieces:\n", - "\t The co-eds of a Boston college campus are targeted by a mysterious killer who is creating a human jigsaw puzzle from their body parts.\n", - "\t Genres: [\"Horror\",\"Mystery\",\"Thriller\"]\n", - "- Cursed:\n", - "\t A prominent psychiatrist at a state run hospital wrestles with madness and a dark supernatural force as he and a female police detective race to stop an escaped patient from butchering five people held hostage in a remote mansion.\n", - "\t Genres: [\"Horror\",\"Thriller\"]\n", - "- The Home:\n", - "\t The Home unfolds after a young man is nearly killed during an accident that leaves him physically and emotionally scarred. To recuperate, he is taken to a secluded nursing home where the elderly residents appear to be suffering from delusions. But after witnessing a violent attac... Read all\n", - "\t Genres: [\"Action\",\"Fantasy\",\"Horror\"]\n" + "- The Forsaken:\n", + "\t A young man gets embroiled in a war against vampires.\n", + "\t Genres: [\"Action\",\"Horror\",\"Thriller\"]\n", + "- Shadow of the Vampire:\n", + "\t The filming of Nosferatu (1922) is hampered by the fact that its star Max Schreck is taking the role of a vampire far more seriously than seems humanly possible.\n", + "\t Genres: [\"Drama\",\"Horror\"]\n", + "- Blood and Chocolate:\n", + "\t A teenage werewolf is torn between honoring her family's secret and her love for a man.\n", + "\t Genres: [\"Drama\",\"Fantasy\",\"Horror\"]\n", + "- Queen of the Damned:\n", + "\t In this loose sequel to Interview with the Vampire: The Vampire Chronicles (1994), the vampire Lestat becomes a rock star whose music wakes up the equally beautiful and monstrous queen of all vampires.\n", + "\t Genres: [\"Drama\",\"Fantasy\",\"Horror\"]\n", + "- Stake Land:\n", + "\t In a world of vampires, an expert vampire hunter and his young protégé travel toward sanctuary.\n", + "\t Genres: [\"Drama\",\"Horror\",\"Sci-Fi\"]\n" ] } ], @@ -1068,7 +805,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 12, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -1081,7 +818,12 @@ "name": "stdout", "output_type": "stream", "text": [ - "Deleted 143 keys\n" + "Deleted 10000 keys\n", + "Deleted 7000 keys\n", + "Deleted 3500 keys\n", + "Deleted 1541 keys\n", + "Deleted 1000 keys\n", + "Deleted 500 keys\n" ] } ], @@ -1111,7 +853,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.10" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/python-recipes/recommendation-systems/01_collaborative_filtering.ipynb b/python-recipes/recommendation-systems/01_collaborative_filtering.ipynb index 84165cba..382b98a0 100644 --- a/python-recipes/recommendation-systems/01_collaborative_filtering.ipynb +++ b/python-recipes/recommendation-systems/01_collaborative_filtering.ipynb @@ -1,1787 +1,3119 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![Redis](https://redis.io/wp-content/uploads/2024/04/Logotype.svg?auto=webp&quality=85,75&width=120)\n", - "\n", - "# Recommendation Systems: Collaborative Filtering in RedisVL\n", - "\n", - "\"Open" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Recommendation systems are a common application of machine learning and serve many industries from e-commerce to music streaming platforms.\n", - "\n", - "There are many different architectures that can be followed to build a recommendation system. In a previous example notebook we demonstrated how to do [content filtering with RedisVL](content_filtering.ipynb). We encourage you to start there before diving into this notebook.\n", - "\n", - "In this notebook we'll demonstrate how to build a [collaborative filtering](https://en.wikipedia.org/wiki/Collaborative_filtering)\n", - "recommendation system and use the large IMDB movies dataset as our example data.\n", - "\n", - "To generate our vectors we'll use the popular Python package [Surprise](https://surpriselib.com/)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Environment Setup" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# NBVAL_SKIP\n", - "!pip install -q scikit-surprise redis redisvl pandas" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Install Redis Stack\n", - "\n", - "Later in this tutorial, Redis will be used to store, index, and query vector\n", - "embeddings. **We need to make sure we have a Redis instance available.**" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Redis in Colab\n", - "Use the shell script below to download, extract, and install [Redis Stack](https://redis.io/docs/getting-started/install-stack/) directly from the Redis package archive." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# NBVAL_SKIP\n", - "%%sh\n", - "curl -fsSL https://packages.redis.io/gpg | sudo gpg --dearmor -o /usr/share/keyrings/redis-archive-keyring.gpg\n", - "echo \"deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb $(lsb_release -cs) main\" | sudo tee /etc/apt/sources.list.d/redis.list\n", - "sudo apt-get update > /dev/null 2>&1\n", - "sudo apt-get install redis-stack-server > /dev/null 2>&1\n", - "redis-stack-server --daemonize yes" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Other ways to get Redis\n", - "There are many ways to get the necessary redis-stack instance running\n", - "1. On cloud, deploy a [FREE instance of Redis in the cloud](https://redis.io/try-free/). Or, if you have your\n", - "own version of Redis Enterprise running, that works too!\n", - "2. Per OS, [see the docs](https://redis.io/docs/latest/operate/oss_and_stack/install/install-stack/)\n", - "3. With docker: `docker run -d --name redis-stack-server -p 6379:6379 redis/redis-stack-server:latest`" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Define the Redis Connection URL\n", - "\n", - "By default this notebook connects to the local instance of Redis Stack. **If you have your own Redis Enterprise instance** - replace REDIS_PASSWORD, REDIS_HOST and REDIS_PORT values with your own." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "import requests\n", - "import pandas as pd\n", - "import numpy as np\n", - "\n", - "from surprise import SVD\n", - "from surprise import Dataset, Reader\n", - "from surprise.model_selection import train_test_split\n", - "\n", - "\n", - "# Replace values below with your own if using Redis Cloud instance\n", - "REDIS_HOST = os.getenv(\"REDIS_HOST\", \"localhost\") # ex: \"redis-18374.c253.us-central1-1.gce.cloud.redislabs.com\"\n", - "REDIS_PORT = os.getenv(\"REDIS_PORT\", \"6379\") # ex: 18374\n", - "REDIS_PASSWORD = os.getenv(\"REDIS_PASSWORD\", \"\") # ex: \"1TNxTEdYRDgIDKM2gDfasupCADXXXX\"\n", - "\n", - "# If SSL is enabled on the endpoint, use rediss:// as the URL prefix\n", - "REDIS_URL = f\"redis://:{REDIS_PASSWORD}@{REDIS_HOST}:{REDIS_PORT}\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To build a collaborative filtering example using the Surprise library and the Movies dataset, we need to first load the data, format it according to the requirements of Surprise, and then apply a collaborative filtering algorithm like SVD." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "def fetch_dataframe(file_name):\n", - " try:\n", - " df = pd.read_csv('datasets/collaborative_filtering/' + file_name)\n", - " except:\n", - " url = 'https://redis-ai-resources.s3.us-east-2.amazonaws.com/recommenders/datasets/collaborative-filtering/'\n", - " r = requests.get(url + file_name)\n", - " if not os.path.exists('datasets/collaborative_filtering'):\n", - " os.makedirs('datasets/collaborative_filtering')\n", - " with open('datasets/collaborative_filtering/' + file_name, 'wb') as f:\n", - " f.write(r.content)\n", - " df = pd.read_csv('datasets/collaborative_filtering/' + file_name)\n", - " return df\n" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "ratings_df = fetch_dataframe('ratings_small.csv') # for a larger example use 'ratings.csv' instead\n", - "\n", - "# only keep the columns we need: userId, movieId, rating\n", - "ratings_df = ratings_df[['userId', 'movieId', 'rating']]\n", - "\n", - "reader = Reader(rating_scale=(0.0, 5.0))\n", - "\n", - "ratings_data = Dataset.load_from_df(ratings_df, reader)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# What is Collaborative Filtering" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A lot is going to happen in the code cell below. We split our full data into train and test sets. We defined the collaborative filtering algorithm to use, which in this case is the Singular Value Decomposition (SVD) algorithm. lastly, we fit our model to our data.\n", - "\n", - "It's worth going into more detail why we chose this algorithm and what it is computing in the `svd.fit(train_set)` method we're calling.\n", - "First, let's think about what data it's receiving - our ratings data. This only contains the userIds, movieIds, and the user's ratings of their watched movies on a scale of 1 to 5.\n", - "\n", - "We can put this data into a matrix with rows being users and columns being movies\n", - "\n", - "| RATINGS| movie_1 | movie_2 | movie_3 | movie_4 | movie_5 | movie_6 | ....... |\n", - "| ----- | :-----: | :-----: | :-----: | :-----: | :-----: | :-----: | :-----: |\n", - "| user_1 | 4 | 1 | | 4 | | 5 | |\n", - "| user_2 | | 5 | 5 | 2 | 1 | | |\n", - "| user_3 | | | | | 1 | | |\n", - "| user_4 | 4 | 1 | | 4 | | ? | |\n", - "| user_5 | | 4 | 5 | 2 | | | |\n", - "| ...... | | | | | | | |\n", - "\n", - "Our empty cells aren't zero's, they're missing ratings, so `user_1` has never rated `movie_3`. They may like it or hate it." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Unlike Content Filtering, here we're only considering the ratings that users assign. We don't know the plot or genre or release year of any of these films. We don't even know the title.\n", - "But we can still build a recommender by assuming that users have similar tastes to each other. As an intuitive example, we can see that `user_1` and `user_4` have very similar ratings on several movies, so we will assume that `user_4` will rate `movie_6` highly, just as `user_1` did. This is the idea behind collaborative filtering." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "That's the intuition, but what about the math? Since we only have this matrix to work with, what we want to do is decompose it into two constituent matrices.\n", - "Lets call our ratings matrix `[R]`. We want to find two other matrices, a user matrix `[U]`, and a movies matrix `[M]` that fit the equation:\n", - "\n", - "`[U] * [M] = [R]`\n", - "\n", - "`[U]` will look like:\n", - "|user_1_feature_1 | user_1_feature_2 | user_1_feature_3 | user_1_feature_4 | ... | user_1_feature_k |\n", - "| ----- | --------- | --------- | --------- | --- | --------- |\n", - "|user_2_feature_1 | user_2_feature_2 | user_2_feature_3 | user_2_feature_4 | ... | user_2_feature_k |\n", - "|user_3_feature_1 | user_3_feature_2 | user_3_feature_3 | user_3_feature_4 | ... | user_3_feature_k |\n", - "| ... | . | . | . | ... | . |\n", - "|user_N_feature_1 | user_N_feature_2 | user_N_feature_3 | user_N_feature_4 | ... | user_N_feature_k |\n", - "\n", - "`[M]` will look like:\n", - "\n", - "| movie_1_feature_1 | movie_2_feature_1 | movie_3_feature_1 | ... | movie_M_feature_1 |\n", - "| --- | --- | --- | --- | --- |\n", - "| movie_1_feature_2 | movie_2_feature_2 | movie_3_feature_2 | ... | movie_M_feature_2 |\n", - "| movie_1_feature_3 | movie_2_feature_3 | movie_3_feature_3 | ... | movie_M_feature_3 |\n", - "| movie_1_feature_4 | movie_2_feature_4 | movie_3_feature_4 | ... | movie_M_feature_4 |\n", - "| ... | . | . | ... | . |\n", - "| movie_1_feature_k | movie_2_feature_k | movie_3_feature_k | ... | movie_M_feature_k |\n", - "\n", - "\n", - "these features are called the latent features (or latent factors) and are the values we're trying to find when we call the `svd.fit(training_data)` method. The algorithm that computes these features from our ratings matrix is the SVD algorithm. The number of users and movies is set by our data. The size of the latent feature vectors `k` is a parameter we choose. We'll keep it at the default 100 for this notebook." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ + "cells": [ { - "data": { - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": { + "id": "1SSb3vPJncuP" + }, + "source": [ + "![Redis](https://redis.io/wp-content/uploads/2024/04/Logotype.svg?auto=webp&quality=85,75&width=120)\n", + "\n", + "# Recommendation Systems: Collaborative Filtering in RedisVL\n", + "\n", + "\"Open" ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# split the data into training and testing sets (80% train, 20% test)\n", - "train_set, test_set = train_test_split(ratings_data, test_size=0.2)\n", - "\n", - "# use SVD (Singular Value Decomposition) for collaborative filtering\n", - "svd = SVD(n_factors=100, biased=False) # we'll set biased to False so that predictions are of the form \"rating_prediction = user_vector dot item_vector\"\n", - "\n", - "# train the algorithm on the train_set\n", - "svd.fit(train_set)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Extracting The User and Movie Vectors" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now that the SVD algorithm has computed our `[U]` and `[M]` matrices - which are both really just lists of vectors - we can load them into our Redis instance.\n", - "\n", - "The Surprise SVD model stores user and movie vectors in two attributes:\n", - "\n", - "`svd.pu`: user features matrix (a matrix where each row corresponds to the latent features of a user).\n", - "`svd.qi`: item features matrix (a matrix where each row corresponds to the latent features of an item/movie).\n", - "\n", - "It's worth noting that the matrix `svd.qi` is the transpose of the matrix `[M]` we defined above. This way each row corresponds to one movie." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "we have 671 users with feature vectors of size 100\n", - "we have 8403 movies with feature vectors of size 100\n" - ] - } - ], - "source": [ - "user_vectors = svd.pu # user latent features (matrix)\n", - "movie_vectors = svd.qi # movie latent features (matrix)\n", - "\n", - "print(f'we have {user_vectors.shape[0]} users with feature vectors of size {user_vectors.shape[1]}')\n", - "print(f'we have {movie_vectors.shape[0]} movies with feature vectors of size {movie_vectors.shape[1]}')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Predicting User Ratings\n", - "The great thing about collaborative filtering is that using our user and movie vectors we can predict the rating any user will give to any movie in our dataset.\n", - "And unlike content filtering, there is no assumption that all the movies a user will be recommended are similar to each other. A user can be recommended dark horror films and light-hearted animations.\n", - "\n", - "Looking back at our SVD algorithm the equation is [User_features] * [Movie_features].transpose = [Ratings]\n", - "So to get a prediction of what a user will rate a movie they haven't seen yet we just need to take the dot product of that user's feature vector and a movie's feature vector." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ + "cell_type": "markdown", + "metadata": { + "id": "qn47l7JVncuQ" + }, + "source": [ + "Recommendation systems are a common application of machine learning and serve many industries from e-commerce to music streaming platforms.\n", + "\n", + "There are many different architectures that can be followed to build a recommendation system. In a previous example notebook we demonstrated how to do [content filtering with RedisVL](content_filtering.ipynb). We encourage you to start there before diving into this notebook.\n", + "\n", + "In this notebook we'll demonstrate how to build a [collaborative filtering](https://en.wikipedia.org/wiki/Collaborative_filtering)\n", + "recommendation system and use the large IMDB movies dataset as our example data.\n", + "\n", + "To generate our vectors we'll use the popular Python package [Surprise](https://surpriselib.com/)" + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "the predicted rating of user 347 on movie 5515 is 0.8991088891906795\n" - ] - } - ], - "source": [ - "# surprise casts userId and movieId to inner ids, so we have to use their mapping to know which rows to use\n", - "inner_uid = train_set.to_inner_uid(347) # userId\n", - "inner_iid = train_set.to_inner_iid(5515) # movieId\n", - "\n", - "# predict one user's rating of one film\n", - "predicted_rating = np.dot(user_vectors[inner_uid], movie_vectors[inner_iid])\n", - "print(f'the predicted rating of user {347} on movie {5515} is {predicted_rating}')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding Movie Data\n", - "while our collaborative filtering algorithm was trained solely on user's ratings of movies, and doesn't require any data about the movies themselves - like the title, genres, or release year - we'll want that information stored as metadata.\n", - "\n", - "We can grab this data from our `movies_metadata.csv` file, clean it, and join it to our user ratings via the `movieId` column" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ + "cell_type": "markdown", + "metadata": { + "id": "RulVkjtBncuR" + }, + "source": [ + "## Environment Setup" + ] + }, { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
belongs_to_collectionbudgetgenreshomepageidimdb_idoriginal_languageoriginal_titleoverviewpopularity...release_daterevenueruntimespoken_languagesstatustaglinetitlevideovote_averagevote_count
0{'id': 10194, 'name': 'Toy Story Collection', ...30000000[{'id': 16, 'name': 'Animation'}, {'id': 35, '...http://toystory.disney.com/toy-story862tt0114709enToy StoryLed by Woody, Andy's toys live happily in his ...21.946943...1995-10-3037355403381.0[{'iso_639_1': 'en', 'name': 'English'}]ReleasedNaNToy StoryFalse7.75415
1NaN65000000[{'id': 12, 'name': 'Adventure'}, {'id': 14, '...NaN8844tt0113497enJumanjiWhen siblings Judy and Peter discover an encha...17.015539...1995-12-15262797249104.0[{'iso_639_1': 'en', 'name': 'English'}, {'iso...ReleasedRoll the dice and unleash the excitement!JumanjiFalse6.92413
2{'id': 119050, 'name': 'Grumpy Old Men Collect...0[{'id': 10749, 'name': 'Romance'}, {'id': 35, ...NaN15602tt0113228enGrumpier Old MenA family wedding reignites the ancient feud be...11.712900...1995-12-220101.0[{'iso_639_1': 'en', 'name': 'English'}]ReleasedStill Yelling. Still Fighting. Still Ready for...Grumpier Old MenFalse6.592
3NaN16000000[{'id': 35, 'name': 'Comedy'}, {'id': 18, 'nam...NaN31357tt0114885enWaiting to ExhaleCheated on, mistreated and stepped on, the wom...3.859495...1995-12-2281452156127.0[{'iso_639_1': 'en', 'name': 'English'}]ReleasedFriends are the people who let you be yourself...Waiting to ExhaleFalse6.134
4{'id': 96871, 'name': 'Father of the Bride Col...0[{'id': 35, 'name': 'Comedy'}]NaN11862tt0113041enFather of the Bride Part IIJust when George Banks has recovered from his ...8.387519...1995-02-1076578911106.0[{'iso_639_1': 'en', 'name': 'English'}]ReleasedJust When His World Is Back To Normal... He's ...Father of the Bride Part IIFalse5.7173
\n", - "

5 rows × 23 columns

\n", - "
" + "cell_type": "code", + "execution_count": 1, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Y-hTUPQxncuR", + "outputId": "83a6bdeb-b0fa-40a3-d4b7-4151b5afdc9c" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/261.5 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m261.5/261.5 kB\u001b[0m \u001b[31m12.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/104.8 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m104.8/104.8 kB\u001b[0m \u001b[31m8.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/46.0 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m46.0/46.0 kB\u001b[0m \u001b[31m3.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m86.8/86.8 kB\u001b[0m \u001b[31m1.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m772.0/772.0 kB\u001b[0m \u001b[31m14.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m17.6/17.6 MB\u001b[0m \u001b[31m39.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Building wheel for scikit-surprise (setup.py) ... \u001b[?25l\u001b[?25hdone\n" + ] + } ], - "text/plain": [ - " belongs_to_collection budget \\\n", - "0 {'id': 10194, 'name': 'Toy Story Collection', ... 30000000 \n", - "1 NaN 65000000 \n", - "2 {'id': 119050, 'name': 'Grumpy Old Men Collect... 0 \n", - "3 NaN 16000000 \n", - "4 {'id': 96871, 'name': 'Father of the Bride Col... 0 \n", - "\n", - " genres \\\n", - "0 [{'id': 16, 'name': 'Animation'}, {'id': 35, '... \n", - "1 [{'id': 12, 'name': 'Adventure'}, {'id': 14, '... \n", - "2 [{'id': 10749, 'name': 'Romance'}, {'id': 35, ... \n", - "3 [{'id': 35, 'name': 'Comedy'}, {'id': 18, 'nam... \n", - "4 [{'id': 35, 'name': 'Comedy'}] \n", - "\n", - " homepage id imdb_id original_language \\\n", - "0 http://toystory.disney.com/toy-story 862 tt0114709 en \n", - "1 NaN 8844 tt0113497 en \n", - "2 NaN 15602 tt0113228 en \n", - "3 NaN 31357 tt0114885 en \n", - "4 NaN 11862 tt0113041 en \n", - "\n", - " original_title \\\n", - "0 Toy Story \n", - "1 Jumanji \n", - "2 Grumpier Old Men \n", - "3 Waiting to Exhale \n", - "4 Father of the Bride Part II \n", - "\n", - " overview popularity ... \\\n", - "0 Led by Woody, Andy's toys live happily in his ... 21.946943 ... \n", - "1 When siblings Judy and Peter discover an encha... 17.015539 ... \n", - "2 A family wedding reignites the ancient feud be... 11.712900 ... \n", - "3 Cheated on, mistreated and stepped on, the wom... 3.859495 ... \n", - "4 Just when George Banks has recovered from his ... 8.387519 ... \n", - "\n", - " release_date revenue runtime \\\n", - "0 1995-10-30 373554033 81.0 \n", - "1 1995-12-15 262797249 104.0 \n", - "2 1995-12-22 0 101.0 \n", - "3 1995-12-22 81452156 127.0 \n", - "4 1995-02-10 76578911 106.0 \n", - "\n", - " spoken_languages status \\\n", - "0 [{'iso_639_1': 'en', 'name': 'English'}] Released \n", - "1 [{'iso_639_1': 'en', 'name': 'English'}, {'iso... Released \n", - "2 [{'iso_639_1': 'en', 'name': 'English'}] Released \n", - "3 [{'iso_639_1': 'en', 'name': 'English'}] Released \n", - "4 [{'iso_639_1': 'en', 'name': 'English'}] Released \n", - "\n", - " tagline \\\n", - "0 NaN \n", - "1 Roll the dice and unleash the excitement! \n", - "2 Still Yelling. Still Fighting. Still Ready for... \n", - "3 Friends are the people who let you be yourself... \n", - "4 Just When His World Is Back To Normal... He's ... \n", - "\n", - " title video vote_average vote_count \n", - "0 Toy Story False 7.7 5415 \n", - "1 Jumanji False 6.9 2413 \n", - "2 Grumpier Old Men False 6.5 92 \n", - "3 Waiting to Exhale False 6.1 34 \n", - "4 Father of the Bride Part II False 5.7 173 \n", - "\n", - "[5 rows x 23 columns]" + "source": [ + "%pip install redis \"redisvl>=0.4.1\" pandas requests\n", + "%pip install numpy==1.25.0 scikit-surprise==1.1.3" ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "movies_df = fetch_dataframe('movies_metadata.csv')\n", - "movies_df.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "budget 0\n", - "genres 0\n", - "id 0\n", - "imdb_id 0\n", - "original_language 0\n", - "overview 0\n", - "popularity 0\n", - "release_date 0\n", - "revenue 0\n", - "runtime 0\n", - "status 0\n", - "tagline 0\n", - "title 0\n", - "vote_average 0\n", - "vote_count 0\n", - "dtype: int64" + "cell_type": "markdown", + "metadata": { + "id": "qhWORopAncuR" + }, + "source": [ + "### Install Redis Stack\n", + "\n", + "Later in this tutorial, Redis will be used to store, index, and query vector\n", + "embeddings. **We need to make sure we have a Redis instance available.**" ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "\n", - "import datetime\n", - "movies_df.drop(columns=['homepage', 'production_countries', 'production_companies', 'spoken_languages', 'video', 'original_title', 'video', 'poster_path', 'belongs_to_collection'], inplace=True)\n", - "\n", - "# drop rows that have missing values\n", - "movies_df.dropna(subset=['imdb_id'], inplace=True)\n", - "\n", - "movies_df['original_language'] = movies_df['original_language'].fillna('unknown')\n", - "movies_df['overview'] = movies_df['overview'].fillna('')\n", - "movies_df['popularity'] = movies_df['popularity'].fillna(0)\n", - "movies_df['release_date'] = movies_df['release_date'].fillna('1900-01-01').apply(lambda x: datetime.datetime.strptime(x, \"%Y-%m-%d\").timestamp())\n", - "movies_df['revenue'] = movies_df['revenue'].fillna(0)\n", - "movies_df['runtime'] = movies_df['runtime'].fillna(0)\n", - "movies_df['status'] = movies_df['status'].fillna('unknown')\n", - "movies_df['tagline'] = movies_df['tagline'].fillna('')\n", - "movies_df['title'] = movies_df['title'].fillna('')\n", - "movies_df['vote_average'] = movies_df['vote_average'].fillna(0)\n", - "movies_df['vote_count'] = movies_df['vote_count'].fillna(0)\n", - "movies_df['genres'] = movies_df['genres'].apply(lambda x: [g['name'] for g in eval(x)] if x != '' else []) # convert to a list of genre names\n", - "movies_df['imdb_id'] = movies_df['imdb_id'].apply(lambda x: x[2:] if str(x).startswith('tt') else x).astype(int) # remove leading 'tt' from imdb_id\n", - "\n", - "# make sure we've filled all missing values\n", - "movies_df.isnull().sum()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We'll have to map these movies to their ratings, which we'll do so with the `links.csv` file that matches `movieId`, `imdbId`, and `tmdbId`.\n", - "Let's do that now." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "links_df = fetch_dataframe('links_small.csv') # for a larger example use 'links.csv' instead\n", - "\n", - "movies_df = movies_df.merge(links_df, left_on='imdb_id', right_on='imdbId', how='inner')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We'll want to move our SVD user vectors and movie vectors and their corresponding userId and movieId into 2 dataframes for later processing." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ + }, + { + "cell_type": "markdown", + "metadata": { + "id": "YivdjgwancuR" + }, + "source": [ + "#### Redis in Colab\n", + "Use the shell script below to download, extract, and install [Redis Stack](https://redis.io/docs/getting-started/install-stack/) directly from the Redis package archive." + ] + }, { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
budgetgenresidimdb_idoriginal_languageoverviewpopularityrelease_daterevenueruntimestatustaglinetitlevote_averagevote_countmovieIdimdbIdtmdbIdmovie_vector
030000000[Animation, Comedy, Family]862114709enLed by Woody, Andy's toys live happily in his ...21.946943815040000.037355403381.0ReleasedToy Story7.754151114709862.0[0.3629597621031209, 0.09949090915092493, -0.3...
165000000[Adventure, Fantasy, Family]8844113497enWhen siblings Judy and Peter discover an encha...17.015539819014400.0262797249104.0ReleasedRoll the dice and unleash the excitement!Jumanji6.9241321134978844.0[0.4218097358091202, 0.40147087972459594, 0.04...
20[Romance, Comedy]15602113228enA family wedding reignites the ancient feud be...11.712900819619200.00101.0ReleasedStill Yelling. Still Fighting. Still Ready for...Grumpier Old Men6.592311322815602.0[0.05688804187546483, 0.23857067106480734, -0....
316000000[Comedy, Drama, Romance]31357114885enCheated on, mistreated and stepped on, the wom...3.859495819619200.081452156127.0ReleasedFriends are the people who let you be yourself...Waiting to Exhale6.134411488531357.0[0.19581296502262047, 0.13208694293045403, -0....
40[Comedy]11862113041enJust when George Banks has recovered from his ...8.387519792403200.076578911106.0ReleasedJust When His World Is Back To Normal... He's ...Father of the Bride Part II5.7173511304111862.0[0.10202142982800701, 0.07210970873780809, -0....
\n", - "
" + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Dh1iOHR7ncuS" + }, + "outputs": [], + "source": [ + "# NBVAL_SKIP\n", + "%%sh\n", + "curl -fsSL https://packages.redis.io/gpg | sudo gpg --dearmor -o /usr/share/keyrings/redis-archive-keyring.gpg\n", + "echo \"deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb $(lsb_release -cs) main\" | sudo tee /etc/apt/sources.list.d/redis.list\n", + "sudo apt-get update > /dev/null 2>&1\n", + "sudo apt-get install redis-stack-server > /dev/null 2>&1\n", + "redis-stack-server --daemonize yes" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "UorOergyncuS" + }, + "source": [ + "#### Other ways to get Redis\n", + "There are many ways to get the necessary redis-stack instance running\n", + "1. On cloud, deploy a [FREE instance of Redis in the cloud](https://redis.io/try-free/). Or, if you have your\n", + "own version of Redis Enterprise running, that works too!\n", + "2. Per OS, [see the docs](https://redis.io/docs/latest/operate/oss_and_stack/install/install-stack/)\n", + "3. With docker: `docker run -d --name redis-stack-server -p 6379:6379 redis/redis-stack-server:latest`" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "z0Q5JXulncuS" + }, + "source": [ + "### Define the Redis Connection URL\n", + "\n", + "By default this notebook connects to the local instance of Redis Stack. **If you have your own Redis Enterprise instance** - replace REDIS_PASSWORD, REDIS_HOST and REDIS_PORT values with your own." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "id": "GSKdqakmncuS" + }, + "outputs": [], + "source": [ + "import os\n", + "import requests\n", + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "from surprise import SVD\n", + "from surprise import Dataset, Reader\n", + "from surprise.model_selection import train_test_split\n", + "\n", + "\n", + "# Replace values below with your own if using Redis Cloud instance\n", + "REDIS_HOST = os.getenv(\"REDIS_HOST\", \"localhost\") # ex: \"redis-18374.c253.us-central1-1.gce.cloud.redislabs.com\"\n", + "REDIS_PORT = os.getenv(\"REDIS_PORT\", \"6379\") # ex: 18374\n", + "REDIS_PASSWORD = os.getenv(\"REDIS_PASSWORD\", \"\") # ex: \"1TNxTEdYRDgIDKM2gDfasupCADXXXX\"\n", + "\n", + "# If SSL is enabled on the endpoint, use rediss:// as the URL prefix\n", + "REDIS_URL = f\"redis://:{REDIS_PASSWORD}@{REDIS_HOST}:{REDIS_PORT}\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "64cNk-zyncuS" + }, + "source": [ + "To build a collaborative filtering example using the Surprise library and the Movies dataset, we need to first load the data, format it according to the requirements of Surprise, and then apply a collaborative filtering algorithm like SVD." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "id": "FtGDNMbOncuS" + }, + "outputs": [], + "source": [ + "def fetch_dataframe(file_name):\n", + " try:\n", + " df = pd.read_csv('datasets/collaborative_filtering/' + file_name)\n", + " except:\n", + " url = 'https://redis-ai-resources.s3.us-east-2.amazonaws.com/recommenders/datasets/collaborative-filtering/'\n", + " r = requests.get(url + file_name)\n", + " if not os.path.exists('datasets/collaborative_filtering'):\n", + " os.makedirs('datasets/collaborative_filtering')\n", + " with open('datasets/collaborative_filtering/' + file_name, 'wb') as f:\n", + " f.write(r.content)\n", + " df = pd.read_csv('datasets/collaborative_filtering/' + file_name)\n", + " return df" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "2J6nhSQZncuS" + }, + "outputs": [], + "source": [ + "ratings_df = fetch_dataframe('ratings_small.csv') # for a larger example use 'ratings.csv' instead\n", + "\n", + "# only keep the columns we need: userId, movieId, rating\n", + "ratings_df = ratings_df[['userId', 'movieId', 'rating']]\n", + "\n", + "reader = Reader(rating_scale=(0.0, 5.0))\n", + "\n", + "ratings_data = Dataset.load_from_df(ratings_df, reader)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "53AiZkIzncuS" + }, + "source": [ + "# What is Collaborative Filtering" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "MFRZUlkRncuT" + }, + "source": [ + "A lot is going to happen in the code cell below. We split our full data into train and test sets. We defined the collaborative filtering algorithm to use, which in this case is the Singular Value Decomposition (SVD) algorithm. lastly, we fit our model to our data.\n", + "\n", + "It's worth going into more detail why we chose this algorithm and what it is computing in the `svd.fit(train_set)` method we're calling.\n", + "First, let's think about what data it's receiving - our ratings data. This only contains the userIds, movieIds, and the user's ratings of their watched movies on a scale of 1 to 5.\n", + "\n", + "We can put this data into a matrix with rows being users and columns being movies\n", + "\n", + "| RATINGS| movie_1 | movie_2 | movie_3 | movie_4 | movie_5 | movie_6 | ....... |\n", + "| ----- | :-----: | :-----: | :-----: | :-----: | :-----: | :-----: | :-----: |\n", + "| user_1 | 4 | 1 | | 4 | | 5 | |\n", + "| user_2 | | 5 | 5 | 2 | 1 | | |\n", + "| user_3 | | | | | 1 | | |\n", + "| user_4 | 4 | 1 | | 4 | | ? | |\n", + "| user_5 | | 4 | 5 | 2 | | | |\n", + "| ...... | | | | | | | |\n", + "\n", + "Our empty cells aren't zero's, they're missing ratings, so `user_1` has never rated `movie_3`. They may like it or hate it." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fv69SyZTncuT" + }, + "source": [ + "Unlike Content Filtering, here we're only considering the ratings that users assign. We don't know the plot or genre or release year of any of these films. We don't even know the title.\n", + "But we can still build a recommender by assuming that users have similar tastes to each other. As an intuitive example, we can see that `user_1` and `user_4` have very similar ratings on several movies, so we will assume that `user_4` will rate `movie_6` highly, just as `user_1` did. This is the idea behind collaborative filtering." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "VdhKXwCjncuT" + }, + "source": [ + "That's the intuition, but what about the math? Since we only have this matrix to work with, what we want to do is decompose it into two constituent matrices.\n", + "Lets call our ratings matrix `[R]`. We want to find two other matrices, a user matrix `[U]`, and a movies matrix `[M]` that fit the equation:\n", + "\n", + "`[U] * [M] = [R]`\n", + "\n", + "`[U]` will look like:\n", + "|user_1_feature_1 | user_1_feature_2 | user_1_feature_3 | user_1_feature_4 | ... | user_1_feature_k |\n", + "| ----- | --------- | --------- | --------- | --- | --------- |\n", + "|user_2_feature_1 | user_2_feature_2 | user_2_feature_3 | user_2_feature_4 | ... | user_2_feature_k |\n", + "|user_3_feature_1 | user_3_feature_2 | user_3_feature_3 | user_3_feature_4 | ... | user_3_feature_k |\n", + "| ... | . | . | . | ... | . |\n", + "|user_N_feature_1 | user_N_feature_2 | user_N_feature_3 | user_N_feature_4 | ... | user_N_feature_k |\n", + "\n", + "`[M]` will look like:\n", + "\n", + "| movie_1_feature_1 | movie_2_feature_1 | movie_3_feature_1 | ... | movie_M_feature_1 |\n", + "| --- | --- | --- | --- | --- |\n", + "| movie_1_feature_2 | movie_2_feature_2 | movie_3_feature_2 | ... | movie_M_feature_2 |\n", + "| movie_1_feature_3 | movie_2_feature_3 | movie_3_feature_3 | ... | movie_M_feature_3 |\n", + "| movie_1_feature_4 | movie_2_feature_4 | movie_3_feature_4 | ... | movie_M_feature_4 |\n", + "| ... | . | . | ... | . |\n", + "| movie_1_feature_k | movie_2_feature_k | movie_3_feature_k | ... | movie_M_feature_k |\n", + "\n", + "\n", + "these features are called the latent features (or latent factors) and are the values we're trying to find when we call the `svd.fit(training_data)` method. The algorithm that computes these features from our ratings matrix is the SVD algorithm. The number of users and movies is set by our data. The size of the latent feature vectors `k` is a parameter we choose. We'll keep it at the default 100 for this notebook." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Z2NGtLF6ncuT", + "outputId": "88414969-d6a9-4db8-e94a-458b14c79f79" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } ], - "text/plain": [ - " budget genres id imdb_id original_language \\\n", - "0 30000000 [Animation, Comedy, Family] 862 114709 en \n", - "1 65000000 [Adventure, Fantasy, Family] 8844 113497 en \n", - "2 0 [Romance, Comedy] 15602 113228 en \n", - "3 16000000 [Comedy, Drama, Romance] 31357 114885 en \n", - "4 0 [Comedy] 11862 113041 en \n", - "\n", - " overview popularity \\\n", - "0 Led by Woody, Andy's toys live happily in his ... 21.946943 \n", - "1 When siblings Judy and Peter discover an encha... 17.015539 \n", - "2 A family wedding reignites the ancient feud be... 11.712900 \n", - "3 Cheated on, mistreated and stepped on, the wom... 3.859495 \n", - "4 Just when George Banks has recovered from his ... 8.387519 \n", - "\n", - " release_date revenue runtime status \\\n", - "0 815040000.0 373554033 81.0 Released \n", - "1 819014400.0 262797249 104.0 Released \n", - "2 819619200.0 0 101.0 Released \n", - "3 819619200.0 81452156 127.0 Released \n", - "4 792403200.0 76578911 106.0 Released \n", - "\n", - " tagline \\\n", - "0 \n", - "1 Roll the dice and unleash the excitement! \n", - "2 Still Yelling. Still Fighting. Still Ready for... \n", - "3 Friends are the people who let you be yourself... \n", - "4 Just When His World Is Back To Normal... He's ... \n", - "\n", - " title vote_average vote_count movieId imdbId \\\n", - "0 Toy Story 7.7 5415 1 114709 \n", - "1 Jumanji 6.9 2413 2 113497 \n", - "2 Grumpier Old Men 6.5 92 3 113228 \n", - "3 Waiting to Exhale 6.1 34 4 114885 \n", - "4 Father of the Bride Part II 5.7 173 5 113041 \n", - "\n", - " tmdbId movie_vector \n", - "0 862.0 [0.3629597621031209, 0.09949090915092493, -0.3... \n", - "1 8844.0 [0.4218097358091202, 0.40147087972459594, 0.04... \n", - "2 15602.0 [0.05688804187546483, 0.23857067106480734, -0.... \n", - "3 31357.0 [0.19581296502262047, 0.13208694293045403, -0.... \n", - "4 11862.0 [0.10202142982800701, 0.07210970873780809, -0.... " + "source": [ + "# split the data into training and testing sets (80% train, 20% test)\n", + "train_set, test_set = train_test_split(ratings_data, test_size=0.2, random_state=42)\n", + "\n", + "# use SVD (Singular Value Decomposition) for collaborative filtering\n", + "svd = SVD(n_factors=100, biased=False) # we'll set biased to False so that predictions are of the form \"rating_prediction = user_vector dot item_vector\"\n", + "\n", + "# train the algorithm on the train_set\n", + "svd.fit(train_set)" ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# build a dataframe out of the user vectors and their userIds\n", - "user_vectors_and_ids = {train_set.to_raw_uid(inner_id): user_vectors[inner_id].tolist() for inner_id in train_set.all_users()}\n", - "user_vector_df = pd.Series(user_vectors_and_ids).to_frame('user_vector')\n", - "\n", - "# now do the same for the movie vectors and their movieIds\n", - "movie_vectors_and_ids = {train_set.to_raw_iid(inner_id): movie_vectors[inner_id].tolist() for inner_id in train_set.all_items()}\n", - "movie_vector_df = pd.Series(movie_vectors_and_ids).to_frame('movie_vector')\n", - "\n", - "# merge the movie vector series with the movies dataframe using the movieId and id fields\n", - "movies_df = movies_df.merge(movie_vector_df, left_on='movieId', right_index=True, how='inner')\n", - "movies_df['movieId'] = movies_df['movieId'].apply(lambda x: str(x)) # need to cast to a string as this is a tag field in our search schema\n", - "movies_df.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## RedisVL Handles the Scale\n", - "\n", - "Especially for large datasets like the 45,000 movie catalog we're dealing with, you'll want Redis to do the heavy lifting of vector search.\n", - "All that's needed is to define the search index and load our data we've cleaned and merged with our vectors.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "16:32:12 redisvl.index.index INFO Index already exists, overwriting.\n" - ] - } - ], - "source": [ - "from redis import Redis\n", - "from redisvl.schema import IndexSchema\n", - "from redisvl.index import SearchIndex\n", - "\n", - "client = Redis.from_url(REDIS_URL)\n", - "\n", - "movie_schema = IndexSchema.from_dict({\n", - " 'index': {\n", - " 'name': 'movies',\n", - " 'prefix': 'movie',\n", - " 'storage_type': 'json'\n", - " },\n", - " 'fields': [\n", - " {'name': 'movieId','type': 'tag'},\n", - " {'name': 'genres', 'type': 'tag'},\n", - " {'name': 'original_language', 'type': 'tag'},\n", - " {'name': 'overview', 'type': 'text'},\n", - " {'name': 'popularity', 'type': 'numeric'},\n", - " {'name': 'release_date', 'type': 'numeric'},\n", - " {'name': 'revenue', 'type': 'numeric'},\n", - " {'name': 'runtime', 'type': 'numeric'},\n", - " {'name': 'status', 'type': 'tag'},\n", - " {'name': 'tagline', 'type': 'text'},\n", - " {'name': 'title', 'type': 'text'},\n", - " {'name': 'vote_average', 'type': 'numeric'},\n", - " {'name': 'vote_count', 'type': 'numeric'},\n", - " {\n", - " 'name': 'movie_vector',\n", - " 'type': 'vector',\n", - " 'attrs': {\n", - " 'dims': 100,\n", - " 'algorithm': 'flat',\n", - " 'datatype': 'float32',\n", - " 'distance_metric': 'ip'\n", - " }\n", - " }\n", - " ]\n", - "})\n", - "\n", - "\n", - "movie_index = SearchIndex(movie_schema, redis_client=client)\n", - "movie_index.create(overwrite=True, drop=True)\n", - "\n", - "movie_keys = movie_index.load(movies_df.to_dict(orient='records'))" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ + "cell_type": "markdown", + "metadata": { + "id": "90teSUBxncuT" + }, + "source": [ + "## Extracting The User and Movie Vectors" + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "number of movies 8365\n", - "size of movie df 8365\n", - "unique movie ids 8359\n", - "unique movie titles 8117\n", - "unique movies rated 9065\n" - ] + "cell_type": "markdown", + "metadata": { + "id": "pkkb9WGGncuT" + }, + "source": [ + "Now that the SVD algorithm has computed our `[U]` and `[M]` matrices - which are both really just lists of vectors - we can load them into our Redis instance.\n", + "\n", + "The Surprise SVD model stores user and movie vectors in two attributes:\n", + "\n", + "`svd.pu`: user features matrix (a matrix where each row corresponds to the latent features of a user).\n", + "`svd.qi`: item features matrix (a matrix where each row corresponds to the latent features of an item/movie).\n", + "\n", + "It's worth noting that the matrix `svd.qi` is the transpose of the matrix `[M]` we defined above. This way each row corresponds to one movie." + ] }, { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
budgetgenresidimdb_idoriginal_languageoverviewpopularityrelease_daterevenueruntimestatustaglinetitlevote_averagevote_countmovieIdimdbIdtmdbIdmovie_vector
030000000[Animation, Comedy, Family]862114709enLed by Woody, Andy's toys live happily in his ...21.946943815040000.037355403381.0ReleasedToy Story7.754151114709862.0[0.3629597621031209, 0.09949090915092493, -0.3...
165000000[Adventure, Fantasy, Family]8844113497enWhen siblings Judy and Peter discover an encha...17.015539819014400.0262797249104.0ReleasedRoll the dice and unleash the excitement!Jumanji6.9241321134978844.0[0.4218097358091202, 0.40147087972459594, 0.04...
20[Romance, Comedy]15602113228enA family wedding reignites the ancient feud be...11.712900819619200.00101.0ReleasedStill Yelling. Still Fighting. Still Ready for...Grumpier Old Men6.592311322815602.0[0.05688804187546483, 0.23857067106480734, -0....
316000000[Comedy, Drama, Romance]31357114885enCheated on, mistreated and stepped on, the wom...3.859495819619200.081452156127.0ReleasedFriends are the people who let you be yourself...Waiting to Exhale6.134411488531357.0[0.19581296502262047, 0.13208694293045403, -0....
40[Comedy]11862113041enJust when George Banks has recovered from his ...8.387519792403200.076578911106.0ReleasedJust When His World Is Back To Normal... He's ...Father of the Bride Part II5.7173511304111862.0[0.10202142982800701, 0.07210970873780809, -0....
\n", - "
" + "cell_type": "code", + "execution_count": 7, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "T-GpsRcmncuT", + "outputId": "9ea7adfd-7949-4d87-f882-4cf225bb8cf6" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "we have 671 users with feature vectors of size 100\n", + "we have 8413 movies with feature vectors of size 100\n" + ] + } ], - "text/plain": [ - " budget genres id imdb_id original_language \\\n", - "0 30000000 [Animation, Comedy, Family] 862 114709 en \n", - "1 65000000 [Adventure, Fantasy, Family] 8844 113497 en \n", - "2 0 [Romance, Comedy] 15602 113228 en \n", - "3 16000000 [Comedy, Drama, Romance] 31357 114885 en \n", - "4 0 [Comedy] 11862 113041 en \n", - "\n", - " overview popularity \\\n", - "0 Led by Woody, Andy's toys live happily in his ... 21.946943 \n", - "1 When siblings Judy and Peter discover an encha... 17.015539 \n", - "2 A family wedding reignites the ancient feud be... 11.712900 \n", - "3 Cheated on, mistreated and stepped on, the wom... 3.859495 \n", - "4 Just when George Banks has recovered from his ... 8.387519 \n", - "\n", - " release_date revenue runtime status \\\n", - "0 815040000.0 373554033 81.0 Released \n", - "1 819014400.0 262797249 104.0 Released \n", - "2 819619200.0 0 101.0 Released \n", - "3 819619200.0 81452156 127.0 Released \n", - "4 792403200.0 76578911 106.0 Released \n", - "\n", - " tagline \\\n", - "0 \n", - "1 Roll the dice and unleash the excitement! \n", - "2 Still Yelling. Still Fighting. Still Ready for... \n", - "3 Friends are the people who let you be yourself... \n", - "4 Just When His World Is Back To Normal... He's ... \n", - "\n", - " title vote_average vote_count movieId imdbId \\\n", - "0 Toy Story 7.7 5415 1 114709 \n", - "1 Jumanji 6.9 2413 2 113497 \n", - "2 Grumpier Old Men 6.5 92 3 113228 \n", - "3 Waiting to Exhale 6.1 34 4 114885 \n", - "4 Father of the Bride Part II 5.7 173 5 113041 \n", - "\n", - " tmdbId movie_vector \n", - "0 862.0 [0.3629597621031209, 0.09949090915092493, -0.3... \n", - "1 8844.0 [0.4218097358091202, 0.40147087972459594, 0.04... \n", - "2 15602.0 [0.05688804187546483, 0.23857067106480734, -0.... \n", - "3 31357.0 [0.19581296502262047, 0.13208694293045403, -0.... \n", - "4 11862.0 [0.10202142982800701, 0.07210970873780809, -0.... " + "source": [ + "user_vectors = svd.pu # user latent features (matrix)\n", + "movie_vectors = svd.qi # movie latent features (matrix)\n", + "\n", + "print(f'we have {user_vectors.shape[0]} users with feature vectors of size {user_vectors.shape[1]}')\n", + "print(f'we have {movie_vectors.shape[0]} movies with feature vectors of size {movie_vectors.shape[1]}')" ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# sanity check we merged all dataframes properly and have the right sizes of movies, users, vectors, ids, etc.\n", - "number_of_movies = len(movies_df.to_dict(orient='records'))\n", - "size_of_movie_df = movies_df.shape[0]\n", - "\n", - "print('number of movies', number_of_movies)\n", - "print('size of movie df', size_of_movie_df)\n", - "\n", - "unique_movie_ids = movies_df['id'].nunique()\n", - "print('unique movie ids', unique_movie_ids)\n", - "\n", - "unique_movie_titles = movies_df['title'].nunique()\n", - "print('unique movie titles', unique_movie_titles)\n", - "\n", - "unique_movies_rated = ratings_df['movieId'].nunique()\n", - "print('unique movies rated', unique_movies_rated)\n", - "movies_df.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For a complete solution we'll store the user vectors and their watched list in Redis also. We won't be searching over these user vectors so no need to define an index for them. A direct JSON look up will suffice." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "from redis.commands.json.path import Path\n", - "\n", - "# use a Redis pipeline to store user data and verify it in a single transaction\n", - "with client.pipeline() as pipe:\n", - " for user_id, user_vector in user_vectors_and_ids.items():\n", - " user_key = f\"user:{user_id}\"\n", - " watched_list_ids = ratings_df[ratings_df['userId'] == user_id]['movieId'].tolist()\n", - "\n", - " user_data = {\n", - " \"user_vector\": user_vector,\n", - " \"watched_list_ids\": watched_list_ids\n", - " }\n", - " pipe.json().set(user_key, Path.root_path(), user_data)\n", - " pipe.execute()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Unlike in content filtering, where we want to compute vector similarity between items and we use cosine distance between items vectors to do so, in collaborative filtering we instead try to compute the predicted rating a user will give to a movie by taking the inner product of the user and movie vector.\n", - "\n", - "This is why in our `collaborative_filtering_schema.yaml` we use `ip` (inner product) as our distance metric.\n", - "\n", - "It's also why we'll use our user vector as the query vector when we do a query. Let's pick a random user and their corresponding user vector to see what this looks like." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "vector distance: -3.70880890,\t predicted rating: 4.70880890,\t title: The Shawshank Redemption, \n", - "vector distance: -3.64755058,\t predicted rating: 4.64755058,\t title: Gladiator 1992, \n", - "vector distance: -3.59094477,\t predicted rating: 4.59094477,\t title: Spirited Away, \n", - "vector distance: -3.55783939,\t predicted rating: 4.55783939,\t title: The Third Man, \n", - "vector distance: -3.50615883,\t predicted rating: 4.50615883,\t title: Schindler's List, \n", - "vector distance: -3.46187067,\t predicted rating: 4.46187067,\t title: My Neighbor Totoro, \n", - "vector distance: -3.45508957,\t predicted rating: 4.45508957,\t title: Ran, \n", - "vector distance: -3.44600630,\t predicted rating: 4.44600630,\t title: Saving Private Ryan, \n", - "vector distance: -3.43901110,\t predicted rating: 4.43901110,\t title: The Lord of the Rings: The Two Towers, \n", - "vector distance: -3.41369772,\t predicted rating: 4.41369772,\t title: Memento, \n", - "vector distance: -3.39571905,\t predicted rating: 4.39571905,\t title: The Great Escape, \n", - "vector distance: -3.36728716,\t predicted rating: 4.36728716,\t title: Letters from Iwo Jima, \n" - ] - } - ], - "source": [ - "from redisvl.query import RangeQuery\n", - "\n", - "user_vector = client.json().get(f\"user:{352}\")[\"user_vector\"]\n", - "\n", - "# the distance metric 'ip' inner product is computing \"score = 1 - u * v\" and returning the minimum, which corresponds to the max of \"u * v\"\n", - "# this is what we want. The predicted rating on a scale of 0 to 5 is then -(score - 1) == -score + 1\n", - "query = RangeQuery(vector=user_vector,\n", - " vector_field_name='movie_vector',\n", - " num_results=12,\n", - " return_score=True,\n", - " return_fields=['title', 'genres']\n", - " )\n", - "\n", - "results = movie_index.query(query)\n", - "\n", - "for r in results:\n", - " # compute our predicted rating on a scale of 0 to 5 from our vector distance\n", - " r['predicted_rating'] = - float(r['vector_distance']) + 1.\n", - " print(f\"vector distance: {float(r['vector_distance']):.08f},\\t predicted rating: {r['predicted_rating']:.08f},\\t title: {r['title']}, \")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding All the Bells & Whistles\n", - "Vector search handles the bulk of our collaborative filtering recommendation system and is a great approach to generating personalized recommendations that are unique to each user.\n", - "\n", - "To up our RecSys game even further we can leverage RedisVL Filter logic to give more control to what users are shown. Why have only one feed of recommended movies when you can have several, each with its own theme and personalized to each user." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "\n", - "from redisvl.query.filter import Tag, Num, Text\n", - "\n", - "def get_recommendations(user_id, filters=None, num_results=10):\n", - " user_vector = client.json().get(f\"user:{user_id}\")[\"user_vector\"]\n", - " query = RangeQuery(vector=user_vector,\n", - " vector_field_name='movie_vector',\n", - " num_results=num_results,\n", - " filter_expression=filters,\n", - " return_fields=['title', 'overview', 'genres'])\n", - "\n", - " results = movie_index.query(query)\n", - "\n", - " return [(r['title'], r['overview'], r['genres'], r['vector_distance']) for r in results]\n", - "\n", - "Top_picks_for_you = get_recommendations(user_id=42) # general SVD results, no filter\n", - "\n", - "block_buster_filter = Num('revenue') > 30_000_000\n", - "block_buster_hits = get_recommendations(user_id=42, filters=block_buster_filter)\n", - "\n", - "classics_filter = Num('release_date') < datetime.datetime(1990, 1, 1).timestamp()\n", - "classics = get_recommendations(user_id=42, filters=classics_filter)\n", - "\n", - "popular_filter = (Num('popularity') > 50) & (Num('vote_average') > 7)\n", - "Whats_popular = get_recommendations(user_id=42, filters=popular_filter)\n", - "\n", - "indie_filter = (Num('revenue') < 1_000_000) & (Num('popularity') > 10)\n", - "indie_hits = get_recommendations(user_id=42, filters=indie_filter)\n", - "\n", - "fruity = Text('title') % 'apple|orange|peach|banana|grape|pineapple'\n", - "fruity_films = get_recommendations(user_id=42, filters=fruity)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ + "cell_type": "markdown", + "metadata": { + "id": "SBZQrgaAncuT" + }, + "source": [ + "# Predicting User Ratings\n", + "The great thing about collaborative filtering is that using our user and movie vectors we can predict the rating any user will give to any movie in our dataset.\n", + "And unlike content filtering, there is no assumption that all the movies a user will be recommended are similar to each other. A user can be recommended dark horror films and light-hearted animations.\n", + "\n", + "Looking back at our SVD algorithm the equation is [User_features] * [Movie_features].transpose = [Ratings]\n", + "So to get a prediction of what a user will rate a movie they haven't seen yet we just need to take the dot product of that user's feature vector and a movie's feature vector." + ] + }, { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
top picksblock bustersclassicswhat's popularindie hitsfruity films
0The GodfatherThe GodfatherThe GodfatherThe Shawshank RedemptionCastle in the SkyA Clockwork Orange
1The Godfather: Part IIThe Godfather: Part IIThe Godfather: Part IIPulp FictionThe ProfessionalJames and the Giant Peach
2The Shawshank RedemptionThe Silence of the LambsThe African QueenThe Dark KnightShineWhat's Eating Gilbert Grape
3Band of BrothersSpirited AwayAmadeusFight ClubMy Neighbor TotoroPineapple Express
4Gladiator 1992Forrest GumpStar WarsBlade RunnerSeven SamuraiThe Grapes of Wrath
5The African QueenPulp FictionOne Flew Over the Cuckoo's NestGuardians of the GalaxyOnce Upon a Time in AmericaBananas
6The Silence of the LambsThe FugitiveThe Empire Strikes BackWhiplashAll About EveOrange County
7Spirited AwayThe Dark KnightTaxi DriverThe AvengersLa HaineThe Apple Dumpling Gang
8Forrest GumpAmadeusCinema ParadisoBig Hero 6CubeAdam's Apples
9Pulp FictionStar WarsThe Philadelphia StoryGone GirlArsenic and Old LaceHerbie Goes Bananas
\n", - "
" + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "EAzvW61fncuT", + "outputId": "7e806167-5c86-4c26-dd8f-a608ae412f8d" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "the predicted rating of user 347 on movie 5515 is 1.9290029937102224\n" + ] + } ], - "text/plain": [ - " top picks block busters \\\n", - "0 The Godfather The Godfather \n", - "1 The Godfather: Part II The Godfather: Part II \n", - "2 The Shawshank Redemption The Silence of the Lambs \n", - "3 Band of Brothers Spirited Away \n", - "4 Gladiator 1992 Forrest Gump \n", - "5 The African Queen Pulp Fiction \n", - "6 The Silence of the Lambs The Fugitive \n", - "7 Spirited Away The Dark Knight \n", - "8 Forrest Gump Amadeus \n", - "9 Pulp Fiction Star Wars \n", - "\n", - " classics what's popular \\\n", - "0 The Godfather The Shawshank Redemption \n", - "1 The Godfather: Part II Pulp Fiction \n", - "2 The African Queen The Dark Knight \n", - "3 Amadeus Fight Club \n", - "4 Star Wars Blade Runner \n", - "5 One Flew Over the Cuckoo's Nest Guardians of the Galaxy \n", - "6 The Empire Strikes Back Whiplash \n", - "7 Taxi Driver The Avengers \n", - "8 Cinema Paradiso Big Hero 6 \n", - "9 The Philadelphia Story Gone Girl \n", - "\n", - " indie hits fruity films \n", - "0 Castle in the Sky A Clockwork Orange \n", - "1 The Professional James and the Giant Peach \n", - "2 Shine What's Eating Gilbert Grape \n", - "3 My Neighbor Totoro Pineapple Express \n", - "4 Seven Samurai The Grapes of Wrath \n", - "5 Once Upon a Time in America Bananas \n", - "6 All About Eve Orange County \n", - "7 La Haine The Apple Dumpling Gang \n", - "8 Cube Adam's Apples \n", - "9 Arsenic and Old Lace Herbie Goes Bananas " + "source": [ + "# surprise casts userId and movieId to inner ids, so we have to use their mapping to know which rows to use\n", + "inner_uid = train_set.to_inner_uid(347) # userId\n", + "inner_iid = train_set.to_inner_iid(5515) # movieId\n", + "\n", + "# predict one user's rating of one film\n", + "predicted_rating = np.dot(user_vectors[inner_uid], movie_vectors[inner_iid])\n", + "print(f'the predicted rating of user {347} on movie {5515} is {predicted_rating}')" ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# put all these titles into a single pandas dataframe, where each column is one category\n", - "all_recommendations = pd.DataFrame(columns=[\"top picks\", \"block busters\", \"classics\", \"what's popular\", \"indie hits\", \"fruity films\"])\n", - "all_recommendations[\"top picks\"] = [m[0] for m in Top_picks_for_you]\n", - "all_recommendations[\"block busters\"] = [m[0] for m in block_buster_hits]\n", - "all_recommendations[\"classics\"] = [m[0] for m in classics]\n", - "all_recommendations[\"what's popular\"] = [m[0] for m in Whats_popular]\n", - "all_recommendations[\"indie hits\"] = [m[0] for m in indie_hits]\n", - "all_recommendations[\"fruity films\"] = [m[0] for m in fruity_films]\n", - "\n", - "all_recommendations.head(10)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Keeping Things Fresh\n", - "You've probably noticed that a few movies get repeated in these lists. That's not surprising as all our results are personalized and things like `popularity` and `user_rating` and `revenue` are likely highly correlated. And it's more than likely that at least some of the recommendations we're expecting to be highly rated by a given user are ones they've already watched and rated highly.\n", - "\n", - "We need a way to filter out movies that a user has already seen, and movies that we've already recommended to them before.\n", - "We could use a Tag filter on our queries to filter out movies by their id, but this gets cumbersome quickly.\n", - "Luckily Redis offers an easy answer to keeping recommendations new and interesting, and that answer is Bloom Filters." - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "# rewrite the get_recommendations() function to use a bloom filter and apply it before we return results\n", - "def get_unique_recommendations(user_id, filters=None, num_results=10):\n", - " user_data = client.json().get(f\"user:{user_id}\")\n", - " user_vector = user_data[\"user_vector\"]\n", - " watched_movies = user_data[\"watched_list_ids\"]\n", - "\n", - " # use a Bloom Filter to filter out movies that the user has already watched\n", - " client.bf().insert('user_watched_list', [f\"{user_id}:{movie_id}\" for movie_id in watched_movies])\n", - "\n", - " query = RangeQuery(vector=user_vector,\n", - " vector_field_name='movie_vector',\n", - " num_results=num_results * 5, # fetch more results to account for watched movies\n", - " filter_expression=filters,\n", - " return_fields=['title', 'overview', 'genres', 'movieId'],\n", - " )\n", - " results = movie_index.query(query)\n", - "\n", - " matches = client.bf().mexists(\"user_watched_list\", *[f\"{user_id}:{r['movieId']}\" for r in results])\n", - "\n", - " recommendations = [\n", - " (r['title'], r['overview'], r['genres'], r['vector_distance'], r['movieId'])\n", - " for i, r in enumerate(results) if matches[i] == 0\n", - " ][:num_results]\n", - "\n", - " # add these recommendations to the bloom filter so they don't appear again\n", - " client.bf().insert('user_watched_list', [f\"{user_id}:{r[4]}\" for r in recommendations])\n", - " return recommendations\n", - "\n", - "# example usage\n", - "# create a bloom filter for all our users\n", - "try:\n", - " client.bf().create(f\"user_watched_list\", 0.01, 10000)\n", - "except Exception as e:\n", - " client.delete(\"user_watched_list\")\n", - " client.bf().create(f\"user_watched_list\", 0.01, 10000)\n", - "\n", - "user_id = 42\n", - "\n", - "top_picks_for_you = get_unique_recommendations(user_id=user_id, num_results=5) # general SVD results, no filter\n", - "block_buster_hits = get_unique_recommendations(user_id=user_id, filters=block_buster_filter, num_results=5)\n", - "classic_movies = get_unique_recommendations(user_id=user_id, filters=classics_filter, num_results=5)\n", - "whats_popular = get_unique_recommendations(user_id=user_id, filters=popular_filter, num_results=5)\n", - "indie_hits = get_unique_recommendations(user_id=user_id, filters=indie_filter, num_results=5)" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "vscode": { - "languageId": "ruby" - } - }, - "outputs": [ + }, { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
top picksblock bustersclassicswhat's popularindie hits
0The GodfatherSpirited AwayTaxi DriverBlade RunnerCastle in the Sky
1The Godfather: Part IIAmadeusCinema ParadisoWhiplashThe Professional
2Gladiator 1992One Flew Over the Cuckoo's NestThe Philadelphia StoryBig Hero 6Shine
3The African QueenFight ClubThe Great EscapeGone GirlMy Neighbor Totoro
4The Silence of the LambsDead Poets SocietyThe Bridge on the River KwaiAvatarSeven Samurai
\n", - "
" + "cell_type": "markdown", + "metadata": { + "id": "i8nzYsK7ncuT" + }, + "source": [ + "## Adding Movie Data\n", + "while our collaborative filtering algorithm was trained solely on user's ratings of movies, and doesn't require any data about the movies themselves - like the title, genres, or release year - we'll want that information stored as metadata.\n", + "\n", + "We can grab this data from our `movies_metadata.csv` file, clean it, and join it to our user ratings via the `movieId` column" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 707 + }, + "id": "SWr8vKKjncuU", + "outputId": "334fe0e1-c86b-4e4f-b0e4-b693c0aee645" + }, + "outputs": [ + { + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "movies_df" + }, + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
belongs_to_collectionbudgetgenreshomepageidimdb_idoriginal_languageoriginal_titleoverviewpopularity...release_daterevenueruntimespoken_languagesstatustaglinetitlevideovote_averagevote_count
0{'id': 10194, 'name': 'Toy Story Collection', ...30000000[{'id': 16, 'name': 'Animation'}, {'id': 35, '...http://toystory.disney.com/toy-story862tt0114709enToy StoryLed by Woody, Andy's toys live happily in his ...21.946943...1995-10-3037355403381.0[{'iso_639_1': 'en', 'name': 'English'}]ReleasedNaNToy StoryFalse7.75415
1NaN65000000[{'id': 12, 'name': 'Adventure'}, {'id': 14, '...NaN8844tt0113497enJumanjiWhen siblings Judy and Peter discover an encha...17.015539...1995-12-15262797249104.0[{'iso_639_1': 'en', 'name': 'English'}, {'iso...ReleasedRoll the dice and unleash the excitement!JumanjiFalse6.92413
2{'id': 119050, 'name': 'Grumpy Old Men Collect...0[{'id': 10749, 'name': 'Romance'}, {'id': 35, ...NaN15602tt0113228enGrumpier Old MenA family wedding reignites the ancient feud be...11.712900...1995-12-220101.0[{'iso_639_1': 'en', 'name': 'English'}]ReleasedStill Yelling. Still Fighting. Still Ready for...Grumpier Old MenFalse6.592
3NaN16000000[{'id': 35, 'name': 'Comedy'}, {'id': 18, 'nam...NaN31357tt0114885enWaiting to ExhaleCheated on, mistreated and stepped on, the wom...3.859495...1995-12-2281452156127.0[{'iso_639_1': 'en', 'name': 'English'}]ReleasedFriends are the people who let you be yourself...Waiting to ExhaleFalse6.134
4{'id': 96871, 'name': 'Father of the Bride Col...0[{'id': 35, 'name': 'Comedy'}]NaN11862tt0113041enFather of the Bride Part IIJust when George Banks has recovered from his ...8.387519...1995-02-1076578911106.0[{'iso_639_1': 'en', 'name': 'English'}]ReleasedJust When His World Is Back To Normal... He's ...Father of the Bride Part IIFalse5.7173
\n", + "

5 rows × 23 columns

\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "text/plain": [ + " belongs_to_collection budget \\\n", + "0 {'id': 10194, 'name': 'Toy Story Collection', ... 30000000 \n", + "1 NaN 65000000 \n", + "2 {'id': 119050, 'name': 'Grumpy Old Men Collect... 0 \n", + "3 NaN 16000000 \n", + "4 {'id': 96871, 'name': 'Father of the Bride Col... 0 \n", + "\n", + " genres \\\n", + "0 [{'id': 16, 'name': 'Animation'}, {'id': 35, '... \n", + "1 [{'id': 12, 'name': 'Adventure'}, {'id': 14, '... \n", + "2 [{'id': 10749, 'name': 'Romance'}, {'id': 35, ... \n", + "3 [{'id': 35, 'name': 'Comedy'}, {'id': 18, 'nam... \n", + "4 [{'id': 35, 'name': 'Comedy'}] \n", + "\n", + " homepage id imdb_id original_language \\\n", + "0 http://toystory.disney.com/toy-story 862 tt0114709 en \n", + "1 NaN 8844 tt0113497 en \n", + "2 NaN 15602 tt0113228 en \n", + "3 NaN 31357 tt0114885 en \n", + "4 NaN 11862 tt0113041 en \n", + "\n", + " original_title \\\n", + "0 Toy Story \n", + "1 Jumanji \n", + "2 Grumpier Old Men \n", + "3 Waiting to Exhale \n", + "4 Father of the Bride Part II \n", + "\n", + " overview popularity ... \\\n", + "0 Led by Woody, Andy's toys live happily in his ... 21.946943 ... \n", + "1 When siblings Judy and Peter discover an encha... 17.015539 ... \n", + "2 A family wedding reignites the ancient feud be... 11.712900 ... \n", + "3 Cheated on, mistreated and stepped on, the wom... 3.859495 ... \n", + "4 Just when George Banks has recovered from his ... 8.387519 ... \n", + "\n", + " release_date revenue runtime \\\n", + "0 1995-10-30 373554033 81.0 \n", + "1 1995-12-15 262797249 104.0 \n", + "2 1995-12-22 0 101.0 \n", + "3 1995-12-22 81452156 127.0 \n", + "4 1995-02-10 76578911 106.0 \n", + "\n", + " spoken_languages status \\\n", + "0 [{'iso_639_1': 'en', 'name': 'English'}] Released \n", + "1 [{'iso_639_1': 'en', 'name': 'English'}, {'iso... Released \n", + "2 [{'iso_639_1': 'en', 'name': 'English'}] Released \n", + "3 [{'iso_639_1': 'en', 'name': 'English'}] Released \n", + "4 [{'iso_639_1': 'en', 'name': 'English'}] Released \n", + "\n", + " tagline \\\n", + "0 NaN \n", + "1 Roll the dice and unleash the excitement! \n", + "2 Still Yelling. Still Fighting. Still Ready for... \n", + "3 Friends are the people who let you be yourself... \n", + "4 Just When His World Is Back To Normal... He's ... \n", + "\n", + " title video vote_average vote_count \n", + "0 Toy Story False 7.7 5415 \n", + "1 Jumanji False 6.9 2413 \n", + "2 Grumpier Old Men False 6.5 92 \n", + "3 Waiting to Exhale False 6.1 34 \n", + "4 Father of the Bride Part II False 5.7 173 \n", + "\n", + "[5 rows x 23 columns]" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } ], - "text/plain": [ - " top picks block busters \\\n", - "0 The Godfather Spirited Away \n", - "1 The Godfather: Part II Amadeus \n", - "2 Gladiator 1992 One Flew Over the Cuckoo's Nest \n", - "3 The African Queen Fight Club \n", - "4 The Silence of the Lambs Dead Poets Society \n", - "\n", - " classics what's popular indie hits \n", - "0 Taxi Driver Blade Runner Castle in the Sky \n", - "1 Cinema Paradiso Whiplash The Professional \n", - "2 The Philadelphia Story Big Hero 6 Shine \n", - "3 The Great Escape Gone Girl My Neighbor Totoro \n", - "4 The Bridge on the River Kwai Avatar Seven Samurai " + "source": [ + "movies_df = fetch_dataframe('movies_metadata.csv')\n", + "movies_df.head()" ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# put all these titles into a single pandas dataframe , where each column is one category\n", - "top_picks = pd.DataFrame({\"top picks\":[m[0] for m in top_picks_for_you]})\n", - "block_busters = pd.DataFrame({\"block busters\": [m[0] for m in block_buster_hits]})\n", - "classics = pd.DataFrame({\"classics\": [m[0] for m in classic_movies]})\n", - "popular = pd.DataFrame({\"what's popular\": [m[0] for m in whats_popular]})\n", - "indies = pd.DataFrame({\"indie hits\": [m[0] for m in indie_hits]})\n", - "\n", - "all_recommendations = pd.concat([top_picks, block_busters, classics, popular, indies], axis=1)\n", - "all_recommendations.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Conclusion\n", - "That's it! That's all it takes to build a highly scalable, personalized, customizable collaborative filtering recommendation system with Redis and RedisVL.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 554 + }, + "id": "uVsYceL6ncuU", + "outputId": "38d1e411-216f-4e1f-9221-a8d074ae295c" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
budget0
genres0
id0
imdb_id0
original_language0
overview0
popularity0
release_date0
revenue0
runtime0
status0
tagline0
title0
vote_average0
vote_count0
\n", + "

" + ], + "text/plain": [ + "budget 0\n", + "genres 0\n", + "id 0\n", + "imdb_id 0\n", + "original_language 0\n", + "overview 0\n", + "popularity 0\n", + "release_date 0\n", + "revenue 0\n", + "runtime 0\n", + "status 0\n", + "tagline 0\n", + "title 0\n", + "vote_average 0\n", + "vote_count 0\n", + "dtype: int64" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import datetime\n", + "\n", + "movies_df.drop(columns=['homepage', 'production_countries', 'production_companies', 'spoken_languages', 'video', 'original_title', 'video', 'poster_path', 'belongs_to_collection'], inplace=True)\n", + "\n", + "# drop rows that have missing values\n", + "movies_df.dropna(subset=['imdb_id'], inplace=True)\n", + "\n", + "movies_df['original_language'] = movies_df['original_language'].fillna('unknown')\n", + "movies_df['overview'] = movies_df['overview'].fillna('')\n", + "movies_df['popularity'] = movies_df['popularity'].fillna(0)\n", + "movies_df['release_date'] = movies_df['release_date'].fillna('1900-01-01').apply(lambda x: datetime.datetime.strptime(x, \"%Y-%m-%d\").timestamp())\n", + "movies_df['revenue'] = movies_df['revenue'].fillna(0)\n", + "movies_df['runtime'] = movies_df['runtime'].fillna(0)\n", + "movies_df['status'] = movies_df['status'].fillna('unknown')\n", + "movies_df['tagline'] = movies_df['tagline'].fillna('')\n", + "movies_df['title'] = movies_df['title'].fillna('')\n", + "movies_df['vote_average'] = movies_df['vote_average'].fillna(0)\n", + "movies_df['vote_count'] = movies_df['vote_count'].fillna(0)\n", + "movies_df['genres'] = movies_df['genres'].apply(lambda x: [g['name'] for g in eval(x)] if x != '' else []) # convert to a list of genre names\n", + "movies_df['imdb_id'] = movies_df['imdb_id'].apply(lambda x: x[2:] if str(x).startswith('tt') else x).astype(int) # remove leading 'tt' from imdb_id\n", + "\n", + "# make sure we've filled all missing values\n", + "movies_df.isnull().sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "1567hKjyncuU" + }, + "source": [ + "We'll have to map these movies to their ratings, which we'll do so with the `links.csv` file that matches `movieId`, `imdbId`, and `tmdbId`.\n", + "Let's do that now." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "id": "r9Ag_1gNncuU" + }, + "outputs": [], + "source": [ + "links_df = fetch_dataframe('links_small.csv') # for a larger example use 'links.csv' instead\n", + "\n", + "movies_df = movies_df.merge(links_df, left_on='imdb_id', right_on='imdbId', how='inner')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "C5cEq3WqncuU" + }, + "source": [ + "We'll want to move our SVD user vectors and movie vectors and their corresponding userId and movieId into 2 dataframes for later processing." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 678 + }, + "id": "FF4VvMIGncuU", + "outputId": "9a5d1405-f81a-4264-c8d3-1a67aeb8770d" + }, + "outputs": [ + { + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "summary": "{\n \"name\": \"movies_df\",\n \"rows\": 8371,\n \"fields\": [\n {\n \"column\": \"budget\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 34386142,\n \"min\": 0,\n \"max\": 380000000,\n \"num_unique_values\": 573,\n \"samples\": [\n 2011799,\n 34000000,\n 1020000\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"genres\",\n \"properties\": {\n \"dtype\": \"object\",\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"id\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 59254,\n \"min\": 2,\n \"max\": 410921,\n \"num_unique_values\": 8365,\n \"samples\": [\n 9647,\n 22717,\n 15373\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"imdb_id\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 708828,\n \"min\": 417,\n \"max\": 5794766,\n \"num_unique_values\": 8365,\n \"samples\": [\n 96061,\n 1084972,\n 430922\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"original_language\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 40,\n \"samples\": [\n \"el\",\n \"cs\",\n \"vi\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"overview\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 8349,\n \"samples\": [\n \"A traumatized Vietnam war veteran finds out that his post-war life isn't what he believes it to be when he's attacked by horned creatures in the subway and his dead son comes to visit him...\",\n \"When ruthless oil prospector, Daniel Plainview learns of oil-rich land in California that can be bought cheaply, he moves his operation there and begins manipulating and exploiting the local landowners into selling him their property. Using his young adopted son to project the image of a caring family man, Plainview gains the cooperation of almost all the locals with lofty promises to build schools and cultivate the land to make their community flourish. Over time, Plainview's gradual accumulation of wealth and power causes his true self to surface, and he begins to slowly alienate himself from everyone in his life.\",\n \"When Erik, a Stockholm urbanite, learns that his beauty-queen sister, Susie, is missing, he goes to their country roots to look for her. But after talking to the eccentric locals -- including a shy video store clerk and a corrupt police officer -- Erik finds a woman who is not at all like the girl he left behind. Award-winning director Ulf Malmros helms this black comedy infused with hipster flair.\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"popularity\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 9.663633526157765,\n \"min\": 4e-06,\n \"max\": 547.488298,\n \"num_unique_values\": 8366,\n \"samples\": [\n 11.465634,\n 7.971424,\n 6.953676\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"release_date\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 599813664.9645566,\n \"min\": -2208988800.0,\n \"max\": 1474588800.0,\n \"num_unique_values\": 5636,\n \"samples\": [\n 569203200.0,\n 890956800.0,\n 1094256000.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"revenue\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 133691465,\n \"min\": 0,\n \"max\": 2787965087,\n \"num_unique_values\": 4340,\n \"samples\": [\n 2963902,\n 56666667,\n 3166000\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"runtime\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 29.19720850092113,\n \"min\": 0.0,\n \"max\": 931.0,\n \"num_unique_values\": 228,\n \"samples\": [\n 38.0,\n 110.0,\n 78.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"status\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"Rumored\",\n \"In Production\",\n \"unknown\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"tagline\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 6515,\n \"samples\": [\n \"Every family is a little bit mental.\",\n \"Pray for day.\",\n \"In order to catch him, he must become him.\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"title\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 8118,\n \"samples\": [\n \"Br\\u00fcno\",\n \"Mean Machine\",\n \"Under Capricorn\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"vote_average\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.0086464494051834,\n \"min\": 0.0,\n \"max\": 10.0,\n \"num_unique_values\": 69,\n \"samples\": [\n 5.9,\n 7.7,\n 8.2\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"vote_count\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1029,\n \"min\": 0,\n \"max\": 14075,\n \"num_unique_values\": 1715,\n \"samples\": [\n 175,\n 3169,\n 5540\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"movieId\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 8365,\n \"samples\": [\n \"3087\",\n \"71460\",\n \"63131\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"imdbId\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 708828,\n \"min\": 417,\n \"max\": 5794766,\n \"num_unique_values\": 8365,\n \"samples\": [\n 96061,\n 1084972,\n 430922\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"tmdbId\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 59079.552089076504,\n \"min\": 2.0,\n \"max\": 410921.0,\n \"num_unique_values\": 8365,\n \"samples\": [\n 9647.0,\n 22717.0,\n 15373.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"movie_vector\",\n \"properties\": {\n \"dtype\": \"object\",\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}", + "type": "dataframe", + "variable_name": "movies_df" + }, + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
budgetgenresidimdb_idoriginal_languageoverviewpopularityrelease_daterevenueruntimestatustaglinetitlevote_averagevote_countmovieIdimdbIdtmdbIdmovie_vector
030000000[Animation, Comedy, Family]862114709enLed by Woody, Andy's toys live happily in his ...21.946943815011200.037355403381.0ReleasedToy Story7.754151114709862.0[-0.06569161273652241, -0.17609557209523566, -...
165000000[Adventure, Fantasy, Family]8844113497enWhen siblings Judy and Peter discover an encha...17.015539818985600.0262797249104.0ReleasedRoll the dice and unleash the excitement!Jumanji6.9241321134978844.0[-0.23059899835353526, 0.11379844893416496, 0....
20[Romance, Comedy]15602113228enA family wedding reignites the ancient feud be...11.712900819590400.00101.0ReleasedStill Yelling. Still Fighting. Still Ready for...Grumpier Old Men6.592311322815602.0[-0.20550941154126207, 0.008979917137958133, 0...
316000000[Comedy, Drama, Romance]31357114885enCheated on, mistreated and stepped on, the wom...3.859495819590400.081452156127.0ReleasedFriends are the people who let you be yourself...Waiting to Exhale6.134411488531357.0[-0.03584003439558818, -0.1677514150360115, -0...
40[Comedy]11862113041enJust when George Banks has recovered from his ...8.387519792374400.076578911106.0ReleasedJust When His World Is Back To Normal... He's ...Father of the Bride Part II5.7173511304111862.0[-0.05428452987012634, 0.04187613726661857, 0....
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "text/plain": [ + " budget genres id imdb_id original_language \\\n", + "0 30000000 [Animation, Comedy, Family] 862 114709 en \n", + "1 65000000 [Adventure, Fantasy, Family] 8844 113497 en \n", + "2 0 [Romance, Comedy] 15602 113228 en \n", + "3 16000000 [Comedy, Drama, Romance] 31357 114885 en \n", + "4 0 [Comedy] 11862 113041 en \n", + "\n", + " overview popularity \\\n", + "0 Led by Woody, Andy's toys live happily in his ... 21.946943 \n", + "1 When siblings Judy and Peter discover an encha... 17.015539 \n", + "2 A family wedding reignites the ancient feud be... 11.712900 \n", + "3 Cheated on, mistreated and stepped on, the wom... 3.859495 \n", + "4 Just when George Banks has recovered from his ... 8.387519 \n", + "\n", + " release_date revenue runtime status \\\n", + "0 815011200.0 373554033 81.0 Released \n", + "1 818985600.0 262797249 104.0 Released \n", + "2 819590400.0 0 101.0 Released \n", + "3 819590400.0 81452156 127.0 Released \n", + "4 792374400.0 76578911 106.0 Released \n", + "\n", + " tagline \\\n", + "0 \n", + "1 Roll the dice and unleash the excitement! \n", + "2 Still Yelling. Still Fighting. Still Ready for... \n", + "3 Friends are the people who let you be yourself... \n", + "4 Just When His World Is Back To Normal... He's ... \n", + "\n", + " title vote_average vote_count movieId imdbId \\\n", + "0 Toy Story 7.7 5415 1 114709 \n", + "1 Jumanji 6.9 2413 2 113497 \n", + "2 Grumpier Old Men 6.5 92 3 113228 \n", + "3 Waiting to Exhale 6.1 34 4 114885 \n", + "4 Father of the Bride Part II 5.7 173 5 113041 \n", + "\n", + " tmdbId movie_vector \n", + "0 862.0 [-0.06569161273652241, -0.17609557209523566, -... \n", + "1 8844.0 [-0.23059899835353526, 0.11379844893416496, 0.... \n", + "2 15602.0 [-0.20550941154126207, 0.008979917137958133, 0... \n", + "3 31357.0 [-0.03584003439558818, -0.1677514150360115, -0... \n", + "4 11862.0 [-0.05428452987012634, 0.04187613726661857, 0.... " + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# build a dataframe out of the user vectors and their userIds\n", + "user_vectors_and_ids = {train_set.to_raw_uid(inner_id): user_vectors[inner_id].tolist() for inner_id in train_set.all_users()}\n", + "user_vector_df = pd.Series(user_vectors_and_ids).to_frame('user_vector')\n", + "\n", + "# now do the same for the movie vectors and their movieIds\n", + "movie_vectors_and_ids = {train_set.to_raw_iid(inner_id): movie_vectors[inner_id].tolist() for inner_id in train_set.all_items()}\n", + "movie_vector_df = pd.Series(movie_vectors_and_ids).to_frame('movie_vector')\n", + "\n", + "# merge the movie vector series with the movies dataframe using the movieId and id fields\n", + "movies_df = movies_df.merge(movie_vector_df, left_on='movieId', right_index=True, how='inner')\n", + "movies_df['movieId'] = movies_df['movieId'].apply(lambda x: str(x)) # need to cast to a string as this is a tag field in our search schema\n", + "movies_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zYrgDkY_ncuU" + }, + "source": [ + "## RedisVL Handles the Scale\n", + "\n", + "Especially for large datasets like the 45,000 movie catalog we're dealing with, you'll want Redis to do the heavy lifting of vector search.\n", + "All that's needed is to define the search index and load our data we've cleaned and merged with our vectors.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "id": "lbbVBALYncuU" + }, + "outputs": [], + "source": [ + "from redis import Redis\n", + "from redisvl.schema import IndexSchema\n", + "from redisvl.index import SearchIndex\n", + "\n", + "client = Redis.from_url(REDIS_URL)\n", + "\n", + "movie_schema = IndexSchema.from_dict({\n", + " 'index': {\n", + " 'name': 'movies',\n", + " 'prefix': 'movie',\n", + " 'storage_type': 'json'\n", + " },\n", + " 'fields': [\n", + " {'name': 'movieId','type': 'tag'},\n", + " {'name': 'genres', 'type': 'tag'},\n", + " {'name': 'original_language', 'type': 'tag'},\n", + " {'name': 'overview', 'type': 'text'},\n", + " {'name': 'popularity', 'type': 'numeric'},\n", + " {'name': 'release_date', 'type': 'numeric'},\n", + " {'name': 'revenue', 'type': 'numeric'},\n", + " {'name': 'runtime', 'type': 'numeric'},\n", + " {'name': 'status', 'type': 'tag'},\n", + " {'name': 'tagline', 'type': 'text'},\n", + " {'name': 'title', 'type': 'text'},\n", + " {'name': 'vote_average', 'type': 'numeric'},\n", + " {'name': 'vote_count', 'type': 'numeric'},\n", + " {\n", + " 'name': 'movie_vector',\n", + " 'type': 'vector',\n", + " 'attrs': {\n", + " 'dims': 100,\n", + " 'algorithm': 'flat',\n", + " 'datatype': 'float32',\n", + " 'distance_metric': 'ip'\n", + " }\n", + " }\n", + " ]\n", + "})\n", + "\n", + "\n", + "movie_index = SearchIndex(movie_schema, redis_client=client)\n", + "movie_index.create(overwrite=True, drop=True)\n", + "\n", + "movie_keys = movie_index.load(movies_df.to_dict(orient='records'))" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 767 + }, + "id": "m3YEZWL5ncuU", + "outputId": "3f931243-ec0b-443a-cdfb-11a7fd25dbeb" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "number of movies 8371\n", + "size of movie df 8371\n", + "unique movie ids 8365\n", + "unique movie titles 8118\n", + "unique movies rated 9065\n" + ] + }, + { + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "summary": "{\n \"name\": \"movies_df\",\n \"rows\": 8371,\n \"fields\": [\n {\n \"column\": \"budget\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 34386142,\n \"min\": 0,\n \"max\": 380000000,\n \"num_unique_values\": 573,\n \"samples\": [\n 2011799,\n 34000000,\n 1020000\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"genres\",\n \"properties\": {\n \"dtype\": \"object\",\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"id\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 59254,\n \"min\": 2,\n \"max\": 410921,\n \"num_unique_values\": 8365,\n \"samples\": [\n 9647,\n 22717,\n 15373\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"imdb_id\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 708828,\n \"min\": 417,\n \"max\": 5794766,\n \"num_unique_values\": 8365,\n \"samples\": [\n 96061,\n 1084972,\n 430922\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"original_language\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 40,\n \"samples\": [\n \"el\",\n \"cs\",\n \"vi\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"overview\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 8349,\n \"samples\": [\n \"A traumatized Vietnam war veteran finds out that his post-war life isn't what he believes it to be when he's attacked by horned creatures in the subway and his dead son comes to visit him...\",\n \"When ruthless oil prospector, Daniel Plainview learns of oil-rich land in California that can be bought cheaply, he moves his operation there and begins manipulating and exploiting the local landowners into selling him their property. Using his young adopted son to project the image of a caring family man, Plainview gains the cooperation of almost all the locals with lofty promises to build schools and cultivate the land to make their community flourish. Over time, Plainview's gradual accumulation of wealth and power causes his true self to surface, and he begins to slowly alienate himself from everyone in his life.\",\n \"When Erik, a Stockholm urbanite, learns that his beauty-queen sister, Susie, is missing, he goes to their country roots to look for her. But after talking to the eccentric locals -- including a shy video store clerk and a corrupt police officer -- Erik finds a woman who is not at all like the girl he left behind. Award-winning director Ulf Malmros helms this black comedy infused with hipster flair.\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"popularity\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 9.663633526157765,\n \"min\": 4e-06,\n \"max\": 547.488298,\n \"num_unique_values\": 8366,\n \"samples\": [\n 11.465634,\n 7.971424,\n 6.953676\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"release_date\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 599813664.9645566,\n \"min\": -2208988800.0,\n \"max\": 1474588800.0,\n \"num_unique_values\": 5636,\n \"samples\": [\n 569203200.0,\n 890956800.0,\n 1094256000.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"revenue\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 133691465,\n \"min\": 0,\n \"max\": 2787965087,\n \"num_unique_values\": 4340,\n \"samples\": [\n 2963902,\n 56666667,\n 3166000\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"runtime\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 29.19720850092113,\n \"min\": 0.0,\n \"max\": 931.0,\n \"num_unique_values\": 228,\n \"samples\": [\n 38.0,\n 110.0,\n 78.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"status\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"Rumored\",\n \"In Production\",\n \"unknown\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"tagline\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 6515,\n \"samples\": [\n \"Every family is a little bit mental.\",\n \"Pray for day.\",\n \"In order to catch him, he must become him.\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"title\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 8118,\n \"samples\": [\n \"Br\\u00fcno\",\n \"Mean Machine\",\n \"Under Capricorn\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"vote_average\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.0086464494051834,\n \"min\": 0.0,\n \"max\": 10.0,\n \"num_unique_values\": 69,\n \"samples\": [\n 5.9,\n 7.7,\n 8.2\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"vote_count\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1029,\n \"min\": 0,\n \"max\": 14075,\n \"num_unique_values\": 1715,\n \"samples\": [\n 175,\n 3169,\n 5540\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"movieId\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 8365,\n \"samples\": [\n \"3087\",\n \"71460\",\n \"63131\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"imdbId\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 708828,\n \"min\": 417,\n \"max\": 5794766,\n \"num_unique_values\": 8365,\n \"samples\": [\n 96061,\n 1084972,\n 430922\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"tmdbId\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 59079.552089076504,\n \"min\": 2.0,\n \"max\": 410921.0,\n \"num_unique_values\": 8365,\n \"samples\": [\n 9647.0,\n 22717.0,\n 15373.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"movie_vector\",\n \"properties\": {\n \"dtype\": \"object\",\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}", + "type": "dataframe", + "variable_name": "movies_df" + }, + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
budgetgenresidimdb_idoriginal_languageoverviewpopularityrelease_daterevenueruntimestatustaglinetitlevote_averagevote_countmovieIdimdbIdtmdbIdmovie_vector
030000000[Animation, Comedy, Family]862114709enLed by Woody, Andy's toys live happily in his ...21.946943815011200.037355403381.0ReleasedToy Story7.754151114709862.0[-0.06569161273652241, -0.17609557209523566, -...
165000000[Adventure, Fantasy, Family]8844113497enWhen siblings Judy and Peter discover an encha...17.015539818985600.0262797249104.0ReleasedRoll the dice and unleash the excitement!Jumanji6.9241321134978844.0[-0.23059899835353526, 0.11379844893416496, 0....
20[Romance, Comedy]15602113228enA family wedding reignites the ancient feud be...11.712900819590400.00101.0ReleasedStill Yelling. Still Fighting. Still Ready for...Grumpier Old Men6.592311322815602.0[-0.20550941154126207, 0.008979917137958133, 0...
316000000[Comedy, Drama, Romance]31357114885enCheated on, mistreated and stepped on, the wom...3.859495819590400.081452156127.0ReleasedFriends are the people who let you be yourself...Waiting to Exhale6.134411488531357.0[-0.03584003439558818, -0.1677514150360115, -0...
40[Comedy]11862113041enJust when George Banks has recovered from his ...8.387519792374400.076578911106.0ReleasedJust When His World Is Back To Normal... He's ...Father of the Bride Part II5.7173511304111862.0[-0.05428452987012634, 0.04187613726661857, 0....
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "text/plain": [ + " budget genres id imdb_id original_language \\\n", + "0 30000000 [Animation, Comedy, Family] 862 114709 en \n", + "1 65000000 [Adventure, Fantasy, Family] 8844 113497 en \n", + "2 0 [Romance, Comedy] 15602 113228 en \n", + "3 16000000 [Comedy, Drama, Romance] 31357 114885 en \n", + "4 0 [Comedy] 11862 113041 en \n", + "\n", + " overview popularity \\\n", + "0 Led by Woody, Andy's toys live happily in his ... 21.946943 \n", + "1 When siblings Judy and Peter discover an encha... 17.015539 \n", + "2 A family wedding reignites the ancient feud be... 11.712900 \n", + "3 Cheated on, mistreated and stepped on, the wom... 3.859495 \n", + "4 Just when George Banks has recovered from his ... 8.387519 \n", + "\n", + " release_date revenue runtime status \\\n", + "0 815011200.0 373554033 81.0 Released \n", + "1 818985600.0 262797249 104.0 Released \n", + "2 819590400.0 0 101.0 Released \n", + "3 819590400.0 81452156 127.0 Released \n", + "4 792374400.0 76578911 106.0 Released \n", + "\n", + " tagline \\\n", + "0 \n", + "1 Roll the dice and unleash the excitement! \n", + "2 Still Yelling. Still Fighting. Still Ready for... \n", + "3 Friends are the people who let you be yourself... \n", + "4 Just When His World Is Back To Normal... He's ... \n", + "\n", + " title vote_average vote_count movieId imdbId \\\n", + "0 Toy Story 7.7 5415 1 114709 \n", + "1 Jumanji 6.9 2413 2 113497 \n", + "2 Grumpier Old Men 6.5 92 3 113228 \n", + "3 Waiting to Exhale 6.1 34 4 114885 \n", + "4 Father of the Bride Part II 5.7 173 5 113041 \n", + "\n", + " tmdbId movie_vector \n", + "0 862.0 [-0.06569161273652241, -0.17609557209523566, -... \n", + "1 8844.0 [-0.23059899835353526, 0.11379844893416496, 0.... \n", + "2 15602.0 [-0.20550941154126207, 0.008979917137958133, 0... \n", + "3 31357.0 [-0.03584003439558818, -0.1677514150360115, -0... \n", + "4 11862.0 [-0.05428452987012634, 0.04187613726661857, 0.... " + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# sanity check we merged all dataframes properly and have the right sizes of movies, users, vectors, ids, etc.\n", + "number_of_movies = len(movies_df.to_dict(orient='records'))\n", + "size_of_movie_df = movies_df.shape[0]\n", + "\n", + "print('number of movies', number_of_movies)\n", + "print('size of movie df', size_of_movie_df)\n", + "\n", + "unique_movie_ids = movies_df['id'].nunique()\n", + "print('unique movie ids', unique_movie_ids)\n", + "\n", + "unique_movie_titles = movies_df['title'].nunique()\n", + "print('unique movie titles', unique_movie_titles)\n", + "\n", + "unique_movies_rated = ratings_df['movieId'].nunique()\n", + "print('unique movies rated', unique_movies_rated)\n", + "movies_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "nrWD9kjgncuU" + }, + "source": [ + "For a complete solution we'll store the user vectors and their watched list in Redis also. We won't be searching over these user vectors so no need to define an index for them. A direct JSON look up will suffice." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "id": "uu6UYWB8ncuV" + }, + "outputs": [], + "source": [ + "from redis.commands.json.path import Path\n", + "\n", + "# use a Redis pipeline to store user data and verify it in a single request\n", + "with client.pipeline(transaction=False) as pipe:\n", + " for user_id, user_vector in user_vectors_and_ids.items():\n", + " user_key = f\"user:{user_id}\"\n", + " watched_list_ids = ratings_df[ratings_df['userId'] == user_id]['movieId'].tolist()\n", + "\n", + " user_data = {\n", + " \"user_vector\": user_vector,\n", + " \"watched_list_ids\": watched_list_ids\n", + " }\n", + " pipe.json().set(user_key, Path.root_path(), user_data)\n", + " pipe.execute()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "YWO3D4NHncuV" + }, + "source": [ + "Unlike in content filtering, where we want to compute vector similarity between items and we use cosine distance between items vectors to do so, in collaborative filtering we instead try to compute the predicted rating a user will give to a movie by taking the inner product of the user and movie vector.\n", + "\n", + "This is why in our `collaborative_filtering_schema.yaml` we use `ip` (inner product) as our distance metric.\n", + "\n", + "It's also why we'll use our user vector as the query vector when we do a query. Let's pick a random user and their corresponding user vector to see what this looks like." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "8I12pQCHncuV", + "outputId": "9377fa45-be5d-45b9-bfdc-188437ec75c9" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "vector distance: -3.69441223,\t predicted rating: 4.69441223,\t title: Star Wars, \n", + "vector distance: -3.65510082,\t predicted rating: 4.65510082,\t title: The Shawshank Redemption, \n", + "vector distance: -3.65108061,\t predicted rating: 4.65108061,\t title: The Empire Strikes Back, \n", + "vector distance: -3.58951712,\t predicted rating: 4.58951712,\t title: The Godfather: Part II, \n", + "vector distance: -3.56594038,\t predicted rating: 4.56594038,\t title: My Neighbor Totoro, \n", + "vector distance: -3.52710867,\t predicted rating: 4.52710867,\t title: The Usual Suspects, \n", + "vector distance: -3.52688694,\t predicted rating: 4.52688694,\t title: Spirited Away, \n", + "vector distance: -3.41610765,\t predicted rating: 4.41610765,\t title: Jurassic Park, \n", + "vector distance: -3.41030931,\t predicted rating: 4.41030931,\t title: Leon: The Professional, \n", + "vector distance: -3.35841942,\t predicted rating: 4.35841942,\t title: Forrest Gump, \n", + "vector distance: -3.35718012,\t predicted rating: 4.35718012,\t title: Raiders of the Lost Ark, \n", + "vector distance: -3.34595776,\t predicted rating: 4.34595776,\t title: Sling Blade, \n" + ] + } + ], + "source": [ + "from redisvl.query import RangeQuery\n", + "\n", + "user_vector = client.json().get(f\"user:{352}\")[\"user_vector\"]\n", + "\n", + "# the distance metric 'ip' inner product is computing \"score = 1 - u * v\" and returning the minimum, which corresponds to the max of \"u * v\"\n", + "# this is what we want. The predicted rating on a scale of 0 to 5 is then -(score - 1) == -score + 1\n", + "query = RangeQuery(\n", + " vector=user_vector,\n", + " vector_field_name='movie_vector',\n", + " num_results=12,\n", + " return_score=True,\n", + " return_fields=['title', 'genres']\n", + ")\n", + "\n", + "results = movie_index.query(query)\n", + "\n", + "for r in results:\n", + " # compute our predicted rating on a scale of 0 to 5 from our vector distance\n", + " r['predicted_rating'] = - float(r['vector_distance']) + 1.\n", + " print(f\"vector distance: {float(r['vector_distance']):.08f},\\t predicted rating: {r['predicted_rating']:.08f},\\t title: {r['title']}, \")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CZgD91JCncuV" + }, + "source": [ + "## Adding All the Bells & Whistles\n", + "Vector search handles the bulk of our collaborative filtering recommendation system and is a great approach to generating personalized recommendations that are unique to each user.\n", + "\n", + "To up our RecSys game even further we can leverage RedisVL Filter logic to give more control to what users are shown. Why have only one feed of recommended movies when you can have several, each with its own theme and personalized to each user." + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "Deleted 4365 keys\n", - "Deleted 2000 keys\n", - "Deleted 1000 keys\n", - "Deleted 500 keys\n", - "Deleted 500 keys\n" - ] + "cell_type": "code", + "execution_count": 17, + "metadata": { + "id": "_IYs3mJFncuV" + }, + "outputs": [], + "source": [ + "from redisvl.query.filter import Tag, Num, Text\n", + "\n", + "\n", + "def get_recommendations(user_id, filters=None, num_results=10):\n", + " user_vector = client.json().get(f\"user:{user_id}\")[\"user_vector\"]\n", + " query = RangeQuery(\n", + " vector=user_vector,\n", + " vector_field_name='movie_vector',\n", + " num_results=num_results,\n", + " filter_expression=filters,\n", + " return_fields=['title', 'overview', 'genres']\n", + " )\n", + "\n", + " results = movie_index.query(query)\n", + "\n", + " return [(r['title'], r['overview'], r['genres'], r['vector_distance']) for r in results]\n", + "\n", + "\n", + "top_picks_for_you = get_recommendations(user_id=42) # general SVD results, no filter\n", + "\n", + "block_buster_filter = Num('revenue') > 30_000_000\n", + "block_buster_hits = get_recommendations(user_id=42, filters=block_buster_filter)\n", + "\n", + "classics_filter = Num('release_date') < datetime.datetime(1990, 1, 1).timestamp()\n", + "classics = get_recommendations(user_id=42, filters=classics_filter)\n", + "\n", + "popular_filter = (Num('popularity') > 50) & (Num('vote_average') > 7)\n", + "Whats_popular = get_recommendations(user_id=42, filters=popular_filter)\n", + "\n", + "indie_filter = (Num('revenue') < 1_000_000) & (Num('popularity') > 10)\n", + "indie_hits = get_recommendations(user_id=42, filters=indie_filter)\n", + "\n", + "fruity = Text('title') % 'apple|orange|peach|banana|grape|pineapple'\n", + "fruity_films = get_recommendations(user_id=42, filters=fruity)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "X6BYOqjGncua", + "outputId": "3dfb698f-553e-4cb4-b373-8cd960c85215" + }, + "outputs": [ + { + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "summary": "{\n \"name\": \"all_recommendations\",\n \"rows\": 10,\n \"fields\": [\n {\n \"column\": \"top picks\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 10,\n \"samples\": [\n \"Die Hard\",\n \"Forrest Gump\",\n \"Good Will Hunting\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"block busters\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 10,\n \"samples\": [\n \"Memento\",\n \"Forrest Gump\",\n \"Fight Club\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"classics\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 10,\n \"samples\": [\n \"Indiana Jones and the Last Crusade\",\n \"The Empire Strikes Back\",\n \"Aliens\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"what's popular\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 10,\n \"samples\": [\n \"Guardians of the Galaxy\",\n \"The Shawshank Redemption\",\n \"The Avengers\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"indie hits\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 10,\n \"samples\": [\n \"Akira\",\n \"Shine\",\n \"M\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"fruity films\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 10,\n \"samples\": [\n \"Herbie Goes Bananas\",\n \"A Clockwork Orange\",\n \"Bananas\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}", + "type": "dataframe", + "variable_name": "all_recommendations" + }, + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
top picksblock bustersclassicswhat's popularindie hitsfruity films
0Raiders of the Lost ArkRaiders of the Lost ArkRaiders of the Lost ArkFight ClubMy Neighbor TotoroThe Grapes of Wrath
1Forrest GumpForrest GumpThe Empire Strikes BackThe Shawshank RedemptionShineA Clockwork Orange
2The Empire Strikes BackThe Empire Strikes BackStar WarsPulp FictionThe Meaning of LifeWhat's Eating Gilbert Grape
3Star WarsStar WarsThe African QueenThe Dark KnightThe ProfessionalJames and the Giant Peach
4The African QueenGood Will HuntingDie HardBlade RunnerThe OthersPineapple Express
5Good Will HuntingFight ClubAliensThe AvengersMBananas
6Band of BrothersDie HardThe Godfather: Part IIGone GirlBicycle ThievesOrange County
7Fight ClubAliens12 Angry MenBig Hero 6MetropolisAdam's Apples
8Die HardMementoIndiana Jones and the Last CrusadeGuardians of the GalaxyAkiraHerbie Goes Bananas
9AliensPulp FictionReturn of the JediWhiplashAll About EveThe Apple Dumpling Gang
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "text/plain": [ + " top picks block busters \\\n", + "0 Raiders of the Lost Ark Raiders of the Lost Ark \n", + "1 Forrest Gump Forrest Gump \n", + "2 The Empire Strikes Back The Empire Strikes Back \n", + "3 Star Wars Star Wars \n", + "4 The African Queen Good Will Hunting \n", + "5 Good Will Hunting Fight Club \n", + "6 Band of Brothers Die Hard \n", + "7 Fight Club Aliens \n", + "8 Die Hard Memento \n", + "9 Aliens Pulp Fiction \n", + "\n", + " classics what's popular \\\n", + "0 Raiders of the Lost Ark Fight Club \n", + "1 The Empire Strikes Back The Shawshank Redemption \n", + "2 Star Wars Pulp Fiction \n", + "3 The African Queen The Dark Knight \n", + "4 Die Hard Blade Runner \n", + "5 Aliens The Avengers \n", + "6 The Godfather: Part II Gone Girl \n", + "7 12 Angry Men Big Hero 6 \n", + "8 Indiana Jones and the Last Crusade Guardians of the Galaxy \n", + "9 Return of the Jedi Whiplash \n", + "\n", + " indie hits fruity films \n", + "0 My Neighbor Totoro The Grapes of Wrath \n", + "1 Shine A Clockwork Orange \n", + "2 The Meaning of Life What's Eating Gilbert Grape \n", + "3 The Professional James and the Giant Peach \n", + "4 The Others Pineapple Express \n", + "5 M Bananas \n", + "6 Bicycle Thieves Orange County \n", + "7 Metropolis Adam's Apples \n", + "8 Akira Herbie Goes Bananas \n", + "9 All About Eve The Apple Dumpling Gang " + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# put all these titles into a single pandas dataframe, where each column is one category\n", + "all_recommendations = pd.DataFrame(columns=[\"top picks\", \"block busters\", \"classics\", \"what's popular\", \"indie hits\", \"fruity films\"])\n", + "all_recommendations[\"top picks\"] = [m[0] for m in top_picks_for_you]\n", + "all_recommendations[\"block busters\"] = [m[0] for m in block_buster_hits]\n", + "all_recommendations[\"classics\"] = [m[0] for m in classics]\n", + "all_recommendations[\"what's popular\"] = [m[0] for m in Whats_popular]\n", + "all_recommendations[\"indie hits\"] = [m[0] for m in indie_hits]\n", + "all_recommendations[\"fruity films\"] = [m[0] for m in fruity_films]\n", + "\n", + "all_recommendations.head(10)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "yMlgR3Nyncua" + }, + "source": [ + "## Keeping Things Fresh\n", + "You've probably noticed that a few movies get repeated in these lists. That's not surprising as all our results are personalized and things like `popularity` and `user_rating` and `revenue` are likely highly correlated. And it's more than likely that at least some of the recommendations we're expecting to be highly rated by a given user are ones they've already watched and rated highly.\n", + "\n", + "We need a way to filter out movies that a user has already seen, and movies that we've already recommended to them before.\n", + "We could use a Tag filter on our queries to filter out movies by their id, but this gets cumbersome quickly.\n", + "Luckily Redis offers an easy answer to keeping recommendations new and interesting, and that answer is Bloom Filters." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "id": "jlWoLrw_ncua" + }, + "outputs": [], + "source": [ + "# rewrite the get_recommendations() function to use a bloom filter and apply it before we return results\n", + "def get_unique_recommendations(user_id, filters=None, num_results=10):\n", + " user_data = client.json().get(f\"user:{user_id}\")\n", + " user_vector = user_data[\"user_vector\"]\n", + " watched_movies = user_data[\"watched_list_ids\"]\n", + "\n", + " # use a Bloom Filter to filter out movies that the user has already watched\n", + " client.bf().insert('user_watched_list', [f\"{user_id}:{movie_id}\" for movie_id in watched_movies])\n", + "\n", + " query = RangeQuery(\n", + " vector=user_vector,\n", + " vector_field_name='movie_vector',\n", + " num_results=num_results * 5, # fetch more results to account for watched movies\n", + " filter_expression=filters,\n", + " return_fields=['title', 'overview', 'genres', 'movieId'],\n", + " )\n", + " results = movie_index.query(query)\n", + "\n", + " matches = client.bf().mexists(\"user_watched_list\", *[f\"{user_id}:{r['movieId']}\" for r in results])\n", + "\n", + " recommendations = [\n", + " (r['title'], r['overview'], r['genres'], r['vector_distance'], r['movieId'])\n", + " for i, r in enumerate(results) if matches[i] == 0\n", + " ][:num_results]\n", + "\n", + " # add these recommendations to the bloom filter so they don't appear again\n", + " client.bf().insert('user_watched_list', [f\"{user_id}:{r[4]}\" for r in recommendations])\n", + " return recommendations\n", + "\n", + "\n", + "# example usage\n", + "# create a bloom filter for all our users\n", + "try:\n", + " client.bf().create(f\"user_watched_list\", 0.01, 10000)\n", + "except Exception as e:\n", + " client.delete(\"user_watched_list\")\n", + " client.bf().create(f\"user_watched_list\", 0.01, 10000)\n", + "\n", + "user_id = 42\n", + "\n", + "top_picks_for_you = get_unique_recommendations(user_id=user_id, num_results=5) # general SVD results, no filter\n", + "block_buster_hits = get_unique_recommendations(user_id=user_id, filters=block_buster_filter, num_results=5)\n", + "classic_movies = get_unique_recommendations(user_id=user_id, filters=classics_filter, num_results=5)\n", + "whats_popular = get_unique_recommendations(user_id=user_id, filters=popular_filter, num_results=5)\n", + "indie_hits = get_unique_recommendations(user_id=user_id, filters=indie_filter, num_results=5)" + ] }, { - "data": { - "text/plain": [ - "671" + "cell_type": "code", + "execution_count": 20, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "TTsI0ntAncua", + "outputId": "fa813546-cbab-4cf0-e1ed-b2db278c1592", + "vscode": { + "languageId": "ruby" + } + }, + "outputs": [ + { + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "summary": "{\n \"name\": \"all_recommendations\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"top picks\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"Fight Club\",\n \"Lock, Stock and Two Smoking Barrels\",\n \"Memento\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"block busters\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"Fargo\",\n \"Se7en\",\n \"The Godfather: Part II\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"classics\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"Taxi Driver\",\n \"The Godfather\",\n \"The Untouchables\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"what's popular\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"Gone Girl\",\n \"Avatar\",\n \"Big Hero 6\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"indie hits\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"Shine\",\n \"The Others\",\n \"The Meaning of Life\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}", + "type": "dataframe", + "variable_name": "all_recommendations" + }, + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
top picksblock bustersclassicswhat's popularindie hits
0The African QueenSpirited Away12 Angry MenBlade RunnerMy Neighbor Totoro
1Fight ClubFargoTaxi DriverGone GirlShine
2MementoThe Godfather: Part IIThe UntouchablesBig Hero 6The Meaning of Life
3HappinessDances with WolvesDr. Strangelove or: How I Learned to Stop Worr...WhiplashThe Professional
4Lock, Stock and Two Smoking BarrelsSe7enThe GodfatherAvatarThe Others
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "text/plain": [ + " top picks block busters \\\n", + "0 The African Queen Spirited Away \n", + "1 Fight Club Fargo \n", + "2 Memento The Godfather: Part II \n", + "3 Happiness Dances with Wolves \n", + "4 Lock, Stock and Two Smoking Barrels Se7en \n", + "\n", + " classics what's popular \\\n", + "0 12 Angry Men Blade Runner \n", + "1 Taxi Driver Gone Girl \n", + "2 The Untouchables Big Hero 6 \n", + "3 Dr. Strangelove or: How I Learned to Stop Worr... Whiplash \n", + "4 The Godfather Avatar \n", + "\n", + " indie hits \n", + "0 My Neighbor Totoro \n", + "1 Shine \n", + "2 The Meaning of Life \n", + "3 The Professional \n", + "4 The Others " + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# put all these titles into a single pandas dataframe , where each column is one category\n", + "top_picks = pd.DataFrame({\"top picks\":[m[0] for m in top_picks_for_you]})\n", + "block_busters = pd.DataFrame({\"block busters\": [m[0] for m in block_buster_hits]})\n", + "classics = pd.DataFrame({\"classics\": [m[0] for m in classic_movies]})\n", + "popular = pd.DataFrame({\"what's popular\": [m[0] for m in whats_popular]})\n", + "indies = pd.DataFrame({\"indie hits\": [m[0] for m in indie_hits]})\n", + "\n", + "all_recommendations = pd.concat([top_picks, block_busters, classics, popular, indies], axis=1)\n", + "all_recommendations.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "PVKkovv1ncua" + }, + "source": [ + "## Conclusion\n", + "That's it! That's all it takes to build a highly scalable, personalized, customizable collaborative filtering recommendation system with Redis and RedisVL.\n" ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "8STRHAQpncua", + "outputId": "1dc73c08-476c-456b-d70f-0041e2f01924" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Deleted 4371 keys\n", + "Deleted 2000 keys\n", + "Deleted 1000 keys\n", + "Deleted 500 keys\n", + "Deleted 500 keys\n" + ] + }, + { + "data": { + "text/plain": [ + "671" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# clean up your index\n", + "while remaining := movie_index.clear():\n", + " print(f\"Deleted {remaining} keys\")\n", + "\n", + "client.delete(\"user_watched_list\")\n", + "client.delete(*[f\"user:{user_id}\" for user_id in user_vectors_and_ids.keys()])" + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "redis-ai-res", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.6" } - ], - "source": [ - "# clean up your index\n", - "while remaining := movie_index.clear():\n", - " print(f\"Deleted {remaining} keys\")\n", - "\n", - "client.delete(\"user_watched_list\")\n", - "client.delete(*[f\"user:{user_id}\" for user_id in user_vectors_and_ids.keys()])" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "redis-ai-res", - "language": "python", - "name": "python3" }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.9" - } - }, - "nbformat": 4, - "nbformat_minor": 2 + "nbformat": 4, + "nbformat_minor": 0 } diff --git a/python-recipes/recommendation-systems/02_two_towers.ipynb b/python-recipes/recommendation-systems/02_two_towers.ipynb index fb6a68e1..ef034b10 100644 --- a/python-recipes/recommendation-systems/02_two_towers.ipynb +++ b/python-recipes/recommendation-systems/02_two_towers.ipynb @@ -44,8 +44,7 @@ "metadata": {}, "outputs": [], "source": [ - "# NBVAL_SKIP\n", - "!pip install -q redis redisvl pandas torch" + "%pip install -q redis \"redisvl>=0.4.1\" pandas torch requests scikit-learn" ] }, { diff --git a/python-recipes/redis-intro/00_redis_intro.ipynb b/python-recipes/redis-intro/00_redis_intro.ipynb index 1c160255..cc46f24b 100644 --- a/python-recipes/redis-intro/00_redis_intro.ipynb +++ b/python-recipes/redis-intro/00_redis_intro.ipynb @@ -56,8 +56,7 @@ } ], "source": [ - "# NBVAL_SKIP\n", - "!pip install -q redis pandas" + "%pip install -q redis pandas" ] }, { @@ -733,4800 +732,8 @@ "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.9" - }, - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "002b4d0804e94c45bb022d0b62cc7115": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "04fb2906d0884dcb9d75912556313ffa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0905de0daac840b888fbea85f5a53424": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "09f3adba65fe44fab16fe53eda6ffad1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "0b30591dac104e61b84e0ed989015c20": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7cb17e544d8e4a1a82d25999a12303fe", - "max": 112, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_42b6cafdab5a40608bf1a826b069238a", - "value": 112 - } - }, - "0c2b0dba9da14550883ee45ef314a475": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "0c98c0118de5446bad5416179a029591": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_70a03a03e501462089b2229944cab6e4", - "IPY_MODEL_92033f24500a4534bf9aa0db1b66afd2", - "IPY_MODEL_f411421ea73647a6b71242128ae4314d" - ], - "layout": "IPY_MODEL_2d905e45162448c3b08c8b18359db4e1" - } - }, - "0ea6b24eab7c438badf5e7cc8930fc4d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f411cceeafc4456bab39da08262bf250", - "placeholder": "​", - "style": "IPY_MODEL_799d273eb7c94d90948596c9e6435d47", - "value": " 90.9M/90.9M [00:00<00:00, 155MB/s]" - } - }, - "0ecd8059efdb462fa9a5589013b389c2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "11c97ec49ef1411791a8a2d044e85deb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4fc19dba35b04216bf99f14148161c9b", - "placeholder": "​", - "style": "IPY_MODEL_a23a1591fb30487ea049e16c2008a1a2", - "value": "sentence_bert_config.json: 100%" - } - }, - "1392e6f30c4847429b5e0a88a2a89712": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "1773989923ce4c59bd0069bc9a21ecf5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "17ec418a815c4fc8b52acb1e86b32990": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "1908379cd85c43eb85e8a919c81dcb27": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "190f9c85da4545d0bfb044f10c6909a7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "193d12bc2d53460e818d150116015a22": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "1e8e79d2c3514055afe3dca4eeffb196": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "1ff3e1f9eb344118a4588feaa8171734": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a956abc114b44dbf9a348ce881a73315", - "placeholder": "​", - "style": "IPY_MODEL_193d12bc2d53460e818d150116015a22", - "value": " 350/350 [00:00<00:00, 20.6kB/s]" - } - }, - "2285c1f10ba249cdb642cf80b2bad70c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "23b59a446f6a48239ada51ec328ef829": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2e4f2048a01a411d8c4fd685c1132cb5", - "placeholder": "​", - "style": "IPY_MODEL_f73152264e3e4a488de0ed086d09389f", - "value": " 612/612 [00:00<00:00, 46.8kB/s]" - } - }, - "249e853a0b05429491c2d3147d3667e0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5cfa9c97f882461a8c7dd2bb267639c0", - "placeholder": "​", - "style": "IPY_MODEL_ffcc3e9520a04ff3b656c9a1c570b857", - "value": " 1.18k/1.18k [00:00<00:00, 73.2kB/s]" - } - }, - "25109429cf0449e08ac53e9e4e2b334b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d30345e01c40452eaefa5977baac9202", - "IPY_MODEL_ac8a7a2ec5ac4763bd1c701fd5c01351", - "IPY_MODEL_962288b7e4ba4d83977a49dff22f4fe7" - ], - "layout": "IPY_MODEL_b2e5f218d4f24356b670dd5a660315f4" - } - }, - "2742a2516d1d4fb8ace292cd1481e4c3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "29fb964e708a4f168c3b871fa3630448": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "2cea07322293454db6ef622cca36a339": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "2d905e45162448c3b08c8b18359db4e1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "2e4f2048a01a411d8c4fd685c1132cb5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "2ee00a6c54674af296ac554e3d7beaf7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "2f65048f27ee4fc5bc932eb9c4eedb19": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "31dbb4b8dc3c4029a52ce8f60f5d786e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_92945b3344354095ae42da4107e0ca85", - "IPY_MODEL_72a087953d41453598ada25ea308d758", - "IPY_MODEL_aedf119b99944d4bb3c1cb146396c068" - ], - "layout": "IPY_MODEL_409427b1277147d3a7bfb63b83776bb9" - } - }, - "347a421a7b7b4458b6daf99f624f740c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "3640f29317474438a728b6f8beaff4a6": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "368d4b4baa784ccc995b398e8fb86d47": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e2e3fecad67b43d8a999d8e0b9d6af6a", - "IPY_MODEL_910947a07b1142f989be614e663cd4d1", - "IPY_MODEL_b42a1a2ff4d647088a74e4323b2bce6d" - ], - "layout": "IPY_MODEL_002b4d0804e94c45bb022d0b62cc7115" - } - }, - "3bbfe30620674561a9c11d3a0237c78a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "3ca3c6a4716d4096b6913c5ac5c15500": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_63f94704cfcf4662839aa460b42e9c0a", - "placeholder": "​", - "style": "IPY_MODEL_707cd800f65a4e43a9969f6ac4322629", - "value": ".gitattributes: 100%" - } - }, - "409427b1277147d3a7bfb63b83776bb9": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "417c738d291e484db654ffbff81d230e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_58b8500439ff4d9fa34c6b6d7f64e7f0", - "placeholder": "​", - "style": "IPY_MODEL_d1bc2447ef6141719ead7a8b572e93a6", - "value": "1_Pooling/config.json: 100%" - } - }, - "42b6cafdab5a40608bf1a826b069238a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4758ae87506a4d20b6e970ab0183a568": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "4792d0d390004e099baf04421c8991ff": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a727471800a84574aa11066d3a668bbd", - "IPY_MODEL_7f82dfde4b6742daaa698fb92947962d", - "IPY_MODEL_941ef72b4dfa45e5b62518c50f5c1b41" - ], - "layout": "IPY_MODEL_a6f68aaebec44588b13d84535a3a21b2" - } - }, - "483526c227044456a80d27400714bd4c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "4860d0495030446c8781cf8e735a92f3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_804bad2b87c043d3888948dec90d48b8", - "max": 90888945, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_c362b07fa96148e79ba31da66bea32d2", - "value": 90888945 - } - }, - "4e98fb057e8d40f7b3a2cdb34c7e8ae7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4fc19dba35b04216bf99f14148161c9b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "50077d692b3c463fa2922e07832f2229": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "508018ecc7b645fe931e5ba634f50cc7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "50d9a22918c8458ead7e4bcbd4bb0e14": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "58b8500439ff4d9fa34c6b6d7f64e7f0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "5c5c93b19d1841c28624fc6906e8aec2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "5cf9cce671654d828a5cb15297e4dc77": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_483526c227044456a80d27400714bd4c", - "max": 350, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_efc5fe5a030f4f8d966ea9cbdb255497", - "value": 350 - } - }, - "5cfa9c97f882461a8c7dd2bb267639c0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "605c7298ca2d43798d651ab58bcaf760": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "63f94704cfcf4662839aa460b42e9c0a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6429283e79f34a5fbce86dc173424615": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6ccdac3c8f074cef88abd0e422fca83d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "705d0311fbf44605abdd55e68f33fdb0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "707cd800f65a4e43a9969f6ac4322629": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "70a03a03e501462089b2229944cab6e4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b3e2d9559f9a4425af9a3e654a15a45c", - "placeholder": "​", - "style": "IPY_MODEL_af8fb1374f674db0acd1848426651457", - "value": "README.md: 100%" - } - }, - "71519aa859b84f6d9905dd587b329cc1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "72a087953d41453598ada25ea308d758": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_847b3bc8c13642e899fc20aaf92cce17", - "max": 116, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_0905de0daac840b888fbea85f5a53424", - "value": 116 - } - }, - "78cb60cd425040369d61f5d96d32da8e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "799d273eb7c94d90948596c9e6435d47": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "7b27a4f09d8f458cae81163a98d3db0b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_cfc987412c034e80a0e75d2ddc44c66f", - "max": 53, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_bb8258cf34154aec906ac6d7d674f8a5", - "value": 53 - } - }, - "7bf512fb78554f1fa31d2390d481cffe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b0e7149f5d634fe798c026ead2024c9d", - "placeholder": "​", - "style": "IPY_MODEL_803c0dd4496541d58887c6881478d736", - "value": "config.json: 100%" - } - }, - "7cb17e544d8e4a1a82d25999a12303fe": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "7dd4d505670048be8316419ef146a35a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "7f82dfde4b6742daaa698fb92947962d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6ccdac3c8f074cef88abd0e422fca83d", - "max": 39265, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_9df5561964194fa1b5d23dc0534e486f", - "value": 39265 - } - }, - "803c0dd4496541d58887c6881478d736": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "804bad2b87c043d3888948dec90d48b8": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "829c6a0adb514d47b6e20dfddbd84f28": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "833d08d4182d45f78ab83f88cac6cad8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2742a2516d1d4fb8ace292cd1481e4c3", - "placeholder": "​", - "style": "IPY_MODEL_95e3a1b5872247b98f922e1e57736bfb", - "value": " 349/349 [00:00<00:00, 25.8kB/s]" - } - }, - "83da3627c45f4a828dc410f2850ca1e5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "847b3bc8c13642e899fc20aaf92cce17": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "88a0d0aee31c4c9ea08cc07faf580fb9": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "8917cc859c2a403c9340f30c85ae92d8": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "898fd091cbea4af0a483d6020840ef4b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "8e0a1196dd1b43a481f37f3aafb0dcdc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_605c7298ca2d43798d651ab58bcaf760", - "placeholder": "​", - "style": "IPY_MODEL_0c2b0dba9da14550883ee45ef314a475", - "value": "pytorch_model.bin: 100%" - } - }, - "910947a07b1142f989be614e663cd4d1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c04f9160ec0c4a21b54dad2f0675adbe", - "max": 466247, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_ea28d1c947f84a9cac89190b7d2af401", - "value": 466247 - } - }, - "91a9488f85ec470a9b60fc851a535196": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e3fd696a0a3649f9847fb60c4316f078", - "IPY_MODEL_f8e5eb701ca74528a87cfb3ed68ff068", - "IPY_MODEL_833d08d4182d45f78ab83f88cac6cad8" - ], - "layout": "IPY_MODEL_2285c1f10ba249cdb642cf80b2bad70c" - } - }, - "92033f24500a4534bf9aa0db1b66afd2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f610967e35834f8aa163f9b858ad100d", - "max": 10610, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_e36d84f0201e4b13966902c7816276ec", - "value": 10610 - } - }, - "92945b3344354095ae42da4107e0ca85": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_71519aa859b84f6d9905dd587b329cc1", - "placeholder": "​", - "style": "IPY_MODEL_1e8e79d2c3514055afe3dca4eeffb196", - "value": "config_sentence_transformers.json: 100%" - } - }, - "941ef72b4dfa45e5b62518c50f5c1b41": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ff4953b5869c4b538fe009c212c51905", - "placeholder": "​", - "style": "IPY_MODEL_7dd4d505670048be8316419ef146a35a", - "value": " 39.3k/39.3k [00:00<00:00, 3.07MB/s]" - } - }, - "9576acc791bc423f90f46e778aebeae5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c5ad2f6f319f4c8ca3157a12d3fdab55", - "IPY_MODEL_0b30591dac104e61b84e0ed989015c20", - "IPY_MODEL_c4937d854e8443ce98fbb67e98e8823c" - ], - "layout": "IPY_MODEL_a516a26232be4d189388bda9deea5913" - } - }, - "95e3a1b5872247b98f922e1e57736bfb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "962288b7e4ba4d83977a49dff22f4fe7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2cea07322293454db6ef622cca36a339", - "placeholder": "​", - "style": "IPY_MODEL_e4a99a6df6984fe088ed74b2f83e390d", - "value": " 13.2k/13.2k [00:00<00:00, 937kB/s]" - } - }, - "99bd49982e4c47ada8b58a5964de166e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "9aa8da964e4147ebb6003bbe8d42288d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9db5b30c2c4240cd899f53008b075165", - "placeholder": "​", - "style": "IPY_MODEL_99bd49982e4c47ada8b58a5964de166e", - "value": " 53.0/53.0 [00:00<00:00, 2.70kB/s]" - } - }, - "9ac987b105a547649f5c18383b45e033": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_11c97ec49ef1411791a8a2d044e85deb", - "IPY_MODEL_7b27a4f09d8f458cae81163a98d3db0b", - "IPY_MODEL_9aa8da964e4147ebb6003bbe8d42288d" - ], - "layout": "IPY_MODEL_cdd620a175eb4b44b04510e8002bcdd0" - } - }, - "9db5b30c2c4240cd899f53008b075165": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "9df5561964194fa1b5d23dc0534e486f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9e9bc5bec01e44d9be7070f2942eaa09": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a23a1591fb30487ea049e16c2008a1a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "a4f01ac0a49640c6a94b4e6727c180be": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "a516a26232be4d189388bda9deea5913": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a6f68aaebec44588b13d84535a3a21b2": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a727471800a84574aa11066d3a668bbd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_bf2566d86a8446118eba25b73f1e0e6c", - "placeholder": "​", - "style": "IPY_MODEL_f3a7f25383564258b7026f770db41889", - "value": "data_config.json: 100%" - } - }, - "a956abc114b44dbf9a348ce881a73315": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ac8a7a2ec5ac4763bd1c701fd5c01351": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_78cb60cd425040369d61f5d96d32da8e", - "max": 13156, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_d92d39e85cb6452d965221cedf0b6571", - "value": 13156 - } - }, - "ad2e309cdc4d4af1920ea645528ce914": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e29cf73eac724dd0b1490662040f93c4", - "IPY_MODEL_5cf9cce671654d828a5cb15297e4dc77", - "IPY_MODEL_1ff3e1f9eb344118a4588feaa8171734" - ], - "layout": "IPY_MODEL_9e9bc5bec01e44d9be7070f2942eaa09" - } - }, - "adf3eba20c4f483a82150f0438bf8e19": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "aed506f8091049df82d2b4a2d7f45372": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "aedf119b99944d4bb3c1cb146396c068": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8917cc859c2a403c9340f30c85ae92d8", - "placeholder": "​", - "style": "IPY_MODEL_d4d97043d2e64de582a6c1005a7c5461", - "value": " 116/116 [00:00<00:00, 9.16kB/s]" - } - }, - "af8fb1374f674db0acd1848426651457": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "b0e7149f5d634fe798c026ead2024c9d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "b2e5f218d4f24356b670dd5a660315f4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "b3e2d9559f9a4425af9a3e654a15a45c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "b42a1a2ff4d647088a74e4323b2bce6d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_dd8e39dfff9c40328391a0bdf16fe2dc", - "placeholder": "​", - "style": "IPY_MODEL_2ee00a6c54674af296ac554e3d7beaf7", - "value": " 466k/466k [00:00<00:00, 3.55MB/s]" - } - }, - "b56688ab060448e98799919ab645c3b2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "bb75843d0f6840dc90513ebc6857da6e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6429283e79f34a5fbce86dc173424615", - "max": 1175, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_4e98fb057e8d40f7b3a2cdb34c7e8ae7", - "value": 1175 - } - }, - "bb8258cf34154aec906ac6d7d674f8a5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "be6d7de5c7e440cead1ae5f54d38dc55": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "bec3dac114434db08e0cbe0a11b73738": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "bf2566d86a8446118eba25b73f1e0e6c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c04f9160ec0c4a21b54dad2f0675adbe": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c362b07fa96148e79ba31da66bea32d2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c3e9746ac3ad43b683813a09bb11a400": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_829c6a0adb514d47b6e20dfddbd84f28", - "max": 190, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_5c5c93b19d1841c28624fc6906e8aec2", - "value": 190 - } - }, - "c4937d854e8443ce98fbb67e98e8823c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_347a421a7b7b4458b6daf99f624f740c", - "placeholder": "​", - "style": "IPY_MODEL_a4f01ac0a49640c6a94b4e6727c180be", - "value": " 112/112 [00:00<00:00, 7.33kB/s]" - } - }, - "c5ad2f6f319f4c8ca3157a12d3fdab55": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3bbfe30620674561a9c11d3a0237c78a", - "placeholder": "​", - "style": "IPY_MODEL_ee9c7709465b47d896b44a58621b3c11", - "value": "special_tokens_map.json: 100%" - } - }, - "c78868d8e7594c9eb91ed3b703ac8a85": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_def9a840c1de4667a889133941a58ca9", - "IPY_MODEL_d101d1ce87ab4ebf85ac055dc003c836", - "IPY_MODEL_f78fbc1390024ed3aba9fc2c5849cdbf" - ], - "layout": "IPY_MODEL_29fb964e708a4f168c3b871fa3630448" - } - }, - "cdd620a175eb4b44b04510e8002bcdd0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "cfc987412c034e80a0e75d2ddc44c66f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d101d1ce87ab4ebf85ac055dc003c836": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_adf3eba20c4f483a82150f0438bf8e19", - "max": 231508, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_0ecd8059efdb462fa9a5589013b389c2", - "value": 231508 - } - }, - "d1bc2447ef6141719ead7a8b572e93a6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d24c7bce8290487094150146b518ad87": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_417c738d291e484db654ffbff81d230e", - "IPY_MODEL_c3e9746ac3ad43b683813a09bb11a400", - "IPY_MODEL_f283f45e6dd244738e67cd573e46c500" - ], - "layout": "IPY_MODEL_50d9a22918c8458ead7e4bcbd4bb0e14" - } - }, - "d30345e01c40452eaefa5977baac9202": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_aed506f8091049df82d2b4a2d7f45372", - "placeholder": "​", - "style": "IPY_MODEL_be6d7de5c7e440cead1ae5f54d38dc55", - "value": "train_script.py: 100%" - } - }, - "d4d97043d2e64de582a6c1005a7c5461": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d92b0de158f94030b6c9156b8f12cc6c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3ca3c6a4716d4096b6913c5ac5c15500", - "IPY_MODEL_bb75843d0f6840dc90513ebc6857da6e", - "IPY_MODEL_249e853a0b05429491c2d3147d3667e0" - ], - "layout": "IPY_MODEL_50077d692b3c463fa2922e07832f2229" - } - }, - "d92d39e85cb6452d965221cedf0b6571": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "dd8e39dfff9c40328391a0bdf16fe2dc": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "def9a840c1de4667a889133941a58ca9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_705d0311fbf44605abdd55e68f33fdb0", - "placeholder": "​", - "style": "IPY_MODEL_898fd091cbea4af0a483d6020840ef4b", - "value": "vocab.txt: 100%" - } - }, - "e29cf73eac724dd0b1490662040f93c4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3640f29317474438a728b6f8beaff4a6", - "placeholder": "​", - "style": "IPY_MODEL_17ec418a815c4fc8b52acb1e86b32990", - "value": "tokenizer_config.json: 100%" - } - }, - "e2e3fecad67b43d8a999d8e0b9d6af6a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_88a0d0aee31c4c9ea08cc07faf580fb9", - "placeholder": "​", - "style": "IPY_MODEL_09f3adba65fe44fab16fe53eda6ffad1", - "value": "tokenizer.json: 100%" - } - }, - "e36d84f0201e4b13966902c7816276ec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e3fd696a0a3649f9847fb60c4316f078": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_190f9c85da4545d0bfb044f10c6909a7", - "placeholder": "​", - "style": "IPY_MODEL_f5a6df5771af4312a4b462ffada36e54", - "value": "modules.json: 100%" - } - }, - "e4a99a6df6984fe088ed74b2f83e390d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "e5ae0decccca4e72bd565df0e6bdd75a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "e5cd47efc6e84d2ab694ba8fb9dbad10": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_fe39155c447d4911be8e525d2b816449", - "max": 612, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_b56688ab060448e98799919ab645c3b2", - "value": 612 - } - }, - "e778621a3492447bac297fa98b9ae8b2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7bf512fb78554f1fa31d2390d481cffe", - "IPY_MODEL_e5cd47efc6e84d2ab694ba8fb9dbad10", - "IPY_MODEL_23b59a446f6a48239ada51ec328ef829" - ], - "layout": "IPY_MODEL_4758ae87506a4d20b6e970ab0183a568" - } - }, - "ea28d1c947f84a9cac89190b7d2af401": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ee9c7709465b47d896b44a58621b3c11": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "efc5fe5a030f4f8d966ea9cbdb255497": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f283f45e6dd244738e67cd573e46c500": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1908379cd85c43eb85e8a919c81dcb27", - "placeholder": "​", - "style": "IPY_MODEL_1392e6f30c4847429b5e0a88a2a89712", - "value": " 190/190 [00:00<00:00, 15.0kB/s]" - } - }, - "f3a7f25383564258b7026f770db41889": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "f411421ea73647a6b71242128ae4314d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e5ae0decccca4e72bd565df0e6bdd75a", - "placeholder": "​", - "style": "IPY_MODEL_2f65048f27ee4fc5bc932eb9c4eedb19", - "value": " 10.6k/10.6k [00:00<00:00, 646kB/s]" - } - }, - "f411cceeafc4456bab39da08262bf250": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f5a6df5771af4312a4b462ffada36e54": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "f5bf93a1ef854aecac757f852d7c12f4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8e0a1196dd1b43a481f37f3aafb0dcdc", - "IPY_MODEL_4860d0495030446c8781cf8e735a92f3", - "IPY_MODEL_0ea6b24eab7c438badf5e7cc8930fc4d" - ], - "layout": "IPY_MODEL_bec3dac114434db08e0cbe0a11b73738" - } - }, - "f610967e35834f8aa163f9b858ad100d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f73152264e3e4a488de0ed086d09389f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "f78fbc1390024ed3aba9fc2c5849cdbf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_83da3627c45f4a828dc410f2850ca1e5", - "placeholder": "​", - "style": "IPY_MODEL_508018ecc7b645fe931e5ba634f50cc7", - "value": " 232k/232k [00:00<00:00, 14.8MB/s]" - } - }, - "f8e5eb701ca74528a87cfb3ed68ff068": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1773989923ce4c59bd0069bc9a21ecf5", - "max": 349, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_04fb2906d0884dcb9d75912556313ffa", - "value": 349 - } - }, - "fe39155c447d4911be8e525d2b816449": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ff4953b5869c4b538fe009c212c51905": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ffcc3e9520a04ff3b656c9a1c570b857": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - } - } } }, "nbformat": 4, "nbformat_minor": 0 -} +} \ No newline at end of file diff --git a/python-recipes/semantic-cache/semantic_caching_gemini.ipynb b/python-recipes/semantic-cache/00_semantic_caching_gemini.ipynb similarity index 99% rename from python-recipes/semantic-cache/semantic_caching_gemini.ipynb rename to python-recipes/semantic-cache/00_semantic_caching_gemini.ipynb index 798fbf44..42944322 100644 --- a/python-recipes/semantic-cache/semantic_caching_gemini.ipynb +++ b/python-recipes/semantic-cache/00_semantic_caching_gemini.ipynb @@ -8,7 +8,7 @@ "source": [ "# Building a Semantic Cache with Redis and VertexAI Gemini Model\n", "\n", - "\"Open\n" + "\"Open\n" ] }, { @@ -53,10 +53,9 @@ }, "outputs": [], "source": [ - "# NBVAL_SKIP\n", - "!pip install redisvl>=0.3.0 unstructured[pdf]\n", - "!pip install llama-parse llama-index-readers-file\n", - "!pip install langchain langchain-google-vertexai" + "%pip install -q \"redisvl>=0.4.1\" unstructured[pdf]\n", + "%pip install -q llama-parse llama-index-readers-file\n", + "%pip install -q langchain langchain-google-vertexai" ] }, { diff --git a/python-recipes/semantic-cache/doc2cache_llama3_1.ipynb b/python-recipes/semantic-cache/01_doc2cache_llama3_1.ipynb similarity index 99% rename from python-recipes/semantic-cache/doc2cache_llama3_1.ipynb rename to python-recipes/semantic-cache/01_doc2cache_llama3_1.ipynb index 2079cf37..f87f354d 100644 --- a/python-recipes/semantic-cache/doc2cache_llama3_1.ipynb +++ b/python-recipes/semantic-cache/01_doc2cache_llama3_1.ipynb @@ -74,9 +74,8 @@ }, "outputs": [], "source": [ - "# NBVAL_SKIP\n", - "!pip install redisvl>=0.3.3 unstructured[pdf] sentence-transformers openai\n", - "!pip install langchain-core langchain-community pypdf rapidocr-onnxruntime" + "%pip install -q \"redisvl>=0.4.1\" unstructured[pdf] sentence-transformers openai\n", + "%pip install -q langchain-core langchain-community pypdf rapidocr-onnxruntime" ] }, { diff --git a/python-recipes/semantic-cache/02_semantic_cache_optimization.ipynb b/python-recipes/semantic-cache/02_semantic_cache_optimization.ipynb new file mode 100644 index 00000000..01b12317 --- /dev/null +++ b/python-recipes/semantic-cache/02_semantic_cache_optimization.ipynb @@ -0,0 +1,607 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "![Redis](https://redis.io/wp-content/uploads/2024/04/Logotype.svg?auto=webp&quality=85,75&width=120)\n", + "\n", + "# Optimize semantic cache threshold with RedisVL\n", + "\n", + "> **Note:** Threshold optimization with redis-retrieval-optimizer relies on `python > 3.9.`\n", + "\n", + "\"Open" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Install dependencies" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%pip install \"redisvl>=0.6.0\" \"redis-retrieval-optimizer>=0.2.0\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Run a Redis instance\n", + "\n", + "#### For Colab\n", + "Use the shell script below to download, extract, and install [Redis Stack](https://redis.io/docs/getting-started/install-stack/) directly from the Redis package archive." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# NBVAL_SKIP\n", + "%%sh\n", + "curl -fsSL https://packages.redis.io/gpg | sudo gpg --dearmor -o /usr/share/keyrings/redis-archive-keyring.gpg\n", + "echo \"deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb $(lsb_release -cs) main\" | sudo tee /etc/apt/sources.list.d/redis.list\n", + "sudo apt-get update > /dev/null 2>&1\n", + "sudo apt-get install redis-stack-server > /dev/null 2>&1\n", + "redis-stack-server --daemonize yes" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### For Alternative Environments\n", + "There are many ways to get the necessary redis-stack instance running\n", + "1. On cloud, deploy a [FREE instance of Redis in the cloud](https://redis.com/try-free/). Or, if you have your\n", + "own version of Redis Enterprise running, that works too!\n", + "2. Per OS, [see the docs](https://redis.io/docs/latest/operate/oss_and_stack/install/install-stack/)\n", + "3. With docker: `docker run -d --name redis-stack-server -p 6379:6379 redis/redis-stack-server:latest`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# CacheThresholdOptimizer\n", + "\n", + "Let's say you setup the following semantic cache with a distance_threshold of `X` and store the entries:\n", + "\n", + "- prompt: `what is the capital of france?` response: `paris`\n", + "- prompt: `what is the capital of morocco?` response: `rabat`" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13:32:11 [RedisVL] WARNING The default vectorizer has changed from `sentence-transformers/all-mpnet-base-v2` to `redis/langcache-embed-v1` in version 0.6.0 of RedisVL. For more information about this model, please refer to https://arxiv.org/abs/2504.02268 or visit https://huggingface.co/redis/langcache-embed-v1. To continue using the old vectorizer, please specify it explicitly in the constructor as: vectorizer=HFTextVectorizer(model='sentence-transformers/all-mpnet-base-v2')\n", + "13:32:11 sentence_transformers.SentenceTransformer INFO Use pytorch device_name: mps\n", + "13:32:11 sentence_transformers.SentenceTransformer INFO Load pretrained SentenceTransformer: redis/langcache-embed-v1\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "abd298f873404faba441d8be98e2c9de", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Batches: 0%| | 0/1 [00:00\"Open" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4i9pSolc896M" + }, + "source": [ + "## What is Context-Enabled Semantic Caching?\n", + "\n", + "\n", + "Most caching systems today are **exact match**. They only return results if the query matches a key 1:1. \n", + "Ask **“What’s the weather in NYC?”**, and the system might cache and return that exact string. \n", + "But change it slightly—**“Is it raining in New York?”**—and you miss the cache completely.\n", + "\n", + "**Semantic caching** fixes that. It uses **vector embeddings** to find conceptually similar queries. \n", + "So whether a user asks “forecast for NYC,” “weather in Manhattan,” or “umbrella needed in NYC?”, they all hit the **same cached result** if the meaning aligns.\n", + "\n", + "But here’s the problem: \n", + "Even if you nail semantic similarity, **not all users want the same level of detail or format**. \n", + "With LLMs storing more history and memory on users, this is a chance to tailor responses to be fully personalized at fractions of the cost.\n", + "\n", + "That’s where **Context-Enabled Semantic Caching (CESC)** comes in.\n", + "\n", + "---\n", + "\n", + "\n", + "\n", + "### The Business Problem\n", + "\n", + "Enterprise LLM applications face three critical challenges:\n", + "- **Cost**: GPT-4o calls can cost $0.0025-0.01 per 1K tokens\n", + "- **Latency**: Cold LLM calls take 2-5 seconds, hurting user experience \n", + "- **Relevance**: Generic responses don't account for user roles, preferences, or context\n", + "\n", + "### Why It Matters\n", + "\n", + "| Challenge | Traditional Caching | Semantic Caching | CESC (Personalized) |\n", + "|----------------|-----------------------------|----------------------------------------|-------------------------------------------|\n", + "| **Match Type** | Exact string | Vector similarity | Vector + user context |\n", + "| **Relevance** | Low | Medium | High |\n", + "| **Latency** | Fast | Fast | Still fast (cached + lightweight model) |\n", + "| **Cost** | Low | Low | Low (personalization avoids full GPT-4o-mini) |\n", + "\n", + "\n", + "\n", + "---\n", + "\n", + "### Our Solution Architecture\n", + "\n", + "CESC creates a three-tier response system:\n", + "1. **Cold Start**: Fresh LLM call for new queries (expensive, slow, but comprehensive)\n", + "2. **Cache Hit**: Instant return of semantically similar cached responses (fast, cheap, generic)\n", + "3. **Personalized Cache Hit**: Lightweight model personalizes cached content using user memory (balanced speed/cost/relevance)\n", + "\n", + "Let's see this in action with a real enterprise IT support scenario.\n", + "[![](https://mermaid.ink/img/pako:eNpdkU1uwjAQha9izTpQfkyAqEJCqdQNlSBpWTRh4SYDiRTbaOKUAkLqFXrFnqROgmjVWdnz5n1-8pwh0SmCB9tCH5JMkGGLIFbM1ip6KZHYqkI6blinM2NhtMbEaGIhCkqy-ze6mwWY5uV6sWk9oZ1jSjMpTJI1nkX0uHz-_vzimvmiKFqQH4UWgyxXtplkeHX7jRhEAZqKFDOa1Qn-on-583qKcnxHNlfl4TY2vyao6uwSpaZjS_0j_9eWt4wdmaucLZFKrUSRn7DNG4ADO8pT8LaiKNEBiSRFfYdzzY3BZCgxBs8eU9yKqjAxxOpifXuhXrWW4BmqrJN0tctunGqfCoMPudiRkLcuoUqRfF0pAx7vTxsIeGf4AG867Lp8POmNXT4YuLYcOILXd6ddPhzzSd8d8Snn3L04cGqe7XUn45EDdk32y5_aZTc7v_wAqpSdUg?type=png)](https://mermaid.live/edit#pako:eNpdkU1uwjAQha9izTpQfkyAqEJCqdQNlSBpWTRh4SYDiRTbaOKUAkLqFXrFnqROgmjVWdnz5n1-8pwh0SmCB9tCH5JMkGGLIFbM1ip6KZHYqkI6blinM2NhtMbEaGIhCkqy-ze6mwWY5uV6sWk9oZ1jSjMpTJI1nkX0uHz-_vzimvmiKFqQH4UWgyxXtplkeHX7jRhEAZqKFDOa1Qn-on-583qKcnxHNlfl4TY2vyao6uwSpaZjS_0j_9eWt4wdmaucLZFKrUSRn7DNG4ADO8pT8LaiKNEBiSRFfYdzzY3BZCgxBs8eU9yKqjAxxOpifXuhXrWW4BmqrJN0tctunGqfCoMPudiRkLcuoUqRfF0pAx7vTxsIeGf4AG867Lp8POmNXT4YuLYcOILXd6ddPhzzSd8d8Snn3L04cGqe7XUn45EDdk32y5_aZTc7v_wAqpSdUg)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Install dependencies" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "v6g7eVRZAcFA" + }, + "outputs": [], + "source": [ + "# 📦 Install required Python packages\n", + "!pip install -q \"redisvl>=0.8.0\" sentence-transformers openai tiktoken python-dotenv redis google pandas" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Run a Redis instance\n", + "\n", + "\n", + "#### For Colab\n", + "Use the shell script below to download, extract, and install [Redis Stack](https://redis.io/docs/getting-started/install-stack/) directly from the Redis package archive." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "m04KxSuhBiOx" + }, + "outputs": [], + "source": [ + "# NBVAL_SKIP\n", + "%%sh\n", + "curl -fsSL https://packages.redis.io/gpg | sudo gpg --dearmor -o /usr/share/keyrings/redis-archive-keyring.gpg\n", + "echo \"deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb $(lsb_release -cs) main\" | sudo tee /etc/apt/sources.list.d/redis.list\n", + "sudo apt-get update > /dev/null 2>&1\n", + "sudo apt-get install redis-stack-server > /dev/null 2>&1\n", + "redis-stack-server --daemonize yes" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### For Alternative Environments\n", + "There are many ways to get the necessary redis-stack instance running\n", + "1. On cloud, deploy a [FREE instance of Redis in the cloud](https://redis.com/try-free/). Or, if you have your\n", + "own version of Redis Enterprise running, that works too!\n", + "2. Per OS, [see the docs](https://redis.io/docs/latest/operate/oss_and_stack/install/install-stack/)\n", + "3. With docker: `docker run -d --name redis-stack-server -p 6379:6379 redis/redis-stack-server:latest`" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "xlsHkIF49Lve" + }, + "source": [ + "## Infrastructure Setup\n", + "\n", + "We're using Redis with vector search capabilities to store embeddings and enable semantic similarity matching. This simulates a production environment where your cache would be persistent across sessions.\n", + "\n", + "**Note**: In production, you'd typically use Redis Enterprise, or a managed Redis service such as Redis Cloud or Azure Managed Redis with proper clustering, persistence, and security configurations." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "we-6LpNAByt1", + "outputId": "89b7e9c1-63f9-4458-cdab-0bc98b88a09e" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import os\n", + "import redis\n", + "\n", + "# Redis connection params\n", + "REDIS_HOST = os.getenv(\"REDIS_HOST\", \"localhost\")\n", + "REDIS_PORT = os.getenv(\"REDIS_PORT\", \"6379\")\n", + "REDIS_PASSWORD = os.getenv(\"REDIS_PASSWORD\", \"\")\n", + "\n", + "#\n", + "# Create Redis client\n", + "redis_client = redis.Redis(\n", + " host=REDIS_HOST,\n", + " port=REDIS_PORT,\n", + " password=REDIS_PASSWORD\n", + ")\n", + "\n", + "redis_url = f\"redis://:{REDIS_PASSWORD}@{REDIS_HOST}:{REDIS_PORT}\" if REDIS_PASSWORD else f\"redis://{REDIS_HOST}:{REDIS_PORT}\"\n", + "\n", + "# Test connection\n", + "redis_client.ping()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Essential Imports\n", + "\n", + "This cell imports all the key libraries needed for Context-Enabled Semantic Caching:\n", + "\n", + "**Core AI & ML:**\n", + "- `sentence_transformers` - For generating text embeddings using the all-MiniLM-L6-v2 model\n", + "- `openai` - Client libraries for both OpenAI and Azure OpenAI APIs\n", + "- `tiktoken` - Accurate token counting for cost calculation\n", + "\n", + "**Redis & Vector Search:**\n", + "- `redis` - Direct Redis client for database operations\n", + "- `redisvl` - Redis Vector Library for semantic search capabilities\n", + "- `SearchIndex` - Vector search index management\n", + "- `HFTextVectorizer` - Hugging Face text vectorization utilities\n", + "\n", + "**Data & Utilities:**\n", + "- `pandas` - Data analysis and telemetry reporting\n", + "- `numpy` - Numerical operations for vector handling\n", + "- `typing` - Type hints for better code clarity\n", + "- `dotenv` - Environment variable management for API keys" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\PhilipLaussermair\\Desktop\\Code\\Internal\\sc recipe\\redis-ai-resources\\.venv\\Lib\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n" + ] + }, + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import os\n", + "import time\n", + "import uuid\n", + "import numpy as np\n", + "from typing import List, Dict\n", + "import redis\n", + "from sentence_transformers import SentenceTransformer\n", + "from redisvl.index import SearchIndex\n", + "from redisvl.utils.vectorize import HFTextVectorizer\n", + "from openai import AzureOpenAI\n", + "import tiktoken\n", + "import pandas as pd\n", + "from openai import AzureOpenAI, OpenAI\n", + "import logging\n", + "import sys\n", + "\n", + "from dotenv import load_dotenv\n", + "\n", + "# Load environment variables from .env file\n", + "# Make sure you have a .env file in the root of this project\n", + "\n", + "\n", + "# Suppress noisy loggers\n", + "logging.getLogger(\"sentence_transformers\").setLevel(logging.WARNING)\n", + "logging.getLogger(\"httpx\").setLevel(logging.WARNING)\n", + "load_dotenv()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## LLM Client Setup\n", + "\n", + "This section handles the detection and initialization of our LLM client. We support both OpenAI and Azure OpenAI with automatic detection based on available environment variables:\n", + "\n", + "- **Priority 1**: OpenAI (if `OPENAI_API_KEY` is present)\n", + "- **Priority 2**: Azure OpenAI (if `AZURE_OPENAI_API_KEY` + `AZURE_OPENAI_ENDPOINT` are present) \n", + "- **Fallback**: Exit with clear instructions if no credentials found" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "🔒 Azure OpenAI detected\n" + ] + } + ], + "source": [ + "# Helper function to get secrets from Colab or environment variables\n", + "def get_secret(secret_name: str) -> str:\n", + " \"\"\"\n", + " Retrieves a secret from Google Colab's userdata if available,\n", + " otherwise falls back to an environment variable.\n", + " \"\"\"\n", + " try:\n", + " from google.colab import userdata\n", + " secret = userdata.get(secret_name)\n", + " if secret:\n", + " return secret\n", + " except (ImportError, KeyError):\n", + " # Not in Colab or secret not found, fall back to environment variables\n", + " pass\n", + " return os.getenv(secret_name)\n", + "\n", + "# 🔐 Simple API key detection and client setup\n", + "if get_secret(\"OPENAI_API_KEY\"):\n", + " print(\"🔒 OpenAI detected\")\n", + " client = OpenAI(api_key=get_secret(\"OPENAI_API_KEY\"))\n", + " MODEL_GPT4 = \"gpt-4o\"\n", + " MODEL_GPT4_MINI = \"gpt-4o-mini\"\n", + "elif get_secret(\"AZURE_OPENAI_API_KEY\") and get_secret(\"AZURE_OPENAI_ENDPOINT\"):\n", + " print(\"🔒 Azure OpenAI detected\")\n", + " client = AzureOpenAI(\n", + " azure_endpoint=get_secret(\"AZURE_OPENAI_ENDPOINT\"),\n", + " api_key=get_secret(\"AZURE_OPENAI_API_KEY\"),\n", + " api_version=get_secret(\"AZURE_OPENAI_API_VERSION\") or \"2024-05-01-preview\"\n", + " )\n", + " MODEL_GPT4 = os.getenv(\"AZURE_OPENAI_MODEL_GPT4\", \"gpt-4o\")\n", + " MODEL_GPT4_MINI = os.getenv(\"AZURE_OPENAI_MODEL_GPT4_MINI\", \"gpt-4o-mini\")\n", + "else:\n", + " print(\"❌ No API keys found!\")\n", + " print(\"Set one of the following environment variables:\")\n", + " print(\" OpenAI: OPENAI_API_KEY\")\n", + " print(\" Azure OpenAI: AZURE_OPENAI_API_KEY + AZURE_OPENAI_ENDPOINT\")\n", + " sys.exit(1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Redis Vector Search Index Setup\n", + "\n", + "We're setting up a Redis search index optimized for semantic caching with vector similarity search:\n", + "\n", + "**Index Configuration:**\n", + "- **Algorithm**: HNSW (Hierarchical Navigable Small World) for fast approximate nearest neighbor search\n", + "- **Distance Metric**: Cosine similarity for semantic text comparison\n", + "- **Vector Dimensions**: 384 (matching our sentence-transformer model)\n", + "- **Storage**: Hash-based for efficient retrieval\n", + "\n", + "**Fields Stored:**\n", + "- `content_vector`: The 384-dimensional embedding of the cached response\n", + "- `content`: The original text response from the LLM\n", + "- `user_id`: Which user generated this cache entry\n", + "- `prompt`: The original query that generated this response\n", + "- `model`: Which LLM model was used (gpt-4o vs gpt-4o-mini)\n", + "- `created_at`: Timestamp for cache expiration and analytics\n", + "\n", + "This setup enables sub-millisecond similarity searches across thousands of cached responses." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "12:16:59 redisvl.index.index INFO Index already exists, overwriting.\n" + ] + } + ], + "source": [ + "# RedisVL index configuration\n", + "index_config = {\n", + " \"index\": {\n", + " \"name\": \"cesc_index\",\n", + " \"prefix\": \"cesc\",\n", + " \"storage_type\": \"hash\"\n", + " },\n", + " \"fields\": [\n", + " {\n", + " \"name\": \"content_vector\",\n", + " \"type\": \"vector\",\n", + " \"attrs\": {\n", + " \"dims\": 384,\n", + " \"distance_metric\": \"cosine\",\n", + " \"algorithm\": \"hnsw\"\n", + " }\n", + " },\n", + " {\"name\": \"content\", \"type\": \"text\"},\n", + " {\"name\": \"user_id\", \"type\": \"tag\"},\n", + " {\"name\": \"prompt\", \"type\": \"text\"},\n", + " {\"name\": \"model\", \"type\": \"tag\"},\n", + " {\"name\": \"created_at\", \"type\": \"numeric\"},\n", + " ]\n", + "}\n", + "\n", + "# Create and connect the search index\n", + "search_index = SearchIndex.from_dict(index_config)\n", + "search_index.connect(redis_url)\n", + "search_index.create(overwrite=True)\n", + "\n", + "# Initialize embedding model and vectorizer for semantic search\n", + "embedding_model = SentenceTransformer(\"all-MiniLM-L6-v2\")\n", + "vectorizer = HFTextVectorizer(model=\"all-MiniLM-L6-v2\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Telemetry and Token Counting\n", + "\n", + "These utilities help us measure and analyze the performance benefits of our caching system:\n", + "\n", + "**TokenCounter:**\n", + "- Accurately counts input/output tokens for cost calculation\n", + "- Uses tiktoken library with model-specific encodings\n", + "- Essential for measuring cost savings vs. baseline GPT-4o calls\n", + "\n", + "**TelemetryLogger:**\n", + "- Tracks latency, token usage, and costs for each query\n", + "- Categorizes responses: `miss` (cold LLM call), `hit_raw` (cache), `hit_personalized` (cache + customization)\n", + "- Calculates cost savings compared to always using GPT-4o\n", + "- Provides detailed analytics tables and summaries\n", + "\n", + "This data demonstrates the ROI of Context-Enabled Semantic Caching in real-world scenarios." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Token counter for accurate cost calculation\n", + "class TokenCounter:\n", + " def __init__(self, model_name=\"gpt-4o\"):\n", + " try:\n", + " self.encoding = tiktoken.encoding_for_model(model_name)\n", + " except KeyError:\n", + " self.encoding = tiktoken.get_encoding(\"cl100k_base\")\n", + "\n", + " def count_tokens(self, text: str) -> int:\n", + " if not text:\n", + " return 0\n", + " return len(self.encoding.encode(text))\n", + "\n", + "token_counter = TokenCounter()\n", + "\n", + "class TelemetryLogger:\n", + " def __init__(self):\n", + " self.logs = []\n", + "\n", + " def log(self, user_id, method, latency_ms, input_tokens, output_tokens, cache_status, response_source):\n", + " model = response_source # assume model name is passed as source, e.g., \"gpt-4o\" or \"gpt-4o-mini\"\n", + " cost = self.calculate_cost(model, input_tokens, output_tokens)\n", + " self.logs.append({\n", + " \"timestamp\": time.time(),\n", + " \"user_id\": user_id,\n", + " \"method\": method,\n", + " \"latency_ms\": latency_ms,\n", + " \"input_tokens\": input_tokens,\n", + " \"output_tokens\": output_tokens,\n", + " \"total_tokens\": input_tokens + output_tokens,\n", + " \"cache_status\": cache_status,\n", + " \"response_source\": response_source,\n", + " \"cost_usd\": cost\n", + " })\n", + "\n", + " # 💵 Real cost vs baseline cold-call cost\n", + " cost = self.calculate_cost(response_source, input_tokens, output_tokens)\n", + " baseline = self.calculate_cost(\"gpt-4o\", input_tokens, output_tokens)\n", + "\n", + " self.logs[-1][\"cost_usd\"] = cost\n", + " self.logs[-1][\"baseline_cost_usd\"] = baseline\n", + "\n", + " def show_logs(self):\n", + " return pd.DataFrame(self.logs)\n", + "\n", + " def summarize(self):\n", + " df = pd.DataFrame(self.logs)\n", + " if df.empty:\n", + " print(\"No telemetry yet.\")\n", + " return\n", + "\n", + " df[\"total_tokens\"] = df[\"input_tokens\"] + df[\"output_tokens\"]\n", + "\n", + " display(df[[\n", + " \"user_id\",\n", + " \"cache_status\",\n", + " \"latency_ms\",\n", + " \"response_source\",\n", + " \"input_tokens\",\n", + " \"output_tokens\",\n", + " \"total_tokens\"\n", + " ]])\n", + "\n", + " # Compare cold start vs personalized\n", + " try:\n", + " cold_latency = df.loc[df[\"user_id\"] == \"user_cold\", \"latency_ms\"].values[0]\n", + " cx_latency = df.loc[df[\"user_id\"] == \"user_withcontext\", \"latency_ms\"].values[0]\n", + "\n", + " if cx_latency < cold_latency:\n", + " delta = cold_latency - cx_latency\n", + " pct = (delta / cold_latency) * 100\n", + " print(f\"\\n⚡ Personalized response (user_withcontext) was faster than the plain LLM by {int(delta)} ms — a {pct:.1f}% speed boost.\")\n", + " else:\n", + " delta = cx_latency - cold_latency\n", + " pct = (delta / cx_latency) * 100\n", + " print(f\"\\n⏱️ Personalized response (user_withcontext) was {int(delta)} ms slower than the plain LLM — a {pct:.1f}% slowdown.\")\n", + " print(\"📌 However, it returned a tailored response based on user memory, offering higher relevance.\")\n", + " except Exception as e:\n", + " print(\"\\n⚠️ Could not compute latency comparison:\", e)\n", + "\n", + " def calculate_cost(self, model: str, input_tokens: int, output_tokens: int) -> float:\n", + " # Azure OpenAI pricing (per 1K tokens)\n", + " pricing = {\n", + " \"gpt-4o\": {\"input\": 0.005, \"output\": 0.015},\n", + " \"gpt-4o-mini\": {\"input\": 0.0015, \"output\": 0.003}\n", + " }\n", + "\n", + " if model not in pricing:\n", + " return 0.0\n", + "\n", + " input_cost = (input_tokens / 1000) * pricing[model][\"input\"]\n", + " output_cost = (output_tokens / 1000) * pricing[model][\"output\"]\n", + " return round(input_cost + output_cost, 6)\n", + "\n", + " def display_cost_summary(self):\n", + " df = self.show_logs()\n", + " if df.empty:\n", + " print(\"No telemetry logged yet.\")\n", + " return\n", + "\n", + " # Calculate savings per row\n", + " df[\"savings_usd\"] = df[\"baseline_cost_usd\"] - df[\"cost_usd\"]\n", + "\n", + " total_cost = df[\"cost_usd\"].sum()\n", + " baseline_cost = df[\"baseline_cost_usd\"].sum()\n", + " total_savings = df[\"savings_usd\"].sum()\n", + " savings_pct = (total_savings / baseline_cost * 100) if baseline_cost > 0 else 0\n", + "\n", + " # Display summary table\n", + " display(df[[\n", + " \"user_id\", \"cache_status\", \"response_source\",\n", + " \"input_tokens\", \"output_tokens\", \"latency_ms\",\n", + " \"cost_usd\", \"baseline_cost_usd\", \"savings_usd\"\n", + " ]])\n", + "\n", + " # 💸 Compare cost of plain LLM vs personalized\n", + " try:\n", + " cost_plain = df.loc[df[\"user_id\"] == \"user_cold\", \"cost_usd\"].values[0]\n", + " cost_personalized = df.loc[df[\"user_id\"] == \"user_withcontext\", \"cost_usd\"].values[0]\n", + "\n", + " print(f\"\\n🧾 Total Cost of Plain LLM Response: ${cost_plain:.4f}\")\n", + " print(f\"🧾 Total Cost of Personalized Response: ${cost_personalized:.4f}\")\n", + "\n", + " if cost_personalized < cost_plain:\n", + " delta = cost_plain - cost_personalized\n", + " pct = (delta / cost_plain) * 100\n", + " print(f\"\\n💡 Personalized response (user_withcontext) was cheaper than plain LLM by ${delta:.4f} — a {pct:.1f}% cost improvement.\")\n", + " else:\n", + " delta = cost_personalized - cost_plain\n", + " pct = (delta / cost_personalized) * 100\n", + " print(f\"\\n⏱️ Personalized response (user_withcontext) was ${delta:.4f} more expensive than plain LLM — a {pct:.1f}% cost increase.\")\n", + " print(\"📌 However, it returned a tailored response based on user memory, offering higher relevance.\")\n", + " except Exception as e:\n", + " print(\"\\n⚠️ Could not compute cost comparison:\", e)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## LLM Client: The Intelligence Engine\n", + "\n", + "The `LLMClient` class serves as our interface to LLM services, handling both fresh content generation and response personalization:\n", + "\n", + "### Key Components:\n", + "- **Dual Model Strategy**: Uses GPT-4o for comprehensive responses and GPT-4o-mini for efficient personalization\n", + "- **Token Counting**: Tracks usage for accurate cost calculation and telemetry\n", + "- **Response Personalization**: Adapts cached responses using user context and memory\n", + "- **Performance Monitoring**: Measures latency and token consumption for each operation\n", + "\n", + "### Personalization Process:\n", + "When a cache hit occurs for a user with stored context, the system:\n", + "1. Takes the cached response as a baseline\n", + "2. Incorporates user-specific preferences, goals, and history\n", + "3. Generates a personalized variant using the lightweight GPT-4o-mini model\n", + "4. Maintains the core information while adapting tone and specific recommendations" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "id": "i3LSCGr3E1t8" + }, + "outputs": [], + "source": [ + "class LLMClient:\n", + " def __init__(self, client, token_counter, gpt4_model=\"gpt-4o\", gpt4mini_model=\"gpt-4o-mini\"):\n", + " self.client = client\n", + " self.token_counter = token_counter\n", + " self.gpt4_model = gpt4_model\n", + " self.gpt4mini_model = gpt4mini_model\n", + "\n", + " def call_llm(self, prompt: str, model: str = \"gpt-4o\") -> Dict:\n", + " \"\"\"Call LLM model and track latency, token usage, and cost\"\"\"\n", + " start_time = time.time()\n", + " response = self.client.chat.completions.create(\n", + " model=model,\n", + " messages=[{\"role\": \"user\", \"content\": prompt}],\n", + " temperature=0.7,\n", + " max_tokens=200\n", + " )\n", + " latency = (time.time() - start_time) * 1000\n", + "\n", + " output = response.choices[0].message.content\n", + " input_tokens = self.token_counter.count_tokens(prompt)\n", + " output_tokens = self.token_counter.count_tokens(output)\n", + "\n", + " return {\n", + " \"response\": output,\n", + " \"latency_ms\": round(latency, 2),\n", + " \"input_tokens\": input_tokens,\n", + " \"output_tokens\": output_tokens,\n", + " \"model\": model\n", + " }\n", + "\n", + " def call_gpt4(self, prompt: str) -> Dict:\n", + " return self.call_llm(prompt, model=self.gpt4_model)\n", + "\n", + " def call_gpt4mini(self, prompt: str) -> Dict:\n", + " return self.call_llm(prompt, model=self.gpt4mini_model)\n", + "\n", + " def personalize_response(self, cached_response: str, user_context: Dict, original_prompt: str) -> Dict:\n", + " context_prompt = self._build_context_prompt(cached_response, user_context, original_prompt)\n", + " start_time = time.time()\n", + " response = self.client.chat.completions.create(\n", + " model=self.gpt4mini_model,\n", + " messages=[\n", + " {\"role\": \"system\", \"content\": context_prompt},\n", + " {\"role\": \"user\", \"content\": \"Please personalize this cached response for the user. Keep your response under 3 sentences.\"}\n", + " ]\n", + " )\n", + " latency = (time.time() - start_time) * 1000 # ms\n", + " reply = response.choices[0].message.content\n", + "\n", + " input_tokens = response.usage.prompt_tokens\n", + " output_tokens = response.usage.completion_tokens\n", + " total_tokens = response.usage.total_tokens\n", + "\n", + " return {\n", + " \"response\": reply,\n", + " \"latency_ms\": round(latency, 2),\n", + " \"input_tokens\": input_tokens,\n", + " \"output_tokens\": output_tokens,\n", + " \"tokens\": total_tokens,\n", + " \"model\": self.gpt4mini_model\n", + " }\n", + "\n", + " def _build_context_prompt(self, cached_response: str, user_context: Dict, prompt: str) -> str:\n", + " context_parts = []\n", + " if user_context.get(\"preferences\"):\n", + " context_parts.append(\"User preferences: \" + \", \".join(user_context[\"preferences\"]))\n", + " if user_context.get(\"goals\"):\n", + " context_parts.append(\"User goals: \" + \", \".join(user_context[\"goals\"]))\n", + " if user_context.get(\"history\"):\n", + " context_parts.append(\"User history: \" + \", \".join(user_context[\"history\"]))\n", + " context_blob = \"\\n\".join(context_parts)\n", + " return f\"\"\"You are a personalization assistant. A cached response was previously generated for the prompt: \"{prompt}\".\n", + "\n", + "Here is the cached response:\n", + "\\\"\\\"\\\"{cached_response}\\\"\\\"\\\"\n", + "\n", + "Use the user's context below to personalize and refine the response:\n", + "{context_blob}\n", + "\n", + "Respond in a way that feels tailored to this user, adjusting tone, content, or suggestions as needed. Keep your response under 3 sentences no matter what.\n", + "\"\"\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Context-Enabled Semantic Cache: The Core Engine\n", + "\n", + "The `ContextEnabledSemanticCache` class orchestrates the entire caching and personalization workflow:\n", + "\n", + "### Architecture Overview:\n", + "- **Vector Storage**: Uses Redis with HNSW indexing for fast semantic similarity search\n", + "- **User Memory System**: Maintains preferences, goals, and history for each user\n", + "- **Three-Tier Response Strategy**:\n", + " - **Cache Miss**: Generate fresh response using GPT-4o (comprehensive but expensive)\n", + " - **Cache Hit (No Context)**: Return cached response instantly (fast and free)\n", + " - **Cache Hit (With Context)**: Personalize cached response using GPT-4o-mini (fast and cheap)\n", + "\n", + "### Key Methods:\n", + "- `add_user_memory()`: Store user context (preferences, goals, history)\n", + "- `search_cache()`: Find semantically similar cached responses using vector search\n", + "- `store_response()`: Save new responses with TTL and vector embeddings\n", + "- `query()`: Main entry point that determines cache hit/miss and response strategy\n", + "\n", + "### Performance Benefits:\n", + "- **Speed**: Cache hits respond in <100ms vs 2-5 seconds for fresh generation\n", + "- **Cost**: 60-80% savings on repeat queries through caching and model optimization\n", + "- **Relevance**: Personalized responses feel tailored to each user's context and expertise" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "id": "6APF2GQaE3fm" + }, + "outputs": [], + "source": [ + "from redisvl.query import VectorQuery\n", + "\n", + "class ContextEnabledSemanticCache:\n", + " def __init__(self, redis_index, vectorizer, llm_client: \"LLMClient\", telemetry: \"TelemetryLogger\", cache_ttl: int = -1):\n", + " self.index = redis_index\n", + " self.vectorizer = vectorizer\n", + " self.llm = llm_client\n", + " self.telemetry = telemetry\n", + " self.user_memories: Dict[str, Dict] = {}\n", + " self.cache_ttl = cache_ttl # seconds, -1 for no expiry\n", + "\n", + " def add_user_memory(self, user_id: str, memory_type: str, content: str):\n", + " if user_id not in self.user_memories:\n", + " self.user_memories[user_id] = {\"preferences\": [], \"history\": [], \"goals\": []}\n", + " self.user_memories[user_id][memory_type].append(content)\n", + "\n", + " def get_user_memory(self, user_id: str) -> Dict:\n", + " return self.user_memories.get(user_id, {})\n", + "\n", + " def generate_embedding(self, text: str) -> List[float]:\n", + " # Disable progress bar for cleaner output\n", + " return self.vectorizer.embed(text, show_progress_bar=False)\n", + "\n", + "\n", + " def search_cache(\n", + " self,\n", + " embedding: List[float],\n", + " distance_threshold: float = 0.2, # Loosened for consistency\n", + " ):\n", + " \"\"\"\n", + " Find the best cached match and gate it by a distance threshold.\n", + " The score returned by RediSearch (HNSW + cosine) is a distance (lower is better).\n", + " We accept a hit if distance <= distance_threshold.\n", + " \"\"\"\n", + " return_fields = [\"content\", \"user_id\", \"prompt\", \"model\", \"created_at\"]\n", + " query = VectorQuery(\n", + " vector=embedding,\n", + " vector_field_name=\"content_vector\",\n", + " return_fields=return_fields,\n", + " num_results=1,\n", + " return_score=True,\n", + " )\n", + " results = self.index.query(query)\n", + "\n", + " if results:\n", + " first = results[0]\n", + " # Use 'vector_distance' which is the standard score field in redisvl\n", + " score = first.get(\"vector_distance\", None)\n", + " if score is not None and float(score) <= distance_threshold:\n", + " return {field: first[field] for field in return_fields}\n", + "\n", + " return None\n", + "\n", + " def store_response(self, prompt: str, response: str, embedding: List[float], user_id: str, model: str):\n", + " import numpy as np\n", + " vec_bytes = np.array(embedding, dtype=np.float32).tobytes()\n", + "\n", + " doc = {\n", + " \"content\": response,\n", + " \"content_vector\": vec_bytes,\n", + " \"user_id\": user_id,\n", + " \"prompt\": prompt,\n", + " \"model\": model,\n", + " \"created_at\": int(time.time())\n", + " }\n", + " \n", + " # Use a unique key for each entry and set TTL\n", + " key = f\"{self.index.prefix}:{uuid.uuid4()}\"\n", + " self.index.load([doc], keys=[key])\n", + " \n", + " if self.cache_ttl > 0:\n", + " # We need a direct redis-py client to set TTL on the hash key\n", + " redis_client = self.index.client\n", + " redis_client.expire(key, self.cache_ttl)\n", + "\n", + "\n", + " def query(self, prompt: str, user_id: str):\n", + " start_time = time.time()\n", + " embedding = self.generate_embedding(prompt)\n", + " cached_result = self.search_cache(embedding)\n", + "\n", + " if cached_result:\n", + " cached_response = cached_result[\"content\"]\n", + " user_context = self.get_user_memory(user_id)\n", + " if user_context:\n", + " result = self.llm.personalize_response(cached_response, user_context, prompt)\n", + " self.telemetry.log(\n", + " user_id=user_id,\n", + " method=\"context_query\",\n", + " latency_ms=result[\"latency_ms\"],\n", + " input_tokens=result[\"input_tokens\"],\n", + " output_tokens=result[\"output_tokens\"],\n", + " cache_status=\"hit_personalized\",\n", + " response_source=result[\"model\"]\n", + " )\n", + " return result[\"response\"]\n", + " else:\n", + " # Measure actual cache hit latency (embedding + Redis query time)\n", + " cache_latency = (time.time() - start_time) * 1000\n", + " self.telemetry.log(\n", + " user_id=user_id,\n", + " method=\"context_query\",\n", + " latency_ms=round(cache_latency, 2),\n", + " input_tokens=0,\n", + " output_tokens=0,\n", + " cache_status=\"hit_raw\",\n", + " response_source=\"cache\"\n", + " )\n", + " return cached_response\n", + "\n", + " else:\n", + " result = self.llm.call_llm(prompt)\n", + " self.store_response(prompt, result[\"response\"], embedding, user_id, result[\"model\"])\n", + " self.telemetry.log(\n", + " user_id=user_id,\n", + " method=\"context_query\",\n", + " latency_ms=result[\"latency_ms\"],\n", + " input_tokens=result[\"input_tokens\"],\n", + " output_tokens=result[\"output_tokens\"],\n", + " cache_status=\"miss\",\n", + " response_source=result[\"model\"]\n", + " )\n", + " return result[\"response\"]\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "RgmW_S6s9Sy_" + }, + "source": [ + "## Scenario Setup: IT Support Dashboard Access\n", + "\n", + "We'll simulate three different approaches to handling the same IT support query:\n", + "- **User A (Cold)**: No cache, fresh LLM call every time\n", + "- **User B (No Context)**: Cache hit, but generic response \n", + "- **User C (With Context)**: Cache hit + personalization based on user memory\n", + "\n", + "The query: *A user in the finance department can't access the dashboard — what should I check?*\n", + "\n", + "### User Context Profile\n", + "User C represents an experienced IT support agent who:\n", + "- Specializes in finance department issues\n", + "- Has solved similar dashboard access problems before\n", + "- Uses specific tools and follows established troubleshooting patterns\n", + "- Needs responses tailored to their expertise level and current context" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "zji4u12fgQZg", + "outputId": "cfc5cc09-381c-4d6e-8c43-0dcd98760edd" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "============================================================\n", + "🧊 Scenario 1: Plain LLM – cache miss\n", + "============================================================\n", + "First, ensure the user has the correct permissions or roles assigned to access the dashboard. Next, verify if there are connectivity issues, incorrect login credentials, or if the dashboard tool is experiencing outages. If everything seems fine, check if their account is active and not locked or expired.\n", + "\n", + "============================================================\n", + "📦 Scenario 2: Semantic Cache Hit – generic, extremely fast, no user memory\n", + "============================================================\n", + "First, ensure the user has the correct permissions or roles assigned to access the dashboard. Next, verify if there are connectivity issues, incorrect login credentials, or if the dashboard tool is experiencing outages. If everything seems fine, check if their account is active and not locked or expired.\n", + "\n", + "============================================================\n", + "🧠 Scenario 3: Context-Enabled Semantic Cache Hit – personalized with user memory\n", + "============================================================\n", + "First, check if the user’s 'finance_dashboard_viewer' role is correctly configured to grant access to the dashboard. Since you know that SSO setups can sometimes be tricky, ensure there are no login issues and that the necessary permissions are intact. Lastly, verify that their account is active and not locked, especially after recent troubleshooting efforts.\n", + "\n" + ] + } + ], + "source": [ + "from IPython.display import clear_output, display, Markdown\n", + "clear_output(wait=True)\n", + "\n", + "# 🔁 Reset Redis index and telemetry (optional for rerun clarity)\n", + "search_index.delete()\n", + "search_index.create(overwrite=True)\n", + "\n", + "# Initialize telemetry and engine\n", + "telemetry_logger = TelemetryLogger()\n", + "cesc = ContextEnabledSemanticCache(\n", + " redis_index=search_index,\n", + " vectorizer=vectorizer,\n", + " llm_client=LLMClient(client, token_counter, MODEL_GPT4, MODEL_GPT4_MINI),\n", + " telemetry=telemetry_logger,\n", + " cache_ttl=3600 # Expire cache entries after 1 hour\n", + ")\n", + "\n", + "def get_divider(title: str = \"\", width: int = 60) -> str:\n", + " line = \"=\" * width\n", + " if title:\n", + " return f\"\\n{line}\\n{title}\\n{line}\\n\"\n", + " else:\n", + " return f\"\\n{line}\\n\"\n", + "\n", + "# 🧪 Define demo prompt and users\n", + "prompt = \"A user in the finance department can't access the dashboard — what should I check? Answer in 2-3 sentences max.\"\n", + "users = {\n", + " \"cold\": \"user_cold\",\n", + " \"nocx\": \"user_nocontext\",\n", + " \"cx\": \"user_withcontext\"\n", + "}\n", + "\n", + "# 🧠 Add memory for personalized user (e.g., HR IT support agent)\n", + "cesc.add_user_memory(users[\"cx\"], \"preferences\", \"uses Chrome browser on macOS\")\n", + "cesc.add_user_memory(users[\"cx\"], \"goals\", \"resolve access issues efficiently for finance team users\")\n", + "cesc.add_user_memory(users[\"cx\"], \"history\", \"frequently resolves issues with 'finance_dashboard_viewer' role misconfigurations\")\n", + "cesc.add_user_memory(users[\"cx\"], \"history\", \"troubleshot recent problems with finance dashboard access and SSO\")\n", + "\n", + "# 🔍 Run prompt for each scenario and collect output\n", + "output_parts = []\n", + "\n", + "output_parts.append(get_divider(\"🧊 Scenario 1: Plain LLM – cache miss\"))\n", + "response_1 = cesc.query(prompt, user_id=users[\"cold\"])\n", + "output_parts.append(response_1 + \"\\n\")\n", + "\n", + "output_parts.append(get_divider(\"📦 Scenario 2: Semantic Cache Hit – generic, extremely fast, no user memory\"))\n", + "response_2 = cesc.query(prompt, user_id=users[\"nocx\"])\n", + "output_parts.append(response_2 + \"\\n\")\n", + "\n", + "output_parts.append(get_divider(\"🧠 Scenario 3: Context-Enabled Semantic Cache Hit – personalized with user memory\"))\n", + "response_3 = cesc.query(prompt, user_id=users[\"cx\"])\n", + "output_parts.append(response_3 + \"\\n\")\n", + "\n", + "# Print all collected output at once\n", + "print(\"\".join(output_parts))\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "gJ-fUMmY9X4V" + }, + "source": [ + "## Key Observations\n", + "\n", + "Notice the different response patterns:\n", + "\n", + "1. **Cold Start Response**: Comprehensive but generic, took longest time and highest cost\n", + "2. **Cache Hit Response**: Identical to cold start, near-instant retrieval, minimal cost\n", + "3. **Personalized Response**: Adapted for user's specific role, tools, and experience level\n", + "\n", + "The personalized response demonstrates how CESC can:\n", + "- Reference user's specific browser/OS (Chrome on macOS)\n", + "- Mention role-specific permissions (finance_dashboard_viewer role)\n", + "- Reference past experience (SSO troubleshooting history)\n", + "- Maintain professional tone appropriate for experienced IT staff" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 600 + }, + "id": "zJdBei1UkQHO", + "outputId": "6df548bd-ec88-41b7-bf61-295e57d0cfbb" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "============================================================\n", + "📈 Telemetry Summary:\n", + "============================================================\n", + "\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
user_idcache_statuslatency_msresponse_sourceinput_tokensoutput_tokenstotal_tokens
0user_coldmiss1413.52gpt-4o255681
1user_nocontexthit_raw14.46cache000
2user_withcontexthit_personalized2727.46gpt-4o-mini23069299
\n", + "
" + ], + "text/plain": [ + " user_id cache_status latency_ms response_source \\\n", + "0 user_cold miss 1413.52 gpt-4o \n", + "1 user_nocontext hit_raw 14.46 cache \n", + "2 user_withcontext hit_personalized 2727.46 gpt-4o-mini \n", + "\n", + " input_tokens output_tokens total_tokens \n", + "0 25 56 81 \n", + "1 0 0 0 \n", + "2 230 69 299 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "⏱️ Personalized response (user_withcontext) was 1313 ms slower than the plain LLM — a 48.2% slowdown.\n", + "📌 However, it returned a tailored response based on user memory, offering higher relevance.\n", + "\n", + "============================================================\n", + "💸 Cost Breakdown:\n", + "============================================================\n", + "\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
user_idcache_statusresponse_sourceinput_tokensoutput_tokenslatency_mscost_usdbaseline_cost_usdsavings_usd
0user_coldmissgpt-4o25561413.520.0009650.0009650.000000
1user_nocontexthit_rawcache0014.460.0000000.0000000.000000
2user_withcontexthit_personalizedgpt-4o-mini230692727.460.0005520.0021850.001633
\n", + "
" + ], + "text/plain": [ + " user_id cache_status response_source input_tokens \\\n", + "0 user_cold miss gpt-4o 25 \n", + "1 user_nocontext hit_raw cache 0 \n", + "2 user_withcontext hit_personalized gpt-4o-mini 230 \n", + "\n", + " output_tokens latency_ms cost_usd baseline_cost_usd savings_usd \n", + "0 56 1413.52 0.000965 0.000965 0.000000 \n", + "1 0 14.46 0.000000 0.000000 0.000000 \n", + "2 69 2727.46 0.000552 0.002185 0.001633 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "🧾 Total Cost of Plain LLM Response: $0.0010\n", + "🧾 Total Cost of Personalized Response: $0.0006\n", + "\n", + "💡 Personalized response (user_withcontext) was cheaper than plain LLM by $0.0004 — a 42.8% cost improvement.\n" + ] + } + ], + "source": [ + "def print_divider(title: str = \"\", width: int = 60):\n", + " line = \"=\" * width\n", + " if title:\n", + " print(f\"\\n{line}\\n{title}\\n{line}\\n\")\n", + " else:\n", + " print(f\"\\n{line}\\n\")\n", + "\n", + "# 📊 Show telemetry summary\n", + "print_divider(\"📈 Telemetry Summary:\")\n", + "telemetry_logger.summarize()\n", + "\n", + "print_divider(\"💸 Cost Breakdown:\")\n", + "telemetry_logger.display_cost_summary()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "natd_dr29bkH" + }, + "source": [ + "# Enterprise Significance & Large-Scale Impact\n", + "\n", + "## Production Metrics That Matter\n", + "\n", + "The results above demonstrate significant improvements across three critical enterprise metrics:\n", + "\n", + "### 💰 Cost Optimization\n", + "- **Immediate Savings**: 60-80% cost reduction on repeated queries\n", + "- **Scale Impact**: For enterprises processing 100K+ LLM queries daily, this translates to $1000s in monthly savings\n", + "- **Strategic Model Usage**: Expensive models (GPT-4o) for new content, efficient models (GPT-4o-mini) for personalization\n", + "\n", + "### ⚡ Performance Enhancement \n", + "- **Latency Reduction**: Cache hits respond in <100ms vs 2-5 seconds for cold calls\n", + "- **User Experience**: Sub-second responses feel instantaneous to end users\n", + "- **Scalability**: Redis can handle millions of vector operations per second\n", + "\n", + "### 🎯 Relevance & Personalization\n", + "- **Context Awareness**: Responses adapt to user roles, departments, and experience levels\n", + "- **Continuous Learning**: User memory grows with each interaction\n", + "- **Business Intelligence**: System learns organizational patterns and common solutions\n", + "\n", + "## ROI Calculations for Enterprise Deployment\n", + "\n", + "### Quantifiable Benefits\n", + "- **Cost Savings**: 60-80% reduction in LLM API costs\n", + "- **Productivity Gains**: 2-3x faster response times improve user productivity \n", + "- **Quality Improvement**: Consistent, personalized responses reduce error rates\n", + "- **Scalability**: Linear cost scaling vs exponential growth with pure LLM approaches\n", + "\n", + "### Investment Considerations\n", + "- **Infrastructure**: Redis Enterprise, vector compute resources\n", + "- **Development**: Initial implementation, integration with existing systems\n", + "- **Maintenance**: Ongoing optimization, user memory management\n", + "- **Training**: Staff education on new capabilities and best practices\n", + "\n", + "### Break-Even Analysis\n", + "For most enterprise deployments:\n", + "- **Break-even**: 3-6 months with >10K daily LLM queries\n", + "- **Positive ROI**: 200-400% in first year through combined cost savings and productivity gains\n", + "- **Compound Benefits**: Value increases as user memory and cache coverage grow\n", + "\n", + "The combination of semantic caching with user context represents a fundamental shift from generic AI responses to truly personalized, enterprise-aware intelligence that scales efficiently and cost-effectively." + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/python-recipes/semantic-router/00_semantic_routing.ipynb b/python-recipes/semantic-router/00_semantic_routing.ipynb new file mode 100644 index 00000000..acc9c541 --- /dev/null +++ b/python-recipes/semantic-router/00_semantic_routing.ipynb @@ -0,0 +1,1073 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "cbba56a9", + "metadata": {}, + "source": [ + "![Redis](https://redis.io/wp-content/uploads/2024/04/Logotype.svg?auto=webp&quality=85,75&width=120)\n", + "# Semantic Routing\n", + "\n", + "RedisVL provides a `SemanticRouter` interface to utilize Redis' built-in search & aggregation in order to perform\n", + "KNN-style classification over a set of `Route` references to determine the best match.\n", + "\n", + "This notebook will go over how to use Redis as a Semantic Router for your applications.\n", + "\n", + "## Let's Begin!\n", + "\"Open\n" + ] + }, + { + "cell_type": "markdown", + "id": "19bdc2a5-2192-4f5f-bd6e-7c956fd0e230", + "metadata": {}, + "source": [ + "# Setup\n", + "\n", + "## Install Packages" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "c620286e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m25.1\u001b[0m\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "%pip install -q \"redisvl>=0.6.0\" sentence-transformers" + ] + }, + { + "cell_type": "markdown", + "id": "323aec7f", + "metadata": {}, + "source": [ + "## Run a Redis instance\n", + "\n", + "#### For Colab\n", + "Use the shell script below to download, extract, and install [Redis Stack](https://redis.io/docs/getting-started/install-stack/) directly from the Redis package archive." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2cb85a99", + "metadata": {}, + "outputs": [], + "source": [ + "# NBVAL_SKIP\n", + "%%sh\n", + "curl -fsSL https://packages.redis.io/gpg | sudo gpg --dearmor -o /usr/share/keyrings/redis-archive-keyring.gpg\n", + "echo \"deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb $(lsb_release -cs) main\" | sudo tee /etc/apt/sources.list.d/redis.list\n", + "sudo apt-get update > /dev/null 2>&1\n", + "sudo apt-get install redis-stack-server > /dev/null 2>&1\n", + "redis-stack-server --daemonize yes" + ] + }, + { + "cell_type": "markdown", + "id": "7c5dbaaf", + "metadata": {}, + "source": [ + "#### For Alternative Environments\n", + "There are many ways to get the necessary redis-stack instance running\n", + "1. On cloud, deploy a [FREE instance of Redis in the cloud](https://redis.com/try-free/). Or, if you have your\n", + "own version of Redis Enterprise running, that works too!\n", + "2. Per OS, [see the docs](https://redis.io/docs/latest/operate/oss_and_stack/install/install-stack/)\n", + "3. With docker: `docker run -d --name redis-stack-server -p 6379:6379 redis/redis-stack-server:latest`" + ] + }, + { + "cell_type": "markdown", + "id": "1d4499ae", + "metadata": {}, + "source": [ + "### Define the Redis Connection URL\n", + "\n", + "By default this notebook connects to the local instance of Redis Stack. **If you have your own Redis Enterprise instance** - replace REDIS_PASSWORD, REDIS_HOST and REDIS_PORT values with your own." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "aefda1d1", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import warnings\n", + "\n", + "warnings.filterwarnings(\"ignore\")\n", + "\n", + "# Replace values below with your own if using Redis Cloud instance\n", + "REDIS_HOST = os.getenv(\"REDIS_HOST\", \"localhost\") # ex: \"redis-18374.c253.us-central1-1.gce.cloud.redislabs.com\"\n", + "REDIS_PORT = os.getenv(\"REDIS_PORT\", \"6379\") # ex: 18374\n", + "REDIS_PASSWORD = os.getenv(\"REDIS_PASSWORD\", \"\") # ex: \"1TNxTEdYRDgIDKM2gDfasupCADXXXX\"\n", + "\n", + "# If SSL is enabled on the endpoint, use rediss:// as the URL prefix\n", + "REDIS_URL = f\"redis://:{REDIS_PASSWORD}@{REDIS_HOST}:{REDIS_PORT}\"" + ] + }, + { + "cell_type": "markdown", + "id": "fb9ad58b", + "metadata": {}, + "source": [ + "# Allow/block list with router\n", + "\n", + "When ChatGPT first launched, there was a famous example where a car dealership accidentally made one of the latest language models available for free to everyone. They assumed users would only ask questions about cars through their chatbot. However, a group of developers quickly realized that the model was powerful enough to answer coding questions, so they started using the dealership's chatbot for free.
\n", + "\n", + "To prevent this kind of misuse in your system, adding an allow/block router to the front of your application is essential. Fortunately, this is very easy to implement using `redisvl`.
\n", + "\n", + "The code below initializes a vectorizer that will create the vectors that will be stored and initialize the `SemanticRouter` class from `redisvl` that will do the bulk of the configuration required for the router." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "c52d454a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "16:15:07 sentence_transformers.SentenceTransformer INFO Load pretrained SentenceTransformer: sentence-transformers/all-mpnet-base-v2\n", + "16:15:09 sentence_transformers.SentenceTransformer INFO Use pytorch device_name: mps\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7284f6ca34f6449f833f4863d041ae37", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Batches: 0%| | 0/1 [00:00\"Open\n" + ] + }, + { + "cell_type": "markdown", + "id": "19bdc2a5-2192-4f5f-bd6e-7c956fd0e230", + "metadata": {}, + "source": [ + "# Setup\n", + "\n", + "## Install Packages" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "c620286e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m25.1.1\u001b[0m\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "%pip install -q sentence-transformers ranx \"redisvl>=0.6.0\" \"redis-retrieval-optimizer>=0.2.0\"" + ] + }, + { + "cell_type": "markdown", + "id": "c1250544", + "metadata": {}, + "source": [ + "### Grab data (if colab)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "76c1f678", + "metadata": {}, + "outputs": [], + "source": [ + "# NBVAL_SKIP\n", + "!git clone https://github.com/redis-developer/redis-ai-resources.git temp_repo\n", + "!mv temp_repo/python-recipes/semantic-router/resources .\n", + "!rm -rf temp_repo" + ] + }, + { + "cell_type": "markdown", + "id": "323aec7f", + "metadata": {}, + "source": [ + "## Run a Redis instance\n", + "\n", + "#### For Colab\n", + "Use the shell script below to download, extract, and install [Redis Stack](https://redis.io/docs/getting-started/install-stack/) directly from the Redis package archive." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2cb85a99", + "metadata": {}, + "outputs": [], + "source": [ + "# NBVAL_SKIP\n", + "%%sh\n", + "curl -fsSL https://packages.redis.io/gpg | sudo gpg --dearmor -o /usr/share/keyrings/redis-archive-keyring.gpg\n", + "echo \"deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb $(lsb_release -cs) main\" | sudo tee /etc/apt/sources.list.d/redis.list\n", + "sudo apt-get update > /dev/null 2>&1\n", + "sudo apt-get install redis-stack-server > /dev/null 2>&1\n", + "redis-stack-server --daemonize yes" + ] + }, + { + "cell_type": "markdown", + "id": "7c5dbaaf", + "metadata": {}, + "source": [ + "#### For Alternative Environments\n", + "There are many ways to get the necessary redis-stack instance running\n", + "1. On cloud, deploy a [FREE instance of Redis in the cloud](https://redis.com/try-free/). Or, if you have your\n", + "own version of Redis Enterprise running, that works too!\n", + "2. Per OS, [see the docs](https://redis.io/docs/latest/operate/oss_and_stack/install/install-stack/)\n", + "3. With docker: `docker run -d --name redis-stack-server -p 6379:6379 redis/redis-stack-server:latest`" + ] + }, + { + "cell_type": "markdown", + "id": "1d4499ae", + "metadata": {}, + "source": [ + "### Define the Redis Connection URL\n", + "\n", + "By default this notebook connects to the local instance of Redis Stack. **If you have your own Redis Enterprise instance** - replace REDIS_PASSWORD, REDIS_HOST and REDIS_PORT values with your own." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "aefda1d1", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import warnings\n", + "\n", + "warnings.filterwarnings(\"ignore\")\n", + "\n", + "# Replace values below with your own if using Redis Cloud instance\n", + "REDIS_HOST = os.getenv(\"REDIS_HOST\", \"localhost\") # ex: \"redis-18374.c253.us-central1-1.gce.cloud.redislabs.com\"\n", + "REDIS_PORT = os.getenv(\"REDIS_PORT\", \"6379\") # ex: 18374\n", + "REDIS_PASSWORD = os.getenv(\"REDIS_PASSWORD\", \"\") # ex: \"1TNxTEdYRDgIDKM2gDfasupCADXXXX\"\n", + "\n", + "# If SSL is enabled on the endpoint, use rediss:// as the URL prefix\n", + "REDIS_URL = f\"redis://:{REDIS_PASSWORD}@{REDIS_HOST}:{REDIS_PORT}\"" + ] + }, + { + "cell_type": "markdown", + "id": "10f4cb85", + "metadata": {}, + "source": [ + "# Routing with multiple routes\n", + "\n", + "## Define the Routes\n", + "\n", + "Below we define 3 different routes. One for `faq` (frequently asked questions), one for `general`, and\n", + "another for `blocked`. Now for this example, the goal here is\n", + "surely topic \"classification\". But you can create routes and references for\n", + "almost anything.\n", + "\n", + "Each route has a set of references that cover the \"semantic surface area\" of the\n", + "route. The incoming query from a user needs to be semantically similar to one or\n", + "more of the references in order to \"match\" on the route. Note that each route can have it's own distinct `distance_threshold` that defines what is considered a match for the particular query. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "60ad280c", + "metadata": {}, + "outputs": [], + "source": [ + "from redisvl.extensions.router import Route\n", + "\n", + "faq = Route(\n", + " name=\"faq\",\n", + " references=[\n", + " \"How do I reset my password?\",\n", + " \"Where can I view my order history?\",\n", + " \"How do I update my shipping address?\",\n", + " \"Where are my saved payment methods?\",\n", + " \"How do I change my email preferences?\",\n", + " \"How can I see my loyalty points balance?\",\n", + " \"Where do I find my digital receipts?\",\n", + " \"How do I enable two-factor authentication?\",\n", + " \"Can I change my username or email?\",\n", + " \"How do I manage my account settings?\"\n", + " ],\n", + " metadata={\"category\": \"account_management\", \"priority\": 1},\n", + " distance_threshold=0.5\n", + ")\n", + "\n", + "general = Route(\n", + " name=\"general\",\n", + " references=[\n", + " \"I received the wrong item in my order, can you help?\",\n", + " \"Can you recommend products that match my specific needs?\",\n", + " \"The assembly instructions for my furniture are unclear\",\n", + " \"I need help finding a product with particular specifications\",\n", + " \"My order arrived damaged, what are my options?\",\n", + " \"Can you help me design a room with your products?\",\n", + " \"I'm looking for custom sizing options for this product\",\n", + " \"The item I received doesn't match the online description\",\n", + " \"I need advice on which model would work best for my situation\",\n", + " \"Can you help troubleshoot an issue with my recent purchase?\"\n", + " ],\n", + " metadata={\"category\": \"customer_service\", \"priority\": 2},\n", + " distance_threshold=0.5\n", + ")\n", + "\n", + "blocked = Route(\n", + " name=\"blocked\",\n", + " references=[\n", + " \"What is your company's stance on the recent election?\",\n", + " \"Do you support liberal or conservative policies?\",\n", + " \"Can you tell me another customer's address?\",\n", + " \"What's your CEO's opinion on gun control?\",\n", + " \"I need personal information about one of your employees\",\n", + " \"How does your company vote on political issues?\",\n", + " \"Can you provide me with someone's credit card details?\",\n", + " \"What's your position on immigration reform?\",\n", + " \"I want to know where a specific customer lives\",\n", + " \"Does your company donate to political campaigns?\"\n", + " ],\n", + " metadata={\"category\": \"prohibited\", \"priority\": 3},\n", + " distance_threshold=0.5\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "9cdbcbff", + "metadata": {}, + "source": [ + "## Initialize the SemanticRouter\n", + "\n", + "Like before the ``SemanticRouter`` class will automatically create an index within Redis upon initialization for the route references." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "e80aaf84", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13:22:06 datasets INFO PyTorch version 2.3.0 available.\n", + "13:22:06 sentence_transformers.SentenceTransformer INFO Use pytorch device_name: mps\n", + "13:22:06 sentence_transformers.SentenceTransformer INFO Load pretrained SentenceTransformer: sentence-transformers/all-mpnet-base-v2\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6345d6b8899347ec9c3eac71442f2bd1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Batches: 0%| | 0/1 [00:00 used claude sonnet 3.7 for generation of resource\n", + "\n", + "```txt\n", + "You are a test data creation helper. \n", + "\n", + "Create test data of the form:\n", + "\n", + "{\n", + " \"query\": \"query about a topic\",\n", + " \"query_match\": \"topic-the-query-matches\"\n", + "}\n", + "\n", + "The 3 available topics are: faq, general, and blocked. Generate many examples that map to these topics such that we can train a model to find the best thresholds for this classification task. Also make sure to include some examples that don't map to any of the topics to check the null case for these leave the query_match field empty.\n", + "```\n", + "\n", + "The output of this call was saved to `./resources/test_data.json`" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "3c03a117", + "metadata": {}, + "outputs": [], + "source": [ + "import json\n", + "\n", + "with open(\"resources/ecom_train_data.json\", \"r\") as f:\n", + " train_data = json.load(f)" + ] + }, + { + "cell_type": "markdown", + "id": "1d0c5c2a", + "metadata": {}, + "source": [ + "## Run optimization with router\n", + "\n", + "Using the `RouterThresholdOptimizer` from the `redis-retrieval-optimizer` library." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "83d2a15c", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a7825e73ad0647f0a84d5f7f4db318e1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Batches: 0%| | 0/1 [00:00 str:\n", + " prompt = f\"\"\"\n", + " You are a classification bot. Your job is to classify the following query as either faq, general, blocked, or none. Return only the string label or an empty string if no match.\n", + "\n", + " general is defined as request requiring customer service.\n", + " faq is defined as a request for commonly asked account questions.\n", + " blocked is defined as a request for prohibited information.\n", + "\n", + " query: \"{question}\"\n", + " \"\"\"\n", + " response = client.responses.create(\n", + " model=\"gpt-4o-mini\",\n", + " input=prompt,\n", + " )\n", + " return response" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "feb25546", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13:23:11 httpx INFO HTTP Request: POST https://api.openai.com/v1/responses \"HTTP/1.1 200 OK\"\n" + ] + }, + { + "data": { + "text/plain": [ + "'faq'" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "with open(\"resources/ecom_test_data.json\", \"r\") as f:\n", + " test_data = json.load(f)\n", + "\n", + "\n", + "res = ask_openai(test_data[0][\"query\"])\n", + "res.output_text" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "5ee72be1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'input_tokens': 99,\n", + " 'input_tokens_details': {'cached_tokens': 0},\n", + " 'output_tokens': 2,\n", + " 'output_tokens_details': {'reasoning_tokens': 0},\n", + " 'total_tokens': 101}" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "res.usage.model_dump()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "e5c921b2", + "metadata": {}, + "outputs": [], + "source": [ + "import time\n", + "\n", + "INPUT_TOKEN_PRICE = (0.15 / 1_000_000)\n", + "OUTPUT_TOKEN_PRICE = (0.60 / 1_000_000)\n", + "\n", + "def calc_cost_rough(openai_response):\n", + " return openai_response.usage.input_tokens * INPUT_TOKEN_PRICE + openai_response.usage.output_tokens * OUTPUT_TOKEN_PRICE\n", + "\n", + "def test_classifier(classifier, test_data, is_router=False):\n", + " correct = 0\n", + " times = []\n", + " costs = []\n", + "\n", + " for data in test_data:\n", + " start = time.time()\n", + " if is_router:\n", + " prediction = classifier(data[\"query\"]).name\n", + " else:\n", + " openai_response = ask_openai(data[\"query\"])\n", + " prediction = openai_response.output_text\n", + " costs.append(calc_cost_rough(openai_response))\n", + " \n", + " if not prediction or prediction.lower() == \"none\":\n", + " prediction = \"\"\n", + "\n", + " times.append(time.time() - start)\n", + " print(f\"Expected | Observed: {data['query_match']} | {prediction.lower()}\")\n", + " if prediction.lower() == data[\"query_match\"]:\n", + " correct += 1\n", + "\n", + " accuracy = correct / len(test_data)\n", + " avg_time = np.mean(times)\n", + " cost = np.sum(costs) if costs else 0\n", + " return accuracy, avg_time, round(cost, 4)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "5c6024e8", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13:23:43 httpx INFO HTTP Request: POST https://api.openai.com/v1/responses \"HTTP/1.1 200 OK\"\n", + "Expected | Observed: faq | faq\n", + "13:23:43 httpx INFO HTTP Request: POST https://api.openai.com/v1/responses \"HTTP/1.1 200 OK\"\n", + "Expected | Observed: faq | faq\n", + "13:23:44 httpx INFO HTTP Request: POST https://api.openai.com/v1/responses \"HTTP/1.1 200 OK\"\n", + "Expected | Observed: faq | faq\n", + "13:23:44 httpx INFO HTTP Request: POST https://api.openai.com/v1/responses \"HTTP/1.1 200 OK\"\n", + "Expected | Observed: faq | faq\n", + "13:23:45 httpx INFO HTTP Request: POST https://api.openai.com/v1/responses \"HTTP/1.1 200 OK\"\n", + "Expected | Observed: faq | general\n", + "13:23:45 httpx INFO HTTP Request: POST https://api.openai.com/v1/responses \"HTTP/1.1 200 OK\"\n", + "Expected | Observed: faq | faq\n", + "13:23:46 httpx INFO HTTP Request: POST https://api.openai.com/v1/responses \"HTTP/1.1 200 OK\"\n", + "Expected | Observed: general | general\n", + "13:23:46 httpx INFO HTTP Request: POST https://api.openai.com/v1/responses \"HTTP/1.1 200 OK\"\n", + "Expected | Observed: general | general\n", + "13:23:47 httpx INFO HTTP Request: POST https://api.openai.com/v1/responses \"HTTP/1.1 200 OK\"\n", + "Expected | Observed: general | general\n", + "13:23:47 httpx INFO HTTP Request: POST https://api.openai.com/v1/responses \"HTTP/1.1 200 OK\"\n", + "Expected | Observed: general | general\n", + "13:23:48 httpx INFO HTTP Request: POST https://api.openai.com/v1/responses \"HTTP/1.1 200 OK\"\n", + "Expected | Observed: general | general\n", + "13:23:48 httpx INFO HTTP Request: POST https://api.openai.com/v1/responses \"HTTP/1.1 200 OK\"\n", + "Expected | Observed: general | general\n", + "13:23:49 httpx INFO HTTP Request: POST https://api.openai.com/v1/responses \"HTTP/1.1 200 OK\"\n", + "Expected | Observed: blocked | \n", + "13:23:49 httpx INFO HTTP Request: POST https://api.openai.com/v1/responses \"HTTP/1.1 200 OK\"\n", + "Expected | Observed: blocked | blocked\n", + "13:23:50 httpx INFO HTTP Request: POST https://api.openai.com/v1/responses \"HTTP/1.1 200 OK\"\n", + "Expected | Observed: blocked | blocked\n", + "13:23:50 httpx INFO HTTP Request: POST https://api.openai.com/v1/responses \"HTTP/1.1 200 OK\"\n", + "Expected | Observed: blocked | general\n", + "13:23:51 httpx INFO HTTP Request: POST https://api.openai.com/v1/responses \"HTTP/1.1 200 OK\"\n", + "Expected | Observed: blocked | blocked\n", + "13:23:52 httpx INFO HTTP Request: POST https://api.openai.com/v1/responses \"HTTP/1.1 200 OK\"\n", + "Expected | Observed: blocked | blocked\n", + "13:23:52 httpx INFO HTTP Request: POST https://api.openai.com/v1/responses \"HTTP/1.1 200 OK\"\n", + "Expected | Observed: blocked | \n", + "13:23:53 httpx INFO HTTP Request: POST https://api.openai.com/v1/responses \"HTTP/1.1 200 OK\"\n", + "Expected | Observed: blocked | blocked\n" + ] + } + ], + "source": [ + "llm_accuracy, llm_avg_time, llm_cost = test_classifier(ask_openai, test_data)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "c3362a1b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(0.8, 0.5609435558319091, 0.0003)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "llm_accuracy, llm_avg_time, llm_cost" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "40ddc05d", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "65740a8a0b094a68aea0d31fd3c6d87a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Batches: 0%| | 0/1 [00:00 \u001b[0m\u001b[32;49m25.1\u001b[0m\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n", "Note: you may need to restart the kernel to use updated packages.\n" ] } ], "source": [ - "# NBVAL_SKIP\n", - "%pip install -q redis numpy sentence-transformers" + "%pip install -q \"redis>=5.0.5\" numpy sentence-transformers" ] }, { @@ -136,7 +148,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 41, "id": "aefda1d1", "metadata": {}, "outputs": [], @@ -162,18 +174,30 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 42, "id": "370c1fcc", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from redis import Redis\n", - "client = Redis.from_url(REDIS_URL)" + "client = Redis.from_url(REDIS_URL)\n", + "client.ping()" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 43, "id": "458fc773", "metadata": {}, "outputs": [], @@ -186,7 +210,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 44, "id": "8d561462", "metadata": {}, "outputs": [ @@ -194,8 +218,8 @@ "name": "stderr", "output_type": "stream", "text": [ - "/Users/justin.cechmanek/.pyenv/versions/3.11.9/envs/redis-ai-res/lib/python3.11/site-packages/sentence_transformers/cross_encoder/CrossEncoder.py:11: TqdmExperimentalWarning: Using `tqdm.autonotebook.tqdm` in notebook mode. Use `tqdm.tqdm` instead to force console mode (e.g. in jupyter console)\n", - " from tqdm.autonotebook import tqdm, trange\n" + "/Users/robert.shelton/.pyenv/versions/3.11.9/lib/python3.11/site-packages/huggingface_hub/file_download.py:1142: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.\n", + " warnings.warn(\n" ] } ], @@ -212,7 +236,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 45, "id": "9946a382", "metadata": {}, "outputs": [], @@ -228,21 +252,22 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 46, "id": "8797fcc6", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "{'title': 'Explosive Pursuit',\n", + "{'id': 1,\n", + " 'title': 'Explosive Pursuit',\n", " 'genre': 'action',\n", " 'rating': 7,\n", " 'description': 'A daring cop chases a notorious criminal across the city in a high-stakes game of cat and mouse.',\n", - " 'vector': b'\\x9bf|=\\xa4a\\n;\\xb6\\x91\\xb7;*\\xcb~\\xbd\\x07e\\xce\\xbb\\xc9\\x16J=G\\xa7?=\\xcev\\x95\\x17\\xbe\\xc0 \\x05\\xb9&u\\xbf<0\\xe2b\\xba\\xd6\\xa6\\xa8\\xbdr\\xdc\\xec\\xbcWc%=\\xa6\\xe7r\\xbb\"OG=:(\\x85=s@\\xa2\\xbc/Z\\xd0\\xbdK%K\\xbd\\xb1\\xed\\x94\\xbc`\\xddH=\\xaa&F<\\xe0*\\xec<\\x88\\xd8\\x8d\\xbd\\xc5Z\\x98<\\x13\\xa3\\xa3=:g3\\xbd+\\xcd\\xbd\\xbd\\x90$\\xf7;\\xf8\\xf4z=\\x01\\xb5\\x8c=\\x8a\\x0e\\xc6\\xbdoI\\x90\\xbd\\x80\\x16\\xbd;u\\xe7\\x0c\\xbd\\xf32\\xc9\\xbc\\x8b\\xf8\\xbb\\xbcP&u\\xbb9\\x8f\\xca<\\x07\\x80J=\\x10\\xaf*=\\x96OU\\xbd\\xc9\\xf0\\x95\\xbc\\x10\\x02\\x19=\\x12\\xf4K<\\xc0\\xc2\\t=L\\x83\\xac=\\x98\\xd7\\xb8\\xbd\\xf7\\xb5\\x9c\\xbd9\\x85\\x18=\\x9fd&=73\\xf8<\\xfb\\xf7\\x88<\\xabv\\xf2\\xbb%=[\\xbd\\xdc\\xac\\xee\\xbb2:A\\xbd\\xdcd\\x19\\xbdjd\\xf2\\xbbr\\xbax;\\xdc;O<\\x991,\\xbc\\xea\\xae\\xae=~\\x00-\\xbc\\x1a\\x06\\xae\\xbdh\\xd6\\x1a=\\xc7\\xbf\\xcd=\\x1f\\x150=\\xdc\\xf1\\x9d\\xbc\\xaaGK=\\xaf\\xb8 =\\xb0\\xf1I\\xbd\\te\\x9e\\xbbI\\x8b\\xf7:\\x8b\\xf8\\x1c=\\x86\\xba\\xde<)o\\x16\\xbb\\x19]p\\xbb\\xc3\\xd5<\\xbd\\x86\\x1bF\\xbd\\xa2?\\x14\\xbe\\xc5\\x8f(\\xbd\\xdfO\\x89\\xbd\\x10\\xae\\xd4<\\xa9\\x12\\xc3=\\xad\\x05O\\xbdn\\x8ep\\xbc$\\xb5\\xac\\xbc\\xc5\\x9ee\\xbdf\\x8es;\\xee`\\xc1;\\xd3\\xfaB\\xbdC#\\xfe:\\x90\\xe6\\xf4=\\xba\\x15*\\x17\\xbeA\\x1e\\x05\\xb9Hu\\xbfg3\\xbd$\\xcd\\xbd\\xbd\\xa1$\\xf7;\\x04\\xf5z=\\xfc\\xb4\\x8c=\\x89\\x0e\\xc6\\xbdhI\\x90\\xbd^\\x16\\xbd;z\\xe7\\x0c\\xbd\\x1b3\\xc9\\xbc\\x89\\xf8\\xbb\\xbc\\x18\\'u\\xbb>\\x8f\\xca<\\x02\\x80J=\\x0e\\xaf*=\\x8dOU\\xbd\\xcf\\xf0\\x95\\xbc \\x02\\x19=\\x19\\xf4K<\\xc5\\xc2\\t=J\\x83\\xac=\\x95\\xd7\\xb8\\xbd\\xf2\\xb5\\x9c\\xbd=\\x85\\x18=\\x94d&=03\\xf8<\\xee\\xf7\\x88<\\x80v\\xf2\\xbb9=[\\xbdG\\xac\\xee\\xbb<:A\\xbd\\xe1d\\x19\\xbd!d\\xf2\\xbb\\x1d\\xbax;\\xec;O<\\xd21,\\xbc\\xec\\xae\\xae=r\\x00-\\xbc\"\\x06\\xae\\xbdl\\xd6\\x1a=\\xc4\\xbf\\xcd=\\x19\\x150=\\xe3\\xf1\\x9d\\xbc\\xa6GK=\\xb2\\xb8 =\\xb2\\xf1I\\xbd-e\\x9e\\xbb\\xe9\\x8a\\xf7:\\x88\\xf8\\x1c=\\x7f\\xba\\xde<\\xd2n\\x16\\xbb\\xb4\\\\p\\xbb\\xd4\\xd5<<\\x89\\xa5\\xa3\\xb8\\xc79s<=4&<\\x84\\x1c\\x18<\\x18\\xd9-\\xbd\\xdf\\xe6\\x98<\\x15\\xa1N=\\xa2/\\xa5=\\x1d\\xf3\\xdd<\\x17L\\x13<\\x10\\x10\\xce\\xbac\\x9e\\xdc\\xbc\\xa68\\x05=+\\xa1\\xf5\\xbd\\x84\\x1bF\\xbd\\xa0?\\x14\\xbe\\xc4\\x8f(\\xbd\\xe6O\\x89\\xbd\\xf7\\xad\\xd4<\\xa7\\x12\\xc3=\\xaf\\x05O\\xbd\\x99\\x8ep\\xbc\\x18\\xb5\\xac\\xbc\\xc9\\x9ee\\xbdH\\x8es;$a\\xc1;\\xd9\\xfaB\\xbd\\xa8#\\xfe:\\x92\\xe6\\xf4=\\xcd\\x15*<\\x86\\xf8\\x1b=\\x01\\xfcV\\xbd\\xd3\\xd1\\r=9\\xee\\x06=\\x13u\\xba\\xbd\\xf7\\xa3\\xd6<\\x1a\\xec\\xd9;\\xb79/=\\xa4\\xc2\\x85=p\\x0b\"=\\xe1i\\xef<:\\xe8c=\\xfb2\\x08\\xbe\\xce\\x12;=OVW;V\\xa4b<\\xd0\\x9d\\xb7<\\x87r;\\xbdqz\\x91\\xbcV\\x00<\\xbd\\xfe\\x19\\xa3<\\xeaJ%\\xbc!\\xe7\\xbf\\xbb\\x7f\\x87\\x12=\\x94\\x1d\\x95=b|\\xfd\\xbc\\xf3\\xf1\\xd1\\xbd\\xf5y\\x84;\\xc9\\tu=]\\x8ai<3\\x91R\\xbd\\xec\\xf3m\\xbd\\x93\\xb83=V\\xedF=\\x1f\\xf3\\xd1\\x08yA\\xba<#\\xacO\\xbd\\x01\\x0f\\xc7;\\x7f\\xf4\\x04\\xbdP\\x82\\x92\\xbd\\x9b\\xddD=p\\xd8;\\xbc\\xd3;\\xf4\\xbc\\xb3\\x8f\\x97\\xbd1\\\\\\r\\xbd\\xea\\x8c\\xf5\\xbd\\x8c\\x13(=\\x9e\\xc8\\xc6=\\xa3\\xed\\x1a=\\x98\\xa8\\xf8=\\x84\\xc1\\xee\\xbc\\xcd-\\x18\\xbb\\xf5~;<\\xd6F\\t\\xbd\\x14\\x08\\x17=\\xa5\\xa5\\x1e=\\x14K\\xcb\\xbd.\\xf7\\x8c\\xbdyb\\xed\\xbb\\x86[\\x19\\xbc]\\x0c\\x13\\xbcgq\\x83=\\xf0wd\\xbd\\xe3\\xc7\\xd1\\xbb8lY\\xbc\\xa7|a=3\\xcf\\xfd\\xbc\\x1f\\xa5\\x83\\xbb\\x99O\\x19\\xbd6\\x02]\\xbd\\xbb\\xeaz=\\x036\\x9c=:^\\xa9\\xbd)^9\\xbcg\\xe4N\\xbcs\\x07x\\xbd\\x18{\\xa0=:\\x9f\\x96<\\xecq8\\xba\\x9e\\xbb=\\xbd\\xe4|(<\\x96\\xdf\\xb4\\xbbl\\xc9\\x0b\\xbd\\xc4\\x01\\x95\\xbd\\xf7\\xc6T=\\tp\\xd1;~=@J=\\x19\\x13=$X\\x7f<=ZPm==*\\x023+\\x06ߞ<1\\x1a=6_ٻtJ\\'=Z\\x0e\\'0L=^֣\\n&ed6=m)=dTH=]p=\\x1c}\\'<\\x03\\x1fFu<؛;*q7M={Q5kW\\x1f=\\x1e;k^A=?E\\x04Enw\\x13<\\x1c_S=ӧL\\x05:ջ\\x01jNn=L=\\x14=أv\\x0etV\\x0fALR=<3;ǽH\\x1bhao{=A|r\\x11%&\\x00\\x13Q=\\x05n<\\x1e\\x10=\\x1f\\x1e/\\x05=\\x06\\x0e=n6\\x08s\\x13;F<\\r<\\x02\\x0c<\\x02=\\x00Uм\\x1c;\\x082=sszS=0Լ)\\x01\\x1c\\x00꽻X=<\\x0cq\\n|<<ɽ\\x16\\x1c\\u07bdm2-_=D::8RM(Bq}6=l=[=?W<\\x18=q1h=ĝi<~$\\x01=-8/}L\\x1b\\x1b=G\\x01\\x01<Ƕ\\nW=*X\\x18*s;g^E=)\"=XbX-ɼ8\\x04ټ@k<٥ʽף=$=\\'\\x02M\\x02v;4dU<\\x16\\x1c\\x7f\\x107HV73\\x0f\\x0f>Vh갣!\\x18<#F\\x14ż#\\x03=\\x0c\\x0f;Ymͼ\\x1e\\x1a;}p+\\nah\\x1bqռ$]pʼJ̇#Wk=\\x0e*6څ =קf\\x10\\x13)I

bl<*ĺ0<\\t&̴qI\\x16=P<+[&F\\x06=\\\\V={\\x7f\\x19\\x01\\x0e<2+QF{\\x08Q\\x01<,\\x1b*d\\x01:\\x10D\\x11d=\\rFvT=;/==A9YڽZ1D<3US=MY\\\\=V;=\\x1absZ<\\x1fB=\\x0b[?_=?<:J=<-Ҝ<0<\\t5Zʝ=Z;5<ü[=\\x14лP⼊*\\x11=*N=!FՉ̼\\r;\\x12<\\u05fd\\nԽZ]\\'<%U@\\x174P_@]нF=A<&\\n\\x11v«#+=[閽\\x07f\\x19Kp0\\x08pq;mMꚽR漉\\x17=o\\x00=x?\\x07=I;\\x13.<\\x7fv=\\x150\\x1dP=0\\x05=!>J=\\x04*uچ=@>7ټE佛sV\\x10R\\x1e==P뼙{\\x0b<+^\\x17=[<\\x0eh\\x04\\x02=zӼHm\\n=\\x0e;:\\x1fє<1=|\\x08t5-peҜ:=\\x04˽hlz&=UUB(|5=&=\\x07\\x14/<+.<\\x05e;\\n<=$\\x1f=\\x042\\x03>w<ޖʼ衝=\\x05G=\\x7fR\\x17wql\\x12x%?;\\x04f\\x088b_=r\\x06<\\x1b<$n\\x0e=vs=\\x10\\x15`=\\x16J_Ѣ?\\x12T>=\\x15\\x06=W=37;Q\\t\\x00\\x18=\\x05q=Q;\\'W\\x05=\\x1a=$4=b6=|=!c=I=J<\\\\`ʍ:+<\\u07b5<\\x03<\\x15Xʼ\"e>\\x1cg=DB<\\x0e<\\x1bK\\x11;8ν<1\\n\\x1976{=/\\x05=;]I\\x1cK\\x1aT;_R[8H=:#=(2=\\x1a\\x03>1n=(d;!\\u07b2t<~\"b;*\\x1b/\\x0cT<]λ{\\x0b=Qԅ=ӦF\\x16q\\x18=A\\x17=씼{=\\x0c0\\x03Ѡ<\\'%<_u=z½1x^S\\x0c\\u05fdŗK=\\x17\\x10\\x16\\x1f!\\\\;yFe =-,d=\\x1dx<=QAһE\\x08j/==嶻<ݼN_[0;C<|ihfx懼\\t\\r\\x00w\\x16z\"9\\x11Dd,мTz5d\\x1bdb%<\\x15,\\u05cb[5,\\x0cM=/ μTB9\\x10lۊ=\\x17֨=cǼC=\\x06u=%?=\\\\J|9PF\\x0f\\x03>h\\x18=щ\\x1dq\\x0f=ߣ<\\x03\\x0e=nA<\\x16뻥⼽H8|v\\x15\\x12={<\\x00YEHq;\"1m<ܒžQ<י\\x07+\\x13,j\\x16\"=\\x05>\\rS<-\"g\\x1bc!=}hc`\\x18<}溡O=\\x12\\x04ɼ0/\\x10-\\'ar.Q;=LPE\\t&1-\\x12ν샄<\\'+=b\\x0b\\x08(ݼhe\\x14ԍ>=uz\\x7f69=%\\x02\\x12=Hhx\\x0f\\x01>\\x02:;/;=C<7kfk=\\x19=,=x=<\\x15]0= P=GsݠE=e=ú\\u05fcO#7\\x17=&g4\\r\\x04=(<\\x17-~BD\\x08R=7=Q\\x10\\x14T\\x066Iג<~;G_ý 뽜NWm\\x18F<<ͼ\\nd<Ĩh=Y-K2TG\\x08Vz=\\x0b(:rx=\\x18\\x1d;C\\x15\\t=6\\x14&aL.}\\x17=%S=\\x1b;gһ\\x19>AuA9\\x1f=A\"(\\x00>N;[Z=X\\x1b\\x15\\x12>-h\\x00C=\\x13Z=>aOEB=\\x14C=^R-<=!<-=\\x0c%<<\\x06\" M=\\x7f\\uea3cI<\\x11S\\x1e\\x1eE(qb=@\\x14=\\x05\\x027%mL<⛳=\\x06M|u*<<3iK\\x17A\\x1e\\x05Hug3$ͽ$;\\x04z==\\x0eƽhI^\\x16;z\\x0c\\x1b3ɼ\\x18\\'u><\\x02J=\\x0e*=OU \\x02\\x19=\\x19K<\\t=J=\\u05f8\\U000b573d=\\x18=d&=03<\\x1bF?\\x14ď(O<\\x12=\\x05Op\\x18ɞeHs;$a;B#:=\\x15*<\\x1b=\\x01V\\r=9\\x06=\\x13u<\\x1a;9/=\\x85=p\\x0b\"=i<:c=2\\x08\\x12;=OVW;Vb<Н<9,=\\x17ߺ\\x14:M9\\x08\\x0bV<_6=!Ub#=WX=u\\x11=?6=\\x06,<\\'\\x15t=;лwK-=H\\x11\\x036=\\x15<8xM\\x10=_\\x03D=\\x0b\\x08$G\\x0cr=m=<)$y\\x06=X=s%\\r\\x1dz\\x0e\\t<$\\tI=\\x01x\\x10;Y\\x0f<蓻bߺe c=>;\\x18u༎\\x10x~=ah<\\x070;#r=iD:?ئa2g\\x00=\\x1bą;g\\x12=OʃRF2=\\x11䛽%==^<̒\\x06=-@g<;ܼX\\x19=#b\\x0bb}xU;\\\\\\x08~=/&N(缸&\\x08ۆ=:p^<|僼½f\\x11=\\u05fdx<#;Ȼ=1I\\x0b\\x7f\\x0cR\\x11\\x14ʽuA<;\\rpr}\\x0f\\x18=Tp1gC<:\\x16{\\x19.<$5=AGl=-\\\\=hGEY>;2\\r==y{@\\x16Oƻ$o=\\x0b#j=~0> {\\x03kl/=ul\\x07ͼ\\x17>F1\\x1bYFؔ/\\x1d5M\\x07Jݏ=-\\x08xN>\\x7f;M\\x05u\\x19H@tC=<\\x0f\\x18Kz=\\x13=ጽ&=qZ\\x07=Mq=^ߣA*\\'\\x13\\x03=;A&s=u0ltn>\\t=bڼ@f\\'j\\x10\\x01=Ѽ\\x12C=6)vgi6\\x05\\x01l\\x15<\\x17m\\x15; =\\rL\\x13;ýC=\\x04лS\\x03_\\x02[=B/D>=5\\x19\\x03\\x13<\\r|K=\\'h<\\nB<>9T\\x1eh=ݨa=Ϳ-\\x00;=fK=t=}ظ;Ϧj<ݛ;\\x03}<-<\\x18;\\x1e.=\\x1en;\\x01G=L\\x10Q\\\\|\\x11Yo=u\\x0f\\x19%+=1P<:m;\\x07&==rQA\\x15ϼ\\x0b+<\\x02=h\\x0e9=I3K=5ͼ\\x04E7;ty|=\\x04Ӏ<\\x0c<\\x01\\x0e\\x18>\\x0f\\x14qiQ=yR:kX=\\x13|\\x0b=ǎI0s-Qߒ;{XB=\\r\\x046=y6EW=\\r<=X=\\x1a<\\x18U\\x15\\x02I\\x00Bg;~ =\\x7fv\\x16y\\'غ\\x19\\r\\x1b)(3\\x16Oj\\x0eA0=7L=dI\\r=A[=\\x02A;\\\\=o\\x00Ƽ)V¼Їh5\\x01=\\x06=h>ˠŐWxL=\\x04=v\\x7f)͓:\\x10;aZ\"\\x06/2\\x0b==\\t/&|f<ӽm\\x1fnx=+F\\n*<}w\\x07lI\\x00\\x02@=Bi\\x06=\\x1c\\x11v:/ٍ!\\x18(Ј`;<ᓟ\\x02R=\\x13>c{R=3Qٽ2ӄ\\x05<~<${Y=_i=Ib>=Y\\x1c<̠$>#=\\x01j|\\x19Q=6l=\\x15q-Sf<\\x1d\\x07$=\\x1f\\x0e=>\\x03$L~<\\x01\\x02a\\x1dI<\\x14=ZnS3m!~͈\\x05\\u07bb\\x1e=cHf\\x11h@<1ki$3=\\x14\\x08.\\x17w>=\\x03)=><\\x1d\\x10b괺Be=\\x1b\\x003=Y<\\x156e<1bL=D\\x03\\x0b]b\\x14<3 >\\x02\\n:2*=\"8,QʽQ=j\\x1d\\x16w!>\\x13<\\x1ey!\\x00U<\\x13u<\\x12<\\x14C[:c=5<@\\x0bM=\\x05\\x182;f<ӭ==\\x03b;\\x0bН<\\x1b=\\r\\tșL[{\\x16;!μU;\\nZ<\\x0f\\x17=ߑ=\\uec09dT=^Լ<\\x0c;\\x196(=\\x08\\x1b<\\x01=!\\x17<\\x0f.=yq=~\\x1a\\x1f:G0(H]X=d\\x10=Ge@[\\x06F<', 'genre': 'action', 'title': 'John Wick', 'description': 'A retired hitman seeks vengeance against those who wronged him, leaving a trail of destruction in his wake.'}, Document {'id': '6', 'payload': None, 'rating': '9', 'vector': ':A%=Em5\\x0eGh=\\x035%\\x01P\\x1eq\\x1d\\x1c=N==\\r\\x04\\\\8E= ,==4\\x01G==(<\\x02/)=PK6\\x04Y螉\\x0eྲྀ8:2jt|=,\\x0c6\\x17am<&=\\t\\x18>_\\x108<\\x0f!lQ^\\x0e>1K=<*F\\x01Q.hЌg\\r\\x01<Ԭ<@<0\\r\\x11=\\rq\\rT\\'P=y\\x17ml>DM}=rH5=\\x0f\\x13Ϋ=D\\x03;\\rR=a=4=\\x13q\\x07=ޭ\\x01=\\x17<.J\\x01=Gy\\t\\x13S=\\'6k\\x00\\x07;Oؽf\\x08<2ݼ<(}E=M{JֽY=Vj\\x18A=CT@]=Jj<18\\x1a=ぎ=\\r8P{<.4Ž\\x0f=\\\\g==+D=Vce=6xUǽ-\\r+=O=,ü0C\\x05R=\\nrSZ=[L\\x01\\nnV=Ѝ\\x19W=:w=4v=C\\x1b@<:y;\\nh=ڙ=C\\uef1e=@ے=9_S8;e<\\x1d\\x1b=rDK-S새;\\t\\x16=\\x1a\\x18~=r6\\x19=r=1?;\\x16\\r\\x18\\x1e;<\\x15j4ߜP<\\nAR\\x06=ߕ$\\x11=hgv\\x18>\\x14ѽO=Ѷ<@6=\\x03o=\\t\\x01|>A=\\x00!.c3\\\\7L\\x01==-I ];ջͣ<[\\x15\\x0cҩ=Q\\x19Rk$\\x17Oc\\x11B}j\\x02\\roy=~=4==\\r-=(=Zҹ<`@j\\x1c(\\x1b=\\x10=(x:h#pI=x\\u05fb\\\\<\\x1d\\x1cY|\\x0c=Aˡ?\\x18\\x0f\\x04n=?5d\\'=d3;\\x06`ܻ\\x101=^)\\x0c\\x13B<\">=s\\x06=\\x08=̽|\\x1f!{=i\\x19Dm\\x192;<-ſ?[R@=|\\x0f%<\\x01ؕ4\\x13$=Ӽ\\x1c-F!ﵼ\\x01Hf{\\ue17d=\\x12TB<\\x064Ἥ\\x13:\\x11\\x1b_:2;W\\x0c=Xx;m=\\x02= <+*x=-\"P=:\\\\=k\\x0c=\\x12L42\\x15\\x17!q>s=|;\\x14\\x1eKj;>v\\x1e=!=d&=s<<\\x16<4\"\\x16\"u\\x0e>\\x0b\\x05Ɍ.kY-pض\\x12\\x19<[*\\x13=\\x1ej\\t\\x7f=]p<.\\x1f=0f~;%\\n_=?;\\x1eC\\x19W\\x04=FF<_s<;=B=վȤ\\x14r\\x00\\x0c0<\\na.t=s\\x19P$\\'%\\x19\\x05===\\x7fWE}A\\r\\r*<`\\x05=TF= ^=\\x0c0=FA;\\x17G\\x01%\\x05U%=\\x0ck5\\x08Hżb{$weight: 1}) | (@description:(%superhero%)=>{$weight: 10}))') \\\n", + " .return_fields(\"title\", \"genre\", \"rating\", \"description\") \\\n", + " .paging(0, 3) \\\n", + " .dialect(2)\n", + "\n", + "res = client.ft(index_name).search(query)\n", + "res.docs" + ] + }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 62, "id": "1902b43b", "metadata": {}, "outputs": [ @@ -651,7 +817,7 @@ "True" ] }, - "execution_count": 20, + "execution_count": 62, "metadata": {}, "output_type": "execute_result" } @@ -664,7 +830,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "Python 3", "language": "python", "name": "python3" }, diff --git a/python-recipes/vector-search/01_redisvl.ipynb b/python-recipes/vector-search/01_redisvl.ipynb index e0e0e8fe..d0c3611c 100644 --- a/python-recipes/vector-search/01_redisvl.ipynb +++ b/python-recipes/vector-search/01_redisvl.ipynb @@ -8,7 +8,8 @@ }, "source": [ "![Redis](https://redis.io/wp-content/uploads/2024/04/Logotype.svg?auto=webp&quality=85,75&width=120)\n", - "# Vector Search with Redisvl\n", + "# Vector Search with RedisVL\n", + "\n", "## Let's Begin!\n", "\"Open\n" ] @@ -22,9 +23,9 @@ "source": [ "## Prepare data\n", "\n", - "In this examples we will load a list of movie objects with the following attributes: `title`, `rating`, `description`, and `genre`.\n", + "In this examples we will load a list of movies with the following attributes: `title`, `rating`, `description`, and `genre`.\n", "\n", - "For the vector part of our vector search we will embed the description so that user's can search for movies that best match what they're looking for.\n", + "We will embed the movie description so that user's can search for movies that best match the kind of movie that they're looking for.\n", "\n", "**If you are running this notebook locally**, FYI you may not need to perform this step at all." ] @@ -34,24 +35,24 @@ "execution_count": 1, "id": "b966a9b5", "metadata": { - "id": "b966a9b5", - "outputId": "61565924-8e01-4411-fac7-82346bb10e87", "colab": { "base_uri": "https://localhost:8080/" - } + }, + "id": "b966a9b5", + "outputId": "8fb1aed9-94a3-47b2-af50-4eac9b08d7f1" }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "Cloning into 'temp_repo'...\n", - "remote: Enumerating objects: 384, done.\u001b[K\n", - "remote: Counting objects: 100% (247/247), done.\u001b[K\n", - "remote: Compressing objects: 100% (159/159), done.\u001b[K\n", - "remote: Total 384 (delta 135), reused 153 (delta 74), pack-reused 137 (from 1)\u001b[K\n", - "Receiving objects: 100% (384/384), 64.50 MiB | 15.56 MiB/s, done.\n", - "Resolving deltas: 100% (159/159), done.\n" + "remote: Enumerating objects: 669, done.\u001b[K\n", + "remote: Counting objects: 100% (320/320), done.\u001b[K\n", + "remote: Compressing objects: 100% (207/207), done.\u001b[K\n", + "remote: Total 669 (delta 219), reused 141 (delta 112), pack-reused 349 (from 2)\u001b[K\n", + "Receiving objects: 100% (669/669), 57.77 MiB | 20.61 MiB/s, done.\n", + "Resolving deltas: 100% (287/287), done.\n" ] } ], @@ -74,31 +75,14 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "id": "c620286e", "metadata": { - "id": "c620286e", - "outputId": "d69d35a0-29b2-4a9c-aa13-acf27d85a414", - "colab": { - "base_uri": "https://localhost:8080/" - } + "id": "c620286e" }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/261.4 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m261.4/261.4 kB\u001b[0m \u001b[31m7.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25h\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/96.1 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m96.1/96.1 kB\u001b[0m \u001b[31m6.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m46.0/46.0 kB\u001b[0m \u001b[31m2.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m86.8/86.8 kB\u001b[0m \u001b[31m5.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25h" - ] - } - ], + "outputs": [], "source": [ - "# NBVAL_SKIP\n", - "%pip install -q redis redisvl numpy sentence-transformers" + "%pip install -q \"redisvl>=0.6.0\" sentence-transformers pandas nltk" ] }, { @@ -120,25 +104,12 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "id": "2cb85a99", "metadata": { - "id": "2cb85a99", - "outputId": "70660a1f-9d1c-408b-f7a5-5981054fabc3", - "colab": { - "base_uri": "https://localhost:8080/" - } + "id": "2cb85a99" }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb jammy main\n", - "Starting redis-stack-server, database path /var/lib/redis-stack\n" - ] - } - ], + "outputs": [], "source": [ "# NBVAL_SKIP\n", "%%sh\n", @@ -178,7 +149,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 1, "id": "aefda1d1", "metadata": { "id": "aefda1d1" @@ -186,6 +157,9 @@ "outputs": [], "source": [ "import os\n", + "import warnings\n", + "\n", + "warnings.filterwarnings('ignore')\n", "\n", "# Replace values below with your own if using Redis Cloud instance\n", "REDIS_HOST = os.getenv(\"REDIS_HOST\", \"localhost\") # ex: \"redis-18374.c253.us-central1-1.gce.cloud.redislabs.com\"\n", @@ -208,62 +182,101 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 48, "id": "370c1fcc", "metadata": { - "id": "370c1fcc" + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "370c1fcc", + "outputId": "2b5297c6-83b7-468f-b2ac-c47acf13ba2e" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from redis import Redis\n", "\n", - "client = Redis.from_url(REDIS_URL)" + "client = Redis.from_url(REDIS_URL)\n", + "client.ping()" ] }, { - "cell_type": "markdown", - "source": [ - "### Load Data" + "cell_type": "code", + "execution_count": 4, + "id": "H4w8c3Bevzq4", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "H4w8c3Bevzq4", + "outputId": "a4d3b9a4-adda-436e-9aef-b4b0120720ab" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } ], + "source": [ + "#client.flushall()" + ] + }, + { + "cell_type": "markdown", + "id": "jCXiuk9ZTN_K", "metadata": { "id": "jCXiuk9ZTN_K" }, - "id": "jCXiuk9ZTN_K" + "source": [ + "### Load Movies Dataset" + ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 49, "id": "8d561462", "metadata": { - "id": "8d561462", - "outputId": "04daf079-cd07-4369-b6ac-5c192b75163c", "colab": { "base_uri": "https://localhost:8080/", - "height": 206 - } + "height": 223 + }, + "id": "8d561462", + "outputId": "75ae0f32-115f-427e-e426-9a018884e860" }, "outputs": [ { - "output_type": "execute_result", + "name": "stdout", + "output_type": "stream", + "text": [ + "Loaded 20 movie entries\n" + ] + }, + { "data": { - "text/plain": [ - " title genre rating \\\n", - "0 Explosive Pursuit action 7 \n", - "1 Skyfall action 8 \n", - "2 Fast & Furious 9 action 6 \n", - "3 Black Widow action 7 \n", - "4 John Wick action 8 \n", - "\n", - " description \n", - "0 A daring cop chases a notorious criminal acros... \n", - "1 James Bond returns to track down a dangerous n... \n", - "2 Dom and his crew face off against a high-tech ... \n", - "3 Natasha Romanoff confronts her dark past and f... \n", - "4 A retired hitman seeks vengeance against those... " - ], + "application/vnd.google.colaboratory.intrinsic+json": { + "summary": "{\n \"name\": \"df\",\n \"rows\": 20,\n \"fields\": [\n {\n \"column\": \"title\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 20,\n \"samples\": [\n \"Explosive Pursuit\",\n \"Despicable Me\",\n \"The Incredibles\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"genre\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"comedy\",\n \"action\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"rating\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 6,\n \"max\": 9,\n \"num_unique_values\": 4,\n \"samples\": [\n 8,\n 9\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"description\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 20,\n \"samples\": [\n \"A daring cop chases a notorious criminal across the city in a high-stakes game of cat and mouse.\",\n \"When a criminal mastermind uses a trio of orphan girls as pawns for a grand scheme, he finds their love is profoundly changing him for the better.\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}", + "type": "dataframe", + "variable_name": "df" + }, "text/html": [ "\n", - "

\n", + "
\n", "
\n", "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
titlescore
0Fast & Furious 95.157032
1The Incredibles4.022877
2Explosive Pursuit2.335427
3Toy Story1.630097
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" ], - "layout": "IPY_MODEL_79ccfa71187d47e6a5437b251064ab5e" - } - }, - "2faa5eee186847019f943229a74eebd8": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_125823e2bcd8452b9b05336f932bc6c2", - "placeholder": "​", - "style": "IPY_MODEL_6e5ea3f8267b4e76ab4e6040fcc814f4", - "value": "Batches: 100%" - } - }, - "00562197816f441485fb309d5ef80ab5": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4b0b663070d845a78c230fb52d2740d7", - "max": 1, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_318e56ea3a794b81ab3c3267823e7d94", - "value": 1 - } - }, - "30913dcc6c064ef0af0066f4c196a6c4": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d56ffff8b5ff4be582ea1e8bb618c66e", - "placeholder": "​", - "style": "IPY_MODEL_9c1f2510d3d14bcf971b6ba2653aa35b", - "value": " 1/1 [00:00<00:00, 34.89it/s]" - } - }, - "79ccfa71187d47e6a5437b251064ab5e": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "125823e2bcd8452b9b05336f932bc6c2": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6e5ea3f8267b4e76ab4e6040fcc814f4": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "4b0b663070d845a78c230fb52d2740d7": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "318e56ea3a794b81ab3c3267823e7d94": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d56ffff8b5ff4be582ea1e8bb618c66e": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "9c1f2510d3d14bcf971b6ba2653aa35b": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } + "text/plain": [ + " title score\n", + "0 Fast & Furious 9 5.157032\n", + "1 The Incredibles 4.022877\n", + "2 Explosive Pursuit 2.335427\n", + "3 Toy Story 1.630097" + ] + }, + "execution_count": 74, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from redisvl.query import TextQuery\n", + "\n", + "user_query = \"High tech, action packed, superheros fight scenes\"\n", + "\n", + "text_query = TextQuery(\n", + " text=user_query,\n", + " text_field_name=\"description\",\n", + " text_scorer=\"BM25STD\",\n", + " num_results=20,\n", + " return_fields=[\"title\", \"description\"],\n", + ")\n", + "\n", + "result = index.query(text_query)[:4]\n", + "pd.DataFrame(result)[[\"title\", \"score\"]]" + ] + }, + { + "cell_type": "markdown", + "id": "pIZ-RiuyFAJP", + "metadata": { + "id": "pIZ-RiuyFAJP" + }, + "source": [ + "### Hybrid search" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "id": "fjJwWyQe02T1", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 174 }, - "0be6317ac95f4dada81f4f9627bee4ed": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_854f21149e8249ca9965f939cdf3efe4", - "IPY_MODEL_d724d841b85f4604960ef35f6470afcb", - "IPY_MODEL_9256c56484ae4755a8eb5c006b11bfe6" + "id": "fjJwWyQe02T1", + "outputId": "399a0f70-089c-4d82-968c-1cc0adf0e7fb" + }, + "outputs": [ + { + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "summary": "{\n \"name\": \"pd\",\n \"rows\": 4,\n \"fields\": [\n {\n \"column\": \"title\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 4,\n \"samples\": [\n \"Fast & Furious 9\",\n \"Black Widow\",\n \"The Incredibles\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"vector_similarity\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 4,\n \"samples\": [\n \"0.537397742271\",\n \"0.626006484032\",\n \"0.677648752928\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"text_score\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 4,\n \"samples\": [\n \"0.498220622181\",\n \"0\",\n \"0.398671082609\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"hybrid_score\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 4,\n \"samples\": [\n \"0.525644606244\",\n \"0.438204538822\",\n \"0.593955451832\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}", + "type": "dataframe" + }, + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
titlevector_similaritytext_scorehybrid_score
0The Incredibles0.6776487529280.3986710826090.593955451832
1Fast & Furious 90.5373977422710.4982206221810.525644606244
2Toy Story0.5530096590520.2135231237920.451163698474
3Black Widow0.62600648403200.438204538822
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" ], - "layout": "IPY_MODEL_7e74865689464603b5f2a155592694af" - } - }, - "854f21149e8249ca9965f939cdf3efe4": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a41e017955ae448690242185f54b9d98", - "placeholder": "​", - "style": "IPY_MODEL_9aa40cdc28e145ff8ab21fc799881ac0", - "value": "Batches: 100%" - } - }, - "d724d841b85f4604960ef35f6470afcb": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6c177a2733884918998183495b79e098", - "max": 1, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_fd9112ea764341c7a20000b43d6de256", - "value": 1 - } - }, - "9256c56484ae4755a8eb5c006b11bfe6": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e4f02e81598a42468fd1931d108cefef", - "placeholder": "​", - "style": "IPY_MODEL_918932f636464b83be936aaf2062f0d8", - "value": " 1/1 [00:00<00:00, 34.42it/s]" - } - }, - "7e74865689464603b5f2a155592694af": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a41e017955ae448690242185f54b9d98": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "9aa40cdc28e145ff8ab21fc799881ac0": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "6c177a2733884918998183495b79e098": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "fd9112ea764341c7a20000b43d6de256": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e4f02e81598a42468fd1931d108cefef": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "918932f636464b83be936aaf2062f0d8": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } + "text/plain": [ + " title vector_similarity text_score hybrid_score\n", + "0 The Incredibles 0.677648752928 0.398671082609 0.593955451832\n", + "1 Fast & Furious 9 0.537397742271 0.498220622181 0.525644606244\n", + "2 Toy Story 0.553009659052 0.213523123792 0.451163698474\n", + "3 Black Widow 0.626006484032 0 0.438204538822" + ] + }, + "execution_count": 77, + "metadata": {}, + "output_type": "execute_result" } - } + ], + "source": [ + "from redisvl.query import HybridQuery\n", + "\n", + "hybrid_query = HybridQuery(\n", + " text=user_query,\n", + " text_field_name=\"description\",\n", + " text_scorer=\"BM25\",\n", + " vector=embedded_user_query,\n", + " vector_field_name=\"vector\",\n", + " alpha=0.7,\n", + " num_results=20,\n", + " return_fields=[\"title\", \"description\"],\n", + ")\n", + "\n", + "result = index.query(hybrid_query)[:4]\n", + "pd.DataFrame(result)[[\"title\", \"vector_similarity\", \"text_score\", \"hybrid_score\"]]" + ] + }, + { + "cell_type": "markdown", + "id": "5fa7cdfb", + "metadata": { + "id": "5fa7cdfb" + }, + "source": [ + "### Next steps\n", + "\n", + "For more query examples with redisvl: [see here](https://github.com/redis/redis-vl-python/blob/main/docs/user_guide/02_hybrid_queries.ipynb)" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "id": "915c2cef", + "metadata": { + "id": "915c2cef" + }, + "outputs": [], + "source": [ + "# clean up!\n", + "index.delete()" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "gpuType": "T4", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" } }, "nbformat": 4, "nbformat_minor": 5 -} \ No newline at end of file +} diff --git a/python-recipes/vector-search/02_hybrid_search.ipynb b/python-recipes/vector-search/02_hybrid_search.ipynb index 8aa488f4..fc9bec04 100644 --- a/python-recipes/vector-search/02_hybrid_search.ipynb +++ b/python-recipes/vector-search/02_hybrid_search.ipynb @@ -9,11 +9,11 @@ "\n", "Hybrid search is all about combining lexical search with semantic vector search to improve result relevancy. This notebook will cover 3 different hybrid search strategies with Redis:\n", "\n", - "1. Linear combination of scores from lexical search (BM25) and vector search (Cosine Distance) with the aggregation API\n", + "1. Linear combination of scores from lexical search (BM25) and vector search (Cosine Distance) with the HybridQuery class\n", "2. Client-Side Reciprocal Rank Fusion (RRF)\n", "3. Client-Side Reranking with a cross encoder model\n", "\n", - ">Note: Additional work is planed within the Redis core and ecosystem to add more flexible hybrid search capabilities in the future.\n", + ">Note: Additional work is planed within Redis Query Engine core to add more flexible hybrid search capabilities in the future.\n", "\n", "## Let's Begin!\n", "\"Open\n" @@ -32,8 +32,7 @@ "metadata": {}, "outputs": [], "source": [ - "# NBVAL_SKIP\n", - "%pip install -q \"redisvl>=0.3.5\" sentence-transformers pandas \"redis>=5.2.0\"" + "%pip install sentence-transformers pandas nltk \"redisvl>=0.6.0\"" ] }, { @@ -155,530 +154,785 @@ "cell_type": "code", "execution_count": 2, "metadata": {}, - "outputs": [], - "source": [ - "from redis import Redis\n", - "\n", - "client = Redis.from_url(REDIS_URL)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import json\n", - "\n", - "with open(\"resources/movies.json\", 'r') as file:\n", - " movies = json.load(file)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "from redisvl.utils.vectorize import HFTextVectorizer\n", - "\n", - "# load model for embedding our movie descriptions\n", - "model = HFTextVectorizer('sentence-transformers/all-MiniLM-L6-v2')" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "movie_data = [\n", - " {\n", - " **movie,\n", - " \"description_vector\": model.embed(movie[\"description\"], as_buffer=True, dtype=\"float32\")\n", - " } for movie in movies\n", - "]" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[{'title': 'Explosive Pursuit',\n", - " 'genre': 'action',\n", - " 'rating': 7,\n", - " 'description': 'A daring cop chases a notorious criminal across the city in a high-stakes game of cat and mouse.',\n", - " 'description_vector': b'\\x9bf|=\\x0e`\\n;\"\\x92\\xb7;<\\xcb~\\xbd\\xfad\\xce\\xbb\\xc3\\x16J=V\\xa7?=\\xedv\\x95\\xaa\\x1c=\\xfd\\xee\\x89<\\xbd\\xb0-<\\x82\\xb2\\x9f\\xbc[\\x0b\\xc3\\xbd\\x98NR=xl\\xf7\\xbcN>\\x17\\xbe#\\x12\\x05\\xb99u\\xbf<\\xb0\\xe0b\\xba\\xd3\\xa6\\xa8\\xbdx\\xdc\\xec\\xbcRc%=\\xe4\\xe7r\\xbb\\x1eOG=?(\\x85=o@\\xa2\\xbc2Z\\xd0\\xbdC%K\\xbd\\xb9\\xed\\x94\\xbcR\\xddH=\\x92&F<\\xc6*\\xec<\\x90\\xd8\\x8d\\xbd\\xcbZ\\x98<\\t\\xa3\\xa3=>g3\\xbd&\\xcd\\xbd\\xbd\\x95$\\xf7;\\xfd\\xf4z=\\xfc\\xb4\\x8c=\\x85\\x0e\\xc6\\xbdnI\\x90\\xbdJ\\x16\\xbd;s\\xe7\\x0c\\xbd 3\\xc9\\xbc\\x85\\xf8\\xbb\\xbc\\xbf&u\\xbb5\\x8f\\xca<\\x05\\x80J=\\x0f\\xaf*=\\x8bOU\\xbd\\xc8\\xf0\\x95\\xbc\\x1d\\x02\\x19=)\\xf4K<\\xcb\\xc2\\t=F\\x83\\xac=\\x9f\\xd7\\xb8\\xbd\\xf2\\xb5\\x9c\\xbdB\\x85\\x18=\\x96d&=-3\\xf8<\\xfa\\xf7\\x88<\\x16v\\xf2\\xbb-=[\\xbd\\xf7\\xac\\xee\\xbb5:A\\xbd\\xd9d\\x19\\xbdrd\\xf2\\xbb!\\xbax;\\xdc;O<\\xb61,\\xbc\\xed\\xae\\xae=^\\x00-\\xbc\\x1a\\x06\\xae\\xbda\\xd6\\x1a=\\xcc\\xbf\\xcd=\\x1f\\x150=\\xcf\\xf1\\x9d\\xbc\\xa9GK=\\xaa\\xb8 =\\xb4\\xf1I\\xbd\"e\\x9e\\xbbF\\x8b\\xf7:\\x94\\xf8\\x1c=\\xa9\\xba\\xde<\\xcco\\x16\\xbb\\xe6]p\\xbb\\xbb\\xd5<<\\xac\\x95\\xa3\\xb8\\xc29s<&4&\\x10\\x90\\xbbvt\\xb9\\xbb\\x00\\xc9\\xb9\\xbb\\xfehk=\\x9a\\r\\xad<3f\\xa8\\xbd\\xbd]\\xcc=\\x15\\xe0 \\xbe\\xc74/\\xbd{f\\xf7\\xbcQ\\x9av=\\x11\\x0cq<,\\xda\\x1c\\xbd\\x01\\t\\x8b<\\xf0n\\xa6\\xbc\\xe4t\\x86<\\x82\\x87\\x19=v\\xae\\xe4\\xbc4m^\\xbc\\nV\\x0e\\xbd\\x81\\xb0\\xe3\\xbc\\xd3FU;\\xaaG|\\xbdW\\xfb\\x8b\\xbd\\x7f\\x81*\\xbdy\\x83\\xf4={\\xb7\\x10;\\x15!\\x0e\\xbd\\xfa\\xd3\\xb4=\\x15&\\x15\\xbdM\\x86\\x83=m$:\\xbdv\\x1bF\\xbd\\xa2?\\x14\\xbe\\xc5\\x8f(\\xbd\\xe3O\\x89\\xbd\\x17\\xae\\xd4<\\xa3\\x12\\xc3=\\xaf\\x05O\\xbd\\x7f\\x8ep\\xbc!\\xb5\\xac\\xbc\\xc4\\x9ee\\xbd9\\x8es;[a\\xc1;\\xd2\\xfaB\\xbd\\xf9#\\xfe:\\x90\\xe6\\xf4=\\xb2\\x15*<~\\xf8\\x1b=\\x01\\xfcV\\xbd\\xcf\\xd1\\r=*\\xee\\x06=\\x18u\\xba\\xbd\\x02\\xa4\\xd6<\\xf8\\xeb\\xd9;\\xc49/=\\xa8\\xc2\\x85=u\\x0b\"=\\xe9i\\xef<4\\xe8c=\\xfa2\\x08\\xbe\\xd4\\x12;=,VW;\\x15\\xa4b<\\xb0\\x9d\\xb7<\\x95r;\\xbd{z\\x91\\xbcI\\x00<\\xbd\\x18\\x1a\\xa3<\\xf9J%\\xbc\\n\\xe7\\xbf\\xbbr\\x87\\x12=\\x97\\x1d\\x95=\\x83|\\xfd\\xbc\\xed\\xf1\\xd1\\xbd%z\\x84;\\xcb\\tu=c\\x8ai\\x85<\\xa29,=\\xbb\\xf5\\xdf\\xba\\xa0\\x14:\\xbdL9\\x08\\xbd\\x02\\x0c\\xbe\\xbcr\\xb9\\x9a<\\xab_6=\\x17Ub\\xbd\\xa4\\xb7#=[\\xee\\xa2\\xbag\\x95\\xe1\\xbc\\xfc\\xefX=\\xa2u\\x11=>\\xd86=\\xb8\\x06\\x9f\\xbc(\\xe5\\xf0<#\\x15t=\\xa0\\xaf\\xd0\\xbbeK-=\\xd5H\\x11\\xbd\\xd2\\x036=\\xff\\x15\\xd8<0x\\xfd\\xbcO\\x10\\x9b=\\xb8\\xdf_\\xbc\\xbe\\xff\\x03\\xbd\\xfbD\\xaa=\\xc5\\xab\\x0b\\xbd!$\\xe6\\xbc7\\x0cr=v\\xbc\\x99=\\xb6\\xae\\xa6<\\x1e\\x9b$\\xbd\\x98y\\x06\\xbd\\xe2\\xcf\\xde=\\xefX\\x8f=g%\\r\\xbd\\xbby\\x0e\\xbc4\\xe0\\t<\\'\\tI=\\xf8w\\x10\\xbd\\xfc\\xd4;\\xbd\\x82\\x0f\\xd9<\\xcd\\xe8\\x93\\xbb\\\\\\xdf\\xba\\xbd\\\\ c=|\\x9b\\x97;\\x19u\\xe0\\xbc\\x9a\\x10\\x9e\\xbdr\\xf4~=e\\x9ehh\\xa6\\xaf<\\xc4\\x8b\\x83\\xbb\\x19\\x1e\\x17\\xbd\\x87L*\\xbds\\x08m\\xbc\\xfcV\\x989C\\xf9\\xc2\\xbd\\x00g\\x11=\\xcf\\xdc\\xd7\\xbd\\xc9\\xfax<\\xa2\\xc0\\xa9;t\\xd6\\xc8\\xbb@1I\\xbd\\x19\\x7f\\x0c\\xbd\\x87P\\xb8\\xba\\x0e\\x14\\xf1\\xbc\\x9f\\xf2\\xca\\xbd\\xf5uA\\xbc\\xb6\\xf9<;\\x1e\\x0e\\x9d\\xbb{\\xd1r\\xbd\\xd4\\xc3}\\xbc\\xc6\\xc0\\xe5\\xbd\\x05\\x18\\xf4=\\xaaTp\\xbd!gC<\\xe5:\\x16\\xbd1|\\x19\\xbb\\xe3.\\xbf<\\xea$5=QGl=1\\xbd\\\\=bGE\\xbc\\xae\\xb8\\x85\\xbd\\xd2\\xd8Y\\xbd\\x17\\xfb\\xff;0\\r\\x88=\\x8f\\xe1\\xab=\\x84{@\\xbd\\x11O\\xc6\\xbb\\xba$o=\\x0e#\\xf4\\xbdk\\x98\\xde=\\x96~0>\\x82 \\x98\\xbc|\\xd9\\x03\\xbe\\xaek\\x8a\\xbd\\xa1l/=\\xd1ul\\xbd$\\xfb\\xd5\\x07\\xcb\\xe9\\xcd\\xbc\\xf1\\x17>\\xbdO\\xc0\\x83\\xbc=\\x1bY\\xbd>\\xd8\\x94\\xbd\\xc0/\\x1d\\xbc4M\\x07\\xbeN\\xdd\\x8f=+\\x08\\xc1\\xbcV\\xe6NJ\\x8f\\x7f<\\xccE\\xb5\\xbd\\x1aF\\x05=a@/=\\xa0\\xad1\\xbd \\xb1\\x8a=\\x14u\\x04\\xbc\\x9cI \\xbd9\\x8b\\x9b\\xbd\\x8bF\\xc4=\\xf7\\xf7;K\\xa6\\x05\\xbd\\x9du\\xe8<\\xb4\\x88N=\\xab\\x13\\x07\\xbd\\xef_`\\xbdS\\xc7\\x99\\xbd\\xd7\\x92\\xb9\\xd8)=\\x12G\\xe1\\xbd\\xden\\x18<\\xabem\\xbd\\xc4\\x9a8\\xbdh\\nL=`\\xbd8=U\\xe1\\xe1<\\x01\\xa0-\\xbb\\xa2v\\xab<\\xfeD(\\xbc\\xc0\\xfcy<\\x11y\\x96\\xbd\\xa8\\t\\xbf\\xbdIu\\xf8:\\x9a\\x1b:='},\n", - " {'title': 'Fast & Furious 9',\n", - " 'genre': 'action',\n", - " 'rating': 6,\n", - " 'description': 'Dom and his crew face off against a high-tech enemy with advanced weapons and technology.',\n", - " 'description_vector': b'&\\xa5\\xc7\\xbc\\xf7,\\xa2==\\x19H\\xbcF\\xc6t\\xbd\\xa3\\xa2C=\\x15\\x0f\\x18\\xbc\\xc8Kz=\\xeb\\x13\\xa0=\\xe5\\xe1\\x8c\\xbd\\xc3\\x84&=wZ\\x07=\\xbf\\xa8M\\xbc\\xb0\\xfaq=d\\x8b\\xe3\\xbc\\xdb\\xa3A\\xbd)\\'\\x13\\xbd\\x00\\x84\\x8a=\\xfb\\x9e\\xdd;@&s=\\x9b0l<\\xcbS\\x03\\xbcQ\\xf1:\\xbc\\xe6\\x07\\x14=u\\r\\x03\\xbd\\xa8\\x18\\xb6\\xbd\\xc5\\xf0\\xbf=b(\\xae=4t\\x91\\xbd\\xfc\\x96n\\xbc\\xc8>\\xbb\\xbc\\xb6\\x87\\t=\\x7f\\xc0\\xda\\xbc\\x8d\\xf6@\\xbcf\\xcd\\'\\xbci\\x9a\\x10\\xbe\\x00\\x98\\xaf=\\x9c\\x8f\\xd1\\xbc$\\xa4C=$\\xee)\\xbc\\x80g\\x9d\\xbcm6\\x98\\xbd\\x00\\x01\\x8a\\xbd\\xc9l\\x15=2\\x19\\x03\\xbd\\xf1\\xba\\xd5<\\x0b\\x8b\\xa2\\xbc\\x80K\\x8a=\\xf7\\'h<\\x89\\xe2\\n\\xbdX\\xd4\\xcd<\\x03?9\\xbcZ\\x1eh=\\xcc\\xa8a=\\xc7\\xcd\\xbf\\xbb)\\x00;=jK\\x9e=\\x95\\x84\\x97\\xbdv\\x82\\xb3=\\xa1\\xd8\\xb8;\\xd3\\xa6j<\\x87\\xdd\\x9b\\xbc3\\x03}\\xbd\\xbc\\xa3\\xdc\\xe1\\xd1Q\\xbdU\\x15\\xcf\\xbc\\x13\\x0c\\xb0\\xbc3\\xc8\\xfc<\\x04\\x8d\\x98=t\\x0e9=O3K=K\\xf2\\xcd\\xbc\\xdf\\x04E\\xbd\\xfc\\x987;\\x9e\\x9ct\\xbd\\xbfy|=\\xf8\\xd2\\x80<\\x00\\xa4\\x0c<\\x01\\x0e\\x18>\\x11\\x14q\\xbdi\\xe6Q=qR:\\xbd\\xbf\\xd4k\\xbd\\xbdX\\x81=\\x00|\\x98\\xbc\\n\\xbe\\xaf\\xbd\\xc6\\xe4\\xc6=\\xf4\\xc7\\x8e\\xbd_\\xd9\\xff\\xbc\\xc6\\xe50\\xbd_-\\xaa\\xbc\\x16\\xdf\\x92;p\\x9e\\xc2\\xc0XB=L\\xb5\\x99\\xbb\\x086\\x90\\xbc\\xab\\x99\\x98=\\x8a\\xb16\\xbc\\xcaE\\xba\\xbd\\x93\\x93W=\\xe7\\r\\xe9<\\xbf\\xb7\\x8e=\\xf0X\\xa9=\\xf2;\\x18\\xba{U\\x15\\xbd\\xefH\\x00\\xbd\\x12g\\xa2;\\x81\\xb0\\xb3\\xbd\\x8f\\x8c =T\\x7fv\\xbb\\x08y\\x84\\xbc\\xba\\'\\xd8\\xba1\\x92\\xa5\\xbc5\\x1b)\\xbc\\x803\\xae\\xbb\"O\\x95<\\xe4\\x82\\x9d\\xbc{O\\x08 str:\n", - " \"\"\"Convert a raw user query to a redis full text query joined by ORs\"\"\"\n", - " tokens = [token.strip().strip(\",\").lower() for token in user_query.split()]\n", - " return \" | \".join([token for token in tokens if token not in stopwords])\n", - "\n", - "# Example\n", - "tokenize_query(user_query)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, we need methods to create vector search and full-text search queries:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "# Function to create a vector query using RedisVL helpers for ease of use\n", - "from redisvl.query import VectorQuery, FilterQuery\n", - "from redisvl.query.filter import Text\n", - "from redisvl.redis.utils import convert_bytes, make_dict\n", - "\n", - "\n", - "def make_vector_query(user_query: str, num_results: int, filters = None) -> VectorQuery:\n", - " \"\"\"Generate a Redis vector query given user query string.\"\"\"\n", - " vector = model.embed(user_query, as_buffer=True, dtype=\"float32\")\n", - " query = VectorQuery(\n", - " vector=vector,\n", - " vector_field_name=\"description_vector\",\n", - " num_results=num_results,\n", - " return_fields=[\"title\", \"description\"]\n", - " )\n", - " if filters:\n", - " query.set_filter(filters)\n", - " \n", - " return query\n", - "\n", - "\n", - "def make_ft_query(text_field: str, user_query: str, num_results: int) -> FilterQuery:\n", - " \"\"\"Generate a Redis full-text query given a user query string.\"\"\"\n", - " return FilterQuery(\n", - " filter_expression=f\"~({Text(text_field) % tokenize_query(user_query)})\",\n", - " num_results=num_results,\n", - " return_fields=[\"title\", \"description\"],\n", - " dialect=4,\n", - " ).scorer(\"BM25\").with_scores()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 1. Linear Combination using Aggregation API\n", - "\n", - "The goal of this technique is to calculate a weighted sum of the BM25 score for our provided text search and the cosine distance between vectors calculated via a KNN vector query. This is possible in Redis using the [aggregations API](https://redis.io/docs/latest/develop/interact/search-and-query/advanced-concepts/aggregations/), as of `Redis 7.4.x` (search version `2.10.5`), within a single database call.\n", - "\n", - "In Redis, the aggregations api allow you the ability to group, sort, and transform your result data in the ways you might expect to be able to do with groupby and sums in other database paradigms. \n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "First, we build a base `VectorQuery` that runs a KNN-style vector search and test it below:" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ + "output_type": "display_data" + }, { "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4ce3491faa204802bd765e90a2cbf64f", + "version_major": 2, + "version_minor": 0 + }, "text/plain": [ - "[{'id': 'movie:dba67e0f8f4f45e38ba58533a7e70ec3',\n", - " 'vector_distance': '0.643690049648',\n", - " 'title': 'The Incredibles',\n", - " 'description': \"A family of undercover superheroes, while trying to live the quiet suburban life, are forced into action to save the world. Bob Parr (Mr. Incredible) and his wife Helen (Elastigirl) were among the world's greatest crime fighters, but now they must assume civilian identities and retreat to the suburbs to live a 'normal' life with their three children. However, the family's desire to help the world pulls them back into action when they face a new and dangerous enemy.\"},\n", - " {'id': 'movie:0d8537e75af24af6b118f4629c2758a3',\n", - " 'vector_distance': '0.668439269066',\n", - " 'title': 'Explosive Pursuit',\n", - " 'description': 'A daring cop chases a notorious criminal across the city in a high-stakes game of cat and mouse.'},\n", - " {'id': 'movie:b81aad8ca262422cb80ba725b17afce4',\n", - " 'vector_distance': '0.698122382164',\n", - " 'title': 'Mad Max: Fury Road',\n", - " 'description': \"In a post-apocalyptic wasteland, Max teams up with Furiosa to escape a tyrant's clutches and find freedom.\"}]" + "Batches: 0%| | 0/1 [00:00[KNN 3 @description_vector $vector AS vector_distance]'" + "application/vnd.jupyter.widget-view+json": { + "model_id": "02e0141513b8406886d45a539104b85b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Batches: 0%| | 0/1 [00:00= 5.2.0`" + "# embed movie descriptions\n", + "movie_data = [\n", + " {\n", + " **movie,\n", + " \"description_vector\": model.embed(movie[\"description\"], as_buffer=True)\n", + " } for movie in movies\n", + "]" ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[{'vector_distance': '0.643690049648',\n", - " '__score': '0.968066079387',\n", - " 'title': 'The Incredibles',\n", - " 'description': \"A family of undercover superheroes, while trying to live the quiet suburban life, are forced into action to save the world. Bob Parr (Mr. Incredible) and his wife Helen (Elastigirl) were among the world's greatest crime fighters, but now they must assume civilian identities and retreat to the suburbs to live a 'normal' life with their three children. However, the family's desire to help the world pulls them back into action when they face a new and dangerous enemy.\",\n", - " 'cosine_similarity': '0.678154975176',\n", - " 'bm25_score': '0.968066079387',\n", - " 'hybrid_score': '0.765128306439'},\n", - " {'vector_distance': '0.668439269066',\n", - " '__score': '0',\n", - " 'title': 'Explosive Pursuit',\n", + "[{'title': 'Explosive Pursuit',\n", + " 'genre': 'action',\n", + " 'rating': 7,\n", " 'description': 'A daring cop chases a notorious criminal across the city in a high-stakes game of cat and mouse.',\n", - " 'cosine_similarity': '0.665780365467',\n", - " 'bm25_score': '0',\n", - " 'hybrid_score': '0.466046255827'},\n", - " {'vector_distance': '0.698122382164',\n", - " '__score': '0',\n", - " 'title': 'Mad Max: Fury Road',\n", - " 'description': \"In a post-apocalyptic wasteland, Max teams up with Furiosa to escape a tyrant's clutches and find freedom.\",\n", - " 'cosine_similarity': '0.650938808918',\n", - " 'bm25_score': '0',\n", - " 'hybrid_score': '0.455657166243'}]" + " 'description_vector': b'\\x8bf|=\\xc3`\\n;\\xf2\\x91\\xb7;?\\xcb~\\xbd\\xdfd\\xce\\xbb\\xc7\\x16J=H\\xa7?=\\xdfv\\x95\\x17\\xbeA\\x1e\\x05\\xb9Hu\\xbfg3\\xbd$\\xcd\\xbd\\xbd\\xa1$\\xf7;\\x04\\xf5z=\\xfc\\xb4\\x8c=\\x89\\x0e\\xc6\\xbdhI\\x90\\xbd^\\x16\\xbd;z\\xe7\\x0c\\xbd\\x1b3\\xc9\\xbc\\x89\\xf8\\xbb\\xbc\\x18\\'u\\xbb>\\x8f\\xca<\\x02\\x80J=\\x0e\\xaf*=\\x8dOU\\xbd\\xcf\\xf0\\x95\\xbc \\x02\\x19=\\x19\\xf4K<\\xc5\\xc2\\t=J\\x83\\xac=\\x95\\xd7\\xb8\\xbd\\xf2\\xb5\\x9c\\xbd=\\x85\\x18=\\x94d&=03\\xf8<\\xee\\xf7\\x88<\\x80v\\xf2\\xbb9=[\\xbdG\\xac\\xee\\xbb<:A\\xbd\\xe1d\\x19\\xbd!d\\xf2\\xbb\\x1d\\xbax;\\xec;O<\\xd21,\\xbc\\xec\\xae\\xae=r\\x00-\\xbc\"\\x06\\xae\\xbdl\\xd6\\x1a=\\xc4\\xbf\\xcd=\\x19\\x150=\\xe3\\xf1\\x9d\\xbc\\xa6GK=\\xb2\\xb8 =\\xb2\\xf1I\\xbd-e\\x9e\\xbb\\xe9\\x8a\\xf7:\\x88\\xf8\\x1c=\\x7f\\xba\\xde<\\xd2n\\x16\\xbb\\xb4\\\\p\\xbb\\xd4\\xd5<<\\x89\\xa5\\xa3\\xb8\\xc79s<=4&<\\x84\\x1c\\x18<\\x18\\xd9-\\xbd\\xdf\\xe6\\x98<\\x15\\xa1N=\\xa2/\\xa5=\\x1d\\xf3\\xdd<\\x17L\\x13<\\x10\\x10\\xce\\xbac\\x9e\\xdc\\xbc\\xa68\\x05=+\\xa1\\xf5\\xbd\\x84\\x1bF\\xbd\\xa0?\\x14\\xbe\\xc4\\x8f(\\xbd\\xe6O\\x89\\xbd\\xf7\\xad\\xd4<\\xa7\\x12\\xc3=\\xaf\\x05O\\xbd\\x99\\x8ep\\xbc\\x18\\xb5\\xac\\xbc\\xc9\\x9ee\\xbdH\\x8es;$a\\xc1;\\xd9\\xfaB\\xbd\\xa8#\\xfe:\\x92\\xe6\\xf4=\\xcd\\x15*<\\x86\\xf8\\x1b=\\x01\\xfcV\\xbd\\xd3\\xd1\\r=9\\xee\\x06=\\x13u\\xba\\xbd\\xf7\\xa3\\xd6<\\x1a\\xec\\xd9;\\xb79/=\\xa4\\xc2\\x85=p\\x0b\"=\\xe1i\\xef<:\\xe8c=\\xfb2\\x08\\xbe\\xce\\x12;=OVW;V\\xa4b<\\xd0\\x9d\\xb7<\\x87r;\\xbdqz\\x91\\xbcV\\x00<\\xbd\\xfe\\x19\\xa3<\\xeaJ%\\xbc!\\xe7\\xbf\\xbb\\x7f\\x87\\x12=\\x94\\x1d\\x95=b|\\xfd\\xbc\\xf3\\xf1\\xd1\\xbd\\xf5y\\x84;\\xc9\\tu=]\\x8ai<3\\x91R\\xbd\\xec\\xf3m\\xbd\\x93\\xb83=V\\xedF=\\x1f\\xf3\\xd1\\x08yA\\xba<#\\xacO\\xbd\\x01\\x0f\\xc7;\\x7f\\xf4\\x04\\xbdP\\x82\\x92\\xbd\\x9b\\xddD=p\\xd8;\\xbc\\xd3;\\xf4\\xbc\\xb3\\x8f\\x97\\xbd1\\\\\\r\\xbd\\xea\\x8c\\xf5\\xbd\\x8c\\x13(=\\x9e\\xc8\\xc6=\\xa3\\xed\\x1a=\\x98\\xa8\\xf8=\\x84\\xc1\\xee\\xbc\\xcd-\\x18\\xbb\\xf5~;<\\xd6F\\t\\xbd\\x14\\x08\\x17=\\xa5\\xa5\\x1e=\\x14K\\xcb\\xbd.\\xf7\\x8c\\xbdyb\\xed\\xbb\\x86[\\x19\\xbc]\\x0c\\x13\\xbcgq\\x83=\\xf0wd\\xbd\\xe3\\xc7\\xd1\\xbb8lY\\xbc\\xa7|a=3\\xcf\\xfd\\xbc\\x1f\\xa5\\x83\\xbb\\x99O\\x19\\xbd6\\x02]\\xbd\\xbb\\xeaz=\\x036\\x9c=:^\\xa9\\xbd)^9\\xbcg\\xe4N\\xbcs\\x07x\\xbd\\x18{\\xa0=:\\x9f\\x96<\\xecq8\\xba\\x9e\\xbb=\\xbd\\xe4|(<\\x96\\xdf\\xb4\\xbbl\\xc9\\x0b\\xbd\\xc4\\x01\\x95\\xbd\\xf7\\xc6T=\\tp\\xd1 List[Dict[str, Any]]:\n", - " # Add the optional flag, \"~\", so that this doesn't also act as a strict text filter\n", - " text = f\"(~{Text('description') % tokenize_query(user_query)})\"\n", - "\n", - " # Build vector query\n", - " query = make_vector_query(user_query, num_results=num_results, filters=text)\n", - " \n", - " # Build aggregation\n", - " req = (\n", - " AggregateRequest(query.query_string())\n", - " .scorer(\"BM25\")\n", - " .add_scores()\n", - " .apply(cosine_similarity=\"(2 - @vector_distance)/2\", bm25_score=\"@__score\")\n", - " .apply(hybrid_score=f\"{1-alpha}*@bm25_score + {alpha}*@cosine_similarity\")\n", - " .sort_by(Desc(\"@hybrid_score\"), max=num_results)\n", - " .load(\"title\", \"description\", \"cosine_similarity\", \"bm25_score\", \"hybrid_score\")\n", - " .dialect(4)\n", - " )\n", - "\n", - " # Run the query\n", - " res = index.aggregate(req, query_params={'vector': query._vector})\n", - "\n", - " # Perform output parsing\n", - " if res:\n", - " movies = [make_dict(row) for row in convert_bytes(res.rows)]\n", - " return [(movie[\"title\"], movie[\"hybrid_score\"]) for movie in movies]" + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "19:18:50 redisvl.index.index INFO Index already exists, overwriting.\n" + ] + } + ], + "source": [ + "from redisvl.schema import IndexSchema\n", + "from redisvl.index import SearchIndex\n", + "\n", + "\n", + "schema = IndexSchema.from_dict({\n", + " \"index\": {\n", + " \"name\": \"movies\",\n", + " \"prefix\": \"movie\",\n", + " \"storage\": \"hash\"\n", + " },\n", + " \"fields\": [\n", + " { \"name\": \"title\", \"type\": \"text\" },\n", + " { \"name\": \"description\", \"type\": \"text\" },\n", + " { \"name\": \"genre\", \"type\": \"tag\", \"attrs\": {\"sortable\": True}},\n", + " { \"name\": \"rating\", \"type\": \"numeric\", \"attrs\": {\"sortable\": True}},\n", + " {\n", + " \"name\": \"description_vector\",\n", + " \"type\": \"vector\",\n", + " \"attrs\": {\n", + " \"dims\": 384,\n", + " \"distance_metric\": \"cosine\",\n", + " \"algorithm\": \"hnsw\",\n", + " \"datatype\": \"float32\"\n", + " }\n", + " }\n", + " ]\n", + "})\n", + "\n", + "\n", + "index = SearchIndex(schema, client, validate_on_load=True)\n", + "index.create(overwrite=True, drop=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Populate index\n", + "\n", + "Load movie objects into Redis" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['movie:01JT4FXV6B1EZFTQVJ8FQQMRSC',\n", + " 'movie:01JT4FXV6CDR8RCXCV75DADW0D',\n", + " 'movie:01JT4FXV6CBY8Q3Y5Z6QAR3CPE',\n", + " 'movie:01JT4FXV6C1Z0XNJWN67Z9A6A6',\n", + " 'movie:01JT4FXV6CJM4E89RRMQ4CJTK0',\n", + " 'movie:01JT4FXV6DF8YP6BVHGEKQKSD4',\n", + " 'movie:01JT4FXV6DAHRQQKAXAMRGZZX3',\n", + " 'movie:01JT4FXV6D2ZJ3A2NJ4S7HFDP2',\n", + " 'movie:01JT4FXV6DAYC2VDEQNN34D4BT',\n", + " 'movie:01JT4FXV6DVQ75MMTX2JZBRP8S',\n", + " 'movie:01JT4FXV6DD22QMG8REZZ4GWZ6',\n", + " 'movie:01JT4FXV6D0P6WPY4KC7KGJZMQ',\n", + " 'movie:01JT4FXV6D5SE399J7AF017ZCK',\n", + " 'movie:01JT4FXV6DMW5K7SXX7XKZHC3P',\n", + " 'movie:01JT4FXV6DXWPMJSAZ19QMXWGH',\n", + " 'movie:01JT4FXV6DBXWKFF3EH3AJ08ZS',\n", + " 'movie:01JT4FXV6DRYSJG93HGE57R1CH',\n", + " 'movie:01JT4FXV6D12HC9R4SQ11SWTT4',\n", + " 'movie:01JT4FXV6EDAFDBRVEM3E6N687',\n", + " 'movie:01JT4FXV6E7VAZBP01KKNNAVZ3']" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "index.load(movie_data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Hybrid Search Approaches\n", + "\n", + "Now that our search index is populated and ready, we will build out a few different hybrid search techniques in Redis.\n", + "\n", + "To start, we will use our `HybridQuery` class that accepts a text string and vector to automatically combine text similarity and vector similarity scores." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Linear Combination using HybridQuery\n", + "\n", + "The goal of this technique is to calculate a weighted sum of the text similarity score for our provided text search and the cosine distance between vectors calculated via a KNN vector query. Under the hood this is possible in Redis using the [aggregations API](https://redis.io/docs/latest/develop/interact/search-and-query/advanced-concepts/aggregations/), as of `Redis 7.4.x` (search version `2.10.5`), within a single database call.\n", + "\n", + "As of RedisVl 0.5.0 all of this is nicely encapsulated in your `HybridQuery` class, which behaves much like our other query classes." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# Sample user query (can be changed for comparisons)\n", + "user_query = \"action adventure movie with great fighting scenes against a dangerous criminal, crime busting, superheroes, and magic\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First, we will import our `HybridQuery` and understand its parameters.\n", + "At a minimum, the `HybridQuery` needs 4 arguments:\n", + "```python\n", + "query = HybridQuery(\n", + " text = \"your query string here\",\n", + " text_field_name = \"\",\n", + " vector = ,\n", + " vector_field_name = \"\",\n", + ")\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "eef2a2e2bf504bbb95caea19bb8c4705", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Batches: 0%| | 0/1 [00:00[KNN 10 @description_vector $vector AS vector_distance]'" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "query._build_query_string()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Choosing your stopwords for better queries\n", + "You can see that the user query string has been tokenized and certain stopwords like 'and', 'for', 'with', 'but', have been removed, otherwise you would get matches on irrelevant words.\n", + "RedisVL uses [NLTK](https://www.nltk.org/index.html) english stopwords as the the default. You can change which default language stopwords to use with the `stopwords` argument.\n", + "You specify a language, like 'german', 'arabic', 'greek' and many others, provide your own list of stopwords, or set it to `None` to not remove any." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3e4537950607485cb399928dd7bc0c04", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Batches: 0%| | 0/1 [00:00[KNN 10 @description_vector $vector AS vector_distance]\n", + "(~@description:(action | adventure | movie | great | fighting | scenes | against | dangerous | criminal | crime | busting | superheroes | magic))=>[KNN 10 @description_vector $vector AS vector_distance]\n", + "(~@description:(action | adventure | movie | with | great | fighting | scenes | against | a | dangerous | criminal | crime | busting | superheroes | and | magic))=>[KNN 10 @description_vector $vector AS vector_distance]\n" + ] + } + ], + "source": [ + "# translate our user query to French and use nltk french stopwords\n", + "french_query_text = \"Film d'action et d'aventure avec de superbes scènes de combat, des enquêtes criminelles, des super-héros et de la magie\"\n", + "\n", + "french_film_query = HybridQuery(\n", + " text=french_query_text,\n", + " text_field_name=\"description\",\n", + " vector=model.embed(french_query_text, as_buffer=True),\n", + " vector_field_name=\"description_vector\",\n", + " stopwords=\"french\",\n", + ")\n", + "\n", + "print(french_film_query._build_query_string())\n", + "\n", + "# specify your own stopwords\n", + "custom_stopwords = set([\n", + " \"a\", \"is\", \"the\", \"an\", \"and\", \"are\", \"as\", \"at\", \"be\", \"but\", \"by\", \"for\",\n", + " \"if\", \"in\", \"into\", \"it\", \"no\", \"not\", \"of\", \"on\", \"or\", \"such\", \"that\", \"their\",\n", + " \"then\", \"there\", \"these\", \"they\", \"this\", \"to\", \"was\", \"will\", \"with\"\n", + "])\n", + "\n", + "stopwords_query = HybridQuery(\n", + " text=user_query,\n", + " text_field_name=\"description\",\n", + " vector=vector,\n", + " vector_field_name=\"description_vector\",\n", + " stopwords=custom_stopwords,\n", + ")\n", + "\n", + "print(stopwords_query._build_query_string())\n", + "\n", + "# don't use any stopwords\n", + "no_stopwords_query = HybridQuery(\n", + " text=user_query,\n", + " text_field_name=\"description\",\n", + " vector=vector,\n", + " vector_field_name=\"description_vector\",\n", + " stopwords=None,\n", + ")\n", + "\n", + "print(no_stopwords_query._build_query_string())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Choosing your text scoring function and weights\n", + "There are different ways to calculate the similarity between sets of text. Redis supports several, such as `BM25`, `TFIDF`, `DISMAX`, and others. The default is `BM25STD` and is easy to configure with the `text_scorer` parameter. Just like changing you embedding model can change your vector similarity scores, changing your text similarity measure can change your text scores.\n", + "\n", + "Because hybrid queries are performing a weighted average of text similarity and vector similarity you also control the relative balance of these scores with the `alpha` parameter.\n", + "\n", + "The documents are ranked based on the hybrid score which is computed as:\n", + "\n", + "```python\n", + "hybrid_score = {1-alpha} * text_score + {alpha} * vector_similarity\n", + "```\n", + "\n", + "Try changing the `text_scorer` and `alpha` parameters in the query below to see how results may change.\n" ] }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[('The Incredibles', '0.765128306439'),\n", - " ('Explosive Pursuit', '0.466046255827'),\n", - " ('Mad Max: Fury Road', '0.455657166243'),\n", - " ('The Dark Knight', '0.452280691266'),\n", - " ('Despicable Me', '0.448826777935'),\n", - " ('Inception', '0.434456580877')]" + "[{'vector_distance': '0.645975351334',\n", + " 'title': 'The Incredibles',\n", + " 'description': \"A family of undercover superheroes, while trying to live the quiet suburban life, are forced into action to save the world. Bob Parr (Mr. Incredible) and his wife Helen (Elastigirl) were among the world's greatest crime fighters, but now they must assume civilian identities and retreat to the suburbs to live a 'normal' life with their three children. However, the family's desire to help the world pulls them back into action when they face a new and dangerous enemy.\",\n", + " 'vector_similarity': '0.677012324333',\n", + " 'text_score': '8',\n", + " 'hybrid_score': '6.16925308108'},\n", + " {'vector_distance': '0.653376042843',\n", + " 'title': 'The Dark Knight',\n", + " 'description': 'Batman faces off against the Joker, a criminal mastermind who threatens to plunge Gotham into chaos.',\n", + " 'vector_similarity': '0.673311978579',\n", + " 'text_score': '8',\n", + " 'hybrid_score': '6.16832799464'},\n", + " {'vector_distance': '0.608649373055',\n", + " 'title': 'Explosive Pursuit',\n", + " 'description': 'A daring cop chases a notorious criminal across the city in a high-stakes game of cat and mouse.',\n", + " 'vector_similarity': '0.695675313473',\n", + " 'text_score': '6',\n", + " 'hybrid_score': '4.67391882837'}]" ] }, - "execution_count": 16, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "# Test it out\n", + "tfidf_query = HybridQuery(\n", + " text=user_query,\n", + " text_field_name=\"description\",\n", + " vector=vector,\n", + " vector_field_name=\"description_vector\",\n", + " text_scorer=\"TFIDF\", # can be one of [TFIDF, TFIDF.DOCNORM, BM25, DISMAX, DOCSCORE, BM25STD]\n", + " stopwords=None,\n", + " alpha=0.25, # weight the vector score lower\n", + " return_fields=[\"title\", \"description\"],\n", + ")\n", + "\n", + "results = index.query(tfidf_query)\n", "\n", - "# 70% of the hybrid search score based on cosine similarity\n", - "linear_combo(user_query, alpha=0.7, num_results=6)" + "results[:3]" ] }, { @@ -694,7 +948,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 26, "metadata": {}, "outputs": [], "source": [ @@ -722,144 +976,1159 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[(2, 0.04814747488101534),\n", - " (1, 0.032266458495966696),\n", - " (6, 0.03200204813108039),\n", - " (5, 0.01639344262295082),\n", - " (4, 0.016129032258064516),\n", - " (3, 0.015873015873015872),\n", - " (7, 0.015625),\n", - " (8, 0.015384615384615385)]" + "[(2, 0.04814747488101534),\n", + " (1, 0.032266458495966696),\n", + " (6, 0.03200204813108039),\n", + " (5, 0.01639344262295082),\n", + " (4, 0.016129032258064516),\n", + " (3, 0.015873015873015872),\n", + " (7, 0.015625),\n", + " (8, 0.015384615384615385)]" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Below is a simple example of RRF over a few lists of numbers\n", + "fuse_rankings_rrf([1, 2, 3], [2, 4, 6, 7, 8], [5, 6, 1, 2])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We'll want some helper functions to construct our individual text and vector queries" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "# Function to create a vector query using RedisVL helpers for ease of use\n", + "from redisvl.query import VectorQuery, TextQuery\n", + "\n", + "\n", + "def make_vector_query(user_query: str, num_results: int, filters = None) -> VectorQuery:\n", + " \"\"\"Generate a Redis vector query given user query string.\"\"\"\n", + " vector = model.embed(user_query, as_buffer=True)\n", + " query = VectorQuery(\n", + " vector=vector,\n", + " vector_field_name=\"description_vector\",\n", + " num_results=num_results,\n", + " return_fields=[\"title\", \"description\"]\n", + " )\n", + " if filters:\n", + " query.set_filter(filters)\n", + " return query\n", + "\n", + "\n", + "def make_ft_query(text_field: str, user_query: str, num_results: int) -> TextQuery:\n", + " \"\"\"Generate a Redis full-text query given a user query string.\"\"\"\n", + " return TextQuery(\n", + " text=user_query,\n", + " text_field_name=text_field,\n", + " text_scorer=\"BM25\",\n", + " num_results=num_results,\n", + " return_fields=[\"title\", \"description\"],\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "from typing import List, Dict, Any\n", + "\n", + "\n", + "def weighted_rrf(\n", + " user_query: str,\n", + " alpha: float = 0.5,\n", + " num_results: int = 4,\n", + " k: int = 60,\n", + ") -> List[Dict[str, Any]]:\n", + " \"\"\"Implemented client-side RRF after querying from Redis.\"\"\"\n", + " # Create the vector query\n", + " vector_query = make_vector_query(user_query, num_results=len(movie_data))\n", + "\n", + " # Create the full-text query\n", + " full_text_query = make_ft_query(\"description\", user_query, num_results=len(movie_data))\n", + "\n", + " # Run queries individually\n", + " vector_query_results = index.query(vector_query)\n", + " full_text_query_results = index.query(full_text_query)\n", + "\n", + " # Extract titles from results\n", + " vector_titles = [movie[\"title\"] for movie in vector_query_results]\n", + " full_text_titles = [movie[\"title\"] for movie in full_text_query_results]\n", + "\n", + " # Perform weighted RRF\n", + " return fuse_rankings_rrf(vector_titles, full_text_titles, weights=[alpha, 1-alpha], k=k)[:num_results]" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "848faeb9dbfe4150917d407dfe865e92", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Batches: 0%| | 0/1 [00:00 List[Dict[str, Any]]:\n", + " \"\"\"Rerank the candidates based on the user query with an external model/module.\"\"\"\n", + " # Create the vector query\n", + " vector_query = make_vector_query(user_query, num_results=num_results)\n", + "\n", + " # Create the full-text query\n", + " full_text_query = make_ft_query(\"description\", user_query, num_results=num_results)\n", + "\n", + " # Run queries individually\n", + " vector_query_results = index.query(vector_query)\n", + " full_text_query_results = index.query(full_text_query)\n", + "\n", + " # Assemble list of potential movie candidates with their IDs\n", + " movie_map = {}\n", + " for movie in vector_query_results + full_text_query_results:\n", + " candidate = f\"Title: {movie['title']}. Description: {movie['description']}\"\n", + " if candidate not in movie_map:\n", + " movie_map[candidate] = movie\n", + "\n", + " # Rerank candidates\n", + " reranked_movies, scores = reranker.rank(\n", + " query=user_query,\n", + " docs=list(movie_map.keys()),\n", + " limit=num_results,\n", + " return_score=True\n", + " )\n", + "\n", + " # Fetch full movie objects for the reranked results\n", + " return [\n", + " (movie_map[movie['content']][\"title\"], score)\n", + " for movie, score in zip(reranked_movies, scores)\n", + " ]\n" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f01f138bb31c49f98fc25f06ff29212b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Batches: 0%| | 0/1 [00:00 List[Dict[str, Any]]:\n", + "\n", + " query = HybridQuery(\n", + " text,\n", + " text_field_name=\"description\",\n", + " vector=model.embed(text, as_buffer=True),\n", + " vector_field_name=\"description_vector\",\n", + " text_scorer=\"BM25\",\n", + " stopwords=\"english\",\n", + " alpha=alpha,\n", + " return_fields=[\"title\", \"hybrid_score\"],\n", + " )\n", + "\n", + " results = index.query(query)\n", + "\n", + " return [\n", + " (\n", + " movie[\"title\"],\n", + " movie[\"hybrid_score\"]\n", + " )\n", + " for movie in results\n", + " ]" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "\n", + "\n", + "rankings = pd.DataFrame()\n", + "rankings[\"queries\"] = movie_user_queries\n", + "\n", + "# First, add new columns to the DataFrame\n", + "rankings[\"hf-cross-encoder\"] = \"\"\n", + "rankings[\"rrf\"] = \"\"\n", + "rankings[\"linear-combo-bm25-cosine\"] = \"\"" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c562a6abb1eb47a982891fb9d6c9fc99", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Batches: 0%| | 0/1 [00:00 List[Dict[str, Any]]:\n", - " \"\"\"Implemented client-side RRF after querying from Redis.\"\"\"\n", - " # Create the vector query\n", - " vector_query = make_vector_query(user_query, num_results=len(movie_data))\n", - "\n", - " # Create the full-text query\n", - " full_text_query = make_ft_query(\"description\", user_query, num_results=len(movie_data))\n", - "\n", - " # Run queries individually\n", - " vector_query_results = index.query(vector_query)\n", - " full_text_query_results = index.query(full_text_query)\n", - "\n", - " # Extract titles from results\n", - " vector_titles = [movie[\"title\"] for movie in vector_query_results]\n", - " full_text_titles = [movie[\"title\"] for movie in full_text_query_results]\n", - "\n", - " # Perform weighted RRF\n", - " return fuse_rankings_rrf(vector_titles, full_text_titles, weights=[alpha, 1-alpha], k=k)[:num_results]" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ + "output_type": "display_data" + }, { "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c73d85418f52400d9bdf7521956be15a", + "version_major": 2, + "version_minor": 0 + }, "text/plain": [ - "[('The Incredibles', 0.016009221311475412),\n", - " ('Explosive Pursuit', 0.01575682382133995),\n", - " ('Mad Max: Fury Road', 0.015079365079365078),\n", - " ('Finding Nemo', 0.015008960573476702),\n", - " ('Fast & Furious 9', 0.014925373134328358),\n", - " ('The Dark Knight', 0.014854753521126762)]" + "Batches: 0%| | 0/1 [00:00 List[Dict[str, Any]]:\n", - " \"\"\"Rerank the candidates based on the user query with an external model/module.\"\"\"\n", - " # Create the vector query\n", - " vector_query = make_vector_query(user_query, num_results=num_results)\n", - "\n", - " # Create the full-text query\n", - " full_text_query = make_ft_query(\"description\", user_query, num_results=num_results)\n", - "\n", - " # Run queries individually\n", - " vector_query_results = index.query(vector_query)\n", - " full_text_query_results = index.query(full_text_query)\n", - "\n", - " # Assemble list of potential movie candidates with their IDs\n", - " movie_map = {}\n", - " for movie in vector_query_results + full_text_query_results:\n", - " candidate = f\"Title: {movie['title']}. Description: {movie['description']}\"\n", - " if candidate not in movie_map:\n", - " movie_map[candidate] = movie\n", - "\n", - " # Rerank candidates\n", - " reranked_movies, scores = reranker.rank(\n", - " query=user_query,\n", - " docs=list(movie_map.keys()),\n", - " limit=num_results,\n", - " return_score=True\n", - " )\n", - "\n", - " # Fetch full movie objects for the reranked results\n", - " return [\n", - " (movie_map[movie['content']][\"title\"], score)\n", - " for movie, score in zip(reranked_movies, scores)\n", - " ]\n" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ + }, { "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2b4e8257a54d43db8e1498ab987d198a", + "version_major": 2, + "version_minor": 0 + }, "text/plain": [ - "[('The Incredibles', -0.45268189907073975),\n", - " ('The Dark Knight', -7.411877632141113),\n", - " ('Explosive Pursuit', -8.751346588134766),\n", - " ('Mad Max: Fury Road', -7.049145698547363),\n", - " ('Aladdin', -9.638406753540039),\n", - " ('Despicable Me', -9.797615051269531)]" + "Batches: 0%| | 0/1 [00:00\n", " 0\n", " I'm in the mood for a high-rated action movie ...\n", - " [(Explosive Pursuit, -11.244140625), (Mad Max:...\n", - " [(The Incredibles, 0.016029143897996357), (Mad...\n", - " [(The Incredibles, 0.552392209158), (Despicabl...\n", + " [(Mad Max: Fury Road, -11.244140625), (Toy Sto...\n", + " [(The Incredibles, 0.016029143897996357), (Toy...\n", + " [(The Incredibles, 0.552392188297), (Toy Story...\n", " \n", " \n", " 1\n", " What's a funny animated film about unlikely fr...\n", - " [(Despicable Me, -10.441911697387695), (The In...\n", - " [(Black Widow, 0.015625), (The Incredibles, 0....\n", - " [(The Incredibles, 0.454752022028), (Despicabl...\n", + " [(Despicable Me, -10.441909790039062), (The In...\n", + " [(Monsters, Inc., 0.015524093392945852), (Mada...\n", + " [(Monsters, Inc., 0.507448260638), (Madagascar...\n", " \n", " \n", " 2\n", " Any movies featuring superheroes or extraordin...\n", - " [(The Incredibles, -3.6648106575012207), (The ...\n", - " [(The Incredibles, 0.01639344262295082), (Mad ...\n", - " [(The Incredibles, 0.603234936448), (The Aveng...\n", + " [(The Incredibles, -3.6648080348968506), (The ...\n", + " [(The Incredibles, 0.01639344262295082), (The ...\n", + " [(The Incredibles, 0.688644165103), (The Aveng...\n", " \n", " \n", " 3\n", " I want to watch a thrilling movie with spies o...\n", - " [(The Incredibles, -10.843631744384766), (Expl...\n", - " [(Skyfall, 0.01631411951348493), (Explosive Pu...\n", - " [(Skyfall, 0.44384047389), (Despicable Me, 0.4...\n", + " [(Inception, -10.843631744384766), (The Incred...\n", + " [(Inception, 0.015524093392945852), (Skyfall, ...\n", + " [(Inception, 0.504883907887), (Skyfall, 0.4438...\n", " \n", " \n", " 4\n", " Are there any comedies set in unusual location...\n", - " [(The Incredibles, -11.45376968383789), (Explo...\n", - " [(Madagascar, 0.015272878190495952), (Explosiv...\n", - " [(Madagascar, 0.442132177949), (Despicable Me,...\n", + " [(The Incredibles, -11.45376968383789), (Findi...\n", + " [(Finding Nemo, 0.015524093392945852), (Madaga...\n", + " [(Finding Nemo, 0.503574235889), (Madagascar, ...\n", " \n", " \n", "\n", @@ -1145,28 +2308,28 @@ "4 Are there any comedies set in unusual location... \n", "\n", " hf-cross-encoder \\\n", - "0 [(Explosive Pursuit, -11.244140625), (Mad Max:... \n", - "1 [(Despicable Me, -10.441911697387695), (The In... \n", - "2 [(The Incredibles, -3.6648106575012207), (The ... \n", - "3 [(The Incredibles, -10.843631744384766), (Expl... \n", - "4 [(The Incredibles, -11.45376968383789), (Explo... \n", + "0 [(Mad Max: Fury Road, -11.244140625), (Toy Sto... \n", + "1 [(Despicable Me, -10.441909790039062), (The In... \n", + "2 [(The Incredibles, -3.6648080348968506), (The ... \n", + "3 [(Inception, -10.843631744384766), (The Incred... \n", + "4 [(The Incredibles, -11.45376968383789), (Findi... \n", "\n", " rrf \\\n", - "0 [(The Incredibles, 0.016029143897996357), (Mad... \n", - "1 [(Black Widow, 0.015625), (The Incredibles, 0.... \n", - "2 [(The Incredibles, 0.01639344262295082), (Mad ... \n", - "3 [(Skyfall, 0.01631411951348493), (Explosive Pu... \n", - "4 [(Madagascar, 0.015272878190495952), (Explosiv... \n", + "0 [(The Incredibles, 0.016029143897996357), (Toy... \n", + "1 [(Monsters, Inc., 0.015524093392945852), (Mada... \n", + "2 [(The Incredibles, 0.01639344262295082), (The ... \n", + "3 [(Inception, 0.015524093392945852), (Skyfall, ... \n", + "4 [(Finding Nemo, 0.015524093392945852), (Madaga... \n", "\n", " linear-combo-bm25-cosine \n", - "0 [(The Incredibles, 0.552392209158), (Despicabl... \n", - "1 [(The Incredibles, 0.454752022028), (Despicabl... \n", - "2 [(The Incredibles, 0.603234936448), (The Aveng... \n", - "3 [(Skyfall, 0.44384047389), (Despicable Me, 0.4... \n", - "4 [(Madagascar, 0.442132177949), (Despicable Me,... " + "0 [(The Incredibles, 0.552392188297), (Toy Story... \n", + "1 [(Monsters, Inc., 0.507448260638), (Madagascar... \n", + "2 [(The Incredibles, 0.688644165103), (The Aveng... \n", + "3 [(Inception, 0.504883907887), (Skyfall, 0.4438... \n", + "4 [(Finding Nemo, 0.503574235889), (Madagascar, ... " ] }, - "execution_count": 27, + "execution_count": 38, "metadata": {}, "output_type": "execute_result" } @@ -1177,20 +2340,20 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 39, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array(['Show me movies set in dystopian or post-apocalyptic worlds',\n", - " list([('Mad Max: Fury Road', -3.490626335144043), ('Despicable Me', -11.051526069641113), ('The Incredibles', -11.315656661987305), ('Black Widow', -10.880638122558594)]),\n", - " list([('Mad Max: Fury Road', 0.01602086438152012), ('Skyfall', 0.015607940446650124), ('The Incredibles', 0.015237691001697792), ('Black Widow', 0.01513526119402985)]),\n", - " list([('Mad Max: Fury Road', '0.452238571644'), ('The Incredibles', '0.445061546564'), ('Madagascar', '0.41901564002'), ('Despicable Me', '0.416218408942')])],\n", + " list([('Mad Max: Fury Road', -3.490626335144043), ('Despicable Me', -11.05152702331543), ('The Incredibles', -11.315656661987305), ('Finding Nemo', -10.880638122558594)]),\n", + " list([('The Incredibles', 0.01620835536753041), ('Finding Nemo', 0.013813068651778329), ('Mad Max: Fury Road', 0.011475409836065573), ('Madagascar', 0.01111111111111111)]),\n", + " list([('The Incredibles', '0.669360563015'), ('Mad Max: Fury Road', '0.452238592505'), ('Madagascar', '0.419015598297'), ('Despicable Me', '0.416218388081'), ('Skyfall', '0.411504265666'), ('The Avengers', '0.411210304499'), ('Black Widow', '0.410578405857'), ('The Lego Movie', '0.408463662863'), ('Monsters, Inc.', '0.392220947146'), ('Shrek', '0.390464794636')])],\n", " dtype=object)" ] }, - "execution_count": 28, + "execution_count": 39, "metadata": {}, "output_type": "execute_result" } @@ -1214,7 +2377,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "redis-ai-res", "language": "python", "name": "python3" }, @@ -1228,7 +2391,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.13.2" } }, "nbformat": 4, diff --git a/python-recipes/vector-search/03_dtype_support.ipynb b/python-recipes/vector-search/03_dtype_support.ipynb new file mode 100644 index 00000000..b19403e8 --- /dev/null +++ b/python-recipes/vector-search/03_dtype_support.ipynb @@ -0,0 +1,1059 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "![Redis](https://redis.io/wp-content/uploads/2024/04/Logotype.svg?auto=webp&quality=85,75&width=120)\n", + "# Using smaller vector types\n", + "\n", + "With the [Redis 7.4 release](https://redis.io/blog/announcing-redis-community-edition-and-redis-stack-74/) there is now support for bfloat16 and float16 data types in the vector store. And with the release of [RedisVL 0.4.0](https://github.com/redis/redis-vl-python/tree/0.4.0) we've added support for integer vector types int8 and uint8 as well.\n", + "\n", + "\n", + "This tutorial will walk through how you can convert data stored in an existing index from the default float32 vectors to float16 or 8 bit integers.\n", + "\n", + "## Version requirements for float16 and bfloat16 datatypes\n", + "\n", + "- redisvl >= 0.3.4\n", + "- redis >= 7.4.0\n", + "\n", + "\n", + "## Version requirements for int8 and uint8 datatypes\n", + "\n", + "- redisvl >= 0.4.0\n", + "- redis >= 7.9.226\n", + "\n", + "\n", + "## Let's Begin!\n", + "\"Open" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Prepare data\n", + "In these examples we will load a list of movie objects with the following attributes: title, rating, description, and genre.\n", + "\n", + "For the vector part of our vector search we will embed the description so that users can search for movies that best match what they're looking for.\n", + "\n", + "If you are running this notebook locally, FYI you may not need to perform this step at all." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'\\n# NBVAL_SKIP\\n!git clone https://github.com/redis-developer/redis-ai-resources.git temp_repo\\n!mv temp_repo/python-recipes/vector-search/resources .\\n!rm -rf temp_repo\\n'" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# NBVAL_SKIP\n", + "!git clone https://github.com/redis-developer/redis-ai-resources.git temp_repo\n", + "!mv temp_repo/python-recipes/vector-search/resources .\n", + "!rm -rf temp_repo" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Packages" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's start with float16 and bfloat16 support" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m25.0.1\u001b[0m\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "%pip install -q \"redis>=5.0.8\" \"redisvl>=0.4.1\" numpy sentence-transformers" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import redisvl\n", + "assert redisvl.__version__ >= '0.3.4'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Run Redis Stack\n", + "\n", + "For this tutorial you will need a running instance of Redis if you don't already have one.\n", + "\n", + "#### For Colab\n", + "Use the shell script below to download, extract, and install [Redis Stack](https://redis.io/docs/getting-started/install-stack/) directly from the Redis package archive." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'\\n# NBVAL_SKIP\\n%%sh\\ncurl -fsSL https://packages.redis.io/gpg | sudo gpg --dearmor -o /usr/share/keyrings/redis-archive-keyring.gpg\\necho \"deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb $(lsb_release -cs) main\" | sudo tee /etc/apt/sources.list.d/redis.list\\nsudo apt-get update > /dev/null 2>&1\\nsudo apt-get install redis-stack-server > /dev/null 2>&1\\nredis-stack-server --daemonize yes\\n'" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# NBVAL_SKIP\n", + "%%sh\n", + "curl -fsSL https://packages.redis.io/gpg | sudo gpg --dearmor -o /usr/share/keyrings/redis-archive-keyring.gpg\n", + "echo \"deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb $(lsb_release -cs) main\" | sudo tee /etc/apt/sources.list.d/redis.list\n", + "sudo apt-get update > /dev/null 2>&1\n", + "sudo apt-get install redis-stack-server > /dev/null 2>&1\n", + "redis-stack-server --daemonize yes" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### For Alternative Environments\n", + "There are many ways to get the necessary redis-stack instance running\n", + "1. On cloud, deploy a [FREE instance of Redis in the cloud](https://redis.com/try-free/). Or, if you have your\n", + "own version of Redis Enterprise running, that works too!\n", + "2. Per OS, [see the docs](https://redis.io/docs/latest/operate/oss_and_stack/install/install-stack/)\n", + "3. With docker: `docker run -d --name redis-stack-server -p 6379:6379 redis/redis-stack-server:latest`" + ] + }, + { + "attachments": { + "image-2.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAooAAAEDCAYAAACyIyUBAAABWmlDQ1BJQ0MgUHJvZmlsZQAAKJF1kD1LQnEUxn+WoYRQVENDg4M0hEaoVLSpgQUNphXW1PVqFvjy52pE0FhrCE1tYX2BlmrsAwQNQUNErS21RBJU3M7Vyl7owOH8eHg4PDzQ4tSUytmBfKFsxKNhd3J+we24w0UXTjx4Nb2kQrHYlFj4vD+ndonNuhc+69diIupWD6Xb58Mxc7v7fuCv/8e0pzMlXe6r7JCujDLYvMKxtbKyeEO4x5BQwhWLsw0+sDjV4JO6ZyYeET4T7tSXtbTwtbA39U3PfuN8blX/yGCld2UKswnrj2wfcyQJ4GeEYXxMM8H4P/5g3R+hiGIdgxWyLFPGTUgURY6M8CQFdAbxCvsZkg1aPf/ur6kVqzD6BK2VppbaheMt6L1qap496NiEo3OlGdpXq7aavbQU8DfYFYa2G9N87AfHDrxVTPOlappv+/JfOjotvAM3ImSkmH1osgAAAFZlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA5KGAAcAAAASAAAARKACAAQAAAABAAACiqADAAQAAAABAAABAwAAAABBU0NJSQAAAFNjcmVlbnNob3TjmMHYAAAB1mlUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNi4wLjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj4yNTk8L2V4aWY6UGl4ZWxZRGltZW5zaW9uPgogICAgICAgICA8ZXhpZjpQaXhlbFhEaW1lbnNpb24+NjUwPC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6VXNlckNvbW1lbnQ+U2NyZWVuc2hvdDwvZXhpZjpVc2VyQ29tbWVudD4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+CnRhDP0AAEAASURBVHgB7J0FeBTJFoUP7hLc3VncXYK7u+vi7s7izqKLu7u7Ptzd3d2Dw6tToYfOZDJxksAtvqGltP/uSZ++91ZPoAwZM3+HdXK9x7lEIOuCvrTtVv++1J00KwSEgBAQAkJACAgBIeCaQGDXu9QeW4LQ1j6blX1g56/syweGK00IASEgBISAEBACQuB3JGBbKP6ORyrHJASEgBAQAkJACAgBIeApAm4LRbNVz7zuqea9Udgv+vTGcKWqEBACQkAICAEhIAR+NwJuC8Xf7UjleISAEBACQkAICAEhIAQ8RUCEoqdwSWEhIASEgBAQAkJACPw5BEQo/jnnWo5UCAgBISAEhIAQEAKeIsBIQHkZjaeQSWEhIASEgBAQAkJACPwZBII6REvjqSN98/yCp8pLYSEgBISAEBACQkAICIGASUBczwHzvMmohYAQEAJCQAgIASHg6wREKPo6YulACAgBISAEhIAQEAIBk4AIxYB53mTUQkAICAEhIASEgBDwdQIiFH0dsXQgBISAEBACQkAICIGASUCEYsA8bzJqISAEhIAQEAJCQAj4OgERir6OWDoQAkJACAgBISAEhEDAJCBCMWCeNxm1EBACQkAICAEhIAR8nYAIRV9HLB0IASEgBISAEBACQiBgEhChGDDPm4xaCAgBISAEhIAQEAK+TkCEoq8jlg6EgBAQAkJACAgBIRAwCYhQDJjnTUYtBISAEBACQkAICAFfJyBC0dcRSwdCQAgIASEgBISAEAiYBEQoBszzJqMWAkJACAgBISAEhICvEwjq6z1IB0JACAgBOwS+f/9uJ1eyhIAQEAJCwKsEAgUK5NWqlnoiFC0oZEUICAGfJhAydDhEiZEAYcJFQuDAQXy6eWlPCAgBISAEvEDg27evePfmOZ4+vIkPTm/stiBC0S4eyRQCQsCrBCgS4yfNKALRqwClnhAQAkLAlwjwwT1chKj6If7WleN2xaLEKPrSSZBmhcCfToCWRLEi/ulXgRy/EBAC/pkA/0bzb7W9JELRHh3JEwJCwMsE6G6WJASEgBAQAv6bgHt/q0Uo+u/zJ6MTAgGWgFgTA+ypk4ELASHwBxFw72+1CMU/6GKQQxUCv4qAzGT+VaSlHyEgBISA9wnY+5stQtH7fKUFISAEhIAQEAJCQAj8lgREKP6Wp1UOSgj4HQF7T6Z+NyrpWQgIASEgBOwRcOtvtwhFe9QkTwgIASEgBISAEBACfzABEYp/8MmXQxcCPk3ArSdSn+5H2hMCQkAICAGfJ2Drb7i8cNvnOUuLQsBfEMiaLSdatOmox5IlWy7LmCb+O0Kvjx873LJPVoSAEBACQkAI2CIgQtEWFdknBAIwAUMgGuLwyKF9cP4cQJZsOdC8tbN45CH6lljkG/8lCQEhIASEQMAnIEIx4J9DOQIhYCFAkThrwUq9TcuhW0KwZZtOWjBSNNarUR6HD+23tOHdlTDhHBApWlzvNiP1hYAQEAJCwB8QCBIqTPS+nhnHp/dPPVPcdtlAgRAoUGD1CaTyv9su48N7cxbpjPhJ8uL2tf/5cMt/XnNJkibHoOH/4uPHj7h+7YqPAQgc2LgmbDdp5NuKoWANI99cm9cY91vXcWs/yxrJaI9lrT8sY7RhnWdsW/fJOkabtvJChAiBqNFi4N27tyzqpbR1z1FtPezRuQ1WLl/sZhsUhkfUJ3acuMo93Umv37t3x83yHsngMVEkRomRUC89UkfKCAEhIASEgN8TePLghotB8D5mpJ93RWPPL1jWarUZ3ca+Q9fRr9Fu8F3Uar0FmXI30eLRt7oPFyEWwkWM7VvN/1HtRojogLz5CyF23Hg+etzrt+7D2SsPsHbzHlftlixdXucxv2ChYq7y06bPiNOX7ukydRs0teT/O2mm3pci1V+WfVzp1usfvb9AoaJ6f5So0TBmwnS9b9zkWXrftj3H9Db7tP506dEfNWo3cLXfKPfP4FG6DfN/9Rs3t5RPlTqtJStu3PiYMnMhjp29iR3/O45DJ6+gdfuuCBIkiKWMR1ZoJWSaMHaEKwvh+WuPwA8tjkaiWGRZJiOW0cjzylJEoleoSR0hIASEgP8m4Geu593r+2Hf5iEIFSYyosdOg7TZauOvLDWwcGIpfProvkWlSKVRCBwkGDYtbuW/CXtjdBQKX79+9UYLAbNqosTJkDFzNhw/eshyABWr1LSsW6+QU59/huHB/XvaQmad79528pSpMUe5a1++fOGi6NBBfRA6VGiECx8eXXv+gzu3b2Ly+NG6zNWrl/Du7VvQcmekECFDonvvAXj//j1GDR9o7NbLGDFjo2XrTrh3946LMYYLFx6zF65C+AgRMGRAb9y+dQO58+bH3y3aIUqUaOjdvb2LdtzaMFzJdDfbcyNb53GbdeiCpoi0znerP+v9ocNGFEuiNRTZFgJCQAj8BgT8TCga7N6/e4abl3fpT/Xm61C4wgisX/i3zqa7OEve5kpMRsLdGwexdl5jvHp+C47lBiNdtjr0/SFxyiJYv6Cprh85ejIUrzoesRNkw4f3L7F/63Ac2TXe6Eovszu2Q/aC7RBIuRgvn16HrSs6WoSpvfrBQ4RFyeqTkDRNKd32/zYNwvH/TdVtUrAWKN0fqTJVQbBgoXHlLNvtjA9OzsIjd7HuyJq/pbIQBcfZo4uwaWkbfP/mvgBs1a4Lvnz5gmmT/8WHDx9cHIdHNlKmSoPO3fsidZp02p25bvVyjB05RLX5GaFDh9Hip2DhYggVMhROnTyG/r274OaNa7rpoEGD4e+W7VCqTAVEjRod58+dxqhhA3Di+BFL18FUmV79hqBw0ZJ6fMOUsNq2ZYMlv1yFqqB1L278BLh+9YoSTwNwcP9eS76tFQqliBEjoXK1WhahSPdothy5cfbMKfyljsU60bIXPUYsdWyD0G/gSOtsd7dDKoH3T99uuHblMpav3WYpv3nDGr0eNVp0zerZs6fKnbvIks8Vs+u9TftuILd/R/XBs6dPXJTr0WcgTp44qvlWr1XfkpcuQ2bEiBkLyxbPx7zZztfT3t3bUcCxGCpVrYmRw/rj1cuXlvLurbgVk5gqcXQ3q7IOhSKtiodrVHCznFsZAUkktm3ZEFUrlkIuxwr49s37YS+pUiRFlMgOePrsBc5fvOICUZLECRArRjS8fPUGp89ecJHHjUwZ0iBM6FC4ev0W7j94pPPz5sqKF69e48zZi5bybJ/9XL1+U5V7rPfHiB4VyZIkxKUr1/Hm7TtkVm3ZSuz75q07SJ82la1s3FB5d+4+cJFna1wsECtmdKT70c7Zcxdd1XPRiGwIASHw2xDwc6FoJnnl7HpkzNVY70qerhxyFemC5dOr4fWLuyhUbgiKVByBpVMr49jeyYgQKZ6K9wqKfVuG4fmTq7pOxQaL8ODOcWxY2BzR46RDhfrzcfvKHjy6d1rnp8xQAZfPrMfs0flB4Vei2kSUrTsLS6dUcrd+nuI9tPVz2pAsynKSEpUaLcYt1fazR5dQvMo4xIqfGRsXtoCTEr4sW6b2dCz5rwKSpCqm3eq0lDKGq1LDxciQoz6O75um+7T336xpk9C+cy+s2bQXwwf3xdbN6+0Vd5GXKElSLFy+Aa9fvcTShXORLEUqNGzSUgnZ4Mpy1Qs9+g4Chdz8OdPw+fMX1KzTEIOHj0P1SiV0O/8MGYWy5atg57bN2LNrG4qXLIf/lHu0bPF8ln7qNWqG+yqujZa//I5FMXjEOBzOs1/3WbVGXW3l27d3F1YsW4iSpStg6qxFqFi6EC5fcn3TNBpl3OOGdStRrmI1DOrfE29ev0L5StW1Je7YkYOuhGK06DG0m3bowN54/fq10YynlqdOHAM/1u5pzzSSMFESNGjSAhfOn8Gi+bNcVM1fsDDyFSiEciULoEatBi7y3r930tsUi0YKEiQoQoUO/WN/bA8JRQo9zmy2TrQSZs2ey7LbLSFpq66lkp0Vzm52iBonwMQkhggeHGHCOLO1c1gezmrSsAYK5suJFy9ewbFkDf1gZ1QePqg7EieMj6PHT6PB385hAUYehduMycN1nOvQkZMwf/EqHb86fvQ/OHDoOJq26mYURYb0f2Hk4J4YMHQclixfh9IlHNG9U0t9HD37jcDZc5fAerYS+x43aZbNfH7vK9b4GabB+rbGxf01q5VHh9aN1N8w4Nv3bwgWNKgK1ZiBWXOXMluSEBACvzEBP4lRdIvn65f3ECFyfJ396cMbrJnbENcvbMXThxdwbN9UxEqQVee9fHYL7948Ua6/p3hw+xg+vn+lrXXnTyzDtpVdtHC8cGK5FoixEmSxdPdBlaO18sXT6zpv1ezaSJamtJqhmdTd+pGiJsG1C1t025fPrMW8cUW1JZKxj+lz1MPmpW1x9fwm3L91RFkTO+l2I6pjcYiWBA/vnFDjPK6XiyaXxd2bP12qlsHZWKErlK7Hzu2aoVnL9pg2ewkSJU5qo6TrXa3bdVXWraCoX6sihg/ph8b1quLs6ZMoVqKMvjm9UaKKLkeKMYpQTmz4K216BFc30qTJUmiRuGHdKrRoWkeX6d2jA0KECIn8BYtYOrtz6yYqly2Cti0bYemiuerGFRbJkqfUNzxa1+7cvoWmDapj7qypaNO8gY5BNccPWhqyWqGwpJWvdNmKuq0KSiiuWbVUWYC+WZWEsvT1x41rV7Fi6UJXeb9yBy2r5E2rrDlcIGSoUOjRZ7BiME1bVa3HREvt0yePkT1nbjCGkVbgnkrER4oUWReNED6CdRU3t48cOuAqj1ZCikjj46qAaYfxOh3TLndXGZfIz5+eHBwiIH+ebBYMf6VOrkWiZYdphROaenRphf0Hj5n2emw1X+5s6NujPS5ccn44Zq2bt+8gZ8EK+rNspbNFv2aDNnq7RbteOHXmgiWf5Vp16KM7mz1vqbI23rV07Na44sWNhU5tmyir6EUlhqujQLFq2LnnANop6yytmpKEgBD4vQn4K4timHBR4aTEH9ONS9sRMXICZFEu2/AR4ygLYlyEDOX2TfPr10/a1Zw4VVHEjJsBIUM76E+IkD/r3Lm2z4XL98XTG3ijxGm0WH/h+eMrduufP75MWwnjJc6l3Nw7cfHkKrx5dV+7vr+rmdsZ8zRBxtzO1lCO/8vnD4gcLTmunduI/KX6oW67XVpoUmQ+vneGRTycTp86rqxyi9CpWx8ULV4ak8a7nihh3dhfadLjxvWruHb1siWrSvmilnWKw1x5CqBth+5wUKKE7l3G+lHssS6T2YJJy2K6FHH0/kxZsuvlrh1b9JL/nT/nfEwODpEQO3ZcRHRwgJPTO3AyiZE+KWthkqQp9OamHQeV8Ayh10cM6Y/1a1caxbSg5bgrV62lY/ZobVu9Ygmq1axnKcOV3HkLKB5lUK1icZsi0kVhqw3zjC6rLE9vcqJN9px5tPuYlklzYqwhj5Oi3FZ67+SETupBYOTY/9Cpq/MN/Mrli9i9c6uyQhbG8+fPbFWzuY/vSLROdX+4kmcvWKHeofjTsmhdjiLTXr51+V+xnfavlGivrFgpkidW1uK3WL5qI6bMWKAt8/Hjxkb3zi2VKzSltohv3rpbzcSfoK8DWg3/blwLxYvkh0PECDij3KRDR03Glas3LMMukDenLhNbuVM3qbr/DPnXMjO+YrniqFW9vHIbR8dlVWfk2Ck4efq8pa71yqPHT3Xd8mWKYdtOZ6tuudJFtSs6aWLXQqp65TIIHy4shqsx5cqR2bo5u9uPnz5D1TotkDJFEmTOmFb95fmuXehvlfuZiVZCJqd3TjD2cdtY58NM25YNtKubE6jMya1xpU6VXD+wrd2wTcXxOlvtl65YD8f8ueBYILdmZG5H1oWAEPi9CPgri2L0OOnx7LGzsEmdqSoadNqP0GGiaOvfw7un7JIPFjyMFmOMaXz7+iHuXNuvYwnNlSjeXCW+PkXFGLpX/9yxxZg+PAce3z+r3ONN0KLvJR0LGSxEGHz98hE3Lm7T4pYCl5+Ni1voY3n+5Bom9U8NWjgTJMuPxl2OIFvBNq6G4dYOWvkWr9yEEqXLoUq5Ih4SiWwrbNhw2nJoq12KpAlT5ugP4xc/fHiPT58+6aLMC6PqMgVW6/bSh48/eX4zTboJHSaMrvbq1Qsdk8e4R34WzJthEZ+HD+7HwQP/05/Hj53js8x90arISSadu/fTru07t2+as7X46tl3sHL5PUfFyjXQd8BwVK2u4lZVKqLEdOO/W+v1Vz8mqIRXk0bMKYKKg2R6ruIOvZPImWN8+eKFiuF06f6j+7+BshIyXpEin2M03MBNW7TVsZ3s+5DiUDh/FtSuVla75ssrF3UoFUPK9OjhA7107z+vuo6Ndm2JTCPP3vLdmxfKuv/CXhEv5cWPFwfTJw/Tdfv8Mwrbd+3T1u0qKr6QaciArogdKwa69BiMpcody/3lSjlbu2mtq60EMsXMwGHjET1aFEweO1A/COnK6r96tStr4UlrW6XyJbT7mHkVlNjr070tdu7aj5bte+HZ8xeYOGaAitN1tvAa9c1LWpBXrtmkRV+0qFFAoVq8cD6sUMLWOjHesOXfdTHq36n48NH5O2ddxt72hYtXcfXaTXtF7ObVrVlRWzqHKZH64cNHS1l743r29LkuxzhJIyVV8ZdMsWNF10v5TwgIgd+XgL+xKIZ3iIv02etixYyamjbjE7cs66Amfzg/9VJkuUoMmPmREqUsrG6uDpg5Mrd6NaPz/iz5mhvZeknLoTlFippYWyufP7oM9+onSV1cu445W5ufyo2XInXmqnpCC0Xm/VtH8eTBT6tD1FiptXs8ZrxMyhX5CYd3qfg99aGFNL2KUTy0Y6x5KDbXGefH16SMGTFQW6tsvXvPZkW189q1y8iQMYuaKBEbDx/c08Vo3SqhrF+0YPH1NpxAYcyqnTx9vnYbs4/rqi5Tztz5sHH9ar3O2bkUrAvmzMCFC2f1Prf+oyg03K+0FhopTz5HbWXkttGvkWe9XLtqGdp36qEskMltls2cNYeekEOBarwuh7OOmeg6f/vmNaaqSUA3b1zX+zhpxJjRS8tperVNV/atH/m6kBf+a92+i3r3YXT0Ua5561nTjOukgIwcJapljGF/CNYsWXPi4vmzakz7MHTkBCWGD2PKJOdrInr0mMiUOSvOnT2FN+o4PJq8YxFkXbesnvb6f/PqiTrXn3URn3RB16hSFkGUi7ZtZyXClRVr87Y9akKWk8ViNlbFxz14+AR37z3AeeWGbVC3GpIlS4SIEcKjXOkimLdwJabPXqzHdfvOPRRT1sXIkRwshzJAWRA5EWTfgSNYv2IWkiVNqMVo7ZoVcOPmHaxcu1mXXbR0jRaRBfJkV7GGZxAvXmy9/4GafML6RlqxehOaNqyJsqUK444aU7BgwbBh80506eDyb1CHNk1w8fI1fTy0mP7KxMkoHOPefYexY7fLF6zbG9exk2dx7sJl0NIaTQlmJzWrP12aVHro/C5JEgJC4Pcm4OdCMWyEmIiTMAeKqtfdcDILXbNMdKmEjRBDrwcJGgKZ8jTV68Z/L5/dQNK/Sum4t+8quJriMGToiCpOLKRy+75XbWZXFr+sqr11RhW9nSZrLZw5PE+1HROcjcyYwod3TyrXdny79ROlKKTjDjljmX0FDRZKxx0yfvLGpR26rR2re+hZ2SnSV4Bj2UGYPDCdfndj3hK9MHdsIR1LGSJEOF3PMig7K3fv3ELpIrk95X40mps/e5oWisNHT8SMqRMQSr3mpdHfrXBg3x51s3W2ZESPEUPHPKZLn0m5cQvqqrQo0trHCSfFS5UDrX2czNKgcQvEjZdAz3pm3J29xAkpjFmkq7hj197YtH4NMmfNri1vXTu2BCeluJcYt7d3907t0t28wfmaMNfhJJm82dOYd6F0uUpadE1Qs3hnTZ+s8zhLuUnzNkpwd9ExmLTeFVATb+LEjYeVymppLe5cNOjOBuMJq6vJKTze2HHigXGZRrp86bx6R+Fw/TH2ccn3K/JVP43qVtEzybnv3bt3aNm2k35Fzm0V91mrbiNl/QqK6VMmMNtDie9DnLUgF/iaHLcmrLAh4z2KhmjmPuP9i1z3SnJ6+1LFETu7dX1KLCaIHwdPlCXLcHVyXOMnz7YMjxY+TuiIp1zQdKsGDhxIT7BgPabLV3+KOLqNrV3HV645j5d9MDE8gNc+Xdrf1Pd7waxxej//e/X6jbYolipeEI3qV9f7GQvYf/DPhz26nynA6HKmeN2yfQ/eKmFrTnQVlyxWEL3/Ganc6UkQP76z6KTFk9ZRznzmA1a4sM7WZKNuyBDB9epHL1ggjTa47NaphXrbQyAMGTnRvFu7sO2N6979h2jYrDPqKCttyuRJ9Xnp3X8kpk0aBh63JCEgBH5vAn4mFAuU/gcFSvVXs1of4Mn9c9i1rjdOHZxjob1Tia4ydWYic55mSpd9065bS6ZaOX9sKVJmqIQOQx/qySNnjizAnev71fYDPUuaLuz7aqKLOZ06NFe5f/OpmMG+KgA/uhaJK2Y4/+G/cm6D3fq0ABatPBqt/7mux3P76l41pmW6+VWz6qgZ1OPRrNdZfPzwSsU7XsW6BU20S/qKEqq0RjbtcVK5coNoq+OW5e3Nw3JznWLIq4kTUSKqeEFOYpgwZa62nu3Ytkm51Tpod+38OdOVyKmPdVsc9Wtn9uzariaqFNbd8fU5LdUklt79h6JJszZ6Is0TJRi7dmihrVxGjKK9sXECzdevX9RLqRtqkXn3zm09qYWWQo8mCjnGOXrGqmbdNt2+fzeoge7q9TSFipTQ7l62yeMfM2KQdXFPbffsN1i7M2lVISdzoiXWsMaa99taH61eG/RBzX4uU64y+OJvvg+SgnrTD2uurTrW+yj86H7m+T58cJ/Fempdjj/vx3LGa3AoHFmH1kR7AtO6HettnxaLj588RfasGbRAe/LEOU6TbuEgQYPg0JETGNinE1as3ojqdVvis3qF1OE9a/SQWI+J1rpVa7fodb5KhrN2aR20l2hNf6z6ev78JWrUdw5dYPlIDhHxXr2e6v37Dxj3Q6zasu5TPI4b1R9x48RE3Sauv+NtWjTQ3ffv1cHFMOgGj6smjLTr3B93lShLniyxFq58AGFKpGZOM925e18vvfIf4wk5EWbS1HmuXmvj3rgGDBmHYsqVvkO54ydPm6+7r1C2uF5eNE2q8cq4pI4QEAL+n0Agh2hpvntmmG+eX/BMcW+VDRQ4iHInR1ITXJ642U6IkOGVReeNxd3M7W/fvuDzJ5dP8+YGGJMYVFkpbb3Y2736QYOFVO1/xbcf7jZzu3xPYpCgwW22q8wV+h2Lnz85B52b6/n2eqTIUbQr1ohDNPrjuxSDKhcZX6HjVuIsaLpLvRrLx5mUESM6eMkq6taYvLqfM6kZf2n9jkOvtufT9WjRYsyjV4UxRZ8hBK1/ncWwJBpjprDkPs6KptvZ3nsWjTruLSmeaFH0iZ/wy5YlA6ZOGIKt2/eq2f6LlMszCoYP7I6pagLGkWOnMGfaaCV65mLRsrWgm5ouVcYkclLKrCkjkThRfB0HeOzEGbRt0RBZM6dH0TK1VHxgPSUay6kwl2Lqe6y8ECFDaJE5Y84SjBk/Hc2b1MHfjWpiyIiJemZvQSWwOrVtippKONL9ap3GDO+DFErYFStbR0/42Lxmrnq4eY+yVRrposf2rVezjs/r1+PQ9W121aZNkwKjhvTCRBUvvHDJGm25ZN8cw/6DR7Fm/TY4KJHKmMaHjx6jcs3mltfvlC5ZSIvlHv2GY60qZ6RuHVugepUyKF+1Ma7duK13h1bvaly9ZJpyvUfEiDFTXMRGHj56Ugtge+N6o14sv2z+ZD12Mqf1taOaBf3mzVuUrtTQEmZijEGWQkAIBDwC549vdzFo3o+M9Mstij3HO8czGQP4U5d8jc/B7aN+yeG7JfJoWXMvUVy6Vd+9usxnHKBnZu56pE2vluFLy73y4nKv9ufZehRaXhWJ7Ivir16N8los0g1tthKaXc0sa/ySC9dZx6cSJ7Y4W9sSeeu1ObQa0kVLa9dixwlaINFCOFO9t4/X1LYd/0OzxrXRRFmL127Yrh4WncMpeBydegxC766t9aQUPqjcUjGKbTr1xTsl4NxLU2cuUGEaIdXM4IbKqttcvz5m9LipNkWidVscF2MVndRMdluJE2PMie9eZHrz5p0WiVxnXGVoFdpRtVJp5MyeWYuwI8dOY6B6hyJfvu+VREZ0bzPxmMypc8/B2LRll3mXfickd5jH1XfgGDSuXw20hgZVVt0Tp86jV//hIhJdkJMNIfB7EvDXFsXfE7kclRDwfQJmIUhXs/Prb3Lojo1JL9xvbXn0zsjM7li+iDtu4rTeac5Sl+8opGixFkp8xczHT591jKilsGklePBg6leHQlpEmCnL3VXGPIYLG9ZLdd1t3IMF6PJ+rax21sftweq+UoxMmT4p7pKEgBD4fQjYsyiKUPx9zrMciRBwQcCYpMIYRCNRHDL5pEA02jYLRe5LldHRyJKlEBACQkAI+GMCIhT98cmRoQmB34WACMXf5UzKcQgBIfCnEbAnFAP/aTDkeIWAEBACQkAICAEhIAQ8RkCEosc4SSkhIASEgBAQAkJACPxxBEQo/nGnXA5YCAgBISAEhIAQEAIeIyBC0WOcpJQQEAJCQAgIASEgBP44AiIU/7hTLgcsBISAEBACQkAICAGPERCh6DFOUkoICAEhIASEgBAQAn8cARGKf9wplwMWAkJACAgBISAEhIDHCIhQ9BgnKSUEhIAQEAJCQAgIgT+OgAjFP+6UywELASEgBISAEBACQsBjBEQoeoyTlBICQkAICAEhIASEwB9HQITiH3fK5YCFgBAQAkJACAgBIeAxAiIUPcZJSgkBIRCACNSvXQWJE8XXI06VIqmfjDxsmNBu9hsuXFgEChTIzXz3MkKECIGgQYPaLBYqVEgECRLEZl6Y0KG81a/NRv35Tp4H77C2d3i+2bb5GrY3Bt/Oy5cnOwoVzK27iRLZAVGjRvaRLvPlzoZihfP5SFvmRvwLN/OYvLpu73seLFhQ8Lv+K5LtvzS/omfpQwgIASHgSwSyZ82AC5eu4OHDx/h3ZF9UqNYUr9+89VBv6dKkxMC+nXH0xGn0HTAarZrVQ6ECzjdKNqCFWODAKFSqJtL+lcJFWeZXKFMMLf6uq/p7g2BBg6Fbn6E4c/Yis1AgXw60b9UIz56/RPx4sTF7/nLMmrtU53nkP96oOba4cWLqcWzftR+Dho3Dt2/fwbyhA7ojWrTICB82LNZt3I7hY/7Tzab9KyX6926P79+/wyFiBPw7YSZWrNnkkS79rAzF9Pdv3/D2nZPNMZQvUxSd2zfDwKHj9LFaFzLO48ePHxFZsRk++j+s37TDupiXtn2zbWNAxjV87fotY5efLJMlSYiQIUNg247/oVL5EggWLBjGTZrl7bHwQS5ihPDYtHW3t9syN+AfuIUIHhytm9dHrerlUaR0LXz9+hXTJw03DxOxYkXH0JGTsHb9NhdlHz1+qr/Lbn3P+bDXr1d7JIwfF4GDBMY79f3o0nMI7t1/6KJ9n9wQoeiTNKUtISAE/BWBd07vUahkTQ+PKVuWDKhRpSx27T2AsGHD6Hq8KZpvjM0a19YiLWvm9K7KpkieBA3rVUP5qo21MM2TKysG9O6IslUaaUtMn+5tUatBW9y990C3v2j2eJw/fxmHj53y0Bh7dm2NPfsOY/6ildqiOGPycBRxzKtvtl06NMfR46cwaeo8BA8eDKsWT8W+g0dx+OgpjB7aC6079sW5C5cROZID1iydhv8dOIrHT556qF+/KFS/dmV9E5w+e7Gr7ps0qKH5nTpz3lUedwRWQn7U0N7qBjpYMTmNBPHjYOm8Sdi996CbwtNmQzZ2+mbbNrrzV7smT5vvr8bjXwczZEBX7P3fYX39coxPn73QfwOM8YZWYm/zmrnYsm0PrMuyjL3veUv14PpcPWh27DZQN1e1UmkM6NMR9Zt2NJr38aW4nn0cqTQoBISAdwn8lTo5hg/qgdbqj+LsKSN1c4kSxMMstb5v+3LM/G8EuG2k/HlzYNWSqdi2fr5+Oje7Gtcum66sIM7PxO1aNsSerUv1H2m6vqzT6bMX0KZTXzx4+MQ6y7JduoQj1m3YBltlHzx4hHpNO1isl/yD/uXLF103RbLEuHfvoRaJ3PH27Tts2LwTBQvksrRtrNSsVh4bVs7SY+VNgBYKpnETZ2LhklV6ne3SSmq0T9E0f5Fz3qdPn3Hn7gOEVq4pergbNOusRSIrvnr9Bl+Vpe7zl8+6HeM/WkpXLppibOrlnGmjES1qFL3uHjsWIve/G9XElrXzsH39AlDQGSlliiRYMncCDu5ehXkzxiBmjGg6ixarpfMn4cDOlRg1pJc+1jIlC6N65TJoUKcKli+YbDRhWc5duAKj/p2KDx8+WvaZV+gSnjl3iRaJ3E8WX799RdAf14G5bMF8OfW1w+tiUL/OlgcElrF1Hjzatk9ew5tWz0GJogWUwJ+OXZsXo2ypIpZDoPuWvDn+pg1tPxSxfmHHPNi6bj7CK0stH4KG/NMVu7cs0W3SvWwkimp+z9jeKPWAEcYUQlGlYinQtcvkkX5Zjg9US+ZN1N/baZOGaWs491snWt/Wr5ilr5te6oHIcKvy4a1vz3aW4tGjRbH8TeBOe999SyW1EitmdEwaOxB7ty3DysVTkDN7Jks2++AYd29egsn/DkTsWDEseWRH6zWX/H4kThgPbdXfEf4dWrt8BmyFtnTvM0xb7GnBt5Uc1XeeDzD8/toqa+97ni5NKuz+3yFLs6vXbQGvtQjhw1n2+fSKCEWfJirtCQEh4G0CwZV7K6+yxn1Ugqddl3+0hWzi2AHaxehYsoZ214wY3ENbjnhj692tDcZOmIHyysVMN0+mDGksY4ihBAkFTPq0qZA5Y1oULVMbnXsM0nXMgpIV3r//YKlnayVD+tRwUmUuX71hsyxF2JMnz7TrqG7NiujeqQUmTpmrm3ry9DmSJ08MWhOMFDp0SPDGZ06lijuiVPGCqNOoHUpVqK9v7I0bVNdFrt24rd3MuXNmAa2TgdVx0TLING/hSotApds2dcpk2pr4+fMX3Lp9V5epUqEkxg7vg+WrNuLFi1d6n/Ef24oRPaqxqZfRVDxaEOXe8gg7VqBrkmNr2KwTaqvxU4wXLZRXt9WvRzssWroWeQtXxukzFy0iskObJpgyYwHyF62qXWllShXGxi07sXz1RsxTwpccrJN754k3YPIwEs/77dv38PLla2OXXvKmT479B41FifL1tPBs26KBznPrPHi0bR+9hqNHQ0oVa1u5ZjMtLHhd8TpinGq3ji1Qr0l7lKncUPPn98E6xVD1C6iHKZ4Xjr+3EmJkWLpiA3TvOwz9lBCLFTOabo9iaocKaShRri42K7cwrxkjUSSHDx/Ww/0yRGJw/y6K7xjkL1YVh4+c1BZ2oz1jWbpkIS08azdsq88D9/MYmej2jqTCJYzE+NtoP74z7n33zXV4XJu37Ua+IlW0y3ekeiihYI4XNxYG9e2kw0wKFK+K9erhjWLRiAEmu/jx4qBs5UZYpUTZ7KmjdbMFi1fHqjWb0bFtE73N8hSUXLp3fZYpUUg9bG7X9WyVtfc9f/r0GTKm/8s4NB0KEEz1af13xFLAB1ZEKPoARGlCCAgBnyfw/MVL/Dd9PrjMrp743ygL3Eb1RzyIcitu2b4HFEP8I1+udFHsVe7YnbsP4I26CVJ0GFY286j4BzxI0CBaeJ06cwFFy9bRMXu8EUWMGF5/zOVtrZcuXghrlTXRvRQmTBj1lJ9Cx8YFU25gpouXruLsuUsYqiw5tLJQVOXNlc3VRItqlUtr0Ut3FW/qQ0dNxhUlTM2JAid1yqRaFBuWF3N+1w7NMH/xKotwNPI4JsaG0dJBF6pHk1vseKMlO8NNX6FsMS3QaEl99eo11qo4Scf8zhbTHv1GqBvtZtDauWP3fiRMEFd3z7bDqZjKL0rgt+/SX4tYiluW+/TpExg+wGScI54vW8mt88gJAd06NceIsVNdVSurrh2Kh0uXr+l4yEVL16Dgj/F65DzYa5ud+eQ1PG3mQvXg9An7Dx7Dw0dPEDd2TG0tDhQ4ECI5RNQimA9Bt5QgtpUYPnH7zn0tMGnFnjZrkb5+bqiHDwq4XDmyIFuW9PramLNguXbRb1au0TPqmrVO6pkCtvrluTTOE9crlC2OVWs346wKr+A5nTFnCbbu/J/ra75iaR03S148xhFjp+iQCrfOtTEej373eVwv1fW4au0W9aD1DQcPn8CAIf+C8X4c4/LVm3D+4hX9EMaYQcYQs46RGP7AcVEYUihPVX9juL1SbSdLkkgXix83lhLc7XXssVHP1pKCLlnSRCqE5KdV0FY57rP1PV+wZDUqliuu4x8zpEutRf7bt06umLrVplf2S4yiV6hJHSEgBHydAIO6jRRH3RRjKcvgQhXTZyQ+iTs4REC8OLFcuGJ4Qzpz3vXN7diJM/qGSDcnb0hzF6zQoqSRiimsW6uSbja3YyVw8oOtxLg/zv6sWONvW9ku9tGC16n7QP2Uv275TC1i2W7ztj3RqG5V1KpWTrmuL4J/9JP8mJ1tNBAvbmzcuHnH2NRB6taB6pwEw0/fHm2Vi7asslrOsZRnjCWtIL36O7vsLRlqpfc/I/UNZY1yxx88dNzDsZFusft3RF+kURN6zikhUK9JB/A8tWpWH82b1LF0e1GJMKaYylrZs0srNcFHzdZUllSnd84CcMTY/9Czcyt0UpYZiqBhoyfDfO5Zl+zpNmWaq477XyV6rJOt80iLMa1FW7fvVdbVk9ZV1HhjgK687FkzWvIYEsBQBffOg3tts0HzcXj3Gqa12kgUPXxA4LU+ZMREDBvYHRSttACOGjfN5oPSo8fO4RR0qwZS/2hhMyeKuXhK7Bw/eda8GydOndVWK/NOt/rNkimtmjzWTxdt07Ev4qtrmQ8FRuIDnNnSa+yPq/q9aRK4/G4/VpYzMrOXPPrd58SxG7d+fqfYpjGxiW1s37XPRTf8/pHFvgPOu/kAyvTm7VstNI2HF26HDOX84EIroGOJ6qDnwF4qWawgtqqJQWToXrL1PafI7dZ7KMqrhxyK1JlqMlw6NVnNvX7d68tevghFe3QkTwgIAT8jwCd/Iz17/gJXr91EXSVGrFOZEoW1ZcC831a8Dm/sY5R7esyE6dqiN0a5YCkexk+erT/m+rbW8+fJgQsXr2rXsq187mNMHidMXLpyXRehUODYkysLwrXrN3Xsk1nkMGjdLApZieXpZjREBl2MtG7w+CuVK4HR46frtvnfiVPnUbzIz1eMcFY1XbeNmnfRNzSWYQwe2+AsaCZaE0+eOqcFnnkSzZev33QMX2BloeIsaibDouMWuwZ/d9LljP849sHDJ+LQkRPGLr2koO+rrC0167dW8Z+PlThLic7tnAU3Z/XWbNAGUaNE0rFfrZs3QA/lDjUnWhez5C5t3uVq3dZ5bN+6sbaMTfjvp5A2V6Tlc6Wa/c261smt80DLNZN7bbOMT1/DbNOceF62KBHMWNekKtZzoIpnZQwtLV3WyTinz5Sl+rv6V7VOC1cuUsZBmkMj2EaE8OFVuIWzqDfatNev+TzR3Z1STfAyrj3WZ2wjhZI5cUyMYTUmV7F9upufKtHFcIjgIZxjdFknpBLERqJ4plXQnGx99589e4lUahzmxPAUPoA9ffZc920IR5aJHCmil4SXR8Qa3ez9Bo4xD8XFOt319r7ntDJS1B9QD3pM/N4w9vblK5ehJC4a9eZGYG/Wl+pCQAgIAV8ncOTYaeUyTaBvhuyMrs6508fom8TBw8fBP77GhA9aNThBwjrxtRmMa+QNk0/lnOBAAeLRpCexbLTvdqY7qk7NSsqtq3xzKjFOkLOMaWH8rKwpFKdGoDzjqxzz51Q3+R3aOlRZxYKx3k4VH8YYJsOlzIkddAs+fvIcJZQ1IkniBLptuvby582u3KbOopQB7ZyR3bxNTz1RRhdS//Hm27BeVTC+jInscmTLqMUs+zD6pcWTr9qghY2JcVB0aTJ5lN2uPQfB8dICyMQ4TU5SiB4tqh4TRSITXe9G4sxtihzeZHfuOaDdzcyj293WTd+o596yepUyiK0mMPRT8XHmZD5m9kfXOIUsE2MxOYmKya3zwDy32uZN3nC1s5w5+cQ1bG6P6+HUueQMdl4LDE/gg8PHj59cXE/WdWhNv3TpGkqrWFgKMiZOIqJl+IR6gMiSKZ2e+MH9vHaL2njXoVv9so450ZrIySbGuxd5njnhhnHE5kSxW650Ecs1SmvZRXVd03J6//4jpFUhE8ZDCyflGMm97z6/szyGI+ptAPze8TVRTBSXjE3lQ9PWHXtV/GZOHaPJPO3uTZUcR9TbAjyTaIXmd8mYOGerLsVw8GDBcfK07dn6rOPe9zyL+u7wFVvGuWvaqJaOdzQeBGz16919YlH0LkGpLwSEgK8T4M2tS6/BGKfcWhQQvNHQhUUXEG8yFDecyUixcfvOPVfuMw6QT+Alizli0Zzx2jW3X00CMax27h0AhQSFU2f1uhV7ibOOe3RuqV5NM025lj7rGaOdew7SM41Zb5h6l99Q9eqMkCFDKmEbDD1V3B4nlfAGQgvVTnVjnaJi0eii3bhqtp4lzePla14o5Lr2GqJnq35SYiCOEiUUvJNVHCdnJo8f1V8Pbfa0UZYhzlFu2qUr1utJJIvmTNDs6G7lOP+3/4iLfhkTOUZZKyf/O0hZP2/pWdKMhWPyKDvGlHLG6qbVc3UcHc8bXfAULzeV649uf1qBHj36GVZAa15f3rTVv48fP2PIyIm6z+0qlm3MsD7IqqypNeq1dmGd0wXs/JcrR2Z0ad9cjeExVishZaRO3QepG6yzNZCs96lrgNZevkqIM9J5zgYNn6CLu3Ue7LWdUcWMlVMTGqxdmWzQJ65h4ziMJa8NThBaMOtfPRGHcaGcDZ4oUTzL9cTzap34bk++p6+2EvLv1XfooIpRNN71yXf7Ubzzu/H+wwfsUmLaOrnVr3U5XjdLlq/VM9f5vQym3ivKyTPWaYaKAWQc6boVM3H/wWP1wPJOhU4M18Wu37ytY5J3blqMyyqM4bgSs0ay991nDC6/U05O4/T56KiuQ373GOvMBxnGMvMY+eHrphjWck+JUgq9rupvjdnVb/Rnb8lZ/OyP8Z631LHaSvR+mK2rtsrY+56z/Ao1yatP93ZYsfA//WJ9vi92pIrp9M0UyCFaGtvzt93o9c3zC27kyG4hIAT+ZALWr4JIldHRV3DQGmDECJk7oFWFNwCnH5MfzHnmdd4Ivio3q9ktaM73iXXepPhaESO2ybpNxpPxhmBOZpcv9/N4OFZbsyJpFeR+a8uMuT1b6+HDhdU3SvO5su6XfQYOHMTV+NieR9mxHC0e1hZbjpvnxxZ7W0zYJy2Athgwz6vJ+pg5VlqsbPVj7zzY6t+6bVtlvHsN22qTFnVatI3kkXGQLV8xZL4eWJ88eK7cun6NPri07tecZ6yzPX4fGP9pL3FGM68dW689okv8gxKutixnbn33bTHgcdFybn3MHBet7m694N3euI08W/0ZeV5Z2vuekxW52pq455W+zh93Dk0x6rJtI4lQNEjIUggIAW8RsP7D61tC0VuDlMpCQAgIASHgioA9oSgxiq5wyQ4hIASEgBAQAkJACAgBEhChKNeBEBACQkAICAEhIASEgE0CfuJ6TpAgARInTqwDuh0cHGwOTHb6HIGnT9WPjEeJ4nMNSkt/BAGzK9lY59L8YawZt7k0fxg7d+vRz3ipPwKYHKQQEAJCIIASiB89uJ4cw/hq84exir981nPChAnVz1glV2/tf4Xz592eIh5AWfvLYTs6OmL7dpeBqv5yoDIof0vAEIrGAM3bxjqX5vVo8dIZxWUpBISAEBAC/pjAkSNH9OQYDpHi0JjMooVim/6nPTX0AS2d34/lqUqmwokSJVI/NfQSt27dMu2VVSEgBISAEBACQkAICAH/RuCXxyiGChVKRKJ/uwpkPEJACAgBISAEhIAQsEHglwvFiBGd3/RvYyyySwgIASEgBISAEBACQsAfEfjlMYpuHTtfmBk6dGj1ss1gFt+4W2V9ez/jrPiGficnJx97maVvj1naFwJCQAgIASEgBISATxPwF0KRIjFChAh+LhANuAzeDK7eck/Rykk3PvXmc6N9WQoBISAEhIAQEAJCICAQ+OWuZ1tQaEk0ZtjYyverfRwTxyZJCAgBISAEhIAQEAJ/IgF/YVGk5c6/Jv88Nv/KTMYlBHyLQLPGtS1NHz1+CkeOee6tDXz4c+s3fS0N++BK/dpVsGffIVy77vZbHvLlzqZ/z3jT1t0+2PPv2xTf8RZMeaHMv2vsk0ebJVNaZM7o/GqnSVPnernpfHmy698t3rbjf3bb4G/2liruCPY7ePgEm79jbrcBlSnXkHuEJN87BPyFRdE/WhMNqP55bMYYZSkEfncCvImePrzZcpgUiX83+ikaLRl2VurWrIht6xdg+qTh+lMwX05L6XDhwiJsGJ/3HmTPmgFRo0Sy9GNrJXGi+EiVIqmtLH+xzyzOjQFxn639Rr6xjBLZAauXTHPxOfK/tahUvoRRxMVyUL/O+jyHUKE/1ilUqJAY2Lcztm9YgHkzx2LaxKGIFtVnf0iAx8TrI3PGtOr4annoGK3HaWwnS5IQKZMnMTbdXPIaKVW8IKbOXKTE72c3y9nLMF9DZBfJQSaN2uMleZ4j4C8sip4bspQWAkLgTyNAUdiwWScXFsTpk9LqmzpZTJ4210WeNZ90aVKidMnCKF6uDj6pm7GDQwTM/G8Ejp04g1ev36B+7cp4984J02cvtq76x29TMDGZrWvcx/PhXnr67AXKVmlkKRY6dChsXjMXW7btsewzVjKkT63iwb/qX/gx9pmX/Xq0w7PnL1G6UkO8ffsOxQrnw8SxA1ClVnM365jre2SdxzVp6jx9rHw4oWg0H7dH2vBsmQzpUuPQkZO4dfuuZ6vaLJ8pQxrUqVkBf7fuYTNfdgoBzxL4LYRi/PiJwE+8+An18XN97x7nXyLZs2ebZ5n4avkkSZLr9o2l0dmmTWuMVVkKASFgIsAbNpO1m5nbHhErrBsxYgQ8evREi0Ruv3jxCtXqtNTCpIwSkNUrl9Fio0TRAqhY42+EVxbGQf27IFP6v/Dy1Wv0HzwWBw4dx1+pk6NerUq4e+8hWO/Nm7fo3mcYzl24zGaRP28OtG3ZQFsn16zf5iL2OmWKJKDYiRcvNq5eu4lO3QfhwcPHup75v1rVy6vxlEXIEMGxa+9BjBg7Be/ff3C3b1pIW7eor61J/9t/BIOUG5OCyruJwsmcKJ7I3vp8mMu4te5YIBeOHj+N14qbOQUOHAhtmzdApx6DFddC5iy9TmFPV27eIlXw8eNHvY+u+gZ1qyKzEkaHj51yVccrO3hMtFYzGe5nj7aTIH4c9FXnN1HCePoYb9+5D/6UJRM9U00b1kCFssURRLnOFy9fhykzFuhrqGbVcvraq1yhJIqVrYOSxQqiVbN6+hrcu+8wuqnri+00aVADT58+x4o1m3SbhR3zIE3qFBj171S9zf84hkH9OyOMso5TkDdTYvH6zduWfFkRAl4h4C9cz14ZuFEnb95CqFW7sRaJFIf8DBzQzchGj56DwTJ+nSgMW7TsiKLFSuuhXL16CcaHO4oVK6M/1gLSr8dt9B9I/XGz5YavVK02GjRuqYuFCBEC02YvRZSo0YxqLpZswzqxTVv7rct5ZluPleO18fFMO1LWfxDgDZviwjvpiBIScWLHxPjR/2i3Z/y4sfHhw0f9RoONW3Zi+eqNmLdoFeo0aqe7adqwJp4+e478Rati1Lhp6N7Z+RoPruKpC+TNiUtXrqNE+brYtHUXOrZtouvwJt27WxuMnTAD5as11Td3WneMRJG4aOla5C1cGafPXNQ3fiPPWJZWIomWstoN26r26+nd3Tu10Et7fSdW4qRP97boP2isrsdja9uigdGst5a0qBluWIp2fmjB9UoqU6IQ1m1wfog31y9fphiOqHP8+MlT827LeuyY0fHo8VOLSDQybt66i9ixYxib3l7yOjNCEwzrokca5Zs7Jo0diB279qNEubrYrERsFSX8jERXe+6cWfSDTW11jTGmsGihvDBfexWrN9XisFfX1mjRrheKlKmN6NGj6nJsJ3z4sFoAGm2GVj9eETFCeGNTL2/fuYd/Bv+Lk6fOge3dvH3HRb5sCAGvEHB95/ZKK35UhwKQVsR5c6fqz61b19WvvlzXo6ElkR9DNPqlWKT4o0DcvGktJowfoQUi9xmikIKRFkUuWc7Y70dYXXWbOk06bNtzHINHjHeVFzlyFESNHl3vDxQoMBImToqgQW1PTtq66yjYlpEiRnTAtDnLUKFSdWOXt5cOkSJj884j+rNF9cdxG9sr1+/ydvvSwK8nYFh4bPVsCBdbeeZ9Tk7vUbVOC+xWFrocWTNi7owx+HdEXz3Z4PPnL9rS+OnTJ8tEggVLVmP4qMl6wgRv/jFjRAMnHTDdvHUHGzfv1EJzyfL1YCwaU7nSRUEL0M7dB7SlkRYj86u1evQbgVXrNuu+duzej4QJ4up65v+qVSyNfyfMxPMXL3XftCYWccyrJ+CwnFt9l1V9b962G5cuX8P3b9+UIF2DgvlzmZv21rphVWQIgFetidGjRUGypIn05B7zYMKGDQNa1WbOWWLe7WKdMaTv1HttrZPT+/cuxJN1vme3KYpppaZg5NKjbudsWdLr3zmfs2A53qoQhs3KtX7m3CVL9xXKFsO8hSvxXLnOXykL9dqN2+Gozo/52mM9TtChK50WZ1qrDx4+ri2UlobcWfn27bu2PtMCyfa4LUkIeJdAgHU9G8KPItG9RMFIqyPr+IUrmuKPApGJlkMjURgyaXF4NbkWi1BeBW5fHf/zj4xR3q+WBRyLYfvWjchXoDDCq/ddvlbvlvRuChc+AoaN+Q+b1q/G8iXzvducpf6L589QJF8mvZ1IidapysJZukhOV5YISwVZ8fcEKExoVeREA/ON29klXfvH+O3HKLIQrWxLV6zXH1q/J4z5R7v+lq/a6IpBsGBBMUR5JjgRhTfboEGCqo+zUGRMo5HoluYkC6Z4cWJh9/8OGVlaBJw5//N7HFNZh3p2aaVn7IYKHRJO795byhorcePGUlage8amvuk/fvpMW0O5062+4yirWro0qZBdiWAj0e3M46AY8W4id2MykeHuJ3/PuJ/pUt2qZgBbj6dZo1pa2L5TYt6t9FhZEx1U+IB1okWNcZA+kXh9cRILj4vCmKKYcbBGzKK9PuKp83b85FkXRU6cOqvfxcudtGa3alYfzZvUsZS5qES9deI1mj9fDhQvkl9fd7z+1m/aYV1MtoXALyUQYIVinryOFmuhR4jRJU2xaLY6eqSeb5Qxu5x1+z/EIdeZ1yJJR9/o1ktt0n2br2BhdGjdGDFjxUZuxX3D2hVeasuoFDZsOAwfM1mJzw1YumiOsRu0BrZu1xUZMmXVv4qzbvUyLJo/U1lygmKC+sM9duRAnDvzMxap78CR2LltE3bv3Gppw95KkmQp0L33IDRvVFOJBuebUujQYXTbXdo3Q/wEiVCpam0sW6xuEi3bI1q0GDh39hTGjR6Me3edXTh0MdVXrvaChYohRMiQOLBvNyaPG6me/l/rrnPmzo+mLdohatToOHvmJIYO6Ilnz2y70+yN1T/lJU6cTF+XfjkmChXDJWi4oSlSDNHi3tga1KmCO/ceYOv2vboo49wOqwkEsZRL01YaMbindiHTQsh0dN86W8Vc7KOIC6Mma5hThPDh9CZj7Pr2bI+a9VvruEROrunc7m9zUb3+TIkexjL9uOpTAABAAElEQVQaLliGZkRSAomxaYybdCvRUrVSxa6NnzzbrSLe3m9YFQ1xSPFurHukcbrV+w0c46Jo3DgxUaNqWdy5+wDV1ZKJr79ZPG8Cuqh4Rbr4me7efwSy5CxqszCkNXfSlLm6jHf+o0hkMq4nikVashs2c3ZFuyeKX716o965a33uw4MWT6Znz1+oV99MVJNWTuhtt/6jlZFu6bqNO+iH20b1qoEWV6avaqJPCBW3aiTzurFPlkLANwgESNczLYPGZBXGILr3YXlDIHKiy69O165etriTDfcy4xX5oYWRrmbD4sh1w9L4q8dpq7/0GTLj+dOnuH3zBnYoq2IBx6K2inl4X+jQYTFk1ETs2bUNi+fPstSjW88Iyu7U9m8lzoagcLFSqFC5hrJAfMKF82dQqmwlS/noMWIiazYVGH/kgGWfeytXL1/UN6H8jkUsRXPnLYi3b97g8aOHyr0XCilTp0GN2g2VwOuFxvUq6/2jx8/QopCVWrfvjsxZc2D08AHo3qmlihFyQOce/XV7FMC9+g/F9CnjdN2PHz/g71YdLH0F5JVmzdu7Ofz6DZohXz7fjwPmTZyxcYYr2hCMbg7MlHH95h3UqVHR4sLlK0Ty5s6KU6fP61KcXGGIOu5gTNyFi1d0HmelMj7QvUQ3IcWQ8WoXigvDLR09WlQ9scSYvJI1c3qbzW1RQrZc6SKWV/WUVy7li5ev6wk1Niv82LlzzwHtyqQgZUqfNhWGD+rxI9dnFhTrZouued29Hih+gwcLjpM/eFMgUhQ9fvxMx1Q2bdUNzdv01J9vynXepkNfPQmDnPjqIAr7VWu3oI2Ku+TEF6aypYroSUmGmHRvDPbyrY+NAtgQwYZ4tFf/hIoJzJIpneXBI3IkBxRVsaZG2rXnoLZeBw/ufB3xVU2ctGSd+OByQ12rPF4+JGRW15CR7j14pLd5/Px7WTD/z9c7GWW4fK3+noUP7zJ20Zwv60LAswQCrEXROFAjBtHYtrekuKQl8lcnxh8aglDHIv5wK9sShRSJSZQbmiKSAtOvZ0Mbbmcy27Vji7aWMbbw5UuvuXvad+6FWzevYcGc6S5OQ978hdQkmOho3riWcrc54crlC4gUOTJq1mmsLXzrVi3D2EmzMH7MULx7+xaOhUtg7+7tet1FQ+5srFuzHCVKVdAubxZ1LFICG9attNQKHSo0hg7shYcPnN1/Y0YMwJxFa1BIlTu4fy+KlyqH9q0a4cyp47rOpPEjMXvhasSIGUtZFMLgg5qduv9/u/FF/Vb4qGH/IEHCxJa2A+rKtWuXkfhaMlAsTpo4ysVhNGjYHNevXcHu3b/m7QLGzdtYuhiMnY1dSkglTZwAS+dP0nFivJGvXrdFxcs5Wwy37/wfxgzrg6wq1qxGvdb6NTnzZoxVbuC7eMjZ0up8upco8uj+Xbl4Cp4oCyAnFhjuyMvKMsb4QvZPy+OjR7atzDPU63m6dWqOdStm4v6Dx+qVPe/Uw8dw97rGvgNHkVzF/61aPBX31Ixs/lY9Zz37l1SmRGGsU3F5RsqTMyvKlSmK7bv22Zz5TeZ0UVerXBoPHz7BeSXax6hJQt06NsPaZTNVnOcnFcf5Ch26DTCa9NWle9cbHwCGjpyEGZOH60k37z98AK85I/03fT44SWXT6rn6emIMaqfuA41sy5Kxjf+NG4RZU0bqmEfzrPUNygXNWMcta+fpc3xFxTHyp2at07kLV3R8I6+1AUP+xakzF6yLyLYQ8BSBQH0nf/dUtOuAlu4/WdsbQa1atbB9+88/GCwbJUoUe1Vc5dGC6BmBaDRAayKFokfiGo06XD5VFjWfSEZ8YuIkybQIZJvGurE0+jHEJfcb1kYjz7NLR0dHV8w90gbdrEtXb0cnNavzyeNHukrfgaOwY9tGrF21VG/TzRrRIZK2wNEit37bAdSsXNIitMz9cGLJxHEj0LBpK4wY3Bc7t2+2ZDf6uzUKFy2FUyeOWvaFDhMG2XPmRclC2fUT9sSp87Fpw2qsWblET4IZN2owTp08ZilvvWLEKJZwzKbrM5+xkUtWbcHfDarj9etXmLVgFaqVL6rFaZ58jsrl3EGNv4SLprr2GqCtjocO7MXAYeO0YFZ/xS1l8uR3VLNd2+HEscOYOG2BslqFVGJxF44ePoBjRw7qP/iWwgF05bs63qJFS2vh+9/kMfqYGikXPEXi9u3Or+tgGX6YuIwWL52/PFq6cN+o+D1jrOZBMt6Qr6JhYhwjk/E6Fr3hgf/4vaHliBNorBPdiNxPq5m9RIsR4wsZs+aZRCvUr/zlGc+MzbosLWPuTbbg8VifJ7qmydezbKz7941tjpfnmBNRbCWeU5bhuzztJV6j1q8QMsqzfbOANPZbL83XsnWebAsBawKPb5+yvNmE1yg/TFwGSIsi3cgUfcYMZx4MxaN1ogXRPHmF5WvFb2xdzNe3aTnkx9o6aGsfB0NBSYsiE62KfpUyZcmOcOHCYbwpBogzm799/2YRip4d26WL59R7vrqjR+/BylLwABfOndZNUGQ+f/4Ux44edNEkrYZGWqtiFstWqIKzp0/oJ+nTP6x6Rr5Hlm+UONyzc5uyDJZXbuUH2Ktc4LRgGumTchdbJ/WVUTO5g2rXNN3gx6zc3Rzzndu39AzXlk1q60k/2XLmQb9Bo1TZQ0pEtrVuMkBub968FoULl8TQoeNxRVm+KRJ37Pgp9gPKQbl1A+b4DZHIdc8KRNZh4kxn82xn573O/3vkBs+SnLVqvIPPXN+9dYoq8zG4V94v890TiRybtUjkPops/ygSjfG6JRKZbz2Rh/tsJXvXqEevoYByHdg6ftnnvwgESKFoC6FHLIzm2EZbbfjWPu1OVkLRcCcbMYjGfvbLmc5M/sHdrAei/iugJmz8N3GMqwkni1ZsRqRIUbSwM8p6Zrlvz07MnDZRuUXGoEWTWsr6eB93bt3Q8Y9bNq3Tr/dge8GDh0DcePEtN2xaMpu36qjc3+2xcd0qmzcRj4yDgrP/4NF4ouISx4wc5KJKDDVhh6LVmOzCzHQZM2PZorm4rcbIvEsXzuHmjWuWegkTJcHLF88RLXoMxIkTH1s3r9MfWoOnzFqiLAzhlAXg50xZS8UAuLJ163rwY+sGHgAPR4YsBISAEBAC7hAI7E6+v8zmDdsvYg29A4Oi0HAhGxZGI26R7TLPyB89Zqq2Kpoti97p2yt1KdJy5S6g4wDN9fn6mfNnTyNvgULm3Z5e52xnWgvpyqWLeYeavcwZ1tVq1NPbtODRRV25eh1L2x9V3A9FGGdFb9m4xrLfsyu0SPI4gqoJCoZF02gjcOAgaKYmoND1x1nNFSrX1EJv25YNKrbyOo4fPYRadRuDk2mYGFvZb9Bobf1h3BStiLHjxNN5oVS8I2dLv3tn2w2lC8l/QkAICAEhIAT8MYEAaVGkC5lC0dr9TM50QVu7nA3+rOMRy6NR3ieXhjikYDQsikb7Rp7hiqaLmutM1mWNOr69zJYjN+7fV4H8PyZ1mPujwOPs51XLF5l3e3qdM5spFPv8M0LPIO7WoTnaqckuNes2UpNC3uPihbMYNfQfF+3SksdYQe++cobtWItEdnT/7m0lCG9gtprAEl7FM75+9VIFobfVFkPm023etmMPHdvISTX3VPmRQ/rqmdm0Ks6YOl5bSsOqWYecLT51knM8H+tKEgJCQAgIASEQ0AgEyMkshEw3svGrLB6BzvJM5phFj9RjGZ+azMK2zBNauM1Ed7MhII187jdEorHkPq8kr05m8UpfPlGHs4c/fXL+eTXr9v6bsQizZ0zWk0Ws8zy6zVnbc5esQy016eaVEoJG4mSWBo1boH6tCjqAly5j4/2IRhljSWtkMPULNOb4RiOPSx6Dk5P3f2fX3KZfrlu7ms3bxjqX5nX/OpnFLzlK30JACAgB/0jgt5vMQsgUfBR//NgTf8ZMZ7qr7ZX7VSfOekKLdb9GvuGW9q5ItG4/IGy7JbBS/ZUODuonA2lR9E4qUboCjh7a70IkWrdHweOWSGRZvv6GH7eSW8fgVnnZLwSEgBAQAkLAPxIIkK5nA6QhFg13M/dzH8Uhk+GedssVrQv50/8MwehPh+cnw4oQISImjh3mpdmg5gHzRdgL580079Lrd5Ubma/fkSQEhIAQEAJCQAg4EwjQQpGHQGFoCEZuUzQar82hFZEi0dhmvqSAS4A/l+cTya3flr6hXvfCjyQhIASEgBAQAkLAmYC/EIp08xkvd/TqiaFYZDKWXm3Hup4Rc2W9X7aFgBAQAkJACAgBIfC7E/AXr8fhz0351+Sfx+Zfmcm4hIAQEAJCQAgIgd+DgL8Qik5OTpbZkv4JK62JHJskISAEhIAQEAJCQAj8iQT8hVDkz129evVK/9C7f3D1cgx8eTLH5NZPcf2JF4scsxAQAkJACAgBIfBnEfAXMYpETkH2+vXrP4u+HK0QEAJCQAgIASEgBPwxgV9uUXzx4oU/xiFDEwJCQAgIASEgBISAEDAI/HKh+EH9Xm+CBAmM/mUpBISAEBACQkAICAEh4E8J/HLX87Vr15AiRQr1Uuz46v2Gt/wpFhmWEBACfkmgQPGKftm99C0EhIAQCHAEdm5c7itj/uW/9cyjSJgwIRIlSoRQoUIhYsSIvnJg0uhPAvyt6ihRovzcIWtCwAMEzBPLjHUuzZ9v377pbS7Nn69fv+LWo08e6EWKCAEhIASEgF8TiB89OIIECYLAgQO7+PAd17/cokgYN27c0B+/BiP9CwEh4HMEDDFptJgqo6OxKkshIASEgBDwxwQ2btzoYnTmH0H55TGKLkYiG0JACAgBISAEhIAQEAL+loAIRX97amRgQkAICAEhIASEgBDwWwIiFP2Wv/QuBISAEBACQkAICAF/S0CEor89NTIwISAEhIAQEAJCQAj4LQERin7LX3oXAkJACAgBISAEhIC/JSBC0d+eGhmYEBACQkAICAEhIAT8loAIRb/lL70LASEgBISAEBACQsDfEhCh6G9PjQxMCAgBISAEhIAQEAJ+S0CEot/yl96FgBAQAkJACAgBIeBvCYhQ9LenRgYmBISAEBACQkAICAG/JSBC0W/5S+9CQAgIASEgBISAEPC3BEQo+ttTIwMTAkJACAgBISAEhIDfEhCh6Lf8pXchIASEgBAQAkJACPhbAiIU/e2pkYEJgT+XQJjQoZA3V1b9yZUjMxImiIugQYP6GhD2dWDnSmTKkMbX+rDXsPl4w4YJ7aJosGBBLSwiRgjvIs+jG9myZNDHlzNbJnersD+yaNWsnrtlpYAQEAK/PwHf+8v7+7OTIxQCQsCXCMSJHRPjR//jovWPnz5hxuwlmD57ET59+uwiz9ZGhvSp8e3rN5w6c8FWtot9FKFhlEALEiSIi/2/asN8vENHTcb8RSstXRfImxMjBvfQ2w2bdcKRY6cteR5dCRIksPPxBfXY8ZFF8ODBPdq8lBMCQuA3JvDLhWLMmDF/Y5xyaELg9yTw/ft3Fwdm3jbWuTSvu6jgxY0FS1Zj8tR5iB0rBqpVLo1mjWshapRI6D94rLstdm3fHB8+fkTdxu3dLeufClQoU9SFUCxXuoh/Gp6MRQgIgd+QQJQoURAoUCB9ZFya18X1/BuecDkkIfC7EKDl8OWr1zh34TJ69R+prWkVyxVH/Lix9SHmzpkFS+dPwpH/rcXmNXNRpUJJvb9vz3ZInDg+UqVMinXLZyJdmpR6f91albBp9Rxdfsm8iciY/i8XqOjinj11FA7tXo0500YjRfIklny3+mKBFk3rYOemRbrexDED4OAQQdcLESIEOrZtgi1r52Hf9uUYNaQXokeLYmnTeuXk6fNImiQh/kqVTGdFjRoZObNncmUVDR48mHYNb1g5C/t3rMCU8UOQIlliS3NJEifAzP9GaBcylwnjx7XkcWXG5OHo1bW1ZV+hgrk1p8QJ41n2GSv2joFu8uGDeuDArlXYu20ZunRohsCBnW82Rn1ZCgEhELAJiFAM2OdPRi8E/igCe/Yd0k+6yZIlQoTw4TBmeB88evwUbTr0xaXL19CjSystItes24onT57hwYPHGDdpJu7cfaDj/Dq0bozNW3ejY9cBCKFcq0MHdHPBr2nDmth34Cj6DBiFaEqkTRo7ABRD9vpifCPrTZ42H2069UXav1KiZdO6ut0+3dugQpliOq9b76E61nL00N5uiqmNW3bindN7lFd1mMqUKIRnz17gf/uP6G3jv+6dW6JOzYrYvfcQRoydqq2sM6eMRMwY0RAqVEj8N24w4saJiQlT5mD/wWNoWK+aUVUvY8WMrusYO3mM8eLGQjAb7mZ7x9BEHXduFUPatlM/jJs4EzWrlkORQvmMZmUpBITAb0Dgl7uefwNmcghCQAj4EYHPP2ITHdSkDrq5W7XvjQuXruK90weEDhMK+fPmUBa5BNi2cx9ev36rXc+bt+3Ro71+8w6atuqGQ0dOIlTIEFoQ1qpeXotA43BWrdmEKTMW6E3GRI4d3he0JFJsudVXKDXxhilkiOC4e+8hipappcUsrYqlijtizfqtyhJ6UpfZsHmntgTGjxcHN9R4rJOTOo4Nm3agRNECGD7mP5QtVQSr1m3B169fLUU5oYXik6Jy6KhJej9F8sLZ41C5fAlcunLd4p5ftnKDzg+pjrdx/erwrK3PvWPgWL6qONBwYUNj687/gaw/fPxkGausCAEhEPAJiFAM+OdQjkAI/DEE8ijrHdOtO/fx9p0TsqvZvIP6dQYFy4cPH3Ve0GDB9NL6v3dOTqDbesywPsqi99OZwlm+Rjp87JSxius3nIUcrW/2+tqybS8K5suJdq0aoUObJtrCOWTERDx/8VK3RbduvjzZLe2+ev1GW/5sCUUWWrZqAyorF3rHtk0RP15srFi9CcWL5LfUTxA/jl4/evyMZd/5i1f08SdQLmZaJJlOnDxryT9x6pxl3TMrCZSgZXLrGGbMWYxkSRNilLKSMnEc3XsPw/Wbt/W2/CcEhEDAJ/Dzr2XAPxY5AiEgBH5jArRuZc2cXguwc+cvoVzpoqhfpwr+VS7PrHnLoG3n/naPvnO7v5X7ORvqNumgy8+ev8xV+dQpnWMDmZFaxTcyPVYubHt90ZI4TM1UzlGgPFq264WPyqLWrVNzJRif6PqLl65FnkKV9KdAsWooW7mRsjD+FKS6kOm/CxevasHFeMvDR0/i3v2Hplzg4SPndlOa4icpHmk1vPfgEZ49f6HLm+MrjRhNoyFaAcOGDWNsqhnRP9ctO9WKe8dAUdq8TU/wuHr/MxJJEydE4wbVzU3IuhAQAgGcwM9H6QB+IDJ8ISAEfj8CSRLFVyKtiIq3i6XFGidK0FpHC1/kSBH1AT94+Fi7WmvXqOACwO2795EtS3o9YeXmrbuI5BBR13v58pWapJJYu4VdVFAblZTrlkLszZu3WoRSCNHtTEskk62+0qqJMhPUq3wYn3j2/GVV/7Eue1/FRx49fhqlVJwhX9FzUbmHW6jYxWxZ0qGMEoufP3/R5Wz9R5dx725tsHzVRlfZHN+BQ8dRxDGvbvPKtRs6RvLLly/azc2xU6xSRNN6yeOm0DWn23fuIUvmdChUIJcS3q/0jHJzvrHu3jHUrlYeJZV7vUnLrjhx6jyc3r8HWUsSAkLg9yEgFsXf51zKkQiB344A4wP79miHomqCxKkz51G9bitsUpNRmBi7d+3GLT3jd+WiqXj69JmL41+0dI0SfO8wS03ySJc2JWbMWaJe2h1Ez0AeN7Ifzl+44qI8N+jm5Yum+Q5HCqzOPQZpC6a9vvbuO4ylK9ajT/e22Lp2vop/DKknkbC9Lr2GqH4uY+SQnuAM5fjxYqmJMqPh9MM9zDK20kYVy3hfWQd37N5vKxucGHPoyAl0VbOMZ08ZhXhKSHNCyZWrN7TQ7dZnqBbPnIHdvEltJTidYxWNlxxN+G+2juGky7ifmiG+c/cBm/1wp71jmLtwhY4RXThrHJap2ednzl7EkhXr3GxLMoSAEAh4BAL1nWz1gjR3jmFAS9vxP+5Us2TLexQtKGRFCAQYAsb7EY0Bm7eNdS7N69HipTOK+9qS7/pyiBhBv0Ln27dvNvuJGDE8Xr58rfP4Qm3OYDbiB21WUDtZhtY4c3KvL+aHVjOOjRhBc12+ziaYeqm3rTxzOc+uM74ydKhQrsbKdn6O9xW+fTMk4s8eaJ0NHy6cZvdzr9tr9o6BeerNa+AEIElCQAgEPAKPb59y8e5E/v1g4lJczwHvfMqIhYAQ+EGAwtQ90WeIRFbh7GH3yrOctUjkPvf6Yr5bQpDvg/TIr8mwH88kuq9ffXYpaI367o2X4pHvqPRosncMvnFsHh2XlBMCQsB3CQQd2zut7/YgrQsBISAEhIAQEAJCQAgESAISoxggT5sMWggIASEgBISAEBACvk9AhKLvM5YehIAQEAJCQAgIASEQIAmIUAyQp00GLQSEgBAQAkJACAgB3ycgQtH3GUsPQkAICAEhIASEgBAIkAREKAbI0yaDFgJCQAgIASEgBISA7xMQoej7jKUHISAEhIAQEAJCQAgESAIiFAPkaZNBCwEhIASEgBAQAkLA9wmIUPR9xtKDEBACQkAICAEhIAQCJAERigHytMmghYAQEAJCQAgIASHg+wREKPo+Y+lBCAgBISAEhIAQEAIBkoAIxQB52mTQQkAICAEhIASEgBDwfQIiFH2fsfQgBISAEBACQkAICIEASUCEYoA8bTJoISAEhIAQEAJCQAj4PgERir7PWHoQAkJACAgBISAEhECAJCBCMUCeNhm0EBACQkAICAEhIAR8n4AIRd9nLD0IASEgBISAEBACQiBAEhChGCBPmwxaCAgBISAEhIAQEAK+T0CEou8zlh6EgBDwQQLNGtf2wdakKSEgBISAELBHQISiPTqSJwSEgL8iMH3ScGTOmBZc+peUK3sWRI0SWQ8nSuRICBYsqJeG5p269joMpDKDBQtmr4i7eb41Nnc79mIBHnOIEMHdrR00aFAECSy3QXdBSYE/moDX/qL90cjk4IWAEPArAg2bdQItipOmzvXWECjsmjaojRcvXuL79+/4+vUbDh87gROnz3q63UQJ4uHBw0d48vQZihcuiAOHj+Lq9Zs222lQqxrChAmlREwIUKS8e/dOl5u9cJm7dW026M7OHFkzIUfWzHjz5g0+ff6MQ0dP4OLlq+7Ucp3t3nG5ruFze8KFC4tyJYvCIWIE/Dt5houG48SOifKliuPW7btYs3GLzsuYPg0K5skFp/fvEViJwGWr1+Pho8cu6oUNEwblSxdTbUZEcCWiL1y+gg1bduhrwUVB2RACQgAiFOUiEAJC4I8k8ObNW0yYOksfe8iQIdCoTg08fvIU9x489DKPuYuW2a07Y94inZ8pfVrEixsbK9dutJR3r66loAdXKKLS/ZUKYydNU0L4K0KHDoX6NatqUfX+wwcPtuJczKfH5tHOQ4YMicplS+HM+YtK8GZ0US2hEujZMmXApSvXEFIJb6ZoUaPAMW9ujJ8yEzxGisaSRR0xfc5CF3W57/LVG0o4H9cWxbo1qyBVimQ4d+GSi3KyIQSEAEQoykUgBITA70WAbunJ0+biyLHTHj6wDx8+4vXrN4gcyUELRbpaSxcrrIXHoydPsG7TNjx99ly3lzxpYhTKnwchggfHqbPn1T46Op1TuVLFcOLUWdy6c1eXyZAuDT4rS96GLduVMLluFLO5NNetWLYk7ty9jwxpUyNM6NDYsmO3rlOoQB7lRg6OrWr75Jlzep9bYw0dKhReKzFMkcjk5PQeU2bNwzdlPWVyq17smDGQI1tmPH/xAvHjxsHMeYthHptb9ejqrVimBOLFiaPr0pL3XFls7SVaVhvXrYH/Zs5VnL7oovlyZcc7JyccPXEanz99wuyFS/VYrYXi3XsPcOPmbWTLnBEhozoLRVoQ127aqkUiG3vy5Jm2GFqPYceefZbz+fXbN3xQovKbWkoSAkLANQEJznDNRPYIASEQgAhkyeQcs0iXND+eFYlBggRBsiSJEDdOLNy+dx/crlW1Ak6fu4BRE/7TYrByuVIIHCiQFpKlihXCtl17MXH6bC0u4ivLoJEo6uhSjhs7FhLEi4MxE6cq1+c6sM5POWmUdrk06nJvGGX9oyCdo1zSS1atRanihZEuTSpMnjEPi1es1m5qxh3aG+vN23e0u7ZG5XKgBTOSg4MWYxRG9uoFCap4JE6IL1++YsmKtXqQxtjs1cuaMYMShq8wfOxEnLt4GQXy5nJ5gDa2Pn78+P/2zsM7qyrf+78UEkKQJJRAkN57IIANQXoTpCg6qKgzYL2z1tx33uVa8ze8966545or6ohtcMaCigICiihNWmihJNR0WggkpJJAkvf33XE/OXnytEAqfPdaec4+++y9zz6fBw5ffmVH3eJF0r9vH9fVUWoFTcvIMudYqxW6rg6/VSDA3QtczE7X+oD+fSQ1PcO9mwkTQMjBgH59zX8IgvS7PZuaVqcfG0iABEQoFPmngARIoFUSgEBEGZcQL4hdPHAoyZwHakmM6nCfvPmnN+Qvf/6jsf59uXa95Odfl359equFqcy4O4OCgiVZRQ9coDEx0WrhGyFnzqUZdyf67Ni9z6MlKjgk2MTHRahLG5avt1aukiqzusA/Eg8dMZYxjL9+vUAS9flg+crMOq+WwkIVftE+11peftNYEE+dSdV+vWT5C0vld08uMCLR1zNihbDo7fh1rzk6V+xrHJ4Z8X4hKpR/3ZtYy63unMO9DlE5dNAA04zY0Vu3bsnVa3nu3ep9DssnXO+7dC3eSpfOHaV7XFf9DqvuOOHH2z3YTgKtnQBjFFv7N8j1k8A9TAAWRKdADFQkAtl1dTUjfg9Zyz26xxkBiHYkTUR16CCvvPQcTk2B9QpWNYgzpwsZ1q7zF+rGNGZqcgWsYq/+4QV1+ZbInsSDcujIMTtdQEcIUVtQdz9vo4LM11ohtuDOPXjkqPmBpfO5JYuMZTI0JNTrM+KeBQVF9ta1jr7uh2QguOv/7x9flUs5ObJ1+y4jamtN4OEEiSRTJj5ihPUQFYzJp8546FW/poiItvLM4idk/aYtmjBU4nXwnv0HNfnooMxXi+0DGu+4bedur315gQTuVQIUivfqN8/nJoFWTgCisD7C0NvjQihAFEKkwG1ZXFIsObm5JjbPfQwsVGEam+gsECXuBa7Mreqehou6b++eKloWaDxdluTl+47Zc5/H37mvtUIA56mFFBZRFFjq0jIyJVpFMOIuvT0jkmzglvVUfN0P28ysUatsqFoVx2oSyZPz58r/qOvdX4GQw1rgqsd38O2Gzf6G+LwOQQzL6a69++VcWl23MzKdsT58N7YgHnTEsMH2lEcSIAEHAbqeHTBYJQESuDsIIKHFuqb9PRGSGNap5WnO9Clm25r0jGyzLyIyaFGQcLF82VIjEFMzMqotcipGUPr06imxsV1M3fnRV93XT2lcIwRXqiZcQCBWVFQnazj73Wnd11qRfPPw+LGufR0hoAZqLGaWurJ9jfO1Jl/jJk96RJmPMck7iO+8qcI00AIxC4seXNfYZggFsYqRke3qTIHYTMRcQoy7F7Qs0oSiFLVKJh1DolFNgUCEEC0sKpKRw4eaRCVchcBFPOily1dqOrNGAiTgIkCLogsFKyRAAi2dAMTf6y8/bzbd9rXWapG4TC2Ob/rq5rp2QbfESVFr4gzNKkaG8zfrNgqSQEpLy6SyqlL2Jh6Scs3ATU45rW7q7vLGihelqKhYrmpmcGZWtmseW0lNS5dRw4cYSyUSMrCvIjKQG7ogltDbWrFtDMTua7pfZHFxqRFdR46eUBd7dfa1t3G+1ujrfokHj+h+h7PNc8MeWR83bsqpsyZBZ9ee/eb2SByaOWWSbFDmzuQUXOzcKUZmTJ1k4kSLftuH0gzSjymPTZAhgwdKt65dZLzGrqJgj8yVqz6RgZqggxhTzIdnXzx/jtzS0AEIyDRNeNmuMZksJEACdQkExcSO9OxjqNvXtBReS/FyJbDmuLi4wDqyFwmQQIsh4O6KdJ7bOo7Oemyv6n+oG/ohIAL9uZwbYlNurBtuZghE9wIrFLKDkTDiqyBLuEqFYqUXV66vsfW95m2tmAfJOGWaCOPpZe9rnK81eBsHyyXc3HdaYDG0f57c5/J1zb2v89x9HKzFiD/l1jhOSqzfiwRyMpNcVnr8PcEPiqlTKN6LfyT4zCRQPwLu/2A7z20dR2e9sYRi/VbO3iRAAiRAAv4I+BKKjFH0R4/XSYAESIAESIAESOAeJUCheI9+8XxsEiABEiABEiABEvBHgELRHyFeJwESIAESIAESIIF7lACF4j36xfOxSYAESIAESIAESMAfAQpFf4R4nQRIgARIgARIgATuUQJNvo9i587Vm9jeo7z52CTQqgjYLGa7aHvuPKLu6ceO4ZEESIAESKBlE4jW/UTttjjuxyYXirn6q5pYSIAEWhcBKwztqp3ntm7FIvqgHtuht+3OIwmQAAmQQAsmkK+/ParW3omOfRTpem7BXxyXRgIkQAIkQAIkQALNSYBCsTnp894kQAIkQAIkQAIk0IIJUCi24C+HSyMBEiABEiABEiCB5iTQ5DGKzfmwvDcJkMDdQQC/y3lcwqhaD/PuqtV+fwd0rQE8IQESIAES8EuAQtEvInYgARJoKQTGjx0lr61YJgcOHZXlr79Za1m49sE7/1WnvVanRjiZ8NB4OX02Va7kXpXOnTrK9YICuXnzlutOYWFtpLz8puu8KSqDB/Y3geknT59t1NuFh4dJeVm5VAV4F38sfF0PCQmR4OBgZdu0LAN8NHYjgbuWAIXiXfvV8sFI4O4jMC4h3iUEIQohGGFZxPGd91dr/ajA2oi6r9Klcyd59Q/LJC8v32RoV1RUyv6Dh+Xw0eO+hnm81q9PL7l46bIRinNmTJU9+w/I2dR06dent8ybPU3KVEhVVFbKqTPnZOfufR7naOjGrrFdJFizFhtLKPa4P04WzZsjt27dksjIdvLD1u1y7ESKhIaGyrTHJsiD48fK397+hxQUFplH69+3jzw+a5rpHxISLHsTD0vioSOux/Z1PSwsTBbMnWlEOLIyy8rL5et1GyU//7prPCskQAKNR4BCsfHYcmYSIIEGJmDdzbAeOi2KEIdog0CEgAykFKqIefv9j03Xtm3DZcULz0rOlVw5f/FSIMM99ln9+VemHdavxU/MkVX//MwIGoi2Z59eLFm9Lkh6ZpbHsa2lEc/y9KInVKx9LxmZ2dKpY4y8pqL79NlzsvDx2XL6XKqK4zLX40CUz58z3Yi7rOwLEh4eLsueWSzFJSWSfPK0+Ls+ddIE03fNtxvMnOP1PwsLH58lH//rS9c9WCEBEmg8AhSKjceWM5MACTQwAVgOURIPHjWC0J7bNohFZ5vpHMDHjRtlUlBQaEQPhCJcyPNnz5DYLp3l8pUrsmHzT5J79ZqZCW7d6ZMnSrhaupKOJ2tbkOsOC+fNlsNJx+VSTo66foOlqKjYXKvUfSU/++rbmn3KtHXShIckIX6kBAUH6ZqTZMdv1sa4brHyxJyZ0jEmRnJ039mvVCBd17U9OG6MEVndu3WVq9fyZMsvO6Rv754yc+pkiY7qIJcu58i6TVskT/dDQ4Fb+JnFT0ifXj2NxXPNdxuktPSGuebtAyLu5Reflfc+Wu1ynz+m64SoO3C4mn2Y9tm9L9GIRMyTp5a9ysoqCQkOkW/WbzKu4ZlTHnPdAsIOTCASUSAid+7ZLw8/MNYIRX/Xe6r18pedu13zHTl2Qp/5MYlo21ZKb/h+HtcgVkiABG6bALOebxsdB5IACTQ1AQgqWAytRRHnsCLiB20QkCi2TyDrg/Vv0IB+0rNHd8k8f0Fw/rxavI6qK/Wvb79nxOCShfOMKxfWs3mzp8tP23bKyg8+UYFUKb173u+6TWS7dsb9CnfzudQ0tVIuFcQw3h/XTaq0L1y1KAmjR8mA/n3l43+vkQ9Xf27uP3zoIHMNInG/umX/31srJfv8RZn0yEOmHSLuwbFjBEJp+697JUZ/k8Ki+XNl/eYt8t9/f1fSMjJl4bxZpi8+hg8dLNt27ZG//+NDuan3fXBcguuatwpEHCytcAXbMmrEMJ27xgp6Q8XZ3sRD9rL07tVDruXlSUlpqcf4weioKCNsXQO0AqEbo+0o/q4Xqtju1aOGsYlV1O+oQ4f7zHh+kAAJNC4BWhQbly9nJwESaEAC1UJwtUloeW1F9cSIS7RxiohhtOLx6P4fZNQDNcLJfRlRKjTe/NMbggQKxCp+uXa9cRMP7N9PYGE8lnzSWAXhHp386CMSExMtY0aNkDPn0ky8IeaDFRCWMU9lrVrXBqn1ESJ0rApDiERYFWGBSxg9Uq1yB4ylDmOTjqfIkEED5UTKaVm7YbOJd8Rvtzl55qxMnTjBNT2SZmzc4cRHHpAjR4/Lhd9c5b/uTZRyTfSw9s2UU2fkcs4VMxaid4QKx0DKCX3eoYMGmPvALYx1Q9h5KohJnKtxmRt/3OrpsmmDW7/MLZmnXOMMIXxR/F1H7OjiJ+YaIQpr78Ma/+h0bZtJ+EECJNBoBCgUGw0tJyYBEmhoAohFhBB0xie636N665x4tTJ+6n6p1jncuW+9s8pY/Hp0jzMCEB1ioqMkqkMHeeWl51z9kWkLa2FHFYsQa7ZUVFTI+QueYxqRCYwEFvygTJv8qEzReLtvNBED1jQkfUyZ+Ii5hg+4jlFw73mzpkuwJn2EtUHGdLlpx0dBYaGr3kld01Y0ohEJM05Ln9PNXKrWPgjiQErK6TNmXcgwHqKCMVkFp6cCQbpIXe0Q0k6Lo3tfWCgj20XUao6IiJCi4mq3vL/rqemZymyTjIkfIV27dJFfVWAjmca69WtNzBMSIIEGJ0Ch2OBIOSEJkEBjEYCL2QpBew8IR2yZg2Kzn+21QI579h80ohCiCMKruKTYxAZ+9OkXdYbHqxsWWbjOEhHR1nlq6siE7qs/W7ftcl07czbNxDaiATF/G7f8LGkqgpylnQqqJ+bOkFWf/NvEJUIQzZ422dXF/l5tNBQVlwjiGWEttAXuZlgS76QU67yIjeyjLmUw+VYtnJ7KDI0TRAayM37QUz8kCMVpXCVc5rZ006xsbCeE4u86rJoXLl2S1PQM0799+0gTDwlXNwsJkEDjE2CMYuMz5h1IgAQaiIC1KEIwQiDiBwUWRvxYIVmfGEXEGSIJZM70KcYdmp6RbTJxkciCAhfp8mVLjUBMzciQ+JHDTBwiriFRJFZFj3vJUREEUYkkE1uGDh4oWRoDiQIr42i9jng7FLivHxqfIB3uu89spwNrJ0rf3r3M0dMHRC0Sa+5r395cxnqReILnudMCK+EDGg8Ji6YVdIhVxFY4KA+MHW2ebYNy81cOHjmm8ZKDBFv2oMDVjOc9eKQ6ntTfdTCeMXmSy6WOZzx6Itlsa+Tv3rxOAiRw5wRoUbxzhpyBBEigiQhYIYhYRFsgFu2WOLdjUcQ8iPNLUeE1Y8pEk+EM9/CzSxZqlnCZVFZVu3ThAk7WGMIe3bvLGyteNK7Pq5rEkZmVbZfiOsItikzppU8tNAkesEIiXhCCFAXJKEiK+c83Vphsa1gY13z7vVRoPCCyq7HdDFzHTleza/LfKrCwJcKauvwFk0wC0bl2wyb3brd1nnLqrGBPyF2anYyCLXFmTpkkG5QBYhZnq6iGmP2PV14y1/GB9Vv3uatRK3Axf6XXntQ4Q4hYsNh34JDZaxL9/F0/lHRMs8BnyOvKHO5w7Fm57ucdzluwTgIk0IgEgmJiRwa6qb5ZRuG1GjfH7awrLi7udoZxDAmQQDMScLo8sQznua3j6KzH9qoRc421dGQ6o9hsZ9SrXdOjpCF+pR9EjTNGEPOjhKhgCQkNCeg3rmAOCEDEELoXa1FErKOzwIp5U0UZttXxVxAriC1rGjvBA5td2+/X35q8XffG0/b3dR0iEc/qiaMdzyMJkMDtEcjJTKrZvkv/ruPvOwqOFIq3x5SjSOCeIuAuEJznto6js94UQvGe+hL4sCRAAiTQSAR8CUXGKDYSdE5LAiRAAiRAAiRAAq2dAIVia/8GuX4SIAESIAESIAESaCQCFIqNBJbTkgAJkAAJkAAJkEBrJ0Ch2Nq/Qa6fBEiABEiABEiABBqJAIViI4HltCRAAiRAAiRAAiTQ2glQKLb2b5DrJwESIAESIAESIIFGIkCh2EhgOS0JkAAJkAAJkAAJtHYCFIqt/Rvk+kmABEiABEiABEigkQhQKDYSWE5LAiRAAiRAAiRAAq2dAIVia/8GuX4SIAESIAESIAESaCQCoY00L6clARIggUYjgN/x/NqKZR7nP3DoqLzz/mqP19hIAiRAAiRQPwIUivXjxd4kQAIthMC7q1ZL4sGjtVZjBeTrLy9rMrE44aHxcvpsqlzJvSqdO3WU6wUFcvPmrVrrCuQkSDuFtmmjY2967R4aGiqVFRVSqb9Xu7kK1hkWHiZlZeU+l9CmDdZaKRWVlT778SIJkEDLJkCh2LK/H66OBEjAAwF3gejsAgE5LiFefInFLp07yat/WCZ5eflSpaKrQgXN/oOH5fDR486pAqr369NLLl66bITinBlTZc/+A3I2Nd3n2L46ZtqkCbLqn5+Zfg8/MFYefmCcFBYWSrkKxX0HDsvJ02ddcwwZNEAem/CQEYihISFSUloqm7b8IjlXck2f8QmjZe7MqfKBzpd94aJr3P/5j1f0Hv/WeYtcbXdSSRg9UqZOnGDuHxwcLF99971cupxTa8qItm3lyQVzpW14uISFhUlGVrZs+vFnl7htHxkpLz67pNaY6KgOsvmnbXLwSG3hX6sTT0iABJqFAIVis2DnTUmABG6HACyGKFYo4tzW7XzWJY1rvlzQEE9vv/+xGda2bbiseOFZI7zOX7xkp6r3cfXnX9V7TI/74yR+xDB5651VKlgrpF27CPn9c89IRma2lN64IePGxAuE4qdffCPFJSVm/u5x3eSZxU/Imm/Xq1C7YtogGmdOe0w+XP15vdcQyIDYLp1V3D4q//uPj8y6IBofnzXNiFPn+GmTH5Ws8xdl+649Auvj0iWLJH7UcDmcVC3Ci4qLXdwxLiysjfzn6y/LiZOnndOwTgIk0EIIUCi2kC+CyyABEvBPAJZCiD+nQHTWIRoTD75pJoJFMdBy40aZFBQUSqeOMQKhCBfy/NkzBOLo8pUrsmHzT5J79ZqZbvDA/jJ98kQJV2tZ0vFkbYMcqi4L5802gghWNPQZEz/SuJI3/rjVuKdtP+exXUSEFKhohUhEKSkplX98/Klx28IiB+G18v1PXCIRfS7oGiHEZk+fIh//60s0SboKS1jmhg0ZJMn1FF2wikKQfrl2vZkLH889vUi2bt/lEqKwIK7fvMWIRFy/cuWqhKmr3L1UVlbJrVvVrnc4yENDQ+SWD1f80EEDjdXxhopiFhIggZZHgFnPLe874YpIgAT8EHC3Ivrp7vNyiLpyBw3oJz17dJfM8xcE588/s1iOnkiRv779nhGDSxbOk+CgICMk582eLj9t2ykrP/hEKjX+rnfP+13zR7Zrp8IoVHre31369Oohf1v5vrpnNwjG1MhJV3dTSc/MkpjoKHl2yUIZO3qUdIyJMTGOiO3rooK1qKhYCovquo4xrlvX2FqTbfllh0xVlzaeoT4lM/uC9OvTWyBaUTrc1166dukil3+zVqINLmanO3xA/z6Smp6BS7XK7n2JMnzoYHWFT5OlTy2U0tIbkuJwo9fqrCewplYLbvcrPCcBEmgJBCgUW8K3wDWQAAkERGBcQrXrGVZEW2BlvJ0S1eE+efNPb8hf/vxHY/2DNS0//7oRTLAwHks+KUFBwcY611bj7mJiomXMqBFy5lyanDpzTtBnx+59Riy63z84JFhggYtQl3a2umHfWrlKvKWflJffNBbEU2dS9d69ZPkLS+V3Ty4wYi8ysp25j/v8OIdbGlZNCFNbYPVMy8iUB8aOtk0BHWEBPJuWLrCWogweOMCIO29rhsUVAm/X3sQ680dHRQniKGEhzMvPF3Bu3z6yTj80GEEa28Uw9diBjSRAAs1OoOYN0+xL4QJIgARIwDcBbH1jixWLBw4l2aZ6Ha+rqxlxgcha7tE9ziVWYN2L6tBBXnnpOdd8yESGtbCjikVkONsCd/H5C3VjGjPVDZyWkaUJMy+oK7lE9iQelENHjtlhdY7IkkYiB34g/J5DXN/IYZKZdV4FalSd/mjAGhFnad28ttO2nXvM2o8cO2GbAjrCXQ3xh4QexETu2L3X47iIiLYmPnL9pi1SXFwdM+nsOHPqJOOizlIrJcqD4xLkUWUM9717GTl8qCSfOu1yu7tf5zkJkEDzE6BQbP7vgCsgARIIkABEoTMm0VkPcIo63fbsP2iEFcQRXKvFJcWSk5srH336RZ2+EFKIG3QWCCf3EqRu6q3qnoaLum/vniqsFkhaepaxsKFvGxWDdtsYCNU8tWTauEIIP1gFo1UIHsk7oUKwQvr37S3n0mq7eYdrLCL6uRckvBxQwTn50YfdL/k8P3MuVebNmm6sfLAYQqS6F4hYWDt37d1fZz3oCytqV3WHX86pzsZG2xVlOWr4EFTrFPCE4GQhARJouQToem653w1XRgIk4EagOlmlxqrYELGKiDNcp2JljiaGhOuWLukZ2YLtc5DIgoK25cuWGoGYmpFhLH3W3dunV0+JVdepe+mr8X5PaVwjtt5JTc80ArGiomZvRYjHa9fyzTC4ix8eP1aw7yAK5h6oMZPIHMbaEHeIGEe7HvSBcMSWOL/s3I3TOgXiF3GX2Kom0AKrJoQnYgshGrH2mOhoY13EHIixXKTJOimnzkjSMSTx1BQ8T1y3rma9lzWWceSwamGIMUiusZnkth9GxnWL1WcN0eestjzWzMYaCZBASyJAi2JL+ja4FhIggYAIWLdzQwhF3BBZxEi4mDFlonGRfrNuo0kuKS0t0/3/KmVv4iEpLy+X5JTT6qbuLm+seNEkmVzNy1PLW3adNadqvB+saHBfw3KIfRWR2YykGIhQWN7+vWatGYd4R4jA13Rfx+LiUkFc4pGjJ4xYQ4cTKadM5vTi+XM0ZjLIjMUWM598tkbyrxfUuTcaYJWECxpZ2PUpcAM/tWCe2G1+Bvbva+IyYWmd8tgEGTJ4oCbQdFGRWh0Xiv0nV676xIhWuPKxn+TXym7h47NNH4hebNvz3cYfzDIgbm0/WBOPHk+pz/LYlwRIoBkIBMXEjvQWr+xxOYXX7uwvdlxcnMd52UgCJNByCcC65CzOc1vH0VmP7XV7SSbO+3irQyj6S2JB4svy16u3yvE2j792uJkhEN1LiAq9ELWGIRHFV0H2cZUKRfubVDAOv9UEmcCeCpJmyjQJpDbtmp4QXpjPuq1rrjReDeLUfq/e7gLLofuasT8ihKTd9gdjPfXzNifbSYAEmo5ATmaS+Y8o7oi/8/ixdVoUDQp+kAAJtCYC7i7oxlq7J5GIe0GoVZT7/9V0TpFkx3kTibjuby9B98QVjGns4k8k4v7uIhFtnkS0p37oy0ICJNByCTBGseV+N1wZCZAACZAACZAACTQrAQrFZsXPm5MACZAACZAACZBAyyVAodhyvxuujARIgARIgARIgASalQCFYrPi581JgARIgARIgARIoOUSoFBsud8NV0YCJEACJEACJEACzUqAQrFZ8fPmJEACJEACJEACJNByCVAottzvhisjARIgARIgARIggWYlQKHYrPh5cxIgARIgARIgARJouQQoFFvud8OVkQAJkAAJkAAJkECzEqBQbFb8vDkJkAAJkAAJkAAJtFwC/BV+Lfe74cpIgAT8EMDvfH5txTI5cOio/iQJfrUfCwmQAAmQQMMRoEWx4VhyJhIggSYiAIH4wTv/JeMS4mX562/KO++vNvXXX17WRCuouc2Eh8ZLl86dTEPnTh2lTZvb///3E3NnSkhISM3kraQWEhwc0HODDfqykAAJtB4Ct/9Gaz3PyJWSAAncRQQgBscljJJ3V62uZUGEWESxYtGee3p0CLtX/7BM8vLypaqqSioqKmX/wcNy+OhxT919tvXr00suXrosV3KvypwZU2XP/gNyNjXd4xjc95XfPy9Xr14zgjA4OEi27dwjx5JPmv4jhw2RTVt+1vV4HN7iGoODgmTurGkyaEB/XXOFXMvLkzXfbpAbN8pqrTWibVt5csFcaRseLmFhYZKRlS2bfvxZKpW9p2I57Us8JD9t2+mpC9tIgASaiACFYhOB5m1IgATunIAVibAieisQiOgHi6OvfoWFRfL2+x+badq2DZcVLzwrOVdy5fzFS96m9tu++vOv/Pa5fr1A3v2wWtR26hgjr/5+mZw+lyplZeV+x7a0DgmjR0lMdJT8beX7UlVZKYvmzxFYWLdu21VrqdMmPypZ5y/K9l17JEivLF2ySOJHDZfDSZ6F+Ywpk+REyqlac/CEBEigeQhQKDYPd96VBEjgNghYK6E3q6EVkrA22r6B3AYWsIKCQoFwg1CEC3n+7BkS26WzXL5yRTZs/kly1QqIMnhgf5k+eaKEq2Us6XiytkD6VJeF82Yb8QOLGfqMiR8pN2/elI0/bpXTZ1NtN9fxut4TFs1gD+7YaBVg89RaF9e1qxQUFsqWX3ZIanqmGQsX7qxpk9WS109u3bql1tAjsletbyhPLnhcsrIvyBgVYpHt2smPP2837dOnTFT3cJhs0fMjx06YNl8fkx55UG6plXD3vgOmG8T07597Rt776FOpVFGIUlRcbNZlz6/kXpP27duZa86Pysoqs060wYYYGhoit27ecnZx1YcMGqCWyXwpKSkx1kfXBVZIgASahQCDRZoFO29KAiRwuwQQn2hFIKyGEIdowxEJLbAi1iepBTGBEFw9e3SXzPMXjEv4+WcWy9ETKfLXt98zYnDJwnkCNyuE5LzZ0407dOUHnxjB1Lvn/a5HgTALDQ2Vnvd3lz69ehhL21ffbTBjrJxs06aN9OvTW4YOHigLHp9lRFtp6Q3XHKggju/5p3UNx1Pkv//+rqzftEUWzpsjHWNiTL+5M6YZgfnWOx/IB6s/lxFDB0v8yGHmWmS7CCNm//nZV/Llt+tl3pwZ5tq7H34qX3zznXGPYw3+SkbWeRk1fKir28D+/SRH3etWFOLCydNn5dLlK64+A/r1cYlZV6NWdu9LlOG6xrkzp8nSpxYKnjdFx7oXfBeTJjwk23/d436J5yRAAs1EgEKxmcDztiRAArdHACLQWhSdrmWIRyS3QDxCOPorUR3ukzf/9Ib85c9/NNa/L9eul/z860bEwcKIuMGgoGBJPnla2mqMXUxMtFrpRsiZc2ly6sw5E4e3Y/e+WsLJ3jM4JNhYCSPUCpetLte3Vq4yljRcDw8PM8INwgmCsqyszIhLOxbHvhr3CGsdxCosjhc0BvJw0jFJiB9hkkaGDx1kLIWICywuLpGt23fJ+DHxrikSDx2R0hs3zL3h6k5UAX1DzzNV/ME62VGfxV/JzD4v7VT4wrWMMkQtqWDhrYxWCyZEpCfLaXRUlISqCMQa8vLzBezbt4+sM9UjD4wzLmd34VynIxtIgASajABdz02GmjciARJoKAIQhRCLVjBiXmtRtNZGf/eC2/etd1aZmLoe3eOMAMQYCKOoDh3klZeec00B9zGshRBYTiEEoXb+Qt2YxszMbEnLyNKEmReMC3VP4kE5dOSYma+oqFjWrt/kmvvFpUtkqLpbbUILLuA+V6/lufqgAtc3rJAx0dFSqHPcdLhuc6/mqZCttjairzOZBHX38zZq9fRXIFBPnj4jcAXDtd27Zw/59vvNHofdr/weU0vgh6u/MMLWvdPMqZNk/eYtxiWOaw+OS5BHNZYRLn1bBABj3AAABsNJREFU7mvfXkYOH2Jc27aNRxIggeYn4P9t0fxr5ApIgARIoA4Bm/kMKyIK3M6o18ftjHF79h80ohCCCK7U4pJidbHmykeffoHLtUr8iGF14uYiItrW6oOTIHVTb9VsXWTs9u3dU55ZvEDS0rPq9EMDLHfdusbWEopFaiUc3a1rrf6RkZFGIEJoIn4RVk5Y6FAiI9tJUVFRrf4NcXJCLYjTJj2qIjXPZCo7xamdH8J6kcZmfv71Ol1f3TUg/rKrPt/lnFw7RDPEc9WtPcR1jsrUSROMlfFVzQpHaacudFh0ERvpFJTmIj9IgASajABdz02GmjciARJoSAJwO0MYQjBWH+NdsYv1uQ/cpes0BnDO9CnqFg6X9Ixssy8iEllQ0LZ82VIjEFMzMozbGHGIKH169ZTY2C6m7vzoqzGIT2lcI6xySECBu7Wiom7yBuYeqPGR2FrHWdJ0DKyasOKhwF0Nt3PKqTNSUloqWepCHjdmlImbROzjQ+MTJFmvNXSBqzo6uoO5F+6NAosmRDUKtr15etF8+e77H1QI1sQq4hoEcpyKXfC9fDlHsPUPCtY7bMggV3b5KBXfELo/bd8p72k2+L++/Mb8JB1LVlf3Kfl5x69mHD9IgASahwAtis3DnXclARJoAAKwIlpXcyBxid5ueUEznZFcMUMzg2G9+mbdRnl2CZIuynSvv0qTUVxeXi7JKaelR/fu8saKF9WCVyxXdd/ATM1wdi+paenGYgb3dYUKJeyrWKDb8XRRYRgV1UFe0z0cYXXEvoKw2lVnT9fMgvjCNRoziQ24kdWMJA/s85ieWW2VXKsu4IWaCDN29EgpL79pYhF/3ZtYM0ED1SB0EY85euRw+Xrd92bWgf37mljNU8rrd08tMLGbC+fNct0xM+uCfLfxBxmfMFrg3scek18rz4WPz9a2eBOPiW2I0AcJQjN1K5wNyhbWXGdB7CbuX1JS6mxmnQRIoIkJBMXEjvS846mXhRReS/FyJbDmuLi4wDqyFwmQQIshgH+wncV5bus4OuuxvWqSK5xjG7IOceh0PdfX7exvLdgcGgLRvSArOUS3eIFI81Ug8LC/oLeNpX2NtddgTfS2xyK2ycFm4c5MZDuuMY8Qufa79nYfWA5r/6kRtcq2MetFbKctgcxl+/JIAiTQOARyMpPMf14xO/5O4sfWaVE0KPhBAiRQHwLe/nH31l6fuevTF8KwocWh8/6eRCKuw0pYUV69l6Czv3vdKYjcrwV67k0kYrynmMFA572Tfv5EIuZ2F4lo8ySsA5kLY1lIgAQan4AViM47MUbRSYN1EiABEiABEiABEiABFwEKRRcKVkiABEiABEiABEiABJwEKBSdNFgnARIgARIgARIgARJwEaBQdKFghQRIgARIgARIgARIwEmAQtFJg3USIAESIAESIAESIAEXAQpFFwpWSIAEGoqAp8y5hpqb85AACZAACTQsAV/vbArFhmXN2UjgriTg6yVyVz4wH4oESIAESMAQoFDkHwQSIIE7ImBFpD3e0WQcTAIkQAIk0KwE7LvcHikUm/Xr4M1J4O4jYF8ud9+T8YlIgARI4O4l4O3dTaF4937nfDISaFQC3l4q9qZV+juSWUiABEiABFo2AX/vagrFlv39cXUk0KoIWPGIY/mNwla1di6WBEiABO5FAnhXO9/d7gwoFN2J8JwESKDeBOxLxjmwpCBH/P1P1dmfdRIgARIggaYlgHc03tXuxflOp1B0p8NzEiABjwScLw6PHX5rtP0qbt6Q/JxzUlZ6nYLRFzBeIwESIIEmJgCBiHcz3tF4V6PYd7f7UkLdG3hOAiRAAoESwIulqqrKdHfW7Xi8gApyM8yp7YcTZ9329dRmr/FIAiRAAiQQOAFPos/ZZuv26JzZ2YY6haKTDuskQAINQgAvFyv8bN2+fNBu67iZs1+D3JyTkAAJkAAJGALOdy0anOfe6u7oKBTdifCcBEjAKwG8WKyws52cbYHWMdbO43xZ2Tnt0fax5zySAAmQAAnUJuDrHWp7uvdxnvurUyhaijySAAncNgG8aKyo81XHDZz97A1tmz23R+cLzLbxSAIkQAIk4J+Ap/ene5vz3FudQtE/a/YgARJwEMDLxJuws92cfezLx46x5+jrqc3OwSMJkAAJkMCdE3C+c+1s7m3u57YfjhSKThqskwAJ3DYBvGis8MMkns7R7t4HbZ6Ks5+n62wjARIgARKoJuBL6DkZeern3uZ+TqHoJMg6CZBAQATwIvEk5Nzb7QvH2de24UbOdvcbO/u5X+M5CZAACZBAYAS8vUs9tXtq+/9ZurTi1zD5YQAAAABJRU5ErkJggg==" + }, + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABicAAAKOCAYAAADNmsp5AAABWmlDQ1BJQ0MgUHJvZmlsZQAAKJF1kD1LQnEUxn+WoYRQVENDg4M0hEaoVLSpgQUNphXW1PVqFvjy52pE0FhrCE1tYX2BlmrsAwQNQUNErS21RBJU3M7Vyl7owOH8eHg4PDzQ4tSUytmBfKFsxKNhd3J+we24w0UXTjx4Nb2kQrHYlFj4vD+ndonNuhc+69diIupWD6Xb58Mxc7v7fuCv/8e0pzMlXe6r7JCujDLYvMKxtbKyeEO4x5BQwhWLsw0+sDjV4JO6ZyYeET4T7tSXtbTwtbA39U3PfuN8blX/yGCld2UKswnrj2wfcyQJ4GeEYXxMM8H4P/5g3R+hiGIdgxWyLFPGTUgURY6M8CQFdAbxCvsZkg1aPf/ur6kVqzD6BK2VppbaheMt6L1qap496NiEo3OlGdpXq7aavbQU8DfYFYa2G9N87AfHDrxVTPOlappv+/JfOjotvAM3ImSkmH1osgAAAFZlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA5KGAAcAAAASAAAARKACAAQAAAABAAAGJ6ADAAQAAAABAAACjgAAAABBU0NJSQAAAFNjcmVlbnNob3QTIE8EAAAB12lUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNi4wLjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj42NTQ8L2V4aWY6UGl4ZWxZRGltZW5zaW9uPgogICAgICAgICA8ZXhpZjpQaXhlbFhEaW1lbnNpb24+MTU3NTwvZXhpZjpQaXhlbFhEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlVzZXJDb21tZW50PlNjcmVlbnNob3Q8L2V4aWY6VXNlckNvbW1lbnQ+CiAgICAgIDwvcmRmOkRlc2NyaXB0aW9uPgogICA8L3JkZjpSREY+CjwveDp4bXBtZXRhPgpGoQnKAABAAElEQVR4AezdB3gURRvA8Zfee++9S0cQRJAmUgUVUKoi2FARBUVRkaIiRQUsIFJFUJFiQQQUqdJ770V67z3wzTthj0tyIXfcwZc7//M8ye3tzs7O/jaEy74778Q5fe78daEggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAndJIO5dOg6HQQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSsAMEJfhAQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDgrgoQnLir3BwMAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE4t9pguvXmdLiThvTPgIIIIAAAggggAACCCCAAAIIIIAAAggggAACwSQQ8OAEwYhguvz0FQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBuy8QsOAEQYm7f/E4IgIIIIAAAggggAACCCCAAAIIIIAAAggggAACwSjgd3AiuqBEdOuDEYk+I4AAAggggAACCCCAAAIIIIAAAggggAACCCCAQOAE/A5ORO6Kp6CEp3WR9+M9AggggAACCCCAAAIIIIAAAggggAACCCCAAAII/DcEAhaccA9AuC87jJ7WOdt4RQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgf+OgN/BCfegg7OcMEF8SRA/vsSPF0/ixInz39HkTBFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBGAb+DE84RNDChAYnECRNKvHhxndW8IoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIRBAISnHACE8mSJI7QOG8QQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgcgCfg9x0MCEpm8iMBGZlvcIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDgSSAgwYkkiRJ5apt1CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEAUAb+DE4kSJmCOiSisrEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHoBPwOTmhKJwoCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg4K0AwQlvpaiHAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACARHwOzgRN67fTQTkRGgEAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEgkOAyEJwXCd6iQACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAyAgQnAiZS8mJIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQHAIEJ4LjOtFLBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRCRoDgRMhcSk4EAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHgECA4ERzXiV4igAACCCCAAAIIIIAAAggggAACCCCAAAIIIBAyAgQnQuZSciIIIIAAAggggAACCCCAAAIIIIAAAggggAACCASHAMGJ4LhO9BIBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgZARIDgRMpeSE0EAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIDgECE4Ex3WilwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIhIwAwYmQuZScCAIIIIAAAggggAACCCCAAAIIIIAAAggggAACwSFAcCI4rhO9RAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgZAQIToTMpeREEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIDoH4sbmbu//dJ//uPSBHjh2XtKlTSa4c2SR3ruyxuct+9e3CxYuye88+20bhgvn8aoudEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCIrQKxMjgxd8ESebtnf1m8bFUUt+LFCknXTi9I08Z1o2wL9hWbt+yQe6s1sqdx8fBGiRcvXrCfEv1HAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCCKQKwLTsxfuExqNGzp6miBfLlFv3bu3isbN2+Ttes3S4t2r8r169el2aP1XPVYQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgeAQiFXBiWUr10q1+s2tXNXKFWTEFx9LzuxZXZLnzl+QAYO/kc++HCE1qlZyrWcBAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEgkcgzulz56/7090USZP4s3uEfctUaWBHRuhIiTX/TJP48T2nNTpz9pykSJ4swr7uby5dviyJEiZ0X3XLZW/re1tPD3b1apgcO3FCMmVIH+HYOuLj/IWLksyD26o1G0jrFEGLNwgggAACCCCAAAIIIIAAAggggAACCCCAAAKhKBA3tpzUlm07bWBC+/Nh9y7RBiZ0u6fAxPETp+Td3p9I+WqNJXmWe6Ro+Yek01u95cjR47qLq+j2gmVryNIVa6TLux/Zelq/RKW68tXwsa56zoKv7S5YtNy2mzFfOcleuJLoJNcnTp6Wvp8NlYo1H5OE6QtJ6hwlJVuhivLMS11FAy0UBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQT+SwKxZuTEL9P+ksdavmDt9276J8qIg1tdlNNnzkrtxm1E00JlTJ9OajxYSXbs+tdOqF2udHH585exrpEKCdIVtE1lz5pZ9u4/KHly55CjJoDhBAnGjxgojz9Sx9a5nXaLFMpv58bQBrTtf2b8JO/0HiDDx/xo29RRIcmTJZOVa9bb95UqlJHZU8dLnDhxhJETloRvCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAiEuEGvmnDh06IiLWgMM7uWTz4fbCbHd12kAolG9WnZVxzd62sBEzQfvl19/+MaOutD0SS91eV++HjleBg0ZJW+9Fh74cNrQwMTiWZOkTMl75MqVq1KvSVv5e94imfLbDFdw4nba1Um7e7z9qjzV4nHJmjmjPdzzTzeXDOnSygvtWrrWbdi0VUreX0/+WbxCdpnJvjWQQUEAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA4L8gEGuCE/Hi3Zxf4tq1a+L+/uffZ9qb+O4XJGXK5DY4oUEI3a7liwE9XOmgdCTCE4/Wt8GJJctXu+9qlz98r7MNTOibBAniS/MmDW1wYsXq8BENt9uujrp4+/UXIxyvVImiol/upWjhAlK8WCGbymrtxi0EJ9xxWEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIaYFYE5zIlPHmxNEHzCgKTbvklG+//kQuXrxk3/48daa83bO/s0m2bt/lSsn0eOsOrvW64OwzZ/7iCOv1TZlS90RYlzlT+CiHU6fO2PW32+5jjzwcoV19ExYWJj/9/If8OXuBbNm2w85BcfHSJdlpUk9pOXU6/Jj2Dd8QQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEAhxgVgTnNBRBE6ZOWuePN2yifNWcmbP6lrOkiU8iOCsuHTpsrMoFcqVijDiQjdUr1pJ4ruNynAqJ06UyFn0+Hq77aZNkzpKe6+82dOO4NANmnrqnqKFJGmSxPLZlyOj1GUFAggggAACCCCAAAIIIIAAAggggAACCCCAAAKhLhBrghMagKhcsZzMX7hM3un1iTSqX1vSpE4Zo79OQO2UTi+2lYL58zhv/XoNVLs6QkLnvdAyY8oYqfbAfa5+/TRlmp2U21kRN25cZ1EumqBLsqRJXO9ZQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgVARu3g2PBWc08ou+opNhHz56TMo8UF/++HOunL9w0dWzs+fOy0STHsm9xI8fT+o/XN2uav/KWxHqX70aJiO+nSALl6xw38Wr5UC1q3NXOOXM2XPOokyd/neEwIRuyJjx5kTgnlJRuXZmAQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBIBaINSMn1DB3ruwyZ9p4qVrnSXvjvkGzdpZW55+4fPmKDVp4sh7c731Zv2mrnTQ7e+GK8kCleyVhggSybOVa206jerVkwpgynna95bpAtJskcWJpWKeG/DLtL3nq+c7yeKO6csWcy9gfp0Q5dqYM6V2TZD/y5LNStXIFeb5tc9FJtikIIIAAAggggAACCCCAAAIIIIAAAggggAACCISKQKwaOaGo+fPmlrl/fG9uyreQFMmTWee9+w+6AhOabun1l9tJ25aPu66BBi9mTx0vrZ5oLKlSppDfZ8yWKWbibJ1oul2bZvJpn3dddX1ZuJ1247mlZnKONcZM6N2yaSM7cffIsRNsYOLNV59zjfhw6sWJE0dGfdlP8uTOYVfp6InDR445m3lFAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCAkBOKcPnf+Zt6h2zilFHdwXgRNiXTy1Bk5fuKEJEyYUNKlTWMnko6pm3pDP+zaNcmSKUNMVX3a7m+7V65clX0HDknWzBnN+SSI9th63gcOHZFLFy9JNhN4uVXdaBthAwIIIIAAAggggAACCCCAAAIIIIAAAggggAACsVQgVgcnYqkZ3UIAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAE/BGJdWic/zoVdEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIAgECE4EwUWiiwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIhJIAwYlQupqcCwIIIIAAAggggAACCCCAAAIIIIAAAggggAACQSBAcCIILhJdRAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAglAQIToTS1eRcEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIAgGCE0FwkegiAggggAACCCCAAAIIIIAAAggggAACCCCAAAKhJEBwIpSuJueCAAIIIIAAAggggAACCCCAAAIIIIAAAggggEAQCBCcCIKLRBcRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEAglAYIToXQ1ORcEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIJAgOBEEFwkuogAAggggAACCCCAAAIIIIAAAggggAACCCCAQCgJEJwIpavJuSCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEAQCBCeC4CLRRQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEQkmA4EQoXU3OBQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBIBAgOBEEF4kuIoAAAggggAACCCCAAAIIIIAAAggggAACCCAQSgIEJ0LpanIuCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggEgQDBiSC4SHQRAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFQEiA4EUpXk3NBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCAIBAhOBMFFoosIIIAAAggggAACCCCAAAIIIIAAAggggAACCISSAMGJULqanAsCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAkEgQHAiCC4SXUQAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIJQECE6E0tXkXBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCAKB+P728eCRU/42wf4IIIAAAggggAACCCCAAAIIIIAAAggggAACCCDwHxLwOziROUOq/xAXp4oAAggggAACCCCAAAIIIIAAAggggAACCCCAAAL+CpDWyV9B9kcAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAGfBAhO+MRFZQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEPBXgOCEv4LsjwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAj4JEJzwiYvKCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg4K8AwQl/BdkfAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEfBIgOOETF5URQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDAXwGCE/4Ksj8CCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgj4JEBwwicuKiOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggIC/AgQn/BVkfwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEPBJgOCET1xURgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAX8FCE74K8j+CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg4JMAwQmfuKiMAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC/goQnPBXkP0RQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDAJwGCEz5xURkBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQT8FSA44a8g+yOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggIBPAgQnfOKiMgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCPgrQHDCX0H2RwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAZ8ECE74xEVlBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ8FeA4IS/guyPAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACPgkQnPCJi8oIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDgrwDBCX8F2R8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQR8EiA44RMXlRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMBfAYIT/gqyPwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCPgkQHDCJy4qI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAgL8CBCf8FWR/BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ8EmA4IRPXFRGAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABfwUITvgryP4IIIAAAggggAACCCCAAAIIIIAAAggggAACCCDgkwDBCZ+4qIwAAggggAACCCCAAAIIIIAAAggggAACCCCAAAL+ChCc8FeQ/RFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMAnAYITPnFRGQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBPwVIDjhryD7I4AAAggggAACCCCAAAIIIIAAAggggAACCCCAgE8CBCd84qIyAggggAACCCCAAAIIIIAAAggggAACCCCAAAII+CtAcMJfQfZHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABnwQITvjERWUEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDwV4DghL+C7I8AAggggAACCCCAAAIIIIAAAn4JHDxyyq/92RkBBBBAAAEEgk+A4ETwXTN6jAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAUAsQnAjqy0fnEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIPoH4wddleowAAggggAACCCCAAAIIIIAAAgggEOoCqzftsae4euMeKVkkp5QsnDPUT5nzQwABBP5TAiEXnLh27bpcuXrVdRHjx48n8eLe3QEiV6+G2ePrsSkIIIAAAggggAACCCCAAAIIIBDcAkdPnJGwsGuSLk0KiR/Pt3sMl69clXhmn7t9byKYxcdMni/fTpnvCkaUMEGJb826ziZY0apRZWnduHIwnx59RwABBBC4IRBywYlRE+fK+N8WRrjAWTOlkaL5s0mdKiVE/0O706XbJxPk5JnzMrRX2zt9KNpHAAEEEEAAAQQQQAABBBBAAIE7IHD9+nUZMn6W/DZrpWiAQYsGGB64t5C80qa2pEiW2KujNnz2E3ns4XulfbNqXtX3t9L5C5elycuD5IFyhaTr8w1uu7lAteNLB3SkhAYhtMwc3dXjrhq46PzROGllAhSMpPBIxEoEEEAgaARCLjhxzXx40PJJtxb29czZi/LvgWPy85/L5c8F66RHx8ekUpkCdps339p2HSaF8maRN5+t70116iCAAAIIIIAAAggggAACCCCAQAgI9B021d5HaFKngtxftqBcu3ZN1m3dK2OnLJBUKZLKS61qxcqzjGMGdpQpltvey/C2g2fPX5LGL3wqXdrXk4cqF7e73U473h4vunoamNCHSm81MkK32ZEVpm7Jt5pH1xTrEUAAAQSCQCDkghNqrk8yFC+Yw42/gDxep7y89+lP0n3gRBnau63kzZHRbXv0i5cuX5ErV8LTNEVfiy0IIIAAAggggAACCCCAAAIIIBAqApoy+u+FG6RO1ZLy7BM3RzwUL5RD6pp1YWZ7bC1JEiWUXp0ev63uaeoqp/jTjtOGL68acIgpMOG0pwEKHT2h+9wqkOHU5xUBBBBAIHYKhGRwwhO1Bixeb1dPmr0yWJau2WGDE2HmqYcZ89bKnCWb5MCRk5IpXSqpX62UVClfWLbuOijDJ8yRYyfOypI126Vrvx9M0COOfPB6Uzlz7qIdiaHtaPqmfCbQ0fKR+yVvzogBjyVm+x9zVsvBo6fk3hJ5pcnD5SX5jWGf3rSh/Zo+d01439KnkkcfKiflS+azp3fVfGDQ0SCLV20XDaDo+mZ1K0h081z0+nyKHXqqeTLnL9siOjy1esWi8kjNsi6u5et2yrQ5a2TXviOSOFECua9UfmnR8H6JEye8Sp8hv0rZ4nlk976jsmT1dsmZNb00rVte0qRKJj/9sVRWrt8leXJksENV05s8nE7R481evFH+PXhMShbKKU3MPhnSpnQ284oAAggggAACCCCAAAIIIIBArBJw5rKM6/xB7NY7HTXhFE0trX+H6z0Bp0yesUz2HjwuL7d+yFll/gYX+zf83KWbRdusXK6gNKxR1vX39qkzF2TUpLmyYds+u0/pIrmkpZlbIXnSRPb9IXNf4ec/V8iqjbslccIEdv9GtcrZ+xWadqrNow/Id7/8I3v2H5MRfdqL3gPQextVzdeiVdvk99mrpW2TqrYP67fslWIFs0sjcz8gV7b0Mn3eGpkxf509ztifF9h7JAVzZ7b13dvRCk4/Vm7YJfp3v2am0ACOU7y59+DUjfyqc0x4SuXkTIodOYVTfzNqolabPgQnIkPyHgEEEAgiAd9mcQqiE/PU1bTmJnqGtClk7eZ/7Wa9aT5w1HRJbT5YPGzmo9Ackr2+mCL6H1+yJInsEEidtEo/eGhqpyJm3gotX38/S378fbEUzJNZalYqJpt3HpCXe44RHQbplB17DtuRGnHMhw5tf5z5kNDl4/GiQQUtMbWhH1h6m74kNf1obIISGgB477OJNhChgYUegybJCBM8KZLP9CtfVtt+j8GTncNHeV2wfIt88OXP8qv50FLCPOmhH54+/3am/L1og6174tQ5G4A5ffaCVL+vqGQz83SMnjTPfM11tfXPyq3S9+vfZOnaHVLKfFBaZl7f+Ph7ebX3WNlnPngVNv2Ys3iTvN3/R9c++qGsx+BJksx8oHqwQhGZs3STvNQjopWrMgsIIIAAAggggAACCCCAAAIIxAKBRDYAUEimzl4lg8fMkF17j9gAQ+Surdyw2z4A6b5+/dZ9NiDgvm7S9KXmPsDf5iG/dHLi9Dn79/jQ8X+5qrzYfaTMNQ8oVrm3sP2bfK752/nHqYvs9iPHT8tz74wQbSN75jSSL1dG29Y/K7bK3gPHZbF5ePB1M4pAAyK1Kt9j99F7AFvMvQotWmeh+Xv+1V7f2gcx9f7GNBOs0PsYh4+dtkGGArky2brZM6e19z80aKHFvZ1jJ8/Ki91H2X4UMMELff/JiGny1bib5xHTvQfbqIdveh8mcvDBqabrb7XNCV449XlFAAEEEAgegf/MyAnnkqRNnVx2mg8VWnRyqDKfv+KaxKqpGXlQ75n+dlSATlT19GNVbH7JQnmy2GWnjRea15SOTz0s8U3gQsu9JfLJyz1Gm//kD0jporntOv32wetNpOw9eex7fRKh/ze/mw8N2+T+MgUlpjaWmtEaSRInlHc6PGL3b1ijjLzYoqboByQdkaFPPgx6r7UNTGgFHTnxZt/v7VMMmcwoC09F2/vapLTSNjTA0fiFz+zIi2omGGFHPxgL9ydADh09LQvNcZ4yDk5JmCC+fNG9jQ1u6JMWGkDJZz7E9H6tia2S1BxjovnAdPVqmA3EfPndn3b/Fg0r2e06+qN++wEyz3zQcn+6wmmfVwQQQAABBBBAAAEEEEAAAQRig4COfEiXJrn8PHO5/PLXCptC2kk7dI/5e9iXopkbJg95VTRVkhZ9eFD/dm7d+AGTIuqaDRJ0NJNs169e2m5/zGRecEZvfPfLQjl34ZJ898mLkjFdeBYCHamRMnkSmWiyGGjRhxr1HsatSp0HS8pzT1S3VTQVUvNOX8r43xaKHrdQ3qy2P/pQYXR/q+tDl/pA4/cDX5J05t6Kli/H/mmDFU1MKm0ng8Kt7j3YnTx8W71xj03p5GGTTd2k60nf5EmHdQgggEBwC/znghNHjp8RDTZoiWvSNJ0x/7HqEwSnTHqmk6fP2w8FelP+ViVpkoSy3kyCpemNNK2TjjrQcvDIKddumkaqVNFcrveVTEBC5HfZuG2/DU7E1EbF0gXkD5PSSUcmPFihsA1yOEGHNeaJAi2aWkm/tFwxwQAtm3YcEKeeXeH2TT9kaGBCi47oyJ4lrU0Z5VTRdZp+Sc/npHmSQ89RP+y4Fx0W6qSOKmyettCi6aGcUth8oNGiT1AcOHzSLu/Zf9SOwrBvbnzToarRfeBxr8cyAggggAACCCCAAAIIIIAAAv8PgVQpkpgHC2uYB+4ekM3bD8jqzXvMA4zrpdMHYyNMHO1N33ReTCcwofWrli9i//7W0Q167yCryV7w9Q9/27TQpc17XefUX7flX7vdCUzo/u4PFup7TVEdU9FjOkVTLWfOkFo2bd/vrIrxVbNQ6MgKJzChO1Q19ysmz1xm7h/ssymkdF1M9x60TuRSskhO0cmwfS0aLNLARnQjK3xtj/oIIIAAAndX4D8VnNDAxHFz01zTGmnROR30yf882TPYfIuaykmLjiq4VfnMpIKa+vdKKVMstx2S6dysd99H0xhpgMIpGozQ907qp5ja0LyNn73TSn4wwzh16Oe5C39IjYrFpOvzDWwgRds955ZGSt83Nvkm3T+s6Dr3kuLGfBfOOg1GOEXzRrbpMlRSJE8s5c1IEP2go6Mk3CfD0rpOvktd1pRXWhw3XXa30MCNlrCw6xH6qv0sWiA8RZatwDcEEEAAAQQQQAABBBBAAAEEYqmABgk0WKBfrc08EB3eHy3jf10oD1Uu7rHHYWHhDw+6b9QsDu5Fsxdoce4RDOn1tBmBsMykSt5o7wPo39kfdm4qRU166QsXL0vk/d3b0uWYtmuddKnDj6nLWlKnTGof0gx/F/P3s+cvSub0qSNUTJPyxnmYuTmdcqt7D06dQL3qw5utzCgQCgIIIIBAcAr8Z4ITOrKg37Cp9irp5NRapv69yj4p8PUHz9j3GpT4adoSu+x80w8EB4+GjwBw1ukk1zpHxevP1LWrdPLsyPvpUMd/DxyTHFnS2TprN/1rR2U4ow28aaOYuYHf89XH7P46wdXA0dPliQYVpbgJruioiuYmVZJ+mAhE0RETOpR0dN/nzTwX4cNMdS6N7bsP3XbzzjBXnehLn5ygIIAAAggggAACCCCAAAIIIBAsAvq3vs6t4F70IT8NFuiclVr0RvxuMwm1e9G/pd0fBtRtS0zqZveiGRy0FMob3r4GQDQdsn7p/YQX3hspY6cscAUo9G/2i5euSOJE4dkQ3NvydnnB8q3SqFZZW/3S5St21IQzmiJRwvDbQzoHRXSlaP7s5iHPjTZzQwIzj6UWnZtSS5H84VkU7Jvb+KYjHzrfyBLhy+4630R/sy8FAQQQQCA4BUIyOKE32Zev22mvyJmzF80HhaM2P6T+B9+nSzNxJnbKkjG1rNywy9bNmyOjDDNDKHVf91LV3FQfNXGuDQbkzZFBcpjJqzTnpM77oBNi6eiCj4b86r6La1knqG77eFU7ifU3P862dcvfCIzE1MYXY2fa9Ew6ObX5VCO7TAopLSnNB58KZn4JDZp07P2tvPpUbTN5dVqbzmnkT3NkwNstRCf+9rVkyZjG7jJpxlJpUL2M/cChTyC4j4rwtU3NN1msQHbpoz5mMIp+WDlsJvIaNXGeHeWhQQsKAggggAACCCCAAAIIIIAAArFNQNMUvWr+5r63eF47ybRmKdhvUhcv1EmozcTTbR59wHa5cL6sdkJqfYBQH0bUeSQ0a0PkrAYa0OgxaJLoXBKapmnyjGU2i4OmVzp45KR8OvIPO6dC3pwZZd+hE3ZEQ4nC4Q8jNjDzUGhwonOfcaJzTaQ2oxVGTJgj7Zs96BPbt1Pm6+0FyZU1vXz78wK770MPhI/+0GCD/v3+m8kSUcSM1tAUz87Dlc5B6lUrae8VdBswwTwsWdHcEzlq54PQVE+akcLf0sqMSulsJvbu/1bzCE1pyidPZYxJA6X7UBBAAAEEglcgJIMTejm69vvBdVX0P0mdK6H2AyUi/OeqgYPtew656up/xJrn0f0JBx0hoXkVBwz/3banwY3uLzeWbp9MkPbdhtt1j9a+146ScPbTV326Qo/b0wQoNOChH0z6vvmka6hlTG1kz5xONNgwdPwsewxNCaW5Lp2hmjrks+fnU+ycFFpBt9eqfI8kvjGnhN3J7ZuTgsltlV10Uk9VLltQ6j5Yys4NMXrSPDsiQ4MgGyPln4wjN1NBxdVPNZFKnJuZrOyWvm8+YYMT/b6Z6nqyRHNtOgGiSLvzFgEEEEAAAQQQQAABBBBAAIH/u4BmMujcrq5JsbRYPvzqF1d/9Kb98+Zv88fMfQAtTetWkGVrd7ruGWiwQv++3mJGXThF/x7Xyai3mcwEOl+FlkImkPHBa03tcrx48eTatesmGBK+TVfqPQVngmudV+HdDo1kyPi/5N1Pf7L75M+VSZIlTSxxzFyaWtz/Vtf3nu4BaEBFgxo6ubY+iNihZS2T1jk8s4Tu80yTqvK5eVCy24Af9a38Nuz1CO2ULppbuj7XwM6N0aXPeFtH/75/v+Ojrvsono6rFZ17D3anaL7phNcanNCgg/vk157mk9A6+kBl5EBGNE2zGgEEEEAglgrEOX3u/K0nWIih4ymSJomhRuzffOHSZbluBkw46Yw89ViHbF64eMXMxXDzfE+duWD3cYYzetpPAxMXLlyW5JHme3DqxtSGbtd0U9Glb9L2dXRIdNud43j7ejXsmpw1uSID1Z77cXWi7ZTGz5sPJe77sYwAAggggAACCCCAAAIIIBDaAgePnDJpl1PFypPUv5NPnj5nggGJXJNUR+6o3lfQ4kxiHXm7817raSDBU3omTUd98vR5+/d4dPcZzpv7C3FNQMLT/s4xIr9qGuqh38+SmaO72k36t7kz50Xkuvpe7wnEix/3lueidRInTijxb8xF6amd21mnaZp0YmwNyLgHKNzb0gCGFp1rwlPgwr0uywgggAACsVuA4ETsvj70DgEEEEAAAQQQQAABBBBAAIGQF4jNwYlgx48cnAiG89GREZqGSoMPGqjQURJaNHihqZyiC1wEw7nRRwQQQACBmwIhm9bp5imyhAACCCCAAAIIIIAAAggggAACCPw3BdKnTSE5sqQLqpPX4IN+aTBi9UYTkDDLWpj8OqguI51FAAEEYhRg5ESMRFRAAAEEEEAAAQQQQAABBBBAAIE7KcDIiTupS9sIIIAAAgjEToFI0xfHzk7SKwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEAgdAYIToXMtORMEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIJCgOBEUFwmOokAAggggAACCCCAAAIIIIAAAggggAACCCCAQOgIEJwInWvJmSCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEBQCBCeC4jLRSQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEQkeA4EToXEvOBAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBoBAgOBEUl4lOIoAAAggggAACCCCAAAIIIIAAAggggAACCCAQOgIEJ0LnWnImCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggEhQDBiaC4THQSAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHQESA4ETrXkjNBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCAoBAhOBMVlopMIIIAAAggggAACCCCAAAIIIIAAAggggAACCISOAMGJ0LmWnAkCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAkEhQHAiKC4TnUQAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIHQECE6EzrXkTBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCAoBghNBcZnoJAIIIIAAAggggAACCCCAAAIIIIAAAggggAACoSNAcCJ0riVnggACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAUAjED4pe0kkEAiwwcNhqGThsTZRW7yubWcZ9VSvKelYggAACCCCAAAIIIIAAAggggAACCCCAAAIIBE6A4ETgLGkpiAQWrzgsHduXkAplMrt6PeibNbJo+UFp/sJMAhQuFRYQQAABBBBAAAEEEEAAAQQCKRAWdl2uhl2TBPHjSty4cQLZtG3r+nWRy1fCYmz/8pVrEs8cP148z31w+pkoYTxXH69evSbXTPsJE0RNxBFmNuj2hAniSZxITTp9ct/mtO9q3MNCHNOQ9lG9oivx48X1eA7XTH+umP54cta+Hjp8XrJkShalr9Edh/UIIIAAAoEXIDjhpWlYWJj5T+2qJE6UyMs9fKt27do18594mCRMmOCWO168dEkSJUxo/vOM9D/9jb0uX75i/lPW/5jDPzxcN58ALl2+HO0+ui1e3HgSP/7NDxtOB7Q/Wty36fFjKgkTJDAfhK5EWy1unLjRnmfk/rs3sv/gYUmfNk20+7rX9Xb5vrKZXFUXr8joWiZA4aJgAQEEEEAAAQQQQAABBBBAIIAC33y3QT7+fIVMHllHShZLH8CWw5tavOKQeehuhnR5sbS88NQ9Httfv/m4NGg11W7XepGLBg4ee2aarNlwTDbOb27uKYTfM6jSaLINTMye3DjyLjLgq1UyZPQ6mfFjQ8mfO5Vr+5btJ6Vbn8WyfPVhmTaugRTKn9pu+8rU/WTIKlc9TwvJkiaQZo3yy4hxGz1ttuve71xeWjctFGV7vy9XytAx6+W7L2tJxXLhDyZqwKK/Wf/tT1vk3Pkrki5NYqlTI5e806mcx4BLlEZZgQACCCAQUIGooe6ANh86jY0ZP0lSZC1+x05o6MhxkixLMTl05Gi0x/jp52m2D7v37PNYZ+36zbaNb3+Y4to+/a95dh+9se+pFC5bUz7o/0WETRqU+Gr4WEmSqYh89uUI1zYNHKhBTF8TJof3M7p65R58xNWm+4Kn/uv2KVNnSsGyNSRXscr2/J5s21H2HTjkvmtAl520ThqgoCCAAAIIIIAAAggggAACCCAQTAL6kKIWvTl/4qTnBwz7fbHylqc0ZMw6G5i4ZaVIG53jOquvmJEZfc1xHn7yVxuYcNY7rxoweLtjWddX4fxp7KaO7Uu61nV9pYxUq5TN9d6p3/XlMk4zki93Steys7Bk5SEbmHDeO6+aMWGICVhULp9FBvZ+QOrXyi1jf9osH362zKnCKwIIIIDAXRRg5MRdxL7VoTR6r6XfwGHSv/dbUapeuXJVnn3l7SjrnRU6oqHZ0y87b12vOiLDl7J9525p2f41WbZybZTddFTH4lmTJOzGcMrTZ87Kw48+Jb3eeU1qVK3kqp8vT05Z+OdEifzBZM26TfJ8p3fk0Qa1XXWdhej6v3DJCmnSuoM8+/ST0qFdS/PB6rS88Nq70vyZjvLXL99FGNXhtOXp1dMcExXK3BwpEXkfDVBocIIRFJFleI8AAggggAACCCCAAAIIIBAsAkO/XS/uN/K13wuXHZS5i/ZHewrrNh23oyCireDlBk1ZNf3vPdKwdh67xy/Td0bYs2yJDKJfTtmw5bhs2nZCWjcpJGlSR8xacb8JJriXbydstm/bNC0skbedPXdFXn13vnt11/J3E7eIBkE+71PFpotq8FBuOX32sowx7TVpmF+KFUrrqssCAggggMCdFyA4ceeNfTrCwK9GykvtW0nuXNkj7Pft95PlzNlzEda5v+nV93M5deqM+6rbWtZ0UZkzZZDNy/+UclWjjnAoU/LmkFANFGjJnzeX3FumRITjpU0TPkzTWanBh2de6irlSheXbp07OKtdr9H1f9Kv06VAvtwyuG93k4szfKDP9yMGSsn768n3k36Vlk0budq41ULkOSb0aQlPxZlzwtnmvHdGUzjreUUAAQQQQAABBBBAAAEEEAh9gd//2i1zF+6XrTtO2Sf0WzxW0KZi0lRFU6btkFXrj8qlS9ekeJG08rxJoZQ5Q1IXysp1R2Wa2V9fM6VPIrWr5bRP6jsVjh6/KJ8OXW3nPsyeNbnojfYSRdM5m0VTL02duUuWrj5ibqintjf57y0V/UN2rh1vLGhKpK9NcKLV44UkW5Zkdq0OqtCUUprO6NiJi5F3kYuXwqTjO/PsDfz06RLL/MUHotTxdoXOZaGpq1KmSCh9zTEDVTSA0b3fEimQJ5W86TaCwmm/96fL5KCZT6LFowXlu0lbnNVy6sxle87V7s9mAxPOBg1ITP59h2w215TghKPCKwIIIHB3BEIyrdOK1eukW68B8lCj1vaG+Jz5i63mqdNnbLoifRK/at0n5KUu78vmrTsiSGu6oL6fDZVHnnxWNH3QaJPOSeebcMqWbTvl7Z79bdud3/koSnqh9Ru3yPsfDZQ6jz0tXd79SFat2eDsGuNrntw5pFKFMtKr3+cR6p6/cFHe7f2JPNXi8QjrnTf/LF5h+zxqSD9n1W2/5s2dUyZ/N0T0NZDlvQ8+lY2bt8noIf0lQYKIMbFb9X/Dpm1S8p4irsCE9il/3ty2azoSw9eic0y4zzPhvr9Ojh0+SXZGM1F2+Je+1wAFBQEEEEAAAQQQQAABBBBA4L8lMHj4Gnnprbny4y/bJGvmpLLaBCLavfa3uUdwXZ7q+JdM+HW7ZMuc3G7TJ++feHa63aZKC5YckMfaThOdXyJ5sgRy4tQle9N/996bDxW2f/1vmbNwn2Q0gQu9Od7ixZm2nu6vAQ2dE2L2P/tFAxJLzDwSzUz7S1d5Ttms+0Qub5mUSFo0k4BTZs7ZY9M1dXu1rLMqwqvOAbFzz2n5tGdl1zwTESr4+EYDE4EsFy5elY7d5tkmP/+oipkXNOL8mX/N22uv10fdKkqenBHTPaUyfcmcMaloyqfzF67aNjSLxex/wlNnb9txMpBdpS0EEEAAAS8EIt4l9mKH2F5lwaLl8mC9JyV71szSrk0zOXzkmNR8pJUc3r5M+g36WsZP+EWead3UDBFMJWPN3AzV67eQTWaUQIrkyeTAoSNSrX5zOXr0uLRp/pikS5taOnXtZT5o3HwyoVHz56Re7WpSq1plMx/DSJm7YIks+XuyZdGb5Xrs+g9Xl2aP1ZefzVwJ1Ru0kHl//CDFihT0iq7P+29IlTpPSKcXn5Z7ihay+wwdMc5OAv3CM81l1Hc/RWhHR1O0aPeqdH6lvVS5v3yEbbHlzV9z/pFPvxghQz/7QArmDx/O6fQtpv6XLlFURo79yY4a0WukZd7CpfZ1/cat9jVQ3zwFLhYt17ktPI+yCNRxaQcBBBBAAAEEEEAAAQQQQCB2CeioAh3VoDe4p4yqa+4ZJJAwcyN75+7ToiMCRg+qITmzp3DdwM+Tc5V8PmKtvbGf3zzR33NA+N+tM34wk0Ob91r0if/cOVK4TrRRnTzySY/K9n2BvGvks69Xy6atJ+zkzd37Lpac2ZLLj8Nq2+CGTlpds8nPdsLpe0tVd7Vxq4VMZhRHp+dK2vNo16KoGfmRyoyaWCllS2aUmlVyRNlV//7VYMpbr5R1TVodpdL/ecXHg1fI1p2npFfXClIgb8SMDXrNNJ2TjoxoalI0jRwfdRLtlmbkS38zcffjz/xhDLLbkS/bTHtajkczP8f/+ZQ5PAIIIBDSAiEXnHiz+8dSpFB+WTnvV/OBITyC/u4bL5tgREp5+/UXpefbnVzzFFSpVF7KVGkg6zZslorly8iQ4d/Jzl3/yu71810BiQ7tW0uqlMll9LiJ9gehe9eO0uzRenY5R/as0urZ1+SICWZkSJ9WXuv2gdSuUUXGDB1gtz9lAhw6gmLIiPEyuF93r36QtB+N6tWSd81IAx3BcPLUaenVd7DZ/33zREDEnIva4Bvv9ZEUKZLLe29GnW/CqwPe4UrHjp+U1s++Lg3r1JC2rZpEOVpM/X/y8QbysRnJoo7tTFBJU0mpR+kSxeT4CZ5qiALKCgQQQAABBBBAAAEEEEAAAb8F1mw4ZtuoVzOXDUzom3hmDgUn0JAtS3Kb7unQ0Qvmb9OLMvL78JH9ew+cNfcHktgb6KXvyeCqr/s7Ez7rspbH6uULXzDfixRIY5cPmHRE585fEZ33QcvwcTdvsOuIhsPmeFp0+5PPz7DLzrfPelWWGg9ETBHd9skiMubHzXZy7NoP5rTBk77v3Zwz0tn3zNkr8lr3+TZwofvcqpw7f9XMMSliskJHKGdNG1riRt4Qodbtv/lz7l47N0StqjmkeeOoD4C+81F41owP364YpW/OUV94qrjZFkd++m27DSZpIGPwh1WkSbs/TLAjPIjk1OUVAQQQQODOC4RUcELnNVi8bJVoMMIJTChh+nTh/8knT5ZUVq5eb3JF7pYT5sb2kWPh/9lrKictOvmyplVyHymhQQ33UqdWVddbnQtBy4GDhyV1qpSi6aM0MDJoyCi7Xr/paIpDR47a95u2bJd2L0ec7HroZ72jjKrQCaaLV6xj+zNj1nzJni2LPGFGYkROQfX7jNnyzegfZOnfUyRJ4sRy6fJl13GdBWeeBp1Q21O5fPmKSZkU6ROFp4q3ue6lzuFBmSFm1ETk4k3/dcTJ/Ok/2lEq3XoOMFYF5IdRg0Xn4EiQIEHkJnmPAAIIIIAAAggggAACCCCAgN8Cmj5IS6qUUdMSXb16Teo2/1X27DsrdWvkkiyZktn0QhpU0HLxYnhq6NSpou5rK9z4pumenBI/fnjWbU0zdMZM6OyUM+du/p3ftnl40EDrpDUTRj/fpphTzb66j8pwNui8E689X0q6fbRINOWRBih0EmqdNNq9DB+3wc7TkDBBXHmx6xy7KTyTgNjUVg+am/g6h4OOJNEJtTdvPxEh2KLBij/M5NdaNHVSoMuhIxek03vz7VwZfUzKpsjxD02jNX12+PHfM6NOtDgjIvp/uUqKFkojvd6sYPd7wcwNol9OgOXvBeFpnXRkCQUBBBBA4O4KhFRw4tKl8P+0NR2Tp9L9w8/kwwFfSoumj9hJnCPf3NYUQ+6BCU9tpDSjFJwS78YEzdeuXTNPNpy3q69evRph4uoX27eUtGnC/4PLkD6dTTXl7K+v6W4ETtzXFS6Yz9Zr/syrsnf/QZkybmiEYIvWvXo1TNrfCHR8N+Fn0S9dp+WHib+Jzn3xUfc3XOez3wRgcufMZrc73zSYc/joMTMxVmZnVUBfdb6On36eJr//NMKOLHFv3Nv+x48fTyqUKyXjzSTYTrluPkF0fLOntG/zhLOKVwQQQAABBBBAAAEEEEAAAQQCJnBP4fCJqfWG/jPNi7ra1dROq8x8EBqY0FRLepNbi6Z90rRMWjJlSGJvoutNbw1yJEkcfutF99XRFzEVnVRbb/DrXBRvvVzWppFy9rly5Zp9wDBr5mTS4enizupbvjZpkE+Gjlln+/z6i6U81tUgjKZ70hI5vdHxE5fkvBktoUUnjNbgxK8zdkmhfGlcQYLlqw/byaY1FVXSJIG91aRuOqpDgz9f93/QZMaImlUigQmqRO6/E2A6efqSyUpxyfZ/3uL9Us6cp14TDXDoBOBfjlpntznX3L7hGwIIIIDAXREI7P8Yd6XL0R8kVcoUoqMZfvtjlnRo3ypKxcFDR0uXjs/Kh+91tts2bNoq75iJs52iN8G/GPat+fBw0Y5EcNZ786ojJ/TYjeo/JN06d/C4iwZNNNWTN0Xb0FER2qbOcRG5aECkVvXKdrWmldKigREtmgrq6NETdlkn2daiwQsdFeJeNHCgpUihm0NJ3bf7s7x9525p91JXeeX5p+z8HJHb8rb/GpxJmya1+XCT2NXEn7MXyNbtu6Kcj6sCCwgggAACCCCAAAIIIIAAAgj4IZAja3KpWimbzDGTJT/96ix5tG5ek4XhpCwzN+GdeSL0Bn2pe9KbbAnnXYEJ55DtWxaVPmZ+hEZtfpennihi/l6/ZlI0bZCfx4SniXbqRfeqqZU+HLjcjlp45OE8ttq0WbvNDfU4oumbfCk6KmP4p9Xl6PGLkj+a0QFPmz7ql3vRCbs1ODNuSC3X3Bp6XuMnb5WvzA39qTN3Sf2HcsvKtUdtwEL31fkqnKITh2tQRMvS1Ufs6/dTtkqGdIml4r1ZpLSx86aMn7TF1b7665d70VRbdarnkglmfg73MsKkxOr92TLpbeanqFgusw1EtHn5LzuXR2NzPRMlii+//7nLpsj6sk9VSZ/25n0H93ZYRgABBBC4cwIhFZxQppefay2vvNFTXu/2oQ0EHDtxQgZ+NUq+HzlIChXIK3/8OUfatnzcpgR6xTx97150RIUGJ3TEQscXnjJPOqSxk2h37fS8e7Vol51j5zRpmB6u9aBcMiMTxv/0q53j4p0uL0W7n6cNOqG3pjPKlMHzf9YJEyaQUV/1i7CrpnX6YdJUea5tc1cQRCeR7tmtk7xn5rDQ0qRRHRt40Ym83+7ZXx6uWcXOt+E0pJOC79i5x77VkSRbTBBAJxlPljSJlDKTU3tTdFREm+e72Ko6cfi8f5ZG2U3n1vCm/zraZemKNaJ+eU2gZZlZfvmNHnb+EA0mURBAAAEEEEAAAQQQQAABBBAItIA+Vf9lnyrSve8SmTZrjw1S6DE6ti9hRzTovA09+i+VFi/ONH8vJ5CnmhWWUT+Ezzuh9Z5tVUw0/dKYCZttSiVd17B2Hrlmbtg7qZWdV93mpClyRlboBNY6GkDni3DSLGlKpc7RjHzQNiIX9/Y1ZZF72iL3bZH3i/xeAyJOyZAuifw8uq70+nSZNflyZHjwQfvW9eUyovNBOEVHPOjk0+5l9I/hRm+YESSRgxPux3HfZ/uu0663Okl55KLzgmhwIrritJs4UTz55pNqopNqDxy2xla/r2wm6ftuJXm4es7odmc9AggggMAdFIhz+tx5kxnw9ksKc9M6tpX+g4bZIIM+da/lpWdbywdmtMTOXXvkSRN42Lh5m13f4+1XRW9+a+DisYYP23V//DnX3shfuWa9fa83778Y0FNmzV1o0yhdObbFrtdvq9ZskHurNZIVc3+V4sUK2fVfDR8rg4eOsU/264pypYtLv15vSeWK5ez26L5pUES/NiyZEV0V0ZEeJe+vJ1tXzJLcubJHqafzRyTLUkyGDf7IFZzQShos+Gb092Yi6c9tGiddp0GLtq2a2om03VNVjTITfzvporSeU/Q8Fv450XlrX3Vy6oz5ytmUS48/Use17eixE5KlYAXXe08LR3Yss/N0uG/z1H+dD6TLOx/JhCm/26o6p4cGWN567UXXxObubUS33PyFmVKhTEbzQbKkraLvFy0/KPeVjTmlldbbsSTqSJzojsV6BBBAAAEEEEAAAQQQQAAB3wQOHjklmTOEp0T2bc87X1uDDJrqSOd5cL+pr3MWHDOTYUdeH7lHJ8y+Or+EBhtup5w+c9n8/Rs34OmSbqcv7vto8EEnA0+ZIqFrZIX79ti8fMqYJoiFprHZjL4hwmA0VwAAQABJREFUgAACd0IgJIMTDpTePNeb8DpvgXvR9ToSQEcfRFfOnjtv8jrG9Tm9k9Pe6TNnzQeP+Le9v9NOoF91NIROju3MgxHo9u9Uezoq5Ny5C7fd78jBiYHDoj5t4d73xSvCh4lqQKNCmcwmiJHJfTPLCCCAAAIIIIAAAggggAACARSITcGJg4fPS6X6ER/OC+Cp0lQsFnijQ2kz0Xj4PCKxuJt0DQEEEAgZgZBL6+R+ZdKkTun+1rUc3XpXBbOQPFlS97c+L7uPRvB55zu4gwZrgrEkSqhPYiQMWNedERTRNRg5mBFdPdYjgAACCCCAAAIIIIAAAgiEloBORs3o+dC6ppwNAggggEDsFLi9MYWx81zoFQIIIIAAAggggAACCCCAAAIIIIAAAggggAACCASBQEiPnAgCf7p4FwV0witn0itvDqspnSgIIIAAAggggAACCCCAAAIIIIAAAggggAACgRcgOBF4U1qMhQKvtCthJ8T2pWsxpX7ypS3qIoAAAggggAACCCCAAAIIIIAAAggggAACCNwUCOkJsW+eJksIIIAAAggggAACCCCAAAIIIBBbBWLThNix1Yh+IYAAAgggEGoCzDkRaleU80EAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIJYLEJyI5ReI7iGAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEGoCBCdC7YpyPggggAACCCCAAAIIIIAAAggEmUDmDKmCrMd0FwEEEEAAAQT8FSA44a8g+yOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggIBPAgQnfOKiMgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCPgrQHDCX0H2RwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAZ8ECE74xEVlBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ8FeA4IS/guyPAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACPgkQnPCJi8oIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDgrwDBCX8F2R8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQR8EiA44RMXlRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMBfAYIT/gqyPwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCPgkQHDCJy4qI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAgL8CBCf8FWR/BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ8EmA4IRPXFRGAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABfwUITvgryP4IIIAAAggggAACCCCAAAIIIIAAAggggAACCCDgkwDBCZ+4qIwAAggggAACCCCAAAIIIIAAAggggAACCCCAAAL+ChCc8FeQ/RFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMAnAYITPnFRGQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBPwVIDjhryD7I4AAAggggAACCCCAAAIIIIAAAggggAACCCCAgE8CBCd84qIyAggggAACCCCAAAIIIIAAAggggAACCCCAAAII+CtAcMJfQfZHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABnwQITvjERWUEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDwV4DghL+C7I8AAggggAACCCCAAAIIIIAAAggggAACCCCAAAI+CRCc8ImLyggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIOCvAMEJfwXZHwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBHwSIDjhExeVEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAwF8BghP+CrI/AggggAACCCCAAAIIIIAAAggggAACCCCAAAII+CRAcMInLiojgAACCCCAAAIIIIAAAggggAACCCCAAAIIIICAvwIEJ/wVZH8EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDwSYDghE9cVEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAF/BQhO+CvI/ggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIOCTAMEJn7iojAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAv4KEJzwV5D9EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAwCcBghM+cVEZAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE/BUgOOGvIPsjgAACCCCAAAIIIIAAAggggAACCCCAAAIIIICATwIEJ3ziojICCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgj4KxDf3wYCtf/BI6cC1RTtIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQCwWiDXBicwZUsViJrqGAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACgRIgrVOgJGkHAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEvBIgOOEVE5UQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgUAIEJwIlSTsIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDglQDBCa+YqIQAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKBEiA4EShJ2kEAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAGvBAhOeMVEJQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEAiUAMGJQEnSDgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCHglQHDCKyYqIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAQKAECE4ESpJ2EEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAwCsBghNeMVEJAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEAiVAcCJQkrSDAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACXgkQnPCKiUoIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQKAGCE4GSpB0EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDwSoDghFdMVEIAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFACRCcCJQk7SCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggIBXAgQnvGKiEgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCARKgOBEoCRpBwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBLwSIDjhFROVEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIFACBCcCJUk7CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg4JUAwQmvmKiEAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACgRIgOBEoSdpBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABrwQITnjFRCUEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIlADBiUBJ0g4CCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgh4JUBwwismKiGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggECgBAhOBEqSdhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMArAYITXjFRCQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBAIlQHAiUJK0gwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAl4JEJzwiolKCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggECgBghOBkqQdBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ8EqA4IRXTFRCAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBQAkQnAiUJO0ggAACCCCAAAIIIIAAAggggAACCCCAAAIIIICAVwIEJ7xiohICCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggESoDgRKAkaQcBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQS8EiA44RUTlRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBQAgQnAiVJOwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIOCVAMEJr5iohAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAoESIDgRKEnaQQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAa8ECE54xUQlBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCJQAwYlASdIOAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIeCUQ36taVEIAAQQQQAABBBBAIBYIDBy2WgYOWxOlJ/eVzSzjvqoVZT0rEEAAAQQQQAABBBBAAAEEYqdAnNPnzl/3p2spkibxZ3f2RQABBBBAAAEEEEDAa4HmL8yUCmUymq/Mrn0GfbNGFi0/KAQoXCQsIIAAAggggAACCCCAAAKxXiDk0jqFhYXJxUuXInzdzlVw2rnVvt7UudX+d2vb5ctXRPtKCQ2Ba9euy+UrV+/oyWj7169HjFteDbsml8zPkqevK1c9/3zpPmHXrkXb16tmv70Hj4u+Rle0HwePnDT9ia6Gb+u9O6bI4WOn5cLFy9E2rv3af/jkLetEu/N/YINeL/1ZuZ2i10iv+a1+Lm6n3ej2OX/hsr3egfoZi+447usdn7t5TPfje7v8/+inXve7de3vxu9Tb61vVc+5DpHrhMrv5cjn5e37+8pmMsGI8C8NVmhgQosGLygIIIAAAggggAACCCCAAAKxXyDk0joN/GqUvNn94wjyKZInk/vvKysfvNtZStxTOMK26N6MGT9Jnu3YTa4c2xJdFYlc5+y581KoTA15sklD6d/7rWj3u5sb9AZPsizFZMSXfaVVs0YBO3S9Js/IkaPHZcnfkwPWJg15JzDsh7/ll79WyNRvOsuiVdvk/YGT5NWnH5aHq5TwroFb1Dp99oIMHDVd5i7dJP3efFJKFc3lqv35mBkydfYq13v3hayZ0sjovs+5VmlAYvyvC2X0pHnSrN590q7pg65turBpxwHp+/Vv8u+BY671JQrnlB4dH5PkSRO51g3WY/69ygY4EiaIL5XLFZQu7etL/Hi+x1W9Oeaxk2flk+G/y/J1u1xBlQxpU8iHrzeV3Nkz2H4dN3X6f/O7rFgfsc4HrzWVPDnC67hO4D+6sGvvEen5+RR7fWeO7uq1gl6j/t9Mld37jrr2KV4wh/Ts9HiEnwvXRj8XZsxfK/rv6eTp87aleHHjSoMapeXFFrUkThw/G49h9xXrd0rXfj/I8I/aS86s6WKo/f/bHLmfz707Qs6Y3xPjPu1wxzrV7ZMJcvLMeRnaq+0dO4bTsPvvU2ddbHu91b+nYP+9fCesNa2TBif0ixRPd0KYNhFAAAEEEEAAAQQQQACBwAmEXHDi2o2ntFfN/80qhZkntxcuWSGjxk2UslUbytYVsyR3ruyBE3RrKa65sVXv4epSvFght7WhuVixfGk5f+Gi1yd35uw5SZurtEwY84U0qkc+aK/hPFS85vaodaoUSeXeEnklc4ZUHmr6tmru0s3y8dBfox2V0bxhJalesWiERo+fPCcffPWzFMufzbV+l7mx3G3Aj/ZJdNdKtwUdZfFqr2+lUN4s8m6HRpLe3PxfYYIBoyfPs4GB915ubGuPmDDHBmHaPPqACUoUkk3b98sAEzhIkiihDca4NRnjorfH7D5wohw6eko6PlXbBBoyysZt+2TkxLnyau+xMmVIJ3uc7oMm2af6nTrbdh2Ub36cLZ0+uFknxg4FSYWz5y9J4xc+NQGhevJQ5eJe9Votfpi6yKu67pV0tI7r5+KlxpIudTJZsnq7jDNBrgEmYNH9lUfdq/u9vHbLv9Jv2FQb1HuwQhHb3q+zVsqUmcsld7YMUq9aKb+PcasGwswIqGAokftZolAOMzLx9kbExMbzdf99Ghv7F9O/p2D+veyLt6c5JnSkRHSFAEV0MqxHAAEEEEAAAQQQQAABBGKXQMgFJ5RXR0oUK1LQJa2jJarcX15KVKors+YulLatmri2BXIhaZLE8vXADwLZZKxt650uL91W365evbPpiG6rU0G8U5F8WaWXeao8EOXc+Yt2ZILehNYnuiOXjOlSin65l09H/mHftm1S1bU6rnnkPE2qZPJR52bybLfhrvXOQoL48WRw99ZSIHd4+g1dX9QEN1Zu3G1HIzj1ppun2quWLyItH7nfrsqdLb15wv2cDDdBi0dr3+vT0+beHvMNMyojU/qUkihhAnvMwiaAcvrcBRk7ZYFN4ZQ1Y2rp0q5elDpnjJ0GUzSwkSm9/4EixyC2vGqQ19ty4tQ50Z+HsKvXbMDJ2/10ZEzkn4tiBbLLig27ZaX5CnTRERlf9ngqws9hcXPjveGzn8iytTvueHAi0Odzt9rr0JLg8t2y1uPE9O8pmH8v++K4eMVh6di+hGuOCZ1fwlPROSfcUzo57xlB4UmLdQgggAACCCCAAAIIIIDA/18gJIMTnljz581tV+/Zu1927dknPT4aKL3efU2yZw2/QXri5Gl57a3e0vmVdhECG9t37pZvv58ii5etkgrlSkmrJxpJvjw3U91EPtbLXXpIvdrV5OGaVeymfQcOyXc/TJEFi5dL0iRJ5OFaVaVl00ckXrx4kXe1ObbH/jhFZs35Ry6YUQnVq1aUdq2fkATmpt3+g4elW4/+8srzbeTP2Qtk9vzFkjlTBrO9qVQsX8bV1pZtO01/J8uylWvlvntLy5OPN3Bt04XZ8xfJ9xN/ky6vtL/leenxxpp25i1cKlkyZ5KHqleWxx+p42pryPDvTK79S9KpQ9sY+zbp1+ny05Rpdt8Bg7+RqX/8bUeXvPbSM672Qn1h3C//yCXzZHi+nJlk4h9L7I3115+pK5ov/Oc/l8viVdttfv7yJfNJs7oVJL65ga9FB0no9nnLNtv31cwT3tfdnrjWm+EaIOjQsqbkyBKeGmbOkk0yfe4aOWBy9uuN8kcfKifabkylTtWSol+aWsebcuT4afndpHmq+2ApSZ8mhWsXTVHzefc2rveeFtwDE852fXI+rxmtoEXTQmn6pLw5I6ZJcrZv233IY3BC25g4fakdiXHWBAw0VVSrRpVtSqCYjqnH9ZReJ2Pa8IBM3BtpfjzV0eNqSiAdBeKpvPvpT9a2UpkCrs2aGqpI/qxSz/hp2b7nkEmFtUh2/HtYkpnUVtXvKyqNapU16YVunV8opp8hTZ2lowE2mFEgOoJEA0HPNqsmyZMltsfVnPvfT11oRinsEE3rVSB3JmneoJL5OdgvM+avs3XG/rxA9OeqoAkouQei7MZI33SUhRb9mfe1eLpG6v/v/mPRNqU/J/pvZOnanZImZVIzuqeY1KhUzFXfl58JDZAkThQemHI14LagadR+M6MrdDTPd+b89ph+jejT3taYv2yLzF68Uf49eExKFsopTeqWlww3fna0gu47Y95a++/yvtL5JUfmiKmcnN8RhfJkkT/Mv99Dx07Zdto/UU00uKbl1JkLMmrSXHst9X3pIrmk5Y2fb33vFOf3QvMGFWXJmh3290dvE8TU3xFbdh6Qaab99Vv2Sr5cmaR+tdJSrMDNkU9e9dPMJfL04+EBSW/75PTN/XXmgnWycMVW2WN+RvOalGj6b9X5PeZeT5f1Ok4y/7b1Omu6Qh0x9pgJUiZJnNBWHWVGOOnvTSeYqSsnz1hm57R5ufVDtk5Mv09tpUjfbtXHv/5ZL/PN7+b95ndtKXMtGlQvLdkzp7UtLF+30/a3hQmujpo4T86YIOf9ZQtKi4b3y9+LNph/W2vl3IVLduSO8ztglQnCfW9GHT1R/z7bnjbk67+n2Ph7ORKpX291fgktg76J2oxOjt0x/J+ja6OOrhg4zHMgw1WJBQQQQAABBBBAAAEEEEAAgf+bgO+J2/9vXfXvwL9Nn2UbKFemuJw8eUo0CHDUzJngFJ1EW9f9u++gs8q+1nm8raxet1FKlywmg4aMkioPP2Fvxkeo5PbmO9PG2vWb7JoDh45ItfrNpc+nQyRv7pwm6FFAOnXtZUdvuO1iFzUd1Yuvv2cDEKVLFJMype6R3n2/kA6du9vtZ01aJO1fjYYtbX9qVassGzZtlSp1nhANgGjZu/+gVKvXXL4Y9q3df8XqdVK7ccSbxDt3/SvDx/wokc+rZsNWrvM6fOSY1DTH0X6XuKeIHDp8RJ5s21E+HPClPY5+W2SCNRok0RJT3zJnzOBKdVWoQF4pWbyIFMif2+77X/m2etMe+eG3RdLr88n2Zlq54nnthNM9TIogfeK+SL4s5iurvaHbY/DNeTy+GDtT9EtzvOtNu6/G/WVTHTluenNLb4IdPXHGrtLUTL2/mGICYYmksQlK6AiG9z6beNsTEzvH8fQ6/Mc5dvVT5kbt7RRNGbTO3CBdtHKbfGhSQ2naJh0RoUVv9OsTwRq0cS+LTZofLXoDP3LRm/Rd+oy3nvqk/73GWG8Wa1oUp9zqmE6dyK96gzO1uemdOUNq1ya9yal9X7khPB2VjqxoVq+C7berktuC3vDdsSdinxeu3CqbbwSCjpvRBs+/O1L2HTpub3Bq6hzt95rN/7q1EnVRJ+WO6Wfozb7fyzLzM1Le3Mwte08e0RuqXfvfHBkzyMzrMWbSfNFRIo/ULGNGf5yWPia9lwacCpib11r0hqum4cplRq/czXLm3EVZsHyL3Fcqv8fD6o3xF7qPklmLNppRNoXtiBftuwYrtHjzM+HesP5b0n9TlcxNZE9l74Hjoj+Dr380zt70rlX5HltNf0Z6DJ5kg0qaImqOmbPlpR5jRH/etCxYsUU0QKW/B+4pmN0E9VbbOVfsxhvfdJsGKHQulswmqKiBoMkzl8lnN0YnabUXu4+UuSZIVOXewjZ4pXPD/OghhZbze+GNj7+XaXNWS2VzPsnM74SN5t/YKz2/lX0HT0htM0eNBq5e//A7G7DQ9r3t56Ib/w596ZPWdS+aLk3PdasJNFYqXcAEbU7J2wMmuFdxLWuwsmtfMz+H+V2ZxASP0prfazqfzWum7xpw06Kja5aaQIx7Wb91nw0KOeti+n3q1HNeb9VH/TevP2v7Dp0wv7uz2aDVi+ZnUSdy17LXGGtgSH8nZcucRjQFn/a5c59xMmj0dJM6LL1cMumx9Prqz50WDSjrsv6c3W6Jbb+Xb/c8bmc/DVx0bF8ywpcGLCgIIIAAAggggAACCCCAAAKxVyAkR07o/Abdeg2w6mFhYWYkwkJZuWa91HzwfqlepZJs2RrxBsatLs8zrZrKm6+GT/T78nNtJGfR++XrkePl/bc63mo3u01HF2gwYPf6+ZI1c/gT4R3at5ZUKZNH2XfBouUycuwEWT7nF9ek3Q9WrmCDD+7HesyMXhg26EO7/6MNa0u+kg/aURLZsmSSL78ZK4ePHpN9mxZKxgzhT+X27ve59OgzKMrxbnVeX5l+b92+K0I7H/T/Qrp/+Jk8Y0ZqZMrg+QZldH17pG5NG5x474NPpb6Zk8N9BEaUjoXwCr3B9snbLURTx2jRG1d603rQe61tYELX6QgHvZmsTz7rE8F6k7WGeRK86/MNdLN94v2R5z8xI288xxWXrtlu93unwyO2fsMaZczkvjVdaYrsygB823/4pPy1cL25mV3WBkBup8nN5sl89/RRGozQp/ad0qROBRuYUY9KZQqaG/n77dP76nLW3LSOXDTIoaMDdESKMzl468aVI+THj+mYkdvUEQP/Y+9O4Gys/jiO/+x7sssakRAiiUhKWilKJVJpUVpQ2v7alPZS0r5qE1q0ao+0SauSNhWlhOz77n++Z+a57tzuNoOZO3M/x2vm3vus53mf547X6/yec36zXXLnay88LsuqLVu3+BwTwUIFU9Txn9MyIzMIcbXLtaCpo1R6dW1n5TJHN8Q6rp4ij3cPaeTMA9f38x2jwTF2KVvKPcn9oX/6XE+af/7tr6Yn+c/t3dlvojZVUEDnblS/hh+Jog53jarJzaLAy7UusKZy5omd/Gvkr2dfc6PM1m2wx246KzQS5OFxk230Cx/6ezOZeyI45nKXgHm4S+Kt5O6Hho28CNaHvyrw1+/4jNFxyr9w/5j37HT3uY/Ly6Ki0Updzx5hH7nggdzue/pdq7hrWRs38nw/EkYJt08cOCqUiDv82PcOOy309L3a4XP3nVbR+4WLV9ig0w63ru4JfZXjj2jjOudjT5Wna3ns5rNCo28ucR3lGjlz2+W9MvZ3wUBNvTZ+4jS7+oLu2aqnDpCTOmk/BW0UiNG0bcHfKi1XkC5aUZBSOUKuOKdbaFSM8pEocbZGISSTD0WjgrLz9zReHXXPKUdOtL/Nj78wxYYOyPj7q2sZeNphdviBzf1l9b7oPvvOBaE02kbBZt073fqP8MFD/f3o0n5v97euYWg0SDSLeMtS8e9yvPqyDgEEEEAAAQQQQAABBBBAAIECGZxQs86blzGaQO+7uCmJLhvc34458lArnjmXvJYnU47q0im02W5uGiVN7fTF18lNEaBE3Afs3yoUmNCBKuyaMUVM6KCZbzRtlIqmXdKPygY3dYbKd9//5EZeZHRoH3/MEX6ZftWpVcO/n/dPxmiPL129OrRrHQpMaOXRhx0cNTgR7bq+mj7DH++zL775z3G0/TA3FdY33/4QmrLKbxz2K17dwjZL27fqFA4CE0JQJ5WKOtn0oxI8BayplUqXypiupFPbxn6dfmnZXm6EReRT+MEG7dwTyJoSRk9Md9p/L99hHuRA0LRBw0a9FGzqX692QYw93TQy2S2PjJvkRwloGpacllZN69lrDw/xT6rraeH7n3nPBrpE2eNGXuA6Uy1zSiMzJSl+2J1P0908OLyfnT30Mdu9VtbpnlSH713npYqSZwdFne9lM6fE0bJE5wz206umc9GTzj26tPa5OMLXKRgx8dFL3Hd0kx9B8dTLH3vzx2/tHwouhG+f6H3LJnX9JgrEHNO5pbVw01GFt0u/yx/2owCC4/R0ndIa5ZDoHlLb64ltTRejqXPUAf+eGzmhoo5gBYQU+FGnrZJDKzimTtJ4QZHtvY8mTp7up64JrqWoC7SpszZy+irVRx3S1w063k2PVC7YPMvrdJenRB3FmsorKD+7aYs0ckCd0cncE9pv7foN/t7T9++2y3r9py7BsYPXrmHJsjXiR+XPeYv8/RJso1cFy5RE/t8lK7NM0aX7WwEGPX0fXtQewbRAWq6n6zVyREVtomDDw+Mn23wXvNQ9s4/7UYL4WOVEN0Vc4KqpkDRSQtML6b4Oip78X+6s1rv/b5KtZ7BvojqpDcNH/zR1gREFWn/87W9/CNmEF42IiFZ0H6iET4vWyt2n+h4qsJdMcEL3hUqyf0/j1TEY6XBwWP2Dv80aURVe2jTfI/RxLxfsW7N2TmjqKk0hpnt7oRutpKK/V/q+5rSk4t/lnF4L+yGAAAIIIIAAAggggAACCKSHQIEMTigh9ugHbstWC8ZK1Fy5csUsx6nmRiQscNMeJVM0giMYMZFo+yVuqikV7RNeNGoi/BjRRl1oihmVZctXunwYdTI+ZP6uVKlCls/Bh3jXtXjJsv8cp2LFjKe5l6/ImD4oOE74a7y6hW+Xru81xVJ4UUexyurMqV+CdeoMVyflAjfNiUpkh10l9wR2rOCEOu9GXtXXPQn9mevQn+w6ad8KPd1bsXxZ30EanEevFdyy7JY//l5kH7sO055HtnEdaaWyu3toe3XQqnNOP+pcVGfyQ2MnuelQFoc67/QUv36CovnUNQJF89NHljWuk1qdlfFyBiRzTh1XoxE05Yye7D7P5fOIVpSfQD8adVC9Snk72z2BriCT8kQkU8KTTCtw9cyIATbWTf2l/BBqO02hNPLKU/yIAB1TUxQFJRhhkuge0vZnDX3UTxOj+e7VERr4aGSCivKVaEoxBQ1ufuBVv0zXrFE30cr23kd71qsexcjdDGFF94GCQxefcWSWDumwTfxbTXemEv4d2sPlLdGPLi+Ze0IBiSE3Peu/b/ddd1pSCc01CiIoyzK/x5s3b81SD32Pm7hcDuvWZ4xsiPz+V4ry3QvygATHjhwhpeDchLe/tCluujJ9xzVV002XnOhHQwT7hL9WqrCtnrJQUY6RcC/lOyjvpi3LTj3DzxGvTrrn6tfJGDWofapk5qZZuzajLsl2xGuklL7bQaJ6HUtBreLFi0YdRaX1Kho5GZTVqzOm2Er272m8OmrEiIpynIQX/W2OzI+i/DFBKVq0cCjoHCwLgkfB55y+purf5ZxeD/shgAACCCCAAAIIIIAAAgikh0CBDE4karryu2Q8hbt46bLQphqdEK28P+UTl8C6u1+lvBSvvvm+nXfWKf5z8eIZT6yuccmrS5cq+Z/dNcpC+R/Wrlvnpmn47/rwHfZrlTHtw4AzT7GKFcqHr/Lvleg6Udlv3+Y29vlX/YiLYISIkmtHK/Guq12bln6KqCc33BEaaTL5w6n+MC2bZ33SNdqxoy0rkWk1LzM/RrRt0m2ZRlFolENvNxWMchpElqDj7hOXMDZ4il4drpHzqkfup+S21w8+3i9W8t673fzmvVxiXD2FrQSy21uU90IdhX1c0uScFj19r+Tg4SV4AjzogJzjplOKHCEx5pVP/bnrR+yr4+i6Nb/+t+5p+mhTLCVzTh1HT2krP4ByNFx53jFalKXMnqt6VQ49ka6VwfethOssjVYUxFi8fFVo1bIVa/zT/aEF7o1GOQw+/XC/aI4LAJ3tggpKmqs8HOEBmvB9Et1DumZ1Wmpaqg6t9/S7jnt9apbgljpHlUBaPwqA3PLgaz5I1O2QVq4zOON6NJ1QUNTJvj33kZJeR0t8HRxf9XvBJY0/5+RDEk4lpfwNyiswoE/nLO0RHCvRPaGO+itdngMF+0a4Kdci78ngOPFeVQcV+Wr6q2hFQQQlzFai8aAowJfdou+Ipo7Sj4J5A64Z7UdfKECRqCgAph8FMGMF3HJSz3h1Ch/pEF6/xm4EhcrHX/2cJRl3sI2+L2syAxhapqmo9Ldy5qy/QqPP9D3UqJmmDTP8NYrjj4jE6RotEXT+7+lypqgk+/c0Xh1Vn1jHCu4Hv0Eu/krVv8u5SMCpEEAAAQQQQAABBBBAAAEE8qFA9J60fHgh2aly3To1TaMrRt7/uNWuuZv9M3+h9R84NOohbrrjfivk/jWoX9fufuAJv80J3Y/yrwcekNHR+4DL9dCz+5FWt3ZGh0VwoD4nHuuDE73PHGyDBpxulSpUsNtHPWxXXHSuNdmrYbCZf+3Uoa3Vc1M39ehzjt0y7DKrW6eWT6ytpNTPP3lflm1jfVAuB+XDOOvCK+z8s/vaL7/Nsdvufjjq5tGuK8gF0ev4rj44EX4c5a3QlFFyyElR5+1x3Q63R10ybiX83rX8LqEk2Tk5XkHYZ383hY46Awfd8LTvlK5ZraJpOqfRbs5ydZQq94DmJX/hzc+ttMuzoKewn3Nzw2/YuMk/sR/NQAlf1cl9SFsXRHKdzurkVtklQe4CbaMO2qUrVvvObH3W9CQapaBRHKqHyqw5833C1t4u2BH5lLffwP3S6IY/MzsJtb86xzUNSknXsarOYn1W8udgjnUlmp7tElzf6+bl17n0oyDM+cOetAYuIbM6wvX08aSpP/jOenW0l818GvlpN53SRy4J+K1uKh4lTZanktSe1uNA29sFfyZO/sZ2c8fXuRKdU/VXou2LbxzjL6WbGznw9cw5/r1+VamY4XDBdU/6YNLJLieEgidLlq2yh9y0UypqU5XweqkzX9fxzkczfLsUcx2vdz/xlt8u+KUk1ZoCSEEIJaL+zSUJVgkCVMF2ka+J7iHVWeXNKdOtcYMaPomzkgoHRaMnlPfj6INbWmtntNhdy/xFy3zbapRJMTfNjDp/X3eO6qxV57YSZ8crmmpJo0KCeyCYAkcd/9GCcOHHUge06ieves422Ffb1HejIWR55Yjn/C43DjnRurp6T3bJsJUrolfXtu6+KGlT3agXJUK/x+VyiXdPKOhz84Ov+qTmer/OTe0Ufr4Wjev6AMAVbqqtA/drZLGmMFN7yUhBHXP3rZwXuu/AEy9umxJMibM1IuYel3z8UJdXQCMfws8VbhDrvRIt3+WSJyuPikYjaDomBbma71Xa7xLuEusYuk7lG9F3oqNLIK5pyV5zbatRCOef0sWyW89EdYpVD43gUQf/S24UiAKdMvn2xz/9NFxXnnes/x5p9JICOvJUOyrXjL7bZ594sJ/+6LHnP/B/B9U2KpruTsnKdQ/pHtVUX5qmSn9PVJL5e6qpzsLbO14dFWCL9rdZQb2cFtX/sec+sLNcjhVNsaaSzPcp1f4u5/T62Q8BBBBAAAEEEEAAAQQQQCD9BNIyOFHYdYaMf+IeO/3cS63p/odbrRrV7dorBtr5l1wbugMKuW1Urrr0Aht2y90+sbWCB088cLvvpNc65XxQsmwli75i2G22cfEvWUZIaDTEa+MfNSWC7nLsqdrF52so6wIjkUW5KCa9NsbOH3KNT4Kt9QqgnHtmHytZsoQVLpx12pPw/dWJqHLwgW3t0XtvsWEucfXYF14z1feGq4ZYn7MGZ2wQ9jvyujQNVhBsademlU0Y84BPgN3h8IwnchW4eOCu4a4eGS4K2AQlmbpp20sH9ffHPKRbH7/rynkzXIf1tikvguMVxFc9vVs4aKjMC1THs6ZEud51rCpHhIo66tRBWDIzN4oSaA91nbGPug4rFXWWqSN5kktGrRJ5zFrVK/nghqbFUdHxBrhEx+HT0PgVUX5pLvvwDlMlfFXRtC+D+x3h3z8y/gN/TCVrjlU+dMGCB93oiqCok1E/6iQcc+d5froiJa1WB746G4PSbM/ads2FPfxHUQ2/qKfvjB1+38t+maY5uqDvYaERAFr4x9+LfcLqtS6xrDof77n2VN9RrdEiKuoMv6x/16TOqe2VQDkoGj0RXpTPQyNSbrv8ZHtw7Pt+REqwXgGWe649LeQcXi9NrHa5S+Q7aPhTdvFNY7yfEnarIzRoP9kob8Wr738dHNJPx6UO5Hgl0T2kefBlPdJ1avcadK8/t9pz4gfT/d+UzW7kgOp+0/2v+ECUziWzq87PGC2mz2eecJDd64JeQef3648MyTK9jrYJLxqJoABaUIKk5+GjN4J1ka8K4Kj86oIzwX7BNheeepifakoBvCA3S3OXm0P3yX0uX4mCWSrqxO7bvb1/L59Y94Q2UGBLZYLryNZPeHnytnOsWLEi/v5SrgeVQpl/h8P//mm5EkwrOHH7oxND1677WfesipLSr1y1zk+dpTaW+RnO9fGwQFHwhL/fIeyXvsMqRYoU8VMyDb7hmdBadZAHibnDXYL7KngNdtCICwWk1HE/2gUpVHTvBd/v7NYzUZ2C80Z7VUBx+L0v+Q5+TVGl6zz9+AP9pgfut5dNdgGc6+6Z4ANVSup+t5uuTn8LbnzgFb+N2kRB3CCnjvJrfOkSxI947A2/XsGKDm5aqV9cQDUoif6eahqo2W7EVtDe8eo44n+9XQ6fCT75uoKwCtwNPv2I0N+nIpn3SngbFC6U0ZZBffQa/J+q90vd3wSdP3ykUjLfp1T7u6xryY1y9yPf2bSvF+bGqTgHAggggAACCCCAAAIIIIDAThIotGL1GvesZ85LudI5n3M+52fdcXsqv0KlzHwK8Y66dNmKmMms12/YYCtXrrbKMfI76LirVq9xnUuFswQvYp1PiUtXrFwVdXqnWPtELo9V39HPPG/9B13pAynaJ9H1qx6lS5XyT6pGniOnn3XMokWLRp0KK6fHzO/7qXNLnZexnixXslqNJgjyBSS63uUr1/pOyFjHS7R/bq1f54IKa1zyYj0RH6tzdpXLyaEOviBBeDJ1k9fGTVtCIyzC90nmnOHbx3qvKZBWuHwD5VynpEYYJFM0FU9pN7pDT6pHK0rMrHwAmrs+lke0/bQs3j2ke2epm1YqlrOmN1rmRs1ohFMwKiXyPH7efzdnfjD9VuT6vP6sdtXfzlgjeuLdEzuy7upg3sXlYgmCCuHHlrNyP8QyDt821nsFZjRiQt/tZO+7aMdSeyoBc7S/Kdmt5/bUScES/b2K9rdKddQIsHAvteMWt0+s+1DfIZVY67Uuu39P49VR3ztNQRUvibzOmZ9KMn8jc/J3eXsMeg941/ZvVdUGnd3CH+buR76Ne7ggaKF99m9V3drum3Uawbg7sxIBBBBAAAEEEEAAAQQQQCDXBNI+OJFr0ilyosjgRIpUi2oggAACCCCAAAJRBSKDE1E3CluY3e3DduUtAggggAACCCCAAAIIIIBALgpEf3w3FyvAqXJXoFrVKnZQh/1z96ScDQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBMAFGToRh8BYBBBBAAAEEEEAgtQQ0EuKzr7blD0mmdoPObh6aBiqZ7dkGAQQQQAABBBBAAAEEEEAg9wUITuS+OWdEAAEEEEAAAQQQSFLgs68WuOTX2Q1OZOSnSPIUbIYAAggggAACCCCAAAIIIJAHAgQn8gCdUyKAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkM4C5JxI59bn2hFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQyAMBghN5gM4pEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBIZwGCE+nc+lw7AggggAACCCCAAAIIIIAAAggggAACCCCAAAJ5IEBwIg/QOSUCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAuksQHAinVufa0cAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIA8ECE7kATqnRAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgnQUITqRz63PtCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjkgQDBiTxA55QIIIAAAggggAACCCCAAAIIIIAAAggggAACCKSzAMGJdG59rh0BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgTwQIDiRB+icEgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBdBYgOJHOrc+1I4AAAggggAACCCCAAAIIIIAAAggggAACCCCQBwIEJ/IAnVMigAACCCCAAAIIIIAAAggggAACCCCAAAIIIJDOAgQn0rn1uXYEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBPJAgOBEHqBzSgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE0lmA4EQ6tz7XjgACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAHggQnMgDdE6JAAIIIIAAAggggAACCCCAAAIIIIAAAggggEA6CxCcSOfW59oRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEMgDAYITeYDOKRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQSGcBghPp3PpcOwIIIIAAAggggAACCCCAAAIIIIAAAggggAACeSBAcCIP0DklAggggAACCCCAAAIIIIAAAggggAACCCCAAALpLFC0oF/8L3M32ux5G23h0s22dt0W21rQL5jrQwABBBDIIlDIfSpVsrBVrVDE6tUoZnvWLpZlPR8QQAABBBBAAAEEEEAAAQQQQAABBHJfoNCK1Wu2q7++XOlSuV/rJM44d+Emm/r9OitdopDtXqO475RS55Q6qSgIIIAAAukjoP/kFJxWkHrOvA22Zv1Wa7d3SatdtcDH59OnkblSBBBAAAEEEEAAAQQQQAABBBDIdwIFMjjx0x8bfGBi/6alrE51npDNd3clFUYAAQR2osCf8zfatJlrfYBir7rFd+KZODQCCCCAAAIIIIAAAggggAACCCCAQCyBAvfYaDBiovN+ZaziLkViXTfLEUAAAQTSVEBB67KlC9v7X6y2MqUKM4IiTe8DLhsBBBBAAAEEEEAAAQQQQAABBPJWoMAlxNZUThoxQWAib28szo4AAgiksoD+j9D/Ffo/g4IAAggggAACCCCAAAIIIIAAAgggkPsCBSo4oeTXyjHBVE65fyNxRgQQQCC/Cej/Cv2fof87KAgggAACCCCAAAIIIIAAAggggAACuStQoIITs+dt9Mmvc5eQsyGAAAII5FeB3WsUN/3fQUEAAQQQQAABBBBAAAEEEEAAAQQQyF2BAhWcWLh0s1WtQJ6J3L2FOBsCCCCQfwX0f4b+76AggAACCCCAAAIIIIAAAggggAACCOSuQIEKTqxdt8VKlSxQl5S7dwNnQwABBNJMQP9n6P8OCgIIIIAAAggggAACCCCAAAIIIIBA7goUqJ78rc6uUO76cTYEEEAAgXwsoP8z9H8HBQEEEEAAAQQQQAABBBBAAAEEEEAgdwWK5u7pOBsCCCCAwI4WmPHDIvvgk7/smxkLbfYfy23p8vW2ZUv+73IvXLiQVShfwurVLW8tm1W1Tu1rWbMmlXc0H8dDAAEEEEAAAQQQQAABBBBAAAEEEMgDAYITeYDOKRFAAIEdIfDRZ3/b6Gdn2pfTF+yIw6XcMRRgWbx0nf/RNT7y9AxrvU8169e7qR3YtmbK1ZcKIYAAAggggAACCCCAAAIIIIAAAggkL0BwInkrtkQAAQRSRmD4HZ/Z86/OSpn65FZFFKTQzwnHNLSrL2mbW6flPAgggAACCCCAAAIIIIAAAggggAACO1igQOWc2ME2HA4BBBBIOYEVKzfYGQPfScvARHhjKDAjB3lQEEAAAQQQQAABBBBAAAEEEEAAAQTynwDBifzXZtQYAQTSWGDwlR8U2GmcstusGkEhDwoCCCCAAAIIIIAAAggggAACCCCAQP4TIDiR/9qMGiOAQJoKaCondchTtgnIQy4UBBBAAAEEEEAAAQQQQAABBBBAAIH8JUBwIkZ7KRHr/AVLbP16pgyJQZQrizdv3uLbQO0Q/GzdunWHnXvjxk2mc+zoEu/+2bR5s23ctDnmKVWfDRs2xlyfaMXixcvdVDdr/rOZjqlzF9SyvW47wmVnGiv5dTrmmEimXeQiHwoCCCCAAAIIIIAAAggggAACCCCAQP4RIDgR0VaffT7T+p93mzVs2statD7d6jToaQcfNtA++PCbiC3T++Pq1eusacu+ds31j+1UiIcefcW3gdoh+Kle51jrdtzl9unUGdt1bnXU16p/nL340gf+OCPved72aHySzZu3KMfHTeb+ObXfDXbehXfEPIeuuXGLU2Kuj7bi77//tcuGPmBt2ve3Jvv0tYZNelnLNmfYY09MDAVfdMwHHno5tPuOuN7QwVLgTU7c4lW71ynDrMtRF8Xb5D/rIo3/s8F2LBj97Mwc7V24cCHr1L6m3X7tATbmgS42dNC+Vq1K6RwdK5V3yqlPKl8TdUMAAQQQQAABBBBAAAEEEEAAAQQKskDRgnxx2b22b6b/Ysce/z/bp0VDu+v2gVanTjX7559F9vKrH9lJfa61jyffZw0b1M7uYXN9+1Wr1vpO9tGP/M+OOqLdTjm/OjwPO7SNNWm8+045fnBQjUBQmfLePf5148bNpnYa9/z71uPEK3dom9Tbvbod07WDlSpdwp8ru7+SvX+Ca4p1/ETrI/dbsmSFndD7Glu+YpVdcckpvk1WrlpjUz/73oZe/ZCVKF7MTul9WORutr3X+58DugV3jRpvr77+iU1+Z1S01Tt1WXbdElVmv9Z72dq16xNtlu31um+bN9vDrrv6jKT3nfHDohxN51S0aGGb8lJ3261aGVu4aK2tXrPR9m1e1c44ubENuHyKvTtlbtJ1yI0Nb7mqnU37eoG99Mbv2T6dpneSU7MmlbO9LzsggAACCCCAAAIIIIAAAggggAACCOS+AMGJTHN16Pc8+Wrr0L65jXt6mBUrlkGzT/MGduThbe2sft3yRWAi/BbatGnHT1cUHL9UqRIugHNh8HGnvpYtW8r2alQ3dI5me9f37dSu47n27vtf7rB2ObbbgaafnJS8vH8uGHyXLVi4xKZ++KBVrVIhVP1OHVtaz+M6WdWqFUPLwt9sz/WGHyf8vTrz16/P+ZRU4cfK6/dDBvfaKVVYs2adbczmtF0ffPJXjury3MOHW9XKpe3E/m+74MZCf4wiLrB485Xt7NfZy3N0zJ250+Gd6liZ0sVyFJxQveREcGJnthDHRgABBBBAAAEEEEAAAQQQQAABBHacAMGJTMuZP842dTAPvaxvKDARzqynqIPy7Yxf7TX3dPg3386yZk3r29FHHmDBeuWpuOHmJ63/mcfYlI+m2yefzrBqVSu4J9cPD22jZS9MmGznDzjexj33nj+ORiCcd04P2616peA09tPPf9grr31sX339szV263v26GTqmA/KP/MX2/MvTrbPv/jBFCzofEhrK12qpL3+xid+k/senGDvvPe5f5Jex44sF116j/U4tqN17NAitGr4TU/4c3Q/pqNf9v7kr1wdPrI//lhgtWtXtT69uli7tnv7dVdc+aB1OXQ/63zwvv46k7kmTcX0+huf2u+z/7FOHfex9gc0N03Hc9X/TrPq1aJ3oocqF/YmcAp/sl25Fp5zHp98+p1VqljejjyirR1x2P6hvX79zc3Z/+IkN/JilrXedy87rvtBoXV6o3Z57oVJdvedg/xy5TB4eszb9tEn39qSpStt76b17IzTjnYjDnbLsp8+ZOf++c/O27FAOQ7URtdceXqWwERwyHgjfSKvV/vEu+dGP/WGrV+3wZo2qWcvu3vi778XWZv9GtuF5x1vhVyH9+Aho+zrb36x337/2xQwUVEHfzQvvzLsVzLfqTNPP9o+mfq9vf3uNLt35EVWt071sCP89228+gbBx+XLV9mDj7zi7wkdoW2bJnbWGd1MATHtv85d74D+3f3BletE37fJU76xTZs2WZfO+1mlSuXt3fe+sFtuPDdUAW03dvx79t6kL/0yBTcVJPr5lz/tnvtftF9/+8sWLlzq84IUKVw4dL+FDhDlzTczMgILUVbFXdSiaWUb8+LPocCENt7sRiNdNvzT0H7HHL67ndxjT6tQvoR9+Nk8u/Wer/02nQ+sZX2O39NefXuOnXZiI/d3sbCNHvuTvTjxN7/vg7d3csGAv63tvtWsWeNK9tucFTb4mo9szZpNfn3DeuVtcP8WtlfDCvbdD4vt+hFf2NLlGSNRtP35ZzSzRvV3tTl/rbTrbv/CRlzf3sqVLWYd2uxmEx4/0l57Z7aNHvdTqJ7JvMmpUzLHZhsEEEAAAQQQQAABBBBAAAEEEEAAgR0rQM6JTM/vvvvVv2vuRkrEKwoUHHbUxfbGW5/ZAa6TXgGIrj0us48+/tbvpgCHOjB7nDjUvp/5u++A/8l1SmobBRNU/vhzvj3rOi9PPeMGnxhZT7hPeHmK9T71Or9ev2b+MNuO7n6ZzfljvvXo3tF15s+z7if8z3cea/0C17mpKajuvvd5273ubn5kwZXXPOzOscia7LW7NrEGe9S0vV1H8h71a/rPkb+eHfeuzfo16xPZb749zZ17jt900gdf+zqVLVPKTj3lcN8Re0q/4aEk4c+7AMsPP2Zsm8w1qRNdU9p88OF0H6h50V1zr77Xeq+lS1dEVi/mZwUkHh39ul/ftk1T/6pOZo18eW3iJy4g0dZKlixup515owsCfeDXz3PTcx3b8wq/XwvXxt+5ANMJbvvwomvQdFFBuf3OsTb8ZhescQEoBWWUi0LG0Uqy90+0fbdn2U8//+l337dVo2wfJvJ6E91zX371k107/HEbcvl9VrNGFR+sufWOMXbzbc/4c+teq+YCTOrY13v97FIucW6DZL9Tal/ds5pOTPdkopKovtr/RDddmwKAh3XZzwUZ29nEt6baU2Pe8ofW/lPcvRqUW25/xi68aLYdvx8AAEAASURBVKQpCKagz3U3jraBF480fQ/Cy423POW+3++a2qRIkcJ2/qA77T03wqdM6ZLeRPfmbrtV8u9btIj/9yY47uw/sj/KQYGJQoXMXn1nTnCY/7z2PaGRjRx+oFV3OSj+XbzWT/f0ogsMqOy9VyXrdEBNu+GK/W3O3JVWskRRn7dCQQeVg9rVsJuGtrX6dXex6d8vskM61LQnRx3q19Wrs4u9/kxXa+iCD1OmzrOObts3x3bz65o2quiDD+33q27fummY6tQs647rRnL8vszlR9lqq1ZvtFnu/bwF/03q7g8Q51dOnOIcjlUIIIAAAggggAACCCCAAAIIIIAAAjtRoOhOPHa+OvTsOf/4TtViRYvErfewGx73IxHef+tuU96FiwedZMeddJVd7kYRfDrlgdC+xxzd3u66Y6D/3M29b9X2TJvuRloET/xrxWVDTrZghEKtmlXs3Avu8B2fehr7qmGP2iGdWtkD9wzxxzj5xEPtRJdX4Imn3vRPaY9+8g0f5Pj2yydCIw7O6tfVypUr455cXmc3u47Uw7vs73IotPf75+SXRjnU2K2y3TT8HL/78W7khp6EL1GieMzDxbsmjSjRXPtvv36nt9OxFGBZtCh+x6sCPgpqqOiJ9c+/+NG/v2xI79AojsefnGjLlq2yVyfc4p6+zugQr+lMbxvxrH9q/XGXGFrnmfnN01a5ckbn6oiR4/x6f7Aov96f/KUfWTJ44Il+rZ5+X7EyeodpsvdPlNNs1yIFr1QqV9p1u46jnRPdc8EJXhx/g9WuVdV/XOaCQu++/4UfuXGuG2GwxAWZFrjRQ3qfbEn2O9W8WQN7cdwN/t5J9tjaLlZ91Zb6Tj547yW+nbXtyb0OdVMuZTz5r89BWbpspSmB+AUDjrOrh57uFw++8ASrvcfx/u9GsJ1edX+9MHa4/54oD8b0b3+1D93om0M7t/YuL7kcNpouLjtGwYiD8PMkel+3Vjm/iYIOscqFZza32X+usM49X/GbnHva3nbZ+S2tetVtQaWT3JRQM39e4t1nTT3FJ9eelTkllKaGOubUN/y+xYsXccGMGv79kAH72CqX3+Kwk171nx96aqZNnXi87dWggh9NoaBJi0PGW5AnRFNNaUTHYW5ap+kzF9nlN0z1+2X3V06csnsOtkcAAQQQQAABBBBAAAEEEEAAAQQQ2DECjJzIdGzQoJaf1mnjxv92TAbUmkJHHeNdjzog1EFayPWyHXX4/n4qm+UrVgebWlcXkAiKOslVgpETwXJNwxSUevUyOvU0LdTGTZtNgQE9Ff/wo6+GfjR10DQ3hZPKF1/96KfUCZ8KqXz5sqF6BcfdnteDDtzHNOJgwIUj/NROqluiJ+FjXZMCJhploTwHCuoEpW+fw/1bNxNO3HLSCYfYiT0Ptv33a+K3O+H4g32gJDjWtM9/9HUdO+69kJdGrmh0gNpFU3BplEUQmNBBNC1PvHJ4lzZ+Wqfrb3zCT52kIEms60/m/ol3rpyu26N+xn3z779Lc3oIv18y95w2VLL4IDChzw33qGW/zMp5UuXsfKfOOO2oLPeOzp+oxKuv2lLTUql9731gQui7pSnSIsuM7zMSNIcnmC/uEo33diNqIkvvk7qEAni6Pxs1qmNz5y6M3Gynf/7ITdGk0qLJtqniIk9aqUJJP7IhWD7+5Vn+becOtfyrggcKTKjovfLYVK64bdTKV9/969fp1z8LVlvxYhnBXU3bpGmifvy4t//5wCXlVmnXupo1auCmcnIjMYLAhJYrMEFBAAEEEEAAAQQQQAABBBBAAAEEEEgvAUZOZLZ3s6Z7+HdfT/8l1AEeeSusdfPPqyifQXipWHEX/3G167wOyi5uBENkieyAD57w13aae15FHXbqyFdRzoNVq7cd88zTu9quu5b169RRHh6Y8At3wK9NLjASlANdLor33hxpTzz9ht14y9O+o/+cs4+16685M9jkP6+xruk/G0Ys0JPUsYqmCep1QufQao0o0UgKJS8Pli9ekjH6ItxLSbR9Im0Hv8IFKHavmzVHQaXMdgsdOOLNxYN6ufwbe/j8IP3Pe9Ovve2mAaYRJJElmfsncp8d8XnPhrX9Yaa5oFmQCyQnx03mntNxK+ya8TR+cI4iCUYaBdvFes3Od6pKleyPDklU3+fGXG9jXd6Xt9x0Zsq3ojwWjz10RZbcLrHqHmv5Lrtk/e4XjndzxzpIxHJ19C9emvF3IWJVzI8aRbB23Sa74IzmPm9E+IalShb169at32R7uqmXgtJi78r+7a9zlrvROKUs8m9WsF3wqmBFUMK3XbRknW1xUzQdcfJrwWr/utFtf3SX3a3RHtvOGb7BVtvqpo8qEr4oW+/lREEAAQQQQAABBBBAAAEEEEAAAQQQyB8CjJzIbKemTXb3T9Vr6iElwY0sH3/ynZV3nY7K3/DepC+yrFaCXHWg16iR0bGXZWUOPgTnOcoldNa0UeE/Ssis0trNZ//WO9Oi1rVEiWJ+m/mZOS78hyi/NIpg0aJloTWaukYjDcKLEnCPuPUC+/yTh/30Nw+55MGawii7pbSbb19Jv5VcWwmDgzLG5RBQCVsUrIr5ekC7ZqYn2NWZHCTE1ogKPSU/+MITs3jJTiNKWu6zpymHRvjImA8z84TEOpGeetfoiUceuNx+/v5ZO6nnIXbN9Y9lqX+wbzL3T7DtjnxVYmcl/b7n/hdcgup//3No5ZFQPg4VBcyCIETkhsncc5H7RPtc1k2ptWDhEtu0eVuQK9p2wbLgvDv7OxWcL/JVoyT0nXru2evtl5ljrUKFcvbI4xlTEYVvGySif/Ptz0KLNepDOTCyW3TNc6O0Vbzj1KubNSAab9vwdVfePM0auBwRyiPR3iWaVr6I8/s1s+nvn+SSYDf0Uyi1aVnVuh9Z36+79uL93Hdki30xfftGerzy1u9Wt3Y56+0SaiuAUcUFOh647SAr4aZ+evXt2S7/RjEbfvn+PgG2EnL3O7mxr/aPs5bafvtUtdo1yvp14deSzPucOiVzbLZBAAEEEEAAAQQQQAABBBBAAAEEENixAgQnMj3Vea6nqDVtU5ejLvKJkTW10suvfugTKx/f6yqXPHquneqmIXrXJbdVLgN1/I4c9ZxP6Hzu2d13aMucdUZX1+H8oo1+6g2b+9dC+9UlrlbyYeVJUFH+A5Wzz7vNPvl0hp8ySdMv/eySb6vDWlNPPf3s2zZ12sxQ0mq/Q9ivNq2b+OS/mndfUy6dP/DOsLXmzzXWJe5WAuAlS1b4qau0QaypjbLsHOXDlZef6hJR/2YdO19gd40ab4d3HeKmBPrTb5ndh8uvvLyvzyERJMY+vsdBPn/A/6560CcN/8uZ6Yl4JcVWUQ4QjTYZePHdpgTMz70wyfv6lVF+aQSLEhkroLF69TqfDFsdylWrVHBJhv87zCPZ+yc41d8uubYCXpE/QbAl2E6vg1yd9ROrjLpzkNWpXc06HnqBn9JKQZe33/3cB1IOOXyQvf7Gp37Xzofs65M///jTHD/VVeTxEt1zkdtH+3yom6pMzvfc94L/vihxu75Hypcy9bPvo+2Sa9+pyJNryjK1se5Jueue+evvhS5AkTESKnx7jcAYdEFPf8/0OmWY3XHXWNu/wzlZpgkL3z7e+yPcNHDvuPZR8vaffv4j3qahdS2bZeT4CC1I8s3Lb/5u14/4wnf2P3XPofb2+GPsonNa2NSv5tvLb862foMm+SmWRgxr79dVrlTS+pz/rh/BFR5EDD9dMAWTviPh24S/f+q5n+2ZF362/13YymZ9dop9+EoP2732Lj7goHXPv/qr9ere0L6d1MvuvK6DValY0p9i1CPf+UDllJd72LvPHRt+2qTe59QpqYOzEQIIIIAAAggggAACCCCAAAIIIIDADhVgWqcwzqZN6tmbr95hTz79pn8qP0jUrHnpX3nxZmvYoLb/WbtuvalTXIECjT5Qp+UlF/XyRwpyIIQdNvQ26NMuFJZzIbQy802RIhnxomCExCOPvWZXuGTbKhoZcN01Z/j3Ggnw7FPX2i0u8fVxJ13pl3U+eF8rWyZjPvgLzzverRtj3Xv+z6/789cXQvPg+wXu1w3DzrJefYf5IIFGfiihtvJiBNegKW4UhBl8ySi/i7a523WEK2G3SsmSxf2rfiVzTUoIrETBr7nO8o9dQEWJwhu5aYlO6TfcBVQyRnuEDpjgjXI8nNb3SJek+DnfuS2PCeNvtBtvfcoOOvRCv7eSeQftoimgVPdbncmEl6f46XuuvKKv9T/v9tCZwq9hy9YtVtONhDl7wK2+s10baQqlu0cMCm0f+SaZ+yfYRwESBbwii6bRiiyvv/mpr4PqH61oZMjYp4fZ/Q+95ANSQQ4IjfK587YL7GSXA0HltFOO9MGrTl0G+gTWwXRkwTET3XPRgjLaV/dFUDQ6ZuD5Pf33Q/ffUBeQql9vN5vy0XTrc3JGPYJtg1clhk7mO1W4UPZiqYnqW9RNSaVpzBSMDEoXd48OyEzmHbn/FZf2NeWGmTT5K1MOCiVk/9eNPHro0Yxk0jpG+HciOKZeixbdVvdjju5gX3/zi5117q1+kwVz/ztSI3xfve/UvpY98vSMyMVJfX5i/E+mHyWs1rRHC/5dk2U/Ja3WujKli9rSZetD60Y9+p3pJ7w0aj8m9LFpx7Gh93pzyz1f+59g4TW3uQCZ+1FybU3zFD4FlBJe66dG9TI2b/62XD3Tvl5gLQ8db9WqlLZlblqq7BY5URBAAAEEEEAAAQQQQAABBBBAAAEE8odAoRWr12ybYycHdS5XelvHZA5236G7PPTycutzREbH+Y44sEYLqOM3CBhEHlPT5Wj9zi4rV62xYkWLxuz41JP9qmO0jlHtW7RIEYuW5DeotxJGlylT0m8XLAt/1XVucfMuRc7fH75NMu/1RH3JUsWznEfBDwV5/p7zUpblyRwv1jaalmvjpk3uKe3SUTfJTrsp78cyN91ViRLFs3TCRz1wxMJE90/E5jE/avTOS698ZE8+lhGEirlh5gq1ZwmXrDna/aBNNBKmnEsGrYTOsUqiey7WfsFyTeu0csUanyNlkzM8yI2Weei+SxPmcshO2wTn2t5XTfWlKc10f2vUUawSrW7djrvc32cKFGa3aFoojdhI9m/IGQPfsS+nL8juadJm+9b7VLPHRx2Wo+sd89ZyO6f7jvu/I0eVYCcEEEAAAQQQQAABBBBAAAEEEEAgzQRi98SlGUS0y418sjxym2Q7FSP3y+7nWJ3swXEUWIhVEu2r/TQHfryyo65TUzlpmqS+bmqsWjWr+NETY8a+Y6f0PmyHBSZ0HeqUL2nbRnVEXlt2rkdBn2CkSORxEn1OdP8k2j9Yv2jxCrvi0j7Bx4SvidozmetJ5r6JVxEFxJS/QUV5TY7r3jFhYELbZqdttP2OKApIaLquRKXnyVdb9eqV7NiuHXxgZ6Ib0aJp4O4fdXGiXaOuV3AoXoAocqd+vZsSnIhECfssHwoCCCCAAAIIIIAAAggggAACCCCAQP4RYORE/mmrfF9TjZx4asxb9uFH39rvs+dZTRegONBNtzTQTYulzmwKAqksoITjDz/+mk2fPstPf9Z4r7rW/ZgDrcexHXOt2sPv+Mzla5iVa+fLLyc64ZiGdvUlbXNcXUZO5JiOHRFAAAEEEEAAAQQQQAABBBBAAIEcCxCcyDEdOyKAAAK5L8D0TlnNt2c6p+BIBCcCCV4RQAABBBBAAAEEEEAAAQQQQACB3BPYlqU1987JmRBAAAEEcigw8sZOpg55inkHeVAQQAABBBBAAAEEEEAAAQQQQAABBPKfAMGJ/Ndm1BgBBNJYYJdyxX3iZ01llM5F168E2PKgIIAAAggggAACCCCAAAIIIIAAAgjkPwESYue/NqPGCCCAgM+x0KlDbRv97My0SpStUSNKfn1g25rcBQgggAACCCCAAAIIIIAAAggggAAC+ViA4EQ+bjyqjgAC6S2gDnr9zPhhkX3wyV/2zYyFNvuP5bZ0+XrbsmVrvscpXLiQVShfwurVLW8tm1W1Tu1rWbMmlfP9dXEBCCCAAAIIIIAAAggggAACCCCAAAJmBCe4CxBAAIF8LqAOezrt83kjUn0EEEAAAQQQQAABBBBAAAEEEEAgzQQKVM6JQq7x8v+zwml2B3K5CCCAQB4K6P8M/d9BQQABBBBAAAEEEEAAAQQQQAABBBDIXYECFZwoVbKwrV23JXcFORsCCCCAQL4V0P8Z+r+DggACCCCAAAIIIIAAAggggAACCCCQuwIFqkemaoUitnDp5twV5GwIIIAAAvlWQP9n6P8OCgIIIIAAAggggAACCCCAAAIIIIBA7goUqOBEvRrFbM68DbkryNkQQAABBPKtgP7P0P8dFAQQQAABBBBAAAEEEEAAAQQQQACB3BUoUMGJPWsXszXrt9qf8zfmriJnQwABBBDIdwL6v0L/Z+j/DgoCCCCAAAIIIIAAAggggAACCCCAQO4KFKjghOja7V3Sps1ca0tWML1T7t5KnA0BBBDIPwL6P0L/V+j/DAoCCCCAAAIIIIAAAggggAACCCCAQO4LFLjgRO2qRX1n0/tfrGYERe7fT5wRAQQQSHkBjZjQ/xEKTOj/DAoCCCCAAAIIIIAAAggggAACCCCAQO4LFFqxes3W7TltudKltmf3nbbv3IWbbOr366x0iUK2e43iPuFpqZKFrdBOOyMHRgABBBBIRQH9J7d23RZT8mvlmNBUTgQmUrGlqBMCCCCAAAIIIIAAAggggAACCKSTQIENTgSN+MvcjTZ73kbfKaXOqe2KxAQH5RUBBBBAIN8IKCit4HTVCkV88mtyTOSbpqOiCCCAAAIIIIAAAggggAACCCBQgAUKfHCiALcdl4YAAggggAACCCCAAAIIIIAAAggggAACCCCAQL4UKHA5J/JlK1BpBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTSSIDgRBo1NpeKAAIIIIAAAggggAACCCCAAAIIIIAAAggggEAqCBCcSIVWoA4IIIAAAggggAACCCCAAAIIIIAAAggggAACCKSRAMGJNGpsLhUBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgVQQIDiRCq1AHRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQSCMBghNp1NhcKgIIIIAAAggggAACCCCAAAIIIIAAAggggAACqSBAcCIVWoE6IIAAAggggAACCCCAAAIIIIAAAggggAACCCCQRgIEJ9KosblUBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRSQYDgRCq0AnVAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCCNBAhOpFFjc6kIIIAAAggggAACCCCAAAIIIIAAAggggAACCKSCAMGJVGgF6oAAAggggAACCCCAAAIIIIAAAggggAACCCCAQBoJEJxIo8bmUhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQSAUBghOp0ArUAQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBNBIgOJFGjc2lIoAAAggggAACCCCAAAIIIIAAAggggAACCCCQCgIEJ1KhFagDAggggAACCCCAAAIIIIAAAggggAACCCCAAAJpJEBwIo0am0tFAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCAVBAhOpEIrUAcEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBNJIgOBEGjU2l4oAAggggAACCCCAAAIIIIAAAggggAACCCCAQCoIEJxIhVagDggggAACCCCAAAIIIIAAAggggAACCCCAAAIIpJEAwYk0amwuFQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBVBAgOJEKrUAdEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBIIwGCE2nU2FwqAggggAACCCCAAAIIIIAAAggggAACCCCAAAKpIEBwIhVagToggAACCCCAAAIIIIAAAggggAACCCCAAAIIIJBGAgQn0qixuVQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBFJBgOBEKrQCdUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAII0ECE6kUWNzqQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIpIIAwYlUaAXqgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAGgkQnEijxuZSEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBIBQGCE6nQCtQBAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIE0EiA4kUaNzaUigAACCCCAAAIIIIAAAggggAACCCCAAAIIIJAKAgQnUqEVqAMCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAmkkQHAijRqbS0UAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIBUECE6kQitQBwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE0kiA4EQaNTaXigACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAKggUTYVKqA7z/12eKlWhHggggAACCCCAAAIIIIAAAggggAACCCCAAAIIILATBVImOFG9SvmdeJkcGgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBFJFgGmdUqUlqAcCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAmkiQHAiTRqay0QAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIFUECE6kSktQDwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE0kSA4ESaNDSXiQACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAqggQnEiVlqAeCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgikiQDBiTRpaC4TAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFUESA4kSotQT0QQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEgTAYITadLQXCYCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAqkiQHAiVVqCeiCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkCYCBCfSpKG5TAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEUkWA4ESqtAT1QAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgTQQITqRJQ3OZCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgikigDBiVRpCeqBAAIIIIAAAggggAACCCCAAAIIIIAAAggggECaCBCcSJOG5jIRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEgVAYITqdIS1AMBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgTQRIDiRJg3NZSKAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkCoCBCdSpSWoBwIIIIAAAggggAACCCCAAAIIIIAAAggggAACaSJAcCJNGprLRAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgVQQITqRKS1APBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTSRIDgRJo0NJeJAAIIIIAAAggggAACCCCAAAIIIIAAAggggECqCBCcSJWWoB4IIIAAAggggAACCCCAAAIIIIAAAggggAACCKSJAMGJNGloLhMBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgVQRIDiRKi1BPRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQSBMBghNp0tBcJgIIIIAAAggggAACCCCAAAIIIIAAAggggAACqSJAcCJVWoJ6IIAAAggggAACCCCAAAIIIIAAAggggAACCCCQJgIEJ9KkoblMBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRSRYDgRKq0BPVAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBNBAhOpElDc5kIIIAAAggggAACCCCAAAIIIIAAAggggAACCKSKAMGJVGkJ6oEAAggggAACCCCAAAIIIIAAAggggAACCCCAQJoIEJxIk4bmMhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQSBUBghOp0hLUAwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBNBEgOJEmDc1lIoAAAggggAACCCCAAAIIIIAAAggggAACCCCQKgIEJ1KlJagHAggggAACCCCAAAIIIIAAAggggAACCCCAAAJpIkBwIk0amstEAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBVBAhOpEpLUA8EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBNJEgOBEmjQ0l4kAAggggAACCCCAAAIIIIAAAggggAACCCCAQKoIEJxIlZagHggggAACCCCAAAIIIIAAAggggAACCCCAAAIIpIkAwYk0aWguEwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBVBEgOJEqLUE9EEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBIEwGCE2nS0FwmAggggAACCCCAAAIIIIAAAggggAACCCCAAAKpIkBwIlVagnoggAACCCCAAAIIIIAAAggggAACCCCAAAIIIJAmAgQn0qShuUwEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBFJFgOBEqrQE9UAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIE0Eihak69ywYaNt2bol7iUVLVLUihYtEneb/LBy46bNtmVL/GstUqSIFS5UyDZu2mQlihfLD5dFHRHItsCWLVtt0+bNVrxY7v0527rVbMPGjf6chdx3LKdlRx0nu+fX348ihQtb4cI5r3uic25y51ApCH9vE10r6xFAAAEEEEAAAQQQQAABBBBAAAEEsi+Qe7152a9btvc4/LjT7OOpX8bd77LB59iNVw+Ju01+WNn/ysfsr/lL4lb1yINaWJ3dKtlD4ybZu09eEXdbViKwPQKfTf/Vht09wQb3O8KO6Nh8ew6V7X0fGT/ZXn3/a5v46CXZ3jfaDslcy+y/Fto5Vz1ut13ey1o22T3aYZJalsxxHho7yV5650t7/Nb+VqPqrkkdN95GmzZvsaPOvN3OP6WLde+yb7xNt2vdlXc+b8tWrrGHhp+xXcdhZwQQQAABBBBAAAEEEEAAAQQQQACBgilQoIITj4y6yZYuWxFqqT5nX2QtmzWxSwaeHVpWrWrl0Pv8/ObaC3vYilVrQ5dwzcgXbfdaVeyMnh1DyypX3MU+/eqX0Gfe5FzggWfftw+m/Wjj774g5wcpwHuWL1fa9mte36pXKZ/UVa5as956DLjLLj37aDusQ7Ok9om10RYNP9iBJfJaFKy4+q4X7Nm7zrMq7juV05LTa669W0VvW7pk8Zyeerv3O+OKR6xR/d3s8v5dt/tYHAABBBBAAAEEEEAAAQQQQAABBBBAAAEJFKjgRIP6u2dp1bJlSlv1alVsv1a5+yR3lkrspA8KRISXEiWKWeUK5az5XnXCF/N+BwmsW7/RgmlqdtAhC9RhGu9Rw4Zf1DPb17TZPcWfaiXyWjZszJieaEfFQLJ7zUd12sf0k5dlvZsyb2OmQ17Wg3MjgAACCCCAAAIIIIAAAggggAACCBQcgQIVnEimWZavWGnPPv+KTZoy1RYuWmzNmu5lF/Y/1Ro1rB/a/dff59jT4162z7/61lq3bGZ9e/WwO+97zHod39U6dWjrt3vrvQ/tuZcm2uw/5trutWtZv1N6Wsf2bULHSLU3v89d6KeG+fG3edagTjXr50ZYVKu87Sn3X2b/Y29++J3N/OUv26NuNet6cEtr2rCmvww9Of76pG/stOMOtDGvfmp/zltsj9+SMRrl4y9/8SMK5s5fbC0a1bETjmoT8+nyuf8stpff/cp++PVvlwdjszVpUNP6n3SwlS1T0p/nWXfs9Rs32R6ufi++9bnVqVHJhpx5lC1Ztspeee8r+2LGbKuwS2k7pF1T63xA06jECxYtt7tGv2V9u7e3T7+eZV9+P9sq71rWeh7ZJsv0O9rulfe+tm9+mOODOge0amiaBiuyaAqcq9z0NLPmzPcjVa64fbzfZEDvzlbLPdH+zkczbMrnP9k//y6zapXKO7d9rGObvUKHmfPXv/ayO88Ps/7y13vsofva6Bc/dJ3NLaztPg38dtr/bWfvj+Ha5LjDWlubFnuEjhH+JpGh8i+MmzjVPv/2d1/fhrtXs97dDrC6NTNGDCU61/ufzrSPv/zZ5rnr2adxXet2SEurVb1iqAqB2/Qf/7CSLo9Jh9Z7uqmBWtu/S1Z49/NPOdRqu6nEVq5el9Fm3/3up/bZo3ZVO+XY9la/TlV7+6Pv7J2Pv/fHfOaVT7zfnrtXtzNOOMjljtji95s2/TdTh7gcTjpq/1DeAgUIdC985OqocvD+jW2ru+ZY5eYHX7WGdav79g+20QgYXeewQcf5vAtavtxNP3Tzg6/5+0ZBPt1DupbX3v/G30PaZvh9L1uZUiX8tFW6N1WWr1xrmlZK91kVt1/PI9rYPk3q+nXhv2Jdc6e2jf1m8Y6j799rbtqqG4ec6LdN1Mbh59X72XP/9Wb63jVrVNuOdvdoeNnsctfEuo913z/2/BRbvHSVff7db6b7v4jLU6G6JLoXg3N87u6Bt6Z8a/Pdd06ja05wRsF3Pt59ov0TXWui+yWoA68IIIAAAggggAACCCCAAAIIIIAAAqknUDj1qrRza3TryIfstpEPW4tmje3EHkfbV9/MsEO69rGVq1b7E8/582876MiT7Z6HnrSWLZraDz/Nsq4nnWWPPfWc/fzL736bt9//0Lq5ZeXKlrGzT+tllStXsO69z7F169fv3Mpvx9EvvWWs7/jd33X2qmP3ohufCR1NAYuB1z9tf89faoe7fAHqdBxy0xhTwELlr3+W2LRvf7MhNz/r81x06bC3X6558K+7Z4KVKV3COrlO4ilf/GQXXPeUafqaaOXy28b5Ttw2roNy373r+Q7iK+7I6OzX9t/+9KeNf/0zG37vS1bKTWHTull93/k74NonbNJnP9pBrtNfib1veeg139ka7Ryr1663r1xH8ZCbnnX1n+8DAHP+XmSX3TrO1LGustgFO85zx5zw9hfW0HWK6/Odj79pmropsijXsaaz0VQ/SiCs9/op5wIqCszc/cTbtqtbpzwLG1xgRR3Yug4V5QQ5f9iTvmNW+/zmAkRyn/rNLFOwSOXDL362G9w+pV2ndw8XlKhQvoxpii51zEcriQxHPfWOPTXhY9vLne/YQ1u5a17hvZI51zMvf+K3/XvBUmu8R00fkJLTfBeoUFEAQnkW5FaregUXxKpqD4+b7INAgfuipSv9tg+7PCfPvTHN9qxX3Q51gaSf3b104fUZ94Y6/xu6AJiKAh+yUfBkq4s8XDdqgj3uOsMb77Gb+6lhClhdd89Lflv9uu+Zd/3PSjelmYIgajPlm4hVClkhHwxSJ3dQRrrAgzr8FQAJyruffO/vm1rVK1n4taheNatV8JspgKK6hk/tdOP9r4Tus9kuEHXprWND91lwbL3GuuZgm3jH0fdPHfxBidfGwTbBq9ruguvcPeiCX3s5T33XB9+w7buv7eLdxwrG6JqLFCnsvwN639gFFVUS3Yva5vc/F9o1bkosJQ3X90TtKSMFFVTi3SdaH+9ak7lfdAwKAggggAACCCCAAAIIIIAAAggggEBqCqTdyImhQ86z64deFHoSu+MBbaxVx272/Q8/W7s2rez+R5/2Iyr++WWaVa6U0SmpQMXFQ28MteCUTz63WjWq2923XuOX9T7hGLvq0gusZIkSoW1S7Y2eSj86c2qY3arsanc/+bYfkVDRjSq4/ZGJ/ql+JfdVOf7w/UwJt8dPnGZXX9A9dCnqPO93fEf/WdMc3T/mPTvdfe5zzAF+mZ7473r2CPvIBSmijUJ44Pp+voMzOOAuZUvZE24UgaZLKlq0iF+sp7jvHNrHP+GtBep8Xrtugz1201mhp63VIT76hQ9d53vsZL6tm9WzGy4+wR/z8AOb22mXPmjf/TzXuriRCeogVb6OcS5/RCV3/Sr3P/Oe73Q/wY2wUEdyUBSQ0DUvW7HGP10fXL/WH9i6kbW6d6APVOjzie4J/6PPvMONWvjNWrjptXQeBSzGj7rQKrqgg8qTL31kCgIE5Qv3NLoCMVedf6xfdEznVnZen0N9ECbYJvw1keHn3/5qbVs2sHPdyA4VGenpdJV455Kx6tbZjUq54txufnuNajn23Dvt8Rem2NABx7pRM1N9x/2YO8+zqpUyci9oNITaUR3z4WVA70Nt0OlHWFHXqa2yX/M97ELXST5rzj8+MNWofg170QU5FNQK7hV1wCtoMOqaU31gQvtp5IQ6wRVYkpNGTUSrozrPo5VunVva+1NnulE3v5sCcwq8Kfigdn3jg+mmETMqb3zwrR9ZU75cKResygiwaLlGGZRz16d6nXR029B1B8GlVk13t1svy/jeRN5n2j8oCsZFu+bsHkfHi9fGwfmCV4100j0Yfq8rwKMRTEGJdx+f7e4B3fPvueBNo3q7hb7/2jfRvRgc/8YhJ/g212eNILnj0TdcsPNXa99qT4t3nyjReLxr1UiqePdL+MiwoC68IoAAAggggAACCCCAAAIIIIAAAgikjkDaBSeUh+Kbb2farN//sKVLl9m/i5f41vj7nwX+ddqX0+2wQw4MBSa0sNuRh/rghJ7UVTm0U3u7/e6H7dRzhljXIzpbh3atrUb1qn5dqv46aL9tUw3VrZUxxc+CxSt8x7I6bFeuXmtPTvgoVH09Pb88LOG2VmjKoqD85J7AVvlz3qIs+2mZpo8JOpz1OSgafTD9hz/sT3c+TaPznptaR2XJ8tWhTl91dGvqmaBo+iB1nKsjOyh6Cl8dzAowaPtoJTzJco2qu/pNgpETM1yQQk/sB4EJrTxo/73spXe/tJmz3MiZsGmZoh07WFbYTW+jJ/g1EkLXowCGgisaraAy0zloGqMgMKFl6lj3wYnMB/nbtWzon2rXyI5Org7qxI7XqZrI8ADX4asOfAWc1LGv42mUh0q8c6nNVA5u18S/6lfpUsX90/bfu6m+VL7/Za7VcKMIgsCElqk+0Yr2nemmsvrDjVpZ5myWujZWmf9vxuiVaPt8lzniRMEd/aho+i+Vn37/x9dH74OpkPQ+qKOe0I9WmjasZbu6qcA0rZCCE2+4VwXk+rqgigJ0a9dvcHVb44MWZ/Q8KNoh4i4LAn7aKPI+i7tjxMrsHCdeG0cc1o+UiLzXFRAKD04kuo8jjxl8TnQvajsFgcKnuVLdXSjIfvx1ng9OJLpP4l1rovsl3vcouAZeEUAAAQQQQAABBBBAAAEEEEAAAQTyTiDtghPX3jTSbhpxv/U58VhrUL+uFStWLGl9TU2ickjHdvbF5JftwdHP2lU3jLDZc+baoAH97I4b/pf0sXJ7w2COd523cKGMp8wVbFnjOv5VNO3N6rDpmNRZWt516oYXdeoGRR3OKps3Z92vh8s/0CQzV0WwbfB61tBH/RRR7ffd002NU86NNMmwD4I+2k7TGoUXdf6rhNdN+Qv0kxkrCt889L5c2YwO+dACvckMCKxas86qV84IWATrK+yScd5VmaMMguXxXpW/QVMy1XPJyZvuWcvnI9D24dcTc/+MW8k/uT/yqr5ulMpnfoqk1WvfyjIyIHL/RIbKk6DpkCZOnm43P/Cq3/08t0wjMjRKINa5gtEVyukRXhTAmetyjKgoSBR+D4RvF/l+pJvuauLkb0wjC5SfIRgZE7ld+GcFeFTC21qfdU8pILIgM7ARHuzRetUxVnBC63Uvj3PThWmqrDfdCAmNAFLeEgUnPnRtOM8F4ooXK2rtWjXQ5tkq8e6z7BwoO8eJ18aR51zjgnj/udfLb/sea/uc3seJ7kUdW1O+KUARFAUj9DmY+i3RfRLvWhPdL8E5eUUAAQQQQAABBBBAAAEEEEAAAQQQSE2BtAtOaIqmSwf1t5uuucS3iHJKXDV8RKh19m+9j9113+O2eMkyq1QxowN74tuT/PrwTud9mjexB++6wS8f9+Lr1rf/xTbgzN62R726oWPlhzcaeaAfdVyrEzvZsrfrjFdRQmQ9iZ2o/PbnAv8U/bUXHuf30fbjXp8at1NZ2+g8Gs0woE9nP2+9lm1vadKgluuQ/dE/lV8sczqpT93oB5XGDWpEPbzm3lenuebKD6YqUgCgupsi6+Ebz/T76P544c3PQ/s3dXPzK5eBRg0EQZfJn/2QsT4zUKIPSjx+/eDj/XIlHlenea9u7Wz3zCTWGTuYJWOoAJqShetHdb3FJXl+aOwkl9i6lfOLfS4lJ1f5xCUR39NN36Oi4M8XbqqloK21jZJJa0qvILDkN4zySyMVlIdDCc1VlFg53KZE8Yw/PQvd6J2gaMSMciP0dtOEabRDZAlGaUSrY+S24Z+PcsEJTW90n5u6SyNuVC91kiv3iaZzUqLmLu33ztKJHr5/WdfBrqK6ho8aCd8mmffRrjmZ/SK3SdTG4dtrKqap3/ya9V7/+pfwTXwgK959rI11/89ftCy0XzL3ojbW6CaNzFJ+EJUZP831o4uUE0Ul0X0S71oT3S/+BPxCAAEEEEAAAQQQQAABBBBAAAEEEEhZgW2PtKZsFXdsxRo1rG9vvTfFfv19jv0x928bePn1WU5w3ll9rWrlStaw5cE+aHHyGYPsjlGP+G2CkRM33H6vPTHmBft30RJbtHipzfpttl+/S7lyWY6VXz4c53JMqFNYORKUxFlPoauDXHPTxyrKy6Apc9T5/YFLVq0pk2a4aX+UNFsJdiNLkET4zSnTfQJqJY1+zCU+TlS6HtzSdwoPv/dln6BbT7lriiclV85pOfrgFn7XK0c8b5o2SlPcPPXSx36qJ42CiFY6uqmeNGXTI+Mn+yCBkkPv5qaLUsJhJeBWAEJTKWmboKiTXU/knzz4PrvLJWG++MYx9nwQvMgcOSHjF9763Of/0PRWSt6tskvmVEzBsfSayFDBEeVnUJLtNWs32D8Ll/kOZY2aUWAi3rnU6a7k4AogaBSH2vKakS/4fAUKbKh0O6Slf73klmf9XP+aaknTUSnwEFkqVSjrkzjPcbko1GY3u/skvCgopPvndTe6QrkmdCxNu6RO8EE3PG3f/DDHt7uupd/lD/upvzRtkjq5o9Ux/NiR74Nre9MFTBq4RNzBdD9Hu3tL01ktcQnRu2ZeW+S++tzc5Q/R0/6jXX4UJZQO2ijatvGWRbvmeNtHW5eojSP3UR4M3ZPh9/rY16Zm2SzRfayND3IByJ9dG+nvxC9uWrVgqrBkvs9KaP6pC3opMHf7oxP9d0KBIZV490mia010v/gT8AsBBBBAAAEEEEAAAQQQQAABBBBAIGUF0m7kxKP33GwnnznYGu93mG+U64YOtikfTws9lb97nZo2eeKz9uTYCfaZyz/RZt8WpiTaSppdokRxv0+9urXtultH2dkDh/rP5cqWsUfvvcWqVK6Ycg1dyOVFiFUKZ063ooTW6ghUp786YFXUoTu43xH+fXCMQpb1WEqgreCEOhyVdFel2Z61rW7EE/9artEZeop+pOuk7zXoXt/Zq+l2JrqkxJrzXkXBn8LqRQ8r6hgeflFP/9T7+cOe9GuUGLlv9/ZhW217G7n/tjXu+JnnUaLdK87pZg+7QMOlt4z1m6jewwYdF7oPwvfTez3prTwaGtkwwTn1dImzlaNAT5Bfcft4v7k625WTIQhiaa7/e6491Qc/lOdCIyT6n3yITwytoIVKreqVXHLvKX50gz6rE3yAS2YdbfqkRIab3dRcegL+pvtfCQVJNALhqvO769AJzzXif71t2KgJPtm4OrR1vsEuqbVGx6ioLa52x3pw7Pt29V0v+GXq7C9TuqRtcFMmhZdrL+xhV975vJ3tEqurKACmJ+gDGy070yVpv9cFZ64c8Zw+2uuPDLEHh/ez610gSkEPFXl06bC3lSyeMQWYkqUPdds/+twHfr1GcyjIMMklvY5XFFi58/E3Xd6UjACLtt1/nz388SvuWsYHLYL9I+8hjZTRqKKnX/7YBrqgmAJYQwccE2z+n9fgPvvPCrcg8prvG3ZatM38suA4wasWJmrjyIMpOboSrOt7rXtdwZ/+vQ72wbJg20T3sbbTaBPdwyMee8PvdsulJyX1fVbAS17XuwCF7in9Xbnt8pND93e8+yTRtWokTaL7JbhGXhFAAAEEEEAAAQQQQAABBBBAAAEEUk+g0IrVa8ImmMl+BcuVjp6QOPtHyt09li5b4TpVS1nxzE7P4OybN2920/e4RMvlts3L/v6UT+2I4063T9553gcrgm11DHXqV6xQPliU71+Vc0H5ARJN2xN5oRo5sEu5Ur6zN3Jd+GdNFbR0+So/zVF4R3X4NrHeazqhTS5Bcnj+jFjbJrtc11vSBTuCqZoS7acO1hUr17pph8q4jvaMrZVUeasbMKGpgsKL8nhozv/w+uoJ8mvvftHucIGAFq6zPyjL3TF1L0WbzijYJnhNZKjzLlux2t/bwZREwb56TXQuXaNGXgRPx4fvG7zXegWVEt0nOpdcgumzgv3DX9UGRYoWtlKZwT+tUx1WrloX00P5I+SQ6Pzh59kR73Wfl3NBm2Tvl1jnjHbNsbaNtjxRG0fbR21R3n1HY5VY93H49gpCrl23MXScRPdisK/ac627Z8K/C8E6vca7T5K51kT3S/i5eI8AAggggAACCCCAAAIIIIAAAgggkBoCaRuciMX/xjsf2ClnX2QXX3CmtWqxt8344Wd78LExVs4FK6ZNmmClSkZJtBzrYCxPawFNd3XLQ69Zt84tranLc/HznH/8/P7KPfD0HQNyvWM9rRuDi0cAAQQQQAABBBBAAAEEEEAAAQQQQACBlBIgOBHRHBo58dLr79h4l+R6pkuWXbZMGWvXpqUNveQ8q1alcsTWfEQgtoCe+H77o+/8PP3K5aGghJJxn9v7EFPODgoCCCCAAAIIIIAAAggggAACCCCAAAIIIJCuAgQn0rXluW4EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBPJIoHAenZfTIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAQJoKEJxI04bnshFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQyCsBghN5Jc95EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBIUwGCE2na8Fw2AggggAACCCCAAAIIIIAAAggggAACCCCAAAJ5JUBwIq/kOS8CCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAmkqQHAiTRuey0YAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIK8ECE7klTznRQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgTQUITqRpw3PZCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjklQDBibyS57wIIIAAAggggAACCCCAAAIIIIAAAggggAACCKSpAMGJNG14LhsBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgbwSIDiRV/KcFwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBNBUgOJGmDc9lI4AAAggggAACCCCAAAIIIIAAAggggAACCCCQVwIEJ/JKnvMigAACCCCAAAIIIIAAAggggAACCCCAAAIIIJCmAgQn0rThuWwEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBPJKgOBEXslzXgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE0lSA4ESaNjyXjQACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAXgkQnMgrec6LAAIIIIAAAggggAACCCCAAAIIIIAAAggggECaChCcSNOG57IRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEMgrAYITeSXPeRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQSFMBghNp2vBcNgIIIIAAAggggAACCCCAAAIIIIAAAggggAACeSVAcCKv5DkvAggggAACCCCAAAIIIIAAAggggAACCCCAAAJpKkBwIk0bnstGAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCCvBAhO5JU850UAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIE0FCE6kacNz2QgggAACCCCAAAIIIIAAAggggAACCCCAAAII5JUAwYm8kue8CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgikqQDBiTRteC4bAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIG8EiA4kVfynBcBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgTQVIDiRpg3PZSOAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkFcCBCfySp7zIoAAAggggAACCCCAAAIIIIAAAggggAACCCCQpgIEJ9K04blsBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTySoDgRF7Jc14EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBNJUgOBEmjY8l40AAggggAACCCCAAAIIIIAAAggggAACCCCAQF4JEJzIK3nOiwACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAmgoQnEjThueyEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIKwGCE3klz3kRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEhTAYITadrwXDYCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAnklQHAir+Q5LwIIIIAAAggggAACCCCAAAIIIIAAAggggAACaSpAcCJNG57LRgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgrwQITuSVPOdFAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBNBQhOpGnDc9kIIIAAAggggAACCCCAAAIIIIAAAggggAACCOSVQNG8OnHkeef/uzxyEZ8RQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgAAqkTHCiepXyBZCXS0IAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFIAaZ1ihThMwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCOxUAYITO5WXgyOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggECkAMGJSBE+I4AAAggggAACCCCAAAIIIIAAAggggAACCCCAwE4VIDixU3k5OAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCEQKEJyIFOEzAggggAACCCCAAAIIIIAAAggggAACCCCAAAII7FQBghM7lZeDI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAQKQAwYlIET4jgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIDAThUgOLFTeTk4AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIRAoQnIgU4TMCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjsVAGCEzuVl4MjgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBApADBiUgRPiOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggMBOFSA4sVN5OTgCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghEChCciBThMwIIIIAAAggggAACCCCAAAL/Z+8s4KM42jD+YgECwV2Du7u7u7u7O21xaKEU+XB3d3f3IoXiUtzdJZAg/eaZY4+74y45IjQhz9vfZXdnZ2dn/3vldl8lARIgARIgARIgARIggQAlQONEgOLl4CRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAArYEaJywJcJtEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiCBACVSNIweAABAAElEQVRA40SA4uXgJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACtgRonLAlwm0SIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIIEAJUDjRIDi5eAkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAK2BGicsCXCbRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIggQAlQONEgOLl4CRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAArYEaJywJcJtEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiCBACVA40SA4uXgJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACtgRonLAlwm0SIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIIEAJUDjRIDi5eAkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAK2BGicsCXCbRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIggQAlQONEgOLl4CRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAArYEaJywJcJtEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiCBACVA40SA4uXgJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACtgRonLAlwm0SIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIIEAJUDjRIDi5eAkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAK2BGicsCXCbRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIggQAlQONEgOLl4CRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAArYEaJywJcJtEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiCBACVA40SA4uXgJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACtgRonLAlwm0SIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIIEAJUDjRIDi5eAkQAIkQAIkQAIkQAIkQAIkQAIkQAL3H70gBBIgARIgARIgARKwIkDjhBUObpAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACQQ0ARonApowxycBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABErAiQOOEFQ5ukAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJBDSBH8o48f79B8HHO/nw4aN4enl518VP+zC+T3Pw0wl4sBw68reMmTDNTALblmK5bbtueZzlMX5Z//jpk+C+2wraPnz8ZNustz99+lfe2znG6Ozp9V7Qx1LQ/9a9J/LqzTvLZq6TAAmQAAmQAAmQAAmQAAmQAAkEEAG8173z9DR/vNS7mn/Jv//+q8fFkkICPhGAnsDRx9nvEPQMXj7ozYx5vPX0khevPIxNLkmABEggQAiEePnGw0+/gm6u4QNkYr4ZtGGrbrLvz7/k0vFdEjp0KLtDlKzcUDzevpP9W5ba3e/XRoyfMEE8mTF+qF+H4vF2CMC4cPiv45IrRxZloJguC2dPkrETp+ueC2dP1EYLtF89d1i3JU2bS6/XbdxWb+M4SKd2LfTSP/606jtTbtx+LKsmd5bwYV3MQ7btP1v/kC/4n+nc5h1qZcL8bbJ62zFZM7mruIb/cgz6HDl5RXr/b5mM7tNA0qWIL1dvPpSB41fJ3QfPzEPEih5JWtUuKgVzpja3cYUESIAESIAESIAESIAESIAEAisBFMSOEzNyYJ2ew3lVqNVcNm/fa7XfLWIEKV28kAzu202SuCe02vctGwcOHZPC5erIP8e2S1L3RFKuRjN59PipHNm16luG+U/6vn7jIamyFpM6NSrKiN9++U/mEJxO6vHWSyq1/p/DSx7YqZrkzZrC4X5jR4+hi+Tc5TuyYXp3o+mr5d2Hz+WPKet0P+yMFzuqtKlbTHJnTv5VXzaQAAmQgF8JhPbrAIHp+NZN68mi5etkw9ZdUqls8a+mdubcP7Jr3yFZNHPMV/v8q+ETPR78C6XdcSyNCjBSHP7rmHRs29xsoEBb7pzZdHSF5QCHjhwzGyws2/26fvHaPW08wDjrdx6XGmVymYcsVSCDjJ+3TUU7PJWEcaOZ2/EV2bb/jN7efficlC2c2bwPK1v2nZZIEcNrwwQeCmD8gDGif4eqEjdWZLlz/5msU+f6dcJqWZW+i0R0DWt1PDdIgARIgARIgARIgARIgARIgAT8hwA8zYsXzmdWwEMpv3v/YRk7abaUq9lMju1dK+HDhfPVyT6pKHxLyZMzi3amtGwLrOshQ4aUcqWLSoZ0qQLrFH+oeYUP5yL/611P/rXJsDBq1ma5ff+ppHCP7eP1bth9Qk6cvyEuYRyrAhGB0W/0cnn24o0M7lZTIoQPKzOW7pYBY1bKglFtJXqUiD6ehx1IgARI4FsIOP4X6VtGCSR98+bKKlkyppNxU+bYNU5MnrVIYsWIrvaVCCQz5jS+lQDSNBmREsaxuXNmlbqNj+lNGCEQTQGjBaRTu+bmJaIosJ0rRzZlwMiq2/36Z9G6g9pwkCl1Ilm8/pBUL51TQoQIoYctmiedNk5s239amtYoZD7V2Uu35c1bT/0jv2nvKSvjBEKGDxy7KJVLZNP99x45r5cTBzaWyG6uej1Zotg6YuLarUc0TJipcoUESIAESIAESIAESIAESIAEAoZAlMiRJF2alObBc2XPLHFix5Tm7X+W02f/kZzZMpn3+WWlT4/2fjn8ux7rGj6cTB0z+LueMzifDGqGDCmto3SePH+tDROlC2aUmNEieYvnweMXMm7OVm/7YOeuQ+flxp3HMmFAI0mZJK7uP+yn2lK+xUiZuWyP9GhRzscx2IEESIAEvoXAD2WcwIV3bd9MGrTsqh8QLC34T5+9kCkzF8ofA3+SMJ+txNt27Zf1m3fK5as3BIaNpg1qSlz1gAHp0GOglClRSB4+eiybtu1R+f8/SeXyJaVezUp6P/48f/FSZs1fLjv3/inuiRJKneoVzPuMFdS3mLtwpY7YeP/+vRQtlEca1qkmET6nw5o8Y4HKMeklaVIlk+lzlkiK5ElkSD/H4XXGuMF1WbdxG21gQASFZf0IREtg2zBGIIICgqgKCPobx2AMI+2T3unLP0/Vg8B+ZUjo0LCkZFTGiW0HzijDwiXJn9300OoWIZx+eNhiY5zYsu+UenBwk4ZVCsjIGRtV6qe3yvBgSo926MQVQQ0LPFxA3noa+UxNBg/LqSZJaPquWrZxnQRIgARIgARIgARIgARIgARIIOAJJE+SWJ/krUobbcjZ8xdl2epNcvjoCUmfNqXUq1FJMmdMa+xWEReHZPmazXLj5m0pWbTAVymhoB94+85TurRrqo+5cPGKTFJtZy9cUu+MEaViuRLSoFZlQdSCpcxbslqnuJ44cpBViuuNW3fLirWbZfKo37QexDsdiCPdhHdzgN6kXKkiKsVVQT0dZ/UfGdOnlqWrNsit2/e0LqZHx5bi4hLG8pK47gQBGAsgTaqZ+Ds6BNkb+o1ZIYniRZcMqRLKZuUk6Ugu33igHSkNwwT6IW16nizJ5fLNB44OYzsJkAAJ+JqA9S+ar4cJPAdWqVBSR0dMmD7PalJzF63U243rVdfLOWq7bPWmglyRSAGFH+xyNZrKq9dv9P4FS1dLpTotZdaC5QKviDBhwkjjNj1kw5Zdej+KYNVp2kl69huqPCZiyad/P0l5FdK5R4V3GgIv+Mate0jbbv0kQgRXiRUrhnTsOUhqN+kgRhGtQ+qhZdAfY9WxzSVihAhSMG9O43AuvSGACApTWqcvRgjUmoAgKgIRFPgYERKGIQNRE/4lyzYdkVDqoRDpm9zjx1BhlHFk3pr9VsOXKZxJYMRAlAMEIcE7D55Tx2SUQp/rRew6dM58zOa9J7Xhwj2ByfBQtpDJA6fzb/OUB8M5ee3hae7LFRIgARIgARIgARIgARIgARIgge9PAHUhxk6erU+cPavJsezUmQtSoHQtuXr9ptSqVl47QRatUE9gsIDs2POnlKjUUHaqJXQM0DU0bNlN7zP+QD+wffcBvfn4yTPJkKeMHq9B7SqSW9VP7DVguBw9ftrobl4mT5JIOU4uk60795nbsDLg9zHi4fFWGyZ80oHY0034NAfoTU6fvaDP6az+o0ff36V1lz6SMH5cyZQhjZ5jvyGjrObNDZ8JIBJiq3KELF80i0TzIdXS4g0HdZ3MQZ2rKcPW146Plme7de+JxLZTGyZOzChyT6WdppAACZCAfxP44SInwrq4SIfWjaTvb/+T3/p0kxjRowp+JMdMmiVtm9eXaFEjK0+Edzr8cuywftKmWX3NtGHdquIWL4Ns2bFXqlcqo9sSxIsjW1bNkXBhw+rIiaMnTusICHgG4IEBnxXzJ0nFMsV0/1pVykmxiqbx0LDnwGHlFbHJbh/UxaiiIjEgMIgc3L5CsmfJoLf5xzEBREYYRglERRjpm2CEQPSEUZPCiKCwHMkoio20T34Vr/cfZO2Ov6VckcwS9rOHR90KeWXguJVy6fp9bajAORBFMWyqyNYDp3UB66NnrgmOhUEDOSOzpU+iakyc0mmc3qkoicOqGHbDKvnN04sdI7IM7lpDpi7ZJUMmrdXtUSK5SqVi2aRa6Rx6DHNnrpAACZAACZAACZAACZAACZAACfg7AegJildqoMd9+uy5ztSAjdULp5izInTtPVhKFSsoc6eM1P0a160mZao1kckzF8m44f3lF2VYQHaHo7vX6MiH3t3bSaZ85eT8P5d1f9s/hhFi4v9+1Yp87G/ZpI5EjuRm21XyqPdhpLieMmuhlC1ZWO8/cuykHD91Vkb93sdpHYitbsIoBO7MHJzVf2ByW1fNVdkn4ut5Pnv+QhDhMXRAT73NP84RmLZkt3aWbKQyMngn128/0umYkPEBBgafBKmiIoT7uq5lBFXr8u07L58O534SIAES+GYCP5xxAgSa1q+hjROzlSdC944tZOO23XL77n1liKinAcGjAXL56k2zt4NuUH/+PnnWbJyoq1I4wTABQdhkutQpdPgltk+eMdUCKFYoLza14IEAkRiGGA8Tln3y5sqm+/z19ymzcSJFMncaJgxoPiwN44PRzYiMwPbC2RONZrORwmiwPc5o9+1y055T2shQTdWYMGqg58maXIc/Llz7p/TvWFUPHT6si+TKlEy2q5RPrWoXlS0qfDJh3OjmhwKkbxo8cY3gAeDEuRv6mJL5rY1UOdXx+KDI1bnLd+SwSv00Z9U+WbPjmCwd21HVuPDtVfA4EiABEiABEiABEiABEiABEiABnwgkT+ouiF74qBwf12zcpo0TU0YP1imNcOx75YCGLAppUiW30jFA9/BApYp+5+mpDQX9f+5oTsmEWoUtGtWSrr3s123InSOznhYyNkDHkSt7Jqu6F7Zz7tSmsc72cP3GbXFPnEAZKhZpY0i+3Nl0min090kHYqub+JY5OKv/gFOmYZjAnFKnSKpTXGOd4hyBW/eeyh5Vn7JqqRwC50VH8uHjJ+k7eoVON12xmHN1N2NEdZP7j76OkHj95p3Wdzg6F9tJgARIwLcEfri0TgARK2Z0adawpoyaMFM/JIxXBbKRAzF1ymSa05Onpn9oP3z4oKMW4B2Az4BfOkn+3NnNLKPYeCSEtNACv3z1WhsZwinlsyGoZWHpxfDi5auv+iBXH/pgnyGI0KA4QeDgACc6edPl9m6R5UVERiltPpZ+kPmf0zc16jFZSjYeqj+lmwzTha5RhwKpnAxBaqfnLz3kzMXbuth1mUKmsF/sz5s1hfZ2gPFiy77Tklilh0K0hD1JECeawHDRt31lGf5zHT3mkVNX7HVlGwmQAAmQAAmQAAmQAAmQAAmQgD8RSKbSJjWqU1XVqawhaxZNFRgZWnXuLf9cuqrP8MbDQy9tdQxtW9TXBoi3b03peWNGj2Y1o5gxolttW26gCPeNs/sFzo7T5iyWzPnLS8nKDQW6CHtStWIprX+YvXCFIB0TUlujJifEWR2IrW7iW+bgrP4jWlRr7/3QoX9In1l7t8jf2qYu3qn1CPUr5fN2zGWbDmtDA/RQf0xdrz9//n1JO1pie88Rk+Ou5SCoS3FfpYyylTsPnkm82FFtm7lNAiRAAn4m8MP+CrRr3kBmzF0qA4eO0amYNi6faYaVLUt6vY6QSyPk0bzTyZXMGdJqg8bxU+fMUQ8XL1/TERrGEFkzpXPYJ3tm0xyMvlw6QSBhYZNRIX4hkTwDnDjApksCdXxu1VZd1Q2BgcKXckSlXoKxoW7FvJI9QxKrUV6+fisDxqyUZZuP6EgJ7MyVKbl+cOivClCh2HWxvF/uvYsyaKGw1MqtR7VBo3XdYlbjId9jzGiRVASPdXEwT68Pup+nuWC21WHcIAESIAESIAESIAESIAESIAESCCACXds3l0nTF0ifX0fKsrkTBEp8RB1UVqmbka7JniRxT6izOrRqWte8e8v2veZ1eyvx4sSSgb0668+VazckdfYSsmr9Vm0ose0fPlw46dy2qYyeOFPCqbQ8yOpgpKz2iw7E2TlQ/2F7RwJm++qth3LoxGWpVS63uEUI5+1Jori5StZ07rqP4UCJNNMQbBvruuHzn5SqlibSN8G5Mn3KBLoVKaj/OnVVSn+uiWnZn+skQAIk4FcCP6xxArkcixTILX+MnqIfEixTK8WOGUOqVigl9Vt0kfnTRknmjGnl3v2HMnLcdGlSv7qUKJLfR66F8ufUhbc79BggfXt20AWmhoz8klYIAxQpkEfgeWDbJ5byjiipDCOUbyQA40J19UEEBYwLuft/GQCGC+y3FURLQA4NNC1xDNosjzXtcfrvApW2KWY0N2lSzf49LJonrazd/rfeD+ND6FAhpVCu1LoQdqqkcSVa5C+pv3DSUiq1E6ItIMXzptNL48+waRvk1t0nUqVkdsmUJpFKIfWvnPrnlh4fxbhzZEpqdOWSBEiABEiABEiABEiABEiABEjgOxBwDR9OBvfvLi06/CIHj/ytaz50aNVQOvYcJIlUoefSJQqLp0rltGj5OoHXep8e7aWhSgs1cOhY/UH9SdShnK8KSjuStZt2yHGVdrpB7coqO0QMOfe5NgXqaDoSZJD4ddg4nea6308dzGmqfasD+ZY5UP/h6K74b/vkhaaoCdS8tCe9Ry7VzYO71ZQyypiAj6VMmL9NNu4+KX/0rK2bn754Iz8PWywFcqSSBpXzq2Vqgd6iz/+WSddmZVUqJxeZsWyPhFJ6jabV7etALMfnOgmQAAl8K4GQ33pAUOoPrwFIN+XVgJoRljJ36khBTQk8TCROl19yF6uqFb8pkrrrbvA6sCdGyGGcWDFlzeKp8lHl8KtUp6XUatxB8ql6EkgfZUj0aFF0Qe0IEVQBY9WnbPWmurD25pWzJX7c2LpbCAmh/pEPZRzCpTMEEDXR5V9TTxgd8FlWxGSwMFI2YYkP2rEfxghETBgGDN9EXqgzIrcj6j7ULIsQDPsCDwZ4IGxTqZoMQW0JSJmC1g8GaMuRManAiJE2eXyJrDwbLKVf+yqSK3MyWbrxsPQYukh6/rFYFq09KEjxNGd4K0FNCwoJkAAJkAAJkAAJkAAJkAAJkMD3JVC/ZmXtCNlr0Ah94jbN6svYYf1krEornSJLEUmfu7SgkHbh/KZ3x17d2kqnNk1kzKRZkq1QRdmwZZdMGKHeVS0E+gFDELGwc++fkipbcYmaKLNUrddGH1+q6Bedg9HXWELPUKtqOb3ZrGEto1kvfdKB2NNN+DQHS72Js/oPq0l93rCs3WlvP9tMBC7feCDHz12XOhXyiKsyGtiTC1fvyWkV9eBILL9j6PPx40e5popmX7n5UB+CbOb9O1SR1MniyRBVH/Pn4Uu0rmxwtxoSKWJ4R8OynQRIgAR8TSDEyzcen7W8vhvDzTXo/+OE/IuoAwGPBt8I6lXAc8I7IwMKYH369K/u55tz8BhvCNzerawG6mMpCQubtgxjhOW+ILqOAlSeyugRPUrEIHoFnDYJkAAJkAAJkAAJkAAJkEBwJXD/0QuJE9Ox1/+PxAV1IVCT0lJ5b1wflMEeb9/ptEtGm3dL9H31+rWgXoWt06V3x3m371t1IN86B+o/vKMfdPZ9UAXg36vvK50ig84940xJICgSoHEiKN41zpkESIAESIAESIAESIAESIAESIAEghCB4GScCEK3hVMlARIgARIggf+UgHWuo/90Kjw5CZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBAcCBA40RwuMu8RhIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIIRARonAhEN4NTIQESIAESIAESIAESIAESIAESIAESIAESIAESIAESIIHgQIDGieBwl3mNJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJBCICNA4EYhuBqdCAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAsGBAI0TweEu8xpJgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIIBARoHEiEN0MToUESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEggMBGieCw13mNZIACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBAICJA40QguhmcCgmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkEBwI0TgSHu8xrJAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIIFARIDGiUB0MzgVEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEggOBGicCA53mddIAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAoGIAI0TgehmcCokQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkEBwI0DgRHO4yr5EESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEAhEBGicC0c3gVEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEggOBCgcSI43GVeIwmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkEIgI0TgSim8GpkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkEBwIEDjRHC4y7xGEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEghEBGicCEQ3g1MhARIgARIgARIgARIgARIgARIgARIgARIgARIgARIggeBAgMaJ4HCXeY0kQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkEIgI0DgRiG4Gp0ICJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACwYFA6OBwkbzGH4vAvUcv5Pb9Z/LitYd8+vSvv15cyJAhJHJEV0kQJ6rEjRnZX8fmYCRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiYCNE7wmxCkCPxz/b6cPn1NDuw8KieOX5QQIULIa2WkcHUNL2/fvpNQoULKx4+fxMUljLS8/5eE+/Thm64vVLhwEipXdrlUoZK8zJpeUrnH+abj2ZkESIAESIAESIAESIAESIAESIAESIAESIAESIAESMBnAjRO+MyIPQIJAURMnD17XVYt2iZv33lKuHBhJUWKhHLy1CVJmTKR3Lx1Xxsl3nu9l4gq+iFNxcYSwSWUr2Yf8u51eRkrhtyLEJ4RFL4iyINIgARIgARIgARIgARIgARIgARIgARIgARIgARIwDEBGiccs+GeQEYAqZz2bjuioyMeP3omsWNHlwsXrkmUyG5y9dodSZwojly6dFPSp0+uoisuSaJqLSSSm6uvr+JDiJByXp2T6Z18jZAHkgAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkIBdAj+cceLjx4/y/oN1Kp+wLi46/Y9dAmwMMgRQY+LypVsqOsJF4sSJIS9fvZE0aZLIiRMXJXVqd7l27a7EiBFVLl68KXHjxpBjXftI+JC+r0kRUp3Hq3M3X/NBPYwP6vvoEubr/83+VdPyev9e70NqKkt57eEpz168kZjR3CRc2DCWu75a91RRIo4krEpt9T3lraeXeHp+kCiRXHUtkE+fPkno0PYjV95/+CihQoYU1PjwTj6ofhBH42DfB5XGC+eyxxn7A5vge/H42SuJFT1SYJtakJiP8f/O9/5+Bwk4nCQJkAAJkAAJkAAJkECAE3j1+o1OKRwrZvQAPxdPQAKOCOC90rt3bhwHvUK4cGEkfFgXR8N81Y73a+jVDHEJE0bp04yt77vEu9+jpy/FLUI4CR/O8TVAF+Hl9UEie+Oc6vHWS157vFN6lkhOXQ90Lc5eu3fvqI50NtBxQCfiSP5VgyJ7SFSlX/HrtVuewzumtvfe8riQaq5hHOh3LPtxnQR8Q+BrralvRglEx4yZNFt+6v/HVzPKmyurDOrVRQrlz/XVPt82DB01WYaNniIn/9woCePH9e0wPM5JAvjxfap+mJIkiSd37jyS6NGjqMiJ6xI5iptcu35XGyxu3rwnyZMnVAaKG+KWK6m4hnH8j70zp32szulbGT17s+w9ckFWT+7y1RC37z+Vpj9PlYGdqknerCn0/h1/npWJC7bLy9dvzf1TJ4snXZuUkSQJY5rbLFfKtxhpuWm1vn5aN/meCtxVW47K+l3HZeGodjJ7xV5ZuvGwzB7WUuLEjGI1L2yUbTZcOjQsKRWLZf1qn2VDr5HL5MLVu7JyYmcJreqJ2JPWfWeKp3oQaVe/uAwYs1I6NyktpQtmtNfVqbZDJy5/8zit1BxeqfuGa/dJlmw8JKu3HZMlY9r71JX7bQhcv/1IBo1fLbfuPZFtc3622ctNEiABEiABEiABEiABEggYAp5eXvL7yEmyZcdeOXr8tD6JW8QI0qB2FRnYq7OK5v++jkf/lS5i9/5DUrVeG5k27nepVrF0wMDmqD4S2H/0ogybtl7ixooiU35tatUfyucZy3bLHqWLuP/oud6XKmlcKV8ki1PvyR0GzpHLNx6Yx4QCHfqI9CkTSPXSOSV2jMjmfQG18uT5a/nfjI1y7Mx1+agcESFw3hzSraa4J/iiG7n78Ln8MWWdnLt8R/eJFzuqtKlbTHJnTq638Wfr/tMybckuef7SQ7fheioUyyJt65VwaKRYsuGQTF+6W6YNbmZ1PvOgFivevaNCh+VIZ9OoagGpXymfxUim1afq2kdM3yh/q5Tmltc+uGtNK72QM9duObgzTMfP3Sobdp+wPMy8DrZzhrUyb3OFBPyTwA9nnIDlGHJi/3q9fP/+g/z19ymZs2ilFK/UQE4f3CSpUybT+/z6J6l7IqleuaxEcPV96iC/ziG4HR8+fFh58+adRIocUTyU1Tthwjhy+cptSZQwtty//1i337x5X6JGjSzJGtURt4jh/ITo8d3Xvj4eP0TOCgwTQ9WPas6MSaVqqRzaM+DKzYcyb/V+GTBupbc/AlDwl8ifwepUoVREgn8YJqCo7ztquVK6t9UeBlYnsdjAA9CKLX9JmUKZdOsn1YAf0p+GL5EZv7dwaFiwGMLuaq1yueRnNcauQ+ekRL70X/W5eO2e3LjzWLo2LaO9JHIofnFi+u1hCd4W3zpOxlQJ5Z2n4ygWy4kXzZ1WZi7bIyfO35DMaRJb7go264gOqtJmlPRoUU5K2nx3HUHAwyEeEikkQAIkQAIkQAIkQAIk8D0JwIu8WbufZMnKDdLvpw7y+4AeyqPaRU6eOSe/DZsgz56/kLlTHDuN+XWuQ0ZOlOVrNsnfe9eZh/oeuggYIkpUaig3zx2QuLFNCuFoUaJoHUiCeHHMc+HK9yMA7/9B41cppf01fdKPKsrBVtbu+Fu/N0GvUCxPWnml9CdLNhyWkUrZj+j9rOncbQ+x2sa7fMK40aVLU2V8Uu/5T569lss3H8iqrUdl2/4zMnFQE4mnjCIBKf3HrJAHj19Ip8allEI+lpxXxodZygGy82/zzc6fiCzoN3q5jg4ZrIwWEZSuaIZ6Z4TD4gKlv4geJaKcvnhLhk/boI0yhXOl0VNet/O4dhZ0jx9TyhXJ/NVlXFf6Bbx7OiPOvqOWL5pFiqp7YSkJYkez3DSv9x+7UhuVjGu/fP2+nk+Xwd927eYBP684w7RuxbxfzfPp8zcyeNIaSZc8vu2Q3CYBfyPwwxknQAYeDOnSpDRDypwxrRQpmFvS5CgpG7fu9jfjRM0qZQUfyvcj4KkUwNGjh5EnT17ootcPHjyVCKpo9ZMnLyWKiqBAe2z1j/z9+0/k7KhJ4hraj/GHjZp/l4vbuOekflDAj6ohKZPE1UaHew+fGU12l/GVBTu18oQICPF6bwrnhPHBO/nr1BUd8VGqgLWR5O6DZzJ2zhZtPPDueEf7sqVPoj0kFq07aNc4sXj9IZ3OCYYLhEX+2qW6o6Gcbk+jolW+dZx29Us4PT48TfCwt0xFlgRX44QBy97DtLHPdomQ5KY1CsnHD59kzqp9tru5TQIkQAIkQAIkQAIkQAIBQmD0xFnaMLF55WwpViiv+RzIzlCragV5/OSpuS0gVjw83sq7d55WQ38PXYSnSpUDgRLYkIzpU8vUMYONTS6/MwGXMKF0aiK8ry5VBoc3Nt8LTGf55iM6ewEiCAxJnji2VG8/Vg4dv+yjcQLHRFEOexlSJjQOl8K500iNMrmkea9pgswFqyd18TFFs/lgX6z0bFFeRWhEMjtcQt/x8s1bmb/6gCBiAMaRXYfOa0fFCQMaCXQnkGE/1daRCnAGhCMcrmHiwMaSwv2LMS2Dciys2PJ/cvT01a+ME3CwhBLfWXH2HTVBnGhWPL0bv0fzcl9d+yvlmItrgsEG+gRnrt32HM4whfHKNv30qFmb9VB4F6eQQEAR+CGNE/ZgxYtr+sfI4+2XlDlnz1+UZas3yeGjJyR92pRSr0YlgSHDkMtXr8u8xavlyLGTkj1LBh2y+b8JM6R2tfJSOH9ugScB9s8YP9Q4RNZu2qFDPa/fuC35cmeTumpM90QmC+Pd+w+l98AR0rF1I9m++4A6/rDEUR4IzRvWlDw5vU9vYz5BMF8Jo+o3IBrGRdVTQO6+mDGiyL17jyVmzKjy/PkrCeMSWl68eC2urmEldCT18atx4jvxfvvO9OBnezqkMoIi2y8Cr4pNe07JdZUKCzUsEOJYr2I+cwjjFeUFsWjdIbl666GKAgor8OyvXCKbTFqwQ45+9sj4dcJq7YmAdEmGx4HlnHYcPKuNBJZzjRQxvFYmj1Y/ZtmVkaFgztSWhzi9XrdCXhmjDBwXrt6zMsIgLHPf0X+kTvk82jCBH2r8cCK9E+aBqI/1yisC4ZIL1v4pN+8+kZlDW2gjygr1wPbX6WsSW/34llLX9I+KwAgTKpTAU8DROPgxhrfI+St3JVmiWNK0eiFzSOtCNT6+j01UG8Qn5vBWWbP9mH7Qt6054jQY1RFRLYhWMVKD4ViEgKZJHk/KFTZ5gSCcd8veUypf5XM936ols0vOTD5HjyHfJOZ4+MQVfW04plbZXOb6H0ithPRUCKFFDZG0ypOiZa0iElHlA4UgcmjxhoNy5ORVzTyFe2zBvUSarq3K4wYyf80BHW6cUj0s+vSwg4dLCFhTSIAESIAESIAESIAESOB7EUAqp9LFC1oZJoxzR1MR+/hAJs9YoKKpvSRNqmQyfc4SSZE8iQzp111QR2/+0tWyc8+fulZF0UJ5lA6gtuDdFnLt+i2Zt2S1yvhwUtXw85Ic2TLJT51biWv48NKiwy9y+NgJuXTlujRp01P379Ozndy6cy9AdRGDR0yQXfsO6fN16N5fIrm5SQ3lmAl9CXQaiCBJ4p5QZsxdqmpBvlaZDOLJfHUNEVzDax1I8cL5ZNb8ZbJx226JET2atGlWT+tU9IDqz6PHT3V/6FSwv1K5ElKxzBdlutGPS2sCcMgb37+RboRxwp7EjOomN+4+tnrXfKMiLiBRo0Swd4hTbZHdwqvUzKXkVxW5Ad0BDB4QpCHCeyPer1EfoWiedFIsbzrzmF5Kf4MsC3+rFE2o+ZAxdSJpUDm/RFS6B0eSKN7XOpBYqlYExChbidRTiJYwDBPYBz55siTXkR7YhlgaJrCNWpWOanvOWLpHHj99pVNFQ4/hk/jHO+qJczfUe/MhqV0+t3ZetHftYIh0VDFUaiuIM9fuzLi2TG2vF/U+Nqo0T2WVbiGG+l5RSCCgCNhP4h5QZ/uPxvV4+04mTJ2rz54/T3a9PHXmghQoXUuuXr8ptZSx4fLVG1K0Qj2BwQJy/eYdKVSmjoybMkeyZEon5y5ckvK1musf338uXtV98BAxV6WLMmTi9PlSrX4buXrtpv7hnTB1nhQpV0du372vu7xWhbPwUFKsYn0VAnpeShTJr8ctWKa23Ln3JaefMR6XXxMweW+EUCmd3qofpRDKS+W5hFI/QM+evVSFnlzkjcr776oeiF69eitp2jSVDF3b+fqTvkvbrycQQC0VVJjfQxX90ed/y+TkhZv6AdbZU91R0QlnL92x+kARD4ElH2mRUMcCRgdEWcxZuU999ur9T9X+1n1nyR0VgYI5ID0RQhNP/XNLEsePofujI5THyFOJ4lH25Na9p5Lqs7eC5X4oyPNnSylDJq0157u03O/MekkVjYEHCFul9KptR/XhCFeFvHnrqY0CKDYNua3mdPjkFen2+0JBjY8S+dNrJTtCQReqSAw8OIVSBgmEfeLB7qh6mII4GqfH0EW6+HYupaRHjs+Ov87T/fEH9+yQOhfEJ+bokz5FAixUcS/TXPWGL/7AAHNVpf+ylIPHL8k/ypAD2fvXP/KbMiy5qoe2KsooETVyBBX6ukJzsDzGdh3eUQNVOCm8M9Iki6s+8TT/geNWmbv+NGyxNl4hFRkiXJCa7OcRS8z7x6p8lXNX7tcGpUrFsyqjz0udugwPNSk+P8jCgwTfK3zXKCRAAiRAAiRAAiRAAiQQ2AggpROU9HlzZfNxaoeU0+OgP8ZK+ZrNlcNOBCmYN6cuWNy2Wz+t0M+SMZ1kzZxep4JqpxT+htRq0lF27DkgRQvmlcIFcsvs+culUevuenemDGkkXtzYOjsE1vGBoSCgdRHJk7oLUkdBMqY3nTdenFhi6DTuP3yk9x1Wjpw9+w2Vvr/9T3Jlz6z1GpXqtJR6zTvLMpWKKneOLHLwyN9SsnJDef7ipT7m2fOXUqpqI1mxdrMySBSX8OHDaT3KgqVr9H7+8RuBepXy6vf/X0Ys1fUWYBj4Rb2n4Z26lJMpdR3NIHMa03fizMXbussLpXdp03+27FRRDIWUMyJSSyNdNYwVEDi84T0a75WIms+RIansPnze6bRJepDPf+AoGEW9wxs1LeEsF9tOSmfsv6eiKxwJHAnxzp9X6SksBU6IyzYdFkQuICWUf8pppV9pqziVbjJMGvWcop30jPHhRIg5QX9hCIKVwPj4ues6awAiRpDy2iig7cy12xvXGN9Y2jI12o0ljDWQxsrhk0ICAUngh4yceKWMAKgvAXn//r38efhvvd7/5476AQEbXXsPllLFCppzQzauW03KVGsik2cuknHD+8vE6fPk4eMncu/iYWXJj6qPh6Giay/7IYxvlLK800+DpFObJjLit190/x6dWkrURJll5LjpMur3ProNf6pVKiPTxg7R21UrlpJkmQrrolrx1UMHxXsCYcKEES9VjCysMkR4IXJC/fDcvv1AYsWKriMn0A5DBSInLkya5beC2PhFqFLL+wn5017UjEBRZxSShkIdAu//OhXySHHldeCddz1ySuJjKfBiH9O3gVZGLx/fUddjMPZDSXxQKbUbVyso+JGE9G1fxZw3sraKRHBT3u+ZlEeDm4p+gAK8VrncX4X3GeNhiWgDPGjYk56tykvjnlNN9SeGNDd73tvra68ND1Goq4HwVBhToikFO8It8UNaKGca/YBi7zijDUr5JupaITsPntPFlHu3qaRDU9F29tJtnbsS694JPPuNaIS46nuHaA54iUSzeXCBAcA75jhHTBWxAcEDg23YpN7hT3+Qbiu8+n+iT7tKekRwbFuvuDk81tFp4PWC+z62X0NtmEA/RE7AIGGEkk5SuUZRn8MQRMrg+wvPMHisHDl5WXIrr5XWn8OJKxXPpvOd4ruVKmk87T2DKByjTokxDpckQAIkQAIkQAIkQAIkEFgIPHhkcvqKE8s5ZxroIg5uX2GOEtj35186guDYnrVKyW+KJC+cP5fAQXHAL50ECv8tq+Yoj3bT+wGuG+sdew7Snu+d2zbRaaPuKmdGrNuTgNBF1KpaThX5dtNzb9G4tp4nzn3xssmhy3Ye29bME+gzWjetKzGTZlfGlj/l3qXD6r3DRQrkySFFytdVjpmXlZEnq0yaMV+9s7+Q3RsWKUOLSQmcKH5cGagMO/Vqmt5bbMfntvMEkLYIUQ1QeONjSE0VBW/77mrsc3aJdz4IikBDFq5T0UAqC8QM9Z5vRNBPXbxLZi3fK3j/QxopRNp3a1bWXIy7YZX8Ttdr1CdRfxBxf02ds3+HqkaToMBzhHBfR18gG4SjzBQvXnmoyI/VguLO0LMYgiwIqF+RJ0sKrSfAu7B/yoFjF7VOAxElyGoAh1Evpf+BjgEpqpEJAe/thnz695OgxoQhMErAIdAQZ67d3rjG8VjaY2q5H+mzkCED9xE6DgoJBCSBH9I4AWANalfRP+b48YRxon7NytKnR3vNEmmB9qiUSmlSJZexk2frNvxBNMWDR4/1NlI9lSxawGyYQGMFZdWHccIy56LurP6cPH1er1YoXdRoUv84u+rQxAOHTFZjY0e1iqWNVUmUIJ5ev3vPFF1h3sEVuwQKZE6qrcWIlninrN2xVH2JhFHCK+NENHn06Jn2ukBURaRIEST0J9MPpt2BvkOjCuwQFJOyJ/DAgSD6A4L0TUilBOXx5Rv3dRTEPuX1Pmzqep0L8ZfWFXU/e39a1i6ii2hb7gshpnHRBsMGvBPg0f/85RutjDceKrKkTawPg9K5YrEs2iBhGRZpOaajdVwiIjOMMW37hQ/rIkO715KWfWYIvOlRvPpbpXqZnNo4sVJ5fTSvWVh2K88MPHDUqZDbx6HKWxS5giECkidrcvNxaZMnsHoQMO+wWSmUw/QygebECUwvJw9UtIu9BzzvmOP4SJ8LtaMmB4xAASV4uNqsHn56/rFYpeNKrR9okKPSkCY/TdXeLMZ29dI51cNHVjmlIkEgR5ShDB8IUjdBkF4LY8AwgVDRm8pjBQ9521XkBAQGJBhc8mZNqT1mUIAMhg08TMEw4UiQXmzA2C+RGejXVxlVvvX76Gh8tpMACZAACZAACZAACZDAtxKAUQI1LZGi2RlJkczdbJhAf+gVIEhfhA8ETnYQ6B9gnIAxAv2uqAwMKK69dNUGvf+RqmWB/T7Jf62LyJAulTZMYJ5RIkcSpHtClggYJiBGPdC7903ZIqAfQXaJ2QuW6/34c0LpUxANgugKjEHxPYHfJqyRa7ceSfsGJSRLWncdJbBH6QOWqpqH8WJF1XUWNuw6oVMJGWeBPgIpkL1zikRfvPdBkqo0x5AT52/o93JEZxiClMmITICO4IwqSA3Jnz2VsVs7skVU+hxn3/+2HTijlflVSmRX43yJdkBE/n3l7Gcrr1UBcKR7spW3KmUash/gvXZYz9pW1zp+3jbtLNrzcyph22N9uw2eRVS9Djjk4V5AqqnMD817TdcOpjBOwLHP0ukPfWCM2DC9uzZgIIJi7ur9+p1+5h8ttVOpM9dub1yMDXHE1LTX9Hfa4p16HkjBRSGBgCbwQxon8PDQqM4Xi2opZWRAJEVhVRQb7W88TP+gfvjwQeDZYEjbFvXN+SKNNntLe/9gGyGK0aNFsToklnqYOf05VZSxI3Ikk3eAsY2lAx22ZReuKwJNmlVwmkOc6BH9VKQJRqj91586fT7bjlDgQoGOUEb82FvKfRVpALH1mg+pEihCGYsPPP6RYmmJyj/YvkFJh4pd/HAZ4X2W58A6vNwb9ZiiHqjDSc6MyfSPHiIRjELEMCjMH9lGFqnC0qgfAC8HpNgZ3bu+2fPBdkzbbdhXcH5EMziSJAljSufGpWX0bFP9CUf9HLUjrBKKdkRLIKRw0fqD2hskWSKfo43sGQ8sz/PZPmTZZHfd8ATBzpAhTPfTnqHSJ+Y43uCPsFf/FmNsjAsPjNF9GujvEO7tm7ebpZjKAfpza9P/RzCI4ftpCOpCQIyHzjce1oX38EBofGfxQIXQ03wqHDamyn1p5O00mKD2B9JB4cH3d5XWC9JWtcEAZ0+iRY6oDXSW+6KqNgoJkAAJkAAJkAAJkAAJ/FcEQqr3HKQrgnNj7+7tfJxGgnimWpdGx6fK2ACx1Dtg24iawDpSHh09flpFDVRWKZxi6ZRQaHdW/mtdRORIblZTDa1S51q2GbU1jE6oNwGxZJIuTQplxOhEvYgByZdLvNshzS8i/uHxbgjey1CvcdPek9o4kTJJnK/evZRbo9Hd4fLYmet6X/qUpjTFr5QBAmL53pgsYSzBBzouD6UPga7AeFfUnT//ceb9DxEMcNhExgS8S1oKajPAOGIrSHuNyAhLgUGi25CFyhn5hUwY2MhcOxJ9LipjChz6oBuZsGC7PsxICzVtyS71Thtf6lfOZzmc0+vQNfRSWRtspbC6njmr9gkMKZZ6Bst+0Nvgg2wEcVT6qha9Z2jHQbzDf8u1W46Jde+YGn1v3Hks+1W0B5xEUWuEQgIBTeCHNE7YQiukwiYrqwJLvQYMlxqVy2pLPDwaKpcv6fABAw8goybMlCdPn4thcNiwZace2lC+WZ7HKKS9ffefqri2ySqMfms3bJcSRWlptGTll/Un8+Y6ffgTp3t607FKbW92er/LKLyEsL1yFt77OAqFmiHx45h+NC9dv6+U7XGU9V43m/8gvBCC4sK+EURMwGgwZ1hrVXfA5LkCT4YrqniUITCidG5cSm9eVz9CLZTSeev+0zoawyhShXoYhlLaOM5yGU0V1kK+Se8EDI6evqrrT3jXz9E+FKvGg9Y45dWAH0vLkE5Hx9i2p1O1HpAC66AKLzUKe6Neh6OwT9vjndl2hjm8SCC2D03OjG/ZBw8rT1QBeENQJBxeKpaSLkV8GdS5mm7C9w7pqGqrdGHuyghl+cBqeQxCgfGABubI62kr8HIx7oHhvbJYGYws61/AiIuwVXzwkDx08jqZsminqm2SVXlRmX568L0yBKGi8CKhkAAJkAAJkAAJkAAJkEBgIlC2ZGGdQWHDll1SrlQRq6kh88KTJ88kbeoUVu3GRo6sGfVqm2b2HSEvXLyia1psXD5TRxug87TZi2Xrzn3GEDr10f0Hj8zpU807Pq8ElC7CSLl0/8FDpyI4bOflaDtf7myq9l9I+aVrG+VMaO3E5+gYtjtH4NNnh0FPlS3EUmAowDuZEQ0PXYWhr7Ds5906UhpPmL9NK/GTJIipu8JIgffpNvWKWUUiGOPgXXTTnpNyUhkRLNMSYb9P73+nVdRF31HLlZNlUundtqIxpHmJuph4j0dkgWEseef5Xv46dVVKq0gFQ6BL6T1ymX5XHdmrntg6OELVkjWdu+6Oa4SgcDfkhXpvN9Z1gy/+4B3ZiDQxDv/77HWdvcGeYQJRL+4qU4OlU7TLZ6dG4z3a2Ws3zmcsfWJq9Ju0cIc2KtWrkNdo4pIEApRAsDBOgOBvfbtJ+tyldWFs1ILo0KqhzuOI3IalSxQWT09PWbR8nQ6pQvqnts0byIIlayRFliJqvb4OsTz0l0mhbPmPhHF3EG6Jh5bhY6bqsE88IEyZtUjXrWDeRIOS35cfXn5RxPp9tIAdAZEKOgpBRQugtkB2ldYGP5ab953SdSVQxwGe88jR32HgXK2ohrI4eeJY8lyFSyJlzrodxyW18nLwzlp9U3mvG2l4LK8ICua4KmwTsnLrX1opvOfIed3XCHNEEWPkgMR5ERpoGC2MsMKMKuUQPB1mqVoCSKeEPIhQattKnBhR5Obdx7bNX20b9SeMH310QI2NGSpCBOMj/Y8jSf25cPLG3Sf0A1G+bPZfABwdj3Ycg1oegyeu0QWc4cGB9FmOIk+8G8vRPp+Y4zgUEIfEtVPAS+9w8g9yiW7dd1oXO4dH0hj1XbMUPDzC+IRi6LB8wfgEieRNeiXsR9FvfEc6/TZPG67iq/RpSOc0a/kewQOdURh9054TkiZ5PF1wfIYqcmYIDLMoxF6uSBb9vUdOzPuPn2uvEBjgwqjQVRiK1u86ro6Pr+8n7q93Aq8YRIUYxd6N/Kl4uLRnQPFuLO4jARIgARIgARIgARIgAWcJtGvRQKcdqly3lXTv2ELXUMCzN9IyDR4xQcqr1M5zp4y0O1zh/LkFaY6q1GslQwf0lMSJEsjpsxdk6KjJsmzOBIkT26TkXbxivWRShaev37wtKKBtKWWUvqL3ryNl2JgpUrVCKYlsk/YooHQRObJm0rqNEWOny89dWkuECP7jQV23RkUZP3WudFQ1O9uoGhURVeYLFB1ft3G7rJg/yfLSuW5DAKmJziljAOSZStmMyATjvQgKdjivZUiZULarVEjxYkXRSndENcCBDu/gVZTXvTMCBziMizTVT5691imYoJtAPYfJvzYxK87Lq/e9XSrlMuo41C6fWyK6htP1LXG+cap+Ye7MyfV7JYpkN6pSQNIrHcUG9Q6IGo5VvXFMu3rroXQdvEBPtYKKvIcy3xC8iyJyoIBKu5xKvUP2+d8y6apqWkRQzph4J4Xhq2n1gkZ3+X3yWl1YGud7p/gZvNAhU5rEgvfQP1SaJ0tBdAEMI93VuO6fDTGW+411n95RUeOz65AFkl9lGyik6i3i/uw+fE5gJDAcBS31ITmUDqn9wDn6/baOqgWKc+O+TVEpliB4T4c4c+2W40LP4gxTjA3HWTCqqxwa7RlP0IdCAv5NINgYJ1KlSCotm9SR3/83SZo3qi3wXICMVUWuO/QcqNezZ8kgw381FbN2TxRfdm1YKHMWrZRDKv9jzmyZpFe3tpK1YAUJq3LoQ0LYWPkXzhgj7dSDRI++v+sQRURnzJ82yuwBgZQ9jsTWY95Rv+DenvGXzt8VwZ93fW8MwT39n1Lkjp+3VZZvOqJT62Dy+EFqpnIL1iybW18LcgFC4TtTKX7R1xD0K5InrTmqwWi3XeLHHR9b2Tijh/4RLKtCOlFwCR8ocfGDdv7KXd0d0RDIX2hZUBtpfwrmNNVXQDoqhE/OU306Dpor8JCYOriZ7am0J8Ca7cd0lIZ3in7Un/i9e01p1WemeQzUwkBxK0svevNOm5X6FfPJ4ElrFLtc5gcio4tRv8PYDvH5/zfL+hswBo1SKauWbjwkR9UPbiz1YNOvQxUdUuny2Zvf0TjGuJZLw9PH0mCJBw/vmON4PKTg/hpGIMsxv2X9p1YVpNOvc/UDD7iXLphR13wwriFBnOjaoICIBQj6tFEFqn1KdYV54aFzkHrIRL0K49gS+dNLOMUQUTgoajZ61map3Wm8HhehwxuU4Qj/zn1U7idx1APnEGUEMtJ94bvXp11lPRb+4P+B8cp40nvkUt22flo3bawzd7BZgbeLl4UHEIwfEETQGNEbNodwkwRIgARIgARIgARIgAT8TADP/JNH/SZ4v9+yY6+MGDtNjxkrRnRppZTrRm1LvHeEUimNLAX1JHauW6D1BCiCDUEa6tbN6kk4VcwXdSoXzxorLTr8InOV7gH7YAiAjJIYBAAAJydJREFU8cJ4x0BNh56dWylHy3nSf8ho7XgZW6WPtpSA0EXgPXX8iIF6LtkKVZTihfPJuOH9LU+rFcG21xw6tLWayXhnMg5ENMm2NXOlz6//k8z5y+tmpMPq27OD0YVLBwSQlsh4DzK6GNurJnbWyuQBnarKYpW2GTUB567ar7vh3bOeioqvVS6PcZi3S9RGNMbFsYiyQIofpBSCU6MhcGb8tUt1FVGxXdoNmKOb4dDY4HMaJLxXjuvfUBsvEMEPwXthz5am+64b7PxBIW1DYCSwFKR7RmYA6Fv6q3f5kTM2md874bw3uFsN7fxmHANnRAjqV+JjKXOGtbKbzcB4n7bsa2/dp3fU9MpQhPfvJareB9IkQcAHHNvWK6G3LfUhuKZhP9WRyYt26IwHuoP6g3frcf0bmd/jnbl2y3ExjjNM0W/akt36/b62Mo5QSOB7EQjx8o2H7/LFfJ6hm6v/WM+/1wXbO8/LV68Fng/hw30p1oqCxW9QWNktovmQHXv+lNJVG8uBrcu0scK8w2YFnvCoa2GZZ9GmCzd9QWDrgbMSY/0KXxzp+0Mel68mJfOl8/0AFkci5Q5+2I30Sha7zKvwOEc/PAh6VzzYfICTKwjhRD5DRx7m8MCARwVqOxgPwbZD48fNTeVhtK2fgX5GOqgRv9QN0ALPtnPyzTbST1lGorxSXKq2HS3wTEBBKv8S75hXazdGp5Xq0LCkv5wOaaJcVaSDvXuDE+Ca8d1ydP+9mwSMC69e2//uqCFVofXXOiTX3vcGIbQowo4wVCNFmO258L0MFTqkwHBFIQESIAESIAESIAES+HEJ3FeKVeROD+ri8fadin7/YKUrcOaaoCeA7iFa1K8Z4Fn9sUoPhZTStsp8Y2wc/+LlK328vWdv9AsoXQTSXUO/gfdU/5S3797Je+WAZKl38c/xg/tYr9U7PlI9oZ5CQAuyROD758jbHimr33/45PC90C/zw3nfKx1eYH6nRAoqT68PTr+TQ5/wUmXUgA4GmQccSVC4dkdzZzsJGASsTdpGazBb2vsh3LJjn9Rv0UW6tm8mWTOll9Pn/pHJMxZImlTJBZ4L3gl+sGmY8I6Q7/bBI/v11RvyycvLdwN841EhXVz8VFDb9nTOKIbxkInci/4tUFp7d378iPv0Q+7dvJDqCXkUN+0+GaiNE0+VgaVWx3FSIHsqXVgKhZ/Xq4LNkEK5TNEi/sXeEXPk5IQxwT/rK/j0sGlpjPnW60O0haPvDjw2vIvCwP+z3u3HXBw9vH7rPNmfBEiABEiABEiABEiABL4HAdfwX5wav+V80BPYM0xgDLwHxowRzdvhcLxRD9NRx4DSRfh0Xkfz8akdDqK+xOnT0NyvCDhyEAsIOLrotUqb7EiQxSCg/NHwvccnMAsiJvBxVqBP8OldGmMFhWt39prZL/gSYOSEg3uPyIlV67fKEpX78eyFS0qBFkHy5Mwivbq3ldgxrUMoHQzBZn8m8Nfp65ImTiQJ/e8nfx7Z/nAfQoSU8/dfSo4M7vY7sNWKwK5D52T1tmMypm8Dq/bAtoG8kEs3HFbRHo+05wJCVJFPESGp30NQEGzPEZVntket73E6noMESIAESIAESIAESIAEAgWBHyVyIlDA5CRIgARIgARI4AchQOPED3Ijg8Nl3FNhwLf/uSaRThyVTyqMNiAlpMqT+TJzdkmQKomfixYH5Dw5NgmQAAmQAAmQAAmQAAmQAAkEBQI0TgSFu8Q5kgAJkAAJkMD3JcC0Tt+XN8/mBwJxVX7Sl2/iyIOH7vJx3Rp5dviofFQ5Kv1TQqmw0qi5skuoCpUkdoI4NEz4J1yORQIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAKfCdA4wa9CkCKQSqXgiRQhvNxOkVw+vvZQxZ38VM/9q2tHjvyIEV0lQZyoNEx8RYcNJEACJEACJEACJEACJEACJEACJEACJEACJEACJOA/BGic8B+OHOU7EkAEBT4UEiABEiABEiABEiABEiABEiABEiABEiABEiABEiCBoEkgZNCcNmdNAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiQQVAnQOBFU7xznTQIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAJBlACNE0H0xnHaJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJBBUCdA4EVTvHOdNAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAkGUAI0TQfTGcdokQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkEFQJ0DgRVO8c500CJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACQZQAjRNB9MZx2iRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiQQVAnQOBFU7xznTQIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAJBlACNE0H0xnHaJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJBBUCdA4EVTvHOdNAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAkGUAI0TQfTGcdokQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkEFQJ0DgRVO8c500CJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACQZQAjRNB9MZx2iRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiQQVAnQOBFU7xznTQIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAJBlACNE0H0xnHaJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJBBUCdA4EVTvHOdNAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAkGUAI0TQfTGcdokQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkEFQJ0DgRVO8c500CJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACQZQAjRNB9MZx2iRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiQQVAmEDqoT57xJgASCH4GTF27qiz55/qZkSpNIMqVOFPwg8IpJgARIgARIgARIgARIgARIgARIgARIgARI4Acg8EMZJ7y83sunfz95e1tChwotoUOH8rYPdwZ9Ao/Gj9cXESFnTnlz5Ihg6ao+/i2e6jtnKWFCh5aQIUNYNvl6/cNH9V3+919//b7+q8a79+iFhHMJLVEjR5QQ/jNVu9eoTiVe79+LS5jQ6jx+O9HcVftl3ur9ZmNERmWUmKfauitjRYPK+aVhlfx258BGEiABEiABEiABEiABEiABEvALgQ8fPqrXsn8ljHqvCYzy/v0HPa3AOj+fmIGtp5eXhHVx8fN7o0/n4n4SIAESIIHARyDEyzceSoXoe3FzDe/7g/35yCLl68r+g0e9HbVn51YyuG83b/twZ9AlAKPE44kTJUbbthKzfXt9IR7KOPFowgS9HrNdO38zUsCLv/vvC7+CFSlieKlZNpfUKpf7q33f0tC813SJHT2SDO5WUw6duCwDxqyUzk1KS+mCGb9lGN331Zt38tuE1YKIg4+fTAa88OFcpFrpHNKgUn5/M6hYTuzqrYfSqs9MGfZTbcmS1t1yl9PrYAwjBGTEL3XtHgfDxSkYKZSBgpEUdhGxkQRIgARIgARIgARIgAT+cwL3lZNUnJiR//N5fOsEKtRqLhEjRJBFM8d866HfpX/jNj3k0eOnsmHZjO9yPv8+yYFDx6RwuTryz7HtktSdkfH+zZfjkQAJkEBgJxA4Tf++pDZt7BB59vyl+eh6LbpIlgxppXvHFua22LFimNe58mMQgPEB0RGGUSLNuXNWF4aIicTqYzZSKEOFa44cZuOFVedv2Pj3k8mu16NFOXGPb/peXb7xQHYcPCfTl+5Wnh9hpHKJbN8wonXXT5/HR2tkN1fJkTGprx/mYeh48dJD2tYvLmmSxZNnL97IQWXwmL/6gKRyjyu5syTXBpC+o5bLwlHKsBMtkvVk/qMtGCYQJeFdZAT26cgK1TeTAwPGfzR9npYESIAESIAESIAESIAESCCIE7B8LwuISyleqYFkyZhWhv/6S0AMH+jH/PTZeS7QT5QTJAESIAESCBACP5RxInlSdytIESO4SpzYMSVH1m/3NLcaiBuBmsCNxo21sSHx7NneRkUYRgojusK/Uj0lihdDUiaJqxlhWUpFNlRpM1q27DvlJ+OEJXQYFH7tUt2yyen1S9fvy9Pnr6Vvu8pSMGdq83E5MyWTysWzScK40XWb1/uPeol0TIFBYHDwyTBhzBMGCkSx4BjvDBlGfy5JgARIgARIgARIgARIgARIIDAQePPGQ5CimkICJEACJEACwZHAD2Wc8OkGHjl2UiZNXyB9f2pvFS545doN+W3YBOnZuaU8ePRYFq9YLz1UtMW8xavl8NETkit7ZmlQu7IkS5LYfIqz5y/KstWb9P70aVNKvRqVJLPydqB8fwKIlIDBQaduUlERjlI3GUYJpHyyja7wz1mHChlSYql0TO88vzxgwjiwZvsx+ev0NYkayVWK5kknxfKmM5/25eu3smLzETly6qrEixVVyhbOZN6HlQePX8ioWZulnYp8gDEB3juLNxyUIyevCo5N4R5b6lbIK4k/R3BYHmzMI6Sal60Y/SfO3y5Hz1zTu39V6Z8ihA+r00cVyJFKtu47LXuOXFC1Kp6rNFORpXyRzFZGDi+V43TFlr/k7zPX5bXHO21QQB0IW4HRY+qSnXLzzmPp2qysRI8S0baL1TZqTGyb87NVGzaMoti2KZyQ9qlEo6E0TnxFjA0kQAIkQAIkQAIkQAIkQAIBReDFy1eycNka2bnnoDx8/EQypEstHVo2lFQpkppPuXn7Xlm6aoNcu3FL3BMmkCb1q0uM6FFl+Jhp8s+lq3L/wSN5+fK1hAwVUmaMH2o+znLl75NnZMXaLfKX0mskTBBPGtauIoXy5zJ32bn3oD7Hrdv3JF/ubEqn0dJcJ+Pa9Vsyb8lq+evvk+Lp6SU5smWSn1TK60hupneyyTMWqPdXL8mYPrV5jLy5suoxXFRGAAhqQ8xfuka27dwnqHNRtlQRiRk9mmzYskvGDe9vnse2Xftl/eadcvnqDcEYTRvUlLjKadSQ3fsPyfI1m+XGzdtSsmgBSeKe0NjFJQmQAAmQQDAk8LW28geGkCZVcvVjulqmz11qdZVTZi2SreoHNmmSRIIf7Rlqf5nqTeXkmfOSJVM6GTt5thSv2EDu3n+ojzt15oIUKF1Lrl6/KbWqldc/ukUr1BMYLCj/DQHUl0g8Z442TMBIcaNRI53GCbOBUeJ8WpPhCEYJoxZFQMwURoNDxy/LDaWAz54hiT7Fi1dvpU3/2bLz0HkppCIXkO5p6JR12liBDu9VgTV4/S9cd1Ar7BHW2nvkMrl174l5im/eesoxZTx4/OyVbhs7d6vMXblfUieNK5WKZ1XGi5d6TPMBFivpUyYU1MEYMX2DLNlwyDyGRRdt1IgfO6puSukeR1KpcZHaaf/RizJm9haJotJKodYFDBEwXhgGAhTt7jF0kcxctkc+qvUcGZLK7sPndVory/HBZdC4lbJ80xEpni+9j4YJjG9rfDDGQ7t3+4y5Gf25JAESIAESIAESIAESIAESIIGAIvDH6CkybPRUyZQhjdSsUk6OHT8tRcvXk1ev3+hTbtmxV1C3wi1iBGnRqLbEiBFVKtdtpQ0HOCZ8uHASP14cfXz2LOntThN1GXIVrSoLlXEABglkiUA6KCOtNfQZrbv0kYTx4+px+g8ZLf2GjDKPVatJR9mx54AULZhXChfILbPnL5dGrbub9x9STpk9+v5uNcaA38dYjdFv8Chp2ranrm+ROmUy+bnfH9Ks3U+yQOlYDJmzaKWUVboUXGulssWVMWWzlKvR1Mxix54/pUSlhsqQ86d2Ap21YLk0bNnNOJxLEiABEiCBYEggWEVO4Aeyc9smAq+Avj3b64cAj7fvZPqcJbouRVgXF/NXoJmy7sOTANKhVSNJlDafTFVGjAG/dJKuvQdLqWIFZe6UkXp/47rVpEw1Ne7MRVYeA3on/wQogRMnT8qJEydN96FRQ53WyagvgTROEKRvsjRIGMfMmTdPdm3fpvv45Q+U7uHCmr47dx880wWnodxvVKWAHnbhuj/l7TsvmTEEhdTC6bapi3fJrOV7lWEhmxw4dlGu3X4kP7eqYI6mOHLyivT+3zKH0zpy8rKuE9G6bjHdB+Og6LU9CRFCZGSvejJD1cFALQx8UAy7QPZUOsogdozIUk5FQ7gpAwYKb6OQNyI/IDAqZB3fUdw+zxuFvss1G6EiNq5oAwEMMecu35FuKhLCKNSNtEqI1nj41FT/5f2HT9JHXctfp6/KwE7VJG/WFPamadWGwt1I6WRPkLoJwvRN9uiwjQRIgARIgARIgARIgARI4HsS6NWtrQzq1UVChw6lT1swb07JWrCCnDn3j+TJmVX2HDgiCZTxYcwf/fT+ujUqSp8e7SVyJDeln0giS1aul2yZ02tdhaN5/9T/D4Gz5fF96yRUKNN5+vbsIFGjfKkVuHXVXHFPFF8P8ez5Cx3R8Hv/Hnp7y6o5Vn1xXMeeg3QERJgwX9RCtmNs3Lpbhg7oKU+fvZChoyZrvYkx5s9dW0vEuOm1IQInefvunTRv/7OMHdZP2jSrr8/bsG5VcYuXQWCgqV6pjPwyYLiKLEklR3evEUT29+7eTjLlKyfn/7ms+/MPCZAACZBA8CPw5VcomFx766Z1ZfTEWbJq3VbBQ8Gy1Ru1Fb9pgxpWBMqWKGzeRggiUjsdO3Fa/3jv2X9YPxggosIQRFMgJRTl+xLInCmT2ThRpHgJadSggTT+bKQwZmIYKWCUmDN3nm7OlDGjvxgmMFi+bCklbswo8kqlNEKBaaREGtq9ltkQceL8DW2cQOojQ/65dk8QDYGUTBeu3NXNlkr7rOncBemhHEnerCl15MXwaRsEtSOypU9iNiDYOwYFu1GzAoWwz125o1MwbTtwRrbuPy3zR7YRGCjsSciQIdT/H2/l4PFL8uKVhzxXRbU/qsgORGpAzly8pZf5laHDEDyUR1QfwzgxZOIafa1De9TS8zT6ebfMlCaRoBj2twoMGjBsOIqs+Nbx2J8ESIAESIAESIAESIAESIAEvCOAKIbjJ8/KJZXG6Nmz5/LoyVPd/c69B3pZvHA+lb5pqjRs1U3Kly4m+fNkl3hxYnk3pNW+d56eOp00jBGGYQIdkBbKkOxZMpgNE2hLrVJKwQnTEBgjkLL6yrWbKtrihU7dhH2YqzEX78Y4fuqsHqpyuRLGkCojgItKT1VDliudCgQ6Ecjlqzd19gm98fnP34pP+dJFBeP0/7mjNkxgVwjlSdeiUS3p2muwZXeukwAJkAAJBCMCjrWfPygE1I3Aj+KUWQv1FU6YOk8a1qkqcWLFtLriGDGiWW3Hjhldh0y+8fDQ7R8+fNBGDYRq4tO2RX39o2p1EDe+CwEYI/AxoiBgpJg9Z67AGAHBsku37tow0ahhAxk1coTub+z36ySL5U0vVUvl0JESS8a011EDv09eax4Wyn3IGw9P8ydZwlhSpUR2lbdTVJ0GT22IQLonQ6Dgd3FxbDtE7QlEWtx7+Fx+n7RWqrcbI2t3/G0c7nAZNXIEyacMGx0alpQF/2urz7tc1bpwJKg10ajnFJ2O6a46Fx4eIcg3CvFQESEwooQL+2XueofFH6PmheX1Wez219VTSAelDBsUEiABEiABEiABEiABEiABEvgeBJBCKWfRKrJx6y6t7A8TxvrdqGjBPPLXrtXi6hpe+vw2UhKnyy/d+/zu9NRQIwISPVoUh8dEi2q9L3Ro63fJkpUb6mwPB48cl5evXitHughfjeXTGF8dYNPw5Olz3WKrK0H2ify5s8tb5ZwHQZ0KS4kZI7rlJtdJgARIgASCGQHrX6xgcvHtVXGq0lUby7TZi7Xlfsro3766cuRjrF+zsm6Hp8LaTTukbfP6EiVyJEmRzF0qly+pQxC/OpAN35UAjA6IgoBxAmIYKmCcQJREl5PdBdEVMEpgCTEiKHCc0aZ3+MOfaKrIc/3K+WTOyn063VHa5PElfcoEcvbSHWlTr5hZuW95qjTJ4smWfadUn9uSIZWpGNi1W490tIVlP8t1GAlQUBsf1H0YOnmdTFm0UyoUzarOYdlTVMTDW/H0em9O1WTsRcomREF4en3QTRFdw+rlwycvzX037DohcVRUyNTBzfQ+GCVQN8KQdCniy6Y9J1W0wg2HURF92lWWeWv2S5fB88XZ6AlEPnRXhoZvFdSbGOEgHdS3jsX+JEACJEACJEACJEACJEACJOATgXFT5kiPTi1lSD9TDYdzFy5Jn19NKaCNYzNnTCuTR5n0DotXrJcGLbuq1Ed1Bc6T0DHcvG2Kpjf6Wy6R/gk6CBSZbteigeUup9YvXLwiu/Ydko3LZ0qJIvn1MdCFoE6Fs5IlYzrddc3G7TqrBDY8vbxk1vxl5rRO2T7Xy0AK7LIlC+v+tn9Q/Hrjtt3SSmW0MGSLKhZOIQESIAESCL4EgqVxoogqAIUf97bd+kneXFl10Wvbr8CQERMlhPovedLEMmbSbL0bORIhHVo11PkZE6liU6VV+idPZbxYtHydzjGJ3JGU70cAURAwRBgpnXBmw0BhOwvDKIF2S2OFbT+/bqMuw9KNh2XMnC0y5demUr5IFtmlimH/On611C6fWyK6hpODqrYDCkeP69dQp2VyUXk+USS7Rc0i+ns0Y9luh9OAgeDn4UtUnYgskl2lc3ry/LXcf/xcp5GyNUxgkLU7jgnqNJQtnFnXe0DaqUvX78tmZRCBlFAFqiFIiYQoiFkr9krzmoV1XYq4saLI8XPXdTHupCraY9qSXdqgoQ9Qf3JnTm5KY6Xmjhob6ZVxZcOu4zrNVea0iXW3CK4u+jp/GbFUz3tAp6o6esMYw9GyQWXlUaQKhY/45cuDK/o6iozANeIYCgmQAAmQAAmQAAmQAAmQAAn4J4Fbd+5pBb/tmEj/nCpFUtm8fY80rV9dFbkOIx1/GmTV7bfh43XNiXKlimpntUtXrun9kdzc9LJi2WJav4Di0UjHlMQ9kbiGN9UqNAYydBDdeg8R1Lx88uyZ1lMsnjXW6OJwGUelqYbAKJIpfRq5fvO21oU4PMDOjmhRI+uanCj+ffL0ecmdI7PMnLdMYqmoB9SagMSOGUOqVigl9Vt0kfnTRgkMMvfuP5SR46ar9E/VtWGkYe0qMnDoWP2pohw+N6hok/kWBbXtnJpNJEACJEACPziBYGmcQOElWPMvXbmuik41tXuLYWQYMHSMXLt+Sz0cJJRZk4ZJgbw5dF+juNNY5SHRoedA3Yb8jMN//cXuWGwMWAKGMQJGCohhqEA7DBIomI3i17YRFAE1KxgaWtUpKqNnbZbDqnB0LlUTAvUeJszfLu0GzNGnRUHqBirCAhIzmpuOKEAqqMGT1mgDQamCGa1SJYW0sDp8VBEPiGZALQdEPkCiRHIVRCjYExhL3r//KBt2n5CN6mMIxhj2U21ztEboUCGlrUoXNW/1fuk4aK4kSRBThv9cV67cfKCNCjguXYoEEi92VHMESGQ3VxnXv6E2vMAYA8FcerYsL5ZzBhOc6zdloBkwZqWea6GcqXV/R39Q8BrGCRgdLItf26sngT5I6WRryHA0NttJgARIgARIgARIgARIgARIwFkCqNeA1Ei2gnRN08f9LnWadZY0OUrq3QN7dRbUqTRS4iZJnFAG/jFWWnTspfe7RYwg08cPlZifU0lXq1hGjhw9JbWbdNT792xcrJ0oLc8FHcSbN29lwrR55noOyAjxUUXRw6nSnuA8EERmwIjRosMvMnfRSh3p8HOX1rrAtTFHn8bAOIN6d5HkyskTkQ4nTp3TtSMePnpiduZEn7lTRwoMKDjXw8dP0KQLYadI6q7XUTz8+YtX6phZAqMNjDsTRgyUdt376/38QwIkQAIkEPwIhHj5xsOUPN6X1+6m8iYGRcGDwcYtu+TG2f3aU924BoQltuzUW94/uaibkDfRu9yOyNcYRilew4ez9mwwxuPyvyGg0zp9NkhYpn36b2bz5ayov/Dhw0dzsewve0xrqD/hqgwXKETtkyAt0/OXb1RtijAqGsOUksmnY3D+V2/eSbQoEbQRxFF/FM52ixheYLCAvFV5Tv9VdhDX8C6ODtGpo95/+OT0XBwOZLEDaZpQGBtRHZYGCosu2oCB7QbKmGHPcGHZl+skQAIkQAIkQAIkQAIkQAL/DYH7j14oJ6vI/83Jv8NZnz1/KRGUfgTvZ/YE+xEFjygEe4I0SR4e7wTFq70TjAPDA+oUfovg3I+fPNP6DThsfqvgvLZzK1S2tkRyiyjrlkz/ajjoUpCSyt48P378KB5v35lTQn11MBtIgARIgASCDYFgaZyAdT9+6jwybNDP0qVdU6ubbWucsNrJDRIggf+EACIjENEB4wMMFYiSgMB4gVROjgwX/8lkeVISIAESIAESIAESIAESIIGvCPzoxomvLvgHa8hZpIrEjxdbR0KEDesi/2/vjlHiDMMgAH9FeivBEwgWniQiiAiSM0maIATBQq1sxEC0kBQeQAghRfpAULHKDfRvbGwUcR12nl53532mnN39T79fjOOTs3HwdWd82lqfs2udQ4AAAQKzEqgcJ6aHOO3uHT58tfHLk08tnF9cjs+7++PHt6NZdeB9CBB4psA0Rvz68/fxuRO+KfFMOH9GgAABAgQIECBA4J0FjBPvXMAr3356aPf08O+rn7/Hv+vbsbqyPLY2Po7tzbVXvrJ/J0CAAIFmgcpxorlwtxMgQIAAAQIECBAgQIAAgVkLGCdmLe79CBAgQIBAvsDLf2gw/yYJCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAgWAB40RwOaIRIECAAAECBAgQIECAAAECBAgQIECAAIF5FDBOzGOrbiJAgAABAgQIECBAgAABAkECS4sLQWlEIUCAAAECBBIEjBMJLchAgAABAgQIECBAgAABAgQIECBAgAABAgSKBIwTRWU7lQABAgQIECBAgAABAgQIECBAgAABAgQIJAgYJxJakIEAAQIECBAgQIAAAQIECBAgQIAAAQIECBQJGCeKynYqAQIECBAgQIAAAQIECBAgQIAAAQIECBBIEDBOJLQgAwECBAgQIECAAAECBAgQIECAAAECBAgQKBIwThSV7VQCBAgQIECAAAECBAgQIECAAAECBAgQIJAgYJxIaEEGAgQIECBAgAABAgQIECBAgAABAgQIECBQJGCcKCrbqQQIECBAgAABAgQIECBAgAABAgQIECBAIEHAOJHQggwECBAgQIAAAQIECBAgQIAAAQIECBAgQKBIwDhRVLZTCRAgQIAAAQIECBAgQIAAAQIECBAgQIBAgoBxIqEFGQgQIECAAAECBAgQIECAAAECBAgQIECAQJGAcaKobKcSIECAAAECBAgQIECAAAECBAgQIECAAIEEAeNEQgsyECBAgAABAgQIECBAgAABAgQIECBAgACBIgHjRFHZTiVAgAABAgQIECBAgAABAgQIECBAgAABAgkCxomEFmQgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJFAsaJorKdSoAAAQIECBAgQIAAAQIECBAgQIAAAQIEEgSMEwktyECAAAECBAgQIECAAAECBAgQIECAAAECBIoEjBNFZTuVAAECBAgQIECAAAECBAgQIECAAAECBAgkCBgnElqQgQABAgQIECBAgAABAgQIECBAgAABAgQIFAkYJ4rKdioBAgQIECBAgAABAgQIECBAgAABAgQIEEgQME4ktCADAQIECBAgQIAAAQIECBAgQIAAAQIECBAoEjBOFJXtVAIECBAgQIAAAQIECBAgQIAAAQIECBAgkCBgnEhoQQYCBAgQIECAAAECBAgQIECAAAECBAgQIFAkYJwoKtupBAgQIECAAAECBAgQIECAAAECBAgQIEAgQcA4kdCCDAQIECBAgAABAgQIECBAgAABAgQIECBAoEjAOFFUtlMJECBAgAABAgQIECBAgAABAgQIECBAgECCgHEioQUZCBAgQIAAAQIECBAgQIAAAQIECBAgQIBAkYBxoqhspxIgQIAAAQIECBAgQIAAAQIECBAgQIAAgQQB40RCCzIQIECAAAECBAgQIECAAAECBAgQIECAAIEiAeNEUdlOJUCAAAECBAgQIECAAAECBAgQIECAAAECCQLGiYQWZCBAgAABAgQIECBAgAABAgQIECBAgAABAkUCxomisp1KgAABAgQIECBAgAABAgQIECBAgAABAgQSBIwTCS3IQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEigSME0VlO5UAAQIECBAgQIAAAQIECBAgQIAAAQIECCQIfEgIMWW4ufufEkUOAgQIECBAgAABAgQIECBAgAABAgQIECBA4A0FYsaJpcWFNzzTSxMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIpAn7WKaUJOQgQIECAAAECBAgQIECAAAECBAgQIECAQImAcaKkaGcSIECAAAECBAgQIECAAAECBAgQIECAAIEUAeNEShNyECBAgAABAgQIECBAgAABAgQIECBAgACBEgHjREnRziRAgAABAgQIECBAgAABAgQIECBAgAABAikCxomUJuQgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIlAsaJkqKdSYAAAQIECBAgQIAAAQIECBAgQIAAAQIEUgSMEylNyEGAAAECBAgQIECAAAECBAgQIECAAAECBEoEjBMlRTuTAAECBAgQIECAAAECBAgQIECAAAECBAikCBgnUpqQgwABAgQIECBAgAABAgQIECBAgAABAgQIlAgYJ0qKdiYBAgQIECBAgAABAgQIECBAgAABAgQIEEgRME6kNCEHAQIECBAgQIAAAQIECBAgQIAAAQIECBAoETBOlBTtTAIECBAgQIAAAQIECBAgQIAAAQIECBAgkCJgnEhpQg4CBAgQIECAAAECBAgQIECAAAECBAgQIFAiYJwoKdqZBAgQIECAAAECBAgQIECAAAECBAgQIEAgRcA4kdKEHAQIECBAgAABAgQIECBAgAABAgQIECBAoETAOFFStDMJECBAgAABAgQIECBAgAABAgQIECBAgECKgHEipQk5CBAgQIAAAQIECBAgQIAAAQIECBAgQIBAiYBxoqRoZxIgQIAAAQIECBAgQIAAAQIECBAgQIAAgRQB40RKE3IQIECAAAECBAgQIECAAAECBAgQIECAAIESgXumrFovOTRS3gAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Check Redis Version\n", + "\n", + "For this tutorial it's important to validate that your redis instance meets the version requirements you can do this through a number of the UI's available or check the docker tag your using itself.\n", + "\n", + "### Redis cloud\n", + "![image.png](attachment:image.png)\n", + "\n", + "### Redis insight\n", + "![image-2.png](attachment:image-2.png)\n", + "\n", + "### Docker\n", + "\n", + "See [docker tags](https://hub.docker.com/_/redis/tags)\n", + "\n", + "## Connect to index by defining REDIS_URL" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "\n", + "# Replace values below with your own if using Redis Cloud instance\n", + "REDIS_HOST = os.getenv(\"REDIS_HOST\", \"localhost\") # ex: \"redis-18374.c253.us-central1-1.gce.cloud.redislabs.com\"\n", + "REDIS_PORT = os.getenv(\"REDIS_PORT\", \"6379\") # ex: 18374\n", + "REDIS_PASSWORD = os.getenv(\"REDIS_PASSWORD\", \"\") # ex: \"1TNxTEdYRDgIDKM2gDfasupCADXXXX\"\n", + "\n", + "# If SSL is enabled on the endpoint, use rediss:// as the URL prefix\n", + "REDIS_URL = f\"redis://:{REDIS_PASSWORD}@{REDIS_HOST}:{REDIS_PORT}\"" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from redis import Redis\n", + "\n", + "client = Redis.from_url(REDIS_URL)\n", + "client.ping()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example setup\n", + "\n", + "If you already have an index populated you can skip this setup but for this tutorial we will create a float32 based index to show how to convert." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "import json\n", + "\n", + "# load raw data\n", + "with open(\"resources/movies.json\", 'r') as file:\n", + " movies = json.load(file)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Create initial index" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "16:04:57 redisvl.index.index INFO Index already exists, overwriting.\n" + ] + } + ], + "source": [ + "from redisvl.schema import IndexSchema\n", + "from redisvl.index import SearchIndex\n", + "\n", + "index_name = \"movies\"\n", + "\n", + "schema = IndexSchema.from_dict({\n", + " \"index\": {\n", + " \"name\": index_name,\n", + " \"prefix\": index_name,\n", + " },\n", + " \"fields\": [\n", + " {\n", + " \"name\": \"title\",\n", + " \"type\": \"text\",\n", + " },\n", + " {\n", + " \"name\": \"description\",\n", + " \"type\": \"text\",\n", + " },\n", + " {\n", + " \"name\": \"genre\",\n", + " \"type\": \"tag\",\n", + " \"attrs\": {\n", + " \"sortable\": True\n", + " }\n", + " },\n", + " {\n", + " \"name\": \"rating\",\n", + " \"type\": \"numeric\",\n", + " \"attrs\": {\n", + " \"sortable\": True\n", + " }\n", + " },\n", + " {\n", + " \"name\": \"vector\",\n", + " \"type\": \"vector\",\n", + " \"attrs\": {\n", + " \"dims\": 384,\n", + " \"distance_metric\": \"cosine\",\n", + " \"algorithm\": \"hnsw\",\n", + " \"datatype\": \"float32\"\n", + " }\n", + " }\n", + " ]\n", + "})\n", + "\n", + "\n", + "index = SearchIndex(schema, client)\n", + "index.create(overwrite=True, drop=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Embed movie description vectors" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/justin.cechmanek/.pyenv/versions/redis-ai-res/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n" + ] + } + ], + "source": [ + "from redisvl.utils.vectorize import HFTextVectorizer\n", + "\n", + "# load a model to embed our movie descriptions, specifying the dtype we want to use\n", + "hf = HFTextVectorizer(model=\"sentence-transformers/all-MiniLM-L6-v2\", dtype=\"float32\")\n", + "\n", + "embeddings_32 = hf.embed_many([movie[\"description\"] for movie in movies], as_buffer=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "b'\\x8df|=*a\\n;-\\x92\\xb7;3\\xcb~\\xbd`e\\xce\\xbb\\xca\\x16J==\\xa7?=\\xefv\\x95\\x17\\xbe\\x18\\x0b\\x05\\xb99u\\xbf<\\xb5\\xe3b\\xba\\xd5\\xa6\\xa8\\xbd~\\xdc\\xec\\xbcPc%=\\xc1\\xe7r\\xbb\\x19OG=>(\\x85=c@\\xa2\\xbc1Z\\xd0\\xbd>%K\\xbd\\xba\\xed\\x94\\xbc\\\\\\xddH=\\xa6&F<\\xd2*\\xec<\\x8f\\xd8\\x8d\\xbd\\xb8Z\\x98<\\r\\xa3\\xa3=*g3\\xbd#\\xcd\\xbd\\xbd\\xde$\\xf7;\\xfd\\xf4z=\\xfc\\xb4\\x8c=\\x8b\\x0e\\xc6\\xbdfI\\x90\\xbdP\\x16\\xbd;x\\xe7\\x0c\\xbd\\x0e3\\xc9\\xbcj\\xf8\\xbb\\xbc\\xba&u\\xbb4\\x8f\\xca<\\x01\\x80J=\\x14\\xaf*=\\x84OU\\xbd\\xd1\\xf0\\x95\\xbc\\x1c\\x02\\x19=*\\xf4K<\\xca\\xc2\\t=B\\x83\\xac=\\x9a\\xd7\\xb8\\xbd\\xf1\\xb5\\x9c\\xbd>\\x85\\x18=\\xa4d&=\\x1f3\\xf8<\\xd8\\xf7\\x88<5v\\xf2\\xbb)=[\\xbd@\\xac\\xee\\xbb5:A\\xbd\\xd9d\\x19\\xbd/d\\xf2\\xbb4\\xbax;\\xeb;O<\\xe21,\\xbc\\xee\\xae\\xae=}\\x00-\\xbc\\x1e\\x06\\xae\\xbdo\\xd6\\x1a=\\xc4\\xbf\\xcd=\\x1b\\x150=\\xd6\\xf1\\x9d\\xbc\\xb6GK=\\xb0\\xb8 =\\xae\\xf1I\\xbd7e\\x9e\\xbb\\x96\\x8b\\xf7:\\x89\\xf8\\x1c=\\x97\\xba\\xde<\\x16p\\x16\\xbb\\xf2]p\\xbb\\xbc\\xd5<\\xbd~\\x1bF\\xbd\\xa2?\\x14\\xbe\\xc8\\x8f(\\xbd\\xe3O\\x89\\xbd\\x18\\xae\\xd4<\\xa6\\x12\\xc3=\\xb8\\x05O\\xbd\\x9e\\x8ep\\xbc\\x18\\xb5\\xac\\xbc\\xc9\\x9ee\\xbdV\\x8es;\\x07a\\xc1;\\xd2\\xfaB\\xbd\\xaa\"\\xfe:\\x92\\xe6\\xf4=\\xa4\\x15*<\\x91\\xf8\\x1b=\\x03\\xfcV\\xbd\\xdf\\xd1\\r=2\\xee\\x06=\\x17u\\xba\\xbd\\xff\\xa3\\xd6<\\x1c\\xec\\xd9;\\xba9/=\\xa9\\xc2\\x85=v\\x0b\"=\\xe3i\\xef<-\\xe8c=\\xfa2\\x08\\xbe\\xca\\x12;=\\xc0UW;Q\\xa4b<\\xd5\\x9d\\xb7<\\x90r;\\xbdUz\\x91\\xbcX\\x00<\\xbd\\r\\x1a\\xa3<\\xbfJ%\\xbc]\\xe7\\xbf\\xbb\\x84\\x87\\x12=\\x95\\x1d\\x95=||\\xfd\\xbc\\xf3\\xf1\\xd1\\xbd1z\\x84;\\xc7\\tu={\\x8ai\\x17\\xbe\\x18\\x0b\\x05\\xb99u\\xbf<\\xb5\\xe3b\\xba\\xd5\\xa6\\xa8\\xbd~\\xdc\\xec\\xbcPc%=\\xc1\\xe7r\\xbb\\x19OG=>(\\x85=c@\\xa2\\xbc1Z\\xd0\\xbd>%K\\xbd\\xba\\xed\\x94\\xbc\\\\\\xddH=\\xa6&F<\\xd2*\\xec<\\x8f\\xd8\\x8d\\xbd\\xb8Z\\x98<\\r\\xa3\\xa3=*g3\\xbd#\\xcd\\xbd\\xbd\\xde$\\xf7;\\xfd\\xf4z=\\xfc\\xb4\\x8c=\\x8b\\x0e\\xc6\\xbdfI\\x90\\xbdP\\x16\\xbd;x\\xe7\\x0c\\xbd\\x0e3\\xc9\\xbcj\\xf8\\xbb\\xbc\\xba&u\\xbb4\\x8f\\xca<\\x01\\x80J=\\x14\\xaf*=\\x84OU\\xbd\\xd1\\xf0\\x95\\xbc\\x1c\\x02\\x19=*\\xf4K<\\xca\\xc2\\t=B\\x83\\xac=\\x9a\\xd7\\xb8\\xbd\\xf1\\xb5\\x9c\\xbd>\\x85\\x18=\\xa4d&=\\x1f3\\xf8<\\xd8\\xf7\\x88<5v\\xf2\\xbb)=[\\xbd@\\xac\\xee\\xbb5:A\\xbd\\xd9d\\x19\\xbd/d\\xf2\\xbb4\\xbax;\\xeb;O<\\xe21,\\xbc\\xee\\xae\\xae=}\\x00-\\xbc\\x1e\\x06\\xae\\xbdo\\xd6\\x1a=\\xc4\\xbf\\xcd=\\x1b\\x150=\\xd6\\xf1\\x9d\\xbc\\xb6GK=\\xb0\\xb8 =\\xae\\xf1I\\xbd7e\\x9e\\xbb\\x96\\x8b\\xf7:\\x89\\xf8\\x1c=\\x97\\xba\\xde<\\x16p\\x16\\xbb\\xf2]p\\xbb\\xbc\\xd5<\\xbd~\\x1bF\\xbd\\xa2?\\x14\\xbe\\xc8\\x8f(\\xbd\\xe3O\\x89\\xbd\\x18\\xae\\xd4<\\xa6\\x12\\xc3=\\xb8\\x05O\\xbd\\x9e\\x8ep\\xbc\\x18\\xb5\\xac\\xbc\\xc9\\x9ee\\xbdV\\x8es;\\x07a\\xc1;\\xd2\\xfaB\\xbd\\xaa\"\\xfe:\\x92\\xe6\\xf4=\\xa4\\x15*<\\x91\\xf8\\x1b=\\x03\\xfcV\\xbd\\xdf\\xd1\\r=2\\xee\\x06=\\x17u\\xba\\xbd\\xff\\xa3\\xd6<\\x1c\\xec\\xd9;\\xba9/=\\xa9\\xc2\\x85=v\\x0b\"=\\xe3i\\xef<-\\xe8c=\\xfa2\\x08\\xbe\\xca\\x12;=\\xc0UW;Q\\xa4b<\\xd5\\x9d\\xb7<\\x90r;\\xbdUz\\x91\\xbcX\\x00<\\xbd\\r\\x1a\\xa3<\\xbfJ%\\xbc]\\xe7\\xbf\\xbb\\x84\\x87\\x12=\\x95\\x1d\\x95=||\\xfd\\xbc\\xf3\\xf1\\xd1\\xbd1z\\x84;\\xc7\\tu={\\x8ai= '0.4.0'" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "int_hf = HFTextVectorizer(model=\"sentence-transformers/all-MiniLM-L6-v2\", dtype='int8')\n", + "\n", + "embeddings_int8 = int_hf.embed_many([movie[\"description\"] for movie in movies], as_buffer=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "b'\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00'" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "embeddings_int8[0]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What happened? Why is the vector all zeros?\n", + "\n", + "While Redis supports integer data types, many embedding models scale their vector length to 1.0, which means each value is less than 1.0 - typically much less than 1.0, and so are rounded down when using `int8`\n", + "\n", + "\n", + "You have two options if you want to use integers\n", + "1. use an embedding model that is not normalized\n", + "2. scale the vectors up yourself before converting them to integers\n", + "\n", + "The large majority of models are normalized, so rather than hunt around for an elusive one that isn't we'll show you how to easily scale up any model" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: scikit-learn in /Users/justin.cechmanek/.pyenv/versions/3.11.9/envs/redis-ai-res/lib/python3.11/site-packages (1.6.1)\n", + "Requirement already satisfied: numpy>=1.19.5 in /Users/justin.cechmanek/.pyenv/versions/3.11.9/envs/redis-ai-res/lib/python3.11/site-packages (from scikit-learn) (1.26.4)\n", + "Requirement already satisfied: scipy>=1.6.0 in /Users/justin.cechmanek/.pyenv/versions/3.11.9/envs/redis-ai-res/lib/python3.11/site-packages (from scikit-learn) (1.15.1)\n", + "Requirement already satisfied: joblib>=1.2.0 in /Users/justin.cechmanek/.pyenv/versions/3.11.9/envs/redis-ai-res/lib/python3.11/site-packages (from scikit-learn) (1.4.2)\n", + "Requirement already satisfied: threadpoolctl>=3.1.0 in /Users/justin.cechmanek/.pyenv/versions/3.11.9/envs/redis-ai-res/lib/python3.11/site-packages (from scikit-learn) (3.5.0)\n", + "\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m25.0.1\u001b[0m\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n" + ] + } + ], + "source": [ + "!pip install scikit-learn" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "# use any embedding model, normalized or not\n", + "# this model isn't normalized, but most values are still between -5.0 and +5.0\n", + "# for int8 we want to use the full range of -128 to +127\n", + "\n", + "from redisvl.redis.utils import array_to_buffer\n", + "\n", + "integer_hf = HFTextVectorizer(model=\"BAAI/bge-base-en-v1.5\", dtype='int8')\n", + "\n", + "embedding = integer_hf.embed('this string will be converted to an integer embedding')\n", + "\n", + "from sklearn.preprocessing import minmax_scale\n", + "from redisvl.redis.utils import array_to_buffer\n", + "\n", + "scaled_embedding = minmax_scale(embedding, feature_range=(-128, 127))\n", + "#print(scaled_embedding)\n", + "#print('####')\n", + "scaled_byte_embedding = array_to_buffer(scaled_embedding, dtype='int8')" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "b'\"\\x1e&-BSQ\\x0e+\\x1c6/\\n@(NH\\x17A3\\x1c8\\x1e/<.7\\x02\\x1248-9%8\\x12\\x13\\x1f3)\\x15$A;\\x00\\x16\\xf801\\x1d\\xf8@\\x150G\\\\@%&g\\'\\x1d\\x11TL\\x1a/\\x11\\x136?\\x1b.\\x08@\\x1c?.*1+9\\x19!D$(@\\x1d3\\x14:5)\\x1b*+MG)\\x03\\x19(\\x14T;#(Z\\x1aR\\x1c\\xf57$?(\\x0cA)#$\\x10\\x05:\\x13T\"/*\\x194\\x1c7+\\x1a5:S \\x0f.\")-\\x13-5/17\\x0c/#\\x15\\x1a\\x1e\\x7fD\\x1d<\\x12\\x18\\xf7(\"\\'I\\x11\\x17_\\x04.^\\n4*51\\x10\\x1a\\x1f.))+\\x14\\x07-&:R\\x15,)\\x10\\x0f\\x0c\\x15ET,5;,/%-]\"\\x1c\\x17)@\\x0b\\x03/\\x18\\x1d\\x0b\\x1e*DF6?[\\x159F?\\x1f*E-?\"\\x1d;!\\x80A\\x05*1!;\\x12,8\\x15!\\x1c23\\x1e3/(3/\\x123Z b\\x1f\\x15/-\\'\\x16U\\x0f%\\x194\\x1212\\r.+\\x15I),(,D#05+)A\\x10\\r\\x13\\x1c\\x15\\x17\\x0cB(/\\x0f502=\\xfc.B$A\\x1b2;*F893)9/>4+:<<5\\xf3\\x15=A\\n9\\x0b\\x1fN0$%\\x159+\\x16\\x1b>9\\x1c#A;*(&9B 8 O5$)B_%&\\x13$$\\x08#-0\\xff\\x0e$Q+0A \\x1b&B\\x101&+.A\"\\x0e\\x19,#5\"-\\xf6E\\x1d2\\x1f20+#;\\x0f@\\x17;N\\r\\x1a\\x00K9O-,#/\"9\\x19\\x04(5A9\\x0c\\x07F8\\x12*)#$9A]SH(\\x1bB&\\'\\x072,2\\x14\\x0b\\x121\\xfa\\x19:;C\"%)>\\x12#,:\\x1c5->DR? \\x19N\\'\\x19\\x033\\'\\xfc\\xf81$\\x12dH! /\\x1c\\x14,\\x1d+[B!;\\x16C2L5M B\\x12\\x1744%C\\x13S#[\\x0c3D5,6,$\\x16\\x18-2 9\\x19E\\x1a9Z#\\x044W9/\\'0(\\'&1\"\\'0\\x18W/&\\x13\\x12\\x1e\\xf8\\x02$\\x1e46\\x0b\\r5 \\x1fJL9FD\\x16(D1[-\\x0f\\xf3-W)\\x0c=#A;\\x1b4$\\x1c &h\\x0cV=\\x1a56!0\\x073\\x0b\\x11:82\\x1245$C\\x10N2\\x1c\\xe8M0.2(C,U#7L'" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "scaled_byte_embedding" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From here we can use the same process as before to convert our existing embeddings to our new desired datatype appropriately scaled.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import minmax_scale\n", + "def scale_and_replace_vectors(index, pattern, old_dtype, new_dtype, scale_range=None):\n", + " cursor = \"0\"\n", + "\n", + " while cursor != 0:\n", + " items_to_convert = []\n", + " # fetch a batch of records\n", + " cursor, keys = index.client.scan(cursor=cursor, match=pattern)\n", + "\n", + " # use a Redis pipeline to make this more scalable\n", + " with index.client.pipeline(transaction=False) as pipe:\n", + " if index.storage_type.value == \"hash\":\n", + " for key in keys:\n", + " pipe.hgetall(key)\n", + " if index.storage_type.value == \"json\":\n", + " for key in keys:\n", + " pipe.json().get(key)\n", + "\n", + " items_to_convert.extend(pipe.execute())\n", + "\n", + " if items_to_convert:\n", + "\n", + " old_vecs = [np.frombuffer(item[b'vector'], dtype=old_dtype) for item in items_to_convert]\n", + "\n", + " if scale_range:\n", + " new_vecs = minmax_scale(old_vecs, feature_range=scale_range)\n", + " new_vecs = [vec.astype(new_dtype).tobytes() for vec in new_vecs]\n", + " updated_data = [{**item, b'vector': new_vecs[i]} for i, item in enumerate(items_to_convert)]\n", + "\n", + " # write back data\n", + " new_keys = index.load(updated_data, keys=keys)\n", + "\n", + " return new_keys\n" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "pattern = \"movies:*\" # prefix of data to convert\n", + "storage_type = \"hash\"\n", + "updated_keys = scale_and_replace_vectors(index, pattern, \"float16\", \"int8\", (-128, 127))" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "16:05:09 redisvl.index.index INFO Index already exists, overwriting.\n" + ] + } + ], + "source": [ + "# Update the schema by removing the old vector field\n", + "index.schema.remove_field(\"vector\")\n", + "\n", + "# Add updated vector field including the new datatype here\n", + "index.schema.add_field({\n", + " \"name\": \"vector\",\n", + " \"type\": \"vector\",\n", + " \"attrs\": {\n", + " \"dims\": 384,\n", + " \"distance_metric\": \"cosine\",\n", + " \"algorithm\": \"hnsw\",\n", + " \"datatype\": \"int8\" # as simple as updating this field\n", + " }\n", + "})\n", + "\n", + "# Update the index schema by dropping the old and updating with the new -- will NOT delete data\n", + "index.create(overwrite=True, drop=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "20" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "index.info()[\"num_docs\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "952" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "client.memory_usage(updated_keys[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Some important notes\n", + "When dealing with integer data types in search indices be aware of overflow and underflow. Depending on the math library you are using trying to converting 256 to an unsigned 8 bit integer may either throw an error, or wrap around and return -1. Numpy versions before 2.0 wrap around, while later versions will raise an `OverflowError`.\n", + "\n", + "When doing vector similarity search in Redis the choice of distance metric also matters, as Inner Product (IP) and Euclidian Distance (L2), will not return scaled values, but cosine (COSINE) will always be scaled regardless of the vector values, because that's how angles work." + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# cleanup\n", + "client.flushall()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "redis-ai-res", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/python-recipes/vector-search/04_redisvl_benchmarking_basics.ipynb b/python-recipes/vector-search/04_redisvl_benchmarking_basics.ipynb new file mode 100644 index 00000000..99dd6ad3 --- /dev/null +++ b/python-recipes/vector-search/04_redisvl_benchmarking_basics.ipynb @@ -0,0 +1,1054 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Redis Vector Search Benchmarking with RedisVL\n", + "\n", + "## A Practical Guide to Multiprocessing Performance Testing\n", + "\n", + "This tutorial demonstrates how to benchmark Redis vector search performance using multiprocessing with RedisVL to bypass Python's GIL and achieve true parallelism.\n", + "\n", + "### What You'll Learn\n", + "- Set up efficient Redis connections for multiprocessing\n", + "- Implement multi-process data loading with batching\n", + "- Build parallel query execution with worker processes\n", + "- Measure and analyze key performance metrics\n", + "- Understand factors affecting Redis performance\n", + "\n", + "### Tutorial Structure\n", + "1. **Part 1: Setup & Configuration** - We'll define all our classes, functions, and utilities\n", + "2. **Part 2: Benchmarking Execution** - We'll run the actual performance tests and analyze results\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Part 1: Setup & Configuration\n", + "\n", + "First, let's install dependencies and import the libraries we'll need for benchmarking." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# Install and import dependencies\n", + "%pip install redisvl redis numpy matplotlib pandas tqdm" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import time\n", + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "from multiprocessing import get_context\n", + "from typing import List, Dict, Any, Optional, Tuple\n", + "from dataclasses import dataclass\n", + "from tqdm import tqdm\n", + "from contextlib import contextmanager\n", + "\n", + "# RedisVL imports\n", + "import redis\n", + "from redisvl.index import SearchIndex\n", + "from redisvl.query import VectorQuery\n", + "from redisvl.schema import IndexSchema" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Redis instance\n", + "Set up a local Redis instance to use for testing" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "!docker run -d --name redis -p 6379:6379 -v redis_data:/data --restart unless-stopped redis:8.0.0 redis-server --search-workers 6" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Configuration Class & Redis Connection\n", + "\n", + "We'll define our benchmark configuration. Note that for multiprocessing, we don't use connection pooling since each process will create its own Redis client." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Benchmark configuration\n", + "@dataclass\n", + "class BenchmarkConfig:\n", + " # Redis settings\n", + " redis_host: str = \"localhost\"\n", + " redis_port: int = 6379\n", + " redis_password: Optional[str] = None\n", + " \n", + " # Index settings\n", + " index_name: str = \"benchmark_index\"\n", + " vector_dim: int = 768\n", + " distance_metric: str = \"cosine\"\n", + " algorithm: str = \"hnsw\" # flat or hnsw\n", + " \n", + " # Data settings\n", + " data_size: int = 500000\n", + " batch_size: int = 1000\n", + " query_count: int = 10000\n", + " num_results: int = 5\n", + " \n", + " # Multiprocessing settings\n", + " workers: int = 10\n", + " mp_start_method: str = \"fork\"" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "def create_redis_client(config: BenchmarkConfig) -> redis.Redis:\n", + " return redis.Redis(\n", + " host=config.redis_host,\n", + " port=config.redis_port,\n", + " password=config.redis_password,\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Core Utility Classes\n", + "\n", + "Next, we'll define our core utilities: a vector generator for creating test data and a timing context manager." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "class VectorGenerator:\n", + " \"\"\"Generate normalized random vectors for testing\"\"\"\n", + " def __init__(self, dimension: int, seed: int = 42):\n", + " self.dimension = dimension\n", + " np.random.seed(seed)\n", + " \n", + " def generate_vectors(self, count: int) -> np.ndarray:\n", + " \"\"\"Generate normalized random vectors\"\"\"\n", + " vectors = np.random.randn(count, self.dimension).astype(np.float32)\n", + " return vectors" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "@contextmanager\n", + "def timer(name: Optional[str] = None):\n", + " \"\"\"Unified context manager for timing operations\n", + " \n", + " Usage:\n", + " # Auto-logging version:\n", + " with timer(\"Test data generation\"):\n", + " # do work\n", + " \n", + " # Get elapsed time version:\n", + " with timer() as elapsed:\n", + " # do work\n", + " total_time = elapsed()\n", + " \n", + " # Both (log + get time):\n", + " with timer(\"Loading data\") as elapsed:\n", + " # do work\n", + " throughput = ops / elapsed()\n", + " \"\"\"\n", + " start_time = time.perf_counter()\n", + " elapsed = lambda: time.perf_counter() - start_time\n", + " \n", + " try:\n", + " yield elapsed\n", + " finally:\n", + " if name:\n", + " print(f\"⏱️ {name}: {elapsed():.2f}s\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Index Management Functions\n", + "\n", + "Now we'll define functions to create and manage our Redis vector search index using RedisVL schemas." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "def create_index_schema(config: BenchmarkConfig) -> IndexSchema:\n", + " \"\"\"Create RedisVL index schema\"\"\"\n", + " schema_dict = {\n", + " \"index\": {\n", + " \"name\": config.index_name,\n", + " \"prefix\": f\"{config.index_name}:\",\n", + " \"storage_type\": \"hash\"\n", + " },\n", + " \"fields\": [\n", + " {\n", + " \"name\": \"vector\",\n", + " \"type\": \"vector\",\n", + " \"attrs\": {\n", + " \"dims\": config.vector_dim,\n", + " \"distance_metric\": config.distance_metric,\n", + " \"algorithm\": config.algorithm,\n", + " \"datatype\": \"float32\",\n", + " \"initial_cap\": config.data_size\n", + " }\n", + " },\n", + " {\"name\": \"id\", \"type\": \"text\"},\n", + " {\"name\": \"metadata\", \"type\": \"text\"}\n", + " ]\n", + " }\n", + " return IndexSchema.from_dict(schema_dict)\n", + "\n", + "def setup_index(config: BenchmarkConfig, redis_client: redis.Redis) -> SearchIndex:\n", + " \"\"\"Create and return search index using provided Redis client\"\"\"\n", + " schema = create_index_schema(config)\n", + " search_index = SearchIndex(schema, redis_client)\n", + " search_index.create(overwrite=True)\n", + " print(f\"✅ Created index: {config.index_name} ({config.algorithm}, {config.vector_dim}D)\")\n", + " return search_index" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Multiprocessing Worker Functions\n", + "\n", + "Here we define the worker functions and initialization for multiprocessing. Each process will have its own Redis client." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# Global variables for multiprocessing workers\n", + "_redis_client = None\n", + "_search_index = None\n", + "_config = None\n", + "\n", + "def init_worker(config_dict: dict):\n", + " \"\"\"Initialize Redis connection and search index in each worker process\n", + " \n", + " Each process needs its own Redis client - cannot share across processes.\n", + " \"\"\"\n", + " global _redis_client, _search_index, _config\n", + " \n", + " # Reconstruct config from dict\n", + " _config = BenchmarkConfig(**config_dict)\n", + " \n", + " # Create Redis client for this process (process-local)\n", + " _redis_client = create_redis_client(_config)\n", + " \n", + " # Create search index with process-local client\n", + " _search_index = SearchIndex(create_index_schema(_config), _redis_client)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Data Loading Functions\n", + "\n", + "Here we define both sequential and multiprocessing data loading functions." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "def load_batch_worker(\n", + " batch_data: List[Tuple[int, np.ndarray]], \n", + " redis_client: Optional[redis.Redis] = None, \n", + " config: Optional[BenchmarkConfig] = None\n", + ") -> Tuple[int, float]:\n", + " \"\"\"Load a batch of vectors using Redis pipeline (worker function)\n", + " \n", + " For sequential: uses passed redis_client (shared)\n", + " For parallel: uses global _redis_client (process-local)\n", + " \"\"\"\n", + " # Use passed parameters (sequential) or fall back to globals (multiprocessing)\n", + " client = redis_client or _redis_client\n", + " cfg = config or _config\n", + " \n", + " with timer() as elapsed:\n", + " with client.pipeline(transaction=False) as pipe:\n", + " for doc_id, vector in batch_data:\n", + " pipe.hset(f\"{cfg.index_name}:{doc_id}\", mapping={\n", + " \"vector\": vector.tobytes(),\n", + " \"id\": f\"doc_{doc_id}\",\n", + " \"metadata\": f\"document_{doc_id}\"\n", + " })\n", + " pipe.execute()\n", + " elapsed_ms = elapsed() * 1000\n", + " return len(batch_data), elapsed_ms\n", + "\n", + "# Wrapper functions for multiprocessing (needed for pickling)\n", + "def load_batch_worker_mp(batch_data: List[Tuple[int, np.ndarray]]) -> Tuple[int, float]:\n", + " \"\"\"Multiprocessing wrapper for load_batch_worker\"\"\"\n", + " return load_batch_worker(batch_data)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "def run_loading_benchmark(\n", + " config: BenchmarkConfig, \n", + " vectors: np.ndarray, \n", + " method: str = \"sequential\",\n", + " redis_client: Optional[redis.Redis] = None\n", + ") -> Dict[str, Any]:\n", + " \"\"\"Run loading benchmark using specified method\n", + " \n", + " Args:\n", + " redis_client: For sequential execution, reuse this client\n", + " \"\"\"\n", + " \n", + " if method == \"sequential\":\n", + " print(f\"📥 Loading {len(vectors):,} vectors (sequential)...\")\n", + " \n", + " # Create batches\n", + " batches = []\n", + " for i in range(0, len(vectors), config.batch_size):\n", + " batch_vectors = vectors[i:i + config.batch_size]\n", + " batch_data = [(i + j, batch_vectors[j]) for j in range(len(batch_vectors))]\n", + " batches.append(batch_data)\n", + " \n", + " # Execute batches sequentially using shared client\n", + " with timer() as elapsed:\n", + " for batch_data in tqdm(batches, desc=\"Loading\"):\n", + " batch_size, _ = load_batch_worker(batch_data, redis_client, config)\n", + " \n", + " total_loaded = len(vectors)\n", + " total_time = elapsed()\n", + " \n", + " elif method == \"multiprocess\":\n", + " print(f\"📥 Loading {len(vectors):,} vectors ({config.workers} processes)...\")\n", + " \n", + " # Create batches for parallel processing\n", + " batches = []\n", + " for i in range(0, len(vectors), config.batch_size):\n", + " batch_vectors = vectors[i:i + config.batch_size]\n", + " batch_data = [(i + j, batch_vectors[j]) for j in range(len(batch_vectors))]\n", + " batches.append(batch_data)\n", + " \n", + " ctx = get_context(config.mp_start_method)\n", + " config_dict = config.__dict__\n", + " \n", + " with timer() as elapsed:\n", + " # Each process will create its own Redis client via init_worker\n", + " with ctx.Pool(\n", + " processes=config.workers,\n", + " initializer=init_worker,\n", + " initargs=(config_dict,)\n", + " ) as pool:\n", + " results = list(tqdm(\n", + " pool.imap_unordered(load_batch_worker_mp, batches),\n", + " total=len(batches),\n", + " desc=\"Loading\"\n", + " ))\n", + " \n", + " total_time = elapsed()\n", + " # Process results: (batch_size, latency_ms) tuples\n", + " total_loaded = sum(batch_size for batch_size, _ in results)\n", + " \n", + " return {\n", + " \"total_time\": total_time,\n", + " \"throughput\": total_loaded / total_time,\n", + " \"total_ops\": total_loaded,\n", + " \"success_rate\": 100.0\n", + " }" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Query Execution Functions\n", + "\n", + "Now we'll define our query execution functions for both sequential and multiprocessing approaches." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "def query_worker(\n", + " query_vector: np.ndarray,\n", + " search_index: Optional[SearchIndex] = None,\n", + " config: Optional[BenchmarkConfig] = None\n", + ") -> Tuple[bool, float]:\n", + " \"\"\"Execute a single vector search query (worker function)\n", + " \n", + " For sequential: uses passed search_index (shared client)\n", + " For parallel: uses global _search_index (process-local client)\n", + " \"\"\"\n", + " # Use passed parameters (sequential) or fall back to globals (multiprocessing)\n", + " index = search_index or _search_index\n", + " cfg = config or _config\n", + " \n", + " try:\n", + " with timer() as elapsed:\n", + " query = VectorQuery(\n", + " vector=query_vector,\n", + " vector_field_name=\"vector\",\n", + " num_results=cfg.num_results,\n", + " return_score=True\n", + " )\n", + " results = index.query(query)\n", + " elapsed_ms = elapsed() * 1000\n", + " return True, elapsed_ms\n", + " except Exception as e:\n", + " print(f\"Query failed: {e}\")\n", + " return False, 0.0\n", + "\n", + "# Wrapper functions for multiprocessing (needed for pickling)\n", + "def query_worker_mp(query_vector: np.ndarray) -> Tuple[bool, float]:\n", + " \"\"\"Multiprocessing wrapper for query_worker\"\"\"\n", + " return query_worker(query_vector)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "def run_query_benchmark(\n", + " config: BenchmarkConfig, \n", + " query_vectors: np.ndarray,\n", + " method: str = \"sequential\",\n", + " search_index: Optional[SearchIndex] = None\n", + ") -> Dict[str, Any]:\n", + " \"\"\"Run query benchmark using specified method\n", + " \n", + " Args:\n", + " search_index: For sequential execution, reuse this index (with shared client)\n", + " \"\"\"\n", + " \n", + " if method == \"sequential\":\n", + " print(f\"🔍 Executing {len(query_vectors):,} queries (sequential)...\")\n", + " latencies = []\n", + " failed_queries = 0\n", + " \n", + " with timer() as elapsed:\n", + " for query_vector in tqdm(query_vectors, desc=\"Querying\"):\n", + " success, latency_ms = query_worker(query_vector, search_index, config)\n", + " if success:\n", + " latencies.append(latency_ms)\n", + " else:\n", + " failed_queries += 1\n", + " \n", + " total_time = elapsed()\n", + " \n", + " elif method == \"multiprocess\":\n", + " print(f\"🔍 Executing {len(query_vectors):,} queries ({config.workers} processes)...\")\n", + " \n", + " ctx = get_context(config.mp_start_method)\n", + " config_dict = config.__dict__\n", + " \n", + " with timer() as elapsed:\n", + " # Each process will create its own Redis client and search index via init_worker\n", + " with ctx.Pool(\n", + " processes=config.workers,\n", + " initializer=init_worker,\n", + " initargs=(config_dict,)\n", + " ) as pool:\n", + " results = list(tqdm(\n", + " pool.imap_unordered(query_worker_mp, query_vectors),\n", + " total=len(query_vectors),\n", + " desc=\"Querying\"\n", + " ))\n", + " \n", + " total_time = elapsed()\n", + " # Process results: (success, latency_ms) tuples\n", + " latencies = [latency for success, latency in results if success]\n", + " failed_queries = len([r for r in results if not r[0]])\n", + " \n", + " if latencies:\n", + " return {\n", + " \"total_time\": total_time,\n", + " \"qps\": len(latencies) / total_time,\n", + " \"avg_latency\": np.mean(latencies),\n", + " \"p95_latency\": np.percentile(latencies, 95),\n", + " \"p99_latency\": np.percentile(latencies, 99),\n", + " \"successful_queries\": len(latencies),\n", + " \"failed_queries\": failed_queries,\n", + " \"success_rate\": (len(latencies) / len(query_vectors)) * 100\n", + " }\n", + " else:\n", + " return {\"error\": \"No successful queries\"}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "## Part 2: Benchmarking Execution\n", + "\n", + "Now that we have all our functions defined, let's run the actual benchmarks! We'll start by setting up our test environment and data." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Initialize Environment\n", + "\n", + "Let's test our Redis connection, generate test vectors, and create our search index." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "📊 Configuration: 500,000 vectors, 768D, 10 processes\n", + "✅ Connected to Redis 8.0.0\n", + " Memory: 498.52M used\n", + "✅ Created index: benchmark_index (hnsw, 768D)\n" + ] + } + ], + "source": [ + "# Initialize configuration (you can modify these values as needed)\n", + "config = BenchmarkConfig()\n", + "print(f\"📊 Configuration: {config.data_size:,} vectors, {config.vector_dim}D, {config.workers} processes\")\n", + "\n", + "# Create Redis client\n", + "try:\n", + " redis_client = create_redis_client(config)\n", + " redis_client.ping()\n", + " info = redis_client.info()\n", + " print(f\"✅ Connected to Redis {info['redis_version']}\")\n", + " print(f\" Memory: {info['used_memory_human']} used\")\n", + " \n", + " # Clear any existing data and create fresh index using shared client\n", + " redis_client.flushdb()\n", + " search_index = setup_index(config, redis_client)\n", + "except Exception as e:\n", + " print(f\"❌ Redis connection failed: {e}\")\n", + " raise" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Initialize vector generator and create test/query vector data based on config." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "⏱️ Test data generation: 5.10s\n", + "📊 Generated 500,000 test vectors (1464.8 MB)\n", + "🔍 Generated 10,000 query vectors for testing\n" + ] + } + ], + "source": [ + "# Generate test data\n", + "with timer(\"Test data generation\"):\n", + " vector_gen = VectorGenerator(config.vector_dim)\n", + " test_vectors = vector_gen.generate_vectors(config.data_size)\n", + " query_vectors = vector_gen.generate_vectors(config.query_count)\n", + "\n", + "print(f\"📊 Generated {len(test_vectors):,} test vectors ({test_vectors.nbytes / 1024 / 1024:.1f} MB)\")\n", + "print(f\"🔍 Generated {len(query_vectors):,} query vectors for testing\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Data Loading Benchmark\n", + "\n", + "Now let's compare sequential vs multiprocessing data loading performance." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "🔬 Data Loading Performance Comparison\n", + "\n", + "=== Sequential Loading ===\n", + "📥 Loading 500,000 vectors (sequential)...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Loading: 100%|██████████| 500/500 [03:18<00:00, 2.52it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "⏱️ Sequential loading: 198.16s\n", + "Results: 2524.4 ops/sec\n", + "✅ Created index: benchmark_index (hnsw, 768D)\n", + "\n", + "=== Multi-process Loading ===\n", + "📥 Loading 500,000 vectors (10 processes)...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Loading: 100%|██████████| 500/500 [03:19<00:00, 2.51it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "⏱️ Multi-process loading: 199.70s\n", + "Results: 2505.2 ops/sec\n", + "\n", + "🚀 Loading Performance:\n", + " 1.0x faster with 10 processes\n", + " Time saved: -0.8%\n", + "⏱️ Redis indexing: 3.01s\n", + "✅ Index ready: 500,000 documents indexed\n" + ] + } + ], + "source": [ + "print(\"🔬 Data Loading Performance Comparison\\n\")\n", + "\n", + "# Sequential loading benchmark\n", + "print(\"=== Sequential Loading ===\")\n", + "with timer(\"Sequential loading\"):\n", + " # Pass shared Redis client to avoid creating new connections\n", + " sequential_load_stats = run_loading_benchmark(config, test_vectors, \"sequential\", redis_client)\n", + "print(f\"Results: {sequential_load_stats['throughput']:.1f} ops/sec\")\n", + "\n", + "# Reset for multi-process test (reuse same client and index)\n", + "redis_client.flushdb()\n", + "search_index = setup_index(config, redis_client)\n", + "\n", + "print(\"\\n=== Multi-process Loading ===\")\n", + "with timer(\"Multi-process loading\"):\n", + " # Multiprocessing will create separate clients per process\n", + " multiprocess_load_stats = run_loading_benchmark(config, test_vectors, \"multiprocess\")\n", + "print(f\"Results: {multiprocess_load_stats['throughput']:.1f} ops/sec\")\n", + "\n", + "# Calculate loading performance improvement\n", + "loading_speedup = multiprocess_load_stats['throughput'] / sequential_load_stats['throughput']\n", + "loading_time_reduction = (sequential_load_stats['total_time'] - multiprocess_load_stats['total_time']) / sequential_load_stats['total_time'] * 100\n", + "\n", + "print(f\"\\n🚀 Loading Performance:\")\n", + "print(f\" {loading_speedup:.1f}x faster with {config.workers} processes\")\n", + "print(f\" Time saved: {loading_time_reduction:.1f}%\")\n", + "\n", + "# Wait for indexing to complete\n", + "with timer(\"Redis indexing\"):\n", + " time.sleep(3)\n", + " index_info = search_index.info()\n", + "print(f\"✅ Index ready: {index_info.get('num_docs', 0):,} documents indexed\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Even though we used multiple processes to load from the client-side, the limitation here is actually the redis server indicating we would need to shard out the db in a clustered environment (Redis Cloud or Redis Enterprise Software). With additional shards, the write throughput will improve linearly." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Query Performance Benchmark\n", + "\n", + "Now let's test query performance comparing sequential vs multiprocessing execution." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "🔬 Query Performance Comparison\n", + "\n", + "=== Sequential Queries ===\n", + "🔍 Executing 10,000 queries (sequential)...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Querying: 100%|██████████| 10000/10000 [00:11<00:00, 883.63it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "⏱️ Sequential queries: 11.33s\n", + "Results: 883.4 QPS, 1.11ms avg\n", + "\n", + "=== Multi-process Queries ===\n", + "🔍 Executing 10,000 queries (10 processes)...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "Querying: 100%|██████████| 10000/10000 [00:01<00:00, 9130.64it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "⏱️ Multi-process queries: 1.16s\n", + "Results: 8663.6 QPS, 1.05ms avg\n", + "\n", + "🚀 Query Performance:\n", + " 9.8x faster with 10 processes\n", + " Time saved: 89.8%\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "print(\"\\n🔬 Query Performance Comparison\")\n", + "\n", + "print(\"\\n=== Sequential Queries ===\")\n", + "with timer(\"Sequential queries\"):\n", + " # Pass shared search index to avoid creating new connections\n", + " sequential_query_stats = run_query_benchmark(config, query_vectors, \"sequential\", search_index)\n", + "if \"error\" not in sequential_query_stats:\n", + " print(f\"Results: {sequential_query_stats['qps']:.1f} QPS, {sequential_query_stats['avg_latency']:.2f}ms avg\")\n", + "\n", + "print(\"\\n=== Multi-process Queries ===\")\n", + "with timer(\"Multi-process queries\"):\n", + " # Multiprocessing will create separate clients per process\n", + " multiprocess_query_stats = run_query_benchmark(config, query_vectors, \"multiprocess\")\n", + "if \"error\" not in multiprocess_query_stats:\n", + " print(f\"Results: {multiprocess_query_stats['qps']:.1f} QPS, {multiprocess_query_stats['avg_latency']:.2f}ms avg\")\n", + " \n", + " # Calculate query performance improvement\n", + " query_speedup = multiprocess_query_stats['qps'] / sequential_query_stats['qps']\n", + " query_time_reduction = (sequential_query_stats['total_time'] - multiprocess_query_stats['total_time']) / sequential_query_stats['total_time'] * 100\n", + " \n", + " print(f\"\\n🚀 Query Performance:\")\n", + " print(f\" {query_speedup:.1f}x faster with {config.workers} processes\")\n", + " print(f\" Time saved: {query_time_reduction:.1f}%\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The near 10x improvement in search throughput as we scale client-side processes indicates we haven't fully saturated the Redis server! Additional throughput can be achieved on Redis Cloud / Redis Enterprise Software with additional QPF (search threads) and sharding as the data volume grows. The best solution is a healthy balance of horozontal and vertical scale.\n", + "\n", + "[Read more about benchmarking techniques and Redis query engine architecture.](https://redis.io/blog/benchmarking-results-for-vector-databases/)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Performance Analysis & Visualization\n", + "\n", + "Let's analyze our results and create visualizations to better understand the performance improvements." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "📊 Summary:\n", + " Loading: 2524 → 2505 ops/sec (1.0x)\n", + " Queries: 883 → 8664 QPS (9.8x)\n", + " Total time: 209.4s → 200.7s\n", + " Peak QPS: 8664 queries/second\n" + ] + } + ], + "source": [ + "# Performance Summary\n", + "if \"error\" not in sequential_query_stats and \"error\" not in multiprocess_query_stats:\n", + " print(f\"\\n📊 Summary:\")\n", + " print(f\" Loading: {sequential_load_stats['throughput']:.0f} → {multiprocess_load_stats['throughput']:.0f} ops/sec ({loading_speedup:.1f}x)\")\n", + " print(f\" Queries: {sequential_query_stats['qps']:.0f} → {multiprocess_query_stats['qps']:.0f} QPS ({query_speedup:.1f}x)\")\n", + " print(f\" Total time: {sequential_load_stats['total_time'] + sequential_query_stats['total_time']:.1f}s → {multiprocess_load_stats['total_time'] + multiprocess_query_stats['total_time']:.1f}s\")\n", + " print(f\" Peak QPS: {multiprocess_query_stats['qps']:.0f} queries/second\")" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "📊 Performance Summary:\n", + " Operation Method Throughput Avg_Latency_ms P95_Latency_ms\n", + " Data Loading Sequential 2524.440444 0.000000 0.000000\n", + " Data Loading Multi-process 2505.225020 0.000000 0.000000\n", + "Vector Queries Sequential 883.366387 1.107922 1.701246\n", + "Vector Queries Multi-process 8663.586546 1.048395 1.746423\n" + ] + } + ], + "source": [ + "# Create comprehensive performance comparison\n", + "perf_data = {\n", + " 'Operation': ['Data Loading', 'Data Loading', 'Vector Queries', 'Vector Queries'],\n", + " 'Method': ['Sequential', 'Multi-process', 'Sequential', 'Multi-process'],\n", + " 'Throughput': [sequential_load_stats['throughput'], multiprocess_load_stats['throughput'], \n", + " sequential_query_stats['qps'], multiprocess_query_stats['qps']],\n", + " 'Avg_Latency_ms': [0, 0, # Loading doesn't track individual latencies\n", + " sequential_query_stats['avg_latency'], multiprocess_query_stats['avg_latency']],\n", + " 'P95_Latency_ms': [0, 0, # Loading doesn't track individual latencies\n", + " sequential_query_stats['p95_latency'], multiprocess_query_stats['p95_latency']]\n", + "}\n", + "\n", + "df = pd.DataFrame(perf_data)\n", + "print(\"📊 Performance Summary:\")\n", + "print(df.to_string(index=False))" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAMWCAYAAAAgRDUeAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAvEdJREFUeJzs3Qm8lPP///9X+0J72hcl2vdIqUgbUkr2KK0fFFqIo00pkVaUELIUhYTQimghlUibqBRtlhbtqvnfnu/v/5rfzJzT6XQ65zrLPO6329U5c80117yvmTlzvXpd7/frnSEQCAQMAAAAAAAA8FFGP58MAAAAAAAAEJJSAAAAAAAA8B1JKQAAAAAAAPiOpBQAAAAAAAB8R1IKAAAAAAAAviMpBQAAAAAAAN+RlAIAAAAAAIDvSEoBAAAAAADAdySlAAAAAAAA4DuSUgDiNWXKFMuQIYNt3bo1uO6qq65yS2qm9lWpUsXSqrvvvtvOP/98S0tmzJhh+fPnt4MHD6Z0U1KFyy+/3Pr165fSzQAARKHHH3/cxW9//fWXpeX4c8WKFZZWbN++3bJnz25Lliyx1OTvv/+28847zz799NOUbgoQJ5JSSPe8k5q36GRRrFgxa9GihT377LP277//JnrfS5cudSf9ffv2JWmb03ogkRy81+RMS2pPlqUFhw8fdq/3l19+meDHnDx50gYPHmz3339/qkmm7d271zJnzuySZSnhkUcesQkTJtiuXbtS5PkBIJqtXbvW7rzzTitevLhly5bNxX66vW7dOkuLdE5OSBykBedu4sSJ7v8QZ2Po0KFWt25du+KKK2LdN3v2bLvmmmusQIEC7v8il1xyiT388MP2zz//xHlhMvT9zJ07t1WvXt1Gjx5tx44dC9t28eLFdu2117rPufZbqlQpa9WqlU2bNi24jZ6za9euNnDgwLM6HsAvmX17JiCF6URRpkwZ+++//9x/EnVy79Wrl40ZM8Y++ugjq1atWqKSUkOGDHEnj7x581q0mDdvnu/PeeONN1q5cuWCt9Ub595777W2bdu6+zyFCxf2vW3pMSmlz7UkNMn38ccf28aNG6179+6WWsydO9cFc82bN0+R57/hhhtcIKnAVt8/AAB/zJw5026//XbXe7dLly4u/lOP71deecXee+89mz59uvuOTksqVqxob775Zti6mJgYdyGof//+Kdau9Ern7oIFC7oYPyH+/PNPe/31190S6aGHHnIJJSWWdMFKn8tVq1bZc8895z6LCxcutIsvvjjsMUqkTp482f2ui9/vv/++2893331n77zzjlv/7rvv2q233mo1atSwBx980PLly2dbtmyxr776yl5++WW74447gvu755573MX4zz//3K6++upzfHWApEVSClFDVxHq1KkTdiLXF/P1119vrVu3tvXr11uOHDlStI1pRdasWX1/TiUNQxOH6kWmpJTW6cpnUjp69Kg7xowZ6UyaUK+99pq7MqgrdamFuqmrTSmVMNbn56abbrI33njDJfm4eg0Aye/XX3+1u+66y8qWLev+c37BBRcE79N/3Bs2bOjihh9//NElq/ykiz45c+ZM1GN10S0y3nnqqadc4iSp46BTp07Z8ePHXc8bJMxbb73lemerl1Kot99+2yWklDyaOnWqZcqUKXifEl6NGze2m2++2Q1T1OM9+j30fb3vvvtcLywlsXRBXT3/1Ku9UqVK9s0338SKzffs2RMrqamyFur9RVIKqQ3/40JU05eyurL+9ttv7mTiUaCiE4UCGp2QixQpYp07d3Zjsj06EajbrSio8brYerWX9J907b9QoULuaodOGi+88EKStl9JNQVXGieu/3jrqp+Sa6F0bDqRlS9f3iXd1IVXJ7/QGlGhXd3VZm1XokQJGzZsmAtMIkXWlPK6lGuY1PDhw91j9bo1adLEfvnll1iP15AmvbZ6nssuu8y+/vrrZKtTpW76OuErCFTCZOTIkWH3e23XVacBAwa4bbTtgQMHglehateu7drqBX5//PFHvK+HR5+hCy+8MGydPkMKltWDRu9Zx44d7YcffnBtiKubuJ6rTZs27kqoAmtdJdNQOY/eRz121KhRNnbsWCtdurRr65VXXmk//fTTWbdT+/MCeC+RokWf9/iSeHPmzLGmTZvGuu/EiRP2xBNP2EUXXeT+DvQ8jz32WKzu51qvBLF64emKnz4/+pvR1e5Q6umodumKorbR57lBgwY2f/78sO30uVWbWrZsGVynbbStXne9nvqbUFtCqV0ahqheeWpvyZIlXV2oyPaKvjP0+dXnRVcnGzVqFKsXYbNmzdzf4OrVq0/7+gEAks4zzzzjkj8vvfRSWEJKdB5/8cUXXW9rbRff+Tq0dEBc3/9ebKBeL7fddpurJxRXbcuVK1e684POFTrn6Lyvduh8Fkk9e3VuSkrqZeP16M+TJ4916tTJvT6hdIw9e/Z0SZPKlSu785/OofL999+7C7uKW3TuVGynJEhCXqe46pLq/KztlVTRa6IYTbGaXv+4eiXp/NunTx/3XireVQ959UpKTAyR0HZqf4qJFy1alODyELNmzXJJo8gSBopZFCPo8xiakBLFEOo5pTgwsq1xXejy2uC1UwnYSy+9NM6Lxfr/RyTFJOrZHggE4n0uwG8kpRD1lCCQ0P9M6j+vmzdvdiduda1VsKGkxXXXXRf8IteQMXUNFyUD1KVaixcAKQGlBIECEF0h0X9ulRxSQiYpLFiwwNXF0pUQnWR1wtZwQvUMCT35q5uv1usY1G1X3XfVTVgnttCgREMaFRjoP8+PPvqoG9qoHh7jx49PcJt0xe6DDz5wiRP1RFPQ0r59+7Bt9Loo8FHiSgkiJdWUdPn9998tOWoKafy+Nw6/QoUK7uT/2WefxdpWiZNPPvnEtf3JJ590J3gFKbfccosLIkaMGGHdunVzQYMSG4mpI6ZATFfQdNVMQakSeDt37nS/x0XJJ73HSrwo6aREk45DgU0kvVd6f3v06OFeeyWklGDcvXv3WbVRn18vearAz/tchw6RjKSAW1dUa9WqFes+1TAYNGiQu09/JzoGvZb6PEbatGmTu5Ko4Ffb6CqhEqihCSd91hXg6bP6/PPPuyELqp+gbvCh9LlX0Kq/WVFwqYBVwa2G0ul1VA/J0GKken+0Tq+13if97euzqXarXaHUBn13ZMmSxe1Pt/U3rkRxKP2nRVJb0VMASK/0n24lFRRfxEUJIt2v7RJD5+4OHTq4iyPqsaJ4SXGV9hsZG+hClM5pSpSMGzfOnbt07tB6DTEPpThM55Ck7vWkOEb1U3Ve1e+Kbbwh+qH03L1793bnO8V+XmJGr6OSJrpAowu5Gh6mGPLbb79NVHsUo+j5NXpBiUG9jop1Dh06FOf2qlWp59cFI/WQ1/umODIxMURC6b1SnKq40YuD4hsiqQSj4o7IOEhtUmkDbzh/XPRZkoR8HpWEEsWFov9n6LOX0BhaMYk+o3pfgVQlAKRzr732mrJIge++++602+TJkydQs2bN4O3Dhw/H2ubtt992+/nqq6+C65555hm3bsuWLbG2j2sfLVq0CJQtW/aMbR48eLDb759//nnabWrUqBEoVKhQ4O+//w6u++GHHwIZM2YMdOjQId52LFu2zO3/jTfeCK7r1auXW/ftt98G1+3Zs8e9NpHHeOWVV7rF88UXX7htKlasGDh27Fhw/fjx4936NWvWuNu6r0CBAoFLL7008N9//wW3mzJlitsudJ9notdGj9FrFRftK/IY9fxFihQJtGvXLlbb9b6EvlbHjx93r2+VKlUCR44cCa6fPXu2237QoEGnfT08HTt2DJQuXTp4+/3333ePHTduXHDdyZMnA1dffbVbr89q6GO1bujQoWH71Oe0du3awdt6X7Rdjhw5Ar///ntwvd5Hre/du/dZt/NMr22kyZMnh73PntWrV7v1Xbt2DVv/0EMPufWff/55cJ2eX+v0Gnn2798fKFq0aNjfZvXq1QMtW7Y8Y5sGDhwYdkxjx44949/Um2++6f5+vv7667D1kyZNco9dsmSJu71p0ya3Xdu2bd37F+rUqVOx9ps1a9bAvffee8Y2AwDOzb59+9z39Q033BDvdq1bt3bbHThwIM7zYGQ85tm6dWsgU6ZMgeHDh4dtp/Nf5syZw9Z7cYjOIaF03ihRokTg1ltvDVs/ZsyYQIYMGQKbN29O8PFWrlz5tLGT1/bOnTuHrde5S7FYKG2n89ratWvD1rdp08adw3799dfguh07dgRy5coVaNSoUaznOl0M7sWQu3btcq+T9hvq8ccfd9vpfYh8bNOmTcPOrYpr9B7ovT7bGCKh7TzTaxvpl19+cY9/7rnnwtbPmjXLrVcMEp/cuXMHatWqFbyt1+G8885zMYsW7f/JJ590n49q1aoFt3vllVfc/vUeNW7c2MU+imEiYxPP0qVL3fbTp09P0HEBfqGnFGDmutqGzsIXWltKQ5NUv0jTu0tkj4zTCd3H/v373T7US0Q9sHT7XKh3jXo0qZuzuo17VF9JXXNDp3wNbYeu5OjqnIYmqRt36LHoMTpGdSUO7TUT2dMpPupZFtqF2LtKqWMWjZfX86vHUei4eT2HujYnx/saesVRbdPxee0Jpd5Koa+V2qpeaOrdFlpTQcPBdOVMvarOlrrCq2eNjj+0O7Z6N52OeraF0msaV/vVoye0npOOU93I/Zj+1xvWGvkees+tXnyh+vbt635Gvobqyq/eWR5dVdQVRA0d8Gaw0+dWV/h09TE+eu7QoXteXakPP/wwziGp3lBN1VzQ+6u/V2/xai988cUXwS762od6gEXWHYtrWIBeF2bSBIDk58VyuXLlinc77/6znYFZvaX1/a8eR6HnCZV5UI8f7zzh0TA4xUahdN5Q3KNJdkKfX0Pn6tevn+R1ruKKI3Te9soUeBSjashbaG9tjSJQfKGSC56iRYu6Atqa9S1yH2eiXj0a1q/YKrI31OloApXQc6var7ZpaPzZxhB+x0Fn83mM/Cyq55jicC2K2zXyol69em5EgkelRRRbquea3g/1+tfro8+iRklE8tpHTILUhqQU8P/P5BZ6wtD0rCqGqaKSSlTohOAFCQlNKGm4jmrsePWetA+vfs25JqW8E3FcdQf0n2qdbLxu0EeOHHH/edbQIgVHqmOgtqj7bmg7tM/ImT9O9xyno2FUcZ38NIwutN2hs+iJElRx1XI4V+p6HZkkUJu89oSKDALje42VtIgMhhJCj1EwF1nkNPL18CgZFlkP43Ttj+u903TDcdUOSy6RNQp0vAq+I49Pwbv+JiJfQ20X+X7pGMQ7Dg2V02dX66tWrerquqkGXCgFn0q4hial1KVfQ1s1nFB/1xo+qBpooQkqJbqU8PKCQG/x2uAVDVX3eR1XaPB+pteFIucAkPwSmmzS/fpeVkx0NnSe0He6zrmR5wrV9IwsLq2LRXHV+1GyRPGZl2DQEC8NhfdKSiSlM8Vmp4uDNAReZR5OF2vq/BlZR+tMThcH6gLr6S5OJrT9CYkh/I6DzubzGFkDSjGghh5qUcF+vdb6v0VoglA09FFDQRUbaTtd6NTrrJIFkZ9Hr33EJEhtmH0PUU/jsJWcCT1B6gqYrjDoP7yqA6AeNzr5qj7R6XpZhNJ/WlUIUskL1RtQQkhBiXpvqD5NQvaRVHT1SUXXVfNAV1hU5FInI/2nPKnbEVnA0ZNSBRXPpj3nMvOiXs+49hlakDwp25/a2unVNlCAqERgXM+bVFSzQ39f6vGkK7iaLll/U5MmTXIJJ1HNMAVzqt0R+v4qWNNVbPXQ0pVFzWCjXlDaj15r/T0o0aW/2bjo7zgxFCie7X98AABnTzGOesxEXqyIpPt1vvISRqc7T0WeH3We0LY6z8R1jo4scn262EIXNVTfRwXTlaDST7VF8WdKxULnGgfF5Vzji6SOLZOrnaFxUCjv4lV8n0clkNTjLDLZpOOOawKZ09EFT/WS0qKYQ3W79DkNrVvqtY+YBKkNSSlEPRUv9K40eF/Y6l6sL3P1MPLENVzodCc3FStUQWV1zQ69whPZrTuxVNjQu7IWacOGDe5kox5a8t5777kTkgo7hw5JjCzGqX3GdYxxPce5tlsz8oUmDNSVW1exNPwwtQh9jSOnztU6737vql1cQ+oiewLpMfoMRE4JHdcMhWcrrvfu559/DuuBltB2nm0SSclXUfFTJXVCj1cBvNqmq6oeFV/X5y/0NfReh8heRToGCT0OXVHVcAgt6uWoRJUKoHtJKSWd9PmKDLDVu0nJYi1KPKmgvQqX6j1R4KcZAlVMVffH9xpoOx2XZgtS0jo+mj1RReBDjx8AkHw0UYVm2NNwJk1MEkkz/irmCB1arvNjXBOYRJ4f9f2v85R6FXm9cBJLySi1QSUZpk2b5nr3Jkcpg8RS7y/FKqeLNXVO9S7WeO3Wa+gNlz9dHOSd70N7Zmn4W1y9wM9GQmKIhLbzbGMhxfqKORQHhVKPOvU007B/FY+PaxifJqoRFWVPKioiL/pshfLaR0yC1Ibhe4hqmmlE4691YvRqJ3lXZCKvwGgmjkhe4icykIlrH+qNpR5LSUFDwPSf4ddffz3suTXjmnp9eDOOeW2JPBbNKhZ5VUiP0Wx5y5cvD+u6rRoHSXmS1NWkl19+2SWiPHqOcw1Gkpraqq7U6oGjBKNHV53URT90aJiCVAVooVMUK7kROeOaEp+q66Xj9yi5kRQzMirgUQLEo/dRM+NoFpqzbaeXMEvoDIO62qsrvKrDFcr7HEb+7Xg9kUJfQ9mxY0dYrQRdOVSwps+6hvyF1m0IvSqtXo7ee6TXV13dI/etIbmRvISS91hdodZrGPr+eDTMwhsSq/oaCsY1lDCyt2Hk35qGY4jqhAAAkp9m0dV57H//+1+sc4bOBaqxpHpDoTO46fyoOC20R4v+Qx96ThLNRKu4ShcuI7/vdTvy+eKjGZyV+FC5CF0wSupZ986VjrN58+auZ3Lo8DddWFISTQk/b0Y5vX6iHskenTMVp4bSRR+VbPBm+fVoNt1zlZAYIqHt9GL8hMZBqhequDEyDhLNGqgYV5+7yNhbMcLTTz9tNWvWDIvXEkoX0ePi1fSMHHqp51NvwsqVK5/1cwHJiZ5SiBpKJug/5EqG6ISqhJT+86qrNurR5BWz1glWPS9Gjhzp/oOregBK9ERe/Qid7l29LTQcTiclXaHTSVz/SdfvCorUm0P/0VWSI/KqRXz0n/fI+kP6z7BqU2kaXZ3ANCSvS5cu7j/NSjbpZKNeIx6NKVdvMK1XN+Jly5bZggULgl2NPZrqV9tpiKICJJ2MX3rpJff6nKkbfELpNVHbNKRQvY+UBFCgo+mJFSikpjHuei8VKKg3jop/KnjU58abJlnTJocWmtR7paST3guN4VcySyf90CKgSmaoALkKfeuKnnoY6bPnJUzO5fiVmFGAqOmSlWRRIkjvsd7Xs22nrvbps6LhbboSrJ5JVapUcUtc9Lejz7w+V0rUeKpXr+566elzpMBOr6OSZQr+9FqE9pYTPZfapWmVVffp1Vdfda95aDJX7VJBT/3tqV0KANUb0PvPhVd4NTIppXYpCNV6faZ17BMnTnTDN7wr6arloTpTChzVe0o1qBRA6ntD61WzQUGnXmv9zXsFRfWfFNVrU7s1bERTUXv0HaMrqAo4AQDJT9/RSkbovK3euzqv6OKj4o1XXnnFJQjeeeedsJ46iuEeeeQRVyj7gQcecD2alTjReSl0UhjFKsOGDbOYmBi3P53L1PtFMaISIirKraRYQnsiKebSJBvqtRN53koNdKw6j+k8qeLkSiipF5riDMXJHsUAOtfptVbpCyW0dA7XMW7bti24nc7tijHVe79169bu+HVxTDG6evmfSxyUkBgioe0UxRn6DOg10GdKMXxkz/lQN9xwg4sNFIN4yTrR51CxiuIv9bD2JvfR58p7bsUxoRMAJZSeU59j/X9Dn00l2BSLacTGpZde6taH0nupdakp3gYc3+b5A1KIN82rt2ja1CJFigSaNWsWGD9+fHA64FC///67mzI3b968gTx58gRuvvlmNwWuHq/pZEM98cQTgeLFi7updEOnk/3oo4/ctK3Zs2cPXHjhhYGnn3468Oqrr8aacjYu3pS1cS2aBtezYMGCwBVXXBHIkSOHm062VatWgXXr1oXta+/evYFOnToFChYsGDj//PMDLVq0CGzYsMFNnxs69a78+OOPbvpbtVnHpGPzppsNbbO2CZ0m94svvnDbvPvuu2H702O0Xu9BqGeffdY9f7Zs2QKXXXZZYMmSJYHatWsHrrnmmkBCaYrcuN6P0DZqOt9IkdM+n67tHk2bq+mE1db8+fMH2rdv7z4fkd56661A2bJl3eerRo0agblz58Y5xbTafccdd7jplPXZuvvuu93xqw3vvPNOrOmAI0VOZ+y9xs8880xg9OjRgZIlS7q2NmzYMPDDDz8kup2aNljvibaL73X2zJw5001VvG3btrD1//33X2DIkCGBMmXKBLJkyeLaFxMTEzh69GjYdnr+li1buvbo70bHUKFChVjvy7Bhw9xnRn+b+txrG03Bffz4cXf/Qw89FKhUqVKs9i1cuNBNEV6sWDF3TPp5++23B37++eew7bQf/a3qs6M25MuXz70OOgZNLx1Kf8/eZ0Pb6TM3f/784P2aklnTUQ8YMCDe1w4AkPTWrFnjzreK+bwYTfHN2rVr49x+3rx5gSpVqrhzRPny5d35MvKc63n//fcDDRo0cOdpLToX9ejRI7Bx48YzxiGhZsyY4fbfvXv3RB2j9h8aj4Xy2q64I664ODSu0221Py6rVq1ysaNiyJw5cwYaN27sYoRIK1euDNStW9e9fqVKlQqMGTMmzuc6ceJEYODAge590Xn86quvDqxfvz5QoECBwD333BOrnd99913Y83hxm36ebQxxNu3ctWuX26fiNd13utfZs3v37kDmzJkDb775Zpz36/8FTZs2dfGLF9Pr/YuMLeKLASO9/fbbgdtuuy1w0UUXuddSn2/FQP3794/1/xu9xnpO/d8BSG0y6B/ycwBSkoZA6UqRepzENXQqvdPQO12dVS8f9c45G7pSq6tk6jmX0KuzyUE9itSLSb3f1IPobKn3mXpizZ49+5zaoTaod2DoFdyUfF81bbYKs2vILQAg5aj31N133+2GyXl1fFKahsapt5V68qrnbbRSb2r1HlKvJPU2SqkY4lypB5bqWKlu2ZmoDqZ67inu9WpiJidNeKTPmYbw0VMKqQ01pQD4SkXWI3PhCg41hE3DstI7DbOMTOZo2KW6eteqVcvSKnWB1xA51cfScNWUoILit956qxtymRpo+KeGFZKQAoCUp8LiGl6tUgUqg5AaKCGhWdfiKsgeLXFQaO3JtB4Hqn6Uhg9G1uqMi4ZB6iKayi54NaCSi2qdabZiJf1ISCE1oqYUAF+pmLrqMWmWEdU80ph6XSnSFa6knHkktVI9LQVkqgWmmgwzZ860pUuXupngzmU65tRACSEtKUU1yxQQphaq3wYASD1UN0pLSlNNK9Xr1GyxqlUZTYkC1atULVFNhqLJStRL/O2333b1ns62t3hqo3pVuvia0It5qv3kB8XbKXXBEEgIklIAfKUu1ppC+Nlnn3W9o1SsWlcvn3rqKZdUSO9UJFMFPtXFXIGLimeqp1ToLEAAACD9UvFrJWQ03EsFxKNJtWrVXFFvDbNXUXCv+Ll68QCITtSUAgAAAAAAgO+oKQUAAAAAAADfkZQCAAAAAACA76gplcDp6nfs2GG5cuWKqkKEAADA3Iyh//77rxUrVswyZuR63tkghgIAIDoFEhg/kZRKAAVTKswMAACi1/bt261EiRIp3Yw0hRgKAIDotv0M8RNJqQTQ1T3vxcydO3dKNwcAAPhIM0QpseLFA0g4YigAAKLTgQTGTySlEsDrbq5gioAKAIDoxPCzs0cMBQBAdMtwhviJwggAAAAAAADwHUkpAAAAAAAA+I6kFAAAAAAAAHxHUgoAAAAAAAC+IykFAAAAAAAA35GUAgAAAAAAgO9ISgEAAAAAAMB3JKUAAAAAAADgO5JSAAAAAAAA8B1JKQAAAAAAAPiOpBQAAAAAAAB8R1IKAAAAAAAA0ZWUGjFihF166aWWK1cuK1SokLVp08Y2btwYts1VV11lGTJkCFvuueeesG22bdtmLVu2tJw5c7r9PPzww3bixImwbb788kurVauWZcuWzcqVK2dTpkzx5RgBAAAAAAAQW2ZLQYsWLbIePXq4xJSSSI899pg1b97c1q1bZ+edd15wu27dutnQoUODt5V88pw8edIlpIoUKWJLly61nTt3WocOHSxLliz25JNPum22bNnitlEya+rUqbZw4ULr2rWrFS1a1Fq0aGGpwf4hQ1K6CUCalGfw4JRuAgAAAFLQzI07U7oJQJp1Y/mi0ZuUmjNnTtht9V5ST6eVK1dao0aNwpJQSjrFZd68eS6JtWDBAitcuLDVqFHDnnjiCXvkkUfs8ccft6xZs9qkSZOsTJkyNnr0aPeYihUr2uLFi23s2LGpJikFAAAAAAAQTVJVTan9+/e7n/nz5w9br95NBQsWtCpVqlhMTIwdPnw4eN+yZcusatWqLiHlUaLpwIEDtnbt2uA2TZs2DdunttH6uBw7dsw9PnQBAAAAAABAOukpFerUqVPWq1cvu+KKK1zyyXPHHXdY6dKlrVixYvbjjz+6HlCqOzVz5kx3/65du8ISUuLd1n3xbaNk05EjRyxHjhyxal0NYTgdgBRA93MgbXY9BwAAQBpOSqm21E8//eSG1YXq3r178Hf1iFIdqCZNmtivv/5qF110UbK0Rb2x+vTpE7yt5FXJkiWT5bkAAAAAAACiUaoYvtezZ0+bPXu2ffHFF1aiRIl4t61bt677+csvv7ifqjW1e/fusG28214dqtNtkzt37li9pEQz9Om+0AUAAAAAAADpJCkVCARcQuqDDz6wzz//3BUjP5PVq1e7n+oxJfXq1bM1a9bYnj17gtvMnz/fJZIqVaoU3EYz7oXSNloPAAAAAACAKEtKacjeW2+9ZdOmTbNcuXK52k9aVOdJNERPM+lpNr6tW7faRx99ZB06dHAz81WrVs1t07x5c5d8uuuuu+yHH36wuXPn2oABA9y+1eNJ7rnnHtu8ebP169fPNmzYYBMnTrQZM2ZY7969U/LwAQAAAAAAolaKJqVeeOEFN+PeVVdd5Xo+ecv06dPd/VmzZrUFCxa4xFOFChWsb9++1q5dO/v444+D+8iUKZMb+qef6vl05513usTV0KFDg9uoB9Ynn3ziekdVr17dRo8ebZMnT3Yz8AEAAAAAACDKCp1r+F58VFx80aJFZ9yPZuf79NNP491Gia/vv//+rNsIAAAAAACAdFroHAAAAAAAANGFpBQAAAAAAAB8R1IKAAAAAAAAviMpBQAAAAAAAN+RlAIAAAAAAIDvSEoBAAAAAADAdySlAAAAAAAA4DuSUgAAAAAAAPAdSSkAAAAAAAD4jqQUAAAAAAAAfEdSCgAAIA05efKkDRw40MqUKWM5cuSwiy66yJ544gkLBALBbfT7oEGDrGjRom6bpk2b2qZNm8L2888//1j79u0td+7cljdvXuvSpYsdPHgwbJsff/zRGjZsaNmzZ7eSJUvayJEjfTtOAACQ/pGUAgAASEOefvppe+GFF+z555+39evXu9tKFj333HPBbXT72WeftUmTJtm3335r5513nrVo0cKOHj0a3EYJqbVr19r8+fNt9uzZ9tVXX1n37t2D9x84cMCaN29upUuXtpUrV9ozzzxjjz/+uL300ku+HzMAAEifMqd0AwAAAJBwS5cutRtuuMFatmzpbl944YX29ttv2/Lly4O9pMaNG2cDBgxw28kbb7xhhQsXtlmzZtltt93mkllz5syx7777zurUqeO2UVLruuuus1GjRlmxYsVs6tSpdvz4cXv11Vcta9asVrlyZVu9erWNGTMmLHkFAACQWPSUAgAASEPq169vCxcutJ9//tnd/uGHH2zx4sV27bXXuttbtmyxXbt2uSF7njx58ljdunVt2bJl7rZ+asiel5ASbZ8xY0bXs8rbplGjRi4h5VFvq40bN9revXvjbNuxY8dcD6vQBQAA4HToKQUAAJCGPProoy7ZU6FCBcuUKZOrMTV8+HA3HE+UkBL1jAql2959+lmoUKGw+zNnzmz58+cP20Z1qyL34d2XL1++WG0bMWKEDRkyJEmPFwAApF/0lAIAAEhDZsyY4YbWTZs2zVatWmWvv/66G3KnnyktJibG9u/fH1y2b9+e0k0CAACpGD2lAAAA0pCHH37Y9ZZSbSipWrWq/fbbb66XUseOHa1IkSJu/e7du93sex7drlGjhvtd2+zZsydsvydOnHAz8nmP1089JpR329smUrZs2dwCAACQEPSUAgAASEMOHz7saj+F0jC+U6dOud815E5JI9Wd8mi4n2pF1atXz93Wz3379rlZ9Tyff/6524dqT3nbaEa+//77L7iNZuorX758nEP3AAAAzhZJKQAAgDSkVatWrobUJ598Ylu3brUPPvjAzYjXtm1bd3+GDBmsV69eNmzYMPvoo49szZo11qFDBzejXps2bdw2FStWtGuuuca6devmZu1bsmSJ9ezZ0/W+0nZyxx13uCLnXbp0sbVr19r06dNt/Pjx1qdPnxQ9fgAAkH4wfA8AACANee6552zgwIF23333uSF4SiL973//s0GDBgW36devnx06dMi6d+/uekQ1aNDA5syZY9mzZw9uo7pUSkQ1adLE9bxq166dPfvss2Ez9s2bN8969OhhtWvXtoIFC7rn0D4BAACSQoZAIBBIkj2lY+ryrsBMBTtz586dLM+xn5lqgETJM3iwpSczN+5M6SYAadKN5f9f7aS0GAekV7x2APxA/ASkvhgqoTEAw/cAAAAAAADgO5JSAAAAAAAA8B1JKQAAAAAAAPiOpBQAAAAAAAB8R1IKAAAAAAAAviMpBQAAAAAAAN+RlAIAAAAAAIDvSEoBAAAAAADAdySlAAAAAAAA4DuSUgAAAAAAAPAdSSkAAAAAAAD4jqQUAAAAAAAAfEdSCgAAAAAAAL4jKQUAAAAAAADfkZQCAAAAAACA70hKAQAAAAAAwHckpQAAAAAAAOA7klIAAAAAAADwHUkpAAAAAAAA+I6kFAAAAAAAAHxHUgoAAAAAAAC+IykFAAAAAAAA35GUAgAAAAAAgO9ISgEAAAAAAMB3JKUAAAAAAADgO5JSAAAAAAAA8B1JKQAAAAAAAPiOpBQAAAAAAAB8R1IKAAAAAAAAviMpBQAAAAAAgOhKSo0YMcIuvfRSy5UrlxUqVMjatGljGzduDNvm6NGj1qNHDytQoICdf/751q5dO9u9e3fYNtu2bbOWLVtazpw53X4efvhhO3HiRNg2X375pdWqVcuyZctm5cqVsylTpvhyjAAAAAAAAEhlSalFixa5hNM333xj8+fPt//++8+aN29uhw4dCm7Tu3dv+/jjj+3dd9912+/YscNuvPHG4P0nT550Canjx4/b0qVL7fXXX3cJp0GDBgW32bJli9umcePGtnr1auvVq5d17drV5s6d6/sxAwAAAAAAwCxzSj75nDlzwm4rmaSeTitXrrRGjRrZ/v377ZVXXrFp06bZ1Vdf7bZ57bXXrGLFii6Rdfnll9u8efNs3bp1tmDBAitcuLDVqFHDnnjiCXvkkUfs8ccft6xZs9qkSZOsTJkyNnr0aLcPPX7x4sU2duxYa9GiRYocOwAAAAAAQDRLVTWllISS/Pnzu59KTqn3VNOmTYPbVKhQwUqVKmXLli1zt/WzatWqLiHlUaLpwIEDtnbt2uA2ofvwtvH2AQAAAAAAgCjqKRXq1KlTbljdFVdcYVWqVHHrdu3a5Xo65c2bN2xbJaB0n7dNaELKu9+7L75tlLg6cuSI5ciRI+y+Y8eOucWj7QAAAAAAAJAOe0qpttRPP/1k77zzTko3xRVgz5MnT3ApWbJkSjcJAAAAAAAgXUkVSamePXva7Nmz7YsvvrASJUoE1xcpUsQVMN+3b1/Y9pp9T/d520TOxufdPtM2uXPnjtVLSmJiYtxQQm/Zvn17Eh4tAAAAAAAAUjQpFQgEXELqgw8+sM8//9wVIw9Vu3Zty5Iliy1cuDC4buPGjbZt2zarV6+eu62fa9assT179gS30Ux+SjhVqlQpuE3oPrxtvH1EypYtm3t86AIAAAAAAIB0UlNKQ/Y0s96HH35ouXLlCtaA0pA59WDSzy5dulifPn1c8XMlh+6//36XTNLMe9K8eXOXfLrrrrts5MiRbh8DBgxw+1ZySe655x57/vnnrV+/fta5c2eXAJsxY4Z98sknKXn4AAAAAAAAUStFe0q98MILbnjcVVddZUWLFg0u06dPD24zduxYu/76661du3bWqFEjNxRv5syZwfszZcrkhv7pp5JVd955p3Xo0MGGDh0a3EY9sJSAUu+o6tWr2+jRo23y5MluBj4AAAAAAABEWU8pDd87k+zZs9uECRPccjqlS5e2Tz/9NN79KPH1/fffJ6qdAAAAAAAASIeFzgEAAAAAABBdSEoBAAAAAADAdySlAAAAAAAA4DuSUgAAAAAAAPAdSSkAAAAAAAD4jqQUAAAAAAAAfEdSCgAAAAAAAL4jKQUAAAAAAADfkZQCAAAAAACA70hKAQAAAAAAwHckpQAAAAAAAOA7klIAAAAAAADwHUkpAAAAAAAA+I6kFAAAAAAAAHxHUgoAAAAAAAC+y5zQDQ8cOJDgnebOnTux7QEAAAAAAEAUSHBSKm/evJYhQ4YEbXvy5MlzaRMAAAAAAADSuQQnpb744ovg71u3brVHH33U7r77bqtXr55bt2zZMnv99ddtxIgRydNSAAAAAAAARF9S6sorrwz+PnToUBszZozdfvvtwXWtW7e2qlWr2ksvvWQdO3ZM+pYCAAAAAAAgugudq1dUnTp1Yq3XuuXLlydFuwAAAAAAAJCOJSopVbJkSXv55ZdjrZ88ebK7DwAAAAAAAEjypNTYsWPtueeec8P1unbt6pZq1aq5dboPAAAAyeePP/6wO++80woUKGA5cuRwMdmKFSuC9wcCARs0aJAVLVrU3d+0aVPbtGlT2D7++ecfa9++vZs1WRPadOnSxQ4ePBi2zY8//mgNGza07NmzuwuPI0eO9O0YAQBA+peopNR1113nAptWrVq5gEaLfv/555/dfQAAAEgee/futSuuuMKyZMlin332ma1bt85Gjx5t+fLlC26j5NGzzz5rkyZNsm+//dbOO+88a9GihR09ejS4jRJSa9eutfnz59vs2bPtq6++su7duwfvP3DggDVv3txKly5tK1eutGeeecYef/xxVz8UAADA10LnkUqUKGFPPvlkkjQCAAAACfP000+7XkuvvfZacF2ZMmXCekmNGzfOBgwYYDfccINb98Ybb1jhwoVt1qxZdtttt9n69ettzpw59t133wXrhKrHuy4ujho1yooVK2ZTp06148eP26uvvmpZs2a1ypUr2+rVq91kN6HJKwAAAF97Ssm+ffts3rx59tZbb7lAJ3QBAABA8vjoo49cIunmm2+2QoUKWc2aNcNqfW7ZssV27drlhux58uTJY3Xr1nWT1Yh+ashe6MQ12j5jxoyuZ5W3TaNGjVxCyqPeVhs3bnS9teJy7Ngx18MqdAEAAEjSnlIff/yx6/KtugOqQ5AhQ4bgffq9Q4cOidktAAAAzmDz5s32wgsvWJ8+feyxxx5zvZ0eeOABlzzq2LGjS0iJekaF0m3vPv1UQitU5syZLX/+/GHbhPbACt2n7gsdLugZMWKEDRkyJImPGAAApFeJ6inVt29f69y5s0tKqceUrpZ5i+pLAQAAIHmcOnXKatWq5cooqJeUhtJ169bN1Y9KaTExMbZ///7gsn379pRuEgAASG89pTTji67I5cyZM+lbBAAAkI6czRA29UA/E82oV6lSpbB1FStWtPfff9/9XqRIEfdz9+7dbluPbteoUSO4zZ49e8L2ceLECXdx0Xu8fuoxobzb3jaRsmXL5hYAAIBk6ymlegKh0w4DAAAgbqrdpKFuCVkSQjPvqa5TKM2ArFnyREPulDRauHBhWGJMtaLq1avnbuunertrVj3P559/7nphqfaUt41m5Pvvv/+C22imvvLlyye4rQAAAEneU6ply5b28MMPuymIq1at6qYkDtW6devE7BYAACDd+eKLL4K/b9261R599FG7++67gwkiFRR//fXXXT2mhOjdu7fVr1/fDd+75ZZbbPny5fbSSy+5xavv2atXLxs2bJhdfPHFLkk1cOBAN6NemzZtgj2rrrnmmuCwPyWeevbs6Wbm03Zyxx13uPpQXbp0sUceecR++uknGz9+vI0dOzYZXiUAABCNEpWUUgAjQ4cOjXWfAqGTJ0+ee8sAAADSgSuvvDL4u2KnMWPG2O233x52MU8X+ZRUUqHyM7n00kvtgw8+cPWbtD8lncaNG+cmofH069fPDh065OpNqUdUgwYNbM6cOZY9e/bgNlOnTnWJqCZNmrhZ99q1a2fPPvts2Ix9mmm5R48eVrt2bStYsKANGjTI7RMAACApZAgEAoEk2VM6pi7vCsxUsDMhtR4SYz8z1QCJkmfwYEtPZm7cmdJNANKkG8v/v9pJSS0p4wDV4/zhhx9cD6bI4Xeq93T48GFLT/yIoQCA+AlIfTFUQmOARNWUAgAAwNkrWbKkvfzyy7HWT5482d0HAAAQTRI1fE8WLVpko0aNsvXr17vbmgVGdaYaNmyYlO0DAABIN1SPScPkPvvss2BBcdWE2rRpU3D2PAAAgGiRqJ5Sb731ljVt2tR1QX/ggQfckiNHDleTYNq0aUnfSgAAgHTguuuucwmoVq1a2T///OMW/a7he7oPAAAgmiSqp9Tw4cNt5MiRbvYXjxJTKtz5xBNPuNlaAAAAEFuJEiXczHkAAADRLlFJqc2bN7urepE0e8xjjz2WFO0CAABIlzQbnobs7dmzx06dOhV2X4cOHVKsXQAAAGkiKaVCnAsXLrRy5cqFrV+wYAFFOgEAAE7j448/tvbt29vBgwfdTDQZMmQI3qffSUoBAIBokqikVN++fd1wvdWrV1v9+vXduiVLltiUKVNs/PjxSd1GAACAdEExVOfOnd3wPdXmBAAAiGaJSkrde++9VqRIERs9erTNmDHDratYsaJNnz7dbrjhhqRuIwAAQLrwxx9/uAt7JKQAAAASmZSStm3bugUAAAAJ06JFC1uxYoWVLVs2pZsCAACQNpNS3333nSvMWbdu3bD13377rWXKlMnq1KmTVO0DAABIN1q2bGkPP/ywrVu3zqpWrWpZsmSJNWkMAABAtEhUUqpHjx7Wr1+/WEkpdUl/+umnXXIKAAAA4bp16+Z+Dh06NNZ9KnR+8uTJFGgVAABAGkpK6eperVq1Yq2vWbOmuw8AAACxqac5AAAA/k9GS4Rs2bLZ7t27Y63fuXOnZc6c6DJVAAAAAAAAiBKJSko1b97cYmJibP/+/cF1+/bts8cee8yaNWuWlO0DAABIVxYtWmStWrWycuXKuUV1pL7++uuUbhYAAEDaSEqNGjXKtm/fbqVLl7bGjRu7pUyZMrZr1y4bPXp00rcSAAAgHXjrrbesadOmljNnTnvggQfckiNHDmvSpIlNmzYtpZsHAADgq0SNtStevLj9+OOPNnXqVPvhhx9cMNWpUye7/fbbY80iAwAAgP8zfPhwGzlypPXu3Tu4TompMWPG2BNPPGF33HFHirYPAADAT4kuAHXeeedZ9+7dk7Y1AAAA6djmzZvd0L1IGsKnMggAAADRJFHD9+TNN9+0Bg0aWLFixey3335z68aOHWsffvhhUrYPAAAg3ShZsqQtXLgw1voFCxa4+wAAAKJJonpKvfDCCzZo0CDr1auXDRs2zE6ePOnW58uXz8aNG2c33HBDUrcTAAAgzevbt68brrd69WqrX7++W7dkyRKbMmWKjR8/PqWbBwAAkPqTUs8995y9/PLL1qZNG3vqqaeC6+vUqWMPPfRQUrYPAAAg3bj33nutSJEibmKYGTNmuHUVK1a06dOnc1EPAABEnUQN39uyZYvVrFkz1vps2bLZoUOHEryfr776ytVV0BDADBky2KxZs8Luv/vuu9360OWaa64J2+aff/6x9u3bW+7cuS1v3rzWpUsXO3jwYNg2KsresGFDy549u+sarwKjAAAAKaFt27a2ePFi+/vvv92i30lIAQCAaJSopFSZMmVct/NIc+bMcVf7EkoJrOrVq9uECRNOu42SUDt37gwub7/9dtj9SkitXbvW5s+fb7Nnz3aJrtAC7AcOHLDmzZtb6dKlbeXKlfbMM8/Y448/bi+99FKC2wkAAJAUvvvuO/v2229jrde6FStWpEibAAAA0tTwvT59+liPHj3s6NGjFggEbPny5S5ZNGLECJs8eXKC93Pttde6JT7qfaVu7nFZv369S4QpwNPQQW9o4XXXXWejRo1yPbCmTp1qx48ft1dffdWyZs1qlStXdgk1Tb3M7IEAAMBPip/69etndevWDVv/xx9/2NNPPx1nwgoAACC9SlRPqa5du7rAacCAAXb48GG74447XPFzFei87bbbkrSBX375pRUqVMjKly/v6jCom7tn2bJlbsiel5CSpk2bWsaMGYNBnbZp1KiRS0h5WrRoYRs3brS9e/fG+ZzHjh1zPaxCFwAAgHO1bt06q1WrVqz1Koug+wAAAKJJopJS3rC5TZs2ufpNu3btst9//93Vc0pKGrr3xhtvuKmTlQRbtGiR61nlzfan51XCKlTmzJktf/787j5vm8KFC4dt4932tomkHl958uQJLkzRDAAAkoJ6gO/evTvWepUoUAwDAAAQTRKVlDpy5IjrISU5c+Z0t8eNG2fz5s1L0sap11Xr1q2tatWqbqY/1YzSUD31nkpOMTExtn///uCyffv2ZH0+AAAQHVTn0oszPPv27bPHHnvMmjVrlqJtAwAASBNJKc0Qox5MXiB12WWXuamNtV7D+JJL2bJlrWDBgvbLL7+426o1tWfPnrBtTpw44Wbk8+pQ6WfkFUnv9ulqVekqpmbzC10AAADOlWpe6mKXJmBp3LixWzSBjHpvK5YCAACIJolKSq1atcoaNmzofn/vvfdccue3335ziapnn33WkouGCKqmVNGiRd3tevXquaSYZtXzfP7553bq1KlgAVFtoxn5/vvvv+A2mqlPNary5cuXbG0FAACIVLx4cfvxxx9t5MiRVqlSJatdu7aryblmzRrKBQAAgKiTqOIFGrqXK1cu97uG7N14442uuPjll1/uklMJpXpUXq8n2bJli5sZTzWhtAwZMsTatWvnkl6//vqrm62mXLlyrlC5VKxY0dWd6tatm02aNMklnnr27OmG/WnmPVERdu1H9a4eeeQR++mnn1zwN3bs2MQcOgAAwDk577zzmAEYAAAgsT2llBiaNWuW634+d+5cVx9BNJTubIa6rVixws02o0X69Onjfh80aJBlypTJXUlUTalLLrnEJZV0NfHrr792w+s8U6dOtQoVKliTJk3suuuuswYNGthLL70UvF+FypU4U8JLj+/bt6/bP8EgAABICW+++aaLV3QBzbuYp4tlH374YUo3DQAAIPX3lFJSRz2Qevfu7ZJBGiInSv54CaaEuOqqqywQCJz2fiW8zkQ9qqZNmxbvNtWqVXPJLAAAgJSk2puKo3r16mXDhg0LziiskgKaNEb1OQEAAKJFonpK3XTTTbZt2zbX02nOnDnB9UpQMSwOAAAgbs8995y9/PLL1r9/f8uc+f9dG6xTp46rKwUAABBNzqqnVKlSpdxwOi1XX311rNnrNAsfAAAA4qZyAnH1KldpgkOHDqVImwAAANJETynVQFDQ1KNHDytYsKDdeuutrqaTZsADAABA/MqUKeMmdYmknueawAUAACCanFVS6sorr7TRo0fbpk2bbMmSJVajRg3XDV09ptRzSrUQNm/enHytBQAASMM0qYsu7k2fPt3V1Vy+fLkNHz7cYmJi3CzDAAAA0SRRhc6lcuXKblEQtXPnTvv444/d8thjj1nZsmXt6aeftpYtWyZtawEAANKwrl27Wo4cOWzAgAF2+PBhN3GMZuEbP3683XbbbSndPAAAgLSRlApVtGhR6969u1tUD0Gz8GmYHwAAAMK1b9/eLUpKHTx40AoVKpTSTQIAAEg7s++tWrUqbIaYDz/80Nq0aeN6SWXJksXatm1rTZs2Tcp2AgAApHlHjhxxySjJmTOnu63yB7qgBwAAEG0SlZT63//+Zz///LP7XTWk1N1cgdW7775LPQQAAIDTuOGGG+yNN95wv2uiGM1crHqdWv/CCy+kdPMAAABSf1JKCSkVORcloho1amTTpk2zKVOm2Pvvv5/UbQQAAEgX1Nu8YcOG7vf33nvPTRbz22+/uUTVs88+m9LNAwAASP1JKc0Wc+rUKff7ggUL7LrrrnO/lyxZ0v7666+kbSEAAEA6oaF7uXLlcr9ryN6NN95oGTNmtMsvv9wlpwAAAKJJopJSderUsWHDhtmbb75pixYtCs6yt2XLFitcuHBStxEAACBdKFeunM2aNcu2b99uc+fOtebNm7v1e/bssdy5c6d08wAAAFJ/UkoFOdX9vGfPnta/f38XYHnd0OvXr5/UbQQAAEgXBg0aZA899JBdeOGFVrduXatXr16w11TNmjVTunkAAAC+ypyYB1WrVi1s9j3PM888Y5kyZUqKdgEAAKQ7N910kzVo0MB27txp1atXD65v0qSJm70YAAAgmiQqKeU5fvy4627u1ZfylCpV6lzbBQAAkG4oNmrdurVbrr76alfgPJRm4QMAAIg2iZ59TzPH5MiRw0qXLm1lypRxi7qi6ycAAAD+H9XhzJYtm/Xo0cMKFixot956q02dOtX27duX0k0DAABIWz2lOnXqZJkzZ7bZs2db0aJFLUOGDEnfMgAAgHTiyiuvdMvo0aNt7dq19tFHH9lzzz1nXbp0cfU4vV5UZcuWTemmAgAApO6k1OrVq23lypVWoUKFpG8RAABAOla5cmW3xMTEuNpSH3/8sVsee+wxl5R6+umngzMbAwAApGeJSkpVqlTJ/vrrr6RvDQAAQBRRj/Pu3bu75dChQ24WPg3zAwAAiAaJqimlK3j9+vWzL7/80v7++287cOBA2AIAAIDYVq1aFTaD8Ycffmht2rRxvaSyZMniZuBr2rRpirYRAAAgVSelFCx98803bvriQoUKWb58+dySN29e9xMAAACx/e9//3MTxsjmzZvttttus5w5c9q7777rLvgBAABEk0QN3/viiy+SviUAAADpnBJSNWrUcL8rEdWoUSObNm2aLVmyxCWoxo0bl9JNBAAASN1JKc0eAwAAgLMTCATs1KlT7vcFCxbY9ddf734vWbIk9ToBAEDUSVRSSvbt22evvPKKrV+/3t3WLDKdO3e2PHnyJGX7AAAA0o06derYsGHDXCmERYsW2QsvvODWb9myxQoXLpzSzQMAAEj9NaVWrFhhF110kY0dO9b++ecft4wZM8atUwFPAAAAxKbheYqVevbsaf3797dy5cq59e+9957Vr18/pZsHAACQ+ntK9e7d21q3bm0vv/yyZc78f7s4ceKEde3a1Xr16mVfffVVUrcTAAAgzatWrVrY7HueZ555xjJlypQibQIAAEhzPaUeeeSRYEJK9LtmjdF9AAAAOH0JhMmTJ1tMTIzrbS7r1q2zPXv2pHTTAAAAUn9Pqdy5c9u2bdusQoUKYeu3b99uuXLlSqq2AQAApCs//vijNWnSxPLmzWtbt261bt26Wf78+W3mzJkutnrjjTdSuokAAACpu6fUrbfeal26dLHp06e7RJSWd955xw3fu/3225O+lQAAAOlAnz59rFOnTrZp0ybLnj17cP11111H+QMAABB1EtVTatSoUZYhQwbr0KGDqyUlWbJksXvvvdeeeuqppG4jAABAuvDdd9/Ziy++GGt98eLFbdeuXSnSJgAAgDSVlMqaNauNHz/eRowYYb/++qtbp5n3cubMmdTtAwAASDeyZctmBw4ciLX+559/tgsuuCBF2gQAAJCmhu95lISqWrWqW0hIAQAAxE+zFw8dOtT+++8/d1s9z1VLShPItGvXLqWbBwAAkDqTUjfeeGPwyp5+j28BAABAbKNHj7aDBw9aoUKF7MiRI3bllVdauXLl3EQxw4cPT9Q+VTpBya1evXoF1x09etR69OhhBQoUsPPPP98lvHbv3h32OCXDWrZs6S4sqj0PP/xwsCyD58svv7RatWq5Hl5q55QpUxJ55AAAAOcwfC9Pnjwu4PFm3/N+BwAAQMLjqfnz59vixYvdTHxKUCnp07Rp03OqUVWtWrWw9b1797ZPPvnE3n33XfecPXv2dBcOlyxZ4u4/efKkS0gVKVLEli5dajt37nS1QlUj9Mknn3TbbNmyxW1zzz332NSpU23hwoVuUpuiRYtaixYtkuDVAAAA0S5DIBAIpHQjUjv1EFNAt3//fpeQSw77hwxJlv0C6V2ewYMtPZm5cWdKNwFIk24sXzRNxwGJ4SW0Jk6caMOGDbMaNWrYuHHjXDtVn2ratGl20003uW03bNhgFStWtGXLltnll19un332mV1//fW2Y8cOK1y4sNtm0qRJbhjhn3/+6eqH6ncltn766afgc9522222b98+mzNnTpp+7QCkL8RPQOqLoRIaAySq0PnVV19tM2fOtLx588Z60jZt2tjnn3+emN0CAACkO88++6x1797dsmfP7n6PzwMPPJDg/Wp4nnoyqZeVklKelStXuppVob2vKlSoYKVKlQompfRTNUG9hJSo95NmUl67dq3VrFnTbRPZg0vbhA4TjHTs2DG3eOIq6g4AAHBOSSnVFzh+/His9apf8PXXXydmlwAAAOnS2LFjrX379i4ppd9PR6UREpqUeuedd2zVqlVu+F6kXbt2uZ5OkRcPlYDSfd42oQkp737vvvi2UaJJ9bBy5MgR67k1M/MQen8DAIDkSEqp9oFn3bp1waDFq02grtzFixc/m10CAACka6rNFNfvibV9+3Z78MEHXW0qJbpSk5iYGOvTp0/wthJYJUuWTNE2AQCAdJKUUq0CXcXToiF8kXTF7LnnnkvK9gEAAKQLGlKnYXSzZ8929Z0SS8Pz9uzZ4+pJhV4c/Oqrr+z555+3uXPnuh7tqv0U2ltKs++psLno5/Lly8P2683OF7pN5Ix9uq26EHH1khLN0qcFAAAgyZNSurqnuuhly5Z1gYyKaHrUTVzTCWfKlOlsdgkAABAVNLOdSh2cqyZNmtiaNWvC1nXq1MklvFScXD2T9FyaLa9du3bu/o0bN9q2bdusXr167rZ+Dh8+3CW3FL+Jel4p4VSpUqXgNp9++mnY82gbbx8AAAC+JqVKly7tfp46deqcnxgAACDaqDj5008/bZMnT7bMmRNV2tNy5cplVapUCVt33nnnWYECBYLru3Tp4obR5c+f3yWa7r//fpdMUpFzad68uUs+3XXXXTZy5EhXkmHAgAGufV5Pp3vuucf1vOrXr5917tzZTWQzY8YMNyMfAABAUkhcNBRSV0pX3SKLnrdu3fpc2wUAAJDuqDC5ejDNmzfPzX6nZFIozW6cFFRQPWPGjK6nlGbD06x5EydODN6vnu0aRqjZ9pSsUjs6duxoQ4cODW5TpkwZl4Dq3bu3jR8/3kqUKOGSadoXAABAiiWlNm/ebG3btnVdx1VfSkP6RL97dQ0AAAAQTjWevCF1SUkzI4dSAfQJEya4Jb4e8JHD8yJdddVV9v333ydZOwEAAM45KaUZX3T1TFf69FP1pf7++2/r27evjRo1KjG7BAAASPdee+21lG4CAABAqpExMQ9atmyZ695dsGBB1zVcS4MGDWzEiBH2wAMPJH0rAQAA0okTJ07YggUL7MUXX7R///3XrduxY4cdPHgwpZsGAACQ+ntKaXieimyKElMKpMqXL++6gWt2FwAAAMT222+/2TXXXONqcqrWU7NmzVxMpeLnuj1p0qSUbiIAAEDq7imlmV1++OEH93vdunXdrC1LlixxvafKli2b1G0EAABIF1QCoU6dOrZ3717LkSNHcL1qdaosAgAAQDRJVE8pTRl86NAh97sSUddff701bNjQTUU8ffr0pG4jAABAuvD111/b0qVLLWvWrGHrL7zwQvvjjz9SrF0AAABpJikVOhVwuXLlbMOGDfbPP/9Yvnz5gjPwAQAAINypU6finKX4999/D5ZGAAAAiBZnPXzvv//+s8yZM9tPP/0Utj5//vwkpAAAAOLRvHlzGzduXPC2YicVOB88eLBdd911Kdo2AACAVN9TKkuWLFaqVKk4r/IBAADg9EaPHu16nFeqVMmOHj1qd9xxh23atMlNHPP222+ndPMAAABS//C9/v3722OPPWZvvvmm6yEFAACAMytRooSbLOadd96xH3/80fWS6tKli7Vv3z6s8DkAAEA0SNTse88//7x99dVXVqxYMStfvrzVqlUrbEko7aNVq1ZuP+q+PmvWrLD7A4GADRo0yIoWLeoCtaZNm7qriaFUy0qBXO7cuS1v3rwusFOAF0pBnwqxZ8+e3UqWLOlmCwQAAEgJKoNw5513unhk4sSJ1rVrVxJSAAAgKiWqp1SbNm2S5Mk1g1/16tWtc+fOduONN8a6X8Has88+a6+//rqVKVPGBg4c6Lq8r1u3ziWYRAmpnTt32vz58129q06dOln37t1t2rRp7v4DBw64+g1KaE2aNMnWrFnjnk8JLG0HAADglzfeeCPe+zt06OBbWwAAANJkUkrFOJPCtdde65a4qJeUCoEOGDDAbrjhhmAgV7hwYdej6rbbbrP169fbnDlz7LvvvrM6deq4bZ577jlXKHTUqFGuB9bUqVPt+PHj9uqrr7rplytXrmyrV6+2MWPGkJQCAAC+evDBB8Nu64La4cOHXYySM2dOklIAACCqJGr4nuzbt88mT55sMTExbgidrFq1yv74448kadiWLVts165droeTJ0+ePFa3bl1btmyZu62f6vHkJaRE22fMmNG+/fbb4DaNGjVywZ5Hva02btxoe/fuTZK2AgAAJIRij9BFJQcUkzRo0IBC5wAAIOokqqeUajQp+aMk0datW61bt26u4PnMmTNt27ZtZ+yanhBKSIl6RoXSbe8+/SxUqFCsOg1qS+g2GvoXuQ/vvnz58sV67mPHjrnFoyGAAAAAyeHiiy+2p556ytWZ2rBhQ0o3BwAAIHX3lOrTp4/dfffdrui4V9tJNGxOxcvTuhEjRriEm7eoODoAAEBy0UW1HTt2pHQzAAAAUn9PKdVwevHFF2OtL168eLCH0rkqUqSI+7l79243+55Ht2vUqBHcZs+ePWGPO3HihBtO6D1eP/WYUN5tb5tIGpKoxFtoTykSUwAA4Fx99NFHsWpoasIWzWx8xRVXpFi7AAAA0kxSKlu2bHEOafv555/tggsuSIp2uSF3ShotXLgwmITSc6pW1L333utu16tXz9W2WrlypdWuXdut+/zzz+3UqVOu9pS3Tf/+/V0h0SxZsrh1mqmvfPnycQ7d845PCwAAQFKKnME4Q4YMLna6+uqrbfTo0SnWLgAAgDQzfK9169Y2dOhQl+jxAirVknrkkUesXbt2Cd6PintqJjwtXnFz/a59aZ+9evWyYcOGuauKa9ascTPSaEY9L6CrWLGiXXPNNa6m1fLly23JkiXWs2dPNzOftpM77rjDFTnv0qWLrV271qZPn27jx48P6wkFAADgB10406Je2yp0fvLkSdfLfNq0aWE9wwEAAKJBopJSupKnhJKKjB85csSuvPJKK1eunOXKlcuGDx+e4P2sWLHCatas6RZRoki/Dxo0yN3u16+f3X///da9e3e79NJL3XPOmTMnrI7V1KlTrUKFCtakSRNX00qz17z00kvB+1UTat68eS7hpd5Uffv2dfvXPgEAAPyi3t09evSwggULut7gmphFP1U24PDhwyndPAAAAN9lCKiYQSItXrzYzcSnZFGtWrXcjHzpkYYNKrm1f/9+y507d7I8x/4hQ5Jlv0B6l2fwYEtPZm7cmdJNANKkG8sXTdVxgOpdqqTAH3/8Ye3bt3e9vWXdunWul5QusHlx1TfffGMPPPCApQd+xFAAQPwEpL4YKqExQKJqSnnUK0kLAAAATk9lD1RO4Ndff7XChQvHuq958+Z21113ud7dzz77bIq1EwAAINUP3xMVIL/++uvtoosucot+X7BgQdK2DgAAIB2YNWuWjRo1KlZCSjSEb+TIkfb++++7UgYdO3ZMkTYCAACkiaTUxIkTXYFx1ZB68MEH3aLuWKrpNGHChKRvJQAAQBq2c+dOq1y58mnvr1KlimXMmNEGp7MhyQAAAPFJ1PC9J5980saOHetmuvOo9sEVV1zh7lMRTwAAAPwfFTffunWrlShRIs77NSGLJpABAACIJhkTO3uMekpFUj0EFbECAADA/9OiRQvr37+/HT9+PNZ9x44ds4EDB8YZWwEAAKRnieop1bp1a/vggw/s4YcfDlv/4YcfutpSAAAACC9mXqdOHbv44otdj3LNtqcJkNevX+/KIigx9cYbb6R0MwEAAFJ/UqpSpUo2fPhw+/LLL930xqLpi5csWWJ9+/YNmzUmvUxpDAAAkFgatrds2TK77777LCYmxiWkJEOGDNasWTN7/vnnrVSpUindTAAAgNSflHrllVcsX758tm7dOrd48ubN6+7zKNAiKQUAAGBWpkwZ++yzz2zv3r22adMmt65cuXKWP3/+lG4aAABA2klKqRin/PXXX8HinQAAADgzXdi77LLLUroZAAAAaa/QuYqcqxaCElGFCxd2i37XTHy6DwAAAAAAAEjSnlL//POPqyH1xx9/WPv27a1ixYpuvYbwTZkyxRYuXGhLly51VwABAAAAAACAJElKaeaYrFmz2q+//up6SEXe17x5c/dz7NixZ7NbAAAAAAAARJmzGr43a9YsGzVqVKyElBQpUsRGjhxpH3zwQVK2DwAAAAAAANGelNq5c6dVrlz5tPdXqVLFdu3alRTtAgAAAAAAQDp2VkkpFTTfunVrvLPyMa0xAAAAAAAAkjQp1aJFC+vfv78dP3481n3Hjh2zgQMH2jXXXHM2uwQAAAAAAEAUOutC53Xq1LGLL77YevToYRUqVLBAIGDr16+3iRMnusTUm2++mXytBQAAAAAAQPQlpUqUKGHLli2z++67z2JiYlxCSjJkyGDNmjWz559/3kqWLJlcbQUAAAAAAEA0JqWkTJky9tlnn9nevXtt06ZNbl25cuWoJQUAAAAAAIDkS0p58uXLZ5dddlliHw4AAAAAAIAodlaFzgEAAAAAAICkQFIKAAAAAAAAviMpBQAAAAAAAN+RlAIAAAAAAIDvSEoBAAAAAADAdySlAAAAAAAA4DuSUgAAAAAAAPAdSSkAAAAAAAD4jqQUAAAAAAAAfEdSCgAAAAAAAL4jKQUAAAAAAADfkZQCAAAAAACA70hKAQAAAAAAwHckpQAAAAAAAOA7klIAAAAAAADwHUkpAAAAAAAA+I6kFAAAAAAAAHxHUgoAAAAAAAC+IykFAAAAAAAA35GUAgAAAAAAgO9ISgEAAAAAAMB3JKUAAADSkBEjRtill15quXLlskKFClmbNm1s48aNYdscPXrUevToYQUKFLDzzz/f2rVrZ7t37w7bZtu2bdayZUvLmTOn28/DDz9sJ06cCNvmyy+/tFq1alm2bNmsXLlyNmXKFF+OEQAARAeSUgAAAGnIokWLXMLpm2++sfnz59t///1nzZs3t0OHDgW36d27t3388cf27rvvuu137NhhN954Y/D+kydPuoTU8ePHbenSpfb666+7hNOgQYOC22zZssVt07hxY1u9erX16tXLunbtanPnzvX9mAEAQPqUOaUbAAAAgISbM2dO2G0lk9TTaeXKldaoUSPbv3+/vfLKKzZt2jS7+uqr3TavvfaaVaxY0SWyLr/8cps3b56tW7fOFixYYIULF7YaNWrYE088YY888og9/vjjljVrVps0aZKVKVPGRo8e7fahxy9evNjGjh1rLVq0SJFjBwAA6Qs9pQAAANIwJaEkf/787qeSU+o91bRp0+A2FSpUsFKlStmyZcvcbf2sWrWqS0h5lGg6cOCArV27NrhN6D68bbx9AAAAnCt6SgEAAKRRp06dcsPqrrjiCqtSpYpbt2vXLtfTKW/evGHbKgGl+7xtQhNS3v3effFto8TVkSNHLEeOHLHac+zYMbd4tC0AAMDp0FMKAAAgjVJtqZ9++sneeecdSy1F2PPkyRNcSpYsmdJNAgAAqRhJKQAAgDSoZ8+eNnv2bPviiy+sRIkSwfVFihRxBcz37dsXtr1m39N93jaRs/F5t8+0Te7cuePsJSUxMTFuOKG3bN++PYmOFgAApEckpQAAANKQQCDgElIffPCBff75564YeajatWtblixZbOHChcF1GzdutG3btlm9evXcbf1cs2aN7dmzJ7iNZvJTwqlSpUrBbUL34W3j7SMu2bJlc/sIXQAAAE6HmlIAAABpbMieZtb78MMPLVeuXMEaUBoupx5M+tmlSxfr06ePK36uxND999/vkkmaeU+aN2/ukk933XWXjRw50u1jwIABbt9KLMk999xjzz//vPXr1886d+7sEmAzZsywTz75JEWPHwAApB/0lAIAAEhDXnjhBTc07qqrrrKiRYsGl+nTpwe3GTt2rF1//fXWrl07a9SokRuKN3PmzOD9mTJlckP/9FPJqjvvvNM6dOhgQ4cODW6jHlhKQKl3VPXq1W306NE2efJkNwMfAABAUqCnFAAAQBobvncm2bNntwkTJrjldEqXLm2ffvppvPtR4uv7779PVDsBAADSdE+pxx9/3DJkyBC2VKhQIXj/0aNHXTfzAgUK2Pnnn++uBkYW5FT9hJYtW1rOnDmtUKFC9vDDD9uJEydS4GgAAAAAAACQZnpKVa5c2RYsWBC8nTnz/2ty7969Xbfyd99919VPUNHPG2+80ZYsWeLuP3nypEtIqcv60qVLbefOna5ruop/PvnkkylyPAAAAAAAAEgDSSklobypiUOplsIrr7ziCn1effXVbt1rr71mFStWtG+++cYV8pw3b56tW7fOJbUKFy5sNWrUsCeeeMIeeeQR1wsra9asKXBEAAAAAAAASNXD92TTpk1WrFgxK1u2rLVv394Nx5OVK1faf//9Z02bNg1uq6F9pUqVsmXLlrnb+lm1alWXkPKoOOeBAwds7dq1p33OY8eOuW1CFwAAAAAAAERJUqpu3bo2ZcoUmzNnjptpZsuWLdawYUP7999/3dTF6umUN2/esMcoAeVNjayfoQkp737vvtMZMWKEGw7oLSVLlkyW4wMAAAAAAIhWqXr43rXXXhv8vVq1ai5JpZliZsyYYTly5Ei2542JibE+ffoEb6unFIkpAAAAAACAKOkpFUm9oi655BL75ZdfXJ2p48eP2759+8K20ex7Xg0q/Yycjc+7HVedKk+2bNksd+7cYQsAAAAAAACiNCl18OBB+/XXX61o0aJWu3ZtN4vewoULg/dv3LjR1ZyqV6+eu62fa9assT179gS3mT9/vksyVapUKUWOAQAAAAAAAKl8+N5DDz1krVq1ckP2duzYYYMHD7ZMmTLZ7bff7mo9denSxQ2zy58/v0s03X///S4RpZn3pHnz5i75dNddd9nIkSNdHakBAwZYjx49XG8oAAAAAAAApIxUnZT6/fffXQLq77//tgsuuMAaNGhg33zzjftdxo4daxkzZrR27dq5GfM0s97EiRODj1cCa/bs2Xbvvfe6ZNV5551nHTt2tKFDh6bgUQEAAAAAACBVJ6XeeeedeO/Pnj27TZgwwS2no15Wn376aTK0DgAAAAAAAFFRUwoAAAAAAADpA0kpAAAAAAAA+I6kFAAAAAAAAHxHUgoAAAAAAAC+IykFAAAAAAAA35GUAgAAAAAAgO9ISgEAAAAAAMB3JKUAAAAAAADgO5JSAAAAAAAA8B1JKQAAAAAAAPiOpBQAAAAAAAB8R1IKAAAAAAAAviMpBQAAAAAAAN+RlAIAAAAAAIDvSEoBAAAAAADAdySlAAAAAAAA4DuSUgAAAAAAAPAdSSkAAAAAAAD4jqQUAAAAAAAAfEdSCgAAAAAAAL4jKQUAAAAAAADfkZQCAAAAAACA70hKAQAAAAAAwHckpQAAAAAAAOC7zP4/JQAAAHDu9g8ZktJNANKsPIMHp3QTAICeUgAAAAAAAPAfSSkAAAAAAAD4jqQUAAAAAAAAfEdSCgAAAAAAAL4jKQUAAAAAAADfkZQCAAAAAACA70hKAQAAAAAAwHckpQAAAAAAAOA7klIAAAAAAADwHUkpAAAAAAAA+I6kFAAAAAAAAHxHUgoAAAAAAAC+IykFAAAAAAAA35GUAgAAAAAAgO9ISgEAAAAAAMB3JKUAAAAAAADgO5JSAAAAAAAA8B1JKQAAAAAAAPiOpBQAAAAAAAB8R1IKAAAAAAAAviMpBQAAAAAAAN+RlAIAAAAAAIDvSEoBAAAAAADAdySlAAAAAAAA4DuSUgAAAAAAAPAdSSkAAAAAAAD4LqqSUhMmTLALL7zQsmfPbnXr1rXly5endJMAAABSNeInAACQXKImKTV9+nTr06ePDR482FatWmXVq1e3Fi1a2J49e1K6aQAAAKkS8RMAAEhOUZOUGjNmjHXr1s06depklSpVskmTJlnOnDnt1VdfTemmAQAApErETwAAIDlFRVLq+PHjtnLlSmvatGlwXcaMGd3tZcuWpWjbAAAAUiPiJwAAkNwyWxT466+/7OTJk1a4cOGw9bq9YcOGWNsfO3bMLZ79+/e7nwcOHEi2Nh44ejTZ9g2kZxmS8e8yJRw++G9KNwFIkw4cOC8Z9/1/3zOBQMCiydnGTykRQxE/AYmXnmIo4icg9cVQCY2foiIpdbZGjBhhQ4YMibW+ZMmSKdIeAPF46qmUbgGAKPHvv/9anjx5UroZqRoxFJCGEEMBSAXxU1QkpQoWLGiZMmWy3bt3h63X7SJFisTaPiYmxhX19Jw6dcr++ecfK1CggGXIkMGXNiN1UHZXgfT27dstd+7cKd0cACmI74PopSt8CqiKFStm0eRs4ychhoKH70wAwndB9AokMH6KiqRU1qxZrXbt2rZw4UJr06ZNMEjS7Z49e8baPlu2bG4JlTdvXt/ai9RHX6B8iQIQvg+iUzT2kDrb+EmIoRCJ70wAwndBdMqTgPgpKpJSoqt2HTt2tDp16thll11m48aNs0OHDrnZZAAAABAb8RMAAEhOUZOUuvXWW+3PP/+0QYMG2a5du6xGjRo2Z86cWMU7AQAA8H+InwAAQHKKmqSUqKv56bqbA3HREITBgwfHGooAIPrwfYBoRfyExOA7E4DwXYAzyRCItvmNAQAAAAAAkOIypnQDAAAAAAAAEH1ISgEAAAAAAMB3JKUAAAAAAADgO5JSQArYunWrZciQwVavXp3gx9x9993Wpk2bZG0XkJbpb2rWrFnxbsPfEQCkbcRQQNIifkJKIymFVEnTT997771WqlQpN1NDkSJFrEWLFrZkyRJLa+L6Ei9ZsqTt3LnTqlSpkmLtAlLD34YCoXvuuSfWfT169HD3aZuk/E/L+PHjbcqUKYluMwCkdsRQQPpG/IT0JnNKNwCIS7t27ez48eP2+uuvW9myZW337t22cOFC+/vvvy09yJQpkwsSgWin/1y88847NnbsWMuRI4dbd/ToUZs2bZr7D1VSy5MnjyWH//77z7JkyZIs+waAs0EMBaR/xE9IT+gphVRn37599vXXX9vTTz9tjRs3ttKlS9tll11mMTEx1rp16+A2Xbt2tQsuuMBy585tV199tf3www9h+3nqqaescOHClitXLuvSpYs9+uijVqNGjeD9V111lfXq1SvsMboaF3pl4dixY/bQQw9Z8eLF7bzzzrO6deval19+GbxfVwzy5s1rc+fOtYoVK9r5559v11xzjbuCJ48//rgLCj/88EN31UGLHh95FeLkyZOujWXKlHEnlvLly7srEkB6V6tWLRdYzZw5M7hOvyugqlmzZnDdhRdeaOPGjQt7rP6e9TcWF/0tifahvzX9vSe0+7me64knnrDbb7/d/d3r73/ChAlh22ifL7zwgvtO0jbDhw9367XuoosusqxZs7q/4zfffDPscfru+t///ue+m7Jnz+6u9M+ePTt4/+LFi61hw4bue0CvywMPPGCHDh0K3j9x4kS7+OKL3WO1j5tuuil433vvvWdVq1Z1jy1QoIA1bdo07LEA0j9iKGIoRAfiJ+Kn9ISkFFIdBSVaNLZZAU1cbr75ZtuzZ4999tlntnLlSvfF3KRJE/vnn3/c/TNmzHBftk8++aStWLHCihYt6r6MzlbPnj1t2bJl7krEjz/+6J5XAdOmTZuC2xw+fNhGjRrlvjy/+uor27ZtmwvCRD9vueWWYJClpX79+rGe59SpU1aiRAl79913bd26dTZo0CB77LHH3HEA6V3nzp3ttddeC95+9dVXrVOnTue0z+XLl7ufCxYscH93oUFbQjzzzDNWvXp1+/77791/xh588EGbP39+2Db6jmnbtq2tWbPGHcMHH3zgtuvbt6/99NNPLnjScXzxxRfBv/Nrr73WDaF566233N+6/uOnq/7y66+/uu8K9XLQ98306dNdkKXvIdF3mYKsoUOH2saNG23OnDnWqFEjd5+OUUGg2rF+/Xr3H7cbb7zRAoHAOb2OANIWYihiKEQP4ifip3QjAKRC7733XiBfvnyB7NmzB+rXrx+IiYkJ/PDDD+6+r7/+OpA7d+7A0aNHwx5z0UUXBV588UX3e7169QL33Xdf2P1169YNVK9ePXj7yiuvDDz44INh29xwww2Bjh07ut9/++23QKZMmQJ//PFH2DZNmjRx7ZHXXntN31iBX375JXj/hAkTAoULFw7e1v6031Bbtmxxj/v+++9P+xr06NEj0K5du3j3A6Rl3md6z549gWzZsgW2bt3qFv3d//nnn2F/j6VLlw6MHTs27PH6ex48eHDwtv6mPvjgg3j/xhLyd6Tnuuaaa8LW3XrrrYFrr7027Ll69eoVto2+q7p16xa27uabbw5cd9117ve5c+cGMmbMGNi4cWOcz9ulS5dA9+7dw9bp+06POXLkSOD99993330HDhyI9diVK1e6Nun1AxDdiKGIoZC+ET+FI35K++gphVRJme4dO3bYRx995DLfylrrSp66equL+cGDB133Su+KoJYtW7a4TLko061u4qHq1at3Vm1Q9l5dwi+55JKw51m0aFHweSRnzpyuu6lHVxR1BfJsqXtr7dq1XXd6Pc9LL73krhgC6Z0+8y1btnR/37rip98LFiyY7M87derUsL9tDXk53feFbut7JVSdOnXCbuv+K664ImydbnuP01ATXc3Xd0pc9N2m1yC0TSpOrCuE+n5r1qyZG4qjGjF33XWXa796GYiuSqqng7qfqzfCyy+/bHv37j3HVwhAWkQMRQyF6ED89H+In9I+Cp0j1dKYX32JaBk4cKCrfzB48GC77777XNASWpfAo9oECZUxY8ZYXTNVbM+joE3dQtW13ese6tGXnSeyOJ/GSp9tl091bVc39dGjR7svb9VwUPfXb7/99qz2A6RV6jbtdbOOrD+QkL/XxFA9g9D/eKn2wdlQLYSz4RUiPR1956jLurqYR1KNCNVZWLVqlfvumzdvnhuioi7w3333nfvuU/f4pUuXuvuee+4569+/v/sO8epDAIgexFDEUIgOxE/ET+kBPaWQZlSqVMkVndPVvl27dlnmzJmtXLlyYYt3dUAFMyODkW+++SbW1QWvmKboip7GMXtU4E/rdMUu8nnOZtYXfRFqP/HRGGnVSVCwqOfVc4ReSQTSO13N12xRCpR0dStS5N/rgQMH3NWv+P7uJL6/Pf3HJfTvOjToify+0G19r8RH90dOua7b+u6SatWq2e+//24///xznI/Xd5vqJER+32jxjkffeyrAOXLkSFc3QQV/P//88+B/5nRlcciQIa6Wgx6jOg0AQAwFpE/ET8RP6QE9pZDqaMpidZ9U5l9fQvriU4E6fYnccMMN7gtFV8I0A4TWqSunuql/8sknrmieuoSqWJ5midDv+pJRN821a9e6bpsezTbTp08f9zh1HR8zZoyb2cGj/bZv3946dOjgrr4p0Pnzzz/dtMpql7rIJoRmotDMMiqsp+7ycU2pqtkg3njjDbedsvIq+KnsPRl6RAtdSfe6aUdeVff+XtU1u1WrVu6qlq5yxbWdp1ChQi5IUjFLdflWr4Gzmc5YwZC+X/Q9oytoKqCr74r4PPzww64or74r9D318ccfuwKhKhYqV155pSusqaE1+r5RsLRhwwYXDCmofOSRR+zyyy93VzzVq0FXEhVk6fmff/55N8vM5s2b3T7y5ctnn376qeuarllq9B9IfTc1b97cHbtu6/vqTIEggPSFGIoYCtGF+In4KV1I6aJWQCQV33z00UcDtWrVCuTJkyeQM2fOQPny5QMDBgwIHD582G2jQnX3339/oFixYoEsWbIESpYsGWjfvn1g27Ztwf0MHz48ULBgwcD555/vivP169cvrEjn8ePHA/fee28gf/78gUKFCgVGjBgRVhjQ22bQoEGBCy+80D1P0aJFA23btg38+OOPwSKdamMoFQoM/dNSEcJmzZq5dmj9F198EauIoI757rvvdvvKmzeva5deg9D2UqQT6c2ZPtOhf4/79+93xTJVqFJ/71OmTIm3UKe8/PLLblsVulRR3oQ8p1eoc8iQIa7Ipr5/ihQpEhg/fnzYNpHP5Zk4cWKgbNmy7vvikksuCbzxxhth9//999+BTp06BQoUKOAKklapUiUwe/bs4P3Lly8Pfl+cd955gWrVqrnvMq9op45DBYxz5Mjh7ps+fbq7b926dYEWLVoELrjgAlf0VM/93HPPxXucANIfYihiKKR/xE/ET+lNBv2T0okxwA8aO6wpklUsDwDiuzLfq1cvtwAAiKEAnBnxExKLmlIAAAAAAADwHUkpAAAAAAAA+I7hewAAAAAAAPAdPaUAAAAAAADgO5JSAAAAAAAA8B1JKQAAAAAAAPiOpBQAAAAAAAB8R1IKAAAAAAAAviMpBQAAAAAAAN+RlAIAAAAAAIDvSEoBAAAAAADAdySlAAAAAAAA4DuSUgAAAAAAAPAdSSkAAAAAAAD4jqQUAAAAAAAAfEdSCgAAAAAAAL4jKQUA8N2MGTMsf/78dvDgQd+e87///rOSJUvaxIkTfXtOAACAkSNHWoUKFezUqVO+Pefff/9t5513nn366ae+PSeQGCSlgGSydu1au/POO6148eKWLVs2K1asmLu9bt06Sy9uueUWy5Ahgz3yyCMp3ZRUZevWre51GTVqVJLsT0mUKVOmWHpx8uRJGzx4sN1///12/vnn+/a8WbJksT59+tjw4cPt6NGjvj0vACBlpNdY7O6773Zxhrfkzp3bqlevbqNHj7Zjx46FbTt//nxr0KCB5cyZ0/Lly2c33XSTi1MiXXjhhWH79JZ77rnnjO358ssv3bbvvfdekhzfk08+abNmzbL04sCBA/b000+7eDljRv/++12gQAHr2rWrDRw40LfnBBKDpBSQDGbOnGm1atWyhQsXWqdOnVxSoUuXLvb555+79R9++KGlhxPsxx9/7IKYt99+2wKBQEo3Kd1Kb0kpfW42btxo3bt39/259ff4119/2bRp03x/bgCAf9J7LKYk25tvvukWJXHU+/ihhx6yjh07BreZPXu2XXPNNS5R9dRTT1nfvn1t0aJFLkn1559/xtpnjRo1gvv0ls6dO/t8ZOkvKfXqq6/aiRMn7Pbbb/f9uZVUXLVqlfvcA6lV5pRuAJDe/Prrr3bXXXdZ2bJl7auvvrILLrggeN+DDz5oDRs2dFfpfvzxRytTpoyvbTt8+LC7UpYU3n//fdfjRSfaq6++2h3rlVdeaX5Sb5esWbP6etUJ5+61116zK664wl259lvevHmtefPmLsmXEoE2ACD5RUMsljlzZncMnvvuu8/q1q1r06dPtzFjxrheYeqZo9dgyZIlLl6SVq1auaScklTqWRVK5+XQfSLp4p7WrVtb9uzZfX/uihUrWpUqVVzco3gdSI34nxyQxJ555hkXcLz00kthQZAULFjQXnzxRVdHR9uFdsNWj6NIjz/+uOsOHemtt96y2rVrW44cOdyVsdtuu822b98ets1VV13lTkIrV660Ro0auQDosccec1fQ1A7V14mk/6yXL18+Qcc5depUa9asmTVu3Nid8HTbs2LFCtfu119/Pdbj5s6d6+7T1TvPH3/84RIEhQsXdlf+Kleu7JJdcXUNf+edd2zAgAEucNIxqcfWP//8464OVq1a1Q0HUzf2a6+91n744YdYz//bb7+5wEBj7AsVKmS9e/cOtknPEerbb791Vxjz5MnjnktJNwV2SRmkKEBQO3TclSpVshdeeCFsG30uNPxAVza9rvR6bz379u2zXr16uVpJ2ke5cuVcF/HQmgWhwwn1ubzooovctpdeeql99913sdq1YcMGNzRTn199xvSZ6N+/v7vviy++cPv64IMPYj1OvY9037Jly+JNJM6ZM8eaNm0a6z49tmfPnvbuu++610LPXa9ePVuzZo27X387Oj4FdXoNIocfbNq0ydq1a2dFihRx25QoUcL9bezfvz9sO31uFy9e7D43AID0J1pisVC6QOfFBzo/6hynYYpt27YNJqREw/wUtymeisvx48ft0KFDlhwUh9SvX98NK9PrptcvcsifXms9v2JIL+7Re5OYmFH1KzVkX/GA4oImTZrYL7/8Eqtdiveuu+46N7xR8WG1atVs/PjxwVhN+/r+++/j7NGVKVMm16bT2bJli0t+RsY9obHZhAkTXPJQnw+9//ocaQTCE0884dqu1+qGG26IFbco3m7RooX7LGkbJVjjuuCmuEe91BnVgFQrACBJFStWLHDhhRfGu43uL1GiRPB2x44dA6VLl4613eDBg3X2CFs3bNiwQIYMGQK33nprYOLEiYEhQ4YEChYs6Pa5d+/e4HZXXnlloEiRIoELLrggcP/99wdefPHFwKxZswLz5893+/z444/D9rtz585ApkyZAkOHDj3jMf7xxx+BjBkzBt588013W4/Jly9f4NixY8FtypYtG7juuutiPbZTp05u2+PHj7vbu3btcq9FyZIl3X5eeOGFQOvWrV0bx44dG3zcF1984dZVqlQpUKNGjcCYMWMCI0aMCBw6dCjw3XffBS666KLAo48+6o5T+ylevHggT548rq2egwcPunblyJHDbTtu3LjAZZddFqhevbrbt57Ds3DhwkDWrFkD9erVC4wePdq1pVq1am7dt99+G+/rs2XLFre/Z555Jt7tLr300sDdd9/t9v3cc88Fmjdv7h73/PPPB7f54IMP3OtToUIF93prmTdvnrtPx642FShQIPDYY48FJk2aFOjQoYP7fDz44IOx2lOzZs1AuXLlAk8//XRg5MiR7nOjfXvvhfzwww+B3Llzu33GxMS417Nfv36BqlWruvtPnTrl3qt27drFOh6933of4rN48WLXlo8++ijWfVqv49H+n3rqKbfoPSxVqpR7TfTe670YMGCAex8aN24cfKw+e2XKlHF/f/obmTx5svvb0Gu8devWONsQ+TcAAEgf0nsspraed955sda3bdvW7XfDhg2BHTt2uN8HDRoUazudG3Wfns+jY1d8pOfXfbqtOCkhvBjt3XffjXc7vd733XefO6crjlMMpsfNnj07uI3inGzZsgUaNmwYjHuWLl2aqJhRcU/t2rXdfY8//nggZ86c7jlDKaZSTKHj1XutfT7wwAOBpk2buvsPHDjgXpe+ffvGOh7FJVdffXW8x/zWW2+5tvz4449h673YTDGt9qPXw4tvLr/8chfX1a9fP/Dss8+69ujzphjas3v3bhdPX3LJJS7efPnllwP9+/cPVKxY8bRtWLNmTbxtBVIKSSkgCe3bt8996d9www3xbuedQHWiO5tASP+5VrAwfPjwsO10ksmcOXPYegVCeqwSFaFOnjzpTugKpELpZKgT3ubNm894nKNGjXInaK/9P//8s3suJVA8SmhkyZIl8M8//4QlDvLmzRvo3LlzcF2XLl0CRYsWDfz1119hz3Hbbbe5hMThw4fDAgwllbx1nqNHj7rjijzZK6gJDeyU0NA+FBB6jhw54hI+oUkpJV4uvvjiQIsWLdzvHj2vEh/NmjVLkqRU5HGInlPHGKpy5cru/Yz0xBNPuKBUr38oJdz0Odm2bVtYe5RoCn0/Pvzww1hBcaNGjQK5cuUK/Pbbb2H7DH0d9N7qtdXn3bNnzx73GdRnNj5KFp0uMNJ67Vft9SiA13oF9d7nzWuD1nvbfv/99wkKiMUL1JWcAwCkL9EQi3lJqT///NMtv/zyS+DJJ590j9XFHe85FHM1adIk7LGKt/RYtWvFihXB9a1atXLnRcVIr7zyiksKaRtdmEqqpFRk3KOLYlWqVImV2FH7dIyRzjZmVIIm9ILp+PHjw2KQEydOuLhO73toMjEy7rn99ttdojM01ly1apXb12uvvRbvMSvRpO3+/fffsPVebKaEZWg85cU3umD633//hbVBCSvFvKKYW9vpwuyZKKmnbadPn37GbYGUwPA9IAn9+++/7meuXLni3c6739v+bIp2aliWhlapWLO3aLjSxRdf7IZWhVK3ZhX3jOze3b59e/voo4/Cnl/D79SlOiG1FbRty5Ytg8eh51YX7NAhfLfeeqvrlq42e+bNm+eGm+k+UR5CtalU30C/hx6TuiNr2JWKM4ZSl3d1UY48Tq+ulOpcaQpcDeNT9/fQx2vYmIb9afieR925u3XrFra/1atXu6Fgd9xxh9uX1yZ1J1fXb9WnSIopfUOPQ8eq59AQwc2bN8cachYXDXNTXQx1Nw997dRFXK+D2hlKr7u29eixoucTFT3VY9T1u1SpUmGPDR260KFDB1c0NbTLvWpYqIjnmWpR6PWU0HaE0usbOnxC9TFEw/JC/6689V7bNcRSNBRTQzbi4z23XisAQPoSLbGYYhINTdSioe0aFqgh797wej3H//73P1foPSYmxsU1GkaodmuInhw5ciS4P7WlX79+bpiY4gCVDVAspvpUv//+uyWF0Lhn7969LtZRLBIZ68UlMTGjXvfQoYuRcY+G5Gl4ncogqOZkfHHPjh07wt5bvVc6HsUnZ4p7VP/rdLMN33zzzcEYJjS+UTylx4Wu1/vmDRX02qtyGHENAw1F3IPUjqQUkIQSGuDofp3sNAb8bCig0IlYQY8XiHjL+vXrbc+ePWHbKwETejIOPbkqEPECF82EpkBFRUHPRM+jk7gKVWtcvreojoFOjKrx5NUsqFChgktWePS7jtkrtKgkiJJUXs2H0MUL4CKPKa5ATcHh2LFj3eui4E/PoX1oDH9ockf1pFRPKbI2hIK5yNfZS4BFtmvy5MkuIZOQpNGZqD6VEkiqX6DgQvtXUCkJ2b/aqURbZBu9ugWRr11koskLUhQYhgZpqn8RH72vqkcVmoTU75dffnms1/J0TlfXILKNXqCmmllxrffars9Fnz593Puj918Bqmo0xPU6es8dV40QAEDaFg2xmHdRbf78+W7RBSXVIVJcodpEnqFDh7oZB0eOHGmXXHKJ1alTxyU6tE5OlygRvTaqu6kLTpE1NxNLcaJiBbVddbj0mqmWZkJinsTEjGeKe1QQPyFxj2oyFS1aNBj3KO7UzNNK4J0p+XkmiY17dBFTCbEhQ4a4z7DaovpXilEjEfcgtWP2PSAJ6YSh2U6UDImP7lfhQi9IOd1JQr1dQukkqG0/++wzV1gxUmRwEdmjyKMi0urZpCKdCor0U23R1bMz0baiQEVLJF3F8oID9cxRgUldmdFJW1fhNB2ud+XH622kq0GhUxiHUrHJMx2TCk0OHDjQXdlTUUgFOrpCqCtfienR5D1GBVA1PXJc4gvkEkKBkHoFKcGjq5AKPvQefPrppy7BlpB2axsFSrqyGRcFoKHi+sxIYgpf6nOjGYx09VQB0DfffGPPP//8GR+n4qZeUKW/gUina2NC2q5ZhFQMVdN8q1feAw88YCNGjHBtC30uL6A72/+IAABSv2iIxUTPHdekIaG0P12sUSz2888/u+Lgig3UE1xx0pkuJHmJkaSYGOTrr792PdVV8H3ixIkuyZMlSxaXSNFEKWeSmJgxqeIe7Uev2csvv+zaruSfek4lZKZCxT1K7CkJGlcCK7Fxjz6D6rGuGEdFzNVTXHGwYiGtC/0cEvcgtSMpBSQxdSvWrC6a3atBgwZxnpQ144Z6dYReudHVn0jq2RNKvXx0MlKvkMiEw9lSAKQ27Ny50wUDGo53uiFVHj23ttWMe5p6OJISQrqKFJqU0hUcJaoUCKkXlWan8ejqlk7QCvjOFFjFRydltemVV14JW6/XNPQEXLp0aTcTjY4jNPiMnIlFr7NoFr9zaVd8FEAomaNEXehVsshu//EFymqnZg9KqjZ6V1d/+umnM26r91GfH10p1JVeBZbesMz4KAkn6i6v2RKTmvapRTM0Ll261PXomzRpkg0bNiy4jZ5bNPsQACD9Sc+xWGIoBtMiirnU80nDwc50gc3rQR05g2FiKBZUDyklT9Sr3aOkVELinqSKGeOK9xT3nGmfeq+U8FH8poSk2qNe2WcT90QmzZKCep5pUeJRnyENC9XMil27dg1uQ9yD1I7he0ASe+ihh9yUrhrH79XP8ehK0z333OOSHT179gw7KarrcuhVPQUoXpduz4033uiunCjRE3mVR7cjny8+6rGkk756uyjoSMjVHl0ZUhCnpNNNN90Ua1FSQkkVXT3yTn5KEGjYnhZdFdMVMo+ORV2PFajElQhRV+2E0H4iXw/VW4qcolfBg9YpEeQ5evSou/IVSlcu9Z5oml4lfRLbrjO1WULbrc9AXMGZhvfFFSjrauqyZctcgBdJ2+vK3NlQgKX3R1Mrb9u2Ley+yNdXyb5rr73WXdlVIvKaa65J0BU4vba6cqtpjJOSEp6Rx6vPnq4ER3Zl1/AIffZVewMAkP6k51jsXCm20XH17ds37DWJ7BGmOkVPPfWUO2frwt+50mumYw19HsWUs2bNSlDck1QxY6hatWq55OK4ceNiPV/ke6uEkhb1PFMbdHEutObT6XixRlLHPer9FNlGr3d/XHGPehBWrlw5SdsAJBV6SgFJTF2h33jjDRdo6D/FGrevE55OvOrJo5OIrmCE1kbSie2RRx6xtm3buiFHKtSsMfa6AhdatFEBk3p8qGCl9temTRt31UhXQBQ0de/e3QViCU1AKJGg5I3qGenq3Jko+aCg4HTbqlt2//793fF5Vx+VqBo0aJC7OqbXwitI7lHAo0SWrtip4Li6sys40nEvWLAgQV3Gr7/+elc3QckyFQhds2aNa2toXQVRcKohZnpvFAB69QHUttArc2qjgg4lXXQC135VE0IJLbVVgayulJ2Jiosq6RVJ71vz5s1doKeruWqXkl9KjhUqVMgFi5GJHH0e9N7r86VtVJfr4Ycfdgk2Hb+GrWk7FT7V8av3mD4jZ9tV+9lnn3VXlRWo6fPkfXY/+eQTVwA+8qqhkpFeL7mE0GutY9d7q/csqXz++efuPxcqGKq/GyWo3nzzzWAQG0r1N9SDyhtKCABIX9JzLHY2dOFICRRdcFKvKJ17Z8yY4XrRhJ4bFUvomHRO12ui2Eu9bpT8UYkEFXFPCD3Xhg0bYq3XcDsdm8oV6Hg1FE71n1T7Ue9V5FBLxTNqq7bXUEy1SXFiUsSMoRTv6T1WLKaEjuI9xYY6hrVr18a66Ke4x3tvE5pAVCyqmlVqn4bXJZXXX3/dDSXU51WfSQ0PVBypGPW6666LFffoGKkphVQrReb8A6KAppu944473FT2GTNmdFOxZs+ePbB27do4t583b56bFlfTvZYvXz7w1ltvxZqG2PP+++8HGjRo4KbM1VKhQoVAjx49Ahs3bgybhrhy5crxtnHGjBlu/927dz/j8Wja3gIFCrgpguOjqXVr1qwZvL1p0yb3HFoWL14c52N2797t2l+yZMlAlixZ3GumKYxfeumlBE03rOlx+/bt66YJzpEjR+CKK64ILFu2zL0GWkJpmuWWLVu67TQNrx6n11P7/uabb8K2/f777wM33nijO+5s2bK5KYNvueWWwMKFC+N9Dbxpfk+3vPnmm267jz76yE3drM/FhRde6KZifvXVV9022odn165drs25cuVy94Uek6YY1vTB5cqVc5+dggULBurXrx8YNWqUe89C2/PMM8/EaqvW63MW6qeffgq0bdvWTSWttunzOHDgwFiP1TTL+fLlc9MwHzlyJJBQM2fOdNNWb9u2LVZb9DmI67WMbHvk50Hva+fOnQMXXXSRa3P+/PkDjRs3DixYsCDscZp2Wa/T5MmTE9xeAEDalN5iMU/Hjh3dc57Jt99+G2jUqJE7V+u4q1evHpg0aVLg1KlTYdutWLEi0KpVq0Dx4sXdsZ9//vnu2NS2hPDOyadbvv76a7fdK6+8Erj44otdTKXX67XXXovz9d2wYYNrt2I13afjTYqY0Ysp9LyhFJ82a9bMxVl6XRWbPffcc7GOc+fOnYFMmTIFLrnkksDZGDNmjHtNDx8+fNbxjUdt1vrvvvvO3V61alXg9ttvD5QqVcq9noUKFQpcf/317r0MtX79eve4yHgISE0y6J+UTowB0UBX7NSbRVdW9HtqoILQusKnWVu8aXKjkbptq2i7inarRxQSRr2RdAVTV98i63nFR133dXVTww8T2sMqKd9rzUKkQvOnKz4LAEifiMVwLjRxj3pSaQSAJthJKA0LVY8pxR/ezId+0aQ/+mx5pQuA1IiaUoBP1OVXM4FpSNFjjz1mqYG6+eokGVcR0PRKRblDaXidiqFqamcSUmdHdSBUw0Gf7bOhIXUauqdu+3HV7Eouqo+hoQAqgk5CCgCiD7EYzsWUKVPchbW77rrrrB6nek6aKVmzOidmVujEUn0zlaPQ0EwSUkjN6CkFRCHVUdD4fQVm48ePd7UTooXqRGm2O9UO0JUr1VtQ3QDVllKNA5zZt99+6z4/6uWkmlWhtTYAAMCZRXMsltaobqVmb1bvKBV9nzlzZko3CUhXSEoBUUhXS1TwUkXIJ02alKDZQ9ILDd/SVSMVJ/WGkenqlV4LJIyGPiiZp8SerhqqgCcAAEi4aI7F0pqrrrrKli5d6iZJUfxDz3ogaZGUAgAAAAAAgO+oKQUAAAAAAADfkZQCAAAAAACA70hKAQAAAAAAwHdU1EsATd25Y8cOy5UrF9NpAgAQZVR+899//7VixYpZxoxczzsbxFAAAESnQALjJ5JSCaBgqmTJkindDAAAkIK2b99uJUqUSOlmpCnEUAAARLftZ4ifSEolgK7ueS9m7ty5U7o5AADARwcOHHCJFS8eQMIRQwEAEJ0OJDB+IimVAF53cwVTBFQAAEQnhp+dPWIoAACiW4YzxE8URgAAAAAAAIDvSEoBAAAAAADAdySlAAAAAAAA4DuSUgAAAAAAAPAdSSkAAAAAAAD4jqQUAAAAAAAAfEdSCgAAAAAAAL4jKQUAAJDGffXVV9aqVSsrVqyYZciQwWbNmhXv9nfffbfbLnKpXLlycJvHH3881v0VKlTw4WgAAEC0ICkFAACQxh06dMiqV69uEyZMSND248ePt507dwaX7du3W/78+e3mm28O205JqtDtFi9enExHAAAAolHmlG4AAAAAzs21117rloTKkyePWzzqWbV3717r1KlT2HaZM2e2IkWKJGlbAQAAPPSUAgAAiHKvvPKKNW3a1EqXLh22ftOmTW5IYNmyZa19+/a2bdu2FGsjAABIf+gpBQAAEMV27Nhhn332mU2bNi1sfd26dW3KlClWvnx5N3RvyJAh1rBhQ/vpp58sV65cce7r2LFjbvEcOHAg2dsPAADSLpJSAAAAUez111+3vHnzWps2bcLWhw4HrFatmktSqSfVjBkzrEuXLnHua8SIES55BQAAkBAkpVKJ/QRwQKLkGTw4pZsAAGlWIBCwV1991e666y7LmjVrvNsqcXXJJZfYL7/8ctptYmJirE+fPmE9pUqWLJmkbQaASDM37kzpJgBp1o3li6bo81NTCgAAIEotWrTIJZlO1/Mp1MGDB+3XX3+1okVPH7xmy5bNcufOHbYAAACcDkkpAACANE4Jo9WrV7tFtmzZ4n73CpOrB1OHDh3iLHCuYXlVqlSJdd9DDz3kklZbt261pUuXWtu2bS1Tpkx2++23+3BEAAAgGjB8DwAAII1bsWKFNW7cOHjbG0LXsWNHV6xchcojZ87bv3+/vf/++zZ+/Pg49/n777+7BNTff/9tF1xwgTVo0MC++eYb9zsAAEBSICkFAACQxl111VWuPtTpKDEVKU+ePHb48OHTPuadd95JsvYBAADEheF7AAAAAAAA8B1JKQAAAAAAAPiOpBQAAAAAAAB8R00pAAAApEn7hwxJ6SYAaVaewYNTugkAQE8pAAAAAAAA+I+kFAAAAAAAAHxHUgoAAAAAAAC+IykFAAAAAAAA35GUAgAAAAAAgO9ISgEAAAAAAMB3JKUAAAAAAADgO5JSAAAAAAAA8F1m/58SAHA6MzfuTOkmAGnSjeWLpnQTAAAAcJboKQUAAAAAAADfkZQCAAAAAACA70hKAQAAAAAAwHckpQAAAAAAAOA7klIAAAAAAADwHUkpAAAAAAAA+I6kFAAAAAAAAHxHUgoAAAAAAAC+S3NJqa+++spatWplxYoVswwZMtisWbPO+Jgvv/zSatWqZdmyZbNy5crZlClTfGkrAAAAAAAA0klS6tChQ1a9enWbMGFCgrbfsmWLtWzZ0ho3bmyrV6+2Xr16WdeuXW3u3LnJ3lYAAAAAAADELbOlMddee61bEmrSpElWpkwZGz16tLtdsWJFW7x4sY0dO9ZatGiRjC0FAAAAAABAuukpdbaWLVtmTZs2DVunZJTWn86xY8fswIEDYQsAAAAAAACSTrpPSu3atcsKFy4ctk63lWg6cuRInI8ZMWKE5cmTJ7iULFnSp9YCAAAAAABEh3SflEqMmJgY279/f3DZvn17SjcJAAAAAAAgXUlzNaXOVpEiRWz37t1h63Q7d+7cliNHjjgfo1n6tAAAAAAAACB5pPueUvXq1bOFCxeGrZs/f75bDwAAAAAAgJSR5pJSBw8etNWrV7tFtmzZ4n7ftm1bcOhdhw4dgtvfc889tnnzZuvXr59t2LDBJk6caDNmzLDevXun2DEAAAAAAABEuzSXlFqxYoXVrFnTLdKnTx/3+6BBg9ztnTt3BhNUUqZMGfvkk09c76jq1avb6NGjbfLkyW4GPgAAAAAAAKSMNFdT6qqrrrJAIHDa+6dMmRLnY77//vtkbhkAAAAAAADSbU8pAAAAAAAApH0kpQAAAAAAAOA7klIAAAAAAADwHUkpAACANO6rr76yVq1aWbFixSxDhgw2a9aseLf/8ssv3XaRy65du8K2mzBhgl144YWWPXt2q1u3ri1fvjyZjwQAAEQTklIAAABp3KFDh9wsw0oinY2NGze6mYu9pVChQsH7pk+f7mY5Hjx4sK1atcrtX7MX79mzJxmOAAAARKM0N/seAAAAwl177bVuOVtKQuXNmzfO+8aMGWPdunWzTp06uduTJk2yTz75xF599VV79NFHz7nNAAAA9JQCAACIUjVq1LCiRYtas2bNbMmSJcH1x48ft5UrV1rTpk2D6zJmzOhuL1u27LT7O3bsmB04cCBsAQAAOB2SUgAAAFFGiSj1fHr//ffdUrJkSbvqqqvcMD3566+/7OTJk1a4cOGwx+l2ZN2pUCNGjLA8efIEF+0XAADgdBi+BwAAEGXKly/vFk/9+vXt119/tbFjx9qbb76Z6P3GxMS4OlQe9ZQiMQUAAE6HpBQAAADssssus8WLF7vfCxYsaJkyZbLdu3eHbaPbRYoUOe0+smXL5hYAAICEYPgeAAAAbPXq1W5Yn2TNmtVq165tCxcuDN5/6tQpd7tevXop2EoAAJCe0FMKAAAgjTt48KD98ssvwdtbtmxxSab8+fNbqVKl3LC6P/74w9544w13/7hx46xMmTJWuXJlO3r0qE2ePNk+//xzmzdvXnAfGobXsWNHq1OnjutFpcccOnQoOBsfAADAuSIpBQAAkMatWLHCGjduHLzt1XVSUmnKlCm2c+dO27ZtW9jsen379nWJqpw5c1q1atVswYIFYfu49dZb7c8//7RBgwa54uaaqW/OnDmxip8DAAAkFkkpAACANE4z5wUCgdPer8RUqH79+rnlTHr27OkWAACA5EBNKQAAAAAAAPiOpBQAAAAAAAB8R1IKAAAAAAAAviMpBQAAAAAAAN+RlAIAAAAAAIDvSEoBAAAAAADAdySlAAAAAAAA4DuSUgAAAAAAAPAdSSkAAAAAAAD4jqQUAAAAAAAAfEdSCgAAAAAAAL4jKQUAAAAAAADfkZQCAAAAAACA70hKAQAAAAAAwHckpQAAAAAAAOA7klIAAAAAAADwHUkpAAAAAAAA+I6kFAAAAAAAAHxHUgoAAAAAAAC+IykFAAAAAAAA35GUAgAAAAAAgO9ISgEAAAAAAMB3JKUAAAAAAADgO5JSAAAAAAAA8B1JKQAAAAAAAPiOpBQAAAAAAAB8R1IKAAAAAAAAviMpBQAAAAAAAN+RlAIAAAAAAIDvSEoBAAAAAADAdySlAAAAAAAA4DuSUgAAAAAAAPBdmk1KTZgwwS688ELLnj271a1b15YvXx7v9uPGjbPy5ctbjhw5rGTJkta7d287evSob+0FAAAAAABAGk9KTZ8+3fr06WODBw+2VatWWfXq1a1Fixa2Z8+eOLefNm2aPfroo2779evX2yuvvOL28dhjj/nedgAAAAAAAKTRpNSYMWOsW7du1qlTJ6tUqZJNmjTJcubMaa+++mqc2y9dutSuuOIKu+OOO1zvqubNm9vtt99+xt5VAAAAacFXX31lrVq1smLFilmGDBls1qxZ8W4/c+ZMa9asmV1wwQWWO3duq1evns2dOzdsm8cff9ztK3SpUKFCMh8JAACIJmkuKXX8+HFbuXKlNW3aNLguY8aM7vayZcvifEz9+vXdY7wk1ObNm+3TTz+16667Ls7tjx07ZgcOHAhbAAAAUqtDhw65nuMqb5DQJJaSUoqHFCM1btzYJbW+//77sO0qV65sO3fuDC6LFy9OpiMAAADRKLOlMX/99ZedPHnSChcuHLZetzds2BDnY9RDSo9r0KCBBQIBO3HihN1zzz2nHb43YsQIGzJkSLK0HwAAIKlde+21bkko1doM9eSTT9qHH35oH3/8sdWsWTO4PnPmzFakSJEkbSsAAECa7SmVGF9++aULtiZOnOhqUKnL+ieffGJPPPFEnNvHxMTY/v37g8v27dt9bzMAAIBfTp06Zf/++6/lz58/bP2mTZvckMCyZcta+/btbdu2bfHuh97mAAAgXfeUKliwoGXKlMl2794dtl63T3clb+DAgXbXXXdZ165d3e2qVau6bu7du3e3/v37u+F/obJly+YWAACAaDBq1Cg7ePCg3XLLLcF1mt14ypQpbvZiDd1TL/KGDRvaTz/9ZLly5YpzP/Q2BwAA6bqnVNasWa127dq2cOHCsKt7uq0inXE5fPhwrMSTElui4XwAAADRSrMUK5E0Y8YMK1SoUHC9hgPefPPNVq1aNTfLsepP7du3z213OvQ2BwAA6bqnlPTp08c6duxoderUscsuu8zVRVDPJ83GJx06dLDixYu7q3Wiwp2asU81EnTV75dffnG9p7TeS04BAABEm3feecf1JH/33XfDJpGJS968ee2SSy5xcdTp0NscAACk+6TUrbfean/++acNGjTIdu3aZTVq1LA5c+YEi5+r3kFoz6gBAwa4aYz1848//nDTHyshNXz48BQ8CgAAgJTz9ttvW+fOnV1iqmXLlmfcXsP7fv31V1cSAQAAIGqTUtKzZ0+3nK6weSjNHDN48GC3AAAApDdKGIX2YNqyZYutXr3aFS4vVaqUG1anC3NvvPFGcMieep2PHz/e9SLXRT7JkSOH5cmTx/3+0EMPuYt4pUuXth07drg4Sj3Mb7/99hQ6SgAAkN6kuZpSAAAACLdixQpXpkCLV+pAv6tXuahQeejMeS+99JKdOHHCevToYUWLFg0uDz74YHCb33//3SWgVOhcBdALFChg33zzjetxDgAAENU9pQAAAPB/rrrqqngnb9EsevH1Ko+LhvUBAAAkJ3pKAQAAAAAAwHckpQAAAAAAAOA7klIAAAAAAADwHUkpAAAAAAAA+I6kFAAAAAAAAHxHUgoAAAAAAAC+IykFAAAAAAAA35GUAgAAAAAAgO9ISgEAAAAAAMB3JKUAAAAAAADgu8zJ/QSnTp2yRYsW2ddff22//fabHT582C644AKrWbOmNW3a1EqWLJncTQAAAEhViI8AAACSsafUkSNHbNiwYS6ouu666+yzzz6zffv2WaZMmeyXX36xwYMHW5kyZdx933zzTXI1AwAAINUgPgIAAPChp9Qll1xi9erVs5dfftmaNWtmWbJkibWNrgxOmzbNbrvtNuvfv79169YtuZoDAACQ4oiPAAAAfEhKzZs3zypWrBjvNqVLl7aYmBh76KGHbNu2bcnVFAAAgFSB+AgAAMCH4XtnCrhC6SrhRRddlFxNAQAASBWIjwAAAHyefW/OnDm2ePHi4O0JEyZYjRo17I477rC9e/f60QQAAIBUhfgIAABEO1+SUg8//LAdOHDA/b5mzRrr27evK+C5ZcsW69Onjx9NAAAASFWIjwAAQLRLtppSoRRcVapUyf3+/vvv2/XXX29PPvmkrVq1ygVfAAAA0Yb4CAAARDtfekplzZrVDh8+7H5fsGCBNW/e3P2eP3/+4BVCAACAaEJ8BAAAop0vPaUaNGjguqFfccUVtnz5cps+fbpb//PPP1uJEiX8aAIAAECqQnwEAACinS89pZ5//nnLnDmzvffee/bCCy9Y8eLF3frPPvvMrrnmGj+aAAAAkKoQHwEAgGjnS0+pUqVK2ezZs2OtHzt2rB9PDwAAkOoQHwEAgGjnS1LKs2fPHrecOnUqbH21atX8bAYAAECqQXwEAACilS9JqZUrV1rHjh1t/fr1FggE3LoMGTK43/Xz5MmTfjQDAAAg1SA+AgAA0c6XpFTnzp3tkksusVdeecUKFy7sAi0AAIBoRnwEAACinS9Jqc2bN9v7779v5cqV8+PpAAAAUj3iIwAAEO18mX2vSZMm9sMPP/jxVAAAAGkC8REAAIh2vvSUmjx5squZ8NNPP1mVKlUsS5YsYfe3bt3aj2YAAACkGsRHAAAg2vmSlFq2bJktWbLEPvvss1j3UcgTAABEI+IjAAAQ7XwZvnf//ffbnXfeaTt37nTTHYcuBFwAACAaER8BAIBo50tS6u+//7bevXu7mWUAAABAfAQAAOBLUurGG2+0L774wo+nAgAASBOIjwAAQLTzpabUJZdcYjExMbZ48WKrWrVqrEKeDzzwgB/NAAAASDWIjwAAQLTzbfa9888/3xYtWuSWyEKeBF0AACDaEB8BAIBo58vwvS1btpx22bx5sx9NAAAASFWSMj766quvrFWrVlasWDGX0Jo1a9YZH/Pll19arVq1LFu2bFauXDmbMmVKrG0mTJhgF154oWXPnt3q1q1ry5cvP6t2AQAApHhSCgAAAMnn0KFDVr16dZdESgglvlq2bGmNGze21atXW69evaxr1642d+7c4DbTp0+3Pn362ODBg23VqlVu/y1atLA9e/Yk45EAAIBokmxJqaeeesqOHDmSoG2//fZb++STT5KrKQAAAKlCcsVH1157rQ0bNszatm2boO0nTZpkZcqUsdGjR1vFihWtZ8+edtNNN9nYsWOD24wZM8a6detmnTp1skqVKrnH5MyZ01599dUEPQcAAECKJaXWrVtnpUqVsvvuu88+++wz+/PPP4P3nThxwn788UebOHGi1a9f32699VbLlStXcjUFAAAgVUgt8dGyZcusadOmYevUC0rr5fjx47Zy5cqwbTJmzOhue9sAAACk2kLnb7zxhv3www/2/PPP2x133GEHDhywTJkyuboFhw8fdtvUrFnTdRW/++67Xa0CAACA9Cy1xEe7du2ywoULh63TbbVHPbn27t1rJ0+ejHObDRs2nHa/x44dc4tH+wMAAEiR2fdUe+Dll1+2F1980V35++2331ygU7BgQatRo4b7CQAAEE3Sc3w0YsQIGzJkSEo3AwAApBHJmpQK7e6tIEsLAAAAUjY+KlKkiO3evTtsnW7nzp3bcuTI4XpvaYlrGz32dGJiYlxx9NCeUiVLlkyGIwAAAOkBs+8BAABEmXr16tnChQvD1s2fP9+tl6xZs1rt2rXDtjl16pS77W0TFw1DVGIrdAEAADgdklIAAABp3MGDB2316tVukS1btrjft23bFuzB1KFDh+D299xzj23evNn69evnakSpuPqMGTOsd+/ewW3U40nDDF9//XVbv3693XvvvXbo0CE3Gx8AAECaGb4HAACA5LNixQpr3Lhx8LY3hK5jx442ZcoU27lzZzBBJWXKlLFPPvnEJaHGjx9vJUqUsMmTJ7sZ+Dya/U+zAw4aNMgVRtcwwzlz5sQqfg4AABB1PaUmTJhgF154oZuVpm7durZ8+fJ4t9+3b5/16NHDihYt6rqWX3LJJfbpp5/61l4AAIDkctVVV1kgEIi1KCEl+vnll1/Gesz333/vZsv79ddf3Wx/kXr27OkKsWubb7/91sVcAAAAaSop9dprrwWnOU4K06dPd1cABw8ebKtWrXKz2OjK3p49e+Lc/vjx49asWTPbunWrvffee7Zx40bXHb148eJJ1iYAAICUjI8AAADSGl+SUo8++qibqaVLly62dOnSc97fmDFjrFu3bq6mQaVKlWzSpEmWM2dOe/XVV+PcXuv/+ecfmzVrll1xxRWuh9WVV17pklkAAAApIanjIwAAgLTGl6TUH3/84Ypk/vXXX66reIUKFezpp5929QnOlno9rVy50po2bRo2pbJuL1u2LM7HfPTRR26mGA3fUx2EKlWq2JNPPmknT56Mc3t1UdcUxqELAABAao2PAAAA0iJfklKZM2e2tm3b2ocffmjbt293vZymTp1qpUqVstatW7v1mmY4IRS4KZkUWWRTt08XxGl2GQ3b0+NUR2rgwIE2evRoGzZsWJzbjxgxwvLkyRNcSpYsmYijBgAA8Cc+AgAASIt8L3Su5FGDBg1czyX1cFqzZo2bGeaiiy6KVYAzqSigK1SokL300ktWu3ZtN5tM//793bC/uGja5P379wcXBYoAAADpKT4CAACImqTU7t27bdSoUVa5cmXXRV1D4mbPnm1btmxx3ddvueUWF3ydScGCBS1Tpkxuf5H7V12GuGjGPc22p8d5Klas6HpWaThgJM3Olzt37rAFAAAgtcZHAAAAaZEvSalWrVq5IXCajlhd0xVkvf3228G6UOedd5717ds3QT2SsmbN6no7LVy4MKwnlG7r6mJcVNz8l19+CesC//PPP7tklfYHAADgt6SMjwAAANKizH48iYbOLVq06LRJI7ngggvcVcGE6NOnj7tqWKdOHbvsssts3LhxdujQITcbn3To0MGKFy/uakPJvffea88//7w9+OCDdv/999umTZtcofMHHnggiY4QAAAgZeMjAACAtMaXpNQrr7xyxm0yZMhgpUuXTtD+VBPqzz//tEGDBrkheDVq1LA5c+YEi59v27bN1WPw6Crk3LlzrXfv3latWjWXsFKC6pFHHjmHowIAAEg98REAAEBa40tSSj2SypUrF6tnknovaVidejqdrZ49e7olLnEVBNVVyG+++easnwcAACCtxEcAAABpiS81pd5//31X1ylS/fr17b333vOjCQAAAKkK8REAAIh2viSl/v77b8uTJ0+s9ZrV7q+//vKjCQAAAKkK8REAAIh2viSl1DVdNZ/+v/buBVrLqkwc+MNFOIDDRZHrkAheiKWAwoJwNE1JNFd5D12OIBpOGjM6jDccBRUNNUWsSApDZbKBbLSmi6iROJooE5i30lFHxBs3DUhIcMH3X3vPOufPBweEgpdzzvf7rfV2znvfH8tv95zn3e+zN/fQQw9Fjx49imgCAECdIj4CACpdITWl0mx5qf5TKk5+zDHH5G1z5syJ2267Tb0EAKAiiY8AgEpXSFLqvPPOi3Xr1sWNN94YEyZMyNu6d+8ed955ZwwfPryIJgAA1CniIwCg0hWSlEouvPDCvKSngS1atIg999yzqFsDANRJ4iMAoJIVlpSqts8++xR9SwCAOk18BABUokIKnS9dujTOOeec6NKlSzRt2jSaNGlStgAAVBrxEQBQ6QoZKXXuuefG4sWL45prronOnTtHo0aNirgtAECdJT4CACpdIUmpJ598Mp544ono169fEbcDAKjzxEcAQKUr5PW9bt26RalUKuJWAAD1gvgIAKh0hSSlJk+eHFdeeWUsWrSoiNsBANR54iMAoNIV8vresGHDYu3atdGzZ89o2bJl7LHHHmX7P/jggyKaAQBQZ4iPAIBK17SoJ4EAAPx/4iMAoNIVkpQaMWJEEbcBAKg3xEcAQKUrpKZU8vrrr8fVV18dZ511Vixbtixve+ihh+Kll14qqgkAAHWK+AgAqGSFJKUef/zxOOSQQ+KZZ56JBx54ID788MO8/bnnnovx48cX0QQAgDpFfAQAVLpCklJpZpkbbrghHn300WjWrFnN9mOOOSaefvrpIpoAAFCniI8AgEpXSFLqhRdeiFNOOWWL7R06dIgVK1YU0QQAgDpFfAQAVLpCklJt27aN9957b4vtzz77bHTt2rWIJgAA1CniIwCg0hWSlDrzzDPjiiuuiCVLlkSjRo1i48aN8Zvf/CYuvfTSGD58eBFNAACoU8RHAEClKyQp9fWvfz169eoV3bp1y0U8e/fuHZ/97Gfj8MMPzzPOAABUGvERAFDpmhZxk1S8c9q0aTFu3LhcPyEFXoceemgccMABRdweAKDOER8BAJWukJFS119/faxduzY/CfzCF74QX/7yl3PA9ec//znvAwCoNOIjAKDSFZKUuu666/LTv82lQCztAwCoNDs7PpoyZUp07949qqqqYtCgQTF//vytHnv00UfnOlabLyeeeGLNMeeee+4W+48//vgdbhcAwG59fa9UKuVAZnPPPfdc7LXXXkU0AQCgTtmZ8dGsWbNizJgxMXXq1JyQmjx5cgwdOjReeeWV6NChwxbHP/DAA7F+/fqa9ffffz/69u0bZ5xxRtlxKQl1991316w3b958h9oFALDbklLt2rWrebJ24IEHlgVeGzZsyE8Hv/rVr+7KJgAA1Cm7Ij6aNGlSjBo1KkaOHJnXU3LqF7/4RUyfPj2uvPLKLY7fPOk1c+bMaNmy5RZJqZSE6tSp0w5+QgCAOpCUSk/p0lPA8847Lw9Db9OmTVlxzzTEfPDgwbuyCQAAdcrOjo/SiKcFCxbE2LFja7Y1btw4hgwZEvPmzduua3z/+9+PM888M1q1alW2fe7cuXmkVUqkHXPMMXHDDTfE3nvvvd1tAwDYbUmpESNG5J/77bdfnt54jz322JW3AwCo83Z2fLRixYo8wqpjx45l29P6yy+//Innp9pTL774Yk5Mbf7q3qmnnprb+frrr8dVV10VJ5xwQk50NWnSpNZrrVu3Li/VVq9e/Rd/LgCg4SukptRRRx1V8/tHH31UVsMgad26dRHNAACoM+pKfJSSUYccckgMHDiwbHsaOVUt7e/Tp0/07Nkzj5469thja73WxIkTTWIDANSt2ffSLDKjR4/Ow7/TsPA0BHzTBQCg0uys+Kh9+/Z55NLSpUvLtqf1T6oHtWbNmlxP6vzzz//E+/To0SPf67XXXtvqMekVwlWrVtUsb7311nZ/DgCg8hSSlLrsssvi17/+ddx55525YOZdd92Vn6J16dIlZsyYUUQTAADqlJ0VH6U6VP379485c+bUbNu4cWNe/6TaVPfff39+3e7v//7vP/E+b7/9dp6lr3Pnzls9Jn2ONMJr0wUAYLe+vvezn/0sB1dHH310nhXmyCOPjP333z/23XffuO++++Lss88uohkAAHXGzoyPxowZk2tVDRgwIL+Gl4qpp1FQ1bPxDR8+PLp27Zpfr9v81b2TTz55i+LlaQbAlCA77bTT8mirVFPq8ssvz+0bOnToTvoXAAAqXSFJqQ8++CAP+U7SE7O0nhxxxBFx4YUXFtEEAIA6ZWfGR8OGDYvly5fHuHHjYsmSJdGvX7+YPXt2TfHzxYsX5xn5NvXKK6/Ek08+GY888sgW10uvAz7//PNx7733xsqVK/PoreOOOy4mTJiQR0MBANSbpFQKuN5444341Kc+Fb169Yof/ehH+SleekLYtm3bIpoAAFCn7Oz4KNWnSkttUnHyzR100EFRKpVqPb5Fixbx8MMP73AbAADqXE2pNHT8ueeey79feeWVMWXKlKiqqop//ud/zvUUAAAqjfgIAKh0hYyUSsFVtSFDhsTLL78cCxYsyHUJ0vTCAACVRnwEAFS6QkZKbS4V8Dz11FNjr732igsuuGB3NAEAoE4RHwEAlWa3JKWqpWmF06wvAAD8H/ERAFApdmtSCgAAAIDKJCkFAAAAQOEkpQAAAABoWLPvpWKd27Jy5cpdeXsAgDpHfAQAUEBSqk2bNp+4f/jw4buyCQAAdYr4CACggKTU3XffvSsvDwBQ74iPAAD+j5pSAAAAABSu3ialpkyZEt27d4+qqqoYNGhQzJ8/f7vOmzlzZjRq1ChOPvnkXd5GAAAAABpQUmrWrFkxZsyYGD9+fCxcuDD69u0bQ4cOjWXLlm3zvEWLFsWll14aRx55ZGFtBQAAAKCBJKUmTZoUo0aNipEjR0bv3r1j6tSp0bJly5g+ffpWz9mwYUOcffbZcd1110WPHj0KbS8AAAAA9TwptX79+liwYEEMGTKkZlvjxo3z+rx587Z63vXXXx8dOnSI888//xPvsW7duli9enXZAgAAAEAFJ6VWrFiRRz117NixbHtaX7JkSa3nPPnkk/H9738/pk2btl33mDhxYp6OuXrp1q3bTmk7AAAAAPU0KbWj/vSnP8U555yTE1Lt27ffrnPGjh0bq1atqlneeuutXd5OAAAAgErSNOqZlFhq0qRJLF26tGx7Wu/UqdMWx7/++uu5wPkXv/jFmm0bN27MP5s2bRqvvPJK9OzZs+yc5s2b5wUAAACAXaPejZRq1qxZ9O/fP+bMmVOWZErrgwcP3uL4Xr16xQsvvBC/+93vapYvfelL8bnPfS7/7tU8AAAAgOLVu5FSyZgxY2LEiBExYMCAGDhwYEyePDnWrFmTZ+NLhg8fHl27ds21oaqqquLggw8uO79t27b55+bbAQAAAChGvUxKDRs2LJYvXx7jxo3Lxc379esXs2fPril+vnjx4jwjHwAAAAB1U71MSiWjR4/OS23mzp27zXPvueeeXdQqAAAAALaH4UQAAAAAFE5SCgAAAIDCSUoBAAAAUDhJKQAAAAAKJykFAAAAQOEkpQAAAAAonKQUAAAAAIWTlAIAAACgcJJSAAAAABROUgoAAACAwklKAQAAAFA4SSkAAAAACicpBQDQAEyZMiW6d+8eVVVVMWjQoJg/f/5Wj73nnnuiUaNGZUs6b1OlUinGjRsXnTt3jhYtWsSQIUPi1VdfLeCTAACVQlIKAKCemzVrVowZMybGjx8fCxcujL59+8bQoUNj2bJlWz2ndevW8d5779Usb775Ztn+W265Jb75zW/G1KlT45lnnolWrVrla3700UcFfCIAoBJISgEA1HOTJk2KUaNGxciRI6N37945kdSyZcuYPn36Vs9Jo6M6depUs3Ts2LFslNTkyZPj6quvjpNOOin69OkTM2bMiHfffTd+8pOfFPSpAICGTlIKAKAeW79+fSxYsCC/XletcePGeX3evHlbPe/DDz+MfffdN7p165YTTy+99FLNvjfeeCOWLFlSds02bdrk1wK3dU0AgB0hKQUAUI+tWLEiNmzYUDbSKUnrKbFUm4MOOiiPovrpT38aP/jBD2Ljxo1x+OGHx9tvv533V5+3I9dM1q1bF6tXry5bAAC2RlIKAKDCDB48OIYPHx79+vWLo446Kh544IHYZ5994rvf/e5fdd2JEyfmEVXVSxqFBQCwNZJSAAD1WPv27aNJkyaxdOnSsu1pPdWK2h577LFHHHroofHaa6/l9erzdvSaY8eOjVWrVtUsb7311l/wiQCASiEpBQBQjzVr1iz69+8fc+bMqdmWXsdL62lE1PZIr/+98MIL0blz57y+33775eTTptdMr+KlWfi2dc3mzZvnWf02XQAAtqbpVvcAAFAvjBkzJkaMGBEDBgyIgQMH5pnz1qxZk2fjS9Krel27ds2v1yXXX399fOYzn4n9998/Vq5cGd/4xjfizTffjK985Ss1M/NdcsklccMNN8QBBxyQk1TXXHNNdOnSJU4++eTd+lkBgIZDUgoAoJ4bNmxYLF++PMaNG5cLkadaUbNnz64pVL548eI8I1+1P/7xjzFq1Kh8bLt27fJIq6eeeip69+5dc8zll1+eE1sXXHBBTlwdccQR+ZpVVVW75TMCAA2PpBQAQAMwevTovNRm7ty5Zeu33357XrYljZZKI6rSAgCwK6gpBQAAAEDhJKUAAAAAKJykFAAAAACFk5QCAAAAoHCSUgAAAAAUTlIKAAAAgMJJSgEAAABQOEkpAAAAAAonKQUAAABA4SSlAAAAACicpBQAAAAAhZOUAgAAAKBwklIAAAAAFE5SCgAAAIDCSUoBAAAAUDhJKQAAAAAKJykFAAAAQOEkpQAAAAAonKQUAAAAAIWTlAIAAACgcJJSAAAAABROUgoAAACAwklKAQAAAFC4epuUmjJlSnTv3j2qqqpi0KBBMX/+/K0eO23atDjyyCOjXbt2eRkyZMg2jwcAAABg16qXSalZs2bFmDFjYvz48bFw4cLo27dvDB06NJYtW1br8XPnzo2zzjorHnvssZg3b15069YtjjvuuHjnnXcKbzsAAAAA9TQpNWnSpBg1alSMHDkyevfuHVOnTo2WLVvG9OnTaz3+vvvui4suuij69esXvXr1irvuuis2btwYc+bMKbztAAAAANTDpNT69etjwYIF+RW8ao0bN87raRTU9li7dm18/PHHsddee9W6f926dbF69eqyBQAAAIAKTkqtWLEiNmzYEB07dizbntaXLFmyXde44oorokuXLmWJrU1NnDgx2rRpU7Ok1/0AAAAAqOCk1F/rpptuipkzZ8aDDz6Yi6TXZuzYsbFq1aqa5a233iq8nQAAAAANWdOoZ9q3bx9NmjSJpUuXlm1P6506ddrmubfeemtOSv3qV7+KPn36bPW45s2b5wUAAACAXaPejZRq1qxZ9O/fv6xIeXXR8sGDB2/1vFtuuSUmTJgQs2fPjgEDBhTUWgAAAAAaxEipZMyYMTFixIicXBo4cGBMnjw51qxZk2fjS4YPHx5du3bNtaGSm2++OcaNGxc//OEPo3v37jW1p/bcc8+8AAAAAFCsepmUGjZsWCxfvjwnmlKCqV+/fnkEVHXx88WLF+cZ+ardeeededa+008/vew648ePj2uvvbbw9gMAAABUunqZlEpGjx6dl9rMnTu3bH3RokUFtQoAAACABllTCgAAAID6T1IKAKABmDJlSq6dWVVVFYMGDYr58+dv9dhp06bFkUceGe3atcvLkCFDtjj+3HPPjUaNGpUtxx9/fAGfBACoFJJSAAD13KxZs/JEMKle5sKFC6Nv374xdOjQWLZs2VZLHZx11lnx2GOPxbx586Jbt25x3HHHxTvvvFN2XEpCvffeezXLv//7vxf0iQCASiApBQBQz02aNClGjRqVZyLu3bt3TJ06NVq2bBnTp0+v9fj77rsvLrroojxZTK9eveKuu+6KjRs3xpw5c8qOa968eXTq1KlmSaOqAAB2FkkpAIB6LM0wvGDBgvwKXrU0C3FaT6OgtsfatWvj448/jr322muLEVUdOnSIgw46KC688MJ4//33t3mddevWxerVq8sWAICtkZQCAKjHVqxYERs2bIiOHTuWbU/rS5Ys2a5rXHHFFdGlS5eyxFZ6dW/GjBl59NTNN98cjz/+eJxwwgn5XlszceLEaNOmTc2SXgsEANiaplvdAwBAg3fTTTfFzJkz86ioVCS92plnnlnz+yGHHBJ9+vSJnj175uOOPfbYWq81duzYXNuqWhopJTEFAGyNkVIAAPVY+/bto0mTJrF06dKy7Wk91YHalltvvTUnpR555JGcdNqWHj165Hu99tprWz0m1aBq3bp12QIAsDWSUgAA9VizZs2if//+ZUXKq4uWDx48eKvn3XLLLTFhwoSYPXt2DBgw4BPv8/bbb+eaUp07d95pbQcAKpukFABAPZdemZs2bVrce++98Yc//CEXJV+zZk2ejS8ZPnx4frWuWqoRdc011+TZ+bp3755rT6Xlww8/zPvTz8suuyyefvrpWLRoUU5wnXTSSbH//vvH0KFDd9vnBAAaFjWlAADquWHDhsXy5ctj3LhxObnUr1+/PAKquvj54sWL84x81e688848a9/pp59edp3x48fHtddem18HfP7553OSa+XKlbkI+nHHHZdHVqVX9AAAdgZJKQCABmD06NF5qU0qTr6pNPppW1q0aBEPP/zwTm0fAMDmvL4HAAAAQOEkpQAAAAAonKQUAAAAAIWTlAIAAACgcJJSAAAAABROUgoAAACAwklKAQAAAFA4SSkAAAAACicpBQAAAEDhJKUAAAAAKJykFAAAAACFk5QCAAAAoHCSUgAAAAAUTlIKAAAAgMJJSgEAAABQOEkpAAAAAAonKQUAAABA4SSlAAAAACicpBQAAAAAhZOUAgAAAKBwklIAAAAAFE5SCgAAAIDCSUoBAAAAUDhJKQAAAAAKJykFAAAAQOEkpQAAAAAonKQUAAAAAIWTlAIAAACgcJJSAAAAABROUgoAAACAwklKAQAAAFA4SSkAAAAACicpBQAAAEDhJKUAAAAAKFy9TUpNmTIlunfvHlVVVTFo0KCYP3/+No+///77o1evXvn4Qw45JH75y18W1lYAgPoWG5VKpRg3blx07tw5WrRoEUOGDIlXX311F38KAKCS1Muk1KxZs2LMmDExfvz4WLhwYfTt2zeGDh0ay5Ytq/X4p556Ks4666w4//zz49lnn42TTz45Ly+++GLhbQcAqA+x0S233BLf/OY3Y+rUqfHMM89Eq1at8jU/+uijAj8ZANCQ1cuk1KRJk2LUqFExcuTI6N27dw6WWrZsGdOnT6/1+DvuuCOOP/74uOyyy+LTn/50TJgwIQ477LD49re/XXjbAQDqemyURklNnjw5rr766jjppJOiT58+MWPGjHj33XfjJz/5ScGfDgBoqJpGPbN+/fpYsGBBjB07tmZb48aN85DyefPm1XpO2p6eHm4qPenbWlC1bt26vFRbtWpV/rl69erYVVZ76gh/kUa78Hu5O6z98E+7uwlQL61e3WoXXnt1TaKmUmKjN954I5YsWZKvUa1Nmzb5tcB07plnnlknYijxE/zlGlIMJX6CuhdDbW/8VO+SUitWrIgNGzZEx44dy7an9ZdffrnWc1JQVdvxaXttJk6cGNddd90W27t16/ZXtR3YBW66aXe3AKgQf/rTn3JiphJio+qfOxI/JWIoqEfEUEAdiJ/qXVKqCOlJ46ZPDzdu3BgffPBB7L333tGoUaPd2jaKlbK7KZB+6623onXr1ru7OcBupD+oXOkJXwqounTpsrubUueJoaimzwQSfUHlKm1n/FTvklLt27ePJk2axNKlS8u2p/VOnTrVek7aviPHN2/ePC+batu27V/dduqv1IHqRIFEf1CZ6uIIqV0ZG1X/TNvS7HubHtOvX7+ttkUMxeb0mUCiL6hMbbYjfqp3hc6bNWsW/fv3jzlz5pQ9hUvrgwcPrvWctH3T45NHH310q8cDAFRybLTffvvlxNSmx6Sn3WkWPvETALCz1LuRUkkaFj5ixIgYMGBADBw4MM8Os2bNmjzjTDJ8+PDo2rVrrmuQXHzxxXHUUUfFbbfdFieeeGLMnDkzfvvb38b3vve93fxJAADqXmyUXrW75JJL4oYbbogDDjggJ6muueaaPAT/5JNP3q2fFQBoOOplUmrYsGGxfPnyGDduXC62mYaRz549u6YY5+LFi/OsM9UOP/zw+OEPf5inNb7qqqtycJVmlzn44IN346egPkivIIwfP36LVxGAyqM/oNJio8svvzwnti644IJYuXJlHHHEEfmaVVVVu+UzUr/oM4FEX8AnaVSqq/MbAwAAANBg1buaUgAAAADUf5JSAAAAABROUgoAAACAwklKwW6waNGiPLPR7373u+0+59xzzzXjEWxD+k6lQs3b4nsEUL+JoWDnEj+xu0lKUSelGYQuvPDC+NSnPpVnaujUqVMMHTo0fvOb30R9U1sn3q1bt3jvvffMAElFS9+NFAh99atf3WLf1772tbwvHbMz/2i544474p577vmL2wxQ14mhoGETP9HQNN3dDYDanHbaabF+/fq49957o0ePHrF06dKYM2dOvP/++9EQNGnSJAeJUOnSHxczZ86M22+/PVq0aJG3ffTRR3mq+vQH1c7Wpk2b2BU+/vjj2GOPPXbJtQF2hBgKGj7xEw2JkVLUOStXrownnngibr755vjc5z4X++67bwwcODDGjh0bX/rSl2qO+cpXvhL77LNPtG7dOo455ph47rnnyq5z0003RceOHeNv/uZv4vzzz48rr7wy+vXrV7P/6KOPjksuuaTsnPQ0btMnC+vWrYtLL700unbtGq1atYpBgwbF3Llza/anJwZt27aNhx9+OD796U/HnnvuGccff3x+gpdce+21OSj86U9/mp86pCWdv/lTiA0bNuQ27rfffvn/WA466KD8RAIausMOOywHVg888EDNtvR7CqgOPfTQmm3du3ePyZMnl52bvs/pO1ab9F1K0jXSdy1937d3+Hm614QJE+Kss87K3/v0/Z8yZUrZMemad955Z+6T0jE33nhj3p629ezZM5o1a5a/x//2b/9Wdl7qu/7hH/4h901VVVX5Sf/Pf/7zmv1PPvlkHHnkkbkfSP8u//RP/xRr1qyp2f+d73wnDjjggHxuusbpp59es+/HP/5xHHLIIfncvffeO4YMGVJ2LtDwiaHEUFQG8ZP4qSGRlKLOSUFJWtK7zSmgqc0ZZ5wRy5Yti4ceeigWLFiQO+Zjjz02Pvjgg7z/Rz/6Ue5sv/71r8dvf/vb6Ny5c+6MdtTo0aNj3rx5+UnE888/n++bAqZXX3215pi1a9fGrbfemjvP//qv/4rFixfnICxJP7/85S/XBFlpOfzww7e4z8aNG+Nv//Zv4/7774/f//73MW7cuLjqqqvy54CG7rzzzou77767Zn369OkxcuTIv+qa8+fPzz9/9atf5e/dpkHb9vjGN74Rffv2jWeffTb/MXbxxRfHo48+WnZM6mNOOeWUeOGFF/JnePDBB/Nx//Iv/xIvvvhiDp7S53jsscdqvucnnHBCfoXmBz/4Qf6upz/80lP/5PXXX899RRrlkPqbWbNm5SAr9UNJ6stSkHX99dfHK6+8ErNnz47PfvazeV/6jCkITO34wx/+kP9wO/XUU6NUKv1V/45A/SKGEkNROcRP4qcGowR10I9//ONSu3btSlVVVaXDDz+8NHbs2NJzzz2X9z3xxBOl1q1blz766KOyc3r27Fn67ne/m38fPHhw6aKLLirbP2jQoFLfvn1r1o866qjSxRdfXHbMSSedVBoxYkT+/c033yw1adKk9M4775Qdc+yxx+b2JHfffXfqsUqvvfZazf4pU6aUOnbsWLOerpeuu6k33ngjn/fss89u9d/ga1/7Wum0007b5nWgPqv+b3rZsmWl5s2blxYtWpSX9L1fvnx52fdx3333Ld1+++1l56fv8/jx42vW03fqwQcf3OZ3bHu+R+lexx9/fNm2YcOGlU444YSye11yySVlx6S+atSoUWXbzjjjjNIXvvCF/PvDDz9caty4cemVV16p9b7nn39+6YILLijblvq7dM6f//zn0n/8x3/kvm/16tVbnLtgwYLcpvTvB1Q2MZQYioZN/FRO/FT/GSlFnZQy3e+++27853/+Z858p6x1epKXhnqnIeYffvhhHl5Z/UQwLW+88UbOlCcp052GiW9q8ODBO9SGlL1PQ8IPPPDAsvs8/vjjNfdJWrZsmYebVktPFNMTyB2Vhrf2798/D6dP9/ne976XnxhCQ5f+mz/xxBPz9zs98Uu/t2/ffpff97777iv7bqdXXrbWX6T11K9sasCAAWXraf/f/d3flW1L69XnpVdN0tP81KfUJvVt6d9g0zal4sTpCWHq3z7/+c/nV3FSjZhzzjkntz+NMkjSU8k00iENP0+jEaZNmxZ//OMf/8p/IaA+EkOJoagM4qf/I36q/xQ6p85K7/ymTiQt11xzTa5/MH78+Ljoooty0LJpXYJqqTbB9mrcuPEWQzNTsb1qKWhLw0LT0Pbq4aHVUmdXbfPifOld6R0d8pmGtqdh6rfddlvuvFMNhzT89Zlnntmh60B9lYZNVw+z3rz+wPZ8X/8SqZ7Bpn94pdoHOyLVQtgR1YVItyb1OWnIehpivrlUIyLVWVi4cGHu+x555JH8ikoaAv/f//3fue9Lw+OfeuqpvO9b3/pW/Ou//mvuQ6rrQwCVQwwlhqIyiJ/ETw2BkVLUG717985F59LTviVLlkTTpk1j//33L1uqnw6kgpmbByNPP/30Fk8XqotpJumJXnqPuVoq8Je2pSd2m99nR2Z9SR1hus62pHekU52EFCym+6Z7bPokERq69DQ/zRaVAqX0dGtzm39fV69enZ9+bet7l2zru5f+cNn0e71p0LN5f5HWU7+yLWn/5lOup/XUdyV9+vSJt99+O/7nf/6n1vNT35bqJGze36Sl+vOkfi8V4Lzlllty3YRU8PfXv/51zR9z6cniddddl2s5pHNSnQYAMRQ0TOIn8VNDYKQUdU6asjgNn0yZ/9QJpY4vFahLnchJJ52UO5T0JCzNAJG2paGcaZj6L37xi1w0Lw0JTcXy0iwR6ffUyaRhmi+99FIetlktzTYzZsyYfF4aOj5p0qQ8s0O1dN2zzz47hg8fnp++pUBn+fLleVrl1K40RHZ7pJko0swyqbBeGi5f25SqaTaIGTNm5ONSVj4V/EzZexl6KkV6kl49THvzp+rV39c0NPuLX/xifqqVnnLVdly1Dh065CApFbNMQ77TqIEdmc44BUOpf0n9THqClgropr5iWy677LJclDf1Famf+tnPfpYLhKZioclRRx2VC2umV2tSf5OCpZdffjkHQymovOKKK+Izn/lMfuKZRjWkJ4kpyEr3//a3v51nmfnf//3ffI127drFL3/5yzw0Pc1Sk/6ATH3Tcccdlz97Wk/91ScFgkDDIoYSQ1FZxE/ipwZhdxe1gs2l4ptXXnll6bDDDiu1adOm1LJly9JBBx1Uuvrqq0tr167Nx6RCdf/4j/9Y6tKlS2mPPfYodevWrXT22WeXFi9eXHOdG2+8sdS+ffvSnnvumYvzXX755WVFOtevX1+68MILS3vttVepQ4cOpYkTJ5YVBqw+Zty4caXu3bvn+3Tu3Ll0yimnlJ5//vmaIp2pjZtKhQI3/WqlIoSf//znczvS9scee2yLIoLpM5977rn5Wm3bts3tSv8Gm7ZXkU4amk/6b3rT7+OqVatyscxUqDJ93++5555tFupMpk2blo9NhS5TUd7tuWd1oc7rrrsuF9lM/U+nTp1Kd9xxR9kxm9+r2ne+851Sjx49cn9x4IEHlmbMmFG2//333y+NHDmytPfee+eCpAcffHDp5z//ec3++fPn1/QXrVq1KvXp0yf3ZdVFO9PnSAWMW7RokffNmjUr7/v9739fGjp0aGmfffbJRU/Tvb/1rW9t83MCDY8YSgxFwyd+Ej81NI3S/+zuxBgUIb07nKZITsXyALb1ZP6SSy7JCwBiKOCTiZ/4S6kpBQAAAEDhJKUAAAAAKJzX9wAAAAAonJFSAAAAABROUgoAAACAwklKAQAAAFA4SSkAAAAACicpBQAAAEDhJKUAAAAAKJykFAAAAACFk5QCAAAAoHCSUgAAAABE0f4fK6n8tRGQvzAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "⚡ Overall Benchmark Results:\n", + " Total time (sequential): 209.38s\n", + " Total time (multi-process): 200.74s\n", + " Overall speedup: 1.0x faster with multiprocessing\n", + " Data processed: 500,000 vectors loaded, 10,000 queries executed\n", + " Peak QPS achieved: 8664 queries/second\n" + ] + } + ], + "source": [ + "# Create performance visualization\n", + "fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(12, 8))\n", + "\n", + "# Throughput comparisons\n", + "loading_throughput = df[df['Operation'] == 'Data Loading']['Throughput']\n", + "query_throughput = df[df['Operation'] == 'Vector Queries']['Throughput']\n", + "\n", + "ax1.bar(['Sequential', 'Multi-process'], loading_throughput, color=['lightcoral', 'lightblue'])\n", + "ax1.set_title('Data Loading Throughput (ops/sec)')\n", + "ax1.set_ylabel('Operations/second')\n", + "\n", + "ax2.bar(['Sequential', 'Multi-process'], query_throughput, color=['lightcoral', 'lightblue'])\n", + "ax2.set_title('Query Throughput (QPS)')\n", + "ax2.set_ylabel('Queries/second')\n", + "\n", + "# Latency comparisons (only for queries)\n", + "query_avg_latency = df[df['Operation'] == 'Vector Queries']['Avg_Latency_ms']\n", + "query_p95_latency = df[df['Operation'] == 'Vector Queries']['P95_Latency_ms']\n", + "\n", + "ax3.bar(['Sequential', 'Multi-process'], query_avg_latency, color=['lightcoral', 'lightblue'])\n", + "ax3.set_title('Query Average Latency (ms)')\n", + "ax3.set_ylabel('Latency (ms)')\n", + "\n", + "ax4.bar(['Sequential', 'Multi-process'], query_p95_latency, color=['lightcoral', 'lightblue'])\n", + "ax4.set_title('Query P95 Latency (ms)')\n", + "ax4.set_ylabel('Latency (ms)')\n", + "\n", + "plt.tight_layout()\n", + "plt.show()\n", + "\n", + "# Calculate overall performance gains\n", + "total_sequential_time = sequential_load_stats['total_time'] + sequential_query_stats['total_time']\n", + "total_multiprocess_time = multiprocess_load_stats['total_time'] + multiprocess_query_stats['total_time']\n", + "overall_speedup = total_sequential_time / total_multiprocess_time\n", + "\n", + "print(f\"\\n⚡ Overall Benchmark Results:\")\n", + "print(f\" Total time (sequential): {total_sequential_time:.2f}s\")\n", + "print(f\" Total time (multi-process): {total_multiprocess_time:.2f}s\")\n", + "print(f\" Overall speedup: {overall_speedup:.1f}x faster with multiprocessing\")\n", + "print(f\" Data processed: {config.data_size:,} vectors loaded, {config.query_count:,} queries executed\")\n", + "print(f\" Peak QPS achieved: {multiprocess_query_stats['qps']:.0f} queries/second\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 🚀 Quick Summary & Best Practices\n", + "\n", + "**What did we learn?**\n", + "- 🧵 Multi-process loading bypasses Python's GIL for true parallelism.\n", + "- Query speedups depend on your Redis server's CPU & network.\n", + "- Each process gets its own Redis connection for safe parallel access.\n", + "\n", + "**Metrics to watch:**\n", + "- **QPS** (Queries/sec): Main throughput stat\n", + "- **P95/P99 Latency**: Key for user experience\n", + "- **Success Rate**: Should stay >99%\n", + "- **Memory Usage**: Keep an eye on Redis RAM\n", + "\n", + "**Performance factors:**\n", + "- More CPU cores = more workers = more speed (up to a point)\n", + "- Network can bottleneck with big vectors\n", + "- Redis needs enough RAM for all your data\n", + "- Persistence (AOF/RDB) can slow down writes\n", + " \n", + "**Redis options:**\n", + "- OSS: Free, single-threaded, good for dev/test\n", + "- Enterprise/Cloud: Multi-threaded, clustering, auto-scaling 🚦\n", + " \n", + "**Top tips:**\n", + "1. Match worker count to CPU cores, then tune\n", + "2. Batch ops for speed, but watch memory on client-side\n", + "3. Pick the right index for the use case: FLAT (exact), HNSW (fast/approx)\n", + "4. Higher vector dims = more RAM, slower queries\n", + "5. Be aware of networking bottlenecks and serialization overhead\n", + "\n", + "**Next steps:**\n", + "- Benchmark with your real data & queries\n", + "- Benchmark in a production / cloud environment using VPC peering\n", + "- Test concurrency that matches your app\n", + "- Monitor memory, CPU, and QPS\n", + "- Plan for growth 📈\n", + "\n", + "**More info:**\n", + "- [RedisVL Docs](https://docs.redisvl.com)\n", + "- [Redis Optimization](https://redis.io/docs/operate/oss_and_stack/management/optimization/)\n", + "- [Benchmarking Blog](https://redis.io/blog/benchmarking-results-for-vector-databases/)\n", + "\n", + "---\n", + "\n", + "🎉 **Congrats!** You're ready to benchmark and tune Redis query engine with RedisVL. Use these tips to get the best performance for your app!" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.11" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/python-recipes/vector-search/resources/movies.json b/python-recipes/vector-search/resources/movies.json index 57c29d3c..1736f924 100644 --- a/python-recipes/vector-search/resources/movies.json +++ b/python-recipes/vector-search/resources/movies.json @@ -1,119 +1,139 @@ [ { + "id": 1, "title": "Explosive Pursuit", "genre": "action", "rating": 7, "description": "A daring cop chases a notorious criminal across the city in a high-stakes game of cat and mouse." }, { + "id": 2, "title": "Skyfall", "genre": "action", "rating": 8, "description": "James Bond returns to track down a dangerous new enemy who threatens global security." }, { + "id": 3, "title": "Fast & Furious 9", "genre": "action", "rating": 6, "description": "Dom and his crew face off against a high-tech enemy with advanced weapons and technology." }, { + "id": 4, "title": "Black Widow", "genre": "action", "rating": 7, "description": "Natasha Romanoff confronts her dark past and family ties as she battles a new enemy." }, { + "id": 5, "title": "John Wick", "genre": "action", "rating": 8, "description": "A retired hitman seeks vengeance against those who wronged him, leaving a trail of destruction in his wake." }, { + "id": 6, "title": "Mad Max: Fury Road", "genre": "action", "rating": 8, "description": "In a post-apocalyptic wasteland, Max teams up with Furiosa to escape a tyrant's clutches and find freedom." }, { + "id": 7, "title": "The Dark Knight", "genre": "action", "rating": 9, "description": "Batman faces off against the Joker, a criminal mastermind who threatens to plunge Gotham into chaos." }, { + "id": 8, "title": "Gladiator", "genre": "action", "rating": 8, "description": "A betrayed Roman general seeks revenge against the corrupt emperor who murdered his family." }, { + "id": 9, "title": "Inception", "genre": "action", "rating": 9, "description": "A thief who enters dreams to steal secrets faces his toughest mission yet, with reality itself at stake." }, { + "id": 10, "title": "The Avengers", "genre": "action", "rating": 8, "description": "Earth's mightiest heroes come together to stop an alien invasion that threatens the entire planet." }, { + "id": 11, "title": "Toy Story", "genre": "comedy", "rating": 8, "description": "Woody, a good-hearted cowboy doll who belongs to a young boy named Andy, sees his position as Andy's favorite toy jeopardized when his parents buy him a Buzz Lightyear action figure. Even worse, the arrogant Buzz thinks he's a real spaceman on a mission to return to his home planet." }, { + "id": 12, "title": "The Lego Movie", "genre": "comedy", "rating": 7, "description": "An ordinary Lego construction worker, thought to be the prophesied 'Special', is recruited to join a quest to stop an evil tyrant from gluing the Lego universe into eternal stasis." }, { + "id": 13, "title": "Aladdin", "genre": "comedy", "rating": 8, "description": "A kind-hearted street urchin and a power-hungry Grand Vizier vie for a magic lamp that has the power to make their deepest wishes come true." }, { + "id": 14, "title": "Finding Nemo", "genre": "comedy", "rating": 8, "description": "After his son is captured in the Great Barrier Reef and taken to Sydney, a timid clownfish sets out on a journey to bring him home." }, { + "id": 15, "title": "Shrek", "genre": "comedy", "rating": 8, "description": "A mean lord exiles fairytale creatures to the swamp of a grumpy ogre, who must go on a quest and rescue a princess for the lord in order to get his land back." }, { + "id": 16, "title": "The Incredibles", "genre": "comedy", "rating": 8, "description": "A family of undercover superheroes, while trying to live the quiet suburban life, are forced into action to save the world. Bob Parr (Mr. Incredible) and his wife Helen (Elastigirl) were among the world's greatest crime fighters, but now they must assume civilian identities and retreat to the suburbs to live a 'normal' life with their three children. However, the family's desire to help the world pulls them back into action when they face a new and dangerous enemy." }, { + "id": 17, "title": "Monsters, Inc.", "genre": "comedy", "rating": 8, "description": "In order to power the city, monsters have to scare children so that they scream. However, the children are toxic to the monsters, and after a child gets through, two monsters realize things may not be what they think." }, { + "id": 18, "title": "Despicable Me", "genre": "comedy", "rating": 7, "description": "When a criminal mastermind uses a trio of orphan girls as pawns for a grand scheme, he finds their love is profoundly changing him for the better." }, { + "id": 19, "title": "Madagascar", "genre": "comedy", "rating": 7, "description": "A group of animals who have spent all their life in a New York zoo end up in the jungles of Madagascar, and must adjust to living in the wild." }, { + "id": 20, "title": "The Princess Diaries", "genre": "comedy", "rating": 6, diff --git a/requirements.txt b/requirements.txt deleted file mode 100644 index d2cd2bcf..00000000 --- a/requirements.txt +++ /dev/null @@ -1,26 +0,0 @@ -# notebook deps are self contained -# this file is for automated testing purposes -openai -tiktoken -langchain -langgraph -langchainhub -langchain-text-splitters -langchain-openai -langchain-redis -langchain-huggingface -llama-index -llama-index-vector-stores-redis -llama-index-embeddings-cohere -llama-index-embeddings-openai -unstructured[pdf] -sentence-transformers -pandas -pdf2image -nbval -redis -redisvl>=0.3.0 -pytest -ragas -datasets -scikit-surprise