|
21 | 21 | "from requests import get\n",
|
22 | 22 | "response = get('https://api.github.com/repos/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/stats/commit_activity').json()\n",
|
23 | 23 | "weekly_totals = np.array(map(lambda x: x['total'], response))\n",
|
24 |
| - "weekly_totals = weekly_totals[np.where(weekly_totals)[0]] # gives me 52 weeks, but project started < 1 year ago so it backwards fills with 0s;" |
| 24 | + "weekly_totals = weekly_totals[np.where(weekly_totals)[0]] # gives me 52 weeks, but project started < 1 year ago so it backwards fills with 0s" |
25 | 25 | ],
|
26 | 26 | "language": "python",
|
27 | 27 | "metadata": {},
|
|
35 | 35 | "count_data = weekly_totals\n",
|
36 | 36 | "n_count_data = len(weekly_totals)\n",
|
37 | 37 | "\n",
|
38 |
| - "plt.bar(range(n_count_data), weekly_totals)\n", |
| 38 | + "plt.bar(range(n_count_data), weekly_totals);\n", |
39 | 39 | "print weekly_totals\n",
|
40 |
| - "print n_count_data;" |
| 40 | + "print n_count_data" |
41 | 41 | ],
|
42 | 42 | "language": "python",
|
43 | 43 | "metadata": {},
|
|
71 | 71 | "lambda_1 = pm.Exponential(\"lambda_1\", alpha)\n",
|
72 | 72 | "lambda_2 = pm.Exponential(\"lambda_2\", alpha)\n",
|
73 | 73 | "\n",
|
74 |
| - "tau = pm.DiscreteUniform(\"tau\", lower=0, upper=n_count_data);" |
| 74 | + "tau = pm.DiscreteUniform(\"tau\", lower=0, upper=n_count_data)" |
75 | 75 | ],
|
76 | 76 | "language": "python",
|
77 | 77 | "metadata": {},
|
|
87 | 87 | " out = np.zeros(n_count_data)\n",
|
88 | 88 | " out[:tau] = lambda_1 # lambda before tau is lambda1\n",
|
89 | 89 | " out[tau:] = lambda_2 # lambda after tau is lambda2\n",
|
90 |
| - " return out;" |
| 90 | + " return out" |
91 | 91 | ],
|
92 | 92 | "language": "python",
|
93 | 93 | "metadata": {},
|
|
100 | 100 | "input": [
|
101 | 101 | "observation = pm.Poisson(\"obs\", lambda_, value=count_data, observed=True)\n",
|
102 | 102 | "\n",
|
103 |
| - "model = pm.Model([observation, lambda_1, lambda_2, tau]);" |
| 103 | + "model = pm.Model([observation, lambda_1, lambda_2, tau])" |
104 | 104 | ],
|
105 | 105 | "language": "python",
|
106 | 106 | "metadata": {},
|
|
113 | 113 | "input": [
|
114 | 114 | "# Mysterious code to be explained in Chapter 3.\n",
|
115 | 115 | "mcmc = pm.MCMC(model)\n",
|
116 |
| - "mcmc.sample(40000, 10000, 1);" |
| 116 | + "mcmc.sample(40000, 10000, 1)" |
117 | 117 | ],
|
118 | 118 | "language": "python",
|
119 | 119 | "metadata": {},
|
|
142 | 142 | "input": [
|
143 | 143 | "lambda_1_samples = mcmc.trace('lambda_1')[:]\n",
|
144 | 144 | "lambda_2_samples = mcmc.trace('lambda_2')[:]\n",
|
145 |
| - "tau_samples = mcmc.trace('tau')[:];" |
| 145 | + "tau_samples = mcmc.trace('tau')[:]" |
146 | 146 | ],
|
147 | 147 | "language": "python",
|
148 | 148 | "metadata": {},
|
|
188 | 188 | "plt.legend(loc=\"upper left\")\n",
|
189 | 189 | "plt.ylim([0, .75])\n",
|
190 | 190 | "plt.xlabel(\"$\\tau$ (in days)\")\n",
|
191 |
| - "plt.ylabel(\"probability\");" |
| 191 | + "plt.ylabel(\"probability\")" |
192 | 192 | ],
|
193 | 193 | "language": "python",
|
194 | 194 | "metadata": {},
|
|
211 | 211 | "cell_type": "code",
|
212 | 212 | "collapsed": false,
|
213 | 213 | "input": [
|
214 |
| - "n_count_data;" |
| 214 | + "n_count_data" |
215 | 215 | ],
|
216 | 216 | "language": "python",
|
217 | 217 | "metadata": {},
|
|
230 | 230 | "cell_type": "code",
|
231 | 231 | "collapsed": false,
|
232 | 232 | "input": [
|
233 |
| - "lambda_2_samples;" |
| 233 | + "lambda_2_samples" |
234 | 234 | ],
|
235 | 235 | "language": "python",
|
236 | 236 | "metadata": {},
|
|
0 commit comments