Skip to content

Commit 73485bc

Browse files
committed
Us baby names finished and wind_stats
1 parent c5a4e53 commit 73485bc

File tree

9 files changed

+11028
-141
lines changed

9 files changed

+11028
-141
lines changed

README.md

Lines changed: 5 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,7 @@ Suggestions and collaborations are more than welcome. :)
1818
| | | |
1919
|:-------------:|:-------------:|:-----:|
2020
|[Getting and knowing](#getting-and-knowing)|[Merge](#merge) |Exporting|
21-
|[Filtering and Sorting](#filtering-and-sorting)| Stats | Visualization |
21+
|[Filtering and Sorting](#filtering-and-sorting)| [Stats](#stats) | Visualization |
2222
|[Grouping](#grouping)| Deleting and Droping | Indexing |
2323
|[Apply](#apply)| Creating Series and DataFrames| Using Dates|
2424

@@ -43,3 +43,7 @@ Suggestions and collaborations are more than welcome. :)
4343
### [Merge](https://github.com/guipsamora/pandas_exercises/tree/master/Merge)
4444
[Auto_MPG](https://github.com/guipsamora/pandas_exercises/tree/master/Merge/Auto_MPG)
4545
[House Market](https://github.com/guipsamora/pandas_exercises/tree/master/Merge/Housing%20Market)
46+
47+
### [Stats](https://github.com/guipsamora/pandas_exercises/tree/master/Stats)
48+
[US_Baby_Names](https://github.com/guipsamora/pandas_exercises/tree/master/Stats/US_Baby_Names)
49+
[Wind_Stats](https://github.com/guipsamora/pandas_exercises/tree/master/Stats/Wind_Stats)
Lines changed: 237 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,237 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"metadata": {},
6+
"source": [
7+
"# US - Baby Names"
8+
]
9+
},
10+
{
11+
"cell_type": "markdown",
12+
"metadata": {},
13+
"source": [
14+
"### Introduction:\n",
15+
"\n",
16+
"We are going to use a subset of [US Baby Names](https://www.kaggle.com/kaggle/us-baby-names) from Kaggle. \n",
17+
"In the file it will be names from 2004 until 2014\n",
18+
"\n",
19+
"\n",
20+
"### Step 1. Import the necessary libraries"
21+
]
22+
},
23+
{
24+
"cell_type": "code",
25+
"execution_count": null,
26+
"metadata": {
27+
"collapsed": false
28+
},
29+
"outputs": [],
30+
"source": []
31+
},
32+
{
33+
"cell_type": "markdown",
34+
"metadata": {},
35+
"source": [
36+
"### Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/Stats/US_Baby_Names/US_Baby_Names_right.csv). "
37+
]
38+
},
39+
{
40+
"cell_type": "markdown",
41+
"metadata": {},
42+
"source": [
43+
"### Step 3. Assign it to a variable called baby_names."
44+
]
45+
},
46+
{
47+
"cell_type": "code",
48+
"execution_count": null,
49+
"metadata": {
50+
"collapsed": false
51+
},
52+
"outputs": [],
53+
"source": []
54+
},
55+
{
56+
"cell_type": "markdown",
57+
"metadata": {},
58+
"source": [
59+
"### Step 4. See the first 10 entries"
60+
]
61+
},
62+
{
63+
"cell_type": "code",
64+
"execution_count": null,
65+
"metadata": {
66+
"collapsed": false
67+
},
68+
"outputs": [],
69+
"source": []
70+
},
71+
{
72+
"cell_type": "markdown",
73+
"metadata": {},
74+
"source": [
75+
"### Step 5. Delete the column 'Unnamed: 0' and 'Id'"
76+
]
77+
},
78+
{
79+
"cell_type": "code",
80+
"execution_count": null,
81+
"metadata": {
82+
"collapsed": false
83+
},
84+
"outputs": [],
85+
"source": []
86+
},
87+
{
88+
"cell_type": "markdown",
89+
"metadata": {},
90+
"source": [
91+
"### Step 6. Is there more male or female names in the dataset?"
92+
]
93+
},
94+
{
95+
"cell_type": "code",
96+
"execution_count": null,
97+
"metadata": {
98+
"collapsed": false
99+
},
100+
"outputs": [],
101+
"source": []
102+
},
103+
{
104+
"cell_type": "markdown",
105+
"metadata": {},
106+
"source": [
107+
"### Step 7. Group the dataset by name and assign to names"
108+
]
109+
},
110+
{
111+
"cell_type": "code",
112+
"execution_count": null,
113+
"metadata": {
114+
"collapsed": false
115+
},
116+
"outputs": [],
117+
"source": []
118+
},
119+
{
120+
"cell_type": "markdown",
121+
"metadata": {},
122+
"source": [
123+
"### Step 8. How many different names exist in the dataset?"
124+
]
125+
},
126+
{
127+
"cell_type": "code",
128+
"execution_count": null,
129+
"metadata": {
130+
"collapsed": false
131+
},
132+
"outputs": [],
133+
"source": []
134+
},
135+
{
136+
"cell_type": "markdown",
137+
"metadata": {},
138+
"source": [
139+
"### Step 9. What is the name with most occurrences?"
140+
]
141+
},
142+
{
143+
"cell_type": "code",
144+
"execution_count": null,
145+
"metadata": {
146+
"collapsed": false
147+
},
148+
"outputs": [],
149+
"source": []
150+
},
151+
{
152+
"cell_type": "markdown",
153+
"metadata": {},
154+
"source": [
155+
"### Step 10. How many different names have the least occurrences?"
156+
]
157+
},
158+
{
159+
"cell_type": "code",
160+
"execution_count": null,
161+
"metadata": {
162+
"collapsed": false
163+
},
164+
"outputs": [],
165+
"source": []
166+
},
167+
{
168+
"cell_type": "markdown",
169+
"metadata": {},
170+
"source": [
171+
"### Step 11. What is the median name occurrence?"
172+
]
173+
},
174+
{
175+
"cell_type": "code",
176+
"execution_count": null,
177+
"metadata": {
178+
"collapsed": false
179+
},
180+
"outputs": [],
181+
"source": []
182+
},
183+
{
184+
"cell_type": "markdown",
185+
"metadata": {},
186+
"source": [
187+
"### Step 12. What is the standard deviation of names?"
188+
]
189+
},
190+
{
191+
"cell_type": "code",
192+
"execution_count": null,
193+
"metadata": {
194+
"collapsed": false
195+
},
196+
"outputs": [],
197+
"source": []
198+
},
199+
{
200+
"cell_type": "markdown",
201+
"metadata": {},
202+
"source": [
203+
"### Step 13. Get a summary with the mean, min, max, std and quartiles."
204+
]
205+
},
206+
{
207+
"cell_type": "code",
208+
"execution_count": null,
209+
"metadata": {
210+
"collapsed": false
211+
},
212+
"outputs": [],
213+
"source": []
214+
}
215+
],
216+
"metadata": {
217+
"kernelspec": {
218+
"display_name": "Python 2",
219+
"language": "python",
220+
"name": "python2"
221+
},
222+
"language_info": {
223+
"codemirror_mode": {
224+
"name": "ipython",
225+
"version": 2
226+
},
227+
"file_extension": ".py",
228+
"mimetype": "text/x-python",
229+
"name": "python",
230+
"nbconvert_exporter": "python",
231+
"pygments_lexer": "ipython2",
232+
"version": "2.7.11"
233+
}
234+
},
235+
"nbformat": 4,
236+
"nbformat_minor": 0
237+
}

0 commit comments

Comments
 (0)