3030import numpy as np
3131
3232try :
33- import urllib .request as urllib # for backwards compatibility
33+ import urllib .request as urllib # for backwards compatibility
3434except ImportError :
3535 import urllib
3636
@@ -231,33 +231,36 @@ def fetch_lfw_people(data_home=None, funneled=True, resize=0.5,
231231 picture of a face, find the name of the person given a training set
232232 (gallery).
233233
234+ The original images are 250 x 250 pixels, but the default slice and resize
235+ arguments reduce them to 62 x 74.
236+
234237 Parameters
235238 ----------
236- data_home: optional, default: None
239+ data_home : optional, default: None
237240 Specify another download and cache folder for the datasets. By default
238241 all scikit learn data is stored in '~/scikit_learn_data' subfolders.
239242
240- funneled: boolean, optional, default: True
243+ funneled : boolean, optional, default: True
241244 Download and use the funneled variant of the dataset.
242245
243- resize: float, optional, default 0.5
246+ resize : float, optional, default 0.5
244247 Ratio used to resize the each face picture.
245248
246- min_faces_per_person: int, optional, default None
249+ min_faces_per_person : int, optional, default None
247250 The extracted dataset will only retain pictures of people that have at
248251 least `min_faces_per_person` different pictures.
249252
250- color: boolean, optional, default False
253+ color : boolean, optional, default False
251254 Keep the 3 RGB channels instead of averaging them to a single
252255 gray level channel. If color is True the shape of the data has
253256 one more dimension than than the shape with color = False.
254257
255- slice_: optional
258+ slice_ : optional
256259 Provide a custom 2D slice (height, width) to extract the
257260 'interesting' part of the jpeg files and avoid use statistical
258261 correlation from the background
259262
260- download_if_missing: optional, True by default
263+ download_if_missing : optional, True by default
261264 If False, raise a IOError if the data is not locally available
262265 instead of trying to download the data from the source site.
263266
@@ -267,11 +270,13 @@ def fetch_lfw_people(data_home=None, funneled=True, resize=0.5,
267270
268271 dataset.data : numpy array of shape (13233, 2914)
269272 Each row corresponds to a ravelled face image of original size 62 x 47
270- pixels.
273+ pixels. Changing the ``slice_`` or resize parameters will change the shape
274+ of the output.
271275
272276 dataset.images : numpy array of shape (13233, 62, 47)
273277 Each row is a face image corresponding to one of the 5749 people in
274- the dataset.
278+ the dataset. Changing the ``slice_`` or resize parameters will change the shape
279+ of the output.
275280
276281 dataset.target : numpy array of shape (13233,)
277282 Labels associated to each face image. Those labels range from 0-5748
@@ -389,36 +394,39 @@ def fetch_lfw_pairs(subset='train', data_home=None, funneled=True, resize=0.5,
389394
390395 .. _`README.txt`: http://vis-www.cs.umass.edu/lfw/README.txt
391396
397+ The original images are 250 x 250 pixels, but the default slice and resize
398+ arguments reduce them to 62 x 74.
399+
392400 Parameters
393401 ----------
394- subset: optional, default: 'train'
402+ subset : optional, default: 'train'
395403 Select the dataset to load: 'train' for the development training
396404 set, 'test' for the development test set, and '10_folds' for the
397405 official evaluation set that is meant to be used with a 10-folds
398406 cross validation.
399407
400- data_home: optional, default: None
408+ data_home : optional, default: None
401409 Specify another download and cache folder for the datasets. By
402410 default all scikit learn data is stored in '~/scikit_learn_data'
403411 subfolders.
404412
405- funneled: boolean, optional, default: True
413+ funneled : boolean, optional, default: True
406414 Download and use the funneled variant of the dataset.
407415
408- resize: float, optional, default 0.5
416+ resize : float, optional, default 0.5
409417 Ratio used to resize the each face picture.
410418
411- color: boolean, optional, default False
419+ color : boolean, optional, default False
412420 Keep the 3 RGB channels instead of averaging them to a single
413421 gray level channel. If color is True the shape of the data has
414422 one more dimension than than the shape with color = False.
415423
416- slice_: optional
424+ slice_ : optional
417425 Provide a custom 2D slice (height, width) to extract the
418426 'interesting' part of the jpeg files and avoid use statistical
419427 correlation from the background
420428
421- download_if_missing: optional, True by default
429+ download_if_missing : optional, True by default
422430 If False, raise a IOError if the data is not locally available
423431 instead of trying to download the data from the source site.
424432
@@ -427,12 +435,14 @@ def fetch_lfw_pairs(subset='train', data_home=None, funneled=True, resize=0.5,
427435 The data is returned as a Bunch object with the following attributes:
428436
429437 data : numpy array of shape (2200, 5828)
430- Each row corresponds to 2 ravel'd face images of original size 62 x 67
431- pixels.
438+ Each row corresponds to 2 ravel'd face images of original size 62 x 47
439+ pixels. Changing the ``slice_`` or resize parameters will change the shape
440+ of the output.
432441
433- pairs : numpy array of shape (2200, 2, 62, 67 )
442+ pairs : numpy array of shape (2200, 2, 62, 47 )
434443 Each row has 2 face images corresponding to same or different person
435- from the dataset containing 5749 people.
444+ from the dataset containing 5749 people. Changing the ``slice_`` or resize
445+ parameters will change the shape of the output.
436446
437447 target : numpy array of shape (13233,)
438448 Labels associated to each pair of images. The two label values being
0 commit comments