From ca1d43b6d38706349ddefed4e6a09f4a946e7258 Mon Sep 17 00:00:00 2001 From: dreyco676 Date: Wed, 8 Feb 2017 09:17:30 -0600 Subject: [PATCH 1/4] added geopy, fixed conversion to float --- Intro to Geospatial Data with Python.ipynb | 13878 ++++++++++++++++++- 1 file changed, 13667 insertions(+), 211 deletions(-) diff --git a/Intro to Geospatial Data with Python.ipynb b/Intro to Geospatial Data with Python.ipynb index a6645da..8008122 100644 --- a/Intro to Geospatial Data with Python.ipynb +++ b/Intro to Geospatial Data with Python.ipynb @@ -247,7 +247,9 @@ "\n", "`conda install pyshp`\n", "\n", - "`conda install pyproj`" + "`conda install pyproj`\n", + "\n", + "`conda install geopy`" ] }, { @@ -326,11 +328,11 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": { "ExecuteTime": { - "end_time": "2017-01-20T15:09:47.869359", - "start_time": "2017-01-20T15:09:40.434905" + "end_time": "2017-02-08T09:09:49.226515", + "start_time": "2017-02-08T09:09:42.931561" }, "collapsed": false }, @@ -381,11 +383,11 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": { "ExecuteTime": { - "end_time": "2017-01-20T15:58:40.606929", - "start_time": "2017-01-20T15:57:05.771586" + "end_time": "2017-02-08T09:11:33.979172", + "start_time": "2017-02-08T09:09:49.230018" }, "collapsed": false }, @@ -409,11 +411,11 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": { "ExecuteTime": { - "end_time": "2017-01-20T16:18:10.729846", - "start_time": "2017-01-20T16:18:10.717821" + "end_time": "2017-02-08T09:11:34.385765", + "start_time": "2017-02-08T09:11:33.982674" }, "collapsed": true }, @@ -434,15 +436,97 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": { "ExecuteTime": { - "end_time": "2017-01-20T15:58:42.624273", - "start_time": "2017-01-20T15:58:41.035184" + "end_time": "2017-02-08T09:11:36.261747", + "start_time": "2017-02-08T09:11:34.387767" }, "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 427762 entries, 0 to 427761\n", + "Data columns (total 70 columns):\n", + "ACRES_DEED 427762 non-null float64\n", + "ACRES_POLY 427762 non-null float64\n", + "AGPRE_ENRD 0 non-null object\n", + "AGPRE_EXPD 0 non-null object\n", + "AG_PRESERV 427762 non-null object\n", + "BASEMENT 111420 non-null object\n", + "BLDG_NUM 427762 non-null object\n", + "BLOCK 305269 non-null object\n", + "CITY 427762 non-null object\n", + "CITY_USPS 414475 non-null object\n", + "COOLING 157514 non-null object\n", + "COUNTY_ID 427762 non-null object\n", + "DWELL_TYPE 0 non-null object\n", + "EMV_BLDG 427762 non-null float64\n", + "EMV_LAND 427762 non-null float64\n", + "EMV_TOTAL 427762 non-null float64\n", + "FIN_SQ_FT 427762 non-null float64\n", + "GARAGE 157514 non-null object\n", + "GARAGESQFT 157514 non-null object\n", + "GREEN_ACRE 427762 non-null object\n", + "HEATING 156532 non-null object\n", + "HOMESTEAD 426337 non-null object\n", + "HOME_STYLE 152400 non-null object\n", + "LANDMARK 0 non-null object\n", + "LOT 290705 non-null object\n", + "MULTI_USES 0 non-null object\n", + "NUM_UNITS 0 non-null object\n", + "OPEN_SPACE 427762 non-null object\n", + "OWNER_MORE 0 non-null object\n", + "OWNER_NAME 426336 non-null object\n", + "OWN_ADD_L1 0 non-null object\n", + "OWN_ADD_L2 0 non-null object\n", + "OWN_ADD_L3 0 non-null object\n", + "PARC_CODE 427762 non-null int64\n", + "PIN 427762 non-null object\n", + "PLAT_NAME 426333 non-null object\n", + "PREFIXTYPE 0 non-null object\n", + "PREFIX_DIR 0 non-null object\n", + "SALE_DATE 331140 non-null object\n", + "SALE_VALUE 427762 non-null float64\n", + "SCHOOL_DST 426337 non-null object\n", + "SPEC_ASSES 427762 non-null float64\n", + "STREETNAME 427762 non-null object\n", + "STREETTYPE 0 non-null object\n", + "SUFFIX_DIR 0 non-null object\n", + "Shape_Area 427762 non-null float64\n", + "Shape_Le_1 427762 non-null float64\n", + "Shape_Leng 427762 non-null float64\n", + "TAX_ADD_L1 426189 non-null object\n", + "TAX_ADD_L2 426071 non-null object\n", + "TAX_ADD_L3 62165 non-null object\n", + "TAX_CAPAC 427762 non-null float64\n", + "TAX_EXEMPT 427762 non-null object\n", + "TAX_NAME 426337 non-null object\n", + "TORRENS 427762 non-null object\n", + "TOTAL_TAX 427762 non-null float64\n", + "UNIT_INFO 51470 non-null object\n", + "USE1_DESC 426337 non-null object\n", + "USE2_DESC 4398 non-null object\n", + "USE3_DESC 752 non-null object\n", + "USE4_DESC 207 non-null object\n", + "WSHD_DIST 350447 non-null object\n", + "XUSE1_DESC 17641 non-null object\n", + "XUSE2_DESC 1341 non-null object\n", + "XUSE3_DESC 250 non-null object\n", + "XUSE4_DESC 36 non-null object\n", + "YEAR_BUILT 427762 non-null int64\n", + "ZIP 427762 non-null object\n", + "ZIP4 0 non-null object\n", + "geometry 427762 non-null object\n", + "dtypes: float64(13), int64(2), object(55)\n", + "memory usage: 228.4+ MB\n" + ] + } + ], "source": [ "hennepin.info()" ] @@ -474,11 +558,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": { + "ExecuteTime": { + "end_time": "2017-02-08T09:11:36.649840", + "start_time": "2017-02-08T09:11:36.264750" + }, "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "1.0" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "hennepin['PIN'].nunique(dropna=True) / len(hennepin['PIN'])" ] @@ -498,11 +597,11 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": { "ExecuteTime": { - "end_time": "2017-01-20T15:58:50.757842", - "start_time": "2017-01-20T15:58:44.184341" + "end_time": "2017-02-08T09:11:38.683278", + "start_time": "2017-02-08T09:11:36.651845" }, "collapsed": true }, @@ -524,15 +623,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": { "ExecuteTime": { - "end_time": "2017-01-20T15:58:50.797872", - "start_time": "2017-01-20T15:58:50.759844" + "end_time": "2017-02-08T09:11:38.718311", + "start_time": "2017-02-08T09:11:38.688282" }, "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "['N', 'Y']" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "list(hennepin['GREEN_ACRE'].unique())" ] @@ -548,11 +658,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": { + "ExecuteTime": { + "end_time": "2017-02-08T09:11:39.455386", + "start_time": "2017-02-08T09:11:38.720312" + }, "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "54" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "column_list = list(hennepin.select_dtypes(include=['object']).columns.values)\n", "# how many are there?\n", @@ -570,11 +695,11 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": { "ExecuteTime": { - "end_time": "2017-01-20T15:58:50.836899", - "start_time": "2017-01-20T15:58:50.802876" + "end_time": "2017-02-08T09:11:39.465393", + "start_time": "2017-02-08T09:11:39.457888" }, "collapsed": true }, @@ -594,15 +719,31 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": { "ExecuteTime": { - "end_time": "2017-01-20T15:58:51.429708", - "start_time": "2017-01-20T15:58:50.841903" + "end_time": "2017-02-08T09:12:00.234756", + "start_time": "2017-02-08T09:11:39.467895" }, "collapsed": false }, - "outputs": [], + "outputs": [ + { + "ename": "TypeError", + "evalue": "unhashable type: 'Polygon'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mhennepin\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mconvert_to_categorical\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mhennepin\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcolumn_list\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m\u001b[0m in \u001b[0;36mconvert_to_categorical\u001b[0;34m(df, cols)\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mcol\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mcols\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[1;31m# get number of unique values\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0munique_vals\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdf\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mcol\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0munique\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[1;31m# calculate the ratio of unique values to total number of rows\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0munique_ratio\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0munique_vals\u001b[0m \u001b[1;33m/\u001b[0m \u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdf\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\pandas\\core\\base.py\u001b[0m in \u001b[0;36munique\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 962\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mvalues\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0munique\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 963\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m--> 964\u001b[0;31m \u001b[1;32mreturn\u001b[0m \u001b[0munique1d\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 965\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 966\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mnunique\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdropna\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mTrue\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\pandas\\core\\nanops.py\u001b[0m in \u001b[0;36munique1d\u001b[0;34m(values)\u001b[0m\n\u001b[1;32m 794\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 795\u001b[0m \u001b[0mtable\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0m_hash\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mPyObjectHashTable\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m--> 796\u001b[0;31m \u001b[0muniques\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtable\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0munique\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0m_ensure_object\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 797\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0muniques\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mpandas\\hashtable.pyx\u001b[0m in \u001b[0;36mpandas.hashtable.PyObjectHashTable.unique (pandas\\hashtable.c:13585)\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mTypeError\u001b[0m: unhashable type: 'Polygon'" + ] + } + ], "source": [ "hennepin = convert_to_categorical(hennepin, column_list)" ] @@ -618,11 +759,11 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": { "ExecuteTime": { - "end_time": "2017-01-20T16:00:10.168953", - "start_time": "2017-01-20T15:59:50.061333" + "end_time": "2017-02-08T09:12:52.733292", + "start_time": "2017-02-08T09:12:52.103781" }, "collapsed": false }, @@ -644,15 +785,96 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": { "ExecuteTime": { - "end_time": "2017-01-20T16:00:13.074130", - "start_time": "2017-01-20T16:00:10.169955" + "end_time": "2017-02-08T09:12:54.449323", + "start_time": "2017-02-08T09:12:52.735294" }, "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Index: 427762 entries, 053-0102724110003 to 053-3612123410019\n", + "Data columns (total 69 columns):\n", + "ACRES_DEED 427762 non-null float64\n", + "ACRES_POLY 427762 non-null float64\n", + "AGPRE_ENRD 0 non-null category\n", + "AGPRE_EXPD 0 non-null category\n", + "AG_PRESERV 427762 non-null category\n", + "BASEMENT 111420 non-null category\n", + "BLDG_NUM 427762 non-null category\n", + "BLOCK 305269 non-null category\n", + "CITY 427762 non-null category\n", + "CITY_USPS 414475 non-null category\n", + "COOLING 157514 non-null category\n", + "COUNTY_ID 427762 non-null category\n", + "DWELL_TYPE 0 non-null category\n", + "EMV_BLDG 427762 non-null float64\n", + "EMV_LAND 427762 non-null float64\n", + "EMV_TOTAL 427762 non-null float64\n", + "FIN_SQ_FT 427762 non-null float64\n", + "GARAGE 157514 non-null category\n", + "GARAGESQFT 157514 non-null category\n", + "GREEN_ACRE 427762 non-null category\n", + "HEATING 156532 non-null category\n", + "HOMESTEAD 426337 non-null category\n", + "HOME_STYLE 152400 non-null category\n", + "LANDMARK 0 non-null category\n", + "LOT 290705 non-null category\n", + "MULTI_USES 0 non-null category\n", + "NUM_UNITS 0 non-null category\n", + "OPEN_SPACE 427762 non-null category\n", + "OWNER_MORE 0 non-null category\n", + "OWNER_NAME 426336 non-null object\n", + "OWN_ADD_L1 0 non-null category\n", + "OWN_ADD_L2 0 non-null category\n", + "OWN_ADD_L3 0 non-null category\n", + "PARC_CODE 427762 non-null int64\n", + "PLAT_NAME 426333 non-null category\n", + "PREFIXTYPE 0 non-null category\n", + "PREFIX_DIR 0 non-null category\n", + "SALE_DATE 331140 non-null category\n", + "SALE_VALUE 427762 non-null float64\n", + "SCHOOL_DST 426337 non-null category\n", + "SPEC_ASSES 427762 non-null float64\n", + "STREETNAME 427762 non-null category\n", + "STREETTYPE 0 non-null category\n", + "SUFFIX_DIR 0 non-null category\n", + "Shape_Area 427762 non-null float64\n", + "Shape_Le_1 427762 non-null float64\n", + "Shape_Leng 427762 non-null float64\n", + "TAX_ADD_L1 426189 non-null object\n", + "TAX_ADD_L2 426071 non-null category\n", + "TAX_ADD_L3 62165 non-null category\n", + "TAX_CAPAC 427762 non-null float64\n", + "TAX_EXEMPT 427762 non-null category\n", + "TAX_NAME 426337 non-null object\n", + "TORRENS 427762 non-null category\n", + "TOTAL_TAX 427762 non-null float64\n", + "UNIT_INFO 51470 non-null category\n", + "USE1_DESC 426337 non-null category\n", + "USE2_DESC 4398 non-null category\n", + "USE3_DESC 752 non-null category\n", + "USE4_DESC 207 non-null category\n", + "WSHD_DIST 350447 non-null category\n", + "XUSE1_DESC 17641 non-null category\n", + "XUSE2_DESC 1341 non-null category\n", + "XUSE3_DESC 250 non-null category\n", + "XUSE4_DESC 36 non-null category\n", + "YEAR_BUILT 427762 non-null int64\n", + "ZIP 427762 non-null category\n", + "ZIP4 0 non-null category\n", + "geometry 427762 non-null object\n", + "dtypes: category(50), float64(13), int64(2), object(4)\n", + "memory usage: 91.4+ MB\n" + ] + } + ], "source": [ "hennepin.info()" ] @@ -676,16 +898,9270 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": { "ExecuteTime": { - "end_time": "2017-01-20T16:01:22.835257", - "start_time": "2017-01-20T16:00:13.076131" + "end_time": "2017-02-08T09:14:09.573381", + "start_time": "2017-02-08T09:12:54.452327" }, "collapsed": false, "scrolled": true }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Anaconda3\\lib\\site-packages\\matplotlib\\__init__.py:1357: UserWarning: This call to matplotlib.use() has no effect\n", + "because the backend has already been chosen;\n", + "matplotlib.use() must be called *before* pylab, matplotlib.pyplot,\n", + "or matplotlib.backends is imported for the first time.\n", + "\n", + " warnings.warn(_use_error_msg)\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "
\n", + "
\n", + "

Overview

\n", + "
\n", + "
\n", + "
\n", + "

Dataset info

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Number of variables66
Number of observations427762
Total Missing (%)43.4%
Total size in memory78.4 MiB
Average record size in memory192.2 B
\n", + "
\n", + "
\n", + "

Variables types

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Numeric8
Categorical34
Date0
Text (Unique)1
Rejected23
\n", + "
\n", + "
\n", + "

Warnings

\n", + "
  • ACRES_DEED has constant value 0 Rejected
  • ACRES_POLY is highly skewed (γ1 = 67.596)
  • AGPRE_ENRD has 427762 / 100.0% missing values Missing
  • AGPRE_ENRD has constant value Rejected
  • AGPRE_EXPD has 427762 / 100.0% missing values Missing
  • AGPRE_EXPD has constant value Rejected
  • BASEMENT has 316342 / 74.0% missing values Missing
  • BLDG_NUM has a high cardinality: 21678 distinct values Warning
  • BLOCK has 122493 / 28.6% missing values Missing
  • BLOCK has a high cardinality: 218 distinct values Warning
  • CITY_USPS has 13287 / 3.1% missing values Missing
  • COOLING has 270248 / 63.2% missing values Missing
  • COUNTY_ID has constant value 053 Rejected
  • DWELL_TYPE has 427762 / 100.0% missing values Missing
  • DWELL_TYPE has constant value Rejected
  • EMV_BLDG has 35878 / 8.4% zeros
  • EMV_BLDG is highly skewed (γ1 = 200.8)
  • EMV_LAND has 22919 / 5.4% zeros
  • EMV_LAND is highly skewed (γ1 = 73.643)
  • EMV_TOTAL is highly correlated with EMV_BLDG (ρ = 0.9836) Rejected
  • FIN_SQ_FT has 282593 / 66.1% zeros
  • GARAGE has 270248 / 63.2% missing values Missing
  • GARAGESQFT has 270248 / 63.2% missing values Missing
  • GARAGESQFT has a high cardinality: 1444 distinct values Warning
  • HEATING has 271230 / 63.4% missing values Missing
  • HOME_STYLE has 275362 / 64.4% missing values Missing
  • LANDMARK has 427762 / 100.0% missing values Missing
  • LANDMARK has constant value Rejected
  • LOT has 137057 / 32.0% missing values Missing
  • LOT has a high cardinality: 392 distinct values Warning
  • MULTI_USES has 427762 / 100.0% missing values Missing
  • MULTI_USES has constant value Rejected
  • NUM_UNITS has 427762 / 100.0% missing values Missing
  • NUM_UNITS has constant value Rejected
  • OWNER_MORE has 427762 / 100.0% missing values Missing
  • OWNER_MORE has constant value Rejected
  • OWN_ADD_L1 has 427762 / 100.0% missing values Missing
  • OWN_ADD_L1 has constant value Rejected
  • OWN_ADD_L2 has 427762 / 100.0% missing values Missing
  • OWN_ADD_L2 has constant value Rejected
  • OWN_ADD_L3 has 427762 / 100.0% missing values Missing
  • OWN_ADD_L3 has constant value Rejected
  • PARC_CODE has constant value 0 Rejected
  • PLAT_NAME has a high cardinality: 18488 distinct values Warning
  • PREFIXTYPE has 427762 / 100.0% missing values Missing
  • PREFIXTYPE has constant value Rejected
  • PREFIX_DIR has 427762 / 100.0% missing values Missing
  • PREFIX_DIR has constant value Rejected
  • SALE_DATE has 96622 / 22.6% missing values Missing
  • SALE_DATE has a high cardinality: 553 distinct values Warning
  • SALE_VALUE has 97862 / 22.9% zeros
  • SALE_VALUE is highly skewed (γ1 = 91.079)
  • SPEC_ASSES has 358992 / 83.9% zeros
  • SPEC_ASSES is highly skewed (γ1 = 134.05)
  • STREETNAME has a high cardinality: 7387 distinct values Warning
  • STREETTYPE has 427762 / 100.0% missing values Missing
  • STREETTYPE has constant value Rejected
  • SUFFIX_DIR has 427762 / 100.0% missing values Missing
  • SUFFIX_DIR has constant value Rejected
  • Shape_Area is highly correlated with ACRES_POLY (ρ = 1) Rejected
  • Shape_Leng is highly correlated with Shape_Le_1 (ρ = 1) Rejected
  • TAX_ADD_L2 has a high cardinality: 54604 distinct values Warning
  • TAX_ADD_L3 has 365597 / 85.5% missing values Missing
  • TAX_ADD_L3 has a high cardinality: 3193 distinct values Warning
  • TAX_CAPAC is highly correlated with EMV_TOTAL (ρ = 0.9882) Rejected
  • TOTAL_TAX is highly correlated with TAX_CAPAC (ρ = 0.99701) Rejected
  • UNIT_INFO has 376292 / 88.0% missing values Missing
  • UNIT_INFO has a high cardinality: 6850 distinct values Warning
  • USE2_DESC has 423364 / 99.0% missing values Missing
  • USE3_DESC has 427010 / 99.8% missing values Missing
  • USE4_DESC has 427555 / 100.0% missing values Missing
  • WSHD_DIST has 77315 / 18.1% missing values Missing
  • XUSE1_DESC has 410121 / 95.9% missing values Missing
  • XUSE2_DESC has 426421 / 99.7% missing values Missing
  • XUSE3_DESC has 427512 / 99.9% missing values Missing
  • XUSE4_DESC has 427726 / 100.0% missing values Missing
  • YEAR_BUILT has 31396 / 7.3% zeros
  • ZIP has a high cardinality: 78 distinct values Warning
  • ZIP4 has 427762 / 100.0% missing values Missing
  • ZIP4 has constant value Rejected
\n", + "
\n", + "
\n", + "
\n", + "

Variables

\n", + "
\n", + "
\n", + "
\n", + "

ACRES_DEED
\n", + " Constant\n", + "

\n", + "
\n", + "

This variable is constant and should be ignored for analysis

\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Constant value0
\n", + "
\n", + "
\n", + "
\n", + "

ACRES_POLY
\n", + " Numeric\n", + "

\n", + "
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count3556
Unique (%)0.8%
Missing (%)0.0%
Missing (n)0
Infinite (%)0.0%
Infinite (n)0
\n", + "\n", + "
\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mean1.1817
Minimum0
Maximum1305.2
Zeros (%)0.7%
\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + "
\n", + "
\n", + "
\n", + "

Quantile statistics

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Minimum0
5-th percentile0.07
Q10.15
Median0.26
Q30.53
95-th percentile4.5
Maximum1305.2
Range1305.2
Interquartile range0.38
\n", + "
\n", + "
\n", + "

Descriptive statistics

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Standard deviation6.3964
Coef of variation5.4127
Kurtosis9865.5
Mean1.1817
MAD1.5226
Skewness67.596
Sum505500
Variance40.913
Memory size3.3 MiB
\n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
0.12319517.5%\n", + "
 
\n", + "
0.23153903.6%\n", + "
 
\n", + "
0.15146803.4%\n", + "
 
\n", + "
0.11141643.3%\n", + "
 
\n", + "
0.13136123.2%\n", + "
 
\n", + "
0.14115322.7%\n", + "
 
\n", + "
0.25107692.5%\n", + "
 
\n", + "
0.2696972.3%\n", + "
 
\n", + "
0.2494612.2%\n", + "
 
\n", + "
0.2288482.1%\n", + "
 
\n", + "
Other values (3546)28765867.2%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "

Minimum 5 values

\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
0.031940.7%\n", + "
 
\n", + "
0.015160.1%\n", + "
 
\n", + "
0.0215310.4%\n", + "
 
\n", + "
0.0333770.8%\n", + "
 
\n", + "
0.0450361.2%\n", + "
 
\n", + "
\n", + "

Maximum 5 values

\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
615.6510.0%\n", + "
 
\n", + "
624.8910.0%\n", + "
 
\n", + "
627.2610.0%\n", + "
 
\n", + "
1299.7510.0%\n", + "
 
\n", + "
1305.2210.0%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

AGPRE_ENRD
\n", + " Constant\n", + "

\n", + "
\n", + "

This variable is constant and should be ignored for analysis

\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Constant value
\n", + "
\n", + "
\n", + "
\n", + "

AGPRE_EXPD
\n", + " Constant\n", + "

\n", + "
\n", + "

This variable is constant and should be ignored for analysis

\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Constant value
\n", + "
\n", + "
\n", + "
\n", + "

AG_PRESERV
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count2
Unique (%)0.0%
Missing (%)0.0%
Missing (n)0
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
N\n", + "
\n", + " 427518\n", + "
\n", + " \n", + "
Y\n", + "
\n", + "  \n", + "
\n", + " 244\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
N42751899.9%\n", + "
 
\n", + "
Y2440.1%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

BASEMENT
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count3
Unique (%)0.0%
Missing (%)74.0%
Missing (n)316342
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
Y\n", + "
\n", + " 102226\n", + "
\n", + " \n", + "
N\n", + "
\n", + "  \n", + "
\n", + " 9194\n", + "
(Missing)\n", + "
\n", + " 316342\n", + "
\n", + " \n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
Y10222623.9%\n", + "
 
\n", + "
N91942.1%\n", + "
 
\n", + "
(Missing)31634274.0%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

BLDG_NUM
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count21678
Unique (%)5.1%
Missing (%)0.0%
Missing (n)0
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
40\n", + "
\n", + "  \n", + "
\n", + " 1420\n", + "
61\n", + "
\n", + "  \n", + "
\n", + " 1365\n", + "
34\n", + "
\n", + "  \n", + "
\n", + " 1208\n", + "
Other values (21675)\n", + "
\n", + " 423769\n", + "
\n", + " \n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
4014200.3%\n", + "
 
\n", + "
6113650.3%\n", + "
 
\n", + "
3412080.3%\n", + "
 
\n", + "
7610590.2%\n", + "
 
\n", + "
20010560.2%\n", + "
 
\n", + "
40110370.2%\n", + "
 
\n", + "
488830.2%\n", + "
 
\n", + "
247330.2%\n", + "
 
\n", + "
387300.2%\n", + "
 
\n", + "
1216890.2%\n", + "
 
\n", + "
Other values (21668)41758297.6%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

BLOCK
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count218
Unique (%)0.1%
Missing (%)28.6%
Missing (n)122493
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
001\n", + "
\n", + " 94328\n", + "
\n", + " \n", + "
002\n", + "
\n", + " 62154\n", + "
\n", + " \n", + "
003\n", + "
\n", + " 38189\n", + "
\n", + " \n", + "
Other values (214)\n", + "
\n", + " 110598\n", + "
\n", + " \n", + "
(Missing)\n", + "
\n", + " 122493\n", + "
\n", + " \n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
0019432822.1%\n", + "
 
\n", + "
0026215414.5%\n", + "
 
\n", + "
003381898.9%\n", + "
 
\n", + "
004259426.1%\n", + "
 
\n", + "
005166043.9%\n", + "
 
\n", + "
006128753.0%\n", + "
 
\n", + "
00793562.2%\n", + "
 
\n", + "
00876501.8%\n", + "
 
\n", + "
00949841.2%\n", + "
 
\n", + "
01043191.0%\n", + "
 
\n", + "
Other values (207)288686.7%\n", + "
 
\n", + "
(Missing)12249328.6%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

CITY
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count47
Unique (%)0.0%
Missing (%)0.0%
Missing (n)0
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
MINNEAPOLIS\n", + "
\n", + " 129889\n", + "
\n", + " \n", + "
BLOOMINGTON\n", + "
\n", + "  \n", + "
\n", + " 31217\n", + "
PLYMOUTH\n", + "
\n", + "  \n", + "
\n", + " 26820\n", + "
Other values (44)\n", + "
\n", + " 239836\n", + "
\n", + " \n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
MINNEAPOLIS12988930.4%\n", + "
 
\n", + "
BLOOMINGTON312177.3%\n", + "
 
\n", + "
PLYMOUTH268206.3%\n", + "
 
\n", + "
MAPLE GROVE256906.0%\n", + "
 
\n", + "
BROOKLYN PARK242265.7%\n", + "
 
\n", + "
EDEN PRAIRIE226465.3%\n", + "
 
\n", + "
EDINA213525.0%\n", + "
 
\n", + "
MINNETONKA207044.8%\n", + "
 
\n", + "
ST. LOUIS PARK177024.1%\n", + "
 
\n", + "
RICHFIELD119182.8%\n", + "
 
\n", + "
Other values (37)9559822.3%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

CITY_USPS
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count49
Unique (%)0.0%
Missing (%)3.1%
Missing (n)13287
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
MINNEAPOLIS\n", + "
\n", + " 129317\n", + "
\n", + " \n", + "
BLOOMINGTON\n", + "
\n", + "  \n", + "
\n", + " 31073\n", + "
PLYMOUTH\n", + "
\n", + "  \n", + "
\n", + " 25320\n", + "
Other values (45)\n", + "
\n", + " 228765\n", + "
\n", + " \n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
MINNEAPOLIS12931730.2%\n", + "
 
\n", + "
BLOOMINGTON310737.3%\n", + "
 
\n", + "
PLYMOUTH253205.9%\n", + "
 
\n", + "
MAPLE GROVE246355.8%\n", + "
 
\n", + "
BROOKLYN PARK233215.5%\n", + "
 
\n", + "
EDEN PRAIRIE212205.0%\n", + "
 
\n", + "
EDINA207524.9%\n", + "
 
\n", + "
ST. LOUIS PARK176394.1%\n", + "
 
\n", + "
MINNETONKA176344.1%\n", + "
 
\n", + "
RICHFIELD118632.8%\n", + "
 
\n", + "
Other values (38)9170121.4%\n", + "
 
\n", + "
(Missing)132873.1%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

COOLING
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count5
Unique (%)0.0%
Missing (%)63.2%
Missing (n)270248
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
Forced Air\n", + "
\n", + " 128846\n", + "
\n", + " \n", + "
N\n", + "
\n", + "  \n", + "
\n", + " 24134\n", + "
Unknown\n", + "
\n", + "  \n", + "
\n", + " 4320\n", + "
(Missing)\n", + "
\n", + " 270248\n", + "
\n", + " \n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
Forced Air12884630.1%\n", + "
 
\n", + "
N241345.6%\n", + "
 
\n", + "
Unknown43201.0%\n", + "
 
\n", + "
Y2140.1%\n", + "
 
\n", + "
(Missing)27024863.2%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

COUNTY_ID
\n", + " Constant\n", + "

\n", + "
\n", + "

This variable is constant and should be ignored for analysis

\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Constant value053
\n", + "
\n", + "
\n", + "
\n", + "

DWELL_TYPE
\n", + " Constant\n", + "

\n", + "
\n", + "

This variable is constant and should be ignored for analysis

\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Constant value
\n", + "
\n", + "
\n", + "
\n", + "

EMV_BLDG
\n", + " Numeric\n", + "

\n", + "
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count12417
Unique (%)2.9%
Missing (%)0.0%
Missing (n)0
Infinite (%)0.0%
Infinite (n)0
\n", + "\n", + "
\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mean186280
Minimum0
Maximum552460000
Zeros (%)8.4%
\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + "
\n", + "
\n", + "
\n", + "

Quantile statistics

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Minimum0
5-th percentile0
Q175000
Median114700
Q3173800
95-th percentile396800
Maximum552460000
Range552460000
Interquartile range98800
\n", + "
\n", + "
\n", + "

Descriptive statistics

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Standard deviation1334900
Coef of variation7.1659
Kurtosis71710
Mean186280
MAD147160
Skewness200.8
Sum79684000000
Variance1781900000000
Memory size3.3 MiB
\n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
0.0358788.4%\n", + "
 
\n", + "
3600.018300.4%\n", + "
 
\n", + "
95000.013270.3%\n", + "
 
\n", + "
100000.011980.3%\n", + "
 
\n", + "
105000.011910.3%\n", + "
 
\n", + "
97000.011560.3%\n", + "
 
\n", + "
110000.011310.3%\n", + "
 
\n", + "
109000.011270.3%\n", + "
 
\n", + "
107000.011130.3%\n", + "
 
\n", + "
99000.010890.3%\n", + "
 
\n", + "
Other values (12407)38072289.0%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "

Minimum 5 values

\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
0.0358788.4%\n", + "
 
\n", + "
100.0570.0%\n", + "
 
\n", + "
200.0350.0%\n", + "
 
\n", + "
300.0770.0%\n", + "
 
\n", + "
400.0630.0%\n", + "
 
\n", + "
\n", + "

Maximum 5 values

\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
136448400.010.0%\n", + "
 
\n", + "
167267200.010.0%\n", + "
 
\n", + "
170681400.010.0%\n", + "
 
\n", + "
175027000.010.0%\n", + "
 
\n", + "
552458400.010.0%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

EMV_LAND
\n", + " Numeric\n", + "

\n", + "
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count9151
Unique (%)2.1%
Missing (%)0.0%
Missing (n)0
Infinite (%)0.0%
Infinite (n)0
\n", + "\n", + "
\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mean100420
Minimum0
Maximum96792000
Zeros (%)5.4%
\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + "
\n", + "
\n", + "
\n", + "

Quantile statistics

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Minimum0
5-th percentile0
Q125300
Median50200
Q3100000
95-th percentile267600
Maximum96792000
Range96792000
Interquartile range74700
\n", + "
\n", + "
\n", + "

Descriptive statistics

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Standard deviation369410
Coef of variation3.6788
Kurtosis13821
Mean100420
MAD90303
Skewness73.643
Sum42955000000
Variance136470000000
Memory size3.3 MiB
\n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
0.0229195.4%\n", + "
 
\n", + "
150000.087222.0%\n", + "
 
\n", + "
40000.057881.4%\n", + "
 
\n", + "
34400.051541.2%\n", + "
 
\n", + "
30000.048551.1%\n", + "
 
\n", + "
20000.039070.9%\n", + "
 
\n", + "
10000.038610.9%\n", + "
 
\n", + "
50000.038340.9%\n", + "
 
\n", + "
100.033420.8%\n", + "
 
\n", + "
35000.027360.6%\n", + "
 
\n", + "
Other values (9141)36264484.8%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "

Minimum 5 values

\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
0.0229195.4%\n", + "
 
\n", + "
100.033420.8%\n", + "
 
\n", + "
200.05550.1%\n", + "
 
\n", + "
300.05040.1%\n", + "
 
\n", + "
400.0750.0%\n", + "
 
\n", + "
\n", + "

Maximum 5 values

\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
35456000.010.0%\n", + "
 
\n", + "
37012500.010.0%\n", + "
 
\n", + "
39228900.010.0%\n", + "
 
\n", + "
58304000.010.0%\n", + "
 
\n", + "
96791600.010.0%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

EMV_TOTAL
\n", + " Highly correlated\n", + "

\n", + "
\n", + "

This variable is highly correlated with EMV_BLDG and should be ignored for analysis

\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Correlation0.9836
\n", + "
\n", + "
\n", + "
\n", + "

FIN_SQ_FT
\n", + " Numeric\n", + "

\n", + "
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count4666
Unique (%)1.1%
Missing (%)0.0%
Missing (n)0
Infinite (%)0.0%
Infinite (n)0
\n", + "\n", + "
\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mean528.12
Minimum0
Maximum19269
Zeros (%)66.1%
\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + "
\n", + "
\n", + "
\n", + "

Quantile statistics

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Minimum0
5-th percentile0
Q10
Median0
Q31087
95-th percentile2214
Maximum19269
Range19269
Interquartile range1087
\n", + "
\n", + "
\n", + "

Descriptive statistics

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Standard deviation857
Coef of variation1.6227
Kurtosis9.0828
Mean528.12
MAD697.83
Skewness2.081
Sum225910000
Variance734450
Memory size3.3 MiB
\n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
0.028259366.1%\n", + "
 
\n", + "
960.017510.4%\n", + "
 
\n", + "
1040.013380.3%\n", + "
 
\n", + "
1092.011930.3%\n", + "
 
\n", + "
1008.010660.2%\n", + "
 
\n", + "
1056.010240.2%\n", + "
 
\n", + "
1144.09020.2%\n", + "
 
\n", + "
1248.08590.2%\n", + "
 
\n", + "
1012.08020.2%\n", + "
 
\n", + "
1000.08010.2%\n", + "
 
\n", + "
Other values (4656)13543331.7%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "

Minimum 5 values

\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
0.028259366.1%\n", + "
 
\n", + "
176.010.0%\n", + "
 
\n", + "
280.010.0%\n", + "
 
\n", + "
320.010.0%\n", + "
 
\n", + "
324.010.0%\n", + "
 
\n", + "
\n", + "

Maximum 5 values

\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
16000.010.0%\n", + "
 
\n", + "
17097.010.0%\n", + "
 
\n", + "
18474.010.0%\n", + "
 
\n", + "
19076.010.0%\n", + "
 
\n", + "
19269.010.0%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

GARAGE
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count3
Unique (%)0.0%
Missing (%)63.2%
Missing (n)270248
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
Y\n", + "
\n", + " 150397\n", + "
\n", + " \n", + "
N\n", + "
\n", + "  \n", + "
\n", + " 7117\n", + "
(Missing)\n", + "
\n", + " 270248\n", + "
\n", + " \n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
Y15039735.2%\n", + "
 
\n", + "
N71171.7%\n", + "
 
\n", + "
(Missing)27024863.2%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

GARAGESQFT
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count1444
Unique (%)0.9%
Missing (%)63.2%
Missing (n)270248
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
440\n", + "
\n", + "  \n", + "
\n", + " 14105\n", + "
528\n", + "
\n", + "  \n", + "
\n", + " 9489\n", + "
0\n", + "
\n", + "  \n", + "
\n", + " 8476\n", + "
Other values (1440)\n", + "
\n", + " 125444\n", + "
\n", + " \n", + "
(Missing)\n", + "
\n", + " 270248\n", + "
\n", + " \n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
440141053.3%\n", + "
 
\n", + "
52894892.2%\n", + "
 
\n", + "
084762.0%\n", + "
 
\n", + "
48483001.9%\n", + "
 
\n", + "
48062011.4%\n", + "
 
\n", + "
57661851.4%\n", + "
 
\n", + "
40047401.1%\n", + "
 
\n", + "
24038840.9%\n", + "
 
\n", + "
28033200.8%\n", + "
 
\n", + "
62427990.7%\n", + "
 
\n", + "
Other values (1433)9001521.0%\n", + "
 
\n", + "
(Missing)27024863.2%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

GREEN_ACRE
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count2
Unique (%)0.0%
Missing (%)0.0%
Missing (n)0
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
N\n", + "
\n", + " 426987\n", + "
\n", + " \n", + "
Y\n", + "
\n", + "  \n", + "
\n", + " 775\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
N42698799.8%\n", + "
 
\n", + "
Y7750.2%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

HEATING
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count7
Unique (%)0.0%
Missing (%)63.4%
Missing (n)271230
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
Forced Air\n", + "
\n", + " 141681\n", + "
\n", + " \n", + "
Hot Water\n", + "
\n", + "  \n", + "
\n", + " 6779\n", + "
0\n", + "
\n", + "  \n", + "
\n", + " 5315\n", + "
Other values (3)\n", + "
\n", + "  \n", + "
\n", + " 2757\n", + "
(Missing)\n", + "
\n", + " 271230\n", + "
\n", + " \n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
Forced Air14168133.1%\n", + "
 
\n", + "
Hot Water67791.6%\n", + "
 
\n", + "
053151.2%\n", + "
 
\n", + "
Gravity17610.4%\n", + "
 
\n", + "
Electric6400.1%\n", + "
 
\n", + "
Other3560.1%\n", + "
 
\n", + "
(Missing)27123063.4%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

HOMESTEAD
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count3
Unique (%)0.0%
Missing (%)0.3%
Missing (n)1425
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
Y\n", + "
\n", + " 317978\n", + "
\n", + " \n", + "
N\n", + "
\n", + " 108359\n", + "
\n", + " \n", + "
(Missing)\n", + "
\n", + "  \n", + "
\n", + " 1425\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
Y31797874.3%\n", + "
 
\n", + "
N10835925.3%\n", + "
 
\n", + "
(Missing)14250.3%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

HOME_STYLE
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count16
Unique (%)0.0%
Missing (%)64.4%
Missing (n)275362
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
Rambler\n", + "
\n", + " 56372\n", + "
\n", + " \n", + "
Other\n", + "
\n", + "  \n", + "
\n", + " 37774\n", + "
Split Entry\n", + "
\n", + "  \n", + "
\n", + " 15713\n", + "
Other values (12)\n", + "
\n", + "  \n", + "
\n", + " 42541\n", + "
(Missing)\n", + "
\n", + " 275362\n", + "
\n", + " \n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
Rambler5637213.2%\n", + "
 
\n", + "
Other377748.8%\n", + "
 
\n", + "
Split Entry157133.7%\n", + "
 
\n", + "
Split Level117612.7%\n", + "
 
\n", + "
Expansion91072.1%\n", + "
 
\n", + "
Town House56811.3%\n", + "
 
\n", + "
Colonial52891.2%\n", + "
 
\n", + "
Condo44061.0%\n", + "
 
\n", + "
Townhouse28290.7%\n", + "
 
\n", + "
Half Double14800.3%\n", + "
 
\n", + "
Other values (5)19880.5%\n", + "
 
\n", + "
(Missing)27536264.4%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

LANDMARK
\n", + " Constant\n", + "

\n", + "
\n", + "

This variable is constant and should be ignored for analysis

\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Constant value
\n", + "
\n", + "
\n", + "
\n", + "

LOT
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count392
Unique (%)0.1%
Missing (%)32.0%
Missing (n)137057
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
001\n", + "
\n", + "  \n", + "
\n", + " 28792\n", + "
002\n", + "
\n", + "  \n", + "
\n", + " 25207\n", + "
003\n", + "
\n", + "  \n", + "
\n", + " 22463\n", + "
Other values (388)\n", + "
\n", + " 214243\n", + "
\n", + " \n", + "
(Missing)\n", + "
\n", + " 137057\n", + "
\n", + " \n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
001287926.7%\n", + "
 
\n", + "
002252075.9%\n", + "
 
\n", + "
003224635.3%\n", + "
 
\n", + "
004206764.8%\n", + "
 
\n", + "
005181174.2%\n", + "
 
\n", + "
006167633.9%\n", + "
 
\n", + "
007149643.5%\n", + "
 
\n", + "
008137123.2%\n", + "
 
\n", + "
009122732.9%\n", + "
 
\n", + "
010114582.7%\n", + "
 
\n", + "
Other values (381)10628024.8%\n", + "
 
\n", + "
(Missing)13705732.0%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

MULTI_USES
\n", + " Constant\n", + "

\n", + "
\n", + "

This variable is constant and should be ignored for analysis

\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Constant value
\n", + "
\n", + "
\n", + "
\n", + "

NUM_UNITS
\n", + " Constant\n", + "

\n", + "
\n", + "

This variable is constant and should be ignored for analysis

\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Constant value
\n", + "
\n", + "
\n", + "
\n", + "

OPEN_SPACE
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count2
Unique (%)0.0%
Missing (%)0.0%
Missing (n)0
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
N\n", + "
\n", + " 427602\n", + "
\n", + " \n", + "
Y\n", + "
\n", + "  \n", + "
\n", + " 160\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
N427602100.0%\n", + "
 
\n", + "
Y1600.0%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

OWNER_MORE
\n", + " Constant\n", + "

\n", + "
\n", + "

This variable is constant and should be ignored for analysis

\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Constant value
\n", + "
\n", + "
\n", + "
\n", + "

OWN_ADD_L1
\n", + " Constant\n", + "

\n", + "
\n", + "

This variable is constant and should be ignored for analysis

\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Constant value
\n", + "
\n", + "
\n", + "
\n", + "

OWN_ADD_L2
\n", + " Constant\n", + "

\n", + "
\n", + "

This variable is constant and should be ignored for analysis

\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Constant value
\n", + "
\n", + "
\n", + "
\n", + "

OWN_ADD_L3
\n", + " Constant\n", + "

\n", + "
\n", + "

This variable is constant and should be ignored for analysis

\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Constant value
\n", + "
\n", + "
\n", + "
\n", + "

PARC_CODE
\n", + " Constant\n", + "

\n", + "
\n", + "

This variable is constant and should be ignored for analysis

\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Constant value0
\n", + "
\n", + "
\n", + "
\n", + "

PIN
\n", + " Categorical, Unique\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
First 3 values
053-1602924320023
053-2411822320004
053-2502924340142
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Last 3 values
053-3202924330157
053-2011622120074
053-2711823320002
\n", + "\n", + "
\n", + "

First 10 values

\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
053-010272411000310.0%\n", + "
 
\n", + "
053-010272411000410.0%\n", + "
 
\n", + "
053-010272411000510.0%\n", + "
 
\n", + "
053-010272411000610.0%\n", + "
 
\n", + "
053-010272411000810.0%\n", + "
 
\n", + "
\n", + "

Last 10 values

\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
053-361212341001410.0%\n", + "
 
\n", + "
053-361212341001510.0%\n", + "
 
\n", + "
053-361212341001610.0%\n", + "
 
\n", + "
053-361212341001810.0%\n", + "
 
\n", + "
053-361212341001910.0%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

PLAT_NAME
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count18488
Unique (%)4.3%
Missing (%)0.3%
Missing (n)1429
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
UNPLATTED\n", + "
\n", + "  \n", + "
\n", + " 1412\n", + "
REMINGTONS 2ND ADDN TO MPLS\n", + "
\n", + "  \n", + "
\n", + " 1042\n", + "
CONDO NO 0587 VILLAGE HOMES OF EDIN\n", + "
\n", + "  \n", + "
\n", + " 927\n", + "
Other values (18484)\n", + "
\n", + " 422952\n", + "
\n", + " \n", + "
(Missing)\n", + "
\n", + "  \n", + "
\n", + " 1429\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
UNPLATTED14120.3%\n", + "
 
\n", + "
REMINGTONS 2ND ADDN TO MPLS10420.2%\n", + "
 
\n", + "
CONDO NO 0587 VILLAGE HOMES OF EDIN9270.2%\n", + "
 
\n", + "
RGT ST LOUIS PARK9150.2%\n", + "
 
\n", + "
SECOND DIV OF REMINGTON PARK7440.2%\n", + "
 
\n", + "
WEST MINNEAPOLIS 2ND DIVISION7080.2%\n", + "
 
\n", + "
FOREST HEIGHTS7040.2%\n", + "
 
\n", + "
REMINGTONS 3RD ADDN TO MPLS6790.2%\n", + "
 
\n", + "
CALHOUN PARK6560.2%\n", + "
 
\n", + "
PARK MANOR6260.1%\n", + "
 
\n", + "
Other values (18477)41792097.7%\n", + "
 
\n", + "
(Missing)14290.3%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

PREFIXTYPE
\n", + " Constant\n", + "

\n", + "
\n", + "

This variable is constant and should be ignored for analysis

\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Constant value
\n", + "
\n", + "
\n", + "
\n", + "

PREFIX_DIR
\n", + " Constant\n", + "

\n", + "
\n", + "

This variable is constant and should be ignored for analysis

\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Constant value
\n", + "
\n", + "
\n", + "
\n", + "

SALE_DATE
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count553
Unique (%)0.2%
Missing (%)22.6%
Missing (n)96622
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
2014-06-01\n", + "
\n", + "  \n", + "
\n", + " 2383\n", + "
2014-08-01\n", + "
\n", + "  \n", + "
\n", + " 2242\n", + "
2014-07-01\n", + "
\n", + "  \n", + "
\n", + " 2237\n", + "
Other values (549)\n", + "
\n", + " 324278\n", + "
\n", + " \n", + "
(Missing)\n", + "
\n", + " 96622\n", + "
\n", + " \n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
2014-06-0123830.6%\n", + "
 
\n", + "
2014-08-0122420.5%\n", + "
 
\n", + "
2014-07-0122370.5%\n", + "
 
\n", + "
2013-08-0122260.5%\n", + "
 
\n", + "
2013-06-0122180.5%\n", + "
 
\n", + "
2013-07-0122170.5%\n", + "
 
\n", + "
2014-05-0120570.5%\n", + "
 
\n", + "
2013-05-0120180.5%\n", + "
 
\n", + "
2005-06-0119560.5%\n", + "
 
\n", + "
2004-06-0119160.4%\n", + "
 
\n", + "
Other values (542)30967072.4%\n", + "
 
\n", + "
(Missing)9662222.6%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

SALE_VALUE
\n", + " Numeric\n", + "

\n", + "
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count40903
Unique (%)9.6%
Missing (%)0.0%
Missing (n)0
Infinite (%)0.0%
Infinite (n)0
\n", + "\n", + "
\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mean212720
Minimum0
Maximum253490000
Zeros (%)22.9%
\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + "
\n", + "
\n", + "
\n", + "

Quantile statistics

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Minimum0
5-th percentile0
Q133278
Median132500
Q3230000
95-th percentile540000
Maximum253490000
Range253490000
Interquartile range196720
\n", + "
\n", + "
\n", + "

Descriptive statistics

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Standard deviation1269600
Coef of variation5.9684
Kurtosis12880
Mean212720
MAD186400
Skewness91.079
Sum90992000000
Variance1611800000000
Memory size3.3 MiB
\n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
0.09786222.9%\n", + "
 
\n", + "
150000.019430.5%\n", + "
 
\n", + "
200000.018180.4%\n", + "
 
\n", + "
175000.018080.4%\n", + "
 
\n", + "
160000.016840.4%\n", + "
 
\n", + "
180000.016680.4%\n", + "
 
\n", + "
165000.016590.4%\n", + "
 
\n", + "
225000.016290.4%\n", + "
 
\n", + "
210000.015540.4%\n", + "
 
\n", + "
125000.015340.4%\n", + "
 
\n", + "
Other values (40893)31460373.5%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "

Minimum 5 values

\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
0.09786222.9%\n", + "
 
\n", + "
1.0440.0%\n", + "
 
\n", + "
3.020.0%\n", + "
 
\n", + "
10.020.0%\n", + "
 
\n", + "
100.0290.0%\n", + "
 
\n", + "
\n", + "

Maximum 5 values

\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
174000000.010.0%\n", + "
 
\n", + "
180000000.010.0%\n", + "
 
\n", + "
208711453.010.0%\n", + "
 
\n", + "
245000000.010.0%\n", + "
 
\n", + "
253486470.010.0%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

SCHOOL_DST
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count24
Unique (%)0.0%
Missing (%)0.3%
Missing (n)1425
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
001\n", + "
\n", + " 129308\n", + "
\n", + " \n", + "
279\n", + "
\n", + " 49461\n", + "
\n", + " \n", + "
281\n", + "
\n", + "  \n", + "
\n", + " 34268\n", + "
Other values (20)\n", + "
\n", + " 213300\n", + "
\n", + " \n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
00112930830.2%\n", + "
 
\n", + "
2794946111.6%\n", + "
 
\n", + "
281342688.0%\n", + "
 
\n", + "
271311157.3%\n", + "
 
\n", + "
270250845.9%\n", + "
 
\n", + "
284240085.6%\n", + "
 
\n", + "
272214615.0%\n", + "
 
\n", + "
283170274.0%\n", + "
 
\n", + "
011168033.9%\n", + "
 
\n", + "
273155243.6%\n", + "
 
\n", + "
Other values (13)6227814.6%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

SPEC_ASSES
\n", + " Numeric\n", + "

\n", + "
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count4282
Unique (%)1.0%
Missing (%)0.0%
Missing (n)0
Infinite (%)0.0%
Infinite (n)0
\n", + "\n", + "
\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mean142.82
Minimum0
Maximum749610
Zeros (%)83.9%
\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + "
\n", + "
\n", + "
\n", + "

Quantile statistics

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Minimum0
5-th percentile0
Q10
Median0
Q30
95-th percentile517
Maximum749610
Range749610
Interquartile range0
\n", + "
\n", + "
\n", + "

Descriptive statistics

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Standard deviation2642.1
Coef of variation18.5
Kurtosis27334
Mean142.82
MAD244.36
Skewness134.05
Sum61093000
Variance6980800
Memory size3.3 MiB
\n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
0.035899283.9%\n", + "
 
\n", + "
228.010240.2%\n", + "
 
\n", + "
222.08760.2%\n", + "
 
\n", + "
193.05280.1%\n", + "
 
\n", + "
298.05020.1%\n", + "
 
\n", + "
220.04760.1%\n", + "
 
\n", + "
301.04420.1%\n", + "
 
\n", + "
313.04390.1%\n", + "
 
\n", + "
304.04330.1%\n", + "
 
\n", + "
121.04310.1%\n", + "
 
\n", + "
Other values (4272)6361914.9%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "

Minimum 5 values

\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
0.035899283.9%\n", + "
 
\n", + "
1.010.0%\n", + "
 
\n", + "
2.01810.0%\n", + "
 
\n", + "
3.01870.0%\n", + "
 
\n", + "
4.0900.0%\n", + "
 
\n", + "
\n", + "

Maximum 5 values

\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
368367.010.0%\n", + "
 
\n", + "
392213.010.0%\n", + "
 
\n", + "
534273.010.0%\n", + "
 
\n", + "
547586.010.0%\n", + "
 
\n", + "
749606.010.0%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

STREETNAME
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count7387
Unique (%)1.7%
Missing (%)0.0%
Missing (n)0
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
ADDRESS UNASSIGNED\n", + "
\n", + "  \n", + "
\n", + " 11598\n", + "
YORK AVE S\n", + "
\n", + "  \n", + "
\n", + " 2338\n", + "
11TH AVE S\n", + "
\n", + "  \n", + "
\n", + " 2205\n", + "
Other values (7384)\n", + "
\n", + " 411621\n", + "
\n", + " \n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
ADDRESS UNASSIGNED115982.7%\n", + "
 
\n", + "
YORK AVE S23380.5%\n", + "
 
\n", + "
11TH AVE S22050.5%\n", + "
 
\n", + "
PORTLAND AVE S19490.5%\n", + "
 
\n", + "
3RD AVE S16820.4%\n", + "
 
\n", + "
10TH AVE S15470.4%\n", + "
 
\n", + "
BRYANT AVE S15280.4%\n", + "
 
\n", + "
LYNDALE AVE S15020.4%\n", + "
 
\n", + "
15TH AVE S13220.3%\n", + "
 
\n", + "
PARK AVE12970.3%\n", + "
 
\n", + "
Other values (7377)40079493.7%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

STREETTYPE
\n", + " Constant\n", + "

\n", + "
\n", + "

This variable is constant and should be ignored for analysis

\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Constant value
\n", + "
\n", + "
\n", + "
\n", + "

SUFFIX_DIR
\n", + " Constant\n", + "

\n", + "
\n", + "

This variable is constant and should be ignored for analysis

\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Constant value
\n", + "
\n", + "
\n", + "
\n", + "

Shape_Area
\n", + " Highly correlated\n", + "

\n", + "
\n", + "

This variable is highly correlated with ACRES_POLY and should be ignored for analysis

\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Correlation1
\n", + "
\n", + "
\n", + "
\n", + "

Shape_Le_1
\n", + " Numeric\n", + "

\n", + "
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count364358
Unique (%)85.2%
Missing (%)0.0%
Missing (n)0
Infinite (%)0.0%
Infinite (n)0
\n", + "\n", + "
\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mean217.78
Minimum0.91772
Maximum35812
Zeros (%)0.0%
\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + "
\n", + "
\n", + "
\n", + "

Quantile statistics

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Minimum0.91772
5-th percentile73.833
Q1108.26
Median136.39
Q3201.33
95-th percentile638.25
Maximum35812
Range35811
Interquartile range93.065
\n", + "
\n", + "
\n", + "

Descriptive statistics

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Standard deviation283.67
Coef of variation1.3026
Kurtosis1496
Mean217.78
MAD140.25
Skewness18.321
Sum93158000
Variance80470
Memory size3.3 MiB
\n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
471.8688742358130.2%\n", + "
 
\n", + "
460.3048712816170.1%\n", + "
 
\n", + "
296.9482955566140.1%\n", + "
 
\n", + "
390.5042184715760.1%\n", + "
 
\n", + "
331.0663874825750.1%\n", + "
 
\n", + "
1748.673375685550.1%\n", + "
 
\n", + "
436.9669413525100.1%\n", + "
 
\n", + "
509.5613667854910.1%\n", + "
 
\n", + "
417.3797863544830.1%\n", + "
 
\n", + "
309.0485655844660.1%\n", + "
 
\n", + "
Other values (364348)42206298.7%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "

Minimum 5 values

\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
0.91771582759910.0%\n", + "
 
\n", + "
0.9404682408610.0%\n", + "
 
\n", + "
0.9404746110110.0%\n", + "
 
\n", + "
0.94048779372110.0%\n", + "
 
\n", + "
0.94048825509210.0%\n", + "
 
\n", + "
\n", + "

Maximum 5 values

\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
12569.960754210.0%\n", + "
 
\n", + "
16203.484260410.0%\n", + "
 
\n", + "
28170.107820110.0%\n", + "
 
\n", + "
35493.803994210.0%\n", + "
 
\n", + "
35811.803419410.0%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

Shape_Leng
\n", + " Highly correlated\n", + "

\n", + "
\n", + "

This variable is highly correlated with Shape_Le_1 and should be ignored for analysis

\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Correlation1
\n", + "
\n", + "
\n", + "
\n", + "

TAX_ADD_L2
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count54604
Unique (%)12.8%
Missing (%)0.4%
Missing (n)1691
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
MAPLE GROVE MN 55311\n", + "
\n", + "  \n", + "
\n", + " 10095\n", + "
EDEN PRAIRIE MN 55347\n", + "
\n", + "  \n", + "
\n", + " 9201\n", + "
MAPLE GROVE MN 55369\n", + "
\n", + "  \n", + "
\n", + " 8965\n", + "
Other values (54600)\n", + "
\n", + " 397810\n", + "
\n", + " \n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
MAPLE GROVE MN 55311100952.4%\n", + "
 
\n", + "
EDEN PRAIRIE MN 5534792012.2%\n", + "
 
\n", + "
MAPLE GROVE MN 5536989652.1%\n", + "
 
\n", + "
BROOKLYN PARK MN 5544382201.9%\n", + "
 
\n", + "
RICHFIELD MN 5542382151.9%\n", + "
 
\n", + "
MINNETONKA MN 5534577501.8%\n", + "
 
\n", + "
CHAMPLIN MN 5531667471.6%\n", + "
 
\n", + "
PLYMOUTH MN 5544766711.6%\n", + "
 
\n", + "
MINNEAPOLIS MN 5540664881.5%\n", + "
 
\n", + "
BLOOMINGTON MN 5543163021.5%\n", + "
 
\n", + "
Other values (54593)34741781.2%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

TAX_ADD_L3
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count3193
Unique (%)5.1%
Missing (%)85.5%
Missing (n)365597
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
MINNEAPOLIS MN 55401\n", + "
\n", + "  \n", + "
\n", + " 3593\n", + "
MAPLE GROVE MN 55311\n", + "
\n", + "  \n", + "
\n", + " 1784\n", + "
EDEN PRAIRIE MN 55347\n", + "
\n", + "  \n", + "
\n", + " 1514\n", + "
Other values (3189)\n", + "
\n", + "  \n", + "
\n", + " 55274\n", + "
(Missing)\n", + "
\n", + " 365597\n", + "
\n", + " \n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
MINNEAPOLIS MN 5540135930.8%\n", + "
 
\n", + "
MAPLE GROVE MN 5531117840.4%\n", + "
 
\n", + "
EDEN PRAIRIE MN 5534715140.4%\n", + "
 
\n", + "
MINNEAPOLIS MN 5541914120.3%\n", + "
 
\n", + "
MINNEAPOLIS MN 5540613230.3%\n", + "
 
\n", + "
PLYMOUTH MN 5544612680.3%\n", + "
 
\n", + "
RICHFIELD MN 5542312610.3%\n", + "
 
\n", + "
BROOKLYN PARK MN 5544311740.3%\n", + "
 
\n", + "
MAPLE GROVE MN 5536910980.3%\n", + "
 
\n", + "
MINNEAPOLIS MN 5541710880.3%\n", + "
 
\n", + "
Other values (3182)4665010.9%\n", + "
 
\n", + "
(Missing)36559785.5%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

TAX_CAPAC
\n", + " Highly correlated\n", + "

\n", + "
\n", + "

This variable is highly correlated with EMV_TOTAL and should be ignored for analysis

\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Correlation0.9882
\n", + "
\n", + "
\n", + "
\n", + "

TAX_EXEMPT
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count2
Unique (%)0.0%
Missing (%)0.0%
Missing (n)0
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
N\n", + "
\n", + " 409906\n", + "
\n", + " \n", + "
Y\n", + "
\n", + "  \n", + "
\n", + " 17856\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
N40990695.8%\n", + "
 
\n", + "
Y178564.2%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

TORRENS
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count3
Unique (%)0.0%
Missing (%)0.0%
Missing (n)0
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
A\n", + "
\n", + " 231844\n", + "
\n", + " \n", + "
T\n", + "
\n", + " 186652\n", + "
\n", + " \n", + "
B\n", + "
\n", + "  \n", + "
\n", + " 9266\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
A23184454.2%\n", + "
 
\n", + "
T18665243.6%\n", + "
 
\n", + "
B92662.2%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

TOTAL_TAX
\n", + " Highly correlated\n", + "

\n", + "
\n", + "

This variable is highly correlated with TAX_CAPAC and should be ignored for analysis

\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Correlation0.99701
\n", + "
\n", + "
\n", + "
\n", + "

UNIT_INFO
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count6850
Unique (%)13.3%
Missing (%)88.0%
Missing (n)376292
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
2\n", + "
\n", + "  \n", + "
\n", + " 600\n", + "
1\n", + "
\n", + "  \n", + "
\n", + " 599\n", + "
3\n", + "
\n", + "  \n", + "
\n", + " 551\n", + "
Other values (6846)\n", + "
\n", + "  \n", + "
\n", + " 49720\n", + "
(Missing)\n", + "
\n", + " 376292\n", + "
\n", + " \n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
26000.1%\n", + "
 
\n", + "
15990.1%\n", + "
 
\n", + "
35510.1%\n", + "
 
\n", + "
2015480.1%\n", + "
 
\n", + "
1015420.1%\n", + "
 
\n", + "
2025330.1%\n", + "
 
\n", + "
45320.1%\n", + "
 
\n", + "
1025190.1%\n", + "
 
\n", + "
2034600.1%\n", + "
 
\n", + "
2044540.1%\n", + "
 
\n", + "
Other values (6839)4613210.8%\n", + "
 
\n", + "
(Missing)37629288.0%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

USE1_DESC
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count46
Unique (%)0.0%
Missing (%)0.3%
Missing (n)1425
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
Residential\n", + "
\n", + " 265117\n", + "
\n", + " \n", + "
Condominium\n", + "
\n", + "  \n", + "
\n", + " 43396\n", + "
Townhouse\n", + "
\n", + "  \n", + "
\n", + " 24692\n", + "
Other values (42)\n", + "
\n", + " 93132\n", + "
\n", + " \n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
Residential26511762.0%\n", + "
 
\n", + "
Condominium4339610.1%\n", + "
 
\n", + "
Townhouse246925.8%\n", + "
 
\n", + "
Vacant Land - Residential139893.3%\n", + "
 
\n", + "
Double Bungalow127373.0%\n", + "
 
\n", + "
Condo Garage/Miscellaneous123302.9%\n", + "
 
\n", + "
Commercial106422.5%\n", + "
 
\n", + "
Residential Lakeshore77751.8%\n", + "
 
\n", + "
Vacant Land - Commercial65691.5%\n", + "
 
\n", + "
Apartment46941.1%\n", + "
 
\n", + "
Other values (35)243965.7%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

USE2_DESC
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count35
Unique (%)0.8%
Missing (%)99.0%
Missing (n)423364
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
Commercial\n", + "
\n", + "  \n", + "
\n", + " 1019\n", + "
Farm\n", + "
\n", + "  \n", + "
\n", + " 763\n", + "
Vacant Land - Residential\n", + "
\n", + "  \n", + "
\n", + " 578\n", + "
Other values (31)\n", + "
\n", + "  \n", + "
\n", + " 2038\n", + "
(Missing)\n", + "
\n", + " 423364\n", + "
\n", + " \n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
Commercial10190.2%\n", + "
 
\n", + "
Farm7630.2%\n", + "
 
\n", + "
Vacant Land - Residential5780.1%\n", + "
 
\n", + "
Vacant Land - Commercial3320.1%\n", + "
 
\n", + "
Residential3090.1%\n", + "
 
\n", + "
Apartment3020.1%\n", + "
 
\n", + "
Vacant Land - Rural Farm2130.0%\n", + "
 
\n", + "
Vacant Land - Rural Residential2000.0%\n", + "
 
\n", + "
Agricultural Preserve1700.0%\n", + "
 
\n", + "
Vacant Land - Industrial1080.0%\n", + "
 
\n", + "
Other values (24)4040.1%\n", + "
 
\n", + "
(Missing)42336499.0%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

USE3_DESC
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count19
Unique (%)2.5%
Missing (%)99.8%
Missing (n)427010
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
Vacant Land - Rural Farm\n", + "
\n", + "  \n", + "
\n", + " 218\n", + "
Farm\n", + "
\n", + "  \n", + "
\n", + " 167\n", + "
Vacant Land - Rural Residential\n", + "
\n", + "  \n", + "
\n", + " 104\n", + "
Other values (15)\n", + "
\n", + "  \n", + "
\n", + " 263\n", + "
(Missing)\n", + "
\n", + " 427010\n", + "
\n", + " \n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
Vacant Land - Rural Farm2180.1%\n", + "
 
\n", + "
Farm1670.0%\n", + "
 
\n", + "
Vacant Land - Rural Residential1040.0%\n", + "
 
\n", + "
Residential710.0%\n", + "
 
\n", + "
Commercial710.0%\n", + "
 
\n", + "
Agricultural Preserve640.0%\n", + "
 
\n", + "
Vacant Land - Commercial230.0%\n", + "
 
\n", + "
Vacant Land - Residential90.0%\n", + "
 
\n", + "
Vacant Land - Industrial60.0%\n", + "
 
\n", + "
Apartment50.0%\n", + "
 
\n", + "
Other values (8)140.0%\n", + "
 
\n", + "
(Missing)42701099.8%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

USE4_DESC
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count11
Unique (%)5.3%
Missing (%)100.0%
Missing (n)427555
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
Vacant Land - Rural Farm\n", + "
\n", + "  \n", + "
\n", + " 118\n", + "
Residential\n", + "
\n", + "  \n", + "
\n", + " 39\n", + "
Vacant Land - Rural Residential\n", + "
\n", + "  \n", + "
\n", + " 20\n", + "
Other values (7)\n", + "
\n", + "  \n", + "
\n", + " 30\n", + "
(Missing)\n", + "
\n", + " 427555\n", + "
\n", + " \n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
Vacant Land - Rural Farm1180.0%\n", + "
 
\n", + "
Residential390.0%\n", + "
 
\n", + "
Vacant Land - Rural Residential200.0%\n", + "
 
\n", + "
Farm120.0%\n", + "
 
\n", + "
Vacant Land - Commercial60.0%\n", + "
 
\n", + "
Commercial60.0%\n", + "
 
\n", + "
Agricultural Preserve30.0%\n", + "
 
\n", + "
Vacant Land - Industrial10.0%\n", + "
 
\n", + "
Golf Course - Reduced Rate10.0%\n", + "
 
\n", + "
Farm-Hmstd (House & 1 Acre)10.0%\n", + "
 
\n", + "
(Missing)427555100.0%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

WSHD_DIST
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count9
Unique (%)0.0%
Missing (%)18.1%
Missing (n)77315
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
Minnehaha Creek\n", + "
\n", + " 113041\n", + "
\n", + " \n", + "
Middle Mississippi\n", + "
\n", + " 72064\n", + "
\n", + " \n", + "
Shingle Creek\n", + "
\n", + " 47481\n", + "
\n", + " \n", + "
Other values (5)\n", + "
\n", + " 117861\n", + "
\n", + " \n", + "
(Missing)\n", + "
\n", + " 77315\n", + "
\n", + " \n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
Minnehaha Creek11304126.4%\n", + "
 
\n", + "
Middle Mississippi7206416.8%\n", + "
 
\n", + "
Shingle Creek4748111.1%\n", + "
 
\n", + "
Nine Mile Creek4319710.1%\n", + "
 
\n", + "
Bassett Creek373048.7%\n", + "
 
\n", + "
Riley Purgatory Bluff272876.4%\n", + "
 
\n", + "
Lower Minnesota River94992.2%\n", + "
 
\n", + "
Rice Creek5740.1%\n", + "
 
\n", + "
(Missing)7731518.1%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

XUSE1_DESC
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count39
Unique (%)0.2%
Missing (%)95.9%
Missing (n)410121
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
MUNICIPAL PROPERTY\n", + "
\n", + "  \n", + "
\n", + " 7945\n", + "
HIGHWAY RIGHT-OF-WAY\n", + "
\n", + "  \n", + "
\n", + " 2713\n", + "
CHURCHES AND CHURCH PROPERTY\n", + "
\n", + "  \n", + "
\n", + " 1283\n", + "
Other values (35)\n", + "
\n", + "  \n", + "
\n", + " 5700\n", + "
(Missing)\n", + "
\n", + " 410121\n", + "
\n", + " \n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
MUNICIPAL PROPERTY79451.9%\n", + "
 
\n", + "
HIGHWAY RIGHT-OF-WAY27130.6%\n", + "
 
\n", + "
CHURCHES AND CHURCH PROPERTY12830.3%\n", + "
 
\n", + "
TAX FORFEIT10340.2%\n", + "
 
\n", + "
CHARITABLE INSTITUTIONS6020.1%\n", + "
 
\n", + "
COUNTY PROPERTY5870.1%\n", + "
 
\n", + "
SPECIAL TAXING DISTRICTS5490.1%\n", + "
 
\n", + "
PUBLIC K-12 SCHOOL PROPERTY4050.1%\n", + "
 
\n", + "
HENNEPIN COUNTY REGIONAL RAIL AUTHORITY3820.1%\n", + "
 
\n", + "
STATE PROPERTY2830.1%\n", + "
 
\n", + "
Other values (28)18580.4%\n", + "
 
\n", + "
(Missing)41012195.9%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

XUSE2_DESC
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count26
Unique (%)1.9%
Missing (%)99.7%
Missing (n)426421
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
WETLANDS\n", + "
\n", + "  \n", + "
\n", + " 1118\n", + "
CHURCHES AND CHURCH PROPERTY\n", + "
\n", + "  \n", + "
\n", + " 78\n", + "
CHARITABLE INSTITUTIONS\n", + "
\n", + "  \n", + "
\n", + " 49\n", + "
Other values (22)\n", + "
\n", + "  \n", + "
\n", + " 96\n", + "
(Missing)\n", + "
\n", + " 426421\n", + "
\n", + " \n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
WETLANDS11180.3%\n", + "
 
\n", + "
CHURCHES AND CHURCH PROPERTY780.0%\n", + "
 
\n", + "
CHARITABLE INSTITUTIONS490.0%\n", + "
 
\n", + "
PUBLIC HOSPITALS250.0%\n", + "
 
\n", + "
HENNEPIN COUNTY REGIONAL RAIL AUTHORITY170.0%\n", + "
 
\n", + "
HRA PROPERTY \"PILT\" (5% IN LIEU)70.0%\n", + "
 
\n", + "
MUNICIPAL PROPERTY70.0%\n", + "
 
\n", + "
PRIVATE HOSPITALS70.0%\n", + "
 
\n", + "
COUNTY PROPERTY40.0%\n", + "
 
\n", + "
PUBLIC CEMETERIES40.0%\n", + "
 
\n", + "
Other values (15)250.0%\n", + "
 
\n", + "
(Missing)42642199.7%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

XUSE3_DESC
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count10
Unique (%)4.0%
Missing (%)99.9%
Missing (n)427512
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
WETLANDS\n", + "
\n", + "  \n", + "
\n", + " 236\n", + "
CHARITABLE INSTITUTIONS\n", + "
\n", + "  \n", + "
\n", + " 5\n", + "
NURSING HOMES\n", + "
\n", + "  \n", + "
\n", + " 2\n", + "
Other values (6)\n", + "
\n", + "  \n", + "
\n", + " 7\n", + "
(Missing)\n", + "
\n", + " 427512\n", + "
\n", + " \n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
WETLANDS2360.1%\n", + "
 
\n", + "
CHARITABLE INSTITUTIONS50.0%\n", + "
 
\n", + "
NURSING HOMES20.0%\n", + "
 
\n", + "
HRA PROPERTY \"PILT\" (5% IN LIEU)20.0%\n", + "
 
\n", + "
PUBLIC HOSPITALS10.0%\n", + "
 
\n", + "
PRIVATE ACADEMIES, COLLEGES & UNIVERSITIES10.0%\n", + "
 
\n", + "
POLLUTION CONTROL10.0%\n", + "
 
\n", + "
MUNICIPAL PROPERTY10.0%\n", + "
 
\n", + "
CHURCHES AND CHURCH PROPERTY10.0%\n", + "
 
\n", + "
(Missing)42751299.9%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

XUSE4_DESC
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count4
Unique (%)11.1%
Missing (%)100.0%
Missing (n)427726
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
WETLANDS\n", + "
\n", + "  \n", + "
\n", + " 34\n", + "
POLLUTION CONTROL\n", + "
\n", + "  \n", + "
\n", + " 1\n", + "
CHARITABLE INSTITUTIONS\n", + "
\n", + "  \n", + "
\n", + " 1\n", + "
(Missing)\n", + "
\n", + " 427726\n", + "
\n", + " \n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
WETLANDS340.0%\n", + "
 
\n", + "
POLLUTION CONTROL10.0%\n", + "
 
\n", + "
CHARITABLE INSTITUTIONS10.0%\n", + "
 
\n", + "
(Missing)427726100.0%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

YEAR_BUILT
\n", + " Numeric\n", + "

\n", + "
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count163
Unique (%)0.0%
Missing (%)0.0%
Missing (n)0
Infinite (%)0.0%
Infinite (n)0
\n", + "\n", + "
\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mean1818.9
Minimum0
Maximum2014
Zeros (%)7.3%
\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + "
\n", + "
\n", + "
\n", + "

Quantile statistics

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Minimum0
5-th percentile0
Q11931
Median1962
Q31985
95-th percentile2005
Maximum2014
Range2014
Interquartile range54
\n", + "
\n", + "
\n", + "

Descriptive statistics

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Standard deviation512.72
Coef of variation0.28189
Kurtosis8.6321
Mean1818.9
MAD267
Skewness-3.2537
Sum778056932
Variance262880
Memory size3.3 MiB
\n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
0313967.3%\n", + "
 
\n", + "
1900111422.6%\n", + "
 
\n", + "
198680931.9%\n", + "
 
\n", + "
195573921.7%\n", + "
 
\n", + "
195073681.7%\n", + "
 
\n", + "
197870791.7%\n", + "
 
\n", + "
195470761.7%\n", + "
 
\n", + "
198366361.6%\n", + "
 
\n", + "
197765351.5%\n", + "
 
\n", + "
197963961.5%\n", + "
 
\n", + "
Other values (153)32864976.8%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "

Minimum 5 values

\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
0313967.3%\n", + "
 
\n", + "
184310.0%\n", + "
 
\n", + "
184710.0%\n", + "
 
\n", + "
185040.0%\n", + "
 
\n", + "
185110.0%\n", + "
 
\n", + "
\n", + "

Maximum 5 values

\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
20109610.2%\n", + "
 
\n", + "
201110330.2%\n", + "
 
\n", + "
201214130.3%\n", + "
 
\n", + "
201317920.4%\n", + "
 
\n", + "
2014260.0%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

ZIP
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count78
Unique (%)0.0%
Missing (%)0.0%
Missing (n)0
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
00000\n", + "
\n", + "  \n", + "
\n", + " 13290\n", + "
55406\n", + "
\n", + "  \n", + "
\n", + " 13112\n", + "
55369\n", + "
\n", + "  \n", + "
\n", + " 13043\n", + "
Other values (75)\n", + "
\n", + " 388317\n", + "
\n", + " \n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
00000132903.1%\n", + "
 
\n", + "
55406131123.1%\n", + "
 
\n", + "
55369130433.0%\n", + "
 
\n", + "
55311128643.0%\n", + "
 
\n", + "
55416124382.9%\n", + "
 
\n", + "
55423119672.8%\n", + "
 
\n", + "
55418115952.7%\n", + "
 
\n", + "
55407115242.7%\n", + "
 
\n", + "
55347113262.6%\n", + "
 
\n", + "
55422109522.6%\n", + "
 
\n", + "
Other values (68)30565171.5%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

ZIP4
\n", + " Constant\n", + "

\n", + "
\n", + "

This variable is constant and should be ignored for analysis

\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Constant value
\n", + "
\n", + "
\n", + "
\n", + "

Sample

\n", + "
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ACRES_DEEDACRES_POLYAGPRE_ENRDAGPRE_EXPDAG_PRESERVBASEMENTBLDG_NUMBLOCKCITYCITY_USPSCOOLINGCOUNTY_IDDWELL_TYPEEMV_BLDGEMV_LANDEMV_TOTALFIN_SQ_FTGARAGEGARAGESQFTGREEN_ACREHEATINGHOMESTEADHOME_STYLELANDMARKLOTMULTI_USESNUM_UNITSOPEN_SPACEOWNER_MOREOWN_ADD_L1OWN_ADD_L2OWN_ADD_L3PARC_CODEPLAT_NAMEPREFIXTYPEPREFIX_DIRSALE_DATESALE_VALUESCHOOL_DSTSPEC_ASSESSTREETNAMESTREETTYPESUFFIX_DIRShape_AreaShape_Le_1Shape_LengTAX_ADD_L2TAX_ADD_L3TAX_CAPACTAX_EXEMPTTORRENSTOTAL_TAXUNIT_INFOUSE1_DESCUSE2_DESCUSE3_DESCUSE4_DESCWSHD_DISTXUSE1_DESCXUSE2_DESCXUSE3_DESCXUSE4_DESCYEAR_BUILTZIPZIP4
PIN
053-01027241100030.01.83NaNNaNNNaN2901NaNBLOOMINGTONBLOOMINGTONNaN053NaN393500.01347400.01740900.00.0NaNNaNNNaNNNaNNaNNaNNaNNaNNNaNNaNNaNNaN0UNPLATTED 01 027 24NaNNaN2005-05-01925000.02710.078TH ST ENaNNaN7416.662441395.6454161298.619232BLOOMINGTON MN 55425NaN34068.0NT72207.0NaNIndustrialNaNNaNNaNLower Minnesota RiverNaNNaNNaNNaN196555425NaN
053-01027241100040.01.90NaNNaNNNaN7800001BLOOMINGTONBLOOMINGTONNaN053NaN160500.01406000.01566500.00.0NaNNaNNNaNNNaNNaN001NaNNaNNNaNNaNNaNNaN0METRO OFFICE PARKNaNNaN1980-02-011950000.02710.0METRO PKWYNaNNaN7676.706709422.8940441388.057469BLOOMINGTON MN 55425NaN30580.0NT64822.0NaNCommercialNaNNaNNaNLower Minnesota RiverNaNNaNNaNNaN196855425NaN
053-01027241100050.01.58NaNNaNNNaN7850001BLOOMINGTONBLOOMINGTONNaN053NaN745200.01172000.01917200.00.0NaNNaNNNaNNNaNNaN002NaNNaNNNaNNaNNaNNaN0METRO OFFICE PARKNaNNaN2006-08-0123000000.02710.0METRO PKWYNaNNaN6399.614332426.5576851400.082610BLOOMINGTON MN 55439NaN38344.0NB81185.0NaNCommercialNaNNaNNaNLower Minnesota RiverNaNNaNNaNNaN196855425NaN
053-01027241100060.01.78NaNNaNNNaN2950001BLOOMINGTONBLOOMINGTONNaN053NaN560100.01315800.01875900.00.0NaNNaNNNaNNNaNNaN003NaNNaNNNaNNaNNaNNaN0METRO OFFICE PARKNaNNaNNaN0.02710.0METRO DRNaNNaN7184.857320421.5020251383.510634BLOOMINGTON MN 55439NaN37518.0NB79436.0NaNCommercialNaNNaNNaNLower Minnesota RiverNaNNaNNaNNaN196955425NaN
053-01027241100080.01.90NaNNaNNNaN7801001BLOOMINGTONBLOOMINGTONNaN053NaN509000.01406400.01915400.00.0NaNNaNNNaNNNaNNaN001NaNNaNNNaNNaNNaNNaN0METRO OFFICE PARK 2ND ADDNNaNNaNNaN0.02713074.0METRO PKWYNaNNaN7681.696608422.9893081388.369487BLOOMINGTON MN 55439NaN38308.0NT84182.0NaNCommercialNaNNaNNaNLower Minnesota RiverNaNNaNNaNNaN196955425NaN
\n", + "
\n", + "
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "import pandas_profiling\n", "\n", @@ -704,11 +10180,11 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": { "ExecuteTime": { - "end_time": "2017-01-20T16:01:23.054407", - "start_time": "2017-01-20T16:01:22.837258" + "end_time": "2017-02-08T09:14:09.773774", + "start_time": "2017-02-08T09:14:09.575882" }, "collapsed": true }, @@ -730,15 +10206,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": { "ExecuteTime": { - "end_time": "2017-01-20T16:01:39.005945", - "start_time": "2017-01-20T16:01:23.055408" + "end_time": "2017-02-08T09:14:20.512968", + "start_time": "2017-02-08T09:14:09.776777" }, "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACCEAAANNCAYAAACj+faWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3XmYXFWZP/C3OiELgiCyBYYgAkKILAYQwYUEiAgBhxEU\nnEdnGPZKazCDM/wQV0TQEVCEDiiCoMiIgwoiBgTSoA+yCAYi22AIsohCgAgSwpau3x9Mp9Ohk1S6\n761zqurzeR4eqqur731z6ty6de/93nMqtVqtFgAAAAAAAAAAQ9SRugAAAAAAAAAAoDUIIQAAAAAA\nAAAAhRBCAAAAAAAAAAAKIYQAAAAAAAAAABRCCAEAAAAAAAAAKIQQAgAAAAAAAABQCCEEAAAAAAAA\nAKAQQggAAAAAAAAAQCGEEAAAAAAAAACAQgghJHTyySfH1ltvHZdffnnqUgAAAAAAAABgyIQQErnu\nuuvikksuiUqlkroUAAAAAAAAACiEEEICs2bNiunTp0etVktdCgAAAAAAAAAUZnjqAtpJrVaLs846\nK84999yo1WpRq9WMhAAAAAAAAABAyzASQoP85je/iQ9+8IMxY8aMqNVqMX78+NQlAQAAAAAAAECh\njITQIEceeWRUKpVYbbXVolqtxv777x+TJ09OXRYAAAAAAAAAFEYIoUE6Ojpi8uTJ8alPfSo222yz\n+POf/5y6JAAAAAAAAAAolBBCg8ycOTM23XTT1GUAAAAAAAAAQGk6UhfQLgQQAAAAAAAAAGh1QggA\nAAAAAAAAQCGEEAAAAAAAAACAQgghAAAAAAAAAACFGJ66AIZm4sSJSdc/bty4OOeccyIiolqtxn33\n3deWNSxbR61WS1JDRESlUomIfNpCv8ivDv0z/XuSQw251pGDlNtIRPrtJJfPi4j0bRGRX//s6elJ\nuv6OjtcyzDn0z1z6RQ5t0e79IiK/90RbpK9BHfnVkEsdOdSgjvxqyKWOHGpYtg7nEPI6HshFux8r\nLt0vpk6dmrR/zpgxI8m6c6Z/5rcvSVlHRMT//M+Vsd56ayZbf6u4/PLL48wzz0xdRja6u7tTl5A9\nIQQAAKhDDidgOzs7sziBQF70C4DBceEGgKGyLwHaxSuvvJK6hGx8/OMfT11CUxBCAACAOvQGAVLq\n6upKXQIAAAAAbWbChAmpS8jCeuutF1OmTEldRlMQQgAAgDoYCcEd7wAAAADtaPPNN892CoJTTjkl\nrr322oasa/78+fHUU0/FBhts0JD1NTMhBAAAqEMOIyEY6hMAipN6Hm/hPgAAGLrDDjss5s2bFw8+\n+GBD1veJT3wi20BGToQQAACgDjmMhOBiCQMxTQfA4Aj3AQBA89twww3ju9/97pKfJ02alLAaegkh\nAAAANDHTdAAAAAC8Zptttol77723tOV/8IMfLG3ZraQjdQHtrFKpZDGsLwAAAAAAAECz+9znPlfq\n8h999NFSl98qjISQyMYbb5zsbiUAAFZdDuFRw+4DAAAAwPJtuOGG0d3dveTn++67L6ZOnVrIstda\na6048cQTC1lWqxNCAACAOtRqtWTr7g1AGHYfAAAAAPrcdtttcfzxxzdkXc8++2wcdNBBQ1rGm970\npjjjjDPiLW95SzFFZUoIAaBBUk7BksPduwBAOWbMmJG6BICmNHXqVOE+oG6pPzN85wMgJz09PfHN\nb34zrrzyytSlNJ0FCxbEv/3bv8XBBx8cw4YNi9GjR8dHPvKRGDFiROrSCiWEAJTKsNF9arVasrto\nU969C9Aqcgh02a8ykNT7+Ry2DQCgHKkuvOcY1BECAIA+f/nLXwQQhujSSy9d8vj888+Pa6+9NoYP\nb51L963zL4GMOEDrk2rY6BzbIhf6JzmrVqvJ+2fqu1ty2k60RX859E/TMQBAcVxQhJWznQAAA9lo\no43iqKOOiu985zupS2kZkydPXvL4wAMPjKOOOqqpR0cQQgBK5WAVAIpjv8pAhFMAAACARqpUKvHR\nj340PvrRjzZ83RdddFFceOGFDV9vI/3kJz+JbbfdNnbffffUpQyaEAKUwFDJAAAAAEArymU6LmFY\ngPbT09MT//M//5O6jNK94Q1viPHjx6cuY0iEEKAEuXwRz4Gh/wGgOKbIAAAAAKBddXR0xIQJE+I3\nv/lN6lKGrLu7O3UJpRJCAEpl2Oj8eE/IWQ4XOG0jfbRFf/onAADtxs0lDKRWqyVdf+8NYNVqVf8E\naDMvvfRSSwQQIiImTZq05PHEiRPj85//fEvd5CyEACVwgNZHW+THe0LOcjiB4E7zPtqiP/0zv/cE\nAIByCcEykFwukDg+AWg/PT09qUsoxc033xwvvfRSjBo1KnUphRFCgBI4QAMAAAAAAIDirLbaaqlL\nKMzIkSOjVqvFqFGj4tRTT22pAEKEEAKUwp3mAAAAAAAAUJyOjo7UJRTmpZdeioiIl19+OTo7O2PW\nrFnZjDZUBCEEKIGREMiZ/knOcghS2Ub6aIv+tAcAtBbTHAEAQP1efPHFWLhwYUQsf2qe3ueX/v3K\nXruiv63Vaq/7ux/+8IdxySWXLKnlhhtuqPNfkLfnnnsu1lprrdRlFEYIAQAAoIl1dXWlLgGgKQkY\nAgBAfe68886YPn166jJaVmdnZ0sFECKEEICSOakDQKvIYTg0+1UAACC1ge5KbaTeY7NqtWpKXIAG\neeSRR1KXkJXu7u7UJWRPCAEAAKCJdXZ2Gk4cAChFqmlLfMcAgLxMmTIl/vznP8ePf/zj1KXQJIQQ\ngFI5WAWgVaS826f3Th9zVwMA0EhG4gIAIiJuu+02AYT/M3LkyNQlNIWO1AUAAAAAAAAAkKe77747\ndQnZGDt2bOoSmoKREAAAAJqYOxQBAACAMq211lqpS8jGH//4x9QlNAUhBAAAqEPvlAgpudjMQEzT\nAQAAAJRpn332iTvvvDNuvvnm1KUkt9VWW6UuoSkIIQAAQB1qtVqydfcGIFxsBgAAAKDRXnzxxXj4\n4YdTl5GF//3f/41JkyYNaRlbbLFFbLjhhlGpVGLUqFFx5JFHxnrrrVdQhXkQQgBK5Y5NAFqFkRDI\nlX4BMDjCfQAMVbVatS8B2sKsWbPi8ccfT11Gy5g7d27MnTt3yc/XXnttXHPNNTFixIiEVRVLCAGg\nzaQ60ebAiHqkOnhfun86Gc3y5NA/AYDiCHHByjmHACumnwLt4v77709dQsvbe++9lzzeZJNN4qyz\nzoq11lorYUVDI4QAJXCABkArEMjIj/eEgegXAIOTcqqliDxGWYKVEdYBACIinnzyydQltJVHH300\nZs+eHRMnTkxdyqAJIQClEsgAAAAgR52dnUJcAABQh7POOis++9nPxs0335y6lLawxx57xC677JK6\njCERQoASSImTM/2TnOVwItY20kdb9Kc9AKC12LcDAEB9Ojo64pRTTkldRvT09MSee+6ZuoxSXHrp\npbH++uunLqMwQggAAAAAAAAALNeiRYtiwYIFEbH8qc2Wfn55j1f2+hW99pVXXlm1opvIwQcfvOTx\n8OHD48orr4xRo0YlrGhohBCgBKYg6OPOkvzon+SsWq0m75/mVu+jLfrL4fPTfhUAAEitUqmkLiEi\n8hhNEaBdXHzxxXH++eenLqNtvPrqq/GNb3wjTjjhhNSlDJoQApTABYI+OVywoT/9k5zlsN3aRvpo\ni/5yaA/BEAAAAAAabdasWalLaDv77bdf6hKGRAgBAAAAAACoy/KGyW6U3pEYchhNEaBdnHPOOfHx\nj3885s+fn7qUlvCTn/wk1llnndRllEoIAQAAAAAAqIvpGADaz8iRI+PHP/5x6jIGNGnSpKTr7+rq\nim222SZpDTkSQgAAgDrkcKIthykhyE9XV1fqEgAAaCNGQjASAtB+nn322Tj55JPj9ttvT11Kcm9+\n85vjsssuS11G9oQQAACgDilPtPWeZJs6dWqSk2wRTrTlrLOzU78AAAAASnPBBRcIIPyfAw44IHUJ\nTUEIAQAAoIkZCQEAAAAoU09PT+oSsvGzn/0sPvaxj6UuI3tCCAAAUIccpmNwsZmBGAkBAAAAKNPh\nhx8ejzzySMyZMyd1Kck988wzqUtoCkIIAABQhxymY3CxGQAAAIBG++tf/yqAsJQpU6ZEpVKJLbbY\nIk444YTYYIMNUpeUHSEEAAAAAAAAAAZ0+eWXpy4hKy+88EJERNx1111xyCGHrPLf77XXXrHrrrtG\nRMTw4cPj3e9+dwwbNqzQGlMTQgAAgDrkMB3DjBkzUpdAhvQLAAAAoExjxoxJXUJLue666+K66657\n3XOtFEQQQgBoM1OnTk0ylLdhvKlHtVpN3j9TbSPL1pEDbdGf/pnfewIAAABA+UaMGJG6hJa31157\nLXm8yy67xFe+8pWmDiUIIUAJXOQFAKBRhFMAAACAMm233XapS2grt956a3R1dcW0adNSlzJoQghQ\ngq6urtQlAAAAAAAAwJCNGTMm3va2t8UDDzyQupS2MWHChNQlDIkQApSgs7PTSAj/xxzFAFAc+1UG\nIgALAAAAlOnaa68VQCjZAQccEJMnT45arRZjx46NNddcM3VJQyKEACVwgaBPrVZLtu5KpZJs3QPJ\npV/kUgcMJIcglW2kj7boL4f+mXK/GpHfvhUAAGi8XI4LcjhmTT01Wg5tALSHESNGpC6h5U2bNi2b\nfWwRhBCAUhkVok/qg5Lc2gOg2eQQrEu1X42wL8mZfgEAQCPlEo5Oda5t6e/AQgBAuxg9enTqElra\nmmuuGa+88kpLhT2EEAAAAAAAgLrkcpemMCxA4+y9997xzDPPxA9+8IMBf79sQK335xUF15b+3fIe\nL6unp6euepvN3//+9xg+vLUu27fWvwbIjjRwHwdGAM0thxNt9qsMpKurK3UJAE3JaHXAqsjl7n/6\n5DBaXep9Se8xov4JlO2mm26K8847L3UZLaujoyNefvnlGDVqVOpSCiOEANAg1WrVCS4AoHCmYwAY\nHOE+YFW4yNonlwvepmPoo38CZXv++edTl9DSDjnkkJYKIEQIIQAly+FgAACK4C4b+1YAWksuF9EA\nACB3ixYtSl1Ctt7+9rfHWWedlbqM7AghAKXKJQ0MAEOVw4UC+1UAABrJzSUAQETEFltskbqELK22\n2mrxyU9+MnUZWRJCAAAAAKDt5BAwBACAZrDtttvG9ddfHz09PRGR93fp/fffv/CRGw4//PAYNmxY\nTJgwIbbaaqtCl92qhBCAUknMAwAAADQnI3EBAL06Ojqio6MjdRkrNX78+Lj99tsLXeb555+/5PGH\nPvQhox/UQQgBAADqkHLe6N50eapwX4SAHwCtJ+W+PSLvu8cAAICB3XbbbalLaApCCECpJOYBAADI\nUWdnp3AfAAA0uYULF8Z3v/vdmDNnTtRqtXjooYdKXd9TTz1V6vJbhRACUCrTMQAAAJCjrq6u1CUA\nAABDdM4558RVV13VsPW9+OKLDVtXMxNCAACAOuQwZLIRhhiIi2gAg5PDvh0AABiacePGNTSEQH2E\nEAAAoA4p543uvUiSaoShCKMMAQAAAJCfKVOmxOTJk2Px4sVRqVTinnvuiU9/+tOpy2p7QggAAABN\nzJzmAIOTMmAYYSQGAACay+233x533HHHkJbRiO/g8+fPL30dkyZNKnR5b33rW+P8888vdJmpCSEA\nAAAA0HaEAAAAoD6/+tWv4tRTT01dRsuaN29ePPLIIzF27NjUpRRGCAFKkMNwzbA8qYbydqck9ahW\nq8n7p+Hu+2iL/nx+kqsZM2akLgEAAABoYauvvnrqElreQw89JIQArJggADlzoYKc5XCh1TbSR1v0\npz3IlcAQwOD4/AQAgPq85z3viR/84Afx4IMPDnlZRV1D613O5z//+UKWl9pmm22WuoRCCSFACdwp\nSc70T3JmJIS8thNt0Z/PTwBoLQKGAABQn7lz58aRRx6ZuoyWVq1WY9y4cRER8cEPfjDe+973NvVN\nz0IIUAInMvpoi/x4T8hZDhdabSN9tEV/+icAtJaUUylGGEWR5iCICwBERHzmM59JXULLe+GFF+KO\nO+6IiIg77rgjTjnllNh1110TVzV4QghQAgdo5Ez/JGdGQshrO9EW/emf+b0nADAUQgCwckKwAEBE\nxH/8x3/Ef/7nf6Yuo6088MADQggAy+OCNwAAAAAAQPOaMGFCTJs2LW644YYVvm5lQd+h/j4iYvbs\n2St9TSsYPXp06hKGRAgBAAAAAAAAgAFdddVV8a1vfSt1GW2jUqnExIkTU5cxJEIIUAJD1ZEz/ZOc\n5TCCiW2kj7boT3sAAADkM51NDucQANrFsGHDUpfQ8rq7u1OXUCghBAAAAAAAAAAG9Pzzz6cuoeW0\nWuhgWR2pCwAAAAAAAAAgT3vvvXe8/e1vT11GS5k0adKS/84+++zU5RTOSAgAAAAAtJ1arZZ0/bkM\nZw6wqnL5/KxWq3Hfffc1fP3jxo0zFQTQdtZee+0466yzSl/PueeeG5deemnp68nNFVdcEUcccUSM\nGjUqdSmFEUIASmX+bABaRQ4XCuxXAaA4OezbIXdTp051kRcAaJh//dd/jYiI3/3ud0u+r1cqlX6P\nH3jggWT1leVLX/pSSwUQIoQQgJI5WAWgVaS826f3QCvVfjXCvhUAoB0JwQIAjTR69Og45phj4phj\njhn0Mrq6uuKyyy4rsKr+TjvttNhxxx1LW36rEEIAAABoYl1dXalLAAAAAMjCgw8+WPgyv//970et\nVot11lkn1lhjjcKX34qEEIBSScwD0CpyGLLZfpWBdHZ2GiEDACiFES4BgGYze/bswpd53XXXRaVS\niXe+852xzTbbFL78ViSEAJTKwSoArcJ0DPatAADtRggWAOC1kRAiIi666KLS1tHd3V3aslPoSF0A\nAAAAAAAAAAzVKaeckrqEQZk7d27qEgplJAQogbv/yZn+Sc6q1Wry/ulO8z7aoj+fnwAAAACQt2a9\nmP/QQw/FFltskbqMwgghQAkMVUfO9E9ylsOFVttIH23Rn/YAAAAAgLytvfbaqUsYlIkTJ6YuoVBC\nCAAAAAC0nVqtlnT9lUol6foBAKAVPfbYY6lLWGUXX3xxrLbaaqnLKJQQAgAAAABtRwgAAACa37x5\n8+Lwww9PXcaQfOxjH4urr746Ro4cmbqUwnSkLgAAAAAAAAAAVlWzBxB63XfffalLKJSREKAEU6dO\nTfJhMW7cuCzmUydv+ic5q1aryftnqm1k2TpyoC368/kJAAAAAJThmWeeSV1CoYQQoAQzZsxIXQIA\nAAAAAAAUYuHChbFgwYJS11Gr1Updfs7GjRuXuoRCCSEAAAAA0HZSn+CsVCpJ1w8AAPX6/e9/H8cd\nd1zqMlra448/HmPGjEldRmGEEAAAAABoO0IAAABQn8ceeyx1CS1v1KhRqUsolBAClCDl3RROogAA\nAAAAAFCUffbZJ6644oqYN29e6lJa1ic+8YkljzfbbLM499xzY8SIEQkrGhohBChBZ2dn3HfffQ1f\n77hx4+Kcc85p+HpXZMaMGalLAICWYb8KAAAAQKPNnDlTAKGBHnrooejq6orp06enLmXQhBCAUk2d\nOlUgAwAKkmq/GmHfCgAAANCuxo4dm7qEtrPbbrulLmFIhBAAAACaWFdXV+oSAAAAgBa2ww47xNVX\nXx0LFy5MXcrrHHjggalLKMSYMWPiuOOOi4iIt771rfGmN70pcUVDI4QAAADQxFJNBRZhhAwAAABo\nB4sWLYpPfepT8cADD6QupWV96EMfih133DF1GYURQoASmK+ZnOmf5CyHC1m2kT7aoj/tQa6MhAAw\nOKY5AhicSqWSuoSIyOMcAkC72HfffVOX0PL23HPP1CUUSggBKJULNgAA5TISAsDgOF4FAABysfrq\nq6cuoVBCCFCCVHdT5HgSWFvkx3tCzqrVavL+6Y64PtqiP5+fAAAAALSjY489Ns4888zUZbS0Wq2W\nuoRCCSFACdxN0Udb5Md7Qs5yuNBqG+mjLfrTP8mVfgEAlEUQl4GkvkjSOx1EDjcyALSLYcOGpS6h\npX3hC1+IUaNGpS6jUEIIQKkcrALQKlKeaOs9yWZ0CgaiXwAAZRF2BAAiIjbYYIPUJSTV3d2duoSm\nI4QAlMrBKgCtojcIkJL9KgAAjeTmEgAgIuKd73xn/PSnP40nnngiIl47TzZv3rz4zne+s+ScWaVS\niY6OjpU+Xva/el6zKn8ze/bswv/9l19+eXR0dMQ222wTW2yxReHLb0VCCAAAUAcjITgRDADQboRg\nAYCIiFdeeSVmzpwZv/rVr5Y8V6vV4o1vfOPrzpn1/rzs/3sf9/T0LPf3K/v7en5fhjPPPHPJ4899\n7nOxxx57lL7OZieEAJRKYh4AAAAAAKB5XXXVVXHeeeelLiMLP/vZz4QQ6tCRugAAAAAAAAAA8rT5\n5punLiEbhx12WOoSmoKREIBSGbYPgFbROyVCSvarAAA0khEuAYCIiG233Tauu+66WLx4cUT0nSdb\n9v85mDVrVpxyyimFLnO77baLWq0We+21V2y//faFLrtVCSEAAEAdGjG/3PL0HsilOgkc4URwzrq6\nulKXANCUUu7bI/I6UQvLIwQLAEREPPvss3HyySfH7bffnrqUJObMmRMREX/4wx/iG9/4RuHL/8pX\nvhK77bZb4ctNSQgBKJXEPABAuTo7O4VTAAbB5ycAANRnxowZbRtAaIQTTzwxrrzyylhjjTVSl1IY\nIQSgVBLzALSKHO5WtF8FgOLYr8LKubkEAIiIGDVqVOoSWt6CBQtaKoTQkboAAAAAAAAAAPJ09NFH\nxwc+8IHUZbS0jo7WumxvJAQogZQ4OdM/yVm1Wk3eP1NtI8vWkQNt0V8O/RMAKE6tVku6/hxGWYKV\nMWIIABARsfrqq8fxxx8fxx9/fOpSVqqrqysuu+yy1GWssttvvz023njj1GUURggBKJUL3gAAAAAA\nAJRh7ty5ceSRR6YuY8gWLVqUuoRCCSEAAECTMDoFABTHSAQAAFC/+fPnxyOPPDLg7yqVyutGGlv6\n+/bSv6v3e3jv61a23FNPPbWu5eVu/fXXT11CoYQQgFIZtg8AimO/CgAAAECj3XLLLXHCCSekLqOl\nvfDCC6lLKJQQAlAq0zEAQHGMhAAAAABAoy1YsCB1CS3v3nvvjf322y91GYURQgAAAAAAAABgQB/4\nwAdijTXWiFtvvfV1v+udLmHZaRZW9vyyvxvo+WWnYuj93dLP//KXv6z735GzMWPGpC6hUEIIAAAA\nAAAAAAzolVdeiYceeihmz56dupSW1dPTk7qEQgkhQAnM19xHW+THe0LOchjq3TbSR1v0p38CAAAA\n0I6uuuqq+N73vpe6jJa21157pS6hUEIIQKlSzV1t3url856Qs2q1mrx/ptpGlq0jB9qiP/0zv/cE\nAAAAgPJtueWWqUtoeTfffHMcdNBBqcsojBACQJtxFy05y+ECp22kj7boT3sAQGsR7gMAgPq8/e1v\nj1mzZr3u+VqtVtdzA1ne61Z1mXvvvXdd68vd+PHjU5dQKCEEgDZjJARy5k7zvLYTbdGfz08AaC0C\nhgAAUL/nnnsu5s+fP+Dvlg4JLO/xiv6mnmUt73UbbbRRPP7448t9XbNYuHBh6hIKJYQAJXCRAgAA\nAAAAgFZwyy23xAknnJC6jJb217/+NXUJhRJCgBK4m6KPtsiP94Sc5RCkso300Rb96Z8AALQbN9oA\nABEhgNAAp59+epx++ukREbH++uvHueeeG29605sSVzV4QghQAgdofbRFfrwn5Mx0DHltJ9qiv5Sf\nn73hg3rn1CtLpVJJun4AABpLCBYAiIg45JBD4kc/+lHqMtrGk08+GXPmzIndd989dSmDJoQAAAB1\nqNVqSUIAS6+zs7NTMAQACiLcBwAA9Tn66KNj3333jT/+8Y91/83yvm/3Pr/s9+Hec28DPb/06+fO\nnRuXXnpp3XU0ow984APxrne9K3UZQyKEACWQEu+jLfLjPSFnOVzgtI300Rb96Z/kSr8AGBwhAFg5\noykCAL022WST2GSTTZLW0NPTE1/5yleS1tAIV199dUybNi11GUMihADQZpxAIGemY8hrO9EW/eUw\nHQMAUBzfdWDlfA9lILmEuHyOArSfl19+OXUJDXPGGWfEiSeemLqMQRNCAErlgnd+nEAgZzlst7aR\nPtqiv66urtQluFjCgPQLgMHxXQdgcHKZziaHGxkAaKxRo0alLqFh/umf/il1CUMihAAAAAAAACuQ\nOvgpOAUAr+nu7l7h7xctWhT77rtvoev87//+74iIWHPNNZcEIXpDccv+n9cIIQAAAAAAwAoIAQBA\nc6jVajF+/Pi45557ClvmRz/60SWPP/3pT8eUKVMKW3ar6khdAAAAAAAAAAAM1emnn15oAGFZZ555\nZmnLbiVGQgAAAACg7aQeWt184gAAULybbrqp1OXvuOOOpS6/VQghAKXq6upKXQIAFCKHed3sVwGg\nOIZWBwCA1vPJT34yTjvttNKWf8stt8SkSZMKX253d3fhy0xJCAFKkOpuihzvpMjhgg396Z/krFqt\nJu+f7ojroy36y6F/dnZ2ek8AoCC1Wi3p+h0vAwDQTO677764++67l/y89Pfp3u+2yz7XqO/cveup\nVCpx7bXXNmSdRfv+978fm222WUS8dh5u3XXXTVzR0AghQAncTUHO9E9ylsMFTttIH23Rn/4JAK1F\nCABWzo0MAEBExHnnnReXXHJJ6jJa2ve+971+P5977rmx1VZbJapm6IQQANqMEwjkLIc7zd3930db\n9Kd/5veeAABQLiFYACAi4q677kpdQttZtGhR6hKGRAgBSuAibx9tAQAAAAAA0Lz++Z//OU488cTU\nZbS0TTbZJHbbbbeIiHjf+94X22yzTeKKhkYIAUrQ1dWVugQAAAAAAAAYsqeeeip1CS3vc5/7XGy5\n5ZapyyiMEAKUwLySfQzblx/vCTnLYQQT20gfbdGf/gkAQLsxwiUAEBExZcqUqFQq8etf/3rA39dq\ntZU+XpF6/r5SqQy4vDlz5tS1jtzdcMMN8eCDD0ZExA477BAbbrhh4oqGRggBSuAArY+2yI/3hJxV\nq9Xk/TPEpoN5AAAgAElEQVTVNrJsHTnQFv3pn/m9JwAAlEsIFgCIiBg2bFjsv//+sf/++6cu5XW+\n+tWvxjXXXJO6jCG75JJL+v38zW9+M7bffvtE1QydEAIAAAAAAAAAA3rggQfi6KOPTl1GW7nyyiub\nOoTQkboAAAAAAAAAAPL0wx/+MHUJbWebbbZJXcKQCCEAAAAA0HZqtVrS/wAAoFk0+wXxZrPHHnvE\nPvvsk7qMITEdA5TAfHkAAACQt0qlkroEAABoCgceeGB0dHTErFmzUpfyOvfff3/qEgrx7W9/O972\ntrelLqMwQghAqQQy8uM9IWfnnHNO6hJsI0vRFv3pnwAAAAC0o+HDh8eHP/zh+PCHP5y6lNeZNGlS\n6hIKsdFGG6UuoVBCCFCCqVOnxn333dfw9Y4bNy6LCyTkTf8kZ9VqNXn/TLWNLFtHDrRFf/pnfu8J\nAAAAAOV78MEH44gjjkhdRku77bbbYo899khdRmGEEIBSueANAAAAAADQvH7/+9+nLqHlffnLX44v\nf/nLy/39F7/4xdh9990bWNHQCCFACQyV3Edb9MklFOE9IWc5bCe2kT7aoj/tQa70TQAASCPViHkR\nbsICGmvKlCkxb968uPrqq1OX0rZ++9vfCiFAu3P3fx9t0SeXgxLvCTkz3H1e24m26M/nJ7myrQIA\nQBq+CwPtYvXVV4/jjz8+jj/++NSlxPPPPx8nnHBCPPvss1Gr1eKxxx5LXVLpdtpppzj66KNTl7FK\nhBAAAAAAaDu1Wi3p+iuVStL1AwBAvRYvXhw///nPo7u7e8lzg/k+u7y/Wdnzvd/da7Va3HXXXau8\n3mbw1a9+NXbZZZfUZRRGCAFKYEhccqZ/krMc7iCwjfTRFv1pDwBoLUIAAIOTy+dnDucQANrFVVdd\nFd/61rdSl9HStt9++9QlFEoIASiVCzYAtIocTrTZrwIAAADQaGPHjk1dQstbeqqLAw44ICZOnJjF\n+cjBEkIAaDPmNCdn1Wo1ef80t3ofbdFfDv0TAAAAABpthx12iJkzZ8bChQsjYsVTm63qtGfLe/1A\nz7/88svxL//yL6u0/GYxZ86cfo9Hjx4d73rXuxJWNDRCCECpXPDOj7toyVkO261tpI+26C+H9hAM\nYSBdXV2pSwAAoI2s6sWlovXeFSooDtBYo0aNilGjRqUuo22MGTMmdQlDIoQAAADQxDo7O4VTAAZB\nuA8AAJpPd3f3656bP39+PPfccxERccQRR5S6/sMPPzw233zz1z2/dEhveY8H+rlSqcRWW23V77m1\n1lorRowYUUS5yQghAAAAANB2chjlCAAAGLr11lsv1ltvvYiIGDFiRLz88suFLv/iiy+Ojo6OWHvt\ntWP06NGFLrtVCSEAAAAAAAAA0PSKDiBERHzsYx9b8vj000+PCRMmFL6OViOEAJTKnSUAAAAAAAC0\ngkcffVQIoQ5CCECpUs2xaX5NAAAAAACA9jJ8+PB49dVXC13mTjvtFD09PfG+970v9ttvv0KX3aqE\nEIBSGQkBgFZRqVRSl2C/yoD0CwCgLG4uAQCazbbbbhuzZ88ubHmVSiW+/vWvF7a8diGEAAAA0MRS\nXRyIcIEAaG4+PwEAoPUUGUCIiKjVajFp0qSIiDjkkEPiqKOOyuJmpdwJIQClkpgHgOLUarWk63eA\nBUArMZIMrJztBACIiLj33nujs7MzdRnJ/ehHP4of/ehHpSy7u7u7lOWmIoQAJXDhvY+D1fzon+Ss\nWq0m75/uiOujLfrLoX92dnZ6T3idrq6u1CUAAAAALez+++9PXULLu//++2PrrbdOXUZhhBCAUrng\nDQDFEe4DAAAAoNH222+/+Nvf/hYzZ86MiP6jdS7v8YqeW9W/G+hxpVIZ8O8WLly43H9HzhYsWJC6\nhEIJIUAJXCAgZ/onOcshPGQb6aMt+suhf5qOAQAAAIBGGzFiRBx22GFx2GGHpS7ldb797W+XNkVC\nI+20006pSyiUEAJQKhewAKA4QgAMxDQdAIMj3AcrZ4RLACB3rRBAiIjo6OhIXUKhhBCAUjlYzY/3\nhJxVq9Xk/TPVNrJsHTnQFv3pn/m9JwAwFEIAsHJuLgEAaIw//OEPscMOO6QuozBCCECpHKzmx3tC\nznK4wGkb6aMt+tM/AQBoN25kAAByc8YZZ8SVV16ZuozCbbPNNqlLKJQQAlAqB6sAtIqUQzb33qlp\nJAQAABpJCBYAiIh47rnn4h//8R9Tl9HS/va3v8X666+fuozCCCFACVx4J2f6Jzkz3H1e24m26M/n\nJwAAAADtaNq0aalLaHnz5s0TQgBWTEq8j7bIj/eEnOVwodU20kdb9Kd/AgDQbgRxAYCIiP333z/O\nPvvs1GW0tFYKIEQIIQAlc7AKQKswHYN9KwCtxX4VVk4IFgCIiDjwwANjjz32iCeeeGLJc73nq5a2\n9HPLe1zPa3vPww1mHV/60pdi3rx5K/4HZejBBx+Mt771ranLKIwQApTAhXdypn+SM9Mx5LWdaIv+\ncvj8dBIYAIpjvwoAAPUbPXp0rLfeeksCAsvesLPs86v6+8Esp1arxQsvvBCdnZ2D+0dl5Lnnnktd\nQqGEEAAAAAAAAAAY0G233RbHH3986jJa2tlnnx033nhjREQccMABMWnSpAFHgmgWQggAAFCHSqWS\n5Iv/0utMOSVExMBD4AFAszLqEwBD5RgNaBdGEWuMP/zhD0v+v/rqq8e73vWuxBUNnhACAADUoXeI\ntxTr7dXZ2eliCa/T1dWVugSApuTzE4ChEgIA2sVxxx0X06ZNS11GWxkzZkzqEoZECAEAAKCJCacA\nDI4LRwAAUJ/x48fHZz7zmbjppptW6e8Gc0PPyv5m0aJFcfvtt6/ycnN35JFHxvvf//6IiHjjG98Y\nI0aMSFzR0AghAAAAAAAAADCgmTNnxmmnnZa6jJa23Xbbxbrrrpu6jMIIIUAJzI1DzvRPcpbD3bS2\nkT7aoj/tAQCtZerUqUaSAQCAOqy//vqpS2h548ePT11CoYQQgFK5YANAq8hhyGb7VQZiTnOAwbFf\nhZUbzBDKRcnh+zcDy+W9EeYCaJw11lgjdQktZ7vttouIiJEjR8axxx6bzf61KEIIAG0m1d0+7vSh\nHtVqNXn/dEdcH23RXw79EwbS2dlpWwUAStFqJ8MBgMG59957U5fQcubMmbPk8dFHHx0/+clPYuTI\nkQkrKpYQAlAqF7zz424fcpbDdmsb6aMt+suhPQRDAACA1FKOkBHRF44RFAdonP322y+efvrpuOqq\nq1b5b1cUaqxUKkv2Kyt7Xa8FCxascg2523zzzWO11VZLXUahhBAAAAAAAAAAGNDIkSPjqKOOiqOO\nOip1KSs1adKkUpf///7f/4udd975dc+vKKS3dNCi9/HSz735zW9uuRGohBAAAAAAaDtGGAIAgPrM\nnTs3jjzyyNRlZOHyyy+PvffeO3UZ2etIXQAAAAAAAAAAebrzzjtTl5CN+++/P3UJTcFICECpcpg/\nGwCKkMOQaParAFAc+1VYuVQjhhgtBADysu+++8a8efNi5syZqUuhSQghAABAHVY0r1vZegMQho0G\nAKCRhHUAgIiIJ598UgCBVWI6BgAAAAAAAAAGdNttt6UugSZjJASgVIbtAwAAIEcpRzmKyGOqJwCG\nxr4EaBf77rtv3H333fGb3/wmdSk0CSEEAAAAANqOCzcADJV9CdAu1lhjjTjppJNSl1GX/fffP55/\n/vlS1zFp0qRVev3S+4tlA2yjR4+Or33ta7HtttsWUlsuhBAAAAAAaKhKpZLkwo2LRQAA0FouvPDC\nuOiii1KXsUIrGjln0aJFMW3atJg5c2aMGjWqgVWVSwgBSmAKAnKmf5KzarWavH+m2kaWrSMH2qI/\nn58AUJxarZZkCOul1+m7DgAANL/cAwj1evLJJ2Ps2LGpyyiMEAKUYMaMGalLyIa2yI/3hJzlcCLW\nNtJHW/SnfwJAa7FfhZUTxAUAaIx11lkndQmFEkKAEjhAI2f6JzkzEkJe24m26C+H/gkAAI0krAMA\nRLw2othNN90Ut95665Kfh7KsiNemSlveclb2/NJ/u+WWW8Yf//jHQdeTizvvvDPe8573pC6jMEII\nQKlc8AaA4giGMJCurq7UJQAAAAAt7Jprromvfe1rqctoaYsXL05dQqGEEKAEUuIAQBlcbGYgnZ2d\nwikAAABAadZaa63UJbS8hQsXpi6hUEIIUAJ3/wMAZXCxGQAAAIBGe/rpp1OX0PKMhAAAAEA2jJAB\nAAAAlGn06NGpS2h5L730UuoSCiWEACUwHQM50z/JWQ53WdtG+miL/rQHuTJCBsDg1Gq1pOuvVCpJ\n1w8AAPV66qmnUpfQ8iZPnpy6hEIJIQAAAADQdoQAAACgPuuss07qElreG9/4xtQlFEoIAQAAAAAA\nqEsuIS4jcgE0zm233Za6hJY3f/78WH/99VOXURghBKBUhq4GoFXkcKLNfhUAAACARrv99ttTl9DS\ndtttt5YKIEQIIUAppk6dmmRe3hzn5NUW+fGekLNqtZq8f6baRpatIwfaoj/9M7/3BAAAAIDynXTS\nSTFt2rTUZbSsJ554IhYvXhzDhg1LXUphhBCgBO5SJGf6JznL4QKnbaSPtuhPe5ArfRMAgEaq1WpJ\n1987Sl0OQXGAdrHttttGd3d36jJi8eLFsddee6Uuo3Dz588XQgAAACAfRsgAAAAAyvTUU0/Fcccd\nF4888kjqUlrC1ltvHW95y1siImK11VaLQw89NEaMGJG2qIIJIQClcmceAAAAAABA87r++usFEP7P\nwQcfHMccc0zqMrInhACUKtWdee7KA6BovUN+piTcBwAAAECjTZw4MS699NJYsGBB6lKSmz9/fuoS\nmoIQAgAAQBPr6upKXQIAAADQwjbYYIP46U9/mrqMulx77bVxyimnlLb8N7zhDaUtu5UIIQAAQB1q\ntVqydfeOwpBqhKEIowwBAAAAkL+yRyqYM2dOqctvFUIIAAAATayzs1M4BQAAACAiLrrootKWPXz4\n8Dj77LNLW34rEUIASmXuagBaRe9oBCnZrwIA0EipRuISdASAvPzlL3+JI444Il544YXUpST16quv\nxt/+9rdYY401UpeSPSEEoFQOVgFoFaZjsG8FoLXYr8LKCcECABERv/71r9s+gNDr4x//eHR3d6cu\nI3tCCAAAUAcjIQBAa7FfBQCA+kyePDlmzZoVDzzwQOpSsjBp0qTCl9lqwQYhBIA2Y3QKclatVpP3\nT3fE9dEW/emf+b0nAAAAAJRv9OjRMW7cOCGEEt16662xyy67pC6jMEIIQKncWQJAq6hUKklGQ1h6\nnfarAAAAADTaxRdfHFdccUXqMlraiy++GA888MCSc5BLn4tc+v8dHR0xbNiw2GijjbIYuXV5hBCg\nBO4076MtAGgVtVotarVakvX2MhICAAAAAI32xBNPpC6h5X3xi19cpdfvvPPO8V//9V/lFFMAIQQA\nAAAA2o5wH7AqUk3PFuEzI2cpgupL670DVv8Eynb44YfHLbfcEgsXLkxdCv9n3rx5sXjx4hg2bFjq\nUgYkhACUyrDRAFAc+1UAKI79KqycES775FYPechlGGz9EyjbmDFj4he/+EXqMiIi4k9/+lOcfPLJ\n8dxzz0VExPz58xNX1Di77rpr1Gq1WH311eOYY47JNoAQIYQApXAio4+D1fzon+Qsh+3WNtJHW/SX\nQ3u4YxMAgEbK4TswAJDe4sWLY+bMmXHjjTeu9LWrMkrMQK9d+rnesNeyr6vVajF69OjkI9IU6bzz\nzostttgidRmFEUIAAAAAoO0I9wEAQH3OOOOM+OUvf5m6jJb1vve9r6UCCBFCCAAAAAAAQJ1MQQDQ\nfnqnPqA43d3dqUsolRACAAAAAG3HMPMAAFCfz372szFjxoz4+c9/nrqUlrDpppumLqF0QghQglRD\nOhrOkXron+SsWq0m75+G5e2jLfrz+QkAAABAOxo5cmRMnz49pk+fnrSOxYsXx1577ZW0hiI8/PDD\nMWnSpCU/f/rTn44pU6YkrKh4QghAqdxZ0kdbADS3HIIA9iUMRL8AAAAAaF5nnHFG7LnnnjFq1KjU\npRRGCAFK4ERwH3eN9snljmL9k5zlsN3aRvpoi/5qtVqydffOuZrLvoS86BcAAABAOxg2bFhceOGF\nceihh6YupVBHHHFESwUQIoQQAAAAAGhDKQOGEX0hQwAAoH6bbrppdHd3L/l56WkNGmHChAlLvssv\n+53+mWeeiXnz5q3w73faaac49dRTY/jw1r5M39r/OgAAgBbX1dWVugSApiQEAAAArKq11147Pve5\nz6UuI3tCCAAAUIccLlS42MxAOjs7TccAAEDD5DKSTLVaNQ0sQAPdc889MWfOnAF/t7zzZks/v7Jz\na/UsIwezZs0SQqiDEAIAANQh5Ym23oMtF5sBAAAAaLRZs2bFl7/85dRlZGHs2LGpS2gKHakLAAAA\nAAAAACBPw4YNS11CNh555JHUJTQFIyEAAEAdchj6zXQMDES/AAAAAMq0++67x3nnnRf3339/RPQf\nMbSe0UMHek0Ry1j6+d7/33jjjXH33XevdHmDNWHChNKW3UqEEAAAoA6mYzAdQ670CwAAAKBsW2yx\nRWyxxRapy1ipESNGlBpCOOigg0pbdisRQgAAAAAAAABgQIsWLYpvf/vbccUVVwzq7wcaYbSeUUfr\n/buln3vllVdWsbpVM3r06FKX3yqEEAAAAAAAYAWmTp2adPSpGTNmJFk3AEREXHXVVYMOIESsfDqG\nZjJ9+vTo7u5OXUb2hBAAAAAAAGAFhAAAaGfbb7996hJoMkIIAABQh3qGiCubE58AAAAANNqWW26Z\n7d3/d955Z0yfPr2h65w0aVKhy3vzm98cl112WaHLTE0IAUqQani2cePGxTnnnNPw9dJc9E9yVq1W\nk/fP1ENs5rSdaIv+9M/83hMAAAAA2lujAwhlePrpp+PPf/5zbLzxxqlLKYwQAgAAAAAAAAADevbZ\nZ+Pzn/98zJkzJ3UpLWvu3LlCCMCKGSq5j7bIj/eEnOVwl7VtpI+26E//JFf6BQAAAFCma665RgCh\nZG94wxtSl1AoIQSgVIb+B6BV1Gq1ZOuuVCoRYToGBqZfAAAAAGV697vfHd/5zndi8eLFqUtpWe94\nxztSl1AoIQQAAKhDbxAgJXe8AwAAANBoG2+8cVx33XWpy6jL97///fje975X2vI33XTT+MhHPhKV\nSmXJ+cKOjo7XnTsc6LmBDBs2LN7znvfEsGHDSqk3FSEEAACog5EQ3PEOQGtJuW+PyCPgCAAAreDx\nxx+PZ555Jmq1WqkBhIiInp6e2HfffUtdRysQQgAAAACg7QgBAABA8/v3f//3mD17dsPWN3ny5Iat\nq5kJIQCl6urqSl1CNgyhDdDccrhQYb/KQPQLAABII/Vodc43Ao3y0ksvxQUXXBBXXnllv+frGV1s\n2dcM9DerspxXX311pa8t0wUXXBAXXHBBocs86aST4r3vfW+hy0xNCAEoVWdnZ5Iv4jkOGZ36oCS3\n9gBoNjlMx5BqvxphX5Iz/QIAANIQAgDaxS9+8Yv48Y9/nLqMlvWlL30pfvGLX8SoUaNSl1IYIQQA\nAAAA2k7KgGFEHqMsAQxGLp9fwrAAjTN+/PjUJbS0gw46qKUCCBFCCAAAAAC0oVwuogEAQO623nrr\n6O7uTl1G9PT0xEc+8pF4+umnU5cyZBMnToxKpRLDhw+PzTffPG644YaoVCpRqVRim222iXXXXTd1\niUMihADQZlJNC2G4ZupRrVaT909Tp/TRFv35/AQAAACAdCqVSksEECIibrjhhiWPr7322tf9/txz\nz42tttqqgRUVSwgBSuAiBQAAjdLV1ZW6BAAAAIDS9fT0pC6hYRYtWpS6hCERQoASzJgxI3UJsFz6\nJznLIUhlG+mjLfrTHuSqs7PTqCUAADRMrVZLuv7e6XRyGE0RgMYaNmxYHHvssXHmmWemLqVQ+++/\nf6y55prR09MTtVotdt999xg3blzqsoZECAEAAOqQw7zRghAAAAAAtLMDDjggDjjggCU/9/T0xPXX\nXx9/+tOfYrXVVovHH398wOkNitLR0RHXX399actvFUIIAABQh5R3+/QGIFJN+RThbp+cmY4BYHBy\nuZMXAAAYvI6Ojpg8efKSn5977rl46KGHYu7cuaWsb9dddy1lua1GCAEolTs2AQDKZToGAAAAgNfc\ncMMNpQUQ9t577zj22GNLWXarEUIASpXDXaMAUIQc9ivCfQBQnBz27QAAQLFuvfXW0pb997//PV59\n9dXSlt9KhBCAUqW6M89deQC0IsNGAwAAANBoDz30UBx22GGpy0jut7/9bfzyl7+Mgw8+OHUp2RNC\nAACAOuQwuo9h9wEAAABotN/97nepS8jG+uuvn7qEpiCEAAAA0MS6urpSlwDQlKZOnSrcBwAAddh3\n333j3nvvjRtvvDF1KcmddNJJMWnSpNRlZE8IAQAAoImZJgNgcGbMmJG6BAAAaAprrLFGfPGLX0xd\nRl0OPfTQePjhh0tb/jvf+c7Slt1KhBAAAKAOOVzodcc7A3EnL8DgpJxqKSKP7xYAANDsarVa3HLL\nLfHwww9HrVYrNYAQETF27Ni44IILolarxZgxY2Kfffbx3X4AQggAAFCHlBcqeg9kOjs7XWwGgII4\nUQgAAM1v8uTJsXjx4oat77LLLuv389e//vUhL3PHHXeM0047bcjLyYkQAkCbSXW3pItX1KNarSbv\nn+4o7qMt+vP5CQAAAAB5aWQAoSx33HFHPP7447HRRhulLqUwQghAqcyxmR/vCTnL4UKrbaSPtuhP\n/wQAoN0I4gIAuTv00EPjwgsvTF0GyxBCgBI4QCNn+ic5MxJCXtuJtugvh/4JAACNJAQLAEREPPvs\ns/GFL3wh7rrrrtSltKxvfvObse6660ZExPvf//7YYYcdElc0NEIIQKlc8AaA4giGAAAAANBoJ554\nYtxzzz2py2hpv/vd75Y8njlzZpx22mmx4447JqxoaIQQoARS4uRM/yRnOVzgtI300Rb9aQ8AaC3C\nfQAAUJ+dd95ZCKHB1lprrdQlDIkQAgAAAAAAwCqq1WpJ11+pVJKuH2gfu+22W1x44YWpy8jGV7/6\n1eV+Bvc+3/v/xYsXv+73w4cPH/C1vTbbbDMhBAAAAABoNkY5AmCohACAdnHXXXelLiErzz77bERE\nrL322rHzzjvbHwxACAEolZM6AADl6urqSl0CQFMyHQMAANRnypQp8eijj8bPf/7z1KVk4dRTT+33\n8zve8Y4lj59//vmIeC2o1htOWHrknHe84x1x1FFHRUdHRwMqTUcIAShVqpM6TugAAO2is7PTRTSA\nQRCaBwCA+owePTqmT58e06dPT1pHT09P7LnnnklrGMjs2bPrfu0DDzwQl1566eue/4d/+IclYYVD\nDjkk9t1336YOKgghAKVyUgeAVpHDsGr2qwxEvwAAyuLmEgaSw7FRROgjAG3o1VdfTV1CaR577LEl\nj08//fRYZ511YrfddktY0dAIIQClcrCaH+8JOatWq8n7p2F5+2iL/vTP/N4TXqNfAABlEXYEAEhj\n0003TV3CkAghQAlc5AUAAID/z97dB8lVlfkDf2YmExICRGJgMRGNgMibILsrECsSJ4gib0ZAEK1F\nrRWsTktAS1akyCLmtyDogrVUBwgiEl9wFQUFIgQ2syDoWsvbiggsERYQRGSByItAyPTvDzbpdJgk\nk5l755zu/nyqLOctfb+cPvfevvc851wAAIDijBnTvkPbvb290dPTExERn/jEJ2KbbbZJnGhk2ved\nAgAA6AC1Wi11BAAAAIDS1ev11BFKs2LFilixYkVERFxwwQUxderUmDFjRuJUw6cIAUpgqTpypn+S\nsxxWc7GPNGiLZtqDXFWrVY9jAABg1KQeAOrq6oqIPB6Zl0tbAHSKnp6emDFjRtx8882po5Ru++23\nTx1hRBQhAAAAANBxUj1KMUIRF0C7UAQAMPrmz58fL730UtPPbrnllnjkkUciIuJb3/pWglQb58or\nr4yxY8eu/n78+PEJ05RDEQJQKrNGAWgXOdxccl5lMPoFwPA4fgIAwNA88sgjccwxx6SOkYUjjjgi\nqtVq6hjZU4QAlCrVzBKzSgBoR5b6ZDBm8gIAAABl+uUvf5k6QjYuv/zyuPzyy0f0Gtdcc01suumm\nBSXKkyIEAAAYgpQFAKsG/6vVqsFmAAAAAEbVjjvumDpCWznooINe87OlS5e21QQgRQhQArP/yZn+\nSc4qlUry/mlGcYO2aJbD8dOy0QAAAACMtvvvvz91hLZ3zz33xC677JI6RmEUIUAJDBA0aIv8eE/I\nWQ6DzvaRBm3RLIf+CYOxrwIAZcmhEBcASO/AAw+M++67L/7t3/4tdZS29dJLL6WOUChFCFACF2gN\n2iI/3hNyZiWEvPYTbdEsh/4Jg7GvAgBlUewIAERETJgwIU499dQ49dRTU0d5jRtvvDG+9KUvpY4x\nYuPHj08doVCKEABGiQt3gNaWw3HcYDODyaFvAgBAJ0pVrB7hGg0YXcuXL4/58+fHbbfdljpK29py\nyy1TRyiUIgSAUWLgCKC15bCSTK1WG/Xtkz+fMQAAIA2fhYFOcd111ylAKFlXV1fqCIVShAAlMBut\nQVvkx3tCznK4eLePNGiLZjn0z3a7GAEAIG85FOICAOlNnz7dublkW2+9deoIhVKEAJTKxSoA7aJe\nryfb9qriAzPeAaA4Kc/tEYoLaQ0KkwGAiIhtt902+vv7U8eIer0es2bNSh2jFPV6va2uERQhAKVy\nsdpg4AagteVwEeC8ymD0C4DhyeHcDtCKcjl+utcGMHp+97vfxac+9anUMdraYYcdFm9605siIuKD\nH/xg9PX1ZXPOHQ5FCACjpFKpmL0KAAAAtAwrXDKYXFaSSXWvTf8EOtHtt9+eOkLbe+aZZ+KZZ56J\niLz6NJQAACAASURBVIhf//rXsemmm8Y+++yTONXwKUKAErhAa9AW+fGekLMcbiBY7r5BWzTTP/N7\nT3iVfgEwPLkMokHOrLjEYHI5fvkcCjB6DjzwwFi2bFksWbIkdZSO8YY3vCF1hBFRhAAlcIHWoC3y\n4z0hZzncQLCPNGiLZjn0z1qtljoCALSNXAbRIGcmMjCYXIq4cigUB+gUEyZMiC9+8YvxxS9+MXWU\n6OvrSx2hED/4wQ/W+buJEyfG2LFjRzFN8RQhAKVysQpAu0h5o23VTbZqtWrGOwAAo0ZhMoPJpYjL\n9QlAZ+rv72/6vhWLEj772c/GVlttlTpGqRQhAAAAtDArZAAMTy4zeQFaTS7HTyshABARse2228Yj\njzwyaturVCpx5JFHjtr2WpUiBAAAGIIcBgrMRGMwVsgAGB7HTwAAaH2LFi1q+v6ggw6KF154obTt\n3XbbbYoQhkARAgAADEEOj2NI9ZijCIMlALQfxX0AANB+zj777PjMZz5T2us/99xzpb12O+lOHQAA\nAAAAAAAARuqpp54q9fV33nnnUl+/XShCAAAAAAAAAKDl7b333qW+/pgxHjQwFFoJKJXlLQEAAAAA\nABgNs2fPLvX1//znP5f6+u1CEQJQqlTPrvbcagAAgNfKpVA8hxz1ej3p9ru6upJuHwAAhupPf/pT\nzJ07Nx5//PHUUZL71a9+lTpCS1CEAJSqVquljgAAhchhoMB5lcHoF8DGSFUoHtFcLJ5DwXq1Ws2i\nLQBoXanPqzkU9QGdYenSpQoQ/s9TTz2VOkJLUIQAlCrVTR03dACATmEQDQAA0lAEAHSKWbNmxRVX\nXBF//OMfU0dJ7tOf/nTqCC1BEQIAAAxByiWbV63CYLCZwbjxCTA8jp8AADA0W221VXz/+99PHWNQ\n9Xo9brnllnj44YcjIuKiiy4qdXsXXnhhPPDAA4Pm6OnpiXe84x3R29u7+uc77bRTTJ06tdRMOVKE\nAAAAAEDHSVlgGJHHo54AGBnnEoD0Zs+eHX/+859HdZvXX3/9On933XXXbfTrfexjH4tPfepTI4mU\nHUUIAAAAAHQcKwwBMFKKAADSG+0ChDJ897vfjcMOOywmTZqUOkphFCEAparVaqkjsJYclhOHdcmh\nf5rF0KAt8uO8ymDsqwDD43EMAABALl5++eXUEQqlCAFKMGfOnCSzKXKcSeGmdH5SzfbJsX+SnxyO\nn2bENWiLZvpnfu8Jr9IvAAAAAFrbPffcE9tss03qGIVRhAAAAC3CjE0AAAAAaD/vfOc7U0colCIE\nKIEBgoYcZo3moqurK9nKEGtuV/8kZznst/aRBm3RLIf2SHVejcjz3MqrcuibAADQiSqVims0gFH2\n8MMPxwknnBDPPPNM6iiFuuiii1aP5ey3337x9re/PXGikVGEADBK6vV6smc2p35WNABQHsUpAACQ\nhs/CAKNrYGAgPv7xj6eOUYqf/vSnq7/+yU9+Ev/8z/8cf/3Xf50w0cgoQgAAAACg4yjiAhieVCt9\nrs1xFKDzrFy5MnWEUbPZZpuljjAiihAAAAAA6DgeZwMAAOTg5JNPji233HL19zvssENMmjQpYaKR\nU4QA0GFSzfYx04ehSPUsxTX7pxlxDdqimeMnAAAAAKTT29ubOkIpvvKVr8T1118fY8a0z9B9+/yX\nQEbq9XqybeeyHBoAAADkTMElwPCkvPcZ0bj/mcNEBgBG32mnnRann3566hiF23///Vd/fcABB8SJ\nJ54Ym2yyScJEI6MIAUqgEICcWXKUnOVwEW8fadAWzXLon7VaLXUEAGgbPusAAEBrGRgYaMsChLVd\ne+21sc8++8TMmTNTRxk2RQhQAss1kzP9k5zlMIvBjLgGbdEsh/5ZrVa9JwAAQFK5TMByfQLQeVau\nXJk6wqjYaqutYvfdd08dY0QUIUAJzKZo0Bb58Z6QsxxuINhHGrRFM/0TAIBOYyIDg/E4Bv0TIJXe\n3t7UEQrxxje+Mb797W+njlEqRQhAqVysAtAuUt5oW3WTzeoUAACMJkWwAEBu+vv7X/Ozl19+OVas\nWBEREUcddVQ8//zzpW3/Xe96V/zTP/1Taa/fLhQhAKVysQoAAAAAAEBZxo4dG2PHjo2IVx9nevbZ\nZ5e2rb/9278t7bXbiSIEoFRWQgAAACBHuSwnDgAAuVuxYkVcfvnlcf3116eOskEPPvhgqa+/asUF\n1k8RAlAqKyEA0C5yGChwXgWA4lSrVY85AgCAIbjmmmti4cKFqWNkwUoIQ6MIASiVlRAAaBcpZ0uu\nKoBIdV6NcG4FoP0o7gMAgKHZfvvtU0dIqr+/P3WElqMIASiVmzoAtAsrIQAAAADQiaZOnZo6QlJ9\nfX2rvz7mmGPik5/8ZMI0rUERAlAqKyEAAAAAAAC0ro997GOpI2Rj0aJFsWjRotXfn3HGGbHJJptE\nV1fX6v91d3c3fb/m/zbffPOYMmVKwv+C0aEIAQAAhsDjGBT4AdBeUp7bI/JYZQkAAIZi4sSJ8eKL\nL6aOkaVTTjllWP+u3R/xoAgBoMNYnYKcVSqV5P3TIG+Dtmjm+AkA7UURAAAADM0FF1wQxx57bDz5\n5JOpo7SNNR/xEBGxdOnStrpGUYQAJchhpmQuPLsaAAAAAACgdb3uda+LH/7wh6ljDOqcc86Jq666\nKnWMEZs1a9bqr6dOnRqXXHJJ9Pb2Jkw0MooQoATVatVMSQCgcIr7AKA4Vn0CAIDWt8kmm6SOULhH\nH300vv71r8dJJ52UOsqwKUKAEhggaLB0dX70T3KWw35rH2nQFs1yaA+DJQBQnBzO7QAA0AqeeOKJ\nqFarHscwitZ+XEOrUYQAJTDwTs70T3JWqVSS90+DvA3aopnjJwC0F591gI2R8vGrEXk9gjWXLI6j\nDfonULb+/n4FCCW78sorY+LEialjFEYRApTAbApypn+SsxxuINhHGrRFM+0BAO3FuR3YGAZZyZn+\nCZRtv/32i2uuuSYeeeSR1FHa0o477thWBQgRihAAAAAAAAAAWIfJkyfHokWLUseIgYGB2G+//VLH\nGLGPf/zj8YlPfCJ1jFIpQgBKZWZJfiwnTs48jiGv/URbNMvh+Om8CgAAAECnWrlyZeoIhbj00ksV\nIQCMRA4DNgDQLhSGAEBxnFcBAKC1dHd3p45QmL6+vnX+7oADDogTTzwxNtlkk1FMVCxFCFACA+8A\nQBmshAAAxanVaqkjAAAAvMa1114b++yzT8ycOTN1lGFThAAwSgwcAbS2HAYqzNgEgOJ0dXWljgAA\nAGyETvkM/1d/9Vex++67p44xIooQoAQGmxu0RUMuA0feE3KWwwCnfaRBWzTrlIscWo99FQCA0VSv\n15Nuf9W1WaVSsRotQIfp7u6OefPmxfz581NHGbH+/v7UEUqlCAEolUdTAACUK5dCRwAAAICyzZo1\nK2bNmrX6+5dffjn+3//7f/Hzn/88Yar1mz59enR1dUVXV1fsuuuucdRRR6WOVDpFCAAAMAQ5rISQ\nwyMhAAAAACAXY8eOjS9/+curv589e3YsX7680G20+6oFZVCEAAAAQ5ByydFVBRDVatWMdwAAAABY\nh6ILEBgeRQgAAAAAAAAADOqll16Kb37zm3HVVVe9ZqLOqu/X/v+1DffvctDX17f669NPPz323Xff\nhGlagyIEAACAFrZgwYLUEQAAAIA2dvXVV8cPfvCD1DGycNppp3k8wxAoQgAAAGhhqWcGrHpcCAAA\nANCedtppp9QRaDGKEAAAAFpYtVqNe+65J8m2d9555zj//POTbBsAAAAYHcuWLUsdgRajCAEAAAAA\nAACAQU2dOjV1hKz09fWN6N/Pnj07ent7IyKit7c3jjrqqNhiiy2KiJYNRQhAqWq1WuoIAAAAAAAA\nDNMjjzySOkJbufLKK5u+/973vhfXXXddjB07NlGi4ilCAEqVanlgSwOv25w5c7wnZKtSqSTvn6n2\nkbVz5EBbNHP8BID24rMOAAAMzVvf+tbUEdreQw891FbtrAgBSmCQAgAAAPJm5T4AABia3XbbLfr7\n+1PHGNT9998fxx13XOoYIzZu3LjUEQqlCAFKsGDBgtQRsqEt8uM9IWc5FFLZRxq0RTP9k1zpFwDD\n09XVlToCZM9EGwAgIuK5556Lk08+Oe6+++7UUdrW5MmTU0colCIEAAAAAAAAAAb1j//4jwoQSnbg\ngQeu/nq77baLCy+8MMaMad2h/NZNDhlTJU7O9E9yVqlUkvdPzwZu0BbNUh4/V810r9fro779NZkx\nmif7KsDwOK/ChllxCdbPuQToFDvuuGPccccdqWN0jAceeCC+/vWvx+c///nUUYZNEQJQKgPeALSL\ner2e5AZT6pta5M/gAMDwGLgBYKScS4BO8elPfzr22GOP+M///M+IaL5fta57V0O5p7Wx/7Zer8c1\n11yzwddtB/vuu2/qCCOiCAEAAFpEtVo1453XsBICwPA4fgIAwNB0dXXF9OnTY/r06amjvGZ1gL6+\nvkRJinXKKafEXnvtFREREyZMaOlHMUQoQoBSmI3WoC0acrnB5D0hZznsJ/aRBm3RTP8kV/oFAAAA\nQGs744wzNurvzz777HjnO99ZUpqRU4QAlMrjGBpSPes+Is/2AGg1KR+LsGqJTzM2GYx+ATA8irgA\nAKD1XHPNNfG1r30tdYzkTj/99PjJT34SPT09qaMMShECAAAAAB1HERfA8Kwqkk7NcRSg8wwMDChA\n+D+HHXZYtgUIEYoQAAAAAOhAVkIAAIChW7FiRbz44otJMwwMDCTdflne9773xRe/+MXUMQqlCAGg\nw3hEBjlL9diSNfunGXEN2qKZ4ye5qtVqqSMAAAAAbezXv/51nHDCCaljtK0lS5bEiSeeGOPHj08d\npTCKEKAEBikAoP0Y6AWA9lKv15NuP5flzAEAYEMeeOCB1BHaXs6PVhgORQhQAks6NmiL/HhPyFkO\nhVT2kQZt0ay7uzt1BO8JgzKIBTA8jp+wYSbaMJhcirhyWE0RoFMcfPDB8fLLL8fSpUtTR4n77rsv\ndYRCzJw5MyIient747jjjouxY8cmTlQsRQhAqVysAtAuUt5oW3WTzSMyGEwuN4EBgPajCBYAiIgY\nM2ZMHHnkkXHkkUemjhIREU8++WQMDAxExGvvS5SRcVXxhXsgQ6cIASiVi1UA2kUOFxnOqwwmh74J\nALQnk0sAgBxNnjx51La15ZZbuvcyDIoQAAAAWpgVMgCAsiiCBQA63dNPP506QktShACUSsU8AAAA\nOVLEBQAA7WffffeNm266qdDX7OvrW/31V77yldh7770Lff12pAgBKJWKeQDaRb1eT7btVUu+GSwB\ngOK4XgUAgPZz3333lfr6J598cvT395e6jXagCAEolZUQAAAAAAAAGA0nnXRSfP7zny/t9T/84Q+X\n9trtRBECAAAAAB0n5SpHEY2VjgAAgOKcdtpppb7+dtttV+rrtwtFCAAAAAB0HEUAAADQ+lauXBmL\nFy+O3/3udxER8fzzz5e6vbPOOivOOuusUrex3XbbxbnnnhtbbLFFqdspkyIEKIFHEJAz/ZOcVSqV\n5P0z1T6ydo4caItmORw/a7XaqG8fANqVzzoAAND6zj///PjRj36UOkahHnjggbj99tvjPe95T+oo\nw6YIAUqwYMGC1BFgnfRPcpbDjVj7SIO2aJZDe1SrVYMlAFCQHM7tAADAyLz+9a9PHaFw7373u2Pv\nvfdOHWNEFCEAAAAAAAAA0HJmz54dCxcuTB1j2Lq7u+O8886LXXbZJXWUQilCAEplZgkA7SKH50Y7\nrzIY/QIAKEsOjyQDAFifAw88MHWEERkYGIhqtRqLFy+O8ePHp45TGEUIQKlcrDZ0dXUlG8DKYeAM\noNXV6/Vk2151HPfsagajXwAMT8pze4TrNFqDYkdYP+cSAIry+OOPx1ve8pbUMQqjCAFKkMMgBfmp\n1+vJ+saa21UYQs4qlUry/mkwr0FbNHP8JFe1Wi11BICW5PoZgJFyLgFI79hjj42LLroodYwRu/HG\nGxUhAOtXrVYNUgAAMCpSffaM8PkTAAAASOujH/1ozJo1K5566qkYGBiIl156KWq1Wjz44IOpo22U\nAw44IHWEQilCAACAFmE5XAAojiW0AQCg9fX19aWOUIitt946dYRCKUIAAIAW4REZAFAcRQAAAEAu\nLrrooth1110j4tX7cK9//esTJxoZRQhQArMUAYAy+IwBAAAAAO3n+9//ftP3F1xwQbztbW9LlGbk\nFCFACVIu6ZjbTI5arZY6QjZyGTjynpCzHPYT+0iDtmiWQ/+0bDSDyaFvArQiKwwBMFKpzyWuBQDa\n16233qoIAWhWrVaTfPjM8SaGwYqG1Bclq/qG/knOUu0nOewja+fIgbZolkP/dF5lMLl8xgBoNQZu\nABgp5xIAyrL77runjjAiihCAUuUwYAMA7cJgMwAUxwpDAABALt7+9rfHvvvuGwMDA7H33nvHm9/8\n5tSRRkQRApRABSyD6erqSnaTac3t6p/kLIcBTvtIg7Zopj0AoL0oAgBgpBS0AVCUefPmxVZbbZU6\nRmEUIQCMknq9nuzCJPUFEQAAQG6sMATASCkCAKAokyZNSh2hUIoQAAAAAOg4tVotdQSAlpTLwLti\nLgDaxaRJk2LlypXR09OTOkphFCEAAAAA0HFyGUQDaDWpV9xcdfyuVCpJVrSxmg3QiZ5++umYN29e\n3H333amjtLytt9463vve90Z3d3dERIwZMyYOP/zwGDt2bOJkxVKEAAAAAAAADEkuRVwKAQBGz5Il\nSxQgFOSJJ56Iv/zlLzF37tzUUUqlCAGgw6R67qkqcYYih1kMng3coC2aOX4CAAAA0IlmzJgRF198\ncaxYsSJ1lLZwxRVXKEIAAAAAAAAAoDNNnTo1lixZkjpGrFixIt73vveljlGIvr6+1V9/9KMfjWOP\nPTZhmuIpQoASpHwuWi7Loa2yYMGC1BFYS61WSx0B1imHY4Z9pEFbNMuhf+aQgfzoFwAAdKIc7sGm\nXkHQtQBAe/jXf/3X+Lu/+7sYN25c6iiFUYQAJcitECAlS1fnR/8kZzn0zxwy5EJb5Cf1DS7n1jzp\nFwDD4/gJMDwpB/8j0hcArHkMVwQAMLp6e3tjwoQJ8fzzz6eOUqhTTz21rQoQIhQhAAAAANCBDBwB\nAEDrufrqq9f7+5NPPjl+9atflbb9hQsXxlvf+tbSXr9dKEIAAAAAAADYSLmsCgFAw//8z/8U/pr9\n/f2Fv2a7U4QAlMrMEgDaRQ43d5xXGYx+AQCUJYfl7iFnOVwnAtDsj3/8Y6Gvt+eeexb6ep1CEQJQ\nKherALSLlDNcUj/zNMK5NWf6BQBQFsWOAECrmT9/fsybN6+w17vjjjsKe61OoggBAACGIIcZLm4C\nAwAAAEDDXXfdFXPnzi11G319faW+/iabbBLXXnttqdsYbYoQADqM1SnIWaVSSd4/zShu0BbN9M/8\n3hMAAAAAOttPf/rT1BFG7KWXXopHH300pk6dmjpKYbpTBwAAAAAAAACAjfXCCy+kjlCIV155JXWE\nQlkJASiVZaPz4z0hZznMsraPNGiLZvonALSXer2edPs5POoJNsRqigBA7rbffvv4xS9+kTrGiE2Y\nMCF1hEIpQgBK5WIVgHaRcqBi1SCFxzEwmFqtljoCQEtSBAAbpggWAMjdJz/5ydhjjz3i0UcfjYiI\nc889N3Gi4XnmmWdi8uTJqWMURhEClMDAOznTP8lZpVJJ3j8N8jZoi2aOn+SqWq3aVwGGwWcdAABo\nfSeddFLcdtttqWOM2LHHHrv668mTJ8eFF14YkyZNSphoZBQhAAAAANBxzPAGAIDhu+mmm+K0005L\nHaMtPfnkk3HXXXfFzJkzU0cZNkUIUAI3Mhq0RX68J+Qsh9lg9pEGbdFM/yRX+gUAUBargQEAg/nD\nH/6gAKFEBx98cOyzzz6pY4yIIgSgVC5WAWgX9Xo92bZXPbPastEMRr8AAMqi2BEAGMxWW20Ve+65\nZ9xxxx2po7SFKVOmxKJFi6Knpyd1lMIoQgBK5WK1wQ16gNa2qhAgJedVBqNfAAyPIi4ARqpSqTiX\nAB1j5cqV8corr6z+/swzz2z6/fom8Ixkcs+GXveMM86IX/ziF8N+/Rw89thjMTAwoAgBYKishNCQ\ny0WJ94ScpdpPcthH1s6RA23RTP/M7z3hVfoFwPAo4gJgpHwWBjrFXXfdFXPnzk0do63de++98fa3\nvz11jMIoQoASGOQFAMpQq9VSRwAAAACgwyxbtix1hLbX29ubOkKhFCEAAECLqFarZrzzGopTAAAA\ngDIdfPDB8eKLL8b111+/3r8byeNM1/dv1/e7dimQ+POf/5w6QqEUIQClsrwlABTHeRUAAACA0fbC\nCy/E7bffHg8++GDqKG1r/PjxqSMUShECUCqPpgAAKJcVMgAAAIAyXX755XHrrbemjtHWnnjiidQR\nCqUIAUpglmKDtsiP94Sc5TCQZR9p0BbNcuifMBiPYwAYnlRF8xGKuGgdJpcwmJEstV0kfQRg9Cxf\nvjx1hLY3ZcqU1BEKpQgBSlCv15NtO5eLAPKlf5KzHPpnygxr5siBtmiWQ/+EwVgJAWB4FFwCDE8u\n14qVSkWRDMAoOeKII+Kqq65KHaOtLVu2LHbeeefUMQqjCAFKkOpGcI4fgFXM50f/JGc5HDMM5jVo\ni2Y59E8zNgGgOLkMokHOFOsAABERb3rTm6K/vz91jKjX6zFr1qzUMUoxadKk1BEKpQgBSuACjZzp\nn+QshwFO+0iDtmimPQCgvSgCAACA1rJixYrUEUqzzz77pI5QKEUIQKkM2ADQLnIYqHBeBQBgNOWw\nGhgAwCpjxrTv0HYO9x6L1L7vFCTkAq1BW+THe0LOcnieo+XuG7RFM/0zv/cEAIByKYJlMLkMkrg+\nARg9f/zjH6NSqcTTTz+dOkrbevzxx2PKlCmpYxRGEQIAAAAAADAk9Xo96fZXFUHkUCgO0Cn+/d//\nXQFCyV5++eXUEQqlCAFKoEocAAAAAGhHVkIA6Dz77bdf/OxnP4uHHnoodZS2NW3atNQRCqUIAaDD\nKJIhZzncQLCPNGiLZtoDAAAAgE40efLk+Na3vpU6Rrzyyiux//77p45RiP7+/tQRSqUIAQAAoIXV\narXUEQBa0pw5c5Is4x1hKW+gtXkcg2M4QCpjxhjabhXeKQAAgBZWrVYNogEMg1WOAACg9fT398fA\nwEDT44EGBgYi4tVCubJXSvjmN78Zb3nLW0rdRjtQhAAAANDCDKIBAAAAnaS7u7vp+56enlHb9pln\nnhkLFy4cte21KkUIAAAALcxy4gAAAEAne+yxx+Kpp56Ker0es2fPjiuvvLK0bY0bN660124nihAA\nAAAAAAAAWKd6vb76sQdFv+5I/vZzn/tc/OY3vyky0nrddddd0dfXV+hrfv3rX4899tij0NdMTREC\nQIdJNVvSTEmGolKpJO+fZhQ3aItmORw/LbsPAAAAwGj7zW9+E8cff3zqGG3rxBNPjJ/+9Kex+eab\np45SGEUIAADQIhSGAEBxnFcBAGBo7r///tQR2t5DDz0Uu+22W+oYhVGEAAAAAEDHscIQAAAMzSuv\nvJI6QtvbZpttUkcolCIEgA7jRhs5y2E2mH2kQVs00x7kqlarpY4AAAAAtLGlS5emjtD2xo0blzpC\noRQhAAAAtLBqtWo5cQCAktXr9aTb7+rqSrp9ADrbvHnz4mMf+1jqGG1twoQJqSMUShEClCDlRYkL\nEjZE/yRnOfRPN5YatEV+zHgHgOLMmTNHERcwZK5PGnJpixyuj1KfS6zYB4yWKVOmRH9/f+oYg+rr\n60sdoRB333137LbbbqljFEYRApQglw/iMBj9k5zl0D9zyJALbZEfM94BoDgGbgCGJ5eC9VTXR2te\nG+VQCAFAe3jrW9+aOkKhFCEAAAAAAABsJMX7ABTl+eefj0022SR1jMIoQoASpFqGywxFhkL/JGeV\nSiV5/0y9lGJO+4m2aJbD40JgMGZfAQAAAJ3illtuiVNPPTV1jMLddtttsf/++6eOURhFCFACSzoC\nQPvJYalPAAAAAOhUAwMDceaZZ6aOUYpJkyaljlAoRQhQAjPNGxRkAACUK1WBTESenz8BhsqqTwAA\nMDQvvfRSnHrqqXHrrbemjtK2ttlmm9QRCqUIASiVggwAAABypGgeAACG5h/+4R/i17/+deoYba2n\npyd1hEJ1pw4AAAAAAAAAQJ522mmn1BHa3rJly1JHKJQiBAAAAAAAAAAG9ZGPfCS6uw0rl+m5555L\nHaFQHscAJbCkY4O2yI/3hJzl8BgV+0iDtmimfwIA0Gk8ZhMAiIhYsmRJDAwMpI7R1l544YXUEQql\nCAFK4AKtQVvkx3tCziqVSvL+mWofWTtHDrRFM/0zv/eEVylOAQDK4nMGABARMWPGjLj44otjxYoV\nqaO0rbFjx6aOUChFCFACF2jkTP8kZzkMcNpHGrRFM+1BrhSnAAAAAGWaOnVqLFmyJHWMQfX19aWO\nUIiDDz44dYRCKUKAEphpTs70T3Jmpnle+4m2aOb4CQAAAABprVy5Mu688854+eWXU0cpTHd3d7z4\n4osxbty41FEKowgBSmCmJAAAo6VWq6WOAABAB+nq6kodISLyWE0RgNFVr9fjve99b+oYhRsYGIgP\nfOADq7+fNWtWfP7zn4/x48cnTDUyihAAAABaWLVatWoJwDDU6/Wk289lEA8AAIbi4YcfjmXLljX9\nbNVn6rX/f2P/Zqh/u3LlyuFEbzlLly6NXXbZJQ4//PDUUYZNEQJQKqtC5Md7Qs5yGMiyjzRoi2ba\ng1xZCQFgeBQBAAxPLkVcOTzSEaBT3HzzzTFv3rzUMTpKb29v6ggjoggBKJXnZwMAlMtKCAAAAECZ\nlixZkjpCR/nwhz8cBxxwQOoYI6IIAQAAAAAAAIBBTZgwIXWEpPr7+1NHaDmKEAAAAAAAAAAYiba0\nqgAAIABJREFU1K677hrXXntt6hjJ9PX1lfr6Z511Vuy1116lbmO0KUIA6DAekUHOcnieY6p9ZO0c\nOdAWzRw/AQAAAOhEBx54YPT29sYtt9yy+mddXV1N/78ug/1dV1dX1Ov1df77Nf/N2n+39t9ff/31\nG/XfkqMvfOELceWVV8bEiRNTRymMIgQAAAAAAAAABtXd3R3vf//74/3vf3/qKK+xdOnSWLlyZeoY\nI/bII48oQgCgdS1YsCB1BFinHGZ720catEUz7QEAAAAAebnhhhti5cqVUa/Xo16vx7PPPhtz586N\nRx99NHW0jbLbbruljlAoRQgAAAAtrFarpY4AAAAAkExPT8/qry+77LLsCxAWLFgQO++8c+oYpVKE\nAAAAQ7Ch59uNBqsxAAAAAMC6XX755aVvY8qUKRHx6v3CVf9b+/vu7u6IiNh7771jhx12WP1vJ0+e\nHDvttFPpGVNThACUysy8BgNHAIxUvV5Puv0cCjEAAAByMWfOnLjnnnuSbHvnnXd2vxEgkccee2zI\nf/vAAw8M+vPPfvazERExduzY2G+//aK3t7eQbLlQhACUqlqtJvkgvvPOO2fxbPk1pb4oya09AFpN\nygKAVYP/qc6rEc4lOdMvAAAgDUUAAOk99NBD8ZnPfCaee+651FE2yrnnnrv667POOituuOGGpsdK\ntLru1AEAAAAAAAAAYGN95zvfabkChME8//zzqSMUykoIQKlUA+cn1YoMZkoyFJVKJXn/tGpJg7Zo\n5vgJAO3FY44AAKD1HXLIIXHDDTekjjFiL730UuoIhVKEACXIYbnmXBiwAQAAIEe5XT8DAECuXnjh\nhajVarF48eLUUdrW/fffH1tttVXqGIVRhAAAAAAAAADAoBYvXqwAoWRf/epXY9asWRERMWvWrNh1\n110TJxoZRQhQgmq1avY/AAAAAAAALe8d73hH6ght75lnnokf//jHERHx4x//OM4555zYc889E6ca\nPkUIAAAAAAAAAAxqhx12iIULF8Zvf/vbpkeSr/148sF+N9gjzDfmd2v/zbJly2Lp0qXD+c9oKRMm\nTEgdYUQUIUAJFixYkDoCrJP+Sc5yWM3FPtKgLZppDwBoL3PmzEmyimGElQwBAGgtl112WSxcuDB1\njLZ23HHHxbRp0yIi4m1ve1tMmjQpbaARUoQAAAAAQMdRYAgAAENz0003pY7Q9g455JDYbLPNUsco\njCIEoFRu6gDQLrq6ulJHcF4FAAAAYNTNnz8/PvzhD6eO0dbGjx+fOkKhFCEApUq1vKWlLQEo2mDP\nqBstqwogLBsNAAAAwGi7+eabU0doKwcffHBsu+22ERHR29sbhx56aPT09CROVSxFCAAAAAAAAAAM\n6i1veUvqCG3l6quvjv7+/tQxSqUIAaDDWJ2CnFUqleT900zzBm3RzPETAAAgj0fVRYTrJIBRtMce\ne8TixYvj2Wef3eh/W/R548gjjyz09SiHIgQogUGKBs+uBqBddHV1JbnZtuY2nVcBAAAAGG133XVX\nzJ07N3UMWogiBCiBAYIGBRn50T/JWQ77rX2kQVs0q9VqqSNYnQIAAEiuXq8n3f6qQu0cVlME6BSL\nFy9OHaGtbL/99qkjlE4RAgAAAAAAAACDmjZtWuoISfX396eO0HIUIQAAAADQcawwBAAAQ/PBD34w\nnnzyybj66qtTR9mgF198MXUEQhECAAAMyaolP1PyiAwAAAAARtu4ceOiWq1GtVpNHWWD+vr6Sn3N\n8847L3bbbbfCt9FuFCEApcrh+dkAAO1McQoAAKSRelUd1wLAaHnllVfi+OOPj3vvvTd1lOSOP/54\nj2cYAkUIQKmq1WqSD+KWtgSgaPV6Pdm2V63CkPoGl3NrnvQLAABIQxEA0Cn233//1BFoMd2pAwAA\nAAAAAAAA7cFKCAAAMASrViNIySwbBqNfAAyP4ycAAAzN9OnT45e//GXqGNm48MILX3OvcF33Dt/0\npjfFlltuufr7SZMmxQ477FBqvhwoQgAAgCHwOAbL7ucqZd+MyKNABwAAACjPTjvtpAhhDd///vcL\nfb1qtRpHHHFEoa+ZmiIEKEGqAQKDAwyF/knOKpVK8v5pkLdBWzRz/CRX1WrVvgoAAACU5uijj47e\n3t64/vrrX/O7oUxOGOxvhrqSwIb+3X//938P6d/lrFarxQEHHBCbbbZZ6iiFUYQAJbCkY4O2yI/3\nhJzlMJBlH2nQFs30TwAAOo1CXAAgIqK3tzeOPvroOProo1NHeY2+vr7UEQrR398fhxxySOoYhVGE\nACVwgdagLfLjPSFnVkLIaz/RFs1y6J+W3QcAYDQpggUAIiIefvjh+PjHP546Rls755xz4pxzzomI\niG222SbOP//8eN3rXpc41fApQgBK5WIVAIqjCIDB1Gq11BEAAACANvYf//EfqSN0lMcffzzuvPPO\neM973pM6yrApQoASGHhvMOseAIpjdQoGU61W9QsAAACgNAcccEDcfvvt8atf/Sp1lI7wvve9L/bZ\nZ5/UMUZEEQKUwMA7AAAAAAAA7WCLLbaIr3zlK6ljDKqvry91hEJ84QtfiAMOOCB1jMIoQoASWAmB\nnOmf5CyHQir7SIO2aKY9AAAAWFPq1epcpwJEfO5zn4tzzjkndYwRO+uss+Kss84a9HcTJ06Mf/mX\nf4k3velNo5xq+BQhAADAEHR1daWOELVaLXUEAGgbqQeOcijABWBkFAEApNcOBQgbsnz58li0aFGc\neuqpqaMMmSIEAAAYgnq9nmzbqwogqtWqwRIAKIiBIwAAaH2VSqUj7lkddNBBqSNsFEUIQKnc1AGg\nXeSwEoLzKgAUx0oIAADQ+qZNm5Y6wka78MILY8cdd0wdo1SKEIBSpbqp44YOAEXLYSUEgyUAUBzF\nfQAA0Hq++93vxje+8Y3UMUbk05/+dHzyk5+MiIje3t449NBDY8KECYlTFUsRAkCHURhCziqVSvL+\naZC3QVs0c/wEgPbisw7A8OSwSlxEOI4CjLI777wz7rjjjohY/2SdNX+3rq+H+/cvv/xyXHHFFUMP\nnbFLLrlk9dc//vGP43vf+1709vYmTFQsRQhAqcwsyY/3hJzlcAPBPtKgLZrpnwAAAGlXiYtoFEHk\nMJEBoFNcf/31ccYZZ6SO0bbGjh0b3d3dqWMUShECUCqzRgFoFx7H4NwKQHtR3AcAAEMzbty41BHa\nxrbbbhsf+chHVhcd9PT0xMyZM6OnpydxsmIpQgBK5aYOAAAAAABA63r3u98dl1xySdx///2rf7bm\n43nWflTPuh7ds65/U9TfR0TMmzdvnb8bqV133TXmz58fW265ZWnbaBeKEIBSWQkBAAAAAACgtU2b\nNi2mTZuWOkZSd999d3z729+OuXPnpo6SPUUIQKmshAAAUC6ftwCGx2OOABip1OcS1wIAo++KK65Q\nhDAEihAAAGAI1rfM22hxg4nBpL7xaRANaFXOq7BhVriE9XMuAeg8W2+9deoILUERAlAqF6sAUJx6\nvZ50+zkUYvBabnwCDI8iLtgwnzNg/VKfS+yjAK91/PHHx3nnnVfa6x9yyCGlvXY7UYQAlMoHYQAo\njiIAAABGk8klsH7ufQLkZ/LkyaW+/s4771zq67cLRQhAqVysAgAAALQmA6ywflZCADrZ8uXLY8mS\nJU0rd676ul6vj+jna/9s7X+zvp9fffXVhfz3rcuyZcvib/7mb0rdRjtQhACUygdhAIBypb7xqfAT\naFWuV2HDTC6B9XMuATrV8uXL44gjjohXXnkldZRRNX369PjABz6QOkZLUIQAAAAAQMdRxAUAAMPX\nKY8Nvfjii+MNb3hDdHV1RW9vb/T09KSO1BIUIQAAAADQccxeBQCA4Zk4cWL86Ec/ihtuuCEiGgUJ\nXV1dTcUJI/n5mv+/9t+u+fMHH3wwvvOd7xT3H7eWv//7vy/ttVc566yzYq+99ip9O6NJEQIAAEAL\nM4gGMDxWQoAN8zkDAFiXzTffPD70oQ+ljhF9fX2pI4zYF77whVi8eHGMHz8+dZTCKEIASuXZgfnx\nnpCzSqWSvH+6Gd2gLZrpn/m9J7xKvwAYHoOrAABALp599llFCAAAAADQyur1etLtd8ozdAEAgA07\n6qijYrPNNot6vR7HHHNMHH744dHT05M61rApQoASmGneUKvVUkfIhrYAaG05zJZ0LgGA4igCAACA\n1vPss8/Gl7/85Vi+fHnywuKiPffccxERcf7558eUKVNixowZiRMNnyIEKEEOgxS5qFarCjL+T6q2\niGhuD/2TnOWw39pHGrRFfnI5lwAAAADAaBsYGIhDDz00dYxRsf3226eOMCKKEAAAAAAAAADIWrut\nfLCmq666KjbbbLPUMQrTnToAAAAAAAAAAKxPT09P/OhHP4o3vvGNscUWW8QWW2yROlIhLr300rYq\nQIiwEgLAqOnq6kr2zFHPOgUAAGiWehaV6zSA1udcAjD6fvazn8Xvf//71DFGrL+/P3WEUilCgBLM\nmTMnyfOaPas5b/V6PdmFyZrb1T/JWaVSSd4/U+0ja+fIgbZo5vgJAO3FwA3A8ORy/MzhOimXtgDo\nFAMDA/GNb3wjdQyGwOMYAAAAAAAAAIBCWAkBSrBgwYLUEWCd9E9ylsMsBvtIg7Zopj0AAADyeQRB\nDqspAjC6uru745xzzonPfe5zqaOwAYoQAAAAWlitVksdAaAlefQUAAAMzV/+8pdYuHBhXHnllamj\ntIX9998/dYTSKUIAAABoYdVq1SAawDBY5QgAAIbmmmuuUYDwf44//vg47LDDUsfIniIEAACAFmYQ\nDQAAACjT7rvvnjpCNjbddNPUEVpCd+oAAAAAAAAAAOTp97//feoI2bAixNBYCQEolZl5ALSLrq6u\n1BGcVxmUZ5oDAGVJ9TnDZwwAyEtPT0/qCNk45phjUkdoCYoQAAAAAOg49Xo96fZzKHAEAIChmDlz\nZlx00UXx29/+NiKaP8uu+nrtz7ep/ubLX/7yUP6Thu2CCy6Id73rXaVuox0oQgAAAACg41SrVSvJ\nAADAEO2www6xww47pI6xQcuWLYvvfe97pb3+oYceWtprtxNFCAAAAAB0HI85gg2znwAAraboAoS+\nvr6YPXt2dHV1xZQpU+L1r399oa/frhQhAAAAAADwGnPmzEmyYojVQgCA4TrttNPi9NNPL+z1Tj31\n1Oju7i7s9TqFFgMAAAAAAACg5Y0ZU+wc/CeeeKLQ1+sUihAAAAAAAAAAaHmLFi0q9PX+9Kc/Ffp6\nncLjGAAAAAAAAABoeffff3+hrzd37tx485vfHN3d3bH//vvH4YcfHmPGjImurq7Vf7Pm17xKEQIA\nAEALW7BgQeoIAAAAAEkcfPDB8fzzz5e6jYceeigiIhYuXBgLFy4sZRtLly5tq2IGRQhQgnq9nmzb\nuR2g5syZE/fcc8+ob3fnnXeO888/f9S32wq8J+SsUqkk75+p9pG1c+RAWzTTP/N7T3iVfgEwPCmv\n3SPyu36HwSh2BAAiIpYvXx7z58+P2267LXWUtnXeeefF9ttvHxERe+65Z0yZMiVxopFRhAAlcCOB\nwXR1dSXrG2tu1w0EcpbDQJZ9pEFbNNMeANBeXLsDAMDQXHfddQoQSnbFFVc0fV+r1WKXXXZJlGbk\nFCEAjJJ6vZ5sps2a27VSBznLoX+aEdegLZrl0D9hMLVaLXUEAAAAoI319vamjtBxVq5cmTrCiChC\nAOgw1Wo1+XLisC45PC4k1T6ydo4caItmjp/kSpEKAAAAUKb77rsvdYS2t/fee8duu+0WXV1dMX36\n9Nhuu+1SRxoRRQhQghwG0XJh6eoGsxQBWlsO57QcMpAfq5YAAEAaqe4DR7x6L9g1IjBa3va2t8V1\n112XOkZb++AHPxjTp09PHaMwihCAUinIaDCjGKC15XBOS32Dy7kkTz5jAAyPIi4ARkoRANApDj74\n4HjxxRfjhhtuKOT1Vn0WX/Mz8dqfz7u6uob0mf3BBx8sJFNqp5xyynp//6EPfSjmzp07SmlGThEC\nAAAAAB1HEQCwMVIXBOc02J3L8TOHYthcCtr0T6Bsvb29cfTRR8fRRx+dOspr9PX1pY4wKq644gpF\nCNDpfOgiZ/onOcvhBoJ9pEFbNNMeANBeUg/Y5PDZFxg61wMMJpeCDP0ToP2de+65qSNsFEUIAAAA\nAHQcAzYAw5PL7P9KpZL8kXkAnWJgYCCWLFkSP//5z1f/bO3zQb1eb/rZqu9X/WzN/1/76/X9uw39\nbDT09/ePynbaiSIEAAAAAAAAAAb11a9+Na699trUMZIp+5EPRx99dBx33HGlbmO0KUIAAABoYWby\nAgAAAGXq5AKE0XDZZZfFZZdd1vSzb33rW/HmN785UaKRU4QAJUj1XElLgTEU+ic5y2EpRc8GbtAW\nzRw/yZV9FWB4cllOHKDV5HL88jkUgHZ26aWXxj/+4z+mjjFsihCAUpmZBwAAQI5yGUQDAIDc3XDD\nDTFv3rz45S9/mTpKxzj++ONTRxgRRQhQAgPvDWaN5kf/JGc57Lf2kQZt0Ux7AEB7sRICwPDkcvzM\nYTVFgE7R09MTZ5xxRuoYERFx4403xpe+9KXUMQp1wgknxOzZs1PHKJQiBAAAAAA6TrVa9TgbAABo\nMTNnzoz+/v51/v6HP/xh4ZOJ1rc9BqcIAQAAoIVZpQNgeBw/AQCg/ZTxOb+vr2/119/+9rfjjW98\nY+HbaDeKEIBSuakDQLvIYclk51UGk+rxVxFm8gJAu/OYTQCAZjfffHN85CMfSR0je4oQgFK5WAWg\nXaR87umqAgiDzQxGcQoAUBafMwCA3C1atCguueSSUdvehRdeGBdeeGGhrzlz5sz40pe+VOhrpqYI\nAaDDKAwhZ5VKJXn/NMjboC2aOX6SK/sqwPCkLDCMyGOVJQAAaHWjWYBQlhtvvDGWL18eEydOTB2l\nMIoQAAAAAOg4igAAAIBc/OEPf1CEAKyfmZIAAAAAAADAUPziF7+InXbaKXWMwihCAACAFuGZvAAA\nAAB0iqE8Qu3000+P0047bRTSlGuzzTZLHaFQihAAAKBFpFptKcKKSwAAAACd6pprromvfe1rqWO0\ntW233TZ1hEIpQgBKZcYmAAAAAABA61KAUL5TTjll9deve93r4uKLL45JkyYlTDQyihCAUqWasZnj\nbM1arZY6AgAjkENhXQ4ZyI/PGAAAkEbq1epcIwKjZd68eTF//vzUMTrGM888E3fddVfMnDkzdZRh\nU4QAJfDhj8FUq9UsltDWP8lZDsVD9pEGbZGf1De4cthHea1cPmMAAECncd0MdIpZs2bFjBkz4oUX\nXkgdJe6999445ZRTol6vp45SmkMPPTSmT5+eOsaIKEKAEpj9T870T3JWqVSS90+DvA3aolnKC5uu\nrq5k2wYAANJfHxnszlPqAbBV14r6JzAaxo4dG2PHjk2aYWBgIM4888zkx98y/PCHP4zJkyenjlEY\nRQhQAh+6yJn+Sc5yGHS2jzRoi2YKAQAAoHO5PmrI5dooh3sIubSF/gl0iu7u7pgxY0YsXrw4dZTC\nbbrppqkjFEoRAgAAAAAAAABZGxgYaMsChIiIgw46aL2/nz9/fsyYMWOU0oycIgQogeXuyZn+Sc48\njiGv/URbNHP8BAAAAIB02vExDEN10003KUIAAACKV6vVUkcAAAAAAEbRLrvsEscee2zqGBtFEQKU\nwDO4GrRFfrwn5CyH2d72kQZt0SyH/pnL80YBAOgMVgNjMKlnoa66LsphNUUAGK7+/v7UEUqlCAEA\nAKCFKRgCGB6PnoIN8zkDAMhJT09PXHnllTF79uzUUUasr69v9dfHHntsfPSjH02YpniKEIBSqZjP\nj/eEnOUwi8HN6AZt0Uz/zO894VX6BcDwGFwFAIDWM3HixKZVBNYczG9VF110URx22GExbty41FEK\nowgBSmCQFwAAAAAAABiKxx57LLbbbrvUMQqjCAFKYDYFg8mlX9RqtdQRYJ1y2E/sIw3aopn2IFf6\nJgAAAFC2O++8M+64447V39fr9UJed0OvU9R2cvfKK6+kjlAoRQhQAishMJhclkquVqv6J9nK4fiZ\nah9ZO0cOtEUzx09yZV8FAAAAynT99dfHGWeckTpGW/vLX/6SOkKhFCEAAECLyGG1EAAAAAA6y7hx\n41JHaHubbrpp6giFUoQAJTBA0KAt8uM9IWc5zKa1jzRoi2Y59E8AABhNOaxWBwCk9+53vzsuueSS\nuP/++1f/7NFHH41LL700Yar2Mn78+NQRCqUIAQAAAAAAAIB1mjZtWkybNi0iIv73f//X4xkKNmnS\npNQRCqUIAUqgSrxBW+THe0LOKpVK8v6Zah9ZO0cOtEUz/TO/9wQAgHJZHQ0AGMz48eNjyy23jKef\nfjp1lLbx3e9+N4499tjUMQqjCAEAAFqEm8AAAAAAjLbf/e538alPfSp1jLa29957p45QKEUIAKPE\nwBFAa8vhOG4lBAaTQ98EAIBOlGrFvAjXaMDoOvfcc1NHaHsnnHDC6q932mmnOPvss2PzzTdPmGhk\nFCEApXJTvMHAEUBrq1aryR7HsOp86rzKYHzGAACANHwWBjrFBz7wgbj77rtTx+gY9957b9x6663R\n19eXOsqwKUKAEhggaEh1U9wN8XXTP8lZDvutfaRBWzSr1WqpIxhsBgAAkuvq6kodISLyuIcA0CkO\nOuig2H777eM3v/nNkP6+Xq+P6Pfr0wnH/6lTp8Zee+2VOsaIKEIA6DAKQ8hZqmUM1+yfBnkbtEUz\nx09ylUOBDAAAnWMkA0dFWFUEkcM9BIBO8oY3vCHGjBne0PL6zh0bU7CwcuXKYW2/1Tz66KPx0EMP\nxS677JI6yrApQoASGKQAAGC0pHpUSITPnwAAANAJbr311jjppJNSx+go//Vf/9XSRQjdqQMAAP+f\nvTsPk6uq88f/qe7sxASyDPvmIIsQWVTyzUMcCDLGJ8CIihEmiKyBTiOIsghidEDAwLDbATPDIhJ0\nMioDYpAECAjIapBFZBMSZAuEPZCQpLt+f/BLd4p0kl6q+pyufr2eJ0+qa7vvOnVuVd17P/ccAAAA\nAADI0yuvvJI6Qo+z5ZZbpo7QKUZCAACANpg6dWrqCABAGZl6CoDOSjUlRITvEqBrjRs3Lnr37h13\n3313REQsX7487rnnnsSpqtuSJUtSR+gURQhQAQ5StNAWLXLZKPCekLMc1hPrSIsc3o+IfHKsmHc0\nJf2zRS79Iocc+kUp7QFrlsPnVkQeOXxe5Md7kp8cphzN4fOCUjlsG0Xk0TdyyADQFWpqamLs2LEx\nduzYiIh47LHHFCFU0Oc+97kYOXJk6hidoggBoIuojAa6m2KxmHT5K3Zs+fykNbn0i1Q5Vs7gTN5S\nORwsgZz5/PT5mTPvCa3J5XOLFj19W1G/AHqq5557Lp588smIiHjzzTcTp8nLhAkTIiLiz3/+czzx\nxBPtfvy1114bG264YbljJaUIAQAAoBtz1igAUCl+ZwAAERF/+MMfYsqUKaljJLPpppu2ev3mm28e\nxx9/fAwZMiQiIo444oiujJU1RQgAAADdmLNGATrGwVVYOyMMAQAREdddd13qCEm98847UVNTE+PG\njYuDDz44+vTpkzpS9hQhAAAAAAAAANCqU045JQ499NDUMZJ5++23IyJi+vTpMX369JLb6uvrY9So\nURHx4ZRBK/6t0KdPn6itrY1CoRA1NTXRu3fv6Nu3b9eFT0QRAlBRKuYBqBYp5z1dseHijHcAALqS\nEUMAgIiILbbYIubMmZM6RqvGjBmTdPkNDQ3R0NDQqef48pe/HMcee2yZEuWhJnUAgJ5i5Qq4FP8A\nAAAAAADIy3XXXRevvfZa6hhlZSQEgC5SLBaTnUWb8uxdAAAAAAAAVm/w4MGpI5SVIgSoAFMQkDP9\nk5zV1dUl75+Gu2+hLUr5/CRXnR3yDwAAAGBNXn755TjssMNiyZIlqaNUreeeey622Wab1DHKRhEC\nUFHmDgSA8vG9Smvq6+sVDAEAAAAV88c//lEBAu2iCAEqwAGCFs4azY/+Sc5yWG+tIy20Rakc2sPo\nFAAAAAB0tS984Qtx++23xxNPPJE6StWaOXNmPPDAAxERsdtuu8WWW26ZOFHnKEIAKsrwwABUi0Kh\nkDqC71VapV8AdIziPqA9Un9m5FAUzaqKxWLS5a/YTtU/gUpbb731sv39OmbMmNQRyuKGG25ovnz5\n5ZfHxRdfHCNGjEiYqHMUIQAVlWp4YDt0ACi3lDuXVuxYMuw+rdEvADrGAROgPXxm0JocitUj9E+A\nalRbW5s6QqcoQoAKMAUBOdM/yVldXV3y/pn67IGc1hNtUcrnJwBUl1zOXgXobnL5/LKdBEA1mThx\nYgwaNCiKxWLsvPPOsfHGG6eO1CmKEAAAAADocXI5iAbQ3eRSxJXDiQwAdL1DDjkk5s+fnzpG2Y0d\nOzaGDBmSOkbZKEIAKspQYABQPr5XAaB8cjmIBtDd5PL5pRAAoOdpbGysygKEiIi+ffumjlBWihCA\nijJ0NQCUjykyaE1DQ0PqCAAAAAAVV1tbGyNHjoz77rsvdZSy+8c//hHbbrtt6hhlowgBAACgG6uv\nr1ecAtABuZzJCwAAtE2xWIx33nkndYyKWLRoUbz77rsRETFgwICora1NnKhzFCFABRgquYW2yI/3\nhJzlcCDLOtJCW5TSP8mVfgEAVIoRLgGAiIj58+fHIYcckjpGVTvxxBNL/r7gggtip512SpSm8xQh\nQAXYQCNn+ic5q6urS94/DXffQluU0j/ze0/4kH4BAFSKYkdaUywWky5/xUg2OWyjAfQU1Tj9Qe5u\nvvlmRQhAKRto5Ez/JGc5bMRbR1poi1L6J7lqaGhIHQEAqFJOZAAAIiLGjRsXjz32WNx5552po/QI\ngwYNim9/+9upY3SKIgQAAIBurL6+3kgIAB2Qy5m8AACQu4EDB8bpp5/e/HdjY2NMmTJl6IF5AAAg\nAElEQVQlZs+enTBV19tss83iqKOOin79+kXEh9sUjY2N0djYGMViMZqamqJQKERTU1M0NTVFY2Nj\n3HXXXbFo0aKoqamJ2traWL58efTt2zdqamqipqYm+vbtG8cee2z0798/8asrL0UIAAAAAPQ4irgA\nAKBjamtr49RTT41TTz01dZRVzJkzp6RgorN+9KMfxe67797hx++5555ly9KdKEIAAAAAoMcxzREA\nALRNY2NjzJw5M+644442P2bFyGNtHQFs5ZHK2vKYj45stuIxTzzxRFsjtsmdd94Zc+fOjYiIz372\ns7HbbrsZ1awNFCEAAAAA0OOkmus+wkgIAAB0L7///e/jggsuSB0jiVtvvbX58g033BAnnnhijBs3\nLmGi7qEmdQAAAAAAAAAA8rTJJpukjpCN9dZbL3WEbsFICAAAAAD0OKZjAACAttlll13i+uuvj9de\ne22VaRBW/L266z96n4/er7XnaO0+q3ue8847L1544YV2v6aOevvtt2PZsmWt5mpNr169oqam540L\noAgBAAAAgB5nTTsKu4J5ZAEA6C4effTROPbYY1PHyMKUKVNiypQpZX/e2267raq2ERQhQAWkmlcy\nxzkltUV+vCfkrK6uLnn/NDdwC21RSv/M7z0BgM6oph18UClGDAEAIiKeeeaZ1BGq3lNPPRXbbLNN\n6hhlowgBAAAAAAAAgFbts88+sWTJkpg9e3ZErFrQu+LvQqGwxts++tg13ba62xsbG+Ovf/1r519U\nZo4++ujo3bt3REQceuihMX78+KitrU2cquMUIQAAQBs0NDSkjgAAAAAAXa53795x4IEHxoEHHpg0\nR7FYjLq6uqQZKmnZsmURETFt2rSYNm3aGu9bV1cX48eP74pYHaIIASrAUHXkTP8kZzkM9W4daaEt\nShmyGQAAAADSKRaL8d5776WOkYWrrroqvvrVr2Y7WoIiBKCiHMDKT6r5xM0lTlvU1dUl75+p1pGP\n5siBtiiVw+en71UAKJ9isZh0+QocAQCgfWpqamLatGnxm9/8JpYsWRIREdOnT0+cKo2TTz452wKE\nCEUIAAAAAPRAigAAOiaXz8/cCtcB6Bq1tbWx7rrrNhchVIvTTjstPv/5z6eOUTaKEICKyuGsUQCo\nFkanAAAAAKCnKhaLMXbs2NQxKmK33XZLHaGsFCEAAAAAAABtkst0NjlM6QhA12psbEwdoWJefvnl\n2HLLLVPHKBtFCAA9jPnEyVkOG/HWkRbaopT2AIDqYoQhAADoXnKZEqgSNtxww9QRykoRAlBRDtgA\nUC1y2MjxvUpr9AuAjvH5CWtnmk1ak8O2UUQeJzIA9BQvvPBCfOMb30gdo2r98Ic/jH79+qWOUVaK\nEKACbKC10Bb58Z6QsxyGUnRGXAttUUr/zO894UP6BQBQKYp1AICIiD/96U+pI1SdOXPmpI5QUTWp\nAwAAAAAAAACQp7Fjx8bOO++cOgbdiJEQAAAAAAAAAGjV4MGD4/zzz08dIyIiGhoa4te//nXqGKyF\nIgSoAEPVtdAW+fGekLMchvS2jrTQFqX0T3LV0NCQOgJAt2Q6G4COKRaLSZdfKBQiIo8p8wDoevX1\n9VFfX9/891tvvRX7779/NDY2JkzVPhMnTkwdoeIUIQAAAHRjK3bCAtA+ivtg7VIV6zjICwC01brr\nrhu33HJL899jxowp6/Mfdthh8Y1vfKOsz9kTKEIAKsrGKgBAZeVyJhpAd2MkBFg7xTotUn9meC8A\nII3f/va3ihA6QBECAAC0QcoDvSsO8qbe8elgSZ7q6+v1C4AOcEAPaA+fGQDQM7311lvtGl3huOOO\ni/3226+CiboHRQhARdlAa2EHPUD3lsPZ3r5XaY1+AdAxivsAAKD7e/PNN+PMM8+MP//5z6mjRETE\nRRddFBdddFG7HvNv//Zvcfzxx1coURqKEAC6SF1dnR1cAEDZOYgG0DGKuGDtTLMJAOTuK1/5SuoI\nnXbDDTfEkUceGQMHDkwdpWwUIQAVZWM1P94TcpaqWGfl/ulgXgttUUr/zO89AQCgshTrAAB0jdde\ne00RArBmDvK2sLEKAOXjexUAykdxHwAAdH/HHXdcu6c/yNFrr70WW265ZeoYZaMIASqgoaEhdQQA\nAABgDRT3AQBA2zz55JNx9NFHp45R1U4++eTYaqutmv8uFArNl3fYYYc44ogjYsCAASmidYgiBKiA\n+vp6IyEAAAAAAADQ7T366KOpI/QIzzzzTKvXP/3007F06dI44YQTujhRxylCAACANlDoR66cyQsA\nVIopRwGAiIh99tknXnnllbjhhhtavX3ls/ZXd7lS93/nnXfWkr46bLvttqkjtIsiBKgAO4Jb2FjN\nj/5JznJYb60jLbRFqWKxmGzZKzauzF1Na/QLgI5J+d0esfodrJAT2wQAQEREv3794phjjoljjjkm\ndZRVnHXWWTF79uzUMcruxz/+cey4444REdG7d+/o27dv4kTtowgBAAAAgB5HEQAAAHR/1VKAcOCB\nB0bEh8XSu+++e7cb+eCjFCFABTj7n5zpn+Ssrq4uef90RnELbVHK5ycAAAAAUAm77bZbbL/99qlj\nlI0iBKgAQ9WRM/2TnOVwoNU60kJblNIeAAAAAJDWk08+Gaeddlq8/fbbyadYK6dPfvKTqSOUVU3q\nAAAAAAAAAACwJk1NTXHiiSfGwoULY9myZbF8+fLUkcpm3rx5qSOUlZEQoAIM10zO9E9yZjqGvNYT\nbVHK5ye5MkoHAAAAUGnvvPNOLFy4cK33KxQKzZdbG6lg5dvbq1gsxrvvvtvhx+dsyZIlqSOUlSIE\nqICGhobUEQAA6CEUDAEA0JU6c/ConPwOBeg61113XVx88cWpY1S17bbbLnWEslKEABVQX1/vTEkA\nAAAAAAC6PQUI5TdnzpzUESqqJnUAAAAAAAAAAPI0YcKE1BGqzpgxY2LMmDExduzYePjhh1PHKTsj\nIUAFmJe3hbbIj/eEnOUwmot1pIW2KKV/AgDQ06Sa9slon3lrbX7vrrRiOoi6ujr9E6CLfP3rX4+/\n//3vce+996aOUnWWLl0a3/72t+Omm26Kfv36pY5TNooQAAAAAAAAAGjVxz72sTj77LNTx2hVU1NT\n/PrXv47HHnssIiLuvPPOxImIUIQAFZGyGnhFJXAuVMznR/8kZzn0z1zO6MiBtiiVQ/8EAICuZCQu\nWpPL9ol9fwBERNTU1MT48eNj/PjxERGx9957x/vvv584Vfvsv//+VTUKQoQiBKiIXH6I58DGan70\nT3KWQ//MIUMutEUp7UGu/N4C6JhURfMRCucByiGHQvFUU0JE+C4BWJ3uUoAwZ86c1BEqShECUFFG\nQgCgWuSwg8vBElqjXwB0jCIugI7JZdS8HPY7+i0M9BTPP/98fPOb30wdo2rkOrVFOSlCAAAAAAAA\nAKBVChDK65RTTin5e5tttonLLrssUZrKUIQAVJQzS1qojAbo3nKYjsH3Kq3RLwAAIA3TMQBQDk8+\n+WQsWLAg1l9//dRRykYRAlBROQyLlotcNkq8J+Qs1XqSwzry0Rw50Bal9M/83hMAAICUbCMBUC7z\n5s1ThACsmYO8AEAlOOOd1uQyJy8AAABQnUaNGhX33HNP6hhVrbGxMXWEslKEAAAA3YSREGhNfX29\nfgHQAb5XAQCgbc4666y477774vbbb08dZRV/+MMfUkcoi2XLlqWOUFaKEAAAAADocYwwBAAAbTdy\n5MgYOXJk6hirWLBgQTz00EOpY3TawIEDU0coK0UIQEXZqQMA5eN7FQDKx3Q2AADQ/VVDAUJExODB\ng1NHKCtFCFABDhC0SDW8paEtV0//JGc5rLfWkRbaolQO7WHYaAAoH0UAAABADvr37x9bbbVV6hhl\npQgBqKgcDtgAQDnkcKDC9yoAAAAAPdmUKVPiD3/4Q+oYZdWnT59YunRp9OnTJ3WUslGEAFSUkRAA\nqBYph2xeUQBhJAQAAAAAeqqmpqa45557Uscou/XWWy9qa2tTxygrRQgAAAAAAAAAZK2mpibefvvt\n1DHKYsqUKRERUVtbGzvttJMiBID2MGx0C2ePAnRvpmMgV/oFAABdKYdto4g89rWlHDEvIp/3AqCr\nNDY2po5QNrvuumvqCBWlCAGgi9TV1RlCGwAoO9N0AACVYppNWDNFAAB01JgxY5ovb7jhhnHttdcm\nTFN+ihCgAmygtdAWLRoaGlJHiAjvCXlLVayzcv90MK+FtijV1NSUbNk1NTUR4T0BAKBrGXGphZNL\naE0uIyHonwDd28svvxxvv/12DB48OHWUslGEANBF6uvrbQwAdGOpPsd9hgMAQHp+k9OaXEZC0D+B\nnqK2tja+/e1vx4UXXpg6Stntt99+zZdHjBgRZ511VgwcODBhos5RhAAAANCNOUMRAAAA6Cm+9KUv\nxZe+9KXV3n7YYYfFc88914WJyu/RRx+NBx54oGTKhu5GEQJUgB3B5Ez/JGc5VO5bR1poi1Lag1yZ\npgMAgK7U06cg8BsYIC933nlnTJ48OXWMstp5553js5/9bOoYnaIIAagoB2wAqBY5DLPpexUAgK6U\nqtjRQV4AoK3uvvvu1BHK4je/+U0MGTIkdYyyUYQAFWADrYW2yI/3hJzlcBaDM4pbaItS+md+7wkA\nAJWlCBYAyN2RRx4Zr776ajz00EOpo3TKLbfcEuPHj08do2wUIUAF2EBr0dDQkDoCH6F/krMcDnBa\nR1poi1I59E/fq7RGvwAAqLzUBcG2zwBI7d13342FCxeu9vaVp+v56NQ9a5vKZ033b8tjJ06c2Px3\nXV3dGu+fq3HjxqWOUFaKEICKqq+vT37WKABUixymhCA/qX5vRfjNBQD0HIoAAOjJ/vznP8cJJ5yQ\nOkZVGzhwYOoIZaUIAQAAoBuzQxwAAACopJdeeil1hKr30EMPxc4775w6RtkoQoAKWNvQMJXkDEnW\nJtXwgc6UpC3q6uqS98/UQ2zmtJ5oi1L6Z37vCR/SLwAAAIBK2nvvvaN3795x5513llz/0WNSK/+9\ntuNVa3pse++78t+33XbbGpebqyeeeEIRArBmpiBo4cw8ACgf36sAUD6KuAAAoG1qamrii1/8Ynzx\ni19MHWWtdtlll/jP//zP1DHa7YADDkgdoawUIUAFOEDQwqgQ+dE/yVkOO2KtIy20Rakc+mfK79UI\n3625amhoSB0BoFvyWweAzkpd0Oa7DGBVjz32WOoIa3XxxRfHiBEjUseoKEUIQEU5WAEA5eN7ldak\nGoUrwpm8AFDtTOkIa6YIACC9GTNmdLvfDccee2x84QtfiJqamujbt28cddRR0b9//9SxykoRAlBR\nNlZbFAqFZAePHLQC6LwcRvdJfZZNbt+tAABUlgOsAEBExHvvvRcXXXRRzJ49O3WUqjFr1qzmy9df\nf33cfPPN0adPn4SJyksRAkAXKRaLyQ5gpR6+GwCoHAcHAAAAgEq68cYbFSBU2KJFi2LIkCGpY5SN\nIgSAHsboFOSsrq4uef90pnkLbVHK5ye5sq4CAAAAlfTyyy+njlD1li9fnjpCWSlCgApwkAIAAAAA\nAIBqsMcee8T111+fOkZVe/7552Po0KFRU1NTFVNsK0IAKsrwwAAAAAAAAN3XTjvtFDNnzoxFixaV\nXL/ywfKPHjhf3YH0Nd3vo7c999xzcfzxx3coc3dz4oknlvw9ffr02GijjRKl6TxFCEBFGRUCAACA\nHBWLxaTLr4azmwAA6Dn69+8f/fv379Jl7rTTTnHNNdfEnXfeGYVCofk39Mr/NzQ0dGmmrvLkk08q\nQgAAAACA7kQRAAAAtM37778fF198cdx8882po/QYjz76aIwZMyZ1jA6rSR0AAAAAAAAAgDxdc801\nChC62C677JI6QqcYCQEqYOrUqakjZENb5Md7Qs5ymEbFOtJCW5TSPwGguqSaPjDCFIIAAHQvCxcu\nTB2h6h133HHRr1+/iIjYcccdY8MNN0ycqHMUIQAVlWqnjh06AJRbynmjVwwX7WAJAACQWi7T2dg+\nAeg6hx12WNx3333xzjvvpI5StcaMGRODBw9OHaNsFCEAFeWMzfwoDCFndXV1yfung7wttEWpHD4/\nfa8CQPn4XgUAgLbZYIMN4vrrr+/y5RaLxbjlllvi8ssvj4iIxsbGqhyVYdq0aVVVgBChCAGgx7Gj\njZzlcNDZOtJCW5TKoX8CAAAAQApvvPFGvPzyyxFROmLomkYPXd39VveYF198Mf7zP/+zs1G7hauu\nuioKhULU1NTExhtvnDpO2SlCACoqh7NGc1EoFJINV5fLMHkA3ZnpGPL7bgWAzvC9CgAAbXP//ffH\nySefnDpGVTnkkENK/r711lujpqYmTZgKUIQAFeDAO60pFovJDmCtvFz9k5yZjiGv9URblPL5CQDV\nxahPAB2TskA7oqVIO4d9CAA9xWuvvZY6QtW77777YtSoUaljlI0iBAAAAAB6nFwOogEAQO7GjRsX\n/fv3j3vvvbfV21f+bfvR37mr+927uscUCoXm3+qre+wzzzwTTU1NUVNTE08++WTbXkTmPvaxj6WO\nUFaKEKACnE1BzvRPcpbDmQTWkRbaopT2AIDqUl9fb9QnAABog0KhEHvuuWfsueeeqaOs4pFHHonj\njjsudYxO22GHHVJHKCtFCAAAAAD0OAoMAQCg+/vUpz4Vc+bMaf57zJgxCdOs6uCDD45DDz00dYwu\npwgBAACgG2toaEgdAQAAACALe+21V9xyyy2pYzS7+uqr4+qrr17jfTbeeOO45ppruihR11CEABUw\nadKkJEM6Gs6RttA/yVldXV3y/plqHflojhxoi1I5fH462ExrDCcOAAAA8KFHH300dYR2e/HFF+Ol\nl16KjTbaKHWUsqlJHQAAAGibQqGQ9B8AAAAA5OyAAw5IHaFDXnjhhdQRyspICFABzlIEACqhWCwm\nXb5CBAAAAABydtFFF6WOQChCgIqwg56cTZ06NXUEWK0chvS2jrTQFqVyaA/D7gMAAADQ1YrFYvzx\nj3+Me++9t/nv1v5f0+NX9/eaHtva/dp6/+5mp512Sh2hrBQhAAAAANDjpN5B6QQGAAC6i5tuuinO\nPffc1DGS+epXvxqFQmGVQogPPvgg3n///Yj48Pf9smXL4tlnn42mpqZoamqKxsbGaGxsbL68fPny\nWH/99WPbbbdtvq62tjaOP/746NOnT7LXVwmKEICKyuGsUQAohxwOFPheBYDyyeG7HQAAuoOhQ4em\njpDUb37zm7I91/z582P+/Pkl17311ltxzjnnlG0ZOVCEAFRUyjNLctuhlMuBI+8JOcuhfzojroW2\nKKV/5vee8KGGhobUEQC6Jd+rAHTWpEmTkk6Zl8v+RqD6jRw5Mv73f/83XnrppebrPvp7duWRAlbc\ntvJ91vT7d+X7r+k5WnvcUUcd1Z6XkqUHHngg3nnnnRg0aFDqKGWjCAGoKDtVWqTeKFkxj7f3hJzl\n0D9zyJALbVEqh/bIIQP5qa+vz+I3BkB343sV1i7Vvgy/MeguFAEAPcmwYcNi2LBhqWOsYp111on3\n3nsvdYxOW2eddVJHKCtFCAAAAN2YHZ8AAABAT3XsscfG2WefnTpGpy1atCgGDx6cOkbZKEIAKiqH\noasp5SwGclZXV5e8f+YyakkODFFcKof+6T2hNT63AIBKUewIAOTuwQcfTB2hLP70pz/FjjvuGIVC\nIYYMGRJ9+/ZNHalTFCFABTjw3iLV8MB2iAN0niHe8+M9oTUNDQ2pIwAAAAAkMXv27NQRyuKcc84p\n+fvKK6+MLbbYIk2YMlCEABWQWyEAAADVS3EKAAAAQHVZsGCBIgSglOHuAQAAIG+mOQIAgO7ho7/d\nU/+Wr5RPf/rTERGx7777xq677po4TecoQgAAAACgx1EEAAAAbfO3v/0tJk2alDpGVfvRj34Uu+++\ne+oYZaMIASpg6tSpqSPAaumf5CyH0VysIy20RSntAQAAAEBP9Pjjj6eOUPV+9KMfNV8eOXJknHnm\nmVFbW5suUCcpQgAqygEbAAAAAACA7mufffaJN954I37/+9+XXP/R0cXWNtrYyre35bELFy5sb9Sq\ncN9998VPf/rTOO6441JH6TBFCEBFTZo0Kf72t791+XK32267LM6oXlmhUEg23KdhRgEAAEql2l6N\nyHObFViz1J8ZTvTJU1NTU9Ll19TURIT+CVRe375948gjj4wjjzyyS5f77LPPxuGHH96ly8zFpz/9\n6dQROkURAkAXKRaLUSwWky0bAACAFg6YAO3hM4PWrCgCSE3/BKrVxz/+8fj5z38et912W0R8eKzj\n6quvTpyqPP71X/81IiJ69eoVX/va10qmXhg+fHj0798/VbSyUIQAFeDsf3Kmf5Kzurq65P0z9dkD\nOa0n2qKUz08AAIB8Rty0nQTQM2y22WZxyCGHRETE0qVLq6YI4dRTT00doaIUIUAFqDwlZ/onOcth\nB4J1pIW2KKU9AAAAACCdXr2q59D2mDFjmi//6Ec/it133z1hmvKrnncKAAAAANrIqE8AANC9LF++\nPHWEijjjjDNi5MiR0a9fv9RRykYRAgAAQDdmlA4AAACgkl599dX41re+Fa+++mrqKFXpa1/7WlUV\nIEQoQoCKMGc0OdM/yVldXV3y/umMuBbaopTPT3JlXQXoGEVcAADQNnPmzFGAUEEbb7xx6ghlpwgB\nKsCODHKmf5KzHA5kWUdaaItS2gMAqkuxWEy6/EKhkHT5AADQVnvuuWdcdtllqWNUrfPOOy/22muv\nqhoNQRECVIAzJVs4YJMf/ZOcGQkhr/VEW5TK4fPT9yoAlI8iAICOyaWIK4d9CAA9xTnnnJM6QtV7\n9dVXY7PNNksdo2wUIUAFOEBAzvRPcpbDRrx1pIW2KJVD/4TWWFcBgErJoRAXAEjvwQcfTB2h6lVT\nAUKEIgQAAAAAAAAAVuOyyy6Lo48+OnWMbuuggw6Kww8/PHWMLqUIAQAAAAAAAIBWbbPNNjFnzpzm\nv19//fXYf//9EybqXq655pq45pprmv/+1re+FV/5ylcSJqo8RQgAAADdWKphkiMMlQx0bz4/AQCg\nY4YOHRpXX311XHXVVSXXFwqFKBQKzZc7c/1Hb1/d9dddd125XlaXueSSS+Kyyy6LiIiBAwfGNddc\nEwMGDEicqrwUIQAAAADQ40ydOjV1BAAA6LY23XTT+MEPfpA6Rjz11FPx17/+NXWMdlu2bFlERLz5\n5pux9957x8yZM6N///6JU5WPIgSogFRnU+R4JoW2yI/3hJzV1dUl75/OiGuhLUrpn/m9JwDQGb5X\nYe0U6wAAERELFiyISZMmxRtvvJE6StW644474otf/GLqGGWjCAEqwAZaC22RH+8JOcthR6x1pIW2\nKKV/AgAAANAT3X777QoQKqyaChAiFCEAAAAA0AMp7oO1M5oiABAR8fnPfz5uuummmD9/fuooXe7w\nww+Pgw46KHWMbkcRAgAAAAAAAACtGjZsWFx11VWpY6zWa6+9Fm+//XYUi8WYOHFiWZ/7sccei0cf\nfXS1txeLxeb/V1xu7T4rbhs6dGhsvvnmZc2YI0UIQEWpmAegWqxuI6IrFAqFiDB3NQAAXcuIIQBA\n7n7zm9/ET3/604o9/3333Rf33XdfxZ5/hTlz5lR8GV1JEQJAD6MwhJzV1dUl758O8rbQFqV8fgIA\nAABAXp5//vnUEcrilVdeiQ022CB1jLJRhAAV4CAFAAAAAAAAVNaKEUS7u8WLF6eOUFaKEKACDFUH\nAAAAAAAAlXX99denjlAW8+fPjy233DJ1jLJRhAAVYCQEAAAAAAAAoC1eeOGF1BHKqiZ1AAAAAAAA\nAADoqZYvX546QlkZCQGoKFNTAED5+F6lNfoFAFApRvsEAOgaG2ywQeoIZaUIASrAjuAWNlbzo3+S\nsxzWW+tIC21RKof2SPW9GuG7NWfFYjHp8guFQtLlA3SUz09Yuxx+AwMArKxYLMY//vGPaGxsTB2l\nrGbNmhWLFy+OiIjPfvazsckmmyRO1DmKEAAAALqx+vp6xSkAHaAIAAAA2uaVV16JI444It57773U\nUarWQw89FA899FDz3z/96U9j++23T5iocxQhAAAAANDjGAkBAADa5o477lCA0MWamppSR+gURQgA\nAAAA9DiKAAAAoG3+9V//NW699dZ4+umnU0epSt/85jdjnXXWaf571113jc033zxhos5ThAAAAAAA\nALRJLkVcpgUD6DpDhgyJadOmpY4RjY2Nsddee6WOURZz5sxJHaGiFCFABUyaNCnJvLzm5KUt9E9y\nVldXl7x/plpHPpojB9qilM9PAKgupmMAAIDupaamJjbaaKN46aWXUkdhLRQhAAAAANDjKAIAAIDu\npVAoRG1tbeoYtEFN6gAAAAAAAAAAsCbLly+Pf/zjH6lj0AZGQgAAAAAAAACgVW+88UacdNJJ8fe/\n/z11lKoxZsyY5stnnXVWjBo1KmGa8jMSAgAAAAAAAACtmj17tgKECpo8eXIsWbIkdYyyMhICVMDU\nqVNTR8iGtsiP94ScXXrppakjWEdWoi1K6Z8AAPQ0kyZNir/97W9dvtztttsui9/fAMCHdt999/jF\nL34R7733XuooVWnfffeNfv36pY5RVooQAAAAAACANikWi0mXXygUIiKirq5OkQxAF3nttdcUIJTR\nhRdeGDvuuGPqGBWlCAGoKBXzAAAA5CjV9mqEbVa6DyNxAQAREc8880zqCFnYZZddYvLkyTF48ODU\nUbKnCAGoKBurAAAA5Mj2Kqydk0sAgIiIrbfeOnWELMydOzdef/11RQhtoAgBqCgbqwBUi5RDjq4Y\nbtQZmwAAdCXFOgBARMStt96aOkI2Hnzwwfj4xz+eOkb2FCEAAAAA0OPkMqc5AADk7sEHH0wdIRuX\nXnppWU7U+fjHPx6FQiHWWWedOPXUU2P99dcvQ7p81KQOAAAAAABdrVAoJP0HAMVOTiQAAB/YSURB\nVADdxQEHHJA6QtV59tln4+9//3s88sgjccABB8SSJUtSRyorIyFABeQwXDOsjikyyFldXV3y/mm4\n+xbaopTPTwCoLn7rAABA22y66aapI1S9Z599Nj75yU+mjlE2ihCgAhQCAAAAQN7MdQ8AAG3zzDPP\npI5Q9RYtWpQ6QlkpQoAKcKZkCzt1AKgWqYZOXnmZDQ0NXb58AAAAAHq20aNHx8UXX5w6RlU7+eST\nmy+vv/76cemll8Z6662XMFHnKEIAKkpBBgDVolgsJplyaeVl1tfXGzYaAAAAgC41fvz41BF6lAUL\nFsTDDz8ce+yxR+ooHaYIASrA2f8ttEV+vCfkLIcDnNaRFtqilPYAAAAAALrCZZddFldeeWVERIwY\nMSKOPvroGDhwYOJUbacIASogxVmSK6QYJpq2yeHgaoT+Sd5y6J8pM6ycIwfaolQOeRRC0BrTdAAA\nAACVNHTo0Hj99ddTx+hRFixY0Hz5+eefj2KxGCeeeGLCRO2jCAGoKNMxtKirq8tiCO1UQ3nn+J6Q\nnxw+Mwx330JblGpqakq27JqamohIt45E5Pme8CHrKgAAAFBJkyZNijPOOCN1jB5t++23Tx2hXRQh\nQAXkcKYkAFBeirgAAAAA6In23HPP2HPPPVPHiIiI8847L2688cbUMcru+9//fmy66aZRLBZjww03\njHXWWaf5tkKhELW1tQnTtZ8iBAAAAAAAoE1yOQFLsTZAz9PY2FiVBQgREbvuumsMGjQodYyyUYQA\nAAAAQI9jmiMAAOheGhsbU0eoiMsuu6yqChAiFCFAReQwpzkAAACwelOnTk0dAQAAaIc+ffqkjlAR\nxx13XJx++ulRLBajWCzG1ltvHUOGDEkdq1MUIQAAQBs4UEGu9E0AAACgJ1i6dGnqCBXxwQcfxMkn\nn1xy3c9+9rPYeuutEyXqPEUIAADQBkY6IleGEwcAoCsVi8Wkyy8UChERUVdXZxsNoAvNnTs35s6d\nGxGr/y5Y+frVXe7Ifdd0fbVatGhR6gidoggBAAAAAABokxVFAKkpBADoOrNnz46zzjordYweZYst\ntkgdoVMUIQAAAAAAAG2S+kxUIyEAdL3+/funjtDjPProo7H77runjtFhihCgAszLS870T3KWw0a8\ndaSFtiilPQAAAADoiUaPHh0///nP45lnnmm+buWRcVZ3eWUrrm/Pfdty/1NPPXVt8budf/u3f4tR\no0aljtEpihAAAKANchhyVCEErWloaEgdAaBbmjRpUpIzaCOcRQsAQPez2WabxWabbZY6xirmzJlT\n8veYMWMqurwf/vCHsccee1R0GdVAEQJQUQ6WAABUVn19vYNoAB1gexXWLlWxjt8YAJC3pqamuOCC\nC+LGG29MHaXLPfHEE926CKGpqSkOOuigmDt3bjz++ONRU1MT999/fxx88MFrfNyuu+4aV199dZuX\nowgBqCgbqwBUi5Tznq4YhcEZmwAAdCXFOgDACm+88Ua8+OKLERHx4osv9sgChIiI//mf/4l/+Zd/\nKRk1dXX7DT86smqhUIi+ffvGwIEDm6+rqamJIUOGdNkorJdeemnMnTu3ZHn//M//HOeee26r97/q\nqqvi8ccfj7Fjx7ZrOYoQAAAAujHTMQAAVF7KouSIPKaHA6Dnuv/+++Pkk09OHSMb9fX1ZX/O2267\nreLf94888khceuml0bdv31i6dGnz9UOHDo199913lfvfcccd8fjjj8fee+8dEyZMaNeyFCFABeRw\npmQuVMznx+gU5Kyuri55/3SmeQttUcrnJwAA9Fy57XMDgK70s5/9LHWEqvfUU0/FNttsU7Hnf//9\n9+PEE0+Mz33uc7Fo0aJ48MEH13j/xYsXx2mnnRbrrbdeTJ48ud3LU4QAFZBqXl4HKQAAep5Uvz0j\n/P4EAACAnmDZsmWpI1S9xYsXV/T5f/zjH8eiRYvizDPPjOOOO26t9582bVosXLgwzjzzzBg0aFC7\nl6cIASrA2f8tnDWaH/2TnOWw3lpHWmiLUtqDXOmbAAAAQCX9x3/8Rxx22GGpY1S1448/vvnyqFGj\n4rTTTosBAwascr+77rorpk+fHvPmzYstttgiJkyYEKNHj17jc8+aNSt++9vfxqWXXhpDhgxZa5a3\n3norrrrqqthqq63iK1/5SvtfTChCACrMTnEAqkUOw6/6XgUAAMhH6mkMbSMCXeXnP/956gg9yj33\n3BN777137L777lEoFJr/LVy4MB555JHm+z3xxBMxefLkOP3001dbiLBgwYL4wQ9+EOPHj48xY8a0\nafm/+tWvYsmSJXHEEUd0+DUoQgAqykgIAFSLYrGYbNkrCiBS7+Dy3ZqnlH0zIo8CHYCO8L0KQGcV\ni8Vkv8dTbwcAPcvgwYNTR+iR7rjjjrXep1gsxvTp01dbhHDyySfHuuuuG6ecckqbl/vLX/4y/umf\n/in23XffNj/moxQhQAU48E7O9E9yVldXl7x/2hndQluU8vlJrurr662rAB3g7FEAOstvYaCnGD58\neOoIrMG8efNavf6KK66I++67L6ZOnRpLliyJJUuWRLFYjOXLl0dExJtvvhm9e/eOQYMGNT/moYce\nigULFsShhx4aNTU1Hc6kCAEqoKGhIXUEAAAAAAAA6LTPfe5zcfnll6eOUdUOP/zw2G233aKpqal5\npJ2VLxeLxZgyZUo8//zzqzx2iy22aPU558yZExEfnvz3UYVCIXbbbbfYeOON49Zbb22+fvbs2VEo\nFGLcuHGdej2KEAAAAAAAgDbJZTouoxAAdJ3NN9+8+YB2So2NjbHXXnuljlERl19++WoLPXr16hU/\n+9nP4sgjj4zJkyeXTMlTKBRiwoQJrT7ulFNOibfffnuV63/yk5/EU089FVdeeWX069ev5LYHHngg\nBg8eHCNGjOjEq1GEABWRyw9xaI0hR8lZDjsQrCMttEUp7QEA1SX1XNr2HUD3knq6upy2R3L5/Mxh\nSsdc2kL/BKhuy5cvj2uvvTZOO+20OP3002P69Okxb9682GKLLWLChAkxevToVh/3yU9+stXrV0y/\nMHLkyJIpF5YvXx5PPvlkjBw5stOZFSFABZgzmpzpn+Qshx0IqTfcc1pPtEUpn58AUF0UAQDt4SBr\ni1w+P3PYTsqlLfRPoKeora1NHSGZL33pSxERMXr06NUWHXTWiy++GEuXLo2NN96408+lCAEAAAAA\nAGiTXM7+z+FEBgC63pw5c+L555+PxsbGiIg47LDDEicqj0suuSR22GGHLltea4V0b7zxRhQKhRg8\neHCnn18RAgAAAAAA0Ca5nP2vEACg6xSLxbjzzjvj3nvvXaUYbcXfH/2/rbe393n++Mc/dvh15GzT\nTTftsmX94he/aPX6nXfeuWwFfooQoAIMf0XO9E9ylsMOBOtIC21RSnuQK30TAICuZCQEIyEAPc9N\nN90U5557buoYVevCCy8sy+gDOVGEAAAA0I1NmjQpyc7XCDtgAQAAoCcYOnRo6ghV5fe//30MGDAg\ndYyKUoQAAAAAQI+jiAsAANpm5MiRMWPGjHjxxRcjomVUmo/+v0J7b//o9e15nmKxGLfcckvMmzcv\nCoVC3HvvvR14he0zZ86cii+ju1OEAFSU4YEBqBY5zHvqexUAgK6UqlhHoQ4A5Gf48OExfPjw1DFa\ntdVWWzVfHjNmTMIkrKAIAagoG6sAUD65zL0KANVAcR+snfUEAIiIeO655+Kwww5LHSMb5S50GDp0\naPz6178u63OmpggBKsCBd3Kmf5Kzurq65P3TsLwttEWpHPpnfX299wQAAACALnX66aenjlDVXn/9\n9Vi4cGEMGzYsdZSyUYQAFaBKnJzpn+QshwOc1pEW2qKU9gAAAACgJ/rGN74RZ5xxRuoYVW3JkiWp\nI5SVIgQAAAAAehyjPgHtYWo0cqZ/ApX2iU98InWEqrdo0aLUEcpKEQJUgOHuyZn+Sc5yGO7ezugW\n2qKUz08AAOi5HGQlZ/onUGn33HNP6ghVr66urvly7969Y/r06TF8+PCEiTpHEQIAAAAAPY6plgAA\noG3Gjh0bDzzwQDz44IOpo/QIy5Yti7/97W+KEIBSdmSQM/2TnOVwtrd1pIW2KKV/kiv9AgAAAKik\nwYMHx7nnnps6RqvGjBmTOkJFrLvuuqkjdIoiBKgAwzWTM/2TnJmOIa/1RFuU0j/ze0/4kH4BAEBX\nymXof79DAahmt912W3zqU59KHaPDFCEAAAAAAABtUiwWky5/RRFEDoXiAD3Fiy++GN/85jejsbEx\ndZQe46CDDkodoVMUIUAFGBIXAAAAAACAanDXXXcpQOgC66+/fhQKhZg0aVIMGzYsdZxOqUkdAAAA\nAAAAAID2eeqpp+LYY4+NUaNGxQ477BB77rlnnHnmmfHuu++u9jGLFy+OsWPHxh577NHm5YwdO7Zb\nTw3QXSxYsCBeeeWVmDx5csyYMSN1nE4xEgJQUUaFaJHLMG3eE3KWw3piHWmhLUrpn+RKvwAAgDRS\nTQkRYVoIIOK5556Lr3/969GnT5/493//99hwww3joYceiunTp8e9994bM2bMiP79+6/yuDPOOCPm\nz58fG2ywQZuX9c4778QjjzxSzvisRerpjzpLEQJQUZMmTTI32//PRglA95byh/+KOU9Tfa9G+C7J\nmX4B0DGpd+qt+H4HoPvyWxhI6YwzzojGxsb41a9+FVtuuWVERIwfPz4++clPxplnnhm/+MUvYuLE\niSWPmTVrVlx33XXRp0+fdi3r3nvvLVtuWrf55ptHsViMYrEYEydOjNGjR6eO1CllK0JYvHhx7Lff\nfjF//vw45phj4phjjmn1fi+99FJcffXVcffdd8eLL74Yy5Yti+HDh8cuu+wSBx10UOy0006rPGbP\nPfeMl156qV15nnjiiYiIuOSSS6KhoaFdj/3JT34S++233yrX33///fGrX/0q5s6dG6+//noMGDAg\ntt9++zjggAPiC1/4wmqfr1gsxsyZM+OGG26Iv/71r/HWW2/FgAED4uMf/3jstddeceCBB8Y666zT\nrowAAAAAdFx9fb0iLgAAuqWlS5fGgw8+GJ/97GebCxBW2G+//eLMM8+MBx54oKQIYcGCBfGDH/wg\nJkyYELfddls0NTW1eXlf/OIX489//nPcf//9ZXsNtPjxj38cu+22W+oYZVW2IoSzzz475s+fv8Yq\n7ptvvjm+973vxeLFi0vu9/LLL8eNN94YN954Y9TV1cVxxx1X8rhCodDm6vBisRgf+9jHOvTYFQYO\nHLjKdaeffnpce+21zc8Z8eHQI3/605/iT3/6U3z5y1+Os88+e5XHvf/++1FfXx/33HNPSY533303\nHn744fjLX/4SM2bMiGnTpsUWW2zRrpwAAAAAdEx7T1oBAIBc9O7dO2bOnNnq6F4LFy6MiIja2tqS\n67/3ve/F8OHD46STTorbbrutXcsbNGhQTJkypeOBK2jMmDGpI3TaaaedFr/73e9aPUbdXZWlCOH2\n22+PGTNmrPFg/1//+tf47ne/G42NjbHRRhvFd77zndh1112jWCzG448/HhdeeGE89dRTcdlll8UG\nG2wQX//615sfO3PmzLVW41xyySVxxRVXRG1tbZx//vnN1x999NFx+OGHr/GxTz31VBx88MGxdOnS\n2GeffWKvvfYquf2CCy6Ia6+9NgqFQuy+++5RV1cXm266aTz77LNx8cUXx/333x//93//F9tss00c\ncsghJY/93ve+11yA8LWvfS0OPPDA2GijjeLll1+OmTNnxhVXXBHPP/98TJw4MW644Ybo16/fGrMC\n3VdHiqLKuWwAAABaGAkBgM4ytQ+QSqFQiE022aTV26ZNmxaFQiH+3//7f83XXXHFFfHggw/GjBkz\n2j0VQ0TEXXfdFddcc03MmzcvNttss9h///3j4YcfjpkzZ3b4NVCq2o4Rd7oI4Y033ojTTjstCoVC\nFIvF1X7pXXjhhbF8+fIYOnRozJgxI4YNG9Z82/rrrx+jR4+Ogw46KB5++OG44IIL4qtf/Wr06vVh\nvL59+64xw1133RVXXnllFAqFqKuri8997nMtL7BXr+bnac3ixYvjpJNOig8++CC22mqrOOOMM0pu\nf+aZZ+Lyyy+PQqEQ++67b5xzzjnNtw0ZMiR+/vOfxwEHHBAPP/xwXH755fHNb36zuQ0eeeSRmDVr\nVnOuY489tvmxgwcPjm233TZ23HHHqK+vj3/84x/xy1/+Mg499NA1vlag+1oxl0+qZQPQOTns3HHG\nJgCUz9SpU1NHAKCby2E7EWBlv/3tb+O6666LjTbaKMaPHx8RH05hf8EFF8QxxxwT2223Xbuf8667\n7oof/OAHzX8//fTTrY4OT+fMnz8//vmf/zl1jLLpdBHCaaedFq+//np8+ctfjt/+9ret3mfRokXN\nowH8+7//e0kBwgq9e/eOSZMmxVFHHRVvv/12/OUvf4nPfOYza13+u+++G6eeempERIwYMSLq6+vb\nlf+cc86J+fPnR69eveLcc89dpcrk2muvjeXLl8ewYcNi8uTJqzy+UCjEwQcfHCeccEJ88MEHMX/+\n/OZpFW6++eaIiOjfv38cddRRrS7/85//fIwYMSIee+yxuP322xUhVIlJkyYlOZvCmRS0hf5Jzurq\n6pL3z1TryEdz5EBblMqhfzpjEwAAAIDW/PrXv44f/vCHsc4668Qll1wSAwYMiKVLl8Z3v/vdGDFi\nREycOLFDzzt9+vQyJ6U1Tz/9tCKEFf73f/83brvttthkk03i+9///mqLEF544YUYOHBgvPPOO7Hj\njjuu9vk233zz5suvvvpqmzKcd9558eqrr0avXr3izDPPbFfl4V/+8pf41a9+FYVCIQ455JBWq3/+\n8Ic/RKFQiAMOOGC183CMGzcuxo4du8qICwsXLow+ffrE1ltvvcbRHDbbbLN49NFH2/yayZ+zKWhN\nLgdu9E9ylsN6Yh1poS1KaQ9ypW8CdEzqEeOcPQvdS+oibb/5AFiTiy++OKZOnRqDBg2Kyy67LLbf\nfvuIiJgyZUq88MILcfbZZ8dbb70VES2jNjc1NcWbb74ZvXv3Xu0x0IiIefPmdcVLICJmz54dERGf\n+tSnYv3110+cpnM6XITw/PPPx9lnnx01NTXxk5/8JNZZZ53V3nfbbbeNe++9N5YuXRq1tbWrvd/8\n+fObLw8aNGitGZ588smYMWNGc5HAJz7xiXa9hjPPPDOKxWIMHz48Jk2atMrtL7zwQrzxxhurzJsS\nEdHY2Nj8WgqFQqtTPkyZMiWmTJkS77///hpzPP/88xHx4RQNUG1sILVIdQZthLNXAcohhwMFvlcB\noHxy+G6H3BlNsYXf4gDkaPny5fH9738/rr/++thggw1i2rRpsfXWWzffPmfOnFi6dGnz1AwfNWrU\nqNh1113j6quvXu0ytthii3jiiSdWuX7bbbeNn/70p51/Ee3Q2NgYY8eO7dJldpUpU6aU/H3ppZfG\ntttumyhN53WoCKGpqSlOOumkWLx4cRxyyCFtmjYhIqJPnz5rvP2Xv/xlRETU1tbGTjvttNbnu+CC\nC6KpqSn69+/f7mkYZs2aFY8++mgUCoWor6+PAQMGrHKfp59+uvny5ptvHm+++WZMmzYtZs2aFS+/\n/HLU1tbGiBEj4qCDDopx48atdlmtPfcKjz32WHOOXXbZpV2vAboDG6v58Z6QsxyGu099dktO64m2\nKKV/5vee8CH9AgCoFAfeaU0uRVx+hwI9XVNTUxx//PExe/bs2GabbWLatGmrnD1/3nnnxZIlS1Z5\n7IknnhhNTU1x/vnnr/XE8AkTJsTkyZNLRhIrFAoxYcKENZ58Xgm5fAd1hQ8++CB1hE7pUBHCZZdd\nFn/5y1/iE5/4RBx//PFlCXLTTTfF7bffHoVCIfbdd981DvsREfH3v/897rjjjuZRENZbb712Le/y\nyy+PiIhhw4bFV7/61Vbv89prrzVffumll2LSpEnxxhtvNF+3fPnymDt3bsydOzduv/32mDJlSrs6\n/9KlS2Py5MkR8WHhxQEHHNCu1wAAAABAx5iOAaBjcvn8zKFQHCClCy64IGbPnh077bRT/Pd//3er\nx1Z33nnnVh/bp0+faGpqWmUk+NaMHj06Tj/99Jg+fXrMmzcvtthii5gwYUKMHj2606+B1dthhx1S\nR+iUdhchPPbYYzF16tTo1atXnHPOOWsd3aAt5s6dG6eeempERKy33nrxne98Z62PufLKK6NYLEaf\nPn3i0EMPbffyHn744SgUCnHYYYdF7969W73fe++913z5mGOOiffeey9OOumk2GeffWLdddeNJ598\nMi688MK4++6743e/+11svPHGcdxxx7UpQ1NTU5xwwgnx+OOPR6FQiCOPPDI222yzdr0O6A5UzANA\n+fheBYDyUQQAa2c0RQDI0wsvvBBXXnll1NTUxF577RW33XbbKvcZOnRo7LbbbmVZ3ujRoxUddLHD\nDz88rrrqqtQxOqxdRQgffPBBnHjiidHY2Bjf+ta3Yrvttut0gAceeCDq6upi8eLF0bt37zj//PNj\n+PDha3zMm2++Gb/73e+iUCjEfvvtF//0T//UrmWueMMGDRoUX//611d7v8WLF0fEh5Wdr7/+elx+\n+eUxatSo5tt32GGHmDZtWkycODHuuuuuuOKKK2LChAkxbNiwNS5/2bJlccIJJ8SsWbOiUCjEbrvt\nFscee2y7XgN5s4HWQlsAQPkYdh8AgK6kCJbW5FLEZfsE6MnuvPPOaGxsjIgPp1xozS677LLGIoRc\nPs/bI/VoPF3pX/7lX1JH6JR2FSFMmTIlnnvuudhxxx3j6KOP7vTCZ82aFSeeeGJ88MEH0atXr7jg\nggvaNOzHrFmz4oMPPohCoRBf/vKX27XM9957r3nah7Fjx8aAAQNWe9/+/ftHxIcr4ZgxY0oKEFao\nqamJ73znO3HXXXfF0qVL4/bbb4/9999/tc+5aNGi+Na3vhX33HNPFAqF+MxnPhOXXHJJt1zRAQAA\nAACgp0p9MMxxBei5DjzwwDjwwAM7/PjWRk6ga22//fYR8eGx5s985jNRU1PTfNsee+wRm2yySapo\nZVEotvFb8q677oojjjgi+vXrF9ddd11sueWWq9xn2223jUKhEPX19XHMMces8fn+67/+K84///wo\nFovRv3//uOiii9pc0XH44YfH3XffHRtttFG7V5Lf//738d3vfjcKhUJcddVVMXLkyNXed8aMGTF5\n8uQoFApxyimnxMEHH7za+37605+O999/Pw455JA4+eSTW73PCy+8EEcffXQ888wz/197dxOi8/rG\nAfx7zwxDXtIkMvKyI+V1IVlYKIqVJBspK82k2NjYSFJs5KWJaWqKHbKQKFGzpBnZjJciK1Ns5G0y\nz5hmPP/FyZTjYJ7T0zlz/n0+9dSv33Xd/a57/33uO6WUbNq0KefPn09zc3NNewAAAAAAAACAyWjC\nJyHcvn07STI8PJxt27b9tK9araajoyMdHR1J/kjStLa2jte/fv2aY8eO5dq1aymlpKWlJZ2dnVm1\natWE5hgcHExvb29KKdm+fftExx939+7dJMncuXN/GUBI8l3C5HdBgRkzZmRoaCjDw8N/WX/8+HHa\n29vz9u3blFKyc+fOHD9+PI2NjTXuAAAAAAAAAAAmp5quY/jd0T7fDlX41vfn/tHR0Rw8eDA9PT0p\npWTp0qXp6urKokWLJjzDgwcPMjo6mlJKtmzZUsv4qVaruX//fkop2bx582/7ly9fPv48MDDw076x\nsbF8/PgxSTJ//vwf6r29vWlra0ulUkkpJQcPHkx7e3tNswMAAAAAAADAZDfhEMLx48dz9OjRX/as\nXbs2pZTs378/bW1tSZLp06eP1w8fPjweQFi9enU6OzszZ86cmgZ+9OjRH4M3NWXFihU1rX3+/HkG\nBwfHv/87LS0tWblyZR4/fpx79+6NX+PwZ319ffny5UtKKVmzZs13tf7+/rS3t6dSqaSpqSknTpzI\njh07apobAAAAAAAAAP4LGibaOGXKlEyfPv2Xv7/q/ebSpUu5c+dOSilZt25dLl++XHMAIUmePn2a\nJFm2bFmmTJnyt9YmmfD1D7t3706SvHr1Kl1dXT/UR0ZGcvr06STJwoULs2HDhvHa4OBgDh06lKGh\noTQ2Nubs2bMCCAAAAAAAAAD836rpOoa/6927dzl37lxKKZkzZ05OnjyZsbGxDA0N/XRNc3NzGhsb\nf3j/8uXLlFKyZMmSmud4+fLl+PPixYsntGbXrl25efNmHj58mDNnzmRgYCB79uzJggUL8vz585w+\nfTpPnjxJKeWHkyIuXLiQN2/epJSSffv2ZePGjb/cc0NDQ6ZNm1bzvgAAAAAAAABgMvhHQghXrlxJ\npVJJkrx//z5bt2797ZpTp079cGpApVLJhw8fUkrJrFmzap7j9evXSZKpU6dm6tSpE1pTSsnFixdz\n4MCB9PX15fr167l+/fp39aamphw5ciSbNm0afz8yMpKrV68mSarVarq7u9Pd3f3Lb7W2tqanp6fW\nbQEAAAAAAADApPCPhBD6+/tTSplw/896P336NF6bPXt2zXMMDg6mlFLz2pkzZ+by5cu5detWbty4\nkWfPnuXz58+ZN29e1q9fn71792b58uXfrXnx4kUqlUpN+25omPDtGAAAAAAAAAAw6ZRqtVr9t4cA\nAAAAAAAAAP77/PUeAAAAAAAAAKgLIQQAAAAAAAAAoC6EEAAAAAAAAACAuhBCAAAAAAAAAADqQggB\nAAAAAAAAAKgLIQQAAAAAAAAAoC6EEAAAAAAAAACAuhBCAAAAAAAAAADqQggBAAAAAAAAAKgLIQQA\nAAAAAAAAoC6EEAAAAAAAAACAuhBCAAAAAAAAAADqQggBAAAAAAAAAKgLIQQAAAAAAAAAoC7+B0DY\nbaermsVxAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import missingno as msno\n", "\n", @@ -754,11 +10241,11 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": { "ExecuteTime": { - "end_time": "2017-01-20T16:01:39.020958", - "start_time": "2017-01-20T16:01:39.008948" + "end_time": "2017-02-08T09:14:20.523477", + "start_time": "2017-02-08T09:14:20.515469" }, "collapsed": true }, @@ -777,11 +10264,11 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": { "ExecuteTime": { - "end_time": "2017-01-20T16:01:39.458220", - "start_time": "2017-01-20T16:01:39.023958" + "end_time": "2017-02-08T09:14:21.417227", + "start_time": "2017-02-08T09:14:20.525983" }, "collapsed": false, "scrolled": true @@ -806,11 +10293,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": { + "ExecuteTime": { + "end_time": "2017-02-08T09:14:21.425736", + "start_time": "2017-02-08T09:14:21.419734" + }, "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "(427762, 47)" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "hennepin.shape" ] @@ -838,11 +10340,11 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": { "ExecuteTime": { - "end_time": "2017-01-20T16:01:41.149378", - "start_time": "2017-01-20T16:01:39.462223" + "end_time": "2017-02-08T09:14:22.647028", + "start_time": "2017-02-08T09:14:21.427737" }, "collapsed": false }, @@ -863,11 +10365,11 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": { "ExecuteTime": { - "end_time": "2017-01-20T16:01:41.249445", - "start_time": "2017-01-20T16:01:41.154383" + "end_time": "2017-02-08T09:14:22.708957", + "start_time": "2017-02-08T09:14:22.649033" }, "collapsed": false }, @@ -879,15 +10381,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": { "ExecuteTime": { - "end_time": "2017-01-20T16:07:01.111873", - "start_time": "2017-01-20T16:07:01.106870" + "end_time": "2017-02-08T09:14:22.716970", + "start_time": "2017-02-08T09:14:22.710458" }, "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "(129889, 47)" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "mpls.shape" ] @@ -924,11 +10437,11 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "metadata": { "ExecuteTime": { - "end_time": "2017-01-20T16:10:04.330197", - "start_time": "2017-01-20T16:10:02.342839" + "end_time": "2017-02-08T09:14:24.359452", + "start_time": "2017-02-08T09:14:22.720979" }, "collapsed": false }, @@ -941,15 +10454,35 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "metadata": { "ExecuteTime": { - "end_time": "2017-01-20T16:10:04.342204", - "start_time": "2017-01-20T16:10:04.332199" + "end_time": "2017-02-08T09:14:24.374462", + "start_time": "2017-02-08T09:14:24.361454" }, "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 2349 entries, 0 to 2348\n", + "Data columns (total 8 columns):\n", + "ALT_NAME 210 non-null object\n", + "AREA_ACRES 2349 non-null float64\n", + "NAME_DNR 1588 non-null object\n", + "OWF_ID 2349 non-null object\n", + "SYSTEM 2349 non-null object\n", + "Shape_Area 2349 non-null float64\n", + "Shape_Leng 2349 non-null float64\n", + "geometry 2349 non-null object\n", + "dtypes: float64(3), object(5)\n", + "memory usage: 146.9+ KB\n" + ] + } + ], "source": [ "water_df.info()" ] @@ -963,11 +10496,11 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "metadata": { "ExecuteTime": { - "end_time": "2017-01-20T16:10:04.383232", - "start_time": "2017-01-20T16:10:04.346208" + "end_time": "2017-02-08T09:14:24.412919", + "start_time": "2017-02-08T09:14:24.377464" }, "collapsed": false }, @@ -985,11 +10518,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 25, "metadata": { + "ExecuteTime": { + "end_time": "2017-02-08T09:14:38.691765", + "start_time": "2017-02-08T09:14:24.415921" + }, "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmwAAAHqCAYAAAC5lBJ9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xlczdn/wPHXrbSQlFLWkK0QWYexZGkw9n0YY1/Gbmxj\nyE6Wwdh3YjJmzJCxDMZOZM9SxIwltCckUqnu/f1xf324KhXhmu/7+XjMY+79nPP5nM89c2venc85\n76PSaDQahBBCCCGE3jL42DcghBBCCCHeTAI2IYQQQgg9JwGbEEIIIYSek4BNCCGEEELPScAmhBBC\nCKHnJGATQgghhNBzErAJIYQQQug5CdiEEEIIIfScBGxCCCGEEHou2wHboUOHcHR0xMnJSfn3iBEj\nAAgJCaF3795UqVKFli1b4uvrm+41rly5Qvny5QkLC9M5vnHjRurXr0+1atVwd3cnMTFRKXvx4gUT\nJkygRo0a1KtXjw0bNuicm1nbp06dolWrVri4uNCrVy+Cg4Oz+9GFEEIIIT6KbAdst27dolGjRvj6\n+uLr68vJkyfx8PAAYPDgwdja2uLt7U3r1q0ZOnQoEREROucnJyczceJEXt8Ra//+/axYsYIZM2bw\n888/c+XKFebNm6eUz507l8DAQDZt2sSUKVNYtmwZBw4cUMqHDBmSYdvh4eEMGTKEDh064O3tjZWV\nFUOGDMnuRxdCCCGE+CiyHbDdvn2bMmXKkD9/fqytrbG2tsbc3JzTp08TEhLC9OnTcXBwYMCAAbi4\nuLBt2zad89euXYuFhUWa627atImePXvi6upKxYoVmTZtGtu2bSMxMZH4+Hi2bdvGxIkTcXR0xM3N\njX79+vHLL78AcPr0aYKDgzNs+48//sDZ2ZlevXpRqlQpZs+eTWhoKOfPn3+bPhNCCCGE+KDeKmAr\nWbJkmuP+/v5UqFABExMT5Vi1atW4fPmy8j4oKIjffvuNcePG6YywqdVqAgICqF69unLMxcWFpKQk\nbty4wY0bN0hJScHFxUXn2v7+/llq29/fnxo1aihlpqamlC9fnkuXLmX34wshhBBCfHDZDtiCgoI4\nceIETZs25YsvvmDBggUkJSXx4MEDbG1tdepaW1sTGRmpvJ88eTLDhg3D2tpap15sbCyJiYk65xsa\nGmJpaUlERAQPHjzA0tISIyMjnWsnJiby+PHjTNuOiopKU25jY6Nzb0IIIYQQ+soo8yovhYWFkZCQ\ngImJCYsXLyYkJAQPDw8SEhKIj4/H2NhYp76xsTEvXrwAYOvWraSkpNCpUydCQ0NRqVRKvYSEBFQq\nVYbnq9XqdMtAuxghs7YTEhLeWC6EEEIIoc+yFbAVLlyYs2fPKnPQHB0dUavVjB07lvbt2xMbG6tT\n/8WLF5iamhIdHc2iRYv4+eefAdIsODA2Nkaj0aQJoF68eIGZmRnJycnplgGYmZlhYmLCkydP0m0b\nwMTEJN3z05tLlxGNRqMTZAohhBBCfCjZCtiANEFOqVKlSExMxMbGhtu3b+uURUdHU6BAAU6ePElM\nTAydO3dWgjWNRkOLFi0YNGgQ/fv3x8TEhOjoaGV+XEpKCjExMRQoUAC1Wk1MTAxqtRoDAwPl2qam\nplhYWGBnZ8etW7fSbRvAzs6OBw8epCl3cnLK8udWqVTExsaTkqLO8jn/SwwNDbCwMJM+yoT0U+ak\njzInfZQ10k+Zkz7KXGoffWzZCthOnjzJ6NGj8fHxUSb4BwYGYmVlRfXq1fH09OTFixfK40c/Pz+q\nV69OkyZNqFatmnKdiIgIevTowdq1aylbtiwqlQpnZ2f8/PyUxQGXLl0iV65cODo6otFoMDIy4vLl\ny1StWhWACxcuULFiRQAqV67M2rVr0207tfzixYtK+/Hx8QQGBjJs2LBsdVZKiprkZPlCv4n0UdZI\nP2VO+ihz0kdZI/2UOekj/ZetRQdVqlTBzMwMd3d3goKCOH78OPPmzaN///7UqFGDQoUK8cMPP3Dr\n1i3WrFlDQEAAHTt2JHfu3BQrVkz5p3Dhwmg0GgoXLqyM2H399desX7+eQ4cO4e/vz7Rp0+jcuTMm\nJiaYmprSpk0bpkyZQkBAAIcOHWLDhg307NkTgJo1a2bYNkCHDh24ePEia9eu5datW4wfPx57e3tq\n1qyZw90phBBCCJHzVJrXJ5Rl4vbt28yaNYvLly+TJ08eunTpwuDBgwEIDg5mwoQJ+Pv7Y29vj7u7\nO7Vq1UpzjdDQUNzc3Dh8+DCFCxdWjq9du5aNGzeSlJRE06ZNmTRpkjJilpCQwLRp09i/fz958+al\nX79+dO/eXTk3s7ZPnDiBh4cHkZGRVK1alenTp1OkSJFsddbjx3HyF0gGjIwMsLLKI32UCemnzEkf\nZU76KGuknzInfZS51D762LIdsP0vky90xuSHPmuknzInfZQ56aOskX7KnPRR5vQlYJPN34UQQggh\n9JwEbEIIIYQQek4CNiGEEEIIPScBmxBCCCGEnpOATQghhBBCz0nAJoQQQgih5yRgE0IIIYTQcxKw\nCSGEEELoOQnYhBBCCCH0nARsQgghhBB6TgI2IYQQQgg9JwGbEEIIIYSek4BNCCGEEELPScAmhBBC\nCKHnJGATQgghhNBzErAJIYQQQug5CdiEEEIIIfScBGxCCCGEEHpOAjYhhBBCCD0nAZsQQgghhJ6T\ngE0IIYQQQs9JwCaEEEIIoeckYBNCCCGE0HMSsAkhhBBC6DkJ2IQQQggh9JwEbEIIIYQQek4CNiGE\nEEIIPScBmxBCCCGEnpOATQghhBBCz0nAJoQQQgih5yRgE0II8dE8ePAAFxcn7t4N+ti3IoRek4BN\nCCHEB6fRaFi/fg0VKpQiLCyUYcMGfuxbEkKvGX3sGxBCCPG/5fHjR4wd+x27du1QjlWpUu0j3pEQ\n+k9G2IQQeiMo6A7585ujUqm4c+f2x76dT4pGo/nYt5Al8fHxlCtXgl27drBixWoADA0NmThx6se9\nMSH0nARsQgi9cebMKeX1zJnTPmoQ4ut7gj59uhMZGZGl+r17d8PW1gJbW4ssn/OqiIhw9u/fR2Ji\nYrbPdXf/Hju7fBw9ejjb535okyaNB2DEiJHK/bZu3Q5jY+OPeVtC6D0J2IQQeqNz565Mm+ZByZIl\n2bFjO0uXLvoo9/HkSQzt2rXgr7924uxcNsN6gYHXuHHjOh4e09izZ7dy3MamQLbaS0xMpFKlcnTv\n/hXFihXg0KH9WTovISEBtVpNQkICAH/9tTNL5924cR03t3pcvRqQbnlSUhLbtv3OyZM+qNXqrH2I\nLDh8+ABeXp7Y2xfH2tqGrVv/YN68RaxatT7d+uHhYVy/Hkh8fHyO3YMQnyoJ2IQQesPQ0JBhw0bg\n5OQEwO3bN7N03t9/78XW1gJf3xM5ch/JySnK6wMHjqdbZ9++PTRoUJv69T9j8eIFANy6FUxUVCyG\nhoaANhDLSsBjYmLCqFHfK++//roTwcH333jOoUOHKFzYhoIFLVmwYAlnzlzkxx8XZtoWwKZNG/D3\nv8LDh9Hplm/e7MXgwf1p374lBQta0rt3N5KTk7N07Te3uxGAWbPmMHmyO/36DaRnzz6oVKo0dfv1\n60nlyo64utaiUaM6vHjx4p3bF+JTJgGbEELvhISEAGBunpc7d26ze/eON9bv168HAO3atciRESFr\na2uiomKJiorFxaVKunVGjhyi837MmB+wsMinvL916ybFihWgYEHLLLU5dux4+vcfpLw3MnrzmjB3\nd3fl9ZAhAyhQwJZLl/yU0bY3mTx5Br/88juurg3TLb927SqWlpYMHKj9jHv27GbzZq+sfIw36tNn\nwP//uyfW1jZMnToz3Xr37t1l164/lffR0Q9ydKRPiE+RBGxCCL3j7+8PQGJiArVqVaFv3x7Mnz8n\nwzlt589r69ev3zDd0Zr3YcyYH3Tez58/B1tbC+X9rVva0cF69Rpk6XqGhoZ4eMwlJCSa69eDsLW1\nY+rUiezfvy/d+t9++y0AjRo1Zvv2rXTv/hXNm7thb2+baVsmJiY0afJlhuU//7yemJgYihWzZ/bs\neRQpUlRnfuHbqlu3Pm5uTTA3N2f58jUZzlvz9Fyr83769NmYmpq+c/tCfMokrYcQQm95eW1QXv/4\n4yyMjIz47rsxaeoVKlSYqKjYD3lrJCa++RFd06ZfculSIIULF8nWdY2NjbG2tubZs2esWLGEFSuW\n0K1bDxYuXKZTr1OnTowYMUKZ33XqlC8Abm5Ns9XemxgYGKDRaJR/cuJ6v/667Y11Hj58yMqVS5X3\ne/YcokaNmu/cthCfOhlhE0LolejoB8rr10exWrZs86FvJ0PTpk0EYOXKdcqxoUO/U16rVCqKFCn6\n1iN+5ubmdO/eC9DOKUsdsUuVN29eWrVqw+nTp0hJ0c65++abnvz669a3ai9VTMxjDAwMqFfPFY1G\nw7FjRwgLC6Vjx87vdN2sWrdulfJ68eIVEqwJ8f9khE0IoVemTJmkvLaw0D5iVKlUhIdrAwl9sXv3\nAVq1asKgQf04dMgHQ0MjKlSomKNtzJw5l+3btxEX94zo6GhKly6jU+7uPoWwsHCOHz8CwD//3Hjn\nNs3N81KhQkVOn/bl/PmzJCQkMHLkWBo3bvLO136Tp09jGT58EEZGRjg7V6JMmXJ06PBhgkQhPgUS\nsAkh9EqXLl+zY4c3Dg4OTJ48AdAmhZ01azpLlvxEs2bNWbXKk9y5c3/we0tJSaF3729YsmQFn31W\nSznu5lYfgLt3I3L0vszMzPDxOYOf33kCAi5Tq1ZtnfLChQvz/fcTlICtSZNm79ymkZERO3fu49df\nN5GY+ILPPqtNzZqfvfN1fX1PsGnTRmxsbBg16nvMzHJjamqqjECuXr2CPXt2U7KkA2fPXn7n9oT4\nr1FpPpX02Hrg8eM4kpNlpVJ6jIwMsLLKI32UCemnzLm51cPf/woAAwYMZs2aFenW+9Bz1gBlUcH0\n6bMYOHAoz58/p0SJgkq5n99VihWzz9E2Hz16iKNjSQAiImIwMDDQ+R7lz28OaEchDxw4RuXK6a9q\n/djat2/JyZM+Osd69OjD/PnaXHs7dngzYEBvWrZsg6fnphxpU37eMid9lLnUPvrY9Of5ghBCAB07\nfgVA8eLFlWBtxozZNG/eSqnTsGHjj3JvqWkwvv1Wm+7i1b93v/rq6xwP1gCsrPIrr19/JPxqqgtv\n7116G6wBbNjwCzNnzqFkSQflmJeXJ4MH9+fOnVu0bduB8PDHORasCfFfIyNs2SB/gWRM/krLGumn\nzKX20auT9Xv37s/cuQsyPTcyMpJRo4bi53eebdt2U66cI7ly5dKp8+zZU8aOHcm4ce6UKFHyne5V\nrVYredbe54hfZGQEsbGxlCmj3XXh1e+Rp+c6Hj6M5rvvxn6wlCbvqnv3r3j27CkdOnRi3rw5mJnl\nxtf3gpJwOKfIz1vmpI8yJyNsQgjxBgEB/yivX59s/7q4uDjWrFmBr68PBw/u59GjRzRqVIciRayZ\nMWMKADdv/kvHjm1YuHA+3t5/ULNmZYKC7rzTPX6ov3ft7AoqwdrrevTow8iR338ywRpo+83X9yRt\n2rSlc+cu3L0bxPPncR/7toTQaxKwCSH0UpEiRShfvgIA3t6/Z1hPrVbTtWsHJk78gaSkJJycyuuU\n29gU4JdffqZOner4+BwlKipSKXt99A20+2iGhYWycuUyhg8fxO+//0pERHi6bf/4o4fyunTpYpkG\ncMePH6Vevf9+mooFC+aycuWydMuSkpK4du0q+fLlo3//PixevJCBA4eSN69FuvWFEFqySlQIoce0\no0aLF69UjoSHhxEcHMyuXdvp0aMPv//+q5KFv3btOjg6OvHFF66cPXuZkiUdiIgIp2rVCsr5pUqV\npn79BowfP4mgoDtERUVStWp1pbxp0wY6m6Jv2bKZKlWqsX//0TR35+raiIUL5wMQG/uE58+fkydP\nxo9OOnXS5pEbN250lh7xfqrmztUGsn37Dkizm8G1awGEhmq3Hrt40Q8vry00bZrxrgtCCC0J2IQQ\neuvoUW32frVajUajISQkmGrVXuY6W7PmZSCXJ4859vbFsbcvrjOfbO5cD5KTk8mb1wIfnzNUqaId\ngVu0aLkSyEVGPlEeKdasWZurVwOwtLQiJuYxAL1790v3/j7/vK7yetWq9W8M1l61YcPaDxqwpaSk\n8PjxY2xsbJRj586dpV275jRq9AWbNm3J8Tbz5rVIdwSzbFlH5XVMTAzz5s2iWbPmOd6+EP818khU\nCKG3VCoVAQFXKFTIikKFrBgxYnCGdXfs2MvEieO4ezcIgBMnjtO4cV0qVaoMgINDKYoUKUrTpl/S\nrFlzZacCQGefzDlz5hMVFcvVqzfZvPkPfHzO0qVLt3TbPHXqpPLa3Nw8088TGfmE3bsPcO3a7Uzr\n5qTevb+hfHkHwsPDlGMtW35BUlIS+/fv5d69uznaXlRULLdvh6Q7ry537tzs2LFXWfUbEODPsWNH\ncrR9If6LJGATQui11FErtVrNyZM+DBv2HRERMZw5c4kTJ87x77/3uHLlBufPn2HNmpXUrFmZuLg4\nLlw4R0CAP7dva4Mj7cT253h5bcHLa4tOkJI6V+5Vnp5r6NatM/Xrf4af3/l0723gwL7K66FDv830\ns6hUKj77rBYFChTIThdkS1xcHDdv/qtz7NKlC4D28W5CQgJhYaE65b/99mFSady6dRO1Ws3nn9fF\nze3lzgmdO7dly5bNH+QehPhUScAmhNBrpUqVITLyCTVr1sLGxoZBg4ZjYGCAg0MpypVzxNLSikKF\nCtOz58vgSaNR07//ICpWrET//gOxtbXjyZMYSpQoiJ1dPgAOHDhOWNgjoqJiyZfPUqfNS5f8mDx5\nAi4u2rxmW7em/8jQw2Ou8jomJoaff/bM6Y+vI/URLWS8QrVkyULUqVNdJyD99ddt1KxZixYtWmJv\nb4uLixPFitnzyy+/4+NzlurVa9K2bfN3XjX7JsuXL+Hzz6tRsKAl168HYmSknZFjZmYGaANNIUTG\nZA6bEELvqVQqdu7cR0pKSppJ7Kly5crF/ftRAJiamgJw+PAJxowZobMy9NXEralBw+tOn9Y+Ir18\n+RL58uWjc+eu6dZzdNTOh8uTJw9xcXF88UXTbH6yzN2/f48pU9zZs2cXoP1M3t6/s2fPbi5dupbh\neVFRERQvXgIAZ+fK/PXXAdRqNc2bt2Lv3t0EB9+nSZMv//+aBzl16iRTprjj5fVbjn8GAB8f7aKN\nXLly8c03nTl/3h8Af//L1KvXQOaxCZEJCdiEEJ8EQ0PDTBOrpgZqqeLj49mxw1t5f/9+VJaSs/bv\nP5DIyHAiIyOZOXOuzmT9V6WOYllY5CMo6GXqD41Gw9Wr/gQE+FO5chXKl6/w1nnSevToSmDgVUxM\nTElMTMDBoTQrVqSfMuPFixfK6+vXr1OjRi2dcgMDAzZu3MyMGVPo06e/crx167ZMmzYxS/Pw3pa5\neV5Am9ajUiUXDAwM6NKlW4bzA4UQumSng2yQTNAZk2zZWSP9lLns9lFycjJbtmymdu3PmTlzKnv2\n7Obs2csUKVIUY2Njrl27yoYN62jW7Evc3HJuBCwuLo6SJQsBsGTJSrp06YZGo2H9+tUsWbJQJ3eb\nk1N5Nmz4BQeH0tlux9f3BAMH9mXv3kOYmppRoEAB7t8P4tixg/TpM1CnjzQajfLI18/vKrGxsTRs\n+DmlS5ehY8ev+PbbIVleyZrTwsPDWL16BXny5GHQoGHvNThMJT9vmZM+ypy+7HQgAVs2yBc6Y/JD\nnzXST5nLbh85OBTh2bOnVK1anYsXL+iUrVmzgbZtO7yX+0xt18rKihs37qJSqVi8eD4eHtPp0qUr\nDRo0xNnZmYiISMaMGUnBgoXZuXOfzjX8/S8zf/5cSpcuzeTJM7Lcdlb6qFatKty5o7satUOHzqxc\nuS77HzYbAgKu0LhxPfr06c+cOdrUJdevB7Jt2+80bNiYunXrv9f2XyU/b5mTPsqcvgRssuhACKF3\n1Go1iYmJWarbqdNXGBgY0Ldv2lxpqXO43vVebG0tsLXVzcT/7NlTAM6cuYRKpUKtVrN8+RIGDPiW\n5ctX0qlTZxwdnWjQoAHdunUnMPCqzvm+vidwc6vP33/vYd261Tm2zdUff/yGra2FMom/adMvGTPm\nB4oUKUpgYMZz3t5Fav8cPXqY0FDtCtTNm73YvNmLadMm0blzW5YuXUj79i0z3AEhu6KionByctB5\n5C3Ef5kEbEIIvWNoaEihQtZp0lOkZ+7cn4iIiKFiRZc0ZZUrV3nne0lJSUn3+NCh3wGwefMmpV5S\nUjIhISEkJyfr1L15818KFSqsc+zVFaXz5y/Osb1AU9OLFCtmD8DZs2dYvHgBoaEh3L9/jxkzJmNr\na8GcOTOIj4/PkTZT9e/fk+3btwKQmJjIyJFD8fb+g9q1a+PrexaAKVMm5EhbNWtW5uHDaAYM6J0j\n1xNC30nAJoTQW5aWVlmu6+RUnv37j+rk9zp37uw730OuXLnYuXMft24FK8eSkpJYtmwRAG3atFPq\nLV26ir1792BnZ0OtWjXZvt2b0NBQdu3amebR7IoVa7l0KZDIyCcZrkJ9G/fvR7Fr198sXbqSgQOH\n0rjxF/TrNxCAMmXKEBWlXUn700/z6NChVYYBaWaSk5Pp0aMLtrYWdOzYGdDO6/vrr51MnjyVI0eO\nc/NmEGfOnGfx4mUULVqUrl27UbGic458zhEjRqFSqVi4MGdG7ITQdzKHLRvkGX/GZB5E1kg/Zc7I\nyAAzM0MiIx+TO7fuxHS1Wk23bp05fPgAbdu2Z9UqTwwMdP/uTEhIYOnShfz66yY2b96ablLcdxUR\nEU6lSuXIk8ecoKAwnbLWrZtx5swpihcvwb17d8mTxxwzMzN8fc9jZZU/R9rPzvfo5s1/iY9/jp/f\nBb74oinh4WG0aPGFUn7rVjAWFvmyfQ+7dv1Jv349AfjuuzFUr16DVauWExoaTPfuPTl8+BB169Zj\n8OChgDbAa9CgHnXr1mfx4hXZbu9tyM9b5qSPMvfJzmE7dOgQjo6OODk5Kf8eMWIEACEhIfTu3Zsq\nVarQsmVLfH19dc719vbmyy+/pEqVKnz11VdcvHhRp3zjxo3Ur1+fatWq4e7urjOH5cWLF0yYMIEa\nNWpQr149NmzYoHNuZm2fOnWKVq1a4eLiQq9evQgODkYIoZ9MTU2xsLBIc/zixQscPnwAgB07tjNp\n0g/pnjt27HguXQrMdrB2924QtrYW9OzZlc8+S/uINVX+/NYAxMU949mzZzplu3b9TWTkE44fP4O7\n+xSGDfuOI0dO5liwlh1+fuepU6c6bm71GTduFL6+J/jnnxsAODtXombNWm8VrGk0Gry8tL+DCxUq\nTK9efWnS5EsqVHAmKCiIOXNmcfVqAHPnzsbPT7sQ5PjxowQH3+frr3vk3AcU4n9ItgO2W7du0ahR\nI3x9ffH19eXkyZN4eHgAMHjwYGxtbfH29qZ169YMHTqUiIgIAHx8fJgxYwZDhw5l165dfP755wwY\nMIAHDx4AsH//flasWMGMGTP4+eefuXLlCvPmzVPanTt3LoGBgWzatIkpU6awbNkyDhw4oJQPGTIk\nw7bDw8MZMmQIHTp0wNvbGysrK4YMGfL2vSaE+OBsbS1o3txNJy2FtXX6+dFAG1Rs2bKZ4OD7WW4j\nNQjZt28PQUF3sLW1YO3alWnqGRsbKylC9u7dnaZcpVKRO3duRowYzahR31OwYKF029uzZze2thbs\n27cny/f4OrVazY0b19MtS07WfdxpaWnFggVzUalUPH78mGrVatCyZRNsbS0YPnxQltp7/vw5T57E\n4ONzDNCmD4mPf05AgD/jxk3Ay2sL16/fYeZM7S4Q337bn4ED+zNy5Ahq1apNzZqfvfH6wcH33+uO\nC0J8qrIdsN2+fZsyZcqQP39+rK2tsba2xtzcnNOnTxMSEsL06dNxcHBgwIABuLi4sG3bNgB27NhB\n+/btadGiBcWKFWPEiBHY2Nhw7NgxADZt2kTPnj1xdXWlYsWKTJs2jW3btpGYmEh8fDzbtm1j4sSJ\nODo64ubmRr9+/fjll18AOH36NMHBwRm2/ccff+Ds7EyvXr0oVaoUs2fPJjQ0lPPn098fUAihv17d\nwui778bolD1//pwZM6ZgZ5eP4sXtGD58ENWqVcTf/3KWrj1p0jS2bt2pk2Lj8ePH6dadO1ebsiIr\ne4hm5OTJ4wDMmZP1lB6vevbsGQULWlK//mdKsPmqEiVKKK+nTJnJ2rUrCQ0NYfDgITx8GI2BgYor\nVy4B2n1GU1JSGDSoHwMH9iEyMjLN9UJDQ3B0LEGrVs2UYw8fPqRBg89p3LguDg5F6NGjC336dMfB\noRQLFiyhcmUX/Pz8aN++E5s2/f7GxRXPnj2lWrWKfPaZC9HR0SQkJLxVvwjxX5TtnQ5u375NnTp1\n0hz39/enQoUKmJiYKMeqVavG5cvaX5T9+/dPN2Hjs2fPUKvVBAQEMGzYMOW4i4sLSUlJ3LhxA7Va\nTUpKCi4uLjrXXr16dZba9vf3p0aNGkqZqakp5cuX59KlSzrHhRD6IykpCU/P9bRp0x4rKyuMjY11\nMvmPGDFamb/m7f0Hq1Ytx82tCUuXLsTa2pqyZR0pXrwEe/bswstrA/PnL860TZVKhatrQ+rXb0Bi\nYgJVq1anYcPG7+0zzpo1j7p1XWnQoNFbnb9//8u8bmPGjKBHD90Vk3Z2BVm2bDVFixbj88/rcunS\nBaysrIiPTyAhIYGuXbszadJ0+vXrQYECtkRFReLt/QcABw8e4ODBYzrJfhMTtef988/LEb3du/9M\nk4Ll+PGjWFhYsH79Jrp375Xlz/NqcFy+vHYLsaioWEA7YurpuYYKFZypVevzLF9TiP+KbAdsQUFB\nnDhxgpUrV6JWq2nWrBnDhw/nwYMH2Nra6tS1trZW/kpzcnLSKfPx8eHevXvUrl2b2NhYEhMTdc43\nNDTE0tKSiIgIVCoVlpaWOvv+WVtbk5iYyOPHjzNtOyoqKk25jY1Nun9BCiE+ntWrl3P79k3atGnF\nkiXLOHr52ZiEAAAgAElEQVT0MOPHj+HkyXNKsObuPoURI0Yr5zx69JDp0ycRHh6u7DVqbm6Om1sT\ncufOzZUrl7h+PTBb96FSqRg9ely6ZU+fxlKrVlUePNCuthw1auxbflptOy1atHrr81u2bJ1pnVdX\noE6bNotWrZri6bmOdu06ULZsOQA8PbVPK9RqNcWK2ZMrlxF37txhw4b1zJgxWzm/ZMlSFCpUmPBw\n7UKLJUtWcuiQdmqKkZER5co50q1bT1xdG1KiRMlsf55ixexZt+5nZTFDqvj4eAYP7seePdrHz6lB\nnBD/S7IVsIWFhZGQkICJiQmLFy8mJCQEDw8PEhISiI+PT7Mp8+t/Eae6f/8+EyZMoHXr1jg6OipB\nWUbnq9XqdMtAuxghs7YTEhKyfG9CiI/j4cOHTJo0HoCNGz11yn777Rfu3YvkyZOYNPPBTp3yJTw8\nnAYNGnHs2BHmzv0JD49pbNiwjooVnbl16yZjxmgXJzx69BBHx5Js2bKdRo3c3uo+u3TpoARrAP36\nZW3u1/tgYmKCl9cW4uKe0b59p0zrFylSlFOn/AgLC003oDIwMGD58rWMGDEYgJAQ3cVZKpWKNWs2\nsnv3n3z11dc4O1fG1taWcuUc6dSpy1sFaa+6d++uTrDWvn0n5b9Zqo4dv3qnNoT4VGUrYCtcuDBn\nz55VVm85OjqiVqsZO3Ys7du3JzZW96+eFy9epNmMOSgoiD59+lC8eHFmzNDO2zA2Nkaj0aQJoF68\neIGZmRnJycnplgGYmZlhYmLCkydPMmzbxMQk3fPTW4X2JoaGkrYuI6l9I330ZtJPb6LGwMAAtfpl\nagFz87w8e/aUjRs9mTFjFnnzpre0Xlv/2LEjtG3bnv79B2BvX4zu3bsSFRVJ69ZtGTRoCEZGBsoC\ngi5d2vPo0bN0rvVmsbFPOH/+ZW63AgUKkD+/JUZG2v+e9+/fw9t7K999NzrHEuGm59XvUcuWLbN1\nrrl5bsqWLZNhed26dbhw4TJBQXewsbHByMiA0NBQChYsiKGhIXXqfE6dOi8fSTZp0pQmTbK3R2tk\nZCQ2NjYYGhrqHB8yZAAAtra2mJqaYmNjw7ff9tGpM3nyNP799zp162oXL1StWp19+w6SK1euNO3I\nz1vmpI8ypy99k+1Hoq8HOaVKlSIxMREbGxtu39bdty46OpoCBQoo72/evEnv3r2xt7dnzZo1yqiX\nlZUVJiYmREdHU7Kk9i+plJQUYmJiKFCgAGq1mpiYGNRqtTJnJTo6Wln6b2dnx61btzJs287OTlmN\n+mr5649pM//sZtmq/79I+ihrpJ/SsrJywNvbm8uXL3Px4kV2795NoUIFuXnzKUZGhhnmQfrmmy5E\nR0dw7tw5Nm/ejLGxMV26dKRly2aYmZnpBAWTJk3g1KkTLF++/K3yKuXPr5sX7sGDB2zevIFRo0b9\nf7k2jUhyciKzZs3K9vWz631+j/LnrwTA4cOHcXPTjkampKSkyXuXXRERETg5lQJIsx1Xp04dOHfu\nDFFRUdjZ2REcfJfjx48q5atXr8bZuRz+/v7KsYsXL1CgQL43Bsjy85Y56SP9l62A7eTJk4wePRof\nHx9lgn9gYCBWVlZUr14dT09PXrx4oQRifn5+VK9eHdD+Yuvbty8lS5Zk7dq1OiNvKpUKZ2dn/Pz8\nlEUAly5dIleuXDg6OqLRaDAyMuLy5ctUrVoVgAsXLlCxYkUAKleuzNq1azNsu3Llyjo53+Lj4wkM\nDNRZ5JAVsbHxpKRIYsH0GBoaYGFhJn2UCemnN3N1/YJGjZoSEHCRf/+9yaFDx5XFSo8fx2V4Xr9+\ng+nXbzBxcUnExSX9/1EVMTEPKVbMDuD/R9SM2LPnYKbXy6oiRYrSqVM35Vp2dnZERkayffufjB3r\n/s7Xz8j7/B6lpKSwd+9f1KtXH0tLKy5cuKSU/fTTYvr2HfDW11ar1RQq9PKRtkqlYtu2Hcrj6b59\nBzF2rHZOYJ485kRFRdOiRStl7tr8+Qvo1KkbxYqV4sKFK/z99z4GDRpCTMzzdNvLbj9pNBp+/fUX\nhg0bRNOmzfjtt21v/Vk/FfI7KXOpffSxZStgq1KlCmZmZri7uzNkyBDu37/PvHnz6N+/PzVq1KBQ\noUL88MMPDB48mCNHjhAQEMDcudpcPHPmzEGtVjNz5kyePXuZbDJ37tzkzp2br7/+milTplC6dGls\nbW2ZNm0anTt3VgLDNm3aMGXKFGbNmkVkZCQbNmxgzpw5ANSsWTPdtlPLO3TogKenJ2vXrqVhw4Ys\nW7YMe3t7atasma3OSklRSyboTEgfZY3005vVqVOH06cvkJz8bv0UEfFyYVFO9Le//z9UqqSdqH/l\nyg1lf9DUa7u5NWXzZi+aNPnyg/z3fR/fo9GjR7Bp00aKFy/B+fP+VKlSXSlbu3Y1hQsXxc2tKSdO\nHKdjx9Y0a9aCqVNn6KwmzciZM6fTHJs0yZ2OHdtSr54rK1euJzT0Ideu+ePu/oPO42fQTmVJ/bz2\n9iUZMGAwKSka4M0b9mS1n77/fiQbN64HYP/+v/nzz+20atU20/P+C+R3kv7L9tZUt2/fZtasWVy+\nfJk8efLQpUsXBg/WTlANDg5mwoQJ+Pv7Y29vj7u7O7Vq1QK0aTpeX/oN2oS3Q4dqty5Zu3YtGzdu\nJCkpiaZNmzJp0iRlxCwhIYFp06axf/9+8ubNS79+/ejevbtynTe1DXDixAk8PDyIjIykatWqTJ8+\nnSJFimSrs2TrjozJ9iZZI/2UuVf7aPTo79iwYR0BAf9iZ1cwTd3UX1/pPQ6rXt2Z+/fvsXDhMipW\ndM6RjeBBm8AXtHt2vj5HNywslJ9/Xs+wYaMwNzdP7/Qsu349kCtXLtGlS7c0ZRl9j27dusnnn1fj\n+vUgrK2t36rdtm1bcOrUCQDu3AnD3NycsmWLExPzGFNTUxISEhg3zp1582Yr8w2trPJz5cqNNP3x\nuqSkJLp0ac/du3fS3W3GwMCAHTv20rp1M53jx4+fwdg4F6VKZTz3Lj3Z/XnbscNb2Uze0tIKKysr\nzp7NWg6/T5X8TsqcvmxNJXuJZoN8oTMmP/RZI/2UuVf7yMGhKDExMfz55x7q1KmnU2/37h307avd\n5ujV0a779++xZMlCdu/ewePHjzJMARET85gWLb5g7tyfqFu3vk5Zy5ZNOHfuDD179mXevIVERIRz\n8OB+vvmmJ507t+X48aOsXu1Ju3Yd30MPaO+tbNniAISGPkwzoT6j71GJEoV4/jyOHj36MH/+ordq\n++HDhwwY0AuNRsMff+zAyMiIgIArHD16mJMnT3Ds2GGlbocOnXB2rsTUqZPYvv2vNP2YkfbtW3Ly\npE+6ZRYW+YiN1S4iq1+/AWvWbFC2AssuIyMDLC1zc/ToSQoWLKIzpzojCxfOY/bsGVhb2/DwYfQ7\nrSj+FMjvpMzpS8CmH0sfhBAiHWfPXubatdtpgrXk5GQlWAPImzev8nrYsIF4eXkyffosgoN1Fxu9\n6siRQ9y8+S/9+qXd2/LcuTMA/Pzzeh4+fEilSuUYPXo4p06dVCbB5879/n6Bpz6WA3RWzWZm0aJl\n5Mljjrv75Ldu29raGm/v3Wzf/peS+9LZuTLDho2kadOXI1/lyjlib19cGeXMlcs43eulZ9KkaeTJ\nkyfdBQypwRrAgwdRbx2spXJ1daVx4/pUqFCKiIjwTOt/990YatX6nIcPo7G3t6dr1w5s3brlne5B\niJwgAZsQQm9ZWeVPd1TEyMgID4+5GBsbM378JMzNXwZs48a5U758Rdq0aa+z+8mr7t+/x8CBfQG4\ncOFqmvJXc329upeovX1x5XWTJrqP7XLSrFnTAahcuUqGnyE9bdt2ICgoLEc3mvfy2siXXzbGzi4f\n48ePxcrKivXrf+b778fj4FCKP/7YgqWlJRUrOuucd/78WWxtLejdu1ua1aBVqlQjKCiciIgYQkMf\nMmzYyHTbrlfP9Z3uffJkd06cOKG8v3z50htqa6lUKvr06Q+Ao2N5NBoNQ4YMoHXrZmk+hxAfkjwS\nzQYZMs6YDKtnjfRT5t53H12+fJEmTRoo7xctWs7XX3fXqaNWq2nXrgWnT/uyYcNmTEyMady4CXZ2\n+QBYv97rvU5GnzhxHEFBQUyePJ1y5RzTlKfXR3Fxcfzww2jGjPmB4sVLZNpGp06tOXHCB0fH8pQq\nVZqBA4dQo8bLjdk1Gg1XrwbQuHFdnfMqVnTm0aNHxMc/Jz4+nly5cuHltUVnFFSj0VCuXAliYrRb\nTc2Zs0AJgtLj5OTAw4fROsemTJlBnz4DMDN7u9V5UVFRVKz4ciGEk1N59uw5qBPcZyQ+Pp42bb7k\n8uWLqFQqJVB73//dPwb5nZQ5fXkkmu08bEII8SkrW/ZlAGRoaJjuvpSRkRHcuXObqlWr06BBI/Lk\nyaPzaPJ9/0975sy52T7n7t0gfv/9V27e/Ie//z6aaf3w8AjUajW2tgW4ePECLVp8AUD9+q5ERz8k\nMDDtyCPAjRs3aNOmHaVKlcbY2IR27TpQrJh9mnoajYZq1Wrg53eeXbv+fGPAduTISSpX1g1Mr14N\neOtgDcDU1ARHRydu3LhOpUqV+fvvozrbG76JmZkZ+/cfJSkpCS8vTyZM+B6AihUrvfX9CPGu5JGo\nEOJ/Su7cuTl37gq3bgUTHv6Ys2dPc+2abnBSubIjkZERXLx4gdWrVwDa7bEAevTok+aaH9OaNSuw\ntbXAwMCAIkWK8v33E7J03vjxkwCIiYmhePGXj3p9fI7rBGu9e2sfHRcsWIhx49y5cMGflSvXMWbM\nDwwfPjLdYE2lUtG2bQf8/M6jUql09iNNT6FChQkLe0SHDp2VYz179tWp0759S2xtLbC1teD27ZuZ\nfj4Li3ycOnWehw8fcuyYb5aDtVc/gzYJ8zf06tWXdet+pmRJB6U8IiKcGzeuy2NS8cHICJsQ4n9O\n6p6Xz549VfbNfHU16dKlqxg2bCAArVq1ISIinNOnfQHtlnz6xNf3JABTp7pz6VLWN7lv0aIV69d7\nMX78WAwNDZk2bRb79u3mzJnTSvqO0qXLKDtFbN/+F6VLZz2thofHXBwdnbCzK4izc+VM6xsZGbFy\n5ToWLVqe7ry9L79soawsrV27GpcvX6dw4cxTM+XPn/+dkiSbm5vz448L0xzv0qUDgYFXKVKkKN7e\nu3FwKPXWbQiRFTLCJoT4n5W60nPkyDE6x7/66mt27fqbpk2bExBwhZo1K/PHH78BEBR054Pf55tM\nnTqTZs1aKCNm2dGqVVsCAv7lypUbfPvtYPr3125kn5CQAGjzulWpUg0LCwvWr1+drWsbGxvTt+8A\nWrZsna3zMlpk0b//ILZs2a68v3//fraum9NSd3wIDQ2hVq0qpKSkAODnd56pUyem2b861b///kOZ\nMsWwtbUgLCz0g92v+PTJCJsQ4n+WgYFBhnnaduzwZv/+vezfv5dy5Rz5558bADRo0OhD3mKmSpZ0\nwMvrt7c+X6VSERUVxfDhAzly5JBOHjSA48ePkZKSkuU0JtevB5KYmICLS9W3vqeMNGrkxv37UURH\nP6Bo0WJoNBqOHz+Kg0MpnRW8H0L37r04c+aUkvLjzp3b/PHHbyxevACAR48esmTJyjTnzZw5hSdP\ntP27d+9u+vUb+OFuWnzSZIRNCPFJ0Gg0OoHE+5Y6YgJQqZKL8rpevQYf7B7elyNHDirzwK5du0rF\niqU5cuQQ3303moULl7BgwWLq1KmLi0tVYmOfEBcXx4ABgzO9bmzsE1xda9GkSQOaN3cjIOBKjt+7\nqakpRYsWA+Cvv3bRuXNbqld3xtbWgi1bNud4e2+ybNlqxo+fhKOjE/nyWSr3BWBra5fuOVWqVFNe\nV6qUM7tvANy7d5eDB//OsesJ/SMBmxDik2Bnl4/SpYtlmCE/p7Vs2YYiRYpSv34DfvppqTKXy97e\nFnt72w9yD+/Djz/OokuXDtSuXY0nT2Jo2FC7Snb6dA+cnbWrIC0tLenTpz/Dho1Q3tvaZv6Z8+a1\nUF5fuHCOVauWv4dP8NLOnd46iwleXzySmYSEBPbt28O6dav4+++9PH2a/mhrqmfPnlKwoKUSGKpU\nKkaOHIuPz1lsbW3p2bMPs2bNA2DJkp9o0+ZLncAftIl5jxzx5fRpPxwcSmW4aCEyMgJbWws2bdqY\npc9So0YlunXrzPPnz99Y78iRg8riDVtbC/LnN6do0aJp7lPoHwnYhBCflBMnjqV7/OrVgBxdsefq\n2pBdu/7Gy2sLJiYmXL16SylLSEggOTk5x9r6kJ4+fQrA55/XJTIyUjlepEjRNHU1Gg0XL16gefNW\n6e7X+jrt49VYvLy0jwnLlCmbQ3edvqdPn5KcnEyePOYMHToiW/P44uLicHWtRc+eXZkw4Xt69OhC\n+fKlWLVqWYbn/P33XtRqNcOHD0pTptFo2LzZi4cPHyrHTp/2JSREd8/U+/fv0ahRHVq1akr58g7Y\n2eVT8tWB9lHqwIF9cXbW9t3o0cOz9Hnmz19M8+atMDAwyHD+XEDAFbp06ZDmeJkyLxeXCP0lc9iE\nEJ+Ef/+9x9atW2jevFWasjNnTtO6dVMAIiJi0t3yKCuSk5MZPnwQRYsWY9Gi+Tpl5ctX1Hl/48b1\nNNn9UyUlJeHqWotbt27i5bWFZs2av9X9vA/Tp89i1KixWFnlZ8oUbQoQlUrFjh3bKVDAFisrK5KT\nkzl27Ah37tzh6dPYdDegf1ViYiLFiml3pAgLe0SzZs0JCYnG2Djr21Vlx+3bN4mLi+Pnn3/jyJFD\nVK9eM0sjgK/67bdN3Lt3j3nzfsLOriDR0Q84ePAAkydPoE6d+spoI8Du3TsZN24UiYkJyrHw8DBl\n/1qAnTu3M3LkUAD8/K6SJ08eNBrtVl+vOnHiOACPHj3CxaUqly9f5OTJE8riDE/PtWzfvlWp//o+\nshnp0aM3rVu3xd7eFlfXhmzdujNNne+/H5Xm2Pbtu2nXruU7raQVH4YEbEKIT4KlpZWyivF1Vau+\nnBcUFhaqM5coOwoX1t3SycjISBlJCwy8StGixQgJCaZ06TI4OZXP8DqhoSHcuqWdI5YvX75s3YNa\nrWbPnl3ExsbStes3bx18ZkSlUilbV61cqR1N0mg07N6t+z/4woWL0Lp1W+rXb5BucuFXJSUlKa9T\nA9n3FayBNq0HwIULATRv3jLb59+/f4+5c2dRr159SpXS7oZgbm5O/fqu7Nu3h4iIMJ2Azd39e6Kj\ndfelPXz4IN980xPQjtYdP36UEiVKMn36LAYM6M2SJSvTHWHs2vUbjh49xOHDh7C0tASgQoWXfwy8\nurNFu3YdWL16Q5Y/V0hICECGjzdfT4Y8ceJUGjRomOXri49LAjYhxCfP2NiY69eDuHLl4lsHa4mJ\nicrrZs2a8+OPCylYsBCgTaQbHh6mPN66desmXbt24I8/dqR7rRIlSiq5udJ71Pgmo0cPZ/NmL0C7\n8nDSpGlv83GypEGDRhw7dkR537HjVzRq5IaLSxVKlSqTpcegoA12AgJucuvWvzrBx/vSsmUb/vpr\nJ0lJ6T/6exO1Ws2oUcP+P+2I7u4Lv/zihZNTeVxdG+nUT2/T+FGjhlGpUmUqVqxEo0Z1lHQvfn4X\n8PM7T5061Tl37oqS8y86OprNm71YtGg+cXHPAJS+j4yM4Ny5MwwbNpCOHb9i4cJlLFgwl1WrPLP1\n2SpWdCY4+EGGqVFef1RatWqNbF1ffFwyh00I8Z9gbW1No0ZfvNW5Go2Gb77RZtk3MzPDy2uLEqwB\n+PqeT3POnTu333jNevVcsx2sge6InLm5ebbPz441azbw5ZctlPf//vsPgwf3x9f3ZJaDtVR2dnbU\nqVMv2+e9DU/PTURFxVKqVNYT+b48dw0+PscYOHBwmv6Njn5AkyZf6owOGhgYcODAMWW0rFIlF6ZO\n9QBg2rRJXLlySSc3X2paD4BevV4+Sv722z54eExVgrURI0YrZcuXL2HhQu1iBY1GQ7duPbh48dpb\n9WVGwZr22rrv69atl35FoZckYBNC/M+7du0qx49r9998NTlrqri4OJYuXUVk5BPlf9YZja69q6lT\nPVi92pOJE6fSpUs3du/eoSSyzWkHD+5nxIjRLFmykhEjRjNunHZOm77lmsspGo2GefNm88UXTahS\nJW2eOGtrG/799x8AfHyOYWtrwfHjR3FxqaqMwHbu3IWYmEf07z+Q2bPnM2fOzDTXWbp0FcbGxgQG\nXlX+EChQwEanjrv7FCpVqoyJiQkHDuyjRYtWbNz4K8uXr8npj63In9/qvV1bvH8SsAkh9EpYWBgq\nlYoDBz5cTqnUnFllypSldu06acrXr1/DsGEDadeuBYMHDyMqKva9bkXUrl1Hhg8fxbRpk+jbtwff\nfz8yx9tYtWo5Q4YMoFmzRri5NcXdfQpffNGMqKhYihcvkePt6YP79+/x+PFjqlevmW65i0sVjh07\njFqtxtNzLQD79v0FaAP5jh2/4uzZMyxatIC1a1dRtmy5dFdXVqjgzL592sedDRs2BmDVKk8uXAig\nU6cuylZXhQtr02loNBquXbtG8+Ytsz1n0d//spKiY+pU9zfWLVHC4Y3lQr9JwCaE0CvLli0GoEuX\njh986574+Ph0j9vZaQO68+fPfsjboXPnLgBKZvycsmrVMiZPHq+8b9LEFbVanaNt6KPUPG0lS2rn\nlWk0Gp25iyYmJsTHxxMaGkKnTl3YuXMfM2bMAaB06TKsWLGWxo21j93btevIkycxdO3anVOnLhAe\n/pgePXpjbp73//dPrURUVCx9+36rXN/evjjLl6+hVy/txvazZv2o9HtQ0JsfsWfk1cemK1YsfWPd\nHj1667x/NQWJ0H+y6EAIoVe++aY7q1Ytp1KlylhYWGR+Qg6wstI+KgoJCSYw8Brly1fQKe/duz9V\nqlTD1NTsg9xPqkaNvshw66y39e+//zB58gTlvY2NDc+f/3dTOiQlJfHDD2Np2LAx5cqVw8jIiIUL\nF9CoUWP++ecfDh06QJ48eVixYg358mlXbVar9nLhhI1NAYYNG0m9eq7cu3eX5ORkPD03Ub16TQYO\n7MvhwwcBOHfuCvPnL2bWrHmZrpA9cuQQXbq0Z/fu/SxatJzhwwfRrFmLN57zunPnztKy5Rf88svv\nnDx5nvPnz+Lo6PTGc15PTbNp0wbGjPk+W+2Kj0elyclMk/9xjx/HkZz83/8r9G0YGRlgZZVH+igT\n0k+Z+1h9ZGv7MjjM6SApp71LH736OUGbvmPy5Om0b98pJ29RLxgZGfD4cSSlSpXCyMiIsLBHnDhx\nnOnTJ3HlyuUMzytdugw//OBOVFQkEyaMy1JbgwcPY8WKpXh4zCU0NISpUz0ICLhCx46t2bfviM4j\n9IED+7B9+zYlTUyJEiU5dy7r23g9eRJDmTL2yvusfl+rVatIcPB9nWOPHj2T30mZSP15+9jkkagQ\nQpD2f3oeHtOwtbUgMjLiI93R+xcW9ojLl6+nG6ylpKQQFRX1Ee4qazQaDcOHD2LcuFHcv3+P2Ngn\n6e50UbJkSRwcSnHwoHZLs3r1XDl40Id79yK5cCEgTX1X1waMHz+R/Pnz4+jopIxa1ar1OevX/8zv\nv3uzcOESnXOmTJmhPI50dx/HihVLefbsKZMmjefx48dcuHBOp/7KleuZN28R69b9TL16rnz//QSy\nas+e3TrBWlZpNJo0wZr4tEjAJoT4ZFy/HqiTBf59+vXXTQDvZQPzj+nw4ZMAODmV19mH81XHjx+l\nUCErKlYsneUVqjdv/sv9+/dy7D5flZCQwLp1q7C1tVACo/XrV7Nly2Y2bFhH9erOlC5djGrVKnL4\n8AGePo3lwoVzXLlymb///ps7d27TsOHnOuk3TE1NqV497U4VtrZ2SkLbY8eOcuPGdQDOnDmFlZUV\nuXLlonjxEjqPzS9evJBm8UHu3Hk4dUrb1/PmzdYpU6lU9OzZhwoVnFm1ypOOHb/Kcl+8mnsub968\nHDhwLEvnqVSqNLsm5M+fP4PaQh/JHDYhhF56+vQp169fp2rV6sqx5s3diIt7hqtrozRb/uQkW1sL\nIiJiSEhIIHfu3O+tnQ8lMTGRpKQXmJvnVSbDv2k2zJMnMcprU1PTTK+/YsUSpk6dCMDQod8xefL0\nd7/p/3fjxnV69erGnTvavVynTnXn9u2bNGzoptSZMGES8fHPWbhwAWPHjiQ6+kG6geaRIweVRQAq\nlQoPj7m4u4+jW7ceVKtWg6NHD7N16+8cPLifQoUKc/16IG5uTTl0aH+aa02YMImEhHg2bfLi7t27\nhIdr9wO9c+cWRka5MDAwoFw5R/755wb37t1l69YtvHjxQmf3iiVLfmLevNk4Ojrh45O1BS3Vqr1M\ndrtmzQZcXNKmJ8nIqztSABgbZ5yzTegfGWETQuilFSuW0qxZI3777RflmIPD+01LEBj4cgTm6dPY\n9xasPX78CFtbCyVZ6tv64YexdOzYOt1M/GfPnuGnn35k4cJ5FCtWAAeHIjrlb0rK2rp1O6KiYrM0\nN2rr1i1KsAYvU6S8K41Gw5Ejh2jT5kuMjAzx9t6Jv38gEyZMZMcObwYM6MWMGdqRqyNHDvHihTYY\nCQkJ5ptveuDrewYfH1+2bNnChAkTyZUrF199pbsnav/+g4iKimXhwmV8801P1q/3YufOffTq1Y9i\nxewZN86dTZu2MG/eIgA2bFinBLq5c+cmf35rTE1NCQy8qhx3cCiNvX1xQDef3ZAhAxg5cihnzpwC\ntKuhU0feUkfxsiJv3rwA1K5dh8aNm2SrT/Pn1/0jJ73vjdBfErAJIfRS27btAbhw4Rw+Psd48eIF\nS5euZu3aje9tdM3GxoYCBbSbiJcpY8+9e3ffSzupWxItXvzTW1+jQYMGrFmzEh+fY/z5p7dO2cSJ\nP9CqVRMWL17A7Nkz3uleMzNkyACd95Mnj6dPn+4sWbLwra/5/PlzOnVqQ5cu7SldujSenhsxNDTg\n5K1Wn90AACAASURBVMkTdO3ajUOHjqJSGZCYmMiKFWu5ceMGy5dr55V98UVTFi5cjLNzJQ4ePEBI\nSAgREeE4OJTK0s4RtWvXYcKEyfzyyx+MHj0OQ0NDevTozezZ89i9excjRw7nwoWXO18UL16clJQU\nJeHuq8aNm5hmxWjqPLKbN1/W37jx1zfe099/76Vevc+wtbWgbNninDhxTmdz98jICDw8pmUagL2+\nr21WN5YX+kFWiWaDrKLJmKx+zBrpp8y92kceHjNYsGAuAMWK2XPu3JV0E5XmpJiYx5QtW1zn2Pz5\ni9PksHoX2g3ed9OokRt58mR/9ZmRkQH5878MPu7fj1IeXYaEBFO1qnZ+VYsWLcmXz5Lff/8NP7+r\nFC5cJN3rva2HDx/i5KTNaebr60edOtV0yt92tW1AwBUaN9Zum1SsmD3m5uZcvx4IwI4du9FoNLRr\n15r1671o1aotz5494+7dO7Rt24JChQqxc+duwsPDadiwvnLN7K7EBEhOTtaZ53fs2BF++ulHAgL8\nWbduAyYmJsTFxdG9e1emTZvFoEFD01zj0aOHODqWVN6Hhz/G0NCQZ8+eMmWKO/36DcTJqfwb72P/\n/n10766d51akSFEuXQrUKZ81azqLFs2nVKnSnD59McPrfPPNVxw4sE957+Exl0GDhsjvpEzIKlEh\nhMjE9evXMDMzo0WL1gQH3+fQoQPp1nvx4gUREeE8ffru6TgsLa04fvyMzrExY0a8cc5XdhkYGNCq\nVZu3CtZSnThxgoULl3LqlJ/OPLNXA1pf35Ps3fsXzZq1yPFgDVCCNYA8eXLu8XHFipWYMmUm/foN\npFWrttSsWVspa9u2Fe3atQbA1bUhoN1ztWLFSuzZc5C4uDicnMoqwVrJkiUpXboMffr0T9vQG9St\nW4PChfOzfv3LraIaNGjE9OmziIt7Rs+e3Zg5czobNqwDtN/V4cMHpRlpy5/fmr17D1GzZi22b/9L\n+e9jbp6XBQuWkD+/NbNnT9dJ4Ps6N7eXjz7PnLmUYXmVKtXSlL2qTZt2Ou/79x/0xvpCv8iiAyGE\n3mratDl79/7F3bvauWVmZmkT186YMYVfftnI48faSd+pozq3b98kNDSUevVcs72JtpNTef755y7J\nySlUqKDNn6XRaD7IxuZZVbduXSpUqJJmVKRQocJMnz6LyZMnEBMTQ8OGjZkzZ0EGV3l7z58/13mf\nN68F3347hH/+uc6xY0cYOXLsW1334sULlC3ryJAhw3WO9+zZh8aN6/L1192JiIjgxx9/wsJC9xFf\nuXKOHDzow44d3lhYWFC1alVq1qzCkyfx2R49Sg28Uvf5bNmyCatWrad69Zp0796bTZs2cPv2TfLl\ns6ROnXps2bIZgC1bNjNv3iJ69uxDbOwTSpcuRseOX/HXX+n/seHpuZqFC+fj6Fiedu06plvH0NAQ\ne/vi/8feWYdFsb1x/EMoqIiCsoiogK0oYoFxbbG7u7u7Cwu7E/saoKLYjYWIdRXBwCAUUUIlFGn2\n98fcHVh3gQXz/tzP89zn7s45c2Z2nGXfOed9v1/69Bmg1NzdxqaGSrOZP3p2Ws2PRb0kmgXUU8bp\no17qUw31dVJEKpVy6tRxHB03U6mSNZMnT6VkSTMiImKIjIxi3LhRnDjhSps27dm2bbdc0PT1chOk\nBmwygdhSpUrj4XEv2+f3qwR1ZcddvHgZgwYNk2v7+j6SBU+yIomkpCQcHTfTuHETSpcu88PPEWDH\njj0MHNgXicSYR49eZGs8L6/7NGlSH4AlS1ZiaGhIq1Zt05UfyYzvITB86NAxZsyYzMuXwmeSVdiG\nhoZQqJAJAE+ePKZ+/Zpy+2/bthszM3Px8/j4vBAtzkC477dt2wwIOYcAc+cupG/fASrl2mUHF5eD\njBiROtMYHPyBXLl01H+TMkG9JKpGjRo1gIPDfAYO7MPt2544Om6mVClzevXqRXh4GHp6edm+fQ+v\nXoWyffsehRmuhIQEufd9+w4UX58+LVgGRUZGkl2Sk5M5cSJV0kHZslVAgD/nzp35LsuxypAFChlh\nbl4Ic/NCoi+ltrY2I0aM/qHBGkBoaBRnz7px/vwV8uQRgoywsNBsj1eqVOr5Tps2kSFD+sstu/5I\njh49jESiz9ixI/4NyKIIDv5A/foNWbhQ8BMdNChVEkQWrAGUL2+pMPM1eHA/8uXLz8KFS5gyZQYS\niURsi4+PZ9u2LcyaNY1Zs6YxdepM+vUbiL39LO7c8RT7vXoVSNu2zbl1y5OviYj4yKZN65FI9KlZ\nUzVpj6JF5XMz/wT/2P8n1AGbGjVqfilpxVZlFZr79++nYsVyjB49nIiIj0qXQgEKFTIhLCyaWbPm\nAVCpkrXYVr26LbduPeDkyXNy+yQnJ6v8Q2ViYkCbNk3F91//KN+4cR1bW2v69OlGqVLFWL8++5WR\nX/P27Udevw5TaTmzf/9BAN81z04VNDQ0qFq1OpUrV6VhQzuWLl0lSm1khzx58hAWFo2b2w0WL14G\nCMb3aQVvfxSXL18CwMlpH58+RcsJzco8XRcvTl+Gxc3NXWFbnTo2DBkygkmTpsk9bGzevJ5Zs1It\nryIiPlKkSFEAnj5Nlfi4d+8Onp4eODntVRj72LGjzJs3EwA/v5cqSXQUKybvkHD4sFOm+6j5fVAv\niWYB9ZRx+qiX+lRDfZ0U8fV9St26tuL78eMnsnq1EKRoaGiQM2dOjh07IycYqoxbtzyxsbEVRUnT\nQ7bUJavWU0ZMTAz29rPYvXuHuK1OnXocOXJSfJ+YmEjdurbExsZSu3YdvL29ePHiOY8f+/1QUV/4\nc+4jT08P2rZtLuaEqYJUKiUm5jN58uiRI4eWytcpOPgNy5YtZty4SVhYZE/vLzw8DEvLkuL7CROm\nMG3aLIV+K1YsYdmyxXLbli5dxdSpE9DV1eXZs1fkypWLhIQEpk+fzJw59qIxvYyYmBgGDepD3rx5\nqVlTyO1Tlt+WluTkZExMDOS2qb1EM0e9JKpGjRo1IHo1yihcuAggJP5raGgQHx+vksBsjRo1Mw3W\n0tpMeXp6pNuvatUKcsGanp4eBw64iO8jIyMoUcIUP7+XlChREjMzc4yNC6GhoYG29s9P7F6yZCH2\n9oqBwX+Re/fuEBz8BhA00Tw9/6F7914q73/ihCvFi5tibJyPmJgYlfczNS3C2rWbMgzWPD09mD17\nOrGxsUrbjYwkuLndoEuX7pw+fVFpsAaKArYANjbCQ0tcXBx//SU8nOTMmZOVK9eKwVpcXBxjxgyn\nTBkz8uTJg5PTERwdd9O//6BMgzUQig5kS9dq/nuoAzY1atT8UmSWQwAlSpSkTZt2aGlp8fTpE3Hp\nMru5WCtXLhU1yQDu3EmV67C0rIBUKuXz589y+3z+/ImPHz+I7zt37sbt2w/lfhC9vR+K1kc5cuTg\n0SMfPD096N27n8JMyI/k9OmTSCT6rFq1TBSO/S9z9eplWrRoTP/+qQFaiRKlFMRnM0JmZaalpfXd\nnSq6dm3P1q0bWbzYPt0+FStasWHDVqpXt5XbPmrUUPr37ynqr8n6AixevBxLy4qizEZQ0Gv8/BRz\nF/39/XB23k9ERAQSiX6WAlIZPzqvUc2PQx2wqVGj5qfw8uUL6ta15Z9/7vLhQ2pAdO3aVQAmT56O\np+d9jIyM8PHxoW7demKfDRvWEhoakuVjLl26iDdvgkSJhsaNhXy0cuUsMTAwpEiRghQvXhg7u7pi\nAPbokY+4/8WL19i40REjIyO5ccuUKSu+vnz5EufOncbOrinz5i3K8jlml/r169O7d3cA9PX1uXpV\nMTH9Wxk0qC/Gxvky7/idWLBgLiBUi0ZHR2VrjKJFixEWFs27dxHfXYZl5UohKJ4yZUaW9z10yInT\np08SExNDfLxwr9Wq9ReAaDY/a9Y8UZuvTh1bhVxLmS2VDAsLE7kcUFUwMJBfEg0NzX6RiJqfizpg\nU6NGzU+hVq2q+Po+pXnzRpQrZ0Hz5o24evUyU6dOAARLIRnlypXj2LHT3LvnLUo6NGvWkGfPfLN0\nzIcPfZk/fzElSgh5RWZm5rx5857Ll28AqWbYDx968eyZkOxtYlJY3H/DhrVKK0ONjQtx754PFy5c\nxdv7Gdeu3WLXrv0/1Si+ZEnhMzVt2pyDB10pX94ykz2yzokTrj+tkOHChbP4+DykffuOgCCV8bvR\nuXM3wsKiyZtXP/POXxEUFE5w8AfxntPR0eHAgX0YGUnE2bidO7eRnJyMoaEhSUlJ3L7tSWxsLGPH\njuDdu7cYGBiI95hsWbVatYpZOo/cueVzsdJKjaj5vVEHbGrUqPnuvH0bzI4djvj4PGTdulWsXZta\n6ShbMvznn7t06dIOACcnF6ytFaUJihUz5/JlIdcsOPgNrVrZER4eLrZHRUUSEfEx3aDCxKQww4aN\nkisuyJkzJydOuCKR6MvNwMgqVPPk0WPwYEH37Pjxo2zduknp2MWKmWFtXYVChUzEfLufyfbt2wkP\nj2Lv3oOZFmRkl1evQnn79uMPGTst3t5e9OrVFUvLCrRv3xEtLa0sGaL/ziQnJ+PgMJ9jx46wd+9u\n6tSxJV++/AwZMoxPn6IZO3bCvw8SQdjbzyIuLo6GDe2wta3J4sWCk4KT0z4qVSpLQIA/w4aNBISH\nDxkZuSR8zdcFMVOnTvoun1PNj0ftdKBGjZrvTs2aVZQmZnt5PaVwYVOxUtPKyhpvby9MTNK3TSpb\nthxHj56iQ4dWREVFYWlZgo4du3Dt2mXev38v9jt71k3lwMXF5SAgVBTWrVsfJ6cj5MiRgxMnXBk0\nqK9c31q1aqs0ZnZITEwkJSVFpYRxZWhpaf3Qyr705FS+N9euXUVLS4s5c+zR1tZGU1OLxMSEzHf8\nDYmOjmLevFns27eHjRsd0dbWZvXqFWJ7zZq16NChM35+Qu6mmZkFnz9/wsXlEJqamqSkpDBu3CT6\n9OmGv78fdeqkpgY0alSH6tVtWbhwKWZmFvTu3QUQtAC/Lt5JDysra7n327ZtwdFx87d+bDU/AfUM\nmxo1ar4rDx8+kAvWxoyZQN++A3FzuyH6WdasKQRB3t5eAJnOTv31V10uXLgqvj9y5JBcsAbQvHkj\nNmxYy7hxI7l27UqG423c6Mj69VvImzcvtWvXEfW2xo4dqdBX2czf96JVKzuKFjVizZoVmXfOIpGR\nETRpUg+JRF+uiOJ34+rVyyxebC/+Ozx//ozExARKliz9q08tW5w6dYJ9+/YAMHLkEOrXb8iECVPo\n3LkbefLkoW/f/hgaGlK5chXy5zegd++utG/fksWL7UlJSaFYMTNCQt6RnJwMCBIg9++nLg/fvXub\nfPnyYWmZahiv6rJmUlISUVGKQtLpVb2q+b1QB2xq1Kj5LkilUlxdXbCzS50RcHI6wqxZ81i+fLVY\nEQewdetO8bWtbU2VZgesrasQGhqFm9sN5s93wNn5KPfvP8bf/y09evQGYP782Rw4sJeuXdsTFPQ6\n3bHy5zega9ceXL9+G4nEWPwR8/F5prBkJJuN+xFMnSpUC8oMxGW8fv2Ks2dPKzg5yPj8+TOGhoaU\nLFlMaTtA+/Yt8fISjMIzuhaZcfz4USQSfZKSkrI9Rkb4+j4hOTmZhg0b4eZ2iblzZ1GmTDnR2P2/\nhizQbNmyNQDz589h8ODhHD7sjI1NDXLkECpetbW1RXeMhw+9xP1fv35Fp05tePUqUNzWuHFdHjx4\nQrNmLVmwwIHOnbthYmJKyZKlOHToGAYGhiqd27Vrl5k/f46C/uDjx79fvqAaRdTCuVlALSyYPn+K\nkOe38l+/TlKplNq1q/Hy5Qvc3G5gZmbG2LEjOX36hFy/w4ePU7t2nQw9IOPj44mKiqJgwYKkpKSI\nfTO7RoGBAdjYVAJSvT1TUlJYsmSh3ExV3rz6LF++GnNzC9zcLnLx4jmqVKnGxInTxKrPQYP6cuKE\nK9ra2rx9+1FOWDRXrtzExgoenZUqWXPx4nWVrpG3txc+Pt707NlHpf5f8+TJY5o2rU98fDz29osZ\nPnyUQp9bt27Qpk0LuWvwNVZWZQgJeYeZmTl37jzMdo6dbPlatuT85MljgoODsLNrlq3xvubLly80\nb96Ip09Tg4avfTezy6/6vvXq1ZUrV9xITEygcGFT+vUbyOLF87G1rcmQIam+sLdve3L5shtFixbj\nyhU3uTHKli2Pr+8T8f3z56/In1++wlMZUqkUqVSqVJNw7dqVLFpkT968+nJWagEBAeTLZ/Sf/Jv0\nM/hdhHPVAVsW+K/+yP4M/uuByM/iv36d7t69TcuWdum26+nl5dKl6xQvXkKl8QYP7sfx40cB6Nat\nJ+vWbVY5YGvduh07dvwt19atW0cuX76IkZGE8PCwdI+7adM2OnbsQlhYKP369cDefjE+Pt5Uq1ad\nM2dOcffuHZYuXUnt2tXEfVQxfk9MTMTUVJihCw2NylaQtGvXdrFytmnT5uzdqzjDl5AQh4vLAdq1\n60zu3HkV2gHc3a/RsWNr1q3b/O+MjPBjnzNnTjw971O0aPqzc2mpV68GT58+4ckTf3Lk0KZUKWE/\nX98ApQKw2SExMZFbt27i5/eSKlWqYWVV6buM+yu+b7IAt0GDRly54saGDVuxsamBjU0lChYsyNKl\n8lZjiYkJvHr1iuTkZKKiokQBXRBcQJYvF3xMVbn/YmJisLAQPE7fvv2o8MC0evVyHBwWKOwnlUr/\ns3+Tfga/S8CmLjpQo0aNUuLi4oiOjmbJkgXs27eHtWs3UblyVYV+q1dvoFu3nunaPKVHQkKCGKwB\nohio4BxQDBeXEwr7uLtf4/37cLy8nsqZb8twcFhOjRqViYqS1/Bq1qwFLVu2YdWqZQQE+DNixGDi\n4uLo1asvZ89eJjIyglatmgCpP4xpRUkPHTqm0mfy9/cTX2d3RqtHj97cvu3J0aOHCQ4OVtond+7c\njB07NsMf2Tp16omf5fPnT+L2hIQETp06oXTmToaz837GjBnOlSs3cXI6Is6EJicnU7lyFcLCwsiZ\nM3uFEsrIkSMHderUY86cGUyZMp6JE6eKy8X/FWSBmozKlavi5HQETU1NUcrj/fv3xMfHyxWZHDiw\nj+vXrwGC5EaFChXR0dFBS0uL0qXLkDevvli1nBlp51/evw9X+I4ULFgwW59Nze+BeoYtC6ifQNLn\nvz5z9LP4na5TbGws3bt35M6dW3h43MPUtAirVi1FWzsHZcqUY+DA3gr7hIZGiUKqly5dx9vbi3bt\nOqGnl3W7m8+fP9O4cR06derCkCEj6N27m5xd1IcPn0hOTv3z9Pr1KznNqX37DtKkSXOFcXfv3sGs\nWVPJkSMHa9dupk2bdmJbcnIyDRrUEiUjHj70FXXXLl48x6NHPvz1V12qV7fl2LEjDBnSnyJFisol\nfWeEnV09Hj4U8sZUmRHJiFevAtHX11ean5Sd+yggwJ+goNd8+PCedu06ZhhQlixZhOjoaExMCvPw\nYda077JLSkoKhQoJki96ennx83vzzVIpP+v7psyjc8WKtfTp0x+AZ898qVPHBoD16zeLWmoBAf4s\nXKjomqCpqUm/fgOJj49n//6/OXfusujgkBlnzpz6d+Z4oELb6NHDOXhwv9y2+/d9qFy5wm/xN+l3\n5XeZYVMXHahR84dibl6ImzdvkJSUhK2tNYsW2bNq1XKWLVusNFgD5FTvDx1yYsKEMRQvXlhpXxnr\n1q1GItFnxIjBctv19PS4desBkyZNR18/H9269QQET8Xu3bvTtm1LuYq2okWLMXv2fPF9+fIVlB6v\nX7+BvHnznoCAd3LBGggyGEOHplaCTpgwRqzGs7NrxooVS2jZ0g6pVCrmC6V1NciMfPnkr8+3YGZm\nrnIyeUZIpVJq1apKgwa1qFu3Pu3bd8o0EFq5ch0SiTHHjp355uOriqxS0cbGls+fP3Hw4IGfduxv\nRUtLCz29vOLr16/DxGANoHjxEhQpUhQDAwO5il1lWnP58uVHKpWyc+c29u//mxo1aimd2U6PFi1a\nKQ3WAE6dSp0p1tXV5fTpi5ibW6g8tppfizpgU6PmD+TmzRsZKtgPHTqS5cvXAEIA9LU6+sOHvtja\n1gKgSZOMk89XrVoGCMnlGdG9ey/8/YMpVMgEJycnbty4zpo1Kylduhh2dnVJTExk9OhxhIVFExYW\nTZEiRTP9nMro2bMP8+cvBsDN7QLHjh0R2yZMmELjxk0wNs7HrVs3/+1zUcEiKD3SXou7d+9k6/y+\nNykpKfj7+6Gvr7rFVNu2HXj06IVohP7mTRASiT7Ozvsz2TP7REZGAODl9QBdXV0CAwN+2LG+N69e\nBYrLzsnJyejq6sq158iRg+PHz2JkZMz27VvF7UePugCCc4aMRYuWEhoaxb17Pty4cZfjx89+F1Hm\n4OA34jK/jo4OZ89eVvA7VfN7ow7Y1Kj5wwgNDaFdO6HC8O+/nRkxYgwAmzevF/tMmzaLvn0HEBYW\nzbJlqwkMfEdgYAi3b3sREhKJiUlhWrduS1hYNPv2HcrweGfPunHp0nV27874xz45OZkOHVpz/vw5\n6tUTpEE2blxLZGQkDx96yVXMfSvduvUU83m8vR+K2ydOnErbth0AQQBV9kOZVmIhI9L2SzvD8ivR\n0tIiJCQSb+9n2R5DFnTL/v8jcHER7qOEhATi4uKQSn/e8tzevbtp0KAWq1cvF2dcs4KhYepM6MmT\nF5T2KVq0GKNHjyMoKIibNwVrNNmDQGhoCJqamlhaVuTGDXdAcNIoXbrMd3PQePw41SPX1fU0lpbK\nZ6jV/L6oAzY1av4gIiI+cuHCOUDQgWrWrAXTp8+W61OkSBGlnpi5c+fGwqI4kZERmc7QpaVcufIK\n6urKePfuLV5e92nUqDH169dn0KCh9OzZl4YN7f493xwqHU8V8uc3EAOqfft2y1n7dO3ag7CwaExN\ni4qfsVgxM5XGlc1YaGhoyOnOZYXbt299s3+nVCrF3/8lNWpU/i6zYqVKCdpiP2rW69OnaBYtmie3\nLW0gvWXLBtq0+T4yIl8TFRXJlCnjefz4EQ4OC2jbVjEvMjPy5tUnJCSSgIB32NrWSLefbAZ2x45t\nbNmSanlmaFiAN2/e8/ixD87O+36I0PHNm6n5oRYWqlVxq/m9UAdsatT8AURHRyGR6FOmjDkTJwoz\narIZLx0dHUJDU6sqIyOjMhRJnTFjCu3atWDw4L5ERUUyduyIbAcFUqmU7t07sXy5A926Cabfnz5F\nk5KSgoGBAfHxcdy9ews9PT0KFSqUyWhkKdDp23fgv8f7pFRo195+FgCPH/upXAHbrl1HvLye8vz5\nK5XPIy116tjQunUTypeX/0HNilfknDkzMDbOx9y5s/D392PMmOHZOpe0DB8+mtevw7L9uTJj4cJ5\ngOD9amQkQVNTk4ULBTkLf38/5syZIS5Rf2+ePn0qN6sm097LKpqamuTJk3FiuoGBIUFBghfu3bu3\nxe0fP35AW1tbDPhz5VJ8YPoWEhIS2LRpnfj+a3FoNf8N1AGbGjV/AJ07txVf16r1FxcvXpOrsPT0\n9BCFNg8ePCpaNcXHx/PixXNAyIGxtbXm6NHDAJw4cYwVK5bi5LSPadMmZuu8NDQ0cHO7wPLlDkRH\nC0Gju/t1FixYwOrVK3BxEYzNr171zFTzy83tAsbG+bh9+5ZKxzYxKczGjY6AkNNXtWoF9uzZiVQq\nJTj4jdhPJrKrKoULm4oG91lFluf38eMH0eXg6NHDFC1qRI0alTl79lSmjgMy7a1Zs+Zy+PBx/P2V\nS4NkFV1dXZWEW7NDbGws2travHv3lvDwMIYPH0Xx4iXx9vbK9r2lKl8HWWvX/hhfzaSkJDZuXEdC\ngmLw3bSp8F08ffoioaFR393D9b+UD6gmfdQBmxo1fwAPHtwHBFmOpUtXsWbNSh48+AeAs2dPM2BA\nbzGfpkqVaiQnJ7N+/RqKFjWidu1qzJ49jY8fPxAQ4C837sCBQ5gxYw6PHr3I9rnJHAH69x8kbitR\nogSzZ9uzatV6nJyOqLQkaWwsaE61bt1E5WN37twNR8dd4vvJk8dRr14N9u3bDUDDho1VHksVkpOT\ncXben+6S19Gjpxg7diILFjiIQXO1ajbkyZMHf38/+vbtQeHCGVeOzpkzn7CwaNHeSVa9mJbQ0BB2\n7HAUc6myQnR0FHXq2DJ8+KBvXrqVUb9+QzEQzZNHj8mTZzBmzHAaN67L1auXAbh+/XZGQ2QbU1NT\n8XWdOvWU5nZJJPpIJPo8fvwo28fp378n9vazsLW1FgM0HR0dypYtx6pVG+jTpzsSiT7GxvmoWLG0\nnBPBt5JWRLp48ZLfbVw1Pxe1cK4aNX8QGhoaNGvWkJiYz5w+fYL167cwerQgyjl16ky0tLTQ0tLi\nxAlXFiyYI+63desm5s5diI/PC0aPHkrTps3p1asf2traeHi4kz9/fvr1G5TeYdMlISGB/fv/ZuXK\ndfTu3Y8OHTpjZlYMI6N8WdaFqlChIps3b2fHDkdRxDQwMERpPl5a2rbtgJGREcePu7J79w58fZ+K\ncguXL1/K8mfKCDe3C+ISpTIlejMzc2bOnCu3rVgxM/r06c/mzRvEbYaGerx69Yq8ebO+tHXmzCn6\n9eshvl+xYi1t27ZXeVbw1atXPHv2lGfPnjJ7tj2FC5tmvlMmtGnTntDQUJKSkmjYsLFCwKKq32x2\nMDQsgJubO6GhIdjY1FBI8ndy2ie+vn//XraT9WXiuRMnTqVv34HcuHGdLl3a4ev7lF69ulCgQKqo\nbWhoCCNGDFbqcpEd0uYDOjsfyaCnmt8Z9QybGjV/ADIbor//3iWncJ9WB2rs2ImMGzcJqVTKmjWC\nfU7OnDnFdm1tbYyNjTl06BgDBw5FR0eHjx8/cu3aFaZMmZCt84qMFHTWJk4cwz//3MXMzDxD/9HM\naNmyDffupcppLFw4N4PeAjdv3qB9+1bY2tbk8mUPBTHe7FQNpkfduqmG5rJZD09PD8zNC4k6m08K\n2QAAIABJREFUZMqYPHm6grRK2rw2b28vateuxrNnGYvcXrx4jhEj5APrSZPGUqpUMXx8HqazlzwV\nK1px8OBRGjRo+F2CNRDureHDRzF69DgOHjzAp0/RlChRkk6dOgMoBLHfm4oVK9G4cVOl0iehoSGA\nMHPZqVNXpFKpKEGiKj4+D6lWzYZjx84wcOBQtLW1MTKSiO0PHvyjkEN5/vxZbGwqsXPntmx8Innu\n378nvjYzM//m8dT8GtQBmxo1fwAXLwrWN5MmjaVVq7b4+gawbdtuZsyYI+qayQIlDQ0NUbBWlkfV\np88ApeMaGRkxYMBgVqxYm63zkkgkVKsmKMCHhoYCQiCS3aU2XV1drly5SYkSpahUqTKDBg3NdJ+q\nVatTuLApw4cPwti4EPv2HWTz5u1iu4PDAuLi4rJ1PsrOz98/mICAd6LDwsqVy/jy5QufP39Odz89\nvbwEBr7D3f0O3t7P+PjxM6VKlRLbb9/25MWL56xbtyrD42/cuC5dPbywsFCVP8e8ebO4cuUyEok+\nw4YpF2nNiIyC4IiIjwD4+b3k8mXBEL1UqTJZPoYqxMfH4+v7lBcvnqertTdu3CRevw5j1Khx6Orq\nUqhQfkqXNmPHjq1K+8fGxircv40a1WHZssWUKFGSpKQk4uLiaNBA0DFs0KARAM+ePWXFirWMHDlW\n3C8wMOC75PA9e5b6YObufu2bx1Pza1AHbGrU/AEYGhbgyJGTAHTq1BpDwwK0bdsBbW1tAgL8FX5g\nbty4y9q1m6hatRq9e/enfv2GmJubsHbtCoWxlyxZ+U2aY2fOXMLf/y0tWrTiwoWzmJgUQFNTU2Wx\n2q+xtKyAp+c/XLx4TaV8HV1dXTF/6suXGPr27UFsbKwYUK1bt4qqVS3FnL9vRU8vr1yi+6pV69i+\nfQ9GRkY4Oe3LUL6iTJmySj1U69SpD0DJkqUU2mRIpVKGDBlOu3Yd2bZtj1xb374DadRI9dy/pUtX\nibmHR48eRiLRp1+/nirte+7cGSwsCtO5c1uleVppRWQ/fhSCt+xYn2VGcnIybdo0pW5dW2rXrka9\nejXw81Oei6mrq8v79++pXLm8WJyTNq/y0CEnJBJ9+vfviZmZMdbW5ZBI9MUcQQMDA6ysrKlYsTSF\nCxty4oSruO+VK0JQ2r59J9q16yCXUyfjwIG/qVixtNxMWVYoXTo14O3Uqc13yz1U83NRe4lmAbXX\nWvr8Th6ZvzO/+jrJcrvatm3P+vVbmT17Gnv27ARg0KChLF68XOl+VatWICjoNeXLV+Dq1R8jrwDQ\nunVTbt/2BKBz566sXbv5m5ZI0yMhIYEdOxx58uQR69dv4f3798TGfiFfvnyULKncQUFbOwcnTpwV\nZwR/BLJ/n4CAdxlKRKS9j7y8HrJ+/Srmz1+CsbGx0v4xMTFYWJj8u682bm43aNCglhgUT5o0jSlT\nZmT5fENC3tGsWUPevg1m3LhJzJgxJ8P+X758wdKyJHnz6hESEsKePU6cPXuKXr36YWMjSFqsXbuS\nRYsEf00NDQ2kUimHDh2jfv2GWT6/jL5vMoP7SZOmYmRkxMqVy6lZszbbtu1WOpaZmbG4bB0SEikG\nbqBo/J4WX98ADA0L0LDhXzx65C3XtmPHPgYO7CW+X7ZsNX37DsDV1YXIyEgiIyM4c+akXA6aiUlh\nli5dRbNmLVS+DgEB/tjaymshBgd/IEeOHL/8b9J/AbWXqBo1an46Xl7C0sjx464UKyYRBVEBOcuc\nr5Hl1+TLp5/tp3xVSE5O/jdH6iBHj7qwbNnibx6zShVLJBJ9pFIpBw7sZfDgfhQpUpC5c2eIfpUF\nCxakUaO/qFixjILmmoODEMQmJSXSokVjXF1dvmteW1q8vZ/h7Hw0Uz2vtIwcOQRX1yOsWyfkHbq7\nXxOrGitXLs+5c2fkqgQ3bNhK9+4d5WYwVRUG/ppChUw4evQkFy5czTRYCw5+w7BhA4mJ+UyvXsLs\n3KFDTjg776dVKzuxcrZq1eoAdOzYiW3bdgBkOWcsM5KTk1m5cil169ajZctW2NjYUqJECVFaRhlp\ncwwtLUvy9m0wMTExSKVSxoyRz+FcsmQl9es3xMDAQFzqVuZY0KBBA4YNS80pbd68FVKpFHv72Uyb\nNhEPD3e5YA0Egem+fbuL6QqqYGFRnE2b5HPhTE0LZGoXp+b3Qh2wqVHzB1G4sCmenv+k0eqaRlBQ\nOI6Ou9iyZUe6+718+YaqVavh6XmTZs2yPtOhKikpyRgZFaRz585oa2uzZs2KbC3ffP78SczDe/Mm\nCICpUycybtxIjh8/KvZ7+VJoS0xMJDIyktjYL5w7d5nQ0Cj8/N4QFhbNwIFDOXbsjBjIDR06ABMT\nA5o2rc+SJQvE8b8HhQqZZFlKRKasb2YmmHh37NhabAsOfoOj4ybMzS0IDY0iLCyaDh06M27cJLGP\ngYEB5ctbZvucixcvibV1lUz79ejRiXPnTtO8eUs6duyElpYWp0+fENstLUuybNliMV9w3LjxYoJ8\nZhp8WcXf349XrwJp3VrQJwwJCeHOnTtiPpkyJk+eDoC+fj4+fHiPtXU5LCxMMDbOJ+dHmz+/AVWq\nVOXQoWNs3boLT08P4uPjOX78LDlz6siNWaNGFbZsSa3+NTY2xs3tAu/evQXgzh1FTUEzMwvmzl0g\nVxCkCp06daVNm/Zy28zNCzFwYL8sjaPm16EO2NSo+cMoUaIUQUHhlC8vyBNs3bqRdu060qFDZ7FP\nSkoK9erVQCLRJzj4Dd27d+Cff4SZtfbtO/2wcxs2bBSXL19m4sSJTJ8+E1A+M5EZ5cuXpFSpYsTG\nxoo5UV9XQTZu3AR9/Xz4+j7F1FQICDp16oqlZUU0NDTImzd1matWrb94+PAZU6fOFLc9eHCfVauW\nU6WK5Q/12MyMZctWExoaxZAhw3F3v6YgYzJ48DBSUlLkrmO/fgNZv34LW7fu5NmzVypZhyUmJnLm\nzCmVcwulUikfPnwgNDSElJQUTEwKU7lyFbZscaRwYVO2bdshl6+WnJzMihVL6NGjE/r6+ShXrrxY\nxVy5cuYBYVaQVdMWLy44Shw4sI98+fTp3Vt5LuaLF89ZvtwBEKzLvmbo0JHi68jICHr16kpsbCxd\nurRj9OhhLFmyED09PTw87srtJyv0mDlzHq9fC7OgVatWF4PD+Ph4qle3lftuHjlyQvT/zSppc+dk\nuLq6fDe/UjU/FnXApkbNH4iWlhYrVwqVnU+fKpqqJycni9sXLZovN4OyfPnqH3Ze7dp1ZOnSFaxe\nvZp58+ZQs2ZtufZHj3yQSPRZty7jc2jdui1WVtbo6uri7n6b27e95AojqlatxvLlawCIjk5NfD96\n9HC6P14SiYSJE6cSGhrFpUvXsbdfLCb5L1myMEtFCTdv3kAi0efMmVMq76OMmJgYHj3yEc956ND+\ncstc3t7P6du3B5UqlVXY186uKVevXub5c9VM4atXt6Jfvx5yJuIZ0bZtc8qVs6BixdI0blyX1q3b\n8eDBfQIC/Hn+/BnDhw8jNDSEqlWr8/ChL66up8V9O3XqjI+PNwsXLqBmzdpywXNWSC+4TEoSNNFC\nQ0NYt241J08eZ9y4SekuRaddAj99+gSHDh1j1KhxODm5ULlyVS5fvsi7dxHMnDkPgHXrNqGjkzqb\n5uFxHUAM+iBVXqNAgYKMGjUWXV1dQJhNHDYsNQA8ffqi3ExbdpevAYYMSd+mbPLkCRlKy6j59agD\nNjVq/lBevQoEoEgRxST7HDlyiP6iLi7ObNu2BQA/v2ClWlXfk8GDh3H27FlmzpzDqlWp/ocpKSk0\nbCgEcEuWLMhwjI0bHbl06ToaGhrkz2+AhUVxunfvxfDhoxk6dCSnTl3E1LQIIARvaY+xcmXGs2Ua\nGhpYWVkzfPgorl27Jc7+jBs3UhRHzQxZ1aNshie7jBkzgoYNa/P58ycAFi9eTv78qQK4VlZCjmJo\naIjCuY0dOxInp32cO3cm0+M8f/6Mt28FiytVBXaDgl6TI0dOhgwZRkCAH+fPn0FfX58tWzbz9OlT\n4uPjcHY+gqvraQoVMkFPT49cuXJjamrKkSOHadCgHtra2jg67lbpeF+TkpJCuXIlWLp0qUJb3br1\nyZMnDyNGDMXV9Shz5swX3QeUUbZsOUJDo/D3f8v581dxcTnIhg1rqFGjNg8e/IOb20WCgl6LBvZv\n375FU1OTNm3aATB/vhCoHTrkJI6pqalJWFg0T5/6K+RN5s2rz5o1G3Fzc0cqlVKiRGq187dIzAwZ\nMiLdth07HGnQoHa67Wp+PeqATY2aPxRZwYG7+1Wl7RoaGkycOFVumyy3RlXOnDlF8+aNOHBgb5b2\na9asGRMnTuHChfMMGdJPPJ9Wrdry1191cXXNPMhQhr39IhYscJD7gYyPj6dVq7bkzJkTTU0tVqxw\nYN++PRmMkkqOHDlEzbanT5+wZ0/6eYBpsbKyJiws+ptzs1xdhdypxERBlqRdu448f/4aJycXhb5f\nvsTIvZdJPdSrVz/T45QqVZoePXrTpUt3lWZ4Pnz4wKdPn2jXrj1//VUHU1NTgoPfMGPGHJydD7Bt\nm1Dgoqenj6/vExo1qoOdXT1iY78QHByMpqYWVatW58iRE+lWvmaGm9sFwsPDOX78uEKboWEBrl+/\nzfDho/H2fsaLF8+xta2crmUYCPefnp7ev+LRQuDVunVT1q3bzJo1GzE2LoSdXVMgtXBi69Zd3Lvn\nQ40agubaoUPH0NYWLMcCAvx5//49IDhqSCT6ODntIyTkHQAdOnTm5MnjvH79imvXrojncebMyWxd\nDxBm53x80reRCwz0T7dNza8ny7Iely5dYtSoUWK5tYaGBk2aNGHt2rW8efOG2bNn4+XlhampKdOn\nT6d27dSI/ebNmzg4OBAUFIS1tTULFiygaNHUp/vdu3ezc+dOYmJiaNasGXPmzBGnlRMSEpg3bx4X\nL15EV1eXAQMG0L9/6hLHtx5bFdRlz+mjLg1Xjd/lOgUGBmBjUwkQVOTHjlUuzpmUlMTKlUsxMpJQ\nvboNFStWytJxlixZKOZ3hYWp5o0ou0avX4dgZiZIUbx5814uyVr2Zyu95cuPHz9QtqwF3bv3YuzY\nCRnqsU2ZMp7du3ewbt1mzp07zZkzp7hw4apKifQyhg8fxJEjh8iRIyd+fm/E5a2MuHTpPD16dMba\nujIXLmRNzFR2jdJ+/q+v74kTrpw9exorq0o0b94Kc3OLLB3jW6hTx5Znz55So0Ytbt0SZGAOHnSl\nQYNGrFmzgsWL5wOCu8bhw87o6+szevQYLC0rsnv3Tjw9b/LsmS+LFi1l8OD0l/EywsFhAatXL6d7\n9+5s3Lgt3e/b6dMn6d9f0JB7+TJIpRnkVq3suHPnNvr6+rx8+SbL55aRDAiApWVFcelZTy+vOIMK\nQvDs4ZH9Su379+8pFA45Ojpy6NBh/Pz8uX37QbbH/n/lPyvr8fLlSxo2bIiHhwceHh7cuHGDRYsW\nATBixAgkEglHjhyhTZs2jBo1ipAQwdbj3bt3jBw5ko4dO3LkyBEMDAwYOTJ1nf78+fNs2rSJBQsW\nsGfPHh4+fMjy5amaUEuXLuXJkyfs3buXuXPnsmHDBi5cuCC2jxw5MtvHVqPmT+LTp2gxWKtTpx6j\nR49Pt6+2tjZTp85kwIDBWQ7WQFCJb9y4CTY2NbK8ryzPaPz4SQoVccbG+TA2Tv+HVWbS7eS0DweH\nhRkep0eP3oCgOL9r135CQiKzFKwBzJo1D4DExASVZ0BkszBVqlTLpGf6yJZUlQWIbdq0Z/Pm7Qwf\nPjpbwZqf3wumTBlHTExM5p2/omzZsv+O8ZKePftw4MBhsQIzrZ6alpYWb98Gs3ChA3Xr1qdAgQJM\nnDiZv//eT+7ceQgPD6dixdL4+/tl+Rw6duwCQNeuXUlKSsLV1YVbtzwV+h09ekh8rWoO16lTF8mb\nV5/o6GgFp4c3b4Jo374l5uYmSqU3/P1fZjp+2jzBz58/yd3/MpmQ5OTkDGVI0kPZtRwyZAj6+vqk\npPwYuRo134csB2x+fn6UKlUKQ0NDChQoQIECBdDT08PT05M3b94wf/58ihcvzpAhQ7C2tsbFRZia\nP3ToEBUrVqRfv36UKFECBwcHgoODuXtXqJrZu3cvffv2pV69elSoUAF7e3tcXFyIj48nNjYWFxcX\nZs2aRdmyZWncuDGDBg1i3z7BlNfT05OgoKBsH1uNmj+FiIiPlCgh5G7NmmXPkSMn5QRAvze6uroc\nOODCqVMXMu/8FQYGhoSGRjF9ury+V0aLAs+e+SKR6JMnTx5OnDhP3br16d49YwV+a+sqhIVFY2xc\nCA0NjWxdD1PTIgwYMBgQ5ENUWTo2MDAkLCyaJUtWZvl4MqZOnUHBggUJDAzJ9hjpMXr0CHbv3snE\niVmrSFy8eD43b3oAgl/q6tUbaNy4KcWKSZBI9ElMTOTsWTcuXbqOrq4u+fLlp0yZMmL/oKAg1q1b\nQ3JyEm3bdiApKVHlvLm0lC5dho8fP9O2bVuWLl3E0KEDaNOmKR8+yC97hoeHU7duPXLmzMmWLRtV\nHn/BAiEv7ejRw3LbDx1ywsPDnS9fYoiMjMTH5yHR0VHExMQgkeizf798esDXGm7KMDMzp2BBIwBG\njhzD06dPMDExoGTJosyePS1LriDpaa99+PCBXLlyK21T83uQrYDNwkLxac3b2xtLS0u5ypiqVavi\n5eUltlevXl1s09XVpXz58jx48ICUlBR8fHyoVi31SdPa2prExER8fX3x9fUlOTkZa2trubG9vb2/\n+dhq1Py/IpVKReuft2+DqV27GmXKmANCwvOYMenPrP0uKFvy1NDQYMOGrbi4nFBok7kkdO/ekZw5\nc+DicoKGDe3k+ixaZI9Eos+sWVMV9k9LUlISLVvaMXr0MJXOVaZtFhUVSaVKZTl82DlbGnK7d+9A\nItGX0/b6mtmzp6OhocHQoQN58sT/hwTd+/Y5s2rVepYuVT2gPHnyOGvWrMDKykrcJpVKiYuLE5Pl\nBwzoTfnyFbCysiZXrlx8+RLDjRvurFq1nIYN69GiRRP279/LvHkLsbSswNOnARQo8G25fk+fpnpp\nxsbKByza2lpERETQo0cvdu3aLs6KycSH06NHj94cPOjKhQtX5bZLJELOXZ8+A4iPj6NRozqULFlU\ndJpYv341ly97iJIm6fm/Fi9eAh+fZ9y585AXL57z/n0469Ztpl+/QUybNpGSJUvRoUNHHB034+Cw\nQOV77cmTR0q3Bwe/kSvAUfP7keVveUBAAO7u7jRt2hQ7OztWrlxJYmIi4eHhSCQSub4FChQQDZ3D\nwsIU2gsWLEhoaCjR0dHEx8fLtWtpaZE/f35CQkIIDw8nf/78chY1BQoUID4+noiIiG86tho1/29I\npVL27NmJsXE+SpQogkSij7V1OV68eA7AnDkLePcuVTlelvC8cOG8X3K+2aFLl+7UrVtfYXvTpi1o\n2bI1ERERSgV+/fxesHatEIAcPaqYmJ+WwMAA7t69LbohZEahQib4+DwXl45HjhxCu3YtOHfuTJZm\nQCwsigOpP/xfc/PmDTZuXK/yeNnF0LAAvXr1VWl2SyqVMmHCaAYO7E2NGjUZMWI0vXv3JWfOnEil\nUtFTs3v3noSHh9GypR0JCQk0amRHhQpWDB8+hF27dorjzZ49H23tHCpLjmSGnl5e8XWPHp1F71iA\n6dPn8PLlC3bv3smXLzF8+vRJ2RBKP3NoaAh58+bl7NnTovRHz5598PUNYMWKNXI6cwCVKlnTqVNX\nKlSoSL9+qUup1avbcumSu1zfXr36Ymxsgrm5BZaWFTEwMKBjxy7kzJkTX98nFCtWjPnzFzJjxizW\nrl1J9epWBARkXjSgo6O4fG5qasrr16+xsPi2qmU1P5YsmfS9ffuWuLg4dHR0xCKDRYsWERcXR2xs\nrEKeSc6cOcWnlbi4uHTbZU9e6bWnpKQobQOhGOFbjp0VtLTURbXpIbs26muUMT/qOiUlJVGvXi2l\nmmoyhgwZjoPDMoVZq2PHhMDl/v27aGv/+n+/b7lGpqYm7N3rxJYtG6lWzUbh83h63hBfly5dJsPP\nW7ZsGSZMmESuXLlVvi6mpoW5csWdzZs3Mnv2dDw9PfD09KBVqzZs375bJXX6Ro0a8fHjZ6VtUqmU\ndu0ED0krKyvc3W+RnPxri3x8fZ8ybdokrl+/RqVK1owfPxFX1yPs2/c3LVu2Rltbk3nzZlK6dBns\n7Jqgo6PD7t07mTRpLM7O+ylcuDB//32APn0EQdoBAwYzbtx4ChQQgqy3b9+rVMShDNk9NHDgIA4d\ncqJ8+fI8efIEFxdn0R6rZs2a7Nt3kN69u/HlyxeMjAqgqalJixYtadTITum/vVQqxd39OmPGpBZE\ntG7dlt2796GhoYlEIixfamvr0rx5Sy5fvkR8fDwPH3rx8KEXK1euoVu37ixduojKlaty7twlhe/l\nuHGpS6XXr99EKpWKM6njxk3EwWEhFSqUQyKRYGZmxqtXr3j82JtSpdIvsAGIivqosC04OPjf89X6\nLf4G/G78Nr9r0iwSFRUl9/78+fNSKysr6bx586QTJkyQaztw4IC0TZs2UqlUKm3ZsqXU2dlZrn3c\nuHHShQsXSj98+CAtU6aM1N/fX669Vq1a0osXL0rPnj0rrV27tlzby5cvpWXLlpVGRUVJ7e3ts31s\nNWr+H+jWrZsUEP+zsLCQBgQESKVSqXT27NlSQGpnZ6d03w8fPkivXr0qTUpK+oln/GtwdnaWAtJc\nuXJJX79+LZVKpdKQkBBpSkqKymNMnDhROnPmzEz7+fj4SK2srMR/k6ZNm0oTExOzfe4yRo8eLQWk\njo6O3zzW98Dc3FwKSA0NDaWtWrWSNmvWTO5ebN26tRSQ2tvbS52dnaXNmjWTGhsbS11dXcU+mzZt\nEl8fPnxYKpVKpfXr15f27dv3u53niBEjxGM8fvw42+OcOHFC7vOl/c/d3V2h/9d9Wrdune79lpiY\nKC1Xrpx0zpw50itXrkg/f/6c7nmEhYVJDx8+LB02bJhUR0dHamZmJo2Jifmm82/fvr3qF0LNTydL\nM2wA+vrya/olSpQgPj6eggUL4ucnX33y/v17jIyEJw1jY2PCw8MV2suVK4eBgQE6Ojq8f/9ezI9L\nTk4mMjISIyMjUlJSiIyMJCUlRXzCeP9eeOrS19fH2NiYly9fZuvYWSE6OvaXP83+rmhpaaKvn0t9\njTLhR1ynqKhInJ2dAahY0YqTJ8+J39OIiBjGjJnE1q2OPHr0mODgcAXrIg0NHaysqhEdnX1Bzu/J\nj7hGsbGxWFmV5cOHD4wZM55161azadNWJk+eRqFCwrLVqlVr5Zap0mPlSmFJtUOHruLypTJMTS04\ne9aN3r27c/nyJc6fP8/IkWMYM2a8qIkmc0pwdNzMtGmTCQx8q/A39mvs7R0YOHAYVlblfovvW40a\ntQgMDOTjx4+cOnVK4f46eVKomi1SxIxHj55w7do1hgwZTt26jVm/fjMXL56nRo06WFgUJyDAn0aN\nmhMREcPRo4ILRERE1qtUZaS9lxYuXMakSYLlU/78Blka19BQEDo+f/4ybdq0UdrHwMAAicQ003FL\nlixDZGT6puseHncZNWo48+cL0ichIR+Vzsxqa+fGzKwkkyfbMmHCVLS1tYmPlxIfn/Hxa9dugK5u\nLuLiFCti+/Yd+E3X+/8V2X30q8nSPN+NGzewtbUlPj5e3PbkyRMMDAyoVq0ajx8/lltm/Oeff8RC\ngUqVKnH//n2xLTY2lidPnlC5cmU0NDSoWLEi//yTau3y4MEDcuTIQdmyZSlXrhza2tpiEQHAvXv3\nqFChgjj2kydPsnzstEUMqpCcnEJSkvo/Zf/JfjTU1+jnXqf37z9gYSFUfZYuXYZt23aTO7eeXB+p\nVIOwsFAMDQugqan9y6/Bz75G4eHvadSonlgdqKkpiOaGhYVx44aH+P2eMGGsSuPJqFrVisTEZE6c\nOIGhoR579/6t0DdHDh22bt0pLuk5Om6mQoXS2NhUxsamMoaGeoSGhlOuXAVy586DVKoh7puQkISh\noR4bNqxTGLdYMTM0NDS+yzV69eo1Hh43s73/unVbaNq0hXhdAgNDxLy38eMni9unTJnIwoXzKVzY\nlCFDRpKcLKVr155s3/43RYqYcf36bXx9A37ovaSnlw89vXxZHkdG06YNMTAwVPr7EBERwdu3IQr7\n1qr1l1y/1atXEBMTm+HxGjVKLZS5cOGC0j579/6NjU1lSpQohoaGFjExsRga6mFoqEd8fGIG10Sq\n1GGjZ8/e1KpV97te//+X/371Q5GMLAVslStXJleuXMycOZOAgACuXbvG8uXLGTx4MNWrV8fExIRp\n06bx8uVLHB0d8fHxoVMnwSi6Y8eO3L9/n23btvHy5UumT59O0aJFxerNHj16sGPHDi5duoS3tzf2\n9vZ06dIFHR0ddHV1adu2LXPnzsXHx4dLly6xa9cu+vbtC4CNjU2Wj12sWDFsbGy+57VUo+ancvPm\nDUqXFlTndXV1uX79droCsWFh0Vy54iFXuPNf58yZU5lW8oHgBuDr+4QKFSoCgpH7q1eh7Ny5jcmT\nx2b5uH5+qUKpKSkp9Osn5F7du3dHaf98+fKTM2fOdPPXevXqzJUrbgQGvpPzskxJSUFPT0/uAflH\nMGLEYFq3bsLdu7eVtkulUiZOHMvVq5flPDXfvXvL4MH9mDZtoqgbJvP8XLlyLfPnL2bs2IlUqyb8\nnc2VKzcuLie4etVTXP1Ii46Ozjc7P2QXd/drSCT6dOjQSmn7zZupkwlnz7px5swl8b2+vj6VKgkP\n/48eeSvsm5ycrOAOkVlV7969u8XXtraKGoa3b99i7NhUm6mDBw9w6lRq1XRwcMZivsOHj1LYNmLE\n6Az3UfPrybLTgZ+fH4sXL8bLy4s8efLQrVs3RowQbpygoCBmzJiBt7c3xYoVY+bMmdRoGlWoAAAg\nAElEQVSokXqzubu7s2jRIkJDQ6lSpQrz58/H1NRUbN+2bRu7d+8mMTGRpk2bMnv2bPGPXFxcHPb2\n9pw/f568efMyaNAgevfuLe77rcdWhV+tTv8787so+P/ufK/r9OpVINWrC9IJCxY4MGTIiHRV//9r\nqHqNtm3bzMyZgjRHRi4Knp4etG3bHA0NDdq27cC6dZvR0dGhUaM6VKhQAWfnA5mOkRF2dvV4/z6c\n+/cfZ/pv8PnzJ/7+ezcLFsyRC34A3N3vUKaMokm7Mr7n9+3MmVP069eDoKBwOWkkGXfu3KZVK2HG\np2BBI6ZNm8WkSWPp2rUHBw8eoEiRIrx5IwQIu3btp2XL1nL7Jycnc/PmDWrV+kvBM/NHk951iomJ\nwclpL3XrNqB06TKi2wXI3wePHz9i8uRx5M+fn6lTZxIeHkbjxoL91NatG1mwYK7cyk6+fPlYsmQl\njRrZUbq0GbVr18HDQ6j+1NfXp0WL1jx65M3o0eNp375Tuued9iEkMDBEYZm5c+e2cnZVRYsWY+vW\nnbRo0VjcduvWg3S9ahMSEihSpKDcttmz5zF6dOaacH8iv4vTQZYDtj8ZdTCSPuqATTW+x3X68OED\n5coJuZ6rV2+gZ88+3/MUfzlZuUaPHz/C3NxCbmZKGUFBr9HT08PAwJDPnz+zc+c2evXqg6amJrVr\nV2fVqnVyy3o/muXLHVi+3EFu27VrtyhXrjwguFHcvXtbQUNOxs/8vsXFxVGlSnnR9zIt5uYW3Lnz\nDy1aNCU4OBgvr6cqPziMHj2MwMAATp48n2G/lJQUNDQ0VBpX+q9dogxtbU10dTW5f9+HO3fu0KiR\nHSYmheUCorCwaD5//syzZ0+pWLGSOEnQpk1TOWeE0NAoubGPHDmEiYkpBw78zaFDTujq6oqKB6dO\nXaBVqybky5cfIyMjXr5U9O/093+Lnp6e0s8xY8Zktm/fio/PC6Veql/PKhsZSbh3z4dt2zaL8jxn\nzlwSZzeVMWBAL7lZOQ0NDYKDP/xfzcJ/L36XgO03qVVVo0aNqsisj9q0af9/F6xlFUvLCpkGayDM\nQMhyjx48+IeFC+eyaNF8Xr9+RXh4GBcvZt2J4WsuXTrP7du3VOo7atQ4ufdGRhKxgOHTp2hKlChC\nt24dcXBY8M3nlRH//HM3Uz3KqKgoRo+eoFSjq0qVquzatYN79+7SvXsvlYO1iIiPHDx4QBQ6To+N\nG9dSsmRR2rRpRkSEohyFjHv37iCR6GNsnE9OQDYlJYXcuXPz11+2TJgwmnPnzgDQrFlLABwddwGg\np6dH1arVxWDt8+fPCjZWaT+bo+Mmhg8fRLt2zdmwYSt//+0sJx/VqlUTxo2bSPHixeWCNdm9Wrx4\niQzv28WLl//rvqEYrMk05Pr06cekSVMAcHNzJ1euXIwZM4E1azYyderMDIM1QME/WCqVkpiYmOE+\nan4t6hm2LKCePUof9QybanzrdUpMTMTUVMjzuX3bS/yRd3bez5gxw9m//xB2ds2+6zn/bH70vZSS\nkkKDBrXYt+8QRYsWw8vrPmXKlCNXruxXgQUFvaZqVaEIStWl1bJlzfn4MTUIuXLlJpaWFXjy5DH1\n69cEoEOHTmzZslNh3+9xjZKSkihc2DDTc+7Tpzvnzp2mX7+B4rIhCFqWiYmJFChQkPfvw7PkSJCS\nksL27Vto0KAxpUqVVtonLCwMG5tKmJqa8uLFc2bMmCO6SaTl48cPlC1rkWa/1M8SFfWRUqXMAZgw\nYQrjx09WuuyrjFatmuDldZ+UFClJSYnijNiFC2fp1asrIIhQjxol5EHevHlD1MiToa2dA5knLggz\nbwEB/tjZNc1Wvl5UVCSlShUDYO/eA8TGxjJkyECuX79N2bJZUz2QSqUULlyA5GQhADQwMOTZs8As\nn9OfgHqGTY0aNVlm/PjUZOG0ht4yAc8dOxx/+jn9LqSkpNClS3sWLJirdPlOhqamJteu3aJoUeGH\nz9q6yjcFayC4EtSoUYuBA4eovI+7u7yXsY/PQwBxWRQEe6MfRVq/09BQwYs0OTmZkJB3rF+/Rmyv\nXVuochw+fDS+vgFiBWNCQgLt2nWgfPkKXLlyM0v2UZqamgwZMiLdYA3A1fUwcXGxDBggSK28fv2K\nOXNmIJHoy93nX7shXL58UXxdoEBBHj16xLt3H5g2bZbKwRoI0h8JCQlYW1cWt507d0YM1mxsaojB\nGgjFLJcuXef27VQ1g6SkRFxdT/PyZRAnT17AxqYGXbv2yHZxRVqvUyurSuKSanx81iV5NDQ0qFOn\nnvg+oxlMNb8H6oBNjZr/CJGRERw65ARAQMA7uSUaWXXepk3bfsm5/Q40bdqAq1fdWL9+NR4e10lJ\nSaFjxza8ehX4w4+to6PDiRPncHBYobQ9PDycz5/l3QuMjIyoVau2+P7161eA8EN66dJ19u07SM2a\ntZk9e3qG1bBJSUmYm5uwZcsGlc83OjpKnBEEOHHCFQBbW2usrMqwYMEcKlUSCiCGDh1JWFg0FhbF\nuXr1Mm5uqQHR1q27cHE5jqVlBb43np5CVfP06UJhyfv378XPOH36JDZuXAcg5o1NmjSVXLlycfr0\nSblxvvaZVpUmTYSZ6nv37qCvr8+OHVvp06cbAOPHT2LPHieFfaysrLGwKM66dZtFW6rNmzegr59P\nabXn1/j6PiU2VlEfTUb+/IJciqvrCd69e8fcubMxMDCkRIlSWf58IOg2ykgvn07N74M6YFOj5j9A\nXFycKOExbdoshfyXly+DCAuL/mWyCD8DDw93evXqkq7J9cOHDwDh+rRp055Hj7xxd79K9epWXL9+\nNVtG7N+D48ddsbQsQYMGtXBzk8+VO3LkFIMGCebyK1Ys4csXQVDVysqaJk2a8+lTNFu3CrMqBgYG\nSsc/duwIX77EMGfODN68CVLpnD59+oSenp5YfVivnuC72r//YLFP2hlcGSYmhcXX+fML5xMdHUW9\nejVU8rHMCuXKWcpVYJ47dxobG1vevg0DYPNmwU9VFozduuWJrW1Nzp49TUzMt4u/yo5tYGBA9eq2\nLFpkL76fPn2OwoxiQkKC+O/XrVtPdu7cC0BiomoWiOvWraZuXVuxoMjb24s1a1bI3bc9e/bB0LAA\na9euxsFhIS9ePGfv3oMZBlv+/i+RSPQ5e/a0QptM6gZQeKBQ8/uhDtjUqPkPUKyYBIBGjezkxEhl\n/L9IemTE2LEjuHDhHP3798yw3/jxk9HQ0KBUqTIYGhqSI0cOOnVqw4oVS37SmcqzYoVQDfrqVSDd\nu8tLOWhpabF48TLxfUjIW7n2kJAQVq5cQ5cu3YmIiODOHUWttLQG43Xq2GYamIaFhXHp0gVevAgi\nMDCEsLBoSpcuA8DIkWMIDAxh2LBR7Nt3SGHfmjVrExYWzZs377l//xF//72LypUtefr0CRs2rAEE\nyYxFi+z5+FEQKn769AnHjh3J8JyUMXXqTPbvP0TVqtUxMDAgV65c7Nq1R6xsnDVrHgBVqwpannfv\n3sbL6wHv34dz65aH0jETEhLYuXMbEok+vXt3zfD4gwYN5dmzQLy9n8vNKrq4nFTStw9FihTE3LwQ\ngYEBgGDoHhDwDmfnoyp93oAAwSmoRo1aSKVS5s+fy+LF89m+fYvYR08vL5MmTeXq1SvcvOlBhw6d\nCQz0V3DySYuXl/Ags3DhXIU2S8uKcu9btWqi0rmq+TWoAzY1an5zJk4cA4CpaRGcnI6kG5xJpVIq\nViyNRKJPgwa1xYq4/xemTJkBCLphb94EsXPnNtatW8W1a1coXbqY2E8WsOTKlQtf30AOHjxG9eq2\ndOnSXewTFPQaiUQ/S8uIMo4fP0q5csX/x95ZBkSV/2/7GkRMwMBBsRAVEMVCxe7uxUJFBbvFwLW7\naxVR7MDuQAFRQVxXRUUMBAQBE2QMBFGQmufF2TkwzlC77q6//zPXGye+58yZM0fmM5+4byIiVKUa\n1HHgwDFatmwNwKJFy9SuqVpVEDw+f/6s+Fh4eBjNmzdk+nRHWrZsA8Aff1xX2dbSsraYKfvyJZGM\njJyHEMaNG46Tk6MYWHxP0aJFWbJkhRjEqUNHR4fixXUpUqQIX74kcuzYGZYsWcmsWdOpUqUcmzat\n59Sp47x8+YJWrRozerQD7u7ncjwugC5d2iGV6omlxw4dOuPpeZVOnbpSsGBBvn1L4cmTJ4CQxQLY\nu3cnBQoUYOzYCXz6FAdAixatAbh6VTBV79fvFwAuXDjHrFnCdOSlS56sWpX5eTx8GEjbts2VAt57\n9+5QsWKmyK+JSVWlMiII11tWodoNGzID8GLFiuXpx1RoaAiHDrkB4ONzhdDQEAwMhAze9yXekSPH\n4ut7E1/fPzh9+gQTJ46hZs2qTJo0li1bnMUpUgW9etmwb99hzpxR/XvwfQ9hQMC9XI9Vw3+HJmDT\noOEnxt//tqh6fufOwxzXZmRkiM3jT548ZuhQ2/9TZY7+/QfSrFkLANq3b8msWdNZs2Yl/fr14tOn\nT+K671XkmzdvwcWLl6lc2Vh8rHBhYcggu6AlJ3R1dUlPTxPLX7lhbFyFkyeFrNCiRfNUepT8/W8T\nESF4Ia9YsUQsXb1/n5k16dixEzJZgtrsaokSJbl69Xd27z5AcHBkruK08fHCFOXDhw9yXJcX+vWz\n5e3bT7Rp047g4CD27MnsoaxWzZT9+zMnXA8d2p/jvsLDwwgIEAYxvLw8OHbssPjc8uWrKVfOiL59\nfyEkJBiAOnXMePgwkJiYGHR0dChVKtMySnEOHBwEcXVFuTxrmbd8+QpK9zt0aEVQ0CNxrbBe2Sv2\n9etXKoGnRCLB09OHunXrA8LEdl54+zZGdLH4vsXB2LgKLi47cHZ2FUurWSlSpDDNm2fKdhQrVowb\nN66zePE8vL29lNYWKFCArl27I5VKVfbzfTCZnp72n7UOaMgdTcCmQcNPilwup0cPoUTh63uTggUL\n5rj++0DFxKTq/3QjcUZGhtLk2rdv3zA3FyYoFeW2OnXq0qdP/xxV49VRpkwZZLIEVq1an+/jatu2\nA2FhL7G0rJPvbUF1Gq9wYeWGeBeXTYBQGnNx2c6dOw/FfrHsqFq1Oj169MLAwCDHdQCbNm2ldu26\n1K6tfPy5ZeZy4/Bh5cDi2bNw+vTpj5VVQ6ysGrBw4TKV9dbWdZFK9bh82UsMWhTX8c6druJaXV09\nNm3aSmRkBN7egtBuTEwMHTq0YutWZ5KSkpDJYuneXTBm9/PzQS6Xs3//IXbt2kVY2HNAmAju2LEL\nixevIDAwWMzSZaV4cV3xdvXqpixevEK8n5KSwogRQzh69BAXLpzn06c4cZrW2dmVbt164uXlk+u5\nunDhPLVrm1GrljAsULFiJW7fvs/o0eMICAji2LFDGBmVwtjYRG1farFiukr3v3z5QufOXShatCi/\n/34t19fPyvjxyjZVf/c60PDPoQnYNGj4SVGIsFpZNRSn8FxdXShbtoRasVOJRKLkWejjo76P53+B\n4OBgatasjpmZMU2bWpGamsqRIwfZvXu70rq7d/05deo4d+7kTbD2R5GUlETt2mYsWjQvzxmJq1dv\nMGnSVKWeM4A6depx9eoN8f6TJ49Fxf7+/Qeqbf5Xx/nzZ7CyqoWHx4UcJRpq1qzFlSvXqVYtc7Kw\nR4+OlC1bgtWrl+fptdSxdOkqbG0H062bEDQ1bNgIC4uaeHpexdPTR0mu5OHDQBwdJ4iDCkuXLsTI\nqDyXLvmKWZ/Pnz8r7b9+/QbMmjWPIkUybZqyDmKYmFSjQwfBNsrWtg+Ghvo8fRrCiBEjxDWvXr3E\n29sTPz/loMrb21O8rZg6VTBy5BiV9zp58jiGD7fD1LQydeqYk5GRgbl5DfbuPUj9+g2Qy+U8evSA\nqKhIletjyZIFuLkJmcesJu8mJtVYtmw1FStWYs+eXQCMGjVM5bUBDA0NkckSCAmJ4tGjpzRr1oLd\nu3fy9etXevWyUbtNdlSurHx9/dv2YRryjiZg06DhJ2X4cOHX/4YNwjRcRkYGCxfOISMjg/btW6jd\n5vff79ChQyfc3b1V/Ad/VuLjP4kBxqRJY6lfvxY1a9akZMmSDBtmz7Nn4fj5+WBrO5g2bdopbVuy\nZEm0tLTEHiIjI1V/4C9fvpCQEJ/t6yskM76f4MyJyMgI3r6NYetWZ1FeQoFcLmft2pWiBIsCS8va\nFC5cmIkTR1OjhglXrlxSeq5VK6FP7evXL2zdujnPx5L1dV+9eom9/SC6dm1PYuJntetSUlI4duyw\nUiZFocb/fRN61n03b96QZs0aZPv6xYsXx9nZlb17DyKTJYglQnVs2LBW6X6ZMkK5rl49KzGwzTqM\noWDatJkEBYWJ91u0aE316qZs27aLd+9kFC1aVOwXBFi4cL5YdgTEHzo+Ppnm7QDLly8RbysmJ5OT\nk7G3H4y7+1nOnlXu/zI2rsLYsZmZqaylRTe3vRga6tO+fUusresq9ckBuLhs5OHDB+zde4h16zap\nOTsgl2f8ebxv1T6voHTp0pQtW44zZy5y/rwX58550rhx0xy3yUpc3Ed+/TXT8UCdm4WGnwdNwKZB\nw09IUlKSKP6qyExoaWkxa9Y8QPAJVEeRIkU4dOhEnjSfFKxatRSpVI9r13Iv5fxojh8/QvXqlTAz\nMyYjI4MrV7x5/vw5AFOmTBUzJsWL67F//278/W9z5MgpnJ1dMTU1Y9MmV6UvS3WZxypVylGtWkWk\nUj0lmQgFdnZCFuPbt7zJL4CQpfL3f8CAAYOwsVEux6alpbF27UqxtJmVtWtXcurUCT58eM/ChXOV\nnjty5BTdu/cCYPHiebi6uuSrn6hXLxtu3BB6wCIinmFiUl5tP9XOnduYNGms2C8GcOXK7xw4cEws\nKaojLOwp4eFhSo99/pzAu3fv8t33ZG5eg/btO3H8+FlmzpxDenq62KxvYVGT+fMX066d+olFXV09\nZLIEZLIELCxq8ubNGyIjI1i1ajmjRjkwePAQtm7dwfDho0hNTeHFixfito0aWXP48HECA4OV9nnx\nojedOnVh+vSZODlNJSMjg8ePH+Lh4c7Zs6cxNTUX19rbj+DOnYcsWbKCly9lPHkSoXQNzpgxRWnf\n0dFvlO4HBARx//4TunXrobZlwdf3Kk+fhgKI4s55oXHjpjRp0iz3hX/y5EkQZmbGSo85Oc3K8/Ya\n/n001lT5QGO7lD0aa6q8kdfzdPLkMcaPH0WPHr3ZvdstX6+xe/cOGjVqrDLNlh1ubnvFL5m82ir9\nCFJSUqhQIbPnysFhJO3bd2bGjMnExEQjkUiQy+V07tyNPXsOiDZKLVu24eTJzMbv7wVls76HjIwM\nypYtId7Pj30SCFpYJUqUVCo154W0tDQKFCiQpbyXgLZ2QbHU+fx5FK1aNebo0dO0bdteadsdO7Yy\nb57wxVmjhgV+fqrl3uyuo/T0dKpUKSeW9bJaJylISIjn7l3/bAOi7Hj58gV+fr4MGWLP9evXWLJk\nPo8eCYMwlSsbc/68l5JOW3YohjUUGeCvX79ibCyUifN7/S1ePJ/jx4+wcuUaVqxYSmRkBBs2OPPo\n0QOOHz+GVColNDSEr1/TSEvLYP78WWzfvpXp03/l11/nquyvfPnSpKamYm3dBH//W0gkEiIi3lC8\neHHS09N58+a12mshKSmJypUNKVq0qPj+7O1H0rlzV5o3b4mOjg6LFs0jKipCRXD30aMHZGRkUKFC\nJTIyMqhVS5gYnjbNiXHjJvHtW4ragYG/Q2BgAJ06tVF5PDz8Jfr6JdRs8f83P4s1lSZgyweaYCR7\nNAFb3sjreWrUqA7Pn0cRGBhM+fIV8vUaigDG1XUXffr0z9M2u3ZtIzIyghUr1ua++Ady+/YtgoOD\nuHDhHDduXEdPT4+EhAT27NlDeHgkenr6DB06nIIFC5KUlMSnT3GULVtOKaMxfvwoTp48RtGiRTlx\n4hwNG1oDQhnPz8+XBw8C8fK6wNq1G/M9KCCV6lGunBEPH4b+rffZokUj4uPjuXfvMTo6OkREhNOk\niRUrV65lxAjVHqkLF84zfLgdoOwZqyCn6yg9PZ2bN29QpEgR6tdvwLZtLixaNA8DgzKsX+9Mly7d\n/tZ7SUpKombNqlSqVJmePXuTmJiIi8smhgyx58CBfbx580FpQObWrT8oWrQopUsbMGfOTLy8LiKR\nSLCzG8aqVespWLAgjx8/QldXN8/9egpOnDjKxIljWLVqnThwERBwj61bN9O//0BWrVpDlSoViIv7\nwty5s0WxXYAhQxxIT09j48YtyOVyRo0ahpeXh0oWNi9B5Pc/er59+8bWrc4UKlSY8eMnAdC0aQOe\nPQtT2p/iOlCHTJbAkCEDuHTJk7dvP6kMFf1VPnz4gJVVTTGwLFmyJNOmTcPOzoFixdS7afz/zs8S\nsGn/1wegQYMGZVJTU0W5ifwGawDVqlXn2bNwlixZkOeATaG2nxXhS8yewoUL4+KyXc1Wf5/GjZvQ\nuHETfvmlD0uXLqRDh04EBwcRFxfHypXL2LPnoPjlX6RIESXPz9TUVC5cOEfHjp04efIYX79+5cqV\nS2LAtnz5YpydN4jr/4rESeXKxvnyB82O8uUr8PRpKN7eXnTv3pOqVatz/fpt+vXrzcePH1m7diWR\nkW/ECcXu3XtSq5YlQUGPiYqKUAnYcqJAgQJKHpGKc/D+/TuGDRuYryxWUlISAQF3qVfPimPHDpOY\n+Jnhw0eTmpqGtrY2HTt24tOnT7i4bOLz589UrFiJ8uWFDObp0xd48+Y1kyZlXlu6urp/9phJOHTo\nAIaGZZk5c06u2eCEhHj8/Hxp1qyFODXp7e3J8uWLKVy4CDduXKd3bxsSExNxc9tLp05dcHHZjrZ2\nZpCjp6ccjBw4sBeAjRu38PHjR1EDT0dHRwza1PWDffjwgdatm9C5c1ecnObw5Usic+YIciuGhmVV\nMr4mJlXp3LkrN2+qapzp66uf/lX8v790SRiG+D5Yk8vlfPjwIU9TwVlJS0vDxqa7GKxVq2aKp6c3\n1apV1vzY/h9A08OmQcNPRrt2zf/SdnK5nKCgxzRqJPSv1a+ffYP4xo3r6NevV469R7Gxbzl//oxK\n8/yP5syZk5iZGXPw4H46dOjMr7/OwcLCgqpVq4nBlzrWrFnBmDHDGT060yA9q+K7iYlyA3WvXl3y\nfWx37z5Sai4HofdnzZoV2Wyhnr17D7Fhw2a6deshPlakSFFiY9/i738LgFOnTihto6cnlKbi47Mf\nmMgLzs6ulCpVipUr13Hlyu953i45OZnKlQ2xselO/fo1mTVrOsuWLcLX9ypjxozn0aOHJCTEU7Jk\nSYyMjChTpgyTJ08Tt+/bt6dSsAZQr14DGjVqTKNG1lStWg1XV2Xh4sTEz6Lwa0ZGBsePH+Hr168c\nP36EESOGYm5eRewJ27RpA9HRb7C0rI2XlwebN29k7txZgERtpnjatJnExsaL/W/R0R+JjRXOrZaW\nBB0dHQCl8uPevao9gH369CA29i379++hdesmWFvXFQO8adNmKq2tUcMixx9dBgYG+PreFO+XKFGC\nLl26kZKSwvjxo+jTpz9Nm6r+PZgzxwkLC5N86wiuWLGYkBBBeFhLS4t9+w5RunT+gj4N/x2agE2D\nhp8MhdTB/ftP8rXd1q2badu2GYcPH2DGjFk59r75+fni5+ebo9F02bLlOH78LJGRb7Jd8yPYu3eX\neHv+/NkAdO7cmbt3H2BoaJjtdlmn/xS8eyfj9u2b7NzpyqBBQ4iIeK30fHBw/s6pOqZOncC6datI\nTU3N8zZFihTBzm4Yb968RirVw8dHEPKVyRI4efI8AQFBDBlir7TNzZtCcFWhQsW/dbwdO3YhNPQ5\nw4YNp337Fnm2H9LW1haDjWPHMu2VvnxJ5OPHD1SpYoK+fgni4uKIiYnB0rIOzZq1wMKiFjVq1CQj\nI4PmzVuK2xUtWpRKlSohl8uRy+WEhz/ly5fMrOeiRfMwMSmPkVEp4uI+8uTJYyZOHMOcOU48fvxI\n9AxVTE46O28FhOtgyBAH9PVLYG8/guvXbys16z969AgHh6EYGupjaKhPgwaW4vuTSCTEx3/CzMxY\nDLpevxauGRubfmr7HWvUqCHefv/+HR07Cj8ErK2bsGDBbKW1ISHBbNmyCalUL9vgqmbNWly9+jsb\nN27By8sXT8+LvHsn4+TJY7i67lKZUAW4fFmYMP5eIiYnzpw5qTQI06VL9xzdLDT8fGhKoho0/GS0\nbNmay5cvERcXl68va4UtDwgyCTn1vJw4cU6UQciJ1q3b5vn1/yrVq5tx+7aQZZg+fWYuqzNxcpqF\nj89ltLW1xUAsISGBnj07A4Izgr5+CQ4dOs7gwf0pVqw4Rka5N8Xnxvnzl3j7NiZXIWN1vHjxHBB6\n99q2zdTg+n4aMGvm886d2/j4XFHbJJ8fFDIeaWl5CzS1tbXFacqsE8Tnz58BJGIw8+rVS+RyOeXK\nGVGtWnWuXbvJ+/fvadrUirCwp+J2/frZYmBQhuPHj/Dq1UsAtm3bLT7fuXNXtm4VJFLev3+PVCoE\nI5aWdfDxucK3b9+UmuKrVq2ea3lXLpfTt29fEhIS6NKlG56eF3n58gUvXjwXnS8KFFD9GhwzZgJL\nl65Uu8/ly9eQnPyNixcF9wpvb08cHEYq/fDIiqfnBUDRl/pW7f85S8s6WFrWYcGCOeJjTk6zVdYp\nuHfvcbbPfU98/CcuXnRn2rRJ4mOFChXK9zCThv8eTYZNg4afiG/fvv2lX88gmJ47Oc1m0KAhDB3q\nkONabW3tPE30/RsUKVIYgLZt22NgUCaX1Zno6uoRFvZUKWu2YMESNm/eRunSpdHVFXqJOnTojEyW\nQFRUdK6OAQDu7udo165FtuXiwoUL57s5XkGzZi148SKWOXMW5Lgua2l38eL5rF+/Gh+fyzlskTs6\nOjq8ffsJLy/ffG+r0LkzNTXj2jUfrKwacO/eXRYtWkBGRgY6OoWUdOUMDAw4eIemK1sAACAASURB\nVPA4NWpYiCW3lJQU3rx5/adW3Ajc3b2xseknbpO1X+zTpzhRHHbEiNEcOnSc2Nj4fE8wrly5jPDw\ncGbPnsvMmbNYvXodhQoVok+fHrx+/QoQ9OOyareBqhSHArlcjo6OEOxknb718LggmtE7OjphaFgW\nO7thFCtWTCmLrSi7pqWl4eKyScWPVuFtW6WKiUrAdvGiO9u3b8nX+3d23kD16pVwdJwgBuwSiYSQ\nkMgfNsSg4d9D84lp0PCTIJfLlYymy5TJe/ACQsnJyWk2Gzdu+Z9SK1fYSn0vipsXnJzmKN338bnC\ngAGDCAmJQktLi9evX4nCuNu3b1FbRl29ejmjR9uL92/e/J3Hjx+qXfsjyDo4kR1Zs6UKFP6nfwct\nLS3kcjne3p707987z/pp/frZ0rhxU8LCnlKwoA6jRo1l/Xpnfv/dj6lTJ5OS8o3OnZWnTxs1subE\niXM8efKMMmXK8OxZOLdu/YGZWQ1WrVqPtXVj5HI5e/bs5PXrV0pBkrrexbyYqGclPT0dF5dN2Nra\nUq9effGY9uxx49u3b7Rq1Vj0Or1+/RoA9+8H8csvfcTJzqzI5XIMDfUxMTGibNkSODrOEPvhHj8O\nY/LkaXTr1oONG9fi7X2NDRs2c/WqUNZu0KAR0dEf0dYWsnkBAfdYsmS+yoTonDkLcXXdib+/qs/r\n7t3bmT9/NlOmjM/T+/f09GDZskXi/Vq1anP8+FliY+OV7Lc0/O+gCdg0aPiXef/+vUr/0+vXrzA0\n1AeEL9Xo6I/5/oL6UURGRnDq1HHxyzwwMECpnPKjsbJqiEyWwJgxE/K97Z49ytOra9euFMurR48e\non79muJz8+fPplIlVT2r9etXc/bsafH9rlixlsjINxQuXDjfx/OjyOpCMG7cJB48CFHbfJ4dX758\nUfv4+/fv2bVrO3Z2A7h2zYczZ07maX86OjocPXqaefMW4+FxBT09/T/12PwBcHHZTrNm6t03tLS0\nKFmyFHfv+vPixXPmzVskZneuXvVm1qzp1K9fU2yGzw65XM6VK5dYu3ZlnvwutbS0SE5O5tmzZ0pS\nHUZGRuzatQdz8xo4OTny+PFD8bl+/XrTpElzrKwaquzPw+OC0v2CBXW4ds2HChUM8PW9CkB4uJAx\nmz59MoCoU3fv3h2OHz+Ct7cnycnJWFk1YPHiFRw8eEzc3549O1mxYjHjxo3i82eh1Bsf/0nsaXVz\nE4Z/jhw5mOvE8717d7C3HyjeFxwkfv9XWhw0/HNoAjYNGv5FateuQZkyZTA0zCzNJSUlERaWqfMV\nFRUj/hL/L+jVqwvjxo1k+fLFfPv2jU6d2nDw4P4c/SnzS2LiZ9HA/e+gaPhWULq0AVeueHPmzEml\n7AKAoWE5Vq/OlPl4+zaGnTtd8fd/gIfHVTFA9vS8yPjxo/72sX3PixfPuXPHn7t3/Rk8uF+OQwvv\n3snE29269VRruZUdLi6bqFKlnJK8hFwuZ+TIoVhYmDB3rtAnaGBQhrFjR4gOA7lRtGhRJk1yFH1t\n5XI5R44c4Jdf+tK37wBAkFpR97k6OIyiYMGCjBs3kU6dhM8sLS2NadMmi2tmzZrB+fNe3L37iK9f\nv3LgwD6lwHPlyiUMGtSPtWtXYmfXX8Xz83sUQdS9e/fo0KGt0nEVL67LsmUr0NHRYfHi+cyePR8Q\nHCJmzpxKWFioih5bvXr1adCgESBYUxUpUoThw4eQkpIiDkT8/rs/R46cZOfO/cyZM5Nx40aK2zs6\nTsDObgCVKknR1tZm3LiJdOzYhZSUFKRSPebN+1Vcq6Mj7G/GDEesrevy6VMcxYvrcvDgMYYPH5Xj\nj4mgoMd0795RKXu6Y8fe/+wHoIYfhyZg06DhX0TRNwOZHpaVKxtia9sHgN9+c8lTyeyf5ONHITDb\ns2cH797J6NChE337DshT/1deuHjRHROT8pibV+GPP/IuM6GOrNIldevWY+LEKTg7b2DMmOFKxuAA\nhoZS7O0zjcBr1zZj7txf2bt3F127tsPaui5yuRx7+0F4ealO5v1dunZtT/fuHejWrQOXL1/iwoVz\n2a61sxsg3tbWzl95W6HN1aJFK+RyOU+fhpKcnCzqjClQ9Fx973WpjuTkZDp1ao2hoT779gmDAgcO\n7GPLFmfOnDnJ7t07MDc3ZsqU8dSqVV1l+xEjRvP69XsWL86UQzl16jhv38ZQt249AFq1akvjxk1Z\nv3419evXZPr0yWKp8vJlLzZuXE+fPn1p374DV6548/LlC5XXASGLOG7cSGxtbZT6NFetWkF8/CdA\nKJeuXbualJQUrl+/xps3rxk0aAjjxk1i8+bttGhhTadOrZX2a2RUnosXL/PkSQR37giZM4VMi8IS\nSiKR0K5dR8aOHc6uXdtIT08HcraYSkgQsmkKORMQ/EYBsbdOUcLs2LELq1atV/lBd/v2LYyMSiGV\n6tG2bTOlDKS//wNxwELD/zaagE2Dhv+A73tIypYtx6xZ8xg0aMh/dESZ6OjoYGpqRmJiIhcunOPQ\noRNs3brzh/1Cv3zZS7ydV/us7Bg2bDgXLlwmJiYOb28/xo+fzO7dB+jcuSuHDp1gzJgJ6OjosHnz\nNhUNMsW5VjR6R0VFYmioz5Ejp3IdCvgr9Or1i9L9Dh06q1335csXkpK+ivf19fXVrpPL5bRv3wqp\nVI8ZM6bg6XkRAFvbwRw8eIzff/fD0FCfFi0aYW1dl7NnPcTMTLt2HZR6Bh89Enqm7t+/x4cPqhmy\nEyeOEhh4H0AcuFBk2ho1asy5c6f4+PEjqamp2eqOKazGFCjkOR48CKRbt560by/IjRw9ekjMhllb\nNyYhIZ7BgwUB6FOnTnLlijB8UbVqNZXzcfLkMZo1s+Ly5UvMmjWXI0eOsWWL0Kh/9+4d+vfvw+fP\nnwkOfiLup2LFiri57eXbt284Oc1mzZrlyOVynjwJEgO8rO8ha2/p5s3bkMkSkEgk+PhcpkuXdkil\neqLgreJ8Dxw4mNKlS3PmjAdBQc+U9mlgYMCRIyfFgQSAs2dPATBkiD0yWUK2GXe5XM6KFUvo2bOT\nUsCnIDAwOF+iyxp+bjQBmwYN/wGJiZ+RyRJ48SIWmSyBR4+eMm3azJ+ibDF+/CRRjiFrRvBHsWHD\nZiIjo5HJEtDTUx+M5IeqVavh5OTIzZs3kEgk9OjRCze3o1SqVJmlS1cSFRXDgAGDlLaJiAjn8OED\nlCtnxMCBg5X0who0aIij44y/fVzfs2LFWmSyBHx8/iA6+qNa42/I1OFT8OzZM7Xrrl69yv37AYBg\njTRsWGbPUosWrZW8QqdNm0lUVCRmZuZ/bnuZO3cyPUqnTp3I5ctedO7clho1quDurpz9693bRryt\n2Iei9/DUKXc+fRICm8uXvdQ2zIOQBTI01Gf+fMEn1c5uGI0aNaZu3XrIZLEMHWrLp09xjB0r9DL2\n7PkLpUqVJiIi8/1PnjwVZ2dXQkOjVAZrNmxYy/jxo6hbtz779h2gU6fOSCQSGjZsyNixQqO+UL7U\nwc/vGgCtWrVm//5DlCxZCm1tbUxMjETJEYC+fXuJgwkgOC4cPXqIAwf2Kb32t2/fsLXtQ0DAXfGx\n2Nh4unXrCcDw4aMJCYmiWbPman1BK1euolSCffo0NE9ZXnv7wWzcuE7tc3fuPPxLTikafl40AZsG\nDf8Sgn6VQIMGQlNzYmIiU6dOVJFsSEpK4unTULGkosDPz5c1a1bw8eMHHj4M5OHDQCIiwlXW/R2c\nnGZz5MhJJk50ZPz4yUrPZWRk4O5+jqCgvOtAfY+Wlla2wcpfoXfvLhw8uJ+RI4eqfd7b20vlS+36\ndT8KFCjA3LkLaN68JXfu+DNkiD23bwcyZ87MPDW1/1Vq1bLMsUdRIXOiILsv5KtXryrd37JlR5Z9\nFOHw4RPs2rUfgJkzpzJ16kS6d+8lrjl79jTbtu2mZMlSmJnVEAVjGzWyZsqUccTERItrdXX1GDJE\nkIqpU8dcqZ/x+nVfMcD/+vUrbdo0VTl/crmcdesEXbPt27dy7ZoPpUqV5sIFb7y9/Zg/fzGTJ0+j\nRImSLFy4jNOnL+Ds7ApA7dp1qVevPsbGVdDSKoCb21615VCF0HCrVq1VyuF9+vSld28b9u07gI5O\nIaytG2Nj05dff52NRCKhffsOXLzoLq5v0kSQGHn4MBAnJ0cxG1itWkUmTx4nDhUoOHcuU1h4x469\nvH37CYlEgqvrLmSyBNFOKzuynk9FILp7d+52cAqNt6y0aNGSqKiYvyw9o+HnRWP+ng80XmvZozF/\nz52sTeDXrt1g+/ZtHDlyUHxs4cJlopxA/fo1Re2rrOKg3/sUfk/VqtW4dev+jzxsJW7fvkXPnp0A\nCAgIyrE356+S32upZUtrQkND6Nath1orISOjUqSlpbF27UaGDRvOy5cvRLX70aPHUqaMlOXLl3D8\n+Fn69+8NCAFPUlJSvnw3fxQZGRlUqmRISoogK+Ll5aNiM6atrUVMzAtq1hSmYCUSCTExcSraWp8/\nJ1C1qpBluXbtFmXKSKlZM9Oy6+LFy9SrZ0WBAgX444/fsbHpzpw581m3bjU2Nn1xdt4mrpXL5VSr\nVpHPnxMwNTXj+nV/tLS0CA5+Qps2TcVyp0QiYc2a3xg2LNMyLDw8jGbNMt+DVCpl+vRZODhkNuXn\nxsOHgXTs2Bq5XE6nTl05cOAoIPR+jRw5DA+PzIBrx47dVK9uipaWhC9fEihUqChaWtn3Ar5//54B\nA/qSkZFO6dKlOXXqAoULF+bJkyDKlCkjasTt37+HS5c8mTbNSRxAkMvl+PvfomfPzirX4OPHj5g3\n71eOHz8rDiZkR0hIMK9evcDY2IR9+3bRvHkrunbtnuM2ir8Hbm6HWbhwHlFRkbx+/V6pvJobmr/d\nufOzmL9rMmwaNPwH1K5dV/xCnjdvAXZ2Q1i8eB5Xrlz6s6wnBA4TJkwmMjJC/PXfs6fQB1WjhgU2\nNv0YONCOfv1sxebqiIhn+Phc+ceO29zcXLydW9bg32Lu3EUA9O8/CKlUT8Uz1NNTyEQp+okUwRrA\njh3bOHBAyEJ9/PhBLPflZNn1T6OlpUWnTkJ/W79+ttl6wlpYWHDkyAnatGlLjRo1SU5OJiMjg7t3\n/cU1urp6vH79nrdvP3Hu3Glq1qxKvXqZ+7tw4Zxo0dS4cVOaNWvBihVLSUlJoUSJUkqvJ5FICA6O\noGFDa8LCnnLjxvU/j6OmKO9hbFyFokWLER2tbAlWrVp12rZtDwjXsEwmY/Xq5fk6LydPHkMul6Ov\nry+6TEREhGNmZoyHh7tSY/3o0SOYPXsmjo6T6dq1K/369WHatCliH973GBgYUKlSJRwcRhISEoWF\nRU1MTKrSo0cvJUHfKlVMuHLlElu3bhYfs7auK7prXLzoTu3aZoSEBCOXy2nXrjm3bv3BlSveub6/\nGjUs6NixC6amZqxYsTbXYA2gTp16tG/fkbS0VF6+fMGiRcvzFaxp+N9CE7Bp0PAvoCipAKxbt47p\n06dgYiJM04WEhODquoPateuwY4dQBlqyZAUyWQILFy6jW7cOODgM5vTpE0ya5Iiuri4hIcF4eFzA\nz8+Xu3f9adu2Aw4Oo6hQoSIzZ07l06e4f0T4tUSJkqJYaLFiwi/O5ORk3r17x759u2jSpD7PnoXn\nspe/T2pqKv7+t0lPT2fIEGGiUtHrdOvWH0pr69Sph0yWIPaxrV69Qakkqyiv3b8fgIVFTc6cucjA\ngXbZ9mL9GyiC7g4dOuW4rlOnLlSvbkZwcBAFChRgzhwnunXrwOHDB8Q1Ojo6aGlp4eoqBBlJSZlS\nGQrjeRDcL06cOMewYcOZNGkqjo7TVQLXQoUKcebMRU6ePK+kC2dmZs6iRct5/jyKr1+/0LVrD6Xt\nJBIJhw6dYOPGLSxevJzbtwPx9w/M1zlRSF3Ex8eLE7ajRjmImmUK2y9zcwvmzVuEv/9tAgPvs2TJ\nEgYMsCU5OZn58+fw8uVLlX1nZGTw8eOHXI3QFaXsCxfOsXjxfNzdzyqVmUGQi2nVqjF79+5i1qx5\nODiMEEusP5q0tFS0tbW5cuUy6enp9OnT/x95HQ0/B5qSaD7QpIyzR5NWz5mnT0Np0aIRffr04/Tp\nk8jlcnFqTk9Pj5cvo5k7dzbu7udVfAL/+ON3Vq1axtGjpylWrBivXr3kwYP7BAU9IiYmhlu3/uDF\ni+fo6emJEgEgfLnOmbOQceMm/uXjvnvXn27dOtC7dx+2bNmh1j+zfv2aKsMJilLijBlTcHPby8mT\n51Xsf7Iju2spMfEzPXt2YdasuURHRzNz5lQAfv11LufPn8HH5w+uXvWmcOEitGzZGh+fK9y4cV1J\nqBXAxqa7mB3KSteuPfDwcCcs7MXfljDJyMggISH+L+0nLu4jZmbGANl6TxYoIOHgwT00b96GihWN\nxcd9fa8yYMAvuLt7Y23dWGmbKVPGc+TIQSpWrCQe2/r1zuLnkp6ertTI36NHJ/z9bxESEqXWBP17\nEhM/4+rqQpcu3alVyzLX9Xnly5cv9OnTHQeHUYSHh3H3rr8YlHft2l0UtDUxqYqj4wy6d+9J8eK6\nHDrkxh9//M7Ro4dISEjm7VsZjRvX48uXRHr3tqFXr95iST88PIzRo0dw9qxHrgLFz59HsX37Vnbv\n3q7kORoQcJf9+/dw9KhQEt2z5yBdunSjXDnhGshveT0s7CnNmwu9rrdv38fEpJrKmubNG2JqakZ4\neBhmZjXEnsX8oPnbnTuakqgGDf8fERoqmGj7+fmKvT6KfxMSEnBz28eDB4Fqm6mbNWuBu/slMaNV\nsWIlevTozezZC3B2duXWrfvs33+ENm3ai2XK0qUNqFq1GgsXzhH13rLTrcqJW7cE14CzZ0+xaJF6\n83FFCaZHj96ULFmK4sV1sxiNC1IDffv2/NuN/MePHyUo6BF2dgPo2zczkzB9+q/4+d1m8eL52NkN\nEGUM7Oz64+KykWPHDivtRzGF2bRpc5ydXXn+/C0yWQK7du0nMDBYDLLc3c8hleqxefPGfB/rsmWL\nMDWtrCILkRdu3hSCkVq1LNUGawCzZ89kypQpWFllyqKkpKTw4IFQ8qtRowZfv37FxKQ8u3cLwwhT\npzoBgln706cvuHv3kRisCebtJZV6JBVizgrJD3VERISLn3Hx4ro4Oc3ONlj79u0b9vaD2bx5Y76u\nhbFjR3D/fgCTJo1l3rxFnDlzEUvLOgBs2bKTJ0+e4eq6i7NnPbC1HSxK5gwePJQdO3aLQaiBgQE3\nbwbg6DgDX9+rjB8/hrdv3/55ToQfHCYmVdUcgTLGxlWwshLKyocPH2Dv3l1IpXp06dIOLS0tZLIE\nZsyYxfDhdoSHh4nb5Tc3klU+ZPLk8Vy+7KWyj/T0dORyOa9evcTCoub3u9DwfwxNwKZBw7+AotTS\nr5+t2ucnT57IH3/c+Ev71tbWpkuXbtSqZcnHjx8wNDTkw4f3vHv3TkkmRPFlnh8KF85slM5OZuD2\n7UBksgR273bj6dPnREa+ETNay5atEtdlNQf/K/TqZUP37r1wcdlO8eK6REZGiwKmT5+Ginpq69ev\nBiAs7CX16zfA0NCQunVrYG5uzNatm/Hzu01sbLz4Ba8IirS1tZVkEIoVEx5funQBCxYoe5bmhsLu\nyNvbM9/vU7GtlVWjbNcEBT0CBD01BX379mTlyqWAMIm5ceM6EhM/s3SpoClXubKxGMx8P5zQt29P\n8fb79++Ry+XExQl+ptldN6GhITRpYkXFimVwds50kHj6NFT8kfDixXMSExNZu3YlrVs3wcPDnaVL\nFzBjxmS1+1THxImODB8+im3bhMDo/PkzXL36u1iWL1NGiolJVWrXNmPx4vk57ksqlfLrr3O5ceMe\nhQsXZvDgAfj4XBE15RS2Zrlx4oQw8PD5cwJeXhfFxxUCunXqCGLA3t6exMbGExMTl2fJHkUwW7Jk\nZg/hnTu3GTy4P6NHO4iPpaen8+rVS8LDw/j69Wuu5VwN//toAjYNGv4FmjdviUyWgKurEFS0a9de\n/NIMCAhiw4bNrFq1npcvZTntJkfq1hUMrlNT01i5ch3v3smUfpE/fvwo3/vMKuS7aFH+msQBdu3K\nlCb4u0MKpUuXZs+eA/TvL+iNFS9eXJQuePVKyB4WKFCA2bMXiM97efnw66/TiY5+w8ePH1m0aC7j\nxo3E0FBfDCqyo23bDtjZDQNAVzd/Ztl+fr6AoA2WXxQZq8TEz9muOXfOg/j4eE6cyJSK2bp1p5hN\nCgp6jKPjDLZs2cHTp8K5kUgk2e7z99/9xNvv3smUjNhXrlzK27cxKttUqWKCrq4e6enpLFu2CD8/\nX96+jaFFi8xAs3nzhjg4DGbt2pVERDzDyKg8ixYt4eBBN7UG9+qwtm7MqlXr2bRJCApHj3ZQkbHR\n1i5IwYIFMTAoo24XgBAIPX8eBQjZNl/fW9SrZ8XSpYvFTFjBgnlr2Ff0ywGMGTOeFSvWMHPmXGxs\n+gEQGHgPEDKtEolERTNOHYmJn5FK9ShbtgSAWqmerHIlWlpapKSkEBkZAYCTk2Oejl3D/y6agE2D\nhn8RQ0NDAOLjE8Rf0j4+V7CzG5arR2ButGjRipEjx+DufokRI0bz8qWM335zEUuWmzatz9G/Uh3F\ni+vi4XGFPXsO0qNHr9w3+I6JEx3p0kWYdjM1Ncv39rkhl8tZsGAOv/22jlu37vPs2WvxHCtISkqi\nXz9hMKFcuXJKTgsAmzf/puTlmpUNGzYjkyXg5DQ7z8eUtdwXEfFMSc8sLyhEfE+dOp5tGa1AgQLo\n6SkHmxUqVGTVqvWAMLRStGhR+vWzVZKT2LRpKxYWtVT25+zsSrly5XjyJIIaNSwwMirP0qUrqVTJ\nGBOTapQpoyr2WqhQIdFWCsDQsKxSwDRu3CQKFtTh8eNHtGrVGoDo6DdYWFgAEBsbm5fTIZL1B8Pm\nzb8pPWdpWZs3bz4wYUL2mbuyZUvQqFEdMTg1NDRk/37BUH3+/DlIJBLKlhWuHW9vT6RSPbWuDwBX\nrvzO5MnTcHScQbNmLTl9+iRr1iwXpUssLesCglNBXnj37h1NmtRXeiwk5Il4WzHos2ZN5vuWSCTM\nm7dIyeEgawlWw/89NAGbBg3/Ih4elylcuDDFihXjwIFjDBo0hJ49e/+QfWtpabFixVqqVzcF+LPk\nMxQ3t6PiGoVPaH5o0KAR3bv3zH2hGrS1tdm//zDR0R9/iKvB94SFPWXbNhfu3hVM1RV9fllp3bot\nJ04co1at2iqSB/r6JVi6dCHNmzfi8GG3H3JMWbMvABMnjlW6Hx4elqPQsbV1E/H29/13uTFs2HBk\nsoRsvSMHDrTj2jXVsp+t7WAePnwq9k1JJBKGDRtBdPRrIiOfKWWInj+PYtWqpcTGvlXKzJmb10Bb\nW5spU6ajpaXF5ctefP36FanUEB0dHSZNmgLA589Cls/OLn8TjW3atBPFdPN7Haenp6Ovr4+xcRUy\nMjJED9u9e3eKa+RyOV26tOfx44c8eCD07fXo0VHt/ooXL868eYuYM2cBFSuW4d69OwBMnjwNEDxG\ng4MjWbs29/5HuVxO167txAC2RAkhw1a5sjGFCxdm0qSp2W6rmMYdP34iRkZG2Nn1z3cgrOF/B03A\npkHDv0iVKiZER0fj5naY9u07MmmSo1Kvyj9B27btCQ2NwsPjCoaGhvlqfk5LS0Mmy75Me//+PVas\nWKJkq6MObW1tjh8/glSqJ8ow/AgqVKgo3lYImWZl8uRxYl9SUNAjXrx4Qb9+tkyePI2jR08pDQXc\nvPnXeggVKLKXoaEhQOYwRlYJkcjICJo1a0C1ahVVd/AnRYoUoWZNS/H4/6tB/gIFCqgtEfr732LD\nhrVKWmSGhob4+wtWV46OM7CwqMWzZ+G0bduOevXqIZPJmDpVCDxGjBD6sF68eJ5tBis7bG0HI5Ml\nsGTJitwXZ8HP7xr37gVx+3Yg69at4pdfuhEVFalWs7BduxZUrCh8PjkFS6Batpw2bZJ428DAQKVX\nUB2urpuVgvwlS4S+T11dPV6+lPHrr3PF8r2i1K6gWrXqtG7dlsOHDzJu3EQ+fHhP585tSEiIz/V1\nNfzvoQnYNGj4lylZsiS6urosX76IJk2slLIU/wRyuRxtbW0aNGjEtWs+GBrq06CBJYMG9c1xu/j4\nT9Svb0GtWtVE66HvWbBgDhs3rsuT9pq3t1CKVEzm/QiKFSvGjRt3uXbtFtWqVVd5/ujRQ0rTsQcP\nHmPLlh3Mm7eItm07IJMlcPXq79jY9GPcuLw3witISIhHKtXDxWUT5cuX5s2b1xw/LpTZUlJSqFSp\nMnv3ZrpZKHrDvn79onZ/ChQTfzVq1PzL/rKxsbEsXjyfM2dOKj3u5eVBaGgIKSkpYnCZlW3bXLCz\nG0CtWtVJSvpKdLRyNisg4C6tWrVlwYIlODnNxtTUjNjYWNEabN++3QQFPUJfX58ZM2ZRvbo5z549\nU5KcUUhntG7dhH37divpFP4d0tPTVSZQPT096du3F+bmxmhpaf2pw6eLoWFZduzYq9YcvWfPXzh6\n9DS2toNzfD1B+26BeD+7qd7viYyMwMqqFvfv3+Ps2UxbK3v7EdjaDvrzuC8ileoplesHDuyj0ofo\n4rIDuRwuX/bGwWEEHz68Z/jwIX9pQlnDz40mYNOg4T/i8mVharJPnx4kJn7m+fMopFI9OnZsTd++\nvbh9++YP8Qg9evQQ1apVpE2bZoSECPIiL1++yFF9PTU1lerVK4nBlb5+CYKCHiOV6jFmTOak2sqV\nQlO9ui+973F13UVISJRYsv1RmJqaKUkaxMV9xNv70p+lr3vcu/eYR4+eMmzYCM6dO6OyvaVlHbZt\n2y1OCuaHmBihGT8iIhyp1JAiRYpw8eJ5AGrVqs3x42eUsixNmzbn1Cl3wsNVxVuzYmhYFkDM9ORG\naGgI79+/F+9PnToJS8vqbNmyiTFjhvPlixAgvnjxnKFDbWnZ0ppx40bSjaVwkwAAIABJREFUsqU1\nixbNE7eLjX3LggVzCAsLEf0tTU0rK71WuXJGFCigRYECBXByms3Ro6dxcBjJjh17AShVSsgYx8fH\n07lzW5o1a86XL4nUrZspQdK+fXsePnyMpaUlM2dOpV27Fkq9WFlJT0/H29uTjx9zz8aVK1eSsmVL\nMGqUvfiYIohS9O5ZWNTk1q0AjI3L0rKlNSdPCp9XiRIlCAt7walT7qxbt4r69a3yFCw7Os4QM732\n9nmz2rp+/RqvXr1k48Z1bNy4RXy8QAFtgoOfYGPTncOH3ahbtx7GxlWYOVOYUk5LS8PEpLxS1lUq\nlbJixRquX78GwOzZ87hzxx9r63ocPLg/2/Oq4X+P7B2INWjQ8I+RkZHB06eZv5xNTMqLorQKGYXr\n130ZOnQ469blXwcsK4om+4iIcNasWc7q1Rt4906motCelayN8ufPe2FoaMjYsYI35Jkzp9i+Xfhy\ntrSsk2dB0IIFC+ZJgPXvsn79Gnbs2ApkipU+eHCf/ft3A8om6X8XMzNz3N29qVmzFr/95oJcLkdL\nS4uMjAz69h1AhQqVkMvlyGQyLC2rY2s7WOzDyokiRYoA5FpqBnB3P8uIEUNp27Y9R48K2ZqsZuTa\n2tokJSVRrFgxpf4mRak2a1aoVKnSaGlpMWDAwD8N0nuRmPiZyMhnonCrQs8tMfEzJiblmTFjFn36\nDKB79w506tSFS5cypUxatmxNnTr1GDVqHBKJFmPGjGPq1IksWbKIs2fPUKlSJUqVKoW2trba8qFc\nLmfkyKGiNduVK9epXbturuckIiIz46s4lwq5FMgsXSYlJfHx4wdiY+Pp0qWtUnB68+YNatasxYgR\nY3IN5gMCggDynA21tx9Bx46dKVfOiOTkZPHx3bu3i6bvOjo6vH4tBOHCOe6PtbXw3uPiPipNXffr\nZ8ulSx4cPOjGb79txsVlKwcO7GfatEns27cLN7ejGBmVz9Oxafh50WTYNGj4D9DS0mLChClKj6Wm\nporWNyB8oX5vs/RXePIkiNat24ryAvPm/Urt2nVVhDZTUlKQSvUYNcr+T5HTkdy+fZ/GjZvy8GFg\nlkbtg+pe5ofz7ds3tWKhuZGU9BWApk1biI+NGDFUvP0jspZZsbZuLAY/EolE9HUND39KhQoGGBrq\ns3ChkCE5evRQnt5PQMBdIFPXKycU700hKQGCaKyCy5evY2BgQGhoiOgO0b//QNavd+bGjbtMmzYT\nN7e9JCYmIpFIyMjIYPXqldjY9KJ2bSErVqhQYUJDQ/D0vCgGGPv3C0H7unWr2LhRyLRmDdZAyCTN\nnz+bnTtd2blzKzo6hUQ7rJCQYOLi4mjfvhMHDhxTG7AlJyeLwRqgVl4kK7t3H2D9emcxawYoTQ3P\nmOFIamoq48dnlr8jIp7h73+L+/cDlPYVGBjAwYP7adOmqfh5ZIdEIsl36drIqDwSiUQMKLMyYMBA\n7t8PVnqsShUTUWtNnUTO/PlLSEhIYPfunWhrF2TKlGmsXLmGmJhounXrwKtXOWd1Nfz8aAI2DRr+\nIxYuXMqzZ69EexwQSh5SqfAFk5iYSHj4U9zdz/7l1/DxuUxUVCTXrvmQlJREQkIC9es3YNiwgURF\nRXLz5g0xgHnwQPB2PHfuNM2aNeDYsUNi03nWpujGjZuK2k//JH369GTw4P48fKjqOXn9uh9SqR6m\nppVYvXo5tWubiWU/iUT4s1apUiUSExP5+vWr+GXVsKG1Wk0suVz+w5r7J04U9LAOHcqcOtXXFyb/\n1A1GfE9qaqrYDN+6ddtc1wcEBOHhcYX+/QcSHPwEqVSPli1b8fhxONHRH8Xs0I4dWwkODmLChCm4\nuGxHW1sbU1MzAgMDmDFjCtu3b0FbW5t69TLlJR49ekT58hXw9vaiZUtrhg0bSKVKgsRHw4bW9OzZ\nm2bNWog+roUKFcLGph9Vqwpm74ULFxH7G+VyObq6umKGLjU1lXnzFuPish1Ly9qoI2swU7RoMdq1\nUz+1qaBTpy5Mnz4Zc/Mq4mOVK1fm3r2HmJvXwM1tD25ue2jatLkY1NarZyWWykuWLKk2gOrSpd0/\n2shvZzcMU1Mz8cfQsWNHkEqVpVQqVZJiYVEz24x25crGzJ+/hJs3/2DWLCcSExMxMzNn+fLVpKWl\n0bZtM6XgV8P/HpqATYOG/xA9PX02b94GgJVVA86f9xL/aE+YMIlGjayZMGG0ildnXlHXv+LsvJlC\nhQoxY8YUevfuSocOgu6Xjo6yT2hSUpKY9ejZ8xd8fW9SvLguNWqY0LhxPZVm9h+NjY0wFKGYmFTg\n5eVB376CnMGnT5/4/DmBt29jRGHgMWPGA0I2y8TECGPjskyaNJWuXXvg6rpL7WsZGupjaKifpxJk\nvXoWSKV62a79vnwWEhLF6tXriYmJ4+LFy7lmYrKWyhUWTDlRsWIlMRCcPXsGIGi4GRoaKmVsx46d\nSLVq1cV+KAV169ane/deYv+VQssNBN02Ly9fTpwQSmoODiMAQdqjUSNrdu1y48yZi6xdu5GCBQti\nbm7Bly9fqFatGs+fR5GcnISxsTEAlSpVxti4LJs2refgweP89psL9epZ5fr+tm3bjbV1E+7de5yr\nAO2yZYsAVDxvTUyqitPY3bv3RiKRsGyZ4IhhbV0XAwMhcxUXF8fu3W6i7lmRIpnl4gIF/rkOog0b\nNnPjxl26despZmjd3c+Jz6elpZGcnJzrgNLYsRPYsMGZt29jGDp0EJs2/UapUqVYuXINhQsXwcFh\ncJ4GhDT8nGgCNg0a/mOaNm2OTJaAp6cPjRs3xcKiFtWqVefAgf3o65cgOTlZKVuTH1q1aou5uSBU\nWrRoMe7ff0jRosUYMWKU+MdfR6cQhw65MXBgH5o3bylqeI0YMVq0agoJCaZz5zYUKZIp7Fujxj/r\nXTh8+ChksgSVL99Tp46Lt8+d82Tp0lXcvfuIxo0F/bLq1U2ZMGEK+/cfwdKyNh06dGb8+Ml4eLiL\nGmAgNNhLpXo0blyPqVNnYGBgoKLTpg6FBtiCBerFdK2tm1C/vhVFixYlJiZO7NsrUKBAnspmWfv8\n8qKQnxVX110MHGgnuj1kxdTUjJs3A8QMkofHBdE+as+eA5QoUQJz8yp4egpWSyVKlKBv3wEYGhpi\nbz+C6Og3og/rhw/vlfadlpZGamoqDx8GcumSB5cueYpZWMU0rouL0JuVlJRE7dp1GDx4aJ5kL2xs\n+uHufkkMqnJi2DAH6te3IiQkUuW5s2c9eP36vVgizfpZZ3UQGDSoHzt2uJKens6LF2+Jjv5IbGy8\nWo0/BYMH96dXr865Hl9Wxo4dTvXqFalevSLbt2cOHrRq1QaAS5cyreC0tbW5ePEyT57kntm2smoo\n3vbz82XECHuSk5PFSdymTa00Arv/o0jk/5XIz/8gcXFfSEv7ewbW/1fR1taiZMlimnOUC3k9T69e\nvcTKSsjUmJqasXPnfmrUsMj36z17Fk7TpkIWY+rU6QwfLmRR7t8PYNSo4aSkpDBz5hzWrMnUtXr9\n+j3PnoVjZmZOQkI8Z86comLFigwenCl0umTJCsaOnaj2NSMjn9GqVVPmzl2Q7ZqcyO0cvX79ikuX\nPGjevBVmZua57i8mJpr79+/h4GDH3LkLmTJlOgBz5jiJ1lmKMlNCQjwWFtUoWLAgISGRap0n0tPT\n2bnTlaNHD9GsWQuWLVutEoilp6fz7ds34uM/sXz5Yo4fP0JoaFSe7LkyMjJEe6InTyKUTMAV/Ij/\nbwpbrvHjJzN8+Ch8fa/g5CT0uJ065Y6pqblS/9eGDWtYtWqZeP/Gjbuie4WtrY1Yxq1YsRJt2rTD\nzW0v58550LhxM7E3zsPjAq1btxE9Tf9pFOcpIuIlpqaCaO6bNx/EHwFCm0A8UqkhDRvWVpKA6dmz\nNzt37lf6bD99iuPkyWOMHJkphpySkkKFCkIwmdcBHEDFFk2xbWLiZy5edKdv3wH5Cti9vT0pXdpA\nKWBr166FOGwxdep0bt78A3//2zRr1oLTpy8gkUg0f7vzgOIc/ddoArZ8oLmgs0fznz5v5Oc8hYU9\npXjx4n9rusvD4wL29oMoWLAgvr7XxV4qEJr6x48fQ+HCRWjTpp1onB0d/VEspVWtWoHPnxMICAhi\n164dvHnzkqJFi7Nixepsv3TPnDnJmDHCROmqVesZPnxUvo75R15LDx7cp2PH1gDs23eYTp26iF+C\nBw8KU3Tz5y9h0iSh7+zOHX+6dxcM1StUqMj9+0/U7heUv3BfvpSpDe4GD+4nyrcsXryCcePyFsB2\n6tSGwMAAFixYysSJU1Se/xHnaPHi+Vy/7svZs56YmxuLwr+jRo3jw4f3SCQSXFy2KwUN/v63RfX/\nO3ceIpUaMnPmVFF7DuDt2095ypx9T2LiZ0JDQ6hTpx4FCxYkKiqSmTOnUrFiJTZs2Ky09tu3b7i7\nn6Vz525KwsTfozhPlpa1CQp6DAiODNev+6uslclkBAU9wtbWBgAjIyNSUlI5cuSkaOZerlxJ0tPT\n6dGjF7t3HyAkJJgSJUrg5eWBtXUTlUGenHB0nEBw8BM6d+7K0KHD85RBzAnF9RgbG49EIlH60afg\n9Onz3L8fwLJli9mxYy+9e/fR/O3OAz9LwKYpiWrQ8JNiamrG3Lm/IpXq/eUJr+bNW2BoaEiHDh0J\nDQ1VEdOMiYmhbNlyTJgwhdu3AwkMDFbqeypYULj98uULXF2dMTOrgbPz1hwzJFmN0v8NGY+cyFr6\nsbcfxPz5s8T7dnbDePIkQikgatTImogIQdz29etXuLhsynbfYWEvRP0tLS0ttUMLxsZVxFLa69d5\n/wzHjxdkJ5YuXaAiBPujWLhwKVev3mDatIlKHrOTJ0/l9OkTnDp1nISEeKZMGY+3tzD9aW3dmKdP\nnxMR8Zry5StgbFxWDNZKlSpNWNgLtcFaVFQky5Yt4smTILXH8u3bN0xMytO1a3uaN2/IjRt+tG/f\nEj8/Xw4e3K+0Nj09nY4dWzF+/CjmzHFSei67c/XmzWvxtrZ2QbVrpFIpbdu258GDEGxtBxMdHc37\n9+/o0KEVgwb148OHDzg6Cj2C7u7nSElJoVWrxtSpY46Dw8g8BWupqaniNblx4xa8va8xbdrMHIO1\no0cPIZXqERn5LNs16gZzKlSoqFLil8vl1K9vRalSpfD1vZrr8Wr4udAEbBo0/MTcvClIaaxbt4r+\n/XvnWwRTT0+fpk1b4OFxkZEjHbC3H8rt27f4/PkzU6ZMQiaTiRIHJiZVKV++gpIuVGjoc2SyBLFR\nee3albk2Lbdv34mwsBfExsbTq5dNno7T29uTd+/e5eu95YV27Too3VeUQBWUKVNGpZypq6vL3r2H\nxNsglM769OlB5cplxXUlSpTk8uXr3L4dSIUKBvTu3VXl9SdNmipOr2ZtYM/9uIUsllwu58aN63ne\n7q/g5SX0Sjk5zaFmzVoYGJQhOvojr169QyaTceTIQcaNy8ySlixZCl1dPZKTk8THihcvzsmT5ylR\noiQvXjzn/PkzSkHgsWOHcHbeQJs2TUlPT0cmi+Xr16/i84oezQkTJiGTxWJj04PPnxMwMamqYlav\npaUlCkArgqRnz8KRSvUoW7aEqMGXlbi4OPH22LETcjwfRkblGT16vNJjV65cYvv2LYwfP4kqVUzY\nsGEzX74kAsrXWP36NZFK9di7V/1wi2ICe/NmZW3FoKDHBAc/YfDgfkyePE7p3Ny5I1h+tWrVhOxQ\nTJZDpnafRCJh7txFSusU12KtWpZ4e3v9Yz8GNPwzaEqi+UCTMs4eTVo9b+T3PD1/HsWbN2/45Zeu\nf95/m2f7GwXHjh1mz56dtGrVBl/fqzx8GEjhwoXR0dFh1y43UTri/v17DB7cnw8f3uPoOEPJcic1\nNZUlSxbw5ctnDh50o169+uzbd1icaMsvz59HUahQIcqVM+LFi+c0bFibFi1ac+rU+WzPUWpqqsoA\nQm7I5XIMDQXT+SNHTmJt3TTHElp2xMV9xMzMGFDfpzRu3EhsbQeLDeNZWb9+NatXL+fx4zDRwSAv\n2NsPwsPjAp06deHAgWNKz/3I/2+hoSHcuXOboUMdVJ67etWbT58+0bChNaVKlWbPnp3Y2w8nJiaG\n2Ni3/4+9sw6LYm3/+GdBwiJUFgzEBsHEQrEQGxURj4l1zCN2HBMTxT52IbaiGKAcuxNUsDtQWhAM\nDEJgfn/MuwMrjfqe4+/dz3V5ye48z8zs7M7MPc9z398vRYsW5cKFc/8RCRZHG2vUMOX160gaNGiI\nr684HRwTE0Pr1s0oVao0X79+5dYtUfNs1y4vWrVqi51dKx4/fsiePfvp3LmDUrBna9sKT88DSvvl\n53eFbds2M2/eIooXL87Jk8dwcuouLVd8R4rjdOTICfbs8aRUqdKMG/dnjlO2SUlJdOjQikePHpKY\nmAggTYNmR8eObSSdufSpBaCcm5h+H9++jVWSIQGxolfhlyoIAmfPnqJqVYts0yNOnz6BoaGRUmXx\nx49xVKxYRnq9du0GjIxK4ut7iF27dvDq1Wu0tTVV1+4c+LdMiaoCtjyg+kFnjSpgyx35PU6xsbHE\nx39RMjvPD4IgsHv3DiIjI+jevZeSBtzixW4sXuwGwNKlK+nTp3+G/uHhYdSuLRY/DB48jHnzFuV5\n+2vWrGTOHDFfbuXKtfz2W0/q1q3Oxo1bqFevQabH6MgRXwYMEH0d85LYDVCnTjVpStnevguamppo\na2tjY9OSDh065Wld+SU5OVnp5p0bPDw2SjIdirwkBf+N8y0iIpxatapStKgOL16E4em5k9GjhyOX\nG/L1a5I0avVtYcTJk8fYtWsHf/45NYPESfoAGmDSpGmMHz8JK6vaVK9eg2vX/P8j0fKMmzcDSExM\noGHDxhgaGnLhwjmqV6+RaeGGIAiEhYWyfPlSbGxsadjQmuLFi2d7nOLj45k6dSKenjvZsmUX7drZ\nAeKDS4cOrZHJZEqBY4UKFTl16gKrVi3nyJHDGBmVpF+/3+nUySHTzxcYeJ+SJUtJ33v6oLJhQ2sG\nDRpGx472SgGblpaWFCDm9XeeFQMH9pEkQnbv9kJDQ4MJE8TcwIMH/1Zdu3PBvyVgU02JqlDxC1C8\neHGlYG3zZndpWkhBfHw89erVQC7XyVIRXiaT0bt3XyZMmEyZMsZSNWO9ejVYvNiN+fMXs2HDlixN\nr0uXLsPx42dxdh7N6NET8vw5Xr4MkoK1IkWK4uIyBTU1NW7deki9eg2y7PfsWebm87khff5fQMB1\n/Pwuc+iQt9KN7GeT12ANoG7dtGq/p0/z//nzS8mSpdDV1ZNkXhR5Vh8+vFeqRPzW47N163Zs27Yb\nC4tqhIWFMnz4YCm/TyaTMX36bMqXr0Bo6BvGj5/E+/fvCAp6gbm5hfS7jY6Ool07Ozp3dsTQ0JBb\ntwL57Td7atQwzXRfZTIZxsZlcXYeye+/O1G1avkMJunfcviwN7t2bSc1NZV+/XqSkpLC7ds3CQsL\nJTk5mcKFlUdig4Je0K5dC9atW4WRkRGRkREMGtRPcgBR7MfNmw+4fPk6depUw8ZGFJmOjIzgxo3r\ngCiX4ud3hYED+xAYeINixYpjY2MLIAVrP5LmzcV1DxkyDG1tbR4+vE9w8CtGjhz7w7el4ueiCthU\nqPjFCA5+xeTJ42nWzEop2TgpKVFyJJgxY2oWvUVCQl5haKhLyZL6tG1rI/WbOnUizs5DGDFiSJbK\n/5GRkaxZs4L79+9kujw7ypevIFWNfvr0EWvrJrnSJhs9ejwzZ7oyffqsPG9zz54DaGhooKenR4sW\nLWnb1o5Bg4ZSqVIVxo0b8d25cwqv0MzeHzDAKUex06yoXr2mNHV39+7t79rHb1m58i+aNbPKto1M\nJsPf/xb3799l1arlkqxLYmIiu3btw8NjB76+J7OVVrG0tGD//r2cOXNSem/UqLHUq9eAZs2sEASB\nIkWKoquri5tbmmTIjBlTlH5/Pj6iN2pOwsalSxtTsWIlGja0zjJn8MqVS+zYsZWWLZVdEywsKtK6\ndXNp1Dk1NaOF2dOnT9HS0qZw4SKUKyeOivn5XVZqU6aMMRUrVgZEEWQrq9rUrGnGihVLGTRoKL6+\nacfi1auXAOzZcxB//1uSJymQ79/Nt+zeLeYHmpqakZqays6dO7CwqEbTps1/yPpV/PdQBWwqVPxi\npM9jCQlJGz3S1dUjPDyWHj16ZzqdqUAQBKyt00ZIFJV769e7s2DBYho0aIC39wHatLEhIiI8Q3/F\nzbdHD0e+fPlCYmJithVs6ZHJZCxYsJSnT4Px8vJh/frNue7n7DyKUaPG5ap9elq0aMWqVet5//49\nO3ZsZdOmDchkMlq2bM3Xr1+ZNu3P77KlMjTUpVq1SlSpYiIldYOY4H3kyGEcHTvma71qamrUry8G\nVen1wX4Erq4z/+Pl+TbbdqdPizloc+fO4MSJczRtaoO//y1kMhkdO9rToEH2Qd/du0/w9j6SwVLq\n8uWLBAW9QBAEChQoIBWnzJgxFxCDqk6d2kq5bmPHTmDlynU8efIKQRCQy3Uy6JiBOKXo53eTQ4eO\nZWlB5uBgx/jxo+jQoQ0PHrzg779PERISTa9eolVV8eIlCAoK5/HjV7i5Lc6wjsKFC/PgwX3JkWLR\nIjdu376p1EZNTQ1v7yN07GgPpLl1lCxZGlNTM0JD33D48HHJ/1Umk1GhQkWMjctKbhwBAdezPba5\nJTAwAIDk5BTevInm2bOnDB8+Ks+izCr+eVQBmwoVvxgaGhpcvHgNd/et2Nl1zLBs5cp1NGnSLMv+\ngiAoTb2sWCFW1T1+/JhXr17y+LF4I7p9+ya1alXN0H/BgqW4uMxh+PBRaGtrY2xsgJWVJXXrVkcu\n1+H69Wv/mQLKqHWlIDj4FVOnTsw0IPwZODh05dQpccSicOHCyGQyChcujI2NLT4+B3B1nZXvoG3u\nXDHv7/37d1KAAaCtrU2hQoUoW7ZsVl1zpGxZE4B86Zplx7Jlq9DQ0MhxxMrGpiXm5hb07z+Q2rXr\nsH//ISpUqJjr7RgZlcx0FPX27UdER8dJn2vRor+4d+8pzs6jpJGva9f8aNdOnM7T09OnR4/e6OsX\nU5oezqvcjRj4izIuL148Y+/e3dSv3wBtbW1sbVvh6rqQsmVNKFKkKAUKFGDgwKGcP+8n9R8+fBR3\n7jwmMPA+gYH3adOmHaBchQqiyLCDgx1JSWIOXIMGVkRHx0l6f1paWlhZNcp0dNnRsRv+/jfzJTr9\nLenPQX19fUJDRYu7atUy925V8e9GFbCpUPELYmZWFXv7Lvm6kaupqbFjh6idZWFRnTJlxCqyv/8+\nzPr1a5Vyd4YOdVYyfgfR0mfkyDHMmuWKmpqaVM2mGAV68OAeNWuaYWenLKmRnkePHvL8+TN27twm\njZZs375FWp5V8OTgYJfpyEpOyGQy7t+/h0wmw86uI0lJYsBataoFNja2rFr1F25uc/O8XhCP0d27\nTzl27AyNGzeV3t+6dRNfvnxhzpwF+VovgLa2aCOloZGzZVZecHLqR3h4bI5Vq3K5nPPn/Vi06K8f\nst3XryMZOnQAkZERSu+Hh4dJ+WTduvWU3m/dul2GdZiamuHuvhUXlzmUKWPM7ds3CQy8ket9mDlz\nLm5uSwBo2rS59PDi4GDH9OmTMkhdmJtb4O9/i2XLVjFunLLu27Ztnvj4HGXjxrWcOnWcdu1slXxm\np0+fRXR0nJI/a26oUKFSpib0eSEpKUnpHCxRogQvXwahr18MM7OMD2Iq/v2oAjYVKn5RBEFQqmLL\nC23a2PHkySvOnLmEn99VACkwCwl5xfHj5xgzZgIbNqyhXr0aklZXZgwbNoJNm9LETbMqWEhP9+69\nOHjwb1avTtOjUuhn1alTHTU1NYoVK8Kff47l/ft3uLhMQS7XISZG9LDMqx4diJp2giDg5bWHlSv/\nkqaC69SpR9OmNixfviRLQ/vNm92Ry3UyHXEEMDIyUkrEB6hRQ1THNzbOf2WvYspSUzNvcibZkZSU\nxMaNazOIKOcXQRBo3LgekyaNz7bds2dPqVHDFG/vAxn08OrUqcaCBa5s2bKJuDixOrJcuQps3py5\njIa9fRdGjhyDTCbDwaGDNBKX034qqFixEkWKFKFlyyYYGytbf2X2EFShQkWcnPqho6OboW3lyqac\nOXOK3r27SYHjX38tZvjwUbmyTvtZpD9HJkz4ExBHAo2MjHKVN6ri34cqYFOh4helV6+umJqWkxKX\n84q+fjHU1NQkE/evX79SqFBhihcvTu3alixfvkRqm9M0WKdODmzevJO5c90oWLAgUVEfiIr6kGV7\nmUxG48ZN0dXVk/wq9fT0SU5ORl09raJy61YPfvuts2SO7eIyi/Dw2HxVXe7bp6xlduzY3zx8KFpP\n1atXH2Pjshw+7J1pX4VifGb2U1lRv34DoqPjlHSx8kpYWOh/tq+V73V8y7VrfkyfPpkWLRoDEBUV\nxfXrWU9f50RqaipPnz6RcroADh7cR5Mm9ZWcDVq3TpumV4g1K9DSEj9fSkoyEyaIU5aTJk3N1ffc\nokVLJcu1zEhJScHQUJfSpUVJEFfXmXz69EmpzbJlq5g9e35m3bPFwMCAZctWUbZsOY4fPyu9v3bt\nSuRynQzb+W+RXq+xYsVKgCjVUr58hX9kf1R8P6qATYWKX5QzZ07x6dPH705OtrPryJQpLtStW58l\nS5bz6NFLZDKZlAdXv34DjIwynzpLTU2VrHY6dOjE0KGiirxMJsvVU7yY2yNWWF6/7o+z82B27drL\nnj17sLVtxYYNm1m3bhPLl69BXb0ATk7dJfHc2NhYli1bhKfnzlx9zm99MQGOHvVFEARSU1NJTU3l\n9evXmfZ1cupHdHQc/v4ZLYAyQ7QtaohcroO//9Vc9ckMRU7cjxypsbSsCyCJHi9aNI8OHVpJXpt5\nRV1dnejoOHx8jgBibtiwYQN58uQxNjaNWLJkAZ8/f5YKMq5du5OicVj7AAAgAElEQVTBsuzcOT+m\nTZvJ4MF/0L17L7p16yEl5OeEh8d2nj3LPpdNMWpWqVIVQPRLVaAQjnZy6pdrr9dvcXLqR0DAXSwt\n63LrlrLczvXrfln0yp6UlBTkch3Gjs1/LpuFRTXatGknTX2HhARLBRAqfj1UAZsKFf8wL18GIZfr\nsHfv7jz127fvEGXLlqNtW7vv2r6amhpjx07k6NHTdO2apha/bp0HIBqid+vmoFQBqWDNmpVYW9el\nffuWWa4/u2T+li1bY2RUklq1LAHw9j5AgwaW9OjRg337vHFw6EqlSpVp27Y9KSlpUzwXL56XptFG\njx7OgQNeOX7Obt16Skni6Tl06CB79+4mKuo1o0dnP62XWw4dOsijR+LoXXqbobyiGGFKbxf2vRQu\nXJjLl2+wZs1GAIYMGY61dZMfltdUooQBRYum5RkuWjSfqKhIpk2bydq1myhfvnyGPpUqVWL06PGo\nqakxePAwvLz2UL58SYYNG5hBm2zw4P7I5ToZKjOzQyaTcf36HfbsER0TunfvJQVtTk798vT5BEGQ\nftOfPn3k2jV/peWlS5fhwoW09zQ0NKVzp21bGyXngez48kXso7Dtyg+lS5chKirtIaRAgQI5Fpqo\n+PeiCthUqPhOFAFXThIJWTF8uKhLNnLkMD5+zL26ebNmNgQE3M2X1dK3JCYmsn79aiVNMoWkQ5ky\nxty8GaBknK5AoXCvmDI8c+YkTZrU5/Bhb86dO4NcroOhoS52di3ZsWMr7969xda2MXK5Dn//fZj+\n/Qdx585jTp48z6FDx9i+3TPT/fv48SNnz16hW7eexMTEsHfvbvT19aSRv1at2mToc+tWICNGDOXd\nu7ckJSXx5s0bjh79W1repctvrFu3ibdv32JoaISPzzHats3oB5pX7t+/h7PzEEAMFFq0yDqYzQnF\n6E/37g7Exsbm0Dr3VKliKgnimpqa4e19JF/TzArGjx+FXK5DeHgYurp6BATcZerUGVSoUJGyZU2w\nsrLk6NG/6dq1W47r6tVLHFn78uULBw/uY+LEMdKylJQUDh0SNdl2787eJupbypUrr2SlNm/eQqKj\n45ScCnLDyJHDcHLqxtmzp6hQoTQdO7bOEFRqaWkREfEWT88DODp2pHz5kqxYsYybNwNzfY7/iDyz\n6tVr8uLFcynAlMsN/2uV2Sp+PKqATYWK72TuXNFz09S0XL6kISZOnCL9ragK/G9z8uQxZsyYiodH\nWjL433+LLgCKPKrHjx9l6NejR2+uXg1k//7DrFmzkp49u/LkyWMGDepH9+5pN8IbN64zfvwoTp48\nzr17dwH4/Xcntm3z4OnTJ/To4YiamrqkdG9iYiL1vX79GvXq1aBFC2u8vDy5ds2PBg0aEh4eLk1h\nfqtKD+DiMgUvL08WL3Zj2LDfadWqKTVr1gLgwIHDzJ+/CEfHbjx+/JITJ85Rv37WTgu55fPnz7Rp\n01x6/a3sSl7p33+g9HfLlk3o1KndD9dk+xEopsUVtlH6+sUYM2YC/v63uHFD/L5jYnInUKzQZANx\nhGjv3t1Snqa6urqU/5a+3X+b58+fSULCIE6tKzh4cB9WVrUpVaqYUl7fkSOHAejcuWuG9R0/fhRL\nS3OOHTsivVekSFFmzXJl0aJl+d7PcuXK8/HjRz58EPNJZTKZyvD9F0blJZoHVF5rWfO/7EcXF/eB\nSpXESkAxD2wF5uYWmbbN6jgFBFxHEIRs7Zl+JvHx8Tg4tMfb+6gkJ/D48SOWLVuIrW1rLlw4i729\nY6ZTigoUchuXLl1lyJBBqKur065de7y89hAcHIyVVUPWr9+Ms/MQUlJS8Pe/St++A6hYsTIzZ4rO\nDJMnT2fBAld0dHR49SqC5ORUKlQoLdkMtW1rx/btnqSmpjJggBMPHtzDxWV2pjfvq1cv07lze7y8\nfOjWrTMAQUHhFCpU+Ifrmik4f/6stC0Ab++jFCtWDH//K0yaNJ7Klatw5UpArtf39etXKVFeQalS\npbh//+kvdb6lpKQgk8lyfdzfvHnD4MH9uHpVdBFYv95DymlLTU3l7du3klVWdnzPdSk1NZUvXz5T\npEjRTJefOHGMly9fULp0GWxtW0tJ/k+fPqFr14507OhAz55OtGhhjY6OLurq6tIofHqf0OTkZBo0\nqEVoaAiVKlXm6tXATLeXH9asWcncuTPZvn0XhQoVYsGC+RQqVBgvr7Timv/la3du+eW9RIcMGcKU\nKWkjA/fv36dHjx7Url2bHj16cOeOsm2Np6cnLVu2pE6dOgwaNEgS8FOwdetWmjZtSp06dZg2bZrS\nEHNSUhJTp06lXr16NGnShC1btij1DQsLY8CAAdSuXZsOHTpw5coVpeVXr16lY8eO1KpVi/79+2fY\ntgoV34PiYgzw5MkjevTowqZN6/PkC1i3bv1/LFgDKFiwIMePn1PSfjIzq8rGjVvp3r0Xa9duyjZY\nA2jdui0ACxe68fZtLPfv32Px4oWEhoYycuRYDh8+wcuXQVy5comoqNdER8exZMkKBgwYJNn8LFjg\nypAhw/Dx8QHEKtH0npCKKVM1NTW2bdtNQMC9LEdaGjVqzMmT56lTR0wE37vXmyJFiv60YA2gRo2a\nNGnSjLFjJ7JixVqGDOmPrW1jPn4UP4NiJCq3aGhoEB0dh7v7Vum9iIgIDhzY9yN3+6ejrq6ep+Nu\nYGAgicwCzJ8/V8rjU1NTy1WwlhmenjuRy3VydObYvNkdIyM9KlQonWWbK1cu8fnzZzp27KxUkVml\niil37z5l3ryF0hRsXNwH6Rqh8A1VEBsbKwkApx9th/zJ16THxKQcqakpxMWJI2wGBgaEheVNbFjF\nv4d8XbmOHDnCxYsXpddv375lwIABmJqacvDgQdq2bcuAAQOk6YpLly6xZMkSXFxcOHjwIIUKFWLE\niLTKlxMnTrB27Vrmzp3Ltm3buHPnDosXp1mCLFy4kIcPH7Jjxw5mzpzJ6tWrOXkyzY/N2dkZuVzO\ngQMH6NSpEyNGjJC2HRkZibOzM46Ojhw4cAB9fX2cnZ3z87FVqMiS3bv3Y2RkxMePHylQoADTpk1i\n6tQ/8ff3+66k81+JHTv2MmTIcO7du0dUVBRDhvzBrl1eRES8xcVlNgDW1k1YtWo9J0+el/rJZDJM\nTdMS3i0sqmNjY0N4eDh//plmUJ1Xs+revX+jdevmNGhQm9Kly2S4UabHyakb7du3zGBknlcuXbrA\npUsXaNmyNT17OrFkyQrmz1/MtWtplYKKad+80KmTA9bWTaTXgwcPoFOnTt9lqfU9BAW9oH17W3x9\nfX7aNiwsRD0+DQ1NQkJeSaOw+WHp0oXY27eTtOeWLFmYbfs3b8TK5fQ5b9+yfv1qFi6cx5EjvkRE\nhOPpuTPDQ9qBA2lSMjExbwgNfUOdOvUkseiVK5dhaGjI2LET6N9/IA4OadOlfn5XKFWqmJSzlx9s\nbGzR1tbm/Plz7Ny5jSNHfDOIFqv4dcjzlOiHDx+wt7dHLpdTsWJF3Nzc8PDwYO/evZw4cUJKlBw8\neDDm5uaMHTuWefPmER0dzYoVKwDRQLdTp074+/ujp6eHk5MTDRs2lAKpwMBABg4cyLVr10hNTcXK\nygoPDw/q1hXL0detW4efnx/bt2/Hz88PZ2dn/Pz8JC2fAQMGUKdOHUaMGMGKFSsIDAxk+3ax0iYh\nIQFra2vWr19PvXr1vv142aIaMs4a1bC6+KRsb9+O6OjX6OsX4+XLIAD++GOEpO/0v3CcFFOjO3fu\nzVSp/ltOnz4hJZoDVK1alYcPHxIb+5GyZY2kgLd8+Qpcu3ab5ORk1NTUlEZsQkKCiYl5I0lWAJQq\nVYzk5GSqVjVXqtrLbp81NbUIC8u7GXxSUhKPHz/Ez+8KLi5TOH78rLQv4eFh1K5tDojK+vv2HcpX\nQnn6qXcFVauac/jw8Rx1yH40u3Ztl+QmIiPf/TRfyrlzZ7J69XLKlDEmIiKckJBoSdYlNxQooMal\nS2ewtxc9PS9fvoGvrw/NmtlQt279bPsmJydnW4hx8uQxnJzEquqGDa3x8xNndoKDo9DS0kImk9Gz\npyOPHz8iMTGRqlXNOXDAF0PDNPFdDQ0NwsMzf0jw9fVh4MC+zJ3rJsnl5IcpUyayY8cWperQSZOm\nMX78JOB/45r0vfyyU6ILFy7E3t6eihXThDTDwsKwsLBQugiZmppy65aoWaSnp0dAQABBQUEkJyfj\n7e2NsbExurq6pKamcu/ePSkYA6hVqxZfv37l8ePHPH78mJSUFGrVqiUtr1OnDnfviomsd+/excLC\nQgrWFMtv374tLU8fmGlra2Nubi7tmwoVP4rixYuzY8ceqlevycuXQVSuXIVKlSqxbt1qXr4MIjU1\nlZs3A9m3bx/+/vnTZsqM8PAwbG0bc/Nm7nOjfiaHDx9n48YtuQrWAGxtW3Po0DEGDx4GwKNHj/j6\n9StqamosX75GaqcYfbC2riuZ17948YylSxdSt2512rZtwaNHaRpYPj6iO4Oi0jI7goOjACTLqrwQ\nEhJMmTIlaNmyKV26dCMi4q1S4Lhlyybp70GDhuW7+k9HR5d7954qFTI8evSQypXLIpfrKCWs/2zS\n25UpilN+BlOnzsDCojqhoSHo6Ojkq5K1YcOGGBgYYG3dmLJlTRg/fpIUrB07dgS5XCfTysmctmVs\nnFYYowjWKleugomJIUZGehga6nL27GksLKoRF/dB+h326tVH6pedU0nHjp15/PjldwVrAL/91l0p\nWKtRoya+vj/vO1Px88hTwObn50dgYGCGKcXixYsTFRWl9F5kZKRkiNunTx/Kly9P+/btqVmzJvv3\n72fNmjXIZDLi4uJITExELpdLfdXV1dHT0+P169e8efMGPT09pZOnePHiJCYm8u7dO968eaPU99v9\niY6OzrC8RIkSGfZXhYofQfnyFdi//zBubot59uwpz5+LuTIfPrzH1XUmLVs2o1u3brRv34opUyZw\n7NgRVqxYirPzELZv35IvjaTY2Bju3bvL6dMnc278DZcuXVASTE1NTWXLlk2MGeOcrXl7dlhZNaJz\nZ8dct5fJZDRsaM28eYto2bINenp6aGqK2lUK83OAw4e9EQSBwoULS1WkAwb0YeHCeVIbY+M0o/WK\nFSujrV0Qc/NqOe5DwYIFuX79DoGB97NtN2vWdORyHWbMmIqlpQVyuQ4JCQloaGhQuHBhDAwMMtzo\ne/Vy4o8/RnL//vPvlg0xNDRiy5ZdXLt2k+HDh1OwYFruVL9+PZU0t34m7dqlaf+NHDlMmgp0cZmC\no2MHUlJSfsh21NXV8fTcz/Tps9m71zvXwW54eBhyuQ7FihVBV1eXJ09e4u19NINThcJBo1atqnmu\nnqxa1TxDzllWOYrJyck0adKcqVMnMmuW63/yG//g2rXb2W5DUXX7LWFhoUyfPilX6RbpnQ2GDx+J\nmpoab96o7n+/Irl+XElKSmLWrFnMnDlT0lxS0KZNG9avX8++ffvo0qULV69e5ezZs5LlTFRUFElJ\nSSxbtgxjY2PWrVvHhAkT2L9/PwkJCchksgzr1NTUJCkpidTU1EyXKfYpPj4+y74gToFmtzwvqKur\nVFCyQnFsVMdIZOjQP6hfvwH9+vVm3rwF1K1bl4AA5QDIw2MjHh4bpdf79u3h1KnjeHpmnVCenJxM\nfHw8RYumVa5ZWlry5EkQBgbyLPtlhaOjOFpz5sxFevbsSpcuv7F+/Rr09fXx8TnA5s3bpWKC3HDr\n1k3KlSuHvn6xPO8LgJfXAYoVEyU6tLW1sLS0RFtbm4SEBN6+jUVdXcbFi2mjk8WK6Sv119NLE2w1\nNDQgIiLn6U1//6tUq1aDSpUy2m+lpqYquTasXbsSEPOXFJiYlCUq6l2W669SpQrz5rnluB95wczM\njDVr1uDmtoSUlFTatm3J9ev+nDp1nP79f/+h28qMevXqMXeuG6tWLcfWtiWFCmnz4cN7KQBKTPyS\nwXczv5QuXYpx43IvaPz06RNsbdNssIKCgihVyiTTtukD3Ojo15QpkztRWwXW1takS7eWmDJlOm5u\nrgCcPn2S9u07MG7cCB48uI+NTQvatGmDo2NXpWKFvDB16kSOHz/K8eNHuX37QbZtS5QoTvny5YmI\niEBPT5fbt8XZJUFIQUNDQ3XtzgX/mmMj5JIlS5YI48aNk15PnjxZmDx5svT64MGDQu3atQVzc3Oh\nS5cuwqJFiwRHR0dBEAShV69egru7u9T28+fPQr169YSjR48KsbGxgqmpqRAUFKS0vUaNGgmnTp0S\njh07JlhbWyste/78uWBmZiZ8+PBBmD17ttJ+CYIg7N69W+jUqZMgCIJgZ2cn7NmzR2n5mDFjBFdX\n19x+dBUqfgjJycnC2rVrhZ07dwqVK1cWAKV/ZmZmwuHDh7NdR+PGjQVAePXq1Q/Zp2/3ARC0tLSE\nvXv3Sq/j4+OzXcemTZuEUaNGCVFRUVKfvBAbGyv89ddfwqFDh4Tw8HBhxYoVwty5c6Xl9+7dE/r3\n7y88fvw4Q9+XL18K9vb20vHLiZs3bwozZ84UZs+eLQiCIPj7+wuAMGzYMKV23t7egrGxcYbP8/79\ne+Hu3bvCly9fhISEBOHLly95+qyZkZqaKuzcuVN48uSJIAiCcPnyZeHcuXN5Wsfs2bMFQBg/fny+\n9mHs2LECIIwePVr4+PFjvtYhCIJw9epV4erVq/nu/yMYNWqU0u85ODg4y7b3798XAGHQoEH52taX\nL18yPYcWLFggVKpUSQCEXr16CbGxscLatWsFbW1tpfPk7NmzwtmzZ/O8XXd3dwEQOnTokKv2AwYM\nyLCPOZ3XKv595HqE7ejRo8TGxlK7dm0gbe79xIkT3Lx5EwcHBzp37kxsbCwlSpRg8eLFlC4tlkQ/\nePCAP/5I824rVKgQJiYmREREoK+vj5aWFjExMZJlSUpKCu/fv8fAwIDU1FTev39PamqqlGQcExOD\ntrY2Ojo6GBoaStNOCmJiYiQFdkNDQyX1dsXyqlXzbsMSFxdPSooqKTMz1NXV0NEpqDpGwPr1a3j9\n+jUmJiYMGDBIaVnv3v358uUDTk5OABw+LJ5XjRpZSyNk795ltIBSEBkpjgjEx6dk2y43uLrOVnpd\nv34Dnj9/RqlSpXn69IX0fmjoa0qUMMhmPfN49eolNjatpPdiYz/+Z+olmvfv31O5cpUs+3/rK2lg\nYEBUVJT0WypdujzLlq3m48ePBAWFKo3e6eoasGXLLlJSUv6jc5X1MfHzu4KdXZojgrV1c/T1xRG6\njh0dePPmA6dOncDaugkODmmivyVKGPDiRQjv3r2jYsVKlClTgYSEVED8nSck5Pw9/PZbZ86cOU1s\n7McM03pRUVE4OTlRuHBhQkOjaNxYNGU/evQUVlYNM13ft+dbnTqiJMzSpUtZunQpDg6OzJ49L9cj\nRrdviznBK1asoGJFU5yc+uaq37eYmdUAsv8N/2ySk8U6Oh0dXWbMmEndunV58+YNrq4LGDr0D6UC\niVKlyvH2rWjOnt99XrhwKZMmjUdTU5N9+7yxt7dj8uTJvHoVrjTK2KNHX3r06Mv792mjsS1aiHlt\n7u6bcXTM3AXi69evrFq1nObNW2BpWQcAR8eedOnSA5lMlqv9NjcX/UM1NTXp1as3W7duYdeuvXTp\n0lV17c4FimP0T5PrgG3nzp1KmjAK2Y2JEydy7do19u7dy7JlyyhRogSCIHDx4kV69eoFgFwu5/nz\n59KFKCkpibCwMIyNjZHJZFSvXp3AwECpOODWrVtoaGhgZmaGIAgUKFCA27dvY2kp+g0GBARQrZqY\nl1KzZk3c3d1JSkqSpj4DAwOlIoaaNWty82aa51x8fDwPHz5k5MiReT5YKSmpqiqaHPhfOEZBQS8I\nCwulSZNmGW6+Hz9+ZOrUSdLrPn0yTk8pNKS0tbWxsmosvZ+b4+bnl/Zb/t7jnN7vEURHARBletLn\n82zZshlt7YL06dMvUxHR3r37Mm/ebBwcOrJ370GaN7clNDSM5cuXsm2bh1JbD48drF+/Gnt7B4YM\nGS7ZXwEsXryMtWtX8fLlS+zt7UlOTqVr1+507CgK0ZqYlARQqsBMQ5bl8Rg5chh6enpUraosZhwT\nE0uNGrXZs+cg586d4/nzF4wePZypU2dw48ZdRo4cRkDADQoVKoSpaQVSUlLYv/8wTZs2z/qgZoKv\n7yHOnDkNiJJIrVu3VapwLV7cgG3bPDE3tyA5OZWJE6eweLEbqak5f8eK861+/UYsWbKCCRNGA6In\nq7f3Ac6cuUz16jVy3Mddu/axcuUyHj9+SMuWbX/pc3jgwKGEh4fTqVNnHBy6MGHCOACmT59MwYKF\n6NOnf57WN378KHbs2MqLF2EZzhmAnj370KVLN+Ljv3DrVtr5mdX3p62dsdqwUKEiWR7zgIAAXF1n\n4+o6W0lwVyR3Ig9NmtgAMHbsBCkv7s8/x9GpU5qG4f/CtftXJ99OBwrRXDc3N6Kiomjbti2TJk3C\n2toaDw8Pzp8/z7FjxyhYsCDu7u54eHiwYMECTExMWL9+PTdv3uTIkSNoampy9OhRZs6ciZubG3K5\nnGnTptGwYUOmThV1d2bOnMnNmzeZP38+UVFRTJ48mQULFtCyZUtSU1Oxt7encuXKDB8+nLNnz7Jh\nwwaOHDmCkZER4eHh2NnZ4ezsjI2NDatXryY4OBhvb+/sPl6mqMqes+b/W2l4UlISffv2pHPnLvTo\n0VtpmZVVbYKCXjBkyHBcXRfg7b2f+fPn8O7dO7Zt86R379/Q0dHByqohGzduVeqrOE4vX4ZRsGCR\nHyqHIAgCgwf3p23b9nTt2p1Pnz5RoYKoI5XxQi+ikLNQoKurK9nYKChSpAifP3+meXNbdu7cm6ms\nwu7dOxgzxlmpz6dPnzA3t+Dhw4w5NuXLV+DMmcvUq1eDcuXKMXWqi2Sbs3+/Fw8e3OPjx0+8evUS\nU1MzevRwYuFCVxISErh+/Y4ktJsbFJ/xypUADhzYi6lpVb5+/YqjYzfU1dWl5Rs2eLBs2WL27/fF\n0NCQ1NRU4uI+MGhQfxIS4rl+3Z9ly1bl2Sw8JCSY5s0bSQLADRo0xNdXDFSjol5jYCDPs5hvdufb\nw4cPGDJkAE+firZIN27clXxD/9coUEANLS0Znp77OHHiOKNHj6dKFdNc908vpfLXX6vp3TvjyGOa\njI0X+vr6qKmpYW5eTUmEWsGnTx8ziPF6efnQvHkLQkNDsLNrxevXkbx+/V76TSjO6zZt2vHbbz1y\nve/f0rhxfeRyOd2792DkyOEAHD58gsaNrf9fXbt/Bv8WWY8fErABXLhwgYULFxIZGUmtWrWYMWOG\nNMUpCAKbNm1i7969fPjwgdq1azNjxgyl4Xp3d3e2bt3K169fadOmDS4uLtKIWUJCArNnz+bEiRMU\nLVqUQYMG0adPWml0aGgoU6dO5e7du5QtW5Zp06ZhZWUlLb906RLz5s0jKioKS0tL5syZI03X5gXV\nDzpr/r8FbL//3keSK/g22JkxYyrr16+mSJGiSir8ICqLFy5chIcP7yvdmBXk9zg9fPiAv/5azIoV\na7NMVH706CHNmlmhqalJWFgMsbExVK0qVojp6+vz8GGQUoAoCIKkCVW5chWePXtKmzbt8Pe/KgVt\nI0eOpm7devTrJ07h1q5dBy8vb3R19bhy5RIrVy5j+vRZVKtWg549HTl79rTSPm3btpOiRXV48+YN\nL18GERT0Ai+vPdjatiI1NZVz586wbNkKpQBMTU2GtrYGfn7XmD17pvS+4nsICQnG2LgsMpmMr1+/\nsnLlMhYunEdExNtMpRhu3gwgOPiVkihpevr168WFC+fw8vLJ0k80OTmZkJBgypUrn2NwJQgC+/fv\npV07O4oUKUpSUhJlypSgYMGCxMfHK+nJGRsbUL++FYcOHct2nd+S0+8oLu4DTZtaERERTuHChblx\n416+3QF+VQIDb7B4sRve3gdISVHP13UpJSWFkiXFafNatSyVBJ8VfPvQc/ToGerWzVzj88uXL5Qr\nZwSIFZvOzmOk9B3FdQXgzp3H2Yr25ofly5ewdOlCpk+fiYtLmgjx1as3aNiw7v+ba/fP4JcP2P4X\nUf2gs+ZXC9giIyNwcupO5cqVWb9+c4blZ86cZNSo4UyaNI2+fQdI70dEhGNpaZFBAmD9endiY2OY\nNi2tzN/evouSpRDkfJwUF/9vR0XMzMrx9u1brlwJyDIfTBAErl+/Ru3altLDzrt3bzE1Fdejrq7O\n9Omzsbd3oHTpMrx+HUnNmmb/2a8CtGvXAV9fH3r06MWePbsB6NatB82aNcfZeZi0HQcHR/r3H4S9\nvaizpqWlRdeu3dm1aztTpszA03OHZNa9caNHhvy3nTu3cfDgAen10KF/0KiRNUuWLKJy5Sr07dsP\nbW0NduzYya5dO6V2AwcOoUuX37Cza8WsWfMoXbo0gwf3l5Y/ePBCuvllx6VLFyhVqhQVK1bOsOzp\n0yccO/Y3I0eOzbeF1ZUrl3BwEGUvDhzwZePGtZw4kRaQDRnyB7a2rdm3bw/794tK+FmNgGZFbs63\nN2/eYGEhVr5WrFgJH5+jGBoa5ecj/XKkFysGiIp6h0wmPqzExMRQoIA6enr6WXUHxN9J3749KVq0\nKK9fR9K0qQ3792fUL0tKSsLJqRvnz58F4PTpS9SoUTPTdcbHx2NiIqonvHwZSeHCykHA/v17WbDA\nlZUr19GoUePMVpFvFD638+cv5PnzZ2zeLOoDlihhwJs30b/Mtfuf4N8SsP1LalVVqPjv4uNzkHv3\n7nDw4P5Ml9vatubBg+dKwRqArq4emppaGdrHxsawYcN6rK2bsGPHXtzcFrN06Yp875/iRq6gd29x\nGm7v3t1Z9pHJZDRoYKUkYxMWFkaRIqJMRrNmzXF1nYmlpQVDhgxgxIihUrvk5GQ0NDQoXrwEBgZy\nWrQQbZy8vPbw9u1bpc8sk6kp7d/MmXNRUxNvhsuXL5GCtZ27EIAAACAASURBVGrVqmdarNCuXQfp\n74ULl7Bhwzr69XPi3r27XLx4XlqmCNYUeYIeHhuxs2uFmpoas2ZNU9Jo8/Tcn6tgLTU1FUfHjjRs\nWCfT5XPmuDBv3mzmz5+T47qyombNWhQqJF7cixYtSpMmzZSWy+VGdO/ukOE7/tEYGBhII0IvXjyn\nYUNLwsPDfuo2/y3o6uphZCTmPFavXl1pGr9FC2uqVMlc5iM9CQnxfP78idevI4mK+pBpsAZiIr+X\nlw/Dh49k/vxFWQZrIOr9nT59kaCgiAzBGsDw4YMJCQnGy8szx/3LK02aNMPYuCz79omjv6tXrwNE\ny6yICJVd1a+AKmBT8T9J//4D2bPngKRwnxWpqaksWjSfe/fEKrrChQtz6NDRDO3CwsIICQlmyZLl\ntGnTjoEDh+ZZhyopKQkHB1FwNr1iP4C9vVi1uHLlMkaNGi55IubEhg1r+PTpEytXikKd7u5b6N//\ndw4dOsilSxekdhUrVsLc3JwPH96zatVyzp49Iy1zcZmq5ABw8OA+duzYyu3bj4iOjmPQoGEkJ4tV\n461bt6FxY9HzMqvB++LFi0uJ8IULF1FaFhMTw5AhA5UKhfbt82b48DTvYcXoZtmy5Th37ir79h2i\nRYtWZIcgCLx9G8vvv/fJtl3PnuLylSuXUapUMY4dO8LAgX0zVJpnR5EiRXn5MoLg4Chq1bJUEjet\nUaMmrq4zM/TJTvH+e6hVy5Ljx8WRn0+fPlG7trlUXPL/mSJFinD58nWePw+WXHFA/O0ovFzfvXub\n7TpsbVsDUL++Va4Ee2fNmsegQeJI9Lp1q5VyOtNTo0Yt6SHqW6pWFUcFd+/ekenyBw/uI5frKIlF\n5xZ1dXVmzZrHrVs3GTNmBKVKlaZbNzEn7t69ezn0VvFvQBWwqfifpGDBgrRo0SrTxOD0PHz4gCVL\nFtCqVVPpvdq161ChgrLI6rp1azAxKZfpNFtuuXLlEt7e4lThxo1bpPfv3btDy5Zp29+zZyd3797J\n1TqbNROrw2bNmk7//k5cuHCOZ8+eASiNxJmZmRMdHa1UCf4t1avXZPv23Tg7ixXWtWpVJTDwBufP\nn8XTcyeDBw+jX78BknXSgwf3sxSodnGZxa5de9i82Z0SJQyUcriio6OlgiOAgwf3c+SIr/R6+vRZ\nPHr0kuLFi2NhUY1mzWxyvKE6Ow/BzKw8R4/6ZtsuIOC69HdycjL9+vXE19eHW7fyZvslk8mk39bw\n4aMYOtSZypWr0L17rwxVig0bWufJHzOvWFrW5caNu9IoaYcOrX7KCM6/DR0d3QxOAbdvpz0IuLnN\nzba/mpoa0dFx/P137h1EwsJCefVKNKrfvXtHls4HWZGTDdXSpQuV/s8rHTuKnqrh4aIVl6Pjb5Qs\nWYq5c+f+MHcKFT8PVcCm4ocQHx+fobrw/wMWFtVwc1vC9evKAZLiZlyrVm3+/FMMLj58+CC5c+SH\npk2bS9N8f/2VJp+ekJCg1G7MmAk0biwGcDExMYSFhfLu3Vvevo0lIOA6tWpVRS7XITU1lejoaECU\n6khISGDbti1cuXIJff1i7NmzHy+vgwwYMJAjRw6zceM6pWnG8eP/pEGDtOKdWbPmUKRIEWxtW/Hn\nn2KuXrt2tri4TMbEpBxt24o5baamZrRpI7ojZGWdU6BAAQoWLISmphbFixdn8WI3ChYsyNSpM3j+\nPJhHjx6hqyuOUO7evZPg4GDJ/9HVdRZfvuRNM2vAgEFUqWLKrl1eABkshRSMGzcxQyWgrW2rXPui\nZoampiZz57px5UoAAwYMpkwZY6XiiDVrNmbT+8dgYlKO+/efUq+eeAxHjBhKSEjwT99ubkhJSeHm\nzQCuXr2s5FGaGz5+jGPgwL5YWloQHx+fY/sDB7ykv5OTkwkNDcnr7mbLb7/ZU79+DUaOHAPAnTt5\n86zu1asP0dFxWeY0Llr0FytXruPy5Rv53scGDRpSv754XmtoaPD77wO5cuUKgYH/Di9iFVmjCthU\nfDdBQS8oXdoAPT29f3pXco2RkR5yuU6O0yIymYyBA4coBTIAx4+fIygonJMnLzB+/CSGDRtBXNwH\nypQpgZGRHg4Odvj6+uTpqVVdXV2qKlUUFiQlJZGYmMjatWkG4nXr1kcmk5GcnIy5eQUsLS0wNS2H\nmVl52rdvKRlZr127itmzpyttw9lZ1OmqVk0U0ixQoAAdO9qzatVaKlasJN3Ea9ashbV1Y7p0Saus\nlMlkPHhwn8uXLyoFck+ePMbc3FxplGvo0OF4eR3M9jchCAJ2dh148uQxly9fJD4+nmPH/qZSJROq\nVq3KmjUbuXnzAXK5mKQdEHAdc3NRS61OnWrI5TrSPze37HPO6tVrwOXLN2jVqi3R0XFZBmxFi+qw\nePFyZs+ez+zZ84iOjsPT80CmbfOKIAgMHz6IxYvdaN1aFPC1tm5CmTLGP2T9OaGnp8/mzbuk1wrD\n8n+KuLgPrF69gmrVKtG2bQs6d25PvXo1aNfOlosXz2c5pZ4eP78r+Pr6EBYWyqVL53Ns36hRE7S1\nC1KsWHF27txGnTrVGDly2A8bXRo7diIAkye7YGxcltGjh/+Q9SooUaIEPXr0zpM0SXoePnzAjRvX\nqFMnLYdTIUT98GH2Proq/nlUVaJ5QFVFkzlnz56mRw9RgNHLy5vmzW1z7HPrViAmJuWyNDf+2WRV\njZkf9u7dzciRw2jatBlaWtoYGBhw794d7t27x5gxE5g6dYbUNqvqvqtXL7NokRvlypXDzKwqjRo1\nZtWq5Zw+fZLPn0UldlfXhUyfLoryhoXFEBcXh7l5Bb6lShVTnj59wrJlqxg3Tpy+tLSsw61bN5Vu\ngm3atKNDh46ULl2GBw/uK5X6g5g7pq6uzpcvX3j7NpagoCCWL18KwLBhwzEwkDN37iy0tLTYuHGz\nkr9pToSGhjB69Ail9/T09Hj/Xjk3TzHSEBh4g3btxN+Vu/tWperQ9ISERGcw+P6nePPmDQULFpTy\nlY4e/Zv+/Xuxc6cnnTs7MG3aFHbu3M7t24/R0spYyJIVERHhqKurUa1alXxdk4yM9EhNTWXSpGmM\nHz8p5w4/mNevI9mwYS1r1mRflFOnTl3mzl0gjayCOCr25k20JHnx7t1bWrduTnDwK4KCIjLkhmV2\nvqWmpnLggBfOzkMwMiop5bQ9exaCrm7uHzrj4j5kmacaEhJM3briQ1FeK4BBDO5za3SfF1q1asr7\n9++YN2+hJA+kpiZj7dpVXLx4kevX70jFGirSUFWJqvh/Q7169aUbTrduDkycODbbJGq5XIc2bWww\nMytPbGzsf2s3lYiOjiM09E2+grXHjx/h6jqLxMREPn6Mw9NTrGbU0tIiMTGBjx/jSEwUc7diYnJO\nVk9JSWHKlAlcvXqJ3bt3MGPGVFq2bMrt2zcZNky0dNPU1ERLKy0QCQkJZscOMc8t/fRa2bImqKur\nM2rUOHr06C0VMdy8GUjv3n1wdPxNanvixDFGjhxOly6d2LBhXYb92rFjG58/f8bdfT0TJ45j+fKl\nlCtXgbp167F+/Vr++ksM3hITE3n8+FEejmBaDg0gacPdvfsUD48dXL7sz+XLl4mMjMXDYwNyuQ5f\nv36lYsVKTJnigr19F2naKDo6jhcv0iofa9TI2gLrR3D8+FEla6HMEASBkSOHYWFRkQoVShETEwPA\n5csXqFSpMp07iwUkffr0IzY2VpKDyC19+nSnenVTAgLyN4WlmLIPCwvNV//vYfv2LdSoYSoFawUK\nFGDcuIn4+9/k9ev3nDlzSWobGBhA+/Yt2bVru/Re06YNqFnTjMmTRTN4ff1i3Lhxl+jouCwT+b9F\nTU2Ndu06ULx4CXR10zTU8jIleOSIL5UqGbNjx9YMy65d82fOHBcmTZrO4cMnMnbOgU+fPmFoqItc\nroONjTWpqakkJCRw7NgR5HIdLC0tuHr1MhcunMvTeoOCnnPnzm26deuZQctx6NChCIKAh8fPn55X\nkX9UAZuK76ZoUR02btyMkZGo8bRtm4dSkv632NuLo3FNmzZHRyej1ct/i9yMagiCwJkzJ9myZRMu\nLlM4e/YUrVs3Y+XKZVy8eI6YmBiuXr0MwKlTJ4mNfYuv72HKl6/IxIlTGDfuzxy3MXBgXx49eoiz\n8whu375H48ZNsLZuTPPmNlIRgJ6ePhMnjpb6uLuv4+XLIEAsghg61Blf35PcuHGXkycv0KCBFQkJ\n8YwYMVZS5t+5czsHDuwDxJtWkSJF0NDQoGxZE3r27I2xcVkApkxxYdKkaRw+7MOgQf25eTNtZO7V\nqyACAsT8mU+fPuLl5YOxcVlOn859YjbA5csXMTevRlTUB2k6yt//Kh072mNuXg1ra2u0tLQoXdoY\nLS0tSpQwwM/vpjTllJ6iRXWIjo6jTp16SqMxP5rIyAj69u1Bv369sm23dauHkvzK27fiQ0lS0lel\n4LpkSXEkIyEh59yr9JQuLQqO79u3L0/9FPzxhzjqqpBf+W+xZs1KyToLwNGxG8HBUUye7EKFCpVQ\nU1OjevWaPHwYxMiRY6VjNWnSOO7fF6sYnz8XC2Y2b3Znz55dGTeSA58/f0Yu12HJkgVs2bKTyMjX\nFC5cmHPnrtKiRctcr+fNGzE31MfnoNL7ycnJ9OrVlcOHfYiKiszSCzY70hcDFShQACMjPcqWldOv\nX09ADLQ7d27Pb7/ZM2hQP8aNGyn9xrJDUR2s8CNNT+HChWnXrj3u7uuyLTxS8c+Say9RFSqyo2NH\ne7p164K7+xZGjRqeqR2RAnf3rRkEZf8tHDt2hH79evL770Nwc1vM0KG/4+NzAHV1dVJSUtiwYQ29\nevWhevWa2Ni0pECBAsyZM59r1/xZsGCpZGmUF9FVxWjkhw8fmD17Jh072rNx43quXLkstfn4UZxW\n6dy5Cz4+B9myZRMREW8ZM2Y8VlaW3LhxDUNDI/78c0wGSZCqVc35++9TBAU958yZUxw6dJDU1FQ+\nffpEoUKFCQkJZvHiBQC4uMyREqYtLKpz9uwpnj17xpUrFylXrjw9evRCR0eH9+/fsXz5MlauXEZY\nWKgk5aHg2bOnHD16hNat20hSBel59+4djx49ZObMabx+/Z5Hjx5K+Wnpadu2PaGhuZPUOHbsTJbL\nFAHn90wzKaZ8O3XqnGWb8PAwJfeLXr36SPmI5uYWbN++mS1bPOjZszdPnz4BkHL0csu2bZ48eHCX\nZs0a8eFD3oI9EIMWxb7+t/D03CnlUw4Z8gejR0/IUjevRIkSuLjMpmTJkkyd+idJSUnMmDGFgwf/\nZvv2PQwbNpAvXz6ze/f2DLZxObFv3x4A1q5dyaxZrgQG3iMhIRFDw7x9B506debs2VNYWTVSen//\n/r3SuaooDMormpqaPHsWwufPnylVqrSUviGTyXBy6kdiYqJU5Xv4sGixWL58Rem8zYrPnz9ToIBG\nlg+qJibl+PLlCykpKZk6hqj451F9Kyp+GNra2jg59cXWtg2xsTH/9O7kC4X/4ubNG2nWzAYfnwNM\nnTqdVq3akJKSjI+PD+7uG9DQ0KB8+VJUqlSJc+euMmxYWj5WXhXy3d23MnnyBG7cuMGTJ4/x9k57\najc3N+fhw4fEx8fTvHkLZs50lZ7qN2xYQ2qqwNGjZ3j7NgYnp+7UrFkLe3sHDh3yRlNTk6SkJN6/\nf0/9+g0QBIFDh/5Q2va31ZZz585AX18fuVxO3749sLPryJUrFwFxRObaNT/pxlCv3hUuXxaXKYoT\n4uPjefXqJXPnziIhIYELF84xYcKfGVTbFVOomze7M2fOfCwsqmV5fBTOAZ6e+yVtrKyIiopCLpdL\ngVlQ0HNKlSpD2bJyACWPxpxQ3CgDAu5RtqwJRYoUlfLnTEzK0bJlmwx9ZsyYiq+vD6dOXaBqVQul\n0ZIaNWpSoEABRo50ZtWqlYSHh1O0qA7Vq2cttJoZMpmMWrVq59uJQRDEKdGsLM5+NLduBSol37u6\n5k6S4vffh3D8+FEuXjzP5csXiYmJoW3b9ly5coNTp07QsmX2v4XM6Nfvd6pVq061aqIOoK6uHrp5\nk0sEoFix4lSsWJlZs6ZTu3YdrKwa8erVS0aNEs+v8uUrULlyFTp1asu+fYfylKOYtl9iPl1o6Bvu\n379LuXIVKF5czPldvXoDdnatuHFDHDXLzXTw169JgEBKSkqmHsZhYWEULFhQFaz9i1FNiar44RgY\nGGBmVvWf3o18MWrUOA4fPk5ISDTr1q0CoFQp0XdWXb0Ajo5d6datO9u2bSYxMYEHD76/sqpQoUKs\nXLmWS5eu8/r1e549C5ECoA8fPtC9uzgVcv78WRo1SpvOmD3bhblzZzB06ACaNWuBXC4nPj6e4sWL\no62tLflzRkZGsHTpQjp2zHiDSx9QbN68jYYNGzFu3EicnLoDYq7O6NHjJdPpc+fOSvItCj02gIMH\nD9ClSyd69+7OtGmTlaRIQkPFXKmkpCRpaksx4qWnp5ujDIqjo6jrdubMqWzb7du3h+rVK7N2rfi9\nffr0ESsrS2bOTCumaN26WVbds2TevFnS3xoamkr/f0vz5i0oX74CNWvWVjq2IFb3Pn0ajK/vSSpU\nqMjnz5/4+DGOc+eyHhn8GSiCh7wk2OeXhIQEnJ2HSK8HD/4jm9bKqKmpMWNGWvWvQiOvdOky9O8/\nMMfq2nXrVlOsWBGGDUuzVZPJZNStW/+HFKYoHjK6dXPA0FBXGjGdPn0W167dZtKk8fj7X/3uvDAt\nLS3q1KknBWsK0gddjo6/ERBwPdvKWjMzc8kT91s+fvzI8eNH6d9/YKbBnIp/B6qATcX/NCEhwcjl\nOlJiuEwmw8qqEdra2vTvPxCAiRPHKU0ftW3bHgBNTS2ion6s9pyamhq6unosXryc6dNnYWJSgb17\n00ROO3d2pG1bO6XqvtDQEKpXr8y4cX9iZFSKPXt28/XrV+kGUrp0aVasWJbp9hTCtra2rdDV1ePL\nl7QptgkTxG2sWLFUmkoCmDx5IkeO+PLp0yfs7ESbKUXhhaLIoXz5NDP3Jk3EqaFBg/ozY8Y0fv+9\nn7QsOjpaScz0WwRB4OTJ80yfPlup2jYzzMzEqVdFflGhQoVp2NAaB4euNGgg5hLdvXtHyoPKiVu3\nHtKpkwMTJqRJgLRv34Ho6DhJkPhb+vTpz7Vrt6XXPj4HpAASRBeEBg2scHffhp1dJ2xsWmZpFP6z\n0NYWNQTzqnmWV16/jqRsWbl0vPfvP8y8edmPrj158hhr67pSEFutWg1pfxVyNblFISnzs3KyunQR\nC3gSE8WHEzOzqqxbt4k2bcTrw5w58xk9ejzDhmUvhptfZs1ypXnzFgQHR3Hs2BHat2+JoaEuUVGZ\nu7coxL4z08s8d+4cSUlJDB8+OsMyFf8eVLIeeUAl65E1v5r5uwLFtFf9+laZKpqHhYXStWsnPnx4\nT9269YiOjiYmJobQ0BA6dLBn8+bMLWSyIj/HKTIygoCAG9jY2EpTHykpKUyfPhkPjw1SO1fXBQwZ\nMpxbtwJp08aG0aPHKgUWa9as5MyZ0xgaGlGuXHmuXfOTlm3btgtNTU169+6uNOLVqlVrTp3KuqBA\nkdv3LaamZkyd6kJiYgIJCQns3r0Tf3+/TNYAO3bspU2bNGFaT88d1KxpQY0adWnWzJry5SuwadO2\nXByprHn06CG9enWVAu+wsJgMI2B5QRAE5sxxoU0bu2wTy0uVKkZycnIGaQd//6t07dqJpKQktLS0\nGD16POPHT8p1jt33nG9ubnP4668lADx48CJXHqx55eHDBzRvnnZc5syZr5Q2kBVeXp6Sx+3jxy/R\n1y+GiYkhCQkJzJ+/SLJ+ArFa9sSJY8yePU8qpPiWn31dGjJkAD4+ok7f0aOnad9eLFzYunU37dt3\nyK7rDyUpKYlGjSwJCQnh5Mnz1KplmaGNQmpkxozZ1KpVW3pfTU3GqlXLeffuPceP563y9H8FlayH\nChU/gV27tktiqll5+WWGQvn7W8qUMebQoeNYWFQnMjISE5NyVK9eg337DikFayVL6jN06IAcJR/y\nQ8mSpejY0V4pT0VdXZ358xcxduyfNG9ug7q6OsHBrzh+/Kg0dZTeFurz58/ExsZSoUJF7t17iq/v\nCZ48eSUtv3z5ElpaWtKoWvptb9jgwYgRo3Fy6pvB2PrbYE1PTx8QR0oSExMpUcKAY8eOEBBwg2XL\nVkmjYAocHLrSqlVaLtiCBa6MHu1M8+bN+fDhPffu3eHGjWt8+vQJD4+N+Pr65Pn4Xb58iTFjnDl6\n9HS2BQN5YdCgfqxZs5IlS9yybbd9u+f/sXeWAVElbBu+hrZIHRMUAVsRExMVURF17cDG7u4Cu7EL\nUVTsVuxADMTCQFdRwUAURhRFVHq+H2fnwDCkurvu+831izk1Zw4D5zlP3HeGwebixfMxNDSkR4/e\nVKlSlcWL5+dapiE9cXFxPH/+LFvBWYWkikQiQU8vd71VOeHevUD69EmdpG3e3DFbyyUFnTt3Y+ZM\nwTLK23sbhw7tF8vr1arVELd78yaMM2cEO7NZs6YxefK4TF01/k42bPAUf06rX9anjzNbtnjw/Pkz\nJk0aS3x8fEa7/zJ0dHS4ffshMllMhsGa4vy0tLR5907Z6D0xMZGgoCDR31fN74s6w5YL/mvZo3+S\n3yHDJpfLKVxYuYP4zBlfbGxUx9hBkAhQ9ITdvHlf7PnKLTExn7G0FPpptLS08Pbel6lEwM9ep6tX\nL7NmzQqMjU14/vxZpuVEQ0NDBg4cQo0aNdm6dTOXLvny/ft3tLS0ePMmitjYL1hbl+fr19i/bKLy\nsG2bIJNw6NABvL0F7SttbW28vfeQkBDPtWtXqVOnHr17K0/mde3qTGhoKCAnOjqalJQUWrZ0olGj\nJkgkEpYuXcydO7d4+TICL6/NTJmiLM0REHBXLNfs3u3NmDHDqVevHm5u82nSRHn6FHIvRKrIot64\ncQ9zc1Wh4R9BcUyAPXsOUrNmbQoUyJlEjSL75OTUhvLlK5CcnMyKFUtZsGApLi4DcnSM9N+jyMhI\nGjeuS1TUe3r06MXy5Wsy3bdp0waiF+2PiLpmxsOHQfTv34vQ0BBxmbW1DcePn8l1z1h09EfKli2l\ntCytKHJcXJw4SFK7dh1u3LhO9+69cHdX/tyK63TmzEVatBCEl+/deyz2peaGzZs3MHXqREJDw8mf\nP1Uk+vjxI6SkpPylDyijU6c/ePxYeUr+ypWblC1bLtfv+atp3LguRYoUYdiwkeKyw4cPsGvXTnx9\nr1KunOqkthp1hk2Nml+ORCLBxkb56VIxOJARaZX5f8btQFEGAaFf5vLlSz98rMwID3/D1auXad++\nFRcvnufAgb3cuxdIp05dlLZT3Ig+ffrE4sUL8Pe/xqlTJ9HU1BLPr3TpYlhamvL1ayw9evSiaNFi\nfPnyhfbt2/D9+zeaNGlKqVLmSKWFadOmLZqamoSGhrBhwzp69+6Ovr4+ZcuWp39/oXTVqVMXJk+e\nyuTJ03j27CkhIc9p3NgeiUTChw8f8Pe/ioGBAZGREZw9e5r+/QezZYu3eM5psw/duvUgKiqGy5cv\nY21dlVat/qBLl+5oamoyYsQY7t5VlizJDT8arF2/fg1vb+UsmZdXqs5a164dGDVqWI49ZDdtWoe+\nvr5oL/Tnnw+Ry+Uqk7S5ITT0uSjSvHNn1mV6hedmzZq1f/j90nPq1AmaNKmnFKyB8Hf1Iw3+RkbG\nnD17SWmZmZlUlMDZtGkdGhoa9O3bn3r1hKD+woXMS/chIc/FnxU9jrll6lRBUzH9kEjr1m1FbUmp\nVCr61c6aNZe1azcxduzE3yJYA6En8OnTVEN6mUyGt/cORowYIdrVqfl9Uc/vqvmf4vRpXz5//sTq\n1StYt24VhQpJM91WW1sbELSyfkafy86uMU+fBqOrq0fJkiX54492P3yszLCxUdUyA6H0aGtbl4AA\nf0C5MbtDh05ig3FabbB27TpgbGyMRKJBVNR7hg8fxaRJgnK8v/817O0dWL5c2TbI0tJK/Dk2NpZn\nz4Jp3foPANzcZlKvXgMcHJoxdeoMcfowJiaGZcsWo6GhiUwmo2pVYXLY1/cCmzdvoHdvF1xd55Ev\nn/KT6+nTJyld2owyZSqJZefVqwUnhuPHj3Ds2BEGDx6W49/Zz2aRnJ078fVrLO3adRTPtWXLVqxb\n58HQoUJGzMfnKEWKCJ+7Q4fOrF+/OdPjBQXdR08vD9HRH4mOjsbf/xqtWv3xU5PVaWVRsiuaKMrY\nv0pk+OnTYFHUNe13MV++/CxcuOyHj1u1ajV8fM7RqpWDuKxfv56sWbORZcsWUbVqNUxMCoolPlfX\neZkeq1u37rRo4UTevPl+eAoyKOgpjx49pHHjrK33SpQwFYM2B4cWP/RefxeGhoZK34/Bg/sDMHDg\nwMx2UfMboc6wqfmfQiKRYGhoxIwZboSHf2DevMWZbmtsbIJMFsOKFWtz/T7h4W/o3LktUqk+/foN\nJCTkDa9eRXD16q1MS7B/B0+fBjNq1BglAU9z89JIJBI6dOiEvr6yv2eFChW5ezeQ1atX8vjxI3bt\n8haDNUjtQUvP8+epGYqUlBRSUlJYunQhrVr9wYMH91m/fg0RERHUqFETKysrrlzxY8iQAbx9G87G\njZ4UKFCAmTPnKJWStm3bwrZtW5BK9YmO/khiYiJ161bH2bkztrYZ9xSeOHGcWbOmIpOlZkm+fIlh\n+/atWfYwJScns3TpQqZNm5Qro+8rV/zEADQlRXm/jh27IJPF8OaNsubgwYP7sjzmhAlTiY39gpeX\nJ0ePHqJYsWK4uWUebGRHSkoKrVoJfYANGzbixYt3WW6vyCz7+1/Jcrucomi6r1SpCvfv38PYWDAT\nHzduEgULFszRMVJSUpBK9WnfXrlRv1at2tjbpwZsDx7cx81tBvHx8dSqJWQIFQGIwl80MwoU0P8p\nyYrChYvQpEnTbB8UPn2Kpnv3znTv3jlHDgT/JHFx1xpVrgAAIABJREFU8RkO25Qt+2Nm8mr+WdQB\nm5r/WTQ0NJg8eRxSqX6Oy1U55erVy6IH5N69uyhQQP+HhUxzgkwWw7t3qgMNCnHaiRMniyW1Fy9C\n6dChE3p6etjZNebQoWOsXbsBEPqnFC4Uaac/tbS0qFatutL0mIKkpCT27dtDmTLlVLJhPj6CKGiR\nIkUpUEAYioiKeo+7+zISExNxdGzF06fB7Nx5gOHDR4mZvho1atKrV188PITMmUJ9X0dHaIJv1KhR\nhtdh6tQZf30OQf8uNPQ5e/fuYvz4UaK3qoKvX78SFvaapKQkBg7sw+LF8/HwWM/Fi1nruX39+pWr\nVy+zdu1KOnRozdu3wmSpQk9LMdSiaIbX0dHh5s37HDhwTDxGSEjm0iEtWrTk4cPn7N17mJ0793H5\n8g3RFuxHuHnzBk+eCKViQWA2a2eIvHmF32FW2efcvX8AIJS2v3//xsePH7G3d2Do0IwnNzNCEXQp\nhJjTMnfuQvFnLS0tduzwws6usRj8FylSlPz5C3Du3Omf+Rg/xbFjh1myZAHXr1/j8+fP4gOUkZHx\nv3ZO6ZHL5YSFvRJ1+N6+DUdDQ5Pp02f9rf+71Pw61CVRNf/TbNniAQiBza9Udu/cuRvR0R/x97+G\ni8ugX3bcrDA1TZVfaNiwMZcv+6KjoyPeHHR1df46t66i2K6CrLIPPXv2ZseObbx//553794SGHgH\nTU1Nvnz5gp/fJWJiPpOYmMSePQe5f/8uc+bMolUroWHezMyM4sVLkJiYyPr1ayhYsBCFCwuesklJ\nSezduws9vTwsWbKA3bsPULZsOYKDn9C4cVMmTJjC8+fP0NXVFUVQL13yV2qoT8uZM6fo2VPo2VOo\nsQ8e3J979wI5cuSkSg+YubkwtdekiYNSkJZdyXDYsIGcPHmcYcOUNanmz58tamwBnDt3RiwLlypl\nTqlS5nh67uDkyeMULJi1VEb+/PmzLa3lhG/fvjF+/Ei0tLRo376j6BWbFc2bt+T69Wu/RDg3bc+m\nnV0jYmO/0LJla2bOnJ2rIEBTU5MyZcry9GkwT548VioPW1hY0a5dRw4fPiD2sKX9HcbExJCcnMyH\nDznLZr19G45UWviXKvr37y9oCy5ZIkwNpx9M+B1YvHg+Fy+ep3v3noDQv5aSkqwkqaPm90YdVqv5\nn+bmzfvcuHHvl9vwSCQSBg8ezvbtuzP0Ibx48RzNmzdCKtXnxInjv+Q9ra2F7Jeuri5SqZAdMTIy\nFm3A3r4VenlevXqZY0NxV9c5YtN2WNhrRo4cxrZtW/H09ODIkUNERkZQvXotjh49ScOGjRgxYgwA\nPj7HWLJkIcuXL+XTp2hWrnTn0iVfDhzYpyTMOXz4KIoXFwYh8uTJy8mT59m5cx/9+gk9M5aWVjnO\nLimyavPnLxGPuXPnfgICAqlbtz5yuVyp3KmwLlJcKxCyrtn1FY0aNY62bTswdOhInJza0LRpM7Eh\ne9CgvjRrJtzgMrrRtW79B+vXb/5HXAQA5sxx5enTYKZNm8HRo0cYNGhYtgM0zZsLn//gwX2Ehj7P\nctv0JCQkMHHiGBo2rM3nz5/Yvl3Iaurp5WHevMXcv/+EBQuWkCdPHqX9FCVPK6vM3QkUAZ5goaTM\n8OGCHdq7d29xcmqNv/81IiIiuHz5Elu3evD9+zeOHDnI+fNnsjz/gAB/qlYtT7FixmJWd+3aVUil\n+qILR25JL0Bcs2ZtMYv5bxIZGYmjoz0jRgxm06Z1LFu2CGfnHnToIAj+xsQIvZ3ZPVyo+X1QB2xq\n/qcpVcr8l0k55JTk5GS6du3A3buC5MaBA3t/yXFPnbpARMQnwsLes3z5alauXIeRkTHjxo1m6NCB\nPHv2FKlUyo0bARw8eAAQbpRyuRy5XK4UGNna1mHUqDF8+hQtNh7b2tbF1XWemBlwdBT6iZ49CxYn\nCtNnp168CMXFpTf+/ldZt84DW9u6nDiRWhpcs2alOKFnY1OdJ08e07BhY4yNlW12csLAgUPZvn0P\nfn6+2NpWo1OnPyhUqBClS1sSFRVFlSplKVmyMNu2bQFg9uwFDB8+mrlzF9KnT3/xemT3+wgJecaR\nIwepWNECT8/t7Np1gNOnfXFwaE6XLs5s376bV68iVXqBpFJ9unfvlOvPlRPi4uJUFPtfvHjBxo3r\nALh79y7x8XGMHDkm22NZWFiJgbetbTV27cqZ+HN8fDz9+/fGy8uTJ08e4+vry+TJQv/j8eOns+zt\nSklJIV++fFSvnrmrw/z5S2jRwklFqw/AzCz1u/v9+3cSEuLx9vbi5s0AMUj//v07zs5ZX/+bN2+I\nP69eLbh/fPkiPGCkL/cr+PQpGqlUX2nftJ+rTx9lmRsfn7O/RYnx8+dP3Llzi717dzF9+mSaN3cU\ngzUQPF7Lli2fa+N7Nf8e//63So2a/0Hs7R0oWbIUffv2x9V1brbbJyYmUr16JTw8NmS5neJGoKen\nR7duPThzxhdPz+1YWZUlJSWFYsVK0LRpc54+fcqnT9F07NiWDh3+4Pjxo4SFvQYEi5rx4ydhbGzC\nqlUr0NbWpm7d+hw9eoqhQ0fQoEFDTE3N8PDwQiaLISgoVQZAIpEgk8Ugk8WwaZNyz1iNGrWoX7+h\nioSB4pxLliyMk5MDpqaF+Pz5U/YXMR358uWjeXNH0ZbLz8+XZ8+Ec9u925vIyAgMDY2YMGE0b9+G\nY2lpxcyZs9HXN2Dq1BligPX06ROl4379+pWgoAdKn0NB0aJGSKX6lChRkJ079//lY+mslEE6fvyo\nqId37twZrl+/luvPlhUXLpzFzExKsWLGSr2YigwJwLFjR1iwYGmOA+EZM9zYvVsI6kePHsabN2FZ\nbp+QkICzc0dOnz4hLhs4UCgDdujQScz+ZoaWlhahoW/Zs+dQptssXDiX06dPZGhBZWBgSP36gsXZ\nxYvnxeX9+qm2IyjKphmR1o+zeHEh2zd58gxksphMH+yWL18CQJs2zVXWhYe/4dEj5czcz0yc/0qC\ngx+LP3fq1IUePXrx4MF9zp07i7v7Uvz8LtGxY+d/8QzV5BZ1wKbmP0diYiIODg1p2bLpLx8myCnv\n3r3NdALs9etXuLgM4NatByxatFypROXp6UFwcLD4OjIyglmzplG8uAlhYa958SIkgyNmTp48eWjd\nui379x8FhECubt36/PnnQ3x9L4rbHTlyWPw5NDSEhIQEzp8/h7l5aZ49C8PAwFDMhHl57eLOnaxN\n7c+cOcXAgX1FU3iAWrWsWbp0IQEB15k6dSavXkXSsaOy1VWfPn0BsLIyw9HRPlcTmwCtWjVTMnCv\nV09Qv1cEgDKZ4KOY1nwehN+JwvmhW7ceSuvKli2JvX19sRerVClz3r2LZsYMN+RyORKJRMxODhzY\nl9OnT3L48AFx/379etKsWSPmz1/CqFHjlCQ2fgWHDqW+V9pA19ramjVrNmBhYUnfvv3p3dslV8e1\nt28mBloREZlPlvr6XqBEiYJcueIHgJFR6iRxixZOrFixLkfvl10gc/DgcY4dO4O39zbatm2pst7T\nczv6+gbplm1U2e7ChcyHSrp378Xp0xe5evUWPXv2ydF5K4Yq8uRRbatQfN/SklvP07+Lfv16iT+X\nLm1Bz57dcHObyYYNa3n79i2LF7uLmVY1/w3UAZua/xwpKSncv39PtGD6FaxatRypVJ/WrZuLmajM\niIuLw9q6HOXKmasEbXK5nNq1q9K9e2devAhVWvf69UsmTBhDuXKpGajhwweJ4r4mJibMn7/kh85f\n4Qtqb+/AkCHDcXR0Ys+eXdja1qF48RJ8+hQtTgXOm7cQXV1drlzxIyrqPefPn+HUKZ8cl8YATp3y\nAWD//j34+vqr9OzMnz8bPT09ihcvIS5r0cIRkIj6d3fu3GLmzKm5+pzphycUwXCPHr2VliucExRU\nrmzN4sXurFmzkdKlLZXWKQI5N7cZHDokNO0rhHrDwz+go6NDhw5CJuLcOT/Kl6+olI1RqOvPmjWV\nadNmqQQVP4uiOV5HR0elN87ZuQfXrweyaNHyH2qir11bkE9RZCrTEhcXx5cvMfTv30t8f4DoaGFa\nuU2btnh57RSnDrNixowprF27ivnzZxMd/THDbXR1dbG1rUNAgD/+/ldV1hsZGXPhQvZSJK9fv8xy\nfbVqNUTR4pywYsVaOnbszObNXirrqlevycOHzwkOfkWtWrbo6Oj88t//z+LqOkfMxnp77+XNmyiu\nXw+kT59+v0XpVk3OUVtT5QK1NVXm/NPWVB8/fkBXVy/TvpPc4uBgx/37dylZsiQgwdfXX8m7Mz2W\nlqbExHwmKOipOBUJQsDm5eVJWNhrZsxwQyKR8PHjB/LnL8D379+oUaMyjRo1YuvWnSQlpVCvXk00\nNCS8eRP2lwzF+xzdANPz/v17GjWqw4YNW2jQoCFxcXG4uPTg/HlBukNDQ4PFi5eJgczz58+YOFHo\nP3Jzm4+7+xJu3LibIxmC5ORkAgPv0Ldvdxo3tmf16g28evWSGTOmKJXMQkLe8OnTJ6pXr/TX65eU\nK2cllqxMTEzw8totBg0KsvouJSQksGfPTs6cOUm+fPlYt26zGKjcuxf4l1l4qVxdN0fHJnTs2IXl\nywXNvoyEdmNiPvPmzRsqVFC27unY8Q+kUimVK1ujra0tuj/khuPHj9CvXy9u3w7CzKykyvpdu3Yw\nevQwJUNxLS0NdHTg3r1HWFmV++Ey3IsXodSuXRWAAQMGU758RUxMCnL8+JEse/2cnXuybNmqHOma\nvXr1kpo1q5AnTx6+f//OihVrcXbu+UPnC4KUS69e3Xj6NDjD9T4+50SNtl/9fykg4Dr58uWlcmXr\n7Df+lxk7dgTe3tvYtm0nW7duJirqAxcvqgbCv4Ot4O+O2ppKjZqfwNjY5JcFawAJCfG0atUGF5f+\nvHr1knHjRmRp5P7s2WseP35B4cJFSEhIwM1tBu/evUUikdC3b39mzpwt3kTLlTOnRImCfPv2jRcv\nwjlyJNXAPDk5ieDgJ+LEWkCAv2gdlJYTJ45jZ2ebaX/OpUsX+PIlhg4dWiGV6nP5si99+wqN9nnz\n5iUlJYXJkyewdasnMlkkEonwp+/g0IJTp3z49Cla7NXJiPj4eNauXcX3798ZO3YETk5NmThxKqtX\nCz13JUuWwstrJ/v3H2XPnoM8eBBMgQL6mJqaMXv2fDQ1NVm+fJlS4/yHDx8oUaJEZm8pBr9pzap1\ndHTo1asvO3fuZ9MmL6WsUtWq1XJtMXbo0D5ev37F58+faN26Lbq6ehnKfrRr50SjRnU4duyw0vLL\nl305cGAvvXr1VQnWNm5ci1Sqz+nTJ7P8jIrSVdrerLQ4O/fk4cPnYrCm2M/CwoL69WuLUhI/grl5\naWrXrgOAh8cGxo4dQe/e3VSCtbSZUhCyijkVoVVcT8X3+meCNYDSpS3x9fVn2rRZ6OnlUVn/4MHd\nHB/Lzs4WqVQ/R6X5yMhI2rRpjr29qr/t78jdu4Ho6OhSoEABvn37rjQtrea/iTpgU6MGoWTm43OM\nWbMEYdbDhw/StGnDTH1BJRKJ2MB88OA+1q5dSa1aWT91a2io3uB27txHlSqp+3Xq9AdlypipCIj2\n7dudx4//VGlwVrBhwxpq1EidwOvRowuTJ48HBK2ubt160KdPf06fPsnIkcMwMjKieXNHLlw4K1oJ\nbdy4NsNgceDAvpiaFsLNbTolSxbGyqosefPmU8osCp9PAzu7xjRp4kCRIkXF5ZGRkSQnJ7N27WqV\nYGjv3l1kRlTUeyZOHIO1deY+jBER78Rg90cYOHAoN2/eZ8GCpZw4cYz4+DhiYmKIjY1l7lxX0ed0\n2rRZmJqaUa1aDaX9X7x4x/HjZ5UeHi5fvsSQIf3Ztk0YyggMvJ3p+ycmJqKtLZQaMyoDKjA0NMTO\nrg4dO7Zh8eL5AJQuLZRlc2o6nxnHj5/h3r3Hop0SQOPG9tjZNcbQUCjBhocL4sFaWlq8fBkhPozk\nRMm/VClzBgwYTLVqNZgyZQYVKlhQuLABGzfm3mFEgba2NqNGjePChStiiV2xvGzZnFl8JSUl8fix\nIDi8a9cOlb7H9BQq9N+Sv3B0dEIuT0Emk2FiYqLSoqHmv4e6JJoL1CnjzPkvp9Wjoz/i4GDH69ev\nlJZra2uTmJhI+/Yd2bBhS6b7h4aGMGRIP7S0tAkNDeHDhygkEgnVq9dAR0eXFy9CKVasOFu27MDU\ntESG12n8+NFs376FPHny8v37N3r06M3y5UJvW1DQffGpvnFjezw8vFT6ZKRS4aatr69PTEwMhQpJ\nVUyuHz0K4du3r9StW53ixUtQtmw5zpw5Ja53du7J4sXuvHz5gkmTxnL//l1RTkJxLQD69RvIggVL\n+f79O1paWko3zIx4+fIFM2dOoUyZcty8eZ2KFYXymI/PMc6du6TSl6X4Lslknyhc2Iju3XuJfWJp\nWbZsEYsWCZZOnp47RBHb9Lx5E4a+vr7KNZs6dQIlSpgydOhIAKytyyll8wD69u3PokXLs/x86VH8\nLgDOnLlEhQoVsyxzh4aG4Ofny8uXL3j5MhQvr11KJc7Y2Fhu3QqgT58efP8u2G99/BiLkVE+zp/3\no3z5ShnaDeWGhw+DGDlyCA8fCtOyhoaGfPqUOuDQuXM3evToQ+3atuK5XbniR4cOrVm3zoOOHbso\nHe/Tp2gaNrTF1rYOmzZ5ictTUlKws6sjTjBm5vP6+fMnoqLeY2FhleH6tCxePJ+lSxf+9bM7ffr0\nE9el/78kl8uxtbXhxYtQataszYcPUaJh/bZtu3F0dMryvRQDNIrer6Cg+7Rs2ZTr1wNF8effhdjY\nWOrUqUaJEiVo3tyR+fPnsH//UezsGitt91/+3/1PoS6Jqvmf5uLF89SvX1NFVPJ3xNNzE+/fyxg8\neCgg9MCUKGEqBihmZqUy3Vcul+Pjc5S7dwMJDw+jS5euVKtWnfbtO1C8eAkMDAyoWLEiL1+G0ru3\nc4bHSElJEYMNxQ1ZKpWKZRozs5I4O/dCIpHg63uBP/98xIEDe/nw4YNok6QIaBTNxemDNRDEfEuW\nLMXp0xeJjY1VCtbs7R1YsWItOjo6bN68gYAAf/r3H8jo0WOBVP9JxfW6du0KdepUo3hxk0ydAxYu\nnEOxYsbkzZuP7dv3MH26KwEB1/H03MiaNSt4+TIUPz/fTK+ttrY2z5+HZRow7dmzU/z5xImjGW4j\nl8upV68GlpamHD9+RGnd5s0bcXWdLr5OPzVoZVWWqVNnZnp+GXHrlrJWV/Pmjbh61S/LfUqXtsDZ\nuSfr16/m1KkTjB8/Wmm9m9sMunRpj4tLf5V9hYeCnwvWYmO/YG9fXwzWADFYmzJlBu/eRbNmzUZs\nbesoBZKK8nP6AQ8QhhgiIt6puA9oaGhw5coNnjx5QVhY5hZaLi49qFOnOvHx8QQHP8l0O4CxYyci\nlQpaYooBnsz48iVGzDTVqmUrBmsgWIZlh4aGhlKjfp8+3YmPj1fJXt25c4sqVcoSE/M5/SH+MfLn\nz8+SJSu4c+c2EomEcuXK4+Y2PVunDzW/L+qATc3fQvfunXj6NBhn547/9qlky9mzp6hQoSKbN2+i\nY8cu1KpVm2XLVlGlSlWaNWuBhYVlpvvOm+fG3Lmu9OzZm0OHjjFkyDC2bfPG1XUOc+fOZ/Hipbi7\nr2LgwCHcv3+X5ORk5HI5mzat/0tEtjZFihiyapUQlPTrN4CyZcuxfPkSFi8WskcGBoZ8/RqLXC6n\nTp16dOr0B0OHDlAyI3dzm8G1a7d58EB12g+galUbKlWqzNChAzA2NuH06YtiKQ6gSZOmgNDUHxh4\nG2vrqvTrN4Bevfr8NTjxkVKlzMXtv337KsoXXLuWOrm3YsVSatSozNixI1i+fAlJSUk8fPiAt2/D\n+fDhg1IZtXLlKqxbtyrLUpS+vgE6OjrExsaqSLhs3ChkPZs1a4G7e8blNYlEIuqq9evXS0mO48aN\ne9y8eV98PX78ZGSyGM6d88PQ0JCyZcsxY8aUXEnHZDS53K1b9n8Durq6oh2TwjxdgZaWUEo3NRUG\nEqytq+b4fHLC3r27MryJb9nizZgxE9DU1OT9e9XgysysJDJZjEqZGAS1/4cPnyv5q6bF2NhEJeso\nl8vFAKdHjz707dufJk3q0aBBrSxtp7S0tKhVSxhcefEiNMveU319AzZu3MKFC1ext3fAyqosFStW\noksX5x8a3FBMLSsEjBW4uy8hIuIdV66oeqP+kzRv7oiNTTX27dtDly7dePgwCB+fjH8nan5/1AGb\nml9OYmKimB169uwpL1++/HdPKBsKFy7CnTu3yZs3H4sXuwNC6fHUqQucPXuaESMGZ6ittHHjWlat\nWs748ZOYOHFylkMQ4eFvKFasOJqamoSEhDB58gQaNqzNkyeP/1ovHD85OYUxY8ZTuXIVTp1KbVZX\nTMRdv34NV9e5LFu2ikKFpISEvKF69Zp8+hRNvXo1MlXab9u2I8OGDeLAgb3Y2lbj0qWLHD0qHL9e\nvQYMGDAEgK1bPXjw4D4DBggN9BKJBFvbOlSoUJFt23YrXbP9+4/SuXM3pRv2/Pmzef36Fd7e2wDB\nHqpOnXp06NCG8uXNlW7SQUEPCAy8k2WP17t3bxkypD+lSxdj0SJlAeJq1Wrw+rUMb+99KlZIaene\nPVWPatAgF3r16opMJsPcvLRSEKrA2tqGp09fExv7hT17doqK+DmhYUPlctOYMRO4ceNejvYdNGgY\ngGiDpWD27AWMHTsRF5cBhIS84dSpixnt/sMcPaoqZtulizOtWrUR11esaMHw4aoTsFZWZlSuXEZl\neWxsLJcv+/Lt2zelZZ07t6V580Yq2z9+/CeFCxtgaWnKjRsBtGvXkUWLlhMREQGAgUHWUhlpS5np\ns5zpadeuI5UrV6F9+1Y8exZMr14u4vBMblFkFxWZcQUzZ85h4cJloj3av4VEImH8+Mk8e/YUHR0d\njIyM6NevZ5b9kmp+X9QBm5pfjra2NpUrW4uyGLVqVclSffzfZtmy1SxatJxz5/yUpDy0tLTEKUSF\nj6WCy5cvMWPGFFxcBtC7d59s36N8+QqEh78hNDRESW0dhL6bM2cu4uTUBi8vTwYP7k9Q0APMzEoS\nHx/P8+fPAMRer+3bvahTpx4gNJz7+JylQQM78ufPT1CQkDGqW7c+Bw4cY968Rezff5TBg4cxfvxk\nAOLj41i3bhXVq9fk0qXrovr8/v17mTFjCgBDhgwUy6rBwU/4889HlCtXnvXrN7NgwVIqVqyMnV1j\n1qzZqOTT2rBhI6VrmJCQSJ48eZg9ex6DBw8Xs2Jp8fHJuJwZHx+PtXU5Dh4UmuHd3ZeqlAv19PSy\nvfbt23cSs6QjRozk9OmTbN+eeU+igkuXhMAoX77M5V3SU7FiJd69i8bFZQDW1ja4uAzIkTVauXLm\njBkzHIBJk8aKy8eOHUHx4iZMmCD8XgoU0P+lpuXR0R8JCLguavQpWLkyNWNUsGBBAPbt282dO7eU\ntouN/UJkZARRUVFKy48fP8LQoQMwN08dPjlwYA+XLl3k4cOHhIW9RirVp1gxIZuY1rXhzp1bPH78\nJ23bOtGqVRtOnbqQ7We2s2si/uzvnzOniaNHhZaA7IYNssLWti6AKCqsoEyZsri4DPghiZ5fTb16\ngkPE/v17mTnTDSurMowbN1JdGv0Pog7Y1PwthIW9JjY2Vnz9+PGjf+R9374Nx8KiBMOGDcxyuwsX\nzlKqVBHq16/JhQtn6du3v3hjlcvl7NmzE3f3xSQlJWFpaaWUOZHL5axcuYwKFSowatTozN5CiaZN\nHTAwMGDlSncMDQ1xd19F06bNOHPGlz59+hEbG0vlylXYtesAZcoIU5H58+fH1LQQdetW5/HjR3z+\n/InChYvw+PEjLlw4Kx5bU1OTgwePc/p0aj/Y8+fPaNiwEQMGDMHOrjEaGhpKWYj372XMmTOLRo3q\nYGlZArlczowZQkCnMINu0sSOmjVt+PjxI2ZmJZFIJHTo0Jl+/QaiqalJZGQEUqm+Uobs69evSr93\nQSxXkA+ZPXs+1avXZMsWb6VrM2zYqAyvmZaWlig5oQhW0w+G5BSFE0RIiNCzdP78mWylHKZNE/rX\nnJ17ZbldejQ1NVm4cBnnzvmpTNJmREJCgtK05bZtuwkNDWHPnp1i0Jw+g/OrUATDaXseq1atptSn\ndeKEj/jz9ev+SvsrMpSdOikPfLRp0w4AHR0hYBk0yIWJE4VANDExgS1bNgHCpKZUqs++fbv4889Q\n9u07Qq9efXn/Xoa//xV27/bO0n8UhL/HUaOGiK8VxwahP7Rt27YsWbJQZb86deohk8UwZMjwLI+f\nFfb2Dj+87z9F3rx5mTNnAQ8fBqGvb0CHDh0JCXmerR2Zmt8PdcCm5m8hbVmnTZt2WFqqlk3+Dq5e\nvcyXLzHs379H5ak/LcuWLeLbt288fRqsYmWzefMGRo4cwsKFQg9ZQkKCUmO3u/sSrlzxo2/f/jlW\nCtfT02Pw4KHs2OHFjh076N3bhV27DmBjUx2Ali2bsnDhXDQ0NLh69SYyWUyGx27btj379x8lNjYW\nqVSfSZPGEhAguByUKVOWsLD3uLrO4/jxM4Bww5o3z41Klax48yZMnKD78uWLqCkWHx9PSMhzMTP2\n4UOUmBmIi4tjxIgxBASoalspbsAtWqRmN7p166F03q9epQZYcrmcy5cv8fy5cp9dZGSEyrEvXrxI\noUIGNGvmiEwWw9Onr/D23ouHx1aVbXNCiRKm9OjRm5MnBWHfwMA7uLpOy3KfUaPGI5PFKGUQ/w7i\n4lKlVPT09Khduw6TJo1l5MghzJ27iBMnzpE/f4EsjvDjNGmSGnAoysr37gUquX2UL59qxq6Q+UhK\nSmLx4vminVl6uZlx44TJ24SEeOLi4lR+5wcPHuDVq0iOHTsNwI4dXlSoUBpDQ0Py589Pw4aCuHRa\nqZHMePXqpdLf8Pfv35HJhAA0Pj6eo0ePsmAjQIXEAAAgAElEQVRB9n6+P0LhwkU4efK8mK37XWnb\ntgNJSUkEBz8WM8ZpH6zU/DdQB2xq/hYU/ThDhgxn8+Ztf/tNT0Haqaw5czKe8IuPj+f2baG04+TU\nmrlzlZ++Hz5Uvvkobiog9McsXDiXIUOGidmjnNKjRy8cHJoxbdo0JQFZSJ24a9Ag1Sdz7tyFFCtW\nXGm7jRvX8eTJn6Kcxd69u+nUqQ1ubjMoU8YMD4/1DB06AnPz0sTFxTFhwmhWrlyGTBZJ8+aNcHEZ\nIB6rb98BDBw4hHbtOlKyZCk8PbfTuLE9UqmUs2cvMmrUWLS1tenbt3+GJanly1eTJ08eVq1aLy4b\nP34UKSkpTJgwGUNDQ+LjU8tNTk4OdOzYhvnzZ2NjU00MEObNc1U5tqmpIJGQnJyMVKqPlZUptWvX\nUZEAyQ2KKUiFjVZWfW+5JSLiHVKpPvPnz1ZZN3euKw4ODYmPj0cq1WfUqKFK6/X1DZDJYrh9O4gn\nT14CgoxG9eo1MDMrSc2atX/ZeaZn797USVt391X07i14vT56lNoCkNb2q3x5wenh/PmzopQGCPZN\naUlbIjQzk2JrW5dVq9bTpUt3AIYNG0mePHmoXbuOkhxL2klqJ6fWODi0yPYzGBsbqzgPHDlyEOCv\n7+cqVqxQlYX5VdSoUYs6deoxc+ZUbGwqZL/Dv4CWliC9k5ycQkDAdYyNjbMcplLze/LrmiHUqElD\n8+aOREZ+/mHLnB/h7dtw3rx5I77OrEdDV1eXuXMXIpPJmDZtlso5tm79B7t3p5bt0gZNR48epmjR\nYqIESG6xsanGuXNnSUpKQksrNWuXNihUYGxswtq1m2jXTlkbavVqd4oUKYKzcy/27t1FdPRH1q5d\nibGxMbNnz6RgwUJ07dqdBQvmsGOHF+vXb6Ro0WK0bduax4//JCzsPXK5XKX/y9rahk6dujJ06ADs\n7IQeufz582eqL2ViYsKrV6rm1wBLliykSJEiDB48TFxWu7Ytt2/fZMsWbxo2tKNLl/bcuXOL0FBV\nQU8rKys+foyla1dhwjImJgY/P1+x1PYjbN26k6VLFzJz5hw+fIjC0jJ7ja+c8vmz8KCwYsVSKlWq\nrHSeiglgiURCzZq1M7SfApSWd+rUlU6duv6y80tPbGwsTZs2UJK1uHTJlz17BCHjtI4REokECwtL\npSxs2kGFwoWL0KJFS27duoGTkwMSiQQvr12sW7dK9Lj18BCa+mWyGFavXq907KVLV3L8uFCyfvfu\nLe/evVXxjM2Kkyd9xN5NBdOnT/rrQUOXESNG/CMaYxs2CEFhSkrKb+fRefaskAE0MDDA1/ciAwYM\n/mk5GDX/PL/Xt0rN/xT/ZLA2ZswIqlYtz7p1qwAh0EifOUvLwIFDmT7dNcNzTCt3kZ4XL0KwtLQU\n/yHHxcXx8GGQGBz6+fmye/fOTPXnFDf2nNr6pO8zKVBAn+rVayKTvcfTcxPh4W/ESTx7e2EibeTI\nIURFRZGUlIiZmRn37t2jbdvWFCigT4MGjdDV1c2wWf/Llxik0sJMmzZLXJbbsklAQCCrVq3n3Dk/\n7tx5pGS0PmvWXGSyGFq1aoO+vgE7d+6jRQsnnJxaZ3o8N7d5lC5tgZ1dE1F65EcpXrwE7u5rMDIy\nwtLSioAAfxYsmM3Lly9ydZyM3CDMzEqKwUxafbu0aGpqcuLEOcaNm5T7k/8JAgNvK8liREZGULp0\nMTFYMzAwZNSoMWKzfqdOXZXKoADHjp3hxo17lC0r9Fcq+j3nzVvE9et3MDY2wcNDCMQU2oQODs0B\n5UB0wYLUDKRCX83IyJjz51PlL9IK9uaELl2c6ddPtWf1Vw5n5ITnz8M4ceLcbxesyeVyli9fTK1a\ntQkPf0Nc3HclcWE1/x1+r2+WGjU/yP37geLPLVu25tmzMBVl+5xSqVIVpWOlpWDBQkRHp+o8rVq1\ngm7dOjNp0ng+fvzA8OFDmT9/Lq1aOXLq1AnSc+vWDRwdHVXcATw81lOhQmmVvrs//mhPr14u1K/f\nkLlzF3L4sA83bgSgqalB8+aOTJo0jW7deiCVFlbSGEtOTiI5OZnXr1+zceN6GjVqwqlTF8SJv/fv\n3+PpuVHpvVq0aELHjm2Ii4sjIuITe/ceJjAwd8MipUtb0rVrd6ytbbJ1QDA2NmH79t3MnbtIZV1I\nSAgTJozh27dvzJ+/mGnTZuZqWjMjXF2nc/r0STG47tGjM+7uS6lVyxqpVF9lAjIjTp06QcmShZWG\nPkAovd2795hTpy6wZs3GDPdV2Fz9k6xa5U6LFk0oXz5VvkRRklUEFtWr12DlSndev36FgYGh6LCR\nlkKFCilNu06cOBWZLIYBA4aI/XVr1mxi1KhxANy4cV3MzNaokVrSVfxNeHtvo0GDWtjbN0Aq1ef6\n9WvIZDHIZDEYGRmxdu0qsQ8tISEhy88okUho0KCR+FpDQwM9vTy50s/7FejrG/xt5euaNasgleor\nZURzypMnj3n16iVNmthz+vQpWrRoqeINq+a/gTpgU/M/wenTvvj5BXDixDm2bNmR4wxWRpiYmHDh\nwlV27Tqg0vtiYWHFs2dPefPmDXK5XMwSnDp1kiFDlHWq0vefXblymcDAQM6cOcPnz8pZhGnTJhEV\nFUXnzm2Vluvp6bF06QoOHfKhe/fedO/emY8fP5CYmMjMmXMYN24SK1eu4/btILp3703x4iVwdZ2L\nVFqYESPG0rt3P3r1cmHr1p2UKVNWPG7FihZMmTKB0NDn4rKBA4cilRamWLHiFCliyPXr136p3U5s\nbCxt2rRgxw6vbLc9e/Ysnp4e2Ns3oGvXDjRr1ggbmwrZ3oRTUlLEPkZf3wuinExw8BPWrVtFr15d\nRWmQ9DfXnARUisxksWKqNzx9fQOqV6+pkrWtWtUGIyPjX9ozl1MqVapE48b23L4dxI0bAUyfPkk0\nmVeU7tKazi9fvjrXUhRfvsSQkpKCjo6OKB2jra2Nl5cnRkbG3LmTKias0B28fFmYaFZ8/2bOnArA\nlCkTqFKlLG5u06lUyZIFC+ZQokTBDLXi0pLWpSAlJYW4uO/ie2WETCZDKtXn3r3ATLf5nVBkKU+c\nOJ7rfRVewd+/x/Hq1UtcXLKeoFfz+6IO2NT8T6Cjo0P58hWoWbP2LylJvHr1EmfnjuIkpILevftS\nsGAhWrd2pHbt6ty8mSrS+eefj1iwYDFHjhwnKOixkiL9s2dPmT3blXz58pGSkoKf3yWl427dKjR/\np7dHSsvnz5+UJioV2TIQAolt2zwJD3+Dq+t0nJ07YWNTnnbtOrB06QoVUd85cxZQurQF5uaptkK9\ne7vw8OEzihQRpChOnfLhV/Dx4weePXtKcPBjAgL8xQnCzEhMTMywVC0YvWddol2wYA6WlqYMGNCX\nLl3aUby4CZMnj6N0aQt69OiNlpYWjRvbExT0gAsXhPLV0qWruHTpOjt3bmf3bu8sM22NG9uzadNW\n7OxsGT16GKGhIUil+lhYZJ6xOHvWj+Dglz/dIhAc/ITdu72zVPJPT5MmDuzde5jTp0/QunUzNm1a\nr7Q+bQBcrFgxUSw3p1y6dBELixIUKSIMg+jq6iKTxeDo6ERAgD/R0R+pWtVG3L5gwULI5XJmz17A\n/PmLmT7dDV1dXdq0aUtSUpJK1vf6daFMW7hwUbJCQ0ODmjVrKS2LjHyX6faKDOnChX/P9OjXr1+J\niMj8/XPLwYPHefz4xQ9JkMhkQp+pYtAqbX+imv8W6oBNjZoM2LxZaJI2N08tJZ086cOxY0c4e/YS\nc+YspEuX7rRp046ePfugpaXN+PGTMDc3JzExkcjISL5//87nz585cGAfPXs6Y2xsjI/PWQYOHKjS\nj+Xk1BqZLIa+fVX9IhUUK1YcT8/tgJDpe//+PZ07t+XixXPEx8crlYUUN6T9+/dkeKxBg4YREHA3\nwyDCwaEF795Fc+WKqs1STvj8+ROVKllx+PABEhISKFfOnHr1ahAV9Z6bN+/z6JFyWScpKUmp7HXl\nymWGDBmS/rBcu3aLAgX0SUpKolGjOkil+ipWUPXrCyKhL16kZg63bPHAz+8iy5ev5u3bj7Rq1YbJ\nk4XSXUpKCuPHj6RRozrs37+HUaOG4uhon6VGm0Ljb9euHdjaCsHIly+C8Ou9e4HUqFEZa+tySKX6\n9OzZRWUi+Edp0KAWo0YNZdAgl1zva2RknOHytBOaDg6OuQ4q0/aJJScns2bNSqRSfe7eFTJX3t57\nWbMmVRdtypQZSCQSihQpSpMmTZkyZTzm5qXZtMmLuLg48f1tbKpRrFhxUlJS8PE5S5s2zfn0KZpV\nq5YjlepneE3TT5RmlY3t2rU7Bw4cY/Pmbbn6vACTJ4/DzW16puuDg59gbl6UKlXKZrrNj2BiYvJD\nfXmK6WjF5PW7d78ukFTzz6IO2NT8KyQkJFC1avm/7Qn3Z+naVZAfUPSwJSYm0qePM+PGjWTTpnXc\nuhWAl9dmjh07TPnyFdDQkLB06SK6du1Ep07tadq0EbVqVaN+fVvc3GZRsWJlHB2dsLa2ZuPGjUpu\nAJlx5YofUqk+ZmaFxUZ3hQ1USMgzNmxYw6VLF+natQOOjvbcuXOL3r37Ubx4CTp27AKQ64yJgsxK\nyrGxX5S8QzPiwYP7yGSRDBrkgra2NsOGjUIikdCzZ1dq1bKmbduWfP78ibi4OJYvX0y5cqUoUaIg\nNjYV/grGGuPq6qp0zD17DmJhYUVcXBwdO7bhzz+F3roBA3orlb7s7Bojk8WQJ4+yjIxCL0zB0qUr\nsbNLFUOuUKGi0npf3/NkxtmzfowdO1F83aJFSx4+FNwogoOf8Pr1K969ewsIAwgZBX8xMZ/x9t6W\nKwcQRXDh6NgqR9u/eBFKy5ZNkUr1GT16GLduBbFoUarNVoECBbC3b0qJEqYYGBiwZIl7js9FQf36\nDdHU1ERLSwtNTU10dYWBHRMTE968iaJHjy6YmgpCzFpaWkpDKKVKlWbSpGls3bqLpKQk8ufPT2Sk\nUM6+ezeQt2/DuXkzgC1bPAAICwvjzh1BpLlYMWPOnVOerB4xYgxFi6Zm4sqVy1xiQyKR/OXKkTt9\nOw+P9WzZ4sHatasy/d0VLVoUO7vGjB07IVfH/ruYOXMOkJpZSyuSrOa/hUSu9qfIMf/EaPh/FS0t\nDYyM8uX4GoWFvaZ69UqAMOr/uxMXF0eDBrV49eolenp6xMXFUaZMWZ4+DWbu3IW4uAzk+fNnJCYm\nkpAQz4cPUcTExKCtrU3ZsuVo2FAwp3737gNFihjn6DqNHTtC9OTcuHEL7doJEheHDu3n1q2bNGzY\niN69uwFC/1RMzGdev5ahp6dHcnIyV674UaNGrRwFhyBMEz579pQuXZwz3aZ06eJ/2REJki1jx44g\nKOg+584pm1w/efKYQoWkmJiYcPv2TVq2bIqWlpaYGQkICGTSpHH4+fkq7Td9uitjx47H0DAv9eo1\n4Pr1a5w754e1tZDJWr16haivN3nyNFHcOCzsvVLv1datm5UsnvbvP6oUoCk4ceI4fft2V1l+5oyv\nKGqcES9ehFK7dmrJ28DAkM+fP2FrW1fsGTI1NUVHR5e1azdhalqSQoWEwCUw8DZHjhxkw4a19OzZ\nh2XLVmX6Ppmh+Ht78OAxUmlRlQD76dNgunZtz8ePH/n27au4vFy58koBboECBfjy5QuQs7/DlJQU\nPn78qFSOj4n5THx8gvj5pFLBPsvIyDjD4CDt+8TGxlK6dDGl5QkJCSQlJTFt2kTq1q2Po6MToaEh\nVKlSVem6e3vvpVmzVC3E8PA3Sjponp7badeufa7+L2WHv/9V2rZtiaWlFf7+d376eP8EX79+xcKi\nOIMGDcHDYyPTp7sxdOgIcX1u/3f/f0Rxjf5t1Dpsav4VTE3N8PE5h5GR0b99KjlCT0+PW7ceIJfL\nxX4dhSG7uXlptLS0KFeufIb7Jicno6ury6JFy3PV0N2smSPe3tvIn7+AGLCA4I3Zvn2nv+ykZhMS\n8gxX17l8+/YNN7fplCxZColEgxkzJqOnp8fr19k/UcvlctGxoFOnrkp9gElJSZw7dwYHh+aYmprx\n+PEjvn//Tt68eYmIeMf9+6rm5mmvhaWlFSYmBZHLUzAzK0W7dh0pXdqS5s1b4ufni76+ARKJcKP+\n9CkaY+P8HDp0iGPHTiKXK5foqldPNZpfuHAe2tra1KhRSyVgUZR/NDQ02L59Nw0bNmLTpnW8ffsW\nV9fUrK6TU2sqVqwsKvXPnDmHqCgZzZs3Zvbs+QwenHHPUNGixdDV1SU+Pp6OHTtz4ICgyJ+SksKS\nJSvo1q0HycnJBAXdo0WLJkilhXn48JnSdQZB4X/p0pU/1N+2cOFCpkyZwh9/tMfDw0tpnavrdL58\niWHAgEEUKVKUBw/ucenSRZVGfA0NTZYsWUHduvUzfZ/Q0BDR5Hz27JmsW7cKd/c1dO8uWHaln8Ze\ntmwV06ZN5P17GRcuXMXePvXYisyvAsWASFr7KR0dHXR0dHB3Tx34qVJFCNLMzUtnGlgOHqwsVZFW\nhDqnBAU9wNzcPNPMW9269f8TD5hpyZcvH1ZWZXj+/DkVK1bm0KF9SgGbmv8O6oBNzb9GrVo5G4F/\n/foVurp6FC5c+G8+o+yRSCTcuvWAkJDn3LsXSEJCgpK9T0ZoamoSFvY+1+/VvLkjhw+fwNTULEOx\nVYlEwogRwsRjYmIiTZs2VPLa1NXVw8trl8p+Dg523L9/lw4dOrFmzSY0NTWVesHSBg+RkZFUriwI\nzFavXhM/v+vI5XJxm127DpAdhoZGPHr0HLlcrhRYubgMoE2bdkilqcbjUqk+AO3bt88w+1S3bn3s\n7R1EK6LExETq1q2PhUVxjI1NuHTJHwMDQ2xt67Jhgyft2nVEIpGQnJzM9OnCBOPbt2/YuHGr+BnS\nZiB9fI6K3qh37ypnUI4cOci0aZNwdu7JuHGTWLVqPSNHDhGDtfPnL1O5srV43IsXz7Fz5w4gtfFb\nIpEwf/5ibt++xaFD+wFhiq9OnXrZXsf0NGvWjM2bPcXvAAiDGefPn+H8ecGa7N69uxgYvKBOnboE\nBz9R6l8qWrQYjRs3ZcKE0djYVOPMmUsq79GlSzt8fS/QoUNn1q/fTKtWbfDxOZrpwwkIgzOK4Rnh\nAacoERHvGDt2olIpGYS+zLdvP/4SzTRFGVwikZA/fwEMDXP3MBgc/AR7+/oUL16Cu3f//Onz+Z2w\nsanOzZvXsbGpzo0bAf/26aj5QdQl0VygThlnzt+VVv/69Svm5kJfys882crlclxdp1O1qo1YWvw3\n0NLSYMKEUZQpU56SJc358uUL+voGNGzY6KekSFavdmfuXFdat27Dw4cPCQ0NoVChQioN/nK5nFq1\nrEVh3wEDBjNv3mK+fIlh/vzZ9O8/CAsLIUCLj4/H1rYq4eHhgJD5uH8/mEGD+hIS8pzAwEc/NfnY\nsWMbLl++xIoVa0SD9cGD+4mBzOHDx7G1rc+ECaNp2bIVTZsKQqzfvn2jVKlUU3VFpivt50mPkI2c\nwqZN6wC4cOEKlpZlyJMnD56em5gyZXym5+nk1Jro6Gju3LktWm2NGDGahIREHB2dMDIy5tu3ryom\n5Yrgs2HDRsyY4aaUJY2KiqJCBUHXzMtrFy1b5qwvTUFmf282NhUID3+jsv3o0eNZuXIZcrmcKlWq\n8u3bV1q3bou7+xIAJk2apiLoK5fLMTcvJpZUMysrJycnU7SoERYWlly/riqTER8fj7a29t8uKNu1\nazsuXryAhoYGKSkp+PvfoVy5sjn+v/T58yd69erGqFFjs30I+x1QfL+eP89ec3Lr1s1MnTqBrl2d\nOXhwPy9fRoi/D3VJNHt+l5KoeuhAzW9B69bNadCglqjar+BXSUs8exbM+vWrGTTIheLFTbJtnP+7\nCAt7jaenJ5Mmjadr1w4MGNCHLl3asWTJ/Cz3+/btGydP+tCkSX2OHz/Cy5cvkEr1kUr1CQt7zZw5\ns0S7qd27hYxPeq2wZ8+eUriwAW/ehFGkSBHy5MlDgQLC/gUK6LNgwVIxWAPw87tIeHg4xsbChOHs\n2QtwdGzC5cuXCA9/g5OTA7NmTeP9+9xnDyG1lDZ69HB27tzOrVs3ePtWCA4XLlyInV1jtmzZhLf3\nNi5fTvWmzJs3rzgUsn79Zh48CKZTJ6GXz8NjA23aNFfKNIKQdZk7dyGhoW//ytI1oGTJwmzYsIYT\nJ46J25mamqmc54kTx/H3v0rTps3EjN2jR4/YuHEtbdu2pEyZsirBGqSW8fbvP6oUrIEgyVK7dh3K\nlavw0w4OCnx8jonBmolJQaV1q1YtFwWDV6/egL//HapWrQaAlVWZDN0XJBIJFy6k9iZm1qyuaL4P\nCXlOWJhw3R8+DKJCBQs8PNajq6v7j6j/580rZEoV06HOzpk/mKWkpLBu3Wrx+wZCH+LRo6f+E8Fa\nWk6ezP5/pI1NNZKTk0lKSiIuLk7FQUXNfwN1wKbmt+DGjesEBz/hxQtlX0nFP/rOnbv90HGFLJEN\n9eunajQlJibSrp0TFhYlcHHpQVjY6x8/8b/o27cHUql+tqKwJUqYUqlSJfF1kSJF0NPT4969u1nu\nt2/fbvr0cebhwwf069eLhg1tkUg00NLSpnjxEgwZMoLixU05duworVoJjdgjR44R9y9Zsgj16gn9\nX8nJyURERJAnT15Wr3anZ8+MPSsV/o8fP35EJovB0tKKly9f0LixPYULF+H27ZusX7+aVq0cRFmL\n3KClpSVOro0ZMxwnJwdsbevQpk1bJk+ezNWrl0Wdu/Q9N6tWrUcmi6FDh84YGRnz4IHQR1ehQgUe\nPgyiRo3KGYqiRkS8w9//qvh65sypjBkjTPOVKGEqTtRpaWmplOkKFSrE4cMHkMvlTJkyHYlE+G6m\nzYwmJiYileozcuQQzp+/jEwWk2kW8vjxM1y+HJChTVhu8fBYj4tLD/G1oodv+/Y9LF26EmNjE0CQ\nvlDYTtnbO1CgQAEVN4+0WFhYsXfvYQCGDh1A+/atlDx6nz4NJikpia5dhfceOVJwUdizx5uoqPdM\nm/bP2XDVr99A6XVWyd/372W4uk6jatXySrZdfwe/StYlPcHBL1m82J327Ttlu22FCsL/HIWTytev\nX7PaXM1vijpgU/Nb0L//IKytbShQoADe3ttE0UknpzasWLGWxYtzLzkAQiCYmZ3Lly8x+PgcY+fO\n7Tk6VlJSUqY+kYosTUblqLRIJBKCgoL4+DGWo0dPoaWlTZ48eRkzZmKW+9Wr1wBNTU2k0sKULVue\nAgUKAHKqV6+BhoYGbm7z2LJlOy4uA+nZsw/Ll69WuhF//y5kLsuXT5WvKFWqFG3btufPPx+q9GsB\nYhaySpWqpKSkUL58RfT09PD1vSD2ZIEwMenpuUll/7R8/vyJS5cuIpfLuX//LnXqVOPIkYNYW1el\nV6++2Ns7UK1aDY4dO8KxY0cAIVj38PAiMvIzRYpkLZxqampG3rx5mTHDlZUrBWslX98LKtspMm/H\njgmSEJaWVjRoYEd4+AeuXw+kZctWzJmzAD+/AHbsEDTsFCbZXl6e4nGsrW2IjPyETBbDhAmjkUr1\nmTJlguhlu2fPzizPNyvkcjlnz57KleSNoo9OgeIBoEEDOwwMDIiKErKgW7bsELfR0dEhJCRcyTs2\nI1avTv3bu3r1MhER7wgNDaFWLWvq16+JlZUpo0cLunaK78zkyTPEff4pS65ateoovTY0zFh7DgTD\n+p49+wLCw9DfxdWrlylWzFjJTeJXYWRkTJ8+/XJk4p6QIPwOFALaSUk5l5NR8/ugDtjU/BbMn7+E\nc+f8qFevJmPHjhAzVbq6ujg79yRv3rxZHyATFNNtBQsWwsjIiEaNhAm9Fi1asmvXfiZPnk6PHr1z\ndKxx40bSs2cXjhw5qLT83r1ASpUyx8NjG5MnZy6omZ46deoRGPiIJ09eULu2bZbbWlmVYceOPchk\nkZibl6Z3bxcaNGjEvXt3OXbsMO3aOeHuvoTAwNsUKlQIZ+eeSpmfwMBH3LnzkDNnfLl+/Q4bNngS\nHR3N/v17ATAwUO2BOXv2EgAPHtwjKiqKQoUKce3abTw9t9O7twsWFpZMnTqT8eMn06rVHyr7K1i2\nbDFNmzakc+e2FC5swMyZU0RdtJo1a1GpUmXs7Brx+XM0BgYGjBkzns6dO4uN+Dnpk1u/3oOaNWvT\nvXtXpk+fhpaWlpLkg4ImTZoSHv4BW9u6vHkTxYULQrZNW1sbXV1dtLW1iYqKwtm5IxUqVGLDBk8l\nUd+LF68p9VImJyeLdkEKlf4aNWrh6+vPhw8fGDKkf4aBY1a4uy+hR48uLF++mLi4uGy3b9u2JX/+\n+VBpmZlZSSQSCR8/fmTAgD6AIKWSW9up5ORkrl4VyqLr12/G1XUeRYsWIzIygpcvX2BpacWpUxco\nXdqCTp2ETK1cLid//vysX7+ZceMmZeopm1uvz5MnfZBK9UWT+fSYmJgovb579w5ZtWgvW7aSmzfv\n/5B7QE65eVNo8N+92/tvew8FcXFxuLnN4NatGyrrFH2oimtuYGD4t5+Pml+PeuggF6ibMjPnVzWu\nDhnSn4MH93Hv3mMVL84fIT4+nnHjRrJv324MDY1EW58qVapy/vzlbPZWJijoAe3bO7F//1Gx/wdg\n9Ohhf6ne1xUzN5nxM9dJLpczbNgAMZtiZVWGZ8+eAlCxYiUePUq9aZcpU5azZ/2yDHT/j70zj8sp\nff/4u6JkrKFQyp6lUqLF2Mm+RbYsWUPIOsNgLMm+jV2yLyP7vitjG0pFCYmSChVKSWk9vz/OPCeP\n9jCa7+95v15er55z3+c+59zO85zrXPd1fa64uPfUqSPGbGU33x8+xEsll/z9n+Tp5cqOp0+DpKVY\nPb3qvHgRirp6STp16szx4/KGryxY/PZtbywsTAs8R0lJSWzfvpXIyFf07Nm70IW4K1cuR0ZGBu7u\nNzA0bETbtj8TECDKfrx+HStnCFetqnQNblMAACAASURBVEFaWhrlypXH0XEKo0ePk4yiSZMcpAe1\noWEjzM0tmTr1VzkNs+ywte3LlSsXsba2wcVlR7Z9ZPfR5ct/0aFDZiJAtWrVqFZNj6ioSBITEyUB\n3zlz5uPoODXbsWR4eXnSrZsV27fvlauAoKenRYsWrdi37xBJSUlSTdQ3b95QsWJFOYM6JSUlXx4f\nQRAwNTUgIiKc7dv30L27fA3dFy9C0dKqLLdcbGFhInnLc0pAatnSnKCgJ5JhcujQMfr2tc71XkpO\nTmbxYidsbYegr18v1/M+ffoEN29elxMgzo2hQwdy4cJZdu8+QOfOXfO1T2GxtGwsvQidOHFOTqpl\n0aIFrF27Svr8+X2sSDrIm6KSdKAw2AqA4obOmaL0pU9JSaFYsWJS/JsgCGzcuJYrVy4RFPQEc3ML\nOnfuVui4uC8JDn6Ku/tlhg0blefD6mvnKTU1FW1t0ZNQvXpNQkPFmD9r6z6MG+dAhw7tpL4REW/z\nPB8vL088PC4xY8acbD1ZRkb6REa+5tSpC1hYNCvw+aanp7Ngwe+MGeOAtrYOr169RFNTi2LFihEV\nFcmDB36oqIjxYn36ZC7hCoLww+4lWfbdgQNHaNeuA4MG9eXyZVEm4+nTMDnvxNChA7hw4RwbN26V\nPEwy3rx5g7FxPTlF/PxIRiQkJBAQ8AADA8McRY9l91FAQBCDBvWXYviyo23b9ri55V48HcSC6AYG\ntVm0aBmjR2ctDdarVxcp/s/D4xYGBoZ5jpkTgiCgpZXp1f3cAHvxIpSmTY3o0qU7u3aJS8uhoc8x\nM2sEiFm1xYsXp2RJUVz5c2bMmMqBA/skz+SYMQ5s2bIx13vp86zj0NDIXF9yqlQpT3p6Os+fv85S\nnzen60xNTc2XEfu1XLx4niFDMnXujh49TYsWreQy7WV8Pt9F6be7qFJUDDbFkqiC/ync3Pajo1NR\nErcFcUltwoTJnDhxjkePgtm5c/83M9ZADMy2t3f4V36UixcvLgmChoaGYGPTn/Xrt3D8+FE6dGiH\npqYmCxcu4dGjkHydj5mZOTNn/p7jsmOVKqIKfV7JFDmhoqKCk9NitLVFT13VqtpSML+WVmXat+9I\nmzbtePfuLcuXr2Hv3oNEReW/uPn3wM8vkObNW6KpqUV0dDQtWrSSvGZ//rmPEyeO0r59SwRBYM8e\nN6Kj47MYayAmKbx8+Y4zZy5Tt67ouckuG/NLSpUqhYWFZZ4VKtLT01m1anmOxlqtWrU5deoCBw4c\nzbb9c65du8r06Y48fBgsGWtfvsvLpGAAPn1KynPM3FBSUspWfgWQlvTOnTstbZNJvQA4Oo5j0KC+\nWFt35dIl+ZhSMzMLuWVkF5dNeQb9lyxZkjZtxBed6tUr59r/9m1fxo2bmC9jDcTr/Dd+F0DUbXz2\nLJy+fQdQpUoVSbvx1Knjcv2MjU2y213BfwCFh60AKN5AciavtzRBEDh27DDx8fHY2Y34bmn+Mh2q\nz0vHnDp1nPPnz2Jt3SfbuKZ/k2/xNvvhQzwhIcGkpaVhZGRMsWLF2LJlI2lpaZiamvLo0UOGDRv1\nTcRIZd6mz8tDfQ9kx4mOji8Sb/yfLxf37t0XJ6clmJjUl/OW3b7tIyeDkhutW1vy6JEYR5iddEhB\nKVZMmY0b1zBv3jw6duyMiUljFi9eKLUbGjbiwQO/fB9PNv8g/h+MHTuCY8eOUKNGTXbvPkC9evWx\nthZLRN265Y2NjVijViYyXBjx27t3Pena1QplZWUiI99L25OSkujbtydNmphJVSlSU1N59CiApKRP\n9Ogh6vGtXr0BW9vBcr8l/v73ad++pdxxDhw4QMeO3XO9l2RacgDVq9fAy8uvQNdSlOndu5sUh6ii\nokJAwDO5eL+i8H0r6hQVD5ui0oGCf4WzZ08zbtwoAAwNjWjSxCyPPQpHjx69eP/+vRRjcvbsaUaN\nsqNkyZKcPHmMI0dOYWHR7F/RhfpelC5dJovxJAuclj14jYxM8l1JIjdOn75EdHRUvo01d/dLbNq0\nnkOHThRICNjX92GRKkr9udTD0KHDSU9Py1Ls29LSlKCgF5QrV57Y2Bi8vb1o165DtvfWnj1uHDiw\n75sYayAaNatXr8bS8mcMDRuxdesWufYHD0SDw9bWhhs3vLIbAhCzmgcOtKFChQq8e/cOR8ep3Lhx\njSpVxHjG589DaNnSnFGjxhIQ4E9cXBzx8XHo6FRDVVVVMtiSkhIpXbpMjsfJDtk9lZGRgaZmGcaM\nGc+ECZNZvnwRgwYNZeDATJmS4sWLY2BghLV1VzQ0KhAT846uXbuRnJwsp/P2ZUZ46dKl6dSpE3m5\nJVRUVHjwIAhDw7pA4cWgixpeXp7cvHkda+s+HD9+FEfHKVmSMxT8d/jvPrUU/KeQ6W3VrFlL0gT6\nHixYsJi1azdJwcobNqyhcuUq9O07gLS0NHr16sLixU7f7fg/mk2bXGnY0JAmTbIKuRYGc3MLuQD0\nvBg40IYbN66xZcvGAh+ralUdrl//iy1bNv4jdDs/1/7p6ekkJHwo8HHyg55edV69iiEqKo5mzZpT\npUpVRo0ak6Xfmzdv0NQsw4wZUxk0qB+VK5fj9u2/sywn6urqMWPG7G9ybq9fv2LAABtiY2NJTk5m\n5cqlkmxHqVKlJENdX78eS5euym0o7t71JDDwkWSgrlu3msGD+zF3rhOTJ2dWf9i2bQt16ugD8Ndf\n7mzbtptNm1x58iSUwMDn7Ny5naNHD2V7jJxQVVVl0yZXqYKFi8tGzpw5wd69u5g0ySHbfe7f98XE\npDFRUXEUL14cPT0tunbNFLqdMkXU65N5+0aNsqdcufxlRGppVcbX96Gc9Ml/mZSUFJycfkdPrzpp\naWmULFmSESOy3sMK/jsoDDYF/wqGhkZER8dz5849Kah36dKFaGqWYd687B9kISHP0NQsw4ABvXF1\n3VwoAcpateoQFRVJdHQ0PXtaAxT4wfJfwsamP1ev3vphHsSRI+0B8q3ef+PGNTp2bEPjxg0xNKyD\njU0PZs0S47z27dtLdHQ0c+bMICTkmdx+YWEvMDc3oWZNbaniw9atm1i9ejlHjx7KlxxGTowbN4oq\nVcozZcoEudi+xYtXcOeOL3PmLKBevfrMnj2Pfft2A1CmTDl0dfUoWfInevbsRKtWucu0FJaQkGB6\n9uzMjRti5Qdvby85eYyEhAS8vDyxsenPjRteWYLyv6Rnz96cOHGOdu0yjZ6kpCS2bNnIrFlzCQuL\nxslpMXv2uPHLL2It1rt3Mz125ctroKFRAWfneYwbN6rA31Ebm/7s23cQKyvRaPvtt18wMWnMlStZ\nK5GoqKgQFhbNgQNHUVJSQl29JAMHDqFRIxOSk5Px9fXm48cEIFOsds2aVSgpKREc/CxXiQ8ZorB1\n4ZMpihJLlizE19ebDh06cf78WRwdpxaJeswKCo/CYFPwwzh37iyAnPL858jKEXl4XGH27Bm4uGwq\n8DH++GMjNjb9cXe/zKdPYk3Djh1/bBzb/zJLlqwkOjpeUtPPjpiYd6xYsYT79+8xfrw9Hz8mYG8/\nVq6Pnp4e0dFRGBjUZuvWzVhYZMqovH8fy5AhA0hJSZbzJM6ZM5OlS50ZN24U48eLhuODB/706NFJ\nMnAKQq9evbNsq1mzNo6OU7h+3ZNJk6Yxfvwktm/fw/Llq/H2fiD1+x4SDteuXcXCwoTQ0OdSEseX\nVKqkyV9/3WbjxtyFjGUoKSnRrFlzDhw4SlhYNEuXrqJmzVrS0q2vrzdz585i6NABNGlixurVG1i5\ncq3cGJ8baZ6et+Xa7tz5W06HLjY2hpkzp8ktXSorK7Nnj5ukkXjvnq+0pJsbKioqGBubsGPHVlau\nXMqrV6KESXbyM02bGqOlVVZOU+9/maioSLZt20L37j25f9+XSpU0GTv2++nNKfh3UCQdFABFUGbO\nFCZwNSbmHVFRUdk+3AVBoEOHVvj53WfIEDuKFSvGwYMH8PC4JYnh5pe4uPd07NiGkJBgGjUy4eTJ\n84UW4v1aFAG+opbVyJFisXdlZWU2bXJBQ0OD/v1tsLHpz6hR9jRq1IDKlSvL7RcdHc+MGdPYudMV\ngHXrNnLnzm3+/FPUOitevDjp6elkZGRQtWpV7t59IEmgAPz0Uynu3Ln3Xb0Mf/99k169ukjn+y3p\n3LktPj5izFiJEiWyeBE1NDTw9g7IM7u0IKSkpKCjUxFVVVXatevA+fNncHBwlJIBZBw6dIAnTwKZ\nNWuuFLv4uXSHbC4aNqzNmzei1+5LA0J2LABPz/vUqFEzX+d36dIF6tdvQKdObYmLy0xeUFdX5+TJ\nc4wdO5KQEFH+pmfP3ri67ircZPyHmDdvNtu2bWH8eEf++GNVtlp3MhS/SXlTVJIOFB42BT8MDY0K\nOXpiMjIy8PO7T61atWnVqhVv3kSTmJjIs2dBBT5O2bLluHz5OidPnufCBQ/U1dW5desG27dvJTq6\n6AS6/3+hffuODB8+itKlS5ORkcG+fXuYPn0qP/30E4sWLaNpUzNWr5YXJm3Xzornz0O4ds1D2ubo\nOJ5jx45In/fsOcAvv/wGgKmpGX5+YnkmdXXROP/4MQFDwzoYGenj7e1FaOhzjh07TGxszDe7tmbN\nmuPmdkyqEvEtEASBwMDH1KlTV9r2pbFWo0ZNDh8++U2NNcgsy5WWls7582KRcVn5rc/p128gv/++\nIMdEE1mNYAcHR0Bc2hUEgVOnjkuyE6qqqkRHxxMdHZ8vYy09PZ07d/7G0rIZc+f+JmesAQwfPoom\nTZoSHBwsybLIhIQLS0jIM6keZ3a8eBGar6XX742Hx2WqVtXm3j0ftLV1cq1EouC/Q6ENNnt7e377\n7Tfpc0BAAAMGDMDExIQBAwbg5yfv0vby8qJXr14YGxszYMAAAgMD5dp37dpFy5YtMTU1Zfbs2XL1\n51JSUpg1axZNmzalRYsW7Ny5U27fiIgIhg8fjomJCd26dePWrVty7X///Tfdu3fH2NiYYcOGER4e\nXtjLVvAvoaKiwrBhIwkOfsaoUSPw9PSkd+++tGvXocBjubntR19fj549O2Ni0gAjI32srbvy22/T\nMTCozcaNWR9A35qUlBQ0NctQv37t736soo66ujrLlq1myZKV2NmNRFlZBQMDI5ydl+HquoWVK5ex\nfLm8Rtfr168wNzcmJCQYNbUS2NoOoW3b9nLxW87O85k69Vd8fAJYs2Y9PXuKS9+yOqoyIiNf06VL\ne8zMGjF27Ej09avTp093EhIS8n0NgiAQHx+XbVvbtu3lKmEUFEEQWL58sRSbp6VVlpYtzXFz+zPH\nfbZt24OhYaMc2+/f95WqNQDs3LmNadMcs+37+++/oalZRs7wyMhIl/4+e/Zyvq5DSUlJqpErezF6\n8eI5AP7+fvj6ejNqlB2jRtkVuEwVwKZN67Gx6UH37h25fPkiTZvKZ56PGzdR+lv2POnf37bAx5Gx\nYcNaLCwaY2raMNt2H5+7NG1qJCcI/CP49OkTwcHBWFl1QE2tBGpqavkq76ag6FMog+3s2bNcv55Z\n1icmJobhw4ejr6/PsWPH6NSpE8OHDycyMhKA8PBw7O3t6dChA6dOnaJu3bo4ODhIsQ8XL15k06ZN\nLFy4kN27d+Pn58eKFSuk8ZctW8ajR4/Yu3cv8+bNY8OGDVy6dElqHz9+PJqamhw9epQePXowYcIE\n6divX79m/Pjx9OnTh6NHj1K+fHnGjx9fmMtW8C+zfPkaPDxu4e5+k4cPn7Fly/YCSUXIOHToT9LS\n0vj11xl06dKVmjVrsW7dBqZNE7Pg0tPT8xjh6xEz2qr/U7RdAYhemeXLVzNo0FDOnTvN5MnjWbFi\niZyemIxHjx5Kfycnf+LPP/fi4XFFLibp4cMAtLTKYmpqQO3a1eRkOJSUlChZsiTm5pacOnWBWrVq\nU7p0aanO5Y0b16hZsyoREfl7mTtwYB+1a1fjzp2/C3v5ObJv325WrlyabZuOTjW5z61atcHb+wGG\nhka5jtmhQ2vatv1Z+rx69fIcxZBlHq8PH8RlzMOHTzJnznxq1KiJjU2/fJf8evIkkDVrllOmTFmp\nVu6VK5f+Of56ypQpi66uHkOGDC9QkkxQ0BMWLpyHtXUfrK37UK9efTQ0NAgMfCz1mTfPGS2tzCV1\nWdm1vXuzL/WVH2QJDZ06dcm2XfbMAXL1wn1v4uPjSUtLpVIlTV6/fkXDht8vK1/Bv0uBDba4uDhW\nrFiBkVHmD8Tx48cpX7488+fPp0aNGgwbNgxTU1MOHDgAwL59+2jUqBEODg7o6uoya9YsihUrRnCw\nGHi6d+9e7OzsaNWqFQYGBixYsIAjR46QnJxMUlISR44cYc6cOdSrV4/27dszatQo9u0T41Zu375N\neHg4Tk5O1KxZE3t7e4yNjTlyRFwqOXToEIaGhgwbNoxatWqxZMkSXr58yd27d7968hR8fwwMDPN8\nGOXF1KkzKFmyJPv37ycqKpLnz0NwdJzA2rV/MHDgYEaPHpv3IF+JkpISd+/64+V177sfqyjw/n0s\n+/btJijoibTt6dMgyWu0YMHvWFm1QkurLGPGjACgWjVdtm/fm8Uonzx5OhMnTiEw8DnXr3tiZGSM\npqYWc+cuJCDgGdHR8YSEZF3qki2FglixoVIlTTw9b7N+/R+0bt2WDx8+ZCmG3rhxw3wFpjdoIHpZ\n/vqrYIXds8PZeT6ammUICQnm9OmTkueralVtVFRUUFJSQltbm3LlyskZlH5+fhw/flpStM+NhQuX\nMHiwnfT5/v3HhIe/ybavbBlUlvTTt29PnJ3n8/x5iCTBkRtRUVFoapZh+PBBVKqkKZepeuuWN8eO\nnaFBg4bUqVMXb+8HrFq1NpfRstK8eVPWr19DYmIif/yxiTNnThETE8OHD6LES4MGDWnXzoqPHz9K\n+5w7d+mf674v3YNjx44s0HGHDx+NhkYFBg8elm17fjOjvzfJyeJyefHixQkPD0dfv/4PPiMF34oC\nC+cuW7aMnj17ysX+RERE0LBhQzm3q76+PvfuiQ+nu3fv0qdPH6mtRIkSkocsIyODBw8eMHFipvva\n2NiY1NRUAgMDycjIID09HWNjY6nd1NQUFxcXAPz9/WnYsKHcD6+pqSn379+X2ps2zcwkK1GiBA0a\nNODevXty2xX879K8eUtOn76Eg8MoIiOjGDBgEHXq1KVdOys0NP5/i0jKhEe/BfHxcQQHP2Pnzm24\nue2Xtu/Z40aNGjVp0SJzyWrjxsyHtL5+PY4cOS0lA3h53ePq1UsMGTISJSV5401DowJXrlznS0qV\nKkVUVBzR0VGUK1ceNTU1bG1tJI/Oq1cvJW+av/89mjdvSfHixXF0nEqpUqXw8Lgi9bW17cvcuQuY\nMGEMVatqs3XrTsqUkV/mMjYWtcCyW2pKS0sjLS1NrnB5Tty968m6dWK8noWFvDjxq1cvpb9fvnyJ\nsbEJI0bYY2zcmHr19KlUqSyxsR/JD2PGyK8qqKiooKysTEjIM2rUqCV3HRs2bMXd/VK2Bsjx40fo\n3buv9HnQoL7Ur9+QOXPm8+bNG7y87kg1Z1VUVHj4UF6ORV1dnebN5SsR5ERqaiovXoRSu3YdUlNT\nKVasGEpKSrRu3ZaYmHfUravP2bOns+xnbd2Xli1FL2BMjOgV09XVo2bNWnLZqceOHWbBgkVynrjc\n0NTUJDDweY7t6urqHDlyCiUlJSpWrJivMb8Hz549BcT5T0pKpGzZH7tEq+DbUSAP2+3bt/Hx8cmy\npFihQgWioqLktr1+/ZrYWLEmYHh4OGpqakyaNImff/4ZOzs7ybsWHx9PcnIympqa0r4qKiqUK1eO\nyMhI3rx5Q7ly5eTKnlSoUIHk5GRiY2P/Ea7UlDv25+cTHR2dpb1ixYpZzlfB/zaGhkbcuOHF+fPu\nzJo1l759B+RorCUkfGDFiiWEhb34l8/y3+XEiaNUq1ZJKluTEykpKXTr1iHbWL/Hjx/RqFE9NDXL\nULt2NTp2bCMZa7L6mkOHDpCMtUWLluHr+5AtW7Zz65Y3UVFx3LjhJZe5WaNGTaZNmyYZWPlFSUkJ\nLa3Kn9X9PEJ0dDyvXsUQGhpJePgboqPj8fcPondvG376qRTr168hOPgZ7dpZYWIixp1dv36V9u1b\nEhj4GA+PK9SuXU0upvbz42VH1aoa6OpqEhPzLtt2GZqaZeREX4Eca1TOm+fMhQtXGTBgEPXq1S9U\n2bG0tDT697dm+3bxZXfv3l1YWDTm2rWrcv0aNzbFxqY/MTHvWLlyqRT3palZmY8fP8qFEFy+fFEy\nOMeMGc7w4YOYOXMac+cu/Gd15KAUC/f+fSx2drYEBwcTHPw0z/OdOnUizZqZoqlZBm3tClJs2KFD\nJySdthMnMuukVqqkScuWrWnTpu0/nyuxbNliNmzYwOnTJ9m9+wAvXkQxZMgwaR+ZcfOtaNmytVTr\n90dhZyfWSY6MfE1ycjL16uUssaPgv0W+DbaUlBTmz5/PvHnzshSz7dixI/7+/hw+fJj09HRu3LiB\nh4eHFEOSmJjIqlWrMDMzY9u2bVSpUoVhw4aRlJTEp0+fsi2Qq6qqSkpKCklJSdm2yc4pp3bZssan\nT59ybVfw49i/fw9jx44sdFZVSMgzmjY1+urMry/ZsmUjK1YsoUkTw+8So1QYEhMT5YLGvwWyB2/v\n3t1y7bd583q8vO6wYMEcue3nzp2hVSsLuflXVlamZMmS3Lv3iI0bt7J9+x6p7ejR04wePQ4dnWr0\n7t2XOnXq/ivB0MWKFSM9PY1582bz8GGAZNjduOGJtrYOu3Ztx8VlE/fu+VKlShUqVdKkYsVKODpO\nlcYwMtLP98N9zpwFAJw8eZwePTrx5EkgISHBPH8eQmjoc548CWTDBvllQG1tHe7e9ef4cVGbsGLF\nSly44MHGjVvZuHEr48c75hrnlVMc5oUL57Czs0UQBJ4/D+HqVXcWLpxHUlISzZu3pFo1Xfbs2SHF\nq334EI+2dgWaN29K48YNWb58MQcP/kmPHr2Ijo7k5s3rzJ8/m3r1qpOQ8IGLF68yfrwjkZGvady4\nCQCXL19g0aL5hIW9wMFhNDo6FdHULIO+fnXOnz+DpaUJlpamNGpUL9fv/sSJU6S/VVVV6dWrT5Y+\nsuLvGhoavHkTjb39OPz8xNWVN2/esGzZYiZOnIid3SBatDBDT09Lit2rWbNWnsLC/0VGjBA1CGUh\nAfnJuFXw3yDfr2nr16/HwMCAZs2aZWmrU6cOCxcuZOHChcyfP5969epha2uLp6cnIHrM2rZty6BB\ngwBYuHAhrVu3xsPDA0tLSwRByGJApaSkoK6uTlpaWrZtILqg1dTUiIuLy9IuW45QU1PLdv8yZQpW\n9068DoUKSk7I5iY/cxQZGcm8ebM5fPggAPfu+XDy5Dl0dLIXA80OX18f2rcX32QvXjxH167dqVCh\nQhbjXEZiYiL16tUiIeEDL168zjX4Pz09Uwh05cqlnDhxJt/nlRefz1NUVBTXr//F8+chmJlZ0Lp1\nmyz94+PjGTZsML6+PsTHx7F48TLs7ccB5PoAz8jI4OPHj7lep6WlJaVKlaJ585YUK5b9WG5uf7Jo\n0QJKly7NqFFjEIR0tm3bSvfuPRg2TPS8nDlzgYoVKzFu3Gju3fMlMTGRw4fdmD79V6yte2NtnVWA\nNjcKci/lRUZGBra2/bh06QIAJ08e5dEjcZlOW7sqhw4dx8lpHkeOHKRkyZK0bWvF/v2ikblu3WpK\nly7Nhw8fiI2NoVkzU6Kj32fr3dq/fy/r1//B9OkzePw4AIAZM0SD7/Ol4Ow4dercZ8uENbl92xtd\nXT3U1dUxM8t+X9ncODnNY8+eXcTEvPtiHJGhQ0UvZ1paCg8f+gPid6F2bR2iomIpX748Z86cQl+/\nHrNnz5WyOD9n8uRpODhMQEdHl/PnzxAeHkZMTAzXrnkwc+Z0oqKi2LhxnXTs8eMdWbEiM2lC9uIu\nCAK1atXm7ds3xMXF8fr1K54+DZTiAb+kQYP60pJmTsgS12JiRGmWFSuWSAYb5P5yHhISjL39MEaP\nHoOFRbP/iUzKpKQkDh78k86du0gixtWr6+X6W/Etv2//qxSZuRHySdu2bYVGjRoJxsbGgrGxsdCw\nYUOhYcOGgomJidQnIyNDePPmjSAIgrB8+XLB0dFR2tfV1VVuvL59+wqurq5CRkaGYGRkJHh5eUlt\naWlpQoMGDYT79+8Lvr6+QsOGDYX09HSp/c6dO4KxsbEgCIKwZcsWYciQIXJjr1u3Thg5cqQgCIIw\nYsQIYf369XLtgwcPFlxcXPJ76Qq+MZcuXRIAwcTERNi8ebOgpaUl1K1bVwgICMj3GLNnzxYAARDq\n1KkjAMLw4cNz7B8aGir19/DwyHXso0ePCoCgrKwsdOvWLd/nVFAaN24snRMgLFmyJEsfR0dHuT6A\n0KhRI6Fs2bLCkydP5PomJCQIK1asEOzs7KS+aWlpX3WOZcuWFQDhzz//FARBkMYtVaqU9LcgCELF\nihUFQChZsqQACEZGRl913G+Fj4+P3Nw5OTkJa9asEX777Tfh0qVLQkpKiiAIguDp6Sm8e/dOUFVV\nFQDh8OHDQqdOnQRtbW25/d++fSts3bpVAARtbW0hISFBOHToUJb/o+z+6evrC5UrVxY0NTWF6dOn\nF+h+zwnZ2CNGjBDatWsnXLp0SWpLTU0VAgMDhW3btgmCIAiJiYmCpaWlAAg9evQQPn36JO0fGhoq\nCIL4G168eHFp+86dO7McMzExUWjZsqXctZmZmQkmJiaCg4ODIAiCMHToUAEQlJSUhFq1agmAMG/e\nPEEQBOHt27fCnTt3hP379wsZGRmFum4rKysBEIYNG5bjfJuamgrJycly28zNzbPt27hxY+Ho0aOF\nOpeixObNmwVlZWXB2dlZuraYmJgffVoKvhH59rDt27dPrgSJTHbjl19+wdPTk4MHD7J69WoqVqyI\nIAhcv34dW1vxDdzY2FhOdy0lthnVLAAAIABJREFUJYXw8HB0dHRQUlLC0NAQHx8fKQng3r17FC9e\nnHr1RJd5sWLFuH//Po0bizEm3t7eGBiIqcqNGjXC1dWVlJQUybvi4+NDkyZNpHZfX1/p2ElJSTx6\n9EguySG/xMcnkZ6uUILODhUVZcqUUc9xjvr1s+bKlcu4u1+ncWMLOnfuytWr7oSHR6CsrEJQUBAG\nBgZ5vlHLGDp0JGfPnufVq5c8fSouVWlqVskxCLtMmYocOnSc+Pg4DA1Ncw3WbtGiHUuXruD9+/eM\nGTMu34Hd+eHzeQoLCwPg+PETWFv34rfffmPMGPn7snFj0cNSp05dDA2NOHbsCAkJH4mLi0NfX19u\nvsaOHcWhQ27S5zFjHIiPL3xNTQB3dzG+rWbNWnLzcOHCFZo3F6UaYmM/0qZNOw4fPkizZs1Zu3Yj\nmpqahZ63vO6lghATI18c/unTEM6fP8Pbt29ZsmQJffsOwMVlG3XqiF6e7dt3M3z4EJycnHj69Kmc\nQG2PHr3kgslfvnwpJ1Q7fPhIdu7cnu15hIdHZRuf9rVzFB4eyevXr6lduw4aGqVwd3cnJiaB4cOH\ncPLkcfz9A+nde4B0nLNnLyMIAkpKSrx4IS5l9+7dlzJlKkp9+vbtT0REBEuWLKd+/QZZzvHIkUNy\nsk7v3n2gQgXRk/vixQucnZdz965YkUEQBCleOSTkBbGxH1FWLkHdugY4OTkzaNAgXr58g7q6ep7X\nfP78WQYN6s/cuQuoUkWU6WjTxopdu3Zl29/Hx4d9+w4QFBRE3bqi6LBs1adChYq8eydKbzRv3oKb\nN2/Qp08fHB2n8MsvM3OMJSzKPHv2lAULnDA3t+D06TOUKKHOhg2bEYTiud5n3/L79r+KbI5+NPk2\n2KpUka/PJruhq1WrhqqqKlevXsXNzY2ff/6Z7du38+HDB3r1Ekth2NnZMXjwYNzc3LC0tMTV1ZUS\nJUrQunVrAGxtbZk3bx61a9dGU1OTBQsW0K9fPyl4uGfPnsybN4/FixcTFRXFzp07WbpUdLmbmZlR\npUoVZs6ciYODAx4eHjx48EBq79OnDzt27MDV1ZU2bdqwYcMGdHV1c1xqyI309AxF6Y48yGmOlJRE\nl/LLl68wNDTGxWUndna2LF68SK7fxo3rs2S0ZUf58qIB1qhRPWlb7dp1+e23X+nXb2C2IqKtW7cD\nQBDI4/9RmREjxkifvsf/eXp6BgMHDmH9+jX89dc1ypYti5VVpyzH6tKlBz4+AZLEw4YNW4mLi2Pb\nti0MGTJMrr+eXg3pbzu7ESxcuPSrz11XVxxz6dLFLF++WNresmVmaMT9+37S8vaIEaOpVEkrH3Oc\nN9/i+1anTj1mzJjN+/exqKqqMWjQEDn9sU6dujB79m8cPuzG27eizIWb2zEGDMi6jHvq1IlcjzV8\nuD0DBgymY8fMpe3OnbvRqJExamrq3+U++umnUlSvXou0tAx27NiHmpoqaWkZUj1NJSWVHI4roK5e\nCkPDRkyePJ23b9+xZctGRo8eJ5X6qlWrbpZ9X76MwN5+hPS5fv0GVKhQmp9++omPHz/SpIk5wcEh\nPH78CBDrekZGvmbBgsUIgvz/p0w2JCwsjFq16uR5raqqYpjLq1evWLlyHStXruPly4hc9xk1ajhe\nXl74+PgzdKgtDx+Ky9UyYw3g5k0xgaFZs+a4uGzi3LmzbNzogomJqdxYHz7Ec+HCOTw8LuPj40OZ\nMmUoXrw4L19GUKVKFX7+uSVmZhaoqCijqqqGubllvjKFvxZBEDhz5hTTpztSqlRp6tTRZ8+enbi6\n7qJHj96kp8ucbbmjeL4VfQpdS1RW5WDJkiUAXLt2jWXLlvH69WuMjY2ZO3cuNWpkPkA8PDxYsWIF\nr169wsDAACcnJ2rVyqwJ6erqyq5du0hNTaVjx478/vvvksfs06dPLFiwgIsXL/4TSzOKIUOGSPuG\nh4cza9Ys/P390dXVZfbs2VhYWEjtN27cYNGiRURFRdG4cWOcnJzQ1tYu8DUraq3lTF716NLS0vj4\nMYGyZcvJbe/WrQNeXncA6Nq1O5cuXWD16vX5UiSPjo6mZUszKX6lefOWUsbj3LkLmTBh0tde1jfn\n83l6/ToKe/theHndwdrahoULl1C+vEahx05NTWXhwnkIgsD8+c6FEhnOjufPQzA3N86x/fXrWLZu\n3Yyt7eAs/7+F4VvWNhQlgeoTFRUp1bOcNMmBkyePYWZmwZw582nfXj7uKzQ0kvT0NI4cOYSenh4N\nGhjQvLlZjpUNANq2tcLNTcxYFASBiIhwKlSo+N1q1uY0Ry4um7h71xNX113Exsbw+++/0b+/LS1b\ntsbT8w4zZkyhWLFiUpaljLp1dXn//j1aWpVp2bI1U6f+kq0Rlde9AGKm5PXrf0mfjxw5xcyZ03j2\n7Ok3r68KYGPTQ+54n6OiokKJEiU4e/YSDRoY8vHjR2rUyFocXkaDBg35+PEjL16EUrp0aRo3boKq\nqhpVq1bl0CE3kpIS0dbWQVdXj7S0VNLS0ihbthyxsbGEhobIxVOXKlWKbt16MmiQnSQc/D1wdd3M\n7Nkz0NTUZMSIUaxZs4r27TuyY8fefMXlKWqJ5k1RqSWqKP5eABQ3dM4U9ku/du0qFi1aQJ8+Nsya\n9TuzZ8/E3f0Kjx4F5+vhn5ycTHx8PC4uG1i3bg06OjpERERgYGCEu/sN6QcrMPAxc+f+hpKSEm5u\nx75LgHFc3HvmzJlJu3ZW2Wa0QfbzlJGRUSCl93+D2NgYDh06wK1bN/H0/FuS6Jk1ay6TJ0/nwQN/\nPDwuM2iQ3TfXnPqaB0haWhrR0VGSsn1w8FMsLUVPyevXsZIRq6kpJh1FRcWxa9c2Zs+egbv7LSpW\nrEilSpWyjPv8eQienrdxdByX7XHv3PGlZs1/r+zYl3OUmJjInDkz+Pvvm3JaYzKio+OpVq2SJE/y\npeFkZKRPZORruW27dv1Jly7diI+Pw81tP4GBj7l27Srh4WFSHzU1NWnMxo2b4OsrLoWuXbuRq1c9\niIx8zbFjZ3j9+hWxsTEYGeVu7BUGN7f9Of6/yChVqjTHj5/BwMCIKlXKy7WVLl0aHR1dHj8Wq2nU\nrFkLE5PGpKSkcPr0SUC8ziZNzKhQoSLVqlXLUnECMsuVKSkpk5iYyIMHfty750tsbAxjx05g/nzn\nb/49FwSBzp3b4evrzbp1G5k9+zeMjBqxf//hfL8sKAy2vCkqBlvBxXwUKPiGTJo0jcuXL/Dy5SuK\nFSsmiVjm16BSU1OjUqVK1K4txqhERIhLJAEB/vj6emNq2pTU1FR69+4mLXktXerMtGkzcswoLSyj\nRw/nr7/cOXjwT54/D2HKlF/ytV9RM9aSkpIwNTWQq625evU6pk51ZPFiJywsmtGwoQGTJk37gWeZ\nPQsW/I6Ly0bpc+3amV6izz2OQ4cOJyjoCUpKSpw+fZK0tDSOHHHj998XZDtujRo1qVGjJgMGiJnu\na9euIi4ujo4du1CnTp3vKsB869YNHBxG8/r1qxw9VC4uG9m3bzdjx07g6dMg3N1FEeA5cxbQsKEY\nn3fw4HHevXtL9+69pP0EQcDJ6XfJWLty5QZJSYl0796Rp0+DaN3aUq4s2JfIjLWffirFvn2HaNBA\nlJCoW7ceAwdmroJUq6ZLtWq6XzELOdOxY+cc2ywsLLlz5zYJCR+wsmpFp05dOXr0NIsWzcfX1wdd\nXT3Cwl4QGyt66ZWVlYmMjOTo0cPSGC1btsLKqhPOzgtITv6ElpYWkydPz3IsJSUl6SWzTJkyVK5c\nmXbtrLh61Z0tWzaQlJTE8uWrv+nL4pUrF/H19ebXX2eyefNGSpUqxfbte76bZ1fBj0VhsCn44YwZ\nM4GRI4fQqJH4YJkxY04WZfm8MDe3pHbtOpJWlq5udfT1xfi2O3f+low1gDVrVmBl1ZEmTXKOYxQE\ngenTJ5GSksL69Vty7Ofndw97++G0atWGatUy37r37NmZb4OtqFG8eHG5sj6VKlXC1DSzKkiPHp0o\nW7YcT5+GZbf7D6VdOys5g+3Zs6fUqlUbN7fjcv1WrszUQdu4cSsnTx6TjLH8UFBj9eDBP4mKimTi\nxCkFfmBbW3fNs49MumLLlg3SNnt7BxwdpxAbG8PKlUuZNm1GlmPfveslJ4hco0YNSpcuQ3R0PM+f\nh7Bo0fx8nWOjRsa8ffuGFSv+ICDAn4YNDQEx5KFBg4bs2rWdmjVrcefOty/NltsLz507t+U+3759\nkwsXzkrzIPMWRkaKiRuurruoWLEie/bswtV1Mx8+fKBzZ1GncODAQTx44EfLlq0LdG7t2llRooQ6\nu3dvp1EjY7kSYV/L5s0bqFtXn+TkFB4/fsSpUxf+31dv+V9GsSRaABQu45z5Gre6IAjs3buL3bt3\nYGs7hBEjRhf4obZu3RqcnecB4Og4lbFjJ0hLdQkJCTRrZkpk5Gu0tXVwdJzKsGEjcz1GdHQ0Bga1\n//k757ib6dMns2ePWFD6zp17rFy5lMePH7FkyUosLCyz9C/qyw9Tp05k377dbNy4lXLlyqGlVZmq\nVXUkz4mM7dv30r17z+9yDl87R35+9xg6dKCcoG+/fgPZsMElX/t/+BDP2LEjuXnzBiEhL786FjA1\nNRVtbfEh2qpVGw4fPlmg/StXLkdGRgZXr96SDKEv5yg+Po7Vq1fw5Mlj3N0vAxAe/gY1NTVp+ffi\nxauYmJgSHh5GcnIytWvXISbmHcbGDdDR0eHZs6ds3bqLXr0yEy7S0tJITk4mJSWZtm2b8/JlBDY2\n/Tly5KDUp2LFStIL0eflulxdtzB79q+AWGnExMRUzlD+Vuzdu0uqv5pfZPqcuT3+SpUqReXKVWjW\nrDn162dWC4iPj8ff/z5hYS+IiookMTEJQcigfHkNNDQ0MDVtmq0o9LFjh3nwwJ+rV2/lK8kiL8LC\nXtCkiSETJ07i+vXrqKmpcebMpQKPU9R/k4oCRWVJVGGwFQDFDZ0zP/pLHx8fx5AhA9DQ0GD79r1Z\n3roTEj7w8WOiXAmkvFi2bBHt23eQ8y59SWjoc375ZTImJqbMmjU3zzF/9DzlxosXoTRtagRAhw6d\naNvWCi+v2xw7dkSuX79+A9iwYet3O4/P5ygg4CGhoc/p1KlLgcaIjY3h+PGjHDz4J+/evWXv3oNy\nD93cmDFjKjt3bgPg3r1HaGvnX9A5O+Lj46hdW/S+1q5dh7//9vmq8SDn+2jZskWsWrWMESNGs3Tp\nKkAslh4U9IRr1+5Qv34DmjVrwrNnQYC4VOnjEyAZdZDzC0rVqhpy0k4A5cqV4/3799LnCxc8pIoH\n2toVSE1NZe3aTWhpVWbAgN5UqVIVP79AUlNTiYuL+ybxj8nJyZw7d5rlyxcTHPws7x0+o3PnLnh4\nuMuVHtPR0UFHpxppael4e3sBsGTJCqKiIrlx4zr379+jWDEVjI0bY2xsQoUKFVFSUiIsLIx793wI\nCPDH3NyCHj2s5X6HkpOT2bhxLVWr6nD+vHuhyot9jo1ND27evM7WrTsYO3YUTk6LGTVqbIHHKcq/\nSUUFhcH2H0RxQ+fM9/rSp6amsm/fbrS0KtOmTbt86TUVZYryj+OVKxexte2bZ7+wsOjvKlcgm6M9\ne/7Ezi5zmdLVdRc9exasakJh8PX1ZvbsGezde/CbJVSEh4cRGvqcGjVqZhuwXlByuo/WrVuNs/N8\n/PwCqVKlKiB6sFNTU6WYzc+NMxANtJcvIzAxaSB9lt0LAQHPpFrMoaGhmJkZUbeu/j9loBxwdJzK\nunWrWbZsEZ06dcXFZYf0HQ0NfU6LFuYkJ3+ibdv2eHhcoWpVbe7ffyyX9PGtYromThzLwYN/AmI8\n2ZePttKly+DsvISjRw9x48b1LO3ly2tIsWyfY28/jkePHnLz5nUqV66Cvb0DQ4bYZZsUJQgCe/bs\n5Ndfp2Bq2hRr6z5yRltYWBguLhv57bffvzoG1MhIn59+KsnAgYNxdl4geVALSlH+TSoqFBWDrWhF\nOytQ8AVLlixkxoypDBtmi5VVy7x3UFBoihfPTMIoU6Ysq1atw97eQa7P1at//yvaUgBly5ZFT686\nPXpYA0hiqd+bxo2bcP68e76MtaSkJEaMGMKtWzdy7Vetmi4tWrT6Jsba51SqVBZNzTKS58vRcSrR\n0fGSsQbI1Wpeu1b0upmZWTJ58jSmTZsBiLVMg4Je4OsrJhi4uGwCIDo6ShpHT0+PKVOm4+Kyk9jY\nWExNm1K8eHEmTJhMaGgkYWGh6OlpERLy7J/+1UlOFoWH09PTCQ6O4No1MaZs3LiJVKlSVSpb9S3o\n2DHTC5udH+LDh3hKlSqFnd0IXF130qVLZg1dJSUlHBwm0r+/Lbq6upiYNGb8+EmMHz8JT8/b3Lx5\nnTlzFuDt/YAJEyblmMGupKSEnd0INmxwwdvbizVrVsh5JXV1xftg2bLFuSZz5EVGRgaxsTG0bNma\ngIAHlC9f/rtk4CooWig8bAVA8QaSM9/rLW3ixLGcOHEUNTU1ihdX5fHjkG829o+gKL/Nyrwezs5L\nJUNtxIghnDt3mlKlStOzpzWrVq3LbYhsuXrVnbNnT9GxY2esrDrl2b8oz9GXrFmzgiVLFgK5xzp+\na2Rz1LFjJ54/D+X69Ts5xtoZGtYlKiqSs2cvs3nzBs6cOcn27XtQU1Nj8OD+LFu2muHDR8ntEx8f\nR3R0tFyWrYzbt2/Rs6eYmblmzQamTJkAiFm46enpdO/eizlz5qOmpoaxcX0AIiLesnnzetTV1bO8\nBHxLvLw8OXnyGK6um7O0NWhgwLRp8olAwcHP2LHDlcjISJSUlNDQqECFCuJSbkREBKmpYjKHqqoq\n4eFvCuQNlH2fGjY0wNZ2CMrKyqSkpBAY+IhLl8TkgEuXrhWqqoIsfm3OnHns2rWDFi1asXbtpgKP\nA/+t79uPQuFhU6AgH4wZM17SWrOx6fejT+d/mpo1RSHrOXNmMnPmNNLT09HQ0CAjQwxqL8wSTnJy\nMv37W7Nnz04GDepHQMADXrwIlZTw/00ePPAjKioq7465kJ6ejr//fcmDIzPWXFx2FHispKQk5s+f\nTdeuVoU+Hze3o9y6dTfXxIgWLVoB8O7dO7Zs2c7Tp2F0795LypL+smA8iB7W8PAwNDXLoKlZhrg4\nMU4tIyMDIyNjaZlUZqx16tSVly/fYWralNOnT2Buboy1dVeWLVvNs2fh7N27k0WLFjBnzkw5Hbdv\njZmZOYsWLePKleuMHj2OX36ZKbU9ehTAokVO3Lx5nYwM0TCpVas2ixYtY9q0GejoVCM+Po6goCc8\nfx7CTz/9RJs2bWnTph2CIMiVKcsPq1atY9SoMTx+/IgLF84Boh7kgQP7effuHU+fBjF9euHEvWXZ\n8OXKlSMiIlz6P1bwv41C1kNBkcbAwBBn56X/qLTP/tGn88OIi3tPSEhwoWJU8svVq38ze/av7Nu3\nmx07XNmxw5UbN7yoXr0GxsaN0dXVK/CYqqqq9OzZm5CQZ/z0Uyk+fkygbdufATh27Ey2xsL3wM/v\nHlZWrahevQZeXn4F2lcQBObNm02ZMmX488+9RESEs3r1egYPtmPChEncv38Pa2ubHPd//foVjo7j\n2Llzv1R79OXLCMzNjSU5ju/Jpk2ubNrkKn2WLY9qaFQgOjqe2NgYnj8PQU+vOhMnjuXwYTcaNDDg\n0aMAaZ9WrSypVEmT9PR0AgL8qVmzNsWKFWfatBkMGTJM6ufgMJGRI4cCotjwjBlT6dixM+/evQNE\nL1zFilmFib81RkbGGBkZU6yYMtbWPXB13UGVKlXx9vZi587tnD9/lnHjJqKjIyaUNGjQgPnzF2Y7\n1vPnIVy96o6vrzc//9wi3+cgm5fq1WswZ85MNDW1MDY2ketz9Ogh+vYdQNu27Qt0faGhz1FWVpHC\nEzQ1859MpeC/i2JJtAAoXMY5o3Cr54/CzpNseWXq1F+ZOXPOdzm3wMDHtGxpjo6ODoaGxpw/f0Zq\n6927L1u2ZF/YvCB8XtpIT686d+/6Z+nzPe4lB4dRHDlyCIDDh0/SqlWbPPbIJCoqCkPDrEuD+V0C\nlUmlTJo0jdmzRemZ5ORk6teviY1NP379dXaBkxtk90NMTMJXzdGzZ09p1kx8Cbh711/KEs4PjRs3\n4cIFjyzbvbw86dYt02v44kUUenqiQfEtkwzyQ3b30rVrV7G3H86HDx+wtR1M8+YtcvRQvnv3jmXL\nFhEXF4+vb4BUo7UgCILA1KkTOXBgn/TZ2NiEe/d8pT6nT1+ke/eOAHTv3pM6derSpo0VJiaNsxX4\nnj59MteueeDoOJlp0yYXOuEAFL/d+UGxJKpAgYJ8M368uHRSqZLmdzvG0aOiQRMREUFoqHysoCzw\n/2upUaMmW7fuBEQZkRcvQgu0v6+vd4GDtQVBkIw1QJK0yA9+fvdQVS1eoON9icwLIivbBKIOWEjI\nS5YvX/NVmagaGqU4efJYofeXva/r69ejfPnyWdr/+GNDlm0ysjPWQFyWPHXqAgCjR4/l6lX3Qp/f\n96BVqzb4+QXSt29/9uzZybJliwkJCZZLVEhISODIkUP8+uvUf4y2VYUy1kBMRFi2bDXNmv1MRkYG\ngiCwZcsOuYoTMmMN4PTpk6xevYLu3Tugo1MRTc0yLF3qLCdmff++D9Wr15A8tGpq/04ikIIfi2JJ\nVIGC/wBz5zoxYMAg6tbV/27HuHPnb+lvWYxZyZIlSUxMLPCSTU68ffsWe/vh0ud9+3YzYIAtQUFB\n2NkNBGDduk1MnJi1NqSox9aWEiXUCQvLfyzal4sIysr5E8L197+PlVUrrK374OcXSKNG9VBWVube\nvUdyWZh5cfbsaQBu3LiW733y4tWrt1StKhp6vr4++ZI7mTZtEkFBgZiZWXDnzt+cPXuZOnXqSgK7\nAA8fBvP48UP27duFvn59zpw5jZ3dSGrXrsP9+760a2dFnz795LxkSUlJqKqqSl6qwMDHfPr0SfJA\nyq4f8l9y7ntTokQJ1q7dhK3tUCZOHMuiRU5oampRo0ZNXr4MJyIiAnX1kkyePB07uxFfrcWnqqrK\nkSOnqVxZzC41Nzdm4MDBlCxZkurVa/Do0UPmz3dm3749BAc/zXLPrl69nNWrl9OmTTvatrXC39+P\natV0pRq/Hz8mZDmmgv89FB42BQr+AygpKaGvX++7PfAyMjLw9BQlF5YsWQnAoUMnePz4OVeuXP8m\nUh4ZGRls3rxeblu3bj2wtDSVjDWAuXNnSUHhnyPzRC1atCxLW3JyMrdu3UAQBBISEhg7doQkL6Gs\nrMz48aISvoWFJf36Dcyyf3bo6FSjbNlyTJ78C1WqVMXN7TgZGRk0alQvx30EQeDp0yC5B26pUqUB\nvomGXEzMO5o0MZTzqoWHv8hVsV/G3r078fS8zfr1a7h711PaR2asgViGrGXL1mzdugttbR2uXLmI\noaERY8Y4sGmTaxZjLSUlBT09LbmC6mPHjqRfv0zvUatWbRg9eize3g++6tq/B+bmFty+7cORI6fo\n0EHMYC5XrjxWVh3x8Qlg1qy5X22syVBWVubFiyjMzcUKKAcO7MPWdqjkMd61azt2dsNxdJxKu3ZW\nWFr+nGWMq1fd+f13MZEiPDyM5cuXAODldeebnKOCoo0ihq0AKNb4c0YRB5E/iuo8/frrlO9a7xEy\n467GjHGQdL7atGmXZcmsXr36PHwYQFxcEqmp6Xh63sHY2CRXo7F/f2uuXnXHwMCIIUOGMWPGVABu\n3/YpVBkgH5+7dO7cjpEj7SUD9vTpk4wcKRY0z6kCQr9+vfjrLw/Gjp2Ak9NiQIyDunbNgw4dOknG\nW2H5UvRWxvz5i3BwmJjrvrJs6ytXLjJpkkOe8WQZGRk8eOCHkZExSkpKdOrUhsqVq7Br159Sn5SU\nFHR0RENa5lGLiAjn/fv3GBiIZbTOnTvDsGG2cn3+LYrq923nzm3SPZoX5uaWxMbGEhQUSNOm5ty9\n65ltP3v7cTg7Z32ZyYuiOkdFCUUMmwIFCooE69f/wa5dYkKBhYUl6enp3/wYwcFPpb9dXDZJmYKf\nG2sy48HFZTvKysqcPXsaLa2y9OjRkWXLFmU7bkJCAk5Oc6XluIAAfywsmtG3r+hFs7TMfyD2+fNn\nqV+/JkZGdencuR0A27dvlbx9ZmYWlCwp/mhPnToRD48rWcaYMGEyDRsaymU0V6hQgd69+8oZawcO\n7MPNbX++zy0hIYEtWzbIxT25urpSsmRJgGwV+r9ETU2NSpUqMWmSqIOWl7dWWVmZRo1MpH7v38dJ\nS3AyVFVVsba2Yfr0TPkMHZ1qkrEGYpmznj17c+nSX3me4/8Xhg8fxeTJmTI5zZr9jJVVJ3r16kP5\n8hpyfT09bxMUFAjA2bOXCQ9/g6lpkyxjbt26GX19PT58+HeNYgX/HgoPWwFQvIHkjOItLX8UtXm6\nceMaffp0l9sWGPicUqVKZ5udVlgSEhKoWTN/cV+rVv3B1KmT5AwKU9OmnD8v74lLTEykQ4dWBAU9\nAWDAgEGoq6uzbNlqxo+35/BhNwAePQrJNrA/IyOD58+DCQ5+hp/ffVasEJeX2rZtR1DQEyIiIgCo\nXLkKly9fQ0urMgDOzvNZt241UDiPkSAIaGmVlfZ/+DCAS5fO5yrAO3z4ICkWbP58ZwQhg/nzf6dW\nrdqEhARz+vQlzM0tEASBRYsWcO3aVS5d+iuLUZaRkSHFUZ06dRELC8t8n3fDhrUpVqwYr1+/Iijo\nBeXKZU1SKGoUte/bl2RkZJCRkSHVFT1//qxceMCXnDx5XhIt7tixCxcvnsvSR1zGn86IEaPzVcqv\nqM9RUUDhYVOgQMEPIy7uPZqaZRg3TlS47907s4ZovXo10NGpyOrVy+USEb6GgtSAlSVWnD9/BX19\nMV4suyD/3bt3SMYawLp1m1m2bDVhYWGSsQZI9SU/x9//Pq1bW2Jpacrgwf0lY61Jk6b8/vt8evfO\n1FWLjHwtFyPk4DARTU0lmpOvAAAgAElEQVQtOf2xgqCkpMTPP7eQrqlnz06SsfY5v/46hTlzxNJR\nFhY//3PNB3BwcGTSJHE57eJFd7Zv34uZmTkgGrHr1q3Gz+8eEyaMySJQnJ6ezrRpMxg2bBR169Yt\n0Hk/fPiMhg0NAHIV6lWQf5SVleWKwDdtak6lSpUoUUL++1K1qjYPHwZTtWpmebaLF89x7twVtLQy\nNdhUVFSoXr0Gzs7zMDauz8SJY79p+S8FPxaFh60AKN5AckbxlpY/iso8jRo1lFOnTkiftbS0cqwC\n8HkcV2Fxd7/EwIE5i8vKmDlzDr/+OlNujtLS0lBRUcniLZoyZQL79+8B5AvDfx7npaSkhI9PADo6\n1XjxIhQPjyvcvn2LEyeOoqury7hxE6hVqxY//VSK8PAwypUrz/v3sYwdOxoQy3S1b99RqgLxPdi1\naxvnz5/Fyqoj/fvbUrp0GSIjX2FkVO+fa9tNz57ysiq53Ufu7pcAGDjQhiZNzDh3LnPpVjY3MuHf\n/3WKyvetINy5c5sJE+wJC3uRbbuRkTH+/vcxNDRi9uz5/PxzC/74YyWbNq0nKSkRFRUVypcvz9u3\nb6V9LlzwoHHjrMuo8N+co3+bouJhUxhsBUBxQ+eM4kufP4rCPL14EZqtQKq39wP+/vsmrq6befAg\nU9B2yBA7Vq1an6V/QZAJ5mpr6/DyZUSW9g0bXOjevRfq6ur5nqMLF84xdOiAf3S/LqKsrExSUpIk\n0qqiosLjxyGUK1ee4OCn2Nj05OXLCCpV0sTObjiWls3Yv38vd+96oaysxPv374mLi5M7hrKyMq9f\nxxY4O/fDh3ju379Hs2bNC+WN+nIJ+ctlUtkcHT16ir/+usrcuU5Zxnj37h0aGhpy5z5wYB/c3S/z\n4MFTOc/M/ypF4ftWWOzsbOXEq3PD3n4cTk5LePo0iJs3r3PixBE8PeUzR21s+uHktDRLeMB/eY7+\nLRQG238QxQ2dM4ovfc68efMGECUTvtU8paenM3hwf+rUqStlI+aXX36ZzJEjB3F2XsKUKY7S9gkT\nJjF37kLi4t5Tp46utN3b+0GhylJ9yf37vigrK9OggQFVq4qB1V279sDWdrBcUfiCzNHHjx+zFM/+\nPH7t3LkrNGliRrduVnh5idl1GhoViIl5R61atQkOFqU/BgwYRGLiR9q164C6ujp//32T2NgY+vUb\nKJ3b48ePGDy4Hz169GLePOdszyctLY3lyxfzxx+iR7JHD2tOnTqOv/8TSXg1KSkJZWVlOTmN7EhN\nTWXLlo106NBJWhr+co5kxti/nX35X+FH/y55e3vx7t07OnbsLLddVp83tzjALytGFCtWjKNHz9Cz\nZ6ds+8vuAVHa5gMBAQ+YOXM6jx9nCk2XK1eeFSvWyEnM/Og5+i9QVAw2RQybAgXfgcTERF69esnK\nlUtp2LAWDRvWwsfn7jcbPy0tDXf3S2zZsoH4eNErFBMjltHR1dXk1auXOe777NlTWrRoxc2b1+W2\nb9iwFhCDlj/n5Mnj3+ScjY0bk5iYKBlrAMOGjZQz1grKl8YawNq1m9i37yCrV6/H1LQp3t5ekrEG\nkJDwAYBu3TKTLQwNjXBx2cnAgYNp27Y9np63OXnyOIMG9QPg5s3r/PnnXsLDw+SWmj7n48ePzJw5\nXTLWILOqwqpVy6Vtenpa+UrAUFZWxsamXxZjTRAEtm1zoVu3boAoMfK9SUlJYfLk8Vy7dhVn5/lo\napahQYOabN++9bsf+79Mly7tGTKkf5bttWrpULeuHk+eBOa4r5mZOZs2udKlSze8vPx49SpGqkWb\nHZqa/8feWYdVlXVx+CUUEcS+CIiKgImtjIU6JnYrjo6o2GK3jord3YFiYuvYiY0diIEFKCpwEWkF\nJL4/7sfROxekBXW/zzPPnHN2nH2259672Hut39IjMDCQrVs3Y2paFE1NTS5cuMaKFWulgJng4CD6\n9evF5s0bk+xHkH0RmQ4EgkygW7eOXL9+DYA8efIQFhbG+PGjuHjxWob0r6WlxcaNTly/fg09vbwE\nBARQvvxXP6vevXtw+vSFRNt++vQJbe1cnDt3VqUsLi4OdXV1Dhw4Su/ePbC17YONTfcMGTPArl3b\nlM5Tkwjc3f0hJiYmyWqZaWpq0rhxM+Lj41FTU2Pu3JloaGhIciUJ6XzOnj0jtZk8eTzGxsVp2tSa\nv/+2kZz169SxIjQ0hA4dWkl1Bw8exn/x9HxJzZpVVa6vXLme48eP0K/f18wNDg6zKVMmafHdBKys\nLHn58gVdu/5F06bNefr0MS4u5zA0NOTYsSNSvfDw5FXu5XI5NWpUYNas+WkKlnBxOceuXdvZtWs7\n/foNBCAsLIzQ0BBGjx6OhUUFevfum+p+f3W2b9+TqG7a0KEjmDdvFnp6ievqJdCpU1c6dfpq8FlY\nVGDjRicKFCiIlVV9vnz5Qp061fH29gKgbFkTKcBnzZqVbNmyAxub7rRt24EePbpI2TYmTBhNSEgw\n3br1wMgo5Vk7BFmL2BJNBWLJOGnEsroy48ePYsuWTTRv3oKhQ4fTooUiV+DHj+GZMk9v3/pQtWp5\nQBFRuXDhUho3bkZAQICKr9KSJQuYNy/xLb3Xr/1TFdGZGmbMmMqqVcvQ0sqFrq4Oy5evoWnT5ir1\nEnuXdu7cxsiR9ujq5sHT8x07dmxl1CiFUOzlyzcpU6Ysz58/w8ioKLlz56Zx43rEx8exZs0mHBwm\nq2imaWpqEhMTA0CDBg3R0srF3LkL8fPzpUULRRoue/sRDBxoj0wmo2LF0vj5+Sa59fjixXOsrRtK\nGlhmZuZcvHidunVrEBUVhZtb0ispiXHt2hXat2+pdE1HR4fy5S2UVgvV1dWJi4tj0qSpmJqaKem0\nfUuCvx+kfPv0+fNn5M6dm3z58uHl5YWNTXscHXdgafkHISHB5M9fgAcP7tG0aYNU9fsj+Z2+ly5e\ndFHKMFGqVBmuXr2lVKdWraqSG0AClSpVZunSJVSubPnLz1FayS5bomKFTSDIBGbNmk98fDzbtm3B\nw0PxY51YSqWM4ttwf1/f99SsWYehQweyb99uVq/eQOfONlL5gAFDyJ+/AI8ePaRFi1a8fv2aCRMU\nIp6ZZayB4ocBICoqkqioyESNtcSIj4+XMiOEh4fx5csXTp48LpV//BjInj27GDpUsfJz+PBJ3N3d\nAKhX749E+4yJiWHv3sMEBwfRpk171NUV3iEGBoYMGDCYt2/fKjnyP3z4LNF+EjA3L0X//oNYvFjx\nb3zypAtv376RVj5SS3BwsMq1okWNlbI9FC5cWPKPnDNHMdakjKZGjZpw7NgZCheWpej+s2ZNY8WK\npdL5ihVrefz4lXS+fPkS8uTJg4VFRRwdt2NsbJyifgWZR4MGDXn06CUWFmYAPH/uQe/ePejUqSst\nW7YmPj6eFSvWMn78aB49+hpU5Ob2gIYNG9KoURNGjRpH9eqW2Sbnq0AZYbAJBJlAjhw5cHCYjbv7\nQz59iuDIkVPUrFk70+6nrq7O48evpG1RM7OidOyo8L/S1s6tVFdHR0dp+yphy6ZJk2aZNj5Q5NI0\nMSnJ3bt3lHTfkuPWrZt4eCi2KM3NS6GpqcmWLTt49swDE5OS6OrqsmTJVx+xPXt2fLe/EiVKMG7c\nZBo0aKhSpqGhwcyZ81I8tm/p128gnz9/5tWrF5ibG+Pu/pwLF1wpWLCgUr0vX76QI0cO5HI5jRrV\npUyZsmzZskNpq7ds2XIq/T975qHk81SkSBHJYAMwNi6m0gbg0qULdO7clokTpzBy5FilstDQEMzM\njClUqDAPHz6TNME+fAhQqvffAIk1a1ZIx1ev3pa08wRZi0wmw98/hIYN6/L4sTvHjx/h+PEjXL16\nm7CwUFq2VAQxrFy5TvoDJ4Hz589y/vxZ6tSxYvXqDUp/BAqyByLoQCDIJHLnzs3Jk+e5dOlGphpr\nCRQuXBgnp13SKtmMGXN5+tSLVq3afLddQpDB2bOnM32MFStWpnfvvuTNmzfFbUqXLo2pqRmFC8tw\nctrF+/fv8PF5TYUKFSUn7BEjxjBixBisrOrj7KxI+ZQ3bz5Gjx4n9TNwoD0A3t7eREZGZuBTKShQ\noCDTps2kfXuF3lxsbCzly1tQpIgBN2640qaNNaGhoRgZFUQm02Phwtn4+/tx6dIFfH19lfoqWdKU\nmzfvI5Ppq9wDQENDkwMHDrBu3SYGDBjCjBlzuHJFefsrgcBARZDE3LkzVXKRRkREAAoD7ds5WbZs\nDXJ5KHJ5KM+eedOuXUeldgkRryNHjsHcPHUCvILMRU1NjQsXrilFgvbsaYOZ2decum5uD6RjI6Oi\n0gozKLbj27SxzpTPiCB9CB+2VPA7+EGkld/JVyQ9ZLd5ioqKQl1dnRIlivDlyxdWrFiboUEGaSGx\nOYqIiCAm5gt58+aTjI4TJ85hZmZOnjx6aGho0K5dC1xdr2JlVR9f3/f06dOXa9eucvz4UerXb4iz\n835WrVpGWFgYY8dO/G4y+bTg5+dLxYqKlSYNDQ3+/feUlIHAwsIcudwfR8dt2Nn1lHzP8ubNR0hI\nMHJ5KJ8/f2bHDic8PJ6yYMFS1q1bzfTp/wAwcuRYSpcuQ9269XFxOUudOnWoWrVCit+jlSuXMXPm\nVEB12zQhV+q3P9rfkiAvsXv3ARo2bJJonexKdvu8/Wi+TYOWQJEiBpw7d0XaOv34MRxNzTimT5/N\nsmWLpOCcGzfuUbKk2Q8fc3Yku/iwiRU2geA3ZcWKJRgbF8bIqCCurncBGDZsEDduXM/Scf377yHU\n1NRo0aIJISEKXy4dHR0VuZHr169RqlRxDAzyc+zYEVxdrwKK/KgvX75g+/atHD9+lDp1rNi37zCa\nmpqMGDGGKVOmJ2qs3bt3hzp1aiCT6WFunnqfrHPnvkadxsbG0qpVE/r0+RuAgQOHAODqehW5PJQn\nTxT+YIaGhtjZDWDfvt2MHz+KyZPHs327E6dPn6RPn340bNiYJUtWMnHiFDp06IxMJsPGpjsmJiVT\nNbahQ0ewfPkatm51VilTV1dXMdb69++FTKbH7NkzePzYHQAbm46MHTsiVfcVZC1qamp4er6jbt16\n0jU/P1/JWAOFUZcnTx4mT57Cs2fe/P13L2QyfWk1V5B9EAabQPCbERMTw9KlC5k1ywGAXLm0KViw\nkBQU0aZN5vqyJceDB/cBRYoec/Ni1K9fk0+fPknlDx8+Y/r0OWzdulm6NmBAb5V+Xr/2ZtAg+0Sz\nAPyXnTu3YW3dkBcvFMEFRkapN9i2bdusci0iIvz//nUKJ+6LF11wcTlH7drVePLEk6dPn+DouJ4h\nQ/or6fRZWFRAW1ubnTv34eTkyN69qoZWaunWrQfNm7dMtp63txeHDx8EYNOmdXTv3pOlS1cBiu0z\nwc+Frm4eDh48xvr1qu8ngL+/PwkbbXp6efnw4QNyuT/Hjx/9kcMUpAARdCAQ/Eb4+r6nUiVlDbDI\nyM8MHNiHM2dOAagknv7R2Nn1Y/nyJdJ5SEgIampq3L59kwkTxvDxYyA6OjpKuRb/m+C6YsVKrFy5\nPlHn/QRH+9y5dXj06AW6urpSVOasWfOwsemOnl7KfewS2Lx5B2vWrKBs2fJERkbStWs3unXrJEmo\naGhoMG/eYiZPHsfHjx/5809lv8YXL54zfvxkhg8fLTn/f/78mYcPH6gkcc9MnJ23S8fDh4+iaNFC\n7NixJ1vKdghSTvPmrRK9Xq6cmRRxPHLkGMkvdPToYXTv3vNHDlGQDGKFTSD4iYiPj8fD42miYpwp\n4dt2OXPmlI4TjLUBAwbz4sUb3Nzuk1XurYaGRjRo0EA6d3G5irv7Qzp1akNk5Cdq1qyFmZk5Xbt2\nw9q6BVZW9ZXanz17iXPnrlC2bDkiIyO5ffsmf/5Zh6tXL/PkyWPCwhSZDj59imDChNHEx8czePBQ\nXr/2p3//wWky1kAhuzFnzkL+/rsXPXrY0rt3D6X5jo2NZfDgfjx/rljF8/f3A5CMM4AyZcopnSfk\nIV29ernka5bZWFk1ABQrMwk/3mmVJxFkH3LlysWjR8oabAl5RROijZcuXcS+fbupVq2GkoyLIHsg\nVtgEgp+E+Ph4Bg7sy6FD+wDw9w9JtV5Ss2YtGDVqHC9fvqBjxy7cunWD1asVKam2bnWmYcPGDBs2\nkEOHDjB16kzs7Ydn+HMkh7q6Oi4uLri63iIi4jMFChRkyZJ+GBgYMGPGHBWJCYXzfl5OnDhG69bt\nqFSpCgB79zpjbz9AqpeQreDbVE579zozceIUjIyKZqgGnaPjBklVHhQ5U48fP0JAgJw6dayoVk2h\nTn/kyGFKljRl7dpNBAUFUa9eA6V+Dh7cJx0/e/aUsmXLZ9gY/8ubN68pXFhGxYqVMDcvhampOXZ2\nA6hX708RCfqLIJPJuH79LrVqVQMUWTtmzFAEo3wrJp0jRw4VORpB1iMMNsEvTUBAACdPHmPbti0c\nOnSMPHm+nwomuzF79nSWL1/M8eNnuXPntmSsAd811gIDA7lw4RwhISE0b94SQ0Mj4uLiePv2DePG\nTUJNTY0yZUoQFBQEgK6uLqdPn2Dz5g1cuqRIaWVpWTNzH+47qKmpUa6chRTZ5+b2ACMjI7S0tHj+\n/Bnr16+lV6/e+Pv7ExQURGys4ofm29yiz58/l441NDQwMDCkZs3aUnBCzpw5GTZsVKboTdWta0Xt\n2nUZP34ytWrVARQGd/36tfj4MZBKlSpz+bLCoNu8eUeSOmZt2rRj5EiFHMnHjx8zfJwJxMTEUL16\nBbp2/YuVK9dx7dodqUxorP1amJqas3fvYbp0aScZawAdO3Zhz55dAIwaNS6p5oIsRBhsgl8Sd/eH\nTJw4htu3b0pbe9u2OTFkiGoeyOxMghaSn5+vlAS8bt16jB49PtH6gYGBLF48j02b1kvXJk4cw9Wr\nt+nWrSM+Pm/o0cOW5s1bSsYaKPJR7tr11Xdpxow5kiRFevny5Qt2dj05f/4Mb99+SPWqoL+/H4GB\nHwgM/EBERATz588hKCiIadOmSHUKFSqMvf0I6d83KOgjK1YslsqvXbstSRTExMSgq5uHunWtVAz4\n+Ph45s+fzZIlC3j61It8+fIRECBHX79IqsZduXJVDh8+ASj80EaPHka+fPkIDw/j7VsfHBymIJf7\nM3CgvZJB9OLFcwoWLChF6OXJo8eLF2/48CEAU1PzRO+VEWhqajJy5BisrZMPShD8/DRo0BAHh9k4\nOEyWrs2fv5AJE/4RgSXZGKHDlgp+Vy2flJDd9I769+/N4cMH+PtvW27evIGfnx9nzlykZEnT5Btn\nIumdpxIlDPj0KYK3bz8o+aC9fevDoEF9uXnzqyTHwIH2eHg84eJFF6pXt+TOHVVh1QULljJu3EhA\nsQ1SsWJlJk2aquIXlh6OHz9K794Kbbe7dx8lqcifwH/n6MOHD1SsWIqYmBh0dHSJi4vl5EkXnJ13\nEBERzpQp09HR0VWaj/j4eFq2bMKdO7fQ0dHh1at3SeqMJfDXX52UpDmUy/5m2bLVqXruuLg41NXV\nJdFcACur+tJWacuWrVmxYq2S0Vi2rAmBgYFKDv7btzsxevQwRo8ez/jxkxOdI0HiiHn6PgmahqGh\nocTEqBMdHUPt2tWoXt2SAQMGY2FRUaSpQuiwCQSZSsWKiryV27dv5dWrl2zatDXLjbWM4ObN+8yf\nv0TJOAF48uSRZKwNHjyM27cfMmPGHCnNUoKxNm7cJKnN6tUbsLHpTvXqloBiJWzHjr0ZaqxFRERI\ngq2gmiYrJRQqVIj37z+ya9c+OnTojLPzAcqVK8/MmXNZsmQl+fMXUJkPNTU1Nm50AmDOnIUqxlpo\naAgfPwYqXUvKWANSHYgwZ84MihTJx8CBdpJPHUBQUBByeSje3n5s2bJTZYWve3dbSpQwUbqWYOA2\na5ay3KsZxYMH97CyssTPzzf5yj853t5e1K1bQ2mV+XdgyZKVANjZ2XHixDGKFMmHp+cr9u51plEj\nK+ztB3Dz5o0sHqUgAWGwCX5JhgwZxsWL19mz5xA3bz5ING9kduVr0vinKmX6+kWU8oC+fu3NvHmz\npAhCTU1N1qxZQY0aFYmPj6dUqdJ06tQVgIMHjzFmzAQp5VDnzjbkypWLRYuW06hREw4ePJahjsbR\n0dEMHz4YT09FtFmjRk2kqLSUEBMTQ5Ei+TAzU2iiNW7cjMWLl1O7dt0UtTcyKoqvbxDduvVQKTMz\nM6ZMGcVqVgIzZ84FUEmb1a/fQKZNm5mie44fP4o//6yNj88bAOrX/xNtbW1Jxyzhj4bcuXPTqVNb\nxo4dSf36tSSDum3b9nh7e7Fo0Ty+fPmCp+crGjRoiJ9fMB4eT3n//l2KxpERODsr8rWuXbvyh90z\nq9i9eyfPnz9j27YtWT2UH0qCbMe+ffvo0cNGpXzfvt20bt2U6OjoHz00QSKILdFUIJbVk0ZsPaSM\nlMzT/v17GDy4H6CaRuhbYmJiMDQskGR5VupmxcbG0qFDK27evI6lZU1u3HClSpVqnD59Idm2CXO0\nadMW+vXrAyT+LOfOnWbatMmsWrWeKlWqpWp8CVtBjx+/onDhwirlHz8GsmXLJvr06Uf+/EnP8X9J\n2LJ+80ZOQIAcY+NiREZGoqWlxY0brlSoUAldXV2VlEEymT6PHr3g6NHD2Nn1xNi4GHK5nKioSLp1\n68GQIcOpW7cGtrZ2LFy49Id83mbOnMrKlcsYOnQEU6YkLz6cUpydd+Dj84ZFixSrv5n5nqZ0nqKj\no9mxYyu9etklu3X+q/HHH5Xx8vJMtt706XMYNMj+B4wo+yG2RAUCQaK8eqXQSlq//vt/7ffvr6ru\nn8CWLTszdEypJSQkmDt3bhEXF8eNG66oqanRq5ddqvrQ08tLgQIFOX/+aqLlq1Yt58WL5zRr9qdS\nJoTECAwMZPjwwfj6vle6ntSKYoECBRk9enyqjDUAb29f5PJQcuXKhbFxMZycHClWTMalSxeoVauO\npGumpqbG3buPMDNTyGXI5f6AQv7DwWE2Pj5viIpSBJwUKWKAuXkp+vYdoLSlndlMmTIDuTw0Q421\nmJgYhg8fLBlrQJbp/X1Lzpw56dOn329nrMXHxzNmTOIBTI0bN1U6nzZtUpanrfvd+b3eToEgmxMc\nHCT50dy7dzvROk+ePGbz5o1cvXpZpUxXV5d79x7TsmXrTB1nchQoUJATJ87RrdvfFC9uwq5d+xPd\nmvweTZo0w8PDiwoVKiZa3rPnV4P1+XOP7/ZVtqwJzs47pDlzd3/By5c+mf4DXa9eA5o1a0716jWU\nrnt7e+HsvIN8+fJhbGxM3rz5ePr0Cerq6piafvW1lMtDmThxCmpqasyZszDR1cCfCU1NTQ4dOo6B\ngSEA9vbDhVN7FtKlSzuGDFFoFRYsWIgcOXJIZZcuXaBbt+5K9TU0hMmQlYjZFwiyEf/+e0haBUpQ\nxP+Wy5cv0KBBLSZMGE2NGsqyG7Nnz+fVq3cULZr6PJiZQaVKVShevDivX3vRrVvHDO8/IiJCOk4w\nAJIiIdihVau2AOjr66c5o0FS+Pi8oX//3piaGhEZGUlUVBTW1n/SsWMXWrRoQqNGX33vWrRozKJF\n87hz5xY+Pj6EhARTv75C965p0+bY2HTn6tXEDfaM5sOHD4wbN1LKH5rZ1KljhZubB3J5KFOnpsw3\nUJA5JGguAkya9A9Hj56Wztu374Sz89eV+vHjJ6t85wh+LMJgEwiyEdbWLRk7diJ37rizZ88hpbKj\nRw/TqVNb6fzs2VPSsbv7C/r1G5TtVisMDRWGlKmpOTKZXoZG4Z0/fxaAkSPHoK9f5Lt1r127jYeH\nV7LZDJYuXYhMpkfnzu1SPZ6pUydx+PABwsLCOHz4AL6+7wkODqZ//97I5X5K/zbFixeXjnPlyoVM\nJgMUvnWXL19kxYq1P0yw1t/fDycnR/r37/VD7ifIPnyba3f06BFYWzdk6NCRrF69gVWr1uPktIsa\nNSxxctqVpPaj4MchDDaBIBuhr6/P2LETKVasuNL13bt3YmeniOjq0KGzdL1u3Xp4efmir6//Q8eZ\nUtzdHwLw6tULANavT52W2ffo2bMXAwfaM3LkOIKDg5g3b2aSztNFixqjoaFBbGzsd/t0cTkHwN27\nqV/dWrBgKfnz5wfg06dPlChhwo0b97h1y437959y8qSLVHfbtj3ScWRkJHK5XDrv3LktR44c4tat\nGypJ7TOD8uUt8PDw4vDh43h6vky+geCX4fjxc1J0dAIrVy7F31/hU9miRSuOHz9HixaJJ44X/FhE\nlGgqEBGQSSOiRFNGWuZpzx5nhg5V+JnUqWPFtWtXAJg4cQojR47NtLFmBK6uV9m0aT1hYaEYGBgx\nYsQoKeNAUqRljmbOnMbKlUsZNGgo06fPVil/9swDKyuF3tz3ohJ9fN4weHA/bt68Ts2atdmz51Cq\ncozeu3cHB4d/mDdvMeXKfT/v55s3r5k2bTLHjx9Jsk7Rosbcu/dY5XpmfN4SIme9vf3InTv1ennZ\nEfG9lDyamuoUKKAIhmna1JozZxQr91kZZZ7dyC5RoiI1lUCQTQkNDaFnz25S7ktAMtaaNLHO9sYa\nQO3adVOsm5YeElYkkwpQSKB+/T+/W25sXIyJE6fQrl0Lbtxw5dmzp1SuXDXF46hatTpHjpxKviKK\nMW/ZskMylPLnL0BQkCJfqImJCV5eXiqReplJw4aNcXE5lyoDVfBrsX79FkxMDFSEqAXZA2GwCQTZ\nkG/TGQG0aNEaH5836OrqMmHCP1JC8fQSHByEm9sD6tVrkO3831KDrW0fevbsneQzlC5dJsUrBrVq\n1WHVqvWEhoZIGTMyk3XrHNm715ktW3bi6nqFbt060apVG7Zv34pM9mO2uuPi4vDy8qRmzVo/5H6C\n7ImJiQEAkydPy+KRCBJDbImmArGsnjRi6yFlpGSe4uLiKFIkH6DY9rSz6y+p/efNm5cXL3wyZCxx\ncXFUqlQGf39Fmsn4kaAAACAASURBVKSslgJJICvepfj4eKKiosiVK1ey9VauXMasWdOwtm7Jtm3O\nab6np+crZDIZurp5lK4XKyZDS0uLkJAQAIYPH42pqRk2Nl8lFjJyjt69e8uYMSO4ePE8sbGxPHz4\njCJFDFTqTZgwms2bNwLg5xf8U2iWie+l5NHUVOfJkwfUrau8Ev7mjTzZz8PvQnbZEs3+nziB4Ddi\n48a1krEGClX4rVu/CuheupRxef2ioqLw9/cDFBpMieHsvIMzZ05myP2+leFIjs+fP9O5czvs7Qdk\nyL2TIiYmhilTJmJmZkyxYjKqVCnHixfPk6zv6nqVWbMUqw+nTh1P171r1qxCyZJGKtfLlCkrBS8A\nLF++mGHDBnH06L+EhASn656JER0dzfnzZ/j331Ns27abfPkU97527Yq0RQtIxhoopEAEvw516tTh\n48dw5PJQFi1aDkB4eHgWj0rwX4TBJhBkE/r2tWXyZOXQeW9vLzZtWgvAvXuPMTRU/YFPK9ra2pw+\nfYH9+48kuhV26tQJhg8fTI8eXdN9L3d3N0xMDOjYsU2K6oeHh3P+/Dn27nXOVONALvdn/frVqKlB\np06deffuLevWJR3J+vq1NwAVK1bmzh33dN3b2roFXbv+pXTN1/c9Dx7cRy6Xc/asi1KZnd3frF+/\nJl33TAwTk5LI5aG4uJyhZ08b2rdvwa1bN2nfviVTpkyU6tnaKtKEbdq0VZIhEfx69OzZG3//kFTl\n/RX8GITBJhBkA+Li4hLNXACKFEGenu8zRRC3SpVq1KvXINGyBH+w1GYoSAyZTB8tLS0qVaqUovqF\nCxeW/LceP07aMAoLC2XYsEEsW7aI4OCgVI+rQIGC0v8T0ls1aNAwyfrduvVg//4jnD59QUV6JbVs\n27ablSvXKV07ckShvffp0ydGjhzOlSvXePDgIevXK1a3wsLC0nXP71GiREkAAgICmDlzKgB79zpL\n0iILFy5DLg+lTZv2mTYGQfbgZ/Zn/ZURBptAkA1QV1ene/eeKteXLl1Fp05dpRyUP5JmzZojl4ey\nfHn6V3VkMn0cHGbx9OmTFLc5duwUvXv3TdKgBMWW7e7dO5kzZwZly5akS5d2qdrKyZUrF+fPXyEs\nLIzz58+xZs1GWrdum2R9NTU16tVrgIaGRorvkRp69uzDihVrGTVqLI8euWNlVQdr62YMGNAPUARP\nZBY2Nt3x9HzH7dsPld7FwMCUrXA+fvyI9u1b8u7d28waokDwWyOCDlKBcFxNGuHcmzK+nacvX2Lx\n8nqFgYERDx+60br1VwmHtm07sHjx8gxPn5RVBAQEUL68qdK18+evJirDkZp3qXfv7hw/fpRFi5Zy\n+/Yt9uxRBAHkyaPHq1cpNxzCw8OJiopKNBn86NHD2L7diTNnLqZK4iO9rFixhCdPHmFkZMzKlUtp\n0qQZGzdu5cKF86irQ48eNoSEfM60z1t4eDgREREpFmXu2bMbp04dp1u3Hhli5GcE4nspecQcJU92\nCToQBlsqEC900ogPfcr4dp5GjBjKtm1bEq336tVb8uTR+8Gjy1zOnDnJ8+fPmDFjqnQtMZHW1LxL\nL1++oHbtakyZMo3Y2DjmzPmamzIjhD/9/HypWFGRImrjRifatu2Q7j7Ti4WFOXK5PwYGBjx+/CLb\nfN5ev35NcPBHLCwqZtoKZGpJ6bv0/v07Ll26QNOmzRM12n9lxHd38mQXg01siQoEP4hTp05gZ2fL\n6NGjKVBAV8VYK1SoEFpaWpw/f/WXM9ZAkdTc3n4E+/d/VfYvUaIIbdtaExgYmKY+TU3NKFSoEMuW\nLWXu3Fn88UctjI2LKa3w3Llziy5d2nHjhmuq+9fW1sbGpge2tnbZxnfL1fUO3bp1Z9WqVVk9FIk1\na1ZSo0YFRo8enm2MtdRw4cJ5hg8fTNmyJty8mXGR2AJBRiJW2FKB+AskacRfad9HLpdjYZF0SqY1\nazbQtm1HoqOj0dHJ+r/kMpvAwEBat27Ky5eKHKMrV66TIiZT+y7duXOLAwf2YmFRkQ4dOisp9bu7\nu9GokZV0vmvXPho3bpbBT/PjSZijd+8CuHz5Eo0aNZUcxT09X3Ls2BGGDRv1w8aTkK1hwIAhKrkp\ns5KUvktRUVHUrFmFd+/ecunSDaWk6L864rs7ecQKm0DwG+Hn9146XrhwIXv3HlIqb9++Mzly5Pgt\njDWAggUL4up6l7lzF1GvXgOaNEm7EVW9uiVz5y7ir7/+VkmrdPTovwAUKlQYgDdv3qR90NmQEyeO\n8ddfnVm8eL507dixo8ya5UBcXOb/+N66dZPBg/uxb9+/DB48DAeHWZl+z8xAS0uL+/efIJeH/lbG\nmuDnQhhsAkEmcPDgPmQyPczNjQkJCaZChUqULKlwuh87dix5837d8nR03P5TbiNlBHZ2/dm//4gk\nr5FWzp49haFhAaytG9KgQS1KlSrOpUsXWLZsEQAODrOQy0Pp06ef1Mbb2wuZTI+qVcsTHp55chkn\nTx5HJtNDJtMjKioqQ/tOELl99eqldM3efjje3n4/JBOBp+dLTpw4Sv36f+LgMOu3fY8Fgh+BMNgE\nghRy9+5tLl26QGhoCOPHj5J+hJs3b8T79++kemFhoQwcaAdASEgImzdvZPToYXh6vvqmTjg3btzj\n3r3H35WRECjj7++Pn58voaEheHt7ERMTA8CuXduJj48nNjaGJ08eExwcxJ07t6R27dt3ko7j4+Nx\ndt6BpaVCE+7tWx9KljQio71D3r9/h0ymp+SrWLy4PitXLsuwezRu3AS5PJS1azdJ19TV1VUCOTIL\nG5vueHv7/ZB7CQS/O8JgEwhSgLe3F82bN6Jz57aYmRmzZcvXH8i7d29TuXJZHjy4R48eXTA1LarU\ndu7cmezYsVU6Hz58OA0a/EnJkmaZIob7qxISEkyVKmWpWLE0ZmbGWFpWom1b6/8nLvciLi4ON7cH\nAHTo0JmRI8fi5eWLr28QkyaNRSbT4/Tpk1y6dIHhwwer9J/RBtuhQ/sBRXaEBw+e0rBhY+Li4jh7\n9lSG3ic7EBcXx/nzZ5DL5Vk9FIHgl0UYbAJBCli6dKHSeYkSJty79xgfnwApXVTTpg04cybxH+N2\n7Trw6tVbPn4MZ9myZT9F4uzsRkREBDExMRgaGjJ//iJatmzN7du3+PTpE7t27ZO2nAGeP/dAXV0d\nHR0d3r71YevWzQBs3rwBb28vqd6pU2cB0NXNk+H/JgnvxcuXz3n8+BEuLucAuH//HpGRkRl6r6xm\nwIA+dOvW6buBNQKBIH2IXw2BAEUS8ITttW+Jjo6me/cuODvvAMDNzYPjx89y/vwVihY1RktLi5kz\n50n1u3b9i6tXb+Pt7YeJiSLVj5PTLjZscPolpTp+JKGhCl21WbPmUrhwYa5evUL58hbo6OhgaGjE\njRv3cXPzYM6cBSxbpsgH+uyZh1Iu1HnzFks5MQH++ssGACennRk+3m+jUbt37ywdR0VFStuxPzuB\ngYG0aWPNv/8ezOqhCAS/PMJgE/z2BAV9pHhxfQwNC+DouFG6/u7dW4oWLSRtYZ0/f5XJk8fTsmUT\nKlQoJdVr0aIVDg6zcXTczsqV6yhVqjS5c+fm5s0HyOWhtGjR6oc/069IoUKF0dLSYuzY0fTr14eK\nFStx4MBR1NTUuHr1Mrdv38TAwJC+fQdSsWJl4uPjsbKy5NkzxXakrq4u9vYDUFNTY9IkhXjvx4+B\nLFmyUin9VXx8PB8/Jq4Ld/jwAaysLOnbtyfR0dHfHe/161dVrhkaGlGgQAG2bt2V9onIRpQrV5Ib\nN1zR0NBg8uRpPHnime4+z549RfnyZlSrZpEBIxQIfh3SbLD179+fiRMnSuePHj3CxsaGKlWqYGNj\ng5ubW6Lt3NzcKFeuHO/fv1e67uTkRL169ahWrRqTJ09WiqaKjo5m0qRJ1KhRAysrK7ZsURYcffv2\nLb1796ZKlSq0atWKa9euKZW7urrSunVrKleuTK9evfDx8UnrYwt+Ie7cuYVMpkfp0iWkBNcTJ47G\n3f0hp06doEoVRXi/sXExXr16S+7c2hw7ppCJGDx4mNSPhoYGgwcP/eWDB4KCPkqBFlkh31ioUCG2\nbnWmTZt2zJu3mD17DuHh8RSZTI8OHVrRsmWTJNu6uJwjPDyce/fuEBsby4gRY3j2zJunT73o0cNW\nqe7ixfMpU8aE69evIZPpYW8/AIBJk8bSv39vnj3z4MiRw9jadlO5T8K8xMfHs3DhPJXyBQuW4OHh\nTZUq1dIzFT+c+Ph4Xrx4TliYcvaIFSsUAsVFihgwfPhoChUqlK77REZG0r17FwIC5Pj4vCE2NjZd\n/QkEvxJpMtiOHz/O5cuXpfOPHz/Su3dvSpcuzcGDB7G2tqZ37974+SlHD8XExPDPP/+ofNmfPn2a\nNWvWMHPmTLZu3YqbmxsLF371GZo/fz5Pnjxh+/btTJs2jVWrVnHmzBmpfMiQIchkMg4cOECbNm2w\nt7eX7u3r68uQIUPo2LEjBw4cIH/+/AwZMiQtjy34xZg3b3ai1xs1qkvPnoqtsvHjJ3Pnjjt58uhR\nsqQZc+cuZN06R0aOHPsjh5ouPn36xLx5M5NcNUoJnz9/5t69u9L5j9D4SoyGDRszf/4SbG37oKmp\nyblzX78H/uuDpqamhr9/CI6O26RrY8ZM4MqVSxgZFeTGjeuJpiG6cuUSAIsWKQyuBMmPhC1tE5OS\n/xeIVTbIHB03oK+fl8qVy3Ly5HHc3O5LZaVLl8HJaRdNmzZPz+NnGX372lKnTnWVgJquXRVRonfv\nPsqQ+2hpaWFsXAwAK6sGQiZEIPgGzdQ2CAkJYeHChVSs+DVp86FDh8ifPz8ODg6oqalhYmLCtWvX\ncHZ2ZuTIkVK9jRs3oqen6sezfft2bG1tqV+/PgDTp0/Hzs6OsWPHEhcXx/79+3F0dKRMmTKUKVOG\nvn37smPHDpo2bcr169fx8fFh7969aGlp0b9/f65fv87+/fuxt7dn7969VKhQgV69egEwd+5c6tSp\nw+3bt6lRo0ZqH1/wCxESEgxAv34D2bhxnUr5qVMuVK1aXTpXU1PDzm7ADxtfRnHjxjWWLFmInl4+\nBg8emqY+nJ13MGHCaHr0sGXyZIds8UN6//5dype3oEuXbshk+kyY8A+lSxcnNDQUX98gQPFvVqGC\nwl+sSRNrRo8eL6nyjxs3klKlSmFqaq7U74EDRwkKCkJLKyfv3r2ThFQnTpzCxIlTVMYxYsQQtLS0\nkMv9AYWcR82atVi4cBnGxsY8f/6Mzp27pThH5du3PhgYGGboHMfFxRETE0POnDnT1L506TIcPao4\nvnLlElZW9aWyjJQQUVNT48iRU9y9e5vWrdtlWL8Cwa9AqlfY5s+fT9u2bTE1/RqR9fbtW8qXLy+l\nRgEoXbo09+9//QvTy8sLZ2dnxo8fr7TCFhcXh7u7O9Wrf/1hrFy5Ml++fMHDwwMPDw9iY2OpXLmy\nVF6tWjUePnwIwMOHDylfvjxaWlpK5Q8ePJDKvzXMcuXKRbly5ZTGJvj9CA8Pl1ZApkyZgZOTwqeo\naFFjVq1aj5eXr5Kx9jPzxx+1MTcvRefONmnuo1OnLgA0b94yXcmxXVzO4ufnm+b2CVy9eplmzf5k\n0KC+vHz5nNGjxxMWFkZQUJDSNtrSpQtp1MgKE5OS0pZ1u3aKBO7+/n7UqqW6NampqUnhwoXR08ub\nItX7Xbu2s2XLJsaNm0y7dh3Ztm03BQoUxNa2Dw0bNmHgQHtpzr58+YJMpsfOndsS7SsgIICqVctj\nYJAfHx9FVob4+PgUbUHHx8fz+PEjFd+616+9KVIkH0WLFkIm05P6TQ1jx351f+nYsXWq26cGI6Oi\ntGnTXun3RCAQpNJgu379Onfv3lXZUixYsCD+/v5K13x9fQkKCpLOp06dytChQ1W+7ENDQ4mKikIm\nk0nXNDQ0yJcvH35+fgQEBJAvXz40Nb8uBhYsWJCoqCiCgoIICAhQavvf8cjlcpXyQoUKqYxX8Ovj\n5eWJhYU5a9asoFQpxbZL9eqW5MqVixYtWiGXh3Lv3mO6dOn2S6WI0tHR4dq1OxQuXDjNfejp5UUu\nD6VJE+s09/H8+TNsbDoyaFBf6dq0aZMlv7jr1699p7Uy30b03rt3F39/PwoWLMiGDVuk7bmYmBjm\nzp1JWFgoXl6eDBs2iOHDB7NhgxOenl99aDduXJuuDATnzl0BoH79mhw+fIA6deoSGxsrPdenT5+k\nuk5OCv2+b3X5viUy8rN0/PatwtdWXz8v+vp5sbcfwJgxI6hZs0qiAQ8zZkzlzz9rU7Sosh+Zrm4e\nrK1bSCt20dGpf1Y1NTXk8lAOHz7B9u17Ut1eIBCknxRviUZHR+Pg4MC0adNUltWbNWvGunXr2Ldv\nHx06dMDV1RUXFxf09fUB2LdvH7GxsXTu3Jl3794p/eUUGRmJmpqaSp85c+YkOjqauLi4RMsSxvT5\n8+ck2yb0/73y1KChIYJqkyJhbrLrHMXHx/PHH4pVWgeHf6TrW7ZsR1Pzx405u89TeoiMjGTr1s2E\nh4fTtKk1FSpUVCo3NS2JmZk5o0aNRVNTHScnR9auXYml5R/cunWTNWtWYGVllaI5aty4MZcuuWJk\nZIS6urqUoqlTp6/yGerqmpQtWw4Pj6fSCtXlyxeJivpMvnx6fPwYzs6d2xk6dBBhYaHkzq1DXFwc\nw4aNSPEzr1q1gqlTJyldCwsLIS7uq0HZvHlDrl1TZF2oUqUqAMOHj1R67z59+kStWtWVVr8KFy6k\nVOfgwX00bWqNp+crwsJC0NfPrzRHjRs35u7dW0ydOl2pnb5+YXbt2gtAbGxsurZa69Wrl+a2WcGv\n/HnLKMQcJU92mZsUG2wrV67EwsKC2rVrq5SZm5szc+ZMZs6ciYODA2XKlOGvv/7i5s2bfPjwgWXL\nlrF1q+Ivyv8u7efMmZP4+HgVAyo6OhptbW1iYmISLQPQ1tZGS0uLkJAQlfJcuXIBCifWxNon5kuX\nHHp62slX+s3JbnPk5+fH/PnzuXXrlkrZ0KFDsbAolUirzCe7zVN6WLNmDQ4ODgQEBACgq6vL7Nkz\nGDp0KCtWrPimpg4vXjyXzmJjo/9fX7GaOWrUCPLn/7qymdwc1atXK9mxPXnymOvXr0vfW+/evWXF\nikX4+PjQvn17jhxR6IeZmBRjwACFf+KUKRNTLKLbqpW1ksG2dOlSKlVSbKPOmDGDqVOnMnLk1+dq\n3rwxERERKn5fb996KhlrZcuWpVYtxZZ8XFwcYWFhqKuro6urq9Tu2zlq164V7doJCZnE+JU+b5mF\nmKPsT4oNthMnThAYGEiVKlUAJBmE06dPc+/ePdq3b0+7du0IDAykUKFCLFy4ECMjI65evUpwcDBd\nunRRCnlv2bIlgwYNol+/fmhpafHhwwdMTEwAxV+BwcHBFC5cmLi4OIKDg4mLi5O+RD98+ECuXLnQ\n09NDX1+fly9fKo31w4cP0vaPvr6+9EPybXnZsmVTPVmhoZ+Jjc2a6LjsjoaGOnp62tlujlq2bKUU\n3fgtdes2ICgo4oeOJ7vOU1o5efK4kovEggWLMTU1pWfP7qxcuZI+fQZQvHiJRNva2vbD0/M17u5u\nLFiwmBo16hAUFJHqObK3H4SpqSkjR45RKYuPj+fSJWU9tIQI9N27d1OqVGkAvtVMvnjxGkWKGFCk\nSJFk/ahKlCiFq+ttatdW+MnOn7+AkSNHMm7cRCZMmMygQcNRV1dXec+iopTPixYtycmT5zh0aD/b\ntjnx9OlTevXqw8iRYyhWrDigQWwsUj/peY+Cg4MIDAzE1PTXz0rwq33eMgMxR8mTMEdZTYoNth07\ndij5jSR86Y0dO5abN2+yZ88elixZQqFChYiPj+fy5ct069aNpk2bUq3aV8dePz8/evbsycaNGylV\nqtT/o7gqcPfuXSk44P79++TIkYMyZcoQHx+PpqYmDx48oGpVxXbCnTt3sLBQiCpWqlSJjRs3Eh0d\nLW193r17VwpiqFSpEvfu3ZPu//nzZ548ecLQoamPlouNjSMmRrzQ3yM7zZGn58skjTVb2z40aNA4\ny8aaneYpPXz58tXBf+/eg2hqavLlyxeqV6/BlSuXiYsjyeeMj1ejUycbWrduR/Xqlir1UjpHu3Zt\nB2Do0FEqZStWLGXWrGnSuY6ODpUrV2Ht2g1cuXKZESOG0qdPP9q06cCRI4fR1s6Nvf1Anj59QseO\nXfjwIYAePWxp27ZDkvc3MyuNn18wq1evYNs2RQqsCxdcWLBgrlRHLg9NqrlEtWqWVKtmyZAhI6lU\nqTRbt27h6NEjzJo1j06duibaJi3vUf36dfDxecP79x+VfIN/ZX6Vz1tmIuYo+5PijVkDAwOMjY2l\n/3R0dNDR0cHY2JgSJUpw4cIFdu/ejY+PD9OnTycsLIz27duTO3dupXaGhobEx8djaGgobUv+9ddf\nODo6cu7cOR4+fMj06dPp0qULWlpa5MqVi7Zt2zJt2jTc3d05d+4cW7ZswdZWIXZpaWmJgYEBEyZM\n4OXLl2zYsAF3d3c6deoEQMeOHbl37x4bN27k5cuXTJw4kWLFimFpaZkJ0ynITly9eiXR6+fPX2Xh\nwmUiCi0DaNGiFaNGjUNLS4uTJ4/zzz8TGTiwL1evXmXFirWSptZ/OXLkEPXr16RRo7q0aNGYBQvm\npHkMW7c6s2lT4k78/w04KlOmHK6u11i2bAmvXr3ky5cvmJmZo6Wlhba2NocPH6BlyzbSGC9dukC/\nfr2SjOpMQF1dnaFDR+Dqepe7dx/x/v07qey/wrzJcevWdQDMzMz5+DGQwYP7JRkk5eb2AJlMj6JF\nC0kyNcnxzz8OVKlSNVtIswgEgpSTIZ50+vr6LFu2jG3bttGmTRtev37Nli1b0NZOfAnxvz+ULVq0\noH///kybNo2+fftSuXJlxoz5ur0xceJELCwssLW1ZebMmQwfPpzGjRsrHkBdnTVr1hAQEEDHjh05\nevQoq1evpkiRIgAYGRmxcuVKDhw4QOfOnQkLC2PVqlUZ8diCbMiXL1+YP382devWYNy4rxqARYsa\nc/78Ffz9Q1Sc4QXpw8qqPlFRUWzZ4siLF88JCgpi5sw5dOmimgkAICwslIED7ciXLx+7dyuc4S9e\ndElTIBAopEbatGmfaJmNTXdu3LjP8+evcXTczsGDx+jUqSubN29iyZJFNGzYhEmTxiGT6Um5Si0t\na3LqlAsXLriyatV6ABUR8KTIkSMHxsbFpLymb97IWbJkZaqep1atuuTMmZOXL18AUKxYcSpUMOfJ\nk8cqdRNcU6Kjo1M8xvbtO3HixHn09fMik+kRHh6eqvEJBIKsQS0+K3LM/KQEBUWIJeMk0NRUJ39+\nnSyfIweHyaxZo/wDee3aHczNsya44L9kl3nKaF69esHx40dp0KARLi5nGTZsVJKO+0eOHKJvX1tu\n3ryDmZkZzs67sLcfTO7cOtja9mb27HmpnqOYmBi2bdvChAmjAdixYy+PH7uTP38BChQoIBl0ly5d\nYMKE0fz9dy86dOhMkSIGkpDuqVMulC1bPsk/NFNKXFwcAwfaUa9eg1SvriXw5MkTGjSoqXTNyWmX\nlJf22/fozRsfIiM/U7Jkyn3S/Px8qVhR4b83YsQYKbfqr8av+nnLSMQcJU/CHGU1wmBLBeKFTprs\n8KH/9OkTJUooVlbnzl2Eu7sbTZpY07Jl5gp9pobsME9ZTZ8+PXjz5jUuLhcBmDJlMjlzarF69UoM\nDY148OBxiucoKiqK8eNHcfjwQT59+urIX7FiZR4+fCCde3v7kTt3bmrWrIKn5yu6dv2LPXsUYsll\nypTFw+MpVatW59Qpl+/e7+HDBzg5OTJjxlyViM0EXr/2pkaNiinq73ts3rwRPz9f9PWLkDNnTnr0\nsJV2JzLiPapUqQy+vu9xdNz2y2YVEJ+35BFzlDzZxWD7PTxOBb80ERERrFu3ivnzFblBdXV16dXL\nTvjoZFMCAgIoXrw4ampqREZGsnbtGqnszZvXKvV9fd8zZcpERo0aR7ly5ZXK1qxZwa5d2+nW7S+c\nnRUGmJaWFnPmLGTOnOnY2vbh5s3rkozG2bOXePTInfHjR0t9WFhUxMqqAfny5Ut27OPHj+Lu3TvY\n2Q2gfHmLROsUL16Ca9fuULKkaaLlKaVPn37pap8cbm4efP78Od0rigKB4MeQPdTgBII0EhUVhYmJ\ngWSsAbi4XBPGWjamatXq3LhxnaioKHLlysUff3zd+jMxKUlMTAx9+/alQAFdIiMj6dChNUeOHKJt\n2+YqOo6GhkYAkrEGULKkKTVqWHL48Anat+/EvHmLpbI8efSoVasOu3btk65pa2vz8uVzqldPPhDJ\nyWkX//zjkKSxloC5eSn2799DsWIyPn4M/G7dxDY5/Px8mThxDOvXr052TOlBGGsCwc+DMNgEPzWB\ngR9Urn2b+kiQ/ahe3ZKAgACePVPkCn740A2ZTJ9jx85y8+YDXr58gaOjIwAPHtyjQoUKAISEBKOv\nn1epr65d/2LdOkdGjRqLm5sHnp7vuXjxerIRwEWLGrNp01YGDrSndu26XLhwnuXLF3+3DYC+fhGG\nDVOVD0mM/fv3EBkZyahRwxItX7NmJRUrlkZfPy/Dhw9WKlu9egWOjhuYMmViom0FAsHvh9gSFfzU\nGBoa8eefjbhw4Tzdu/dk585t3L17O6uHJUiCyMhI7Oz+Jk8ePcqUKUunTu35/PkzBw8eo1o1hQ5j\nmTJlGT9+PB8+fMTSsiY1a9amcGEZGzeuS7TPDh06J3o9Odq0aU+bNu2JjY3l6dMn2Nn1T/NzJcaG\nDVtwdt6ZZLTsgQN78fPzBaBnz95KZcOGjaJ48eLUqfNzpYISCASZhwg6SAXCKTNpsoPjakK037Fj\nZ7G0/CNLxpAc2WGespK3b32oWlXhh/bypRdmZiaYmppx+fJNcuTIASQ+R58/f8bJyRETk5JYW7dI\ntO+YmBieuLW9LwAAIABJREFUP3/G+/dvefr0Kb1726Grm+fHPNgP5nd/j1KKmKfkEXOUPCLoQCDI\nJIoVS1ysVZD1FC1qLB1/+vQJgH79BknGWlJoa2szaJD9d+sMHTqQAwf2Sue3bt1g+/bd6RitQCAQ\nZB+ED5vgl8Dd/aF0fPDg/nT3t3TpQmQyPVasWJruvgTK2Nh0R0dHl8KFC6Orm4ebN10zpN9vnfst\nLWvy999p00ADcHO7n6hQ7Y/i338PIpPpSUatQCAQCINN8NPz4sVzGjWqK51raqYvQjQyMpIdOxSp\njmbNmkbHjq0JC0s+F6QgZdStW4+IiHBOnjxBiRIlCAiQZ0i/f/7ZCFCkyzp27AxNmzZPc1+dO7ej\nQYNaREZGJlvX29sLmUyPv/9OPN9nWnBzU2jIffgQkOY+Pn/+jLv7w0SjUBMIDQ1JcUorgUCQtQiD\nTfDTU6dOdelYXV2devX+THNfgYGB1K9fEx+fNwwfPpKGDRtx5colXr16mRFD/SWJiYlJVf1Wrdpi\nYGBInz698PLywt5+ZPKNUsDAgfa8ePEGR8ftiZafPHmcQYP6pmjVKjg4CID79+8mW/f8+TMAPH36\nRLp2+vRJJk0ai79/ytJF/ZcpU6bj4eFFsWLF09QeoFKl0jRqVJeKFUsTHh6WaJ22bZtjbl4Me/v+\nyGR6SeYsFQgEWY8w2AQ/PTo6XxXn4+LiqFfvDwIDv699lRQnThzFy8uTEiVKsHz5UlxcztOkiTWV\nKlVJcR9Hj/6LTKbHjRvX0zSGn4mTJ49jaFhAJR3Y98idOzfXrt3mwgVXHj16QcOGjTNsPHnz5ktU\ngy8gIABb224cOLA3RbIvzs6KbfU8efQSLff1fS8ZN7169WXrVmcuX74JwNmzp/j7765s2rSeLl0S\nz3GaHGpqahQoUDBNbRMIDlasnIWFhdGs2Z+JrhbOnr2AggULUqVKdYoXL4GOTtY7VgsEgsQRBpvg\np+fJk1fs3XuYnTu/OpxHR0elqS9jY0XAgre3NwULFmLXrn1s2+acrK7XtxQvrlgV8fFRVe1PK2fO\nnKRECQNu376ZYX2mh/j4eFq2bIytrUKy4tKl1KVg0tXNQ/nyFj/MQPD0VKyQGhgYkpJ/ykaNmiKX\nh2JhUUGlLCIigkqVylChgjmurlfR0NCgefOWUjaFhQvnSnXr1LFK85gPHtxHqVLFefTIPU3tEzIl\ntGzZihcvnvPkySOVOrVr1+XpUy/s7Ppz+/bDJNNtCQSCrEcYbIKfHm1tbUxNzejevQsAffr0x8DA\nME19mZmZo6mpSd269XB23k/jxs1SnTWhYsXKeHq+o3NnmzSN4b9ERETQo0dXPn2KoGXLJnh7e2VI\nv+khLi6O27dvAfD0qSd79hzK4hF9nwQfRF/f92lefU3Aze2+dCyT6auUb9myUzoeNy7twreOjhsI\nDg5i2rTJaWo/Y8Zc1NTUpO38woVlaR6LQCDIeoTBJvglaNxYsZIxfPho5s5dmOZ+ihY15t27QA4e\nPEblylXT3E9G6n+Fh4cDkDevQuX/8WPVlZIfjYaGBnJ5KHJ5KAULFsrq4SRL48bNsLKqD8DNm9f5\n55/xxMWlTXOqZs3a7N59gHv3HmNmZq5SbmRUVJqbfPnyp3nMDg6z6NmzD46OW9PU/vnzZ8THxxMc\nHEypUqWl1WOBQPBzIgw2wU/P27c+BAUpnMQnT56Wqu3LxEhv+4xGX1+xihMSEgKQYVGVvwqxsbHS\n/9evX02JEgaMHq2aDurdu7fS8YYNa9m9e6dKnZSgrq5Ow4ZNlDTlMoMaNf5g0aJlaTb6EmROtLW1\nfwqjWiAQfB9hsAl+er4VS3V3d8vCkWQeo0aNk44bNGiYhSNJH+fPn2H69ClER0dnSH8XLpzHwCA/\n5cqV5MiRQ0yZMpFPnyLYvt1Jpe716/eoUeNrBowqVaplyBiyK5GRnwH48OEDRkZFs3g0AoEgvQiD\nTfBT8/q1N7NnT5fOGzWyYsGCOVk4osxh3LhJ7N59gAcPnlKihElWD0dCLpdz796dFNfv1q0Tq1cv\nT9QBPi1MmjQWUBgl324VV6pUWaWumpoax4+flbYry5YtlyFjyK4kBCv4+/tRq1adLB6NQCBIL8Jg\nE/y0vHr1gho1KqpcX7Ro3nfFQn9GErbhDA2NsnooSlhYmGFt3ZCIiIhUtdPSypUh9w8M/CAdr1ix\nBGNjRYRuWoNOvsenT5/4/PkzX758USm7evUyxYrJJH/DrObp0yfMmzcLgKZNrenevWcWj0ggEKQX\nYbAJfkrev39HrVqKLa2JE6eolKfWgBCkjTZt2qGhoYG2tnaK6r97F8iFC66UKVM2Q+6/a9d+Spcu\nQ69edpiZmXP7thuurndZvnwNAQFpzxLwX6Kjo6lQwZzixfUxMiqo8gfB4cMHiYyM5MqVSxl2z/QQ\nEaEwHPv2HYixcXG8vT2zeEQCgSC9CINN8FMyYcIYAPr1G8hff6muHggB0B/Dpk3b8PUNQl09ZV8l\nOXLkoHx5ixQFdsjl/hw69P28sNWrW3Llyi0WLFjKtWt32LhxLS1bNqZ06RKUL2/Kvn0Zk/w9R44c\nlCxpJp3/d5Vt/vzFHD58gkqVKnPkyKE0R6BmFNWrWyKXh1K1ajUcHdezevWKLB2PQCBIP8JgE/yU\nFCyoUIGvVasuY8YoRwQqxFGzV6SnIPX07PkXAwb0SZFuWlxcHM2aNWDKlIlSxDDAkCH9M2Qsampq\nHDlyigcPnuLrG0TOnDmVyjU0NKhVqw6VK5elb19bHj16yLVrVxgxYggAL1++QCbTU0pf9SNISNNW\nrVqNH3pfgUCQ8Whm9QAEgrQwceJUwsLCCAkJ5vTpk9L1LVt20rSpdRaOTJBRrFq1jqdPPSTj/Hu4\nuJzlwYP7KtfHjJmQYePR1tZGWztpH8Jvt0nLl6+AjU1HLl1yoWXLNnTv3hkAO7u/cXVNPj9pRiGT\nyZDLQ3/Y/QQCQeYhDDbBT4lMJmPTpq08fvyI/PkLYG3dgpkz56KnlzerhybIIMzMzClRwjRFdS0t\na/LPP9MJCvqIlpYWf/xRi9q166KlpZXJo/yKuro6vr5BRESEo6GhwapV6/+ffL0SRkZFeffuLeHh\n4cTHx4sVYIFAkGrU4n+1cLpMJCgogpiYrPVNya5oaqqTP7+OmKNkEPOUPL/iHHl7e/HsmQeWln+Q\nP3+BdPf3K85RZiDmKXnEHCVPwhxlNWKFTSAQCDKZEiVMspV+nkAg+PkQQQcCgUAgEAgE2RxhsAkE\nAoFAIBBkc4TBJhAIBAKBQJDNET5sAoFA8JOR1cK8PwNxcXHExSmyVAgEvwJihU0gEAh+Er58+YJM\npkehQnqEhYVl9XCyJfHx8Rw5cohy5UwpVEiPPHnysHfvbl68eE54eHi2yfcqEKQWscImEAgEPwn/\n/ntQOhZabokzadI4HB3XA9CkSVPc3B4wcGBfqVxDQ4OmTa1ZvXojurq6AAQHBxEQEECOHDlENK8g\n2yJW2AQCgeAnICQkmP3792Jn1x8Pj1eSsfG7curUCWQyPWQyPdzcvma5SDDWAIoWNaZFixYUKFCQ\ntm3b06BBQ1q0aM2FC+dp374l48aNxMrKknLlTKlTpzqWlpVwcnIkMjIyKx5JIPguQjg3FQhhwaQR\n4ospQ8xT8og5ShwPj6fUq/cHAB8/hv92c/Tlyxf27NlFkybW6OvrI5PpKZU7O+9HVzcPrVs3A0BD\nQxMbm274+LwmR46clChRksKFZeTNm5eXL59z+fIlIiLCyZ+/AKamZujrF+H69Ws8euSOuXkpLlxw\nVckZm8CCBXMwMirK/9q78/ga77z/469IIskgkhHJrygTuVUi2zlZhuqIUjPSCml1DDfVSVAdE6VT\n2hLEEn5uVbqoFr1bax9pU0vF0iHqR5SUJEiMyE1QWYQsBJE9+f7+MLk4snKTxfk8Hw+P9lzfazvv\nx3W+Pq7tO2bM64/9ez9u8nurX3N5ca4UbA9ADujayY++YSSn+klGtfvmmw08++xzPPNMjyc+o/Ly\ncn78cRcffLCI//mflIdeT+vWrbUHD2xsbHj//Vm1zltZWUlKSjIbN65n5co1jBgxyqA9Le0S/v4D\nyM3N5Xe/c+TYscSH3q/mQn5v9WsuBZvcwyaEEC3Ek3BGp6HGj3+dH3/caTCta9dupKVd0j57eXnz\nwQcfMWiQHwBmZmZMnz6T7t27Y23dHgcHe5577vekpJwnOPh1fv31grasUoorV7JISTnDTz9FU1FR\nQUjIFP7jP56hXTtrQkImMmfODIqKiujVy42EhDiDfdm5M/oxfnshqpOCTQghRJMrLy9n1qz3OHny\nOG3btuPQoYMA/PTTIVxd3SkvL9cuUVZUVGBqaqotm519s8Z1mpm1wtzcnC5dnubvf5/C+PFjiYs7\niq9vb775ZiOnT5/CysqKiooKACIjIygtLeXWrTvrs7L6DdeuXTMo1iIiNvPCC396LBkIURcp2IQQ\nQjSpq1ev4u7eo9r0XbuicXf3BDC4n+zeYq2hAgKG0aNHT/bu/SedO3fh9OlTAJw9m8bt2wV8/PEy\n1q//mqKiQm2ZzMwMLCwsGTFiJO+/PwsHh//zwNsV4lGRgk0IIUSTUEqxYsVHLFw4D4Du3Z3YtCmS\nmzdv0L27EzY2to9sWyYmJly7lkdBQQErVnwMwLffbsXCwgILCwsWLPi/dO7cmTlzZgIwdmwQr732\nV1xcXLG0tHxk+yHEw5KCTQghRKMrKiqiWzcH7fPChf/FG29Meqzvlxsz5nWOHo0lMPAV/P2H0KXL\n0wbtQ4e+zMmTJ3j++YG8+upfMDOTvyJF8yFPiT4AeYqmdvKkUcNITvWTjOrXEjNSShEXdwxLSwuc\nnXvRpYsdAO3b25CQcApr6/aPfJstMafGJhnVT54SFUII8dhVVFSQm5vT5Pdf9e3rzfnzqdWmnz17\nSUZtEKIBZKQDIYR4Qiml8PR0xt39GTZuXNfo29+2bbM2GkFVsTZgwAvAncuTly9fk2JNiAaSM2xC\nCPGEioyMIDv7KgBPPfVUo2579uz3WbPmC+2zmZkZFy5clhv4hXhIUrAJIcQTqmqEgMWLlz72d4eV\nlJRw7txZHB27M3r0n4mNPQzA6dPn6dix42PdthDGQAo2IYR4Qs2ZM59p096nTZvHd8N0WVkZCxaE\nsXr1ympt589n0K6ddQ1LCSEelBRsQgjxhDIxMXlsxdqlS7/i6+tRY1toaBhTprxDq1Zym7QQj4r8\nmoQQDRIff4w33xyHvb21drlLNK5r1/L47/9eRWZmZpPux/TpbxsUa1OnTuPChUyys2+SnX2Tt9+e\nLsWaEI+YnGETQtTr5MnjDB06GDu7O/ciBQa+SGxsAk5O1YcTqqioIDn5X/Ts6WIwnJD431FK4ezs\nCEBo6Hs01Ss0Dx78f2zY8DVwZ+goX9/eTbIfQhgb+SeQEKJeK1d+SqdOnfnmmwgiI7cAsGvXjhrn\nPXz4EC+80I8uXewYNMiPiRODeP/9dygouNWYu/zEqay8+1JTW9tHN2TTgygvL2fEiEAATp48I8Wa\nEI1ICjYhRL1u375Nq1at+PTTT/jLX14FoEMHuxrn7d37We3/raws2bVrB+vXf81//uefm+ysUEuy\nf/8+7O2t2b8/2mC6qakphw/H8+abf+fgwdgm2beqp04BOnXq3CT7IISxkoJNCFGjjz/+kDlzZrB1\n6/ccPx6PmZkp9vb2APj7D+HPfx5Z43IWFhYMGTKMdu3aMXPmLH7+OZblyz/h6NFYJk4MJicnpzG/\nRouTkZEOQHFxSbW2Hj2eITz8v+jSpcsj3+6vv17k3Xf/we3bt7Vpy5d/wIYNawHIz7/OgAF9H/l2\nhRANI2OJPgAZa612Mh5dw7SUnG7cyKdHj64G05577g88++xzxMUd48iRn0lLy8bU1LTG5Y8fj2f0\n6BFcu5ZH79598Pd/kUOHYti//yeGDg3kq6821rrtlpJRU3ocGW3YsJbp06eybNmnjB0bRHl5OZ06\n/Ra4M97njRv52rzR0Qfx9NQ/ku0+TnIs1U8yqp+MJSqEaLbatGlLt26/4/LlTMrKygA4fPhnDh/+\nGQCdTl9rsQbg5eXDt99uISJiEykpZ5g/fy7+/i9ibt4aR0enavNHRkZw/fo13nwz5PF8IVGvMWNe\nJyvrMiNHjgbujEwQEbGZNm3akZGRxtKli2nVqhX79x/GysqqifdWCOMjZ9gegPwLpHbyr7SGaUk5\nXb6cSVTUNjIzMykvL8Pffwg3b97k9u0CBg0ajJ1dzfew3a+iooLlyz9gz54fcXHpxeLFH9K2bVut\nPS3tEj4+7gC4urrh4tKLceOCaN26De3atcfKyopTpxJJT0/nhRf+SLduv3scX7dFaUnHUVOSnOon\nGdWvuZxhk4LtAcgBXTv50TeM5FRdeXk5w4b5Ex9/rN55zc3N+fTTL3j11b80wp41X3IcNYzkVD/J\nqH7NpWCThw6EEE3KzMyMUaPG1DvfCy8MoqysjG++2dAIeyWEEM2LFGxCiCb3+uvBXL16g+++28ak\nSZM5cOAAmZk5ZGff5PDheJ56qhM//bQPgOefH9jEeyuEEI1PLok+ADllXDs5rd4wklP9asooOzub\nYcMGY2VlxY4de2jbtl0T72XTkuOoYSSn+klG9Wsul0TlKVEhRLNnb2/PL7+caOrdEEKIJiOXRIUQ\nQgghmjkp2IQQQgghmrmHLtgmTpzIzJkztc//+te/GDVqFHq9nlGjRpGYmGgw/5YtW3jxxRfR6/WM\nHDmS48ePG7SvW7cOPz8/vL29mTVrFiUld4dlKS0tJTQ0FF9fX/r168fatWsNls3IyCA4OBi9Xk9A\nQACHDx82aD9y5AhDhw5Fp9MRFBREenr6w35tIYQQQohG91AF265du4iJidE+X7t2jeDgYHr27MnW\nrVvx9/cnODiYK1euABATE0N4eDiTJ08mKiqKvn37MnHiRG1MwT179vD5558THh7O+vXrSUxMZOnS\npdr6lyxZQnJyMhs3bmTu3Ll89tln7N27V2sPCQnB3t6eLVu2MGzYMCZPnqxtOysri5CQEF599VW2\nbNmCra0tISHyNnUhhBBCtBwPXLDduHGDpUuX4uHhoU3btm0btra2zJs3D0dHR4KCgvD29iYiIgKA\nH374geHDhzNkyBCefvpppk6dip2dHQcOHABg48aN/PWvf6V///64ubkxf/58Nm/eTElJCUVFRWze\nvJnZs2fj7OzMoEGDmDBhAps2bQIgNjaW9PR0FixYQPfu3Zk4cSI6nY7NmzcDEBkZibu7O0FBQTg5\nObF48WIyMzOJi4v732YnhBBCCNEoHrhgW7JkCYGBgTg53R0PMCMjA1dXV0xMTLRpPXv25MSJO091\nvfHGGwQFBVVbV0FBAZWVlZw6dQofHx9tuk6no6ysjJSUFFJSUqioqECn02nt3t7eJCUlAZCUlISr\nqysWFhYG7SdPntTafX19tTZLS0t69eql7ZsQQgghRHP3QAVbbGwsCQkJ1S4pdujQgatXrxpMy8rK\n4vr16wC4uLjQtWtXrS0mJoZLly7x7LPPcvPmTUpKSrC3t9faTU1NsbGx4cqVK+Tk5GBjY4OZ2d03\nkHTo0IGSkhKuX79OTk6OwbL37092dna1djs7u2r7K4QQQgjRXDX4PWylpaXMmzePuXPn0rp1a4O2\nwYMHs2rVKr7//nuGDx/OkSNH2L9/Pw4ODtXWk5aWRmhoKMOGDcPZ2ZkrV65gYmJSbZ2tW7emtLSU\nysrKGtuq9qmoqKjWZQGKi4vrbH8QpqbyUG1tqrKRjOomOdVPMqqfZNQwklP9JKP6NZdsGlywrVix\nAjc3N/r27VutrUePHoSHhxMeHs68efNwdnZm9OjRHD161GC+ixcvMm7cOLp160Z4eDhwp3hSSlUr\noEpLS7GysqK8vLzGNgArKyssLCy4ceNGtXZLS0sALCwsalze2tq6oV9dY21t9cDLGBvJqGEkp/pJ\nRvWTjBpGcqqfZNT8Nbhg2717N3l5eej1egDKysqAO094Hj9+nFdeeYWXX36ZvLw87OzsWLp0KZ07\nd9aWP3fuHMHBwXTt2pU1a9ZoZ71sbW2xsLAgNzcXR0dHACoqKsjPz6djx45UVlaSn59PZWUlrVrd\nqXJzc3OxtLTE2toaBwcHUlNTDfY1NzeXjh07AuDg4KA9jXpvu4uLywMFJYQQQgjRVBp8nm/Tpk3s\n2LGDqKgooqKiGDhwIAMHDmT79u0cPXqUd955BxMTE+zs7FBKERMTQ+/evQHIyclh/PjxODo68vXX\nX9Omzd0xuUxMTHB3dychIUGbduLECczNzXF2dsbFxQUzMzPtIQKA+Ph43NzcAPD09CQ5OdngLFpC\nQoL2kIKnp6fBO9+KiopITk42eIhBCCGEEKI5M503b968hszYrl072rdvr/2JiYmhdevWDB8+HHNz\ncxYuXIiNjQ3t27fno48+4uzZsyxcuBBzc3PCwsLIyMhg5cqVABQWFlJYWAiAubk5lpaWLF++nO7d\nu1NQUEBYWBj+/v4MGDAAMzMzsrKyiIiIwN3dnVOnTvHhhx8yffp0unfvTqdOndi5cycnTpzAycmJ\nzZs3s3v3bhYtWkTbtm3p0qULy5Ytw9TUlPbt27N48WIApk2b9ngSFUIIIYR4xEyUUuphFqwa5aCq\nADp48CBLliwhKysLnU5HWFiYdolTp9MZjFxQJSQkhMmTJwPw5Zdfsm7dOsrKyhg8eDBz5szRLpsW\nFxczf/589uzZQ7t27ZgwYQJjx47V1pOenk5oaChJSUl07dqVWbNm0adPH6390KFDLFq0iKtXr+Ll\n5cWCBQsMLtcKIYQQQjRnD12wCSGEEEKIxtE8nlUVQgghhBC1koJNCCGEEKKZk4JNCCGEEKKZk4JN\nCCGEEKKZk4JNCCGEEKKZe6ILtokTJ2qvHwHIyMggODgYvV5PQEAAhw8fNpj/yJEjDB06FJ1OR1BQ\nEOnp6Qbt69atw8/PD29vb2bNmmXwqpLS0lJCQ0Px9fWlX79+rF271mDZ+rbdVO7P6OTJk4waNQq9\nXs+LL77I999/bzC/MWYE1XOqUlBQgJ+fHz/88IPBdGPM6f6MsrKyeOONN9DpdAwePJgff/zRYH7J\n6M5LwIcPH45er+eVV14hNjbWYH5jymjfvn3ay9Kr/jt16tQG7aux5FRXRtJ331VXTlVaZN+tnlA7\nd+5UPXv2VDNmzNCmDRs2TL333nvq/PnzavXq1Uqn06msrCyllFKXL19WOp1OrV27VqWmpqq3335b\nDR06VFv2n//8p/L19VUHDhxQp06dUkOGDFHh4eFa+4IFC1RgYKA6c+aMio6OVl5eXmrPnj0N2nZT\nuT+j7Oxs5evrqz766CN16dIltWvXLuXh4aEOHDiglFIqMzPT6DJSquZjqcqcOXOUs7Oz2rZtmzZN\njiWlysvLVUBAgAoJCVEXL15U3377rXJ1dVXnzp1TSklGSimVl5enfHx81Ndff63S09PVqlWrlE6n\nU1euXFFKGV9GX3zxhZo0aZLKy8tTubm5Kjc3V926dUsppdTQoUOl71a1Z5STkyN99z3qOpaqtMS+\n+4ks2PLz81X//v3ViBEjtM7xyJEjSq/Xq+LiYm2+oKAgtWLFCqWUUh9//LEaO3as1lZUVKS8vLzU\nsWPHlFJKjRkzRn322Wdae3x8vPL09FTFxcWqsLBQeXh4qLi4OK39888/19ZX37abQk0ZRUREqJde\neslgvjlz5qjp06crpYwvI6VqzqlKXFyc+tOf/qT+8Ic/GPzoP/nkE6PKqaaM9u3bp3x9fdXt27e1\n+UJCQlRkZKRSSjJSSqno6GjVp08fg/l+//vfax28sWU0ffp0tXz58mrTpe++q7aMpO82VFtOVVpq\n3/1EXhJdsmQJgYGBODk5adOSkpJwdXXFwsJCm+bt7a2NUZqUlISvr6/WZmlpSa9evThx4gSVlZWc\nOnUKHx8frV2n01FWVkZKSgopKSlUVFQYjE/q7e1NUlJSg7bdFGrKyM/PTxu54l63bt0CjC8jqDkn\nuHPqOywsjLlz52Jubm7QlpiYaFQ51ZRRXFwcffr04Te/+Y027bPPPmPEiBGAZARgY2NDfn4+0dHR\nwJ3LOIWFhfTs2RMwvozOnz+vjY5zL+m776otI+m7DdWWE7TsvvuJK9hiY2NJSEggJCTEYHpOTg72\n9vYG0zp06MDVq1cByM7OrtZuZ2fH1atXuXnzJiUlJQbtpqam2NjYcOXKFXJycrCxscHMzMxg3SUl\nJVy/fr3ebTe22jLq1KkTHh4e2ue8vDx2795N3759AePKCGrPCWDVqlW4urpq2dzLmHKqLaP09HSe\neuopli1bhp+fHy+//DL79u3T2iUj8PHxYfTo0UyZMgVXV1feeustwsPD6datG2BcGQFcvHiRQ4cO\nMXjwYP74xz+ybNkyysrKpO++R20ZSd9tqKacysvLgZbdd5vVP0vLUVpayrx585g7d642DmmVoqKi\natNat25NaWkpcGe80trai4uLtc81tVdWVtbYVrVP9W27MdWV0b1KSkp46623sLe3Z+TIkYDxZFS1\nT7XllJqaSmRkJFFRUTUuayw51ZVRYWEhW7du5aWXXmL16tX88ssvTJ06lcjISFxdXSUj4Pbt26Sn\npzNlyhSef/559u7dS3h4OJ6enjg6OhpNRgCXL1+muLgYCwsLPvnkEzIyMli0aBHFxcXSd/9bTRkt\nXLiQkpISQkNDtfmMve+uK6eRI0e26L77iSrYVqxYgZubW42Vs4WFBTdu3DCYVlpaiqWlpdZ+f3Cl\npaVYW1sbhH5/u5WVFeXl5TW2AVhZWdW77cZUV0ZVCgsLmTRpEmlpaURERGincI0lI6g7p9mzZzNl\nyhR++9vf1risseRUV0ampqbY2toyf/58AFxcXIiPj+e7775jwYIFkhHw5ZdfAjBp0iTgTkaJiYls\n2LDYnFFeAAAEdklEQVSBuXPnGk1GcOfs/tGjR7G2tgbA2dmZyspK3n33XYYPH87NmzcN5jfGvru2\njN577z1mzpyJiYmJ9N3UfSwlJSW16L77iSrYdu/eTV5eHnq9HoCysjIA9uzZw9/+9jdSU1MN5s/N\nzaVjx44AODg4kJOTU63dxcUFW1tbLCwsyM3N1a6LV1RUkJ+fT8eOHamsrCQ/P5/KykpatWqlLWtp\naYm1tTUODg51brsx1ZXR8ePHKSgoYMKECWRkZLB+/XqefvppbVljyQhqz2nbtm2YmJhw9uxZ7Z6R\n4uJiwsLC2L17N2vWrDGanOo6lvz9/bX9r+Lo6MjZs2cB4zmW6srI19cXZ2dng/ldXFy0fTeWjKpU\n/QVbxcnJiZKSEuzs7Dh//rxBmzH23VB7Rvn5+Zibm0vf/W+15ZSYmNii++4n6h62TZs2sWPHDqKi\nooiKimLgwIEMHDiQ7du34+HhQXJyskEFnJCQoN0g6OnpyfHjx7W2oqIikpOT0ev1mJiY4O7uTkJC\ngtZ+4sQJzM3NtXe8mJmZGdw8GB8fj5ubm7buurbdmOrKSCnF5MmTyczMZNOmTdVutDeWjKD2nKKj\no9m7dy/bt2/X2uzt7Zk6dSoLFy7Uvosx5FTXseTp6cm5c+dQSmnznz9/ns6dO2vfw9gz6tixY7UO\n/MKFC3Tp0gUwnowAfv75Z3r37m3wTqvk5GRsbW3x8fHh9OnTRt9315aRjY0Ntra20nf/W13HUovv\nuxv8PGkLNGPGDO0R+oqKChUQEKD+8Y9/qHPnzqnVq1crLy8v7R0oGRkZytPTU61Zs0adO3dOTZ06\nVQUGBmrr2rVrl/Lx8VHR0dEqMTFRBQQEqEWLFmntYWFhKiAgQCUlJano6Gjl7e2toqOjG7TtpnRv\nRt99951ycXFRBw4cUDk5Odqf/Px8pZTxZqSUYU73GzBggMGj4caa070Z3bp1S/n5+amwsDB16dIl\ntWnTJuXq6qrOnDmjlJKMlFLq5MmTytXVVa1bt06lpaWptWvXKjc3N5WamqqUMq6MCgoKVP/+/dW0\nadPUhQsX1IEDB1S/fv3UV199pSoqKtSQIUOMvu+uKyPpu++qK6f7tbS+22gKNqWUSktLU6+99pry\n8PBQAQEBKjY21mD+mJgYNXjwYKXT6dS4ceNURkaGQfuaNWtU3759la+vr5o9e7YqKSnR2oqKitSM\nGTOUXq9Xfn5+asOGDQbL1rftpnJvRuPHj1fOzs7V/tz7XhpjzEipugu2gQMHGvzolTLOnO7PKDU1\nVdtPf39/reOqIhkptX//fhUYGKj0er0aPny4UfdJqampaty4ccrLy0v169dPrVy5UmuTvvuO2jKS\nvttQXcfSvVpa322i1D3XLIQQQgghRLPzRN3DJoQQQgjxJJKCTQghhBCimZOCTQghhBCimZOCTQgh\nhBCimZOCTQghhBCimZOCTQghhBCimZOCTQghhBCimZOCTQghhBCimZOCTQghhBCimZOCTQghhBCi\nmZOCTQghhBCimfv/zUiYuOFKDo4AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "water_df.plot()\n", "plt.show()" @@ -1004,15 +10552,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 26, "metadata": { "ExecuteTime": { - "end_time": "2017-01-20T16:10:09.043425", - "start_time": "2017-01-20T16:10:04.386234" + "end_time": "2017-02-08T09:14:39.249762", + "start_time": "2017-02-08T09:14:38.694268" }, "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB/cAAAPCCAYAAACN6FtTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Wd81eX9//HXOSeTJIQssjczSDBAEAgk7A0ypApuENvS\nVmQqbf911PIrim0VbavWWq1t3QoyEkYgQAZkhxCCgYQdVpghCSQ553+DxzkmAmqHnAO+n3cInMF1\n3bjy/X6v93V9LoPFYrEgIiIiIiIiIiIiIiIiIiIiDsto7waIiIiIiIiIiIiIiIiIiIjI11O4LyIi\nIiIiIiIiIiIiIiIi4uAU7ouIiIiIiIiIiIiIiIiIiDg4hfsiIiIiIiIiIiIiIiIiIiIOTuG+iIiI\niIiIiIiIiIiIiIiIg1O4LyIiIiIiIiIiIiIiIiIi4uAU7ouIiIiIiIiIiIiIiIiIiDg4hfsiIiIi\nIiIiIiIiIiIiIiIOTuG+iIiIiIiIiIiIiIiIiIiIg1O4LyIiIiIiIiIiIiIiIiIi4uAU7ouIiMhN\nw2KxYLFYbD+LiIiIiIiIiIiIiHxfKNwXERGRm4bBYMBgMNh+BjCbzfZskoiIiIiIiIiIiIjIDWGw\naNubiIiI3AROnDjBvn37SE9Px9fXF29vb6ZPn27vZomIiIiIiIiIiIiI3BBO9m6AiIiIyDcpKiri\nd7/7HYWFhTQ2Ntr+vbS0lKeeegpXV1c7tk5ERERERERERERE5LuncF9EREQcWk5ODrNnz8ZisTBp\n0iR69epFQ0MDK1euJCAgAGdnZ3s3UURERERERERERETkO6ey/CIiIuKwSktLeeSRR/Dy8uInP/kJ\nEydOtL1WW1uLu7s7JpOp1WcsFgsGg+FGN1VERERERERERERE5DtltHcDRERERK7lwoULvP7669TX\n1zN79mxbsN/U1ERzczOenp6YTCYuX77MhQsXOHDgABcvXrRzq0VEREREREREREREvhsqyy8iIiIO\n6dKlS+zYsYNhw4YxadIk4Eqw7+T05e1LZmYmK1euJDc3lwsXLhAQEMCYMWOYOHEiYWFh9mq6iIiI\niIiIiIiIiMj/nMJ9ERERcUhlZWWcPXuWbt26AXDx4kU8PDwAKC4uZsuWLbz66qu293t7e1NZWcmb\nb77J2bNneeyxx2jbtq1d2i4iIiIiIiIiIiIi8r+mcF9EREQcisViwWAw4OzsDEBWVhb33XefLdj/\n85//THp6OiUlJQCMGDGC7t27k5KSQnZ2Nh9//DGpqak8+OCDCvdFRERERERERERE5JahcF9EREQc\nwpkzZ/D09LSF+omJiXTv3p1t27bxwx/+kNjYWPbs2UNubi4mk4mAgADuv/9+Hn74YQwGA05OTkRH\nR3Px4kVefvlltm3bxrRp0+zcKxERERERERERERGR/w2F+yIiImJ3W7du5bXXXmPOnDkkJiZiNptx\ncnLihz/8IX/4wx/Izs4mOzsbAFdXV+69914GDhxIv379bN9x+fJlXFxciI2NBcBoNNqlLyIiIiIi\nIiIiIiIi3wWF+yIiImJX2dnZzJo1C39/fywWC/BlMJ+cnExsbCwffPABjY2NtGvXjhEjRtCxY0cM\nBgMAZrMZg8GAi4sLAF988QUmk4muXbvap0MiIiIiIiIiIiIiIt8Bg8U6iy4iIiJyg2VlZTFz5kwi\nIiKYN28eI0eO/FafM5vNGI1G22IAa9Cfk5PDY489RmRkJMuXLycoKOg7a7uIiIiIiIiIiIiIyI2k\nerUiIiJiF9ZgPzw8vFWwbzabW73vq3+3WCy2nf3WUB8gNzeXV155hQsXLvDggw8q2BcRERERERER\nERGRW4rK8ouIiMgN1zLYnz9/fqtgv2VgD9h26Fv/vaysjI0bN9KnTx86duxIQ0MDmZmZvPbaaxw5\ncoQnn3yScePGAbT6nIiIiIiIiIiIiIjIzUxl+UVEROSG+qZg3xrGp6WlcfjwYWbOnGn7bHNzM888\n8wwffPABHh4eeHt7U1tby/nz5/H392fOnDlMnTrV9n3WHf4iIiIiIiIiIiIiIjc77dwXERGRG2b7\n9u3MnDmTyMhIHnvssesG+6tWrWLBggX06tWL0aNHExISAoDJZGL69OkYDAaKioo4efIkXl5e3Hvv\nvSQlJdG7d2/b9ynYFxEREREREREREZFbiXbui4iIyA1RWFjItGnTAHjxxRcZO3YscP1gv0uXLixY\nsIABAwbYvsMa2jc3N9PU1MTFixdxc3OjTZs2tveoFL+IiIiIiIiIiIiI3Iq0pU1ERERuCJPJRNu2\nbQH417/+hXV9YVNT0zcG+xaLBYvFYtuNbzKZcHV1xdfXlzZt2tByraKCfRHHoDXEIiIiIiIiIiIi\n/1sK90VEROSGiI+P58033yQsLIy8vDymT59OQ0MDLi4uwNcH+/BlaH/w4EFqa2uv+ZqI2E9zczOX\nLl2yjU+NSxERERERx9Tc3GzvJoiIiMh/SGX5RURE5DthLY9v/dNaUn/nzp3MnTuXw4cPk5CQwL/+\n9S/S09OZPXv2Nwb7xcXFvPLKK7i5ubFs2TJcXV3t1j8R+dLu3bv5+OOPKSgowGAw0L17dx544AEi\nIiJwcnKyd/NEREREROQaXn/9dSIjIxk5cqS9myIiIiLfksJ9EbErnY0tcuuyltuvra3F29u71Wst\nA/6YmBgqKyuJi4tjzpw5pKSkAFcH+yUlJSxbtowdO3bw5JNP8tBDD93Q/ojIte3YsYP58+dz8uRJ\njEYjRqORpqYmEhMTmTNnDr1799b1XkRE5Caja7fIrcm66B6uPJdPnTqVyMhIFi5cyLBhw+zcOhER\nEfk2TE8//fTT9m6EiHy/ZGRk8Omnn9KvXz9NFojcosrLy3nrrbd4/fXX+eijj6ipqcHLywt/f38A\nAgMDSUhIICsri4MHD+Ll5cUvf/lLBg0a1Oqc7msF+wsXLmTGjBmAJh1F7C0rK4uZM2disViYNWsW\nc+fOZdiwYXzxxRfs3LmT2tpaRo8erXEqIiLi4Mxmc6vrtfVn3W+L3Dqam5sxmUzAlWf22tpadu3a\nxeHDhykrKyMoKIiYmBg7t1JERES+iXbui8gNlZ2dzcMPP4y3tzfvvvsuHTt2tHeTROR/LDc3l/nz\n53PixAlbWX6Afv36MWvWLPr372+bJCwpKeHxxx/n6NGj9O7dm7fffhuTycTly5dxcXEBrg72Z86c\nCbTecSAiN5412A8PD2fOnDmMHTvW9lpZWRnTp0+noaGBDz/8kO7du9uxpSIiIvJ1WgZ+2dnZVFZW\ncvLkSYYOHapruMgtouXz80svvcQHH3xATU0N3t7enDt3DoCIiAgWL17M4MGD7dlUERER+QbauS8i\nN4w1BIiMjGTx4sXccccd9m6SiPyPWce52WxmxowZzJs3j549e3L8+HEKCgpwcXFhyJAhtt0/1h38\n2dnZlJeXk52dzfjx43F1dQUU7Is4KutYDwsLY8GCBYwePRqAxsZGTCYTAQEBZGVlUV9fz/Tp02nX\nrp2dWywiIiLX0jLY/9Of/sSvf/1rNm7cSF5eHh9++CExMTFalC9yC7A+g7/xxhu8/PLL9OjRg4UL\nFzJr1izi4uJwd3cnLy+P4uJiwsPDiY6OtnOLRURE5Hq0c19EboiWu/vmz5/PyJEjAQV0IreSluP8\nZz/7GePHj7e9tm3bNh555BEAVq9eTUxMTKvynjt37mTu3LkcPnyYnj178s9//pN9+/bx9NNPk5ub\nq2BfxIFkZ2czY8YMwsPDmTt3ri3Yt5bzNRgMnD59msmTJ2MwGHjvvfcIDAxUWV8REREH0/LavGzZ\nMv7yl78QHBzMqFGjOH36NCtWrMBoNLJkyRImTpxo59aKyH+rqqqKH/7whzQ1NfHnP/+ZTp062V6r\nra3lzTff5E9/+hPh4eEsXryYIUOG2LG1IiIicj1O9m6AiNz6vi7Y1yS/yK2h5S7eluPcWl5/wIAB\n9OzZk4MHD+Lp6XnV2O/evTu///3vmTt3LgUFBUyePBkPDw8F+yIOxnq8jq+vL7/85S9JTk4GWgf7\nAGlpaRw/fpxnn32WwMBAmpqacHJq/ehhNpsBNKZFRETsxHrdfv/993nzzTcZNGgQc+fOpXPnzsCV\na/Xnn3/O4sWLARTwi9zkTp8+zeHDh5k2bRqdOnXCYrFgNpsxmUx4enryk5/8hIaGBt566y2ef/55\nzGYzw4YNs3ezRURE5CsU7ovId+qbgn3rZEJpaSmurq4q9ydyE8rOzr5msG82m3F2dsZisXDixAn2\n79+Pu7v7NYM8i8ViC/gXLFhAWVkZgIJ9EQdy8eJFPvroIwBMJpMtnIcr49Ma3qelpfHMM8/g5OTE\np59+ysqVK3F2dqZ9+/b07duXgIAA+vXrp/EsIiLiAGpqavj888/x8/Pjpz/9KZ07d8ZsNnPx4kUO\nHTpkO4978eLFGAwG7rzzTns3WUT+Q7W1ta2eq5ubm1stwHVycmLSpElkZmayb98+XnrpJZycnBg0\naJCdWiwiIiLXYnr66aeftncjROTWZA38IiIimDt3LqNGjQKuDvZXrFjBo48+SnBwMHFxcTg7O9uz\n2SLyb8jMzGTmzJn4+/vzm9/8hsGDBwOtx7nBYGDlypWkpqby85//nF69egGty4AaDAYsFguBgYHE\nx8ezZs0afvaznzFr1izb9ykIFLEvFxcXgoKCuHTpEoWFhRQXFxMYGEiHDh1s43P16tXMnTsXgMDA\nQPbt28eJEyc4cOAA5eXlbNy4kRUrVpCZmcmKFSs4ffo0HTt2xNXV1Z5dExER+d6qrq7m1VdfZeTI\nkdxzzz3AlXvzF198kc2bN/O3v/2NoKAgtm/fzsaNGwkMDKRTp06YTCY7t1xEvo2Wz93nz5/nk08+\n4dSpU4wcOZK2bdtedXSWn58fGRkZVFVVcfr0aaqqqujUqRPBwcH26oKIiIh8hXbui8h3Ijc3l4cf\nfpi2bdt+bbC/atUqnnjiCaKjo+nWrRvu7u72bLaI/Bvq6+v5+9//jsViwWKx4O3tDUBTUxMGg8EW\n9qWlpfHss8/i4eHBqlWrWLFiBb6+vnh6ejJw4ED8/Py47bbbcHFxAaBHjx6kpaUREBAAKNgXsTfr\n8RpwZXw6OTnR3NzMmjVreP755zEYDIwYMYI1a9Ywf/58IiMjmTVrFoMGDeLUqVPU1dWRn59PZWUl\nFRUVlJeXU1RUBMDIkSPx8vKyZ/dERES+186dO0d9fT0HDx7k/PnztG3bln/84x+888473HPPPXTu\n3Jnu3buza9cu0tPTefbZZ6msrKR///4MHDjQ3s0Xka/46vNzy+A+Pj6elJQU0tPTeffdd5kxYwY+\nPj62Z3rrfJ27uzudO3cmLi6OTz/9lNWrV9O9e3dMJpOO1xQREXEACvdF5H+urq6OFStWAFd2+V24\ncMH2WsuyvatWrWLBggV06dKFhQsXkpSUZJf2ish/xt3dnccffxyTycTGjRv56U9/yrJly+jVq5et\nXPfq1auZP38+AK6urmRmZrb6jhUrVnDp0iUSExPx8vIiISGBadOmKdgXcRDp6eksXbqUt956i5CQ\nEAC6detmOy5jzZo1vPjiixQUFPC3v/2NLl26MG/ePJKTkwHw9/cHoGfPnsCV3UJHjx6lqqoKgNGj\nR9/oLomIiHzvWSwW4Ero17VrV0aMGEHbtm1xd3cnLy+P1157je7du3PPPffYFvj5+PgA4OXlxVtv\nvUXXrl3t1n4Rubbm5mZbVY3s7GyOHj1KTU0NI0aMICoqCoBHHnmEvXv38sEHH+Dq6soPfvAD2rdv\nD1z5nZCXl0dOTg5jxoxh+vTpFBcX8/nnnzNz5kzt3hcREXEQKssvIv8z1lW+zs7OBAcHY7FYKCws\n5IsvvsBkMnHbbbfZHjJaBvsLFixgwIABtu+AL1cWX7x4EScnJ60MFnFQ/v7+dOrUierqakpLS8nK\nyiI+Pp6QkBA+//xzFixYQFRUFPPnz2fx4sVMnDiRwYMHExcXh8lkwtPTk+PHj1NdXU1VVRWjRo2y\nhYCAxr6Inf3qV7+irKyMrVu3MnToUDw9PQFo3749YWFh1NbWkpeXR1FREeHh4Tz33HP07dsXuDK5\naF2cY63c4+LiQkBAAB07dqRjx46tXhMREZHvxlevtS2r6ZlMJmJjY0lJSaFt27Z8+OGHZGRk8Mwz\nz5CYmGj7TGpqKmfPnuXpp59m6tSpDBs27Ib3Q0Suz2w22+bcXn75ZZ555hnWr19PdnY2n332GcHB\nwURHRxMQEICbmxuFhYXk5ORQUVFBREQEDQ0N5OXlsXz5cvbv38+PfvQjevXqRV5eHqWlpYwdO5bA\nwEA791JEREQADBZrkiYi8l+qqanBz8/P9veKigreeustVq5cSVBQEDNmzGD69OmkpaUxZ86cbwz2\nCwsLWbduHQMHDqRfv36a+Bexs6+exWdlNpvZt2+f7VzO0NBQJk+ezPLly+nSpQvz58+/bsnOuro6\nSkpKOHXqFJcuXWLKlCnfdTdE5N/Q2NjIo48+SnZ2NhEREbzzzjsEBQXZXi8tLeWtt95i9erV+Pn5\nsWTJElJSUoDr/84QERGRG6flTt7c3FwOHTpEWVkZERERdO/enYSEBNt7L1y4wIQJE2hsbGTt2rW2\no3OysrKYPXs2w4YNY9myZbb3q8qWiON5/fXX+d3vfkdMTAyDBg2isrKSzZs34+npyYIFC5g6dSqX\nLl0iLS2Nv//975SVleHs7AxcufcHWLRoETNmzADg3nvvpbq6mo8++ghfX1+79UtERES+pJ37IvI/\nkZ2dzYQJEwgJCbGV5/Pz8yMiIoL6+nry8/Opqqpi9+7d/O53vyMuLo65c+faAr+vBvslJSW8+OKL\nrF69mkGDBtl294mI/TQ0NHD58mX27t3LyZMncXd35/Lly7i6uuLr60uXLl2orq5m586d7Nixg6io\nKJYsWUKfPn2A1juGrD87OzsTFhZGp06diIuLu+p9ImI/TU1NODs7M27cOHJzc9m9ezfp6ekMHz68\n1Q7+0NBQamtrKSkpoaioiMDAQDp06IDBYFDALyIiYkctd/IuX76c3/zmN6SmplJSUsLWrVv5+OOP\nuXz5Mm3btqV9+/a4urqybt06ampqSEpKon379uTn5/PSSy9RXV3N7NmziY2NtX2/rvEi9teyWtbF\nixd55plniI6O5vnnn2fChAmMGzeOxsZGcnNzycnJoV27dsTHx9OtWzfGjBmDq6sr7du3x2AwMGbM\nGGbNmmVbdP/WW2/x8ccfM2TIEEaMGGE7ZlNERETsS+G+iPzXysrKmD59OgAbN24kMjKSzp07A18G\n/HV1dRQUFFBaWkpISAiLFy+2ncd7rWB/2bJl5ObmsmDBAu6++2479EpEWtq9ezfLly/npZde4rXX\nXuP9999n48aN1NXV0bVrV1xdXfHz86Nz584cPXqUAwcOYDQamTx5Mv7+/jQ1NdkmFuHrJwI1SSji\nGIxGI01NTTg5OTFhwoSvDfitJfrz8/MpLS0lODiY2NhYDAaDFuyIiIjYifX6+8orr/Dqq6/SqVMn\n5s2bx5QpU+jQoQNHjx5l06ZN1NfXExERga+vL6WlpeTl5ZGdnc3atWt55513OHjwIIsWLVKVLREH\nZA3216xZw/Hjx/n8889ZuHAhiYmJXL58GZPJRL9+/TCbzWzfvp3t27fj4+NDVFQUXl5e9OnTh+HD\nhzNlyhRSUlKIiYkB4I033uDNN9/Ey8uL//u//2tVqVNERETsS+G+iPzXjEYjK1eupK6uDoD169cT\nHR1Np06dgC8D/oaGBiorKzEajcTHx9t26bYsE2gN9nfs2MHChQt55JFHAO3kFbGnnJwcfvSjH1FU\nVERAQACxsbG4urpy7tw5IiMjGTx4sG18+vn52Xbw7969m4yMDLp3705YWJh28Io4sK8utLP6TwP+\nnTt3EhISQkxMjMa9iIiIHRUUFPDMM8/QsWNHlixZwoABA4iOjiYxMZGioiIqKioICgpi9OjReHl5\nkZiYSFVVFYcOHaKqqoqoqCgWLFjAtGnTAD2biziiTz75hEWLFnHkyBFqamr4wQ9+QHBwMEaj0fYc\n3qdPH1vAn5OTQ/v27YmKisLFxQW4UpL//fffZ86cObz33nusXbuWgIAAXnvtNVvgLyIiIo5B4b6I\n/FfMZjNubm5cuHCBiooKoqKiqKmpYd26dcTExNjK6fv5+REaGmo7X3vPnj2YTCZuu+226wb7M2fO\ntP0fOsdPxD5KSkr44Q9/SJs2bXjsscdYunQpkydPZvLkyfTv35+JEydiMplaBffWHfzV1dWUlpaS\nnZ3N7bffTnBwsAJ+EQdlMBiuGpvNzc0YDAZMJhONjY04Ozv/WwF/fn4+gYGBOlpHRETEjrZu3cq6\ndev4xS9+Qd++fW3//sc//pF3332X5ORkfvWrX9HU1ERqaioJCQkMHjyYYcOGMX36dH7wgx/Qu3dv\nQM/mIo4qKCiI8vJycnNzuXz5MklJSXTs2BGLxYLRaLSV7m8Z8Ofn5+Pr60t0dDQuLi4YDAb+/ve/\nU1hYSFhYGMOHD+epp54iOjra3t0TERGRr1C4LyL/FYPBgNFoxNXVlc8++4whQ4bQv39/8vPzSUtL\naxXw+/v7ExERQX19Pfn5+ezduxcXFxe6d+9OeXk5v/3tb8nNzVWwL+Igjh8/zlNPPUVNTQ2LFi3i\nnnvuAa6cw+3q6kpgYCBGo/Ga49TX17dVwJ+ZmUlCQgJBQUEK+EUcTGZmJkuWLOHgwYPU1tbS1NRk\nK7tpHdvWRTwmk4kJEyawfft2ysvLrxnwh4eHc+bMGUpKSkhOTrZV6hEREZHvVsuzt6333CtWrKC4\nuJhp06YRFhYGXCnTv3z5cpKSknjssceIiIjg7rvv5vPPP2fs2LEEBATg6+uLr68vHh4etu/Ts7mI\n47FYLLi7u5OSksKBAweorKwkMzOT5ORkAgICMJvNmEymVgE/wJYtW8jIyGDcuHH4+flhNBoZMWIE\n48eP57777iM5ORlfX187905ERESuReG+iPxPBAcHc+7cOT788EN+/etfExMTQ0ZGxlUBv7VEvzXg\nr6ys5OTJk3z44YcK9kUchHUisLi4mL/85S/84Ac/YNasWQC2iYGWWgb1ZrOZuro6XFxcaNeuHV27\ndrUF/Js2baJHjx6Ehobe0P6IyPXt37+fGTNm8MUXX5Cbm8uqVav4+OOP2bBhA5s3b+b8+fMcP34c\nV1dXXFxcMJvNODs7M3HiRIqLiyktLWXDhg0MHz4cLy8vAAICAggNDWXYsGGMHj3azj0UERH5fmh5\n3N2GDRvw8fHB3d2d0tJStm/fzqBBg+jQoQPLly/n1VdfJSkpifnz53Pbbbfh5ORERkYGBw8eZPr0\n6dcM9LQ4V8T+rnUshvXvbm5u9O/fnwMHDlBeXk5WVhaJiYnXDPgTExNpaGhg9OjRDBkypNV3t2vX\nDmdn56ue+0VERMRxKNwXkf+aNQh0d3cnNTWVyspKnnjiCVxcXMjOzv7agL+4uJjt27dz5MgRBfsi\nDsI6OfDSSy+xb98+nnrqKfz9/b9xXNbX1/Puu+/yxhtvEB0dTVBQEL6+vsTFxXHo0CHKy8tJSEig\nW7duN6orIvINampqOH/+PEePHqWhoYG2bdvSpk0bLly4wO7du8nIyGDNmjWsWrWK1NRU8vLyOHLk\nCPX19UyZMoWsrCz279/P+vXrWwX8gYGBREVFATqbV0RE5Eaw3qcvW7aM5557jvr6elJSUqivr+fz\nzz+nqqqKgwcP8vrrr9uC/bi4ONt1euXKlRw+fJj777+fdu3a2bk3IvJVLRfwFBcXU1RURGpqKkeP\nHsXNzY127drh5ubGgAEDqKyspKioiG3bttGnT59rBvz9+/enR48egObgREREbjYK90XkP9Jyot76\nZ3BwMPv27WPjxo0kJyfbduvt2LHjugH/hQsXKC8vZ9GiRQr2RRzMu+++S11dHffffz9eXl7fGM45\nOTnx3nvvsX79egIDA+nTpw8Gg8FWoj85OZlx48bdoNaLyLdhPWezoaGBvXv3EhwczP3338/cuXPp\n1q0bHTp0oLGxkUuXLrF//34qKirIyspi5cqVZGZmcv78eS5fvsy5c+dYs2YNI0aMoG3btq3+DwX7\nIiIi352WpfiLior4+c9/TlJSEnfddRfh4eEEBQVRVFREcXExO3fupG/fvjzzzDN06NABuHKd3rFj\nB2+88Qbx8fFMmTIFNzc3e3ZJRL6iZQW9V199lSVLlrBy5Uq2b9/Ohg0bWLFiBc7Oznh7exMUFMTA\ngQOpqqqiqKiIzMzMqwL+r9L9uoiIyM1F4b6IfCvZ2dl8+umnuLq6EhQUdNWNvzXs79q1KytXruTI\nkSOMGTOGPn36YDQa2b59+zUD/tDQUEaNGsWECRNs36NgX8QxvPvuu5w7d46pU6fi7e39jbtvLRYL\n+/fvJzs7G1dXVyZMmGCr7OHv7090dDSgXbwijsI6Pn18fAgLC+PSpUts27aNkydP0qFDB8aNG0e/\nfv2YMGECd999N4MHDyY+Pp6OHTvS1NREfX09R44cwWw2A1BXV0fnzp2Ji4uzc89Evt8aGxsxmUy2\nMS4itzbr8/Nnn33G4cOHKSsr44UXXuD222+nsbERFxcX+vfvT0ZGBqdPn8bd3Z177rmHpqYmXFxc\nyMjIYPny5Rw+fJiFCxfSvXt3O/dIRL7Kej1/+eWXefXVV4mMjGT27NmMGTOGgIAAKisrSU9Pp7m5\nmejoaAIDA0lKSmL//v0UFRWRk5NDr169aN++vZ17IiJf1XKRnojIt+Vk7waIiOPLyspixowZAKxe\nvZqePXvy2GOP4ePjg5ubGxaLxXYT4uPjQ0pKCmvXriUjI4OUlBRmz56N0WjkD3/4A/PmzcNgMNh2\n9Xft2tX2/yjYF3EM1rEYFBREWVkZGzZs4OGHH/7G8Wkt7ffHP/6RixcvAtfeAaBxLuIYWo7P2NhY\nHnjgASwWCx9//DEvv/wyly5dYsyYMbi6uuLq6kpCQgIJCQkAtjFeUlJCTU0N+fn5xMfHM2nSJLv0\nRUSueP0j7DvKAAAgAElEQVT11zl16hRz587F3d1dAb/I98T777/PU089RVBQEGaz2bbz3tnZmebm\nZtq3b88rr7zC448/zhdffMG4ceMIDAzE3d2dwsJCmpubefLJJxkzZgyAfneIOKDs7GzefPNNevTo\nwbPPPkvnzp0BuPPOOzl+/Djp6ekcO3aMNm3aYDab8fb25rnnnsNkMpGWlsZDDz3E2rVr8fHx0fgW\ncSDWahpvvPEGnTp1IiUlxc4tEpGbgXbui8jXqqur47HHHrOt8L948SKlpaWkpqZSXV1NUFAQ/v7+\ntvc7OzsTFBTEe++9h5eXl+2GpHfv3jg5OZGTk0NaWhphYWF06dKl1f+lhwsRx2AdiyaTidTUVC5e\nvMhtt93Waqx/lXU3flVVFR999BGBgYFMmTJFE4MiDuT06dMcPnyYtLQ0iouLOX/+PHV1dbax7ePj\nQ0REBE1NTWRlZVFVVUW7du3o0KEDBoOBpqYmjEYjFosFFxcXXFxcCAsLo3PnziQlJdGtWzdAOw9E\n7GXp0qX86U9/4tixY9TX1xMfH4+zs7OuxSLfA926dSM7O5uKigrgyiL6zp0720pwWywWfH19GT9+\nPLW1tdTV1bF3717q6+vp27cvjz32GHfddRegRfcijmrjxo1kZGTw1FNPkZiYaPv3P/3pT7z33nsk\nJyfz//7f/6OpqYkdO3YQGxuLm5sb/fr1o6ysjDFjxpCcnKx7AhEHtG3bNhYvXkxsbCyJiYm6fxeR\nb6RwX0S+lrOzMwkJCRQVFXHs2DGioqIYP348cGUX/4oVK2yT+CEhIQC0b9+empoaPvzwQ/r3709Q\nUBBwJeAH2LFjBz169KBXr1726ZSIfCtt2rShrKyMoqIivLy86Ny5M+7u7le9r2X1jk2bNrF161Ye\neeQRevToAWjhjogjKCkp4de//jV//vOfWbduHVu2bGH16tV88sknNDc307ZtW/z9/fH19SU8PJym\npiYyMzOprKzE29ubDh06XLPMd8vFQFYKBERuvAsXLvDxxx9TVVXFxYsX2b9/Pw0NDfTo0UMBv8gt\nrqmpCZPJxJQpU8jPz6eqqori4mIGDhyIn5+f7Xm9ubkZNzc3Bg4cyNixYxk9ejQPPPAAY8eOtVXU\nU7Av4ngsFgsAH3zwAeXl5TzyyCMEBAQA8Morr7B8+XKSkpKYM2cOwcHBTJ06lXXr1jFlyhTc3d1x\nc3Nj9OjR9O3bF9AxeSKOqK6ujvT0dEpKShg6dCjt2rWzd5NExMEp3BeRbxQQEEBCQgLbt2+nsrIS\nd3d3li5dSlhYGPv27WPdunWkpaVx+vRpoqOjadOmDT4+Pnz66acYjUbbA4TRaKRPnz4kJyfbyv2J\niP1db8Lfy8sLi8VCVlYWubm5uLu7ExERgaenJ3DlTF+DwWCbAMzLy+OFF17A1dWVhx9+mKCgIE0a\niDiAnJwcfvzjH7N3714GDRrE2LFjue222wgKCmL37t3s2LGDqqoqXFxc6NSp09cG/AaDQSGhiANy\ndXXl3LlzZGRkEBgYyKVLl8jPz8disSjgF7nJ7dy5k+rqagwGg+0+HL4M6IxGo626zsSJEykoKKC8\nvJxNmzbZAoLm5mbbIj2j0YiLiwt+fn54eHjg5ORku74r2BdxPAaDAYPBQF5eHkVFRYwaNYrw8HCW\nL1/Oq6++SlJSEgsWLKBbt264uLiwevVqjh49yvTp0/Hy8gK+XIircS7imPz9/amuriY7O5uwsDBu\nv/12LcQRka+lcF9EvhV/f3969+5Nbm4uO3fu5MCBA8yfP5/x48cTHh7Ozp07yczMJD09nYMHDzJq\n1ChOnjzJpk2bGDduHN7e3ly+fBmTyURgYCCgsr0i9lReXs6uXbuIioqyPSy0HJPWACAuLg64cr5f\nXl4eFy9exNnZmYiICEwmk+2zW7Zs4eWXX6aiooInnniCoUOH2qdjItJKVlYWjzzyCH5+fixatIj5\n8+eTmJhIUlISI0eOpEuXLtTU1JCbm0tFRQVubm7ExcUp4Be5iVjHY/fu3cnNzeXUqVM8+uijVFRU\nkJWVpYBf5CZWUFDAPffcw+rVq8nMzMTFxQUPDw+8vb1bjeWWAf+dd95JYWEhZWVlbNiwoVXAf63n\nb+v36HeDiGOyXrvPnz9PWloaZ86cobKykj/+8Y8kJSUxf/584uLibEHgJ598wokTJ3jggQds4b6V\nxrmIfV3rXtw6dqOioli/fj2HDh1i8uTJODk56d5dRK5L4b6IfGvWgD8/P5/8/Hx27drFqFGj6NWr\nFwMHDiQ6OpqKigo2b97MZ599hqenJ7t37+bs2bMMHz68VcleUNleEXvJzMzkwQcfZMWKFRw4cIBz\n587RuXNnnJycbO9peb5279698fLyorKyku3bt7N+/XqOHj3KoUOHKCgo4NNPP+X555+nurqaJ598\nkvvuuw+4fkUAEbkxsrKymDlzJqGhoSxYsIA777wTuFJ1A65ch2NiYujQoQMNDQ3k5uZy+PBhAgMD\niY6OxtfXl8jISBobG8nMzOTAgQN4eHjQqVMnjW0RB2IwGGyhnZOTE2vWrCEsLIyRI0dSWFhIXl4e\nZrNZAb/ITeby5cv84x//oKioiMDAQPbv38+GDRvYtGkTBw8eJDQ0FGdnZ1xdXbFYLJhMJtuC+n83\n4BcRx2W9Zvv4+JCRkUFRURGFhYX079+fX/7yl3Tq1Mn2vpycHP7617/Sp08fJk6ciLOzs675Ig6i\n5dE3tbW1uLi4AF+OcWdnZ0pLS8nOzsbf35/4+HiNXxG5LoX7IvJv8ff3p1evXuTn59smCwYNGkRw\ncDDx8fHcdddduLi4cPbsWXJycgA4d+4cQ4cOxdvb286tFxGApUuXsnfvXjp37kxZWRlr165l8+bN\nXLx4EVdXV9v5fUaj0TZBePvttxMbG4ufnx/FxcWUlJSwdetWMjMz+eKLL+jWrRtPPPEEU6dOBXRe\np4i9ZWdnM2vWLMLDw5k3bx6jRo0CroxNJycnjEajLeALDAwkNDSUU6dOsWPHDgwGAwMGDMDZ2Rkf\nHx8iIyNpbm4mPT2dXbt2kZKSgo+Pj517KCItWa+57dq1Y8uWLdTU1DBt2jTCwsLIy8ujsLCQ5uZm\nBfwiNxGTyYTJZGL16tUMGTKEe+65h8jISAoKCsjPzyc9PZ3t27cTGBiIi4sLnp6emEwmW4DfMuDf\ntGkTgwcP1hm+Ig7k5MmTWCwWW8D3dcxmMx4eHvTq1YvU1FTq6+sJDQ3l4Ycf5tKlSzg5ObFt2zZe\nfvlljh49yrx584iLi9O1XsRBtJwje+WVV3jvvffw9fUlLCzM9h5nZ2ciIyNZsWIFAGPHjrVLW0Xk\n5qBwX0SAKyHA73//e4KDgzGZTLRp08b22lfP+GkZ8BcVFbF7924GDx6Mm5sbJpOJxMREhgwZQmho\nKHv37uWhhx4iOTnZHt0SkWsIDAxk48aNREZG8sILL3D06FF27dpFRkYGn376KfX19dTW1hIbG9uq\n4kZERAQDBgxg6NChJCUl0a1bN4YOHcqsWbOYMmUKvXr1AhTsi9hbSUkJ9913H0ajkZ/97GdMmjQJ\nwHberlXLa3tAQAB+fn7k5ORQUFBATEwMXbp0Aa7sEgoPD6e2tpaRI0eSkpJyYzskIle51u5bi8WC\np6cn/v7+vP322/To0YO7774bd3d3CgoKKCgoUMAvcpMJDw+nqqqKdevWMX36dKZNm8bgwYMxmUzU\n1NRQVFTEqlWryM3N5ezZswQHB+Pu7m673lsD/l27dvHJJ59w7733aieviAPIzs7mJz/5CV5eXkRF\nRX1jwG8wGDCbzQQEBHD77bezefNmKioqbAv1165dy5///GeOHDnCk08+yV133QWomp6II2j5HL5y\n5UrefvttioqK+Oyzzzh48CDnz5+3HYnp5+fHnj17WL9+PXFxcURHR9uz6SLiwBTuiwi7du3igQce\nsN08ZGZm4unpibu7O23btrU9CLQM+a8X8Lu6umI2m2nTpg3du3dnzJgx9O/fH9BDhYijcHZ2JjMz\nk7y8PIYOHcqjjz5KQkICXl5ethJ/a9asobS0lPr6enx8fFqd1efn50dMTAw9e/YkPj6e4OBg2rZt\nC1wZ5wr2RezHbDazceNGysvLaWhowMfHh65du+Ll5XXdsWm9PoeFheHk5MSWLVtoaGiw7fY3Go34\n+Phwxx130KdPn1afEZEba+XKlVddl63j0TomPTw8KCwsZMuWLQwfPpwePXrQtm1bCgsLyc/PV8Av\ncpO5fPkya9asoaKiguHDhxMWFkZiYiJTp07F19eXqqoqKioqyM7OJisri5KSEmJiYmhqasLDw4MJ\nEyaQmZnJmDFjSElJ0ZgXsbOmpiZefvll8vPzqaqqsi2k/TYBP0BISAgjRozg5MmTnDhxgtLSUk6f\nPk1CQgJz585VNT0RB9Nyx/7bb7/N888/T+fOnamuriY3N5cNGzZQUFBAY2MjoaGhhIWF8cknn2Cx\nWEhKStKiPBG5JoX7IkJJSQmrVq2iU6dOREVFkZubS1paGhkZGRw/fpygoCBcXV1bPWhYVwxfbwe/\ntZS3h4cHoBBAxJF4eHjQrl071q5di5OTEyNHjiQ8PJzk5GT69+/P7bffzo4dO/jiiy/Yvn07q1at\nwmg0Ul9f36pk2LV2DWqci9iXwWAgNjYWb29vKioqyM/P5/Tp03Tp0uW6x+NYdwIZDAaCgoLYsGED\nx44d45577sHNzc32PldXV0DXdBF7Wbp0KS+88AJr167FYDBgMpkIDAy8aiGup6cnDQ0NrF69mi5d\nuhAfH09oaCi+vr62ct4K+EVuHp06dWLHjh3s3r2b3r17ExkZidFoxMXFhdOnT9tKdHfr1o1jx45R\nUlJCamoqJSUlXLp0iaioKKZPn06/fv2AqyvziciNZTQa6d27t+1IrPLycvz8/L5VwA9XFgf4+Pgw\naNAgJkyYwPDhw5kxYwZ33nknt912G6BgX8QRtLze/uUvf+EPf/gDISEhjB49mqFDhzJw4ED69u3L\n/v37KS8vJy0tjY0bN5KUlER1dTXFxcWMHDkSX19f3a+LyFUU7osIMTExVFVVsXv3bv7whz8wePBg\nXFxcbKV509PTyc/PJygoCCcnJzw8PK67g3/nzp0MGTKkVVl/UOAn4mg8PT3Zvn07W7duZcCAAQQF\nBQEQHBzMyZMn2bp1K3V1dcTExHDgwAEyMzNZsWIFZ86c4dy5c4SGhrYK/UTEMVjP7YyNjcXNzY19\n+/ZRUFDAuXPn6Ny589cG/AAuLi6sXr2a48ePc9999+Hu7n7d94rIjfPJJ5/w4osvAlBbW0t2djYb\nNmzAbDbTvn17vL29MRgMNDU1YTQa6dGjB9u2bWP79u3cddddeHl5ERYWho+PDwUFBRQXF3Pu3Dl6\n9+6Ns7OznXsnItdjXUxrMBhIS0vDbDYzcuRIjEYj69at4ze/+Q0nT55k2bJlPPHEE/Tq1YtTp05x\n4sQJ9uzZw6ZNm0hMTCQyMhJQlS0RR2A2m/Hw8KBXr14cO3aM/Px89uzZg6+v7zcG/Gaz2Vbe28nJ\niTZt2tgq6bVciKtxLmJfLcfhgQMH2Lx5M01NTfzud7+jU6dOAHh7exMdHc3w4cO54447aGpqYseO\nHaxevZozZ85w4cIFzp8/bzuOR0SkJYX7It9z1pV/58+fZ+3atRw6dIhHH32UESNGkJycDEBNTQ0F\nBQWsXbuW/Px8amtrCQoKsoX81oA/OzubXbt20aNHD2JiYuzcMxH5Op6enpw5c4bt27djsVgYOHAg\nJpOJDRs28Oyzz3LixAl++9vf8swzz+Dt7U2bNm2oqKigpKSE9evXEx8fr3Eu4oAMBgMWiwVnZ2c6\ndOhgC/jz8/O/NuC3WCy2z//rX/+iqamJBx988FvtHhKR796xY8e4cOEChw4dIjw8nG7dunHq1Ck2\nbtzItm3bOHbsGPHx8baFd01NTVy4cIFVq1bRrl074uPjadOmDREREfj6+rJ+/Xqqq6uZPHnyNRfx\niIhjsAYDnp6etrK9ycnJlJaW8pvf/IZjx47x61//mkmTJmEymQgJCWHs2LHExcXh5eXF0KFDmTx5\nsu37tEBPxP6sVbPatGlDYmKiLeD/ph38LXfjr1mzht27dxMbG6tqeiIOwLpLv+WiPIDf/va3LF++\nnD179pCQkMDdd9/d6tnbYrHQpk0bwsPDGTlyJL169SI0NJSdO3diMBi4ePEiI0eOxNPTU7v3RaQV\nhfsi33PWm4KuXbuydetWSktL6dmzJ+Hh4QQGBjJgwADuu+8+du7cyb59+6iurrbtAiouLiY6Ohon\nJydCQ0Pp2bMnPXv2ZMyYMXbulYh8HetDR0xMDFu3buXQoUPcd999ZGdn8/TTT3Ps2DGee+4520Rg\njx49GDx4MAkJCZw9e5aZM2cyYcIEO/dCRK7n3w34W57XnZqayj/+8Q8mT57MsGHDNIEgYmfWo66i\no6Px9/fn1KlT7Nq1i969ezNixAiSkpLIyclh27ZtbNiwgdraWnx8fPD396dDhw6sW7eOw4cPM3Hi\nREwmE25uboSFhREZGcmPf/xjQkJC7N1FEfkGFosFb29vXF1d2bx5MydPnuSTTz6x3bO3PF/buqvX\neuRW7969ba/pei7iOP7dgP+rwf68efNYv34948aNw8fHx17dEBHgyJEjLFmyhKSkJFsFDas1a9aQ\nk5NDY2OjLcA3Go2tnsHhy0o94eHh9OnTh6SkJDw8PEhPT8fb25vExERdx0WkFYX7It9TLSfrm5ub\nMZlMWCwW1q9fj7u7O4MGDQLAZDKRmZnJhx9+SG1tLffeey8NDQ0cPXqU4uJiNm/eTGZmJkajkYED\nB9KlSxdAkwcijsw6Np2cnNi3bx+ZmZkUFxfz0Ucf2SYJ77rrLgBbeV8nJyeioqIYMmQIPXv2BDTO\nRRzZtQL+vXv3XlWiv+VEYV5eHsuWLaOpqYnZs2cTHh6uMS5iR8uWLePQoUN06NABZ2dnwsPDCQgI\noLq6mvT0dNq0acOdd97JrFmzMJvNVFVVkZqaSlpaGs7OzoSFhdGhQwf+8Y9/4OfnR/fu3QFwc3Oj\nS5cu+Pr62rmHIvJtWK/FRqOR9PR0ysrKqK2tZenSpbbFuNbr+fVKcet6LuJ4vm3Ab52zA1i1ahXz\n588HYNGiRQwZMsSeXRAR4Pjx4zz11FPs2bOHUaNGYTQaWbNmDR07dmTo0KE0NjaSm5vLvn37CA4O\nJi4uzva83vIa31JAQAChoaGsXLmSmpoaxowZg7Ozs67nImKjcF/ke6S8vJzKykpCQ0Nb3URYbyDc\n3NxYs2YNeXl59O3bl5CQEDZs2NBqJ++Pf/xjBg4cSFJSEocPH+bIkSNUVVVx++232wI/0OSBiKOz\nWCw4OTkRExPDypUrqaiooLa2tlWw3/I8Pyvr7gGd4yfi+L4p4O/YsaNtp09xcTG///3v2blzJ088\n8YSq8IjY2dKlS/nrX/+Kp6cnycnJtl1A4eHhBAUFcfz4cTZv3szx48fp2bMn48ePZ+zYsQBUVFSQ\nmppKRkYGZ8+e5fLly5w4cYK+ffvi6ekJ6F5d5GYUEBDA0aNHKSkpYdSoUTz++OOYzWbdl4vcxL4p\n4A8NDbUdn7Nq1SoWLFgAwC9+8QseeughQIvuReytrq6OVatWUV5eTkVFBQUFBbzwwgu2xbV9+vTB\nYrGQl5dHeno6MTExdOzY8aqAv6XGxkZ8fX3ZuXMn2dnZTJo0SVU6RKQVhfsi3xN79uxh0qRJHDhw\ngIiIiKsCfgBfX1+cnJzYtm0bt912G6dPn+bZZ5+9aidv27ZtCQ8PZ/To0XTt2pU777yz1Tl+IuL4\nrJMInp6eHD58mN27dzN16lR++tOfAq3L/l3v8yLi+L4u4D9//jwJCQkcOXKE3/72t+Tm5rJo0SIe\neOABQBOFIvayZMkS3n77bUaOHMns2bMJDg4Gvqy8ZT0+6+TJk2zdupXq6mrCwsKIjo4mKSmJXr16\nERsby5YtWygvL+f06dMcOnSIlJQUwsPD7dw7EflPWK/J/v7+bNmyhQsXLjBu3Djc3d11hI7ITe7r\nAv6AgAC6du1Kamoq8+bNA64E+/fffz/wzc/tIvLd8/b2ZvDgwezYsYO8vDxKSkoYPHgwDz/8MJ6e\nnhiNRvr06UNzczN5eXls3LiR6Ojorw34rRtt/vnPf3Lq1CmmTp2Kn5+fPbonIg5K4b7I98TBgwc5\nfPgwxcXFHDt2jKCgoGsG/BaLhbS0NLZt28a2bds4ceLEVTt5jUYjZrMZFxcXYmJiiIqKsr2mSQWR\nm4e1ckdTUxNr167l5MmTDBgwAD8/P41lkVvI9QL+wsJC9u7dy5o1a8jPz2fhwoXMnDkT0EShiL0s\nWbKEd955h+HDhzNnzhw6dOhge806+W8N+Nu3b8/JkyfZtm0bZ86cISgoiJCQEAIDA7n99tsZNGgQ\n7dq149SpU5w9e5Yf//jHtGvXzo69E5H/lPXevE2bNuTn51NYWEhjYyMDBw7UfbvILeB6Af/evXvZ\nt28fy5YtAxTsizgqX19f8vPzqaioAK5U27GO1cbGRpycnOjTpw9NTU3k5uZeFfB/dU69qamJn/zk\nJ2RmZhIcHMyDDz5oq+IhIgIK90W+N4KDg4mKiuLEiRNs2bKFkydPtgr4rTcRwcHBHDhwgJKSEurq\n6liyZAlTpkwBWpfhvtYEgiYVRG5OsbGxHDhwgJ07d9K9e3e6dOlCc3OzJgpEbiHXCvgPHDhAYWEh\nx44dY9GiRQr2ReysZbD/+OOPExsba3vNel1ueb9tDfhPnDjB1q1bOXv2LCEhIbad/n5+fvTu3ZtJ\nkyYxbdo07doXuclZLBZcXFyIjIxk9erV1NXVcccdd2jRjsgt4loBf2FhISUlJQD88pe/VLAv4qD2\n7t3LihUrbPfbe/bsobS0lMGDB+Pm5kZTUxMmk4k77rijVcAfExNDhw4drppTNxqNHDp0CCcnJ154\n4QVCQkLs0S0RcWAK90W+B6w784ODgwkJCaGmpuaaAX9jYyMmk4nAwECysrLw8fFhyZIlALbXROTW\ndObMGdLT09m/fz/jx4/Hzc3N3k0SkWv4b6rkfDXgd3JyYvfu3fz0pz9lxowZtu/XRKHIjfdNwb71\nPvz999+nffv2eHh4AFcH/GfOnCE0NJSgoCDgyph2c3PDy8vrxndKRP6nWl7HS0tLyc/PJyQkhISE\nBHs3TUT+R74a8B84cIB9+/axePHiVkdn6X5dxLH4+vrSqVMnpkyZwvjx49myZQvFxcV88cUXDB06\nFFdX12sG/KmpqYSHh9OlSxfbd1nn8RMTExkxYgTt27e3Y89ExFEp3Bf5HmhZev/rAn7rpKGLiwtb\nt26lrKwMgD59+ijYF7nFde3alZycHHbt2oWPjw/x8fGaMBBxEDt27ODjjz/mjjvu+K+r5LQMBmJj\nY0lJSWH48OGAJgpF7GXp0qW8/fbb1yzF3zLYnzdvHm+99RbR0dF06dLFdn//1YD//PnzBAQEEBIS\nojEtcosxGAy4u7tz6dIlNm3aRFJSksJ9kVvMVwP+O+64gzvvvBPQ/bqII/jqgntrha3AwEA8PDzw\n9vamd+/e5OTkUFxczJ49e64K+Pv168fFixcpKirijjvuoEePHrbvazmP7+zsbI8uishNQOG+yC3M\nYrHYbga+bcAP4ObmRlhYGGvWrKG+vp6BAwfi6elp+7yI3FqswcGFCxfYtm0bU6ZMoXPnzvZulogA\nWVlZPPTQQ9TX19OrVy98fX3/6++03hO4uLjg7+8PtA4QReTGee6553jnnXdISEjg+eefJywszDZh\n2HJcLly4kNWrVzNu3DjuvvtuvLy8Wt3fWwP+mpoaNm3aRGNjIykpKf+fvfuOy7Ls/z/+ugYgyBIQ\nudgCAoobcYGKC3GUZpaa2bL6WpqWq2zclZa5t96l3WWOlt65cG9BhihbRAUVVBAcqGDKvH5/+LvO\nQK27YV6En+fj0UMDOeH448Nxnsf7PD4HWq3WyCMUQjxIhpp3cXGhQ4cOSuAnz+pC1C6GgL9u3bp4\nenoCcr8uRE1QtQ6joqLYvn07q1atIj09ndzcXPz8/FCr1dSvX/9XA/6srCzs7OwICQmhY8eOhIeH\n3/N9ZE4XQvwvEu4LUctcuHCB3NxcHBwclFAffnnYN7TX1+l06HQ6rl69et+AX6PRkJKSQkJCAn5+\nfjRu3FhuLISopQxv/puZmREYGEi/fv2M/BMJIeBOsP/yyy/j6urKG2+8QVBQ0AO79t0hgFqtVnYc\nCCEejqKiItatW0d2djY3b96kbdu2yjmdZWVlyk6dCRMmEBERwRNPPMHYsWPR6XTVatjwp5ubGzY2\nNty+fZs33niD+vXrG2dgQoi/jaHeTU1N8fDwqPbxv3J0jxCi5rnf/brUuRDGU1lZqQT78+bNY+rU\nqRw6dIisrCwSEhLYu3cvhw8fpmnTptja2uLo6EhQUBAxMTEkJyeTnp6OmZkZ77//PnFxcfTs2RNX\nV1fl2lLbQog/QsJ9IWqRAwcOMHz4cP773/9y4MAB9uzZw7Vr1ygqKkKr1SpnbRoW7p2dnXFxceHS\npUtERkaSn5+Pk5MTrq6uWFpaUlJSwoEDB8jIyOCxxx7D3NzcmMMTQvzN6tevr+zYLy0tlV0BQhhR\ndHQ0I0aMwM3NjYkTJ9KrVy/gwezMq9rOc/Xq1Rw4cIB27dpJsC/EQ3T27FkaNGhA69atKSoqIjk5\nmT179uDj44OXl5cyB1cN9t944w2cnZ2V3wNVa/nixYtYWlri6elJ165d5WxOIWoQQ83ebw7/M4v5\nVWv/v//9LwkJCTRv3lxCASGMSOpciNrPUH+ff/45S5YsoU2bNnz88ce88MIL9OnTh7Nnz5KQkEBy\ncjKtWrXCzs6O+vXrExQURHx8PElJSezevZvCwkIGDhxY7eV9qW0hxB8lPfqEqEX++9//cvv2bbRa\nLXw2Si4AACAASURBVCkpKVRUVLBv3z4ArKys8PX1pUGDBgQHB2NtbU1gYCDNmjVjzJgx2Nvbs2HD\nBkxNTSkvLyc4OJj+/fuzatUqhgwZ8kDaAAsh/ppLly4BVNuJ96DO3KvaWmzHjh2o1WpCQkLkpR4h\njKBqsD9+/HjCwsKAB/M2/90LhUuWLKGwsJAhQ4YoXX+EEH+vTz/9lIyMDN5//338/Px4/fXX0ev1\nbNiwgUmTJjF//nxCQkJ+d7C/bt06Dhw4wDPPPEOHDh1k7haiBql6j52fn8+1a9coLi7Gzs4OLy+v\nP3wff3ftz507l/Lycvr06SPP7EIYidS5EI+O9PR0Vq9ejbe3N++++y7+/v7K54KCgkhLS8Pc3Bxr\na2uljv39/fnyyy/56KOPMDMzo3PnzgwaNAiQY3WEEH+ehPtC1CILFy5k7Nix7NixA61Wy1NPPYW3\ntzfbtm0jOzubpKQkKioq2Lp1KwA6nQ4bGxtatWrFrVu3sLa2Zv/+/Wi1WlQqFR07dmT+/Pn4+voC\ncsMhhDEdPHiQDz/8kAYNGjBs2DDatm1LgwYNHkiwX7W12Lp165gyZQp+fn60b9/+L19bCPHH3B3s\nG3bsG4J9wzx84sQJXF1dqVu37u++9v0WCisrK9m4caO07xbiIZk+fTqrVq2ie/fuSlctNzc3Ro0a\nBcCGDRt46623aNKkCXFxcTzxxBOMGjXqN4P9mTNnolKpePvtt402LiHEvareY69YsYINGzZw9uxZ\nbt++jY2NDe3atePNN9/E1dUVU1PT33W9qrU/b948ysrKWL16tQR+QhiJ1LkQj5bz589z+fJlRo0a\nVS3YX7hwIcuXLyckJISPPvqIGzdu8M033zB+/HhMTU3R6XT8+9//pry8XPld8KA26wghHk3Sll+I\nWqK8vBy1Wk3v3r3JyMggMzOTc+fO8e677zJixAgef/xxevfujbe3N40aNeLnn3+moqKC06dPk5aW\nRmZmJiUlJQCcPn2a3NxcOnXqhLu7OyDBvhDGVFRUxKuvvsrFixcpLy9n48aNREdHc/78eXx8fIA7\n527+VivAX3O/xQOVSsXChQtxcXH528YkhLhXTEwMI0aMwN3dnXHjxhEeHg7cG+xv2rSJESNG4OTk\nREBAwO+q9/sF+6WlpaxevVo5jkMI8feaNm0a33zzDWFhYbz11lt4eHgoc7aNjQ1+fn4UFxeTnJzM\nhQsX6NixIzNnzsTe3p6KigrlrF1DLa9du5Z58+ZRWVnJqlWr8PLyMvIIhRBVGebnOXPmsHDhQgDC\nwsLw8/OjoKCApKQkYmNj0el0uLq6otX++v6bX5vH16xZI/O4EEYkdS7Eo8Fwz75lyxbi4+MJDw+n\ncePGACxevJglS5YQHBzMW2+9hY+PD6NHj2bHjh20bdsWNzc39Ho9arVaeRnI8P9CCPFnyc59IWoJ\nrVartAJbvHixsoN/4MCBrFixgiZNmuDo6EizZs0AKC4upry8nNTUVM6fP09mZiaJiYkUFxeTk5ND\n9+7dq+3ik2BfCOMxMzOjW7dubNy4keDgYJycnFi5ciX/+c9/2LFjBz4+Przyyis0bNgQOzs7pV7/\nV8gviwdC1ByHDx/mxRdfpF69eowdO/ZXg/2IiAgmTZqEt7c3Li4uv2tBQGpdCOObMWMGK1euJCws\njLFjx+Lt7Q1Uv8d2c3Pj9ddfVzpqJCUlkZSURIcOHdBoNJSXlyuhgCHYLy0t5dtvv1U6bQkhapaI\niAiWL19Ox44dmTRpkrLLr7y8nH79+pGVlUVkZCTt27fHzMzsvteQeVyImk3qXIhHh2GDTU5ODgBL\nly5l8eLFBAcHM378eJo0aQKAq6srSUlJXL9+Hbh3XV3W2YUQf5WE+0LUIhqNRgn4FyxYwJtvvsn2\n7dt5/vnnWbNmDb6+vpSXl6PRaLCwsECtVtOpUyfl60tKSigtLSU7O5umTZsCsmNfiJrA1NSULl26\n8O2333LlyhXGjRtHv379WL16NQkJCezfv5/o6GhatGhB9+7deeKJJ7CwsMDExORXa1gWD4SoOW7d\nusXixYsBsLW1xcbGplonDkOtRkREMGHCBPz9/Zk4cSLBwcH/89pS60IY3+zZs/n666/x8fFhxIgR\nSrB/vznazc2N0aNHo1Kp2LBhA2+88QYzZsyge/fuEuwL8Q9iqO+YmBhUKhWvv/56tfa9K1as4OzZ\ns3Tu3JlXX32VW7ducfPmTZycnKrN3TKPC1FzSZ0LUTvdr12+4Z7d0OF2+fLlZGZmsmvXLkJCQhg7\ndqwS7AOo1WrMzc1xdnZ+eD+4EOKRIm35hahl1Gq10rYzPDyczMxM0tPTiYiIIDQ0lPr161c7E6zq\n2Z0mJiaYmZlRv379e87zFEIYl6enJ2fPnuXgwYMEBQURGBhIu3bt6Nu3L3Xq1EGlUhEXF0dUVBRH\njhwhOTkZHx8f1Gp1td0Ber2+WlgoiwdCGJ+JiQmNGzcmJyeH1NRUzp49i4ODA87OzpiYmADVg/0J\nEyYQEhIC3Klp+GWxoaysTJnjZaFQCOObNm0aX3/9NQA3btzAx8cHT09PZe6+H0OL/qKiIlJSUjh4\n8CD+/v54eHiwdu1a5s6dS1lZmQT7QtRgKpWK4uJilixZQt26dRk/frwyPy9evJj58+cru/xMTU15\n8sknuXDhAmFhYcrvBpnHhajZpM6FqH0Mm+YA4uLiOHnyJKdOncLDwwO1Wo2joyMmJiZER0dz+vRp\nmjZtypQpU6q92HP48GEWL16Mh4cHAwcOxMbGxljDEULUYhLuC1EL/Z6A3/B5wwNF1cXF+31MCGF8\nRUVF7Nq1i/Pnz9OrVy8sLS2xsLCgXbt23Lx5k6SkJEpKSrh58ybJycns3LmTtLQ05aUdMzOzau29\nZfFACOO6dOkSdevWBcDBwYEmTZqQlZVFQkICOTk5ODk50bBhQ7Zt28b48eP/Z7B/9OhRvvnmGxo1\naoSVlZXUuhBG9tlnn7Fy5Up69+5N+/btSUpKIioqCisrKxo1avSrrXnh3oB/3759XLp0idWrV8uO\nfSH+QdavX09xcTHPPvssWq2WRYsWKefyGtr3Xrp0iW+//RYTExOeeuopAHkZV4h/EKlzIWqHqjW5\ndOlSpkyZQkREBFu3biU3NxdHR0caNGiAu7s7RUVFpKenA+Dv74+Xlxd6vZ4DBw6wYMECzp8/z4QJ\nE2jXrp0xhySEqMUk3BeilvojAb8QouYoLi5Gq9Xe9+Uaf39/YmJiSE9Pp23btri5uQGwZ88e5s2b\nx5UrV3jvvfcYMWIEFy5cIC8vj+PHj7N161ZiYmJo3rw5Dg4OgCweCGFscXFxjBw5EhMTE5o1awaA\nvb09TZs2JSsri8TERPLy8sjKymL69Ok0btyY8ePHK8fp3B3sp6SksGDBArZu3Urz5s2V0G/VqlUs\nWbJEal2Ih+yzzz7jm2++oUePHkycOJHHHnsMuLOTJzY2Fmtr6z8c8KekpGBiYqIctyWEqHkMnfEq\nKioASExMJCEhAS8vL2JiYpg3b161wE+v13P79m2+//57AJ5++ulqzwJr1qxh8eLFMo8LUYNInQtR\nOxlq8uuvv2bu3Lk4OjrSo0cPcnNzSU5OJi8vD3d3d7y9vfHy8qKiooK4uDh27NhBREQEq1at4rvv\nvuPSpUtMnjyZIUOGAHLkrRDi7yHhvhC12G8F/F27dsXBwUECfiFqkAMHDvCvf/2LZs2aKSG8gaE1\nmEqlYufOnWi1Wrp3786+ffuYMmUKFy9e5JNPPmHo0KHodDr69u1LQEAANjY2pKSkMGLECHr06AHc\nOat39uzZVFZWsnr1alk8EOIhy8jIYMiQIRQVFXH69GksLCyU8/mqBvxHjhwhMTERNzc3Jk6cSJcu\nXYD7B/uzZ88mLi6OSZMmMXjwYOV7ffHFFxw7dox169ZJrQvxkPz444/Mnz+fsLAw3nzzTTw9PQFo\n27Yt8McDfn9/f3Jzc8nOzmbt2rU0atToYQxDCPE7VFZW3rcLnlqtRqPRUFlZyfbt29m1axdRUVF0\n6dKFcePGKfO+SqXi8OHDbNq0if79+9OtWzclBLh58yZLly7lxIkTMo8LYURS50I8OiorK1m6dCl2\ndnbMmjWLwYMH06pVK/Lz8zl06BB5eXl4enri7+9Pp06d8PLyorCwkJKSEvR6Pd27d2fMmDEMGDBA\nuZ6suwsh/g4S7gtRy/1awL9+/XpCQ0NxdHQ09o8ohABiYmJ49dVX+fnnn+nWrRuurq7VPm94GLC0\ntGTbtm1kZGTw888/s2zZMiXYHzRoEAClpaWYmpri4eFB586d6du3L6GhoQBkZ2fzn//8h9zcXFav\nXl3tXDAhxMNx9epVDhw4QFFRETdu3CA1NRVbW1saN24M3An4AwICyMrKIi8vj3r16tG9e3ecnZ1R\nq9XV2gUagv3Dhw8zceJERowYAUBZWRkajYbevXszYMAAvLy8jDZeIR41Op0OKysrBg8erATx5eXl\nqNXqPxXwW1tb06JFC1588UXc3d0fyhiEEP/b3efyRkVFsW3bNnJzc9FoNDg4OODj40NZWRlHjx5F\nq9XSv39/evfurVwjLi6ORYsWcf36dUaOHImHh4cSHJqamhIYGMizzz4r87gQRiJ1LkTtdvemt6Ki\nIhYsWMDAgQMJCwsDwNnZmYYNG5Kbm6sE/G5ubjg7O+Pn50dYWBjDhg3jqaeeolevXkotS7AvhPg7\nSbgvRA137tw5bt++jaWl5Z++xt0B/4kTJzh58iR+fn5KK2AhhPFER0czYsQI3N3dee+995TduXfT\n6/XY2Nig0WjYt28fycnJXL9+nalTp1Y7t0+r1QK/7DCwtbVVFg9sbW0xMzNj9OjR+Pj4PJwBCiGq\nMTMzIy0tjaysLJo2bcrZs2c5cuQIDg4O9wT8mZmZHDt2jDNnzlC/fn2cnZ0xMTEBfj3Yr6ysRKvV\nUl5ejkajwcbGxmhjFeJRZG5uTuvWrat14al6P/5nA/6/8jwghHiwqr5ot3DhQj788EP27t1LYmIi\n+/btY//+/WRnZxMaGkqbNm24ceMGycnJxMbGcu3aNdLT04mMjGTu3LlkZ2fz9ttv8/jjj9/zfayt\nrWUeF8JIpM6FqN2qvryzZcsWdu7cyZ49eygsLKRr1674+vpSWlqKRqOhQYMG1QL+/Px8XFxc0Ol0\nmJmZodFoMDU1rdaCX1rxCyH+ThLuC1GDRUZG8txzz+Hk5IS/v79yw/FnVF1Q7NOnD82aNaNfv34P\n8KcVQvwZhmDfzc2N8ePH06tXL+De1n9Q/cEgMjKSGzdu8NZbb/Hcc88pX1P1reC7HygMDxk+Pj7Y\n2tr+reMSQvw6U1NTPD092bhxI61ateKJJ55g79699w34DS36ExISyMnJQafT4enpybFjx5g1a9Z9\ng33D7wHZJSDEw1VSUkJlZaVyjA5Un8//asAvhKg5DHX91VdfMX/+fJo3b86bb75Jz549cXd3JzU1\nlSNHjpCens7jjz9Oly5dsLCwICEhgYSEBGJjY0lMTMTR0ZEJEyYwdOhQ4P7PAEII45A6F6J2Mzwv\nz5s3j2nTpnH48GHS0tK4evUqN2/eJCwsjDp16igduO4O+K9evYpOp8PZ2Vm5ptS2EOJhkXBfiBoq\nOjqakSNHYm1tTb9+/R7I2ZpqtVq5ITGc/Wn4fyHEw/e/gv27HwoMH3dycuLMmTMcO3aMpk2b0qZN\nG2Wn7m+RhwwhaobKykocHBzIy8sjIiKCwYMH4+/vz/79+0lISMDe3v6+AX9iYiLnz5+nuLiYVatW\nER8f/6vBvhDi4YmJiWHbtm0sXryYzZs3k5eXh0qlwtnZ+Z65VwJ+If7Z7m7fO2/ePLRaLbNnzyY4\nOBh/f3+Cg4MJDg5m3759pKWlkZOTQ8+ePWnVqhWhoaF069aNxo0b8/LLLzNkyBA6duwIyDwuRE0h\ndS5E7VZ1d/3atWuZPXs2TZo0Yfjw4VhYWFBcXExGRgYVFRW0bNkSMzOzewL+/Px8Dhw4wJkzZ+jc\nuTN169Y18qiEEI8aCfeFqIEMgZ+LiwvvvvsuPXv2fKDXr7rIaDi7V0I/IR4uQ527uroyYcKEXw32\n9+7dy4EDB2jZsiUqlUr5vKOjI3v37iU/P5/HH38cCwsLqWUh/iEMNa7X69myZQu2trYMGzYMExMT\nDh069JsB/9GjR4mLi+PcuXMS7AtRA3zxxRd89tln7N+/n4KCAs6dO6ecuduyZUvq1Klzz9f8VsBv\na2uLl5fXfb9OCGF8VXf5HTt2jMTERPr27Uvv3r2Vuq6srMTR0ZEuXbqwY8cOEhMTcXNzw9/fHwcH\nBzw8PGjVqhWurq5KN62q7b+FEMYldS5E7XX3c/PGjRspLCxk9uzZ9OrVi6CgIOzt7ZXar6iooHnz\n5vcE/O7u7mRmZhIeHk5wcLARRySEeFRJuC9EDRMbG8tLL72Eu7s748aN+80W3X9U1RuY/fv3c/r0\naTw9PSUMFOIhi4uLY8SIEXh4ePDmm2/Su3dv4N5gPyIigrFjx6LVagkMDMTKykr5XN26dYmPjycp\nKYnS0lI6deoktSzEP0zDhg05e/Ysu3fvZujQoXTt2pXy8vLfDPgzMjK4cOEC77zzDi+99BIgwb4Q\nxjJr1iyWLl2Ku7s7H374IW+++SZBQUE0bNiQtm3b4u/v/6tf+2sBf3R0NI6OjjRv3lzmdSFqIL1e\nT3p6OpMmTSI1NZX8/Hx8fHzo0qUL8MsLfBUVFdjb29OgQQP27t2Lvb09oaGh1a5Ttcal3oWoOaTO\nhai9DHW4aNEi9uzZw+7du+ncuTNPPvkker0eS0tLPDw8sLW1JTExkSNHjtw34HdyciI0NFTpyiGb\nbYQQD5uE+0LUILGxsbz44ovo9XpeeeUVnn76aeDBLNpXvcbatWv58MMPKSgooHv37piamv7ln10I\n8fukpKQwbNgw9Ho9EydOpH///sD9g/0JEybg6+vLa6+9RkBAgHKNyspKzMzMcHFxYdeuXRQVFdGx\nY0dsbGyMMiYhxL1iY2NZu3YtjRo1QqvVotFoqrX4NNS8lZUVGzZs4Nq1a3Tr1o2mTZuiVquJioq6\nb8AfEBBAx44dGTRokHIdCfaFePhWr17NggUL6Nq1K++//z7t27fHxsYGb29vmjZt+qtHalVd+Ls7\n4L99+zZpaWlMnDgROzu7hzkcIcTvZOig5eTkxPbt2wFwd3enV69e1bpsGeZmjUbDpk2bKCwspF+/\nfkpXDgkAhKi5pM6FqN0uXLjABx98QEpKCmq1moCAAEJCQigrK0Oj0WBmZoaHhwf16tUjMTGRo0eP\nUlFRQYsWLaoF/BYWFoAE+0II45BwX4gaIjo6mpdeegm9Xg/A2bNnadu2LfXr13+gO/bXrVvHggUL\nKCkpYe7cuTg7O//ln10I8ftlZWURGxvLzZs3uXnzJt27d1ceDjQaDfBLsO/v78/EiRMJCQkBfnlg\nMPxOsLCwIDIykvT0dPr06YNOpzPauIQQv4iJieGll17iyJEjJCYmkp2djb+/f7Vz+Az17OjoSEJC\nAgkJCYSGhqLT6fD19cXU1FQJ+B0cHJQdwPXr18fHxweQYF8IYykoKGDWrFmYm5vz0UcfKS/gGBb6\nTExMgDsLhydPniQ7O5u8vDxcXFzuua+vGvB37NiRwYMH4+Li8tDHJIS4v7sX7A312qRJE1xdXdm9\nezenTp3C3t6eZs2aKbt54U6wZ2dnx08//YRWq+Xpp5+WF+uFqIGkzoV4tFhaWtKqVSvS09PJzs7m\n/Pnz9O7dG1tbW6X+zczMcHd3VwL+5ORkbt26RfPmze85PkuCfSGEMUi4L0QNYDh728PDgw8++IBr\n166RkZFBZGQkrVu3pkGDBn/62ncH+3PnzqWkpITvv/8ePz+/BzUEIcTv5OTkRJMmTTh27Bipqakk\nJSXRuXNnrKysgOrB/oQJE6oF+/DLQ8OFCxewtbXFzMyMpk2b8thjjxlnQEKIaq5evcrkyZMpKCjA\nxMSEixcvkpCQwJYtW1CpVJiamlZ7cU+r1eLl5cV3332HRqMhJCQECwsLfH19MTExISoqipiYGGxt\nbWnatGm17yWLCEIYR3p6OsuWLWPMmDF069aNiooK9Ho9Wq0WvV7P7du3WbRoEUuXLmX58uVs3ryZ\nn376iWvXruHn54elpeU9O/gNuwDNzc2NPDohhEHVjju3bt2iuLiYyspKJbjz9/fH3d2dXbt2cejQ\nIZydnfH390etViv1HRUVxZo1awgNDVWO3JP5W4iaQ+pciEeDXq9X1sgNL9n7+PiQlZXFmTNnOHXq\nFO3bt8fKyuqegN/Ozo6YmBiio6Pp2rWrbKwRQtQIEu4LYWQHDx5k5MiRuLq6MnbsWPr27cvjjz/O\n4cOHOXHiBIcOHfrTAf/9gv3S0lLWrFkjwb4QRqLRaNDpdHh5eXHs2DHS0tJITU1l4MCB7Nu3j7Fj\nx/7PYD8pKYm5c+dy+PBh/u///o927doBv7T5FkIYj1qtxtbWlosXL5Kbm0uXLl3w9PREr9ezfv16\nduzYgVqtxsHBAWtra1QqFSYmJpw5c4a9e/cSFBSEk5MT5ubm+Pn5oVariY2NpWvXrveE+0II44iM\njGT//v0EBwfTsmVL1Go1arWawsJCduzYwfz589mwYQOFhYWYmZnh6+vLpUuXSElJoby8nM6dO98z\nX8v8LUTNUlFRoXTVWrt2LV988QWLFy8mMTGROnXq4OXlBYCfnx+urq7s3LmT3bt3Y2ZmhqOjI1ZW\nVhw8eJBly5aRm5vLa6+9hre3t9S6EDWI1LkQtVvVNTKVSkVZWRlarZby8nK0Wi0ODg40atSIjIwM\nEhISOHfuHEFBQfcE/G5ublhZWREWFkaPHj2MPCohhLhDpTckBkKIh+7q1asMGjSIW7du8fHHHxMW\nFqZ8rqSkhJdffpn4+HicnZ1ZsGABzZo1+93XlmBfiJpBr9dTXl5OeXl5td14paWlHDlyhGnTppGZ\nmYmPjw+ZmZkEBAQwZswYunTponw9/LLon5KSwpw5c4iLi+O9995j+PDhD39QQojfVFJSQmRkJPPm\nzePSpUt069aN8PBwcnJymDt3Lrdv38bPz49OnTrx2muvUbduXeV4njFjxvD6668ru3qvXr1KdnY2\nrVq1MvawhHikFRYWUq9ePeDO0Rsvvvgijz32GGPGjKFevXrk5uYyY8YMTpw4weXLlzExMeGNN96g\nZcuWtG3blsjISCZPnszly5dZtWoVQUFBRh6REOLXVH2Wnjt3LsuWLUOr1aJWqyktLcXc3JxPPvmE\nvn37Kl+zYcMG3nnnHQB0Oh2VlZVcuXIFjUbDuHHjeP75540yFiHE/UmdC1G7VX15Z+fOncTHxxMX\nF4dOp8POzo6XX34Zb29vAI4ePcrUqVPJyMige/fufPjhhzg6Ola7RmlpqdLRQ47HE0LUBLJzXwgj\nUqvV+Pv7061bN7p37w7cuUGorKzExMSEvn37cvTo0T+8g1+CfSFqhoyMDL755huWLl3Kli1bOH/+\nPK6urlhaWqLVanFycsLb25u0tDSysrKwtLRk/Pjx9OzZE7h/sD979mwOHz7MxIkTeeGFF5R/J7sD\nhKg5tFotrq6uODs7k5KSQnx8PCYmJowePZrevXtjZ2fH4cOHiYqKYteuXdy+fZs2bdpQWVnJDz/8\nQJ8+fbC2tgbA3Nxcafsn3TmEMI63336bPXv2EB4eDtyZl1NSUjh48CCxsbFs3ryZFStWkJmZiYWF\nBa1atWLWrFn06dMHFxcXADw8PKioqCA2Npbw8HA8PDyMOSQhxG8wzLWLFy/m3//+Ny1atOCjjz5i\n2LBhWFpaEh8fz8GDB9HpdPj7+wPVW3cXFxfj4ODAwoULeeqpp5Q23TKPC1FzSJ0LUXtVVlYqofyc\nOXP49NNPSUlJoaioiLy8PFJTU9m2bZvSdt/Ly4tGjRpx/PhxDh8+TE5Ozj07+A3XA+m4JYSoGSTc\nF8KItFotbm5ueHp6Ar+E8mq1moqKij8V8Ov1egn2hagB4uPjGTNmDJGRkUp77vj4eHJycmjYsCGO\njo5Ki35DwJ+fn8/169cJDQ2lTp06lJeXKw8Qdwf7I0aMAOSNYSFqKo1GowT8J06cICoqioKCAkJD\nQwkNDVV2AZ07d44tW7YQERFBZWUl+fn5aLVa2rRpU20BAWQRQQhjOHbsGFOmTMHd3V2pW2tra2xt\nbTl//jynTp0iPz+fkpISgoKCeO211xg+fDheXl7KAn9paSkajYbU1FSioqIICQlRggIhRM104MAB\nZs6cSYsWLfjggw9o06YNDRo0wNTUlH379lFcXMz+/fvx8PDA19cX+KV19+7du7l+/TqNGzdWuvMZ\nWgELIWoOqXMhaifDc/OyZctYsmQJwcHBTJs2jTFjxjB06FBu3brF8ePHiYuLw8bGRqlrX19fJeA/\nc+aMEvALIURNJOG+EEZWdaG+6t//bMBvuMYPP/zAvHnzqKioYPXq1RLsC/EQRUdHM2LECMrLy3np\npZcYNWoUHTt2JD09ndTUVAC6du0K3Kl1Q8B/7NgxUlJSSE5OpnPnzspDhAT7QtRMhuDO8OfdXTQM\nAb9Op+PUqVNERUVx7do1fH19cXZ2pk2bNoSHh2NiYkJOTg4nT56ktLSU4uJi+vTpU+0oDyGEcdy4\ncYNvv/2W4uJi+vfvj6mpKWq1Gi8vL1q3bk3Xrl3p2LEjgwcPZsyYMfj5+WFpaQmg/H4wLPQvWrSI\nkpISxo4dKwuFQtRwGzZs4PDhw0yfPp0WLVooH585cyb5+fkMHDiQpKQk9u7di6urq/K87e/vrwR/\nkZGRmJqaEhgYiEajkR29QtQwUudC1F4nTpxg+vTp2NvbM3XqVFq0aIGFhQXW1tZ06dKFOnXqkJiY\nSHx8PE2bNsXT0xMHBwcaN25MSkoKCQkJtGvXjoYNGxp7KEIIcV8S7gtRg/3ZgP/s2bMsW7aMguO2\nIAAAIABJREFU7Oxsvv/+ewn2hXiIDMG+q6srkydP5vnnn8fNzQ1/f398fX3ZuHEjmZmZ9OzZk3r1\n6qFSqZSA38vLi2PHjpGWlkZqaip9+/YlJyeHTz/9lPj4eAn2hahBkpKS+Pzzz/Hw8KBu3bpotVpl\nIa9qyH93wB8TE0NxcTH+/v7Y2dlhaWlJx44dadmyJT4+PsTExDBs2DA6depkzOEJIf4/Ozs7oqOj\nKSgoYPDgwVhbWysL93Z2dri7u+Pv74+Hh0e1l30qKyurndO5YsUKfvjhB3r06EGvXr0wMTEx8siE\nEPdjqN05c+ZQWFjIiBEjsLW1Be607/7uu++YOHEio0aN4tKlS6SmprJ37150Oh2NGzcGUH4n7Nq1\ni5iYGPR6Pe3atZPAT4gaQupciNrv2LFj/PDDD7zwwguEh4crz+iG+/PmzZtTXFzMoUOHyMjIoF+/\nflhYWNCgQQN8fHwIDg5WjtsQQoiaSMJ9IWq4Xwv4Y2Njadmy5X0DfkPIMH78eLy9vY3wUwvxaKoa\n7E+YMIE+ffoAKO143dzcOHjwIJWVlcpZfgb3C/ijo6PZv38/R48elWBfiBrkyJEjPPPMMxw7dowN\nGzaQkZEB3DlTW6PR3LObX6vVKgH/yZMniYmJoaioiCZNmii7dxs0aECLFi0YOnSoEuzf3QlACPFw\n6fV6AA4ePMjx48dp3rw5jRo1Au5/TEZpaSnXr1/HwsJCeXkP7gT7X3zxBdbW1kyfPh0HB4eHNwgh\nxB9iqN2MjAxOnjxJjx49cHZ2ZvPmzcycOZOePXvyzDPPKC/67Nmzh7KyMvbs2cOJEycIDAzE0tIS\nPz8/GjZsyM6dO4mPj2fYsGHSkUeIGkLqXIjay/AMvWvXLqKjo2nfvj1t2rShoqJCOQrXsKbWrl07\nDh48yKlTpwgNDUWn06FSqap16pBuHEKImkoOAhLiIbh58yZ169b901+v0WioqKjAzMyML7/8kldf\nfZW4uDheeuklduzYgb29vfJv9Xo9JiYmDBgw4EH86EKI3ykmJkYJ9sePH6+84VtZWanszsvPzycn\nJwdra2tlJ1/V8E6r1dK2bVveffddZsyYQUpKCgCTJk3ipZdeUq4nwb4QxnXr1i0AfHx88PPzY8uW\nLezcuZMOHTrQunVrnn32WSwtLZVa1ev1mJqa0rlzZwAWLFjAhg0bAHjjjTfQ6XTKooFh15DUuhA1\ng0qlIiQkhJ07d3L+/HnlY/ezb98+Pv/8c5555hnc3d0pLi5m/fr17N69GycnJ5YvX46bm9vD/PGF\nEL/hfnOtYUdfp06d0Gg0uLi4kJ+fz5o1a7C2tub555/HxcUFABcXFyorKwkICKCwsJDAwEAaNGig\n3N/37dsXtVpNw4YNqVevnjGGKMQjT+pciEeL4T7d0E7/5MmTwJ31NsPvA7VaTVlZGSYmJvj4+JCa\nmsrFixfvez15JhdC1FQS7gvxN4uLi+Prr7/m9ddfp3nz5n/6OlUD/uXLlzNkyBA6d+5cLdiHX19s\nFEL8fWJiYnjxxRdxcHDgX//6l7Lr1hDWGepy9+7dXL9+nXfeeUfZtXd3zWq1Wtq0acOkSZN45513\nGD58uAT7QtQger2e5s2bExwcTFxcHFOnTqV///589dVXpKWlERMTw+bNm+nQoQOPPfYYgYGBSp2b\nmpoqvx8WLlzI5s2bKS8vZ8yYMbi6ulb7PlLrQjxchl36Vedlw9+dnZ0BSEtLA6jWbt+gpKSE+Ph4\njh8/zgcffKB83MzMjODgYP71r3/h4eHxt45BCPH7Va3j7OxsiouLsba2xt7eHgsLC7p160bbtm2x\ntLQkJiaGpKQkRo8eTevWrZVrHD16lLKyMqZMmYKHh0e1rlyG+/bevXs/9LEJIe6QOheidvutTne+\nvr5YWlqydetWAgMDGTZsmLJrX6VSVTsiy9LSUjrfCiH+cSTcF+JvdPXqVWbMmEF6ejparZaRI0fS\ntGnTP309jUZDeXk5pqamrFu3Tln4l8BPCOMpKirim2++AaBOnTpYWFgAd+pSr9crtbljxw6mTp2K\nubk5mzdvZvv27ZiZmVG/fn06duxIvXr1aNWqFXAnAAwODubHH39Ep9Mp15M6F8L4VCoVNjY2BAcH\nc+jQIVavXs2cOXNo3Lgx+fn5LFy4kMzMTH744Qd++OEH+vXrR7NmzXjmmWeAO0Ffx44dUalUzJw5\nk02bNjFgwIB7wn0hxMNVUlJCnTp1qn3MEAp4enri4ODAiRMnuH379j3/Du7U9qRJk/Dz8+Po0aNc\nu3YNnU5H165dadasmezmE8LILl68iKWlJZaWluj1eiXw+/LLL/n++++5cOECVlZW9O/fn8cff5xm\nzZop/9Zw/I5hJy/cCfxWrlyJq6srderUUQI/Q9AgL90L8fBJnQvx6Kj68s6tW7e4du0apaWluLi4\noNfrcXd3Z9KkSUyZMoWvvvoKc3NzBg4cWG1d7ciRI+zduxcvLy9sbGyMNRQhhPhTNB999NFHxv4h\nhKitzMzMqFOnDvn5+cTGxlJQUICnpyeOjo5/+ppqtbpaYFj170KIh8/U1BRHR0du3LhBcnIyaWlp\neHh44O7urtTm1q1beeuttwCwsbHhxIkTnD17lqysLFJSUti5cydr164lISGBHTt2cOPGDXx8fJQg\nQOpciJrDsJgXEBDAoUOHOHXqFD179kSn0+Ho6EivXr3o27cv2dnZnD17lpMnTxIVFcXhw4c5d+4c\nTk5OODo64uXlRYMGDejSpQs9e/Y09rCEeKQtWrSImTNncvHiRc6dO4dKpcLMzAy1Wo1Wq8XKyoro\n6GiysrJ4+umnf/W4LY1GQ0BAAD169KBfv36Ehobi4eEh5+8KYWTx8fE89dRTWFhY4Ovri5mZGQDz\n5s1j0aJFlJWV4ePjQ0FBAcnJyeTl5eHq6qqcvZuZmcm+ffs4ceIETZo0ISYmhiVLlpCZmcnEiRMJ\nCQlRvpeEfUIYh9S5EI+OqsH+mjVrmD9/PvPmzWP16tVERUVx4cIFfH19CQoKoqioiEOHDhEfH09x\ncTGNGjWivLyc6OhoFi9ezNmzZxk3bhyBgYFGHpUQQvwxEu4L8TcxhHG+vr5YWVlx7tw54uPjf3fA\nb2gTdPc17347WB4qhDAeQ026uLig0+m4fPkyCQkJpKen07BhQ9zc3IiIiGD8+PG4u7szbtw4xo0b\nR58+fQgLC8PFxQVra2vUajVXrlzh3LlznDlzhtDQUGUXP0idC2FMhYWFaDQaZfFApVIp7bvPnTtH\nZGQkJSUldO3aFbgT7h0+fJiNGzdy48YNhg8fTn5+PqdPn+bIkSNs2bKF06dPc+vWLXr37o2/vz9w\n/3lfCPH3W758OQsWLODKlSscPXqUffv2sWnTJrZu3UpkZCQFBQVcu3aNq1evkpqaSqtWrfDy8rrv\ntQz3BVVb/P9Wu1AhxMOxfft2IiMjSU5OxtraGh8fH06dOsXMmTNp3bo1c+bMYfTo0fj6+nLjxg0i\nIyPJzc3F1dUVZ2dnAgICSEpKIi0tjZ9++om9e/dy6dIl3n33XaUzj9S6EMYldS7Eo6Hq5pfZs2cz\nf/58bt68SYcOHTA3N+fixYscPHiQyMhIunfvTkhICGZmZkrAv27dOr7++mvWr1/PpUuXeOeddxg8\neLBybalxIcQ/hYT7QvxNDIt5arUab29vrK2tf3fAX7X9dkJCAvn5+Tg5OckNhhA1jKEmVSoVOp0O\nFxcXLl++TGJiIqdOnSIvL49p06bh7+/P22+/Td++fbG2tsbJyQkPDw/at29P3759CQ8PJzQ0lMDA\nQHr16sWgQYOMPDIhBEBMTAwjR47E1dUVNze3amdsazQaGjZsSEREBLm5uXTu3Jl69eqxa9cupk6d\nSl5eHlOnTmXkyJH07NkTT09PSktLyczM5Pjx47Rp04YWLVoo15M5XgjjcHR0ZMiQIfj6+tK4cWNK\nSkoAyM3NJTs7m5iYGLZu3Up6ejp6vZ7mzZvTsmXL+16r6n1B1b8LIYzD8OJc69atsbCwIC4ujkOH\nDuHm5kZBQQFbt27lk08+UWray8sLNzc3rly5QlRUFHl5eTg7O+Pi4kJ4eDjFxcU4OjrSqVMnXn/9\ndfr37698H+myJYRxSJ0L8Wgx3FuvXbuWOXPm0KlTJ6ZNm8YLL7xA7969efzxx9m2bRvnzp3j+vXr\nhIeHExQURNu2bSkuLsbc3BxTU1P69OnDqFGjpMaFEP9YKr1hW4EQ4oGp2h7I8NZfZWUl27dv58sv\nvyQ9PZ3Q0FBGjx5N06ZNq31t1ZuJTZs2MWnSJDp37synn35K/fr1H/pYhBD3V7XODfR6PQkJCXzx\nxRccPHgQAA8PD6ZPn67sxK/6dfe7xm9dXwjx8FRWVvLRRx/x448/4uHhwdtvv01ISAimpqbALzU6\nc+ZMvvrqK6ZPn46LiwsTJ07k4sWLfPLJJwwaNOieRYI1a9ZQv359wsLCjDU0IcRvKC0tpbS0lJMn\nT5KVlUV2djbx8fHcunWLkydPKnXft29fY/+oQog/aNmyZSxZskQ5i1ej0bBx40YAysvL0Wq1ACQl\nJfH555+zf/9+2rdvz6hRowgKCgLuvUeXMECImkXqXIjaTa/XU15ezujRozl8+DCrV68mICBA+fzS\npUtZuHAhoaGhvPPOO1hZWaHRaLC1taWkpAQzMzNKS0uV53qQGhdC/DPJzn0hHpDMzExSUlLw9PRU\nbggMNweGP//XDv6qDxARERG8/fbb6PV6hg0bRseOHY02NiHEHb9W54YXeNRqNTqdDmdnZ65evcrZ\ns2epW7cuvXr1QqfT3XO0xm89PMiDhRDGpVKpCAoK4vr16xw6dIikpCQ8PT1xcXFBo9EoNarX69m0\naRNRUVHs2bOHS5cuKcG+4fMqlYqKigrUajXNmzfH29sbkFb8QhjLiRMniIuL4+uvv+bcuXMUFBTg\n4+MD3KnZOnXqoNPpCAgIoGPHjvTt25enn36a4uJikpOT2b17Nw0bNqRRo0ZGHokQ4n6uXbtGTk4O\nmzdv5sqVK+Tn5+Pm5kZgYCBarZbU1FTy8vK4ffs2QUFB6HQ65bldpVLh5OSEq6srly9fJioqioKC\nAqVLl1qtrta2V+ZxIYxD6lyIR5NKpeLKlSvMmDGD5s2b8+qrryr1unjxYhYtWkRwcDATJ07E3Nyc\nF154gcrKSmXDjeFZXmpcCPFPJ+G+EA9AZGQkQ4cOJSIiguPHj6PX63FwcMDCwgK4c5NQXl6ORqP5\nzYDfEBREREQwYcIE9Ho9H3zwAcOHDwfk7B8hjOmP1LlOp0On03HlyhXS0tJITU3F09MTNzc3OX9X\niH+IiooK6tSpQ9u2bSksLCQ2NvaegB/A3d2dgoICkpOTuXXrFnPnzr1va7/7vbAjvweEePhWrFjB\nrFmz+PHHH8nIyODQoUNs374dT09PfH19q724Y5izTU1N0Wq1dO7cmcuXL5OamsquXbsk4BeiBkpN\nTWXWrFksXryYPXv2sHXrVjZu3IidnR3NmjUjMDAQvV7PqVOnKC4uxs7ODn9/f8zNzZUXdqsGf4WF\nhRw4cIDMzExCQ0OpW7euzN9CGJnUuRCPDsNL8gaVlZUAfP/991hbW/Pkk08qwf7ixYsJDg5m3Lhx\nNG7cmOjoaL777jscHR0JCwtTnuGrbroRQoh/Kgn3hXgAPv/8czIyMmjcuDE5OTn89NNP7NmzBxMT\nEyoqKnByclJuRFQqFd7e3lhZWXH+/Hkl4G/YsCGOjo5KsA/w3nvv8eyzzwLSIkgIY/ujdW4I+C9f\nvkxCQgLp6el4eXnh6uoqAb8Q/wCGnT1mZma0a9fuNwP+oqIioqKicHZ2ZsqUKYAcrSFETTRr1iwW\nLVqEpaUlY8aMITw8nBYtWlBcXEynTp3w9PRU/u3dO3kMC4uhoaFcuXKF1NRU9u3bh06nw9/f3xjD\nEULcJTY2ltdee41Tp07RqVMnQkND8fPzIy8vDz8/P1q2bIlGoyEwMJCKigoSExM5evQodnZ2+Pj4\nYGpqek/w5+zsTE5ODr169SI4ONjYQxTikSd1LsSjxbDOtnTpUuzs7LC3t+fmzZts3ryZjIwMWrZs\nyaZNm5Rgf/z48Uqb/tu3b/Pjjz/i4ODAY489BsgL9kKI2kPCfSEeAFNTUw4ePIiDgwPvvfcet2/f\n5ujRoxw4cID169dTVFRERUUF7u7uytuBhoD/3LlzHDlyRGkpZggF3nvvPWXHvgT7Qhjfn6lzw0LB\npUuXSExM5NixY3h7eysBvxCiZjMs/P2vgN/Ly4vIyEhOnDhBvXr1CAgIkGBfiBpm+fLlLFmyhNDQ\nUD7++GN69OhBkyZNaNOmDV26dKl2Vuf9qNXqagH/tWvXSExMJD4+nqFDh1Y7t1MI8fAlJyczcuRI\nrK2tmTBhAhMmTCA4OJjQ0FC6dOlC9+7dMTExUQK9wMBA1Go1R44cITo6Gltb2/sGfzqdjk6dOimB\nn7ygK4TxSJ0L8eioeoTdwYMHef/999myZQvdu3fH2dkZtVpNZGQkcXFx7Nu3j5CQECZOnEjjxo2V\na8TExLB7926eeuop2rRpA0i4L4SoPSTcF+IBsLe3Z8+ePRw/fpxevXrx2muv4e/vj7OzM0eOHCEp\nKYmtW7cSFxeHhYWF0s7b29sbOzs7srKyOHr0KDExMQC8//77EuwLUcP82TrX6XR4eHiQl5dHUlKS\nEgq6u7sbe0hCiP+vvLwcuPdB37D7vry8nDp16lQL+BMTE/H09MTJyQkzMzMsLS3Zs2cPKpVK2RUg\nC4NC1AwpKSnMnDkTNzc33n//fRo3boxer6eyshK9Xo+VlRVw53fBxYsXKSwsxNraWqlfw+Ji1YC/\nc+fO3Lx5k7fffhsXFxdjDk+IR97ly5eZMmUKly5dYtKkSQwcOBCAsrIy1Go19vb2yjN1WVkZ169f\nx9zcnMDAQOrWrcuhQ4eIiYn51eCvbt26gMzrQhiT1LkQj46qXfCys7MpKysjISGB/Px8tm/fTlhY\nGC1btuTEiRNkZGRga2vLs88+S5cuXZRrHDlyhEWLFnHr1i1efvllXFxcpLaFELWKhPtC/EWGHX32\n9vZs374djUZDjx498PLyomPHjnTu3Bl/f3+OHz/OqVOnOHToEBEREahUKrRaLcHBwTg6OnL+/Hny\n8/OZPHkyzz33nHJtCfaFML6/UucALVu2xNvbm4sXL5KcnExwcLC08BWihjhw4AAffPABkZGRFBUV\nkZeXR7169TAxMUGr1QK/tAI0NTWlbdu2XL16lbi4OOVlHQ8PD8zNzdm2bRtpaWk0aNCAgIAAWTwQ\nooaIiopi8+bNvPvuu3To0AG4s3iv0WiU+l62bBkrV65k+vTpfP/99yQlJfHzzz/j5+dXrROHWq2m\nvLwctVpNSEgI9evXN8qYhBC/yMnJYcmSJQwYMIBXX30VuPOyjomJiTIXx8fHs3btWubPn8+6des4\nevQoGo2GJ554AhsbGyX4s7Ozw8vLCzMzs3vmcZnXhTAeqXMhHg2VlZXKvfeiRYv44IMP+Omnn7hy\n5Qrm5ubcuHGDHTt2MGDAAFq3bs3Jkyc5c+YM+fn55OfnU1hYyP79+5kzZw5nzpxh8uTJhIeHG3lU\nQgjx4Em4L8RfZLjx12q1HDx4kJiYGFq3bo2bmxsADRo04OLFi0RGRnLz5k38/f05c+YMhw4dYuvW\nreTm5uLh4YGlpSXPPfec8vaxBPtC1Bx/pc63b9/O+fPnqV+/Ph4eHgwePJiwsDBjDkcI8f8VFBTw\n3HPPkZ2dTVZWFvv27WPr1q1s3LiRTZs2kZ6ezqVLl7hx4wb16tWjuLgYGxsbQkJCuHHjBtHR0SQk\nJODu7k7Lli2xtbVlz5493Lp1i9DQUOrUqWPsIQohgJUrV3Ly5ElGjRqFvb09t2/fxsTEhKKiImJi\nYpg1axbffvstOTk5lJaWotFoyMrK4vjx49SrV0/Z6W+4H5B7dCFqls2bN7N//35GjRqFp6cnxcXF\nyhx88uRJ1q9fz8SJEzly5AgFBQVcvXqVU6dOcfToUerVq8fTTz+NiYkJiYmJ7NmzBysrK5o1ayZH\n7AhRg0idC/FoMNxvL1u2jIULF9KyZUsmTpzIiBEjaNeuHTdu3CAjI4MtW7bw/PPP07lzZ4qLi4mL\niyM2Npbt27cTFxdHnTp1mDRpEkOHDgWqt/kXQojaQMJ9IR4QGxsbKisriYyMxMbGhk6dOgGwe/du\nPv30U/Lz85k6dSofffQRDg4OVFZWkpOTQ0pKCrt372bYsGH06NEDkGBfiJrqz9Z5amoqO3fupH//\n/oSGhgLyYCFETWBiYoKNjQ1JSUmUlJRga2uLr68vJiYmnDx5kvT0dPbv38/GjRvZvn07W7du5fTp\n0xQUFBAQEMCVK1c4fvw4SUlJuLu7U79+ffbs2cOQIUNo166dsYcnhPj/oqKiSE1NRafTERgYiFar\n5fz588ydO5cffviBpKQkVCoVw4cPV/5zcHAgPj6e27dv069fP5mzhajBMjIyOHDgAM7OznTo0AFT\nU1Pgzos9K1eu5McffwQgODiYrl278vzzz2NjY0N6ejq5ubkMGjSI1q1bA3fO5+3evTutWrUy2niE\nEPeSOhfi0ZGVlcVnn32Gra0tn332GW3btsXR0RFvb2/69+9Pbm4uR48eZcuWLQwdOpQBAwbQtm1b\n3NzcaNKkCc899xzPPPMMXbt2BWSdXQhRO6n0er3e2D+EEP90hp0858+fZ8SIEdy6dYtt27aRkpLC\n5MmTuXjxIp988gmDBg1SvqawsJDMzEwWLlxIeHg4w4YNM+IIhBD/i9S5ELVTaWkp69evZ/r06ajV\nap566inGjh3LyZMnSUtL49SpUyQkJCgt+w1sbW35+eefqayspLy8HFdXV9577z1sbW2VhUI5s1OI\nmiE+Pp5XX30VjUZDaGgodevWZceOHVy7dg1zc3M8PDyYPHkybdu2VWr28uXLvPXWW8THx7Nr1y6l\nW48QoubJyMhg6NChmJiYMHDgQJycnIiOjubgwYOoVCrMzc158cUXef7556lbty4ajYYrV64wbdo0\ntmzZwooVK2jfvj0Ax44dIyAgwMgjEkLcTepciEdHfHw8L7zwAi+//DJvvfUWhviqoqJCOTpv7Nix\n7NixAwcHB1auXImXl9d9ryXP5EKI2kpr7B9AiNrAcJPg6upKu3bt+PHHHxk1apSyu2/atGlKu/3y\n8nK0Wi22trYEBQWxbNkyzM3NAXmTUIiaTOpciNrJ1NSUJ554gsrKSmbMmME333yDvb09r7zyCi1a\ntACgrKyMW7duceTIEa5evUp0dDQXLlwgNzeXS5cuAXD+/Hlu3rwpuwOEqIFatGjByy+/zL///W8i\nIiKUjzdr1ozevXsTFhaGq6ursnBYVlaGg4MDLi4uxMfHy4KgEDWcr68v//d//8eSJUtYsWKF8nEz\nMzP69+9P9+7d6dKli/Lx8vJy7O3t8fb2Bu4cvWVY/DcEfjKPC1GzSJ0L8ejIzc2loqKC4uJi4JdQ\nX6vVUlFRgUaj4eOPP+bs2bOcOHGC4cOH89133+Hu7q583kDu44UQtZWE+0I8IIaHgldeeYWoqChi\nY2MBmD59OgMGDADuvC1oeMPQcHNhCPz0er08VAhRw0mdC1E7mZqa8uSTT6JSqZgxYwYLFiygpKSE\n0aNHA3dq2dra+v+xd+9Bdpb1HcB/73nP2UuyuZGQxFwKBFpzgiBYQqC1U0K90MYqVCsIvVsc9ERR\nR6vWqjijViI6Y+FwqFNvM1aYtgOdemurbW2l1UO4FRFcl0u5DyEXKRA3m909/cNJyjVCeM6+757z\n+cyc2WzifOe7M3lNyPc8z8app54aERGve93rYnp6Ou67776466674oEHHoharRavetWr9md61qE8\nBgYG4txzz42XvOQl8ZWvfCUOPfTQOOSQQ+LMM8+MWq0WeZ7v/wf/6enpqNVqEfHT7+G7du3aWLVq\nVcFfAXAglUolfv/3fz/WrFkTX/7yl2Pu3Lkxf/78OOuss+LII4+MkZGRiPj/b4u17+/qDz74YAwM\nDMTy5cuf8o///hyHcvGcQ/9Yt25dLFiwIH70ox9FxE/fnLPv3+PyPI/p6ekYHByMBQsWRETEjh07\n4rzzzovPfe5zsXz5cqf1gb5g3IdE9v1HwaJFi+K4446L+++/P17zmtfsH/x+1juC/aUDys9zDr1r\nYGBg/+0bF154YVx22WVRqVTiLW95S1Sr1f03ckT8/7O+evXqp1zV/eSTAkA5DAwMxMknnxwnnXTS\nE/48np6ejojYP+zv+3P80ksvjVtuuSXe+MY3xtTUVFQqFX+OQ4kNDw/HK17xijjllFNiYGAg9u7d\nG7Vabf+NHPv+oX/fc3z11VfHlVdeGSeddFIsXLjQCV6YBTzn0B+WLVsWRxxxRGzdujW2bNkSf/In\nfxKVSiUmJycjz/OoVCoxPDwchxxySLzkJS+JgYGB+N73vhef/vSn44Mf/OD+AzYAvczfaCCxkZGR\n+O3f/u2IiLjpppvi9ttv9x8Q0GM859Cb9g3873nPe6JWq8Wll14azWYzImL/FYARBz7lY9iH2WPv\n3r1RqVT2jwL7nu2//uu/ji996UtxxBFHxDnnnBN5nhv2YZbYd/PGvsFv3xt3Hv8MX3vttdFqtSIi\n4swzz4yRkRF/j4dZxHMOvW3+/Pnxvve9L4aHh+MLX/hC/MVf/EVE/PS/yfc959dcc038x3/8R5x8\n8slx2WWXxWGHHRY33nhj7Nmzp8jqADMmv+CCCy4ougT0mhe84AVx5513xvXXXx8vfvGLY+3ata4E\ngh7jOYfelOd5/MIv/EIsXrw4vvvd70a73Y5OpxMnnnhiVCqVp/zDITC77Ht+p6en46tf/Wp873vf\n2/89PLdt2xYXXXRRfPGLX4yBgYH4zGc+E4cddljBjYHn4vF/Rt98881x/fXXx/DwcCxYLvqPAAAg\nAElEQVRYsCD27t0bX/va1+Kiiy6KH/zgB/He9743zjjjjIgIf4+HWcRzDr1v+fLlsXz58rj66qvj\nu9/9btx1112xcuXK6HQ60W6349JLL4377rsvzj777Fi7dm185zvfif/+7/+Ol7/85bFs2TLPOtDz\nss6+YwpAUpdffnl8+MMfjlWrVsUXv/jFWLlyZdGVgMQ859C7JiYm4sorr4wLL7ww9u7dG29+85uj\n0WhEhKv3oRc8+uijcdppp8X27dtj3rx5MW/evPjxj38cu3fvjuOPPz4++tGPxpo1a4quCRykfX92\nX3311XHYYYfF4sWLY9euXXHnnXfGggUL4p3vfGeceeaZEfGzv7UWUE6ec+htk5OT8e1vfzs++MEP\nxs6dOyPLssjzPCYnJyMi4j3veU/84R/+YUREvP71r4/du3fHFVdcESMjI0XWBpgRTu5DYvveCXzM\nMcfEjTfeGDfffHOsWbMm1q1b512D0CM859D7nnyC/9prr43JycnYsGGDfxiEHjAwMBAnn3xyTExM\nxF133RWdTieOPvroOOecc+L888+PVatWFV0ReB7yPI8jjjgi7r777hgdHY377rsvOp1OvPrVr463\nvvWtcdppp0WEwQ9mM8859LZKpRJr1qyJV77ylXHIIYfEwoULY2RkJE499dR485vfHL/1W78VERGf\n/exn46qrropTTjklNm7cGNVqteDmAN3n5D50wb7hr9lsxsUXXxyf/OQnY9OmTUXXAhLynEN/mJiY\niL//+7+PD3/4wzE1NRV/8zd/E8cee2zRtYCEdu3aFRERixYtKrgJkNrExEQ88MADMTk5GYsWLYpD\nDjlk/6+5oht6g+cc+sfjb9Gbnp6Oz372s/H5z38+hoaG4otf/GKsXr264IYAM8O4D110zz33xPXX\nXx+vec1riq4CdInnHHrfxMREXHHFFVGtVuPss88uug7QRUYA6G1O8ELv85xD79n3d/Sf/OQn8dWv\nfjWuuOKKmJiYiNtvvz1WrFgRl112WRx11FFF1wSYMX0/7n/kIx+JL33pS/Hxj388Tj/99KLr0MP8\nxwX0Ps859K7HP9+edQAAAJhZjz76aLzrXe+K//zP/4xVq1bFSSedFG984xt9Sy2g7/T1NyD51re+\nFV/+8pedzGBGGAGg93nOoXc9/vn2rAMAAMDMGhkZiYsuuigee+yxmDt3bgwODkatViu6FsCM69tx\n/1//9V/jHe94R/T5xQUAAAAAAAClNzIyEiMjI0XXAChU3437nU4nLr744rjsssui0+n4nooAAAAA\nAAAAlF5f3Sn6ne98J1796lfHpZdeGp1OJ44++uiiKwEAAAAAAADAz9RXJ/fPPffcyLIsarVavPnN\nb47f/M3fjJe//OVF1wIAAAAAAACAA+qrcb9SqcTLX/7yePvb3x5HHHFE3HfffUVXAgAAAAAAAICf\nqa/G/W984xtx2GGHFV0DAAAAAAAAAJ6TStEFZpJhHwAAAAAAAIDZqK/GfQAAAAAAAACYjYz7AAAA\nAAAAAFByxn0AAAAAAAAAKLlq0QV6wU9+MhHVqvdJQC/Ksohq9af/V3nBBRfE7bffUXAjIKUjj1wT\nF1xwQUR4xqFXec6ht3nGofd5zqG3ecahP3zqU8049NB5RdegJN773vdGu92OE088MS688MKi68w6\nxv0E8rwS1WpedA2gyx588MG45567i64BJDQyMnf/jz3j0Js859DbPOPQ+zzn0Ns84wD9q9PpFF1h\nVjLuAwAAAAAAADBj7rzzzvjEJz4RWZY9r5zBwcH4nd/5nVi0aFGiZuVm3AcAAAAAAACg69rtdkRE\nbN++Pb7+9a8nybzyyivjn/7pn2JgYCBJXpkZ9xPodDqujoAe9nzfNQYAAAAAAED3TE5OGvd5drIs\nM/4BAAAAAAAAFKBSqRRdYUb0x1cJAAAAAAAAQE/K87zoCjOi70/upzh171p+6G1u5gAAAAAAACiv\n3bt3x4IFC4qu0XV9Pe6vXLkybr311qJrAAAAAAAAAPS8tWvXxg9/+MOkmQsWLIg5c+YkzSyrvh73\nU0lx+h8AAAAAAACgl+07Xb98+fI49dRTI8/z/a9qtfqEj8/080/+9aOOOipqtVrBX9nMMO4DAAAA\nAAAAMGNWr14d5557btE1Zp1K0QUAAAAAAAAAgANzch8AAAAAAACAGbNt27b4+te/flDX8T9epVKJ\nlStX9s23UDfuAwAAAAAAANB1t912W0RE3HXXXfGJT3wiSea6devi4osvjkql9y+tN+4n0Ol0otPp\nFF0D6JJ+ebcXAAAAAABAN+3YsSN55i233BJ79+6NwcHB5NllY9xPYPPmzTE2Nlp0DaAL6vV6tFqt\nomsAAAAAAADMekNDQzE+Pp48d3x83LjPs3PJJZdErZb/7P8hAAAAAAAAQJ/qxrAfETEwMNCV3LIx\n7ieQZZlruwEAAAAAAAAOYPHixV25mn9oaCh5ZhkZ9xNoNBqu5Yce5Vp+AAAAAACANLo17O/Zs6cv\nBn7jfgLNZtO1/AAAAAAAAAAHsGHDhmi32xERsXTp0uedNzw8HO9///v7YtiPMO4DAAAAAAAAMIPW\nr18fW7ZsKbrGrGPcBwAAAAAAAKDrOp1ORERs3bo1Nm7cmCTzYx/7WJx88slJssquUnQBAAAAAAAA\nAHrfNddckzzzT//0T2N8fDx5bhkZ9wEAAAAAAACg5FzLn0Cj0YixsdGiawBdUK/Xo9VqFV0DAAAA\nAACAZzA+Ph5DQ0NF1+g6434CzWYzarW86BoAAAAAAAAApXXiiScmv5r/la98ZSxcuDBpZlkZ9wEA\nAAAAAADouizLIiJi7dq1sXnz5sjzPKrVauR5vv+17/Mnf8zzPCqVyv6MfmTcBwAAAAAAAGDGzJs3\nL44++uiia8w6laILAAAAAAAAAAAH5uQ+AAAAAAAAADNmx44d8S//8i/P+Vr+x38eEVGpVGL+/Pl9\nc1W/cR8AAAAAAACArrvzzjsjIuKOO+6Ij3zkI0kyjzvuuPjUpz7VFwO/cT+BRqMRY2OjRdcAuqBe\nr0er1Sq6BgAAAAAAwKy3bdu25Jk33nhj7NmzJ4aGhpJnl02l6AIAAAAAAAAAcLAmJiaKrjAjnNxP\n4JJLLolaLS+6BgAAAAAAAEDfGRgYKLrCjHByHwAAAAAAAICuW7hwYfLMNWvWRK1WS55bRk7uJ5Bl\nWWRZVnQNAAAAAAAAgNJ64QtfGO12O1avXh1nnHFG5Hm+/1WtVp/2477X06lUKrF27dpn/PVeY9wH\nAAAAAAAAYMYsX748zjjjjKJrzDrGfQAAAAAAAABmzNatW2Pjxo1Jsi688MI48cQTk2SVXaXoAgAA\nAAAAAAD0vna7nTzzz/7sz2J8fDx5bhkZ9wEAAAAAAADouiOPPDJ55mmnnRZDQ0PJc8vItfwAAAAA\nAAAAdN2SJUvi9ttvj3Xr1sXb3/72yPM8qtVq5Hm+/7Xv88d/rFQqkWVZ0fULZ9wHAAAAAAAAYMbM\nnTs3fv7nf77oGrOOa/kBAAAAAAAAoOSM+wAAAAAAAABQcsZ9AAAAAAAAACg54z4AAAAAAAAAlJxx\nHwAAAAAAAABKzrgPAAAAAAAAACVn3AcAAAAAAACAkjPuAwAAAAAAAEDJGfcBAAAAAAAAoOSM+wAA\nAAAAAABQcsZ9AAAAAAAAACg54z4AAAAAAAAAlJxxHwAAAAAAAABKzrgPAAAAAAAAACVXLboAAAAA\nAAAAAP1j69atsXHjxoiIyLIs8jyParUaeZ4/p5y5c+fGhz70oVi3bl03apaOcR8AAAAAAACArmu3\n20/5uU6nE5OTkzE5Ofmc8x577LFoNBrxjW98I4aGhlJULDXjfgKNRiPGxkaLrgF0Qb1ej1arVXQN\nAAAAAAAAnsH4+Lhxn2en2WxGrfbcrogAAAAAAAAA6CcrV66M++67L3nu4OBg8swyMu4n0Ol0otPp\nFF0D6JIsy4quAAAAAAAAMOsNDAwkz5w7d27fbDnG/QSyLOub3zAAAAAAAAAAB2Pp0qVx5513xqJF\ni+K4446LPM+jWq1Gnuf7X/s+f/LHp/v1SqUSxx57bF9cyR9h3AcAAAAAAABgBkxOTkZExK5du+Lf\n/u3fkmS+613vik2bNiXJKrtK0QUAAAAAAAAA6H3XXXdd8syLLrooxsfHk+eWkXEfAAAAAAAAgFmr\nUumP2du1/Al0Op3odDpF1wC6JMuyoisAAAAAAADMegsWLIiHH344aeaaNWsiz/OkmWVl3E8gyzLj\nHwAAAAAAAMABrF27NtrtdixatChOOOGEGBgYiMHBwf2vx3/++B/XarWnHfArlUqsW7fOuA8AAAAA\nAAAAqey7DX3Xrl3xzW9+M0nmb/zGb8S73/3uJFllZ9xPoNFoxNjYaNE1gC6o1+vRarWKrgEAAAAA\nADDr3XTTTckzv/71r8e5554bCxcuTJ5dNsb9BJrNZtRq/XHVAwAAAAAAAMDBePGLXxztdjtp5qZN\nm/pi2I+IqBRdAAAAAAAAAIDed/PNNyfPvOGGG2Jqaip5bhk5uZ9Ap9PZ//0hgN6TZVnRFQAAAAAA\nAGa9xx57LHnm/fffH1NTU5HnvX/TunE/gc2bN8fY2GjRNYAuqNfr0Wq1iq4BAAAAAADAM5icnIyB\ngYGia3SdcT+BSy65JGq13n8nCAAAAAAAAEDZuJafZy3LMtd2AwAAAAAAABxAlmVd+Xbn1Wp/zN79\n8VV2WafT6cpvQqAcvHkHAAAAAADg+Vu5cmXce++9RdeYtYz7CWzevDnGxkaLrgF0Qb1ej1arVXQN\nAAAAAACAWe/hhx/uSu7ExEQMDw93JbtMjPsJNJvNqNXyomsAAAAAAAAAlNa6deui3W4nzTzrrLNi\nwYIFSTPLqlJ0AQAAAAAAAAB630MPPZQ88ytf+Urs2bMneW4ZObmfQKPRcC0/9CjX8gMAAAAAAKSx\nd+/e5JlTU1MxPT2dPLeMjPsJuJYfAAAAAAAA4MBWrFgR99xzT9LM1772tTE8PJw0s6xcyw8AAAAA\nAABA142NjSXPvPzyy+N///d/k+eWkZP7CXQ6neh0OkXXALoky7KiKwAAAAAAAMx6L3jBC2Lnzp1J\nM1euXBlz585NmllWxv0Esiwz/gEAAAAAAAAcwMjISET8dJDftGlT5Hke1Wr1CR/3vZ7888/066tW\nrYo8749voW7cBwAAAAAAAGDGrFixIt7whjcUXWPWqRRdAAAAAAAAAAA4MOM+AAAAAAAAAJSccR8A\nAAAAAAAASs64DwAAAAAAAAAlZ9wHAAAAAAAAgJIz7gMAAAAAAABAyRn3AQAAAAAAAKDkjPsAAAAA\nAAAAUHLGfQAAAAAAAAAoOeM+AAAAAAAAAJSccR8AAAAAAAAASs64DwAAAAAAAAAlZ9wHAAAAAAAA\ngJKrFl0AAAAAAAAAgN7X6XQiImLr1q2xcePGJJl//ud/HieddFKSrLJzch8AAAAAAACArrvmmmuS\nZ77vfe+L8fHx5LllZNwHAAAAAAAAoOuOOuqoruROTk52JbdsXMufQKPRiLGx0aJrAF1Qr9ej1WoV\nXQMAAAAAAGDWy/O8K7n7rvvvdU7uAwAAAAAAANB1o6PdOTBdq9W6kls2xn0AAAAAAAAAKDnX8ifQ\nbDajVuvOFRIAAAAAAAAAvWD9+vWxdevWpJkf+MAHYmhoKGlmWRn3AQAAAAAAAOi6SuWnF8uvX78+\ntmzZUnCb2ce1/AAAAAAAAADMmE6nE51Op+gas46T+wAAAAAAAAB03cTEREREXHvttXHqqacmyTz/\n/PPj9NNPT5JVdsb9BBqNRoyNjRZdA+iCer0erVar6BoAAAAAAACz3g033JA88+KLL47TTjsthoaG\nkmeXjXE/gWazGbVaXnQNAAAAAAAAgNI65phj4vvf/37SzOnp6RgcHEyaWVbG/QSc3Ife5eQ+AAAA\nAABAGrfddltXch9++OFYuHBhV7LLxLifgJP7AAAAAAAAAAd27LHHRrvdTpr5ute9ri+G/YiIStEF\nAAAAAAAAAOh91157bfLMf/iHf4iJiYnkuWXk5H4CnU4nOp1O0TWALsmyrOgKAAAAAAAAs97U1FTy\nzImJiZienk6eW0ZO7gMAAAAAAADQdXPmzEmeuXTp0qjVaslzy8jJ/QSyLHOyFwAAAAAAAOAAjjnm\nmGi320kz3/nOd0ae50kzy8rJfQAAAAAAAAC6LvWwHxHx3ve+N8bHx5PnlpFxHwAAAAAAAABKzrgP\nAAAAAAAAQNctXbq0K7m1Wq0ruWVTLbpAL2g0GjE2Nlp0DaAL6vV6tFqtomsAAAAAAADMetu2betK\n7iOPPBILFy7sSnaZGPcTuOSSS6JWy4uuAQAAAAAAANB3hoaGiq4wI1zLDwAAAAAAAAAlZ9wHAAAA\nAAAAYNbKsqzoCjPCtfwJZFnWN79hAAAAAAAAAA7Ghg0bot1ux5w5c+Loo49+yq93Op3nlDc4OBhv\nectbYnBwMFXFUjPuAwAAAAAAADBjdu/eHdddd93zzlm0aFHceOONsWLFigStys+4n0Cj0YixsdGi\nawBdUK/Xo9VqFV0DAAAAAABg1vvhD3+4/8fT09PPO2/Hjh3xiU98In75l385FixY8Lzzys64n8Al\nl1wStVpedA0AAAAAAACA0nr44Ye7ktsv1/JXii4AAAAAAAAAAAcrxS0As4GT+wlkWRZZlhVdAwAA\nAAAAAKC06vV63HrrrUkzTz/99JgzZ07SzLJych8AAAAAAACArrv99tuTZ1599dWxd+/e5Lll5OR+\nAp1OJzqdTtE1gC5xMwcAAAAAAMDzl+d58szp6em+2XKM+wm4lh8AAAAAAADgwI444oi45ZZbkmb2\n005r3E+g0WjE2Nho0TWALqjX69FqtYquAQAAAAAAMOtt27YteeaPf/zj+MlPfhLz5s1Lnl02xv0E\nms1m1Grpr5AAAAAAAAAA6BVHHnlkbN++PWq1WixcuDDyPI9qtRp5nkelUnnOeXPmzImzzjqrL4b9\nCOM+AAAAAAAAADNo7969ERExNTUVU1NTB50zPT0dS5cuTVWr9Iz7AAAAAAAAAHRdu93e/+OHHnoo\nSeb5558fV111VQwNDSXJK7PnfrcBAAAAAAAAADxHK1asSJ65ZMmSGBwcTJ5bRsZ9AAAAAAAAALru\n/vvvT565Y8eOmJiYSJ5bRsZ9AAAAAAAAALpu2bJlyTPXrl0bAwMDyXPLqFp0AQAAAAAAAAB63+GH\nHx4PPvhgrFmzJs4555zI8zyq1erTftz3eqZfz7IssiyLkZGRyLKs6C9tRhj3AQAAAAAAAJgxixcv\njlNPPbXoGrOOa/kBAAAAAAAAoOSc3AcAAAAAAACg6zqdTkREbN26NTZu3Jgk80Mf+lCccsopSbLK\nzsl9AAAAAAAAALrummuuSZ754Q9/OMbHx5PnlpGT+wk0Go0YGxstugbQBfV6PVqtVtE1AAAAAAAA\neAbj4+MxNDRUdI2uM+4n0Gw2o1bLi64BAAAAAAAAUFobNmyIdrudNPN1r3tdLFy4MGlmWRn3AQAA\nAAAAAJgxL3rRi+Ld73535Hke1Wr1aT/meR6VSiWyLCu6bmkY9wEAAAAAAACYMcPDw/FzP/dzRdeY\ndSpFFwAAAAAAAAAADsy4DwAAAAAAAAAl51p+AAAAAAAAAGbMtm3b4qtf/WrkeR7VajXyPN//2vf5\nkz/meR5Zlj0hp1KpxOGHH/6Un+9Vxn0AAAAAAAAAum5sbCwiIu6666745Cc/mSRz7dq10Ww2o1Lp\n/UvrjfsJdDqd6HQ6RdcAuqRf3u0FAAAAAADQTTt37kyeec8998TevXtjcHAweXbZGPcTyLLM+AcA\nAAAAAABwAMcff3zccMMNSTNf/epX98WwH2HcT6LRaMTY2GjRNYAuqNfr0Wq1iq4BAAAAAAAw66Ue\n9iMiLr/88vjd3/3dGB4eTp5dNr3/jQcAAAAAAAAAKFye513JnZiY6Epu2Ti5n0Cz2YxarTu/EQEA\nAAAAAAB6wQknnBDtdjtp5pve9KZYsGBB0syyMu4DAAAAAAAAMGMWLVoUJ5xwQgwODsbAwEDkeR5Z\nlj3nnIGBgdi0aVMXGpaTcR8AAAAAAACArrv22msjImLXrl3xzW9+M0nm1772tbjiiitiYGAgSV6Z\nGfcT6HQ60el0iq4BdMnBvFMMAAAAAACAJ5ozZ0488sgjSTNHRkYiz/vjW6gb9xPIssz4BwAAAAAA\nAHAA69ati3a7HStXroxNmzZFnuf7X9Vq9Qkf8zyPSqVywLw8z+PEE0807gMAAAAAAABAaitWrIg3\nvOENRdeYdQ78VgcAAAAAAAAAoHDGfQAAAAAAAAAoOeM+AAAAAAAAAJSccR8AAAAAAAAASs64DwAA\nAAAAAAAlZ9wHAAAAAAAAgJIz7gMAAAAAAABAyRn3AQAAAAAAAKDkjPsAAAAAAAAAUHLGfQAAAAAA\nAAAoOeM+AAAAAAAAAJSccR8AAAAAAAAASq5adAEAAAAAAAAA+sejjz4ao6Ojkef5/le1Wn3aj49/\n9TvjPgAAAAAAAABd99BDD0VExK233hrnnXdeksxNmzbFu971riRZZWfcT6DRaMTY2GjRNYAuqNfr\n0Wq1iq4BAAAAAAAw691xxx3JM//5n/85Nm/eHENDQ8mzy8a4n0Cz2YxazTUQAAAAAAAAAM9kw4YN\n0W63k2Z+7GMf64thP8K4DwAAAAAAAMAMWr9+fWzZsqXoGrNOpegCAAAAAAAAAMCBGfcBAAAAAAAA\noORcyw8AAAAAAADAjNm2bVt87WtfizzPo1qtPuHjk3/8+M8rlSeeXc/zPFavXh1ZlhX0lcws4z4A\nAAAAAAAAXXfbbbdFRMRdd90VF110UZLMOXPmxFe+8pWnDP+9yLifQKfTiU6nU3QNoEv65d1eAAAA\nAAAA3bRjx47kmbt3745HH3005s+fnzy7bIz7CWRZZvwDAAAAAAAAOIBly5bFgw8+mDRz5cqVMW/e\nvKSZZdX7dxMAAAAAAAAAULhVq1Ylz3zDG97QNwexndxPoNFoxNjYaNE1gC6o1+vRarWKrgEAAAAA\nADDrXXfddckzP/WpT8Wv/dqvxdDQUPLssjHuJ9BsNqNWy4uuAQAAAAAAAFBaixcvjh07diTNnJ6e\njsHBwaSZZWXcT8DJfehdTu4DAAAAAACkkXrYj4gYHByMPXv2OLnPs+PkPgAAAAAAAMCBbdiwIdrt\ndkREzJ8//3nnzZkzJz70oQ/1xbAfYdwHAAAAAAAAYAatX78+tmzZUnSNWadSdAEAAAAAAAAA4MCM\n+wAAAAAAAABQcsZ9AAAAAAAAACg54z4AAAAAAAAAlJxxHwAAAAAAAABKrlp0AQAAAAAAAAD6x9at\nW+Pss89+3jnDw8Pxvve9L4466qgErcrPuA8AAAAAAABA17Xb7f0/fuCBB5JkvvWtb42rrroqhoaG\nkuSVmWv5AQAAAAAAAOi6Qw45JHnm+Ph4DA4OJs8tIyf3E2g0GjE2Nlp0DaAL6vV6tFqtomsAAAAA\nAADMejt37kyeWalUYs+ePX1xct+4n0Cz2YxaLS+6BgAAAAAAAEBpHXPMMfH9738/aebhhx/eF8N+\nhHE/CSf3oXc5uQ8AAAAAAJBG6mE/IuJ//ud/Ynx8vC8GfuN+Ak7uAwAAAAAAABzYscceGzfddFPS\nzD/+4z/ui2E/IqJSdAEAAAAAAAAAet+uXbuSZ46Ojkan00meW0ZO7ifgWn7oXa7lBwAAAAAASOOe\ne+5Jnvnv//7vsWfPnr44vW/cT8C1/AAAAAAAAAB0k2v5AQAAAAAAAOi6F77whckzzzzzzL44tR/h\n5D4AAAAAAAAAM2DhwoUREXHMMcfEe97znsjzfP+rWq0+4WOe55FlWcGNy8W4DwAAAAAAAMCM2blz\nZ3z7299+ypj/5M9/lmq1GieddFLUarUZaF084z4AAAAAAAAAXXfzzTdHRMR9990Xf/VXf5Ukc9Wq\nVfGFL3zhWb0ZYLYz7ifQ6XSi0+kUXQPoEle+AAAAAAAAPH/j4+PJM++9996Ympoy7vPsZFlm/AMA\nAAAAAAA4gGXLlsX999+fPHdycjIGBgaS55aNcT8BJ/eht3nzDgAAAAAAwPM3PDycPHP+/PlRrfbH\n7N0fX2WXObkPAAAAAAAAcGBz585Nnvnrv/7rfXFqP8K4n0Sj0YixsdGiawBdUK/Xo9VqFV0DAAAA\nAABg1rvpppuSZ/7t3/5t/MEf/EEMDQ0lzy4b434CzWYzarW86BoAAAAAAAAApXX88cfHDTfckDTz\nbW97W18M+xHGfQAAAAAAAABmwL7r80844YTYsmWLb33+HFWKLgAAAAAAAABA/8iyzLB/EJzcBwAA\nAAAAAKDrpqenIyJi69atsXHjxiSZ73//++NlL3tZkqyyM+4n0Gg0YmxstOgaQBfU6/VotVpF1wAA\nAAAAAJj1tm7dmjzzox/9aLz0pS+NoaGh5Nll41p+AAAAAAAAACg5J/cTaDabUavlRdcAAAAAAAAA\nKK0lS5bE9u3bk+fu3bu3L07uG/cT6HQ60el0iq4BdEmWZUVXAAAAAAAAmPWWLl2afNxfvHhxDA8P\nJ80sK+N+AlmWGf8AAAAAAAAADuDOO+8susKsZtxPwMl96G3evAMAAAAAAPD8TU1NJc/Msqxvtlrj\nfgJO7gMAAAAAAAAc2PHHHx/tdjuWLVsWp5xySuR5HtVqNfI8jzzPn/PmWq1W41WvelXUarUuNS4X\n4z4AAAAAAAAAM2ZwcDCWL1/+hHH/8SP/0/380w3/eZ7H0NBQAV9BMYz7AAAAAAAAAHTdj370o4iI\nuPvuu+PTn/50ksyjjjoq/vIv/zIqlUqSvDIz7ifQ6XT65vs4QD/ybTcAAAAAAACev127diXPvO22\n22JiYqIvTvD3/tsXAAAAAAAAAOhZ/XJQ08n9BLIs65vfMAAAAAAAAAAHY+nSpUC0kf4AACAASURB\nVLFt27akmZVKJQYGBpJmlpVxPwHX8kNv8+YdAAAAAACA5y/1sB8RMT09HY888kjMnz8/eXbZGPcT\ncHIfAAAAAAAA4MCWLFkS27dvT5o5f/78GBkZSZpZVpWiCwAAAAAAAADQ+w4//PDkmZs3b45KpT9m\nbyf3E2g0GjE2Nlp0DaAL6vV6tFqtomsAAAAAAADMetdee23yzI9//OPxK7/yKzE0NJQ8u2yM+wk0\nm82o1fKiawAAAAAAAACU1rp16+KWW25JmnnOOef0xbAfYdwHAAAAAAAAYAbMmzcvIiKOPfbY+MAH\nPhB5nke1Wn3Cx0qlElmWFdy0nIz7AAAAAAAAAMyYqampeOSRRyLP8/2vJ4/8xv6nMu4DAAAAAAAA\n0HU7d+6MiIgf/OAH8Ud/9EdJMs8444x429veliSr7Iz7CTQajRgbGy26BtAF9Xo9Wq1W0TUAAAAA\nAABmvbGxseSZV111VbzpTW+KoaGh5NllY9xPoNlsRq2WF10DAAAAAAAAgB5VKboAAAAAAAAAABys\nWq1WdIUZ4eR+Ap1OJzqdTtE1gC7JsqzoCgAAAAAAADyD3bt3x7x584qu0XXG/QSyLDP+AQAAAAAA\nABzAqlWr4t57702a+aIXvShGRkaSZpaVa/kBAAAAAAAA6LqVK1cmz+ynW9ad3E+g0WjE2Nho0TWA\nLqjX69FqtYquAQAAAAAAMOtNTk4mz/zBD34QDz30UCxbtix5dtkY9xNoNptRq+VF1wAAAAAAAAAo\nreuuu64ruQsWLOhKbtm4lh8AAAAAAACArluyZEnyzKOPPjoGBgaS55aRk/sAAAAAAAAAdN2RRx4Z\n27dvj8MPPzzOOuusyPM8qtXqEz7uez355/d9rFQqkWXZ/sxly5Y94fNeZtwHAAAAAAAAYMYceuih\n8cpXvrLoGrOOa/kBAAAAAAAAoOSc3AcAAAAAAABgxjz66KMxOjr6rK7hf/yr3xn3AQAAAAAAAOi6\nhx56KCIibr311jjvvPOSZL7sZS+L97///Umyys64n0Cj0YixsdGiawBdUK/Xo9VqFV0DAAAAAABg\n1rvjjjuSZ37rW9+K888/P0ZGRpJnl41xP4FLLrkkajXXQAAAAAAAAAA8k6GhoRgfH+9Kbj8w7ieQ\nZVlkWVZ0DQAAAAAAAIDSeslLXhL/9V//lTRzyZIlfbPVGvcTcC0/9C7X8gMAAAAAAKTRjVP727dv\nj507d8ahhx6aPLtsjPsJNJtN1/IDAAAAAAAAHECtVkueeeqpp8aSJUuS55aRcR8AAAAAAACAGfPC\nF74wzjvvvMjzfP+rWq0+7ccn/3qe51GpVIr+Egph3AcAAAAAAABgxoyMjMTRRx/d10P9wTDuAwAA\nAAAAANB1e/bsiYiI6667Ll7xilckydy8eXO89rWvTZJVdsb9BBqNRoyNjRZdA+iCer0erVar6BoA\nAAAAAACz3o033pg889JLL41NmzbF0NBQ8uyyMe4n0Gw2o1bLi64BAAAAAAAAUFrHHXdc8oH/LW95\nS18M+xHGfQAAAAAAAABmwODgYERE/OIv/mJ8/OMfj0qlEpVKpeBWs4dxHwAAAAAAAIAZU6lUolo1\nVT9X3gYBAAAAAAAAACVn3AcAAAAAAACAkjPuAwAAAAAAAEDJGfcBAAAAAAAAoOSM+wAAAAAAAABQ\nctWiCwAAAAAAAADQPx544IG4/PLLI8/zqFarT/i471WtVqNSOfBZ9TzPY/369VGt9sfs3R9fJQAA\nAAAAAACFuuWWWyIi4t57743PfOYzSTJXr14dn//85yPP8yR5ZWbcT6DT6USn0ym6BtAlWZYVXQEA\nAAAAAGDWe+yxx5JnPvLIIzE1NWXc59nJssz4BwAAAAAAAHAA69evj3a7HYceemj80i/9UuR5/jOv\n3j+QgYGBeP3rXx8DAwMJW5aXcR8AAAAAAACAGfPQQw/F97///eedMzw8HC972ctiwYIFCVqVn3Ef\nAAAAAAAAgK5rt9v7f3zHHXckyWw0GnHVVVfF4OBgkrwyO/g7DgAAAAAAAADgWVq2bFnyzHXr1rmW\nHwAAAAAAAABSOfzww+PBBx+MNWvWxO/93u9Fnuf7X9Vq9Wk/PtOv53keWZbF8PBw0V/WjDHuAwAA\nAAAAADBjFi9eHL/6q79adI1Zx7X8AAAAAAAAAFByxn0AAAAAAAAAKDnX8gMAAAAAAAAwY+6+++5o\nNpuR5/n+18EYGBiI008/PUZGRhI3LCfjPgAAAAAAAABdd/3110dExIMPPhh/93d/lyTzqquuiiuu\nuCJqtVqSvDIz7ifQ6XSi0+kUXQPokizLiq4AAAAAAAAw6w0MDMTevXuTZg4NDUWl0h/fjd64n0CW\nZcY/AAAAAAAAgAN40YteFO12O1asWBGnnXZa5Hke1Wo1KpVKVKvV/Z/nef6s9tc8z+OlL33pQV/r\nP9sY9wEAAAAAAACYMffff3987nOfe945Q0NDccghh8Rxxx2XoFX59cf9BAAAAAAAAAAUqt1uJ80b\nHx+Pd7zjHTE+Pp40t6yc3E+g0WjE2Nho0TWALqjX69FqtYquAQAAAAAAQJ8z7ifQbDajVuuP7+MA\nAAAAAAAAcDDWr18fW7duTZp59tlnx9DQUNLMsnItPwAAAAAAAABdl3rYj4i48sor++ZafuM+AAAA\nAAAAAF23YsWK5JnHH398DA4OJs8tI9fyAwAAAAAAANB1q1evjvvvv/8pP59lWeR5HtVqNfI83//a\n9/kz/fzcuXOj0WhElmUFfDUzz7gPAAAAAAAAQNe12+2n/flOpxOTk5MxOTl5UJn/+I//2Ben9437\nCTQajRgbGy26BtAF9Xo9Wq1W0TUAAAAAAAB4BtPT00VXmBHG/QSazWbUannRNQAAAAAAAAD6Tp73\nx1ZbKboAAAAAAAAAABysfhn3ndxPoNPpRKfTKboG0CVZlhVdAQAAAAAAgGewe/fumDdvXtE1us7J\nfQAAAAAAAAC6rlsn7CuV/pi9ndxPYPPmzTE2Nlp0DaAL6vV6tFqtomsAAAAAAADMelNTU13JdS0/\nz1qz2YxarT9+wwAAAAAAAAAcjA0bNkS73U6WV6vVYsuWLTE0NJQss8z+j717jZGrPA84/pw5M7Oz\n2HUMOMQJDrc2KUNlp6Q2W+FtWsilEm5QkXqjxChKKE27KE1U0pS0TZUQo8pIldp6M60aKVUrqiZt\n8yGqhCqCxAd6GWyM4lgFZ6Uo4OCC6siAAa9Ze08/2Qqx2fjynj3v7vx+0tGsZz1Pnoks8eE/5x1x\nHwAAAAAAAIBFs2nTpti+fXvTayw54j4AAAAAAAAAi2bnzp3x3ve+97znrFixIrZt2xbr169PsFX+\nWk0vAAAAAAAAAMDy94NH8s/Pz5/3dfjw4bj77rtjdna2wXe1eMR9AAAAAAAAAGp32WWXJZ85OTkZ\nY2NjyefmyLH8AAAAAAAAANTurW99azzzzDPxkz/5k/Gxj30syrKMdrt92scT1+meL4qi6bfSCHEf\nAAAAAAAAgEWzatWq+Omf/umm11hyHMsPAAAAAAAAAJkT9wEAAAAAAAAgc+I+AAAAAAAAAGRO3AcA\nAAAAAACAzIn7AAAAAAAAAJA5cR8AAAAAAAAAMifuAwAAAAAAAEDmxH0AAAAAAAAAyJy4DwAAAAAA\nAACZE/cBAAAAAAAAIHPtphcAAAAAAAAAYHTs3bs37rzzzijL8uTVbrdf91iWZRRFseCcbrcbW7Zs\niQ0bNizS5s0S9wEAAAAAAACo3TPPPBMREUeOHImZmZkkMx955JH42te+FitWrEgyL2fifgJVVUVV\nVU2vAdTkR30qDAAAAAAAgB9t5cqVyWeuWLEiOp1O8rk5EvcTKIpC/AMAAAAAAABYwEUXXRQRERde\neGFs3Lgxut1ujI2NxdjY2CnH8v/g8fyne/7E49VXXx3dbrfhd7Y4xH0AAAAAAAAAanfkyJGIiDh0\n6FA89NBDSWbeeeedceuttyaZlTtxP4GpqamYmdnX9BpADfr9fgwGg6bXAAAAAAAAWPL27NmTfOaX\nvvSluOWWW6LX6yWfnRtxP4Hp6enodMqm1wAAAAAAAADI1rvf/e7YvXt30pmf+MQnRiLsR4j7AAAA\nAAAAACyCTqcTERGbNm2K7du3N7zN0tNqegEAAAAAAAAAYGHu3AcAAAAAAABg0bz44ovx+OOPR1mW\nJ692u33axzf6fVEUTb+NRSfuAwAAAAAAAFC7AwcORETEt7/97bj77ruTzPz5n//5+NM//dORiP3i\nfgJVVUVVVU2vAdRkFP5jAAAAAAAAULf9+/cnn/nf//3fcfTo0ej1esln50bcT6AoCvEPAAAAAAAA\nYAETExMxHA6Tzty2bdtIhP2IiFbTCwAAAAAAAACw/D3xxBPJZ/7Zn/1ZzM3NJZ+bI3fuJ+BYflje\nnMwBAAAAAABw/l577bXkMw8ePDgyLUfcT+Cuu+6KmZl9Ta8B1KDf78dgMGh6DQAAAAAAAN7AsWPH\not1e/ul7+b/DRTA9PR2dTtn0GgAAAAAAAADZuu666+Kxxx5LOvO+++6LXq+XdGauxH0AAAAAAAAA\nanfi+PxNmzbF9u3bG95m6Wk1vQAAAAAAAAAAsDBxHwAAAAAAAAAyJ+4DAAAAAAAAQObEfQAAAAAA\nAADInLgPAAAAAAAAAJkT9wEAAAAAAAAgc+I+AAAAAAAAAGRO3AcAAAAAAACAzIn7AAAAAAAAAJA5\ncR8AAAAAAAAAMifuAwAAAAAAAEDmxH0AAAAAAAAAyJy4DwAAAAAAAACZE/cBAAAAAAAAIHPtphcA\nAAAAAAAAYHTs3LkztmzZct5zLrjggvjc5z4X11xzTYKt8ifuAwAAAAAAAFC74XB48udXX331vOe9\n+uqrMTU1FQ8++GD0er3znpc7x/IDAAAAAAAAQObEfQAAAAAAAABqd+mllyafuXnz5hgbG0s+N0eO\n5QcAAAAAAACgduvWrYtnn3023vGOd8RHP/rRKMsy2u12lGV58jrx5x9+/OHfl2UZrdZo3csu7gMA\nAAAAAACwaFavXh0TExNNr7HkjNZHGQAAAAAAAABgCXLnPgAAAAAAAACL5oUXXojHHnvsDY/bP5Mj\n+dvtdhRF0fRbWVTiPgAAAAAAAAC1m5+fj4iImZmZ+PSnP51k5uTkZHz+858fidAv7icwNTUVMzP7\nml4DqEG/34/BYND0GgAAAAAAAEve3r17k8989NFH48UXX4zVq1cnn50bcT+B6enp6HTKptcAAAAA\nAAAAyNaGDRtiOBwmnbl169aRCPsR4j4AAAAAAAAAi+jCCy+MjRs3RrfbjbGxsRgbG4tutxudTida\nrdYZz+l0OrFly5YaN82LuA8AAAAAAABA7Z544omIiDh06FA89NBDSWZ+5StfiX/8x3+MTqeTZF7O\nxP0EqqqKqqqaXgOoSVEUTa8AAAAAAACw5J3NXflnqizLkWk54n4CRVGMzD8YAAAAAAAAgHPxrne9\nK4bDYbz1rW+N973vfVGWZbTb7dc9tlqtM26vZVnG+973vmi3RyN7j8a7BAAAAAAAACAL69ati498\n5CNNr7HkpD/3AAAAAAAAAABIStwHAAAAAAAAgMyJ+wAAAAAAAACQOXEfAAAAAAAAADIn7gMAAAAA\nAABA5sR9AAAAAAAAAMhcu+kFAAAAAAAAABgdL7zwQvzXf/1XlGUZ7Xb7tI8nroV+32q1oiiKpt/O\nohH3AQAAAAAAAKjd/v37IyJiZmYmPvOZzySZef3118cXvvCFkYj84n4CVVVFVVVNrwHUZBT+YwAA\nAAAAAFC3AwcOJJ+5e/fuOHr0aPR6veSzcyPuJ1AUhfgHAAAAAAAAsICJiYkYDodJZ27btm0kwn5E\nRKvpBQAAAAAAAABY/h5//PHkM7/whS/Ea6+9lnxujsR9AAAAAAAAAGp37Nix5DMPHToUZVkmn5sj\nx/InUFVVVFXV9BpATXztBgAAAAAAQL7m5uZGIvCL+wkURSH+AQAAAAAAACxgYmIihsNh0pn33Xdf\n9Hq9pDNz5Vh+AAAAAAAAAGr38ssvJ5/5xS9+MY4fP558bo7cuZ/A1NRUzMzsa3oNoAb9fj8Gg0HT\nawAAAAAAACx5//u//1vLzFdeeSVWrVqVfHZuxP0Epqeno9NZ/t/hAAAAAAAAAHCu3vGOd8RwOIyy\nLGPVqlVRlmW02+1otc7twPkVK1bEbbfdNhJhP0LcBwAAAAAAAGARbdiwIbZt2xZlWUZZltFqtaIo\niqbXyp64DwAAAAAAAEDtjhw5EhERTzzxRNx0001JZn7sYx+LX//1X08yK3fifgJTU1MxM7Ov6TWA\nGvT7/RgMBk2vAQAAAAAAsOTt2bMn+cy//uu/jptvvjnGx8eTz86NuJ/Ajh07otMpm14DAAAAAAAA\nYOS0Wq2mV1gU4n4CRVH4DggAAAAAAACABaxduzaee+65pDPf9ra3RbfbTTozV+J+AlVVRVVVTa8B\n1MSHdwAAAAAAAM5f6rAfEXHgwIE4evRo9Hq95LNzI+4ncNddd8XMzL6m1wBq0O/3YzAYNL0GAAAA\nAADAkrd69ep44YUXks8V9zlj09PT0emUTa8BAAAAAAAAkK3LLrssedy/6qqrYuXKlUln5krcBwAA\nAAAAAKB24+PjERHx9re/PW655ZYoy/Lk1W63T/n5B597o79zySWXRFmOxo3Y4j4AAAAAAAAAi2bt\n2rVxyy23NL3GkiPuAwAAAAAAALBodu7cGTfccEOSWdu3b49NmzYlmZW7VtMLAAAAAAAAALD8DYfD\n5DP/4A/+IGZnZ5PPzZG4DwAAAAAAAACZcyx/AlNTUzEzs6/pNYAa9Pv9GAwGTa8BAAAAAADAiBP3\nE5ieno5Op2x6DQAAAAAAAIBsXXfddfHYY48lnfm5z30uer1e0pm5EvcBAAAAAAAAqF1RFBERsWnT\npti+fXvD2yw9raYXAAAAAAAAAAAWJu4DAAAAAAAAQObEfQAAAAAAAADInLgPAAAAAAAAAJlrN70A\nAAAAAAAAAMvf8ePHIyJi586dccMNNySZ+alPfSpuuummJLNyJ+4nMDU1FTMz+5peA6hBv9+PwWDQ\n9BoAAAAAAABL3q5du5LPvP/+++PGG2+MXq+XfHZuxP0EduzYEZ1O2fQaAAAAAAAAACxT4n4CRVFE\nURRNrwEAAAAAAACQrYmJiRgOhxER0el0oizL111n21zHx8fjT/7kT0birv0IcR8AAAAAAACARbRp\n06bYvn1702ssOa2mFwAAAAAAAAAAFubOfQAAAAAAAAAWzbe+9a348Ic//Loj+dvt9mkf3+j3J65N\nmzbFz/zMzzT9lhaFuA8AAAAAAADAopmdnY2nn346yayvfvWr8fWvfz1WrlyZZF7OxP0EpqamYmZm\nX9NrADXo9/sxGAyaXgMAAAAAAGDJ27t3b/KZVVXFsWPHks/NkbifwI4dO6LTKZteAwAAAAAAACBb\ns7Oztcy94IILapmbG3E/gaIooiiKptcAAAAAAAAAyNbGjRtjOBzGJZdcEps3b46yLKMsy2i1Wuc0\nr9PpxK/8yq9Et9tNvGmexH0AAAAAAAAAFs26devit37rt6Isy2i32+cc90eNuA8AAAAAAABA7Y4c\nORIREbt3746bbropyczf+Z3fiV/7tV9LMit34n4CU1NTMTOzr+k1gBr0+/0YDAZNrwEAAAAAALDk\n7dmzJ/nMv/mbv4mbb745er1e8tm5EfcTmJ6ejk6nbHoNAAAAAAAAgGxde+218cQTTySd+fGPf3wk\nwn6EuA8AAAAAAADAIuh2uxERsXHjxti+fXsURdHwRktLq+kFAAAAAAAAABgdRVEI++dA3AcAAAAA\nAACAzIn7AAAAAAAAAJA5cR8AAAAAAAAAMifuAwAAAAAAAEDmxH0AAAAAAAAAyJy4DwAAAAAAAACZ\nE/cBAAAAAAAAIHPtphcAAAAAAAAAYHQ899xz8S//8i9RluXJq91un/axLMs3nFOWZaxfv37Bv7Oc\niPsAAAAAAAAA1O7JJ5+MiIj9+/fH9PR0kplXXnll/O3f/u1IBH5xP4GqqqKqqqbXAGpSFEXTKwAA\nAAAAACx5L730UvKZ3//+9+P48ePiPmemKArxDwAAAAAAAGABExMTMRwOY82aNXHdddedd2Ptdrux\ndevW6Ha7iTbMm7gPAAAAAAAAwKK58sor41Of+lTTayw5raYXAAAAAAAAAAAWJu4DAAAAAAAAQObE\nfQAAAAAAAADInLgPAAAAAAAAAJkT9wEAAAAAAAAgc+I+AAAAAAAAAGRO3AcAAAAAAACAzIn7AAAA\nAAAAAJC5dtMLAAAAAAAAADA6nn322fj7v//7KMsy2u12lGV58jrx5zPR6XRicnIyut1uzRvnQdwH\nAAAAAAAAoHZ79+6NiIgDBw7El7/85SQz3/KWt8QDDzxwxh8IWMrE/QSqqoqqqppeA6hJURRNrwAA\nAAAAALDkvfLKK8lnPv/88zE3NzcScb/V9AIAAAAAAAAAcK7m5uaaXmFRuHM/gaIo3NkLAAAAAAAA\n0IALLrig6RUWhbifgGP5YXnz4R0AAAAAAIB8HT9+fCSO5Rf3E3DnPgAAAAAAAEAz5ufnm15hUbSa\nXgAAAAAAAACA5W/t2rXJZ27cuDHGxsaSz82RO/cBAAAAAAAAqN3ll18ezz33XFx11VVx++23R1mW\n0W63T/t44lro90VRRK/Xa/ptLRpxHwAAAAAAAIBFU5ZljI2NnXPUP/HnVmu0DqoX9wEAAAAAAACo\n3fHjxyMiYmZmJu65554kMzdv3hz33ntvFEWRZF7OxP0EpqamYmZmX9NrADXo9/sxGAyaXgMAAAAA\nAGDJ27VrV/KZ//Ef/xEvvvhirF69Ovns3Ij7CezYsSM6nbLpNQAAAAAAAABGTq/Xa3qFRSHuJ3DX\nXXe5cx+WKXfuAwAAAAAAkANxP4Hp6Wl37gMAAAAAAAAsYM2aNXHw4MHkc925zxmrqiqqqmp6DaAm\nRVE0vQIAAAAAAMCSV0fYj4h4+eWXY+XKlbXMzom4n0BRFOIfAAAAAAAAwAJ6vV7Mzs7WMncUtJpe\nAAAAAAAAAIDl713velfymffff3+026NxT7u4DwAAAAAAAEDtnnnmmeQz/+iP/iheeeWV5HNzNBof\nYahZVVVRVVXTawA18bUbAAAAAAAA52/lypXJZ46Pj0en00k+N0fifgJFUYh/AAAAAAAAAAu46KKL\nIiJizZo1cf3110dZlievdrt9ymOr1Trt8z/4umuuuSa63W7D72xxiPsAAAAAAAAALJorr7wyPvnJ\nTza9xpLTanoBAAAAAAAAAEaHrz0/N+7cBwAAAAAAAGDR7Nq1K2688cbTHrt/uqP33+hI/rIs42d/\n9mfjl3/5l5t+S4tC3E9gamoqZmb2Nb0GUIN+vx+DwaDpNQAAAAAAAJa811577XV/np+fP+W5szUc\nDuMXfuEXYvXq1ec1ZykQ9xPYsWNHdDpl02sAAAAAAAAAZOub3/xmLXOLoqhlbm7E/QSKohiZfzAA\nAAAAAAAA52J+fr6WuWNjY7XMzY24n0BVVVFVVdNrADXx4R0AAAAAAIB8HT16NHq9XtNr1E7cT8Cd\n+wAAAAAAAAALW7VqVbz00kvJ565cuTL5zByJ+wlMTU3FzMy+ptcAatDv92MwGDS9BgAAAAAAwJJX\nR9gviiLm5uaiLMvks3Mj7icwPT0dnc7y/8cCAAAAAAAAcK7e+c53xre//e2kMz/4wQ+OxJH8ERGt\nphcAAAAAAAAAYPnbv39/8pnD4TCOHTuWfG6OxH0AAAAAAAAAanf8+PFaZlZVlXxujhzLDwAAAAAA\nAEDtrr322hgOh/GWt7wlbrjhhijLMtrtdpRlGWVZRlEUZzWv0+nEli1botPp1LRxXsR9AAAAAAAA\nABbNZZddFr/927/d9BpLjrgPAAAAAAAAwKJ56qmn4vd///dPuXP/xHXiuR9+LIridUfwl2UZ73nP\ne+InfuInGnw3i0fcBwAAAAAAAKB2Bw4ciIiIw4cPx+7du5PM/Od//uf42te+FuPj40nm5UzcT6Cq\nqtd9QgRYXs72+10AAAAAAAA41f79+5PPnJ2dTT4zV62mFwAAAAAAAACAc9VqjUb2dud+AkVRuLMX\nAAAAAAAAgNqMxkcYAAAAAAAAAGjUmjVrks9cu3ZtdDqd5HNzJO4DAAAAAAAAULuDBw8mn/nKK6/E\nsWPHks/NkbgPAAAAAAAAQO3e9KY3JZ95+PDhKMsy+dwctZteYDmYmpqKmZl9Ta8B1KDf78dgMGh6\nDQAAAAAAgCXvxRdfTD6z1WrF3NzcSAR+cT+B6enp6HSW/z8WAAAAAAAAgHN19dVXx1NPPZV05m/8\nxm9Er9dLOjNX4j4AAAAAAAAAtTtxLP+GDRvinnvuibIso91un/LYarWiKIqGt82PuA8AAAAAAADA\nojl48GD8+7//+2nj/onrTLTb7XjPe94T3W635o3zIO4DAAAAAAAAULtvfetbERFx4MCB+Lu/+7sk\nM7dt2xbf+MY3zvgDAUuZuJ9AVVVRVVXTawA1cewLAAAAAADA+Xv11VdrmXvkyJFYuXJlLbNzIu4n\nUBSF+AcAAAAAAACwgMsvvzyefvrppDM3b94cK1asSDozV+I+AAAAAAAAALVbu3ZtPP3003H11VfH\n7/7u70ZZltFut0/7eOL6wedbrVa0Wq2m30ZjxH0AAAAAAAAAFs2P/diPxfr165teY8kZ3Y81AAAA\nAAAAAMASIe4DAAAAAAAAQObEfQAAAAAAAADInLgPAAAAAAAAAJkT9wEAAAAAAAAgc+I+AAAAAAAA\nAGRO3AcAAAAAAACAzIn7AAAAAAAAAJA5cR8AAAAAAAAAMifuAwAAAAAAAEDmxH0AAAAAAAAAyJy4\nDwAAAAAAAACZE/cBAAAAAAAAIHPiPgAAAAAAAABkrt30AgAAAAAAAACM+bYzdAAAH0NJREFUjp07\nd8bWrVvPe874+Hh8+tOfjh//8R9PsFX+xH0AAAAAAAAAajccDk/+/L3vfS/JzDvuuCMefPDB6PV6\nSeblzLH8AAAAAAAAAJA5cR8AAAAAAACA2q1Zs6aWud1ut5a5uXEsfwJTU1MxM7Ov6TWAGvT7/RgM\nBk2vAQAAAAAAsOS9/PLLtcw9fPhwvOlNb6pldk7cuQ8AAAAAAABA7WZnZ2uZOzY2Vsvc3LhzP4Hp\n6enodMqm1wAAAAAAAADI1oYNG2LPnj1JZ955553R6/WSzsyVuA8AAAAAAABA7cbHxyMi4sILL4yN\nGzfG2NhYdLvdaLfbURTFWc/rdruxZcuW1GtmS9wHAAAAAAAAoHa7du2KiIhDhw7FQw89lGTmv/3b\nv8U//dM/RbfbTTIvZ62mFwAAAAAAAABg+Ttx535KK1asiLIcja9Qd+c+AAAAAAAAALX7qZ/6qRgO\nh3HppZfGli1boizLk1e73T7l5x+lLMuYmJgQ9wEAAAAAAAAgtbe97W1x6623Nr3GkuNYfgAAAAAA\nAADInDv3AQAAAAAAAFg0R48ejYMHD77uCP4Tj61WK4qiaHrFLIn7AAAAAAAAANTu8OHDERGxZ8+e\n+NVf/dUkM7du3Rof+chHkszKnbifwNTUVMzM7Gt6DaAG/X4/BoNB02sAAAAAAAAsef/zP/+TfOY/\n/MM/xK233hrj4+PJZ+dG3E9gx44d0emUTa8BAAAAAAAAMHLKcjRarbifQFEUvvcBAAAAAAAAYAET\nExMxHA7j4osvjne/+93nPW9sbCw+/OEPR7fbTbBd/sR9AAAAAAAAABbNlVdeGZ/5zGeaXmPJEfcB\nAAAAAAAAqN3c3FxEROzatStuuOGGJDM/+clPxs0335xkVu7E/QSmpqZiZmZf02sANej3+zEYDJpe\nAwAAAAAAYMnbvXt38pl/8Rd/ER/4wAei1+sln50bcT+B6enp6HTKptcAAAAAAAAAyNbFF18c3//+\n95POnJ+fj7GxsaQzcyXuJ1BVVVRV1fQaQE2Komh6BQAAAAAAgCUvddg/4ejRo+7c58wURSH+AQAA\nAAAAACyg1WrF/Px8LXNHwWi8SwAAAAAAAAAatWLFiuQzL7vssijL0fgKdXfuAwAAAAAAAFC7N7/5\nzXH48OGkM6+55pqs4/6zzz4b733vexf8O5deemk8/PDDP3KWuJ9AVVVRVVXTawA18bUbAAAAAAAA\n5+873/lO8pkPP/xw/N7v/V70er3ks1O46KKL4v777z/t777+9a/Ho48+Gr/4i794RrPE/QSKohD/\nAAAAAAAAABYwMTERw+Ew6cxt27ZlG/YjIsbHx+ODH/zgKc8/9dRTMRwOY+PGjXH33Xef0SxxHwAA\nAAAAAIBF1W6ff6q+4IILsg77b6SqqrjnnnuiKIq47777otVqndHrzuxvAQAAAAAAAMB5+MG79o8d\nO3be10svvRQf//jHY3Z2tsF3dfb+9V//NZ588sm444474u1vf/sZv07cBwAAAAAAAIBFcOzYsfir\nv/qrWL16ddxxxx1n9VpxHwAAAAAAAIDarVu3LvnMVqsVn/jEJ+LRRx9NPrsODz74YDz//PNx++23\nx/j4+Fm9VtwHAAAAAAAAoHaXXnpp8pnz8/Oxb9+++OxnP7skAv8DDzwQvV4vPvShD531a9s17DNy\npqamYmZmX9NrADXo9/sxGAyaXgMAAAAAAGDJ27t3b22zq6qKBx54ICYnJ2v73zhfzz//fHzzm9+M\n97///bFq1aqzfr24n8D09HR0OmXTawAAAAAAAABk6+qrr47HH3+8tvnf/e53a5udwje+8Y2IiNiy\nZcs5vV7cBwAAAAAAAOANVVUV8/PzcezYsTh+/PgpjyeuH/X7l156KSIirrrqqrjtttuiLMtot9un\nfTxxne73f/iHfxgzMzOn7HnFFVcs8v8zZ2fnzp1RFEVs3rz5nF4v7gMAAAAAAABwiqqq4o//+I/j\nP//zP5POvfjii+PGG28859fffvvt8dnPfjaqqjr5XFEUcdttt6VYrzZ79+6NK664IlauXHlOrxf3\nAQAi4otf/GLTKwAAAAAAZOXgwYPJw36r1Yrrr7/+vGZMTk7G5z//+XjggQfiu9/9blxxxRVx2223\nxeTkZKIt05ubm4vvfe978XM/93PnPEPcBwAAAAAAAOAU8/PzJ3/+pV/6pXjnO9951kfo//Dvx8fH\nY9WqVee92+TkZNYx/4cdOnQoiqI4r/cu7gMAAAAAAACwoImJiSUV03NzySWXxJNPPnleM1qJdgEA\nAAAAAAAAaiLuAwAAAAAAAEDmxH0AAAAAAAAAyJy4DwAAAAAAAACZE/cBAAAAAAAAIHPiPgAAAAAA\nAABkTtwHAAAAAAAAgMyJ+wAAAAAAAACQOXEfAAAAAAAAADIn7gMAAAAAAABA5sR9AAAAAAAAAMic\nuA8AAAAAAAAAmRP3AQAAAAAAACBz4j4AAAAAAAAAZE7cBwAAAAAAAIDMifsAAAAAAAAAkDlxHwAA\nAAAAAAAyJ+4DAAAAAAAAQObEfQAAAAAAAADInLgPAAAAAAAAAJkT9wEAAAAAAAAgc+I+AAAAAAAA\nAGRO3AcAAAAAAACAzIn7AAAAAAAAAJA5cR8AAAAAAAAAMifuAwAAAAAAAEDmxH0AAAAAAAAAyJy4\nDwAAAAAAAACZE/cBAAAAAAAAIHPiPgAAAAAAAABkTtwHAAAAAAAAgMyJ+wAAAAAAAACQOXEfAAAA\nAAAAADIn7gMAAAAAAABA5sR9AAAAAAAAAMicuA8AAAAAAAAAmRP3AQAAAAAAACBz4j4AAAAAAAAA\nZE7cBwAAAAAAAIDMifsAAAAAAAAAkDlxHwAAAAAAAAAyJ+4DAAAAAAAAQObEfQAAAAAAAADInLgP\nAAAAAAAAAJkT9wEAAAAAAAAgc+I+AAAAAAAAAGRO3AcAAAAAAACAzIn7AAAAAAAAAJA5cR8AAAAA\nAAAAMifuAwAAAAAAAEDmxH0AAAAAAAAAyJy4DwAAAAAAAACZE/cBAAAAAAAAIHPiPgAAAAAAAABk\nTtwHAAAAAAAAgMyJ+wAAAAAAAACQOXEfAAAAAAAAADIn7gMAAAAAAABA5sR9AAAAAAAAAMicuA8A\nAAAAAAAAmRP3AQAAAAAAACBz4j4AAAAAAAAAZE7cBwAAAAAAAIDMtZteAAAAAAAAAIC8Pfzww/Gd\n73wnyrKMdrsdZVm+7mq1zuy+8nXr1sX69etr3nZ5EvcBAAAAAAAAOEVZlid/fuSRR+KRRx5JMvej\nH/1ofOhDH0oya5Q4lh8AAAAAAACAU5zp3fhn67XXXqtl7nIn7gMAAAAAAABwirm5uVrmbtq0qZa5\ny51j+ROoqiqqqmp6DaAmRVE0vQIAAAAAAMCi6/V6tcx98MEHY/369bXMXs7E/QSKohD/AAAAAAAA\ngGVldnY2+cw3v/nN8Zu/+ZvJ544CcR8AAAAAAACABd17770xOTnZ9BojrdX0AgAAAAAAAADAwsR9\nAAAAAAAAAMicuA8AAAAAAAAAmRP3AQAAAAAAACBz4j4AAAAAAAAAZE7cBwAAAAAAAIDMifsAAAAA\nAAAAkDlxHwAAAAAAAAAyJ+4DAAAAAAAAQObEfQAAAAAAAADInLgPAAAAAAAAAJkT9wEAAAAAAAAg\nc+I+AAAAAAAAAGRO3AcAAAAAAACAzIn7AAAAAAAAAJA5cR8AAAAAAAAAMifuAwAAAAAAAEDmxH0A\nAAAAAAAAyJy4DwAAAAAAAACZE/cBAAAAAAAAIHPiPgAAAAAAAABkTtwHAAAAAAAAgMyJ+wAAAAAA\nAACQOXEfAAAAAAAAADIn7gMAAAAAAABA5sR9AAAAAAAAAMicuA8AAAAAAAAAmRP3AQAAAAAAACBz\n4j4AAAAAAAAAZE7cBwAAAAAAAIDMifsAAAAAAAAAkDlxHwAAAAAAAAAyJ+4DAAAAAAAAQObEfQAA\nAAAAAADInLgPAAAAAAAAAJkT9wEAAAAAAAAgc+I+AAAAAAAAAGRO3AcAAAAAAACAzIn7AAAAAAAA\nAJA5cR8AAAAAAAAAMifuAwAAAAAAAEDmxH0AAAAAAAAAyJy4DwAAAAAAAACZE/cBAAAAAAAAIHPi\nPgAAAAAAAABkTtwHAAAAAAAAgMyJ+wAAAAAAAACQOXEfAAAAAAAAADIn7gMAAAAAAABA5sR9AAAA\nAAAAAMicuA8AAAAAAAAAmRP3AQAAAAAAACBz4j4AAAAAAAAAZE7cBwAAAAAAAIDMifsAAAAAAAAA\nkLl20wsAAAAAAAAAkLf/+7//i2effTbKsox2u33ax1arFUVRNL3qsiXuAwAAAAAAALCgv/zLv0w2\n68///M/j2muvTTZvVIj7CVRVFVVVNb0GUBOfMAMAAAAAAEZRr9erZe5DDz0k7p8DcT+BoijEPwAA\nAAAAAGBZmZ2dTT7z8ssvj61btyafOwrEfQAAAAAAAAAWdO+998bk5GTTa4y0VtMLAAAAAAAAAAAL\nE/cBAAAAAAAAIHPiPgAAAAAAAABkTtwHAAAAAAAAgMyJ+wAAAAAAAACQOXEfAAAAAAAAADIn7gMA\nAAAAAABA5sR9AAAAAAAAAMicuA8AAAAAAAAAmRP3AQAAAAAAACBz4j4AAAAAAAAAZE7cBwAAAAAA\nAIDMifsAAAAAAPD/7d1/rJZ1/cfx1wVIcHI6UMIkIBagbKQwoul0NhxhOHBqDbEJwiSpoe3UCIPy\nBLO0VZCWJoOcCR4yC8ogVPwRuDPihzPJFSAYIwQD+SELEs45cL5/NM9C4MhB9Fz2fTy2e9znvj+f\n637f9/jveV/XDQBQcuI+AAAAAAAAAJScuA8AAAAAAAAAJSfuAwAAAAAAAEDJifsAAAAAAAAAUHLi\nPgAAAAAAAACUnLgPAAAAAAAAACUn7gMAAAAAAABAyYn7AAAAAAAAAFBy4j4AAAAAAAAAlJy4DwAA\nAAAAAAAlJ+4DAAAAAAAAQMmJ+wAAAAAAAABQcuI+AAAAAAAAAJScuA8AAAAAAAAAJSfuAwAAAAAA\nAEDJifsAAAAAAAAAUHLiPgAAAAAAAACUnLgPAAAAAAAAACUn7gMAAAAAAABAyYn7AAAAAAAAAFBy\n4j4AAAAAAAAAlJy4DwAAAAAAAAAlJ+4DAAAAAAAAQMmJ+wAAAAAAAABQcuI+AAAAAAAAAJScuA8A\nAAAAAAAAJSfuAwAAAAAAAEDJifsAAAAAAAAAUHLiPgAAAAAAAACUnLgPAAAAAAAAACUn7gMAAAAA\nAABAyYn7AAAAAAAAAFBy4j4AAAAAAAAAlJy4DwAAAAAAAAAlJ+4DAAAAAAAAQMmJ+wAAAAAAAABQ\ncuI+AAAAAAAAAJScuA8AAAAAAAAAJSfuAwAAAAAAAEDJifsAAAAAAAAAUHLiPgAAAAAAAACUnLgP\nAAAAAAAAACUn7gMAAAAAAABAyYn7AAAAAAAAAFBy4j4AAAAAAAAAlJy4DwAAAAAAAAAlJ+4DAAAA\nAAAAQMmJ+wAAAAAAAABQcuI+AAAAAAAAAJScuA8AAAAAAAAAJSfuAwAAAAAAAEDJifsAAAAAAAAA\nUHLiPgAAAAAAAACUnLgPAAAAAAAAACUn7gMAAAAAAABAyYn7AAAAAAAAAFBy4j4AAAAAAAAAlJy4\nDwAAAAAAAAAlJ+4DAAAAAAAAQMmJ+wAAAAAAAABQcuI+AAAAAAAAAJScuA8AAAAAAAAAJSfuAwAA\nAAAAAEDJifsAAAAAAAAAUHLiPgAAAAAAAACUnLgPAAAAAAAAACUn7gMAAAAAAABAyYn7AAAAAAAA\nAFBy4j4AAAAAAAAAlJy4DwAAAAAAAAAlJ+4DAAAAAAAAQMmJ+wAAAAAAAABQcuI+AAAAAAAAAJSc\nuA8AAAAAAAAAJSfuAwAAAAAAAEDJifsAAAAAAAAAUHLiPgAAAAAAAACUnLgPAAAAAAAAACUn7gMA\nAAAAAABAyYn7AAAAAAAAAFBy4j4AAAAAAAAAlJy4DwAAAAAAAAAlJ+4DAAAAAAAAQMmJ+wAAAAAA\nAABQcuI+AAAAAAAAAJRcm5YeAAAAAAAAAIByu/3220/JcTp37pzp06enS5cup+R4/5+I+6fAhAkT\nsmHD+pYeA3gP9OnTJ/fff39LjwEAAAAAAPC+a9eu3Sk/5vbt21NdXZ1Jkyad8mP/rxP3T4H77rsv\np53WuqXHAAAAAAAAADhlDhw48J4cd+jQoe/Jcf/XifsAAAAAAAAANOnrX/96LrroorRu3Tpt2rQ5\n4t/WrVunKIqWHvF/nrgPAAAAAAAAQJM6dOiQTp06tfQY/6+1aukBAAAAAAAAAICmifsAAAAAAAAA\nUHLiPgAAAAAAAACUnLgPAAAAAAAAACUn7gMAAAAAAABAyYn7AAAAAAAAAFBy4j4AAAAAAAAAlJy4\nDwAAAAAAAAAlJ+4DAAAAAAAAQMmJ+wAAAAAAAABQcuI+AAAAAAAAAJRcm3ezedmyZZk/f37WrFmT\n3bt3p23btunevXs+85nPZNSoUenYseMx923evDkPPPBA/vSnP2X79u2pqKhIjx49cuWVV+a6665L\n27ZtmzXHyy+/nM9//vOpq6vL3LlzM3DgwOOuXblyZaqrq/PCCy/kjTfeyJlnnpn+/fvn+uuvzyWX\nXNKs1wUAAAAAAACA98NJxf1Dhw7ltttuy6JFi1IURePj9fX1Wbt2bf72t7/l0UcfzX333Zd+/fod\nsXfx4sWZPHlyDh482Lh37969efHFF/PnP/858+bNy6xZs9K1a9cTmqWuri4TJ05MXV3dEbO8XUND\nQ7773e+muro6SRrX7t69O88880yefvrpjBw5MlVVVWnVygUNAAAAAAAAACiPk6rYP/rRjxrD/uDB\ng/PLX/4yK1asyMKFCzNx4sRUVFRk165d+fKXv5wdO3Y07lu7dm0mTZqU2tradO/ePffcc0+WLl2a\nJ598MrfddltOP/30bNq0KV/5yldy+PDhE5plxowZefnll99x3U9+8pNUV1enKIr06tUrP/vZz7J8\n+fIsWbIkt9xyS9q0aZNHHnkkVVVVJ/ORAAAAAAAAAMB7ptlxf8eOHZk7d26KoshVV12Vn/70p+nX\nr1/OPPPM9OzZMzfddFPmzJmTNm3aZO/evZk1a1bj3h//+Mepr69Phw4d8vDDD2fIkCHp3LlzunXr\nljFjxuSuu+5Kkrzyyit54okn3nGWlStX5qGHHmryjP0k2bZtW2bPnp2iKNKnT5888sgjGTRoUDp0\n6JCuXbtmwoQJ+eEPf5gkmT9/fp5//vnmfiwAAAAAAAAA8J5pdtx/+umnU19fnySprKw85pq+fftm\n8ODBaWhoyNKlS5Mk//73v7N8+fIURZEvfOEL6dSp01H7Bg8enIqKiiTJX/7ylybn2LdvX775zW+m\noaEh11xzTZNrFy9e3Djz1KlT8+EPf/ioNUOHDs3AgQOTJLNnz27yeAAAAAAAAADNMXny5Jx//vlH\n3fr06ZPf/e53LT0eHwBtmrthx44dad++fU4//fR89KMfPe667t27N65PkoqKiqxatSobN27MOeec\nc9x9b52F36ZN06NNmzYtr732WoYMGZKrr746CxYsOO7av/71r0mSzp0754ILLjjuuksvvTSrV6/O\nihUrUl9f/44zAAAAAAAAAJyI9evXp1u3bvnqV7+ahoaGI57r379/C03FB0mz63VlZWUqKyuzf//+\nJtdt3rw5SXLGGWc0PlZRUdFkXP/1r3+d/fv3pyiKXHLJJcddt3jx4ixcuDBnn312pk2blg0bNjQ5\ny969e5Mk5557bpPrOnbsmCSpra3Npk2b0qtXrybXAwAAAAAAALyTQ4cOZePGjbniiisybNiwlh6H\nD6iTPjX9WJe2f8uOHTvyxz/+MUVRZMCAAcddV19fnz179uTvf/97fvOb32TRokUpiiJXX311Lr74\n4mPu2b59e6ZOnZqiKHLHHXekQ4cOJzzrO30h4a0vASTJP//5T3EfAAAAAAAAeNc2bdqU2tpa/ZF3\n5T257vztt9+egwcPpiiK3HDDDcdd99hjj+Vb3/pW49+tWrXK1772tYwbN+64eyZPnpx//etfufba\nazNo0KATmqd379556qmn8sorr+T1119Pp06djrlu5cqVjff37dt3QscGAAAAAAAAaMq6detSFEV6\n9+6dJDlw4EDatm2bVq1atfBkfJCc8v8td955Z5YtW5aiKDJ8+PAMHDjwuGu3bduWoigabw0NDfn5\nz3+emTNnHnP9nDlzsnz58nTp0iVTpkw54ZmuuOKKFEWRQ4cO5Y477jjqNyySpKamJjU1NY1/19XV\nnfDxAQAAAAAAAI5n3bp1SZKlS5fm8ssvT79+/XLhhRdmwoQJ2bJlSwtPd3yrV69uvD9z5swjeirv\nv1Ma9++6667MmTMnRVHkvPPOy7Rp05pcP2LEiKxevTpr1qzJww8/nIEDB2bv3r255557cueddx6x\nduPGjZk+fXpatWqV73//+03+LMDb9e7dO9dee20aGhqyZMmSjB07NqtWrcrevXuzZcuWzJo1KxMm\nTEjnzp0b95x22mnNe/MAAAAAAAAAx7B+/fokyZo1azJhwoTce++9GT16dJ577rlcd911efXVV1t4\nwqPV1NRk+vTpjX9v3bo1VVVVAn8LOiWX5a+rq8uUKVOycOHCFEWRnj175oEHHkj79u2b3PffMX3A\ngAF58MEHG8N7dXV1rr/++vTo0SP19fX5xje+kdra2owZMyaf+tSnmj3jd77znbzxxht59tlns3Ll\nyqxYseKI5z/xiU+kqqoqN954Y5KkoqKi2a8BAAAAAAAA8HbDhw/PhRdemPHjxzeeZDx48OD069cv\nt956a2bMmJEZM2a08JRHqq6uPuqxhoaGVFdX59JLL22BiSgajnWN+mbYu3dvJkyYkOeffz5FUaRv\n376ZNWtWOnTocFLHe+GFF/LFL34xRVFk0qRJGTt2bKZPn57Zs2enZ8+eWbBgQdq2bXvEnpUrV+bG\nG29MURSZM2dOkz8FsGjRojz66KNZu3ZtDh06lO7du2fYsGG54YYbsn79+owYMSJFUWTBggXp06fP\nSb0HAAAAAAAAgBMxaNCg7N+/P6tWrWrpUY4wdOjQHDhw4KjH27Vrl8cff7wFJuJdnbn/j3/8I1/6\n0peyefPmFEWRyy67LHffffc7nrHflL59+zbef+vyE3/4wx+S/OfS/BdccEGT+0eNGpUkOffcc/Ps\ns88e9fywYcMybNiwY+5963IYRVHk4x//eLNnBwAAAAAAAGiOs846K6+//npLj3EUAb98Wp3sxg0b\nNmTkyJGNYX/EiBG5//77jxv216xZk3HjxuVzn/tctmzZctzj/ve3Pz70oQ813i+Kosnb29e1anX0\nW9uzZ0+T7+mt34fo2bPnu/qCAgAAAAAAAECS7Nq1K8OHD09lZeVRz9XX12fz5s3p2rVrC0zGB81J\nnbm/ZcuWjB07Nrt3705RFKmsrMz48eOb3NO2bdvU1NSkKIosWbIkN9100zHXPffcc4333zqL//HH\nH8/hw4ePe+zVq1fn5ptvTpLMnj07AwYMOCLu19TUZPz48Tl8+HCefPLJdOvW7ahj7Ny5M8uWLUtR\nFBkyZEiT7wUAAAAAAADgRJx11lmpra3NM888k3Xr1uX8889vfG7mzJnZt2/fO7ZWSE7izP36+vpU\nVlZm586dKYoiU6ZMOaH/bH369EnPnj3T0NCQBx98MLt27Tpqzc6dOzNjxowkydlnn53LL788yX/O\n4G/fvv1xb+3atWs8xltr//us/09+8pONsX/u3LlHvW5DQ0OmTp2aAwcOpH379hk5cmTzPhQAAAAA\nAACA45g6dWqKosjo0aNz9913Z968ebn11ltz77335qKLLsqYMWNaekQ+AFpPnTp1anM2zJs3L/Pn\nz09RFBk6dGhuueWW1NXVNXk77bTTkiQ9evTIwoULs3///jzxxBPp2LFjzjjjjLz55pt56qmnMnHi\nxGzbti2tW7fOD37wg/Tq1euEZtq6dWt++9vfpiiKXHPNNenSpcsRz7dr1y47d+7MSy+9lJdeeilv\nvvlmzjnnnCTJiy++mClTpjReVeDb3/52Pv3pTzfnIwEAAAAAAAA4rq5du+ayyy7L1q1bs2TJkixd\nujSHDx/O2LFjU1VV1dhToSlFQ0NDQ3M2fPazn82WLVua9SLr1q1rvP/73/8+VVVVOXjwYN7+0kVR\npF27dvne976XK6+88oSPv2rVqowePTpFUWTOnDkZOHDgUWsOHDiQm2++OatXrz7m67Zu3TqVlZUZ\nN25cs94bAAAAAAAAALzX2jRn8Z49e/Lqq6+mKIoT3vP2tVdddVX69++fhx56KDU1NXnttdfSunXr\nfOxjH8tll12WUaNGpXPnzs0Zq/F1mpqrXbt2+cUvfpFf/epXeeyxx7Jhw4bU1tbmIx/5SC6++OKM\nGjUq5513XrNfFwAAAAAAAADea80+cx8AAAAAAAAAeH+1aukBAAAAAAAAAICmifsAAAAAAAAAUHLi\nPgAAAAAAAACUnLgPAAAAAAAAACUn7gMAAAAAAABAyYn7AAAAAAAAAFBy4j4AAAAAAAAAlJy4DwAA\nAAAAAAAlJ+4DAAAAAAAAQMmJ+wAAAAAAAABQcuI+AAAAAAAAAJScuA8AAAAAAAAAJSfuAwAAAAAA\nAEDJifsAAAAAAAAAUHL/B2F534E7AzQhAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "msno.matrix(water_df)" ] @@ -1051,15 +10610,84 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 27, "metadata": { "ExecuteTime": { - "end_time": "2017-01-21T07:57:26.022851", - "start_time": "2017-01-21T07:57:25.991810" + "end_time": "2017-02-08T09:14:39.280799", + "start_time": "2017-02-08T09:14:39.251763" }, "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ALT_NAMEAREA_ACRESNAME_DNRSYSTEMShape_AreaShape_Lenggeometry
OWF_ID
27003900None168.41CedarLake6.815421e+054803.870607POLYGON ((474663.9454 4979190.5593, 474684.879...
70009100None793.48CedarLake3.211136e+0611307.426102POLYGON ((458834.4773 4938960.6654, 458842.693...
\n", + "
" + ], + "text/plain": [ + " ALT_NAME AREA_ACRES NAME_DNR SYSTEM Shape_Area Shape_Leng \\\n", + "OWF_ID \n", + "27003900 None 168.41 Cedar Lake 6.815421e+05 4803.870607 \n", + "70009100 None 793.48 Cedar Lake 3.211136e+06 11307.426102 \n", + "\n", + " geometry \n", + "OWF_ID \n", + "27003900 POLYGON ((474663.9454 4979190.5593, 474684.879... \n", + "70009100 POLYGON ((458834.4773 4938960.6654, 458842.693... " + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# cedar lake\n", "cedar_lake = water_df[water_df['NAME_DNR'] == 'Cedar']\n", @@ -1077,30 +10705,58 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 28, "metadata": { "ExecuteTime": { - "end_time": "2017-01-21T07:53:11.505440", - "start_time": "2017-01-21T07:53:11.497454" + "end_time": "2017-02-08T09:14:39.302314", + "start_time": "2017-02-08T09:14:39.282300" }, "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "image/svg+xml": [ + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "cedar_lake['geometry'].iloc[0]" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 29, "metadata": { "ExecuteTime": { - "end_time": "2017-01-21T07:53:13.967159", - "start_time": "2017-01-21T07:53:13.953265" + "end_time": "2017-02-08T09:14:39.346383", + "start_time": "2017-02-08T09:14:39.305316" }, "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "image/svg+xml": [ + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "cedar_lake['geometry'].iloc[1]" ] @@ -1114,11 +10770,11 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 30, "metadata": { "ExecuteTime": { - "end_time": "2017-01-21T07:57:35.953728", - "start_time": "2017-01-21T07:57:35.949725" + "end_time": "2017-02-08T09:14:39.377219", + "start_time": "2017-02-08T09:14:39.348887" }, "collapsed": false }, @@ -1129,15 +10785,72 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 31, "metadata": { "ExecuteTime": { - "end_time": "2017-01-21T07:57:37.630142", - "start_time": "2017-01-21T07:57:37.608105" + "end_time": "2017-02-08T09:14:39.435753", + "start_time": "2017-02-08T09:14:39.380224" }, "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ALT_NAMEAREA_ACRESNAME_DNRSYSTEMShape_AreaShape_Lenggeometry
OWF_ID
27003900None168.41CedarLake681542.1053314803.870607POLYGON ((474663.9454 4979190.5593, 474684.879...
\n", + "
" + ], + "text/plain": [ + " ALT_NAME AREA_ACRES NAME_DNR SYSTEM Shape_Area Shape_Leng \\\n", + "OWF_ID \n", + "27003900 None 168.41 Cedar Lake 681542.105331 4803.870607 \n", + "\n", + " geometry \n", + "OWF_ID \n", + "27003900 POLYGON ((474663.9454 4979190.5593, 474684.879... " + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "cedar_lake" ] @@ -1153,15 +10866,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 32, "metadata": { "ExecuteTime": { - "end_time": "2017-01-21T07:58:47.356314", - "start_time": "2017-01-21T07:58:47.030318" + "end_time": "2017-02-08T09:14:39.718098", + "start_time": "2017-02-08T09:14:39.438922" }, "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAHyCAYAAAAOdL4mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xd4VFXi//H3ZDIz6T2BVFIoSQgkIQSkdwUEG8oqq4gN\n1wXzs+7qV11kWUVlLUhTUVeKKM0GqCiI9A7SAyShpPc2yWRmMnN/f2STNRIgE3Jnksl5PQ+P5t47\nc86BO5+cuffccxSSJEkIgiAIdsnB1hUQBEEQ5CNCXhAEwY6JkBcEQbBjIuQFQRDsmAh5QRAEOyZC\nXhAEwY6JkBcEQbBjIuQFQRDsmAh5QRAEO+Zo6wrYyvTp0/H19WXu3LlXPWbXrl3MmzePy5cvk5iY\nyCuvvEJERAQA0dHRKBQK/vjA8JtvvklgYCBTp05t2P/7/27bto3OnTtft35nz55l9uzZnDp1ii5d\nuvDSSy/Rv3//G2u0IAgdTofsyW/atIkdO3Zc85jz58/zl7/8hTFjxvD1118TExPDgw8+iE6nA2D3\n7t3s2rWL3bt3s3v3bh599FGCg4MZNWoUffr0abR/165d9O3blzFjxjQr4LVaLY888gjdunVj48aN\njBkzhpkzZ1JSUtIq7RcEoeOw25BfuHAhL7744hXby8vLmTdvHr17977m67/88ksSExOZOXMm4eHh\nPP/887i7u7NhwwYAfH19G/5UV1ezYsUKXnvtNdzc3HB0dGy0f+/evZw/f545c+Y0q+5fffUVrq6u\nzJ49m9DQUJ588knCw8M5efKk5X8RgiB0aHYb8lfz5ptvcvvttxMVFXXN4zIzM4mPj2+0rXv37hw9\nevSKY99//30GDBjATTfddMW+2tpa5s+fzxNPPIGnp2fD9nPnzjF16lTi4+MZN24cq1atath38OBB\nRo4c2eh91q5dy9ChQ5vVRkEQhHodKuT37t3L4cOHmTFjxnWP9fX1JT8/v9G23NxcSktLG23Lyclh\n06ZNV33P77//nsrKSqZMmdKwTa/XM336dJKTk9m4cSN///vfWbx4Md999x1Q9wvG29ubf/zjHwwe\nPJh7772XI0eOWNpcQRAE+wr5Q4cOkZiYSGJiIh988AEbNmwgMTGRPn36cOjQIV599VVmzZqFWq2+\n7nuNHz+eH3/8kV9//RWTycTXX3/NyZMnMRqNjY5bt24dvXr1olevXk2+z9q1a5k8eXKjMjds2ICv\nry9PPvkkoaGhDB8+nL/85S8sW7YMgOrqaj7++GMCAgL4+OOP6du3L4888sgVv3QEQRCux65G1/Tu\n3buhN7xs2TIKCgp4/vnnAVi5ciVxcXEMHDiwWe81ZMgQZs6cyZNPPonZbKZ///7ccccdVFZWNjru\np59+4r777mvyPUpKSjh06BCzZs1qtD09PZ3U1FQSExMbtpnNZlQqFQBKpZKYmBhmzpwJ1I3k2b17\nN99++y3Tp09vVv0FQRDAzkJerVYTGhoKgJeXF1VVVQ0/b9myheLi4oZgre+Rb968+aqXQh5//HEe\nfvhhKisr8fHx4amnniI4OLhhf15eHunp6YwaNarJ1+/cuZPQ0FC6du3aaLvJZGLAgAFXhH89f39/\nIiMjG20LDw8nNzf3en8FgiAIjVh0uSY/P5+UlBT69+/PsGHDeOONNzAYDI2O0Wq1DB06lG+++abR\n9j179jBx4kQSEhKYNm0amZmZjfZ/9tlnDB06lKSkJF566SX0en0Lm9S0lStXsmHDBr777ju+++47\nRo4cyciRI/n222+bPH7Tpk28/vrrqFQqfHx8qKmpYf/+/Y3Gqh87dozAwMCrDos8fvw4ffr0uWJ7\nREQEFy9eJCQkhNDQUEJDQzly5AjLly8HICEhgdTU1EavycjIaPQLRhAEoTksCvmUlBT0ej2rVq3i\nnXfeYdu2bcyfP7/RMW+99RaFhYWNtuXm5jJjxgwmTZrE+vXr8fb2bnSjcvPmzSxevJg5c+awbNky\njh07xrx5826gWTBz5sxGDzoFBgY2BGpoaCiurq64uro29PQBioqKGn65hIeHs3r1an7++WcuXrzI\ns88+S1BQEMOGDWs4/vz589ccpXPu3Lkm9992223U1NTwyiuvkJGRwfbt23n99dfx9/cH4N577+Xs\n2bMsXLiQy5cvM3/+fLKysrjttttu6O9EEISOp9khn5GRwfHjx5k7dy5RUVEkJSWRkpLCxo0bG445\ndOgQ+/fvx8/Pr9Fr165dS69evZg2bRpRUVHMnTuX7OxsDh48CMCKFSt48MEHGTZsGHFxccyePZt1\n69a1em/+egYPHswPP/wAQM+ePXn11Vd54403uPvuu1EqlXz44YeNji8qKsLDw+Oq71dSUtJo2GQ9\nV1dXli5dyqVLl7jzzjv5xz/+wQMPPNBwvT0oKIhPPvmEX375hYkTJ7J9+3Y++ugjAgICWrG1giB0\nCFIzVVRUSLt27Wq0bcOGDVJiYqIkSZKk1+ulcePGSbt375ZGjBghff311w3HPfzww9L777/f6LX3\n33+/9OGHH0omk0nq3bu3tG/fvoZ9tbW1UmxsrPTbb781t3qCIAhCE5rdk3d3d2fQoEG//+XAypUr\nG0arfPDBB/Ts2bPJ0SsFBQVX9EL9/PzIz8+noqICvV7faL9SqcTLy4u8vDyLf2kJgiAI/9Pi0TVv\nvfUWqamprF+/nrS0NNasWdMwfPGPampqrhibrlarMRgM1NTUNPzc1H5BEASh5VoU8vPmzWPFihW8\n9957REVFcd9995GSkoKPj0+Tx2s0misC22Aw4OHh0RDuTe13dna2qF7Sf2d6FARBEOpYHPJz5sxh\n9erVzJs3j9GjR5OTk8PRo0c5e/Zsw2iWmpoa/vGPf/D999/z0Ucf0alTpytG3BQVFRETE4O3tzca\njYaioqKGaXxNJhNlZWUNo02aS6FQUFGhw2QyW9qsNkGpdMDDw1m0wYbae/1BtKGtqG+DrVkU8gsX\nLmT16tW8++67jBkzBoDOnTvz888/Nzru/vvvZ+rUqUycOBGA+Pj4Rg8c6XQ6Tp8+TUpKCgqFgl69\nenH48GGSk5MBOHr0KCqViujoaIsbZDKZqa1tnydFPdEG22vv9QfRBqFOs0M+PT2dJUuW8Pjjj5OY\nmEhRUVHDvt+PNYe6G6e+vr4NN1MnTZrEp59+ytKlSxkxYgQLFy4kNDS0IdSnTJnCrFmz6Nq1KwEB\nAcyePZvJkyej0Whao42CIAgdVrNDfuvWrZjNZpYsWcKSJUuA/10DP3PmTKNj/3hdPDg4mAULFvDa\na6+xePFi+vTpw6JFixr2jx8/nuzsbGbNmoXRaOSWW27hueeeu5F2CYIgCIBCkv6wfl07V1pa1W6/\n3jk6OuDt7SraYEPtvf4g2tBW1LfB1uxqqmFBEAShMRHygiAIdkyEvCAIgh0TIS8IgmDHRMgLgiDY\nMRHygiAIdkyEvCAIgh0TIS8IgmDHRMgLgiDYMRHygiAIdkyEvCAIgh0TIS8IgmDHRMgLgiDYMRHy\ngiAIdkyEvCAIgh0TIS8IgmDHRMgLgiDYMYsW8hYEeyVJEjqdDp2uiooKJeXl1ZhMEi4uLri5uaNW\nq21dRUFoERHyQpsgSRIVFeVkZmZSVlaK0WhEksx4eHji6+tHcHDIDQetJEnk5GRz9uwZzp49W/ff\nc6lk52RRWFCIqbb2qq91dXWlU+fOBAeHEBQYTFBQEEFBIURFdaVbtx4EBARcsbaxILQFIuQFm5Ak\niSNHDvHLL1s4eGg/R44coqK84qrHO6oc6REdQ2J8HxIS+pCc3J8ePaJxcLj6FUez2cyhQwfZufNX\n9u3bw+HDB9FqtQCoNCp8Q/3wDvEhfEgEPX164eSqQeOqwcXVCYOhFpPJTK3eiEFnoLq8Gm1xJflF\neWQcT0e7TUtlcQVmU936o+4eHnTv3oO+Sf1ITu5HcnJ/AgODWvcvTRBaQCzk3YbY0+LFV2tDbm4O\nn366lLXrviAnOwdndxcCowMJ7B6Ed4gPHv4euHi64KB0AIUCvbaG6vJqSrKKyU/LoyC9gKLLhZhN\nZjw8PRg8aCjDh49i+PCRhIdHAJCRkcaqVStZ99VqcrKycXZzJjAmiKDoYPwjAvAN88MzwBOFw5U9\nbwcHBc7OanQ6A2bztT8aJqOJsrwySrKKKckqpvBCAfnn8ijNKwWga7dujBwxmptuGkSXLl0ICgrB\nzc0NtVota6+/I5xH7UFbWchbhHwbYk8n9h/bkJWVyRtv/ov169eg0qjoMTSGHkOiCekZWhfoFjDU\nGMg7m0PmyUyyjmeSnZqF2WQmPCICXx9fDh8+hLO7C90GdSdmeCwhsaFNBnpTLAn5q6kq1ZJ5MpNL\nRy9y+bdLlBeUXXGMRqPB2cWZTp07ExQYQkhwCIGBQQQGBhEUFExCQiLe3j4tKt+ez6P2RIS8TOzh\npLCnNuj1et57798sXPgealc1SXcl0+vmeDQumlYrU19VQ+aJy1w8ehFdeTWR/brSfVAPVBqVxe/V\nGiH/e5IkUV1WTUVBOZVFFRhrjJiMJmqNtRh0BrTFWrTFlWiLtVQVa9GWapEkCYVCQffoHgwaMJSB\nAwcxYMBg/P39m1WmPZ5H7ZEIeZnYw0lhL204deo00x9/iHPnUul7Zz/633MT6lYMdzm0dshbymQ0\nUVFYQfaZLLJOZpJzKouSnBIAIqIi6df3JpKSkklKSiYmJhZHxytvq9nbedTe22Br4sarIItNmzbw\n6GMP4R7gzp/fmUpAZCdbV6ldUKqUeAd54x3kTdyoXgBUFlWSeeIyOanZbD+8jbXrvsRsMuPu4cHI\nEaMZNWoMN988Fh8fXxvXXmiLRE++DbGX3svnn/+HlJQUug/qwdinbkXlZPllE1uxdU++OYw1RvLS\ncrl87BKXDl8k51w2KpWKsWPHM2XKA4wePQY/P492fx7Zw2ehLfTkRci3IfZwYi9f/gnPPfc0fe9I\nZtjDI5t9w7OtaA8h/0dVpVrO/HqaU1tPUnixgIBOnZj+2GM88MDDeHv72bp6LWIPnwUR8jKxh5Oi\nvbbhm2/W8/jjD9Pvrn4MfXgE7fHMao8hX0+SJPLT8ji15QSnfzkFZnjkkek888zf8PDwtHX1LNLe\nPwsgQl429nBStMc2nD2bypibhxLRP5J7XrmbGr2x3YUktO+Qr+fgoACjiV2rd3Poq4O4ubrxz9lz\nueeee9vNU7nt+bNQr62EvJigTLhhVVVVPPzI/bj7u3NLyrh2d4nGHjl7ODP4/qE89MFjBPTszMyZ\nj3PXpAlkZKTZumqClYmQF27Y3194hkuXL3LrC7ejdhITebUl7n7uTPjbbUyaPZnTaScZNmwAn3zy\nIWZz++wdC5YTIS/ckC+//Jw1q79g1BNj8Atrnzf5OoKIpEimLnyY2JvjePHF57nvvkmUl1/5JK5g\nf0TICy2WkZHG8397mrgxven53zHdQtulclIx6vExTJo9mX2H9jJ23EguXrxg62oJMhMhL7SIJEm8\n+OLzOHs5M+rxMbaujmCBiKRI7vv3/ZRWlzJh4s1cuJBh6yoJMhIhL7TITz/9yLZtWxn+6Ih29bCT\nUMcn2Ic/vXkfJsda7po0gezsLFtXSZCJCHnBYpIk8e+35xLWqwtR/bvZujpCC7l6uzHpX3+iyqjl\nT/feKa7R2ykR8oLFdu/eybHffiP57v7tZty10DQPfw/ufPVuMnMyeXDaFPR6va2rJLQyi0I+Pz+f\nlJQU+vfvz7Bhw3jjjTcwGAwA/Pbbb9x7770kJiYybtw41q5d2+i1e/bsYeLEiSQkJDBt2jQyMzMb\n7f/ss88YOnQoSUlJvPTSS+Jka8OWL/8P/mEBhPeJsHVVhFbgG+rH7S/dyYED+3jqqRlieKWdsSjk\nU1JS0Ov1rFq1infeeYdt27Yxf/58ioqKmD59OjfddBPffvstTz75JP/617/Yvn07ADk5OcyYMYNJ\nkyaxfv16vL29mTFjRsP7bt68mcWLFzNnzhyWLVvGsWPHmDdvXuu2VGgVVVVV/Lh5E9HDY0Qv3o6E\nxIUy9plbWb9+Da+9NtvW1RFaUbOnGs7IyOD48ePs3r0bH5+6FWtSUlJ48803CQ0Nxd/fn6eeegqA\nsLAw9u3bx8aNGxk2bBhr166lV69eTJs2DYC5c+cyaNAgDh48SHJyMitWrODBBx9k2LBhAMyePZtH\nHnmE559/Ho2mbc8/3tFs27aVGl0NPYbG2LoqQiuLHhKDtqiSBQveJTQ0jGnTHrmh9ysqKiI19TRn\nz6ZSUJBHRUUF1dXVdatiObvg7e2Nv38AgYGBhIdHEhoahkolbuK3tmaHvL+/Px9//HFDwEPdDTit\nVsvQoUOJjY294jWVlZUAHD9+nOTk5IbtTk5OxMbGcvToUZKSkjhx4gRPPvlkw/6EhASMRiOpqanE\nx8e3qGGCPPbu3YV3Zx+8OnvZuiqCDJLuSKaioJwXXniWwMAgbrllXLNfazab2bt3Nz/8sJGt27aQ\nfv48AEpHJe4+HmjcNKg0KkxGE8YaA7oKHVUVVQ2vd1Q5Eh+fyMABgxk3bhy33DKq1dvXETU75N3d\n3Rk0aFDDz5IksXLlSgYOHEhQUBBBQf9bmb64uJjvv/+elJQUAAoKCggICGj0fn5+fuTn51NRUYFe\nr2+0X6lU4uXlRV5engj5Nmbvvt0E9Qy6/oFCu6RQKBj+6CiqSqp59LEHWb9uA/369W/YbzAYKCkp\npqioiOLiuj8lJcXk5OTw7XdfkXn5Ml4BXoQmdGHCHbfhH9kJr0AvlI7KJssz1ZqoLKqkPK+M4stF\nZJ/J5j8rP2bBgncJDgnm3j/9mYcemn5FfgjN1+KVod566y1SU1NZv359o+16vZ4nn3ySgIAA/vSn\nPwFQU1ODWt14ThO1Wo3BYKCmpqbh56b2W0pp4aLQbUl93dtqGyRJ4vy5cwy8aXDdTIdNqN9+tf1t\nTa2xlpLMYgovFlKWW4quUodBq8egN6JQKHDxdMHVxw03XzfcfNzwDvbBM8DT4sXHrelG/w0cHJSM\nf+5W1s9ay31T7mLQwCFkXEgnJycbbaX2iuNVahWuXm6E9A5hyJP3Exwb0uz7NQ5qR3yCvPEJ8iai\nTwR970hGMkvkpGaRuuMMCxfPZ8GC97j//gd54YX/w8+veevctgVt5XPcopCfN28eK1as4L333iMq\nKqphe3V1NU888QSXL1/miy++aLiertForghsg8GAh4dHQ7g3td/Z2dniunl4WP6atqattiEnJwe9\nXk+nLv44O197IjJNCxbR/r2v/rWeGm0NYb27ENYrjKAeQTiqW2e1Sn21nhNbTnBk42HyMwowm+pG\nk7i6aXB1VeHi7IijowNms0ROei2VFXqqq/53fipVSnyDffCPCCAiMYKu/bviGdD25mu/kX8DZ2c1\nU16/j03vbCK99DxeMV6EDQvF1dsVF0+Xul9+Xq64eLmgdla3+k34rklRdE2KYtSjozj07SG+WL2S\n9evXMGfOHP7617+iVDb9zUC4ksWfmjlz5rB69WrmzZvH6NGjG7ZrtVoeffRRsrKyWLZsGaGhoQ37\nOnXqRGFhYaP3KSoqIiYmBm9vbzQaDUVFRURE1A3JM5lMlJWVNXt1+t+rqNBhMrXPIWBKpQMeHs5t\ntg2nT9ddY9V4OqPTNf0ty8FBgUajQn+D88mf23cejSNcOnoBg8GESuNItwE9iBkeS3ifiKt+/b+a\nmkodF45cIP1AGmn7zmGsMdKtmy/xYyLwD3DF398FJydHFApwVCqpNZkaLXpiMpnRag0UF+soLtZR\nVFRNwflMNv16CkkC31BfQuLC6NS1E35h/vhH+KOx0aLlrfVvgIOCcc9NuOYhZqCmxtjyMq5W9H/b\n4KB2pO+k/sSO7sXO5dtJSUlh5eerWLzoQyIjo67/RjZU/3m2NYtCfuHChaxevZp3332XMWP+N1+J\nJEnMnDmT7OxsVq5cSXh4eKPXxcfHc+TIkYafdTodp0+fJiUlBYVCQa9evTh8+HDDzdmjR4+iUqmI\njo62uEEmk7ndLjJQr622oaqqGgClWnXd8DCbpRYFTHFmMTlnsjAZaunbP5TkfkEUFFSRnlbK6VMX\nOf3rKZzdnYhI7oqHvwcu/+1Nuni6oHbRUN+flICy3FJyz+aQm5pN7rlcJLNEQCc3kpM6Ex/fCU/P\nxiFct36O4r//X/9zHQcHBR4eGjw8NERE/O+ms05Xy8ULZVy4WEbWwbMc++Fowz4nVw0eAR64B3ji\n4unS8N4qJxWu3q7//eOGR4AnPiE+rd4bbum/QVtS3wYnd2fGzBhL9LBYfpr/I4MG9+OVl2fz6KN/\nwcGhbVwWaauaHfLp6eksWbKExx9/nMTERIqKihr2/fLLLxw4cIAlS5bg5ubWsE+lUuHp6cmkSZP4\n9NNPWbp0KSNGjGDhwoWEhoY2hPqUKVOYNWsWXbt2JSAggNmzZzN58mQxfLKNqb9/4qiS76vy1iU/\ncfn4JZycVfj6OePgoKBzZzc6d3Zj4KAQCgurOXWqkItnLpF5yEh1leGa33o8vZwICnSl982RRHX1\nxsOjdc8pZ2dHYmL9iImtm2a5vrev1RqoKNdTXq6nvKiY4qyChtcYDCa0WgM1uv/1gF29XAiLDycs\nvguhvbvg2clTPIfQhNC4MB5YMI2dy7bz8ssv8N3Gb1gw/wMiIiJtXbU2q9nL/3300Ue8++67Te4b\nPHgwu3btumJ7cnIyy5cvB2Dnzp289tpr5Ofn06dPH/75z38SHBzccOzSpUv57LPPMBqN3HLLLbzy\nyitX3IxtDntYLqyttmHfvj3cdttYHlryGL6hvk0ec6PL553edpLv397ItIfiCQx0u+7xkiSh15uo\nrjZiMJga7XN3U+PqZtk5pFAoUDkqMdaakHtlzNpaM1VVRoqLq7l0qZyLlyrIy60ECZzcNHTqGkhg\njyDC+0QQFB3c7Ju99rKE4fXacPn4JX56/0dqynUsWfwJt9460cq1vLa2svyfWOO1DWnrIX/mzGmG\nDbuJKfMeICgmuMljbjRgzCYz8+9+mxHDw0hOtv5QTWuGfFN0OiPZ2ZXk5WrJy6siK7sSXXVdj1/p\nqOS+effTuVvgNd+jo4Q8gEFnYPP87zm3+yyvvvoaTzwx04q1vLa2EvKtM1xB6BD8/evGKlcWV8pW\nhoPSod0Mv5SDs7OKrl196Nq17qFDs1kiN1fLzz9nkJujZeXTy+g+qAcjp4/GzdfdxrW1PbWzmgl/\nu52dy7cza9b/UVRUyMsvvyoudf2OCHmh2fz8/PD28ab4ctH1D74BkllCfETrODgoCA52Z9q0eMxm\nidOnC9m69QKf/mUpwx8ZSe+xCbauos0pHBQMnTYcFy8XFix4l9LSEubNe08Ms/wvEfKCRaKjYym8\nUHD9A1vIZDRRazSh1ohT848cHBTExQUQFeXNL79c5KeFPyJJEvHjEm1dtTah7x39cHJzYtWCFZRX\nlLN40VIxeAMxn7xgociIKKqKq65/YAvVaOtG8Dg7iV7Y1Tg7qxg/vitJSYFsWfwTGQfTbV2lNiNu\ndG9ue/EOfvhxE/ffPxmt9sondDsaEfKCRbRaLWoXy0c9NVd9yDs5iZ78tSgUCkaPiaBrV282vPE1\neWl5tq5Sm9H1pu7c9erd7D+4l/G3jiYjo2P/EhQhL1iktKwEtat8Ia8XId9sDg4Kbr+jO36+znw1\naw3l+WL5vnphvbvwp7f+TEFFPqNHD2HLls22rpLNiJAXLFJVVSXrwt06rQ4AJ2cR8s2hUim5555o\n1A5m1v9jDYZqsaJaPf9wf/78zgN0ig3kgan3smHDN7aukk2IkBcsIkkSyDg8zVBVF1IaceO12Vxd\n1Uy+J4bS3FJO/3rK1tVpUzSuTtz+0p10H9yDxx6bxoYN39q6SlYnQl6wmJzDGx3+O/FYe32Ix1Z8\n/VyIivRm1/IdpB9Is3V12hQHpQPjnp5A98E9mDHzMU6dOmnrKlmVCHnBIiqVCpOMT+PWz9yo19fK\nVoa9GjY8DB9PFetfXcvWpVsaplAW6oL+lpTxeAZ6MfXBeyktLbF1laxGhLxgEQ93Dww6+a77alzr\nQ950nSOFPwoIcGXq1F6MHBnO7i/28Oun22xdpTZF5aTitpfuoKi0iMemT8Nk6hjnmAh5wSLu7h4Y\nda0/f3g9Z08XAEpLa2Qrw54pFApuGhDC2LFRHPr6AKe2nrB1ldoUz05eTPj7bezcuZ3333/H1tWx\nChHygkU8PDwwVFm+LGNzeXX2wj/cn9OnCq9/sHBV/foF0zPOn18/3oquUmfr6rQpXRLC6Xf3Tcz7\n91xOnrT/X4Ii5AWL+Pn5U10m3xOvAD1H9eL8+VJ0Mn5j6AhGjYrAZDCye+VOW1elzRlw3yB8gn14\n/vn/Z5PZRq1JhLxgkcDAICpLK2W9qRczPBazJHHmjLwTodk7Nzc1Q4aEcuz7oxRelG++IUuUF5RT\nUVhBrdG2N9YdVY4Me3Qkhw8fYuNG+x5WKQYjCxbp0iUcySxRmlN61YVDbpSrtxshPUO4eKGcPn2u\nPXe6cG1JSYHs2pXF/rX7GPvUeBxV1v/Im2pNpO07z9HvDpF1Oqthe3hCOKNnjsWrs9c1Xi2fLgnh\nRCRF8ua815kw4Xa7nZ5Y9OQFi/TuHQ9AflqurOW4+3uirRKXa26UUunAwIHBnN1xmk+nf8iprSes\nNrSyqrSKvV/sZunDi9nwxjcotJXcdnt3Jv8pllvGRlJyIY9lMz7m0DcHbDbcM/mufpxLTWXnzu02\nKd8aRE9esIiXlzcRkZFkn84mdkScbOW4eruSUy1CvjXcdFMI3br6sH37ZX54dxN7v9hFj6Gx9Bgc\njX9EQLN6sPpqPXnncslPz0dbVEGNtqbuT6UOfWUNNVU11BoaX4Ix1BhRKhXE9fQn6a5uBAQ0XiUp\nLi6A7b9e4tdPfuHszjPc8fIkXL2vv+Rjawrt3YWA8ACWLf+UoUOHW7VsaxEhL1hszOhb+PKrVXWL\ne8i0ipOrlytVWvlG8XQ0vn4u3DUpmpycSo4eyePYhkPsX7MXNx9XvIN98Ar0xquzN56dvfAK9ELj\n6kRlUQVEx7h8AAAgAElEQVQVhRVkHEgj/UAaJqMJlVqJp5cTTholTk5KfJwccQrS4OTkisrRodHj\n0BqNI9HRfjhfZR4itVrJmJsjiYn14+uvz/HF8yu55/X78AzwtNLfSt2Q0x5DY/h57Y9UV1fj4uJi\ntbKtRYS8YLFx4ybw0UdLyDufS2APedZhdfV2xWgwYTCYUKvF3PKtJSjInaAgd8aazFy8WE5mZgVl\npToKT5ZxfucZapoY0RTQyY1hQ0OJivLGx8e51ZdnDAnx4IEH4vjii9N8+fwK7v7Xffh38WvVMq6l\n+6Ae7Fy+nR07fmXs2PFWK9daRMgLFuvffwB+/v6c3Z0qW8h7BdWtcVpcXE1goFjLtLUplQ5ERXkT\nFeXdaLtOV0tZWQ36mlrcPdS4u2us8kvWy8uJBx6I48svT/Pl31Zw75v3E3aVxeJbvewgbzz9Pdm/\nf69dhry48SpYzNHRkbi43pTnyjd/uV+YHwqFgoL8atnKEK7k7OxIYKAb4RFe+Pq6WPVblJubmj//\nuSfuLkq+mr2G6nLr/NsrFAo6Rwex/8Beq5RnbSLkhRYJDQlFWyjf0moqJxXegV4UFMj74JXQtjg7\nq7j77miM2hrWzlqD3krz4/t18SM9/bxVyrI2EfJCi0RGdqUku1jWpwX9IjtRUCh68h2Np6cTd93V\ng6zTWSx9eAlHNx7GVCvvZGJegd6UlpTyyScfotfb18IrIuSFFomK6opep6eqRL7evGeAJxWVYoRN\nRxQW5snMGX3pGu7O1g9/5rvXv0KScY2BqH5d6T6oB//3f3+jb3IvPv98OWazfUzVLEJeaJHi4iIU\nDgqUavnu3esqqnERywB2WJ6eTkyY2J27J0WTfiCdw98dlK0stbOa2168k2mLH8Gnhw9PPz2TceNH\ncvp0+19pS4S80CI/bv6ekJhQnN2dZStDW6LF1VW+9WSF9qFbd1+6d/fh/O6zspflG+rHrc/fxp/e\nmEJWUSa33DKc5cv/064nMRMhL1jMaDSyY8c2wpMjZS2nNLsYH28nWcsQ2j5JkpAkwIpBGxoXxpR3\npxI9Mpbnnvt/PPtsCrW17XO1MhHygsVOnjyOrlpHaFyobGUY9UbKCyrw9bW/JxAFy2zcmMb58yWE\nJ8nbqfgjlUbFmBm3MPap8az6YgUPP/JAu7wpK0JesNiBA/tQqVV0iuosWxllOaUgga+ffJeDhPbh\n0qVy+kxMYsB9g21Sftzo3tz+8l1s3foTjz46FaOxfc2pJEJesNi+fXvo1K0zSpV8D8rkp+cBiJ68\ngKNKiYOM51pzRCV3ZeKLd7Bl60/8dcZj7Wp9WBHygkUkSWL/gX0EyfzIecbBdAKD3K86uZXQcagc\nHajV2/56eGRyFLc+P5HvvvuaZ555st0MsRQhL1jk0qWLFBUWEhwbIlsZJqOJi0cy6NbV+/oHC3ZP\npXLAqG8bl0i6D4pm3NO38uWXn/PWW6/bujrNIrpJgkV2796JwkEha8jnnM3GoDMSGSVCXqgL+do2\nEvIAsSPiqCys5N1359G//wBGjBhl6ypdk+jJCxbZtm0rQd2DcXKTb2hj9uks1BolnTq5Xv9gwe6p\nHB0w1rSdkAfod/dNhPeJ4K8zHqO8XL6J+lqDCHnBIkeOHiIwRp7phetln8wkONi91ectF9onxzbW\nkwdQOCi4+clxaKsqmTt3jq2rc00i5IVm0+l0ZGdlybaAN4DZZCYnNZvQUA/ZyhDaF5XKAYOu7c1h\n5O7nzsD7B/Of/3zMuXPyP43bUhaFfH5+PikpKfTv359hw4bxxhtvYDDU/eVnZWXx0EMPkZiYyIQJ\nE9i9e3ej1+7Zs4eJEyeSkJDAtGnTyMzMbLT/s88+Y+jQoSQlJfHSSy+1y4cO7N2FCxlIkoRPiHwh\nX3y5CH21gdAQEfJCHX9/VwoyCtAWV9q6KleIH5+Ih58H7703z9ZVuSqLQj4lJQW9Xs+qVat45513\n2LZtG/Pnzwfgr3/9KwEBAaxfv57bbruNmTNnkpdXN9Y5NzeXGTNmMGnSJNavX4+3tzczZsxoeN/N\nmzezePFi5syZw7Jlyzh27Bjz5rXdv7SOqrS0BAAXT/nGrmedysRBqSAwyLoLOgttV+/eATgqFfz2\n/VFbV+UKjipH+k7qx1dfrePSpYu2rk6Tmh3yGRkZHD9+nLlz5xIVFUVSUhIpKSls3LiRffv2kZWV\nxT//+U8iIyOZPn06CQkJrFu3DoA1a9bQq1cvpk2bRlRUFHPnziU7O5uDB+tmlVuxYgUPPvggw4YN\nIy4ujtmzZ7Nu3TrRm29jqqvrFvBQOatlK+PikQyCgtxR2fjhF6HtcHJypHfvAI59f6TNDKX8vbjR\nvXFyc+KTTz6ydVWa1OyQ9/f35+OPP8bHx6fR9srKSo4dO0bPnj3RaDQN25OSkvjtt98AOH78OMnJ\nyQ37nJyciI2N5ejRo5jNZk6cOEHfvn0b9ickJGA0GklNTW1xw4TWV1NTA4CjjNMLF6TnEyauxwt/\n0Dc5EJ22hjPb2t7UvyonFb1uiWflys/QatveJaVmh7y7uzuDBg1q+FmSJFauXMmAAQMoLCwkICCg\n0fG+vr7k5+cDUFBQcMV+Pz8/8vPzqaioQK/XN9qvVCrx8vJquNwjtBXyj3ZRKBTWKEZoZ7y9nenW\nzYfD3xyQdfGQlkq4NZFqXTVffvm5ratyhRZ3yd566y3OnDnDunXr+M9//oNa3fgrvFqtbrgpW1NT\nc9X99b3Da73eEkpl+x0wVF/3ttqG6uq6VaAc1cqrDm+s397S4Y8KhQKk//7XBuqLrftv+/xtY69t\nGDgwhGWfHefc7lRihsXarG5N8QzwpNuA7ixf8R8ef/wJFApFm/kctyjk582bx4oVK3jvvffo2rUr\nGo2G8vLyRscYDAacnOoemNFoNFcEtsFgwMPDoyHcm9rv7Gz5DIQeHu1/1sK22oazZ0/hH+aPp/f1\nb4pqNC1b7MPB0QGFQoHK0bbX5B2V7f+egL21IbyLN926+bBn5U4SxvTGoY2EaL2kW/uw6sVVXLhw\nlqSkJFtXp4HFIT9nzhxWr17NvHnzGD16NACdOnUiLS2t0XFFRUX4+/s37C8sLLxif0xMDN7e3mg0\nGoqKioiIiADAZDJRVlbW8HpLVFToMJnax8RBf6RUOuDh4dxm27B33378Iv3RXWPMsoODAo1GhV5v\nxNyCr9VmkxmT2YxR5oWbr0ahqAuWWpPJmmtUtCp7bsOQIWF8+ulvHP7+CHGje9uugk0IigvF1dOV\nL75YTWRkdMPn2dYsCvmFCxeyevVq3n33XcaMGdOwPT4+nqVLl2IwGBp65ocPH264mRofH8+RI0ca\njtfpdJw+fZqUlBQUCgW9evXi8OHDDTdnjx49ikqlIjo62uIGmUxmamvbXkBaoq224fz5s/S+PaFZ\n4W02SxaHvEFnoLywAp/kABsut1Z3aUCSaMdLvtlvGzp1dqVHD192r9xJjyGxzZruukZbg8JBgcZF\nc91jb4hCQVhCF37e+jN///sr8pZlgWZ/30lPT2fJkiVMnz6dxMREioqKGv7069ePwMBAXnjhBdLS\n0vjoo484ceIEd999NwCTJk3iyJEjLF26lLS0NF588UVCQ0MbQn3KlCl88sknbNmyhePHjzN79mwm\nT57caLSOYFsVFeVUlFfg1clLtjIK0vNBgsBAMUZeuLohQ0IpL6zgxM/Hr3qM2WRm18odfPTQIhbe\n+x4fPriQ7DNZstctLL4LJ44dQ6vVyl5WczU75Ldu3YrZbGbJkiUMGTKEIUOGMHjwYIYMGYKDgwOL\nFi2isLCQSZMmsWHDBhYtWkTnznUrBwUHB7NgwQLWr1/PPffcQ2VlJYsWLWp47/HjxzN9+nRmzZrF\no48+SkJCAs8991zrt1ZosUuXLgHg2Vm+kM9Ly8XR0QE/P7FQiHB1/gGuxET7ceSbA01+U9GWaFnz\n0hfsX7OXbmFuTLytG538nVn/j9XkpGbLW7fITkiSxLlzbWf4t0Jqv9/nmlRaWtUmL3U0h6OjA97e\nrm2yDT/++D1Tp97LEytm4nqNG68ODgqcndXodAaLL9dsmvcdFelZTJ3a60ar22L1N32NtaZ2e6mj\nI7ThwoUyvvziFH9+eyqBPYKoNdSiLdFSkJHPlkWbcTDXcsft3QkN8wTAYDCxatUpTBonHnj/YdlG\nbxn1Rt6/+x3ee28RDzwwFW9v28+kKuaTF5qloqJu9JRGximG88/nEhFo+w+F0PZ16eKJh6eGL/6+\nEo2TGp22ptG+22/viavb/4Zlq9VKhg0L48svTpF1MpPQXmGy1EulUeHi4UpBQb4s798SIuSFZqms\nrMRR5YijSr5TpqqsCo9o8bSrcH0ODgruuKMHp04W4uqmwt1djbu7Bnd3Nb6+zk321MPDPfHzd+Hw\ntwdlC3kAZw9niouLZXt/S4mQF5pFq62UdXSCJEkYdEbU6vY/tluwjuBgd4KD3Zt9vEKhID6+E1u3\nnqdGWyPbwjeOakf0+prrH2glbetpAqHNqqyUN+Rr9bVIkoRGI/odgnwuXyrHJ8gbtYyT7JlrTahU\nLXsYUA4i5IVmqagoRy1jyNcvCiF68oJc8vOrOH++hP6TB8r6tKyhxoiTk+0fgqonQl5olsrKStQu\n8vV+DNV100qLkBfksmdPFp4BHkTLOO+N2WSmsriCwEB5l8i0hAh5oVkqKytQOcv3FbS+J6/RiJAX\nWl9RUTWpqUX0nzwQpYzzIlWVajHVmggJCZWtDEuJkBeuy2w2k56RhpO7fMMnxeUaQS6SJLF160Xc\nfd2IHRUna1n5aXXTo/fsKW85lhAhL1zXd999TXpaGr1ujpetDHG5RpDL8eMFZKSXMnrGWFmHAAPk\nns3Fz9+f4OAQWcuxhAh54ZoyMtJ48f+eJyq5KyE95fsKKi7XCHKoqNCzdctFeo6MIyq5q+zlXTp6\nkUEDh9hsPYSmiJAXriorK5M7J01A4Qw3/79xspZl0Bnqppd1FKek0DokSeKHH9JRuWgYMX207OWV\n55eRl5bLhAm3yV6WJcQnSmhSaWkJd02agK5Wx6Q5k3H1kne6AX21AbXGsU31gIT2rf4yzZiUcbI9\n+PR7p345iZOzE6NGjbn+wVYkQl64gtls5oknHqWgOJ+7/zUZdz/5pxow6PTiQSih1Vj7Mo3JaOLE\nD8f40+QpuLk1/ylcaxAhL1xh6dIlbNu2lXHPTsAr0NsqZRp1BnHTVWgV1r5MA3Bm+ykqSyp55JHH\nrVKeJUTIC43k5+cx941/ET8+kYikSKuVqy3R4uwsevLCjZEkia1bLlj1Mo3ZZObg2v3cMnY80dEx\nspdnKRHyQiOzZv0fOMLgB4ZarUxJksg+lUlQkFgRSmi5+oA/eDCXUU/cbJXLNABnd6VSnF3Ms8/8\nzSrlWUqEvNBg797dfPXVOoY8ONQqPaB6p7aeQFtSRViYmGZYaJk/BnzirX2sU65Z4sCafYwYMYqE\nBOuUaSnx/VgAoLa2lr/9/WmCegQTN7q31co9s/00P87/noSETkRFWef6v2BfbBXwAOf3naPwUgHP\nLnrBamVaSvTkBQA+/fQjzp09y8gnxqBwsM4wxhptDb988BMx0X6MHRclhk8KLbJt2yWbBLzJaGL3\n8p0MHTqcfv36W61cS4mevEB+fj5z3/gXvccl0LlrZ6uVe2DdPmprjIwaHS4CXmiRs6nF7N+XzfBH\nR1o14AGObjpMaU4J/1w516rlWkr05AXefvsNJAezVW+2VhSUc/jbg/TrF4i7u3zz1Av2q6JCz/c/\npNNtQHeSbk+2atlVZVXs+2IvU6c+RGxsT6uWbSkR8h3c5cuXWPn5MpLu6oezu/UWOti1YgcatZL+\nNwVbrUzBfpjNEhs2nMfRWcPNT46z+jfBX5b8jLPGib///WWrltsSIuQ7uLfffhONqxOJE6z3VTc/\nPY/Tv55iyJAQ8ZSr0CLnzhVz+VI545+biLOHdVdhSt15hrO7U3nrzXfx9fW1atktIUK+A0tPP8/q\nNV/Q757+qJ3kW/Xp9yRJYvun2/D1dSEhwXrX/wX7UpBfhauXC2G9u1i13KqyKrZ9sIUJE27n9tvv\nsmrZLSVCvgN7971/4+blSvy4RKuVuWfVLi4fu8SIEV1wsNIoHsH+lJTo8A6xbi9akiS2LvkJtVLN\nm2++Y9Wyb4QI+Q4qNzeHr75aS+LtSTiqrXPJZPfnO9n7xW6GDe9Ct24+VilTsE/FJXp8rBzyZ3em\ncm73Wd568138/f2tWvaNECHfQS1d+gGOakd6j02wSnl7Vu1qCPiBA9vOqjlC+yNJEqUlOnyCrddR\nqCqr4pd2dpmmngj5DqimpobPln1C3M290bjIP3wxff959qzaJQJeaBWVlQaMRhPeIdYJeUmS2LJo\nMxrH9nWZpp4Y2tAB7dixDW1lJXFj5J++wFhj5JcPfiIi0osBA8RwSeHGFRfrAPAJsk7IH/vhN87v\nPcenn65sV5dp6omefAe0adMG/EL98A2V/5rm/rV70ZZoufnmSPFUq9Aq9PpaAJw9XWQvK/dcLr9+\nvJWHHnq0zS3r11wi5DsYSZLYsvUnwpPlD92S7BIOrt/HTTcF4+Nj3bHMgnCjii4V8vWra4nvlcDs\n2a/bujotJkK+g0lLO09hQQFd4sNlLaduuNlm3N3UDBDX4YV2piyvjPWvrKFLSDhffvkVTk7Wm3q7\ntYmQ72B27PgVpaOS4J7yBm/6gTQu/XaJ0WMiUKnEsn5C+7Jl0Wa83X1Yu+Y7PD29bF2dGyJCvoPZ\nuWs7QdHBsj7hKkkSu1bsIKyLpxgPL7Q6pbIutmr1RtnKMBlNJPftT0BAgGxlWIsI+Q7EbDaza9cO\nQnqFylrOuT3nKMgoYPBgecsROiY3NxUAVaVVspXh5OFEUXGhbO9vTSLkO5BTp05QUV4u63wfkiTx\n62fbCOviSZcunrKVI3Rcbm5130K1JVrZynD2cKG4uEi297cmEfIdyMGDB3BQKuncPVC2MvLO55GX\nli8eehJk4+qqBgVUyRny7s6UlpbK9v7W1OKQNxgMTJw4kYMHDzZsO3ToEHfddReJiYnceeed7N27\nt9Fr9uzZw8SJE0lISGDatGlkZmY22v/ZZ58xdOhQkpKSeOmll9Dr9S2tntCE3347QqfITqg0KtnK\nuHzsEiq1UvTiBdmYzRJyP3FhrSUwraFFIW8wGHjmmWdIS0tr2FZSUsITTzzBxIkT2bBhA2PHjuWv\nf/0r+fn5AOTm5jJjxgwmTZrE+vXr8fb2ZsaMGQ2v37x5M4sXL2bOnDksW7aMY8eOMW/evBtsnvB7\naenn8Q6Rd7HsS79doEuYZ8PNMUFobcXFOiQJfMP8ZCvDqDeicbKPFcss/iSmp6czefJksrKyGm0/\ncuQIjo6OPPTQQ4SEhPD444+jVqs5duwYAGvXrqVXr15MmzaNqKgo5s6dS3Z2dsM3gRUrVvDggw8y\nbNgw4uLimD17NuvWrRO9+VaUmXUZjwD5etgmo4msU1lERLTvIWdC21ZUVA3IG/K68mq8vexjZJjF\nIX/gwAEGDBjA6tWrkSSpYbuXlxdlZWX8/PPPAGzZsoXq6mp69OgBwLFjx0hO/t86jE5OTsTGxnL0\n6FHMZjMnTpygb9++DfsTEhIwGo2kpqa2uHFCY9VVVahlnJAs52w2tYZaEfKCrC5fKsfNxxUnN/ke\nUKosrCQs1LoLksjF4gnK7rvvvia39+3blylTppCSkoKDgwNms5m5c+fSpUvdX1RBQcEVY079/PzI\nz8+noqICvV7faL9SqcTLy4u8vDzi4+MtrabQBFOtCQelfNcaM09cxsnJkU6d3DCZzbKVI3Rc+flV\nHDuWz7CHR8paTml2CRE3R8pahrW02iyUVVVVZGZmkpKSwvDhw/npp5+YM2cO8fHxREREUFNTg1rd\n+AEctVqNwWCgpqam4eem9luiPV8Lrq+7XG0wmUwoHZWyrcik19bg7qHBwUGBWQJkvz3W+uqn86n7\nb/urP9hvGyRJ4qefMvAJ9iHp9r6yncfaEi3aUi3x8fE4Orb8s9hWsqjVQn7p0qUAPPHEEwDExMRw\n7Ngxli9fzqxZs9BoNFcEtsFgwMPDoyHcm9rv7GzZxFYeVl7UVw5ytcFkMuHkrMbZWZ6nXR0dlQ2f\nTkdl+57KoL3XH+yvDceP55OVWcED/34AN3f5PufZ2SUADBrUH29vV9nKsZZWC/nTp08THR3daFtM\nTEzDCJxOnTpRWNj4CbKioiJiYmLw9vZGo9FQVFREREQEUBdIZWVlFs/fXFGhw2Rqn5cKlEoHPDyc\nZWmDJEnU1tZSazKj01n27ai5amtN8N/7NLUmE7+7ZdNuKBR1wdJe6w/22Qa9vpaft2TQfVAPAmND\nZDuHAbJSs3FxdcXLK4DSG3iqtv7zbGutFvIBAQGNhlQCZGRkEBJS91BMfHw8R44cadin0+k4ffo0\nKSkpKBQKevXqxeHDhxtuzh49ehSVSnXFL47rMZnM1Na2z5CvJ0cbqqrqTlZHtSNmszyffEkC6ff/\n3y4Tpv7SQHutP9hjG3bsuEyN3sywR0bKdv7Wy88oICY2FrO5biqQ9q7VLhrdc8897Nixg2XLlpGZ\nmclnn33Grl27mDJlCgCTJk3iyJEjLF26lLS0NF588UVCQ0MbQn3KlCl88sknbNmyhePHjzN79mwm\nT56MRmMfY1Vtrf4RbTkXWjDWGFHdwDVMQWjKxYtlHDyYw6D7h+Ap4xDgekUZhfSOs5/BHjfUk//9\nohPx8fEsWLCA+fPnM3/+fCIiIli6dClRUVEABAcHs2DBAl577TUWL15Mnz59WLRoUcPrx48fT3Z2\nNrNmzcJoNHLLLbfw3HPP3Uj1hN8pKqq7VOYiY8jrKqpxcRYrSgqtR6erZePGNELjwuh7Rz/ZyyvL\nK6Mos5BBg4bIXpa13NAn8syZM41+HjFiBCNGjLjq8UOGDOHHH3+86v7HHnuMxx577EaqJFxFfU9e\nzpCvLqvC10W+KROEjkWSJH78MQ2DCcY9M8EqUw2k7T2HWq1m5MjRspdlLeK7dQdRXFwM1M2uJxdd\neTUuIuSFVnLiRAFnThcxZsZYPPw9ZC9PkiRO/nyC0WNuwc3NXfbyrEWEfAdRWFiIs5szShlXaaou\n14mQF1pFbk4l3/+QRuyInkQPjbFKmZnHL1F0uZBHH3ncKuVZi7iA2kGUlpbI2os31ZrQV+txcRUh\nL7ScwWBi587LHDyQQ+eozoz5681WKVeSJPZ+sYeY2J52dT0eRMh3GAaDHke1fP/cugodgOjJCy12\n4UIZP/6YjlZrZOi04QyZMhiD0ST7kEmAC4cyyDx5mVWr1jYaUGIPRMh3EEajEaWjfJdqarR1U1M4\nOYlTyh5VVuoxma4MW2dnRzSalv+bS5JETo6Ww4dzOXWykNC4UCY9OQ7fUN+689VoupFqN0utsZZf\nP/6FgYMGM2qUdb45WJP4RHYQtbUmWUcn1P8CsYeHR4T/ycqqYNeuTC5klDW538FBQWioB127edO1\nqw8+Ptd/wtNslsjMrOBsajHnzpdQWaHHxdOFW1LGETemt9V70gfX76c8v4w3v3zH7nrxIEK+w3By\n0mAy1Mr2/vWXgoxGEfL2oLrKyHcbznEhowzfUF/GPX0rbr5XjjgpzSkhfX8av26/xNYtF/HxdaFb\nVy98fV2umButvtd+/nwp1VUG3H3d6DYsjm6DehAcE4KDDSb0Kssr48Caffzl8Rn06GHZ0/XthQj5\nDsLZ2QWjXr6QVznVXYtv71NKCHUOHc4lO6eKiS/cQfeBPa76LbBLQjgJ4/tg0Bm4fOwi6QfSOHkg\njaqynCaP9+rsSc+xiXQf2IPO3QJtvszer0u34uPry7PPvmDTeshJhHwH4eTkRK3BKNv71/fka0VP\nvt2TJIlTp4roPiSGHoOb17tVO6vpelN3ut7UvW6+nKvcK7V1qP9e+oE00vaf55NPluPm5mbr6shG\njJPvIJycnDHq5Qt5pUoJCjBY4UaZIK+8vCrKSnXEDo9t0esVCgUKh6b/tBVGvZFtH21l6LDhTJhw\nu62rIysR8h2Es7Mzhhr5pmdVKBR4d/YiL1crWxmCddRfcnP1sd/e7b7Ve6gq1vLmG2/b5c3W3xMh\n30F4eHhgqjVhrJGvN991YA/OniuxyrhmQT6u/32greoG5lJvy3LOZHNg3T6efvp5oqK62bo6shMh\n30H4+dUtvlJdUS1bGd0H9kBXbeTy5XLZyhDk5+ZWt3JYVYn9fSszVOv54Z1N9ElM4qmnOsYstyLk\nO4igoGAAKvLlC+DO3QJx93Xj9OnC6x8stFlqtRK1WkllUaWtq9Lqflm6FX1FDYsXf4yjY8cYdyJC\nvoMID69bVrHwonwBrHBQ0H1QNKlni9vxikQCQEioB2d3nrGrf8dzu1M5+fNx5r7+byIiIm1dHasR\nIW+H6obAnWTx4gU8/PD9DByURERkIADleU0/udhaug3qQWWFnpwc++sFdiR9+waSn55PbmrT493b\nm8qiSrYs+onxt07k3nv/bOvqWFXH+L7SQVy4kMGqVSv4cvXn5OfloVKrCOwRhE93X4aOHI6Llyth\nvbvIWoeQ2BA8/NzZuvUi993XE0exHGC7FBnphbePM0c2HCIoJtjW1bkhJqOJTW99h7uLB++8/b7d\nj6b5IxHy7VxxcTHfffc169ev4cCBfTi5OhM9PIahA4YTHBsi68yTTXFQOnD3q/ew7Oll/PB9GhMm\ndutwHyp7oFAoSErqzC+/pFJZNAJ3P/kX7ZCDJEls+3greedz+fabH/Dx8bV1laxOhHw7pNVW8sMP\nm/jqq7X8un0bkmQmsk8U45+dSLeB3VFpbDvdb2jPUMY9fSsb3/oODw8NQ4eFiaBvh3r3DmDXriz2\nfbmHMTPH2ro6LbL78538tukI//73fJKT+9u6OjYhQr6dMJvNbN++jVWrVvDj5u/R19QQ2jOM4Y+N\npLsjrtAAACAASURBVMfgaFnXbm2J2OE9qSisZMd/tlFSouPWCd1Qq+Wb6lhofRqNIwMHBrPtp2P0\nvbMf3sE+tq5Ss0mSxO6VO9m3eg8vvzybqVMfsnWVbEYh2dPtc6C0tKrdTpLl6OiAt7drozbo9XpW\nrlzGwsXvkZ2ZhX+XAKKHxxA9NAbPTl42rvGVHBwUODur0ekMmM0S5/ee4/u3N+DipGTQwBDievmj\ntMFsg82lUChQOSox1pra7ciS1myD0Wjiww+PEpwQyYS/We/x/z+eR5Yw6o38vPBHTm87xcsvzyYl\n5WmZanlt9Z9nWxMh34b8MeQ3bPiGl17+O/n5eUQPjSXx1j4ERge16UsfTX04S7JL2LV8O+d2n8Xd\nQ4OfnzMeHho6d3YlMNCdgACXNhP8IuSv9NtvefzwfTpT33+IgMhOrVDD62tpyOeey2Xzu5uoyK9g\nwYIPuPPOu2Ws5bWJkJeJPYR8RkYmzz73NN98vZ6uN3Vn6LRh+IS0jxtG1/pwFl4s4PjmY2iLKinL\nLaXochGSWUKpdCCgsytBnd3o3sOHsDBPHGw0mZUI+SuZzRJLl/6GZ3hnJs2e3Ao1vD5LQ95kNLFv\nzR72r9lLz7heLFn0Md2797BCTa9OhLxM2nvI79nzK9MeegitTsuov4wmelhsm+65/5ElH06j3khh\nRgF553PJO59L1snLVBRW4uauJibal9ie/gQGulm1/SLkm3bmTBHffH2WP70xhdC4sFZ5z2ux5DzK\nOpnJ1sU/UZJdwjPP/I2nnnoOlcr2aw23lZAXN17biMrKCl75xwus+nwlkclR3D1zcpMr8dgTlUZF\nUExwwzhsSZLIPZtD6vbTnNpxhoMHc/EPcGX8+CiCguz776Kti472pVNnNw59td8qId8cugod2z/9\nhZNbTpDYJ4k1y76lZ884W1erzREh3wbs2PErT/6/v1BSWszE5yYSPaIn7bQTeUMUCgVB0cEERQcz\n/NFRZJ64zI7PtrF82XH63xTMkCFh4uEqG1EoFERGenHybL6tq1L3RPcvJ9nx6a8oJQfmzXuPBx6Y\nhoODODeaIkLehmpra3n99X+ycOF7dOkdzrR/PULncH90OkO7vVTQWhyUDnRJCOfPbz/IwfX72bNq\nJ+fOlTJqVBeiorzb1SUse+Hn50zlniz01Xo0Lhqrly9JEhcOZXBg7T6yTmdy5113M+efbxAQEGD1\nurQnIuRtpLy8jKkP3sf+/XsZ+tAIku/sh1L0Uq/goHSg/+QBRPXvytYlP7F2zRkiIr0ZNbIL/gG2\nv97Zkfj51T2LUXy5iKBo6011UFWq5cTPxznzy2mKs4rok5TEu2sXMmzY/2fvvMOjKtM+fM9MJpNG\neg8JaUACaRACBKQt0gKhKiKKoGLZRVk/y1pYBUTFXbYLWFEUFoSEjnSRXgIhJAESIAHSe29TMjPf\nH5GsCAgpZ2YSzn1dXDHnnTO/55hzfvPOW55nhMFi6MiIJm8EiooKeXT6ZLLzbvDohzNMZozTlHHu\n5sL0pTPJOHWVw18fZNWq80REuDFkiA/WP+c/FxEWJydLkBje5Pev3EfGyStMmjSVZ1Y8x8CBg8Rv\nci1ANHkDU1NTzbRHJlJYVsD0j2fi7ONs7JA6DBKJhO7RPfDvF8D5Xec4se4YFy+VMSjai6j+nuJ4\nvcDI5TLsHSwpzS41qG7U1P5knLyCr68f0dGDDardGRCfCgPS2NjI3Odmk517g6nvPyoafCuRyWVE\nTopi7pcvEjI6nCNHs/niiyQuXSx54OcyhMbd1ZobidfQaQ23TNkruCtDnhrGf/7zD06fPmUw3c6C\naPIG5M9/fpPDh38i9u3JosG3A5a2lvzuhVHMWTEXp+5ebNt2hW++SSEjo1w0e4HoP8CTspwyLh9N\nM6zuIwPx6O7BW2+/ilarNah2R0c0eQPx1Vef8fXXXzLy96PpFuFr7HA6FY5dnZi68FFmfPwEckd7\n4jamsWbNBbKyxFqz7Y2XVxcCuztyfO0RtI2GM1uJVMLw50dy8cIF1qxZbTDdzoBs0aJFi4wdRHui\nVGpanNBIaPbv38PLL79I5OQoBk6PvuvrJBIJcrmMxkZth10nb8xrsHW1o/fDoXgGeXHjYh6nDl8n\nK6sac3Mpjo6W9zVZJ5FIkEmlJncPtQShr8HFxYqTR7KwdbbFLdBdEI073UddnG2pLath/Vdr6R7Y\ng6CgYEG024ubu3aNjTjxKjCXL6fz3PNz8O8fyNA5w40dTqdHIpHgF+mPb18/Mk5e4eyWBLZsvoyt\nnYKoKE/69HFDLhdTHrcFV1drgns5c2LdMboP6omlraXBtB/+wxg0qkZefPFZZDIzJkyYaDDtjoqY\nu0ZA6urqGD1mGJWqSh7/+5OYW/z2p3pb0quaCqZ4DUUZhSRuP0vaoYtYWcmJHuhFxF3MXsxdc39U\nVSn55psUnP3deWTJDGTt/MH5W/eRTqtj1993cvXEZdav28Tw4b9rV+32wlRy14gmLyCvvTafDXHr\nmPmPp+5rotUUDbKlmPI1VBZUcGrDCS4evICVlZzhw3wIDXO9ZRhHNPn7Jye7inXrL9J7ZCijXx7X\nrmvX73Uf6bQ6tr6/ibLMMg7+eAxvb9Pba2IqJt/qiVe1Wk1sbCxnzpxpPlZQUMBzzz1HREQEY8aM\nYffu3becc+LECWJjY4mIiGDOnDnk5OTc0r569WqGDh1KZGQkCxYsQKVStTY8o3PmzGnWrFnNkKeH\niytpTAR7DwfGvjKeZz9/Hp9+gfzwQwbbt1/tsGZubLx97Bg3LoDUfSkkbjtz7xPaEalMyrjXJiBR\nwNPPPNmhvUJoWmXyarWaV199lYyMjOZjWq2W559/HoVCwdatW3nmmWd44403ml9TUFDAvHnzmDZt\nGps2bcLBwYF58+Y1n793715WrlzJkiVL+Pbbb0lOTmbZsmVtvDzjoNPpePOt13AP9CB8bISxwxH5\nFfYeDox/fSIP/2E0ly6WUFbWYOyQOixhYW4MHOjFoVUHyTyTce8T2hFLW0smvD2ZixdT+etfPzKo\ndkeixROvmZmZvPbaa7cdP3ToEEVFRWzYsAErKyt8fX05evQoSUlJBAYGEhcXR2hoKHPmzAFg6dKl\nDB48mDNnzhAVFcWaNWuYPXs2w4YNA2Dx4sU8++yzvPHGGygUhk+G1Bb27t3NhdQUZnz8BFITqXgE\noFFquHjwAtcSMpp7r+ZWCty7u+PewwO3AHfMTWA1gKFQ1aqQmUmxsjJ+7vGOzLDh3Sgra2DnX7Yx\n82+zcPE1XMIw90B3omcOZsWKfxMTM4HIyCiDaXcUWmzyCQkJREdH88orrxAeHt58/MyZMwwcOBAr\nq/8VlF6+fHnzfycnJxMV9b8/gIWFBb169SIpKYnIyEhSU1N5+eWXm9sjIiLQaDSkp6ffomPq6PV6\n/vWfv+Ed4kPXEG9jh4NOqyP3Yg6Xj6Rx+VgaqjoV3XztMZc3ffjUFTdy4tQVNBotEokEZx8n3Ht6\n4dHDA/ceHjh3c2nxB5Ver0er0aJRNyK3kJtknpHridc4uf4YYaGuosm3EalUwsRJPVizJpUti+N4\n4p9zsLY33Fh0/2kDyTh+lT+9+X/s23sYmUxcPfVLWmzyjz/++B2P5+Tk0LVrV/7+97+zbds2HB0d\neemll3j44YcBKC4uvi0lqLOzM0VFRVRXV6NSqW5pl8lk2NvbU1hY2KFM/sKFVJISE5n87jSjxaDX\n6clLy+Xy0TSuHEunrrIeO3sLIkKciejjjoODxS2v1+n0lJbWk59fQ0F+LfnJmVzYn4xeD3KFGW4B\n7rj39MTCxoL6yjrqqxuor6yjobIOdYMarUaLtlH7v5+/mPju4mSDX1QgfpH+dAvvhrkRUtT+msyE\nDLZ/tBk/X3seHuVn7HA6BebmMh55JJhvV6ewbUk805c+gZm5YVZoS2VSRrw4kvVvrGXdujXMmjXH\nILodhXb7K9TX17N582ZiYmL4/PPPOXXqFH/84x/ZuHEjvXv3RqlUYm5+61CAubk5arUapVLZ/Pud\n2luCsQtCb9u2CWs7awKiAlpcp/Tm61tb37S2vJaETae5fOQSNWW1dLFV0DvIieBe3fH0vHsZPZlM\ngpubDW5uNvTp03RMrdZSWFhLQX4N+fm1XP0pBY1Gh5W1HCtLM6yt5Lg4y1EoLJDKJJjJpMjMpJiZ\nSZCbmSGR6pFIJBTk15J55gope84jlUnx7eNL/0ej8Q7xNkoP/+qJK2xbuoXAQAemTOl52/1yM6Sm\nn6b3DeR+MNY12Ntb8Mijwaxdm8q+/+xm/Buxrf4bt/RZ8O7tTe+RISz5YCHTpj2Cra1tq3TbE2N7\n0U3azeRlMhkODg4sXrwYgODgYM6ePcuGDRt4//33USgUtxm2Wq3G1ta22dzv1G5p2bKNFrYG3Jjx\na/R6PVu3bSJoaBA2XVofh0LR8uGDtCNp7PjbdtBqCentQsjEQLy9bVv9kMnNZAT4OxLg79iq82/S\n5+d55/LyBjIyykk8V8j3b/4X715deejJIXQf2N1gZn/x0EW2Ld1CUE8npk4N+s2H0KwTfOU3xjX4\ndrNn0sSebN58EfcAN4Y8OaRN79eSZ2H0C6P45IlPWLv2axYsWNAm3c5Eu5m8i4vLbeW3/Pz8uHLl\nCgBubm6UlJTc0l5aWkpwcDAODg4oFApKS0vx82v6+qzVaqmsrMTFxaVFcVRXN6A1YIa8X3Lp0kWy\ns7IZMDeahoaWfQOBpl6LQiFHpbr/1AyqehU/frafCwdS6dHTiZiYwOYx5kYj/H+QSJrMpVF7a1qD\nLrbm9OnrTkQfNzIyKjh5Mpf176zHxdeFAdOjCRoSLOgk9aVDF/nhbzvoFexM7MQe6PR6dHfIvXK3\n+DsSxr6GoGAnBg3qyqHVPxEwqAcOHg4tfo/WPAtyGwvCxobz12XLePLJZ4zem5fJpEbtdN6k3Uw+\nIiKCzz77DL1e39wzy8zMxMurqbhAeHg4586da359Q0MDly5dYv78+UgkEkJDQ0lMTGyenE1KSkIu\nlxMUFNSiOLRandE2Q+3duxdzC3O8enu3aSOQTqe/r/NzL+Sw+x87aKiqZ/yEQEJDmzb2GHfdd9Pf\nXq/nrnEEBjoQEGBPTk41J07msfOv2zn23RECBgTi5OOCczdnnHyc263E3LkdZ/npix/pHeLC+PGB\nSCR3j+1+4jd9jH8NgwZ3JSW1hGPfHWH8G61PPXC/z8JNoqYNJGVPMp9//in/939vtFq3M9FuJj9+\n/HhWrlzJokWLePbZZzl69ChHjx4lPj4egGnTpvH111/z5ZdfMmLECJYvX463t3ezqc+cOZOFCxcS\nGBiIq6srixcvZvr06R1q+eS+/bvxDutmkAmny8fS2fGXrXTtasvMZ8Oxt7e490kmhEQiwcfHDh8f\nOwoLa0lIyOf6sUucK69v7n3aOnfBqZsLzt1ccOrm3PTT2wn5fX6F12l1HFp1kHPbz9J/gCe/+52v\nSa706YzI5TKGDvFm165L9Bjck+6DehpEt4tzF0LHhLFi5X+YO/cFunQx/ti8sWmTG/3ygbGxseHr\nr79m0aJFxMbG4unpyb/+9a/mnriXlxeffPIJH374IStXrqRv376sWLGi+fyYmBjy8vJYuHAhGo2G\nMWPG8Prrr7clPINSVVXJ2TMJ/O7FhwXXKswoZPc/dtKrlwuxsd1bPVFrKri72zBxYg8ANBotZWUN\nlJbWU1JST2lJBVcO5lNV2TQ5b2ZuRtDQYMJj+uLe3f2upq1Wqvnhr9u5diaD0WP8iYz0MNj1iDQR\nFu5KZmYFe/71Ay7+bti72xtEt/8j0aTuTeHLLz/j1Vf/ZBBNU0bMXdNObN++hblzZ/P8N3/A1qV1\nvYf7yftSW17L2ldW08VCwhNP9Da5jIpC5U1Rq7WUltZz/XolycnFVFUqcfN3JTymL0HDejVv4lIr\n1VQVVrHnnzspzyll8uQeBAbe/+SxmLumfVEqG/nmmxQUjrY8/rdZmMnvr1/Z1hxI+1fsJe9sLueT\n0m5btWcoTCV3jZhquJ04duwIzt4urTb4+0Gj0rB1STxoNDzyZJjJGbyQmJvL8PTsgqdnF6Kju3Lt\nWgVJ54rYt2IPh1YdxMbBmtryWtRKDQA2XRQ8+WQI7u42Ro78wcbCwowpU3rw3Xep7F+xlzEvjzPI\nLvCI8X1J3p3E7t07mTRpquB6poxo8u3EiZPH8Aj2FFTj/A/nKLlWzKynQrCxeXDSD/waqVRCYKAj\ngYGOVFUpSUkpRqXS0iXIDpsu5thYy3Fzt8HCQry9TQF3dxtiYgLYuSMVTYOamNdj77tH31pcfF3w\nDvHhq1WfiyZv7AA6Aw0NDVy5fJkxY8YJqpOZkIGfnz0eHl0E1elI2NlZMGSI6aWZFbmVkBBXFOYy\ntm69wpZFcUx7/zHBe/Rh4yL4Ydl2rl3LxN8/QFAtU8Y0tmR1cHJysgGw92z5euD7RVmrJO9SLgGB\nhpm8EhFpb7r3cGL69GCyU7I4HXdScL3AAd1RWCrYvDlOcC1TRjT5diAnJwsAOzfhDDjr/A30Oj0B\nAW3bgSoiYky6+doTPagrJ9cfoyynVFAtuYWcwEE9iIvfYPQJaGMimnw7UFxcDIC1gDPp185m4uJq\njZ1dx9k3ICJyJx56yBsbGwUn1x8XXCt4WC+uX8skKSlRcC1TRTT5dqCsrAxLG0tkZsKtdrmReI0A\nf3GoRqTjI5NJGRTtRfrRNMF78z7h3XBwd+DLLz8TVMeUEU2+HSgvL8PKTrhevFajpa6iDidn4+fB\nEBFpD8LCXbG1Fb43L5VJiYjty9ZtmygqKhRUy1QRTb4dKC8vw8JWuLQCytqm8nSWlmJxC5HOQVNv\nvivpR9MozRa2N997ZCgA27ZtFlTHVBFNvh0oLy9DYSPcWHl91U2TF1e8inQebvbmT30vbG/ewsYC\nv0h/tmzdJKiOqSKafDtQWlaKpYApRRuq6wHEMnUinQqZTEpUPw+unriMqk4pqJZfP3/OJ52jtrZG\nUB1TRDT5dqCsvBRLW6t7v7CVNFSLwzUinZOgYGe0jToyTmcIquMd6oNWqyUh4bSgOqaIaPLtQEV5\nucA9+QYkUgkWFg9OrhqRBwNbWwVeXW25cixNUB0HT0fkCjlXrqQLqmOKiCbfRrRaLVWVVYL25JU1\nDVhaysVc6CKdkuAgJ26cu46yVrghG4lUgoOHA9evXxNMw1QRTb6NVFVVotfrsewi3Oqahup6cTxe\npNMSFOyEtlHHlWPC9rLtPOzJvCbssJApIpp8GykvLwcQfExeXFkj0lnp0kVBjx5OJMSfRCdgXWI7\nd3tuZF0X7P1NFdHk20hZWRkAlnbCjcnXV9VjKY7Hi3RiHhrSlcrCKjJOXxVMw9LOisqKCsHe31QR\nTb6NlJf/bPJCjsmLwzUinRw3NxusrM0pE3BjlIWNBTXVNQ9csjLR5NtIeXkZEokECxshx+QbsBRN\nXqQTo9frkUigUd0ouNaDtoBBNPk2Ul5ejoW1haAFEBqqG7ASx+RFOjGVlSrqatV4BnkJpqFr1Aqa\nRNBUEU2+jdTV1aCwFq4X36hpRK3UYCFuhBLpxORkV4EEvHp1FUyjvqoeBwfhCvuYKqLJt5Ha2lrk\nFsIZsPLn3a5WVmJPXqTzkp1Tjauvi6DDnrVlNbh7CFuH2RQRTb6N1NbWYm4pXFHthpomkxeLUot0\nZrJzauga2k1QjYqccgL9uwuqYYqIJt9GlEolMrlw43zWDjaYmZtxLfPBW/ol8mCgUjVSVdGAe3d3\nwTR0Wh3F14sJD+8jmIapIpp8G+nSxRZNg0aw97eysyJiQl/OnC2kvl44HRERY1FR0ZTOwN5DuPHy\nsuxS1Eo1ffr0FUzDVBFNvo3Y29s3D6kIRf9pA9FLJJw+lSeojoiIMci4Wo7cQo6zr4tgGnlpucjM\nzMSevEjL8fHpRlVJJY0a4db3WtlZETkpirOJBdTWqgXTERExNDqdntQLJfR8KAhzC+HmtvLT8ggJ\nCcXKSrhNi6aKaPJtJDCwO3qdnoo8YcfM+03pj0xuxoED1x+4HXsinZe0tFIqK5REjBd2GKXwciED\n+g8UVMNUEU2+jYSGhiGTyShIF3YoxcLGglEvjSPtUimJZwsE1RIRMQR6vZ4TJ/Lw7euHe3cPwXTq\nq+opzy8jMjJKMA1TRjT5NmJj04WQsDCyU7MF1woaGkzkpH7s33+d1NRiwfVERITk8uUySkvqiH58\nsKA6xZlFAISHRwiqY6qIJt8OjBwxihtnrws6Ln+ToU+PAGDnjqukpQlb5V5EREhOnsrHJ6wbXsHC\n7XIFKMooxNrGGl9ff0F1TBXR5NuBqVMfRVnXwPUzmYJrycxkPPP58wBs33aFwsJawTVFRNqboqI6\nCvNr6DNB+CWNWedvMKB/NFLpg2l3D+ZVtzM9evQkvE8fzm1PNIieo5cj8+NfxTXAjY0b06iqErbS\nvYhIe6LT6dm9OxMHTwf8ogIE1aqvqifnQjbjx08UVMeUEU2+nXj91bfIuZBNdkqWQfTMLcyZsvBR\nzKwt2bAhjYYG4YeKRETag5MncyksqCXmtVjM5MKm68g4dRX0MHr0OEF1TBnR5NuJ0aPH0jskhJPr\njxtM09remmnvP0a9UsemTWk0NgpXOk1EpD0oKqrl2LEc+j86EI+ewicLSzt4kSFDhuHm5ia4lqki\nmnw7IZFI+NMbC8hJzSbngvArbW7i6OXI5IWPUFBQx3ffpVJQII7Ri5gmjY06du7MwMnbWfAVNQBl\nOaXkXMxm5sxZgmuZMqLJtyNjx8bQq3dvTq0/YVBdr+CuzFg2C52FJd+uTubgj9fRaLQGjUFE5F4c\nO5ZDaWkD416dIPgwDcC5bWdxcXVlwoRJgmuZMq02ebVaTWxsLGfOnLmtrba2lqFDh7J169Zbjp84\ncYLY2FgiIiKYM2cOOTk5t7SvXr2aoUOHEhkZyYIFC1CpVK0NzyhIJBLeeP0dspJvkHsx594ntCPu\nge48+a85PPTUMM6eK+Krr85z/XqlQWMQEbkbVVUqTp/KI3rGYFz9hR86qa+q59JPF5n77AuYmwuX\nLqEj0CqTV6vVvPrqq2RkZNyx/a9//SslJSW3HCsoKGDevHlMmzaNTZs24eDgwLx585rb9+7dy8qV\nK1myZAnffvstycnJLFu2rDXhGZVx48YTFNyLk/89bvD0AzIzGQMejWbO8mex8XLh+/UX2bw5naIi\ncQhHxLgkJORhbmVO5BTD7Do9uyUBuZmc2bOfMYieKdNik8/MzGT69Onk5ubesf3s2bOcPn0aZ2fn\nW47HxcURGhrKnDlzCAgIYOnSpeTl5TV/E1izZg2zZ89m2LBhhISEsHjxYuLj4ztcb14qlfLeu4vJ\nSrnRNLNvBBy8HHnso5mMfSWGwopGvl6VzMaNaeTmVhslHpEHm6KiOs6dK6TvpChBk5DdpKG6gfM/\nJPHc3N/j6OgkuJ6p02KTT0hIIDo6mg0bNtzWU1Wr1bz33nssXLgQufzWknjJyclERf3vU9zCwoJe\nvXqRlJSETqcjNTWVfv36NbdHRESg0WhIT09vaYhGZ+TI0Qwf/jsOr/oJVZ1x1rBLpBJCHg7j2S9e\nIOa1CVQqYc13qaxbd5EbNyrFJGciBqGxUceOHVdx8nam/yOGSRB24UAK+kYdL7ww794vfgBo8ezH\n448/fte2zz77jN69ezNo0KDb2oqLi3F1db3lmLOzM0VFRVRXV6NSqW5pl8lk2NvbU1hYSHh4eEvD\nNCoSiYRly/7FiN8NZu9/dhP71mQkEolRYpHKpPQaEULwsN5cPXWFU98fZ/26i7i529C/vwfBwc7I\nZIadf1cqGykqqqOsrB61WotGrUOj0aLW6LC1VdCnjxuWYuHyDo9er2f/vmuUlzfw5HuPGWSyVa/T\nc2FfKhMmTLptNOFBpd3+r2dkZLBx40a2b99+x3alUnnbBIi5uTlqtRqlUtn8+53aW4KhDetuBAT4\ns3LF5zz11EySd52jb2y/e54jlUpu+dmuSCUEPRREz8E9uZF0nbNbEtix/So//ZRNv0h3+vR1bxdj\nvflZ1vSz6ReNRsvFCyVkZlZQVFxPZUXDz6+RYG4pR66QI7do+peamsvJE7n0jXSnf38vbGwMO2l2\np/g7GqZyDWfO5HP+fBHjXhmPWwsnW1v7LKQfT6cst5QXvvo9ZmbG9QJT8aJ2M/l3332X+fPn4+jo\neMd2hUJxm2Gr1WpsbW2bzf1O7ZaWli2Kw9a2Za8XklmzHufs2VOsWLkCv3BfPO9z84dCIWwvttfg\nIHoNDqLkRgmn4k9xdF8yx0/kEhzkTM+eTgQEOKBQtO3WMJPJqKpSkphYwNnEAhoaNHQL9SF4VA/c\nA91xD3TH2ccZ6a8ehNryWk5tOsWZLWc4c6aAPhHu/O53vgbv2ZvJhKvbayiMeQ1Xr5bx44HrRE+P\npv+ke3dw7kZLngVto5bT608yatQoxoz5Xas1OxvtYvL5+fkkJSVx+fJlli5dCjT13N977z127drF\nF198gZub220rbkpLSwkODsbBwQGFQkFpaSl+fn4AaLVaKisrcXFpWUmw6uoGtFrT2fn5zjuLOHzk\nCPGL4pn1nzlY2Fjc9bVSqQSFQo5KpUGnE37M3MbNjofnjSH6iYdI3pVE+pFLpMRdQiaT0s3Xju6B\njnj72OLsbHXPHpVer6ekpJ7c3Gry82rIzqmhsqIBcws5oWPC6TuxHw6/quGpUt+eikFmac7gJ4cS\nObk/STsTObXhBDIzCSNH+rXrtd8NiaTJHBu1WjrqtIWxr+H69UriNl4ioH8gg2cNpaGh5dXMWvMs\nJGw+TUl2Ce98s5CKiroWa7Y3MpnUJDqd7WLy7u7u7N+//5ZjTz75JE899RSxsbEAhIeHc+7cueb2\nhoYGLl26xPz585FIJISGhpKYmNg8OZuUlIRcLicoKKhFsWi1OpPa3i+VmrHqqzWM+N1gdv3jTbxa\nvgAAIABJREFUBya9MwXJPQxTp9MbxORvYmlrxcAZgxk4YzCVhZVknr5K5umr7D9wDZ1Wj9xchoeH\nDa6uVuh0elQqLSpVIyqVrvm/G+o1qNVapDIJ7gHuBAwLwTPIC98+viisLZqv634xt1IwYPogiq+X\nkHcjz4ATxU1/G72eDjw5bbxryLpRSVxcOl1DuzHhzckgkbTpXr7fZ6GysJIT/z3OM888T+/eYSbl\nAcamXUxeKpXi7e19yzGZTIaTk1PzZOq0adP4+uuv+fLLLxkxYgTLly/H29u72dRnzpzJwoULCQwM\nxNXVlcWLFzN9+nQUCkV7hGhUfHy68enKL5k1awZHvzvM0DnDjR3SXbF3tydyUhSRk6JQ16sozCik\n8EoBhVcLyLxWhExuhsJagcLOFhtrBY7WChRWCixtLXELdMczyBM7BxsaGtRt/qAquVFM0dV8UIl1\nbTsCWVlVbIxLp2uIN5PfnYaZufATrdA02brv37txdXbhnXfeNYhmR6JNf4XfWjHy6zYvLy8++eQT\nPvzwQ1auXEnfvn1ZsWJFc3tMTAx5eXksXLgQjUbDmDFjeP3119sSnkkxevQ43n//I959922sHayJ\nnGT6pcjMrRT4hHXDJ6zbfZ/TXpPGqftT+HHlXhwdLZg8vVe7vKeIMGg0Wg4fzuZcYiFdQ32Y9GfD\nGTzAuR1nyU7NYvPmndjYdDGYbkdBou+430nvSEVFncl+VdPr9SxZspDly/9F1xBvZnz8xC3tUqkE\nS0vzdukFG4u2XoNGqeHAp3u5+OMFwiPcGDXKD7nccBOIEokEuZkMTaO2ww7XGPIaamvVxMWnU1bW\nQNQjA4maOgB5OywcuN/7qDyvnDXzv2HWE0/z8cd/a7Nue2JmJsXBwdrYYYgmb2j0ej1DhvTnypXL\nTPjTJIKGBje3PegmX5ZTyo6lW6gqqGTMWH9CQ13vfVI7I5r8/VNSXMfGuHR0UhlTFj2KW4B7u733\n/d5H8e9uRFeu5fChU1hbG99Qf4mpmLzhvlOJAE0P4NGjCcx76Xm2/CMehbUCv8gHs/bkTdRKNac3\nnOTM5tM4OFgwe04YLi5Wxg5L5De4dq2CrVuuYOvhwNRFj9LF2dbgMeSkZnMj6RrffPNfkzN4U0I0\neSMgkUj4979WUlFRwfaPtvDIksfw6iVsMWNTRK/Xc/XEZX764gD1VfUMGuTFwIFeBh2eEWkZer2e\n06fzOPRTFr6R/sT+aRLmVoZfHKHT6jjy9SFCw8KIiZlgcP2OhGjyRkIul/P1qjVMf2wymxfFM2nB\nZHz7GGYtuClQllPGT1/s50bSDQK7O/Lw9J44ONx9D4GI8VGpGtn1Qwbp6WX0f2QgD80aettmNkNx\nbvtZCjMK+Gb3WqOlDOkoiCZvRCwtLVm/bhNz5sxk86J4xr8RS8SoMGOHJRh6vZ6s8zc4t/0s185m\nYm9vwSOPBtO9+513SYuYDmWl9WzafJmaOg0T35lCj0E9jRZLaXYpx9cc5dlnX6Bv39bvpn1QECde\nTQC1Ws28ec+xfftWBs8czIDHBiGRmkbei5ZypwkzdYOaiwcvcH7HWcpyy3F1s6FfP3d693Yxen6R\nXyNOvN5OenopP+zMoIurHRMXTMPJW/j0vXebeG3UNLL+tbV0kXXhxwPHWpz2xJCIE68izZibm/P5\n598QEhLKxx9/yPXEG4x5ZRyOXTt2LuzKggqSdp7jwv5k1A1qevR0YuyTIXh724pfsTsAOp2ew4ey\nOHUqjx6DezL2lfGYWxq3ytKx745QllPKuj3xJm3wpoTYkzchzMykXLlygRmPzyA3L5eBMwYRNXUA\nMrOOMxEpkUDBpVxObjxJ5tlMLCzk9IlwpU9fD+zsTH/3stiTb0KpbGTz5stkZ1cxdM5w+k3pb9AP\n5jv15K+dzWTzojgWLfqQP/zhZYPF0lpMpScvmrwJcfOmyM8v5eOPP2LFyv/g7OPMqJfG4HGfGSyN\nxR2HZCLd6dXbuUOtlhFNvomdO69yJaOSSX+e1qIdz+3Fr02+srCS/77yLYOjh7J2zQakHWA4UzR5\ngegMJn/zGlJTU/jjK3/g4oVU+k6MZPATQ4yyXO230DZqObHuGOd3JjYPyUQP7IqHp42xQ2sVosk3\nZZH8fv1FRr88jrAxxinY80uTr69uYOPb67HQWfDjgaPY2dkbJaaWYiomL47JmzChoWHs23uIL774\nlKUfL+HykctEPzGY0FFhRlu69kvqKuvYsXQL+el59I/ypG+kB/b2Fh3eJB9kNBote/Zk0jXEm9DR\nxl/ppVFq2LpkE8pyJfE7tncYgzclxJ68CfHrnvwvyc3N4aOPFhMfvxEXH1f6Tx9AzyHBRjP7woxC\ntn0Qj06pZsqUnnh7N+147Og94Y4eP7T+GvLyati7J5PSciWzlz+Lo5fxlrZKpRLM5TLWL/ie/At5\nbIrfQb9+/Y0WT2swlZ68aPImxG+Z/E3Onz/Hxx9/wMGDB3D0dGTwU0Pp+VDLcu63lUs/XWTff3bh\n4mLF1Kk9sbX93xBSRzfJjh4/tPwa6urUHDyYxYXUYlx8XXjoqWEE9A80QKR3R6/Tsfefu0g/ls66\n/8YzfHjHq/QkmrxAdHaTv0lychIvvvgstfpaZv1njkHi02l1HFl9iLNbEggNdWXsuIDb1rl3dJPs\n6PFDy67h+vVKduy4ik4i5aHZw01iKLBR08gPf93O9bPX+HrVd4wd2zHTFpiKyYtj8h2UsLAI6urr\n6NrfMDlvVHVKti/dSnZKFg8/7Ee/KA9xrXsHJzOzgk3x6XiH+TDu1VisTcCQNEoN2z7aTMHFfLZt\n3UZ09LAO22kzFUST76BcuXKZwoICBvcdIriWtlHL9o+2UHg5jxkzeuHrK05+dXSysqrYvCkd30g/\nJr4z1ST2YqjrVWx+P56ya6Vs2LCJmJgYk6jV2tERTb6DkpBwCqlMKnj2Sr1ez4+f7iMnNZsZj/em\nWzc7QfVEhEej0bJjx1U8grsS+9YUkzB4Za2STQs3Up1XRdzG7QwaFG3skDoNosl3UBISTuHm5y74\nNvOzWxJI2ZvM+PGBosF3EhJO51Nfr+Gx+eMMWqbvbpRml7LrrztQVSrZumUX4eF9jB1Sp8L4f2GR\nVnHxUirO/i6CamScusLhb34iOtqLsHA3QbVEDENNjYqTp/LoM7Ef9h4ORo1Fr9eTtCORo6sP4+PT\njbht2wgOFuv5tjfG31Ej0ipyc3OwdRWuGs/NYZrAQEeGDTf8tnYRYThyOBszhZyB0wcZNY5GTSO7\n/7GTg18cYPZTz3Lwx+OiwQuE2JPvgDQ0NFBZUUkXF+FMvvRGCTVltYwf3VtcRdNJKCysJSW1mJEv\njMLCxngFWuqr6tn+4RaKM4r4/POvmTLlEaPF8iAgmnwHRKVSAiBXyAXTuJZ4Dbm5rHknq0jHRq/X\nc/DHGzh5ORI+znhj3sXXitj+0VakGilbt+7qcLtYOyLicE0HRKttWjcs5KaVqoIK7OwsTK6oh0jr\nyM6uJiuriqFPjzDaZqe0w5dY/8ZaPJ282L/vsGjwBkJ8gjsgZj8vedNphdsk4tmrK6WlddTXawTT\nEDEMWq2OQ4eycPF1wd8I6Qp0Wh2HVh3kh2XbmThhCrt+OIC3t4/B43hQEU2+A2Jra4dcLqdOwI0i\nPqE+oIec7GrBNEQMw+HD2RQU1PLwH8YYfH5Fq9GydfEmkrYn8sEHH7Ny5ZdYWVkZNIYHHXFMvgMi\nkUhwdnWhrrxWMA1bVzvs3e3IyqqiZ1DHLkP4IHPlShmnT+Ux7JkRgm+cuxPH/3uUrJQbfP/9ZoYN\nG2FwfRGxJ99h6R7Qg7LsUkE1fMJ9yRJ78h2WigolO3dmEDiwO/2mGH78O+v8Dc5sOs3bb70rGrwR\nEU2+gxIR0ZfijCJBNXzCulFaUkdtrVpQHZH2p7FRx5Yt6VjYWTP2lfEGH6YpzS5lx9JtDBs2gnnz\n/mhQbZFbEYdrOhh1dXUcOLCX7777murKauqr6rGyE2aM0/vn2p5ZWVX07i3s7lqR1qHRaPnxxxuk\np5fh4W5Dt262ODtbcflyGSWlDcz82yyDr4mvyK9gy8I4uvn4smrVd8hkxs+N8yAjmnwHQK/Xc/z4\nUb755iv27d+NSqnCo7snfR6NxLKLpWC61g7WOPs4kZlZIZq8CaLRaFm79gKlZUrCxkZQnlPGsRM5\naFSNSKQSxrw8DrcAd4PGVHKjhM0L43B1cCVuw1a6dBH3WRgb0eRNnOPHj7L04yUknD6Fq68r/WdE\n0/OhIOzdDZPuN3h4CCfXH0WpbMTCQrxdTIkfD1yntLSBGctm4R7YZOYalQZ1vQpbe2v0Mik6neEK\nn1w5cZk9/9xFgF8gcRu34erqajBtkbsjPrUmSllZGe++9xbxcRvw6O7JlPcewT8qwOBjq71HhnBs\n7REuXSyhb6SHQbVF7s6liyUkJRUx+qWxzQYPTbugFZbmWFia09BgmLkUdYOaI6sPcf6Hc8TGTuY/\n//kUa2vjFyARaUI0eRNkz55dvPTyizSolYz5YwwhD4caLX+MjVMX/PsFkJxSKJq8iVBVpWT37kyC\nh/cidEy4UWPRaXVsfGsdlflVLF26jGeeeV7MdWRiiKtrTIiGhgbmzZvHzJnTcQx0Ys7KZwgdFWb0\nhyZsTDiFBbUUFgq3Ll/k/rmQWoJeKmWUETY33RbL/hQKMwvZuuUHnn32BaPHI3I7Yk/eREhPT+O5\n52dz7Vomo/4wmrBxfUzmgfHrF4C1gzXJ54twH2tj7HAeeK5kVODfLwBzK4VR49AoNZxaf4LJk6fR\nt28/o8YicnfEnrwJsH37FkaPGUa5spy5n82lz4RIkzF4aEqEFjIqjIuXStFotMYO54GmulpFYX4N\ngQO7GzsUzu04S311Pe+8856xQxH5DUSTNyI6nY6PPnqfuXNn49ffnyf/8RSufqa5IiF0VBgqZSPp\n6WXGDuWB5urVcqQyCX79AowaR0V+BQkbTzFn9lx8ff2MGovIb9Nqk1er1cTGxnLmzJnmY+fPn2fG\njBn06dOHcePGERcXd8s5J06cIDY2loiICObMmUNOTs4t7atXr2bo0KFERkayYMECVCpVa8MzeWpq\nqpn11Az+/e+/M3TOcGJej0VuIVx++LZi7+GAd6gPqaklxg7lgebKlXK8Q3yMWvRD26hl19924O7m\nwTvvvGu0OETuj1aZvFqt5tVXXyUjI6P5WGlpKc8//zwDBw5k27ZtvPzyy3zwwQccPnwYgPz8fObN\nm8e0adPYtGkTDg4OzJs3r/n8vXv3snLlSpYsWcK3335LcnIyy5Yta+PlmSZFRYXETBjF0eOHmfLe\nI/R/ZKBJDc/cDXsPB5QqcbjGWKhUjWRnVREwsIdR4zjx32MUXyvii8+/wcami1FjEbk3LTb5zMxM\npk+fTm5u7i3HDxw4gIuLC6+88go+Pj7ExMQwadIkdu7cCUBcXByhoaHMmTOHgIAAli5dSl5eXvM3\ngTVr1jB79myGDRtGSEgIixcvJj4+vtP15rOybhAz/mEKSvKZsewJ/KOM+7W7JRRfK8LVWbgdtiK/\nTUlxPTqdHu8Qb6PFkJ2SRUL8Kd5688/06RNptDhE7p8Wm3xCQgLR0dFs2LABvf5/u+mGDh3K0qVL\nb3t9TU0NACkpKURFRTUft7CwoFevXiQlJaHT6UhNTaVfv//N0EdERKDRaEhPT29piCZLaWkpjzw6\nkbrGOh7760ycfZyNHdJ9o23UUppVgpubuMnFWJSXNwBg7+lgFP3a8lp2LdvJoMEP8dJLrxglBpGW\n0+IllI8//vgdj3t6euLp6dn8e1lZGbt27WL+/PkAFBcX37bN2dnZmaKiIqqrq1GpVLe0y2Qy7O3t\nKSwsJDzcuBs+2oOGhgaenPUoZVWlzFj2JHaudsYOqUWU55ah1WhxcxdN3liUVyixde4iaG3fu6HT\n6ti1bAeWcks+/+wbMelYB0KQdfIqlYqXX34ZV1dXHnvsMQCUSiXm5ua3vM7c3By1Wo1SqWz+/U7t\nLUFmpPqVv4Ver+fNN/+P1AspzPjLTBzv0hOTSiW3/DQlSq4XA+DubvOb8wc3m5p+mt513AtTjr+8\nvAGHro73vD+EuI+OfnuUvEu5bNv2A56ewic9u/kcm+LzfL+YSuztbvL19fX8/ve/Jzs7m/Xr16NQ\nNG3YUCgUtxm2Wq3G1ta22dzv1G5p2bIxYFtb0xsz/vTTT/n++3VMeWcK/uG+93y9wgg9tXtRklmE\ng5MVNtb3twHHrIP39Ewx/opKFT4D/LC0NL/3i2m/++jKySucjjvJxx9/zPjxY9rlPe8XU3yeOxrt\navK1tbXMnTuX3Nxcvv32W7y9/zdB5ObmRknJrcvvSktLCQ4OxsHBAYVCQWlpKX5+TWtutVotlZWV\nuLi0LMVtdXUDWgELXLeU06dPMf+P84mc2I/uDwX9ZtIoqVSCQiFHpdIYNHvgvdBpdaQdvkRQoB2a\nxt9eXSORNBlko1aL3nQu4b4x5fgryxvo5WJ7z8Rj7XkfldwoYfMHWxg7dhxz5/6BCgHrCv8SmUyK\nra2lyT3PLeHmNRibdjN5vV7PSy+9RF5eHmvXrsXX1/eW9vDwcM6dO9f8e0NDA5cuXWL+/PlIJBJC\nQ0NJTExsnpxNSkpCLpcTFBTUoji0Wh2NjaZxUxQXF/PU7Jl49PRk6DMj7vuB0+n0JmXy2anZ1FbU\n0atXwC2T7XemaYhAr+c+XmuKmGb8er0etUaL3MLcYPdRbVkNW97fhF83f1au/AqdrmkDnyExpee5\no9Jug0ZxcXEkJCTwwQcfYGNjQ2lpKaWlpVRVVQEwbdo0zp07x5dffklGRgZvv/023t7ezaY+c+ZM\nVq1axYEDB0hJSWHx4sVMnz69ebino6HX63nl/+bRoGlgwpsTkZmZ3tf/+yX9SBp29hZ4eop5a4yF\nVqsHPZjJDXMfVRdXsfHt9VhILFj33zhxPXwHpk09eYlE0jwJt2/fPvR6PS+++OItr4mKiuK7777D\ny8uLTz75hA8//JCVK1fSt29fVqxY0fy6mJgY8vLyWLhwIRqNhjFjxvD666+3JTyjsm7dGg7s38uU\nd6dh7dBxzVGr0XLlWBp9Qp07xIatzsrN3qyZAeZr8tPz+OEv2+li0YWtW3bTtavx1uWLtJ02mXxa\nWlrzf3/11Vf3fP2QIUPYs2fPXdufe+45nnvuubaEZBLk5eWy4M9/InRUGAEDjJ9Iqi1cP3cNZa2K\nXmL5P6PSbPIC9uT1ej2JW89wZPUhwiP68M2qtXh6egmmJ2IYTGONTydj4cIFSM1lDJ/7O2OH0iZ0\nWh3H1xzBq6stLi7CFAsXuT8M0ZM/se4Yh1Yd5IUX5rFz+z7R4DsJosm3M8eOHWH79i0MmTMUhbXx\nkki1Byl7kym5UcLDD/uKQzVGRvuzyQs5t1OUUcjIkaNYvOhD5HLTW8Yr0jrEoiHtSGNjI2+98zpe\nwV3pNSLEODGoG8lOyeL62UwaapRIpRKkMilmCjlO3k64+rvh4utyz4ITylolx9ccJjTMFU9PcdLN\n2EhlTR+yQq5ukcqkmM56IpH2QjT5duSbb77k6uXLPPnP2UiMsGs16/wNdv19B3UVddjaW+Bgp0Cn\nb1pKp1ZrSdlTj06rR2YmJXJyfwZMj0ZxF7M/uf4YWpWG4cO7GfgqRO7Ezd2TjepGwTTMzM1QqZSC\nvb+IcRBNvp2orq7iL3/9iNDRYbgFCr/t+5doNVqOrT3Cmc2n8fW1Z8a0CFxcrG4bYtFqdZSWNnA5\nvZTT2xK4sD+Fh2YNpffIUGS/mNCrLKggaec5hjzUFRub+9tdKSIsZj+bvFbAylwyuQxllWjynQ3R\n5NuJTz9dTkNDPYNmPmRQ3cqCCnb8ZSsl14oZMaIbAwZ43XX8XCaT4uZmjZubNRF93Pnppyz2Ld/D\niXXHiJwchYufK5UFFaQduoS1tZyo/p53fB8RwyMza/qbCmvyZqjUnSu1t4ho8u1CbW0Nn32+nPAJ\nfbBxMtz4dXbyDbZ/tAVLhZSnZofi4XH/2ra2CiZN6sHgQV05fTqPo98eQqfVI5VKsHOwYMwYf+QG\n2ngjcm/MzG725AUcrpHLqFU1CPb+IsZBNPl2YPPmeOrr64mcaLiK9cl7zvPjp3vx8bFjypSeWFi0\n7k/p7GLF+AndGT6iGyqVFnt7C5PMgvmgc/Nv0ihwT14pjsl3OkSTbwfWrP0G/8gAujjbGkTv8rF0\n9i/fQ9++7owa7d8upmxtbY61mCrepJHKJIIO1yDB5JKyibQdcZ18GykoyCf5/HmChvcyiF5pdil7\n/rmT4F7OjB7TPgYvYvpUVanQafXYuQtXbEarbsTSomPv7RC5HdHk28ihQweRSCT49vETXEtVp2Tb\nB5uwt1MQExMoblB6gMjPbyqj6dFDuMlwrUaLeQdNCChyd0STbyNHjhzCvbsHlgLnjdbr9ez+x07q\ny2uYOrUn5ubipOiDREF+LXautljZCZdeora8Fldn13u/UKRDIZp8GzmdcBLPYOGXGqYfvkTG6Qxi\nJwTi6Gj8QgQihiW/oBb3nsLmkqnMq6R79x6CaogYHtHk20BxcTG5OTl4BAn78KnrVRxadZCeQU50\n7+EkqJaI6aHT6SksrMWjh4dgGlqNlorCcgICOnbWVJHbEU2+DZw9mwCAp8Amf3LDCVS1DYwc6Suo\njohpUlJSR6NGh7uAJl98rQidVkdISKhgGiLGQTT5NnD2bAK2znbYugi3dLI8t4zErWeIju6KnZ24\n8uFBJDenBqlMgmuAm2Aa+el5mJubExoaLpiGiHEQTb4NnDl7GveewuapOfbdEWxtzRk4UMzt/aBy\nNaOcrr29MbcQLo9Qfno+oWFhHbbcpsjdEU2+lej1ei5eSBU0GZlepycr+Qahoa7N29pFHiyUykay\nsqoIjBZ2QrTwcgH9o6IF1RAxDqJztJLCwgJqa2tx9nEWTKM8rwxVnQovLzGf+4PKtWsV6LR6QctI\n1pbVUFVcSb9+/QXTEDEeosm3koyMqwA4dhVutUt+Wh5IwNOz4xYCF2kbV69U4Orngp2rcDtd89Pz\nAIiKEk2+MyKafCupqCgHwFLAzSkFl/NxcbFGoRBTDD2IaDRaMq9VEDBQ2KGavLQ83D09cHcXbvWO\niPEQTb6V1NQ0bTM3txRwMiwtFy+xF//AkppSjFqlFbyUZOHlAgb0F8fjOyuiybcStVqNRCoRtMxf\nVVGVuLv1AUWn03M6IZ8eD/XEwdNBMB2NSkNRZiH9owYIpiFiXESTbyXW1tbodXpBU79a21tTV68R\n7P1FTJe0tFIqK5T0f2SgoDrZ52/QqG5k+PCRguqIGA/R5FuJjU3TihdVvXDl0myculBboxbs/UVM\nE71ez8mTefj29cMtQNh9GBmnr+Ln7y/mrOnEiCbfSpydXQCor6wXTMPGuQs1taLJP2hkZlZQUlzH\ngEeFHSfX6/RcP3ONmHGxguqIGBfR5FuJu3tTD6uuvFYwDRunLtTWisM1DxonT+bh0dODriHeguoU\nXM6ntqKWMWNiBNURMS6iybcSN7cmk68pqxFMw8bRhpoaFXqxJtsDQ15eDbk51QyYPkjwojAZp6/i\n4OQoro/v5Igm30oUCgUOjg6C9uTdurujUWtJPFsgmIaIaXE5vRQrOysCogIF1dFpdVw+nMaEmInI\nZGIBms6MaPJtwN3dQ9CevHeID5GTovjxxxvk5lYLpiNiOlzNqMS/f6CgS3MBss7foKqkiieeeEpQ\nHRHjI5p8G/D08KKuTLiePMDQp4fj0dOTrVuvUFcnTsJ2ZsrLGygvqyegv7C9eIAL+1Lo0TOIPn0i\nBdcSMS6iybcBPz9/qgqrBNWQmcmIfWsyWomUbduuotOJ4/OdlYyMcmRyGd36+AqqU1VcRcapq8x+\n6mmxGPwDgGjybSAgIJCK/HJ0Wp2gOjZOXZjw5mSys6rYsydTNPpOSsbVCnzCugmaNx4gcUsCNl26\n8PjjswTVETENRJNvA717h9GoaaT4erHgWj5h3RjzSgwpKcVs2XKZxkZhP1hEDItK1UhOTjUBA4Qd\nqqmvqufC/lTmPvsCNjZiXqQHAdHk20CfPn1RKBTkpmYbRC9kZCiT/zyNa9er+P77iyiVjQbRFREe\nvb4pX42QCe8AknYmIkHK3LkvCqojYjqIJt8GFAoF0dGDuXYm02CaAf0Dmf7h45SUqVi79gI1NcKl\nVRAxHGZmUszNZVTkVwimoVaqSf4hiVlPzsHJSbg6CCKmRatNXq1WExsby5kzZ5qP5ebm8vTTT9On\nTx8mTJjA8ePHbznnxIkTxMbGEhERwZw5c8jJybmlffXq1QwdOpTIyEgWLFiASmX6BjZlyiPkpGZT\nK+BSyl/jGezFjGWzUGolrF17gaoqpcG0RYThTEI+jVodQUODBdO4fDQdZa2S3//+JcE0REyPVpm8\nWq3m1VdfJSMj45bj8+bNw9XVlU2bNjFx4kReeuklCgsLASgoKGDevHlMmzaNTZs24eDgwLx585rP\n3bt3LytXrmTJkiV8++23JCcns2zZsjZcmmGIiZmAuUJB6r4Ug+o6+zjz+LJZ6OXmrFt3UTT6DoxS\n2ciJE7lEjI/EyVu4cpLVxVXY2tni7e0jmIaI6dFik8/MzGT69Onk5ubecvzkyZPk5OTw/vvv4+/v\nz/PPP09ERATx8fEAbNy4kdDQUObMmUNAQABLly4lLy+v+ZvAmjVrmD17NsOGDSMkJITFixcTHx9v\n8r15Ozt7Zj7+JOd/SEKjMmyeGVtXOx77+AnR6Ds4WTeqUKu1RE7qJ6iOrasdlRWVbN4cJ6iOiGnR\nYpNPSEggOjqaDRs23JJTJSUlhd69e6NQKJqPRUZGcv78+eb2qKio5jYLCwt69epFUlISOp2O1NRU\n+vX7300eERGBRqMhPT29VRdmSF54YR7KmgaSdp4zuLZo9B2fouI6rB2ssHOzF1Qn5OFRK0KoAAAg\nAElEQVRQeo8M4eWXX+TcubOCaomYDi02+ccff5w333zzFjMHKCkpwdXV9ZZjTk5OFBUVAVBcXHxb\nu7OzM0VFRVRXV6NSqW5pl8lk2NvbNw/3mDL+/gHMnv0MCRtPUldRZ3D9Xxt9RYVo9B0KvR6pVPg1\nEBKJhNEvjcM1wJXnnp9DTY2YKuNBoN3urIaGBszNb13+ZW5ujlrdtBVfqVTetV2pVDb/frfzTZ0/\n/ekdLMwt2PfJbvRG2Kx00+hRKPj662SSkgrF7JUdBIlEYrB7RiaXMe71WIpLi3n33bcNoiliXMza\n640UCgVVVbdu8Ver1VhYWDS3/9qw1Wo1tra2zeZ+p3ZLy5bVOJXJjLMq1NXVhc8/W8Vjj00jcdsZ\n+k9rec1M6c9JqaStTE5l727P7E+e4aevDrJndzLp6WWMHx+InZ1Fq96vNdzcJd/0s+NtmTdG/FbW\ncuqrG9DrdMjM2p4R8l73kaOnA8OeGc665Wt47LEZDBkyrM2a7c3N59hYz3N7YCqxt5vJu7m53bba\nprS0FBcXl+b2kpKS29qDg4NxcHBAoVBQWlqKn58fAFqtlsrKyubz7xdbW+MVvp4+fSqJiX/ib3//\nG/4Rvni3suiDQiFvdQyWluZMeWsyYSND2b5sG19+eZ7Ro/zo29fDoHlKzDp4+lpDxu/uZoNOq0NZ\nUYezT/utrvmt+2jglP5cOZrOK//3EhcvXGxxZ8pQGPN57iy0m8mHh4fz5Zdfolarm3vmiYmJzZOp\n4eHhnDv3v4nJhoYGLl26xPz585FIJISGhpKYmNg8OZuUlIRcLicoKKhFcVRXN6AVOJfMb/Haa2/z\n06FDxL+/idmfzMHS1uq+z5VKJSgUclQqTZvz03iGePP0yrn89NVBdu5M5uKlEiZM6E6XLop7n9wG\nJJImg2zUaumIo0XGiN/RyRIkkHnuOtYutm1+v/u9j0bOG823L33NW28tYNGiJW3WbU9kMim2tpZG\nf57bws1rMDayRYsWLWrtycuXL2fq1Kl4eXnh6enJzp07SUpKIiAggPj4eHbt2sWHH36IjY0NXbt2\n5e9//zsymQw7OzuWLl2KXq/ntddeA5pW2/zjH//A39+f2tpa3nvvPcaOHcuIESNaFFN9vZrGRh06\nnd4o/yQSKSOGj+Tbb1aRm55LzyFNm1v0+nv/A5DLZWg0WnQ6/X2d81v/ZHIzAgZ0x6OnJ8mH0kk8\nk4eTkyWOjkLeeBJkUilanb6DzgkYPn65XEpubg2F2RX0fjiszX/3pve8931k2aXpw2XTqjhGjRqL\ni4ub0Z6b25+jpm+lxn6e2+MajE2bBo1++fVfKpWycuVKSkpKmDZtGjt27GDFihXNtVC9vLz45JNP\n2LRpE48++ig1NTWsWLGi+fyYmBief/55Fi5cyNy5c4mIiOD1119vS3hGw9PTi09XfsW1s5mc2Xza\n2OHgF+nP7OXP4hnajfi4NPbuvYZGozV2WCK/ICLCjdxLuaQdumhQ3aipA3Dydmb+K7+nsVHMhdQZ\nkeg7ZnfrrlRU1JlMhsYlSxayYuW/mbZ4Ot0ifO/5eqlUgqWlOQ0NakHSCev1es7vSuLwVz/i4GDB\npIndcXG1blcNiUSC3EyGplHbIXvyxopfr9fzw84M0tLLeHzZLNwC3Vv9Xi29jwquFLDu9e94790l\nzJs3v9W67YmZmRQHB2uTep5bys1rMDamMf3bSXn77XcZ8tAwdn68jbKcMmOHg0Qioc/4vjzxzzno\nLSz5ZnUKiWcLOqQZdzYkEgljxwXg4mLF1g/iqas03H4Ljx4e9J3Yj4//soQbN64bTFfEMIgmLyBm\nZmasWvUd3l4+xL2znhID5J2/H1x8XXjin7MJGxvBvn3XiI9Pp77esCkZRG7HzEzK1Kk90SnV7Px4\nq0E/fAc/OQRzawX//Kfp54sSaRmiyQuMra0dWzbvopuXLxveXk9eWu69TzIAcoWckS+OZsp7j5BX\nWM+qVee5caPS2GE98NjaKoiN7U7OhRyuJWTc+4R2wtzCnL6TIomL/578/DyD6YoIj2jyBsDFxYVt\nW3cTFhJO/J83cD3xmrFDaiagfyCzV8zF0c+djRvSyMoStmatyL3x87PH28eOI6sPoao3XIK+8LER\nyMxkrFu3xmCaIsIjmryBsLW1I27DNoYNHcHWJZtIP5Jm7JCasXG0Ydrix+ga4s2m+HSKiw2ff0fk\nVsaM8ae2uIodS7fSqDHMqhdzKwUB0d3ZGLdenKfpRIgmb0AsLS35dvV6Jk+exg/LtpO857yxQ2pG\nJpcxacFU7L0c2bDhEpWVYpIzY+LiYsXUqT3JSc1i88KNBuvRBw/rxY3r10lLu2QQPRHhEU3ewMjl\nclYs/4Knn36O/cv3kLQz0dghNWNupWDq4seQWVmyYUOaOBlrZHz97JkxoxdFV/LZ+NZ/USuFT9bX\nNcQbM3Mzjh49JLiWiGEQTd4ISKVSli5dxosvvsSPn+03KaO3drDmkSUzUGr0xMWloVaLm6aMiY+P\nHU880ZuynFKOfXtYcD25Qo5nkBenTp0QXEvEMIgmbyQkEgmLF39okkbv4OnA1MXTKSltYOvWKx02\nd0hnwc3NhmFDfTi3M5Hcizn3PqGNOPu6cCndsDtvRYRDNHkj8mujP7fDdIzevbsHkxZM4/r1Cvbs\nzhQn4oxMvyhPvLxs2fvvXYKXmXTydiL7RhYajThc1xkQTd7I/NLoD3y6j+Prj5uMofr29WPsK+NJ\nSSnmyJFsY4fzQCOVShgfE0B1cRUn/ntMUC0bRxu0Wi3l5eWC6ogYBtHkTYCbRv/aa3/iwBcHOPjl\nj+hMZIik14gQBj42iBPHc7ly2fipGR5knJytGDLEm7NbEii4nC+YjsKmqchMZWWFYBoihkM0eRNB\nIpGwYMF7LF++nKTticQt+J6aUtOowRk9YzA9Bvdk85bLXLxYcu8TRARjwAAvXFytOLXhuGAa0p8r\nGmm14qR7Z0A0eRNj3rx57Ny5B02Zhu9eXs2lny4affhGJpcx4U+TCB7em+3br5CcXGTUeB5kJJKm\n/PMSAQt/N/485m9ldf8Fb0RMF9HkTZCBAwdx6KcTjBk5ll1/38H2D7dQV1Fr1Jik/9/encdFWe7/\nH38NIMOAIpuAopQri7Io4m6mlp4MKUXtZGrqKS21n5Xleo6ay7EeeaxTaSHl3rGvadk5mQvaZi6p\nIIsbAoKyyyqgwDBw/f4gJkdNU2f3ej4ePJT7npn782Hu+809MzfXZWvDE68+SchfuvLdrjROHDfc\n2wXSHztxPI+c7AoCB3Ux2DZqqxtD3vTD5Er3T4a8mXJzc2ft2g2sW7eF4rRiNkxbZ/KzeoWNgsem\nDaH7iB7ExmZw+FCWyV9lPEiyssr5/vtMwp4Op1MfP4NtR13V8EdX8kzeOsiQN3MREZEcOnjihrN6\n040to1AoGDB5IH3G9uOnny6xZ3e6vI7eCCor1ezcmUIrfx8emfioQbdVUVSBU9OmNG3a1KDbkYxD\nhrwFcHe/7qw+tYjN/289F06km6wehUJBn7H9GDpzGEnJl/nyy3PU1Mip4wxFCME335xH2NoRMfdp\nbO1sDbq9K5ev0KZNG4NuQzIeGfIWJCIikp9/OkZ4aE++Wvwl36/db7QRCm8l6PFgot56hpy8q2zc\nmExuboXJarFmaWmlXLp4hSdeH05TN8OfXRdnFOLXKcDg25GMQ4a8hfH09GTr1h0sW/Y2ybsT2Tpr\nC8VZRSar56HQh3lu1fPYuTRj08Ykfvg+02Ln5DRHQggOHcrGJ9CHh7o+bPDtaWo15KflEx7ew+Db\nkoxDhrwFsrGxYcqUaezd+yNNbZqy5dWNJO4+abIPQd3buPPcv56n3/gBHDueS/TaeLKy5OQj+pCR\nUUZebgW9/9oPhUJh8O3lnslGU6uhZ8/eBt+WZBwy5C1Yly5BHNj/C88+M47Y1Xs59uVRk9ViY2tD\nzzG9ef7DySjdmrN5UzI7v06R49Lfh8azeO+O3kY5iwc4f/g8LVu1Ijg41CjbkwxPhryFc3R0ZOXK\nf/Pmm/M4uOknzv5o2tEDPR5qwd/WvMCwWRFcyq9i7dqT/PTjRTlk8T24dKmc7Kxyej9rnLN4Ta2G\ntMPniRw+wijbk4zDztQFSPrxxhtzuZR1kR3/3kZT92a0CfI1WS0KGwVdBgfRoVcnjm0/yrGvfiUx\n6TKPDvClc5cW2NrKc4s7KS2t4ttvU/Hq4EW78PZG2ea5n89SWVrJ889PNsr2JOOQR5uVUCgU/Gvl\nB/Tu3Zf/Lv+aokum+zC2kb3Knn7jH2FS9BRad23Hrl1prF4dx48/XqS0VL6N80dKS6v5z+ensXVy\nZMQ/RhnlrLq+rp74nScYNPhxOnToaPDtScajEFb2J4ulpVct9uoOOzsbXF2d7quH8vIrPDl8CAUl\nefz13XFGueTuejY2ClQqe6qq1NTX6+5ahZmFJO1N4MyBZGquqWnbzoXQUC86dnQzm7N7hUJBEztb\najV1JvkgOz+/ku3bz2HnpOKZt5+jqXuzu36M2z0HfyQ5Nom9//6OXbtiCQ/vedfb1Dd9HAum1tiD\nqcmQNyP62rFzc3MY+peBKJoqGLPiWexV9nqs8vb+TMDUVteScugcSd/Fk5uSh1NTe4KDWtDGtzlu\nbiqaN1diY2Oa94RNGfKpqSV888153Hw9GLFw9D3/gr7bkK+urGbj9HUM7v8Ya9duuKdt6psMef2R\nIW9G9LljnzqVzPDIIXi0b8HT/4iiiUMTPVV5e3cbMIWZl0nak8CZH05Tc7UGAFs7G9zcVLi5OuDu\nrsLNXYX7b19KpWE/RjJFyAshOH48lwMHMunYqxPDZg2/r+frbp+DXSv/S1ZcFgd//hUfn9b3vF19\nkiGvPzLkzYi+d+wjRw7x12dH4tG+BSMWjjLKGf29vFUAIOoF5YVXKMkuoTSnhOLsYkqziynJLqay\n5Pexepya2uPupsLVVYmrqwpXVwdcXB1wdXXQyy8AY4d8XV09sfsyOHkynx6jetF/wgAU9/kq5m6e\ngzM/nOK7f33Lxx9/SlTUmPvarj7JkNcfGfJmxBA79rFjvzLmmadxfciVkYtHo3RU6uVx/8i9hvzt\nqK/VUJJbSklWMSU5xZTmlFCWW0pZXik119Ta2zk62ePq6oCrixJ3D0e8vZ3w9m6Ko+OfPys2VsjX\n1wvS0kr44YdLlJVV8fj0vxA0JEQvj/1nn4PCzMv8Z9ZmnoocyZrVMXrZtr7IkNcfGfJmxFA7dnz8\nCUaNjsS5VXNGvjUah9+mdzMEQ4T8HxFCUF1RTVleKaW5pZTll1KWW9rwSiCrWDtkrrOLAy29nBpC\nv2XT2wa/IUO+qqqW7OwKLl28wpmzxVRW1NC6SxsGvzSEFg+30Nt2/uznIltmbqCFsxd7dn9vdsMK\ny5DXHxnyZsSQO3ZSUgIjoyJw9HQiaskYVM1Uen38RsYM+dsR9YKyvFIK0vLJT8+n4HweBekFOsHv\n7emERwsVHh6OtGjhiJubiiZNbPUS8hpNPcXFVVy+fJWc7AqysisoKmx428nJ1YkOvTsRNCQEr/Ze\ner9E8s88Byd2HuPghp/45eAx2rc3v0smZcjrjwx5M2LoHfvUqWSiRkVg76IkaukYHJvr/+zNXEL+\nVm4M/stp+RRnFXG19BrQMLWeq6sKT8+GwHf3UOHkZE+tuo4adR3qxq+a3/6traNWXUf9dU9VXX09\npaU1lJRUIX7r383HldZdfPEJbI1P5zY092pu0Gvf7/QcaNQaPntxLU8+PpwPPvjYYHXcDxny+iND\n3owYY8c+e/YMI6KexNbRhhGLR+Hs2Vyvj2/OIf9HqiurKb5U1PCVXUzppSIuZ17W+cAXGsbnsXdo\ngr3KniaqJtirlDRR2WNjZwu/HUYKGwUuLV3xeKgFHr4euPt6GPTtsVu503MQ/784fow5wOHDJ2jX\nroNRa/uzZMjrsQ5TFyAZV0BAIN/+dx9jnnmarW9u4emFUXi19zZ1WSbl0NSh4Sw7sLVOQFZVVFFV\nUY29yh57lT22TWwtfkwX9bUajm07wsio0WYb8JJ+mcefGUpG1aFDR/bs/oG2rduxbe5WMuIumLok\ns6R0csDF2wXH5o7Y2dtZfMADHPvqV2qv1TJ/3kJTlyIZiQz5B5Snpyff7NxD/36P8vWS7STuSTB1\nSZKBFWZe5sSOY7z00gxat5bT+z0o9Bry+fn5vPTSS4SFhTF48GA2btyoXZednc2kSZPo2rUrERER\nHDp0SOe+hw8fZvjw4YSGhjJx4kSysrL0WZp0C05OTmzauJXnJ0wm9qM97Hl/F7XVtaYuSzIATa2G\nPf/aRbv2HZg1a46py5GMSK8hP3PmTJycnPj666+ZP38+77//Pvv37wdg2rRpeHp6smPHDiIjI5kx\nYwb5+fkA5OXlMX36dKKiotixYweurq5Mnz5dn6VJf8DOzo533lnFhx9+QuovqWx9YzOFmZdNXZak\nR6JesOe9XZTmlPLJms9wcDDuB8GSaekt5MvLy0lMTOTll1/G19eXwYMH079/f44ePcrRo0fJzs5m\nyZIltGvXjilTphAaGsr27dsB2LZtG0FBQUycOJH27duzYsUKcnJyOH78uL7Kk+7gmWfGsm/vj7go\nXdny6kaOfHGIOo2c6MPSCSH4PmY/539J4ZNP1tGlS5CpS5KMTG8h7+DggEqlYseOHWg0Gi5cuEB8\nfDwBAQEkJibSuXNnlMrf/6Q+LCyMhISG94GTkpIIDw/XeazAwEBOnjypr/KkPyEgIJAD+39hxvRX\nObL1MFvf2EJhhjyrt2S/bjvCyf/F8c47q4iIiDR1OZIJ6C3k7e3tWbhwIV988QUhISEMGzaMRx55\nhKioKAoLC/H09NS5vbu7OwUFBQBcvnz5pvUeHh7a9ZLxKJVKFixYxJ7dB3C2dWbzqxv4PjqW6ko5\nyYelObkrnl82/8zs2fPlbE8PML1eJ5+ens6gQYP429/+xvnz51m6dCm9e/emqqoKe3vdERDt7e1R\nqxv+xLy6uvq26++GuUw+cS8aazeHHrp3785PPx7mk09W8+7Kt0n5+Rx9x/cneGgINrepr3EceFON\nB3+/LL1+aKj90BeH2B+9nylTXmbOnHkWd/mnOR0L98pcatdbyB85coTt27fz888/Y29vT2BgIPn5\n+Xz88cf07t2bsrIyndur1WrtB0BKpfKmQFer1Tg7O991Hc7OhhmTxZjMpwcnFi/+B1OnvsC8efPY\n+NFGkvckMnTGUB4Keei291QqjTN+vaFYav2iXnDg0wMc2nqIBQsWsHTpUosL+OuZz7FgufQW8qdP\nn+bhhx/WOSMPCAggOjoaLy8vUlNTdW5fVFREixYNI+95eXlRWFh40/qAgIC7rqO8vIq6Osv8M2hb\nWxucnVVm14ODgzPvvbeaceMmMXvOLDa8ugH/RwIYMGkgzb10h0WwsVGgVDahpqbWYoY1uJ4l119b\nXct3q74l5ZdzvPfee0yePJWysmumLuuemOuxcDcaezA1vYW8p6cnFy9eRKPRYGfX8LAXLlygdevW\nhISEEB0djVqt1v4SiIuLo3v37gCEhIQQHx+vfayqqirOnDnDK6+8ctd11NXVW+xYF43MtYeQkG7s\n/u4A27f/H28t+QefTV1L0NAQekT1pJmH7quu+nphcSF5PUurv6KonG+Wfc2V3DK2bPmC5557xqLH\nfWlkrseCJdHbm0aDBg3Czs6Ov//972RmZvL9998THR3NhAkTCA8Pp2XLlsydO5e0tDTWrl1LcnIy\no0aNAiAqKor4+HhiYmJIS0tj3rx5+Pr60qNHD32VJ+mJjY0NY8Y8y69HTzLrtTmk/5zGZy+uZe8H\nu8lPyzd1eQ+kvJRcPn99M4oqBbu+3c+wYRGmLkkyI3odhTI9PZ1//vOfJCUl4ebmxrhx4xg/fjwA\nWVlZzJ8/n6SkJHx9fVmwYAG9evXS3vfgwYMsX76cgoICunXrxpIlS/Dx8bnrGiz57MUSR96rqChn\n/fpP+fSzaPLz8vDu0JLukWG079OJJg7Gm0BcXyxtFM2zP51h7793ExwUwqaNX+Dp6WmR+9GNrKkH\nU5NDDZsRS96xNRoNBw7EsmnzOg7sj6WJsgl+AwII/kso3h0sZ5RLSwn5Ok0dR7Ye4uj/HWbUqGdY\ntepD7YUMlrwfNbKmHkxNhrwZsZYdu7KyhI8++piNm9ZRkF9Ay46t8H80gE59/W56797cWELI56Xk\nEvvRXoouFjJ//iJeeeVVnStorGU/spYeTE2GvBmxph27tPQq1dXq387u1/PDD/vR1Gpo1ckHb/+W\neHdsiWc7T1xauWLXxHymNTDnkK+urObQlp9J2HWSzkFBvL/qI4KDQ2+6nbXtR5beg6mZz9ElWR07\nOzuGDn2CoUOf4MqVMvbt28P+/fuIP3mC+P+eABpmUnL1dsOllQuuPm64tXHHzccNt9ZuOLo4WfQ1\n3vpSXVlN0p4Ejm//FerhrbeW88ILL2mvYpOk25Fn8mbEms5e7tRDSUkx58+nkJp6nrS0VFJTUzif\ndp7sS5eo/23SVIemKtx8fvsF0MoNl1auuLR0xbWVq8Gm1DOnM/m883kkfhdPysFz1NfVM2H8JF5/\nfQ5eXl63vd+DtB+ZM3kmLz3Q3Nzc6dWrD7169dFZXlNTQ2ZmBmlpqaSnp5Kaep7zqSmcTjxFWUmp\n9naOzo64tHTF2bs5Li1dcG/jgVcHb1xbuqKw0CEJhBAUZxWTfjSV1MPnyU/Lo6VPK954fS5jx064\nY7hL0q3IkJfMilKpxM/PHz8//5vWXblSRmZmBpmZGWRkXCAj4wLpF9JIO5DK0cLDADg4OeDZzgvP\nDl54dfA26+AXQlCaW0ru2WxyzuSQcyqbktxiVI4qBg58jLGLxzF48BBsbW1NXapkwWTISxajeXMX\nQkK6EhLS9aZ1JSXFJCYmkJSUQELiSRKOx3Pi62PA78Hv5uuOx0MeuPt64OHbApUR/+RcCEFVeRXF\nl4rIS8kl52w2+efyuHrlKgqFgo6dOjH88acZMmQo/fs/Kif2kPRGhrxkFdzc3Bk4cDADBw7WLrs+\n+BOTEjh79jTJexO1k6E0dW2KWxt33H3dcfdtgYevBx4PeeDgcOvByUS9QKPWUFtTS21NLZqaWmpr\nNGhqauG6t+81ag3qqhrK8q9Qkl1MaXYJpTklXCtvGEdG5aiia7cwnvrbCHr06EVYWDjNm7sY7ocj\nPdDkB69mxJo+bDLXHtRqNRcupJOScpZz586SknKWM+fOcDEzQxv+dk3saOrWDDt7OzQ1tair1dpg\nvxuOTo60a98B/07+dOzoR4cOnejQoSMdO3Yy6JUx5v4c/BnW1IOpyTN56YFib2+Pv38A/v4BPPXU\n78sbwz8jI42KilIuXMjk6tUqnJwccXR0QqVSoVI5olKpdL53dHTEwcEBhUJB4/mSg4MDjo5OuLm5\nyUtAJZOTIS9J/B7+Xbp0tvgzSEm6nnlMXSJJkiQZhAx5SZIkKyZDXpIkyYrJkJckSbJiMuQlSZKs\nmAx5SZIkKyZDXpIkyYrJkJckSbJiMuQlSZKsmAx5SZIkKyZDXpIkyYrJkJckSbJiMuQlSZKsmAx5\nSZIkKyZDXpIkyYrJkJckSbJiMuQlSZKsmAx5SZIkKyZDXpIkyYrJkJckSbJiMuQlSZKsmAx5SZIk\nKyZDXpIkyYrJkJckSbJiMuQlSZKsmAx5SZIkK6bXkFer1bz11lv06NGDfv368d5772nXZWdnM2nS\nJLp27UpERASHDh3Sue/hw4cZPnw4oaGhTJw4kaysLH2WJkmS9EDSa8gvW7aMI0eOsG7dOlauXMm2\nbdvYtm0bANOmTcPT05MdO3YQGRnJjBkzyM/PByAvL4/p06cTFRXFjh07cHV1Zfr06fosTZIk6YFk\np68HunLlCl999RUbNmygS5cuAEyePJnExER8fX3Jzs7myy+/RKlUMmXKFI4cOcL27duZMWMG27Zt\nIygoiIkTJwKwYsUK+vbty/HjxwkPD9dXiZIkSQ8cvYV8XFwczZo1o3v37tplL774IgDR0dF07twZ\npVKpXRcWFkZCQgIASUlJOmHu4OBAYGAgJ0+elCEvSZJ0H/T2dk1WVhY+Pj7s3LmTJ554gscee4w1\na9YghKCwsBBPT0+d27u7u1NQUADA5cuXb1rv4eGhXS9JkiTdG72dyV+7do3MzEy2bdvG22+/TWFh\nIQsXLkSlUlFVVYW9vb3O7e3t7VGr1QBUV1ffdv3dsLW13AuGGmuXPZiOpdcPsgdzYS616y3kbW1t\nuXr1KqtWrcLb2xuAnJwc/vOf/9CvXz/Kysp0bq9Wq3FwcABAqVTeFOhqtRpnZ+e7rsPZWXWPHZgP\n2YPpWXr9IHuQGujtV42npydKpVIb8ABt27aloKAALy8vCgsLdW5fVFREixYtAO64XpIkSbo3egv5\nkJAQampquHjxonZZeno6Pj4+hISEcPr0aZ2z9bi4OEJDQ7X3jY+P166rqqrizJkz2vWSJEnSvdFb\nyLdt25YBAwYwd+5czp07x8GDB4mJiWHs2LGEh4fTsmVL5s6dS1paGmvXriU5OZlRo0YBEBUVRXx8\nPDExMaSlpTFv3jx8fX3p0aOHvsqTJEl6ICmEEEJfD1ZZWcmyZcuIjY1FpVLx3HPP8fLLLwMNV9/M\nnz+fpKQkfH19WbBgAb169dLe9+DBgyxfvpyCggK6devGkiVL8PHx0VdpkiRJDyS9hrwkSZJkXszj\nGh9JkiTJIGTIS5IkWTEZ8pIkSVZMhrwkSZIVkyEvSZJkxUwe8lOmTGHevHkAzJs3D39/fwICAvD3\n99d+NQ5BfL3ExEQCAwPJzc3VWb5hwwYeeeQRwsLCWLBgATU1Ndp1arWa+fPnEx4eTv/+/Vm/fr3O\nfe80sYmh61er1bzzzjsMGDCAHj16MGPGDJ1B2gxRv757uN6nn37KoEGDdJZZSjc8zKsAAAkySURB\nVA+ff/45AwcOJCwsjJkzZ1JeXm5RPajVapYuXUqfPn3o27cvCxcupLq62ux6iIyM1LlNQEAAaWlp\n2vXGPp713YOpjmkdwoS+/fZb4efnJ+bOnSuEEKKiokIUFRVpvxISEkRwcLA4cOCAzv1qa2tFRESE\n8Pf3Fzk5Odrle/bsEeHh4eLHH38UycnJ4sknnxRLly7Vrl+yZIl46qmnxNmzZ0VsbKzo1q2b2Lt3\nr3Z9ZGSkmD17tkhPTxfR0dEiNDRU5OXlGa3+d999VwwZMkQcP35cpKWlialTp4pRo0YZrH5D9NDo\n0qVLIjQ0VAwaNEhnuSX0sGvXLhESEiJiY2NFamqqGD16tHj99dctqoeVK1eKyMhIcfr0aZGcnCyG\nDRsmli9fblY91NXVieDgYHHixAmd29XV1QkhjH88G6IHUxzTNzJZyJeVlYkBAwaI0aNHa3+gN5o8\nebKYM2fOTcvXrFkjxo4de9OO/dxzz4mPPvpI+/2JEydESEiIqK6uFteuXRPBwcHi+PHjOo8zfvx4\nIYQQhw8fFl27dhXV1dXa9RMnThQffvih0erv27ev2L17t/b7y5cvCz8/P3Hx4kW912+oHq6/39ix\nY3VC3lJ6GDFihFi9erX2++PHj4uIiAhRX19vMT1ERkaKLVu2aL/fvHmziIiIEEKYz/Nw8eJFERgY\nKGpqam55e2Mez4bqwdjH9K2Y7O2ad955h6eeeor27dvfcv2RI0eIi4vjtdde01mekZHB1q1bmTNn\nDuK6v+Oqr68nOTlZZ9KS0NBQamtrOXfuHOfOnaOurk5nPJywsDCSkpKAholLbjexiaHrF0Lw7rvv\n0qdPH51lABUVFXqv3xA9NNq5cyfV1dXaYSsaWUIPlZWVnDlzhscff1y7rHv37vzvf/9DoVBYRA8A\nLi4u7N27l/Lycq5cucK+ffvo3LkzAGfPnjWLHtLS0vD29r5pmHEw/vFsiB5McUzfiklCvvGHdbt5\nXGNiYhg5ciReXl46yxcuXMgrr7yCu7u7zvLy8nJqamp0Jh+xtbXFxcWF/Px8CgsLcXFxwc7u99GV\n3d3dqampobS09I4Tmxi6foVCQe/evXWGV960aRNubm74+fnptX5D9QBQUlLCypUrWbJkyU3rLKGH\n7OxsFAoFxcXFPPvss/Tv35+5c+dSUVFhMT0AzJ49m+zsbHr27EmvXr0oLy9n4cKFQMMIr+bQQ3p6\nOnZ2drz00kv069eP8ePHawPOmMezoXow9jH9R4we8mq1msWLF7No0aJb/vaDhnFujh49yrhx43SW\nf/nll9TV1TF69Gig4YfYqLq6GoVC8YeTj/zRxCWNNd1pYhND13+j/fv3s379embNmoWdnZ3e6jd0\nDytWrCAqKuqWZ0OW0MPVq1cRQrB06VKmTp3KBx98QGpqKrNnz7aYHgAuXrxIq1at2Lx5M+vWraOm\npoYVK1aYVQ8XLlygoqKCMWPGEBMTQ/v27Zk4cSIFBQVGO54N2cONDHlM347eJg35sz788EO6dOmi\n8xLmRvv27SMgIIB27dpplxUVFfH++++zceNGgJtentrb2yOEuGUoq1QqNBrNLdcBqFQqlEolV65c\nuWl948Qmhq7/evv37+e1115jwoQJREVFAX88scrd1m/IHg4ePEhCQgLLly+/5XpL6KHxrGrKlCk8\n+uijACxfvpwRI0ZQWFhoET1UVlayYMECNm3aRFBQkLaH8ePHM3PmTLPoobGmqqoqnJycAFi8eDHx\n8fF88803jBo1yijHsyF7mDJlivZ2hj6mb8foIf/dd99RXFxM165dAaitrQVg79692jHlDx48yGOP\nPaZzv19++YWysjLGjBmj3amFEDz55JO8/PLLvPjiiyiVSoqKimjbti0AdXV1lJWV0aJFC+rr6ykr\nK6O+vh4bm4YXMEVFRTg4OODs7IyXl5fOpVuN62+cuMRQ9TfuELt27WLOnDk8++yzzJkzR3t/Ly8v\nvdRvyB4yMjLIz8+nZ8+e2p9/bW0t3bp1IyYmxiJ6iIiIANDuQ43/F0KQl5dnET306tWL6upq/Pz8\ntPcJDAykrq7ObHoAsLGx0YZjo3bt2lFQUICrq6tRjmdD9tDIGMf07Rg95Lds2YJGo9F+/+677wLw\n5ptvapclJydrhyhuNGTIEMLCwrTf5+fnM2HCBGJiYujUqRMKhYKgoCDi4uIIDw8H4OTJkzRp0gR/\nf3+EENjZ2ZGQkEC3bt0AOHHiBF26dAEaJi6JiYlBrVZrXyLFxcXpfPBjyPqh4X3BOXPmMH78eJ2d\nASAgIEAv9RuyB41Gw7Rp07Tr9+7dy5YtW9i8eTNeXl7U19ebfQ/Ozs54enqSkpJCcHAw0PDhmo2N\nDa1bt8bR0dHse6iqqgIa3i8OCAjQ/l+hUNCmTRscHBxM3gPAhAkTtNeOQ8MvqpSUFMaNG2e049mQ\nPYDxjunbuqtrcQxg7ty5OpcrZWdnCz8/P1FUVHTb+zXe7sbrm7t37y5iY2NFYmKiiIiI0Lk2eOHC\nhSIiIkIkJSWJ2NhYERYWJmJjY4UQDde7RkREiNdee02kpqaK6Oho0a1btztek6qv+jUajXj00UfF\npEmTRGFhoc6XWq02WP367OFGX3311U3XyVtCD5999pno27evOHTokDh79qwYPXq0eOWVVyyqhxde\neEFERUWJU6dOiaSkJDFy5Egxa9Yss+ph/fr1Ijw8XBw4cEBcuHBBLFq0SPTt21dcvXpVCGGa41mf\nPZjymL6e0c/k76S4uBiFQvGnJvG+8cOmYcOGkZOTw6JFi6itrWXo0KG88cYb2vXz5s3jrbfe4vnn\nn6dZs2bMnDlT+xLMxsaGNWvWMH/+fKKiovD19WX16tU6c9Yasv5Tp06Rn59Pfn4+/fv3BxrOChQK\nBZs2bSI8PNwo9d9PD3+GJfQwefJk1Go1s2fP5tq1awwePJhFixZZVA+rVq3i7bffZurUqQA8/vjj\n2g+PzaWHiRMnolarWbZsGcXFxQQHB7Nx40YcHR0B8zie76eHxMREszim5aQhkiRJVszkY9dIkiRJ\nhiNDXpIkyYrJkJckSbJiMuQlSZKsmAx5SZIkKyZDXpIkyYrJkJckSbJiMuQlSZKsmAx5SZIkKyZD\nXpIkyYrJkJckSbJi/x+vtB8y8XD3jAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "buffered_cedar_lake = cedar_lake.buffer(100)\n", "ax = cedar_lake.plot(color='red')\n", @@ -1179,11 +10903,11 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 33, "metadata": { "ExecuteTime": { - "end_time": "2017-01-21T07:58:47.361317", - "start_time": "2017-01-21T07:58:47.358315" + "end_time": "2017-02-08T09:14:39.725104", + "start_time": "2017-02-08T09:14:39.721099" }, "collapsed": false }, @@ -1203,11 +10927,11 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 34, "metadata": { "ExecuteTime": { - "end_time": "2017-01-21T07:58:47.398821", - "start_time": "2017-01-21T07:58:47.363284" + "end_time": "2017-02-08T09:14:51.817901", + "start_time": "2017-02-08T09:14:39.727610" }, "collapsed": true }, @@ -1238,15 +10962,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 35, "metadata": { "ExecuteTime": { - "end_time": "2017-01-21T07:58:47.444260", - "start_time": "2017-01-21T07:58:47.401323" + "end_time": "2017-02-08T09:14:51.827398", + "start_time": "2017-02-08T09:14:51.820385" }, "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "(474116.7938611487, 4977740.731593291, 475191.1664816106, 4979300.6081)" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "cedar_bb = buffered_cedar_poly.bounds\n", "cedar_bb" @@ -1261,11 +10996,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 36, "metadata": { + "ExecuteTime": { + "end_time": "2017-02-08T09:14:52.107841", + "start_time": "2017-02-08T09:14:51.829900" + }, "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAHyCAYAAAAOdL4mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xl8VPW9//HXZLbs+0oSkpAACSEkIYRFNtciaFyKonKt\n4IZakNpeva0/riJSi5XWymWrohaEahFQkcUiIIiAsiWEJQRI2LKRhezJZPbfH9SpKVtCQs4k+Twf\njzx85HxnJu+D8M53zvnOOSq73W5HCCFEl+SidAAhhBA3jpS8EEJ0YVLyQgjRhUnJCyFEFyYlL4QQ\nXZiUvBBCdGFS8kII0YVJyQshRBcmJS+EEF2YRukASpkyZQoBAQHMmTPnio/ZuXMnc+fO5dy5c6Sm\npvLKK68QExMDQHx8PCqViv/8wPAf//hHwsLCeOyxxxzjP/3vtm3bCA0NvWa+48ePM2vWLI4ePUpU\nVBQzZsxgyJAhbdtpIUS30y1n8hs2bGDHjh1XfczJkyd59tlnueOOO/j8889JSEhg0qRJGAwGAHbt\n2sXOnTvZtWsXu3bt4qmnniI8PJzbbruNgQMHNhvfuXMngwYN4o477mhRwdfX1/Pkk0/Su3dv1q9f\nzx133MG0adOorKxsl/0XQnQfXbbkFyxYwMsvv3zJ9pqaGubOncuAAQOu+vx//OMfpKamMm3aNKKj\no3nppZfw8vJi3bp1AAQEBDi+GhsbWb58OW+88Qaenp5oNJpm499//z0nT55k9uzZLcr+2Wef4eHh\nwaxZs4iMjOT5558nOjqaI0eOtP4PQgjRrXXZkr+SP/7xj9x7773ExsZe9XEFBQUkJyc329anTx+y\nsrIueez//d//MWzYMIYOHXrJmMViYd68eTz33HP4+Pg4tp84cYLHHnuM5ORkxo4dy8cff+wY27dv\nH7feemuz11m1ahWjRo1q0T4KIcSPulXJf//99xw4cICpU6de87EBAQGUlpY221ZSUkJVVVWzbcXF\nxWzYsOGKr7lx40bq6uqYOHGiY5vRaGTKlCmkp6ezfv16fvvb37Jo0SK+/PJL4OIvGD8/P1599VVG\njBjBww8/TGZmZmt3VwghulbJ79+/n9TUVFJTU/nrX//KunXrSE1NZeDAgezfv5/XXnuNmTNnotPp\nrvla48aN45///Cfbt2/HarXy+eefc+TIEcxmc7PHrV69mqSkJJKSki77OqtWrWLChAnNfua6desI\nCAjg+eefJzIykptvvplnn32WZcuWAdDY2Mj7779PcHAw77//PoMGDeLJJ5+85JeOEEJcS5daXTNg\nwADHbHjZsmWUlZXx0ksvAbBixQr69+/PTTfd1KLXGjlyJNOmTeP555/HZrMxZMgQ7rvvPurq6po9\n7uuvv+aRRx657GtUVlayf/9+Zs6c2Wx7fn4+ubm5pKamOrbZbDa0Wi0AarWahIQEpk2bBlxcybNr\n1y7Wrl3LlClTWpRfCCGgi5W8TqcjMjISAF9fXxoaGhzfb9myhQsXLjiK9ccZ+aZNm654KOSZZ57h\niSeeoK6uDn9/f1544QXCw8Md4+fPnyc/P5/bbrvtss//7rvviIyMJC4urtl2q9XKsGHDLin/HwUF\nBdGrV69m26KjoykpKbnWH4EQQjTTqsM1paWlTJ8+nSFDhjB69GjefPNNTCZTs8fU19czatQovvji\ni2bbd+/eTUZGBikpKUyePJmCgoJm40uXLmXUqFGkpaUxY8YMjEbjde7S5a1YsYJ169bx5Zdf8uWX\nX3Lrrbdy6623snbt2ss+fsOGDfzhD39Aq9Xi7+9PU1MTe/bsabZWPTs7m7CwsCsuizx06BADBw68\nZHtMTAxnzpwhIiKCyMhIIiMjyczM5KOPPgIgJSWF3NzcZs85depUs18wQgjREq0q+enTp2M0Gvn4\n4495++232bZtG/PmzWv2mLfeeovy8vJm20pKSpg6dSrjx49nzZo1+Pn5NTtRuWnTJhYtWsTs2bNZ\ntmwZ2dnZzJ07tw27BdOmTWv2QaewsDBHoUZGRuLh4YGHh4djpg9QUVHh+OUSHR3NypUr2bx5M2fO\nnOG///u/6dGjB6NHj3Y8/uTJk1ddpXPixInLjt9zzz00NTXxyiuvcOrUKb799lv+8Ic/EBQUBMDD\nDz/M8ePHWbBgAefOnWPevHkUFhZyzz33tOnPRAjR/bS45E+dOsWhQ4eYM2cOsbGxpKWlMX36dNav\nX+94zP79+9mzZw+BgYHNnrtq1SqSkpKYPHkysbGxzJkzh6KiIvbt2wfA8uXLmTRpEqNHj6Z///7M\nmjWL1atXt/ts/lpGjBjBV199BUBiYiKvvfYab775Jg888ABqtZp333232eMrKirw9va+4utVVlY2\nWzb5Iw8PD5YsWcLZs2e5//77efXVV/nFL37hON7eo0cPPvjgA7755hsyMjL49ttvee+99wgODm7H\nvRVCdAv2FqqtrbXv3Lmz2bZ169bZU1NT7Xa73W40Gu1jx46179q1y37LLbfYP//8c8fjnnjiCfv/\n/d//NXvuo48+an/33XftVqvVPmDAAPsPP/zgGLNYLPZ+/frZDx482NJ4QgghLqPFM3kvLy+GDx/+\n018OrFixwrFa5a9//SuJiYmXXb1SVlZ2ySw0MDCQ0tJSamtrMRqNzcbVajW+vr6cP3++1b+0hBBC\n/Nt1r6556623yM3NZc2aNeTl5fHpp586li/+p6ampkvWput0OkwmE01NTY7vLzcuhBDi+l1Xyc+d\nO5fly5fzzjvvEBsbyyOPPML06dPx9/e/7OP1ev0lhW0ymfD29naU++XG3dzcWpXL/q8rPQohhLio\n1SU/e/ZsVq5cydy5c7n99tspLi4mKyuL48ePO1azNDU18eqrr7Jx40bee+89QkJCLllxU1FRQUJC\nAn5+fuj1eioqKhyX8bVarVRXVztWm7SUSqWittaA1Wpr7W45BbXaBW9vN9kHBXX2/CD74Cx+3Ael\ntarkFyxYwMqVK/nLX/7CHXfcAUBoaCibN29u9rhHH32Uxx57jIyMDACSk5ObfeDIYDCQk5PD9OnT\nUalUJCUlceDAAdLT0wHIyspCq9USHx/f6h2yWm1YLJ3zL8WPZB+U19nzg+yDuKjFJZ+fn8/ixYt5\n5plnSE1NpaKiwjH207XmcPHEaUBAgONk6vjx4/nwww9ZsmQJt9xyCwsWLCAyMtJR6hMnTmTmzJnE\nxcURHBzMrFmzmDBhAnq9vj32UQghuq0Wl/zWrVux2WwsXryYxYsXA/8+Bn7s2LFmj/3P4+Lh4eHM\nnz+fN954g0WLFjFw4EAWLlzoGB83bhxFRUXMnDkTs9nMmDFjePHFF9uyX0IIIQCV3f4f96/r5Kqq\nGjrt2zuNxgU/Pw/ZBwV19vwg++AsftwHpXWpSw0LIYRoTkpeCCG6MCl5IYTowqTkhRCiC5OSF0KI\nLkxKXgghujApeSGE6MKk5IUQoguTkhdCiC5MSl4IIbowKXkhhOjCpOSFEKILk5IXQoguTEpeCCG6\nMCl5IYTowqTkhRCiC5OSF0KILqxVN/IWoquy2+0YDAYMhgZqa9XU1DRitdpxd3fH09MLnU6ndEQh\nrouU/HW7EXdNtGGxWADbDXr9jnB9+2C326mtraGgoIDq6irMZjN2ux1vbx8CAgIID49oc9Ha7XaK\ni4s4fjz3X1/HOHnyBEVFRZSVlf4r9+V5enoSGhpGjx49CAsLp0ePHvToEU5sbBy9e/clODj4knsb\nK6f7/j0Sl5J7vF43Ox9uzKGovKEDflbXY7fbKS3I5WzuPs6fzaG0IBejof6Kj3dRawgMjSYoog/B\nEX0Ii07EPzgKlcuVjzjabTbOnztGwcksSs4c5vy5Y5iaGgHQaHUEhYQTFBqOn38wXj5+uLp5oNe7\notFoQaXCbrdhNpkwGg001NVQW1NJbfXFr5rqSupqK7HbLv5d07t54h/ck5CeCYRG9SMsOhFPn8D2\n/UMTnUJ4kAdPjOuHRqN2inu8yky+DYrKGzhdcuViEpcy1F3gbPZGio59i6GuAr2bBz0i40i7aQx+\nQWF4+QTi7uGFi1qNChVNTQ0YGmqpLC+htOg0588cJmfvP7HbbWhdPQmISCQoKpXAqBQ8fEMBqK8q\npuDIVkqO76CxthydqwfhPeNIH3EXQWE98Q8Ox8c38Kq/IFrCarFQU1VGZXkxleXFlJ8/R/7hHRz8\nbg0Anv4RBEWl4B+RiLtPCG5egai1brioNU406xddnZS86BCG2nKO7/6YotwdaLU64pNvok/SECKi\n43G5Stl6EQBAz9j+jm1mUxMlBfkUnsnlXH4OR755D7vdhodvGDo3b6pKjqN386BP/8EkJA8nPKpP\nmwv9ctQaDf5BPfAP6tFse0NdNYVncjmbd4QzJ7/ndNb6yzxXh1qrx9XTH1ePAFy9AnD1DMTV0x83\nr0B8QuLQuXm1e2bR/cjhmutmZ/ayfTKTvwarxUze3tWc2v85eld30kfdRf+00ehd3dvtZxibGik4\ndYyzeYcxNNTSK34gvfsPRqtV/mSp3W6nsaGW2qoK6mouYDEbsVgsWC1mTEYD9bVV1NdWUVdTSX1t\nFY31NVw8Bq3CO6gn/uGJ+EckEhCRiN7dV+ndES0QE+bJK5PS5XCN6PrqLhSQtfHP1F8oYNDIcQwe\nfQ86vVu7/xy9qztx/dKI65fW7q/dViqVCg9PHzw8fQiLjL3m460WC7U1FRSfPUHhmeMUnj7AmYMb\nAfD0D8c3tA9+YX3xDeuDV2AULi7qG70LopOTkhc3xPm8H8ja+DbefoFMfO51gntEKR2pU1BrNPgF\nhOIXEEriwFEA1NVUUnj6GMXnTlJSkMeRY99ePCeh9yAoOpWg6IGE9BqEzs1b4fTCGUnJi3Z3OmsD\nR7e9T+/+6dw5/hm0Or3SkTo1Lx9/ElKGk5AyHACzyUhp0WnO5R/l9IlssjftxEWtISR2MJGJtxEU\nlYJKZvjiX6TkRbs6k/0VR7ctYeDwOxl958QbcsKzu9Pq9ETExBMRE89Nt4+noa6a3OzdHMncwd7P\nZ+Pq6U9k4m1Ep94lx/GFlLxoP8XHd3Jk63uk3jSG0WP/S5YJdhAPL1/SRoxj4PCxlBad5mjmDo5m\nfsmpA2uJSh5L76ET0OqVPwEolCElL9pF3YUCsr+eT98BQ7lZCl4RKpWK0IhehEb04qbbHyBr9yb2\n79xI0bFtJIx6nPCEm+X/Szck76VFm1nMTWSufwsf30B+dv+TcojGCbi5e3LT7eN5/NdziY7rx8F/\nzmPP6leprypWOproYPKvUbTZka3vYqgtI2PidLQ6V6XjiJ/w8vHnroem8fPJ/4Op/jzfLX+B01kb\nsNs74rMkwhlIyYs2KTi6lcKcbdx+72QCgsOVjiOuILr3ACZNf5Ok9Js5um0Jez+fjblJPsjXHUjJ\ni+tWX1XMka3vkpg2mn6pI5WOI65Bq9Nz692P8fPJ/0Nt6Ql2/eO3NFSfVzqWuMGk5MV1sdvtHN22\nBA9PH269+zGl44hWiO49gInPvoYaC99/+v9oqC5ROpK4gaTkxXUpO7WP8jNZ3HzXo/Jhp07ILzCM\nh6e8gqtex57Vr2KoK1c6krhBpORFq9ntdk7u+ZTw6ARiEwYqHUdcJw8vXx584mXULnb2fva6HKPv\noqTkRatdKDhC9fk8Bo++W9Zdd3JevgH8fNJLmBor2b/uTawWs9KRRDtrVcmXlpYyffp0hgwZwujR\no3nzzTcxmUwAHDx4kIcffpjU1FTGjh3LqlWrmj139+7dZGRkkJKSwuTJkykoKGg2vnTpUkaNGkVa\nWhozZszAaDS2cdfEjXLu8Cb8g8KJ7j1A6SiiHQQEh3Pvo7+mqjiXQ1/Pl+WVXUyrSn769OkYjUY+\n/vhj3n77bbZt28a8efOoqKhgypQpDB06lLVr1/L888/z+9//nm+//RaA4uJipk6dyvjx41mzZg1+\nfn5MnTrV8bqbNm1i0aJFzJ49m2XLlpGdnc3cuXPbd09Fu7CYmyg9tY9+qcNlFt+FRETHM/bBZynK\n3UHuzhVKxxHtqMWXNTh16hSHDh1i165d+Pv7AxdL/49//CORkZEEBQXxwgsvANCzZ09++OEH1q9f\nz+jRo1m1ahVJSUlMnjwZgDlz5jB8+HD27dtHeno6y5cvZ9KkSYwePRqAWbNm8eSTT/LSSy+h18tJ\nPWdSfiYLq9lIn6ShSkcR7axv0lDqayr59quPcfcOJir5zja9nrGxhrqKc9RXFtDUUIXF2IDVbMRF\no0Wt0aN19UTv7ourZwAevmG4eQfhopYrrbS3Fv+JBgUF8f777zsKHi6egKuvr2fUqFH069fvkufU\n1dUBcOjQIdLT0x3bXV1d6devH1lZWaSlpXH48GGef/55x3hKSgpms5nc3FySk5Ova8fEjXGh8Cje\nfkH4+gcrHUXcAAOHj6W2uoKD37yHq6c/IbGDW/xcu93GhcKjlObtoeLsQeoqCwFwcVHj7uWHq6s7\nWp0ei8WM2WSkyVBHU+O/T/a6uGjwCY3DP7wfIb0G4dcjHpVKThu2VYtL3svLi+HDhzu+t9vtrFix\ngptuuokePXrQo8e/73N54cIFNm7cyPTp0wEoKysjOLh5KQQGBlJaWkptbS1Go7HZuFqtxtfXl/Pn\nz0vJO5mqohwiouOVjiFuEJVKxehxj1JXU0Xmhj8x5IHX8e/x7//fNqsZk6EOk6EGY2MtJkMNJkMt\nTXUXOH9yNw01pXj5BBLVuz8977iX4LAofPyDUV9hhm61WqivqaS6sowLZUUUnztBwbGt5O/7DDev\nQCL63UJ0yl3oPeSSydfrut8bvfXWW+Tm5rJmzZpm241GI88//zzBwcE89NBDADQ1NaHTNb/fpk6n\nw2Qy0dTU5Pj+cuOtpVZ31G/+7ndyym63U19ZSNCgYUpHETeQi4sLYyc8x2dL57Lv89fxj0iksfo8\nhroLWEyNlzxerdbi6uFFdFwi/dOm0COqT4vP16jVGnz8g/HxDyYqrj8DbxqD3Waj6NwJcrO/Jyfz\nS/L3f0Fk/9voM+wR9O4+7b27N4RGo+rALrq66yr5uXPnsnz5ct555x1iY/9938rGxkaee+45zp07\nxyeffOI4nq7X6y8pbJPJhLe3t6PcLzfu5tb6+4F6e7f/PUQvx2KxdMjPcSbGhiqsFpMcqukGtFod\n9/3i12xZ+yHGJgOhcfF4+wbg7umNm7sXbh5euHl44+7hhVbn2q4n4VUuLkRExxMRHc+In00ge88W\n9n23geLc7+hz0yNEJ491+jtfeXm5odE4x/mFVqeYPXs2K1euZO7cudx+++2O7fX19Tz11FMUFhay\nbNkyIiMjHWMhISGUlzf/RF1FRQUJCQn4+fmh1+upqKggJiYGAKvVSnV1NUFBQa3eodpaA1ZrR8yy\nu99M3lBXAYCXT4DCSURH0Lu6c9dD0xTN4OrmwZCb7yUp/RZ2bV7F4W3vU3JiF8k/m46HX5ii2a6m\nrs6AWq3psEnn1bTq/cSCBQtYuXIlf/nLXxg7dqxju91uZ9q0aRQVFbFixYpms3uA5ORkMjMzHd8b\nDAZycnJITU1FpVKRlJTEgQMHHONZWVlotVri41t/7NdqtWGxdMSXvdXZOjub5eK7LbmMgeho7h7e\n3HHfk0x46n+xNF5gx/JfcSpzndOu6bdY7B002by2Fs/k8/PzWbx4Mc888wypqalUVFQ4xr755hv2\n7t3L4sWL8fT0dIxptVp8fHwYP348H374IUuWLOGWW25hwYIFREZGOlbcTJw4kZkzZxIXF0dwcDCz\nZs1iwoQJsnzSyVitFz8NqdZoFU4iuquImHgmTf8D3339KQe3f0Bp3vcM+NnzePg676xeaS0u+a1b\nt2Kz2Vi8eDGLFy9uNjZixAjsdjvPPvtss+3p6el89NFHhIeHM3/+fN544w0WLVrEwIEDWbhwoeNx\n48aNo6ioiJkzZ2I2mxkzZgwvvvhiG3dNtDe15uL5E4u59SfEhWgvWp0rt979GL37DWLTZ0vYsfwF\nUu78NWG95bMbl6Oy2+1d6rhDVVUDFktHvE2yM3vZPk6XdJ+LOtVWnGXHR7/i4Wdm0qNnb6XjCIHJ\n2MSmz97j5JF99Bs9mV5p9yodiZgwT16ZlI5Go8bPT/kbqDvHGh/RKejdL65Vrq+tUjiJEBfp9K7c\n/dA00kfdRc63f+PYdx/RxeatbeYca3xEp6B390Hn5s2F0kLo3/JPQgpxI6lcXBg55mHcPX34duPf\nMTfVkXTbs06/zLKjSMmLVvEK7En5+XNKxxDiEmnDx+Lq5sHXn72P2dhAyp2/lkUCyOEa0UruPqHU\n1lQqHUOIy0ocOIqMib+iLH8f+9b+HovJoHQkxUnJi1axmAy4urorHUOIK4rrl8b9k1+ipuQEu1f+\njoaq7n0PWyl50SpmYz16Nyl54dx69urHI8++iovNyHd//29KT+1XOpJipORFq9jMRrRa+ZCacH6B\nIZH81y9fp2evvuz/cg7FJ3YrHUkRUvKiVex2O3JDKNFZ6F3duWfiC/RNGkLWhrmUdMOil9U14jpI\ny4vOw0Wt5s4HnsVus3Fw0zw8/HrgHRStdKwOIzN50SouajVWa/e7zLLo3FxcXPjZz5/GPzCUA1/O\nwWSoUzpSh5GSF62i1rljNjYpHUOIVtPq9NzzXy9gMTWQtfHP2G1WpSN1CCl50SoanTtGo6w9Fp2T\nj18QGY9Mo+JcNnn7PlM6ToeQkhetotW702S49BZwQnQWPWP7kz4qg5Pfr6S2/LTScW44KXnRKjo3\nHxobapSOIUSbDL31fvwCQzm85a9d/oJmUvKiVVw9AzDU12Czdo/jmaJr0mi03HL3o1SVHKfk5PdK\nx7mhpORFq3j4hmC326muLFU6ihBt0jO2P1G9kzj5wz+69GxeSl60infwxfv3ni86pXASIdoufeTd\n1FWc40LBIaWj3DBS8qJVdK6eePr1oPjsSaWjCNFmkb36ERAcwdlDm5SOcsNIyYtWC4oeSH5uFnab\nc9yNXojrpVKpSEi5ibLTB7CajUrHuSGk5EWrhcQNoaG2Ug7ZiC6hd+JgrGYj5eeylY5yQ0jJi1bz\nD++Hq4cvJ47sVTqKEG3mGxCCp7c/lUU5Ske5IaTkRau5uKjxCoyhprJM6ShCtJlKpSI8qg/VxblK\nR7khpOTFdXHzDqSmukLpGEK0i4CQCOqripWOcUNIyYvr4uEXTnXF+S69vlh0H77+wZgMtZzO2oDV\nYlY6TruSkhfXxcOvB2ZTEw111UpHEaLNesUPJC4xnaPb3mfbh89w7vBm7PausXpMbhoiroupsQaV\nSoVao1U6ihBtptO7cs/EX3GhrIgftn3Boc0LKTiymaTbf9npbzAiM3lxXUpP7SOsZx/c3D2VjiJE\nuwkIDueuh6Yy4an/RWVpYNcn/8PZQ5s69WFJKXnRajarhYpzh+gVn6J0FCFuiIiYeP5r6mwSB47k\n8JbFHN6yCFsnvcmIHK4RrVZbfhqruYmI6ASlowhxw2i1Om6/93HCImP5+rP3MTXWknrXi53uEKXM\n5EWrVRYfQ63REtIjWukoQtxwiQNHce+jv6b8bCaZG+Zi62T3OJaSF61WVXSM0PBeqDXyRlB0D73i\nU8mY+CvKTx/g4D/f6VT3h5WSF61it9upKj5Gj6g+SkcRokP16pvCuIemUnJiF4c2L+o0Syyl5EWr\nNNaU0tRQTbiUvOiG+vQfzJgHnqHg6Dec2P2J0nFaRN5vi1a5UHAYlUolM3nRbfVLGUF9TSU7v16F\nf3g/gqJTlY50VTKTF61SfvYgIeG9cHXzUDqKEIpJH3k3Ub37c/Cf8zA31Ssd56qk5EWr1JTmER7d\nV+kYQihK5eLCz+5/Gpulidxdf1c6zlVJyYsWs5qNNNaUERAUrnQUIRTn5ePP8Nsf4Gz2P6m7UKB0\nnCtqVcmXlpYyffp0hgwZwujRo3nzzTcxmUwAFBYW8vjjj5Oamsrdd9/Nrl27mj139+7dZGRkkJKS\nwuTJkykoaP6HsnTpUkaNGkVaWhozZszAaOyat+LqzBqqSwA7fkFhSkcRwikMGHIbnj7+5O1drXSU\nK2pVyU+fPh2j0cjHH3/M22+/zbZt25g3bx4Av/zlLwkODmbNmjXcc889TJs2jfPnzwNQUlLC1KlT\nGT9+PGvWrMHPz4+pU6c6XnfTpk0sWrSI2bNns2zZMrKzs5k7d2477qZoD6amOgDcPbwVTiKEc9Bo\ntAwedTfFuTtorClVOs5ltbjkT506xaFDh5gzZw6xsbGkpaUxffp01q9fzw8//EBhYSGvv/46vXr1\nYsqUKaSkpLB69cXfbp9++ilJSUlMnjyZ2NhY5syZQ1FREfv27QNg+fLlTJo0idGjR9O/f39mzZrF\n6tWrZTbvZH680bFWp1c4iRDOI3HgKHSuHpw5uEHpKJfV4pIPCgri/fffx9/fv9n2uro6srOzSUxM\nRK//9z/+tLQ0Dh48CMChQ4dIT093jLm6utKvXz+ysrKw2WwcPnyYQYMGOcZTUlIwm83k5nbN23F1\nVlbLxUNzGq1O4SRCOA+tTk/y4Fs4d3gLFpNB6TiXaHHJe3l5MXz4cMf3drudFStWMGzYMMrLywkO\nDm72+ICAAEpLL759KSsru2Q8MDCQ0tJSamtrMRqNzcbVajW+vr6Owz3COaiUDiCEk0oecjtWcxMF\nR7cqHeUS17265q233uLYsWP8+te/xmAwoNM1n93pdDrHSdmmpqYrjjc1NTm+v9LzW0OtdkGj6Yiv\n7ld5P85S1Gq1wkmEcC5ePgHEJQ6i4PBm7HY7Go0Ktdo5Fi9e1yde586dy/Lly3nnnXeIi4tDr9dT\nU1PT7DEmkwlXV1cA9Hr9JYVtMpnw9vZ2lPvlxt3c3Fqdzdu79c+5HhZL57oSXXuoKcvHNyAMrc5V\n6ShCOJ3EgaM4+dGfKC86iZfXzWic5AJ+rU4xe/ZsVq5cydy5c7n99tsBCAkJIS8vr9njKioqCAoK\ncoyXl5dfMp6QkICfnx96vZ6KigpiYmIAsFqtVFdXO57fGrW1BqzWjrhwUOe4OFF7qinNJzQiRukY\nQjil6LgNkbUsAAAgAElEQVQkXN29yD+yk7q6R1GrNR026byaVr2fWLBgAStXruQvf/kLY8eOdWxP\nTk4mJyen2Wz8wIEDpKSkOMYzMzMdYwaDgZycHFJTU1GpVCQlJXHgwAHHeFZWFlqtlvj4+FbvkNVq\nw2LpiK/Oezuw61VfVURAsHwQSojLcVGriYrrT8GJA1gs9g6abF5bi0s+Pz+fxYsXM2XKFFJTU6mo\nqHB8DR48mLCwMH73u9+Rl5fHe++9x+HDh3nggQcAGD9+PJmZmSxZsoS8vDxefvllIiMjHStuJk6c\nyAcffMCWLVs4dOgQs2bNYsKECc1W6whlmY0NmJvq8fEPvvaDheimesYmUlp4gvp657meTYsP12zd\nuhWbzcbixYtZvHgxcHGFjUql4tixYyxcuJAZM2Ywfvx4evbsycKFCwkNDQUgPDyc+fPn88Ybb7Bo\n0SIGDhzIwoULHa89btw4ioqKmDlzJmazmTFjxvDiiy+2866Ktvjxgx4+fq0/hCZEdxEcFgV2OydO\nHGfw4MFKxwFAZe/MtyG/jKqqBiyWjnibZGf2sn2cLnGe39g30vn8vexf+wee+d0CPLx8lY4jhFMy\nm03Mn/Uk895ZwC9+MQk/P+Wv1uoca3yE07MYGwDQyyWGhbgirVaHu7sXZWXOc4kDKXnRIhaTARe1\nBk0nu1O9EB3NzcOTCxcqlY7hICUvWsRiakSnV345mBDOTqvVYTQ2KR3DQUpetIjZaJCSF6IFrFYL\nWq3zvOOVkhctYjE1SMkL0QImo9HxaX9nICUvWsRiNKB3dVc6hhBOzWazUVdbRViY83xoUEpetIjF\n1IjeiWYnQjijhroqbFYLERERSkdxkJIX12S322ioLsbVzVPpKEI4tdKiMwAkJvZXNshPSMmLayo5\nsZv6yiKSBt2sdBQhnNr5wjzcvfwID5eZvOgk6quKObrtfWL6phAe3VfpOEI4tdMnDhPeKxmVynnu\nNyElL67IUFvOnjWv4u7uzpifP610HCGcWk1VOeUlZ4hNGqF0lGak5MVlmQx1/LDmVbQuKh544re4\ne/ooHUkIp5aTtRO1Vk9UX+e4MNmPpOTFJex2Gwe/+guWpjoeeOJ3ePkEKB1JCKdmtVjI3rOViISb\n0TnZUmMpeXGJ01nrKTuTxV0P/RLfgBCl4wjh9HIP7aaxvprolLuUjnIJKXnRTFN9JSd2f0LykNuI\n7j1A6ThCOD2bzcae7V8SEjsYr8CeSse5hJS8aObYjqVoNBqG3/Gg0lGE6BROHP6B6gvn6T1kgtJR\nLktKXjhcKDxKUe4ORo15GFe5brwQ12S32fhh+5cERafiGxqndJzLkpIXANhsVo5+8x6hEbEkDhyp\ndBwhOoW8YweoLCuk99CHlI5yRVLyAoAzBzdSW3GO2+6ZjMpF/loIcS1Wi4XvNn1KYFQy/j3ilY5z\nRfKvWdDUUHXxZOvgWwkJj1E6jhCdwsE9m6mpPE+/UY8rHeWqpOQFJ39YiVrtwk1yslWIFmmsr+H7\nbz6n54AxeAdFKx3nqqTku7nGmlIKDm8mfdRduLnLVSaFaImt65aBSkPfmyYqHeWapOS7uZM/fIre\nzYPUoXcoHUWITuH44R84eWQv/W+dgs7NW+k41yQl343VVxVRmLONIaPvQauTG4IIcS2N9TVs/XIZ\nYb2H0aOvc12I7Eqk5LuxvD2rcff0YcDgW5WOIoTTs9vtbPlyKTa7iv63PaN0nBaTku+mDHUXKM7d\nQdqIsWi0OqXjCOH0ThzeQ97RffS/dQp6d1+l47SYlHw3debgejRandztSYgWaKyvYeu6pZ3qMM2P\npOS7IavFxLlDm0hKvwW9k10WVQhnY7fb2bL2b9jsLp3qMM2PpOS7oYpz2ZiNjfRPG610FCGc3qG9\n35CXs5+k25/rVIdpfiQl3w2dP/kDfoFh+Af1UDqKEE7tfGE+2zesICr5TsJ6D1M6znWRku9m7HY7\n5Wcy6RWf6lQ3GxbC2VSUFrJm6Vy8g3vRb/QTSse5blLy3UxDVRFNDVVExfVXOooQTqu6sow1f3sT\nvWcgg+9/BbWm865Ak5LvZirOHcLFRU14VB+lowjhtLZ88SGoXRny89fQunbuy31IyXczFecOERYZ\nJ59wFeIqrFYLvqF90Ht0vhOt/0lKvhux221cKDxCZGw/paMI4dTcPLwwNdUpHaNdSMl3I7XlZzA3\n1RPZS0peiKtxc/fEbKhVOka7kJLvRqqKc3FxURMaEat0FCGcmpu7p8zkTSYTGRkZ7Nu3z7Ft//79\n/PznPyc1NZX777+f77//vtlzdu/eTUZGBikpKUyePJmCgoJm40uXLmXUqFGkpaUxY8YMjEbj9cYT\nl1FdmkdgaE+0cq0aIa5Kpeo689/r2hOTycRvfvMb8vLyHNsqKyt57rnnyMjIYN26ddx555388pe/\npLS0FICSkhKmTp3K+PHjWbNmDX5+fkydOtXx/E2bNrFo0SJmz57NsmXLyM7OZu7cuW3cPfFTjVXF\nBATLB6CEuBaL2YSLWqt0jHbR6pLPz89nwoQJFBYWNtuemZmJRqPh8ccfJyIigmeeeQadTkd2djYA\nq1atIikpicmTJxMbG8ucOXMoKipyvBNYvnw5kyZNYvTo0fTv359Zs2axevVqmc23I0NdOd6+gUrH\nEMLpNTbUonX1UjpGu2h1ye/du5dhw4axcuVK7Ha7Y7uvry/V1dVs3rwZgC1bttDY2Ejfvn0ByM7O\nJj093fF4V1dX+vXrR1ZWFjabjcOHDzNo0CDHeEpKCmazmdzc3OveOdGcxdSEztVN6RhCOL3aqgrc\nvIKUjtEuNK19wiOPPHLZ7YMGDWLixIlMnz4dFxcXbDYbc+bMISoqCoCysjKCg4ObPScwMJDS0lJq\na2sxGo3NxtVqNb6+vpw/f57k5OTWxhSXYbdbcXFRKx1DCKdXWVFCRP+u0TutLvkraWhooKCggOnT\np3PzzTfz9ddfM3v2bJKTk4mJiaGpqQmdrvkJP51Oh8lkoqmpyfH95cZbQ63uqBMmtg76Oe3HbrNJ\nyQtxDQ111RgaavEOjrnu19BoVB3YRVfXbiW/ZMkSAJ577jkAEhISyM7O5qOPPmLmzJno9fpLCttk\nMuHt7e0o98uNu7m17vCCt3fHHI6wWCwd8nPak80mM3khrqX8/DkAvIOir/s1vLzc0GjarV7bpN1S\n5OTkEB8f32xbQkKCYwVOSEgI5eXlzcYrKipISEjAz88PvV5PRUUFMTEXf3tarVaqq6sJCmrdcbHa\nWgNWa0fMsjvXTN5ut2O3WXFxcY7ZhRDOqqzkLBqdG+4+Idf9GnV1BtRqTYdNOq+m3f7FBwcHN1tS\nCXDq1CkiIiIASE5OJjMz0zFmMBjIyckhNfXiJW+TkpI4cOCAYzwrKwutVnvJL45rsVptWCwd8WW/\ndhgnYrVcXKWk0ekVTiKEcysvOYd3YFSb1spbLPYOmmxeW7uV/IMPPsiOHTtYtmwZBQUFLF26lJ07\ndzJx4kQAxo8fT2ZmJkuWLCEvL4+XX36ZyMhIx4qbiRMn8sEHH7BlyxYOHTrErFmzmDBhAnq9lFJ7\nMDXWAODu0TWWhQlxo5QVn8Ur6PqPxzubNh2u+elNJ5KTk5k/fz7z5s1j3rx5xMTEsGTJEmJjL36E\nPjw8nPnz5/PGG2+waNEiBg4cyMKFCx3PHzduHEVFRcycOROz2cyYMWN48cUX2xJP/ITxXyXv5u6t\ncBIhnFdNZRlVFcXEDP0vpaO0mzaV/LFjx5p9f8stt3DLLbdc8fEjR47kn//85xXHn376aZ5++um2\nRBJXYPrXxZbcPaXkhbiSvJz9uKi1BEcPVDpKu5GzcN2EyfDjTF4O1whxOXa7nUP7txMck4ZGp/wJ\n0/YiJd9NGBtr0Ll6oHaSZV1COJuCUzlUlRcTnXKX0lHalZR8N2E21OHm3rlvYybEjWK32/l+62d4\nB0UTENm17n8sJd9N2Kxm1JqucVU9Idrb6RPZFJ09Tt/hjzZbUNIVSMl3EzabFbVaDtUI8Z8sFjPb\nN6wgMLI/wTFpSsdpd1Ly3YTdZkUln3YV4hL7v9tATVU5ibc+0+Vm8SAl3224aHRYzWalYwjhVGoq\ny9izfS0xAzPwCohUOs4NISXfTag1esxmuQGLED+1fcMKdG7e9Bn6kNJRbhgp+W5CrdFhsbTuss1C\ndGWncrPIz80kYfSTXWpd/H+Sku8m1BodllZem1+IrspsNvHN+o8IikohrPcwpePcUFLy3YRaq8ci\nh2uEAGDPti+or60i8danu+TJ1p+Sku8mNDp3bDYrZpMUvejeis+dZN+OdcQNfhBPv3Cl49xwUvLd\nhN7dBwBDQ53CSYRQjsloYOOni/EN7UPckAeUjtMhpOS7CVevQABqqsuv8Ughuq5t65fTWF9LytgX\nus2tMKXkuwl3n1AAKs4XKJxECGWcOLKXo5k7SLzlaTx8w5SO02Hkc+5dkN1up67iLOVnD1JVcpyG\nykIaqkoAqKkqUzidEB2vrqaSzV98SGjcUCISb1U6ToeSku9CGqpLKDiyhcKcbTTVV6LWaAmLiKVX\nXF/8g27B3dObnr0SlY4pRIeyWiys/8d8VGodA+74ZZdfTfOfpOQ7OZOhluITuyjO3UFl0TF0ru4k\nJN9E78RB9OjZB41Wp3REIRRjt9vZvnEFpYWnGTbh9+jcut+d0aTkOyGLycD5vD0UH/+O8rMHwW4n\nqvcAhjz4HHGJ6Wil2IUAYPfWNWTv2ULS7c/h1yNe6TiKkJLvJOx2GxVnsyk4upXS/L1YLSbCevbh\nlrsepU/SENw9ut8MRYgrsdvt7N6ymj3b1xI/4jGiBoxROpJipOSdnNVipuDIZk7t/4LG2jL8g8IZ\ndut99B0wDB+/IKXjCeF0zGYTW774gGMHdxE/4jHiBv9c6UiKkpJ3YsUndnPs2w9oqq+k74BhpAx9\njrDIuG534kiIljpfmM9Xq96lpqqc1HH/TXj8SKUjKU5K3gmZDHUc/eY9io5/R2xCGiPH/Bb/oB5K\nxxLCaVktFvZsX8ue7WvxCY5h5KNvd9nrw7eWlLyTKT21n8ObF2C3mhg74ZfEDxgmM3chrqLwTC5b\nvvgbVRUl9B46gbjBD+Ait7p0kD8JJ2E2NpKz/QMKjm4lpk8yd9z/FJ7efkrHEsJpGRrr2PHVJxzN\n3IFfWB9GPvo23kHRSsdyOlLyTqDiXDbZX8/HYmzgjvufon/aaJm9C3EFdrudnKzv+ParT7BabSTd\n/hw9k+5ApZKrtFyOlLyCbDYrx3etIH/f50TG9GPM+Cl4+wUqHUsIp2S32zl9Ips929dScu4k4fGj\n6Df6CfQevkpHc2pS8goxN9Wzf92bVBbmMPLOhxk0fBwqF5mJCPGfGuqqOXLgW3KydlJVUYJfWB+G\njJ9FUFSy0tE6BSl5BTTVV7L389cx1lfw4JP/j4iY7vlJPCFaYsvav5F/7AA9+o4g/tZp+If3k8OZ\nrSBTxw5mNjay57PXsBpreXjKK1LwQlxD+si7AHD3CSEgIlEKvpWk5DuQzWYla+OfMNZX8MDjvyUg\nuOvfekyItuoR1YcRP5tA3t7PqCw6pnScTkdKvgPlbP+A8jMHyXhkuhS8EK2QPvJuQsJjOLptCXab\nVek4nYqUfAc5nbWeMwc3cts9k4mK6690HCE6FZWLC7fc/Rg1Zac4d3iz0nE6FSn5DlB6aj852z8g\nbcQ4BgzuXnelEaK99OgZR/9BN3Nk2xKKj+9UOk6nIatrbrC6CwVkbfgTveIHMnLMw0rHEaJTu/2e\nx7GYTWRtfBuVi5qw3sOUjuT0ZCZ/A1nMTWSufwsfv0DGTXgOF1kHL0SbuKjV3Dn+GfokDSZzw58u\n3jRHXJW0zg2Us/1DDLVl3P3I82h1rkrHEaJLcFGrGfvAc0TFJpK14U801srN6a/mukveZDKRkZHB\nvn37HNtKSkp4+umnSUlJYcyYMXz11VfNnrN7924yMjJISUlh8uTJFBQUNBtfunQpo0aNIi0tjRkz\nZmA0Gq83nuKqinM5d/hrRt35sKykEaKduajVjJ3wHHpXVzLXvYXVYlY6ktO6rpI3mUz85je/IS8v\nz7HNarUyZcoU9Ho9X3zxBU888QQvvfSS4zElJSVMnTqV8ePHs2bNGvz8/Jg6darj+Zs2bWLRokXM\nnj2bZcuWkZ2dzdy5c9u4e8qw220c+eY9gntEM2DwbUrHEaJLcnP34p6Jv6K2/DQnvv9E6ThOq9Ul\nn5+fz4QJEygsLGy2ffv27ZSWlvLWW28RHR3NQw89xM0330xWVhYAq1atIikpicmTJxMbG8ucOXMo\nKipyvBNYvnw5kyZNYvTo0fTv359Zs2axevXqTjmbL83fR03ZKW6+61E5Di/EDRQSHsOw237Oqf2f\nU1VyQuk4TqnVDbR3716GDRvGypUrsdvtju379u1j6NChuLu7O7YtWLCABx98EIDs7GzS09MdY66u\nrvTr14+srCxsNhuHDx9m0KBBjvGUlBTMZjO5ubnXtWNKsdvt5O9bQ3hUXyKi5ZIFQtxo6SPvJjA0\niiPfvCsflLqMVpf8I488wm9/+1v0en2z7QUFBYSFhfHnP/+ZUaNGcd9997FlyxbHeFlZGcHBwc2e\nExgYSGlpKbW1tRiNxmbjarUaX19fzp8/39qIiqotP01VyQkGjRyndBQhugUXtZrbMh6jpjSfc0e2\nKh3H6bTbsYTGxkY+++wzamtreffdd7n33nv51a9+xdGjRwFoampCp9M1e45Op8NkMtHU1OT4/nLj\nraFWu6DRdMTX5S+SVJz7Ha7unkT3kcugCtFRekT1ISFlBMd3LcdsbFQ6DhqNCrXaOQ7VttuHodRq\nNX5+fsyaNQuAhIQE9u/fz8qVK3n99dfR6/WXFLbJZMLb29tR7pcbd3Nza1UOb+/WPf56WSyWS7bZ\n7XZKTuyiT+Jg1HKPSSE61IifTeD44R84c3ADvYc8qGgWLy83NBrn6IB2SxEUFHTJScaYmBhOnLh4\nMiQkJITy8vJm4xUVFSQkJODn54der6eiooKYmBjg4mqd6upqgoKCWpWjttaA1Wprw5601KU/o+7C\nORpry4hLHHSZxwshbiQvH38GpN/C0QNriU65C63e/dpPukHq6gyo1ZoOm3ReTbu9n0hJSeHkyZPN\nTsbm5+cTHn5xjXhycjKZmZmOMYPBQE5ODqmpqahUKpKSkjhw4IBjPCsrC61WS3x8605eWq02LJaO\n+LJf8rPLTh9Ao9XLCVchFJI+KgOruYkzBzcomsNisXfQZPPa2q3k77rrLmw2G6+99hrnzp3j73//\nO9999x0PPfQQAOPHjyczM5MlS5aQl5fHyy+/TGRkpGPFzcSJE/nggw/YsmULhw4dYtasWUyYMOGS\nE7zOrPz0fnrG9kOj1V37wUKIdvfjbP7UgbVOcWzeGbSp5H96hxZPT08+/PBDTp06RUZGBitWrOCd\nd95xzMTDw8OZP38+a9as4cEHH6Suro6FCxc6nj9u3DimTJnCzJkzeeqpp0hJSeHFF19sS7wOZW6q\np7Iol159U5SOIkS35pjNZ61XOopTUNl/enylC6iqasBi6Yi3SXZmL9vH6ZJ6AIpP7CJz/Vyefmke\nXr4BHfDzhRBXsmXt3zh+9AC3PbUEF7W2Q392TJgnr0xKR6NR4+fn0aE/+3KcY41PF3Ch4DC+gWFS\n8EI4gZSht2NsqOZ83h6loyhOSr6dVBXlEBHdV+kYQgggMCSS8Oh4zmZvVDqK4qTk24HVbKS24hxh\nkXFKRxFC/Evy4Fu5UJhDQ1WJ0lEUJSXfDn68nrVfQKjCSYQQP4pNSEOrc6Uod4fSURQlJd8ODP8q\neR+/1n1wSwhx42h1euISB1GU+y1dbH1Jq0jJtwNjQzUA7l4+CicRQvxUQvJwGqqKqT5/UukoipGS\nbwcmQy06Vw+5Xo0QTqZnbCLefkHdes28lHw7MBlqcXP3VDqGEOI/uLi4MPCmMRSf2EVTfaXScRQh\nJd8OTIZa3Dy8lI4hhLiMfqkjUXHxA4vdkZR8OzA11clMXggn5ermQXSfAZRIyYvrZTbU4uYuM3kh\nnFWvvilUl5zAYjIoHaXDScm3A1NTnRyuEcKJRcQkYLfbqCzuXPeMbg9S8u1ATrwK4dz8AkLRaHTU\nXyhQOkqHk5JvI7vNislQL4drhHBiKhcXfPyDaajufpc4kJJvI7OxAbDjKjN5IZyaX2AojVLyorVM\nhjoAOSYvhJPz8Q+msaZU6RgdTkq+jUyGWgA5XCOEk3Pz8MLUVKd0jA4nJd9GjpKXmbwQTs3V1QNz\nU0O3u1iZlHwbXSx5Fa6uyt/mSwhxbT+9N3V3ICXfRqamOnSu7rio1UpHEUJchc1mxcWl+/07lZJv\nI6vJgN7VTekYQohraKyvRefW/Q6rSsm3kcVkQKtzVTqGEOIa6msrcfX0VzpGh5OSbyOLyYBOLyUv\nhLO7UFaMu28PpWN0OCn5NrJazajVWqVjCCGuwmazUX7+HD4hsUpH6XBS8m2k1blj6oZXthOiM7lQ\nVojFbMQ3tLfSUTqclHwbaV09aGqsVzqGEOIqis+eQOWixjckTukoHU5Kvo3cvEOor7mAxWJWOooQ\n4gqKz53EJzgGtVavdJQOJyXfRp7+4djtdqovnFc6ihDiCorOnsQvLF7pGIqQkm8jn+BeqFQuFJ/L\nUzqKEOIyDA111FaV4RvWV+koipCSbyONzg2fkFgKTuUoHUUIcRmlxWcAuuXKGpCSbxdBUamcPpEt\nx+WFcEJlxafR6Nzw8A1VOooipOTbQY/4kZiaGjl9/KDSUYQQ/+HMycP490hApeqeddc997qdeQVE\n4hvam8zdm5SOIoT4CUNDHUVncgmJG6p0FMVIybeT3kMepOhMrhybF8KJ5OXsx26HkNh0paMoRkq+\nnQT3Ssc3pBfff/O50lGEEP9yNGsngVEDcPXwUzqKYqTk24lKpSJuyEMUnj5G4elcpeMI0e1dKCui\n+OxxIhNvUzqKoqTk21FI7GB8gmP4/pvPlI4iRLeXtXsTrh5+hPUepnQURV13yZtMJjIyMti3b98l\nY/X19YwaNYovvvii2fbdu3eTkZFBSkoKkydPpqCgoNn40qVLGTVqFGlpacyYMQOj0Xi98RTx42y+\n4FQORWeOKx1HiG7L0FBHTtZOolLG4dLNrxJ7XSVvMpn4zW9+Q17e5T/l+dZbb1FeXt5sW0lJCVOn\nTmX8+PGsWbMGPz8/pk6d6hjftGkTixYtYvbs2Sxbtozs7Gzmzp17PfEUFRo3GO+gKHZvWdPtbhgs\nhLPYv3MjqFyIGjBG6SiKa3XJ5+fnM2HCBAoLCy87vn//fvbs2UNgYGCz7atWrSIpKYnJkycTGxvL\nnDlzKCoqcrwTWL58OZMmTWL06NH079+fWbNmsXr16k44m3eh7/BfUHA6h/xjB5SOI0S3Y2isI+v7\nr4lOvQudm7fScRTX6pLfu3cvw4YNY+XKlZfMVE0mE6+++iozZ85Eq23+Fik7O5v09H8vY3J1daVf\nv35kZWVhs9k4fPgwgwYNcoynpKRgNpvJze18JzGDY9IIikpl+4a/Y2xqVDqOEN3K0czvsNmsxAy8\nR+koTqHVJf/II4/w29/+Fr3+0kt2/vWvfyUxMZGbbrrpkrGysjKCg4ObbQsMDKS0tJTa2lqMRmOz\ncbVaja+vL+fPd76rO6pUKpJufxaDoYGvP1sih22E6CB2m41De7cRGjcMvbuP0nGcgqa9XigvL49P\nP/2UL7/88rLjTU1N6HS6Ztt0Oh0mk4mmpibH95cbbw21uqMWDNmuOuruE8KAn03nwLo3OfjDZlKH\n/ayDcgnRfZ08uo/qCyUk3vErRXNoNKoO7KKra7eSf+WVV5g+fTr+/pe/G7per7+ksE0mE97e3o5y\nv9y4m5tbq3J4e7fu8dfLYrFc8zFhvYcSk3o33278O2GRcYRG9OqAZEJ0T1arhd1bPyMoKgW/Hspe\nO97Lyw2Npt3qtU3aJUVxcTFZWVkcP36cOXPmABdn7q+++iobN27kvffeIyQk5JIVNxUVFSQkJODn\n54der6eiooKYmBgArFYr1dXVBAUFtSpLba0Bq/Xqs+z20bKfkTBqElUluaz/x3wenfp7XN08bnAu\nIbqnrO+/pqqimBETf6N0FOrqDKjVmg6bdF5Nu5R8aGgomzdvbrbt0Ucf5bHHHiMjIwOA5ORkMjMz\nHeMGg4GcnBymT59+8Rh2UhIHDhxwnJzNyspCq9USH9+638hWqw2LpSNKvmXH2V3UWgbe9RLfrfgN\nm9a8xz0Tf4XKxTnexgnRVVRXlrF7yxqiUsY5xXXjLRY7LZ0I3mjt0jYuLi5ERkY2+1Kr1QQEBDhO\npo4fP57MzEyWLFlCXl4eL7/8MpGRkY5SnzhxIh988AFbtmzh0KFDzJo1iwkTJlz2BG9n4+4TQsrY\nF8g/lsnOzZ8qHUeILsVus7FpzRJ0bj7ED39U6ThOp00zeZVK1eKx8PBw5s+fzxtvvMGiRYsYOHAg\nCxcudIyPGzeOoqIiZs6cidlsZsyYMbz44ottiedUQnql0+/mx9m3/UM8PH0ZOPxOpSMJ0SVk/fA1\nRWeOMfSB2Wh0yh8ecTYqexdb31dV1dBhh2tmL9vH6ZL6lj/Dbid350fk7/uciJh4Jjz1vzcwnxBd\nX1VFCcvnzyCi/+30v3WK0nEAiAnz5JVJ6Wg0avz8lD8HJweHO5BKpSJ+xGN4+kdQeDqX44d+UDqS\nEJ3a1i+Xoff0J37kY0pHcVpS8h1MpVIxetJ8whNu5qtVizlz8pDSkYTolApOH+Nc/hHiR05Go3VV\nOo7TkpJXgEqlIvln0wiMSuHLFe9QdPaE0pGE6FRsVivfbvwYn5BYQuOGKB3HqUnJK8RFrSHt7v/B\nJzSOz5bN5Vz+UaUjCdFpZH2/ibLiM/S/9ZmrLgARUvKKUmv1pN/3Cj6hffhs2VxOHNmrdCQhnN6F\nssil/a0AACAASURBVCJ2bl5FdOo4/ML6KB3H6UnJK0yjc2Pwff9LaNxQ1n8yn51ff4rVeu1LJgjR\nHVksZjasXIi7dwgJI+Rka0s4x8UVujkXtZbUcb/BKzCKfTs+4Vz+Ue584Bn8g3ooHU0Ip7Jr8yoq\ny4oZPvEt1NrO/0HJjiAzeSehUrnQe8iD3PTwm9TVN7J8/gz2bF8rs3oh/uX08WwO7NxI3xGP4hMs\nF/trKSl5J+MX1odRv3iH6IEZ7N6yhhULX6GkIF/pWEIoqrqyjI2fLiSk1yB6pcnNQFpDSt4JqbV6\nEkY+xoj/+hMWu5ZP/voa2zeswGQ0KB1NiA7XZGhg7Yq/oHH1JuXOF1CppLZaQ/60nJhPcC+GT5xL\nwqhJZO/9hg/ffpFDe7/BZrUqHU2IDmE2Gfli+Z+prali0D3/D62rp9KROh0peSfn4qImdtB93Dx5\nIX6RKWxZ+yEfzf9/HMveLWUvujSr1cL6f8ynrPgcg+97Ba/AnkpH6pSk5DsJN+8gUsf+mhET/4TG\nI4SvPl3E3975H1lbL7okq9XCV6v+ytmTh0m753f49eirdKROS0q+k/ENjWPwz1/91/F6NT9s+0Lp\nSEK0K4vFzPpP5pN3dD+pd71EUFSK0pE6NVkn30n5BMdisxjpmTBA6ShCtBuzyciXf3+HwjPHSbvn\nd4T0GqR0pE5PSr6Tqq8sxFB3geg+UvKiazAZDXz+0Z8pLTpD+n3/S2BP+bvdHqTkO6nKomOoVC70\n6CnX7hCdX5Ohgc+WvcWFshIGj38N/x6tu7ezuDIp+U6qqvgYQWE90enlOtqic7tQVsT6fyygrqaK\nIQ+8jm9InNKRuhQp+U6qruL/t3fncVXV+R/HX5d74YIggmwCSiqZgAubmLtmu6EtqJOWZk3Zok2/\nlknNGc1trJ9N069GZ4w2l5lyoXLaxq3NXBJRAXdBQ0B2QRaBu53fH453Ik0FLvfce/08Hw8eyvne\nq+8vcN6ce+5Z8ugS0VXtGEK0mKIo7Nu5iW0bP8LLN5gB4xfhG3id2rFcjpS8k6qvKcPXL0HtGEK0\niMlkZPMn73B4/3a6xt9F9JDJcsGxNiIl74TMxkYM9TW079BR7ShCNNu5umr+tfoNigtPEj/qecKj\nhqodyaVJyTshs9kIgLuH7I8XzqWsKI8Nq9+g0WBg4LiFcpKTHUjJOyPFAoCbm5zLJpzHkcwdbPr4\nHbz9wxk8dhbtfIPVjnRNkJJ3QheuwifXrhHOwGI2s23TGjJ++JLwqGH0vXWa7H+3Iyl5J6TTe+Om\n1VFXe1btKEJcltlk4pNVfyY/9yAxI35Lt/hkufG2nUnJOyGNRoOntx91NZVqRxHisnZsTSP/xCH6\n3zeXoOti1Y5zTZKduk6qnX845SWFascQ4lfl5Rwg/fvP6TloohS8iqTknVSH4OspKTypdgwhLqmi\ntJDPPnyToOviiOx3j9pxrmmyu8bJmIwNlJ7Yw6msjRgba6mvq8HLu73asYSwqqwoJu2D/8XTJ4iE\n5N+jcdOqHemaJiXvBBRFoSL/AHlZX1F6Yg9mk4GQ8O5Ex92Dp5e32vGEsCovyWf9+6/i5u5N//vm\n4q5vp3aka56UvIMrz8/m2I4POVN4iIDgzgy8+V5u6H0jfh3lGGPhWI4fTOerdX+nnV8oN973Mnpv\nP7UjCaTkHZahvpqD375H4eFvCQnvzj2Tnqdbzzg5/Ew4HENjA9s2riHzx82E3jCI2Nt/h85dzsZ2\nFFLyDqgkdzdZm/8Kipnb7nuMXgnDpNyFQ7KYzax5ewFnKorpddNjdI0bJT+rDkZK3oGYjY0c+v4D\n8jK/ontUPLfe81u828tLXuG4Duz9nrLiPAZP+F/8Q+UGNo5ISt5B1JSfYu+Xr3GusoiRox8i9sZb\nZItIODSjoZGdWz8mrOcQKXgHJiXvAE4f207mxjfx8w/i3mnzCQzponYkIa5o386N1NfV0H/wg2pH\nEZchJa8iRbFwdMc/yflxPT37DuS2ex/F3UMu3CQcX2VFMT9++y8iYm/H26+T2nHEZbT4jFeDwcDo\n0aNJT0+3Ltu/fz/3338/8fHx3Hnnnaxbt67Jc3bs2MHo0aOJi4tjypQp5OfnNxn/4IMPGDZsGImJ\nicyePZvGxsaWxnN4xsZz7NmwmJwf0xh6+/2MGv+UFLxwCmaziS/XLMOjnT9RshXv8FpU8gaDgeee\ne46cnBzrsvLycqZOncqAAQPYsGEDTz/9NAsXLuS7774D4PTp00ybNo2UlBTS0tLw9/dn2rRp1udv\n3LiRZcuWsWDBAlasWEFmZiZLlixp5fQcU0PtGXaumUXl6YPcM/l5kobJlfmE89i5NY3SojziRz2H\nzsNL7TjiCppd8rm5uYwfP56CgoImy7ds2UJQUBD/8z//Q0REBKNGjeLuu+/m888/B2DdunX06dOH\nKVOmEBkZyeLFiyksLLS+Eli1ahUPPfQQw4cPp3fv3sybN4/169e73Nb8ubMl7FgzC7OhhgmPz6V7\nzzi1Iwlx1U6dOMTu7z6n56AJ+HXqoXYccRWaXfK7d+9m4MCBrFmzBkVRrMuHDRvG4sWLL3p8TU0N\nAFlZWSQlJVmXe3p6EhMTw759+7BYLGRnZ9OvXz/reFxcHEajkSNHjjQ3osNqPHeWH9Nexl0LE6bO\nISA4XO1IQly12upKvlyzlMAuvYnsd6/accRVavYbrxMmTLjk8rCwMMLCwqyfV1RU8OWXX/K73/0O\ngNLSUoKDm56KHxgYSElJCdXV1TQ2NjYZ12q1+Pn5UVxcTGys81+m1GxsZM+GRViMdYx94mV8/QPV\njiTEVbOYzXyxZhkWxY34Uc/LRcecSJscXdPY2MjTTz9NcHAwv/nNbwBoaGjAw8OjyeM8PDwwGAw0\nNDRYP7/UeHNotfa6erLlqh+pKArZW/9OTdlPjH9sNh3kujPCyWzfsp7TeUcZMG6BXJPmKuh0Gjt2\n0eXZvOTPnTvHk08+yalTp/jwww/R688fMaLX6y8qbIPBgK+vr7XcLzXu5dW8N3Z8fe3zRpDJZLrq\nx+Zl/ZuCQ99wx7gn6NQ5sg1TCWF7J47sI/37z4gaMpmAzr3UjuMU2rf3QqdzjCPUbZqitraWRx99\nlIKCAlasWEGXLv89qSckJISysrImjy8vLyc6Ohp/f3/0ej3l5eV069YNALPZTFVVFUFBQc3KUF1d\nj9l89VvZLXd1/8eZ00c49M27xA+8jZi4IW2cSQjbKi/J54u1ywiJTCIySW7+cbVqaurRanV22+i8\nHJu9nlAUhenTp1NYWMjq1auJjGy6xRobG8vevXutn9fX13Po0CHi4+PRaDT06dOHjIwM6/i+fftw\nd3cnKiqqWTnMZgsmkz0+lCtmaayrYu9nrxLaJZJhd05s1jyEUFttdSWfrnwdL98Q4u98Do3GMXY/\nOAOTSbHTxuaV2ey7tm7dOnbv3s3ChQvx8fGhvLyc8vJyzp49C0BKSgp79+4lNTWVnJwcZs2aRZcu\nXaxH3EycOJF3332XLVu2kJWVxbx58xg/frx1d4+zURSFrM1/RaOxkDzhabRax3jpJsTVqK4qZ03q\nQoxmC0l3z5bj4Z1Yq5pHo9FYT+LZtGkTiqLwxBNPNHlMUlISK1euJDw8nLfeeotFixaxbNkyEhIS\nWLp0qfVxo0aNorCwkLlz52I0Grn99tt54YUXWhNPVfkHtlByYg93P/icXElSOJXTp3L4/KO3sCha\nBo7/E16+zdtlKhyLRvn5we4uoLKyDpPJHi+TFBasSOdkUe1FI/U1ZXz3wdP07Hsjt9/3mB2yCNF6\niqKwd/tXbNu4hg4hkSQkv4hXeznUt7m6hfrwx4eS0Om0+Purf3tO2YfQBg599wEeej0jRj2gdhQh\nrtrOrR+z65tP6J54N1FDJuEmuxhdgryTYmPlp7IpOradYXfcj95TbmIsnEfp6Z8I6ppAzPCHpeBd\niJS8DVksZg5+m0polx5Exw5WO44QzaJxkzpwRfJdtaG8/V9RU57PyNGTZYURTkfn7o5iNqodQ9iY\nNJGNGBvrOLbrI/r0G0FIeDe14wjRbFqtOxYpeZcjJW8jJzL+hcXUyMCb71M7ihAtotXpMEvJuxwp\neRswGeo5ufdfxA24FR9ff7XjCNEiOp3srnFFUvI2UHjke8zGBhIG3a52FCFaTKtzx2ySknc1UvI2\nkH9gM11viKV9hwC1owjRChrApc6NFEjJt1p9TQVVxTlExw5SO4oQrWI2GdDqPK78QOFUpORbqTxv\nP6Dhuh591I4iRKuYTSY0Wne1Ywgbk5JvpfJTmQSHd8OrXXu1owjRKjXVlXh4dVA7hrAxKflWqiw6\nSufrblA7hhCtVllehE9Hubm8q5GSb4VzNZWcO1tCaMT1akcRolXMJhNnz5Ti4y8l72qk5FuhKO8Q\nAGFdeqicRIjWKS3KQ1Es+AbJ2dquRkq+FYrzDuHt25H2fnLopHBuRfnHcdO64xvcXe0owsak5Fuh\n+NQhwrpEXvmBQji4olM5+IV0R6uTo2tcjZR8CymKQvnpXLkYmXAJp08dxy80Su0Yog1IybdQcXER\nhoZzBAR3VjuKEK1SW11JzdkK/EN7qh1FtAEp+RbKyTkOQMegMJWTCNE6p0+d/1n2D5MteVckJd9C\nlZVnAPDylpOghHMrOnWcdr6BePp0VDuKaANS8i1UU1MDgIfeS+UkQrTO6VM5sj/ehUnJt5DBYECj\ncUOj0agdRYgWMxoNlJ7+CX8peZclJd9C3t4+KIpFrr8tnNqpnAOYzUaCusapHUW0ESn5FvLx8QHA\n0FivchIhWi73cAY+/mH4dJSjxFyVlHwLBQYGAXCurlrlJEK0jGKxkHtkH8GR/dWOItqQlHwLderU\nCYDa6iqVkwjRMkUFudTXVdNJSt6lScm3UEjIhZI/o3ISIVom93AG+na+chKUi5OSbyG9Xo+Xdwfq\nZEteOCGLxcLh/TsIiRyAxk2rdhzRhqTkW8HbN0C25IVTysvJprb6DF1636J2FNHGpORbwbtDILXV\nlWrHEKLZDmR8R/vACPw6yb0QXJ2UfCt0CAijsqJE7RhCNEt1ZTk5hzKI6H2bnMx3DZCSbwW/oM5U\nnSnBYjarHUWIq5ax/UvcPbzo0vtmtaMIO5CSb4WgsEgsZhNlxafUjiLEVamvqyF7z3dcF3cXOg+5\n7tK1QEq+FUK69ESr86Dg5GG1owhxVfbt2oSiKHSLv0vtKMJOpORbQavzoGN4L3KP7FM7ihBXZDQ0\nsG/nZrr0uRUPL1+14wg7aXHJGwwGRo8eTXp6unVZQUEBDz/8MPHx8SQnJ7N9+/Ymz9mxYwejR48m\nLi6OKVOmkJ+f32T8gw8+YNiwYSQmJjJ79mwaGxtbGs9uwnoOoeDkETnKRji8o9k/Ymioo3vi3WpH\nEXbUopI3GAw899xz5OTkNFk+bdo0goODSUtLY8yYMUyfPp3i4mIAioqKmDZtGikpKaSlpeHv78+0\nadOsz924cSPLli1jwYIFrFixgszMTJYsWdKKqdlHp+tvRKtz58Ceb9WOIsRlVVeV4+7pQzvfYLWj\nCDtqdsnn5uYyfvx4CgoKmizfuXMn+fn5zJ8/n+7duzN16lTi4uJYv349AGvXrqVPnz5MmTKFyMhI\nFi9eTGFhofWVwKpVq3jooYcYPnw4vXv3Zt68eaxfv97ht+bdPX3o3Gsk+3Ztxmg0qB1HiF/l6xeI\nob6GwiPfqx1F2FGzS3737t0MHDiQNWvWoCiKdXlWVha9evVCr9dblyUmJrJ//37reFJSknXM09OT\nmJgY9u3bh8ViITs7m379+lnH4+LiMBqNHDlypEUTs6fuCXfTcK6W/bs2qR1FiF/VK2EYMfFDyNz4\nJpVFx9SOI+yk2SU/YcIEZsyY0aTMAcrKyggObvoyMCAggJKS8ycLlZaWXjQeGBhISUkJ1dXVNDY2\nNhnXarX4+flZd/c4Mm//UCL63s6P32ygrvas2nGEuCSNRsOt9zxKcOh17Pvyzxgbz6kdSdiBzY6u\nqa+vx8PDo8kyDw8PDIbzuzAaGhp+dbyhocH6+a8939H1HDQB3HRs+vgdFItF7ThCXJJWp2PUb6Zh\nrK/m0HfvqR1H2IHNSl6v119UyAaDAU9PzyuOXyj3S417eTXvhA2t1g2dzh4fTU8H9/DyJfb2Zzh5\ndB8Z279qVmYh7MmvYzDD77yf/ANbKD+VrXYcl6TTadBqHeMIdZ2t/qGQkJCLjrYpLy8nKCjIOl5W\nVnbReHR0NP7+/uj1esrLy+nWrRsAZrOZqqoq6/Ovlq+vfc7iM5lMFy0L6d6PyKR72bZxDWERPQi7\n7ga7ZBGiufr0u4nDmTvJ3rKUYZP+D627/spPEletfXsvdDqb1Wur2OxXTWxsLIcOHWqyNZ6RkUFc\nXJx1fO/evdax+vp6Dh06RHx8PBqNhj59+pCRkWEd37dvH+7u7kRFNe8u8tXV9VRW1rX5R03Npe/t\n2nPQA/iH3sDnH/2V+nM1zcouhL1o3Ny49Z5HaKip4Niuj9SO43JqauqprnaM+z/brOT79+9PaGgo\nM2fOJCcnh7fffpvs7GzGjh0LQEpKCnv37iU1NZWcnBxmzZpFly5drEfcTJw4kXfffZctW7aQlZXF\nvHnzGD9+/EVv8F6J2WzBZLLHh3LJ/99NqyP+rhcwGI38e93fZf+8cFgdg8IYMPIeTuzZwNnSE2rH\ncSkmk4LZ7BjrfqtK/ueXKXVzc2PZsmWUlZWRkpLCZ599xtKlS633Qg0PD+ett94iLS2NcePGUVNT\nw9KlS63PHzVqFFOnTmXu3Lk8+uijxMXF8cILL7Qmnmq82gcSd8f/cPJYJnt++FLtOEL8qn5D7yIg\nOJyszX/FYpGrqboijfLzg91dQGVlHSaTPX6DKixYkc7JotpffcThbSs5sedTUh5+kYjI3nbIJETz\nFRfk8uHfXyZq6ENE9rtH7ThOr1uoD398KAmdTou/v7faceQCZW2p5+AHCIzoy2f/fJMzZafVjiPE\nJXXqHEnCoDs4tuOf1FU5/nkponmk5NuQm5uWhOTf4+EdwNp3Fsl154XDGnRLCnqvduT8uE7tKMLG\npOTbmLvemwHjFuDeriNrUxdyOk9OJxeOx93Dk36D76Tw8HfU15SrHUfYkJS8Hejb+TFg3EJ8Aruy\n/v1XOHksU+1IQlykb/+RaHU68g9sVTuKsCEpeTtx13vT/965BHTpy4ZVr3M0a5fakYRowkPvRY9e\n/Sg88i0udjzGNU1K3o607noSR88ktOcQvlizlKzdX6sdSYgmomIHUVdZRE15ntpRhI04xnm31xA3\nrY64O57BXe/Nlg3vYbGYiRtwq9qxhAAgvGsUWq075flZ+AZ1VTuOsAHZkleBRuNGr5seo3viGL7+\nbAX7d21WO5IQALi7exAacT1nCg6pHUXYiGzJq0Sj0RA97GEAvv5sBYBs0QuHEBQawfEjB9SOIWxE\nSl5FUvTCEQUEhbF/52YsZhNuWqkIZyffQZX9suiNhkb6Db2ryXWBhLAn7/b+KIoFQ0MNnt7+ascR\nrSQl7wAuFL1Wp2fbxo+oq6li2B0TcNNq1Y4mrkGeXuevt2JsqJWSdwFS8g5Co9HQc/AD6L392fdN\nKiWFJxn1m6do3yFA7WjiGqNxO79xochVKV2CHF3jYLrGjWLg+EWcOVPOyrde4vD+7XJiirArk7ER\nAK27p8pJhC1IyTugjuExDH3wLwRExPPVur/xr3+8QV1NldqxxDXCaDhf8jopeZcgJe+gPLx8Sbjr\nBRJHz6AgL4cP/m+GbNULuzAYGgDkvq8uQkrewYX2GMjwh95qulVfe1btWMKF1Z49g86jHToPL7Wj\nCBuQkncCTbfqj7PyzVmcPCpXshRto7qyjHYdgtSOIWxESt6JhPYYyLBJb+ITFMknK5fwzRerMJmM\nascSLqa06BQ+HbuoHUPYiJS8k9F7+9H/3j8SM+K3ZP64lX/+bS4VpYVqxxIuwmQyUnL6JH6hPdWO\nImxESt4JaTRudE8YzZCJS2gwmPnH0j+StXurvCkrWu103jEsZhMdw6PVjiJsREreifkGdWPoA68T\nFjOCLRveJ/37z9SOJJzc8YPpeLUPpENwpNpRhI3IGa9OTuuup+8tT+Hp3ZEfNn1Ee79AomMHqR1L\nOCGTycixA7vp1HOEXDvJhUjJu4geA37DuepSNqa9jY+vP126yctt0TxHs3ZSX1fNdX1vVzuKsCHZ\nXeMiNBoNfW95ko7hvfjX6r/Im7GiWSwWC3t++Irgbon4dAxXO46wISl5F+KmdSdx9IvofYL4eMUS\naqsr1Y4knMShfduoKMmnx43j1I4ibExK3sW4671JuvePGE0WPl31ZwyNDWpHEg6uob6OHzavI6zn\nEPzDotSOI2xMSt4FebUPpP+9f+RMeQkbVr9uveCUEJdy/mY1BqKHPaR2FNEGpORdlG9QN5Lu+QNF\n+Sf4ZOUS2aIXl3Ro/w8cydxB75GP49VeLmXgiqTkXVhA5170T3mZ4sI8Pl7xvzQ2nFM7knAgZcX5\nbPnkPcKjRxAePVztOKKNSMm7uI5hUdyYMo+y4gLS3n+Vhvo6tSMJB2A0NPLZP/+Pdv5h9L3lSbXj\niDYkJX8N8A+9gQFjF1BRXsL6916h/lyt2pGEyrLSv+ZsZRkJyb+X68a7OCn5a0SHkEgGjltAVWUF\n6979E/V1NWpHEioxGQ2kb/uCztHD8fGXY+JdnZT8NcQ3qBsDxi2gpvosa1IXUl1VrnYkoYLsPd9S\nX3uWyP5j1Y4i7EBK/hrjG3gdA8f/iQaDiQ///jKlp39SO5KwI0NjPbu++ZSwqOH4+IepHUfYgZT8\nNcinYziD738V93aBrEldyMljcpepa0X6ti8wNDYQNfgBtaMIO5GSv0bpvf0YMH4hHTv35tOVfyZr\n99dqRxJtrKw4n/TvP6dbwmi8fOWY+GuFTUu+uLiYJ554gsTERG6++WZWrFhhHSsoKODhhx8mPj6e\n5ORktm/f3uS5O3bsYPTo0cTFxTFlyhTy8/NtGU1cgs7dk8Qxs4joextbNrzHxrTlcnasizKZjHy1\n9m94+4fRY8Bv1I4j7MimJf/MM8/g7e3NJ598wksvvcQbb7zBli1bAHjqqacIDg4mLS2NMWPGMH36\ndIqLiwEoKipi2rRppKSkkJaWhr+/P9OmTbNlNPEr3Ny09Ln5CeLueIYjWT/yz7/NpaxYfsG6EsVi\nYWPacs6UFxF/57NodR5qRxJ2ZLOSr66uJjMzkyeffJKIiAhuvvlmhg4dyq5du9i1axcFBQXMnz+f\n7t27M3XqVOLi4li/fj0Aa9eupU+fPkyZMoXIyEgWL15MYWEh6enptoonrqBzzE0MnrgEg1nDP5b+\ngV3ffIrZbFI7lmglRVH45svVHMv+kfhRz+Eb1E3tSMLObFbynp6eeHl5kZaWhslk4sSJE+zdu5fo\n6GgyMzPp1asXev1/T7pITExk//79AGRlZZGUlNTk34qJiWHfvn22iieugm/gdQx54HW697uHnVs/\n5sO/v0xZ8Sm1Y4lW2P3tv9i/cxO9b36C0B4D1Y4jVGCzkvfw8GDOnDl89NFHxMbGMmrUKIYNG0ZK\nSgplZWUEBwc3eXxAQAAlJSUAlJaWXjQeGBhoHRf2o9W5EzVkEoMn/C/1jWZW//UPfPP5SrkcghPK\n/HEr27es44aB98vdnq5hNr39X25uLiNHjuS3v/0tx44dY8GCBQwcOJD6+no8PJruB/Tw8MBgMADQ\n0NBw2fHm0GrtdcCQxU7/jzr8Ol3PkAde5+Tez8jevZbDmTsZcutYeve7CTc3OSjL0aVv+5xt//6I\nrvF3yRutKtDpNHbsosuzWcnv3LmT9evX8/333+Ph4UFMTAzFxcX87W9/Y+DAgVRVVTV5vMFgwNPT\nEwC9Xn9RoRsMBnx9fZudw9fXq+WTaAaTyfX3V2t17lzf/z46x4zgyPbVbNnwPvt/3MrI5Ml07iY3\nl3BEisXCD5vXkv795/S4cRw3DJooN+VWQfv2Xuh0jnELbZulOHjwIF27dm2yRR4dHc3y5csJCQnh\n+PHjTR5fXl5OUND5Y3VDQkIoKyu7aDw6uvk3o66ursdstsdWtmtvyf+cp09H4m7/Hdf1vYND377D\n2ncWckOfGxl2+wR8/QPVjif+w2ho5N9pyzl+YDcxIx6he8IYtSNds2pq6tFqdXbb6Lwcm72eCA4O\nJi8vr8kW7okTJ+jcuTOxsbEcPHiwydZ6RkYGcXFxAMTGxrJ3717rWH19PYcOHbKON4fZbMFksseH\n0oqvlnPyD72BQfe/Qtwdz3DqxDHe/8vv+frzldScrVA72jWv5mwFa1IXcPJoFv3GzJKCV5nJpNhp\nY/PKbFbyI0eORKfT8Yc//IGffvqJr7/+muXLlzN58mSSkpIIDQ1l5syZ5OTk8Pbbb5Odnc3Ysecv\nkJSSksLevXtJTU0lJyeHWbNmERERQf/+/W0VT9iIRuNG55ibGPHwMiJvHMvBfTt498/Ps+mTdygp\nPKl2vGtSUX4u/1g2l5raWgbdv5hO19+odiThQDSKothskzQ3N5c//elPZGVl0bFjRx588EEmTZoE\nQH5+Pi+99BJZWVlEREQwe/ZsBgwYYH3utm3bWLRoESUlJSQkJDB//nzCw5t/GdTKyjpMJnv8BlVY\nsCKdk0XX9rXZjY3nyMv8irzML6mvqSA4rCt9k0YSFTsQD736L1Vd3ZHMHWz8OBXfoO70GzMLvbef\n2pGued1CffjjQ0nodFr8/b3VjmPbkncEUvLqsFjMlJ3M4FT2JkpPZqBz1xMVO5C+SSMJCZcTcGzN\nbDax6+tP+PHbDXSOHkGfW5+SM1kdhKOVvGO8/SucnpublpDI/oRE9qe+poxT2Vs4fmAz2enfEBzW\njZj4wfTolUT7DgFqR3V6Rfm5bP70XSpK8okaMpnIpHvlCBrxq6Tkhc15tQ+i56AJ9Bgw/j9bjeMr\nrwAAESdJREFU95v5/quP+PaL1YSEdyfsuh50Cu9OUOh1+AWEoNO5qx3ZKTTU17Fjy3r279pCh5Du\nDJn4Gh1CItWOJRyclLxoMz/fujc21FJyYg+lJzM4diiLfTs2AqDRaPD1D6ZjYCf8g0LpGBj2nz9D\naefTQbZQOV/u2enfsPu7f2EyW4gZ/jBd4+/CzU2rdjThBKTkhV24e/rQOWYEnWNGAGCor6amIp/a\nM4XUVRZSe6aA0oOZnDu7CUU5/56Kh76dtfD9A0Lws350wtNL/X2dba24IJfMH7dyNGsXZouZiD63\n0mPAb/D09lc7mnAiUvJCFR5evgR07kVA515NlptNRs6dLW5S/sUlheQezcJQX219nN7L53zhdwzG\nLyCEgKAwQsK74dcxBI2TXnZBURTOlJ0m93AGxw7spvT0T7TzDSTyxnF06X2LlLtoESl54VC0Onfa\nB3ShfUCXi8aMDbXUnS3mXFUxdVVFnKsqpqyiiLzcwzTUnb9shofei+DQ6wjp3J2QsK4OXfyKolBV\nUczpU8cpzDtG/onDnD1Tgtbdk6Dr4ki65wGCuyagkd0yohWk5IXTcPf0wc/zevxCrr9ozFBfzdmS\nXM6W5lJVksvh7D1k/PAlcL74g0K7EhjSmcCQcAKCOxMQEo5Xu/Z2y64oCvXnaqgoLaQ4P5fTecco\nPHWchnM1gAbfwC74d47nhmH9CIzoK4dDCpuRkhcuwcPLl6Cu8QR1jbcu+3nxny3J5cTxw2Slf41i\nMQPQzqcDAcHh//k4X/wdg8Lwatf+km/4KhYLJpMRo7ERk8Fw/k+jAZPRgMJ/TzcxGY0YGus5W1nK\nmbIizpSd5kxZEY3158+p0Ll74hfagy597sA/LBr/0Btw9/Rp46+QuFZJybdCeJDrv/nn3Hygexgw\n1LrEbDJSVV7ImZKfqCjOo7L0J06dOErW7q+x/Kf8tVodPr5+uHvoMRoaMRgaMRrOF3pzuOu96BjU\nBb/gCK6LGYJ/UBf8g7vgHxSBm1Z2wbiq7mH2e4V4NeSM1xaz/ZdNp9PQvr0XNTX1TnsBNGedg8Fg\n4MSJXE6ezKGqqoK8vHzq6urx9m5Hu3bt8PJqh5eXF15eFz7/7989PT3RaDRcWJU8PT1p186bjh07\nqnIIqLN+D37O+eegQadzkzNenVtbrLxu/7kGtRvOeylj55yDh4eeqKgYevfujb+/tx03FtqCc34P\nmnKFOTgGxzvkQAghhM1IyQshhAuTkhdCCBcmJS+EEC5MSl4IIVyYlLwQQrgwKXkhhHBhUvJCCOHC\npOSFEMKFSckLIYQLk5IXQggXJiUvhBAuTEpeCCFcmJS8EEK4MCl5IYRwYVLyQgjhwqTkhRDChUnJ\nCyGEC5OSF0IIFyYlL4QQLkxKXgghXJiUvBBCuDApeSGEcGFS8kII4cKk5IUQwoVJyQshhAuzackb\nDAbmzZtH//79GTJkCH/5y1+sYwUFBTz88MPEx8eTnJzM9u3bmzx3x44djB49mri4OKZMmUJ+fr4t\nowkhxDXJpiW/cOFCdu7cyXvvvcdrr73G2rVrWbt2LQBPPfUUwcHBpKWlMWbMGKZPn05xcTEARUVF\nTJs2jZSUFNLS0vD392fatGm2jCaEENckna3+obNnz/Lxxx/zwQcf0Lt3bwAeeeQRMjMziYiIoKCg\ngHXr1qHX65k6dSo7d+5k/fr1TJ8+nbVr19KnTx+mTJkCwOLFixk8eDDp6ekkJSXZKqIQQlxzbFby\nGRkZtG/fnn79+lmXPfbYYwAsX76cXr16odfrrWOJiYns378fgKysrCZl7unpSUxMDPv27ZOSF0KI\nVrDZ7pr8/HzCw8P59NNPufPOO7nllltYtmwZiqJQVlZGcHBwk8cHBARQUlICQGlp6UXjgYGB1nEh\nhBAtY7Mt+XPnzvHTTz+xdu1aXnnlFcrKypgzZw5eXl7U19fj4eHR5PEeHh4YDAYAGhoaLjveHFqt\n8x4wdCG7zEE9zp4fZA6OwlGy26zktVotdXV1vP7663Tq1AmAwsJC/vnPfzJkyBCqqqqaPN5gMODp\n6QmAXq+/qNANBgO+vr7NzuHr69XCGTgOmYP6nD0/yBzEeTb7VRMcHIxer7cWPEC3bt0oKSkhJCSE\nsrKyJo8vLy8nKCgI4IrjQgghWsZmJR8bG0tjYyN5eXnWZbm5uYSHhxMbG8vBgwebbK1nZGQQFxdn\nfe7evXutY/X19Rw6dMg6LoQQomVsVvLdunVj+PDhzJw5kyNHjrBt2zZSU1OZOHEiSUlJhIaGMnPm\nTHJycnj77bfJzs5m7NixAKSkpLB3715SU1PJyclh1qxZRERE0L9/f1vFE0KIa5JGURTFVv9YbW0t\nCxcuZPPmzXh5efHAAw/w5JNPAuePvnnppZfIysoiIiKC2bNnM2DAAOtzt23bxqJFiygpKSEhIYH5\n8+cTHh5uq2hCCHFNsmnJCyGEcCyOcYyPEEKINiElL4QQLkxKXgghXJiUvBBCuDApeSGEcGGql/zU\nqVOZNWsWALNmzSIqKoro6GiioqKsHxcuQfxzmZmZxMTEcPr06SbLP/jgA4YNG0ZiYiKzZ8+msbHR\nOmYwGHjppZdISkpi6NChvP/++02ee6Ubm7R1foPBwKuvvsrw4cPp378/06dPb3KRtrbIb+s5/Nw7\n77zDyJEjmyxzljn84x//4KabbiIxMZFnnnmG6upqp5qDwWBgwYIFDBo0iMGDBzNnzhwaGhocbg5j\nxoxp8pjo6GhycnKs4/Zen209B7XW6SYUFX3++edKz549lZkzZyqKoig1NTVKeXm59WP//v1K3759\nla1btzZ5ntFoVJKTk5WoqCilsLDQuvzf//63kpSUpHz77bdKdna2ctdddykLFiywjs+fP1+5++67\nlcOHDyubN29WEhISlI0bN1rHx4wZo7z44otKbm6usnz5ciUuLk4pKiqyW/4lS5Yot912m5Kenq7k\n5OQojz/+uDJ27Ng2y98Wc7jg1KlTSlxcnDJy5Mgmy51hDl988YUSGxurbN68WTl+/Lgybtw45bnn\nnnOqObz22mvKmDFjlIMHDyrZ2dnKqFGjlEWLFjnUHMxms9K3b19lz549TR5nNpsVRbH/+twWc1Bj\nnf4l1Uq+qqpKGT58uDJu3DjrF/SXHnnkEWXGjBkXLV+2bJkyceLEi36wH3jgAeWvf/2r9fM9e/Yo\nsbGxSkNDg3Lu3Dmlb9++Snp6epN/Z9KkSYqiKMqOHTuU+Ph4paGhwTo+ZcoU5a233rJb/sGDBytf\nffWV9fPS0lKlZ8+eSl5ens3zt9Ucfv68iRMnNil5Z5nDvffeqyxdutT6eXp6upKcnKxYLBanmcOY\nMWOU1atXWz9ftWqVkpycrCiK43wf8vLylJiYGKWxsfGSj7fn+txWc7D3On0pqu2uefXVV7n77ruJ\njIy85PjOnTvJyMjg2WefbbL85MmTfPjhh8yYMQPlZ+dxWSwWsrOzm9y0JC4uDqPRyJEjRzhy5Ahm\ns7nJ9XASExPJysoCzt+45HI3Nmnr/IqisGTJEgYNGtRkGUBNTY3N87fFHC749NNPaWhosF624gJn\nmENtbS2HDh3i1ltvtS7r168fn332GRqNxinmAODn58fGjRuprq7m7NmzbNq0iV69egFw+PBhh5hD\nTk4OnTp1uugy42D/9bkt5qDGOn0pqpT8hS/W5e7jmpqayn333UdISEiT5XPmzOHpp58mICCgyfLq\n6moaGxub3HxEq9Xi5+dHcXExZWVl+Pn5odP99+rKAQEBNDY2UllZecUbm7R1fo1Gw8CBA5tcXnnl\nypV07NiRnj172jR/W80B4MyZM7z22mvMnz//ojFnmENBQQEajYaKigomTJjA0KFDmTlzJjU1NU4z\nB4AXX3yRgoICbrzxRgYMGEB1dTVz5swBzl/h1RHmkJubi06n44knnmDIkCFMmjTJWnD2XJ/bag72\nXqd/jd1L3mAw8PLLLzN37txL/vaD89e52bVrFw8++GCT5evWrcNsNjNu3Djg/BfxgoaGBjQaza/e\nfOTXblxyIdOVbmzS1vl/acuWLbz//vs8//zz6HQ6m+Vv6zksXryYlJSUS24NOcMc6urqUBSFBQsW\n8Pjjj/Pmm29y/PhxXnzxRaeZA0BeXh5hYWGsWrWK9957j8bGRhYvXuxQczhx4gQ1NTWMHz+e1NRU\nIiMjmTJlCiUlJXZbn9tyDr/Uluv05djspiFX66233qJ3795NXsL80qZNm4iOjqZ79+7WZeXl5bzx\nxhusWLEC4KKXpx4eHiiKcslS9vLywmQyXXIMwMvLC71ez9mzZy8av3Bjk7bO/3Nbtmzh2WefZfLk\nyaSkpAC/fmOV5uZvyzls27aN/fv3s2jRokuOO8McLmxVTZ06lREjRgCwaNEi7r33XsrKypxiDrW1\ntcyePZuVK1fSp08f6xwmTZrEM8884xBzuJCpvr4eb29vAF5++WX27t3Lhg0bGDt2rF3W57acw9Sp\nU62Pa+t1+nLsXvJffvklFRUVxMfHA2A0GgHYuHGj9Zry27Zt45ZbbmnyvB9++IGqqirGjx9v/aFW\nFIW77rqLJ598ksceewy9Xk95eTndunUDwGw2U1VVRVBQEBaLhaqqKiwWC25u51/AlJeX4+npia+v\nLyEhIU0O3bow/ssbl7RV/gs/EF988QUzZsxgwoQJzJgxw/r8kJAQm+RvyzmcPHmS4uJibrzxRuvX\n32g0kpCQQGpqqlPMITk5GcD6M3Th74qiUFRU5BRzGDBgAA0NDfTs2dP6nJiYGMxms8PMAcDNzc1a\njhd0796dkpIS/P397bI+t+UcLrDHOn05di/51atXYzKZrJ8vWbIEgN///vfWZdnZ2dZLFF9w2223\nkZiYaP28uLiYyZMnk5qayg033IBGo6FPnz5kZGSQlJQEwL59+3B3dycqKgpFUdDpdOzfv5+EhAQA\n9uzZQ+/evYHzNy5JTU3FYDBYXyJlZGQ0eeOnLfPD+f2CM2bMYNKkSU1+GACio6Ntkr8t52AymXjq\nqaes4xs3bmT16tWsWrWKkJAQLBaLw8/B19eX4OBgjh49St++fYHzb665ubnRuXNn2rVr5/BzqK+v\nB87vL46Ojrb+XaPR0KVLFzw9PVWfA8DkyZOtx47D+V9UR48e5cEHH7Tb+tyWcwD7rdOX1axjcdrA\nzJkzmxyuVFBQoPTs2VMpLy+/7PMuPO6Xxzf369dP2bx5s5KZmakkJyc3OTZ4zpw5SnJyspKVlaVs\n3rxZSUxMVDZv3qwoyvnjXZOTk5Vnn31WOX78uLJ8+XIlISHhisek2iq/yWRSRowYoTz88MNKWVlZ\nkw+DwdBm+W05h1/6+OOPLzpO3hnm8O677yqDBw9Wtm/frhw+fFgZN26c8vTTTzvVHB599FElJSVF\nOXDggJKVlaXcd999yvPPP+9Qc3j//feVpKQkZevWrcqJEyeUuXPnKoMHD1bq6uoURVFnfbblHNRc\np3/O7lvyV1JRUYFGo7mqm3j/8s2mUaNGUVhYyNy5czEajdx+++288MIL1vFZs2Yxb948HnroIdq3\nb88zzzxjfQnm5ubGsmXLeOmll0hJSSEiIoKlS5c2uWdtW+Y/cOAAxcXFFBcXM3ToUOD8VoFGo2Hl\nypUkJSXZJX9r5nA1nGEOjzzyCAaDgRdffJFz585x8803M3fuXKeaw+uvv84rr7zC448/DsCtt95q\nffPYUeYwZcoUDAYDCxcupKKigr59+7JixQratWsHOMb63Jo5ZGZmOsQ6LTcNEUIIF6b6tWuEEEK0\nHSl5IYRwYVLyQgjhwqTkhRDChUnJCyGEC5OSF0IIFyYlL4QQLkxKXgghXJiUvBBCuDApeSGEcGFS\n8kII4cL+H1qR6NDKnHYMAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "from shapely.geometry import box\n", "from descartes import PolygonPatch\n", @@ -1295,11 +11045,11 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 37, "metadata": { "ExecuteTime": { - "end_time": "2017-01-21T07:58:47.489807", - "start_time": "2017-01-21T07:58:47.446762" + "end_time": "2017-02-08T09:14:52.116337", + "start_time": "2017-02-08T09:14:52.110330" }, "collapsed": true }, @@ -1322,15 +11072,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 38, "metadata": { "ExecuteTime": { - "end_time": "2017-01-21T07:58:47.544730", - "start_time": "2017-01-21T07:58:47.491808" + "end_time": "2017-02-08T09:14:52.173899", + "start_time": "2017-02-08T09:14:52.122845" }, "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "(457, 47)" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "possible_matches = mpls.iloc[possible_matches_index]\n", "possible_matches.shape" @@ -1347,15 +11108,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 39, "metadata": { "ExecuteTime": { - "end_time": "2017-01-21T07:58:47.677707", - "start_time": "2017-01-21T07:58:47.546731" + "end_time": "2017-02-08T09:14:52.301515", + "start_time": "2017-02-08T09:14:52.176901" }, "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "(208, 47)" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "precise_matches = possible_matches[possible_matches.intersects(buffered_cedar_poly)]\n", "precise_matches.shape" @@ -1370,15 +11142,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 40, "metadata": { "ExecuteTime": { - "end_time": "2017-01-21T07:58:48.784796", - "start_time": "2017-01-21T07:58:47.680209" + "end_time": "2017-02-08T09:14:53.608561", + "start_time": "2017-02-08T09:14:52.308019" }, "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVsAAAHyCAYAAABF3G3LAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xd8zdfjx/HXvTdTSEQWMqwYQci0Y8RW80fVHqVGhbZG\na1RVFS3f1qatVbRKkRS1KbGCICJECBkSMmVHkpvce39/pLltagXJvRnn+Xh4tPmscz43975z7udz\nPudIVCqVCkEQBKFESbVdAUEQhIpAhK0gCIIGiLAVBEHQABG2giAIGiDCVhAEQQNE2AqCIGiACFtB\nEAQNEGErCIKgASJsBUEQNEBH2xXQlgkTJmBmZsbSpUtfuM358+dZvnw5Dx8+xNnZmfnz51OnTh0A\nGjVqhEQi4b8P4H377bfUqFGDUaNGqdf/+7+nT5+mevXqr6zf3bt3WbhwIbdv36ZWrVrMmzePli1b\nvt1JC4KgNRWyZXvo0CHOnj370m1CQ0OZNGkSXbt2xcfHBwcHB0aPHk1WVhYAFy5c4Pz581y4cIEL\nFy4wfvx4rK2t6dy5My4uLoXWnz9/Hjc3N7p27VqkoM3IyGDcuHHUr1+fP//8k65du+Ll5UVSUlKx\nnL8gCJpXbsN27dq1zJkz55nlqampLF++nGbNmr10/127duHs7IyXlxe1a9dm1qxZVKlShYMHDwJg\nZmam/vf06VN27NjB4sWLqVy5Mjo6OoXW+/n5ERoayqJFi4pUd29vb4yMjFi4cCG2trZMnTqV2rVr\nc+vWrdd/IQRBKBXKbdi+yLfffku/fv2oV6/eS7eLioqiefPmhZY1aNCAgICAZ7ZdvXo1rVu3plWr\nVs+sy8vLY9WqVUyePBkTExP18nv37jFq1CiaN29Oz5492blzp3qdv78/np6ehY6zZ88e2rdvX6Rz\nFASh9KlQYevn58e1a9eYMmXKK7c1MzMjLi6u0LKYmBiSk5MLLXv8+DGHDh164TEPHz5Meno6w4YN\nUy/LyclhwoQJuLu78+eff/LZZ5+xfv16Dhw4AOQHvampKV988QXt2rVjyJAhXL9+/XVPVxCEUqRc\nhe3Vq1dxdnbG2dmZH374gYMHD+Ls7IyLiwtXr17lyy+/ZMGCBejp6b3yWL169eLo0aOcOXMGhUKB\nj48Pt27dIjc3t9B2e/fuxdHREUdHx+ceZ8+ePQwePLhQmQcPHsTMzIypU6dia2tLx44dmTRpEtu2\nbQPg6dOnbNq0CUtLSzZt2oSbmxvjxo17JvwFQSg7ylVvhGbNmqlbh9u2bSM+Pp5Zs2YB8Msvv9C0\naVPatGlTpGN5eHjg5eXF1KlTUSqVtGzZkv79+5Oenl5ou+PHjzN06NDnHiMpKYmrV6+yYMGCQssf\nPHhASEgIzs7O6mVKpRJdXV0AZDIZDg4OeHl5Afk9Hy5cuMD+/fuZMGFCkeovCELpUq7CVk9PD1tb\nWwCqVq1KZmam+ueTJ0/y5MkTdcAVtFCPHTv2wq/oEydO5P333yc9PZ1q1arx8ccfY21trV4fGxvL\ngwcP6Ny583P3P3fuHLa2ttjb2xdarlAoaN269TMhXMDCwoK6desWWla7dm1iYmJe9RIIglBKvfZl\nhIcPHzJu3DicnZ3x9PRk8+bN6nXR0dGMHTsWZ2dnevfuzYULFwrte/HiRfr06YOTkxNjxowhKiqq\n0Pqff/6Z9u3b4+rqyrx588jJyXnD03rWL7/8wsGDBzlw4AAHDhzA09MTT09P9u/f/9ztDx06xJIl\nS9DV1aVatWpkZ2dz+fLlQn1dAwMDqVGjxgu7c928eRMXF5dnltepU4eIiAhsbGywtbXF1taW69ev\ns337dgCcnJwICQkptE9YWFihoBcEoWx5rbBVqVRMmDABc3Nz9u/fz5dffsmGDRs4dOgQAB9++CGW\nlpbs27ePvn374uXlRWxsLJB/c2nKlCkMHDiQffv2YWpqWuim0rFjx1i/fj2LFi1i27ZtBAYGsnz5\n8jc+MS8vr0IPLNSoUUMdbLa2thgZGWFkZKRu+QIkJiaqA7527drs3r2bEydOEBERwYwZM6hZsyYd\nOnRQbx8aGvrSXg337t177vq+ffuSnZ3N/PnzCQsLw9fXlyVLlmBhYQHAkCFDuHv3LmvXruXhw4es\nWrWK6Oho+vbt+8avhyAIWqZ6DfHx8apPPvlElZmZqV7m5eWlWrhwocrPz0/l7Oysys7OVq8bM2aM\nas2aNSqVSqVauXKlauTIkep1WVlZKhcXF9WVK1dUKpVKNXz4cNXatWvV669evapq3rx5oeMVp9mz\nZ6tmz55daFnDhg1VPj4+6p+9vb1Vnp6eKldXV9XUqVNVCQkJhbZfsGCBavr06S8so1evXqrdu3c/\nd11wcLBqxIgRqmbNmqnat2+vfp0KXL9+XTVgwABVs2bNVAMGDFBdvXr1dU9REIRSRKJSvfmEj9eu\nXcPLy4sFCxYQGRnJ+fPn2bFjh3r92rVruXHjBps2bWLcuHE4OTkxdepU9fqRI0fi4eHB+PHjcXZ2\n5qefflJ/TVcoFDRr1oydO3c+099VEAShrHnjrl+enp6MGDECJycnunXrRkJCApaWloW2+Xdf1fj4\n+GfWm5ubExcXR1paGjk5OYXWy2Qyqlatqr4MIQiCUJa9cdiuWbOGH374gZCQEJYsWUJWVtYz/Vf1\n9PSQy+UAZGdnv3B9dna2+ucX7S8IglCWvXHYNmnShA4dOjB79mx279793GCUy+UYGBgAoK+v/8L1\nBSH7vPWGhoZFrtNbXBERBEEoUa/Vz/bJkycEBATQpUsX9TJ7e3tyc3OxsLDgwYMHhbZPTExU32G3\nsrIiISHhmfUODg6Ympqir69PYmKieghDhUJBSkqKev+ikEgkpKVloVAoX+e03phMJsXY2LDcl6mt\ncitKmdoqt6KU+e9ytem1wjY6OpqpU6fi6+urvr4aFBSEmZkZrq6ubN68Gblcrm6pXrt2DTc3NwCa\nN29e6OGBrKwsgoODmTZtGhKJBEdHR65du4a7uzsAAQEB6Orq0qhRo9c6IYVCSV6e5n6JFalMbZVb\nUcrUVrkVpUxte63LCI6OjjRt2pS5c+fy4MEDfH19+d///sfkyZNxd3enRo0azJ49m/v37/PTTz8R\nFBTEoEGDABg4cCDXr19n48aN3L9/nzlz5mBra6sO12HDhrF582ZOnjzJzZs3WbhwIYMHD0ZfX7/4\nz1oQBEHDXitspVIp69evp1KlSgwZMoT58+czatQoRowYgVQqZcOGDSQkJDBw4EAOHjzIunXr1E9X\nWVtbs2bNGvbt28e7775Leno669atUx+7V69eTJgwgQULFjB+/HicnJyYOXNm8Z6tIAiClrxVP9vS\nKDk5U2NfT3R0pJiaGpX7MrVVbkUpU1vlVpQy/12uNpWrIRYFQRBKKxG2giAIGiDCVhAEQQNE2AqC\nIGiACFtBEAQNEGErCIKgASJsBUEQNECErSAIggaIsBUEQdAAEbaCIAgaIMJWEARBA0TYCoIgaIAI\nW0EQBA0QYSsIgqABImwFQRA0QIStIAiCBoiwFQRB0AARtoIgCBogwlYQBEEDRNgKgiBogAhbQRAE\nDRBhKwiCoAEibAVBEDRAhK0gCIIGiLAVBEHQABG2giAIGiDCVhAEQQNE2AqCIGiACFtBEAQNEGEr\nCIKgASJsBUEQNECErSAIggaIsBUEQdAAEbaCIAgaIMJWEARBA0TYCoIgaIAIW0EQBA0QYSsIgqAB\nImwFQRA0QIStIAiCBoiwFQRB0AARtoIgCBogwracS09PIyMjQ9vVEIQKT4RtOZaamoKnZzvmzp2l\n7aoIQoUnwracUiqVTJ48nsjICJ4+fart6ghChSfCtpz67rtvOXXqBJUqVUIikWi7OoJQ4YmwLYeO\nHz/C8uVLadvWA0tLK6RSEbaCoG0ibMuZsLD7TJo0nvr1G9CyZWtUKpVo2QpCKSDCthzJyMhg1Khh\n6Ovr06NHLyQSyd9hK37NgqBt4lNYTqhUKj75ZAqRkeH06dMffX0D9TrRshUE7RNhW0788MM69u/3\noXv3npibm6uXq1QqpFLxaxYEbROfwnLg/PmzLFw4nxYtWtGgQaNC68Q1W0EoHUTYlnHR0VGMGzcS\nOzs72rVr/9xtRMtWELRPfArLsOzsbMaMGY5KpeKdd/o+N1RFy1YQSgcRtmWUSqXis8+mc+fObfr0\n6Y+hoeELtxUtW0HQPvEpLKN+/nkzv/32C126dMfKqvoLtxMtW0EoHUTYlkF+fn589tlMnJ1dadKk\n6Su3F/1sBUH7xKewjImNjWXAgAHUqFGTjh09X7m9aNkKQukgwrYMkcvljB49nOzsbPr06YdMJivS\nfiJrhbIqLi6Oo0cPo1QqtV2Vt6aj7QoIRffFF3O5fv0qo0ePpnLlyiiVqlfuIx5qEMqalJRkDh06\niLf3Hs6d8wXg2LHTODu7arlmb0d8CsuI3bt3smXLT3h6dsHW1rbI+4nLCEJZkJmZiY/PXkaOHEKT\nJvZMnz4VhSKPceM+ACA3N0/LNXx7omVbBty8eYOZMz/C0bEZTk7Or72/aNkKpZFcLuf06VN4e+/h\n2LEjPH2aibOzC3Pnfs477/TBysqKe/fusnnzRm1XtVi81qcwLi6OadOm0bJlSzp06MA333yDXC4H\n4Ouvv6ZRo0Y4ODio//vrr7+q97148SJ9+vTBycmJMWPGEBUVVejYP//8M+3bt8fV1ZV58+aRk5NT\nDKdX9j158oTRo4diZmZG587dXruVKlq2QmmiUCj466+/+OijKTRtas/Ike8RHHyLKVO8OHfuIn/8\ncZD33x+PlZUVkP/+hfJx3+G1WrbTpk2jatWq7Ny5k5SUFObOnYtMJmPWrFmEhYUxc+ZMBgwYoN6+\ncuXKAMTExDBlyhQ++ugjPDw8WLt2LVOmTOHAgQMAHDt2jPXr17N8+XLMzMyYPXs2y5cv5/PPPy/G\nUy178vLymDBhDCkpqQwfPgodnTf5IiKGWBS0S6VSERBwDW/vPezf70NcXCy2trYMHz6Cvn3706iR\nwyuPUR4aDEX+9IaFhXHz5k0uXLhAtWrVgPzwXbZsGbNmzeLBgweMHz8eMzOzZ/bds2cPjo6OjBkz\nBoClS5fStm1b/P39cXd3Z8eOHYwePZoOHToAsHDhQsaNG8esWbPQ19cvhtMsm5YsWciFC+cYNOg9\njI2N3+gYomUraEtIyB18fPbg7b2XyMgILCws6NOnL+++O4gmTZqhevX93X+1bMv+e7jIYWthYcGm\nTZvUQQv5L0R6ejoZGRnExcVRu3bt5+4bGBiIu7u7+mcDAwMaN25MQEAArq6uBAUFMXXqVPV6Jycn\ncnNzCQkJoXnz5m9wWmXfgQM+rF27io4dPbGzq/XGx1GpxDVbQXMiIyP44499eHvv4c6dYExMTOjR\noxdLlnxD69Zt0NXVwcBAl+zsXHWQvkyFDNsqVarQtm1b9c8qlYpffvmFNm3aEBYWhkQiYcOGDZw9\ne5aqVasyduxY+vfvD0B8fDyWlpaFjmdubk5cXBxpaWnk5OQUWi+TyahatSqxsbEVMmzv3Alm6tRJ\nNGrUGFdX91fv8BKiZSuUtLi4OA4c8Mbbey/XrvljaGhI167dmDFjFu3bd3irb6eXL/sBFKmbY2n3\nxr0Rli1bRkhICHv37uXWrVtIpVLq1avHyJEjuXLlCvPnz6dy5cp06dKF7Oxs9PT0Cu2vp6eHXC4n\nOztb/fPz1r8umUxzrbiCsoqzzNTUFMaMGUqVKsb06NHzmWMXTN74OpM46ujI0NF5uzqWxLmKMrVb\n7tuUmZqawsGDB9i3L78vrEwmo0OHjqxZs45u3bpTqVKl5+5X8IdfIpHwoi9cqampfPzxR5w8eVy9\nLCcn663ew5r+fT7PG4Xt8uXL2bFjBytXrsTe3h57e3s8PT3V1xUbNGhAREQEv/32G126dEFfX/+Z\n4JTL5RgbG6tD9nnrXzaS1YsYG7/+Pm+ruMpUKpWMHPkecXFxjBs3DhOTyi/cVl9ft0jHlEjA0FAP\nU1OjYqljWX59S3uZ2iq3qGU+ffqUgwcP8ttvv3HkyBFyc3Np164d//vf/+jduzempqZFLlNf/9no\n+fHHH1m1ahUJCQmFlm/evJn+/d8p8rFLq9cO20WLFrF7926WL19Oly5d1Mv/ewOnbt26XL58GQAr\nK6tnXsDExEQcHBwwNTVFX1+fxMRE6tSpA+R3D0lJScHCwuK1TygtLQuFQjOP9slkUoyNDYutzG+/\nXcLhw4cZOPBdDA0rk5X1bMteKpWgr69LTk5ukb5aKZVK5PI8kpMz36puxX2uokztl1uUMgv6wu7b\nt4fDhw8V6gvbu3cfdRctgOzs3FeWKZFI0NfXIScnD5VKRVBQEJ99Notbt4IKXcOVSqX8+utuunfv\nCVBs719teq2wXbt2Lbt372bFihV07dpVvXz16tUEBASwdetW9bI7d+6ow7N58+Zcv35dvS4rK4vg\n4GCmTZuGRCLB0dGRa9euqW+iBQQEoKurS6NGhad4KQqFQklenmafoy6OMo8fP8K33y6hbVsPateu\n+8ogVSpVRX5cV6Wi2F6Tsvr6loUytVXuf8tUKBT4+V3A23sPhw4dIDk5mQYNGvLhh1Po27cftWrV\nVm/7utdSpdL8z//MmbM4ePAAWVlZhdbLZDI+/XQun3wyCyi+921pUOSwffDgARs2bGDixIk4OzuT\nmJioXtepUyd++ukntm7dSpcuXTh37hwHDhxgx44dAAwcOJAtW7awceNGOnXqxNq1a7G1tVWH67Bh\nw1iwYAH29vZYWlqycOFCBg8eXGG6fYWF3WfSpPHUr9+AVq3aFOuxVSoxxKLwagV9YX189vLHH97q\nvrDDhg0vcl/YV/H23suyZd8SE/NYvUwqlaoHmenevRcbNmxS988vb4octqdOnUKpVLJhwwY2bNgA\n/HOn+86dO6xevZpVq1axatUqrK2t+e6772jWrBkA1tbWrFmzhsWLF7N+/XpcXFxYt26d+ti9evXi\n0aNHLFiwgNzcXLp3787MmTOL+VRLp4yMDEaNGoq+vj49evQq9p4DojeC8DK3b99m69Zt7Nu3l4iI\ncCwsLHjnnT7069cfZ2eXt37vREREMGvWJ1y7dg2FQgGAiYkJbdq049w5XzIyMqhTpx5bt/5K48aN\ni+OUSi2Jqiid3cqQ5ORMjX310NGRYmpq9MZlqlQqPvhgDMeOHWbYsJGYmZm/ch+pVIKhoR5ZWfIi\nfYXbuHEDEyZ8yKxZc167fv/2tucqyiw95T58GMkff+zDx2cvt2/fwtjYmB49etGvXz9atWrzhk8q\n/kOhULBkySJ27fqNjIwMAHR0dGjbth2rVq1mxoxPOHXqFDo6Osyf/xWTJ3sVx2m9VMHrq01iIBot\nWrduNQcO+NC374AiBe2bEC1bAfL7uhf0hb169QoGBoZ07dqVzz77lDZtPNDV1Xv1QV7h1KkTLFz4\nJZGREepldnZ2fPXVIgYM+D/OnTtHu3ZtyMjIwNXVlZ0792FqWu3FByxnRNhqia/vab7+egEtWrSi\nQYOGJVaOeIKs4kpNTVGPC3v+/FmkUikdOnRk1aq1dO3ajSpVKquf5nrThwYSExOYMWM658+fIy8v\nvzeCkZERQ4YM4ZtvlqGnp4dSqWTqVC+2b9+Gjo4OP/zwA4MHjyhXN7+KQoStFkRFPeSDD0ZTq1Zt\n2rVrX6JliZZtxfL06VOOHz+Ct/de/vrrBLm5ubRs2ZrFi5fSs2evYmlJKhQK1q1bzebNm0hJSQHy\n/6C7ubmzfv0GGjb8p/EQFhZG797592Rq1arNn38eo2nTBm/dlassEmGrYVlZWYwePQyQ0KtXHw20\nOsVMDeWdXC7H1/cvvL33cuRIfl/Y5s2d+OyzOfTu3Yfq1WsUSzlXr/ozd+5n3Lt3T90ntnr16sye\nPYexY99/ZvuNG3/is88+RaFQMmHCh3z99Tdv/SRjWSbCVoNUKhWzZn3M3bt3GDp0xBs9IfcmZYqW\nbfmjVCrVfWH//HM/ycnJ1K/fgMmTP6Rv337Url2nWMrJyMhg9uxZHD9+TD3GtIGBAb1792bVqjXP\n7aalVCoZPnwYhw8fokoVY37/3eetx/goD0TYatCWLRv5/fff6NWrN5aWVq/eoRjkh23FbU2UJyqV\nihs3ruPtvZf9+72JjY3BxsaGoUOH07dvPxo1cii2P6zbt29n9eoVJCTEA/lPfjVt2pSVK1fi7t7y\nhfvFxMTQuXMnHj16hJOTMwcOHMPAwKBY6lTWibDVkMuXL/H555/h4uJK48ZNNVauaNmWfffu3cXb\new8+PnsJDw/D3Nxc3RfWxcW12H6/d+/e5dNPZ3DzZqD6QYNq1arh5TWVGTNe3e/93LlzDBw4gJyc\nHCZPnsbChV8XS73KCxG2GhAbG8PYscOpWdOaDh08NV6+uGZb9kRFPcTHZx8+PnvUfWG7d+/JokWL\nad367fvCFsjIyGDGjJkcPnxIPQKfrq4u3bp1Z+3adUUen2TDhvXMmTMbmUzG9u276NGjV7HUrzwR\nYVvCcnNzGTt2BHJ5Du++OwSZTKbR8pVK0bItK+Li4ti27Rf27t2Dv/9lDAwM6dKlCx999AkdO3Yq\n1sfXN2/exPr1a0lMzB8gSiKRUL9+fb75ZlmhAaaKYubM6WzcuBETk6ocPfoX9erZF1s9yxMRtiXs\n668XEBBwnSFDhmFkpI0nWFSvNfatoFlpaakcOnQQH5+9nD17BqlUSvv2HVi5cg1du3Yr1nECrl71\nZ968udy9e0fdm8DMzIxJkyYzY8bMN2oIvPfeYI4ePULt2nU4c8bvhePYCiJsS9T9+6Fs2LCWDh06\nUbOmtVbqIK7Zlj6ZmZmcOnUcb+89nDx5nNzcXFq1as3y5cvp2rU7JiZFHxf2VZKSkvj005n4+p5W\njxmtr69Pt27dWLNmHVZWFuTmKoo0Rc2/5eXl0blzJ27cuIG7e0sOHjwmLle9ggjbEpSUlARAnTr1\ntFYHlUr0sy0N0tJSOX78KIcOHeDUqZNkZ2fRrFlzPv10Nn369KVmzZpv/TRXAYVCwapVK9i2bav6\noYOCoUxXrFih7k3wpn+E09LSaNOmFVFRUfTp05/Nm7e/VX0rChG2JUipzB/lSJtf40XLVnsePYrm\n6NHDHD16iIsXz5Obm4uTkzOffDKdHj16Fltf2AKnT5/iq6++JCwsTL3MysqKGTNmMHHi5GIpIyEh\nHnd3N5KTk5k82YuFC5cUy3ErAhG2Jaig+4y2w070s9WM3Nxc/P0vc/LkcU6dOs6dO8Ho6OjQqlVr\nPv98Ad26dSv2y0mPHj1i1qzpXL58iby8PAAqVapEv379WbFiZbE+OBMTE0OLFm6kpaWxaNFSJk6c\nUmzHrghE2JaggvE7tRl2SqVS62FfXqlUKu7du4uv71+cOXMaP78LZGZmYGFhQYcOHZkyxYv27Tti\nYmJSrOXK5XIWL17E3r2/q4cwlMlkuLu3YPXqNSUyLuyjR49o0cKNjIwMli9fyejRzz6eK7ycCNsS\n9E/YarcexRm2Bw/uJyEhkWHDRhZbX8+yQqVS8fBhJJcuXeTcOV/Onj1DbGwM+vr6uLm54+U1FQ+P\n9jRp0rRErpPv3+/Dt98u5dGjR+plNja2zJ//BUOGDCn28gokJMTTsqU7GRkZrFq1jqFDR5ZYWeVZ\nxfq0aNg/lxG017J91Q0yS8v8iTovXw5Uzxn3IuHh4UyY8D45OTls2vQjy5atoFWr1sVa39JELpcT\nFBSIv/9lrly5xJUrl4mPjwOgSZMm9OvXn3btPHB3b1Fi41zcvXuX2bM/JTAwQP3Hu0qVKgwdOozF\ni5eoZ6cuKUlJSbi5uZKens73368WQfsWRNiWoNJ+g8zB4Z9wbdmyOcbGxty/H/3C43h5eWFgYEi/\nfv/H+fO+9O3bnUGDBrNgwddYWVUvtH1ERDh79+4mMDAAc3MLvv9+DRkZ6ejrG5R4QLwJlUpFdHQU\nN25c4/btQM6fv0Bg4A1ycnLQ1zegWbNmDBr0Lm5ubri4uJbooNdZWVnMmzeHw4f/VE+IqKOjQ4cO\nHVm3bj22trYlVva/PX36FHd3V1JSUliyZBkjRozRSLnllQjbEqTtG2QFfSef17INDw/nyZMn6vVK\npZK0tDQsLY0ZPnw0K1asKbT9kSOHOHz4MP37/x92drUYOnQkQUE3OXz4EEeOHOLTT+cxZMgwjh07\nwrZtW7h2zR8AXV09cnPlnDx5nLi4WN5//wO++ea7Ej7zl8vKyiI09C7BwbcJDr5NUFAgt28HqbtJ\n2dnZ4eTkTI8ec3Bzc8fBobFG/kBs3ryZ77//nvj4ePWyevXqsWTJUnr06Fni5f9bXl4erVq1IDEx\nkc8//5Lx4ydptPzySIRtCVIotH8ZIb/8Z8O+ZcvmQH7Q9ujRg8zMTHx9fQH49ddt/PrrNm7duo+l\npSWZmZl8+ukMGjRoQP36Df6esVdCs2bNMTIywsdnLwsWzGXBgrlIJBIcHPJv0LRp0w4zMzMOHtyP\nmZkZcXGxXL3qr5FzViqVxMbGEB4eRkREOPfvhxIaeo/Q0LtERkao/xDa2trRpElTxo37gCZNmuLk\n5IStbc1i6e9aFNevX2PevDncuROs/uNoamrK+PEfMGfOXI0/3l2gS5fOREZG8sEHk5g2bbpW6lDe\niLAtQaW1ZTt16j99Lnv06AHkT2XSq1cvrl+/TmxsLABNm9pjalqNESNGk5AQz6BBk5FIJKSnp7Nx\n4wb1NcR/8/TszJQp0xg4sN/ffTLzxzGtW7ceNja2+PldLLa+vwqFgujoKMLCHhAeHkZ4+APCw8MJ\nDw/j4cMI9firEokEGxsb6tWrj6dnZ+rXr0/Dho1o0KDhM4/DauKST1JSEnPmfMpff51SP9Wlp6dH\nt27dWLVqDebmJTMfXVENGzaUgIDr9O7dj8WLl2m1LuWJCNsSVHDNVtth+1+7d/8K5I+y/18uLi4A\nHD16FKVSSXJyEmvWrKBtWw+2bt1Kenr6M/vo6OigUOQ/8nnhwgWmTJmGoaEhSUlPsLdvAMDjx49x\ncGhMenrB/zJxAAAgAElEQVQaiYmJRR5NSqFQ8PBhJPfuhRIeHkZY2APCwh4QERFGZGSEOqx0dHSw\ns6tFrVq1aNu2LcOGDaNWrdrUqlUbW1vbYh3E5U0UTCWzZctmkpOTgfz3RePGTfjuu+9o27Ydurqy\nN3p0tjh99dVCDh36E2dnF7Zs2aG1epRHImxLUEHLT9sDwfy7ZVu79j8BWxCsz9OjRw/i4uK4du0a\nABcunHtmm/bt26tbhkFBQURFRZGdnX9Dx8SkKk+ePKFSpUpIpVISExOwsLAE4P79e4XCVqFQ8OhR\ntDpIC0I1PPwBkZER5ObmTySoo6ODra3d33O3eTBixCjq1KlDnTp1qFnTulR2RfP1PcPChQsIC3ug\nDlELC0s++eQTpkwp+Sm8X8eePXv47rv/Ub16dQ4dOqnt6pQ7pe/dWY5ou+tXwYe7oGWdl5fH06dP\n1etDQ0OpX7/+C/e/fv36M8ucnZ2pUePZOa0cHR2JiopS/2xlZUVMzGOUSiUGBgakpKSQkZEGwLZt\nWzh8+M8XtlBtbe2oXbs27du3p37997GxyW+xWlvblMpA/a+wsAfMnTsbf/8r6qe6DA0N6d27DytX\nrirWkbyKS2joPSZO/ABDQ0NOn75YJl7nska8oiXon4caSsc1202bfii0PjQ0lNDQ0EIt1H9r2LAh\nISEh2Nra4ujoWORyfXz2qe+of/LJVHXAb9r0EwB//LFP/RW/oIVau3Zt6tSpUyhQpVJJsQ3OUtKS\nkpKYP38uJ0+eUA/CLZPJcHV1Y9Wq1a/1+mmaXC6na9cuKJVK9u49gJmZdq8Zl1cibEtQablBJpFI\niIl5zLffLqZnz3f44IOJTJv2IdHR+X1qz549S8OGDalXr/DoZHXr1qVu3bqFlmVkZBAQEPDca7cF\nduzYpi5XV1eXevXsMTMzx8PDA1dXN9zdW5TKvravKzY2hq+//oozZ06rXw+JREK9evVYsGAh/fr1\n03INi+add3qSnJzMF18seun8YsLbEWFbgrQVttHRURw9epi8vPxrnTKZjPnz56Cnp0e/fv0ZOXIo\nmZmZhfZJSkpSh21RAvVFTExMWL/+R1xcXMvdQNIKhYJdu3ayY8d27t8PVV9LhvybjdOmfVTqrsO+\nyhdffMHly5fx9OyCl9dH2q5OuSbCtgRpI2zlcjnHjh3G1taO3r37IpPJkMl0OHDAB4BJkz547n4J\nCQkcPny4SGXIZDLs7GqzfPl36q5d5U1iYiJ79uzh7NkzhIaGkpycpL6uDPmvgb29PV5eUxk1arTW\n+sO+jZMnT7J8+XKqV6/Ozp17tV2dck+EbQkqGHFLk2F79uwZnj7NYuPGnzEyqkyPHh0LDVxSVFKp\nlFq16qgDtSxdP30dGRkZHDiwn1OnThAScoeEhAR1/9x/09XVxdLSik6dOjJv3ufUqlVb85UtRhkZ\nGQwfPhRdXV1OnPAVA8xrgAjbEqTp4Q0fPozkxo3rLFmyjLp169G/f6+XBu1/A7U8S01N5c8/D+Dr\ne4aQkDvEx8eTnZ39TJ9WmUyGmZkZderUoU2btgwe/F6pvrn1pgYNGkhWVhY7duzA2tqavDyltqtU\n7omwLUEFlxE0QS6Xc/z4UVq1asP770/Ax2cvFy+eB/Kvo27evK3cBypAfHw8Pj7enD9/jvv3Q3ny\nJBG5XP7cUDU2NsbOzo4WLVowaNC7tGnT9u+betp/uKAk/frrr/j5XaRtWw9GjBhBcnLmq3cS3poI\n2xKkVCo19vXM1/c02dlZrF69gcTERCZO/Gdw5+7de5b5oFUoFNy/fx9//8vcvn2biIhwYmNjSUlJ\n5unTp8jl8uf+cdPR0cHU1BRbWzvc3d0ZOHAgLVu2KpPXWItDUlISH3+c/4Tf7t37tF2dCkWEbQlS\nqTRzGSE8PIzAwACGDx/F3r27Wbas8LxQtWrVKvE6vI2wsAdcunSJ4ODbhIWFERcXS3JyEpmZmeTm\n5j53DIZ/09HRwdDQkLy8PBo1akSHDh159913adasuYbOoOzo168vcrmc7dt3lbveIqWdCNsSVFLX\nbPMfo71OREQET548UY/B8Ouv2zE1rYahoSE6Ojo0b+5E/fr1ef/98cVeh6KIinrIpUsXCQq6RXh4\nGDExMeoQlcvlRQpRAwMDKleujJmZGdbW1tSv34DmzZ1o27atxsZ1LS/WrVvHzZuBdO/eix49emm7\nOhWOCNsSVFxh+/DhQ27fvsmjR9GkpaWpvy7LZDJ10H755Vf07t0Xc3PzEm9NP3r0iCtX/Lh5M4gH\nD+4TGxtDUlIymZkZ5OTkvDJEZTIZ+vr6VK5cmWrVqlGzpg3169ejeXNn2rZto551tiJcP9WUR48e\nMX/+PKpUMWbr1l+0XZ0KSYRtCVIq32wowSdPnhAYGEBERBgpKSnqcNXXN6Bhw0Z4eLSjb98BXLhw\nnqVLF9O7dx/Gjh333GOtWPEdcrkcAwMD9PX1MTQ0xMDAAAMDQwwNDTA0NMTQsBKGhoaoVEouXvQj\nIiKc6Ogo4uJiSUpKJiMjvcghqqenR+XKlTE1rYa1dU3q1bPHyak5rVq1eek4DELJ6tevDwqFgh07\ndolxD7REvOolqKgt26dPn3LzZiD3798jMTFBPXiJrq4uDRs2onPnLgwbNgJra2t1f9fIyCiWLfsG\nY2NjVq1aW+h4aWlpPHoUzZkzp1m58vsSObcCEokEqVSq/q9SqSQjI4OnT58SGxtDQEAAPj4+yGQy\ndHV1kMl00NXVQVdXFz09PXR19TAyMqJRo0a0a+dB586dS+VALWXZ999/T2hoKIMGvUebNu20XZ0K\nS4RtCXpR2Obl5XHnTjAhIcHExsaoO9FLpVJsbGxo27Ydw4aNeOkNniFD3kOhUPDZZ3PYvfs3QkJC\nuHfvLqGh99TT3UBBFycTkpOTsLGxpXv3HtjZ2ZGdnUNOTg45OdnI5XISExM5ceKYemrsolKpVCiV\nSnR0dNT/n5eXh0qlUn/1L8olgLNnffnppx8L1dvAwJBq1UyxsbGhUSMH2rZtS+fOXahWreTm/ypv\nEhMTWbx4ESYmJqxd++OrdxBKjAjbEpTfGyG/tRcZGcmtW4FER0eTmflPoJmbm9OpkycDB75Lly5d\nX9pVLP8R0l38+OMP6gGo582bg0wmo169+n+3Djtgb18fO7ta2NrWwsLCApVKxb59v7N69fds3rwR\nc3MLbGxsMDExISsri8ePHxMdHUWlSpWYNMmL994bhomJCXp6+sjlOWRlZZGbm4NMpiQ8PIro6Ggi\nIsIJCblDUFAgycnJ5Obmoq9vgLm5OWZmZpibm2NuboGZmRlWVtWpW7cuNWtaP9PlSqFQEB8fh7+/\nP7dvBxEZ+ZDExHgyMjLIynpKVFQGUVFR+Pn5sXXrFvV+Bdd9TU1NqVGjJo0aOdCmTSu6detR5IHJ\nK4LBgweRl5fHxo3bxFNiWiZRlbM7D8nJmRp7GkZHR4qpqdFzy4yKesjHH0/h3DlfJBKJunVXuXJl\nHB2b0bt3H/7v/wa9tPtNUlISv/++ixMnjhMScueZVueCBYtwdW1Bs2bNi9SNR6lU8tdfJ/D3v0xo\n6D0yMjIwNKyEra0t7u4t6dChE1Wrmr7WuapUKsLC7hMcfJuYmMfExMQQE/OY2Nh//lswQ6y+vsHf\ng33XpW7detSrV4+6detiYlL1uWVKpRIMDfWIjo7h0iU/goKCiIyMICEhP4xzcnJe+OCIVCpFX18f\nExOTv8O4IW5u7nTv3uOlvRi0dVOuJMrdt28v778/lg4dOrFnz/5n1r/s/VtStFHmv8vVJhG2b6Hg\nF5iUlMHdu/fw87ug/vfo0T9Tgjdp0pSuXbsxbNjwZ6b8/reUlGT27Pmd48ePcedO8EtH3bp06Rp1\n62ruhtObfkhUKhUJCQncuZM/k+2dO7e5ffsWd++GIJfnXz5xcnKmf/8BeHh0KNT6KgjbrCz5S8dj\nSE1Nxd//CkFBNwkPf0BcXDzp6WmvDGM9PX2MjatQo0YN6tevj6urO926daNx40ZlPmzlcjm1atmi\nUCi4cyf8udfBRdhqlgjbN6BUKgkOvs2VKxe5evUyvr6+JCQkIJVKadrUkRYtWtKyZSvc3d0xNX3x\n9cXU1FT27dvD0aNHCA4OJj097YXb6ujo/D1DbRzz5s1jxow5WnmzFtfrm5eXR3h4GNeu+bNz5w4u\nXbpIo0YOzJr1GXXr5g/1WNSwfZWsrKdcuXKFmzcDefDgPnFxsaSlpb20h4VEIkFPT58qVSpTvXp1\n6tWzx8XF9e8wbvzGdXmR4g7bYcOGcujQn3z//WpGjBjz3G1E2GqWCNsiyM3NJSgoED+/i/j5XeDy\n5Yukpqaiq6uLi4sLbm4taNGiJa6ublSpUuWFx0lPT2Pfvr0cPXqE27dvkZb24nCVSCRYW1vTrp0H\nI0eOpGnTZvTo0Q2VSkVg4A0yM3PLdNj+16VLF5k162Pi4+NZs2Yd1tY2xRK2KpWKtLRUUlNT/27N\n6pGeno5SqcTQ0JDq1WuQm5vLjRsB3Lhxnfv3HxAfH0tycjLZ2dmvCOP8bm6WlpbUqVMXFxcXunTp\nSrNmzV77ceDiDNtLly7RvXtXGjduwpkzfi/cToStZomwfY7s7GwCAq6pLwn4+1/h6dNMDAwMcXV1\npWXLVrRo0RIXFxdMTY1fOOxgRkYG3t754XrrVhCpqakvLdfMzAw3N3cGD36P3r37qPtDZmVlMXr0\nSC5fvszx43/RurWb1t6sJVluYmIiffp0Izs7mx9+2IixcZU3CtucnBzOnTvLmTN/vfJ119PTo379\n+ri4uNGxYyfs7e2fKVMul3PrVhDXrl0lNPQeMTExpKSkkJ2dpe6m91/m5uY8eBBe5DoXV9jeunWL\n/v378uTJE65fv03NmtYv3FaErWaJsAUyMtLx97/CpUsX8PO7yPXrV5HL5RgbG+Pm5q4O16ZNHQtN\n5/LfMV4zMzPx8fHmyJFD3LoVREpKykvLNTIywtHRkb59+zF06HCMjY2f2SY6Oorx48dx+/Yttm/f\nhaenp1bfrCVdbmRkBJ6ebXFzc2fBgoVUqqT/WmEbFvaA2bM/JSEhHnf3lrRv35HGjZtiYWGBQqEg\nJycbY2MTdHV1SU1NJSQkGH//K5w58xepqSk0bNiQfv36YWdXGxsbO0xMTF5ZpkKhIDj4Nlev+hMa\nek/9reWTT6bz5ZcLi1Tv4gjbjz6ays8///z3/89g3rwFL91ehK1mVciwTU5O4vLlS+qWa1BQIAqF\nAjMzM/X11hYtWtKokcNLvw5mZ2dx6NAB9u8/wM2bgeruWEChHggFdHX1qF/fnm7dujNmzBhsbV88\nQExaWhqbN29i5coVVK1alY0bf8bV1f2Vb9azZ8/g7OxClSrPBvfb0OSH5I8/9jFhwli++24FHh5t\nixy2eXl5jB07CmPj/CEl69Ur+g1EuVzO6dOn+Pnnjfz11yn1765KlSpYWlphYWFBlSpVMDKqjJGR\nEUZGRhgaViIzMwNDQ0Pq1bOnaVNHZDIZWVlZvPNOd6RSKQkJT4p0SeFtwzYpKQl7+7ooFAo8Pbuw\na5f3K/cRYatZFS5s//hjHxMnvo9KpaJGjZp/h2tLWrRohb29/Uuf+MrOzubAgT84dOhPAgMDSU5O\nUq8r+MqvVCrVd8DzH1KwpX37DowaNRpXV1cg/zpiRkaG+l92dhZSqZSkpCTCwsI4f/4cx44dJScn\nh/ff/4CZM2eru2S97M2qUCho186d//1vFW3berzZC/gCmvyQqFQq2rdviZmZGStXrihy2F696s+s\nWdM5ccKX5s2d36hsHR0pBgZSrl+/SUjIXSIiwnn0KJrHjx+TkpJMWloa6elppKam8vRpJlWqGPP0\naf7AOlZWVowfP5HOnbuwbNk3HD16mL59+7Fjx6vHInjbsH333UEcP36M33//g44dPYt8riJsNafC\nPdQQFvYAY2NjDh06ho2NzSvD9c8/D/LnnwcJDLxBUtI/T2YZGOSPK6BUKsnJyVFfuzM3t6Bly5YM\nGTKU7t17EBkZSUDAdXx89rFs2Tc8fPiQqKiH6r6n/yWVSnFycmbKlI8YNmwkNWtak5ycxPbtW5k/\nfw7vvjuYli3d8fDwpHr1wtfjZDIZZ89eRldXtxheKe2RSCR8/PFMJk8ej7+/P02bFm2oxJiYGAAc\nHd9uaEVDQ0MaN25KgwZF63WgUCi4fv0qGzasYfHirwgOvsWsWZ9x4sQxDhzYT0ZGRok+ghwTE8OJ\nE8dp0KBhkYNW0LwKF7ZKpRJ9fYPndmyXy+UcOvQnBw/u58aNGzx5kqheZ2BggImJibrva3Z2NpD/\nNdPd3Z1+/QYwZMhQ8vLyOHPmNEeOHGbGjE+Ij48HwM6uFg4OjenQoRN2drWwtLSicuXKVK5cBQMD\nA5RKJVWrVqVmTRsMDQ2B/BbeDz+s49tvv1bPhrt9+8/s3PkLCoWCAQMG8fXX32Jubq6uZ1kP2gID\nBgxix46f+eqrr9iw4UdMTc1euY+VlRUAgYEBODu7lnQV1WQyGe7uLXF3b8n27VuZNetjDA0NGTv2\nfTZt2kifPr05ffpMiZU/efJEVCoVq1atL7EyhLdXIcO2oON8Xl6eOlwDAgJITEwotG3BoNQA6enp\n6oAFmDBhEh9//DF16tTi1q1gjh07yrBhQ7h0yY/c3FwaNmzE4MHDaNeuPU5OzlSr9uqw+DeVSkWL\nFs2JjIzA2dmF3NxcQkLu0LlzF957bzBnzpzFx8eby5f92L//CHZ2pXuA8NcllUr58cfNdOvWkZkz\nZ/DNN8tf+Riui4srdna1GD78XU6f9lOHryaNGjWW9PR0Fi78nKVLl2FoaMj169cICwujbt26xV5e\nVFQUZ86cwcGhMa6uZXs2jvKuwj0snZmZSVLSE9zcnLG3r820aVM4ceL4M0ELUKmSEW5uLZg4cQq7\ndnkTGvqQpUv/h5FRZTZt+olevXpQt25d3N1dWbToK3R19fjqqyX4+9/k3LkrfPHFV3h6dnntoAXY\ntm0LkZERQP7XRAeHJuTl5REaGkqlSpXo1MmTL774ktzcXEaOHEJubu7bvjSljrW1NadOnSI7O5vJ\nkz/g4sULL72eqaOjw//930ASExMJDw/TYE0L+/DDqXTq1IWVK79n+vRZQP4QhyVT1uS/W7UbSuT4\nQvGpcC3b0NC7yOVyEhLin1nXsGEj3NxaqP/Vr9/gmcE7xo2bwIABAzl27Aj379+jatUqNGrUlDZt\n2mNkVDwX4J8+fcqSJQvp3LkLGRkZXL58iZiYx0B+16iC68PVqpkxadKHfPXVAnx89jJ48NBiKb80\ncXBw4ORJX6ZMmcS8ebNp1qw5vXv3wcXFFTMz80Lb3r59i02bfuKdd/rQsmUrLdU4/5rz0qXL8PBo\nyePHj6hWrRoPHz7E19eXDh06FFs5kZGRnD3rS5MmTXFyerMbgoLmVLiwLWjxGBub4Orqpg5WFxfX\nFw6I8l/VqpkxdOiIEruzeuzYYVJSUhg0aDBmZuaMGTOCixfPI5PJUCgUREZGUrNm/jVnCwtLatSo\nyZIlXzFo0HvlcmSn6tWrs2vXPo4fP8qaNStYsuRrAKpWrap+HDolJZnk5GTc3VuycuU6jU4h/zx1\n69rzwQeT2LJlI19+uYjZs2cxatQIIiOjiq2MSZMmArBmzQ/Fdkyh5FS4sD158hz37oXQvLlzqQ2m\n8+fPARAREUl0dDQDBgzi11+3q9fv3r2bjIxMYmIeF+rVcP68L+3bd9J4fTVBIpHQvXtPunfvSXx8\nPH5+53nw4D6JiQlIJBJMTathb1+fnj17o6+vr+3qAjB9+qfs2vUrFy6cp3bt2kRERLB16xbGjn3/\n1Tu/QlhYGBcvXqBZMyeaNm1WDLUVSlqF62dbnEqqZWtp+eoHEiQSCebm5jRq1BgPj/Zs3bqZDh08\nWb26ZO5IV5Q+mcVd5tq1q1iyZCHr1//IhAnj0NfXJz4+8ZntXrefbffuXbl06RJnzlx644FxysPr\n+7rlapMI27dQUm+cUaOGEBQUyNix41CpQKHIQ6FQEBUVxa5dOwGwsbElJyebnJwc5HI52dnZyGQy\nHj16UiIt9orywSzuMjMy0nF0bMCgQYPV4ytMmTKFJUu+KbTd64Ttgwf3cXFxxtnZhWPHzrxx3crD\n6/u65WqTCNu3oM2Wbf7cXZUwMDCgUiUjZDIZoaH3OHbsdIn0Ma0oH8ySKHPGjGkcO3aY7dt30rNn\nVyQSCYmJSYUe432dsO3SxRN/f3/On/enQYOGb1yv8vL6vk652lQ6L1pWcK1bt8HKyoqhQ4cxcOAg\n+vTpS48ePencuYt6CMfq1atjY2OLtbUNNWrUwNo6/2myU6dOaLPqwnMMHDiY+Ph4IiLC6d27D0ql\nkuHDh73Rse7eDcHf3x9XV/e3ClpB8yrcDbKywM/vIgCHDv2JoaEhRkZGVKlSBRMTEypVqkR6ejqx\nsTHExcWiUCjUEy0C+PqeZubM2dqsvvAfLVq0wsSkKhcunGf69FkcOXKYI0cOk5qaWqRRxf5t0qRJ\nAGLyxjJIhG0pZGlppR6HIS0tneTkZBQKBUqlUv0VU09Pj+bNnTA3t6B6dStq1qzJgQMHNDqVi1A0\nOjo6tGvnwa1bQQBMmDCR9evX0afPO5w9e77IxwkODub69Wu0aNGKevXsS6q6QgkRYVsKxcfHIZVK\nadCgEVZWVlhb22BsnN8C2rhxA6mpqWRlZXHpkt8zc2z9e7xdofRo2LARly/nz5rw7rtD+PnnrQQG\nBuLo2ARv7z9o0KDBK48xebLoV1uWvVbYxsXFsXjxYi5fvoyBgQE9e/Zk+vTp6OnpER0dzfz587lx\n4wbW1tbMmTOHtm3bqve9ePEiS5cuJSoqCicnJxYtWlRoMJiff/6ZLVu2kJmZSY8ePfjiiy9KTX9J\nTSoIT6VSydWrVwqt09HRJS8v/7FcO7taWFvbUK1aNYyMKqOjo0Ng4A0ePozQdJWFIqhfvyGJiYnq\nEcB++GETH300hYcPH+Lm5oKjoyNHjx6lSpXnX1a4efMmN27coHXrttSpU/xjLAgl77XCdtq0aVSt\nWpWdO3eSkpLC3LlzkclkzJo1iw8//BAHBwf27dvHyZMn8fLy4siRI1SvXp2YmBimTJnCRx99hIeH\nB2vXrmXKlCkcOHAAgGPHjrF+/XqWL1+OmZkZs2fPZvny5Xz++eclctKlWcETbh07etKqVStiY2N5\n+PAhsbExPHmSSFxcHAAREeFERDw77UrBuLpC6VJwMysq6iEODo2xtbXF2/sA586d5ZtvFhMUFIS1\ntTXt23dg3z7vZ76hTJ5ccK1WtGrLqiJ/MsPCwrh58yYXLlygWrX8RySnTZvGsmXL8PDwIDo6mj17\n9qCvr8+ECRPw8/Nj7969eHl58fvvv+Po6MiYMWMAWLp0KW3btsXf3x93d3d27NjB6NGj1c+NL1y4\nkHHjxjFr1qwK17r18dkLwJkzf3HmzF9IJBIMDQ2pWrUq5uYW6rB1d2+BqWk1KlWqhJ6eHpmZmQQE\nXCs0MplQelha5o9AlpKSXGi5h0d7PDza88cf3mzYsI6zZ32xtDRn0KB3+fHHn5DJZAQEBHDrVhDt\n2rV/6eweQulW5LC1sLBg06ZN6qAtkJ6eTmBgIE2aNCkUjK6urty4cQPI/wrk7v7P8G8GBgY0btyY\ngIAAXF1dCQoKYurUqer1Tk5Ofw8pGELz5m83EHRZUzBv2eefLyAkJJj79+/z+PFjEhMTefz4sXo7\nf/8r/9lTglQqwdraRoO1FYqqYJqizMynz13/f/83kOHDh7JixSp27/6NPXt+58CB/cTHJ/Lhh5OQ\nSCSiB0IZV+SwrVKlSqFrsCqVil9++YXWrVuTkJCApaVloe3NzMzUrbD4+Phn1pubmxMXF0daWho5\nOTmF1stkMqpWrUpsbGyFC9uffsp/3PbrrxdiYGCIlZUVjo6OuLi4UamSIQsX5k/i16mTJ9Wr18DY\n2Jjs7CzCw8O5cuUy5uYvH/NV0A5DQ0NkMhmZmRkv3W7SpMmMG/cBXbp0RKFQ4O/vT3BwMB06dHrp\nTLlC6ffGF/iWLVvGnTt32Lt3L1u3bn3mGpOenh5yuRzIn9XgResLvva+bP/XIZNp7jmNgrKKq8y8\nvDx0dHRo06YtlSsbcedOCLGxMURGRnDq1MlC254+/VehnytXrkxeXh7u7i3Q0Sn+16C4z7Uilqmr\nq0teXh5S6bMjkhUsk0olfP11/oy8Y8eOxcvrQyQSCevX/1Tsv9fy9voWpVxteqOwXb58OTt27GDl\nypXY29ujr69PampqoW3kcjkGBgYA6OvrPxOcBVOFF4Ts89YXzJLwOoyNX3+ft1VcZf7yyy/k5eVx\n9qwvNWvWxMnJiRkzptOnTx+uXr3KihUrOH8+v19m9+7dsbW1RU9Pj9DQUO7cuUN0dDQ1aliW6GOJ\nZfn11WaZkZGRZGdnY2dng6Hhi7vn6ehI8fU9g0wmY8iQIWzcuJGePXvSuHHJ9astD69vWfDaYbto\n0SJ2797N8uXL6dKlC5A/99P9+/cLbZeYmKiexsTKyoqEhIRn1js4OGBqaoq+vj6JiYnUqVMHyJ9A\nLyUl5ZXToDxPWloWCoVmnrmWyaQYGxsWW5lBQcHo6elRu3YdoqOjOHz4MIcPH8bLywsjo/zxDwqm\nSD927Jh6P11dXfU8ZO3bdyY5OfOt6/JfxX2uFa3MZcv+h4GBAU2aNCMr69lvbFKpBH19XebOnYdK\npWLMmDFMnjwZiUTCypXrxO+0mMrVptcK27Vr17J7925WrFhB165d1cubN2/Oxo0bkcvl6pbqtWvX\ncHNzU6+/fv26evusrCyCg4OZNm0aEokER0dHrl27pr6JFhAQgK6uLo0aNXrtE1IolBod4KI4y1y2\nbCmQfzmhV6/eeHh04MGDUK5cucK9eyEkJeVPnV65cmU8PNpjY2PD48cxBAff5tGjaACsre1K9PzL\n8lxYSXwAACAASURBVOurrTJ37fqV9evXMmHCJCpVMnrhtOwKhYIzZ04jk8kYMGAgmzdvplu3npia\nmovfaTlQ5LB98OABGzZsYOLEiTg7O5OY+M+YnC1atKBGjRrMnj2bDz/8kL/++ougoCC++SZ/GLmB\nAweyZcsWNm7cSKdOnVi7di22trbqcB02bBgLFizA3t4eS0tLFi5cyODBgytUt6+CaW+MjIyIiAgn\nLOwBe/f+jp6ePjY2NtSuXYekpCQkEgl5eXkcOXIYyL+ZWKNGTezsapGWlvpMbxFBe7Kzs/n2269Z\nt24177zTh/fee/m0RV988QUqlYpRo0bz0UfTkEikrFq1TkO1FUpakcP21KlTKJVKNmzYwIYN+ZPL\nqVQqJBIJd+7cYd26dcybN4+BAwdiZ2fHunXrqF69OpA/cd+aNWtYvHgx69evx8XFhXXr/nkT9erV\ni0ePHrFgwQJyc3Pp3r07M2fOLOZTLd2++uoLIH9CSnNzc2xsbNHV1SEmJoaIiHD1k2UqlYqGDRvS\nunUbcnLk+PldJCzsAXK5XN2XU9C+wMAAJk58n6ioh0ycOJn33hv60ql6FAoFJ0+eRCaT0bdvP7Zu\n3ULPnu88M8+aUHaJ8WzfQnGOzTlq1FBCQoKxtbXlxo0A0tPTgfyWq42NDZGRkQBYW9sQE/NYHb6W\nlpa0bduOy5cv06lTZ1asWPt2J/UCFWXs0+Io8+rVKwwa1Bc7Oztmz55HrVq1X7nP4sVfcfLkCUaN\nGsO5c2eJjIzgzp0w9RxrJaGsvr5vU642ab8/hMDTp085evQQERHhWFtbs3v3Hm7dusPMmbNwcHDg\n0aNH6m3t7OxYvXo1GzduxtOzM1lZWfj4ePP48SP09Q20eBYCQGpqCmPGDKdePXtWrFhTpKBVKBSc\nOnUSqVRKv379CA8Po1evPiUatILmiQfpS4Hz532B/Fbsrl2/sWvXb+jo6GJvX48uXbqir2/I9etX\nkUql+PldVI93a21tTf/+A2je3ImZM6fTrVsPbZ6GAKxYsZy0tFTWrt2g7vr4Kt9+u+Tva7WjmD79\nY6RSKd9/v6aEaypomgjbUmD8+DEA1KpVm1q1apOenk54eBj37t0jJCREvV2lSpVwd2+JsXFlAgNv\n8uhRNDt2bGfHjvyZd11cin86HKHowsLus3HjD4wYMarI3Rbzr9WeQCqV0qdPH7Zt20b//2fvvMOa\nvNo4fCch7CnIEGWIG1HciCIOnLXVauu27lFXnbVaa9VW66571IHVuifuvbcCIi6GgAIqQ0A2md8f\nkSgfWheClfe+Li5N3vE8J5BfTs55RvuOmJubf2RvBQobQWyLGLVajY6OphdVRMR9IiLuA5pc+sqV\nqyCXKwgN1QhuRkYGJ09qMskMDQ0pV6485ctX4OrVy2Rn52BublE0gxBALpfz/ff9sba2oVOnLm99\n3ezZf6BWq+natRujRo1CIpEwd+7Cj+ipQFEhiG0Rs337FtLT0ylRwhJv78ao1Wpu3QomOvoht2/f\nynNumzZtcXR0wN//Ordu3ebOHc0PQLNmzV91e4FCQKVSMWrUMG7evMnixUvfevlAqVRy7NhRxGIx\nbdt+waZNG/n2286Ymr654afAfw9BbIuYGzcCAUhKesru3TsBTdESR0cnSpcuo53JisVi9u/fqz1e\nrlx5ateuQ3R0NMePH8Xbu2nRDKCYk5WVxZgxI9i5cxuTJk2mcuUqb33twoXzUavVdOnShXHjxqGj\no8O8ecKs9nNFENsiZvVqTTHozp27UqqUPdevX+POnduEhYUSGhqiPe+LL77E07MBly5d4MqVywQH\n3yQ4+CagSdf97rs+ReJ/cSY9PZ1OndoRHHyTSZMm07Spzztdf/SoJuW6ZcvWbN68mV69ej0vKFS8\nMquKC0Kc7QfwoTGDjx7F4u5e+f/uqUPNmrVo0+YLfH3X8vDhgzxNHI2NjalXrx6dOnUhKiqK2bNn\n4u5eg0OHTv7/7QuU4hKT+bY2lUol3bp9y5Url5g3708qVar82nNfRVhYKAMH9qN8+QpkZKQTHx/P\ns2fPyMlRf3Jj/a/bfNluUSLMbIuQo0cPI5FICA29T3DwTfr06U1ychJXr17h6tUr2vMOHTqKVCpl\nxYrlnD59khMnTnDixAltUZqpU/8owlEUT3x9V3Hq1HHmzJn/zkILMGfOLAD69OnNxIkT6dDhGwwN\nDcnJKfiCMwKfBkJSQxFy9OghPDw8MTc3p0GDhqSlpVKuXHliYp7QunUb7XmdOn3DlCmTqVevHleu\nXOfWrVsMGDBIO+OtU6duUQ2hWPLsWQozZkzjq6/aUbt2nTdf8ArCw8PQ1dVlz549APzxx+yCdFHg\nE0QQ2yIkKioSOztbVCoVu3fvRKFQ0KNHD8zNzUlOTkYslqCrq4tKpeT8+XOMGzcGFxcnfHx8CAnR\nhINt3LjtX3PuBQqezZv/ITs7m1693m+dfPv2LajVanx8muPv70/FipUoWdL6zRcK/KcRlhGKkM6d\nuzJ9+jROnjxBVpamY0WrVl/w6FEsly9fAqBLl++wtrZBLpdz+/YtQkLuEh8fx9mzZ7C0tMTHp2VR\nDqFY4ue3C0/PBpQoYfle12/atBEADw8PDh48QN++gwrSPYFPFEFsi5ARI8bg6enFiRNHWbx4AQAe\nHrUxNTVFLBajp6eHkZFmUV8qleLuXoOaNWsSE/OATZs2MX/+EmFWW8jIZDKCgm5gamrKkCGDkEql\n6OjoPP+RoqMjQUdHilSq8/zfF8elUilqtZqUlBR0dHRYvHgRIpGInj17FfWwBAoBQWyLiKioSNat\nW4OdnR3t2nVk/PhJpKencenSBc6dO0NgYADXrl1h+fIl2Nra4ujojJOTM6VKleLkyZPUrl2XVq3a\nvNmQQIEilUoZP/5ntm3bTFpaGqampsjlCgDUahUqlRoDAwN0dHRITk5CoVCgUilRKBQoFErkck2X\nBoVCQUJCAjVq1ERHR3gbFgeE0K8P4EPCWLy86hId/RC5XI5cLsfKqiSNGzfF27sJjRo1xs6uFImJ\niZw+fYKTJ49z4sQxkpOTtNfv33+YunU9C3pIr6W4hAm9rU1ra02Wl52dHTk5OchkMu2Pm1s1+vYd\nyKhRw157/b17kXmWIT7lsf7Xbb5stygRPlKLgOTkJEJC7tG5czdcXasSFRVJeHgYly5dYMeOrQA4\nODjSsmVrvL2bMHv2fAwNjbh58wY3bvjj6lqJ+vUbCsHvRYRMJkMkEjF16m98/XXHPMfGjh1FRkYm\nu3fvAMDNzQ2JRAexWIyOjoSEhARiYmIxNTUrCtcFihBBbIuAnTu3A7Bvnx9RUZHUrVuP1q2/AODw\n4QOcOXOaEiVKsHv3DlatWoGOjg61atVm6NCR9O8/SDszECgaMjLSUavVGBub5Dv29Gkijo5l8fe/\nBsCdO3dQqVR5ElPMzMyEpYNiiPAbLwJkshwA5HIZV65c4sqVS0gkEqysrEhJSQFgyJDhiMVi4uPj\nuHPnNtevX6NXr66cOnUeb+/CWz4QyE+ucL5qbzIhIZE6deoTFRWpfU5HRwexWIJEIiYnJ4dq1WoU\nlqsCnxCC2BYBCxfOA6BePQ/c3Krx8OFDAgL8tU0fAQYN6oepqRllypShalU3+vcfyNixo7h69bIg\ntkVMdrYmTO9VnTESEhKwsbHVPlarNZ1klUolcrmmQliZMmUKzVeBTwdBbIsAExMzkpOTOX/+HOfP\nn9POagGkUl3atPmCsLAQHj58yK1bwdy6FcyWLZsAKFvWpShdFwDttw8Tk7zLCJmZGWRmZmBj86Lx\npkqlzHe9kMBQPBHEtgh4+DAKfX19ZsyYxd27dzh16iSRkREAGBoa0Ldvf21NU5lMxuXLF9m8eSOh\noaHUqVOvKF0XAMLCNNXY/r+/WEJCAgBmZi+6LOjp6WljodVqyMnJpmHDRoXjqMAnhSC2hUzuGzI7\nO5vRo39AT0+PqlXdqFGjJtevX+PZs2e0a/cFenp62NraUblyZTw9G2JtbYOJiWm+2ZRA4RMeHkaJ\nEiWwsMjbGSP3d6urqwuAoaER+vp6qFRq1GoVMpkmxtbK6u1a5gh8XghiW8hcvqxp1jh79jxCQ+9x\n+PBh/P2va48PGDCIxMREgoICiYmJ4cGDKA4fPgRAu3YdisRngbw8evQIW1u7fM8nJmrENrfDRu6y\nwv/zNh13BT4/BLEtZHK/gv744xhatWrDsmUrKFvWhWrVXFGplIwZMzZPs8DHjx+zceMG/vhjBg0b\nehWV2wIvERYWgr196XzPJyQkoK9vgK2tZoOsSZOmqNWgUMhRKJTExsbw6FEsxsbGhe2ywCeAILaF\nTExMNBKJBKVSydGjhzl8+CDOzs7ajZRKlcojlUqxt7enZs3afPHFF9oSivXqCVEIRY1CoeDGjUCG\nDRue75gmEsGGCxfOAZCcnIKOjgSJRPMjFosxMRH6ixVXBLEtZIKDb1KpUmU8PDyfN268SWRkJFKp\nFLlcDkD58hWIjIxg164d7NqlyUQSiURCJMInQGCgP9nZWVSv7p7vWGKiJuwrMDAAgKCgQP4/Gz63\nsJBA8UMQ20JEoVAQFBSInV0pLCxK4OPTgoYNGxEcHIS//zWt2GZkZNCrVx+6devO5cuXWLJkEVlZ\n2dqNF4Gi48CBfVhaWuLmVi3fsYSERGxsbNDT00ckgoULl+Q5vmTJIm7dCi4sVwU+MYTi4YXI3bt3\nAHj8+BHr1q0hPT0NfX196tSpR40atRGJROjq6hIbG8uKFcto1KgBv/02jfT0DKpUcS1i7wWUSiV+\nfrto2tQHiUSS73hychKWllYkJMTni1QATcytWJz/OoHigSC2hcju3TswMDCkWjV3EhMTWLlyGRcv\nngcgLu4xarUamUxG9eru9Oz5HdWru6NWq0lKekpS0tMi9l7g0KEDxMbG0LHjt688npmZibGxCRkZ\nGRgYGOQ7rlQq0dERxLa4IiwjFBJyuZwtWzbi6dmAbt16EBp6jyVLFnHx4nn8/a+hoyMFNEHw/v7X\n8Pe/homJKTVq1CA4+CZNmrxbm2yBgkWtVrNs2SJq1qyFq+urv2VkZ2dhZGREaOg9YmONuHEjEF1d\nXfT09NDT0yM9PeOVM2KB4oEgtoVEdPRDEhMTqFrVDYAKFSrRocO3bNiwjpycHHJyNMVp7OzsaNSo\nMXfv3uHmzSDOnTsLaNZx1Wo1ly9fpHXr5kU2juLKoUMHuH79KitWrHrtOdnZ2ejp6ZOamkpqaiqj\nRo3Id46nZ8OP6abAJ4wgtoVEmTIOlCxpzYED+3B0dMLMzIydO7cBMGjQ96xcuRyABw8esH79OvT0\n9Khduw7Vq7uzbNkSypRxYNu2zQwfPphLly5RsaJbUQ6nWJGens6vv06kfn1PGjR4vViqVGokEgkx\nMYkkJiaQnZ1FdnbO83+zyc7Ooly5CoXoucCnhCC2hYRUKuXvvzfRq1c3fvttCkOHDiczMxNbW1uO\nHz+mPa9Wrdo4ODhy5swpLlw4z4UL559fr0tc3BMAYmNjBbEtRKZN+4X4+DiWLVvxr+ep1SrEYs0m\nZ6lS9oXkncB/BWGDrJDIzs7G0dGZkyfP4+TkxMyZ0wFo0MCL+/fDteddv36NXbt24OjoxJIlS/Hy\n8gZAJsvWBsQnJSXlNyDwUfDz28W6dWsYPXosDg6O/3quSqVCLBbeUgKvRvjL+MjIZDLWrVtD3brV\nqVXLlcOHD7Jr1wHMzTWVoZ48eQyAlZVVnk65AQH+DBs2lISEeEDTJkep1DQWvHfvXiGPongSEHCd\n4cO/p02btnTu3PWN55uZmfHkyZNC8Ezgv4ggtgVIblUn0CQwbNmykfr1azB+/GjEYk2V/nHjRjJr\n1u/cuHGP5s1bapcJNm/eztatO6hcuYr2HlKplHv37gIQF/eE1NRUAM6fP1+IoyqeBAYG0KlTeypV\nqsTUqb+9Vct4d/caHD16KF/WmIAACGJbIMjlcubOnUnZsqX4+ecfmTt3JrVruzFixPeIxRKMjY15\n9CgWsViMubk5K1YspU+f7vj6btTGY965c5uSJa2ZPVvTxUFHRwe5XK59k5cqVVorttevXyclJblo\nBlsMOHXqFB06fImzszPLl/+Fvn7+jgyvomvX7oSE3MPXd/VH9lDgv4ggth9IUFAQNjYWzJ49g+bN\nW7B27Spmz57Bo0exmJub8+BBFOnp6ZQt64Kuri4pKSkYGhpy7NgRVq5cSlhYNPXrN2DKlMnEx8ex\nbt1aADZt2srcufO1jQHNzMxIS0vFxMQElUrFiRPH/s0tgffkn3/W06JFC1xdq7J8+ap3qtBVq1Zt\nunTpxqRJ4/H1XY1KJXQ/FniBSP2ZfecprH70MpmMxYvnM2/ebMRiMTKZDD09PRYsWMSECeO1rVPM\nzc0RiyUkJT1FV1cXN7dqREVFaje5Jk/+jc6du9G8eSOMjIyIjY1FLBbx+LGmNqqv7xpGjBhGVNQT\nBg3qS2TkfVQqJbq6ehw7drbQurTq6Ii1XX0Lq4V6YdtMT0+jXLkyGBkZsWDBYtzcqr0yE+zfUCgU\nzJw5na1bt1C+fEXatGmLjY2Ntp15gwZelCtXPt91xeH1LSqbL9stSgSxfQ+Cg28ybNggQkLuUqdO\nHYKCgrRNAEUiEYsXL2Xx4kWEhLzYyHJxcSEl5RlPnyYCUKJECSpUqMjly5dYt24TZco40KyZJoaz\nd+8+LFmiibsdM2YUR48e4cqVG1hbm2Jra0fXrl1YtGgR7dt3ZN68RRgaGn7U8ULxeGOq1Wr69OnO\nkSOHUCqVGBgY4OXlTcuWrfDyavROwnvjRiAbN27A39+flJQU1GoVCoWCdu06sGrVunznF4fXt6hs\nvmy3KBGWEd4BmUzG7NkzaNHCm6dPE+nY8Vut0NaoURPQvGGHDRtCo0beeXLo79+/rxVagOXLVzF2\n7Hjq1/dk2LBBGBkZ0rr1FwD4+LQANGvBu3fvolmz5jx9qqmN8OTJY/bv30+HDt+wd+9uataswtSp\nvxAR8SJ8TOD9EIlE/PPPFjIzMzl37jKjR//Io0ePGDNmJN7eDRgzZhRHjhwmMzPzjfdyd6/BnDnz\nOXnyDAEBQQQGBuPp2UBYWijGCDPbtyQxMZFvvvmKkJC71K3rQdWqbqxf70tOTg5ffvkVBw7sR1dX\nFx0dKenpaYCmdmlGxou2KCNHjiYiIoK9e/fQsmUrBg0aQmZmJj/+OIaSJUty4MBxvv22HXFxj7ly\nxZ/16/9m7NhRnDlzmbNnTzFp0k9Uq1admzeD0NfXp2PHb4mKiiIwMIDMzAyqVq1GgwZeuLpWxdLS\nEiMjY8qXr5in88P7UlxmQa+yGRFxn/37/di7dzc3bwZhYGBAzZq1cXNze75EICElJYUHDx6QmZmB\nQqFAoVAikYhxcSlH+/YdKF26NAMG9MPGxlaY2RbTma0gtm/Jli0bGTHiexo3bkr58hVYt24Ncrmc\nfv36sX37dlJTU2nVqg2HDx/Md23JkiVJSEigTp26rF7tyxdftCQmJoaff55MrVq1CQsLZcKEH5k4\ncTJt2nxJkyaeNG3ajLNnz/D1198wY8YcGjasg4eHB7//Pp0KFcphaWlJcnIyXl7eeHs35sCBfXl6\nmeUikegwcuQYhgwZ/kFdAorLG/NNNiMjI9i/fy8XL54jODiIhIQE1Go1hoaGlC1bDnNzc6RSKTo6\nUuRyGYGBAaSnp9G1azeCgoIoX74CK1asfWe7H4PiYvNlu0WJILZv4PHjRxgaGqJUKunZswvXrl3R\nHuvffwDXrl0lKCiI7t17sm3bFnR1dbWzWYlEglqtpkqVKujoSLlxI5CdO/0oUcKCFi2aAbB6tS8m\nJqasXbuaU6dOcPlyIMePH+WXXyZQo0Yt1q/fzIIFc1m2bBGXLl1DoZDj4VGHvXsPcenSRebOnYm5\nuQVyuYyUlBTEYjFlyjholzACAvw5f/4sxsYmjBw5ln79BqKnp/fOr0NxeWO+q02lUtPO6HXVvDIz\nM1m9eiVz584kOzuL1q3b8vffmz7YbkFQXGy+bLcoEdZs/4VZs6ZTvXolqlWryJYtm9i9+wC9e/fT\nHr979y5BQUFUrepGXFwccrmcxo2bAmBqaoZKpcLS0op790JYvVozm/nxxzFYWZVk9ux5yOVyJk4c\nD0CnTl1QKpWsWLGU7t2/IyIilp0793L8+BEWLpzHxImTqFSpEuXKlQPg4cMHjBo1jtOnL+Hk5ExO\nTg5Xrwaxa9d+EhMTuHLlMiVLWtOyZWvGjBlPhQoVmDbtFxo3rq/t8Cvw4eT2F3sdhoaGjBgxigsX\nrtGrV1+++aZTIXon8CkhiO1rWLBgLvPmzaJNm7Z4ejZk2rRf8PKqi7d3E4KDQ/nii6+02V8DBw7i\nxIljODg4kJysCemys7N7Pqt1RaGQExUVRYsWLbl/P5xz587RrJkPHh6exMbGMm7caCZOHE92djaW\nllZaHzZv/ochQwbQuXMXxo79EdC8eR0cHAgPDwM0/cr27TvCzZshODk54+nZkG+/7cL9+2Ha+5ib\nm/P1198wfPhIlEol7dq15o8/ftO24RH4+JQp48CcOQv48sv2Re2KQBEhiO0riI5+yIwZ0wBo1+5r\nunXrQffuPYmMjKBPnx4sWvQnixcvZ+DA7zE1NWXEiGGo1WoWLlzC7du3MDQ0xNTUDICKFSsBsG7d\nWpYvX4lYLGbs2FG0bOmjnWFmZGTQvHlLVq1ax5Ahw4mJiaZv35788MMQevT4jhUrVuVJFzU3N9du\nwgGIxWLMzMy1j2vWrE1cXByPHz/KMy5bWzsGDBhM8+YtWbhwHt9+207oACEgUEgIYvt/yOVyBg7s\ng7GxCQB//aWJd/Xz24NYLKZLl25s2OBLw4Z1ady4CdHR0VhbWwPw66+/8OzZM2xt7TAz04htVlYW\nBgYGnDx5km++6YBKpUKlUtKmTVu2bNlFVNQTbt4MYdas+TRr1gJbW3Nq1nRl/34//vprNYsWLUEq\nlebxMS0tDUPD168/tW/fkcqVq/DXX8s5d+4MCoVCe0wsFtOkSTP69RtIUNANWrRoTGRkRIG+hgIC\nAvkRxPb/aNy4Pv7+15g1aw5OTs74+19n5cplpKY+o23br+jUqQsLFizG1taWbt060a9fP4KC7rJ/\n/zFt/GVExH2Cg4MAOHr0EFlZWWRmZmBmZs4//2wlMvIxf/wxl6ZNffIkJLwcJgbw888TmTp1Mg8e\nRAGaGN5du3YSGRn5ylbauejr67N372G6dfuOw4cPMmvWdHbu3J6nlGPZsi4MGTKcjIwMxo79oaBe\nPgEBgdcgRCO8xPHjR+jWTbOLX7++J8OH/0CPHl1RqVSYmpqydu16xGIxWVmZbN++lT17dgPQsmVr\nNmzYilKpZPnyJYSHh3LzZhBRURFUqVKV+vUb0Lx5S+rW9XgrP5RKJTdv3mD79i1s3bqZ9PQ0XF2r\nkpKSTExMDB06dOCvv9bxNvHxYWGhbN78DwcP7iMi4j4uLuWoWtWNkiWtsba2JigoiCNHDvLo0b/X\nyC0uO9dFvVv+uY+1qF/fokQQ2+c8ehRLkyYNqFy5CikpSdy5cwcjIyNsbGyJiLjPkCFDMTMzZ+vW\nLURGRmhjKw0MDMjMzOL+/ZiPUqcgIyMDP79d3LgRgKGhEc2bN6dduy9IScl8p3Gq1WqOHDnE/Pmz\nCA4O1tbGBXB2LsuVKzf+9fri8sYsajH43Mda1K9vUSKILZriIaVKlQDAw6M+kydP5cyZU8ydO1sb\nR6mrq4tMJkMkEuHqWpUffhhJq1atOXbsMH379uXevUhKlLAs8PH8PwXxxyqXy4mKiiQsLJSYmIe0\nbNkGR0enj273XSkuNovKbnGx+bLdokToQQbMnz8b0Ajq5cuXaNOmBQ4ODowePZY1a1aRlJSEvr4+\nvXr1YeTI0XnK7p09exZLS8s80QCfOlKplPLlK1C+vNB8UECgsCj2YqtQKFi2bDHDh//AlClTuXPn\nDpMnT+Ls2TPMmTNLe16JEpacPn2KI0cOkZOTg0wmIyMjA5lMxtSp0/81sF1AQECg2EcjqNVq5HKZ\nNryqSpUq7Nixi5iYx4wdO057XmxsDNHR0SQnJ6NQKNDX19e2wRk4cHCR+C4gIPDfodiLrVQqZeDA\n75k/fy59+vTShlnp6upiZ2cHwI8//kRychqJick8fpzAgwexHDqk6ZSwfv3696o1ICAgULwQNsjQ\nzG63b9/C779P4dmzFObMmUfXrt2wtNSsw1auXAVdXV0kEgk6OhJ0dKTcvn0bhUJOQkIC2dmqYrPB\n8Llvpgiv7+dn82W7RUmxXLMNDg7C13c1gYEBqNVqqlWrTq9efbl40Z9Jk35k2LAh+Pn5ac8PCwtF\n85GkRq1+8ePiUg4DAwOyszNea0tAQEAAiqHYLlw4jz/++A1LSysqV66MSCTi9OmTbN26iZEjxzJv\n3mJq1qyjzaoaNmzkK7urrlixRKjgJCAg8NYUK7F99CiW6dOn0qJFK775ppM2gkClUnHo0AEWLpzH\n7dvBrFmzAT+/XZw7d4YlSxYgkUgQiUSIxWLEYgkSiZiMjAzE4mK/5C0gIPCWFCuxzcrS1C5wd6+R\nJ1RLLBbzxRdf4uDgwLJlSxg8uB/bt/tRubIzycnJmJqaoaOjg0KhQKlUaBMdXi7wIiAgIPBvvPfU\nTCaT8eWXX3Lt2jXtc7///juVKlWicuXK2n83btyoPX7x4kW+/PJL3N3d6d27N9HR0XnuuW7dOho1\nakStWrX4+eefycnJeV/3XknuVuDL5Qpfxs2tOgMHfs+BA3vx9V1FQMAdnJycUSjkuLvX4OuvOzBq\n1DgmTZqCnp4e5uYWBeqfgIDA58t7zWxlMhmjR48mPDxvR9eIiAjGjh3L119/rX0uN9vq8ePHDB06\nlB9++AEvLy+WLFnC0KFD2bt3LwBHjhxh2bJlzJkzB0tLS3766SfmzJnDpEmT3nds+cjtbPo60+4p\nXQAAIABJREFUsQWoUaMmTZo0Y9q0yTRr1oKpU2fQq1dXjh07oj1HJBKhVqsJCblbYL4JCAh83rzz\nzPb+/ft06tSJmJiYVx6rUqUKlpaW2p/cGNTt27fj5uZG7969cXFx4Y8//iA2NlY7M96wYQO9evXC\n29ubqlWrMnXqVHbs2FGgs9sXYvvvw/7mm04YGxvzww9DaNmyNUOHajbLfHxa0LhxUypWrIREIhGW\nEQQEBN6adxbbq1evUr9+fbZu3crLIbrp6enExcXh5OT0yuuCgoKoU6eO9rG+vj5VqlQhMDAQlUpF\ncHAwtWvX1h53d3dHLpdz7969d3XxteT6Kxa/fmab61uvXn25dOkCvr6rmThxMtWqVefevTsMGvQ9\nM2bMwsHBMU8tWgEBAYF/453FtmvXrowfPz5f1lRERAQikYjly5fj7e1Nu3bt2LNnj/Z4fHy8tqNB\nLlZWVsTFxZGamkpOTk6e4xKJBHNzc548efKuLr4W1dsUgH1O5cpVaNy4KdOmTSY2NoZly1aTkJDA\nhg1/A2BgYEBaWtob7iIgICCgocCiESIiIhCLxbi4uNCzZ0+uXr3KL7/8grGxMT4+PmRnZ6Orq5vn\nmtyyhdnZ2drHrzr+Lkgkr//8yI3UkkjEb5zdAnTq1Jnbt4MZNWoofn4H+fXXaUycOB4jIyMePYrF\ny6vRG20WNLm2CtNmUdktLjaLym5xsVkU9l5FgYlt+/btadq0KaampgBUqFCBqKgoNm/ejI+PD3p6\nevmEUyaTYWpqqhXZVx03MDB4Jz9MTV9/vomJJjnBwEAPAwPd156Xi4GBLgMHDmT69Ols2/YP48eP\nJTw8hA0bNuDu7s7kyZPeaPNjURQ2i8pucbFZVHaLi82ipkDjbHOFNpeyZcty5coVAGxsbEhISMhz\nPDExkcqVK2NhYYGenh6JiYk4OzsDmtYwKSkplCxZ8p18SE3NQql89XLBo0fxAMyYMQMnJydEIjFi\nsfilhIXcx5qZb+5jY2MTxo4dS6NGPsydu4g5cxYiEom0n5apqVmkpaUjFotfmW1WkEgkYkxNDf51\nnJ+L3eJis6jsFhebL9stSgpMbBctWkRgYCC+vr7a5+7evasVz+rVqxMQEKA9lpWVxZ07dxgxYgQi\nkQg3Nzf8/f21m2iBgYFIpVIqVar0Tn4ola8vClOxYhUAGjRohEQiQalUolQqtR1vNQkLKpRKBXK5\nUnvcyckZPT09MjJebkXzYnNw27atDBjQB4BVq9bRrl2Hd/L5ffi3cX5udouLzaKyW1xsFjUFJrZN\nmjThr7/+wtfXFx8fH86dO8fevXvZsGEDAB07dmTt2rWsWrWKJk2asGTJEsqUKaMV127duvHrr79S\nrlw5rK2tmTp1Kp06dSrQ8oVmZubEx6fmeW769Kls27b5+UxWQk5ODvHxcZQt64JUKiU0NERbrGbw\n4L7P03UltG79BeHhYTx+HIOZ2Yvkhq1bNxWK2AoULgqFgoSEeGxt7f41TltA4HV8kNi+/Efn5ubG\nokWLWLhwIQsXLsTe3p558+ZRrVo1AOzt7Vm8eDHTp09n2bJl1KxZk6VLl2qvb9OmDbGxsfz666/I\n5XJatmzJ2LFjP8S9t+LatSuYmprSokVLVColx48fJz4+jurV3TE0NCQkRBN65ujo9Hz2q+L+/XCm\nTZuMWq3GzMxM28K8YsVKnDhxjNu3b+HqWvWj+y5QOFy9eoXvv+9HdPRDZsyYTf/+QrF4gXfng8T2\n7t28GVRNmzaladOmrz3fy8uLw4cPv/b4gAEDGDBgwIe49M4olUpcXV0ZO/ZHAFJT0wgJuceoUaOx\nsCjBjh3bsLMrxejRL4T/0KEDzJ49E4D69etz+PBhSpWyx8bGhrS0VEaMGMy+fUeFONz/OGq1mmXL\nFjNt2i/aGG0rq3fbQxAQyKXo4yGKGJVKlacoTe6bKjfLLDc1N+81Lx47OTmhoyPF1taOBw8e0L//\nIMLCQunZszMpKcmFMAKBj0FychI9e3Zh6tRJ2t//woXLaN++YxF7JvBfpdiLrVKpzJO+m5v48HL5\nxPzNLF481tXVxdHREVATHf0QO7tSjBgxisBAf7y86rFly8YCL6gj8HG5cuUK3t4NuHLlIqampkil\nUtav30LXrj2K2jWB/zDFXmxVKuX/zWzziu3rZra5x8ViMc7Ozjx58gSVSkV8fBwVK1bi11+nUbp0\naUaM+B5398rMmDGN2Nj89SQEPh3UajXLly/Fy8sLa2tr6tSpS3p6OsuXr6ZVqzZF7Z7Af5xiVc/2\nVQQH3+TGjUBKly7N33/7IpPJAWjRoqk2HTcmJpomTby08bgvp/2KRCLs7Ow4deokoKluVrp0GUqU\nsGTIkOE8fvyIU6dOsnLlUhYv/pP27TsyYsRoKleuUviDFXgtaWmpDB8+mIMH9/P9998jEolZtmwp\n8+cv5quvvn7zDQQE3kCxn9nmFgJfuXI58fHxpKQkIxKJtEJrZmaGhYUmtMvQ0JCaNWtRtqwLYrFm\nNiwSibCxsUWpVGJqasaTJ4/z3N/OrhTduvVgzpw/6dSpC6dPn8Tb24PvvuvK3bt3CnGkAq/j8eNH\nfPVVK86dO8Pq1WuRSqUsW7aUyZN/o0ePXkXtnsBnQrEX2/j4VOLjUzl69DQAnTt3Y8yY8ZiZmWNs\nbEJsbBx79uwDYNiw4Rw+fJQBAwaio6MRW7FYjI2NLQA2NrY8fvz4lXYMDAzw8WnBjBmz6NOnPwEB\n12ncuD5DhvQnOvrhxx+owCu5c+c2rVs3Izk5iZ079xAdHc2iRYv47bc/GDbsh6J2T+AzotgvI/wb\nuWHEueu4L/csy40xFolElChRAqlUiomJCQkJ8f96Tx0dHRo29MLDoz7nzp1h//697Nvnx4gRoxk2\nbOQ714L4fyIjI1i3bg3p6Wno6enh5ORM+fIVcXOrjpWV1Qfd+3Pj3Lkz9O7dDQcHB3x915ORkcGM\nGb8zatQohg4dXuwynAQ+LoLYPufVEQcaQc0N9coVWLValSc0TCwWU6KEJcBbl13U0dGhSZNm1K/f\ngP379/Lnn3PYtGkDf/3lS5069d7Z94CA66xdu4pdu7ZjZGSMlZUVOTk5JCTEI5PJ0NGRMmHCJIYP\nH/VO9/5c2bZtM6NGDcPTswHLlq3E2NiYESOGYWNjy4wZM8jKUha1iwKfGYLY/gu5M9v/7/Aglyu0\nJRpzBdjExAS1WkVq6rN3sqGvr88333SiYcNG+PqupkuXDmzbtodater863UymYyrV69y+vQJ9u3b\nS1hYCJaWVnz7bRe8vRtrK6mpVCqePHnCrFkz2LZtc7EXW7VazYIFc/njj9/o1KkLM2bMRCqVkpGR\nwaFDB5g4cTL6+vpkZWUUtasCnxmC2P4fCQkJZGdnI5PJUCpV/PjjWG23iJUrl7Nq1V/ExT2hfPkK\nhIWFakPAjIyMkMvl5OTkkJOT8841HWxtbRk5cgwLF86nffs2/P77LHr27K29f1ZWFkePHuLgwX3c\nu3eHsLBwFAo5JiYmuLq60bbtWKpUcc3XXv3JkyesXr2S7OxsfvhhTAG8Qv9t2rTxwd//GoaGhvz6\n61SkUikAAQH+yGQyWrVqXcQeCnyuCGL7HAMDTWrtyZPHtM/p6elz4sRxSpSwxMWlHPXqeWBvXwYr\nq5JUr+5Oq1ZNtTNbY2MTbVeJtLS09yqgY2BgwOjR49iyZRPjxo1k8eI/sbOzIzU1lbCwMBQKOS4u\nLri4uFC7dh0cHZ1xdHTKJ7CgmcGdOnWC7du34uDgxJEjJ3Fzq/4+L81nxfffD+PHH0eRnp6Oj08T\nVq1ag5tbNaKiIpFIJLi4lCtqFwU+UwSxfU6pUvacOXMZkUiElVVJLCwskEgkHDiwj/v3w1GrVSQl\nJREd/ZCQkHvacLAXYmtMZqbmq2dGRvp7b0bp6ury3Xe9qVfPg+vXr5GZmYGNjS01atSkShVX7O3t\nMTDQJStLlidt+GWSkp6yYcPf3LwZRN++A5k8eVqxr9OQnZ3NsWOHefLkMevXb8XGxoYBA3rTrVtn\ntmzZ/vzbiH6eBJcPQalUsmfPTtq0+fKDNz0FPg8EsX2JVyUa9OnTHdCIqaGhEYaGBjx+/JiHD6OA\nF5lmOjo6qFSaTZXc2N0PoWLFSlSs+G61fFUqFSdPHmf37l2YmZmxefMOmjVr8cG+/NcJDg5i4MA+\n3L8frm211L37d2zfvodvv21Hz57d6Ny5K5mZGWRkZGBhYfRB9pRKJd27f8vJk8fx8ztE/foNCmgk\nAv9lBLF9A/b29pQrVyFPuuaOHVu1LXxyZ7YvZ5a9S2PJgiI6+iHr168jMjKC3r378fPPv2Jqalbo\nfnxqbNu2mWHDBgGwZ88+nJ3Lsnv3TqZMmUzp0mXYvHkX7du3ZtmyJQAcP36U3r3frwaCWq3mypXL\nzJz5OxcvngPQxmALCAhi+0ZE+YpFq1TqPHG2uf/mtvkoTLHNzMxk//69HD9+lLJly7Fv31Hq1n23\n0LHPEZlMxq+//syaNSsRiUQYGBho12M7dvyW+Ph4Zs2ajqurG9u27aFt2xZERz+kT5+eqFQyatXy\nwMTEjCdPnjwvNuT0SjsqlYrg4CAOHdrPjh3bePjwAeXKlaNDh47s2rWTUqXsC3HUAp8ygti+B2q1\nWhsGlruMIJFICnVmq1QqOXPmNH5+e5DLZYwbN4Fhw0bm61BcHLlxI5AWLbyRSqX8/vsM7t8Px9d3\nLadPn6RxY0295UGDvufevXsMGdKfw4dPsXPnPpo18yItLZV+/frlu2eLFq1p2NALK6uSPHv2jOjo\nh4SG3iMgwJ+kpKeYmprSpk1b5syZR9269Vi6dDElSlh+9J50Av8dBLF9C7KyMklKSkIiESOR6KBQ\nyNHR0YQMvTyzzU2M+Jhiq1arCQwMZOPGTcTERNOpU1d+/vlX7OxKfTSb/yUuX75E166atkTt2rWn\nZ89epKens26dL4sXL9KKrVgsZsaMmXTv3oXvvuvCkSOnCAi4xfTpU1i3bi2gWYfv1asP9vb2HDx4\ngOnTp5KTk4OOjg729qVxdi5Lz57fUb++J7Vr1+Hp00ROnTrFqVMnOXfuLPb2wqxW4AWC2L4BIyMj\nrly5zJUrl/M8X7euB/BCbF+OrS3Ivmm5qNVqbt++xf79foSFheHhUR9f33+oXr1Ggdv6r7Jt22ZG\njhxK7dp1uX37Frt372LChElYWVnh7l6DwMAAkpOTsLAoAWh+t4sWLeHbbzuwdOkiJk6czPz5i5gy\nZTLLlq3Ez28Pa9aswtDQkCZNmtK795/Ur98AS0vLPEtLcXFPGDlyOAcO7EckElG6dBl0dHT4+utv\niuqlEPgEEcT2DezYsZeoqEjkcjlyuQy5XIFMJkNPT48ePTpplxFeFtuC/OqYK7L79vkRHh5GzZq1\nOHz4MHXqNECpfHXoV3FkxYolTJ48ke7dezBv3p9cvHiBDh3a06tXD1auXI2trWajasSIYSxatFQb\nuhcUdAO5XJ7nd+bo6MhPP/3M2LETCA8PY/9+P/bv92PYsCHo6enj7e1Ns2bNsbe358aNQFauXI6e\nnj6zZ//J1193FDYmBV6JILZvwNbWDltbu3zPBwcHAS9mttnZ2ejq5s5sC0Zs4+PjWL9+HXfv3qFG\njVps2bKT5s1bUKKEMcnJGbzcMaI4ExJyj8mTJwLg4VEfqVSKt3djfHyac/z4MRo0qIe+vgFSqS63\nbgXTokVTOnT4BlNTU1asWEaXLt0ZOvQHlEolGzas5dKl89jZlcbcvARdu/Zg5MixjBw5lgcPoti/\nfy/79/vx00/jUKvV6Osb0LmzZinH3NziDZ4KFGcEsX1PXtRL0IhtWloqhoaa4HUjow+L0wSIiLjP\n/PlzsLS0YuPGbfj4tEQkyh8ZIQCTJ08ANJuUw4cPZfHiRfzzzybmz19AtWquGBubkJ6ehq2tLU+e\nPMHY2IQ9e3aRmZnJyJFjmTDhFw4e3M+UKT/z4EEUAM7OzkRGRmJoaEi/fgMBTYfloUNHMHToCNLS\nUklOTsba2kbYBBN4K4p9Pdv3Jb/YpiGV6qKnp/fBb76cnBwWLfoTV1c3zp69TPPmrQSRfQ3BwTc5\ndeoEXbt2Z/Lkabi6ViU0NIR69WrTsqUPIpGI9PQ0Nm/eRnh4FGfOnKdu3bpkZmYyevSPTJjwC97e\nHvTp0x1XV1fatm0LwJw5cwEoUaLEK+2amJji4OAoCK3AWyOI7Xvy/2KbmpqKWCzG3Nz8g4UxISGe\ntLQ0pkyZjrGxyQf7+jlz8OA+DA0NcXV1Q1dXlx49ejFixCjMzS3yFHLv0aMbnp71OH/+HG5u1TAw\nMKBv34Fs3bqJe/fuAjBq1BjmzJkPwNKlSwGwtrYp/EEJfJYIYvuevNyFV6FQkJT0FIVCod3p/hAS\nExMBcHBw+OB7fe5cvHgBZ2eXPDUN7OxKMWbMj4Bm/dzOrhTm5uYEB9/k558nMG/eHLy9m2JoaMgv\nv0ygdOnSiMViWrVqTnh4GMbGxly4cAEQxFag4BDWbN+TlwuKJyYmolKpSE1NpVSpD493ffYsBZFI\nJLzR34Lo6AeULeuS7/mkpCQAsrOz8PBog4tLeVQqFdeuXeXcudO0bt2G/fv9SE19xuDBQ0hPT2fF\niqV89VVbnJ2diYiIAMDa2rpQxyPw+SKI7Xsik+UAmsD3R480LcoTEuKoXv3DyxjKZDL09Q1eWTpR\nIC/p6WmvrKqVnJyk/f+ePbvQ09NHKpVqE09at25Ls2ZeqNVqIiMjsLOzZ+jQH1i+fLFWaAEhjEug\nwBDE9j3JFVupVEpMTAwGBgakpaW9Mkzs3e8tQyrVeZ4WXHw2xtLT01iz5i8SExP48suv8fSsD8C+\nfX4kJCTy3Xd98l2jr6+vLQqUi0wm48yZ09rHlpZWKBQKZLIcMjMzATAzM6d8+QpERz9k27YtANo+\ncklJSZQp48CqVeuK1esv8HERxPY9SUlJATRhXjEx0ZQqZc/9++GUKVPmg+/t6OhEamoqZ86c0qaX\nfu7I5XK+/voLQkJCsLCwYOXKZVhYWJCYmMiCBfMJDNTUIBg5cmye68qUceTp06faxydOHOPUqRN5\nylz27z+Q8uUrAHDy5HG2btWI65YtuwDNss2dO7e5desmt28HExERzpQp06lZs/bHHrZAMUIQ2/fk\n6dNEbZhXTEwMlpZW6OnpUbLkh6/xubpWxdm5LMuWLSo2Ynvu3GmCgm6wc+ceEhISGTy4P8nJyfTv\n35/Bg4cwaFA/ZsyYhkKhYOzYn7TXVa/uzu7dO7lz5zY7d24nMzMDQ0Mjevfuy7p1axCJRCxevJBa\ntWqhUCiIjY1FoZCTlJSEpaWmSaeZmTn16zegfv0G6OiIsbAwIjk5Q+iuK1CgCGL7CtRqNRs3rn8e\nO6uDVKqLrq4uUqkUXV1d7O1LExsbi4VFCbKysoiJicbCwgIHB8cCWWcViUQ0auTN+vXrePQotliU\n6bt9+zYmJibUqFGT8uWdAc3r4Ovry7Nn6Tg6OvPgQSSzZ89ALpfz00+TEIlE+Pi0YPXqlWzYsA6J\nRMLXX3eke/eeiMVi7t27y8mTxzE2NuHChfNYWloilepSvnxFoqMfasVWQKAwEMT2FcTERDN69HD0\n9PRQq9XI5fJ8rc5r1aqDjY0N9+/fR6VSERMTQ506dQvMh9q167Jhw98cO3aEXr36Fth9P1WioiJw\ndHRi3LgxKJVKTExMtG3hd+3ajpeXN0+fJpCens6ff85BLpfxyy/T8PT00t7j77835mn/k9vp2MHB\ngTt3bhMfH0+VKq7ExMSwZMkCVq/+u3AHKVCsEba7X4FcLgfg558ns2XLDnbu9GP79t1s2bKDOXP+\nBODBgyhsbe0ICQnByMiIp08TKVeufIH5YGhoiItLOc6ePV1g9/yUiYi4j729PTt3bgfg/PmLNGny\nYgnl3LkzVKtWHRMTTZLHkiULmTx5Inp6ekye/BsSiYSEhPg894yPj0cqlbJ06Qr09fUxN7dg69Yd\n9OnTl2PHjmg3ywQECgNBbF+BWp03Oww0efe6urrExWmykhITE3B0dOT27dtakS3ozqyOjk7cunWz\nQO/5qRIVFZEngsDDoy6jRo3iq6++0j538eIFKld21YZjrVy5lIkTf2TAgME4OTmzevVfeWoJP3uW\ngrGxMQBNmzYjJSWZq1cv06JFS7KyMjlx4mjhDE5AAEFsX0luwsKr1l9DQkK0a32lSpUiNDQUsViC\ng4MjpqamBeqHnV0pHjyIKpAGkp8ycrmc2NhYsrOz0dfXZ/HiJchkMtq1+4rWrVvj7v6iZu/Vq5cp\nX74C5ubmAKxZs5JJk8Yzc+Y87ty5ja/vGq3gZmRkajP6Bg0aAsD8+fNwcHCkcuUq+PntLuSRChRn\nhDXbV5Arbq8S2zt3bmNtbYNMJiMpKQmFQkFkZAQeHvUL3A9jY+PnmWnPCiQN+FPl5a//3bp1p2PH\nb6hWrRpNmzZh6tSpxMXF5Tnf3/8a7u41ePjwAUlJSfz991oUCgUzZ85j/PjR3LlzGx+f5igUcm0G\nmJGRIU5Ozty5c5vx48dy/364kDQiUKgIf20vERcXxx9/TGPatMkA+QLaU1KSiYi4T1ZWNhUrViIg\nwB8HBwdSUpKpWtWtwP3R09P0E8vKyirwe39KxMU90f5/3Tpfnj17RvnyFShTpgxPnjxBIpGwcuUq\nOnfuoj3vxo1A7O3LYGlpBcDGjesJCLjOrl37KVeuPKtWrQQ0bXKaNfPGx6cJUVGRqNVq7t69y7hx\nE9i5c1/hDlSgWCPMbF9i795dLFgwD1fXqrRs2RoHB8c8x69fv4ZarSY6+gGenp7s2+eHm5sbSUnJ\n2qD5gkQuVwAFV4z8U+XlmatKpcLb24sbN24ilWr6vLVv3x47Ozu6d++BgYGhtkdYcHAQlSu7IhaL\nSEhIYOvWTcjlcv7+ezOpqc9Ys+Yv7O1LI5fLEYvFODo6UaFCxQLJ8hMQeFcEsX0JhUKJvr4+06ZN\nf+XxCxcuUK5cBcLDQ7XpudHR0bi7u6OjU/AvZVpaGmKxuMDXgj81Hj9+BGjqTFhYWBAfH8+QId/z\nyy+T+e67nly9epXvvusNQKNGjVi/fp12Xfbu3dtUrFgJkUhMfHwcu3ZtR6FQsHz5asaNm1BUQxIQ\nyIewjPASL7co/38SExMIDg7C0NAQZ+ey3Lt3Fzu7UkRHR1O7dsHF175MfHwcdnaltDO8z5WIiHBA\nE/ExbNhIJBIJe/bs5tkzTZzsw4cPWbjwT549e8aAAf1QqVTUqFFTu+YaEnIPU1MTbGw0fcb27t3N\nwIG989VMEBAoSgSxfYnXFX5RKpWsXbsGExMTQkLuUrWqG/7+/tjbl8bCwoKqVat+FH9iYqI/ylrw\np0ZkZCSgKSCjq6vLwIGayIHhw4cBmhnviRMn6NmzO0qlEi+vxgwb9gMTJvyirWMbHh6OoaGhtqX7\ngQP7qFLFRRszLSBQ1Ahi+xIqlQqxWCO2arWasLAwfH3XMHhwf65cuYStrR0SiQ4mJiZkZ2cRHh6G\np6dnnsLVb0NmZuYbA+rVajUPHz6gWjX39x7Pf4WUlGRAM+a5c2dhYmJMo0aNAU1EyJMnL8olenjU\np3dvTfWvsmXLMnnyVO0MNzIyAqlUir19aUCTQRYQ4F+IIxEQeD3Cmu1LqNVq0tLS2LTpHy5cOM/j\nx4+wsLDA2dmFp0+fEhJyj5Ejx3Dt2hUcHZ148CAKDw+Pt7rv/fvhXLlymfDwUKKjo1Gr1VSt6saA\nAYO1gfcvEx39kNTUVGrWrPUxhvpJkZWl+eDR1dXl6dNE5syZSZMmzShVqhQZGRlcuHAO0HRNGDBg\ncJ5rg4Nv5klkePjwAaVLl6FePQ/69RtEvXpv/v0ICBQGwsz2Jc6cOQXA4cOHsLMrhYtLOZKTk7l7\n9zag+Trr5laN0NAQbGxsMDAwoGzZsq+9n1qtJijoBtOmTeaPP37n3r27NGzozcKFy1iwYCmPHj1i\n3rzZJCcn57tu//69WFvb0KhRk4834E8EHR3NmnSpUvbMmjUHExMTTp48TkpKCmlpaWzcuAFjYxM8\nPRvkue7YsaPs2LENMzMzfH3Xa+sixMREo1Aoad++Y6GPRUDgdQgz2+c8ffoULy9voqMfEhUVQXBw\nEPXqedC9e0/c3WvQocNXuLq6kZGRQUJCAqVLl8HJyfn5EkL+DK/09HT+/tuXgIDreHo2ZN68xXh5\neecJpK9ZszadO7dnypRJNGvWHFfXqujr63P+/Dn8/a+zatW6z35zDNDO7KOiInF0dGbt2vWsXv0X\nR48eRqVSceDAPjw8PAkLC9Vec/r0SbZs2YiJiQnr12/C1NSUYcNGMHv2zOf3FBplCnxaFCuxffAg\niuPHj+Ds7EKJEiVIS0vj7t3bHD9+lPPnz6JWq6lZsxadO3emYcNGWhE4evQIANWqufPoUSygEefX\nFZ6Ji4vjzz/nIJPJWLNmA23bfvXKjbdKlSpz4sQFZs36nW3bNmvTR0UiEVOmTKdduw4f42X45Hi5\nhGS/fr2YOvU3Bg4cTI8ePZkzZyZBQUG4ulbl/Pmz5OTkcP36VTZs+BsjIyPWr9+IqakpV65cZs6c\nWejq6lKypDUXLpxl585tdOzYqQhHJiDwgmIltt9/35/r16/meU5HR4fq1d0ZMmQ4jRs3wcLCIt91\nt28HA1C9enXCwzWzq6Skp1ha5l8PTEhIYPbsGVhaWrFt2x7KlPn3DrlWVlbMmbOA33+fRWjoPbKy\nsnFwcChWgfe5H2qOjk5ERz9k3LgxdO3anU6dOjN69Gh69epFuXLlycnJYeXKZQQF3cDAwIB16/7B\n3NyCgAB/Jk4cj1Qq5dChozg5OfPTT+MYMmQAqamp9OnTv4hHKCBQzMQ2tzzfxo1byczMRF9fDxsb\n2zd+VX/48CEikQgLCwsyMjKQSCSkp6fn29jKzs5m6dJFmJmZs3fvEUqWLPnWvunp6eEWqrhIAAAg\nAElEQVTm9uHNIv+LZGRkAFCrVm0WLlxC79492bTpH65fv8aYMaMBsLa2pVevvvz9tyZ7bPXqdVhZ\nWXHr1i3GjRuNWCzGz++A9tvG7NnzMDU1Zfz40aSmPmPEiNFCPzGBIqVYiW3lyq7cvx/2zu3Gnz17\nps0QUygU6OhIUSqV+bLG9uzZSWJiAkeOnH4noS3uBARcBzSRBS4uLpw6dZbhw4dw/vw5hg4dikQi\nwdXVjQYNvNixYxsZGemMGjUcT8+G7Nvnh0gkYteuPVSpUkV7T7FYzC+/TCE+Pp7p06fSpEmzYhFG\nJ/DpUqyiEVQq1WszxP6NnJxsbSytZnakzndObGwMJ04cZ9y4iVSqVPlDXS025OTkEBoaAkBYWCgd\nO7YnMzOT5cv/YvjwH1AoFFSsWAkbGxv09PSIjHzEyZMXaNXqCw4dOohSqaRx4yZUqZI/seTkyRMc\nPnyIr75q/8rjAgKFSbESW7Va9V5fJV++Rl/fgJycHKRSqfbrL8CRI4exsbHR1k0VeDuOHj0MaFqS\nt2vXntDQEJo2bcTevX7s3etHmTJl2LnTj+vXrzJp0ng6dWrPzJm/UbKkNfv3H2HMmPGcOXOaQYP6\n50nPvX79GoMHD8DHpyXLl6/5KLUrBATehWImtq9Ox30TUqmutsatmZmmS4C5uYU2d18mk3H16mX6\n9RtcLEK1CgqVSkW/fj0BGDhwMGvXrmPtWl/UajU///wTaWmp7N+/nwkTfqRNGx8OHtyHsbExIpGm\naHiLFo0JDw9l/fotnDt3ltGjf0CpVPLoUSyDBw+gRo1axSZ8TuDTp1h93GvScd/988Xc3JwHD6IA\nsLGxAcDa2lpbhzUiIgK5XI6PT4sC87U48HJ/tcWLFxIaGsKiRYs5c+Yc9evXY/jwkVSvXh1dXV3W\nrl3HN9900v7+MjIysLGxxM9vN5aWJVm50pd+/XoilUoJDQ1BV1ePtWv/QVdXt4hGJyCQl2Intu8z\ns7W1teXGDTVpaalYWlqhr2+AkZExDx5oCqjEx2vqsRZ0D7LPnalTJwFgY2OLTJbD4cOHqFixPDVq\naNrg6OrqAZpvDiVKWOX5oOzdWzMjdnR0Yu3avyhXrhzz5i1i1ChN8ZoTJ84Jm5QCnxTCMsJbUL26\n5s1/82YQYrGYsmXLkpmZSVxcHElJSchkMqRSKXp6egXt8mfLxYvnuX37FgBt235Fv36D6NSpG+bm\n5gQEBCASibShehKJhPbt2zJ69A8AbNmyiUOHDmJvX5rBg4fi5dWISZN+wtrami1bdrFly85iG0Yn\n8OlSrMRWpXo/sc3NyQ8KCgLA1bUqoaH3EIvF+Pv7Y2BggFwuz7NhJvB6srOztTNQgFOnTnD37m1K\nly5Nv36DKF++As7OLjx4EPU86eN/7N11WFTZ/8Dx9wwdgoCIgKBioISCYK9iYoKB3a1rrl1rJ3br\nmiiouyrqrp1f2zVQkbUBKUUFpWWomd8f6OzysxUYlfN6Hh4f7r0zn3PvXD+cOffEYooUKcK6db/h\n6GjHwIH90dDQpG/fAQA0adKc8uUr0K9fL5ycnKlfv5GqTk0Q3qtANSNERIQRHPyQli2bf/C4N7N/\n6enpoaamzpv8HBBwlV9+GUJmZhbp6emoq6uzceNGZbvgqVMn8PBomden8d2bNm0Sjx6FAtlNBaGh\nIYSGhnDw4H4KFSpEZmYmzZt7snXrZmJjYwkPD2PWrHn4+W3h/PnsGcDq1q2Ptnb2ckFSqRR7ewfu\n3LlNQkICxsYmKjs3QXifApVs1dTUUFNTQ09P74PHZWZmkpSUREpKCkWLFkWhAF1dPV69SlH+B8/K\nykRLS5ukpETU1dXJysri0KG/RLL9iJ07d7Bp03oAjI2N2bDBh1evXnHy5HEuXbpIWNgjZDIZmZmZ\nxMTEALBs2RIge1ivkZERcXFxnD59iuvXA9DR0QYkJCYmUKVKNUqVev8sbJ8rLu6lsseJmpoaxYtb\niVFowhcrUMnWzKwY9vYO/PnngY8eW6ZMSSwsLDlw4PA79/v5bWXRogVoa2vTs2cv5HIFvr5bePHi\nBSYmomb1Lnfu3Gb06OHK32UyGdOnT8HaugS2traMHz/p9exdP1OsmDmtW3tx584/1K1bj6tXrxIa\nGkJcXLzy9YmJCchkqcjlcjIzM2nZsnWulfX8+bO0bdsqR9/ddes2i2kbhS9WoJLt5zwgc3Bw5MaN\n6yQmJr5zwcVWrdqwevVKypQpg5+fLzt27GTr1i0sWbKAWbPm5XbRfwiTJ4/H0tKSsLAwsrKyUCgg\nMPAmgYE32f96VfE3PQ5u3ryuHH7buXNXOnbsAmQvUXTmzCkOHz6Mubk5BgaGXLlymdjYWHr37p8r\n5QwODqZHj67UrFmL7t178PPPAyhTppzo2id8FZFs32PEiFF0796FefPmMGfO28lTX1+fLl264eOz\nCYUCfv99B3379mPVqhW0a9dB2YNByBYQcJVz587QoEEjQkJCGDt2PN269UAulxMeHs7Vq1e4ffsf\nQkODuX//PvHxcWRkZHL//n1atfIgNTWVjIwM5eCS/69GjVq5MkosMTEBT09PTEyMWbduAx07tsfI\nyJht23aKOXKFr1IAk+2nHevmVhdzc3MOHTrAxIm/vnPpmt69e7Nv3x4MDQuzbZsvmzZtoVw5WwYO\n7MORI6cwNCycy2fw/frzz72Ymppy48Z1tLS06NIlu5+sVCqlVKlSlCpVCugAgLf3XC5evKBcDw6g\nePHiGBubYGpqirm5+evJ20tiaGhI69Yt6dPn62u1WVlZ9O3bi+joaE6dOs3IkSO4f/8ef/11JMec\nu4LwJQpgsv303m6zZs2jT58eDBo0gK1bt721X09Pn8mTJzN48GDlHKoLFixmyJCf6dOnO9u27RJ9\nb1/7+++L1Knjhr//bgBq1KiChoYGGhqaaGtroa2tg46ODnp6erx8+YJHj0LZsMGHLVs24+vrR40a\n/y6Jk5aWhp/fVlasWE5Q0C0AnJ2/fq22adN+5X//O8nhw4fZssWHQ4cOsGXLDtFnV8gVX9zPNj09\nHQ8PD65evarcFhUVRa9evXB2dqZFixZcuHAhx2suXryIh4cHTk5O9OzZk8jIyBz7fXx8qFOnDi4u\nLkyaNIm0tLQvLd47fe6ghoYNG1KjRk1u3LjO1q0+7zymSZMmeHm148mTJ8hkaSxY4M2sWXO5fPkS\n3bt3FH1vXwsLC8XGprTyd0tLy9dfyxUkJCQQFRXJ3bt3uHz5bx48eIBCoeDVq1dIpVLatvXi9OlT\nTJgwHmfnSlhaFmPs2DHKlXO1tbUpXtzqq8q3bdtWfvttFfPnLyQ4OJhly5Yya9Y8Gjdu+lXvKwhv\nfFGyTU9PZ+TIkQQHB+fYPnjwYIoWLYq/vz+enp4MGTKEp0+z5w+Ijo5m8ODBeHl54e/vj5GREYMH\nD1a+9ujRo6xevZqZM2eyZcsWAgMDWbBgwVec2tu+ZASZj48vhQsXZuHC+Zw9e+adx0ycOImyZcsC\nCkJDQ9i0aQNz5nhz+fIlmjatT0jIw1wo/fdNJktDT08PqVRKnTpu3LgRxP37wYSFRREdHUNsbDzx\n8ckkJaUSHZ3d5SsiIpy9e/cilUrx8mrDunVrefLkMRYWlri7N2HEiDFUqGCHjU3pr+qSdenSBcaO\nHUGfPv0oXbo0Q4cOpX//n+nbd+DHXywIn+izk21ISAjt27cnKioqx/ZLly4RGRnJjBkzsLGxoX//\n/jg5ObF7d/bXxp07d+Lo6EjPnj0pXbo0c+fO5fHjx8qasa+vLz169MDNzQ0HBwemT5/O7t27c7V2\n+yVzI2hra3PgwCE0NDQYMuRnDh8+9M5j1qxZh7GxCVpa2oSGhrBs2RJmzJhNWpqMevV+YvnyJble\nU/+e6OrqkpSUhEQiUfZdfZ9ChQphY2NDYOBNPD096dixMwDNm3vwyy+j6dSpKxUrOiGVSomJicHa\nuuQXlyss7BG9enWhZs1a9OrVm65dO9O0aVNmzxY9SoTc9dnJ9sqVK9SoUYM//vgDheLfSbRv3bqF\nvb19jjZKFxcXbt68qdxfpUoV5T5tbW3s7Oy4ceMGcrmcoKAgXF1dlfudnJzIyMjg3r17X3Ri7/Kl\ncyNYWZXgyJETaGtrM3bsKKZOnYxcLs9xjJGREevXb8LU1JSMjAzk8iwmThyHu3sT2rTxYu7cGVSp\n4sjq1SuIjY3NrVP6btjalufevbuUK2dLYOBNFi9eyJw5sxg+fCidO3ekSZNGVK9eBXt7W0qWLE54\neDj+/jsBmDlzLoUKGfDixQsge5kif/9dLFu2iCdPHhMd/eSLypSUlEi3bh0wMjJiwYLFdOjQFhub\n0uzYsUM5Wbwg5JbPfkDWqVOnd26PiYmhaNGiObaZmJjw7Fn2jFjPnz9/a3+RIkV49uwZiYmJpKWl\n5divpqZG4cKFefr0KZUq5dYDCgXwZV83S5cuzd9/X8XTswV79uxmz57dLFu2ghYtmimPKVq0KD4+\nvowbN5ozZ07j4FCRdevWYm1dgj59+hEREc6sWVOZNWsqjRo1YdiwEbi4VPlA1B9H9eo12LRpA9u2\n/U6LFk2YMuXXHPslEinq6mqoq2ugqamBvr4+sbGxxMfHo6OjQ82aP3H69EmuXbtCZmYmAIUKGSCV\nSpWzhH2OrKwsBgzozdOn0Rw4cJj+/fsglyvYvn0X+vr6xMWJtnYhd+Vab4TU1NS35g7V1NRUjsCR\nyWTv3S+TyZS/v+/1n0pN7cOVdalUkqNL0ecwNjbm4MHDODhkL3szfPhQtm3zZenSFcpJxQsV0mfl\nytXs2LGdRYsWYGxsgp6ePuvWrUVfX5/69RtQtKgZFy6cp2nTBtStW585c7w/eSmdN+f3sfPMbV8b\nt3PnrixZspB79+5ga1ue+/fv0aVLN6pXr/HObnXPnz9n3LjRnD59mvr1G6Ovr0daWhqFCxfG0bEi\ndevWQ1+/EIsXL0BPTx919c8r1/Tpv3Lq1An8/fcyb94cgoMfcujQcaysin/VeX4pVXyuBSWmKuK9\nS64lWy0trbfa4tLT05VzCWhpab2VONPT0zEwMFAm2Xft19HR+axyGBi8/3gNDTXU1KRoa3/ZzP3x\n8fHUqZPdBalx48bcv3+fK1euULt2TQYPHszw4f8ORe3TpxeNGjVg0aJFHDhwgCJFilCmTBkCAq4R\nFxdHixYt6NKlM+vXr6dmzSpMnDiRGTNmfPLX1w+dZ1760riurpVo27YtCxZ4s3PnTho0aMC2bb5k\nZKTRpk2bt44vUaI4VlZW7N27l1atWtGunRf+/rsYN24curq6yuPkcjkGBnoYGX14vov/2rx5M6tW\nLWfZsmWcOfM/Dh8+xP79+6ld+9+l6b+36ytifvtyLdmamZm91TshNjZWOYGzmZmZcmKR/+6vUKEC\nRkZGaGlpERsb+7pze/bXvPj4+M+eADoxMZWsLPk796WlZQAgk2V81ntmv28itWvX4uXLlzRr1hw3\nt3o0aOBOcPB9fH39WL58Odu2bWf27DnUrl0HgKJFzfH2XkivXn3Zu9efAwcOkJAQj5OTM+fOnef4\n8eNYWFjy7Nkz5syZw9mz59i4cQumpkXfWw41NSkGBjofPM+8kBtxp06djZtbDbp06cLKlauZNGkC\nO3fu5ObNQMaMGZdjBFh6ejq2tuXZt28fL14kcu9eMBKJBJksA4kknefPn/Hw4UMSEhJITEz55K/9\nly5dYMCAAfTu3YesLAVLly5lwYLF1KjhRlxcynd9fUXMj8dVpVxLtpUqVWL9+vWkp6cra6oBAQHK\nh16VKlXi+vXryuNTU1O5c+cOw4YNQyKR4OjoSEBAgPIh2o0bN9DQ0KB8+fKfVY6sLDmZme/+EOXy\n7Dbb7H8/XXJyMm5uP/Hy5Qvc3ZtQu3Zd5HIFUinY29szZco09u//k7//vsTAgf2xsrJi/PhJ1Knj\nBkC5craMGzeR4cNHsnevP5s2bSAlJRkHh4rcuJHdV3TZspXMmjUdD4+m+Pvvx8ys2BefZ176mrhm\nZuYcP36Wvn17MGzYECZNmszx48c4f/4c/fr1RiKR5Hjo+saWLT5Mm5bdxjtv3uy3enU8ffr0k8oU\nHh5G9+6dqV69Bo0aNaZLl44MGDCIHj36vvX67/H6ipjftlxryKhatSrm5uaMHz+e4OBg1q1bR1BQ\nEG3btgXAy8uL69evs379eoKDg5kwYQJWVlbK5Nq5c2c2btzIiRMnuHXrFtOnT6d9+/a5OgLrS7p+\nJScnU7fuT8TGxtKwYWPq1Wvw1jFSqRQPj1ZMmjQVOzt7oqKiGDx4ID/9VJ25c2fx/PlzILsHRqdO\nXfjzz4P07NmboKBArK2t0dHRwdt7DtOmzSAxMZFWrZopHyz+aKysrNm//yjduvVi6tTJWFoWp2HD\nfyf7LlXKhnLlyuPg4IiLSxUKFSpEQMC/A2d0dHSwsSlN7dp16NatJ3p6ep/U3p2cnET37h0xNDRk\n3LgJ9OvXG3f3JkybNjtPzlMQ/r+vSrb/TVxSqZTVq1cTExODl5cX+/fvZ9WqVRQrll1Ds7S0ZMWK\nFfj7+9OuXTuSkpJYtWqV8vXNmjWjf//+TJ06lb59++Lk5MTo0aO/pnhv+dyuX69evaJevTrExMTQ\noEEjGjRo+MHjdXV16datJ1OmzMDVtSoymYzt27fRoIEbderUYsqUX0lOTkZXV5ehQ4fj67udV69e\nIZPJ0NLSYfTokQwZMpTk5GQ6dmxNYuKH+6N+rzQ1NZk7dwErVqxl587fcXaujL29AwqFAgeHinh6\ntqJJk+Y0aNCQypUrs3evP+vW+QDQuXN3+vUbSLNmHtjZ2QN89DPNyspi4MA+PH4cxbJlK+jfvw82\nNmVYs2aj6OIl5BuJ4l3f275jcXEp7/160rNnF1JSktm61e+j7/Pq1Svq1q3Ns2dPqV+/IY0aNX7r\nGKlUgra2BjJZxnubJsLCwjh37gyhocHIZDKkUik9e/ZixIjsPySjRo3g2LEjSCQS7O0defjwARMm\nTGTJksXY2zuyc+feHL001NWlGBnpffA880JexZ0xYzLr1//GkSPHcXevT0ZGxn8WdpQACuRyOf37\nD+Lgwb8oVsyctm3bK18/a9Y0Ro4cx9Chv7w3xvTpk1mzZgVbtvixYIE3L1684PDhkxQrZp5v5/kx\nqohbUGL+N64qqb4/RD761JqtTCajfv06PHv2lLp1670z0X6qkiVL0q1bD6ZOnUmPHr3R09Nj06aN\ndOjghVwuRy7PnjKwbdt23L4d9HqV2AVMmDCRq1f/ZsKE0e9sx/xRDB06Ark8i7Nnz+DsXBnIbkoo\nWbIU1tbWWFtbo6+vz9mzp+nVqy+3bt3MMd/Exz7T7dt9WbVqGbNmzWHbNl9CQ0Px89v5zkQrCHmp\nAM769eFjZDIZ9erVITo6mjp16tK4cbMPv+AzlC9fgfHjf2X7dl9u3/6H7t27YGxsDIC390IyMjI5\neHA/FhaWrFmzmgkTJjFjxjQcHSvRs2efXCvHt8TIyBgXlypcufI3GhoaSCQSJk6cDGR/c9DR0eTC\nhUusWLEMZ+fsh63Xr1+jdm03FArFB9vhz549zejRw+nVqw/h4eEcP36Mbdt2Ym/vkG/nJwhvFKhk\na2JiwrlzZ5DL5f/5qvqv9PR0GjRw48mTx9SuXYemTT+8MOSXkEqldO3ag40b1xEYeBMrq+zZqtTU\n1Jg/fyGPH0cRHBxMRkY6//wTRPfuPfn113FUruxCxYpOuV6eb0HZsuW4efM6kZGRKBQK+vTpodz3\n30S6cOEcPD1bc+bM/6hWrQb+/ruQyWTv7LFy//49evfuRt269ShXrhwTJoxj/vwlYuVdQWUKVDNC\nly7diYgI53//O/XWvvT0dOrXdyMqKopatWrTrJlHnpalW7eeaGho5JhmUktLizVr1iGVSihZ0oY9\ne/yxs7OjXDlbOnb04tatm3laJlV5M+DlzR+eqlWr4eLiSuXKlXFycsLBwYFixYoRGBhI587diI2N\nYenShTx4cJ+NG31p0CDncjXR0U/o3LktVlZWdOrUmYkTx/Pzz0N/2G8HwvehQNVsXVyqUKGCHYcO\nHcjRsyAzM5OGDesRGRlBzZq1aNHCM8/LoqmpiZdXO37/fXuO7aampnh7L6Rv3144OVVmypRfWbt2\nHcuWLaVVq+b4+m6nVasWeV6+/PT8+XOMjIxIT09HKlVj/PhJQM4HkE+ePGHQoAE8fhxFxYpOxMQ8\nZ/fuv96a2Ds2Npa2bT1RKORMnjyV3r170KRJc6ZMmaGKUxMEpQKVbCUSCT/9VIejR/9dMTc70dYl\nPDyM6tVr4uHRKt/KU6mSM8eOHeXlyxecOHGChg2z/wA0auTOoEFDWL16JWXL2jJmzCg2bvRh8eKF\ntG3binnz5tG7948x16pCoSAg4CqNGzfmxIkTyOVZTJ8+BalUilSaPTkNSJTNCUuXLuTo0f+hrq7x\n1pL0CQnxdOjQmoSEBDZv3kLfvr2wtS3PmjUbRBcvQeUKVDMCQPXqNYmICOfZs6dkZmbSqFF9Hj16\nRLVq1XN1KexPNXjwMKRSKcOGDVbOZgUwevRYGjVyJyIiDH39QvTt24sJEyYxYMBAxowZQ7dunYiL\ne5nv5c1tly9f4vHjKBo0aKTsV3zrViA3b94gIOAaly9f5vLlv/n770sAhIaG8OzZs7cSrVwup2vX\nDgQFBbJjxx+MHz8WNTV1tm79I8dcCoKgKgUu2b6Z0vDmzZs0btyQ0NAQXF2r0qqVl0rKo6urS7Nm\nHqSkJDNs2BDldjU1NVauXEPVqtVeJxd9OnRoS82atfD19eXChXPUqlWFvXt3f7ddw9LS0hgxYghl\nypSlZs1aWFoWR0NDg1OnznLq1FnOnDnPlStXOHPmPP/73zmOHj2JoaEhfn5b3nqv9PR0Ll++hK1t\neebPn0dYWBjbtu3CzMxMBWcmCG8rcMnW3NwCAwMDfvllKMHBD3FxccXLq51Ky1Sr1k+Ymhbl4MH9\n3Ljx7/wR2trarF+/iapVqxIVFUnx4lb06NGNe/fucfz4SapWrcqAAb3p1MmLu3fvqPAMPp9CoaBO\nneqEhAQTHPyQsmVLcfv2P2RkZDB+/BjWrFnFiRPHiY6OVr5GU1MTd/cm/PHH9rfmR1i+fDEAmZkZ\nnDhxnI0bt1Khgl2+npMgfEiBGkH2RsmSxXj16hXOzi60b9/xi2N9ygiyTxUfH8f8+XMxNjbm2rWb\nObqmZWRkMGXKJLZv30bFipUICrqFq2sV5syZR3h4ONOnTyUqKpLWrdsyZsx4Spcu+1VleZfcHvmz\naJE33t7/zktgYGBAYmLie4/X0tKmUKFCaGlp8fhxFL1792fevIUA7N79B4MG9cPEpAgvXsSyaNFy\nunXr+UXlUvUIpx99NJeqr68qFbiaLYCBQfZE31+TaHNb4cJGuLnV5cWLF0ybNiXHPg0NDebM8WbW\nrDk8eHAfa2trHj9+TJMmjTh37iw7d+5m1qw5XLhwjho1XOjQoTV79+5WToDzrfH19cHbezajRo1h\n8OChADkSrYWFJUOGDGXlylUMGjSI+vUbYGFhQWxsDI8fR1GtWg00NbPnJN6/fx/Dhv2MsbExL1++\nYMiQX7440QpCXiqQybZLl+4ULlxY1cV4S+PGzTAwMGTrVh9CQkJy7JNIJHTr1oODB49QuHBhnjx5\njL29I/7+u3Bz+4mgoCB++209ixcvJS7uJQMG9MbBoQzVqjnRv38vVq9ewcWL50lOTlLR2WU3HSxc\nOI9Ro4bRvXtPhg4dzi+/jMTaugQA6urqNG7chJiY56xcuYIRI34hLCyMUaNGYWhoiLa2NmvXbmT/\n/qPMmDGXvXt3079/L8qUKUtycjLNm3vy66/TVHZ+gvAhBbIZwdfXh9Gjh+PkVBktLU20tLTR1NRE\nS0sLTU2t1/9m//7vtuzj3gwphdxtRngjOvoJy5cvwcrKmvPnL721XyqVoKEhxcdnK/PnzyMxMRF7\ne0ciIyN4+fIF5crZ0qiROzY2NmRkZPLgwT1u3brFP//8g0yWikQioUyZcjg5OePk5EylSpVxcHD8\n6BP7r/369+zZM8aOHcHhwwcYM2YcgwcPJSsriyFDfubkyROMHTuJRYvmYWFhyZEjx9izx5+VK5cr\nB32YmZmxbdsuKlZ0QqFQsGnTeiZNGkvHjp0oUsSUHTu2c+1a0Gev7JHb5/k9xS0oMf8bV5UKVD/b\nN9zc6uHu3oS4uDgSExNJSYkmOTmZV69SSE1N/eBrJRLJ6ySsjbZ2djLW0NBEQ0NDmZT/f8J+83v2\nPu3Xifvf7f/tA2puboGLSxUCAq6yYsUyhg4d/lYZ1NTU6NKlKy1aeLJtmx8bNqzj5csX2NiUQUdH\nl23b/IiPj0NNTQ1Hx4pUq1adAQN+xsjIiLCwRwQGBhIUdIu//tpLWloaUqkUW9vyVKpUWZmE7ewc\nlEsafQ2ZTMaOHX7MmzcTNTU1fvttA02aNCUpKYlhwwZz9uwZNm/eRsOG7ly9epmjRw9RvnxZbt26\nQ0zMcxYuXECFCnZs3foHJUqUQCaTMXbsCH7/fRuDBg1h3LgJNGhQlzJlyn51ohWEvFQga7YfkpWV\nRWrqK5KTk0lJSX79bwrJyUmv//13e2rqKzIyZLx8GU9iYhLJyUkkJSW9TtzJJCen8OpVCllZWR+M\nqampibGxMYULG2FsbIKxsTFHjhxCoVBw8eLlHDNUvas2nZaWxokTx9mzZzenT/+PzMxMzM3NsbS0\nIisri8jICGJjY5BIJJQuXQYnJycqVXJSzgf78OEDbt0K5NatW9y7d5fMzEzU1dWpUMEOJ6fKODlV\nxsXFhRo1XElJyfik6xsaGsL+/fvYsOE3nj9/RuvWbZg8eRrGxsZERETQp09PoqOfsH79FmrW/ImB\nA/tw+PABbGxKExISrBzUMHv2bPr0+Rm5PLucgwb14/79u6xYsYq2bdvTqpUHt/pJgVoAACAASURB\nVG4FcvjwKWxsSn/x5/6GqmteP3otU9XXV5VEsv0Kn3LjKBQK0tLS3puwU1KSiY+PIyIinEePQgkL\ne0RERDgZGf+uk2ZhYYG1dQlKlChJyZIlKVPGBgsLK6ysrDA0zNn2nJiYyOXLf3Pu3FmuXbvC3bt3\nkcvl6OvrY2VVAm1tbRIS4omICCczMxOpVEqpUqWwtS1P+fIVsLGxQaGAuLg4/vkniKCgWzx4cJ+s\nrCy0tLSwt3fA0dGJUqVsMDY2Rl+/EMbGxiQlJREWFsq9e3cJCLjGvXt30NbWwcPDk0GDBmNjUxqF\nQsG+fXuZOnUyRkZG+PntxMzMjG7dOhIQcJVmzTzIysri2LEjSKUSdu7ci4dHE549i2PlyhUsWDCH\n4sWt2LLFl0qVnBg+fChbt/qwe/df1Kz5U759pnmhoCQ+VV9fVRLJ9it8zo2jUCi4cuUymZkZ6Onp\noaenj66uLnp6ehQqZJCjKUEulxMd/YS//75IQkIC0dFPePQolIiIMMLCHhEfH6881tCwMCVKlKBE\niRLKhPzmdzOz7C5ub0ZjXb9+nRs3ApSrIFtYWFKkiCkaGhq8epXCkydPSEjIfm9dXV3KlbOlVKlS\nmJtbkJr6ipSUZGJiYnny5AmRkRG8evUqxzlqaWlTtmxZKlSwo0GDhri51VW2BT99Gs2kSRM4ceI4\nrVu3Zd687Cklvbw8uH//Llpa2igUctLT0/HwaMXixcsxMTEmPT2Z2rVrExoayqBBQ5g8eSq6urqs\nWbOaMWNGsmTJSrp06Z4rnyeoPhl8q/fv9xzzv3FVqUC22arCw4cP8PBwf+9+XV1dKlZ0okSJklhZ\nWWNtXQJnZxdsbXNOH6iuLgXSuXHjH0JCQggLe6T8uX49gCdPnihHlGlpaWFlZaVMwnXr1qV79+6k\np2fw4kUsISHB3Llzh7t37yqTrIGBAZaW1ujq6pCZmUlQ0D/873//Iz4+TlkGbW0dLC0t0NLSQkdH\nFzMzM0qUKEm5cuUwNS2KiYkJJiYmaGho8PLlS9asWcWWLT4YGBjg47OdZs2yJ9LZv38fkZERODhU\nxMHBkQoV7KlYsRI1a/6kfAiZlZVFaGgoAwcOYu5cbwBOnjzOuHGjGThwSK4mWkHIS6Jm+xU+56/0\nzZvXcXevy/DhIylWrBjp6elkZGRw9OgRrl69jIaGBrVru/Hs2VOio6N5+fIFhoaGPHwYybx5s9iz\nZxcmJiZIpVLc3RuRmamgdu26FC1qhrV1CeUgCJlMRmRkBGFhocok/OjRI8LDs5sn3oy8kkgkFCtm\nrqwRa2pqkpKS3T796tUr4uJe8ujRoxy112LFimFsXAQdHW0Uiuwhsikpybx69YqEhHhkMtlb562m\npoa2tg4DBw7m55+HKPs4f4ro6CgqVcoeBebsXJlz5y5y7949GjRwo0qVavj6/pHrE8youub1rd6/\n33PM/8ZVJVGzzSfJyckALFu2+J375XI5ZcqUoUOHTpQpUwZ//11s3rwRgBs3ApDL5YSEBBMfH09g\n4E3S09Px9p4DZA960NLSxsHBEYVCjrt7M6ytrXF1rYqHRyvMzIohkUiQy+U8fRqdozb86FEoDx7c\nJzw8jLi4f2uvhoaG2NiURk9PD7lcjkKR/R8jIyOTtLQ0YmJiePbs6TvP5ciRU7x4EUtsbCypqal4\neramSJEiyv2jRw+nSZNmNGz4/uWG9u//k19+Gaz83dKyOHFxcbRv3wZzcwt++22TmMlL+K6IZJtP\natWqza+/TsfKyorMzEyysrLIysoiOvoJ8+fPISsri3Xr1gJrgZwrFGRlZeHo6Mi1a9de91gwIioq\nCl1dXZKSktDX1yc+Pp7bt4NISkrin3/+ISUlWfl6XV1dihe3xtzcnPT0dJo2bY6LSxUaNmyMlpam\n8iFbQkJ8jkT8plYcFfWIJ08eK5snNDU1MTMrhlQqRS7PWTvp1KkrlSu7fvBaODlVxtLS6p37MjIy\n8PLy4O+/LyoXujQ1NWXrVj86dWrPy5dxHD9+hkKFDD7vAxAEFRPJNp9IJBKGDRvx1vbg4IfMnz8H\nW9vyzJ49lwsXzhEYGMipUyeVx8jlctTU1EhIiKdkyZJERUWho6OLTCajUCEDsrLkFCpUCG3t7HbW\n/fsPkZSUxODBA3ny5DFubvWIi4sjIOAqycnJBARcQ1dXh5SUFDIyMjAwMKB4cSuKF89eYNHTszUt\nW7bJUc6srAwSEmIIDLxNSEgIUVFRWFlZ4+hYCTs7e/T19d953vHx2b0a/v77IvPnz6F2bTf8/fe/\n89jQ0BA6dvQiLCz0dcws1NXVOX36HIsXL+TYsaPs2LGbEiVKfuGnIAiqI5Ktir2pLUqlEurVq0e9\nevUAWLFiOUuXZjc5vOlPK5PJKFmyJPfv38fKyprIyAQsLS0JDw/H0rI4z549w8ioMBKJBAMDA5KT\nk9DV1aVOnboAPHoUSnp6Op06debUqVPEx8czcmT26r1PnjzmyZMnbNjwGw8e3Gf37r+UZUxIiMfX\ndzPnzp1GQ0MTN7cGWFhYUq6cLTJZKlevXkahkCOXyylduiylStmwceM6Vq5cyuPHUR+9BpmZmaxf\nv5a5c2cik2UPKtHW1kEmS2XXrl08fPiA2bNnMmbMBLGGmPDdEslWxQwMsr8O3717lzlzZiGRZK9K\ncOXKFeVDL4VCzrNnz4Ds7loKhQJDQ0MiIhSYmZkTEhJCsWLFiIgIp2jRf+dvjY+PRyKRcP78WWxs\nSpOUlEjhwoWJjIzA0NCQyEho164D+vr6RESEs3btagCuXr0MQEpKCps3b2DGjMnK95RIJJw8eeK9\nAzUsLYsTEPAPwcEPcyTa1q3bMnnydIoXz9l8EBh4g1GjhhEUdEv5h6dQIQOSkhLp168/rq6uuLi4\n0KBBI0aOHPtV11oQVEkkWxUzMytGmzbtOH/+LL///jsKhUL5U61aTQAuXbqgPP7q1asAyGTZvQp0\ndbOfsJqaFkWhUGBlZQ1Aenr2foVCwcGD/35tNzUtSmRkJAYGhhQubERcXBzz5s3hwIG/MDU1ZebM\nuXTt2pPQ0BCqV3cGwMrKisjISNTU1DA1LUqJEiW5fPkSPj6+aGpqIpWqIZVKuH79OvPmzebKlct0\n7doDH58NVKtWg+nTZ1OpknOO837+/DkLFszB19eHsmXL0b17T7Zs2fy6HToRBwdHvL0X0KhRfQoV\nMmDVqnXvXBFZEL4XItl+A9au3fjB/R07duHgwf0kJSUSFHQLgIcP7wNw4sRRAC5ezE7ISUmJ3Lt3\nl5cvXwDZywCZm1sSERFGQMBVypYty/nz57GzMyAlJRlPz2YYGRkzffpsunXrRUzMc2xtS5Cenq6M\nX7t2HbZv30ZWVhampqY8epTdpmpiUgR9fX3i4uLYvt2P/fv/xNCwMLq6OtjbO/DPP8EYGxvneNiX\nkpLC2rUrWblyKerq6owaNQZ398Y0aeKOmpoaqamp6Ovrc+LE/xg5cgS3b9/myJGTGBkZ59LVFgTV\nEP1sv4Iq+gxKpTBs2EB27NjxScvhlCtni6dna8LDw9i163c8PFqyf/+f1K/fkMDAmwwbNpIePXoT\nF/cSd3c3YmJilK+tWbMWly5dfG8ciURCp05d2LvXH3V1dQYOHMKAAYPe2Zc2OTkJH59NrFmzgvj4\neDp37kK/fgMwNDSkRYumhIeHoa2tjUwm49ixE4SHh9OvXx82bdpEq1btf+jPVFVxC0rM/8ZVJVGz\n/c5IpVKePn1K9eo1uHv3DnK5nCVLltOnT0+KFy8OQFRUFFpa2qSlyXj5MntRyPDwMCC7/+qbAQEA\nL1++oEmTety7d1cZo1Gjxhw/fpSsLDnq6uo55mkwNDQkLS0NmUz2eq6DPfTvP4hBg4a+s/aZkpLC\nqlXL2LBhLSkpKXh6tqRv3wHKsq5bt5bw8DD09PRJSUmmd+8+mJqa0bp1Szp16kKvXr2Ii0vJgysp\nCPlLNIJ9hx4+fIiFhQXJycmYm5tTsmRJAOrVa0CpUjZIJBK2bdsBZCfTkyePc+3aFQDGjZvEH3/s\nJT4+nr59e+DoWE6ZaIcNy57OMSQkGD09Pa5du5JjgpdZs2bx88+DlPP61qvXkKtXgzAzM+PEiWPv\nLOuBA3+ycOE8XFxcOXToGNOmzVQm2tjYGFatWom6ujopKckUL16c+fMX0bNnN4oVM8fbe1GeXD9B\nUAWRbL8zMpmMqKgoihY1IzMzE2vrkty4cQMAe3t7YmJiUFdXRyKRoKGhgVwuJzj4IWPHTiQkJIpR\no8ahra2NvX1pDh8+AICTkzOampr4+flStWo1QkNDqFevAVlZWSQmJqCllT2v7fz581m0aCFt2rTl\n2rUg/vhjD6amphgYGGJo+G/TwcWL5/Hy8mDKlIm0bNkGR8eKBAcHv9UXd8CAfsjlWcrpFA8fPs70\n6VO5e/cO69Ztfm/fXUH4Holk+5159CgUhUKhnIegfPny3LlzGwAXF1eeP39ORkYGnTt3REtLm+HD\nR3Ljxm1GjhyrHHX1ZpirkZERZmbFuHnzBu3adeDly5e4udVFIpFw40YAhoaGBAbeRF1dDR0dHdq1\na8e1a4F4ey/G3NxCWab27Tvh7t6UGzcCaNeuJa1aNSMqKoK1a1dy9Ogh1q/fwosXsUyfPkXZ/vvX\nX/t48OA+enp6pKenM2jQkNfL4Sxn4sSpODpWys/LKgh5TiTb78y1a9ldv27dCgSgXLlyhIZmr1e2\nb99eZS+EQYOGcP36P0yaNO2tB1YSiYSdO/cRFxeHvb0DkD0rmY6ODmvXrqFevfo8fvwYiSR7OG71\n6jU5ffoCGzZsUHYt+6+MjAyKFjWgceN6PH0ajZ/fDgIDb9OmTVtGjRqOpqYmS5as5MiRw+zatZPM\nzExmzZqJVCrl1atXmJiYMH36TIYMGUSlSk4MGDAoz66fIKiKeED2nXkz50FAwDUAhg79d7KWjRs3\n0K1bD/r1+5ny5e0++D5ubvVwcXHl/v17FCtmzpUrl+nTpx8bN65X1pSLF7fijz/24Ozs8npqx3dL\nS8uuZVtYWHLlSgBqampkZWVhYFCIxMQEgoMf0rJlGy5ePI+39xxOnDhOauorZe+DrVv9WL58Kffv\n3+PYsTNighnhhyRqtt+ZgQMHI5fLuX//EZs2+bFu3WZatGiJvb0D164FsWjRio8mWsiu3Y4ZM4HH\nj6NwdHQEYMeObUD2JOB//nmYU6fO4+zs8tH30tcvxJAhv5CUlEhiYiIymYzu3buydesWli5dxU8/\n1eH58+dMn5690sKlSxfQ1NREJpNRp44bZcuWY/78eQwYMBhHx4pfd4EE4RslarbfIYlEgqmpKS1a\neALQqpXXF71PvXoNcXJy5uzZMwDo6OiwYcMWGjRwzzEQ4VMMHDiEDRvWsmjRAgICrnH16hV8fLZT\nvXoNWrduTmDgDQ4fPkXNmrUIDQ15PepMio+PL1On/oquri4jR475ovMQhO+BSLYFmEQiYcaMucyY\nMYX+/X/G07P1Fw+JLVq0KJ07d2Pp0sUYGBiyc+c+rKysad68EY8fR6Gnp0/Pnp159uwpFhaWPHny\nmHbtOvD8+TP8/HyZM2fBZ00sLgjfG5FsC7jq1Wty6NCJXHmv4cNH8fTpU8aMmQBAgwa1SU19RatW\nXujq6uLntxU1NSkvXrxAQ0ODVavW0KNHV2xsStO9e69cKYMgfKtEm62Qa8zNLfDx2cbLly/w8HAn\nJSWZ1NRUdu36nYsXz1OnTl1sbcuTliajb9/+hIaGcPjwIUaMGIOGhoaqiy8IeUrUbIVc5e+/k6FD\nB2JubkFUVCQTJ05BU1MLH58NHD9+BHV1DTQ0NJg9ey4DB/bDysqa1q3bqrrYgpDnRM1WyBUKhYKF\nC+fx8899sbKypkIFOxQKBXPmzMDaugQnTpxFQ0ODzMwMvLzacejQQXbu/INBg4aJWq1QIIhkK+SK\nUaOGM39+9gKUz549w9LSCje37FUnevfuipOTHRkZGUgkEgYPHkLXrp3Q1y9E587dVFlsQcg3ItkK\nXy0oKBA/Px8ApkyZiampKXv27CQm5jmdO3ejS5fuyuG99es3YPfuXejp6REQEISOjo4KSy4I+Ue0\n2QpfbcuWTcqlbGbMmEzNmj8RHh5GUlISd+7cxtzcQrmMzty53jRp4k737r3FhOBCgSJqtsJXSU5O\nYteu31FXV8fVtSoAV678DUDnzt1Ys2YDAM+fP6NEiZIEBd3i5csXdO/eU1VFFgSVEDVb4av4++8i\nNTWVjIwMAgKuYmVlTenSpYmKisLPbwt+fluUcx0MH/4LGzduoHZtN0qXLqvikgtC/hI1W+GLKRQK\nVq1aCsD48b+yatU6IiMjOH36f7x8+ZIqVapSsWIlFAoFGhoa/PRTbS5evECPHr1VXHJByH+iZit8\nsRs3AggLCwNg1qxpVK7sCoCXVwcyM9M5cOAv1NTUkMvltGjhyaZNGzE1LUqTJs1VVmZBUBVRsxW+\n2ObNG5BKpRgYZE9Kfv169rSP4eGPWLhwGfPmLVKu0vvrr1PYsWMbnTt3Q1NTU2VlFgRVETVb4Ysk\nJiawZ88u5HI51arV4NSpExQuXBhtbR2uXbtC+fKlMDEpAoCNjQ3Xrl0hMTGRrl17qLjkgqAaomYr\nfJFdu/4gIyMDPT19Zs6ch6lpUSQSKQkJ8bi6VqVyZVeSkhIB+OWXUWzatJH69RtSokRJ1RZcEFRE\n1GyFz6ZQKNi0aT0mJia8ePGC6tWdAdDQ0MDOzp6goFuvH4qpo6WljbOzM8OGDWbr1t9VXHJBUB1R\nsxU+29WrV3j48D6pqTLs7R2ws3PA1rY8GRkZBAbexMHBEU1NTVJSUmjRogWbNm3EwsKShg3dVV10\nQVAZkWyFz7Zu3WogezXfmJgY7tz5B7lcQdWq1QEICLiq7Fs7fvwkdu78nS5duqOuLr5ICQWXSLbC\nZ4mLe8mBA38C2euhtWrlhVQq5dGjUK5c+Rtzc3Nq13YjMTGBsmXLcuHCeWQymXgwJhR4oqohfJbZ\ns2cgl8uRSCR06dJeuf2PP/aSkZHOkiULOXcue02zUaPGsmrVCtzdmyonohGEgkrUbIXPMn36bHr2\n7IOpaVEANDSy+8y2a9eSgIBr2Nk5AKCtrU2ZMmUICrolRowJAiBRKBQKVRciN8XFpZCZKc+XWOrq\nUoyM9H74mO+Km56ezl9/7WXVqmXcvv0PAGpqasrZvdq374CGhgbnz5/n8uWbX7SQZEG+viJm3sRV\nJVGzFb6IpqYmbdt24NSpC+zZc4CGDd2ViRZgzJjx+Pvvplu3nl+8Yq8g/EjE/wLhq0gkEn76qQ7b\nt+/m9OlL6OrqUq1adU6dOklWVhYdO3ZVdREF4ZsgHpAJuSYiIpxXr16xcOFi+vTpRfPmHhQtWlTV\nxRKEb4Ko2Qq5ZuvWTVSu7EJycjIPHtyne3fxYEwQ3sjVZHvixAnKly9PhQoVlP8OHz4cgKioKHr1\n6oWzszMtWrTgwoULOV578eJFPDw8cHJyomfPnkRGRuZm0YQ8FhUVycmTx+nduw8bN66ndOky1KpV\nW9XFEoRvRq4m2+DgYOrXr8+FCxe4cOEC58+fZ/bs2QAMGjSIokWL4u/vj6enJ0OGDOHp06cAREdH\nM3jwYLy8vPD398fIyIjBgwfnZtGEPObntwV9fX3q1q3Hn3/uo0eP3kgkElUXSxC+GbmabENCQihb\ntizGxsaYmJhgYmKCvr4+ly5dIioqihkzZmBjY0P//v1xcnJi9+7dAOzcuRNHR0d69uxJ6dKlmTt3\nLo8fP+bq1au5WTwhj2RmZrJ9uy/t23dk7949SKVSOnTorOpiCcI3JdeTbalSpd7afuvWLezt7dHS\n0lJuc3Fx4ebNm8r9VapUUe7T1tbGzs6OGzdu5GbxhDxy7NgRnj6Nplev3mzatAFPz9Zi5VxB+H9y\nNdk+evSIc+fO0bhxYxo1asSiRYvIyMggJibmrafSJiYmPHv2DIDnz5+/tb9IkSLK/cK3bdOm9bi6\nVuHFi1gePXpEjx59VF0kQfjm5FrXrydPniCTydDS0mLZsmVERUUxe/ZsZDIZqampby2FoqmpqVwy\nRSaTfXD/51BTy78OFm9i/egxPxT3zp1/OHv2f2zevIU1a1Zjb+9AjRrVc6W9VlxfETO346pSriVb\nCwsLLl++rFyPqnz58sjlcsaMGUObNm1ITEzMcXx6ejra2toAaGlpvZVY09PTle/1OQwMdL7wDL5c\nQYn5rrgbN/6GpaUlLi7O9OrVAx8fH4yN9fM0Zn74Vq6viPnjyNVBDf8/OZYuXZq0tDSKFClCSEhI\njn2xsbGYmpoCYGZmRkxMzFv7K1So8NllSExMJSsrf8Zcq6lJMTDQ+eFjvi9uVFQkfn5+TJ8+g2XL\nlmNmZkbjxh7ExaXkWcy89i1dXxEz9+OqUq4l2/PnzzNq1CjOnj2rfBB2584djIyMcHV1ZdOmTaSn\npyubCwICAnB1zV76ulKlSly/fl35Xqmpqdy5c4ehQ4d+djmysuT5OsFFQYr5/+MuWbKIQoUMaNWq\nDZUrV2LEiDGoqWnkerkK6vUVMX8sudaQ4ezsjI6ODpMmTeLRo0ecOXOGBQsW0K9fP6pUqYK5uTnj\nx48nODiYdevWERQURNu2bQHw8vLi+vXrrF+/nuDgYCZMmIC1tTVVq1bNreIJuSw8PIxt27YyZMhQ\nfHw2I5FIxIgxQfiAXEu2enp6bNy4kbi4ONq2bcvkyZPp2LEjvXv3RiqVsmbNGmJiYvDy8mL//v2s\nWrWKYsWKAWBpacmKFSvw9/enXbt2JCUlsXLlytwqmpAH5s6dgbGxMR06dGT16pX06TMAExMTVRdL\nEL5ZYj7br1AQ5wONi0vh2rVruLvXZeXK1dy/fx8fn81cvRqIsXHuJtuCen1/5HNV9fVVJdX3hxC+\nKwqFgmnTfqVCBTvq12/AunVr+fnnIbmeaAXhRyOmWBQ+y+HDB7l48Tz+/vuYN28Oenp6DBgwSNXF\nEoRvnki2widLSkpi7NhRNGrkjpGREVu3bmH+/CUUKvT5/aEFoaARyVb4ZBMmTCAhIZ7Fi5fStWtn\nKlVyplu3nqouliB8F0SyFT7J339fYvXq1SxYsJDjx48TGHiTw4dPoqampuqiCcJ3QSRb4aPS0tIY\nPnwwVatWxcPDk6pVXenatQcuLlU+/mJBEACRbIVPMHPmFMLDw9izx59Bgwaio6PL5MnTVV0sQfiu\niGQrfNChQwdYt24NixYt5syZM5w8eZLff98j5qsVhM8kkq3wXpGREQwfPggPj5Y0aNCQGjWq0adP\nP+rXb6jqognCd0ckW+GdMjIy6N+/F4aGBqxevZauXTuRmprKuHETVV00QfguiWQrvEUulzNy5FAC\nA29w7NhJoqIiOXPmNK6urhQubKTq4gnCd0kkWyEHuVzOqFHD2LXrdzZs2ISOjg7NmjXBycmZY8eO\nAeoFbmo8QcgNYm4EQUmhUDB27Ei2b/dl7dp1VKhgR7NmTbC2LsGePX9hZCRqtYLwpUTNVgCyE+2E\nCaPZunUTa9b8hqNjRZo3b4q1dQl27donmg8E4SuJmq2AQqFg8uTxbNq0nhUrVuHk5Ezz5k0pXtxK\nJFpByCUi2RZwb6ZMXLduDUuWLMfVtYoy0e7e/adItIKQS0QzQgGmUCiYNWsaa9asYMGCxdSoUYNm\nzZqIRCsIeUDUbAswb+9ZrFixhHnz5lO7dm1lohVNB4KQ+0SyLaAWLpzH4sULmDVrDnXr1suRaMVQ\nXEHIfSLZFkBLlixg/vw5TJs2g4YNG9G8eVMsLYuLRCsIeUgk2wJmxYqlzJ07k19/nUKTJk1p3rwp\nFhaW7N79p0i0gpCHxAOyAmTNmpXMnDmFceMm0KKFJ82bNxGJVhDyiajZFhDr169h6tSJjB49htat\nvUSiFYR8JpJtAbBx4zomTRrHL7+MpG3bDiLRCoIKiGT7g9u3z58JE0YD8Ntva6hVq5pItIKgAqLN\n9gfXoEEjWrZsQ9Wq1QBQU1OnTZu2oh+tIOQzkWx/cIUKGbB+vY+qiyEIBZ5oRhAEQcgHItkKgiDk\nA5FsBUEQ8oFItoIgCPlAJFtBEIR8IJKtIAhCPhDJVhAEIR+IZCsIgpAPRLIVBEHIByLZCoIg5AOR\nbAVBEPKBSLaCIAj5QCRbQRCEfCCSrSAIQj4QyVYQBCEfiGQrCIKQD0SyFQRByAci2QqCIOQDkWwF\nQRDygUi2giAI+UAkW0EQhHwgkq0gCEI+EMlWEAQhH4hkKwiCkA9EshUEQcgHItkKgiDkA5FsBUEQ\n8oFItoIgCPlAJFtBEIR8IJKtIAhCPhDJVhAEIR+IZCsIgpAPRLIVBEHIByLZCoIg5INvKtmmp6cz\nceJEqlSpQu3atdm8ebOqiyQIgpAr1FVdgP/y9vbmzp07+Pr6EhUVxbhx47C0tMTd3V3VRRMEQfgq\n30zNNjU1ld27d/Prr79Svnx5GjZsSN++ffHz81N10QRBEL7aN5Ns7927R1ZWFk5OTsptLi4u3Lp1\nS4WlEgRByB3fTLKNiYmhcOHCqKv/27JhYmJCWloacXFxKiyZIAjC1/tm2mxTU1PR1NTMse3N7+np\n6Z/8Pmpq+ff3402sHz2mquIWlJiqiltQYqoi3rt8M8lWS0vrraT65ncdHZ1Pfh8Dg08/NrcUlJiq\niltQYqoqbkGJqWqqT/evmZmZER8fj1wuV26LjY1FW1sbAwMDFZZMEATh630zybZChQqoq6tz8+ZN\n5bZr167h4OCgwlIJgiDkjm8m2Wpra9OyZUumTp1KUFAQJ06cYPPmzfTo0UPVRRMEQfhqEoVCoVB1\nId6QyWRMnz6do0ePUqhQIfr27Uu3bt1UXSxBEISv9k0lW0EQhB/VN9OMIAiC8CMTyVYQBCEfiGQr\nCIKQD0SyFQRByAci2QqCIOQDlSfb/v37M2HCBAAmTJhA+fLlqVChAuXL0RY3ywAADe9JREFUl1f+\n9OzZ863XBQYGYmdnx5MnT3Js9/HxoU6dOri4uDBp0iTS0tKU+95MTm5vb0+lSpXYvHnzWzFtbW2x\ntbXFycmJCxcufDRmeno63t7euLm5UbVqVYYMGcKzZ8/yNOZ/bdiwgfr16+fY9t9J2B0dHWnbtu1b\n1/dNTFtbW1q1avXJ13fbtm3Uq1cPFxcXhg8fTmJiYp5f35kzZ1KzZk1q1arFlClTkMlkXx3T09Mz\nxzEVKlQgODhY+b6fch99yfX9UNy8upc+dq6fci/ldsxPuY/y4vp+yr30vsULoqKi6NWrF87OzrRo\n0eKt+/ejFCp04MABha2trWL8+PEKhUKhSEpKUsTGxip/bt68qahYsaLi5MmTOV6XkZGhaNGihaJ8\n+fKKx48fK7cfOXJEUaVKFcXp06cVQUFBiubNmytmzpyp3D9jxgxF3bp1Fba2toru3bsrKleurPjz\nzz+V8Zo1a6bo27evwtHRUTF27FiFk5OTIjo6+oMxFyxYoHB3d1dcvXpVERwcrBgwYICibdu2eRrz\njYiICIWTk5Oifv36ObbPmDFD0bJlS8Vvv/2msLW1VdjZ2SmOHj2qvL7NmjVTDB8+XHHw4EGFnZ2d\nwsHBQRnzQ3EPHjyoqFSpkuL48eOKhw8fKtq1a6cYOXJknp7rwoULFZ6enorbt28rgoKCFM2aNVPM\nnj37q2I+fvxYUbFiRcW1a9dy3G9ZWVmffB99yfXNysr6YNy8uJc+dq6fci/ldsxPuY/y4vp+yr3U\nsmVLxd27dxXHjx9XVK5cWXH06FHlfk9PT8XYsWMVISEhit9++y3H/fspVFazTUhIYMGCBVSsWFG5\nTV9fHxMTE+XP8uXLadq06Vt/bdevX//O+RJ8fX3p0aMHbm5uODg4MH36dHbv3k1aWhqpqans2rWL\ntLQ0KlasiIWFBX379mX37t2YmJjw4MEDoqOjyczMpFmzZnh7e+Pk5MTu3bs/GHPfvn2MGDECV1dX\nSpcuzcyZMwkKCiIiIiLPYr4xbdo07Ozscmx7Mwn7iBEj2L59OxUrVqRcuXL4+fmhr6+vjOnt7Y2/\nvz8eHh64uroqY34o7oYNG+jfvz8NGzakTJkyjB07lgcPHqBQKPLsXM+ePUv79u2xs7PDwcGBTp06\ncenSJeW5fknMzZs3k5mZiaOjY477TSqVftJ99KXXNyoq6oNx8+Je+ti5fuxeyouYH7uP8ur6fuxe\n+tDiBZcuXSIyMpIZM2ZgY2ND//79c9y/n0Jlydbb25uWLVtSunTpd+6/dOkSAQEBjBgxIsf2R48e\nsWPHDsaNG4fiP+Mx5HI5QUFBuLq6Krc5OTmRkZHBvXv3uHfvHunp6Xh5eSlj/ndy8lu3blG8eHFu\n3LihjOni4sLNmzffG1OhULBgwQJq1qyZYxtAUlJSnsR8Y9++fchkMuVXrDfeTMJ+5MgR5fUtUqRI\njpj29vZcv35deX3fxPzQ9U1OTubOnTs0atRIuc3V1ZX9+/cjkUjy7FwLFy7M0aNHSUxMJCEhgWPH\njmFvbw/A3bt3vyjmtWvXKFas2FtTesKn3Udfen2Dg4PfGzev7qUPnesbH7qXcjvmp9xHeXF94eP3\n0ocWL3gTV0tLK8f+/87l8jEqSbZvEungwYPfe8z69etp06YNZmZmObZPmTKFoUOHYmJikmN7YmIi\naWlp/F975x7S1PvH8ffmZbpKbOamLjFNUocXZnkpNSokCCWwUlCcSZGlFBGVil3UwktYkBlGGYUX\nKgiC/shSwn+yC4G2kgpJrbygy03UqdPN7fn+ITu43MV02++P3/MCwe3x7L3Pm/f5nHO24/Pw+Xzm\nOQcHB7i7u2NkZATt7e1gs9k4deoUM754cvLR0VEoFAoDTQ8PD8hkMpOaLBYL27dvNzgja2hoAI/H\nQ1BQkE00AWBsbAzXr1/HlStXloyNjo6Cy+Wis7OT8ZfD4Rho8vl8A3/1mub8HRwcBIvFgkKhQHp6\nOhISElBYWAilUgkANqs1Pz8fg4ODiImJQWxsLCYnJ3H58mUAwNu3b1ek+efPHzg6OuLEiROIj4+H\nRCJhdipLOVqNv729vSZ1bZUlc7VaypItNC3lyFb+WsqSXC43u3iBXncxi/eb5WD3ZqtWq1FSUoLi\n4mKTR6CBgQF8+PABmZmZBs8/ffoUWq0WqampABYCqmd2dhYsFsvoBOQzMzN48uQJ3N3dDcYXT06u\nD85iTWdnZygUCpOaf6OfPOfs2bPQ6XQ206yoqDA421iMUqnE1NSUgb/6yyi1Wg2VSgWNRmPgr7Oz\nM9RqtVl/p6enQQjB1atXcfz4cdy6dQs/fvxAfn4+1Gq1zWr9/fs3fHx80NjYiAcPHmBubg4VFRWr\n0pydnYVSqURaWhrq6uqwefNmZGdnQyaTmc2RWq1elb99fX0mdf/GWlkyVytgOku28tdcjoDV5deS\nv6ayBFhevMDU+L8sbGD3ycNramoQGhpqcLn0N62trQgJCUFAQADznFwux82bN1FfXw8ASy43nZ2d\nQQgxOgF5W1sb/Pz80N/fv2QMWJicXCaTwc3NzUBzbGwM4+PjzFHf2OW8ntevX+PMmTPIysrCwYMH\ncePGDZtovnnzBlKpFGVlZUbH29ra4OjoaOCvfo5gV1dXcDgcfP361cBftVoNR0dHs/7qj/g5OTnY\ntWsXAKCsrAwpKSm4du2aTWqdmprChQsX0NDQgLCwMEZTIpHA2dl5RZpqtRpCoRCPHz/GmjVrACx8\nXtnZ2Ynnz5/j0KFDJnPk6uqKV69erchfFxcXlJWVQaVSGdXNyclhXs9aWbJUq0gkMpmlmpoam2jG\nxMQAMJ6j0dHRFefXkr8ZGRkms3T69GmLixdwOBxMTEwsGXdxccFysXuzbW5uhkKhgFgsBgBoNBoA\nQEtLCzo7OwEsNJTExESD7drb2zE+Po60tDQmFIQQJCUlITc3F8eOHQOHw4FcLoe/vz8AQKvVYnx8\nHFKpFBMTE5ibm4NYLGY0m5ubmcnJFQoF1q1bZ6AplUqh0+lMaup3kBcvXqCgoADp6ekoKChgXnt0\ndNTqmj9//sTIyAgTWq1WC41Gg8jISNTV1eHLly+Mpt5fnU4HnU4HNzc3CAQCDA0N4ciRI4ymXC4H\nm802629ycjIAMN7qfyeEoLW11Sb+xsbGYnZ2FkFBQcw2IpEIWq12xZpyuRx8Pp/ZIfUEBARAJpNh\n/fr1JnPk6em5Yn89PT3BZrNN6uqxZpYs1WouS1wul/lIxZqanp6eAIznaHh42Gb+9vX1mczS8PCw\nweIF+jPpxYsXCASCJbfL6XWXi92bbVNTE+bn55nHVVVVAIDz588zz3V1dSE3N9dgu71792Lr1q3M\n45GREWRlZaGurg5btmwBi8VCWFgYOjo6EBUVBQD49OkTnJyc0NTUBI1GgwMHDqC8vBwvX74EAHh5\neeH79+8AFj4rAhaOVvrLhcnJSUgkEmRlZRnVBBY+fy4oKIBEImF2Dn2d09PTVtecn59HXl4eo9PS\n0oKmpiY0NjZCIBCgsbER+/fvR3l5OUJDQ1FVVYXe3l4mhBEREZicnDS4C6SjowN79uxBbW2tSX/d\n3NzA5/PR3d3NbNvT0wM2m4179+7BycnJ6rWqVCoAQG9vL0JCQpjfWSwW7t+/DwcHh3/W7OjowMDA\nAG7fvo2TJ08CWGjw3d3dyMzMNJuj4ODgFfu7bds2ZGVlMffP/q1riyxZqnXfvn0ms6Q/u7e2po+P\nj8kcbdy40Wb+CgQCEEKMZsnX1xcuLi7M4gWRkZEADBcviIiIQF1d3ZJaF3+Ragm7N1tvb2+Dx3oT\nfX19AQBDQ0OYnp5GYGCgwd9xuVxwuVzmMZvNBiEEPj4+zJcKGRkZKC4uRmBgIPh8PkpLS5GWlgY/\nPz8AQEpKCmprayEUCqFSqfDu3TtUVlZiaGgIs7Oz8Pf3R2FhIfLy8tDW1oZv376hqqoKXl5eRjW1\nWi2KiooQHR2No0ePQi6XM+9vw4YN8Pb2tromAPB4PEbHw8MDDg4OjH+bNm1iNMvLyzExMYFfv36h\nuroaACAUCgEAjx49gkAgQFtbG7q6ulBZWclomtLNzs5GdXU1hEIheDweSktLkZiYyITX2rW6ubkh\nPj4ely5dQmlpKXQ6HUpKSpCUlMScofyrZldXFw4fPoyGhgaIRCL4+/ujvr4eSqUSKSkpZnPE4XBW\n5e/atWtRW1trVNcWWbJUK5fLNZslW/lrKkc8Hg88Hs8m/nK5XCQkJBjNkru7OwAwixeUl5dDJpPh\n4cOHqKysBABER0fD29t7Sa368WWx7DtybURhYSHzTw2EEPL582cSHBxM1Gq12e0GBweN3ux/7949\nsmPHDhIVFUUuXrxI5ubmmDGVSkUKCwuJSCQiERERpKGhwUCzr6+PZGZmkvDwcJKcnEzev39vVlMq\nlZLg4GCDn6CgIBIcHEw+fvxoE82/efbs2ZIb0fWaYrGYREREkNTU1CX+ZmRkmNQ0p3vnzh0SFxdH\nxGIxOXfuHFEqlTbzlxBCJicnSVFREYmLiyNxcXGkpKSEzMzMrFrz7t27ZPfu3SQ8PJxkZmaSnp4e\ng/eynBytxF9TurbMkqVa9ZjLkrU1l5Mja/pLyPKzJBaLyc6dO5la9fT395vNryXo5OEUCoViB/7n\ncyNQKBTK/wO02VIoFIodoM2WQqFQ7ABtthQKhWIHaLOlUCgUO0CbLYVCodgB2mwpFArFDtBmS6FQ\nKHaANlsKhUKxA7TZUigUih2gzZZCoVDswH+k83il1LXBPQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "precise_matches.plot()\n", "plt.show()" @@ -1396,11 +11179,11 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 41, "metadata": { "ExecuteTime": { - "end_time": "2017-01-21T08:00:39.986749", - "start_time": "2017-01-21T08:00:39.176599" + "end_time": "2017-02-08T09:14:53.620070", + "start_time": "2017-02-08T09:14:53.611063" }, "collapsed": false }, @@ -1429,11 +11212,11 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 42, "metadata": { "ExecuteTime": { - "end_time": "2017-01-21T08:00:40.446475", - "start_time": "2017-01-21T08:00:39.988750" + "end_time": "2017-02-08T09:14:54.059436", + "start_time": "2017-02-08T09:14:53.623072" }, "collapsed": false }, @@ -1445,46 +11228,2909 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 43, "metadata": { "ExecuteTime": { - "end_time": "2017-01-21T08:00:40.649035", - "start_time": "2017-01-21T08:00:40.565520" + "end_time": "2017-02-08T09:14:54.157503", + "start_time": "2017-02-08T09:14:54.064439" }, "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 29531 entries, 0 to 29530\n", + "Data columns (total 20 columns):\n", + "analysisDate 29531 non-null datetime64[ns]\n", + "collectingOrg 29531 non-null object\n", + "comments 56 non-null object\n", + "county 29531 non-null object\n", + "gtlt 1035 non-null object\n", + "parameter 29531 non-null object\n", + "result 29443 non-null object\n", + "resultUnit 29393 non-null object\n", + "sampleDate 29531 non-null datetime64[ns]\n", + "sampleTime 29531 non-null object\n", + "sampleDepthUnit 29531 non-null object\n", + "sampleFractionType 29531 non-null object\n", + "sampleLowerDepth 2525 non-null float64\n", + "sampleType 29531 non-null object\n", + "sampleUpperDepth 29523 non-null float64\n", + "stationId 29531 non-null object\n", + "stationName 29531 non-null object\n", + "statisticType 1 non-null object\n", + "testMethodId 29531 non-null object\n", + "testMethodName 29531 non-null object\n", + "dtypes: datetime64[ns](2), float64(2), object(16)\n", + "memory usage: 4.5+ MB\n" + ] + } + ], "source": [ "lake_qual.info()" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 44, "metadata": { "ExecuteTime": { - "end_time": "2017-01-21T08:00:42.223284", - "start_time": "2017-01-21T08:00:40.651537" + "end_time": "2017-02-08T09:14:55.222287", + "start_time": "2017-02-08T09:14:54.162006" }, "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACBEAAAPnCAYAAABzjUYmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3WlglOXZ9vH/LNl3yEIgO2aHELZACJuAgmETraBVHxXU\nqvW1FAW1tdb6tNZWAYXggiKtta1afYCiIPsSsu8JgUDCTtghQZKQhMzM+4FmmghYa4Vgc/y+AElm\ncl/3nMxyX8d1XgabzWZDREREREREREREREREREREOj1jRx+AiIiIiIiIiIiIiIiIiIiIXB8UIhAR\nERERERERERERERERERFAIQIRERERERERERERERERERH5B4UIREREREREREREREREREREBFCIQERE\nRERERERERERERERERP5BIQIREREREREREREREREREREBFCIQERERERERERERERERERGRf1CIQERE\nRERERERERERERERERACFCEREREREREREREREREREROQfFCIQERERERERERERERERERERQCECERER\nERERERERERERERER+QeFCERERERERERERERERERERARQiEBERERERERERERERERERET+QSECERER\nERERERERERERERERARQiEBERERERERER+Y/ZbLZ/6+siIiIiIiLXK3NHH4CIiIiIiIiIiMj3mcVi\nwWQyAXD69GlOnjxJfX09QUFBeHp64uLi0sFHKCIiIiIi8s0pRCAiIiIiIiIiIvItWa1We4Dgvffe\nY9myZVRWVgLg5eVFcnIyd911F4MGDerIwxQREREREfnGDDb1VBMREREREREREfmPzJ07l3feeYfu\n3bszduxYzpw5w8GDBykqKsLBwYHf//733HLLLR19mCIiIiIiIv+SOhGIiIiIiIiIiIj8Bz777DPe\neecdhgwZwpw5c4iJiQHAZrMxdepUysrK+OSTTxg2bBju7u4dfLQiIiIiIiJfz9jRByAiIiIiIiIi\nIvJ9lpWVhYODA0888YQ9QACwaNEiysrKGDlyJC+88AJ1dXXs2rWrA49URERERETkX1OIQERERERE\nRERE5Fuw2WzU19ezbds2goKCiImJoXXn0LS0NNLS0khJSWHmzJm4ublx77338uc//5kLFy5gtVo7\n+OhFREREREQuTyECERERERERERGRb8FgMODm5kaXLl1oaGjgwoULGAyGdgGCWbNmERMTw4EDBzh0\n6BAVFRWYTCaMRl2Wa+tKoYrWUIbI9epKtaugkIiIiHyfmTv6AERERERERERERL7PgoKC2LlzJ59+\n+ilnzpxh8eLFpKSk8OSTTxIXFwdAREQELi4utLS00NzcjLOzcwcfdcezWCyYTCb7nwC5ubnU1tZy\n4sQJbr31Vtzd3Tv4KEUudbna3b59O+fOnePcuXPcfPPNCgqJiIjI95pCBCIiIiIiIiIiIl/DarV+\n7YTgPffcQ15eHgsWLKChoYGUlBSefvppoqKi7D+Tl5fH+fPn6devH87Ozv/yPv+blZeXExoairu7\nO83NzTg6OgIXt4BYsmQJ58+fB2DZsmU8/vjjDBo0CFdX1448ZBEAdu/eTWhoKE5OTu1q94033uD9\n99+ntrYWgKSkJJ577jkiIyMxGAwdecgiIiIi34rphRdeeKGjD0JEREREREREROR61HalcUZGBtu2\nbWPVqlXs3LkTf39/3N3d8fX1paamhl27dmE0Gpk4cSLjxo2z30deXh5paWmcPXuWH/3oR4SFhXXa\nicXS0lLuuOMONmzYwOTJk3FxcQHgzTffZOHChfj7+zN+/HiampqoqKigtLQUX19fgoOD7RO2Ih2h\nuLiY22+/ndLSUsaNG4eTkxNwMfyycOFCPDw8GDJkCI2NjVRUVFBSUsINN9xAt27dOu3/dxEREfn+\nMti0sZiIiIiIiIiIiMglbDabffJv4cKFLFmyhMbGRvv3/fz8uP3225k2bRpOTk688sorrF69GldX\nVxITE+nbty+nT59m2bJlnD17lueee4577rmno4ZzXaitrWXKlCkcPXqUhIQElixZgslkYuLEiYSE\nhPDMM88QHR3N6dOnWbRoEZ988gm+vr488cQT3HTTTbi5uXX0EKSTKi8v58EHH6SmpoZRo0Yxb948\nGhoamDRpEtHR0cyZM4fo6GiOHz/O888/z5YtW4iOjuYXv/gF/fr167SdR0REROT7SZ0IRERERERE\nRERELqM1QLB06VLmz59PbGwsjz/+OBMnTsTNzY3Dhw+zbds2qqurSU5OZsSIEXh6enLgwAEKCgrI\nysqirKyMbt26MXv2bO68807g4vYInXFlcnNzM25ubtx6661s2bKFnTt3UlBQQM+ePVm2bBlPPfUU\nAwYMoKWlBXd3dxISEmhqaiI3N5eysjL8/PzUkUCuqdYgkdVqJSAggCFDhpCZmUlJSQn79u3Dz8+P\nlStX8otf/ILExEQuXLiAp6cngwYNorq6mtzcXMrLy4mKilJHAhEREfleUScCERERERERERGRNtpu\nYXD+/HmeeuopKisrWbhwIdHR0faf27hxI0uXLiUvL4+pU6fyzDPP4OjoSGNjI1u3bqWxsZGQkBB8\nfX0JCwsDLgYIOtuK5JMnT+Ln5wdAU1MTTk5O1NbWcs8991BVVYWXlxeNjY189NFHxMTE0Hq50mAw\nUFtby5tvvslf//pXdSSQa+7MmTN06dIFgJaWFsxmM+Xl5fzkJz/h8OHD+Pn5cf78eVauXElgYCA2\nmw2bzYbRaOTUqVO8+OKLrF27Vh0JRERE5HtHnQhERERERERERETaaJ3kW7JkCaWlpaxZs4aRI0dy\n++23AxcnE41GI2FhYXTr1o09e/aQk5NDUlKSfaV8ZGQksbGxdO/eHW9vbwD75GJn0tTUxMMPP0xT\nUxMJCQmYzWZsNhsuLi6MHTuWjRs3cvz4cZydnUlKSqJnz572oIXVasXFxYXevXvT2NhIbm4uO3fu\nxMfHRx0J5Kqrr69n5syZGI1GoqOj7f93/f39SUxMJCMjg+PHj9tr2c/Pzx5AslqtuLm5MXDgQA4f\nPkxubi4VFRVERETQrVu3Tvc8ICIiIt8/ChGIiIiIiIiIiIjQfpuB7du3M3PmTCoqKrDZbPTp04ch\nQ4bYVyO3tjkPDAzk/PnzbN68mVOnTjFhwgSAy7Yt74ytzG02GwsWLOCLL76gW7duxMXF8fLLL3Ph\nwgXi4+NJTU1l06ZNnDhxgv3793PzzTfj5ubWbjK2NUjQ3NzM1q1byc3N5ZZbbrGvEBe5Gpqamnj9\n9df57LPPiIyMpGfPnixatAiDwUC/fv3o378/2dnZnDhxgqqqKiZOnIiDg8NlgwRHjhwhKyuLnJwc\nUlNTcXd37+jhiYiIiHwthQhERERERERERKTTa9sl4ODBg0RGRhIYGEh5eTlHjx6loaGB1NRUXFxc\n7AECm82GyWQiOjqazz//nJaWFqZNm6ZVxm2YTCYsFgtZWVls3LiRoqIiVq5cSWNjIykpKfj4+JCa\nmsqWLVvYvXs3eXl53HLLLTg7O18SJOjVqxdffvkl48ePZ+TIkR09NPkv5+TkxLFjxygpKWHdunWU\nlpby8ccf4+DgQFJSEkFBQfTr14+cnBx27tzJrl27GDNmzGWDBP3792f37t2MHz+eYcOGdfTQRERE\nRP4lg611kzEREREREREREZFO7qWXXiI9PZ2PP/4Ym83GunXrePfddzl48CCzZ89m2rRp9iABYN8D\nPTU1lQsXLvDZZ5/h6urawaO4PrSGLQCWL1/OM888g8lkIjY2ljfeeAN/f3+am5txdHSktraWe++9\nl8rKShISEnjvvfdwd3dvNxlrNBrtPw/YvyZyNS1evJh58+ZhMBjo3bs3ixYtard1QXl5OTNnzuTQ\noUOMHj2aefPm4eTkdEntNjY24uzsDLT/vyEiIiJyPdK7bBEREREREREREaC5uZkDBw5w9OhRDh06\nhKenJ2PGjOHBBx/E19eXP/7xj6xevZq6ujp7JwKj0UheXh5HjhwhKSkJV1dXtGbnIoPBgNVqBaCm\npgYAi8XC9u3byczMBMDR0ZHm5ma8vb3505/+RGRkJKWlpUyfPp26ujpMJhMtLS32sEBrgKBt5wiR\nq6mhoQG4WHM7duxg+/btwD+7bMTHx/Paa68RHBzMhg0bmDVrFk1NTfbvt9apAgQiIiLyfaLtDERE\nREREREREriOtE9Qmk6mjD6XTMZlMNDQ0sH79eo4dO8bo0aPx8PAgJCQEPz8/MjMzyc7OpqamhoiI\nCEwmE7m5uaSlpVFdXc3jjz9ORESEJgjbMBgMnD9/nt27dxMSEsLgwYMpKChg/fr1+Pr60qtXL0wm\nE83Nzbi5udm3Nti5cyd5eXmMGzcOZ2fnSyZedY7lWjh37hzZ2dmEhYWRkJBAWVkZa9asISwsjMjI\nSIxGIxaLhYCAAPr3709WVhbFxcXs3buXUaNG4eDgoNoVERGR7yVtZyAiIiIiIiIicp04ceIEixcv\nZvz48cTHx9tXXct351+tArZYLEydOpVjx47x7rvvEhsbC0B9fT1r1qwhLS2NI0eO4OXlhYuLC7W1\ntQD89Kc/5b777rsmY7jetZ7jtue6rq4OAHd3dz744AN+/etfA/CrX/2KadOmAdDU1ISTkxO1tbXc\nd9997Nq1i/DwcP7+97/j4ODQMYORTuVytXvq1CmMRiNdunRh/vz5vP3225jNZn7/+9+TmpoK0G5r\ng1mzZnHgwAEGDx7MkiVLFAgTERGR7yV1IhARERERERERuU40NTXxi1/8gh07dpCQkICfnx8rV67E\n2dkZb2/vjj6877XTp0/j6uqKwWBo1x4fwGq12r9uNpsxGAysWrUKFxcXhg4dClxsox8cHEyXLl3Y\nv38/x44dw8/Pj8cee4ynnnqKkSNHtruvzqpt+/Zz585x4sQJLly4gM1mw8vLC4CEhAS8vLxIT09n\n8+bN+Pn50atXL8xmM1arFRcXF8aOHctnn33G+PHjSUlJ6cghSSfRtnabmprsASFnZ2c8PDwAGDhw\nIBaLhby8PDZs2NCuIwGAv78/ffr0Ye3atYwfP55BgwZ1zGBERERE/kMKEYiIiIiIiIiIXAcsFgv1\n9fVkZmZSUlLCvn37SE9P54033iA4OJj4+HitaP2Wtm3bxosvvoivry+hoaH285iRkYGTk5N9grB1\nItDV1ZW1a9dSWlrK4MGDCQgIwGaz4eTkREhICF5eXuzatYvTp08TERHB0KFDcXJyoqWlpVM/Rlar\n1T7+Dz74gNdee40FCxawfPly1q1bh4uLCz169MDJyYk+ffrg7e3N1q1b2bx5s31rg4KCAvbs2UNM\nTAx33323PcShfeTlampbux999BGLFi0iLS2NFStWkJ+fj6urK2FhYRiNRpKTk2lpaSE3N7ddkKCo\nqIhTp06RkJDA7bffzvDhwwHVroiIiHw/KUQgIiIiIiIiItKBDh06hJeXF0ajETc3N1JSUjh48CAZ\nGRlUVVUxcOBA7rrrLgICAjr6UL+XsrKymDFjBjabjdTUVIKCggBYtGgRP//5z1m7di3u7u4YDAb8\n/PwA8PHxwWQysXHjRmJiYkhISLBPBLbtSFBaWkpWVhZNTU3Ex8fj5ubWqScMW8c9b9485s+fT21t\nLT179sTJyYmKigrWr1/P2bNnCQwMxNfXl4SEBHx8fOxBgurqahYvXszf/vY3brzxRrp16wZoElau\nvtb6mjt3LnPnzuXIkSN07dqV8+fPU1paymeffQZAZGQkLi4uJCUlYbVayc3NZc2aNdTV1fHWW2/x\n/vvvM378eAIDA4GL4YS2XU9ERESulrYddUS+CwoRiIiIiIiIiIh0kLy8PKZMmcK+ffsYO3YsAB4e\nHqxbt449e/YA4O3tzbhx4+xBA/nmMjMzmTFjBqGhocyePZsRI0YAUF9fz8GDB2lpaWHHjh1s2bKF\njRs3Ul9fj5+fHx4eHvj7+7N69WoKCgoYM2ZMu+0kWoMEXbt2Zfv27RQVFVFTU0Pfvn1xdnbuqOF2\nmLYXrYuKivjf//1fkpOTmTt3Lo899hh33nknQUFBHDhwgPT0dJqamoiJicHT05OEhAR8fX3ZvHkz\nu3btoqGhgaeffpqbbrrJfv8KEMjV0nb7kfT0dF566SWGDh3KK6+8wpNPPsltt92Gr68v+fn5ZGZm\nYjabGTx4MEajkYEDB2IymcjNzaW4uJhz584xe/Zs+9YmoNoVEZFro3VLrubmZtatW8fKlSvZvHkz\nZWVl+Pn54ejoiIODQ6ffdkv+PQoRiIiIiIiIiIh0kIMHD7JixQrc3NyYOHEiJpMJm83GF198gZub\nG927d6esrIyKigqio6Px8/PThb9vqLUDQXBwME899ZQ9pGGxWHBycqJ3795MnjyZG264ga5du5KV\nlUVubi6bN2+mqqqKESNGcO7cOTIyMoiMjCQ+Pr7dZHlrkMDPz48tW7Zw6NAhpk6diqura0cOu0O0\nnpMjR45QWVnJ559/zosvvkhiYqL9YnVMTAyhoaHs27ePLVu24OfnR//+/QHo1asXcXFxpKSkMHXq\nVG699VYAXeiWq8pms9lrt6Ghgd27d7Nq1Sp+85vfkJiYCICzszOJiYkEBwdTWFhIeno6PXr0IDY2\nFqPRSFJSEkFBQSQkJHD33Xdz++23A6pdERG5diwWC2azmYaGBh555BGWLFlCfn4+JSUl5OTksHXr\nVs6cOUPPnj3tW3iJfBMGm81m6+iDEBERERERERHpbFpbtO/evZuAgAC8vLzYuHEjo0aNAqCuro6m\npibmzJlDRkYG/fr145lnnqFXr17qSPAv5OTkcP/992M2m3n++ee54447gIsXWVv3PW/7d7i4gn7L\nli2sXLmS6upqgoKCGDp0KB9++CGDBw/mD3/4w2V/V11dHZs2baJ3796EhYVd7aFdt9LS0khLS2PU\nqFFUVVXxl7/8BV9fX/tkauuE6vr165k5cyYAn3zyCTExMZe9P7WBl2vld7/7HX/84x8ZPXo01dXV\nfPTRR/bVmvDPkMynn37Kz3/+c4KCgli6dClBQUGXDQqodkVE5FprbGzk/vvvp6SkhMmTJzNt2jQa\nGhrIz89nxYoVnDx5kkmTJvHss8/i7u7e0Ycr3xPqRCAiIiIiIiIi0kEMBgNdu3bF2dmZV155hV//\n+tfU1tYyfPhwHB0dcXV1JSEhgf3795Obm8uePXuIioqia9eumqS6gszMTKZPn47NZsNqtRIREUFs\nbCzOzs7tztlXz19gYCCDBw9m4sSJuLi4cPr0adavXw/A4cOHCQwMJC4u7pLf5+joSFRUFD4+Pld3\nYNe5srIy9u7dS1lZGWfPnmXYsGEEBwfbAwStoZmIiAjOnTtHYWEhQ4cOJSIi4rL3p1Xccq1s3ryZ\n8vJy9uzZw5dffsnIkSPx9/e3125rECYuLo6DBw9SXFzMuHHjCAwMtNd1W6pdERG51pYuXcqyZcu4\n++67ee655wgKCiIkJIS4uDg+/fRTmpqaSElJYciQIZcEaUWuRCECEREREREREZEO8NWJppaWFj77\n7DNKS0s5e/Ysw4cPB8DHx4fExET27dtnDxJER0cTEBDAoUOHOHbsGF26dNHEFRcDBDNmzCA0NJTU\n1FTKy8spLCykpaWFmJgY3Nzcvvb2VqsVV1dXBgwYwG233UZgYCAODg4cPnwYFxcXbrrppsverjOf\n+9YJ1n79+mE2m6murqampoYuXbqQmJiIo6MjcPEctbS0YDQaOXz4MJs3byYiIoKkpKTLTsSKXG2t\ndTd8+HDOnz9PVVUVzc3N3HDDDSQkJNh/rm3tVlRUkJ2dTa9evejVq5f9+yIiIh1p6dKl1NTU8Mor\nr+Dl5QVc7Lr1wAMPsGvXLqZPn84TTzzB2rVrqaysJCoqSu+/5F9SiEBEREREREREpAPZbDZsNhvh\n4eEMGDCA5cuXXxIk8Pb2bhck2Lt3L9XV1bz22msUFRUxYMAA+wXDziozM5OHH36YHj16MHv2bKZP\nn0737t3ZtGkTxcXF2Gw2oqOjvzZI0Lpi3mg0YjQaiY+Pp0+fPhw+fJhVq1YxePBgunfvfg1Hdf35\n6gXntn9PSEjAYrFQVVVFUVERERERRERE2Ls+tK7szsvLIysri+nTpxMWFqYL2HJNfF3tDhkyhNra\nWoqKiigpKWHgwIF069bNfjuj0Wiv3fz8fGbMmEH37t1VuyIi0uGampp45513MBqN3HXXXTg7O9PS\n0sI999xDcXExDz74ID/60Y/Ys2cPDz/8MHV1dUycOFGvYfIvKUQgIiIiIiIiInINta7cbtV2v/ig\noCD69+/PihUrrhgkOHz4MFlZWeTl5VFTU8M999zDiBEjOmQs14s9e/Ywbdo0unfvzpw5c7j55psB\niI2Nxd/fny1btlBUVPSNgwTwzwlHDw8P6urq2LRpE3Fxce1WKHc2FovFHgg4ceIE+/fvZ//+/cDF\n8+bk5ESfPn0wmUyUlJSwYcMG/Pz86Nq1K25ubhgMBoqLi1m4cCEmk4m77roLX1/fDhyRdBZta7eu\nro4jR45w+vRpzGYzJpMJo9FISkoKjY2NZGRksHnzZuLi4vD19cXBwQGDwUBRURFpaWl4enpy5513\n4u3t3cGjEhERufjZYsWKFezfv59x48bRtWtX7r77boqLi3nooYd45JFHcHd3p7a2lmXLltHS0sKE\nCRNwcXHp6EOX65xCBCIiIiIiIiIi10jbPUhbJ6oKCwv58ssvCQsLAyA4OPhrgwR9+vTBx8eHyMhI\n7rvvPqZOnQpcusq2M3Fzc8Nms5GamkpqaioAFy5cwGQyER8f/28HCeDipHhzc7P98fr444/p2rUr\nY8aMuerjuR5ZrVb7uViyZAm//e1vefvtt1m2bBn/93//R0VFBR4eHoSGhtKnTx8cHR0pKipi/fr1\n7Nixg0OHDrFhwwbeffdd9u/fz1NPPcWNN97YwaOSzqDt8+4f//hHfv/73zNv3jz+8pe/sHz5ck6c\nOIGbmxuBgYEkJydz4cIF0tPT2bRpE0ePHuXIkSNkZGSwePFi9u3bx5NPPsnQoUM7eFQiItLZfDWI\n3MpkMnH+/HnS09Npbm7mzTffpKysjIceeoiHH34YDw8PAIxGI3/9618JCQlh2rRp9nCdyJUoRCAi\nIiIiIiIicg20tsQGeP311/nlL3/J1q1bycjI4LPPPsNkMjFw4EDg64MEXl5eDBw4kOHDhxMVFQVc\nvKjYmS8Ems1mBg8eTHR0NHDxfJjNZvvF1m8bJGideHz55ZeprKxk2LBhJCcnd8qwRuuY586dy8KF\nC3Fzc2PatGmEh4fj6OjItm3bWLlyJUFBQcTExJCQkICTkxO7d+9m+/bt5ObmUl1dTe/evXnooYe4\n4447gM4dfpGrr+3z7quvvsqCBQsAuOWWWwgICKChoYEtW7aQnZ1Njx496NmzJ8nJyTQ3N1NQUEBp\naSlbt26lqqqKwMBAHnvsMQW3RETkmmtpacFkMtHc3ExZWRmVlZWcP3/e3tHJYrFQWFhIVlYWp0+f\n5v777+eRRx6xBwjgYgg0PT2dCRMmdNr3s/LvUYhAREREREREROQaaL1Q984777BgwQLCw8OZMmUK\nPXv2ZMeOHeTk5GC1Whk0aBBwaZCgrq7Ovvr1clsidHaXOx8Gg+E/DhL87W9/Y/HixXTt2pXnnnsO\nHx+fqzqO69nnn3/Ob3/7W5KTk3nppZeYNGkSo0eP5rbbbmPbtm0cO3aMc+fOMWrUKJydnUlISMBm\ns3H06FHOnj3LPffcw4MPPmiv8bYt5kWuhtbngmXLlvHKK6+QkpLCyy+/zNSpU5kwYQI33XQTGRkZ\nVFdXY7VaSU5OxsnJieTkZM6dO8f+/ftpaWlh5syZPPbYY/agl2pXRESuldZuUA0NDTz66KO88cYb\nLF++nPT0dGpraxk8eDDdu3fHxcWF3NxcmpqaiI2N5YYbbsDZ2Rmbzca7777LH/7wB7p3787PfvYz\nvLy8OnpY8j2gEIGIiIiIiIiIyFXUdrLp/PnzzJs3j4CAAF555RUmTZrEqFGjuOGGG/jiiy/Iy8u7\nbJBg5cqVFBUVcfz4cUaNGqXQwL/hPw0SxMfHExMTw+OPP05wcPA1PPLrzwcffMCuXbt4+eWX6d27\nt/3raWlp/P3vf2fkyJG88MILtLS0sH//fgICAkhMTMRqtVJRUUF+fj7Ozs6EhYXh7u6uSVi5ZhYv\nXkx1dTUvv/wy8fHx9q//4Q9/4IsvviAlJYVnnnkGgKNHj9KlSxdSUlKora2lsLCQ0tJSevToQXh4\nOA4ODqpdERG5Zlq32HrkkUfIzs4mISGBnj17smfPHrKzszl37hzDhg0jLi4OHx8fysvLycnJYdWq\nVaxfv57333+f1atX4+3tzVtvvWXfQk3kX1GIQERERERERETkO9Tc3Gxvg9+2lfaqVauoqqriww8/\n5IknniAlJQWbzYbNZiMyMpKYmBhWrVp12SBB3759WbFiBTfeeKP963LlvWG/+r2vCxIYDAYiIyMv\nGyRoDYBERES0awf736pte/av/v38+fO8/PLLeHl58eMf/xgHBwcMBgNpaWmkpaWRkpLCk08+SZcu\nXbjrrrs4c+YMKSkpODg40KdPHxwdHSkvLyc7OxsXFxeCgoI6xTmVa+PrthY4e/YsL730EjfccAM/\n/vGP7V9vW7tz5szB3d2dGTNmYDQa6devH0ajkSFDhtDc3ExWVhb5+fkEBgYSEhKCg4PDtRqaiIh0\nYq3vX4uLi3nvvff44Q9/yLx58xgzZgw33HADW7ZsoaCggC+//JJhw4YRHx9PZGQkAQEBVFVVcfr0\naby9vbnlllt48cUXCQ8P7+ghyfeIQgQiIiIiIiIiIt+R3NxcPvzwQ4KCgvD29rZPaq1du5aZM2dy\n6tQpLBYLU6dOpXv37vb9TQ0GAxEREV8bJPjBD37A6NGjAe3FDRcn+FvDGllZWWRmZlJWVkZDQwNB\nQUEYDIZ2XSAuFyTYtm0bBQUFNDQ0MHjw4EsmBjvbauPLbQlhtVoxGo04ODjw2WefUVNTw5133omL\ni0u7Sdg8iU0VAAAgAElEQVRZs2YRFxdHVVUVS5cuxWAwMG3aNPtjlJCQgIODAxUVFaxfv56uXbuS\nmJjY6c6xXB2Xez5s+zz54YcfYrFYmDJlCo6OjpfUbmxsLFlZWXzwwQcYjUZuvfVW++2Tk5Npamoi\nPz+fNWvWEBkZSVRU1LUeooiIdCKt72FbX8cKCgooKChg3rx5ODs7YzKZiI6OJiIigk2bNlFQUGDv\nSBASEsKQIUP4wQ9+wLRp07j33nsZPnw43t7eHTwq+b4xd/QBiIiIiIiIiIj8Nzh27BiPPfYYdXV1\nGI1Gpk2bZm9/37NnT6ZOncr//d//0dLSQnp6Ov3798fBwQGr1QpcnAQbM2YMaWlpPP7447zxxhtY\nLBZ++tOfAhAQEAD8c1K3M7PZbPbJ6QULFrB48WJaWloA8Pb25oEHHuBHP/oRJpOpXdjAaDTaz98d\nd9yBzWbj+eefJyQkBBcXlw4bT0c7fvw4e/fuZcOGDTg6OuLu7s7AgQPp1asXLi4u9nMWFBREWVkZ\nf/vb3/jyyy9555137B0I4uLiAAgPD8fV1RWr1UpLS4u9xo1GI3fffTdNTU18+umnjB492v64iHxb\np06dorq6mi1btuDu7o6LiwtDhgyhW7duODk5YbFY7FtoFBQUkJ6ezs6dO3n77bcvqd34+HhMJhNW\nqxWLxYLZbLbX7qxZszh//jx///vfiY2N7eBRi4jIf7OWlhbMZjNNTU188skntLS0kJubi8Vi4fz5\n83h6etrfQ918880AzJkzhz/+8Y8YDAb79jxubm7q+iT/EXUiEBERERERERH5Dri7u9v3fs/NzcVo\nNBIaGoqXlxddunQhJCQEo9FIaWkplZWVdOvWjejoaAwGAzabDeCSjgQFBQUMHTqUbt26tWvN39m1\nnoPFixezYMECevToweTJk+nWrRs7duwgKysLm83GoEGDMBqNX9uRYOzYsYwZM6Yjh9OhiouL+eUv\nf8nSpUspLCykqKiInJwc1qxZQ0ZGBr169cLLywuTyWTfBiIzM5OcnBxSUlJ4+umniYmJsd/f1q1b\nWb58OTfffLO9c0ZreMNgMNC3b18mTJhAYGBgRw1Z/kuUlpby4osvsnjxYjIzM8nIyGDLli1s2bKF\n4uJi+vfvb588MZvN9trdtm0bKSkpzJ49u10gYOvWrXzxxRdMmDDBvt1M29odPnw4t912Gz169Oio\nIYuIyH85q9WKyWSioaGBBx54gI8//pht27axb98+zGYzffv2JSwsrN1tevbsae9IkJ+fT2NjI0OG\nDNFnBvmPKUQgIiIiIiIiIvIfap1kGjBgACaTiaKiIgoLCzEajYSEhNiDBN27dwcgPz+fvXv34uPj\nQ2Rk5GWDBBERESQkJJCamtqRQ7uutA0D1NTUMH/+fHr06MGrr77KlClTGD58OOHh4WzYsIHc3Fz7\nlhBfFyTo2rUr8M/HsDPJysri0Ucf5fjx40ycOJEf/vCH3HLLLQQEBHDu3DnKy8vZuHEj3t7eBAUF\nERAQwJdffsmuXbuw2Wykpqa2q8/c3FzS0tKora3l0UcfJSwsrF34pfUcOzs7d9SQ5b9EdnY2jz76\nKAcPHmTMmDFMnDiR0aNH4+joyKlTpygqKmL9+vVERUURFBREly5dOHz4MLt378bNzY27776bG2+8\n0X5/+fn5LFy4kPr6eh566CFCQkIuW7uurq4dNWQREekEDAYDFy5cYNasWeTk5DBq1CgmTpzIoUOH\nOHXqFPv27SMpKQkfH592t2sNEqSnp5OdnY3FYmHw4MEdNAr5b6EQgYiIiIiIiIjIf6jtJFPfvn1x\ncHCgsLDwskGC4OBgrFYr6enpVFVVXTFIEBkZSb9+/YD2k+edWes52LRpE9XV1bz//vv89Kc/JSUl\nBQAHBwdiY2MJDQ1l/fr15OXlfW2QoK3OFiDIzMxkxowZ+Pv7M3v2bB577DHi4uKIjo5m2LBhTJo0\niYMHD1JSUkJBQQFeXl4kJibSs2dPampq2LNnD+Xl5eTl5XH48GHWrl3La6+9xoEDB3j22WeZNGnS\nJb+zs51juToyMzOZPn06vr6+PPXUU8ycOZP+/fuTkJDAiBEjGD16NLt372bnzp1kZmYSEhJCr169\n6NmzJ3v37qWqqopDhw6xa9cuTp06xcaNG5k7dy4HDhzgmWeeYfz48Zf8TtWuiIhcTS0tLfb3qGfP\nnuXVV19l8uTJ/Pa3v2XQoEGkpqZSVFREWVkZ5eXlJCUl4eXl1e4+evbsSffu3SkqKuLJJ5+0B2VF\nvi2FCEREREREREREvgNfDRI4OjpetiOBj48PoaGhWCyWKwYJvjphpQDBP61cuZKf/OQnHD16FIPB\nwP/8z//g5+fHhQsX7PvDRkdHf6MgQWfVGiAICgpi9uzZTJgwAfjnBWyr1YqzszOjR4+mrq6O3Nxc\nysvLCQkJITExkaioKPz9/Tl06BCFhYXk5OSwY8cOevTowVNPPcW0adOAztndQa6ur9Zua1iltXYd\nHR3x8fFh0qRJVFVVUVpaSmFhIf379yc2NpZevXphNpuprKwkOzubTZs2kZeXR5cuXZg9ezZ33nkn\noNoVEZFry2g0Ul9fz7PPPovBYCA/P58XXniBLl260NjYiJeXF8OGDaO4uJji4mLKysouGySIiopi\n6tSp2jZKvhMKEYiIiIiIiIiIfAuXm4y+XEeC1iCBg4MD4eHheHh4XBIk2LdvH15eXvYggVxZU1MT\ndXV15OXlUVNTg5+fH0lJSZhMpnYTf18NEly4cIHk5OROHyDIysriwQcfJCgoiKeffpqbb74Z+Oce\nvIA9bGE2mxkyZAgnTpygoKCA0tJSxo0bR2BgIHFxcUyZMoX4+HhuvPFG7r//fu644w5761yr1drp\nz7V8t7Kzs5kxYwbBwcHMnj2bsWPHAu1rFy4GCsxmM6NHj6asrIwdO3ZQXFzM+PHjCQwMpG/fvkya\nNImwsDBSUlK47777uPPOOxk2bJj9/lS7IiJyrb333nv86U9/Iisri9raWsaOHUuPHj0wm81YLBY8\nPDy+UZDA0dGxg0Yg/20UIhARERERERER+TcUFxdjMBjw8PD4xkGCwsJCCgoK8PHxIS4uDgcHB3x8\nfAgLCwMutucvKirixhtvxNvbuwNGdf1rPdcBAQEEBQXR0NBAVVUVx44do1u3bkRERLQ793AxSBAe\nHs7atWspKChg6NChdOvWrYNH0nFKS0u57777sFqtPPjgg9xxxx3AxUnXtpOw0D5IMGzYMHJzc9m9\nezeNjY2kpKRgMBhwcnKiZ8+eREdHExgYaL+IbbPZNAkr36n8/Hz+53/+B7PZzMyZM5k8eTJw8Xnh\nSrXr4ODAqFGj2LZtG7t27cLb25vExETMZjMeHh706tWLPn36EBISQpcuXQDVroiIdJzY2FjOnj3L\nnj17aG5uxs/Pj/j4eJycnOyvbV8NEuzYsYN+/frh4+PT0Ycv/4UUIhARERERERER+YbKy8uZOnUq\ny5cvZ9KkSXh4eLTbw7TVV4MEJpOJjIwMCgoK6NOnjz084O3tTXBwMPX19dx8882MHDny2g/qOvXV\nduJtz7G/vz/+/v7U19eTn5/P0aNH8fX1JSws7JIgQVRUFIGBgQwePNi+crmz2rlzJ3l5edTX1+Ph\n4UFwcDC+vr6YTKYrbqPRGiTo2bMn69atw2azcfvtt2M2m6/4e9RNQ75reXl5rF+/HqvVSlBQEHFx\ncTg7O18SIGjVWrvOzs64urqyceNGnJ2dmTBhwteGBFS7IiJyLXz1fZfNZsPR0ZFBgwZx9OhRdu7c\nyf79+wkNDSU0NBSTyXRJkKC8vJz8/Hz2799PamrqFV8TRb4thQhERERERERERL6hxsZGsrOzOXLk\nCOvWrWPs2LF4enr+yyBBv379qKuro6CgwN5W29XVFQAfHx+SkpIYNGgQcOlFxc6o7erinTt3UlBQ\nwNq1azly5Aj19fV0796dgIAAAgMDqa+vJz09nerq6isGCeLi4ujTpw/Qufc6DwsLIyIigrKyMgoK\nCjh9+jTBwcF069YNg8FwxSABXGyN+/nnn1NRUcGoUaPw8/PrtOdRrr2YmBjCw8PZvHkzRUVF1NfX\nExcXh7u7+xVv01q7rq6uLF++nP3793PLLbfg6emp2hURkQ7T2l3LYrFw7tw5Tp48aX9tcnBwYPDg\nwZw5c4a8vDxKS0sJDQ0lKCjokiDBkCFDqKysZPbs2QQEBHT0sOS/kEIEIiIiIiIiIiLfkJeXF8OG\nDaO0tJTKykrWr1//L4MErRcKhw4dSnZ2NgcOHGDcuHH4+fnZJ22dnJwABQig/f7mb775Ji+++CLL\nly8nJyeH9evX8/nnn3P8+HFGjBhBQEAAPXr0oL6+nm3btn1tkKBVZz2/rbUVGhpKcHAw27dvp6io\niNraWnr06PG1QQKr1Yqrqyt5eXns37+fu+++G19f3w4aiXQ2rf+Po6KiCA4OZtOmTZSWltLU1ERM\nTMzXBglsNhteXl5s3bqVmpoafvjDH16yd7SIiMi10tLSgtlsprGxkVdffZW33nqLP/3pT+Tm5jJk\nyBBcXFxwcHBg0KBB1NTUkJOTQ3FxMSEhIe2CBC0tLXh6ejJhwgT8/f07eljyX0ohAhERERERERGR\nf4OXlxeDBw+mrKyM3bt3s27dOsaNG4enp6c9MNBW64ohgKysLHbs2MHIkSMJDw/XBPdltJ6D+fPn\ns2jRIkJDQ/nxj3/MyJEjiYmJoaioiJKSEiorKxk9ejSBgYH2jgTbtm3j2LFj+Pj4XPb8dmZWq9Ve\nm2FhYcTGxlJYWEhhYSE1NTUEBQVdNkjQdo/4Dz74gPPnz/PAAw/g5ubWYWORzqVt7UZFRREVFcW6\ndesoKSmhsbHxikGCtnW8dOlSDAYD9957L87Oztf0+EVERAD7FlH19fU88MADrF27lvr6elpaWti9\nezd5eXkMGDAAHx8fe0eC2tpasrOzKSoquqQjAVx836z3u3K1KEQgIiIiIiIiIvJv8vLyYtCgQZSV\nlVFZWWkPEnh4eFwSJGidhDUYDKxZs4bq6moeeeQRvL29O3AE17cNGzbwm9/8hgEDBvDrX/+akSNH\n0rt3b5KTkxk2bBiZmZkUFRVx+PBhbr75ZntHgvPnz7Np0yZ2797N8OHD8fT07OihXBfadnd49913\nWbNmDVOnTiUsLIyysrIrBgngn6GO9evXs2TJEm666SZuueUWe02LXE1ta/f999+npKSEKVOmEBYW\nxubNm68YJGgbIFi9ejV/+ctfGD9+PDfddBOgwJaISKvjx4/j5uam58WrrPXzQGNjI9OnT6e0tJSp\nU6fy0ksvMW3aNAoLC+1dogYOHHjZIEFZWRkBAQGEhobaXxv1uMnVpBCBiHRKl7uopxdcERERERH5\nplpbZF8pSNDafrvtCtotW7aQlpbGoEGDuPXWW+1bGHRWJ06cuOJq9pUrV1JQUMAvf/lL+vXrZ5/Q\ntlqtdOvWjQEDBvD555+zfft2PD096dOnD/7+/nTv3p2TJ08yduxYhg0bdi2Hc91q20lgwYIFvP76\n6xgMBoYPH05sbCwhISFs3779skGC1s/JhYWFvPrqq9TX1/OTn/yEnj176jO0XBNtO5O89tprNDQ0\nMHbsWOLj4wkJCblikKD1dgUFBbzyyitcuHCBxx9/nNDQUNWuiMg//OY3vyEtLY0+ffrg5+en58fv\nWNtttVoDmm+99RYrV65kxowZPPXUU/j5+eHt7c2XX35JXl4ex48fv2yQ4Ny5c2RkZLB3715uu+02\nHB0dO3h00hkoRCAinVLrBZTMzEyCg4OvuO+jiIiIiIhI2wuArVr/fbkgwYgRI/Dx8Wn3cwUFBbz+\n+uucOXOGmTNnEhsbe20HcZ3Jzc1l0qRJmM1mBgwYYP+6zWbDarUyd+5campqePjhh/H29rZPhBuN\nRqxWK/7+/oSHh7NmzRpcXV0ZNWoUJpMJf39/hgwZwuDBg+3315k/57UNsVRXVzN//nyioqJ4+umn\niYiIACA0NPSSIEH37t0JDAwEoLi4mPnz51NSUsKzzz7LxIkTO2w80nm0fd49cuQIL774In379uX/\n/b//R1hYGHBxa4OvBgmioqLw8PAAoKSkhPnz51NWVsYzzzxDampqRw1HROS6U1tby9tvv82uXbvY\nt28fUVFRChJ8RyoqKujSpQtGo7Hde9HGxkYWLVqE2WxmwYIF9kDxoUOHeP7550lMTCQgIICSkhJK\nS0vp168f3t7eODo6MmDAAJqampg1axbdunXryOFJJ6IQgYh0Km1ftN944w1+9rOfceHCBZKTkxUk\nEBERERGRS1gsFnu70NYW+jk5OXh5eeHm5obJZLIHCbZv387u3btZv349fn5+GI1GHB0dWbt2LXPn\nzmXHjh3MmTOHKVOmAJ17gnvdunVs27YNV1dXbrrpJvs5houh702bNrFnzx5Gjhx5ycrh1r+bTCaW\nL1/OuXPnmDx5Mi4uLgD2Pzvz+W3VdhV3bm4uO3bs4J577mHUqFFYLBZ7OOOrQYLa2loiIyM5fPiw\n/bazZ8/mvvvuAy4frBH5LrXW1+uvv05lZSUVFRU8+uijDBs2rF3tfjVI0NTURL9+/di1axdz585V\n7YqIXIGzszPJycns27eP7OxsqqqqiImJUZDgPzRv3jx+//vfExAQQGRkpL0zmcFg4MiRI7z55psE\nBQUxbdo04OLr0kMPPURdXR1vv/02EydOZO3atVRWVlJYWEhcXBxmsxlvb2+GDh1K165dO3iE0pko\nRCAincZXtzDYu3cv+fn5ZGVlYbPZGDRokIIEIiIiIiKdXEVFBSdPnsTX1xeDwWD/DJGWlsavfvUr\n1q5dy9atWyktLcVisRAdHY3ZbMbLy4tRo0ZRUVHBzp072bx5MytWrOCjjz5i2bJlWCwWfvazn3H3\n3XcD7VeId0aJiYnEx8dz77334ubmRnFxsb2FPsDhw4fJzs6mqamJhIQEPD097bdt/czm7e3Nhx9+\niKurK9OmTbukras+11104MABXn/9dbZu3UpDQwPx8fEkJSVhNBrbtdj9apBgz549rFu3juLiYmbP\nns2MGTMA1a5cO+Xl5Tz//PNkZGRQV1fHgAEDSEhIaNeVxGAwXBIkOHjwIF988QUFBQWqXRGRK7Ba\nrXh7e9OnTx/27dtHbm4ulZWVxMTE2N8Hy7+npqaG1atXU1ZWxoEDB/Dw8OCGG26wv/aYzWZWr15N\nY2MjY8aMwd3dnV/84hdkZmbyyCOP0K9fPzw9PWlqaiInJ4eTJ0+ybNkympubGTx4MCaTSY+LXFMK\nEYhcJ5SEvrqsVqt9ZcuSJUv4zW9+Q3p6OmfOnAEgLy8Pg8FAUlKSggQiIiIiIp3Uzp07mTJlCrt2\n7aJ37974+voC8Oabb7Jw4UICAgKYNGkSLS0t7Nmzh6KiImw2G71798ZsNuPi4sLkyZMxm824urpy\n9uxZ3N3dueOOO3j44YcZO3Ys0HknspqamjCbzfaAd3h4OM7Ozvzud7/jueeew8fHh969e2MwGPDz\n86O0tJTi4mI8PT0JDQ3Fzc2t3bnbvHkzf/3rXxk3bhxjxowBFBy4HG9vb4KDg6mrq2P//v0cPHiQ\nqKgo+9Z+rdoGCSoqKigrK+PkyZM8/fTTTJ8+Hei8tSsdw9/fH19fX44fP87Jkyepq6sjNjYWPz8/\ngHarO1uDBBkZGezcuZNjx44xZ84cBQhERK6g9f1Ya5CgpKSEkpIS9u3bR3R0tDoSfAsuLi5ERUVh\nsVhIT09nz549eHl52TsSODg44OvrS0REBCkpKWzdupWFCxcyaNAgnnjiCXtotrS0lPT0dMaMGYO3\ntzePP/64Hg/pEAoRiFwH2rbH3LJlCxs3bmTp0qUUFBTQ3NyMr6+vfX8c+XbatsF7/fXX8fLy4s47\n76Rv375ERkZSVlZGbm6uOhKIiIiIiHRitbW1lJaW2lcPRUVF0dLSwuuvv054eDi/+93vuO2220hJ\nSaFLly7k5+dTXFwMYA8SAAwYMIDU1FTGjx/PnXfeyYgRIwgKCgI670TW8ePHefnll4mMjMTHx6fd\n90pKSsjNzWXr1q106dKFhIQE+57mxcXF5OTkYLVa8fPzswc78vPzeeONNzh9+jSPPvooYWFh+vzW\nxlc/z4aFheHh4UFNTQ07d+7kyy+/JDQ0lICAgMsGCQIDAykoKOCJJ57g/vvvBzpv7UrHaA0HxMXF\nYTQaOXjwILt27cJsNhMeHo6XlxdwaZAgICCA9evX88wzz/DAAw/Y70u1K1fD5a4d6nqifB9YLBbM\nZjP19fX88pe/ZPXq1RQXF2M0Gjl8+DD79+8nKipKE9ffgre3N6GhoVy4cIHMzEz27NmDp6envSNB\nYGAgAwYMAODPf/4zxcXFzJ8/3/5ZAeCtt97CZrORlpbGD37wA/z9/TtqONLJKUQg0sHarpB/7bXX\neOmll9i2bRv79++nuLiYVatWcejQIRwdHQkPD+/go/1+y8rK4le/+hWJiYn89re/ZcyYMSQlJTFi\nxAji4uLYvHkzGRkZAOpIICIiIiLSCXXt2pX+/ftTWVlJTk4Ox48fx8PDg48//phZs2aRnJyMzWbD\ny8uLsLAwPD09KSgooKioCPhnkKB1ZZerqyuOjo7tPld01s8XTU1NzJ49m+3btzN06FDc3d1ZtmwZ\nERERJCcn4+7uzrZt29i6dSve3t4kJibat4qorKxk06ZNrF69mp07d7JixQreeOMNDh48yJw5c5g8\neXJHD++60LbDocFgoKGhwT5JABeDBN7e3hw/fpzMzEzOnj1LUFDQZYME4eHhjBkzhmHDhtnvW5Ow\ncrV8tTtnc3MzNpvNfr0sPj4eR0dHqqqqyMrKwmg0Ehoa2i5I0Po8GxMTQ2pqKjfeeKP9vlW7cjW0\nvtZbLBZqa2uprKykpaWFCxcu4Orq2tGH972na7JXl9FopLGxkQceeIBt27YRFBTEHXfcQf/+/e2h\nrd27d9u7v+ix+Pd4e3sTFhZmDxLs3bvXHiRwcnLCYrFgtVp58803OX36NLfffru9y84HH3zARx99\nRFJSEuPHj9fiUulQChGIdLDWF+A333yTRYsW0adPH37+858zffp0+vTpQ1NTExs3buT48eN07969\nXSJN/j1bt25l06ZNPPvssyQlJWGxWOznPyIigtjYWFauXElubi6gIIGIiIiISGdw8uRJGhsbcXV1\nxWq10rVrV3r37k1VVRWZmZkUFBRgsVh46KGH8PX1tU8auLi4EBoaioeHR7sgQUJCAg4ODpdM6HZ2\nTU1NbNiwgYqKCsrLy8nPzyctLQ03Nzf69+9PYmJiuyCBl5cXffv2pVevXoSHh2MymSgpKaGyspLq\n6mpiY2OZNWsW06ZNA7RFYNsOhytXruRPf/oTb7/9NsuXL2ffvn00NTURERFBWFgYvr6+HDt2jPT0\ndM6ePUtwcDD+/v6XBAlaW+rabDZNwspV07Z216xZw6effsof/vAHVq1axdmzZ2lubqZHjx7Ex8fj\n7OxMZWUlGRkZGI1Ge5gL2nck8Pb2tv9btStXQ0tLC2azmfPnz/PrX/+aRYsW8e6777JixQo2b96M\nzWajV69eHX2Y31ut77UAzpw5w9GjRzl06BDOzs4YjUZMJlOnf93/d13u+vbChQv5/PPPeeCBB3jx\nxRdJSkpi4MCBjB49moaGBrZs2UJFRYWCBP/ClWrxckGC1q0NjEYjRqOR7du3U1JSgsViobGxkU8+\n+YT33nsP9//P3pnHVV2lf/x9F+Cy7/sqO7IoKqiguKW4pKWVy5hZ2To1lv7MrKZlrMwxUXHJcm9s\nstI0d1GURXaQRRQVREAQARVFlB3u7w/nfruoLTO/JuzHeb9evdR7ubd7Hs59zjnP+TzPY2TEp59+\nioWFRReMSCD4ESEiEAgeAM6ePcuHH36Ik5MTixYtIiQkBGtra/z8/MjMzKSgoAAPDw8mTpyInp6e\ndLgS/DTam822tjbkcjnbtm3j7NmzTJgwQarqoPkZTclGW1tb4uLiyMjIoKOjQ7Q2EAgEAoFAIBA8\nUPzcvlTsWf891Go1zc3NfPTRR1y7do0ePXqgr68P3KlI0KtXL4qKirh48SLNzc24uLhIlQY0tr5b\nSJCfn09LSwu9evVCR0eni0f44NDR0YGBgQFjx47l5MmTZGZmcubMGcLDw3nqqaekAKm2kOD48eOS\nkMDNzY2RI0cyYsQInnjiCZ566ikmTZpEcHCw9P7d+aJQ+5I/KiqKxYsXU1BQgI6ODpcvXyYzM5MD\nBw4gl8sJCQnB1dUVGxsbLl++fF8hwd1+pDv7Fc13XZQs/++gXZ1z2bJlLFq0iJycHOrr6ykqKuL4\n8eMkJiaiUqkICgrC398fQ0NDzp07R3JyMjKZ7B4hwf3+FAh+SzTztqGhgSeffJL4+HisrKwIDQ3F\n0NCQ3Nxc4uPjqa2tpWfPnhgaGnb1R/5DoS0s+vLLL1m2bBlr1qzhm2++4dixY5w+fVpqeyT88C9T\nWloqCau07aVWq9mwYQO3bt3ik08+wdTUVEq4MzU1JTAwkKamJmJjYykpKcHb2xsrKythby2qq6sx\nMjK67/5Aczdxt5BAu7WB5iyRlJREVlYWMTEx5OXl4ejoyPr160VVasEDgRARCAS/M/dTpuXk5LBz\n507mzJlDRESE9PiaNWvYvHkzgwcP5r333qOtrY1vvvmGPn36dOsAyS+hfQjdsWMHHR0d2NraUl1d\nTWJiIv369SMwMFDaOGlvolQqFbGxsdy+fZvMzEwMDAwIDg4WGySBQCAQCAQCQZejLZStrKykoqKC\nCxcu0NzcjIWFhdiz/pvIZDKUSiVffPEFu3fvxtbWll69erFq1SpqamoYMGAA/v7+FBYWUllZya1b\nt/Dz85MuWu8WEpiampKUlERycjLDhw/H1ta2q4f4wKDJCDYwMCAtLY1z584BYGxszJQpU9DX15fE\n37FpJvIAACAASURBVHcLCczNzQkMDEQmk2FlZYWtrS3m5ubo6+tLv4fufj7WfPe//PJLoqOjGTRo\nEIsXL2bevHk88sgj+Pj4cPToUdLT07Gzs6Nnz564uLhgaWlJVVUVqampXL16FUdHR+zs7Lp4NA8O\n2j63urqaiooKSkpKaGlpwdzcXPjc3wCNDTdu3MiqVasIDw/nww8/ZO7cuYwYMQJHR0fi4+NJTEzE\ny8sLT09P/Pz8MDAwoLCwkPT0dNra2jq1NhAI/tvIZDLa2tp4++23SUlJ4cUXX2Tp0qWMGzeOiRMn\n4ubmxuHDhykqKiIwMBB3d3fhL34l2mv60qVLWblyJR0dHYwcORIbGxtu3rxJWloa+/bto3///qJP\n/C/w6aefsnHjRhwcHHB1de20f21sbGTLli0AzJgxAz09vU5xciMjIzw9PcnMzCQvL4+SkhJ8fX1F\nRYJ/sXjxYlavXk1iYiKnT5+mpaWFGzduYGdnh0wmk+axWq3G3NwcZ2dnWltbSU5O7iQkcHZ2JiAg\nAGtra5ydnZkwYQJz587F1dW1i0coENxBiAgEgt+B8vJyvvvuO4KCgqRehBrUajVJSUkkJSXx8MMP\n4+3tDcDq1atZvXo14eHhvPbaa3h6evLSSy+xZ88ehg4dKgJSP4NmI/Ppp58SFRVFaWkpEydOpK6u\njr1795KXl8egQYOwtra+J6vAwsKCbdu24ejoyJUrV0hOTsbHxwcPD48uHpVAIBAIBALBg88vlRUV\n2UL/OdpC2S1btkhBwR07dkh7XB8fH4yMjETlsn+T6upqTp8+TVJSEmlpaezatQtjY2P69++Pg4MD\nAQEBnD9/nuzsbCoqKvDx8ZEysbSFBM7OzhgYGBAZGcmIESO6elgPHDKZjNraWuLi4jA3N8fIyIiz\nZ8+SnZ1NaGgo5ubm0qXt3a0NrKysJCGB9vtp/9mdUavVVFdXExUVhVqt5pNPPiEoKAi5XI6xsTFp\naWkkJycTHh7O9OnTUSgU6Orq4ubmho2NDaWlpaSkpDBy5Ejc3Ny6ejgPBHf73KVLl7Jhwwa2b9/O\nvn37OHnyJH5+fsLn/gaUlZWxePFiDAwMWLRoEb1790alUmFvb096ejoZGRmEh4czceJEdHV10dXV\npWfPnhgbG5OXl0dycjKRkZE4ODh09VAE3YgLFy6wZs0a/P39WbhwodSzvKOjg48++oirV68yc+ZM\npk+fTklJCebm5l38if8YaNb0H374gSVLlhAeHs4nn3zC1KlTGTNmDDNmzOCHH36gqqqK27dvM2TI\nEJRKpWhtcB9KS0tZvXo1RUVF1NbWYmlpiYuLiyTsBDh06BCFhYV4e3vj4+PTaW+lVqsxMTHBwMCA\no0ePcunSJTIyMggJCcHKyqorh9blJCcns3DhQmprayktLSU3N5cDBw6wY8cOjh49yqFDh7h8+TI3\nbtygra0NCwsLLC0tCQgIoKmpiYyMDIqLizEwMMDLywtnZ2f69etHZGQkwcHBUnUdgeBBQIgIBILf\ngdTUVL744gva2tro27cvAHl5eZIyraSkhKNHj+Ln50dISEgnAcH//M//EBAQgEwmIysri7NnzzJm\nzBicnZ27eFQPHtpZAuXl5bzxxhsMHDiQl19+GScnJ1xdXamuriY7O5tz584RGBgo9TTVHPrj4+P5\n+uuvWbJkCYMHD+bw4cMYGhoyfPhwEfQWCAQCgUAg+Bm091RnzpwhLy+P9PR0SkpKMDMzQ1dXVwT5\n/g9obBYVFcXKlSuRy+WMHj0aX19frl69Sl5eHqmpqdjZ2eHk5HSPeFlwL5r9ff/+/TEzM+P48eOU\nl5fj5+fHn//8ZykDyNLSksDAQM6fP096ejoXL178SSFBQEAAvXv3Bn5ZVNMduNsG+vr6hIWFMXXq\nVB5++GEyMjLIzc3l1KlT0u/hfkKChIQEDA0NpfYFgs7IZDIuXrzIunXrGDduHJMnT5aeW716NcuX\nLyc8PJy3336blpYW5s6di62tLa6urlJFglGjRgnxixZ3+1yAyMhIfHx8qKmpkXyug4MDjo6Owuf+\nHzh//jybN29m+vTpjB8/XnpcOzb27rvv0t7ezocffoizszO2trb4+vqir68vhFuCLiE9PZ1du3Yx\nZcoUBgwYANxZ86ZNm0Z2djbPPvssr776Kl999RXz58/H19dXZBb/CjR7qvXr11NaWsqSJUsICAgA\n7rSkXbduHTExMQwdOpT58+fT1tZGS0sLBgYGXfzJHzzMzMxwdXXl8uXLpKenc+XKFaysrCQhgUKh\nQE9Pj7i4OFpaWggICMDMzEx6vaZVVHl5OTExMfTt25fKykqefPLJbn/J7eLiQmtrKydOnJD+PWnS\nJCorK6mrq5PODAcPHpSEBbGxscjlcpqbm1Gr1eTl5VFTUyMJCcQ+QvCgImamQPA7UVVVxaZNmzAw\nMKC0tJTExEQ++OADwsLCCAoKwtramu3bt3Px4kV27dolCQh69ux5z+W1KNF2fzRB602bNtHY2IiJ\niQmvvPIKffr0obW1FR0dHebOnUtNTQ0JCQnMnj2bjz76CH9/fwwMDEhPT2fjxo0YGhqio6NDSEgI\nZmZm5Obm0tTUJKmKBQKBQCAQCASd0c7YXLNmDVu3buXGjRvS8+7u7gwbNoyXXnoJY2Pjbt+//D9l\n//79rF+/nrCwMCkgDXcCruPGjePChQskJSURFhaGSqXq4k/74COTySTxS2VlJS0tLejo6FBUVMTZ\ns2fx8PCQgqReXl689957LFy4kNTUVJYsWSL9DrSFBNpnhu4+x7WFRRrxRUlJCX5+fgQHB+Pk5MSK\nFSuYM2cOOTk5zJ8/nyVLluDs7Cy99umnn6ajo4MlS5Z08WgeLLRtq+HWrVvSuVeD9iXs3Llz8fDw\nYPXq1eTm5nLx4kXp54YNGyb9XfjnH9m3bx/r168nPDycN954Q/K5HR0djB07lgsXLpCYmMiAAQNE\nvOD/gGa/oK+vLz1299x1c3Nj4cKFHD16lPHjxxMUFATAlClTpNeIuSv4PdHM16amJgBaW1uZMWMG\neXl5PP/887z44ovo6elRUVFBfX09tbW1Xflx/1DcuHGD9PR03N3dO7Wj1fYLr7/+OkqlkkmTJjF6\n9GjefvvtTiXkuzM3btyQxACDBw9GJpOxZs0aUlNTpZ8ZNGgQAH5+foSGhnLs2DGsrKx47rnncHFx\nAei0h3NwcOCdd97B2toaS0vL33lEDw7atp0zZw4AX3zxBRcvXqRfv37MmzePy5cvk5WVxaVLlzh5\n8iRnz56lpKSEgoICjh8/Dvx4Rjh58iRr165FR0eH0aNHd82gBIJfQIgIBILfgeDgYN566y3WrFlD\nVFQUjY2NDBs2DC8vLwDc3NwYOnQo27dvZ8+ePYSGhvLWW2/h6ekJIFUhiIuLw9fXt9uXDALuaUOg\neSwpKYklS5Zgbm5Oa2srDQ0NAJKaz9zcnDfffBNdXV2OHDnCU089hbu7O0ZGRuTn59PR0cH8+fPp\n168fcMf2Dg4OIggrEAgEAoFA8DNoAiHR0dGsXbsWPz8/5syZg0qlIj8/n7i4ODZu3EhJSQmffvop\nhoaGXfyJ/1ho9rypqanIZDL+/Oc/S5dZcKeX9IULF4iIiODFF1+ksbGR+vp6HBwcRDWtX0ATIA0I\nCGDcuHFYW1vz7bffsmjRIpqbm3nssccwNjYG7hUSREVFMXfuXPz8/ISN70JbWLR69Wq2bt1KfX29\nVD73ySef5I033sDe3p4VK1bw+uuv3yMkKC4uxszMjGeffZawsLBOc767o7Ht7t27GTRoEJaWlqhU\nKpRKJSkpKbS2trJ58+ZOFQ579uwJgJGREQBFRUXAvYIEcQHT2efK5XJefvnlTvNv06ZNlJaWEhER\nwQsvvEBDQwO3b9/G1tZW+Nz/AI0AIzU1lZdeeonPP//8Z+fu+fPnATF3Bb8Pd8cd1Wq11CoG7gg8\nH374Yd577z1yc3MlAYFmvmoSwaqrq7tmAH8wZDIZxsbGmJqa0t7eLtn+7qq9vr6+5Obmcu3aNS5d\nuiTayvyLpUuXUlxczFtvvSWJATSCAW0hgVqtZvDgwXh4eDBz5kyqq6v57rvvuH79OpGRkQwZMgSZ\nTMaOHTvYs2cPHh4euLm5dev4+P1sO2fOHBQKBZ999hmvvPIKy5cvZ8yYMTg6Okpz99atW1y5coXM\nzExqampITk7mxo0b1NTUcPv2bSoqKqRqGwLBg4gQEQgEvwO2trZMnz6dmJgYsrKy0NPTw8XFBWtr\na+BOAODdd9/l/Pnz5OTkcPHiRerr67l8+TL29vYcPXqUL774grq6Ot555x1sbW27eERdz/36X8pk\nMgYPHsysWbPYuHEjACdOnGDQoEFSvye5XI67uzurVq1i3bp1pKamUlBQQH19PX379mXixIlMmjQJ\ngFWrVnH9+nV69+6NWq2+5/8nEAgEAoFAIPiR48ePs3nzZnr16sXChQvx8fEB4JFHHuHGjRtUV1fT\n3NxMfX29JCIQly2/DplMxq1bt8jLy8PBwUHKwITOQdU5c+agVquZMGECYWFhLFu2TNj3Ptxv3o0c\nOZIhQ4agq6uLlZWVJAAHJCGBWq3Gy8uLd999l0WLFpGUlMTNmzf5/PPPsbCw6IqhPLBoLvM0l4EB\nAQFMmzYNhUJBfn4+U6ZMQU9Pj46ODuzs7FixYgWvvfYaOTk5vPnmmzz00ENs27YNBwcHoqKiOmWA\ni4vCO+zZs4c333yTN998k2eeeYagoCAGDRpEfHw8kydP5syZM0RERDB79mzpEhaQLmVCQ0MBxMXL\nfdD2uY6OjvTq1Ut67n4+d/z48QwaNIioqCjhc3+Cn1vvBw4cSHBwMHl5ecycOZP09HQGDx7M66+/\n3mnuapJDAgMDATF3Bf99NEIVzdrT2tqKrq4uAH379mXkyJEcOXKEKVOmcOvWLV555RWeeuopSUAA\ncOHCBYyMjKT2toKfp6Ojg5aWFkxNTcnOzuaHH36goqLivsIizd7rypUrUjWp7uyDi4uLOXDgAJWV\nlZiZmfHyyy//opAgIiKCiIgI1Go1mzZtIi4ujiNHjkjl+i9fvoytrS0ffvhhtxYQ/JxtZ8+ejVwu\nZ/Xq1cyZMweZTCZVFWhpacHIyAgjIyN69OgBwHPPPUd7eztFRUVcunQJX19fnJycumxsAsEvofjg\ngw8+6OoPIRB0B1JSUti8eTPu7u40NDRQVFREe3s7QUFBKBQKFAoF48eP59SpUxQUFHDgwAH27t3L\njh07+Oqrr6ipqWHBggVSqbbuGnBtaGjg+vXrxMfHc/LkSTIyMqQgkmaTHh4eTltbG1lZWWRlZeHq\n6oqPj48kJIA7QYG+ffsSGRnJhAkT+NOf/sRjjz0mBWS3bt3Kli1bsLOzY8GCBRgbG3dLewsEAoFA\nIBDczU/tQ48dO0ZiYiJ//etfpcspuBOs+uqrrwgLC+ODDz6gra2N2NhYvL29xQXAv4FMJuOHH37g\n5s2bzJgxA6VSyapVq1izZk2noOq1a9f4+uuvUSgUnfqiC+7Q3t4unR/q6uq4fPkyTU1NyGQyqTRx\nnz59UCgUnDhxguTkZMzMzHB3d5eCp5aWlgQGBpKbm8vo0aMJDw/vsvE8yJw6dYpFixbh5ubGokWL\nGDx4ML6+vgwZMkQqhau5rLWwsCAsLIyCggLJ7jdv3uTJJ5/sZF9xJvuR+vp69uzZQ2lpKcHBwdja\n2mJjY0NeXh5FRUW4uroye/Zs+vXrJ/ntrKwsoqOj0dXVZcaMGVJig+D+7Nq1i1u3bjFjxgwUCsV9\nfe7Vq1f5+uuv0dXV5Yknnujqj/xA8nN+V1dXF7lcjlKpJCsri6KiIry9vXn99dcJDg6W5m5mZiYr\nV67ExMSEJ598Ugi3BP91NAKCpqYmFi9ezLZt29iyZQtWVlaYmppiYGCAp6cn+fn5VFRU4OXlxUsv\nvdTpMvCrr77iq6++IiAggD/96U+dWnZ0dzo6Ou67pstkMnR0dDAzM+Pw4cMkJyeTnJzMoEGDmD9/\nPn5+ftLPpqWlcejQISZNmiRdknfnfYKRkRFubm5cvHiRxMREbt68iY+Pj1QNw8XFBTs7O8rLy8nM\nzOTq1auYm5vj5uaGm5sbgYGBBAQEUFNTQ2trK+bm5jz00EMsXLgQNze3rh1cF/NLttWcfTMyMjh0\n6BBeXl54enqiUCjuSUyUy+Xo6elhZ2eHt7e3WM8EDzxCRCAQ/E64uLjg7OzMo48+iqenJ6mpqeTm\n5iKXyyUhgVKpZPTo0ZiYmKBUKqmurkYmkzFy5EheeeUVKUO+u2ZfFBQUEBUVxdKlS9m9ezfHjh0j\nKSmJvXv3cuDAAUxNTbGwsMDQ0JABAwbQ3t5OVlYWR44ckRbvuysXKJVKTExMMDQ0JCEhgf379/OP\nf/yDb7/9Fj09PdatW4erq2sXjlogEAgEAoHgweDcuXNcvXoVa2trWltbJQGAJgi4ZcsWSktLeeGF\nF6QLQu2MzXnz5uHk5MQLL7zAqVOnGDNmTLfOaPkp7i6bK5PJaGtrQ61Wk5eXR3Z2Ni4uLqSlpbF8\n+fJOl1lqtZrm5ma2bdsGwOTJkzv1R+/uaJfY//LLL1myZAnLly9n+/bt7N27F5VKhUqlwsLCgr59\n+3YSEpibm+Pv78+ZM2fIycmhV69ejB8/noEDBwLdV+T9c6SlpbF7927+8pe/MGTIkPtWdzt//jzf\nfvstxsbGeHh4EB4ejkwmo2fPnsyYMYOpU6cCwr738wsODg4olUpiYmJwc3OjT58+GBsbo6OjQ0lJ\nCdXV1bS3t2NnZ0ddXR0pKSksW7aMkpIS3nrrLYYOHdq1g3oA0di2vb0dtVrNiRMnyMnJwdXVldTU\n1Pv63MbGRrZt24ZMJmPy5MlStrzgDr/G75qbmxMUFMSNGze4cOECTU1NmJmZYWNjQ2trK8nJySxb\ntozS0lIWLFgghFuC3wW5XE5jYyMzZ84kNjaWqqoqqqqqiIuLQ0dHB1dXV1xdXbG0tOTChQsUFhaS\nl5dHR0cH586dY/PmzWzZsgVTU1NWrlyJg4NDVw/pgUG7FcmJEyfIyMggJSWF4uJiHBwckMvluLi4\ncPXqVU6dOoVKpeLRRx9l1KhR0ntkZGSwatUq6urqePHFF3F2du72+wSlUomjoyM2NjaUlJRIFbO8\nvLwwMzMD7hUSXLt2DQsLC1xdXbGwsMDX15dHHnmEqVOnMmXKFCIiIqTXdld+rW1/SkhwdzXl7jxP\nBX9MhIhAIPgvcLeasrm5GaVSibe3N3Z2dtjb22NiYkJmZiY5OTnIZLJOFQmCg4MZO3YsY8eO5ckn\nnyQyMhIPDw/pvbujgCAtLY2XXnqJ/Px8QkNDGT16NNOmTcPGxgYDAwNOnz5NbGwst2/fxszMDHt7\newYMGIBarSYzM/MnF2/N3/Pz83nttddISkqipqaG/v37s2zZMtzd3bty2AKBQCAQCAQPDNu3bycq\nKoqQkBCpvdbt27fR09NDrVaTmJhIQUEBffv2xdvbmzVr1txTevTatWt88803XLhwgTFjxogs2LvQ\nztZsa2vj1q1bqFQq5HK5FGw9cOAAR48eJTk5mSFDhjB37lyprKtMJiMjI4Pdu3czYcIERowY0e0v\nX7XR2GHZsmVER0fT1tZG7969MTU15dy5cxw/fpzKykqsra1xdHSkb9++KJVKTpw4QUpKCoWFhaxb\nt47Y2FgGDBggiY2Fje9PbGwsGRkZPPLII3h6ekp9pLVJTk5m0aJFVFdXM3LkSMzMzAgPD2fo0KFS\nS5TuegbWoO0XWlpaUCqVtLS0oFAosLS0JDs7m7i4OCIjI7GxscHNzQ1zc3MqKipITk5m9+7dbNu2\njZiYGBobG1mwYAHTpk0DxNy9O3ajnSWoUCiQyWQcPHiQ2NjYn/S5mZmZks8dPnx4t7fp3fwav1tS\nUoKvry8jR46USjzHxcWxZ88evvnmG6kKz5tvvinmruB3ZfXq1Rw9epRp06axaNEiDA0NOX/+PKmp\nqejo6ODt7U3Pnj3x8fGhqqqK7OxsEhISOHbsGGVlZQQGBrJq1SoRW9RCey+wevVqFi5cyMGDB0lO\nTubYsWOkpKRw8+ZNAgICpGovhYWFnDt3joqKCioqKoiPj5eERW+//Tbjxo3r4lF1PTKZTGq34eTk\nhJOTE2fOnCEvL4/a2lq8vb1/Ukhw9epVLC0tOyXRaVpDCD/779n254QEYt0S/FERIgKB4DdGW00Z\nExPD999/z9atW6mvr8fb2xulUomBgQEuLi6Ympp2EhL06tULuVxOVVWV1C9HT08P6N5qtZycHF54\n4QWMjIx4/fXXeeeddxg4cCDe3t4MGjSIRx55BAMDA4qLi0lPT+f27ds4OztjY2ND//79gV9evG1t\nbQkODmb06NHMmjWLiRMnSsFxgUAgEAgEAgEkJCQQHx9PWloaI0eO5IsvvmDVqlWMGTNG6m1+6NAh\nlEolqampbNq0iUGDBjF37lz8/f2BO6UgY2JiaGpq4umnn+7UM7a7o52t+Y9//IMVK1awYsUKqqqq\n0NfXx9HRUQpCZ2RkoFAoePjhhxk7dqz0Hunp6axcuZIbN27w8ssv4+rq2i3PD3ejfQlbWFjIX//6\nV/r378/SpUuZNWsWjz/+OG5ubty6dYuEhASuXr2Km5sbtra29OnTB319fc6cOUN+fj4NDQ3MmTNH\n6nUK3fOM9ms4e/Ysx48fx9ramv79+9+3KoaHhwe7du1CLpdLl4N327O721f7smXHjh2EhIRIvtPM\nzIza2loSExNpbm4mNDQUY2NjvL29GT16NDo6OtjY2GBoaMjUqVN57rnnJJ8hxBk/xm7S09NJSkri\n0KFDXLp0CaVSiZWVFR4eHrS2tnLixAmUSiUTJkxgzJgx0nukp6ezatUq4XPvw7/jdxMTEykvL6dv\n374MGzaM0NBQOjo6UCqVKJVKHnvsMV588UXGjx8PiLkr+O9xt7Bo3bp12NjYsHTpUiwsLBg4cCAq\nlYqCggJSUlJQKBR4eHjg6enJI488gru7OwMHDiQoKIjnn3+ep556SlQguAuNfdetW0d0dDReXl7M\nmjWLyMhI5HI5xcXFxMXFceXKFUaNGkW/fv0wNDQkPT2dnJwcEhMTycnJwczMjDfeeEOqWPRT7RG6\nC+3t7SiVSm7fvs3WrVs5cOAAFRUV1NXVcenSJa5du/aLrQ1sbGxwdnYW/vUu/l3bCiGB4P8bQkQg\nEPyGaAf+Vq5cyYcffkhubq7UL6e+vh5PT09MTEwwMDDA2dn5HiFBU1MTa9eu5cKFC9Ki050Xl+rq\nav76179SW1vLW2+9JfUYbG9v7ySsCA4OxsbGhgsXLpCZmYmJiQn9+vVDoVDcs3i7u7vj5eUlvV6z\n0XRwcJDKN2nEGwKBQCAQCASCO3h7e3Pp0iVOnDjB999/T2pqKr1796Zv376Ympqiq6tLYWEh8fHx\nnDp1igEDBjBv3jz8/f2l/VZSUhIbNmwgODiY8ePHo6ur2633utpo7LB8+XJWrFhBTU0NDQ0NnDx5\nkrKyMkxMTPDw8KBnz560tLSQk5NDRkYGV69epaCggMTERJYtW0ZZWRkLFixgwoQJXTyiBwdNMDQ/\nP59z584RExPDxx9/TFBQkNSaw9vbGzc3N65du8bx48cxNzcnJCQEuVxO7969cXd3Z9iwYUyaNIlH\nH30UEAFruH82sMYuJiYmJCQkUFpaSr9+/TqJtDs6OgBQKBR8++231NXV8cQTT0iZb4LOxMXF8f77\n71NUVERMTAwWFhbo6+tjampKSEiI5HeHDRuGpaUlarUaIyMjBg4cyKhRo5g4cSIhISFSr+7ufgmr\nnQkbHR3N+++/z7Fjx6SqDomJiZSWljJkyBD69u1LfX09ubm5pKenc/36dUkgo11iX/jczvwnfldf\nX5/Bgwdja2vLiBEjmDRpEo8//jiDBw/GxcUFEHNX8N+jra0NhUJBW1sbN27coLKykoyMDPr3709I\nSAgNDQ3o6OgQGBiInp4eBQUFUkUCJycnTExM8PLyIiAggJCQEJydndHX1+/qYT0waAuLWltbWb16\nNSqViqioKEaMGIG/vz8RERF4eXlRVFREcnIyzc3NDBs2jLCwMB566CECAgLw9/fnmWeekUrtg/AL\nmjWtsbGRGTNmsH//fgwMDBg+fDg6OjrcunWL3Nxcbt68ia+v732FBDk5ORQWFuLq6irtFQT/uW3v\nvotwdXXFx8dH7HEFf0iEiEAg+I3QPoQuW7aMzz//HC8vL15//XUGDRpEQUEB6enpNDc34+XldY+Q\nQHNYPXDgAOfPn2fMmDEEBgZ28ai6Dk0wKiMjg40bNzJlyhSef/554EexhqaskiZI5eXlhbGxMceP\nHyc9PZ1+/fpJB83Q0FDp/WJiYhg/fjympqaiNNO/0NhbKCIFAoGGuy9GhH8QCLo3arUaQ0NDxowZ\nw86dO6mrq0OlUvHqq68SHByMWq3G1NQUHR0dzp49S11dHb169SI8PBxzc3NkMhmpqamsWrWKmpoa\nXnvtNfz9/YVfuYtTp06xaNEiQkJC+Pvf/864ceNobGwkNTWVsrIyqVdpWFiYdIbIyckhPT2dvLw8\nbG1tRVbWT7BhwwbmzJmDWq3m6tWrzJo1CyMjI0kELpPJsLW1xcLCgoyMDLKzs4mMjJTKk7q5ueHl\n5YWbmxsgAtbQ+ULgypUrlJeXo1AokMvlKJVKdHV1qaioICUlRWp1ovEHmv/S09P5xz/+wcCBA3n4\n4YfF+ewnaG9vJykpibq6OhoaGjh69CglJSUYGhrSo0cPLCws2LNnD9evX5eyObV/P3fv47q7jTXj\n37RpE9HR0QQFBfH6668zatQonJycOH36NJmZmRQUFDBhwgSGDBmCoaEh2dnZZGdnk5aWRm5uLjY2\nNsybN0+qoiF8bmf+Xb+bk5MjtTXRoFAoOs1fYV/BfwNNpnFjYyPz5s3jiy++YO3atZSWlmJnailq\nRAAAIABJREFUZ8dDDz2Ejo6OJIDRCAlOnz5NSkoKKpUKV1dXUWHrZ9CsR1u2bCE3N5eYmBgef/xx\nxowZg1qtRq1Wo1KpcHZ2xtXVlZMnT1JQUEBISAj29vZYWFjg5+dHSEgIrq6uWFpaAty3VVJ3QyaT\n0d7ezieffMKxY8d44YUXWLJkCUOGDOHhhx/G29ubmpoajh49ys2bN++pSGBvb8+pU6e4fPkyL774\nIsbGxl08ogeH/4ttQ0NDkcvlpKenEx8fz1NPPSXEsoI/JEJEIBD8RmgWgL179xIVFcWgQYP44IMP\nGDJkCEFBQbS1tZGamsrp06dpbGzEx8dHEhK4uLjg7OwsBQb/8pe/SIfQ7orGnqtXr6aoqIh3330X\nW1vbTiUHtX9Wc1j38fGhsbGREydO0NraytChQ1Gr1VJFgqamJsLCwhg1apRYtPkx8CcO5AKBQBtt\nX5uUlIStrS1KpbKLP5VAIOhKNHuEAwcOsGPHDkxNTamvr+f06dOEhIRgbW0N3KlWoFKpuHDhAllZ\nWRw7doyMjAz27dvHZ599xqVLl3jzzTd5/PHHASFQuvvCKT8/nz179hAVFUVgYCDOzs54eHjQ2NhI\ncnIypaWlWFpa4uHhQa9evRgyZAgPPfQQPXv25LnnnmPq1KkMHDhQeu/uHlTV0N7eTnV1NYWFheTk\n5NDS0sL48eOxt7eXLq01c9HZ2Vkq7arJKLwf3XneQue9wldffcWnn37KqlWriI2Npba2VrrYDggI\n4Ny5c5w4cYITJ05gYmKCkZERxsbGJCcns3LlSiorK3n11Vfx9vbu9naFzn5RrVYDYGlpia2tLQcP\nHmTEiBFERESwa9cu9u/fj1qtxsPDg8rKSlJTU3FxccHLy6vT91/Y9Q7awgqAFStWoFQqWbp0KeHh\n4fj4+BAWFkZYWBiJiYnk5+dz8eJFRo0aRXBwMEOHDmX48OH4+voya9Yspk2bRlhYGCB87t38ln5X\nzF/Bfxu5XC612kpJScHAwICOjg5aW1spKSnB2dkZb29vFArFfYUEGRkZtLW14e3tjaGhYVcP54FC\ne6+blZXF3LlzqaiooLGxkb59+xISEtJpT6FQKLC2tqapqYm4uDiUSiXDhg37yfcX/uEOra2tfP75\n5+jr6xMdHY2Ojg4tLS3o6uri4uJC7969KS0t5ciRI9y8eRNvb29JsOXi4oK7uzvPP/88jo6OXTyS\nB4//i21DQkLQ09Nj3rx5ODg4iPkq+EMiRAQCwW9Ia2sr69ev5+LFi3z88cfSwae5uZl169Zx69Yt\nbGxsSE1Npbm5GU9PT0xNTdHX18fHx4cJEyYwevRoBgwYAAgVO9wJSDU1NfHKK6+gUql+8lCuUQbK\n5XLc3d05cOAAt2/fZtKkSejr60vPhYWFSSWFurt929raUCqVtLS0sH//fo4cOcK+fftwcHDAysqq\nqz+eQCDoQrQr6yxduhRTU1MCAgK6tc8UCAR3aGxsxNfXl2eeeYZbt25x4sQJkpOTCQ0NlfYP/v7+\nuLu7Y2xsTEZGBufPn+fSpUv07duXuXPnSu2puvuFi3bAtLy8nKqqKkpKSigpKWH27NlSWV1LS0tc\nXV1paGggOTmZsrIyTE1N8fT0xMrKSgpeOTk5SQErkZX1IxpbaMqzVlRUUF1dTX19Pf369cPAwAC4\nc57QXAzcunWLmJgYAgICpLOD4Ee02/gtXbqUFStWUFtbi6OjI9evX+fEiRPcvHkTLy8v7O3tGThw\nIGVlZWRnZ5OQkMDBgwfZt28fX375JZcuXWLBggWSXxDCoh/94u3bt9HV1ZXOso6Ojly6dIkjR47w\n4YcfMnz4cIqLi9m/fz9VVVUYGRlRVFSEiYkJ4eHhncTigjtobLt8+XLy8/PJyclh3LhxjBkzRrKz\nWq3GxsaGiIgIDh8+TE5ODi4uLvj4+GBlZYWrqyt9+vTB2dlZ+NyfQPhdwR8FbWHRjh072LlzJ88+\n+ywrVqzA398fXV1dTp06RVlZGba2tvTo0eMeIYG+vr7UAmX69OmihYEW2mtaXV2ddD5ISEjg1q1b\nGBsbM3bsWORyeacYrY6ODhYWFuzbt4+Ojg4mTpwofOzPoFarKSsrY8WKFTg6OjJt2jTpkhvu+Fpz\nc3NcXFw4ceIE+fn51NbWdrrs1rTkEHTmt7Bt3759RZxd8IdGiAgEgn8D7YCGpoej9qH85s2bREdH\n4+bmxquvvio9Hh0dzd69e1mzZg2DBw8mJiaGkydP0tjYiIuLCxYWFshkMnR1daXSV939ENre3k5b\nWxsbNmzg+vXrTJo0CSMjo5+1ieY5HR0d9uzZQ3l5OWPGjMHS0vK+r+vOARVNqbaGhgZeeeUVNm3a\nREZGBqdPn0ZHR4c+ffpIGyKBQNB90A6iaPqWenp6MmXKlE59jAUCQffgfoJLW1tbfH19cXR0JDQ0\nlNLSUnJzc+8REri4uBAREcGjjz7KtGnTmDlzJpMmTcLf31967+6819W+hP3ss89YtGgR69evly5f\nJ0+ejLGxMW1tbcjl8nuEBOXl5VhYWODu7i69nyhVfoefsoVSqcTOzg4rKyuKi4vJz8/HzMwMDw8P\n9PT0aGtrQ0dHB7hThSc1NZUZM2ZINhb8iMam69atY82aNYSFhfHpp5/y2muv4eDgQE5ODufOnZOC\nqA4ODoSFhWFvb097ezuXLl2isbGR8PBwXn31VakySXf3C/CjbZcuXcr69esJCgqSKr0olUrkcjmx\nsbGUlZXx3HPPMXjwYJydnTlw4ADnzp2jo6OD06dPExwcLLXeEPzoF9RqNQUFBcyfP5/Tp09TU1OD\nh4cHQ4YMAejUMtHCwgJbW1uOHTuGubk5Q4cOld5PtIfojPC7gj8imrhrc3MzZ86cISEhgaamJqKj\no9HT06NHjx64ubnR3NzM8ePHKS4uxtraGnd3905CgoCAAKytrXn11Vext7fv6mE9UGh8wbvvvsuG\nDRsYP348fn5+WFlZkZmZyblz57C2tpYSFjo6OiT/qlKp2LFjBx0dHTzxxBOiMuLPoLFXfHw8tbW1\nTJ48GX19/Xt8s7W1NXl5eRQUFEji5V69egnxwM8gbCsQCBGBQPBvcXdvaO0Ah1qt5tatW3z99dfU\n1dUxdOhQLCws2L59O0uXLuXRRx9l/Pjx+Pr6olarSU9Pp6CggHPnzlFVVXWP0rq7H0JlMhlKpZK8\nvDzOnDnDoEGD6NGjx696rVKpZN++fbS0tDBjxgzRk+wuNHO3qamJmTNnkpuby5gxY/jrX/+Kt7c3\nI0eOFOWrBIJuimZdy8/PJy4ujoqKClauXCld+gkEDwrdvZrQ78HdbU2Sk5PZv38/FhYWGBsbo6ur\ni76+PuHh4ZSVlZGTk0NSUlKn1gYtLS2YmZlhZmaGiYmJ1AOyu4tloXPrrlWrVqFUKrG2tqajo4Ob\nN29SVlbG0KFDUalUnYQEbm5uNDQ0kJaWRmFhIaampnh5eYnvw7/QnrcXL17kwoUL5ObmSnPOxMQE\nBwcHHBwcyMvLIykpCblcjpubm9T/NTs7m88++wyZTMa0adOwsbHpyiE9sOTm5rJkyRJ69OjBu+++\nS0BAAEqlkra2Ng4dOsT169cpLCykvr4eb29vbG1tCQwMZPz48UyYMIEnn3xS6iULQkCgTXFxMStW\nrODcuXPs3buXlpYW9PT0sLOzw93dnYqKCg4cOICnpyf9+vWjV69ejBkzhsrKSpqamqRs759qxdHd\n0J5b169fx9XVFVtbWw4dOoRarcbJyYnRo0d3apOofQm+Z88eamtrGT9+PCqVChDxGm20/e7p06c5\nc+YMycnJdHR0oKuri4mJCY6Ojtjb2wu/K3igkMlktLW1MXXqVHbv3s2VK1fw8PBg7NixNDU1oVQq\nsbCw6CQkuHDhwn2FBD179pSyjgWdaW9vJzo6murqasaNG4e1tTXOzs5YW1uTnp7O+fPnMTc379TS\nSCaTkZaWxnfffUdkZCQjRozo4lE82GiEF+np6Zw8eZIbN24wcOBAdHR0pHWtpaUFHR0dbty4wenT\npzE0NOTcuXPMnDlTxM1/BmFbgUCICASCX83FixfZv38/0dHRfPPNN2zfvp36+nqam5txcnJCJpNh\naGhIe3s7JiYmREZGUlJSwscff4ylpSVz586VMgEKCwtJTEzE29ubU6dOMXz4cHr37t21A3zA0Gwc\nKyoqSE5Oprq6mpCQEExNTX/yNZqFvbGxkXXr1mFgYMD06dNFRv1daFo/REVFcfjwYZ555hnmz59P\njx49CA4OxtramqtXr5KQkEBtbS0tLS2Ym5t39ccWCAS/E19++SWzZ8+moaEBBwcHXnjhhU4ZAQJB\nV5KSkoKzs3On8reC3x7tC4G1a9fy0UcfcezYMXJycsjKykKhUNCjRw/09PRQqVSEhYVRVlZGbm4u\nKSkpDB06lNLSUlasWIGHhwcWFhYAnQKD3RXtii9Xr17lb3/7G7169WL58uVMmzYNFxcXzpw5Q15e\nHjdu3GDAgAFStqZcLpeC2XV1daSkpDBq1CjpEra7o13dYcOGDSxevJgtW7Zw8OBB9uzZQ0JCAl5e\nXri4uODs7IyjoyN5eXkcOnSIhIQEqqqq2Lt3Lxs3buTixYv8z//8jwhaa3H3PiAlJYU9e/Ywd+5c\nBg0aJD2+fPlyCgsLeeONN6iuriYtLY26ujp8fHyks5yhoeE9req6s1+4G1NTU6ZPn45areby5csc\nPnyY1NRU2tvbCQ4Opnfv3qSmppKens7kyZMlgUxERATOzs6MGzeOCRMmdPUwHhg0c+v9999n9erV\nTJ48mcDAQFxcXDhy5Ih0gRUUFCSdlTWvMzc3Z+fOnSgUCqZMmSJiC3dxv6o633//PfHx8ezfv5/4\n+Hjc3d1xc3OT/G5ubi4xMTHC7woeCFpaWrh+/TpJSUlcuXIFExMTHn/8cUkUp7330hYS2NjYSK0N\nBD+PXC6nra2Nw4cP09LSwrBhw1CpVPTo0QNLS0tiYmLIzc3l9u3b9OrVC7lcTnp6Op999hmXL1/m\npZde+tVJZf/f0T5HANTX1yOXy1EoFCgUCvz9/YmNjSU3NxeZTEavXr3Q0dHpVH5/3bp13L59m9Wr\nVzNr1ixRcfJfCNsKBD+NEBEIBL+CrKws5s+fz65duygvL6ehoYGysjKSk5P54YcfkMlkeHh4YGBg\ngLe3NwMGDMDMzIyjR4+ye/du3n77bQYPHiy939GjRzl9+jRRUVG8+OKLncridXc0wSmNms/V1ZXs\n7GwKCgowMjLC09Pzvv3FtINaBw4cYNeuXTz77LMMHDiwW198NTQ0oKOjc89mqKOjg5UrV2JkZMSq\nVavQ09NDrVbT3NxMVFQUn332Gf/85z+JiYkhJycHb29v7OzsunAkAoHg90CtVnPjxg3Ky8s5c+YM\nlZWV9O/fXxLLCQRdybVr1/jggw8oLy8nNDQUpVJJc3OzKG35G6NdJUCzJzA3N2fGjBkYGhpSVFTE\n6dOnUSgUeHh4oFKpOgkJcnJy2LlzJ4cPHyY3N5egoCB8fX27eFRdh2YPpglEa2ybkJDAlStX2L17\nN++99x5BQUEYGhpKly3Z2dmkp6dz/fr1+woJnJ2dGTlypLhs0UKzTi1fvpxVq1ZhbGzM1KlT6dmz\nJ0qlkpycHPbs2YODgwM9e/bE2dkZBwcHysrKKCws5OTJk1RVVTF8+HBmzJjB5MmTgXsvz7sj2mcJ\njT12795Nbm6uJH6BO8HTzZs389prr/HYY4/R0dFBSkoKFRUVVFRU4ObmJnrC3sXdlXU0Ii6FQsGA\nAQPo168fVlZWxMfHk5SUxKlTpzAwMMDJyYm4uDiqqqqkeIKuri4eHh54eHjc9727M62traxYsYLi\n4mICAwPp0aMHPj4+9OjRQxJp2NnZ4efnh1wul+yWlJTE119/zZAhQ4iMjBT2vAuNPdauXcvKlSux\ns7Nj2rRp+Pr6olAoOHnyJDExMVhaWhIYGIijoyOOjo7C7woeGJRKJT179sTc3Jy0tDQuXbpEa2sr\nAwcO7LR/0xYSpKamcuLECdzc3ETbmH/xS99ZKysrDh48yIULFwgNDcXGxkZasywtLTl27BjJyckc\nOHCAjRs38v3333Pp0iXmz5/PxIkTf8eRPLi0tbWhVCppampiy5YtbN68mU2bNnHo0CGqq6vR09PD\n29sbExMTMjIyyMjI4MqVK4SEhEhx9H/+8598//33hISEMHHixJ9N1OtOCNsKBD+PEBEIBL9Aamoq\nL730Ei0tLcycOZP33nuPGTNm0Lt3b1xcXMjOziYjI4OamhpJWa2vr09raytLliyhsrKS559/XlKf\npaens3z5cry9vXnmmWekMm3igN+5zGB9fT16enooFAoaGhrIyMjg7NmzmJmZ4eTkJC3SHR0dnV6X\nlZVFVFQUOjo6PPfcc9jZ2XVbu2ZmZjJ37lweeughDA0NOz1XXl7OqlWrcHR0ZNSoUdTV1REbG8v7\n77/PkSNHaG1txd/fHysrK/Ly8tDV1WXIkCHiMC8Q/D9G40udnJxwdHSkpqaGiooKSkpKCAoKwtLS\nsqs/oqCbU19fz9q1a0lOTkalUuHn58crr7xCQ0MDgYGBXf3x/t+gWee/+eYbli9fztChQ/nwww+Z\nMGECAwYM4PLly5w4cYKysjIUCgWenp5SRYKIiAguXrzImTNn0NHRYf78+dKFQHckOTmZv/3tbwwZ\nMgQDAwPp8a1btzJ//nwqKyu5du0aTz/9NBYWFqjVapRKJU5OTri5uZGTk0NaWlonIYGmAoeVlZV0\ncSvOET8SExPDRx99xIABA1i0aBHjx48nIiKCRx99lPj4eKqqqpDJZISFhWFoaIi9vT02NjZcvHiR\n6upqhg8fzp///Gf69+8P3JuV1B3RFhatXr2auLg4Bg0aRHl5OcePH8fFxYXQ0FAOHTrEkiVLCAsL\n46mnnsLGxgZ7e3v27NnD9evXOX/+PN988w0TJkwQgdV/oV315dixYxw4cIBVq1YRHx9PZWWlVDK7\nf//+hIaGIpPJSEpKIiEhgRs3btDe3s6VK1dwdnbG1dUV6FzRQfiFO6jVahQKBba2thw5cgQjIyNJ\neOHt7Y2zszMxMTEcPXoUHR0d7OzsMDQ05Pjx46xfv57KykpefvllSZwh6Owba2tr+fjjj3Fzc2PJ\nkiWMHTuWiIgIJk6cSFNTE9nZ2aSkpODp6SklJ9ja2gq/K/jd+am5paurK4ncNAIBlUpFnz597isk\nuHbtGsXFxbz00kvdfj27fv06+vr6UmsIbftq7N3R0YGpqSlyuZzDhw/j5eVFr169gDu2d3d3x9bW\nlszMTK5cuYKFhQVvvfUWL7/8MiNHjgTEXre9vR2lUsnt27d59tln2blzJ5cvX6a5uZmysjJSU1OJ\njY0lICCAkSNHYm5uzsmTJ0lPT2f37t0cOHCAbdu28f3332NsbMyiRYuk9nPdHWFbgeCXESICgeBn\nSElJYdasWdjZ2TFv3jxmzpyJpaUlJiYmeHp6EhYWhqenJ3l5eWRnZ3P9+nVJRalQKDhz5gwnT56U\nNqOnTp0iOjqakpIS5syZ0yng3Z03Qxo0Nvj73//O7t27CQgIwMLCAk9PT65fv05mZianT5+mqakJ\na2trLC0tkclknTK6oqOjOXPmDAsWLOj2mVmXLl1i3bp1JCQkMHXqVORyOe+99x7Dhg3DzMyM8+fP\nk5aWRn5+Pt9++y179uzhypUr9O3bVyrz2LdvX2JjY7l69SpPPPGEyPYUCP4fcfdBXPN3uVyOnZ0d\n1tbWVFZWkpOTw7Vr1/D29pZKkgsEXYFCocDExIS8vDwSEhL47rvvuHDhAoMHD8bHx0eUE/0NuXXr\nFlFRUajVaj766CN69uwJ3LmI2bp1Kw0NDbS1tUlCQ01FAl1dXUaPHs1DDz3E1KlTiYiIALpf4E9T\n3em1114jLy8PlUpFaGio9LyZmRmZmZmcOnUKgIiICFxdXaVgq0KhuEdIUFdXR//+/aXqUeKisDMa\nm3z77becPHmSxYsXExQUJD2/bt06du/ezZAhQ3jnnXdoaWmhpqYGW1tbHBwcsLW1paioiKysLG7e\nvIm/vz/GxsadeqN3R7Tn2vLly1m7di319fVERkZK7QnGjRuHqakpS5YsoaqqinfeeYeAgADUajUd\nHR1s376doKAg+vTpw8iRI6ULge6Odhn4FStW8PHHH5ORkUFVVRXnz58nJSWF/Px82tvb8fPzw8nJ\niX79+jF06FDOnDlDcXExV65coba2Fn19fcLDw7vtOqiZpz8leNc8pqOjw/Hjx0lMTCQkJAQnJycA\nfH19cXV15ciRI6SlpREbG8uWLVvYsWMHNTU1vPHGG0yaNOl3HdODyt1VdXbu3IlKpWLnzp386U9/\nYvjw4XR0dEjrWVhYmFSRJD09nVGjRmFlZYWjo6Pwu4LfFU2mcUtLCzExMezZs4eKigrUajU2Njao\nVCrc3NywtLQkNTWVrKwsdHV1CQ4OvkdI4OPjw9NPP42Dg0NXD6tLSU1NZeHChVISgsYvZGRkdPq3\nxjfLZDIOHjxIbm4uI0aMwMzMDOgs4sjIyKChoQE/Pz8iIyOBOy0nunssUi6X09zczIsvvkhOTg5P\nPvkkn376KdOnTyciIgKZTEZOTg4//PADoaGhjBw5ksGDB1NTU0NTUxOFhYWYmpoyYMAA/v73v4v2\nEFoI2woEv4wQEQgEP0FqaiqzZs3CycmJefPmMXbsWKBzEFQmk+Hp6YmHhwe5ubnk5OTQ0dHBsGHD\ngDt9TtPT00lLS2Pnzp3s3LmTyspKFixYwJQpUwBRpg0627ShoYHly5eTk5PD7du38fDwwMbGhuDg\nYFpbWykqKuL48eMcOXKE2tpaCgoKSE1N5bvvvmPlypVcuXKF+fPnM336dKB729fS0pLY2FiKi4s5\ndOgQX3/9NUlJSTg5OeHr64tKpeLq1aukpqZSW1tL//79ef7555k9ezZ2dnbo6elhYmLC1q1bsbOz\n44knnujqIQkEgt8I7cy34uJiCgsLSU9Pp62tDbjTi9fe3l4qN5qSkiKEBIIuYfv27VRWVuLh4YGO\njo5U8v348eO0tLQQHBzMW2+9ha6u7j3ZL4L/nPLycpYuXcq4ceM6rf9Lly4lLi6Ojz/+GB8fHxIS\nEigtLaWtra1TyykrKyvMzc2BzpWmugt1dXUYGRnRu3dvVCoVs2bNQqVSSe03zMzMGDx4MCdPnpTE\nWpGRkZiYmEjzWFtIcPLkSVJSUrh06RIjRozodvb8NWiEG9HR0XR0dDB79mxUKhVwJ3s+Ojqa8PBw\nXn/9dUxNTRk7dixnz54lMjJSKg1vb2/PuXPnSE1NpaGhAS8vr26XYajtR7UzNq9cucKGDRuwt7fn\no48+wtXVFZVKRXBwMKamphQWFrJ48WImTpzIjBkzpO99XFwc27dv5+WXX2b27NmSmKa7CYvuh2b8\nn332GWvWrKFPnz68++67zJo1i0GDBtHS0kJOTg75+fno6+vj7++Pvr4+tra2jB8/HhsbGxQKBcXF\nxYwdO5aQkJAuHlHXUVdXh0qlum8mrFqtBu7Y29TUFIVCQXx8PA4ODvTv31+q7uLj44ObmxuHDx+m\nvr4eS0tLSVg/atQooPvO2/j4eFavXs2oUaM6Xabu3buXBQsWEBcXx82bN3n44Yfx9vaWKj9o7BUa\nGkp5eTk5OTk4ODjQu3dvdHR0hN8V/G5oMo0bGhqYPXs2GzduJCsri7i4OM6fP4+pqSnu7u6o/pe9\nM4+rus7+/xPuhQuX/bLJzmW7LKIiCrIqYrnvlmaNWzU1TbZMWdZMzq/HtFvqlJU1TU22OLZaSqUi\nogKXfUdE2RQBFUU2Adk+vz/83k8XRbOZDKf7ef5Tchfu+3Du+Xze7/M655iZ4ePjg52dHWlpaWRn\nZ6NQKEQhgS5e2NnZXdHt09DQarWsXLkSExMTEhMTcXNzAy6J4v785z+Tk5ODQqHA0tISa2trAEaM\nGEFTUxNZWVmEhoYSGBgoxhNTU1PUajUODg5kZGSg1WoxMjJi/Pjxg+KJIfPNN9/w0UcfMW/ePJ56\n6inRD93d3ZkyZQqdnZ0UFBSQmppKREQEQUFB3HLLLcybN48ZM2Zw9913k5iYKFXJD4FkWwmJayOJ\nCCQkhiAzM5NVq1bh6urK2rVrB20adRtSfaW7l5cX7u7u7N27l+LiYhwcHBg5ciRBQUGYmJjQ29vL\n6dOnCQ8P5+GHHxbbuhrioerl6CeyUlNT2b17N2fPnqWuro6Ghgaam5vx9/fH2dmZsLAwPD09MTY2\npri4mMLCQtLT08nOzubkyZPExsby6KOPilUChmzfvr4+TE1NWbp0KampqVRUVNDW1sY999zDqlWr\nAPD29iYuLo7JkyczZ84c/vjHPxIcHIxCoQAuHbi8//77JCcnM336dKKiogCp2k1C4n8d/cq3d999\nlxdffJGPPvqIlJQUduzYQXJyMh4eHvj6+opzS0+cOEF6erokJJD4VUlKSmLt2rU0NDQQHR2NtbU1\nAwMDbNy4kbq6OuRyOfX19cjlcvGASWqB+9+hs19rayuffPIJjo6OzJo1C7g05/GNN95gyZIl/O53\nv8PHx4f09HSqqqqor6/n6NGj+Pj4XDH6xNDuG9LT01m1ahWjRo1i9OjRxMbGYm5uzrp163j77beZ\nPn26KNScMGECpaWlVFRUkJuby6RJk7CysrpCSODu7s6BAweYNWsWY8eOHe4l3nTo7vnlcjkpKSmc\nOnWKVatWYWpqyhtvvMGbb75JTEwMjz32GCEhIXR1dbF9+3aMjY1Zvnw5gGhrFxcXampqSE1Npb+/\nn5iYGIOJKbm5uRw6dAhvb28UCoW47o0bN/L111+Tn5/P7373O7GTgH5ytqioiKSkJHx8fJgyZQrG\nxsbk5eWxadMm+vr6uPPOO3FxcRF/l6HFhatRVlbG3/72N9RqNc899xzh4eE4ODjg4+N5Tgv7AAAg\nAElEQVTDqFGjsLKyIiMjg5qaGtRqNZ6envT29mJqakpQUBDTp08nPj6e6dOnD/dShg39mOvq6ir6\nbVZWFm5ubuI4Dl3yz97enoyMDPLy8pg5c6Z4b2FkZCSONkhOTqa1tRV/f3+Dr4RtaWlh6dKllJWV\nUVdXxy233CLa2NbWloaGBqqrq+nq6mLEiBFMmDBBtJO+qMPV1ZXPPvsMR0dHMYZIcVfi10C39+3s\n7OSuu+4iNzeXsWPHMmvWLMzMzMjOzqa2thYrKyv8/f1RKBSikEB33mhubs6YMWMMttvL5ei69np5\nefHoo48yceJE4JKgq6amhrq6Og4fPsyePXvYt28f1tbWGBsbY29vj6urK3v27KG6upqFCxcil8vF\ns3V9IUFmZib5+fl0dnYSFRUl3TcA27dvp7y8nGeffRY3Nzfx2qX7b0xMjChOtra2JiIiArlcjkKh\nwN7eHlNTU0xMTIZ7GTclkm0lJK6NJCKQkLiM6upqli9fTm9vLzNmzODOO+9ELpcPmZDWFxKo1Wps\nbW05cOAAp06dIiYmBhsbG8LCwpg6dSpLlixh/vz5YjtYQ05w69Cfr/nqq6/y3HPPiRdkmUxGa2sr\nFRUVdHR0EBAQgIODA/7+/kybNo0JEyYwZcoURo8ezbx583jggQeYN28egYGBgGRf/bX/85//pLW1\nFUEQaGlpYf78+ZiYmDAwMIBSqcTV1VVs5VhdXQ2Aubk577//Pu+//z4ODg6sW7cOGxsb6cZdQuI3\ngH5b4s2bN2Nvb8/KlSsZM2YMtra25Ofns2vXLmxsbBg5ciQeHh6DhAQtLS34+flJQgKJG05HRwet\nra1MnDiR+Ph4UXjY2tpKVFQUiYmJ5Obmkp6eTl9fHxMmTMDY2FgSEvwEjY2NFBcXi+Kho0ePcvr0\nafz9/QfZLS8vDysrKxISEsjPzxfbMz744IM4Oztjbm7O0aNHKSkpQRAESktLCQoKIiQkZBhXN7xk\nZGRw7733YmNjQ1RUFN7e3hgZGdHc3MwLL7zA8ePHOXz4MAkJCaKQIDIykuLiYoqLiykoKCA+Pn5I\nIcHs2bPFQ1pD7LR1Lb/V2aKnp4fc3FwKCgoQBIH8/PxBAgL9fdjWrVsZGBhg0aJFmJiYYGRkJNra\n1taW06dP8/DDD+Pg4DCcy/7V0Gq1LF++nLa2NuLi4sRK4HPnzvHUU09RXl6OUqkkLCyMsWPHiglZ\nne1NTU35+uuvqa6upqGhgcrKSjZt2kRVVRVPPPGEKMqXGExOTg7ffvstDz/8MPHx8eIICGNjY6yt\nrUXRwP79+zE3NychIeGKJJazszNgmFXyQ8VcgOeff55nn32W3NxcTp06hZ+fn1g1bGVlJc44NjMz\nY/z48YMKRQIDA8WOBOnp6cjlcsaNG2ewlbBmZmb4+vqSlpZGcXExtbW14vfZ0tKScePGUVNTQ1VV\nFR0dHcTGxmJnZzfoOqU7N/vwww9xcnJi9uzZ4uOGGnffffdd8RomcWMxMjKip6eHtWvXkpOTw733\n3svzzz9PXFwc3t7elJSUUFFRQV1dHba2tvj5+Q0SEmRnZ5Oamoqdnd2gMUmGiq5rr6enJ4899pgo\ntBIEQexQNGfOHIKCghgYGKCgoIDk5GQyMjJobW1l9OjR1NbWotVqcXFxEe/N9O8n1Go1Tk5O7N27\nl9raWubPny92OzNkvvjiC+rr67n99tvFinfdmAjd9cne3p4ffviB5uZm5s+fj6mpqfg8iasj2VZC\n4tpIIgIJicswMTGhpqaGEydO0NjYKLZ0ViqVQz7/8o4Eubm51NTUMHPmTPHCI5fLMTc3FxXZ+slz\nQ0Z3od2+fTsbNmwgPj6eV155hdWrVzN37lw8PDxoamoiNTWVzs5ONBqN2AbL1dUVtVrN6NGjxapY\n3QGgZN8fqaqq4syZM8TFxdHT00NFRQXJyclMmzYNCwuLQe0e33vvPR5++GH27t3L9u3b2blzJ5aW\nlrz33nvigYyEhMRvg+TkZJ5//nnGjRvHCy+8IIqzpk+fTlZWFg0NDchkMmJjY7GwsBBHG9TX13Pw\n4EHq6uqYOHGi2CpaQuJG4OLiQmRkJNHR0XR2dvL//t//Q6lUMnv2bMaOHUtwcDAqlYrs7Gy0Wu0g\nIYE02mBoCgoKeOaZZ9i6dSv5+fmUlpai1WrZvXs3+fn5WFlZYWdnh52dHZGRkSQkJGBra8uOHTtI\nSUnhmWeeITIyUny/L774gu7ubj7++GMSEhIMuhpWV5Xl4eHBE088QWJioviYubk58fHx5OfnU1BQ\nQGlpKZMnTx7UkUDXZSs/P5+JEydeISTQJXUNUSh7PX5rb2+PUqnE09OTXbt2odVqyc7OJiYmhqee\negqNRiO+n1ar5YsvvmDq1Kmiz+r2JTKZDC8vL2bNmsWIESOGZb2/NhkZGdxzzz14enpy7733Mm7c\nOPExpVJJQkICeXl5NDQ0UF9fz4wZM7C0tBQFW4IgYG1tjUKhoKCggLy8PLRaLf39/axdu1YaMzcE\nugPppKQk8vLyuPXWWwkKCgIGi8EtLS1RqVTs3LmTwsJCbr311iu6vegwNNvqx9w1a9YwZcoU8bHT\np09z/vx5qqqqOHDgALt37xaFLyNGjGDkyJGkpKTQ0NDA7bffPsjmuo4EarWaPXv2kJmZSW9vr0FX\nwvr4+ODn50dKSgqHDx8eJCSwsLBg3LhxNDY2kpOTQ3l5OQkJCeL5mc5m2dnZJCUlMXv2bHGsiaHG\n3eTkZJ555hlKSkpwd3fHx8dnuD/Sb4qhrjUFBQVs2bKFuLg4/vKXv4jJv7q6Oj755BNcXV2prKyk\nuroaW1tbsSOBWq3GzMyMo0eP8tBDDxm8iD4rK4uVK1diZmbGQw89xJw5c4DB448GBgYwNzcnICCA\nGTNm4O/vj5OTE+np6WRlZXH48GFUKhXl5eWoVComT558xd/L1NQUb29vPD09eeCBB8RRCYaKzqdT\nUlIoLy/HycmJsWPHDhIV6mxobm7Orl27aG9vZ968eVhaWg7Xx/6fQLKthMT1IYkIJCT0GBgYQKFQ\nEBMTQ1NTEzk5OZSWlqJSqfD09LxqskR3QVEoFJSUlFBQUEBwcDAjR4685vMloLe3lzfeeIPm5mbW\nr19PcHAwfX19WFhY4O/vz8iRI6msrCQlJYULFy6IQoKhNgb6SndD5fLqCJVKRWhoKImJidx+++0c\nPHiQI0eOcPDgQaZOnYqlpaV4QF1ZWUlXVxfl5eXY2NgQGRnJq6++ilqtHsYVSUhI3Ai++uor8vLy\nePHFFxkzZoz483feeYcvv/ySiRMnsm7dOnp6ejh+/Diurq64uLgwYsQIysvLRdGBhMSNQnedVyqV\nCILA3//+dz799FMaGhpwdHTEy8sLIyMjvL29cXFxISsrSxQSREZGXlExKCWvLiVO77//fs6cOcO8\nefO4++67mTx5MmFhYdTW1nL48GEKCgro6enB19cXFxcXLC0taW9v57XXXsPY2Jh169aJhyparZY3\n3niDqKgoFi9ejKenJ0ZGRgbZCUI3Cs3T05M//elPYlWWvg+qVCrGjx9PTk4ORUVFVxUSFBUVUVRU\nRGxs7JD3vIbmx9frtxcvXhQPnJVKJbm5ufT29hIXF8f8+fMHvd/mzZs5e/YsDz74IGq1+gqbymQy\nMcHwW0c/EfvYY4+Jogp9v1OpVERERJCfn09VVRWFhYXccsstmJubD/q++/j4MGHCBGQyGYsWLWLZ\nsmXi+xmi+OVa6Gx78uRJ9u/fT1BQEBEREVfYSRAEnJycKCkpoaamhiVLlhhElfZPcXnMnTZtGvBj\nzA0JCSEhIYG4uDjOnTvH8ePHSUlJISkpie7ubmxsbDA1NeX777/H0tKSsLAwseJQ5/sBAQH4+Piw\ne/du8vLyWLp0KWZmZgYXg3Wo1WoCAwPZt2/fVYUEDQ0NHDp0iLy8PDw8PDA3N0epVJKVlcXbb79N\nU1MT9913Hx4eHgYdd83MzLh48SJarZbi4mJcXV0lIcEvwPr16+nr68Pb2/uKe6fvv/+e/fv38+ij\nj4rdH7q6unjggQdwdHTk+eefp7+/n7S0NOrq6lAoFAQGBmJmZkZgYCB33HEHrq6uw7W0m4KMjAxW\nrVqFIAiYmpoSHByMWq1GqVReIcSCH+Oxn58fcXFxJCQkYGNjQ0FBAdnZ2QAcPnyY0NDQIYuWdGN7\nDE24MVTHG92/ra2tSU1NpaWlhZCQEJycnK54nZGRER999BEjRozgrrvukkZw6CHZVkLiP0cSEUhI\n6KFrU6NQKIiIiKC5uZnc3FwOHz6Mra3tNYUEukRsRUUFmZmZxMfHExoa+iuv4H+P5uZmsT3uH//4\nR3p7e8U5QjKZDEdHR9zd3cnPz6e4uJiWlhY0Go1YjSXxI319fchkMnp7e2lsbOTIkSNYWFhgZ2cn\n3hjNnj0brVZLeXn5ICEBQEhICHPmzGHatGksX76cKVOmiN00JCQk/rdoaGigubkZW1vbQT8fGBgQ\nxVvt7e08+OCDYgzYvHkzr7/+OjExMWIr0RkzZlBcXMzUqVNRKpW4ubkxefJk4uLiACkxK3HjuDxp\nqlQq6e7u5uDBgzQ2NuLg4ICXlxempqZ4eXmJQoLMzEwGBgaIjIzkq6++IisrS0wOGDK6SmMnJyee\nfPJJ/vCHP+Dv709gYCBjx44lMTGRvr4+ysrKyM/Pp6enh+DgYMzNzent7eWrr76ivr4eHx8fAgIC\nyMnJYfPmzTQ2NvLQQw/h6+sr2tjQEoWZmZmsXLkSY2NjHnzwQRYsWAAgjt/QR6VSERkZeU0hge5v\ncOjQIRYsWGDQ8zV/rt/29vYSGhpKcHAwJiYmlJSUkJ+fT0lJCYcPH2bfvn1s2rSJEydOsHbtWubN\nmzfcSxxWLhcQ6ItfLv8e60Qwubm5lJaWir5rbm4u7oMVCgWurq5MnjyZ0NBQsXJQEhBcna6uLpKS\nkiguLmbSpEk4OjqKh9X691hfffUVZ8+eZeXKlVhZWQ3zpx5erjfmKpVKXFxcmD59OhMmTBArX9PT\n08nNzaWlpYWOjg4EQSA2NhaFQnGFkMDf35+AgADuv//+IRPfhoa3t/dVhQRKpVIUEqSlpZGWlkZS\nUhL79+/nH//4Bw0NDTzxxBPMmjVrmFcx/FhZWREYGEhXVxdarZaioiLc3NwkIcF/QUpKCs899xy7\ndu0iPDwcDw+PQTFUd/41YcIEQkJCEASB1atXc+TIER5//HExBug6lFRVVVFfX8+ECRMwMzMz+O57\n+vcL0dHRVFVVkZ+fj1wux9vbe8iKbP14qRPERUREiGOkLC0tqa2txdramokTJ14zwftbR7d23Zlu\nT08PhYWFFBYW0tLSgpOTEzKZDGNjY+rq6khPT6epqQkfHx9sbW0HjZfaunUrP/zwA7NnzyYmJsZg\nbHg1JNtKSPwySCICCYnL+E+EBIIgiBvWb775hpqaGh544IFByjWJoTEyMuKbb74BYPHixZiYmFwx\nP8/JyYkjR45QUlJCY2Mj7e3tBAUFSa2D9Ojv70cul9PZ2cmaNWt499132bp1K1qtlqamJrEdk1wu\nv0JIMGvWLBQKBfv27cPS0hJ3d3cUCoXBVAJISPzWEASB9evXU1BQgL+/vzgGpru7GxMTE2QyGenp\n6dTW1rJ8+XKUSiVvvPHGoLnRISEh9PX18fnnn9PX18fy5cvFzZXu8FoSEEjcKPR9S1fl6uLigqur\nK+3t7Rw8eJBTp04NKSTIzs4mPT2dAwcO8Pnnn1NaWsqCBQsMeo6m7uDP3d2dNWvWiAf4utbOAwMD\n2NjYEBoaipmZGWVlZZSVlWFlZYVGo8HCwoK2tjaysrJIT08nOTmZ9957j5MnT/LEE0+ICRxDRL8q\nS6FQYGtrS1BQEFZWVldNmv6UkCAiIoKMjAxmzJhBdHT0r7yim4f/1G8tLS0JDw8nICCA4OBgiouL\nOXz4sFhFr5vhu2TJEsAw58jDYPs+/vjjV3TP0Nmkp6dH3OfqOhJc7rv6QgK48v7AEO0L13ef5Orq\nysmTJykqKiIjI4Po6GhxXIHutbm5uWzZsoWwsDDmzp2Lqampwdr058bcgYEBZDIZzs7OREVFERUV\nRXBwMDk5OZw8eZKOjg7q6uqIiYnBw8NDfJ2+kMDX19fguj9cy3e9vb3RaDTiaIMTJ05wyy23AD8K\nCerr6zl27Bhnz57FwsKChQsXct999zF79mzAcOOuDkEQsLKyEgVvqampHD58GCcnJ3x9fYf74/1P\nolaraWlpobi4mG+++UYUEuh87dy5c5SWluLj40N4eDhbtmzhq6++YtGiRSxZsgRTU1OcnJz47rvv\naG1tpbm5mcLCQhYvXmzw545arZZ77rkHd3d3nn76ae6//376+/vJzc2lqKgIhUKBl5fXNe2k/31X\nKBRERkYyfvx4KisrSU9PZ9asWQYpkDt06BD29vYoFAp6enowMTGhs7OTP/7xj7zzzjskJSWxd+9e\nysrKmDx5MiqVChcXF6qqqtBqtVRWVtLR0YGDgwMXLlzgww8/5IMPPsDe3p5nnnnGoIvvJNtKSPyy\nSCICCYkh0LViNTMz+0khgX5lxYEDB9iwYQOjR4+W5uNcB4IgYGxszL59+ygtLcXBwYGgoCBkMpm4\nce3r6xMv9ikpKZiamlJSUoK1tTUjR45ELpcP9zJuCoyNjenq6mL58uVotVocHR1RKpU0NjaSmZlJ\nW1sbUVFRQwoJkpOTqaioYP369Zw8eZIpU6ZIbZkkJP6HMTIy4ssvv2TXrl309vaKo0nKysoICgrC\nxMSEoqIicnNzaW9vp6SkhLfeeksUEAQHB4vv89FHH9HT08Ptt99+hYDOkA//JG4cOtGA7tCvra1N\n9D1nZ2dcXV3p6OgYUkjg7e2Nt7c3qampNDY24uLiwvvvv2/QczS1Wi2///3vxZnRuorBgYEB8R5K\nlyxRKpX4+PjQ09NDbm4up06dEluP6hI0paWlNDU1oVareeKJJww6EatLwrq6ujJ9+nRaWlrIzc2l\nubmZwMDAax4uXUtIYGNjw9y5c4mNjQUMU7D13/htY2Mj8fHxODs74+vry6xZs5g0aRLjx49n1apV\nLFiwgMjISPH9DLFCXt++TzzxxCD76gsIduzYwfbt2xk/frwoLh7KdxMTEweNNjA0f9Xn2LFj1NfX\n4+zsfEU3gcvR2WvSpEmUl5dTVFTE7t278ff3RyaTYW1tzYEDB3jrrbc4ceIEjz76KCNHjjRY+/4n\nMffykUZOTk6MHDmSmTNn4uHhgUwmo7KykqamJjEGX/5aQ6GsrIzy8nK8vb1/0nf1RxuUlZXR3NzM\nxIkTgR+FBMePH6e2thaVSsWKFSsYP348MHSXHkNCvxo2JyeHhoYGjh49SnNzM4cPH2bEiBFSR4Kf\niU7EFh8fT2tr6yAhgaenJ3DJZ8PDw8XRJy+//DKmpqa8/PLLYue+7u5u3nnnHRYuXMjf/vY3li9f\njru7+7Ct62aguLiYu+66Cy8vLx5//HGmTJkCwPjx4+nr6yMvL4/CwsLrEhLAYIGWpaUl9fX1HDhw\nALVafdVxwL9V3nrrLf7yl79gZGTEqFGjMDc358KFC9x9993k5OQQEhJCQEAAHR0dFBcXk5mZycyZ\nM3F3d8fPz4+WlhYKCwvZv38/u3bt4pNPPiEtLQ0HBwfeeeedIUdEGAqSbSUkfnkkEYGEBFcefOpv\nbExNTa8pJNC9rrCwkA0bNtDU1MTjjz/O6NGjh2UtNyP6szIFQRBvGo2MjDA2Nsbe3p59+/Zx7tw5\nPD09cXNzw8jIaNBogz179lBWVsbq1aupra2lpKSEmTNnGrxQQ993//Wvf/Hdd99x99138/rrrzN9\n+nTUajWFhYVkZmbS3t5+hZAgLy+PsrIyUfn+wgsvSB00JCR+AxgZGVFRUUFaWhoHDhxg3759WFtb\nM2nSJJRKJf7+/uzevZusrCxyc3OJiYnhz3/+MwEBAeJ7aLVatm3bxuTJk5kxY8agxIKExI2gr68P\nuVxOV1cX69ev58MPP2Tz5s309PSgVCpxdHS8ppDAxMSEgIAAZsyYQWJiopgkM1QqKipYsmQJAwMD\n3HHHHdx5553AjwfY+ugO9czNzfH19aW8vJyCggI6OztJTEzE3t6eyMhI5syZw2233caCBQsYN24c\nYJiJWP22rk8//TQrVqxAoVBw7Ngx8vPzaW1t/cnxW5cnYwsLC0lMTMTMzExM2BqigOC/9dvCwkK6\nurqYPHmyKDJwdXUlKCgIZ2dn8W+iEzMbGjU1Ndx2220MDAwwZ84cVqxYAfzY4UHnb9999x1r1qyh\nra2NhISEQTOJr+a7htzxBS4lWxYtWsTp06fx8vL6SSGBTjAnk8mYOHEix48fp7S0lO+//55vv/2W\nzz//nI8//pjGxkbWrl3LbbfdBhhmXPhvY66+vQYGBrCwsCA4OJgZM2Zw9OhRioqKmDt3rti9y9A4\ncuQICxYs4MiRI7i5uV2XkMDb2xs/Pz9SUlIoKCjAwsKCsLAwBEHAwsKCcePGcfLkSbKysigqKsLH\nxwdnZ2eDLgLRfd87OztZsWIF27Zt4+jRozg5OdHX18fp06cpLi6WRhv8TIyNjcUzx6GEBLq9gG5U\nZ15eHlu2bGHWrFmiqAAuJR7T0tJYtGgREydOxM7ObljWczNhZ2dHVVUVt99+OzNnzgQudSiSy+VE\nRkbS29v7HwkJdF2OjIyM+Oqrr9BoNERFRf0aS7opuHjxIhUVFeJ9a09PD6NHjyY7O5sPP/yQVatW\nsXHjRmbPns2kSZPEAjCtVsusWbPw8PAgJCSEsLAw2traMDc3x9PTk/nz5/PUU0/h5eU13EscNiTb\nSkjcGCQRgYTBoy8Y2Lt3L9u2bePTTz8lNTWVuLg45HL5kKMNrK2t8fLywszMjKKiIjZs2EB+fj5P\nPvkkCxcuBAxzg385+vb99ttv+fTTT/n6668pKSkhIiICmUyGUqnk/PnzpKSkUF9fj5WVFb6+vuLr\n8vPzeffdd/H39+e+++7jzJkzpKenExAQQFBQ0HAub1jRHdr39PTQ1dXFRx99hJGREa+99hpyuRxL\nS0t8fHzw8vIiNzd3SCHBzJkzsbW1JT4+nsceewy1Wj3cy5KQkPgv0J/hGhwcTHJyMo2NjXh4eLB6\n9WoCAgIQBAFLS0tsbW0pKCigq6uL8PBw8XAaLgkI3njjDZqamnjooYfw8/Mz+OuZxI1FNxqqs7OT\n3/3udyQnJ3P27FlaW1vJzMykqakJBwcH3N3drykkALC1tcXDwwMLC4thXtXwcvToURoaGjhz5gw9\nPT04Ozvj5eWFsbHxkPeouoSBpaUlAQEB7Nixg7a2NmbMmIFSqcTY2BhbW1tUKtWgsSaGlog9cuQI\nK1aswNnZmTVr1nDLLbdgZGSEt7c3SqWSqqoq8vLyfpaQQKvVUlZWxujRowe1MjbEuPtL+e3MmTNR\nKpVX/T2GaFuApqYm2tvbxXnPDg4OaDQacUSEsbExu3btEjsTrV27ljFjxlzxPj/lu4ZIdnY2JSUl\nHD16lJaWFlxdXX9SSKB7TKFQMH36dMzMzFAoFJw7dw5TU1MmTZrEgw8+KI6NMUTR1i8Zc+HH774u\n6djR0cF3332HpaWl2KXE0Dh27Bh1dXVUVFRQW1uLk5PTdXcksLa2RqvV0tXVxdSpUzE1NaW/vx9L\nS0vGjx9PQ0MD2dnZHD16VCwYMTQf1qErlPnTn/5EZmYmK1eu5JVXXmHZsmWEhYVhaWlJWloahYWF\nuLu7S0KCn8H1CAl0BTgNDQ189dVXCILA2LFjUalUbN26lQ8//FDcMxt6sRIgdoWdNm0agYGBwI8d\noXS2/k+FBLqz3pdeeomqqipiYmIYN26cwdybyeVyfHx8cHBwIC8vj7y8PABKSkpobm5m8+bNyGQy\nent7cXBw4NZbb+XgwYMcOXIErVbL7NmzcXBwwNfXl7lz57Jw4ULmzZvH+PHjDXIshD6SbSUkbgyS\niEDCoNEpgQE2btzICy+8QFFREcePH6ehoYHo6GhcXFwGjTY4d+4cubm5lJeX4+zszPnz53nzzTfJ\nyspizZo1rFy5UnxvQ90c6aOzwYYNG3jppZcoKyujurqawsJCcnJyGD9+PK6urri6utLc3IxWq0Wr\n1XLkyBHa2tpIS0vj9ddfp7a2lhUrVjBhwgT6+/tJSkoiISFBbLttiOgUvPPnz+f777+ns7OTKVOm\nEBUVxcWLF5HL5cjlcjw9PfH09LyqkGDMmDGMHj1amukkIfEbQP+wb9++fezduxelUsnZs2exsrLC\nz89PrLJycnLC1taWsrIyCgoKSEtLo6SkhD179vD3v/+dkydP8tRTTzF//vxhXpWEIaAbJfXXv/6V\nrKws7rjjDtavX49Go6Gjo4O0tDTOnj2Lo6MjHh4eVwgJmpqasLa2lsRwenh4eODi4sKZM2fIycnh\n+PHjP5kY0I2SUqlUZGdnU1ZWxqxZs3B0dLxqAszQ6OnpoaOjg7vuuktsA9/X14eZmRl+fn6YmZn9\nbCFBREQEYWFhzJgx49daxk3LL+W3M2fOFKsOJX7E3t4eHx8furu7yc3NpaCgQJwrb2xszLfffsua\nNWsIDAzkscceIy4uDhhaHC/57mA0Gg2Ojo4cO3aM3Nxc2trarltIoOsEMXbsWKZOncqsWbNYunQp\nt9xyC/7+/oDhni/80jFXh86egiDw2WefERwcLPq7oeHh4YGbmxunT58mNzeXEydOXJeQwMjICFtb\nWzGBOGXKFJydncUuG7qOBKdPnyYjI4O6ujpmzZoldpv8raPfkVNHWVkZb7/9NuPGjePZZ5/F2toa\nuVyOu7s7MTExmJmZsWfPHoqKiqSOBNeJzs7GxsZXHW0wduxYcbSBk5MTZWVl5OTkkJSURFJSEl9/\n/TXm5ua88847Bt3FTB+d7+qPhdH9TF+08Z8KCT788EM+/PBDrKysWLdunUGcR8AJsMIAACAASURB\nVFZXV4sdLhQKBe7u7tjb25Ofn09OTg719fUEBAQwb948uru7USgUoihr6tSpHDhwQEx2z5kzB7lc\nTm9vr9jhxZALGSXbSkjcWCQRgYTBcLUDJ4B33nmHzZs3M2HCBP76179y//33Ex0dzZgxYzAxMRFv\nlExNTYmMjBSFBEVFRaSnp1NWVsaaNWu4++67AcPd4F+Nbdu2sWHDBsaOHcvq1auZOXMmR44cEWc/\nRkRE4Ofnh7+/PyqViiNHjpCfn09KSgparZaBgQEef/xx7rrrLuDS36uyspL777/f4Fvvnzp1itzc\nXEpLS6mvr8fU1JTp06djamoq+rxMJrtCSHDhwgUiIyMNeh6hhMRvFd21zcLCAqVSyZQpUzhx4gSH\nDh2iq6sLjUaDlZUV5ubmqNVqxowZQ0VFBUePHqW4uJi6ujp8fX157LHHWLx4MWCY884lbiy6a5Tu\nsE93MPXCCy8QHh7Os88+i0qlIjg4GA8PD5qbmzl06BBNTU04OTkNEhJ0dnayf/9+Ojo6SExMNJjD\n6Wuhs6+HhwdOTk6cPXv2uhMDxsbGyGQyMjIyOHr0KEuWLJGSsf/HwMAA1tbWREVFieNfdKJkQRAw\nMTERk1qVlZXXPdrA3t4ejUYjvp+hxlvJb28sOrupVCo8PT3p7e0V97Te3t5UVVXx6KOPotFoWLNm\nDbGxsYNeNxSS715Ct/aAgACsrKyorq6+biGBrrIToL29HTMzMywtLVEoFBgbG4vPN0Tb3qiYCz8m\nyJ599llqamoIDQ0Vfd6QbK3zSXd3958ddwFsbGwoKyujrKyMOXPm4ObmBlyyoU5IEBYWRktLC48+\n+igjRoz4tZf4q7N582ZUKhUODg5XCAkyMzNJSkpi7ty5REdHD3rc2NiY8PBwenp6SE1NpaysDGdn\nZ4Pv8qLPv/71L06fPk1TUxN2dnaDzmsBsVOnTCYjPj6elpaWQUICnUDA2dmZzs5ODh8+jJmZGWPG\njGHTpk2SaEOPy7/z+mIC3Wja/0ZI4OnpSVBQEI8++iju7u43fD3DTXl5ORs2bEClUol+aGZmRlBQ\nEJaWlhQVFdHU1MTAwAC33347ZmZm4vXu8mR3eXk5OTk5zJw5E4VCIf4OQ7p26SPZVkLixiOJCCQM\nhgsXLgxKrOrIycnh5ZdfxtfXl3Xr1hEeHo5KpcLLy4v6+nry8vL49NNPuXjxIqampjg6OhIZGUlL\nSwu5ubm0trby5JNPsmrVKsCwBQS6G8jLN0rbtm2jo6ODl19+mbi4OPz9/Zk2bRqFhYUUFRVRVFRE\nZGQkPj4+jB07lpkzZ+Ln50doaCiLFy9m6dKl4qyyjz/+mI8++oiwsDCWLFmCmZnZcC33psDa2pqQ\nkBDOnTvHyZMn6ejowNnZGbVaLR6uXC4k0Ilfenp6iImJGe4lSEhI/ALovuv61zj9CkFXV1dKS0vJ\nyMgYJCRQKBR4eHgwe/ZsEhMTiYmJYdWqVcyfP9+g551L3Djq6+vFbhi6A6gLFy6wZMkSGhoaqKmp\nYc2aNXh4eIiHgPodi4YSEjg6OiIIAqtXr8bZ2XmYV3hzoB8Pfk5CVv//v/zyS86cOcO9994rtXX9\nP3S20a9K0a/U+m+TWvq/wxCR/PbGou9b9vb2eHh4iEKC1NRUvvnmG4KDg3nyySfFPcLPqbwydN/V\nCQl091jXIyTQv8fasWMHH3zwgej7uvc1ZG5kzB0YGOD7779ny5YtKJVKXnzxRWxtbQ3O5v9N3NW9\n/vvvv6eqqop77rln0Bx53ffC0tKShIQEgxB2ff7557z88sskJSUxZcoUVCrVoPOxU6dOsWvXLvz9\n/Zk4cSJw5ffc0dGR9PR0Tp48ybFjx7C1tRU7khgy7777LuvXryc5OZkdO3aQnJzMrl27OHbsGG1t\nbXR1deHk5DSo42x8fDwXLlygsLCQb775htGjR+Pt7Y2LiwszZ84kKiqKlStXMnPmTGkPocfl+/+O\njg5MTU2Bwde7awkJzM3N8fDwGPJebGBgAKVSSUBAgLgv/K1TVVXF3//+d2prawkKCsLJyYkXX3wR\nNzc3IiIisLGx4dixY5w8eZK2tjbCw8NRKBRDJrvT0tIoLS2lpKSEuXPnDvfShh3JthISNx5JRCBh\nEGRkZLB8+XI0Go3YwkpHTk4OO3fu5MEHH2TixIkMDAwAlxLfr7zyCtu3b6egoID09HTa2toICQnB\nzs6O8ePHc+LECZYuXcqyZcsAw0201NXVYWVlJSatdTbYsmULWq2WH374gVmzZjFnzhwAent7sbKy\nIj4+XhQSFBcXExERgZ2dHZaWlgQHBzN+/Hj8/f25ePEiAG+99RZbt25FJpPx+uuv4+LiMmxrHg6u\ndoinUqlQq9WcO3eOoqIiGhoacHV1xc3NbUghgZOTE5WVlfzpT39CpVINw0okJCR+SfQPplpaWmhs\nbKStrY329nbxIM/Hx+cKIYH+pl0mkzFixAj8/PxwcHAw6HnnEjeOZ599lqeeeoqIiAjc3NzE61Ny\ncjIff/wx5eXlnD17ljFjxhASEiLO6DYyMsLFxeUKIcGIESNwd3fHxcWF2NhYgzic/jnoH/JdT2JA\n9xqAlJQU3nrrLaZMmcKcOXMwMjIyuMTK9TBUl7NfQkhgyEh+e+PRxV59IUFRUREAs2fPZsmSJQBi\ni32J6+PnCgn077GSkpJ44oknqKysZMqUKXh5eQ3zam5OfsmYq/sOTJw4kfvuu8+gW5j/nLirOy/T\nxde0tDQ2btxIbGws8+fPx8TEZMjqZUPZT6hUKo4ePUplZSXfffcdkydPxt7eXuy81dXVxQ8//MCR\nI0eYNGkSDg4OV5zzqFQq9uzZQ3NzM6dPn6ampoY5c+aISVxDpLOzk4yMDBoaGmhra8PY2Jju7m7q\n6uooKipiz549fPHFF+zZs4cffviBs2fPUl1djYWFBTNmzODcuXOUlpayc+dORo0aJY4/GzFihCis\nl7hEf3+/eO3/+uuveeedd3jppZdITU2lpqaG6OjoQf46lJCgsLCQrKwsZDKZ2OFXH0O8N+vs7KSx\nsZGsrCyOHDnCG2+8QWFhIWPHjiUwMBB3d3dsbGw4fPgwRUVF9Pf3M2rUqCGT3YmJieTn57N27VqD\n784Lkm0lJH4NJBGBxG+egYEB3n77bfLz8zExMWHSpEmDDpTS0tLIyMggMjISZ2dnDhw4wJtvvsn7\n779Pc3MzU6dOZeTIkVy4cIGSkhISEhJwdnbG1NSUxMRExowZI/4eQ9kY6VNQUMDcuXOpr68nMTFR\ntGtlZSUPPfQQ1dXVAERERBAeHk5vby8mJib09/dfISQoKSkhMjJS3Oj39vby3XffsXz5ct577z3y\n8vLw8vLinXfeMbiWbvpdHs6fP091dTVNTU1YWVlhbGyMg4MDarWa1tZW0tLSOH78OC4uLkMKCdRq\nNQsXLjSIVoISEr919Csttm7dyquvvsqmTZvYtm0bn3/+OR0dHZibm+Pi4nKFkKC7u5tRo0Zx+PBh\nDh48iFwuvyIJa4gbfIkbw7lz5/j00085efIkmZmZjBw5EldXVwD8/f2xtbUlLS2N/v5+RowYwbhx\n4zA1NR10sK0vJNBqtVRWVqJWq3F1dRWrFA2dq7UehUszjx0dHa+aGNA9Pz8/n1dffZX29nYeeeQR\nfH19pVjA1cWcQ9n8akmt9vZ2/P39JSHBZUh+e2O5ln3t7e1xdXWlv7+fw4cPU19fj52dHYGBgYOE\nXBJDcy3bajQaLCwsqKmpGVJIoHvurl27ePzxxwF4+umnReG9ofNrxFxzc3Pc3NwMphJWn58Td2tr\na7GzsxPjqu65+fn5vP766zQ1NfHII48QFBRk8PHCysqKqKgojh07xtGjRwcJCeBSl4H6+nry8/Mp\nLy8nPDwcOzs7BgYGBp0pbt26lcmTJ7NgwQJWrFhhcAU0l2NiYoJGo0Emk1FTU0NXVxe33XYbixcv\nJioqCmtray5evEhrayvV1dVkZmayf/9+Pv/8c77//nuUSiUNDQ309vby/fffExQUhFqtNnh/vRx9\ncdtrr73G+vXraWhowNramtraWk6fPs2MGTNQKpWDXne5kKCrq0tsCR8eHj4cS7npUKlUjB07llOn\nTqHVaunu7mbatGn84Q9/AC613/f09MTOzo6CggLy8vLo6+u7Itnd19eHlZUVCxYskLpn/B+SbSUk\nbjySiEDiN4+RkRETJkzA2dmZFStWoFQqB7XSFQSBjIwM0tPTSUpK4ssvv6Surg6NRsO6det44IEH\niI+P59y5c6SlpeHp6Ul4ePig2YWGWqkpCAJ5eXns2bMHDw8PEhMTRZuYm5szcuRItFotp0+fpqOj\ng3nz5mFqaioqWy8XEhQWFpKXlyd2JJDJZHR3d3P8+HEiIyNZuHAhjzzyiMFVCfT19SGXy+nq6mLd\nunVs2rSJf/7zn3z22WdotVrq6uoYM2YMI0aMQK1W09bWNqSQQHcIKJPJDFrFLiHxW0H/2vPqq6/y\n97//nf7+fhITE1Gr1TQ0NJCRkcGxY8cwMTEhMDAQHx8f3N3dRSFBXl4en3zyCXv27GHq1KkGF18l\nfj2USiWjRo2iqamJoqIi0tLSGDVqlCgkGDVqFFZWVhw8eJDS0lJsbGwYO3YsMLhCTnddq6mpoaqq\ninvvvVfsnGHo6HclaW5u5vjx45w6dYq+vj4UCgUymQwPDw/s7e05d+6cmJDVCRGNjIwoLCxkw4YN\nFBUVsXbtWjGZ9XNamv8WuZZtLSwsxMd0fjpUUqumpka8L46Li5Puxf4PyW9vLNeyr5mZGTKZDAcH\nB1xdXcXRBoWFhahUKgIDAwfFX4nBXI/vBgYGolQqBwkJRowYIYq5d+7cyZo1awD485//PKjDoSHb\nXIq5N5brjbsODg60traSk5NDQUEBRkZG+Pr60tvby969e9m4cSMlJSWsXbuW+fPnA1LcBbC0tGTC\nhAlXCAl0HeLCw8MpKysjJyeH8vJyRo8ejb29vfg32bZtG99++y2TJ09mxYoVogDB0DE3Nxev+2Vl\nZZw+fRqNRsPSpUuZPn068+bNY9GiRYSEhBAWFgZcSm7X1tZy9OhR+vr6gEtx49ChQ9x1113I5XKD\n91d9dLb497//zYYNG4iPj+fFF19k9erVzJ49m7lz5161GMnY2FiMyVFRUcTGxnLrrbf+mh//psbI\nyAgzMzPefPNNzp8/jyAImJmZ4evrK4qEFAoFnp6eqFSqaya7wXC6u1wPkm0lJG48kohAwiAwNTVl\n1KhRmJmZ8de//pUnn3ySCRMm4Orqir29PXK5nHPnztHQ0ICXlxcPP/wwy5YtY9y4cQiCgFwup6io\niNzcXFauXImnp+dVVduGhJGREZ6ensTGxrJ48WKUSiWpqal4enpiamqKq6srarWa4uJiKisrOX36\nNLGxsWIngsuFBLm5uZSVlREeHi7OfBsxYgTz589nypQpjB492uBmm+puZDo7O7nrrrs4dOgQPj4+\nzJgxAwsLC06ePMnBgwfJzMxk+vTpuLi44O/vT0tLiygk0B9tIPEj+ocnEhL/i+iuPTt27OCVV14h\nLi6OV155hTvuuINp06YxZcoUMjMzOXbsGE5OTowePRozMzPUajWenp7U1NRQXV3NxYsXefLJJ5k9\ne/Ywr0jit45KpUKj0XDq1ClKS0uHFBKoVCoOHDhARkYGFhYW4iHg5UICPz8/7r77bvG1ho7+wccH\nH3zAiy++yFtvvcVnn33G9u3bqaurw8TEBG9vbzw9PXFwcBATsnV1dXh6etLR0cH69evJzs5mzZo1\nrFixQnxvQ75e/pRtT5w4gampKV5eXoNmRl+e1DIxMaGoqIj58+czfvz4YV7VzYHktzeWn2NfBwcH\n3N3d6evrE4UEdnZ2YmWxoSe1L+d6bCuXy/H29iYwMHBQR4L29naCgoLIzMzkscceAy4JCH73u9+J\n723IvivF3BvLz427rq6uGBsbk52dTVpaGl9//TXvvfceu3btYmBggLVr17J06VLxvQ3Zd/W5lpDA\nxMSE4OBgamtrycnJISkpiXPnzlFeXs727dv5+OOPsba25qmnnjLILhnXwtzcHB8fH0xNTcnKyqKg\noAC5XI5arcbGxgYLCwsCAgIICwtjzpw5LFq0iKlTpzJu3DhCQ0MxNjbGzc2N1157DRcXF+m6BuKo\nDR2dnZ1s2rSJzs5OXn75ZUJCQjAyMsLOzm5QV5czZ84wMDAgJmB1cVh3zqYTG0j3Dz/S2NhIXl4e\n8fHxuLi4kJGRQVVVFW5ubmIxx1DJbkEQCAkJkcZuXAPJthISNxZJRCBhUPT29vL1119TXV1NWloa\nISEheHl5ERISwi233MLs2bNZvnw5YWFh4qx4IyMjcnNz2bRpE9bW1ixevNjglcBtbW3iBVYul+Pq\n6opCoWDz5s2sW7eOjo4OYmJiMDU1xcXFBS8vL/Lz88nJyeH8+fNER0cPKSSYOHEio0ePZsaMGeLv\n0leyG6Kq3cjIiL6+PtatW0daWhr33Xcff/vb30hISGDu3LmEhoayc+dOTp8+jUqlYsyYMWKrwdbW\nVjIzMykqKsLPz0+qMNZDv4K7uLgYR0dHg/Qvid8G7733HrW1tTz33HOEhoaKP9+2bRs//PAD0dHR\nPPLII8hkMhobG1GpVHh7e4vxds6cOWLclTb5EjcaXXXr1YQEoaGhopAgPT39qkICZ2dnqQOBHrrv\n7Wuvvcbrr7+OmZkZCxcuFGe+Hjx4kLS0NKytrQkJCcHT03PQzOPDhw+zd+9eiouLWbNmDXfffTcg\nJQTg+mx76NAhbG1tCQ4Ovmab7cTERCZPngwY5n3t5Uh+e2O5Xvva2NgQEhKCg4MDHh4eYkeCsrIy\nrKysrvBriZ/vu4GBgVhZWVFdXU1ubi4lJSX861//AiQBweVIMffG8nN919XVlXHjxqHRaDh79ixy\nuRxLS0sWLVrEfffdJ1YaS747GEEQriokUKlU2NnZkZCQQFtbG8eOHSM7OxutVktNTQ0BAQFs3rwZ\nb2/v4V7GTYcgCCiVSnx8fDAxMaGgoICioiLMzc3x9/cXO5/qquJNTExwcHAgICCA8PBwpk2bxsyZ\nMw1+PERGRgb/+Mc/SEhIuOJ729DQwEsvvURsbCzLli0TO6Ne/pxNmzaxc+dOZs2aNSi2Xv5+Utz9\nEWtra+Lj45k8eTJBQUE0NzeLxV9XS3aXlJSwf/9+zM3NGTdunGTPqyDZVkLiBiNISBgYFy5cEJ5+\n+mlBo9EI0dHRQnZ29hXPKSwsFCoqKoRz584JqampwqJFiwSNRiN89tlnw/CJby6am5uF1atXC+np\n6Vc89tlnnwnjx48XAgMDhZdeekno7+8XBEEQOjs7hb179woTJ04UNBqNsG7dOqG7u1sQBEHo6+sb\n9F8dutdKCEJ9fb2QkJAgLF68WOjt7RV/3t/fLyxZskQIDAwUNm7cKPT39wsFBQXCxYsXBUEQhKqq\nKuH3v/+9MH78eKGurm64Pv5Nzeuvvy4EBQUJp06dGu6PIiHxH9HS0iIkJCQICxcuHPTzN954Q9Bo\nNMKqVauEiooK4eTJk8KsWbOEN99886rvJcVdiV+TyspK4Q9/+IOg0WiEuLg4ITc3d9Djn3zyiaDR\naASNRiO8//77w/Qp/7f45ptvBI1GI6xcuVIoLy8Xf97W1ibcdtttwsiRI4U//vGPwvnz58XH0tPT\nhfvuu0+09QcffCA+JsWEH7le27a1tQ35+oGBgUH/lmz7I5Lf3liu174tLS3iY0eOHBGeeeYZQaPR\nCKGhoUJlZeVwfPSbnuu1bXNz86DXzJs3T/Tdjz76SHxM8t0fkWLujeU/iQuCIAjt7e1Cd3e30NXV\nNejnl9vb0Liaf+nOuE6dOiWsWrVK0Gg0woQJE4SqqqpBzysrKxNSUlKE7du3C/n5+YNihqFzre/u\nuXPnhLfffluIjIwUYmJihPfff19ob28XBGFonzR0P9XR2toqRERECBqNRti2bZv4c52tq6urhcDA\nQGH58uVXfY/29nZhxowZgkajEYqKim70R/6fRPf9HxgYEPr6+oSzZ8+K/qmjpKREeOSRRwSNRiMs\nXrxYyMjIGPR4d3e38K9//Uu49dZbr4gbhoxkWwmJXx+pE4HEb5arVVOamJgwYcIEmpqayM/P5+DB\ng4wePVqsgKutreWuu+7ik08+4YsvvuDzzz/nzJkzrF27ljvvvBMwbBX7+fPn2bhxI7m5uQQGBuLq\n6sq2bdtQKpXExsbi6upKVlYWmZmZdHZ2Eh0dLXYkUKvV5Ofnk5WVNWRHAn0M1b5DkZ+fz7Zt25g7\ndy4xMTHAJf9eunQphYWF3HvvvTzwwAPs3r2bp556CrVaja+vL3Z2dowaNYply5ZJ7Z6vQlJSEqWl\npSiVSsLDw6XqCYn/OTo7O/n3v/9NV1eXOOZk8+bNbN68mZiYGP70pz8RFBREdnY2H3/8Md3d3cyd\nO3fI8SZS3JX4pbh48SJyufya90uXdyTIysoiLCwMZ2dn4MqOBDKZTGpHDPT09CCTyYa8z926dSvV\n1dW88MILg7qS/OMf/2Dnzp3ExMTwl7/8hYGBAWpqanB2dsbDwwNbW1saGxtZtmyZQbeC/yVs29/f\nz/Hjx3Fychr0+svfz9DireS3N5Zf2r4ODg64ubnR2trKvHnzxEpuQ+SXsK0gCFRXV+Ps7IxGo0Gh\nUHDs2DEeeOABli1bBhim70ox98byS8UFffuamJggl8uRy+WD3tcQ7aujr68PmUxGT08PBw4coKio\niMrKSgICAsTv9LVGGwA4OjqiVqsJCQnBxcUFc3Pz4VzSTcO1bAs/jjYwMTEhPz+foqIiFAoF/v7+\nKBSKK/Yhhuyn+igUCnEkxIoVKzAzMwN+7OQik8nYuXMnJ0+eJDAw8Ipxvn19fZiZmXH+/Hmys7OZ\nPHmy2MlE4hK67g3d3d1s3ryZLVu28M9//pMdO3Zw+vRpADw8PHBycsLd3Z329naxat7Lyws3Nzf2\n7dtHf38/U6ZMYe7cueJ4CENHsq2ExPAgiQgkfpPoJ6WPHj1KSUkJFRUVGBkZoVKpMDU1JTo6mjNn\nzpCfn8+BAwdEIYFCoeDixYsolUra2tqYOHEiDz30EAsWLAAMc4OvT29vL2VlZRQUFFBWVoZWq+X9\n999HpVIRFhaGt7c37u7uZGdn/6SQ4OzZs+JjElenpaWFL774Al9fXxISEgC44447RAHBfffdh1Kp\n5NtvvyU9PZ3Q0FCx9bOtrS2WlpbD+fFvSnQbypCQEHbv3k1zczPz589HJpMZtEhI4ublan5pbm5O\nSUkJ5eXlxMbGsmPHDlFA8NhjjxESEgJcOvT74osvsLe3Z8GCBUOKCCQkfgm2bNlCXl4egYGBmJmZ\nXZeQoLGxkeLiYioqKgaNlAoNDcXBwYHU1FQKCgq44447xIMuQyQjI4MXX3yRsLAwbGxsBh3gX7hw\ngZdeegknJydWr14tfsf1RUVr1qzB1taWFStW0N3dTXR0NMbGxnh6ehIVFUVcXBxgmPe6v6Rtu7q6\niI2NBaQDa5D89kbzS9s3JiYGIyMj7O3tiYyMZMKECYBhjjv6JW178eJFoqKiMDY2JigoiOjoaHFf\nZ4i+K8XcG8uvYV/J1pfOHeVyOZ2dnTzwwANs2bKF5ORk9uzZQ01NDX5+ftjZ2WFkZHRNIUFvb6+0\nN7uM67Gtra3toNEG1yMkkLh0zdGdLSqVSp599lm++eYbpk2bhpGRkXgmfujQIXp7ewkJCcHGxgZg\n0GiD/fv3U1hYyJ133mnw4yH0GRgYQCaT0dnZybJly/juu+/o7e3F1taWM2fOkJGRQXJyMtbW1oSG\nhuLk5ISXlxft7e0cOnSI0tJS8vLy+OCDDygvLxcLRSQk20pIDCeSiEDiN4fuogLw7rvv8sILL/Dv\nf/+bH374gcrKShITE1EoFJiYmBAdHS12JDhw4AAhISGo1WoiIiKYM2cOixYtYubMmfj6+orvbWgb\n/MtRKBRERERw4cIFDh48SFVVFWFhYTz++ONYW1sjl8tFIUFOTg5arZYLFy6IYgFXV1d8fHzIzMwk\nLy+PyMhIcTaRoaO/wdH//wsXLvDll1/S1NSEn58fTzzxBIWFhdxzzz3cf//9okigoaGBlJQUwsPD\npWrNn0BfZV1VVUVqaip2dnaMHj1a2mRK3HTo5jrCJSFXT08PJiYm4uNNTU2kpKSwd+9e0tPTmTRp\nEg899BAjR44Un5OWlkZSUhKzZ88WEy4SEr80ycnJrFu3jpqaGrE66HqEBH5+ftTW1pKXl4dMJiMi\nIkKM0SNHjsTFxYWHH37YoLvqdHR08PTTT5OVlUVdXd0ViQFjY2O++OILWltbmTNnDpaWlkN2JSkq\nKuKDDz6gt7eXefPmibHEysoKuHT/YWj3ujfCtnPnzh0Upw0VyW9vLDfad3WiLUO0743yXblcLhY2\ngGRbKeb+8kj2/fUwNjbm4sWL3HPPPWRnZzNu3DgmT57M8ePHKSkpoa6ujoCAAOzt7YcUEuzevZu4\nuDgcHR2Heyk3HddjW41Gg0qlEoUEpqamopDAzMxM3IdIQEVFBZWVlbj/f/bOPDDK6mz7v5kkM5nJ\nQvaEJDPZ9wQC2chiWBICVMQNBdQK1qqtvp9YV2xrba21gqjIUvWlohXBBUsFkTUs2feVELKQEAgh\nISEBkkD25PsD52kCwfq2jkmZ8/uLLPNkzsWZ5znn3Nd9366u0tmCTCajrq6OFStWcOLECZqbmyVz\nm1KppKamhrS0NNrb29FoNNjZ2UnPq4KCAjZs2IClpSX33nuvVFVDcPWssbe3l6eeeorc3Fwefvhh\n3nzzTRYvXsw999yDXC4nJyeH3NxcIiIicHZ2xt7eHo1GQ29vLxkZGVRXV2Nubs6aNWuuq7RjyAht\nBYKxQ5gIBDcVwzfhb731FuvXr8fe3p5FixYREBDAtGnTCAwMlDZAOiOBrFPZ+QAAIABJREFUriJB\nWloakyZNwtXVVfo5/NNlLYKLSJuf1NRUysrKAKTKDroSxEZGRiOMBNnZ2ZKRwMTEBCcnJ9zc3IiN\njWXOnDljOZxxg24hPzAwQH9/P52dndKGx8bGRnJOHjx4kLNnz/Loo4/yy1/+coRr8m9/+xtVVVU8\n8sgjaLVa4br+luEBWB06bUxMTLCzs+Mf//gH3d3dzJw5E6VSKXQTjBuGG+M2b97Mxo0b+etf/8q5\nc+dQq9U4OTkREhJCZWUllZWVqFQqHn30UeLj46Vr5Ofns3btWq5cucLPf/5z3Nzcxmo4gpsctVpN\nV1cXZWVllJeXo1Qq8fLy+pdGAmtra8zNzcnKyqKxsZG7774btVot3b8DAwOlgIuhYmJigpeXFydP\nniQrK4u6ujqmTp0qBQaMjIwoKiqiuLgYDw8P9u3bx3vvvXddVRJLS0s+++wzbG1tufvuu6VsIh2G\n+Pz7sbQ1RMS81S9CX/0htNUf4p6rX4S++mf4+cKhQ4f4+OOPWbZsGa+99hqzZs0iNjaWyspKcnNz\nOXPmDH5+ftcZCU6ePMnx48fJyMhg8eLFUlDX0Pl3tL3WSFBaWsqhQ4dwcHAgJCRE6Ars3buXV155\nhcDAQOksoLW1FRcXFyZPnkxGRgb5+fk0NjaSkJCAo6Mjjo6OVFZWkpGRQUVFBefOncPY2Ji0tDTW\nrVvHqVOnePbZZw0+QWG088acnBzef/99pk+fzu9+9zvMzMwwNjbG1NSUdevW0d7ezv33388dd9xB\nc3Mz5ubm2NvbExoaiq+vL1OnTmXFihW4u7uPzaDGCUJbgWD8IEwEgpsK3eLwH//4B2vWrCEmJoZX\nXnmF+fPnEx8fT3BwMMbGxjQ1NdHc3IxSqUStVhMfH09TUxOFhYUkJycTEhKCRqNBJpOJBec1DA4O\n0tzczK5du3B3d8fNzY3S0lIKCwvx8vKSDBijGQm6urqIjo5GoVDg4eEhZckaYnnM4ejab3R1dbFq\n1So+/PBDtm/fTmdnp9SWwNTUlPr6eurq6vD29mbx4sV4enpK1/jkk0/YsmULQUFBLFu2DJVKZdCa\nwj8XnLpF544dOzAyMkKhUKBUKqV55+TkRFNTEwcPHiQmJkZUxhCMK3Sf4zVr1vD222/T0NBAS0sL\nxcXFHD9+HI1Gg0ajYe7cueTn51NXV0dRURHnz5/n1KlTpKSk8Oabb3Lq1ClWrFjB/Pnzx3hEgpuV\noaEhLCwsCAoKoqOjg6KiIioqKr6XkUAul+Ph4UFWVhbHjh0jNjYWjUZjcNmZ34XueeXr6ysdng4P\nDMBVU2d6ejrp6elkZ2dLJYkDAgKk6xw5coQdO3Ywe/ZsZs2aJQyHCG31idBWvwh99YfQVn8IbfWL\n0Ff/yOVyurq6yMzM5Pjx49TX1/POO+9gampKX18fTk5OBAcHU11dTU5OzqhGgoiICM6ePctvf/tb\nnJychLbf8u9qO9xI0NfXR1NTE0888YTIkP+WnJwcDh8+TEpKCtHR0WzevJnXX3+dpKQkgoKCCAwM\nlNrHnT17loSEBLRaLe7u7vT09FBUVER6ejp///vfOXz4MH19fTz//PMsWbIEuHHrxZuZr776Cmtr\naywsLK470967dy9paWk888wz+Pr6AlfPJ++//36Ki4tZtmwZy5cvZ9u2bbz33ntMmTJFas/h7+9P\naGiodL82RIS2AsH4Q5gIBDcl77//PmfOnOGVV14hJCREeujs37+f999/nzfeeIOtW7dy9uxZHBwc\ncHZ2JjY2lsbGRo4ePUpYWJjkwBaMDPLrNj1xcXHExcUxb948GhsbycnJ4ejRo3h7e49qJCgsLCQj\nI4Pz588zc+bMEYEBQ1tsXotuo/Tggw+SnJzMuXPnaGpqIiMjg4sXLxIbG4uLiwsqlYqmpiaOHz9O\neXk5Z8+epbq6mg8//JCPPvoIS0tLNmzYYNDlnmtqavjwww+lfrm6zcz69et57bXXSE5OpqCgAI1G\ng4WFBUqlErha9nH//v00NzczY8YMUfZOMK7Iy8tj5cqVTJkyhd///vfEx8fT19dHdnY2x48fx83N\nDa1Wy+23305LSwv19fWkpaWRkpJCbm4uNjY2PPfccyxevBgwTONWZWWldHAn+GEZru3AwAAWFhYE\nBATQ2dlJcXHx9zIS9PT0YGJiwrFjxygpKWHBggVotdoxGtH4RSaT4eDggL+//3WBAUtLS6kfZGVl\nJcbGxtx9990kJSVJr8/Ly2PdunV0dHTw2GOP4e7uLj4T3yK01R9CW/0i9NUfQlv9IbTVL0Jf/aIL\nWH344Ye0trZiZ2fHokWL6O/vl6qZ2tnZERQU9J1GgqSkJKmap+Aq/4m2OiOBn58f99xzDxMnThzj\n0Ywf/Pz86OzsJC8vjx07dpCbm8u0adOIiopiwoQJaDQagoODOXLkCMXFxZKRQKPRMHnyZBISEiSz\n+KJFi3jwwQele4Yhtv3905/+xFtvvUV9fT1RUVGYmZmNOGPJz88nOzubpKQkvL296e/v54EHHqC4\nuJhHHnmExx57DJVKxapVqygrK+PWW28dUVrfkO+3QluBYHwiTASC/3quLW9z6dIl3nnnHaytrXny\nyScZGhri2LFjbNq0iddff52qqiosLS0BKCkpkQLiJiYmxMbGEhUVxdy5c8dqOOMOXZY8XH1Yp6en\ns3v3bnp6etBqtdjY2BAYGMjFixfJzs4e1Ujg7e2Nra0tBw8eZP78+YSGho7lkMYlH3zwAQcOHODB\nBx/kd7/7HeHh4Rw6dIji4mLa2tqYPn06Pj4+uLi4YGJiQnp6OoWFhaSnp9Pc3MzkyZNZu3btiOoE\nhsjZs2dZsWIFra2tzJgxA5lMRklJCdOmTQPg4sWL5Ofns2vXLk6cOEF3dzcBAQH4+flJJR/nzJmD\nvb39qKWzBIIfg2uD/MXFxRw+fJjXX3+d8PBwvL29CQ4O5sKFC5KRwN3dHa1Wy4wZM7jlllsICwsj\nKiqKpUuX8sADDxAbGytd29DmdVNTE48//jhmZmb4+fkhk8kM0kihD67V1sjIiL6+PiwtLa8zEigU\nilGNBIODg9Kh4LvvvouJiQlPPPGEMHPdgOGBgaqqKikwEBoaiqOjIwEBATQ0NEj9dnUZRcnJybz1\n1lucPn2aFStWsGDBgrEeyrhDaKs/hLb6ReirP4S2+kNoq1+EvvpDLpdjampKWloazc3NWFpactdd\nd6FQKKQzhKGhIezt7UcEu5uamvD09MTe3h6ZTGZwe7Lvw3+qrZ2dHWq1GpVKNdZDGVcoFAqmT5/O\n7t27uXjxIsbGxixdupTo6GiGhoYYGhpCq9WOMBLoWhtYWFjg5OREXFwc06dPJzAwUDJoGOLZQmlp\nKS+99BIA586do7a2lsjISMzMzOjv70cul1NRUUFqaiqmpqaEhobyyCOPjAhym5ubA1crvlRUVBAX\nF4eXl9dYDmtcILQVCMYvwkQg+K9Ht2D529/+hpOTE3Z2dpSVlZGbm8vly5fZuXMnW7ZsISUlBbVa\nzYsvvsgzzzxDeHg4qamp1NTUMH/+fMzMzDAxMZFKmYsAw8he3OvXr+cPf/gDBw4coKioiH379iGT\nyYiIiJCMBLqAVllZmdTaoKKigu7ubqKiovjJT37CzJkzx3hU44Nr59dHH32EsbExq1evxtHREV9f\nX0JCQjhy5AiFhYW0trYSHx+PVqvllltuYfr06URGRhIVFcUvfvEL7r33XoOuQKCjra2Nzz77jLKy\nMi5fvkxGRga/+c1viI+PZ/Hixdx6662oVCp6e3tJS0vj4MGDFBUV0dvbi5+fHzk5OZw7d445c+YY\n3GZIMD4Ybtw6ffo0nZ2d7Nmzh87OTpYvXw5cPRS0srLC39//OiOBRqPBxsYGX19fJk2ahFarxcrK\nCrhaZtAQ53VnZydvv/02Bw8exM/Pj4kTJ7Js2TI0Gg0uLi5j/fb+qxlN25/97Ge4uLjg7+9PQEAA\nly9fpqioiMrKShQKBZ6enpKRYPg6Y+PGjWzfvp2EhAQSEhJE791v0RkuhhsvZDIZtra2IwIDp06d\nIjQ0FBcXF6ZMmSJVL8rJySEzM5OioiImTpxo8FVJhiO01R9CW/0i9NUfQlv9IbTVL0LfH4+hoSH8\n/f3x9vbm0KFDnDt3jtbWVmbNmoVcLh812F1bWytVmkxMTJTWv4KRCG31R3JyMlu3bsXOzo729nYK\nCwsJCgqSWvkODg6OMBIUFRXR1NTErFmzAOjr67tOW0O8LxgZGVFdXU1DQwNyuZyqqirOnDlDZGSk\nFMB2dXUlLS2N0tJSduzYQXV1NY899hg///nPsbCwkK61detW+vv7efTRR0WJfYS2AsF4RpgIBDcF\n27Zt45VXXmHixImEhobS19dHeXk5aWlpVFdXI5fLWbhwIc8++yxJSUlYWlri5ubGvn376O/v5777\n7rsu480QF0PXotPgvffeY+3atUyaNInnn3+emTNn4uXlxcKFC7G1tQXA0tKSoKAgWltbycnJoaCg\ngCtXrvD++++zdetWFixYIAW5DX0T2t/fL2VrNjU1UVVVRWlpKTNnziQsLIzu7m6MjY1xc3MjICBA\nMhK0tbURExODQqHAyckJPz8/Jk2ahIODg3Bag7SRjIuLY/v27RQVFVFcXExiYiKzZ8/G2toahUJB\nREQESUlJTJo0iUuXLlFaWsrevXspKyujr6+P8+fPExoaipOTk0H2dhOMHcMDqu+//z4rV67kk08+\n4fTp0wwMDJCYmIiFhYV0eDKakcDb21sKjF87fw11Lpubm9PV1UVRURF79+7l66+/pqqqCm9vb6ZM\nmWKwuvwQ3EhbHx8fJk2aJFUkuHz5MsXFxZSXl9PX14eHhwfm5uaSqWXLli1s3LgRR0dHXnnlFWlt\nYegMr4ijez7p2kYolUopw7CiooK8vDwpMODs7ExISAh33HEHgYGBzJo1i2XLlrFo0SKio6MBw8wc\nGo7QVn8IbfWL0Fd/CG31h9BWvwh99cdoZ1e6rz09PaVgd2lpKZ2dncTFxY0a7Pb19aWpqYmnnnpq\nRGltQ0Zo++MyODhIQEAADz/8MCYmJuTm5nLkyBGCg4O/00jQ0NAgzBnDUKvVnD9/nvT0dBITE1Eo\nFGRnZ0vBbrVajVwuZ3BwkJKSEpqbm5k+fTqPP/449vb20nU+/vhjvvjiCyIjI7n99ttRKBRjOKrx\ngdBWIBi/CBOB4KZAqVSye/duuru7WbBgAb6+vvj6+jJt2jQCAgJ48cUXSUhIGNFfNzMzk02bNhEV\nFcWcOXMwMjISgYRRKC0t5U9/+hMeHh788Y9/ZNq0afj7+0sVCHT09PRgbW1NaGgoly5dIicnh+zs\nbM6fP8/jjz9OTEyM9LuGrPPAwADGxsZcuXKFZ599lo0bN/LFF19QWVnJwMAASUlJqFQqaWM03EhQ\nUFBAe3s70dHRYgF/A2QyGU5OTpSVlXHq1CkAAgICpCyK3t5ejIyMpGzYW265hcTERNra2rhw4QJN\nTU10dHTg5uZGWFiYQc9VwY+Pbr6tXbuWdevW0d/fz4QJEzh79izt7e1YWFgQGRk54vDkWiNBSUkJ\nnp6e0kGAobJt2zbUajXW1tYAxMbG0tfXR2FhIR0dHSQlJfHcc8+JbPd/g++rrYmJCYODg1hYWBAY\nGEhPTw/l5eXk5eVRXFyMsbExx48f57333mPr1q2oVCref/99PDw8xniE44PhpqJPP/2UtWvXsnr1\nanbt2sWBAwdwdnbG2toarVZ7XWBgypQp2NraolAo8Pb2xs/PD2dnZykLw1CrkugQ2uoPoa1+Efrq\nD6Gt/hDa6hehr/4YnvxRXl5OamoqJ06c4PTp03h6eiKTyfD09MTLy4tDhw5RUFBww2C3g4MDc+bM\nEUHubxHa6pdrDRpDQ0PY2toSFBSEvb09ERERXLhwgcLCwhFGgmtbG+zfv5+jR48SFhYmVe01ZHRJ\nGqGhoWRmZlJfX8+LL77IqVOnyMzM5MyZM0RERGBpacnEiRNpb2/n1KlTtLa20tnZiVKppLm5mQ8+\n+IBNmzZhY2PDm2++KeYuQluBYLwjTASCmwK5XE5RUREZGRk4OTkRGBiIq6sr/v7+REZGYmVlRVdX\nl1RtID8/n3Xr1tHY2MiTTz6Jv7+/QQdbvou8vDx27NjB8uXLiY+PlxbrwzeTlZWVfPHFF1y5coXg\n4GCmTZuGmZkZXl5ePPTQQ9x7772AqEAAV+dqd3c3y5YtIysrC0tLSzo6OhgcHGRgYABbW1u8vLww\nMTEZ1UiQn59PU1MT8fHxwkhwDbq5VV1dzbZt23BycuL8+fNUVVXR2trKjBkzMDIyGpGpoVKppE1n\nVFQUdnZ25OXlUVlZyYwZM0YYZQQCfTH8EOTkyZO89tprhIWF8frrr/PTn/4UZ2dn0tLSyM3Nxdzc\nnNDQ0OuMBAEBATQ3N5Ofn09sbCx+fn5jPawxY+vWrfz+97+ntraWsLAw6SB07dq1NDY2AlBbW4uP\njw8+Pj5j+Vb/6/i/aqsrq2tubk5QUBC2trY0NjZSWlpKcnIyycnJ0oHAmjVr8PT0HMvhjSt0z7Q3\n33yTt956i7a2NpydnRkcHKSiooL9+/fT0dGBVqvFz88Pf39/KisrpZ7HYWFhWFhYfGeWl6EitNUf\nQlv9IvTVH0Jb/SG01S9CX/0wPPnj+eef591332XPnj0kJyezZ88eSktLUavVODk5jSi/f6NgNyDO\nb75FaKtfhrdHPHDgADt37mTTpk3U1NSg0WiwtLTExMSEmJgY2traRhgJtFotMpmMrq4uPDw88Pf3\nJzw8nHnz5o3xqMYHur0tXE2k+/rrr/H09OTuu+/m2LFj5ObmcubMGcLDw3FwcMDX1xelUkltbS1p\naWns2rWLbdu2UVpaiqenJ++++64w0H+L0FYgGN8IE4Hgv4rhpZmH/9vU1BQHBwd27NiBqakpiYmJ\nwD83PXl5eSxevJjq6mqSk5NZt24ddXV1vPDCC9x9993XXU/wz4D/F198QWlpKbNmzSIwMHBUN3pV\nVRUvvfQSSqWShIQEFAoF4eHhxMTE4O/vL13PkF3swzc4e/bs4csvv+Shhx5izZo1zJ07l4sXL3L0\n6FFOnz7NxIkTcXV1vc5IEBQUxM6dO6moqOC+++7DzMxsjEc1Prj2s6sLsj788MMkJSWxbds2jh49\nSltbG9OnT79uw6nL3rCzsyMyMhJTU1MOHjxIZGQk3t7e4t4g0Du6uXj06FFMTEz4+OOPeemllwgL\nC8Pc3JzJkyfj7OzMwYMHSU9PH9VIMGHCBPz9/Zk+fTpJSUljPKKxZWBggBMnTpCfn09tbS1Tp05l\nwoQJyOVyIiMjCQ4OJj8/n/379+Pi4kJAQMBYv+X/Gv4dbXUHAmq1moCAAGbPno2NjQ0hISFMmTKF\nJ554giVLluDk5DTWwxsXDD/ELygo4OWXXyY2NpbVq1fz5JNPcv/992NqakpjYyNpaWn09fXh7++P\nl5cXvr6+Us/j6upqpk6dipWV1RiPaPwgtNUfQlv9IvTVH0Jb/SG01S9CX/2hO/Pq6urigQceIDs7\nm9DQUO655x6ioqJoamqitLSUo0ePYmFhgaenJ35+fvj4+HDw4EGptWdsbKxBn4GNhtBWvwyvTLJm\nzRr+/Oc/U1hYSF1dHe3t7cTExODg4MDQ0BAmJiZER0ePMBKEh4dz7tw5XnvtNZycnIiJiSE4OFi6\ntiGdi+kC2qOZq2QyGa6uruzdu5cLFy6wbNkyAgICOHr0KHl5eTQ0NBAeHo6joyMBAQEkJiZiamqK\nu7s7fn5+LFu2jCeeeMJgqzsIbQWC/z6EiUAwrtEtUoaGhq4LQg83EwDY2tpSVVXFwYMHiYuLw9nZ\nWfrd7OxsUlNTKSsro7KykokTJ/LCCy+wZMkS6e+IBehIdPq2tbWRnJwstYfQZcsOf9j39/ezY8cO\n2tvbmTdvHiqVChjpBjakxea16DZK3d3dnDhxgr1799LS0sK6detQKpVSWbH29nYyMzOpqanB0dHx\nOiOBVqslLCyMxx57DFdX17Ee1rhguBkAoLOzE7VajaOjIyYmJjg4OBAZGclXX311QyOBbm7qvlar\n1Xz22WdcvnyZBQsWAIY9fwU/Dn/5y1949tlnKS4uBmD58uUolUr6+vowMjIiICDgXxoJrK2tcXNz\nAwxvkz8c3Yayurqa3NxcKWs+KiqK0NBQpk2bBkBubi6HDh0SRoL/A/+utrq1nJGREWZmZoSFhREd\nHU1MTAyurq5SpSjBP583DQ0NFBQUcPjwYVatWkVwcLBU+nXq1KnY2dlx8uRJMjMzcXd3lyo9BAYG\ncuzYMQoLC4mKihLVHYYhtNUfQlv9IvTVH0Jb/SG01S9C3x+W4WdcMpmMgYEB/vSnP3HkyBF++ctf\n8sorrxAVFUVERATTp09HoVCQn59PRUUFGo0GT09PPD098fHxITU1lZycHPr6+oiOjh7jkY09Qlv9\ncq2+AO+++y4bNmxg0qRJ/OY3v+H2229n+vTpBAQEoFAopN8zNjYeUZFg+/btHDp0iOPHjzNlyhSC\ngoKkv2NoZwu6Evk6hp+vDAwMYGZmhoWFBZs3b8bDw4PExES8vb0pKysbEey2trbGysqKmJgYZs2a\nRWJiIv7+/gadFCa0FQj++xAmAsG4pbCwkP379+Pt7Y1SqZQChevWrePAgQMEBgYik8kwMTEBQKFQ\ncOnSJVJSUujr6yM2NhZjY2NkMhmBgYHMnDmTW2+9lYULF7Jo0SJpwSkMBN9dheHy5cvs3LmT3Nxc\ngoKC8PDwkIIButdZW1vzzTffMDQ0xOLFi1EoFD/yCMY3MpmM/v5+li1bxgcffMDQ0BABAQHMnTuX\nnp4ejIyMmDBhAn5+fnR0dHynkUCj0Uh9qA2d4WXaPvvsMzZt2sTbb79NfX09AwMDUukqFxcXoqKi\nJCOBrrWBXC6nqakJc3Nz6ZoymQxjY2O+/PJL7O3tuf322w1usyQYG7q6usjMzOTs2bP09fURFBSE\np6cnRkZG0qbqWiOBhYWFZCS49j5uyPNWJpNhb2+Pn58fJ06cIDc3l5qaGilrHiAyMhKZTEZOTo4w\nEvwf+E+0Ha2S1GhfC66udV966SWGhobo6uril7/8JcbGxtIzTyaT4eXlhUKh4ODBg5SVlTF//nws\nLCywt7fH19eX2NhY5syZM8YjGX8IbfWH0Fa/CH31h9BWfwht9YvQ9z+nvr6eCRMmXLcWvXDhAhs2\nbMDW1paVK1diampKf38/MpkMKysrfH196evrIzU1lYsXL3Lbbbchk8nw9PREo9FQWFjIM888g52d\n3RiNbOwR2uqXjo4OlErldfrm5eXxxz/+kZCQEF5++WUiIyNxd3dHo9HQ1tZGUVERe/bsob+/H2dn\nZ0xMTIiLi6Ojo4Py8nLUajXPPPMMixcvHqORjT2vv/46zz33HDY2NlLV0uF7WV0MwdTUlMzMTCor\nK4mPj5da+unK7zc0NBAZGYlaraa/v196nSHvf4W2AsF/J8JEIBiXNDQ0sHTpUjIyMrCyspI2PkeO\nHOHll1+mtLSUlJQUKisrcXV1xcbGBplMxqRJk8jIyKC8vJzbbrsNS0tLKYvT1tYWZ2dnJk6cKJVq\nG600v6ExPJN7aGiIzs5Ouru7paxAZ2dnBgYGyMvL4+jRo7i7u+Pm5iaVGQLIyMjgo48+Ijw8nKSk\nJMm8IfgnXV1dtLa2UlNTQ3V1NRcuXOAnP/kJEyZMkKppjGYkmDhxIi4uLpJZRvBPdPP2rbfe4s03\n3+TkyZNcunRJyqjQlXeH640EFy5coK+vjxUrVkj9uE1MTBgaGuJXv/oVFRUVeHt7k5SUNKJagUDw\nQ6Pb5Li5uREYGEhaWhrt7e309/cTERGBWq1GJpPd0EhgYmJCeHi4mKPfotNJJpNha2tLQECAFOwe\nXn4frg92a7VavL29+cc//sHp06dxcHAY4ZA3dPSlrZi7I+nt7aWoqIijR49SVlZGb28vd9xxh7TW\n1Rk5dfeDiooKSktLmTZtGu7u7shkMiZOnIiPjw9g2FVJrkVoqz+EtvpF6Ks/hLb6Q2irX4S+/zlv\nv/0269evx8PD47rS1+Xl5XzwwQeEh4ezYMECqUy8TiMzMzO0Wi1ZWVkUFxfj5OREUFAQQ0ND+Pj4\nsGjRIiZOnDgWwxoXCG31S15eHq+++ioTJkzA3d19xM+OHDlCcnIyv/71r4mKipI+29u2bWPlypVs\n2rSJ7OxsvvrqK8zNzZkyZQpGRkbEx8czb948Fi1aRGxsLGCY94XVq1ezadMm+vr6yM7OJiMjg56e\nHjw8PFAoFMjlcilobW1tTW9vL1999RURERF4eXlJBi1dsLupqYmpU6diYWEh/Q1D01SH0FYg+O9F\nmAgE45L+/n6p725hYSGmpqb4+fnh5uZGQkICPT09NDY2kpWVxY4dO2hpaaGrqwtvb296enrYs2cP\n3d3dzJw5c0RJ/Wsx9IfL8Ezu7du3s2nTJtavX8+2bds4ceIEFy5cICAggKioKM6ePSu1hXB0dMTF\nxQWFQkFWVhYbNmzg7NmzPPHEE1KFCMFIFAoFfn5+mJiYcObMGc6ePcvAwADBwcGo1epRjQS5ubnk\n5+fj5eV13cZAcJWvv/6aVatWERkZySuvvMKsWbMwNzcnOzubwsJCbGxspOxinZFg165dFBcXc+DA\nAVpbW5k7dy7h4eEAVFRU8OmnnzI4OMiaNWtGuGIFgh+Cazfiw/+t0WgkI0FZWRkXL15k2rRpUsnB\n4UYCR0dHDh8+LJV+FPzzmdbT00N7eztmZmbSPeD7BLuTk5PJzc1l8+bN1NTUcNddd4ky+98itP3x\nMDIywt/fH5VKxZkzZ2htbUWlUjFp0iSp0pNMJqO3txcjIyPOnj1LZmYmU6ZMYdKkSdddTzzD/onQ\nVn8IbfWL0Fd/CG31h9BWvwh9/zMaGxv561//Snl5OQkJCXh5eY2wVMVJAAAgAElEQVT4+eXLl9mx\nYwe2trZSdcLhGa5DQ0NMmDABuVzOkSNHiIiIYMqUKdLPDbk6p9BWv3R2drJ69WpSUlLw8PAgLCxs\nRHJcZmYm2dnZ3HbbbXh4eLB3717ee+893n//fVpaWpg1axaBgYHU1taSlpZGYmKiVNXB2toaS0tL\nwDCT7tra2qR2DroKfM3NzVIbjfPnz4+4xwJotVrS09PJyspiwYIFqFQqHB0d8fX1pbKykszMTC5e\nvMisWbMM7j47HKGtQPDfjTARCMYlKpUKX19f5HI5BQUFlJSUoFQq8fHxQaPREB0dza233oqRkRGt\nra2kpqZKfea1Wi1Hjx6lo6OD2NhYLC0tRTmbURi+IFy9ejVvvPEGdXV12Nvb09raSklJCQcOHODs\n2bMkJCQQGRlJd3c3ubm5HDhwgG+++YbPP/+cjz76iMbGRlasWME999wjXduQ9dZVd7hWB1NTU9zd\n3TEyMqK6upry8nKMjY3x8fFBpVKNMBL4+/vT0NDAyZMneeyxx6SgjKFzbQB2y5YtNDc3s2rVKqZM\nmYK3tzfBwcEoFArS09MpLCyUMmbhqpEgMjKS+vp6tFotjz76KPfff790PTs7O+bPn8+SJUtwdXX9\n0ccnuLkZbtzKzMxk//79pKSkcPnyZakPqaurK0FBQaSlpVFYWEhbWxtRUVHXGQmCgoKYN28eSUlJ\nYzmkcYVcLqe7u5s77riDlJQUaQ3wfYLdCoWC0tJSGhsbcXZ2Zu3atTg7O4/xiMYPQlv9cKPsHqVS\nOWK9UFNTg4eHB66urhgZGdHf3y9VKEpPT6ekpIRly5aJ59YwhLb6Q2irX4S++kNoqz+EtvpF6PvD\nY2FhgaenJwkJCcyePZuenh7Ky8txdHQErga6Dxw4QFlZGZMmTZKqcerOeHRnPpWVlRw6dIhJkyYx\nbdq0MR7V+EBoq18UCgW2trZ4eXlx3333oVKppNYRAOfPn2fv3r1888037N+/n61bt1JbW4u3tzcv\nvfQSTz31FHPmzOHKlSsUFRURExNzndEDDM9YBFdjEZ6enpiYmFBaWoqPjw/x8fHExMRQUlLCwYMH\nOXDgAHK5HLVajY2NDaamprS1tbF37148PT3x9/dHLpfj5OSEm5sbp0+f5umnnzb49htCW4Hgvxth\nIhCMW1QqFV5eXpiYmFBYWEhpaSmmpqZ4e3tjYWGBubk5sbGxxMfHExISQl1dndTKoKuri/r6etzd\n3QkJCTHIxc+/QqfJJ598wpo1a7jlllt47bXX+NWvfsWcOXOIjo5m9+7dlJeXo1AoiImJIT4+HkdH\nR3p7e7l06RKDg4PExcXx5JNPcvfddwNXN7iG5lYdji5I2NXVxcqVK/n444/ZvXs3Q0NDODo6Ym1t\njbu7O6amppSWllJUVISxsTHe3t7XGQkmT57MAw88IIItw9DN29WrV5OXl0dFRQVhYWEsXLhQal1i\nZmaGv78/JiYmoxoJnJ2d+clPfsL8+fOlLIzhZbpVKhVmZmZjNkbBzYmuTCPAhg0b+OMf/0hqaioF\nBQXs3r0btVrNlClTgKtGguDgYNLS0igoKLjOSKA7WLG2th5hLBBAdXU1O3bsoKqqijNnzhAWFva9\ngt1hYWGEhYVx22238dBDD+Hm5jbGIxl/CG1/WIavl3bs2MGePXvYs2cPSqUSS0tLrKys8PDwwNTU\nlKysLAoLC7Gzs8PZ2Vmq4lBYWMj69etRq9Xce++92NjYjOWQxg1CW/0htNUvQl/9IbTVH0Jb/SL0\n/WHp7OyUMl2dnZ3x9PSkp6eHxYsXk5KSgru7O66urkyYMIHOzk5ycnIoKioiMDAQZ2dnaS9mbGwM\nXE1qOHnyJL/4xS8M3pwhtNUvuqoicPW8IDQ0FJVKxerVq9m4cSNarRaNRoO3tzdGRkYcP36cixcv\n4uLiwv/8z//w8MMPj2hvkJ+fT35+Pvfff7/BnzkOn7vW1ta4uroyMDDAgQMH6O/vZ8aMGTz33HN0\ndnZSXV3NN998w8GDB1GpVGi1WqZNm0ZycjL19fXccccdwFUTvouLC7fddptkoDFEhLYCwc2BMBEI\nxjXDjQQFBQUjjAS6h5Cu/PusWbOIi4ujurqaixcvSkaC+Ph4kcX9LdeWCLtw4QKrV6+mt7eXVatW\nERISAlzVdM+ePWRnZzN9+nQefPBB5HI5pqamBAUFkZiYyKJFi1i8eDFz5szB19cXEAYCuLqY6erq\n4qGHHmL//v00NjZSW1tLUVERly9fJiAgABsbG2mjX1JSQmFh4ahGAktLSxHMHoWamhpWrVpFSkoK\nDQ0NeHt7k5iYiJGRkbQhUqlUUvsInZHAzs4Of39/4Gr5R93m1BDLtAl+XK6t/PLee+/h4ODAokWL\nmDx5MsXFxWRkZGBkZCS1JrjWSHDx4kUpq1t3Ld39XBgI/omNjQ2hoaEcP36cnJwc6uvrCQ8P/17B\nbmdnZ1xcXDA3Nx/jUYxPhLY/LLrP7Zo1a3j99dcpKCjg2LFj5OXlcfnyZfz8/LC2tsbDwwNzc3My\nMjJISUmhuLiYjo4O9u3bx8aNG6mvr+eZZ54hPj5+jEc0fhDa6g+hrX4R+uoPoa3+ENrqF6HvD0dm\nZia7du3C19cXlUolfb++vp6UlBSOHz/OuXPnsLe3R6PREBERwalTp8jPz6egoAAPDw+0Wq20F/v0\n00/ZvHkzfn5+PPjggyOuaWgIbfVLQ0MDf//739FqtajVauDq2WNzczMffvghpaWltLa2Ymtri1ar\nJSIigpkzZ3Lvvffys5/9jPDwcMk8JJPJKCgoYP369djZ2XHfffdJLQwMkdHmrpWVFX5+fnR3d3Pk\nyBGqq6sJCAhg6dKlxMfHSzGK5ORkMjIypHvxtm3bcHJyIjAwELiqte7c0RAR2goENw/CRCAYV1wb\n5NYFA3Ulb0YzEugyMs3NzdFqtdx5551S8DAnJ4eYmBjc3d0NNlMzPz+fqqoq3N3dR5QIk8lkNDQ0\nsHbtWubMmcPixYul16xfv55169YRGxvLihUrkMvlPPXUU1hYWODt7Y1cLkelUklZsSKQdRWdtm+9\n9RaHDx/m3nvv5YUXXsDKyora2lpyc3Pp7e0lMDBQ2ugPNxIoFAo8PDxQq9UGr+VwdJ9xHTY2Nri6\nutLc3ExTUxN9fX34+flJ7vUbGQmysrKwsrIiODj4hj3pBQJ9oJtjX375JW+++SYzZszg1VdfZcGC\nBcTFxdHV1UVRURE5OTkoFArCwsKAf7Y2yMzMJDc3l4aGBhISEoTp5TuQy+U4Ojri4+PD8ePHyc3N\n/c5g96lTpwgJCcHKymqs3/q4R2j7w7Nr1y5WrVpFcHAwjz/+ODY2NtTV1Y26XlCr1VRUVHDs2DHS\n0tKorq5m0qRJPPTQQyxatAgQ7aSGI7TVH0Jb/SL01R9CW/0htNUvQt8fhr179/Lxxx8jk8mIjIwE\nYN++fYSFheHv709LSwupqam0tLTg4OCARqNh8uTJtLS0kJeXx86dOzl58iTZ2dls2bKFLVu2YG5u\nzrp163BxcRnj0Y0tQlv9kpuby3vvvUd/fz8BAQEolUqKi4vx8PDA39+fCxcukJKSQktLC3Z2dmi1\nWmxsbLCyskKpVHL06FHOnj2Lg4MDqamprFmzhhMnTvDss88afKuIa+fu0NAQ+/fvJzg4GD8/PwYG\nBsjIyKCkpAQ7OzsiIyOJi4tj6tSpODs7k5qaSkpKCqWlpRgbGyOTyYiJiZEqwRgyQluB4OZBmAgE\n44bhgcLe3l7a2towMzNjcHAQMzMzPDw8UCgU1xkJTE1Nr+udpdVqsbOzY+fOnTQ1NTF//nyp7JMh\ncerUKe666y527dpFSEjIdUaC1tZWPv30UwICAkhMTASuGgjWr19PbGwsTz/9NH5+fmzfvp3t27cT\nGBhIWFjYiACWIW4+r2W4MQNg06ZNaDQa/vSnP6HRaAgODsbe3p6jR4+Sl5c3qpHg2LFjHDhwADs7\nOyZPnix0HYZuvuXl5aFSqaQKJRYWFjQ0NFBRUUF/fz/u7u7Y2tqOaiSQy+VkZ2czc+ZMgoODx3hE\nAkNjaGiIS5cusWHDBi5dusRrr70mtde4ePEiH374Id3d3XR1dZGVlXWdkcDf359vvvmGefPmSYcy\nhk5/fz9yuZyBgQF6e3tHuNBlMhlOTk74+vp+Z7C7rq6OrKwszp07x+zZsw1ynTAaQlv9ce2h/a5d\nuzhz5gyrV69mxowZhIWF4ejoOOp6wd3dHRMTE86cOcOVK1e4//77+cUvfkF0dDRwveHO0BDa6g+h\nrX4R+uoPoa3+ENrqF6HvD4tOz8rKSrKysigrK6Ojo4Pf/OY3FBcXM2XKFIKCgnB2dubChQukpaVx\n7tw5nJ2dpaqnQ0NDnDhxguPHj1NaWkpHRwfh4eG8/fbbeHp6jvUQxwyh7Y9DbW0tO3fu5NixY6jV\nar788ks++OAD/Pz8CAsLY+LEiZK+LS0tODo64urqikwmo66ujp///Ods3ryZ3bt3s3XrVpqamlix\nYgX33XcfYJjGon81d6dOnYqXlxdubm4MDQ2RkZFBZWUlFhYW+Pv74+LiQlRUFElJSQB0dXXR2NjI\npUuXeOCBB1AqlWM8wrFDaCsQ3HwIE4FgXKDrIw+wbds2NmzYwMqVKyW3mYuLCxMmTLihkUCpVF5X\nktzGxoZDhw7R1NTEHXfcYVDlr3QPbLVaTVtbG8eOHePgwYP4+/tLRoKBgQEuXbrE559/zoULF5g7\ndy6ffPIJa9euJTY2lmeeeYagoCAATp8+TXJyMhMnTiQhIcFgqzqMRn9/P0ZGRvT399PS0iIZM+bM\nmUNkZCR9fX2o1Wo0Gg12dnY3NBIMDg7S3NzME088YdA9Cm/E2rVr+fWvf42VlRWenp6SkcDa2pq6\nujrS09Pp6elBq9WOaiTw9/cnMTFRMssYOoa4SfyxGX6flMlknDt3jrVr1xIdHc3SpUul31uzZg37\n9+/n008/JSIign379pGVlQUgGQY0Gg133nknM2fOBMT/H1w1F125coXly5fT3d0tVSzSoQt2+/j4\nUF5eTl5e3ohgt62tLd7e3jQ1NfH000/j4OAwhqMZXwht9cPwQ/vLly/T19fHxx9/jLu7Ow888ACD\ng4OoVKobrhd0rZCMjY0pLy+nsrISpVKJj48PpqamI8yMhobQVn8IbfWL0Fd/CG31h9BWvwh9f3h0\n43VxccHFxYXc3FwyMzNpb2/ntttu48477wRg4sSJI4LdTU1NODo64ubmxrRp04iLi+PWW28lNjaW\nRx99lLvuusvg+3ELbX8crK2tpcSkI0eOcPToUYKDg7nnnnswNze/Tt/m5mbJSGBkZMSlS5e4dOkS\n3d3dREdH8//+3/9j4cKFgOG2pf2+c9fKykoKdqenp1NTU8OECROktr5WVlZEREQwe/Zs5HI5zz//\nvMFXzxDaCgQ3H8JEIBhzBgcHJQPBW2+9xerVqzl16hSDg4PU1tZy/PhxTE1N8fLy+l5GArj6wDIy\nMuKLL76gtbWV22+/3aDK6XZ2dqJUKjEyMiI2NpYrV66Qn58/wkggl8uxsbHh3LlzZGdnk52dza5d\nu7jlllt4+umnpT5DcLUlQmpqKg8++CABAQEGt+m8EQMDAxgbG3PlyhVeeOEF3n33XXbu3ElLSwu+\nvr7ExMQAV+ejUqmUKmSMZiTw9fXl7rvvZuLEiWM8qvFJcXExJSUlZGdnY2lpiYeHh9TqxNbWlrq6\nOlJTU7/TSKDT1lBNMPX19RQXF0tGIoH+GG6MKykpwdLSkvb2dj755BPMzc1JSkpCqVSydetW3nnn\nHRYuXEhCQgKTJk2iqamJ8vJyqX2BTCbDw8MDMzMzaU4b4iZ/NDZv3syWLVs4efIkNjY2aDQaFAqF\n9HOZTIaDgwMuLi6UlJRQUlJCXV0dERERWFpaYmdnx09+8hMR5B4Foe0Py/C17ubNm/nf//1ftm/f\nTktLCzY2NsydO5eBgYF/uV6wsbHB3d0dtVpNUVERRUVFI1ohGSJCW/0htNUvQl/9IbTVH0Jb/SL0\n1S8qlQpbW1s+//xzrly5gqmpKREREYSGhkqVt0YLxurKw9vZ2eHs7Iyvry82NjYiG3YYQlv9MTQ0\nhEqlYtKkSRw8eJDTp0+jVCqJi4sjMTFRumfcyEjg5eVFXFwc8+fPZ8mSJcydOxd/f3/AcA0Ew/k+\nc9fKygr3b9sk69rEWFlZScFuuVyOhYUFsbGx2NnZjeVwxhVCW4Hg5kGYCARjji6YtX79et59913C\nwsL485//zM9//nPkcjlZWVnU19djbGyMt7f3dUaC8vJyjIyM8PX1RalUIpPJ6O/v57e//S2pqal4\neXmxZMkSg1mEpqWlsXTpUgICAtBoNBgZGREVFTWqkQDA1NSUqqoqKioq0Gg0PPbYY0RFRUnXy8/P\n55133kEul7N06VLhBh6GXC6nu7ubpUuXkpGRgYmJCf39/bS3t3P8+HHi4uJwcnKSzC0KhWLERr+o\nqIjW1lZCQ0OxsrISfZ1GQZdxHR4ejpmZGXl5eWRkZEj3gRsZCdzc3LCxsRk1WG5oAXSdhp9//jnf\nfPONtFEHaGxsxMLCYozf4c2HbiP+5ptvsmrVKmJiYvDw8ODcuXOYmZkxZ84ciouLWblyJRqNhuXL\nl6PRaADIzMyktLQUOzs7CgsLmT59Ov7+/iOqGgiuotVqGRoaIjs7m7KyMuzs7K4LdsvlchwcHCgv\nL6eqqoqzZ89SVlZGXFwcFhYWosz+DRDa/rDoPrdvv/02b7/9NqdPn6axsZELFy5w+vRpYmNjmThx\n4g3XC4WFhVy+fJmgoCBsbGykdl6iFZLQVp8IbfWL0Fd/CG31h9BWvwh99U9qaip79+4lKiqKjo4O\niouLGRgYwNvbW6peem0wtqWlBScnJ1xdXcf43Y9vhLb6QZdIcPToUd555x18fHwYGBiQ2np6eXlJ\n5qDRjAQODg5oNBpMTU1RKpVS8Pbaar6GzPeZuxMmTJCy5nXBbmtra3x8fISO34HQViC4ORAmAsG4\nIDU1lTfeeIPJkyfz29/+ltDQUGxsbBgaGuLw4cM0NTVRU1ODWq0eUZHA1NSUjIwMsrOzmT17Nvb2\n9sDVHtOZmZmYm5vz2muvGUx299DQEBs3bqSgoIDMzEyCgoKk8lXXGgl8fX3x8PDAxcWF/v5+6uvr\naWxslLLrL1++THp6Om+++SYnT57kxRdfZNasWWM9xHHB8BKDH3/8MXv27OGhhx7iD3/4A9HR0XR2\ndlJVVUV6ejpRUVHY29uP2OhrNBrs7e1JSUmhoaGBRYsWGXRGwHBG69GoC4JPnjwZlUpFfn7+dxoJ\nMjMz6ejokEo8Gjq6Q6IjR46wY8cOWlpa8PLyYvPmzezZs4fAwEAmTJgwxu/y5mD4/N22bRurV6/G\nzs6OWbNmodVqcXd3Z9asWVhaWrJjxw4OHTrE7373uxHGreTkZFpbW3n11VelCgWC0SuIqNVqAgIC\n6OnpITc3l2PHjl0X7O7r68PU1JS2tjZaWlqkg9SlS5dibm4+FkMZdwht9cdwbdPT01m5ciWRkZHS\nmqqnp4eamhpSUlKIjo6+br2g1Wqxt7cnPz+frKwsZs2ahbOzM0qlEm9vbwYGBjh37pxBtkIS2uoP\noa1+EfrqD6Gt/hDa6hehr/64tg2cj48Pt9xyC3feeSc2NjYUFRVRWFiIkZHRDYPdWVlZVFVV4enp\nibOz81gNZdwhtP3xkMlkODo6MnnyZG699VY8PT0pLCz8l/pmZmZy5swZHBwcpESS4dc0VEabu/Hx\n8dx+++3Y2trecO4OL7+flZVFTk4OGo0GLy+vsRrKuENoKxDcnAgTgWBcsGvXLtLT03n55ZcJCwuT\nvv/OO+/Q0NDAwoULKS0tpaqqCoVCgZeXF1ZWVmi1WmQyGfPmzRvRK1qtVjNt2jRuvfVWnJycxmpY\nPzoymYzo6GguXLhAXl4eKSkphISEjGokOHToED4+Pnh5eRESEoJKpeLSpUukpKSwe/duvvzySw4d\nOkR/fz8vvPACS5YsAUQvbp1bt7u7m+bmZrKysujo6GDlypXY2tri6upKdHQ0p0+fpqSkhPT0dCIj\nI0ds9JVKJa6urnh4ePDLX/7SYEwu/4rhTuj6+nopsC2Xy6WDldGMBO7u7pKRwM7OjsrKSjIzM0lK\nSpKyuwVgZGRET08PKSkppKenk5KSgo+PD7Nnz5YW7oL/DN38rauro66ujmPHjvHXv/6VkJAQAGxs\nbDAzM6Orq4vf//73yGQynnvuOak/aVZWFmvXrmXy5Mk88cQTUkaGobbg0KFrD9HX10djYyOlpaWS\n1tbW1gQFBV0X7HZ1dUWhUEjZ8O+88w5qtZovvviChQsXGtTa4LsQ2uqP4c+0zs5OamtrOXDgAK+/\n/jrTpk3Dx8eHmJgY6uvrKS0tJSMj47r1gkKhwNXVFWtra2bPnk1iYqJ0baVSSUBAAHfddZfBrSOE\ntvpDaKtfhL76Q2irP4S2+kXoqz90Bu/BwUF6e3tpaWnBwsICBwcH1Go1Wq0WtVpNaWnpDYOxbm5u\n1NTUUFtbyyOPPCKq+H2L0Fa/XLv/7+npwdjYGDc3NxwdHXFzc8PU1FSqQDKavhqNhrNnz5KVlcXs\n2bNFMPZbdHN3YGCAK1euUFtbi52dHba2tpiZmf3LuWtlZYW3tzdtbW3U1tby+OOPi6ScbxHaCgQ3\nL8JEIBhzBgcH2bRpE+fOneNXv/oVZmZmwNX2Blu3buWll17ijjvuoL6+nvz8fBoaGujv75cyj0ND\nQ5kyZYp0Ld0GTKFQjCi7ayiYmJgwbdo0WltbKSws/E4jweHDh/H29sbLy4uAgACioqKkMvCOjo4s\nWbKEhx56iLlz5wKiXxZcNWr09vaSlJTEZ599xsmTJ5k6dSpz586VFvoqlYqYmBhOnTpFcXHxqBt9\npVKJj48PVlZWYzyi8YNuk/T73/+eF154gYiICFxdXSXjyvCKBEqlkqysLLKzs7G1tUWr1UpGAt3h\niaFncOfk5FBQUCD1u3N1dcXf35/U1FQaGhqws7PjnnvuITw8HBAGoR+K9evX8+STT1JbW4u7uzsP\nP/wwMLJKgbGxMYcPH6auro7o6Gg0Gg3Z2dmsW7eOM2fOsHz5cry9vaVrGvL/iy7I3dXVxe9+9zv+\n8pe/sGXLFvbt24eHhwfu7u6YmZmNCHaXlZVhZWWFi4sLpqambNmyha+//ppp06Zxyy23YGZmZtCa\n6hDa6pfhz7RXXnmFmpoaHB0defzxx4Grayq1Wk10dDSnTp2iqKjohusFPz8/goODpdcNX+saYisk\noa3+ENrqF6Gv/hDa6g+hrX4R+uqH/v5+jI2N6e7u5p133mHjxo1s3bqVEydOEBMTg5GREaamplLL\nB11QSy6XExgYiEKhoKKiAl9fX6ZMmcJPf/pTkSn/LUJb/aLbowHs2bOHLVu2sG3bNqqqqoiJiQGQ\nqowM13d4QLa5uRl3d3d8fX2Jj4+XjEWGjm7udnV18cYbb/D++++zdu1acnJymDx5MlZWVqhUqu+c\nu8ePH8fV1ZWIiAiWLFki5u63CG0FgpsbYSIQjAsyMjIoKysjODgYX19fdu7cyRtvvEFCQgKLFi3C\n2dkZOzs7du7cSWtrK7m5uRw6dIgFCxagVqtFr+hrMDExITo6+nsbCXx8fPD09MTS0pJJkyaRmJjI\n/PnzCQ0NlR7awkDwT4yMjKiurqawsJArV65ga2vLrFmzUCqVUiDW1NRUMhKMttGXyWRivo5Cf38/\nO3bsoKamhvT0dIKDg3F1dZW00mkXGhpKb28vubm5ZGdnY21tLVUk8PHxwdfXFzDcDO4zZ85w1113\nkZycjJubG35+fsDVTeiOHTtwdHTk/Pnz9PT0YGdnJ1V1EUaC/5yamhqOHz9OS0sL7e3tBAUFodFo\nRtw/ZTIZtbW15Obmsm/fPvbv38/HH3/MmTNneOGFF1i4cCEgjB2Dg4MYGRlx5coVfvrTn5KWloab\nmxuBgYH4+fkRHR0tZVSpVCoCAwPp7e2VKpUkJyezd+9ePv30UywsLPjDH/7AhAkTDFpTHULbH48D\nBw5QUFBAR0cHCoWCmTNnSplW/2q9oFt76Q4Sda8RXEVoqz+EtvpF6Ks/hLb6Q2irX4S+PxzDW3T+\n7Gc/Y/fu3TQ3N3PhwgXKysqorq4mKioKtVqNQqG4Lqh1+fJlcnNz2bhxI+3t7SQlJYks+W8R2uoX\n3R4NrlZ7e/XVVykrK+PUqVMUFhZSVVVFZGTkDfWVy+W0trby4YcfUl5ezm233SZVIDDUszEdw/e/\nS5cu5cCBAxgbG2Nubo6LiwvR0dHY2tpKFVy8vLxQqVTXzd2//vWvtLe3Ex8fLyVBGjpCW4Hg5keY\nCAQ/GjdasMhkMlxcXFAqlcybN4+BgQFee+01ent7WbFihZRF297ezvbt2wkPD8fExITExESmT59u\n0Iug78LExISYmBhaW1spKCjgyJEjUkBWZyTo6uqSjAS+vr54eHgAo/elFzpfRTePExISuHLlCoWF\nhZw+fRoPDw8CAgJGBGJNTU2JjY3l9OnTFBUV8c033zBjxgzs7OzGehjjFrlczsyZM2lrayMvL4/D\nhw9LBphrjQQRERF88803DAwMcOjQIUxMTJg6dao4PAEsLS3p6emhsLCQgwcPSlUInJ2dUavVzJ8/\nH2NjYw4dOkRjY6PUI08YCf59dPfNkJAQJkyYwLFjxzh//jwKhYLAwECpR7zuHqJrPXPq1ClaW1vx\n9PTk6aefllrHCOPW1c9vX18fL7zwAgUFBTzyyCO89dZbzJs3j4SEBKlsfmNjI/39/djY2BAYGIha\nreb8+fNUVlZy+fJlfHx82LBhg/SMEwhtfwyuXS/k5ubS1taGt7c3QUFB37leOHz4MBEREaI1xA0Q\n2uoPoa1+EfrqD6Gt/hDa6heh7w/L8PaTDz30ECUlJdx551gOQrQAACAASURBVJ28+uqr3HbbbWRk\nZHD06FFqamqIjo4eEYxVq9WUl5eTmppKQUGB1NrT2tp6rIc1LhDa6h/dOczbb7/Ne++9h6+vL8uX\nL+fOO++koKCA0tJSamtriYqKwszMbIS+x44d4+DBg+zbt4+amhoWLFggtVUcfm1DRVdVdvny5RQW\nFvLwww+zfv167rrrLmbMmCG1kuzr62NgYAC1Wo2Hhwfm5ubXzd0XX3xRzN1hCG0FgpsfYSIQ/CgM\nL8dUWVlJQ0MDNTU1aLX/n707j4/p3v84/p7JHiFCgiBELCNC7ERDqLV05bbVunWplLaqbnH1Ry0t\nbdGq0tTaVtVWVG9VFb222lI7sTW4ltgTDUUlIsuc3x+aaVLLbTXHRPJ6Ph4e1Unm5HvevjlzZs7n\nfL4VJEkBAQFq1KiR/Pz8tGfPHk2dOlW9evXSI4884njDtHbtWq1YsUIjR47UoEGD1KRJE0ncqSnp\nhnbv2Y9ldyRITk7Wrl27bigkaNSokaOQYP369QoJCVFISEihv3CV0++LX3L+PTIyUlevXtWuXbu0\nevVqVa9eXSEhIbm+N/uOgR9//FFHjhxR9+7dWcLgV7ebtxEREbnmbc5Cgux/E6vVqhkzZqhevXpy\ndXVV/fr1Va9ePSfvlXPlzDK71d2WLVu0Zs0alSlTRvXr11ejRo1UrVo1lSlTRpcuXdKGDRsoJLgD\nvz825DxuhoaGqmjRotq9e7e2b98ud3d3VatWzdE5JyMjQy4uLmrevLmioqL0zDPP6LHHHlP9+vUd\n2+Y4fN3u3bsVExOjJk2aaNCgQXJ3d5fVapXFYtHnn3+ujz/+WDExMVq6dKlCQkJUrVo1hYaGqkOH\nDqpZs6a6deump59+WuXKlXP2ruQ7ZJu3/tf5QnZh1/fff3/b84UjR45o3759qlOnjkJDQ+/qPuRX\nZGsesjUX+ZqHbM1DtuYiX3Nlf17wwQcf6LvvvlOvXr306quvKjAwUGXLltXFixe1a9cuJSQk6OjR\no4qIiMh1sbt8+fKOlttjx46lUDYHsr07li9frrFjxyoyMlKvv/66mjdvrsqVK8vX11cbNmzQkSNH\ndOzYsVz5Vq5cWQEBAbp69aqKFi2qvn37qnPnzs7elXwj+/Ot7777TtOnT1f79u01cOBAeXp6ytPT\nU97e3lq+fLlmz56tTz75RHv27FHlypVVpkwZhYSEKCgoiLl7C2QLFA4UEcB0OdsxTZs2TaNGjdKc\nOXP09ddf69ixY7LZbPL19ZWrq6skafHixdqyZYsiIyNVv359WSwWbd++Xe+//768vb3VuXNnlSxZ\nUhIFBFLurgFpaWk6d+6c0tLSdPXqVRUpUkRubm5q1qyZkpKSbllIkJaWpi1btmjZsmV69NFHVaxY\nsUKfq3S9tb6Li4syMzOVlJSknTt36vz587p69aqKFy8ui8WSq5Bg2bJlqlGjxk3f6N9///36+9//\n7qjALOz+yrzNvsi1YcMGffnllxo8eLCio6MVERHh5L1yrhMnTujIkSMqVaqU4y6BRo0aSbpeSLB2\n7VqVK1fO0d2lTJkyKleuXK5CgoCAAEchwS+//CIPDw9n7lK+lbMwbtOmTVq/fr3WrFkjHx8flSpV\nStL1QgI/Pz/t3r1bGzZskJubm6OQwMXFxfE7ULJkSfn6+jratWX/2+G6vXv3asmSJXrhhRcUHh7u\nuAt+yJAhmjNnjo4fPy4XFxclJiZqzZo1atWqlUqXLi1vb29VrVpVAQEB8vLycvZu5Etkm3dyHhMO\nHTqkPXv26PTp03J1dXW0aL3vvvuUnp6uHTt23PZ8oWnTpmrQoIHat2/vlH3Jb8jWPGRrLvI1D9ma\nh2zNRb7m+P3ngpcvX9bEiRNVvHhxjRs3zvGe9ujRo3r77bdVu3Ztubu7Oy54N2jQQD4+PnJ3d1dI\nSIjatGmjFi1aOD53LMzI1ly/v6HGbrdrxowZOnjwoMaMGaOwsDBJ0rVr1xQTE6PLly+rVKlS2r17\n9w35Vq5cWY8++qhatWqlhg0bSmIJg2zZGaxatUqbN2/W0KFDValSJV26dElnzpzRkCFDNHXqVO3f\nv1+JiYmKj4/Xjz/+qKZNm6pEiRKqUqWKWrduzdy9CbIFCgeKCGC67BeUmJgYffjhh46W4z/99JN+\n/PFHJSQkyGazqWTJkrJYLEpNTdW3336r1NRU2e12HTlyRBMmTNDhw4f16quvqlmzZjdsu7DK+SZ0\n/vz5+uCDD/Tuu+9q3rx5WrBggdLT0+Xp6amyZcsqKirqtoUE58+fV9u2bdWyZctCn6t0vYDA1dVV\nV69e1fDhwzVx4kR9/vnn+uqrr/Tll1/q8uXLcnFxUVBQUK5CgqVLlzre6Oe8o9vDw8PRzrywu9N5\nu2LFClWrVk0lSpTQrl27NGnSJF25ckVPP/20goKCJBXuwqLZs2drwYIFqly5suPO4CtXrqhp06aS\nfutIkLOQoHTp0rkKCRITE1W2bFmdP39e8+bNU1ZWloKDg521S/lSzvk7ZcoUvfnmm1q9erW2b9+u\nhQsXKiQkRFWrVpX0WyFBXFzcDYUEtyoUKKzz91aOHTumZcuW6b///a88PDw0c+ZMxwcrVapU0YgR\nI9SzZ0+lpaUpLi5OFStWVJ06dZw97HsC2eaNnMeETz75RKNGjdL8+fO1bNkybdmyRTVr1nQUFzVp\n0sRxYSDn+UK27AsD2cfdwv7BH9mah2zNRb7mIVvzkK25yDdvffXVV0pKSlJwcPANy3EmJCRoypQp\nCg8P1yOPPCLpekY9e/ZUenq6PvvsMzVv3lyLFy/WoUOHdPjwYYWFhcnT01Pu7u6SlGuJxMKGbM11\n8OBBHTp0SEFBQbnytVgsunLliiZNmqTixYurf//+jufExMRo0aJFmjJliv7+97/rm2++0YEDB3T0\n6FHVrl1bXl5ecnd3l8Vi4eaE29iyZYu2bt3qyGXhwoWKiYnRnj17FBQUpFdeeUWdOnVScnKy9u/f\nr1atWikwMNDxOWNhn7u3Q7ZAwUYRAUyT82To4MGDGjlypBo0aKB3331X0dHRioyM1MGDB7Vt2zad\nOHFCNptN/v7+8vHxUVJSkjZt2qQ1a9Zo1apVunz5sgYNGqQuXbpIKtwXCrPlPCEcO3asxo8frwsX\nLqhWrVoqVaqUjh49qq1bt+rw4cMqXry4qlatqqioKJ07d85RSBAeHq5y5co52mpTrXpddveM1NRU\nPfPMM9q4caMqVqyoFi1aKDg4WKdPn9a2bdt09OhRFS9eXJUrV1ZkZKTS0tK0c+dOLV26VDVr1lRw\ncHChzvFm7nTenj9/XnFxcVq6dKm+++47zZs3T6dPn9aAAQPUqlUrx/YLc94bNmzQ0qVLdfToUdWt\nW1cTJkzQF1984WiZL92+kODy5cuKjY3V+vXrtWjRIm3ZskUtW7Z0XBBH7vn73nvvacqUKfL399cT\nTzyhChUq6ODBg1q5cmWufENDQ1WiRAlHIYG7u7uqVq0qb29vZ+5KvnOr1/WQkBAdPXpU27dv1/ff\nf6+jR48qODhYnTp10ogRIxQWFiY/Pz/5+vrqq6++Uv369R2vZbiObM3z+9e0SZMmyWq1qnHjxipa\ntKj27dunjRs3qm7duipdurSkGy8MhIWFOdo2/v7fqTC/ppGtecjWXORrHrI1D9mai3zz3rx58zRl\nyhTZbDZVqlRJqampOnv2rHx9fZWRkaHFixfLYrGoTZs28vT01JAhQ7R582a98MILql27tkqXLq0r\nV65o165dOnHihJYtW6asrCzVr1+/0F94JVtz/ec//9HIkSMVGhrqKARKTk6Wt7e30tPTtXDhQiUn\nJysqKkr+/v5auHChxo0bp0cffVQPPPCAypcvL19fX61du1bHjx/X5s2blZycrLp16zo6/EqF87hw\nK9nXJ0qVKqW4uDitW7dOy5Yt0969e1WiRAk9+OCDGjt2rBo1aqQqVaooMTFRsbGxatCggUJDQ8ny\nNsgWKBwoIoBpsk8ODxw4oPPnz+ubb77RyJEjVbt2bWVlZalMmTIKDw/XkSNHtGXLFp08eVLVq1dX\nhQoVFBISouDgYP3yyy968MEH9dxzz+nRRx+VxFrR2bJfaD///HNNmDBBLVq00NixY9WrVy916tRJ\nNWvWlGEYWr9+vU6fPq3y5curYsWKatq0qZKTk7Vz506tWLFCNWvWdLQv//22CyuLxaLMzEwNGTJE\nsbGxevHFFzV27Fi1atVK7dq1U3h4uCRp3bp1SkpKUtmyZRUUFJSr9eC3336r8PBwVaxY0cl7k7/c\n6by9//77lZWVpbNnzyo1NVXVqlXTP//5T8c6b4W98EW6vjxBYmKiNm3apFWrVmnr1q0KCgpSVFSU\nihYtmmtpg5sVEgQFBclut+vAgQNydXXVgAED9Pjjjztzl/Kd7Dm2YMECjR8/Xi1atNBbb72lxx57\nTG3atNHx48d18ODBG/LNLiTYt2+f1q1bp8zMTDVs2DDXm/zCLPuNp2EYysjIUHJystLT0x2t8tu1\naydJqlmzpiIjIzVw4EDHvM42ffp07d27V8899xzH3RzI1lzZx4RZs2YpJiZGUVFRevfdd/Xss8+q\nWbNm2rt3rw4dOqSNGzeqfv36t7wwULVqVVWpUsWZu5LvkK15yNZc5GsesjUP2ZqLfPPeDz/8oG3b\ntmn9+vUKCQnRgAEDtGzZMrVt21alS5eWj4+PQkJC1KRJE61atUqTJ09Ws2bN1KdPH0eHyM2bN2vH\njh2Ozn19+vShnbbI1mzbt2/XmjVrtG7dOjVu3Fhz5szRqFGj1Lp1a/n7+8vDw0NFihTRAw88oBMn\nTmj06NEqVqyYBgwY4Pj9P3TokFatWiWbzabjx4+rdevWql+/vpP3LH/4ffeMzMxMSdevURQtWlRh\nYWFKS0tTQECAmjdvrgEDBqhDhw4qVqyY4znz5s1TUlKSXnjhBeZtDmQLFF58eg1TTZgwQVOnTlXD\nhg3l5+fnWM8pu827zWbTsGHD9Oabb+qHH37QmDFjNHjwYNlsNlWtWlVPP/10rossFBDk9ssvv+i7\n775TsWLF9NJLL6l69eqONvwtWrRQUFCQ3N3d9fXXX+vrr79WzZo1VbRoUQ0ZMkRZWVlatGiRTp06\n5ezdyJdOnz6tzZs3q27duurVq5dcXFyUnp4ud3d3RUREKCAgQHa7XUuWLNHq1atVv359ubu7q3//\n/kpNTdWcOXMUGBjo7N3Il/7svA0LC1OxYsX0z3/+U506dZKbm5vc3NwcJ5wcF66fzIeEhOi9997T\nQw89pKSkJBUvXlwdO3bMNQ/79OkjSZo4caJee+01SdJjjz0m6fpFxLJly+rZZ5/VtWvXFBoaKol8\nf+/8+fNasmSJSpYsqT59+qh69eqy2+26cuWKTp48KV9fX126dEmvvfaarFarHnroIVmtVnXs2FFZ\nWVkaMWKEypYtK09PT2fvSr6Qc+mYmJgY7dy5U8ePH5e7u7vuv/9+RUREqH379o65my0lJcWxBufc\nuXO1ePFihYWFOeYtyPZuOXr0qBYuXKiKFSuqX79+juIhu92uy5cvy9vbW2fPnlXfvn0VExOjWrVq\nSZL69++vzMxMffrppzpz5owzdyHfIlvzkK25yNc8ZGsesjUX+eatV155Re7u7po+fbr69u0ri8Wi\nfv36OQphH3zwQccF7Y0bN8owDL366qvy9fV1bGPv3r2y2WwaM2aMvLy8HG3gCzuyNddTTz2lM2fO\naM6cOeratauuXbumdu3aKSsrS5LUpk0btW3bVsWKFdPq1auVkJCgN99803EzkyQlJibK09NTw4YN\nU0BAAIXev8p+/5uWlqZZs2Zp7969OnXqlLy8vPS3v/1N9erVU61atTR27FhduXLFMY/tdrtjG3Pn\nztXKlStVr149xxIzIFugsKMTAUx14cIFrV69WqdOnZKPj48eeughFS1a1LEenGEY8vf3V82aNXX4\n8GFt3bpVJ0+eVNWqVVWyZMkb1sQp7Hca/15SUpJiYmLUsGFD9ejRQ4Zh5MqsRIkS8vf3V1xcnDZv\n3qyIiAgFBQXJzc1NkZGRioiI0AMPPODEPci/du/erS+++EKdOnVS06ZNlZWVJTc3N8fXS5QoIV9f\nX23YsEHbtm1Ty5YtHSdBUVFR6tKli8qXL++s4edrf3be3nfffQoKCpIk+fr6ysfHx9EKnnXecq+v\nuWvXLs2aNUvFixfXzz//rJ9++kkhISEKCAhw5HS7jgReXl7y8/NTQECAJPK9mbNnz2rSpEl64IEH\nHJ0wLBaLxo0bp7Vr1+qzzz5T6dKltWXLFq1evVqlS5dWlSpV5Orqqho1aqht27Zq2bKlk/cif8i5\ndEzXrl21YsUKubu7q2LFirpy5Yo2b96sFStWyDAMNW7c2PG8Tz75RB9//LGuXr2qzz77TDNnzpSn\np6emTp3KcfdXZHv3HDhwQDNnzlS3bt3Uvn17x+Pjxo3T9u3bNXXqVGVkZGjnzp1av3696tSp4yju\nioyMVJMmTdShQwdnDT9fI1vzkK25yNc8ZGsesjUX+eYtd3d3hYaG6vPPP3d8VvP000+rSpUqstvt\njvXhU1NTNW7cOGVmZurJJ590XOieNWuWFi5cqKZNm6pDhw4UeOdAtuZyc3NTVFSUli9frp9//lku\nLi7q2rWr7rvvPkmSp6enPD09ZbfbNX78eB0/flzdu3dXuXLlJEnbtm3T+PHjVbZsWfXo0cPRuaSw\nd+fMysqSq6urUlNT1b17d3399de6cOGCDMPQoUOHtG7dOsXHx8vDw0PVqlWTu7u7JGnOnDmKjY1V\nVlaWPvvsM3366afy9vZWTEwMN4b9imwBcGUAecYwjBse69ChgyZMmCAvLy8lJiZqwoQJkiRXV1dl\nZWU5OhJUq1ZNw4YNU+PGjRUbG6sRI0bo4sWLd3sX7gmGYTgq+S5evKjU1FT9/PPPunLlyk2/v06d\nOmrXrp0Mw9CWLVsc2/Dy8lKTJk0k5a4MLIxyzt3sLDIyMiRd70hwq/WkGzVqpFatWikrK0snTpyQ\nJEf1cIkSJcwe9j3lr8zbzZs333K7hflNUrbsAoIpU6bIx8dHH330kd5++221bt1acXFxGjNmjPbu\n3Zvr97xPnz7q06eP7Ha7hg0bpkWLFt102+R7o4sXL+rq1as6ceKELl++LOl6RfWsWbPUsWNH2Ww2\n9enTR/fff7/sdrtGjhypCRMmaN26dZLkaEFY2I+70vW2d+np6Ro4cKD279+v5557Tl999ZVmzZql\nJUuWaODAgTIMQ9OmTdOGDRskSWfOnFFsbKxiY2P1xhtv6Ntvv1VoaKjmzp2rypUrO3mP8g+yvXvO\nnDmjrKwspaamOh6bMWOG5s+fry5duqhOnTrq2bOnqlWrpqSkJD3//PNasWKFzp49K0mqV6+epN/O\nH/AbsjUP2ZqLfM1DtuYhW3ORb97J/mzhyy+/lJubm6pWraq0tDQNGjRIGzZskNVqlcVikd1ul7e3\nt2rUqKFLly7pq6++0saNG/X+++/rww8/VMmSJdW7d2+WmMuBbO+OVatW6dixYypRooQyMjL03nvv\naePGjY6vZ3eDrFGjhqTrS0wcO3ZMa9as0dixY5WYmKhu3brl6v5Q2G/+yO4e26dPH+3Zs0ddu3bV\n4sWLtXDhQs2YMUOtW7fW9u3bNXv2bP3444+Srt889sknnygmJkbdu3fXnDlzVK5cOc2ZM0chISFO\n3qP8g2wB8GqOPJHzTtikpCT99NNP8vPzU/HixdW6dWuNHTtWAwcO1OLFi1WsWDENGTJELi4uuToS\nVKtWTa+99poGDRqktm3bchE2h5ztxC0Wi65duyZPT0+VL19eYWFhOnPmjH7++Wf5+Pjk+rfIyMhw\nnPhLclyw/f2FwcJ8spmdl91uV1ZWlhITExUUFKQKFSqofPnyiouL088//6wSJUrkyjZ7aQN/f39J\n19s/S7qhe0ZhltfzFrnlzHf9+vX64IMPNHPmTMcFv0qVKikjI0Pr1q3T6NGjNXjwYNWuXVsWi0UW\ni0V9+vSR1WpVTEyMBg8erPDwcC4U5nCrZRzCw8PVqlUr+fn5ycvLS9u3b9e0adMUHh6up556ylF1\nnf0aVrRoUc2YMeOGVvCF+bgryVGctWfPHm3evFlRUVHq27evIz9vb2+tXLlSnp6e+sc//qH77rtP\nZ86cUdmyZfXxxx9rxYoVunbtmkqUKKFatWpxzpAD2ZrjVseEsLAwVapUyXEesG7dOk2bNk0NGzbU\nY489Jnd3dwUFBcnLy0uSdPnyZfXt21efffaZAgMDHedkhfn8gWzNQ7bmIl/zkK15yNZc5Gue7M8M\nst/PPvTQQ6pZs6bq1Kmj999/X3PmzNGAAQM0fvx4RUZGOv4d2rZtq9WrV2vq1KmObVWoUEGTJ092\ndDws7MjWXL8/LthsNr355puqXbu25s+frzlz5qh///435Fu7dm1HV7g5c+YoNTVVdrtdgwcP1qOP\nPipJt7zpqaC72X6vXbtWP/zwgx566CENGDDA0QWjSZMmeuedd+Th4aHGjRvLZrPpl19+UY0aNfTO\nO+/ohx9+0LVr11ShQgW1atXK0d2hsCJbAL9HEQH+spwX/2bOnKlFixbpwIEDKlu2rCIjI9W3b99c\nhQSzZ8+WYRgaOnToDYUENptNn376qfz8/CQV3pOhnHLmu2zZMu3YsUP79u1TUFCQ7rvvPpUvX177\n9+/XkCFD9PHHH8vDw0OZmZlycXFxtN9PTEyUq6urGjZs6MxdyXdyrhc9ceJE7d27V4cOHVJYWJha\ntGihChUq6IcfftDAgQM1adIkeXp6Oir/sy/G/Pe//1WJEiVUt25dZ+5KvsO8NVfOfI8fPy5vb28F\nBwcrISFBXbt21dy5c1WpUiW99tprslgsWrt2rUaPHq1BgwapTp06slgsyszMVO/evZWRkSFvb28K\nCHLIme/hw4eVnJys1NRUFStWTA0aNFD//v3l5+cnNzc3xcbG6ty5cxo5cqRjWQjpeqFRqVKlNHz4\ncBUpUsTR+aWwy5mtdL21a0pKih588EHHcTUrK0t///vfFRcXp549e6pPnz5auHChvvzyS7311luq\nXr067VxvgmzNkzPbffv26dSpU0pLS1P58uXVoEEDvfrqq6pWrZokacWKFUpJSdGLL77o6Dzi7e0t\nDw8P1apVS+3bt5efn58iIiKctj/5Cdmah2zNRb7mIVvzkK25yNc82Z/dpKena8WKFdq/f7+KFi2q\nkJAQeXt761//+peysrI0b9489evXz3Ex1jAMtW/fXlarVRs2bND58+cVGhqqTp06sVTXr8jWXDmP\nC3v37tXp06dlt9sVEBCgKlWq6NVXX1VmZqbmz5+fK19JatmypUaMGKElS5bo2LFjioiIUPv27fXg\ngw9KunXRUkG2bNkyVatWTVWqVHHcgJRt7969kqTu3bs7LnJnZmbqmWee0YEDB/T888+rb9++WrJk\nifbt26ehQ4eqcePGuZb3K8zIFsAtGcBfkJWV5fj7u+++a9hsNiM8PNxo3769ERkZadhsNuPll182\nEhMTDcMwjJUrVxp16tQxbDab8dZbbzmem5mZecO27Xa7+TuQz+XM4P333zdsNpsj4+xsjx49arRv\n396w2WxGr169jJSUlFzb2LFjh9GuXTsjKirK2L9//93ehXwre+6mpKQYTz75pGGz2YyoqCijZcuW\nRnh4uDF16lTj/PnzRrt27QybzWZER0cbFy9ezLWNefPmGTVr1jR69Ohxw9cKM+atuXIed2NiYoxG\njRo5ss0+vkZGRhpHjx41DMMwEhISjOeff96w2WzGE088YezevdtYu3atMXr0aCM2NvaW2y6scmYw\nbdo0o0WLFo45bLPZjP79+xtbtmwxrl27ZmRkZBhRUVFGZGSk8csvvzieFxsba9SuXdsYMGDALbdd\nGGW/1qemphoxMTFGQkKCsXDhQsNmsxlffPGFYRiGkZGRYXTu3Nmw2WzGe++958i1V69eRlhYmLFp\n0yanjT8/I1vz5Py9nTp1quP81mazGT169DAuXLjg+HpSUpIRHh5uPPPMM4ZhXM/cMAxj7dq1hs1m\nM95///1bbrswIlvzkK25yNc8ZGsesjUX+Zon+zw3JSXF6NGjh1GjRg1HtiNGjHB8FpOWlmYMHz7c\nsNlsRsOGDY3169c7tnH16lXDMK5nyWeNvyFbc93uuBAdHe34rDwtLc14/fXXHflu2LDhhm1dvHjR\nuHbt2k23XVikpaUZL730ktGtWzfj8OHDhmFcf/+b/b42e45u3rzZMIzr8zvn+9/Lly8bycnJRvPm\nzY3w8HDjxIkTubZfmOcv2QK4HToR4C/Jrnj8+OOPNX36dEVGRuqf//ynqlevrk2bNmnEiBFas2aN\nsrKy9Prrr9/QkcBqtWrw4MGOTgQ5uw4U9g4E0m8ZzJo1S9OmTVOzZs3Uu3dvlStXTv/9738dbfcn\nTJigl19+WevWrdNTTz2lzp07KygoSKdPn9bnn3+uhIQEvfHGG471tHB97mZkZGjw4MHav3+/evXq\npT59+ig9PV2JiYmqXLmyLBaLYmJi9PLLL2vjxo166qmn1Lx5c1WoUEE7duzQ6tWrVbRoUQ0ZMiTX\nWmSFHfPWXNnH3Y8++kiTJk1S48aN1bVrVwUGBur06dNasGCBYmNj9cwzz2j27NkKCQnR4MGDJV1v\nQfbSSy/pl19+UVpamsLDw2+67cIsO4MPP/xQkyZNUrly5fT000/LarVq1apVWrp0qfbv368ePXro\n4YcfVqVKlRQfH6/Dhw8rPDxcO3fu1MSJE5WZmam2bdvedNuFlYuLi65evarOnTvr0KFDqlSpkmOd\nzDVr1igiIkKvvvqq4y75559/Xj4+PpKkUqVKKTMzU4mJic7chXyLbM2T/Xs7fvx4TZs2TcHBwfrb\n3/4mu92ukJAQeXh4OL7XYrHIarXq8uXLunbtmjw8HVIh6AAAIABJREFUPLRjxw5NmTJFXl5eatCg\nwU23XViRrXnI1lzkax6yNQ/Zmot8zWEYhlxcXJSWlqYePXooLi5OHTp0UOvWrZWSkqLKlSs7Povx\n8PDQ66+/LklasGCB+vXrp/fff18HDx7UokWL9NZbb6levXrO3J18hWzN97+OC0WLFpV0Pd9hw4bJ\nbrfriy++UP/+/TV58mRZrVZ99NFHio6OztWh0zCMQnlcsFgsSklJ0ebNm/XOO++oX79+euONN1Sp\nUiW9/fbbKlmypCTpyJEjqlmzpqKjo294/2u32xUcHKzExETH8jI5t19YkS2A23JuDQMKgri4OKNF\nixbGY489ZsTHxzsej4+PN+6//34jLCzMsNlsRp8+fYykpCTDMK53JKhfv75hs9mMIUOGOGvo94TE\nxESjY8eORrNmzW56R3Z29enu3buNhx56yJFr9p9GjRoZc+bMcXw/1X+/2bNnj1GvXj0jOjraSE1N\nveX3xcbGGp06dTKaN2/uyDUsLMzo0qWLo0ITuTFvzXX48GHj/vvvN1q3bm0cOHDghq8PHjz4ho4E\nx48fN/r372+0adPGiIiIyJUvcnfESUxMNNq1a2d07tzZOHjwoOPxkydPGmPGjDHq169vtGzZ0li8\neLExbNgww2azGS1btjSefPJJo169eobNZjNmzJjhhL3In7LvrrLb7cYnn3xihIWFGcOHDzfS0tKM\nrKwso0uXLkZ4eLjRrFkzx91Xly9fzrWN6Ohoo3HjxsahQ4ecsQv5FtneHUuWLDFq1apl9OrV64Zj\nbkZGhpGQkGBs27bN+OWXX4zHH3/csNlsRufOnY3XXnvNuO+++wybzWbMnDnTSaPP38jWPGRrLvI1\nD9mah2zNRb7myMrKMkaPHm1Ur17dGDduXK67sQ3jemeHlStXGt9++61x7do149q1a8bIkSNzfb5Q\np04dx/ti/IZszfe/jgvHjh0ztm7dahiGYaSnp+fKt0mTJobNZjMWLFjgjKHnSzt37jR69OiRqxPn\njBkzjKysLCMuLs5o0qSJ0aZNG+OBBx64oQOfYVx/39yxY0fj/vvvN86fP+/EPcl/yBbArdCJAH9Z\nQkKCkpKS9PLLL+daD3rmzJm6cuWK3n77bc2cOVMrV65UVlaWhg8frtatW2vUqFHq27evgoKCnDj6\n/O/8+fM6dOiQHn/8cdWoUeOGNa+sVquOHDmipUuXqmrVqnruued08uRJXbhwQTVr1lTVqlVVq1Yt\nSYVzvazbOXLkiFJSUtSuXTt5eXk51oLLadOmTfrkk09ks9nUsWNHJSQkyG63y2azKTg4WMWLF3fS\n6PM35q25Lly4oKSkJD333HOy2WwyDEPS9fX2XF1dNWrUKKWkpOg///nPDR0JMjIylJKS4lh7k3yv\ny16ncPXq1UpPT9eJEyfUo0cPVatWTYZhyG63q3z58oqOjpaHh4emT5+uZcuWacyYMUpJSVFsbKxO\nnz6tqlWr6tlnn1WnTp0kka8kubq6KjU1VV988YUOHz6swMBADRw4UB4eHkpPT1enTp109uxZnTlz\nRk2aNNFjjz3muCtDkmbPnq3NmzerSZMmKlOmjBP3JP8hW/NlZWXphx9+UFZWlnr27Cmbzeb42vLl\ny7VixQqtX79eKSkp6tixowYNGqQ33nhDcXFxiouLk7+/v0aMGKHOnTtL4piQE9mah2zNRb7mIVvz\nkK25yNc8qamp2rJliypUqKDnn39e7u7ukqT09HSNGzdOmzdv1sGDByVJkZGRevPNNzVs2DC5ublp\nw4YNKlmypF5//XVVqlTJmbuRL5Gtuf7McaF58+YaPHiwhg0bJovFovnz58vNzU3Dhg3Tk08+6cS9\nyF/q1q2rF198UVu3blV6erqCgoLUpEkTWa1WVaxYUc2bN9eiRYtktVrVqVMn9ejRw9GBT7p+reLH\nH3/Ugw8+KG9vbyfuSf5DtgBuhSIC/GUHDx6U3W7P9QLx0UcfadGiRerfv7/atWsnwzA0evRorV+/\nXoMGDdKwYcPUtm1brV69WuXKlZOkG5YzwHVJSUnKzMzUzz//rIyMDMeFrpwCAgK0du1aGYahoUOH\nqkSJEjd8j1FI213dTmpqqiTp5MmTkm7eXqlSpUqKi4tT9erVVa9evVwtxHBrzFtznTlzRllZWbpy\n5Yqk34oHXF1dlZWVJRcXF40YMUIJCQk6ePCgunbtqrlz5yo4ODjXdsg3tyVLlmjgwIGqVauWihcv\nrlKlSkn6LV9J8vf3V+fOnbV3716tXbtW69at0zvvvKOEhARJUrFixRzP48O/6wzD0KRJkzR9+nR5\neHjIZrM53my6u7urXbt2OnXqlBYuXKh9+/ZpypQpatu2rTw9PbVy5Up9/fXX8vPz05AhQ3JdAAfZ\n3g1ZWVlKSEiQv7+/o73wzp07tXTpUs2dO1eSFBwcLC8vLy1atEhFihTRl19+qe+++04BAQHy9/dX\ntWrVJHFM+D2yNQ/Zmot8zUO25iFbc5Gvea5evaoLFy4oMDBQRYoU0ZkzZ7Rt2zbHBStfX19FRUXp\nxIkTio2N1eTJk/XWW29p0KBBevHFF+Xu7i4vLy9n70a+RLbm+jPHhXXr1snLy0sTJkzQ0KFD9cwz\nz8jd3V1ly5aVxHEhp3//+98yDEMBAQE6efKk3n33XQ0ePFhVqlTRK6+8opMnT2r79u3avXu3Nm7c\nqJCQEPn5+enzzz/XvHnzFBgYqFdeeUWenp7O3pV8h2wB3AxFBPjLbDabihQpoqNHj0qSVqxYoWnT\npikqKsrxQXXDhg3l5uamzMxMbd68WQ8//LCWLFmiypUrS+Jk6HaqVKmiMmXK6Pjx48rIyJCbm5vj\nIqF0PTsvLy/ZbDatWLFCP/74o5o2bXpDphRo3KhGjRoqUqSIduzYIbvdLhcXlxuy9fPzU3BwsA4d\nOqSEhASFhISQ5R/AvDVXjRo15Ovrq0OHDkm6fjdydnYuLi6y2+3y8PBwrGF4/vx59e7dW59++qnK\nlCnjKNoi39waNWqkBx98UKtXr1ZaWpq2b9+uFi1a3NChJDAwUD179tQPP/ygPXv26NFHH3V0dshG\ngcZvLBaL/vGPf+jChQtavny59uzZo88++0zdu3eXJPn4+Cg6Olp+fn76+uuv9c0332jJkiWODKtX\nr66xY8feUAQDsr1bAgMDtXPnTvXp00dWq1W7d+9WUlKSihcvrgEDBqhVq1ZKTk5Wz5499e9//1s9\ne/bUo48+mmsbHBNujmzNQ7bmIl/zkK15yNZc5GsOLy8vlS9fXjt27FDXrl2VmJios2fPSpIiIiI0\ndOhQValSRceOHVOnTp20f/9+XbhwQSVKlHC8H8bNka35/sxxYePGjTp27JgqVaqU6/0Zx4XcXnzx\nRTVu3FgVK1bU+PHjFRsbq7fffltDhw5V5cqVNW7cOL399tvasGGDBg4cKDc3N1mtVl27dk3BwcGa\nOHEiXZFvgWwB3IzLG2+88YazB4F7W3bVdNu2beXr66uxY8fq9OnTGj58uMLCwiRdvxtu0aJFCgsL\nU4MGDfTwww+rVatWjm1wIevWXFxcFBcXp23btuns2bNq06aNrFarMjMzJclx0XDTpk06duyYunXr\nppIlS5LpH+Dh4aHNmzdr586dOnPmjFq3bi2r1aqsrCwZhiEXFxe5urpqwYIF8vb2Vrdu3eTh4eHs\nYd8TmLfmcnNz08aNG7Vz506lpqYqMjJSFotFmZmZslgsslqtcnNz07p161SsWDFVrFhRe/fu1aVL\nlxQZGSk3Nzdn70K+5OPjo7p16yo5OVlHjhzRlStXVKNGDZUuXdrxPXa7XRaLRSkpKZo3b558fX31\nyCOPOB7PxlzOzcfHR+Hh4UpOTtbhw4d19uxZlSpVSiEhIZKunyfUqFFDrVu3dtyJVaNGDUVHR6tX\nr14qX768k/cg/yJbc7m4uKhq1apatWqV9u7dqyNHjqho0aJ68skn1a9fP7Vs2VKenp7y9/fXhg0b\ndOHCBXXp0kVFihTJtR2OCTciW/OQrbnI1zxkax6yNRf5msfd3V116tTR+vXrdfz4cZ0/f15RUVGK\njo7Wyy+/rMDAQEnXO8LNnTtXpUuXVufOnbno+geQrbn+7HEhOTlZ3bt357jwP/j6+qp69eoKDAx0\nFLls3bpVx44dU61atRQUFKTGjRurVq1a8vb2VpEiRVStWjU99dRTGjBggCpUqODsXci3yBbAzdCJ\nAH9ZyZIl1aVLF8ca52vXrtXf/vY3NWrUyHHn8dq1a3Xs2DFFR0fr8ccfdzyXDgT/m4+PjwYOHKjt\n27frm2++kaenp0aOHJnrztht27Zp5cqVKleu3A0nm7g1Pz8/vfXWW3rqqacc6zq9/fbbuVrvz549\n27Gm081a8uPmmLfmKlasmAYPHqzu3bvrs88+k6enp/r27Zsr361bt2r9+vV69tlnHXe5xMXF6dq1\na7QcvI1SpUqpX79+ysjI0LfffqtZs2bpxRdfdHTOyZa9fEFERIQk8Vr2B2Rnm5mZqaVLl2r69Oly\ndXVVixYtJF3vqFGqVClFR0c7d6D3ILI1V0hIiObMmaNdu3bp8uXLatGihfz9/eXp6ek4l920aZN2\n7dqliIgIlob4E8jWPGRrLvI1D9mah2zNRb7mqVy5subOnatz587p0qVLN+1i+Omnnyo5OVmPP/44\n783+BLI11589LuRcYx7/W82aNTV48GCNHj1amzZt0ptvvunooNG6dWu1bNnScbMYn+n+OWQLIBud\nCJAnsqsijxw5okWLFik4OFgPPPCArFarduzYoQkTJigjI0NdunRxrOeU83m4PT8/P9WuXVurVq3S\nrl27tG/fPseJ5aZNmzRx4kQdP35c/fv3d1zQwh9TokQJhYeHa/Xq1YqLi9POnTt15coVpaSkaObM\nmZo9e7a8vb317rvvKiAgwNnDvacwb81VpkwZlSlTRhs3btSmTZt0/PhxlStXToZhaMuWLZo8ebJO\nnz6tLl26qHr16tqwYYN2796tNm3aqHTp0hx/b6NIkSKqW7eukpKStHTpUiUnJ8vLy0vBwcGyWCza\nvn27Jk6cqIsXL+q5557jTu4/ITvbc+fOaePGjTp16pT8/f0d2WZlZfHB1B0iW3P5+vrKZrMpPDxc\nxYoVU1JSkooVKyaLxaKtW7fqgw8+0KlTp9S3b1+FhoY6e7j3FLI1D9mai3zNQ7bmIVtzka95fHx8\nVLp0acedrtu3b1fp0qVlt9s1c+ZMffTRR/L399fQoUNptf8nka25OC6Yx2KxKCAgQNWrV9fRo0e1\ndetWHT16VLVr19Z3332njz/+WBEREdy4dAfIFkA2i2EYhrMHgYLj7Nmz6tChg65evarHH39cgYGB\nWrRokU6dOqXhw4erS5cuzh7iPW3Pnj3q16+fTp8+netxT09PDRgwQF27dpUkx3rn+OPi4+P16quv\n6siRI7Lb7Y7Hq1evrnHjxt1wFzL+OOateTIzM7V27VoNHz5cFy5ckMVikYuLi2PZiP/7v//Ts88+\nK0l68sknlZqaqvnz51Pd/gf99NNPGjNmjJYvXy4vLy/VqFFDLi4uio+P16VLlzRkyBDH/MWf89NP\nP+mdd97RsmXLVLt2bT3//POOu+Y5Fvw1ZGu+vXv3qk+fPrLZbCpevLjWrl2ry5cva9CgQerevbsk\nsr5TZGsesjUX+ZqHbM1DtuYiX/PMnTtXb775pmrVqqVr167p0KFDCggI0KeffqqqVas6e3j3NLI1\nF8cFcxiGofj4eI0ePVrbtm2Tr6+vLl26pCJFimjx4sXc+PEXkC0AljNAngoMDNTw4cM1cuRIffnl\nl5KuV7TmLCDgZOjOhYeHa+7cufr++++1b98+Xbx4UeHh4apbt64aNWokiSUi7lRoaKhmzJihPXv2\naP/+/bJYLKpevbrq1Kkjf39/Zw/vnsa8NY+rq6tat26t6tWr69tvv9WBAwd07tw5hYaGKjIyUi1b\ntpQkTZ8+XXv27FGnTp1yLXmA2wsICNCgQYPk6uqq5cuXa9u2bapYsaK6dOmihg0b6r777pPE/L0T\nAQEB+r//+z9J0rJlyzR9+nRlZGSoTZs2nCP8RWRrLsMwdOHCBaWmpmr9+vWSpKpVq+q1117TY489\nJoljwp0iW/OQrbnI1zxkax6yNRf5msdut6tcuXIqV66cEhISVKRIEXXo0EGvvPIK63H/RWRrLo4L\n5rFYLAoNDdXrr7+uUaNGac+ePY6bwrjI/deQLQA6EcAUe/bs0fLly1W5cmWFhISoXr16kjgZMhv5\n4l7EvM1bOdcjs9vtmj59umbMmCFPT0/NnDlTQUFBTh7hvefcuXMaP368lixZorp166pnz56KioqS\ndL0bBIUZd+6nn37Se++9p8WLF6tp06aKiYmRt7e3s4dVIJCtuc6fP6/ExEQZhqGSJUsqMDBQEq9p\neYFszUO25iJf85CtecjWXORrnuxlKF1cXOTj4yNPT09nD6nAIFtzcVwwl2EYSkhIUMmSJVWsWDFn\nD6dAIVugcKKIAHcNHQjyTnaW2b++5Jp3cs5T5mzeYt6aKzvfq1ev6ttvv9X8+fOVnp6uI0eOqGzZ\nspo6daqqVKni7GHes86dO5erRfwLL7xAi/g8kpSUpEmTJqlbt24sHZPHyPbu4lhgHrI1D9mai3zN\nQ7bmIVtzkS+A3+O4kDfI0TxkCxReFBH8BW+99ZbmzJmjMWPGONoO4Te8uADA3XflyhX961//Umxs\nrMqXL6+IiAhFR0fTZiwP5Fxrvn79+vrHP/6hNm3aOHtYBQIdHcxDtgAAAAAAAAD+LD5RvEOrVq3S\n559/zkXy2yAbALj7fHx89N577yklJUVFihSRh4eH3NzcnD2sAiF7rXkXFxctXrxYHh4eioyMpEV8\nHuAit3nIFgAAAAAAAMCfxaeKd2DNmjXq16+faOIAAMiPfHx85OPj4+xhFEgBAQHq37+/PDw81K1b\nNwoIAAAAAAAAAAAFDkUEf4JhGPrwww81depUGYZBu34AAAqh0qVLa/jw4dzhDQAAAAAAAAAokKzO\nHsC9YsOGDXrkkUc0efJkGYahsLAwZw8JAAA4CQUEAAAAAAAAAICCik/A/6CePXvKYrHIzc1NL774\noh5++GG1adPG2cMCAAAAAAAAAAAAACDPUETwB1mtVrVp00avvPKKKlWqpNOnTzt7SAAAAAAAAAAA\nAAAA5CmKCP6g5cuXq2LFis4eBgAAAAAAAAAAAAAAprE6ewD3CgoIAAAAAAAAAAAAAAAFHUUEAAAA\nAAAAAAAAAABAEkUEAAAAAAAAAAAAAADgVxQRAAAAAAAAAAAAAAAASZKrswcA6f77Wzp7CAVOaGh1\nTZ48WZLUu3dvxccfcPKICo6c2drtdiePpmCyWq/XdzF38xZz11zMW/PwmmYesjUP2ZqLfM1DtuYh\nW3NxrmsuznXNwXHBXORrHrI1D69n5uL1zDwcF8z3/fdrnD0E5LEnnnhCycnJ6ty5s1544QVnDwc3\nQRFBPmAYnBDlNcMwcv2djPNOzmwtFosTR1LwMXfzFnP37mDe5j1e08xDtuYhW3ORr3nI1jxkay7O\nde8O5m7e4rhgLvI1D9mah9ezu4N5m/c4LgAoiFjOAAAAAAAAAAAAAAAASKKIAAAAAAAAAAAAAAAA\n/IoiAgAAAAAAAAAAAAAAIIkiAgAAAAAAAAAAAAAA8CuKCAAAAAAAAAAAAAAAgCSKCP4Si8Uii8Xi\n7GEAAAAAAAAAAAAAAJAnXJ09gHtVuXLlFB8f7+xhAAAAAAAAAAAAAACQZ+hEAAAAAAAAAAAAAAAA\nJFFEAAAAAAAAAAAAAAAAfkURAQAAAAAAAAAAAAAAkEQRAQAAAAAAAAAAAAAA+BVFBAAAAAAAAAAA\nAAAAQBJFBAAAAAAAAAAAAAAA4FcUEQAAAAAAAAAAAAAAAEmSq7MHAAAAAAAAAAAAAAAoXC5cuKCD\nBw9KkqxWqywWy//84+rqqtKlS8tisTh59AUbRQQAAAAAAAAAAAAAgLsiOTlZkrRy5UqtXLnyjrax\nZs0aCglMRBEBAKDQ6d27t+Lj4509jAIjNDRUU6ZMcfYwAAAAAAAAAACFxOzZs1W0aNE/9ZwqVaqo\nVq1aJo2oYKGIAABQ6EyePNnZQwAAAAAAAAAAAHdoxowZd/S8vn37qmPHjnk8moLH6uwBAAAAAAAA\nAAAAAABgNrvd7uwh3BPoRAAAAAAAAAAAAAAAuCv8/f2VnJwsm82mVq1aOR63WCwyDCPX997ssTtV\npUoV1a1bN0+2VdBRRAAAAAAAAAAAAAAAuKvq1KmjJ554wtnDwE2wnAEAAAAAAAAAAAAAAJBEEQEA\nAAAAAAAAAAAAAPgVyxkAAAAAAAAAAAAAAO6Kq1evSpIWLFigBQsW/Onnjxo1Sk2aNMnrYSEHOhEA\nAAAAAAAAAAAAAO6KlJSUv/T81157TWlpaXk0GtwMnQgAAIVO7969FR8f7+xhFBihoaGaMmWKs4cB\nAAAAAAAAALiLrl69qnPnzv3h7zcMQ4Zh5MnPzszMzJPt4OYoIgAAAAAAAAAAAAAA/GErV67UqFGj\nnD0MmIQiAgBAoTN58mRnDwFAPsNxAQAAAAAAAPjjnF1A4OXl5dSfX9BRRAAAAIBCj2VO8hbLnAAA\nAAAAAOCPeOONNxzLHGQvdZDzv7//u6urq6KiouTi4uK0MRcGFBEAAAAAAAAAAAAAAP6w559/XtOm\nTfvL22nevHkejAZ5jSICAAAAAAAAAAAAAMAf9tRTTykiIkLbtm1zdAuw2+2OP1lZWbn+P+efL7/8\nUpLUuXNnZ+4CboMiAgAAAAAAAAAAAADAnxIcHKzg4OA//by1a9cqOTlZx44d03fffSer1SqLxSIX\nFxdZLBZZrdbbPubr66siRYrIYrFIkiwWi+NP9v/nfDz7715eXvL09MybnS/gKCIAAAAAAAAAAAAA\nANwVycnJkqStW7dq69atd/Vnh4aGavLkyXf1Z96LKCIAABQ6vXv3Vnx8vLOHUWCEhoZqypQpzh4G\nAAAAxLluXuNcFwAAAChYeL/0x1BEAAAAAAAAUEBwRw0AAAAA3FqXLl2cPYR7AkUEAAAAAAAAAAAA\nAIB7xscffyx/f39ZLJYb/litVkmS1WqVxWKRJMfjLi4uzhz2PYMiAgBAocPdWQAAAAAAAAAA3LvK\nli0rb29vZw+jwKKIAABQ6LBObN5inVgAAAAAAAAAwN1kGIazh1CgUUQAACh06EQAAAAAAAAAAMC9\ny93d3dlDKNAoIgAAFDp0IshbdCIAAAAAAAAAANxNV69elZubm7OHUWBRRAAAKHToRAAAAAAAAAAA\nwL2L5QzMRREBAKDQoRNB3qITAQAAAAAAAADgbqKIwFxWZw8AAAAAAAAAAAAAAIA/6sqVK84eQoFG\nJwIAQKEzadIkZw8BAAAAAAAAAADcIVdXLnObiXQBAIXOSy+9xHIGeYjlDAAAAAAAAAAAd5O7u7uz\nh1CgUUQAACh0Jk+e7OwhAAAAAAAAAACAO+Ti4uLsIRRoFBEAAAqd3r1704kgD9GJAAAAAAAAAACA\ngoMiAgBAoUMnAgAAAAAAAAAA7l2enp7OHkKBRhEBAAAAAAAAAAAAAOCe8cADD9zR8xYuXCh/f/88\nHk3BQxEBAKDQMQzD2UMocCwWi7OHAAAAAAAAAADAbT3xxBP6/vvvnT2MfI8iAgBAocMFbwAAABRU\nFMzmPd4/AAAAAChsKCIAAAAAAAAoILjgDQAAAAD4q6zOHgAAAAAAAAAAAAAAAGb797//7ewh3BMo\nIgAAAAAAAAAAAAAAFHgnT5509hDuCSxnAAAAAAAAUED07t1b8fHxzh5GgREaGqopU6Y4exgAAAAA\n8sjo0aM1f/58Zw8j36OIAAAAAAAAoICYNGmSs4cAAAAAAPlWYGCgs4dwT6CIAAAAAAAAoIB46aWX\n6ESQh+hEAAAAABQsCQkJzh7CPYEiAgAAAAAAgAJi8uTJzh4CAAAAAORb5cuXd/YQ7gkUEQAACh3D\nMJw9hALHYrE4ewgAAACQ1Lt3bzoR5CE6EQAAAAAFC9cH/hiKCAAAhQ4XvAEAAAAAAAAAKHxYzuCP\nsTp7AAAAAAAAAAAAAAAAmK1Zs2bOHsI9gU4EAAAAAAAABcTkyZOdPQQAAAAAyLd8fX2dPYR7AkUE\nAAAAAAAABUTv3r0VHx/v7GEUGKGhoZoyZYqzhwEAAAAgj5w8edLZQ7gnUEQAAAAAAABQQEyaNMnZ\nQwAAAACAfCs9Pd3ZQ7gnUEQAAAAAAABQQLz00kt0IshDdCIAAAAACpbKlSs7ewj3BIoIAAAAAAAA\nCojJkyc7ewgAAAAAkC81a9ZMTz/9tLOHcU+giAAAUOiwTmze4u4sAAAAAAAAAMDd5OnpKS8vr1yP\nWSyWm/43m7+/v9zd3e/OAO9xFBEAAAod7s4CAAAAAAAAAODelZaWprS0tD/1nEWLFqlIkSKKjo42\naVQFh9XZAwAAAAAAAAAAAAAAwGxhYWHOHsI9gU4EAAAAAAAAAAAAAIB7xhdffCGr9bf75X+/dIEk\nGYZx0/9PTk6+6ddv9/yAgICb/oyCiiICAAAAAAAAAAAAAMA948knn7zrP/M///mP3N3d7/rPdQaW\nMwAAAAAAAAAAAAAA4DZOnTrl7CHcNXQiAHDH/lebF9yZwtQOx1mYu3mPeQsAAJA/cK6b9zjXBQAA\nACBJHh4ezh7CXUMRAYA7xgcpuFcxdwEAAFBQca4LAAAAAOY4ceKEypUr5+xh3BUUEQC4Y9zhYg4+\n9DMfczfvMW8BAAAAAAAAAAVZmTJlnD2Eu4YiAgB37KWXXlJ8fLyzh1GghIaGasqUKc4eRoHH3M1b\nzFsAAAAAAAAAQEF36dIlZw/hrqGIAMAdmzx5srOHANwR5i4AAAAAAAAAAPgzvLy8nD2Eu4YiAgB3\nrHfv3tzNnce4o/vuYO7mLeYtAAAAAAAAAKADUAzhAAAgAElEQVSgO3bsmP6fvTsOtbMu/Dj+eW5u\nzjUVY2KKrmmauyIhRKG1hQOVVRQi6rS7UCrS7hUNNCxL12ZEUCESu7dt5R+COFuzIpRA6oINA+2P\n9I/ujKKhJK6uSYKNmt7z+6Nn+215V9vuued7zvO8XnDYvffs3OfjCDqc8z7Pc/7555ee0RMiAuCY\n+TQ3g8r/dgEAaCrBbHcJZgEAgP3aEhAkIgIAAACAxti0aVPpCQAAAI1z22235eyzzy49o2dEBAAA\nAAANUVVV6QkAAAB9bXJysvSEvjdUegAAAAAAAAAA0B+ciQCA1nGd2O5ynVgAgP7huW53ea4LAAC0\nkYgAgNYZHx8vPQEAAAAAAKAviQgAAAAAGkIwCwAAwFyJCABoHad47S6neAUA6B+e63aX57oAAEAb\niQgAaB2fzgIAoKk81wUAAGCuRAQAtI5PZ3WXT2cBAPQPz3W7y3NdAACgjUQEALSOT2cBANBUnusC\nAAAwVyICAAAAgIbodDqlJzROVVWlJwAAAF1y3XXXlZ4wEEQEALSOU7x2l1O8AgD0D294AwAAHN62\nbdty0003lZ7R94ZKDwAAAAAAAACA+bZkyZLSEwaCMxEA0DquEwsAQFM561Z3OesWAAA0yw033FB6\nwkAQEQAAAAA0hGAWAADg8LZs2ZKrr7669Iy+53IGAAAAAAAAADTevn37Sk8YCCICAAAAAAAAACCJ\nyxkAAAAANEan0yk9oXGqqio9AQAA6JKPfvSjpScMBBEBAAAAQEN4wxsAAGiDkZGRLFy48Kgec/75\n5+cDH/jAPC1qFhEBAAAAAAAAAANj7dq1OfHEE0vPaKyh0gMAAAAAAAAAgP4gIgAAAAAAAABgYHQ6\nndITGk1EAAAAAAAAAAAkEREAAAAAAAAAMEAWLFhQekKjHVd6AAAAAAAAAAAcqV//+tdZtGhRkqSq\nqkPuq6rqkJ/t//qMM87ImWee2buRA0xEAAAAANAQrgvaff/5giQAAFDevffee0yP+/CHP5wNGzZ0\neU3ziAgAAAAAGsIb3gAAAIf35JNPlp4wEEQEALTO6OhopqamSs9ojOHh4UxMTJSeAQAAAAAAdIGI\nAIDWGR8fLz0BAADmhcsZdJ+zOwAAQHOMjIyUnjAQRAQAAAAADeENbwAAgMNbtGhR6QkDYaj0AADo\ntU6n49blGwAAAAAA9LsHH3yw9ISB4EwEALSOT2cBAAAAAED77Nu3r/SEgSAiAKB1fHK++4QZAAD9\nwXPd7vNcFwAAaBsRAQCtMzY2lqmpqdIzGmN4eDgTExOlZwAAEG94AwAAMHciAgBaZ9OmTaUnAAAA\nAAAA9CURAQCt49NZAAAAAAAAsxMRANA6o6OjLmfQRS5nAAAAAAAAzSEiAKB1xsfHS08AAAAAAADo\nSyICAAAAgIbodDqlJzSOy6EBAEBzfOYznyk9YSCICAAAAAAawhveAAAAh/ehD32o9ISBICIAoHVG\nR0czNTVVekZjDA8PZ2JiovQMAADiuW63ea4LAADN8ulPfzqTk5OlZ/Q9EQEArbNp06bSEwAAYF6M\nj4+XngAAAMCAExEA0DpO8QoAAAAAAO3zne98p/SEgSAiAKB1Op1O6QmNI8wAAOgPLmfQXS5nAAAA\nzXL77be7nMEREBEA0Dre8AYAoKlczgAAAODwPvaxj5WeMBBEBAAAAAAN4UwE3eVMBAAA0Cy/+tWv\ncscdd5Se0fdEBAC0jhdWu8sLqwAA/cOZCAAAAA7vtddeKz1hIIgIAAAAABpCMNtdglkAAKCNRAQA\ntI5PZwEA0FSe6wIAAL3S6XRm/fNo/w79R0QAAAAAAAAAwBF7+umnc+edd5aecdSqqio9YSCICABo\nHaVj93niBQDQH1zOoLtczgAAAGZXOiBYvHhxFi9enOTfr0/vf416/9cHf7/fypUrc+ONN/Z86yAS\nEQDQOt7wBgCgqVzOAAAA6IX169dnw4YNxY6/bdu2nHjiicWO33QiAgAAAICGcCaC7nImAgAAmN1v\nfvObosf3YcH5JSIAoHVczqD7PGEDAAAAAGiPxx57rOjxvc4/v0QEALTO2NiYT2d1kU9n9Y5/5/nj\n1M8ANIX/TwMAANrAB9vml4gAgNbZtGlT6QlwTD7/+c8LYLro4ADGqZ+7S1wEAAAA0GynnXZa9uzZ\nU3oG82So9AAA6LWqqty6fAMAAAAAoD0uu+yyosf3uvT8EhEAAAAAAAAAcMTe9773lZ7APBIRAAAA\nAAAAAHDEXnzxxaLHf+ONN4oev+lEBAAAAAAAAAAcsampqaLHX7hwYdHjN91xpQcAQK91Op3SExrH\n9acAAAAAANqj9JkAhoZ8Vn4+iQgAaB1veAMAAAAAwLE788wzix5/zZo1x/S47du3Z+nSpV1e0zwS\nDQAAAAAAAACO2KpVq0pPOCbXXHNN6QkDwZkIAAAAAAAAADhi55xzTh5//PH85S9/SVVVqarqkEsM\nDA0NHXJW4E6nk5mZmSTJunXrer6XoyMiAKB1Op1O6QmN4xIRAAAAAADtcsIJJ+Rd73pX6RnMAxEB\nAK3jDW8AAAAAAIDZDf3vvwIAAAAAAAAAtIEzEQDQOqOjo5mamio9ozGGh4czMTFRegYAAPFct9s8\n1wUAgOZZvXr1UT/mgx/8YL7+9a+35kzHzkQAAAAAAAAAAIfx1FNP5cUXXyw9o2eciQCA1hkfHy89\nAQAAAAAAWun+++/PbbfdVnrGUTv11FNLT+gZEQEAAAAAAAAAPfHe9743k5OTR/24q6++Oq+88sqc\nj3/XXXcd9WNWrVqVRYsWzfnYg0JEAAAAAAAAAEBPPPzww9myZUux419++eXFjj0oRAQAAAAADeHS\nXQAAQL8rGRAkyZ///OcDX3c6nUO+Pvj7g+8/66yzMjQ01JuBfUBEAAAAANAQo6OjmZqaKj2jMYaH\nhzMxMVF6BgAA0EXr1q076scsW7YsW7duzcKFC+dhUf8REQDQOl5Y7S4vrAIA9A9nIgAAAOi+F154\nIXv37hURAEBTeWEVAICmEsx2l2AWAAC6b/PmzbnppptKzzhqMzMzpSf0THsu3AAAAAAAAABAUYMY\nECTJyy+/XHpCz4gIAAAAAAAAAOAwFi1alBUrVpSe0TMuZwAAAAAAAABAT5x99tn505/+VOz4k5OT\nxY49KEQEAAAAAAAAAPTE9773vfzkJz/JX//616N63M9+9rP885//nNOxv/CFL8zp8W0hIgAAAAAA\nAACgJxYuXJhrr732qB93+umn57vf/e6cjr137945Pb4thkoPAIBe63Q6bl2+AQAAAADAfNqxY8ec\nf8fmzZu7sKT5nIkAgNapqqr0BAAAAAAAaKU333wzmzdvzu7du9PpdDIzM3Pgtv/7gz/Etv/7l156\nqfT01hARAAAAAAAAANATl112WekJ/A8uZwAAAAAAAABA411wwQWlJwwEEQEAAAAAAAAAPfH444/n\nlFNOKXLs3/3ud0WOO2hEBAAAAAAAAAD0xAMPPJBXX321yLHPOOOMIscdNCICAAAAAAAAAHrij3/8\nY7FjL1++vNixB8lxpQcAAAAAAAAA0A4bN27MAw88kJdeeimdTufALcl//f65556b87GfeuqpOf+O\nNhARANA6o6OjmZqaKj2jMYaHhzMxMVF6BgAAAAAAA2DJkiW59dZbj/pxq1evnoc1zMblDAAAAAAA\nAADoa2vWrCk9oTWciQCA1hkfHy89AQAAAAAAWumXv/xl7r333p4f99xzz803vvGNnh93EIkIAAAA\nAAAAAOiJbgQEP/zhD3Pqqad2YQ2zEREAAAAANMSmTZtKTwAAAJh3CxYsKD2h0UQEAAAAAA0xNjaW\nqamp0jMaY3h4OBMTE6VnAAAA/6HT6ZSe0GhDpQcAAAAAAAAAwJGamZkpPaHRnIkAAAAAoCFczgAA\nAGiDqqpKT2g0EQEAAABAQ7icQXe5nAEAAPSnN954o/SERhMRAAAAADTE+Ph46QkAAADz7rjjvM09\nn/zrAgAAADTE6OioMxF0kTMRAABAf+p0OqUnNNpQ6QEAAAAAAAAAtMPFF188598hIphfzkQAAAAA\nAAAAQE9s2LAhP/3pTzM9PZ2qqpLkkD/3f33w91VV5dlnn81zzz2XJLnmmmuO6dibNm3KBRdcMMf/\nguYTEQAAAAAAAAAU9Oyzz+aTn/xkvv/97+eSSy455L5PfepTeeaZZ97ymKqq8uCDD+b9739/r2Z2\nxcKFC48pAli3bt2cjz02NpbJyck5/56mExEAAAAAAAAAFLJ79+6MjY1lZmZm1vt///vf56KLLsrI\nyMhb7nv3u9893/P6xpo1a/KDH/xgTr9jxYoVXVrTbCICAAAAAAAAgAKeeOKJfPWrX81rr7026/0v\nv/xy/v73v+fiiy/Oxz/+8R6v6y/vfOc75/w7vvzlL3dhSfOJCAAAAAAAAAB67HOf+1yefPLJnHfe\neVm1alUee+yxt/yd559/Pknynve8p9fz5s3zzz+fsbGxvPnmmz0/9g033HDMj/3FL36RoaGhLq7p\nX+34rwQAAAAAAADoI7t3787tt9+eRx99NMuXL5/17+zatStVVeW8885LkuzduzedTqeHK7vvvvvu\nKxIQzNUf/vCH0hN6xpkIAGid0dHRTE1NlZ7RGMPDw5mYmCg9AwAAAABgoDz22GNZsGDBf/07u3bt\nSpJs3749jz/+eKanp3PCCSfkiiuuyJ133pl3vOMdvZj6Fjt37sxDDz2U3bt3Z/ny5RkZGcnKlSuP\n6LH7z64wSM4666wDIUcbiAgAaJ3x8fHSEwAAAAAAaLn/FRAk//+G+65du3LnnXfm+OOPz86dO7N9\n+/b89re/zfbt23PSSSfN99RD7Ny5M3ffffeB73ft2pW77747q1evzrJlyzIzM5Mk6XQ6B25JMjMz\n0xdnUZicnCw9oe+JCAAAAAAaQjALAADNMjIykr179+azn/3sgZ9dccUVOeecc/LNb34zW7duze23\n397TTQ899NCsPx+EN+fvv//+0hMGgogAAAAAAAAAoA+NjIwc9uff+ta3snPnzp5HBLt37+7p8Wbz\n8MMPZ+nSpamqKkNDQ6mqqvSkRhERAAAAADREP5watGm8GAkAQD9asGBBTjrppLz++us9P/by5cuz\na9eut/z89NNPz4033pjk38+j97/Bf/D3VVXla1/72pw3XH/99cf0uPvuuy8XXXTRnI/fdCICAAAA\ngIYYGxvL1NRU6RmNMTw8nImJidIzAABoqV27duWOO+7IypUr86UvfemQ+/72t7/l1VdfzYUXXtjz\nXSMjI7nnnnsOiZirqsro6GhWrlzZ8z1H4+mnnxYRHIGh0gMAAAAAAAAAONTy5cuzZ8+e/PjHP86e\nPXsOue/b3/52qqrKVVdd1fNdK1euzMaNG7NixYosWrQoK1asyMaNG/s+IFi1alXWrl1besZAcCYC\nAAAAgIYYHx8vPQEAAOiSRYsW5Stf+UruuuuuXHvttbn++uuzZMmSPPHEE3n66afziU98Ih/5yEeK\nbFu5cmWxaODSSy/N+vXrixy7LUQEAAAAAAAAAH3oyiuvzGmnnZYtW7Zk69atefPNN3POOedk/fr1\nue6660rPOyZLly7N9PR01q5dm5tvvrn0HGYhIgAAAAAAAAAo6JZbbsktt9wy632XXHJJLrnkkh4v\nos2GSg8AAAAAAAAAAPqDiAAAAAAAAAAASOJyBgAAAAAAAAD02COPPJJHHnmk9Iwjcs8992T16tWl\nZ/SMMxEAAAAAAAAA0BPT09OlJxy1jRs35pVXXik9o2eciQAAAACgIUZHRzM1NVV6RmMMDw9nYmKi\n9AwAAKCwyy+/PKecckrpGT0jIgAAAABoiPHx8dITAAAA+trk5GTpCX1PRABA6/h0Vnf5dBYAAAAA\nADSHiAAAAACgIQSz3SWYBQAA2khEAEDrOMUrAAAAAADA7EQEAAAAAA0hmAUAAJhdVVXZsWNH6RkD\nQUQAAAAAAAAAQE8sXbo009PTWbNmTa6//vpUVZWhoaEMDQ2lqqq87W1vO/CzqqpSVdWBx1ZVlZNP\nPrng+nYQEQAAAAAAAADQE6+99lqS5Oc//3mee+65JDkQC+wPBmaLB6qqytvf/vZ88YtfzLJly3o/\nvEVEBAAAAAAAAAD0xL/+9a8DX7/00ktH/fhbbrklO3bsyIIFC7o5i4MMlR4AAAAAAAAAAEfiwgsv\nzHHH+az8fPKvCwAAAAAAAEBPLF68OP/4xz+SJMuWLTvkUgb7b0ND//4s/P4/91/aYPHixbn11lsP\nudQB3SciAAAAAAAAAKAn9gcESfLCCy8c9eNvuumm/OhHP3I5g3nkcgYAAAAAAAAADIRzzz3X5Qzm\nmX9dAAAAAAAAAHpi6dKlmZ6ezpVXXpkbb7zxkPs6nc6B22zf73+8yxnMLxEBAAAAAAAAAD11/PHH\n5+STTy49g1m4nAEAAAAAAAAAkEREAAAAAAAAAADURAQAAAAAAAAAQBIRAQAAAAAAAABQExEAAAAA\nAAAAAElEBAAAAAAAAABATUQAAAAAAAAAACQREQAAAAAAAAAANREBAAAAAAAAAJBERAAAAAAAAAAA\n1I4rPQAAAAAAAACAdtm3b19ef/31VFU1621o6N+fhz/4Z/SGiAAAAAAAAACAnpienk6SPProo3n0\n0UeP+vGXXnpp1q9f3+1ZHMTlDAAAAAAAAAAYCM8880z27dtXekajiQgAAAAAAAAAGAhXXXVVFixY\nUHpGo4kIAAAAAAAAABgI27ZtcyaCeSYiAAAAAAAAAGAgrFu3zpkI5tlxpQcAAAAAAAAA0A5Lly7N\n9PR01q5dm5tvvrn0HGbhTAQAAAAAAAAAQBIRAQAAAAAAAABQExEAAAAAAAAAAElEBAAAAAAAAABA\nTUQAAAAAAAAAACQREQAAAAAAAAAANREBAAAAAAAAAJBERAAAAAAAAAAA1EQEAAAAAAAAAEASEQEA\nAAAAAAAAUBMRAAAAAAAAAABJRAQAAAAAAAAAQE1EAAAAAAAAAAAkEREAAAAAAAAAADURAQAAAAAA\nAACQREQAAAAAAAAAANREBAAAAAAAAABAEhEBAAAAAAAAAFATEQAAAAAAAAAASUQEAAAAAAAAAEBN\nRAAAAAAAAAAAJBERAAAAAAAAAAA1EQEAAAAAAAAAkEREAAAAAAAAAADURAQAAAAAAAAAQBIRAQAA\nAAAAAABQExEAAAAAAAAAAElEBAAAAAAAAABATUQAAAAAAAAAACQREQAAAAAAAAAANREBAAAAAAAA\nAJBERAAAAAAAAAAA1EQEAAAAAAAAAEASEQEAAAAAAAAAUBMRAAAAAAAAAABJRAQAAAAAAAAAQE1E\nAAAAAAAAAAAkEREAAAAAAAAAADURAQAAAAAAAACQREQAAAAAAAAAANREBAAAAAAAAABAEhEBAAAA\nAAAAAFATEQAAAAAAAAAASUQEAAAAAAAAAEBNRAAAAAAAAAAAJBERAAAAAAAAAAA1EQEAAAAAAAAA\nkEREAAAAAAAAAADURAQAAAAAAAAAQBIRAQAAAAAAAABQExEAAAAAAAAAAElEBAAAAAAAAABATUQA\nAAAAAAAAACQREQAAAAAAAAAANREBAAAAAAAAAJBERAAAAAAAAAAA1EQEAAAAAAAAAEASEQEAAAAA\nAAAAUBMRAAAAAAAAAABJRAQAAAAAAAAAQE1EAAAAAAAAAAAkEREAAAAAAAAAADURAQAAAAAAAACQ\nREQAAAAAAAAAANREBAAAAAAAAABAEhEBAAAAAAAAAFATEQAAAAAAAAAASUQEAAAAAAAAAEBNRAAA\nAAAAAAAAJBERAAAAAAAAAAA1EQEAAAAAAAAAkEREAAAAAAAAAADURAQAAAAAAAAAQBIRAQAAAAAA\nAABQExEAAAAAAAAAAElEBAAAAAAAAABATUQAAAAAAAAAACQREQAAAAAAAAAANREBAAAAAAAAAJBE\nRAAAAAAAAAAA1EQEAAAAAAAAAEASEQEAAAAAAAAAUBMRAAAAAAAAAABJRAQAAAAAAAAAQE1EAAAA\nAAAAAAAkEREAAAAAAAAAADURAQAAAAAAAACQREQAAAAAAAAAANREBAAAAAAAAABAEhEBAAAAAAAA\nAFATEQAAAAAAAAAASUQEAAAAAAAAAEBNRAAAAAAAAAAAJBERAAAAAAAAAAA1EQEAAAAAAAAAkERE\nAAAAAAAAAADURAQAAAAAAAAAQBIRAQAAAAAAAABQExEAAAAAAAAAAElEBAAAAAAAAABATUQAAAAA\nAAAAACQREQAAAAAAAAAANREBAAAAAAAAAJBERAAAAAAAAAAA1EQEAAAAAAAAAEASEQEAAAAAAAAA\nUBMRAAAAAAAAAABJRAQAAAAAAAAAQE1EAAAAAAAAAAAkEREAAAAAAAAAADURAQAAAAAAAACQREQA\nAAAAAAAAANREBAAAAAAAAABAEhEBAAAAAAAAAFATEQAAAAAAAAAASUQEAAAAAAAAAEBNRAAAAAAA\nAAAAJBERAAAAAAAAAAA1EQEAAAAAAAAAkEREAAAAAAAAAADURAQAAAAAAAAAQBIRAQAAAAAAAABQ\nExEAAAAAAAAAAElEBAAAAAAAAABATUQAAAAAAAAAACQREQAAAAAAAAAANREBAAAAAAAAAJBERAAA\nAAAAAAAA1EQEAAAAAAAAAEASEQEAAAAAAAAAUBMRAAAAAAAAAABJRAQAAAAAAAAAQE1EAAAAAAAA\nAAAkEREAAAAAAAAAADURAQAAAAAAAACQREQAAAAAAAAAANREBAAAAAAAAABAEhEBAAAAAAAAAFAT\nEQAAAAAAAAAASUQEAAAAAAAAAEBNRAAAAAAAAAAAJBERAAAAAAAAAAA1EQEAAAAAAAAAkEREAAAA\nAAAAAADURAQAAAAAAAAAQBIRAQAAAAAAAABQExEAAAAAAAAAAElEBAAAAAAAAABATUQAAAAAAAAA\nACQREQAAAAAAAAAANREBAAAAAAAAAJBERAAAAAAAAAAA1EQEAAAAAAAAAEASEQEAAAAAAAAAUBMR\nAAAAAAAAAABJRAQAAAAAAAAAQE1EAAAAAAAAAAAkEREAAAAAAAAAADURAQAAAAAAAACQREQAAAAA\nAAAAANREBAAAAAAAAABAEhEBAAAAAAAAAFATEQAAAAAAAAAASUQEAAAAAAAAAEBNRAAAAAAAAAAA\nJBERAAAAAAAAAAA1EQEAAAAAAAAAkEREAAAAAAAAAADURAQAAAAAAAAAQBIRAQAAAAAAAABQExEA\nAAAAAAAAAElEBAAAAAAAAABATUQAAAAAAAAAACQREQAAAAAAAAAANREBAAAAAAAAAJBERAAAAAAA\nAAAA1EQEAAAAAAAAAEASEQEAAAAAAAAAUBMRAAAAAAAAAABJRAQAAAAAAAAAQE1EAAAAAAAAAAAk\nEREAAAAAAAAAADURAQAAAAAAAACQREQAAAAAAAAAANREBAAAAAAAAABAEhEBAAAAAAAAAFATEQAA\nAAAAAAAASUQEAAAAAAAAAEBNRAAAAAAAAAAAJBERAAAAAAAAAAA1EQEAAAAAAAAAkEREAAAAAAAA\nAADURAQAAAAAAAAAQBIRAQAAAAAAAABQExEAAAAAAAAAAElEBAAAAAAAAABATUQAAAAAAAAAACQR\nEQAAAAAAAAAANREBAAAAAAAAAJBERAAAAAAAAAAA1EQEAAAAAAAAAEASEQEAAAAAAAAAUBMRAAAA\nAAAAAABJRAQAAAAAAAAAQE1EAAAAAAAAAAAkEREAAAAAAAAAADURAQAAAAAAAACQREQAAAAAAAAA\nANREBAAAAAAAAABAEhEBAAAAAAAAAFATEQAAAAAAAAAASUQEAAAAAAAAAEBNRAAAAAAAAAAAJBER\nAAAAAAAAAAA1EQEAAAAAAAAAkEREAAAAAAAAAADURAQAAAAAAAAAQBIRAQAAAAAAAABQExEAAAAA\nAAAAAElEBAAAAAAAAABATUQAAAAAAAAAACQREQAAAAAAAAAANREBAAAAAAAAAJBERAAAAAAAAAAA\n1EQEAAAAAAAAAEASEQEAAAAAAAAAUBMRAAAAAAAAAABJRAQAAAAAAAAAQE1EAAAAAAAAAAAkEREA\nAAAAAAAAADURAQAAAAAAAACQREQAAAAAAAAAANREBAAAAAAAAABAEhEBAAAAAAAAAFATEQAAAAAA\nAAAASUQEAAAAAAAAAEBNRAAAAAAAAAAAJBERAAAAAAAAAAA1EQEAAAAAAAAAkEREAAAAAAAAAADU\nRAQAAAAAAAAAQBIRAQAAAAAAAABQExEAAAAAAAAAAElEBAAAAAAAAABATUQAAAAAAAAAACQREQAA\nAAAAAAAANREBAAAAAAAAAJBERAAAAAAAAAAA1EQEAAAAAAAAAEASEQEAAAAAAAAAUBMRAAAAAAAA\nAABJRAQAAAAAAAAAQE1EAAAAAAAAAAAkEREAAAAAAAAAADURAQAAAAAAAACQREQAAAAAAAAAANRE\nBAAAAAAAAABAEhEBAAAAAAAAAFATEQAAAAAAAAAASUQEAAAAAAAAAEBNRAAAAAAAAAAAJBERAAAA\nAAAAAAA1EQEAAAAAAAAAkEREAAAAAAAAAADURAQAAAAAAAAAQBIRAQAAAAAAAABQExEAAAAAAAAA\nAElEBAAAAAAAAABATUQAAAAAAAAAACQREQAAAAAAAAAANRHB/7V3/8FS1ff9x1/n/kDQ6BW40dSE\nmAgtRlMRpBoTW2Pizxg1EsuVkSINNl5EJrQ2Y7GRNBa1TWixROKPGKuYi1lb0EnQOkkdxapxUvzB\nEJXUmICkbcAVAyEUWHC/f7jeL8gFvQZY7+XxmNmZ3XvOZ/e9O/x3nnwOAAAAAAAAAJBERAAAAAAA\nAAAA1IgIAAAAAAAAAIAkIgIAAAAAAAAAoEZEAAAAAAAAAAAkEREAAAAAAAAAADUiAgAAAAAAAAAg\niYgAAAAAAAAAAKgREQAAAAAAAAAASeT1q2oAACAASURBVEQEAAAAAAAAAECNiAAAAAAAAAAASCIi\nAAAAAAAAAABqRAQAAAAAAAAAQBIRAQAAAAAAAABQIyIAAAAAAAAAAJKICAAAAAAAAACAGhEBAAAA\nAAAAAJBERAAAAAAAAAAA1IgIAAAAAAAAAIAkIgIAAAAAAAAAoEZEAAAAAAAAAAAkEREAAAAAAAAA\nADUiAgAAAAAAAAAgiYgAAAAAAAAAAKgREQAAAAAAAAAASUQEAAAAAAAAAECNiAAAAAAAAAAASCIi\nAAAAAAAAAABqRAQAAAAAAAAAQBIRAQAAAAAAAABQIyIAAAAAAAAAAJKICAAAAAAAAACAGhEBAAAA\nAAAAAJBERAAAAAAAAAAA1IgIAAAAAAAAAIAkIgIAAAAAAAAAoEZEAAAAAAAAAAAkEREAAAAAAAAA\nADUiAgAAAAAAAAAgiYgAAAAAAAAAAKgREQAAAAAAAAAASUQEAAAAAAAAAECNiAAAAAAAAAAASCIi\nAAAAAAAAAABqRAQAAAAAAAAAQBIRAQAAAAAAAABQIyIAAAAAAAAAAJKICAAAAAAAAACAGhEBAAAA\nAAAAAJBERAAAAAAAAAAA1IgIAAAAAAAAAIAkIgIAAAAAAAAAoEZEAAAAAAAAAAAkEREAAAAAAAAA\nADUiAgAAAAAAAAAgiYgAAAAAAAAAAKgREQAAAAAAAAAASUQEAAAAAAAAAECNiAAAAAAAAAAASCIi\nAAAAAAAAAABqRAQAAAAAAAAAQBIRAQAAAAAAAABQIyIAAAAAAAAAAJKICAAAAAAAAACAGhEBAAAA\nAAAAAJBERAAAAAAAAAAA1IgIAAAAAAAAAIAkIgIAAAAAAAAAoEZEAAAAAAAAAAAkEREAAAAAAAAA\nADUiAgAAAAAAAAAgiYgAAAAAAAAAAKgREQAAAAAAAAAASUQEAAAAAAAAAECNiAAAAAAAAAAASCIi\nAAAAAAAAAABqRAQAAAAAAAAAQBIRAQAAAAAAAABQIyIAAAAAAAAAAJKICAAAAAAAAACAGhEBAAAA\nAAAAAJBERAAAAAAAAAAA1IgIAAAAAAAAAIAkIgIAAAAAAAAAoEZEAAAAAAAAAAAkEREAAAAAAAAA\nADUiAgAAAAAAAAAgiYgAAAAAAAAAAKgREQAAAAAAAAAASUQEAAAAAAAAAECNiAAAAAAAAAAASCIi\nAAAAAAAAAABqRAQAAAAAAAAAQBIRAQAAAAAAAABQIyIAAAAAAAAAAJKICAAAAAAAAACAGhEBAAAA\nAAAAAJBERAAAAAAAAAAA1IgIAAAAAAAAAIAkIgIAAAAAAAAAoEZEAAAAAAAAAAAkEREAAAAAAAAA\nADUiAgAAAAAAAAAgiYgAAAAAAAAAAKgREQAAAAAAAAAASUQEAAAAAAAAAECNiAAAAAAAAAAASCIi\nAAAAAAAAAABqRAQAAAAAAAAAQBIRAQAAAAAAAABQIyIAAAAAAAAAAJKICAAAAAAAAACAGhEBAAAA\nAAAAAJBERAAAAAAAAAAA1IgIAAAAAAAAAIAkIgIAAAAAAAAAoEZEAAAAAAAAAAAkEREAAAAAAAAA\nADUiAgAAAAAAAAAgiYgAAAAAAAAAAKgREQAAAAAAAAAASUQEAAAAAAAAAECNiAAAAAAAAAAASCIi\nAAAAAAAAAABqRAQAAAAAAAAAQBIRAQAAAAAAAABQIyIAAAAAAAAAAJKICAAAAAAAAACAGhEBAAAA\nAAAAAJBERAAAAAAAAAAA1IgIAAAAAAAAAIAkIgIAAAAAAAAAoEZEAAAAAAAAAAAkEREAAAAAAAAA\nADUiAgAAAAAAAAAgiYgAAAAAAAAAAKhpqvcAAAAAAAAAAOxdFi1alJkzZ6ahoSFFUaSxsTFFUaSh\noWGHf2toaMjIkSMzdOjQeo/fq4kIAAAAAAAAANgj+vTpkyR54YUX8sILL3R7/dy5czN//vzss88+\nu3o0akQEAAAAAL3EJZdckueee67eY/QaH/rQh3LDDTfUewwAAOhV+vXr91utX79+fX7zm9+ICHYj\nEQEAAABAL/GNb3yj3iMAAADs1Lp1636r9S0tLdl///130TR0paHeAwAAAAAAAACwd1i5cuVvtX7Y\nsGFpbm7eRdPQFREBAAAAAAAAAD3Cj370o1QqlXqP0auJCAAAAAAAAADoEa6++mo7EexmTfUeAAAA\nAAAAAIC9Q2tra8rlctra2tLe3l7vceiCnQgAAAAAAAAAgCQiAgAAAAAAAACgRkQAAAAAAAAAACQR\nEQAAAAAAAAAANSICAAAAAAAAACCJiAAAAAAAAAAAqBERAAAAAAAAAABJRAQAAAAAAAAAQI2IAAAA\nAAAAAABIIiIAAAAAAAAAAGqa6j0AAAAAAAAAAHuHcrmcJCmVSimVSt1eP2rUqEyePHlXj8VW7EQA\nAAAAAAAAQI9w3333pVKp1HuMXk1EAAAAAAAAAECPMGrUqDQ3N9d7jF5NRAAAAAAAAABAjzBv3jw7\nEexmIgIAAAAAAAAAeoTTTz/dTgS7mYgAAAAAAAAAgB7hySefzJYtW+o9Rq8mIgAAAAAAAACgR9i8\neXO9R+j1muo9AAAAAAAAAAB7h9bW1pTL5QwePDif/vSnU61WkyTVarXz8bqtX1er1TQ3N+dTn/pU\nGhsb6zL73kJEAAAAAAAAAMAeNXLkyHzmM5+p9xh0we0MAAAAAAAAAIAkIgIAAAAAAAAAoEZEAAAA\nAAAAAAAkEREAAAAAAAAAADUiAgAAAAAAAAAgiYgAAAAAAAAAAKgREQAAAAAAAAAASUQEAAAAAAAA\nAECNiAAAAAAAAAAASCIiAAAAAAAAAABqRAQAAAAAAAAAQBIRAQAAAAAAAABQIyIAAAAAAAAAAJKI\nCAAAAAAAAACAGhEBAAAAAAAAAJBERAAAAAAAAAAA1DTVewAAAAAAAAAA9g7lcjlJUiqVUiqVur3+\nvPPOy6RJk3b1WGzFTgQAAAAAAAAA9AgLFixIpVKp9xi9mogAAAAAAAAAgB7h3HPPTXNzc73H6NVE\nBAAAAAAAAAD0CPPnz7cTwW4mIgAAAAAAAACgR/jYxz5mJ4LdTEQAAAAAAAAAQI/w1FNPZfPmzfUe\no1cTEQAAAAAAAADQIxxyyCFpbGys9xi9WlO9BwAAAAAAAABg79Da2ppyuZzTTz89Y8aMSZJUq9XO\nx85eNzQ0ZPDgwSmKom7z7w1EBAAAAAAAAADsUS0tLXn/+99f7zHogtsZAAAAAAAAAABJRAQAAAAA\nAAAAQI2IAAAAAAAAAABIIiIAAAAAAAAAAGpEBAAAAAAAAABAEhEBAAAAAAAAAFDTVO8BAAAAAAAA\nANi7PP744xk4cGCKokiSFEXR+dj69evPk2SfffbJSSedlD59+tRn6L2EiAAAAAAAAACAPaJcLidJ\nli9fnm984xvdXt/R0ZF//ud/TmNj464ejRq3MwAAAAAAAACgR6hUKvUeodezEwEAAAAAAAAAe0Rr\na2vK5XIOO+ywnHnmmalWq6lWq53Ht379xufNzc0588wz7UKwm4kIAAAAAAAAANijBg0alCOOOCJF\nUSRJiqLofGz9+vXnSdLU1JS+ffvWZ+C9iIgAAAAAAAAAgD2iXC4nSRYuXJiFCxd2e/1RRx2V6667\nrjMsYNdrqPcAAAAAAAAAAPBWLF++PFu2bKn3GL2aiAAAAAAAAACAHuFzn/tcmppsuL87iQgAAAAA\nAAAA6BFmz56dSqVS7zF6NREBAAAAAAAAAD3Ceeedl+bm5nqP0avZ5wEAAAAAAACAPaK1tTXlcjlt\nbW1pb2+v9zh0wU4EAAAAAAAAAEASEQEAAAAAAAAAUCMiAAAAAAAAAACSiAgAAAAAAAAAgBoRAQAA\nAAAAAACQREQAAAAAAAAAANSICAAAAAAAAACAJElTvQcAAAAAAAAAYO9QLpeTJKVSKaVSqdvrr7nm\nmhx//PG7eiy2YicCAAAAAAAAAHqEv/mbv0mlUqn3GL2aiAAAAAAAAACAHuG8885Lc3Nzvcfo1dzO\nAAAAAAAAAIA9orW1NeVyOW1tbWlvb6/3OHTBTgQAAAAAAAAAQBIRAQAAAAAAAABQIyIAAAAAAAAA\nAJKICAAAAAAAAACAGhEBAAAAAAAAAJBERAAAAAAAAAAA1IgIAAAAAAAAAIAkIgIAAAAAAAAAoEZE\nAAAAAAAAAAAkSZrqPQAAAAAAAAAAe4dyuZwkKZVKKZVK3V4/derUnHrqqbt6LLZiJwIAAAAAAAAA\neoQZM2akUqnUe4xeTUQAAAAAAAAAQI8wYcKENDc313uMXs3tDAAAAAAAAADYI1pbW1Mul9PW1pb2\n9vZ6j0MXRAQAAAAAAAAA7BHlcjlJUiqVUiqVur1+8uTJGTVq1K4ei62ICAAAAAB6iWq1Wu8Rep2i\nKOo9AgAAsJUbb7wxZ511llsa7EYiAgAAAIBewgVvAACgt/vCF74gINjNRAQAAAAAAAAA7BGtra0p\nl8tpa2tLe3t7vcehCw31HgAAAAAAAAAAeGcQEQAAAAAAAAAASUQEAAAAAAAAAECNiAAAAAAAAAAA\nSJI01XsAAAAAAAAAAPYOW7ZsSZLcc889Wbt2bYqiSFEUSdL5fOvXW/+9b9++GTNmTPbff//6DL+X\nEBEAAAAAAAAAsEe88sorSZKNGzfm3/7t37q9/gc/+EHuvPPONDW51L27uJ0BAAAAAAAAAD1CS0tL\nGhpc5t6d5BkAAAAAAAAA7BGtra0pl8v56Ec/mj/+4z9OklSr1c7Hzl43NjZmxIgRIoLdTEQAAAAA\nAAAAwB41aNCgHH300fUegy5INAAAAAAAAACAJCICAAAAAAAAAKBGRAAAAAAAAAAAJBERAAAAAAAA\nAAA1IgIAAAAAAAAAIImIAAAAAAAAAACoaar3AAAAAAAAAADsHcrlcpKkVCqlVCp1e/2ECRMyduzY\nXT0WW7ETAQAAAAAAAAA9wpw5c1KpVOo9Rq8mIgAAAAAAAACgR5g6dWqam5vrPUav5nYGAAAAAAAA\nAOwRra2tKZfLaWtrS3t7e73HoQt2IgAAAAAAAAAAkogIAAAAAAAAAIAatzMAAAAAAAAAYI8ol8tJ\nklKplFKp1O3148ePz4UXXrirx2IrdiIAAAAAAAAAoEeYO3duKpVKvcfo1UQEAAAAAAAAAPQIU6dO\nTXNzc73H6NVEBAAAAAAAAAD0CHfeeWeq1Wq9x+jVRAQAAAAAAAAA9Ajlcjlbtmyp9xi9WlO9BwAA\nAAAAAABg7zBgwICsXr06Bx54YE455ZTOXQWq1WrnY0ev99lnn4wdOzZNTS5z705+XQAAAAAAAAD2\niIaG1zbLP+2009Le3l7naeiK2xkAAAAAAAAAAEnsRAAAAAAAAADAHlIul5MkpVIppVKpW2ubmpoy\nY8aMDBs2bHeMRo2dCAAAAAAAAAB4x9u8eXP+6q/+KpVKpd6j9GoiAgAAAAAAAAB6hL59+6a5ubne\nY/RqIgIAAAAAAAAAeoT169fbiWA3ExEAAAAAAAAA0CNccMEFdiLYzZrqPQAAAAAAAAAAe4fW1taU\ny+W0tbWlvb293uPQBTsRAAAAAAAAAABJRAQAAAAAAAAAQI2IAAAAAAAAAABIkjTVewAAAAAAAAAA\n9g7lcjlJUiqVUiqVur3+qquuyh/+4R/u6rHYip0IAAAAAAAAAOgRpk+fnkqlUu8xejURAQAAAAAA\nAAA9Qv/+/dPc3FzvMXo1EQEAAAAAAAAAPcLq1avtRLCbiQgAAAAAAAAA6BE+//nP24lgN2uq9wAA\nAAAAAAAA7B1aW1tTLpfT1taW9vb2eo9DF+xEAAAAAAAAAAAkEREAAAAAAAAAADUiAgAAAAAAAAAg\niYgAAAAAAAAAAKgREQAAAAAAAAAASZKmeg8AAAAAAAAAwN6hXC4nSUqlUkqlUrfXX3nllfnEJz6x\nq8diK3YiAAAAAAAAAKBH+Lu/+7tUKpV6j9Gr/VY7ESxcuDDz5s3L4sWLs3r16vTp0yeHHnpoTjzx\nxPzJn/xJBgwY0OW6FStW5JZbbsljjz2WlStXpk+fPjn88MNzzjnnZNSoUWlsbNzhZ5599tn5r//6\nrzedbcGCBRkyZMh2f3/88cfT0dGRp556Kr/61a8yYMCAHHnkkfnsZz+bk08++a1/+ST/8z//k09/\n+tPp379/HnjggW6tBQAAAAAAAKB7xo0bl+bm5nqP0au9rYhgy5Ytufzyy7NgwYIURdH5982bN+e5\n557Ls88+m7vuuiuzZ8/O0Ucfvc3ae+65J9OmTcumTZs611YqlTzxxBNZtGhR5s2blxtuuCH9+/ff\n7nM3bdqUn/3sZ9t8Zld2dPzaa6/N7bffvs05L730Uh566KE8+OCDOemkkzJr1qy39I9u48aN+cu/\n/MusX7++y1kBAAAAAAAA2FZra2vK5XLa2trS3t5e73HowtuKCGbMmNEZEJx88smZMGFCPvjBD+al\nl17KwoULM3v27Lz88stpb2/Pd7/73Rx00EFJkkcffTRXXHFFqtVqWlpaMmXKlHziE59IU1NT/uM/\n/iMzZszI008/nXHjxmX+/PnbXcxfunRpNm/enKIosmDBghxyyCE7nLFfv37bvL7jjjty++23pyiK\nfPSjH83EiRNz2GGH5aWXXspdd92VuXPn5qGHHsrf/u3f5qqrrtrp91+/fn0uvfTSPPnkk2/n5wMA\nAAAAAACAd6SG7i5YtWpV7rjjjhRFkbPPPjtf//rXc/TRR6elpSVDhgzJhAkTMmfOnDQ1NWXNmjW5\n+eabkyTVajXTp0/Pq6++mv322y9z587NmDFjcvDBB2fgwIH5zGc+k46OjrzrXe/KT3/603zzm9/c\n7rOfeeaZJMmBBx6YwYMHp1+/fjt8bG3jxo25/vrrUxRFRo4cmVtuuSUjR47MgAEDMnTo0Fx55ZW5\n4IILUq1WM3/+/KxcuXKH3//555/PZz/72Tz22GNvuiMCAAAAAAAAAOwKixcvzpFHHpkf/vCH2x17\n4oknMn78+AwfPjzHHXdcLr744jz99NNv63O6HRH8+7//ezZv3pwkmTJlSpfnfPjDH87JJ5+carWa\nhx56KEmyZMmS/PznP09RFGlvb8/gwYO3W3fooYfmwgsvTLVaze233975Oa979tlnO9+/O/7zP/8z\na9euTZJcfPHFXV78P+ecc5K8dquG12OFra1duzbXXnttRo0alWXLlmXffffNYYcd1q05AAAAAAAA\nAKC7li1blkmTJuXVV1/d7tiDDz6YCy+8MEuWLMm4ceMyefLkrFmzJmPHjs33v//9bn/W29qJoF+/\nfmltbc3v/M7v7PC8Qw89tPP8JNtcmD/ttNN2uO6EE05I8tpF+zeWEc8880yKoshRRx3VrZlPOOGE\nPProo7n99ttz3HHHven5TU3b3+Vhzpw5nWHDEUcckVKp1O05AAAAAAAAAKA7fvCDH6StrS0vv/zy\ndscqlUqmTZuWoijS0dGRP//zP8/YsWPT0dGR3//938+0adM6/8P9W9XtiGDKlCl56qmncv/99+/0\nvOXLlydJDjjggCTJmjVrOo8dcsghO1w3YMCAzuc/+clPOp9XKpU8//zzSZJBgwZl1qxZOeusszJs\n2LAcc8wxOf/889PR0bHd7gVbv++xxx6b5ubmLo/PmTMnSbLffvtl+PDhXZ5z0EEH5ctf/nL+5V/+\nJb/7u7+7w+8AAAAAAAAAAL+tz3/+85k8eXIOOuignHnmmdsdX7x4cV566aWcddZZOfzwwzv/3tjY\nmIsuuii/+tWv3vTa/htt/1/u36L99ttvh8dWrVqVBx98MEVRZOTIkdud/5vf/KYzLnijrWODX/7y\nl53Pn3/++VQqlRRFkSuvvHKbWGDTpk1ZvHhxnn766dx999256aabMnDgwJ3Ov2nTpqxatSo//vGP\nc8cdd+SJJ55IURS54oorsv/++293/qhRo9Le3t7lLgUAAAAAAAAAsKstW7Ysl112WcaPH5+bbrpp\nu+OvX1MfOnTodsc+8IEPJEl+/OMfZ/To0W/5M3fLFfErr7wyGzduTFEUueCCC5Ikv/d7v9d5/NFH\nH80ZZ5zR5drHH3+88/m6des6n79+O4RqtZp99tknU6ZMySmnnJKWlpb87Gc/y2233Zbvf//7eeaZ\nZzJx4sTMnTt3pxf8v/SlL+W73/1u5+uWlpZ89atfzYknntjl+TvbPQEAAAAAAACA3uWRRx5JR0dH\nli1blg984AO54IILcsIJJ+zRGe69994d7rafJPvuu2+Sba+tv+6VV15J8tomAN2xyyOCa665JgsX\nLkxRFDnrrLPyB3/wB0mSESNG5KCDDsqqVasyc+bMHH/88TnwwAO3Wbty5crcdtttKYoiyWu3MHjd\nmjVr0r9//2zZsiV33nlnBg8e3Hls+PDhGT58eK6++urccccdWbJkSUqlUmfA0JX//d//7fyc19//\nmmuuSaVSycknn7xLfgsAAAAAAAAA/r9qtZokKZVKKZVK3Vrbp0+fjBs3LoMGDeq81lsURYqiSEND\nwzav3/joyhv/vvV7LlmyJLfeemvnsaVLl2batGm56qqr9mhIsLOAIEmGDRuWpqam3H///Zk4cWLn\n75Ak9913X5Jk48aN3frMXRoRXHvttZkzZ06KosjQoUPzla98pfNYc3NzLrvsslx++eV58cUXM3r0\n6EyZMiXHHXdcqtVqfvjDH2bmzJnZsGFDDjjggKxdu3abH+Siiy7KRRddlM2bN+9wh4EvfvGLuffe\ne/PKK69k3rx5O40Irr766rznPe/Jpk2b8sgjj+RrX/tali9fni984QuZOXNmTj311F33wwAAAAAA\nAACQl19++W2v3bRpU2655ZZdOE33VKvVdHR07PHdCHZm4MCBGTNmTL797W9n4sSJmTRpUg444IAs\nWLAgCxYsSHNz80538O/KLokIKpVKrrjiinzve99LURQZMmRIvvWtb6Vfv37bnHfOOefkl7/8Zf7p\nn/4pK1asyF/8xV9sc7ylpSWzZs3KtGnTsnbt2s6tF7YZeCdfsE+fPvnYxz6W733ve1m6dGkqlcoO\ny4z3v//9nWtOP/30jBgxIueee25Wr16dv//7v88nP/nJNDY2dvenAAAAAKibSy65JM8991y9x+g1\nPvShD+WGG26o9xgAAMA7yLJly+o9wnamTp2ahoaGdHR05OGHH061Ws1hhx2Wm2++OWPHjk1LS0u3\n3q+ovr5fxNu0Zs2aTJo0KYsWLUpRFPnwhz+cm2++Of3799/hmsWLF+db3/pWnnjiiaxbty4HH3xw\nTjrppHzuc5/LwQcfnOHDh2fDhg25/PLLM378+G7NM3PmzNx0000piiIPP/xw3v3ud7/ltTfeeGOu\nu+66FEWRf/3Xf82RRx650/OnTp2au+++O+9973vzwAMPdGtOAAAAAAAAAN6ZJk6cmKVLl27398MP\nP7xusfH111+f2bNn59Zbb83xxx+/3fG1a9fmpz/9aQ444IAMGTIk//3f/51PfvKTmTRpUiZPnvyW\nP+e32ongxRdfzJ/92Z9l+fLlKYoif/RHf5Trrrtuux0I3mjYsGGZNWtWl8eWL1+e//u//0tRFPng\nBz/Y7Zk2bdrU+fzN5nijraOBX/ziF28aEQAAAAAAAADQ+/SUXck2b96ce++9NwcffHA+8pGPZMSI\nEZ3HHnrooRRFkWOPPbZb79nwdod5/vnnc/7553cGBKNHj84NN9zwphfu161bl0qlssPjjzzyyGuD\nNTTkqKOOSpJs2bIlp512Wo455phMnTp1p+//wgsvJHnt3g/vete7kiTz5s3LuHHjMnr06J2u3bhx\nY+fzvn377vRcAAAAAAAAAKinpqamzJo1K1/+8pe3uQ6/atWq3HrrrTnyyCNz3HHHdes931ZEsGLF\nivzpn/5pVq9enaIoMmXKlHzlK19JQ8OO3279+vU5+uijM3LkyNxzzz07PG/evHlJkhEjRnTeEqGx\nsTHNzc1Zv359Hnvssbz66qtdri2Xy3n88cc7d0V43a9//ev86Ec/ypIlS7JkyZIdfvbDDz+cJCmK\nIkccccSOfwAAAAAAAAAAeAe49NJL8+KLL2b8+PG58847c8stt+T888/PunXrMn369G6/X7cjgs2b\nN2fKlCkpl8spiiJXXHFFLr744jddt++++2bIkCEpiiLf+c53smXLlu3Oue222/Lss8+mKIpMmDBh\nm2Nnn312qtVqVq1alZtuumm7tVu2bMlf//VfZ9OmTWlsbMyFF17YeeyMM85IU9Nrd274h3/4hy4j\nhEWLFmX+/PkpiiIf//jH8+53v/tNvxMAAAAAAAAA1NO5556bmTNnZtOmTZkxY0bmzJmTY445JqVS\nKYcffni336+oVqvV7iz49re/nenTp6coipxxxhlvqVzYd999kyT3339/pkyZkqIocuKJJ+aSSy7J\noEGDsnLlysydOzd33XVX5/v+4z/+4zbvsWHDhpxzzjmdt084//zzM3r06LznPe/JT37yk1x//fVZ\ntGhRiqLIpEmTcumll26z/utf/3pmz56d5LVdDiZPnpyhQ4dm3bp1ue+++3LjjTdmw4YNGThwYEql\nUt73vve96feaOnVq7r777rz3ve/NAw888FZ/QgAAAAAAAAB4R+p2RHDKKadkxYoV3fqQpUuXdj7/\n2te+lltvvTVJ8saPLooip512Wr761a+mT58+273PihUrcvHFF+fnP/95l2tf38Hgsssu63KO6dOn\np6OjY4ef/b73vS/XX399hg4d+pa+l4gAAAAAAAAAgN6kqTsnv/LKK/nFL36Roije8po3nvvFL34x\nH/nIR9LR0ZHFixfn17/+dVpaWjJs2LCMHj06H//4x3f4XoMGDcrdd9+d73znO7n//vvzwgsvZMOG\nDWltbc2xxx6bMWPGZNiwYTtc/6UvfSmnn356Ojo68uSTT2b16tWdt1k49dRT09bWlr59+77l7/b6\n9+vO7wEAAAAAAAAA71Td3okANIKB5gAAAKhJREFUAAAAAAAAAOidGuo9AAAAAAAAAADwziAiAAAA\nAAAAAACSiAgAAAAAAAAAgBoRAQAAAAAAAACQREQAAAAAAAAAANSICAAAAAAAAACAJCICAAAAAAAA\nAKBGRAAAAAAAAAAAJBERAAAAAAAAAAA1IgIAAAAAAAAAIImIAAAAAAAAAACoEREAAAAAAAAAAElE\nBAAAAAAAAABAjYgAAAAAAAAAAEiS/D/yz3SpHKlMAQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "msno.matrix(lake_qual)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 45, "metadata": { "ExecuteTime": { - "end_time": "2017-01-21T08:00:55.905498", - "start_time": "2017-01-21T08:00:42.226784" + "end_time": "2017-02-08T09:15:05.027226", + "start_time": "2017-02-08T09:14:55.224776" }, "collapsed": false, "scrolled": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "
\n", + "
\n", + "

Overview

\n", + "
\n", + "
\n", + "
\n", + "

Dataset info

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Number of variables20
Number of observations29531
Total Missing (%)19.4%
Total size in memory4.5 MiB
Average record size in memory160.0 B
\n", + "
\n", + "
\n", + "

Variables types

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Numeric2
Categorical12
Date2
Text (Unique)0
Rejected4
\n", + "
\n", + "
\n", + "

Warnings

\n", + "
  • comments has 29475 / 99.8% missing values Missing
  • county has constant value Hennepin Rejected
  • gtlt has 28496 / 96.5% missing values Missing
  • parameter has a high cardinality: 56 distinct values Warning
  • result has a high cardinality: 6005 distinct values Warning
  • sampleDepthUnit has constant value m Rejected
  • sampleLowerDepth has 27006 / 91.4% missing values Missing
  • sampleTime has a high cardinality: 386 distinct values Warning
  • sampleUpperDepth has 4698 / 15.9% zeros
  • stationId has constant value 27-0039-00-202 Rejected
  • stationName has constant value CEDAR Rejected
  • statisticType has 29530 / 100.0% missing values Missing
  • testMethodId has a high cardinality: 53 distinct values Warning
  • testMethodName has a high cardinality: 53 distinct values Warning
  • Dataset has 123 duplicate rows Warning
\n", + "
\n", + "
\n", + "
\n", + "

Variables

\n", + "
\n", + "
\n", + "
\n", + "

analysisDate
\n", + " Date\n", + "

\n", + "
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count533
Unique (%)1.8%
Missing (%)0.0%
Missing (n)0
Infinite (%)0.0%
Infinite (n)0
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Minimum1901-01-01 00:00:00
Maximum2015-10-26 00:00:00
\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + "\n", + "
\n", + " \n", + "
\n", + "
\n", + "
\n", + "

collectingOrg
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count4
Unique (%)0.0%
Missing (%)0.0%
Missing (n)0
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
Minneapolis Chain of Lakes Project\n", + "
\n", + " 28233\n", + "
\n", + " \n", + "
MPCA Lake Monitoring Program Project\n", + "
\n", + "  \n", + "
\n", + " 1074\n", + "
Citizen Lake Monitoring Program\n", + "
\n", + "  \n", + "
\n", + " 216\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
Minneapolis Chain of Lakes Project2823395.6%\n", + "
 
\n", + "
MPCA Lake Monitoring Program Project10743.6%\n", + "
 
\n", + "
Citizen Lake Monitoring Program2160.7%\n", + "
 
\n", + "
Lake Study 201380.0%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

comments
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count3
Unique (%)5.4%
Missing (%)99.8%
Missing (n)29475
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
Lab qualifier: (<)\n", + "
\n", + "  \n", + "
\n", + " 54\n", + "
Questionable result: Pheophytin-a > Chlorophyll-a\n", + "
\n", + "  \n", + "
\n", + " 2\n", + "
(Missing)\n", + "
\n", + " 29475\n", + "
\n", + " \n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
Lab qualifier: (<)540.2%\n", + "
 
\n", + "
Questionable result: Pheophytin-a > Chlorophyll-a20.0%\n", + "
 
\n", + "
(Missing)2947599.8%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

county
\n", + " Constant\n", + "

\n", + "
\n", + "

This variable is constant and should be ignored for analysis

\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Constant valueHennepin
\n", + "
\n", + "
\n", + "
\n", + "

gtlt
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count3
Unique (%)0.3%
Missing (%)96.5%
Missing (n)28496
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
< \n", + "
\n", + "  \n", + "
\n", + " 1034\n", + "
> \n", + "
\n", + "  \n", + "
\n", + " 1\n", + "
(Missing)\n", + "
\n", + " 28496\n", + "
\n", + " \n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
< 10343.5%\n", + "
 
\n", + "
> 10.0%\n", + "
 
\n", + "
(Missing)2849696.5%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

parameter
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count56
Unique (%)0.2%
Missing (%)0.0%
Missing (n)0
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
Temperature, water\n", + "
\n", + " 5000\n", + "
\n", + " \n", + "
Dissolved oxygen (DO)\n", + "
\n", + " 4964\n", + "
\n", + " \n", + "
pH\n", + "
\n", + " 4374\n", + "
\n", + " \n", + "
Other values (53)\n", + "
\n", + " 15193\n", + "
\n", + " \n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
Temperature, water500016.9%\n", + "
 
\n", + "
Dissolved oxygen (DO)496416.8%\n", + "
 
\n", + "
pH437414.8%\n", + "
 
\n", + "
Specific conductance422014.3%\n", + "
 
\n", + "
Dissolved oxygen saturation374512.7%\n", + "
 
\n", + "
Phosphorus as P17365.9%\n", + "
 
\n", + "
Orthophosphate as P16295.5%\n", + "
 
\n", + "
Turbidity6002.0%\n", + "
 
\n", + "
Depth, Secchi disk depth4971.7%\n", + "
 
\n", + "
Chlorophyll a, corrected for pheophytin3421.2%\n", + "
 
\n", + "
Other values (46)24248.2%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

result
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count6005
Unique (%)20.4%
Missing (%)0.3%
Missing (n)88
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
0.1\n", + "
\n", + "  \n", + "
\n", + " 403\n", + "
0.003\n", + "
\n", + "  \n", + "
\n", + " 373\n", + "
0.00\n", + "
\n", + "  \n", + "
\n", + " 231\n", + "
Other values (6001)\n", + "
\n", + " 28436\n", + "
\n", + " \n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
0.14031.4%\n", + "
 
\n", + "
0.0033731.3%\n", + "
 
\n", + "
0.002310.8%\n", + "
 
\n", + "
0.0022270.8%\n", + "
 
\n", + "
01540.5%\n", + "
 
\n", + "
0.011530.5%\n", + "
 
\n", + "
0.51500.5%\n", + "
 
\n", + "
0.021280.4%\n", + "
 
\n", + "
0.21070.4%\n", + "
 
\n", + "
11020.3%\n", + "
 
\n", + "
Other values (5994)2741592.8%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

resultUnit
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count14
Unique (%)0.0%
Missing (%)0.5%
Missing (n)138
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
mg/L\n", + "
\n", + " 9895\n", + "
\n", + " \n", + "
deg C\n", + "
\n", + " 5000\n", + "
\n", + " \n", + "
None\n", + "
\n", + " 4401\n", + "
\n", + " \n", + "
Other values (10)\n", + "
\n", + " 10097\n", + "
\n", + " \n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
mg/L989533.5%\n", + "
 
\n", + "
deg C500016.9%\n", + "
 
\n", + "
None440114.9%\n", + "
 
\n", + "
uS/cm422014.3%\n", + "
 
\n", + "
%374912.7%\n", + "
 
\n", + "
ug/L9643.3%\n", + "
 
\n", + "
FNU5731.9%\n", + "
 
\n", + "
m4971.7%\n", + "
 
\n", + "
mV390.1%\n", + "
 
\n", + "
PCU320.1%\n", + "
 
\n", + "
Other values (3)230.1%\n", + "
 
\n", + "
(Missing)1380.5%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

sampleDate
\n", + " Date\n", + "

\n", + "
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count544
Unique (%)1.8%
Missing (%)0.0%
Missing (n)0
Infinite (%)0.0%
Infinite (n)0
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Minimum1971-04-21 00:00:00
Maximum2015-10-26 00:00:00
\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + "\n", + "
\n", + " \n", + "
\n", + "
\n", + "
\n", + "

sampleDepthUnit
\n", + " Constant\n", + "

\n", + "
\n", + "

This variable is constant and should be ignored for analysis

\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Constant valuem
\n", + "
\n", + "
\n", + "
\n", + "

sampleFractionType
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count3
Unique (%)0.0%
Missing (%)0.0%
Missing (n)0
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
Total\n", + "
\n", + " 27685\n", + "
\n", + " \n", + "
Dissolved\n", + "
\n", + "  \n", + "
\n", + " 1831\n", + "
Non-filter\n", + "
\n", + "  \n", + "
\n", + " 15\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
Total2768593.7%\n", + "
 
\n", + "
Dissolved18316.2%\n", + "
 
\n", + "
Non-filter150.1%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

sampleLowerDepth
\n", + " Numeric\n", + "

\n", + "
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count2
Unique (%)0.1%
Missing (%)91.4%
Missing (n)27006
Infinite (%)0.0%
Infinite (n)0
\n", + "\n", + "
\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mean2
Minimum2
Maximum2
Zeros (%)0.0%
\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + "
\n", + "
\n", + "
\n", + "

Quantile statistics

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Minimum2
5-th percentile2
Q12
Median2
Q32
95-th percentile2
Maximum2
Range0
Interquartile range0
\n", + "
\n", + "
\n", + "

Descriptive statistics

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Standard deviation0
Coef of variation0
Kurtosis0
Mean2
MAD0
Skewness0
Sum5050
Variance0
Memory size230.8 KiB
\n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
2.025258.6%\n", + "
 
\n", + "
(Missing)2700691.4%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "

Minimum 5 values

\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
2.025258.6%\n", + "
 
\n", + "
\n", + "

Maximum 5 values

\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
2.025258.6%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

sampleTime
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count386
Unique (%)1.3%
Missing (%)0.0%
Missing (n)0
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
00:01:00\n", + "
\n", + " 7773\n", + "
\n", + " \n", + "
10:30:00\n", + "
\n", + "  \n", + "
\n", + " 1083\n", + "
11:00:00\n", + "
\n", + "  \n", + "
\n", + " 952\n", + "
Other values (383)\n", + "
\n", + " 19723\n", + "
\n", + " \n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
00:01:00777326.3%\n", + "
 
\n", + "
10:30:0010833.7%\n", + "
 
\n", + "
11:00:009523.2%\n", + "
 
\n", + "
10:45:008322.8%\n", + "
 
\n", + "
11:15:007472.5%\n", + "
 
\n", + "
10:00:005842.0%\n", + "
 
\n", + "
11:45:004571.5%\n", + "
 
\n", + "
11:30:003741.3%\n", + "
 
\n", + "
10:15:003071.0%\n", + "
 
\n", + "
14:00:002921.0%\n", + "
 
\n", + "
Other values (376)1613054.6%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

sampleType
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count5
Unique (%)0.0%
Missing (%)0.0%
Missing (n)0
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
FMO\n", + "
\n", + " 23403\n", + "
\n", + " \n", + "
Sample\n", + "
\n", + " 5759\n", + "
\n", + " \n", + "
QC-FR\n", + "
\n", + "  \n", + "
\n", + " 256\n", + "
Other values (2)\n", + "
\n", + "  \n", + "
\n", + " 113\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
FMO2340379.2%\n", + "
 
\n", + "
Sample575919.5%\n", + "
 
\n", + "
QC-FR2560.9%\n", + "
 
\n", + "
QC-LD710.2%\n", + "
 
\n", + "
QC-F420.1%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

sampleUpperDepth
\n", + " Numeric\n", + "

\n", + "
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count267
Unique (%)0.9%
Missing (%)0.0%
Missing (n)8
Infinite (%)0.0%
Infinite (n)0
\n", + "\n", + "
\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mean6.7
Minimum0
Maximum18
Zeros (%)15.9%
\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + "
\n", + "
\n", + "
\n", + "

Quantile statistics

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Minimum0
5-th percentile0
Q12
Median6.05
Q311
95-th percentile14.1
Maximum18
Range18
Interquartile range9
\n", + "
\n", + "
\n", + "

Descriptive statistics

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Standard deviation4.9647
Coef of variation0.741
Kurtosis-1.265
Mean6.7
MAD4.34
Skewness0.13993
Sum197810
Variance24.648
Memory size230.8 KiB
\n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
0.0469815.9%\n", + "
 
\n", + "
14.020236.9%\n", + "
 
\n", + "
5.019866.7%\n", + "
 
\n", + "
10.019846.7%\n", + "
 
\n", + "
3.015765.3%\n", + "
 
\n", + "
7.015715.3%\n", + "
 
\n", + "
2.014464.9%\n", + "
 
\n", + "
6.013044.4%\n", + "
 
\n", + "
1.013034.4%\n", + "
 
\n", + "
4.013024.4%\n", + "
 
\n", + "
Other values (256)1033035.0%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "

Minimum 5 values

\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
0.0469815.9%\n", + "
 
\n", + "
0.02190.1%\n", + "
 
\n", + "
0.0450.0%\n", + "
 
\n", + "
0.0550.0%\n", + "
 
\n", + "
0.1150.1%\n", + "
 
\n", + "
\n", + "

Maximum 5 values

\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
16.340.0%\n", + "
 
\n", + "
16.440.0%\n", + "
 
\n", + "
16.550.0%\n", + "
 
\n", + "
17.0430.1%\n", + "
 
\n", + "
18.060.0%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

stationId
\n", + " Constant\n", + "

\n", + "
\n", + "

This variable is constant and should be ignored for analysis

\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Constant value27-0039-00-202
\n", + "
\n", + "
\n", + "
\n", + "

stationName
\n", + " Constant\n", + "

\n", + "
\n", + "

This variable is constant and should be ignored for analysis

\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Constant valueCEDAR
\n", + "
\n", + "
\n", + "
\n", + "

statisticType
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count2
Unique (%)200.0%
Missing (%)100.0%
Missing (n)29530
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
Minimum\n", + "
\n", + "  \n", + "
\n", + " 1\n", + "
(Missing)\n", + "
\n", + " 29530\n", + "
\n", + " \n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
Minimum10.0%\n", + "
 
\n", + "
(Missing)29530100.0%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

testMethodId
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count53
Unique (%)0.2%
Missing (%)0.0%
Missing (n)0
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
FLD\n", + "
\n", + " 22499\n", + "
\n", + " \n", + "
4500-P-E\n", + "
\n", + "  \n", + "
\n", + " 2825\n", + "
LEG_UNKNOWN\n", + "
\n", + "  \n", + "
\n", + " 777\n", + "
Other values (50)\n", + "
\n", + "  \n", + "
\n", + " 3430\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
FLD2249976.2%\n", + "
 
\n", + "
4500-P-E28259.6%\n", + "
 
\n", + "
LEG_UNKNOWN7772.6%\n", + "
 
\n", + "
10200-H5802.0%\n", + "
 
\n", + "
FLD TURB PROBE5731.9%\n", + "
 
\n", + "
DO WINKLER4041.4%\n", + "
 
\n", + "
4500-N-C2680.9%\n", + "
 
\n", + "
4500-CL-(B)2240.8%\n", + "
 
\n", + "
4500-SI(D)1360.5%\n", + "
 
\n", + "
3113-B1320.4%\n", + "
 
\n", + "
Other values (43)11133.8%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

testMethodName
\n", + " Categorical\n", + "

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distinct count53
Unique (%)0.2%
Missing (%)0.0%
Missing (n)0
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + "
Field measurement/observation, generic method\n", + "
\n", + " 22499\n", + "
\n", + " \n", + "
Phosphorus in Water by Colorimetry- Ascorbic Acid Method\n", + "
\n", + "  \n", + "
\n", + " 2825\n", + "
Legacy STORET migration; analytical procedure not specified\n", + "
\n", + "  \n", + "
\n", + " 777\n", + "
Other values (50)\n", + "
\n", + "  \n", + "
\n", + " 3430\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
ValueCountFrequency (%) 
Field measurement/observation, generic method2249976.2%\n", + "
 
\n", + "
Phosphorus in Water by Colorimetry- Ascorbic Acid Method28259.6%\n", + "
 
\n", + "
Legacy STORET migration; analytical procedure not specified7772.6%\n", + "
 
\n", + "
Chlorophyll a-b-c Determination5802.0%\n", + "
 
\n", + "
Turbidity, Probe Method5731.9%\n", + "
 
\n", + "
Dissolved Oxygen, Iodometric Method with Azide Modification4041.4%\n", + "
 
\n", + "
Persufate Method for Total Nitrogen2680.9%\n", + "
 
\n", + "
Chloride in Water by Titration- Argentometric Method2240.8%\n", + "
 
\n", + "
Silica in Water by Spectrophotometry- Molybdosilicate Method1360.5%\n", + "
 
\n", + "
Metals in Water by GFAA1320.4%\n", + "
 
\n", + "
Other values (43)11133.8%\n", + "
 
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

Sample

\n", + "
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
analysisDatecollectingOrgcommentscountygtltparameterresultresultUnitsampleDatesampleTimesampleDepthUnitsampleFractionTypesampleLowerDepthsampleTypesampleUpperDepthstationIdstationNamestatisticTypetestMethodIdtestMethodName
01901-01-01MPCA Lake Monitoring Program ProjectNaNHennepinNaNChlorophyll a, uncorrected for pheophytin8.79ug/L1971-06-0800:01:00mTotalNaNSample0.027-0039-00-202CEDARNaNLEG_P32210CHLOROPHYLL-A UG/L TRICHROMATIC UNCORRECTED
11901-01-01MPCA Lake Monitoring Program ProjectNaNHennepinNaNChlorophyll a, uncorrected for pheophytin3.88ug/L1972-07-1200:01:00mTotalNaNSample0.027-0039-00-202CEDARNaNLEG_P32210CHLOROPHYLL-A UG/L TRICHROMATIC UNCORRECTED
21901-01-01MPCA Lake Monitoring Program ProjectNaNHennepinNaNChlorophyll a, uncorrected for pheophytin13.7ug/L1972-07-2400:01:00mTotalNaNSample0.027-0039-00-202CEDARNaNLEG_P32210CHLOROPHYLL-A UG/L TRICHROMATIC UNCORRECTED
31901-01-01MPCA Lake Monitoring Program ProjectNaNHennepinNaNChlorophyll a, uncorrected for pheophytin18.76ug/L1972-08-0900:01:00mTotalNaNSample0.027-0039-00-202CEDARNaNLEG_P32210CHLOROPHYLL-A UG/L TRICHROMATIC UNCORRECTED
41901-01-01MPCA Lake Monitoring Program ProjectNaNHennepinNaNChlorophyll a, uncorrected for pheophytin17.16ug/L1972-08-1800:01:00mTotalNaNSample0.027-0039-00-202CEDARNaNLEG_P32210CHLOROPHYLL-A UG/L TRICHROMATIC UNCORRECTED
\n", + "
\n", + "
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "pandas_profiling.ProfileReport(lake_qual)" ] @@ -1493,17 +14139,63 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "**Hmm for some reason result is being treated as a categorical variable. Let's make it a floating point.**" + "**Hmm for some reason result is being treated as a categorical variable.**" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": { + "ExecuteTime": { + "end_time": "2017-02-08T09:15:05.273333", + "start_time": "2017-02-08T09:15:05.029227" + }, + "collapsed": false, + "scrolled": true + }, + "outputs": [ + { + "ename": "ValueError", + "evalue": "could not convert string to float: '3.MED ALGAE'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mlake_qual\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'result'\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mlake_qual\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'result'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'float'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\pandas\\core\\generic.py\u001b[0m in \u001b[0;36mastype\u001b[0;34m(self, dtype, copy, raise_on_error, **kwargs)\u001b[0m\n\u001b[1;32m 2948\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2949\u001b[0m mgr = self._data.astype(dtype=dtype, copy=copy,\n\u001b[0;32m-> 2950\u001b[0;31m raise_on_error=raise_on_error, **kwargs)\n\u001b[0m\u001b[1;32m 2951\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_constructor\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmgr\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__finalize__\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2952\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\pandas\\core\\internals.py\u001b[0m in \u001b[0;36mastype\u001b[0;34m(self, dtype, **kwargs)\u001b[0m\n\u001b[1;32m 2936\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2937\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mastype\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2938\u001b[0;31m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mapply\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'astype'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mdtype\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2939\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2940\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mconvert\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\pandas\\core\\internals.py\u001b[0m in \u001b[0;36mapply\u001b[0;34m(self, f, axes, filter, do_integrity_check, consolidate, raw, **kwargs)\u001b[0m\n\u001b[1;32m 2888\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2889\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'mgr'\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2890\u001b[0;31m \u001b[0mapplied\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mb\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2891\u001b[0m \u001b[0mresult_blocks\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0m_extend_blocks\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mapplied\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mresult_blocks\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2892\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\pandas\\core\\internals.py\u001b[0m in \u001b[0;36mastype\u001b[0;34m(self, dtype, copy, raise_on_error, values, **kwargs)\u001b[0m\n\u001b[1;32m 432\u001b[0m **kwargs):\n\u001b[1;32m 433\u001b[0m return self._astype(dtype, copy=copy, raise_on_error=raise_on_error,\n\u001b[0;32m--> 434\u001b[0;31m values=values, **kwargs)\n\u001b[0m\u001b[1;32m 435\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 436\u001b[0m def _astype(self, dtype, copy=False, raise_on_error=True, values=None,\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\pandas\\core\\internals.py\u001b[0m in \u001b[0;36m_astype\u001b[0;34m(self, dtype, copy, raise_on_error, values, klass, mgr, **kwargs)\u001b[0m\n\u001b[1;32m 475\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 476\u001b[0m \u001b[1;31m# _astype_nansafe works fine with 1-d only\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m--> 477\u001b[0;31m \u001b[0mvalues\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcom\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_astype_nansafe\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mravel\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mTrue\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 478\u001b[0m \u001b[0mvalues\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mvalues\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mreshape\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 479\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\pandas\\core\\common.py\u001b[0m in \u001b[0;36m_astype_nansafe\u001b[0;34m(arr, dtype, copy)\u001b[0m\n\u001b[1;32m 1918\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1919\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mcopy\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1920\u001b[0;31m \u001b[1;32mreturn\u001b[0m \u001b[0marr\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1921\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0marr\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mview\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1922\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: could not convert string to float: '3.MED ALGAE'" + ] + } + ], + "source": [ + "lake_qual['result'] = lake_qual['result'].astype('float')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Ahh, ok there are a few non-numeric values. Let's replace them with numbers.**" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 47, "metadata": { + "ExecuteTime": { + "end_time": "2017-02-08T09:15:30.745241", + "start_time": "2017-02-08T09:15:30.714737" + }, "collapsed": true }, "outputs": [], "source": [ + "lake_qual['result'] = lake_qual['result'].astype('str').replace('3.MED ALGAE', '3').replace('3.FAIR', '3')\n", "lake_qual['result'] = lake_qual['result'].astype('float')" ] }, @@ -1516,15 +14208,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 48, "metadata": { "ExecuteTime": { - "end_time": "2017-01-21T08:01:40.812538", - "start_time": "2017-01-21T08:01:40.804534" + "end_time": "2017-02-08T09:15:30.777312", + "start_time": "2017-02-08T09:15:30.753250" }, "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "(984, 20)" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "lake_qual = lake_qual[lake_qual['sampleDate'].dt.year == 2014]\n", "lake_qual.shape" @@ -1539,11 +14242,207 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 49, "metadata": { + "ExecuteTime": { + "end_time": "2017-02-08T09:15:30.834207", + "start_time": "2017-02-08T09:15:30.789825" + }, "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
analysisDatecollectingOrgcommentscountygtltparameterresultresultUnitsampleDatesampleTimesampleDepthUnitsampleFractionTypesampleLowerDepthsampleTypesampleUpperDepthstationIdstationNamestatisticTypetestMethodIdtestMethodName
28031901-01-01Minneapolis Chain of Lakes ProjectNaNHennepinNaNPhosphorus as P0.022mg/L2014-06-2512:24:00mTotalNaNSample5.027-0039-00-202CEDARNaN4500-P-EPhosphorus in Water by Colorimetry- Ascorbic A...
28041901-01-01Minneapolis Chain of Lakes ProjectLab qualifier: (<)Hennepin<Orthophosphate as P0.003mg/L2014-06-2512:24:00mDissolvedNaNSample5.027-0039-00-202CEDARNaN4500-P-EPhosphorus in Water by Colorimetry- Ascorbic A...
28051901-01-01Minneapolis Chain of Lakes ProjectNaNHennepinNaNPhosphorus as P0.058mg/L2014-06-2512:21:00mTotalNaNSample10.027-0039-00-202CEDARNaN4500-P-EPhosphorus in Water by Colorimetry- Ascorbic A...
28061901-01-01Minneapolis Chain of Lakes ProjectNaNHennepinNaNOrthophosphate as P0.024mg/L2014-06-2512:21:00mDissolvedNaNSample10.027-0039-00-202CEDARNaN4500-P-EPhosphorus in Water by Colorimetry- Ascorbic A...
28071901-01-01Minneapolis Chain of Lakes ProjectNaNHennepinNaNPhosphorus as P0.111mg/L2014-06-2512:20:00mTotalNaNSample14.027-0039-00-202CEDARNaN4500-P-EPhosphorus in Water by Colorimetry- Ascorbic A...
\n", + "
" + ], + "text/plain": [ + " analysisDate collectingOrg comments \\\n", + "2803 1901-01-01 Minneapolis Chain of Lakes Project NaN \n", + "2804 1901-01-01 Minneapolis Chain of Lakes Project Lab qualifier: (<) \n", + "2805 1901-01-01 Minneapolis Chain of Lakes Project NaN \n", + "2806 1901-01-01 Minneapolis Chain of Lakes Project NaN \n", + "2807 1901-01-01 Minneapolis Chain of Lakes Project NaN \n", + "\n", + " county gtlt parameter result resultUnit sampleDate \\\n", + "2803 Hennepin NaN Phosphorus as P 0.022 mg/L 2014-06-25 \n", + "2804 Hennepin < Orthophosphate as P 0.003 mg/L 2014-06-25 \n", + "2805 Hennepin NaN Phosphorus as P 0.058 mg/L 2014-06-25 \n", + "2806 Hennepin NaN Orthophosphate as P 0.024 mg/L 2014-06-25 \n", + "2807 Hennepin NaN Phosphorus as P 0.111 mg/L 2014-06-25 \n", + "\n", + " sampleTime sampleDepthUnit sampleFractionType sampleLowerDepth \\\n", + "2803 12:24:00 m Total NaN \n", + "2804 12:24:00 m Dissolved NaN \n", + "2805 12:21:00 m Total NaN \n", + "2806 12:21:00 m Dissolved NaN \n", + "2807 12:20:00 m Total NaN \n", + "\n", + " sampleType sampleUpperDepth stationId stationName statisticType \\\n", + "2803 Sample 5.0 27-0039-00-202 CEDAR NaN \n", + "2804 Sample 5.0 27-0039-00-202 CEDAR NaN \n", + "2805 Sample 10.0 27-0039-00-202 CEDAR NaN \n", + "2806 Sample 10.0 27-0039-00-202 CEDAR NaN \n", + "2807 Sample 14.0 27-0039-00-202 CEDAR NaN \n", + "\n", + " testMethodId testMethodName \n", + "2803 4500-P-E Phosphorus in Water by Colorimetry- Ascorbic A... \n", + "2804 4500-P-E Phosphorus in Water by Colorimetry- Ascorbic A... \n", + "2805 4500-P-E Phosphorus in Water by Colorimetry- Ascorbic A... \n", + "2806 4500-P-E Phosphorus in Water by Colorimetry- Ascorbic A... \n", + "2807 4500-P-E Phosphorus in Water by Colorimetry- Ascorbic A... " + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "lake_qual.head()" ] @@ -1557,11 +14456,238 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 50, "metadata": { + "ExecuteTime": { + "end_time": "2017-02-08T09:15:30.905264", + "start_time": "2017-02-08T09:15:30.836713" + }, "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
parameterAlkalinity, total as CaCO3ChlorideChlorophyll a, corrected for pheophytinDepth, Secchi disk depthDissolved oxygen (DO)Hardness, carbonate as CaCO3Inorganic nitrogen (nitrate and nitrite) as NKjeldahl nitrogen as NNutrient-nitrogen as NOrthophosphate as PPheophytin aPhosphorus as PSilica as SiO2Specific conductanceSulfate as SO4Temperature, waterpH
sampleDate
2014-03-12134.0133.50.50NaN2.215333164.00.5771.370.7920.038500.500.171001.28750.846667NaN2.9400007.206667
2014-05-05122.0162.05.471.417.363529152.00.1441.001.1800.009505.100.057250.50691.8411768.86.5435297.844706
2014-05-20NaN140.53.301.106.518125NaNNaNNaN0.9640.005251.230.05425NaN711.987500NaN8.5700007.993125
2014-06-11NaN141.52.403.853.059412NaNNaNNaN0.8550.015000.500.052000.50717.082353NaN10.7982357.157647
2014-06-25NaN118.08.202.173.078235NaNNaNNaN0.6570.019250.830.05475NaN696.905882NaN11.9152947.592353
\n", + "
" + ], + "text/plain": [ + "parameter Alkalinity, total as CaCO3 Chloride \\\n", + "sampleDate \n", + "2014-03-12 134.0 133.5 \n", + "2014-05-05 122.0 162.0 \n", + "2014-05-20 NaN 140.5 \n", + "2014-06-11 NaN 141.5 \n", + "2014-06-25 NaN 118.0 \n", + "\n", + "parameter Chlorophyll a, corrected for pheophytin Depth, Secchi disk depth \\\n", + "sampleDate \n", + "2014-03-12 0.50 NaN \n", + "2014-05-05 5.47 1.41 \n", + "2014-05-20 3.30 1.10 \n", + "2014-06-11 2.40 3.85 \n", + "2014-06-25 8.20 2.17 \n", + "\n", + "parameter Dissolved oxygen (DO) Hardness, carbonate as CaCO3 \\\n", + "sampleDate \n", + "2014-03-12 2.215333 164.0 \n", + "2014-05-05 7.363529 152.0 \n", + "2014-05-20 6.518125 NaN \n", + "2014-06-11 3.059412 NaN \n", + "2014-06-25 3.078235 NaN \n", + "\n", + "parameter Inorganic nitrogen (nitrate and nitrite) as N \\\n", + "sampleDate \n", + "2014-03-12 0.577 \n", + "2014-05-05 0.144 \n", + "2014-05-20 NaN \n", + "2014-06-11 NaN \n", + "2014-06-25 NaN \n", + "\n", + "parameter Kjeldahl nitrogen as N Nutrient-nitrogen as N \\\n", + "sampleDate \n", + "2014-03-12 1.37 0.792 \n", + "2014-05-05 1.00 1.180 \n", + "2014-05-20 NaN 0.964 \n", + "2014-06-11 NaN 0.855 \n", + "2014-06-25 NaN 0.657 \n", + "\n", + "parameter Orthophosphate as P Pheophytin a Phosphorus as P \\\n", + "sampleDate \n", + "2014-03-12 0.03850 0.50 0.17100 \n", + "2014-05-05 0.00950 5.10 0.05725 \n", + "2014-05-20 0.00525 1.23 0.05425 \n", + "2014-06-11 0.01500 0.50 0.05200 \n", + "2014-06-25 0.01925 0.83 0.05475 \n", + "\n", + "parameter Silica as SiO2 Specific conductance Sulfate as SO4 \\\n", + "sampleDate \n", + "2014-03-12 1.28 750.846667 NaN \n", + "2014-05-05 0.50 691.841176 8.8 \n", + "2014-05-20 NaN 711.987500 NaN \n", + "2014-06-11 0.50 717.082353 NaN \n", + "2014-06-25 NaN 696.905882 NaN \n", + "\n", + "parameter Temperature, water pH \n", + "sampleDate \n", + "2014-03-12 2.940000 7.206667 \n", + "2014-05-05 6.543529 7.844706 \n", + "2014-05-20 8.570000 7.993125 \n", + "2014-06-11 10.798235 7.157647 \n", + "2014-06-25 11.915294 7.592353 " + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "lake_qual_pivot = lake_qual.pivot_table(values='result', index='sampleDate', columns='parameter')\n", "lake_qual_pivot.head()" @@ -1576,8 +14702,12 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 51, "metadata": { + "ExecuteTime": { + "end_time": "2017-02-08T09:15:31.867779", + "start_time": "2017-02-08T09:15:30.907766" + }, "collapsed": true }, "outputs": [], @@ -1595,8 +14725,12 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 52, "metadata": { + "ExecuteTime": { + "end_time": "2017-02-08T09:15:31.911809", + "start_time": "2017-02-08T09:15:31.871781" + }, "collapsed": true }, "outputs": [], @@ -1606,15 +14740,209 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 53, "metadata": { "ExecuteTime": { - "end_time": "2017-01-21T09:26:39.990863", - "start_time": "2017-01-21T09:26:39.906491" + "end_time": "2017-02-08T09:15:32.008785", + "start_time": "2017-02-08T09:15:31.916312" }, "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PINACRES_DEEDACRES_POLYAG_PRESERVBASEMENTBLDG_NUMBLOCKCITYCITY_USPSCOOLING...Orthophosphate as PPheophytin aPhosphorus as PSilica as SiO2Specific conductanceSulfate as SO4Temperature, waterpHlatitudelongitude
0053-29029243300110.00.15NNaN1944003MINNEAPOLISMINNEAPOLISNaN...0.038500.500.171001.28750.846667NaN2.9400007.20666744.961482-93.32013
1053-29029243300110.00.15NNaN1944003MINNEAPOLISMINNEAPOLISNaN...0.009505.100.057250.50691.8411768.86.5435297.84470644.961482-93.32013
2053-29029243300110.00.15NNaN1944003MINNEAPOLISMINNEAPOLISNaN...0.005251.230.05425NaN711.987500NaN8.5700007.99312544.961482-93.32013
3053-29029243300110.00.15NNaN1944003MINNEAPOLISMINNEAPOLISNaN...0.015000.500.052000.50717.082353NaN10.7982357.15764744.961482-93.32013
4053-29029243300110.00.15NNaN1944003MINNEAPOLISMINNEAPOLISNaN...0.019250.830.05475NaN696.905882NaN11.9152947.59235344.961482-93.32013
\n", + "

5 rows × 68 columns

\n", + "
" + ], + "text/plain": [ + " PIN ACRES_DEED ACRES_POLY AG_PRESERV BASEMENT BLDG_NUM \\\n", + "0 053-2902924330011 0.0 0.15 N NaN 1944 \n", + "1 053-2902924330011 0.0 0.15 N NaN 1944 \n", + "2 053-2902924330011 0.0 0.15 N NaN 1944 \n", + "3 053-2902924330011 0.0 0.15 N NaN 1944 \n", + "4 053-2902924330011 0.0 0.15 N NaN 1944 \n", + "\n", + " BLOCK CITY CITY_USPS COOLING ... Orthophosphate as P \\\n", + "0 003 MINNEAPOLIS MINNEAPOLIS NaN ... 0.03850 \n", + "1 003 MINNEAPOLIS MINNEAPOLIS NaN ... 0.00950 \n", + "2 003 MINNEAPOLIS MINNEAPOLIS NaN ... 0.00525 \n", + "3 003 MINNEAPOLIS MINNEAPOLIS NaN ... 0.01500 \n", + "4 003 MINNEAPOLIS MINNEAPOLIS NaN ... 0.01925 \n", + "\n", + " Pheophytin a Phosphorus as P Silica as SiO2 Specific conductance \\\n", + "0 0.50 0.17100 1.28 750.846667 \n", + "1 5.10 0.05725 0.50 691.841176 \n", + "2 1.23 0.05425 NaN 711.987500 \n", + "3 0.50 0.05200 0.50 717.082353 \n", + "4 0.83 0.05475 NaN 696.905882 \n", + "\n", + " Sulfate as SO4 Temperature, water pH latitude longitude \n", + "0 NaN 2.940000 7.206667 44.961482 -93.32013 \n", + "1 8.8 6.543529 7.844706 44.961482 -93.32013 \n", + "2 NaN 8.570000 7.993125 44.961482 -93.32013 \n", + "3 NaN 10.798235 7.157647 44.961482 -93.32013 \n", + "4 NaN 11.915294 7.592353 44.961482 -93.32013 \n", + "\n", + "[5 rows x 68 columns]" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "result = cedar_lake_parcels.reset_index().merge(lake_qual_pivot, on='LAKE_NAME')\n", "result.head()" @@ -1631,26 +14959,37 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 54, "metadata": { "ExecuteTime": { - "end_time": "2017-01-21T09:26:39.997870", - "start_time": "2017-01-21T09:26:39.992864" + "end_time": "2017-02-08T09:15:32.019293", + "start_time": "2017-02-08T09:15:32.012288" }, "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "(2496, 68)" + ] + }, + "execution_count": 54, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "result.shape" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 55, "metadata": { "ExecuteTime": { - "end_time": "2017-01-21T09:26:40.074419", - "start_time": "2017-01-21T09:26:40.000369" + "end_time": "2017-02-08T09:15:32.073330", + "start_time": "2017-02-08T09:15:32.022796" }, "collapsed": true }, @@ -1661,15 +15000,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 56, "metadata": { "ExecuteTime": { - "end_time": "2017-01-21T09:26:40.095938", - "start_time": "2017-01-21T09:26:40.076920" + "end_time": "2017-02-08T09:15:32.104352", + "start_time": "2017-02-08T09:15:32.078834" }, "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "(2496, 60)" + ] + }, + "execution_count": 56, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "result.shape" ] @@ -1692,15 +15042,31 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 57, "metadata": { "ExecuteTime": { - "end_time": "2017-01-21T09:26:41.098745", - "start_time": "2017-01-21T09:26:40.098439" + "end_time": "2017-02-08T09:15:32.492666", + "start_time": "2017-02-08T09:15:32.107354" }, "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "0 POINT (474420.2918534343 4978995.538410055)\n", + "1 POINT (474420.2918534343 4978995.538410055)\n", + "2 POINT (474420.2918534343 4978995.538410055)\n", + "3 POINT (474420.2918534343 4978995.538410055)\n", + "4 POINT (474420.2918534343 4978995.538410055)\n", + "Name: Parcel_Centroid, dtype: object" + ] + }, + "execution_count": 57, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "result['Parcel_Centroid'] = result.centroid\n", "result['Parcel_Centroid'].head()" @@ -1719,15 +15085,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 58, "metadata": { "ExecuteTime": { - "end_time": "2017-01-21T09:26:41.106732", - "start_time": "2017-01-21T09:26:41.100728" + "end_time": "2017-02-08T09:15:32.502179", + "start_time": "2017-02-08T09:15:32.495168" }, "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "{'init': 'epsg:26915'}" + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# what is the starting projection\n", "result.crs" @@ -1742,11 +15119,11 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 59, "metadata": { "ExecuteTime": { - "end_time": "2017-01-21T09:26:41.911762", - "start_time": "2017-01-21T09:26:41.109234" + "end_time": "2017-02-08T09:15:32.985098", + "start_time": "2017-02-08T09:15:32.505682" }, "collapsed": true }, @@ -1757,15 +15134,31 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 60, "metadata": { "ExecuteTime": { - "end_time": "2017-01-21T09:26:41.986784", - "start_time": "2017-01-21T09:26:41.913727" + "end_time": "2017-02-08T09:15:33.031501", + "start_time": "2017-02-08T09:15:32.988090" }, "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "0 POINT (-93.324349184036 44.96393792859692)\n", + "1 POINT (-93.324349184036 44.96393792859692)\n", + "2 POINT (-93.324349184036 44.96393792859692)\n", + "3 POINT (-93.324349184036 44.96393792859692)\n", + "4 POINT (-93.324349184036 44.96393792859692)\n", + "Name: Parcel_Centroid, dtype: object" + ] + }, + "execution_count": 60, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "result['Parcel_Centroid'] = result.centroid\n", "result['Parcel_Centroid'].head()" @@ -1782,11 +15175,31 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 61, "metadata": { + "ExecuteTime": { + "end_time": "2017-02-08T09:15:33.135459", + "start_time": "2017-02-08T09:15:33.034486" + }, "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "0 (44.96393792859692, -93.324349184036)\n", + "1 (44.96393792859692, -93.324349184036)\n", + "2 (44.96393792859692, -93.324349184036)\n", + "3 (44.96393792859692, -93.324349184036)\n", + "4 (44.96393792859692, -93.324349184036)\n", + "Name: Parcel_Centroid, dtype: object" + ] + }, + "execution_count": 61, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "result['Parcel_Centroid'] = result['Parcel_Centroid'].apply(lambda p: tuple([p.y, p.x]))\n", "result['Parcel_Centroid'].head()" @@ -1803,15 +15216,31 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 62, "metadata": { "ExecuteTime": { - "end_time": "2017-01-21T09:26:42.172443", - "start_time": "2017-01-21T09:26:42.043845" + "end_time": "2017-02-08T09:15:33.158936", + "start_time": "2017-02-08T09:15:33.137963" }, "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "0 (44.961482, -93.32013)\n", + "1 (44.961482, -93.32013)\n", + "2 (44.961482, -93.32013)\n", + "3 (44.961482, -93.32013)\n", + "4 (44.961482, -93.32013)\n", + "Name: station_coords, dtype: object" + ] + }, + "execution_count": 62, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from shapely.geometry import Point\n", "\n", @@ -1834,15 +15263,31 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 63, "metadata": { "ExecuteTime": { - "end_time": "2017-01-21T09:26:42.845942", - "start_time": "2017-01-21T09:26:42.174445" + "end_time": "2017-02-08T09:15:33.829523", + "start_time": "2017-02-08T09:15:33.160937" }, "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "0 0.430469\n", + "1 0.430469\n", + "2 0.430469\n", + "3 0.430469\n", + "4 0.430469\n", + "Name: dist_to_station, dtype: float64" + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from geopy.distance import vincenty\n", "\n", @@ -1864,15 +15309,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 64, "metadata": { "ExecuteTime": { - "end_time": "2017-01-21T09:26:42.898112", - "start_time": "2017-01-21T09:26:42.847929" + "end_time": "2017-02-08T09:15:33.847562", + "start_time": "2017-02-08T09:15:33.833527" }, "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "(2496, 61)" + ] + }, + "execution_count": 64, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# group by the PIN key, which would be duplicated for each station and take the minimum\n", "def get_min_rows(df, grpby, aggcol):\n", @@ -1894,11 +15350,11 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 65, "metadata": { "ExecuteTime": { - "end_time": "2017-01-21T09:34:20.731031", - "start_time": "2017-01-21T09:34:20.178435" + "end_time": "2017-02-08T09:15:38.922414", + "start_time": "2017-02-08T09:15:33.851547" }, "collapsed": false }, From 87513c5c293dbd9a124d464274fd306dcc42df02 Mon Sep 17 00:00:00 2001 From: dreyco676 Date: Wed, 8 Feb 2017 09:19:18 -0600 Subject: [PATCH 2/4] removed idea files --- .idea/vcs.xml | 6 ------ 1 file changed, 6 deletions(-) delete mode 100644 .idea/vcs.xml diff --git a/.idea/vcs.xml b/.idea/vcs.xml deleted file mode 100644 index 94a25f7..0000000 --- a/.idea/vcs.xml +++ /dev/null @@ -1,6 +0,0 @@ - - - - - - \ No newline at end of file From b16871d09a4c8a4926ba14981883a616ec58de66 Mon Sep 17 00:00:00 2001 From: John Hogue Date: Wed, 8 Feb 2017 18:44:37 -0600 Subject: [PATCH 3/4] cleared output --- Intro to Geospatial Data with Python.ipynb | 13596 +------------------ 1 file changed, 105 insertions(+), 13491 deletions(-) diff --git a/Intro to Geospatial Data with Python.ipynb b/Intro to Geospatial Data with Python.ipynb index 8008122..fed35ee 100644 --- a/Intro to Geospatial Data with Python.ipynb +++ b/Intro to Geospatial Data with Python.ipynb @@ -328,7 +328,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:09:49.226515", @@ -383,7 +383,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:11:33.979172", @@ -411,7 +411,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:11:34.385765", @@ -436,7 +436,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:11:36.261747", @@ -444,89 +444,7 @@ }, "collapsed": false }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "RangeIndex: 427762 entries, 0 to 427761\n", - "Data columns (total 70 columns):\n", - "ACRES_DEED 427762 non-null float64\n", - "ACRES_POLY 427762 non-null float64\n", - "AGPRE_ENRD 0 non-null object\n", - "AGPRE_EXPD 0 non-null object\n", - "AG_PRESERV 427762 non-null object\n", - "BASEMENT 111420 non-null object\n", - "BLDG_NUM 427762 non-null object\n", - "BLOCK 305269 non-null object\n", - "CITY 427762 non-null object\n", - "CITY_USPS 414475 non-null object\n", - "COOLING 157514 non-null object\n", - "COUNTY_ID 427762 non-null object\n", - "DWELL_TYPE 0 non-null object\n", - "EMV_BLDG 427762 non-null float64\n", - "EMV_LAND 427762 non-null float64\n", - "EMV_TOTAL 427762 non-null float64\n", - "FIN_SQ_FT 427762 non-null float64\n", - "GARAGE 157514 non-null object\n", - "GARAGESQFT 157514 non-null object\n", - "GREEN_ACRE 427762 non-null object\n", - "HEATING 156532 non-null object\n", - "HOMESTEAD 426337 non-null object\n", - "HOME_STYLE 152400 non-null object\n", - "LANDMARK 0 non-null object\n", - "LOT 290705 non-null object\n", - "MULTI_USES 0 non-null object\n", - "NUM_UNITS 0 non-null object\n", - "OPEN_SPACE 427762 non-null object\n", - "OWNER_MORE 0 non-null object\n", - "OWNER_NAME 426336 non-null object\n", - "OWN_ADD_L1 0 non-null object\n", - "OWN_ADD_L2 0 non-null object\n", - "OWN_ADD_L3 0 non-null object\n", - "PARC_CODE 427762 non-null int64\n", - "PIN 427762 non-null object\n", - "PLAT_NAME 426333 non-null object\n", - "PREFIXTYPE 0 non-null object\n", - "PREFIX_DIR 0 non-null object\n", - "SALE_DATE 331140 non-null object\n", - "SALE_VALUE 427762 non-null float64\n", - "SCHOOL_DST 426337 non-null object\n", - "SPEC_ASSES 427762 non-null float64\n", - "STREETNAME 427762 non-null object\n", - "STREETTYPE 0 non-null object\n", - "SUFFIX_DIR 0 non-null object\n", - "Shape_Area 427762 non-null float64\n", - "Shape_Le_1 427762 non-null float64\n", - "Shape_Leng 427762 non-null float64\n", - "TAX_ADD_L1 426189 non-null object\n", - "TAX_ADD_L2 426071 non-null object\n", - "TAX_ADD_L3 62165 non-null object\n", - "TAX_CAPAC 427762 non-null float64\n", - "TAX_EXEMPT 427762 non-null object\n", - "TAX_NAME 426337 non-null object\n", - "TORRENS 427762 non-null object\n", - "TOTAL_TAX 427762 non-null float64\n", - "UNIT_INFO 51470 non-null object\n", - "USE1_DESC 426337 non-null object\n", - "USE2_DESC 4398 non-null object\n", - "USE3_DESC 752 non-null object\n", - "USE4_DESC 207 non-null object\n", - "WSHD_DIST 350447 non-null object\n", - "XUSE1_DESC 17641 non-null object\n", - "XUSE2_DESC 1341 non-null object\n", - "XUSE3_DESC 250 non-null object\n", - "XUSE4_DESC 36 non-null object\n", - "YEAR_BUILT 427762 non-null int64\n", - "ZIP 427762 non-null object\n", - "ZIP4 0 non-null object\n", - "geometry 427762 non-null object\n", - "dtypes: float64(13), int64(2), object(55)\n", - "memory usage: 228.4+ MB\n" - ] - } - ], + "outputs": [], "source": [ "hennepin.info()" ] @@ -558,7 +476,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:11:36.649840", @@ -566,18 +484,7 @@ }, "collapsed": false }, - "outputs": [ - { - "data": { - "text/plain": [ - "1.0" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "hennepin['PIN'].nunique(dropna=True) / len(hennepin['PIN'])" ] @@ -597,7 +504,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:11:38.683278", @@ -623,7 +530,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:11:38.718311", @@ -631,18 +538,7 @@ }, "collapsed": false }, - "outputs": [ - { - "data": { - "text/plain": [ - "['N', 'Y']" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "list(hennepin['GREEN_ACRE'].unique())" ] @@ -658,7 +554,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:11:39.455386", @@ -666,18 +562,7 @@ }, "collapsed": false }, - "outputs": [ - { - "data": { - "text/plain": [ - "54" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "column_list = list(hennepin.select_dtypes(include=['object']).columns.values)\n", "# how many are there?\n", @@ -695,7 +580,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:11:39.465393", @@ -719,7 +604,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:12:00.234756", @@ -727,23 +612,7 @@ }, "collapsed": false }, - "outputs": [ - { - "ename": "TypeError", - "evalue": "unhashable type: 'Polygon'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mhennepin\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mconvert_to_categorical\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mhennepin\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcolumn_list\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m\u001b[0m in \u001b[0;36mconvert_to_categorical\u001b[0;34m(df, cols)\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mcol\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mcols\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[1;31m# get number of unique values\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0munique_vals\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdf\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mcol\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0munique\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[1;31m# calculate the ratio of unique values to total number of rows\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0munique_ratio\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0munique_vals\u001b[0m \u001b[1;33m/\u001b[0m \u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdf\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\pandas\\core\\base.py\u001b[0m in \u001b[0;36munique\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 962\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mvalues\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0munique\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 963\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m--> 964\u001b[0;31m \u001b[1;32mreturn\u001b[0m \u001b[0munique1d\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 965\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 966\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mnunique\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdropna\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mTrue\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\pandas\\core\\nanops.py\u001b[0m in \u001b[0;36munique1d\u001b[0;34m(values)\u001b[0m\n\u001b[1;32m 794\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 795\u001b[0m \u001b[0mtable\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0m_hash\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mPyObjectHashTable\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m--> 796\u001b[0;31m \u001b[0muniques\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtable\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0munique\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0m_ensure_object\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 797\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0muniques\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[0;32mpandas\\hashtable.pyx\u001b[0m in \u001b[0;36mpandas.hashtable.PyObjectHashTable.unique (pandas\\hashtable.c:13585)\u001b[0;34m()\u001b[0m\n", - "\u001b[0;31mTypeError\u001b[0m: unhashable type: 'Polygon'" - ] - } - ], + "outputs": [], "source": [ "hennepin = convert_to_categorical(hennepin, column_list)" ] @@ -759,7 +628,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:12:52.733292", @@ -785,7 +654,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:12:54.449323", @@ -793,88 +662,7 @@ }, "collapsed": false }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Index: 427762 entries, 053-0102724110003 to 053-3612123410019\n", - "Data columns (total 69 columns):\n", - "ACRES_DEED 427762 non-null float64\n", - "ACRES_POLY 427762 non-null float64\n", - "AGPRE_ENRD 0 non-null category\n", - "AGPRE_EXPD 0 non-null category\n", - "AG_PRESERV 427762 non-null category\n", - "BASEMENT 111420 non-null category\n", - "BLDG_NUM 427762 non-null category\n", - "BLOCK 305269 non-null category\n", - "CITY 427762 non-null category\n", - "CITY_USPS 414475 non-null category\n", - "COOLING 157514 non-null category\n", - "COUNTY_ID 427762 non-null category\n", - "DWELL_TYPE 0 non-null category\n", - "EMV_BLDG 427762 non-null float64\n", - "EMV_LAND 427762 non-null float64\n", - "EMV_TOTAL 427762 non-null float64\n", - "FIN_SQ_FT 427762 non-null float64\n", - "GARAGE 157514 non-null category\n", - "GARAGESQFT 157514 non-null category\n", - "GREEN_ACRE 427762 non-null category\n", - "HEATING 156532 non-null category\n", - "HOMESTEAD 426337 non-null category\n", - "HOME_STYLE 152400 non-null category\n", - "LANDMARK 0 non-null category\n", - "LOT 290705 non-null category\n", - "MULTI_USES 0 non-null category\n", - "NUM_UNITS 0 non-null category\n", - "OPEN_SPACE 427762 non-null category\n", - "OWNER_MORE 0 non-null category\n", - "OWNER_NAME 426336 non-null object\n", - "OWN_ADD_L1 0 non-null category\n", - "OWN_ADD_L2 0 non-null category\n", - "OWN_ADD_L3 0 non-null category\n", - "PARC_CODE 427762 non-null int64\n", - "PLAT_NAME 426333 non-null category\n", - "PREFIXTYPE 0 non-null category\n", - "PREFIX_DIR 0 non-null category\n", - "SALE_DATE 331140 non-null category\n", - "SALE_VALUE 427762 non-null float64\n", - "SCHOOL_DST 426337 non-null category\n", - "SPEC_ASSES 427762 non-null float64\n", - "STREETNAME 427762 non-null category\n", - "STREETTYPE 0 non-null category\n", - "SUFFIX_DIR 0 non-null category\n", - "Shape_Area 427762 non-null float64\n", - "Shape_Le_1 427762 non-null float64\n", - "Shape_Leng 427762 non-null float64\n", - "TAX_ADD_L1 426189 non-null object\n", - "TAX_ADD_L2 426071 non-null category\n", - "TAX_ADD_L3 62165 non-null category\n", - "TAX_CAPAC 427762 non-null float64\n", - "TAX_EXEMPT 427762 non-null category\n", - "TAX_NAME 426337 non-null object\n", - "TORRENS 427762 non-null category\n", - "TOTAL_TAX 427762 non-null float64\n", - "UNIT_INFO 51470 non-null category\n", - "USE1_DESC 426337 non-null category\n", - "USE2_DESC 4398 non-null category\n", - "USE3_DESC 752 non-null category\n", - "USE4_DESC 207 non-null category\n", - "WSHD_DIST 350447 non-null category\n", - "XUSE1_DESC 17641 non-null category\n", - "XUSE2_DESC 1341 non-null category\n", - "XUSE3_DESC 250 non-null category\n", - "XUSE4_DESC 36 non-null category\n", - "YEAR_BUILT 427762 non-null int64\n", - "ZIP 427762 non-null category\n", - "ZIP4 0 non-null category\n", - "geometry 427762 non-null object\n", - "dtypes: category(50), float64(13), int64(2), object(4)\n", - "memory usage: 91.4+ MB\n" - ] - } - ], + "outputs": [], "source": [ "hennepin.info()" ] @@ -898,7 +686,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:14:09.573381", @@ -907,9261 +695,7 @@ "collapsed": false, "scrolled": true }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Anaconda3\\lib\\site-packages\\matplotlib\\__init__.py:1357: UserWarning: This call to matplotlib.use() has no effect\n", - "because the backend has already been chosen;\n", - "matplotlib.use() must be called *before* pylab, matplotlib.pyplot,\n", - "or matplotlib.backends is imported for the first time.\n", - "\n", - " warnings.warn(_use_error_msg)\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "
\n", - "
\n", - "

Overview

\n", - "
\n", - "
\n", - "
\n", - "

Dataset info

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Number of variables66
Number of observations427762
Total Missing (%)43.4%
Total size in memory78.4 MiB
Average record size in memory192.2 B
\n", - "
\n", - "
\n", - "

Variables types

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Numeric8
Categorical34
Date0
Text (Unique)1
Rejected23
\n", - "
\n", - "
\n", - "

Warnings

\n", - "
  • ACRES_DEED has constant value 0 Rejected
  • ACRES_POLY is highly skewed (γ1 = 67.596)
  • AGPRE_ENRD has 427762 / 100.0% missing values Missing
  • AGPRE_ENRD has constant value Rejected
  • AGPRE_EXPD has 427762 / 100.0% missing values Missing
  • AGPRE_EXPD has constant value Rejected
  • BASEMENT has 316342 / 74.0% missing values Missing
  • BLDG_NUM has a high cardinality: 21678 distinct values Warning
  • BLOCK has 122493 / 28.6% missing values Missing
  • BLOCK has a high cardinality: 218 distinct values Warning
  • CITY_USPS has 13287 / 3.1% missing values Missing
  • COOLING has 270248 / 63.2% missing values Missing
  • COUNTY_ID has constant value 053 Rejected
  • DWELL_TYPE has 427762 / 100.0% missing values Missing
  • DWELL_TYPE has constant value Rejected
  • EMV_BLDG has 35878 / 8.4% zeros
  • EMV_BLDG is highly skewed (γ1 = 200.8)
  • EMV_LAND has 22919 / 5.4% zeros
  • EMV_LAND is highly skewed (γ1 = 73.643)
  • EMV_TOTAL is highly correlated with EMV_BLDG (ρ = 0.9836) Rejected
  • FIN_SQ_FT has 282593 / 66.1% zeros
  • GARAGE has 270248 / 63.2% missing values Missing
  • GARAGESQFT has 270248 / 63.2% missing values Missing
  • GARAGESQFT has a high cardinality: 1444 distinct values Warning
  • HEATING has 271230 / 63.4% missing values Missing
  • HOME_STYLE has 275362 / 64.4% missing values Missing
  • LANDMARK has 427762 / 100.0% missing values Missing
  • LANDMARK has constant value Rejected
  • LOT has 137057 / 32.0% missing values Missing
  • LOT has a high cardinality: 392 distinct values Warning
  • MULTI_USES has 427762 / 100.0% missing values Missing
  • MULTI_USES has constant value Rejected
  • NUM_UNITS has 427762 / 100.0% missing values Missing
  • NUM_UNITS has constant value Rejected
  • OWNER_MORE has 427762 / 100.0% missing values Missing
  • OWNER_MORE has constant value Rejected
  • OWN_ADD_L1 has 427762 / 100.0% missing values Missing
  • OWN_ADD_L1 has constant value Rejected
  • OWN_ADD_L2 has 427762 / 100.0% missing values Missing
  • OWN_ADD_L2 has constant value Rejected
  • OWN_ADD_L3 has 427762 / 100.0% missing values Missing
  • OWN_ADD_L3 has constant value Rejected
  • PARC_CODE has constant value 0 Rejected
  • PLAT_NAME has a high cardinality: 18488 distinct values Warning
  • PREFIXTYPE has 427762 / 100.0% missing values Missing
  • PREFIXTYPE has constant value Rejected
  • PREFIX_DIR has 427762 / 100.0% missing values Missing
  • PREFIX_DIR has constant value Rejected
  • SALE_DATE has 96622 / 22.6% missing values Missing
  • SALE_DATE has a high cardinality: 553 distinct values Warning
  • SALE_VALUE has 97862 / 22.9% zeros
  • SALE_VALUE is highly skewed (γ1 = 91.079)
  • SPEC_ASSES has 358992 / 83.9% zeros
  • SPEC_ASSES is highly skewed (γ1 = 134.05)
  • STREETNAME has a high cardinality: 7387 distinct values Warning
  • STREETTYPE has 427762 / 100.0% missing values Missing
  • STREETTYPE has constant value Rejected
  • SUFFIX_DIR has 427762 / 100.0% missing values Missing
  • SUFFIX_DIR has constant value Rejected
  • Shape_Area is highly correlated with ACRES_POLY (ρ = 1) Rejected
  • Shape_Leng is highly correlated with Shape_Le_1 (ρ = 1) Rejected
  • TAX_ADD_L2 has a high cardinality: 54604 distinct values Warning
  • TAX_ADD_L3 has 365597 / 85.5% missing values Missing
  • TAX_ADD_L3 has a high cardinality: 3193 distinct values Warning
  • TAX_CAPAC is highly correlated with EMV_TOTAL (ρ = 0.9882) Rejected
  • TOTAL_TAX is highly correlated with TAX_CAPAC (ρ = 0.99701) Rejected
  • UNIT_INFO has 376292 / 88.0% missing values Missing
  • UNIT_INFO has a high cardinality: 6850 distinct values Warning
  • USE2_DESC has 423364 / 99.0% missing values Missing
  • USE3_DESC has 427010 / 99.8% missing values Missing
  • USE4_DESC has 427555 / 100.0% missing values Missing
  • WSHD_DIST has 77315 / 18.1% missing values Missing
  • XUSE1_DESC has 410121 / 95.9% missing values Missing
  • XUSE2_DESC has 426421 / 99.7% missing values Missing
  • XUSE3_DESC has 427512 / 99.9% missing values Missing
  • XUSE4_DESC has 427726 / 100.0% missing values Missing
  • YEAR_BUILT has 31396 / 7.3% zeros
  • ZIP has a high cardinality: 78 distinct values Warning
  • ZIP4 has 427762 / 100.0% missing values Missing
  • ZIP4 has constant value Rejected
\n", - "
\n", - "
\n", - "
\n", - "

Variables

\n", - "
\n", - "
\n", - "
\n", - "

ACRES_DEED
\n", - " Constant\n", - "

\n", - "
\n", - "

This variable is constant and should be ignored for analysis

\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Constant value0
\n", - "
\n", - "
\n", - "
\n", - "

ACRES_POLY
\n", - " Numeric\n", - "

\n", - "
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count3556
Unique (%)0.8%
Missing (%)0.0%
Missing (n)0
Infinite (%)0.0%
Infinite (n)0
\n", - "\n", - "
\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Mean1.1817
Minimum0
Maximum1305.2
Zeros (%)0.7%
\n", - "
\n", - "
\n", - "
\n", - "
\n", - " \n", - "\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - "
\n", - "
\n", - "
\n", - "

Quantile statistics

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Minimum0
5-th percentile0.07
Q10.15
Median0.26
Q30.53
95-th percentile4.5
Maximum1305.2
Range1305.2
Interquartile range0.38
\n", - "
\n", - "
\n", - "

Descriptive statistics

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Standard deviation6.3964
Coef of variation5.4127
Kurtosis9865.5
Mean1.1817
MAD1.5226
Skewness67.596
Sum505500
Variance40.913
Memory size3.3 MiB
\n", - "
\n", - "
\n", - "
\n", - " \n", - "
\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
0.12319517.5%\n", - "
 
\n", - "
0.23153903.6%\n", - "
 
\n", - "
0.15146803.4%\n", - "
 
\n", - "
0.11141643.3%\n", - "
 
\n", - "
0.13136123.2%\n", - "
 
\n", - "
0.14115322.7%\n", - "
 
\n", - "
0.25107692.5%\n", - "
 
\n", - "
0.2696972.3%\n", - "
 
\n", - "
0.2494612.2%\n", - "
 
\n", - "
0.2288482.1%\n", - "
 
\n", - "
Other values (3546)28765867.2%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "

Minimum 5 values

\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
0.031940.7%\n", - "
 
\n", - "
0.015160.1%\n", - "
 
\n", - "
0.0215310.4%\n", - "
 
\n", - "
0.0333770.8%\n", - "
 
\n", - "
0.0450361.2%\n", - "
 
\n", - "
\n", - "

Maximum 5 values

\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
615.6510.0%\n", - "
 
\n", - "
624.8910.0%\n", - "
 
\n", - "
627.2610.0%\n", - "
 
\n", - "
1299.7510.0%\n", - "
 
\n", - "
1305.2210.0%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

AGPRE_ENRD
\n", - " Constant\n", - "

\n", - "
\n", - "

This variable is constant and should be ignored for analysis

\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Constant value
\n", - "
\n", - "
\n", - "
\n", - "

AGPRE_EXPD
\n", - " Constant\n", - "

\n", - "
\n", - "

This variable is constant and should be ignored for analysis

\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Constant value
\n", - "
\n", - "
\n", - "
\n", - "

AG_PRESERV
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count2
Unique (%)0.0%
Missing (%)0.0%
Missing (n)0
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
N\n", - "
\n", - " 427518\n", - "
\n", - " \n", - "
Y\n", - "
\n", - "  \n", - "
\n", - " 244\n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
N42751899.9%\n", - "
 
\n", - "
Y2440.1%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

BASEMENT
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count3
Unique (%)0.0%
Missing (%)74.0%
Missing (n)316342
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
Y\n", - "
\n", - " 102226\n", - "
\n", - " \n", - "
N\n", - "
\n", - "  \n", - "
\n", - " 9194\n", - "
(Missing)\n", - "
\n", - " 316342\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
Y10222623.9%\n", - "
 
\n", - "
N91942.1%\n", - "
 
\n", - "
(Missing)31634274.0%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

BLDG_NUM
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count21678
Unique (%)5.1%
Missing (%)0.0%
Missing (n)0
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
40\n", - "
\n", - "  \n", - "
\n", - " 1420\n", - "
61\n", - "
\n", - "  \n", - "
\n", - " 1365\n", - "
34\n", - "
\n", - "  \n", - "
\n", - " 1208\n", - "
Other values (21675)\n", - "
\n", - " 423769\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
4014200.3%\n", - "
 
\n", - "
6113650.3%\n", - "
 
\n", - "
3412080.3%\n", - "
 
\n", - "
7610590.2%\n", - "
 
\n", - "
20010560.2%\n", - "
 
\n", - "
40110370.2%\n", - "
 
\n", - "
488830.2%\n", - "
 
\n", - "
247330.2%\n", - "
 
\n", - "
387300.2%\n", - "
 
\n", - "
1216890.2%\n", - "
 
\n", - "
Other values (21668)41758297.6%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

BLOCK
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count218
Unique (%)0.1%
Missing (%)28.6%
Missing (n)122493
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
001\n", - "
\n", - " 94328\n", - "
\n", - " \n", - "
002\n", - "
\n", - " 62154\n", - "
\n", - " \n", - "
003\n", - "
\n", - " 38189\n", - "
\n", - " \n", - "
Other values (214)\n", - "
\n", - " 110598\n", - "
\n", - " \n", - "
(Missing)\n", - "
\n", - " 122493\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
0019432822.1%\n", - "
 
\n", - "
0026215414.5%\n", - "
 
\n", - "
003381898.9%\n", - "
 
\n", - "
004259426.1%\n", - "
 
\n", - "
005166043.9%\n", - "
 
\n", - "
006128753.0%\n", - "
 
\n", - "
00793562.2%\n", - "
 
\n", - "
00876501.8%\n", - "
 
\n", - "
00949841.2%\n", - "
 
\n", - "
01043191.0%\n", - "
 
\n", - "
Other values (207)288686.7%\n", - "
 
\n", - "
(Missing)12249328.6%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

CITY
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count47
Unique (%)0.0%
Missing (%)0.0%
Missing (n)0
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
MINNEAPOLIS\n", - "
\n", - " 129889\n", - "
\n", - " \n", - "
BLOOMINGTON\n", - "
\n", - "  \n", - "
\n", - " 31217\n", - "
PLYMOUTH\n", - "
\n", - "  \n", - "
\n", - " 26820\n", - "
Other values (44)\n", - "
\n", - " 239836\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
MINNEAPOLIS12988930.4%\n", - "
 
\n", - "
BLOOMINGTON312177.3%\n", - "
 
\n", - "
PLYMOUTH268206.3%\n", - "
 
\n", - "
MAPLE GROVE256906.0%\n", - "
 
\n", - "
BROOKLYN PARK242265.7%\n", - "
 
\n", - "
EDEN PRAIRIE226465.3%\n", - "
 
\n", - "
EDINA213525.0%\n", - "
 
\n", - "
MINNETONKA207044.8%\n", - "
 
\n", - "
ST. LOUIS PARK177024.1%\n", - "
 
\n", - "
RICHFIELD119182.8%\n", - "
 
\n", - "
Other values (37)9559822.3%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

CITY_USPS
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count49
Unique (%)0.0%
Missing (%)3.1%
Missing (n)13287
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
MINNEAPOLIS\n", - "
\n", - " 129317\n", - "
\n", - " \n", - "
BLOOMINGTON\n", - "
\n", - "  \n", - "
\n", - " 31073\n", - "
PLYMOUTH\n", - "
\n", - "  \n", - "
\n", - " 25320\n", - "
Other values (45)\n", - "
\n", - " 228765\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
MINNEAPOLIS12931730.2%\n", - "
 
\n", - "
BLOOMINGTON310737.3%\n", - "
 
\n", - "
PLYMOUTH253205.9%\n", - "
 
\n", - "
MAPLE GROVE246355.8%\n", - "
 
\n", - "
BROOKLYN PARK233215.5%\n", - "
 
\n", - "
EDEN PRAIRIE212205.0%\n", - "
 
\n", - "
EDINA207524.9%\n", - "
 
\n", - "
ST. LOUIS PARK176394.1%\n", - "
 
\n", - "
MINNETONKA176344.1%\n", - "
 
\n", - "
RICHFIELD118632.8%\n", - "
 
\n", - "
Other values (38)9170121.4%\n", - "
 
\n", - "
(Missing)132873.1%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

COOLING
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count5
Unique (%)0.0%
Missing (%)63.2%
Missing (n)270248
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
Forced Air\n", - "
\n", - " 128846\n", - "
\n", - " \n", - "
N\n", - "
\n", - "  \n", - "
\n", - " 24134\n", - "
Unknown\n", - "
\n", - "  \n", - "
\n", - " 4320\n", - "
(Missing)\n", - "
\n", - " 270248\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
Forced Air12884630.1%\n", - "
 
\n", - "
N241345.6%\n", - "
 
\n", - "
Unknown43201.0%\n", - "
 
\n", - "
Y2140.1%\n", - "
 
\n", - "
(Missing)27024863.2%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

COUNTY_ID
\n", - " Constant\n", - "

\n", - "
\n", - "

This variable is constant and should be ignored for analysis

\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Constant value053
\n", - "
\n", - "
\n", - "
\n", - "

DWELL_TYPE
\n", - " Constant\n", - "

\n", - "
\n", - "

This variable is constant and should be ignored for analysis

\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Constant value
\n", - "
\n", - "
\n", - "
\n", - "

EMV_BLDG
\n", - " Numeric\n", - "

\n", - "
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count12417
Unique (%)2.9%
Missing (%)0.0%
Missing (n)0
Infinite (%)0.0%
Infinite (n)0
\n", - "\n", - "
\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Mean186280
Minimum0
Maximum552460000
Zeros (%)8.4%
\n", - "
\n", - "
\n", - "
\n", - "
\n", - " \n", - "\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - "
\n", - "
\n", - "
\n", - "

Quantile statistics

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Minimum0
5-th percentile0
Q175000
Median114700
Q3173800
95-th percentile396800
Maximum552460000
Range552460000
Interquartile range98800
\n", - "
\n", - "
\n", - "

Descriptive statistics

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Standard deviation1334900
Coef of variation7.1659
Kurtosis71710
Mean186280
MAD147160
Skewness200.8
Sum79684000000
Variance1781900000000
Memory size3.3 MiB
\n", - "
\n", - "
\n", - "
\n", - " \n", - "
\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
0.0358788.4%\n", - "
 
\n", - "
3600.018300.4%\n", - "
 
\n", - "
95000.013270.3%\n", - "
 
\n", - "
100000.011980.3%\n", - "
 
\n", - "
105000.011910.3%\n", - "
 
\n", - "
97000.011560.3%\n", - "
 
\n", - "
110000.011310.3%\n", - "
 
\n", - "
109000.011270.3%\n", - "
 
\n", - "
107000.011130.3%\n", - "
 
\n", - "
99000.010890.3%\n", - "
 
\n", - "
Other values (12407)38072289.0%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "

Minimum 5 values

\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
0.0358788.4%\n", - "
 
\n", - "
100.0570.0%\n", - "
 
\n", - "
200.0350.0%\n", - "
 
\n", - "
300.0770.0%\n", - "
 
\n", - "
400.0630.0%\n", - "
 
\n", - "
\n", - "

Maximum 5 values

\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
136448400.010.0%\n", - "
 
\n", - "
167267200.010.0%\n", - "
 
\n", - "
170681400.010.0%\n", - "
 
\n", - "
175027000.010.0%\n", - "
 
\n", - "
552458400.010.0%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

EMV_LAND
\n", - " Numeric\n", - "

\n", - "
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count9151
Unique (%)2.1%
Missing (%)0.0%
Missing (n)0
Infinite (%)0.0%
Infinite (n)0
\n", - "\n", - "
\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Mean100420
Minimum0
Maximum96792000
Zeros (%)5.4%
\n", - "
\n", - "
\n", - "
\n", - "
\n", - " \n", - "\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - "
\n", - "
\n", - "
\n", - "

Quantile statistics

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Minimum0
5-th percentile0
Q125300
Median50200
Q3100000
95-th percentile267600
Maximum96792000
Range96792000
Interquartile range74700
\n", - "
\n", - "
\n", - "

Descriptive statistics

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Standard deviation369410
Coef of variation3.6788
Kurtosis13821
Mean100420
MAD90303
Skewness73.643
Sum42955000000
Variance136470000000
Memory size3.3 MiB
\n", - "
\n", - "
\n", - "
\n", - " \n", - "
\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
0.0229195.4%\n", - "
 
\n", - "
150000.087222.0%\n", - "
 
\n", - "
40000.057881.4%\n", - "
 
\n", - "
34400.051541.2%\n", - "
 
\n", - "
30000.048551.1%\n", - "
 
\n", - "
20000.039070.9%\n", - "
 
\n", - "
10000.038610.9%\n", - "
 
\n", - "
50000.038340.9%\n", - "
 
\n", - "
100.033420.8%\n", - "
 
\n", - "
35000.027360.6%\n", - "
 
\n", - "
Other values (9141)36264484.8%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "

Minimum 5 values

\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
0.0229195.4%\n", - "
 
\n", - "
100.033420.8%\n", - "
 
\n", - "
200.05550.1%\n", - "
 
\n", - "
300.05040.1%\n", - "
 
\n", - "
400.0750.0%\n", - "
 
\n", - "
\n", - "

Maximum 5 values

\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
35456000.010.0%\n", - "
 
\n", - "
37012500.010.0%\n", - "
 
\n", - "
39228900.010.0%\n", - "
 
\n", - "
58304000.010.0%\n", - "
 
\n", - "
96791600.010.0%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

EMV_TOTAL
\n", - " Highly correlated\n", - "

\n", - "
\n", - "

This variable is highly correlated with EMV_BLDG and should be ignored for analysis

\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Correlation0.9836
\n", - "
\n", - "
\n", - "
\n", - "

FIN_SQ_FT
\n", - " Numeric\n", - "

\n", - "
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count4666
Unique (%)1.1%
Missing (%)0.0%
Missing (n)0
Infinite (%)0.0%
Infinite (n)0
\n", - "\n", - "
\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Mean528.12
Minimum0
Maximum19269
Zeros (%)66.1%
\n", - "
\n", - "
\n", - "
\n", - "
\n", - " \n", - "\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - "
\n", - "
\n", - "
\n", - "

Quantile statistics

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Minimum0
5-th percentile0
Q10
Median0
Q31087
95-th percentile2214
Maximum19269
Range19269
Interquartile range1087
\n", - "
\n", - "
\n", - "

Descriptive statistics

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Standard deviation857
Coef of variation1.6227
Kurtosis9.0828
Mean528.12
MAD697.83
Skewness2.081
Sum225910000
Variance734450
Memory size3.3 MiB
\n", - "
\n", - "
\n", - "
\n", - " \n", - "
\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
0.028259366.1%\n", - "
 
\n", - "
960.017510.4%\n", - "
 
\n", - "
1040.013380.3%\n", - "
 
\n", - "
1092.011930.3%\n", - "
 
\n", - "
1008.010660.2%\n", - "
 
\n", - "
1056.010240.2%\n", - "
 
\n", - "
1144.09020.2%\n", - "
 
\n", - "
1248.08590.2%\n", - "
 
\n", - "
1012.08020.2%\n", - "
 
\n", - "
1000.08010.2%\n", - "
 
\n", - "
Other values (4656)13543331.7%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "

Minimum 5 values

\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
0.028259366.1%\n", - "
 
\n", - "
176.010.0%\n", - "
 
\n", - "
280.010.0%\n", - "
 
\n", - "
320.010.0%\n", - "
 
\n", - "
324.010.0%\n", - "
 
\n", - "
\n", - "

Maximum 5 values

\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
16000.010.0%\n", - "
 
\n", - "
17097.010.0%\n", - "
 
\n", - "
18474.010.0%\n", - "
 
\n", - "
19076.010.0%\n", - "
 
\n", - "
19269.010.0%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

GARAGE
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count3
Unique (%)0.0%
Missing (%)63.2%
Missing (n)270248
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
Y\n", - "
\n", - " 150397\n", - "
\n", - " \n", - "
N\n", - "
\n", - "  \n", - "
\n", - " 7117\n", - "
(Missing)\n", - "
\n", - " 270248\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
Y15039735.2%\n", - "
 
\n", - "
N71171.7%\n", - "
 
\n", - "
(Missing)27024863.2%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

GARAGESQFT
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count1444
Unique (%)0.9%
Missing (%)63.2%
Missing (n)270248
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
440\n", - "
\n", - "  \n", - "
\n", - " 14105\n", - "
528\n", - "
\n", - "  \n", - "
\n", - " 9489\n", - "
0\n", - "
\n", - "  \n", - "
\n", - " 8476\n", - "
Other values (1440)\n", - "
\n", - " 125444\n", - "
\n", - " \n", - "
(Missing)\n", - "
\n", - " 270248\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
440141053.3%\n", - "
 
\n", - "
52894892.2%\n", - "
 
\n", - "
084762.0%\n", - "
 
\n", - "
48483001.9%\n", - "
 
\n", - "
48062011.4%\n", - "
 
\n", - "
57661851.4%\n", - "
 
\n", - "
40047401.1%\n", - "
 
\n", - "
24038840.9%\n", - "
 
\n", - "
28033200.8%\n", - "
 
\n", - "
62427990.7%\n", - "
 
\n", - "
Other values (1433)9001521.0%\n", - "
 
\n", - "
(Missing)27024863.2%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

GREEN_ACRE
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count2
Unique (%)0.0%
Missing (%)0.0%
Missing (n)0
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
N\n", - "
\n", - " 426987\n", - "
\n", - " \n", - "
Y\n", - "
\n", - "  \n", - "
\n", - " 775\n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
N42698799.8%\n", - "
 
\n", - "
Y7750.2%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

HEATING
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count7
Unique (%)0.0%
Missing (%)63.4%
Missing (n)271230
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
Forced Air\n", - "
\n", - " 141681\n", - "
\n", - " \n", - "
Hot Water\n", - "
\n", - "  \n", - "
\n", - " 6779\n", - "
0\n", - "
\n", - "  \n", - "
\n", - " 5315\n", - "
Other values (3)\n", - "
\n", - "  \n", - "
\n", - " 2757\n", - "
(Missing)\n", - "
\n", - " 271230\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
Forced Air14168133.1%\n", - "
 
\n", - "
Hot Water67791.6%\n", - "
 
\n", - "
053151.2%\n", - "
 
\n", - "
Gravity17610.4%\n", - "
 
\n", - "
Electric6400.1%\n", - "
 
\n", - "
Other3560.1%\n", - "
 
\n", - "
(Missing)27123063.4%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

HOMESTEAD
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count3
Unique (%)0.0%
Missing (%)0.3%
Missing (n)1425
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
Y\n", - "
\n", - " 317978\n", - "
\n", - " \n", - "
N\n", - "
\n", - " 108359\n", - "
\n", - " \n", - "
(Missing)\n", - "
\n", - "  \n", - "
\n", - " 1425\n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
Y31797874.3%\n", - "
 
\n", - "
N10835925.3%\n", - "
 
\n", - "
(Missing)14250.3%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

HOME_STYLE
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count16
Unique (%)0.0%
Missing (%)64.4%
Missing (n)275362
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
Rambler\n", - "
\n", - " 56372\n", - "
\n", - " \n", - "
Other\n", - "
\n", - "  \n", - "
\n", - " 37774\n", - "
Split Entry\n", - "
\n", - "  \n", - "
\n", - " 15713\n", - "
Other values (12)\n", - "
\n", - "  \n", - "
\n", - " 42541\n", - "
(Missing)\n", - "
\n", - " 275362\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
Rambler5637213.2%\n", - "
 
\n", - "
Other377748.8%\n", - "
 
\n", - "
Split Entry157133.7%\n", - "
 
\n", - "
Split Level117612.7%\n", - "
 
\n", - "
Expansion91072.1%\n", - "
 
\n", - "
Town House56811.3%\n", - "
 
\n", - "
Colonial52891.2%\n", - "
 
\n", - "
Condo44061.0%\n", - "
 
\n", - "
Townhouse28290.7%\n", - "
 
\n", - "
Half Double14800.3%\n", - "
 
\n", - "
Other values (5)19880.5%\n", - "
 
\n", - "
(Missing)27536264.4%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

LANDMARK
\n", - " Constant\n", - "

\n", - "
\n", - "

This variable is constant and should be ignored for analysis

\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Constant value
\n", - "
\n", - "
\n", - "
\n", - "

LOT
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count392
Unique (%)0.1%
Missing (%)32.0%
Missing (n)137057
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
001\n", - "
\n", - "  \n", - "
\n", - " 28792\n", - "
002\n", - "
\n", - "  \n", - "
\n", - " 25207\n", - "
003\n", - "
\n", - "  \n", - "
\n", - " 22463\n", - "
Other values (388)\n", - "
\n", - " 214243\n", - "
\n", - " \n", - "
(Missing)\n", - "
\n", - " 137057\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
001287926.7%\n", - "
 
\n", - "
002252075.9%\n", - "
 
\n", - "
003224635.3%\n", - "
 
\n", - "
004206764.8%\n", - "
 
\n", - "
005181174.2%\n", - "
 
\n", - "
006167633.9%\n", - "
 
\n", - "
007149643.5%\n", - "
 
\n", - "
008137123.2%\n", - "
 
\n", - "
009122732.9%\n", - "
 
\n", - "
010114582.7%\n", - "
 
\n", - "
Other values (381)10628024.8%\n", - "
 
\n", - "
(Missing)13705732.0%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

MULTI_USES
\n", - " Constant\n", - "

\n", - "
\n", - "

This variable is constant and should be ignored for analysis

\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Constant value
\n", - "
\n", - "
\n", - "
\n", - "

NUM_UNITS
\n", - " Constant\n", - "

\n", - "
\n", - "

This variable is constant and should be ignored for analysis

\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Constant value
\n", - "
\n", - "
\n", - "
\n", - "

OPEN_SPACE
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count2
Unique (%)0.0%
Missing (%)0.0%
Missing (n)0
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
N\n", - "
\n", - " 427602\n", - "
\n", - " \n", - "
Y\n", - "
\n", - "  \n", - "
\n", - " 160\n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
N427602100.0%\n", - "
 
\n", - "
Y1600.0%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

OWNER_MORE
\n", - " Constant\n", - "

\n", - "
\n", - "

This variable is constant and should be ignored for analysis

\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Constant value
\n", - "
\n", - "
\n", - "
\n", - "

OWN_ADD_L1
\n", - " Constant\n", - "

\n", - "
\n", - "

This variable is constant and should be ignored for analysis

\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Constant value
\n", - "
\n", - "
\n", - "
\n", - "

OWN_ADD_L2
\n", - " Constant\n", - "

\n", - "
\n", - "

This variable is constant and should be ignored for analysis

\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Constant value
\n", - "
\n", - "
\n", - "
\n", - "

OWN_ADD_L3
\n", - " Constant\n", - "

\n", - "
\n", - "

This variable is constant and should be ignored for analysis

\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Constant value
\n", - "
\n", - "
\n", - "
\n", - "

PARC_CODE
\n", - " Constant\n", - "

\n", - "
\n", - "

This variable is constant and should be ignored for analysis

\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Constant value0
\n", - "
\n", - "
\n", - "
\n", - "

PIN
\n", - " Categorical, Unique\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
First 3 values
053-1602924320023
053-2411822320004
053-2502924340142
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Last 3 values
053-3202924330157
053-2011622120074
053-2711823320002
\n", - "\n", - "
\n", - "

First 10 values

\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
053-010272411000310.0%\n", - "
 
\n", - "
053-010272411000410.0%\n", - "
 
\n", - "
053-010272411000510.0%\n", - "
 
\n", - "
053-010272411000610.0%\n", - "
 
\n", - "
053-010272411000810.0%\n", - "
 
\n", - "
\n", - "

Last 10 values

\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
053-361212341001410.0%\n", - "
 
\n", - "
053-361212341001510.0%\n", - "
 
\n", - "
053-361212341001610.0%\n", - "
 
\n", - "
053-361212341001810.0%\n", - "
 
\n", - "
053-361212341001910.0%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

PLAT_NAME
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count18488
Unique (%)4.3%
Missing (%)0.3%
Missing (n)1429
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
UNPLATTED\n", - "
\n", - "  \n", - "
\n", - " 1412\n", - "
REMINGTONS 2ND ADDN TO MPLS\n", - "
\n", - "  \n", - "
\n", - " 1042\n", - "
CONDO NO 0587 VILLAGE HOMES OF EDIN\n", - "
\n", - "  \n", - "
\n", - " 927\n", - "
Other values (18484)\n", - "
\n", - " 422952\n", - "
\n", - " \n", - "
(Missing)\n", - "
\n", - "  \n", - "
\n", - " 1429\n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
UNPLATTED14120.3%\n", - "
 
\n", - "
REMINGTONS 2ND ADDN TO MPLS10420.2%\n", - "
 
\n", - "
CONDO NO 0587 VILLAGE HOMES OF EDIN9270.2%\n", - "
 
\n", - "
RGT ST LOUIS PARK9150.2%\n", - "
 
\n", - "
SECOND DIV OF REMINGTON PARK7440.2%\n", - "
 
\n", - "
WEST MINNEAPOLIS 2ND DIVISION7080.2%\n", - "
 
\n", - "
FOREST HEIGHTS7040.2%\n", - "
 
\n", - "
REMINGTONS 3RD ADDN TO MPLS6790.2%\n", - "
 
\n", - "
CALHOUN PARK6560.2%\n", - "
 
\n", - "
PARK MANOR6260.1%\n", - "
 
\n", - "
Other values (18477)41792097.7%\n", - "
 
\n", - "
(Missing)14290.3%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

PREFIXTYPE
\n", - " Constant\n", - "

\n", - "
\n", - "

This variable is constant and should be ignored for analysis

\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Constant value
\n", - "
\n", - "
\n", - "
\n", - "

PREFIX_DIR
\n", - " Constant\n", - "

\n", - "
\n", - "

This variable is constant and should be ignored for analysis

\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Constant value
\n", - "
\n", - "
\n", - "
\n", - "

SALE_DATE
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count553
Unique (%)0.2%
Missing (%)22.6%
Missing (n)96622
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
2014-06-01\n", - "
\n", - "  \n", - "
\n", - " 2383\n", - "
2014-08-01\n", - "
\n", - "  \n", - "
\n", - " 2242\n", - "
2014-07-01\n", - "
\n", - "  \n", - "
\n", - " 2237\n", - "
Other values (549)\n", - "
\n", - " 324278\n", - "
\n", - " \n", - "
(Missing)\n", - "
\n", - " 96622\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
2014-06-0123830.6%\n", - "
 
\n", - "
2014-08-0122420.5%\n", - "
 
\n", - "
2014-07-0122370.5%\n", - "
 
\n", - "
2013-08-0122260.5%\n", - "
 
\n", - "
2013-06-0122180.5%\n", - "
 
\n", - "
2013-07-0122170.5%\n", - "
 
\n", - "
2014-05-0120570.5%\n", - "
 
\n", - "
2013-05-0120180.5%\n", - "
 
\n", - "
2005-06-0119560.5%\n", - "
 
\n", - "
2004-06-0119160.4%\n", - "
 
\n", - "
Other values (542)30967072.4%\n", - "
 
\n", - "
(Missing)9662222.6%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

SALE_VALUE
\n", - " Numeric\n", - "

\n", - "
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count40903
Unique (%)9.6%
Missing (%)0.0%
Missing (n)0
Infinite (%)0.0%
Infinite (n)0
\n", - "\n", - "
\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Mean212720
Minimum0
Maximum253490000
Zeros (%)22.9%
\n", - "
\n", - "
\n", - "
\n", - "
\n", - " \n", - "\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - "
\n", - "
\n", - "
\n", - "

Quantile statistics

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Minimum0
5-th percentile0
Q133278
Median132500
Q3230000
95-th percentile540000
Maximum253490000
Range253490000
Interquartile range196720
\n", - "
\n", - "
\n", - "

Descriptive statistics

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Standard deviation1269600
Coef of variation5.9684
Kurtosis12880
Mean212720
MAD186400
Skewness91.079
Sum90992000000
Variance1611800000000
Memory size3.3 MiB
\n", - "
\n", - "
\n", - "
\n", - " \n", - "
\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
0.09786222.9%\n", - "
 
\n", - "
150000.019430.5%\n", - "
 
\n", - "
200000.018180.4%\n", - "
 
\n", - "
175000.018080.4%\n", - "
 
\n", - "
160000.016840.4%\n", - "
 
\n", - "
180000.016680.4%\n", - "
 
\n", - "
165000.016590.4%\n", - "
 
\n", - "
225000.016290.4%\n", - "
 
\n", - "
210000.015540.4%\n", - "
 
\n", - "
125000.015340.4%\n", - "
 
\n", - "
Other values (40893)31460373.5%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "

Minimum 5 values

\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
0.09786222.9%\n", - "
 
\n", - "
1.0440.0%\n", - "
 
\n", - "
3.020.0%\n", - "
 
\n", - "
10.020.0%\n", - "
 
\n", - "
100.0290.0%\n", - "
 
\n", - "
\n", - "

Maximum 5 values

\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
174000000.010.0%\n", - "
 
\n", - "
180000000.010.0%\n", - "
 
\n", - "
208711453.010.0%\n", - "
 
\n", - "
245000000.010.0%\n", - "
 
\n", - "
253486470.010.0%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

SCHOOL_DST
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count24
Unique (%)0.0%
Missing (%)0.3%
Missing (n)1425
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
001\n", - "
\n", - " 129308\n", - "
\n", - " \n", - "
279\n", - "
\n", - " 49461\n", - "
\n", - " \n", - "
281\n", - "
\n", - "  \n", - "
\n", - " 34268\n", - "
Other values (20)\n", - "
\n", - " 213300\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
00112930830.2%\n", - "
 
\n", - "
2794946111.6%\n", - "
 
\n", - "
281342688.0%\n", - "
 
\n", - "
271311157.3%\n", - "
 
\n", - "
270250845.9%\n", - "
 
\n", - "
284240085.6%\n", - "
 
\n", - "
272214615.0%\n", - "
 
\n", - "
283170274.0%\n", - "
 
\n", - "
011168033.9%\n", - "
 
\n", - "
273155243.6%\n", - "
 
\n", - "
Other values (13)6227814.6%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

SPEC_ASSES
\n", - " Numeric\n", - "

\n", - "
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count4282
Unique (%)1.0%
Missing (%)0.0%
Missing (n)0
Infinite (%)0.0%
Infinite (n)0
\n", - "\n", - "
\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Mean142.82
Minimum0
Maximum749610
Zeros (%)83.9%
\n", - "
\n", - "
\n", - "
\n", - "
\n", - " \n", - "\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - "
\n", - "
\n", - "
\n", - "

Quantile statistics

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Minimum0
5-th percentile0
Q10
Median0
Q30
95-th percentile517
Maximum749610
Range749610
Interquartile range0
\n", - "
\n", - "
\n", - "

Descriptive statistics

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Standard deviation2642.1
Coef of variation18.5
Kurtosis27334
Mean142.82
MAD244.36
Skewness134.05
Sum61093000
Variance6980800
Memory size3.3 MiB
\n", - "
\n", - "
\n", - "
\n", - " \n", - "
\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
0.035899283.9%\n", - "
 
\n", - "
228.010240.2%\n", - "
 
\n", - "
222.08760.2%\n", - "
 
\n", - "
193.05280.1%\n", - "
 
\n", - "
298.05020.1%\n", - "
 
\n", - "
220.04760.1%\n", - "
 
\n", - "
301.04420.1%\n", - "
 
\n", - "
313.04390.1%\n", - "
 
\n", - "
304.04330.1%\n", - "
 
\n", - "
121.04310.1%\n", - "
 
\n", - "
Other values (4272)6361914.9%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "

Minimum 5 values

\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
0.035899283.9%\n", - "
 
\n", - "
1.010.0%\n", - "
 
\n", - "
2.01810.0%\n", - "
 
\n", - "
3.01870.0%\n", - "
 
\n", - "
4.0900.0%\n", - "
 
\n", - "
\n", - "

Maximum 5 values

\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
368367.010.0%\n", - "
 
\n", - "
392213.010.0%\n", - "
 
\n", - "
534273.010.0%\n", - "
 
\n", - "
547586.010.0%\n", - "
 
\n", - "
749606.010.0%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

STREETNAME
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count7387
Unique (%)1.7%
Missing (%)0.0%
Missing (n)0
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
ADDRESS UNASSIGNED\n", - "
\n", - "  \n", - "
\n", - " 11598\n", - "
YORK AVE S\n", - "
\n", - "  \n", - "
\n", - " 2338\n", - "
11TH AVE S\n", - "
\n", - "  \n", - "
\n", - " 2205\n", - "
Other values (7384)\n", - "
\n", - " 411621\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
ADDRESS UNASSIGNED115982.7%\n", - "
 
\n", - "
YORK AVE S23380.5%\n", - "
 
\n", - "
11TH AVE S22050.5%\n", - "
 
\n", - "
PORTLAND AVE S19490.5%\n", - "
 
\n", - "
3RD AVE S16820.4%\n", - "
 
\n", - "
10TH AVE S15470.4%\n", - "
 
\n", - "
BRYANT AVE S15280.4%\n", - "
 
\n", - "
LYNDALE AVE S15020.4%\n", - "
 
\n", - "
15TH AVE S13220.3%\n", - "
 
\n", - "
PARK AVE12970.3%\n", - "
 
\n", - "
Other values (7377)40079493.7%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

STREETTYPE
\n", - " Constant\n", - "

\n", - "
\n", - "

This variable is constant and should be ignored for analysis

\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Constant value
\n", - "
\n", - "
\n", - "
\n", - "

SUFFIX_DIR
\n", - " Constant\n", - "

\n", - "
\n", - "

This variable is constant and should be ignored for analysis

\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Constant value
\n", - "
\n", - "
\n", - "
\n", - "

Shape_Area
\n", - " Highly correlated\n", - "

\n", - "
\n", - "

This variable is highly correlated with ACRES_POLY and should be ignored for analysis

\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Correlation1
\n", - "
\n", - "
\n", - "
\n", - "

Shape_Le_1
\n", - " Numeric\n", - "

\n", - "
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count364358
Unique (%)85.2%
Missing (%)0.0%
Missing (n)0
Infinite (%)0.0%
Infinite (n)0
\n", - "\n", - "
\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Mean217.78
Minimum0.91772
Maximum35812
Zeros (%)0.0%
\n", - "
\n", - "
\n", - "
\n", - "
\n", - " \n", - "\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - "
\n", - "
\n", - "
\n", - "

Quantile statistics

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Minimum0.91772
5-th percentile73.833
Q1108.26
Median136.39
Q3201.33
95-th percentile638.25
Maximum35812
Range35811
Interquartile range93.065
\n", - "
\n", - "
\n", - "

Descriptive statistics

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Standard deviation283.67
Coef of variation1.3026
Kurtosis1496
Mean217.78
MAD140.25
Skewness18.321
Sum93158000
Variance80470
Memory size3.3 MiB
\n", - "
\n", - "
\n", - "
\n", - " \n", - "
\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
471.8688742358130.2%\n", - "
 
\n", - "
460.3048712816170.1%\n", - "
 
\n", - "
296.9482955566140.1%\n", - "
 
\n", - "
390.5042184715760.1%\n", - "
 
\n", - "
331.0663874825750.1%\n", - "
 
\n", - "
1748.673375685550.1%\n", - "
 
\n", - "
436.9669413525100.1%\n", - "
 
\n", - "
509.5613667854910.1%\n", - "
 
\n", - "
417.3797863544830.1%\n", - "
 
\n", - "
309.0485655844660.1%\n", - "
 
\n", - "
Other values (364348)42206298.7%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "

Minimum 5 values

\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
0.91771582759910.0%\n", - "
 
\n", - "
0.9404682408610.0%\n", - "
 
\n", - "
0.9404746110110.0%\n", - "
 
\n", - "
0.94048779372110.0%\n", - "
 
\n", - "
0.94048825509210.0%\n", - "
 
\n", - "
\n", - "

Maximum 5 values

\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
12569.960754210.0%\n", - "
 
\n", - "
16203.484260410.0%\n", - "
 
\n", - "
28170.107820110.0%\n", - "
 
\n", - "
35493.803994210.0%\n", - "
 
\n", - "
35811.803419410.0%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

Shape_Leng
\n", - " Highly correlated\n", - "

\n", - "
\n", - "

This variable is highly correlated with Shape_Le_1 and should be ignored for analysis

\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Correlation1
\n", - "
\n", - "
\n", - "
\n", - "

TAX_ADD_L2
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count54604
Unique (%)12.8%
Missing (%)0.4%
Missing (n)1691
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
MAPLE GROVE MN 55311\n", - "
\n", - "  \n", - "
\n", - " 10095\n", - "
EDEN PRAIRIE MN 55347\n", - "
\n", - "  \n", - "
\n", - " 9201\n", - "
MAPLE GROVE MN 55369\n", - "
\n", - "  \n", - "
\n", - " 8965\n", - "
Other values (54600)\n", - "
\n", - " 397810\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
MAPLE GROVE MN 55311100952.4%\n", - "
 
\n", - "
EDEN PRAIRIE MN 5534792012.2%\n", - "
 
\n", - "
MAPLE GROVE MN 5536989652.1%\n", - "
 
\n", - "
BROOKLYN PARK MN 5544382201.9%\n", - "
 
\n", - "
RICHFIELD MN 5542382151.9%\n", - "
 
\n", - "
MINNETONKA MN 5534577501.8%\n", - "
 
\n", - "
CHAMPLIN MN 5531667471.6%\n", - "
 
\n", - "
PLYMOUTH MN 5544766711.6%\n", - "
 
\n", - "
MINNEAPOLIS MN 5540664881.5%\n", - "
 
\n", - "
BLOOMINGTON MN 5543163021.5%\n", - "
 
\n", - "
Other values (54593)34741781.2%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

TAX_ADD_L3
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count3193
Unique (%)5.1%
Missing (%)85.5%
Missing (n)365597
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
MINNEAPOLIS MN 55401\n", - "
\n", - "  \n", - "
\n", - " 3593\n", - "
MAPLE GROVE MN 55311\n", - "
\n", - "  \n", - "
\n", - " 1784\n", - "
EDEN PRAIRIE MN 55347\n", - "
\n", - "  \n", - "
\n", - " 1514\n", - "
Other values (3189)\n", - "
\n", - "  \n", - "
\n", - " 55274\n", - "
(Missing)\n", - "
\n", - " 365597\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
MINNEAPOLIS MN 5540135930.8%\n", - "
 
\n", - "
MAPLE GROVE MN 5531117840.4%\n", - "
 
\n", - "
EDEN PRAIRIE MN 5534715140.4%\n", - "
 
\n", - "
MINNEAPOLIS MN 5541914120.3%\n", - "
 
\n", - "
MINNEAPOLIS MN 5540613230.3%\n", - "
 
\n", - "
PLYMOUTH MN 5544612680.3%\n", - "
 
\n", - "
RICHFIELD MN 5542312610.3%\n", - "
 
\n", - "
BROOKLYN PARK MN 5544311740.3%\n", - "
 
\n", - "
MAPLE GROVE MN 5536910980.3%\n", - "
 
\n", - "
MINNEAPOLIS MN 5541710880.3%\n", - "
 
\n", - "
Other values (3182)4665010.9%\n", - "
 
\n", - "
(Missing)36559785.5%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

TAX_CAPAC
\n", - " Highly correlated\n", - "

\n", - "
\n", - "

This variable is highly correlated with EMV_TOTAL and should be ignored for analysis

\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Correlation0.9882
\n", - "
\n", - "
\n", - "
\n", - "

TAX_EXEMPT
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count2
Unique (%)0.0%
Missing (%)0.0%
Missing (n)0
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
N\n", - "
\n", - " 409906\n", - "
\n", - " \n", - "
Y\n", - "
\n", - "  \n", - "
\n", - " 17856\n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
N40990695.8%\n", - "
 
\n", - "
Y178564.2%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

TORRENS
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count3
Unique (%)0.0%
Missing (%)0.0%
Missing (n)0
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
A\n", - "
\n", - " 231844\n", - "
\n", - " \n", - "
T\n", - "
\n", - " 186652\n", - "
\n", - " \n", - "
B\n", - "
\n", - "  \n", - "
\n", - " 9266\n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
A23184454.2%\n", - "
 
\n", - "
T18665243.6%\n", - "
 
\n", - "
B92662.2%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

TOTAL_TAX
\n", - " Highly correlated\n", - "

\n", - "
\n", - "

This variable is highly correlated with TAX_CAPAC and should be ignored for analysis

\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Correlation0.99701
\n", - "
\n", - "
\n", - "
\n", - "

UNIT_INFO
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count6850
Unique (%)13.3%
Missing (%)88.0%
Missing (n)376292
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
2\n", - "
\n", - "  \n", - "
\n", - " 600\n", - "
1\n", - "
\n", - "  \n", - "
\n", - " 599\n", - "
3\n", - "
\n", - "  \n", - "
\n", - " 551\n", - "
Other values (6846)\n", - "
\n", - "  \n", - "
\n", - " 49720\n", - "
(Missing)\n", - "
\n", - " 376292\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
26000.1%\n", - "
 
\n", - "
15990.1%\n", - "
 
\n", - "
35510.1%\n", - "
 
\n", - "
2015480.1%\n", - "
 
\n", - "
1015420.1%\n", - "
 
\n", - "
2025330.1%\n", - "
 
\n", - "
45320.1%\n", - "
 
\n", - "
1025190.1%\n", - "
 
\n", - "
2034600.1%\n", - "
 
\n", - "
2044540.1%\n", - "
 
\n", - "
Other values (6839)4613210.8%\n", - "
 
\n", - "
(Missing)37629288.0%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

USE1_DESC
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count46
Unique (%)0.0%
Missing (%)0.3%
Missing (n)1425
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
Residential\n", - "
\n", - " 265117\n", - "
\n", - " \n", - "
Condominium\n", - "
\n", - "  \n", - "
\n", - " 43396\n", - "
Townhouse\n", - "
\n", - "  \n", - "
\n", - " 24692\n", - "
Other values (42)\n", - "
\n", - " 93132\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
Residential26511762.0%\n", - "
 
\n", - "
Condominium4339610.1%\n", - "
 
\n", - "
Townhouse246925.8%\n", - "
 
\n", - "
Vacant Land - Residential139893.3%\n", - "
 
\n", - "
Double Bungalow127373.0%\n", - "
 
\n", - "
Condo Garage/Miscellaneous123302.9%\n", - "
 
\n", - "
Commercial106422.5%\n", - "
 
\n", - "
Residential Lakeshore77751.8%\n", - "
 
\n", - "
Vacant Land - Commercial65691.5%\n", - "
 
\n", - "
Apartment46941.1%\n", - "
 
\n", - "
Other values (35)243965.7%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

USE2_DESC
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count35
Unique (%)0.8%
Missing (%)99.0%
Missing (n)423364
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
Commercial\n", - "
\n", - "  \n", - "
\n", - " 1019\n", - "
Farm\n", - "
\n", - "  \n", - "
\n", - " 763\n", - "
Vacant Land - Residential\n", - "
\n", - "  \n", - "
\n", - " 578\n", - "
Other values (31)\n", - "
\n", - "  \n", - "
\n", - " 2038\n", - "
(Missing)\n", - "
\n", - " 423364\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
Commercial10190.2%\n", - "
 
\n", - "
Farm7630.2%\n", - "
 
\n", - "
Vacant Land - Residential5780.1%\n", - "
 
\n", - "
Vacant Land - Commercial3320.1%\n", - "
 
\n", - "
Residential3090.1%\n", - "
 
\n", - "
Apartment3020.1%\n", - "
 
\n", - "
Vacant Land - Rural Farm2130.0%\n", - "
 
\n", - "
Vacant Land - Rural Residential2000.0%\n", - "
 
\n", - "
Agricultural Preserve1700.0%\n", - "
 
\n", - "
Vacant Land - Industrial1080.0%\n", - "
 
\n", - "
Other values (24)4040.1%\n", - "
 
\n", - "
(Missing)42336499.0%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

USE3_DESC
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count19
Unique (%)2.5%
Missing (%)99.8%
Missing (n)427010
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
Vacant Land - Rural Farm\n", - "
\n", - "  \n", - "
\n", - " 218\n", - "
Farm\n", - "
\n", - "  \n", - "
\n", - " 167\n", - "
Vacant Land - Rural Residential\n", - "
\n", - "  \n", - "
\n", - " 104\n", - "
Other values (15)\n", - "
\n", - "  \n", - "
\n", - " 263\n", - "
(Missing)\n", - "
\n", - " 427010\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
Vacant Land - Rural Farm2180.1%\n", - "
 
\n", - "
Farm1670.0%\n", - "
 
\n", - "
Vacant Land - Rural Residential1040.0%\n", - "
 
\n", - "
Residential710.0%\n", - "
 
\n", - "
Commercial710.0%\n", - "
 
\n", - "
Agricultural Preserve640.0%\n", - "
 
\n", - "
Vacant Land - Commercial230.0%\n", - "
 
\n", - "
Vacant Land - Residential90.0%\n", - "
 
\n", - "
Vacant Land - Industrial60.0%\n", - "
 
\n", - "
Apartment50.0%\n", - "
 
\n", - "
Other values (8)140.0%\n", - "
 
\n", - "
(Missing)42701099.8%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

USE4_DESC
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count11
Unique (%)5.3%
Missing (%)100.0%
Missing (n)427555
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
Vacant Land - Rural Farm\n", - "
\n", - "  \n", - "
\n", - " 118\n", - "
Residential\n", - "
\n", - "  \n", - "
\n", - " 39\n", - "
Vacant Land - Rural Residential\n", - "
\n", - "  \n", - "
\n", - " 20\n", - "
Other values (7)\n", - "
\n", - "  \n", - "
\n", - " 30\n", - "
(Missing)\n", - "
\n", - " 427555\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
Vacant Land - Rural Farm1180.0%\n", - "
 
\n", - "
Residential390.0%\n", - "
 
\n", - "
Vacant Land - Rural Residential200.0%\n", - "
 
\n", - "
Farm120.0%\n", - "
 
\n", - "
Vacant Land - Commercial60.0%\n", - "
 
\n", - "
Commercial60.0%\n", - "
 
\n", - "
Agricultural Preserve30.0%\n", - "
 
\n", - "
Vacant Land - Industrial10.0%\n", - "
 
\n", - "
Golf Course - Reduced Rate10.0%\n", - "
 
\n", - "
Farm-Hmstd (House & 1 Acre)10.0%\n", - "
 
\n", - "
(Missing)427555100.0%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

WSHD_DIST
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count9
Unique (%)0.0%
Missing (%)18.1%
Missing (n)77315
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
Minnehaha Creek\n", - "
\n", - " 113041\n", - "
\n", - " \n", - "
Middle Mississippi\n", - "
\n", - " 72064\n", - "
\n", - " \n", - "
Shingle Creek\n", - "
\n", - " 47481\n", - "
\n", - " \n", - "
Other values (5)\n", - "
\n", - " 117861\n", - "
\n", - " \n", - "
(Missing)\n", - "
\n", - " 77315\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
Minnehaha Creek11304126.4%\n", - "
 
\n", - "
Middle Mississippi7206416.8%\n", - "
 
\n", - "
Shingle Creek4748111.1%\n", - "
 
\n", - "
Nine Mile Creek4319710.1%\n", - "
 
\n", - "
Bassett Creek373048.7%\n", - "
 
\n", - "
Riley Purgatory Bluff272876.4%\n", - "
 
\n", - "
Lower Minnesota River94992.2%\n", - "
 
\n", - "
Rice Creek5740.1%\n", - "
 
\n", - "
(Missing)7731518.1%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

XUSE1_DESC
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count39
Unique (%)0.2%
Missing (%)95.9%
Missing (n)410121
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
MUNICIPAL PROPERTY\n", - "
\n", - "  \n", - "
\n", - " 7945\n", - "
HIGHWAY RIGHT-OF-WAY\n", - "
\n", - "  \n", - "
\n", - " 2713\n", - "
CHURCHES AND CHURCH PROPERTY\n", - "
\n", - "  \n", - "
\n", - " 1283\n", - "
Other values (35)\n", - "
\n", - "  \n", - "
\n", - " 5700\n", - "
(Missing)\n", - "
\n", - " 410121\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
MUNICIPAL PROPERTY79451.9%\n", - "
 
\n", - "
HIGHWAY RIGHT-OF-WAY27130.6%\n", - "
 
\n", - "
CHURCHES AND CHURCH PROPERTY12830.3%\n", - "
 
\n", - "
TAX FORFEIT10340.2%\n", - "
 
\n", - "
CHARITABLE INSTITUTIONS6020.1%\n", - "
 
\n", - "
COUNTY PROPERTY5870.1%\n", - "
 
\n", - "
SPECIAL TAXING DISTRICTS5490.1%\n", - "
 
\n", - "
PUBLIC K-12 SCHOOL PROPERTY4050.1%\n", - "
 
\n", - "
HENNEPIN COUNTY REGIONAL RAIL AUTHORITY3820.1%\n", - "
 
\n", - "
STATE PROPERTY2830.1%\n", - "
 
\n", - "
Other values (28)18580.4%\n", - "
 
\n", - "
(Missing)41012195.9%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

XUSE2_DESC
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count26
Unique (%)1.9%
Missing (%)99.7%
Missing (n)426421
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
WETLANDS\n", - "
\n", - "  \n", - "
\n", - " 1118\n", - "
CHURCHES AND CHURCH PROPERTY\n", - "
\n", - "  \n", - "
\n", - " 78\n", - "
CHARITABLE INSTITUTIONS\n", - "
\n", - "  \n", - "
\n", - " 49\n", - "
Other values (22)\n", - "
\n", - "  \n", - "
\n", - " 96\n", - "
(Missing)\n", - "
\n", - " 426421\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
WETLANDS11180.3%\n", - "
 
\n", - "
CHURCHES AND CHURCH PROPERTY780.0%\n", - "
 
\n", - "
CHARITABLE INSTITUTIONS490.0%\n", - "
 
\n", - "
PUBLIC HOSPITALS250.0%\n", - "
 
\n", - "
HENNEPIN COUNTY REGIONAL RAIL AUTHORITY170.0%\n", - "
 
\n", - "
HRA PROPERTY \"PILT\" (5% IN LIEU)70.0%\n", - "
 
\n", - "
MUNICIPAL PROPERTY70.0%\n", - "
 
\n", - "
PRIVATE HOSPITALS70.0%\n", - "
 
\n", - "
COUNTY PROPERTY40.0%\n", - "
 
\n", - "
PUBLIC CEMETERIES40.0%\n", - "
 
\n", - "
Other values (15)250.0%\n", - "
 
\n", - "
(Missing)42642199.7%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

XUSE3_DESC
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count10
Unique (%)4.0%
Missing (%)99.9%
Missing (n)427512
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
WETLANDS\n", - "
\n", - "  \n", - "
\n", - " 236\n", - "
CHARITABLE INSTITUTIONS\n", - "
\n", - "  \n", - "
\n", - " 5\n", - "
NURSING HOMES\n", - "
\n", - "  \n", - "
\n", - " 2\n", - "
Other values (6)\n", - "
\n", - "  \n", - "
\n", - " 7\n", - "
(Missing)\n", - "
\n", - " 427512\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
WETLANDS2360.1%\n", - "
 
\n", - "
CHARITABLE INSTITUTIONS50.0%\n", - "
 
\n", - "
NURSING HOMES20.0%\n", - "
 
\n", - "
HRA PROPERTY \"PILT\" (5% IN LIEU)20.0%\n", - "
 
\n", - "
PUBLIC HOSPITALS10.0%\n", - "
 
\n", - "
PRIVATE ACADEMIES, COLLEGES & UNIVERSITIES10.0%\n", - "
 
\n", - "
POLLUTION CONTROL10.0%\n", - "
 
\n", - "
MUNICIPAL PROPERTY10.0%\n", - "
 
\n", - "
CHURCHES AND CHURCH PROPERTY10.0%\n", - "
 
\n", - "
(Missing)42751299.9%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

XUSE4_DESC
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count4
Unique (%)11.1%
Missing (%)100.0%
Missing (n)427726
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
WETLANDS\n", - "
\n", - "  \n", - "
\n", - " 34\n", - "
POLLUTION CONTROL\n", - "
\n", - "  \n", - "
\n", - " 1\n", - "
CHARITABLE INSTITUTIONS\n", - "
\n", - "  \n", - "
\n", - " 1\n", - "
(Missing)\n", - "
\n", - " 427726\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
WETLANDS340.0%\n", - "
 
\n", - "
POLLUTION CONTROL10.0%\n", - "
 
\n", - "
CHARITABLE INSTITUTIONS10.0%\n", - "
 
\n", - "
(Missing)427726100.0%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

YEAR_BUILT
\n", - " Numeric\n", - "

\n", - "
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count163
Unique (%)0.0%
Missing (%)0.0%
Missing (n)0
Infinite (%)0.0%
Infinite (n)0
\n", - "\n", - "
\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Mean1818.9
Minimum0
Maximum2014
Zeros (%)7.3%
\n", - "
\n", - "
\n", - "
\n", - "
\n", - " \n", - "\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - "
\n", - "
\n", - "
\n", - "

Quantile statistics

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Minimum0
5-th percentile0
Q11931
Median1962
Q31985
95-th percentile2005
Maximum2014
Range2014
Interquartile range54
\n", - "
\n", - "
\n", - "

Descriptive statistics

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Standard deviation512.72
Coef of variation0.28189
Kurtosis8.6321
Mean1818.9
MAD267
Skewness-3.2537
Sum778056932
Variance262880
Memory size3.3 MiB
\n", - "
\n", - "
\n", - "
\n", - " \n", - "
\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
0313967.3%\n", - "
 
\n", - "
1900111422.6%\n", - "
 
\n", - "
198680931.9%\n", - "
 
\n", - "
195573921.7%\n", - "
 
\n", - "
195073681.7%\n", - "
 
\n", - "
197870791.7%\n", - "
 
\n", - "
195470761.7%\n", - "
 
\n", - "
198366361.6%\n", - "
 
\n", - "
197765351.5%\n", - "
 
\n", - "
197963961.5%\n", - "
 
\n", - "
Other values (153)32864976.8%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "

Minimum 5 values

\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
0313967.3%\n", - "
 
\n", - "
184310.0%\n", - "
 
\n", - "
184710.0%\n", - "
 
\n", - "
185040.0%\n", - "
 
\n", - "
185110.0%\n", - "
 
\n", - "
\n", - "

Maximum 5 values

\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
20109610.2%\n", - "
 
\n", - "
201110330.2%\n", - "
 
\n", - "
201214130.3%\n", - "
 
\n", - "
201317920.4%\n", - "
 
\n", - "
2014260.0%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

ZIP
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count78
Unique (%)0.0%
Missing (%)0.0%
Missing (n)0
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
00000\n", - "
\n", - "  \n", - "
\n", - " 13290\n", - "
55406\n", - "
\n", - "  \n", - "
\n", - " 13112\n", - "
55369\n", - "
\n", - "  \n", - "
\n", - " 13043\n", - "
Other values (75)\n", - "
\n", - " 388317\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
00000132903.1%\n", - "
 
\n", - "
55406131123.1%\n", - "
 
\n", - "
55369130433.0%\n", - "
 
\n", - "
55311128643.0%\n", - "
 
\n", - "
55416124382.9%\n", - "
 
\n", - "
55423119672.8%\n", - "
 
\n", - "
55418115952.7%\n", - "
 
\n", - "
55407115242.7%\n", - "
 
\n", - "
55347113262.6%\n", - "
 
\n", - "
55422109522.6%\n", - "
 
\n", - "
Other values (68)30565171.5%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

ZIP4
\n", - " Constant\n", - "

\n", - "
\n", - "

This variable is constant and should be ignored for analysis

\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Constant value
\n", - "
\n", - "
\n", - "
\n", - "

Sample

\n", - "
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ACRES_DEEDACRES_POLYAGPRE_ENRDAGPRE_EXPDAG_PRESERVBASEMENTBLDG_NUMBLOCKCITYCITY_USPSCOOLINGCOUNTY_IDDWELL_TYPEEMV_BLDGEMV_LANDEMV_TOTALFIN_SQ_FTGARAGEGARAGESQFTGREEN_ACREHEATINGHOMESTEADHOME_STYLELANDMARKLOTMULTI_USESNUM_UNITSOPEN_SPACEOWNER_MOREOWN_ADD_L1OWN_ADD_L2OWN_ADD_L3PARC_CODEPLAT_NAMEPREFIXTYPEPREFIX_DIRSALE_DATESALE_VALUESCHOOL_DSTSPEC_ASSESSTREETNAMESTREETTYPESUFFIX_DIRShape_AreaShape_Le_1Shape_LengTAX_ADD_L2TAX_ADD_L3TAX_CAPACTAX_EXEMPTTORRENSTOTAL_TAXUNIT_INFOUSE1_DESCUSE2_DESCUSE3_DESCUSE4_DESCWSHD_DISTXUSE1_DESCXUSE2_DESCXUSE3_DESCXUSE4_DESCYEAR_BUILTZIPZIP4
PIN
053-01027241100030.01.83NaNNaNNNaN2901NaNBLOOMINGTONBLOOMINGTONNaN053NaN393500.01347400.01740900.00.0NaNNaNNNaNNNaNNaNNaNNaNNaNNNaNNaNNaNNaN0UNPLATTED 01 027 24NaNNaN2005-05-01925000.02710.078TH ST ENaNNaN7416.662441395.6454161298.619232BLOOMINGTON MN 55425NaN34068.0NT72207.0NaNIndustrialNaNNaNNaNLower Minnesota RiverNaNNaNNaNNaN196555425NaN
053-01027241100040.01.90NaNNaNNNaN7800001BLOOMINGTONBLOOMINGTONNaN053NaN160500.01406000.01566500.00.0NaNNaNNNaNNNaNNaN001NaNNaNNNaNNaNNaNNaN0METRO OFFICE PARKNaNNaN1980-02-011950000.02710.0METRO PKWYNaNNaN7676.706709422.8940441388.057469BLOOMINGTON MN 55425NaN30580.0NT64822.0NaNCommercialNaNNaNNaNLower Minnesota RiverNaNNaNNaNNaN196855425NaN
053-01027241100050.01.58NaNNaNNNaN7850001BLOOMINGTONBLOOMINGTONNaN053NaN745200.01172000.01917200.00.0NaNNaNNNaNNNaNNaN002NaNNaNNNaNNaNNaNNaN0METRO OFFICE PARKNaNNaN2006-08-0123000000.02710.0METRO PKWYNaNNaN6399.614332426.5576851400.082610BLOOMINGTON MN 55439NaN38344.0NB81185.0NaNCommercialNaNNaNNaNLower Minnesota RiverNaNNaNNaNNaN196855425NaN
053-01027241100060.01.78NaNNaNNNaN2950001BLOOMINGTONBLOOMINGTONNaN053NaN560100.01315800.01875900.00.0NaNNaNNNaNNNaNNaN003NaNNaNNNaNNaNNaNNaN0METRO OFFICE PARKNaNNaNNaN0.02710.0METRO DRNaNNaN7184.857320421.5020251383.510634BLOOMINGTON MN 55439NaN37518.0NB79436.0NaNCommercialNaNNaNNaNLower Minnesota RiverNaNNaNNaNNaN196955425NaN
053-01027241100080.01.90NaNNaNNNaN7801001BLOOMINGTONBLOOMINGTONNaN053NaN509000.01406400.01915400.00.0NaNNaNNNaNNNaNNaN001NaNNaNNNaNNaNNaNNaN0METRO OFFICE PARK 2ND ADDNNaNNaNNaN0.02713074.0METRO PKWYNaNNaN7681.696608422.9893081388.369487BLOOMINGTON MN 55439NaN38308.0NT84182.0NaNCommercialNaNNaNNaNLower Minnesota RiverNaNNaNNaNNaN196955425NaN
\n", - "
\n", - "
\n", - "
" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "import pandas_profiling\n", "\n", @@ -10180,7 +714,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:14:09.773774", @@ -10206,7 +740,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:14:20.512968", @@ -10214,18 +748,7 @@ }, "collapsed": false }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACCEAAANNCAYAAACj+faWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3XmYXFWZP/C3OiELgiCyBYYgAkKILAYQwYUEiAgBhxEU\nnEdnGPZKazCDM/wQV0TQEVCEDiiCoMiIgwoiBgTSoA+yCAYi22AIsohCgAgSwpau3x9Mp9Ohk1S6\n761zqurzeR4eqqur731z6ty6de/93nMqtVqtFgAAAAAAAAAAQ9SRugAAAAAAAAAAoDUIIQAAAAAA\nAAAAhRBCAAAAAAAAAAAKIYQAAAAAAAAAABRCCAEAAAAAAAAAKIQQAgAAAAAAAABQCCEEAAAAAAAA\nAKAQQggAAAAAAAAAQCGEEAAAAAAAAACAQgghJHTyySfH1ltvHZdffnnqUgAAAAAAAABgyIQQErnu\nuuvikksuiUqlkroUAAAAAAAAACiEEEICs2bNiunTp0etVktdCgAAAAAAAAAUZnjqAtpJrVaLs846\nK84999yo1WpRq9WMhAAAAAAAAABAyzASQoP85je/iQ9+8IMxY8aMqNVqMX78+NQlAQAAAAAAAECh\njITQIEceeWRUKpVYbbXVolqtxv777x+TJ09OXRYAAAAAAAAAFEYIoUE6Ojpi8uTJ8alPfSo222yz\n+POf/5y6JAAAAAAAAAAolBBCg8ycOTM23XTT1GUAAAAAAAAAQGk6UhfQLgQQAAAAAAAAAGh1QggA\nAAAAAAAAQCGEEAAAAAAAAACAQgghAAAAAAAAAACFGJ66AIZm4sSJSdc/bty4OOeccyIiolqtxn33\n3deWNSxbR61WS1JDRESlUomIfNpCv8ivDv0z/XuSQw251pGDlNtIRPrtJJfPi4j0bRGRX//s6elJ\nuv6OjtcyzDn0z1z6RQ5t0e79IiK/90RbpK9BHfnVkEsdOdSgjvxqyKWOHGpYtg7nEPI6HshFux8r\nLt0vpk6dmrR/zpgxI8m6c6Z/5rcvSVlHRMT//M+Vsd56ayZbf6u4/PLL48wzz0xdRja6u7tTl5A9\nIQQAAKhDDidgOzs7sziBQF70C4DBceEGgKGyLwHaxSuvvJK6hGx8/OMfT11CUxBCAACAOvQGAVLq\n6upKXQIAAAAAbWbChAmpS8jCeuutF1OmTEldRlMQQgAAgDoYCcEd7wAAAADtaPPNN892CoJTTjkl\nrr322oasa/78+fHUU0/FBhts0JD1NTMhBAAAqEMOIyEY6hMAipN6Hm/hPgAAGLrDDjss5s2bFw8+\n+GBD1veJT3wi20BGToQQAACgDjmMhOBiCQMxTQfA4Aj3AQBA89twww3ju9/97pKfJ02alLAaegkh\nAAAANDHTdAAAAAC8Zptttol77723tOV/8IMfLG3ZraQjdQHtrFKpZDGsLwAAAAAAAECz+9znPlfq\n8h999NFSl98qjISQyMYbb5zsbiUAAFZdDuFRw+4DAAAAwPJtuOGG0d3dveTn++67L6ZOnVrIstda\na6048cQTC1lWqxNCAACAOtRqtWTr7g1AGHYfAAAAAPrcdtttcfzxxzdkXc8++2wcdNBBQ1rGm970\npjjjjDPiLW95SzFFZUoIAaBBUk7BksPduwBAOWbMmJG6BICmNHXqVOE+oG6pPzN85wMgJz09PfHN\nb34zrrzyytSlNJ0FCxbEv/3bv8XBBx8cw4YNi9GjR8dHPvKRGDFiROrSCiWEAJTKsNF9arVasrto\nU969C9Aqcgh02a8ykNT7+Ry2DQCgHKkuvOcY1BECAIA+f/nLXwQQhujSSy9d8vj888+Pa6+9NoYP\nb51L963zL4GMOEDrk2rY6BzbIhf6JzmrVqvJ+2fqu1ty2k60RX859E/TMQBAcVxQhJWznQAAA9lo\no43iqKOOiu985zupS2kZkydPXvL4wAMPjKOOOqqpR0cQQgBK5WAVAIpjv8pAhFMAAACARqpUKvHR\nj340PvrRjzZ83RdddFFceOGFDV9vI/3kJz+JbbfdNnbffffUpQyaEAKUwFDJAAAAAEArymU6LmFY\ngPbT09MT//M//5O6jNK94Q1viPHjx6cuY0iEEKAEuXwRz4Gh/wGgOKbIAAAAAKBddXR0xIQJE+I3\nv/lN6lKGrLu7O3UJpRJCAEpl2Oj8eE/IWQ4XOG0jfbRFf/onAADtxs0lDKRWqyVdf+8NYNVqVf8E\naDMvvfRSSwQQIiImTZq05PHEiRPj85//fEvd5CyEACVwgNZHW+THe0LOcjiB4E7zPtqiP/0zv/cE\nAIByCcEykFwukDg+AWg/PT09qUsoxc033xwvvfRSjBo1KnUphRFCgBI4QAMAAAAAAIDirLbaaqlL\nKMzIkSOjVqvFqFGj4tRTT22pAEKEEAKUwp3mAAAAAAAAUJyOjo7UJRTmpZdeioiIl19+OTo7O2PW\nrFnZjDZUBCEEKIGREMiZ/knOcghS2Ub6aIv+tAcAtBbTHAEAQP1efPHFWLhwYUQsf2qe3ueX/v3K\nXruiv63Vaq/7ux/+8IdxySWXLKnlhhtuqPNfkLfnnnsu1lprrdRlFEYIAQAAoIl1dXWlLgGgKQkY\nAgBAfe68886YPn166jJaVmdnZ0sFECKEEICSOakDQKvIYTg0+1UAACC1ge5KbaTeY7NqtWpKXIAG\neeSRR1KXkJXu7u7UJWRPCAEAAKCJdXZ2Gk4cAChFqmlLfMcAgLxMmTIl/vznP8ePf/zj1KXQJIQQ\ngFI5WAWgVaS826f3Th9zVwMA0EhG4gIAIiJuu+02AYT/M3LkyNQlNIWO1AUAAAAAAAAAkKe77747\ndQnZGDt2bOoSmoKREAAAAJqYOxQBAACAMq211lqpS8jGH//4x9QlNAUhBAAAqEPvlAgpudjMQEzT\nAQAAAJRpn332iTvvvDNuvvnm1KUkt9VWW6UuoSkIIQAAQB1qtVqydfcGIFxsBgAAAKDRXnzxxXj4\n4YdTl5GF//3f/41JkyYNaRlbbLFFbLjhhlGpVGLUqFFx5JFHxnrrrVdQhXkQQgBK5Y5NAFqFkRDI\nlX4BMDjCfQAMVbVatS8B2sKsWbPi8ccfT11Gy5g7d27MnTt3yc/XXnttXHPNNTFixIiEVRVLCAGg\nzaQ60ebAiHqkOnhfun86Gc3y5NA/AYDiCHHByjmHACumnwLt4v77709dQsvbe++9lzzeZJNN4qyz\nzoq11lorYUVDI4QAJXCABkArEMjIj/eEgegXAIOTcqqliDxGWYKVEdYBACIinnzyydQltJVHH300\nZs+eHRMnTkxdyqAJIQClEsgAAAAgR52dnUJcAABQh7POOis++9nPxs0335y6lLawxx57xC677JK6\njCERQoASSImTM/2TnOVwItY20kdb9Kc9AKC12LcDAEB9Ojo64pRTTkldRvT09MSee+6ZuoxSXHrp\npbH++uunLqMwQggAAAAAAAAALNeiRYtiwYIFEbH8qc2Wfn55j1f2+hW99pVXXlm1opvIwQcfvOTx\n8OHD48orr4xRo0YlrGhohBCgBKYg6OPOkvzon+SsWq0m75/mVu+jLfrL4fPTfhUAAEitUqmkLiEi\n8hhNEaBdXHzxxXH++eenLqNtvPrqq/GNb3wjTjjhhNSlDJoQApTABYI+OVywoT/9k5zlsN3aRvpo\ni/5yaA/BEAAAAAAabdasWalLaDv77bdf6hKGRAgBAAAAAACoy/KGyW6U3pEYchhNEaBdnHPOOfHx\nj3885s+fn7qUlvCTn/wk1llnndRllEoIAQAAAAAAqIvpGADaz8iRI+PHP/5x6jIGNGnSpKTr7+rq\nim222SZpDTkSQgAAgDrkcKIthykhyE9XV1fqEgAAaCNGQjASAtB+nn322Tj55JPj9ttvT11Kcm9+\n85vjsssuS11G9oQQAACgDilPtPWeZJs6dWqSk2wRTrTlrLOzU78AAAAASnPBBRcIIPyfAw44IHUJ\nTUEIAQAAoIkZCQEAAAAoU09PT+oSsvGzn/0sPvaxj6UuI3tCCAAAUIccpmNwsZmBGAkBAAAAKNPh\nhx8ejzzySMyZMyd1Kck988wzqUtoCkIIAABQhxymY3CxGQAAAIBG++tf/yqAsJQpU6ZEpVKJLbbY\nIk444YTYYIMNUpeUHSEEAAAAAAAAAAZ0+eWXpy4hKy+88EJERNx1111xyCGHrPLf77XXXrHrrrtG\nRMTw4cPj3e9+dwwbNqzQGlMTQgAAgDrkMB3DjBkzUpdAhvQLAAAAoExjxoxJXUJLue666+K66657\n3XOtFEQQQgBoM1OnTk0ylLdhvKlHtVpN3j9TbSPL1pEDbdGf/pnfewIAAABA+UaMGJG6hJa31157\nLXm8yy67xFe+8pWmDiUIIUAJXOQFAKBRhFMAAACAMm233XapS2grt956a3R1dcW0adNSlzJoQghQ\ngq6urtQlAAAAAAAAwJCNGTMm3va2t8UDDzyQupS2MWHChNQlDIkQApSgs7PTSAj/xxzFAFAc+1UG\nIgALAAAAlOnaa68VQCjZAQccEJMnT45arRZjx46NNddcM3VJQyKEACVwgaBPrVZLtu5KpZJs3QPJ\npV/kUgcMJIcglW2kj7boL4f+mXK/GpHfvhUAAGi8XI4LcjhmTT01Wg5tALSHESNGpC6h5U2bNi2b\nfWwRhBCAUhkVok/qg5Lc2gOg2eQQrEu1X42wL8mZfgEAQCPlEo5Oda5t6e/AQgBAuxg9enTqElra\nmmuuGa+88kpLhT2EEAAAAAAAgLrkcpemMCxA4+y9997xzDPPxA9+8IMBf79sQK335xUF15b+3fIe\nL6unp6euepvN3//+9xg+vLUu27fWvwbIjjRwHwdGAM0thxNt9qsMpKurK3UJAE3JaHXAqsjl7n/6\n5DBaXep9Se8xov4JlO2mm26K8847L3UZLaujoyNefvnlGDVqVOpSCiOEANAg1WrVCS4AoHCmYwAY\nHOE+YFW4yNonlwvepmPoo38CZXv++edTl9DSDjnkkJYKIEQIIQAly+FgAACK4C4b+1YAWksuF9EA\nACB3ixYtSl1Ctt7+9rfHWWedlbqM7AghAKXKJQ0MAEOVw4UC+1UAABrJzSUAQETEFltskbqELK22\n2mrxyU9+MnUZWRJCAAAAAKDt5BAwBACAZrDtttvG9ddfHz09PRGR93fp/fffv/CRGw4//PAYNmxY\nTJgwIbbaaqtCl92qhBCAUknMAwAAADQnI3EBAL06Ojqio6MjdRkrNX78+Lj99tsLXeb555+/5PGH\nPvQhox/UQQgBAADqkHLe6N50eapwX4SAHwCtJ+W+PSLvu8cAAICB3XbbbalLaApCCECpJOYBAADI\nUWdnp3AfAAA0uYULF8Z3v/vdmDNnTtRqtXjooYdKXd9TTz1V6vJbhRACUCrTMQAAAJCjrq6u1CUA\nAABDdM4558RVV13VsPW9+OKLDVtXMxNCAACAOuQwZLIRhhiIi2gAg5PDvh0AABiacePGNTSEQH2E\nEAAAoA4p543uvUiSaoShCKMMAQAAAJCfKVOmxOTJk2Px4sVRqVTinnvuiU9/+tOpy2p7QggAAABN\nzJzmAIOTMmAYYSQGAACay+233x533HHHkJbRiO/g8+fPL30dkyZNKnR5b33rW+P8888vdJmpCSEA\nAAAA0HaEAAAAoD6/+tWv4tRTT01dRsuaN29ePPLIIzF27NjUpRRGCAFKkMNwzbA8qYbydqck9ahW\nq8n7p+Hu+2iL/nx+kqsZM2akLgEAAABoYauvvnrqElreQw89JIQArJggADlzoYKc5XCh1TbSR1v0\npz3IlcAQwOD4/AQAgPq85z3viR/84Afx4IMPDnlZRV1D613O5z//+UKWl9pmm22WuoRCCSFACdwp\nSc70T3JmJIS8thNt0Z/PTwBoLQKGAABQn7lz58aRRx6ZuoyWVq1WY9y4cRER8cEPfjDe+973NvVN\nz0IIUAInMvpoi/x4T8hZDhdabSN9tEV/+icAtJaUUylGGEWR5iCICwBERHzmM59JXULLe+GFF+KO\nO+6IiIg77rgjTjnllNh1110TVzV4QghQAgdo5Ez/JGdGQshrO9EW/emf+b0nADAUQgCwckKwAEBE\nxH/8x3/Ef/7nf6Yuo6088MADQggAy+OCNwAAAAAAQPOaMGFCTJs2LW644YYVvm5lQd+h/j4iYvbs\n2St9TSsYPXp06hKGRAgBAAAAAAAAgAFdddVV8a1vfSt1GW2jUqnExIkTU5cxJEIIUAJD1ZEz/ZOc\n5TCCiW2kj7boT3sAAADkM51NDucQANrFsGHDUpfQ8rq7u1OXUCghBAAAAAAAAAAG9Pzzz6cuoeW0\nWuhgWR2pCwAAAAAAAAAgT3vvvXe8/e1vT11GS5k0adKS/84+++zU5RTOSAgAAAAAtJ1arZZ0/bkM\nZw6wqnL5/KxWq3Hfffc1fP3jxo0zFQTQdtZee+0466yzSl/PueeeG5deemnp68nNFVdcEUcccUSM\nGjUqdSmFEUIASmX+bABaRQ4XCuxXAaA4OezbIXdTp051kRcAaJh//dd/jYiI3/3ud0u+r1cqlX6P\nH3jggWT1leVLX/pSSwUQIoQQgJI5WAWgVaS826f3QCvVfjXCvhUAoB0JwQIAjTR69Og45phj4phj\njhn0Mrq6uuKyyy4rsKr+TjvttNhxxx1LW36rEEIAAABoYl1dXalLAAAAAMjCgw8+WPgyv//970et\nVot11lkn1lhjjcKX34qEEIBSScwD0CpyGLLZfpWBdHZ2GiEDACiFES4BgGYze/bswpd53XXXRaVS\niXe+852xzTbbFL78ViSEAJTKwSoArcJ0DPatAADtRggWAOC1kRAiIi666KLS1tHd3V3aslPoSF0A\nAAAAAAAAAAzVKaeckrqEQZk7d27qEgplJAQogbv/yZn+Sc6q1Wry/ulO8z7aoj+fnwAAAACQt2a9\nmP/QQw/FFltskbqMwgghQAkMVUfO9E9ylsOFVttIH23Rn/YAAAAAgLytvfbaqUsYlIkTJ6YuoVBC\nCAAAAAC0nVqtlnT9lUol6foBAKAVPfbYY6lLWGUXX3xxrLbaaqnLKJQQAgAAAABtRwgAAACa37x5\n8+Lwww9PXcaQfOxjH4urr746Ro4cmbqUwnSkLgAAAAAAAAAAVlWzBxB63XfffalLKJSREKAEU6dO\nTfJhMW7cuCzmUydv+ic5q1aryftnqm1k2TpyoC368/kJAAAAAJThmWeeSV1CoYQQoAQzZsxIXQIA\nAAAAAAAUYuHChbFgwYJS11Gr1Updfs7GjRuXuoRCCSEAAAAA0HZSn+CsVCpJ1w8AAPX6/e9/H8cd\nd1zqMlra448/HmPGjEldRmGEEAAAAABoO0IAAABQn8ceeyx1CS1v1KhRqUsolBAClCDl3RROogAA\nAAAAAFCUffbZJ6644oqYN29e6lJa1ic+8YkljzfbbLM499xzY8SIEQkrGhohBChBZ2dn3HfffQ1f\n77hx4+Kcc85p+HpXZMaMGalLAICWYb8KAAAAQKPNnDlTAKGBHnrooejq6orp06enLmXQhBCAUk2d\nOlUgAwAKkmq/GmHfCgAAANCuxo4dm7qEtrPbbrulLmFIhBAAAACaWFdXV+oSAAAAgBa2ww47xNVX\nXx0LFy5MXcrrHHjggalLKMSYMWPiuOOOi4iIt771rfGmN70pcUVDI4QAAADQxFJNBRZhhAwAAABo\nB4sWLYpPfepT8cADD6QupWV96EMfih133DF1GYURQoASmK+ZnOmf5CyHC1m2kT7aoj/tQa6MhAAw\nOKY5AhicSqWSuoSIyOMcAkC72HfffVOX0PL23HPP1CUUSggBKJULNgAA5TISAsDgOF4FAABysfrq\nq6cuoVBCCFCCVHdT5HgSWFvkx3tCzqrVavL+6Y64PtqiP5+fAAAAALSjY489Ns4888zUZbS0Wq2W\nuoRCCSFACdxN0Udb5Md7Qs5yuNBqG+mjLfrTP8mVfgEAlEUQl4GkvkjSOx1EDjcyALSLYcOGpS6h\npX3hC1+IUaNGpS6jUEIIQKkcrALQKlKeaOs9yWZ0CgaiXwAAZRF2BAAiIjbYYIPUJSTV3d2duoSm\nI4QAlMrBKgCtojcIkJL9KgAAjeTmEgAgIuKd73xn/PSnP40nnngiIl47TzZv3rz4zne+s+ScWaVS\niY6OjpU+Xva/el6zKn8ze/bswv/9l19+eXR0dMQ222wTW2yxReHLb0VCCAAAUAcjITgRDADQboRg\nAYCIiFdeeSVmzpwZv/rVr5Y8V6vV4o1vfOPrzpn1/rzs/3sf9/T0LPf3K/v7en5fhjPPPHPJ4899\n7nOxxx57lL7OZieEAJRKYh4AAAAAAKB5XXXVVXHeeeelLiMLP/vZz4QQ6tCRugAAAAAAAAAA8rT5\n5punLiEbhx12WOoSmoKREIBSGbYPgFbROyVCSvarAAA0khEuAYCIiG233Tauu+66WLx4cUT0nSdb\n9v85mDVrVpxyyimFLnO77baLWq0We+21V2y//faFLrtVCSEAAEAdGjG/3PL0HsilOgkc4URwzrq6\nulKXANCUUu7bI/I6UQvLIwQLAEREPPvss3HyySfH7bffnrqUJObMmRMREX/4wx/iG9/4RuHL/8pX\nvhK77bZb4ctNSQgBKJXEPABAuTo7O4VTAAbB5ycAANRnxowZbRtAaIQTTzwxrrzyylhjjTVSl1IY\nIQSgVBLzALSKHO5WtF8FgOLYr8LKubkEAIiIGDVqVOoSWt6CBQtaKoTQkboAAAAAAAAAAPJ09NFH\nxwc+8IHUZbS0jo7WumxvJAQogZQ4OdM/yVm1Wk3eP1NtI8vWkQNt0V8O/RMAKE6tVku6/hxGWYKV\nMWIIABARsfrqq8fxxx8fxx9/fOpSVqqrqysuu+yy1GWssttvvz023njj1GUURggBKJUL3gAAAAAA\nAJRh7ty5ceSRR6YuY8gWLVqUuoRCCSEAAECTMDoFABTHSAQAAFC/+fPnxyOPPDLg7yqVyutGGlv6\n+/bSv6v3e3jv61a23FNPPbWu5eVu/fXXT11CoYQQgFIZtg8AimO/CgAAAECj3XLLLXHCCSekLqOl\nvfDCC6lLKJQQAlAq0zEAQHGMhAAAAABAoy1YsCB1CS3v3nvvjf322y91GYURQgAAAAAAAABgQB/4\nwAdijTXWiFtvvfV1v+udLmHZaRZW9vyyvxvo+WWnYuj93dLP//KXv6z735GzMWPGpC6hUEIIAAAA\nAAAAAAzolVdeiYceeihmz56dupSW1dPTk7qEQgkhQAnM19xHW+THe0LOchjq3TbSR1v0p38CAAAA\n0I6uuuqq+N73vpe6jJa21157pS6hUEIIQKlSzV1t3url856Qs2q1mrx/ptpGlq0jB9qiP/0zv/cE\nAAAAgPJtueWWqUtoeTfffHMcdNBBqcsojBACQJtxFy05y+ECp22kj7boT3sAQGsR7gMAgPq8/e1v\nj1mzZr3u+VqtVtdzA1ne61Z1mXvvvXdd68vd+PHjU5dQKCEEgDZjJARy5k7zvLYTbdGfz08AaC0C\nhgAAUL/nnnsu5s+fP+Dvlg4JLO/xiv6mnmUt73UbbbRRPP7448t9XbNYuHBh6hIKJYQAJXCRAgAA\nAAAAgFZwyy23xAknnJC6jJb217/+NXUJhRJCgBK4m6KPtsiP94Sc5RCkso300Rb96Z8AALQbN9oA\nABEhgNAAp59+epx++ukREbH++uvHueeeG29605sSVzV4QghQAgdofbRFfrwn5Mx0DHltJ9qiv5Sf\nn73hg3rn1CtLpVJJun4AABpLCBYAiIg45JBD4kc/+lHqMtrGk08+GXPmzIndd989dSmDJoQAAAB1\nqNVqSUIAS6+zs7NTMAQACiLcBwAA9Tn66KNj3333jT/+8Y91/83yvm/3Pr/s9+Hec28DPb/06+fO\nnRuXXnpp3XU0ow984APxrne9K3UZQyKEACWQEu+jLfLjPSFnOVzgtI300Rb96Z/kSr8AGBwhAFg5\noykCAL022WST2GSTTZLW0NPTE1/5yleS1tAIV199dUybNi11GUMihADQZpxAIGemY8hrO9EW/eUw\nHQMAUBzfdWDlfA9lILmEuHyOArSfl19+OXUJDXPGGWfEiSeemLqMQRNCAErlgnd+nEAgZzlst7aR\nPtqiv66urtQluFjCgPQLgMHxXQdgcHKZziaHGxkAaKxRo0alLqFh/umf/il1CUMihAAAAAAAACuQ\nOvgpOAUAr+nu7l7h7xctWhT77rtvoev87//+74iIWHPNNZcEIXpDccv+n9cIIQAAAAAAwAoIAQBA\nc6jVajF+/Pi45557ClvmRz/60SWPP/3pT8eUKVMKW3ar6khdAAAAAAAAAAAM1emnn15oAGFZZ555\nZmnLbiVGQgAAAACg7aQeWt184gAAULybbrqp1OXvuOOOpS6/VQghAKXq6upKXQIAFCKHed3sVwGg\nOIZWBwCA1vPJT34yTjvttNKWf8stt8SkSZMKX253d3fhy0xJCAFKkOpuihzvpMjhgg396Z/krFqt\nJu+f7ojroy36y6F/dnZ2ek8AoCC1Wi3p+h0vAwDQTO677764++67l/y89Pfp3u+2yz7XqO/cveup\nVCpx7bXXNmSdRfv+978fm222WUS8dh5u3XXXTVzR0AghQAncTUHO9E9ylsMFTttIH23Rn/4JAK1F\nCABWzo0MAEBExHnnnReXXHJJ6jJa2ve+971+P5977rmx1VZbJapm6IQQANqMEwjkLIc7zd3930db\n9Kd/5veeAABQLiFYACAi4q677kpdQttZtGhR6hKGRAgBSuAibx9tAQAAAAAA0Lz++Z//OU488cTU\nZbS0TTbZJHbbbbeIiHjf+94X22yzTeKKhkYIAUrQ1dWVugQAAAAAAAAYsqeeeip1CS3vc5/7XGy5\n5ZapyyiMEAKUwLySfQzblx/vCTnLYQQT20gfbdGf/gkAQLsxwiUAEBExZcqUqFQq8etf/3rA39dq\ntZU+XpF6/r5SqQy4vDlz5tS1jtzdcMMN8eCDD0ZExA477BAbbrhh4oqGRggBSuAArY+2yI/3hJxV\nq9Xk/TPEpoN5AAAgAElEQVTVNrJsHTnQFv3pn/m9JwAAlEsIFgCIiBg2bFjsv//+sf/++6cu5XW+\n+tWvxjXXXJO6jCG75JJL+v38zW9+M7bffvtE1QydEAIAAAAAAAAAA3rggQfi6KOPTl1GW7nyyiub\nOoTQkboAAAAAAAAAAPL0wx/+MHUJbWebbbZJXcKQCCEAAAAA0HZqtVrS/wAAoFk0+wXxZrPHHnvE\nPvvsk7qMITEdA5TAfHkAAACQt0qlkroEAABoCgceeGB0dHTErFmzUpfyOvfff3/qEgrx7W9/O972\ntrelLqMwQghAqQQy8uM9IWfnnHNO6hJsI0vRFv3pnwAAAAC0o+HDh8eHP/zh+PCHP5y6lNeZNGlS\n6hIKsdFGG6UuoVBCCFCCqVOnxn333dfw9Y4bNy6LCyTkTf8kZ9VqNXn/TLWNLFtHDrRFf/pnfu8J\nAAAAAOV78MEH44gjjkhdRku77bbbYo899khdRmGEEIBSueANAAAAAADQvH7/+9+nLqHlffnLX44v\nf/nLy/39F7/4xdh9990bWNHQCCFACQyV3Edb9MklFOE9IWc5bCe2kT7aoj/tQa70TQAASCPViHkR\nbsICGmvKlCkxb968uPrqq1OX0rZ++9vfCiFAu3P3fx9t0SeXgxLvCTkz3H1e24m26M/nJ7myrQIA\nQBq+CwPtYvXVV4/jjz8+jj/++NSlxPPPPx8nnHBCPPvss1Gr1eKxxx5LXVLpdtpppzj66KNTl7FK\nhBAAAAAAaDu1Wi3p+iuVStL1AwBAvRYvXhw///nPo7u7e8lzg/k+u7y/Wdnzvd/da7Va3HXXXau8\n3mbw1a9+NXbZZZfUZRRGCAFKYEhccqZ/krMc7iCwjfTRFv1pDwBoLUIAAIOTy+dnDucQANrFVVdd\nFd/61rdSl9HStt9++9QlFEoIASiVCzYAtIocTrTZrwIAAADQaGPHjk1dQstbeqqLAw44ICZOnJjF\n+cjBEkIAaDPmNCdn1Wo1ef80t3ofbdFfDv0TAAAAABpthx12iJkzZ8bChQsjYsVTm63qtGfLe/1A\nz7/88svxL//yL6u0/GYxZ86cfo9Hjx4d73rXuxJWNDRCCECpXPDOj7toyVkO261tpI+26C+H9hAM\nYSBdXV2pSwAAoI2s6sWlovXeFSooDtBYo0aNilGjRqUuo22MGTMmdQlDIoQAAADQxDo7O4VTAAZB\nuA8AAJpPd3f3656bP39+PPfccxERccQRR5S6/sMPPzw233zz1z2/dEhveY8H+rlSqcRWW23V77m1\n1lorRowYUUS5yQghAAAAANB2chjlCAAAGLr11lsv1ltvvYiIGDFiRLz88suFLv/iiy+Ojo6OWHvt\ntWP06NGFLrtVCSEAAAAAAAAA0PSKDiBERHzsYx9b8vj000+PCRMmFL6OViOEAJTKnSUAAAAAAAC0\ngkcffVQIoQ5CCECpUs2xaX5NAAAAAACA9jJ8+PB49dVXC13mTjvtFD09PfG+970v9ttvv0KX3aqE\nEIBSGQkBgFZRqVRSl2C/yoD0CwCgLG4uAQCazbbbbhuzZ88ubHmVSiW+/vWvF7a8diGEAAAA0MRS\nXRyIcIEAaG4+PwEAoPUUGUCIiKjVajFp0qSIiDjkkEPiqKOOyuJmpdwJIQClkpgHgOLUarWk63eA\nBUArMZIMrJztBACIiLj33nujs7MzdRnJ/ehHP4of/ehHpSy7u7u7lOWmIoQAJXDhvY+D1fzon+Ss\nWq0m75/uiOujLfrLoX92dnZ6T3idrq6u1CUAAAAALez+++9PXULLu//++2PrrbdOXUZhhBCAUrng\nDQDFEe4DAAAAoNH222+/+Nvf/hYzZ86MiP6jdS7v8YqeW9W/G+hxpVIZ8O8WLly43H9HzhYsWJC6\nhEIJIUAJXCAgZ/onOcshPGQb6aMt+suhf5qOAQAAAIBGGzFiRBx22GFx2GGHpS7ldb797W+XNkVC\nI+20006pSyiUEAJQKhewAKA4QgAMxDQdAIMj3AcrZ4RLACB3rRBAiIjo6OhIXUKhhBCAUjlYzY/3\nhJxVq9Xk/TPVNrJsHTnQFv3pn/m9JwAwFEIAsHJuLgEAaIw//OEPscMOO6QuozBCCECpHKzmx3tC\nznK4wGkb6aMt+tM/AQBoN25kAAByc8YZZ8SVV16ZuozCbbPNNqlLKJQQAlAqB6sAtIqUQzb33qlp\nJAQAABpJCBYAiIh47rnn4h//8R9Tl9HS/va3v8X666+fuozCCCFACVx4J2f6Jzkz3H1e24m26M/n\nJwAAAADtaNq0aalLaHnz5s0TQgBWTEq8j7bIj/eEnOVwodU20kdb9Kd/AgDQbgRxAYCIiP333z/O\nPvvs1GW0tFYKIEQIIQAlc7AKQKswHYN9KwCtxX4VVk4IFgCIiDjwwANjjz32iCeeeGLJc73nq5a2\n9HPLe1zPa3vPww1mHV/60pdi3rx5K/4HZejBBx+Mt771ranLKIwQApTAhXdypn+SM9Mx5LWdaIv+\ncvj8dBIYAIpjvwoAAPUbPXp0rLfeeksCAsvesLPs86v6+8Esp1arxQsvvBCdnZ2D+0dl5Lnnnktd\nQqGEEAAAAAAAAAAY0G233RbHH3986jJa2tlnnx033nhjREQccMABMWnSpAFHgmgWQggAAFCHSqWS\n5Iv/0utMOSVExMBD4AFAszLqEwBD5RgNaBdGEWuMP/zhD0v+v/rqq8e73vWuxBUNnhACAADUoXeI\ntxTr7dXZ2eliCa/T1dWVugSApuTzE4ChEgIA2sVxxx0X06ZNS11GWxkzZkzqEoZECAEAAKCJCacA\nDI4LRwAAUJ/x48fHZz7zmbjppptW6e8Gc0PPyv5m0aJFcfvtt6/ycnN35JFHxvvf//6IiHjjG98Y\nI0aMSFzR0AghAAAAAAAAADCgmTNnxmmnnZa6jJa23Xbbxbrrrpu6jMIIIUAJzI1DzvRPcpbD3bS2\nkT7aoj/tAQCtZerUqUaSAQCAOqy//vqpS2h548ePT11CoYQQgFK5YANAq8hhyGb7VQZiTnOAwbFf\nhZUbzBDKRcnh+zcDy+W9EeYCaJw11lgjdQktZ7vttouIiJEjR8axxx6bzf61KEIIAG0m1d0+7vSh\nHtVqNXn/dEdcH23RXw79EwbS2dlpWwUAStFqJ8MBgMG59957U5fQcubMmbPk8dFHHx0/+clPYuTI\nkQkrKpYQAlAqF7zz424fcpbDdmsb6aMt+suhPQRDAACA1FKOkBHRF44RFAdonP322y+efvrpuOqq\nq1b5b1cUaqxUKkv2Kyt7Xa8FCxascg2523zzzWO11VZLXUahhBAAAAAAAAAAGNDIkSPjqKOOiqOO\nOip1KSs1adKkUpf///7f/4udd975dc+vKKS3dNCi9/HSz735zW9uuRGohBAAAAAAaDtGGAIAgPrM\nnTs3jjzyyNRlZOHyyy+PvffeO3UZ2etIXQAAAAAAAAAAebrzzjtTl5CN+++/P3UJTcFICECpcpg/\nGwCKkMOQaParAFAc+1VYuVQjhhgtBADysu+++8a8efNi5syZqUuhSQghAABAHVY0r1vZegMQho0G\nAKCRhHUAgIiIJ598UgCBVWI6BgAAAAAAAAAGdNttt6UugSZjJASgVIbtAwAAIEcpRzmKyGOqJwCG\nxr4EaBf77rtv3H333fGb3/wmdSk0CSEEAAAAANqOCzcADJV9CdAu1lhjjTjppJNSl1GX/fffP55/\n/vlS1zFp0qRVev3S+4tlA2yjR4+Or33ta7HtttsWUlsuhBAAAAAAaKhKpZLkwo2LRQAA0FouvPDC\nuOiii1KXsUIrGjln0aJFMW3atJg5c2aMGjWqgVWVSwgBSmAKAnKmf5KzarWavH+m2kaWrSMH2qI/\nn58AUJxarZZkCOul1+m7DgAANL/cAwj1evLJJ2Ps2LGpyyiMEAKUYMaMGalLyIa2yI/3hJzlcCLW\nNtJHW/SnfwJAa7FfhZUTxAUAaIx11lkndQmFEkKAEjhAI2f6JzkzEkJe24m26C+H/gkAAI0krAMA\nRLw2othNN90Ut95665Kfh7KsiNemSlveclb2/NJ/u+WWW8Yf//jHQdeTizvvvDPe8573pC6jMEII\nQKlc8AaA4giGMJCurq7UJQAAAAAt7Jprromvfe1rqctoaYsXL05dQqGEEKAEUuIAQBlcbGYgnZ2d\nwikAAABAadZaa63UJbS8hQsXpi6hUEIIUAJ3/wMAZXCxGQAAAIBGe/rpp1OX0PKMhAAAAEA2jJAB\nAAAAlGn06NGpS2h5L730UuoSCiWEACUwHQM50z/JWQ53WdtG+miL/rQHuTJCBsDg1Gq1pOuvVCpJ\n1w8AAPV66qmnUpfQ8iZPnpy6hEIJIQAAAADQdoQAAACgPuuss07qElreG9/4xtQlFEoIAQAAAAAA\nqEsuIS4jcgE0zm233Za6hJY3f/78WH/99VOXURghBKBUhq4GoFXkcKLNfhUAAACARrv99ttTl9DS\ndtttt5YKIEQIIUAppk6dmmRe3hzn5NUW+fGekLNqtZq8f6baRpatIwfaoj/9M7/3BAAAAIDynXTS\nSTFt2rTUZbSsJ554IhYvXhzDhg1LXUphhBCgBO5SJGf6JznL4QKnbaSPtuhPe5ArfRMAgEaq1WpJ\n1987Sl0OQXGAdrHttttGd3d36jJi8eLFsddee6Uuo3Dz588XQgAAACAfRsgAAAAAyvTUU0/Fcccd\nF4888kjqUlrC1ltvHW95y1siImK11VaLQw89NEaMGJG2qIIJIQClcmceAAAAAABA87r++usFEP7P\nwQcfHMccc0zqMrInhACUKtWdee7KA6BovUN+piTcBwAAAECjTZw4MS699NJYsGBB6lKSmz9/fuoS\nmoIQAgAAQBPr6upKXQIAAADQwjbYYIP46U9/mrqMulx77bVxyimnlLb8N7zhDaUtu5UIIQAAQB1q\ntVqydfeOwpBqhKEIowwBAAAAkL+yRyqYM2dOqctvFUIIAAAATayzs1M4BQAAACAiLrrootKWPXz4\n8Dj77LNLW34rEUIASmXuagBaRe9oBCnZrwIA0EipRuISdASAvPzlL3+JI444Il544YXUpST16quv\nxt/+9rdYY401UpeSPSEEoFQOVgFoFaZjsG8FoLXYr8LKCcECABERv/71r9s+gNDr4x//eHR3d6cu\nI3tCCAAAUAcjIQBAa7FfBQCA+kyePDlmzZoVDzzwQOpSsjBp0qTCl9lqwQYhBIA2Y3QKclatVpP3\nT3fE9dEW/emf+b0nAAAAAJRv9OjRMW7cOCGEEt16662xyy67pC6jMEIIQKncWQJAq6hUKklGQ1h6\nnfarAAAAADTaxRdfHFdccUXqMlraiy++GA888MCSc5BLn4tc+v8dHR0xbNiw2GijjbIYuXV5hBCg\nBO4076MtAGgVtVotarVakvX2MhICAAAAAI32xBNPpC6h5X3xi19cpdfvvPPO8V//9V/lFFMAIQQA\nAAAA2o5wH7AqUk3PFuEzI2cpgupL670DVv8Eynb44YfHLbfcEgsXLkxdCv9n3rx5sXjx4hg2bFjq\nUgYkhACUyrDRAFAc+1UAKI79KqycES775FYPechlGGz9EyjbmDFj4he/+EXqMiIi4k9/+lOcfPLJ\n8dxzz0VExPz58xNX1Di77rpr1Gq1WH311eOYY47JNoAQIYQApXAio4+D1fzon+Qsh+3WNtJHW/SX\nQ3u4YxMAgEbK4TswAJDe4sWLY+bMmXHjjTeu9LWrMkrMQK9d+rnesNeyr6vVajF69OjkI9IU6bzz\nzostttgidRmFEUIAAAAAoO0I9wEAQH3OOOOM+OUvf5m6jJb1vve9r6UCCBFCCAAAAAAAQJ1MQQDQ\nfnqnPqA43d3dqUsolRACAAAAAG3HMPMAAFCfz372szFjxoz4+c9/nrqUlrDpppumLqF0QghQglRD\nOhrOkXron+SsWq0m75+G5e2jLfrz+QkAAABAOxo5cmRMnz49pk+fnrSOxYsXx1577ZW0hiI8/PDD\nMWnSpCU/f/rTn44pU6YkrKh4QghAqdxZ0kdbADS3HIIA9iUMRL8AAAAAaF5nnHFG7LnnnjFq1KjU\npRRGCAFK4ERwH3eN9snljmL9k5zlsN3aRvpoi/5qtVqydffOuZrLvoS86BcAAABAOxg2bFhceOGF\nceihh6YupVBHHHFESwUQIoQQAAAAAGhDKQOGEX0hQwAAoH6bbrppdHd3L/l56WkNGmHChAlLvssv\n+53+mWeeiXnz5q3w73faaac49dRTY/jw1r5M39r/OgAAgBbX1dWVugSApiQEAAAArKq11147Pve5\nz6UuI3tCCAAAUIccLlS42MxAOjs7TccAAEDD5DKSTLVaNQ0sQAPdc889MWfOnAF/t7zzZks/v7Jz\na/UsIwezZs0SQqiDEAIAANQh5Ym23oMtF5sBAAAAaLRZs2bFl7/85dRlZGHs2LGpS2gKHakLAAAA\nAAAAACBPw4YNS11CNh555JHUJTQFIyEAAEAdchj6zXQMDES/AAAAAMq0++67x3nnnRf3339/RPQf\nMbSe0UMHek0Ry1j6+d7/33jjjXH33XevdHmDNWHChNKW3UqEEAAAoA6mYzAdQ670CwAAAKBsW2yx\nRWyxxRapy1ipESNGlBpCOOigg0pbdisRQgAAAAAAAABgQIsWLYpvf/vbccUVVwzq7wcaYbSeUUfr\n/buln3vllVdWsbpVM3r06FKX3yqEEAAAAAAAYAWmTp2adPSpGTNmJFk3AEREXHXVVYMOIESsfDqG\nZjJ9+vTo7u5OXUb2hBAAAAAAAGAFhAAAaGfbb7996hJoMkIIAABQh3qGiCubE58AAAAANNqWW26Z\n7d3/d955Z0yfPr2h65w0aVKhy3vzm98cl112WaHLTE0IAUqQani2cePGxTnnnNPw9dJc9E9yVq1W\nk/fP1ENs5rSdaIv+9M/83hMAAAAA2lujAwhlePrpp+PPf/5zbLzxxqlLKYwQAgAAAAAAAAADevbZ\nZ+Pzn/98zJkzJ3UpLWvu3LlCCMCKGSq5j7bIj/eEnOVwl7VtpI+26E//JFf6BQAAAFCma665RgCh\nZG94wxtSl1AoIQSgVIb+B6BV1Gq1ZOuuVCoRYToGBqZfAAAAAGV697vfHd/5zndi8eLFqUtpWe94\nxztSl1AoIQQAAKhDbxAgJXe8AwAAANBoG2+8cVx33XWpy6jL97///fje975X2vI33XTT+MhHPhKV\nSmXJ+cKOjo7XnTsc6LmBDBs2LN7znvfEsGHDSqk3FSEEAACog5EQ3PEOQGtJuW+PyCPgCAAAreDx\nxx+PZ555Jmq1WqkBhIiInp6e2HfffUtdRysQQgAAAACg7QgBAABA8/v3f//3mD17dsPWN3ny5Iat\nq5kJIQCl6urqSl1CNgyhDdDccrhQYb/KQPQLAABII/Vodc43Ao3y0ksvxQUXXBBXXnllv+frGV1s\n2dcM9DerspxXX311pa8t0wUXXBAXXHBBocs86aST4r3vfW+hy0xNCAEoVWdnZ5Iv4jkOGZ36oCS3\n9gBoNjlMx5BqvxphX5Iz/QIAANIQAgDaxS9+8Yv48Y9/nLqMlvWlL30pfvGLX8SoUaNSl1IYIQQA\nAAAA2k7KgGFEHqMsAQxGLp9fwrAAjTN+/PjUJbS0gw46qKUCCBFCCAAAAAC0oVwuogEAQO623nrr\n6O7uTl1G9PT0xEc+8pF4+umnU5cyZBMnToxKpRLDhw+PzTffPG644YaoVCpRqVRim222iXXXXTd1\niUMihADQZlJNC2G4ZupRrVaT909Tp/TRFv35/AQAAACAdCqVSksEECIibrjhhiWPr7322tf9/txz\nz42tttqqgRUVSwgBSuAiBQAAjdLV1ZW6BAAAAIDS9fT0pC6hYRYtWpS6hCERQoASzJgxI3UJsFz6\nJznLIUhlG+mjLfrTHuSqs7PTqCUAADRMrVZLuv7e6XRyGE0RgMYaNmxYHHvssXHmmWemLqVQ+++/\nf6y55prR09MTtVotdt999xg3blzqsoZECAEAAOqQw7zRghAAAAAAtLMDDjggDjjggCU/9/T0xPXX\nXx9/+tOfYrXVVovHH398wOkNitLR0RHXX399actvFUIIAABQh5R3+/QGIFJN+RThbp+cmY4BYHBy\nuZMXAAAYvI6Ojpg8efKSn5977rl46KGHYu7cuaWsb9dddy1lua1GCAEolTs2AQDKZToGAAAAgNfc\ncMMNpQUQ9t577zj22GNLWXarEUIASpXDXaMAUIQc9ivCfQBQnBz27QAAQLFuvfXW0pb997//PV59\n9dXSlt9KhBCAUqW6M89deQC0IsNGAwAAANBoDz30UBx22GGpy0jut7/9bfzyl7+Mgw8+OHUp2RNC\nAACAOuQwuo9h9wEAAABotN/97nepS8jG+uuvn7qEpiCEAAAA0MS6urpSlwDQlKZOnSrcBwAAddh3\n333j3nvvjRtvvDF1KcmddNJJMWnSpNRlZE8IAQAAoImZJgNgcGbMmJG6BAAAaAprrLFGfPGLX0xd\nRl0OPfTQePjhh0tb/jvf+c7Slt1KhBAAAKAOOVzodcc7A3EnL8DgpJxqKSKP7xYAANDsarVa3HLL\nLfHwww9HrVYrNYAQETF27Ni44IILolarxZgxY2Kfffbx3X4AQggAAFCHlBcqeg9kOjs7XWwGgII4\nUQgAAM1v8uTJsXjx4oat77LLLuv389e//vUhL3PHHXeM0047bcjLyYkQAkCbSXW3pItX1KNarSbv\nn+4o7qMt+vP5CQAAAAB5aWQAoSx33HFHPP7447HRRhulLqUwQghAqcyxmR/vCTnL4UKrbaSPtuhP\n/wQAoN0I4gIAuTv00EPjwgsvTF0GyxBCgBI4QCNn+ic5MxJCXtuJtugvh/4JAACNJAQLAEREPPvs\ns/GFL3wh7rrrrtSltKxvfvObse6660ZExPvf//7YYYcdElc0NEIIQKlc8AaA4giGAAAAANBoJ554\nYtxzzz2py2hpv/vd75Y8njlzZpx22mmx4447JqxoaIQQoARS4uRM/yRnOVzgtI300Rb9aQ8AaC3C\nfQAAUJ+dd95ZCKHB1lprrdQlDIkQAgAAAAAAwCqq1WpJ11+pVJKuH2gfu+22W1x44YWpy8jGV7/6\n1eV+Bvc+3/v/xYsXv+73w4cPH/C1vTbbbDMhBAAAAABoNkY5AmCohACAdnHXXXelLiErzz77bERE\nrL322rHzzjvbHwxACAEolZM6AADl6urqSl0CQFMyHQMAANRnypQp8eijj8bPf/7z1KVk4dRTT+33\n8zve8Y4lj59//vmIeC2o1htOWHrknHe84x1x1FFHRUdHRwMqTUcIAShVqpM6TugAAO2is7PTRTSA\nQRCaBwCA+owePTqmT58e06dPT1pHT09P7LnnnklrGMjs2bPrfu0DDzwQl1566eue/4d/+IclYYVD\nDjkk9t1336YOKgghAKVyUgeAVpHDsGr2qwxEvwAAyuLmEgaSw7FRROgjAG3o1VdfTV1CaR577LEl\nj08//fRYZ511YrfddktY0dAIIQClcrCaH+8JOatWq8n7p2F5+2iL/vTP/N4TXqNfAABlEXYEAEhj\n0003TV3CkAghQAlc5AUAAID/z97dB8lVlfkDf2YmExICRGJgMRGNgMibILsrECsSJ4gib0ZAEK1F\nrRWsTktAS1akyCLmtyDogrVUBwgiEl9wFQUFIgQ2syDoWsvbiggsERYQRGSByItAyPTvDzbpdJgk\nk5l755zu/nyqLOctfb+cPvfevvc851wAAIDijBnTvkPbvb290dPTExERn/jEJ2KbbbZJnGhk2ved\nAgAA6AC1Wi11BAAAAIDS1ev11BFKs2LFilixYkVERFxwwQUxderUmDFjRuJUw6cIAUpgqTpypn+S\nsxxWc7GPNGiLZtqDXFWrVY9jAABg1KQeAOrq6oqIPB6Zl0tbAHSKnp6emDFjRtx8882po5Ru++23\nTx1hRBQhAAAAANBxUj1KMUIRF0C7UAQAMPrmz58fL730UtPPbrnllnjkkUciIuJb3/pWglQb58or\nr4yxY8eu/n78+PEJ05RDEQJQKrNGAWgXOdxccl5lMPoFwPA4fgIAwNA88sgjccwxx6SOkYUjjjgi\nqtVq6hjZU4QAlCrVzBKzSgBoR5b6ZDBm8gIAAABl+uUvf5k6QjYuv/zyuPzyy0f0Gtdcc01suumm\nBSXKkyIEAAAYgpQFAKsG/6vVqsFmAAAAAEbVjjvumDpCWznooINe87OlS5e21QQgRQhQArP/yZn+\nSc4qlUry/mlGcYO2aJbD8dOy0QAAAACMtvvvvz91hLZ3zz33xC677JI6RmEUIUAJDBA0aIv8eE/I\nWQ6DzvaRBm3RLIf+CYOxrwIAZcmhEBcASO/AAw+M++67L/7t3/4tdZS29dJLL6WOUChFCFACF2gN\n2iI/3hNyZiWEvPYTbdEsh/4Jg7GvAgBlUewIAERETJgwIU499dQ49dRTU0d5jRtvvDG+9KUvpY4x\nYuPHj08doVCKEABGiQt3gNaWw3HcYDODyaFvAgBAJ0pVrB7hGg0YXcuXL4/58+fHbbfdljpK29py\nyy1TRyiUIgSAUWLgCKC15bCSTK1WG/Xtkz+fMQAAIA2fhYFOcd111ylAKFlXV1fqCIVShAAlMBut\nQVvkx3tCznK4eLePNGiLZjn0z3a7GAEAIG85FOICAOlNnz7dublkW2+9deoIhVKEAJTKxSoA7aJe\nryfb9qriAzPeAaA4Kc/tEYoLaQ0KkwGAiIhtt902+vv7U8eIer0es2bNSh2jFPV6va2uERQhAKVy\nsdpg4AagteVwEeC8ymD0C4DhyeHcDtCKcjl+utcGMHp+97vfxac+9anUMdraYYcdFm9605siIuKD\nH/xg9PX1ZXPOHQ5FCACjpFKpmL0KAAAAtAwrXDKYXFaSSXWvTf8EOtHtt9+eOkLbe+aZZ+KZZ56J\niLz6NJQAACAASURBVIhf//rXsemmm8Y+++yTONXwKUKAErhAa9AW+fGekLMcbiBY7r5BWzTTP/N7\nT3iVfgEwPLkMokHOrLjEYHI5fvkcCjB6DjzwwFi2bFksWbIkdZSO8YY3vCF1hBFRhAAlcIHWoC3y\n4z0hZzncQLCPNGiLZjn0z1qtljoCALSNXAbRIGcmMjCYXIq4cigUB+gUEyZMiC9+8YvxxS9+MXWU\n6OvrSx2hED/4wQ/W+buJEyfG2LFjRzFN8RQhAKVysQpAu0h5o23VTbZqtWrGOwAAo0ZhMoPJpYjL\n9QlAZ+rv72/6vhWLEj772c/GVlttlTpGqRQhAAAAtDArZAAMTy4zeQFaTS7HTyshABARse2228Yj\njzwyaturVCpx5JFHjtr2WpUiBAAAGIIcBgrMRGMwVsgAGB7HTwAAaH2LFi1q+v6ggw6KF154obTt\n3XbbbYoQhkARAgAADEEOj2NI9ZijCIMlALQfxX0AANB+zj777PjMZz5T2us/99xzpb12O+lOHQAA\nAAAAAAAARuqpp54q9fV33nnnUl+/XShCAAAAAAAAAKDl7b333qW+/pgxHjQwFFoJKJXlLQEAAAAA\nABgNs2fPLvX1//znP5f6+u1CEQJQqlTPrvbcagAAgNfKpVA8hxz1ej3p9ru6upJuHwAAhupPf/pT\nzJ07Nx5//PHUUZL71a9+lTpCS1CEAJSqVquljgAAhchhoMB5lcHoF8DGSFUoHtFcLJ5DwXq1Ws2i\nLQBoXanPqzkU9QGdYenSpQoQ/s9TTz2VOkJLUIQAlCrVTR03dACATmEQDQAA0lAEAHSKWbNmxRVX\nXBF//OMfU0dJ7tOf/nTqCC1BEQIAAAxByiWbV63CYLCZwbjxCTA8jp8AADA0W221VXz/+99PHWNQ\n9Xo9brnllnj44YcjIuKiiy4qdXsXXnhhPPDAA4Pm6OnpiXe84x3R29u7+uc77bRTTJ06tdRMOVKE\nAAAAAEDHSVlgGJHHo54AGBnnEoD0Zs+eHX/+859HdZvXX3/9On933XXXbfTrfexjH4tPfepTI4mU\nHUUIAAAAAHQcKwwBMFKKAADSG+0ChDJ897vfjcMOOywmTZqUOkphFCEAparVaqkjsJYclhOHdcmh\nf5rF0KAt8uO8ymDsqwDD43EMAABALl5++eXUEQqlCAFKMGfOnCSzKXKcSeGmdH5SzfbJsX+SnxyO\nn2bENWiLZvpnfu8Jr9IvAAAAAFrbPffcE9tss03qGIVRhAAAAC3CjE0AAAAAaD/vfOc7U0colCIE\nKIEBgoYcZo3moqurK9nKEGtuV/8kZznst/aRBm3RLIf2SHVejcjz3MqrcuibAADQiSqVims0gFH2\n8MMPxwknnBDPPPNM6iiFuuiii1aP5ey3337x9re/PXGikVGEADBK6vV6smc2p35WNABQHsUpAACQ\nhs/CAKNrYGAgPv7xj6eOUYqf/vSnq7/+yU9+Ev/8z/8cf/3Xf50w0cgoQgAAAACg4yjiAhieVCt9\nrs1xFKDzrFy5MnWEUbPZZpuljjAiihAAAAAA6DgeZwMAAOTg5JNPji233HL19zvssENMmjQpYaKR\nU4QA0GFSzfYx04ehSPUsxTX7pxlxDdqimeMnAAAAAKTT29ubOkIpvvKVr8T1118fY8a0z9B9+/yX\nQEbq9XqybeeyHBoAAADkTMElwPCkvPcZ0bj/mcNEBgBG32mnnRann3566hiF23///Vd/fcABB8SJ\nJ54Ym2yyScJEI6MIAUqgEICcWXKUnOVwEW8fadAWzXLon7VaLXUEAGgbPusAAEBrGRgYaMsChLVd\ne+21sc8++8TMmTNTRxk2RQhQAss1kzP9k5zlMIvBjLgGbdEsh/5ZrVa9JwAAQFK5TMByfQLQeVau\nXJk6wqjYaqutYvfdd08dY0QUIUAJzKZo0Bb58Z6QsxxuINhHGrRFM/0TAIBOYyIDg/E4Bv0TIJXe\n3t7UEQrxxje+Mb797W+njlEqRQhAqVysAtAuUt5oW3WTzeoUAACMJkWwAEBu+vv7X/Ozl19+OVas\nWBEREUcddVQ8//zzpW3/Xe96V/zTP/1Taa/fLhQhAKVysQoAAAAAAEBZxo4dG2PHjo2IVx9nevbZ\nZ5e2rb/9278t7bXbiSIEoFRWQgAAACBHuSwnDgAAuVuxYkVcfvnlcf3116eOskEPPvhgqa+/asUF\n1k8RAlAqKyEA0C5yGChwXgWA4lSrVY85AgCAIbjmmmti4cKFqWNkwUoIQ6MIASiVlRAAaBcpZ0uu\nKoBIdV6NcG4FoP0o7gMAgKHZfvvtU0dIqr+/P3WElqMIASiVmzoAtAsrIQAAAADQiaZOnZo6QlJ9\nfX2rvz7mmGPik5/8ZMI0rUERAlAqKyEAAAAAAAC0ro997GOpI2Rj0aJFsWjRotXfn3HGGbHJJptE\nV1fX6v91d3c3fb/m/zbffPOYMmVKwv+C0aEIAQAAhsDjGBT4AdBeUp7bI/JYZQkAAIZi4sSJ8eKL\nL6aOkaVTTjllWP+u3R/xoAgBoMNYnYKcVSqV5P3TIG+Dtmjm+AkA7UURAAAADM0FF1wQxx57bDz5\n5JOpo7SNNR/xEBGxdOnStrpGUYQAJchhpmQuPLsaAAAAAACgdb3uda+LH/7wh6ljDOqcc86Jq666\nKnWMEZs1a9bqr6dOnRqXXHJJ9Pb2Jkw0MooQoATVatVMSQCgcIr7AKA4Vn0CAIDWt8kmm6SOULhH\nH300vv71r8dJJ52UOsqwKUKAEhggaLB0dX70T3KWw35rH2nQFs1yaA+DJQBQnBzO7QAA0AqeeOKJ\nqFarHscwitZ+XEOrUYQAJTDwTs70T3JWqVSS90+DvA3aopnjJwC0F591gI2R8vGrEXk9gjWXLI6j\nDfonULb+/n4FCCW78sorY+LEialjFEYRApTAbApypn+SsxxuINhHGrRFM+0BAO3FuR3YGAZZyZn+\nCZRtv/32i2uuuSYeeeSR1FHa0o477thWBQgRihAAAAAAAAAAWIfJkyfHokWLUseIgYGB2G+//VLH\nGLGPf/zj8YlPfCJ1jFIpQgBKZWZJfiwnTs48jiGv/URbNMvh+Om8CgAAAECnWrlyZeoIhbj00ksV\nIQCMRA4DNgDQLhSGAEBxnFcBAKC1dHd3p45QmL6+vnX+7oADDogTTzwxNtlkk1FMVCxFCFACA+8A\nQBmshAAAxanVaqkjAAAAvMa1114b++yzT8ycOTN1lGFThAAwSgwcAbS2HAYqzNgEgOJ0dXWljgAA\nAGyETvkM/1d/9Vex++67p44xIooQoAQGmxu0RUMuA0feE3KWwwCnfaRBWzTrlIscWo99FQCA0VSv\n15Nuf9W1WaVSsRotQIfp7u6OefPmxfz581NHGbH+/v7UEUqlCAEolUdTAACUK5dCRwAAAICyzZo1\nK2bNmrX6+5dffjn+3//7f/Hzn/88Yar1mz59enR1dUVXV1fsuuuucdRRR6WOVDpFCAAAMAQ5rISQ\nwyMhAAAAACAXY8eOjS9/+curv589e3YsX7680G20+6oFZVCEAAAAQ5ByydFVBRDVatWMdwAAAABY\nh6ILEBgeRQgAAAAAAAAADOqll16Kb37zm3HVVVe9ZqLOqu/X/v+1DffvctDX17f669NPPz323Xff\nhGlagyIEAACAFrZgwYLUEQAAAIA2dvXVV8cPfvCD1DGycNppp3k8wxAoQgAAAGhhqWcGrHpcCAAA\nANCedtppp9QRaDGKEAAAAFpYtVqNe+65J8m2d9555zj//POTbBsAAAAYHcuWLUsdgRajCAEAAAAA\nAACAQU2dOjV1hKz09fWN6N/Pnj07ent7IyKit7c3jjrqqNhiiy2KiJYNRQhAqWq1WuoIAAAAAAAA\nDNMjjzySOkJbufLKK5u+/973vhfXXXddjB07NlGi4ilCAEqVanlgSwOv25w5c7wnZKtSqSTvn6n2\nkbVz5EBbNHP8BID24rMOAAAMzVvf+tbUEdreQw891FbtrAgBSmCQAgAAAPJm5T4AABia3XbbLfr7\n+1PHGNT9998fxx13XOoYIzZu3LjUEQqlCAFKsGDBgtQRsqEt8uM9IWc5FFLZRxq0RTP9k1zpFwDD\n09XVlToCZM9EGwAgIuK5556Lk08+Oe6+++7UUdrW5MmTU0colCIEAAAAAAAAAAb1j//4jwoQSnbg\ngQeu/nq77baLCy+8MMaMad2h/NZNDhlTJU7O9E9yVqlUkvdPzwZu0BbNUh4/V810r9fro779NZkx\nmif7KsDwOK/ChllxCdbPuQToFDvuuGPccccdqWN0jAceeCC+/vWvx+c///nUUYZNEQJQKgPeALSL\ner2e5AZT6pta5M/gAMDwGLgBYKScS4BO8elPfzr22GOP+M///M+IaL5fta57V0O5p7Wx/7Zer8c1\n11yzwddtB/vuu2/qCCOiCAEAAFpEtVo1453XsBICwPA4fgIAwNB0dXXF9OnTY/r06amjvGZ1gL6+\nvkRJinXKKafEXnvtFREREyZMaOlHMUQoQoBSmI3WoC0acrnB5D0hZznsJ/aRBm3RTP8kV/oFAAAA\nQGs744wzNurvzz777HjnO99ZUpqRU4QAlMrjGBpSPes+Is/2AGg1KR+LsGqJTzM2GYx+ATA8irgA\nAKD1XHPNNfG1r30tdYzkTj/99PjJT34SPT09qaMMShECAAAAAB1HERfA8Kwqkk7NcRSg8wwMDChA\n+D+HHXZYtgUIEYoQAAAAAOhAVkIAAIChW7FiRbz44otJMwwMDCTdflne9773xRe/+MXUMQqlCAGg\nw3hEBjlL9diSNfunGXEN2qKZ4ye5qtVqqSMAAAAAbezXv/51nHDCCaljtK0lS5bEiSeeGOPHj08d\npTCKEKAEBikAoP0Y6AWA9lKv15NuP5flzAEAYEMeeOCB1BHaXs6PVhgORQhQAks6NmiL/HhPyFkO\nhVT2kQZt0ay7uzt1BO8JgzKIBTA8jp+wYSbaMJhcirhyWE0RoFMcfPDB8fLLL8fSpUtTR4n77rsv\ndYRCzJw5MyIient747jjjouxY8cmTlQsRQhAqVysAtAuUt5oW3WTzSMyGEwuN4EBgPajCBYAiIgY\nM2ZMHHnkkXHkkUemjhIREU8++WQMDAxExGvvS5SRcVXxhXsgQ6cIASiVi1UA2kUOFxnOqwwmh74J\nALQnk0sAgBxNnjx51La15ZZbuvcyDIoQAAAAWpgVMgCAsiiCBQA63dNPP506QktShACUSsU8AAAA\nOVLEBQAA7WffffeNm266qdDX7OvrW/31V77yldh7770Lff12pAgBKJWKeQDaRb1eT7btVUu+GSwB\ngOK4XgUAgPZz3333lfr6J598cvT395e6jXagCAEolZUQAAAAAAAAGA0nnXRSfP7zny/t9T/84Q+X\n9trtRBECAAAAAB0n5SpHEY2VjgAAgOKcdtpppb7+dtttV+rrtwtFCAAAAAB0HEUAAADQ+lauXBmL\nFy+O3/3udxER8fzzz5e6vbPOOivOOuusUrex3XbbxbnnnhtbbLFFqdspkyIEKIFHEJAz/ZOcVSqV\n5P0z1T6ydo4caItmORw/a7XaqG8fANqVzzoAAND6zj///PjRj36UOkahHnjggbj99tvjPe95T+oo\nw6YIAUqwYMGC1BFgnfRPcpbDjVj7SIO2aJZDe1SrVYMlAFCQHM7tAADAyLz+9a9PHaFw7373u2Pv\nvfdOHWNEFCEAAAAAAAAA0HJmz54dCxcuTB1j2Lq7u+O8886LXXbZJXWUQilCAEplZgkA7SKH50Y7\nrzIY/QIAKEsOjyQDAFifAw88MHWEERkYGIhqtRqLFy+O8ePHp45TGEUIQKlcrDZ0dXUlG8DKYeAM\noNXV6/Vk2151HPfsagajXwAMT8pze4TrNFqDYkdYP+cSAIry+OOPx1ve8pbUMQqjCAFKkMMgBfmp\n1+vJ+saa21UYQs4qlUry/mkwr0FbNHP8JFe1Wi11BICW5PoZgJFyLgFI79hjj42LLroodYwRu/HG\nGxUhAOtXrVYNUgAAMCpSffaM8PkTAAAASOujH/1ozJo1K5566qkYGBiIl156KWq1Wjz44IOpo22U\nAw44IHWEQilCAACAFmE5XAAojiW0AQCg9fX19aWOUIitt946dYRCKUIAAIAW4REZAFAcRQAAAEAu\nLrrooth1110j4tX7cK9//esTJxoZRQhQArMUAYAy+IwBAAAAAO3n+9//ftP3F1xwQbztbW9LlGbk\nFCFACVIu6ZjbTI5arZY6QjZyGTjynpCzHPYT+0iDtmiWQ/+0bDSDyaFvArQiKwwBMFKpzyWuBQDa\n16233qoIAWhWrVaTfPjM8SaGwYqG1Bclq/qG/knOUu0nOewja+fIgbZolkP/dF5lMLl8xgBoNQZu\nABgp5xIAyrL77runjjAiihCAUuUwYAMA7cJgMwAUxwpDAABALt7+9rfHvvvuGwMDA7H33nvHm9/8\n5tSRRkQRApRABSyD6erqSnaTac3t6p/kLIcBTvtIg7Zopj0AoL0oAgBgpBS0AVCUefPmxVZbbZU6\nRmEUIQCMknq9nuzCJPUFEQAAQG6sMATASCkCAKAokyZNSh2hUIoQAAAAAOg4tVotdQSAlpTLwLti\nLgDaxaRJk2LlypXR09OTOkphFCEAAAAA0HFyGUQDaDWpV9xcdfyuVCpJVrSxmg3QiZ5++umYN29e\n3H333amjtLytt9463vve90Z3d3dERIwZMyYOP/zwGDt2bOJkxVKEAAAAAAAADEkuRVwKAQBGz5Il\nSxQgFOSJJ56Iv/zlLzF37tzUUUqlCAGgw6R67qkqcYYih1kMng3coC2aOX4CAAAA0IlmzJgRF198\ncaxYsSJ1lLZwxRVXKEIAAAAAAAAAoDNNnTo1lixZkjpGrFixIt73vveljlGIvr6+1V9/9KMfjWOP\nPTZhmuIpQoASpHwuWi7Loa2yYMGC1BFYS61WSx0B1imHY4Z9pEFbNMuhf+aQgfzoFwAAdKIc7sGm\nXkHQtQBAe/jXf/3X+Lu/+7sYN25c6iiFUYQAJcitECAlS1fnR/8kZzn0zxwy5EJb5Cf1DS7n1jzp\nFwDD4/gJMDwpB/8j0hcArHkMVwQAMLp6e3tjwoQJ8fzzz6eOUqhTTz21rQoQIhQhAAAAANCBDBwB\nAEDrufrqq9f7+5NPPjl+9atflbb9hQsXxlvf+tbSXr9dKEIAAAAAAADYSLmsCgFAw//8z/8U/pr9\n/f2Fv2a7U4QAlMrMEgDaRQ43d5xXGYx+AQCUJYfl7iFnOVwnAtDsj3/8Y6Gvt+eeexb6ep1CEQJQ\nKherALSLlDNcUj/zNMK5NWf6BQBQFsWOAECrmT9/fsybN6+w17vjjjsKe61OoggBAACGIIcZLm4C\nAwAAAEDDXXfdFXPnzi11G319faW+/iabbBLXXnttqdsYbYoQADqM1SnIWaVSSd4/zShu0BbN9M/8\n3hMAAAAAOttPf/rT1BFG7KWXXopHH300pk6dmjpKYbpTBwAAAAAAAACAjfXCCy+kjlCIV155JXWE\nQlkJASiVZaPz4z0hZznMsraPNGiLZvonALSXer2edPs5POoJNsRqigBA7rbffvv4xS9+kTrGiE2Y\nMCF1hEIpQgBK5WIVgHaRcqBi1SCFxzEwmFqtljoCQEtSBAAbpggWAMjdJz/5ydhjjz3i0UcfjYiI\nc889N3Gi4XnmmWdi8uTJqWMURhEClMDAOznTP8lZpVJJ3j8N8jZoi2aOn+SqWq3aVwGGwWcdAABo\nfSeddFLcdtttqWOM2LHHHrv668mTJ8eFF14YkyZNSphoZBQhAAAAANBxzPAGAIDhu+mmm+K0005L\nHaMtPfnkk3HXXXfFzJkzU0cZNkUIUAI3Mhq0RX68J+Qsh9lg9pEGbdFM/yRX+gUAUBargQEAg/nD\nH/6gAKFEBx98cOyzzz6pY4yIIgSgVC5WAWgX9Xo92bZXPbPastEMRr8AAMqi2BEAGMxWW20Ve+65\nZ9xxxx2po7SFKVOmxKJFi6Knpyd1lMIoQgBK5WK1wQ16gNa2qhAgJedVBqNfAAyPIi4ARqpSqTiX\nAB1j5cqV8corr6z+/swzz2z6/fom8Ixkcs+GXveMM86IX/ziF8N+/Rw89thjMTAwoAgBYKishNCQ\ny0WJ94ScpdpPcthH1s6RA23RTP/M7z3hVfoFwPAo4gJgpHwWBjrFXXfdFXPnzk0do63de++98fa3\nvz11jMIoQoASGOQFAMpQq9VSRwAAAACgwyxbtix1hLbX29ubOkKhFCEAAECLqFarZrzzGopTAAAA\ngDIdfPDB8eKLL8b111+/3r8byeNM1/dv1/e7dimQ+POf/5w6QqEUIQClsrwlABTHeRUAAACA0fbC\nCy/E7bffHg8++GDqKG1r/PjxqSMUShECUCqPpgAAKJcVMgAAAIAyXX755XHrrbemjtHWnnjiidQR\nCqUIAUpglmKDtsiP94Sc5TCQZR9p0BbNcuifMBiPYwAYnlRF8xGKuGgdJpcwmJEstV0kfQRg9Cxf\nvjx1hLY3ZcqU1BEKpQgBSlCv15NtO5eLAPKlf5KzHPpnygxr5siBtmiWQ/+EwVgJAWB4FFwCDE8u\n14qVSkWRDMAoOeKII+Kqq65KHaOtLVu2LHbeeefUMQqjCAFKkOpGcI4fgFXM50f/JGc5HDMM5jVo\ni2Y59E8zNgGgOLkMokHOFOsAABERb3rTm6K/vz91jKjX6zFr1qzUMUoxadKk1BEKpQgBSuACjZzp\nn+QshwFO+0iDtmimPQCgvSgCAACA1rJixYrUEUqzzz77pI5QKEUIQKkM2ADQLnIYqHBeBQBgNOWw\nGhgAwCpjxrTv0HYO9x6L1L7vFCTkAq1BW+THe0LOcnieo+XuG7RFM/0zv/cEAIByKYJlMLkMkrg+\nARg9f/zjH6NSqcTTTz+dOkrbevzxx2PKlCmpYxRGEQIAAAAAADAk9Xo96fZXFUHkUCgO0Cn+/d//\nXQFCyV5++eXUEQqlCAFKoEocAAAAAGhHVkIA6Dz77bdf/OxnP4uHHnoodZS2NW3atNQRCqUIAaDD\nKJIhZzncQLCPNGiLZtoDAAAAgE40efLk+Na3vpU6Rrzyyiux//77p45RiP7+/tQRSqUIAQAAoIXV\narXUEQBa0pw5c5Is4x1hKW+gtXkcg2M4QCpjxhjabhXeKQAAgBZWrVYNogEMg1WOAACg9fT398fA\nwEDT44EGBgYi4tVCubJXSvjmN78Zb3nLW0rdRjtQhAAAANDCDKIBAAAAnaS7u7vp+56enlHb9pln\nnhkLFy4cte21KkUIAAAALcxy4gAAAEAne+yxx+Kpp56Ker0es2fPjiuvvLK0bY0bN660124nihAA\nAAAAAAAAWKd6vb76sQdFv+5I/vZzn/tc/OY3vyky0nrddddd0dfXV+hrfv3rX4899tij0NdMTREC\nQIdJNVvSTEmGolKpJO+fZhQ3aItmORw/LbsPAAAAwGj7zW9+E8cff3zqGG3rxBNPjJ/+9Kex+eab\np45SGEUIAADQIhSGAEBxnFcBAGBo7r///tQR2t5DDz0Uu+22W+oYhVGEAAAAAEDHscIQAAAMzSuv\nvJI6QtvbZpttUkcolCIEgA7jRhs5y2E2mH2kQVs00x7kqlarpY4AAAAAtLGlS5emjtD2xo0blzpC\noRQhAAAAtLBqtWo5cQCAktXr9aTb7+rqSrp9ADrbvHnz4mMf+1jqGG1twoQJqSMUShEClCDlRYkL\nEjZE/yRnOfRPN5YatEV+zHgHgOLMmTNHERcwZK5PGnJpixyuj1KfS6zYB4yWKVOmRH9/f+oYg+rr\n60sdoRB333137LbbbqljFEYRApQglw/iMBj9k5zl0D9zyJALbZEfM94BoDgGbgCGJ5eC9VTXR2te\nG+VQCAFAe3jrW9+aOkKhFCEAAAAAAABsJMX7ABTl+eefj0022SR1jMIoQoASpFqGywxFhkL/JGeV\nSiV5/0y9lGJO+4m2aJbD40JgMGZfAQAAAJ3illtuiVNPPTV1jMLddtttsf/++6eOURhFCFACSzoC\nQPvJYalPAAAAAOhUAwMDceaZZ6aOUYpJkyaljlAoRQhQAjPNGxRkAACUK1WBTESenz8BhsqqTwAA\nMDQvvfRSnHrqqXHrrbemjtK2ttlmm9QRCqUIASiVggwAAABypGgeAACG5h/+4R/i17/+deoYba2n\npyd1hEJ1pw4AAAAAAAAAQJ522mmn1BHa3rJly1JHKJQiBAAAAAAAAAAG9ZGPfCS6uw0rl+m5555L\nHaFQHscAJbCkY4O2yI/3hJzl8BgV+0iDtmimfwIA0Gk8ZhMAiIhYsmRJDAwMpI7R1l544YXUEQql\nCAFK4AKtQVvkx3tCziqVSvL+mWofWTtHDrRFM/0zv/eEVylOAQDK4nMGABARMWPGjLj44otjxYoV\nqaO0rbFjx6aOUChFCFACF2jkTP8kZzkMcNpHGrRFM+1BrhSnAAAAAGWaOnVqLFmyJHWMQfX19aWO\nUIiDDz44dYRCKUKAEphpTs70T3Jmpnle+4m2aOb4CQAAAABprVy5Mu688854+eWXU0cpTHd3d7z4\n4osxbty41FEKowgBSmCmJAAAo6VWq6WOAABAB+nq6kodISLyWE0RgNFVr9fjve99b+oYhRsYGIgP\nfOADq7+fNWtWfP7zn4/x48cnTDUyihAAAABaWLVatWoJwDDU6/Wk289lEA8AAIbi4YcfjmXLljX9\nbNVn6rX/f2P/Zqh/u3LlyuFEbzlLly6NXXbZJQ4//PDUUYZNEQJQKqtC5Md7Qs5yGMiyjzRoi2ba\ng1xZCQFgeBQBAAxPLkVcOTzSEaBT3HzzzTFv3rzUMTpKb29v6ggjoggBKJXnZwMAlMtKCAAAAECZ\nlixZkjpCR/nwhz8cBxxwQOoYI6IIAQAAAAAAAIBBTZgwIXWEpPr7+1NHaDmKEAAAAAAAAAAYiba0\nqgAAIABJREFU1K677hrXXntt6hjJ9PX1lfr6Z511Vuy1116lbmO0KUIA6DAekUHOcnieY6p9ZO0c\nOdAWzRw/AQAAAOhEBx54YPT29sYtt9yy+mddXV1N/78ug/1dV1dX1Ov1df77Nf/N2n+39t9ff/31\nG/XfkqMvfOELceWVV8bEiRNTRymMIgQAAAAAAAAABtXd3R3vf//74/3vf3/qKK+xdOnSWLlyZeoY\nI/bII48oQgCgdS1YsCB1BFinHGZ720catEUz7QEAAAAAebnhhhti5cqVUa/Xo16vx7PPPhtz586N\nRx99NHW0jbLbbruljlAoRQgAAAAtrFarpY4AAAAAkExPT8/qry+77LLsCxAWLFgQO++8c+oYpVKE\nAAAAQ7Ch59uNBqsxAAAAAMC6XX755aVvY8qUKRHx6v3CVf9b+/vu7u6IiNh7771jhx12WP1vJ0+e\nHDvttFPpGVNThACUysy8BgNHAIxUvV5Puv0cCjEAAAByMWfOnLjnnnuSbHvnnXd2vxEgkccee2zI\nf/vAAw8M+vPPfvazERExduzY2G+//aK3t7eQbLlQhACUqlqtJvkgvvPOO2fxbPk1pb4oya09AFpN\nygKAVYP/qc6rEc4lOdMvAAAgDUUAAOk99NBD8ZnPfCaee+651FE2yrnnnrv667POOituuOGGpsdK\ntLru1AEAAAAAAAAAYGN95zvfabkChME8//zzqSMUykoIQKlUA+cn1YoMZkoyFJVKJXn/tGpJg7Zo\n5vgJAO3FY44AAKD1HXLIIXHDDTekjjFiL730UuoIhVKEACXIYbnmXBiwAQAAIEe5XT8DAECuXnjh\nhajVarF48eLUUdrW/fffH1tttVXqGIVRhAAAAAAAAADAoBYvXqwAoWRf/epXY9asWRERMWvWrNh1\n110TJxoZRQhQgmq1avY/AAAAAAAALe8d73hH6ght75lnnokf//jHERHx4x//OM4555zYc889E6ca\nPkUIAAAAAAAAAAxqhx12iIULF8Zvf/vbpkeSr/148sF+N9gjzDfmd2v/zbJly2Lp0qXD+c9oKRMm\nTEgdYUQUIUAJFixYkDoCrJP+Sc5yWM3FPtKgLZppDwBoL3PmzEmyimGElQwBAGgtl112WSxcuDB1\njLZ23HHHxbRp0yIi4m1ve1tMmjQpbaARUoQAAAAAQMdRYAgAAENz0003pY7Q9g455JDYbLPNUsco\njCIEoFRu6gDQLrq6ulJHcF4FAAAAYNTNnz8/PvzhD6eO0dbGjx+fOkKhFCEApUq1vKWlLQEo2mDP\nqBstqwogLBsNAAAAwGi7+eabU0doKwcffHBsu+22ERHR29sbhx56aPT09CROVSxFCAAAAAAAAAAM\n6i1veUvqCG3l6quvjv7+/tQxSqUIAaDDWJ2CnFUqleT900zzBm3RzPETAAAgj0fVRYTrJIBRtMce\ne8TixYvj2Wef3eh/W/R548gjjyz09SiHIgQogUGKBs+uBqBddHV1JbnZtuY2nVcBAAAAGG133XVX\nzJ07N3UMWogiBCiBAYIGBRn50T/JWQ77rX2kQVs0q9VqqSNYnQIAAEiuXq8n3f6qQu0cVlME6BSL\nFy9OHaGtbL/99qkjlE4RAgAAAAAAAACDmjZtWuoISfX396eO0HIUIQAAAADQcawwBAAAQ/PBD34w\nnnzyybj66qtTR9mgF198MXUEQhECAAAMyaolP1PyiAwAAAAARtu4ceOiWq1GtVpNHWWD+vr6Sn3N\n8847L3bbbbfCt9FuFCEApcrh+dkAAO1McQoAAKSRelUd1wLAaHnllVfi+OOPj3vvvTd1lOSOP/54\nj2cYAkUIQKmq1WqSD+KWtgSgaPV6Pdm2V63CkPoGl3NrnvQLAABIQxEA0Cn233//1BFoMd2pAwAA\nAAAAAAAA7cFKCAAAMASrViNIySwbBqNfAAyP4ycAAAzN9OnT45e//GXqGNm48MILX3OvcF33Dt/0\npjfFlltuufr7SZMmxQ477FBqvhwoQgAAgCHwOAbL7ucqZd+MyKNABwAAACjPTjvtpAhhDd///vcL\nfb1qtRpHHHFEoa+ZmiIEKEGqAQKDAwyF/knOKpVK8v5pkLdBWzRz/CRX1WrVvgoAAACU5uijj47e\n3t64/vrrX/O7oUxOGOxvhrqSwIb+3X//938P6d/lrFarxQEHHBCbbbZZ6iiFUYQAJbCkY4O2yI/3\nhJzlMJBlH2nQFs30TwAAOo1CXAAgIqK3tzeOPvroOProo1NHeY2+vr7UEQrR398fhxxySOoYhVGE\nACVwgdagLfLjPSFnVkLIaz/RFs1y6J+W3QcAYDQpggUAIiIefvjh+PjHP546Rls755xz4pxzzomI\niG222SbOP//8eN3rXpc41fApQgBK5WIVAIqjCIDB1Gq11BEAAACANvYf//EfqSN0lMcffzzuvPPO\neM973pM6yrApQoASGHhvMOseAIpjdQoGU61W9QsAAACgNAcccEDcfvvt8atf/Sp1lI7wvve9L/bZ\nZ5/UMUZEEQKUwMA7AAAAAAAA7WCLLbaIr3zlK6ljDKqvry91hEJ84QtfiAMOOCB1jMIoQoASWAmB\nnOmf5CyHQir7SIO2aKY9AAAAWFPq1epcpwJEfO5zn4tzzjkndYwRO+uss+Kss84a9HcTJ06Mf/mX\nf4k3velNo5xq+BQhAADAEHR1daWOELVaLXUEAGgbqQeOcijABWBkFAEApNcOBQgbsnz58li0aFGc\neuqpqaMMmSIEAAAYgnq9nmzbqwogqtWqwRIAKIiBIwAAaH2VSqUj7lkddNBBqSNsFEUIQKnc1AGg\nXeSwEoLzKgAUx0oIAADQ+qZNm5Y6wka78MILY8cdd0wdo1SKEIBSpbqp44YOAEXLYSUEgyUAUBzF\nfQAA0Hq++93vxje+8Y3UMUbk05/+dHzyk5+MiIje3t449NBDY8KECYlTFUsRAkCHURhCziqVSvL+\naZC3QVs0c/wEgPbisw7A8OSwSlxEOI4CjLI777wz7rjjjohY/2SdNX+3rq+H+/cvv/xyXHHFFUMP\nnbFLLrlk9dc//vGP43vf+1709vYmTFQsRQhAqcwsyY/3hJzlcAPBPtKgLZrpnwAAAGlXiYtoFEHk\nMJEBoFNcf/31ccYZZ6SO0bbGjh0b3d3dqWMUShECUCqzRgFoFx7H4NwKQHtR3AcAAEMzbty41BHa\nxrbbbhsf+chHVhcd9PT0xMyZM6OnpydxsmIpQgBK5aYOAAAAAABA63r3u98dl1xySdx///2rf7bm\n43nWflTPuh7ds65/U9TfR0TMmzdvnb8bqV133TXmz58fW265ZWnbaBeKEIBSWQkBAAAAAACgtU2b\nNi2mTZuWOkZSd999d3z729+OuXPnpo6SPUUIQKmshAAAUC6ftwCGx2OOABip1OcS1wIAo++KK65Q\nhDAEihAAAGAI1rfM22hxg4nBpL7xaRANaFXOq7BhVriE9XMuAeg8W2+9deoILUERAlAqF6sAUJx6\nvZ50+zkUYvBabnwCDI8iLtgwnzNg/VKfS+yjAK91/PHHx3nnnVfa6x9yyCGlvXY7UYQAlMoHYQAo\njiIAAABGk8klsH7ufQLkZ/LkyaW+/s4771zq67cLRQhAqVysAgAAALQmA6ywflZCADrZ8uXLY8mS\nJU0rd676ul6vj+jna/9s7X+zvp9fffXVhfz3rcuyZcvib/7mb0rdRjtQhACUygdhAIBypb7xqfAT\naFWuV2HDTC6B9XMuATrV8uXL44gjjohXXnkldZRRNX369PjABz6QOkZLUIQAAAAAQMdRxAUAAMPX\nKY8Nvfjii+MNb3hDdHV1RW9vb/T09KSO1BIUIQAAAADQccxeBQCA4Zk4cWL86Ec/ihtuuCEiGgUJ\nXV1dTcUJI/n5mv+/9t+u+fMHH3wwvvOd7xT3H7eWv//7vy/ttVc566yzYq+99ip9O6NJEQIAAEAL\nM4gGMDxWQoAN8zkDAFiXzTffPD70oQ+ljhF9fX2pI4zYF77whVi8eHGMHz8+dZTCKEIASuXZgfnx\nnpCzSqWSvH+6Gd2gLZrpn/m9J7xKvwAYHoOrAABALp599llFCAAAAADQyur1etLtd8ozdAEAgA07\n6qijYrPNNot6vR7HHHNMHH744dHT05M61rApQoASmGneUKvVUkfIhrYAaG05zJZ0LgGA4igCAACA\n1vPss8/Gl7/85Vi+fHnywuKiPffccxERcf7558eUKVNixowZiRMNnyIEKEEOgxS5qFarCjL+T6q2\niGhuD/2TnOWw39pHGrRFfnI5lwAAAADAaBsYGIhDDz00dYxRsf3226eOMCKKEAAAAAAAAADIWrut\nfLCmq666KjbbbLPUMQrTnToAAAAAAAAAAKxPT09P/OhHP4o3vvGNscUWW8QWW2yROlIhLr300rYq\nQIiwEgLAqOnq6kr2zFHPOgUAAGiWehaV6zSA1udcAjD6fvazn8Xvf//71DFGrL+/P3WEUilCgBLM\nmTMnyfOaPas5b/V6PdmFyZrb1T/JWaVSSd4/U+0ja+fIgbZo5vgJAO3FwA3A8ORy/MzhOimXtgDo\nFAMDA/GNb3wjdQyGwOMYAAAAAAAAAIBCWAkBSrBgwYLUEWCd9E9ylsMsBvtIg7Zopj0AAADyeQRB\nDqspAjC6uru745xzzonPfe5zqaOwAYoQAAAAWlitVksdAaAlefQUAAAMzV/+8pdYuHBhXHnllamj\ntIX9998/dYTSKUIAAABoYdVq1SAawDBY5QgAAIbmmmuuUYDwf44//vg47LDDUsfIniIEAACAFmYQ\nDQAAACjT7rvvnjpCNjbddNPUEVpCd+oAAAAAAAAAAOTp97//feoI2bAixNBYCQEolZl5ALSLrq6u\n1BGcVxmUZ5oDAGVJ9TnDZwwAyEtPT0/qCNk45phjUkdoCYoQAAAAAOg49Xo96fZzKHAEAIChmDlz\nZlx00UXx29/+NiKaP8uu+nrtz7ep/ubLX/7yUP6Thu2CCy6Id73rXaVuox0oQgAAAACg41SrVSvJ\nAADAEO2www6xww47pI6xQcuWLYvvfe97pb3+oYceWtprtxNFCAAAAAB0HI85gg2znwAAraboAoS+\nvr6YPXt2dHV1xZQpU+L1r399oa/frhQhAAAAAADwGnPmzEmyYojVQgCA4TrttNPi9NNPL+z1Tj31\n1Oju7i7s9TqFFgMAAAAAAACg5Y0ZU+wc/CeeeKLQ1+sUihAAAAAAAAAAaHmLFi0q9PX+9Kc/Ffp6\nncLjGAAAAAAAAABoeffff3+hrzd37tx485vfHN3d3bH//vvH4YcfHmPGjImurq7Vf7Pm17xKEQIA\nAEALW7BgQeoIAAAAAEkcfPDB8fzzz5e6jYceeigiIhYuXBgLFy4sZRtLly5tq2IGRQhQgnq9nmzb\nuR2g5syZE/fcc8+ob3fnnXeO888/f9S32wq8J+SsUqkk75+p9pG1c+RAWzTTP/N7T3iVfgEwPCmv\n3SPyu36HwSh2BAAiIpYvXx7z58+P2267LXWUtnXeeefF9ttvHxERe+65Z0yZMiVxopFRhAAlcCOB\nwXR1dSXrG2tu1w0EcpbDQJZ9pEFbNNMeANBeXLsDAMDQXHfddQoQSnbFFVc0fV+r1WKXXXZJlGbk\nFCEAjJJ6vZ5sps2a27VSBznLoX+aEdegLZrl0D9hMLVaLXUEAAAAoI319vamjtBxVq5cmTrCiChC\nAOgw1Wo1+XLisC45PC4k1T6ydo4caItmjp/kSpEKAAAAUKb77rsvdYS2t/fee8duu+0WXV1dMX36\n9Nhuu+1SRxoRRQhQghwG0XJh6eoGsxQBWlsO57QcMpAfq5YAAEAaqe4DR7x6L9g1IjBa3va2t8V1\n112XOkZb++AHPxjTp09PHaMwihCAUinIaDCjGKC15XBOS32Dy7kkTz5jAAyPIi4ARkoRANApDj74\n4HjxxRfjhhtuKOT1Vn0WX/Mz8dqfz7u6uob0mf3BBx8sJFNqp5xyynp//6EPfSjmzp07SmlGThEC\nAAAAAB1HEQCwMVIXBOc02J3L8TOHYthcCtr0T6Bsvb29cfTRR8fRRx+dOspr9PX1pY4wKq644gpF\nCNDpfOgiZ/onOcvhBoJ9pEFbNNMeANBeUg/Y5PDZFxg61wMMJpeCDP0ToP2de+65qSNsFEUIAAAA\nAHQcAzYAw5PL7P9KpZL8kXkAnWJgYCCWLFkSP//5z1f/bO3zQb1eb/rZqu9X/WzN/1/76/X9uw39\nbDT09/ePynbaiSIEAAAAAAAAAAb11a9+Na699trUMZIp+5EPRx99dBx33HGlbmO0KUIAAABoYWby\nAgAAAGXq5AKE0XDZZZfFZZdd1vSzb33rW/HmN785UaKRU4QAJUj1XElLgTEU+ic5y2EpRc8GbtAW\nzRw/yZV9FWB4cllOHKDV5HL88jkUgHZ26aWXxj/+4z+mjjFsihCAUpmZBwAAQI5yGUQDAIDc3XDD\nDTFv3rz45S9/mTpKxzj++ONTRxgRRQhQAgPvDWaN5kf/JGc57Lf2kQZt0Ux7AEB7sRICwPDkcvzM\nYTVFgE7R09MTZ5xxRuoYERFx4403xpe+9KXUMQp1wgknxOzZs1PHKJQiBAAAAAA6TrVa9TgbAABo\nMTNnzoz+/v51/v6HP/xh4ZOJ1rc9BqcIAQAAoIVZpQNgeBw/AQCg/ZTxOb+vr2/119/+9rfjjW98\nY+HbaDeKEIBSuakDQLvIYclk51UGk+rxVxFm8gJAu/OYTQCAZjfffHN85CMfSR0je4oQgFK5WAWg\nXaR87umqAgiDzQxGcQoAUBafMwCA3C1atCguueSSUdvehRdeGBdeeGGhrzlz5sz40pe+VOhrpqYI\nAaDDKAwhZ5VKJXn/NMjboC2aOX6SK/sqwPCkLDCMyGOVJQAAaHWjWYBQlhtvvDGWL18eEydOTB2l\nMIoQAAAAAOg4igAAAIBc/OEPf1CEAKyfmZIAAAAAAADAUPziF7+InXbaKXWMwihCAACAFuGZvAAA\nAAB0iqE8Qu3000+P0047bRTSlGuzzTZLHaFQihAAAKBFpFptKcKKSwAAAACd6pprromvfe1rqWO0\ntW233TZ1hEIpQgBKZcYmAAAAAABA61KAUL5TTjll9deve93r4uKLL45JkyYlTDQyihCAUqWasZnj\nbM1arZY6AgAjkENhXQ4ZyI/PGAAAkEbq1epcIwKjZd68eTF//vzUMTrGM888E3fddVfMnDkzdZRh\nU4QAJfDhj8FUq9UsltDWP8lZDsVD9pEGbZGf1De4cthHea1cPmMAAECncd0MdIpZs2bFjBkz4oUX\nXkgdJe6999445ZRTol6vp45SmkMPPTSmT5+eOsaIKEKAEpj9T870T3JWqVSS90+DvA3aolnKC5uu\nrq5k2wYAANJfHxnszlPqAbBV14r6JzAaxo4dG2PHjk2aYWBgIM4888zkx98y/PCHP4zJkyenjlEY\nRQhQAh+6yJn+Sc5yGHS2jzRoi2YKAQAAoHO5PmrI5dooh3sIubSF/gl0iu7u7pgxY0YsXrw4dZTC\nbbrppqkjFEoRAgAAAAAAAABZGxgYaMsChIiIgw46aL2/nz9/fsyYMWOU0oycIgQogeXuyZn+Sc48\njiGv/URbNHP8BAAAAIB02vExDEN10003KUIAAACKV6vVUkcAAAAAAEbRLrvsEscee2zqGBtFEQKU\nwDO4GrRFfrwn5CyH2d72kQZt0SyH/pnL80YBAOgMVgNjMKlnoa66LsphNUUAGK7+/v7UEUqlCAEA\nAKCFKRgCGB6PnoIN8zkDAMhJT09PXHnllTF79uzUUUasr69v9dfHHntsfPSjH02YpniKEIBSqZjP\nj/eEnOUwi8HN6AZt0Uz/zO894VX6BcDwGFwFAIDWM3HixKZVBNYczG9VF110URx22GExbty41FEK\nowgBSmCQFwAAAAAAABiKxx57LLbbbrvUMQqjCAFKYDYFg8mlX9RqtdQRYJ1y2E/sIw3aopn2IFf6\nJgAAAFC2O++8M+64447V39fr9UJed0OvU9R2cvfKK6+kjlAoRQhQAishMJhclkquVqv6J9nK4fiZ\nah9ZO0cOtEUzx09yZV8FAAAAynT99dfHGWeckTpGW/vLX/6SOkKhFCEAAECLyGG1EAAAAAA6y7hx\n41JHaHubbrpp6giFUoQAJTBA0KAt8uM9IWc5zKa1jzRoi2Y59E8AABhNOaxWBwCk9+53vzsuueSS\nuP/++1f/7NFHH41LL700Yar2Mn78+NQRCqUIAQAAAAAAAIB1mjZtWkybNi0iIv73f//X4xkKNmnS\npNQRCqUIAUqgSrxBW+THe0LOKpVK8v6Zah9ZO0cOtEUz/TO/9wQAgHJZHQ0AGMz48eNjyy23jKef\nfjp1lLbx3e9+N4499tjUMQqjCAEAAFqEm8AAAAAAjLbf/e538alPfSp1jLa29957p45QKEUIAKPE\nwBFAa8vhOG4lBAaTQ98EAIBOlGrFvAjXaMDoOvfcc1NHaHsnnHDC6q932mmnOPvss2PzzTdPmGhk\nFCEApXJTvMHAEUBrq1aryR7HsOp86rzKYHzGAACANHwWBjrFBz7wgbj77rtTx+gY9957b9x6663R\n19eXOsqwKUKAEhggaEh1U9wN8XXTP8lZDvutfaRBWzSr1WqpIxhsBgAAkuvq6kodISLyuIcA0CkO\nOuig2H777eM3v/nNkP6+Xq+P6Pfr0wnH/6lTp8Zee+2VOsaIKEIA6DAKQ8hZqmUM1+yfBnkbtEUz\nx09ylUOBDAAAnWMkA0dFWFUEkcM9BIBO8oY3vCHGjBne0PL6zh0bU7CwcuXKYW2/1Tz66KPx0EMP\nxS677JI6yrApQoASGKQAAGC0pHpUSITPnwAAANAJbr311jjppJNSx+go//Vf/9XSRQjdqQMAAP+f\nvTsPk6uq88f/qe7sxASyDPvmIIsQWVTyzUMcCDLGJ8CIihEmiKyBTiOIsghidEDAwLDbATPDIhJ0\nMioDYpAECAjIapBFZBMSZAuEPZCQpLt+f/BLd4p0kl6q+pyufr2eJ0+qa7vvOnVuVd17P/ccAAAA\nAADI0yuvvJI6Qo+z5ZZbpo7QKUZCAACANpg6dWrqCABAGZl6CoDOSjUlRITvEqBrjRs3Lnr37h13\n3313REQsX7487rnnnsSpqtuSJUtSR+gURQhQAQ5StNAWLXLZKPCekLMc1hPrSIsc3o+IfHKsmHc0\nJf2zRS79Iocc+kUp7QFrlsPnVkQeOXxe5Md7kp8cphzN4fOCUjlsG0Xk0TdyyADQFWpqamLs2LEx\nduzYiIh47LHHFCFU0Oc+97kYOXJk6hidoggBoIuojAa6m2KxmHT5K3Zs+fykNbn0i1Q5Vs7gTN5S\nORwsgZz5/PT5mTPvCa3J5XOLFj19W1G/AHqq5557Lp588smIiHjzzTcTp8nLhAkTIiLiz3/+czzx\nxBPtfvy1114bG264YbljJaUIAQAAoBtz1igAUCl+ZwAAERF/+MMfYsqUKaljJLPpppu2ev3mm28e\nxx9/fAwZMiQiIo444oiujJU1RQgAAADdmLNGATrGwVVYOyMMAQAREdddd13qCEm98847UVNTE+PG\njYuDDz44+vTpkzpS9hQhAAAAAAAAANCqU045JQ499NDUMZJ5++23IyJi+vTpMX369JLb6uvrY9So\nURHx4ZRBK/6t0KdPn6itrY1CoRA1NTXRu3fv6Nu3b9eFT0QRAlBRKuYBqBYp5z1dseHijHcAALqS\nEUMAgIiILbbYIubMmZM6RqvGjBmTdPkNDQ3R0NDQqef48pe/HMcee2yZEuWhJnUAgJ5i5Qq4FP8A\nAAAAAADIy3XXXRevvfZa6hhlZSQEgC5SLBaTnUWb8uxdAAAAAAAAVm/w4MGpI5SVIgSoAFMQkDP9\nk5zV1dUl75+Gu2+hLUr5/CRXnR3yDwAAAGBNXn755TjssMNiyZIlqaNUreeeey622Wab1DHKRhEC\nUFHmDgSA8vG9Smvq6+sVDAEAAAAV88c//lEBAu2iCAEqwAGCFs4azY/+Sc5yWG+tIy20Rakc2sPo\nFAAAAAB0tS984Qtx++23xxNPPJE6StWaOXNmPPDAAxERsdtuu8WWW26ZOFHnKEIAKsrwwABUi0Kh\nkDqC71VapV8AdIziPqA9Un9m5FAUzaqKxWLS5a/YTtU/gUpbb731sv39OmbMmNQRyuKGG25ovnz5\n5ZfHxRdfHCNGjEiYqHMUIQAVlWp4YDt0ACi3lDuXVuxYMuw+rdEvADrGAROgPXxm0JocitUj9E+A\nalRbW5s6QqcoQoAKMAUBOdM/yVldXV3y/pn67IGc1hNtUcrnJwBUl1zOXgXobnL5/LKdBEA1mThx\nYgwaNCiKxWLsvPPOsfHGG6eO1CmKEAAAAADocXI5iAbQ3eRSxJXDiQwAdL1DDjkk5s+fnzpG2Y0d\nOzaGDBmSOkbZKEIAKspQYABQPr5XAaB8cjmIBtDd5PL5pRAAoOdpbGysygKEiIi+ffumjlBWihCA\nijJ0NQCUjykyaE1DQ0PqCAAAAAAVV1tbGyNHjoz77rsvdZSy+8c//hHbbrtt6hhlowgBAACgG6uv\nr1ecAtABuZzJCwAAtE2xWIx33nkndYyKWLRoUbz77rsRETFgwICora1NnKhzFCFABRgquYW2yI/3\nhJzlcCDLOtJCW5TSP8mVfgEAVIoRLgGAiIj58+fHIYcckjpGVTvxxBNL/r7gggtip512SpSm8xQh\nQAXYQCNn+ic5q6urS94/DXffQluU0j/ze0/4kH4BAFSKYkdaUywWky5/xUg2OWyjAfQU1Tj9Qe5u\nvvlmRQhAKRto5Ez/JGc5bMRbR1poi1L6J7lqaGhIHQEAqFJOZAAAIiLGjRsXjz32WNx5552po/QI\ngwYNim9/+9upY3SKIgQAAIBurL6+3kgIAB2Qy5m8AACQu4EDB8bpp5/e/HdjY2NMmTJl6IF5AAAg\nAElEQVQlZs+enTBV19tss83iqKOOin79+kXEh9sUjY2N0djYGMViMZqamqJQKERTU1M0NTVFY2Nj\n3HXXXbFo0aKoqamJ2traWL58efTt2zdqamqipqYm+vbtG8cee2z0798/8asrL0UIAAAAAPQ4irgA\nAKBjamtr49RTT41TTz01dZRVzJkzp6RgorN+9KMfxe67797hx++5555ly9KdKEIAAAAAoMcxzREA\nALRNY2NjzJw5M+644442P2bFyGNtHQFs5ZHK2vKYj45stuIxTzzxRFsjtsmdd94Zc+fOjYiIz372\ns7HbbrsZ1awNFCEAAAAA0OOkmus+wkgIAAB0L7///e/jggsuSB0jiVtvvbX58g033BAnnnhijBs3\nLmGi7qEmdQAAAAAAAAAA8rTJJpukjpCN9dZbL3WEbsFICAAAAAD0OKZjAACAttlll13i+uuvj9de\ne22VaRBW/L266z96n4/er7XnaO0+q3ue8847L1544YV2v6aOevvtt2PZsmWt5mpNr169oqam540L\noAgBAAAAgB5nTTsKu4J5ZAEA6C4effTROPbYY1PHyMKUKVNiypQpZX/e2267raq2ERQhQAWkmlcy\nxzkltUV+vCfkrK6uLnn/NDdwC21RSv/M7z0BgM6oph18UClGDAEAIiKeeeaZ1BGq3lNPPRXbbLNN\n6hhlowgBAAAAAAAAgFbts88+sWTJkpg9e3ZErFrQu+LvQqGwxts++tg13ba62xsbG+Ovf/1r519U\nZo4++ujo3bt3REQceuihMX78+KitrU2cquMUIQAAQBs0NDSkjgAAAAAAXa53795x4IEHxoEHHpg0\nR7FYjLq6uqQZKmnZsmURETFt2rSYNm3aGu9bV1cX48eP74pYHaIIASrAUHXkTP8kZzkM9W4daaEt\nShmyGQAAAADSKRaL8d5776WOkYWrrroqvvrVr2Y7WoIiBKCiHMDKT6r5xM0lTlvU1dUl75+p1pGP\n5siBtiiVw+en71UAKJ9isZh0+QocAQCgfWpqamLatGnxm9/8JpYsWRIREdOnT0+cKo2TTz452wKE\nCEUIAAAAAPRAigAAOiaXz8/cCtcB6Bq1tbWx7rrrNhchVIvTTjstPv/5z6eOUTaKEICKyuGsUQCo\nFkanAAAAAKCnKhaLMXbs2NQxKmK33XZLHaGsFCEAAAAAAABtkst0NjlM6QhA12psbEwdoWJefvnl\n2HLLLVPHKBtFCAA9jPnEyVkOG/HWkRbaopT2AIDqYoQhAADoXnKZEqgSNtxww9QRykoRAlBRDtgA\nUC1y2MjxvUpr9AuAjvH5CWtnmk1ak8O2UUQeJzIA9BQvvPBCfOMb30gdo2r98Ic/jH79+qWOUVaK\nEKACbKC10Bb58Z6QsxyGUnRGXAttUUr/zO894UP6BQBQKYp1AICIiD/96U+pI1SdOXPmpI5QUTWp\nAwAAAAAAAACQp7Fjx8bOO++cOgbdiJEQAAAAAAAAAGjV4MGD4/zzz08dIyIiGhoa4te//nXqGKyF\nIgSoAEPVtdAW+fGekLMchvS2jrTQFqX0T3LV0NCQOgJAt2Q6G4COKRaLSZdfKBQiIo8p8wDoevX1\n9VFfX9/891tvvRX7779/NDY2JkzVPhMnTkwdoeIUIQAAAHRjK3bCAtA+ivtg7VIV6zjICwC01brr\nrhu33HJL899jxowp6/Mfdthh8Y1vfKOsz9kTKEIAKsrGKgBAZeVyJhpAd2MkBFg7xTotUn9meC8A\nII3f/va3ihA6QBECAAC0QcoDvSsO8qbe8elgSZ7q6+v1C4AOcEAPaA+fGQDQM7311lvtGl3huOOO\ni/3226+CiboHRQhARdlAa2EHPUD3lsPZ3r5XaY1+AdAxivsAAKD7e/PNN+PMM8+MP//5z6mjRETE\nRRddFBdddFG7HvNv//Zvcfzxx1coURqKEAC6SF1dnR1cAEDZOYgG0DGKuGDtTLMJAOTuK1/5SuoI\nnXbDDTfEkUceGQMHDkwdpWwUIQAVZWM1P94TcpaqWGfl/ulgXgttUUr/zO89AQCgshTrAAB0jdde\ne00RArBmDvK2sLEKAOXjexUAykdxHwAAdH/HHXdcu6c/yNFrr70WW265ZeoYZaMIASqgoaEhdQQA\nAABgDRT3AQBA2zz55JNx9NFHp45R1U4++eTYaqutmv8uFArNl3fYYYc44ogjYsCAASmidYgiBKiA\n+vp6IyEAAAAAAADQ7T366KOpI/QIzzzzTKvXP/3007F06dI44YQTujhRxylCAACANlDoR66cyQsA\nVIopRwGAiIh99tknXnnllbjhhhtavX3ls/ZXd7lS93/nnXfWkr46bLvttqkjtIsiBKgAO4Jb2FjN\nj/5JznJYb60jLbRFqWKxmGzZKzauzF1Na/QLgI5J+d0esfodrJAT2wQAQEREv3794phjjoljjjkm\ndZRVnHXWWTF79uzUMcruxz/+cey4444REdG7d+/o27dv4kTtowgBAAAAgB5HEQAAAHR/1VKAcOCB\nB0bEh8XSu+++e7cb+eCjFCFABTj7n5zpn+Ssrq4uef90RnELbVHK5ycAAAAAUAm77bZbbL/99qlj\nlI0iBKgAQ9WRM/2TnOVwoNU60kJblNIeAAAAAJDWk08+Gaeddlq8/fbbyadYK6dPfvKTqSOUVU3q\nAAAAAAAAAACwJk1NTXHiiSfGwoULY9myZbF8+fLUkcpm3rx5qSOUlZEQoAIM10zO9E9yZjqGvNYT\nbVHK5ye5MkoHAAAAUGnvvPNOLFy4cK33KxQKzZdbG6lg5dvbq1gsxrvvvtvhx+dsyZIlqSOUlSIE\nqICGhobUEQAA6CEUDAEA0JU6c/ConPwOBeg61113XVx88cWpY1S17bbbLnWEslKEABVQX1/vTEkA\nAAAAAAC6PQUI5TdnzpzUESqqJnUAAAAAAAAAAPI0YcKE1BGqzpgxY2LMmDExduzYePjhh1PHKTsj\nIUAFmJe3hbbIj/eEnOUwmot1pIW2KKV/AgDQ06Sa9slon3lrbX7vrrRiOoi6ujr9E6CLfP3rX4+/\n//3vce+996aOUnWWLl0a3/72t+Omm26Kfv36pY5TNooQAAAAAAAAAGjVxz72sTj77LNTx2hVU1NT\n/PrXv47HHnssIiLuvPPOxImIUIQAFZGyGnhFJXAuVMznR/8kZzn0z1zO6MiBtiiVQ/8EAICuZCQu\nWpPL9ol9fwBERNTU1MT48eNj/PjxERGx9957x/vvv584Vfvsv//+VTUKQoQiBKiIXH6I58DGan70\nT3KWQ//MIUMutEUp7UGu/N4C6JhURfMRCucByiGHQvFUU0JE+C4BWJ3uUoAwZ86c1BEqShECUFFG\nQgCgWuSwg8vBElqjXwB0jCIugI7JZdS8HPY7+i0M9BTPP/98fPOb30wdo2rkOrVFOSlCAAAAAAAA\nAKBVChDK65RTTin5e5tttonLLrssUZrKUIQAVJQzS1qojAbo3nKYjsH3Kq3RLwAAIA3TMQBQDk8+\n+WQsWLAg1l9//dRRykYRAlBROQyLlotcNkq8J+Qs1XqSwzry0Rw50Bal9M/83hMAAICUbCMBUC7z\n5s1ThACsmYO8AEAlOOOd1uQyJy8AAABQnUaNGhX33HNP6hhVrbGxMXWEslKEAAAA3YSREGhNfX29\nfgHQAb5XAQCgbc4666y477774vbbb08dZRV/+MMfUkcoi2XLlqWOUFaKEAAAAADocYwwBAAAbTdy\n5MgYOXJk6hirWLBgQTz00EOpY3TawIEDU0coK0UIQEXZqQMA5eN7FQDKx3Q2AADQ/VVDAUJExODB\ng1NHKCtFCFABDhC0SDW8paEtV0//JGc5rLfWkRbaolQO7WHYaAAoH0UAAABADvr37x9bbbVV6hhl\npQgBqKgcDtgAQDnkcKDC9yoAAAAAPdmUKVPiD3/4Q+oYZdWnT59YunRp9OnTJ3WUslGEAFSUkRAA\nqBYph2xeUQBhJAQAAAAAeqqmpqa45557Uscou/XWWy9qa2tTxygrRQgAAAAAAAAAZK2mpibefvvt\n1DHKYsqUKRERUVtbGzvttJMiBID2MGx0C2ePAnRvpmMgV/oFAABdKYdto4g89rWlHDEvIp/3AqCr\nNDY2po5QNrvuumvqCBWlCAGgi9TV1RlCGwAoO9N0AACVYppNWDNFAAB01JgxY5ovb7jhhnHttdcm\nTFN+ihCgAmygtdAWLRoaGlJHiAjvCXlLVayzcv90MK+FtijV1NSUbNk1NTUR4T0BAKBrGXGphZNL\naE0uIyHonwDd28svvxxvv/12DB48OHWUslGEANBF6uvrbQwAdGOpPsd9hgMAQHp+k9OaXEZC0D+B\nnqK2tja+/e1vx4UXXpg6Stntt99+zZdHjBgRZ511VgwcODBhos5RhAAAANCNOUMRAAAA6Cm+9KUv\nxZe+9KXV3n7YYYfFc88914WJyu/RRx+NBx54oGTKhu5GEQJUgB3B5Ez/JGc5VO5bR1poi1Lag1yZ\npgMAgK7U06cg8BsYIC933nlnTJ48OXWMstp5553js5/9bOoYnaIIAagoB2wAqBY5DLPpexUAgK6U\nqtjRQV4AoK3uvvvu1BHK4je/+U0MGTIkdYyyUYQAFWADrYW2yI/3hJzlcBaDM4pbaItS+md+7wkA\nAJWlCBYAyN2RRx4Zr776ajz00EOpo3TKLbfcEuPHj08do2wUIUAF2EBr0dDQkDoCH6F/krMcDnBa\nR1poi1I59E/fq7RGvwAAqLzUBcG2zwBI7d13342FCxeu9vaVp+v56NQ9a5vKZ033b8tjJ06c2Px3\nXV3dGu+fq3HjxqWOUFaKEICKqq+vT37WKABUixymhCA/qX5vRfjNBQD0HIoAAOjJ/vznP8cJJ5yQ\nOkZVGzhwYOoIZaUIAQAAoBuzQxwAAACopJdeeil1hKr30EMPxc4775w6RtkoQoAKWNvQMJXkDEnW\nJtXwgc6UpC3q6uqS98/UQ2zmtJ5oi1L6Z37vCR/SLwAAAIBK2nvvvaN3795x5513llz/0WNSK/+9\ntuNVa3pse++78t+33XbbGpebqyeeeEIRArBmpiBo4cw8ACgf36sAUD6KuAAAoG1qamrii1/8Ynzx\ni19MHWWtdtlll/jP//zP1DHa7YADDkgdoawUIUAFOEDQwqgQ+dE/yVkOO2KtIy20Rakc+mfK79UI\n3625amhoSB0BoFvyWweAzkpd0Oa7DGBVjz32WOoIa3XxxRfHiBEjUseoKEUIQEU5WAEA5eN7ldak\nGoUrwpm8AFDtTOkIa6YIACC9GTNmdLvfDccee2x84QtfiJqamujbt28cddRR0b9//9SxykoRAlBR\nNlZbFAqFZAePHLQC6LwcRvdJfZZNbt+tAABUlgOsAEBExHvvvRcXXXRRzJ49O3WUqjFr1qzmy9df\nf33cfPPN0adPn4SJyksRAkAXKRaLyQ5gpR6+GwCoHAcHAAAAgEq68cYbFSBU2KJFi2LIkCGpY5SN\nIgSAHsboFOSsrq4uef90pnkLbVHK5ye5sq4CAAAAlfTyyy+njlD1li9fnjpCWSlCgApwkAIAAAAA\nAIBqsMcee8T111+fOkZVe/7552Po0KFRU1NTFVNsK0IAKsrwwAAAAAAAAN3XTjvtFDNnzoxFixaV\nXL/ywfKPHjhf3YH0Nd3vo7c999xzcfzxx3coc3dz4oknlvw9ffr02GijjRKl6TxFCEBFGRUCAACA\nHBWLxaTLr4azmwAA6Dn69+8f/fv379Jl7rTTTnHNNdfEnXfeGYVCofk39Mr/NzQ0dGmmrvLkk08q\nQgAAAACA7kQRAAAAtM37778fF198cdx8882po/QYjz76aIwZMyZ1jA6rSR0AAAAAAAAAgDxdc801\nChC62C677JI6QqcYCQEqYOrUqakjZENb5Md7Qs5ymEbFOtJCW5TSPwGguqSaPjDCFIIAAHQvCxcu\nTB2h6h133HHRr1+/iIjYcccdY8MNN0ycqHMUIQAVlWqnjh06AJRbynmjVwwX7WAJAACQWi7T2dg+\nAeg6hx12WNx3333xzjvvpI5StcaMGRODBw9OHaNsFCEAFeWMzfwoDCFndXV1yfung7wttEWpHD4/\nfa8CQPn4XgUAgLbZYIMN4vrrr+/y5RaLxbjlllvi8ssvj4iIxsbGqhyVYdq0aVVVgBChCAGgx7Gj\njZzlcNDZOtJCW5TKoX8CAAAAQApvvPFGvPzyyxFROmLomkYPXd39VveYF198Mf7zP/+zs1G7hauu\nuioKhULU1NTExhtvnDpO2SlCACoqh7NGc1EoFJINV5fLMHkA3ZnpGPL7bgWAzvC9CgAAbXP//ffH\nySefnDpGVTnkkENK/r711lujpqYmTZgKUIQAFeDAO60pFovJDmCtvFz9k5yZjiGv9URblPL5CQDV\nxahPAB2TskA7oqVIO4d9CAA9xWuvvZY6QtW77777YtSoUaljlI0iBAAAAAB6nFwOogEAQO7GjRsX\n/fv3j3vvvbfV21f+bfvR37mr+927uscUCoXm3+qre+wzzzwTTU1NUVNTE08++WTbXkTmPvaxj6WO\nUFaKEKACnE1BzvRPcpbDmQTWkRbaopT2AIDqUl9fb9QnAABog0KhEHvuuWfsueeeqaOs4pFHHonj\njjsudYxO22GHHVJHKCtFCAAAAAD0OAoMAQCg+/vUpz4Vc+bMaf57zJgxCdOs6uCDD45DDz00dYwu\npwgBAACgG2toaEgdAQAAACALe+21V9xyyy2pYzS7+uqr4+qrr17jfTbeeOO45ppruihR11CEABUw\nadKkJEM6Gs6RttA/yVldXV3y/plqHflojhxoi1I5fH462ExrDCcOAAAA8KFHH300dYR2e/HFF+Ol\nl16KjTbaKHWUsqlJHQAAAGibQqGQ9B8AAAAA5OyAAw5IHaFDXnjhhdQRyspICFABzlIEACqhWCwm\nXb5CBAAAAABydtFFF6WOQChCgIqwg56cTZ06NXUEWK0chvS2jrTQFqVyaA/D7gMAAADQ1YrFYvzx\nj3+Me++9t/nv1v5f0+NX9/eaHtva/dp6/+5mp512Sh2hrBQhAAAAANDjpN5B6QQGAAC6i5tuuinO\nPffc1DGS+epXvxqFQmGVQogPPvgg3n///Yj48Pf9smXL4tlnn42mpqZoamqKxsbGaGxsbL68fPny\nWH/99WPbbbdtvq62tjaOP/746NOnT7LXVwmKEICKyuGsUQAohxwOFPheBYDyyeG7HQAAuoOhQ4em\njpDUb37zm7I91/z582P+/Pkl17311ltxzjnnlG0ZOVCEAFRUyjNLctuhlMuBI+8JOcuhfzojroW2\nKKV/5vee8KGGhobUEQC6Jd+rAHTWpEmTkk6Zl8v+RqD6jRw5Mv73f/83XnrppebrPvp7duWRAlbc\ntvJ91vT7d+X7r+k5WnvcUUcd1Z6XkqUHHngg3nnnnRg0aFDqKGWjCAGoKDtVWqTeKFkxj7f3hJzl\n0D9zyJALbVEqh/bIIQP5qa+vz+I3BkB343sV1i7Vvgy/MeguFAEAPcmwYcNi2LBhqWOsYp111on3\n3nsvdYxOW2eddVJHKCtFCAAAAN2YHZ8AAABAT3XsscfG2WefnTpGpy1atCgGDx6cOkbZKEIAKiqH\noasp5SwGclZXV5e8f+YyakkODFFcKof+6T2hNT63AIBKUewIAOTuwQcfTB2hLP70pz/FjjvuGIVC\nIYYMGRJ9+/ZNHalTFCFABTjw3iLV8MB2iAN0niHe8+M9oTUNDQ2pIwAAAAAkMXv27NQRyuKcc84p\n+fvKK6+MLbbYIk2YMlCEABWQWyEAAADVS3EKAAAAQHVZsGCBIgSglOHuAQAAIG+mOQIAgO7ho7/d\nU/+Wr5RPf/rTERGx7777xq677po4TecoQgAAAACgx1EEAAAAbfO3v/0tJk2alDpGVfvRj34Uu+++\ne+oYZaMIASpg6tSpqSPAaumf5CyH0VysIy20RSntAQAAAEBP9Pjjj6eOUPV+9KMfNV8eOXJknHnm\nmVFbW5suUCcpQgAqygEbAAAAAACA7mufffaJN954I37/+9+XXP/R0cXWNtrYyre35bELFy5sb9Sq\ncN9998VPf/rTOO6441JH6TBFCEBFTZo0Kf72t791+XK32267LM6oXlmhUEg23KdhRgEAAEql2l6N\nyHObFViz1J8ZTvTJU1NTU9Ll19TURIT+CVRe375948gjj4wjjzyyS5f77LPPxuGHH96ly8zFpz/9\n6dQROkURAkAXKRaLUSwWky0bAACAFg6YAO3hM4PWrCgCSE3/BKrVxz/+8fj5z38et912W0R8eKzj\n6quvTpyqPP71X/81IiJ69eoVX/va10qmXhg+fHj0798/VbSyUIQAFeDsf3Kmf5Kzurq65P0z9dkD\nOa0n2qKUz08AAIB8Rty0nQTQM2y22WZxyCGHRETE0qVLq6YI4dRTT00doaIUIUAFqDwlZ/onOcth\nB4J1pIW2KKU9AAAAACCdXr2q59D2mDFjmi//6Ec/it133z1hmvKrnncKAAAAANrIqE8AANC9LF++\nPHWEijjjjDNi5MiR0a9fv9RRykYRAgAAQDdmlA4AAACgkl599dX41re+Fa+++mrqKFXpa1/7WlUV\nIEQoQoCKMGc0OdM/yVldXV3y/umMuBbaopTPT3JlXQXoGEVcAADQNnPmzFGAUEEbb7xx6ghlpwgB\nKsCODHKmf5KzHA5kWUdaaItS2gMAqkuxWEy6/EKhkHT5AADQVnvuuWdcdtllqWNUrfPOOy/22muv\nqhoNQRECVIAzJVs4YJMf/ZOcGQkhr/VEW5TK4fPT9yoAlI8iAICOyaWIK4d9CAA9xTnnnJM6QtV7\n9dVXY7PNNksdo2wUIUAFOEBAzvRPcpbDRrx1pIW2KJVD/4TWWFcBgErJoRAXAEjvwQcfTB2h6lVT\nAUKEIgQAAAAAAAAAVuOyyy6Lo48+OnWMbuuggw6Kww8/PHWMLqUIAQAAAAAAAIBWbbPNNjFnzpzm\nv19//fXYf//9EybqXq655pq45pprmv/+1re+FV/5ylcSJqo8RQgAAADdWKphkiMMlQx0bz4/AQCg\nY4YOHRpXX311XHXVVSXXFwqFKBQKzZc7c/1Hb1/d9dddd125XlaXueSSS+Kyyy6LiIiBAwfGNddc\nEwMGDEicqrwUIQAAAADQ40ydOjV1BAAA6LY23XTT+MEPfpA6Rjz11FPx17/+NXWMdlu2bFlERLz5\n5pux9957x8yZM6N///6JU5WPIgSogFRnU+R4JoW2yI/3hJzV1dUl75/OiGuhLUrpn/m9JwDQGb5X\nYe0U6wAAERELFiyISZMmxRtvvJE6StW644474otf/GLqGGWjCAEqwAZaC22RH+8JOcthR6x1pIW2\nKKV/AgAAANAT3X777QoQKqyaChAiFCEAAAAA0AMp7oO1M5oiABAR8fnPfz5uuummmD9/fuooXe7w\nww+Pgw46KHWMbkcRAgAAAAAAAACtGjZsWFx11VWpY6zWa6+9Fm+//XYUi8WYOHFiWZ/7sccei0cf\nfXS1txeLxeb/V1xu7T4rbhs6dGhsvvnmZc2YI0UIQEWpmAegWqxuI6IrFAqFiDB3NQAAXcuIIQBA\n7n7zm9/ET3/604o9/3333Rf33XdfxZ5/hTlz5lR8GV1JEQJAD6MwhJzV1dUl758O8rbQFqV8fgIA\nAABAXp5//vnUEcrilVdeiQ022CB1jLJRhAAV4CAFAAAAAAAAVNaKEUS7u8WLF6eOUFaKEKACDFUH\nAAAAAAAAlXX99denjlAW8+fPjy233DJ1jLJRhAAVYCQEAAAAAAAAoC1eeOGF1BHKqiZ1AAAAAAAA\nAADoqZYvX546QlkZCQGoKFNTAED5+F6lNfoFAFApRvsEAOgaG2ywQeoIZaUIASrAjuAWNlbzo3+S\nsxzWW+tIC21RKof2SPW9GuG7NWfFYjHp8guFQtLlA3SUz09Yuxx+AwMArKxYLMY//vGPaGxsTB2l\nrGbNmhWLFy+OiIjPfvazsckmmyRO1DmKEAAAALqx+vp6xSkAHaAIAAAA2uaVV16JI444It57773U\nUarWQw89FA899FDz3z/96U9j++23T5iocxQhAAAAANDjGAkBAADa5o477lCA0MWamppSR+gURQgA\nAAAA9DiKAAAAoG3+9V//NW699dZ4+umnU0epSt/85jdjnXXWaf571113jc033zxhos5ThAAAAAAA\nALRJLkVcpgUD6DpDhgyJadOmpY4RjY2Nsddee6WOURZz5sxJHaGiFCFABUyaNCnJvLzm5KUt9E9y\nVldXl7x/plpHPpojB9qilM9PAKgupmMAAIDupaamJjbaaKN46aWXUkdhLRQhAAAAANDjKAIAAIDu\npVAoRG1tbeoYtEFN6gAAAAAAAAAAsCbLly+Pf/zjH6lj0AZGQgAAAAAAAACgVW+88UacdNJJ8fe/\n/z11lKoxZsyY5stnnXVWjBo1KmGa8jMSAgAAAAAAAACtmj17tgKECpo8eXIsWbIkdYyyMhICVMDU\nqVNTR8iGtsiP94ScXXrppakjWEdWoi1K6Z8AAPQ0kyZNir/97W9dvtztttsui9/fAMCHdt999/jF\nL34R7733XuooVWnfffeNfv36pY5RVooQAAAAAACANikWi0mXXygUIiKirq5OkQxAF3nttdcUIJTR\nhRdeGDvuuGPqGBWlCAGoKBXzAAAA5CjV9mqEbVa6DyNxAQAREc8880zqCFnYZZddYvLkyTF48ODU\nUbKnCAGoKBurAAAA5Mj2Kqydk0sAgIiIrbfeOnWELMydOzdef/11RQhtoAgBqCgbqwBUi5RDjq4Y\nbtQZmwAAdCXFOgBARMStt96aOkI2Hnzwwfj4xz+eOkb2FCEAAAAA0OPkMqc5AADk7sEHH0wdIRuX\nXnppWU7U+fjHPx6FQiHWWWedOPXUU2P99dcvQ7p81KQOAAAAAABdrVAoJP0HAMVOTiQAAB/YSURB\nVADdxQEHHJA6QtV59tln4+9//3s88sgjccABB8SSJUtSRyorIyFABeQwXDOsjikyyFldXV3y/mm4\n+xbaopTPTwCoLn7rAABA22y66aapI1S9Z599Nj75yU+mjlE2ihCgAhQCAAAAQN7MdQ8AAG3zzDPP\npI5Q9RYtWpQ6QlkpQoAKcKZkCzt1AKgWqYZOXnmZDQ0NXb58AAAAAHq20aNHx8UXX5w6RlU7+eST\nmy+vv/76cemll8Z6662XMFHnKEIAKkpBBgDVolgsJplyaeVl1tfXGzYaAAAAgC41fvz41BF6lAUL\nFsTDDz8ce+yxR+ooHaYIASrA2f8ttEV+vCfkLIcDnNaRFtqilPYAAAAAALrCZZddFldeeWVERIwY\nMSKOPvroGDhwYOJUbacIASogxVmSK6QYJpq2yeHgaoT+Sd5y6J8pM6ycIwfaolQOeRRC0BrTdAAA\nAACVNHTo0Hj99ddTx+hRFixY0Hz5+eefj2KxGCeeeGLCRO2jCAGoKNMxtKirq8tiCO1UQ3nn+J6Q\nnxw+Mwx330JblGpqakq27JqamohIt45E5Pme8CHrKgAAAFBJkyZNijPOOCN1jB5t++23Tx2hXRQh\nQAXkcKYkAFBeirgAAAAA6In23HPP2HPPPVPHiIiI8847L2688cbUMcru+9//fmy66aZRLBZjww03\njHXWWaf5tkKhELW1tQnTtZ8iBAAAAAAAoE1yOQFLsTZAz9PY2FiVBQgREbvuumsMGjQodYyyUYQA\nAAAAQI9jmiMAAOheGhsbU0eoiMsuu6yqChAiFCFAReQwpzkAAACwelOnTk0dAQAAaIc+ffqkjlAR\nxx13XJx++ulRLBajWCzG1ltvHUOGDEkdq1MUIQAAQBs4UEGu9E0AAACgJ1i6dGnqCBXxwQcfxMkn\nn1xy3c9+9rPYeuutEyXqPEUIAADQBkY6IleGEwcAoCsVi8Wkyy8UChERUVdXZxsNoAvNnTs35s6d\nGxGr/y5Y+frVXe7Ifdd0fbVatGhR6gidoggBAAAAAABokxVFAKkpBADoOrNnz46zzjordYweZYst\ntkgdoVMUIQAAAAAAAG2S+kxUIyEAdL3+/funjtDjPProo7H77runjtFhihCgAszLS870T3KWw0a8\ndaSFtiilPQAAAADoiUaPHh0///nP45lnnmm+buWRcVZ3eWUrrm/Pfdty/1NPPXVt8budf/u3f4tR\no0aljtEpihAAAKANchhyVCEErWloaEgdAaBbmjRpUpIzaCOcRQsAQPez2WabxWabbZY6xirmzJlT\n8veYMWMqurwf/vCHsccee1R0GdVAEQJQUQ6WAABUVn19vYNoAB1gexXWLlWxjt8YAJC3pqamuOCC\nC+LGG29MHaXLPfHEE926CKGpqSkOOuigmDt3bjz++ONRU1MT999/fxx88MFrfNyuu+4aV199dZuX\nowgBqCgbqwBUi5Tznq4YhcEZmwAAdCXFOgDACm+88Ua8+OKLERHx4osv9sgChIiI//mf/4l/+Zd/\nKRk1dXX7DT86smqhUIi+ffvGwIEDm6+rqamJIUOGdNkorJdeemnMnTu3ZHn//M//HOeee26r97/q\nqqvi8ccfj7Fjx7ZrOYoQAAAAujHTMQAAVF7KouSIPKaHA6Dnuv/+++Pkk09OHSMb9fX1ZX/O2267\nreLf94888khceuml0bdv31i6dGnz9UOHDo199913lfvfcccd8fjjj8fee+8dEyZMaNeyFCFABeRw\npmQuVMznx+gU5Kyuri55/3SmeQttUcrnJwAA9Fy57XMDgK70s5/9LHWEqvfUU0/FNttsU7Hnf//9\n9+PEE0+Mz33uc7Fo0aJ48MEH13j/xYsXx2mnnRbrrbdeTJ48ud3LU4QAFZBqXl4HKQAAep5Uvz0j\n/P4EAACAnmDZsmWpI1S9xYsXV/T5f/zjH8eiRYvizDPPjOOOO26t9582bVosXLgwzjzzzBg0aFC7\nl6cIASrA2f8tnDWaH/2TnOWw3lpHWmiLUtqDXOmbAAAAQCX9x3/8Rxx22GGpY1S1448/vvnyqFGj\n4rTTTosBAwascr+77rorpk+fHvPmzYstttgiJkyYEKNHj17jc8+aNSt++9vfxqWXXhpDhgxZa5a3\n3norrrrqqthqq63iK1/5SvtfTChCACrMTnEAqkUOw6/6XgUAAMhH6mkMbSMCXeXnP/956gg9yj33\n3BN777137L777lEoFJr/LVy4MB555JHm+z3xxBMxefLkOP3001dbiLBgwYL4wQ9+EOPHj48xY8a0\nafm/+tWvYsmSJXHEEUd0+DUoQgAqykgIAFSLYrGYbNkrCiBS7+Dy3ZqnlH0zIo8CHYCO8L0KQGcV\ni8Vkv8dTbwcAPcvgwYNTR+iR7rjjjrXep1gsxvTp01dbhHDyySfHuuuuG6ecckqbl/vLX/4y/umf\n/in23XffNj/moxQhQAU48E7O9E9yVldXl7x/2hndQluU8vlJrurr662rAB3g7FEAOstvYaCnGD58\neOoIrMG8efNavf6KK66I++67L6ZOnRpLliyJJUuWRLFYjOXLl0dExJtvvhm9e/eOQYMGNT/moYce\nigULFsShhx4aNTU1Hc6kCAEqoKGhIXUEAAAAAAAA6LTPfe5zcfnll6eOUdUOP/zw2G233aKpqal5\npJ2VLxeLxZgyZUo8//zzqzx2iy22aPU558yZExEfnvz3UYVCIXbbbbfYeOON49Zbb22+fvbs2VEo\nFGLcuHGdej2KEAAAAAAAgDbJZTouoxAAdJ3NN9+8+YB2So2NjbHXXnuljlERl19++WoLPXr16hU/\n+9nP4sgjj4zJkyeXTMlTKBRiwoQJrT7ulFNOibfffnuV63/yk5/EU089FVdeeWX069ev5LYHHngg\nBg8eHCNGjOjEq1GEABWRyw9xaI0hR8lZDjsQrCMttEUp7QEA1SX1XNr2HUD3knq6upy2R3L5/Mxh\nSsdc2kL/BKhuy5cvj2uvvTZOO+20OP3002P69Okxb9682GKLLWLChAkxevToVh/3yU9+stXrV0y/\nMHLkyJIpF5YvXx5PPvlkjBw5stOZFSFABZgzmpzpn+Qshx0IqTfcc1pPtEUpn58AUF0UAQDt4SBr\ni1w+P3PYTsqlLfRPoKeora1NHSGZL33pSxERMXr06NUWHXTWiy++GEuXLo2NN96408+lCAEAAAAA\nAGiTXM7+z+FEBgC63pw5c+L555+PxsbGiIg47LDDEicqj0suuSR22GGHLltea4V0b7zxRhQKhRg8\neHCnn18RAgAAAAAA0Ca5nP2vEACg6xSLxbjzzjvj3nvvXaUYbcXfH/2/rbe393n++Mc/dvh15GzT\nTTftsmX94he/aPX6nXfeuWwFfooQoAIMf0XO9E9ylsMOBOtIC21RSnuQK30TAICuZCQEIyEAPc9N\nN90U5557buoYVevCCy8sy+gDOVGEAAAA0I1NmjQpyc7XCDtgAQAAoCcYOnRo6ghV5fe//30MGDAg\ndYyKUoQAAAAAQI+jiAsAANpm5MiRMWPGjHjxxRcjomVUmo/+v0J7b//o9e15nmKxGLfcckvMmzcv\nCoVC3HvvvR14he0zZ86cii+ju1OEAFSU4YEBqBY5zHvqexUAgK6UqlhHoQ4A5Gf48OExfPjw1DFa\ntdVWWzVfHjNmTMIkrKAIAagoG6sAUD65zL0KANVAcR+snfUEAIiIeO655+Kwww5LHSMb5S50GDp0\naPz6178u63OmpggBKsCBd3Kmf5Kzurq65P3TsLwttEWpHPpnfX299wQAAACALnX66aenjlDVXn/9\n9Vi4cGEMGzYsdZSyUYQAFaBKnJzpn+QshwOc1pEW2qKU9gAAAACgJ/rGN74RZ5xxRuoYVW3JkiWp\nI5SVIgQAAAAAehyjPgHtYWo0cqZ/ApX2iU98InWEqrdo0aLUEcpKEQJUgOHuyZn+Sc5yGO7ezugW\n2qKUz08AAOi5HGQlZ/onUGn33HNP6ghVr66urvly7969Y/r06TF8+PCEiTpHEQIAAAAAPY6plgAA\noG3Gjh0bDzzwQDz44IOpo/QIy5Yti7/97W+KEIBSdmSQM/2TnOVwtrd1pIW2KKV/kiv9AgAAAKik\nwYMHx7nnnps6RqvGjBmTOkJFrLvuuqkjdIoiBKgAwzWTM/2TnJmOIa/1RFuU0j/ze0/4kH4BAEBX\nymXof79DAahmt912W3zqU59KHaPDFCEAAAAAAABtUiwWky5/RRFEDoXiAD3Fiy++GN/85jejsbEx\ndZQe46CDDkodoVMUIUAFGBIXAAAAAACAanDXXXcpQOgC66+/fhQKhZg0aVIMGzYsdZxOqUkdAAAA\nAAAAAID2eeqpp+LYY4+NUaNGxQ477BB77rlnnHnmmfHuu++u9jGLFy+OsWPHxh577NHm5YwdO7Zb\nTw3QXSxYsCBeeeWVmDx5csyYMSN1nE4xEgJQUUaFaJHLMG3eE3KWw3piHWmhLUrpn+RKvwAAgDRS\nTQkRYVoIIOK5556Lr3/969GnT5/493//99hwww3joYceiunTp8e9994bM2bMiP79+6/yuDPOOCPm\nz58fG2ywQZuX9c4778QjjzxSzvisRerpjzpLEQJQUZMmTTI32//PRglA95byh/+KOU9Tfa9G+C7J\nmX4B0DGpd+qt+H4HoPvyWxhI6YwzzojGxsb41a9+FVtuuWVERIwfPz4++clPxplnnhm/+MUvYuLE\niSWPmTVrVlx33XXRp0+fdi3r3nvvLVtuWrf55ptHsViMYrEYEydOjNGjR6eO1CllK0JYvHhx7Lff\nfjF//vw45phj4phjjmn1fi+99FJcffXVcffdd8eLL74Yy5Yti+HDh8cuu+wSBx10UOy0006rPGbP\nPfeMl156qV15nnjiiYiIuOSSS6KhoaFdj/3JT34S++233yrX33///fGrX/0q5s6dG6+//noMGDAg\ntt9++zjggAPiC1/4wmqfr1gsxsyZM+OGG26Iv/71r/HWW2/FgAED4uMf/3jstddeceCBB8Y666zT\nrowAAAAAdFx9fb0iLgAAuqWlS5fGgw8+GJ/97GebCxBW2G+//eLMM8+MBx54oKQIYcGCBfGDH/wg\nJkyYELfddls0NTW1eXlf/OIX489//nPcf//9ZXsNtPjxj38cu+22W+oYZVW2IoSzzz475s+fv8Yq\n7ptvvjm+973vxeLFi0vu9/LLL8eNN94YN954Y9TV1cVxxx1X8rhCodDm6vBisRgf+9jHOvTYFQYO\nHLjKdaeffnpce+21zc8Z8eHQI3/605/iT3/6U3z5y1+Os88+e5XHvf/++1FfXx/33HNPSY533303\nHn744fjLX/4SM2bMiGnTpsUWW2zRrpwAAAAAdEx7T1oBAIBc9O7dO2bOnNnq6F4LFy6MiIja2tqS\n67/3ve/F8OHD46STTorbbrutXcsbNGhQTJkypeOBK2jMmDGpI3TaaaedFr/73e9aPUbdXZWlCOH2\n22+PGTNmrPFg/1//+tf47ne/G42NjbHRRhvFd77zndh1112jWCzG448/HhdeeGE89dRTcdlll8UG\nG2wQX//615sfO3PmzLVW41xyySVxxRVXRG1tbZx//vnN1x999NFx+OGHr/GxTz31VBx88MGxdOnS\n2GeffWKvvfYquf2CCy6Ia6+9NgqFQuy+++5RV1cXm266aTz77LNx8cUXx/333x//93//F9tss00c\ncsghJY/93ve+11yA8LWvfS0OPPDA2GijjeLll1+OmTNnxhVXXBHPP/98TJw4MW644Ybo16/fGrMC\n3VdHiqLKuWwAAABaGAkBgM4ytQ+QSqFQiE022aTV26ZNmxaFQiH+3//7f83XXXHFFfHggw/GjBkz\n2j0VQ0TEXXfdFddcc03MmzcvNttss9h///3j4YcfjpkzZ3b4NVCq2o4Rd7oI4Y033ojTTjstCoVC\nFIvF1X7pXXjhhbF8+fIYOnRozJgxI4YNG9Z82/rrrx+jR4+Ogw46KB5++OG44IIL4qtf/Wr06vVh\nvL59+64xw1133RVXXnllFAqFqKuri8997nMtL7BXr+bnac3ixYvjpJNOig8++CC22mqrOOOMM0pu\nf+aZZ+Lyyy+PQqEQ++67b5xzzjnNtw0ZMiR+/vOfxwEHHBAPP/xwXH755fHNb36zuQ0eeeSRmDVr\nVnOuY489tvmxgwcPjm233TZ23HHHqK+vj3/84x/xy1/+Mg499NA1vlag+1oxl0+qZQPQOTns3HHG\nJgCUz9SpU1NHAKCby2E7EWBlv/3tb+O6666LjTbaKMaPHx8RH05hf8EFF8QxxxwT2223Xbuf8667\n7oof/OAHzX8//fTTrY4OT+fMnz8//vmf/zl1jLLpdBHCaaedFq+//np8+ctfjt/+9ret3mfRokXN\nowH8+7//e0kBwgq9e/eOSZMmxVFHHRVvv/12/OUvf4nPfOYza13+u+++G6eeempERIwYMSLq6+vb\nlf+cc86J+fPnR69eveLcc89dpcrk2muvjeXLl8ewYcNi8uTJqzy+UCjEwQcfHCeccEJ88MEHMX/+\n/OZpFW6++eaIiOjfv38cddRRrS7/85//fIwYMSIee+yxuP322xUhVIlJkyYlOZvCmRS0hf5Jzurq\n6pL3z1TryEdz5EBblMqhfzpjEwAAAIDW/PrXv44f/vCHsc4668Qll1wSAwYMiKVLl8Z3v/vdGDFi\nREycOLFDzzt9+vQyJ6U1Tz/9tCKEFf73f/83brvttthkk03i+9///mqLEF544YUYOHBgvPPOO7Hj\njjuu9vk233zz5suvvvpqmzKcd9558eqrr0avXr3izDPPbFfl4V/+8pf41a9+FYVCIQ455JBWq3/+\n8Ic/RKFQiAMOOGC183CMGzcuxo4du8qICwsXLow+ffrE1ltvvcbRHDbbbLN49NFH2/yayZ+zKWhN\nLgdu9E9ylsN6Yh1poS1KaQ9ypW8CdEzqEeOcPQvdS+oibb/5AFiTiy++OKZOnRqDBg2Kyy67LLbf\nfvuIiJgyZUq88MILcfbZZ8dbb70VES2jNjc1NcWbb74ZvXv3Xu0x0IiIefPmdcVLICJmz54dERGf\n+tSnYv3110+cpnM6XITw/PPPx9lnnx01NTXxk5/8JNZZZ53V3nfbbbeNe++9N5YuXRq1tbWrvd/8\n+fObLw8aNGitGZ588smYMWNGc5HAJz7xiXa9hjPPPDOKxWIMHz48Jk2atMrtL7zwQrzxxhurzJsS\nEdHY2Nj8WgqFQqtTPkyZMiWmTJkS77///hpzPP/88xHx4RQNUG1sILVIdQZthLNXAcohhwMFvlcB\noHxy+G6H3BlNsYXf4gDkaPny5fH9738/rr/++thggw1i2rRpsfXWWzffPmfOnFi6dGnz1AwfNWrU\nqNh1113j6quvXu0ytthii3jiiSdWuX7bbbeNn/70p51/Ee3Q2NgYY8eO7dJldpUpU6aU/H3ppZfG\ntttumyhN53WoCKGpqSlOOumkWLx4cRxyyCFtmjYhIqJPnz5rvP2Xv/xlRETU1tbGTjvttNbnu+CC\nC6KpqSn69+/f7mkYZs2aFY8++mgUCoWor6+PAQMGrHKfp59+uvny5ptvHm+++WZMmzYtZs2aFS+/\n/HLU1tbGiBEj4qCDDopx48atdlmtPfcKjz32WHOOXXbZpV2vAboDG6v58Z6QsxyGu099dktO64m2\nKKV/5vee8CH9AgCoFAfeaU0uRVx+hwI9XVNTUxx//PExe/bs2GabbWLatGmrnD1/3nnnxZIlS1Z5\n7IknnhhNTU1x/vnnr/XE8AkTJsTkyZNLRhIrFAoxYcKENZ58Xgm5fAd1hQ8++CB1hE7pUBHCZZdd\nFn/5y1/iE5/4RBx//PFlCXLTTTfF7bffHoVCIfbdd981DvsREfH3v/897rjjjuZRENZbb712Le/y\nyy+PiIhhw4bFV7/61Vbv89prrzVffumll2LSpEnxxhtvNF+3fPnymDt3bsydOzduv/32mDJlSrs6\n/9KlS2Py5MkR8WHhxQEHHNCu1wAAAABAx5iOAaBjcvn8zKFQHCClCy64IGbPnh077bRT/Pd//3er\nx1Z33nnnVh/bp0+faGpqWmUk+NaMHj06Tj/99Jg+fXrMmzcvtthii5gwYUKMHj2606+B1dthhx1S\nR+iUdhchPPbYYzF16tTo1atXnHPOOWsd3aAt5s6dG6eeempERKy33nrxne98Z62PufLKK6NYLEaf\nPn3i0EMPbffyHn744SgUCnHYYYdF7969W73fe++913z5mGOOiffeey9OOumk2GeffWLdddeNJ598\nMi688MK4++6743e/+11svPHGcdxxx7UpQ1NTU5xwwgnx+OOPR6FQiCOPPDI222yzdr0O6A5UzANA\n+fheBYDyUQQAa2c0RQDI0wsvvBBXXnll1NTUxF577RW33XbbKvcZOnRo7LbbbmVZ3ujRoxUddLHD\nDz88rrrqqtQxOqxdRQgffPBBnHjiidHY2Bjf+ta3Yrvttut0gAceeCDq6upi8eLF0bt37zj//PNj\n+PDha3zMm2++Gb/73e+iUCjEfvvtF//0T//UrmWueMMGDRoUX//611d7v8WLF0fEh5Wdr7/+elx+\n+eUxatSo5tt32GGHmDZtWkycODHuuuuuuOKKK2LChAkxbNiwNS5/2bJlccIJJ8SsWbOiUCjEbrvt\nFscee2y7XgN5s4HWQlsAQPkYdh8AgK6kCJbW5FLEZfsE6MnuvPPOaGxsjIgPp1xozS677LLGIoRc\nPs/bI/VoPF3pX/7lX1JH6JR2FSFMmTIlnnvuudhxxx3j6KOP7vTCZ82aFSeeeGJ88MEH0atXr7jg\nggvaNOzHrFmz4oMPPohCoRBf/vKX27XM9957r3nah7Fjx8aAAQNWe9/+/ftHxIcr4ZgxY0oKEFao\nqamJ73znO3HXXXfF0qVL4/bbb4/9999/tc+5aNGi+Na3vhX33HNPFAqF+MxnPhOXXHJJt1zRAQAA\nAACgp0p9MMxxBei5DjzwwDjwwAM7/PjWRk6ga22//fYR8eGx5s985jNRU1PTfNsee+wRm2yySapo\nZVEotvFb8q677oojjjgi+vXrF9ddd11sueWWq9xn2223jUKhEPX19XHMMces8fn+67/+K84///wo\nFovRv3//uOiii9pc0XH44YfH3XffHRtttFG7V5Lf//738d3vfjcKhUJcddVVMXLkyNXed8aMGTF5\n8uQoFApxyimnxMEHH7za+37605+O999/Pw455JA4+eSTW73PCy+8EEcffXQ888wz/197dxOi8/rG\nAfx7zwxDXtIkMvKyI+V1IVlYKIqVJBspK82k2NjYSFJs5KWJaWqKHbKQKFGzpBnZjJciK1Ns5G0y\nz5hmPP/FyZTjYJ7T0zlz/n0+9dSv33Xd/a57/33uO6WUbNq0KefPn09zc3NNewAAAAAAAACAyWjC\nJyHcvn07STI8PJxt27b9tK9araajoyMdHR1J/kjStLa2jte/fv2aY8eO5dq1aymlpKWlJZ2dnVm1\natWE5hgcHExvb29KKdm+fftExx939+7dJMncuXN/GUBI8l3C5HdBgRkzZmRoaCjDw8N/WX/8+HHa\n29vz9u3blFKyc+fOHD9+PI2NjTXuAAAAAAAAAAAmp5quY/jd0T7fDlX41vfn/tHR0Rw8eDA9PT0p\npWTp0qXp6urKokWLJjzDgwcPMjo6mlJKtmzZUsv4qVaruX//fkop2bx582/7ly9fPv48MDDw076x\nsbF8/PgxSTJ//vwf6r29vWlra0ulUkkpJQcPHkx7e3tNswMAAAAAAADAZDfhEMLx48dz9OjRX/as\nXbs2pZTs378/bW1tSZLp06eP1w8fPjweQFi9enU6OzszZ86cmgZ+9OjRH4M3NWXFihU1rX3+/HkG\nBwfHv/87LS0tWblyZR4/fpx79+6NX+PwZ319ffny5UtKKVmzZs13tf7+/rS3t6dSqaSpqSknTpzI\njh07apobAAAAAAAAAP4LGibaOGXKlEyfPv2Xv7/q/ebSpUu5c+dOSilZt25dLl++XHMAIUmePn2a\nJFm2bFmmTJnyt9YmmfD1D7t3706SvHr1Kl1dXT/UR0ZGcvr06STJwoULs2HDhvHa4OBgDh06lKGh\noTQ2Nubs2bMCCAAAAAAAAAD836rpOoa/6927dzl37lxKKZkzZ05OnjyZsbGxDA0N/XRNc3NzGhsb\nf3j/8uXLlFKyZMmSmud4+fLl+PPixYsntGbXrl25efNmHj58mDNnzmRgYCB79uzJggUL8vz585w+\nfTpPnjxJKeWHkyIuXLiQN2/epJSSffv2ZePGjb/cc0NDQ6ZNm1bzvgAAAAAAAABgMvhHQghXrlxJ\npVJJkrx//z5bt2797ZpTp079cGpApVLJhw8fUkrJrFmzap7j9evXSZKpU6dm6tSpE1pTSsnFixdz\n4MCB9PX15fr167l+/fp39aamphw5ciSbNm0afz8yMpKrV68mSarVarq7u9Pd3f3Lb7W2tqanp6fW\nbQEAAAAAAADApPCPhBD6+/tTSplw/896P336NF6bPXt2zXMMDg6mlFLz2pkzZ+by5cu5detWbty4\nkWfPnuXz58+ZN29e1q9fn71792b58uXfrXnx4kUqlUpN+25omPDtGAAAAAAAAAAw6ZRqtVr9t4cA\nAAAAAAAAAP77/PUeAAAAAAAAAKgLIQQAAAAAAAAAoC6EEAAAAAAAAACAuhBCAAAAAAAAAADqQggB\nAAAAAAAAAKgLIQQAAAAAAAAAoC6EEAAAAAAAAACAuhBCAAAAAAAAAADqQggBAAAAAAAAAKgLIQQA\nAAAAAAAAoC6EEAAAAAAAAACAuhBCAAAAAAAAAADqQggBAAAAAAAAAKgLIQQAAAAAAAAAoC7+B0DY\nbaermsVxAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "import missingno as msno\n", "\n", @@ -10241,7 +764,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:14:20.523477", @@ -10264,7 +787,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:14:21.417227", @@ -10293,7 +816,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:14:21.425736", @@ -10301,18 +824,7 @@ }, "collapsed": false }, - "outputs": [ - { - "data": { - "text/plain": [ - "(427762, 47)" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "hennepin.shape" ] @@ -10340,7 +852,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:14:22.647028", @@ -10365,7 +877,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:14:22.708957", @@ -10381,7 +893,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:14:22.716970", @@ -10389,18 +901,7 @@ }, "collapsed": false }, - "outputs": [ - { - "data": { - "text/plain": [ - "(129889, 47)" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "mpls.shape" ] @@ -10437,7 +938,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:14:24.359452", @@ -10454,7 +955,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:14:24.374462", @@ -10462,27 +963,7 @@ }, "collapsed": false }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "RangeIndex: 2349 entries, 0 to 2348\n", - "Data columns (total 8 columns):\n", - "ALT_NAME 210 non-null object\n", - "AREA_ACRES 2349 non-null float64\n", - "NAME_DNR 1588 non-null object\n", - "OWF_ID 2349 non-null object\n", - "SYSTEM 2349 non-null object\n", - "Shape_Area 2349 non-null float64\n", - "Shape_Leng 2349 non-null float64\n", - "geometry 2349 non-null object\n", - "dtypes: float64(3), object(5)\n", - "memory usage: 146.9+ KB\n" - ] - } - ], + "outputs": [], "source": [ "water_df.info()" ] @@ -10496,7 +977,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:14:24.412919", @@ -10518,7 +999,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:14:38.691765", @@ -10526,18 +1007,7 @@ }, "collapsed": false }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmwAAAHqCAYAAAC5lBJ9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xlczdn/wPHXrbSQlFLWkK0QWYexZGkw9n0YY1/Gbmxj\nyE6Wwdh3YjJmzJCxDMZOZM9SxIwltCckUqnu/f1xf324KhXhmu/7+XjMY+79nPP5nM89c2venc85\n76PSaDQahBBCCCGE3jL42DcghBBCCCHeTAI2IYQQQgg9JwGbEEIIIYSek4BNCCGEEELPScAmhBBC\nCKHnJGATQgghhNBzErAJIYQQQug5CdiEEEIIIfScBGxCCCGEEHou2wHboUOHcHR0xMnJSfn3iBEj\nAAgJCaF3795UqVKFli1b4uvrm+41rly5Qvny5QkLC9M5vnHjRurXr0+1atVwd3cnMTFRKXvx4gUT\nJkygRo0a1KtXjw0bNuicm1nbp06dolWrVri4uNCrVy+Cg4Oz+9GFEEIIIT6KbAdst27dolGjRvj6\n+uLr68vJkyfx8PAAYPDgwdja2uLt7U3r1q0ZOnQoEREROucnJyczceJEXt8Ra//+/axYsYIZM2bw\n888/c+XKFebNm6eUz507l8DAQDZt2sSUKVNYtmwZBw4cUMqHDBmSYdvh4eEMGTKEDh064O3tjZWV\nFUOGDMnuRxdCCCGE+CiyHbDdvn2bMmXKkD9/fqytrbG2tsbc3JzTp08TEhLC9OnTcXBwYMCAAbi4\nuLBt2zad89euXYuFhUWa627atImePXvi6upKxYoVmTZtGtu2bSMxMZH4+Hi2bdvGxIkTcXR0xM3N\njX79+vHLL78AcPr0aYKDgzNs+48//sDZ2ZlevXpRqlQpZs+eTWhoKOfPn3+bPhNCCCGE+KDeKmAr\nWbJkmuP+/v5UqFABExMT5Vi1atW4fPmy8j4oKIjffvuNcePG6YywqdVqAgICqF69unLMxcWFpKQk\nbty4wY0bN0hJScHFxUXn2v7+/llq29/fnxo1aihlpqamlC9fnkuXLmX34wshhBBCfHDZDtiCgoI4\nceIETZs25YsvvmDBggUkJSXx4MEDbG1tdepaW1sTGRmpvJ88eTLDhg3D2tpap15sbCyJiYk65xsa\nGmJpaUlERAQPHjzA0tISIyMjnWsnJiby+PHjTNuOiopKU25jY6Nzb0IIIYQQ+soo8yovhYWFkZCQ\ngImJCYsXLyYkJAQPDw8SEhKIj4/H2NhYp76xsTEvXrwAYOvWraSkpNCpUydCQ0NRqVRKvYSEBFQq\nVYbnq9XqdMtAuxghs7YTEhLeWC6EEEIIoc+yFbAVLlyYs2fPKnPQHB0dUavVjB07lvbt2xMbG6tT\n/8WLF5iamhIdHc2iRYv4+eefAdIsODA2Nkaj0aQJoF68eIGZmRnJycnplgGYmZlhYmLCkydP0m0b\nwMTEJN3z05tLlxGNRqMTZAohhBBCfCjZCtiANEFOqVKlSExMxMbGhtu3b+uURUdHU6BAAU6ePElM\nTAydO3dWgjWNRkOLFi0YNGgQ/fv3x8TEhOjoaGV+XEpKCjExMRQoUAC1Wk1MTAxqtRoDAwPl2qam\nplhYWGBnZ8etW7fSbRvAzs6OBw8epCl3cnLK8udWqVTExsaTkqLO8jn/SwwNDbCwMJM+yoT0U+ak\njzInfZQ10k+Zkz7KXGoffWzZCthOnjzJ6NGj8fHxUSb4BwYGYmVlRfXq1fH09OTFixfK40c/Pz+q\nV69OkyZNqFatmnKdiIgIevTowdq1aylbtiwqlQpnZ2f8/PyUxQGXLl0iV65cODo6otFoMDIy4vLl\ny1StWhWACxcuULFiRQAqV67M2rVr0207tfzixYtK+/Hx8QQGBjJs2LBsdVZKiprkZPlCv4n0UdZI\nP2VO+ihz0kdZI/2UOekj/ZetRQdVqlTBzMwMd3d3goKCOH78OPPmzaN///7UqFGDQoUK8cMPP3Dr\n1i3WrFlDQEAAHTt2JHfu3BQrVkz5p3Dhwmg0GgoXLqyM2H399desX7+eQ4cO4e/vz7Rp0+jcuTMm\nJiaYmprSpk0bpkyZQkBAAIcOHWLDhg307NkTgJo1a2bYNkCHDh24ePEia9eu5datW4wfPx57e3tq\n1qyZw90phBBCCJHzVJrXJ5Rl4vbt28yaNYvLly+TJ08eunTpwuDBgwEIDg5mwoQJ+Pv7Y29vj7u7\nO7Vq1UpzjdDQUNzc3Dh8+DCFCxdWjq9du5aNGzeSlJRE06ZNmTRpkjJilpCQwLRp09i/fz958+al\nX79+dO/eXTk3s7ZPnDiBh4cHkZGRVK1alenTp1OkSJFsddbjx3HyF0gGjIwMsLLKI32UCemnzEkf\nZU76KGuknzInfZS51D762LIdsP0vky90xuSHPmuknzInfZQ56aOskX7KnPRR5vQlYJPN34UQQggh\n9JwEbEIIIYQQek4CNiGEEEIIPScBmxBCCCGEnpOATQghhBBCz0nAJoQQQgih5yRgE0IIIYTQcxKw\nCSGEEELoOQnYhBBCCCH0nARsQgghhBB6TgI2IYQQQgg9JwGbEEIIIYSek4BNCCGEEELPScAmhBBC\nCKHnJGATQgghhNBzErAJIYQQQug5CdiEEEIIIfScBGxCCCGEEHpOAjYhhBBCCD0nAZsQQgghhJ6T\ngE0IIYQQQs9JwCaEEEIIoeckYBNCCCGE0HMSsAkhhBBC6DkJ2IQQQggh9JwEbEIIIYQQek4CNiGE\nEEIIPScBmxBCCCGEnpOATQghhBBCz0nAJoQQQgih5yRgE0II8dE8ePAAFxcn7t4N+ti3IoRek4BN\nCCHEB6fRaFi/fg0VKpQiLCyUYcMGfuxbEkKvGX3sGxBCCPG/5fHjR4wd+x27du1QjlWpUu0j3pEQ\n+k9G2IQQeiMo6A7585ujUqm4c+f2x76dT4pGo/nYt5Al8fHxlCtXgl27drBixWoADA0NmThx6se9\nMSH0nARsQgi9cebMKeX1zJnTPmoQ4ut7gj59uhMZGZGl+r17d8PW1gJbW4ssn/OqiIhw9u/fR2Ji\nYrbPdXf/Hju7fBw9ejjb535okyaNB2DEiJHK/bZu3Q5jY+OPeVtC6D0J2IQQeqNz565Mm+ZByZIl\n2bFjO0uXLvoo9/HkSQzt2rXgr7924uxcNsN6gYHXuHHjOh4e09izZ7dy3MamQLbaS0xMpFKlcnTv\n/hXFihXg0KH9WTovISEBtVpNQkICAH/9tTNL5924cR03t3pcvRqQbnlSUhLbtv3OyZM+qNXqrH2I\nLDh8+ABeXp7Y2xfH2tqGrVv/YN68RaxatT7d+uHhYVy/Hkh8fHyO3YMQnyoJ2IQQesPQ0JBhw0bg\n5OQEwO3bN7N03t9/78XW1gJf3xM5ch/JySnK6wMHjqdbZ9++PTRoUJv69T9j8eIFANy6FUxUVCyG\nhoaANhDLSsBjYmLCqFHfK++//roTwcH333jOoUOHKFzYhoIFLVmwYAlnzlzkxx8XZtoWwKZNG/D3\nv8LDh9Hplm/e7MXgwf1p374lBQta0rt3N5KTk7N07Te3uxGAWbPmMHmyO/36DaRnzz6oVKo0dfv1\n60nlyo64utaiUaM6vHjx4p3bF+JTJgGbEELvhISEAGBunpc7d26ze/eON9bv168HAO3atciRESFr\na2uiomKJiorFxaVKunVGjhyi837MmB+wsMinvL916ybFihWgYEHLLLU5dux4+vcfpLw3MnrzmjB3\nd3fl9ZAhAyhQwJZLl/yU0bY3mTx5Br/88juurg3TLb927SqWlpYMHKj9jHv27GbzZq+sfIw36tNn\nwP//uyfW1jZMnToz3Xr37t1l164/lffR0Q9ydKRPiE+RBGxCCL3j7+8PQGJiArVqVaFv3x7Mnz8n\nwzlt589r69ev3zDd0Zr3YcyYH3Tez58/B1tbC+X9rVva0cF69Rpk6XqGhoZ4eMwlJCSa69eDsLW1\nY+rUiezfvy/d+t9++y0AjRo1Zvv2rXTv/hXNm7thb2+baVsmJiY0afJlhuU//7yemJgYihWzZ/bs\neRQpUlRnfuHbqlu3Pm5uTTA3N2f58jUZzlvz9Fyr83769NmYmpq+c/tCfMokrYcQQm95eW1QXv/4\n4yyMjIz47rsxaeoVKlSYqKjYD3lrJCa++RFd06ZfculSIIULF8nWdY2NjbG2tubZs2esWLGEFSuW\n0K1bDxYuXKZTr1OnTowYMUKZ33XqlC8Abm5Ns9XemxgYGKDRaJR/cuJ6v/667Y11Hj58yMqVS5X3\ne/YcokaNmu/cthCfOhlhE0LolejoB8rr10exWrZs86FvJ0PTpk0EYOXKdcqxoUO/U16rVCqKFCn6\n1iN+5ubmdO/eC9DOKUsdsUuVN29eWrVqw+nTp0hJ0c65++abnvz669a3ai9VTMxjDAwMqFfPFY1G\nw7FjRwgLC6Vjx87vdN2sWrdulfJ68eIVEqwJ8f9khE0IoVemTJmkvLaw0D5iVKlUhIdrAwl9sXv3\nAVq1asKgQf04dMgHQ0MjKlSomKNtzJw5l+3btxEX94zo6GhKly6jU+7uPoWwsHCOHz8CwD//3Hjn\nNs3N81KhQkVOn/bl/PmzJCQkMHLkWBo3bvLO136Tp09jGT58EEZGRjg7V6JMmXJ06PBhgkQhPgUS\nsAkh9EqXLl+zY4c3Dg4OTJ48AdAmhZ01azpLlvxEs2bNWbXKk9y5c3/we0tJSaF3729YsmQFn31W\nSznu5lYfgLt3I3L0vszMzPDxOYOf33kCAi5Tq1ZtnfLChQvz/fcTlICtSZNm79ymkZERO3fu49df\nN5GY+ILPPqtNzZqfvfN1fX1PsGnTRmxsbBg16nvMzHJjamqqjECuXr2CPXt2U7KkA2fPXn7n9oT4\nr1FpPpX02Hrg8eM4kpNlpVJ6jIwMsLLKI32UCemnzLm51cPf/woAAwYMZs2aFenW+9Bz1gBlUcH0\n6bMYOHAoz58/p0SJgkq5n99VihWzz9E2Hz16iKNjSQAiImIwMDDQ+R7lz28OaEchDxw4RuXK6a9q\n/djat2/JyZM+Osd69OjD/PnaXHs7dngzYEBvWrZsg6fnphxpU37eMid9lLnUPvrY9Of5ghBCAB07\nfgVA8eLFlWBtxozZNG/eSqnTsGHjj3JvqWkwvv1Wm+7i1b93v/rq6xwP1gCsrPIrr19/JPxqqgtv\n7116G6wBbNjwCzNnzqFkSQflmJeXJ4MH9+fOnVu0bduB8PDHORasCfFfIyNs2SB/gWRM/krLGumn\nzKX20auT9Xv37s/cuQsyPTcyMpJRo4bi53eebdt2U66cI7ly5dKp8+zZU8aOHcm4ce6UKFHyne5V\nrVYredbe54hfZGQEsbGxlCmj3XXh1e+Rp+c6Hj6M5rvvxn6wlCbvqnv3r3j27CkdOnRi3rw5mJnl\nxtf3gpJwOKfIz1vmpI8yJyNsQgjxBgEB/yivX59s/7q4uDjWrFmBr68PBw/u59GjRzRqVIciRayZ\nMWMKADdv/kvHjm1YuHA+3t5/ULNmZYKC7rzTPX6ov3ft7AoqwdrrevTow8iR338ywRpo+83X9yRt\n2rSlc+cu3L0bxPPncR/7toTQaxKwCSH0UpEiRShfvgIA3t6/Z1hPrVbTtWsHJk78gaSkJJycyuuU\n29gU4JdffqZOner4+BwlKipSKXt99A20+2iGhYWycuUyhg8fxO+//0pERHi6bf/4o4fyunTpYpkG\ncMePH6Vevf9+mooFC+aycuWydMuSkpK4du0q+fLlo3//PixevJCBA4eSN69FuvWFEFqySlQIoce0\no0aLF69UjoSHhxEcHMyuXdvp0aMPv//+q5KFv3btOjg6OvHFF66cPXuZkiUdiIgIp2rVCsr5pUqV\npn79BowfP4mgoDtERUVStWp1pbxp0wY6m6Jv2bKZKlWqsX//0TR35+raiIUL5wMQG/uE58+fkydP\nxo9OOnXS5pEbN250lh7xfqrmztUGsn37Dkizm8G1awGEhmq3Hrt40Q8vry00bZrxrgtCCC0J2IQQ\neuvoUW32frVajUajISQkmGrVXuY6W7PmZSCXJ4859vbFsbcvrjOfbO5cD5KTk8mb1wIfnzNUqaId\ngVu0aLkSyEVGPlEeKdasWZurVwOwtLQiJuYxAL1790v3/j7/vK7yetWq9W8M1l61YcPaDxqwpaSk\n8PjxY2xsbJRj586dpV275jRq9AWbNm3J8Tbz5rVIdwSzbFlH5XVMTAzz5s2iWbPmOd6+EP818khU\nCKG3VCoVAQFXKFTIikKFrBgxYnCGdXfs2MvEieO4ezcIgBMnjtO4cV0qVaoMgINDKYoUKUrTpl/S\nrFlzZacCQGefzDlz5hMVFcvVqzfZvPkPfHzO0qVLt3TbPHXqpPLa3Nw8088TGfmE3bsPcO3a7Uzr\n5qTevb+hfHkHwsPDlGMtW35BUlIS+/fv5d69uznaXlRULLdvh6Q7ry537tzs2LFXWfUbEODPsWNH\ncrR9If6LJGATQui11FErtVrNyZM+DBv2HRERMZw5c4kTJ87x77/3uHLlBufPn2HNmpXUrFmZuLg4\nLlw4R0CAP7dva4Mj7cT253h5bcHLa4tOkJI6V+5Vnp5r6NatM/Xrf4af3/l0723gwL7K66FDv830\ns6hUKj77rBYFChTIThdkS1xcHDdv/qtz7NKlC4D28W5CQgJhYaE65b/99mFSady6dRO1Ws3nn9fF\nze3lzgmdO7dly5bNH+QehPhUScAmhNBrpUqVITLyCTVr1sLGxoZBg4ZjYGCAg0MpypVzxNLSikKF\nCtOz58vgSaNR07//ICpWrET//gOxtbXjyZMYSpQoiJ1dPgAOHDhOWNgjoqJiyZfPUqfNS5f8mDx5\nAi4u2rxmW7em/8jQw2Ou8jomJoaff/bM6Y+vI/URLWS8QrVkyULUqVNdJyD99ddt1KxZixYtWmJv\nb4uLixPFitnzyy+/4+NzlurVa9K2bfN3XjX7JsuXL+Hzz6tRsKAl168HYmSknZFjZmYGaANNIUTG\nZA6bEELvqVQqdu7cR0pKSppJ7Kly5crF/ftRAJiamgJw+PAJxowZobMy9NXEralBw+tOn9Y+Ir18\n+RL58uWjc+eu6dZzdNTOh8uTJw9xcXF88UXTbH6yzN2/f48pU9zZs2cXoP1M3t6/s2fPbi5dupbh\neVFRERQvXgIAZ+fK/PXXAdRqNc2bt2Lv3t0EB9+nSZMv//+aBzl16iRTprjj5fVbjn8GAB8f7aKN\nXLly8c03nTl/3h8Af//L1KvXQOaxCZEJCdiEEJ8EQ0PDTBOrpgZqqeLj49mxw1t5f/9+VJaSs/bv\nP5DIyHAiIyOZOXOuzmT9V6WOYllY5CMo6GXqD41Gw9Wr/gQE+FO5chXKl6/w1nnSevToSmDgVUxM\nTElMTMDBoTQrVqSfMuPFixfK6+vXr1OjRi2dcgMDAzZu3MyMGVPo06e/crx167ZMmzYxS/Pw3pa5\neV5Am9ajUiUXDAwM6NKlW4bzA4UQumSng2yQTNAZk2zZWSP9lLns9lFycjJbtmymdu3PmTlzKnv2\n7Obs2csUKVIUY2Njrl27yoYN62jW7Evc3HJuBCwuLo6SJQsBsGTJSrp06YZGo2H9+tUsWbJQJ3eb\nk1N5Nmz4BQeH0tlux9f3BAMH9mXv3kOYmppRoEAB7t8P4tixg/TpM1CnjzQajfLI18/vKrGxsTRs\n+DmlS5ehY8ev+PbbIVleyZrTwsPDWL16BXny5GHQoGHvNThMJT9vmZM+ypy+7HQgAVs2yBc6Y/JD\nnzXST5nLbh85OBTh2bOnVK1anYsXL+iUrVmzgbZtO7yX+0xt18rKihs37qJSqVi8eD4eHtPp0qUr\nDRo0xNnZmYiISMaMGUnBgoXZuXOfzjX8/S8zf/5cSpcuzeTJM7Lcdlb6qFatKty5o7satUOHzqxc\nuS77HzYbAgKu0LhxPfr06c+cOdrUJdevB7Jt2+80bNiYunXrv9f2XyU/b5mTPsqcvgRssuhACKF3\n1Go1iYmJWarbqdNXGBgY0Ldv2lxpqXO43vVebG0tsLXVzcT/7NlTAM6cuYRKpUKtVrN8+RIGDPiW\n5ctX0qlTZxwdnWjQoAHdunUnMPCqzvm+vidwc6vP33/vYd261Tm2zdUff/yGra2FMom/adMvGTPm\nB4oUKUpgYMZz3t5Fav8cPXqY0FDtCtTNm73YvNmLadMm0blzW5YuXUj79i0z3AEhu6KionByctB5\n5C3Ef5kEbEIIvWNoaEihQtZp0lOkZ+7cn4iIiKFiRZc0ZZUrV3nne0lJSUn3+NCh3wGwefMmpV5S\nUjIhISEkJyfr1L15818KFSqsc+zVFaXz5y/Osb1AU9OLFCtmD8DZs2dYvHgBoaEh3L9/jxkzJmNr\na8GcOTOIj4/PkTZT9e/fk+3btwKQmJjIyJFD8fb+g9q1a+PrexaAKVMm5EhbNWtW5uHDaAYM6J0j\n1xNC30nAJoTQW5aWVlmu6+RUnv37j+rk9zp37uw730OuXLnYuXMft24FK8eSkpJYtmwRAG3atFPq\nLV26ir1792BnZ0OtWjXZvt2b0NBQdu3amebR7IoVa7l0KZDIyCcZrkJ9G/fvR7Fr198sXbqSgQOH\n0rjxF/TrNxCAMmXKEBWlXUn700/z6NChVYYBaWaSk5Pp0aMLtrYWdOzYGdDO6/vrr51MnjyVI0eO\nc/NmEGfOnGfx4mUULVqUrl27UbGic458zhEjRqFSqVi4MGdG7ITQdzKHLRvkGX/GZB5E1kg/Zc7I\nyAAzM0MiIx+TO7fuxHS1Wk23bp05fPgAbdu2Z9UqTwwMdP/uTEhIYOnShfz66yY2b96ablLcdxUR\nEU6lSuXIk8ecoKAwnbLWrZtx5swpihcvwb17d8mTxxwzMzN8fc9jZZU/R9rPzvfo5s1/iY9/jp/f\nBb74oinh4WG0aPGFUn7rVjAWFvmyfQ+7dv1Jv349AfjuuzFUr16DVauWExoaTPfuPTl8+BB169Zj\n8OChgDbAa9CgHnXr1mfx4hXZbu9tyM9b5qSPMvfJzmE7dOgQjo6OODk5Kf8eMWIEACEhIfTu3Zsq\nVarQsmVLfH19dc719vbmyy+/pEqVKnz11VdcvHhRp3zjxo3Ur1+fatWq4e7urjOH5cWLF0yYMIEa\nNWpQr149NmzYoHNuZm2fOnWKVq1a4eLiQq9evQgODkYIoZ9MTU2xsLBIc/zixQscPnwAgB07tjNp\n0g/pnjt27HguXQrMdrB2924QtrYW9OzZlc8+S/uINVX+/NYAxMU949mzZzplu3b9TWTkE44fP4O7\n+xSGDfuOI0dO5liwlh1+fuepU6c6bm71GTduFL6+J/jnnxsAODtXombNWm8VrGk0Gry8tL+DCxUq\nTK9efWnS5EsqVHAmKCiIOXNmcfVqAHPnzsbPT7sQ5PjxowQH3+frr3vk3AcU4n9ItgO2W7du0ahR\nI3x9ffH19eXkyZN4eHgAMHjwYGxtbfH29qZ169YMHTqUiIgIAHx8fJgxYwZDhw5l165dfP755wwY\nMIAHDx4AsH//flasWMGMGTP4+eefuXLlCvPmzVPanTt3LoGBgWzatIkpU6awbNkyDhw4oJQPGTIk\nw7bDw8MZMmQIHTp0wNvbGysrK4YMGfL2vSaE+OBsbS1o3txNJy2FtXX6+dFAG1Rs2bKZ4OD7WW4j\nNQjZt28PQUF3sLW1YO3alWnqGRsbKylC9u7dnaZcpVKRO3duRowYzahR31OwYKF029uzZze2thbs\n27cny/f4OrVazY0b19MtS07WfdxpaWnFggVzUalUPH78mGrVatCyZRNsbS0YPnxQltp7/vw5T57E\n4ONzDNCmD4mPf05AgD/jxk3Ay2sL16/fYeZM7S4Q337bn4ED+zNy5Ahq1apNzZqfvfH6wcH33+uO\nC0J8qrIdsN2+fZsyZcqQP39+rK2tsba2xtzcnNOnTxMSEsL06dNxcHBgwIABuLi4sG3bNgB27NhB\n+/btadGiBcWKFWPEiBHY2Nhw7NgxADZt2kTPnj1xdXWlYsWKTJs2jW3btpGYmEh8fDzbtm1j4sSJ\nODo64ubmRr9+/fjll18AOH36NMHBwRm2/ccff+Ds7EyvXr0oVaoUs2fPJjQ0lPPn098fUAihv17d\nwui778bolD1//pwZM6ZgZ5eP4sXtGD58ENWqVcTf/3KWrj1p0jS2bt2pk2Lj8ePH6dadO1ebsiIr\ne4hm5OTJ4wDMmZP1lB6vevbsGQULWlK//mdKsPmqEiVKKK+nTJnJ2rUrCQ0NYfDgITx8GI2BgYor\nVy4B2n1GU1JSGDSoHwMH9iEyMjLN9UJDQ3B0LEGrVs2UYw8fPqRBg89p3LguDg5F6NGjC336dMfB\noRQLFiyhcmUX/Pz8aN++E5s2/f7GxRXPnj2lWrWKfPaZC9HR0SQkJLxVvwjxX5TtnQ5u375NnTp1\n0hz39/enQoUKmJiYKMeqVavG5cvaX5T9+/dPN2Hjs2fPUKvVBAQEMGzYMOW4i4sLSUlJ3LhxA7Va\nTUpKCi4uLjrXXr16dZba9vf3p0aNGkqZqakp5cuX59KlSzrHhRD6IykpCU/P9bRp0x4rKyuMjY11\nMvmPGDFamb/m7f0Hq1Ytx82tCUuXLsTa2pqyZR0pXrwEe/bswstrA/PnL860TZVKhatrQ+rXb0Bi\nYgJVq1anYcPG7+0zzpo1j7p1XWnQoNFbnb9//8u8bmPGjKBHD90Vk3Z2BVm2bDVFixbj88/rcunS\nBaysrIiPTyAhIYGuXbszadJ0+vXrQYECtkRFReLt/QcABw8e4ODBYzrJfhMTtef988/LEb3du/9M\nk4Ll+PGjWFhYsH79Jrp375Xlz/NqcFy+vHYLsaioWEA7YurpuYYKFZypVevzLF9TiP+KbAdsQUFB\nnDhxgpUrV6JWq2nWrBnDhw/nwYMH2Nra6tS1trZW/kpzcnLSKfPx8eHevXvUrl2b2NhYEhMTdc43\nNDTE0tKSiIgIVCoVlpaWOvv+WVtbk5iYyOPHjzNtOyoqKk25jY1Nun9BCiE+ntWrl3P79k3atGnF\nkiXLOHr52ZiEAAAgAElEQVT0MOPHj+HkyXNKsObuPoURI0Yr5zx69JDp0ycRHh6u7DVqbm6Om1sT\ncufOzZUrl7h+PTBb96FSqRg9ely6ZU+fxlKrVlUePNCuthw1auxbflptOy1atHrr81u2bJ1pnVdX\noE6bNotWrZri6bmOdu06ULZsOQA8PbVPK9RqNcWK2ZMrlxF37txhw4b1zJgxWzm/ZMlSFCpUmPBw\n7UKLJUtWcuiQdmqKkZER5co50q1bT1xdG1KiRMlsf55ixexZt+5nZTFDqvj4eAYP7seePdrHz6lB\nnBD/S7IVsIWFhZGQkICJiQmLFy8mJCQEDw8PEhISiI+PT7Mp8+t/Eae6f/8+EyZMoHXr1jg6OipB\nWUbnq9XqdMtAuxghs7YTEhKyfG9CiI/j4cOHTJo0HoCNGz11yn777Rfu3YvkyZOYNPPBTp3yJTw8\nnAYNGnHs2BHmzv0JD49pbNiwjooVnbl16yZjxmgXJzx69BBHx5Js2bKdRo3c3uo+u3TpoARrAP36\nZW3u1/tgYmKCl9cW4uKe0b59p0zrFylSlFOn/AgLC003oDIwMGD58rWMGDEYgJAQ3cVZKpWKNWs2\nsnv3n3z11dc4O1fG1taWcuUc6dSpy1sFaa+6d++uTrDWvn0n5b9Zqo4dv3qnNoT4VGUrYCtcuDBn\nz55VVm85OjqiVqsZO3Ys7du3JzZW96+eFy9epNmMOSgoiD59+lC8eHFmzNDO2zA2Nkaj0aQJoF68\neIGZmRnJycnplgGYmZlhYmLCkydPMmzbxMQk3fPTW4X2JoaGkrYuI6l9I330ZtJPb6LGwMAAtfpl\nagFz87w8e/aUjRs9mTFjFnnzpre0Xlv/2LEjtG3bnv79B2BvX4zu3bsSFRVJ69ZtGTRoCEZGBsoC\ngi5d2vPo0bN0rvVmsbFPOH/+ZW63AgUKkD+/JUZG2v+e9+/fw9t7K999NzrHEuGm59XvUcuWLbN1\nrrl5bsqWLZNhed26dbhw4TJBQXewsbHByMiA0NBQChYsiKGhIXXqfE6dOi8fSTZp0pQmTbK3R2tk\nZCQ2NjYYGhrqHB8yZAAAtra2mJqaYmNjw7ff9tGpM3nyNP799zp162oXL1StWp19+w6SK1euNO3I\nz1vmpI8ypy99k+1Hoq8HOaVKlSIxMREbGxtu39bdty46OpoCBQoo72/evEnv3r2xt7dnzZo1yqiX\nlZUVJiYmREdHU7Kk9i+plJQUYmJiKFCgAGq1mpiYGNRqtTJnJTo6Wln6b2dnx61btzJs287OTlmN\n+mr5649pM//sZtmq/79I+ihrpJ/SsrJywNvbm8uXL3Px4kV2795NoUIFuXnzKUZGhhnmQfrmmy5E\nR0dw7tw5Nm/ejLGxMV26dKRly2aYmZnpBAWTJk3g1KkTLF++/K3yKuXPr5sX7sGDB2zevIFRo0b9\nf7k2jUhyciKzZs3K9vWz631+j/LnrwTA4cOHcXPTjkampKSkyXuXXRERETg5lQJIsx1Xp04dOHfu\nDFFRUdjZ2REcfJfjx48q5atXr8bZuRz+/v7KsYsXL1CgQL43Bsjy85Y56SP9l62A7eTJk4wePRof\nHx9lgn9gYCBWVlZUr14dT09PXrx4oQRifn5+VK9eHdD+Yuvbty8lS5Zk7dq1OiNvKpUKZ2dn/Pz8\nlEUAly5dIleuXDg6OqLRaDAyMuLy5ctUrVoVgAsXLlCxYkUAKleuzNq1azNsu3Llyjo53+Lj4wkM\nDNRZ5JAVsbHxpKRIYsH0GBoaYGFhJn2UCemnN3N1/YJGjZoSEHCRf/+9yaFDx5XFSo8fx2V4Xr9+\ng+nXbzBxcUnExSX9/1EVMTEPKVbMDuD/R9SM2LPnYKbXy6oiRYrSqVM35Vp2dnZERkayffufjB3r\n/s7Xz8j7/B6lpKSwd+9f1KtXH0tLKy5cuKSU/fTTYvr2HfDW11ar1RQq9PKRtkqlYtu2Hcrj6b59\nBzF2rHZOYJ485kRFRdOiRStl7tr8+Qvo1KkbxYqV4sKFK/z99z4GDRpCTMzzdNvLbj9pNBp+/fUX\nhg0bRNOmzfjtt21v/Vk/FfI7KXOpffSxZStgq1KlCmZmZri7uzNkyBDu37/PvHnz6N+/PzVq1KBQ\noUL88MMPDB48mCNHjhAQEMDcudpcPHPmzEGtVjNz5kyePXuZbDJ37tzkzp2br7/+milTplC6dGls\nbW2ZNm0anTt3VgLDNm3aMGXKFGbNmkVkZCQbNmxgzpw5ANSsWTPdtlPLO3TogKenJ2vXrqVhw4Ys\nW7YMe3t7atasma3OSklRSyboTEgfZY3005vVqVOH06cvkJz8bv0UEfFyYVFO9Le//z9UqqSdqH/l\nyg1lf9DUa7u5NWXzZi+aNPnyg/z3fR/fo9GjR7Bp00aKFy/B+fP+VKlSXSlbu3Y1hQsXxc2tKSdO\nHKdjx9Y0a9aCqVNn6KwmzciZM6fTHJs0yZ2OHdtSr54rK1euJzT0Ideu+ePu/oPO42fQTmVJ/bz2\n9iUZMGAwKSka4M0b9mS1n77/fiQbN64HYP/+v/nzz+20atU20/P+C+R3kv7L9tZUt2/fZtasWVy+\nfJk8efLQpUsXBg/WTlANDg5mwoQJ+Pv7Y29vj7u7O7Vq1QK0aTpeX/oN2oS3Q4dqty5Zu3YtGzdu\nJCkpiaZNmzJp0iRlxCwhIYFp06axf/9+8ubNS79+/ejevbtynTe1DXDixAk8PDyIjIykatWqTJ8+\nnSJFimSrs2TrjozJ9iZZI/2UuVf7aPTo79iwYR0BAf9iZ1cwTd3UX1/pPQ6rXt2Z+/fvsXDhMipW\ndM6RjeBBm8AXtHt2vj5HNywslJ9/Xs+wYaMwNzdP7/Qsu349kCtXLtGlS7c0ZRl9j27dusnnn1fj\n+vUgrK2t36rdtm1bcOrUCQDu3AnD3NycsmWLExPzGFNTUxISEhg3zp1582Yr8w2trPJz5cqNNP3x\nuqSkJLp0ac/du3fS3W3GwMCAHTv20rp1M53jx4+fwdg4F6VKZTz3Lj3Z/XnbscNb2Uze0tIKKysr\nzp7NWg6/T5X8TsqcvmxNJXuJZoN8oTMmP/RZI/2UuVf7yMGhKDExMfz55x7q1KmnU2/37h307avd\n5ujV0a779++xZMlCdu/ewePHjzJMARET85gWLb5g7tyfqFu3vk5Zy5ZNOHfuDD179mXevIVERIRz\n8OB+vvmmJ507t+X48aOsXu1Ju3Yd30MPaO+tbNniAISGPkwzoT6j71GJEoV4/jyOHj36MH/+ordq\n++HDhwwY0AuNRsMff+zAyMiIgIArHD16mJMnT3Ds2GGlbocOnXB2rsTUqZPYvv2vNP2YkfbtW3Ly\npE+6ZRYW+YiN1S4iq1+/AWvWbFC2AssuIyMDLC1zc/ToSQoWLKIzpzojCxfOY/bsGVhb2/DwYfQ7\nrSj+FMjvpMzpS8CmH0sfhBAiHWfPXubatdtpgrXk5GQlWAPImzev8nrYsIF4eXkyffosgoN1Fxu9\n6siRQ9y8+S/9+qXd2/LcuTMA/Pzzeh4+fEilSuUYPXo4p06dVCbB5879/n6Bpz6WA3RWzWZm0aJl\n5Mljjrv75Ldu29raGm/v3Wzf/peS+9LZuTLDho2kadOXI1/lyjlib19cGeXMlcs43eulZ9KkaeTJ\nkyfdBQypwRrAgwdRbx2spXJ1daVx4/pUqFCKiIjwTOt/990YatX6nIcPo7G3t6dr1w5s3brlne5B\niJwgAZsQQm9ZWeVPd1TEyMgID4+5GBsbM378JMzNXwZs48a5U758Rdq0aa+z+8mr7t+/x8CBfQG4\ncOFqmvJXc329upeovX1x5XWTJrqP7XLSrFnTAahcuUqGnyE9bdt2ICgoLEc3mvfy2siXXzbGzi4f\n48ePxcrKivXrf+b778fj4FCKP/7YgqWlJRUrOuucd/78WWxtLejdu1ua1aBVqlQjKCiciIgYQkMf\nMmzYyHTbrlfP9Z3uffJkd06cOKG8v3z50htqa6lUKvr06Q+Ao2N5NBoNQ4YMoHXrZmk+hxAfkjwS\nzQYZMs6YDKtnjfRT5t53H12+fJEmTRoo7xctWs7XX3fXqaNWq2nXrgWnT/uyYcNmTEyMady4CXZ2\n+QBYv97rvU5GnzhxHEFBQUyePJ1y5RzTlKfXR3Fxcfzww2jGjPmB4sVLZNpGp06tOXHCB0fH8pQq\nVZqBA4dQo8bLjdk1Gg1XrwbQuHFdnfMqVnTm0aNHxMc/Jz4+nly5cuHltUVnFFSj0VCuXAliYrRb\nTc2Zs0AJgtLj5OTAw4fROsemTJlBnz4DMDN7u9V5UVFRVKz4ciGEk1N59uw5qBPcZyQ+Pp42bb7k\n8uWLqFQqJVB73//dPwb5nZQ5fXkkmu08bEII8SkrW/ZlAGRoaJjuvpSRkRHcuXObqlWr06BBI/Lk\nyaPzaPJ9/0975sy52T7n7t0gfv/9V27e/Ie//z6aaf3w8AjUajW2tgW4ePECLVp8AUD9+q5ERz8k\nMDDtyCPAjRs3aNOmHaVKlcbY2IR27TpQrJh9mnoajYZq1Wrg53eeXbv+fGPAduTISSpX1g1Mr14N\neOtgDcDU1ARHRydu3LhOpUqV+fvvozrbG76JmZkZ+/cfJSkpCS8vTyZM+B6AihUrvfX9CPGu5JGo\nEOJ/Su7cuTl37gq3bgUTHv6Ys2dPc+2abnBSubIjkZERXLx4gdWrVwDa7bEAevTok+aaH9OaNSuw\ntbXAwMCAIkWK8v33E7J03vjxkwCIiYmhePGXj3p9fI7rBGu9e2sfHRcsWIhx49y5cMGflSvXMWbM\nDwwfPjLdYE2lUtG2bQf8/M6jUql09iNNT6FChQkLe0SHDp2VYz179tWp0759S2xtLbC1teD27ZuZ\nfj4Li3ycOnWehw8fcuyYb5aDtVc/gzYJ8zf06tWXdet+pmRJB6U8IiKcGzeuy2NS8cHICJsQ4n9O\n6p6Xz549VfbNfHU16dKlqxg2bCAArVq1ISIinNOnfQHtlnz6xNf3JABTp7pz6VLWN7lv0aIV69d7\nMX78WAwNDZk2bRb79u3mzJnTSvqO0qXLKDtFbN/+F6VLZz2thofHXBwdnbCzK4izc+VM6xsZGbFy\n5ToWLVqe7ry9L79soawsrV27GpcvX6dw4cxTM+XPn/+dkiSbm5vz448L0xzv0qUDgYFXKVKkKN7e\nu3FwKPXWbQiRFTLCJoT4n5W60nPkyDE6x7/66mt27fqbpk2bExBwhZo1K/PHH78BEBR054Pf55tM\nnTqTZs1aKCNm2dGqVVsCAv7lypUbfPvtYPr3125kn5CQAGjzulWpUg0LCwvWr1+drWsbGxvTt+8A\nWrZsna3zMlpk0b//ILZs2a68v3//fraum9NSd3wIDQ2hVq0qpKSkAODnd56pUyem2b861b///kOZ\nMsWwtbUgLCz0g92v+PTJCJsQ4n+WgYFBhnnaduzwZv/+vezfv5dy5Rz5558bADRo0OhD3mKmSpZ0\nwMvrt7c+X6VSERUVxfDhAzly5JBOHjSA48ePkZKSkuU0JtevB5KYmICLS9W3vqeMNGrkxv37UURH\nP6Bo0WJoNBqOHz+Kg0MpnRW8H0L37r04c+aUkvLjzp3b/PHHbyxevACAR48esmTJyjTnzZw5hSdP\ntP27d+9u+vUb+OFuWnzSZIRNCPFJ0Gg0OoHE+5Y6YgJQqZKL8rpevQYf7B7elyNHDirzwK5du0rF\niqU5cuQQ3303moULl7BgwWLq1KmLi0tVYmOfEBcXx4ABgzO9bmzsE1xda9GkSQOaN3cjIOBKjt+7\nqakpRYsWA+Cvv3bRuXNbqld3xtbWgi1bNud4e2+ybNlqxo+fhKOjE/nyWSr3BWBra5fuOVWqVFNe\nV6qUM7tvANy7d5eDB//OsesJ/SMBmxDik2Bnl4/SpYtlmCE/p7Vs2YYiRYpSv34DfvppqTKXy97e\nFnt72w9yD+/Djz/OokuXDtSuXY0nT2Jo2FC7Snb6dA+cnbWrIC0tLenTpz/Dho1Q3tvaZv6Z8+a1\nUF5fuHCOVauWv4dP8NLOnd46iwleXzySmYSEBPbt28O6dav4+++9PH2a/mhrqmfPnlKwoKUSGKpU\nKkaOHIuPz1lsbW3p2bMPs2bNA2DJkp9o0+ZLncAftIl5jxzx5fRpPxwcSmW4aCEyMgJbWws2bdqY\npc9So0YlunXrzPPnz99Y78iRg8riDVtbC/LnN6do0aJp7lPoHwnYhBCflBMnjqV7/OrVgBxdsefq\n2pBdu/7Gy2sLJiYmXL16SylLSEggOTk5x9r6kJ4+fQrA55/XJTIyUjlepEjRNHU1Gg0XL16gefNW\n6e7X+jrt49VYvLy0jwnLlCmbQ3edvqdPn5KcnEyePOYMHToiW/P44uLicHWtRc+eXZkw4Xt69OhC\n+fKlWLVqWYbn/P33XtRqNcOHD0pTptFo2LzZi4cPHyrHTp/2JSREd8/U+/fv0ahRHVq1akr58g7Y\n2eVT8tWB9lHqwIF9cXbW9t3o0cOz9Hnmz19M8+atMDAwyHD+XEDAFbp06ZDmeJkyLxeXCP0lc9iE\nEJ+Ef/+9x9atW2jevFWasjNnTtO6dVMAIiJi0t3yKCuSk5MZPnwQRYsWY9Gi+Tpl5ctX1Hl/48b1\nNNn9UyUlJeHqWotbt27i5bWFZs2av9X9vA/Tp89i1KixWFnlZ8oUbQoQlUrFjh3bKVDAFisrK5KT\nkzl27Ah37tzh6dPYdDegf1ViYiLFiml3pAgLe0SzZs0JCYnG2Djr21Vlx+3bN4mLi+Pnn3/jyJFD\nVK9eM0sjgK/67bdN3Lt3j3nzfsLOriDR0Q84ePAAkydPoE6d+spoI8Du3TsZN24UiYkJyrHw8DBl\n/1qAnTu3M3LkUAD8/K6SJ08eNBrtVl+vOnHiOACPHj3CxaUqly9f5OTJE8riDE/PtWzfvlWp//o+\nshnp0aM3rVu3xd7eFlfXhmzdujNNne+/H5Xm2Pbtu2nXruU7raQVH4YEbEKIT4KlpZWyivF1Vau+\nnBcUFhaqM5coOwoX1t3SycjISBlJCwy8StGixQgJCaZ06TI4OZXP8DqhoSHcuqWdI5YvX75s3YNa\nrWbPnl3ExsbStes3bx18ZkSlUilbV61cqR1N0mg07N6t+z/4woWL0Lp1W+rXb5BucuFXJSUlKa9T\nA9n3FayBNq0HwIULATRv3jLb59+/f4+5c2dRr159SpXS7oZgbm5O/fqu7Nu3h4iIMJ2Azd39e6Kj\ndfelPXz4IN980xPQjtYdP36UEiVKMn36LAYM6M2SJSvTHWHs2vUbjh49xOHDh7C0tASgQoWXfwy8\nurNFu3YdWL16Q5Y/V0hICECGjzdfT4Y8ceJUGjRomOXri49LAjYhxCfP2NiY69eDuHLl4lsHa4mJ\nicrrZs2a8+OPCylYsBCgTaQbHh6mPN66desmXbt24I8/dqR7rRIlSiq5udJ71Pgmo0cPZ/NmL0C7\n8nDSpGlv83GypEGDRhw7dkR537HjVzRq5IaLSxVKlSqTpcegoA12AgJucuvWvzrBx/vSsmUb/vpr\nJ0lJ6T/6exO1Ws2oUcP+P+2I7u4Lv/zihZNTeVxdG+nUT2/T+FGjhlGpUmUqVqxEo0Z1lHQvfn4X\n8PM7T5061Tl37oqS8y86OprNm71YtGg+cXHPAJS+j4yM4Ny5MwwbNpCOHb9i4cJlLFgwl1WrPLP1\n2SpWdCY4+EGGqVFef1RatWqNbF1ffFwyh00I8Z9gbW1No0ZfvNW5Go2Gb77RZtk3MzPDy2uLEqwB\n+PqeT3POnTu333jNevVcsx2sge6InLm5ebbPz441azbw5ZctlPf//vsPgwf3x9f3ZJaDtVR2dnbU\nqVMv2+e9DU/PTURFxVKqVNYT+b48dw0+PscYOHBwmv6Njn5AkyZf6owOGhgYcODAMWW0rFIlF6ZO\n9QBg2rRJXLlySSc3X2paD4BevV4+Sv722z54eExVgrURI0YrZcuXL2HhQu1iBY1GQ7duPbh48dpb\n9WVGwZr22rrv69atl35FoZckYBNC/M+7du0qx49r9998NTlrqri4OJYuXUVk5BPlf9YZja69q6lT\nPVi92pOJE6fSpUs3du/eoSSyzWkHD+5nxIjRLFmykhEjRjNunHZOm77lmsspGo2GefNm88UXTahS\nJW2eOGtrG/799x8AfHyOYWtrwfHjR3FxqaqMwHbu3IWYmEf07z+Q2bPnM2fOzDTXWbp0FcbGxgQG\nXlX+EChQwEanjrv7FCpVqoyJiQkHDuyjRYtWbNz4K8uXr8npj63In9/qvV1bvH8SsAkh9EpYWBgq\nlYoDBz5cTqnUnFllypSldu06acrXr1/DsGEDadeuBYMHDyMqKva9bkXUrl1Hhg8fxbRpk+jbtwff\nfz8yx9tYtWo5Q4YMoFmzRri5NcXdfQpffNGMqKhYihcvkePt6YP79+/x+PFjqlevmW65i0sVjh07\njFqtxtNzLQD79v0FaAP5jh2/4uzZMyxatIC1a1dRtmy5dFdXVqjgzL592sedDRs2BmDVKk8uXAig\nU6cuylZXhQtr02loNBquXbtG8+Ytsz1n0d//spKiY+pU9zfWLVHC4Y3lQr9JwCaE0CvLli0GoEuX\njh986574+Ph0j9vZaQO68+fPfsjboXPnLgBKZvycsmrVMiZPHq+8b9LEFbVanaNt6KPUPG0lS2rn\nlWk0Gp25iyYmJsTHxxMaGkKnTl3YuXMfM2bMAaB06TKsWLGWxo21j93btevIkycxdO3anVOnLhAe\n/pgePXpjbp73//dPrURUVCx9+36rXN/evjjLl6+hVy/txvazZv2o9HtQ0JsfsWfk1cemK1YsfWPd\nHj1667x/NQWJ0H+y6EAIoVe++aY7q1Ytp1KlylhYWGR+Qg6wstI+KgoJCSYw8Brly1fQKe/duz9V\nqlTD1NTsg9xPqkaNvshw66y39e+//zB58gTlvY2NDc+f/3dTOiQlJfHDD2Np2LAx5cqVw8jIiIUL\nF9CoUWP++ecfDh06QJ48eVixYg358mlXbVar9nLhhI1NAYYNG0m9eq7cu3eX5ORkPD03Ub16TQYO\n7MvhwwcBOHfuCvPnL2bWrHmZrpA9cuQQXbq0Z/fu/SxatJzhwwfRrFmLN57zunPnztKy5Rf88svv\nnDx5nvPnz+Lo6PTGc15PTbNp0wbGjPk+W+2Kj0elyclMk/9xjx/HkZz83/8r9G0YGRlgZZVH+igT\n0k+Z+1h9ZGv7MjjM6SApp71LH736OUGbvmPy5Om0b98pJ29RLxgZGfD4cSSlSpXCyMiIsLBHnDhx\nnOnTJ3HlyuUMzytdugw//OBOVFQkEyaMy1JbgwcPY8WKpXh4zCU0NISpUz0ICLhCx46t2bfviM4j\n9IED+7B9+zYlTUyJEiU5dy7r23g9eRJDmTL2yvusfl+rVatIcPB9nWOPHj2T30mZSP15+9jkkagQ\nQpD2f3oeHtOwtbUgMjLiI93R+xcW9ojLl6+nG6ylpKQQFRX1Ee4qazQaDcOHD2LcuFHcv3+P2Ngn\n6e50UbJkSRwcSnHwoHZLs3r1XDl40Id79yK5cCEgTX1X1waMHz+R/Pnz4+jopIxa1ar1OevX/8zv\nv3uzcOESnXOmTJmhPI50dx/HihVLefbsKZMmjefx48dcuHBOp/7KleuZN28R69b9TL16rnz//QSy\nas+e3TrBWlZpNJo0wZr4tEjAJoT4ZFy/HqiTBf59+vXXTQDvZQPzj+nw4ZMAODmV19mH81XHjx+l\nUCErKlYsneUVqjdv/sv9+/dy7D5flZCQwLp1q7C1tVACo/XrV7Nly2Y2bFhH9erOlC5djGrVKnL4\n8AGePo3lwoVzXLlymb///ps7d27TsOHnOuk3TE1NqV497U4VtrZ2SkLbY8eOcuPGdQDOnDmFlZUV\nuXLlonjxEjqPzS9evJBm8UHu3Hk4dUrb1/PmzdYpU6lU9OzZhwoVnFm1ypOOHb/Kcl+8mnsub968\nHDhwLEvnqVSqNLsm5M+fP4PaQh/JHDYhhF56+vQp169fp2rV6sqx5s3diIt7hqtrozRb/uQkW1sL\nIiJiSEhIIHfu3O+tnQ8lMTGRpKQXmJvnVSbDv2k2zJMnMcprU1PTTK+/YsUSpk6dCMDQod8xefL0\nd7/p/3fjxnV69erGnTvavVynTnXn9u2bNGzoptSZMGES8fHPWbhwAWPHjiQ6+kG6geaRIweVRQAq\nlQoPj7m4u4+jW7ceVKtWg6NHD7N16+8cPLifQoUKc/16IG5uTTl0aH+aa02YMImEhHg2bfLi7t27\nhIdr9wO9c+cWRka5MDAwoFw5R/755wb37t1l69YtvHjxQmf3iiVLfmLevNk4Ojrh45O1BS3Vqr1M\ndrtmzQZcXNKmJ8nIqztSABgbZ5yzTegfGWETQuilFSuW0qxZI3777RflmIPD+01LEBj4cgTm6dPY\n9xasPX78CFtbCyVZ6tv64YexdOzYOt1M/GfPnuGnn35k4cJ5FCtWAAeHIjrlb0rK2rp1O6KiYrM0\nN2rr1i1KsAYvU6S8K41Gw5Ejh2jT5kuMjAzx9t6Jv38gEyZMZMcObwYM6MWMGdqRqyNHDvHihTYY\nCQkJ5ptveuDrewYfH1+2bNnChAkTyZUrF199pbsnav/+g4iKimXhwmV8801P1q/3YufOffTq1Y9i\nxewZN86dTZu2MG/eIgA2bFinBLq5c+cmf35rTE1NCQy8qhx3cCiNvX1xQDef3ZAhAxg5cihnzpwC\ntKuhU0feUkfxsiJv3rwA1K5dh8aNm2SrT/Pn1/0jJ73vjdBfErAJIfRS27btAbhw4Rw+Psd48eIF\nS5euZu3aje9tdM3GxoYCBbSbiJcpY8+9e3ffSzupWxItXvzTW1+jQYMGrFmzEh+fY/z5p7dO2cSJ\nP9CqVRMWL17A7Nkz3uleMzNkyACd95Mnj6dPn+4sWbLwra/5/PlzOnVqQ5cu7SldujSenhsxNDTg\n5K1Wn90AACAASURBVMkTdO3ajUOHjqJSGZCYmMiKFWu5ceMGy5dr55V98UVTFi5cjLNzJQ4ePEBI\nSAgREeE4OJTK0s4RtWvXYcKEyfzyyx+MHj0OQ0NDevTozezZ89i9excjRw7nwoWXO18UL16clJQU\nJeHuq8aNm5hmxWjqPLKbN1/W37jx1zfe099/76Vevc+wtbWgbNninDhxTmdz98jICDw8pmUagL2+\nr21WN5YX+kFWiWaDrKLJmKx+zBrpp8y92kceHjNYsGAuAMWK2XPu3JV0E5XmpJiYx5QtW1zn2Pz5\ni9PksHoX2g3ed9OokRt58mR/9ZmRkQH5878MPu7fj1IeXYaEBFO1qnZ+VYsWLcmXz5Lff/8NP7+r\nFC5cJN3rva2HDx/i5KTNaebr60edOtV0yt92tW1AwBUaN9Zum1SsmD3m5uZcvx4IwI4du9FoNLRr\n15r1671o1aotz5494+7dO7Rt24JChQqxc+duwsPDadiwvnLN7K7EBEhOTtaZ53fs2BF++ulHAgL8\nWbduAyYmJsTFxdG9e1emTZvFoEFD01zj0aOHODqWVN6Hhz/G0NCQZ8+eMmWKO/36DcTJqfwb72P/\n/n10766d51akSFEuXQrUKZ81azqLFs2nVKnSnD59McPrfPPNVxw4sE957+Exl0GDhsjvpEzIKlEh\nhMjE9evXMDMzo0WL1gQH3+fQoQPp1nvx4gUREeE8ffru6TgsLa04fvyMzrExY0a8cc5XdhkYGNCq\nVZu3CtZSnThxgoULl3LqlJ/OPLNXA1pf35Ps3fsXzZq1yPFgDVCCNYA8eXLu8XHFipWYMmUm/foN\npFWrttSsWVspa9u2Fe3atQbA1bUhoN1ztWLFSuzZc5C4uDicnMoqwVrJkiUpXboMffr0T9vQG9St\nW4PChfOzfv3LraIaNGjE9OmziIt7Rs+e3Zg5czobNqwDtN/V4cMHpRlpy5/fmr17D1GzZi22b/9L\n+e9jbp6XBQuWkD+/NbNnT9dJ4Ps6N7eXjz7PnLmUYXmVKtXSlL2qTZt2Ou/79x/0xvpCv8iiAyGE\n3mratDl79/7F3bvauWVmZmkT186YMYVfftnI48faSd+pozq3b98kNDSUevVcs72JtpNTef755y7J\nySlUqKDNn6XRaD7IxuZZVbduXSpUqJJmVKRQocJMnz6LyZMnEBMTQ8OGjZkzZ0EGV3l7z58/13mf\nN68F3347hH/+uc6xY0cYOXLsW1334sULlC3ryJAhw3WO9+zZh8aN6/L1192JiIjgxx9/wsJC9xFf\nuXKOHDzow44d3lhYWFC1alVq1qzCkyfx2R49Sg28Uvf5bNmyCatWrad69Zp0796bTZs2cPv2TfLl\ns6ROnXps2bIZgC1bNjNv3iJ69uxDbOwTSpcuRseOX/HXX+n/seHpuZqFC+fj6Fiedu06plvH0NAQ\ne/vi/8feWYdFsb1x/EMoqIiCsoiogK0oYoFxbbG7u7u7Cwu7E/saoKLYjYWIdRXBwCAUUUIlFGn2\n98fcHVh3gQXz/tzP89zn7s45c2Z2nGXfOed9v1/69Bmg1NzdxqaGSrOZP3p2Ws2PRb0kmgXUU8bp\no17qUw31dVJEKpVy6tRxHB03U6mSNZMnT6VkSTMiImKIjIxi3LhRnDjhSps27dm2bbdc0PT1chOk\nBmwygdhSpUrj4XEv2+f3qwR1ZcddvHgZgwYNk2v7+j6SBU+yIomkpCQcHTfTuHETSpcu88PPEWDH\njj0MHNgXicSYR49eZGs8L6/7NGlSH4AlS1ZiaGhIq1Zt05UfyYzvITB86NAxZsyYzMuXwmeSVdiG\nhoZQqJAJAE+ePKZ+/Zpy+2/bthszM3Px8/j4vBAtzkC477dt2wwIOYcAc+cupG/fASrl2mUHF5eD\njBiROtMYHPyBXLl01H+TMkG9JKpGjRo1gIPDfAYO7MPt2544Om6mVClzevXqRXh4GHp6edm+fQ+v\nXoWyffsehRmuhIQEufd9+w4UX58+LVgGRUZGkl2Sk5M5cSJV0kHZslVAgD/nzp35LsuxypAFChlh\nbl4Ic/NCoi+ltrY2I0aM/qHBGkBoaBRnz7px/vwV8uQRgoywsNBsj1eqVOr5Tps2kSFD+sstu/5I\njh49jESiz9ixI/4NyKIIDv5A/foNWbhQ8BMdNChVEkQWrAGUL2+pMPM1eHA/8uXLz8KFS5gyZQYS\niURsi4+PZ9u2LcyaNY1Zs6YxdepM+vUbiL39LO7c8RT7vXoVSNu2zbl1y5OviYj4yKZN65FI9KlZ\nUzVpj6JF5XMz/wT/2P8n1AGbGjVqfilpxVZlFZr79++nYsVyjB49nIiIj0qXQgEKFTIhLCyaWbPm\nAVCpkrXYVr26LbduPeDkyXNy+yQnJ6v8Q2ViYkCbNk3F91//KN+4cR1bW2v69OlGqVLFWL8++5WR\nX/P27Udevw5TaTmzf/9BAN81z04VNDQ0qFq1OpUrV6VhQzuWLl0lSm1khzx58hAWFo2b2w0WL14G\nCMb3aQVvfxSXL18CwMlpH58+RcsJzco8XRcvTl+Gxc3NXWFbnTo2DBkygkmTpsk9bGzevJ5Zs1It\nryIiPlKkSFEAnj5Nlfi4d+8Onp4eODntVRj72LGjzJs3EwA/v5cqSXQUKybvkHD4sFOm+6j5fVAv\niWYB9ZRx+qiX+lRDfZ0U8fV9St26tuL78eMnsnq1EKRoaGiQM2dOjh07IycYqoxbtzyxsbEVRUnT\nQ7bUJavWU0ZMTAz29rPYvXuHuK1OnXocOXJSfJ+YmEjdurbExsZSu3YdvL29ePHiOY8f+/1QUV/4\nc+4jT08P2rZtLuaEqYJUKiUm5jN58uiRI4eWytcpOPgNy5YtZty4SVhYZE/vLzw8DEvLkuL7CROm\nMG3aLIV+K1YsYdmyxXLbli5dxdSpE9DV1eXZs1fkypWLhIQEpk+fzJw59qIxvYyYmBgGDepD3rx5\nqVlTyO1Tlt+WluTkZExMDOS2qb1EM0e9JKpGjRo1IHo1yihcuAggJP5raGgQHx+vksBsjRo1Mw3W\n0tpMeXp6pNuvatUKcsGanp4eBw64iO8jIyMoUcIUP7+XlChREjMzc4yNC6GhoYG29s9P7F6yZCH2\n9oqBwX+Re/fuEBz8BhA00Tw9/6F7914q73/ihCvFi5tibJyPmJgYlfczNS3C2rWbMgzWPD09mD17\nOrGxsUrbjYwkuLndoEuX7pw+fVFpsAaKArYANjbCQ0tcXBx//SU8nOTMmZOVK9eKwVpcXBxjxgyn\nTBkz8uTJg5PTERwdd9O//6BMgzUQig5kS9dq/nuoAzY1atT8UmSWQwAlSpSkTZt2aGlp8fTpE3Hp\nMru5WCtXLhU1yQDu3EmV67C0rIBUKuXz589y+3z+/ImPHz+I7zt37sbt2w/lfhC9vR+K1kc5cuTg\n0SMfPD096N27n8JMyI/k9OmTSCT6rFq1TBSO/S9z9eplWrRoTP/+qQFaiRKlFMRnM0JmZaalpfXd\nnSq6dm3P1q0bWbzYPt0+FStasWHDVqpXt5XbPmrUUPr37ynqr8n6AixevBxLy4qizEZQ0Gv8/BRz\nF/39/XB23k9ERAQSiX6WAlIZPzqvUc2PQx2wqVGj5qfw8uUL6ta15Z9/7vLhQ2pAdO3aVQAmT56O\np+d9jIyM8PHxoW7demKfDRvWEhoakuVjLl26iDdvgkSJhsaNhXy0cuUsMTAwpEiRghQvXhg7u7pi\nAPbokY+4/8WL19i40REjIyO5ccuUKSu+vnz5EufOncbOrinz5i3K8jlml/r169O7d3cA9PX1uXpV\nMTH9Wxk0qC/Gxvky7/idWLBgLiBUi0ZHR2VrjKJFixEWFs27dxHfXYZl5UohKJ4yZUaW9z10yInT\np08SExNDfLxwr9Wq9ReAaDY/a9Y8UZuvTh1bhVxLmS2VDAsLE7kcUFUwMJBfEg0NzX6RiJqfizpg\nU6NGzU+hVq2q+Po+pXnzRpQrZ0Hz5o24evUyU6dOAARLIRnlypXj2LHT3LvnLUo6NGvWkGfPfLN0\nzIcPfZk/fzElSgh5RWZm5rx5857Ll28AqWbYDx968eyZkOxtYlJY3H/DhrVKK0ONjQtx754PFy5c\nxdv7Gdeu3WLXrv0/1Si+ZEnhMzVt2pyDB10pX94ykz2yzokTrj+tkOHChbP4+DykffuOgCCV8bvR\nuXM3wsKiyZtXP/POXxEUFE5w8AfxntPR0eHAgX0YGUnE2bidO7eRnJyMoaEhSUlJ3L7tSWxsLGPH\njuDdu7cYGBiI95hsWbVatYpZOo/cueVzsdJKjaj5vVEHbGrUqPnuvH0bzI4djvj4PGTdulWsXZta\n6ShbMvznn7t06dIOACcnF6ytFaUJihUz5/JlIdcsOPgNrVrZER4eLrZHRUUSEfEx3aDCxKQww4aN\nkisuyJkzJydOuCKR6MvNwMgqVPPk0WPwYEH37Pjxo2zduknp2MWKmWFtXYVChUzEfLufyfbt2wkP\nj2Lv3oOZFmRkl1evQnn79uMPGTst3t5e9OrVFUvLCrRv3xEtLa0sGaL/ziQnJ+PgMJ9jx46wd+9u\n6tSxJV++/AwZMoxPn6IZO3bCvw8SQdjbzyIuLo6GDe2wta3J4sWCk4KT0z4qVSpLQIA/w4aNBISH\nDxkZuSR8zdcFMVOnTvoun1PNj0ftdKBGjZrvTs2aVZQmZnt5PaVwYVOxUtPKyhpvby9MTNK3TSpb\nthxHj56iQ4dWREVFYWlZgo4du3Dt2mXev38v9jt71k3lwMXF5SAgVBTWrVsfJ6cj5MiRgxMnXBk0\nqK9c31q1aqs0ZnZITEwkJSVFpYRxZWhpaf3Qyr705FS+N9euXUVLS4s5c+zR1tZGU1OLxMSEzHf8\nDYmOjmLevFns27eHjRsd0dbWZvXqFWJ7zZq16NChM35+Qu6mmZkFnz9/wsXlEJqamqSkpDBu3CT6\n9OmGv78fdeqkpgY0alSH6tVtWbhwKWZmFvTu3QUQtAC/Lt5JDysra7n327ZtwdFx87d+bDU/AfUM\nmxo1ar4rDx8+kAvWxoyZQN++A3FzuyH6WdasKQRB3t5eAJnOTv31V10uXLgqvj9y5JBcsAbQvHkj\nNmxYy7hxI7l27UqG423c6Mj69VvImzcvtWvXEfW2xo4dqdBX2czf96JVKzuKFjVizZoVmXfOIpGR\nETRpUg+JRF+uiOJ34+rVyyxebC/+Ozx//ozExARKliz9q08tW5w6dYJ9+/YAMHLkEOrXb8iECVPo\n3LkbefLkoW/f/hgaGlK5chXy5zegd++utG/fksWL7UlJSaFYMTNCQt6RnJwMCBIg9++nLg/fvXub\nfPnyYWmZahiv6rJmUlISUVGKQtLpVb2q+b1QB2xq1Kj5LkilUlxdXbCzS50RcHI6wqxZ81i+fLVY\nEQewdetO8bWtbU2VZgesrasQGhqFm9sN5s93wNn5KPfvP8bf/y09evQGYP782Rw4sJeuXdsTFPQ6\n3bHy5zega9ceXL9+G4nEWPwR8/F5prBkJJuN+xFMnSpUC8oMxGW8fv2Ks2dPKzg5yPj8+TOGhoaU\nLFlMaTtA+/Yt8fISjMIzuhaZcfz4USQSfZKSkrI9Rkb4+j4hOTmZhg0b4eZ2iblzZ1GmTDnR2P2/\nhizQbNmyNQDz589h8ODhHD7sjI1NDXLkECpetbW1RXeMhw+9xP1fv35Fp05tePUqUNzWuHFdHjx4\nQrNmLVmwwIHOnbthYmJKyZKlOHToGAYGhiqd27Vrl5k/f46C/uDjx79fvqAaRdTCuVlALSyYPn+K\nkOe38l+/TlKplNq1q/Hy5Qvc3G5gZmbG2LEjOX36hFy/w4ePU7t2nQw9IOPj44mKiqJgwYKkpKSI\nfTO7RoGBAdjYVAJSvT1TUlJYsmSh3ExV3rz6LF++GnNzC9zcLnLx4jmqVKnGxInTxKrPQYP6cuKE\nK9ra2rx9+1FOWDRXrtzExgoenZUqWXPx4nWVrpG3txc+Pt707NlHpf5f8+TJY5o2rU98fDz29osZ\nPnyUQp9bt27Qpk0LuWvwNVZWZQgJeYeZmTl37jzMdo6dbPlatuT85MljgoODsLNrlq3xvubLly80\nb96Ip09Tg4avfTezy6/6vvXq1ZUrV9xITEygcGFT+vUbyOLF87G1rcmQIam+sLdve3L5shtFixbj\nyhU3uTHKli2Pr+8T8f3z56/In1++wlMZUqkUqVSqVJNw7dqVLFpkT968+nJWagEBAeTLZ/Sf/Jv0\nM/hdhHPVAVsW+K/+yP4M/uuByM/iv36d7t69TcuWdum26+nl5dKl6xQvXkKl8QYP7sfx40cB6Nat\nJ+vWbVY5YGvduh07dvwt19atW0cuX76IkZGE8PCwdI+7adM2OnbsQlhYKP369cDefjE+Pt5Uq1ad\nM2dOcffuHZYuXUnt2tXEfVQxfk9MTMTUVJihCw2NylaQtGvXdrFytmnT5uzdqzjDl5AQh4vLAdq1\n60zu3HkV2gHc3a/RsWNr1q3b/O+MjPBjnzNnTjw971O0aPqzc2mpV68GT58+4ckTf3Lk0KZUKWE/\nX98ApQKw2SExMZFbt27i5/eSKlWqYWVV6buM+yu+b7IAt0GDRly54saGDVuxsamBjU0lChYsyNKl\n8lZjiYkJvHr1iuTkZKKiokQBXRBcQJYvF3xMVbn/YmJisLAQPE7fvv2o8MC0evVyHBwWKOwnlUr/\ns3+Tfga/S8CmLjpQo0aNUuLi4oiOjmbJkgXs27eHtWs3UblyVYV+q1dvoFu3nunaPKVHQkKCGKwB\nohio4BxQDBeXEwr7uLtf4/37cLy8nsqZb8twcFhOjRqViYqS1/Bq1qwFLVu2YdWqZQQE+DNixGDi\n4uLo1asvZ89eJjIyglatmgCpP4xpRUkPHTqm0mfy9/cTX2d3RqtHj97cvu3J0aOHCQ4OVtond+7c\njB07NsMf2Tp16omf5fPnT+L2hIQETp06oXTmToaz837GjBnOlSs3cXI6Is6EJicnU7lyFcLCwsiZ\nM3uFEsrIkSMHderUY86cGUyZMp6JE6eKy8X/FWSBmozKlavi5HQETU1NUcrj/fv3xMfHyxWZHDiw\nj+vXrwGC5EaFChXR0dFBS0uL0qXLkDevvli1nBlp51/evw9X+I4ULFgwW59Nze+BeoYtC6ifQNLn\nvz5z9LP4na5TbGws3bt35M6dW3h43MPUtAirVi1FWzsHZcqUY+DA3gr7hIZGiUKqly5dx9vbi3bt\nOqGnl3W7m8+fP9O4cR06derCkCEj6N27m5xd1IcPn0hOTv3z9Pr1KznNqX37DtKkSXOFcXfv3sGs\nWVPJkSMHa9dupk2bdmJbcnIyDRrUEiUjHj70FXXXLl48x6NHPvz1V12qV7fl2LEjDBnSnyJFisol\nfWeEnV09Hj4U8sZUmRHJiFevAtHX11ean5Sd+yggwJ+goNd8+PCedu06ZhhQlixZhOjoaExMCvPw\nYda077JLSkoKhQoJki96ennx83vzzVIpP+v7psyjc8WKtfTp0x+AZ898qVPHBoD16zeLWmoBAf4s\nXKjomqCpqUm/fgOJj49n//6/OXfusujgkBlnzpz6d+Z4oELb6NHDOXhwv9y2+/d9qFy5wm/xN+l3\n5XeZYVMXHahR84dibl6ImzdvkJSUhK2tNYsW2bNq1XKWLVusNFgD5FTvDx1yYsKEMRQvXlhpXxnr\n1q1GItFnxIjBctv19PS4desBkyZNR18/H9269QQET8Xu3bvTtm1LuYq2okWLMXv2fPF9+fIVlB6v\nX7+BvHnznoCAd3LBGggyGEOHplaCTpgwRqzGs7NrxooVS2jZ0g6pVCrmC6V1NciMfPnkr8+3YGZm\nrnIyeUZIpVJq1apKgwa1qFu3Pu3bd8o0EFq5ch0SiTHHjp355uOriqxS0cbGls+fP3Hw4IGfduxv\nRUtLCz29vOLr16/DxGANoHjxEhQpUhQDAwO5il1lWnP58uVHKpWyc+c29u//mxo1aimd2U6PFi1a\nKQ3WAE6dSp0p1tXV5fTpi5ibW6g8tppfizpgU6PmD+TmzRsZKtgPHTqS5cvXAEIA9LU6+sOHvtja\n1gKgSZOMk89XrVoGCMnlGdG9ey/8/YMpVMgEJycnbty4zpo1Kylduhh2dnVJTExk9OhxhIVFExYW\nTZEiRTP9nMro2bMP8+cvBsDN7QLHjh0R2yZMmELjxk0wNs7HrVs3/+1zUcEiKD3SXou7d+9k6/y+\nNykpKfj7+6Gvr7rFVNu2HXj06IVohP7mTRASiT7Ozvsz2TP7REZGAODl9QBdXV0CAwN+2LG+N69e\nBYrLzsnJyejq6sq158iRg+PHz2JkZMz27VvF7UePugCCc4aMRYuWEhoaxb17Pty4cZfjx89+F1Hm\n4OA34jK/jo4OZ89eVvA7VfN7ow7Y1Kj5wwgNDaFdO6HC8O+/nRkxYgwAmzevF/tMmzaLvn0HEBYW\nzbJlqwkMfEdgYAi3b3sREhKJiUlhWrduS1hYNPv2HcrweGfPunHp0nV27874xz45OZkOHVpz/vw5\n6tUTpEE2blxLZGQkDx96yVXMfSvduvUU83m8vR+K2ydOnErbth0AQQBV9kOZVmIhI9L2SzvD8ivR\n0tIiJCQSb+9n2R5DFnTL/v8jcHER7qOEhATi4uKQSn/e8tzevbtp0KAWq1cvF2dcs4KhYepM6MmT\nF5T2KVq0GKNHjyMoKIibNwVrNNmDQGhoCJqamlhaVuTGDXdAcNIoXbrMd3PQePw41SPX1fU0lpbK\nZ6jV/L6oAzY1av4gIiI+cuHCOUDQgWrWrAXTp8+W61OkSBGlnpi5c+fGwqI4kZERmc7QpaVcufIK\n6urKePfuLV5e92nUqDH169dn0KCh9OzZl4YN7f493xwqHU8V8uc3EAOqfft2y1n7dO3ag7CwaExN\ni4qfsVgxM5XGlc1YaGhoyOnOZYXbt299s3+nVCrF3/8lNWpU/i6zYqVKCdpiP2rW69OnaBYtmie3\nLW0gvWXLBtq0+T4yIl8TFRXJlCnjefz4EQ4OC2jbVjEvMjPy5tUnJCSSgIB32NrWSLefbAZ2x45t\nbNmSanlmaFiAN2/e8/ixD87O+36I0PHNm6n5oRYWqlVxq/m9UAdsatT8AURHRyGR6FOmjDkTJwoz\narIZLx0dHUJDU6sqIyOjMhRJnTFjCu3atWDw4L5ERUUyduyIbAcFUqmU7t07sXy5A926Cabfnz5F\nk5KSgoGBAfHxcdy9ews9PT0KFSqUyWhkKdDp23fgv8f7pFRo195+FgCPH/upXAHbrl1HvLye8vz5\nK5XPIy116tjQunUTypeX/0HNilfknDkzMDbOx9y5s/D392PMmOHZOpe0DB8+mtevw7L9uTJj4cJ5\ngOD9amQkQVNTk4ULBTkLf38/5syZIS5Rf2+ePn0qN6sm097LKpqamuTJk3FiuoGBIUFBghfu3bu3\nxe0fP35AW1tbDPhz5VJ8YPoWEhIS2LRpnfj+a3FoNf8N1AGbGjV/AJ07txVf16r1FxcvXpOrsPT0\n9BCFNg8ePCpaNcXHx/PixXNAyIGxtbXm6NHDAJw4cYwVK5bi5LSPadMmZuu8NDQ0cHO7wPLlDkRH\nC0Gju/t1FixYwOrVK3BxEYzNr171zFTzy83tAsbG+bh9+5ZKxzYxKczGjY6AkNNXtWoF9uzZiVQq\nJTj4jdhPJrKrKoULm4oG91lFluf38eMH0eXg6NHDFC1qRI0alTl79lSmjgMy7a1Zs+Zy+PBx/P2V\nS4NkFV1dXZWEW7NDbGws2travHv3lvDwMIYPH0Xx4iXx9vbK9r2lKl8HWWvX/hhfzaSkJDZuXEdC\ngmLw3bSp8F08ffoioaFR393D9b+UD6gmfdQBmxo1fwAPHtwHBFmOpUtXsWbNSh48+AeAs2dPM2BA\nbzGfpkqVaiQnJ7N+/RqKFjWidu1qzJ49jY8fPxAQ4C837sCBQ5gxYw6PHr3I9rnJHAH69x8kbitR\nogSzZ9uzatV6nJyOqLQkaWwsaE61bt1E5WN37twNR8dd4vvJk8dRr14N9u3bDUDDho1VHksVkpOT\ncXben+6S19Gjpxg7diILFjiIQXO1ajbkyZMHf38/+vbtQeHCGVeOzpkzn7CwaNHeSVa9mJbQ0BB2\n7HAUc6myQnR0FHXq2DJ8+KBvXrqVUb9+QzEQzZNHj8mTZzBmzHAaN67L1auXAbh+/XZGQ2QbU1NT\n8XWdOvWU5nZJJPpIJPo8fvwo28fp378n9vazsLW1FgM0HR0dypYtx6pVG+jTpzsSiT7GxvmoWLG0\nnBPBt5JWRLp48ZLfbVw1Pxe1cK4aNX8QGhoaNGvWkJiYz5w+fYL167cwerQgyjl16ky0tLTQ0tLi\nxAlXFiyYI+63desm5s5diI/PC0aPHkrTps3p1asf2traeHi4kz9/fvr1G5TeYdMlISGB/fv/ZuXK\ndfTu3Y8OHTpjZlYMI6N8WdaFqlChIps3b2fHDkdRxDQwMERpPl5a2rbtgJGREcePu7J79w58fZ+K\ncguXL1/K8mfKCDe3C+ISpTIlejMzc2bOnCu3rVgxM/r06c/mzRvEbYaGerx69Yq8ebO+tHXmzCn6\n9eshvl+xYi1t27ZXeVbw1atXPHv2lGfPnjJ7tj2FC5tmvlMmtGnTntDQUJKSkmjYsLFCwKKq32x2\nMDQsgJubO6GhIdjY1FBI8ndy2ie+vn//XraT9WXiuRMnTqVv34HcuHGdLl3a4ev7lF69ulCgQKqo\nbWhoCCNGDFbqcpEd0uYDOjsfyaCnmt8Z9QybGjV/ADIbor//3iWncJ9WB2rs2ImMGzcJqVTKmjWC\nfU7OnDnFdm1tbYyNjTl06BgDBw5FR0eHjx8/cu3aFaZMmZCt84qMFHTWJk4cwz//3MXMzDxD/9HM\naNmyDffupcppLFw4N4PeAjdv3qB9+1bY2tbk8mUPBTHe7FQNpkfduqmG5rJZD09PD8zNC4k6m08K\n2QAAIABJREFUZMqYPHm6grRK2rw2b28vateuxrNnGYvcXrx4jhEj5APrSZPGUqpUMXx8HqazlzwV\nK1px8OBRGjRo+F2CNRDureHDRzF69DgOHjzAp0/RlChRkk6dOgMoBLHfm4oVK9G4cVOl0iehoSGA\nMHPZqVNXpFKpKEGiKj4+D6lWzYZjx84wcOBQtLW1MTKSiO0PHvyjkEN5/vxZbGwqsXPntmx8Innu\n378nvjYzM//m8dT8GtQBmxo1fwAXLwrWN5MmjaVVq7b4+gawbdtuZsyYI+qayQIlDQ0NUbBWlkfV\np88ApeMaGRkxYMBgVqxYm63zkkgkVKsmKMCHhoYCQiCS3aU2XV1drly5SYkSpahUqTKDBg3NdJ+q\nVatTuLApw4cPwti4EPv2HWTz5u1iu4PDAuLi4rJ1PsrOz98/mICAd6LDwsqVy/jy5QufP39Odz89\nvbwEBr7D3f0O3t7P+PjxM6VKlRLbb9/25MWL56xbtyrD42/cuC5dPbywsFCVP8e8ebO4cuUyEok+\nw4YpF2nNiIyC4IiIjwD4+b3k8mXBEL1UqTJZPoYqxMfH4+v7lBcvnqertTdu3CRevw5j1Khx6Orq\nUqhQfkqXNmPHjq1K+8fGxircv40a1WHZssWUKFGSpKQk4uLiaNBA0DFs0KARAM+ePWXFirWMHDlW\n3C8wMOC75PA9e5b6YObufu2bx1Pza1AHbGrU/AEYGhbgyJGTAHTq1BpDwwK0bdsBbW1tAgL8FX5g\nbty4y9q1m6hatRq9e/enfv2GmJubsHbtCoWxlyxZ+U2aY2fOXMLf/y0tWrTiwoWzmJgUQFNTU2Wx\n2q+xtKyAp+c/XLx4TaV8HV1dXTF/6suXGPr27UFsbKwYUK1bt4qqVS3FnL9vRU8vr1yi+6pV69i+\nfQ9GRkY4Oe3LUL6iTJmySj1U69SpD0DJkqUU2mRIpVKGDBlOu3Yd2bZtj1xb374DadRI9dy/pUtX\nibmHR48eRiLRp1+/nirte+7cGSwsCtO5c1uleVppRWQ/fhSCt+xYn2VGcnIybdo0pW5dW2rXrka9\nejXw81Oei6mrq8v79++pXLm8WJyTNq/y0CEnJBJ9+vfviZmZMdbW5ZBI9MUcQQMDA6ysrKlYsTSF\nCxty4oSruO+VK0JQ2r59J9q16yCXUyfjwIG/qVixtNxMWVYoXTo14O3Uqc13yz1U83NRe4lmAbXX\nWvr8Th6ZvzO/+jrJcrvatm3P+vVbmT17Gnv27ARg0KChLF68XOl+VatWICjoNeXLV+Dq1R8jrwDQ\nunVTbt/2BKBz566sXbv5m5ZI0yMhIYEdOxx58uQR69dv4f3798TGfiFfvnyULKncQUFbOwcnTpwV\nZwR/BLJ/n4CAdxlKRKS9j7y8HrJ+/Srmz1+CsbGx0v4xMTFYWJj8u682bm43aNCglhgUT5o0jSlT\nZmT5fENC3tGsWUPevg1m3LhJzJgxJ8P+X758wdKyJHnz6hESEsKePU6cPXuKXr36YWMjSFqsXbuS\nRYsEf00NDQ2kUimHDh2jfv2GWT6/jL5vMoP7SZOmYmRkxMqVy6lZszbbtu1WOpaZmbG4bB0SEikG\nbqBo/J4WX98ADA0L0LDhXzx65C3XtmPHPgYO7CW+X7ZsNX37DsDV1YXIyEgiIyM4c+akXA6aiUlh\nli5dRbNmLVS+DgEB/tjaymshBgd/IEeOHL/8b9J/AbWXqBo1an46Xl7C0sjx464UKyYRBVEBOcuc\nr5Hl1+TLp5/tp3xVSE5O/jdH6iBHj7qwbNnibx6zShVLJBJ9pFIpBw7sZfDgfhQpUpC5c2eIfpUF\nCxakUaO/qFixjILmmoODEMQmJSXSokVjXF1dvmteW1q8vZ/h7Hw0Uz2vtIwcOQRX1yOsWyfkHbq7\nXxOrGitXLs+5c2fkqgQ3bNhK9+4d5WYwVRUG/ppChUw4evQkFy5czTRYCw5+w7BhA4mJ+UyvXsLs\n3KFDTjg776dVKzuxcrZq1eoAdOzYiW3bdgBkOWcsM5KTk1m5cil169ajZctW2NjYUqJECVFaRhlp\ncwwtLUvy9m0wMTExSKVSxoyRz+FcsmQl9es3xMDAQFzqVuZY0KBBA4YNS80pbd68FVKpFHv72Uyb\nNhEPD3e5YA0Egem+fbuL6QqqYGFRnE2b5HPhTE0LZGoXp+b3Qh2wqVHzB1G4sCmenv+k0eqaRlBQ\nOI6Ou9iyZUe6+718+YaqVavh6XmTZs2yPtOhKikpyRgZFaRz585oa2uzZs2KbC3ffP78SczDe/Mm\nCICpUycybtxIjh8/KvZ7+VJoS0xMJDIyktjYL5w7d5nQ0Cj8/N4QFhbNwIFDOXbsjBjIDR06ABMT\nA5o2rc+SJQvE8b8HhQqZZFlKRKasb2YmmHh37NhabAsOfoOj4ybMzS0IDY0iLCyaDh06M27cJLGP\ngYEB5ctbZvucixcvibV1lUz79ejRiXPnTtO8eUs6duyElpYWp0+fENstLUuybNliMV9w3LjxYoJ8\nZhp8WcXf349XrwJp3VrQJwwJCeHOnTtiPpkyJk+eDoC+fj4+fHiPtXU5LCxMMDbOJ+dHmz+/AVWq\nVOXQoWNs3boLT08P4uPjOX78LDlz6siNWaNGFbZsSa3+NTY2xs3tAu/evQXgzh1FTUEzMwvmzl0g\nVxCkCp06daVNm/Zy28zNCzFwYL8sjaPm16EO2NSo+cMoUaIUQUHhlC8vyBNs3bqRdu060qFDZ7FP\nSkoK9erVQCLRJzj4Dd27d+Cff4SZtfbtO/2wcxs2bBSXL19m4sSJTJ8+E1A+M5EZ5cuXpFSpYsTG\nxoo5UV9XQTZu3AR9/Xz4+j7F1FQICDp16oqlZUU0NDTImzd1matWrb94+PAZU6fOFLc9eHCfVauW\nU6WK5Q/12MyMZctWExoaxZAhw3F3v6YgYzJ48DBSUlLkrmO/fgNZv34LW7fu5NmzVypZhyUmJnLm\nzCmVcwulUikfPnwgNDSElJQUTEwKU7lyFbZscaRwYVO2bdshl6+WnJzMihVL6NGjE/r6+ShXrrxY\nxVy5cuYBYVaQVdMWLy44Shw4sI98+fTp3Vt5LuaLF89ZvtwBEKzLvmbo0JHi68jICHr16kpsbCxd\nurRj9OhhLFmyED09PTw87srtJyv0mDlzHq9fC7OgVatWF4PD+Ph4qle3lftuHjlyQvT/zSppc+dk\nuLq6fDe/UjU/FnXApkbNH4iWlhYrVwqVnU+fKpqqJycni9sXLZovN4OyfPnqH3Ze7dp1ZOnSFaxe\nvZp58+ZQs2ZtufZHj3yQSPRZty7jc2jdui1WVtbo6uri7n6b27e95AojqlatxvLlawCIjk5NfD96\n9HC6P14SiYSJE6cSGhrFpUvXsbdfLCb5L1myMEtFCTdv3kAi0efMmVMq76OMmJgYHj3yEc956ND+\ncstc3t7P6du3B5UqlVXY186uKVevXub5c9VM4atXt6Jfvx5yJuIZ0bZtc8qVs6BixdI0blyX1q3b\n8eDBfQIC/Hn+/BnDhw8jNDSEqlWr8/ChL66up8V9O3XqjI+PNwsXLqBmzdpywXNWSC+4TEoSNNFC\nQ0NYt241J08eZ9y4SekuRaddAj99+gSHDh1j1KhxODm5ULlyVS5fvsi7dxHMnDkPgHXrNqGjkzqb\n5uFxHUAM+iBVXqNAgYKMGjUWXV1dQJhNHDYsNQA8ffqi3ExbdpevAYYMSd+mbPLkCRlKy6j59agD\nNjVq/lBevQoEoEgRxST7HDlyiP6iLi7ObNu2BQA/v2ClWlXfk8GDh3H27FlmzpzDqlWp/ocpKSk0\nbCgEcEuWLMhwjI0bHbl06ToaGhrkz2+AhUVxunfvxfDhoxk6dCSnTl3E1LQIIARvaY+xcmXGs2Ua\nGhpYWVkzfPgorl27Jc7+jBs3UhRHzQxZ1aNshie7jBkzgoYNa/P58ycAFi9eTv78qQK4VlZCjmJo\naIjCuY0dOxInp32cO3cm0+M8f/6Mt28FiytVBXaDgl6TI0dOhgwZRkCAH+fPn0FfX58tWzbz9OlT\n4uPjcHY+gqvraQoVMkFPT49cuXJjamrKkSOHadCgHtra2jg67lbpeF+TkpJCuXIlWLp0qUJb3br1\nyZMnDyNGDMXV9Shz5swX3QeUUbZsOUJDo/D3f8v581dxcTnIhg1rqFGjNg8e/IOb20WCgl6LBvZv\n375FU1OTNm3aATB/vhCoHTrkJI6pqalJWFg0T5/6K+RN5s2rz5o1G3Fzc0cqlVKiRGq187dIzAwZ\nMiLdth07HGnQoHa67Wp+PeqATY2aPxRZwYG7+1Wl7RoaGkycOFVumyy3RlXOnDlF8+aNOHBgb5b2\na9asGRMnTuHChfMMGdJPPJ9Wrdry1191cXXNPMhQhr39IhYscJD7gYyPj6dVq7bkzJkTTU0tVqxw\nYN++PRmMkkqOHDlEzbanT5+wZ0/6eYBpsbKyJiws+ptzs1xdhdypxERBlqRdu448f/4aJycXhb5f\nvsTIvZdJPdSrVz/T45QqVZoePXrTpUt3lWZ4Pnz4wKdPn2jXrj1//VUHU1NTgoPfMGPGHJydD7Bt\nm1Dgoqenj6/vExo1qoOdXT1iY78QHByMpqYWVatW58iRE+lWvmaGm9sFwsPDOX78uEKboWEBrl+/\nzfDho/H2fsaLF8+xta2crmUYCPefnp7ev+LRQuDVunVT1q3bzJo1GzE2LoSdXVMgtXBi69Zd3Lvn\nQ40agubaoUPH0NYWLMcCAvx5//49IDhqSCT6ODntIyTkHQAdOnTm5MnjvH79imvXrojncebMyWxd\nDxBm53x80reRCwz0T7dNza8ny7Iely5dYtSoUWK5tYaGBk2aNGHt2rW8efOG2bNn4+XlhampKdOn\nT6d27dSI/ebNmzg4OBAUFIS1tTULFiygaNHUp/vdu3ezc+dOYmJiaNasGXPmzBGnlRMSEpg3bx4X\nL15EV1eXAQMG0L9/6hLHtx5bFdRlz+mjLg1Xjd/lOgUGBmBjUwkQVOTHjlUuzpmUlMTKlUsxMpJQ\nvboNFStWytJxlixZKOZ3hYWp5o0ou0avX4dgZiZIUbx5814uyVr2Zyu95cuPHz9QtqwF3bv3YuzY\nCRnqsU2ZMp7du3ewbt1mzp07zZkzp7hw4apKifQyhg8fxJEjh8iRIyd+fm/E5a2MuHTpPD16dMba\nujIXLmRNzFR2jdJ+/q+v74kTrpw9exorq0o0b94Kc3OLLB3jW6hTx5Znz55So0Ytbt0SZGAOHnSl\nQYNGrFmzgsWL5wOCu8bhw87o6+szevQYLC0rsnv3Tjw9b/LsmS+LFi1l8OD0l/EywsFhAatXL6d7\n9+5s3Lgt3e/b6dMn6d9f0JB7+TJIpRnkVq3suHPnNvr6+rx8+SbL55aRDAiApWVFcelZTy+vOIMK\nQvDs4ZH9Su379+8pFA45Ojpy6NBh/Pz8uX37QbbH/n/lPyvr8fLlSxo2bIiHhwceHh7cuHGDRYsW\nATBixAgkEglHjhyhTZs2jBo1ipAQwdbj3bt3jBw5ko4dO3LkyBEMDAwYOTJ1nf78+fNs2rSJBQsW\nsGfPHh4+fMjy5amaUEuXLuXJkyfs3buXuXPnsmHDBi5cuCC2jxw5MtvHVqPmT+LTp2gxWKtTpx6j\nR49Pt6+2tjZTp85kwIDBWQ7WQFCJb9y4CTY2NbK8ryzPaPz4SQoVccbG+TA2Tv+HVWbS7eS0DweH\nhRkep0eP3oCgOL9r135CQiKzFKwBzJo1D4DExASVZ0BkszBVqlTLpGf6yJZUlQWIbdq0Z/Pm7Qwf\nPjpbwZqf3wumTBlHTExM5p2/omzZsv+O8ZKePftw4MBhsQIzrZ6alpYWb98Gs3ChA3Xr1qdAgQJM\nnDiZv//eT+7ceQgPD6dixdL4+/tl+Rw6duwCQNeuXUlKSsLV1YVbtzwV+h09ekh8rWoO16lTF8mb\nV5/o6GgFp4c3b4Jo374l5uYmSqU3/P1fZjp+2jzBz58/yd3/MpmQ5OTkDGVI0kPZtRwyZAj6+vqk\npPwYuRo134csB2x+fn6UKlUKQ0NDChQoQIECBdDT08PT05M3b94wf/58ihcvzpAhQ7C2tsbFRZia\nP3ToEBUrVqRfv36UKFECBwcHgoODuXtXqJrZu3cvffv2pV69elSoUAF7e3tcXFyIj48nNjYWFxcX\nZs2aRdmyZWncuDGDBg1i3z7BlNfT05OgoKBsH1uNmj+FiIiPlCgh5G7NmmXPkSMn5QRAvze6uroc\nOODCqVMXMu/8FQYGhoSGRjF9ury+V0aLAs+e+SKR6JMnTx5OnDhP3br16d49YwV+a+sqhIVFY2xc\nCA0NjWxdD1PTIgwYMBgQ5ENUWTo2MDAkLCyaJUtWZvl4MqZOnUHBggUJDAzJ9hjpMXr0CHbv3snE\niVmrSFy8eD43b3oAgl/q6tUbaNy4KcWKSZBI9ElMTOTsWTcuXbqOrq4u+fLlp0yZMmL/oKAg1q1b\nQ3JyEm3bdiApKVHlvLm0lC5dho8fP9O2bVuWLl3E0KEDaNOmKR8+yC97hoeHU7duPXLmzMmWLRtV\nHn/BAiEv7ejRw3LbDx1ywsPDnS9fYoiMjMTH5yHR0VHExMQgkeizf798esDXGm7KMDMzp2BBIwBG\njhzD06dPMDExoGTJosyePS1LriDpaa99+PCBXLlyK21T83uQrYDNwkLxac3b2xtLS0u5ypiqVavi\n5eUltlevXl1s09XVpXz58jx48ICUlBR8fHyoVi31SdPa2prExER8fX3x9fUlOTkZa2trubG9vb2/\n+dhq1Py/IpVKReuft2+DqV27GmXKmANCwvOYMenPrP0uKFvy1NDQYMOGrbi4nFBok7kkdO/ekZw5\nc+DicoKGDe3k+ixaZI9Eos+sWVMV9k9LUlISLVvaMXr0MJXOVaZtFhUVSaVKZTl82DlbGnK7d+9A\nItGX0/b6mtmzp6OhocHQoQN58sT/hwTd+/Y5s2rVepYuVT2gPHnyOGvWrMDKykrcJpVKiYuLE5Pl\nBwzoTfnyFbCysiZXrlx8+RLDjRvurFq1nIYN69GiRRP279/LvHkLsbSswNOnARQo8G25fk+fpnpp\nxsbKByza2lpERETQo0cvdu3aLs6KycSH06NHj94cPOjKhQtX5bZLJELOXZ8+A4iPj6NRozqULFlU\ndJpYv341ly97iJIm6fm/Fi9eAh+fZ9y585AXL57z/n0469Ztpl+/QUybNpGSJUvRoUNHHB034+Cw\nQOV77cmTR0q3Bwe/kSvAUfP7keVveUBAAO7u7jRt2hQ7OztWrlxJYmIi4eHhSCQSub4FChQQDZ3D\nwsIU2gsWLEhoaCjR0dHEx8fLtWtpaZE/f35CQkIIDw8nf/78chY1BQoUID4+noiIiG86tho1/29I\npVL27NmJsXE+SpQogkSij7V1OV68eA7AnDkLePcuVTlelvC8cOG8X3K+2aFLl+7UrVtfYXvTpi1o\n2bI1ERERSgV+/fxesHatEIAcPaqYmJ+WwMAA7t69LbohZEahQib4+DwXl45HjhxCu3YtOHfuTJZm\nQCwsigOpP/xfc/PmDTZuXK/yeNnF0LAAvXr1VWl2SyqVMmHCaAYO7E2NGjUZMWI0vXv3JWfOnEil\nUtFTs3v3noSHh9GypR0JCQk0amRHhQpWDB8+hF27dorjzZ49H23tHCpLjmSGnl5e8XWPHp1F71iA\n6dPn8PLlC3bv3smXLzF8+vRJ2RBKP3NoaAh58+bl7NnTovRHz5598PUNYMWKNXI6cwCVKlnTqVNX\nKlSoSL9+qUup1avbcumSu1zfXr36Ymxsgrm5BZaWFTEwMKBjxy7kzJkTX98nFCtWjPnzFzJjxizW\nrl1J9epWBARkXjSgo6O4fG5qasrr16+xsPi2qmU1P5YsmfS9ffuWuLg4dHR0xCKDRYsWERcXR2xs\nrEKeSc6cOcWnlbi4uHTbZU9e6bWnpKQobQOhGOFbjp0VtLTURbXpIbs26muUMT/qOiUlJVGvXi2l\nmmoyhgwZjoPDMoVZq2PHhMDl/v27aGv/+n+/b7lGpqYm7N3rxJYtG6lWzUbh83h63hBfly5dJsPP\nW7ZsGSZMmESuXLlVvi6mpoW5csWdzZs3Mnv2dDw9PfD09KBVqzZs375bJXX6Ro0a8fHjZ6VtUqmU\ndu0ED0krKyvc3W+RnPxri3x8fZ8ybdokrl+/RqVK1owfPxFX1yPs2/c3LVu2Rltbk3nzZlK6dBns\n7Jqgo6PD7t07mTRpLM7O+ylcuDB//32APn0EQdoBAwYzbtx4ChQQgqy3b9+rVMShDNk9NHDgIA4d\ncqJ8+fI8efIEFxdn0R6rZs2a7Nt3kN69u/HlyxeMjAqgqalJixYtadTITum/vVQqxd39OmPGpBZE\ntG7dlt2796GhoYlEIixfamvr0rx5Sy5fvkR8fDwPH3rx8KEXK1euoVu37ixduojKlaty7twlhe/l\nuHGpS6XXr99EKpWKM6njxk3EwWEhFSqUQyKRYGZmxqtXr3j82JtSpdIvsAGIivqosC04OPjf89X6\nLf4G/G78Nr9r0iwSFRUl9/78+fNSKysr6bx586QTJkyQaztw4IC0TZs2UqlUKm3ZsqXU2dlZrn3c\nuHHShQsXSj98+CAtU6aM1N/fX669Vq1a0osXL0rPnj0rrV27tlzby5cvpWXLlpVGRUVJ7e3ts31s\nNWr+H+jWrZsUEP+zsLCQBgQESKVSqXT27NlSQGpnZ6d03w8fPkivXr0qTUpK+oln/GtwdnaWAtJc\nuXJJX79+LZVKpdKQkBBpSkqKymNMnDhROnPmzEz7+fj4SK2srMR/k6ZNm0oTExOzfe4yRo8eLQWk\njo6O3zzW98Dc3FwKSA0NDaWtWrWSNmvWTO5ebN26tRSQ2tvbS52dnaXNmjWTGhsbS11dXcU+mzZt\nEl8fPnxYKpVKpfXr15f27dv3u53niBEjxGM8fvw42+OcOHFC7vOl/c/d3V2h/9d9Wrdune79lpiY\nKC1Xrpx0zpw50itXrkg/f/6c7nmEhYVJDx8+LB02bJhUR0dHamZmJo2Jifmm82/fvr3qF0LNTydL\nM2wA+vrya/olSpQgPj6eggUL4ucnX33y/v17jIyEJw1jY2PCw8MV2suVK4eBgQE6Ojq8f/9ezI9L\nTk4mMjISIyMjUlJSiIyMJCUlRXzCeP9eeOrS19fH2NiYly9fZuvYWSE6OvaXP83+rmhpaaKvn0t9\njTLhR1ynqKhInJ2dAahY0YqTJ8+J39OIiBjGjJnE1q2OPHr0mODgcAXrIg0NHaysqhEdnX1Bzu/J\nj7hGsbGxWFmV5cOHD4wZM55161azadNWJk+eRqFCwrLVqlVr5Zap0mPlSmFJtUOHruLypTJMTS04\ne9aN3r27c/nyJc6fP8/IkWMYM2a8qIkmc0pwdNzMtGmTCQx8q/A39mvs7R0YOHAYVlblfovvW40a\ntQgMDOTjx4+cOnVK4f46eVKomi1SxIxHj55w7do1hgwZTt26jVm/fjMXL56nRo06WFgUJyDAn0aN\nmhMREcPRo4ILRERE1qtUZaS9lxYuXMakSYLlU/78Blka19BQEDo+f/4ybdq0UdrHwMAAicQ003FL\nlixDZGT6puseHncZNWo48+cL0ichIR+Vzsxqa+fGzKwkkyfbMmHCVLS1tYmPlxIfn/Hxa9dugK5u\nLuLiFCti+/Yd+E3X+/8V2X30q8nSPN+NGzewtbUlPj5e3PbkyRMMDAyoVq0ajx8/lltm/Oeff8RC\ngUqVKnH//n2xLTY2lidPnlC5cmU0NDSoWLEi//yTau3y4MEDcuTIQdmyZSlXrhza2tpiEQHAvXv3\nqFChgjj2kydPsnzstEUMqpCcnEJSkvo/Zf/JfjTU1+jnXqf37z9gYSFUfZYuXYZt23aTO7eeXB+p\nVIOwsFAMDQugqan9y6/Bz75G4eHvadSonlgdqKkpiOaGhYVx44aH+P2eMGGsSuPJqFrVisTEZE6c\nOIGhoR579/6t0DdHDh22bt0pLuk5Om6mQoXS2NhUxsamMoaGeoSGhlOuXAVy586DVKoh7puQkISh\noR4bNqxTGLdYMTM0NDS+yzV69eo1Hh43s73/unVbaNq0hXhdAgNDxLy38eMni9unTJnIwoXzKVzY\nlCFDRpKcLKVr155s3/43RYqYcf36bXx9A37ovaSnlw89vXxZHkdG06YNMTAwVPr7EBERwdu3IQr7\n1qr1l1y/1atXEBMTm+HxGjVKLZS5cOGC0j579/6NjU1lSpQohoaGFjExsRga6mFoqEd8fGIG10Sq\n1GGjZ8/e1KpV97te//+X/371Q5GMLAVslStXJleuXMycOZOAgACuXbvG8uXLGTx4MNWrV8fExIRp\n06bx8uVLHB0d8fHxoVMnwSi6Y8eO3L9/n23btvHy5UumT59O0aJFxerNHj16sGPHDi5duoS3tzf2\n9vZ06dIFHR0ddHV1adu2LXPnzsXHx4dLly6xa9cu+vbtC4CNjU2Wj12sWDFsbGy+57VUo+ancvPm\nDUqXFlTndXV1uX79droCsWFh0Vy54iFXuPNf58yZU5lW8oHgBuDr+4QKFSoCgpH7q1eh7Ny5jcmT\nx2b5uH5+qUKpKSkp9Osn5F7du3dHaf98+fKTM2fOdPPXevXqzJUrbgQGvpPzskxJSUFPT0/uAflH\nMGLEYFq3bsLdu7eVtkulUiZOHMvVq5flPDXfvXvL4MH9mDZtoqgbJvP8XLlyLfPnL2bs2IlUqyb8\nnc2VKzcuLie4etVTXP1Ii46Ozjc7P2QXd/drSCT6dOjQSmn7zZupkwlnz7px5swl8b2+vj6VKgkP\n/48eeSvsm5ycrOAOkVlV7969u8XXtraKGoa3b99i7NhUm6mDBw9w6lRq1XRwcMZivsOHj1LYNmLE\n6Az3UfPrybLTgZ+fH4sXL8bLy4s8efLQrVs3RowQbpygoCBmzJiBt7c3xYoVY+bMmdRoGlWoAAAg\nAElEQVSokXqzubu7s2jRIkJDQ6lSpQrz58/H1NRUbN+2bRu7d+8mMTGRpk2bMnv2bPGPXFxcHPb2\n9pw/f568efMyaNAgevfuLe77rcdWhV+tTv8787so+P/ufK/r9OpVINWrC9IJCxY4MGTIiHRV//9r\nqHqNtm3bzMyZgjRHRi4Knp4etG3bHA0NDdq27cC6dZvR0dGhUaM6VKhQAWfnA5mOkRF2dvV4/z6c\n+/cfZ/pv8PnzJ/7+ezcLFsyRC34A3N3vUKaMokm7Mr7n9+3MmVP069eDoKBwOWkkGXfu3KZVK2HG\np2BBI6ZNm8WkSWPp2rUHBw8eoEiRIrx5IwQIu3btp2XL1nL7Jycnc/PmDWrV+kvBM/NHk951iomJ\nwclpL3XrNqB06TKi2wXI3wePHz9i8uRx5M+fn6lTZxIeHkbjxoL91NatG1mwYK7cyk6+fPlYsmQl\njRrZUbq0GbVr18HDQ6j+1NfXp0WL1jx65M3o0eNp375Tuued9iEkMDBEYZm5c+e2cnZVRYsWY+vW\nnbRo0VjcduvWg3S9ahMSEihSpKDcttmz5zF6dOaacH8iv4vTQZYDtj8ZdTCSPuqATTW+x3X68OED\n5coJuZ6rV2+gZ88+3/MUfzlZuUaPHz/C3NxCbmZKGUFBr9HT08PAwJDPnz+zc+c2evXqg6amJrVr\nV2fVqnVyy3o/muXLHVi+3EFu27VrtyhXrjwguFHcvXtbQUNOxs/8vsXFxVGlSnnR9zIt5uYW3Lnz\nDy1aNCU4OBgvr6cqPziMHj2MwMAATp48n2G/lJQUNDQ0VBpX+q9dogxtbU10dTW5f9+HO3fu0KiR\nHSYmheUCorCwaD5//syzZ0+pWLGSOEnQpk1TOWeE0NAoubGPHDmEiYkpBw78zaFDTujq6oqKB6dO\nXaBVqybky5cfIyMjXr5U9O/093+Lnp6e0s8xY8Zktm/fio/PC6Veql/PKhsZSbh3z4dt2zaL8jxn\nzlwSZzeVMWBAL7lZOQ0NDYKDP/xfzcJ/L36XgO03qVVVo0aNqsisj9q0af9/F6xlFUvLCpkGayDM\nQMhyjx48+IeFC+eyaNF8Xr9+RXh4GBcvZt2J4WsuXTrP7du3VOo7atQ4ufdGRhKxgOHTp2hKlChC\nt24dcXBY8M3nlRH//HM3Uz3KqKgoRo+eoFSjq0qVquzatYN79+7SvXsvlYO1iIiPHDx4QBQ6To+N\nG9dSsmRR2rRpRkSEohyFjHv37iCR6GNsnE9OQDYlJYXcuXPz11+2TJgwmnPnzgDQrFlLABwddwGg\np6dH1arVxWDt8+fPCjZWaT+bo+Mmhg8fRLt2zdmwYSt//+0sJx/VqlUTxo2bSPHixeWCNdm9Wrx4\niQzv28WLl//rvqEYrMk05Pr06cekSVMAcHNzJ1euXIwZM4E1azYyderMDIM1QME/WCqVkpiYmOE+\nan4t6hm2LKCePUof9QybanzrdUpMTMTUVMjzuX3bS/yRd3bez5gxw9m//xB2ds2+6zn/bH70vZSS\nkkKDBrXYt+8QRYsWw8vrPmXKlCNXruxXgQUFvaZqVaEIStWl1bJlzfn4MTUIuXLlJpaWFXjy5DH1\n69cEoEOHTmzZslNh3+9xjZKSkihc2DDTc+7Tpzvnzp2mX7+B4rIhCFqWiYmJFChQkPfvw7PkSJCS\nksL27Vto0KAxpUqVVtonLCwMG5tKmJqa8uLFc2bMmCO6SaTl48cPlC1rkWa/1M8SFfWRUqXMAZgw\nYQrjx09WuuyrjFatmuDldZ+UFClJSYnijNiFC2fp1asrIIhQjxol5EHevHlD1MiToa2dA5knLggz\nbwEB/tjZNc1Wvl5UVCSlShUDYO/eA8TGxjJkyECuX79N2bJZUz2QSqUULlyA5GQhADQwMOTZs8As\nn9OfgHqGTY0aNVlm/PjUZOG0ht4yAc8dOxx/+jn9LqSkpNClS3sWLJirdPlOhqamJteu3aJoUeGH\nz9q6yjcFayC4EtSoUYuBA4eovI+7u7yXsY/PQwBxWRQEe6MfRVq/09BQwYs0OTmZkJB3rF+/Rmyv\nXVuochw+fDS+vgFiBWNCQgLt2nWgfPkKXLlyM0v2UZqamgwZMiLdYA3A1fUwcXGxDBggSK28fv2K\nOXNmIJHoy93nX7shXL58UXxdoEBBHj16xLt3H5g2bZbKwRoI0h8JCQlYW1cWt507d0YM1mxsaojB\nGgjFLJcuXef27VQ1g6SkRFxdT/PyZRAnT17AxqYGXbv2yHZxRVqvUyurSuKSanx81iV5NDQ0qFOn\nnvg+oxlMNb8H6oBNjZr/CJGRERw65ARAQMA7uSUaWXXepk3bfsm5/Q40bdqAq1fdWL9+NR4e10lJ\nSaFjxza8ehX4w4+to6PDiRPncHBYobQ9PDycz5/l3QuMjIyoVau2+P7161eA8EN66dJ19u07SM2a\ntZk9e3qG1bBJSUmYm5uwZcsGlc83OjpKnBEEOHHCFQBbW2usrMqwYMEcKlUSCiCGDh1JWFg0FhbF\nuXr1Mm5uqQHR1q27cHE5jqVlBb43np5CVfP06UJhyfv378XPOH36JDZuXAcg5o1NmjSVXLlycfr0\nSblxvvaZVpUmTYSZ6nv37qCvr8+OHVvp06cbAOPHT2LPHieFfaysrLGwKM66dZtFW6rNmzegr59P\nabXn1/j6PiU2VlEfTUb+/IJciqvrCd69e8fcubMxMDCkRIlSWf58IOg2ykgvn07N74M6YFOj5j9A\nXFycKOExbdoshfyXly+DCAuL/mWyCD8DDw93evXqkq7J9cOHDwDh+rRp055Hj7xxd79K9epWXL9+\nNVtG7N+D48ddsbQsQYMGtXBzk8+VO3LkFIMGCebyK1Ys4csXQVDVysqaJk2a8+lTNFu3CrMqBgYG\nSsc/duwIX77EMGfODN68CVLpnD59+oSenp5YfVivnuC72r//YLFP2hlcGSYmhcXX+fML5xMdHUW9\nejVU8rHMCuXKWcpVYJ47dxobG1vevg0DYPNmwU9VFozduuWJrW1Nzp49TUzMt4u/yo5tYGBA9eq2\nLFpkL76fPn2OwoxiQkKC+O/XrVtPdu7cC0BiomoWiOvWraZuXVuxoMjb24s1a1bI3bc9e/bB0LAA\na9euxsFhIS9ePGfv3oMZBlv+/i+RSPQ5e/a0QptM6gZQeKBQ8/uhDtjUqPkPUKyYBIBGjezkxEhl\n/L9IemTE2LEjuHDhHP3798yw3/jxk9HQ0KBUqTIYGhqSI0cOOnVqw4oVS37SmcqzYoVQDfrqVSDd\nu8tLOWhpabF48TLxfUjIW7n2kJAQVq5cQ5cu3YmIiODOHUWttLQG43Xq2GYamIaFhXHp0gVevAgi\nMDCEsLBoSpcuA8DIkWMIDAxh2LBR7Nt3SGHfmjVrExYWzZs377l//xF//72LypUtefr0CRs2rAEE\nyYxFi+z5+FEQKn769AnHjh3J8JyUMXXqTPbvP0TVqtUxMDAgV65c7Nq1R6xsnDVrHgBVqwpannfv\n3sbL6wHv34dz65aH0jETEhLYuXMbEok+vXt3zfD4gwYN5dmzQLy9n8vNKrq4nFTStw9FihTE3LwQ\ngYEBgGDoHhDwDmfnoyp93oAAwSmoRo1aSKVS5s+fy+LF89m+fYvYR08vL5MmTeXq1SvcvOlBhw6d\nCQz0V3DySYuXl/Ags3DhXIU2S8uKcu9btWqi0rmq+TWoAzY1an5zJk4cA4CpaRGcnI6kG5xJpVIq\nViyNRKJPgwa1xYq4/xemTJkBCLphb94EsXPnNtatW8W1a1coXbqY2E8WsOTKlQtf30AOHjxG9eq2\ndOnSXewTFPQaiUQ/S8uIMo4fP0q5csX/x95ZBkSV/2/7GkRMwMBBsRAVEMVCxe7uxUJFBbvFwLW7\naxVR7MDuQAFRQVxXRUUMBAQBE2QMBFGQmufF2TkwzlC77q6//zPXGye+58yZM0fmM5+4byIiVKUa\n1HHgwDFatmwNwKJFy9SuqVpVEDw+f/6s+Fh4eBjNmzdk+nRHWrZsA8Aff1xX2dbSsraYKfvyJZGM\njJyHEMaNG46Tk6MYWHxP0aJFWbJkhRjEqUNHR4fixXUpUqQIX74kcuzYGZYsWcmsWdOpUqUcmzat\n59Sp47x8+YJWrRozerQD7u7ncjwugC5d2iGV6omlxw4dOuPpeZVOnbpSsGBBvn1L4cmTJ4CQxQLY\nu3cnBQoUYOzYCXz6FAdAixatAbh6VTBV79fvFwAuXDjHrFnCdOSlS56sWpX5eTx8GEjbts2VAt57\n9+5QsWKmyK+JSVWlMiII11tWodoNGzID8GLFiuXpx1RoaAiHDrkB4ONzhdDQEAwMhAze9yXekSPH\n4ut7E1/fPzh9+gQTJ46hZs2qTJo0li1bnMUpUgW9etmwb99hzpxR/XvwfQ9hQMC9XI9Vw3+HJmDT\noOEnxt//tqh6fufOwxzXZmRkiM3jT548ZuhQ2/9TZY7+/QfSrFkLANq3b8msWdNZs2Yl/fr14tOn\nT+K671XkmzdvwcWLl6lc2Vh8rHBhYcggu6AlJ3R1dUlPTxPLX7lhbFyFkyeFrNCiRfNUepT8/W8T\nESF4Ia9YsUQsXb1/n5k16dixEzJZgtrsaokSJbl69Xd27z5AcHBkruK08fHCFOXDhw9yXJcX+vWz\n5e3bT7Rp047g4CD27MnsoaxWzZT9+zMnXA8d2p/jvsLDwwgIEAYxvLw8OHbssPjc8uWrKVfOiL59\nfyEkJBiAOnXMePgwkJiYGHR0dChVKtMySnEOHBwEcXVFuTxrmbd8+QpK9zt0aEVQ0CNxrbBe2Sv2\n9etXKoGnRCLB09OHunXrA8LEdl54+zZGdLH4vsXB2LgKLi47cHZ2FUurWSlSpDDNm2fKdhQrVowb\nN66zePE8vL29lNYWKFCArl27I5VKVfbzfTCZnp72n7UOaMgdTcCmQcNPilwup0cPoUTh63uTggUL\n5rj++0DFxKTq/3QjcUZGhtLk2rdv3zA3FyYoFeW2OnXq0qdP/xxV49VRpkwZZLIEVq1an+/jatu2\nA2FhL7G0rJPvbUF1Gq9wYeWGeBeXTYBQGnNx2c6dOw/FfrHsqFq1Oj169MLAwCDHdQCbNm2ldu26\n1K6tfPy5ZeZy4/Bh5cDi2bNw+vTpj5VVQ6ysGrBw4TKV9dbWdZFK9bh82UsMWhTX8c6druJaXV09\nNm3aSmRkBN7egtBuTEwMHTq0YutWZ5KSkpDJYuneXTBm9/PzQS6Xs3//IXbt2kVY2HNAmAju2LEL\nixevIDAwWMzSZaV4cV3xdvXqpixevEK8n5KSwogRQzh69BAXLpzn06c4cZrW2dmVbt164uXlk+u5\nunDhPLVrm1GrljAsULFiJW7fvs/o0eMICAji2LFDGBmVwtjYRG1farFiukr3v3z5QufOXShatCi/\n/34t19fPyvjxyjZVf/c60PDPoQnYNGj4SVGIsFpZNRSn8FxdXShbtoRasVOJRKLkWejjo76P53+B\n4OBgatasjpmZMU2bWpGamsqRIwfZvXu70rq7d/05deo4d+7kTbD2R5GUlETt2mYsWjQvzxmJq1dv\nMGnSVKWeM4A6depx9eoN8f6TJ49Fxf7+/Qeqbf5Xx/nzZ7CyqoWHx4UcJRpq1qzFlSvXqVYtc7Kw\nR4+OlC1bgtWrl+fptdSxdOkqbG0H062bEDQ1bNgIC4uaeHpexdPTR0mu5OHDQBwdJ4iDCkuXLsTI\nqDyXLvmKWZ/Pnz8r7b9+/QbMmjWPIkUybZqyDmKYmFSjQwfBNsrWtg+Ghvo8fRrCiBEjxDWvXr3E\n29sTPz/loMrb21O8rZg6VTBy5BiV9zp58jiGD7fD1LQydeqYk5GRgbl5DfbuPUj9+g2Qy+U8evSA\nqKhIletjyZIFuLkJmcesJu8mJtVYtmw1FStWYs+eXQCMGjVM5bUBDA0NkckSCAmJ4tGjpzRr1oLd\nu3fy9etXevWyUbtNdlSurHx9/dv2YRryjiZg06DhJ2X4cOHX/4YNwjRcRkYGCxfOISMjg/btW6jd\n5vff79ChQyfc3b1V/Ad/VuLjP4kBxqRJY6lfvxY1a9akZMmSDBtmz7Nn4fj5+WBrO5g2bdopbVuy\nZEm0tLTEHiIjI1V/4C9fvpCQEJ/t6yskM76f4MyJyMgI3r6NYetWZ1FeQoFcLmft2pWiBIsCS8va\nFC5cmIkTR1OjhglXrlxSeq5VK6FP7evXL2zdujnPx5L1dV+9eom9/SC6dm1PYuJntetSUlI4duyw\nUiZFocb/fRN61n03b96QZs0aZPv6xYsXx9nZlb17DyKTJYglQnVs2LBW6X6ZMkK5rl49KzGwzTqM\noWDatJkEBYWJ91u0aE316qZs27aLd+9kFC1aVOwXBFi4cL5YdgTEHzo+Ppnm7QDLly8RbysmJ5OT\nk7G3H4y7+1nOnlXu/zI2rsLYsZmZqaylRTe3vRga6tO+fUusresq9ckBuLhs5OHDB+zde4h16zap\nOTsgl2f8ebxv1T6voHTp0pQtW44zZy5y/rwX58550rhx0xy3yUpc3Ed+/TXT8UCdm4WGnwdNwKZB\nw09IUlKSKP6qyExoaWkxa9Y8QPAJVEeRIkU4dOhEnjSfFKxatRSpVI9r13Iv5fxojh8/QvXqlTAz\nMyYjI4MrV7x5/vw5AFOmTBUzJsWL67F//278/W9z5MgpnJ1dMTU1Y9MmV6UvS3WZxypVylGtWkWk\nUj0lmQgFdnZCFuPbt7zJL4CQpfL3f8CAAYOwsVEux6alpbF27UqxtJmVtWtXcurUCT58eM/ChXOV\nnjty5BTdu/cCYPHiebi6uuSrn6hXLxtu3BB6wCIinmFiUl5tP9XOnduYNGms2C8GcOXK7xw4cEws\nKaojLOwp4eFhSo99/pzAu3fv8t33ZG5eg/btO3H8+FlmzpxDenq62KxvYVGT+fMX066d+olFXV09\nZLIEZLIELCxq8ubNGyIjI1i1ajmjRjkwePAQtm7dwfDho0hNTeHFixfito0aWXP48HECA4OV9nnx\nojedOnVh+vSZODlNJSMjg8ePH+Lh4c7Zs6cxNTUX19rbj+DOnYcsWbKCly9lPHkSoXQNzpgxRWnf\n0dFvlO4HBARx//4TunXrobZlwdf3Kk+fhgKI4s55oXHjpjRp0iz3hX/y5EkQZmbGSo85Oc3K8/Ya\n/n001lT5QGO7lD0aa6q8kdfzdPLkMcaPH0WPHr3ZvdstX6+xe/cOGjVqrDLNlh1ubnvFL5m82ir9\nCFJSUqhQIbPnysFhJO3bd2bGjMnExEQjkUiQy+V07tyNPXsOiDZKLVu24eTJzMbv7wVls76HjIwM\nypYtId7Pj30SCFpYJUqUVCo154W0tDQKFCiQpbyXgLZ2QbHU+fx5FK1aNebo0dO0bdteadsdO7Yy\nb57wxVmjhgV+fqrl3uyuo/T0dKpUKSeW9bJaJylISIjn7l3/bAOi7Hj58gV+fr4MGWLP9evXWLJk\nPo8eCYMwlSsbc/68l5JOW3YohjUUGeCvX79ibCyUifN7/S1ePJ/jx4+wcuUaVqxYSmRkBBs2OPPo\n0QOOHz+GVColNDSEr1/TSEvLYP78WWzfvpXp03/l11/nquyvfPnSpKamYm3dBH//W0gkEiIi3lC8\neHHS09N58+a12mshKSmJypUNKVq0qPj+7O1H0rlzV5o3b4mOjg6LFs0jKipCRXD30aMHZGRkUKFC\nJTIyMqhVS5gYnjbNiXHjJvHtW4ragYG/Q2BgAJ06tVF5PDz8Jfr6JdRs8f83P4s1lSZgyweaYCR7\nNAFb3sjreWrUqA7Pn0cRGBhM+fIV8vUaigDG1XUXffr0z9M2u3ZtIzIyghUr1ua++Ady+/YtgoOD\nuHDhHDduXEdPT4+EhAT27NlDeHgkenr6DB06nIIFC5KUlMSnT3GULVtOKaMxfvwoTp48RtGiRTlx\n4hwNG1oDQhnPz8+XBw8C8fK6wNq1G/M9KCCV6lGunBEPH4b+rffZokUj4uPjuXfvMTo6OkREhNOk\niRUrV65lxAjVHqkLF84zfLgdoOwZqyCn6yg9PZ2bN29QpEgR6tdvwLZtLixaNA8DgzKsX+9Mly7d\n/tZ7SUpKombNqlSqVJmePXuTmJiIi8smhgyx58CBfbx580FpQObWrT8oWrQopUsbMGfOTLy8LiKR\nSLCzG8aqVespWLAgjx8/QldXN8/9egpOnDjKxIljWLVqnThwERBwj61bN9O//0BWrVpDlSoViIv7\nwty5s0WxXYAhQxxIT09j48YtyOVyRo0ahpeXh0oWNi9B5Pc/er59+8bWrc4UKlSY8eMnAdC0aQOe\nPQtT2p/iOlCHTJbAkCEDuHTJk7dvP6kMFf1VPnz4gJVVTTGwLFmyJNOmTcPOzoFixdS7afz/zs8S\nsGn/1wegQYMGZVJTU0W5ifwGawDVqlXn2bNwlixZkOeATaG2nxXhS8yewoUL4+KyXc1Wf5/GjZvQ\nuHETfvmlD0uXLqRDh04EBwcRFxfHypXL2LPnoPjlX6RIESXPz9TUVC5cOEfHjp04efIYX79+5cqV\nS2LAtnz5YpydN4jr/4rESeXKxvnyB82O8uUr8PRpKN7eXnTv3pOqVatz/fpt+vXrzcePH1m7diWR\nkW/ECcXu3XtSq5YlQUGPiYqKUAnYcqJAgQJKHpGKc/D+/TuGDRuYryxWUlISAQF3qVfPimPHDpOY\n+Jnhw0eTmpqGtrY2HTt24tOnT7i4bOLz589UrFiJ8uWFDObp0xd48+Y1kyZlXlu6urp/9phJOHTo\nAIaGZZk5c06u2eCEhHj8/Hxp1qyFODXp7e3J8uWLKVy4CDduXKd3bxsSExNxc9tLp05dcHHZjrZ2\nZpCjp6ccjBw4sBeAjRu38PHjR1EDT0dHRwza1PWDffjwgdatm9C5c1ecnObw5Usic+YIciuGhmVV\nMr4mJlXp3LkrN2+qapzp66uf/lX8v790SRiG+D5Yk8vlfPjwIU9TwVlJS0vDxqa7GKxVq2aKp6c3\n1apV1vzY/h9A08OmQcNPRrt2zf/SdnK5nKCgxzRqJPSv1a+ffYP4xo3r6NevV469R7Gxbzl//oxK\n8/yP5syZk5iZGXPw4H46dOjMr7/OwcLCgqpVq4nBlzrWrFnBmDHDGT060yA9q+K7iYlyA3WvXl3y\nfWx37z5Sai4HofdnzZoV2Wyhnr17D7Fhw2a6deshPlakSFFiY9/i738LgFOnTihto6cnlKbi47Mf\nmMgLzs6ulCpVipUr13Hlyu953i45OZnKlQ2xselO/fo1mTVrOsuWLcLX9ypjxozn0aOHJCTEU7Jk\nSYyMjChTpgyTJ08Tt+/bt6dSsAZQr14DGjVqTKNG1lStWg1XV2Xh4sTEz6Lwa0ZGBsePH+Hr168c\nP36EESOGYm5eRewJ27RpA9HRb7C0rI2XlwebN29k7txZgERtpnjatJnExsaL/W/R0R+JjRXOrZaW\nBB0dHQCl8uPevao9gH369CA29i379++hdesmWFvXFQO8adNmKq2tUcMixx9dBgYG+PreFO+XKFGC\nLl26kZKSwvjxo+jTpz9Nm6r+PZgzxwkLC5N86wiuWLGYkBBBeFhLS4t9+w5RunT+gj4N/x2agE2D\nhp8MhdTB/ftP8rXd1q2badu2GYcPH2DGjFk59r75+fni5+ebo9F02bLlOH78LJGRb7Jd8yPYu3eX\neHv+/NkAdO7cmbt3H2BoaJjtdlmn/xS8eyfj9u2b7NzpyqBBQ4iIeK30fHBw/s6pOqZOncC6datI\nTU3N8zZFihTBzm4Yb968RirVw8dHEPKVyRI4efI8AQFBDBlir7TNzZtCcFWhQsW/dbwdO3YhNPQ5\nw4YNp337Fnm2H9LW1haDjWPHMu2VvnxJ5OPHD1SpYoK+fgni4uKIiYnB0rIOzZq1wMKiFjVq1CQj\nI4PmzVuK2xUtWpRKlSohl8uRy+WEhz/ly5fMrOeiRfMwMSmPkVEp4uI+8uTJYyZOHMOcOU48fvxI\n9AxVTE46O28FhOtgyBAH9PVLYG8/guvXbys16z969AgHh6EYGupjaKhPgwaW4vuTSCTEx3/CzMxY\nDLpevxauGRubfmr7HWvUqCHefv/+HR07Cj8ErK2bsGDBbKW1ISHBbNmyCalUL9vgqmbNWly9+jsb\nN27By8sXT8+LvHsn4+TJY7i67lKZUAW4fFmYMP5eIiYnzpw5qTQI06VL9xzdLDT8fGhKoho0/GS0\nbNmay5cvERcXl68va4UtDwgyCTn1vJw4cU6UQciJ1q3b5vn1/yrVq5tx+7aQZZg+fWYuqzNxcpqF\nj89ltLW1xUAsISGBnj07A4Izgr5+CQ4dOs7gwf0pVqw4Rka5N8Xnxvnzl3j7NiZXIWN1vHjxHBB6\n99q2zdTg+n4aMGvm886d2/j4XFHbJJ8fFDIeaWl5CzS1tbXFacqsE8Tnz58BJGIw8+rVS+RyOeXK\nGVGtWnWuXbvJ+/fvadrUirCwp+J2/frZYmBQhuPHj/Dq1UsAtm3bLT7fuXNXtm4VJFLev3+PVCoE\nI5aWdfDxucK3b9+UmuKrVq2ea3lXLpfTt29fEhIS6NKlG56eF3n58gUvXjwXnS8KFFD9GhwzZgJL\nl65Uu8/ly9eQnPyNixcF9wpvb08cHEYq/fDIiqfnBUDRl/pW7f85S8s6WFrWYcGCOeJjTk6zVdYp\nuHfvcbbPfU98/CcuXnRn2rRJ4mOFChXK9zCThv8eTYZNg4afiG/fvv2lX88gmJ47Oc1m0KAhDB3q\nkONabW3tPE30/RsUKVIYgLZt22NgUCaX1Zno6uoRFvZUKWu2YMESNm/eRunSpdHVFXqJOnTojEyW\nQFRUdK6OAQDu7udo165FtuXiwoUL57s5XkGzZi148SKWOXMW5Lgua2l38eL5rF+/Gh+fyzlskTs6\nOjq8ffsJLy/ffG+r0LkzNTXj2jUfrKwacO/eXRYtWkBGRgY6OoWUdOUMDAw4eIemK1sAACAASURB\nVPA4NWpYiCW3lJQU3rx5/adW3Ajc3b2xseknbpO1X+zTpzhRHHbEiNEcOnSc2Nj4fE8wrly5jPDw\ncGbPnsvMmbNYvXodhQoVok+fHrx+/QoQ9OOyareBqhSHArlcjo6OEOxknb718LggmtE7OjphaFgW\nO7thFCtWTCmLrSi7pqWl4eKyScWPVuFtW6WKiUrAdvGiO9u3b8nX+3d23kD16pVwdJwgBuwSiYSQ\nkMgfNsSg4d9D84lp0PCTIJfLlYymy5TJe/ACQsnJyWk2Gzdu+Z9SK1fYSn0vipsXnJzmKN338bnC\ngAGDCAmJQktLi9evX4nCuNu3b1FbRl29ejmjR9uL92/e/J3Hjx+qXfsjyDo4kR1Zs6UKFP6nfwct\nLS3kcjne3p707987z/pp/frZ0rhxU8LCnlKwoA6jRo1l/Xpnfv/dj6lTJ5OS8o3OnZWnTxs1subE\niXM8efKMMmXK8OxZOLdu/YGZWQ1WrVqPtXVj5HI5e/bs5PXrV0pBkrrexbyYqGclPT0dF5dN2Nra\nUq9effGY9uxx49u3b7Rq1Vj0Or1+/RoA9+8H8csvfcTJzqzI5XIMDfUxMTGibNkSODrOEPvhHj8O\nY/LkaXTr1oONG9fi7X2NDRs2c/WqUNZu0KAR0dEf0dYWsnkBAfdYsmS+yoTonDkLcXXdib+/qs/r\n7t3bmT9/NlOmjM/T+/f09GDZskXi/Vq1anP8+FliY+OV7Lc0/O+gCdg0aPiXef/+vUr/0+vXrzA0\n1AeEL9Xo6I/5/oL6UURGRnDq1HHxyzwwMECpnPKjsbJqiEyWwJgxE/K97Z49ytOra9euFMurR48e\non79muJz8+fPplIlVT2r9etXc/bsafH9rlixlsjINxQuXDjfx/OjyOpCMG7cJB48CFHbfJ4dX758\nUfv4+/fv2bVrO3Z2A7h2zYczZ07maX86OjocPXqaefMW4+FxBT09/T/12PwBcHHZTrNm6t03tLS0\nKFmyFHfv+vPixXPmzVskZneuXvVm1qzp1K9fU2yGzw65XM6VK5dYu3ZlnvwutbS0SE5O5tmzZ0pS\nHUZGRuzatQdz8xo4OTny+PFD8bl+/XrTpElzrKwaquzPw+OC0v2CBXW4ds2HChUM8PW9CkB4uJAx\nmz59MoCoU3fv3h2OHz+Ct7cnycnJWFk1YPHiFRw8eEzc3549O1mxYjHjxo3i82eh1Bsf/0nsaXVz\nE4Z/jhw5mOvE8717d7C3HyjeFxwkfv9XWhw0/HNoAjYNGv5FateuQZkyZTA0zCzNJSUlERaWqfMV\nFRUj/hL/L+jVqwvjxo1k+fLFfPv2jU6d2nDw4P4c/SnzS2LiZ9HA/e+gaPhWULq0AVeueHPmzEml\n7AKAoWE5Vq/OlPl4+zaGnTtd8fd/gIfHVTFA9vS8yPjxo/72sX3PixfPuXPHn7t3/Rk8uF+OQwvv\n3snE29269VRruZUdLi6bqFKlnJK8hFwuZ+TIoVhYmDB3rtAnaGBQhrFjR4gOA7lRtGhRJk1yFH1t\n5XI5R44c4Jdf+tK37wBAkFpR97k6OIyiYMGCjBs3kU6dhM8sLS2NadMmi2tmzZrB+fNe3L37iK9f\nv3LgwD6lwHPlyiUMGtSPtWtXYmfXX8Xz83sUQdS9e/fo0KGt0nEVL67LsmUr0NHRYfHi+cyePR8Q\nHCJmzpxKWFioih5bvXr1adCgESBYUxUpUoThw4eQkpIiDkT8/rs/R46cZOfO/cyZM5Nx40aK2zs6\nTsDObgCVKknR1tZm3LiJdOzYhZSUFKRSPebN+1Vcq6Mj7G/GDEesrevy6VMcxYvrcvDgMYYPH5Xj\nj4mgoMd0795RKXu6Y8fe/+wHoIYfhyZg06DhX0TRNwOZHpaVKxtia9sHgN9+c8lTyeyf5ONHITDb\ns2cH797J6NChE337DshT/1deuHjRHROT8pibV+GPP/IuM6GOrNIldevWY+LEKTg7b2DMmOFKxuAA\nhoZS7O0zjcBr1zZj7txf2bt3F127tsPaui5yuRx7+0F4ealO5v1dunZtT/fuHejWrQOXL1/iwoVz\n2a61sxsg3tbWzl95W6HN1aJFK+RyOU+fhpKcnCzqjClQ9Fx973WpjuTkZDp1ao2hoT779gmDAgcO\n7GPLFmfOnDnJ7t07MDc3ZsqU8dSqVV1l+xEjRvP69XsWL86UQzl16jhv38ZQt249AFq1akvjxk1Z\nv3419evXZPr0yWKp8vJlLzZuXE+fPn1p374DV6548/LlC5XXASGLOG7cSGxtbZT6NFetWkF8/CdA\nKJeuXbualJQUrl+/xps3rxk0aAjjxk1i8+bttGhhTadOrZX2a2RUnosXL/PkSQR37giZM4VMi8IS\nSiKR0K5dR8aOHc6uXdtIT08HcraYSkgQsmkKORMQ/EYBsbdOUcLs2LELq1atV/lBd/v2LYyMSiGV\n6tG2bTOlDKS//wNxwELD/zaagE2Dhv+A73tIypYtx6xZ8xg0aMh/dESZ6OjoYGpqRmJiIhcunOPQ\noRNs3brzh/1Cv3zZS7ydV/us7Bg2bDgXLlwmJiYOb28/xo+fzO7dB+jcuSuHDp1gzJgJ6OjosHnz\nNhUNMsW5VjR6R0VFYmioz5Ejp3IdCvgr9Or1i9L9Dh06q1335csXkpK+ivf19fXVrpPL5bRv3wqp\nVI8ZM6bg6XkRAFvbwRw8eIzff/fD0FCfFi0aYW1dl7NnPcTMTLt2HZR6Bh89Enqm7t+/x4cPqhmy\nEyeOEhh4H0AcuFBk2ho1asy5c6f4+PEjqamp2eqOKazGFCjkOR48CKRbt560by/IjRw9ekjMhllb\nNyYhIZ7BgwUB6FOnTnLlijB8UbVqNZXzcfLkMZo1s+Ly5UvMmjWXI0eOsWWL0Kh/9+4d+vfvw+fP\nnwkOfiLup2LFiri57eXbt284Oc1mzZrlyOVynjwJEgO8rO8ha2/p5s3bkMkSkEgk+PhcpkuXdkil\neqLgreJ8Dxw4mNKlS3PmjAdBQc+U9mlgYMCRIyfFgQSAs2dPATBkiD0yWUK2GXe5XM6KFUvo2bOT\nUsCnIDAwOF+iyxp+bjQBmwYN/wGJiZ+RyRJ48SIWmSyBR4+eMm3azJ+ibDF+/CRRjiFrRvBHsWHD\nZiIjo5HJEtDTUx+M5IeqVavh5OTIzZs3kEgk9OjRCze3o1SqVJmlS1cSFRXDgAGDlLaJiAjn8OED\nlCtnxMCBg5X0who0aIij44y/fVzfs2LFWmSyBHx8/iA6+qNa42/I1OFT8OzZM7Xrrl69yv37AYBg\njTRsWGbPUosWrZW8QqdNm0lUVCRmZuZ/bnuZO3cyPUqnTp3I5ctedO7clho1quDurpz9693bRryt\n2Iei9/DUKXc+fRICm8uXvdQ2zIOQBTI01Gf+fMEn1c5uGI0aNaZu3XrIZLEMHWrLp09xjB0r9DL2\n7PkLpUqVJiIi8/1PnjwVZ2dXQkOjVAZrNmxYy/jxo6hbtz779h2gU6fOSCQSGjZsyNixQqO+UL7U\nwc/vGgCtWrVm//5DlCxZCm1tbUxMjETJEYC+fXuJgwkgOC4cPXqIAwf2Kb32t2/fsLXtQ0DAXfGx\n2Nh4unXrCcDw4aMJCYmiWbPman1BK1euolSCffo0NE9ZXnv7wWzcuE7tc3fuPPxLTikafl40AZsG\nDf8Sgn6VQIMGQlNzYmIiU6dOVJFsSEpK4unTULGkosDPz5c1a1bw8eMHHj4M5OHDQCIiwlXW/R2c\nnGZz5MhJJk50ZPz4yUrPZWRk4O5+jqCgvOtAfY+Wlla2wcpfoXfvLhw8uJ+RI4eqfd7b20vlS+36\ndT8KFCjA3LkLaN68JXfu+DNkiD23bwcyZ87MPDW1/1Vq1bLMsUdRIXOiILsv5KtXryrd37JlR5Z9\nFOHw4RPs2rUfgJkzpzJ16kS6d+8lrjl79jTbtu2mZMlSmJnVEAVjGzWyZsqUccTERItrdXX1GDJE\nkIqpU8dcqZ/x+nVfMcD/+vUrbdo0VTl/crmcdesEXbPt27dy7ZoPpUqV5sIFb7y9/Zg/fzGTJ0+j\nRImSLFy4jNOnL+Ds7ApA7dp1qVevPsbGVdDSKoCb21615VCF0HCrVq1VyuF9+vSld28b9u07gI5O\nIaytG2Nj05dff52NRCKhffsOXLzoLq5v0kSQGHn4MBAnJ0cxG1itWkUmTx4nDhUoOHcuU1h4x469\nvH37CYlEgqvrLmSyBNFOKzuynk9FILp7d+52cAqNt6y0aNGSqKiYvyw9o+HnRWP+ng80XmvZozF/\nz52sTeDXrt1g+/ZtHDlyUHxs4cJlopxA/fo1Re2rrOKg3/sUfk/VqtW4dev+jzxsJW7fvkXPnp0A\nCAgIyrE356+S32upZUtrQkND6Nath1orISOjUqSlpbF27UaGDRvOy5cvRLX70aPHUqaMlOXLl3D8\n+Fn69+8NCAFPUlJSvnw3fxQZGRlUqmRISoogK+Ll5aNiM6atrUVMzAtq1hSmYCUSCTExcSraWp8/\nJ1C1qpBluXbtFmXKSKlZM9Oy6+LFy9SrZ0WBAgX444/fsbHpzpw581m3bjU2Nn1xdt4mrpXL5VSr\nVpHPnxMwNTXj+nV/tLS0CA5+Qps2TcVyp0QiYc2a3xg2LNMyLDw8jGbNMt+DVCpl+vRZODhkNuXn\nxsOHgXTs2Bq5XE6nTl05cOAoIPR+jRw5DA+PzIBrx47dVK9uipaWhC9fEihUqChaWtn3Ar5//54B\nA/qSkZFO6dKlOXXqAoULF+bJkyDKlCkjasTt37+HS5c8mTbNSRxAkMvl+PvfomfPzirX4OPHj5g3\n71eOHz8rDiZkR0hIMK9evcDY2IR9+3bRvHkrunbtnuM2ir8Hbm6HWbhwHlFRkbx+/V6pvJobmr/d\nufOzmL9rMmwaNPwH1K5dV/xCnjdvAXZ2Q1i8eB5Xrlz6s6wnBA4TJkwmMjJC/PXfs6fQB1WjhgU2\nNv0YONCOfv1sxebqiIhn+Phc+ceO29zcXLydW9bg32Lu3EUA9O8/CKlUT8Uz1NNTyEQp+okUwRrA\njh3bOHBAyEJ9/PhBLPflZNn1T6OlpUWnTkJ/W79+ttl6wlpYWHDkyAnatGlLjRo1SU5OJiMjg7t3\n/cU1urp6vH79nrdvP3Hu3Glq1qxKvXqZ+7tw4Zxo0dS4cVOaNWvBihVLSUlJoUSJUkqvJ5FICA6O\noGFDa8LCnnLjxvU/j6OmKO9hbFyFokWLER2tbAlWrVp12rZtDwjXsEwmY/Xq5fk6LydPHkMul6Ov\nry+6TEREhGNmZoyHh7tSY/3o0SOYPXsmjo6T6dq1K/369WHatCliH973GBgYUKlSJRwcRhISEoWF\nRU1MTKrSo0cvJUHfKlVMuHLlElu3bhYfs7auK7prXLzoTu3aZoSEBCOXy2nXrjm3bv3BlSveub6/\nGjUs6NixC6amZqxYsTbXYA2gTp16tG/fkbS0VF6+fMGiRcvzFaxp+N9CE7Bp0PAvoCipAKxbt47p\n06dgYiJM04WEhODquoPateuwY4dQBlqyZAUyWQILFy6jW7cOODgM5vTpE0ya5Iiuri4hIcF4eFzA\nz8+Xu3f9adu2Aw4Oo6hQoSIzZ07l06e4f0T4tUSJkqJYaLFiwi/O5ORk3r17x759u2jSpD7PnoXn\nspe/T2pqKv7+t0lPT2fIEGGiUtHrdOvWH0pr69Sph0yWIPaxrV69Qakkqyiv3b8fgIVFTc6cucjA\ngXbZ9mL9GyiC7g4dOuW4rlOnLlSvbkZwcBAFChRgzhwnunXrwOHDB8Q1Ojo6aGlp4eoqBBlJSZlS\nGQrjeRDcL06cOMewYcOZNGkqjo7TVQLXQoUKcebMRU6ePK+kC2dmZs6iRct5/jyKr1+/0LVrD6Xt\nJBIJhw6dYOPGLSxevJzbtwPx9w/M1zlRSF3Ex8eLE7ajRjmImmUK2y9zcwvmzVuEv/9tAgPvs2TJ\nEgYMsCU5OZn58+fw8uVLlX1nZGTw8eOHXI3QFaXsCxfOsXjxfNzdzyqVmUGQi2nVqjF79+5i1qx5\nODiMEEusP5q0tFS0tbW5cuUy6enp9OnT/x95HQ0/B5qSaD7QpIyzR5NWz5mnT0Np0aIRffr04/Tp\nk8jlcnFqTk9Pj5cvo5k7dzbu7udVfAL/+ON3Vq1axtGjpylWrBivXr3kwYP7BAU9IiYmhlu3/uDF\ni+fo6emJEgEgfLnOmbOQceMm/uXjvnvXn27dOtC7dx+2bNmh1j+zfv2aKsMJilLijBlTcHPby8mT\n51Xsf7Iju2spMfEzPXt2YdasuURHRzNz5lQAfv11LufPn8HH5w+uXvWmcOEitGzZGh+fK9y4cV1J\nqBXAxqa7mB3KSteuPfDwcCcs7MXfljDJyMggISH+L+0nLu4jZmbGANl6TxYoIOHgwT00b96GihWN\nxcd9fa8yYMAvuLt7Y23dWGmbKVPGc+TIQSpWrCQe2/r1zuLnkp6ertTI36NHJ/z9bxESEqXWBP17\nEhM/4+rqQpcu3alVyzLX9Xnly5cv9OnTHQeHUYSHh3H3rr8YlHft2l0UtDUxqYqj4wy6d+9J8eK6\nHDrkxh9//M7Ro4dISEjm7VsZjRvX48uXRHr3tqFXr95iST88PIzRo0dw9qxHrgLFz59HsX37Vnbv\n3q7kORoQcJf9+/dw9KhQEt2z5yBdunSjXDnhGshveT0s7CnNmwu9rrdv38fEpJrKmubNG2JqakZ4\neBhmZjXEnsX8oPnbnTuakqgGDf8fERoqmGj7+fmKvT6KfxMSEnBz28eDB4Fqm6mbNWuBu/slMaNV\nsWIlevTozezZC3B2duXWrfvs33+ENm3ai2XK0qUNqFq1GgsXzhH13rLTrcqJW7cE14CzZ0+xaJF6\n83FFCaZHj96ULFmK4sV1sxiNC1IDffv2/NuN/MePHyUo6BF2dgPo2zczkzB9+q/4+d1m8eL52NkN\nEGUM7Oz64+KykWPHDivtRzGF2bRpc5ydXXn+/C0yWQK7du0nMDBYDLLc3c8hleqxefPGfB/rsmWL\nMDWtrCILkRdu3hSCkVq1LNUGawCzZ89kypQpWFllyqKkpKTw4IFQ8qtRowZfv37FxKQ8u3cLwwhT\npzoBgln706cvuHv3kRisCebtJZV6JBVizgrJD3VERISLn3Hx4ro4Oc3ONlj79u0b9vaD2bx5Y76u\nhbFjR3D/fgCTJo1l3rxFnDlzEUvLOgBs2bKTJ0+e4eq6i7NnPbC1HSxK5gwePJQdO3aLQaiBgQE3\nbwbg6DgDX9+rjB8/hrdv3/55ToQfHCYmVdUcgTLGxlWwshLKyocPH2Dv3l1IpXp06dIOLS0tZLIE\nZsyYxfDhdoSHh4nb5Tc3klU+ZPLk8Vy+7KWyj/T0dORyOa9evcTCoub3u9DwfwxNwKZBw7+AotTS\nr5+t2ucnT57IH3/c+Ev71tbWpkuXbtSqZcnHjx8wNDTkw4f3vHv3TkkmRPFlnh8KF85slM5OZuD2\n7UBksgR273bj6dPnREa+ETNay5atEtdlNQf/K/TqZUP37r1wcdlO8eK6REZGiwKmT5+Ginpq69ev\nBiAs7CX16zfA0NCQunVrYG5uzNatm/Hzu01sbLz4Ba8IirS1tZVkEIoVEx5funQBCxYoe5bmhsLu\nyNvbM9/vU7GtlVWjbNcEBT0CBD01BX379mTlyqWAMIm5ceM6EhM/s3SpoClXubKxGMx8P5zQt29P\n8fb79++Ry+XExQl+ptldN6GhITRpYkXFimVwds50kHj6NFT8kfDixXMSExNZu3YlrVs3wcPDnaVL\nFzBjxmS1+1THxImODB8+im3bhMDo/PkzXL36u1iWL1NGiolJVWrXNmPx4vk57ksqlfLrr3O5ceMe\nhQsXZvDgAfj4XBE15RS2Zrlx4oQw8PD5cwJeXhfFxxUCunXqCGLA3t6exMbGExMTl2fJHkUwW7Jk\nZg/hnTu3GTy4P6NHO4iPpaen8+rVS8LDw/j69Wuu5VwN//toAjYNGv4FmjdviUyWgKurEFS0a9de\n/NIMCAhiw4bNrFq1npcvZTntJkfq1hUMrlNT01i5ch3v3smUfpE/fvwo3/vMKuS7aFH+msQBdu3K\nlCb4u0MKpUuXZs+eA/TvL+iNFS9eXJQuePVKyB4WKFCA2bMXiM97efnw66/TiY5+w8ePH1m0aC7j\nxo3E0FBfDCqyo23bDtjZDQNAVzd/Ztl+fr6AoA2WXxQZq8TEz9muOXfOg/j4eE6cyJSK2bp1p5hN\nCgp6jKPjDLZs2cHTp8K5kUgk2e7z99/9xNvv3smUjNhXrlzK27cxKttUqWKCrq4e6enpLFu2CD8/\nX96+jaFFi8xAs3nzhjg4DGbt2pVERDzDyKg8ixYt4eBBN7UG9+qwtm7MqlXr2bRJCApHj3ZQkbHR\n1i5IwYIFMTAoo24XgBAIPX8eBQjZNl/fW9SrZ8XSpYvFTFjBgnlr2Ff0ywGMGTOeFSvWMHPmXGxs\n+gEQGHgPEDKtEolERTNOHYmJn5FK9ShbtgSAWqmerHIlWlpapKSkEBkZAYCTk2Oejl3D/y6agE2D\nhn8RQ0NDAOLjE8Rf0j4+V7CzG5arR2ButGjRipEjx+DufokRI0bz8qWM335zEUuWmzatz9G/Uh3F\ni+vi4XGFPXsO0qNHr9w3+I6JEx3p0kWYdjM1Ncv39rkhl8tZsGAOv/22jlu37vPs2WvxHCtISkqi\nXz9hMKFcuXJKTgsAmzf/puTlmpUNGzYjkyXg5DQ7z8eUtdwXEfFMSc8sLyhEfE+dOp5tGa1AgQLo\n6SkHmxUqVGTVqvWAMLRStGhR+vWzVZKT2LRpKxYWtVT25+zsSrly5XjyJIIaNSwwMirP0qUrqVTJ\nGBOTapQpoyr2WqhQIdFWCsDQsKxSwDRu3CQKFtTh8eNHtGrVGoDo6DdYWFgAEBsbm5fTIZL1B8Pm\nzb8pPWdpWZs3bz4wYUL2mbuyZUvQqFEdMTg1NDRk/37BUH3+/DlIJBLKlhWuHW9vT6RSPbWuDwBX\nrvzO5MnTcHScQbNmLTl9+iRr1iwXpUssLesCglNBXnj37h1NmtRXeiwk5Il4WzHos2ZN5vuWSCTM\nm7dIyeEgawlWw/89NAGbBg3/Ih4elylcuDDFihXjwIFjDBo0hJ49e/+QfWtpabFixVqqVzcF+LPk\nMxQ3t6PiGoVPaH5o0KAR3bv3zH2hGrS1tdm//zDR0R9/iKvB94SFPWXbNhfu3hVM1RV9fllp3bot\nJ04co1at2iqSB/r6JVi6dCHNmzfi8GG3H3JMWbMvABMnjlW6Hx4elqPQsbV1E/H29/13uTFs2HBk\nsoRsvSMHDrTj2jXVsp+t7WAePnwq9k1JJBKGDRtBdPRrIiOfKWWInj+PYtWqpcTGvlXKzJmb10Bb\nW5spU6ajpaXF5ctefP36FanUEB0dHSZNmgLA589Cls/OLn8TjW3atBPFdPN7Haenp6Ovr4+xcRUy\nMjJED9u9e3eKa+RyOV26tOfx44c8eCD07fXo0VHt/ooXL868eYuYM2cBFSuW4d69OwBMnjwNEDxG\ng4MjWbs29/5HuVxO167txAC2RAkhw1a5sjGFCxdm0qSp2W6rmMYdP34iRkZG2Nn1z3cgrOF/B03A\npkHDv0iVKiZER0fj5naY9u07MmmSo1Kvyj9B27btCQ2NwsPjCoaGhvlqfk5LS0Mmy75Me//+PVas\nWKJkq6MObW1tjh8/glSqJ8ow/AgqVKgo3lYImWZl8uRxYl9SUNAjXrx4Qb9+tkyePI2jR08pDQXc\nvPnXeggVKLKXoaEhQOYwRlYJkcjICJo1a0C1ahVVd/AnRYoUoWZNS/H4/6tB/gIFCqgtEfr732LD\nhrVKWmSGhob4+wtWV46OM7CwqMWzZ+G0bduOevXqIZPJmDpVCDxGjBD6sF68eJ5tBis7bG0HI5Ml\nsGTJitwXZ8HP7xr37gVx+3Yg69at4pdfuhEVFalWs7BduxZUrCh8PjkFS6Batpw2bZJ428DAQKVX\nUB2urpuVgvwlS4S+T11dPV6+lPHrr3PF8r2i1K6gWrXqtG7dlsOHDzJu3EQ+fHhP585tSEiIz/V1\nNfzvoQnYNGj4lylZsiS6urosX76IJk2slLIU/wRyuRxtbW0aNGjEtWs+GBrq06CBJYMG9c1xu/j4\nT9Svb0GtWtVE66HvWbBgDhs3rsuT9pq3t1CKVEzm/QiKFSvGjRt3uXbtFtWqVVd5/ujRQ0rTsQcP\nHmPLlh3Mm7eItm07IJMlcPXq79jY9GPcuLw3witISIhHKtXDxWUT5cuX5s2b1xw/LpTZUlJSqFSp\nMnv3ZrpZKHrDvn79onZ/ChQTfzVq1PzL/rKxsbEsXjyfM2dOKj3u5eVBaGgIKSkpYnCZlW3bXLCz\nG0CtWtVJSvpKdLRyNisg4C6tWrVlwYIlODnNxtTUjNjYWNEabN++3QQFPUJfX58ZM2ZRvbo5z549\nU5KcUUhntG7dhH37divpFP4d0tPTVSZQPT096du3F+bmxmhpaf2pw6eLoWFZduzYq9YcvWfPXzh6\n9DS2toNzfD1B+26BeD+7qd7viYyMwMqqFvfv3+Ps2UxbK3v7EdjaDvrzuC8ileoplesHDuyj0ofo\n4rIDuRwuX/bGwWEEHz68Z/jwIX9pQlnDz40mYNOg4T/i8mVharJPnx4kJn7m+fMopFI9OnZsTd++\nvbh9++YP8Qg9evQQ1apVpE2bZoSECPIiL1++yFF9PTU1lerVK4nBlb5+CYKCHiOV6jFmTOak2sqV\nQlO9ui+973F13UVISJRYsv1RmJqaKUkaxMV9xNv70p+lr3vcu/eYR4+eMmzYCM6dO6OyvaVlHbZt\n2y1OCuaHmBihGT8iIhyp1JAiRYpw8eJ5AGrVqs3x42eUsixNmzbn1Cl3wsNVxVuzYmhYFkDM9ORG\naGgI79+/F+9PnToJS8vqbNmyiTFjhvPlixAgvnjxnKFDbWnZ0ppx40bSjaVwkwAAIABJREFUsqU1\nixbNE7eLjX3LggVzCAsLEf0tTU0rK71WuXJGFCigRYECBXByms3Ro6dxcBjJjh17AShVSsgYx8fH\n07lzW5o1a86XL4nUrZspQdK+fXsePnyMpaUlM2dOpV27Fkq9WFlJT0/H29uTjx9zz8aVK1eSsmVL\nMGqUvfiYIohS9O5ZWNTk1q0AjI3L0rKlNSdPCp9XiRIlCAt7walT7qxbt4r69a3yFCw7Os4QM732\n9nmz2rp+/RqvXr1k48Z1bNy4RXy8QAFtgoOfYGPTncOH3ahbtx7GxlWYOVOYUk5LS8PEpLxS1lUq\nlbJixRquX78GwOzZ87hzxx9r63ocPLg/2/Oq4X+P7B2INWjQ8I+RkZHB06eZv5xNTMqLorQKGYXr\n130ZOnQ469blXwcsK4om+4iIcNasWc7q1Rt4906motCelayN8ufPe2FoaMjYsYI35Jkzp9i+Xfhy\ntrSsk2dB0IIFC+ZJgPXvsn79Gnbs2ApkipU+eHCf/ft3A8om6X8XMzNz3N29qVmzFr/95oJcLkdL\nS4uMjAz69h1AhQqVkMvlyGQyLC2rY2s7WOzDyokiRYoA5FpqBnB3P8uIEUNp27Y9R48K2ZqsZuTa\n2tokJSVRrFgxpf4mRak2a1aoVKnSaGlpMWDAwD8N0nuRmPiZyMhnonCrQs8tMfEzJiblmTFjFn36\nDKB79w506tSFS5cypUxatmxNnTr1GDVqHBKJFmPGjGPq1IksWbKIs2fPUKlSJUqVKoW2trba8qFc\nLmfkyKGiNduVK9epXbturuckIiIz46s4lwq5FMgsXSYlJfHx4wdiY+Pp0qWtUnB68+YNatasxYgR\nY3IN5gMCggDynA21tx9Bx46dKVfOiOTkZPHx3bu3i6bvOjo6vH4tBOHCOe6PtbXw3uPiPipNXffr\nZ8ulSx4cPOjGb79txsVlKwcO7GfatEns27cLN7ejGBmVz9Oxafh50WTYNGj4D9DS0mLChClKj6Wm\nporWNyB8oX5vs/RXePIkiNat24ryAvPm/Urt2nVVhDZTUlKQSvUYNcr+T5HTkdy+fZ/GjZvy8GFg\nlkbtg+pe5ofz7ds3tWKhuZGU9BWApk1biI+NGDFUvP0jspZZsbZuLAY/EolE9HUND39KhQoGGBrq\ns3ChkCE5evRQnt5PQMBdIFPXKycU700hKQGCaKyCy5evY2BgQGhoiOgO0b//QNavd+bGjbtMmzYT\nN7e9JCYmIpFIyMjIYPXqldjY9KJ2bSErVqhQYUJDQ/D0vCgGGPv3C0H7unWr2LhRyLRmDdZAyCTN\nnz+bnTtd2blzKzo6hUQ7rJCQYOLi4mjfvhMHDhxTG7AlJyeLwRqgVl4kK7t3H2D9emcxawYoTQ3P\nmOFIamoq48dnlr8jIp7h73+L+/cDlPYVGBjAwYP7adOmqfh5ZIdEIsl36drIqDwSiUQMKLMyYMBA\n7t8PVnqsShUTUWtNnUTO/PlLSEhIYPfunWhrF2TKlGmsXLmGmJhounXrwKtXOWd1Nfz8aAI2DRr+\nIxYuXMqzZ69EexwQSh5SqfAFk5iYSHj4U9zdz/7l1/DxuUxUVCTXrvmQlJREQkIC9es3YNiwgURF\nRXLz5g0xgHnwQPB2PHfuNM2aNeDYsUNi03nWpujGjZuK2k//JH369GTw4P48fKjqOXn9uh9SqR6m\nppVYvXo5tWubiWU/iUT4s1apUiUSExP5+vWr+GXVsKG1Wk0suVz+w5r7J04U9LAOHcqcOtXXFyb/\n1A1GfE9qaqrYDN+6ddtc1wcEBOHhcYX+/QcSHPwEqVSPli1b8fhxONHRH8Xs0I4dWwkODmLChCm4\nuGxHW1sbU1MzAgMDmDFjCtu3b0FbW5t69TLlJR49ekT58hXw9vaiZUtrhg0bSKVKgsRHw4bW9OzZ\nm2bNWog+roUKFcLGph9Vqwpm74ULFxH7G+VyObq6umKGLjU1lXnzFuPish1Ly9qoI2swU7RoMdq1\nUz+1qaBTpy5Mnz4Zc/Mq4mOVK1fm3r2HmJvXwM1tD25ue2jatLkY1NarZyWWykuWLKk2gOrSpd0/\n2shvZzcMU1Mz8cfQsWNHkEqVpVQqVZJiYVEz24x25crGzJ+/hJs3/2DWLCcSExMxMzNn+fLVpKWl\n0bZtM6XgV8P/HpqATYOG/xA9PX02b94GgJVVA86f9xL/aE+YMIlGjayZMGG0ildnXlHXv+LsvJlC\nhQoxY8YUevfuSocOgu6Xjo6yT2hSUpKY9ejZ8xd8fW9SvLguNWqY0LhxPZVm9h+NjY0wFKGYmFTg\n5eVB376CnMGnT5/4/DmBt29jRGHgMWPGA0I2y8TECGPjskyaNJWuXXvg6rpL7WsZGupjaKifpxJk\nvXoWSKV62a79vnwWEhLF6tXriYmJ4+LFy7lmYrKWyhUWTDlRsWIlMRCcPXsGIGi4GRoaKmVsx46d\nSLVq1cV+KAV169ane/deYv+VQssNBN02Ly9fTpwQSmoODiMAQdqjUSNrdu1y48yZi6xdu5GCBQti\nbm7Bly9fqFatGs+fR5GcnISxsTEAlSpVxti4LJs2refgweP89psL9epZ5fr+tm3bjbV1E+7de5yr\nAO2yZYsAVDxvTUyqitPY3bv3RiKRsGyZ4IhhbV0XAwMhcxUXF8fu3W6i7lmRIpnl4gIF/rkOog0b\nNnPjxl26despZmjd3c+Jz6elpZGcnJzrgNLYsRPYsMGZt29jGDp0EJs2/UapUqVYuXINhQsXwcFh\ncJ4GhDT8nGgCNg0a/mOaNm2OTJaAp6cPjRs3xcKiFtWqVefAgf3o65cgOTlZKVuTH1q1aou5uSBU\nWrRoMe7ff0jRosUYMWKU+MdfR6cQhw65MXBgH5o3bylqeI0YMVq0agoJCaZz5zYUKZIp7Fujxj/r\nXTh8+ChksgSVL99Tp46Lt8+d82Tp0lXcvfuIxo0F/bLq1U2ZMGEK+/cfwdKyNh06dGb8+Ml4eLiL\nGmAgNNhLpXo0blyPqVNnYGBgoKLTpg6FBtiCBerFdK2tm1C/vhVFixYlJiZO7NsrUKBAnspmWfv8\n8qKQnxVX110MHGgnuj1kxdTUjJs3A8QMkofHBdE+as+eA5QoUQJz8yp4egpWSyVKlKBv3wEYGhpi\nbz+C6Og3og/rhw/vlfadlpZGamoqDx8GcumSB5cueYpZWMU0rouL0JuVlJRE7dp1GDx4aJ5kL2xs\n+uHufkkMqnJi2DAH6te3IiQkUuW5s2c9eP36vVgizfpZZ3UQGDSoHzt2uJKens6LF2+Jjv5IbGy8\nWo0/BYMH96dXr865Hl9Wxo4dTvXqFalevSLbt2cOHrRq1QaAS5cyreC0tbW5ePEyT57kntm2smoo\n3vbz82XECHuSk5PFSdymTa00Arv/o0jk/5XIz/8gcXFfSEv7ewbW/1fR1taiZMlimnOUC3k9T69e\nvcTKSsjUmJqasXPnfmrUsMj36z17Fk7TpkIWY+rU6QwfLmRR7t8PYNSo4aSkpDBz5hzWrMnUtXr9\n+j3PnoVjZmZOQkI8Z86comLFigwenCl0umTJCsaOnaj2NSMjn9GqVVPmzl2Q7ZqcyO0cvX79ikuX\nPGjevBVmZua57i8mJpr79+/h4GDH3LkLmTJlOgBz5jiJ1lmKMlNCQjwWFtUoWLAgISGRap0n0tPT\n2bnTlaNHD9GsWQuWLVutEoilp6fz7ds34uM/sXz5Yo4fP0JoaFSe7LkyMjJEe6InTyKUTMAV/Ij/\nbwpbrvHjJzN8+Ch8fa/g5CT0uJ065Y6pqblS/9eGDWtYtWqZeP/Gjbuie4WtrY1Yxq1YsRJt2rTD\nzW0v58550LhxM7E3zsPjAq1btxE9Tf9pFOcpIuIlpqaCaO6bNx/EHwFCm0A8UqkhDRvWVpKA6dmz\nNzt37lf6bD99iuPkyWOMHJkphpySkkKFCkIwmdcBHEDFFk2xbWLiZy5edKdv3wH5Cti9vT0pXdpA\nKWBr166FOGwxdep0bt78A3//2zRr1oLTpy8gkUg0f7vzgOIc/ddoArZ8oLmgs0fznz5v5Oc8hYU9\npXjx4n9rusvD4wL29oMoWLAgvr7XxV4qEJr6x48fQ+HCRWjTpp1onB0d/VEspVWtWoHPnxMICAhi\n164dvHnzkqJFi7Nixepsv3TPnDnJmDHCROmqVesZPnxUvo75R15LDx7cp2PH1gDs23eYTp26iF+C\nBw8KU3Tz5y9h0iSh7+zOHX+6dxcM1StUqMj9+0/U7heUv3BfvpSpDe4GD+4nyrcsXryCcePyFsB2\n6tSGwMAAFixYysSJU1Se/xHnaPHi+Vy/7svZs56YmxuLwr+jRo3jw4f3SCQSXFy2KwUN/v63RfX/\nO3ceIpUaMnPmVFF7DuDt2095ypx9T2LiZ0JDQ6hTpx4FCxYkKiqSmTOnUrFiJTZs2Ky09tu3b7i7\nn6Vz525KwsTfozhPlpa1CQp6DAiODNev+6uslclkBAU9wtbWBgAjIyNSUlI5cuSkaOZerlxJ0tPT\n6dGjF7t3HyAkJJgSJUrg5eWBtXUTlUGenHB0nEBw8BM6d+7K0KHD85RBzAnF9RgbG49EIlH60afg\n9Onz3L8fwLJli9mxYy+9e/fR/O3OAz9LwKYpiWrQ8JNiamrG3Lm/IpXq/eUJr+bNW2BoaEiHDh0J\nDQ1VEdOMiYmhbNlyTJgwhdu3AwkMDFbqeypYULj98uULXF2dMTOrgbPz1hwzJFmN0v8NGY+cyFr6\nsbcfxPz5s8T7dnbDePIkQikgatTImogIQdz29etXuLhsynbfYWEvRP0tLS0ttUMLxsZVxFLa69d5\n/wzHjxdkJ5YuXaAiBPujWLhwKVev3mDatIlKHrOTJ0/l9OkTnDp1nISEeKZMGY+3tzD9aW3dmKdP\nnxMR8Zry5StgbFxWDNZKlSpNWNgLtcFaVFQky5Yt4smTILXH8u3bN0xMytO1a3uaN2/IjRt+tG/f\nEj8/Xw4e3K+0Nj09nY4dWzF+/CjmzHFSei67c/XmzWvxtrZ2QbVrpFIpbdu258GDEGxtBxMdHc37\n9+/o0KEVgwb148OHDzg6Cj2C7u7nSElJoVWrxtSpY46Dw8g8BWupqaniNblx4xa8va8xbdrMHIO1\no0cPIZXqERn5LNs16gZzKlSoqFLil8vl1K9vRalSpfD1vZrr8Wr4udAEbBo0/MTcvClIaaxbt4r+\n/XvnWwRTT0+fpk1b4OFxkZEjHbC3H8rt27f4/PkzU6ZMQiaTiRIHJiZVKV++gpIuVGjoc2SyBLFR\nee3albk2Lbdv34mwsBfExsbTq5dNno7T29uTd+/e5eu95YV27Too3VeUQBWUKVNGpZypq6vL3r2H\nxNsglM769OlB5cplxXUlSpTk8uXr3L4dSIUKBvTu3VXl9SdNmipOr2ZtYM/9uIUsllwu58aN63ne\n7q/g5SX0Sjk5zaFmzVoYGJQhOvojr169QyaTceTIQcaNy8ySlixZCl1dPZKTk8THihcvzsmT5ylR\noiQvXjzn/PkzSkHgsWOHcHbeQJs2TUlPT0cmi+Xr16/i84oezQkTJiGTxWJj04PPnxMwMamqYlav\npaUlCkArgqRnz8KRSvUoW7aEqMGXlbi4OPH22LETcjwfRkblGT16vNJjV65cYvv2LYwfP4kqVUzY\nsGEzX74kAsrXWP36NZFK9di7V/1wi2ICe/NmZW3FoKDHBAc/YfDgfkyePE7p3Ny5I1h+tWrVhOxQ\nTJZDpnafRCJh7txFSusU12KtWpZ4e3v9Yz8GNPwzaEqi+UCTMs4eTVo9b+T3PD1/HsWbN2/45Zeu\nf95/m2f7GwXHjh1mz56dtGrVBl/fqzx8GEjhwoXR0dFh1y43UTri/v17DB7cnw8f3uPoOEPJcic1\nNZUlSxbw5ctnDh50o169+uzbd1icaMsvz59HUahQIcqVM+LFi+c0bFibFi1ac+rU+WzPUWpqqsoA\nQm7I5XIMDQXT+SNHTmJt3TTHElp2xMV9xMzMGFDfpzRu3EhsbQeLDeNZWb9+NatXL+fx4zDRwSAv\n2NsPwsPjAp06deHAgWNKz/3I/2+hoSHcuXOboUMdVJ67etWbT58+0bChNaVKlWbPnp3Y2w8nJiaG\n2Ni3/4+9sw6LYm3/+GdBwiJUFgzEBsHEQrEQGxURj4l1zCN2HBMTxT52IbaiGKAcuxNUsDtQWhAM\nDEJgfn/MuwMrjfqe4+/dz3V5ye48z8zs7M7MPc9z398vRYsW5cKFc/8RCRZHG2vUMOX160gaNGiI\nr684HRwTE0Pr1s0oVao0X79+5dYtUfNs1y4vWrVqi51dKx4/fsiePfvp3LmDUrBna9sKT88DSvvl\n53eFbds2M2/eIooXL87Jk8dwcuouLVd8R4rjdOTICfbs8aRUqdKMG/dnjlO2SUlJdOjQikePHpKY\nmAggTYNmR8eObSSdufSpBaCcm5h+H9++jVWSIQGxolfhlyoIAmfPnqJqVYts0yNOnz6BoaGRUmXx\nx49xVKxYRnq9du0GjIxK4ut7iF27dvDq1Wu0tTVV1+4c+LdMiaoCtjyg+kFnjSpgyx35PU6xsbHE\nx39RMjvPD4IgsHv3DiIjI+jevZeSBtzixW4sXuwGwNKlK+nTp3+G/uHhYdSuLRY/DB48jHnzFuV5\n+2vWrGTOHDFfbuXKtfz2W0/q1q3Oxo1bqFevQabH6MgRXwYMEH0d85LYDVCnTjVpStnevguamppo\na2tjY9OSDh065Wld+SU5OVnp5p0bPDw2SjIdirwkBf+N8y0iIpxatapStKgOL16E4em5k9GjhyOX\nG/L1a5I0avVtYcTJk8fYtWsHf/45NYPESfoAGmDSpGmMHz8JK6vaVK9eg2vX/P8j0fKMmzcDSExM\noGHDxhgaGnLhwjmqV6+RaeGGIAiEhYWyfPlSbGxsadjQmuLFi2d7nOLj45k6dSKenjvZsmUX7drZ\nAeKDS4cOrZHJZEqBY4UKFTl16gKrVi3nyJHDGBmVpF+/3+nUySHTzxcYeJ+SJUtJ33v6oLJhQ2sG\nDRpGx472SgGblpaWFCDm9XeeFQMH9pEkQnbv9kJDQ4MJE8TcwIMH/1Zdu3PBvyVgU02JqlDxC1C8\neHGlYG3zZndpWkhBfHw89erVQC7XyVIRXiaT0bt3XyZMmEyZMsZSNWO9ejVYvNiN+fMXs2HDlixN\nr0uXLsPx42dxdh7N6NET8vw5Xr4MkoK1IkWK4uIyBTU1NW7deki9eg2y7PfsWebm87khff5fQMB1\n/Pwuc+iQt9KN7GeT12ANoG7dtGq/p0/z//nzS8mSpdDV1ZNkXhR5Vh8+vFeqRPzW47N163Zs27Yb\nC4tqhIWFMnz4YCm/TyaTMX36bMqXr0Bo6BvGj5/E+/fvCAp6gbm5hfS7jY6Ool07Ozp3dsTQ0JBb\ntwL57Td7atQwzXRfZTIZxsZlcXYeye+/O1G1avkMJunfcviwN7t2bSc1NZV+/XqSkpLC7ds3CQsL\nJTk5mcKFlUdig4Je0K5dC9atW4WRkRGRkREMGtRPcgBR7MfNmw+4fPk6depUw8ZGFJmOjIzgxo3r\ngCiX4ud3hYED+xAYeINixYpjY2MLIAVrP5LmzcV1DxkyDG1tbR4+vE9w8CtGjhz7w7el4ueiCthU\nqPjFCA5+xeTJ42nWzEop2TgpKVFyJJgxY2oWvUVCQl5haKhLyZL6tG1rI/WbOnUizs5DGDFiSJbK\n/5GRkaxZs4L79+9kujw7ypevIFWNfvr0EWvrJrnSJhs9ejwzZ7oyffqsPG9zz54DaGhooKenR4sW\nLWnb1o5Bg4ZSqVIVxo0b8d25cwqv0MzeHzDAKUex06yoXr2mNHV39+7t79rHb1m58i+aNbPKto1M\nJsPf/xb3799l1arlkqxLYmIiu3btw8NjB76+J7OVVrG0tGD//r2cOXNSem/UqLHUq9eAZs2sEASB\nIkWKoquri5tbmmTIjBlTlH5/Pj6iN2pOwsalSxtTsWIlGja0zjJn8MqVS+zYsZWWLZVdEywsKtK6\ndXNp1Dk1NaOF2dOnT9HS0qZw4SKUKyeOivn5XVZqU6aMMRUrVgZEEWQrq9rUrGnGihVLGTRoKL6+\nacfi1auXAOzZcxB//1uSJymQ79/Nt+zeLeYHmpqakZqays6dO7CwqEbTps1/yPpV/PdQBWwqVPxi\npM9jCQlJGz3S1dUjPDyWHj16ZzqdqUAQBKyt00ZIFJV769e7s2DBYho0aIC39wHatLEhIiI8Q3/F\nzbdHD0e+fPlCYmJithVs6ZHJZCxYsJSnT4Px8vJh/frNue7n7DyKUaPG5ap9elq0aMWqVet5//49\nO3ZsZdOmDchkMlq2bM3Xr1+ZNu3P77KlMjTUpVq1SlSpYiIldYOY4H3kyGEcHTvma71qamrUry8G\nVen1wX4Erq4z/+Pl+TbbdqdPizloc+fO4MSJczRtaoO//y1kMhkdO9rToEH2Qd/du0/w9j6SwVLq\n8uWLBAW9QBAEChQoIBWnzJgxFxCDqk6d2kq5bmPHTmDlynU8efIKQRCQy3Uy6JiBOKXo53eTQ4eO\nZWlB5uBgx/jxo+jQoQ0PHrzg779PERISTa9eolVV8eIlCAoK5/HjV7i5Lc6wjsKFC/PgwX3JkWLR\nIjdu376p1EZNTQ1v7yN07GgPpLl1lCxZGlNTM0JD33D48HHJ/1Umk1GhQkWMjctKbhwBAdezPba5\nJTAwAIDk5BTevInm2bOnDB8+Ks+izCr+eVQBmwoVvxgaGhpcvHgNd/et2Nl1zLBs5cp1NGnSLMv+\ngiAoTb2sWCFW1T1+/JhXr17y+LF4I7p9+ya1alXN0H/BgqW4uMxh+PBRaGtrY2xsgJWVJXXrVkcu\n1+H69Wv/mQLKqHWlIDj4FVOnTsw0IPwZODh05dQpccSicOHCyGQyChcujI2NLT4+B3B1nZXvoG3u\nXDHv7/37d1KAAaCtrU2hQoUoW7ZsVl1zpGxZE4B86Zplx7Jlq9DQ0MhxxMrGpiXm5hb07z+Q2rXr\nsH//ISpUqJjr7RgZlcx0FPX27UdER8dJn2vRor+4d+8pzs6jpJGva9f8aNdOnM7T09OnR4/e6OsX\nU5oezqvcjRj4izIuL148Y+/e3dSv3wBtbW1sbVvh6rqQsmVNKFKkKAUKFGDgwKGcP+8n9R8+fBR3\n7jwmMPA+gYH3adOmHaBchQqiyLCDgx1JSWIOXIMGVkRHx0l6f1paWlhZNcp0dNnRsRv+/jfzJTr9\nLenPQX19fUJDRYu7atUy925V8e9GFbCpUPELYmZWFXv7Lvm6kaupqbFjh6idZWFRnTJlxCqyv/8+\nzPr1a5Vyd4YOdVYyfgfR0mfkyDHMmuWKmpqaVM2mGAV68OAeNWuaYWenLKmRnkePHvL8+TN27twm\njZZs375FWp5V8OTgYJfpyEpOyGQy7t+/h0wmw86uI0lJYsBataoFNja2rFr1F25uc/O8XhCP0d27\nTzl27AyNGzeV3t+6dRNfvnxhzpwF+VovgLa2aCOloZGzZVZecHLqR3h4bI5Vq3K5nPPn/Vi06K8f\nst3XryMZOnQAkZERSu+Hh4dJ+WTduvWU3m/dul2GdZiamuHuvhUXlzmUKWPM7ds3CQy8ket9mDlz\nLm5uSwBo2rS59PDi4GDH9OmTMkhdmJtb4O9/i2XLVjFunLLu27Ztnvj4HGXjxrWcOnWcdu1slXxm\np0+fRXR0nJI/a26oUKFSpib0eSEpKUnpHCxRogQvXwahr18MM7OMD2Iq/v2oAjYVKn5RBEFQqmLL\nC23a2PHkySvOnLmEn99VACkwCwl5xfHj5xgzZgIbNqyhXr0aklZXZgwbNoJNm9LETbMqWEhP9+69\nOHjwb1avTtOjUuhn1alTHTU1NYoVK8Kff47l/ft3uLhMQS7XISZG9LDMqx4diJp2giDg5bWHlSv/\nkqaC69SpR9OmNixfviRLQ/vNm92Ry3UyHXEEMDIyUkrEB6hRQ1THNzbOf2WvYspSUzNvcibZkZSU\nxMaNazOIKOcXQRBo3LgekyaNz7bds2dPqVHDFG/vAxn08OrUqcaCBa5s2bKJuDixOrJcuQps3py5\njIa9fRdGjhyDTCbDwaGDNBKX034qqFixEkWKFKFlyyYYGytbf2X2EFShQkWcnPqho6OboW3lyqac\nOXOK3r27SYHjX38tZvjwUbmyTvtZpD9HJkz4ExBHAo2MjHKVN6ri34cqYFOh4helV6+umJqWkxKX\n84q+fjHU1NQkE/evX79SqFBhihcvTu3alixfvkRqm9M0WKdODmzevJO5c90oWLAgUVEfiIr6kGV7\nmUxG48ZN0dXVk/wq9fT0SU5ORl09raJy61YPfvuts2SO7eIyi/Dw2HxVXe7bp6xlduzY3zx8KFpP\n1atXH2Pjshw+7J1pX4VifGb2U1lRv34DoqPjlHSx8kpYWOh/tq+V73V8y7VrfkyfPpkWLRoDEBUV\nxfXrWU9f50RqaipPnz6RcroADh7cR5Mm9ZWcDVq3TpumV4g1K9DSEj9fSkoyEyaIU5aTJk3N1ffc\nokVLJcu1zEhJScHQUJfSpUVJEFfXmXz69EmpzbJlq5g9e35m3bPFwMCAZctWUbZsOY4fPyu9v3bt\nSuRynQzb+W+RXq+xYsVKgCjVUr58hX9kf1R8P6qATYWKX5QzZ07x6dPH705OtrPryJQpLtStW58l\nS5bz6NFLZDKZlAdXv34DjIwynzpLTU2VrHY6dOjE0KGiirxMJsvVU7yY2yNWWF6/7o+z82B27drL\nnj17sLVtxYYNm1m3bhPLl69BXb0ATk7dJfHc2NhYli1bhKfnzlx9zm99MQGOHvVFEARSU1NJTU3l\n9evXmfZ1cupHdHQc/v4ZLYAyQ7QtaohcroO//9Vc9ckMRU7cjxypsbSsCyCJHi9aNI8OHVpJXpt5\nRV1dnejoOHx8jgBibtiwYQN58uQxNjaNWLJkAZ8/f5YKMq5du5OicVj7AAAgAElEQVTBsuzcOT+m\nTZvJ4MF/0L17L7p16yEl5OeEh8d2nj3LPpdNMWpWqVIVQPRLVaAQjnZy6pdrr9dvcXLqR0DAXSwt\n63LrlrLczvXrfln0yp6UlBTkch3Gjs1/LpuFRTXatGknTX2HhARLBRAqfj1UAZsKFf8wL18GIZfr\nsHfv7jz127fvEGXLlqNtW7vv2r6amhpjx07k6NHTdO2apha/bp0HIBqid+vmoFQBqWDNmpVYW9el\nffuWWa4/u2T+li1bY2RUklq1LAHw9j5AgwaW9OjRg337vHFw6EqlSpVp27Y9KSlpUzwXL56XptFG\njx7OgQNeOX7Obt16Skni6Tl06CB79+4mKuo1o0dnP62XWw4dOsijR+LoXXqbobyiGGFKbxf2vRQu\nXJjLl2+wZs1GAIYMGY61dZMfltdUooQBRYum5RkuWjSfqKhIpk2bydq1myhfvnyGPpUqVWL06PGo\nqakxePAwvLz2UL58SYYNG5hBm2zw4P7I5ToZKjOzQyaTcf36HfbsER0TunfvJQVtTk798vT5BEGQ\nftOfPn3k2jV/peWlS5fhwoW09zQ0NKVzp21bGyXngez48kXso7Dtyg+lS5chKirtIaRAgQI5Fpqo\n+PeiCthUqPhOFAFXThIJWTF8uKhLNnLkMD5+zL26ebNmNgQE3M2X1dK3JCYmsn79aiVNMoWkQ5ky\nxty8GaBknK5AoXCvmDI8c+YkTZrU5/Bhb86dO4NcroOhoS52di3ZsWMr7969xda2MXK5Dn//fZj+\n/Qdx585jTp48z6FDx9i+3TPT/fv48SNnz16hW7eexMTEsHfvbvT19aSRv1at2mToc+tWICNGDOXd\nu7ckJSXx5s0bjh79W1repctvrFu3ibdv32JoaISPzzHats3oB5pX7t+/h7PzEEAMFFq0yDqYzQnF\n6E/37g7Exsbm0Dr3VKliKgnimpqa4e19JF/TzArGjx+FXK5DeHgYurp6BATcZerUGVSoUJGyZU2w\nsrLk6NG/6dq1W47r6tVLHFn78uULBw/uY+LEMdKylJQUDh0SNdl2787eJupbypUrr2SlNm/eQqKj\n45ScCnLDyJHDcHLqxtmzp6hQoTQdO7bOEFRqaWkREfEWT88DODp2pHz5kqxYsYybNwNzfY7/iDyz\n6tVr8uLFcynAlMsN/2uV2Sp+PKqATYWK72TuXNFz09S0XL6kISZOnCL9ragK/G9z8uQxZsyYiodH\nWjL433+LLgCKPKrHjx9l6NejR2+uXg1k//7DrFmzkp49u/LkyWMGDepH9+5pN8IbN64zfvwoTp48\nzr17dwH4/Xcntm3z4OnTJ/To4YiamrqkdG9iYiL1vX79GvXq1aBFC2u8vDy5ds2PBg0aEh4eLk1h\nfqtKD+DiMgUvL08WL3Zj2LDfadWqKTVr1gLgwIHDzJ+/CEfHbjx+/JITJ85Rv37WTgu55fPnz7Rp\n01x6/a3sSl7p33+g9HfLlk3o1KndD9dk+xEopsUVtlH6+sUYM2YC/v63uHFD/L5jYnInUKzQZANx\nhGjv3t1Snqa6urqU/5a+3X+b58+fSULCIE6tKzh4cB9WVrUpVaqYUl7fkSOHAejcuWuG9R0/fhRL\nS3OOHTsivVekSFFmzXJl0aJl+d7PcuXK8/HjRz58EPNJZTKZyvD9F0blJZoHVF5rWfO/7EcXF/eB\nSpXESkAxD2wF5uYWmbbN6jgFBFxHEIRs7Zl+JvHx8Tg4tMfb+6gkJ/D48SOWLVuIrW1rLlw4i729\nY6ZTigoUchuXLl1lyJBBqKur065de7y89hAcHIyVVUPWr9+Ms/MQUlJS8Pe/St++A6hYsTIzZ4rO\nDJMnT2fBAld0dHR49SqC5ORUKlQoLdkMtW1rx/btnqSmpjJggBMPHtzDxWV2pjfvq1cv07lze7y8\nfOjWrTMAQUHhFCpU+Ifrmik4f/6stC0Ab++jFCtWDH//K0yaNJ7Klatw5UpArtf39etXKVFeQalS\npbh//+kvdb6lpKQgk8lyfdzfvHnD4MH9uHpVdBFYv95DymlLTU3l7du3klVWdnzPdSk1NZUvXz5T\npEjRTJefOHGMly9fULp0GWxtW0tJ/k+fPqFr14507OhAz55OtGhhjY6OLurq6tIofHqf0OTkZBo0\nqEVoaAiVKlXm6tXATLeXH9asWcncuTPZvn0XhQoVYsGC+RQqVBgvr7Timv/la3du+eW9RIcMGcKU\nKWkjA/fv36dHjx7Url2bHj16cOeOsm2Np6cnLVu2pE6dOgwaNEgS8FOwdetWmjZtSp06dZg2bZrS\nEHNSUhJTp06lXr16NGnShC1btij1DQsLY8CAAdSuXZsOHTpw5coVpeVXr16lY8eO1KpVi/79+2fY\ntgoV34PiYgzw5MkjevTowqZN6/PkC1i3bv1/LFgDKFiwIMePn1PSfjIzq8rGjVvp3r0Xa9duyjZY\nA2jdui0ACxe68fZtLPfv32Px4oWEhoYycuRYDh8+wcuXQVy5comoqNdER8exZMkKBgwYJNn8LFjg\nypAhw/Dx8QHEKtH0npCKKVM1NTW2bdtNQMC9LEdaGjVqzMmT56lTR0wE37vXmyJFiv60YA2gRo2a\nNGnSjLFjJ7JixVqGDOmPrW1jPn4UP4NiJCq3aGhoEB0dh7v7Vum9iIgIDhzY9yN3+6ejrq6ep+Nu\nYGAgicwCzJ8/V8rjU1NTy1WwlhmenjuRy3VydObYvNkdIyM9KlQonWWbK1cu8fnzZzp27KxUkVml\niil37z5l3ryF0hRsXNwH6Rqh8A1VEBsbKwkApx9th/zJ16THxKQcqakpxMWJI2wGBgaEheVNbFjF\nv4d8XbmOHDnCxYsXpddv375lwIABmJqacvDgQdq2bcuAAQOk6YpLly6xZMkSXFxcOHjwIIUKFWLE\niLTKlxMnTrB27Vrmzp3Ltm3buHPnDosXp1mCLFy4kIcPH7Jjxw5mzpzJ6tWrOXkyzY/N2dkZuVzO\ngQMH6NSpEyNGjJC2HRkZibOzM46Ojhw4cAB9fX2cnZ3z87FVqMiS3bv3Y2RkxMePHylQoADTpk1i\n6tQ/8ff3+66k81+JHTv2MmTIcO7du0dUVBRDhvzBrl1eRES8xcVlNgDW1k1YtWo9J0+el/rJZDJM\nTdMS3i0sqmNjY0N4eDh//plmUJ1Xs+revX+jdevmNGhQm9Kly2S4UabHyakb7du3zGBknlcuXbrA\npUsXaNmyNT17OrFkyQrmz1/MtWtplYKKad+80KmTA9bWTaTXgwcPoFOnTt9lqfU9BAW9oH17W3x9\nfX7aNiwsRD0+DQ1NQkJeSaOw+WHp0oXY27eTtOeWLFmYbfs3b8TK5fQ5b9+yfv1qFi6cx5EjvkRE\nhOPpuTPDQ9qBA2lSMjExbwgNfUOdOvUkseiVK5dhaGjI2LET6N9/IA4OadOlfn5XKFWqmJSzlx9s\nbGzR1tbm/Plz7Ny5jSNHfDOIFqv4dcjzlOiHDx+wt7dHLpdTsWJF3Nzc8PDwYO/evZw4cUJKlBw8\neDDm5uaMHTuWefPmER0dzYoVKwDRQLdTp074+/ujp6eHk5MTDRs2lAKpwMBABg4cyLVr10hNTcXK\nygoPDw/q1hXL0detW4efnx/bt2/Hz88PZ2dn/Pz8JC2fAQMGUKdOHUaMGMGKFSsIDAxk+3ax0iYh\nIQFra2vWr19PvXr1vv142aIaMs4a1bC6+KRsb9+O6OjX6OsX4+XLIAD++GOEpO/0v3CcFFOjO3fu\nzVSp/ltOnz4hJZoDVK1alYcPHxIb+5GyZY2kgLd8+Qpcu3ab5ORk1NTUlEZsQkKCiYl5I0lWAJQq\nVYzk5GSqVjVXqtrLbp81NbUIC8u7GXxSUhKPHz/Ez+8KLi5TOH78rLQv4eFh1K5tDojK+vv2HcpX\nQnn6qXcFVauac/jw8Rx1yH40u3Ztl+QmIiPf/TRfyrlzZ7J69XLKlDEmIiKckJBoSdYlNxQooMal\nS2ewtxc9PS9fvoGvrw/NmtlQt279bPsmJydnW4hx8uQxnJzEquqGDa3x8xNndoKDo9DS0kImk9Gz\npyOPHz8iMTGRqlXNOXDAF0PDNPFdDQ0NwsMzf0jw9fVh4MC+zJ3rJsnl5IcpUyayY8cWperQSZOm\nMX78JOB/45r0vfyyU6ILFy7E3t6eihXThDTDwsKwsLBQugiZmppy65aoWaSnp0dAQABBQUEkJyfj\n7e2NsbExurq6pKamcu/ePSkYA6hVqxZfv37l8ePHPH78mJSUFGrVqiUtr1OnDnfviomsd+/excLC\nQgrWFMtv374tLU8fmGlra2Nubi7tmwoVP4rixYuzY8ceqlevycuXQVSuXIVKlSqxbt1qXr4MIjU1\nlZs3A9m3bx/+/vnTZsqM8PAwbG0bc/Nm7nOjfiaHDx9n48YtuQrWAGxtW3Po0DEGDx4GwKNHj/j6\n9StqamosX75GaqcYfbC2riuZ17948YylSxdSt2512rZtwaNHaRpYPj6iO4Oi0jI7goOjACTLqrwQ\nEhJMmTIlaNmyKV26dCMi4q1S4Lhlyybp70GDhuW7+k9HR5d7954qFTI8evSQypXLIpfrKCWs/2zS\n25UpilN+BlOnzsDCojqhoSHo6Ojkq5K1YcOGGBgYYG3dmLJlTRg/fpIUrB07dgS5XCfTysmctmVs\nnFYYowjWKleugomJIUZGehga6nL27GksLKoRF/dB+h326tVH6pedU0nHjp15/PjldwVrAL/91l0p\nWKtRoya+vj/vO1Px88hTwObn50dgYGCGKcXixYsTFRWl9F5kZKRkiNunTx/Kly9P+/btqVmzJvv3\n72fNmjXIZDLi4uJITExELpdLfdXV1dHT0+P169e8efMGPT09pZOnePHiJCYm8u7dO968eaPU99v9\niY6OzrC8RIkSGfZXhYofQfnyFdi//zBubot59uwpz5+LuTIfPrzH1XUmLVs2o1u3brRv34opUyZw\n7NgRVqxYirPzELZv35IvjaTY2Bju3bvL6dMnc278DZcuXVASTE1NTWXLlk2MGeOcrXl7dlhZNaJz\nZ8dct5fJZDRsaM28eYto2bINenp6aGqK2lUK83OAw4e9EQSBwoULS1WkAwb0YeHCeVIbY+M0o/WK\nFSujrV0Qc/NqOe5DwYIFuX79DoGB97NtN2vWdORyHWbMmIqlpQVyuQ4JCQloaGhQuHBhDAwMMtzo\ne/Vy4o8/RnL//vPvlg0xNDRiy5ZdXLt2k+HDh1OwYFruVL9+PZU0t34m7dqlaf+NHDlMmgp0cZmC\no2MHUlJSfsh21NXV8fTcz/Tps9m71zvXwW54eBhyuQ7FihVBV1eXJ09e4u19NINThcJBo1atqnmu\nnqxa1TxDzllWOYrJyck0adKcqVMnMmuW63/yG//g2rXb2W5DUXX7LWFhoUyfPilX6RbpnQ2GDx+J\nmpoab96o7n+/Irl+XElKSmLWrFnMnDlT0lxS0KZNG9avX8++ffvo0qULV69e5ezZs5LlTFRUFElJ\nSSxbtgxjY2PWrVvHhAkT2L9/PwkJCchksgzr1NTUJCkpidTU1EyXKfYpPj4+y74gToFmtzwvqKur\nVFCyQnFsVMdIZOjQP6hfvwH9+vVm3rwF1K1bl4AA5QDIw2MjHh4bpdf79u3h1KnjeHpmnVCenJxM\nfHw8RYumVa5ZWlry5EkQBgbyLPtlhaOjOFpz5sxFevbsSpcuv7F+/Rr09fXx8TnA5s3bpWKC3HDr\n1k3KlSuHvn6xPO8LgJfXAYoVEyU6tLW1sLS0RFtbm4SEBN6+jUVdXcbFi2mjk8WK6Sv119NLE2w1\nNDQgIiLn6U1//6tUq1aDSpUy2m+lpqYquTasXbsSEPOXFJiYlCUq6l2W669SpQrz5rnluB95wczM\njDVr1uDmtoSUlFTatm3J9ev+nDp1nP79f/+h28qMevXqMXeuG6tWLcfWtiWFCmnz4cN7KQBKTPyS\nwXczv5QuXYpx43IvaPz06RNsbdNssIKCgihVyiTTtukD3Ojo15QpkztRWwXW1takS7eWmDJlOm5u\nrgCcPn2S9u07MG7cCB48uI+NTQvatGmDo2NXpWKFvDB16kSOHz/K8eNHuX37QbZtS5QoTvny5YmI\niEBPT5fbt8XZJUFIQUNDQ3XtzgX/mmMj5JIlS5YI48aNk15PnjxZmDx5svT64MGDQu3atQVzc3Oh\nS5cuwqJFiwRHR0dBEAShV69egru7u9T28+fPQr169YSjR48KsbGxgqmpqRAUFKS0vUaNGgmnTp0S\njh07JlhbWyste/78uWBmZiZ8+PBBmD17ttJ+CYIg7N69W+jUqZMgCIJgZ2cn7NmzR2n5mDFjBFdX\n19x+dBUqfgjJycnC2rVrhZ07dwqVK1cWAKV/ZmZmwuHDh7NdR+PGjQVAePXq1Q/Zp2/3ARC0tLSE\nvXv3Sq/j4+OzXcemTZuEUaNGCVFRUVKfvBAbGyv89ddfwqFDh4Tw8HBhxYoVwty5c6Xl9+7dE/r3\n7y88fvw4Q9+XL18K9vb20vHLiZs3bwozZ84UZs+eLQiCIPj7+wuAMGzYMKV23t7egrGxcYbP8/79\ne+Hu3bvCly9fhISEBOHLly95+qyZkZqaKuzcuVN48uSJIAiCcPnyZeHcuXN5Wsfs2bMFQBg/fny+\n9mHs2LECIIwePVr4+PFjvtYhCIJw9epV4erVq/nu/yMYNWqU0u85ODg4y7b3798XAGHQoEH52taX\nL18yPYcWLFggVKpUSQCEXr16CbGxscLatWsFbW1tpfPk7NmzwtmzZ/O8XXd3dwEQOnTokKv2AwYM\nyLCPOZ3XKv595HqE7ejRo8TGxlK7dm0gbe79xIkT3Lx5EwcHBzp37kxsbCwlSpRg8eLFlC4tlkQ/\nePCAP/5I824rVKgQJiYmREREoK+vj5aWFjExMZJlSUpKCu/fv8fAwIDU1FTev39PamqqlGQcExOD\ntrY2Ojo6GBoaStNOCmJiYiQFdkNDQyX1dsXyqlXzbsMSFxdPSooqKTMz1NXV0NEpqDpGwPr1a3j9\n+jUmJiYMGDBIaVnv3v358uUDTk5OABw+LJ5XjRpZSyNk795ltIBSEBkpjgjEx6dk2y43uLrOVnpd\nv34Dnj9/RqlSpXn69IX0fmjoa0qUMMhmPfN49eolNjatpPdiYz/+Z+olmvfv31O5cpUs+3/rK2lg\nYEBUVJT0WypdujzLlq3m48ePBAWFKo3e6eoasGXLLlJSUv6jc5X1MfHzu4KdXZojgrV1c/T1xRG6\njh0dePPmA6dOncDaugkODmmivyVKGPDiRQjv3r2jYsVKlClTgYSEVED8nSck5Pw9/PZbZ86cOU1s\n7McM03pRUVE4OTlRuHBhQkOjaNxYNGU/evQUVlYNM13ft+dbnTqiJMzSpUtZunQpDg6OzJ49L9cj\nRrdviznBK1asoGJFU5yc+uaq37eYmdUAsv8N/2ySk8U6Oh0dXWbMmEndunV58+YNrq4LGDr0D6UC\niVKlyvH2rWjOnt99XrhwKZMmjUdTU5N9+7yxt7dj8uTJvHoVrjTK2KNHX3r06Mv792mjsS1aiHlt\n7u6bcXTM3AXi69evrFq1nObNW2BpWQcAR8eedOnSA5lMlqv9NjcX/UM1NTXp1as3W7duYdeuvXTp\n0lV17c4FimP0T5PrgG3nzp1KmjAK2Y2JEydy7do19u7dy7JlyyhRogSCIHDx4kV69eoFgFwu5/nz\n59KFKCkpibCwMIyNjZHJZFSvXp3AwECpOODWrVtoaGhgZmaGIAgUKFCA27dvY2kp+g0GBARQrZqY\nl1KzZk3c3d1JSkqSpj4DAwOlIoaaNWty82aa51x8fDwPHz5k5MiReT5YKSmpqiqaHPhfOEZBQS8I\nCwulSZNmGW6+Hz9+ZOrUSdLrPn0yTk8pNKS0tbWxsmosvZ+b4+bnl/Zb/t7jnN7vEURHARBletLn\n82zZshlt7YL06dMvUxHR3r37Mm/ebBwcOrJ370GaN7clNDSM5cuXsm2bh1JbD48drF+/Gnt7B4YM\nGS7ZXwEsXryMtWtX8fLlS+zt7UlOTqVr1+507CgK0ZqYlARQqsBMQ5bl8Rg5chh6enpUraosZhwT\nE0uNGrXZs+cg586d4/nzF4wePZypU2dw48ZdRo4cRkDADQoVKoSpaQVSUlLYv/8wTZs2z/qgZoKv\n7yHOnDkNiJJIrVu3VapwLV7cgG3bPDE3tyA5OZWJE6eweLEbqak5f8eK861+/UYsWbKCCRNGA6In\nq7f3Ac6cuUz16jVy3Mddu/axcuUyHj9+SMuWbX/pc3jgwKGEh4fTqVNnHBy6MGHCOACmT59MwYKF\n6NOnf57WN378KHbs2MqLF2EZzhmAnj370KVLN+Ljv3DrVtr5mdX3p62dsdqwUKEiWR7zgIAAXF1n\n4+o6W0lwVyR3Ig9NmtgAMHbsBCkv7s8/x9GpU5qG4f/CtftXJ99OBwrRXDc3N6Kiomjbti2TJk3C\n2toaDw8Pzp8/z7FjxyhYsCDu7u54eHiwYMECTExMWL9+PTdv3uTIkSNoampy9OhRZs6ciZubG3K5\nnGnTptGwYUOmThV1d2bOnMnNmzeZP38+UVFRTJ48mQULFtCyZUtSU1Oxt7encuXKDB8+nLNnz7Jh\nwwaOHDmCkZER4eHh2NnZ4ezsjI2NDatXryY4OBhvb+/sPl6mqMqes+b/W2l4UlISffv2pHPnLvTo\n0VtpmZVVbYKCXjBkyHBcXRfg7b2f+fPn8O7dO7Zt86R379/Q0dHByqohGzduVeqrOE4vX4ZRsGCR\nHyqHIAgCgwf3p23b9nTt2p1Pnz5RoYKoI5XxQi+ikLNQoKurK9nYKChSpAifP3+meXNbdu7cm6ms\nwu7dOxgzxlmpz6dPnzA3t+Dhw4w5NuXLV+DMmcvUq1eDcuXKMXWqi2Sbs3+/Fw8e3OPjx0+8evUS\nU1MzevRwYuFCVxISErh+/Y4ktJsbFJ/xypUADhzYi6lpVb5+/YqjYzfU1dWl5Rs2eLBs2WL27/fF\n0NCQ1NRU4uI+MGhQfxIS4rl+3Z9ly1bl2Sw8JCSY5s0bSQLADRo0xNdXDFSjol5jYCDPs5hvdufb\nw4cPGDJkAE+firZIN27clXxD/9coUEANLS0Znp77OHHiOKNHj6dKFdNc908vpfLXX6vp3TvjyGOa\njI0X+vr6qKmpYW5eTUmEWsGnTx8ziPF6efnQvHkLQkNDsLNrxevXkbx+/V76TSjO6zZt2vHbbz1y\nve/f0rhxfeRyOd2792DkyOEAHD58gsaNrf9fXbt/Bv8WWY8fErABXLhwgYULFxIZGUmtWrWYMWOG\nNMUpCAKbNm1i7969fPjwgdq1azNjxgyl4Xp3d3e2bt3K169fadOmDS4uLtKIWUJCArNnz+bEiRMU\nLVqUQYMG0adPWml0aGgoU6dO5e7du5QtW5Zp06ZhZWUlLb906RLz5s0jKioKS0tL5syZI03X5gXV\nDzpr/r8FbL//3keSK/g22JkxYyrr16+mSJGiSir8ICqLFy5chIcP7yvdmBXk9zg9fPiAv/5azIoV\na7NMVH706CHNmlmhqalJWFgMsbExVK0qVojp6+vz8GGQUoAoCIKkCVW5chWePXtKmzbt8Pe/KgVt\nI0eOpm7devTrJ07h1q5dBy8vb3R19bhy5RIrVy5j+vRZVKtWg549HTl79rTSPm3btpOiRXV48+YN\nL18GERT0Ai+vPdjatiI1NZVz586wbNkKpQBMTU2GtrYGfn7XmD17pvS+4nsICQnG2LgsMpmMr1+/\nsnLlMhYunEdExNtMpRhu3gwgOPiVkihpevr168WFC+fw8vLJ0k80OTmZkJBgypUrn2NwJQgC+/fv\npV07O4oUKUpSUhJlypSgYMGCxMfHK+nJGRsbUL++FYcOHct2nd+S0+8oLu4DTZtaERERTuHChblx\n416+3QF+VQIDb7B4sRve3gdISVHP13UpJSWFkiXFafNatSyVBJ8VfPvQc/ToGerWzVzj88uXL5Qr\nZwSIFZvOzmOk9B3FdQXgzp3H2Yr25ofly5ewdOlCpk+fiYtLmgjx1as3aNiw7v+ba/fP4JcP2P4X\nUf2gs+ZXC9giIyNwcupO5cqVWb9+c4blZ86cZNSo4UyaNI2+fQdI70dEhGNpaZFBAmD9endiY2OY\nNi2tzN/evouSpRDkfJwUF/9vR0XMzMrx9u1brlwJyDIfTBAErl+/Ru3altLDzrt3bzE1Fdejrq7O\n9Omzsbd3oHTpMrx+HUnNmmb/2a8CtGvXAV9fH3r06MWePbsB6NatB82aNcfZeZi0HQcHR/r3H4S9\nvaizpqWlRdeu3dm1aztTpszA03OHZNa9caNHhvy3nTu3cfDgAen10KF/0KiRNUuWLKJy5Sr07dsP\nbW0NduzYya5dO6V2AwcOoUuX37Cza8WsWfMoXbo0gwf3l5Y/ePBCuvllx6VLFyhVqhQVK1bOsOzp\n0yccO/Y3I0eOzbeF1ZUrl3BwEGUvDhzwZePGtZw4kRaQDRnyB7a2rdm3bw/794tK+FmNgGZFbs63\nN2/eYGEhVr5WrFgJH5+jGBoa5ecj/XKkFysGiIp6h0wmPqzExMRQoIA6enr6WXUHxN9J3749KVq0\nKK9fR9K0qQ3792fUL0tKSsLJqRvnz58F4PTpS9SoUTPTdcbHx2NiIqonvHwZSeHCykHA/v17WbDA\nlZUr19GoUePMVpFvFD638+cv5PnzZ2zeLOoDlihhwJs30b/Mtfuf4N8SsP1LalVVqPjv4uNzkHv3\n7nDw4P5Ml9vatubBg+dKwRqArq4emppaGdrHxsawYcN6rK2bsGPHXtzcFrN06Yp875/iRq6gd29x\nGm7v3t1Z9pHJZDRoYKUkYxMWFkaRIqJMRrNmzXF1nYmlpQVDhgxgxIihUrvk5GQ0NDQoXrwEBgZy\nWrQQbZy8vPbw9u1bpc8sk6kp7d/MmXNRUxNvhsuXL5GCtZ27EIAAACAASURBVGrVqmdarNCuXQfp\n74ULl7Bhwzr69XPi3r27XLx4XlqmCNYUeYIeHhuxs2uFmpoas2ZNU9Jo8/Tcn6tgLTU1FUfHjjRs\nWCfT5XPmuDBv3mzmz5+T47qyombNWhQqJF7cixYtSpMmzZSWy+VGdO/ukOE7/tEYGBhII0IvXjyn\nYUNLwsPDfuo2/y3o6uphZCTmPFavXl1pGr9FC2uqVMlc5iM9CQnxfP78idevI4mK+pBpsAZiIr+X\nlw/Dh49k/vxFWQZrIOr9nT59kaCgiAzBGsDw4YMJCQnGy8szx/3LK02aNMPYuCz79omjv6tXrwNE\ny6yICJVd1a+AKmBT8T9J//4D2bPngKRwnxWpqaksWjSfe/fEKrrChQtz6NDRDO3CwsIICQlmyZLl\ntGnTjoEDh+ZZhyopKQkHB1FwNr1iP4C9vVi1uHLlMkaNGi55IubEhg1r+PTpEytXikKd7u5b6N//\ndw4dOsilSxekdhUrVsLc3JwPH96zatVyzp49Iy1zcZmq5ABw8OA+duzYyu3bj4iOjmPQoGEkJ4tV\n461bt6FxY9HzMqvB++LFi0uJ8IULF1FaFhMTw5AhA5UKhfbt82b48DTvYcXoZtmy5Th37ir79h2i\nRYtWZIcgCLx9G8vvv/fJtl3PnuLylSuXUapUMY4dO8LAgX0zVJpnR5EiRXn5MoLg4Chq1bJUEjet\nUaMmrq4zM/TJTvH+e6hVy5Ljx8WRn0+fPlG7trlUXPL/mSJFinD58nWePw+WXHFA/O0ovFzfvXub\n7TpsbVsDUL++Va4Ee2fNmsegQeJI9Lp1q5VyOtNTo0Yt6SHqW6pWFUcFd+/ekenyBw/uI5frKIlF\n5xZ1dXVmzZrHrVs3GTNmBKVKlaZbNzEn7t69ezn0VvFvQBWwqfifpGDBgrRo0SrTxOD0PHz4gCVL\nFtCqVVPpvdq161ChgrLI6rp1azAxKZfpNFtuuXLlEt7e4lThxo1bpPfv3btDy5Zp29+zZyd3797J\n1TqbNROrw2bNmk7//k5cuHCOZ8+eASiNxJmZmRMdHa1UCf4t1avXZPv23Tg7ixXWtWpVJTDwBufP\nn8XTcyeDBw+jX78BknXSgwf3sxSodnGZxa5de9i82Z0SJQyUcriio6OlgiOAgwf3c+SIr/R6+vRZ\nPHr0kuLFi2NhUY1mzWxyvKE6Ow/BzKw8R4/6ZtsuIOC69HdycjL9+vXE19eHW7fyZvslk8mk39bw\n4aMYOtSZypWr0L17rwxVig0bWufJHzOvWFrW5caNu9IoaYcOrX7KCM6/DR0d3QxOAbdvpz0IuLnN\nzba/mpoa0dFx/P137h1EwsJCefVKNKrfvXtHls4HWZGTDdXSpQuV/s8rHTuKnqrh4aIVl6Pjb5Qs\nWYq5c+f+MHcKFT8PVcCm4ocQHx+fobrw/wMWFtVwc1vC9evKAZLiZlyrVm3+/FMMLj58+CC5c+SH\npk2bS9N8f/2VJp+ekJCg1G7MmAk0biwGcDExMYSFhfLu3Vvevo0lIOA6tWpVRS7XITU1lejoaECU\n6khISGDbti1cuXIJff1i7NmzHy+vgwwYMJAjRw6zceM6pWnG8eP/pEGDtOKdWbPmUKRIEWxtW/Hn\nn2KuXrt2tri4TMbEpBxt24o5baamZrRpI7ojZGWdU6BAAQoWLISmphbFixdn8WI3ChYsyNSpM3j+\nPJhHjx6hqyuOUO7evZPg4GDJ/9HVdRZfvuRNM2vAgEFUqWLKrl1eABkshRSMGzcxQyWgrW2rXPui\nZoampiZz57px5UoAAwYMpkwZY6XiiDVrNmbT+8dgYlKO+/efUq+eeAxHjBhKSEjwT99ubkhJSeHm\nzQCuXr2s5FGaGz5+jGPgwL5YWloQHx+fY/sDB7ykv5OTkwkNDcnr7mbLb7/ZU79+DUaOHAPAnTt5\n86zu1asP0dFxWeY0Llr0FytXruPy5Rv53scGDRpSv754XmtoaPD77wO5cuUKgYH/Di9iFVmjCthU\nfDdBQS8oXdoAPT29f3pXco2RkR5yuU6O0yIymYyBA4coBTIAx4+fIygonJMnLzB+/CSGDRtBXNwH\nypQpgZGRHg4Odvj6+uTpqVVdXV2qKlUUFiQlJZGYmMjatWkG4nXr1kcmk5GcnIy5eQUsLS0wNS2H\nmVl52rdvKRlZr127itmzpyttw9lZ1OmqVk0U0ixQoAAdO9qzatVaKlasJN3Ea9ashbV1Y7p0Saus\nlMlkPHhwn8uXLyoFck+ePMbc3FxplGvo0OF4eR3M9jchCAJ2dh148uQxly9fJD4+nmPH/qZSJROq\nVq3KmjUbuXnzAXK5mKQdEHAdc3NRS61OnWrI5TrSPze37HPO6tVrwOXLN2jVqi3R0XFZBmxFi+qw\nePFyZs+ez+zZ84iOjsPT80CmbfOKIAgMHz6IxYvdaN1aFPC1tm5CmTLGP2T9OaGnp8/mzbuk1wrD\n8n+KuLgPrF69gmrVKtG2bQs6d25PvXo1aNfOlosXz2c5pZ4eP78r+Pr6EBYWyqVL53Ns36hRE7S1\nC1KsWHF27txGnTrVGDly2A8bXRo7diIAkye7YGxcltGjh/+Q9SooUaIEPXr0zpM0SXoePnzAjRvX\nqFMnLYdTIUT98GH2Proq/nlUVaJ5QFVFkzlnz56mRw9RgNHLy5vmzW1z7HPrViAmJuWyNDf+2WRV\njZkf9u7dzciRw2jatBlaWtoYGBhw794d7t27x5gxE5g6dYbUNqvqvqtXL7NokRvlypXDzKwqjRo1\nZtWq5Zw+fZLPn0UldlfXhUyfLoryhoXFEBcXh7l5Bb6lShVTnj59wrJlqxg3Tpy+tLSsw61bN5Vu\ngm3atKNDh46ULl2GBw/uK5X6g5g7pq6uzpcvX3j7NpagoCCWL18KwLBhwzEwkDN37iy0tLTYuHGz\nkr9pToSGhjB69Ail9/T09Hj/Xjk3TzHSEBh4g3btxN+Vu/tWperQ9ISERGcw+P6nePPmDQULFpTy\nlY4e/Zv+/Xuxc6cnnTs7MG3aFHbu3M7t24/R0spYyJIVERHhqKurUa1alXxdk4yM9EhNTWXSpGmM\nHz8p5w4/mNevI9mwYS1r1mRflFOnTl3mzl0gjayCOCr25k20JHnx7t1bWrduTnDwK4KCIjLkhmV2\nvqWmpnLggBfOzkMwMiop5bQ9exaCrm7uHzrj4j5kmacaEhJM3briQ1FeK4BBDO5za3SfF1q1asr7\n9++YN2+hJA+kpiZj7dpVXLx4kevX70jFGirSUFWJqvh/Q7169aUbTrduDkycODbbJGq5XIc2bWww\nMytPbGzsf2s3lYiOjiM09E2+grXHjx/h6jqLxMREPn6Mw9NTrGbU0tIiMTGBjx/jSEwUc7diYnJO\nVk9JSWHKlAlcvXqJ3bt3MGPGVFq2bMrt2zcZNky0dNPU1ERLKy0QCQkJZscOMc8t/fRa2bImqKur\nM2rUOHr06C0VMdy8GUjv3n1wdPxNanvixDFGjhxOly6d2LBhXYb92rFjG58/f8bdfT0TJ45j+fKl\nlCtXgbp167F+/Vr++ksM3hITE3n8+FEejmBaDg0gacPdvfsUD48dXL7sz+XLl4mMjMXDYwNyuQ5f\nv36lYsVKTJnigr19F2naKDo6jhcv0iofa9TI2gLrR3D8+FEla6HMEASBkSOHYWFRkQoVShETEwPA\n5csXqFSpMp07iwUkffr0IzY2VpKDyC19+nSnenVTAgLyN4WlmLIPCwvNV//vYfv2LdSoYSoFawUK\nFGDcuIn4+9/k9ev3nDlzSWobGBhA+/Yt2bVru/Re06YNqFnTjMmTRTN4ff1i3Lhxl+jouCwT+b9F\nTU2Ndu06ULx4CXR10zTU8jIleOSIL5UqGbNjx9YMy65d82fOHBcmTZrO4cMnMnbOgU+fPmFoqItc\nroONjTWpqakkJCRw7NgR5HIdLC0tuHr1MhcunMvTeoOCnnPnzm26deuZQctx6NChCIKAh8fPn55X\nkX9UAZuK76ZoUR02btyMkZGo8bRtm4dSkv632NuLo3FNmzZHRyej1ct/i9yMagiCwJkzJ9myZRMu\nLlM4e/YUrVs3Y+XKZVy8eI6YmBiuXr0MwKlTJ4mNfYuv72HKl6/IxIlTGDfuzxy3MXBgXx49eoiz\n8whu375H48ZNsLZuTPPmNlIRgJ6ePhMnjpb6uLuv4+XLIEAsghg61Blf35PcuHGXkycv0KCBFQkJ\n8YwYMVZS5t+5czsHDuwDxJtWkSJF0NDQoGxZE3r27I2xcVkApkxxYdKkaRw+7MOgQf25eTNtZO7V\nqyACAsT8mU+fPuLl5YOxcVlOn859YjbA5csXMTevRlTUB2k6yt//Kh072mNuXg1ra2u0tLQoXdoY\nLS0tSpQwwM/vpjTllJ6iRXWIjo6jTp16SqMxP5rIyAj69u1Bv369sm23dauHkvzK27fiQ0lS0lel\n4LpkSXEkIyEh59yr9JQuLQqO79u3L0/9FPzxhzjqqpBf+W+xZs1KyToLwNGxG8HBUUye7EKFCpVQ\nU1OjevWaPHwYxMiRY6VjNWnSOO7fF6sYnz8XC2Y2b3Znz55dGTeSA58/f0Yu12HJkgVs2bKTyMjX\nFC5cmHPnrtKiRctcr+fNGzE31MfnoNL7ycnJ9OrVlcOHfYiKiszSCzY70hcDFShQACMjPcqWldOv\nX09ADLQ7d27Pb7/ZM2hQP8aNGyn9xrJDUR2s8CNNT+HChWnXrj3u7uuyLTxS8c+Say9RFSqyo2NH\ne7p164K7+xZGjRqeqR2RAnf3rRkEZf8tHDt2hH79evL770Nwc1vM0KG/4+NzAHV1dVJSUtiwYQ29\nevWhevWa2Ni0pECBAsyZM59r1/xZsGCpZGmUF9FVxWjkhw8fmD17Jh072rNx43quXLkstfn4UZxW\n6dy5Cz4+B9myZRMREW8ZM2Y8VlaW3LhxDUNDI/78c0wGSZCqVc35++9TBAU958yZUxw6dJDU1FQ+\nffpEoUKFCQkJZvHiBQC4uMyREqYtLKpz9uwpnj17xpUrFylXrjw9evRCR0eH9+/fsXz5MlauXEZY\nWKgk5aHg2bOnHD16hNat20hSBel59+4djx49ZObMabx+/Z5Hjx5K+Wnpadu2PaGhuZPUOHbsTJbL\nFAHn90wzKaZ8O3XqnGWb8PAwJfeLXr36SPmI5uYWbN++mS1bPOjZszdPnz4BkHL0csu2bZ48eHCX\nZs0a8eFD3oI9EIMWxb7+t/D03CnlUw4Z8gejR0/IUjevRIkSuLjMpmTJkkyd+idJSUnMmDGFgwf/\nZvv2PQwbNpAvXz6ze/f2DLZxObFv3x4A1q5dyaxZrgQG3iMhIRFDw7x9B506debs2VNYWTVSen//\n/r3SuaooDMormpqaPHsWwufPnylVqrSUviGTyXBy6kdiYqJU5Xv4sGixWL58Rem8zYrPnz9ToIBG\nlg+qJibl+PLlCykpKZk6hqj451F9Kyp+GNra2jg59cXWtg2xsTH/9O7kC4X/4ubNG2nWzAYfnwNM\nnTqdVq3akJKSjI+PD+7uG9DQ0KB8+VJUqlSJc+euMmxYWj5WXhXy3d23MnnyBG7cuMGTJ4/x9k57\najc3N+fhw4fEx8fTvHkLZs50lZ7qN2xYQ2qqwNGjZ3j7NgYnp+7UrFkLe3sHDh3yRlNTk6SkJN6/\nf0/9+g0QBIFDh/5Q2va31ZZz585AX18fuVxO3749sLPryJUrFwFxRObaNT/pxlCv3hUuXxaXKYoT\n4uPjefXqJXPnziIhIYELF84xYcKfGVTbFVOomze7M2fOfCwsqmV5fBTOAZ6e+yVtrKyIiopCLpdL\ngVlQ0HNKlSpD2bJyACWPxpxQ3CgDAu5RtqwJRYoUlfLnTEzK0bJlmwx9ZsyYiq+vD6dOXaBqVQul\n0ZIaNWpSoEABRo50ZtWqlYSHh1O0qA7Vq2cttJoZMpmMWrVq59uJQRDEKdGsLM5+NLduBSol37u6\n5k6S4vffh3D8+FEuXjzP5csXiYmJoW3b9ly5coNTp07QsmX2v4XM6Nfvd6pVq061aqIOoK6uHrp5\nk0sEoFix4lSsWJlZs6ZTu3YdrKwa8erVS0aNEs+v8uUrULlyFTp1asu+fYfylKOYtl9iPl1o6Bvu\n379LuXIVKF5czPldvXoDdnatuHFDHDXLzXTw169JgEBKSkqmHsZhYWEULFhQFaz9i1FNiar44RgY\nGGBmVvWf3o18MWrUOA4fPk5ISDTr1q0CoFQp0XdWXb0Ajo5d6datO9u2bSYxMYEHD76/sqpQoUKs\nXLmWS5eu8/r1e549C5ECoA8fPtC9uzgVcv78WRo1SpvOmD3bhblzZzB06ACaNWuBXC4nPj6e4sWL\no62tLflzRkZGsHTpQjp2zHiDSx9QbN68jYYNGzFu3EicnLoDYq7O6NHjJdPpc+fOSvItCj02gIMH\nD9ClSyd69+7OtGmTlaRIQkPFXKmkpCRpaksx4qWnp5ujDIqjo6jrdubMqWzb7du3h+rVK7N2rfi9\nffr0ESsrS2bOTCumaN26WVbds2TevFnS3xoamkr/f0vz5i0oX74CNWvWVjq2IFb3Pn0ajK/vSSpU\nqMjnz5/4+DGOc+eyHhn8GSiCh7wk2OeXhIQEnJ2HSK8HD/4jm9bKqKmpMWNGWvWvQiOvdOky9O8/\nMMfq2nXrVlOsWBGGDUuzVZPJZNStW/+HFKYoHjK6dXPA0FBXGjGdPn0W167dZtKk8fj7X/3uvDAt\nLS3q1KknBWsK0gddjo6/ERBwPdvKWjMzc8kT91s+fvzI8eNH6d9/YKbBnIp/B6qATcX/NCEhwcjl\nOlJiuEwmw8qqEdra2vTvPxCAiRPHKU0ftW3bHgBNTS2ion6s9pyamhq6unosXryc6dNnYWJSgb17\n00ROO3d2pG1bO6XqvtDQEKpXr8y4cX9iZFSKPXt28/XrV+kGUrp0aVasWJbp9hTCtra2rdDV1ePL\nl7QptgkTxG2sWLFUmkoCmDx5IkeO+PLp0yfs7ESbKUXhhaLIoXz5NDP3Jk3EqaFBg/ozY8Y0fv+9\nn7QsOjpaScz0WwRB4OTJ80yfPlup2jYzzMzEqVdFflGhQoVp2NAaB4euNGgg5hLdvXtHyoPKiVu3\nHtKpkwMTJqRJgLRv34Ho6DhJkPhb+vTpz7Vrt6XXPj4HpAASRBeEBg2scHffhp1dJ2xsWmZpFP6z\n0NYWNQTzqnmWV16/jqRsWbl0vPfvP8y8edmPrj158hhr67pSEFutWg1pfxVyNblFISnzs3KyunQR\nC3gSE8WHEzOzqqxbt4k2bcTrw5w58xk9ejzDhmUvhptfZs1ypXnzFgQHR3Hs2BHat2+JoaEuUVGZ\nu7coxL4z08s8d+4cSUlJDB8+OsMyFf8eVLIeeUAl65E1v5r5uwLFtFf9+laZKpqHhYXStWsnPnx4\nT9269YiOjiYmJobQ0BA6dLBn8+bMLWSyIj/HKTIygoCAG9jY2EpTHykpKUyfPhkPjw1SO1fXBQwZ\nMpxbtwJp08aG0aPHKgUWa9as5MyZ0xgaGlGuXHmuXfOTlm3btgtNTU169+6uNOLVqlVrTp3KuqBA\nkdv3LaamZkyd6kJiYgIJCQns3r0Tf3+/TNYAO3bspU2bNGFaT88d1KxpQY0adWnWzJry5SuwadO2\nXByprHn06CG9enWVAu+wsJgMI2B5QRAE5sxxoU0bu2wTy0uVKkZycnIGaQd//6t07dqJpKQktLS0\nGD16POPHT8p1jt33nG9ubnP4668lADx48CJXHqx55eHDBzRvnnZc5syZr5Q2kBVeXp6Sx+3jxy/R\n1y+GiYkhCQkJzJ+/SLJ+ArFa9sSJY8yePU8qpPiWn31dGjJkAD4+ok7f0aOnad9eLFzYunU37dt3\nyK7rDyUpKYlGjSwJCQnh5Mnz1KplmaGNQmpkxozZ1KpVW3pfTU3GqlXLeffuPceP563y9H8FlayH\nChU/gV27tktiqll5+WWGQvn7W8qUMebQoeNYWFQnMjISE5NyVK9eg337DikFayVL6jN06IAcJR/y\nQ8mSpejY0V4pT0VdXZ358xcxduyfNG9ug7q6OsHBrzh+/Kg0dZTeFurz58/ExsZSoUJF7t17iq/v\nCZ48eSUtv3z5ElpaWtKoWvptb9jgwYgRo3Fy6pvB2PrbYE1PTx8QR0oSExMpUcKAY8eOEBBwg2XL\nVkmjYAocHLrSqlVaLtiCBa6MHu1M8+bN+fDhPffu3eHGjWt8+vQJD4+N+Pr65Pn4Xb58iTFjnDl6\n9HS2BQN5YdCgfqxZs5IlS9yybbd9u+f/sXeWAVElbBu+hrZIHRMUAVsRExMVURF17cDG7u4Cu7EL\nUVTsVuxADMTCQFdRwUAURhRFVHq+H2fnwDCkurvu+831izk1Zw4D5zlP3HeGwebixfMxNDSkR4/e\nVKlSlcWL5+dapiE9cXFxPH/+LFvBWYWkikQiQU8vd71VOeHevUD69EmdpG3e3DFbyyUFnTt3Y+ZM\nwTLK23sbhw7tF8vr1arVELd78yaMM2cEO7NZs6YxefK4TF01/k42bPAUf06rX9anjzNbtnjw/Pkz\nJk0aS3x8fEa7/zJ0dHS4ffshMllMhsGa4vy0tLR5907Z6D0xMZGgoCDR31fN74s6w5YL/mvZo3+S\n3yHDJpfLKVxYuYP4zBlfbGxUx9hBkAhQ9ITdvHlf7PnKLTExn7G0FPpptLS08Pbel6lEwM9ep6tX\nL7NmzQqMjU14/vxZpuVEQ0NDBg4cQo0aNdm6dTOXLvny/ft3tLS0ePMmitjYL1hbl+fr19i/bKLy\nsG2bIJNw6NABvL0F7SttbW28vfeQkBDPtWtXqVOnHr17K0/mde3qTGhoKCAnOjqalJQUWrZ0olGj\nJkgkEpYuXcydO7d4+TICL6/NTJmiLM0REHBXLNfs3u3NmDHDqVevHm5u82nSRHn6FHIvRKrIot64\ncQ9zc1Wh4R9BcUyAPXsOUrNmbQoUyJlEjSL75OTUhvLlK5CcnMyKFUtZsGApLi4DcnSM9N+jyMhI\nGjeuS1TUe3r06MXy5Wsy3bdp0waiF+2PiLpmxsOHQfTv34vQ0BBxmbW1DcePn8l1z1h09EfKli2l\ntCytKHJcXJw4SFK7dh1u3LhO9+69cHdX/tyK63TmzEVatBCEl+/deyz2peaGzZs3MHXqREJDw8mf\nP1Uk+vjxI6SkpPylDyijU6c/ePxYeUr+ypWblC1bLtfv+atp3LguRYoUYdiwkeKyw4cPsGvXTnx9\nr1KunOqkthp1hk2Nml+ORCLBxkb56VIxOJARaZX5f8btQFEGAaFf5vLlSz98rMwID3/D1auXad++\nFRcvnufAgb3cuxdIp05dlLZT3Ig+ffrE4sUL8Pe/xqlTJ9HU1BLPr3TpYlhamvL1ayw9evSiaNFi\nfPnyhfbt2/D9+zeaNGlKqVLmSKWFadOmLZqamoSGhrBhwzp69+6Ovr4+ZcuWp39/oXTVqVMXJk+e\nyuTJ03j27CkhIc9p3NgeiUTChw8f8Pe/ioGBAZGREZw9e5r+/QezZYu3eM5psw/duvUgKiqGy5cv\nY21dlVat/qBLl+5oamoyYsQY7t5VlizJDT8arF2/fg1vb+UsmZdXqs5a164dGDVqWI49ZDdtWoe+\nvr5oL/Tnnw+Ry+Uqk7S5ITT0uSjSvHNn1mV6hedmzZq1f/j90nPq1AmaNKmnFKyB8Hf1Iw3+RkbG\nnD17SWmZmZlUlMDZtGkdGhoa9O3bn3r1hKD+woXMS/chIc/FnxU9jrll6lRBUzH9kEjr1m1FbUmp\nVCr61c6aNZe1azcxduzE3yJYA6En8OnTVEN6mUyGt/cORowYIdrVqfl9Uc/vqvmf4vRpXz5//sTq\n1StYt24VhQpJM91WW1sbELSyfkafy86uMU+fBqOrq0fJkiX54492P3yszLCxUdUyA6H0aGtbl4AA\nf0C5MbtDh05ig3FabbB27TpgbGyMRKJBVNR7hg8fxaRJgnK8v/817O0dWL5c2TbI0tJK/Dk2NpZn\nz4Jp3foPANzcZlKvXgMcHJoxdeoMcfowJiaGZcsWo6GhiUwmo2pVYXLY1/cCmzdvoHdvF1xd55Ev\nn/KT6+nTJyld2owyZSqJZefVqwUnhuPHj3Ds2BEGDx6W49/Zz2aRnJ078fVrLO3adRTPtWXLVqxb\n58HQoUJGzMfnKEWKCJ+7Q4fOrF+/OdPjBQXdR08vD9HRH4mOjsbf/xqtWv3xU5PVaWVRsiuaKMrY\nv0pk+OnTYFHUNe13MV++/CxcuOyHj1u1ajV8fM7RqpWDuKxfv56sWbORZcsWUbVqNUxMCoolPlfX\neZkeq1u37rRo4UTevPl+eAoyKOgpjx49pHHjrK33SpQwFYM2B4cWP/RefxeGhoZK34/Bg/sDMHDg\nwMx2UfMboc6wqfmfQiKRYGhoxIwZboSHf2DevMWZbmtsbIJMFsOKFWtz/T7h4W/o3LktUqk+/foN\nJCTkDa9eRXD16q1MS7B/B0+fBjNq1BglAU9z89JIJBI6dOiEvr6yv2eFChW5ezeQ1atX8vjxI3bt\n8haDNUjtQUvP8+epGYqUlBRSUlJYunQhrVr9wYMH91m/fg0RERHUqFETKysrrlzxY8iQAbx9G87G\njZ4UKFCAmTPnKJWStm3bwrZtW5BK9YmO/khiYiJ161bH2bkztrYZ9xSeOHGcWbOmIpOlZkm+fIlh\n+/atWfYwJScns3TpQqZNm5Qro+8rV/zEADQlRXm/jh27IJPF8OaNsubgwYP7sjzmhAlTiY39gpeX\nJ0ePHqJYsWK4uWUebGRHSkoKrVoJfYANGzbixYt3WW6vyCz7+1/Jcrucomi6r1SpCvfv38PYWDAT\nHzduEgULFszRMVJSUpBK9WnfXrlRv1at2tjbpwZsDx7cx81tBvHx8dSqJWQIFQGIwl80MwoU0P8p\nyYrChYvQpEnTbB8UPn2Kpnv3znTv3jlHDgT/JHFx1xpVrgAAIABJREFU8RkO25Qt+2Nm8mr+WdQB\nm5r/WTQ0NJg8eRxSqX6Oy1U55erVy6IH5N69uyhQQP+HhUxzgkwWw7t3qgMNCnHaiRMniyW1Fy9C\n6dChE3p6etjZNebQoWOsXbsBEPqnFC4Uaac/tbS0qFatutL0mIKkpCT27dtDmTLlVLJhPj6CKGiR\nIkUpUEAYioiKeo+7+zISExNxdGzF06fB7Nx5gOHDR4mZvho1atKrV188PITMmUJ9X0dHaIJv1KhR\nhtdh6tQZf30OQf8uNPQ5e/fuYvz4UaK3qoKvX78SFvaapKQkBg7sw+LF8/HwWM/Fi1nruX39+pWr\nVy+zdu1KOnRozdu3wmSpQk9LMdSiaIbX0dHh5s37HDhwTDxGSEjm0iEtWrTk4cPn7N17mJ0793H5\n8g3RFuxHuHnzBk+eCKViQWA2a2eIvHmF32FW2efcvX8AIJS2v3//xsePH7G3d2Do0IwnNzNCEXQp\nhJjTMnfuQvFnLS0tduzwws6usRj8FylSlPz5C3Du3Omf+Rg/xbFjh1myZAHXr1/j8+fP4gOUkZHx\nv3ZO6ZHL5YSFvRJ1+N6+DUdDQ5Pp02f9rf+71Pw61CVRNf/TbNniAQiBza9Udu/cuRvR0R/x97+G\ni8ugX3bcrDA1TZVfaNiwMZcv+6KjoyPeHHR1df46t66i2K6CrLIPPXv2ZseObbx//553794SGHgH\nTU1Nvnz5gp/fJWJiPpOYmMSePQe5f/8uc+bMolUroWHezMyM4sVLkJiYyPr1ayhYsBCFCwuesklJ\nSezduws9vTwsWbKA3bsPULZsOYKDn9C4cVMmTJjC8+fP0NXVFUVQL13yV2qoT8uZM6fo2VPo2VOo\nsQ8e3J979wI5cuSkSg+YubkwtdekiYNSkJZdyXDYsIGcPHmcYcOUNanmz58tamwBnDt3RiwLlypl\nTqlS5nh67uDkyeMULJi1VEb+/PmzLa3lhG/fvjF+/Ei0tLRo376j6BWbFc2bt+T69Wu/RDg3bc+m\nnV0jYmO/0LJla2bOnJ2rIEBTU5MyZcry9GkwT548VioPW1hY0a5dRw4fPiD2sKX9HcbExJCcnMyH\nDznLZr19G45UWviXKvr37y9oCy5ZIkwNpx9M+B1YvHg+Fy+ep3v3noDQv5aSkqwkqaPm90YdVqv5\nn+bmzfvcuHHvl9vwSCQSBg8ezvbtuzP0Ibx48RzNmzdCKtXnxInjv+Q9ra2F7Jeuri5SqZAdMTIy\nFm3A3r4VenlevXqZY0NxV9c5YtN2WNhrRo4cxrZtW/H09ODIkUNERkZQvXotjh49ScOGjRgxYgwA\nPj7HWLJkIcuXL+XTp2hWrnTn0iVfDhzYpyTMOXz4KIoXFwYh8uTJy8mT59m5cx/9+gk9M5aWVjnO\nLimyavPnLxGPuXPnfgICAqlbtz5yuVyp3KmwLlJcKxCyrtn1FY0aNY62bTswdOhInJza0LRpM7Eh\ne9CgvjRrJtzgMrrRtW79B+vXb/5HXAQA5sxx5enTYKZNm8HRo0cYNGhYtgM0zZsLn//gwX2Ehj7P\nctv0JCQkMHHiGBo2rM3nz5/Yvl3Iaurp5WHevMXcv/+EBQuWkCdPHqX9FCVPK6vM3QkUAZ5goaTM\n8OGCHdq7d29xcmqNv/81IiIiuHz5Elu3evD9+zeOHDnI+fNnsjz/gAB/qlYtT7FixmJWd+3aVUil\n+qILR25JL0Bcs2ZtMYv5bxIZGYmjoz0jRgxm06Z1LFu2CGfnHnToIAj+xsQIvZ3ZPVyo+X1QB2xq\n/qcpVcr8l0k55JTk5GS6du3A3buC5MaBA3t/yXFPnbpARMQnwsLes3z5alauXIeRkTHjxo1m6NCB\nPHv2FKlUyo0bARw8eAAQbpRyuRy5XK4UGNna1mHUqDF8+hQtNh7b2tbF1XWemBlwdBT6iZ49CxYn\nCtNnp168CMXFpTf+/ldZt84DW9u6nDiRWhpcs2alOKFnY1OdJ08e07BhY4yNlW12csLAgUPZvn0P\nfn6+2NpWo1OnPyhUqBClS1sSFRVFlSplKVmyMNu2bQFg9uwFDB8+mrlzF9KnT3/xemT3+wgJecaR\nIwepWNECT8/t7Np1gNOnfXFwaE6XLs5s376bV68iVXqBpFJ9unfvlOvPlRPi4uJUFPtfvHjBxo3r\nALh79y7x8XGMHDkm22NZWFiJgbetbTV27cqZ+HN8fDz9+/fGy8uTJ08e4+vry+TJQv/j8eOns+zt\nSklJIV++fFSvnrmrw/z5S2jRwklFqw/AzCz1u/v9+3cSEuLx9vbi5s0AMUj//v07zs5ZX/+bN2+I\nP69eLbh/fPkiPGCkL/cr+PQpGqlUX2nftJ+rTx9lmRsfn7O/RYnx8+dP3Llzi717dzF9+mSaN3cU\ngzUQPF7Lli2fa+N7Nf8e//63So2a/0Hs7R0oWbIUffv2x9V1brbbJyYmUr16JTw8NmS5neJGoKen\nR7duPThzxhdPz+1YWZUlJSWFYsVK0LRpc54+fcqnT9F07NiWDh3+4Pjxo4SFvQYEi5rx4ydhbGzC\nqlUr0NbWpm7d+hw9eoqhQ0fQoEFDTE3N8PDwQiaLISgoVQZAIpEgk8Ugk8WwaZNyz1iNGrWoX7+h\nioSB4pxLliyMk5MDpqaF+Pz5U/YXMR358uWjeXNH0ZbLz8+XZ8+Ec9u925vIyAgMDY2YMGE0b9+G\nY2lpxcyZs9HXN2Dq1BligPX06ROl4379+pWgoAdKn0NB0aJGSKX6lChRkJ079//lY+mslEE6fvyo\nqId37twZrl+/luvPlhUXLpzFzExKsWLGSr2YigwJwLFjR1iwYGmOA+EZM9zYvVsI6kePHsabN2FZ\nbp+QkICzc0dOnz4hLhs4UCgDdujQScz+ZoaWlhahoW/Zs+dQptssXDiX06dPZGhBZWBgSP36gsXZ\nxYvnxeX9+qm2IyjKphmR1o+zeHEh2zd58gxksphMH+yWL18CQJs2zVXWhYe/4dEj5czcz0yc/0qC\ngx+LP3fq1IUePXrx4MF9zp07i7v7Uvz8LtGxY+d/8QzV5BZ1wKbmP0diYiIODg1p2bLpLx8myCnv\n3r3NdALs9etXuLgM4NatByxatFypROXp6UFwcLD4OjIyglmzplG8uAlhYa958SIkgyNmTp48eWjd\nui379x8FhECubt36/PnnQ3x9L4rbHTlyWPw5NDSEhIQEzp8/h7l5aZ49C8PAwFDMhHl57eLOnaxN\n7c+cOcXAgX1FU3iAWrWsWbp0IQEB15k6dSavXkXSsaOy1VWfPn0BsLIyw9HRPlcTmwCtWjVTMnCv\nV09Qv1cEgDKZ4KOY1nwehN+JwvmhW7ceSuvKli2JvX19sRerVClz3r2LZsYMN+RyORKJRMxODhzY\nl9OnT3L48AFx/379etKsWSPmz1/CqFHjlCQ2fgWHDqW+V9pA19ramjVrNmBhYUnfvv3p3dslV8e1\nt28mBloREZlPlvr6XqBEiYJcueIHgJFR6iRxixZOrFixLkfvl10gc/DgcY4dO4O39zbatm2pst7T\nczv6+gbplm1U2e7ChcyHSrp378Xp0xe5evUWPXv2ydF5K4Yq8uRRbatQfN/SklvP07+Lfv16iT+X\nLm1Bz57dcHObyYYNa3n79i2LF7uLmVY1/w3UAZua/xwpKSncv39PtGD6FaxatRypVJ/WrZuLmajM\niIuLw9q6HOXKmasEbXK5nNq1q9K9e2devAhVWvf69UsmTBhDuXKpGajhwweJ4r4mJibMn7/kh85f\n4Qtqb+/AkCHDcXR0Ys+eXdja1qF48RJ8+hQtTgXOm7cQXV1drlzxIyrqPefPn+HUKZ8cl8YATp3y\nAWD//j34+vqr9OzMnz8bPT09ihcvIS5r0cIRkIj6d3fu3GLmzKm5+pzphycUwXCPHr2VliucExRU\nrmzN4sXurFmzkdKlLZXWKQI5N7cZHDokNO0rhHrDwz+go6NDhw5CJuLcOT/Kl6+olI1RqOvPmjWV\nadNmqQQVP4uiOV5HR0elN87ZuQfXrweyaNHyH2qir11bkE9RZCrTEhcXx5cvMfTv30t8f4DoaGFa\nuU2btnh57RSnDrNixowprF27ivnzZxMd/THDbXR1dbG1rUNAgD/+/ldV1hsZGXPhQvZSJK9fv8xy\nfbVqNUTR4pywYsVaOnbszObNXirrqlevycOHzwkOfkWtWrbo6Oj88t//z+LqOkfMxnp77+XNmyiu\nXw+kT59+v0XpVk3OUVtT5QK1NVXm/NPWVB8/fkBXVy/TvpPc4uBgx/37dylZsiQgwdfXX8m7Mz2W\nlqbExHwmKOipOBUJQsDm5eVJWNhrZsxwQyKR8PHjB/LnL8D379+oUaMyjRo1YuvWnSQlpVCvXk00\nNCS8eRP2lwzF+xzdANPz/v17GjWqw4YNW2jQoCFxcXG4uPTg/HlBukNDQ4PFi5eJgczz58+YOFHo\nP3Jzm4+7+xJu3LibIxmC5ORkAgPv0Ldvdxo3tmf16g28evWSGTOmKJXMQkLe8OnTJ6pXr/TX65eU\nK2cllqxMTEzw8totBg0KsvouJSQksGfPTs6cOUm+fPlYt26zGKjcuxf4l1l4qVxdN0fHJnTs2IXl\nywXNvoyEdmNiPvPmzRsqVFC27unY8Q+kUimVK1ujra0tuj/khuPHj9CvXy9u3w7CzKykyvpdu3Yw\nevQwJUNxLS0NdHTg3r1HWFmV++Ey3IsXodSuXRWAAQMGU758RUxMCnL8+JEse/2cnXuybNmqHOma\nvXr1kpo1q5AnTx6+f//OihVrcXbu+UPnC4KUS69e3Xj6NDjD9T4+50SNtl/9fykg4Dr58uWlcmXr\n7Df+lxk7dgTe3tvYtm0nW7duJirqAxcvqgbCv4Ot4O+O2ppKjZqfwNjY5JcFawAJCfG0atUGF5f+\nvHr1knHjRmRp5P7s2WseP35B4cJFSEhIwM1tBu/evUUikdC3b39mzpwt3kTLlTOnRImCfPv2jRcv\nwjlyJNXAPDk5ieDgJ+LEWkCAv2gdlJYTJ45jZ2ebaX/OpUsX+PIlhg4dWiGV6nP5si99+wqN9nnz\n5iUlJYXJkyewdasnMlkkEonwp+/g0IJTp3z49Cla7NXJiPj4eNauXcX3798ZO3YETk5NmThxKqtX\nCz13JUuWwstrJ/v3H2XPnoM8eBBMgQL6mJqaMXv2fDQ1NVm+fJlS4/yHDx8oUaJEZm8pBr9pzap1\ndHTo1asvO3fuZ9MmL6WsUtWq1XJtMXbo0D5ev37F58+faN26Lbq6ehnKfrRr50SjRnU4duyw0vLL\nl305cGAvvXr1VQnWNm5ci1Sqz+nTJ7P8jIrSVdrerLQ4O/fk4cPnYrCm2M/CwoL69WuLUhI/grl5\naWrXrgOAh8cGxo4dQe/e3VSCtbSZUhCyijkVoVVcT8X3+meCNYDSpS3x9fVn2rRZ6OnlUVn/4MHd\nHB/Lzs4WqVQ/R6X5yMhI2rRpjr29qr/t78jdu4Ho6OhSoEABvn37rjQtrea/iTpgU6MGoWTm43OM\nWbMEYdbDhw/StGnDTH1BJRKJ2MB88OA+1q5dSa1aWT91a2io3uB27txHlSqp+3Xq9AdlypipCIj2\n7dudx4//VGlwVrBhwxpq1EidwOvRowuTJ48HBK2ubt160KdPf06fPsnIkcMwMjKieXNHLlw4K1oJ\nbdy4NsNgceDAvpiaFsLNbTolSxbGyqosefPmU8osCp9PAzu7xjRp4kCRIkXF5ZGRkSQnJ7N27WqV\nYGjv3l1kRlTUeyZOHIO1deY+jBER78Rg90cYOHAoN2/eZ8GCpZw4cYz4+DhiYmKIjY1l7lxX0ed0\n2rRZmJqaUa1aDaX9X7x4x/HjZ5UeHi5fvsSQIf3Ztk0YyggMvJ3p+ycmJqKtLZQaMyoDKjA0NMTO\nrg4dO7Zh8eL5AJQuLZRlc2o6nxnHj5/h3r3Hop0SQOPG9tjZNcbQUCjBhocL4sFaWlq8fBkhPozk\nRMm/VClzBgwYTLVqNZgyZQYVKlhQuLABGzfm3mFEgba2NqNGjePChStiiV2xvGzZnFl8JSUl8fix\nIDi8a9cOlb7H9BQq9N+Sv3B0dEIuT0Emk2FiYqLSoqHmv4e6JJoL1CnjzPkvp9Wjoz/i4GDH69ev\nlJZra2uTmJhI+/Yd2bBhS6b7h4aGMGRIP7S0tAkNDeHDhygkEgnVq9dAR0eXFy9CKVasOFu27MDU\ntESG12n8+NFs376FPHny8v37N3r06M3y5UJvW1DQffGpvnFjezw8vFT6ZKRS4aatr69PTEwMhQpJ\nVUyuHz0K4du3r9StW53ixUtQtmw5zpw5Ja53du7J4sXuvHz5gkmTxnL//l1RTkJxLQD69RvIggVL\n+f79O1paWko3zIx4+fIFM2dOoUyZcty8eZ2KFYXymI/PMc6du6TSl6X4Lslknyhc2Iju3XuJfWJp\nWbZsEYsWCZZOnp47RBHb9Lx5E4a+vr7KNZs6dQIlSpgydOhIAKytyyll8wD69u3PokXLs/x86VH8\nLgDOnLlEhQoVsyxzh4aG4Ofny8uXL3j5MhQvr11KJc7Y2Fhu3QqgT58efP8u2G99/BiLkVE+zp/3\no3z5ShnaDeWGhw+DGDlyCA8fCtOyhoaGfPqUOuDQuXM3evToQ+3atuK5XbniR4cOrVm3zoOOHbso\nHe/Tp2gaNrTF1rYOmzZ5ictTUlKws6sjTjBm5vP6+fMnoqLeY2FhleH6tCxePJ+lSxf+9bM7ffr0\nE9el/78kl8uxtbXhxYtQataszYcPUaJh/bZtu3F0dMryvRQDNIrer6Cg+7Rs2ZTr1wNF8effhdjY\nWOrUqUaJEiVo3tyR+fPnsH//UezsGitt91/+3/1PoS6Jqvmf5uLF89SvX1NFVPJ3xNNzE+/fyxg8\neCgg9MCUKGEqBihmZqUy3Vcul+Pjc5S7dwMJDw+jS5euVKtWnfbtO1C8eAkMDAyoWLEiL1+G0ru3\nc4bHSElJEYMNxQ1ZKpWKZRozs5I4O/dCIpHg63uBP/98xIEDe/nw4YNok6QIaBTNxemDNRDEfEuW\nLMXp0xeJjY1VCtbs7R1YsWItOjo6bN68gYAAf/r3H8jo0WOBVP9JxfW6du0KdepUo3hxk0ydAxYu\nnEOxYsbkzZuP7dv3MH26KwEB1/H03MiaNSt4+TIUPz/fTK+ttrY2z5+HZRow7dmzU/z5xImjGW4j\nl8upV68GlpamHD9+RGnd5s0bcXWdLr5OPzVoZVWWqVNnZnp+GXHrlrJWV/Pmjbh61S/LfUqXtsDZ\nuSfr16/m1KkTjB8/Wmm9m9sMunRpj4tLf5V9hYeCnwvWYmO/YG9fXwzWADFYmzJlBu/eRbNmzUZs\nbesoBZKK8nP6AQ8QhhgiIt6puA9oaGhw5coNnjx5QVhY5hZaLi49qFOnOvHx8QQHP8l0O4CxYyci\nlQpaYooBnsz48iVGzDTVqmUrBmsgWIZlh4aGhlKjfp8+3YmPj1fJXt25c4sqVcoSE/M5/SH+MfLn\nz8+SJSu4c+c2EomEcuXK4+Y2PVunDzW/L+qATc3fQvfunXj6NBhn547/9qlky9mzp6hQoSKbN2+i\nY8cu1KpVm2XLVlGlSlWaNWuBhYVlpvvOm+fG3Lmu9OzZm0OHjjFkyDC2bfPG1XUOc+fOZ/Hipbi7\nr2LgwCHcv3+X5ORk5HI5mzat/0tEtjZFihiyapUQlPTrN4CyZcuxfPkSFi8WskcGBoZ8/RqLXC6n\nTp16dOr0B0OHDlAyI3dzm8G1a7d58EB12g+galUbKlWqzNChAzA2NuH06YtiKQ6gSZOmgNDUHxh4\nG2vrqvTrN4Bevfr8NTjxkVKlzMXtv337KsoXXLuWOrm3YsVSatSozNixI1i+fAlJSUk8fPiAt2/D\n+fDhg1IZtXLlKqxbtyrLUpS+vgE6OjrExsaqSLhs3ChkPZs1a4G7e8blNYlEIuqq9evXS0mO48aN\ne9y8eV98PX78ZGSyGM6d88PQ0JCyZcsxY8aUXEnHZDS53K1b9n8Durq6oh2TwjxdgZaWUEo3NRUG\nEqytq+b4fHLC3r27MryJb9nizZgxE9DU1OT9e9XgysysJDJZjEqZGAS1/4cPnyv5q6bF2NhEJeso\nl8vFAKdHjz707dufJk3q0aBBrSxtp7S0tKhVSxhcefEiNMveU319AzZu3MKFC1ext3fAyqosFStW\noksX5x8a3FBMLSsEjBW4uy8hIuIdV66oeqP+kzRv7oiNTTX27dtDly7dePgwCB+fjH8nan5/1AGb\nml9OYmKimB169uwpL1++/HdPKBsKFy7CnTu3yZs3H4sXuwNC6fHUqQucPXuaESMGZ6ittHHjWlat\nWs748ZOYOHFylkMQ4eFvKFasOJqamoSEhDB58gQaNqzNkyeP/1ovHD85OYUxY8ZTuXIVTp1KbVZX\nTMRdv34NV9e5LFu2ikKFpISEvKF69Zp8+hRNvXo1MlXab9u2I8OGDeLAgb3Y2lbj0qWLHD0qHL9e\nvQYMGDAEgK1bPXjw4D4DBggN9BKJBFvbOlSoUJFt23YrXbP9+4/SuXM3pRv2/Pmzef36Fd7e2wDB\nHqpOnXp06NCG8uXNlW7SQUEPCAy8k2WP17t3bxkypD+lSxdj0SJlAeJq1Wrw+rUMb+99KlZIaene\nPVWPatAgF3r16opMJsPcvLRSEKrA2tqGp09fExv7hT17doqK+DmhYUPlctOYMRO4ceNejvYdNGgY\ngGiDpWD27AWMHTsRF5cBhIS84dSpixnt/sMcPaoqZtulizOtWrUR11esaMHw4aoTsFZWZlSuXEZl\neWxsLJcv+/Lt2zelZZ07t6V580Yq2z9+/CeFCxtgaWnKjRsBtGvXkUWLlhMREQGAgUHWUhlpS5np\ns5zpadeuI5UrV6F9+1Y8exZMr14u4vBMblFkFxWZcQUzZ85h4cJloj3av4VEImH8+Mk8e/YUHR0d\njIyM6NevZ5b9kmp+X9QBm5pfjra2NpUrW4uyGLVqVclSffzfZtmy1SxatJxz5/yUpDy0tLTEKUSF\nj6WCy5cvMWPGFFxcBtC7d59s36N8+QqEh78hNDRESW0dhL6bM2cu4uTUBi8vTwYP7k9Q0APMzEoS\nHx/P8+fPAMRer+3bvahTpx4gNJz7+JylQQM78ufPT1CQkDGqW7c+Bw4cY968Rezff5TBg4cxfvxk\nAOLj41i3bhXVq9fk0qXrovr8/v17mTFjCgBDhgwUy6rBwU/4889HlCtXnvXrN7NgwVIqVqyMnV1j\n1qzZqOTT2rBhI6VrmJCQSJ48eZg9ex6DBw8Xs2Jp8fHJuJwZHx+PtXU5Dh4UmuHd3ZeqlAv19PSy\nvfbt23cSs6QjRozk9OmTbN+eeU+igkuXhMAoX77M5V3SU7FiJd69i8bFZQDW1ja4uAzIkTVauXLm\njBkzHIBJk8aKy8eOHUHx4iZMmCD8XgoU0P+lpuXR0R8JCLguavQpWLkyNWNUsGBBAPbt282dO7eU\ntouN/UJkZARRUVFKy48fP8LQoQMwN08dPjlwYA+XLl3k4cOHhIW9RirVp1gxIZuY1rXhzp1bPH78\nJ23bOtGqVRtOnbqQ7We2s2si/uzvnzOniaNHhZaA7IYNssLWti6AKCqsoEyZsri4DPghiZ5fTb16\ngkPE/v17mTnTDSurMowbN1JdGv0Pog7Y1PwthIW9JjY2Vnz9+PGjf+R9374Nx8KiBMOGDcxyuwsX\nzlKqVBHq16/JhQtn6du3v3hjlcvl7NmzE3f3xSQlJWFpaaWUOZHL5axcuYwKFSowatTozN5CiaZN\nHTAwMGDlSncMDQ1xd19F06bNOHPGlz59+hEbG0vlylXYtesAZcoIU5H58+fH1LQQdetW5/HjR3z+\n/InChYvw+PEjLlw4Kx5bU1OTgwePc/p0aj/Y8+fPaNiwEQMGDMHOrjEaGhpKWYj372XMmTOLRo3q\nYGlZArlczowZQkCnMINu0sSOmjVt+PjxI2ZmJZFIJHTo0Jl+/QaiqalJZGQEUqm+Uobs69evSr93\nQSxXkA+ZPXs+1avXZMsWb6VrM2zYqAyvmZaWlig5oQhW0w+G5BSFE0RIiNCzdP78mWylHKZNE/rX\nnJ17ZbldejQ1NVm4cBnnzvmpTNJmREJCgtK05bZtuwkNDWHPnp1i0Jw+g/OrUATDaXseq1atptSn\ndeKEj/jz9ev+SvsrMpSdOikPfLRp0w4AHR0hYBk0yIWJE4VANDExgS1bNgHCpKZUqs++fbv4889Q\n9u07Qq9efXn/Xoa//xV27/bO0n8UhL/HUaOGiK8VxwahP7Rt27YsWbJQZb86deohk8UwZMjwLI+f\nFfb2Dj+87z9F3rx5mTNnAQ8fBqGvb0CHDh0JCXmerR2Zmt8PdcCm5m8hbVmnTZt2WFqqlk3+Dq5e\nvcyXLzHs379H5ak/LcuWLeLbt288fRqsYmWzefMGRo4cwsKFQg9ZQkKCUmO3u/sSrlzxo2/f/jlW\nCtfT02Pw4KHs2OHFjh076N3bhV27DmBjUx2Ali2bsnDhXDQ0NLh69SYyWUyGx27btj379x8lNjYW\nqVSfSZPGEhAguByUKVOWsLD3uLrO4/jxM4Bww5o3z41Klax48yZMnKD78uWLqCkWHx9PSMhzMTP2\n4UOUmBmIi4tjxIgxBASoalspbsAtWqRmN7p166F03q9epQZYcrmcy5cv8fy5cp9dZGSEyrEvXrxI\noUIGNGvmiEwWw9Onr/D23ouHx1aVbXNCiRKm9OjRm5MnBWHfwMA7uLpOy3KfUaPGI5PFKGUQ/w7i\n4lKlVPT09Khduw6TJo1l5MghzJ27iBMnzpE/f4EsjvDjNGmSGnAoysr37gUquX2UL59qxq6Q+UhK\nSmLx4vminVl6uZlx44TJ24SEeOLi4lR+5wcPHuDVq0iOHTsNwI4dXlSoUBpDQ0Py589Pw4aCuHRa\nqZHMePXqpdLf8Pfv35HJhAA0Pj6eo0ePsmAjQIXEAAAgAElEQVRB9n6+P0LhwkU4efK8mK37XWnb\ntgNJSUkEBz8WM8ZpH6zU/DdQB2xq/hYU/ThDhgxn8+Ztf/tNT0Haqaw5czKe8IuPj+f2baG04+TU\nmrlzlZ++Hz5Uvvkobiog9McsXDiXIUOGidmjnNKjRy8cHJoxbdo0JQFZSJ24a9Ag1Sdz7tyFFCtW\nXGm7jRvX8eTJn6Kcxd69u+nUqQ1ubjMoU8YMD4/1DB06AnPz0sTFxTFhwmhWrlyGTBZJ8+aNcHEZ\nIB6rb98BDBw4hHbtOlKyZCk8PbfTuLE9UqmUs2cvMmrUWLS1tenbt3+GJanly1eTJ08eVq1aLy4b\nP34UKSkpTJgwGUNDQ+LjU8tNTk4OdOzYhvnzZ2NjU00MEObNc1U5tqmpIJGQnJyMVKqPlZUptWvX\nUZEAyQ2KKUiFjVZWfW+5JSLiHVKpPvPnz1ZZN3euKw4ODYmPj0cq1WfUqKFK6/X1DZDJYrh9O4gn\nT14CgoxG9eo1MDMrSc2atX/ZeaZn797USVt391X07i14vT56lNoCkNb2q3x5wenh/PmzopQGCPZN\naUlbIjQzk2JrW5dVq9bTpUt3AIYNG0mePHmoXbuOkhxL2klqJ6fWODi0yPYzGBsbqzgPHDlyEOCv\n7+cqVqxQlYX5VdSoUYs6deoxc+ZUbGwqZL/Dv4CWliC9k5ycQkDAdYyNjbMcplLze/LrmiHUqElD\n8+aOREZ+/mHLnB/h7dtw3rx5I77OrEdDV1eXuXMXIpPJmDZtlso5tm79B7t3p5bt0gZNR48epmjR\nYqIESG6xsanGuXNnSUpKQksrNWuXNihUYGxswtq1m2jXTlkbavVqd4oUKYKzcy/27t1FdPRH1q5d\nibGxMbNnz6RgwUJ07dqdBQvmsGOHF+vXb6Ro0WK0bduax4//JCzsPXK5XKX/y9rahk6dujJ06ADs\n7IQeufz582eqL2ViYsKrV6rm1wBLliykSJEiDB48TFxWu7Ytt2/fZMsWbxo2tKNLl/bcuXOL0FBV\nQU8rKys+foyla1dhwjImJgY/P1+x1PYjbN26k6VLFzJz5hw+fIjC0jJ7ja+c8vmz8KCwYsVSKlWq\nrHSeiglgiURCzZq1M7SfApSWd+rUlU6duv6y80tPbGwsTZs2UJK1uHTJlz17BCHjtI4REokECwtL\npSxs2kGFwoWL0KJFS27duoGTkwMSiQQvr12sW7dK9Lj18BCa+mWyGFavXq907KVLV3L8uFCyfvfu\nLe/evVXxjM2Kkyd9xN5NBdOnT/rrQUOXESNG/CMaYxs2CEFhSkrKb+fRefaskAE0MDDA1/ciAwYM\n/mk5GDX/PL/Xt0rN/xT/ZLA2ZswIqlYtz7p1qwAh0EifOUvLwIFDmT7dNcNzTCt3kZ4XL0KwtLQU\n/yHHxcXx8GGQGBz6+fmye/fOTPXnFDf2nNr6pO8zKVBAn+rVayKTvcfTcxPh4W/ESTx7e2EibeTI\nIURFRZGUlIiZmRn37t2jbdvWFCigT4MGjdDV1c2wWf/Llxik0sJMmzZLXJbbsklAQCCrVq3n3Dk/\n7tx5pGS0PmvWXGSyGFq1aoO+vgE7d+6jRQsnnJxaZ3o8N7d5lC5tgZ1dE1F65EcpXrwE7u5rMDIy\nwtLSioAAfxYsmM3Lly9ydZyM3CDMzEqKwUxafbu0aGpqcuLEOcaNm5T7k/8JAgNvK8liREZGULp0\nMTFYMzAwZNSoMWKzfqdOXZXKoADHjp3hxo17lC0r9Fcq+j3nzVvE9et3MDY2wcNDCMQU2oQODs0B\n5UB0wYLUDKRCX83IyJjz51PlL9IK9uaELl2c6ddPtWf1Vw5n5ITnz8M4ceLcbxesyeVyli9fTK1a\ntQkPf0Nc3HclcWE1/x1+r2+WGjU/yP37geLPLVu25tmzMBVl+5xSqVIVpWOlpWDBQkRHp+o8rVq1\ngm7dOjNp0ng+fvzA8OFDmT9/Lq1aOXLq1AnSc+vWDRwdHVXcATw81lOhQmmVvrs//mhPr14u1K/f\nkLlzF3L4sA83bgSgqalB8+aOTJo0jW7deiCVFlbSGEtOTiI5OZnXr1+zceN6GjVqwqlTF8SJv/fv\n3+PpuVHpvVq0aELHjm2Ii4sjIuITe/ceJjAwd8MipUtb0rVrd6ytbbJ1QDA2NmH79t3MnbtIZV1I\nSAgTJozh27dvzJ+/mGnTZuZqWjMjXF2nc/r0STG47tGjM+7uS6lVyxqpVF9lAjIjTp06QcmShZWG\nPkAovd2795hTpy6wZs3GDPdV2Fz9k6xa5U6LFk0oXz5VvkRRklUEFtWr12DlSndev36FgYGh6LCR\nlkKFCilNu06cOBWZLIYBA4aI/XVr1mxi1KhxANy4cV3MzNaokVrSVfxNeHtvo0GDWtjbN0Aq1ef6\n9WvIZDHIZDEYGRmxdu0qsQ8tISEhy88okUho0KCR+FpDQwM9vTy50s/7FejrG/xt5euaNasgleor\nZURzypMnj3n16iVNmthz+vQpWrRoqeINq+a/gTpgU/M/wenTvvj5BXDixDm2bNmR4wxWRpiYmHDh\nwlV27Tqg0vtiYWHFs2dPefPmDXK5XMwSnDp1kiFDlHWq0vefXblymcDAQM6cOcPnz8pZhGnTJhEV\nFUXnzm2Vluvp6bF06QoOHfKhe/fedO/emY8fP5CYmMjMmXMYN24SK1eu4/btILp3703x4iVwdZ2L\nVFqYESPG0rt3P3r1cmHr1p2UKVNWPG7FihZMmTKB0NDn4rKBA4cilRamWLHiFCliyPXr136p3U5s\nbCxt2rRgxw6vbLc9e/Ysnp4e2Ns3oGvXDjRr1ggbmwrZ3oRTUlLEPkZf3wuinExw8BPWrVtFr15d\nRWmQ9DfXnARUisxksWKqNzx9fQOqV6+pkrWtWtUGIyPjX9ozl1MqVapE48b23L4dxI0bAUyfPkk0\nmVeU7tKazi9fvjrXUhRfvsSQkpKCjo6OKB2jra2Nl5cnRkbG3LmTKias0B28fFmYaFZ8/2bOnArA\nlCkTqFKlLG5u06lUyZIFC+ZQokTBDLXi0pLWpSAlJYW4uO/ie2WETCZDKtXn3r3ATLf5nVBkKU+c\nOJ7rfRVewd+/x/Hq1UtcXLKeoFfz+6IO2NT8T6Cjo0P58hWoWbP2LylJvHr1EmfnjuIkpILevftS\nsGAhWrd2pHbt6ty8mSrS+eefj1iwYDFHjhwnKOixkiL9s2dPmT3blXz58pGSkoKf3yWl427dKjR/\np7dHSsvnz5+UJioV2TIQAolt2zwJD3+Dq+t0nJ07YWNTnnbtOrB06QoVUd85cxZQurQF5uaptkK9\ne7vw8OEzihQRpChOnfLhV/Dx4weePXtKcPBjAgL8xQnCzEhMTMywVC0YvWddol2wYA6WlqYMGNCX\nLl3aUby4CZMnj6N0aQt69OiNlpYWjRvbExT0gAsXhPLV0qWruHTpOjt3bmf3bu8sM22NG9uzadNW\n7OxsGT16GKGhIUil+lhYZJ6xOHvWj+Dglz/dIhAc/ITdu72zVPJPT5MmDuzde5jTp0/QunUzNm1a\nr7Q+bQBcrFgxUSw3p1y6dBELixIUKSIMg+jq6iKTxeDo6ERAgD/R0R+pWtVG3L5gwULI5XJmz17A\n/PmLmT7dDV1dXdq0aUtSUpJK1vf6daFMW7hwUbJCQ0ODmjVrKS2LjHyX6faKDOnChX/P9OjXr1+J\niMj8/XPLwYPHefz4xQ9JkMhkQp+pYtAqbX+imv8W6oBNjZoM2LxZaJI2N08tJZ086cOxY0c4e/YS\nc+YspEuX7rRp046ePfugpaXN+PGTMDc3JzExkcjISL5//87nz585cGAfPXs6Y2xsjI/PWQYOHKjS\nj+Xk1BqZLIa+fVX9IhUUK1YcT8/tgJDpe//+PZ07t+XixXPEx8crlYUUN6T9+/dkeKxBg4YREHA3\nwyDCwaEF795Fc+WKqs1STvj8+ROVKllx+PABEhISKFfOnHr1ahAV9Z6bN+/z6JFyWScpKUmp7HXl\nymWGDBmS/rBcu3aLAgX0SUpKolGjOkil+ipWUPXrCyKhL16kZg63bPHAz+8iy5ev5u3bj7Rq1YbJ\nk4XSXUpKCuPHj6RRozrs37+HUaOG4uhon6VGm0Ljb9euHdjaCsHIly+C8Ou9e4HUqFEZa+tySKX6\n9OzZRWUi+Edp0KAWo0YNZdAgl1zva2RknOHytBOaDg6OuQ4q0/aJJScns2bNSqRSfe7eFTJX3t57\nWbMmVRdtypQZSCQSihQpSpMmTZkyZTzm5qXZtMmLuLg48f1tbKpRrFhxUlJS8PE5S5s2zfn0KZpV\nq5YjlepneE3TT5RmlY3t2rU7Bw4cY/Pmbbn6vACTJ4/DzW16puuDg59gbl6UKlXKZrrNj2BiYvJD\nfXmK6WjF5PW7d78ukFTzz6IO2NT8KyQkJFC1avm/7Qn3Z+naVZAfUPSwJSYm0qePM+PGjWTTpnXc\nuhWAl9dmjh07TPnyFdDQkLB06SK6du1Ep07tadq0EbVqVaN+fVvc3GZRsWJlHB2dsLa2ZuPGjUpu\nAJlx5YofUqk+ZmaFxUZ3hQ1USMgzNmxYw6VLF+natQOOjvbcuXOL3r37Ubx4CTp27AKQ64yJgsxK\nyrGxX5S8QzPiwYP7yGSRDBrkgra2NsOGjUIikdCzZ1dq1bKmbduWfP78ibi4OJYvX0y5cqUoUaIg\nNjYV/grGGuPq6qp0zD17DmJhYUVcXBwdO7bhzz+F3roBA3orlb7s7Bojk8WQJ4+yjIxCL0zB0qUr\nsbNLFUOuUKGi0npf3/NkxtmzfowdO1F83aJFSx4+FNwogoOf8Pr1K969ewsIAwgZBX8xMZ/x9t6W\nKwcQRXDh6NgqR9u/eBFKy5ZNkUr1GT16GLduBbFoUarNVoECBbC3b0qJEqYYGBiwZIl7js9FQf36\nDdHU1ERLSwtNTU10dYWBHRMTE968iaJHjy6YmgpCzFpaWkpDKKVKlWbSpGls3bqLpKQk8ufPT2Sk\nUM6+ezeQt2/DuXkzgC1bPAAICwvjzh1BpLlYMWPOnVOerB4xYgxFi6Zm4sqVy1xiQyKR/OXKkTt9\nOw+P9WzZ4sHatasy/d0VLVoUO7vGjB07IVfH/ruYOXMOkJpZSyuSrOa/hUSu9qfIMf/EaPh/FS0t\nDYyM8uX4GoWFvaZ69UqAMOr/uxMXF0eDBrV49eolenp6xMXFUaZMWZ4+DWbu3IW4uAzk+fNnJCYm\nkpAQz4cPUcTExKCtrU3ZsuVo2FAwp3737gNFihjn6DqNHTtC9OTcuHEL7doJEheHDu3n1q2bNGzY\niN69uwFC/1RMzGdev5ahp6dHcnIyV674UaNGrRwFhyBMEz579pQuXZwz3aZ06eJ/2REJki1jx44g\nKOg+584pm1w/efKYQoWkmJiYcPv2TVq2bIqWlpaYGQkICGTSpHH4+fkq7Td9uitjx47H0DAv9eo1\n4Pr1a5w754e1tZDJWr16haivN3nyNFHcOCzsvVLv1datm5UsnvbvP6oUoCk4ceI4fft2V1l+5oyv\nKGqcES9ehFK7dmrJ28DAkM+fP2FrW1fsGTI1NUVHR5e1azdhalqSQoWEwCUw8DZHjhxkw4a19OzZ\nh2XLVmX6Ppmh+Ht78OAxUmlRlQD76dNgunZtz8ePH/n27au4vFy58koBboECBfjy5QuQs7/DlJQU\nPn78qFSOj4n5THx8gvj5pFLBPsvIyDjD4CDt+8TGxlK6dDGl5QkJCSQlJTFt2kTq1q2Po6MToaEh\nVKlSVem6e3vvpVmzVC3E8PA3Sjponp7badeufa7+L2WHv/9V2rZtiaWlFf7+d376eP8EX79+xcKi\nOIMGDcHDYyPTp7sxdOgIcX1u/3f/f0Rxjf5t1Dpsav4VTE3N8PE5h5GR0b99KjlCT0+PW7ceIJfL\nxX4dhSG7uXlptLS0KFeufIb7Jicno6ury6JFy3PV0N2smSPe3tvIn7+AGLCA4I3Zvn2nv+ykZhMS\n8gxX17l8+/YNN7fplCxZColEgxkzJqOnp8fr19k/UcvlctGxoFOnrkp9gElJSZw7dwYHh+aYmprx\n+PEjvn//Tt68eYmIeMf9+6rm5mmvhaWlFSYmBZHLUzAzK0W7dh0pXdqS5s1b4ufni76+ARKJcKP+\n9CkaY+P8HDp0iGPHTiKXK5foqldPNZpfuHAe2tra1KhRSyVgUZR/NDQ02L59Nw0bNmLTpnW8ffsW\nV9fUrK6TU2sqVqwsKvXPnDmHqCgZzZs3Zvbs+QwenHHPUNGixdDV1SU+Pp6OHTtz4ICgyJ+SksKS\nJSvo1q0HycnJBAXdo0WLJkilhXn48JnSdQZB4X/p0pU/1N+2cOFCpkyZwh9/tMfDw0tpnavrdL58\niWHAgEEUKVKUBw/ucenSRZVGfA0NTZYsWUHduvUzfZ/Q0BDR5Hz27JmsW7cKd/c1dO8uWHaln8Ze\ntmwV06ZN5P17GRcuXMXePvXYisyvAsWASFr7KR0dHXR0dHB3Tx34qVJFCNLMzUtnGlgOHqwsVZFW\nhDqnBAU9wNzcPNPMW9269f8TD5hpyZcvH1ZWZXj+/DkVK1bm0KF9SgGbmv8O6oBNzb9GrVo5G4F/\n/foVurp6FC5c+G8+o+yRSCTcuvWAkJDn3LsXSEJCgpK9T0ZoamoSFvY+1+/VvLkjhw+fwNTULEOx\nVYlEwogRwsRjYmIiTZs2VPLa1NXVw8trl8p+Dg523L9/lw4dOrFmzSY0NTWVesHSBg+RkZFUriwI\nzFavXhM/v+vI5XJxm127DpAdhoZGPHr0HLlcrhRYubgMoE2bdkilqcbjUqk+AO3bt88w+1S3bn3s\n7R1EK6LExETq1q2PhUVxjI1NuHTJHwMDQ2xt67Jhgyft2nVEIpGQnJzM9OnCBOPbt2/YuHGr+BnS\nZiB9fI6K3qh37ypnUI4cOci0aZNwdu7JuHGTWLVqPSNHDhGDtfPnL1O5srV43IsXz7Fz5w4gtfFb\nIpEwf/5ibt++xaFD+wFhiq9OnXrZXsf0NGvWjM2bPcXvAAiDGefPn+H8ecGa7N69uxgYvKBOnboE\nBz9R6l8qWrQYjRs3ZcKE0djYVOPMmUsq79GlSzt8fS/QoUNn1q/fTKtWbfDxOZrpwwkIgzOK4Rnh\nAacoERHvGDt2olIpGYS+zLdvP/4SzTRFGVwikZA/fwEMDXP3MBgc/AR7+/oUL16Cu3f//Onz+Z2w\nsanOzZvXsbGpzo0bAf/26aj5QdQl0VygThlnzt+VVv/69Svm5kJfys882crlclxdp1O1qo1YWvw3\n0NLSYMKEUZQpU56SJc358uUL+voGNGzY6KekSFavdmfuXFdat27Dw4cPCQ0NoVChQioN/nK5nFq1\nrEVh3wEDBjNv3mK+fIlh/vzZ9O8/CAsLIUCLj4/H1rYq4eHhgJD5uH8/mEGD+hIS8pzAwEc/NfnY\nsWMbLl++xIoVa0SD9cGD+4mBzOHDx7G1rc+ECaNp2bIVTZsKQqzfvn2jVKlUU3VFpivt50mPkI2c\nwqZN6wC4cOEKlpZlyJMnD56em5gyZXym5+nk1Jro6Gju3LktWm2NGDGahIREHB2dMDIy5tu3ryom\n5Yrgs2HDRsyY4aaUJY2KiqJCBUHXzMtrFy1b5qwvTUFmf282NhUID3+jsv3o0eNZuXIZcrmcKlWq\n8u3bV1q3bou7+xIAJk2apiLoK5fLMTcvJpZUMysrJycnU7SoERYWlly/riqTER8fj7a29t8uKNu1\nazsuXryAhoYGKSkp+PvfoVy5sjn+v/T58yd69erGqFFjs30I+x1QfL+eP89ec3Lr1s1MnTqBrl2d\nOXhwPy9fRoi/D3VJNHt+l5KoeuhAzW9B69bNadCglqjar+BXSUs8exbM+vWrGTTIheLFTbJtnP+7\nCAt7jaenJ5Mmjadr1w4MGNCHLl3asWTJ/Cz3+/btGydP+tCkSX2OHz/Cy5cvkEr1kUr1CQt7zZw5\ns0S7qd27hYxPeq2wZ8+eUriwAW/ehFGkSBHy5MlDgQLC/gUK6LNgwVIxWAPw87tIeHg4xsbChOHs\n2QtwdGzC5cuXCA9/g5OTA7NmTeP9+9xnDyG1lDZ69HB27tzOrVs3ePtWCA4XLlyInV1jtmzZhLf3\nNi5fTvWmzJs3rzgUsn79Zh48CKZTJ6GXz8NjA23aNFfKNIKQdZk7dyGhoW//ytI1oGTJwmzYsIYT\nJ46J25mamqmc54kTx/H3v0rTps3EjN2jR4/YuHEtbdu2pEyZsirBGqSW8fbvP6oUrIEgyVK7dh3K\nlavw0w4OCnx8jonBmolJQaV1q1YtFwWDV6/egL//HapWrQaAlVWZDN0XJBIJFy6k9iZm1qyuaL4P\nCXlOWJhw3R8+DKJCBQs8PNajq6v7j6j/580rZEoV06HOzpk/mKWkpLBu3Wrx+wZCH+LRo6f+E8Fa\nWk6ezP5/pI1NNZKTk0lKSiIuLk7FQUXNfwN1wKbmt+DGjesEBz/hxQtlX0nFP/rOnbv90HGFLJEN\n9eunajQlJibSrp0TFhYlcHHpQVjY6x8/8b/o27cHUql+tqKwJUqYUqlSJfF1kSJF0NPT4969u1nu\nt2/fbvr0cebhwwf069eLhg1tkUg00NLSpnjxEgwZMoLixU05duworVoJjdgjR44R9y9Zsgj16gn9\nX8nJyURERJAnT15Wr3anZ8+MPSsV/o8fP35EJovB0tKKly9f0LixPYULF+H27ZusX7+aVq0cRFmL\n3KClpSVOro0ZMxwnJwdsbevQpk1bJk+ezNWrl0Wdu/Q9N6tWrUcmi6FDh84YGRnz4IHQR1ehQgUe\nPgyiRo3KGYqiRkS8w9//qvh65sypjBkjTPOVKGEqTtRpaWmplOkKFSrE4cMHkMvlTJkyHYlE+G6m\nzYwmJiYileozcuQQzp+/jEwWk2kW8vjxM1y+HJChTVhu8fBYj4tLD/G1oodv+/Y9LF26EmNjE0CQ\nvlDYTtnbO1CgQAEVN4+0WFhYsXfvYQCGDh1A+/atlDx6nz4NJikpia5dhfceOVJwUdizx5uoqPdM\nm/bP2XDVr99A6XVWyd/372W4uk6jatXySrZdfwe/StYlPcHBL1m82J327Ttlu22FCsL/HIWTytev\nX7PaXM1vijpgU/Nb0L//IKytbShQoADe3ttE0UknpzasWLGWxYtzLzkAQiCYmZ3Lly8x+PgcY+fO\n7Tk6VlJSUqY+kYosTUblqLRIJBKCgoL4+DGWo0dPoaWlTZ48eRkzZmKW+9Wr1wBNTU2k0sKULVue\nAgUKAHKqV6+BhoYGbm7z2LJlOy4uA+nZsw/Ll69WuhF//y5kLsuXT5WvKFWqFG3btufPPx+q9GsB\nYhaySpWqpKSkUL58RfT09PD1vSD2ZIEwMenpuUll/7R8/vyJS5cuIpfLuX//LnXqVOPIkYNYW1el\nV6++2Ns7UK1aDY4dO8KxY0cAIVj38PAiMvIzRYpkLZxqampG3rx5mTHDlZUrBWslX98LKtspMm/H\njgmSEJaWVjRoYEd4+AeuXw+kZctWzJmzAD+/AHbsEDTsFCbZXl6e4nGsrW2IjPyETBbDhAmjkUr1\nmTJlguhlu2fPzizPNyvkcjlnz57KleSNoo9OgeIBoEEDOwwMDIiKErKgW7bsELfR0dEhJCRcyTs2\nI1avTv3bu3r1MhER7wgNDaFWLWvq16+JlZUpo0cLunaK78zkyTPEff4pS65ateoovTY0zFh7DgTD\n+p49+wLCw9DfxdWrlylWzFjJTeJXYWRkTJ8+/XJk4p6QIPwOFALaSUk5l5NR8/ugDtjU/BbMn7+E\nc+f8qFevJmPHjhAzVbq6ujg79yRv3rxZHyATFNNtBQsWwsjIiEaNhAm9Fi1asmvXfiZPnk6PHr1z\ndKxx40bSs2cXjhw5qLT83r1ASpUyx8NjG5MnZy6omZ46deoRGPiIJ09eULu2bZbbWlmVYceOPchk\nkZibl6Z3bxcaNGjEvXt3OXbsMO3aOeHuvoTAwNsUKlQIZ+eeSpmfwMBH3LnzkDNnfLl+/Q4bNngS\nHR3N/v17ATAwUO2BOXv2EgAPHtwjKiqKQoUKce3abTw9t9O7twsWFpZMnTqT8eMn06rVHyr7K1i2\nbDFNmzakc+e2FC5swMyZU0RdtJo1a1GpUmXs7Brx+XM0BgYGjBkzns6dO4uN+Dnpk1u/3oOaNWvT\nvXtXpk+fhpaWlpLkg4ImTZoSHv4BW9u6vHkTxYULQrZNW1sbXV1dtLW1iYqKwtm5IxUqVGLDBk8l\nUd+LF68p9VImJyeLdkEKlf4aNWrh6+vPhw8fGDKkf4aBY1a4uy+hR48uLF++mLi4uGy3b9u2JX/+\n+VBpmZlZSSQSCR8/fmTAgD6AIKWSW9up5ORkrl4VyqLr12/G1XUeRYsWIzIygpcvX2BpacWpUxco\nXdqCTp2ETK1cLid//vysX7+ZceMmZeopm1uvz5MnfZBK9UWT+fSYmJgovb579w5ZtWgvW7aSmzfv\n/5B7QE65eVNo8N+92/tvew8FcXFxuLnN4NatGyrrFH2oimtuYGD4t5+Pml+PeuggF6ibMjPnVzWu\nDhnSn4MH93Hv3mMVL84fIT4+nnHjRrJv324MDY1EW58qVapy/vzlbPZWJijoAe3bO7F//1Gx/wdg\n9Ohhf6ne1xUzN5nxM9dJLpczbNgAMZtiZVWGZ8+eAlCxYiUePUq9aZcpU5azZ/2yDHT/j70zj8sp\nff/4u6JkrKFQyp6lUqLF2Mm+RbYsWUPIOsNgLMm+jV2yLyP7vitjG0pFCYmSChVKSWk9vz/OPCeP\n9jCa7+95v15er55z3+c+59zO85zrXPd1fa64uPfUqSPGbGU33x8+xEsll/z9n+Tp5cqOp0+DpKVY\nPb3qvHgRirp6STp16szx4/KGryxY/PZtbywsTAs8R0lJSWzfvpXIyFf07Nm70IW4K1cuR0ZGBu7u\nNzA0bETbtj8TECDKfrx+HStnCFetqnQNblMAACAASURBVEFaWhrlypXH0XEKo0ePk4yiSZMcpAe1\noWEjzM0tmTr1VzkNs+ywte3LlSsXsba2wcVlR7Z9ZPfR5ct/0aFDZiJAtWrVqFZNj6ioSBITEyUB\n3zlz5uPoODXbsWR4eXnSrZsV27fvlauAoKenRYsWrdi37xBJSUlSTdQ3b95QsWJFOYM6JSUlXx4f\nQRAwNTUgIiKc7dv30L27fA3dFy9C0dKqLLdcbGFhInnLc0pAatnSnKCgJ5JhcujQMfr2tc71XkpO\nTmbxYidsbYegr18v1/M+ffoEN29elxMgzo2hQwdy4cJZdu8+QOfOXfO1T2GxtGwsvQidOHFOTqpl\n0aIFrF27Svr8+X2sSDrIm6KSdKAw2AqA4obOmaL0pU9JSaFYsWJS/JsgCGzcuJYrVy4RFPQEc3ML\nOnfuVui4uC8JDn6Ku/tlhg0blefD6mvnKTU1FW1t0ZNQvXpNQkPFmD9r6z6MG+dAhw7tpL4REW/z\nPB8vL088PC4xY8acbD1ZRkb6REa+5tSpC1hYNCvw+aanp7Ngwe+MGeOAtrYOr169RFNTi2LFihEV\nFcmDB36oqIjxYn36ZC7hCoLww+4lWfbdgQNHaNeuA4MG9eXyZVEm4+nTMDnvxNChA7hw4RwbN26V\nPEwy3rx5g7FxPTlF/PxIRiQkJBAQ8AADA8McRY9l91FAQBCDBvWXYviyo23b9ri55V48HcSC6AYG\ntVm0aBmjR2ctDdarVxcp/s/D4xYGBoZ5jpkTgiCgpZXp1f3cAHvxIpSmTY3o0qU7u3aJS8uhoc8x\nM2sEiFm1xYsXp2RJUVz5c2bMmMqBA/skz+SYMQ5s2bIx13vp86zj0NDIXF9yqlQpT3p6Os+fv85S\nnzen60xNTc2XEfu1XLx4niFDMnXujh49TYsWreQy7WV8Pt9F6be7qFJUDDbFkqiC/ync3Pajo1NR\nErcFcUltwoTJnDhxjkePgtm5c/83M9ZADMy2t3f4V36UixcvLgmChoaGYGPTn/Xrt3D8+FE6dGiH\npqYmCxcu4dGjkHydj5mZOTNn/p7jsmOVKqIKfV7JFDmhoqKCk9NitLVFT13VqtpSML+WVmXat+9I\nmzbtePfuLcuXr2Hv3oNEReW/uPn3wM8vkObNW6KpqUV0dDQtWrSSvGZ//rmPEyeO0r59SwRBYM8e\nN6Kj47MYayAmKbx8+Y4zZy5Tt67ouckuG/NLSpUqhYWFZZ4VKtLT01m1anmOxlqtWrU5deoCBw4c\nzbb9c65du8r06Y48fBgsGWtfvsvLpGAAPn1KynPM3FBSUspWfgWQlvTOnTstbZNJvQA4Oo5j0KC+\nWFt35dIl+ZhSMzMLuWVkF5dNeQb9lyxZkjZtxBed6tUr59r/9m1fxo2bmC9jDcTr/Dd+F0DUbXz2\nLJy+fQdQpUoVSbvx1Knjcv2MjU2y213BfwCFh60AKN5AciavtzRBEDh27DDx8fHY2Y34bmn+Mh2q\nz0vHnDp1nPPnz2Jt3SfbuKZ/k2/xNvvhQzwhIcGkpaVhZGRMsWLF2LJlI2lpaZiamvLo0UOGDRv1\nTcRIZd6mz8tDfQ9kx4mOji8Sb/yfLxf37t0XJ6clmJjUl/OW3b7tIyeDkhutW1vy6JEYR5iddEhB\nKVZMmY0b1zBv3jw6duyMiUljFi9eKLUbGjbiwQO/fB9PNv8g/h+MHTuCY8eOUKNGTXbvPkC9evWx\nthZLRN265Y2NjVijViYyXBjx27t3Pena1QplZWUiI99L25OSkujbtydNmphJVSlSU1N59CiApKRP\n9Ogh6vGtXr0BW9vBcr8l/v73ad++pdxxDhw4QMeO3XO9l2RacgDVq9fAy8uvQNdSlOndu5sUh6ii\nokJAwDO5eL+i8H0r6hQVD5ui0oGCf4WzZ08zbtwoAAwNjWjSxCyPPQpHjx69eP/+vRRjcvbsaUaN\nsqNkyZKcPHmMI0dOYWHR7F/RhfpelC5dJovxJAuclj14jYxM8l1JIjdOn75EdHRUvo01d/dLbNq0\nnkOHThRICNjX92GRKkr9udTD0KHDSU9Py1Ls29LSlKCgF5QrV57Y2Bi8vb1o165DtvfWnj1uHDiw\n75sYayAaNatXr8bS8mcMDRuxdesWufYHD0SDw9bWhhs3vLIbAhCzmgcOtKFChQq8e/cOR8ep3Lhx\njSpVxHjG589DaNnSnFGjxhIQ4E9cXBzx8XHo6FRDVVVVMtiSkhIpXbpMjsfJDtk9lZGRgaZmGcaM\nGc+ECZNZvnwRgwYNZeDATJmS4sWLY2BghLV1VzQ0KhAT846uXbuRnJwsp/P2ZUZ46dKl6dSpE3m5\nJVRUVHjwIAhDw7pA4cWgixpeXp7cvHkda+s+HD9+FEfHKVmSMxT8d/jvPrUU/KeQ6W3VrFlL0gT6\nHixYsJi1azdJwcobNqyhcuUq9O07gLS0NHr16sLixU7f7fg/mk2bXGnY0JAmTbIKuRYGc3MLuQD0\nvBg40IYbN66xZcvGAh+ralUdrl//iy1bNv4jdDs/1/7p6ekkJHwo8HHyg55edV69iiEqKo5mzZpT\npUpVRo0ak6Xfmzdv0NQsw4wZUxk0qB+VK5fj9u2/sywn6urqMWPG7G9ybq9fv2LAABtiY2NJTk5m\n5cqlkmxHqVKlJENdX78eS5euym0o7t71JDDwkWSgrlu3msGD+zF3rhOTJ2dWf9i2bQt16ugD8Ndf\n7mzbtptNm1x58iSUwMDn7Ny5naNHD2V7jJxQVVVl0yZXqYKFi8tGzpw5wd69u5g0ySHbfe7f98XE\npDFRUXEUL14cPT0tunbNFLqdMkXU65N5+0aNsqdcufxlRGppVcbX96Gc9Ml/mZSUFJycfkdPrzpp\naWmULFmSESOy3sMK/jsoDDYF/wqGhkZER8dz5849Kah36dKFaGqWYd687B9kISHP0NQsw4ABvXF1\n3VwoAcpateoQFRVJdHQ0PXtaAxT4wfJfwsamP1ev3vphHsSRI+0B8q3ef+PGNTp2bEPjxg0xNKyD\njU0PZs0S47z27dtLdHQ0c+bMICTkmdx+YWEvMDc3oWZNbaniw9atm1i9ejlHjx7KlxxGTowbN4oq\nVcozZcoEudi+xYtXcOeOL3PmLKBevfrMnj2Pfft2A1CmTDl0dfUoWfInevbsRKtWucu0FJaQkGB6\n9uzMjRti5Qdvby85eYyEhAS8vDyxsenPjRteWYLyv6Rnz96cOHGOdu0yjZ6kpCS2bNnIrFlzCQuL\nxslpMXv2uPHLL2It1rt3Mz125ctroKFRAWfneYwbN6rA31Ebm/7s23cQKyvRaPvtt18wMWnMlStZ\nK5GoqKgQFhbNgQNHUVJSQl29JAMHDqFRIxOSk5Px9fXm48cEIFOsds2aVSgpKREc/CxXiQ8ZorB1\n4ZMpihJLlizE19ebDh06cf78WRwdpxaJeswKCo/CYFPwwzh37iyAnPL858jKEXl4XGH27Bm4uGwq\n8DH++GMjNjb9cXe/zKdPYk3Djh1/bBzb/zJLlqwkOjpeUtPPjpiYd6xYsYT79+8xfrw9Hz8mYG8/\nVq6Pnp4e0dFRGBjUZuvWzVhYZMqovH8fy5AhA0hJSZbzJM6ZM5OlS50ZN24U48eLhuODB/706NFJ\nMnAKQq9evbNsq1mzNo6OU7h+3ZNJk6Yxfvwktm/fw/Llq/H2fiD1+x4SDteuXcXCwoTQ0OdSEseX\nVKqkyV9/3WbjxtyFjGUoKSnRrFlzDhw4SlhYNEuXrqJmzVrS0q2vrzdz585i6NABNGlixurVG1i5\ncq3cGJ8baZ6et+Xa7tz5W06HLjY2hpkzp8ktXSorK7Nnj5ukkXjvnq+0pJsbKioqGBubsGPHVlau\nXMqrV6KESXbyM02bGqOlVVZOU+9/maioSLZt20L37j25f9+XSpU0GTv2++nNKfh3UCQdFABFUGbO\nFCZwNSbmHVFRUdk+3AVBoEOHVvj53WfIEDuKFSvGwYMH8PC4JYnh5pe4uPd07NiGkJBgGjUy4eTJ\n84UW4v1aFAG+opbVyJFisXdlZWU2bXJBQ0OD/v1tsLHpz6hR9jRq1IDKlSvL7RcdHc+MGdPYudMV\ngHXrNnLnzm3+/FPUOitevDjp6elkZGRQtWpV7t59IEmgAPz0Uynu3Ln3Xb0Mf/99k169ukjn+y3p\n3LktPj5izFiJEiWyeBE1NDTw9g7IM7u0IKSkpKCjUxFVVVXatevA+fNncHBwlJIBZBw6dIAnTwKZ\nNWuuFLv4uXSHbC4aNqzNmzei1+5LA0J2LABPz/vUqFEzX+d36dIF6tdvQKdObYmLy0xeUFdX5+TJ\nc4wdO5KQEFH+pmfP3ri67ircZPyHmDdvNtu2bWH8eEf++GNVtlp3MhS/SXlTVJIOFB42BT8MDY0K\nOXpiMjIy8PO7T61atWnVqhVv3kSTmJjIs2dBBT5O2bLluHz5OidPnufCBQ/U1dW5desG27dvJTq6\n6AS6/3+hffuODB8+itKlS5ORkcG+fXuYPn0qP/30E4sWLaNpUzNWr5YXJm3Xzornz0O4ds1D2ubo\nOJ5jx45In/fsOcAvv/wGgKmpGX5+YnkmdXXROP/4MQFDwzoYGenj7e1FaOhzjh07TGxszDe7tmbN\nmuPmdkyqEvEtEASBwMDH1KlTV9r2pbFWo0ZNDh8++U2NNcgsy5WWls7582KRcVn5rc/p128gv/++\nIMdEE1mNYAcHR0Bc2hUEgVOnjkuyE6qqqkRHxxMdHZ8vYy09PZ07d/7G0rIZc+f+JmesAQwfPoom\nTZoSHBwsybLIhIQLS0jIM6keZ3a8eBGar6XX742Hx2WqVtXm3j0ftLV1cq1EouC/Q6ENNnt7e377\n7Tfpc0BAAAMGDMDExIQBAwbg5yfv0vby8qJXr14YGxszYMAAAgMD5dp37dpFy5YtMTU1Zfbs2XL1\n51JSUpg1axZNmzalRYsW7Ny5U27fiIgIhg8fjomJCd26dePWrVty7X///Tfdu3fH2NiYYcOGER4e\nXtjLVvAvoaKiwrBhIwkOfsaoUSPw9PSkd+++tGvXocBjubntR19fj549O2Ni0gAjI32srbvy22/T\nMTCozcaNWR9A35qUlBQ0NctQv37t736soo66ujrLlq1myZKV2NmNRFlZBQMDI5ydl+HquoWVK5ex\nfLm8Rtfr168wNzcmJCQYNbUS2NoOoW3b9nLxW87O85k69Vd8fAJYs2Y9PXuKS9+yOqoyIiNf06VL\ne8zMGjF27Ej09avTp093EhIS8n0NgiAQHx+XbVvbtu3lKmEUFEEQWL58sRSbp6VVlpYtzXFz+zPH\nfbZt24OhYaMc2+/f95WqNQDs3LmNadMcs+37+++/oalZRs7wyMhIl/4+e/Zyvq5DSUlJqpErezF6\n8eI5AP7+fvj6ejNqlB2jRtkVuEwVwKZN67Gx6UH37h25fPkiTZvKZ56PGzdR+lv2POnf37bAx5Gx\nYcNaLCwaY2raMNt2H5+7NG1qJCcI/CP49OkTwcHBWFl1QE2tBGpqavkq76ag6FMog+3s2bNcv55Z\n1icmJobhw4ejr6/PsWPH6NSpE8OHDycyMhKA8PBw7O3t6dChA6dOnaJu3bo4ODhIsQ8XL15k06ZN\nLFy4kN27d+Pn58eKFSuk8ZctW8ajR4/Yu3cv8+bNY8OGDVy6dElqHz9+PJqamhw9epQePXowYcIE\n6divX79m/Pjx9OnTh6NHj1K+fHnGjx9fmMtW8C+zfPkaPDxu4e5+k4cPn7Fly/YCSUXIOHToT9LS\n0vj11xl06dKVmjVrsW7dBqZNE7Pg0tPT8xjh6xEz2qr/U7RdAYhemeXLVzNo0FDOnTvN5MnjWbFi\niZyemIxHjx5Kfycnf+LPP/fi4XFFLibp4cMAtLTKYmpqQO3a1eRkOJSUlChZsiTm5pacOnWBWrVq\nU7p0aanO5Y0b16hZsyoREfl7mTtwYB+1a1fjzp2/C3v5ObJv325WrlyabZuOTjW5z61atcHb+wGG\nhka5jtmhQ2vatv1Z+rx69fIcxZBlHq8PH8RlzMOHTzJnznxq1KiJjU2/fJf8evIkkDVrllOmTFmp\nVu6VK5f+Of56ypQpi66uHkOGDC9QkkxQ0BMWLpyHtXUfrK37UK9efTQ0NAgMfCz1mTfPGS2tzCV1\nWdm1vXuzL/WVH2QJDZ06dcm2XfbMAXL1wn1v4uPjSUtLpVIlTV6/fkXDht8vK1/Bv0uBDba4uDhW\nrFiBkVHmD8Tx48cpX7488+fPp0aNGgwbNgxTU1MOHDgAwL59+2jUqBEODg7o6uoya9YsihUrRnCw\nGHi6d+9e7OzsaNWqFQYGBixYsIAjR46QnJxMUlISR44cYc6cOdSrV4/27dszatQo9u0T41Zu375N\neHg4Tk5O1KxZE3t7e4yNjTlyRFwqOXToEIaGhgwbNoxatWqxZMkSXr58yd27d7968hR8fwwMDPN8\nGOXF1KkzKFmyJPv37ycqKpLnz0NwdJzA2rV/MHDgYEaPHpv3IF+JkpISd+/64+V177sfqyjw/n0s\n+/btJijoibTt6dMgyWu0YMHvWFm1QkurLGPGjACgWjVdtm/fm8Uonzx5OhMnTiEw8DnXr3tiZGSM\npqYWc+cuJCDgGdHR8YSEZF3qki2FglixoVIlTTw9b7N+/R+0bt2WDx8+ZCmG3rhxw3wFpjdoIHpZ\n/vqrYIXds8PZeT6ammUICQnm9OmTkueralVtVFRUUFJSQltbm3LlyskZlH5+fhw/flpStM+NhQuX\nMHiwnfT5/v3HhIe/ybavbBlUlvTTt29PnJ3n8/x5iCTBkRtRUVFoapZh+PBBVKqkKZepeuuWN8eO\nnaFBg4bUqVMXb+8HrFq1NpfRstK8eVPWr19DYmIif/yxiTNnThETE8OHD6LES4MGDWnXzoqPHz9K\n+5w7d+mf674v3YNjx44s0HGHDx+NhkYFBg8elm17fjOjvzfJyeJyefHixQkPD0dfv/4PPiMF34oC\nC+cuW7aMnj17ysX+RERE0LBhQzm3q76+PvfuiQ+nu3fv0qdPH6mtRIkSkocsIyODBw8eMHFipvva\n2NiY1NRUAgMDycjIID09HWNjY6nd1NQUFxcXAPz9/WnYsKHcD6+pqSn379+X2ps2zcwkK1GiBA0a\nNODevXty2xX879K8eUtOn76Eg8MoIiOjGDBgEHXq1KVdOys0NP5/i0jKhEe/BfHxcQQHP2Pnzm24\nue2Xtu/Z40aNGjVp0SJzyWrjxsyHtL5+PY4cOS0lA3h53ePq1UsMGTISJSV5401DowJXrlznS0qV\nKkVUVBzR0VGUK1ceNTU1bG1tJI/Oq1cvJW+av/89mjdvSfHixXF0nEqpUqXw8Lgi9bW17cvcuQuY\nMGEMVatqs3XrTsqUkV/mMjYWtcCyW2pKS0sjLS1NrnB5Tty968m6dWK8noWFvDjxq1cvpb9fvnyJ\nsbEJI0bYY2zcmHr19KlUqSyxsR/JD2PGyK8qqKiooKysTEjIM2rUqCV3HRs2bMXd/VK2Bsjx40fo\n3buv9HnQoL7Ur9+QOXPm8+bNG7y87kg1Z1VUVHj4UF6ORV1dnebN5SsR5ERqaiovXoRSu3YdUlNT\nKVasGEpKSrRu3ZaYmHfUravP2bOns+xnbd2Xli1FL2BMjOgV09XVo2bNWnLZqceOHWbBgkVynrjc\n0NTUJDDweY7t6urqHDlyCiUlJSpWrJivMb8Hz549BcT5T0pKpGzZH7tEq+DbUSAP2+3bt/Hx8cmy\npFihQgWioqLktr1+/ZrYWLEmYHh4OGpqakyaNImff/4ZOzs7ybsWHx9PcnIympqa0r4qKiqUK1eO\nyMhI3rx5Q7ly5eTKnlSoUIHk5GRiY2P/Ea7UlDv25+cTHR2dpb1ixYpZzlfB/zaGhkbcuOHF+fPu\nzJo1l759B+RorCUkfGDFiiWEhb34l8/y3+XEiaNUq1ZJKluTEykpKXTr1iHbWL/Hjx/RqFE9NDXL\nULt2NTp2bCMZa7L6mkOHDpCMtUWLluHr+5AtW7Zz65Y3UVFx3LjhJZe5WaNGTaZNmyYZWPlFSUkJ\nLa3Kn9X9PEJ0dDyvXsUQGhpJePgboqPj8fcPondvG376qRTr168hOPgZ7dpZYWIixp1dv36V9u1b\nEhj4GA+PK9SuXU0upvbz42VH1aoa6OpqEhPzLtt2GZqaZeREX4Eca1TOm+fMhQtXGTBgEPXq1S9U\n2bG0tDT697dm+3bxZXfv3l1YWDTm2rWrcv0aNzbFxqY/MTHvWLlyqRT3palZmY8fP8qFEFy+fFEy\nOMeMGc7w4YOYOXMac+cu/Gd15KAUC/f+fSx2drYEBwcTHPw0z/OdOnUizZqZoqlZBm3tClJs2KFD\nJySdthMnMuukVqqkScuWrWnTpu0/nyuxbNliNmzYwOnTJ9m9+wAvXkQxZMgwaR+ZcfOtaNmytVTr\n90dhZyfWSY6MfE1ycjL16uUssaPgv0W+DbaUlBTmz5/PvHnzshSz7dixI/7+/hw+fJj09HRu3LiB\nh4eHFEOSmJjIqlWrMDMzY9u2bVSpUoVhw4aRlJTEp0+fsi2Qq6qqSkpKCklJSdm2yc4pp3bZssan\nT59ybVfw49i/fw9jx44sdFZVSMgzmjY1+urMry/ZsmUjK1YsoUkTw+8So1QYEhMT5YLGvwWyB2/v\n3t1y7bd583q8vO6wYMEcue3nzp2hVSsLuflXVlamZMmS3Lv3iI0bt7J9+x6p7ejR04wePQ4dnWr0\n7t2XOnXq/ivB0MWKFSM9PY1582bz8GGAZNjduOGJtrYOu3Ztx8VlE/fu+VKlShUqVdKkYsVKODpO\nlcYwMtLP98N9zpwFAJw8eZwePTrx5EkgISHBPH8eQmjoc548CWTDBvllQG1tHe7e9ef4cVGbsGLF\nSly44MHGjVvZuHEr48c75hrnlVMc5oUL57Czs0UQBJ4/D+HqVXcWLpxHUlISzZu3pFo1Xfbs2SHF\nq334EI+2dgWaN29K48YNWb58MQcP/kmPHr2Ijo7k5s3rzJ8/m3r1qpOQ8IGLF68yfrwjkZGvady4\nCQCXL19g0aL5hIW9wMFhNDo6FdHULIO+fnXOnz+DpaUJlpamNGpUL9fv/sSJU6S/VVVV6dWrT5Y+\nsuLvGhoavHkTjb39OPz8xNWVN2/esGzZYiZOnIid3SBatDBDT09Lit2rWbNWnsLC/0VGjBA1CGUh\nAfnJuFXw3yDfr2nr16/HwMCAZs2aZWmrU6cOCxcuZOHChcyfP5969epha2uLp6cnIHrM2rZty6BB\ngwBYuHAhrVu3xsPDA0tLSwRByGJApaSkoK6uTlpaWrZtILqg1dTUiIuLy9IuW45QU1PLdv8yZQpW\n9068DoUKSk7I5iY/cxQZGcm8ebM5fPggAPfu+XDy5Dl0dLIXA80OX18f2rcX32QvXjxH167dqVCh\nQhbjXEZiYiL16tUiIeEDL168zjX4Pz09Uwh05cqlnDhxJt/nlRefz1NUVBTXr//F8+chmJlZ0Lp1\nmyz94+PjGTZsML6+PsTHx7F48TLs7ccB5PoAz8jI4OPHj7lep6WlJaVKlaJ585YUK5b9WG5uf7Jo\n0QJKly7NqFFjEIR0tm3bSvfuPRg2TPS8nDlzgYoVKzFu3Gju3fMlMTGRw4fdmD79V6yte2NtnVWA\nNjcKci/lRUZGBra2/bh06QIAJ08e5dEjcZlOW7sqhw4dx8lpHkeOHKRkyZK0bWvF/v2ikblu3WpK\nly7Nhw8fiI2NoVkzU6Kj32fr3dq/fy/r1//B9OkzePw4AIAZM0SD7/Ol4Ow4dercZ8uENbl92xtd\nXT3U1dUxM8t+X9ncODnNY8+eXcTEvPtiHJGhQ0UvZ1paCg8f+gPid6F2bR2iomIpX748Z86cQl+/\nHrNnz5WyOD9n8uRpODhMQEdHl/PnzxAeHkZMTAzXrnkwc+Z0oqKi2LhxnXTs8eMdWbEiM2lC9uIu\nCAK1atXm7ds3xMXF8fr1K54+DZTiAb+kQYP60pJmTsgS12JiRGmWFSuWSAYb5P5yHhISjL39MEaP\nHoOFRbP/iUzKpKQkDh78k86du0gixtWr6+X6W/Etv2//qxSZuRHySdu2bYVGjRoJxsbGgrGxsdCw\nYUOhYcOGgomJidQnIyNDePPmjSAIgrB8+XLB0dFR2tfV1VVuvL59+wqurq5CRkaGYGRkJHh5eUlt\naWlpQoMGDYT79+8Lvr6+QsOGDYX09HSp/c6dO4KxsbEgCIKwZcsWYciQIXJjr1u3Thg5cqQgCIIw\nYsQIYf369XLtgwcPFlxcXPJ76Qq+MZcuXRIAwcTERNi8ebOgpaUl1K1bVwgICMj3GLNnzxYAARDq\n1KkjAMLw4cNz7B8aGir19/DwyHXso0ePCoCgrKwsdOvWLd/nVFAaN24snRMgLFmyJEsfR0dHuT6A\n0KhRI6Fs2bLCkydP5PomJCQIK1asEOzs7KS+aWlpX3WOZcuWFQDhzz//FARBkMYtVaqU9LcgCELF\nihUFQChZsqQACEZGRl913G+Fj4+P3Nw5OTkJa9asEX777Tfh0qVLQkpKiiAIguDp6Sm8e/dOUFVV\nFQDh8OHDQqdOnQRtbW25/d++fSts3bpVAARtbW0hISFBOHToUJb/o+z+6evrC5UrVxY0NTWF6dOn\nF+h+zwnZ2CNGjBDatWsnXLp0SWpLTU0VAgMDhW3btgmCIAiJiYmCpaWlAAg9evQQPn36JO0fGhoq\nCIL4G168eHFp+86dO7McMzExUWjZsqXctZmZmQkmJiaCg4ODIAiCMHToUAEQlJSUhFq1agmAMG/e\nPEEQBOHt27fCnTt3hP379wsZGRmFum4rKysBEIYNG5bjfJuamgrJycly28zNzbPt27hxY+Ho0aOF\nOpeixObNmwVlZWXB2dlZuraYmJgffVoKvhH59rDt27dPrgSJTHbjl19+wdPTk4MHD7J69WoqVqyI\nIAhcv34dW1vxDdzY2FhOdy0lthnVLAAAIABJREFUJYXw8HB0dHRQUlLC0NAQHx8fKQng3r17FC9e\nnHr1RJd5sWLFuH//Po0bizEm3t7eGBiIqcqNGjXC1dWVlJQUybvi4+NDkyZNpHZfX1/p2ElJSTx6\n9EguySG/xMcnkZ6uUILODhUVZcqUUc9xjvr1s+bKlcu4u1+ncWMLOnfuytWr7oSHR6CsrEJQUBAG\nBgZ5vlHLGDp0JGfPnufVq5c8fSouVWlqVskxCLtMmYocOnSc+Pg4DA1Ncw3WbtGiHUuXruD9+/eM\nGTMu34Hd+eHzeQoLCwPg+PETWFv34rfffmPMGPn7snFj0cNSp05dDA2NOHbsCAkJH4mLi0NfX19u\nvsaOHcWhQ27S5zFjHIiPL3xNTQB3dzG+rWbNWnLzcOHCFZo3F6UaYmM/0qZNOw4fPkizZs1Zu3Yj\nmpqahZ63vO6lghATI18c/unTEM6fP8Pbt29ZsmQJffsOwMVlG3XqiF6e7dt3M3z4EJycnHj69Kmc\nQG2PHr3kgslfvnwpJ1Q7fPhIdu7cnu15hIdHZRuf9rVzFB4eyevXr6lduw4aGqVwd3cnJiaB4cOH\ncPLkcfz9A+nde4B0nLNnLyMIAkpKSrx4IS5l9+7dlzJlKkp9+vbtT0REBEuWLKd+/QZZzvHIkUNy\nsk7v3n2gQgXRk/vixQucnZdz965YkUEQBCleOSTkBbGxH1FWLkHdugY4OTkzaNAgXr58g7q6ep7X\nfP78WQYN6s/cuQuoUkWU6WjTxopdu3Zl29/Hx4d9+w4QFBRE3bqi6LBs1adChYq8eydKbzRv3oKb\nN2/Qp08fHB2n8MsvM3OMJSzKPHv2lAULnDA3t+D06TOUKKHOhg2bEYTiud5n3/L79r+KbI5+NPk2\n2KpUka/PJruhq1WrhqqqKlevXsXNzY2ff/6Z7du38+HDB3r1Ekth2NnZMXjwYNzc3LC0tMTV1ZUS\nJUrQunVrAGxtbZk3bx61a9dGU1OTBQsW0K9fPyl4uGfPnsybN4/FixcTFRXFzp07WbpUdLmbmZlR\npUoVZs6ciYODAx4eHjx48EBq79OnDzt27MDV1ZU2bdqwYcMGdHV1c1xqyI309AxF6Y48yGmOlJRE\nl/LLl68wNDTGxWUndna2LF68SK7fxo3rs2S0ZUf58qIB1qhRPWlb7dp1+e23X+nXb2C2IqKtW7cD\nQBDI4/9RmREjxkifvsf/eXp6BgMHDmH9+jX89dc1ypYti5VVpyzH6tKlBz4+AZLEw4YNW4mLi2Pb\nti0MGTJMrr+eXg3pbzu7ESxcuPSrz11XVxxz6dLFLF++WNresmVmaMT9+37S8vaIEaOpVEkrH3Oc\nN9/i+1anTj1mzJjN+/exqKqqMWjQEDn9sU6dujB79m8cPuzG27eizIWb2zEGDMi6jHvq1IlcjzV8\nuD0DBgymY8fMpe3OnbvRqJExamrq3+U++umnUlSvXou0tAx27NiHmpoqaWkZUj1NJSWVHI4roK5e\nCkPDRkyePJ23b9+xZctGRo8eJ5X6qlWrbpZ9X76MwN5+hPS5fv0GVKhQmp9++omPHz/SpIk5wcEh\nPH78CBDrekZGvmbBgsUIgvz/p0w2JCwsjFq16uR5raqqYpjLq1evWLlyHStXruPly4hc9xk1ajhe\nXl74+PgzdKgtDx+Ky9UyYw3g5k0xgaFZs+a4uGzi3LmzbNzogomJqdxYHz7Ec+HCOTw8LuPj40OZ\nMmUoXrw4L19GUKVKFX7+uSVmZhaoqCijqqqGubllvjKFvxZBEDhz5hTTpztSqlRp6tTRZ8+enbi6\n7qJHj96kp8ucbbmjeL4VfQpdS1RW5WDJkiUAXLt2jWXLlvH69WuMjY2ZO3cuNWpkPkA8PDxYsWIF\nr169wsDAACcnJ2rVyqwJ6erqyq5du0hNTaVjx478/vvvksfs06dPLFiwgIsXL/4TSzOKIUOGSPuG\nh4cza9Ys/P390dXVZfbs2VhYWEjtN27cYNGiRURFRdG4cWOcnJzQ1tYu8DUraq3lTF716NLS0vj4\nMYGyZcvJbe/WrQNeXncA6Nq1O5cuXWD16vX5UiSPjo6mZUszKX6lefOWUsbj3LkLmTBh0tde1jfn\n83l6/ToKe/theHndwdrahoULl1C+vEahx05NTWXhwnkIgsD8+c6FEhnOjufPQzA3N86x/fXrWLZu\n3Yyt7eAs/7+F4VvWNhQlgeoTFRUp1bOcNMmBkyePYWZmwZw582nfXj7uKzQ0kvT0NI4cOYSenh4N\nGhjQvLlZjpUNANq2tcLNTcxYFASBiIhwKlSo+N1q1uY0Ry4um7h71xNX113Exsbw+++/0b+/LS1b\ntsbT8w4zZkyhWLFiUpaljLp1dXn//j1aWpVp2bI1U6f+kq0Rlde9AGKm5PXrf0mfjxw5xcyZ03j2\n7Ok3r68KYGPTQ+54n6OiokKJEiU4e/YSDRoY8vHjR2rUyFocXkaDBg35+PEjL16EUrp0aRo3boKq\nqhpVq1bl0CE3kpIS0dbWQVdXj7S0VNLS0ihbthyxsbGEhobIxVOXKlWKbt16MmiQnSQc/D1wdd3M\n7Nkz0NTUZMSIUaxZs4r27TuyY8fefMXlKWqJ5k1RqSWqKP5eABQ3dM4U9ku/du0qFi1aQJ8+Nsya\n9TuzZ8/E3f0Kjx4F5+vhn5ycTHx8PC4uG1i3bg06OjpERERgYGCEu/sN6QcrMPAxc+f+hpKSEm5u\nx75LgHFc3HvmzJlJu3ZW2Wa0QfbzlJGRUSCl93+D2NgYDh06wK1bN/H0/FuS6Jk1ay6TJ0/nwQN/\nPDwuM2iQ3TfXnPqaB0haWhrR0VGSsn1w8FMsLUVPyevXsZIRq6kpJh1FRcWxa9c2Zs+egbv7LSpW\nrEilSpWyjPv8eQienrdxdByX7XHv3PGlZs1/r+zYl3OUmJjInDkz+Pvvm3JaYzKio+OpVq2SJE/y\npeFkZKRPZORruW27dv1Jly7diI+Pw81tP4GBj7l27Srh4WFSHzU1NWnMxo2b4OsrLoWuXbuRq1c9\niIx8zbFjZ3j9+hWxsTEYGeVu7BUGN7f9Of6/yChVqjTHj5/BwMCIKlXKy7WVLl0aHR1dHj8Wq2nU\nrFkLE5PGpKSkcPr0SUC8ziZNzKhQoSLVqlXLUnECMsuVKSkpk5iYyIMHfty750tsbAxjx05g/nzn\nb/49FwSBzp3b4evrzbp1G5k9+zeMjBqxf//hfL8sKAy2vCkqBlvBxXwUKPiGTJo0jcuXL/Dy5SuK\nFSsmiVjm16BSU1OjUqVK1K4txqhERIhLJAEB/vj6emNq2pTU1FR69+4mLXktXerMtGkzcswoLSyj\nRw/nr7/cOXjwT54/D2HKlF/ytV9RM9aSkpIwNTWQq625evU6pk51ZPFiJywsmtGwoQGTJk37gWeZ\nPQsW/I6Ly0bpc+3amV6izz2OQ4cOJyjoCUpKSpw+fZK0tDSOHHHj998XZDtujRo1qVGjJgMGiJnu\na9euIi4ujo4du1CnTp3vKsB869YNHBxG8/r1qxw9VC4uG9m3bzdjx07g6dMg3N1FEeA5cxbQsKEY\nn3fw4HHevXtL9+69pP0EQcDJ6XfJWLty5QZJSYl0796Rp0+DaN3aUq4s2JfIjLWffirFvn2HaNBA\nlJCoW7ceAwdmroJUq6ZLtWq6XzELOdOxY+cc2ywsLLlz5zYJCR+wsmpFp05dOXr0NIsWzcfX1wdd\nXT3Cwl4QGyt66ZWVlYmMjOTo0cPSGC1btsLKqhPOzgtITv6ElpYWkydPz3IsJSUl6SWzTJkyVK5c\nmXbtrLh61Z0tWzaQlJTE8uWrv+nL4pUrF/H19ebXX2eyefNGSpUqxfbte76bZ1fBj0VhsCn44YwZ\nM4GRI4fQqJH4YJkxY04WZfm8MDe3pHbtOpJWlq5udfT1xfi2O3f+low1gDVrVmBl1ZEmTXKOYxQE\ngenTJ5GSksL69Vty7Ofndw97++G0atWGatUy37r37NmZb4OtqFG8eHG5sj6VKlXC1DSzKkiPHp0o\nW7YcT5+GZbf7D6VdOys5g+3Zs6fUqlUbN7fjcv1WrszUQdu4cSsnTx6TjLH8UFBj9eDBP4mKimTi\nxCkFfmBbW3fNs49MumLLlg3SNnt7BxwdpxAbG8PKlUuZNm1GlmPfveslJ4hco0YNSpcuQ3R0PM+f\nh7Bo0fx8nWOjRsa8ffuGFSv+ICDAn4YNDQEx5KFBg4bs2rWdmjVrcefOty/NltsLz507t+U+3759\nkwsXzkrzIPMWRkaKiRuurruoWLEie/bswtV1Mx8+fKBzZ1GncODAQTx44EfLlq0LdG7t2llRooQ6\nu3dvp1EjY7kSYV/L5s0bqFtXn+TkFB4/fsSpUxf+31dv+V9GsSRaABQu45z5Gre6IAjs3buL3bt3\nYGs7hBEjRhf4obZu3RqcnecB4Og4lbFjJ0hLdQkJCTRrZkpk5Gu0tXVwdJzKsGEjcz1GdHQ0Bga1\n//k757ib6dMns2ePWFD6zp17rFy5lMePH7FkyUosLCyz9C/qyw9Tp05k377dbNy4lXLlyqGlVZmq\nVXUkz4mM7dv30r17z+9yDl87R35+9xg6dKCcoG+/fgPZsMElX/t/+BDP2LEjuXnzBiEhL786FjA1\nNRVtbfEh2qpVGw4fPlmg/StXLkdGRgZXr96SDKEv5yg+Po7Vq1fw5Mlj3N0vAxAe/gY1NTVp+ffi\nxauYmJgSHh5GcnIytWvXISbmHcbGDdDR0eHZs6ds3bqLXr0yEy7S0tJITk4mJSWZtm2b8/JlBDY2\n/Tly5KDUp2LFStIL0eflulxdtzB79q+AWGnExMRUzlD+Vuzdu0uqv5pfZPqcuT3+SpUqReXKVWjW\nrDn162dWC4iPj8ff/z5hYS+IiookMTEJQcigfHkNNDQ0MDVtmq0o9LFjh3nwwJ+rV2/lK8kiL8LC\nXtCkiSETJ07i+vXrqKmpcebMpQKPU9R/k4oCRWVJVGGwFQDFDZ0zP/pLHx8fx5AhA9DQ0GD79r1Z\n3roTEj7w8WOiXAmkvFi2bBHt23eQ8y59SWjoc375ZTImJqbMmjU3zzF/9DzlxosXoTRtagRAhw6d\naNvWCi+v2xw7dkSuX79+A9iwYet3O4/P5ygg4CGhoc/p1KlLgcaIjY3h+PGjHDz4J+/evWXv3oNy\nD93cmDFjKjt3bgPg3r1HaGvnX9A5O+Lj46hdW/S+1q5dh7//9vmq8SDn+2jZskWsWrWMESNGs3Tp\nKkAslh4U9IRr1+5Qv34DmjVrwrNnQYC4VOnjEyAZdZDzC0rVqhpy0k4A5cqV4/3799LnCxc8pIoH\n2toVSE1NZe3aTWhpVWbAgN5UqVIVP79AUlNTiYuL+ybxj8nJyZw7d5rlyxcTHPws7x0+o3PnLnh4\nuMuVHtPR0UFHpxppael4e3sBsGTJCqKiIrlx4zr379+jWDEVjI0bY2xsQoUKFVFSUiIsLIx793wI\nCPDH3NyCHj2s5X6HkpOT2bhxLVWr6nD+vHuhyot9jo1ND27evM7WrTsYO3YUTk6LGTVqbIHHKcq/\nSUUFhcH2H0RxQ+fM9/rSp6amsm/fbrS0KtOmTbt86TUVZYryj+OVKxexte2bZ7+wsOjvKlcgm6M9\ne/7Ezi5zmdLVdRc9exasakJh8PX1ZvbsGezde/CbJVSEh4cRGvqcGjVqZhuwXlByuo/WrVuNs/N8\n/PwCqVKlKiB6sFNTU6WYzc+NMxANtJcvIzAxaSB9lt0LAQHPpFrMoaGhmJkZUbeu/j9loBxwdJzK\nunWrWbZsEZ06dcXFZYf0HQ0NfU6LFuYkJ3+ibdv2eHhcoWpVbe7ffyyX9PGtYromThzLwYN/AmI8\n2ZePttKly+DsvISjRw9x48b1LO3ly2tIsWyfY28/jkePHnLz5nUqV66Cvb0DQ4bYZZsUJQgCe/bs\n5Ndfp2Bq2hRr6z5yRltYWBguLhv57bffvzoG1MhIn59+KsnAgYNxdl4geVALSlH+TSoqFBWDrWhF\nOytQ8AVLlixkxoypDBtmi5VVy7x3UFBoihfPTMIoU6Ysq1atw97eQa7P1at//yvaUgBly5ZFT686\nPXpYA0hiqd+bxo2bcP68e76MtaSkJEaMGMKtWzdy7Vetmi4tWrT6Jsba51SqVBZNzTKS58vRcSrR\n0fGSsQbI1Wpeu1b0upmZWTJ58jSmTZsBiLVMg4Je4OsrJhi4uGwCIDo6ShpHT0+PKVOm4+Kyk9jY\nWExNm1K8eHEmTJhMaGgkYWGh6OlpERLy7J/+1UlOFoWH09PTCQ6O4No1MaZs3LiJVKlSVSpb9S3o\n2DHTC5udH+LDh3hKlSqFnd0IXF130qVLZg1dJSUlHBwm0r+/Lbq6upiYNGb8+EmMHz8JT8/b3Lx5\nnTlzFuDt/YAJEyblmMGupKSEnd0INmxwwdvbizVrVsh5JXV1xftg2bLFuSZz5EVGRgaxsTG0bNma\ngIAHlC9f/rtk4CooWig8bAVA8QaSM9/rLW3ixLGcOHEUNTU1ihdX5fHjkG829o+gKL/Nyrwezs5L\nJUNtxIghnDt3mlKlStOzpzWrVq3LbYhsuXrVnbNnT9GxY2esrDrl2b8oz9GXrFmzgiVLFgK5xzp+\na2Rz1LFjJ54/D+X69Ts5xtoZGtYlKiqSs2cvs3nzBs6cOcn27XtQU1Nj8OD+LFu2muHDR8ntEx8f\nR3R0tFyWrYzbt2/Rs6eYmblmzQamTJkAiFm46enpdO/eizlz5qOmpoaxcX0AIiLesnnzetTV1bO8\nBHxLvLw8OXnyGK6um7O0NWhgwLRp8olAwcHP2LHDlcjISJSUlNDQqECFCuJSbkREBKmpYjKHqqoq\n4eFvCuQNlH2fGjY0wNZ2CMrKyqSkpBAY+IhLl8TkgEuXrhWqqoIsfm3OnHns2rWDFi1asXbtpgKP\nA/+t79uPQuFhU6AgH4wZM17SWrOx6fejT+d/mpo1RSHrOXNmMnPmNNLT09HQ0CAjQwxqL8wSTnJy\nMv37W7Nnz04GDepHQMADXrwIlZTw/00ePPAjKioq7465kJ6ejr//fcmDIzPWXFx2FHispKQk5s+f\nTdeuVoU+Hze3o9y6dTfXxIgWLVoB8O7dO7Zs2c7Tp2F0795LypL+smA8iB7W8PAwNDXLoKlZhrg4\nMU4tIyMDIyNjaZlUZqx16tSVly/fYWralNOnT2Buboy1dVeWLVvNs2fh7N27k0WLFjBnzkw5Hbdv\njZmZOYsWLePKleuMHj2OX36ZKbU9ehTAokVO3Lx5nYwM0TCpVas2ixYtY9q0GejoVCM+Po6goCc8\nfx7CTz/9RJs2bWnTph2CIMiVKcsPq1atY9SoMTx+/IgLF84Boh7kgQP7effuHU+fBjF9euHEvWXZ\n8OXKlSMiIlz6P1bwv41C1kNBkcbAwBBn56X/qLTP/tGn88OIi3tPSEhwoWJU8svVq38ze/av7Nu3\nmx07XNmxw5UbN7yoXr0GxsaN0dXVK/CYqqqq9OzZm5CQZ/z0Uyk+fkygbdufATh27Ey2xsL3wM/v\nHlZWrahevQZeXn4F2lcQBObNm02ZMmX488+9RESEs3r1egYPtmPChEncv38Pa2ubHPd//foVjo7j\n2Llzv1R79OXLCMzNjSU5ju/Jpk2ubNrkKn2WLY9qaFQgOjqe2NgYnj8PQU+vOhMnjuXwYTcaNDDg\n0aMAaZ9WrSypVEmT9PR0AgL8qVmzNsWKFWfatBkMGTJM6ufgMJGRI4cCotjwjBlT6dixM+/evQNE\nL1zFilmFib81RkbGGBkZU6yYMtbWPXB13UGVKlXx9vZi587tnD9/lnHjJqKjIyaUNGjQgPnzF2Y7\n1vPnIVy96o6vrzc//9wi3+cgm5fq1WswZ85MNDW1MDY2ketz9Ogh+vYdQNu27Qt0faGhz1FWVpHC\nEzQ1859MpeC/i2JJtAAoXMY5o3Cr54/CzpNseWXq1F+ZOXPOdzm3wMDHtGxpjo6ODoaGxpw/f0Zq\n6927L1u2ZF/YvCB8XtpIT686d+/6Z+nzPe4lB4dRHDlyCIDDh0/SqlWbPPbIJCoqCkPDrEuD+V0C\nlUmlTJo0jdmzRemZ5ORk6teviY1NP379dXaBkxtk90NMTMJXzdGzZ09p1kx8Cbh711/KEs4PjRs3\n4cIFjyzbvbw86dYt02v44kUUenqiQfEtkwzyQ3b30rVrV7G3H86HDx+wtR1M8+YtcvRQvnv3jmXL\nFhEXF4+vb4BUo7UgCILA1KkTOXBgn/TZ2NiEe/d8pT6nT1+ke/eOAHTv3pM6derSpo0VJiaNsxX4\nnj59MteueeDoOJlp0yYXOuEAFL/d+UGxJKpAgYJ8M368uHRSqZLmdzvG0aOiQRMREUFoqHysoCzw\n/2upUaMmW7fuBEQZkRcvQgu0v6+vd4GDtQVBkIw1QJK0yA9+fvdQVS1eoON9icwLIivbBKIOWEjI\nS5YvX/NVmagaGqU4efJYofeXva/r69ejfPnyWdr/+GNDlm0ysjPWQFyWPHXqAgCjR4/l6lX3Qp/f\n96BVqzb4+QXSt29/9uzZybJliwkJCZZLVEhISODIkUP8+uvUf4y2VYUy1kBMRFi2bDXNmv1MRkYG\ngiCwZcsOuYoTMmMN4PTpk6xevYLu3Tugo1MRTc0yLF3qLCdmff++D9Wr15A8tGpq/04ikIIfi2JJ\nVIGC/wBz5zoxYMAg6tbV/27HuHPnb+lvWYxZyZIlSUxMLPCSTU68ffsWe/vh0ud9+3YzYIAtQUFB\n2NkNBGDduk1MnJi1NqSox9aWEiXUCQvLfyzal4sIysr5E8L197+PlVUrrK374OcXSKNG9VBWVube\nvUdyWZh5cfbsaQBu3LiW733y4tWrt1StKhp6vr4++ZI7mTZtEkFBgZiZWXDnzt+cPXuZOnXqSgK7\nAA8fBvP48UP27duFvn59zpw5jZ3dSGrXrsP9+760a2dFnz795LxkSUlJqKqqSl6qwMDHfPr0SfJA\nyq4f8l9y7ntTokQJ1q7dhK3tUCZOHMuiRU5oampRo0ZNXr4MJyIiAnX1kkyePB07uxFfrcWnqqrK\nkSOnqVxZzC41Nzdm4MDBlCxZkurVa/Do0UPmz3dm3749BAc/zXLPrl69nNWrl9OmTTvatrXC39+P\natV0pRq/Hz8mZDmmgv89FB42BQr+AygpKaGvX++7PfAyMjLw9BQlF5YsWQnAoUMnePz4OVeuXP8m\nUh4ZGRls3rxeblu3bj2wtDSVjDWAuXNnSUHhnyPzRC1atCxLW3JyMrdu3UAQBBISEhg7doQkL6Gs\nrMz48aISvoWFJf36Dcyyf3bo6FSjbNlyTJ78C1WqVMXN7TgZGRk0alQvx30EQeDp0yC5B26pUqUB\nvomGXEzMO5o0MZTzqoWHv8hVsV/G3r078fS8zfr1a7h711PaR2asgViGrGXL1mzdugttbR2uXLmI\noaERY8Y4sGmTaxZjLSUlBT09LbmC6mPHjqRfv0zvUatWbRg9eize3g++6tq/B+bmFty+7cORI6fo\n0EHMYC5XrjxWVh3x8Qlg1qy5X22syVBWVubFiyjMzcUKKAcO7MPWdqjkMd61azt2dsNxdJxKu3ZW\nWFr+nGWMq1fd+f13MZEiPDyM5cuXAODldeebnKOCoo0ihq0AKNb4c0YRB5E/iuo8/frrlO9a7xEy\n467GjHGQdL7atGmXZcmsXr36PHwYQFxcEqmp6Xh63sHY2CRXo7F/f2uuXnXHwMCIIUOGMWPGVABu\n3/YpVBkgH5+7dO7cjpEj7SUD9vTpk4wcKRY0z6kCQr9+vfjrLw/Gjp2Ak9NiQIyDunbNgw4dOknG\nW2H5UvRWxvz5i3BwmJjrvrJs6ytXLjJpkkOe8WQZGRk8eOCHkZExSkpKdOrUhsqVq7Br159Sn5SU\nFHR0RENa5lGLiAjn/fv3GBiIZbTOnTvDsGG2cn3+LYrq923nzm3SPZoX5uaWxMbGEhQUSNOm5ty9\n65ltP3v7cTg7Z32ZyYuiOkdFCUUMmwIFCooE69f/wa5dYkKBhYUl6enp3/wYwcFPpb9dXDZJmYKf\nG2sy48HFZTvKysqcPXsaLa2y9OjRkWXLFmU7bkJCAk5Oc6XluIAAfywsmtG3r+hFs7TMfyD2+fNn\nqV+/JkZGdencuR0A27dvlbx9ZmYWlCwp/mhPnToRD48rWcaYMGEyDRsaymU0V6hQgd69+8oZawcO\n7MPNbX++zy0hIYEtWzbIxT25urpSsmRJgGwV+r9ETU2NSpUqMWmSqIOWl7dWWVmZRo1MpH7v38dJ\nS3AyVFVVsba2Yfr0TPkMHZ1qkrEGYpmznj17c+nSX3me4/8Xhg8fxeTJmTI5zZr9jJVVJ3r16kP5\n8hpyfT09bxMUFAjA2bOXCQ9/g6lpkyxjbt26GX19PT58+HeNYgX/HgoPWwFQvIHkjOItLX8UtXm6\nceMaffp0l9sWGPicUqVKZ5udVlgSEhKoWTN/cV+rVv3B1KmT5AwKU9OmnD8v74lLTEykQ4dWBAU9\nAWDAgEGoq6uzbNlqxo+35/BhNwAePQrJNrA/IyOD58+DCQ5+hp/ffVasEJeX2rZtR1DQEyIiIgCo\nXLkKly9fQ0urMgDOzvNZt241UDiPkSAIaGmVlfZ/+DCAS5fO5yrAO3z4ICkWbP58ZwQhg/nzf6dW\nrdqEhARz+vQlzM0tEASBRYsWcO3aVS5d+iuLUZaRkSHFUZ06dRELC8t8n3fDhrUpVqwYr1+/Iijo\nBeXKZU1SKGoUte/bl2RkZJCRkSHVFT1//qxceMCXnDx5XhIt7tixCxcvnsvSR1zGn86IEaPzVcqv\nqM9RUUDhYVOgQMEPIy7uPZqaZRg3TlS47907s4ZovXo10NGpyOrVy+USEb6GgtSAlSVWnD9/BX19\nMV4suyD/3bt3SMYawLp1m1m2bDVhYWGSsQZI9SU/x9//Pq1bW2Jpacrgwf0lY61Jk6b8/vt8evfO\n1FWLjHwtFyPk4DARTU0lmpOvAAAgAElEQVQtOf2xgqCkpMTPP7eQrqlnz06SsfY5v/46hTlzxNJR\nFhY//3PNB3BwcGTSJHE57eJFd7Zv34uZmTkgGrHr1q3Gz+8eEyaMySJQnJ6ezrRpMxg2bBR169Yt\n0Hk/fPiMhg0NAHIV6lWQf5SVleWKwDdtak6lSpUoUUL++1K1qjYPHwZTtWpmebaLF89x7twVtLQy\nNdhUVFSoXr0Gzs7zMDauz8SJY79p+S8FPxaFh60AKN5AckbxlpY/iso8jRo1lFOnTkiftbS0cqwC\n8HkcV2Fxd7/EwIE5i8vKmDlzDr/+OlNujtLS0lBRUcniLZoyZQL79+8B5AvDfx7npaSkhI9PADo6\n1XjxIhQPjyvcvn2LEyeOoqury7hxE6hVqxY//VSK8PAwypUrz/v3sYwdOxoQy3S1b99RqgLxPdi1\naxvnz5/Fyqoj/fvbUrp0GSIjX2FkVO+fa9tNz57ysiq53Ufu7pcAGDjQhiZNzDh3LnPpVjY3MuHf\n/3WKyvetINy5c5sJE+wJC3uRbbuRkTH+/vcxNDRi9uz5/PxzC/74YyWbNq0nKSkRFRUVypcvz9u3\nb6V9LlzwoHHjrMuo8N+co3+bouJhUxhsBUBxQ+eM4kufP4rCPL14EZqtQKq39wP+/vsmrq6befAg\nU9B2yBA7Vq1an6V/QZAJ5mpr6/DyZUSW9g0bXOjevRfq6ur5nqMLF84xdOiAf3S/LqKsrExSUpIk\n0qqiosLjxyGUK1ee4OCn2Nj05OXLCCpV0sTObjiWls3Yv38vd+96oaysxPv374mLi5M7hrKyMq9f\nxxY4O/fDh3ju379Hs2bNC+WN+nIJ+ctlUtkcHT16ir/+usrcuU5Zxnj37h0aGhpy5z5wYB/c3S/z\n4MFTOc/M/ypF4ftWWOzsbOXEq3PD3n4cTk5LePo0iJs3r3PixBE8PeUzR21s+uHktDRLeMB/eY7+\nLRQG238QxQ2dM4ovfc68efMGECUTvtU8paenM3hwf+rUqStlI+aXX36ZzJEjB3F2XsKUKY7S9gkT\nJjF37kLi4t5Tp46utN3b+0GhylJ9yf37vigrK9OggQFVq4qB1V279sDWdrBcUfiCzNHHjx+zFM/+\nPH7t3LkrNGliRrduVnh5idl1GhoViIl5R61atQkOFqU/BgwYRGLiR9q164C6ujp//32T2NgY+vUb\nKJ3b48ePGDy4Hz169GLePOdszyctLY3lyxfzxx+iR7JHD2tOnTqOv/8TSXg1KSkJZWVlOTmN7EhN\nTWXLlo106NBJWhr+co5kxti/nX35X+FH/y55e3vx7t07OnbsLLddVp83tzjALytGFCtWjKNHz9Cz\nZ6ds+8vuAVHa5gMBAQ+YOXM6jx9nCk2XK1eeFSvWyEnM/Og5+i9QVAw2RQybAgXfgcTERF69esnK\nlUtp2LAWDRvWwsfn7jcbPy0tDXf3S2zZsoH4eNErFBMjltHR1dXk1auXOe777NlTWrRoxc2b1+W2\nb9iwFhCDlj/n5Mnj3+ScjY0bk5iYKBlrAMOGjZQz1grKl8YawNq1m9i37yCrV6/H1LQp3t5ekrEG\nkJDwAYBu3TKTLQwNjXBx2cnAgYNp27Y9np63OXnyOIMG9QPg5s3r/PnnXsLDw+SWmj7n48ePzJw5\nXTLWILOqwqpVy6Vtenpa+UrAUFZWxsamXxZjTRAEtm1zoVu3boAoMfK9SUlJYfLk8Vy7dhVn5/lo\napahQYOabN++9bsf+79Mly7tGTKkf5bttWrpULeuHk+eBOa4r5mZOZs2udKlSze8vPx49SpGqkWb\nHZqa/8feWYdVlXVx+CUUEcS+CIiKgImtjIU6JnYrjo6o2GK3jord3YFiYuvYiY0diIEFKCpwEWkF\nJL4/7sfROxekBXW/zzPPnHN2nH2259672Hut39IjMDCQrVs3Y2paFE1NTS5cuMaKFWulgJng4CD6\n9evF5s0bk+xHkH0RmQ4EgkygW7eOXL9+DYA8efIQFhbG+PGjuHjxWob0r6WlxcaNTly/fg09vbwE\nBARQvvxXP6vevXtw+vSFRNt++vQJbe1cnDt3VqUsLi4OdXV1Dhw4Su/ePbC17YONTfcMGTPArl3b\nlM5Tkwjc3f0hJiYmyWqZaWpq0rhxM+Lj41FTU2Pu3JloaGhIciUJ6XzOnj0jtZk8eTzGxsVp2tSa\nv/+2kZz169SxIjQ0hA4dWkl1Bw8exn/x9HxJzZpVVa6vXLme48eP0K/f18wNDg6zKVMmafHdBKys\nLHn58gVdu/5F06bNefr0MS4u5zA0NOTYsSNSvfDw5FXu5XI5NWpUYNas+WkKlnBxOceuXdvZtWs7\n/foNBCAsLIzQ0BBGjx6OhUUFevfum+p+f3W2b9+TqG7a0KEjmDdvFnp6ievqJdCpU1c6dfpq8FlY\nVGDjRicKFCiIlVV9vnz5Qp061fH29gKgbFkTKcBnzZqVbNmyAxub7rRt24EePbpI2TYmTBhNSEgw\n3br1wMgo5Vk7BFmL2BJNBWLJOGnEsroy48ePYsuWTTRv3oKhQ4fTooUiV+DHj+GZMk9v3/pQtWp5\nQBFRuXDhUho3bkZAQICKr9KSJQuYNy/xLb3Xr/1TFdGZGmbMmMqqVcvQ0sqFrq4Oy5evoWnT5ir1\nEnuXdu7cxsiR9ujq5sHT8x07dmxl1CiFUOzlyzcpU6Ysz58/w8ioKLlz56Zx43rEx8exZs0mHBwm\nq2imaWpqEhMTA0CDBg3R0srF3LkL8fPzpUULRRoue/sRDBxoj0wmo2LF0vj5+Sa59fjixXOsrRtK\nGlhmZuZcvHidunVrEBUVhZtb0ispiXHt2hXat2+pdE1HR4fy5S2UVgvV1dWJi4tj0qSpmJqaKem0\nfUuCvx+kfPv0+fNn5M6dm3z58uHl5YWNTXscHXdgafkHISHB5M9fgAcP7tG0aYNU9fsj+Z2+ly5e\ndFHKMFGqVBmuXr2lVKdWraqSG0AClSpVZunSJVSubPnLz1FayS5bomKFTSDIBGbNmk98fDzbtm3B\nw0PxY51YSqWM4ttwf1/f99SsWYehQweyb99uVq/eQOfONlL5gAFDyJ+/AI8ePaRFi1a8fv2aCRMU\nIp6ZZayB4ocBICoqkqioyESNtcSIj4+XMiOEh4fx5csXTp48LpV//BjInj27GDpUsfJz+PBJ3N3d\nAKhX749E+4yJiWHv3sMEBwfRpk171NUV3iEGBoYMGDCYt2/fKjnyP3z4LNF+EjA3L0X//oNYvFjx\nb3zypAtv376RVj5SS3BwsMq1okWNlbI9FC5cWPKPnDNHMdakjKZGjZpw7NgZCheWpej+s2ZNY8WK\npdL5ihVrefz4lXS+fPkS8uTJg4VFRRwdt2NsbJyifgWZR4MGDXn06CUWFmYAPH/uQe/ePejUqSst\nW7YmPj6eFSvWMn78aB49+hpU5Ob2gIYNG9KoURNGjRpH9eqW2Sbnq0AZYbAJBJlAjhw5cHCYjbv7\nQz59iuDIkVPUrFk70+6nrq7O48evpG1RM7OidOyo8L/S1s6tVFdHR0dp+yphy6ZJk2aZNj5Q5NI0\nMSnJ3bt3lHTfkuPWrZt4eCi2KM3NS6GpqcmWLTt49swDE5OS6OrqsmTJVx+xPXt2fLe/EiVKMG7c\nZBo0aKhSpqGhwcyZ81I8tm/p128gnz9/5tWrF5ibG+Pu/pwLF1wpWLCgUr0vX76QI0cO5HI5jRrV\npUyZsmzZskNpq7ds2XIq/T975qHk81SkSBHJYAMwNi6m0gbg0qULdO7clokTpzBy5FilstDQEMzM\njClUqDAPHz6TNME+fAhQqvffAIk1a1ZIx1ev3pa08wRZi0wmw98/hIYN6/L4sTvHjx/h+PEjXL16\nm7CwUFq2VAQxrFy5TvoDJ4Hz589y/vxZ6tSxYvXqDUp/BAqyByLoQCDIJHLnzs3Jk+e5dOlGphpr\nCRQuXBgnp13SKtmMGXN5+tSLVq3afLddQpDB2bOnM32MFStWpnfvvuTNmzfFbUqXLo2pqRmFC8tw\nctrF+/fv8PF5TYUKFSUn7BEjxjBixBisrOrj7KxI+ZQ3bz5Gjx4n9TNwoD0A3t7eREZGZuBTKShQ\noCDTps2kfXuF3lxsbCzly1tQpIgBN2640qaNNaGhoRgZFUQm02Phwtn4+/tx6dIFfH19lfoqWdKU\nmzfvI5Ppq9wDQENDkwMHDrBu3SYGDBjCjBlzuHJFefsrgcBARZDE3LkzVXKRRkREAAoD7ds5WbZs\nDXJ5KHJ5KM+eedOuXUeldgkRryNHjsHcPHUCvILMRU1NjQsXrilFgvbsaYOZ2decum5uD6RjI6Oi\n0gozKLbj27SxzpTPiCB9CB+2VPA7+EGkld/JVyQ9ZLd5ioqKQl1dnRIlivDlyxdWrFiboUEGaSGx\nOYqIiCAm5gt58+aTjI4TJ85hZmZOnjx6aGho0K5dC1xdr2JlVR9f3/f06dOXa9eucvz4UerXb4iz\n835WrVpGWFgYY8dO/G4y+bTg5+dLxYqKlSYNDQ3+/feUlIHAwsIcudwfR8dt2Nn1lHzP8ubNR0hI\nMHJ5KJ8/f2bHDic8PJ6yYMFS1q1bzfTp/wAwcuRYSpcuQ9269XFxOUudOnWoWrVCit+jlSuXMXPm\nVEB12zQhV+q3P9rfkiAvsXv3ARo2bJJonexKdvu8/Wi+TYOWQJEiBpw7d0XaOv34MRxNzTimT5/N\nsmWLpOCcGzfuUbKk2Q8fc3Yku/iwiRU2geA3ZcWKJRgbF8bIqCCurncBGDZsEDduXM/Scf377yHU\n1NRo0aIJISEKXy4dHR0VuZHr169RqlRxDAzyc+zYEVxdrwKK/KgvX75g+/atHD9+lDp1rNi37zCa\nmpqMGDGGKVOmJ2qs3bt3hzp1aiCT6WFunnqfrHPnvkadxsbG0qpVE/r0+RuAgQOHAODqehW5PJQn\nTxT+YIaGhtjZDWDfvt2MHz+KyZPHs327E6dPn6RPn340bNiYJUtWMnHiFDp06IxMJsPGpjsmJiVT\nNbahQ0ewfPkatm51VilTV1dXMdb69++FTKbH7NkzePzYHQAbm46MHTsiVfcVZC1qamp4er6jbt16\n0jU/P1/JWAOFUZcnTx4mT57Cs2fe/P13L2QyfWk1V5B9EAabQPCbERMTw9KlC5k1ywGAXLm0KViw\nkBQU0aZN5vqyJceDB/cBRYoec/Ni1K9fk0+fPknlDx8+Y/r0OWzdulm6NmBAb5V+Xr/2ZtAg+0Sz\nAPyXnTu3YW3dkBcvFMEFRkapN9i2bdusci0iIvz//nUKJ+6LF11wcTlH7drVePLEk6dPn+DouJ4h\nQ/or6fRZWFRAW1ubnTv34eTkyN69qoZWaunWrQfNm7dMtp63txeHDx8EYNOmdXTv3pOlS1cBiu0z\nwc+Frm4eDh48xvr1qu8ngL+/PwkbbXp6efnw4QNyuT/Hjx/9kcMUpAARdCAQ/Eb4+r6nUiVlDbDI\nyM8MHNiHM2dOAagknv7R2Nn1Y/nyJdJ5SEgIampq3L59kwkTxvDxYyA6OjpKuRb/m+C6YsVKrFy5\nPlHn/QRH+9y5dXj06AW6urpSVOasWfOwsemOnl7KfewS2Lx5B2vWrKBs2fJERkbStWs3unXrJEmo\naGhoMG/eYiZPHsfHjx/5809lv8YXL54zfvxkhg8fLTn/f/78mYcPH6gkcc9MnJ23S8fDh4+iaNFC\n7NixJ1vKdghSTvPmrRK9Xq6cmRRxPHLkGMkvdPToYXTv3vNHDlGQDGKFTSD4iYiPj8fD42miYpwp\n4dt2OXPmlI4TjLUBAwbz4sUb3Nzuk1XurYaGRjRo0EA6d3G5irv7Qzp1akNk5Cdq1qyFmZk5Xbt2\nw9q6BVZW9ZXanz17iXPnrlC2bDkiIyO5ffsmf/5Zh6tXL/PkyWPCwhSZDj59imDChNHEx8czePBQ\nXr/2p3//wWky1kAhuzFnzkL+/rsXPXrY0rt3D6X5jo2NZfDgfjx/rljF8/f3A5CMM4AyZcopnSfk\nIV29ernka5bZWFk1ABQrMwk/3mmVJxFkH3LlysWjR8oabAl5RROijZcuXcS+fbupVq2GkoyLIHsg\nVtgEgp+E+Ph4Bg7sy6FD+wDw9w9JtV5Ss2YtGDVqHC9fvqBjxy7cunWD1asVKam2bnWmYcPGDBs2\nkEOHDjB16kzs7Ydn+HMkh7q6Oi4uLri63iIi4jMFChRkyZJ+GBgYMGPGHBWJCYXzfl5OnDhG69bt\nqFSpCgB79zpjbz9AqpeQreDbVE579zozceIUjIyKZqgGnaPjBklVHhQ5U48fP0JAgJw6dayoVk2h\nTn/kyGFKljRl7dpNBAUFUa9eA6V+Dh7cJx0/e/aUsmXLZ9gY/8ubN68pXFhGxYqVMDcvhampOXZ2\nA6hX708RCfqLIJPJuH79LrVqVQMUWTtmzFAEo3wrJp0jRw4VORpB1iMMNsEvTUBAACdPHmPbti0c\nOnSMPHm+nwomuzF79nSWL1/M8eNnuXPntmSsAd811gIDA7lw4RwhISE0b94SQ0Mj4uLiePv2DePG\nTUJNTY0yZUoQFBQEgK6uLqdPn2Dz5g1cuqRIaWVpWTNzH+47qKmpUa6chRTZ5+b2ACMjI7S0tHj+\n/Bnr16+lV6/e+Pv7ExQURGys4ofm29yiz58/l441NDQwMDCkZs3aUnBCzpw5GTZsVKboTdWta0Xt\n2nUZP34ytWrVARQGd/36tfj4MZBKlSpz+bLCoNu8eUeSOmZt2rRj5EiFHMnHjx8zfJwJxMTEUL16\nBbp2/YuVK9dx7dodqUxorP1amJqas3fvYbp0aScZawAdO3Zhz55dAIwaNS6p5oIsRBhsgl8Sd/eH\nTJw4htu3b0pbe9u2OTFkiGoeyOxMghaSn5+vlAS8bt16jB49PtH6gYGBLF48j02b1kvXJk4cw9Wr\nt+nWrSM+Pm/o0cOW5s1bSsYaKPJR7tr11Xdpxow5kiRFevny5Qt2dj05f/4Mb99+SPWqoL+/H4GB\nHwgM/EBERATz588hKCiIadOmSHUKFSqMvf0I6d83KOgjK1YslsqvXbstSRTExMSgq5uHunWtVAz4\n+Ph45s+fzZIlC3j61It8+fIRECBHX79IqsZduXJVDh8+ASj80EaPHka+fPkIDw/j7VsfHBymIJf7\nM3CgvZJB9OLFcwoWLChF6OXJo8eLF2/48CEAU1PzRO+VEWhqajJy5BisrZMPShD8/DRo0BAHh9k4\nOEyWrs2fv5AJE/4RgSXZGKHDlgp+Vy2flJDd9I769+/N4cMH+PtvW27evIGfnx9nzlykZEnT5Btn\nIumdpxIlDPj0KYK3bz8o+aC9fevDoEF9uXnzqyTHwIH2eHg84eJFF6pXt+TOHVVh1QULljJu3EhA\nsQ1SsWJlJk2aquIXlh6OHz9K794Kbbe7dx8lqcifwH/n6MOHD1SsWIqYmBh0dHSJi4vl5EkXnJ13\nEBERzpQp09HR0VWaj/j4eFq2bMKdO7fQ0dHh1at3SeqMJfDXX52UpDmUy/5m2bLVqXruuLg41NXV\nJdFcACur+tJWacuWrVmxYq2S0Vi2rAmBgYFKDv7btzsxevQwRo8ez/jxkxOdI0HiiHn6PgmahqGh\nocTEqBMdHUPt2tWoXt2SAQMGY2FRUaSpQuiwCQSZSsWKiryV27dv5dWrl2zatDXLjbWM4ObN+8yf\nv0TJOAF48uSRZKwNHjyM27cfMmPGHCnNUoKxNm7cJKnN6tUbsLHpTvXqloBiJWzHjr0ZaqxFRERI\ngq2gmiYrJRQqVIj37z+ya9c+OnTojLPzAcqVK8/MmXNZsmQl+fMXUJkPNTU1Nm50AmDOnIUqxlpo\naAgfPwYqXUvKWANSHYgwZ84MihTJx8CBdpJPHUBQUBByeSje3n5s2bJTZYWve3dbSpQwUbqWYOA2\na5ay3KsZxYMH97CyssTPzzf5yj853t5e1K1bQ2mV+XdgyZKVANjZ2XHixDGKFMmHp+cr9u51plEj\nK+ztB3Dz5o0sHqUgAWGwCX5JhgwZxsWL19mz5xA3bz5ING9kduVr0vinKmX6+kWU8oC+fu3NvHmz\npAhCTU1N1qxZQY0aFYmPj6dUqdJ06tQVgIMHjzFmzAQp5VDnzjbkypWLRYuW06hREw4ePJahjsbR\n0dEMHz4YT09FtFmjRk2kqLSUEBMTQ5Ei+TAzU2iiNW7cjMWLl1O7dt0UtTcyKoqvbxDduvVQKTMz\nM6ZMGcVqVgIzZ84FUEmb1a/fQKZNm5mie44fP4o//6yNj88bAOrX/xNtbW1Jxyzhj4bcuXPTqVNb\nxo4dSf36tSSDum3b9nh7e7Fo0Ty+fPmCp+crGjRoiJ9fMB4eT3n//l2KxpERODsr8rWuXbvyh90z\nq9i9eyfPnz9j27YtWT2UH0qCbMe+ffvo0cNGpXzfvt20bt2U6OjoHz00QSKILdFUIJbVk0ZsPaSM\nlMzT/v17GDy4H6CaRuhbYmJiMDQskGR5VupmxcbG0qFDK27evI6lZU1u3HClSpVqnD59Idm2CXO0\nadMW+vXrAyT+LOfOnWbatMmsWrWeKlWqpWp8CVtBjx+/onDhwirlHz8GsmXLJvr06Uf+/EnP8X9J\n2LJ+80ZOQIAcY+NiREZGoqWlxY0brlSoUAldXV2VlEEymT6PHr3g6NHD2Nn1xNi4GHK5nKioSLp1\n68GQIcOpW7cGtrZ2LFy49Id83mbOnMrKlcsYOnQEU6YkLz6cUpydd+Dj84ZFixSrv5n5nqZ0nqKj\no9mxYyu9etklu3X+q/HHH5Xx8vJMtt706XMYNMj+B4wo+yG2RAUCQaK8eqXQSlq//vt/7ffvr6ru\nn8CWLTszdEypJSQkmDt3bhEXF8eNG66oqanRq5ddqvrQ08tLgQIFOX/+aqLlq1Yt58WL5zRr9qdS\nJoTECAwMZPjwwfj6vle6ntSKYoECBRk9enyqjDUAb29f5PJQcuXKhbFxMZycHClWTMalSxeoVauO\npGumpqbG3buPMDNTyGXI5f6AQv7DwWE2Pj5viIpSBJwUKWKAuXkp+vYdoLSlndlMmTIDuTw0Q421\nmJgYhg8fLBlrQJbp/X1Lzpw56dOn329nrMXHxzNmTOIBTI0bN1U6nzZtUpanrfvd+b3eToEgmxMc\nHCT50dy7dzvROk+ePGbz5o1cvXpZpUxXV5d79x7TsmXrTB1nchQoUJATJ87RrdvfFC9uwq5d+xPd\nmvweTZo0w8PDiwoVKiZa3rPnV4P1+XOP7/ZVtqwJzs47pDlzd3/By5c+mf4DXa9eA5o1a0716jWU\nrnt7e+HsvIN8+fJhbGxM3rz5ePr0Cerq6piafvW1lMtDmThxCmpqasyZszDR1cCfCU1NTQ4dOo6B\ngSEA9vbDhVN7FtKlSzuGDFFoFRYsWIgcOXJIZZcuXaBbt+5K9TU0hMmQlYjZFwiyEf/+e0haBUpQ\nxP+Wy5cv0KBBLSZMGE2NGsqyG7Nnz+fVq3cULZr6PJiZQaVKVShevDivX3vRrVvHDO8/IiJCOk4w\nAJIiIdihVau2AOjr66c5o0FS+Pi8oX//3piaGhEZGUlUVBTW1n/SsWMXWrRoQqNGX33vWrRozKJF\n87hz5xY+Pj6EhARTv75C965p0+bY2HTn6tXEDfaM5sOHD4wbN1LKH5rZ1KljhZubB3J5KFOnpsw3\nUJA5JGguAkya9A9Hj56Wztu374Sz89eV+vHjJ6t85wh+LMJgEwiyEdbWLRk7diJ37rizZ88hpbKj\nRw/TqVNb6fzs2VPSsbv7C/r1G5TtVisMDRWGlKmpOTKZXoZG4Z0/fxaAkSPHoK9f5Lt1r127jYeH\nV7LZDJYuXYhMpkfnzu1SPZ6pUydx+PABwsLCOHz4AL6+7wkODqZ//97I5X5K/zbFixeXjnPlyoVM\nJgMUvnWXL19kxYq1P0yw1t/fDycnR/r37/VD7ifIPnyba3f06BFYWzdk6NCRrF69gVWr1uPktIsa\nNSxxctqVpPaj4MchDDaBIBuhr6/P2LETKVasuNL13bt3YmeniOjq0KGzdL1u3Xp4efmir6//Q8eZ\nUtzdHwLw6tULANavT52W2ffo2bMXAwfaM3LkOIKDg5g3b2aSztNFixqjoaFBbGzsd/t0cTkHwN27\nqV/dWrBgKfnz5wfg06dPlChhwo0b97h1y437959y8qSLVHfbtj3ScWRkJHK5XDrv3LktR44c4tat\nGypJ7TOD8uUt8PDw4vDh43h6vky+geCX4fjxc1J0dAIrVy7F31/hU9miRSuOHz9HixaJJ44X/FhE\nlGgqEBGQSSOiRFNGWuZpzx5nhg5V+JnUqWPFtWtXAJg4cQojR47NtLFmBK6uV9m0aT1hYaEYGBgx\nYsQoKeNAUqRljmbOnMbKlUsZNGgo06fPVil/9swDKyuF3tz3ohJ9fN4weHA/bt68Ts2atdmz51Cq\ncozeu3cHB4d/mDdvMeXKfT/v55s3r5k2bTLHjx9Jsk7Rosbcu/dY5XpmfN4SIme9vf3InTv1ennZ\nEfG9lDyamuoUKKAIhmna1JozZxQr91kZZZ7dyC5RoiI1lUCQTQkNDaFnz25S7ktAMtaaNLHO9sYa\nQO3adVOsm5YeElYkkwpQSKB+/T+/W25sXIyJE6fQrl0Lbtxw5dmzp1SuXDXF46hatTpHjpxKviKK\nMW/ZskMylPLnL0BQkCJfqImJCV5eXiqReplJw4aNcXE5lyoDVfBrsX79FkxMDFSEqAXZA2GwCQTZ\nkG/TGQG0aNEaH5836OrqMmHCP1JC8fQSHByEm9sD6tVrkO3831KDrW0fevbsneQzlC5dJsUrBrVq\n1WHVqvWEhoZIGTMyk3XrHNm715ktW3bi6nqFbt060apVG7Zv34pM9mO2uuPi4vDy8qRmzVo/5H6C\n7ImJiQEAkydPy+KRCBJDbImmArGsnjRi6yFlpGSe4uLiKFIkH6DY9rSz6y+p/efNm5cXL3wyZCxx\ncXFUqlQGf39Fmsn4kaAAACAASURBVKSslgJJICvepfj4eKKiosiVK1ey9VauXMasWdOwtm7Jtm3O\nab6np+crZDIZurp5lK4XKyZDS0uLkJAQAIYPH42pqRk2Nl8lFjJyjt69e8uYMSO4ePE8sbGxPHz4\njCJFDFTqTZgwms2bNwLg5xf8U2iWie+l5NHUVOfJkwfUrau8Ev7mjTzZz8PvQnbZEs3+nziB4Ddi\n48a1krEGClX4rVu/CuheupRxef2ioqLw9/cDFBpMieHsvIMzZ05myP2+leFIjs+fP9O5czvs7Qdk\nyL2TIiYmhilTJmJmZkyxYjKqVCnHixfPk6zv6nqVWbMUqw+nTh1P171r1qxCyZJGKtfLlCkrBS8A\nLF++mGHDBnH06L+EhASn656JER0dzfnzZ/j331Ns27abfPkU97527Yq0RQtIxhoopEAEvw516tTh\n48dw5PJQFi1aDkB4eHgWj0rwX4TBJhBkE/r2tWXyZOXQeW9vLzZtWgvAvXuPMTRU/YFPK9ra2pw+\nfYH9+48kuhV26tQJhg8fTI8eXdN9L3d3N0xMDOjYsU2K6oeHh3P+/Dn27nXOVONALvdn/frVqKlB\np06deffuLevWJR3J+vq1NwAVK1bmzh33dN3b2roFXbv+pXTN1/c9Dx7cRy6Xc/asi1KZnd3frF+/\nJl33TAwTk5LI5aG4uJyhZ08b2rdvwa1bN2nfviVTpkyU6tnaKtKEbdq0VZIhEfx69OzZG3//kFTl\n/RX8GITBJhBkA+Li4hLNXACKFEGenu8zRRC3SpVq1KvXINGyBH+w1GYoSAyZTB8tLS0qVaqUovqF\nCxeW/LceP07aMAoLC2XYsEEsW7aI4OCgVI+rQIGC0v8T0ls1aNAwyfrduvVg//4jnD59QUV6JbVs\n27ablSvXKV07ckShvffp0ydGjhzOlSvXePDgIevXK1a3wsLC0nXP71GiREkAAgICmDlzKgB79zpL\n0iILFy5DLg+lTZv2mTYGQfbgZ/Zn/ZURBptAkA1QV1ene/eeKteXLl1Fp05dpRyUP5JmzZojl4ey\nfHn6V3VkMn0cHGbx9OmTFLc5duwUvXv3TdKgBMWW7e7dO5kzZwZly5akS5d2qdrKyZUrF+fPXyEs\nLIzz58+xZs1GWrdum2R9NTU16tVrgIaGRorvkRp69uzDihVrGTVqLI8euWNlVQdr62YMGNAPUARP\nZBY2Nt3x9HzH7dsPld7FwMCUrXA+fvyI9u1b8u7d28waokDwWyOCDlKBcFxNGuHcmzK+nacvX2Lx\n8nqFgYERDx+60br1VwmHtm07sHjx8gxPn5RVBAQEUL68qdK18+evJirDkZp3qXfv7hw/fpRFi5Zy\n+/Yt9uxRBAHkyaPHq1cpNxzCw8OJiopKNBn86NHD2L7diTNnLqZK4iO9rFixhCdPHmFkZMzKlUtp\n0qQZGzdu5cKF86irQ48eNoSEfM60z1t4eDgREREpFmXu2bMbp04dp1u3Hhli5GcE4nspecQcJU92\nCToQBlsqEC900ogPfcr4dp5GjBjKtm1bEq336tVb8uTR+8Gjy1zOnDnJ8+fPmDFjqnQtMZHW1LxL\nL1++oHbtakyZMo3Y2DjmzPmamzIjhD/9/HypWFGRImrjRifatu2Q7j7Ti4WFOXK5PwYGBjx+/CLb\nfN5ev35NcPBHLCwqZtoKZGpJ6bv0/v07Ll26QNOmzRM12n9lxHd38mQXg01siQoEP4hTp05gZ2fL\n6NGjKVBAV8VYK1SoEFpaWpw/f/WXM9ZAkdTc3n4E+/d/VfYvUaIIbdtaExgYmKY+TU3NKFSoEMuW\nLWXu3Fn88UctjI2LKa3w3Llziy5d2nHjhmuq+9fW1sbGpge2tnbZxnfL1fUO3bp1Z9WqVVk9FIk1\na1ZSo0YFRo8enm2MtdRw4cJ5hg8fTNmyJty8mXGR2AJBRiJW2FKB+AskacRfad9HLpdjYZF0SqY1\nazbQtm1HoqOj0dHJ+r/kMpvAwEBat27Ky5eKHKMrV66TIiZT+y7duXOLAwf2YmFRkQ4dOisp9bu7\nu9GokZV0vmvXPho3bpbBT/PjSZijd+8CuHz5Eo0aNZUcxT09X3Ls2BGGDRv1w8aTkK1hwIAhKrkp\ns5KUvktRUVHUrFmFd+/ecunSDaWk6L864rs7ecQKm0DwG+Hn9146XrhwIXv3HlIqb9++Mzly5Pgt\njDWAggUL4up6l7lzF1GvXgOaNEm7EVW9uiVz5y7ir7/+VkmrdPTovwAUKlQYgDdv3qR90NmQEyeO\n8ddfnVm8eL507dixo8ya5UBcXOb/+N66dZPBg/uxb9+/DB48DAeHWZl+z8xAS0uL+/efIJeH/lbG\nmuDnQhhsAkEmcPDgPmQyPczNjQkJCaZChUqULKlwuh87dix5837d8nR03P5TbiNlBHZ2/dm//4gk\nr5FWzp49haFhAaytG9KgQS1KlSrOpUsXWLZsEQAODrOQy0Pp06ef1Mbb2wuZTI+qVcsTHp55chkn\nTx5HJtNDJtMjKioqQ/tOELl99eqldM3efjje3n4/JBOBp+dLTpw4Sv36f+LgMOu3fY8Fgh+BMNgE\nghRy9+5tLl26QGhoCOPHj5J+hJs3b8T79++kemFhoQwcaAdASEgImzdvZPToYXh6vvqmTjg3btzj\n3r3H35WRECjj7++Pn58voaEheHt7ERMTA8CuXduJj48nNjaGJ08eExwcxJ07t6R27dt3ko7j4+Nx\ndt6BpaVCE+7tWx9KljQio71D3r9/h0ymp+SrWLy4PitXLsuwezRu3AS5PJS1azdJ19TV1VUCOTIL\nG5vueHv7/ZB7CQS/O8JgEwhSgLe3F82bN6Jz57aYmRmzZcvXH8i7d29TuXJZHjy4R48eXTA1LarU\ndu7cmezYsVU6Hz58OA0a/EnJkmaZIob7qxISEkyVKmWpWLE0ZmbGWFpWom1b6/8nLvciLi4ON7cH\nAHTo0JmRI8fi5eWLr28QkyaNRSbT4/Tpk1y6dIHhwwer9J/RBtuhQ/sBRXaEBw+e0rBhY+Li4jh7\n9lSG3ic7EBcXx/nzZ5DL5Vk9FIHgl0UYbAJBCli6dKHSeYkSJty79xgfnwApXVTTpg04cybxH+N2\n7Trw6tVbPn4MZ9myZT9F4uzsRkREBDExMRgaGjJ//iJatmzN7du3+PTpE7t27ZO2nAGeP/dAXV0d\nHR0d3r71YevWzQBs3rwBb28vqd6pU2cB0NXNk+H/JgnvxcuXz3n8+BEuLucAuH//HpGRkRl6r6xm\nwIA+dOvW6buBNQKBIH2IXw2BAEUS8ITttW+Jjo6me/cuODvvAMDNzYPjx89y/vwVihY1RktLi5kz\n50n1u3b9i6tXb+Pt7YeJiSLVj5PTLjZscPolpTp+JKGhCl21WbPmUrhwYa5evUL58hbo6OhgaGjE\njRv3cXPzYM6cBSxbpsgH+uyZh1Iu1HnzFks5MQH++ssGACennRk+3m+jUbt37ywdR0VFStuxPzuB\ngYG0aWPNv/8ezOqhCAS/PMJgE/z2BAV9pHhxfQwNC+DouFG6/u7dW4oWLSRtYZ0/f5XJk8fTsmUT\nKlQoJdVr0aIVDg6zcXTczsqV6yhVqjS5c+fm5s0HyOWhtGjR6oc/069IoUKF0dLSYuzY0fTr14eK\nFStx4MBR1NTUuHr1Mrdv38TAwJC+fQdSsWJl4uPjsbKy5NkzxXakrq4u9vYDUFNTY9IkhXjvx4+B\nLFmyUin9VXx8PB8/Jq4Ld/jwAaysLOnbtyfR0dHfHe/161dVrhkaGlGgQAG2bt2V9onIRpQrV5Ib\nN1zR0NBg8uRpPHnime4+z549RfnyZlSrZpEBIxQIfh3SbLD179+fiRMnSuePHj3CxsaGKlWqYGNj\ng5ubW6Lt3NzcKFeuHO/fv1e67uTkRL169ahWrRqTJ09WiqaKjo5m0qRJ1KhRAysrK7ZsURYcffv2\nLb1796ZKlSq0atWKa9euKZW7urrSunVrKleuTK9evfDx8UnrYwt+Ie7cuYVMpkfp0iWkBNcTJ47G\n3f0hp06doEoVRXi/sXExXr16S+7c2hw7ppCJGDx4mNSPhoYGgwcP/eWDB4KCPkqBFlkh31ioUCG2\nbnWmTZt2zJu3mD17DuHh8RSZTI8OHVrRsmWTJNu6uJwjPDyce/fuEBsby4gRY3j2zJunT73o0cNW\nqe7ixfMpU8aE69evIZPpYW8/AIBJk8bSv39vnj3z4MiRw9jadlO5T8K8xMfHs3DhPJXyBQuW4OHh\nTZUq1dIzFT+c+Ph4Xrx4TliYcvaIFSsUAsVFihgwfPhoChUqlK77REZG0r17FwIC5Pj4vCE2NjZd\n/QkEvxJpMtiOHz/O5cuXpfOPHz/Su3dvSpcuzcGDB7G2tqZ37974+SlHD8XExPDPP/+ofNmfPn2a\nNWvWMHPmTLZu3YqbmxsLF371GZo/fz5Pnjxh+/btTJs2jVWrVnHmzBmpfMiQIchkMg4cOECbNm2w\nt7eX7u3r68uQIUPo2LEjBw4cIH/+/AwZMiQtjy34xZg3b3ai1xs1qkvPnoqtsvHjJ3Pnjjt58uhR\nsqQZc+cuZN06R0aOHPsjh5ouPn36xLx5M5NcNUoJnz9/5t69u9L5j9D4SoyGDRszf/4SbG37oKmp\nyblzX78H/uuDpqamhr9/CI6O26RrY8ZM4MqVSxgZFeTGjeuJpiG6cuUSAIsWKQyuBMmPhC1tE5OS\n/xeIVTbIHB03oK+fl8qVy3Ly5HHc3O5LZaVLl8HJaRdNmzZPz+NnGX372lKnTnWVgJquXRVRonfv\nPsqQ+2hpaWFsXAwAK6sGQiZEIPgGzdQ2CAkJYeHChVSs+DVp86FDh8ifPz8ODg6oqalhYmLCtWvX\ncHZ2ZuTIkVK9jRs3oqen6sezfft2bG1tqV+/PgDTp0/Hzs6OsWPHEhcXx/79+3F0dKRMmTKUKVOG\nvn37smPHDpo2bcr169fx8fFh7969aGlp0b9/f65fv87+/fuxt7dn7969VKhQgV69egEwd+5c6tSp\nw+3bt6lRo0ZqH1/wCxESEgxAv34D2bhxnUr5qVMuVK1aXTpXU1PDzm7ADxtfRnHjxjWWLFmInl4+\nBg8emqY+nJ13MGHCaHr0sGXyZIds8UN6//5dype3oEuXbshk+kyY8A+lSxcnNDQUX98gQPFvVqGC\nwl+sSRNrRo8eL6nyjxs3klKlSmFqaq7U74EDRwkKCkJLKyfv3r2ThFQnTpzCxIlTVMYxYsQQtLS0\nkMv9AYWcR82atVi4cBnGxsY8f/6Mzp27pThH5du3PhgYGGboHMfFxRETE0POnDnT1L506TIcPao4\nvnLlElZW9aWyjJQQUVNT48iRU9y9e5vWrdtlWL8Cwa9AqlfY5s+fT9u2bTE1/RqR9fbtW8qXLy+l\nRgEoXbo09+9//QvTy8sLZ2dnxo8fr7TCFhcXh7u7O9Wrf/1hrFy5Ml++fMHDwwMPDw9iY2OpXLmy\nVF6tWjUePnwIwMOHDylfvjxaWlpK5Q8ePJDKvzXMcuXKRbly5ZTGJvj9CA8Pl1ZApkyZgZOTwqeo\naFFjVq1aj5eXr5Kx9jPzxx+1MTcvRefONmnuo1OnLgA0b94yXcmxXVzO4ufnm+b2CVy9eplmzf5k\n0KC+vHz5nNGjxxMWFkZQUJDSNtrSpQtp1MgKE5OS0pZ1u3aKBO7+/n7UqqW6NampqUnhwoXR08ub\nItX7Xbu2s2XLJsaNm0y7dh3Ztm03BQoUxNa2Dw0bNmHgQHtpzr58+YJMpsfOndsS7SsgIICqVctj\nYJAfHx9FVob4+PgUbUHHx8fz+PEjFd+616+9KVIkH0WLFkIm05P6TQ1jx351f+nYsXWq26cGI6Oi\ntGnTXun3RCAQpNJgu379Onfv3lXZUixYsCD+/v5K13x9fQkKCpLOp06dytChQ1W+7ENDQ4mKikIm\nk0nXNDQ0yJcvH35+fgQEBJAvXz40Nb8uBhYsWJCoqCiCgoIICAhQavvf8cjlcpXyQoUKqYxX8Ovj\n5eWJhYU5a9asoFQpxbZL9eqW5MqVixYtWiGXh3Lv3mO6dOn2S6WI0tHR4dq1OxQuXDjNfejp5UUu\nD6VJE+s09/H8+TNsbDoyaFBf6dq0aZMlv7jr1699p7Uy30b03rt3F39/PwoWLMiGDVuk7bmYmBjm\nzp1JWFgoXl6eDBs2iOHDB7NhgxOenl99aDduXJuuDATnzl0BoH79mhw+fIA6deoSGxsrPdenT5+k\nuk5OCv2+b3X5viUy8rN0/PatwtdWXz8v+vp5sbcfwJgxI6hZs0qiAQ8zZkzlzz9rU7Sosh+Zrm4e\nrK1bSCt20dGpf1Y1NTXk8lAOHz7B9u17Ut1eIBCknxRviUZHR+Pg4MC0adNUltWbNWvGunXr2Ldv\nHx06dMDV1RUXFxf09fUB2LdvH7GxsXTu3Jl3794p/eUUGRmJmpqaSp85c+YkOjqauLi4RMsSxvT5\n8+ck2yb0/73y1KChIYJqkyJhbrLrHMXHx/PHH4pVWgeHf6TrW7ZsR1Pzx405u89TeoiMjGTr1s2E\nh4fTtKk1FSpUVCo3NS2JmZk5o0aNRVNTHScnR9auXYml5R/cunWTNWtWYGVllaI5aty4MZcuuWJk\nZIS6urqUoqlTp6/yGerqmpQtWw4Pj6fSCtXlyxeJivpMvnx6fPwYzs6d2xk6dBBhYaHkzq1DXFwc\nw4aNSPEzr1q1gqlTJyldCwsLIS7uq0HZvHlDrl1TZF2oUqUqAMOHj1R67z59+kStWtWVVr8KFy6k\nVOfgwX00bWqNp+crwsJC0NfPrzRHjRs35u7dW0ydOl2pnb5+YXbt2gtAbGxsurZa69Wrl+a2WcGv\n/HnLKMQcJU92mZsUG2wrV67EwsKC2rVrq5SZm5szc+ZMZs6ciYODA2XKlOGvv/7i5s2bfPjwgWXL\nlrF1q+Ivyv8u7efMmZP4+HgVAyo6OhptbW1iYmISLQPQ1tZGS0uLkJAQlfJcuXIBCifWxNon5kuX\nHHp62slX+s3JbnPk5+fH/PnzuXXrlkrZ0KFDsbAolUirzCe7zVN6WLNmDQ4ODgQEBACgq6vL7Nkz\nGDp0KCtWrPimpg4vXjyXzmJjo/9fX7GaOWrUCPLn/7qymdwc1atXK9mxPXnymOvXr0vfW+/evWXF\nikX4+PjQvn17jhxR6IeZmBRjwACFf+KUKRNTLKLbqpW1ksG2dOlSKlVSbKPOmDGDqVOnMnLk1+dq\n3rwxERERKn5fb996KhlrZcuWpVYtxZZ8XFwcYWFhqKuro6urq9Tu2zlq164V7doJCZnE+JU+b5mF\nmKPsT4oNthMnThAYGEiVKlUAJBmE06dPc+/ePdq3b0+7du0IDAykUKFCLFy4ECMjI65evUpwcDBd\nunRRCnlv2bIlgwYNol+/fmhpafHhwwdMTEwAxV+BwcHBFC5cmLi4OIKDg4mLi5O+RD98+ECuXLnQ\n09NDX1+fly9fKo31w4cP0vaPvr6+9EPybXnZsmVTPVmhoZ+Jjc2a6LjsjoaGOnp62tlujlq2bKUU\n3fgtdes2ICgo4oeOJ7vOU1o5efK4kovEggWLMTU1pWfP7qxcuZI+fQZQvHiJRNva2vbD0/M17u5u\nLFiwmBo16hAUFJHqObK3H4SpqSkjR45RKYuPj+fSJWU9tIQI9N27d1OqVGkAvtVMvnjxGkWKGFCk\nSJFk/ahKlCiFq+ttatdW+MnOn7+AkSNHMm7cRCZMmMygQcNRV1dXec+iopTPixYtycmT5zh0aD/b\ntjnx9OlTevXqw8iRYyhWrDigQWwsUj/peY+Cg4MIDAzE1PTXz0rwq33eMgMxR8mTMEdZTYoNth07\ndij5jSR86Y0dO5abN2+yZ88elixZQqFChYiPj+fy5ct069aNpk2bUq3aV8dePz8/evbsycaNGylV\nqtT/o7gqcPfuXSk44P79++TIkYMyZcoQHx+PpqYmDx48oGpVxXbCnTt3sLBQiCpWqlSJjRs3Eh0d\nLW193r17VwpiqFSpEvfu3ZPu//nzZ548ecLQoamPlouNjSMmRrzQ3yM7zZGn58skjTVb2z40aNA4\ny8aaneYpPXz58tXBf+/eg2hqavLlyxeqV6/BlSuXiYsjyeeMj1ejUycbWrduR/Xqlir1UjpHu3Zt\nB2Do0FEqZStWLGXWrGnSuY6ODpUrV2Ht2g1cuXKZESOG0qdPP9q06cCRI4fR1s6Nvf1Anj59QseO\nXfjwIYAePWxp27ZDkvc3MyuNn18wq1evYNs2RQqsCxdcWLBgrlRHLg9NqrlEtWqWVKtmyZAhI6lU\nqTRbt27h6NEjzJo1j06duibaJi3vUf36dfDxecP79x+VfIN/ZX6Vz1tmIuYo+5PijVkDAwOMjY2l\n/3R0dNDR0cHY2JgSJUpw4cIFdu/ejY+PD9OnTycsLIz27duTO3dupXaGhobEx8djaGgobUv+9ddf\nODo6cu7cOR4+fMj06dPp0qULWlpa5MqVi7Zt2zJt2jTc3d05d+4cW7ZswdZWIXZpaWmJgYEBEyZM\n4OXLl2zYsAF3d3c6deoEQMeOHbl37x4bN27k5cuXTJw4kWLFimFpaZkJ0ynITly9eiXR6+fPX2Xh\nwmUiCi0DaNGiFaNGjUNLS4uTJ4/zzz8TGTiwL1evXmXFirWSptZ/OXLkEPXr16RRo7q0aNGYBQvm\npHkMW7c6s2lT4k78/w04KlOmHK6u11i2bAmvXr3ky5cvmJmZo6Wlhba2NocPH6BlyzbSGC9dukC/\nfr2SjOpMQF1dnaFDR+Dqepe7dx/x/v07qey/wrzJcevWdQDMzMz5+DGQwYP7JRkk5eb2AJlMj6JF\nC0kyNcnxzz8OVKlSNVtIswgEgpSTIZ50+vr6LFu2jG3bttGmTRtev37Nli1b0NZOfAnxvz+ULVq0\noH///kybNo2+fftSuXJlxoz5ur0xceJELCwssLW1ZebMmQwfPpzGjRsrHkBdnTVr1hAQEEDHjh05\nevQoq1evpkiRIgAYGRmxcuVKDhw4QOfOnQkLC2PVqlUZ8diCbMiXL1+YP382devWYNy4rxqARYsa\nc/78Ffz9Q1Sc4QXpw8qqPlFRUWzZ4siLF88JCgpi5sw5dOmimgkAICwslIED7ciXLx+7dyuc4S9e\ndElTIBAopEbatGmfaJmNTXdu3LjP8+evcXTczsGDx+jUqSubN29iyZJFNGzYhEmTxiGT6Um5Si0t\na3LqlAsXLriyatV6ABUR8KTIkSMHxsbFpLymb97IWbJkZaqep1atuuTMmZOXL18AUKxYcSpUMOfJ\nk8cqdRNcU6Kjo1M8xvbtO3HixHn09fMik+kRHh6eqvEJBIKsQS0+K3LM/KQEBUWIJeMk0NRUJ39+\nnSyfIweHyaxZo/wDee3aHczNsya44L9kl3nKaF69esHx40dp0KARLi5nGTZsVJKO+0eOHKJvX1tu\n3ryDmZkZzs67sLcfTO7cOtja9mb27HmpnqOYmBi2bdvChAmjAdixYy+PH7uTP38BChQoIBl0ly5d\nYMKE0fz9dy86dOhMkSIGkpDuqVMulC1bPsk/NFNKXFwcAwfaUa9eg1SvriXw5MkTGjSoqXTNyWmX\nlJf22/fozRsfIiM/U7Jkyn3S/Px8qVhR4b83YsQYKbfqr8av+nnLSMQcJU/CHGU1wmBLBeKFTprs\n8KH/9OkTJUooVlbnzl2Eu7sbTZpY07Jl5gp9pobsME9ZTZ8+PXjz5jUuLhcBmDJlMjlzarF69UoM\nDY148OBxiucoKiqK8eNHcfjwQT59+urIX7FiZR4+fCCde3v7kTt3bmrWrIKn5yu6dv2LPXsUYsll\nypTFw+MpVatW59Qpl+/e7+HDBzg5OTJjxlyViM0EXr/2pkaNiinq73ts3rwRPz9f9PWLkDNnTnr0\nsJV2JzLiPapUqQy+vu9xdNz2y2YVEJ+35BFzlDzZxWD7PTxOBb80ERERrFu3ivnzFblBdXV16dXL\nTvjoZFMCAgIoXrw4ampqREZGsnbtGqnszZvXKvV9fd8zZcpERo0aR7ly5ZXK1qxZwa5d2+nW7S+c\nnRUGmJaWFnPmLGTOnOnY2vbh5s3rkozG2bOXePTInfHjR0t9WFhUxMqqAfny5Ut27OPHj+Lu3TvY\n2Q2gfHmLROsUL16Ca9fuULKkaaLlKaVPn37pap8cbm4efP78Od0rigKB4MeQPdTgBII0EhUVhYmJ\ngWSsAbi4XBPGWjamatXq3LhxnaioKHLlysUff3zd+jMxKUlMTAx9+/alQAFdIiMj6dChNUeOHKJt\n2+YqOo6GhkYAkrEGULKkKTVqWHL48Anat+/EvHmLpbI8efSoVasOu3btk65pa2vz8uVzqldPPhDJ\nyWkX//zjkKSxloC5eSn2799DsWIyPn4M/G7dxDY5/Px8mThxDOvXr052TOlBGGsCwc+DMNgEPzWB\ngR9Urn2b+kiQ/ahe3ZKAgACePVPkCn740A2ZTJ9jx85y8+YDXr58gaOjIwAPHtyjQoUKAISEBKOv\nn1epr65d/2LdOkdGjRqLm5sHnp7vuXjxerIRwEWLGrNp01YGDrSndu26XLhwnuXLF3+3DYC+fhGG\nDVOVD0mM/fv3EBkZyahRwxItX7NmJRUrlkZfPy/Dhw9WKlu9egWOjhuYMmViom0FAsHvh9gSFfzU\nGBoa8eefjbhw4Tzdu/dk585t3L17O6uHJUiCyMhI7Oz+Jk8ePcqUKUunTu35/PkzBw8eo1o1hQ5j\nmTJlGT9+PB8+fMTSsiY1a9amcGEZGzeuS7TPDh06J3o9Odq0aU+bNu2JjY3l6dMn2Nn1T/NzJcaG\nDVtwdt6ZZLTsgQN78fPzBaBnz95KZcOGjaJ48eLUqfNzpYISCASZhwg6SAXCKTNpsoPjakK037Fj\nZ7G0/CNLxpAc2WGespK3b32oWlXhh/bypRdmZiaYmppx+fJNcuTIASQ+R58/f8bJyRETk5JYW7dI\ntO+YmBieuLW9LwAAIABJREFUP3/G+/dvefr0Kb1726Grm+fHPNgP5nd/j1KKmKfkEXOUPCLoQCDI\nJIoVS1ysVZD1FC1qLB1/+vQJgH79BknGWlJoa2szaJD9d+sMHTqQAwf2Sue3bt1g+/bd6RitQCAQ\nZB+ED5vgl8Dd/aF0fPDg/nT3t3TpQmQyPVasWJruvgTK2Nh0R0dHl8KFC6Orm4ebN10zpN9vnfst\nLWvy999p00ADcHO7n6hQ7Y/i338PIpPpSUatQCAQCINN8NPz4sVzGjWqK51raqYvQjQyMpIdOxSp\njmbNmkbHjq0JC0s+F6QgZdStW4+IiHBOnjxBiRIlCAiQZ0i/f/7ZCFCkyzp27AxNmzZPc1+dO7ej\nQYNaREZGJlvX29sLmUyPv/9OPN9nWnBzU2jIffgQkOY+Pn/+jLv7w0SjUBMIDQ1JcUorgUCQtQiD\nTfDTU6dOdelYXV2devX+THNfgYGB1K9fEx+fNwwfPpKGDRtx5colXr16mRFD/SWJiYlJVf1Wrdpi\nYGBInz698PLywt5+ZPKNUsDAgfa8ePEGR8ftiZafPHmcQYP6pmjVKjg4CID79+8mW/f8+TMAPH36\nRLp2+vRJJk0ai79/ytJF/ZcpU6bj4eFFsWLF09QeoFKl0jRqVJeKFUsTHh6WaJ22bZtjbl4Me/v+\nyGR6SeYsFQgEWY8w2AQ/PTo6XxXn4+LiqFfvDwIDv699lRQnThzFy8uTEiVKsHz5UlxcztOkiTWV\nKlVJcR9Hj/6LTKbHjRvX0zSGn4mTJ49jaFhAJR3Y98idOzfXrt3mwgVXHj16QcOGjTNsPHnz5ktU\ngy8gIABb224cOLA3RbIvzs6KbfU8efQSLff1fS8ZN7169WXrVmcuX74JwNmzp/j7765s2rSeLl0S\nz3GaHGpqahQoUDBNbRMIDlasnIWFhdGs2Z+JrhbOnr2AggULUqVKdYoXL4GOTtY7VgsEgsQRBpvg\np+fJk1fs3XuYnTu/OpxHR0elqS9jY0XAgre3NwULFmLXrn1s2+acrK7XtxQvrlgV8fFRVe1PK2fO\nnKRECQNu376ZYX2mh/j4eFq2bIytrUKy4tKl1KVg0tXNQ/nyFj/MQPD0VKyQGhgYkpJ/ykaNmiKX\nh2JhUUGlLCIigkqVylChgjmurlfR0NCgefOWUjaFhQvnSnXr1LFK85gPHtxHqVLFefTIPU3tEzIl\ntGzZihcvnvPkySOVOrVr1+XpUy/s7Ppz+/bDJNNtCQSCrEcYbIKfHm1tbUxNzejevQsAffr0x8DA\nME19mZmZo6mpSd269XB23k/jxs1SnTWhYsXKeHq+o3NnmzSN4b9ERETQo0dXPn2KoGXLJnh7e2VI\nv+khLi6O27dvAfD0qSd79hzK4hF9nwQfRF/f92lefU3Aze2+dCyT6auUb9myUzoeNy7twreOjhsI\nDg5i2rTJaWo/Y8Zc1NTUpO38woVlaR6LQCDIeoTBJvglaNxYsZIxfPho5s5dmOZ+ihY15t27QA4e\nPEblylXT3E9G6n+Fh4cDkDevQuX/8WPVlZIfjYaGBnJ5KHJ5KAULFsrq4SRL48bNsLKqD8DNm9f5\n55/xxMWlTXOqZs3a7N59gHv3HmNmZq5SbmRUVJqbfPnyp3nMDg6z6NmzD46OW9PU/vnzZ8THxxMc\nHEypUqWl1WOBQPBzIgw2wU/P27c+BAUpnMQnT56Wqu3LxEhv+4xGX1+xihMSEgKQYVGVvwqxsbHS\n/9evX02JEgaMHq2aDurdu7fS8YYNa9m9e6dKnZSgrq5Ow4ZNlDTlMoMaNf5g0aJlaTb6EmROtLW1\nfwqjWiAQfB9hsAl+er4VS3V3d8vCkWQeo0aNk44bNGiYhSNJH+fPn2H69ClER0dnSH8XLpzHwCA/\n5cqV5MiRQ0yZMpFPnyLYvt1Jpe716/eoUeNrBowqVaplyBiyK5GRnwH48OEDRkZFs3g0AoEgvQiD\nTfBT8/q1N7NnT5fOGzWyYsGCOVk4osxh3LhJ7N59gAcPnlKihElWD0dCLpdz796dFNfv1q0Tq1cv\nT9QBPi1MmjQWUBgl324VV6pUWaWumpoax4+flbYry5YtlyFjyK4kBCv4+/tRq1adLB6NQCBIL8Jg\nE/y0vHr1gho1KqpcX7Ro3nfFQn9GErbhDA2NsnooSlhYmGFt3ZCIiIhUtdPSypUh9w8M/CAdr1ix\nBGNjRYRuWoNOvsenT5/4/PkzX758USm7evUyxYrJJH/DrObp0yfMmzcLgKZNrenevWcWj0ggEKQX\nYbAJfkrev39HrVqKLa2JE6eolKfWgBCkjTZt2qGhoYG2tnaK6r97F8iFC66UKVM2Q+6/a9d+Spcu\nQ69edpiZmXP7thuurndZvnwNAQFpzxLwX6Kjo6lQwZzixfUxMiqo8gfB4cMHiYyM5MqVSxl2z/QQ\nEaEwHPv2HYixcXG8vT2zeEQCgSC9CINN8FMyYcIYAPr1G8hff6muHggB0B/Dpk3b8PUNQl09ZV8l\nOXLkoHx5ixQFdsjl/hw69P28sNWrW3Llyi0WLFjKtWt32LhxLS1bNqZ06RKUL2/Kvn0Zk/w9R44c\nlCxpJp3/d5Vt/vzFHD58gkqVKnPkyKE0R6BmFNWrWyKXh1K1ajUcHdezevWKLB2PQCBIP8JgE/yU\nFCyoUIGvVasuY8YoRwQqxFGzV6SnIPX07PkXAwb0SZFuWlxcHM2aNWDKlIlSxDDAkCH9M2Qsampq\nHDlyigcPnuLrG0TOnDmVyjU0NKhVqw6VK5elb19bHj16yLVrVxgxYggAL1++QCbTU0pf9SNISNNW\nrVqNH3pfgUCQ8Whm9QAEgrQwceJUwsLCCAkJ5vTpk9L1LVt20rSpdRaOTJBRrFq1jqdPPSTj/Hu4\nuJzlwYP7KtfHjJmQYePR1tZGWztpH8Jvt0nLl6+AjU1HLl1yoWXLNnTv3hkAO7u/cXVNPj9pRiGT\nyZDLQ3/Y/QQCQeYhDDbBT4lMJmPTpq08fvyI/PkLYG3dgpkz56KnlzerhybIIMzMzClRwjRFdS0t\na/LPP9MJCvqIlpYWf/xRi9q166KlpZXJo/yKuro6vr5BRESEo6GhwapV6/+ffL0SRkZFeffuLeHh\n4cTHx4sVYIFAkGrU4n+1cLpMJCgogpiYrPVNya5oaqqTP7+OmKNkEPOUPL/iHHl7e/HsmQeWln+Q\nP3+BdPf3K85RZiDmKXnEHCVPwhxlNWKFTSAQCDKZEiVMspV+nkAg+PkQQQcCgUAgEAgE2RxhsAkE\nAoFAIBBkc4TBJhAIBAKBQJDNET5sAoFA8JOR1cK8PwNxcXHExSmyVAgEvwJihU0gEAh+Er58+YJM\npkehQnqEhYVl9XCyJfHx8Rw5cohy5UwpVEiPPHnysHfvbl68eE54eHi2yfcqEKQWscImEAgEPwn/\n/ntQOhZabokzadI4HB3XA9CkSVPc3B4wcGBfqVxDQ4OmTa1ZvXojurq6AAQHBxEQEECOHDlENK8g\n2yJW2AQCgeAnICQkmP3792Jn1x8Pj1eSsfG7curUCWQyPWQyPdzcvma5SDDWAIoWNaZFixYUKFCQ\ntm3b06BBQ1q0aM2FC+dp374l48aNxMrKknLlTKlTpzqWlpVwcnIkMjIyKx5JIPguQjg3FQhhwaQR\n4ospQ8xT8og5ShwPj6fUq/cHAB8/hv92c/Tlyxf27NlFkybW6OvrI5PpKZU7O+9HVzcPrVs3A0BD\nQxMbm274+LwmR46clChRksKFZeTNm5eXL59z+fIlIiLCyZ+/AKamZujrF+H69Ws8euSOuXkpLlxw\nVckZm8CCBXMwMirK/9q78/ga77z/469IIskgkhHJrygTuVUi2zlZhuqIUjPSCml1DDfVSVAdE6VT\n2hLEEn5uVbqoFr1bax9pU0vF0iHqR5SUJEiMyE1QWYQsBJE9+f7+MLk4snKTxfk8Hw+P9lzfazvv\nx3W+Pq7tO2bM64/9ez9u8nurX3N5ca4UbA9ADujayY++YSSn+klGtfvmmw08++xzPPNMjyc+o/Ly\ncn78cRcffLCI//mflIdeT+vWrbUHD2xsbHj//Vm1zltZWUlKSjIbN65n5co1jBgxyqA9Le0S/v4D\nyM3N5Xe/c+TYscSH3q/mQn5v9WsuBZvcwyaEEC3Ek3BGp6HGj3+dH3/caTCta9dupKVd0j57eXnz\nwQcfMWiQHwBmZmZMnz6T7t27Y23dHgcHe5577vekpJwnOPh1fv31grasUoorV7JISTnDTz9FU1FR\nQUjIFP7jP56hXTtrQkImMmfODIqKiujVy42EhDiDfdm5M/oxfnshqpOCTQghRJMrLy9n1qz3OHny\nOG3btuPQoYMA/PTTIVxd3SkvL9cuUVZUVGBqaqotm519s8Z1mpm1wtzcnC5dnubvf5/C+PFjiYs7\niq9vb775ZiOnT5/CysqKiooKACIjIygtLeXWrTvrs7L6DdeuXTMo1iIiNvPCC396LBkIURcp2IQQ\nQjSpq1ev4u7eo9r0XbuicXf3BDC4n+zeYq2hAgKG0aNHT/bu/SedO3fh9OlTAJw9m8bt2wV8/PEy\n1q//mqKiQm2ZzMwMLCwsGTFiJO+/PwsHh//zwNsV4lGRgk0IIUSTUEqxYsVHLFw4D4Du3Z3YtCmS\nmzdv0L27EzY2to9sWyYmJly7lkdBQQErVnwMwLffbsXCwgILCwsWLPi/dO7cmTlzZgIwdmwQr732\nV1xcXLG0tHxk+yHEw5KCTQghRKMrKiqiWzcH7fPChf/FG29Meqzvlxsz5nWOHo0lMPAV/P2H0KXL\n0wbtQ4e+zMmTJ3j++YG8+upfMDOTvyJF8yFPiT4AeYqmdvKkUcNITvWTjOrXEjNSShEXdwxLSwuc\nnXvRpYsdAO3b25CQcApr6/aPfJstMafGJhnVT54SFUII8dhVVFSQm5vT5Pdf9e3rzfnzqdWmnz17\nSUZtEKIBZKQDIYR4Qiml8PR0xt39GTZuXNfo29+2bbM2GkFVsTZgwAvAncuTly9fk2JNiAaSM2xC\nCPGEioyMIDv7KgBPPfVUo2579uz3WbPmC+2zmZkZFy5clhv4hXhIUrAJIcQTqmqEgMWLlz72d4eV\nlJRw7txZHB27M3r0n4mNPQzA6dPn6dix42PdthDGQAo2IYR4Qs2ZM59p096nTZvHd8N0WVkZCxaE\nsXr1ympt589n0K6ddQ1LCSEelBRsQgjxhDIxMXlsxdqlS7/i6+tRY1toaBhTprxDq1Zym7QQj4r8\nmoQQDRIff4w33xyHvb21drlLNK5r1/L47/9eRWZmZpPux/TpbxsUa1OnTuPChUyys2+SnX2Tt9+e\nLsWaEI+YnGETQtTr5MnjDB06GDu7O/ciBQa+SGxsAk5O1YcTqqioIDn5X/Ts6WIwnJD431FK4ezs\nCEBo6Hs01Ss0Dx78f2zY8DVwZ+goX9/eTbIfQhgb+SeQEKJeK1d+SqdOnfnmmwgiI7cAsGvXjhrn\nPXz4EC+80I8uXewYNMiPiRODeP/9dygouNWYu/zEqay8+1JTW9tHN2TTgygvL2fEiEAATp48I8Wa\nEI1ICjYhRL1u375Nq1at+PTTT/jLX14FoEMHuxrn7d37We3/raws2bVrB+vXf81//uefm+ysUEuy\nf/8+7O2t2b8/2mC6qakphw/H8+abf+fgwdgm2beqp04BOnXq3CT7IISxkoJNCFGjjz/+kDlzZrB1\n6/ccPx6PmZkp9vb2APj7D+HPfx5Z43IWFhYMGTKMdu3aMXPmLH7+OZblyz/h6NFYJk4MJicnpzG/\nRouTkZEOQHFxSbW2Hj2eITz8v+jSpcsj3+6vv17k3Xf/we3bt7Vpy5d/wIYNawHIz7/OgAF9H/l2\nhRANI2OJPgAZa612Mh5dw7SUnG7cyKdHj64G05577g88++xzxMUd48iRn0lLy8bU1LTG5Y8fj2f0\n6BFcu5ZH79598Pd/kUOHYti//yeGDg3kq6821rrtlpJRU3ocGW3YsJbp06eybNmnjB0bRHl5OZ06\n/Ra4M97njRv52rzR0Qfx9NQ/ku0+TnIs1U8yqp+MJSqEaLbatGlLt26/4/LlTMrKygA4fPhnDh/+\nGQCdTl9rsQbg5eXDt99uISJiEykpZ5g/fy7+/i9ibt4aR0enavNHRkZw/fo13nwz5PF8IVGvMWNe\nJyvrMiNHjgbujEwQEbGZNm3akZGRxtKli2nVqhX79x/GysqqifdWCOMjZ9gegPwLpHbyr7SGaUk5\nXb6cSVTUNjIzMykvL8Pffwg3b97k9u0CBg0ajJ1dzfew3a+iooLlyz9gz54fcXHpxeLFH9K2bVut\nPS3tEj4+7gC4urrh4tKLceOCaN26De3atcfKyopTpxJJT0/nhRf+SLduv3scX7dFaUnHUVOSnOon\nGdWvuZxhk4LtAcgBXTv50TeM5FRdeXk5w4b5Ex9/rN55zc3N+fTTL3j11b80wp41X3IcNYzkVD/J\nqH7NpWCThw6EEE3KzMyMUaPG1DvfCy8MoqysjG++2dAIeyWEEM2LFGxCiCb3+uvBXL16g+++28ak\nSZM5cOAAmZk5ZGff5PDheJ56qhM//bQPgOefH9jEeyuEEI1PLok+ADllXDs5rd4wklP9asooOzub\nYcMGY2VlxY4de2jbtl0T72XTkuOoYSSn+klG9Wsul0TlKVEhRLNnb2/PL7+caOrdEEKIJiOXRIUQ\nQgghmjkp2IQQQgghmrmHLtgmTpzIzJkztc//+te/GDVqFHq9nlGjRpGYmGgw/5YtW3jxxRfR6/WM\nHDmS48ePG7SvW7cOPz8/vL29mTVrFiUld4dlKS0tJTQ0FF9fX/r168fatWsNls3IyCA4OBi9Xk9A\nQACHDx82aD9y5AhDhw5Fp9MRFBREenr6w35tIYQQQohG91AF265du4iJidE+X7t2jeDgYHr27MnW\nrVvx9/cnODiYK1euABATE0N4eDiTJ08mKiqKvn37MnHiRG1MwT179vD5558THh7O+vXrSUxMZOnS\npdr6lyxZQnJyMhs3bmTu3Ll89tln7N27V2sPCQnB3t6eLVu2MGzYMCZPnqxtOysri5CQEF599VW2\nbNmCra0tISHyNnUhhBBCtBwPXLDduHGDpUuX4uHhoU3btm0btra2zJs3D0dHR4KCgvD29iYiIgKA\nH374geHDhzNkyBCefvpppk6dip2dHQcOHABg48aN/PWvf6V///64ubkxf/58Nm/eTElJCUVFRWze\nvJnZs2fj7OzMoEGDmDBhAps2bQIgNjaW9PR0FixYQPfu3Zk4cSI6nY7NmzcDEBkZibu7O0FBQTg5\nObF48WIyMzOJi4v732YnhBBCCNEoHrhgW7JkCYGBgTg53R0PMCMjA1dXV0xMTLRpPXv25MSJO091\nvfHGGwQFBVVbV0FBAZWVlZw6dQofHx9tuk6no6ysjJSUFFJSUqioqECn02nt3t7eJCUlAZCUlISr\nqysWFhYG7SdPntTafX19tTZLS0t69eql7ZsQQgghRHP3QAVbbGwsCQkJ1S4pdujQgatXrxpMy8rK\n4vr16wC4uLjQtWtXrS0mJoZLly7x7LPPcvPmTUpKSrC3t9faTU1NsbGx4cqVK+Tk5GBjY4OZ2d03\nkHTo0IGSkhKuX79OTk6OwbL37092dna1djs7u2r7K4QQQgjRXDX4PWylpaXMmzePuXPn0rp1a4O2\nwYMHs2rVKr7//nuGDx/OkSNH2L9/Pw4ODtXWk5aWRmhoKMOGDcPZ2ZkrV65gYmJSbZ2tW7emtLSU\nysrKGtuq9qmoqKjWZQGKi4vrbH8QpqbyUG1tqrKRjOomOdVPMqqfZNQwklP9JKP6NZdsGlywrVix\nAjc3N/r27VutrUePHoSHhxMeHs68efNwdnZm9OjRHD161GC+ixcvMm7cOLp160Z4eDhwp3hSSlUr\noEpLS7GysqK8vLzGNgArKyssLCy4ceNGtXZLS0sALCwsalze2tq6oV9dY21t9cDLGBvJqGEkp/pJ\nRvWTjBpGcqqfZNT8Nbhg2717N3l5eej1egDKysqAO094Hj9+nFdeeYWXX36ZvLw87OzsWLp0KZ07\nd9aWP3fuHMHBwXTt2pU1a9ZoZ71sbW2xsLAgNzcXR0dHACoqKsjPz6djx45UVlaSn59PZWUlrVrd\nqXJzc3OxtLTE2toaBwcHUlNTDfY1NzeXjh07AuDg4KA9jXpvu4uLywMFJYQQQgjRVBp8nm/Tpk3s\n2LGDqKgooqKiGDhwIAMHDmT79u0cPXqUd955BxMTE+zs7FBKERMTQ+/evQHIyclh/PjxODo68vXX\nX9Omzd0xuUxMTHB3dychIUGbduLECczNzXF2dsbFxQUzMzPtIQKA+Ph43NzcAPD09CQ5OdngLFpC\nQoL2kIKnp6fBO9+KiopITk42eIhBCCGEEKI5M503b968hszYrl072rdvr/2JiYmhdevWDB8+HHNz\ncxYuXIiNjQ3t27fno48+4uzZsyxcuBBzc3PCwsLIyMhg5cqVABQWFlJYWAiAubk5lpaWLF++nO7d\nu1NQUEBYWBj+/v4MGDAAMzMzsrKyiIiIwN3dnVOnTvHhhx8yffp0unfvTqdOndi5cycnTpzAycmJ\nzZs3s3v3bhYtWkTbtm3p0qULy5Ytw9TUlPbt27N48WIApk2b9ngSFUIIIYR4xEyUUuphFqwa5aCq\nADp48CBLliwhKysLnU5HWFiYdolTp9MZjFxQJSQkhMmTJwPw5Zdfsm7dOsrKyhg8eDBz5szRLpsW\nFxczf/589uzZQ7t27ZgwYQJjx47V1pOenk5oaChJSUl07dqVWbNm0adPH6390KFDLFq0iKtXr+Ll\n5cWCBQsMLtcKIYQQQjRnD12wCSGEEEKIxtE8nlUVQgghhBC1koJNCCGEEKKZk4JNCCGEEKKZk4JN\nCCGEEKKZk4JNCCGEEKKZe6ILtokTJ2qvHwHIyMggODgYvV5PQEAAhw8fNpj/yJEjDB06FJ1OR1BQ\nEOnp6Qbt69atw8/PD29vb2bNmmXwqpLS0lJCQ0Px9fWlX79+rF271mDZ+rbdVO7P6OTJk4waNQq9\nXs+LL77I999/bzC/MWYE1XOqUlBQgJ+fHz/88IPBdGPM6f6MsrKyeOONN9DpdAwePJgff/zRYH7J\n6M5LwIcPH45er+eVV14hNjbWYH5jymjfvn3ay9Kr/jt16tQG7aux5FRXRtJ331VXTlVaZN+tnlA7\nd+5UPXv2VDNmzNCmDRs2TL333nvq/PnzavXq1Uqn06msrCyllFKXL19WOp1OrV27VqWmpqq3335b\nDR06VFv2n//8p/L19VUHDhxQp06dUkOGDFHh4eFa+4IFC1RgYKA6c+aMio6OVl5eXmrPnj0N2nZT\nuT+j7Oxs5evrqz766CN16dIltWvXLuXh4aEOHDiglFIqMzPT6DJSquZjqcqcOXOUs7Oz2rZtmzZN\njiWlysvLVUBAgAoJCVEXL15U3377rXJ1dVXnzp1TSklGSimVl5enfHx81Ndff63S09PVqlWrlE6n\nU1euXFFKGV9GX3zxhZo0aZLKy8tTubm5Kjc3V926dUsppdTQoUOl71a1Z5STkyN99z3qOpaqtMS+\n+4ks2PLz81X//v3ViBEjtM7xyJEjSq/Xq+LiYm2+oKAgtWLFCqWUUh9//LEaO3as1lZUVKS8vLzU\nsWPHlFJKjRkzRn322Wdae3x8vPL09FTFxcWqsLBQeXh4qLi4OK39888/19ZX37abQk0ZRUREqJde\neslgvjlz5qjp06crpYwvI6VqzqlKXFyc+tOf/qT+8Ic/GPzoP/nkE6PKqaaM9u3bp3x9fdXt27e1\n+UJCQlRkZKRSSjJSSqno6GjVp08fg/l+//vfax28sWU0ffp0tXz58mrTpe++q7aMpO82VFtOVVpq\n3/1EXhJdsmQJgYGBODk5adOSkpJwdXXFwsJCm+bt7a2NUZqUlISvr6/WZmlpSa9evThx4gSVlZWc\nOnUKHx8frV2n01FWVkZKSgopKSlUVFQYjE/q7e1NUlJSg7bdFGrKyM/PTxu54l63bt0CjC8jqDkn\nuHPqOywsjLlz52Jubm7QlpiYaFQ51ZRRXFwcffr04Te/+Y027bPPPmPEiBGAZARgY2NDfn4+0dHR\nwJ3LOIWFhfTs2RMwvozOnz+vjY5zL+m776otI+m7DdWWE7TsvvuJK9hiY2NJSEggJCTEYHpOTg72\n9vYG0zp06MDVq1cByM7OrtZuZ2fH1atXuXnzJiUlJQbtpqam2NjYcOXKFXJycrCxscHMzMxg3SUl\nJVy/fr3ebTe22jLq1KkTHh4e2ue8vDx2795N3759AePKCGrPCWDVqlW4urpq2dzLmHKqLaP09HSe\neuopli1bhp+fHy+//DL79u3T2iUj8PHxYfTo0UyZMgVXV1feeustwsPD6datG2BcGQFcvHiRQ4cO\nMXjwYP74xz+ybNkyysrKpO++R20ZSd9tqKacysvLgZbdd5vVP0vLUVpayrx585g7d642DmmVoqKi\natNat25NaWkpcGe80trai4uLtc81tVdWVtbYVrVP9W27MdWV0b1KSkp46623sLe3Z+TIkYDxZFS1\nT7XllJqaSmRkJFFRUTUuayw51ZVRYWEhW7du5aWXXmL16tX88ssvTJ06lcjISFxdXSUj4Pbt26Sn\npzNlyhSef/559u7dS3h4OJ6enjg6OhpNRgCXL1+muLgYCwsLPvnkEzIyMli0aBHFxcXSd/9bTRkt\nXLiQkpISQkNDtfmMve+uK6eRI0e26L77iSrYVqxYgZubW42Vs4WFBTdu3DCYVlpaiqWlpdZ+f3Cl\npaVYW1sbhH5/u5WVFeXl5TW2AVhZWdW77cZUV0ZVCgsLmTRpEmlpaURERGincI0lI6g7p9mzZzNl\nyhR++9vf1risseRUV0ampqbY2toyf/58AFxcXIiPj+e7775jwYIFkhHw5ZdfAjBp0iTgTkaJiYls\n2LDYnFFeAAAEdklEQVSBuXPnGk1GcOfs/tGjR7G2tgbA2dmZyspK3n33XYYPH87NmzcN5jfGvru2\njN577z1mzpyJiYmJ9N3UfSwlJSW16L77iSrYdu/eTV5eHnq9HoCysjIA9uzZw9/+9jdSU1MN5s/N\nzaVjx44AODg4kJOTU63dxcUFW1tbLCwsyM3N1a6LV1RUkJ+fT8eOHamsrCQ/P5/KykpatWqlLWtp\naYm1tTUODg51brsx1ZXR8ePHKSgoYMKECWRkZLB+/XqefvppbVljyQhqz2nbtm2YmJhw9uxZ7Z6R\n4uJiwsLC2L17N2vWrDGanOo6lvz9/bX9r+Lo6MjZs2cB4zmW6srI19cXZ2dng/ldXFy0fTeWjKpU\n/QVbxcnJiZKSEuzs7Dh//rxBmzH23VB7Rvn5+Zibm0vf/W+15ZSYmNii++4n6h62TZs2sWPHDqKi\nooiKimLgwIEMHDiQ7du34+HhQXJyskEFnJCQoN0g6OnpyfHjx7W2oqIikpOT0ev1mJiY4O7uTkJC\ngtZ+4sQJzM3NtXe8mJmZGdw8GB8fj5ubm7buurbdmOrKSCnF5MmTyczMZNOmTdVutDeWjKD2nKKj\no9m7dy/bt2/X2uzt7Zk6dSoLFy7Uvosx5FTXseTp6cm5c+dQSmnznz9/ns6dO2vfw9gz6tixY7UO\n/MKFC3Tp0gUwnowAfv75Z3r37m3wTqvk5GRsbW3x8fHh9OnTRt9315aRjY0Ntra20nf/W13HUovv\nuxv8PGkLNGPGDO0R+oqKChUQEKD+8Y9/qHPnzqnVq1crLy8v7R0oGRkZytPTU61Zs0adO3dOTZ06\nVQUGBmrr2rVrl/Lx8VHR0dEqMTFRBQQEqEWLFmntYWFhKiAgQCUlJano6Gjl7e2toqOjG7TtpnRv\nRt99951ycXFRBw4cUDk5Odqf/Px8pZTxZqSUYU73GzBggMGj4caa070Z3bp1S/n5+amwsDB16dIl\ntWnTJuXq6qrOnDmjlJKMlFLq5MmTytXVVa1bt06lpaWptWvXKjc3N5WamqqUMq6MCgoKVP/+/dW0\nadPUhQsX1IEDB1S/fv3UV199pSoqKtSQIUOMvu+uKyPpu++qK6f7tbS+22gKNqWUSktLU6+99pry\n8PBQAQEBKjY21mD+mJgYNXjwYKXT6dS4ceNURkaGQfuaNWtU3759la+vr5o9e7YqKSnR2oqKitSM\nGTOUXq9Xfn5+asOGDQbL1rftpnJvRuPHj1fOzs7V/tz7XhpjzEipugu2gQMHGvzolTLOnO7PKDU1\nVdtPf39/reOqIhkptX//fhUYGKj0er0aPny4UfdJqampaty4ccrLy0v169dPrVy5UmuTvvuO2jKS\nvttQXcfSvVpa322i1D3XLIQQQgghRLPzRN3DJoQQQgjxJJKCTQghhBCimZOCTQghhBCimZOCTQgh\nhBCimZOCTQghhBCimZOCTQghhBCimZOCTQghhBCimZOCTQghhBCimZOCTQghhBCimZOCTQghhBCi\nmZOCTQghhBCimfv/zUiYuOFKDo4AAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "water_df.plot()\n", "plt.show()" @@ -10552,7 +1022,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:14:39.249762", @@ -10560,18 +1030,7 @@ }, "collapsed": false }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB/cAAAPCCAYAAACN6FtTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Wd81eX9//HXOSeTJIQssjczSDBAEAgk7A0ypApuENvS\nVmQqbf911PIrim0VbavWWq1t3QoyEkYgQAZkhxCCgYQdVpghCSQ553+DxzkmAmqHnAO+n3cInMF1\n3bjy/X6v93V9LoPFYrEgIiIiIiIiIiIiIiIiIiIiDsto7waIiIiIiIiIiIiIiIiIiIjI11O4LyIi\nIiIiIiIiIiIiIiIi4uAU7ouIiIiIiIiIiIiIiIiIiDg4hfsiIiIiIiIiIiIiIiIiIiIOTuG+iIiI\niIiIiIiIiIiIiIiIg1O4LyIiIiIiIiIiIiIiIiIi4uAU7ouIiIiIiIiIiIiIiIiIiDg4hfsiIiIi\nIiIiIiIiIiIiIiIOTuG+iIiIiIiIiIiIiIiIiIiIg1O4LyIiIiIiIiIiIiIiIiIi4uAU7ouIiMhN\nw2KxYLFYbD+LiIiIiIiIiIiIiHxfKNwXERGRm4bBYMBgMNh+BjCbzfZskoiIiIiIiIiIiIjIDWGw\naNubiIiI3AROnDjBvn37SE9Px9fXF29vb6ZPn27vZomIiIiIiIiIiIiI3BBO9m6AiIiIyDcpKiri\nd7/7HYWFhTQ2Ntr+vbS0lKeeegpXV1c7tk5ERERERERERERE5LuncF9EREQcWk5ODrNnz8ZisTBp\n0iR69epFQ0MDK1euJCAgAGdnZ3s3UURERERERERERETkO6ey/CIiIuKwSktLeeSRR/Dy8uInP/kJ\nEydOtL1WW1uLu7s7JpOp1WcsFgsGg+FGN1VERERERERERERE5DtltHcDRERERK7lwoULvP7669TX\n1zN79mxbsN/U1ERzczOenp6YTCYuX77MhQsXOHDgABcvXrRzq0VEREREREREREREvhsqyy8iIiIO\n6dKlS+zYsYNhw4YxadIk4Eqw7+T05e1LZmYmK1euJDc3lwsXLhAQEMCYMWOYOHEiYWFh9mq6iIiI\niIiIiIiIiMj/nMJ9ERERcUhlZWWcPXuWbt26AXDx4kU8PDwAKC4uZsuWLbz66qu293t7e1NZWcmb\nb77J2bNneeyxx2jbtq1d2i4iIiIiIiIiIiIi8r+mcF9EREQcisViwWAw4OzsDEBWVhb33XefLdj/\n85//THp6OiUlJQCMGDGC7t27k5KSQnZ2Nh9//DGpqak8+OCDCvdFRERERERERERE5JahcF9EREQc\nwpkzZ/D09LSF+omJiXTv3p1t27bxwx/+kNjYWPbs2UNubi4mk4mAgADuv/9+Hn74YQwGA05OTkRH\nR3Px4kVefvlltm3bxrRp0+zcKxERERERERERERGR/w2F+yIiImJ3W7du5bXXXmPOnDkkJiZiNptx\ncnLihz/8IX/4wx/Izs4mOzsbAFdXV+69914GDhxIv379bN9x+fJlXFxciI2NBcBoNNqlLyIiIiIi\nIiIiIiIi3wWF+yIiImJX2dnZzJo1C39/fywWC/BlMJ+cnExsbCwffPABjY2NtGvXjhEjRtCxY0cM\nBgMAZrMZg8GAi4sLAF988QUmk4muXbvap0MiIiIiIiIiIiIiIt8Bg8U6iy4iIiJyg2VlZTFz5kwi\nIiKYN28eI0eO/FafM5vNGI1G22IAa9Cfk5PDY489RmRkJMuXLycoKOg7a7uIiIiIiIiIiIiIyI2k\nerUiIiJiF9ZgPzw8vFWwbzabW73vq3+3WCy2nf3WUB8gNzeXV155hQsXLvDggw8q2BcRERERERER\nERGRW4rK8ouIiMgN1zLYnz9/fqtgv2VgD9h26Fv/vaysjI0bN9KnTx86duxIQ0MDmZmZvPbaaxw5\ncoQnn3yScePGAbT6nIiIiIiIiIiIiIjIzUxl+UVEROSG+qZg3xrGp6WlcfjwYWbOnGn7bHNzM888\n8wwffPABHh4eeHt7U1tby/nz5/H392fOnDlMnTrV9n3WHf4iIiIiIiIiIiIiIjc77dwXERGRG2b7\n9u3MnDmTyMhIHnvssesG+6tWrWLBggX06tWL0aNHExISAoDJZGL69OkYDAaKioo4efIkXl5e3Hvv\nvSQlJdG7d2/b9ynYFxEREREREREREZFbiXbui4iIyA1RWFjItGnTAHjxxRcZO3YscP1gv0uXLixY\nsIABAwbYvsMa2jc3N9PU1MTFixdxc3OjTZs2tveoFL+IiIiIiIiIiIiI3Iq0pU1ERERuCJPJRNu2\nbQH417/+hXV9YVNT0zcG+xaLBYvFYtuNbzKZcHV1xdfXlzZt2tByraKCfRHHoDXEIiIiIiIiIiIi\n/1sK90VEROSGiI+P58033yQsLIy8vDymT59OQ0MDLi4uwNcH+/BlaH/w4EFqa2uv+ZqI2E9zczOX\nLl2yjU+NSxERERERx9Tc3GzvJoiIiMh/SGX5RURE5DthLY9v/dNaUn/nzp3MnTuXw4cPk5CQwL/+\n9S/S09OZPXv2Nwb7xcXFvPLKK7i5ubFs2TJcXV3t1j8R+dLu3bv5+OOPKSgowGAw0L17dx544AEi\nIiJwcnKyd/NEREREROQaXn/9dSIjIxk5cqS9myIiIiLfksJ9EbErnY0tcuuyltuvra3F29u71Wst\nA/6YmBgqKyuJi4tjzpw5pKSkAFcH+yUlJSxbtowdO3bw5JNP8tBDD93Q/ojIte3YsYP58+dz8uRJ\njEYjRqORpqYmEhMTmTNnDr1799b1XkRE5Caja7fIrcm66B6uPJdPnTqVyMhIFi5cyLBhw+zcOhER\nEfk2TE8//fTT9m6EiHy/ZGRk8Omnn9KvXz9NFojcosrLy3nrrbd4/fXX+eijj6ipqcHLywt/f38A\nAgMDSUhIICsri4MHD+Ll5cUvf/lLBg0a1Oqc7msF+wsXLmTGjBmAJh1F7C0rK4uZM2disViYNWsW\nc+fOZdiwYXzxxRfs3LmT2tpaRo8erXEqIiLi4Mxmc6vrtfVn3W+L3Dqam5sxmUzAlWf22tpadu3a\nxeHDhykrKyMoKIiYmBg7t1JERES+iXbui8gNlZ2dzcMPP4y3tzfvvvsuHTt2tHeTROR/LDc3l/nz\n53PixAlbWX6Afv36MWvWLPr372+bJCwpKeHxxx/n6NGj9O7dm7fffhuTycTly5dxcXEBrg72Z86c\nCbTecSAiN5412A8PD2fOnDmMHTvW9lpZWRnTp0+noaGBDz/8kO7du9uxpSIiIvJ1WgZ+2dnZVFZW\ncvLkSYYOHapruMgtouXz80svvcQHH3xATU0N3t7enDt3DoCIiAgWL17M4MGD7dlUERER+QbauS8i\nN4w1BIiMjGTx4sXccccd9m6SiPyPWce52WxmxowZzJs3j549e3L8+HEKCgpwcXFhyJAhtt0/1h38\n2dnZlJeXk52dzfjx43F1dQUU7Is4KutYDwsLY8GCBYwePRqAxsZGTCYTAQEBZGVlUV9fz/Tp02nX\nrp2dWywiIiLX0jLY/9Of/sSvf/1rNm7cSF5eHh9++CExMTFalC9yC7A+g7/xxhu8/PLL9OjRg4UL\nFzJr1izi4uJwd3cnLy+P4uJiwsPDiY6OtnOLRURE5Hq0c19EboiWu/vmz5/PyJEjAQV0IreSluP8\nZz/7GePHj7e9tm3bNh555BEAVq9eTUxMTKvynjt37mTu3LkcPnyYnj178s9//pN9+/bx9NNPk5ub\nq2BfxIFkZ2czY8YMwsPDmTt3ri3Yt5bzNRgMnD59msmTJ2MwGHjvvfcIDAxUWV8REREH0/LavGzZ\nMv7yl78QHBzMqFGjOH36NCtWrMBoNLJkyRImTpxo59aKyH+rqqqKH/7whzQ1NfHnP/+ZTp062V6r\nra3lzTff5E9/+hPh4eEsXryYIUOG2LG1IiIicj1O9m6AiNz6vi7Y1yS/yK2h5S7eluPcWl5/wIAB\n9OzZk4MHD+Lp6XnV2O/evTu///3vmTt3LgUFBUyePBkPDw8F+yIOxnq8jq+vL7/85S9JTk4GWgf7\nAGlpaRw/fpxnn32WwMBAmpqacHJq/ehhNpsBNKZFRETsxHrdfv/993nzzTcZNGgQc+fOpXPnzsCV\na/Xnn3/O4sWLARTwi9zkTp8+zeHDh5k2bRqdOnXCYrFgNpsxmUx4enryk5/8hIaGBt566y2ef/55\nzGYzw4YNs3ezRURE5CsU7ovId+qbgn3rZEJpaSmurq4q9ydyE8rOzr5msG82m3F2dsZisXDixAn2\n79+Pu7v7NYM8i8ViC/gXLFhAWVkZgIJ9EQdy8eJFPvroIwBMJpMtnIcr49Ma3qelpfHMM8/g5OTE\np59+ysqVK3F2dqZ9+/b07duXgIAA+vXrp/EsIiLiAGpqavj888/x8/Pjpz/9KZ07d8ZsNnPx4kUO\nHTpkO4978eLFGAwG7rzzTns3WUT+Q7W1ta2eq5ubm1stwHVycmLSpElkZmayb98+XnrpJZycnBg0\naJCdWiwiIiLXYnr66aeftncjROTWZA38IiIimDt3LqNGjQKuDvZXrFjBo48+SnBwMHFxcTg7O9uz\n2SLyb8jMzGTmzJn4+/vzm9/8hsGDBwOtx7nBYGDlypWkpqby85//nF69egGty4AaDAYsFguBgYHE\nx8ezZs0afvaznzFr1izb9ykIFLEvFxcXgoKCuHTpEoWFhRQXFxMYGEiHDh1s43P16tXMnTsXgMDA\nQPbt28eJEyc4cOAA5eXlbNy4kRUrVpCZmcmKFSs4ffo0HTt2xNXV1Z5dExER+d6qrq7m1VdfZeTI\nkdxzzz3AlXvzF198kc2bN/O3v/2NoKAgtm/fzsaNGwkMDKRTp06YTCY7t1xEvo2Wz93nz5/nk08+\n4dSpU4wcOZK2bdtedXSWn58fGRkZVFVVcfr0aaqqqujUqRPBwcH26oKIiIh8hXbui8h3Ijc3l4cf\nfpi2bdt+bbC/atUqnnjiCaKjo+nWrRvu7u72bLaI/Bvq6+v5+9//jsViwWKx4O3tDUBTUxMGg8EW\n9qWlpfHss8/i4eHBqlWrWLFiBb6+vnh6ejJw4ED8/Py47bbbcHFxAaBHjx6kpaUREBAAKNgXsTfr\n8RpwZXw6OTnR3NzMmjVreP755zEYDIwYMYI1a9Ywf/58IiMjmTVrFoMGDeLUqVPU1dWRn59PZWUl\nFRUVlJeXU1RUBMDIkSPx8vKyZ/dERES+186dO0d9fT0HDx7k/PnztG3bln/84x+888473HPPPXTu\n3Jnu3buza9cu0tPTefbZZ6msrKR///4MHDjQ3s0Xka/46vNzy+A+Pj6elJQU0tPTeffdd5kxYwY+\nPj62Z3rrfJ27uzudO3cmLi6OTz/9lNWrV9O9e3dMJpOO1xQREXEACvdF5H+urq6OFStWAFd2+V24\ncMH2WsuyvatWrWLBggV06dKFhQsXkpSUZJf2ish/xt3dnccffxyTycTGjRv56U9/yrJly+jVq5et\nXPfq1auZP38+AK6urmRmZrb6jhUrVnDp0iUSExPx8vIiISGBadOmKdgXcRDp6eksXbqUt956i5CQ\nEAC6detmOy5jzZo1vPjiixQUFPC3v/2NLl26MG/ePJKTkwHw9/cHoGfPnsCV3UJHjx6lqqoKgNGj\nR9/oLomIiHzvWSwW4Ero17VrV0aMGEHbtm1xd3cnLy+P1157je7du3PPPffYFvj5+PgA4OXlxVtv\nvUXXrl3t1n4Rubbm5mZbVY3s7GyOHj1KTU0NI0aMICoqCoBHHnmEvXv38sEHH+Dq6soPfvAD2rdv\nD1z5nZCXl0dOTg5jxoxh+vTpFBcX8/nnnzNz5kzt3hcREXEQKssvIv8z1lW+zs7OBAcHY7FYKCws\n5IsvvsBkMnHbbbfZHjJaBvsLFixgwIABtu+AL1cWX7x4EScnJ60MFnFQ/v7+dOrUierqakpLS8nK\nyiI+Pp6QkBA+//xzFixYQFRUFPPnz2fx4sVMnDiRwYMHExcXh8lkwtPTk+PHj1NdXU1VVRWjRo2y\nhYCAxr6Inf3qV7+irKyMrVu3MnToUDw9PQFo3749YWFh1NbWkpeXR1FREeHh4Tz33HP07dsXuDK5\naF2cY63c4+LiQkBAAB07dqRjx46tXhMREZHvxlevtS2r6ZlMJmJjY0lJSaFt27Z8+OGHZGRk8Mwz\nz5CYmGj7TGpqKmfPnuXpp59m6tSpDBs27Ib3Q0Suz2w22+bcXn75ZZ555hnWr19PdnY2n332GcHB\nwURHRxMQEICbmxuFhYXk5ORQUVFBREQEDQ0N5OXlsXz5cvbv38+PfvQjevXqRV5eHqWlpYwdO5bA\nwEA791JEREQADBZrkiYi8l+qqanBz8/P9veKigreeustVq5cSVBQEDNmzGD69OmkpaUxZ86cbwz2\nCwsLWbduHQMHDqRfv36a+Bexs6+exWdlNpvZt2+f7VzO0NBQJk+ezPLly+nSpQvz58+/bsnOuro6\nSkpKOHXqFJcuXWLKlCnfdTdE5N/Q2NjIo48+SnZ2NhEREbzzzjsEBQXZXi8tLeWtt95i9erV+Pn5\nsWTJElJSUoDr/84QERGRG6flTt7c3FwOHTpEWVkZERERdO/enYSEBNt7L1y4wIQJE2hsbGTt2rW2\no3OysrKYPXs2w4YNY9myZbb3q8qWiON5/fXX+d3vfkdMTAyDBg2isrKSzZs34+npyYIFC5g6dSqX\nLl0iLS2Nv//975SVleHs7AxcufcHWLRoETNmzADg3nvvpbq6mo8++ghfX1+79UtERES+pJ37IvI/\nkZ2dzYQJEwgJCbGV5/Pz8yMiIoL6+nry8/Opqqpi9+7d/O53vyMuLo65c+faAr+vBvslJSW8+OKL\nrF69mkGDBtl294mI/TQ0NHD58mX27t3LyZMncXd35/Lly7i6uuLr60uXLl2orq5m586d7Nixg6io\nKJYsWUKfPn2A1juGrD87OzsTFhZGp06diIuLu+p9ImI/TU1NODs7M27cOHJzc9m9ezfp6ekMHz68\n1Q7+0NBQamtrKSkpoaioiMDAQDp06IDBYFDALyIiYkctd/IuX76c3/zmN6SmplJSUsLWrVv5+OOP\nuXz5Mm3btqV9+/a4urqybt06ampqSEpKon379uTn5/PSSy9RXV3N7NmziY2NtX2/rvEi9teyWtbF\nixd55plniI6O5vnnn2fChAmMGzeOxsZGcnNzycnJoV27dsTHx9OtWzfGjBmDq6sr7du3x2AwMGbM\nGGbNmmVbdP/WW2/x8ccfM2TIEEaMGGE7ZlNERETsS+G+iPzXysrKmD59OgAbN24kMjKSzp07A18G\n/HV1dRQUFFBaWkpISAiLFy+2ncd7rWB/2bJl5ObmsmDBAu6++2479EpEWtq9ezfLly/npZde4rXX\nXuP9999n48aN1NXV0bVrV1xdXfHz86Nz584cPXqUAwcOYDQamTx5Mv7+/jQ1NdkmFuHrJwI1SSji\nGIxGI01NTTg5OTFhwoSvDfitJfrz8/MpLS0lODiY2NhYDAaDFuyIiIjYifX6+8orr/Dqq6/SqVMn\n5s2bx5QpU+jQoQNHjx5l06ZN1NfXExERga+vL6WlpeTl5ZGdnc3atWt55513OHjwIIsWLVKVLREH\nZA3216xZw/Hjx/n8889ZuHAhiYmJXL58GZPJRL9+/TCbzWzfvp3t27fj4+NDVFQUXl5e9OnTh+HD\nhzNlyhRSUlKIiYkB4I033uDNN9/Ey8uL//u//2tVqVNERETsS+G+iPzXjEYjK1eupK6uDoD169cT\nHR1Np06dgC8D/oaGBiorKzEajcTHx9t26bYsE2gN9nfs2MHChQt55JFHAO3kFbGnnJwcfvSjH1FU\nVERAQACxsbG4urpy7tw5IiMjGTx4sG18+vn52Xbw7969m4yMDLp3705YWJh28Io4sK8utLP6TwP+\nnTt3EhISQkxMjMa9iIiIHRUUFPDMM8/QsWNHlixZwoABA4iOjiYxMZGioiIqKioICgpi9OjReHl5\nkZiYSFVVFYcOHaKqqoqoqCgWLFjAtGnTAD2biziiTz75hEWLFnHkyBFqamr4wQ9+QHBwMEaj0fYc\n3qdPH1vAn5OTQ/v27YmKisLFxQW4UpL//fffZ86cObz33nusXbuWgIAAXnvtNVvgLyIiIo5B4b6I\n/FfMZjNubm5cuHCBiooKoqKiqKmpYd26dcTExNjK6fv5+REaGmo7X3vPnj2YTCZuu+226wb7M2fO\ntP0fOsdPxD5KSkr44Q9/SJs2bXjsscdYunQpkydPZvLkyfTv35+JEydiMplaBffWHfzV1dWUlpaS\nnZ3N7bffTnBwsAJ+EQdlMBiuGpvNzc0YDAZMJhONjY04Ozv/WwF/fn4+gYGBOlpHRETEjrZu3cq6\ndev4xS9+Qd++fW3//sc//pF3332X5ORkfvWrX9HU1ERqaioJCQkMHjyYYcOGMX36dH7wgx/Qu3dv\nQM/mIo4qKCiI8vJycnNzuXz5MklJSXTs2BGLxYLRaLSV7m8Z8Ofn5+Pr60t0dDQuLi4YDAb+/ve/\nU1hYSFhYGMOHD+epp54iOjra3t0TERGRr1C4LyL/FYPBgNFoxNXVlc8++4whQ4bQv39/8vPzSUtL\naxXw+/v7ExERQX19Pfn5+ezduxcXFxe6d+9OeXk5v/3tb8nNzVWwL+Igjh8/zlNPPUVNTQ2LFi3i\nnnvuAa6cw+3q6kpgYCBGo/Ga49TX17dVwJ+ZmUlCQgJBQUEK+EUcTGZmJkuWLOHgwYPU1tbS1NRk\nK7tpHdvWRTwmk4kJEyawfft2ysvLrxnwh4eHc+bMGUpKSkhOTrZV6hEREZHvVsuzt6333CtWrKC4\nuJhp06YRFhYGXCnTv3z5cpKSknjssceIiIjg7rvv5vPPP2fs2LEEBATg6+uLr68vHh4etu/Ts7mI\n47FYLLi7u5OSksKBAweorKwkMzOT5ORkAgICMJvNmEymVgE/wJYtW8jIyGDcuHH4+flhNBoZMWIE\n48eP57777iM5ORlfX187905ERESuReG+iPxPBAcHc+7cOT788EN+/etfExMTQ0ZGxlUBv7VEvzXg\nr6ys5OTJk3z44YcK9kUchHUisLi4mL/85S/84Ac/YNasWQC2iYGWWgb1ZrOZuro6XFxcaNeuHV27\ndrUF/Js2baJHjx6Ehobe0P6IyPXt37+fGTNm8MUXX5Cbm8uqVav4+OOP2bBhA5s3b+b8+fMcP34c\nV1dXXFxcMJvNODs7M3HiRIqLiyktLWXDhg0MHz4cLy8vAAICAggNDWXYsGGMHj3azj0UERH5fmh5\n3N2GDRvw8fHB3d2d0tJStm/fzqBBg+jQoQPLly/n1VdfJSkpifnz53Pbbbfh5ORERkYGBw8eZPr0\n6dcM9LQ4V8T+rnUshvXvbm5u9O/fnwMHDlBeXk5WVhaJiYnXDPgTExNpaGhg9OjRDBkypNV3t2vX\nDmdn56ue+0VERMRxKNwXkf+aNQh0d3cnNTWVyspKnnjiCVxcXMjOzv7agL+4uJjt27dz5MgRBfsi\nDsI6OfDSSy+xb98+nnrqKfz9/b9xXNbX1/Puu+/yxhtvEB0dTVBQEL6+vsTFxXHo0CHKy8tJSEig\nW7duN6orIvINampqOH/+PEePHqWhoYG2bdvSpk0bLly4wO7du8nIyGDNmjWsWrWK1NRU8vLyOHLk\nCPX19UyZMoWsrCz279/P+vXrWwX8gYGBREVFATqbV0RE5Eaw3qcvW7aM5557jvr6elJSUqivr+fz\nzz+nqqqKgwcP8vrrr9uC/bi4ONt1euXKlRw+fJj777+fdu3a2bk3IvJVLRfwFBcXU1RURGpqKkeP\nHsXNzY127drh5ubGgAEDqKyspKioiG3bttGnT59rBvz9+/enR48egObgREREbjYK90XkP9Jyot76\nZ3BwMPv27WPjxo0kJyfbduvt2LHjugH/hQsXKC8vZ9GiRQr2RRzMu+++S11dHffffz9eXl7fGM45\nOTnx3nvvsX79egIDA+nTpw8Gg8FWoj85OZlx48bdoNaLyLdhPWezoaGBvXv3EhwczP3338/cuXPp\n1q0bHTp0oLGxkUuXLrF//34qKirIyspi5cqVZGZmcv78eS5fvsy5c+dYs2YNI0aMoG3btq3+DwX7\nIiIi352WpfiLior4+c9/TlJSEnfddRfh4eEEBQVRVFREcXExO3fupG/fvjzzzDN06NABuHKd3rFj\nB2+88Qbx8fFMmTIFNzc3e3ZJRL6iZQW9V199lSVLlrBy5Uq2b9/Ohg0bWLFiBc7Oznh7exMUFMTA\ngQOpqqqiqKiIzMzMqwL+r9L9uoiIyM1F4b6IfCvZ2dl8+umnuLq6EhQUdNWNvzXs79q1KytXruTI\nkSOMGTOGPn36YDQa2b59+zUD/tDQUEaNGsWECRNs36NgX8QxvPvuu5w7d46pU6fi7e39jbtvLRYL\n+/fvJzs7G1dXVyZMmGCr7OHv7090dDSgXbwijsI6Pn18fAgLC+PSpUts27aNkydP0qFDB8aNG0e/\nfv2YMGECd999N4MHDyY+Pp6OHTvS1NREfX09R44cwWw2A1BXV0fnzp2Ji4uzc89Evt8aGxsxmUy2\nMS4itzbr8/Nnn33G4cOHKSsr44UXXuD222+nsbERFxcX+vfvT0ZGBqdPn8bd3Z177rmHpqYmXFxc\nyMjIYPny5Rw+fJiFCxfSvXt3O/dIRL7Kej1/+eWXefXVV4mMjGT27NmMGTOGgIAAKisrSU9Pp7m5\nmejoaAIDA0lKSmL//v0UFRWRk5NDr169aN++vZ17IiJf1XKRnojIt+Vk7waIiOPLyspixowZAKxe\nvZqePXvy2GOP4ePjg5ubGxaLxXYT4uPjQ0pKCmvXriUjI4OUlBRmz56N0WjkD3/4A/PmzcNgMNh2\n9Xft2tX2/yjYF3EM1rEYFBREWVkZGzZs4OGHH/7G8Wkt7ffHP/6RixcvAtfeAaBxLuIYWo7P2NhY\nHnjgASwWCx9//DEvv/wyly5dYsyYMbi6uuLq6kpCQgIJCQkAtjFeUlJCTU0N+fn5xMfHM2nSJLv0\nRUSueP0j7DvKAAAgAElEQVT11zl16hRz587F3d1dAb/I98T777/PU089RVBQEGaz2bbz3tnZmebm\nZtq3b88rr7zC448/zhdffMG4ceMIDAzE3d2dwsJCmpubefLJJxkzZgyAfneIOKDs7GzefPNNevTo\nwbPPPkvnzp0BuPPOOzl+/Djp6ekcO3aMNm3aYDab8fb25rnnnsNkMpGWlsZDDz3E2rVr8fHx0fgW\ncSDWahpvvPEGnTp1IiUlxc4tEpGbgXbui8jXqqur47HHHrOt8L948SKlpaWkpqZSXV1NUFAQ/v7+\ntvc7OzsTFBTEe++9h5eXl+2GpHfv3jg5OZGTk0NaWhphYWF06dKl1f+lhwsRx2AdiyaTidTUVC5e\nvMhtt93Waqx/lXU3flVVFR999BGBgYFMmTJFE4MiDuT06dMcPnyYtLQ0iouLOX/+PHV1dbax7ePj\nQ0REBE1NTWRlZVFVVUW7du3o0KEDBoOBpqYmjEYjFosFFxcXXFxcCAsLo3PnziQlJdGtWzdAOw9E\n7GXp0qX86U9/4tixY9TX1xMfH4+zs7OuxSLfA926dSM7O5uKigrgyiL6zp0720pwWywWfH19GT9+\nPLW1tdTV1bF3717q6+vp27cvjz32GHfddRegRfcijmrjxo1kZGTw1FNPkZiYaPv3P/3pT7z33nsk\nJyfz//7f/6OpqYkdO3YQGxuLm5sb/fr1o6ysjDFjxpCcnKx7AhEHtG3bNhYvXkxsbCyJiYm6fxeR\nb6RwX0S+lrOzMwkJCRQVFXHs2DGioqIYP348cGUX/4oVK2yT+CEhIQC0b9+empoaPvzwQ/r3709Q\nUBBwJeAH2LFjBz169KBXr1726ZSIfCtt2rShrKyMoqIivLy86Ny5M+7u7le9r2X1jk2bNrF161Ye\neeQRevToAWjhjogjKCkp4de//jV//vOfWbduHVu2bGH16tV88sknNDc307ZtW/z9/fH19SU8PJym\npiYyMzOprKzE29ubDh06XLPMd8vFQFYKBERuvAsXLvDxxx9TVVXFxYsX2b9/Pw0NDfTo0UMBv8gt\nrqmpCZPJxJQpU8jPz6eqqori4mIGDhyIn5+f7Xm9ubkZNzc3Bg4cyNixYxk9ejQPPPAAY8eOtVXU\nU7Av4ngsFgsAH3zwAeXl5TzyyCMEBAQA8Morr7B8+XKSkpKYM2cOwcHBTJ06lXXr1jFlyhTc3d1x\nc3Nj9OjR9O3bF9AxeSKOqK6ujvT0dEpKShg6dCjt2rWzd5NExMEp3BeRbxQQEEBCQgLbt2+nsrIS\nd3d3li5dSlhYGPv27WPdunWkpaVx+vRpoqOjadOmDT4+Pnz66acYjUbbA4TRaKRPnz4kJyfbyv2J\niP1db8Lfy8sLi8VCVlYWubm5uLu7ExERgaenJ3DlTF+DwWCbAMzLy+OFF17A1dWVhx9+mKCgIE0a\niDiAnJwcfvzjH7N3714GDRrE2LFjue222wgKCmL37t3s2LGDqqoqXFxc6NSp09cG/AaDQSGhiANy\ndXXl3LlzZGRkEBgYyKVLl8jPz8disSjgF7nJ7dy5k+rqagwGg+0+HL4M6IxGo626zsSJEykoKKC8\nvJxNmzbZAoLm5mbbIj2j0YiLiwt+fn54eHjg5ORku74r2BdxPAaDAYPBQF5eHkVFRYwaNYrw8HCW\nL1/Oq6++SlJSEgsWLKBbt264uLiwevVqjh49yvTp0/Hy8gK+XIircS7imPz9/amuriY7O5uwsDBu\nv/12LcQRka+lcF9EvhV/f3969+5Nbm4uO3fu5MCBA8yfP5/x48cTHh7Ozp07yczMJD09nYMHDzJq\n1ChOnjzJpk2bGDduHN7e3ly+fBmTyURgYCCgsr0i9lReXs6uXbuIioqyPSy0HJPWACAuLg64cr5f\nXl4eFy9exNnZmYiICEwmk+2zW7Zs4eWXX6aiooInnniCoUOH2qdjItJKVlYWjzzyCH5+fixatIj5\n8+eTmJhIUlISI0eOpEuXLtTU1JCbm0tFRQVubm7ExcUp4Be5iVjHY/fu3cnNzeXUqVM8+uijVFRU\nkJWVpYBf5CZWUFDAPffcw+rVq8nMzMTFxQUPDw+8vb1bjeWWAf+dd95JYWEhZWVlbNiwoVXAf63n\nb+v36HeDiGOyXrvPnz9PWloaZ86cobKykj/+8Y8kJSUxf/584uLibEHgJ598wokTJ3jggQds4b6V\nxrmIfV3rXtw6dqOioli/fj2HDh1i8uTJODk56d5dRK5L4b6IfGvWgD8/P5/8/Hx27drFqFGj6NWr\nFwMHDiQ6OpqKigo2b97MZ599hqenJ7t37+bs2bMMHz68VcleUNleEXvJzMzkwQcfZMWKFRw4cIBz\n587RuXNnnJycbO9peb5279698fLyorKyku3bt7N+/XqOHj3KoUOHKCgo4NNPP+X555+nurqaJ598\nkvvuuw+4fkUAEbkxsrKymDlzJqGhoSxYsIA777wTuFJ1A65ch2NiYujQoQMNDQ3k5uZy+PBhAgMD\niY6OxtfXl8jISBobG8nMzOTAgQN4eHjQqVMnjW0RB2IwGGyhnZOTE2vWrCEsLIyRI0dSWFhIXl4e\nZrNZAb/ITeby5cv84x//oKioiMDAQPbv38+GDRvYtGkTBw8eJDQ0FGdnZ1xdXbFYLJhMJtuC+n83\n4BcRx2W9Zvv4+JCRkUFRURGFhYX079+fX/7yl3Tq1Mn2vpycHP7617/Sp08fJk6ciLOzs675Ig6i\n5dE3tbW1uLi4AF+OcWdnZ0pLS8nOzsbf35/4+HiNXxG5LoX7IvJv8ff3p1evXuTn59smCwYNGkRw\ncDDx8fHcdddduLi4cPbsWXJycgA4d+4cQ4cOxdvb286tFxGApUuXsnfvXjp37kxZWRlr165l8+bN\nXLx4EVdXV9v5fUaj0TZBePvttxMbG4ufnx/FxcWUlJSwdetWMjMz+eKLL+jWrRtPPPEEU6dOBXRe\np4i9ZWdnM2vWLMLDw5k3bx6jRo0CroxNJycnjEajLeALDAwkNDSUU6dOsWPHDgwGAwMGDMDZ2Rkf\nHx8iIyNpbm4mPT2dXbt2kZKSgo+Pj517KCItWa+57dq1Y8uWLdTU1DBt2jTCwsLIy8ujsLCQ5uZm\nBfwiNxGTyYTJZGL16tUMGTKEe+65h8jISAoKCsjPzyc9PZ3t27cTGBiIi4sLnp6emEwmW4DfMuDf\ntGkTgwcP1hm+Ig7k5MmTWCwWW8D3dcxmMx4eHvTq1YvU1FTq6+sJDQ3l4Ycf5tKlSzg5ObFt2zZe\nfvlljh49yrx584iLi9O1XsRBtJwje+WVV3jvvffw9fUlLCzM9h5nZ2ciIyNZsWIFAGPHjrVLW0Xk\n5qBwX0SAKyHA73//e4KDgzGZTLRp08b22lfP+GkZ8BcVFbF7924GDx6Mm5sbJpOJxMREhgwZQmho\nKHv37uWhhx4iOTnZHt0SkWsIDAxk48aNREZG8sILL3D06FF27dpFRkYGn376KfX19dTW1hIbG9uq\n4kZERAQDBgxg6NChJCUl0a1bN4YOHcqsWbOYMmUKvXr1AhTsi9hbSUkJ9913H0ajkZ/97GdMmjQJ\nwHberlXLa3tAQAB+fn7k5ORQUFBATEwMXbp0Aa7sEgoPD6e2tpaRI0eSkpJyYzskIle51u5bi8WC\np6cn/v7+vP322/To0YO7774bd3d3CgoKKCgoUMAvcpMJDw+nqqqKdevWMX36dKZNm8bgwYMxmUzU\n1NRQVFTEqlWryM3N5ezZswQHB+Pu7m673lsD/l27dvHJJ59w7733aieviAPIzs7mJz/5CV5eXkRF\nRX1jwG8wGDCbzQQEBHD77bezefNmKioqbAv1165dy5///GeOHDnCk08+yV133QWomp6II2j5HL5y\n5UrefvttioqK+Oyzzzh48CDnz5+3HYnp5+fHnj17WL9+PXFxcURHR9uz6SLiwBTuiwi7du3igQce\nsN08ZGZm4unpibu7O23btrU9CLQM+a8X8Lu6umI2m2nTpg3du3dnzJgx9O/fH9BDhYijcHZ2JjMz\nk7y8PIYOHcqjjz5KQkICXl5ethJ/a9asobS0lPr6enx8fFqd1efn50dMTAw9e/YkPj6e4OBg2rZt\nC1wZ5wr2RezHbDazceNGysvLaWhowMfHh65du+Ll5XXdsWm9PoeFheHk5MSWLVtoaGiw7fY3Go34\n+Phwxx130KdPn1afEZEba+XKlVddl63j0TomPTw8KCwsZMuWLQwfPpwePXrQtm1bCgsLyc/PV8Av\ncpO5fPkya9asoaKiguHDhxMWFkZiYiJTp07F19eXqqoqKioqyM7OJisri5KSEmJiYmhqasLDw4MJ\nEyaQmZnJmDFjSElJ0ZgXsbOmpiZefvll8vPzqaqqsi2k/TYBP0BISAgjRozg5MmTnDhxgtLSUk6f\nPk1CQgJz585VNT0RB9Nyx/7bb7/N888/T+fOnamuriY3N5cNGzZQUFBAY2MjoaGhhIWF8cknn2Cx\nWEhKStKiPBG5JoX7IkJJSQmrVq2iU6dOREVFkZubS1paGhkZGRw/fpygoCBcXV1bPWhYVwxfbwe/\ntZS3h4cHoBBAxJF4eHjQrl071q5di5OTEyNHjiQ8PJzk5GT69+/P7bffzo4dO/jiiy/Yvn07q1at\nwmg0Ul9f36pk2LV2DWqci9iXwWAgNjYWb29vKioqyM/P5/Tp03Tp0uW6x+NYdwIZDAaCgoLYsGED\nx44d45577sHNzc32PldXV0DXdBF7Wbp0KS+88AJr167FYDBgMpkIDAy8aiGup6cnDQ0NrF69mi5d\nuhAfH09oaCi+vr62ct4K+EVuHp06dWLHjh3s3r2b3r17ExkZidFoxMXFhdOnT9tKdHfr1o1jx45R\nUlJCamoqJSUlXLp0iaioKKZPn06/fv2AqyvziciNZTQa6d27t+1IrPLycvz8/L5VwA9XFgf4+Pgw\naNAgJkyYwPDhw5kxYwZ33nknt912G6BgX8QRtLze/uUvf+EPf/gDISEhjB49mqFDhzJw4ED69u3L\n/v37KS8vJy0tjY0bN5KUlER1dTXFxcWMHDkSX19f3a+LyFUU7osIMTExVFVVsXv3bv7whz8wePBg\nXFxcbKV509PTyc/PJygoCCcnJzw8PK67g3/nzp0MGTKkVVl/UOAn4mg8PT3Zvn07W7duZcCAAQQF\nBQEQHBzMyZMn2bp1K3V1dcTExHDgwAEyMzNZsWIFZ86c4dy5c4SGhrYK/UTEMVjP7YyNjcXNzY19\n+/ZRUFDAuXPn6Ny589cG/AAuLi6sXr2a48ePc9999+Hu7n7d94rIjfPJJ5/w4osvAlBbW0t2djYb\nNmzAbDbTvn17vL29MRgMNDU1YTQa6dGjB9u2bWP79u3cddddeHl5ERYWho+PDwUFBRQXF3Pu3Dl6\n9+6Ns7OznXsnItdjXUxrMBhIS0vDbDYzcuRIjEYj69at4ze/+Q0nT55k2bJlPPHEE/Tq1YtTp05x\n4sQJ9uzZw6ZNm0hMTCQyMhJQlS0RR2A2m/Hw8KBXr14cO3aM/Px89uzZg6+v7zcG/Gaz2Vbe28nJ\niTZt2tgq6bVciKtxLmJfLcfhgQMH2Lx5M01NTfzud7+jU6dOAHh7exMdHc3w4cO54447aGpqYseO\nHaxevZozZ85w4cIFzp8/bzuOR0SkJYX7It9z1pV/58+fZ+3atRw6dIhHH32UESNGkJycDEBNTQ0F\nBQWsXbuW/Px8amtrCQoKsoX81oA/OzubXbt20aNHD2JiYuzcMxH5Op6enpw5c4bt27djsVgYOHAg\nJpOJDRs28Oyzz3LixAl++9vf8swzz+Dt7U2bNm2oqKigpKSE9evXEx8fr3Eu4oAMBgMWiwVnZ2c6\ndOhgC/jz8/O/NuC3WCy2z//rX/+iqamJBx988FvtHhKR796xY8e4cOEChw4dIjw8nG7dunHq1Ck2\nbtzItm3bOHbsGPHx8baFd01NTVy4cIFVq1bRrl074uPjadOmDREREfj6+rJ+/Xqqq6uZPHnyNRfx\niIhjsAYDnp6etrK9ycnJlJaW8pvf/IZjx47x61//mkmTJmEymQgJCWHs2LHExcXh5eXF0KFDmTx5\nsu37tEBPxP6sVbPatGlDYmKiLeD/ph38LXfjr1mzht27dxMbG6tqeiIOwLpLv+WiPIDf/va3LF++\nnD179pCQkMDdd9/d6tnbYrHQpk0bwsPDGTlyJL169SI0NJSdO3diMBi4ePEiI0eOxNPTU7v3RaQV\nhfsi33PWm4KuXbuydetWSktL6dmzJ+Hh4QQGBjJgwADuu+8+du7cyb59+6iurrbtAiouLiY6Ohon\nJydCQ0Pp2bMnPXv2ZMyYMXbulYh8HetDR0xMDFu3buXQoUPcd999ZGdn8/TTT3Ps2DGee+4520Rg\njx49GDx4MAkJCZw9e5aZM2cyYcIEO/dCRK7n3w34W57XnZqayj/+8Q8mT57MsGHDNIEgYmfWo66i\no6Px9/fn1KlT7Nq1i969ezNixAiSkpLIyclh27ZtbNiwgdraWnx8fPD396dDhw6sW7eOw4cPM3Hi\nREwmE25uboSFhREZGcmPf/xjQkJC7N1FEfkGFosFb29vXF1d2bx5MydPnuSTTz6x3bO3PF/buqvX\neuRW7969ba/pei7iOP7dgP+rwf68efNYv34948aNw8fHx17dEBHgyJEjLFmyhKSkJFsFDas1a9aQ\nk5NDY2OjLcA3Go2tnsHhy0o94eHh9OnTh6SkJDw8PEhPT8fb25vExERdx0WkFYX7It9TLSfrm5ub\nMZlMWCwW1q9fj7u7O4MGDQLAZDKRmZnJhx9+SG1tLffeey8NDQ0cPXqU4uJiNm/eTGZmJkajkYED\nB9KlSxdAkwcijsw6Np2cnNi3bx+ZmZkUFxfz0Ucf2SYJ77rrLgBbeV8nJyeioqIYMmQIPXv2BDTO\nRRzZtQL+vXv3XlWiv+VEYV5eHsuWLaOpqYnZs2cTHh6uMS5iR8uWLePQoUN06NABZ2dnwsPDCQgI\noLq6mvT0dNq0acOdd97JrFmzMJvNVFVVkZqaSlpaGs7OzoSFhdGhQwf+8Y9/4OfnR/fu3QFwc3Oj\nS5cu+Pr62rmHIvJtWK/FRqOR9PR0ysrKqK2tZenSpbbFuNbr+fVKcet6LuJ4vm3Ab52zA1i1ahXz\n588HYNGiRQwZMsSeXRAR4Pjx4zz11FPs2bOHUaNGYTQaWbNmDR07dmTo0KE0NjaSm5vLvn37CA4O\nJi4uzva83vIa31JAQAChoaGsXLmSmpoaxowZg7Ozs67nImKjcF/ke6S8vJzKykpCQ0Nb3URYbyDc\n3NxYs2YNeXl59O3bl5CQEDZs2NBqJ++Pf/xjBg4cSFJSEocPH+bIkSNUVVVx++232wI/0OSBiKOz\nWCw4OTkRExPDypUrqaiooLa2tlWw3/I8Pyvr7gGd4yfi+L4p4O/YsaNtp09xcTG///3v2blzJ088\n8YSq8IjY2dKlS/nrX/+Kp6cnycnJtl1A4eHhBAUFcfz4cTZv3szx48fp2bMn48ePZ+zYsQBUVFSQ\nmppKRkYGZ8+e5fLly5w4cYK+ffvi6ekJ6F5d5GYUEBDA0aNHKSkpYdSoUTz++OOYzWbdl4vcxL4p\n4A8NDbUdn7Nq1SoWLFgAwC9+8QseeughQIvuReytrq6OVatWUV5eTkVFBQUFBbzwwgu2xbV9+vTB\nYrGQl5dHeno6MTExdOzY8aqAv6XGxkZ8fX3ZuXMn2dnZTJo0SVU6RKQVhfsi3xN79uxh0qRJHDhw\ngIiIiKsCfgBfX1+cnJzYtm0bt912G6dPn+bZZ5+9aidv27ZtCQ8PZ/To0XTt2pU777yz1Tl+IuL4\nrJMInp6eHD58mN27dzN16lR++tOfAq3L/l3v8yLi+L4u4D9//jwJCQkcOXKE3/72t+Tm5rJo0SIe\neOABQBOFIvayZMkS3n77bUaOHMns2bMJDg4Gvqy8ZT0+6+TJk2zdupXq6mrCwsKIjo4mKSmJXr16\nERsby5YtWygvL+f06dMcOnSIlJQUwsPD7dw7EflPWK/J/v7+bNmyhQsXLjBu3Djc3d11hI7ITe7r\nAv6AgAC6du1Kamoq8+bNA64E+/fffz/wzc/tIvLd8/b2ZvDgwezYsYO8vDxKSkoYPHgwDz/8MJ6e\nnhiNRvr06UNzczN5eXls3LiR6Ojorw34rRtt/vnPf3Lq1CmmTp2Kn5+fPbonIg5K4b7I98TBgwc5\nfPgwxcXFHDt2jKCgoGsG/BaLhbS0NLZt28a2bds4ceLEVTt5jUYjZrMZFxcXYmJiiIqKsr2mSQWR\nm4e1ckdTUxNr167l5MmTDBgwAD8/P41lkVvI9QL+wsJC9u7dy5o1a8jPz2fhwoXMnDkT0EShiL0s\nWbKEd955h+HDhzNnzhw6dOhge806+W8N+Nu3b8/JkyfZtm0bZ86cISgoiJCQEAIDA7n99tsZNGgQ\n7dq149SpU5w9e5Yf//jHtGvXzo69E5H/lPXevE2bNuTn51NYWEhjYyMDBw7UfbvILeB6Af/evXvZ\nt28fy5YtAxTsizgqX19f8vPzqaioAK5U27GO1cbGRpycnOjTpw9NTU3k5uZeFfB/dU69qamJn/zk\nJ2RmZhIcHMyDDz5oq+IhIgIK90W+N4KDg4mKiuLEiRNs2bKFkydPtgr4rTcRwcHBHDhwgJKSEurq\n6liyZAlTpkwBWpfhvtYEgiYVRG5OsbGxHDhwgJ07d9K9e3e6dOlCc3OzJgpEbiHXCvgPHDhAYWEh\nx44dY9GiRQr2ReysZbD/+OOPExsba3vNel1ueb9tDfhPnDjB1q1bOXv2LCEhIbad/n5+fvTu3ZtJ\nkyYxbdo07doXuclZLBZcXFyIjIxk9erV1NXVcccdd2jRjsgt4loBf2FhISUlJQD88pe/VLAv4qD2\n7t3LihUrbPfbe/bsobS0lMGDB+Pm5kZTUxMmk4k77rijVcAfExNDhw4drppTNxqNHDp0CCcnJ154\n4QVCQkLs0S0RcWAK90W+B6w784ODgwkJCaGmpuaaAX9jYyMmk4nAwECysrLw8fFhyZIlALbXROTW\ndObMGdLT09m/fz/jx4/Hzc3N3k0SkWv4b6rkfDXgd3JyYvfu3fz0pz9lxowZtu/XRKHIjfdNwb71\nPvz999+nffv2eHh4AFcH/GfOnCE0NJSgoCDgyph2c3PDy8vrxndKRP6nWl7HS0tLyc/PJyQkhISE\nBHs3TUT+R74a8B84cIB9+/axePHiVkdn6X5dxLH4+vrSqVMnpkyZwvjx49myZQvFxcV88cUXDB06\nFFdX12sG/KmpqYSHh9OlSxfbd1nn8RMTExkxYgTt27e3Y89ExFEp3Bf5HmhZev/rAn7rpKGLiwtb\nt26lrKwMgD59+ijYF7nFde3alZycHHbt2oWPjw/x8fGaMBBxEDt27ODjjz/mjjvu+K+r5LQMBmJj\nY0lJSWH48OGAJgpF7GXp0qW8/fbb1yzF3zLYnzdvHm+99RbR0dF06dLFdn//1YD//PnzBAQEEBIS\nojEtcosxGAy4u7tz6dIlNm3aRFJSksJ9kVvMVwP+O+64gzvvvBPQ/bqII/jqgntrha3AwEA8PDzw\n9vamd+/e5OTkUFxczJ49e64K+Pv168fFixcpKirijjvuoEePHrbvazmP7+zsbI8uishNQOG+yC3M\nYrHYbga+bcAP4ObmRlhYGGvWrKG+vp6BAwfi6elp+7yI3FqswcGFCxfYtm0bU6ZMoXPnzvZulogA\nWVlZPPTQQ9TX19OrVy98fX3/6++03hO4uLjg7+8PtA4QReTGee6553jnnXdISEjg+eefJywszDZh\n2HJcLly4kNWrVzNu3DjuvvtuvLy8Wt3fWwP+mpoaNm3aRGNjIykpKf+fvfuOy7Ls/z/+ugYgyBIQ\nudgCAoobcYGKC3GUZpaa2bL6WpqWq2zclZa5t96l3WWOlt65cG9BhihbRAUVVBAcqGDKvH5/+LvO\nQK27YV6En+fj0UMDOeH448Nxnsf7PD4HWq3WyCMUQjxIhpp3cXGhQ4cOSuAnz+pC1C6GgL9u3bp4\nenoCcr8uRE1QtQ6joqLYvn07q1atIj09ndzcXPz8/FCr1dSvX/9XA/6srCzs7OwICQmhY8eOhIeH\n3/N9ZE4XQvwvEu4LUctcuHCB3NxcHBwclFAffnnYN7TX1+l06HQ6rl69et+AX6PRkJKSQkJCAn5+\nfjRu3FhuLISopQxv/puZmREYGEi/fv2M/BMJIeBOsP/yyy/j6urKG2+8QVBQ0AO79t0hgFqtVnYc\nCCEejqKiItatW0d2djY3b96kbdu2yjmdZWVlyk6dCRMmEBERwRNPPMHYsWPR6XTVatjwp5ubGzY2\nNty+fZs33niD+vXrG2dgQoi/jaHeTU1N8fDwqPbxv3J0jxCi5rnf/brUuRDGU1lZqQT78+bNY+rU\nqRw6dIisrCwSEhLYu3cvhw8fpmnTptja2uLo6EhQUBAxMTEkJyeTnp6OmZkZ77//PnFxcfTs2RNX\nV1fl2lLbQog/QsJ9IWqRAwcOMHz4cP773/9y4MAB9uzZw7Vr1ygqKkKr1SpnbRoW7p2dnXFxceHS\npUtERkaSn5+Pk5MTrq6uWFpaUlJSwoEDB8jIyOCxxx7D3NzcmMMTQvzN6tevr+zYLy0tlV0BQhhR\ndHQ0I0aMwM3NjYkTJ9KrVy/gwezMq9rOc/Xq1Rw4cIB27dpJsC/EQ3T27FkaNGhA69atKSoqIjk5\nmT179uDj44OXl5cyB1cN9t944w2cnZ2V3wNVa/nixYtYWlri6elJ165d5WxOIWoQQ83ebw7/M4v5\nVWv/v//9LwkJCTRv3lxCASGMSOpciNrPUH+ff/45S5YsoU2bNnz88ce88MIL9OnTh7Nnz5KQkEBy\ncjKtWrXCzs6O+vXrExQURHx8PElJSezevZvCwkIGDhxY7eV9qW0hxB8lPfqEqEX++9//cvv2bbRa\nLXw2Si4AACAASURBVCkpKVRUVLBv3z4ArKys8PX1pUGDBgQHB2NtbU1gYCDNmjVjzJgx2Nvbs2HD\nBkxNTSkvLyc4OJj+/fuzatUqhgwZ8kDaAAsh/ppLly4BVNuJ96DO3KvaWmzHjh2o1WpCQkLkpR4h\njKBqsD9+/HjCwsKAB/M2/90LhUuWLKGwsJAhQ4YoXX+EEH+vTz/9lIyMDN5//338/Px4/fXX0ev1\nbNiwgUmTJjF//nxCQkJ+d7C/bt06Dhw4wDPPPEOHDh1k7haiBql6j52fn8+1a9coLi7Gzs4OLy+v\nP3wff3ftz507l/Lycvr06SPP7EIYidS5EI+O9PR0Vq9ejbe3N++++y7+/v7K54KCgkhLS8Pc3Bxr\na2uljv39/fnyyy/56KOPMDMzo3PnzgwaNAiQY3WEEH+ehPtC1CILFy5k7Nix7NixA61Wy1NPPYW3\ntzfbtm0jOzubpKQkKioq2Lp1KwA6nQ4bGxtatWrFrVu3sLa2Zv/+/Wi1WlQqFR07dmT+/Pn4+voC\ncsMhhDEdPHiQDz/8kAYNGjBs2DDatm1LgwYNHkiwX7W12Lp165gyZQp+fn60b9/+L19bCPHH3B3s\nG3bsG4J9wzx84sQJXF1dqVu37u++9v0WCisrK9m4caO07xbiIZk+fTqrVq2ie/fuSlctNzc3Ro0a\nBcCGDRt46623aNKkCXFxcTzxxBOMGjXqN4P9mTNnolKpePvtt402LiHEvareY69YsYINGzZw9uxZ\nbt++jY2NDe3atePNN9/E1dUVU1PT33W9qrU/b948ysrKWL16tQR+QhiJ1LkQj5bz589z+fJlRo0a\nVS3YX7hwIcuXLyckJISPPvqIGzdu8M033zB+/HhMTU3R6XT8+9//pry8XPld8KA26wghHk3Sll+I\nWqK8vBy1Wk3v3r3JyMggMzOTc+fO8e677zJixAgef/xxevfujbe3N40aNeLnn3+moqKC06dPk5aW\nRmZmJiUlJQCcPn2a3NxcOnXqhLu7OyDBvhDGVFRUxKuvvsrFixcpLy9n48aNREdHc/78eXx8fIA7\n527+VivAX3O/xQOVSsXChQtxcXH528YkhLhXTEwMI0aMwN3dnXHjxhEeHg7cG+xv2rSJESNG4OTk\nREBAwO+q9/sF+6WlpaxevVo5jkMI8feaNm0a33zzDWFhYbz11lt4eHgoc7aNjQ1+fn4UFxeTnJzM\nhQsX6NixIzNnzsTe3p6KigrlrF1DLa9du5Z58+ZRWVnJqlWr8PLyMvIIhRBVGebnOXPmsHDhQgDC\nwsLw8/OjoKCApKQkYmNj0el0uLq6otX++v6bX5vH16xZI/O4EEYkdS7Eo8Fwz75lyxbi4+MJDw+n\ncePGACxevJglS5YQHBzMW2+9hY+PD6NHj2bHjh20bdsWNzc39Ho9arVaeRnI8P9CCPFnyc59IWoJ\nrVartAJbvHixsoN/4MCBrFixgiZNmuDo6EizZs0AKC4upry8nNTUVM6fP09mZiaJiYkUFxeTk5ND\n9+7dq+3ik2BfCOMxMzOjW7dubNy4keDgYJycnFi5ciX/+c9/2LFjBz4+Przyyis0bNgQOzs7pV7/\nV8gviwdC1ByHDx/mxRdfpF69eowdO/ZXg/2IiAgmTZqEt7c3Li4uv2tBQGpdCOObMWMGK1euJCws\njLFjx+Lt7Q1Uv8d2c3Pj9ddfVzpqJCUlkZSURIcOHdBoNJSXlyuhgCHYLy0t5dtvv1U6bQkhapaI\niAiWL19Ox44dmTRpkrLLr7y8nH79+pGVlUVkZCTt27fHzMzsvteQeVyImk3qXIhHh2GDTU5ODgBL\nly5l8eLFBAcHM378eJo0aQKAq6srSUlJXL9+Hbh3XV3W2YUQf5WE+0LUIhqNRgn4FyxYwJtvvsn2\n7dt5/vnnWbNmDb6+vpSXl6PRaLCwsECtVtOpUyfl60tKSigtLSU7O5umTZsCsmNfiJrA1NSULl26\n8O2333LlyhXGjRtHv379WL16NQkJCezfv5/o6GhatGhB9+7deeKJJ7CwsMDExORXa1gWD4SoOW7d\nusXixYsBsLW1xcbGplonDkOtRkREMGHCBPz9/Zk4cSLBwcH/89pS60IY3+zZs/n666/x8fFhxIgR\nSrB/vznazc2N0aNHo1Kp2LBhA2+88QYzZsyge/fuEuwL8Q9iqO+YmBhUKhWvv/56tfa9K1as4OzZ\ns3Tu3JlXX32VW7ducfPmTZycnKrN3TKPC1FzSZ0LUTvdr12+4Z7d0OF2+fLlZGZmsmvXLkJCQhg7\ndqwS7AOo1WrMzc1xdnZ+eD+4EOKRIm35hahl1Gq10rYzPDyczMxM0tPTiYiIIDQ0lPr161c7E6zq\n2Z0mJiaYmZlRv379e87zFEIYl6enJ2fPnuXgwYMEBQURGBhIu3bt6Nu3L3Xq1EGlUhEXF0dUVBRH\njhwhOTkZHx8f1Gp1td0Ber2+WlgoiwdCGJ+JiQmNGzcmJyeH1NRUzp49i4ODA87OzpiYmADVg/0J\nEyYQEhIC3Klp+GWxoaysTJnjZaFQCOObNm0aX3/9NQA3btzAx8cHT09PZe6+H0OL/qKiIlJSUjh4\n8CD+/v54eHiwdu1a5s6dS1lZmQT7QtRgKpWK4uJilixZQt26dRk/frwyPy9evJj58+cru/xMTU15\n8sknuXDhAmFhYcrvBpnHhajZpM6FqH0Mm+YA4uLiOHnyJKdOncLDwwO1Wo2joyMmJiZER0dz+vRp\nmjZtypQpU6q92HP48GEWL16Mh4cHAwcOxMbGxljDEULUYhLuC1EL/Z6A3/B5wwNF1cXF+31MCGF8\nRUVF7Nq1i/Pnz9OrVy8sLS2xsLCgXbt23Lx5k6SkJEpKSrh58ybJycns3LmTtLQ05aUdMzOzau29\nZfFACOO6dOkSdevWBcDBwYEmTZqQlZVFQkICOTk5ODk50bBhQ7Zt28b48eP/Z7B/9OhRvvnmGxo1\naoSVlZXUuhBG9tlnn7Fy5Up69+5N+/btSUpKIioqCisrKxo1avSrrXnh3oB/3759XLp0idWrV8uO\nfSH+QdavX09xcTHPPvssWq2WRYsWKefyGtr3Xrp0iW+//RYTExOeeuopAHkZV4h/EKlzIWqHqjW5\ndOlSpkyZQkREBFu3biU3NxdHR0caNGiAu7s7RUVFpKenA+Dv74+Xlxd6vZ4DBw6wYMECzp8/z4QJ\nE2jXrp0xhySEqMUk3BeilvojAb8QouYoLi5Gq9Xe9+Uaf39/YmJiSE9Pp23btri5uQGwZ88e5s2b\nx5UrV3jvvfcYMWIEFy5cIC8vj+PHj7N161ZiYmJo3rw5Dg4OgCweCGFscXFxjBw5EhMTE5o1awaA\nvb09TZs2JSsri8TERPLy8sjKymL69Ok0btyY8ePHK8fp3B3sp6SksGDBArZu3Urz5s2V0G/VqlUs\nWbJEal2Ih+yzzz7jm2++oUePHkycOJHHHnsMuLOTJzY2Fmtr6z8c8KekpGBiYqIctyWEqHkMnfEq\nKioASExMJCEhAS8vL2JiYpg3b161wE+v13P79m2+//57AJ5++ulqzwJr1qxh8eLFMo8LUYNInQtR\nOxlq8uuvv2bu3Lk4OjrSo0cPcnNzSU5OJi8vD3d3d7y9vfHy8qKiooK4uDh27NhBREQEq1at4rvv\nvuPSpUtMnjyZIUOGAHLkrRDi7yHhvhC12G8F/F27dsXBwUECfiFqkAMHDvCvf/2LZs2aKSG8gaE1\nmEqlYufOnWi1Wrp3786+ffuYMmUKFy9e5JNPPmHo0KHodDr69u1LQEAANjY2pKSkMGLECHr06AHc\nOat39uzZVFZWsnr1alk8EOIhy8jIYMiQIRQVFXH69GksLCyU8/mqBvxHjhwhMTERNzc3Jk6cSJcu\nXYD7B/uzZ88mLi6OSZMmMXjwYOV7ffHFFxw7dox169ZJrQvxkPz444/Mnz+fsLAw3nzzTTw9PQFo\n27Yt8McDfn9/f3Jzc8nOzmbt2rU0atToYQxDCPE7VFZW3rcLnlqtRqPRUFlZyfbt29m1axdRUVF0\n6dKFcePGKfO+SqXi8OHDbNq0if79+9OtWzclBLh58yZLly7lxIkTMo8LYURS50I8OiorK1m6dCl2\ndnbMmjWLwYMH06pVK/Lz8zl06BB5eXl4enri7+9Pp06d8PLyorCwkJKSEvR6Pd27d2fMmDEMGDBA\nuZ6suwsh/g4S7gtRy/1awL9+/XpCQ0NxdHQ09o8ohABiYmJ49dVX+fnnn+nWrRuurq7VPm94GLC0\ntGTbtm1kZGTw888/s2zZMiXYHzRoEAClpaWYmpri4eFB586d6du3L6GhoQBkZ2fzn//8h9zcXFav\nXl3tXDAhxMNx9epVDhw4QFFRETdu3CA1NRVbW1saN24M3An4AwICyMrKIi8vj3r16tG9e3ecnZ1R\nq9XV2gUagv3Dhw8zceJERowYAUBZWRkajYbevXszYMAAvLy8jDZeIR41Op0OKysrBg8erATx5eXl\nqNXqPxXwW1tb06JFC1588UXc3d0fyhiEEP/b3efyRkVFsW3bNnJzc9FoNDg4OODj40NZWRlHjx5F\nq9XSv39/evfurVwjLi6ORYsWcf36dUaOHImHh4cSHJqamhIYGMizzz4r87gQRiJ1LkTtdvemt6Ki\nIhYsWMDAgQMJCwsDwNnZmYYNG5Kbm6sE/G5ubjg7O+Pn50dYWBjDhg3jqaeeolevXkotS7AvhPg7\nSbgvRA137tw5bt++jaWl5Z++xt0B/4kTJzh58iR+fn5KK2AhhPFER0czYsQI3N3dee+995TduXfT\n6/XY2Nig0WjYt28fycnJXL9+nalTp1Y7t0+r1QK/7DCwtbVVFg9sbW0xMzNj9OjR+Pj4PJwBCiGq\nMTMzIy0tjaysLJo2bcrZs2c5cuQIDg4O9wT8mZmZHDt2jDNnzlC/fn2cnZ0xMTEBfj3Yr6ysRKvV\nUl5ejkajwcbGxmhjFeJRZG5uTuvWrat14al6P/5nA/6/8jwghHiwqr5ot3DhQj788EP27t1LYmIi\n+/btY//+/WRnZxMaGkqbNm24ceMGycnJxMbGcu3aNdLT04mMjGTu3LlkZ2fz9ttv8/jjj9/zfayt\nrWUeF8JIpM6FqN2qvryzZcsWdu7cyZ49eygsLKRr1674+vpSWlqKRqOhQYMG1QL+/Px8XFxc0Ol0\nmJmZodFoMDU1rdaCX1rxCyH+ThLuC1GDRUZG8txzz+Hk5IS/v79yw/FnVF1Q7NOnD82aNaNfv34P\n8KcVQvwZhmDfzc2N8ePH06tXL+De1n9Q/cEgMjKSGzdu8NZbb/Hcc88pX1P1reC7HygMDxk+Pj7Y\n2tr+reMSQvw6U1NTPD092bhxI61ateKJJ55g79699w34DS36ExISyMnJQafT4enpybFjx5g1a9Z9\ng33D7wHZJSDEw1VSUkJlZaVyjA5Un8//asAvhKg5DHX91VdfMX/+fJo3b86bb75Jz549cXd3JzU1\nlSNHjpCens7jjz9Oly5dsLCwICEhgYSEBGJjY0lMTMTR0ZEJEyYwdOhQ4P7PAEII45A6F6J2Mzwv\nz5s3j2nTpnH48GHS0tK4evUqN2/eJCwsjDp16igduO4O+K9evYpOp8PZ2Vm5ptS2EOJhkXBfiBoq\nOjqakSNHYm1tTb9+/R7I2ZpqtVq5ITGc/Wn4fyHEw/e/gv27HwoMH3dycuLMmTMcO3aMpk2b0qZN\nG2Wn7m+RhwwhaobKykocHBzIy8sjIiKCwYMH4+/vz/79+0lISMDe3v6+AX9iYiLnz5+nuLiYVatW\nER8f/6vBvhDi4YmJiWHbtm0sXryYzZs3k5eXh0qlwtnZ+Z65VwJ+If7Z7m7fO2/ePLRaLbNnzyY4\nOBh/f3+Cg4MJDg5m3759pKWlkZOTQ8+ePWnVqhWhoaF069aNxo0b8/LLLzNkyBA6duwIyDwuRE0h\ndS5E7VZ1d/3atWuZPXs2TZo0Yfjw4VhYWFBcXExGRgYVFRW0bNkSMzOzewL+/Px8Dhw4wJkzZ+jc\nuTN169Y18qiEEI8aCfeFqIEMgZ+LiwvvvvsuPXv2fKDXr7rIaDi7V0I/IR4uQ527uroyYcKEXw32\n9+7dy4EDB2jZsiUqlUr5vKOjI3v37iU/P5/HH38cCwsLqWUh/iEMNa7X69myZQu2trYMGzYMExMT\nDh069JsB/9GjR4mLi+PcuXMS7AtRA3zxxRd89tln7N+/n4KCAs6dO6ecuduyZUvq1Klzz9f8VsBv\na2uLl5fXfb9OCGF8VXf5HTt2jMTERPr27Uvv3r2Vuq6srMTR0ZEuXbqwY8cOEhMTcXNzw9/fHwcH\nBzw8PGjVqhWurq5KN62q7b+FEMYldS5E7XX3c/PGjRspLCxk9uzZ9OrVi6CgIOzt7ZXar6iooHnz\n5vcE/O7u7mRmZhIeHk5wcLARRySEeFRJuC9EDRMbG8tLL72Eu7s748aN+80W3X9U1RuY/fv3c/r0\naTw9PSUMFOIhi4uLY8SIEXh4ePDmm2/Su3dv4N5gPyIigrFjx6LVagkMDMTKykr5XN26dYmPjycp\nKYnS0lI6deoktSzEP0zDhg05e/Ysu3fvZujQoXTt2pXy8vLfDPgzMjK4cOEC77zzDi+99BIgwb4Q\nxjJr1iyWLl2Ku7s7H374IW+++SZBQUE0bNiQtm3b4u/v/6tf+2sBf3R0NI6OjjRv3lzmdSFqIL1e\nT3p6OpMmTSI1NZX8/Hx8fHzo0qUL8MsLfBUVFdjb29OgQQP27t2Lvb09oaGh1a5Ttcal3oWoOaTO\nhai9DHW4aNEi9uzZw+7du+ncuTNPPvkker0eS0tLPDw8sLW1JTExkSNHjtw34HdyciI0NFTpyiGb\nbYQQD5uE+0LUILGxsbz44ovo9XpeeeUVnn76aeDBLNpXvcbatWv58MMPKSgooHv37piamv7ln10I\n8fukpKQwbNgw9Ho9EydOpH///sD9g/0JEybg6+vLa6+9RkBAgHKNyspKzMzMcHFxYdeuXRQVFdGx\nY0dsbGyMMiYhxL1iY2NZu3YtjRo1QqvVotFoqrX4NNS8lZUVGzZs4Nq1a3Tr1o2mTZuiVquJioq6\nb8AfEBBAx44dGTRokHIdCfaFePhWr17NggUL6Nq1K++//z7t27fHxsYGb29vmjZt+qtHalVd+Ls7\n4L99+zZpaWlMnDgROzu7hzkcIcTvZOig5eTkxPbt2wFwd3enV69e1bpsGeZmjUbDpk2bKCwspF+/\nfkpXDgkAhKi5pM6FqN0uXLjABx98QEpKCmq1moCAAEJCQigrK0Oj0WBmZoaHhwf16tUjMTGRo0eP\nUlFRQYsWLaoF/BYWFoAE+0II45BwX4gaIjo6mpdeegm9Xg/A2bNnadu2LfXr13+gO/bXrVvHggUL\nKCkpYe7cuTg7O//ln10I8ftlZWURGxvLzZs3uXnzJt27d1ceDjQaDfBLsO/v78/EiRMJCQkBfnlg\nMPxOsLCwIDIykvT0dPr06YNOpzPauIQQv4iJieGll17iyJEjJCYmkp2djb+/f7Vz+Az17OjoSEJC\nAgkJCYSGhqLT6fD19cXU1FQJ+B0cHJQdwPXr18fHxweQYF8IYykoKGDWrFmYm5vz0UcfKS/gGBb6\nTExMgDsLhydPniQ7O5u8vDxcXFzuua+vGvB37NiRwYMH4+Li8tDHJIS4v7sX7A312qRJE1xdXdm9\nezenTp3C3t6eZs2aKbt54U6wZ2dnx08//YRWq+Xpp5+WF+uFqIGkzoV4tFhaWtKqVSvS09PJzs7m\n/Pnz9O7dG1tbW6X+zczMcHd3VwL+5ORkbt26RfPmze85PkuCfSGEMUi4L0QNYDh728PDgw8++IBr\n166RkZFBZGQkrVu3pkGDBn/62ncH+3PnzqWkpITvv/8ePz+/BzUEIcTv5OTkRJMmTTh27Bipqakk\nJSXRuXNnrKysgOrB/oQJE6oF+/DLQ8OFCxewtbXFzMyMpk2b8thjjxlnQEKIaq5evcrkyZMpKCjA\nxMSEixcvkpCQwJYtW1CpVJiamlZ7cU+r1eLl5cV3332HRqMhJCQECwsLfH19MTExISoqipiYGGxt\nbWnatGm17yWLCEIYR3p6OsuWLWPMmDF069aNiooK9Ho9Wq0WvV7P7du3WbRoEUuXLmX58uVs3ryZ\nn376iWvXruHn54elpeU9O/gNuwDNzc2NPDohhEHVjju3bt2iuLiYyspKJbjz9/fH3d2dXbt2cejQ\nIZydnfH390etViv1HRUVxZo1awgNDVWO3JP5W4iaQ+pciEeDXq9X1sgNL9n7+PiQlZXFmTNnOHXq\nFO3bt8fKyuqegN/Ozo6YmBiio6Pp2rWrbKwRQtQIEu4LYWQHDx5k5MiRuLq6MnbsWPr27cvjjz/O\n4cOHOXHiBIcOHfrTAf/9gv3S0lLWrFkjwb4QRqLRaNDpdHh5eXHs2DHS0tJITU1l4MCB7Nu3j7Fj\nx/7PYD8pKYm5c+dy+PBh/u///o927doBv7T5FkIYj1qtxtbWlosXL5Kbm0uXLl3w9PREr9ezfv16\nduzYgVqtxsHBAWtra1QqFSYmJpw5c4a9e/cSFBSEk5MT5ubm+Pn5oVariY2NpWvXrveE+0II44iM\njGT//v0EBwfTsmVL1Go1arWawsJCduzYwfz589mwYQOFhYWYmZnh6+vLpUuXSElJoby8nM6dO98z\nX8v8LUTNUlFRoXTVWrt2LV988QWLFy8mMTGROnXq4OXlBYCfnx+urq7s3LmT3bt3Y2ZmhqOjI1ZW\nVhw8eJBly5aRm5vLa6+9hre3t9S6EDWI1LkQtVvVNTKVSkVZWRlarZby8nK0Wi0ODg40atSIjIwM\nEhISOHfuHEFBQfcE/G5ublhZWREWFkaPHj2MPCohhLhDpTckBkKIh+7q1asMGjSIW7du8fHHHxMW\nFqZ8rqSkhJdffpn4+HicnZ1ZsGABzZo1+93XlmBfiJpBr9dTXl5OeXl5td14paWlHDlyhGnTppGZ\nmYmPjw+ZmZkEBAQwZswYunTponw9/LLon5KSwpw5c4iLi+O9995j+PDhD39QQojfVFJSQmRkJPPm\nzePSpUt069aN8PBwcnJymDt3Lrdv38bPz49OnTrx2muvUbduXeV4njFjxvD6668ru3qvXr1KdnY2\nrVq1MvawhHikFRYWUq9ePeDO0Rsvvvgijz32GGPGjKFevXrk5uYyY8YMTpw4weXLlzExMeGNN96g\nZcuWtG3blsjISCZPnszly5dZtWoVQUFBRh6REOLXVH2Wnjt3LsuWLUOr1aJWqyktLcXc3JxPPvmE\nvn37Kl+zYcMG3nnnHQB0Oh2VlZVcuXIFjUbDuHHjeP75540yFiHE/UmdC1G7VX15Z+fOncTHxxMX\nF4dOp8POzo6XX34Zb29vAI4ePcrUqVPJyMige/fufPjhhzg6Ola7RmlpqdLRQ47HE0LUBLJzXwgj\nUqvV+Pv7061bN7p37w7cuUGorKzExMSEvn37cvTo0T+8g1+CfSFqhoyMDL755huWLl3Kli1bOH/+\nPK6urlhaWqLVanFycsLb25u0tDSysrKwtLRk/Pjx9OzZE7h/sD979mwOHz7MxIkTeeGFF5R/J7sD\nhKg5tFotrq6uODs7k5KSQnx8PCYmJowePZrevXtjZ2fH4cOHiYqKYteuXdy+fZs2bdpQWVnJDz/8\nQJ8+fbC2tgbA3Nxcafsn3TmEMI63336bPXv2EB4eDtyZl1NSUjh48CCxsbFs3ryZFStWkJmZiYWF\nBa1atWLWrFn06dMHFxcXADw8PKioqCA2Npbw8HA8PDyMOSQhxG8wzLWLFy/m3//+Ny1atOCjjz5i\n2LBhWFpaEh8fz8GDB9HpdPj7+wPVW3cXFxfj4ODAwoULeeqpp5Q23TKPC1FzSJ0LUXtVVlYqofyc\nOXP49NNPSUlJoaioiLy8PFJTU9m2bZvSdt/Ly4tGjRpx/PhxDh8+TE5Ozj07+A3XA+m4JYSoGSTc\nF8KItFotbm5ueHp6Ar+E8mq1moqKij8V8Ov1egn2hagB4uPjGTNmDJGRkUp77vj4eHJycmjYsCGO\njo5Ki35DwJ+fn8/169cJDQ2lTp06lJeXKw8Qdwf7I0aMAOSNYSFqKo1GowT8J06cICoqioKCAkJD\nQwkNDVV2AZ07d44tW7YQERFBZWUl+fn5aLVa2rRpU20BAWQRQQhjOHbsGFOmTMHd3V2pW2tra2xt\nbTl//jynTp0iPz+fkpISgoKCeO211xg+fDheXl7KAn9paSkajYbU1FSioqIICQlRggIhRM104MAB\nZs6cSYsWLfjggw9o06YNDRo0wNTUlH379lFcXMz+/fvx8PDA19cX+KV19+7du7l+/TqNGzdWuvMZ\nWgELIWoOqXMhaifDc/OyZctYsmQJwcHBTJs2jTFjxjB06FBu3brF8ePHiYuLw8bGRqlrX19fJeA/\nc+aMEvALIURNJOG+EEZWdaG+6t//bMBvuMYPP/zAvHnzqKioYPXq1RLsC/EQRUdHM2LECMrLy3np\npZcYNWoUHTt2JD09ndTUVAC6du0K3Kl1Q8B/7NgxUlJSSE5OpnPnzspDhAT7QtRMhuDO8OfdXTQM\nAb9Op+PUqVNERUVx7do1fH19cXZ2pk2bNoSHh2NiYkJOTg4nT56ktLSU4uJi+vTpU+0oDyGEcdy4\ncYNvv/2W4uJi+vfvj6mpKWq1Gi8vL1q3bk3Xrl3p2LEjgwcPZsyYMfj5+WFpaQmg/H4wLPQvWrSI\nkpISxo4dKwuFQtRwGzZs4PDhw0yfPp0WLVooH585cyb5+fkMHDiQpKQk9u7di6urq/K87e/vrwR/\nkZGRmJqaEhgYiEajkR29QtQwUudC1F4nTpxg+vTp2NvbM3XqVFq0aIGFhQXW1tZ06dKFOnXqkJiY\nSHx8PE2bNsXT0xMHBwcaN25MSkoKCQkJtGvXjoYNGxp7KEIIcV8S7gtRg/3ZgP/s2bMsW7aMguO2\nIAAAIABJREFU7Oxsvv/+ewn2hXiIDMG+q6srkydP5vnnn8fNzQ1/f398fX3ZuHEjmZmZ9OzZk3r1\n6qFSqZSA38vLi2PHjpGWlkZqaip9+/YlJyeHTz/9lPj4eAn2hahBkpKS+Pzzz/Hw8KBu3bpotVpl\nIa9qyH93wB8TE0NxcTH+/v7Y2dlhaWlJx44dadmyJT4+PsTExDBs2DA6depkzOEJIf4/Ozs7oqOj\nKSgoYPDgwVhbWysL93Z2dri7u+Pv74+Hh0e1l30qKyurndO5YsUKfvjhB3r06EGvXr0wMTEx8siE\nEPdjqN05c+ZQWFjIiBEjsLW1Be607/7uu++YOHEio0aN4tKlS6SmprJ37150Oh2NGzcGUH4n7Nq1\ni5iYGPR6Pe3atZPAT4gaQupciNrv2LFj/PDDD7zwwguEh4crz+iG+/PmzZtTXFzMoUOHyMjIoF+/\nflhYWNCgQQN8fHwIDg5WjtsQQoiaSMJ9IWq4Xwv4Y2Njadmy5X0DfkPIMH78eLy9vY3wUwvxaKoa\n7E+YMIE+ffoAKO143dzcOHjwIJWVlcpZfgb3C/ijo6PZv38/R48elWBfiBrkyJEjPPPMMxw7dowN\nGzaQkZEB3DlTW6PR3LObX6vVKgH/yZMniYmJoaioiCZNmii7dxs0aECLFi0YOnSoEuzf3QlACPFw\n6fV6AA4ePMjx48dp3rw5jRo1Au5/TEZpaSnXr1/HwsJCeXkP7gT7X3zxBdbW1kyfPh0HB4eHNwgh\nxB9iqN2MjAxOnjxJjx49cHZ2ZvPmzcycOZOePXvyzDPPKC/67Nmzh7KyMvbs2cOJEycIDAzE0tIS\nPz8/GjZsyM6dO4mPj2fYsGHSkUeIGkLqXIjay/AMvWvXLqKjo2nfvj1t2rShoqJCOQrXsKbWrl07\nDh48yKlTpwgNDUWn06FSqap16pBuHEKImkoOAhLiIbh58yZ169b901+v0WioqKjAzMyML7/8kldf\nfZW4uDheeuklduzYgb29vfJv9Xo9JiYmDBgw4EH86EKI3ykmJkYJ9sePH6+84VtZWanszsvPzycn\nJwdra2tlJ1/V8E6r1dK2bVveffddZsyYQUpKCgCTJk3ipZdeUq4nwb4QxnXr1i0AfHx88PPzY8uW\nLezcuZMOHTrQunVrnn32WSwtLZVa1ev1mJqa0rlzZwAWLFjAhg0bAHjjjTfQ6XTKooFh15DUuhA1\ng0qlIiQkhJ07d3L+/HnlY/ezb98+Pv/8c5555hnc3d0pLi5m/fr17N69GycnJ5YvX46bm9vD/PGF\nEL/hfnOtYUdfp06d0Gg0uLi4kJ+fz5o1a7C2tub555/HxcUFABcXFyorKwkICKCwsJDAwEAaNGig\n3N/37dsXtVpNw4YNqVevnjGGKMQjT+pciEeL4T7d0E7/5MmTwJ31NsPvA7VaTVlZGSYmJvj4+JCa\nmsrFixfvez15JhdC1FQS7gvxN4uLi+Prr7/m9ddfp3nz5n/6OlUD/uXLlzNkyBA6d+5cLdiHX19s\nFEL8fWJiYnjxxRdxcHDgX//6l7Lr1hDWGepy9+7dXL9+nXfeeUfZtXd3zWq1Wtq0acOkSZN45513\nGD58uAT7QtQger2e5s2bExwcTFxcHFOnTqV///589dVXpKWlERMTw+bNm+nQoQOPPfYYgYGBSp2b\nmpoqvx8WLlzI5s2bKS8vZ8yYMbi6ulb7PlLrQjxchl36Vedlw9+dnZ0BSEtLA6jWbt+gpKSE+Ph4\njh8/zgcffKB83MzMjODgYP71r3/h4eHxt45BCPH7Va3j7OxsiouLsba2xt7eHgsLC7p160bbtm2x\ntLQkJiaGpKQkRo8eTevWrZVrHD16lLKyMqZMmYKHh0e1rlyG+/bevXs/9LEJIe6QOheidvutTne+\nvr5YWlqydetWAgMDGTZsmLJrX6VSVTsiy9LSUjrfCiH+cSTcF+JvdPXqVWbMmEF6ejparZaRI0fS\ntGnTP309jUZDeXk5pqamrFu3Tln4l8BPCOMpKirim2++AaBOnTpYWFgAd+pSr9crtbljxw6mTp2K\nubk5mzdvZvv27ZiZmVG/fn06duxIvXr1aNWqFXAnAAwODubHH39Ep9Mp15M6F8L4VCoVNjY2BAcH\nc+jQIVavXs2cOXNo3Lgx+fn5LFy4kMzMTH744Qd++OEH+vXrR7NmzXjmmWeAO0Ffx44dUalUzJw5\nk02bNjFgwIB7wn0hxMNVUlJCnTp1qn3MEAp4enri4ODAiRMnuH379j3/Du7U9qRJk/Dz8+Po0aNc\nu3YNnU5H165dadasmezmE8LILl68iKWlJZaWluj1eiXw+/LLL/n++++5cOECVlZW9O/fn8cff5xm\nzZop/9Zw/I5hJy/cCfxWrlyJq6srderUUQI/Q9AgL90L8fBJnQvx6Kj68s6tW7e4du0apaWluLi4\noNfrcXd3Z9KkSUyZMoWvvvoKc3NzBg4cWG1d7ciRI+zduxcvLy9sbGyMNRQhhPhTNB999NFHxv4h\nhKitzMzMqFOnDvn5+cTGxlJQUICnpyeOjo5/+ppqtbpaYFj170KIh8/U1BRHR0du3LhBcnIyaWlp\neHh44O7urtTm1q1beeuttwCwsbHhxIkTnD17lqysLFJSUti5cydr164lISGBHTt2cOPGDXx8fJQg\nQOpciJrDsJgXEBDAoUOHOHXqFD179kSn0+Ho6EivXr3o27cv2dnZnD17lpMnTxIVFcXhw4c5d+4c\nTk5OODo64uXlRYMGDejSpQs9e/Y09rCEeKQtWrSImTNncvHiRc6dO4dKpcLMzAy1Wo1Wq8XKyoro\n6GiysrJ4+umnf/W4LY1GQ0BAAD169KBfv36Ehobi4eEh5+8KYWTx8fE89dRTWFhY4Ovri5mZGQDz\n5s1j0aJFlJWV4ePjQ0FBAcnJyeTl5eHq6qqcvZuZmcm+ffs4ceIETZo0ISYmhiVLlpCZmcnEiRMJ\nCQlRvpeEfUIYh9S5EI+OqsH+mjVrmD9/PvPmzWP16tVERUVx4cIFfH19CQoKoqioiEOHDhEfH09x\ncTGNGjWivLyc6OhoFi9ezNmzZxk3bhyBgYFGHpUQQvwxEu4L8TcxhHG+vr5YWVlx7tw54uPjf3fA\nb2gTdPc17347WB4qhDAeQ026uLig0+m4fPkyCQkJpKen07BhQ9zc3IiIiGD8+PG4u7szbtw4xo0b\nR58+fQgLC8PFxQVra2vUajVXrlzh3LlznDlzhtDQUGUXP0idC2FMhYWFaDQaZfFApVIp7bvPnTtH\nZGQkJSUldO3aFbgT7h0+fJiNGzdy48YNhg8fTn5+PqdPn+bIkSNs2bKF06dPc+vWLXr37o2/vz9w\n/3lfCPH3W758OQsWLODKlSscPXqUffv2sWnTJrZu3UpkZCQFBQVcu3aNq1evkpqaSqtWrfDy8rrv\ntQz3BVVb/P9Wu1AhxMOxfft2IiMjSU5OxtraGh8fH06dOsXMmTNp3bo1c+bMYfTo0fj6+nLjxg0i\nIyPJzc3F1dUVZ2dnAgICSEpKIi0tjZ9++om9e/dy6dIl3n33XaUzj9S6EMYldS7Eo6Hq5pfZs2cz\nf/58bt68SYcOHTA3N+fixYscPHiQyMhIunfvTkhICGZmZkrAv27dOr7++mvWr1/PpUuXeOeddxg8\neLBybalxIcQ/hYT7QvxNDIt5arUab29vrK2tf3fAX7X9dkJCAvn5+Tg5OckNhhA1jKEmVSoVOp0O\nFxcXLl++TGJiIqdOnSIvL49p06bh7+/P22+/Td++fbG2tsbJyQkPDw/at29P3759CQ8PJzQ0lMDA\nQHr16sWgQYOMPDIhBEBMTAwjR47E1dUVNze3amdsazQaGjZsSEREBLm5uXTu3Jl69eqxa9cupk6d\nSl5eHlOnTmXkyJH07NkTT09PSktLyczM5Pjx47Rp04YWLVoo15M5XgjjcHR0ZMiQIfj6+tK4cWNK\nSkoAyM3NJTs7m5iYGLZu3Up6ejp6vZ7mzZvTsmXL+16r6n1B1b8LIYzD8OJc69atsbCwIC4ujkOH\nDuHm5kZBQQFbt27lk08+UWray8sLNzc3rly5QlRUFHl5eTg7O+Pi4kJ4eDjFxcU4OjrSqVMnXn/9\ndfr37698H+myJYRxSJ0L8Wgx3FuvXbuWOXPm0KlTJ6ZNm8YLL7xA7969efzxx9m2bRvnzp3j+vXr\nhIeHExQURNu2bSkuLsbc3BxTU1P69OnDqFGjpMaFEP9YKr1hW4EQ4oGp2h7I8NZfZWUl27dv58sv\nvyQ9PZ3Q0FBGjx5N06ZNq31t1ZuJTZs2MWnSJDp37synn35K/fr1H/pYhBD3V7XODfR6PQkJCXzx\nxRccPHgQAA8PD6ZPn67sxK/6dfe7xm9dXwjx8FRWVvLRRx/x448/4uHhwdtvv01ISAimpqbALzU6\nc+ZMvvrqK6ZPn46LiwsTJ07k4sWLfPLJJwwaNOieRYI1a9ZQv359wsLCjDU0IcRvKC0tpbS0lJMn\nT5KVlUV2djbx8fHcunWLkydPKnXft29fY/+oQog/aNmyZSxZskQ5i1ej0bBx40YAysvL0Wq1ACQl\nJfH555+zf/9+2rdvz6hRowgKCgLuvUeXMECImkXqXIjaTa/XU15ezujRozl8+DCrV68mICBA+fzS\npUtZuHAhoaGhvPPOO1hZWaHRaLC1taWkpAQzMzNKS0uV53qQGhdC/DPJzn0hHpDMzExSUlLw9PRU\nbggMNweGP//XDv6qDxARERG8/fbb6PV6hg0bRseOHY02NiHEHb9W54YXeNRqNTqdDmdnZ65evcrZ\ns2epW7cuvXr1QqfT3XO0xm89PMiDhRDGpVKpCAoK4vr16xw6dIikpCQ8PT1xcXFBo9EoNarX69m0\naRNRUVHs2bOHS5cuKcG+4fMqlYqKigrUajXNmzfH29sbkFb8QhjLiRMniIuL4+uvv+bcuXMUFBTg\n4+MD3KnZOnXqoNPpCAgIoGPHjvTt25enn36a4uJikpOT2b17Nw0bNqRRo0ZGHokQ4n6uXbtGTk4O\nmzdv5sqVK+Tn5+Pm5kZgYCBarZbU1FTy8vK4ffs2QUFB6HQ65bldpVLh5OSEq6srly9fJioqioKC\nAqVLl1qtrta2V+ZxIYxD6lyIR5NKpeLKlSvMmDGD5s2b8+qrryr1unjxYhYtWkRwcDATJ07E3Nyc\nF154gcrKSmXDjeFZXmpcCPFPJ+G+EA9AZGQkQ4cOJSIiguPHj6PX63FwcMDCwgK4c5NQXl6ORqP5\nzYDfEBREREQwYcIE9Ho9H3zwAcOHDwfk7B8hjOmP1LlOp0On03HlyhXS0tJITU3F09MTNzc3OX9X\niH+IiooK6tSpQ9u2bSksLCQ2NvaegB/A3d2dgoICkpOTuXXrFnPnzr1va7/7vbAjvweEePhWrFjB\nrFmz+PHHH8nIyODQoUNs374dT09PfH19q724Y5izTU1N0Wq1dO7cmcuXL5OamsquXbsk4BeiBkpN\nTWXWrFksXryYPXv2sHXrVjZu3IidnR3NmjUjMDAQvV7PqVOnKC4uxs7ODn9/f8zNzZUXdqsGf4WF\nhRw4cIDMzExCQ0OpW7euzN9CGJnUuRCPDsNL8gaVlZUAfP/991hbW/Pkk08qwf7ixYsJDg5m3Lhx\nNG7cmOjoaL777jscHR0JCwtTnuGrbroRQoh/Kgn3hXgAPv/8czIyMmjcuDE5OTn89NNP7NmzBxMT\nEyoqKnByclJuRFQqFd7e3lhZWXH+/Hkl4G/YsCGOjo5KsA/w3nvv8eyzzwLSIkgIY/ujdW4I+C9f\nvkxCQgLp6el4eXnh6uoqAb8Q/wCGnT1mZma0a9fuNwP+oqIioqKicHZ2ZsqUKYAcrSFETTRr1iwW\nLVqEpaUlY8aMITw8nBYtWlBcXEynTp3w9PRU/u3dO3kMC4uhoaFcuXKF1NRU9u3bh06nw9/f3xjD\nEULcJTY2ltdee41Tp07RqVMnQkND8fPzIy8vDz8/P1q2bIlGoyEwMJCKigoSExM5evQodnZ2+Pj4\nYGpqek/w5+zsTE5ODr169SI4ONjYQxTikSd1LsSjxbDOtnTpUuzs7LC3t+fmzZts3ryZjIwMWrZs\nyaZNm5Rgf/z48Uqb/tu3b/Pjjz/i4ODAY489BsgL9kKI2kPCfSEeAFNTUw4ePIiDgwPvvfcet2/f\n5ujRoxw4cID169dTVFRERUUF7u7uytuBhoD/3LlzHDlyRGkpZggF3nvvPWXHvgT7Qhjfn6lzw0LB\npUuXSExM5NixY3h7eysBvxCiZjMs/P2vgN/Ly4vIyEhOnDhBvXr1CAgIkGBfiBpm+fLlLFmyhNDQ\nUD7++GN69OhBkyZNaNOmDV26dKl2Vuf9qNXqagH/tWvXSExMJD4+nqFDh1Y7t1MI8fAlJyczcuRI\nrK2tmTBhAhMmTCA4OJjQ0FC6dOlC9+7dMTExUQK9wMBA1Go1R44cITo6Gltb2/sGfzqdjk6dOimB\nn7ygK4TxSJ0L8eioeoTdwYMHef/999myZQvdu3fH2dkZtVpNZGQkcXFx7Nu3j5CQECZOnEjjxo2V\na8TExLB7926eeuop2rRpA0i4L4SoPSTcF+IBsLe3Z8+ePRw/fpxevXrx2muv4e/vj7OzM0eOHCEp\nKYmtW7cSFxeHhYWF0s7b29sbOzs7srKyOHr0KDExMQC8//77EuwLUcP82TrX6XR4eHiQl5dHUlKS\nEgq6u7sbe0hCiP+vvLwcuPdB37D7vry8nDp16lQL+BMTE/H09MTJyQkzMzMsLS3Zs2cPKpVK2RUg\nC4NC1AwpKSnMnDkTNzc33n//fRo3boxer6eyshK9Xo+VlRVw53fBxYsXKSwsxNraWqlfw+Ji1YC/\nc+fO3Lx5k7fffhsXFxdjDk+IR97ly5eZMmUKly5dYtKkSQwcOBCAsrIy1Go19vb2yjN1WVkZ169f\nx9zcnMDAQOrWrcuhQ4eIiYn51eCvbt26gMzrQhiT1LkQj46qXfCys7MpKysjISGB/Px8tm/fTlhY\nGC1btuTEiRNkZGRga2vLs88+S5cuXZRrHDlyhEWLFnHr1i1efvllXFxcpLaFELWKhPtC/EWGHX32\n9vZs374djUZDjx498PLyomPHjnTu3Bl/f3+OHz/OqVOnOHToEBEREahUKrRaLcHBwTg6OnL+/Hny\n8/OZPHkyzz33nHJtCfaFML6/UucALVu2xNvbm4sXL5KcnExwcLC08BWihjhw4AAffPABkZGRFBUV\nkZeXR7169TAxMUGr1QK/tAI0NTWlbdu2XL16lbi4OOVlHQ8PD8zNzdm2bRtpaWk0aNCAgIAAWTwQ\nooaIiopi8+bNvPvuu3To0AG4s3iv0WiU+l62bBkrV65k+vTpfP/99yQlJfHzzz/j5+dXrROHWq2m\nvLwctVpNSEgI9evXN8qYhBC/yMnJYcmSJQwYMIBXX30VuPOyjomJiTIXx8fHs3btWubPn8+6des4\nevQoGo2GJ554AhsbGyX4s7Ozw8vLCzMzs3vmcZnXhTAeqXMhHg2VlZXKvfeiRYv44IMP+Omnn7hy\n5Qrm5ubcuHGDHTt2MGDAAFq3bs3Jkyc5c+YM+fn55OfnU1hYyP79+5kzZw5nzpxh8uTJhIeHG3lU\nQgjx4Em4L8RfZLjx12q1HDx4kJiYGFq3bo2bmxsADRo04OLFi0RGRnLz5k38/f05c+YMhw4dYuvW\nreTm5uLh4YGlpSXPPfec8vaxBPtC1Bx/pc63b9/O+fPnqV+/Ph4eHgwePJiwsDBjDkcI8f8VFBTw\n3HPPkZ2dTVZWFvv27WPr1q1s3LiRTZs2kZ6ezqVLl7hx4wb16tWjuLgYGxsbQkJCuHHjBtHR0SQk\nJODu7k7Lli2xtbVlz5493Lp1i9DQUOrUqWPsIQohgJUrV3Ly5ElGjRqFvb09t2/fxsTEhKKiImJi\nYpg1axbffvstOTk5lJaWotFoyMrK4vjx49SrV0/Z6W+4H5B7dCFqls2bN7N//35GjRqFp6cnxcXF\nyhx88uRJ1q9fz8SJEzly5AgFBQVcvXqVU6dOcfToUerVq8fTTz+NiYkJiYmJ7NmzBysrK5o1ayZH\n7AhRg0idC/FoMNxvL1u2jIULF9KyZUsmTpzIiBEjaNeuHTdu3CAjI4MtW7bw/PPP07lzZ4qLi4mL\niyM2Npbt27cTFxdHnTp1mDRpEkOHDgWqt/kXQojaQMJ9IR4QGxsbKisriYyMxMbGhk6dOgGwe/du\nPv30U/Lz85k6dSofffQRDg4OVFZWkpOTQ0pKCrt372bYsGH06NEDkGBfiJrqz9Z5amoqO3fupH//\n/oSGhgLyYCFETWBiYoKNjQ1JSUmUlJRga2uLr68vJiYmnDx5kvT0dPbv38/GjRvZvn07W7du5fTp\n0xQUFBAQEMCVK1c4fvw4SUlJuLu7U79+ffbs2cOQIUNo166dsYcnhPj/oqKiSE1NRafTERgYiFar\n5fz588ydO5cffviBpKQkVCoVw4cPV/5zcHAgPj6e27dv069fP5mzhajBMjIyOHDgAM7OznTo0AFT\nU1Pgzos9K1eu5McffwQgODiYrl278vzzz2NjY0N6ejq5ubkMGjSI1q1bA3fO5+3evTutWrUy2niE\nEPeSOhfi0ZGVlcVnn32Gra0tn332GW3btsXR0RFvb2/69+9Pbm4uR48eZcuWLQwdOpQBAwbQtm1b\n3NzcaNKkCc899xzPPPMMXbt2BWSdXQhRO6n0er3e2D+EEP90hp0858+fZ8SIEdy6dYtt27aRkpLC\n5MmTuXjxIp988gmDBg1SvqawsJDMzEwWLlxIeHg4w4YNM+IIhBD/i9S5ELVTaWkp69evZ/r06ajV\nap566inGjh3LyZMnSUtL49SpUyQkJCgt+w1sbW35+eefqayspLy8HFdXV9577z1sbW2VhUI5s1OI\nmiE+Pp5XX30VjUZDaGgodevWZceOHVy7dg1zc3M8PDyYPHkybdu2VWr28uXLvPXWW8THx7Nr1y6l\nW48QoubJyMhg6NChmJiYMHDgQJycnIiOjubgwYOoVCrMzc158cUXef7556lbty4ajYYrV64wbdo0\ntmzZwooVK2jfvj0Ax44dIyAgwMgjEkLcTepciEdHfHw8L7zwAi+//DJvvfUWhviqoqJCOTpv7Nix\n7NixAwcHB1auXImXl9d9ryXP5EKI2kpr7B9AiNrAcJPg6upKu3bt+PHHHxk1apSyu2/atGlKu/3y\n8nK0Wi22trYEBQWxbNkyzM3NAXmTUIiaTOpciNrJ1NSUJ554gsrKSmbMmME333yDvb09r7zyCi1a\ntACgrKyMW7duceTIEa5evUp0dDQXLlwgNzeXS5cuAXD+/Hlu3rwpuwOEqIFatGjByy+/zL///W8i\nIiKUjzdr1ozevXsTFhaGq6ursnBYVlaGg4MDLi4uxMfHy4KgEDWcr68v//d//8eSJUtYsWKF8nEz\nMzP69+9P9+7d6dKli/Lx8vJy7O3t8fb2Bu4cvWVY/DcEfjKPC1GzSJ0L8ejIzc2loqKC4uJi4JdQ\nX6vVUlFRgUaj4eOPP+bs2bOcOHGC4cOH89133+Hu7q583kDu44UQtZWE+0I8IIaHgldeeYWoqChi\nY2MBmD59OgMGDADuvC1oeMPQcHNhCPz0er08VAhRw0mdC1E7mZqa8uSTT6JSqZgxYwYLFiygpKSE\n0aNHA3dq2dra+v+xd+9Bdpb1HcB/73nP2UuyuZGQxFwKBFpzgiBYQqC1U0K90MYqVCsIvVsc9ERR\nR6vWqjijViI6Y+FwqFNvM1aYtgOdemurbW2l1UO4FRFcl0u5DyEXKRA3m909/cNJyjVCeM6+757z\n+cyc2WzifOe7M3lNyPc8z8app54aERGve93rYnp6Ou67776466674oEHHoharRavetWr9md61qE8\nBgYG4txzz42XvOQl8ZWvfCUOPfTQOOSQQ+LMM8+MWq0WeZ7v/wf/6enpqNVqEfHT7+G7du3aWLVq\nVcFfAXAglUolfv/3fz/WrFkTX/7yl2Pu3Lkxf/78OOuss+LII4+MkZGRiPj/b4u17+/qDz74YAwM\nDMTy5cuf8o///hyHcvGcQ/9Yt25dLFiwIH70ox9FxE/fnLPv3+PyPI/p6ekYHByMBQsWRETEjh07\n4rzzzovPfe5zsXz5cqf1gb5g3IdE9v1HwaJFi+K4446L+++/P17zmtfsH/x+1juC/aUDys9zDr1r\nYGBg/+0bF154YVx22WVRqVTiLW95S1Sr1f03ckT8/7O+evXqp1zV/eSTAkA5DAwMxMknnxwnnXTS\nE/48np6ejojYP+zv+3P80ksvjVtuuSXe+MY3xtTUVFQqFX+OQ4kNDw/HK17xijjllFNiYGAg9u7d\nG7Vabf+NHPv+oX/fc3z11VfHlVdeGSeddFIsXLjQCV6YBTzn0B+WLVsWRxxxRGzdujW2bNkSf/In\nfxKVSiUmJycjz/OoVCoxPDwchxxySLzkJS+JgYGB+N73vhef/vSn44Mf/OD+AzYAvczfaCCxkZGR\n+O3f/u2IiLjpppvi9ttv9x8Q0GM859Cb9g3873nPe6JWq8Wll14azWYzImL/FYARBz7lY9iH2WPv\n3r1RqVT2jwL7nu2//uu/ji996UtxxBFHxDnnnBN5nhv2YZbYd/PGvsFv3xt3Hv8MX3vttdFqtSIi\n4swzz4yRkRF/j4dZxHMOvW3+/Pnxvve9L4aHh+MLX/hC/MVf/EVE/PS/yfc959dcc038x3/8R5x8\n8slx2WWXxWGHHRY33nhj7Nmzp8jqADMmv+CCCy4ougT0mhe84AVx5513xvXXXx8vfvGLY+3ata4E\ngh7jOYfelOd5/MIv/EIsXrw4vvvd70a73Y5OpxMnnnhiVCqVp/zDITC77Ht+p6en46tf/Wp873vf\n2/89PLdt2xYXXXRRfPGLX4yBgYH4zGc+E4cddljBjYHn4vF/Rt98881x/fXXx/DwcCxYLvqPAAAg\nAElEQVRYsCD27t0bX/va1+Kiiy6KH/zgB/He9743zjjjjIgIf4+HWcRzDr1v+fLlsXz58rj66qvj\nu9/9btx1112xcuXK6HQ60W6349JLL4377rsvzj777Fi7dm185zvfif/+7/+Ol7/85bFs2TLPOtDz\nss6+YwpAUpdffnl8+MMfjlWrVsUXv/jFWLlyZdGVgMQ859C7JiYm4sorr4wLL7ww9u7dG29+85uj\n0WhEhKv3oRc8+uijcdppp8X27dtj3rx5MW/evPjxj38cu3fvjuOPPz4++tGPxpo1a4quCRykfX92\nX3311XHYYYfF4sWLY9euXXHnnXfGggUL4p3vfGeceeaZEfGzv7UWUE6ec+htk5OT8e1vfzs++MEP\nxs6dOyPLssjzPCYnJyMi4j3veU/84R/+YUREvP71r4/du3fHFVdcESMjI0XWBpgRTu5DYvveCXzM\nMcfEjTfeGDfffHOsWbMm1q1b512D0CM859D7nnyC/9prr43JycnYsGGDfxiEHjAwMBAnn3xyTExM\nxF133RWdTieOPvroOOecc+L888+PVatWFV0ReB7yPI8jjjgi7r777hgdHY377rsvOp1OvPrVr463\nvvWtcdppp0WEwQ9mM8859LZKpRJr1qyJV77ylXHIIYfEwoULY2RkJE499dR485vfHL/1W78VERGf\n/exn46qrropTTjklNm7cGNVqteDmAN3n5D50wb7hr9lsxsUXXxyf/OQnY9OmTUXXAhLynEN/mJiY\niL//+7+PD3/4wzE1NRV/8zd/E8cee2zRtYCEdu3aFRERixYtKrgJkNrExEQ88MADMTk5GYsWLYpD\nDjlk/6+5oht6g+cc+sfjb9Gbnp6Oz372s/H5z38+hoaG4otf/GKsXr264IYAM8O4D110zz33xPXX\nXx+vec1riq4CdInnHHrfxMREXHHFFVGtVuPss88uug7QRUYA6G1O8ELv85xD79n3d/Sf/OQn8dWv\nfjWuuOKKmJiYiNtvvz1WrFgRl112WRx11FFF1wSYMX0/7n/kIx+JL33pS/Hxj388Tj/99KLr0MP8\nxwX0Ps859K7HP9+edQAAAJhZjz76aLzrXe+K//zP/4xVq1bFSSedFG984xt9Sy2g7/T1NyD51re+\nFV/+8pedzGBGGAGg93nOoXc9/vn2rAMAAMDMGhkZiYsuuigee+yxmDt3bgwODkatViu6FsCM69tx\n/1//9V/jHe94R/T5xQUAAAAAAAClNzIyEiMjI0XXAChU3437nU4nLr744rjsssui0+n4nooAAAAA\nAAAAlF5f3Sn6ne98J1796lfHpZdeGp1OJ44++uiiKwEAAAAAAADAz9RXJ/fPPffcyLIsarVavPnN\nb47f/M3fjJe//OVF1wIAAAAAAACAA+qrcb9SqcTLX/7yePvb3x5HHHFE3HfffUVXAgAAAAAAAICf\nqa/G/W984xtx2GGHFV0DAAAAAAAAAJ6TStEFZpJhHwAAAAAAAIDZqK/GfQAAAAAAAACYjYz7AAAA\nAAAAAFByxn0AAAAAAAAAKLlq0QV6wU9+MhHVqvdJQC/Ksohq9af/V3nBBRfE7bffUXAjIKUjj1wT\nF1xwQUR4xqFXec6ht3nGofd5zqG3ecahP3zqU8049NB5RdegJN773vdGu92OE088MS688MKi68w6\nxv0E8rwS1WpedA2gyx588MG45567i64BJDQyMnf/jz3j0Js859DbPOPQ+zzn0Ns84wD9q9PpFF1h\nVjLuAwAAAAAAADBj7rzzzvjEJz4RWZY9r5zBwcH4nd/5nVi0aFGiZuVm3AcAAAAAAACg69rtdkRE\nbN++Pb7+9a8nybzyyivjn/7pn2JgYCBJXpkZ9xPodDqujoAe9nzfNQYAAAAAAED3TE5OGvd5drIs\nM/4BAAAAAAAAFKBSqRRdYUb0x1cJAAAAAAAAQE/K87zoCjOi70/upzh171p+6G1u5gAAAAAAACiv\n3bt3x4IFC4qu0XV9Pe6vXLkybr311qJrAAAAAAAAAPS8tWvXxg9/+MOkmQsWLIg5c+YkzSyrvh73\nU0lx+h8AAAAAAACgl+07Xb98+fI49dRTI8/z/a9qtfqEj8/080/+9aOOOipqtVrBX9nMMO4DAAAA\nAAAAMGNWr14d5557btE1Zp1K0QUAAAAAAAAAgANzch8AAAAAAACAGbNt27b4+te/flDX8T9epVKJ\nlStX9s23UDfuAwAAAAAAANB1t912W0RE3HXXXfGJT3wiSea6devi4osvjkql9y+tN+4n0Ol0otPp\nFF0D6JJ+ebcXAAAAAABAN+3YsSN55i233BJ79+6NwcHB5NllY9xPYPPmzTE2Nlp0DaAL6vV6tFqt\nomsAAAAAAADMekNDQzE+Pp48d3x83LjPs3PJJZdErZb/7P8hAAAAAAAAQJ/qxrAfETEwMNCV3LIx\n7ieQZZlruwEAAAAAAAAOYPHixV25mn9oaCh5ZhkZ9xNoNBqu5Yce5Vp+AAAAAACANLo17O/Zs6cv\nBn7jfgLNZtO1/AAAAAAAAAAHsGHDhmi32xERsXTp0uedNzw8HO9///v7YtiPMO4DAAAAAAAAMIPW\nr18fW7ZsKbrGrGPcBwAAAAAAAKDrOp1ORERs3bo1Nm7cmCTzYx/7WJx88slJssquUnQBAAAAAAAA\nAHrfNddckzzzT//0T2N8fDx5bhkZ9wEAAAAAAACg5FzLn0Cj0YixsdGiawBdUK/Xo9VqFV0DAAAA\nAACAZzA+Ph5DQ0NF1+g6434CzWYzarW86BoAAAAAAAAApXXiiScmv5r/la98ZSxcuDBpZlkZ9wEA\nAAAAAADouizLIiJi7dq1sXnz5sjzPKrVauR5vv+17/Mnf8zzPCqVyv6MfmTcBwAAAAAAAGDGzJs3\nL44++uiia8w6laILAAAAAAAAAAAH5uQ+AAAAAAAAADNmx44d8S//8i/P+Vr+x38eEVGpVGL+/Pl9\nc1W/cR8AAAAAAACArrvzzjsjIuKOO+6Ij3zkI0kyjzvuuPjUpz7VFwO/cT+BRqMRY2OjRdcAuqBe\nr0er1Sq6BgAAAAAAwKy3bdu25Jk33nhj7NmzJ4aGhpJnl02l6AIAAAAAAAAAcLAmJiaKrjAjnNxP\n4JJLLolaLS+6BgAAAAAAAEDfGRgYKLrCjHByHwAAAAAAAICuW7hwYfLMNWvWRK1WS55bRk7uJ5Bl\nWWRZVnQNAAAAAAAAgNJ64QtfGO12O1avXh1nnHFG5Hm+/1WtVp/2477X06lUKrF27dpn/PVeY9wH\nAAAAAAAAYMYsX748zjjjjKJrzDrGfQAAAAAAAABmzNatW2Pjxo1Jsi688MI48cQTk2SVXaXoAgAA\nAAAAAAD0vna7nTzzz/7sz2J8fDx5bhkZ9wEAAAAAAADouiOPPDJ55mmnnRZDQ0PJc8vItfwAAAAA\nAAAAdN2SJUvi9ttvj3Xr1sXb3/72yPM8qtVq5Hm+/7Xv88d/rFQqkWVZ0fULZ9wHAAAAAAAAYMbM\nnTs3fv7nf77oGrOOa/kBAAAAAAAAoOSM+wAAAAAAAABQcsZ9AAAAAAAAACg54z4AAAAAAAAAlJxx\nHwAAAAAAAABKzrgPAAAAAAAAACVn3AcAAAAAAACAkjPuAwAAAAAAAEDJGfcBAAAAAAAAoOSM+wAA\nAAAAAABQcsZ9AAAAAAAAACg54z4AAAAAAAAAlJxxHwAAAAAAAABKzrgPAAAAAAAAACVXLboAAAAA\nAAAAAP1j69atsXHjxoiIyLIs8jyParUaeZ4/p5y5c+fGhz70oVi3bl03apaOcR8AAAAAAACArmu3\n20/5uU6nE5OTkzE5Ofmc8x577LFoNBrxjW98I4aGhlJULDXjfgKNRiPGxkaLrgF0Qb1ej1arVXQN\nAAAAAAAAnsH4+Lhxn2en2WxGrfbcrogAAAAAAAAA6CcrV66M++67L3nu4OBg8swyMu4n0Ol0otPp\nFF0D6JIsy4quAAAAAAAAMOsNDAwkz5w7d27fbDnG/QSyLOub3zAAAAAAAAAAB2Pp0qVx5513xqJF\ni+K4446LPM+jWq1Gnuf7X/s+f/LHp/v1SqUSxx57bF9cyR9h3AcAAAAAAABgBkxOTkZExK5du+Lf\n/u3fkmS+613vik2bNiXJKrtK0QUAAAAAAAAA6H3XXXdd8syLLrooxsfHk+eWkXEfAAAAAAAAgFmr\nUumP2du1/Al0Op3odDpF1wC6JMuyoisAAAAAAADMegsWLIiHH344aeaaNWsiz/OkmWVl3E8gyzLj\nHwAAAAAAAMABrF27NtrtdixatChOOOGEGBgYiMHBwf2vx3/++B/XarWnHfArlUqsW7fOuA8AAAAA\nAAAAqey7DX3Xrl3xzW9+M0nmb/zGb8S73/3uJFllZ9xPoNFoxNjYaNE1gC6o1+vRarWKrgEAAAAA\nADDr3XTTTckzv/71r8e5554bCxcuTJ5dNsb9BJrNZtRq/XHVAwAAAAAAAMDBePGLXxztdjtp5qZN\nm/pi2I+IqBRdAAAAAAAAAIDed/PNNyfPvOGGG2Jqaip5bhk5uZ9Ap9PZ//0hgN6TZVnRFQAAAAAA\nAGa9xx57LHnm/fffH1NTU5HnvX/TunE/gc2bN8fY2GjRNYAuqNfr0Wq1iq4BAAAAAADAM5icnIyB\ngYGia3SdcT+BSy65JGq13n8nCAAAAAAAAEDZuJafZy3LMtd2AwAAAAAAABxAlmVd+Xbn1Wp/zN79\n8VV2WafT6cpvQqAcvHkHAAAAAADg+Vu5cmXce++9RdeYtYz7CWzevDnGxkaLrgF0Qb1ej1arVXQN\nAAAAAACAWe/hhx/uSu7ExEQMDw93JbtMjPsJNJvNqNXyomsAAAAAAAAAlNa6deui3W4nzTzrrLNi\nwYIFSTPLqlJ0AQAAAAAAAAB630MPPZQ88ytf+Urs2bMneW4ZObmfQKPRcC0/9CjX8gMAAAAAAKSx\nd+/e5JlTU1MxPT2dPLeMjPsJuJYfAAAAAAAA4MBWrFgR99xzT9LM1772tTE8PJw0s6xcyw8AAAAA\nAABA142NjSXPvPzyy+N///d/k+eWkZP7CXQ6neh0OkXXALoky7KiKwAAAAAAAMx6L3jBC2Lnzp1J\nM1euXBlz585NmllWxv0Esiwz/gEAAAAAAAAcwMjISET8dJDftGlT5Hke1Wr1CR/3vZ7888/066tW\nrYo8749voW7cBwAAAAAAAGDGrFixIt7whjcUXWPWqRRdAAAAAAAAAAA4MOM+AAAAAAAAAJSccR8A\nAAAAAAAASs64DwAAAAAAAAAlZ9wHAAAAAAAAgJIz7gMAAAAAAABAyRn3AQAAAAAAAKDkjPsAAAAA\nAAAAUHLGfQAAAAAAAAAoOeM+AAAAAAAAAJSccR8AAAAAAAAASs64DwAAAAAAAAAlZ9wHAAAAAAAA\ngJKrFl0AAAAAAAAAgN7X6XQiImLr1q2xcePGJJl//ud/HieddFKSrLJzch8AAAAAAACArrvmmmuS\nZ77vfe+L8fHx5LllZNwHAAAAAAAAoOuOOuqoruROTk52JbdsXMufQKPRiLGx0aJrAF1Qr9ej1WoV\nXQMAAAAAAGDWy/O8K7n7rvvvdU7uAwAAAAAAANB1o6PdOTBdq9W6kls2xn0AAAAAAAAAKDnX8ifQ\nbDajVuvOFRIAAAAAAAAAvWD9+vWxdevWpJkf+MAHYmhoKGlmWRn3AQAAAAAAAOi6SuWnF8uvX78+\ntmzZUnCb2ce1/AAAAAAAAADMmE6nE51Op+gas46T+wAAAAAAAAB03cTEREREXHvttXHqqacmyTz/\n/PPj9NNPT5JVdsb9BBqNRoyNjRZdA+iCer0erVar6BoAAAAAAACz3g033JA88+KLL47TTjsthoaG\nkmeXjXE/gWazGbVaXnQNAAAAAAAAgNI65phj4vvf/37SzOnp6RgcHEyaWVbG/QSc3Ife5eQ+AAAA\nAABAGrfddltXch9++OFYuHBhV7LLxLifgJP7AAAAAAAAAAd27LHHRrvdTpr5ute9ri+G/YiIStEF\nAAAAAAAAAOh91157bfLMf/iHf4iJiYnkuWXk5H4CnU4nOp1O0TWALsmyrOgKAAAAAAAAs97U1FTy\nzImJiZienk6eW0ZO7gMAAAAAAADQdXPmzEmeuXTp0qjVaslzy8jJ/QSyLHOyFwAAAAAAAOAAjjnm\nmGi320kz3/nOd0ae50kzy8rJfQAAAAAAAAC6LvWwHxHx3ve+N8bHx5PnlpFxHwAAAAAAAABKzrgP\nAAAAAAAAQNctXbq0K7m1Wq0ruWVTLbpAL2g0GjE2Nlp0DaAL6vV6tFqtomsAAAAAAADMetu2betK\n7iOPPBILFy7sSnaZGPcTuOSSS6JWy4uuAQAAAAAAANB3hoaGiq4wI1zLDwAAAAAAAAAlZ9wHAAAA\nAAAAYNbKsqzoCjPCtfwJZFnWN79hAAAAAAAAAA7Ghg0bot1ux5w5c+Loo49+yq93Op3nlDc4OBhv\nectbYnBwMFXFUjPuAwAAAAAAADBjdu/eHdddd93zzlm0aFHceOONsWLFigStys+4n0Cj0YixsdGi\nawBdUK/Xo9VqFV0DAAAAAABg1vvhD3+4/8fT09PPO2/Hjh3xiU98In75l385FixY8Lzzys64n8Al\nl1wStVpedA0AAAAAAACA0nr44Ye7ktsv1/JXii4AAAAAAAAAAAcrxS0As4GT+wlkWRZZlhVdAwAA\nAAAAAKC06vV63HrrrUkzTz/99JgzZ07SzLJych8AAAAAAACArrv99tuTZ1599dWxd+/e5Lll5OR+\nAp1OJzqdTtE1gC5xMwcAAAAAAMDzl+d58szp6em+2XKM+wm4lh8AAAAAAADgwI444oi45ZZbkmb2\n005r3E+g0WjE2Nho0TWALqjX69FqtYquAQAAAAAAMOtt27YteeaPf/zj+MlPfhLz5s1Lnl02xv0E\nms1m1Grpr5AAAAAAAAAA6BVHHnlkbN++PWq1WixcuDDyPI9qtRp5nkelUnnOeXPmzImzzjqrL4b9\nCOM+AAAAAAAAADNo7969ERExNTUVU1NTB50zPT0dS5cuTVWr9Iz7AAAAAAAAAHRdu93e/+OHHnoo\nSeb5558fV111VQwNDSXJK7PnfrcBAAAAAAAAADxHK1asSJ65ZMmSGBwcTJ5bRsZ9AAAAAAAAALru\n/vvvT565Y8eOmJiYSJ5bRsZ9AAAAAAAAALpu2bJlyTPXrl0bAwMDyXPLqFp0AQAAAAAAAAB63+GH\nHx4PPvhgrFmzJs4555zI8zyq1erTftz3eqZfz7IssiyLkZGRyLKs6C9tRhj3AQAAAAAAAJgxixcv\njlNPPbXoGrOOa/kBAAAAAAAAoOSc3AcAAAAAAACg6zqdTkREbN26NTZu3Jgk80Mf+lCccsopSbLK\nzsl9AAAAAAAAALrummuuSZ754Q9/OMbHx5PnlpGT+wk0Go0YGxstugbQBfV6PVqtVtE1AAAAAAAA\neAbj4+MxNDRUdI2uM+4n0Gw2o1bLi64BAAAAAAAAUFobNmyIdrudNPN1r3tdLFy4MGlmWRn3AQAA\nAAAAAJgxL3rRi+Ld73535Hke1Wr1aT/meR6VSiWyLCu6bmkY9wEAAAAAAACYMcPDw/FzP/dzRdeY\ndSpFFwAAAAAAAAAADsy4DwAAAAAAAAAl51p+AAAAAAAAAGbMtm3b4qtf/WrkeR7VajXyPN//2vf5\nkz/meR5Zlj0hp1KpxOGHH/6Un+9Vxn0AAAAAAAAAum5sbCwiIu6666745Cc/mSRz7dq10Ww2o1Lp\n/UvrjfsJdDqd6HQ6RdcAuqRf3u0FAAAAAADQTTt37kyeec8998TevXtjcHAweXbZGPcTyLLM+AcA\nAAAAAABwAMcff3zccMMNSTNf/epX98WwH2HcT6LRaMTY2GjRNYAuqNfr0Wq1iq4BAAAAAAAw66Ue\n9iMiLr/88vjd3/3dGB4eTp5dNr3/jQcAAAAAAAAAKFye513JnZiY6Epu2Ti5n0Cz2YxarTu/EQEA\nAAAAAAB6wQknnBDtdjtp5pve9KZYsGBB0syyMu4DAAAAAAAAMGMWLVoUJ5xwQgwODsbAwEDkeR5Z\nlj3nnIGBgdi0aVMXGpaTcR8AAAAAAACArrv22msjImLXrl3xzW9+M0nm1772tbjiiitiYGAgSV6Z\nGfcT6HQ60el0iq4BdMnBvFMMAAAAAACAJ5ozZ0488sgjSTNHRkYiz/vjW6gb9xPIssz4BwAAAAAA\nAHAA69ati3a7HStXroxNmzZFnuf7X9Vq9Qkf8zyPSqVywLw8z+PEE0807gMAAAAAAABAaitWrIg3\nvOENRdeYdQ78VgcAAAAAAAAAoHDGfQAAAAAAAAAoOeM+AAAAAAAAAJSccR8AAAAAAAAASs64DwAA\nAAAAAAAlZ9wHAAAAAAAAgJIz7gMAAAAAAABAyRn3AQAAAAAAAKDkjPsAAAAAAAAAUHLGfQAAAAAA\nAAAoOeM+AAAAAAAAAJSccR8AAAAAAAAASq5adAEAAAAAAAAA+sejjz4ao6Ojkef5/le1Wn3aj49/\n9TvjPgAAAAAAAABd99BDD0VExK233hrnnXdeksxNmzbFu971riRZZWfcT6DRaMTY2GjRNYAuqNfr\n0Wq1iq4BAAAAAAAw691xxx3JM//5n/85Nm/eHENDQ8mzy8a4n0Cz2YxazTUQAAAAAAAAAM9kw4YN\n0W63k2Z+7GMf64thP8K4DwAAAAAAAMAMWr9+fWzZsqXoGrNOpegCAAAAAAAAAMCBGfcBAAAAAAAA\noORcyw8AAAAAAADAjNm2bVt87WtfizzPo1qtPuHjk3/8+M8rlSeeXc/zPFavXh1ZlhX0lcws4z4A\nAAAAAAAAXXfbbbdFRMRdd90VF110UZLMOXPmxFe+8pWnDP+9yLifQKfTiU6nU3QNoEv65d1eAAAA\nAAAA3bRjx47kmbt3745HH3005s+fnzy7bIz7CWRZZvwDAAAAAAAAOIBly5bFgw8+mDRz5cqVMW/e\nvKSZZdX7dxMAAAAAAAAAULhVq1Ylz3zDG97QNwexndxPoNFoxNjYaNE1gC6o1+vRarWKrgEAAAAA\nADDrXXfddckzP/WpT8Wv/dqvxdDQUPLssjHuJ9BsNqNWy4uuAQAAAAAAAFBaixcvjh07diTNnJ6e\njsHBwaSZZWXcT8DJfehdTu4DAAAAAACkkXrYj4gYHByMPXv2OLnPs+PkPgAAAAAAAMCBbdiwIdrt\ndkREzJ8//3nnzZkzJz70oQ/1xbAfYdwHAAAAAAAAYAatX78+tmzZUnSNWadSdAEAAAAAAAAA4MCM\n+wAAAAAAAABQcsZ9AAAAAAAAACg54z4AAAAAAAAAlJxxHwAAAAAAAABKrlp0AQAAAAAAAAD6x9at\nW+Pss89+3jnDw8Pxvve9L4466qgErcrPuA8AAAAAAABA17Xb7f0/fuCBB5JkvvWtb42rrroqhoaG\nkuSVmWv5AQAAAAAAAOi6Qw45JHnm+Ph4DA4OJs8tIyf3E2g0GjE2Nlp0DaAL6vV6tFqtomsAAAAA\nAADMejt37kyeWalUYs+ePX1xct+4n0Cz2YxaLS+6BgAAAAAAAEBpHXPMMfH9738/aebhhx/eF8N+\nhHE/CSf3oXc5uQ8AAAAAAJBG6mE/IuJ//ud/Ynx8vC8GfuN+Ak7uAwAAAAAAABzYscceGzfddFPS\nzD/+4z/ui2E/IqJSdAEAAAAAAAAAet+uXbuSZ46Ojkan00meW0ZO7ifgWn7oXa7lBwAAAAAASOOe\ne+5Jnvnv//7vsWfPnr44vW/cT8C1/AAAAAAAAAB0k2v5AQAAAAAAAOi6F77whckzzzzzzL44tR/h\n5D4AAAAAAAAAM2DhwoUREXHMMcfEe97znsjzfP+rWq0+4WOe55FlWcGNy8W4DwAAAAAAAMCM2blz\nZ3z7299+ypj/5M9/lmq1GieddFLUarUZaF084z4AAAAAAAAAXXfzzTdHRMR9990Xf/VXf5Ukc9Wq\nVfGFL3zhWb0ZYLYz7ifQ6XSi0+kUXQPoEle+AAAAAAAAPH/j4+PJM++9996Ympoy7vPsZFlm/AMA\nAAAAAAA4gGXLlsX999+fPHdycjIGBgaS55aNcT8BJ/eht3nzDgAAAAAAwPM3PDycPHP+/PlRrfbH\n7N0fX2WXObkPAAAAAAAAcGBz585Nnvnrv/7rfXFqP8K4n0Sj0YixsdGiawBdUK/Xo9VqFV0DAAAA\nAABg1rvpppuSZ/7t3/5t/MEf/EEMDQ0lzy4b434CzWYzarW86BoAAAAAAAAApXX88cfHDTfckDTz\nbW97W18M+xHGfQAAAAAAAABmwL7r80844YTYsmWLb33+HFWKLgAAAAAAAABA/8iyzLB/EJzcBwAA\nAAAAAKDrpqenIyJi69atsXHjxiSZ73//++NlL3tZkqyyM+4n0Gg0YmxstOgaQBfU6/VotVpF1wAA\nAAAAAJj1tm7dmjzzox/9aLz0pS+NoaGh5Nll41p+AAAAAAAAACg5J/cTaDabUavlRdcAAAAAAAAA\nKK0lS5bE9u3bk+fu3bu3L07uG/cT6HQ60el0iq4BdEmWZUVXAAAAAAAAmPWWLl2afNxfvHhxDA8P\nJ80sK+N+AlmWGf8AAAAAAAAADuDOO+8susKsZtxPwMl96G3evAMAAAAAAPD8TU1NJc/Msqxvtlrj\nfgJO7gMAAAAAAAAc2PHHHx/tdjuWLVsWp5xySuR5HtVqNfI8jzzPn/PmWq1W41WvelXUarUuNS4X\n4z4AAAAAAAAAM2ZwcDCWL1/+hHH/8SP/0/380w3/eZ7H0NBQAV9BMYz7AAAAAAAAAHTdj370o4iI\nuPvuu+PTn/50ksyjjjoq/vIv/zIqlUqSvDIz7ifQ6XT65vs4QD/ybTcAAAAAAACev127diXPvO22\n22JiYqIvTvD3/tsXAAAAAAAAAOhZ/XJQ08n9BLIs65vfMAAAAAAAAAAHY+nSpUC0kf4AACAASURB\nVLFt27akmZVKJQYGBpJmlpVxPwHX8kNv8+YdAAAAAACA5y/1sB8RMT09HY888kjMnz8/eXbZGPcT\ncHIfAAAAAAAA4MCWLFkS27dvT5o5f/78GBkZSZpZVpWiCwAAAAAAAADQ+w4//PDkmZs3b45KpT9m\nbyf3E2g0GjE2Nlp0DaAL6vV6tFqtomsAAAAAAADMetdee23yzI9//OPxK7/yKzE0NJQ8u2yM+wk0\nm82o1fKiawAAAAAAAACU1rp16+KWW25JmnnOOef0xbAfYdwHAAAAAAAAYAbMmzcvIiKOPfbY+MAH\nPhB5nke1Wn3Cx0qlElmWFdy0nIz7AAAAAAAAAMyYqampeOSRRyLP8/2vJ4/8xv6nMu4DAAAAAAAA\n0HU7d+6MiIgf/OAH8Ud/9EdJMs8444x429veliSr7Iz7CTQajRgbGy26BtAF9Xo9Wq1W0TUAAAAA\nAABmvbGxseSZV111VbzpTW+KoaGh5NllY9xPoNlsRq2WF10DAAAAAAAAgB5VKboAAAAAAAAAABys\nWq1WdIUZ4eR+Ap1OJzqdTtE1gC7JsqzoCgAAAAAAADyD3bt3x7x584qu0XXG/QSyLDP+AQAAAAAA\nABzAqlWr4t57702a+aIXvShGRkaSZpaVa/kBAAAAAAAA6LqVK1cmz+ynW9ad3E+g0WjE2Nho0TWA\nLqjX69FqtYquAQAAAAAAMOtNTk4mz/zBD34QDz30UCxbtix5dtkY9xNoNptRq+VF1wAAAAAAAAAo\nreuuu64ruQsWLOhKbtm4lh8AAAAAAACArluyZEnyzKOPPjoGBgaS55aRk/sAAAAAAAAAdN2RRx4Z\n27dvj8MPPzzOOuusyPM8qtXqEz7uez355/d9rFQqkWXZ/sxly5Y94fNeZtwHAAAAAAAAYMYceuih\n8cpXvrLoGrOOa/kBAAAAAAAAoOSc3AcAAAAAAABgxjz66KMxOjr6rK7hf/yr3xn3AQAAAAAAAOi6\nhx56KCIibr311jjvvPOSZL7sZS+L97///Umyys64n0Cj0YixsdGiawBdUK/Xo9VqFV0DAAAAAABg\n1rvjjjuSZ37rW9+K888/P0ZGRpJnl41xP4FLLrkkajXXQAAAAAAAAAA8k6GhoRgfH+9Kbj8w7ieQ\nZVlkWVZ0DQAAAAAAAIDSeslLXhL/9V//lTRzyZIlfbPVGvcTcC0/9C7X8gMAAAAAAKTRjVP727dv\nj507d8ahhx6aPLtsjPsJNJtN1/IDAAAAAAAAHECtVkueeeqpp8aSJUuS55aRcR8AAAAAAACAGfPC\nF74wzjvvvMjzfP+rWq0+7ccn/3qe51GpVIr+Egph3AcAAAAAAABgxoyMjMTRRx/d10P9wTDuAwAA\nAAAAANB1e/bsiYiI6667Ll7xilckydy8eXO89rWvTZJVdsb9BBqNRoyNjRZdA+iCer0erVar6BoA\nAAAAAACz3o033pg889JLL41NmzbF0NBQ8uyyMe4n0Gw2o1bLi64BAAAAAAAAUFrHHXdc8oH/LW95\nS18M+xHGfQAAAAAAAABmwODgYERE/OIv/mJ8/OMfj0qlEpVKpeBWs4dxHwAAAAAAAIAZU6lUolo1\nVT9X3gYBAAAAAAAAACVn3AcAAAAAAACAkjPuAwAAAAAAAEDJGfcBAAAAAAAAoOSM+wAAAAAAAABQ\nctWiCwAAAAAAAADQPx544IG4/PLLI8/zqFarT/i471WtVqNSOfBZ9TzPY/369VGt9sfs3R9fJQAA\nAAAAAACFuuWWWyIi4t57743PfOYzSTJXr14dn//85yPP8yR5ZWbcT6DT6USn0ym6BtAlWZYVXQEA\nAAAAAGDWe+yxx5JnPvLIIzE1NWXc59nJssz4BwAAAAAAAHAA69evj3a7HYceemj80i/9UuR5/jOv\n3j+QgYGBeP3rXx8DAwMJW5aXcR8AAAAAAACAGfPQQw/F97///eedMzw8HC972ctiwYIFCVqVn3Ef\nAAAAAAAAgK5rt9v7f3zHHXckyWw0GnHVVVfF4OBgkrwyO/g7DgAAAAAAAADgWVq2bFnyzHXr1rmW\nHwAAAAAAAABSOfzww+PBBx+MNWvWxO/93u9Fnuf7X9Vq9Wk/PtOv53keWZbF8PBw0V/WjDHuAwAA\nAAAAADBjFi9eHL/6q79adI1Zx7X8AAAAAAAAAFByxn0AAAAAAAAAKDnX8gMAAAAAAAAwY+6+++5o\nNpuR5/n+18EYGBiI008/PUZGRhI3LCfjPgAAAAAAAABdd/3110dExIMPPhh/93d/lyTzqquuiiuu\nuCJqtVqSvDIz7ifQ6XSi0+kUXQPokizLiq4AAAAAAAAw6w0MDMTevXuTZg4NDUWl0h/fjd64n0CW\nZcY/AAAAAAAAgAN40YteFO12O1asWBGnnXZa5Hke1Wo1KpVKVKvV/Z/nef6s9tc8z+OlL33pQV/r\nP9sY9wEAAAAAAACYMffff3987nOfe945Q0NDccghh8Rxxx2XoFX59cf9BAAAAAAAAAAUqt1uJ80b\nHx+Pd7zjHTE+Pp40t6yc3E+g0WjE2Nho0TWALqjX69FqtYquAQAAAAAAQJ8z7ifQbDajVuuP7+MA\nAAAAAAAAcDDWr18fW7duTZp59tlnx9DQUNLMsnItPwAAAAAAAABdl3rYj4i48sor++ZafuM+AAAA\nAAAAAF23YsWK5JnHH398DA4OJs8tI9fyAwAAAAAAANB1q1evjvvvv/8pP59lWeR5HtVqNfI83//a\n9/kz/fzcuXOj0WhElmUFfDUzz7gPAAAAAAAAQNe12+2n/flOpxOTk5MxOTl5UJn/+I//2Ben9437\nCTQajRgbGy26BtAF9Xo9Wq1W0TUAAAAAAAB4BtPT00VXmBHG/QSazWbUannRNQAAAAAAAAD6Tp73\nx1ZbKboAAAAAAAAAABysfhn3ndxPoNPpRKfTKboG0CVZlhVdAQAAAAAAgGewe/fumDdvXtE1us7J\nfQAAAAAAAAC6rlsn7CuV/pi9ndxPYPPmzTE2Nlp0DaAL6vV6tFqtomsAAAAAAADMelNTU13JdS0/\nz1qz2YxarT9+wwAAAAAAAAAcjA0bNkS73U6WV6vVYsuWLTE0NJQss8z+j717jZGrPA84/pw5M7Oz\n2HUMOMQJDrc2KUNlp6Q2W+FtWsilEm5QkXqjxChKKE27KE1U0pS0TZUQo8pIldp6M60aKVUrqiZt\n8yGqhCqCxAd6GWyM4lgFZ6Uo4OCC6siAAa9Ze08/2Qqx2fjynj3v7vx+0tGsZz1Pnoks8eE/5x1x\nHwAAAAAAAIBFs2nTpti+fXvTayw54j4AAAAAAAAAi2bnzp3x3ve+97znrFixIrZt2xbr169PsFX+\nWk0vAAAAAAAAAMDy94NH8s/Pz5/3dfjw4bj77rtjdna2wXe1eMR9AAAAAAAAAGp32WWXJZ85OTkZ\nY2NjyefmyLH8AAAAAAAAANTurW99azzzzDPxkz/5k/Gxj30syrKMdrt92scT1+meL4qi6bfSCHEf\nAAAAAAAAgEWzatWq+Omf/umm11hyHMsPAAAAAAAAAJkT9wEAAAAAAAAgc+I+AAAAAAAAAGRO3AcA\nAAAAAACAzIn7AAAAAAAAAJA5cR8AAAAAAAAAMifuAwAAAAAAAEDmxH0AAAAAAAAAyJy4DwAAAAAA\nAACZE/cBAAAAAAAAIHPtphcAAAAAAAAAYHTs3bs37rzzzijL8uTVbrdf91iWZRRFseCcbrcbW7Zs\niQ0bNizS5s0S9wEAAAAAAACo3TPPPBMREUeOHImZmZkkMx955JH42te+FitWrEgyL2fifgJVVUVV\nVU2vAdTkR30qDAAAAAAAgB9t5cqVyWeuWLEiOp1O8rk5EvcTKIpC/AMAAAAAAABYwEUXXRQRERde\neGFs3Lgxut1ujI2NxdjY2CnH8v/g8fyne/7E49VXXx3dbrfhd7Y4xH0AAAAAAAAAanfkyJGIiDh0\n6FA89NBDSWbeeeedceuttyaZlTtxP4GpqamYmdnX9BpADfr9fgwGg6bXAAAAAAAAWPL27NmTfOaX\nvvSluOWWW6LX6yWfnRtxP4Hp6enodMqm1wAAAAAAAADI1rvf/e7YvXt30pmf+MQnRiLsR4j7AAAA\nAAAAACyCTqcTERGbNm2K7du3N7zN0tNqegEAAAAAAAAAYGHu3AcAAAAAAABg0bz44ovx+OOPR1mW\nJ692u33axzf6fVEUTb+NRSfuAwAAAAAAAFC7AwcORETEt7/97bj77ruTzPz5n//5+NM//dORiP3i\nfgJVVUVVVU2vAdRkFP5jAAAAAAAAULf9+/cnn/nf//3fcfTo0ej1esln50bcT6AoCvEPAAAAAAAA\nYAETExMxHA6Tzty2bdtIhP2IiFbTCwAAAAAAAACw/D3xxBPJZ/7Zn/1ZzM3NJZ+bI3fuJ+BYflje\nnMwBAAAAAABw/l577bXkMw8ePDgyLUfcT+Cuu+6KmZl9Ta8B1KDf78dgMGh6DQAAAAAAAN7AsWPH\not1e/ul7+b/DRTA9PR2dTtn0GgAAAAAAAADZuu666+Kxxx5LOvO+++6LXq+XdGauxH0AAAAAAAAA\nanfi+PxNmzbF9u3bG95m6Wk1vQAAAAAAAAAAsDBxHwAAAAAAAAAyJ+4DAAAAAAAAQObEfQAAAAAA\nAADInLgPAAAAAAAAAJkT9wEAAAAAAAAgc+I+AAAAAAAAAGRO3AcAAAAAAACAzIn7AAAAAAAAAJA5\ncR8AAAAAAAAAMifuAwAAAAAAAEDmxH0AAAAAAAAAyJy4DwAAAAAAAACZE/cBAAAAAAAAIHPtphcA\nAAAAAAAAYHTs3LkztmzZct5zLrjggvjc5z4X11xzTYKt8ifuAwAAAAAAAFC74XB48udXX331vOe9\n+uqrMTU1FQ8++GD0er3znpc7x/IDAAAAAAAAQObEfQAAAAAAAABqd+mllyafuXnz5hgbG0s+N0eO\n5QcAAAAAAACgduvWrYtnn3023vGOd8RHP/rRKMsy2u12lGV58jrx5x9+/OHfl2UZrdZo3csu7gMA\nAAAAAACwaFavXh0TExNNr7HkjNZHGQAAAAAAAABgCXLnPgAAAAAAAACL5oUXXojHHnvsDY/bP5Mj\n+dvtdhRF0fRbWVTiPgAAAAAAAAC1m5+fj4iImZmZ+PSnP51k5uTkZHz+858fidAv7icwNTUVMzP7\nml4DqEG/34/BYND0GgAAAAAAAEve3r17k8989NFH48UXX4zVq1cnn50bcT+B6enp6HTKptcAAAAA\nAAAAyNaGDRtiOBwmnbl169aRCPsR4j4AAAAAAAAAi+jCCy+MjRs3RrfbjbGxsRgbG4tutxudTida\nrdYZz+l0OrFly5YaN82LuA8AAAAAAABA7Z544omIiDh06FA89NBDSWZ+5StfiX/8x3+MTqeTZF7O\nxP0EqqqKqqqaXgOoSVEUTa8AAAAAAACw5J3NXflnqizLkWk54n4CRVGMzD8YAAAAAAAAgHPxrne9\nK4bDYbz1rW+N973vfVGWZbTb7dc9tlqtM26vZVnG+973vmi3RyN7j8a7BAAAAAAAACAL69ati498\n5CNNr7HkpD/3AAAAAAAAAABIStwHAAAAAAAAgMyJ+wAAAAAAAACQOXEfAAAAAAAAADIn7gMAAAAA\nAABA5sR9AAAAAAAAAMhcu+kFAAAAAAAAABgdL7zwQvzXf/1XlGUZ7Xb7tI8nroV+32q1oiiKpt/O\nohH3AQAAAAAAAKjd/v37IyJiZmYmPvOZzySZef3118cXvvCFkYj84n4CVVVFVVVNrwHUZBT+YwAA\nAAAAAFC3AwcOJJ+5e/fuOHr0aPR6veSzcyPuJ1AUhfgHAAAAAAAAsICJiYkYDodJZ27btm0kwn5E\nRKvpBQAAAAAAAABY/h5//PHkM7/whS/Ea6+9lnxujsR9AAAAAAAAAGp37Nix5DMPHToUZVkmn5sj\nx/InUFVVVFXV9BpATXztBgAAAAAAQL7m5uZGIvCL+wkURSH+AQAAAAAAACxgYmIihsNh0pn33Xdf\n9Hq9pDNz5Vh+AAAAAAAAAGr38ssvJ5/5xS9+MY4fP558bo7cuZ/A1NRUzMzsa3oNoAb9fj8Gg0HT\nawAAAAAAACx5//u//1vLzFdeeSVWrVqVfHZuxP0Epqeno9NZ/t/hAAAAAAAAAHCu3vGOd8RwOIyy\nLGPVqlVRlmW02+1otc7twPkVK1bEbbfdNhJhP0LcBwAAAAAAAGARbdiwIbZt2xZlWUZZltFqtaIo\niqbXyp64DwAAAAAAAEDtjhw5EhERTzzxRNx0001JZn7sYx+LX//1X08yK3fifgJTU1MxM7Ov6TWA\nGvT7/RgMBk2vAQAAAAAAsOTt2bMn+cy//uu/jptvvjnGx8eTz86NuJ/Ajh07otMpm14DAAAAAAAA\nYOS0Wq2mV1gU4n4CRVH4DggAAAAAAACABaxduzaee+65pDPf9ra3RbfbTTozV+J+AlVVRVVVTa8B\n1MSHdwAAAAAAAM5f6rAfEXHgwIE4evRo9Hq95LNzI+4ncNddd8XMzL6m1wBq0O/3YzAYNL0GAAAA\nAADAkrd69ep44YUXks8V9zlj09PT0emUTa8BAAAAAAAAkK3LLrssedy/6qqrYuXKlUln5krcBwAA\nAAAAAKB24+PjERHx9re/PW655ZYoy/Lk1W63T/n5B597o79zySWXRFmOxo3Y4j4AAAAAAAAAi2bt\n2rVxyy23NL3GkiPuAwAAAAAAALBodu7cGTfccEOSWdu3b49NmzYlmZW7VtMLAAAAAAAAALD8DYfD\n5DP/4A/+IGZnZ5PPzZG4DwAAAAAAAACZcyx/AlNTUzEzs6/pNYAa9Pv9GAwGTa8BAAAAAADAiBP3\nE5ieno5Op2x6DQAAAAAAAIBsXXfddfHYY48lnfm5z30uer1e0pm5EvcBAAAAAAAAqF1RFBERsWnT\npti+fXvD2yw9raYXAAAAAAAAAAAWJu4DAAAAAAAAQObEfQAAAAAAAADInLgPAAAAAAAAAJlrN70A\nAAAAAAAAAMvf8ePHIyJi586dccMNNySZ+alPfSpuuummJLNyJ+4nMDU1FTMz+5peA6hBv9+PwWDQ\n9BoAAAAAAABL3q5du5LPvP/+++PGG2+MXq+XfHZuxP0EduzYEZ1O2fQaAAAAAAAAACxT4n4CRVFE\nURRNrwEAAAAAAACQrYmJiRgOhxER0el0oizL111n21zHx8fjT/7kT0birv0IcR8AAAAAAACARbRp\n06bYvn1702ssOa2mFwAAAAAAAAAAFubOfQAAAAAAAAAWzbe+9a348Ic//Loj+dvt9mkf3+j3J65N\nmzbFz/zMzzT9lhaFuA8AAAAAAADAopmdnY2nn346yayvfvWr8fWvfz1WrlyZZF7OxP0EpqamYmZm\nX9NrADXo9/sxGAyaXgMAAAAAAGDJ27t3b/KZVVXFsWPHks/NkbifwI4dO6LTKZteAwAAAAAAACBb\ns7Oztcy94IILapmbG3E/gaIooiiKptcAAAAAAAAAyNbGjRtjOBzGJZdcEps3b46yLKMsy2i1Wuc0\nr9PpxK/8yq9Et9tNvGmexH0AAAAAAAAAFs26devit37rt6Isy2i32+cc90eNuA8AAAAAAABA7Y4c\nORIREbt3746bbropyczf+Z3fiV/7tV9LMit34n4CU1NTMTOzr+k1gBr0+/0YDAZNrwEAAAAAALDk\n7dmzJ/nMv/mbv4mbb745er1e8tm5EfcTmJ6ejk6nbHoNAAAAAAAAgGxde+218cQTTySd+fGPf3wk\nwn6EuA8AAAAAAADAIuh2uxERsXHjxti+fXsURdHwRktLq+kFAAAAAAAAABgdRVEI++dA3AcAAAAA\nAACAzIn7AAAAAAAAAJA5cR8AAAAAAAAAMifuAwAAAAAAAEDmxH0AAAAAAAAAyJy4DwAAAAAAAACZ\nE/cBAAAAAAAAIHPtphcAAAAAAAAAYHQ899xz8S//8i9RluXJq91un/axLMs3nFOWZaxfv37Bv7Oc\niPsAAAAAAAAA1O7JJ5+MiIj9+/fH9PR0kplXXnll/O3f/u1IBH5xP4GqqqKqqqbXAGpSFEXTKwAA\nAAAAACx5L730UvKZ3//+9+P48ePiPmemKArxDwAAAAAAAGABExMTMRwOY82aNXHdddedd2Ptdrux\ndevW6Ha7iTbMm7gPAAAAAAAAwKK58sor41Of+lTTayw5raYXAAAAAAAAAAAWJu4DAAAAAAAAQObE\nfQAAAAAAAADInLgPAAAAAAAAAJkT9wEAAAAAAAAgc+I+AAAAAAAAAGRO3AcAAAAAAACAzIn7AAAA\nAAAAAJC5dtMLAAAAAAAAADA6nn322fj7v//7KMsy2u12lGV58jrx5zPR6XRicnIyut1uzRvnQdwH\nAAAAAAAAoHZ79+6NiIgDBw7El7/85SQz3/KWt8QDDzxwxh8IWMrE/QSqqoqqqppeA6hJURRNrwAA\nAAAAALDkvfLKK8lnPv/88zE3NzcScb/V9AIAAAAAAAAAcK7m5uaaXmFRuHM/gaIo3NkLAAAAAAAA\n0IALLrig6RUWhbifgGP5YXnz4R0AAAAAAIB8HT9+fCSO5Rf3E3DnPgAAAAAAAEAz5ufnm15hUbSa\nXgAAAAAAAACA5W/t2rXJZ27cuDHGxsaSz82RO/cBAAAAAAAAqN3ll18ezz33XFx11VVx++23R1mW\n0W63T/t44lro90VRRK/Xa/ptLRpxHwAAAAAAAIBFU5ZljI2NnXPUP/HnVmu0DqoX9wEAAAAAAACo\n3fHjxyMiYmZmJu65554kMzdv3hz33ntvFEWRZF7OxP0EpqamYmZmX9NrADXo9/sxGAyaXgMAAAAA\nAGDJ27VrV/KZ//Ef/xEvvvhirF69Ovns3Ij7CezYsSM6nbLpNQAAAAAAAABGTq/Xa3qFRSHuJ3DX\nXXe5cx+WKXfuAwAAAAAAkANxP4Hp6Wl37gMAAAAAAAAsYM2aNXHw4MHkc925zxmrqiqqqmp6DaAm\nRVE0vQIAAAAAAMCSV0fYj4h4+eWXY+XKlbXMzom4n0BRFOIfAAAAAAAAwAJ6vV7Mzs7WMncUtJpe\nAAAAAAAAAIDl713velfymffff3+026NxT7u4DwAAAAAAAEDtnnnmmeQz/+iP/iheeeWV5HNzNBof\nYahZVVVRVVXTawA18bUbAAAAAAAA52/lypXJZ46Pj0en00k+N0fifgJFUYh/AAAAAAAAAAu46KKL\nIiJizZo1cf3110dZlievdrt9ymOr1Trt8z/4umuuuSa63W7D72xxiPsAAAAAAAAALJorr7wyPvnJ\nTza9xpLTanoBAAAAAAAAAEaHrz0/N+7cBwAAAAAAAGDR7Nq1K2688cbTHrt/uqP33+hI/rIs42d/\n9mfjl3/5l5t+S4tC3E9gamoqZmb2Nb0GUIN+vx+DwaDpNQAAAAAAAJa811577XV/np+fP+W5szUc\nDuMXfuEXYvXq1ec1ZykQ9xPYsWNHdDpl02sAAAAAAAAAZOub3/xmLXOLoqhlbm7E/QSKohiZfzAA\nAAAAAAAA52J+fr6WuWNjY7XMzY24n0BVVVFVVdNrADXx4R0AAAAAAIB8HT16NHq9XtNr1E7cT8Cd\n+wAAAAAAAAALW7VqVbz00kvJ565cuTL5zByJ+wlMTU3FzMy+ptcAatDv92MwGDS9BgAAAAAAwJJX\nR9gviiLm5uaiLMvks3Mj7icwPT0dnc7y/8cCAAAAAAAAcK7e+c53xre//e2kMz/4wQ+OxJH8ERGt\nphcAAAAAAAAAYPnbv39/8pnD4TCOHTuWfG6OxH0AAAAAAAAAanf8+PFaZlZVlXxujhzLDwAAAAAA\nAEDtrr322hgOh/GWt7wlbrjhhijLMtrtdpRlGWVZRlEUZzWv0+nEli1botPp1LRxXsR9AAAAAAAA\nABbNZZddFr/927/d9BpLjrgPAAAAAAAAwKJ56qmn4vd///dPuXP/xHXiuR9+LIridUfwl2UZ73nP\ne+InfuInGnw3i0fcBwAAAAAAAKB2Bw4ciIiIw4cPx+7du5PM/Od//uf42te+FuPj40nm5UzcT6Cq\nqtd9QgRYXs72+10AAAAAAAA41f79+5PPnJ2dTT4zV62mFwAAAAAAAACAc9VqjUb2dud+AkVRuLMX\nAAAAAAAAgNqMxkcYAAAAAAAAAGjUmjVrks9cu3ZtdDqd5HNzJO4DAAAAAAAAULuDBw8mn/nKK6/E\nsWPHks/NkbgPAAAAAAAAQO3e9KY3JZ95+PDhKMsy+dwctZteYDmYmpqKmZl9Ta8B1KDf78dgMGh6\nDQAAAAAAgCXvxRdfTD6z1WrF3NzcSAR+cT+B6enp6HSW/z8WAAAAAAAAgHN19dVXx1NPPZV05m/8\nxm9Er9dLOjNX4j4AAAAAAAAAtTtxLP+GDRvinnvuibIso91un/LYarWiKIqGt82PuA8AAAAAAADA\nojl48GD8+7//+2nj/onrTLTb7XjPe94T3W635o3zIO4DAAAAAAAAULtvfetbERFx4MCB+Lu/+7sk\nM7dt2xbf+MY3zvgDAUuZuJ9AVVVRVVXTawA1cewLAAAAAADA+Xv11VdrmXvkyJFYuXJlLbNzIu4n\nUBSF+AcAAAAAAACwgMsvvzyefvrppDM3b94cK1asSDozV+I+AAAAAAAAALVbu3ZtPP3003H11VfH\n7/7u70ZZltFut0/7eOL6wedbrVa0Wq2m30ZjxH0AAAAAAAAAFs2P/diPxfr165teY8kZ3Y81AAAA\nAAAAAMASIe4DAAAAAAAAQObEfQAAAAAAAADInLgPAAAAAAAAAJkT9wEAAAAAAAAgc+I+AAAAAAAA\nAGRO3AcAAAAAAACAzIn7AAAAAAAAAJA5cR8AAAAAAAAAMifuAwAAAAAAAEDmxH0AAAAAAAAAyJy4\nDwAAAAAAAACZE/cBAAAAAAAAIHPiPgAAAAAAAABkrt30AgAAAAAAAACM+bYzdAAAH0NJREFUjp07\nd8bWrVvPe874+Hh8+tOfjh//8R9PsFX+xH0AAAAAAAAAajccDk/+/L3vfS/JzDvuuCMefPDB6PV6\nSeblzLH8AAAAAAAAAJA5cR8AAAAAAACA2q1Zs6aWud1ut5a5uXEsfwJTU1MxM7Ov6TWAGvT7/RgM\nBk2vAQAAAAAAsOS9/PLLtcw9fPhwvOlNb6pldk7cuQ8AAAAAAABA7WZnZ2uZOzY2Vsvc3LhzP4Hp\n6enodMqm1wAAAAAAAADI1oYNG2LPnj1JZ955553R6/WSzsyVuA8AAAAAAABA7cbHxyMi4sILL4yN\nGzfG2NhYdLvdaLfbURTFWc/rdruxZcuW1GtmS9wHAAAAAAAAoHa7du2KiIhDhw7FQw89lGTmv/3b\nv8U//dM/RbfbTTIvZ62mFwAAAAAAAABg+Ttx535KK1asiLIcja9Qd+c+AAAAAAAAALX7qZ/6qRgO\nh3HppZfGli1boizLk1e73T7l5x+lLMuYmJgQ9wEAAAAAAAAgtbe97W1x6623Nr3GkuNYfgAAAAAA\nAADInDv3AQAAAAAAAFg0R48ejYMHD77uCP4Tj61WK4qiaHrFLIn7AAAAAAAAANTu8OHDERGxZ8+e\n+NVf/dUkM7du3Rof+chHkszKnbifwNTUVMzM7Gt6DaAG/X4/BoNB02sAAAAAAAAsef/zP/+TfOY/\n/MM/xK233hrj4+PJZ+dG3E9gx44d0emUTa8BAAAAAAAAMHLKcjRarbifQFEUvvcBAAAAAAAAYAET\nExMxHA7j4osvjne/+93nPW9sbCw+/OEPR7fbTbBd/sR9AAAAAAAAABbNlVdeGZ/5zGeaXmPJEfcB\nAAAAAAAAqN3c3FxEROzatStuuOGGJDM/+clPxs0335xkVu7E/QSmpqZiZmZf02sANej3+zEYDJpe\nAwAAAAAAYMnbvXt38pl/8Rd/ER/4wAei1+sln50bcT+B6enp6HTKptcAAAAAAAAAyNbFF18c3//+\n95POnJ+fj7GxsaQzcyXuJ1BVVVRV1fQaQE2Komh6BQAAAAAAgCUvddg/4ejRo+7c58wURSH+AQAA\nAAAAACyg1WrF/Px8LXNHwWi8SwAAAAAAAAAatWLFiuQzL7vssijL0fgKdXfuAwAAAAAAAFC7N7/5\nzXH48OGkM6+55pqs4/6zzz4b733vexf8O5deemk8/PDDP3KWuJ9AVVVRVVXTawA18bUbAAAAAAAA\n5+873/lO8pkPP/xw/N7v/V70er3ks1O46KKL4v777z/t777+9a/Ho48+Gr/4i794RrPE/QSKohD/\nAAAAAAAAABYwMTERw+Ew6cxt27ZlG/YjIsbHx+ODH/zgKc8/9dRTMRwOY+PGjXH33Xef0SxxHwAA\nAAAAAIBF1W6ff6q+4IILsg77b6SqqrjnnnuiKIq47777otVqndHrzuxvAQAAAAAAAMB5+MG79o8d\nO3be10svvRQf//jHY3Z2tsF3dfb+9V//NZ588sm444474u1vf/sZv07cBwAAAAAAAIBFcOzYsfir\nv/qrWL16ddxxxx1n9VpxHwAAAAAAAIDarVu3LvnMVqsVn/jEJ+LRRx9NPrsODz74YDz//PNx++23\nx/j4+Fm9VtwHAAAAAAAAoHaXXnpp8pnz8/Oxb9+++OxnP7skAv8DDzwQvV4vPvShD531a9s17DNy\npqamYmZmX9NrADXo9/sxGAyaXgMAAAAAAGDJ27t3b22zq6qKBx54ICYnJ2v73zhfzz//fHzzm9+M\n97///bFq1aqzfr24n8D09HR0OmXTawAAAAAAAABk6+qrr47HH3+8tvnf/e53a5udwje+8Y2IiNiy\nZcs5vV7cBwAAAAAAAOANVVUV8/PzcezYsTh+/PgpjyeuH/X7l156KSIirrrqqrjtttuiLMtot9un\nfTxxne73f/iHfxgzMzOn7HnFFVcs8v8zZ2fnzp1RFEVs3rz5nF4v7gMAAAAAAABwiqqq4o//+I/j\nP//zP5POvfjii+PGG28859fffvvt8dnPfjaqqjr5XFEUcdttt6VYrzZ79+6NK664IlauXHlOrxf3\nAQAi4otf/GLTKwAAAAAAZOXgwYPJw36r1Yrrr7/+vGZMTk7G5z//+XjggQfiu9/9blxxxRVx2223\nxeTkZKIt05ubm4vvfe978XM/93PnPEPcBwAAAAAAAOAU8/PzJ3/+pV/6pXjnO9951kfo//Dvx8fH\nY9WqVee92+TkZNYx/4cdOnQoiqI4r/cu7gMAAAAAAACwoImJiSUV03NzySWXxJNPPnleM1qJdgEA\nAAAAAAAAaiLuAwAAAAAAAEDmxH0AAAAAAAAAyJy4DwAAAAAAAACZE/cBAAAAAAAAIHPiPgAAAAAA\nAABkTtwHAAAAAAAAgMyJ+wAAAAAAAACQOXEfAAAAAAAAADIn7gMAAAAAAABA5sR9AAAAAAAAAMic\nuA8AAAAAAAAAmRP3AQAAAAAAACBz4j4AAAAAAAAAZE7cBwAAAAAAAIDMifsAAAAAAAAAkDlxHwAA\nAAAAAAAyJ+4DAAAAAAAAQObEfQAAAAAAAADInLgPAAAAAAAAAJkT9wEAAAAAAAAgc+I+AAAAAAAA\nAGRO3AcAAAAAAACAzIn7AAAAAAAAAJA5cR8AAAAAAAAAMifuAwAAAAAAAEDmxH0AAAAAAAAAyJy4\nDwAAAAAAAACZE/cBAAAAAAAAIHPiPgAAAAAAAABkTtwHAAAAAAAAgMyJ+wAAAAAAAACQOXEfAAAA\nAAAAADIn7gMAAAAAAABA5sR9AAAAAAAAAMicuA8AAAAAAAAAmRP3AQAAAAAAACBz4j4AAAAAAAAA\nZE7cBwAAAAAAAIDMifsAAAAAAAAAkDlxHwAAAAAAAAAyJ+4DAAAAAAAAQObEfQAAAAAAAADInLgP\nAAAAAAAAAJkT9wEAAAAAAAAgc+I+AAAAAAAAAGRO3AcAAAAAAACAzIn7AAAAAAAAAJA5cR8AAAAA\nAAAAMifuAwAAAAAAAEDmxH0AAAAAAAAAyJy4DwAAAAAAAACZE/cBAAAAAAAAIHPiPgAAAAAAAABk\nTtwHAAAAAAAAgMyJ+wAAAAAAAACQOXEfAAAAAAAAADIn7gMAAAAAAABA5sR9AAAAAAAAAMicuA8A\nAAAAAAAAmRP3AQAAAAAAACBz4j4AAAAAAAAAZE7cBwAAAAAAAIDMtZteAAAAAAAAAIC8Pfzww/Gd\n73wnyrKMdrsdZVm+7mq1zuy+8nXr1sX69etr3nZ5EvcBAAAAAAAAOEVZlid/fuSRR+KRRx5JMvej\nH/1ofOhDH0oya5Q4lh8AAAAAAACAU5zp3fhn67XXXqtl7nIn7gMAAAAAAABwirm5uVrmbtq0qZa5\ny51j+ROoqiqqqmp6DaAmRVE0vQIAAAAAAMCi6/V6tcx98MEHY/369bXMXs7E/QSKohD/AAAAAAAA\ngGVldnY2+cw3v/nN8Zu/+ZvJ544CcR8AAAAAAACABd17770xOTnZ9BojrdX0AgAAAAAAAADAwsR9\nAAAAAAAAAMicuA8AAAAAAAAAmRP3AQAAAAAAACBz4j4AAAAAAAAAZE7cBwAAAAAAAIDMifsAAAAA\nAAAAkDlxHwAAAAAAAAAyJ+4DAAAAAAAAQObEfQAAAAAAAADInLgPAAAAAAAAAJkT9wEAAAAAAAAg\nc+I+AAAAAAAAAGRO3AcAAAAAAACAzIn7AAAAAAAAAJA5cR8AAAAAAAAAMifuAwAAAAAAAEDmxH0A\nAAAAAAAAyJy4DwAAAAAAAACZE/cBAAAAAAAAIHPiPgAAAAAAAABkTtwHAAAAAAAAgMyJ+wAAAAAA\nAACQOXEfAAAAAAAAADIn7gMAAAAAAABA5sR9AAAAAAAAAMicuA8AAAAAAAAAmRP3AQAAAAAAACBz\n4j4AAAAAAAAAZE7cBwAAAAAAAIDMifsAAAAAAAAAkDlxHwAAAAAAAAAyJ+4DAAAAAAAAQObEfQAA\nAAAAAADInLgPAAAAAAAAAJkT9wEAAAAAAAAgc+I+AAAAAAAAAGRO3AcAAAAAAACAzIn7AAAAAAAA\nAJA5cR8AAAAAAAAAMifuAwAAAAAAAEDmxH0AAAAAAAAAyJy4DwAAAAAAAACZE/cBAAAAAAAAIHPi\nPgAAAAAAAABkTtwHAAAAAAAAgMyJ+wAAAAAAAACQOXEfAAAAAAAAADIn7gMAAAAAAABA5sR9AAAA\nAAAAAMicuA8AAAAAAAAAmRP3AQAAAAAAACBz4j4AAAAAAAAAZE7cBwAAAAAAAIDMifsAAAAAAAAA\nkLl20wsAAAAAAAAAkLf/+7//i2effTbKsox2u33ax1arFUVRNL3qsiXuAwAAAAAAALCgv/zLv0w2\n68///M/j2muvTTZvVIj7CVRVFVVVNb0GUBOfMAMAAAAAAEZRr9erZe5DDz0k7p8DcT+BoijEPwAA\nAAAAAGBZmZ2dTT7z8ssvj61btyafOwrEfQAAAAAAAAAWdO+998bk5GTTa4y0VtMLAAAAAAAAAAAL\nE/cBAAAAAAAAIHPiPgAAAAAAAABkTtwHAAAAAAAAgMyJ+wAAAAAAAACQOXEfAAAAAAAAADIn7gMA\nAAAAAABA5sR9AAAAAAAAAMicuA8AAAAAAAAAmRP3AQAAAAAAACBz4j4AAAAAAAAAZE7cBwAAAAAA\nAIDMifsAAAAAAPD/7d1/rJZ1/cfx1wVIcHI6UMIkIBagbKQwoul0NhxhOHBqDbEJwiSpoe3UCIPy\nBLO0VZCWJoOcCR4yC8ogVPwRuDPihzPJFSAYIwQD+SELEs45cL5/NM9C4MhB9Fz2fTy2e9znvj+f\n637f9/jveV/XDQBQcuI+AAAAAAAAAJScuA8AAAAAAAAAJSfuAwAAAAAAAEDJifsAAAAAAAAAUHLi\nPgAAAAAAAACUnLgPAAAAAAAAACUn7gMAAAAAAABAyYn7AAAAAAAAAFBy4j4AAAAAAAAAlJy4DwAA\nAAAAAAAlJ+4DAAAAAAAAQMmJ+wAAAAAAAABQcuI+AAAAAAAAAJScuA8AAAAAAAAAJSfuAwAAAAAA\nAEDJifsAAAAAAAAAUHLiPgAAAAAAAACUnLgPAAAAAAAAACUn7gMAAAAAAABAyYn7AAAAAAAAAFBy\n4j4AAAAAAAAAlJy4DwAAAAAAAAAlJ+4DAAAAAAAAQMmJ+wAAAAAAAABQcuI+AAAAAAAAAJScuA8A\nAAAAAAAAJSfuAwAAAAAAAEDJifsAAAAAAAAAUHLiPgAAAAAAAACUnLgPAAAAAAAAACUn7gMAAAAA\nAABAyYn7AAAAAAAAAFBy4j4AAAAAAAAAlJy4DwAAAAAAAAAlJ+4DAAAAAAAAQMmJ+wAAAAAAAABQ\ncuI+AAAAAAAAAJScuA8AAAAAAAAAJSfuAwAAAAAAAEDJifsAAAAAAAAAUHLiPgAAAAAAAACUnLgP\nAAAAAAAAACUn7gMAAAAAAABAyYn7AAAAAAAAAFBy4j4AAAAAAAAAlJy4DwAAAAAAAAAlJ+4DAAAA\nAAAAQMmJ+wAAAAAAAABQcuI+AAAAAAAAAJScuA8AAAAAAAAAJSfuAwAAAAAAAEDJifsAAAAAAAAA\nUHLiPgAAAAAAAACUnLgPAAAAAAAAACUn7gMAAAAAAABAyYn7AAAAAAAAAFBy4j4AAAAAAAAAlJy4\nDwAAAAAAAAAlJ+4DAAAAAAAAQMmJ+wAAAAAAAABQcuI+AAAAAAAAAJScuA8AAAAAAAAAJSfuAwAA\nAAAAAEDJifsAAAAAAAAAUHLiPgAAAAAAAACUnLgPAAAAAAAAACUn7gMAAAAAAABAyYn7AAAAAAAA\nAFBy4j4AAAAAAAAAlJy4DwAAAAAAAAAlJ+4DAAAAAAAAQMmJ+wAAAAAAAABQcuI+AAAAAAAAAJSc\nuA8AAAAAAAAAJSfuAwAAAAAAAEDJifsAAAAAAAAAUHLiPgAAAAAAAACUnLgPAAAAAAAAACUn7gMA\nAAAAAABAyYn7AAAAAAAAAFBy4j4AAAAAAAAAlJy4DwAAAAAAAAAlJ+4DAAAAAAAAQMmJ+wAAAAAA\nAABQcuI+AAAAAAAAAJRcm5YeAAAAAAAAAIByu/3220/JcTp37pzp06enS5cup+R4/5+I+6fAhAkT\nsmHD+pYeA3gP9OnTJ/fff39LjwEAAAAAAPC+a9eu3Sk/5vbt21NdXZ1Jkyad8mP/rxP3T4H77rsv\np53WuqXHAAAAAAAAADhlDhw48J4cd+jQoe/Jcf/XifsAAAAAAAAANOnrX/96LrroorRu3Tpt2rQ5\n4t/WrVunKIqWHvF/nrgPAAAAAAAAQJM6dOiQTp06tfQY/6+1aukBAAAAAAAAAICmifsAAAAAAAAA\nUHLiPgAAAAAAAACUnLgPAAAAAAAAACUn7gMAAAAAAABAyYn7AAAAAAAAAFBy4j4AAAAAAAAAlJy4\nDwAAAAAAAAAlJ+4DAAAAAAAAQMmJ+wAAAAAAAABQcuI+AAAAAAAAAJRcm3ezedmyZZk/f37WrFmT\n3bt3p23btunevXs+85nPZNSoUenYseMx923evDkPPPBA/vSnP2X79u2pqKhIjx49cuWVV+a6665L\n27ZtmzXHyy+/nM9//vOpq6vL3LlzM3DgwOOuXblyZaqrq/PCCy/kjTfeyJlnnpn+/fvn+uuvzyWX\nXNKs1wUAAAAAAACA98NJxf1Dhw7ltttuy6JFi1IURePj9fX1Wbt2bf72t7/l0UcfzX333Zd+/fod\nsXfx4sWZPHlyDh482Lh37969efHFF/PnP/858+bNy6xZs9K1a9cTmqWuri4TJ05MXV3dEbO8XUND\nQ7773e+muro6SRrX7t69O88880yefvrpjBw5MlVVVWnVygUNAAAAAAAAACiPk6rYP/rRjxrD/uDB\ng/PLX/4yK1asyMKFCzNx4sRUVFRk165d+fKXv5wdO3Y07lu7dm0mTZqU2tradO/ePffcc0+WLl2a\nJ598MrfddltOP/30bNq0KV/5yldy+PDhE5plxowZefnll99x3U9+8pNUV1enKIr06tUrP/vZz7J8\n+fIsWbIkt9xyS9q0aZNHHnkkVVVVJ/ORAAAAAAAAAMB7ptlxf8eOHZk7d26KoshVV12Vn/70p+nX\nr1/OPPPM9OzZMzfddFPmzJmTNm3aZO/evZk1a1bj3h//+Mepr69Phw4d8vDDD2fIkCHp3LlzunXr\nljFjxuSuu+5Kkrzyyit54okn3nGWlStX5qGHHmryjP0k2bZtW2bPnp2iKNKnT5888sgjGTRoUDp0\n6JCuXbtmwoQJ+eEPf5gkmT9/fp5//vnmfiwAAAAAAAAA8J5pdtx/+umnU19fnySprKw85pq+fftm\n8ODBaWhoyNKlS5Mk//73v7N8+fIURZEvfOEL6dSp01H7Bg8enIqKiiTJX/7ylybn2LdvX775zW+m\noaEh11xzTZNrFy9e3Djz1KlT8+EPf/ioNUOHDs3AgQOTJLNnz27yeAAAAAAAAADNMXny5Jx//vlH\n3fr06ZPf/e53LT0eHwBtmrthx44dad++fU4//fR89KMfPe667t27N65PkoqKiqxatSobN27MOeec\nc9x9b52F36ZN06NNmzYtr732WoYMGZKrr746CxYsOO7av/71r0mSzp0754ILLjjuuksvvTSrV6/O\nihUrUl9f/44zAAAAAAAAAJyI9evXp1u3bvnqV7+ahoaGI57r379/C03FB0mz63VlZWUqKyuzf//+\nJtdt3rw5SXLGGWc0PlZRUdFkXP/1r3+d/fv3pyiKXHLJJcddt3jx4ixcuDBnn312pk2blg0bNjQ5\ny969e5Mk5557bpPrOnbsmCSpra3Npk2b0qtXrybXAwAAAAAAALyTQ4cOZePGjbniiisybNiwlh6H\nD6iTPjX9WJe2f8uOHTvyxz/+MUVRZMCAAcddV19fnz179uTvf/97fvOb32TRokUpiiJXX311Lr74\n4mPu2b59e6ZOnZqiKHLHHXekQ4cOJzzrO30h4a0vASTJP//5T3EfAAAAAAAAeNc2bdqU2tpa/ZF3\n5T257vztt9+egwcPpiiK3HDDDcdd99hjj+Vb3/pW49+tWrXK1772tYwbN+64eyZPnpx//etfufba\nazNo0KATmqd379556qmn8sorr+T1119Pp06djrlu5cqVjff37dt3QscGAAAAAAAAaMq6detSFEV6\n9+6dJDlw4EDatm2bVq1atfBkfJCc8v8td955Z5YtW5aiKDJ8+PAMHDjwuGu3bduWoigabw0NDfn5\nz3+emTNnHnP9nDlzsnz58nTp0iVTpkw54ZmuuOKKFEWRQ4cO5Y477jjqNyySpKamJjU1NY1/19XV\nnfDxAQAAAAAAAI5n3bp1SZKlS5fm8ssvT79+/XLhhRdmwoQJ2bJlSwtPd3yrV69uvD9z5swjeirv\nv1Ma9++6667MmTMnRVHkvPPOy7Rp05pcP2LEiKxevTpr1qzJww8/nIEDB2bv3r255557cueddx6x\nduPGjZk+fXpatWqV73//+03+LMDb9e7dO9dee20aGhqyZMmSjB07NqtWrcrevXuzZcuWzJo1KxMm\nTEjnzp0b95x22mnNe/MAAAAAAAAAx7B+/fokyZo1azJhwoTce++9GT16dJ577rlcd911efXVV1t4\nwqPV1NRk+vTpjX9v3bo1VVVVAn8LOiWX5a+rq8uUKVOycOHCFEWRnj175oEHHkj79u2b3PffMX3A\ngAF58MEHG8N7dXV1rr/++vTo0SP19fX5xje+kdra2owZMyaf+tSnmj3jd77znbzxxht59tlns3Ll\nyqxYseKI5z/xiU+kqqoqN954Y5KkoqKi2a8BAAAAAAAA8HbDhw/PhRdemPHjxzeeZDx48OD069cv\nt956a2bMmJEZM2a08JRHqq6uPuqxhoaGVFdX59JLL22BiSgajnWN+mbYu3dvJkyYkOeffz5FUaRv\n376ZNWtWOnTocFLHe+GFF/LFL34xRVFk0qRJGTt2bKZPn57Zs2enZ8+eWbBgQdq2bXvEnpUrV+bG\nG29MURSZM2dOkz8FsGjRojz66KNZu3ZtDh06lO7du2fYsGG54YYbsn79+owYMSJFUWTBggXp06fP\nSb0HAAAAAAAAgBMxaNCg7N+/P6tWrWrpUY4wdOjQHDhw4KjH27Vrl8cff7wFJuJdnbn/j3/8I1/6\n0peyefPmFEWRyy67LHffffc7nrHflL59+zbef+vyE3/4wx+S/OfS/BdccEGT+0eNGpUkOffcc/Ps\ns88e9fywYcMybNiwY+5963IYRVHk4x//eLNnBwAAAAAAAGiOs846K6+//npLj3EUAb98Wp3sxg0b\nNmTkyJGNYX/EiBG5//77jxv216xZk3HjxuVzn/tctmzZctzj/ve3Pz70oQ813i+Kosnb29e1anX0\nW9uzZ0+T7+mt34fo2bPnu/qCAgAAAAAAAECS7Nq1K8OHD09lZeVRz9XX12fz5s3p2rVrC0zGB81J\nnbm/ZcuWjB07Nrt3705RFKmsrMz48eOb3NO2bdvU1NSkKIosWbIkN9100zHXPffcc4333zqL//HH\nH8/hw4ePe+zVq1fn5ptvTpLMnj07AwYMOCLu19TUZPz48Tl8+HCefPLJdOvW7ahj7Ny5M8uWLUtR\nFBkyZEiT7wUAAAAAAADgRJx11lmpra3NM888k3Xr1uX8889vfG7mzJnZt2/fO7ZWSE7izP36+vpU\nVlZm586dKYoiU6ZMOaH/bH369EnPnj3T0NCQBx98MLt27Tpqzc6dOzNjxowkydlnn53LL788yX/O\n4G/fvv1xb+3atWs8xltr//us/09+8pONsX/u3LlHvW5DQ0OmTp2aAwcOpH379hk5cmTzPhQAAAAA\nAACA45g6dWqKosjo0aNz9913Z968ebn11ltz77335qKLLsqYMWNaekQ+AFpPnTp1anM2zJs3L/Pn\nz09RFBk6dGhuueWW1NXVNXk77bTTkiQ9evTIwoULs3///jzxxBPp2LFjzjjjjLz55pt56qmnMnHi\nxGzbti2tW7fOD37wg/Tq1euEZtq6dWt++9vfpiiKXHPNNenSpcsRz7dr1y47d+7MSy+9lJdeeilv\nvvlmzjnnnCTJiy++mClTpjReVeDb3/52Pv3pTzfnIwEAAAAAAAA4rq5du+ayyy7L1q1bs2TJkixd\nujSHDx/O2LFjU1VV1dhToSlFQ0NDQ3M2fPazn82WLVua9SLr1q1rvP/73/8+VVVVOXjwYN7+0kVR\npF27dvne976XK6+88oSPv2rVqowePTpFUWTOnDkZOHDgUWsOHDiQm2++OatXrz7m67Zu3TqVlZUZ\nN25cs94bAAAAAAAAALzX2jRn8Z49e/Lqq6+mKIoT3vP2tVdddVX69++fhx56KDU1NXnttdfSunXr\nfOxjH8tll12WUaNGpXPnzs0Zq/F1mpqrXbt2+cUvfpFf/epXeeyxx7Jhw4bU1tbmIx/5SC6++OKM\nGjUq5513XrNfFwAAAAAAAADea80+cx8AAAAAAAAAeH+1aukBAAAAAAAAAICmifsAAAAAAAAAUHLi\nPgAAAAAAAACUnLgPAAAAAAAAACUn7gMAAAAAAABAyYn7AAAAAAAAAFBy4j4AAAAAAAAAlJy4DwAA\nAAAAAAAlJ+4DAAAAAAAAQMmJ+wAAAAAAAABQcuI+AAAAAAAAAJScuA8AAAAAAAAAJSfuAwAAAAAA\nAEDJifsAAAAAAAAAUHL/B2F534E7AzQhAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "msno.matrix(water_df)" ] @@ -10610,7 +1069,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:14:39.280799", @@ -10618,76 +1077,7 @@ }, "collapsed": false }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ALT_NAMEAREA_ACRESNAME_DNRSYSTEMShape_AreaShape_Lenggeometry
OWF_ID
27003900None168.41CedarLake6.815421e+054803.870607POLYGON ((474663.9454 4979190.5593, 474684.879...
70009100None793.48CedarLake3.211136e+0611307.426102POLYGON ((458834.4773 4938960.6654, 458842.693...
\n", - "
" - ], - "text/plain": [ - " ALT_NAME AREA_ACRES NAME_DNR SYSTEM Shape_Area Shape_Leng \\\n", - "OWF_ID \n", - "27003900 None 168.41 Cedar Lake 6.815421e+05 4803.870607 \n", - "70009100 None 793.48 Cedar Lake 3.211136e+06 11307.426102 \n", - "\n", - " geometry \n", - "OWF_ID \n", - "27003900 POLYGON ((474663.9454 4979190.5593, 474684.879... \n", - "70009100 POLYGON ((458834.4773 4938960.6654, 458842.693... " - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# cedar lake\n", "cedar_lake = water_df[water_df['NAME_DNR'] == 'Cedar']\n", @@ -10705,7 +1095,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:14:39.302314", @@ -10713,28 +1103,14 @@ }, "collapsed": false }, - "outputs": [ - { - "data": { - "image/svg+xml": [ - "" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "cedar_lake['geometry'].iloc[0]" ] }, { "cell_type": "code", - "execution_count": 29, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:14:39.346383", @@ -10742,21 +1118,7 @@ }, "collapsed": false }, - "outputs": [ - { - "data": { - "image/svg+xml": [ - "" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "cedar_lake['geometry'].iloc[1]" ] @@ -10770,7 +1132,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:14:39.377219", @@ -10785,7 +1147,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:14:39.435753", @@ -10793,64 +1155,7 @@ }, "collapsed": false }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ALT_NAMEAREA_ACRESNAME_DNRSYSTEMShape_AreaShape_Lenggeometry
OWF_ID
27003900None168.41CedarLake681542.1053314803.870607POLYGON ((474663.9454 4979190.5593, 474684.879...
\n", - "
" - ], - "text/plain": [ - " ALT_NAME AREA_ACRES NAME_DNR SYSTEM Shape_Area Shape_Leng \\\n", - "OWF_ID \n", - "27003900 None 168.41 Cedar Lake 681542.105331 4803.870607 \n", - "\n", - " geometry \n", - "OWF_ID \n", - "27003900 POLYGON ((474663.9454 4979190.5593, 474684.879... " - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "cedar_lake" ] @@ -10866,7 +1171,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:14:39.718098", @@ -10874,18 +1179,7 @@ }, "collapsed": false }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAHyCAYAAAAOdL4mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xd4VFXi//H3ZDIz6T2BVFIoSQgkIQSkdwUEG8oqq4gN\n1wXzs+7qV11kWUVlLUhTUVeKKM0GqCiI9A7SAyShpPc2yWRmMnN/f2STNRIgE3Jnksl5PQ+P5t47\nc86BO5+cuffccxSSJEkIgiAIdsnB1hUQBEEQ5CNCXhAEwY6JkBcEQbBjIuQFQRDsmAh5QRAEOyZC\nXhAEwY6JkBcEQbBjIuQFQRDsmAh5QRAEO+Zo6wrYyvTp0/H19WXu3LlXPWbXrl3MmzePy5cvk5iY\nyCuvvEJERAQA0dHRKBQK/vjA8JtvvklgYCBTp05t2P/7/27bto3OnTtft35nz55l9uzZnDp1ii5d\nuvDSSy/Rv3//G2u0IAgdTofsyW/atIkdO3Zc85jz58/zl7/8hTFjxvD1118TExPDgw8+iE6nA2D3\n7t3s2rWL3bt3s3v3bh599FGCg4MZNWoUffr0abR/165d9O3blzFjxjQr4LVaLY888gjdunVj48aN\njBkzhpkzZ1JSUtIq7RcEoeOw25BfuHAhL7744hXby8vLmTdvHr17977m67/88ksSExOZOXMm4eHh\nPP/887i7u7NhwwYAfH19G/5UV1ezYsUKXnvtNdzc3HB0dGy0f+/evZw/f545c+Y0q+5fffUVrq6u\nzJ49m9DQUJ588knCw8M5efKk5X8RgiB0aHYb8lfz5ptvcvvttxMVFXXN4zIzM4mPj2+0rXv37hw9\nevSKY99//30GDBjATTfddMW+2tpa5s+fzxNPPIGnp2fD9nPnzjF16lTi4+MZN24cq1atath38OBB\nRo4c2eh91q5dy9ChQ5vVRkEQhHodKuT37t3L4cOHmTFjxnWP9fX1JT8/v9G23NxcSktLG23Lyclh\n06ZNV33P77//nsrKSqZMmdKwTa/XM336dJKTk9m4cSN///vfWbx4Md999x1Q9wvG29ubf/zjHwwe\nPJh7772XI0eOWNpcQRAE+wr5Q4cOkZiYSGJiIh988AEbNmwgMTGRPn36cOjQIV599VVmzZqFWq2+\n7nuNHz+eH3/8kV9//RWTycTXX3/NyZMnMRqNjY5bt24dvXr1olevXk2+z9q1a5k8eXKjMjds2ICv\nry9PPvkkoaGhDB8+nL/85S8sW7YMgOrqaj7++GMCAgL4+OOP6du3L4888sgVv3QEQRCux65G1/Tu\n3buhN7xs2TIKCgp4/vnnAVi5ciVxcXEMHDiwWe81ZMgQZs6cyZNPPonZbKZ///7ccccdVFZWNjru\np59+4r777mvyPUpKSjh06BCzZs1qtD09PZ3U1FQSExMbtpnNZlQqFQBKpZKYmBhmzpwJ1I3k2b17\nN99++y3Tp09vVv0FQRDAzkJerVYTGhoKgJeXF1VVVQ0/b9myheLi4oZgre+Rb968+aqXQh5//HEe\nfvhhKisr8fHx4amnniI4OLhhf15eHunp6YwaNarJ1+/cuZPQ0FC6du3aaLvJZGLAgAFXhH89f39/\nIiMjG20LDw8nNzf3en8FgiAIjVh0uSY/P5+UlBT69+/PsGHDeOONNzAYDI2O0Wq1DB06lG+++abR\n9j179jBx4kQSEhKYNm0amZmZjfZ/9tlnDB06lKSkJF566SX0en0Lm9S0lStXsmHDBr777ju+++47\nRo4cyciRI/n222+bPH7Tpk28/vrrqFQqfHx8qKmpYf/+/Y3Gqh87dozAwMCrDos8fvw4ffr0uWJ7\nREQEFy9eJCQkhNDQUEJDQzly5AjLly8HICEhgdTU1EavycjIaPQLRhAEoTksCvmUlBT0ej2rVq3i\nnXfeYdu2bcyfP7/RMW+99RaFhYWNtuXm5jJjxgwmTZrE+vXr8fb2bnSjcvPmzSxevJg5c+awbNky\njh07xrx5826gWTBz5sxGDzoFBgY2BGpoaCiurq64uro29PQBioqKGn65hIeHs3r1an7++WcuXrzI\ns88+S1BQEMOGDWs4/vz589ccpXPu3Lkm9992223U1NTwyiuvkJGRwfbt23n99dfx9/cH4N577+Xs\n2bMsXLiQy5cvM3/+fLKysrjttttu6O9EEISOp9khn5GRwfHjx5k7dy5RUVEkJSWRkpLCxo0bG445\ndOgQ+/fvx8/Pr9Fr165dS69evZg2bRpRUVHMnTuX7OxsDh48CMCKFSt48MEHGTZsGHFxccyePZt1\n69a1em/+egYPHswPP/wAQM+ePXn11Vd54403uPvuu1EqlXz44YeNji8qKsLDw+Oq71dSUtJo2GQ9\nV1dXli5dyqVLl7jzzjv5xz/+wQMPPNBwvT0oKIhPPvmEX375hYkTJ7J9+3Y++ugjAgICWrG1giB0\nCFIzVVRUSLt27Wq0bcOGDVJiYqIkSZKk1+ulcePGSbt375ZGjBghff311w3HPfzww9L777/f6LX3\n33+/9OGHH0omk0nq3bu3tG/fvoZ9tbW1UmxsrPTbb781t3qCIAhCE5rdk3d3d2fQoEG//+XAypUr\nG0arfPDBB/Ts2bPJ0SsFBQVX9EL9/PzIz8+noqICvV7faL9SqcTLy4u8vDyLf2kJgiAI/9Pi0TVv\nvfUWqamprF+/nrS0NNasWdMwfPGPampqrhibrlarMRgM1NTUNPzc1H5BEASh5VoU8vPmzWPFihW8\n9957REVFcd9995GSkoKPj0+Tx2s0misC22Aw4OHh0RDuTe13dna2qF7Sf2d6FARBEOpYHPJz5sxh\n9erVzJs3j9GjR5OTk8PRo0c5e/Zsw2iWmpoa/vGPf/D999/z0Ucf0alTpytG3BQVFRETE4O3tzca\njYaioqKGaXxNJhNlZWUNo02aS6FQUFGhw2QyW9qsNkGpdMDDw1m0wYbae/1BtKGtqG+DrVkU8gsX\nLmT16tW8++67jBkzBoDOnTvz888/Nzru/vvvZ+rUqUycOBGA+Pj4Rg8c6XQ6Tp8+TUpKCgqFgl69\nenH48GGSk5MBOHr0KCqViujoaIsbZDKZqa1tnydFPdEG22vv9QfRBqFOs0M+PT2dJUuW8Pjjj5OY\nmEhRUVHDvt+PNYe6G6e+vr4NN1MnTZrEp59+ytKlSxkxYgQLFy4kNDS0IdSnTJnCrFmz6Nq1KwEB\nAcyePZvJkyej0Whao42CIAgdVrNDfuvWrZjNZpYsWcKSJUuA/10DP3PmTKNj/3hdPDg4mAULFvDa\na6+xePFi+vTpw6JFixr2jx8/nuzsbGbNmoXRaOSWW27hueeeu5F2CYIgCIBCkv6wfl07V1pa1W6/\n3jk6OuDt7SraYEPtvf4g2tBW1LfB1uxqqmFBEAShMRHygiAIdkyEvCAIgh0TIS8IgmDHRMgLgiDY\nMRHygiAIdkyEvCAIgh0TIS8IgmDHRMgLgiDYMRHygiAIdkyEvCAIgh0TIS8IgmDHRMgLgiDYMRHy\ngiAIdkyEvCAIgh0TIS8IgmDHRMgLgiDYMYsW8hYEeyVJEjqdDp2uiooKJeXl1ZhMEi4uLri5uaNW\nq21dRUFoERHyQpsgSRIVFeVkZmZSVlaK0WhEksx4eHji6+tHcHDIDQetJEnk5GRz9uwZzp49W/ff\nc6lk52RRWFCIqbb2qq91dXWlU+fOBAeHEBQYTFBQEEFBIURFdaVbtx4EBARcsbaxILQFIuQFm5Ak\niSNHDvHLL1s4eGg/R44coqK84qrHO6oc6REdQ2J8HxIS+pCc3J8ePaJxcLj6FUez2cyhQwfZufNX\n9u3bw+HDB9FqtQCoNCp8Q/3wDvEhfEgEPX164eSqQeOqwcXVCYOhFpPJTK3eiEFnoLq8Gm1xJflF\neWQcT0e7TUtlcQVmU936o+4eHnTv3oO+Sf1ITu5HcnJ/AgODWvcvTRBaQCzk3YbY0+LFV2tDbm4O\nn366lLXrviAnOwdndxcCowMJ7B6Ed4gPHv4euHi64KB0AIUCvbaG6vJqSrKKyU/LoyC9gKLLhZhN\nZjw8PRg8aCjDh49i+PCRhIdHAJCRkcaqVStZ99VqcrKycXZzJjAmiKDoYPwjAvAN88MzwBOFw5U9\nbwcHBc7OanQ6A2bztT8aJqOJsrwySrKKKckqpvBCAfnn8ijNKwWga7dujBwxmptuGkSXLl0ICgrB\nzc0NtVota6+/I5xH7UFbWchbhHwbYk8n9h/bkJWVyRtv/ov169eg0qjoMTSGHkOiCekZWhfoFjDU\nGMg7m0PmyUyyjmeSnZqF2WQmPCICXx9fDh8+hLO7C90GdSdmeCwhsaFNBnpTLAn5q6kq1ZJ5MpNL\nRy9y+bdLlBeUXXGMRqPB2cWZTp07ExQYQkhwCIGBQQQGBhEUFExCQiLe3j4tKt+ez6P2RIS8TOzh\npLCnNuj1et57798sXPgealc1SXcl0+vmeDQumlYrU19VQ+aJy1w8ehFdeTWR/brSfVAPVBqVxe/V\nGiH/e5IkUV1WTUVBOZVFFRhrjJiMJmqNtRh0BrTFWrTFlWiLtVQVa9GWapEkCYVCQffoHgwaMJSB\nAwcxYMBg/P39m1WmPZ5H7ZEIeZnYw0lhL204deo00x9/iHPnUul7Zz/633MT6lYMdzm0dshbymQ0\nUVFYQfaZLLJOZpJzKouSnBIAIqIi6df3JpKSkklKSiYmJhZHxytvq9nbedTe22Br4sarIItNmzbw\n6GMP4R7gzp/fmUpAZCdbV6ldUKqUeAd54x3kTdyoXgBUFlWSeeIyOanZbD+8jbXrvsRsMuPu4cHI\nEaMZNWoMN988Fh8fXxvXXmiLRE++DbGX3svnn/+HlJQUug/qwdinbkXlZPllE1uxdU++OYw1RvLS\ncrl87BKXDl8k51w2KpWKsWPHM2XKA4wePQY/P492fx7Zw2ehLfTkRci3IfZwYi9f/gnPPfc0fe9I\nZtjDI5t9w7OtaA8h/0dVpVrO/HqaU1tPUnixgIBOnZj+2GM88MDDeHv72bp6LWIPnwUR8jKxh5Oi\nvbbhm2/W8/jjD9Pvrn4MfXgE7fHMao8hX0+SJPLT8ji15QSnfzkFZnjkkek888zf8PDwtHX1LNLe\nPwsgQl429nBStMc2nD2bypibhxLRP5J7XrmbGr2x3YUktO+Qr+fgoACjiV2rd3Poq4O4ubrxz9lz\nueeee9vNU7nt+bNQr62EvJigTLhhVVVVPPzI/bj7u3NLyrh2d4nGHjl7ODP4/qE89MFjBPTszMyZ\nj3PXpAlkZKTZumqClYmQF27Y3194hkuXL3LrC7ejdhITebUl7n7uTPjbbUyaPZnTaScZNmwAn3zy\nIWZz++wdC5YTIS/ckC+//Jw1q79g1BNj8Atrnzf5OoKIpEimLnyY2JvjePHF57nvvkmUl1/5JK5g\nf0TICy2WkZHG8397mrgxven53zHdQtulclIx6vExTJo9mX2H9jJ23EguXrxg62oJMhMhL7SIJEm8\n+OLzOHs5M+rxMbaujmCBiKRI7vv3/ZRWlzJh4s1cuJBh6yoJMhIhL7TITz/9yLZtWxn+6Ih29bCT\nUMcn2Ic/vXkfJsda7po0gezsLFtXSZCJCHnBYpIk8e+35xLWqwtR/bvZujpCC7l6uzHpX3+iyqjl\nT/feKa7R2ykR8oLFdu/eybHffiP57v7tZty10DQPfw/ufPVuMnMyeXDaFPR6va2rJLQyi0I+Pz+f\nlJQU+vfvz7Bhw3jjjTcwGAwA/Pbbb9x7770kJiYybtw41q5d2+i1e/bsYeLEiSQkJDBt2jQyMzMb\n7f/ss88YOnQoSUlJvPTSS+Jka8OWL/8P/mEBhPeJsHVVhFbgG+rH7S/dyYED+3jqqRlieKWdsSjk\nU1JS0Ov1rFq1infeeYdt27Yxf/58ioqKmD59OjfddBPffvstTz75JP/617/Yvn07ADk5OcyYMYNJ\nkyaxfv16vL29mTFjRsP7bt68mcWLFzNnzhyWLVvGsWPHmDdvXuu2VGgVVVVV/Lh5E9HDY0Qv3o6E\nxIUy9plbWb9+Da+9NtvW1RFaUbOnGs7IyOD48ePs3r0bH5+6FWtSUlJ48803CQ0Nxd/fn6eeegqA\nsLAw9u3bx8aNGxk2bBhr166lV69eTJs2DYC5c+cyaNAgDh48SHJyMitWrODBBx9k2LBhAMyePZtH\nHnmE559/Ho2mbc8/3tFs27aVGl0NPYbG2LoqQiuLHhKDtqiSBQveJTQ0jGnTHrmh9ysqKiI19TRn\nz6ZSUJBHRUUF1dXVdatiObvg7e2Nv38AgYGBhIdHEhoahkolbuK3tmaHvL+/Px9//HFDwEPdDTit\nVsvQoUOJjY294jWVlZUAHD9+nOTk5IbtTk5OxMbGcvToUZKSkjhx4gRPPvlkw/6EhASMRiOpqanE\nx8e3qGGCPPbu3YV3Zx+8OnvZuiqCDJLuSKaioJwXXniWwMAgbrllXLNfazab2bt3Nz/8sJGt27aQ\nfv48AEpHJe4+HmjcNKg0KkxGE8YaA7oKHVUVVQ2vd1Q5Eh+fyMABgxk3bhy33DKq1dvXETU75N3d\n3Rk0aFDDz5IksXLlSgYOHEhQUBBBQf9bmb64uJjvv/+elJQUAAoKCggICGj0fn5+fuTn51NRUYFe\nr2+0X6lU4uXlRV5engj5Nmbvvt0E9Qy6/oFCu6RQKBj+6CiqSqp59LEHWb9uA/369W/YbzAYKCkp\npqioiOLiuj8lJcXk5OTw7XdfkXn5Ml4BXoQmdGHCHbfhH9kJr0AvlI7KJssz1ZqoLKqkPK+M4stF\nZJ/J5j8rP2bBgncJDgnm3j/9mYcemn5FfgjN1+KVod566y1SU1NZv359o+16vZ4nn3ySgIAA/vSn\nPwFQU1ODWt14ThO1Wo3BYKCmpqbh56b2W0pp4aLQbUl93dtqGyRJ4vy5cwy8aXDdTIdNqN9+tf1t\nTa2xlpLMYgovFlKWW4quUodBq8egN6JQKHDxdMHVxw03XzfcfNzwDvbBM8DT4sXHrelG/w0cHJSM\nf+5W1s9ay31T7mLQwCFkXEgnJycbbaX2iuNVahWuXm6E9A5hyJP3Exwb0uz7NQ5qR3yCvPEJ8iai\nTwR970hGMkvkpGaRuuMMCxfPZ8GC97j//gd54YX/w8+veevctgVt5XPcopCfN28eK1as4L333iMq\nKqphe3V1NU888QSXL1/miy++aLiertForghsg8GAh4dHQ7g3td/Z2dniunl4WP6atqattiEnJwe9\nXk+nLv44O197IjJNCxbR/r2v/rWeGm0NYb27ENYrjKAeQTiqW2e1Sn21nhNbTnBk42HyMwowm+pG\nk7i6aXB1VeHi7IijowNms0ROei2VFXqqq/53fipVSnyDffCPCCAiMYKu/bviGdD25mu/kX8DZ2c1\nU16/j03vbCK99DxeMV6EDQvF1dsVF0+Xul9+Xq64eLmgdla3+k34rklRdE2KYtSjozj07SG+WL2S\n9evXMGfOHP7617+iVDb9zUC4ksWfmjlz5rB69WrmzZvH6NGjG7ZrtVoeffRRsrKyWLZsGaGhoQ37\nOnXqRGFhYaP3KSoqIiYmBm9vbzQaDUVFRURE1A3JM5lMlJWVNXt1+t+rqNBhMrXPIWBKpQMeHs5t\ntg2nT9ddY9V4OqPTNf0ty8FBgUajQn+D88mf23cejSNcOnoBg8GESuNItwE9iBkeS3ifiKt+/b+a\nmkodF45cIP1AGmn7zmGsMdKtmy/xYyLwD3DF398FJydHFApwVCqpNZkaLXpiMpnRag0UF+soLtZR\nVFRNwflMNv16CkkC31BfQuLC6NS1E35h/vhH+KOx0aLlrfVvgIOCcc9NuOYhZqCmxtjyMq5W9H/b\n4KB2pO+k/sSO7sXO5dtJSUlh5eerWLzoQyIjo67/RjZU/3m2NYtCfuHChaxevZp3332XMWP+N1+J\nJEnMnDmT7OxsVq5cSXh4eKPXxcfHc+TIkYafdTodp0+fJiUlBYVCQa9evTh8+HDDzdmjR4+iUqmI\njo62uEEmk7ndLjJQr622oaqqGgClWnXd8DCbpRYFTHFmMTlnsjAZaunbP5TkfkEUFFSRnlbK6VMX\nOf3rKZzdnYhI7oqHvwcu/+1Nuni6oHbRUN+flICy3FJyz+aQm5pN7rlcJLNEQCc3kpM6Ex/fCU/P\nxiFct36O4r//X/9zHQcHBR4eGjw8NERE/O+ms05Xy8ULZVy4WEbWwbMc++Fowz4nVw0eAR64B3ji\n4unS8N4qJxWu3q7//eOGR4AnPiE+rd4bbum/QVtS3wYnd2fGzBhL9LBYfpr/I4MG9+OVl2fz6KN/\nwcGhbVwWaauaHfLp6eksWbKExx9/nMTERIqKihr2/fLLLxw4cIAlS5bg5ubWsE+lUuHp6cmkSZP4\n9NNPWbp0KSNGjGDhwoWEhoY2hPqUKVOYNWsWXbt2JSAggNmzZzN58mQxfLKNqb9/4qiS76vy1iU/\ncfn4JZycVfj6OePgoKBzZzc6d3Zj4KAQCgurOXWqkItnLpF5yEh1leGa33o8vZwICnSl982RRHX1\nxsOjdc8pZ2dHYmL9iImtm2a5vrev1RqoKNdTXq6nvKiY4qyChtcYDCa0WgM1uv/1gF29XAiLDycs\nvguhvbvg2clTPIfQhNC4MB5YMI2dy7bz8ssv8N3Gb1gw/wMiIiJtXbU2q9nL/3300Ue8++67Te4b\nPHgwu3btumJ7cnIyy5cvB2Dnzp289tpr5Ofn06dPH/75z38SHBzccOzSpUv57LPPMBqN3HLLLbzy\nyitX3IxtDntYLqyttmHfvj3cdttYHlryGL6hvk0ec6PL553edpLv397ItIfiCQx0u+7xkiSh15uo\nrjZiMJga7XN3U+PqZtk5pFAoUDkqMdaakHtlzNpaM1VVRoqLq7l0qZyLlyrIy60ECZzcNHTqGkhg\njyDC+0QQFB3c7Ju99rKE4fXacPn4JX56/0dqynUsWfwJt9460cq1vLa2svyfWOO1DWnrIX/mzGmG\nDbuJKfMeICgmuMljbjRgzCYz8+9+mxHDw0hOtv5QTWuGfFN0OiPZ2ZXk5WrJy6siK7sSXXVdj1/p\nqOS+effTuVvgNd+jo4Q8gEFnYPP87zm3+yyvvvoaTzwx04q1vLa2EvKtM1xB6BD8/evGKlcWV8pW\nhoPSod0Mv5SDs7OKrl196Nq17qFDs1kiN1fLzz9nkJujZeXTy+g+qAcjp4/GzdfdxrW1PbWzmgl/\nu52dy7cza9b/UVRUyMsvvyoudf2OCHmh2fz8/PD28ab4ctH1D74BkllCfETrODgoCA52Z9q0eMxm\nidOnC9m69QKf/mUpwx8ZSe+xCbauos0pHBQMnTYcFy8XFix4l9LSEubNe08Ms/wvEfKCRaKjYym8\nUHD9A1vIZDRRazSh1ohT848cHBTExQUQFeXNL79c5KeFPyJJEvHjEm1dtTah7x39cHJzYtWCFZRX\nlLN40VIxeAMxn7xgociIKKqKq65/YAvVaOtG8Dg7iV7Y1Tg7qxg/vitJSYFsWfwTGQfTbV2lNiNu\ndG9ue/EOfvhxE/ffPxmt9sondDsaEfKCRbRaLWoXy0c9NVd9yDs5iZ78tSgUCkaPiaBrV282vPE1\neWl5tq5Sm9H1pu7c9erd7D+4l/G3jiYjo2P/EhQhL1iktKwEtat8Ia8XId9sDg4Kbr+jO36+znw1\naw3l+WL5vnphvbvwp7f+TEFFPqNHD2HLls22rpLNiJAXLFJVVSXrwt06rQ4AJ2cR8s2hUim5555o\n1A5m1v9jDYZqsaJaPf9wf/78zgN0ig3kgan3smHDN7aukk2IkBcsIkkSyDg8zVBVF1IaceO12Vxd\n1Uy+J4bS3FJO/3rK1tVpUzSuTtz+0p10H9yDxx6bxoYN39q6SlYnQl6wmJzDGx3+O/FYe32Ix1Z8\n/VyIivRm1/IdpB9Is3V12hQHpQPjnp5A98E9mDHzMU6dOmnrKlmVCHnBIiqVCpOMT+PWz9yo19fK\nVoa9GjY8DB9PFetfXcvWpVsaplAW6oL+lpTxeAZ6MfXBeyktLbF1laxGhLxgEQ93Dww6+a77alzr\nQ950nSOFPwoIcGXq1F6MHBnO7i/28Oun22xdpTZF5aTitpfuoKi0iMemT8Nk6hjnmAh5wSLu7h4Y\nda0/f3g9Z08XAEpLa2Qrw54pFApuGhDC2LFRHPr6AKe2nrB1ldoUz05eTPj7bezcuZ3333/H1tWx\nChHygkU8PDwwVFm+LGNzeXX2wj/cn9OnCq9/sHBV/foF0zPOn18/3oquUmfr6rQpXRLC6Xf3Tcz7\n91xOnrT/X4Ii5AWL+Pn5U10m3xOvAD1H9eL8+VJ0Mn5j6AhGjYrAZDCye+VOW1elzRlw3yB8gn14\n/vn/Z5PZRq1JhLxgkcDAICpLK2W9qRczPBazJHHmjLwTodk7Nzc1Q4aEcuz7oxRelG++IUuUF5RT\nUVhBrdG2N9YdVY4Me3Qkhw8fYuNG+x5WKQYjCxbp0iUcySxRmlN61YVDbpSrtxshPUO4eKGcPn2u\nPXe6cG1JSYHs2pXF/rX7GPvUeBxV1v/Im2pNpO07z9HvDpF1Oqthe3hCOKNnjsWrs9c1Xi2fLgnh\nRCRF8ua815kw4Xa7nZ5Y9OQFi/TuHQ9AflqurOW4+3uirRKXa26UUunAwIHBnN1xmk+nf8iprSes\nNrSyqrSKvV/sZunDi9nwxjcotJXcdnt3Jv8pllvGRlJyIY9lMz7m0DcHbDbcM/mufpxLTWXnzu02\nKd8aRE9esIiXlzcRkZFkn84mdkScbOW4eruSUy1CvjXcdFMI3br6sH37ZX54dxN7v9hFj6Gx9Bgc\njX9EQLN6sPpqPXnncslPz0dbVEGNtqbuT6UOfWUNNVU11BoaX4Ix1BhRKhXE9fQn6a5uBAQ0XiUp\nLi6A7b9e4tdPfuHszjPc8fIkXL2vv+Rjawrt3YWA8ACWLf+UoUOHW7VsaxEhL1hszOhb+PKrVXWL\ne8i0ipOrlytVWvlG8XQ0vn4u3DUpmpycSo4eyePYhkPsX7MXNx9XvIN98Ar0xquzN56dvfAK9ELj\n6kRlUQVEx7h8AAAgAElEQVQVhRVkHEgj/UAaJqMJlVqJp5cTTholTk5KfJwccQrS4OTkisrRodHj\n0BqNI9HRfjhfZR4itVrJmJsjiYn14+uvz/HF8yu55/X78AzwtNLfSt2Q0x5DY/h57Y9UV1fj4uJi\ntbKtRYS8YLFx4ybw0UdLyDufS2APedZhdfV2xWgwYTCYUKvF3PKtJSjInaAgd8aazFy8WE5mZgVl\npToKT5ZxfucZapoY0RTQyY1hQ0OJivLGx8e51ZdnDAnx4IEH4vjii9N8+fwK7v7Xffh38WvVMq6l\n+6Ae7Fy+nR07fmXs2PFWK9daRMgLFuvffwB+/v6c3Z0qW8h7BdWtcVpcXE1goFjLtLUplQ5ERXkT\nFeXdaLtOV0tZWQ36mlrcPdS4u2us8kvWy8uJBx6I48svT/Pl31Zw75v3E3aVxeJbvewgbzz9Pdm/\nf69dhry48SpYzNHRkbi43pTnyjd/uV+YHwqFgoL8atnKEK7k7OxIYKAb4RFe+Pq6WPVblJubmj//\nuSfuLkq+mr2G6nLr/NsrFAo6Rwex/8Beq5RnbSLkhRYJDQlFWyjf0moqJxXegV4UFMj74JXQtjg7\nq7j77miM2hrWzlqD3krz4/t18SM9/bxVyrI2EfJCi0RGdqUku1jWpwX9IjtRUCh68h2Np6cTd93V\ng6zTWSx9eAlHNx7GVCvvZGJegd6UlpTyyScfotfb18IrIuSFFomK6opep6eqRL7evGeAJxWVYoRN\nRxQW5snMGX3pGu7O1g9/5rvXv0KScY2BqH5d6T6oB//3f3+jb3IvPv98OWazfUzVLEJeaJHi4iIU\nDgqUavnu3esqqnERywB2WJ6eTkyY2J27J0WTfiCdw98dlK0stbOa2168k2mLH8Gnhw9PPz2TceNH\ncvp0+19pS4S80CI/bv6ekJhQnN2dZStDW6LF1VW+9WSF9qFbd1+6d/fh/O6zspflG+rHrc/fxp/e\nmEJWUSa33DKc5cv/064nMRMhL1jMaDSyY8c2wpMjZS2nNLsYH28nWcsQ2j5JkpAkwIpBGxoXxpR3\npxI9Mpbnnvt/PPtsCrW17XO1MhHygsVOnjyOrlpHaFyobGUY9UbKCyrw9bW/JxAFy2zcmMb58yWE\nJ8nbqfgjlUbFmBm3MPap8az6YgUPP/JAu7wpK0JesNiBA/tQqVV0iuosWxllOaUgga+ffJeDhPbh\n0qVy+kxMYsB9g21Sftzo3tz+8l1s3foTjz46FaOxfc2pJEJesNi+fXvo1K0zSpV8D8rkp+cBiJ68\ngKNKiYOM51pzRCV3ZeKLd7Bl60/8dcZj7Wp9WBHygkUkSWL/gX0EyfzIecbBdAKD3K86uZXQcagc\nHajV2/56eGRyFLc+P5HvvvuaZ555st0MsRQhL1jk0qWLFBUWEhwbIlsZJqOJi0cy6NbV+/oHC3ZP\npXLAqG8bl0i6D4pm3NO38uWXn/PWW6/bujrNIrpJgkV2796JwkEha8jnnM3GoDMSGSVCXqgL+do2\nEvIAsSPiqCys5N1359G//wBGjBhl6ypdk+jJCxbZtm0rQd2DcXKTb2hj9uks1BolnTq5Xv9gwe6p\nHB0w1rSdkAfod/dNhPeJ4K8zHqO8XL6J+lqDCHnBIkeOHiIwRp7phetln8wkONi91ectF9onxzbW\nkwdQOCi4+clxaKsqmTt3jq2rc00i5IVm0+l0ZGdlybaAN4DZZCYnNZvQUA/ZyhDaF5XKAYOu7c1h\n5O7nzsD7B/Of/3zMuXPyP43bUhaFfH5+PikpKfTv359hw4bxxhtvYDDU/eVnZWXx0EMPkZiYyIQJ\nE9i9e3ej1+7Zs4eJEyeSkJDAtGnTyMzMbLT/s88+Y+jQoSQlJfHSSy+1y4cO7N2FCxlIkoRPiHwh\nX3y5CH21gdAQEfJCHX9/VwoyCtAWV9q6KleIH5+Ih58H7703z9ZVuSqLQj4lJQW9Xs+qVat45513\n2LZtG/Pnzwfgr3/9KwEBAaxfv57bbruNmTNnkpdXN9Y5NzeXGTNmMGnSJNavX4+3tzczZsxoeN/N\nmzezePFi5syZw7Jlyzh27Bjz5rXdv7SOqrS0BAAXT/nGrmedysRBqSAwyLoLOgttV+/eATgqFfz2\n/VFbV+UKjipH+k7qx1dfrePSpYu2rk6Tmh3yGRkZHD9+nLlz5xIVFUVSUhIpKSls3LiRffv2kZWV\nxT//+U8iIyOZPn06CQkJrFu3DoA1a9bQq1cvpk2bRlRUFHPnziU7O5uDB+tmlVuxYgUPPvggw4YN\nIy4ujtmzZ7Nu3TrRm29jqqvrFvBQOatlK+PikQyCgtxR2fjhF6HtcHJypHfvAI59f6TNDKX8vbjR\nvXFyc+KTTz6ydVWa1OyQ9/f35+OPP8bHx6fR9srKSo4dO0bPnj3RaDQN25OSkvjtt98AOH78OMnJ\nyQ37nJyciI2N5ejRo5jNZk6cOEHfvn0b9ickJGA0GklNTW1xw4TWV1NTA4CjjNMLF6TnEyauxwt/\n0Dc5EJ22hjPb2t7UvyonFb1uiWflys/QatveJaVmh7y7uzuDBg1q+FmSJFauXMmAAQMoLCwkICCg\n0fG+vr7k5+cDUFBQcMV+Pz8/8vPzqaioQK/XN9qvVCrx8vJquNwjtBXyj3ZRKBTWKEZoZ7y9nenW\nzYfD3xyQdfGQlkq4NZFqXTVffvm5ratyhRZ3yd566y3OnDnDunXr+M9//oNa3fgrvFqtbrgpW1NT\nc9X99b3Da73eEkpl+x0wVF/3ttqG6uq6VaAc1cqrDm+s397S4Y8KhQKk//7XBuqLrftv+/xtY69t\nGDgwhGWfHefc7lRihsXarG5N8QzwpNuA7ixf8R8ef/wJFApFm/kctyjk582bx4oVK3jvvffo2rUr\nGo2G8vLyRscYDAacnOoemNFoNFcEtsFgwMPDoyHcm9rv7Gz5DIQeHu1/1sK22oazZ0/hH+aPp/f1\nb4pqNC1b7MPB0QGFQoHK0bbX5B2V7f+egL21IbyLN926+bBn5U4SxvTGoY2EaL2kW/uw6sVVXLhw\nlqSkJFtXp4HFIT9nzhxWr17NvHnzGD16NACdOnUiLS2t0XFFRUX4+/s37C8sLLxif0xMDN7e3mg0\nGoqKioiIiADAZDJRVlbW8HpLVFToMJnax8RBf6RUOuDh4dxm27B33378Iv3RXWPMsoODAo1GhV5v\nxNyCr9VmkxmT2YxR5oWbr0ahqAuWWpPJmmtUtCp7bsOQIWF8+ulvHP7+CHGje9uugk0IigvF1dOV\nL75YTWRkdMPn2dYsCvmFCxeyevVq3n33XcaMGdOwPT4+nqVLl2IwGBp65ocPH264mRofH8+RI0ca\njtfpdJw+fZqUlBQUCgW9evXi8OHDDTdnjx49ikqlIjo62uIGmUxmamvbXkBaoq224fz5s/S+PaFZ\n4W02SxaHvEFnoLywAp/kABsut1Z3aUCSaMdLvtlvGzp1dqVHD192r9xJjyGxzZruukZbg8JBgcZF\nc91jb4hCQVhCF37e+jN///sr8pZlgWZ/30lPT2fJkiVMnz6dxMREioqKGv7069ePwMBAXnjhBdLS\n0vjoo484ceIEd999NwCTJk3iyJEjLF26lLS0NF588UVCQ0MbQn3KlCl88sknbNmyhePHjzN79mwm\nT57caLSOYFsVFeVUlFfg1clLtjIK0vNBgsBAMUZeuLohQ0IpL6zgxM/Hr3qM2WRm18odfPTQIhbe\n+x4fPriQ7DNZstctLL4LJ44dQ6vVyl5WczU75Ldu3YrZbGbJkiUMGTKEIUOGMHjwYIYMGYKDgwOL\nFi2isLCQSZMmsWHDBhYtWkTnznUrBwUHB7NgwQLWr1/PPffcQ2VlJYsWLWp47/HjxzN9+nRmzZrF\no48+SkJCAs8991zrt1ZosUuXLgHg2Vm+kM9Ly8XR0QE/P7FQiHB1/gGuxET7ceSbA01+U9GWaFnz\n0hfsX7OXbmFuTLytG538nVn/j9XkpGbLW7fITkiSxLlzbWf4t0Jqv9/nmlRaWtUmL3U0h6OjA97e\nrm2yDT/++D1Tp97LEytm4nqNG68ODgqcndXodAaLL9dsmvcdFelZTJ3a60ar22L1N32NtaZ2e6mj\nI7ThwoUyvvziFH9+eyqBPYKoNdSiLdFSkJHPlkWbcTDXcsft3QkN8wTAYDCxatUpTBonHnj/YdlG\nbxn1Rt6/+x3ee28RDzwwFW9v28+kKuaTF5qloqJu9JRGximG88/nEhFo+w+F0PZ16eKJh6eGL/6+\nEo2TGp22ptG+22/viavb/4Zlq9VKhg0L48svTpF1MpPQXmGy1EulUeHi4UpBQb4s798SIuSFZqms\nrMRR5YijSr5TpqqsCo9o8bSrcH0ODgruuKMHp04W4uqmwt1djbu7Bnd3Nb6+zk321MPDPfHzd+Hw\ntwdlC3kAZw9niouLZXt/S4mQF5pFq62UdXSCJEkYdEbU6vY/tluwjuBgd4KD3Zt9vEKhID6+E1u3\nnqdGWyPbwjeOakf0+prrH2glbetpAqHNqqyUN+Rr9bVIkoRGI/odgnwuXyrHJ8gbtYyT7JlrTahU\nLXsYUA4i5IVmqagoRy1jyNcvCiF68oJc8vOrOH++hP6TB8r6tKyhxoiTk+0fgqonQl5olsrKStQu\n8vV+DNV100qLkBfksmdPFp4BHkTLOO+N2WSmsriCwEB5l8i0hAh5oVkqKytQOcv3FbS+J6/RiJAX\nWl9RUTWpqUX0nzwQpYzzIlWVajHVmggJCZWtDEuJkBeuy2w2k56RhpO7fMMnxeUaQS6SJLF160Xc\nfd2IHRUna1n5aXXTo/fsKW85lhAhL1zXd999TXpaGr1ujpetDHG5RpDL8eMFZKSXMnrGWFmHAAPk\nns3Fz9+f4OAQWcuxhAh54ZoyMtJ48f+eJyq5KyE95fsKKi7XCHKoqNCzdctFeo6MIyq5q+zlXTp6\nkUEDh9hsPYSmiJAXriorK5M7J01A4Qw3/79xspZl0Bnqppd1FKek0DokSeKHH9JRuWgYMX207OWV\n55eRl5bLhAm3yV6WJcQnSmhSaWkJd02agK5Wx6Q5k3H1kne6AX21AbXGsU31gIT2rf4yzZiUcbI9\n+PR7p345iZOzE6NGjbn+wVYkQl64gtls5oknHqWgOJ+7/zUZdz/5pxow6PTiQSih1Vj7Mo3JaOLE\nD8f40+QpuLk1/ylcaxAhL1xh6dIlbNu2lXHPTsAr0NsqZRp1BnHTVWgV1r5MA3Bm+ykqSyp55JHH\nrVKeJUTIC43k5+cx941/ET8+kYikSKuVqy3R4uwsevLCjZEkia1bLlj1Mo3ZZObg2v3cMnY80dEx\nspdnKRHyQiOzZv0fOMLgB4ZarUxJksg+lUlQkFgRSmi5+oA/eDCXUU/cbJXLNABnd6VSnF3Ms8/8\nzSrlWUqEvNBg797dfPXVOoY8ONQqPaB6p7aeQFtSRViYmGZYaJk/BnzirX2sU65Z4sCafYwYMYqE\nBOuUaSnx/VgAoLa2lr/9/WmCegQTN7q31co9s/00P87/noSETkRFWef6v2BfbBXwAOf3naPwUgHP\nLnrBamVaSvTkBQA+/fQjzp09y8gnxqBwsM4wxhptDb988BMx0X6MHRclhk8KLbJt2yWbBLzJaGL3\n8p0MHTqcfv36W61cS4mevEB+fj5z3/gXvccl0LlrZ6uVe2DdPmprjIwaHS4CXmiRs6nF7N+XzfBH\nR1o14AGObjpMaU4J/1w516rlWkr05AXefvsNJAezVW+2VhSUc/jbg/TrF4i7u3zz1Av2q6JCz/c/\npNNtQHeSbk+2atlVZVXs+2IvU6c+RGxsT6uWbSkR8h3c5cuXWPn5MpLu6oezu/UWOti1YgcatZL+\nNwVbrUzBfpjNEhs2nMfRWcPNT46z+jfBX5b8jLPGib///WWrltsSIuQ7uLfffhONqxOJE6z3VTc/\nPY/Tv55iyJAQ8ZSr0CLnzhVz+VI545+biLOHdVdhSt15hrO7U3nrzXfx9fW1atktIUK+A0tPP8/q\nNV/Q757+qJ3kW/Xp9yRJYvun2/D1dSEhwXrX/wX7UpBfhauXC2G9u1i13KqyKrZ9sIUJE27n9tvv\nsmrZLSVCvgN7971/4+blSvy4RKuVuWfVLi4fu8SIEV1wsNIoHsH+lJTo8A6xbi9akiS2LvkJtVLN\nm2++Y9Wyb4QI+Q4qNzeHr75aS+LtSTiqrXPJZPfnO9n7xW6GDe9Ct24+VilTsE/FJXp8rBzyZ3em\ncm73Wd568138/f2tWvaNECHfQS1d+gGOakd6j02wSnl7Vu1qCPiBA9vOqjlC+yNJEqUlOnyCrddR\nqCqr4pd2dpmmngj5DqimpobPln1C3M290bjIP3wxff959qzaJQJeaBWVlQaMRhPeIdYJeUmS2LJo\nMxrH9nWZpp4Y2tAB7dixDW1lJXFj5J++wFhj5JcPfiIi0osBA8RwSeHGFRfrAPAJsk7IH/vhN87v\nPcenn65sV5dp6omefAe0adMG/EL98A2V/5rm/rV70ZZoufnmSPFUq9Aq9PpaAJw9XWQvK/dcLr9+\nvJWHHnq0zS3r11wi5DsYSZLYsvUnwpPlD92S7BIOrt/HTTcF4+Nj3bHMgnCjii4V8vWra4nvlcDs\n2a/bujotJkK+g0lLO09hQQFd4sNlLaduuNlm3N3UDBDX4YV2piyvjPWvrKFLSDhffvkVTk7Wm3q7\ntYmQ72B27PgVpaOS4J7yBm/6gTQu/XaJ0WMiUKnEsn5C+7Jl0Wa83X1Yu+Y7PD29bF2dGyJCvoPZ\nuWs7QdHBsj7hKkkSu1bsIKyLpxgPL7Q6pbIutmr1RtnKMBlNJPftT0BAgGxlWIsI+Q7EbDaza9cO\nQnqFylrOuT3nKMgoYPBgecsROiY3NxUAVaVVspXh5OFEUXGhbO9vTSLkO5BTp05QUV4u63wfkiTx\n62fbCOviSZcunrKVI3Rcbm5130K1JVrZynD2cKG4uEi297cmEfIdyMGDB3BQKuncPVC2MvLO55GX\nli8eehJk4+qqBgVUyRny7s6UlpbK9v7W1OKQNxgMTJw4kYMHDzZsO3ToEHfddReJiYnceeed7N27\nt9Fr9uzZw8SJE0lISGDatGlkZmY22v/ZZ58xdOhQkpKSeOmll9Dr9S2tntCE3347QqfITqg0KtnK\nuHzsEiq1UvTiBdmYzRJyP3FhrSUwraFFIW8wGHjmmWdIS0tr2FZSUsITTzzBxIkT2bBhA2PHjuWv\nf/0r+fn5AOTm5jJjxgwmTZrE+vXr8fb2ZsaMGQ2v37x5M4sXL2bOnDksW7aMY8eOMW/evBtsnvB7\naenn8Q6Rd7HsS79doEuYZ8PNMUFobcXFOiQJfMP8ZCvDqDeicbKPFcss/iSmp6czefJksrKyGm0/\ncuQIjo6OPPTQQ4SEhPD444+jVqs5duwYAGvXrqVXr15MmzaNqKgo5s6dS3Z2dsM3gRUrVvDggw8y\nbNgw4uLimD17NuvWrRO9+VaUmXUZjwD5etgmo4msU1lERLTvIWdC21ZUVA3IG/K68mq8vexjZJjF\nIX/gwAEGDBjA6tWrkSSpYbuXlxdlZWX8/PPPAGzZsoXq6mp69OgBwLFjx0hO/t86jE5OTsTGxnL0\n6FHMZjMnTpygb9++DfsTEhIwGo2kpqa2uHFCY9VVVahlnJAs52w2tYZaEfKCrC5fKsfNxxUnN/ke\nUKosrCQs1LoLksjF4gnK7rvvvia39+3blylTppCSkoKDgwNms5m5c+fSpUvdX1RBQcEVY079/PzI\nz8+noqICvV7faL9SqcTLy4u8vDzi4+MtrabQBFOtCQelfNcaM09cxsnJkU6d3DCZzbKVI3Rc+flV\nHDuWz7CHR8paTml2CRE3R8pahrW02iyUVVVVZGZmkpKSwvDhw/npp5+YM2cO8fHxREREUFNTg1rd\n+AEctVqNwWCgpqam4eem9luiPV8Lrq+7XG0wmUwoHZWyrcik19bg7qHBwUGBWQJkvz3W+uqn86n7\nb/urP9hvGyRJ4qefMvAJ9iHp9r6yncfaEi3aUi3x8fE4Orb8s9hWsqjVQn7p0qUAPPHEEwDExMRw\n7Ngxli9fzqxZs9BoNFcEtsFgwMPDoyHcm9rv7GzZxFYeVl7UVw5ytcFkMuHkrMbZWZ6nXR0dlQ2f\nTkdl+57KoL3XH+yvDceP55OVWcED/34AN3f5PufZ2SUADBrUH29vV9nKsZZWC/nTp08THR3daFtM\nTEzDCJxOnTpRWNj4CbKioiJiYmLw9vZGo9FQVFREREQEUBdIZWVlFs/fXFGhw2Rqn5cKlEoHPDyc\nZWmDJEnU1tZSazKj01n27ai5amtN8N/7NLUmE7+7ZdNuKBR1wdJe6w/22Qa9vpaft2TQfVAPAmND\nZDuHAbJSs3FxdcXLK4DSG3iqtv7zbGutFvIBAQGNhlQCZGRkEBJS91BMfHw8R44cadin0+k4ffo0\nKSkpKBQKevXqxeHDhxtuzh49ehSVSnXFL47rMZnM1Na2z5CvJ0cbqqrqTlZHtSNmszyffEkC6ff/\n3y4Tpv7SQHutP9hjG3bsuEyN3sywR0bKdv7Wy88oICY2FrO5biqQ9q7VLhrdc8897Nixg2XLlpGZ\nmclnn33Grl27mDJlCgCTJk3iyJEjLF26lLS0NF588UVCQ0MbQn3KlCl88sknbNmyhePHjzN79mwm\nT56MRmMfY1Vtrf4RbTkXWjDWGFHdwDVMQWjKxYtlHDyYw6D7h+Ap4xDgekUZhfSOs5/BHjfUk//9\nohPx8fEsWLCA+fPnM3/+fCIiIli6dClRUVEABAcHs2DBAl577TUWL15Mnz59WLRoUcPrx48fT3Z2\nNrNmzcJoNHLLLbfw3HPP3Uj1hN8pKqq7VOYiY8jrKqpxcRYrSgqtR6erZePGNELjwuh7Rz/ZyyvL\nK6Mos5BBg4bIXpa13NAn8syZM41+HjFiBCNGjLjq8UOGDOHHH3+86v7HHnuMxx577EaqJFxFfU9e\nzpCvLqvC10W+KROEjkWSJH78MQ2DCcY9M8EqUw2k7T2HWq1m5MjRspdlLeK7dQdRXFwM1M2uJxdd\neTUuIuSFVnLiRAFnThcxZsZYPPw9ZC9PkiRO/nyC0WNuwc3NXfbyrEWEfAdRWFiIs5szShlXaaou\n14mQF1pFbk4l3/+QRuyInkQPjbFKmZnHL1F0uZBHH3ncKuVZi7iA2kGUlpbI2os31ZrQV+txcRUh\nL7ScwWBi587LHDyQQ+eozoz5681WKVeSJPZ+sYeY2J52dT0eRMh3GAaDHke1fP/cugodgOjJCy12\n4UIZP/6YjlZrZOi04QyZMhiD0ST7kEmAC4cyyDx5mVWr1jYaUGIPRMh3EEajEaWjfJdqarR1U1M4\nOYlTyh5VVuoxma4MW2dnRzSalv+bS5JETo6Ww4dzOXWykNC4UCY9OQ7fUN+689VoupFqN0utsZZf\nP/6FgYMGM2qUdb45WJP4RHYQtbUmWUcn1P8CsYeHR4T/ycqqYNeuTC5klDW538FBQWioB127edO1\nqw8+Ptd/wtNslsjMrOBsajHnzpdQWaHHxdOFW1LGETemt9V70gfX76c8v4w3v3zH7nrxIEK+w3By\n0mAy1Mr2/vWXgoxGEfL2oLrKyHcbznEhowzfUF/GPX0rbr5XjjgpzSkhfX8av26/xNYtF/HxdaFb\nVy98fV2umButvtd+/nwp1VUG3H3d6DYsjm6DehAcE4KDDSb0Kssr48Caffzl8Rn06GHZ0/XthQj5\nDsLZ2QWjXr6QVznVXYtv71NKCHUOHc4lO6eKiS/cQfeBPa76LbBLQjgJ4/tg0Bm4fOwi6QfSOHkg\njaqynCaP9+rsSc+xiXQf2IPO3QJtvszer0u34uPry7PPvmDTeshJhHwH4eTkRK3BKNv71/fka0VP\nvt2TJIlTp4roPiSGHoOb17tVO6vpelN3ut7UvW6+nKvcK7V1qP9e+oE00vaf55NPluPm5mbr6shG\njJPvIJycnDHq5Qt5pUoJCjBY4UaZIK+8vCrKSnXEDo9t0esVCgUKh6b/tBVGvZFtH21l6LDhTJhw\nu62rIysR8h2Es7Mzhhr5pmdVKBR4d/YiL1crWxmCddRfcnP1sd/e7b7Ve6gq1vLmG2/b5c3W3xMh\n30F4eHhgqjVhrJGvN991YA/OniuxyrhmQT6u/32greoG5lJvy3LOZHNg3T6efvp5oqK62bo6shMh\n30H4+dUtvlJdUS1bGd0H9kBXbeTy5XLZyhDk5+ZWt3JYVYn9fSszVOv54Z1N9ElM4qmnOsYstyLk\nO4igoGAAKvLlC+DO3QJx93Xj9OnC6x8stFlqtRK1WkllUaWtq9Lqflm6FX1FDYsXf4yjY8cYdyJC\nvoMID69bVrHwonwBrHBQ0H1QNKlni9vxikQCQEioB2d3nrGrf8dzu1M5+fNx5r7+byIiIm1dHasR\nIW+H6obAnWTx4gU8/PD9DByURERkIADleU0/udhaug3qQWWFnpwc++sFdiR9+waSn55PbmrT493b\nm8qiSrYs+onxt07k3nv/bOvqWFXH+L7SQVy4kMGqVSv4cvXn5OfloVKrCOwRhE93X4aOHI6Llyth\nvbvIWoeQ2BA8/NzZuvUi993XE0exHGC7FBnphbePM0c2HCIoJtjW1bkhJqOJTW99h7uLB++8/b7d\nj6b5IxHy7VxxcTHfffc169ev4cCBfTi5OhM9PIahA4YTHBsi68yTTXFQOnD3q/ew7Oll/PB9GhMm\ndutwHyp7oFAoSErqzC+/pFJZNAJ3P/kX7ZCDJEls+3greedz+fabH/Dx8bV1laxOhHw7pNVW8sMP\nm/jqq7X8un0bkmQmsk8U45+dSLeB3VFpbDvdb2jPUMY9fSsb3/oODw8NQ4eFiaBvh3r3DmDXriz2\nfbmHMTPH2ro6LbL78538tukI//73fJKT+9u6OjYhQr6dMJvNbN++jVWrVvDj5u/R19QQ2jOM4Y+N\npLsjrtAAACAASURBVMfgaFnXbm2J2OE9qSisZMd/tlFSouPWCd1Qq+Wb6lhofRqNIwMHBrPtp2P0\nvbMf3sE+tq5Ss0mSxO6VO9m3eg8vvzybqVMfsnWVbEYh2dPtc6C0tKrdTpLl6OiAt7drozbo9XpW\nrlzGwsXvkZ2ZhX+XAKKHxxA9NAbPTl42rvGVHBwUODur0ekMmM0S5/ee4/u3N+DipGTQwBDievmj\ntMFsg82lUChQOSox1pra7ciS1myD0Wjiww+PEpwQyYS/We/x/z+eR5Yw6o38vPBHTm87xcsvzyYl\n5WmZanlt9Z9nWxMh34b8MeQ3bPiGl17+O/n5eUQPjSXx1j4ERge16UsfTX04S7JL2LV8O+d2n8Xd\nQ4OfnzMeHho6d3YlMNCdgACXNhP8IuSv9NtvefzwfTpT33+IgMhOrVDD62tpyOeey2Xzu5uoyK9g\nwYIPuPPOu2Ws5bWJkJeJPYR8RkYmzz73NN98vZ6uN3Vn6LRh+IS0jxtG1/pwFl4s4PjmY2iLKinL\nLaXochGSWUKpdCCgsytBnd3o3sOHsDBPHGw0mZUI+SuZzRJLl/6GZ3hnJs2e3Ao1vD5LQ95kNLFv\nzR72r9lLz7heLFn0Md2797BCTa9OhLxM2nvI79nzK9MeegitTsuov4wmelhsm+65/5ElH06j3khh\nRgF553PJO59L1snLVBRW4uauJibal9ie/gQGulm1/SLkm3bmTBHffH2WP70xhdC4sFZ5z2ux5DzK\nOpnJ1sU/UZJdwjPP/I2nnnoOlcr2aw23lZAXN17biMrKCl75xwus+nwlkclR3D1zcpMr8dgTlUZF\nUExwwzhsSZLIPZtD6vbTnNpxhoMHc/EPcGX8+CiCguz776Kti472pVNnNw59td8qId8cugod2z/9\nhZNbTpDYJ4k1y76lZ884W1erzREh3wbs2PErT/6/v1BSWszE5yYSPaIn7bQTeUMUCgVB0cEERQcz\n/NFRZJ64zI7PtrF82XH63xTMkCFh4uEqG1EoFERGenHybL6tq1L3RPcvJ9nx6a8oJQfmzXuPBx6Y\nhoODODeaIkLehmpra3n99X+ycOF7dOkdzrR/PULncH90OkO7vVTQWhyUDnRJCOfPbz/IwfX72bNq\nJ+fOlTJqVBeiorzb1SUse+Hn50zlniz01Xo0Lhqrly9JEhcOZXBg7T6yTmdy5113M+efbxAQEGD1\nurQnIuRtpLy8jKkP3sf+/XsZ+tAIku/sh1L0Uq/goHSg/+QBRPXvytYlP7F2zRkiIr0ZNbIL/gG2\nv97Zkfj51T2LUXy5iKBo6011UFWq5cTPxznzy2mKs4rok5TEu2sXMmzY/2fvvMOjKtM+fM9MJpNG\neg8JaUACaRACBKQt0gKhKiKKoGLZRVk/y1pYBUTFXbYLWFEUFoSEjnSRXgIhJAESIAHSe29TMjPf\nH5GsCAgpZ2YSzn1dXDHnnTO/55hzfvPOW55nhMFi6MiIJm8EiooKeXT6ZLLzbvDohzNMZozTlHHu\n5sL0pTPJOHWVw18fZNWq80REuDFkiA/WP+c/FxEWJydLkBje5Pev3EfGyStMmjSVZ1Y8x8CBg8Rv\nci1ANHkDU1NTzbRHJlJYVsD0j2fi7ONs7JA6DBKJhO7RPfDvF8D5Xec4se4YFy+VMSjai6j+nuJ4\nvcDI5TLsHSwpzS41qG7U1P5knLyCr68f0dGDDardGRCfCgPS2NjI3Odmk517g6nvPyoafCuRyWVE\nTopi7pcvEjI6nCNHs/niiyQuXSx54OcyhMbd1ZobidfQaQ23TNkruCtDnhrGf/7zD06fPmUw3c6C\naPIG5M9/fpPDh38i9u3JosG3A5a2lvzuhVHMWTEXp+5ebNt2hW++SSEjo1w0e4HoP8CTspwyLh9N\nM6zuIwPx6O7BW2+/ilarNah2R0c0eQPx1Vef8fXXXzLy96PpFuFr7HA6FY5dnZi68FFmfPwEckd7\n4jamsWbNBbKyxFqz7Y2XVxcCuztyfO0RtI2GM1uJVMLw50dy8cIF1qxZbTDdzoBs0aJFi4wdRHui\nVGpanNBIaPbv38PLL79I5OQoBk6PvuvrJBIJcrmMxkZth10nb8xrsHW1o/fDoXgGeXHjYh6nDl8n\nK6sac3Mpjo6W9zVZJ5FIkEmlJncPtQShr8HFxYqTR7KwdbbFLdBdEI073UddnG2pLath/Vdr6R7Y\ng6CgYEG024ubu3aNjTjxKjCXL6fz3PNz8O8fyNA5w40dTqdHIpHgF+mPb18/Mk5e4eyWBLZsvoyt\nnYKoKE/69HFDLhdTHrcFV1drgns5c2LdMboP6omlraXBtB/+wxg0qkZefPFZZDIzJkyYaDDtjoqY\nu0ZA6urqGD1mGJWqSh7/+5OYW/z2p3pb0quaCqZ4DUUZhSRuP0vaoYtYWcmJHuhFxF3MXsxdc39U\nVSn55psUnP3deWTJDGTt/MH5W/eRTqtj1993cvXEZdav28Tw4b9rV+32wlRy14gmLyCvvTafDXHr\nmPmPp+5rotUUDbKlmPI1VBZUcGrDCS4evICVlZzhw3wIDXO9ZRhHNPn7Jye7inXrL9J7ZCijXx7X\nrmvX73Uf6bQ6tr6/ibLMMg7+eAxvb9Pba2IqJt/qiVe1Wk1sbCxnzpxpPlZQUMBzzz1HREQEY8aM\nYffu3becc+LECWJjY4mIiGDOnDnk5OTc0r569WqGDh1KZGQkCxYsQKVStTY8o3PmzGnWrFnNkKeH\niytpTAR7DwfGvjKeZz9/Hp9+gfzwQwbbt1/tsGZubLx97Bg3LoDUfSkkbjtz7xPaEalMyrjXJiBR\nwNPPPNmhvUJoWmXyarWaV199lYyMjOZjWq2W559/HoVCwdatW3nmmWd44403ml9TUFDAvHnzmDZt\nGps2bcLBwYF58+Y1n793715WrlzJkiVL+Pbbb0lOTmbZsmVtvDzjoNPpePOt13AP9CB8bISxwxH5\nFfYeDox/fSIP/2E0ly6WUFbWYOyQOixhYW4MHOjFoVUHyTyTce8T2hFLW0smvD2ZixdT+etfPzKo\ndkeixROvmZmZvPbaa7cdP3ToEEVFRWzYsAErKyt8fX05evQoSUlJBAYGEhcXR2hoKHPmzAFg6dKl\nDB48mDNnzhAVFcWaNWuYPXs2w4YNA2Dx4sU8++yzvPHGGygUhk+G1Bb27t3NhdQUZnz8BFITqXgE\noFFquHjwAtcSMpp7r+ZWCty7u+PewwO3AHfMTWA1gKFQ1aqQmUmxsjJ+7vGOzLDh3Sgra2DnX7Yx\n82+zcPE1XMIw90B3omcOZsWKfxMTM4HIyCiDaXcUWmzyCQkJREdH88orrxAeHt58/MyZMwwcOBAr\nq/8VlF6+fHnzfycnJxMV9b8/gIWFBb169SIpKYnIyEhSU1N5+eWXm9sjIiLQaDSkp6ffomPq6PV6\n/vWfv+Ed4kPXEG9jh4NOqyP3Yg6Xj6Rx+VgaqjoV3XztMZc3ffjUFTdy4tQVNBotEokEZx8n3Ht6\n4dHDA/ceHjh3c2nxB5Ver0er0aJRNyK3kJtknpHridc4uf4YYaGuosm3EalUwsRJPVizJpUti+N4\n4p9zsLY33Fh0/2kDyTh+lT+9+X/s23sYmUxcPfVLWmzyjz/++B2P5+Tk0LVrV/7+97+zbds2HB0d\neemll3j44YcBKC4uvi0lqLOzM0VFRVRXV6NSqW5pl8lk2NvbU1hY2KFM/sKFVJISE5n87jSjxaDX\n6clLy+Xy0TSuHEunrrIeO3sLIkKciejjjoODxS2v1+n0lJbWk59fQ0F+LfnJmVzYn4xeD3KFGW4B\n7rj39MTCxoL6yjrqqxuor6yjobIOdYMarUaLtlH7v5+/mPju4mSDX1QgfpH+dAvvhrkRUtT+msyE\nDLZ/tBk/X3seHuVn7HA6BebmMh55JJhvV6ewbUk805c+gZm5YVZoS2VSRrw4kvVvrGXdujXMmjXH\nILodhXb7K9TX17N582ZiYmL4/PPPOXXqFH/84x/ZuHEjvXv3RqlUYm5+61CAubk5arUapVLZ/Pud\n2luCsQtCb9u2CWs7awKiAlpcp/Tm61tb37S2vJaETae5fOQSNWW1dLFV0DvIieBe3fH0vHsZPZlM\ngpubDW5uNvTp03RMrdZSWFhLQX4N+fm1XP0pBY1Gh5W1HCtLM6yt5Lg4y1EoLJDKJJjJpMjMpJiZ\nSZCbmSGR6pFIJBTk15J55gope84jlUnx7eNL/0ej8Q7xNkoP/+qJK2xbuoXAQAemTOl52/1yM6Sm\nn6b3DeR+MNY12Ntb8Mijwaxdm8q+/+xm/Buxrf4bt/RZ8O7tTe+RISz5YCHTpj2Cra1tq3TbE2N7\n0U3azeRlMhkODg4sXrwYgODgYM6ePcuGDRt4//33USgUtxm2Wq3G1ta22dzv1G5p2bKNFrYG3Jjx\na/R6PVu3bSJoaBA2XVofh0LR8uGDtCNp7PjbdtBqCentQsjEQLy9bVv9kMnNZAT4OxLg79iq82/S\n5+d55/LyBjIyykk8V8j3b/4X715deejJIXQf2N1gZn/x0EW2Ld1CUE8npk4N+s2H0KwTfOU3xjX4\ndrNn0sSebN58EfcAN4Y8OaRN79eSZ2H0C6P45IlPWLv2axYsWNAm3c5Eu5m8i4vLbeW3/Pz8uHLl\nCgBubm6UlJTc0l5aWkpwcDAODg4oFApKS0vx82v6+qzVaqmsrMTFxaVFcVRXN6A1YIa8X3Lp0kWy\ns7IZMDeahoaWfQOBpl6LQiFHpbr/1AyqehU/frafCwdS6dHTiZiYwOYx5kYj/H+QSJrMpVF7a1qD\nLrbm9OnrTkQfNzIyKjh5Mpf176zHxdeFAdOjCRoSLOgk9aVDF/nhbzvoFexM7MQe6PR6dHfIvXK3\n+DsSxr6GoGAnBg3qyqHVPxEwqAcOHg4tfo/WPAtyGwvCxobz12XLePLJZ4zem5fJpEbtdN6k3Uw+\nIiKCzz77DL1e39wzy8zMxMurqbhAeHg4586da359Q0MDly5dYv78+UgkEkJDQ0lMTGyenE1KSkIu\nlxMUFNSiOLRandE2Q+3duxdzC3O8enu3aSOQTqe/r/NzL+Sw+x87aKiqZ/yEQEJDmzb2GHfdd9Pf\nXq/nrnEEBjoQEGBPTk41J07msfOv2zn23RECBgTi5OOCczdnnHyc263E3LkdZ/npix/pHeLC+PGB\nSCR3j+1+4jd9jH8NgwZ3JSW1hGPfHWH8G61PPXC/z8JNoqYNJGVPMp9//in/939vtFq3M9FuJj9+\n/HhWrlzJokWLePbZZzl69ChHjx4lPj4egGnTpvH111/z5ZdfMmLECJYvX463t3ezqc+cOZOFCxcS\nGBiIq6srixcvZvr06R1q+eS+/bvxDutmkAmny8fS2fGXrXTtasvMZ8Oxt7e490kmhEQiwcfHDh8f\nOwoLa0lIyOf6sUucK69v7n3aOnfBqZsLzt1ccOrm3PTT2wn5fX6F12l1HFp1kHPbz9J/gCe/+52v\nSa706YzI5TKGDvFm165L9Bjck+6DehpEt4tzF0LHhLFi5X+YO/cFunQx/ti8sWmTG/3ygbGxseHr\nr79m0aJFxMbG4unpyb/+9a/mnriXlxeffPIJH374IStXrqRv376sWLGi+fyYmBjy8vJYuHAhGo2G\nMWPG8Prrr7clPINSVVXJ2TMJ/O7FhwXXKswoZPc/dtKrlwuxsd1bPVFrKri72zBxYg8ANBotZWUN\nlJbWU1JST2lJBVcO5lNV2TQ5b2ZuRtDQYMJj+uLe3f2upq1Wqvnhr9u5diaD0WP8iYz0MNj1iDQR\nFu5KZmYFe/71Ay7+bti72xtEt/8j0aTuTeHLLz/j1Vf/ZBBNU0bMXdNObN++hblzZ/P8N3/A1qV1\nvYf7yftSW17L2ldW08VCwhNP9Da5jIpC5U1Rq7WUltZz/XolycnFVFUqcfN3JTymL0HDejVv4lIr\n1VQVVrHnnzspzyll8uQeBAbe/+SxmLumfVEqG/nmmxQUjrY8/rdZmMnvr1/Z1hxI+1fsJe9sLueT\n0m5btWcoTCV3jZhquJ04duwIzt4urTb4+0Gj0rB1STxoNDzyZJjJGbyQmJvL8PTsgqdnF6Kju3Lt\nWgVJ54rYt2IPh1YdxMbBmtryWtRKDQA2XRQ8+WQI7u42Ro78wcbCwowpU3rw3Xep7F+xlzEvjzPI\nLvCI8X1J3p3E7t07mTRpquB6poxo8u3EiZPH8Aj2FFTj/A/nKLlWzKynQrCxeXDSD/waqVRCYKAj\ngYGOVFUpSUkpRqXS0iXIDpsu5thYy3Fzt8HCQry9TQF3dxtiYgLYuSMVTYOamNdj77tH31pcfF3w\nDvHhq1WfiyZv7AA6Aw0NDVy5fJkxY8YJqpOZkIGfnz0eHl0E1elI2NlZMGSI6aWZFbmVkBBXFOYy\ntm69wpZFcUx7/zHBe/Rh4yL4Ydl2rl3LxN8/QFAtU8Y0tmR1cHJysgGw92z5euD7RVmrJO9SLgGB\nhpm8EhFpb7r3cGL69GCyU7I4HXdScL3AAd1RWCrYvDlOcC1TRjT5diAnJwsAOzfhDDjr/A30Oj0B\nAW3bgSoiYky6+doTPagrJ9cfoyynVFAtuYWcwEE9iIvfYPQJaGMimnw7UFxcDIC1gDPp185m4uJq\njZ1dx9k3ICJyJx56yBsbGwUn1x8XXCt4WC+uX8skKSlRcC1TRTT5dqCsrAxLG0tkZsKtdrmReI0A\nf3GoRqTjI5NJGRTtRfrRNMF78z7h3XBwd+DLLz8TVMeUEU2+HSgvL8PKTrhevFajpa6iDidn4+fB\nEBFpD8LCXbG1Fb43L5VJiYjty9ZtmygqKhRUy1QRTb4dKC8vw8JWuLQCytqm8nSWlmJxC5HOQVNv\nvivpR9MozRa2N997ZCgA27ZtFlTHVBFNvh0oLy9DYSPcWHl91U2TF1e8inQebvbmT30vbG/ewsYC\nv0h/tmzdJKiOqSKafDtQWlaKpYApRRuq6wHEMnUinQqZTEpUPw+unriMqk4pqJZfP3/OJ52jtrZG\nUB1TRDT5dqCsvBRLW6t7v7CVNFSLwzUinZOgYGe0jToyTmcIquMd6oNWqyUh4bSgOqaIaPLtQEV5\nucA9+QYkUgkWFg9OrhqRBwNbWwVeXW25cixNUB0HT0fkCjlXrqQLqmOKiCbfRrRaLVWVVYL25JU1\nDVhaysVc6CKdkuAgJ26cu46yVrghG4lUgoOHA9evXxNMw1QRTb6NVFVVotfrsewi3Oqahup6cTxe\npNMSFOyEtlHHlWPC9rLtPOzJvCbssJApIpp8GykvLwcQfExeXFkj0lnp0kVBjx5OJMSfRCdgXWI7\nd3tuZF0X7P1NFdHk20hZWRkAlnbCjcnXV9VjKY7Hi3RiHhrSlcrCKjJOXxVMw9LOisqKCsHe31QR\nTb6NlJf/bPJCjsmLwzUinRw3NxusrM0pE3BjlIWNBTXVNQ9csjLR5NtIeXkZEokECxshx+QbsBRN\nXqQTo9frkUigUd0ouNaDtoBBNPk2Ul5ejoW1haAFEBqqG7ASx+RFOjGVlSrqatV4BnkJpqFr1Aqa\nRNBUEU2+jdTV1aCwFq4X36hpRK3UYCFuhBLpxORkV4EEvHp1FUyjvqoeBwfhCvuYKqLJt5Ha2lrk\nFsIZsPLn3a5WVmJPXqTzkp1Tjauvi6DDnrVlNbh7CFuH2RQRTb6N1NbWYm4pXFHthpomkxeLUot0\nZrJzauga2k1QjYqccgL9uwuqYYqIJt9GlEolMrlw43zWDjaYmZtxLfPBW/ol8mCgUjVSVdGAe3d3\nwTR0Wh3F14sJD+8jmIapIpp8G+nSxRZNg0aw97eysyJiQl/OnC2kvl44HRERY1FR0ZTOwN5DuPHy\nsuxS1Eo1ffr0FUzDVBFNvo3Y29s3D6kIRf9pA9FLJJw+lSeojoiIMci4Wo7cQo6zr4tgGnlpucjM\nzMSevEjL8fHpRlVJJY0a4db3WtlZETkpirOJBdTWqgXTERExNDqdntQLJfR8KAhzC+HmtvLT8ggJ\nCcXKSrhNi6aKaPJtJDCwO3qdnoo8YcfM+03pj0xuxoED1x+4HXsinZe0tFIqK5REjBd2GKXwciED\n+g8UVMNUEU2+jYSGhiGTyShIF3YoxcLGglEvjSPtUimJZwsE1RIRMQR6vZ4TJ/Lw7euHe3cPwXTq\nq+opzy8jMjJKMA1TRjT5NmJj04WQsDCyU7MF1woaGkzkpH7s33+d1NRiwfVERITk8uUySkvqiH58\nsKA6xZlFAISHRwiqY6qIJt8OjBwxihtnrws6Ln+ToU+PAGDnjqukpQlb5V5EREhOnsrHJ6wbXsHC\n7XIFKMooxNrGGl9ff0F1TBXR5NuBqVMfRVnXwPUzmYJrycxkPPP58wBs33aFwsJawTVFRNqboqI6\nCvNr6DNB+CWNWedvMKB/NFLpg2l3D+ZVtzM9evQkvE8fzm1PNIieo5cj8+NfxTXAjY0b06iqErbS\nvYhIe6LT6dm9OxMHTwf8ogIE1aqvqifnQjbjx08UVMeUEU2+nXj91bfIuZBNdkqWQfTMLcyZsvBR\nzKwt2bAhjYYG4YeKRETag5MncyksqCXmtVjM5MKm68g4dRX0MHr0OEF1TBnR5NuJ0aPH0jskhJPr\njxtM09remmnvP0a9UsemTWk0NgpXOk1EpD0oKqrl2LEc+j86EI+ewicLSzt4kSFDhuHm5ia4lqki\nmnw7IZFI+NMbC8hJzSbngvArbW7i6OXI5IWPUFBQx3ffpVJQII7Ri5gmjY06du7MwMnbWfAVNQBl\nOaXkXMxm5sxZgmuZMqLJtyNjx8bQq3dvTq0/YVBdr+CuzFg2C52FJd+uTubgj9fRaLQGjUFE5F4c\nO5ZDaWkD416dIPgwDcC5bWdxcXVlwoRJgmuZMq02ebVaTWxsLGfOnLmtrba2lqFDh7J169Zbjp84\ncYLY2FgiIiKYM2cOOTk5t7SvXr2aoUOHEhkZyYIFC1CpVK0NzyhIJBLeeP0dspJvkHsx594ntCPu\nge48+a85PPTUMM6eK+Krr85z/XqlQWMQEbkbVVUqTp/KI3rGYFz9hR86qa+q59JPF5n77AuYmwuX\nLqEj0CqTV6vVvPrqq2RkZNyx/a9//SslJSW3HCsoKGDevHlMmzaNTZs24eDgwLx585rb9+7dy8qV\nK1myZAnffvstycnJLFu2rDXhGZVx48YTFNyLk/89bvD0AzIzGQMejWbO8mex8XLh+/UX2bw5naIi\ncQhHxLgkJORhbmVO5BTD7Do9uyUBuZmc2bOfMYieKdNik8/MzGT69Onk5ubesf3s2bOcPn0aZ2fn\nW47HxcURGhrKnDlzCAgIYOnSpeTl5TV/E1izZg2zZ89m2LBhhISEsHjxYuLj4ztcb14qlfLeu4vJ\nSrnRNLNvBBy8HHnso5mMfSWGwopGvl6VzMaNaeTmVhslHpEHm6KiOs6dK6TvpChBk5DdpKG6gfM/\nJPHc3N/j6OgkuJ6p02KTT0hIIDo6mg0bNtzWU1Wr1bz33nssXLgQufzWknjJyclERf3vU9zCwoJe\nvXqRlJSETqcjNTWVfv36NbdHRESg0WhIT09vaYhGZ+TI0Qwf/jsOr/oJVZ1x1rBLpBJCHg7j2S9e\nIOa1CVQqYc13qaxbd5EbNyrFJGciBqGxUceOHVdx8nam/yOGSRB24UAK+kYdL7ww794vfgBo8ezH\n448/fte2zz77jN69ezNo0KDb2oqLi3F1db3lmLOzM0VFRVRXV6NSqW5pl8lk2NvbU1hYSHh4eEvD\nNCoSiYRly/7FiN8NZu9/dhP71mQkEolRYpHKpPQaEULwsN5cPXWFU98fZ/26i7i529C/vwfBwc7I\nZIadf1cqGykqqqOsrB61WotGrUOj0aLW6LC1VdCnjxuWYuHyDo9er2f/vmuUlzfw5HuPGWSyVa/T\nc2FfKhMmTLptNOFBpd3+r2dkZLBx40a2b99+x3alUnnbBIi5uTlqtRqlUtn8+53aW4KhDetuBAT4\ns3LF5zz11EySd52jb2y/e54jlUpu+dmuSCUEPRREz8E9uZF0nbNbEtix/So//ZRNv0h3+vR1bxdj\nvflZ1vSz6ReNRsvFCyVkZlZQVFxPZUXDz6+RYG4pR66QI7do+peamsvJE7n0jXSnf38vbGwMO2l2\np/g7GqZyDWfO5HP+fBHjXhmPWwsnW1v7LKQfT6cst5QXvvo9ZmbG9QJT8aJ2M/l3332X+fPn4+jo\neMd2hUJxm2Gr1WpsbW2bzf1O7ZaWli2Kw9a2Za8XklmzHufs2VOsWLkCv3BfPO9z84dCIWwvttfg\nIHoNDqLkRgmn4k9xdF8yx0/kEhzkTM+eTgQEOKBQtO3WMJPJqKpSkphYwNnEAhoaNHQL9SF4VA/c\nA91xD3TH2ccZ6a8ehNryWk5tOsWZLWc4c6aAPhHu/O53vgbv2ZvJhKvbayiMeQ1Xr5bx44HrRE+P\npv+ke3dw7kZLngVto5bT608yatQoxoz5Xas1OxvtYvL5+fkkJSVx+fJlli5dCjT13N977z127drF\nF198gZub220rbkpLSwkODsbBwQGFQkFpaSl+fn4AaLVaKisrcXFpWUmw6uoGtFrT2fn5zjuLOHzk\nCPGL4pn1nzlY2Fjc9bVSqQSFQo5KpUGnE37M3MbNjofnjSH6iYdI3pVE+pFLpMRdQiaT0s3Xju6B\njnj72OLsbHXPHpVer6ekpJ7c3Gry82rIzqmhsqIBcws5oWPC6TuxHw6/quGpUt+eikFmac7gJ4cS\nObk/STsTObXhBDIzCSNH+rXrtd8NiaTJHBu1WjrqtIWxr+H69UriNl4ioH8gg2cNpaGh5dXMWvMs\nJGw+TUl2Ce98s5CKiroWa7Y3MpnUJDqd7WLy7u7u7N+//5ZjTz75JE899RSxsbEAhIeHc+7cueb2\nhoYGLl26xPz585FIJISGhpKYmNg8OZuUlIRcLicoKKhFsWi1OpPa3i+VmrHqqzWM+N1gdv3jTbxa\nvgAAIABJREFUBya9MwXJPQxTp9MbxORvYmlrxcAZgxk4YzCVhZVknr5K5umr7D9wDZ1Wj9xchoeH\nDa6uVuh0elQqLSpVIyqVrvm/G+o1qNVapDIJ7gHuBAwLwTPIC98+viisLZqv634xt1IwYPogiq+X\nkHcjz4ATxU1/G72eDjw5bbxryLpRSVxcOl1DuzHhzckgkbTpXr7fZ6GysJIT/z3OM888T+/eYSbl\nAcamXUxeKpXi7e19yzGZTIaTk1PzZOq0adP4+uuv+fLLLxkxYgTLly/H29u72dRnzpzJwoULCQwM\nxNXVlcWLFzN9+nQUCkV7hGhUfHy68enKL5k1awZHvzvM0DnDjR3SXbF3tydyUhSRk6JQ16sozCik\n8EoBhVcLyLxWhExuhsJagcLOFhtrBY7WChRWCixtLXELdMczyBM7BxsaGtRt/qAquVFM0dV8UIl1\nbTsCWVlVbIxLp2uIN5PfnYaZufATrdA02brv37txdXbhnXfeNYhmR6JNf4XfWjHy6zYvLy8++eQT\nPvzwQ1auXEnfvn1ZsWJFc3tMTAx5eXksXLgQjUbDmDFjeP3119sSnkkxevQ43n//I959922sHayJ\nnGT6pcjMrRT4hHXDJ6zbfZ/TXpPGqftT+HHlXhwdLZg8vVe7vKeIMGg0Wg4fzuZcYiFdQ32Y9GfD\nGTzAuR1nyU7NYvPmndjYdDGYbkdBou+430nvSEVFncl+VdPr9SxZspDly/9F1xBvZnz8xC3tUqkE\nS0vzdukFG4u2XoNGqeHAp3u5+OMFwiPcGDXKD7nccBOIEokEuZkMTaO2ww7XGPIaamvVxMWnU1bW\nQNQjA4maOgB5OywcuN/7qDyvnDXzv2HWE0/z8cd/a7Nue2JmJsXBwdrYYYgmb2j0ej1DhvTnypXL\nTPjTJIKGBje3PegmX5ZTyo6lW6gqqGTMWH9CQ13vfVI7I5r8/VNSXMfGuHR0UhlTFj2KW4B7u733\n/d5H8e9uRFeu5fChU1hbG99Qf4mpmLzhvlOJAE0P4NGjCcx76Xm2/CMehbUCv8gHs/bkTdRKNac3\nnOTM5tM4OFgwe04YLi5Wxg5L5De4dq2CrVuuYOvhwNRFj9LF2dbgMeSkZnMj6RrffPNfkzN4U0I0\neSMgkUj4979WUlFRwfaPtvDIksfw6iVsMWNTRK/Xc/XEZX764gD1VfUMGuTFwIFeBh2eEWkZer2e\n06fzOPRTFr6R/sT+aRLmVoZfHKHT6jjy9SFCw8KIiZlgcP2OhGjyRkIul/P1qjVMf2wymxfFM2nB\nZHz7GGYtuClQllPGT1/s50bSDQK7O/Lw9J44ONx9D4GI8VGpGtn1Qwbp6WX0f2QgD80aettmNkNx\nbvtZCjMK+Gb3WqOlDOkoiCZvRCwtLVm/bhNz5sxk86J4xr8RS8SoMGOHJRh6vZ6s8zc4t/0s185m\nYm9vwSOPBtO9+513SYuYDmWl9WzafJmaOg0T35lCj0E9jRZLaXYpx9cc5dlnX6Bv39bvpn1QECde\nTQC1Ws28ec+xfftWBs8czIDHBiGRmkbei5ZypwkzdYOaiwcvcH7HWcpyy3F1s6FfP3d693Yxen6R\nXyNOvN5OenopP+zMoIurHRMXTMPJW/j0vXebeG3UNLL+tbV0kXXhxwPHWpz2xJCIE68izZibm/P5\n598QEhLKxx9/yPXEG4x5ZRyOXTt2LuzKggqSdp7jwv5k1A1qevR0YuyTIXh724pfsTsAOp2ew4ey\nOHUqjx6DezL2lfGYWxq3ytKx745QllPKuj3xJm3wpoTYkzchzMykXLlygRmPzyA3L5eBMwYRNXUA\nMrOOMxEpkUDBpVxObjxJ5tlMLCzk9IlwpU9fD+zsTH/3stiTb0KpbGTz5stkZ1cxdM5w+k3pb9AP\n5jv15K+dzWTzojgWLfqQP/zhZYPF0lpMpScvmrwJcfOmyM8v5eOPP2LFyv/g7OPMqJfG4HGfGSyN\nxR2HZCLd6dXbuUOtlhFNvomdO69yJaOSSX+e1qIdz+3Fr02+srCS/77yLYOjh7J2zQakHWA4UzR5\ngegMJn/zGlJTU/jjK3/g4oVU+k6MZPATQ4yyXO230DZqObHuGOd3JjYPyUQP7IqHp42xQ2sVosk3\nZZH8fv1FRr88jrAxxinY80uTr69uYOPb67HQWfDjgaPY2dkbJaaWYiomL47JmzChoWHs23uIL774\nlKUfL+HykctEPzGY0FFhRlu69kvqKuvYsXQL+el59I/ypG+kB/b2Fh3eJB9kNBote/Zk0jXEm9DR\nxl/ppVFq2LpkE8pyJfE7tncYgzclxJ68CfHrnvwvyc3N4aOPFhMfvxEXH1f6Tx9AzyHBRjP7woxC\ntn0Qj06pZsqUnnh7N+147Og94Y4eP7T+GvLyati7J5PSciWzlz+Lo5fxlrZKpRLM5TLWL/ie/At5\nbIrfQb9+/Y0WT2swlZ68aPImxG+Z/E3Onz/Hxx9/wMGDB3D0dGTwU0Pp+VDLcu63lUs/XWTff3bh\n4mLF1Kk9sbX93xBSRzfJjh4/tPwa6urUHDyYxYXUYlx8XXjoqWEE9A80QKR3R6/Tsfefu0g/ls66\n/8YzfHjHq/QkmrxAdHaTv0lychIvvvgstfpaZv1njkHi02l1HFl9iLNbEggNdWXsuIDb1rl3dJPs\n6PFDy67h+vVKduy4ik4i5aHZw01iKLBR08gPf93O9bPX+HrVd4wd2zHTFpiKyYtj8h2UsLAI6urr\n6NrfMDlvVHVKti/dSnZKFg8/7Ee/KA9xrXsHJzOzgk3x6XiH+TDu1VisTcCQNEoN2z7aTMHFfLZt\n3UZ09LAO22kzFUST76BcuXKZwoICBvcdIriWtlHL9o+2UHg5jxkzeuHrK05+dXSysqrYvCkd30g/\nJr4z1ST2YqjrVWx+P56ya6Vs2LCJmJgYk6jV2tERTb6DkpBwCqlMKnj2Sr1ez4+f7iMnNZsZj/em\nWzc7QfVEhEej0bJjx1U8grsS+9YUkzB4Za2STQs3Up1XRdzG7QwaFG3skDoNosl3UBISTuHm5y74\nNvOzWxJI2ZvM+PGBosF3EhJO51Nfr+Gx+eMMWqbvbpRml7LrrztQVSrZumUX4eF9jB1Sp8L4f2GR\nVnHxUirO/i6CamScusLhb34iOtqLsHA3QbVEDENNjYqTp/LoM7Ef9h4ORo1Fr9eTtCORo6sP4+PT\njbht2wgOFuv5tjfG31Ej0ipyc3OwdRWuGs/NYZrAQEeGDTf8tnYRYThyOBszhZyB0wcZNY5GTSO7\n/7GTg18cYPZTz3Lwx+OiwQuE2JPvgDQ0NFBZUUkXF+FMvvRGCTVltYwf3VtcRdNJKCysJSW1mJEv\njMLCxngFWuqr6tn+4RaKM4r4/POvmTLlEaPF8iAgmnwHRKVSAiBXyAXTuJZ4Dbm5rHknq0jHRq/X\nc/DHGzh5ORI+znhj3sXXitj+0VakGilbt+7qcLtYOyLicE0HRKttWjcs5KaVqoIK7OwsTK6oh0jr\nyM6uJiuriqFPjzDaZqe0w5dY/8ZaPJ282L/vsGjwBkJ8gjsgZj8vedNphdsk4tmrK6WlddTXawTT\nEDEMWq2OQ4eycPF1wd8I6Qp0Wh2HVh3kh2XbmThhCrt+OIC3t4/B43hQEU2+A2Jra4dcLqdOwI0i\nPqE+oIec7GrBNEQMw+HD2RQU1PLwH8YYfH5Fq9GydfEmkrYn8sEHH7Ny5ZdYWVkZNIYHHXFMvgMi\nkUhwdnWhrrxWMA1bVzvs3e3IyqqiZ1DHLkP4IHPlShmnT+Ux7JkRgm+cuxPH/3uUrJQbfP/9ZoYN\nG2FwfRGxJ99h6R7Qg7LsUkE1fMJ9yRJ78h2WigolO3dmEDiwO/2mGH78O+v8Dc5sOs3bb70rGrwR\nEU2+gxIR0ZfijCJBNXzCulFaUkdtrVpQHZH2p7FRx5Yt6VjYWTP2lfEGH6YpzS5lx9JtDBs2gnnz\n/mhQbZFbEYdrOhh1dXUcOLCX7777murKauqr6rGyE2aM0/vn2p5ZWVX07i3s7lqR1qHRaPnxxxuk\np5fh4W5Dt262ODtbcflyGSWlDcz82yyDr4mvyK9gy8I4uvn4smrVd8hkxs+N8yAjmnwHQK/Xc/z4\nUb755iv27d+NSqnCo7snfR6NxLKLpWC61g7WOPs4kZlZIZq8CaLRaFm79gKlZUrCxkZQnlPGsRM5\naFSNSKQSxrw8DrcAd4PGVHKjhM0L43B1cCVuw1a6dBH3WRgb0eRNnOPHj7L04yUknD6Fq68r/WdE\n0/OhIOzdDZPuN3h4CCfXH0WpbMTCQrxdTIkfD1yntLSBGctm4R7YZOYalQZ1vQpbe2v0Mik6neEK\nn1w5cZk9/9xFgF8gcRu34erqajBtkbsjPrUmSllZGe++9xbxcRvw6O7JlPcewT8qwOBjq71HhnBs\n7REuXSyhb6SHQbVF7s6liyUkJRUx+qWxzQYPTbugFZbmWFia09BgmLkUdYOaI6sPcf6Hc8TGTuY/\n//kUa2vjFyARaUI0eRNkz55dvPTyizSolYz5YwwhD4caLX+MjVMX/PsFkJxSKJq8iVBVpWT37kyC\nh/cidEy4UWPRaXVsfGsdlflVLF26jGeeeV7MdWRiiKtrTIiGhgbmzZvHzJnTcQx0Ys7KZwgdFWb0\nhyZsTDiFBbUUFgq3Ll/k/rmQWoJeKmWUETY33RbL/hQKMwvZuuUHnn32BaPHI3I7Yk/eREhPT+O5\n52dz7Vomo/4wmrBxfUzmgfHrF4C1gzXJ54twH2tj7HAeeK5kVODfLwBzK4VR49AoNZxaf4LJk6fR\nt28/o8YicnfEnrwJsH37FkaPGUa5spy5n82lz4RIkzF4aEqEFjIqjIuXStFotMYO54GmulpFYX4N\ngQO7GzsUzu04S311Pe+8856xQxH5DUSTNyI6nY6PPnqfuXNn49ffnyf/8RSufqa5IiF0VBgqZSPp\n6WXGDuWB5urVcqQyCX79AowaR0V+BQkbTzFn9lx8ff2MGovIb9Nqk1er1cTGxnLmzJnmY+fPn2fG\njBn06dOHcePGERcXd8s5J06cIDY2loiICObMmUNOTs4t7atXr2bo0KFERkayYMECVCpVa8MzeWpq\nqpn11Az+/e+/M3TOcGJej0VuIVx++LZi7+GAd6gPqaklxg7lgebKlXK8Q3yMWvRD26hl19924O7m\nwTvvvGu0OETuj1aZvFqt5tVXXyUjI6P5WGlpKc8//zwDBw5k27ZtvPzyy3zwwQccPnwYgPz8fObN\nm8e0adPYtGkTDg4OzJs3r/n8vXv3snLlSpYsWcK3335LcnIyy5Yta+PlmSZFRYXETBjF0eOHmfLe\nI/R/ZKBJDc/cDXsPB5QqcbjGWKhUjWRnVREwsIdR4zjx32MUXyvii8+/wcami1FjEbk3LTb5zMxM\npk+fTm5u7i3HDxw4gIuLC6+88go+Pj7ExMQwadIkdu7cCUBcXByhoaHMmTOHgIAAli5dSl5eXvM3\ngTVr1jB79myGDRtGSEgIixcvJj4+vtP15rOybhAz/mEKSvKZsewJ/KOM+7W7JRRfK8LVWbgdtiK/\nTUlxPTqdHu8Qb6PFkJ2SRUL8Kd5688/06RNptDhE7p8Wm3xCQgLR0dFs2LABvf5/u+mGDh3K0qVL\nb3t9TU0NACkpKURFRTUft7CwoFevXiQlJaHT6UhNTaVfv//N0EdERKDRaEhPT29piCZLaWkpjzw6\nkbrGOh7760ycfZyNHdJ9o23UUppVgpubuMnFWJSXNwBg7+lgFP3a8lp2LdvJoMEP8dJLrxglBpGW\n0+IllI8//vgdj3t6euLp6dn8e1lZGbt27WL+/PkAFBcX37bN2dnZmaKiIqqrq1GpVLe0y2Qy7O3t\nKSwsJDzcuBs+2oOGhgaenPUoZVWlzFj2JHaudsYOqUWU55ah1WhxcxdN3liUVyixde4iaG3fu6HT\n6ti1bAeWcks+/+wbMelYB0KQdfIqlYqXX34ZV1dXHnvsMQCUSiXm5ua3vM7c3By1Wo1SqWz+/U7t\nLUFmpPqVv4Ver+fNN/+P1AspzPjLTBzv0hOTSiW3/DQlSq4XA+DubvOb8wc3m5p+mt513AtTjr+8\nvAGHro73vD+EuI+OfnuUvEu5bNv2A56ewic9u/kcm+LzfL+YSuztbvL19fX8/ve/Jzs7m/Xr16NQ\nNG3YUCgUtxm2Wq3G1ta22dzv1G5p2bIxYFtb0xsz/vTTT/n++3VMeWcK/uG+93y9wgg9tXtRklmE\ng5MVNtb3twHHrIP39Ewx/opKFT4D/LC0NL/3i2m/++jKySucjjvJxx9/zPjxY9rlPe8XU3yeOxrt\navK1tbXMnTuX3Nxcvv32W7y9/zdB5ObmRknJrcvvSktLCQ4OxsHBAYVCQWlpKX5+TWtutVotlZWV\nuLi0LMVtdXUDWgELXLeU06dPMf+P84mc2I/uDwX9ZtIoqVSCQiFHpdIYNHvgvdBpdaQdvkRQoB2a\nxt9eXSORNBlko1aL3nQu4b4x5fgryxvo5WJ7z8Rj7XkfldwoYfMHWxg7dhxz5/6BCgHrCv8SmUyK\nra2lyT3PLeHmNRibdjN5vV7PSy+9RF5eHmvXrsXX1/eW9vDwcM6dO9f8e0NDA5cuXWL+/PlIJBJC\nQ0NJTExsnpxNSkpCLpcTFBTUoji0Wh2NjaZxUxQXF/PU7Jl49PRk6DMj7vuB0+n0JmXy2anZ1FbU\n0atXwC2T7XemaYhAr+c+XmuKmGb8er0etUaL3MLcYPdRbVkNW97fhF83f1au/AqdrmkDnyExpee5\no9Jug0ZxcXEkJCTwwQcfYGNjQ2lpKaWlpVRVVQEwbdo0zp07x5dffklGRgZvv/023t7ezaY+c+ZM\nVq1axYEDB0hJSWHx4sVMnz69ebino6HX63nl/+bRoGlgwpsTkZmZ3tf/+yX9SBp29hZ4eop5a4yF\nVqsHPZjJDXMfVRdXsfHt9VhILFj33zhxPXwHpk09eYlE0jwJt2/fPvR6PS+++OItr4mKiuK7777D\ny8uLTz75hA8//JCVK1fSt29fVqxY0fy6mJgY8vLyWLhwIRqNhjFjxvD666+3JTyjsm7dGg7s38uU\nd6dh7dBxzVGr0XLlWBp9Qp07xIatzsrN3qyZAeZr8tPz+OEv2+li0YWtW3bTtavx1uWLtJ02mXxa\nWlrzf3/11Vf3fP2QIUPYs2fPXdufe+45nnvuubaEZBLk5eWy4M9/InRUGAEDjJ9Iqi1cP3cNZa2K\nXmL5P6PSbPIC9uT1ej2JW89wZPUhwiP68M2qtXh6egmmJ2IYTGONTydj4cIFSM1lDJ/7O2OH0iZ0\nWh3H1xzBq6stLi7CFAsXuT8M0ZM/se4Yh1Yd5IUX5rFz+z7R4DsJosm3M8eOHWH79i0MmTMUhbXx\nkki1Byl7kym5UcLDD/uKQzVGRvuzyQs5t1OUUcjIkaNYvOhD5HLTW8Yr0jrEoiHtSGNjI2+98zpe\nwV3pNSLEODGoG8lOyeL62UwaapRIpRKkMilmCjlO3k64+rvh4utyz4ITylolx9ccJjTMFU9PcdLN\n2EhlTR+yQq5ukcqkmM56IpH2QjT5duSbb77k6uXLPPnP2UiMsGs16/wNdv19B3UVddjaW+Bgp0Cn\nb1pKp1ZrSdlTj06rR2YmJXJyfwZMj0ZxF7M/uf4YWpWG4cO7GfgqRO7Ezd2TjepGwTTMzM1QqZSC\nvb+IcRBNvp2orq7iL3/9iNDRYbgFCr/t+5doNVqOrT3Cmc2n8fW1Z8a0CFxcrG4bYtFqdZSWNnA5\nvZTT2xK4sD+Fh2YNpffIUGS/mNCrLKggaec5hjzUFRub+9tdKSIsZj+bvFbAylwyuQxllWjynQ3R\n5NuJTz9dTkNDPYNmPmRQ3cqCCnb8ZSsl14oZMaIbAwZ43XX8XCaT4uZmjZubNRF93Pnppyz2Ld/D\niXXHiJwchYufK5UFFaQduoS1tZyo/p53fB8RwyMza/qbCmvyZqjUnSu1t4ho8u1CbW0Nn32+nPAJ\nfbBxMtz4dXbyDbZ/tAVLhZSnZofi4XH/2ra2CiZN6sHgQV05fTqPo98eQqfVI5VKsHOwYMwYf+QG\n2ngjcm/MzG725AUcrpHLqFU1CPb+IsZBNPl2YPPmeOrr64mcaLiK9cl7zvPjp3vx8bFjypSeWFi0\n7k/p7GLF+AndGT6iGyqVFnt7C5PMgvmgc/Nv0ihwT14pjsl3OkSTbwfWrP0G/8gAujjbGkTv8rF0\n9i/fQ9++7owa7d8upmxtbY61mCrepJHKJIIO1yDB5JKyibQdcZ18GykoyCf5/HmChvcyiF5pdil7\n/rmT4F7OjB7TPgYvYvpUVanQafXYuQtXbEarbsTSomPv7RC5HdHk28ihQweRSCT49vETXEtVp2Tb\nB5uwt1MQExMoblB6gMjPbyqj6dFDuMlwrUaLeQdNCChyd0STbyNHjhzCvbsHlgLnjdbr9ez+x07q\ny2uYOrUn5ubipOiDREF+LXautljZCZdeora8Fldn13u/UKRDIZp8GzmdcBLPYOGXGqYfvkTG6Qxi\nJwTi6Gj8QgQihiW/oBb3nsLmkqnMq6R79x6CaogYHtHk20BxcTG5OTl4BAn78KnrVRxadZCeQU50\n7+EkqJaI6aHT6SksrMWjh4dgGlqNlorCcgICOnbWVJHbEU2+DZw9mwCAp8Amf3LDCVS1DYwc6Suo\njohpUlJSR6NGh7uAJl98rQidVkdISKhgGiLGQTT5NnD2bAK2znbYugi3dLI8t4zErWeIju6KnZ24\n8uFBJDenBqlMgmuAm2Aa+el5mJubExoaLpiGiHEQTb4NnDl7GveewuapOfbdEWxtzRk4UMzt/aBy\nNaOcrr29MbcQLo9Qfno+oWFhHbbcpsjdEU2+lej1ei5eSBU0GZlepycr+Qahoa7N29pFHiyUykay\nsqoIjBZ2QrTwcgH9o6IF1RAxDqJztJLCwgJqa2tx9nEWTKM8rwxVnQovLzGf+4PKtWsV6LR6QctI\n1pbVUFVcSb9+/QXTEDEeosm3koyMqwA4dhVutUt+Wh5IwNOz4xYCF2kbV69U4Orngp2rcDtd89Pz\nAIiKEk2+MyKafCupqCgHwFLAzSkFl/NxcbFGoRBTDD2IaDRaMq9VEDBQ2KGavLQ83D09cHcXbvWO\niPEQTb6V1NQ0bTM3txRwMiwtFy+xF//AkppSjFqlFbyUZOHlAgb0F8fjOyuiybcStVqNRCoRtMxf\nVVGVuLv1AUWn03M6IZ8eD/XEwdNBMB2NSkNRZiH9owYIpiFiXESTbyXW1tbodXpBU79a21tTV68R\n7P1FTJe0tFIqK5T0f2SgoDrZ52/QqG5k+PCRguqIGA/R5FuJjU3TihdVvXDl0myculBboxbs/UVM\nE71ez8mTefj29cMtQNh9GBmnr+Ln7y/mrOnEiCbfSpydXQCor6wXTMPGuQs1taLJP2hkZlZQUlzH\ngEeFHSfX6/RcP3ONmHGxguqIGBfR5FuJu3tTD6uuvFYwDRunLtTWisM1DxonT+bh0dODriHeguoU\nXM6ntqKWMWNiBNURMS6iybcSN7cmk68pqxFMw8bRhpoaFXqxJtsDQ15eDbk51QyYPkjwojAZp6/i\n4OQoro/v5Igm30oUCgUOjg6C9uTdurujUWtJPFsgmIaIaXE5vRQrOysCogIF1dFpdVw+nMaEmInI\nZGIBms6MaPJtwN3dQ9CevHeID5GTovjxxxvk5lYLpiNiOlzNqMS/f6CgS3MBss7foKqkiieeeEpQ\nHRHjI5p8G/D08KKuTLiePMDQp4fj0dOTrVuvUFcnTsJ2ZsrLGygvqyegv7C9eIAL+1Lo0TOIPn0i\nBdcSMS6iybcBPz9/qgqrBNWQmcmIfWsyWomUbduuotOJ4/OdlYyMcmRyGd36+AqqU1VcRcapq8x+\n6mmxGPwDgGjybSAgIJCK/HJ0Wp2gOjZOXZjw5mSys6rYsydTNPpOSsbVCnzCugmaNx4gcUsCNl26\n8PjjswTVETENRJNvA717h9GoaaT4erHgWj5h3RjzSgwpKcVs2XKZxkZhP1hEDItK1UhOTjUBA4Qd\nqqmvqufC/lTmPvsCNjZiXqQHAdHk20CfPn1RKBTkpmYbRC9kZCiT/zyNa9er+P77iyiVjQbRFREe\nvb4pX42QCe8AknYmIkHK3LkvCqojYjqIJt8GFAoF0dGDuXYm02CaAf0Dmf7h45SUqVi79gI1NcKl\nVRAxHGZmUszNZVTkVwimoVaqSf4hiVlPzsHJSbg6CCKmRatNXq1WExsby5kzZ5qP5ebm8vTTT9On\nTx8mTJjA8ePHbznnxIkTxMbGEhERwZw5c8jJybmlffXq1QwdOpTIyEgWLFiASmX6BjZlyiPkpGZT\nK+BSyl/jGezFjGWzUGolrF17gaoqpcG0RYThTEI+jVodQUODBdO4fDQdZa2S3//+JcE0REyPVpm8\nWq3m1VdfJSMj45bj8+bNw9XVlU2bNjFx4kReeuklCgsLASgoKGDevHlMmzaNTZs24eDgwLx585rP\n3bt3LytXrmTJkiV8++23JCcns2zZsjZcmmGIiZmAuUJB6r4Ug+o6+zjz+LJZ6OXmrFt3UTT6DoxS\n2ciJE7lEjI/EyVu4cpLVxVXY2tni7e0jmIaI6dFik8/MzGT69Onk5ubecvzkyZPk5OTw/vvv4+/v\nz/PPP09ERATx8fEAbNy4kdDQUObMmUNAQABLly4lLy+v+ZvAmjVrmD17NsOGDSMkJITFixcTHx9v\n8r15Ozt7Zj7+JOd/SEKjMmyeGVtXOx77+AnR6Ds4WTeqUKu1RE7qJ6iOrasdlRWVbN4cJ6iOiGnR\nYpNPSEggOjqaDRs23JJTJSUlhd69e6NQKJqPRUZGcv78+eb2qKio5jYLCwt69epFUlISOp2O1NRU\n+vX7300eERGBRqMhPT29VRdmSF54YR7KmgaSdp4zuLZo9B2fouI6rB2ssHOzF1Qn5OFRK0KoAAAg\nAElEQVRQeo8M4eWXX+TcubOCaomYDi02+ccff5w333zzFjMHKCkpwdXV9ZZjTk5OFBUVAVBcXHxb\nu7OzM0VFRVRXV6NSqW5pl8lk2NvbNw/3mDL+/gHMnv0MCRtPUldRZ3D9Xxt9RYVo9B0KvR6pVPg1\nEBKJhNEvjcM1wJXnnp9DTY2YKuNBoN3urIaGBszNb13+ZW5ujlrdtBVfqVTetV2pVDb/frfzTZ0/\n/ekdLMwt2PfJbvRG2Kx00+hRKPj662SSkgrF7JUdBIlEYrB7RiaXMe71WIpLi3n33bcNoiliXMza\n640UCgVVVbdu8Ver1VhYWDS3/9qw1Wo1tra2zeZ+p3ZLy5bVOJXJjLMq1NXVhc8/W8Vjj00jcdsZ\n+k9rec1M6c9JqaStTE5l727P7E+e4aevDrJndzLp6WWMHx+InZ1Fq96vNdzcJd/0s+NtmTdG/FbW\ncuqrG9DrdMjM2p4R8l73kaOnA8OeGc665Wt47LEZDBkyrM2a7c3N59hYz3N7YCqxt5vJu7m53bba\nprS0FBcXl+b2kpKS29qDg4NxcHBAoVBQWlqKn58fAFqtlsrKyubz7xdbW+MVvp4+fSqJiX/ib3//\nG/4Rvni3suiDQiFvdQyWluZMeWsyYSND2b5sG19+eZ7Ro/zo29fDoHlKzDp4+lpDxu/uZoNOq0NZ\nUYezT/utrvmt+2jglP5cOZrOK//3EhcvXGxxZ8pQGPN57iy0m8mHh4fz5Zdfolarm3vmiYmJzZOp\n4eHhnDv3v4nJhoYGLl26xPz585FIJISGhpKYmNg8OZuUlIRcLicoKKhFcVRXN6AVOJfMb/Haa2/z\n06FDxL+/idmfzMHS1uq+z5VKJSgUclQqTZvz03iGePP0yrn89NVBdu5M5uKlEiZM6E6XLop7n9wG\nJJImg2zUaumIo0XGiN/RyRIkkHnuOtYutm1+v/u9j0bOG823L33NW28tYNGiJW3WbU9kMim2tpZG\nf57bws1rMDayRYsWLWrtycuXL2fq1Kl4eXnh6enJzp07SUpKIiAggPj4eHbt2sWHH36IjY0NXbt2\n5e9//zsymQw7OzuWLl2KXq/ntddeA5pW2/zjH//A39+f2tpa3nvvPcaOHcuIESNaFFN9vZrGRh06\nnd4o/yQSKSOGj+Tbb1aRm55LzyFNm1v0+nv/A5DLZWg0WnQ6/X2d81v/ZHIzAgZ0x6OnJ8mH0kk8\nk4eTkyWOjkLeeBJkUilanb6DzgkYPn65XEpubg2F2RX0fjiszX/3pve8931k2aXpw2XTqjhGjRqL\ni4ub0Z6b25+jpm+lxn6e2+MajE2bBo1++fVfKpWycuVKSkpKmDZtGjt27GDFihXNtVC9vLz45JNP\n2LRpE48++ig1NTWsWLGi+fyYmBief/55Fi5cyNy5c4mIiOD1119vS3hGw9PTi09XfsW1s5mc2Xza\n2OHgF+nP7OXP4hnajfi4NPbuvYZGozV2WCK/ICLCjdxLuaQdumhQ3aipA3Dydmb+K7+nsVHMhdQZ\nkeg7ZnfrrlRU1JlMhsYlSxayYuW/mbZ4Ot0ifO/5eqlUgqWlOQ0NakHSCev1es7vSuLwVz/i4GDB\npIndcXG1blcNiUSC3EyGplHbIXvyxopfr9fzw84M0tLLeHzZLNwC3Vv9Xi29jwquFLDu9e94790l\nzJs3v9W67YmZmRQHB2uTep5bys1rMDamMf3bSXn77XcZ8tAwdn68jbKcMmOHg0Qioc/4vjzxzzno\nLSz5ZnUKiWcLOqQZdzYkEgljxwXg4mLF1g/iqas03H4Ljx4e9J3Yj4//soQbN64bTFfEMIgmLyBm\nZmasWvUd3l4+xL2znhID5J2/H1x8XXjin7MJGxvBvn3XiI9Pp77esCkZRG7HzEzK1Kk90SnV7Px4\nq0E/fAc/OQRzawX//Kfp54sSaRmiyQuMra0dWzbvopuXLxveXk9eWu69TzIAcoWckS+OZsp7j5BX\nWM+qVee5caPS2GE98NjaKoiN7U7OhRyuJWTc+4R2wtzCnL6TIomL/578/DyD6YoIj2jyBsDFxYVt\nW3cTFhJO/J83cD3xmrFDaiagfyCzV8zF0c+djRvSyMoStmatyL3x87PH28eOI6sPoao3XIK+8LER\nyMxkrFu3xmCaIsIjmryBsLW1I27DNoYNHcHWJZtIP5Jm7JCasXG0Ydrix+ga4s2m+HSKiw2ff0fk\nVsaM8ae2uIodS7fSqDHMqhdzKwUB0d3ZGLdenKfpRIgmb0AsLS35dvV6Jk+exg/LtpO857yxQ2pG\nJpcxacFU7L0c2bDhEpWVYpIzY+LiYsXUqT3JSc1i88KNBuvRBw/rxY3r10lLu2QQPRHhEU3ewMjl\nclYs/4Knn36O/cv3kLQz0dghNWNupWDq4seQWVmyYUOaOBlrZHz97JkxoxdFV/LZ+NZ/USuFT9bX\nNcQbM3Mzjh49JLiWiGEQTd4ISKVSli5dxosvvsSPn+03KaO3drDmkSUzUGr0xMWloVaLm6aMiY+P\nHU880ZuynFKOfXtYcD25Qo5nkBenTp0QXEvEMIgmbyQkEgmLF39okkbv4OnA1MXTKSltYOvWKx02\nd0hnwc3NhmFDfTi3M5Hcizn3PqGNOPu6cCndsDtvRYRDNHkj8mujP7fDdIzevbsHkxZM4/r1Cvbs\nzhQn4oxMvyhPvLxs2fvvXYKXmXTydiL7RhYajThc1xkQTd7I/NLoD3y6j+Prj5uMofr29WPsK+NJ\nSSnmyJFsY4fzQCOVShgfE0B1cRUn/ntMUC0bRxu0Wi3l5eWC6ogYBtHkTYCbRv/aa3/iwBcHOPjl\nj+hMZIik14gQBj42iBPHc7ly2fipGR5knJytGDLEm7NbEii4nC+YjsKmqchMZWWFYBoihkM0eRNB\nIpGwYMF7LF++nKTticQt+J6aUtOowRk9YzA9Bvdk85bLXLxYcu8TRARjwAAvXFytOLXhuGAa0p8r\nGmm14qR7Z0A0eRNj3rx57Ny5B02Zhu9eXs2lny4affhGJpcx4U+TCB7em+3br5CcXGTUeB5kJJKm\n/PMSAQt/N/485m9ldf8Fb0RMF9HkTZCBAwdx6KcTjBk5ll1/38H2D7dQV1Fr1Jik/9/encdFWe7/\nH38NIMOAIpuAopQri7Io4m6mlp4MKUXtZGrqKS21n5Xleo6ay7EeeaxTaSHl3rGvadk5mQvaZi6p\nIIsbAoKyyyqgwDBw/f4gJkdNU2f3ej4ePJT7npn782Hu+809MzfXZWvDE68+SchfuvLdrjROHDfc\n2wXSHztxPI+c7AoCB3Ux2DZqqxtD3vTD5Er3T4a8mXJzc2ft2g2sW7eF4rRiNkxbZ/KzeoWNgsem\nDaH7iB7ExmZw+FCWyV9lPEiyssr5/vtMwp4Op1MfP4NtR13V8EdX8kzeOsiQN3MREZEcOnjihrN6\n040to1AoGDB5IH3G9uOnny6xZ3e6vI7eCCor1ezcmUIrfx8emfioQbdVUVSBU9OmNG3a1KDbkYxD\nhrwFcHe/7qw+tYjN/289F06km6wehUJBn7H9GDpzGEnJl/nyy3PU1Mip4wxFCME335xH2NoRMfdp\nbO1sDbq9K5ev0KZNG4NuQzIeGfIWJCIikp9/OkZ4aE++Wvwl36/db7QRCm8l6PFgot56hpy8q2zc\nmExuboXJarFmaWmlXLp4hSdeH05TN8OfXRdnFOLXKcDg25GMQ4a8hfH09GTr1h0sW/Y2ybsT2Tpr\nC8VZRSar56HQh3lu1fPYuTRj08Ykfvg+02Ln5DRHQggOHcrGJ9CHh7o+bPDtaWo15KflEx7ew+Db\nkoxDhrwFsrGxYcqUaezd+yNNbZqy5dWNJO4+abIPQd3buPPcv56n3/gBHDueS/TaeLKy5OQj+pCR\nUUZebgW9/9oPhUJh8O3lnslGU6uhZ8/eBt+WZBwy5C1Yly5BHNj/C88+M47Y1Xs59uVRk9ViY2tD\nzzG9ef7DySjdmrN5UzI7v06R49Lfh8azeO+O3kY5iwc4f/g8LVu1Ijg41CjbkwxPhryFc3R0ZOXK\nf/Pmm/M4uOknzv5o2tEDPR5qwd/WvMCwWRFcyq9i7dqT/PTjRTlk8T24dKmc7Kxyej9rnLN4Ta2G\ntMPniRw+wijbk4zDztQFSPrxxhtzuZR1kR3/3kZT92a0CfI1WS0KGwVdBgfRoVcnjm0/yrGvfiUx\n6TKPDvClc5cW2NrKc4s7KS2t4ttvU/Hq4EW78PZG2ea5n89SWVrJ889PNsr2JOOQR5uVUCgU/Gvl\nB/Tu3Zf/Lv+aokum+zC2kb3Knn7jH2FS9BRad23Hrl1prF4dx48/XqS0VL6N80dKS6v5z+ensXVy\nZMQ/RhnlrLq+rp74nScYNPhxOnToaPDtScajEFb2J4ulpVct9uoOOzsbXF2d7quH8vIrPDl8CAUl\nefz13XFGueTuejY2ClQqe6qq1NTX6+5ahZmFJO1N4MyBZGquqWnbzoXQUC86dnQzm7N7hUJBEztb\najV1JvkgOz+/ku3bz2HnpOKZt5+jqXuzu36M2z0HfyQ5Nom9//6OXbtiCQ/vedfb1Dd9HAum1tiD\nqcmQNyP62rFzc3MY+peBKJoqGLPiWexV9nqs8vb+TMDUVteScugcSd/Fk5uSh1NTe4KDWtDGtzlu\nbiqaN1diY2Oa94RNGfKpqSV888153Hw9GLFw9D3/gr7bkK+urGbj9HUM7v8Ya9duuKdt6psMef2R\nIW9G9LljnzqVzPDIIXi0b8HT/4iiiUMTPVV5e3cbMIWZl0nak8CZH05Tc7UGAFs7G9zcVLi5OuDu\nrsLNXYX7b19KpWE/RjJFyAshOH48lwMHMunYqxPDZg2/r+frbp+DXSv/S1ZcFgd//hUfn9b3vF19\nkiGvPzLkzYi+d+wjRw7x12dH4tG+BSMWjjLKGf29vFUAIOoF5YVXKMkuoTSnhOLsYkqziynJLqay\n5Pexepya2uPupsLVVYmrqwpXVwdcXB1wdXXQyy8AY4d8XV09sfsyOHkynx6jetF/wgAU9/kq5m6e\ngzM/nOK7f33Lxx9/SlTUmPvarj7JkNcfGfJmxBA79rFjvzLmmadxfciVkYtHo3RU6uVx/8i9hvzt\nqK/VUJJbSklWMSU5xZTmlFCWW0pZXik119Ta2zk62ePq6oCrixJ3D0e8vZ3w9m6Ko+OfPys2VsjX\n1wvS0kr44YdLlJVV8fj0vxA0JEQvj/1nn4PCzMv8Z9ZmnoocyZrVMXrZtr7IkNcfGfJmxFA7dnz8\nCUaNjsS5VXNGvjUah9+mdzMEQ4T8HxFCUF1RTVleKaW5pZTll1KWW9rwSiCrWDtkrrOLAy29nBpC\nv2XT2wa/IUO+qqqW7OwKLl28wpmzxVRW1NC6SxsGvzSEFg+30Nt2/uznIltmbqCFsxd7dn9vdsMK\ny5DXHxnyZsSQO3ZSUgIjoyJw9HQiaskYVM1Uen38RsYM+dsR9YKyvFIK0vLJT8+n4HweBekFOsHv\n7emERwsVHh6OtGjhiJubiiZNbPUS8hpNPcXFVVy+fJWc7AqysisoKmx428nJ1YkOvTsRNCQEr/Ze\ner9E8s88Byd2HuPghp/45eAx2rc3v0smZcjrjwx5M2LoHfvUqWSiRkVg76IkaukYHJvr/+zNXEL+\nVm4M/stp+RRnFXG19BrQMLWeq6sKT8+GwHf3UOHkZE+tuo4adR3qxq+a3/6traNWXUf9dU9VXX09\npaU1lJRUIX7r383HldZdfPEJbI1P5zY092pu0Gvf7/QcaNQaPntxLU8+PpwPPvjYYHXcDxny+iND\n3owYY8c+e/YMI6KexNbRhhGLR+Hs2Vyvj2/OIf9HqiurKb5U1PCVXUzppSIuZ17W+cAXGsbnsXdo\ngr3KniaqJtirlDRR2WNjZwu/HUYKGwUuLV3xeKgFHr4euPt6GPTtsVu503MQ/784fow5wOHDJ2jX\nroNRa/uzZMjrsQ5TFyAZV0BAIN/+dx9jnnmarW9u4emFUXi19zZ1WSbl0NSh4Sw7sLVOQFZVVFFV\nUY29yh57lT22TWwtfkwX9bUajm07wsio0WYb8JJ+mcefGUpG1aFDR/bs/oG2rduxbe5WMuIumLok\ns6R0csDF2wXH5o7Y2dtZfMADHPvqV2qv1TJ/3kJTlyIZiQz5B5Snpyff7NxD/36P8vWS7STuSTB1\nSZKBFWZe5sSOY7z00gxat5bT+z0o9Bry+fn5vPTSS4SFhTF48GA2btyoXZednc2kSZPo2rUrERER\nHDp0SOe+hw8fZvjw4YSGhjJx4kSysrL0WZp0C05OTmzauJXnJ0wm9qM97Hl/F7XVtaYuSzIATa2G\nPf/aRbv2HZg1a46py5GMSK8hP3PmTJycnPj666+ZP38+77//Pvv37wdg2rRpeHp6smPHDiIjI5kx\nYwb5+fkA5OXlMX36dKKiotixYweurq5Mnz5dn6VJf8DOzo533lnFhx9+QuovqWx9YzOFmZdNXZak\nR6JesOe9XZTmlPLJms9wcDDuB8GSaekt5MvLy0lMTOTll1/G19eXwYMH079/f44ePcrRo0fJzs5m\nyZIltGvXjilTphAaGsr27dsB2LZtG0FBQUycOJH27duzYsUKcnJyOH78uL7Kk+7gmWfGsm/vj7go\nXdny6kaOfHGIOo2c6MPSCSH4PmY/539J4ZNP1tGlS5CpS5KMTG8h7+DggEqlYseOHWg0Gi5cuEB8\nfDwBAQEkJibSuXNnlMrf/6Q+LCyMhISG94GTkpIIDw/XeazAwEBOnjypr/KkPyEgIJAD+39hxvRX\nObL1MFvf2EJhhjyrt2S/bjvCyf/F8c47q4iIiDR1OZIJ6C3k7e3tWbhwIV988QUhISEMGzaMRx55\nhKioKAoLC/H09NS5vbu7OwUFBQBcvnz5pvUeHh7a9ZLxKJVKFixYxJ7dB3C2dWbzqxv4PjqW6ko5\nyYelObkrnl82/8zs2fPlbE8PML1eJ5+ens6gQYP429/+xvnz51m6dCm9e/emqqoKe3vdERDt7e1R\nqxv+xLy6uvq26++GuUw+cS8aazeHHrp3785PPx7mk09W8+7Kt0n5+Rx9x/cneGgINrepr3EceFON\nB3+/LL1+aKj90BeH2B+9nylTXmbOnHkWd/mnOR0L98pcatdbyB85coTt27fz888/Y29vT2BgIPn5\n+Xz88cf07t2bsrIyndur1WrtB0BKpfKmQFer1Tg7O991Hc7OhhmTxZjMpwcnFi/+B1OnvsC8efPY\n+NFGkvckMnTGUB4Keei291QqjTN+vaFYav2iXnDg0wMc2nqIBQsWsHTpUosL+OuZz7FgufQW8qdP\nn+bhhx/WOSMPCAggOjoaLy8vUlNTdW5fVFREixYNI+95eXlRWFh40/qAgIC7rqO8vIq6Osv8M2hb\nWxucnVVm14ODgzPvvbeaceMmMXvOLDa8ugH/RwIYMGkgzb10h0WwsVGgVDahpqbWYoY1uJ4l119b\nXct3q74l5ZdzvPfee0yePJWysmumLuuemOuxcDcaezA1vYW8p6cnFy9eRKPRYGfX8LAXLlygdevW\nhISEEB0djVqt1v4SiIuLo3v37gCEhIQQHx+vfayqqirOnDnDK6+8ctd11NXVW+xYF43MtYeQkG7s\n/u4A27f/H28t+QefTV1L0NAQekT1pJmH7quu+nphcSF5PUurv6KonG+Wfc2V3DK2bPmC5557xqLH\nfWlkrseCJdHbm0aDBg3Czs6Ov//972RmZvL9998THR3NhAkTCA8Pp2XLlsydO5e0tDTWrl1LcnIy\no0aNAiAqKor4+HhiYmJIS0tj3rx5+Pr60qNHD32VJ+mJjY0NY8Y8y69HTzLrtTmk/5zGZy+uZe8H\nu8lPyzd1eQ+kvJRcPn99M4oqBbu+3c+wYRGmLkkyI3odhTI9PZ1//vOfJCUl4ebmxrhx4xg/fjwA\nWVlZzJ8/n6SkJHx9fVmwYAG9evXS3vfgwYMsX76cgoICunXrxpIlS/Dx8bnrGiz57MUSR96rqChn\n/fpP+fSzaPLz8vDu0JLukWG079OJJg7Gm0BcXyxtFM2zP51h7793ExwUwqaNX+Dp6WmR+9GNrKkH\nU5NDDZsRS96xNRoNBw7EsmnzOg7sj6WJsgl+AwII/kso3h0sZ5RLSwn5Ok0dR7Ye4uj/HWbUqGdY\ntepD7YUMlrwfNbKmHkxNhrwZsZYdu7KyhI8++piNm9ZRkF9Ay46t8H80gE59/W56797cWELI56Xk\nEvvRXoouFjJ//iJeeeVVnStorGU/spYeTE2GvBmxph27tPQq1dXq387u1/PDD/vR1Gpo1ckHb/+W\neHdsiWc7T1xauWLXxHymNTDnkK+urObQlp9J2HWSzkFBvL/qI4KDQ2+6nbXtR5beg6mZz9ElWR07\nOzuGDn2CoUOf4MqVMvbt28P+/fuIP3mC+P+eABpmUnL1dsOllQuuPm64tXHHzccNt9ZuOLo4WfQ1\n3vpSXVlN0p4Ejm//FerhrbeW88ILL2mvYpOk25Fn8mbEms5e7tRDSUkx58+nkJp6nrS0VFJTUzif\ndp7sS5eo/23SVIemKtx8fvsF0MoNl1auuLR0xbWVq8Gm1DOnM/m883kkfhdPysFz1NfVM2H8JF5/\nfQ5eXl63vd+DtB+ZM3kmLz3Q3Nzc6dWrD7169dFZXlNTQ2ZmBmlpqaSnp5Kaep7zqSmcTjxFWUmp\n9naOzo64tHTF2bs5Li1dcG/jgVcHb1xbuqKw0CEJhBAUZxWTfjSV1MPnyU/Lo6VPK954fS5jx064\nY7hL0q3IkJfMilKpxM/PHz8//5vWXblSRmZmBpmZGWRkXCAj4wLpF9JIO5DK0cLDADg4OeDZzgvP\nDl54dfA26+AXQlCaW0ru2WxyzuSQcyqbktxiVI4qBg58jLGLxzF48BBsbW1NXapkwWTISxajeXMX\nQkK6EhLS9aZ1JSXFJCYmkJSUQELiSRKOx3Pi62PA78Hv5uuOx0MeuPt64OHbApUR/+RcCEFVeRXF\nl4rIS8kl52w2+efyuHrlKgqFgo6dOjH88acZMmQo/fs/Kif2kPRGhrxkFdzc3Bk4cDADBw7WLrs+\n+BOTEjh79jTJexO1k6E0dW2KWxt33H3dcfdtgYevBx4PeeDgcOvByUS9QKPWUFtTS21NLZqaWmpr\nNGhqauG6t+81ag3qqhrK8q9Qkl1MaXYJpTklXCtvGEdG5aiia7cwnvrbCHr06EVYWDjNm7sY7ocj\nPdDkB69mxJo+bDLXHtRqNRcupJOScpZz586SknKWM+fOcDEzQxv+dk3saOrWDDt7OzQ1tair1dpg\nvxuOTo60a98B/07+dOzoR4cOnejQoSMdO3Yy6JUx5v4c/BnW1IOpyTN56YFib2+Pv38A/v4BPPXU\n78sbwz8jI42KilIuXMjk6tUqnJwccXR0QqVSoVI5olKpdL53dHTEwcEBhUJB4/mSg4MDjo5OuLm5\nyUtAJZOTIS9J/B7+Xbp0tvgzSEm6nnlMXSJJkiQZhAx5SZIkKyZDXpIkyYrJkJckSbJiMuQlSZKs\nmAx5SZIkKyZDXpIkyYrJkJckSbJiMuQlSZKsmAx5SZIkKyZDXpIkyYrJkJckSbJiMuQlSZKsmAx5\nSZIkKyZDXpIkyYrJkJckSbJiMuQlSZKsmAx5SZIkKyZDXpIkyYrJkJckSbJiMuQlSZKsmAx5SZIk\nKyZDXpIkyYrJkJckSbJiMuQlSZKsmAx5SZIkK6bXkFer1bz11lv06NGDfv368d5772nXZWdnM2nS\nJLp27UpERASHDh3Sue/hw4cZPnw4oaGhTJw4kaysLH2WJkmS9EDSa8gvW7aMI0eOsG7dOlauXMm2\nbdvYtm0bANOmTcPT05MdO3YQGRnJjBkzyM/PByAvL4/p06cTFRXFjh07cHV1Zfr06fosTZIk6YFk\np68HunLlCl999RUbNmygS5cuAEyePJnExER8fX3Jzs7myy+/RKlUMmXKFI4cOcL27duZMWMG27Zt\nIygoiIkTJwKwYsUK+vbty/HjxwkPD9dXiZIkSQ8cvYV8XFwczZo1o3v37tplL774IgDR0dF07twZ\npVKpXRcWFkZCQgIASUlJOmHu4OBAYGAgJ0+elCEvSZJ0H/T2dk1WVhY+Pj7s3LmTJ554gscee4w1\na9YghKCwsBBPT0+d27u7u1NQUADA5cuXb1rv4eGhXS9JkiTdG72dyV+7do3MzEy2bdvG22+/TWFh\nIQsXLkSlUlFVVYW9vb3O7e3t7VGr1QBUV1ffdv3dsLW13AuGGmuXPZiOpdcPsgdzYS616y3kbW1t\nuXr1KqtWrcLb2xuAnJwc/vOf/9CvXz/Kysp0bq9Wq3FwcABAqVTeFOhqtRpnZ+e7rsPZWXWPHZgP\n2YPpWXr9IHuQGujtV42npydKpVIb8ABt27aloKAALy8vCgsLdW5fVFREixYtAO64XpIkSbo3egv5\nkJAQampquHjxonZZeno6Pj4+hISEcPr0aZ2z9bi4OEJDQ7X3jY+P166rqqrizJkz2vWSJEnSvdFb\nyLdt25YBAwYwd+5czp07x8GDB4mJiWHs2LGEh4fTsmVL5s6dS1paGmvXriU5OZlRo0YBEBUVRXx8\nPDExMaSlpTFv3jx8fX3p0aOHvsqTJEl6ICmEEEJfD1ZZWcmyZcuIjY1FpVLx3HPP8fLLLwMNV9/M\nnz+fpKQkfH19WbBgAb169dLe9+DBgyxfvpyCggK6devGkiVL8PHx0VdpkiRJDyS9hrwkSZJkXszj\nGh9JkiTJIGTIS5IkWTEZ8pIkSVZMhrwkSZIVkyEvSZJkxUwe8lOmTGHevHkAzJs3D39/fwICAvD3\n99d+NQ5BfL3ExEQCAwPJzc3VWb5hwwYeeeQRwsLCWLBgATU1Ndp1arWa+fPnEx4eTv/+/Vm/fr3O\nfe80sYmh61er1bzzzjsMGDCAHj16MGPGDJ1B2gxRv757uN6nn37KoEGDdJZZSjc8zKsAAAkySURB\nVA+ff/45AwcOJCwsjJkzZ1JeXm5RPajVapYuXUqfPn3o27cvCxcupLq62ux6iIyM1LlNQEAAaWlp\n2vXGPp713YOpjmkdwoS+/fZb4efnJ+bOnSuEEKKiokIUFRVpvxISEkRwcLA4cOCAzv1qa2tFRESE\n8Pf3Fzk5Odrle/bsEeHh4eLHH38UycnJ4sknnxRLly7Vrl+yZIl46qmnxNmzZ0VsbKzo1q2b2Lt3\nr3Z9ZGSkmD17tkhPTxfR0dEiNDRU5OXlGa3+d999VwwZMkQcP35cpKWlialTp4pRo0YZrH5D9NDo\n0qVLIjQ0VAwaNEhnuSX0sGvXLhESEiJiY2NFamqqGD16tHj99dctqoeVK1eKyMhIcfr0aZGcnCyG\nDRsmli9fblY91NXVieDgYHHixAmd29XV1QkhjH88G6IHUxzTNzJZyJeVlYkBAwaI0aNHa3+gN5o8\nebKYM2fOTcvXrFkjxo4de9OO/dxzz4mPPvpI+/2JEydESEiIqK6uFteuXRPBwcHi+PHjOo8zfvx4\nIYQQhw8fFl27dhXV1dXa9RMnThQffvih0erv27ev2L17t/b7y5cvCz8/P3Hx4kW912+oHq6/39ix\nY3VC3lJ6GDFihFi9erX2++PHj4uIiAhRX19vMT1ERkaKLVu2aL/fvHmziIiIEEKYz/Nw8eJFERgY\nKGpqam55e2Mez4bqwdjH9K2Y7O2ad955h6eeeor27dvfcv2RI0eIi4vjtdde01mekZHB1q1bmTNn\nDuK6v+Oqr68nOTlZZ9KS0NBQamtrOXfuHOfOnaOurk5nPJywsDCSkpKAholLbjexiaHrF0Lw7rvv\n0qdPH51lABUVFXqv3xA9NNq5cyfV1dXaYSsaWUIPlZWVnDlzhscff1y7rHv37vzvf/9DoVBYRA8A\nLi4u7N27l/Lycq5cucK+ffvo3LkzAGfPnjWLHtLS0vD29r5pmHEw/vFsiB5McUzfiklCvvGHdbt5\nXGNiYhg5ciReXl46yxcuXMgrr7yCu7u7zvLy8nJqamp0Jh+xtbXFxcWF/Px8CgsLcXFxwc7u99GV\n3d3dqampobS09I4Tmxi6foVCQe/evXWGV960aRNubm74+fnptX5D9QBQUlLCypUrWbJkyU3rLKGH\n7OxsFAoFxcXFPPvss/Tv35+5c+dSUVFhMT0AzJ49m+zsbHr27EmvXr0oLy9n4cKFQMMIr+bQQ3p6\nOnZ2drz00kv069eP8ePHawPOmMezoXow9jH9R4we8mq1msWLF7No0aJb/vaDhnFujh49yrhx43SW\nf/nll9TV1TF69Gig4YfYqLq6GoVC8YeTj/zRxCWNNd1pYhND13+j/fv3s379embNmoWdnZ3e6jd0\nDytWrCAqKuqWZ0OW0MPVq1cRQrB06VKmTp3KBx98QGpqKrNnz7aYHgAuXrxIq1at2Lx5M+vWraOm\npoYVK1aYVQ8XLlygoqKCMWPGEBMTQ/v27Zk4cSIFBQVGO54N2cONDHlM347eJg35sz788EO6dOmi\n8xLmRvv27SMgIIB27dpplxUVFfH++++zceNGgJtentrb2yOEuGUoq1QqNBrNLdcBqFQqlEolV65c\nuWl948Qmhq7/evv37+e1115jwoQJREVFAX88scrd1m/IHg4ePEhCQgLLly+/5XpL6KHxrGrKlCk8\n+uijACxfvpwRI0ZQWFhoET1UVlayYMECNm3aRFBQkLaH8ePHM3PmTLPoobGmqqoqnJycAFi8eDHx\n8fF88803jBo1yijHsyF7mDJlivZ2hj6mb8foIf/dd99RXFxM165dAaitrQVg79692jHlDx48yGOP\nPaZzv19++YWysjLGjBmj3amFEDz55JO8/PLLvPjiiyiVSoqKimjbti0AdXV1lJWV0aJFC+rr6ykr\nK6O+vh4bm4YXMEVFRTg4OODs7IyXl5fOpVuN62+cuMRQ9TfuELt27WLOnDk8++yzzJkzR3t/Ly8v\nvdRvyB4yMjLIz8+nZ8+e2p9/bW0t3bp1IyYmxiJ6iIiIANDuQ43/F0KQl5dnET306tWL6upq/Pz8\ntPcJDAykrq7ObHoAsLGx0YZjo3bt2lFQUICrq6tRjmdD9tDIGMf07Rg95Lds2YJGo9F+/+677wLw\n5ptvapclJydrhyhuNGTIEMLCwrTf5+fnM2HCBGJiYujUqRMKhYKgoCDi4uIIDw8H4OTJkzRp0gR/\nf3+EENjZ2ZGQkEC3bt0AOHHiBF26dAEaJi6JiYlBrVZrXyLFxcXpfPBjyPqh4X3BOXPmMH78eJ2d\nASAgIEAv9RuyB41Gw7Rp07Tr9+7dy5YtW9i8eTNeXl7U19ebfQ/Ozs54enqSkpJCcHAw0PDhmo2N\nDa1bt8bR0dHse6iqqgIa3i8OCAjQ/l+hUNCmTRscHBxM3gPAhAkTtNeOQ8MvqpSUFMaNG2e049mQ\nPYDxjunbuqtrcQxg7ty5OpcrZWdnCz8/P1FUVHTb+zXe7sbrm7t37y5iY2NFYmKiiIiI0Lk2eOHC\nhSIiIkIkJSWJ2NhYERYWJmJjY4UQDde7RkREiNdee02kpqaK6Oho0a1btztek6qv+jUajXj00UfF\npEmTRGFhoc6XWq02WP367OFGX3311U3XyVtCD5999pno27evOHTokDh79qwYPXq0eOWVVyyqhxde\neEFERUWJU6dOiaSkJDFy5Egxa9Yss+ph/fr1Ijw8XBw4cEBcuHBBLFq0SPTt21dcvXpVCGGa41mf\nPZjymL6e0c/k76S4uBiFQvGnJvG+8cOmYcOGkZOTw6JFi6itrWXo0KG88cYb2vXz5s3jrbfe4vnn\nn6dZs2bMnDlT+xLMxsaGNWvWMH/+fKKiovD19WX16tU6c9Yasv5Tp06Rn59Pfn4+/fv3BxrOChQK\nBZs2bSI8PNwo9d9PD3+GJfQwefJk1Go1s2fP5tq1awwePJhFixZZVA+rVq3i7bffZurUqQA8/vjj\n2g+PzaWHiRMnolarWbZsGcXFxQQHB7Nx40YcHR0B8zie76eHxMREszim5aQhkiRJVszkY9dIkiRJ\nhiNDXpIkyYrJkJckSbJiMuQlSZKsmAx5SZIkKyZDXpIkyYrJkJckSbJiMuQlSZKsmAx5SZIkKyZD\nXpIkyYrJkJckSbJi/x+vtB8y8XD3jAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "buffered_cedar_lake = cedar_lake.buffer(100)\n", "ax = cedar_lake.plot(color='red')\n", @@ -10903,7 +1197,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:14:39.725104", @@ -10927,7 +1221,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:14:51.817901", @@ -10962,7 +1256,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:14:51.827398", @@ -10970,18 +1264,7 @@ }, "collapsed": false }, - "outputs": [ - { - "data": { - "text/plain": [ - "(474116.7938611487, 4977740.731593291, 475191.1664816106, 4979300.6081)" - ] - }, - "execution_count": 35, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "cedar_bb = buffered_cedar_poly.bounds\n", "cedar_bb" @@ -10996,7 +1279,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:14:52.107841", @@ -11004,18 +1287,7 @@ }, "collapsed": false }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAHyCAYAAAAOdL4mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xl8VPW9//HXZLbs+0oSkpAACSEkIYRFNtciaFyKonKt\n4IZakNpeva0/riJSi5XWymWrohaEahFQkcUiIIiAsiWEJQRI2LKRhezJZPbfH9SpKVtCQs4k+Twf\njzx85HxnJu+D8M53zvnOOSq73W5HCCFEl+SidAAhhBA3jpS8EEJ0YVLyQgjRhUnJCyFEFyYlL4QQ\nXZiUvBBCdGFS8kII0YVJyQshRBcmJS+EEF2YRukASpkyZQoBAQHMmTPnio/ZuXMnc+fO5dy5c6Sm\npvLKK68QExMDQHx8PCqViv/8wPAf//hHwsLCeOyxxxzjP/3vtm3bCA0NvWa+48ePM2vWLI4ePUpU\nVBQzZsxgyJAhbdtpIUS30y1n8hs2bGDHjh1XfczJkyd59tlnueOOO/j8889JSEhg0qRJGAwGAHbt\n2sXOnTvZtWsXu3bt4qmnniI8PJzbbruNgQMHNhvfuXMngwYN4o477mhRwdfX1/Pkk0/Su3dv1q9f\nzx133MG0adOorKxsl/0XQnQfXbbkFyxYwMsvv3zJ9pqaGubOncuAAQOu+vx//OMfpKamMm3aNKKj\no3nppZfw8vJi3bp1AAQEBDi+GhsbWb58OW+88Qaenp5oNJpm499//z0nT55k9uzZLcr+2Wef4eHh\nwaxZs4iMjOT5558nOjqaI0eOtP4PQgjRrXXZkr+SP/7xj9x7773ExsZe9XEFBQUkJyc329anTx+y\nsrIueez//d//MWzYMIYOHXrJmMViYd68eTz33HP4+Pg4tp84cYLHHnuM5ORkxo4dy8cff+wY27dv\nH7feemuz11m1ahWjRo1q0T4KIcSPulXJf//99xw4cICpU6de87EBAQGUlpY221ZSUkJVVVWzbcXF\nxWzYsOGKr7lx40bq6uqYOHGiY5vRaGTKlCmkp6ezfv16fvvb37Jo0SK+/PJL4OIvGD8/P1599VVG\njBjBww8/TGZmZmt3VwghulbJ79+/n9TUVFJTU/nrX//KunXrSE1NZeDAgezfv5/XXnuNmTNnotPp\nrvla48aN45///Cfbt2/HarXy+eefc+TIEcxmc7PHrV69mqSkJJKSki77OqtWrWLChAnNfua6desI\nCAjg+eefJzIykptvvplnn32WZcuWAdDY2Mj7779PcHAw77//PoMGDeLJJ5+85JeOEEJcS5daXTNg\nwADHbHjZsmWUlZXx0ksvAbBixQr69+/PTTfd1KLXGjlyJNOmTeP555/HZrMxZMgQ7rvvPurq6po9\n7uuvv+aRRx657GtUVlayf/9+Zs6c2Wx7fn4+ubm5pKamOrbZbDa0Wi0AarWahIQEpk2bBlxcybNr\n1y7Wrl3LlClTWpRfCCGgi5W8TqcjMjISAF9fXxoaGhzfb9myhQsXLjiK9ccZ+aZNm654KOSZZ57h\niSeeoK6uDn9/f1544QXCw8Md4+fPnyc/P5/bbrvtss//7rvviIyMJC4urtl2q9XKsGHDLin/HwUF\nBdGrV69m26KjoykpKbnWH4EQQjTTqsM1paWlTJ8+nSFDhjB69GjefPNNTCZTs8fU19czatQovvji\ni2bbd+/eTUZGBikpKUyePJmCgoJm40uXLmXUqFGkpaUxY8YMjEbjde7S5a1YsYJ169bx5Zdf8uWX\nX3Lrrbdy6623snbt2ss+fsOGDfzhD39Aq9Xi7+9PU1MTe/bsabZWPTs7m7CwsCsuizx06BADBw68\nZHtMTAxnzpwhIiKCyMhIIiMjyczM5KOPPgIgJSWF3NzcZs85depUs18wQgjREq0q+enTp2M0Gvn4\n4495++232bZtG/PmzWv2mLfeeovy8vJm20pKSpg6dSrjx49nzZo1+Pn5NTtRuWnTJhYtWsTs2bNZ\ntmwZ2dnZzJ07tw27BdOmTWv2QaewsDBHoUZGRuLh4YGHh4djpg9QUVHh+OUSHR3NypUr2bx5M2fO\nnOG///u/6dGjB6NHj3Y8/uTJk1ddpXPixInLjt9zzz00NTXxyiuvcOrUKb799lv+8Ic/EBQUBMDD\nDz/M8ePHWbBgAefOnWPevHkUFhZyzz33tOnPRAjR/bS45E+dOsWhQ4eYM2cOsbGxpKWlMX36dNav\nX+94zP79+9mzZw+BgYHNnrtq1SqSkpKYPHkysbGxzJkzh6KiIvbt2wfA8uXLmTRpEqNHj6Z///7M\nmjWL1atXt/ts/lpGjBjBV199BUBiYiKvvfYab775Jg888ABqtZp333232eMrKirw9va+4utVVlY2\nWzb5Iw8PD5YsWcLZs2e5//77efXVV/nFL37hON7eo0cPPvjgA7755hsyMjL49ttvee+99wgODm7H\nvRVCdAv2FqqtrbXv3Lmz2bZ169bZU1NT7Xa73W40Gu1jx46179q1y37LLbfYP//8c8fjnnjiCfv/\n/d//NXvuo48+an/33XftVqvVPmDAAPsPP/zgGLNYLPZ+/frZDx482NJ4QgghLqPFM3kvLy+GDx/+\n018OrFixwrFa5a9//SuJiYmXXb1SVlZ2ySw0MDCQ0tJSamtrMRqNzcbVajW+vr6cP3++1b+0hBBC\n/Nt1r6556623yM3NZc2aNeTl5fHpp586li/+p6ampkvWput0OkwmE01NTY7vLzcuhBDi+l1Xyc+d\nO5fly5fzzjvvEBsbyyOPPML06dPx9/e/7OP1ev0lhW0ymfD29naU++XG3dzcWpXL/q8rPQohhLio\n1SU/e/ZsVq5cydy5c7n99tspLi4mKyuL48ePO1azNDU18eqrr7Jx40bee+89QkJCLllxU1FRQUJC\nAn5+fuj1eioqKhyX8bVarVRXVztWm7SUSqWittaA1Wpr7W45BbXaBW9vN9kHBXX2/CD74Cx+3Ael\ntarkFyxYwMqVK/nLX/7CHXfcAUBoaCibN29u9rhHH32Uxx57jIyMDACSk5ObfeDIYDCQk5PD9OnT\nUalUJCUlceDAAdLT0wHIyspCq9USHx/f6h2yWm1YLJ3zL8WPZB+U19nzg+yDuKjFJZ+fn8/ixYt5\n5plnSE1NpaKiwjH207XmcPHEaUBAgONk6vjx4/nwww9ZsmQJt9xyCwsWLCAyMtJR6hMnTmTmzJnE\nxcURHBzMrFmzmDBhAnq9vj32UQghuq0Wl/zWrVux2WwsXryYxYsXA/8+Bn7s2LFmj/3P4+Lh4eHM\nnz+fN954g0WLFjFw4EAWLlzoGB83bhxFRUXMnDkTs9nMmDFjePHFF9uyX0IIIQCV3f4f96/r5Kqq\nGjrt2zuNxgU/Pw/ZBwV19vwg++AsftwHpXWpSw0LIYRoTkpeCCG6MCl5IYTowqTkhRCiC5OSF0KI\nLkxKXgghujApeSGE6MKk5IUQoguTkhdCiC5MSl4IIbowKXkhhOjCpOSFEKILk5IXQoguTEpeCCG6\nMCl5IYTowqTkhRCiC5OSF0KILqxVN/IWoquy2+0YDAYMhgZqa9XU1DRitdpxd3fH09MLnU6ndEQh\nrouU/HW7EXdNtGGxWADbDXr9jnB9+2C326mtraGgoIDq6irMZjN2ux1vbx8CAgIID49oc9Ha7XaK\ni4s4fjz3X1/HOHnyBEVFRZSVlf4r9+V5enoSGhpGjx49CAsLp0ePHvToEU5sbBy9e/clODj4knsb\nK6f7/j0Sl5J7vF43Ox9uzKGovKEDflbXY7fbKS3I5WzuPs6fzaG0IBejof6Kj3dRawgMjSYoog/B\nEX0Ii07EPzgKlcuVjzjabTbOnztGwcksSs4c5vy5Y5iaGgHQaHUEhYQTFBqOn38wXj5+uLp5oNe7\notFoQaXCbrdhNpkwGg001NVQW1NJbfXFr5rqSupqK7HbLv5d07t54h/ck5CeCYRG9SMsOhFPn8D2\n/UMTnUJ4kAdPjOuHRqN2inu8yky+DYrKGzhdcuViEpcy1F3gbPZGio59i6GuAr2bBz0i40i7aQx+\nQWF4+QTi7uGFi1qNChVNTQ0YGmqpLC+htOg0588cJmfvP7HbbWhdPQmISCQoKpXAqBQ8fEMBqK8q\npuDIVkqO76CxthydqwfhPeNIH3EXQWE98Q8Ox8c38Kq/IFrCarFQU1VGZXkxleXFlJ8/R/7hHRz8\nbg0Anv4RBEWl4B+RiLtPCG5egai1brioNU406xddnZS86BCG2nKO7/6YotwdaLU64pNvok/SECKi\n43G5Stl6EQBAz9j+jm1mUxMlBfkUnsnlXH4OR755D7vdhodvGDo3b6pKjqN386BP/8EkJA8nPKpP\nmwv9ctQaDf5BPfAP6tFse0NdNYVncjmbd4QzJ7/ndNb6yzxXh1qrx9XTH1ePAFy9AnD1DMTV0x83\nr0B8QuLQuXm1e2bR/cjhmutmZ/ayfTKTvwarxUze3tWc2v85eld30kfdRf+00ehd3dvtZxibGik4\ndYyzeYcxNNTSK34gvfsPRqtV/mSp3W6nsaGW2qoK6mouYDEbsVgsWC1mTEYD9bVV1NdWUVdTSX1t\nFY31NVw8Bq3CO6gn/uGJ+EckEhCRiN7dV+ndES0QE+bJK5PS5XCN6PrqLhSQtfHP1F8oYNDIcQwe\nfQ86vVu7/xy9qztx/dKI65fW7q/dViqVCg9PHzw8fQiLjL3m460WC7U1FRSfPUHhmeMUnj7AmYMb\nAfD0D8c3tA9+YX3xDeuDV2AULi7qG70LopOTkhc3xPm8H8ja+DbefoFMfO51gntEKR2pU1BrNPgF\nhOIXEEriwFEA1NVUUnj6GMXnTlJSkMeRY99ePCeh9yAoOpWg6IGE9BqEzs1b4fTCGUnJi3Z3OmsD\nR7e9T+/+6dw5/hm0Or3SkTo1Lx9/ElKGk5AyHACzyUhp0WnO5R/l9IlssjftxEWtISR2MJGJtxEU\nlYJKZvjiX6TkRbs6k/0VR7ctYeDwOxl958QbcsKzu9Pq9ETExBMRE89Nt4+noa6a3OzdHMncwd7P\nZ+Pq6U9k4m1Ep94lx/GFlLxoP8XHd3Jk63uk3jSG0WP/S5YJdhAPL1/SRoxj4PCxlBad5mjmDo5m\nfsmpA2uJSh5L76ET0OqVPwEolCElL9pF3YUCsr+eT98BQ7lZCl4RKpWK0IhehEb04qbbHyBr9yb2\n79xI0bFtJIx6nPCEm+X/Szck76VFm1nMTWSufwsf30B+dv+TcojGCbi5e3LT7eN5/NdziY7rx8F/\nzmPP6leprypWOproYPKvUbTZka3vYqgtI2PidLQ6V6XjiJ/w8vHnroem8fPJ/4Op/jzfLX+B01kb\nsNs74rMkwhlIyYs2KTi6lcKcbdx+72QCgsOVjiOuILr3ACZNf5Ok9Js5um0Jez+fjblJPsjXHUjJ\ni+tWX1XMka3vkpg2mn6pI5WOI65Bq9Nz692P8fPJ/0Nt6Ql2/eO3NFSfVzqWuMGk5MV1sdvtHN22\nBA9PH269+zGl44hWiO49gInPvoYaC99/+v9oqC5ROpK4gaTkxXUpO7WP8jNZ3HzXo/Jhp07ILzCM\nh6e8gqtex57Vr2KoK1c6krhBpORFq9ntdk7u+ZTw6ARiEwYqHUdcJw8vXx584mXULnb2fva6HKPv\noqTkRatdKDhC9fk8Bo++W9Zdd3JevgH8fNJLmBor2b/uTawWs9KRRDtrVcmXlpYyffp0hgwZwujR\no3nzzTcxmUwAHDx4kIcffpjU1FTGjh3LqlWrmj139+7dZGRkkJKSwuTJkykoKGg2vnTpUkaNGkVa\nWhozZszAaDS2cdfEjXLu8Cb8g8KJ7j1A6SiiHQQEh3Pvo7+mqjiXQ1/Pl+WVXUyrSn769OkYjUY+\n/vhj3n77bbZt28a8efOoqKhgypQpDB06lLVr1/L888/z+9//nm+//RaA4uJipk6dyvjx41mzZg1+\nfn5MnTrV8bqbNm1i0aJFzJ49m2XLlpGdnc3cuXPbd09Fu7CYmyg9tY9+qcNlFt+FRETHM/bBZynK\n3UHuzhVKxxHtqMWXNTh16hSHDh1i165d+Pv7AxdL/49//CORkZEEBQXxwgsvANCzZ09++OEH1q9f\nz+jRo1m1ahVJSUlMnjwZgDlz5jB8+HD27dtHeno6y5cvZ9KkSYwePRqAWbNm8eSTT/LSSy+h18tJ\nPWdSfiYLq9lIn6ShSkcR7axv0lDqayr59quPcfcOJir5zja9nrGxhrqKc9RXFtDUUIXF2IDVbMRF\no0Wt0aN19UTv7ourZwAevmG4eQfhopYrrbS3Fv+JBgUF8f777zsKHi6egKuvr2fUqFH069fvkufU\n1dUBcOjQIdLT0x3bXV1d6devH1lZWaSlpXH48GGef/55x3hKSgpms5nc3FySk5Ova8fEjXGh8Cje\nfkH4+gcrHUXcAAOHj6W2uoKD37yHq6c/IbGDW/xcu93GhcKjlObtoeLsQeoqCwFwcVHj7uWHq6s7\nWp0ei8WM2WSkyVBHU+O/T/a6uGjwCY3DP7wfIb0G4dcjHpVKThu2VYtL3svLi+HDhzu+t9vtrFix\ngptuuokePXrQo8e/73N54cIFNm7cyPTp0wEoKysjOLh5KQQGBlJaWkptbS1Go7HZuFqtxtfXl/Pn\nz0vJO5mqohwiouOVjiFuEJVKxehxj1JXU0Xmhj8x5IHX8e/x7//fNqsZk6EOk6EGY2MtJkMNJkMt\nTXUXOH9yNw01pXj5BBLVuz8977iX4LAofPyDUV9hhm61WqivqaS6sowLZUUUnztBwbGt5O/7DDev\nQCL63UJ0yl3oPeSSydfrut8bvfXWW+Tm5rJmzZpm241GI88//zzBwcE89NBDADQ1NaHTNb/fpk6n\nw2Qy0dTU5Pj+cuOtpVZ31G/+7ndyym63U19ZSNCgYUpHETeQi4sLYyc8x2dL57Lv89fxj0iksfo8\nhroLWEyNlzxerdbi6uFFdFwi/dOm0COqT4vP16jVGnz8g/HxDyYqrj8DbxqD3Waj6NwJcrO/Jyfz\nS/L3f0Fk/9voM+wR9O4+7b27N4RGo+rALrq66yr5uXPnsnz5ct555x1iY/9938rGxkaee+45zp07\nxyeffOI4nq7X6y8pbJPJhLe3t6PcLzfu5tb6+4F6e7f/PUQvx2KxdMjPcSbGhiqsFpMcqukGtFod\n9/3i12xZ+yHGJgOhcfF4+wbg7umNm7sXbh5euHl44+7hhVbn2q4n4VUuLkRExxMRHc+In00ge88W\n9n23geLc7+hz0yNEJ491+jtfeXm5odE4x/mFVqeYPXs2K1euZO7cudx+++2O7fX19Tz11FMUFhay\nbNkyIiMjHWMhISGUlzf/RF1FRQUJCQn4+fmh1+upqKggJiYGAKvVSnV1NUFBQa3eodpaA1ZrR8yy\nu99M3lBXAYCXT4DCSURH0Lu6c9dD0xTN4OrmwZCb7yUp/RZ2bV7F4W3vU3JiF8k/m46HX5ii2a6m\nrs6AWq3psEnn1bTq/cSCBQtYuXIlf/nLXxg7dqxju91uZ9q0aRQVFbFixYpms3uA5ORkMjMzHd8b\nDAZycnJITU1FpVKRlJTEgQMHHONZWVlotVri41t/7NdqtWGxdMSXvdXZOjub5eK7LbmMgeho7h7e\n3HHfk0x46n+xNF5gx/JfcSpzndOu6bdY7B002by2Fs/k8/PzWbx4Mc888wypqalUVFQ4xr755hv2\n7t3L4sWL8fT0dIxptVp8fHwYP348H374IUuWLOGWW25hwYIFREZGOlbcTJw4kZkzZxIXF0dwcDCz\nZs1iwoQJsnzSyVitFz8NqdZoFU4iuquImHgmTf8D3339KQe3f0Bp3vcM+NnzePg676xeaS0u+a1b\nt2Kz2Vi8eDGLFy9uNjZixAjsdjvPPvtss+3p6el89NFHhIeHM3/+fN544w0WLVrEwIEDWbhwoeNx\n48aNo6ioiJkzZ2I2mxkzZgwvvvhiG3dNtDe15uL5E4u59SfEhWgvWp0rt979GL37DWLTZ0vYsfwF\nUu78NWG95bMbl6Oy2+1d6rhDVVUDFktHvE2yM3vZPk6XdJ+LOtVWnGXHR7/i4Wdm0qNnb6XjCIHJ\n2MSmz97j5JF99Bs9mV5p9yodiZgwT16ZlI5Go8bPT/kbqDvHGh/RKejdL65Vrq+tUjiJEBfp9K7c\n/dA00kfdRc63f+PYdx/RxeatbeYca3xEp6B390Hn5s2F0kLo3/JPQgpxI6lcXBg55mHcPX34duPf\nMTfVkXTbs06/zLKjSMmLVvEK7En5+XNKxxDiEmnDx+Lq5sHXn72P2dhAyp2/lkUCyOEa0UruPqHU\n1lQqHUOIy0ocOIqMib+iLH8f+9b+HovJoHQkxUnJi1axmAy4urorHUOIK4rrl8b9k1+ipuQEu1f+\njoaq7n0PWyl50SpmYz16Nyl54dx69urHI8++iovNyHd//29KT+1XOpJipORFq9jMRrRa+ZCacH6B\nIZH81y9fp2evvuz/cg7FJ3YrHUkRUvKiVex2O3JDKNFZ6F3duWfiC/RNGkLWhrmUdMOil9U14jpI\ny4vOw0Wt5s4HnsVus3Fw0zw8/HrgHRStdKwOIzN50SouajVWa/e7zLLo3FxcXPjZz5/GPzCUA1/O\nwWSoUzpSh5GSF62i1rljNjYpHUOIVtPq9NzzXy9gMTWQtfHP2G1WpSN1CCl50SoanTtGo6w9Fp2T\nj18QGY9Mo+JcNnn7PlM6ToeQkhetotW702S49BZwQnQWPWP7kz4qg5Pfr6S2/LTScW44KXnRKjo3\nHxobapSOIUSbDL31fvwCQzm85a9d/oJmUvKiVVw9AzDU12Czdo/jmaJr0mi03HL3o1SVHKfk5PdK\nx7mhpORFq3j4hmC326muLFU6ihBt0jO2P1G9kzj5wz+69GxeSl60infwxfv3ni86pXASIdoufeTd\n1FWc40LBIaWj3DBS8qJVdK6eePr1oPjsSaWjCNFmkb36ERAcwdlDm5SOcsNIyYtWC4oeSH5uFnab\nc9yNXojrpVKpSEi5ibLTB7CajUrHuSGk5EWrhcQNoaG2Ug7ZiC6hd+JgrGYj5eeylY5yQ0jJi1bz\nD++Hq4cvJ47sVTqKEG3mGxCCp7c/lUU5Ske5IaTkRau5uKjxCoyhprJM6ShCtJlKpSI8qg/VxblK\nR7khpOTFdXHzDqSmukLpGEK0i4CQCOqripWOcUNIyYvr4uEXTnXF+S69vlh0H77+wZgMtZzO2oDV\nYlY6TruSkhfXxcOvB2ZTEw111UpHEaLNesUPJC4xnaPb3mfbh89w7vBm7PausXpMbhoiroupsQaV\nSoVao1U6ihBtptO7cs/EX3GhrIgftn3Boc0LKTiymaTbf9npbzAiM3lxXUpP7SOsZx/c3D2VjiJE\nuwkIDueuh6Yy4an/RWVpYNcn/8PZQ5s69WFJKXnRajarhYpzh+gVn6J0FCFuiIiYeP5r6mwSB47k\n8JbFHN6yCFsnvcmIHK4RrVZbfhqruYmI6ASlowhxw2i1Om6/93HCImP5+rP3MTXWknrXi53uEKXM\n5EWrVRYfQ63REtIjWukoQtxwiQNHce+jv6b8bCaZG+Zi62T3OJaSF61WVXSM0PBeqDXyRlB0D73i\nU8mY+CvKTx/g4D/f6VT3h5WSF61it9upKj5Gj6g+SkcRokP16pvCuIemUnJiF4c2L+o0Syyl5EWr\nNNaU0tRQTbiUvOiG+vQfzJgHnqHg6Dec2P2J0nFaRN5vi1a5UHAYlUolM3nRbfVLGUF9TSU7v16F\nf3g/gqJTlY50VTKTF61SfvYgIeG9cHXzUDqKEIpJH3k3Ub37c/Cf8zA31Ssd56qk5EWr1JTmER7d\nV+kYQihK5eLCz+5/Gpulidxdf1c6zlVJyYsWs5qNNNaUERAUrnQUIRTn5ePP8Nsf4Gz2P6m7UKB0\nnCtqVcmXlpYyffp0hgwZwujRo3nzzTcxmUwAFBYW8vjjj5Oamsrdd9/Nrl27mj139+7dZGRkkJKS\nwuTJkykoaP6HsnTpUkaNGkVaWhozZszAaOyat+LqzBqqSwA7fkFhSkcRwikMGHIbnj7+5O1drXSU\nK2pVyU+fPh2j0cjHH3/M22+/zbZt25g3bx4Av/zlLwkODmbNmjXcc889TJs2jfPnzwNQUlLC1KlT\nGT9+PGvWrMHPz4+pU6c6XnfTpk0sWrSI2bNns2zZMrKzs5k7d2477qZoD6amOgDcPbwVTiKEc9Bo\ntAwedTfFuTtorClVOs5ltbjkT506xaFDh5gzZw6xsbGkpaUxffp01q9fzw8//EBhYSGvv/46vXr1\nYsqUKaSkpLB69cXfbp9++ilJSUlMnjyZ2NhY5syZQ1FREfv27QNg+fLlTJo0idGjR9O/f39mzZrF\n6tWrZTbvZH680bFWp1c4iRDOI3HgKHSuHpw5uEHpKJfV4pIPCgri/fffx9/fv9n2uro6srOzSUxM\nRK//9z/+tLQ0Dh48CMChQ4dIT093jLm6utKvXz+ysrKw2WwcPnyYQYMGOcZTUlIwm83k5nbN23F1\nVlbLxUNzGq1O4SRCOA+tTk/y4Fs4d3gLFpNB6TiXaHHJe3l5MXz4cMf3drudFStWMGzYMMrLywkO\nDm72+ICAAEpLL759KSsru2Q8MDCQ0tJSamtrMRqNzcbVajW+vr6Owz3COaiUDiCEk0oecjtWcxMF\nR7cqHeUS17265q233uLYsWP8+te/xmAwoNM1n93pdDrHSdmmpqYrjjc1NTm+v9LzW0OtdkGj6Yiv\n7ld5P85S1Gq1wkmEcC5ePgHEJQ6i4PBm7HY7Go0Ktdo5Fi9e1yde586dy/Lly3nnnXeIi4tDr9dT\nU1PT7DEmkwlXV1cA9Hr9JYVtMpnw9vZ2lPvlxt3c3Fqdzdu79c+5HhZL57oSXXuoKcvHNyAMrc5V\n6ShCOJ3EgaM4+dGfKC86iZfXzWic5AJ+rU4xe/ZsVq5cydy5c7n99tsBCAkJIS8vr9njKioqCAoK\ncoyXl5dfMp6QkICfnx96vZ6KigpiYmIAsFqtVFdXO57fGrW1BqzWjrhwUOe4OFF7qinNJzQiRukY\nQjil6LgNkbUsAAAgAElEQVQkXN29yD+yk7q6R1GrNR026byaVr2fWLBgAStXruQvf/kLY8eOdWxP\nTk4mJyen2Wz8wIEDpKSkOMYzMzMdYwaDgZycHFJTU1GpVCQlJXHgwAHHeFZWFlqtlvj4+FbvkNVq\nw2LpiK/Oezuw61VfVURAsHwQSojLcVGriYrrT8GJA1gs9g6abF5bi0s+Pz+fxYsXM2XKFFJTU6mo\nqHB8DR48mLCwMH73u9+Rl5fHe++9x+HDh3nggQcAGD9+PJmZmSxZsoS8vDxefvllIiMjHStuJk6c\nyAcffMCWLVs4dOgQs2bNYsKECc1W6whlmY0NmJvq8fEPvvaDheimesYmUlp4gvp657meTYsP12zd\nuhWbzcbixYtZvHgxcHGFjUql4tixYyxcuJAZM2Ywfvx4evbsycKFCwkNDQUgPDyc+fPn88Ybb7Bo\n0SIGDhzIwoULHa89btw4ioqKmDlzJmazmTFjxvDiiy+2866Ktvjxgx4+fq0/hCZEdxEcFgV2OydO\nHGfw4MFKxwFAZe/MtyG/jKqqBiyWjnibZGf2sn2cLnGe39g30vn8vexf+wee+d0CPLx8lY4jhFMy\nm03Mn/Uk895ZwC9+MQk/P+Wv1uoca3yE07MYGwDQyyWGhbgirVaHu7sXZWXOc4kDKXnRIhaTARe1\nBk0nu1O9EB3NzcOTCxcqlY7hICUvWsRiakSnV345mBDOTqvVYTQ2KR3DQUpetIjZaJCSF6IFrFYL\nWq3zvOOVkhctYjE1SMkL0QImo9HxaX9nICUvWsRiNKB3dVc6hhBOzWazUVdbRViY83xoUEpetIjF\n1IjeiWYnQjijhroqbFYLERERSkdxkJIX12S322ioLsbVzVPpKEI4tdKiMwAkJvZXNshPSMmLayo5\nsZv6yiKSBt2sdBQhnNr5wjzcvfwID5eZvOgk6quKObrtfWL6phAe3VfpOEI4tdMnDhPeKxmVynnu\nNyElL67IUFvOnjWv4u7uzpifP610HCGcWk1VOeUlZ4hNGqF0lGak5MVlmQx1/LDmVbQuKh544re4\ne/ooHUkIp5aTtRO1Vk9UX+e4MNmPpOTFJex2Gwe/+guWpjoeeOJ3ePkEKB1JCKdmtVjI3rOViISb\n0TnZUmMpeXGJ01nrKTuTxV0P/RLfgBCl4wjh9HIP7aaxvprolLuUjnIJKXnRTFN9JSd2f0LykNuI\n7j1A6ThCOD2bzcae7V8SEjsYr8CeSse5hJS8aObYjqVoNBqG3/Gg0lGE6BROHP6B6gvn6T1kgtJR\nLktKXjhcKDxKUe4ORo15GFe5brwQ12S32fhh+5cERafiGxqndJzLkpIXANhsVo5+8x6hEbEkDhyp\ndBwhOoW8YweoLCuk99CHlI5yRVLyAoAzBzdSW3GO2+6ZjMpF/loIcS1Wi4XvNn1KYFQy/j3ilY5z\nRfKvWdDUUHXxZOvgWwkJj1E6jhCdwsE9m6mpPE+/UY8rHeWqpOQFJ39YiVrtwk1yslWIFmmsr+H7\nbz6n54AxeAdFKx3nqqTku7nGmlIKDm8mfdRduLnLVSaFaImt65aBSkPfmyYqHeWapOS7uZM/fIre\nzYPUoXcoHUWITuH44R84eWQv/W+dgs7NW+k41yQl343VVxVRmLONIaPvQauTG4IIcS2N9TVs/XIZ\nYb2H0aOvc12I7Eqk5LuxvD2rcff0YcDgW5WOIoTTs9vtbPlyKTa7iv63PaN0nBaTku+mDHUXKM7d\nQdqIsWi0OqXjCOH0ThzeQ97RffS/dQp6d1+l47SYlHw3debgejRandztSYgWaKyvYeu6pZ3qMM2P\npOS7IavFxLlDm0hKvwW9k10WVQhnY7fb2bL2b9jsLp3qMM2PpOS7oYpz2ZiNjfRPG610FCGc3qG9\n35CXs5+k25/rVIdpfiQl3w2dP/kDfoFh+Af1UDqKEE7tfGE+2zesICr5TsJ6D1M6znWRku9m7HY7\n5Wcy6RWf6lQ3GxbC2VSUFrJm6Vy8g3vRb/QTSse5blLy3UxDVRFNDVVExfVXOooQTqu6sow1f3sT\nvWcgg+9/BbWm865Ak5LvZirOHcLFRU14VB+lowjhtLZ88SGoXRny89fQunbuy31IyXczFecOERYZ\nJ59wFeIqrFYLvqF90Ht0vhOt/0lKvhux221cKDxCZGw/paMI4dTcPLwwNdUpHaNdSMl3I7XlZzA3\n1RPZS0peiKtxc/fEbKhVOka7kJLvRqqKc3FxURMaEat0FCGcmpu7p8zkTSYTGRkZ7Nu3z7Ft//79\n/PznPyc1NZX777+f77//vtlzdu/eTUZGBikpKUyePJmCgoJm40uXLmXUqFGkpaUxY8YMjEbj9cYT\nl1FdmkdgaE+0cq0aIa5Kpeo689/r2hOTycRvfvMb8vLyHNsqKyt57rnnyMjIYN26ddx555388pe/\npLS0FICSkhKmTp3K+PHjWbNmDX5+fkydOtXx/E2bNrFo0SJmz57NsmXLyM7OZu7cuW3cPfFTjVXF\nBATLB6CEuBaL2YSLWqt0jHbR6pLPz89nwoQJFBYWNtuemZmJRqPh8ccfJyIigmeeeQadTkd2djYA\nq1atIikpicmTJxMbG8ucOXMoKipyvBNYvnw5kyZNYvTo0fTv359Zs2axevVqmc23I0NdOd6+gUrH\nEMLpNTbUonX1UjpGu2h1ye/du5dhw4axcuVK7Ha7Y7uvry/V1dVs3rwZgC1bttDY2Ejfvn0ByM7O\nJj093fF4V1dX+vXrR1ZWFjabjcOHDzNo0CDHeEpKCmazmdzc3OveOdGcxdSEztVN6RhCOL3aqgrc\nvIKUjtEuNK19wiOPPHLZ7YMGDWLixIlMnz4dFxcXbDYbc+bMISoqCoCysjKCg4ObPScwMJDS0lJq\na2sxGo3NxtVqNb6+vpw/f57k5OTWxhSXYbdbcXFRKx1DCKdXWVFCRP+u0TutLvkraWhooKCggOnT\np3PzzTfz9ddfM3v2bJKTk4mJiaGpqQmdrvkJP51Oh8lkoqmpyfH95cZbQ63uqBMmtg76Oe3HbrNJ\nyQtxDQ111RgaavEOjrnu19BoVB3YRVfXbiW/ZMkSAJ577jkAEhISyM7O5qOPPmLmzJno9fpLCttk\nMuHt7e0o98uNu7m17vCCt3fHHI6wWCwd8nPak80mM3khrqX8/DkAvIOir/s1vLzc0GjarV7bpN1S\n5OTkEB8f32xbQkKCYwVOSEgI5eXlzcYrKipISEjAz88PvV5PRUUFMTEXf3tarVaqq6sJCmrdcbHa\nWgNWa0fMsjvXTN5ut2O3WXFxcY7ZhRDOqqzkLBqdG+4+Idf9GnV1BtRqTYdNOq+m3f7FBwcHN1tS\nCXDq1CkiIiIASE5OJjMz0zFmMBjIyckhNfXiJW+TkpI4cOCAYzwrKwutVnvJL45rsVptWCwd8WW/\ndhgnYrVcXKWk0ekVTiKEcysvOYd3YFSb1spbLPYOmmxeW7uV/IMPPsiOHTtYtmwZBQUFLF26lJ07\ndzJx4kQAxo8fT2ZmJkuWLCEvL4+XX36ZyMhIx4qbiRMn8sEHH7BlyxYOHTrErFmzmDBhAnq9lFJ7\nMDXWAODu0TWWhQlxo5QVn8Ur6PqPxzubNh2u+elNJ5KTk5k/fz7z5s1j3rx5xMTEsGTJEmJjL36E\nPjw8nPnz5/PGG2+waNEiBg4cyMKFCx3PHzduHEVFRcycOROz2cyYMWN48cUX2xJP/ITxXyXv5u6t\ncBIhnFdNZRlVFcXEDP0vpaO0mzaV/LFjx5p9f8stt3DLLbdc8fEjR47kn//85xXHn376aZ5++um2\nRBJXYPrXxZbcPaXkhbiSvJz9uKi1BEcPVDpKu5GzcN2EyfDjTF4O1whxOXa7nUP7txMck4ZGp/wJ\n0/YiJd9NGBtr0Ll6oHaSZV1COJuCUzlUlRcTnXKX0lHalZR8N2E21OHm3rlvYybEjWK32/l+62d4\nB0UTENm17n8sJd9N2Kxm1JqucVU9Idrb6RPZFJ09Tt/hjzZbUNIVSMl3EzabFbVaDtUI8Z8sFjPb\nN6wgMLI/wTFpSsdpd1Ly3YTdZkUln3YV4hL7v9tATVU5ibc+0+Vm8SAl3224aHRYzWalYwjhVGoq\ny9izfS0xAzPwCohUOs4NISXfTag1esxmuQGLED+1fcMKdG7e9Bn6kNJRbhgp+W5CrdFhsbTuss1C\ndGWncrPIz80kYfSTXWpd/H+Sku8m1BodllZem1+IrspsNvHN+o8IikohrPcwpePcUFLy3YRaq8ci\nh2uEAGDPti+or60i8danu+TJ1p+Sku8mNDp3bDYrZpMUvejeis+dZN+OdcQNfhBPv3Cl49xwUvLd\nhN7dBwBDQ53CSYRQjsloYOOni/EN7UPckAeUjtMhpOS7CVevQABqqsuv8Ughuq5t65fTWF9LytgX\nus2tMKXkuwl3n1AAKs4XKJxECGWcOLKXo5k7SLzlaTx8w5SO02Hkc+5dkN1up67iLOVnD1JVcpyG\nykIaqkoAqKkqUzidEB2vrqaSzV98SGjcUCISb1U6ToeSku9CGqpLKDiyhcKcbTTVV6LWaAmLiKVX\nXF/8g27B3dObnr0SlY4pRIeyWiys/8d8VGodA+74ZZdfTfOfpOQ7OZOhluITuyjO3UFl0TF0ru4k\nJN9E78RB9OjZB41Wp3REIRRjt9vZvnEFpYWnGTbh9+jcut+d0aTkOyGLycD5vD0UH/+O8rMHwW4n\nqvcAhjz4HHGJ6Wil2IUAYPfWNWTv2ULS7c/h1yNe6TiKkJLvJOx2GxVnsyk4upXS/L1YLSbCevbh\nlrsepU/SENw9ut8MRYgrsdvt7N6ymj3b1xI/4jGiBoxROpJipOSdnNVipuDIZk7t/4LG2jL8g8IZ\ndut99B0wDB+/IKXjCeF0zGYTW774gGMHdxE/4jHiBv9c6UiKkpJ3YsUndnPs2w9oqq+k74BhpAx9\njrDIuG534kiIljpfmM9Xq96lpqqc1HH/TXj8SKUjKU5K3gmZDHUc/eY9io5/R2xCGiPH/Bb/oB5K\nxxLCaVktFvZsX8ue7WvxCY5h5KNvd9nrw7eWlLyTKT21n8ObF2C3mhg74ZfEDxgmM3chrqLwTC5b\nvvgbVRUl9B46gbjBD+Ait7p0kD8JJ2E2NpKz/QMKjm4lpk8yd9z/FJ7efkrHEsJpGRrr2PHVJxzN\n3IFfWB9GPvo23kHRSsdyOlLyTqDiXDbZX8/HYmzgjvufon/aaJm9C3EFdrudnKzv+ParT7BabSTd\n/hw9k+5ApZKrtFyOlLyCbDYrx3etIH/f50TG9GPM+Cl4+wUqHUsIp2S32zl9Ips929dScu4k4fGj\n6Df6CfQevkpHc2pS8goxN9Wzf92bVBbmMPLOhxk0fBwqF5mJCPGfGuqqOXLgW3KydlJVUYJfWB+G\njJ9FUFSy0tE6BSl5BTTVV7L389cx1lfw4JP/j4iY7vlJPCFaYsvav5F/7AA9+o4g/tZp+If3k8OZ\nrSBTxw5mNjay57PXsBpreXjKK1LwQlxD+si7AHD3CSEgIlEKvpWk5DuQzWYla+OfMNZX8MDjvyUg\nuOvfekyItuoR1YcRP5tA3t7PqCw6pnScTkdKvgPlbP+A8jMHyXhkuhS8EK2QPvJuQsJjOLptCXab\nVek4nYqUfAc5nbWeMwc3cts9k4mK6690HCE6FZWLC7fc/Rg1Zac4d3iz0nE6FSn5DlB6aj852z8g\nbcQ4BgzuXnelEaK99OgZR/9BN3Nk2xKKj+9UOk6nIatrbrC6CwVkbfgTveIHMnLMw0rHEaJTu/2e\nx7GYTWRtfBuVi5qw3sOUjuT0ZCZ/A1nMTWSufwsfv0DGTXgOF1kHL0SbuKjV3Dn+GfokDSZzw58u\n3jRHXJW0zg2Us/1DDLVl3P3I82h1rkrHEaJLcFGrGfvAc0TFJpK14U801srN6a/mukveZDKRkZHB\nvn37HNtKSkp4+umnSUlJYcyYMXz11VfNnrN7924yMjJISUlh8uTJFBQUNBtfunQpo0aNIi0tjRkz\nZmA0Gq83nuKqinM5d/hrRt35sKykEaKduajVjJ3wHHpXVzLXvYXVYlY6ktO6rpI3mUz85je/IS8v\nz7HNarUyZcoU9Ho9X3zxBU888QQvvfSS4zElJSVMnTqV8ePHs2bNGvz8/Jg6darj+Zs2bWLRokXM\nnj2bZcuWkZ2dzdy5c9u4e8qw220c+eY9gntEM2DwbUrHEaJLcnP34p6Jv6K2/DQnvv9E6ThOq9Ul\nn5+fz4QJEygsLGy2ffv27ZSWlvLWW28RHR3NQw89xM0330xWVhYAq1atIikpicmTJxMbG8ucOXMo\nKipyvBNYvnw5kyZNYvTo0fTv359Zs2axevXqTjmbL83fR03ZKW6+61E5Di/EDRQSHsOw237Oqf2f\nU1VyQuk4TqnVDbR3716GDRvGypUrsdvtju379u1j6NChuLu7O7YtWLCABx98EIDs7GzS09MdY66u\nrvTr14+srCxsNhuHDx9m0KBBjvGUlBTMZjO5ubnXtWNKsdvt5O9bQ3hUXyKi5ZIFQtxo6SPvJjA0\niiPfvCsflLqMVpf8I488wm9/+1v0en2z7QUFBYSFhfHnP/+ZUaNGcd9997FlyxbHeFlZGcHBwc2e\nExgYSGlpKbW1tRiNxmbjarUaX19fzp8/39qIiqotP01VyQkGjRyndBQhugUXtZrbMh6jpjSfc0e2\nKh3H6bTbsYTGxkY+++wzamtreffdd7n33nv51a9+xdGjRwFoampCp9M1e45Op8NkMtHU1OT4/nLj\nraFWu6DRdMTX5S+SVJz7Ha7unkT3kcugCtFRekT1ISFlBMd3LcdsbFQ6DhqNCrXaOQ7VttuHodRq\nNX5+fsyaNQuAhIQE9u/fz8qVK3n99dfR6/WXFLbJZMLb29tR7pcbd3Nza1UOb+/WPf56WSyWS7bZ\n7XZKTuyiT+Jg1HKPSSE61IifTeD44R84c3ADvYc8qGgWLy83NBrn6IB2SxEUFHTJScaYmBhOnLh4\nMiQkJITy8vJm4xUVFSQkJODn54der6eiooKYmBjg4mqd6upqgoKCWpWjttaA1Wprw5601KU/o+7C\nORpry4hLHHSZxwshbiQvH38GpN/C0QNriU65C63e/dpPukHq6gyo1ZoOm3ReTbu9n0hJSeHkyZPN\nTsbm5+cTHn5xjXhycjKZmZmOMYPBQE5ODqmpqahUKpKSkjhw4IBjPCsrC61WS3x8605eWq02LJaO\n+LJf8rPLTh9Ao9XLCVchFJI+KgOruYkzBzcomsNisXfQZPPa2q3k77rrLmw2G6+99hrnzp3j73//\nO9999x0PPfQQAOPHjyczM5MlS5aQl5fHyy+/TGRkpGPFzcSJE/nggw/YsmULhw4dYtasWUyYMOGS\nE7zOrPz0fnrG9kOj1V37wUKIdvfjbP7UgbVOcWzeGbSp5H96hxZPT08+/PBDTp06RUZGBitWrOCd\nd95xzMTDw8OZP38+a9as4cEHH6Suro6FCxc6nj9u3DimTJnCzJkzeeqpp0hJSeHFF19sS7wOZW6q\np7Iol159U5SOIkS35pjNZ61XOopTUNl/enylC6iqasBi6Yi3SXZmL9vH6ZJ6AIpP7CJz/Vyefmke\nXr4BHfDzhRBXsmXt3zh+9AC3PbUEF7W2Q392TJgnr0xKR6NR4+fn0aE/+3KcY41PF3Ch4DC+gWFS\n8EI4gZSht2NsqOZ83h6loyhOSr6dVBXlEBHdV+kYQgggMCSS8Oh4zmZvVDqK4qTk24HVbKS24hxh\nkXFKRxFC/Evy4Fu5UJhDQ1WJ0lEUJSXfDn68nrVfQKjCSYQQP4pNSEOrc6Uod4fSURQlJd8ODP8q\neR+/1n1wSwhx42h1euISB1GU+y1dbH1Jq0jJtwNjQzUA7l4+CicRQvxUQvJwGqqKqT5/UukoipGS\nbwcmQy06Vw+5Xo0QTqZnbCLefkHdes28lHw7MBlqcXP3VDqGEOI/uLi4MPCmMRSf2EVTfaXScRQh\nJd8OTIZa3Dy8lI4hhLiMfqkjUXHxA4vdkZR8OzA11clMXggn5ermQXSfAZRIyYvrZTbU4uYuM3kh\nnFWvvilUl5zAYjIoHaXDScm3A1NTnRyuEcKJRcQkYLfbqCzuXPeMbg9S8u1ATrwK4dz8AkLRaHTU\nXyhQOkqHk5JvI7vNislQL4drhHBiKhcXfPyDaajufpc4kJJvI7OxAbDjKjN5IZyaX2AojVLyorVM\nhjoAOSYvhJPz8Q+msaZU6RgdTkq+jUyGWgA5XCOEk3Pz8MLUVKd0jA4nJd9GjpKXmbwQTs3V1QNz\nU0O3u1iZlHwbXSx5Fa6uyt/mSwhxbT+9N3V3ICXfRqamOnSu7rio1UpHEUJchc1mxcWl+/07lZJv\nI6vJgN7VTekYQohraKyvRefW/Q6rSsm3kcVkQKtzVTqGEOIa6msrcfX0VzpGh5OSbyOLyYBOLyUv\nhLO7UFaMu28PpWN0OCn5NrJazajVWqVjCCGuwmazUX7+HD4hsUpH6XBS8m2k1blj6oZXthOiM7lQ\nVojFbMQ3tLfSUTqclHwbaV09aGqsVzqGEOIqis+eQOWixjckTukoHU5Kvo3cvEOor7mAxWJWOooQ\n4gqKz53EJzgGtVavdJQOJyXfRp7+4djtdqovnFc6ihDiCorOnsQvLF7pGIqQkm8jn+BeqFQuFJ/L\nUzqKEOIyDA111FaV4RvWV+koipCSbyONzg2fkFgKTuUoHUUIcRmlxWcAuuXKGpCSbxdBUamcPpEt\nx+WFcEJlxafR6Nzw8A1VOooipOTbQY/4kZiaGjl9/KDSUYQQ/+HMycP490hApeqeddc997qdeQVE\n4hvam8zdm5SOIoT4CUNDHUVncgmJG6p0FMVIybeT3kMepOhMrhybF8KJ5OXsx26HkNh0paMoRkq+\nnQT3Ssc3pBfff/O50lGEEP9yNGsngVEDcPXwUzqKYqTk24lKpSJuyEMUnj5G4elcpeMI0e1dKCui\n+OxxIhNvUzqKoqTk21FI7GB8gmP4/pvPlI4iRLeXtXsTrh5+hPUepnQURV13yZtMJjIyMti3b98l\nY/X19YwaNYovvvii2fbdu3eTkZFBSkoKkydPpqCgoNn40qVLGTVqFGlpacyYMQOj0Xi98RTx42y+\n4FQORWeOKx1HiG7L0FBHTtZOolLG4dLNrxJ7XSVvMpn4zW9+Q17e5T/l+dZbb1FeXt5sW0lJCVOn\nTmX8+PGsWbMGPz8/pk6d6hjftGkTixYtYvbs2Sxbtozs7Gzmzp17PfEUFRo3GO+gKHZvWdPtbhgs\nhLPYv3MjqFyIGjBG6SiKa3XJ5+fnM2HCBAoLCy87vn//fvbs2UNgYGCz7atWrSIpKYnJkycTGxvL\nnDlzKCoqcrwTWL58OZMmTWL06NH079+fWbNmsXr16k44m3eh7/BfUHA6h/xjB5SOI0S3Y2isI+v7\nr4lOvQudm7fScRTX6pLfu3cvw4YNY+XKlZfMVE0mE6+++iozZ85Eq23+Fik7O5v09H8vY3J1daVf\nv35kZWVhs9k4fPgwgwYNcoynpKRgNpvJze18JzGDY9IIikpl+4a/Y2xqVDqOEN3K0czvsNmsxAy8\nR+koTqHVJf/II4/w29/+Fr3+0kt2/vWvfyUxMZGbbrrpkrGysjKCg4ObbQsMDKS0tJTa2lqMRmOz\ncbVaja+vL+fPd76rO6pUKpJufxaDoYGvP1sih22E6CB2m41De7cRGjcMvbuP0nGcgqa9XigvL49P\nP/2UL7/88rLjTU1N6HS6Ztt0Oh0mk4mmpibH95cbbw21uqMWDNmuOuruE8KAn03nwLo3OfjDZlKH\n/ayDcgnRfZ08uo/qCyUk3vErRXNoNKoO7KKra7eSf+WVV5g+fTr+/pe/G7per7+ksE0mE97e3o5y\nv9y4m5tbq3J4e7fu8dfLYrFc8zFhvYcSk3o33278O2GRcYRG9OqAZEJ0T1arhd1bPyMoKgW/Hspe\nO97Lyw2Npt3qtU3aJUVxcTFZWVkcP36cOXPmABdn7q+++iobN27kvffeIyQk5JIVNxUVFSQkJODn\n54der6eiooKYmBgArFYr1dXVBAUFtSpLba0Bq/Xqs+z20bKfkTBqElUluaz/x3wenfp7XN08bnAu\nIbqnrO+/pqqimBETf6N0FOrqDKjVmg6bdF5Nu5R8aGgomzdvbrbt0Ucf5bHHHiMjIwOA5ORkMjMz\nHeMGg4GcnBymT59+8Rh2UhIHDhxwnJzNyspCq9USH9+638hWqw2LpSNKvmXH2V3UWgbe9RLfrfgN\nm9a8xz0Tf4XKxTnexgnRVVRXlrF7yxqiUsY5xXXjLRY7LZ0I3mjt0jYuLi5ERkY2+1Kr1QQEBDhO\npo4fP57MzEyWLFlCXl4eL7/8MpGRkY5SnzhxIh988AFbtmzh0KFDzJo1iwkTJlz2BG9n4+4TQsrY\nF8g/lsnOzZ8qHUeILsVus7FpzRJ0bj7ED39U6ThOp00zeZVK1eKx8PBw5s+fzxtvvMGiRYsYOHAg\nCxcudIyPGzeOoqIiZs6cidlsZsyYMbz44ottiedUQnql0+/mx9m3/UM8PH0ZOPxOpSMJ0SVk/fA1\nRWeOMfSB2Wh0yh8ecTYqexdb31dV1dBhh2tmL9vH6ZL6lj/Dbid350fk7/uciJh4Jjz1vzcwnxBd\nX1VFCcvnzyCi/+30v3WK0nEAiAnz5JVJ6Wg0avz8lD8HJweHO5BKpSJ+xGN4+kdQeDqX44d+UDqS\nEJ3a1i+Xoff0J37kY0pHcVpS8h1MpVIxetJ8whNu5qtVizlz8pDSkYTolApOH+Nc/hHiR05Go3VV\nOo7TkpJXgEqlIvln0wiMSuHLFe9QdPaE0pGE6FRsVivfbvwYn5BYQuOGKB3HqUnJK8RFrSHt7v/B\nJzSOz5bN5Vz+UaUjCdFpZH2/ibLiM/S/9ZmrLgARUvKKUmv1pN/3Cj6hffhs2VxOHNmrdCQhnN6F\nssil/a0AACAASURBVCJ2bl5FdOo4/ML6KB3H6UnJK0yjc2Pwff9LaNxQ1n8yn51ff4rVeu1LJgjR\nHVksZjasXIi7dwgJI+Rka0s4x8UVujkXtZbUcb/BKzCKfTs+4Vz+Ue584Bn8g3ooHU0Ip7Jr8yoq\ny4oZPvEt1NrO/0HJjiAzeSehUrnQe8iD3PTwm9TVN7J8/gz2bF8rs3oh/uX08WwO7NxI3xGP4hMs\nF/trKSl5J+MX1odRv3iH6IEZ7N6yhhULX6GkIF/pWEIoqrqyjI2fLiSk1yB6pcnNQFpDSt4JqbV6\nEkY+xoj/+hMWu5ZP/voa2zeswGQ0KB1NiA7XZGhg7Yq/oHH1JuXOF1CppLZaQ/60nJhPcC+GT5xL\nwqhJZO/9hg/ffpFDe7/BZrUqHU2IDmE2Gfli+Z+prali0D3/D62rp9KROh0peSfn4qImdtB93Dx5\nIX6RKWxZ+yEfzf9/HMveLWUvujSr1cL6f8ynrPgcg+97Ba/AnkpH6pSk5DsJN+8gUsf+mhET/4TG\nI4SvPl3E3975H1lbL7okq9XCV6v+ytmTh0m753f49eirdKROS0q+k/ENjWPwz1/91/F6NT9s+0Lp\nSEK0K4vFzPpP5pN3dD+pd71EUFSK0pE6NVkn30n5BMdisxjpmTBA6ShCtBuzyciXf3+HwjPHSbvn\nd4T0GqR0pE5PSr6Tqq8sxFB3geg+UvKiazAZDXz+0Z8pLTpD+n3/S2BP+bvdHqTkO6nKomOoVC70\n6CnX7hCdX5Ohgc+WvcWFshIGj38N/x6tu7ezuDIp+U6qqvgYQWE90enlOtqic7tQVsT6fyygrqaK\nIQ+8jm9InNKRuhQp+U6qruL/t3fncVXV+R/HX5d74YIggmwCSiqZgAubmLtmu6EtqJOWZk3Zok2/\nlknNGc1trJ9N069GZ4w2l5lyoXLaxq3NXBJRAXdBQ0B2QRaBu53fH453Ik0FLvfce/08Hw8eyvne\nq+8vcN6ce+5Z8ugS0VXtGEK0mKIo7Nu5iW0bP8LLN5gB4xfhG3id2rFcjpS8k6qvKcPXL0HtGEK0\niMlkZPMn73B4/3a6xt9F9JDJcsGxNiIl74TMxkYM9TW079BR7ShCNNu5umr+tfoNigtPEj/qecKj\nhqodyaVJyTshs9kIgLuH7I8XzqWsKI8Nq9+g0WBg4LiFcpKTHUjJOyPFAoCbm5zLJpzHkcwdbPr4\nHbz9wxk8dhbtfIPVjnRNkJJ3QheuwifXrhHOwGI2s23TGjJ++JLwqGH0vXWa7H+3Iyl5J6TTe+Om\n1VFXe1btKEJcltlk4pNVfyY/9yAxI35Lt/hkufG2nUnJOyGNRoOntx91NZVqRxHisnZsTSP/xCH6\n3zeXoOti1Y5zTZKduk6qnX845SWFascQ4lfl5Rwg/fvP6TloohS8iqTknVSH4OspKTypdgwhLqmi\ntJDPPnyToOviiOx3j9pxrmmyu8bJmIwNlJ7Yw6msjRgba6mvq8HLu73asYSwqqwoJu2D/8XTJ4iE\n5N+jcdOqHemaJiXvBBRFoSL/AHlZX1F6Yg9mk4GQ8O5Ex92Dp5e32vGEsCovyWf9+6/i5u5N//vm\n4q5vp3aka56UvIMrz8/m2I4POVN4iIDgzgy8+V5u6H0jfh3lGGPhWI4fTOerdX+nnV8oN973Mnpv\nP7UjCaTkHZahvpqD375H4eFvCQnvzj2Tnqdbzzg5/Ew4HENjA9s2riHzx82E3jCI2Nt/h85dzsZ2\nFFLyDqgkdzdZm/8Kipnb7nuMXgnDpNyFQ7KYzax5ewFnKorpddNjdI0bJT+rDkZK3oGYjY0c+v4D\n8jK/ontUPLfe81u828tLXuG4Duz9nrLiPAZP+F/8Q+UGNo5ISt5B1JSfYu+Xr3GusoiRox8i9sZb\nZItIODSjoZGdWz8mrOcQKXgHJiXvAE4f207mxjfx8w/i3mnzCQzponYkIa5o386N1NfV0H/wg2pH\nEZchJa8iRbFwdMc/yflxPT37DuS2ex/F3UMu3CQcX2VFMT9++y8iYm/H26+T2nHEZbT4jFeDwcDo\n0aNJT0+3Ltu/fz/3338/8fHx3Hnnnaxbt67Jc3bs2MHo0aOJi4tjypQp5OfnNxn/4IMPGDZsGImJ\nicyePZvGxsaWxnN4xsZz7NmwmJwf0xh6+/2MGv+UFLxwCmaziS/XLMOjnT9RshXv8FpU8gaDgeee\ne46cnBzrsvLycqZOncqAAQPYsGEDTz/9NAsXLuS7774D4PTp00ybNo2UlBTS0tLw9/dn2rRp1udv\n3LiRZcuWsWDBAlasWEFmZiZLlixp5fQcU0PtGXaumUXl6YPcM/l5kobJlfmE89i5NY3SojziRz2H\nzsNL7TjiCppd8rm5uYwfP56CgoImy7ds2UJQUBD/8z//Q0REBKNGjeLuu+/m888/B2DdunX06dOH\nKVOmEBkZyeLFiyksLLS+Eli1ahUPPfQQw4cPp3fv3sybN4/169e73Nb8ubMl7FgzC7OhhgmPz6V7\nzzi1Iwlx1U6dOMTu7z6n56AJ+HXqoXYccRWaXfK7d+9m4MCBrFmzBkVRrMuHDRvG4sWLL3p8TU0N\nAFlZWSQlJVmXe3p6EhMTw759+7BYLGRnZ9OvXz/reFxcHEajkSNHjjQ3osNqPHeWH9Nexl0LE6bO\nISA4XO1IQly12upKvlyzlMAuvYnsd6/accRVavYbrxMmTLjk8rCwMMLCwqyfV1RU8OWXX/K73/0O\ngNLSUoKDm56KHxgYSElJCdXV1TQ2NjYZ12q1+Pn5UVxcTGys81+m1GxsZM+GRViMdYx94mV8/QPV\njiTEVbOYzXyxZhkWxY34Uc/LRcecSJscXdPY2MjTTz9NcHAwv/nNbwBoaGjAw8OjyeM8PDwwGAw0\nNDRYP7/UeHNotfa6erLlqh+pKArZW/9OTdlPjH9sNh3kujPCyWzfsp7TeUcZMG6BXJPmKuh0Gjt2\n0eXZvOTPnTvHk08+yalTp/jwww/R688fMaLX6y8qbIPBgK+vr7XcLzXu5dW8N3Z8fe3zRpDJZLrq\nx+Zl/ZuCQ99wx7gn6NQ5sg1TCWF7J47sI/37z4gaMpmAzr3UjuMU2rf3QqdzjCPUbZqitraWRx99\nlIKCAlasWEGXLv89qSckJISysrImjy8vLyc6Ohp/f3/0ej3l5eV069YNALPZTFVVFUFBQc3KUF1d\nj9l89VvZLXd1/8eZ00c49M27xA+8jZi4IW2cSQjbKi/J54u1ywiJTCIySW7+cbVqaurRanV22+i8\nHJu9nlAUhenTp1NYWMjq1auJjGy6xRobG8vevXutn9fX13Po0CHi4+PRaDT06dOHjIwM6/i+fftw\nd3cnKiqqWTnMZgsmkz0+lCtmaayrYu9nrxLaJZJhd05s1jyEUFttdSWfrnwdL98Q4u98Do3GMXY/\nOAOTSbHTxuaV2ey7tm7dOnbv3s3ChQvx8fGhvLyc8vJyzp49C0BKSgp79+4lNTWVnJwcZs2aRZcu\nXaxH3EycOJF3332XLVu2kJWVxbx58xg/frx1d4+zURSFrM1/RaOxkDzhabRax3jpJsTVqK4qZ03q\nQoxmC0l3z5bj4Z1Yq5pHo9FYT+LZtGkTiqLwxBNPNHlMUlISK1euJDw8nLfeeotFixaxbNkyEhIS\nWLp0qfVxo0aNorCwkLlz52I0Grn99tt54YUXWhNPVfkHtlByYg93P/icXElSOJXTp3L4/KO3sCha\nBo7/E16+zdtlKhyLRvn5we4uoLKyDpPJHi+TFBasSOdkUe1FI/U1ZXz3wdP07Hsjt9/3mB2yCNF6\niqKwd/tXbNu4hg4hkSQkv4hXeznUt7m6hfrwx4eS0Om0+Purf3tO2YfQBg599wEeej0jRj2gdhQh\nrtrOrR+z65tP6J54N1FDJuEmuxhdgryTYmPlp7IpOradYXfcj95TbmIsnEfp6Z8I6ppAzPCHpeBd\niJS8DVksZg5+m0polx5Exw5WO44QzaJxkzpwRfJdtaG8/V9RU57PyNGTZYURTkfn7o5iNqodQ9iY\nNJGNGBvrOLbrI/r0G0FIeDe14wjRbFqtOxYpeZcjJW8jJzL+hcXUyMCb71M7ihAtotXpMEvJuxwp\neRswGeo5ufdfxA24FR9ff7XjCNEiOp3srnFFUvI2UHjke8zGBhIG3a52FCFaTKtzx2ySknc1UvI2\nkH9gM11viKV9hwC1owjRChrApc6NFEjJt1p9TQVVxTlExw5SO4oQrWI2GdDqPK78QOFUpORbqTxv\nP6Dhuh591I4iRKuYTSY0Wne1Ywgbk5JvpfJTmQSHd8OrXXu1owjRKjXVlXh4dVA7hrAxKflWqiw6\nSufrblA7hhCtVllehE9Hubm8q5GSb4VzNZWcO1tCaMT1akcRolXMJhNnz5Ti4y8l72qk5FuhKO8Q\nAGFdeqicRIjWKS3KQ1Es+AbJ2dquRkq+FYrzDuHt25H2fnLopHBuRfnHcdO64xvcXe0owsak5Fuh\n+NQhwrpEXvmBQji4olM5+IV0R6uTo2tcjZR8CymKQvnpXLkYmXAJp08dxy80Su0Yog1IybdQcXER\nhoZzBAR3VjuKEK1SW11JzdkK/EN7qh1FtAEp+RbKyTkOQMegMJWTCNE6p0+d/1n2D5MteVckJd9C\nlZVnAPDylpOghHMrOnWcdr6BePp0VDuKaANS8i1UU1MDgIfeS+UkQrTO6VM5sj/ehUnJt5DBYECj\ncUOj0agdRYgWMxoNlJ7+CX8peZclJd9C3t4+KIpFrr8tnNqpnAOYzUaCusapHUW0ESn5FvLx8QHA\n0FivchIhWi73cAY+/mH4dJSjxFyVlHwLBQYGAXCurlrlJEK0jGKxkHtkH8GR/dWOItqQlHwLderU\nCYDa6iqVkwjRMkUFudTXVdNJSt6lScm3UEjIhZI/o3ISIVom93AG+na+chKUi5OSbyG9Xo+Xdwfq\nZEteOCGLxcLh/TsIiRyAxk2rdhzRhqTkW8HbN0C25IVTysvJprb6DF1636J2FNHGpORbwbtDILXV\nlWrHEKLZDmR8R/vACPw6yb0QXJ2UfCt0CAijsqJE7RhCNEt1ZTk5hzKI6H2bnMx3DZCSbwW/oM5U\nnSnBYjarHUWIq5ax/UvcPbzo0vtmtaMIO5CSb4WgsEgsZhNlxafUjiLEVamvqyF7z3dcF3cXOg+5\n7tK1QEq+FUK69ESr86Dg5GG1owhxVfbt2oSiKHSLv0vtKMJOpORbQavzoGN4L3KP7FM7ihBXZDQ0\nsG/nZrr0uRUPL1+14wg7aXHJGwwGRo8eTXp6unVZQUEBDz/8MPHx8SQnJ7N9+/Ymz9mxYwejR48m\nLi6OKVOmkJ+f32T8gw8+YNiwYSQmJjJ79mwaGxtbGs9uwnoOoeDkETnKRji8o9k/Ymioo3vi3WpH\nEXbUopI3GAw899xz5OTkNFk+bdo0goODSUtLY8yYMUyfPp3i4mIAioqKmDZtGikpKaSlpeHv78+0\nadOsz924cSPLli1jwYIFrFixgszMTJYsWdKKqdlHp+tvRKtz58Ceb9WOIsRlVVeV4+7pQzvfYLWj\nCDtqdsnn5uYyfvx4CgoKmizfuXMn+fn5zJ8/n+7duzN16lTi4uJYv349AGvXrqVPnz5MmTKFyMhI\nFi9eTGFhofWVwKpVq3jooYcYPnw4vXv3Zt68eaxfv97ht+bdPX3o3Gsk+3Ztxmg0qB1HiF/l6xeI\nob6GwiPfqx1F2FGzS3737t0MHDiQNWvWoCiKdXlWVha9evVCr9dblyUmJrJ//37reFJSknXM09OT\nmJgY9u3bh8ViITs7m379+lnH4+LiMBqNHDlypEUTs6fuCXfTcK6W/bs2qR1FiF/VK2EYMfFDyNz4\nJpVFx9SOI+yk2SU/YcIEZsyY0aTMAcrKyggObvoyMCAggJKS8ycLlZaWXjQeGBhISUkJ1dXVNDY2\nNhnXarX4+flZd/c4Mm//UCL63s6P32ygrvas2nGEuCSNRsOt9zxKcOh17Pvyzxgbz6kdSdiBzY6u\nqa+vx8PDo8kyDw8PDIbzuzAaGhp+dbyhocH6+a8939H1HDQB3HRs+vgdFItF7ThCXJJWp2PUb6Zh\nrK/m0HfvqR1H2IHNSl6v119UyAaDAU9PzyuOXyj3S417eTXvhA2t1g2dzh4fTU8H9/DyJfb2Zzh5\ndB8Z279qVmYh7MmvYzDD77yf/ANbKD+VrXYcl6TTadBqHeMIdZ2t/qGQkJCLjrYpLy8nKCjIOl5W\nVnbReHR0NP7+/uj1esrLy+nWrRsAZrOZqqoq6/Ovlq+vfc7iM5lMFy0L6d6PyKR72bZxDWERPQi7\n7ga7ZBGiufr0u4nDmTvJ3rKUYZP+D627/spPEletfXsvdDqb1Wur2OxXTWxsLIcOHWqyNZ6RkUFc\nXJx1fO/evdax+vp6Dh06RHx8PBqNhj59+pCRkWEd37dvH+7u7kRFNe8u8tXV9VRW1rX5R03Npe/t\n2nPQA/iH3sDnH/2V+nM1zcouhL1o3Ny49Z5HaKip4Niuj9SO43JqauqprnaM+z/brOT79+9PaGgo\nM2fOJCcnh7fffpvs7GzGjh0LQEpKCnv37iU1NZWcnBxmzZpFly5drEfcTJw4kXfffZctW7aQlZXF\nvHnzGD9+/EVv8F6J2WzBZLLHh3LJ/99NqyP+rhcwGI38e93fZf+8cFgdg8IYMPIeTuzZwNnSE2rH\ncSkmk4LZ7BjrfqtK/ueXKXVzc2PZsmWUlZWRkpLCZ599xtKlS633Qg0PD+ett94iLS2NcePGUVNT\nw9KlS63PHzVqFFOnTmXu3Lk8+uijxMXF8cILL7Qmnmq82gcSd8f/cPJYJnt++FLtOEL8qn5D7yIg\nOJyszX/FYpGrqboijfLzg91dQGVlHSaTPX6DKixYkc7JotpffcThbSs5sedTUh5+kYjI3nbIJETz\nFRfk8uHfXyZq6ENE9rtH7ThOr1uoD398KAmdTou/v7faceQCZW2p5+AHCIzoy2f/fJMzZafVjiPE\nJXXqHEnCoDs4tuOf1FU5/nkponmk5NuQm5uWhOTf4+EdwNp3Fsl154XDGnRLCnqvduT8uE7tKMLG\npOTbmLvemwHjFuDeriNrUxdyOk9OJxeOx93Dk36D76Tw8HfU15SrHUfYkJS8Hejb+TFg3EJ8Aruy\n/v1XOHksU+1IQlykb/+RaHU68g9sVTuKsCEpeTtx13vT/965BHTpy4ZVr3M0a5fakYRowkPvRY9e\n/Sg88i0udjzGNU1K3o607noSR88ktOcQvlizlKzdX6sdSYgmomIHUVdZRE15ntpRhI04xnm31xA3\nrY64O57BXe/Nlg3vYbGYiRtwq9qxhAAgvGsUWq075flZ+AZ1VTuOsAHZkleBRuNGr5seo3viGL7+\nbAX7d21WO5IQALi7exAacT1nCg6pHUXYiGzJq0Sj0RA97GEAvv5sBYBs0QuHEBQawfEjB9SOIWxE\nSl5FUvTCEQUEhbF/52YsZhNuWqkIZyffQZX9suiNhkb6Db2ryXWBhLAn7/b+KIoFQ0MNnt7+ascR\nrSQl7wAuFL1Wp2fbxo+oq6li2B0TcNNq1Y4mrkGeXuevt2JsqJWSdwFS8g5Co9HQc/AD6L392fdN\nKiWFJxn1m6do3yFA7WjiGqNxO79xochVKV2CHF3jYLrGjWLg+EWcOVPOyrde4vD+7XJiirArk7ER\nAK27p8pJhC1IyTugjuExDH3wLwRExPPVur/xr3+8QV1NldqxxDXCaDhf8jopeZcgJe+gPLx8Sbjr\nBRJHz6AgL4cP/m+GbNULuzAYGgDkvq8uQkrewYX2GMjwh95qulVfe1btWMKF1Z49g86jHToPL7Wj\nCBuQkncCTbfqj7PyzVmcPCpXshRto7qyjHYdgtSOIWxESt6JhPYYyLBJb+ITFMknK5fwzRerMJmM\nascSLqa06BQ+HbuoHUPYiJS8k9F7+9H/3j8SM+K3ZP64lX/+bS4VpYVqxxIuwmQyUnL6JH6hPdWO\nImxESt4JaTRudE8YzZCJS2gwmPnH0j+StXurvCkrWu103jEsZhMdw6PVjiJsREreifkGdWPoA68T\nFjOCLRveJ/37z9SOJJzc8YPpeLUPpENwpNpRhI3IGa9OTuuup+8tT+Hp3ZEfNn1Ee79AomMHqR1L\nOCGTycixA7vp1HOEXDvJhUjJu4geA37DuepSNqa9jY+vP126yctt0TxHs3ZSX1fNdX1vVzuKsCHZ\nXeMiNBoNfW95ko7hvfjX6r/Im7GiWSwWC3t++Irgbon4dAxXO46wISl5F+KmdSdx9IvofYL4eMUS\naqsr1Y4knMShfduoKMmnx43j1I4ibExK3sW4671JuvePGE0WPl31ZwyNDWpHEg6uob6OHzavI6zn\nEPzDotSOI2xMSt4FebUPpP+9f+RMeQkbVr9uveCUEJdy/mY1BqKHPaR2FNEGpORdlG9QN5Lu+QNF\n+Sf4ZOUS2aIXl3Ro/w8cydxB75GP49VeLmXgiqTkXVhA5170T3mZ4sI8Pl7xvzQ2nFM7knAgZcX5\nbPnkPcKjRxAePVztOKKNSMm7uI5hUdyYMo+y4gLS3n+Vhvo6tSMJB2A0NPLZP/+Pdv5h9L3lSbXj\niDYkJX8N8A+9gQFjF1BRXsL6916h/lyt2pGEyrLSv+ZsZRkJyb+X68a7OCn5a0SHkEgGjltAVWUF\n6979E/V1NWpHEioxGQ2kb/uCztHD8fGXY+JdnZT8NcQ3qBsDxi2gpvosa1IXUl1VrnYkoYLsPd9S\nX3uWyP5j1Y4i7EBK/hrjG3gdA8f/iQaDiQ///jKlp39SO5KwI0NjPbu++ZSwqOH4+IepHUfYgZT8\nNcinYziD738V93aBrEldyMljcpepa0X6ti8wNDYQNfgBtaMIO5GSv0bpvf0YMH4hHTv35tOVfyZr\n99dqRxJtrKw4n/TvP6dbwmi8fOWY+GuFTUu+uLiYJ554gsTERG6++WZWrFhhHSsoKODhhx8mPj6e\n5ORktm/f3uS5O3bsYPTo0cTFxTFlyhTy8/NtGU1cgs7dk8Qxs4joextbNrzHxrTlcnasizKZjHy1\n9m94+4fRY8Bv1I4j7MimJf/MM8/g7e3NJ598wksvvcQbb7zBli1bAHjqqacIDg4mLS2NMWPGMH36\ndIqLiwEoKipi2rRppKSkkJaWhr+/P9OmTbNlNPEr3Ny09Ln5CeLueIYjWT/yz7/NpaxYfsG6EsVi\nYWPacs6UFxF/57NodR5qRxJ2ZLOSr66uJjMzkyeffJKIiAhuvvlmhg4dyq5du9i1axcFBQXMnz+f\n7t27M3XqVOLi4li/fj0Aa9eupU+fPkyZMoXIyEgWL15MYWEh6enptoonrqBzzE0MnrgEg1nDP5b+\ngV3ffIrZbFI7lmglRVH45svVHMv+kfhRz+Eb1E3tSMLObFbynp6eeHl5kZaWhslk4sSJE+zdu5fo\n6GgyMzPp1asXev1/T7pITExk//79AGRlZZGUlNTk34qJiWHfvn22iieugm/gdQx54HW697uHnVs/\n5sO/v0xZ8Sm1Y4lW2P3tv9i/cxO9b36C0B4D1Y4jVGCzkvfw8GDOnDl89NFHxMbGMmrUKIYNG0ZK\nSgplZWUEBwc3eXxAQAAlJSUAlJaWXjQeGBhoHRf2o9W5EzVkEoMn/C/1jWZW//UPfPP5SrkcghPK\n/HEr27es44aB98vdnq5hNr39X25uLiNHjuS3v/0tx44dY8GCBQwcOJD6+no8PJruB/Tw8MBgMADQ\n0NBw2fHm0GrtdcCQxU7/jzr8Ol3PkAde5+Tez8jevZbDmTsZcutYeve7CTc3OSjL0aVv+5xt//6I\nrvF3yRutKtDpNHbsosuzWcnv3LmT9evX8/333+Ph4UFMTAzFxcX87W9/Y+DAgVRVVTV5vMFgwNPT\nEwC9Xn9RoRsMBnx9fZudw9fXq+WTaAaTyfX3V2t17lzf/z46x4zgyPbVbNnwPvt/3MrI5Ml07iY3\nl3BEisXCD5vXkv795/S4cRw3DJooN+VWQfv2Xuh0jnELbZulOHjwIF27dm2yRR4dHc3y5csJCQnh\n+PHjTR5fXl5OUND5Y3VDQkIoKyu7aDw6uvk3o66ursdstsdWtmtvyf+cp09H4m7/Hdf1vYND377D\n2ncWckOfGxl2+wR8/QPVjif+w2ho5N9pyzl+YDcxIx6he8IYtSNds2pq6tFqdXbb6Lwcm72eCA4O\nJi8vr8kW7okTJ+jcuTOxsbEcPHiwydZ6RkYGcXFxAMTGxrJ3717rWH19PYcOHbKON4fZbMFksseH\n0oqvlnPyD72BQfe/Qtwdz3DqxDHe/8vv+frzldScrVA72jWv5mwFa1IXcPJoFv3GzJKCV5nJpNhp\nY/PKbFbyI0eORKfT8Yc//IGffvqJr7/+muXLlzN58mSSkpIIDQ1l5syZ5OTk8Pbbb5Odnc3Ysecv\nkJSSksLevXtJTU0lJyeHWbNmERERQf/+/W0VT9iIRuNG55ibGPHwMiJvHMvBfTt498/Ps+mTdygp\nPKl2vGtSUX4u/1g2l5raWgbdv5hO19+odiThQDSKothskzQ3N5c//elPZGVl0bFjRx588EEmTZoE\nQH5+Pi+99BJZWVlEREQwe/ZsBgwYYH3utm3bWLRoESUlJSQkJDB//nzCw5t/GdTKyjpMJnv8BlVY\nsCKdk0XX9rXZjY3nyMv8irzML6mvqSA4rCt9k0YSFTsQD736L1Vd3ZHMHWz8OBXfoO70GzMLvbef\n2pGued1CffjjQ0nodFr8/b3VjmPbkncEUvLqsFjMlJ3M4FT2JkpPZqBz1xMVO5C+SSMJCZcTcGzN\nbDax6+tP+PHbDXSOHkGfW5+SM1kdhKOVvGO8/SucnpublpDI/oRE9qe+poxT2Vs4fmAz2enfEBzW\njZj4wfTolUT7DgFqR3V6Rfm5bP70XSpK8okaMpnIpHvlCBrxq6Tkhc15tQ+i56AJ9Bgw/j9bjeMr\nrwAAESdJREFU95v5/quP+PaL1YSEdyfsuh50Cu9OUOh1+AWEoNO5qx3ZKTTU17Fjy3r279pCh5Du\nDJn4Gh1CItWOJRyclLxoMz/fujc21FJyYg+lJzM4diiLfTs2AqDRaPD1D6ZjYCf8g0LpGBj2nz9D\naefTQbZQOV/u2enfsPu7f2EyW4gZ/jBd4+/CzU2rdjThBKTkhV24e/rQOWYEnWNGAGCor6amIp/a\nM4XUVRZSe6aA0oOZnDu7CUU5/56Kh76dtfD9A0Lws350wtNL/X2dba24IJfMH7dyNGsXZouZiD63\n0mPAb/D09lc7mnAiUvJCFR5evgR07kVA515NlptNRs6dLW5S/sUlheQezcJQX219nN7L53zhdwzG\nLyCEgKAwQsK74dcxBI2TXnZBURTOlJ0m93AGxw7spvT0T7TzDSTyxnF06X2LlLtoESl54VC0Onfa\nB3ShfUCXi8aMDbXUnS3mXFUxdVVFnKsqpqyiiLzcwzTUnb9shofei+DQ6wjp3J2QsK4OXfyKolBV\nUczpU8cpzDtG/onDnD1Tgtbdk6Dr4ki65wGCuyagkd0yohWk5IXTcPf0wc/zevxCrr9ozFBfzdmS\nXM6W5lJVksvh7D1k/PAlcL74g0K7EhjSmcCQcAKCOxMQEo5Xu/Z2y64oCvXnaqgoLaQ4P5fTecco\nPHWchnM1gAbfwC74d47nhmH9CIzoK4dDCpuRkhcuwcPLl6Cu8QR1jbcu+3nxny3J5cTxw2Slf41i\nMQPQzqcDAcHh//k4X/wdg8Lwatf+km/4KhYLJpMRo7ERk8Fw/k+jAZPRgMJ/TzcxGY0YGus5W1nK\nmbIizpSd5kxZEY3158+p0Ll74hfagy597sA/LBr/0Btw9/Rp46+QuFZJybdCeJDrv/nn3Hygexgw\n1LrEbDJSVV7ImZKfqCjOo7L0J06dOErW7q+x/Kf8tVodPr5+uHvoMRoaMRgaMRrOF3pzuOu96BjU\nBb/gCK6LGYJ/UBf8g7vgHxSBm1Z2wbiq7mH2e4V4NeSM1xaz/ZdNp9PQvr0XNTX1TnsBNGedg8Fg\n4MSJXE6ezKGqqoK8vHzq6urx9m5Hu3bt8PJqh5eXF15eFz7/7989PT3RaDRcWJU8PT1p186bjh07\nqnIIqLN+D37O+eegQadzkzNenVtbrLxu/7kGtRvOeylj55yDh4eeqKgYevfujb+/tx03FtqCc34P\nmnKFOTgGxzvkQAghhM1IyQshhAuTkhdCCBcmJS+EEC5MSl4IIVyYlLwQQrgwKXkhhHBhUvJCCOHC\npOSFEMKFSckLIYQLk5IXQggXJiUvhBAuTEpeCCFcmJS8EEK4MCl5IYRwYVLyQgjhwqTkhRDChUnJ\nCyGEC5OSF0IIFyYlL4QQLkxKXgghXJiUvBBCuDApeSGEcGFS8kII4cKk5IUQwoVJyQshhAuzackb\nDAbmzZtH//79GTJkCH/5y1+sYwUFBTz88MPEx8eTnJzM9u3bmzx3x44djB49mri4OKZMmUJ+fr4t\nowkhxDXJpiW/cOFCdu7cyXvvvcdrr73G2rVrWbt2LQBPPfUUwcHBpKWlMWbMGKZPn05xcTEARUVF\nTJs2jZSUFNLS0vD392fatGm2jCaEENckna3+obNnz/Lxxx/zwQcf0Lt3bwAeeeQRMjMziYiIoKCg\ngHXr1qHX65k6dSo7d+5k/fr1TJ8+nbVr19KnTx+mTJkCwOLFixk8eDDp6ekkJSXZKqIQQlxzbFby\nGRkZtG/fnn79+lmXPfbYYwAsX76cXr16odfrrWOJiYns378fgKysrCZl7unpSUxMDPv27ZOSF0KI\nVrDZ7pr8/HzCw8P59NNPufPOO7nllltYtmwZiqJQVlZGcHBwk8cHBARQUlICQGlp6UXjgYGB1nEh\nhBAtY7Mt+XPnzvHTTz+xdu1aXnnlFcrKypgzZw5eXl7U19fj4eHR5PEeHh4YDAYAGhoaLjveHFqt\n8x4wdCG7zEE9zp4fZA6OwlGy26zktVotdXV1vP7663Tq1AmAwsJC/vnPfzJkyBCqqqqaPN5gMODp\n6QmAXq+/qNANBgO+vr7NzuHr69XCGTgOmYP6nD0/yBzEeTb7VRMcHIxer7cWPEC3bt0oKSkhJCSE\nsrKyJo8vLy8nKCgI4IrjQgghWsZmJR8bG0tjYyN5eXnWZbm5uYSHhxMbG8vBgwebbK1nZGQQFxdn\nfe7evXutY/X19Rw6dMg6LoQQomVsVvLdunVj+PDhzJw5kyNHjrBt2zZSU1OZOHEiSUlJhIaGMnPm\nTHJycnj77bfJzs5m7NixAKSkpLB3715SU1PJyclh1qxZRERE0L9/f1vFE0KIa5JGURTFVv9YbW0t\nCxcuZPPmzXh5efHAAw/w5JNPAuePvnnppZfIysoiIiKC2bNnM2DAAOtzt23bxqJFiygpKSEhIYH5\n8+cTHh5uq2hCCHFNsmnJCyGEcCyOcYyPEEKINiElL4QQLkxKXgghXJiUvBBCuDApeSGEcGGql/zU\nqVOZNWsWALNmzSIqKoro6GiioqKsHxcuQfxzmZmZxMTEcPr06SbLP/jgA4YNG0ZiYiKzZ8+msbHR\nOmYwGHjppZdISkpi6NChvP/++02ee6Ubm7R1foPBwKuvvsrw4cPp378/06dPb3KRtrbIb+s5/Nw7\n77zDyJEjmyxzljn84x//4KabbiIxMZFnnnmG6upqp5qDwWBgwYIFDBo0iMGDBzNnzhwaGhocbg5j\nxoxp8pjo6GhycnKs4/Zen209B7XW6SYUFX3++edKz549lZkzZyqKoig1NTVKeXm59WP//v1K3759\nla1btzZ5ntFoVJKTk5WoqCilsLDQuvzf//63kpSUpHz77bdKdna2ctdddykLFiywjs+fP1+5++67\nlcOHDyubN29WEhISlI0bN1rHx4wZo7z44otKbm6usnz5ciUuLk4pKiqyW/4lS5Yot912m5Kenq7k\n5OQojz/+uDJ27Ng2y98Wc7jg1KlTSlxcnDJy5Mgmy51hDl988YUSGxurbN68WTl+/Lgybtw45bnn\nnnOqObz22mvKmDFjlIMHDyrZ2dnKqFGjlEWLFjnUHMxms9K3b19lz549TR5nNpsVRbH/+twWc1Bj\nnf4l1Uq+qqpKGT58uDJu3DjrF/SXHnnkEWXGjBkXLV+2bJkyceLEi36wH3jgAeWvf/2r9fM9e/Yo\nsbGxSkNDg3Lu3Dmlb9++Snp6epN/Z9KkSYqiKMqOHTuU+Ph4paGhwTo+ZcoU5a233rJb/sGDBytf\nffWV9fPS0lKlZ8+eSl5ens3zt9Ucfv68iRMnNil5Z5nDvffeqyxdutT6eXp6upKcnKxYLBanmcOY\nMWOU1atXWz9ftWqVkpycrCiK43wf8vLylJiYGKWxsfGSj7fn+txWc7D3On0pqu2uefXVV7n77ruJ\njIy85PjOnTvJyMjg2WefbbL85MmTfPjhh8yYMQPlZ+dxWSwWsrOzm9y0JC4uDqPRyJEjRzhy5Ahm\ns7nJ9XASExPJysoCzt+45HI3Nmnr/IqisGTJEgYNGtRkGUBNTY3N87fFHC749NNPaWhosF624gJn\nmENtbS2HDh3i1ltvtS7r168fn332GRqNxinmAODn58fGjRuprq7m7NmzbNq0iV69egFw+PBhh5hD\nTk4OnTp1uugy42D/9bkt5qDGOn0pqpT8hS/W5e7jmpqayn333UdISEiT5XPmzOHpp58mICCgyfLq\n6moaGxub3HxEq9Xi5+dHcXExZWVl+Pn5odP99+rKAQEBNDY2UllZecUbm7R1fo1Gw8CBA5tcXnnl\nypV07NiRnj172jR/W80B4MyZM7z22mvMnz//ojFnmENBQQEajYaKigomTJjA0KFDmTlzJjU1NU4z\nB4AXX3yRgoICbrzxRgYMGEB1dTVz5swBzl/h1RHmkJubi06n44knnmDIkCFMmjTJWnD2XJ/bag72\nXqd/jd1L3mAw8PLLLzN37txL/vaD89e52bVrFw8++GCT5evWrcNsNjNu3Djg/BfxgoaGBjQaza/e\nfOTXblxyIdOVbmzS1vl/acuWLbz//vs8//zz6HQ6m+Vv6zksXryYlJSUS24NOcMc6urqUBSFBQsW\n8Pjjj/Pmm29y/PhxXnzxRaeZA0BeXh5hYWGsWrWK9957j8bGRhYvXuxQczhx4gQ1NTWMHz+e1NRU\nIiMjmTJlCiUlJXZbn9tyDr/Uluv05djspiFX66233qJ3795NXsL80qZNm4iOjqZ79+7WZeXl5bzx\nxhusWLEC4KKXpx4eHiiKcslS9vLywmQyXXIMwMvLC71ez9mzZy8av3Bjk7bO/3Nbtmzh2WefZfLk\nyaSkpAC/fmOV5uZvyzls27aN/fv3s2jRokuOO8McLmxVTZ06lREjRgCwaNEi7r33XsrKypxiDrW1\ntcyePZuVK1fSp08f6xwmTZrEM8884xBzuJCpvr4eb29vAF5++WX27t3Lhg0bGDt2rF3W57acw9Sp\nU62Pa+t1+nLsXvJffvklFRUVxMfHA2A0GgHYuHGj9Zry27Zt45ZbbmnyvB9++IGqqirGjx9v/aFW\nFIW77rqLJ598ksceewy9Xk95eTndunUDwGw2U1VVRVBQEBaLhaqqKiwWC25u51/AlJeX4+npia+v\nLyEhIU0O3bow/ssbl7RV/gs/EF988QUzZsxgwoQJzJgxw/r8kJAQm+RvyzmcPHmS4uJibrzxRuvX\n32g0kpCQQGpqqlPMITk5GcD6M3Th74qiUFRU5BRzGDBgAA0NDfTs2dP6nJiYGMxms8PMAcDNzc1a\njhd0796dkpIS/P397bI+t+UcLrDHOn05di/51atXYzKZrJ8vWbIEgN///vfWZdnZ2dZLFF9w2223\nkZiYaP28uLiYyZMnk5qayg033IBGo6FPnz5kZGSQlJQEwL59+3B3dycqKgpFUdDpdOzfv5+EhAQA\n9uzZQ+/evYHzNy5JTU3FYDBYXyJlZGQ0eeOnLfPD+f2CM2bMYNKkSU1+GACio6Ntkr8t52AymXjq\nqaes4xs3bmT16tWsWrWKkJAQLBaLw8/B19eX4OBgjh49St++fYHzb665ubnRuXNn2rVr5/BzqK+v\nB87vL46Ojrb+XaPR0KVLFzw9PVWfA8DkyZOtx47D+V9UR48e5cEHH7Tb+tyWcwD7rdOX1axjcdrA\nzJkzmxyuVFBQoPTs2VMpLy+/7PMuPO6Xxzf369dP2bx5s5KZmakkJyc3OTZ4zpw5SnJyspKVlaVs\n3rxZSUxMVDZv3qwoyvnjXZOTk5Vnn31WOX78uLJ8+XIlISHhisek2iq/yWRSRowYoTz88MNKWVlZ\nkw+DwdBm+W05h1/6+OOPLzpO3hnm8O677yqDBw9Wtm/frhw+fFgZN26c8vTTTzvVHB599FElJSVF\nOXDggJKVlaXcd999yvPPP+9Qc3j//feVpKQkZevWrcqJEyeUuXPnKoMHD1bq6uoURVFnfbblHNRc\np3/O7lvyV1JRUYFGo7mqm3j/8s2mUaNGUVhYyNy5czEajdx+++288MIL1vFZs2Yxb948HnroIdq3\nb88zzzxjfQnm5ubGsmXLeOmll0hJSSEiIoKlS5c2uWdtW+Y/cOAAxcXFFBcXM3ToUOD8VoFGo2Hl\nypUkJSXZJX9r5nA1nGEOjzzyCAaDgRdffJFz585x8803M3fuXKeaw+uvv84rr7zC448/DsCtt95q\nffPYUeYwZcoUDAYDCxcupKKigr59+7JixQratWsHOMb63Jo5ZGZmOsQ6LTcNEUIIF6b6tWuEEEK0\nHSl5IYRwYVLyQgjhwqTkhRDChUnJCyGEC5OSF0IIFyYlL4QQLkxKXgghXJiUvBBCuDApeSGEcGFS\n8kII4cL+H1qR6NDKnHYMAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "from shapely.geometry import box\n", "from descartes import PolygonPatch\n", @@ -11045,7 +1317,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:14:52.116337", @@ -11072,7 +1344,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:14:52.173899", @@ -11080,18 +1352,7 @@ }, "collapsed": false }, - "outputs": [ - { - "data": { - "text/plain": [ - "(457, 47)" - ] - }, - "execution_count": 38, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "possible_matches = mpls.iloc[possible_matches_index]\n", "possible_matches.shape" @@ -11108,7 +1369,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:14:52.301515", @@ -11116,18 +1377,7 @@ }, "collapsed": false }, - "outputs": [ - { - "data": { - "text/plain": [ - "(208, 47)" - ] - }, - "execution_count": 39, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "precise_matches = possible_matches[possible_matches.intersects(buffered_cedar_poly)]\n", "precise_matches.shape" @@ -11142,7 +1392,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:14:53.608561", @@ -11150,18 +1400,7 @@ }, "collapsed": false }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVsAAAHyCAYAAABF3G3LAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xd8zdfjx/HXvTdTSEQWMqwYQci0Y8RW80fVHqVGhbZG\na1RVFS3f1qatVbRKkRS1KbGCICJECBkSMmVHkpvce39/pLltagXJvRnn+Xh4tPmscz43975z7udz\nPudIVCqVCkEQBKFESbVdAUEQhIpAhK0gCIIGiLAVBEHQABG2giAIGiDCVhAEQQNE2AqCIGiACFtB\nEAQNEGErCIKgASJsBUEQNEBH2xXQlgkTJmBmZsbSpUtfuM358+dZvnw5Dx8+xNnZmfnz51OnTh0A\nGjVqhEQi4b8P4H377bfUqFGDUaNGqdf/+7+nT5+mevXqr6zf3bt3WbhwIbdv36ZWrVrMmzePli1b\nvt1JC4KgNRWyZXvo0CHOnj370m1CQ0OZNGkSXbt2xcfHBwcHB0aPHk1WVhYAFy5c4Pz581y4cIEL\nFy4wfvx4rK2t6dy5My4uLoXWnz9/Hjc3N7p27VqkoM3IyGDcuHHUr1+fP//8k65du+Ll5UVSUlKx\nnL8gCJpXbsN27dq1zJkz55nlqampLF++nGbNmr10/127duHs7IyXlxe1a9dm1qxZVKlShYMHDwJg\nZmam/vf06VN27NjB4sWLqVy5Mjo6OoXW+/n5ERoayqJFi4pUd29vb4yMjFi4cCG2trZMnTqV2rVr\nc+vWrdd/IQRBKBXKbdi+yLfffku/fv2oV6/eS7eLioqiefPmhZY1aNCAgICAZ7ZdvXo1rVu3plWr\nVs+sy8vLY9WqVUyePBkTExP18nv37jFq1CiaN29Oz5492blzp3qdv78/np6ehY6zZ88e2rdvX6Rz\nFASh9KlQYevn58e1a9eYMmXKK7c1MzMjLi6u0LKYmBiSk5MLLXv8+DGHDh164TEPHz5Meno6w4YN\nUy/LyclhwoQJuLu78+eff/LZZ5+xfv16Dhw4AOQHvampKV988QXt2rVjyJAhXL9+/XVPVxCEUqRc\nhe3Vq1dxdnbG2dmZH374gYMHD+Ls7IyLiwtXr17lyy+/ZMGCBejp6b3yWL169eLo0aOcOXMGhUKB\nj48Pt27dIjc3t9B2e/fuxdHREUdHx+ceZ8+ePQwePLhQmQcPHsTMzIypU6dia2tLx44dmTRpEtu2\nbQPg6dOnbNq0CUtLSzZt2oSbmxvjxo17JvwFQSg7ylVvhGbNmqlbh9u2bSM+Pp5Zs2YB8Msvv9C0\naVPatGlTpGN5eHjg5eXF1KlTUSqVtGzZkv79+5Oenl5ou+PHjzN06NDnHiMpKYmrV6+yYMGCQssf\nPHhASEgIzs7O6mVKpRJdXV0AZDIZDg4OeHl5Afk9Hy5cuMD+/fuZMGFCkeovCELpUq7CVk9PD1tb\nWwCqVq1KZmam+ueTJ0/y5MkTdcAVtFCPHTv2wq/oEydO5P333yc9PZ1q1arx8ccfY21trV4fGxvL\ngwcP6Ny583P3P3fuHLa2ttjb2xdarlAoaN269TMhXMDCwoK6desWWla7dm1iYmJe9RIIglBKvfZl\nhIcPHzJu3DicnZ3x9PRk8+bN6nXR0dGMHTsWZ2dnevfuzYULFwrte/HiRfr06YOTkxNjxowhKiqq\n0Pqff/6Z9u3b4+rqyrx588jJyXnD03rWL7/8wsGDBzlw4AAHDhzA09MTT09P9u/f/9ztDx06xJIl\nS9DV1aVatWpkZ2dz+fLlQn1dAwMDqVGjxgu7c928eRMXF5dnltepU4eIiAhsbGywtbXF1taW69ev\ns337dgCcnJwICQkptE9YWFihoBcEoWx5rbBVqVRMmDABc3Nz9u/fz5dffsmGDRs4dOgQAB9++CGW\nlpbs27ePvn374uXlRWxsLJB/c2nKlCkMHDiQffv2YWpqWuim0rFjx1i/fj2LFi1i27ZtBAYGsnz5\n8jc+MS8vr0IPLNSoUUMdbLa2thgZGWFkZKRu+QIkJiaqA7527drs3r2bEydOEBERwYwZM6hZsyYd\nOnRQbx8aGvrSXg337t177vq+ffuSnZ3N/PnzCQsLw9fXlyVLlmBhYQHAkCFDuHv3LmvXruXhw4es\nWrWK6Oho+vbt+8avhyAIWqZ6DfHx8apPPvlElZmZqV7m5eWlWrhwocrPz0/l7Oysys7OVq8bM2aM\nas2aNSqVSqVauXKlauTIkep1WVlZKhcXF9WVK1dUKpVKNXz4cNXatWvV669evapq3rx5oeMVp9mz\nZ6tmz55daFnDhg1VPj4+6p+9vb1Vnp6eKldXV9XUqVNVCQkJhbZfsGCBavr06S8so1evXqrdu3c/\nd11wcLBqxIgRqmbNmqnat2+vfp0KXL9+XTVgwABVs2bNVAMGDFBdvXr1dU9REIRSRKJSvfmEj9eu\nXcPLy4sFCxYQGRnJ+fPn2bFjh3r92rVruXHjBps2bWLcuHE4OTkxdepU9fqRI0fi4eHB+PHjcXZ2\n5qefflJ/TVcoFDRr1oydO3c+099VEAShrHnjrl+enp6MGDECJycnunXrRkJCApaWloW2+Xdf1fj4\n+GfWm5ubExcXR1paGjk5OYXWy2Qyqlatqr4MIQiCUJa9cdiuWbOGH374gZCQEJYsWUJWVtYz/Vf1\n9PSQy+UAZGdnv3B9dna2+ucX7S8IglCWvXHYNmnShA4dOjB79mx279793GCUy+UYGBgAoK+v/8L1\nBSH7vPWGhoZFrtNbXBERBEEoUa/Vz/bJkycEBATQpUsX9TJ7e3tyc3OxsLDgwYMHhbZPTExU32G3\nsrIiISHhmfUODg6Ympqir69PYmKieghDhUJBSkqKev+ikEgkpKVloVAoX+e03phMJsXY2LDcl6mt\ncitKmdoqt6KU+e9ytem1wjY6OpqpU6fi6+urvr4aFBSEmZkZrq6ubN68Gblcrm6pXrt2DTc3NwCa\nN29e6OGBrKwsgoODmTZtGhKJBEdHR65du4a7uzsAAQEB6Orq0qhRo9c6IYVCSV6e5n6JFalMbZVb\nUcrUVrkVpUxte63LCI6OjjRt2pS5c+fy4MEDfH19+d///sfkyZNxd3enRo0azJ49m/v37/PTTz8R\nFBTEoEGDABg4cCDXr19n48aN3L9/nzlz5mBra6sO12HDhrF582ZOnjzJzZs3WbhwIYMHD0ZfX7/4\nz1oQBEHDXitspVIp69evp1KlSgwZMoT58+czatQoRowYgVQqZcOGDSQkJDBw4EAOHjzIunXr1E9X\nWVtbs2bNGvbt28e7775Leno669atUx+7V69eTJgwgQULFjB+/HicnJyYOXNm8Z6tIAiClrxVP9vS\nKDk5U2NfT3R0pJiaGpX7MrVVbkUpU1vlVpQy/12uNpWrIRYFQRBKKxG2giAIGiDCVhAEQQNE2AqC\nIGiACFtBEAQNEGErCIKgASJsBUEQNECErSAIggaIsBUEQdAAEbaCIAgaIMJWEARBA0TYCoIgaIAI\nW0EQBA0QYSsIgqABImwFQRA0QIStIAiCBoiwFQRB0AARtoIgCBogwlYQBEEDRNgKgiBogAhbQRAE\nDRBhKwiCoAEibAVBEDRAhK0gCIIGiLAVBEHQABG2giAIGiDCVhAEQQNE2AqCIGiACFtBEAQNEGEr\nCIKgASJsBUEQNECErSAIggaIsBUEQdAAEbaCIAgaIMJWEARBA0TYCoIgaIAIW0EQBA0QYSsIgqAB\nImwFQRA0QIStIAiCBoiwFQRB0AARtoIgCBogwracS09PIyMjQ9vVEIQKT4RtOZaamoKnZzvmzp2l\n7aoIQoUnwracUiqVTJ48nsjICJ4+fart6ghChSfCtpz67rtvOXXqBJUqVUIikWi7OoJQ4YmwLYeO\nHz/C8uVLadvWA0tLK6RSEbaCoG0ibMuZsLD7TJo0nvr1G9CyZWtUKpVo2QpCKSDCthzJyMhg1Khh\n6Ovr06NHLyQSyd9hK37NgqBt4lNYTqhUKj75ZAqRkeH06dMffX0D9TrRshUE7RNhW0788MM69u/3\noXv3npibm6uXq1QqpFLxaxYEbROfwnLg/PmzLFw4nxYtWtGgQaNC68Q1W0EoHUTYlnHR0VGMGzcS\nOzs72rVr/9xtRMtWELRPfArLsOzsbMaMGY5KpeKdd/o+N1RFy1YQSgcRtmWUSqXis8+mc+fObfr0\n6Y+hoeELtxUtW0HQPvEpLKN+/nkzv/32C126dMfKqvoLtxMtW0EoHUTYlkF+fn589tlMnJ1dadKk\n6Su3F/1sBUH7xKewjImNjWXAgAHUqFGTjh09X7m9aNkKQukgwrYMkcvljB49nOzsbPr06YdMJivS\nfiJrhbIqLi6Oo0cPo1QqtV2Vt6aj7QoIRffFF3O5fv0qo0ePpnLlyiiVqlfuIx5qEMqalJRkDh06\niLf3Hs6d8wXg2LHTODu7arlmb0d8CsuI3bt3smXLT3h6dsHW1rbI+4nLCEJZkJmZiY/PXkaOHEKT\nJvZMnz4VhSKPceM+ACA3N0/LNXx7omVbBty8eYOZMz/C0bEZTk7Or72/aNkKpZFcLuf06VN4e+/h\n2LEjPH2aibOzC3Pnfs477/TBysqKe/fusnnzRm1XtVi81qcwLi6OadOm0bJlSzp06MA333yDXC4H\n4Ouvv6ZRo0Y4ODio//vrr7+q97148SJ9+vTBycmJMWPGEBUVVejYP//8M+3bt8fV1ZV58+aRk5NT\nDKdX9j158oTRo4diZmZG587dXruVKlq2QmmiUCj466+/+OijKTRtas/Ike8RHHyLKVO8OHfuIn/8\ncZD33x+PlZUVkP/+hfJx3+G1WrbTpk2jatWq7Ny5k5SUFObOnYtMJmPWrFmEhYUxc+ZMBgwYoN6+\ncuXKAMTExDBlyhQ++ugjPDw8WLt2LVOmTOHAgQMAHDt2jPXr17N8+XLMzMyYPXs2y5cv5/PPPy/G\nUy178vLymDBhDCkpqQwfPgodnTf5IiKGWBS0S6VSERBwDW/vPezf70NcXCy2trYMHz6Cvn3706iR\nwyuPUR4aDEX+9IaFhXHz5k0uXLhAtWrVgPzwXbZsGbNmzeLBgweMHz8eMzOzZ/bds2cPjo6OjBkz\nBoClS5fStm1b/P39cXd3Z8eOHYwePZoOHToAsHDhQsaNG8esWbPQ19cvhtMsm5YsWciFC+cYNOg9\njI2N3+gYomUraEtIyB18fPbg7b2XyMgILCws6NOnL+++O4gmTZqhevX93X+1bMv+e7jIYWthYcGm\nTZvUQQv5L0R6ejoZGRnExcVRu3bt5+4bGBiIu7u7+mcDAwMaN25MQEAArq6uBAUFMXXqVPV6Jycn\ncnNzCQkJoXnz5m9wWmXfgQM+rF27io4dPbGzq/XGx1GpxDVbQXMiIyP44499eHvv4c6dYExMTOjR\noxdLlnxD69Zt0NXVwcBAl+zsXHWQvkyFDNsqVarQtm1b9c8qlYpffvmFNm3aEBYWhkQiYcOGDZw9\ne5aqVasyduxY+vfvD0B8fDyWlpaFjmdubk5cXBxpaWnk5OQUWi+TyahatSqxsbEVMmzv3Alm6tRJ\nNGrUGFdX91fv8BKiZSuUtLi4OA4c8Mbbey/XrvljaGhI167dmDFjFu3bd3irb6eXL/sBFKmbY2n3\nxr0Rli1bRkhICHv37uXWrVtIpVLq1avHyJEjuXLlCvPnz6dy5cp06dKF7Oxs9PT0Cu2vp6eHXC4n\nOztb/fPz1r8umUxzrbiCsoqzzNTUFMaMGUqVKsb06NHzmWMXTN74OpM46ujI0NF5uzqWxLmKMrVb\n7tuUmZqawsGDB9i3L78vrEwmo0OHjqxZs45u3bpTqVKl5+5X8IdfIpHwoi9cqampfPzxR5w8eVy9\nLCcn663ew5r+fT7PG4Xt8uXL2bFjBytXrsTe3h57e3s8PT3V1xUbNGhAREQEv/32G126dEFfX/+Z\n4JTL5RgbG6tD9nnrXzaS1YsYG7/+Pm+ruMpUKpWMHPkecXFxjBs3DhOTyi/cVl9ft0jHlEjA0FAP\nU1OjYqljWX59S3uZ2iq3qGU+ffqUgwcP8ttvv3HkyBFyc3Np164d//vf/+jduzempqZFLlNf/9no\n+fHHH1m1ahUJCQmFlm/evJn+/d8p8rFLq9cO20WLFrF7926WL19Oly5d1Mv/ewOnbt26XL58GQAr\nK6tnXsDExEQcHBwwNTVFX1+fxMRE6tSpA+R3D0lJScHCwuK1TygtLQuFQjOP9slkUoyNDYutzG+/\nXcLhw4cZOPBdDA0rk5X1bMteKpWgr69LTk5ukb5aKZVK5PI8kpMz36puxX2uokztl1uUMgv6wu7b\nt4fDhw8V6gvbu3cfdRctgOzs3FeWKZFI0NfXIScnD5VKRVBQEJ99Notbt4IKXcOVSqX8+utuunfv\nCVBs719teq2wXbt2Lbt372bFihV07dpVvXz16tUEBASwdetW9bI7d+6ow7N58+Zcv35dvS4rK4vg\n4GCmTZuGRCLB0dGRa9euqW+iBQQEoKurS6NGhad4KQqFQklenmafoy6OMo8fP8K33y6hbVsPateu\n+8ogVSpVRX5cV6Wi2F6Tsvr6loUytVXuf8tUKBT4+V3A23sPhw4dIDk5mQYNGvLhh1Po27cftWrV\nVm/7utdSpdL8z//MmbM4ePAAWVlZhdbLZDI+/XQun3wyCyi+921pUOSwffDgARs2bGDixIk4OzuT\nmJioXtepUyd++ukntm7dSpcuXTh37hwHDhxgx44dAAwcOJAtW7awceNGOnXqxNq1a7G1tVWH67Bh\nw1iwYAH29vZYWlqycOFCBg8eXGG6fYWF3WfSpPHUr9+AVq3aFOuxVSoxxKLwagV9YX189vLHH97q\nvrDDhg0vcl/YV/H23suyZd8SE/NYvUwqlaoHmenevRcbNmxS988vb4octqdOnUKpVLJhwwY2bNgA\n/HOn+86dO6xevZpVq1axatUqrK2t+e6772jWrBkA1tbWrFmzhsWLF7N+/XpcXFxYt26d+ti9evXi\n0aNHLFiwgNzcXLp3787MmTOL+VRLp4yMDEaNGoq+vj49evQq9p4DojeC8DK3b99m69Zt7Nu3l4iI\ncCwsLHjnnT7069cfZ2eXt37vREREMGvWJ1y7dg2FQgGAiYkJbdq049w5XzIyMqhTpx5bt/5K48aN\ni+OUSi2Jqiid3cqQ5ORMjX310NGRYmpq9MZlqlQqPvhgDMeOHWbYsJGYmZm/ch+pVIKhoR5ZWfIi\nfYXbuHEDEyZ8yKxZc167fv/2tucqyiw95T58GMkff+zDx2cvt2/fwtjYmB49etGvXz9atWrzhk8q\n/kOhULBkySJ27fqNjIwMAHR0dGjbth2rVq1mxoxPOHXqFDo6Osyf/xWTJ3sVx2m9VMHrq01iIBot\nWrduNQcO+NC374AiBe2bEC1bAfL7uhf0hb169QoGBoZ07dqVzz77lDZtPNDV1Xv1QV7h1KkTLFz4\nJZGREepldnZ2fPXVIgYM+D/OnTtHu3ZtyMjIwNXVlZ0792FqWu3FByxnRNhqia/vab7+egEtWrSi\nQYOGJVaOeIKs4kpNTVGPC3v+/FmkUikdOnRk1aq1dO3ajSpVKquf5nrThwYSExOYMWM658+fIy8v\nvzeCkZERQ4YM4ZtvlqGnp4dSqWTqVC+2b9+Gjo4OP/zwA4MHjyhXN7+KQoStFkRFPeSDD0ZTq1Zt\n2rVrX6JliZZtxfL06VOOHz+Ct/de/vrrBLm5ubRs2ZrFi5fSs2evYmlJKhQK1q1bzebNm0hJSQHy\n/6C7ubmzfv0GGjb8p/EQFhZG797592Rq1arNn38eo2nTBm/dlassEmGrYVlZWYwePQyQ0KtXHw20\nOsVMDeWdXC7H1/cvvL33cuRIfl/Y5s2d+OyzOfTu3Yfq1WsUSzlXr/ozd+5n3Lt3T90ntnr16sye\nPYexY99/ZvuNG3/is88+RaFQMmHCh3z99Tdv/SRjWSbCVoNUKhWzZn3M3bt3GDp0xBs9IfcmZYqW\nbfmjVCrVfWH//HM/ycnJ1K/fgMmTP6Rv337Url2nWMrJyMhg9uxZHD9+TD3GtIGBAb1792bVqjXP\n7aalVCoZPnwYhw8fokoVY37/3eetx/goD0TYatCWLRv5/fff6NWrN5aWVq/eoRjkh23FbU2UJyqV\nihs3ruPtvZf9+72JjY3BxsaGoUOH07dvPxo1cii2P6zbt29n9eoVJCTEA/lPfjVt2pSVK1fi7t7y\nhfvFxMTQuXMnHj16hJOTMwcOHMPAwKBY6lTWibDVkMuXL/H555/h4uJK48ZNNVauaNmWfffu3cXb\new8+PnsJDw/D3Nxc3RfWxcW12H6/d+/e5dNPZ3DzZqD6QYNq1arh5TWVGTNe3e/93LlzDBw4gJyc\nHCZPnsbChV8XS73KCxG2GhAbG8PYscOpWdOaDh08NV6+uGZb9kRFPcTHZx8+PnvUfWG7d+/JokWL\nad367fvCFsjIyGDGjJkcPnxIPQKfrq4u3bp1Z+3adUUen2TDhvXMmTMbmUzG9u276NGjV7HUrzwR\nYVvCcnNzGTt2BHJ5Du++OwSZTKbR8pVK0bItK+Li4ti27Rf27t2Dv/9lDAwM6dKlCx999AkdO3Yq\n1sfXN2/exPr1a0lMzB8gSiKRUL9+fb75ZlmhAaaKYubM6WzcuBETk6ocPfoX9erZF1s9yxMRtiXs\n668XEBBwnSFDhmFkpI0nWFSvNfatoFlpaakcOnQQH5+9nD17BqlUSvv2HVi5cg1du3Yr1nECrl71\nZ968udy9e0fdm8DMzIxJkyYzY8bMN2oIvPfeYI4ePULt2nU4c8bvhePYCiJsS9T9+6Fs2LCWDh06\nUbOmtVbqIK7Zlj6ZmZmcOnUcb+89nDx5nNzcXFq1as3y5cvp2rU7JiZFHxf2VZKSkvj005n4+p5W\njxmtr69Pt27dWLNmHVZWFuTmKoo0Rc2/5eXl0blzJ27cuIG7e0sOHjwmLle9ggjbEpSUlARAnTr1\ntFYHlUr0sy0N0tJSOX78KIcOHeDUqZNkZ2fRrFlzPv10Nn369KVmzZpv/TRXAYVCwapVK9i2bav6\noYOCoUxXrFih7k3wpn+E09LSaNOmFVFRUfTp05/Nm7e/VX0rChG2JUipzB/lSJtf40XLVnsePYrm\n6NHDHD16iIsXz5Obm4uTkzOffDKdHj16Fltf2AKnT5/iq6++JCwsTL3MysqKGTNmMHHi5GIpIyEh\nHnd3N5KTk5k82YuFC5cUy3ErAhG2Jaig+4y2w070s9WM3Nxc/P0vc/LkcU6dOs6dO8Ho6OjQqlVr\nPv98Ad26dSv2y0mPHj1i1qzpXL58iby8PAAqVapEv379WbFiZbE+OBMTE0OLFm6kpaWxaNFSJk6c\nUmzHrghE2JaggvE7tRl2SqVS62FfXqlUKu7du4uv71+cOXMaP78LZGZmYGFhQYcOHZkyxYv27Tti\nYmJSrOXK5XIWL17E3r2/q4cwlMlkuLu3YPXqNSUyLuyjR49o0cKNjIwMli9fyejRzz6eK7ycCNsS\n9E/YarcexRm2Bw/uJyEhkWHDRhZbX8+yQqVS8fBhJJcuXeTcOV/Onj1DbGwM+vr6uLm54+U1FQ+P\n9jRp0rRErpPv3+/Dt98u5dGjR+plNja2zJ//BUOGDCn28gokJMTTsqU7GRkZrFq1jqFDR5ZYWeVZ\nxfq0aNg/lxG017J91Q0yS8v8iTovXw5Uzxn3IuHh4UyY8D45OTls2vQjy5atoFWr1sVa39JELpcT\nFBSIv/9lrly5xJUrl4mPjwOgSZMm9OvXn3btPHB3b1Fi41zcvXuX2bM/JTAwQP3Hu0qVKgwdOozF\ni5eoZ6cuKUlJSbi5uZKens73368WQfsWRNiWoNJ+g8zB4Z9wbdmyOcbGxty/H/3C43h5eWFgYEi/\nfv/H+fO+9O3bnUGDBrNgwddYWVUvtH1ERDh79+4mMDAAc3MLvv9+DRkZ6ejrG5R4QLwJlUpFdHQU\nN25c4/btQM6fv0Bg4A1ycnLQ1zegWbNmDBr0Lm5ubri4uJbooNdZWVnMmzeHw4f/VE+IqKOjQ4cO\nHVm3bj22trYlVva/PX36FHd3V1JSUliyZBkjRozRSLnllQjbEqTtG2QFfSef17INDw/nyZMn6vVK\npZK0tDQsLY0ZPnw0K1asKbT9kSOHOHz4MP37/x92drUYOnQkQUE3OXz4EEeOHOLTT+cxZMgwjh07\nwrZtW7h2zR8AXV09cnPlnDx5nLi4WN5//wO++ea7Ej7zl8vKyiI09C7BwbcJDr5NUFAgt28HqbtJ\n2dnZ4eTkTI8ec3Bzc8fBobFG/kBs3ryZ77//nvj4ePWyevXqsWTJUnr06Fni5f9bXl4erVq1IDEx\nkc8//5Lx4ydptPzySIRtCVIotH8ZIb/8Z8O+ZcvmQH7Q9ujRg8zMTHx9fQH49ddt/PrrNm7duo+l\npSWZmZl8+ukMGjRoQP36Df6esVdCs2bNMTIywsdnLwsWzGXBgrlIJBIcHPJv0LRp0w4zMzMOHtyP\nmZkZcXGxXL3qr5FzViqVxMbGEB4eRkREOPfvhxIaeo/Q0LtERkao/xDa2trRpElTxo37gCZNmuLk\n5IStbc1i6e9aFNevX2PevDncuROs/uNoamrK+PEfMGfOXI0/3l2gS5fOREZG8sEHk5g2bbpW6lDe\niLAtQaW1ZTt16j99Lnv06AHkT2XSq1cvrl+/TmxsLABNm9pjalqNESNGk5AQz6BBk5FIJKSnp7Nx\n4wb1NcR/8/TszJQp0xg4sN/ffTLzxzGtW7ceNja2+PldLLa+vwqFgujoKMLCHhAeHkZ4+APCw8MJ\nDw/j4cMI9firEokEGxsb6tWrj6dnZ+rXr0/Dho1o0KDhM4/DauKST1JSEnPmfMpff51SP9Wlp6dH\nt27dWLVqDebmJTMfXVENGzaUgIDr9O7dj8WLl2m1LuWJCNsSVHDNVtth+1+7d/8K5I+y/18uLi4A\nHD16FKVSSXJyEmvWrKBtWw+2bt1Kenr6M/vo6OigUOQ/8nnhwgWmTJmGoaEhSUlPsLdvAMDjx49x\ncGhMenrB/zJxAAAgAElEQVQaiYmJRR5NSqFQ8PBhJPfuhRIeHkZY2APCwh4QERFGZGSEOqx0dHSw\ns6tFrVq1aNu2LcOGDaNWrdrUqlUbW1vbYh3E5U0UTCWzZctmkpOTgfz3RePGTfjuu+9o27Ydurqy\nN3p0tjh99dVCDh36E2dnF7Zs2aG1epRHImxLUEHLT9sDwfy7ZVu79j8BWxCsz9OjRw/i4uK4du0a\nABcunHtmm/bt26tbhkFBQURFRZGdnX9Dx8SkKk+ePKFSpUpIpVISExOwsLAE4P79e4XCVqFQ8OhR\ntDpIC0I1PPwBkZER5ObmTySoo6ODra3d33O3eTBixCjq1KlDnTp1qFnTulR2RfP1PcPChQsIC3ug\nDlELC0s++eQTpkwp+Sm8X8eePXv47rv/Ub16dQ4dOqnt6pQ7pe/dWY5ou+tXwYe7oGWdl5fH06dP\n1etDQ0OpX7/+C/e/fv36M8ucnZ2pUePZOa0cHR2JiopS/2xlZUVMzGOUSiUGBgakpKSQkZEGwLZt\nWzh8+M8XtlBtbe2oXbs27du3p37997GxyW+xWlvblMpA/a+wsAfMnTsbf/8r6qe6DA0N6d27DytX\nrirWkbyKS2joPSZO/ABDQ0NOn75YJl7nska8oiXon4caSsc1202bfii0PjQ0lNDQ0EIt1H9r2LAh\nISEh2Nra4ujoWORyfXz2qe+of/LJVHXAb9r0EwB//LFP/RW/oIVau3Zt6tSpUyhQpVJJsQ3OUtKS\nkpKYP38uJ0+eUA/CLZPJcHV1Y9Wq1a/1+mmaXC6na9cuKJVK9u49gJmZdq8Zl1cibEtQablBJpFI\niIl5zLffLqZnz3f44IOJTJv2IdHR+X1qz549S8OGDalXr/DoZHXr1qVu3bqFlmVkZBAQEPDca7cF\nduzYpi5XV1eXevXsMTMzx8PDA1dXN9zdW5TKvravKzY2hq+//oozZ06rXw+JREK9evVYsGAh/fr1\n03INi+add3qSnJzMF18seun8YsLbEWFbgrQVttHRURw9epi8vPxrnTKZjPnz56Cnp0e/fv0ZOXIo\nmZmZhfZJSkpSh21RAvVFTExMWL/+R1xcXMvdQNIKhYJdu3ayY8d27t8PVV9LhvybjdOmfVTqrsO+\nyhdffMHly5fx9OyCl9dH2q5OuSbCtgRpI2zlcjnHjh3G1taO3r37IpPJkMl0OHDAB4BJkz547n4J\nCQkcPny4SGXIZDLs7GqzfPl36q5d5U1iYiJ79uzh7NkzhIaGkpycpL6uDPmvgb29PV5eUxk1arTW\n+sO+jZMnT7J8+XKqV6/Ozp17tV2dck+EbQkqGHFLk2F79uwZnj7NYuPGnzEyqkyPHh0LDVxSVFKp\nlFq16qgDtSxdP30dGRkZHDiwn1OnThAScoeEhAR1/9x/09XVxdLSik6dOjJv3ufUqlVb85UtRhkZ\nGQwfPhRdXV1OnPAVA8xrgAjbEqTp4Q0fPozkxo3rLFmyjLp169G/f6+XBu1/A7U8S01N5c8/D+Dr\ne4aQkDvEx8eTnZ39TJ9WmUyGmZkZderUoU2btgwe/F6pvrn1pgYNGkhWVhY7duzA2tqavDyltqtU\n7omwLUEFlxE0QS6Xc/z4UVq1asP770/Ax2cvFy+eB/Kvo27evK3cBypAfHw8Pj7enD9/jvv3Q3ny\nJBG5XP7cUDU2NsbOzo4WLVowaNC7tGnT9u+betp/uKAk/frrr/j5XaRtWw9GjBhBcnLmq3cS3poI\n2xKkVCo19vXM1/c02dlZrF69gcTERCZO/Gdw5+7de5b5oFUoFNy/fx9//8vcvn2biIhwYmNjSUlJ\n5unTp8jl8uf+cdPR0cHU1BRbWzvc3d0ZOHAgLVu2KpPXWItDUlISH3+c/4Tf7t37tF2dCkWEbQlS\nqTRzGSE8PIzAwACGDx/F3r27Wbas8LxQtWrVKvE6vI2wsAdcunSJ4ODbhIWFERcXS3JyEpmZmeTm\n5j53DIZ/09HRwdDQkLy8PBo1akSHDh159913adasuYbOoOzo168vcrmc7dt3lbveIqWdCNsSVFLX\nbPMfo71OREQET548UY/B8Ouv2zE1rYahoSE6Ojo0b+5E/fr1ef/98cVeh6KIinrIpUsXCQq6RXh4\nGDExMeoQlcvlRQpRAwMDKleujJmZGdbW1tSv34DmzZ1o27atxsZ1LS/WrVvHzZuBdO/eix49emm7\nOhWOCNsSVFxh+/DhQ27fvsmjR9GkpaWpvy7LZDJ10H755Vf07t0Xc3PzEm9NP3r0iCtX/Lh5M4gH\nD+4TGxtDUlIymZkZ5OTkvDJEZTIZ+vr6VK5cmWrVqlGzpg3169ejeXNn2rZto551tiJcP9WUR48e\nMX/+PKpUMWbr1l+0XZ0KSYRtCVIq32wowSdPnhAYGEBERBgpKSnqcNXXN6Bhw0Z4eLSjb98BXLhw\nnqVLF9O7dx/Gjh333GOtWPEdcrkcAwMD9PX1MTQ0xMDAAAMDQwwNDTA0NMTQsBKGhoaoVEouXvQj\nIiKc6Ogo4uJiSUpKJiMjvcghqqenR+XKlTE1rYa1dU3q1bPHyak5rVq1eek4DELJ6tevDwqFgh07\ndolxD7REvOolqKgt26dPn3LzZiD3798jMTFBPXiJrq4uDRs2onPnLgwbNgJra2t1f9fIyCiWLfsG\nY2NjVq1aW+h4aWlpPHoUzZkzp1m58vsSObcCEokEqVSq/q9SqSQjI4OnT58SGxtDQEAAPj4+yGQy\ndHV1kMl00NXVQVdXFz09PXR19TAyMqJRo0a0a+dB586dS+VALWXZ999/T2hoKIMGvUebNu20XZ0K\nS4RtCXpR2Obl5XHnTjAhIcHExsaoO9FLpVJsbGxo27Ydw4aNeOkNniFD3kOhUPDZZ3PYvfs3QkJC\nuHfvLqGh99TT3UBBFycTkpOTsLGxpXv3HtjZ2ZGdnUNOTg45OdnI5XISExM5ceKYemrsolKpVCiV\nSnR0dNT/n5eXh0qlUn/1L8olgLNnffnppx8L1dvAwJBq1UyxsbGhUSMH2rZtS+fOXahWreTm/ypv\nEhMTWbx4ESYmJqxd++OrdxBKjAjbEpTfGyG/tRcZGcmtW4FER0eTmflPoJmbm9OpkycDB75Lly5d\nX9pVLP8R0l38+OMP6gGo582bg0wmo169+n+3Djtgb18fO7ta2NrWwsLCApVKxb59v7N69fds3rwR\nc3MLbGxsMDExISsri8ePHxMdHUWlSpWYNMmL994bhomJCXp6+sjlOWRlZZGbm4NMpiQ8PIro6Ggi\nIsIJCblDUFAgycnJ5Obmoq9vgLm5OWZmZpibm2NuboGZmRlWVtWpW7cuNWtaP9PlSqFQEB8fh7+/\nP7dvBxEZ+ZDExHgyMjLIynpKVFQGUVFR+Pn5sXXrFvV+Bdd9TU1NqVGjJo0aOdCmTSu6detR5IHJ\nK4LBgweRl5fHxo3bxFNiWiZRlbM7D8nJmRp7GkZHR4qpqdFzy4yKesjHH0/h3DlfJBKJunVXuXJl\nHB2b0bt3H/7v/wa9tPtNUlISv/++ixMnjhMScueZVueCBYtwdW1Bs2bNi9SNR6lU8tdfJ/D3v0xo\n6D0yMjIwNKyEra0t7u4t6dChE1Wrmr7WuapUKsLC7hMcfJuYmMfExMQQE/OY2Nh//lswQ6y+vsHf\ng33XpW7detSrV4+6detiYlL1uWVKpRIMDfWIjo7h0iU/goKCiIyMICEhP4xzcnJe+OCIVCpFX18f\nExOTv8O4IW5u7nTv3uOlvRi0dVOuJMrdt28v778/lg4dOrFnz/5n1r/s/VtStFHmv8vVJhG2b6Hg\nF5iUlMHdu/fw87ug/vfo0T9Tgjdp0pSuXbsxbNjwZ6b8/reUlGT27Pmd48ePcedO8EtH3bp06Rp1\n62ruhtObfkhUKhUJCQncuZM/k+2dO7e5ffsWd++GIJfnXz5xcnKmf/8BeHh0KNT6KgjbrCz5S8dj\nSE1Nxd//CkFBNwkPf0BcXDzp6WmvDGM9PX2MjatQo0YN6tevj6urO926daNx40ZlPmzlcjm1atmi\nUCi4cyf8udfBRdhqlgjbN6BUKgkOvs2VKxe5evUyvr6+JCQkIJVKadrUkRYtWtKyZSvc3d0xNX3x\n9cXU1FT27dvD0aNHCA4OJj097YXb6ujo/D1DbRzz5s1jxow5WnmzFtfrm5eXR3h4GNeu+bNz5w4u\nXbpIo0YOzJr1GXXr5g/1WNSwfZWsrKdcuXKFmzcDefDgPnFxsaSlpb20h4VEIkFPT58qVSpTvXp1\n6tWzx8XF9e8wbvzGdXmR4g7bYcOGcujQn3z//WpGjBjz3G1E2GqWCNsiyM3NJSgoED+/i/j5XeDy\n5Yukpqaiq6uLi4sLbm4taNGiJa6ublSpUuWFx0lPT2Pfvr0cPXqE27dvkZb24nCVSCRYW1vTrp0H\nI0eOpGnTZvTo0Q2VSkVg4A0yM3PLdNj+16VLF5k162Pi4+NZs2Yd1tY2xRK2KpWKtLRUUlNT/27N\n6pGeno5SqcTQ0JDq1WuQm5vLjRsB3Lhxnfv3HxAfH0tycjLZ2dmvCOP8bm6WlpbUqVMXFxcXunTp\nSrNmzV77ceDiDNtLly7RvXtXGjduwpkzfi/cToStZomwfY7s7GwCAq6pLwn4+1/h6dNMDAwMcXV1\npWXLVrRo0RIXFxdMTY1fOOxgRkYG3t754XrrVhCpqakvLdfMzAw3N3cGD36P3r37qPtDZmVlMXr0\nSC5fvszx43/RurWb1t6sJVluYmIiffp0Izs7mx9+2IixcZU3CtucnBzOnTvLmTN/vfJ119PTo379\n+ri4uNGxYyfs7e2fKVMul3PrVhDXrl0lNPQeMTExpKSkkJ2dpe6m91/m5uY8eBBe5DoXV9jeunWL\n/v378uTJE65fv03NmtYv3FaErWaJsAUyMtLx97/CpUsX8PO7yPXrV5HL5RgbG+Pm5q4O16ZNHQtN\n5/LfMV4zMzPx8fHmyJFD3LoVREpKykvLNTIywtHRkb59+zF06HCMjY2f2SY6Oorx48dx+/Yttm/f\nhaenp1bfrCVdbmRkBJ6ebXFzc2fBgoVUqqT/WmEbFvaA2bM/JSEhHnf3lrRv35HGjZtiYWGBQqEg\nJycbY2MTdHV1SU1NJSQkGH//K5w58xepqSk0bNiQfv36YWdXGxsbO0xMTF5ZpkKhIDj4Nlev+hMa\nek/9reWTT6bz5ZcLi1Tv4gjbjz6ays8///z3/89g3rwFL91ehK1mVciwTU5O4vLlS+qWa1BQIAqF\nAjMzM/X11hYtWtKokcNLvw5mZ2dx6NAB9u8/wM2bgeruWEChHggFdHX1qF/fnm7dujNmzBhsbV88\nQExaWhqbN29i5coVVK1alY0bf8bV1f2Vb9azZ8/g7OxClSrPBvfb0OSH5I8/9jFhwli++24FHh5t\nixy2eXl5jB07CmPj/CEl69Ur+g1EuVzO6dOn+Pnnjfz11yn1765KlSpYWlphYWFBlSpVMDKqjJGR\nEUZGRhgaViIzMwNDQ0Pq1bOnaVNHZDIZWVlZvPNOd6RSKQkJT4p0SeFtwzYpKQl7+7ooFAo8Pbuw\na5f3K/cRYatZFS5s//hjHxMnvo9KpaJGjZp/h2tLWrRohb29/Uuf+MrOzubAgT84dOhPAgMDSU5O\nUq8r+MqvVCrVd8DzH1KwpX37DowaNRpXV1cg/zpiRkaG+l92dhZSqZSkpCTCwsI4f/4cx44dJScn\nh/ff/4CZM2eru2S97M2qUCho186d//1vFW3berzZC/gCmvyQqFQq2rdviZmZGStXrihy2F696s+s\nWdM5ccKX5s2d36hsHR0pBgZSrl+/SUjIXSIiwnn0KJrHjx+TkpJMWloa6elppKam8vRpJlWqGPP0\naf7AOlZWVowfP5HOnbuwbNk3HD16mL59+7Fjx6vHInjbsH333UEcP36M33//g44dPYt8riJsNafC\nPdQQFvYAY2NjDh06ho2NzSvD9c8/D/LnnwcJDLxBUtI/T2YZGOSPK6BUKsnJyVFfuzM3t6Bly5YM\nGTKU7t17EBkZSUDAdXx89rFs2Tc8fPiQqKiH6r6n/yWVSnFycmbKlI8YNmwkNWtak5ycxPbtW5k/\nfw7vvjuYli3d8fDwpHr1wtfjZDIZZ89eRldXtxheKe2RSCR8/PFMJk8ej7+/P02bFm2oxJiYGAAc\nHd9uaEVDQ0MaN25KgwZF63WgUCi4fv0qGzasYfHirwgOvsWsWZ9x4sQxDhzYT0ZGRok+ghwTE8OJ\nE8dp0KBhkYNW0LwKF7ZKpRJ9fYPndmyXy+UcOvQnBw/u58aNGzx5kqheZ2BggImJibrva3Z2NpD/\nNdPd3Z1+/QYwZMhQ8vLyOHPmNEeOHGbGjE+Ij48HwM6uFg4OjenQoRN2drWwtLSicuXKVK5cBQMD\nA5RKJVWrVqVmTRsMDQ2B/BbeDz+s49tvv1bPhrt9+8/s3PkLCoWCAQMG8fXX32Jubq6uZ1kP2gID\nBgxix46f+eqrr9iw4UdMTc1euY+VlRUAgYEBODu7lnQV1WQyGe7uLXF3b8n27VuZNetjDA0NGTv2\nfTZt2kifPr05ffpMiZU/efJEVCoVq1atL7EyhLdXIcO2oON8Xl6eOlwDAgJITEwotG3BoNQA6enp\n6oAFmDBhEh9//DF16tTi1q1gjh07yrBhQ7h0yY/c3FwaNmzE4MHDaNeuPU5OzlSr9uqw+DeVSkWL\nFs2JjIzA2dmF3NxcQkLu0LlzF957bzBnzpzFx8eby5f92L//CHZ2pXuA8NcllUr58cfNdOvWkZkz\nZ/DNN8tf+Riui4srdna1GD78XU6f9lOHryaNGjWW9PR0Fi78nKVLl2FoaMj169cICwujbt26xV5e\nVFQUZ86cwcGhMa6uZXs2jvKuwj0snZmZSVLSE9zcnLG3r820aVM4ceL4M0ELUKmSEW5uLZg4cQq7\ndnkTGvqQpUv/h5FRZTZt+olevXpQt25d3N1dWbToK3R19fjqqyX4+9/k3LkrfPHFV3h6dnntoAXY\ntm0LkZERQP7XRAeHJuTl5REaGkqlSpXo1MmTL774ktzcXEaOHEJubu7bvjSljrW1NadOnSI7O5vJ\nkz/g4sULL72eqaOjw//930ASExMJDw/TYE0L+/DDqXTq1IWVK79n+vRZQP4QhyVT1uS/W7UbSuT4\nQvGpcC3b0NC7yOVyEhLin1nXsGEj3NxaqP/Vr9/gmcE7xo2bwIABAzl27Aj379+jatUqNGrUlDZt\n2mNkVDwX4J8+fcqSJQvp3LkLGRkZXL58iZiYx0B+16iC68PVqpkxadKHfPXVAnx89jJ48NBiKb80\ncXBw4ORJX6ZMmcS8ebNp1qw5vXv3wcXFFTMz80Lb3r59i02bfuKdd/rQsmUrLdU4/5rz0qXL8PBo\nyePHj6hWrRoPHz7E19eXDh06FFs5kZGRnD3rS5MmTXFyerMbgoLmVLiwLWjxGBub4Orqpg5WFxfX\nFw6I8l/VqpkxdOiIEruzeuzYYVJSUhg0aDBmZuaMGTOCixfPI5PJUCgUREZGUrNm/jVnCwtLatSo\nyZIlXzFo0HvlcmSn6tWrs2vXPo4fP8qaNStYsuRrAKpWrap+HDolJZnk5GTc3VuycuU6jU4h/zx1\n69rzwQeT2LJlI19+uYjZs2cxatQIIiOjiq2MSZMmArBmzQ/Fdkyh5FS4sD158hz37oXQvLlzqQ2m\n8+fPARAREUl0dDQDBgzi11+3q9fv3r2bjIxMYmIeF+rVcP68L+3bd9J4fTVBIpHQvXtPunfvSXx8\nPH5+53nw4D6JiQlIJBJMTathb1+fnj17o6+vr+3qAjB9+qfs2vUrFy6cp3bt2kRERLB16xbGjn3/\n1Tu/QlhYGBcvXqBZMyeaNm1WDLUVSlqF62dbnEqqZWtp+eoHEiQSCebm5jRq1BgPj/Zs3bqZDh08\nWb26ZO5IV5Q+mcVd5tq1q1iyZCHr1//IhAnj0NfXJz4+8ZntXrefbffuXbl06RJnzlx644FxysPr\n+7rlapMI27dQUm+cUaOGEBQUyNix41CpQKHIQ6FQEBUVxa5dOwGwsbElJyebnJwc5HI52dnZyGQy\nHj16UiIt9orywSzuMjMy0nF0bMCgQYPV4ytMmTKFJUu+KbTd64Ttgwf3cXFxxtnZhWPHzrxx3crD\n6/u65WqTCNu3oM2Wbf7cXZUwMDCgUiUjZDIZoaH3OHbsdIn0Ma0oH8ySKHPGjGkcO3aY7dt30rNn\nVyQSCYmJSYUe432dsO3SxRN/f3/On/enQYOGb1yv8vL6vk652lQ6L1pWcK1bt8HKyoqhQ4cxcOAg\n+vTpS48ePencuYt6CMfq1atjY2OLtbUNNWrUwNo6/2myU6dOaLPqwnMMHDiY+Ph4IiLC6d27D0ql\nkuHDh73Rse7eDcHf3x9XV/e3ClpB8yrcDbKywM/vIgCHDv2JoaEhRkZGVKlSBRMTEypVqkR6ejqx\nsTHExcWiUCjUEy0C+PqeZubM2dqsvvAfLVq0wsSkKhcunGf69FkcOXKYI0cOk5qaWqRRxf5t0qRJ\nAGLyxjJIhG0pZGlppR6HIS0tneTkZBQKBUqlUv0VU09Pj+bNnTA3t6B6dStq1qzJgQMHNDqVi1A0\nOjo6tGvnwa1bQQBMmDCR9evX0afPO5w9e77IxwkODub69Wu0aNGKevXsS6q6QgkRYVsKxcfHIZVK\nadCgEVZWVlhb22BsnN8C2rhxA6mpqWRlZXHpkt8zc2z9e7xdofRo2LARly/nz5rw7rtD+PnnrQQG\nBuLo2ARv7z9o0KDBK48xebLoV1uWvVbYxsXFsXjxYi5fvoyBgQE9e/Zk+vTp6OnpER0dzfz587lx\n4wbW1tbMmTOHtm3bqve9ePEiS5cuJSoqCicnJxYtWlRoMJiff/6ZLVu2kJmZSY8ePfjiiy9KTX9J\nTSoIT6VSydWrVwqt09HRJS8v/7FcO7taWFvbUK1aNYyMKqOjo0Ng4A0ePozQdJWFIqhfvyGJiYnq\nEcB++GETH300hYcPH+Lm5oKjoyNHjx6lSpXnX1a4efMmN27coHXrttSpU/xjLAgl77XCdtq0aVSt\nWpWdO3eSkpLC3LlzkclkzJo1iw8//BAHBwf27dvHyZMn8fLy4siRI1SvXp2YmBimTJnCRx99hIeH\nB2vXrmXKlCkcOHAAgGPHjrF+/XqWL1+OmZkZs2fPZvny5Xz++eclctKlWcETbh07etKqVStiY2N5\n+PAhsbExPHmSSFxcHAAREeFERDw77UrBuLpC6VJwMysq6iEODo2xtbXF2/sA586d5ZtvFhMUFIS1\ntTXt23dg3z7vZ76hTJ5ccK1WtGrLqiJ/MsPCwrh58yYXLlygWrX8RySnTZvGsmXL8PDwIDo6mj17\n9qCvr8+ECRPw8/Nj7969eHl58fvvv+Po6MiYMWMAWLp0KW3btsXf3x93d3d27NjB6NGj1c+NL1y4\nkHHjxjFr1qwK17r18dkLwJkzf3HmzF9IJBIMDQ2pWrUq5uYW6rB1d2+BqWk1KlWqhJ6eHpmZmQQE\nXCs0MplQelha5o9AlpKSXGi5h0d7PDza88cf3mzYsI6zZ32xtDRn0KB3+fHHn5DJZAQEBHDrVhDt\n2rV/6eweQulW5LC1sLBg06ZN6qAtkJ6eTmBgIE2aNCkUjK6urty4cQPI/wrk7v7P8G8GBgY0btyY\ngIAAXF1dCQoKYurUqer1Tk5Ofw8pGELz5m83EHRZUzBv2eefLyAkJJj79+/z+PFjEhMTefz4sXo7\nf/8r/9lTglQqwdraRoO1FYqqYJqizMynz13/f/83kOHDh7JixSp27/6NPXt+58CB/cTHJ/Lhh5OQ\nSCSiB0IZV+SwrVKlSqFrsCqVil9++YXWrVuTkJCApaVloe3NzMzUrbD4+Phn1pubmxMXF0daWho5\nOTmF1stkMqpWrUpsbGyFC9uffsp/3PbrrxdiYGCIlZUVjo6OuLi4UamSIQsX5k/i16mTJ9Wr18DY\n2Jjs7CzCw8O5cuUy5uYvH/NV0A5DQ0NkMhmZmRkv3W7SpMmMG/cBXbp0RKFQ4O/vT3BwMB06dHrp\nTLlC6ffGF/iWLVvGnTt32Lt3L1u3bn3mGpOenh5yuRzIn9XgResLvva+bP/XIZNp7jmNgrKKq8y8\nvDx0dHRo06YtlSsbcedOCLGxMURGRnDq1MlC254+/VehnytXrkxeXh7u7i3Q0Sn+16C4z7Uilqmr\nq0teXh5S6bMjkhUsk0olfP11/oy8Y8eOxcvrQyQSCevX/1Tsv9fy9voWpVxteqOwXb58OTt27GDl\nypXY29ujr69PampqoW3kcjkGBgYA6OvrPxOcBVOFF4Ts89YXzJLwOoyNX3+ft1VcZf7yyy/k5eVx\n9qwvNWvWxMnJiRkzptOnTx+uXr3KihUrOH8+v19m9+7dsbW1RU9Pj9DQUO7cuUN0dDQ1aliW6GOJ\nZfn11WaZkZGRZGdnY2dng6Hhi7vn6ehI8fU9g0wmY8iQIWzcuJGePXvSuHHJ9astD69vWfDaYbto\n0SJ2797N8uXL6dKlC5A/99P9+/cLbZeYmKiexsTKyoqEhIRn1js4OGBqaoq+vj6JiYnUqVMHyJ9A\nLyUl5ZXToDxPWloWCoVmnrmWyaQYGxsWW5lBQcHo6elRu3YdoqOjOHz4MIcPH8bLywsjo/zxDwqm\nSD927Jh6P11dXfU8ZO3bdyY5OfOt6/JfxX2uFa3MZcv+h4GBAU2aNCMr69lvbFKpBH19XebOnYdK\npWLMmDFMnjwZiUTCypXrxO+0mMrVptcK27Vr17J7925WrFhB165d1cubN2/Oxo0bkcvl6pbqtWvX\ncHNzU6+/fv26evusrCyCg4OZNm0aEokER0dHrl27pr6JFhAQgK6uLo0aNXrtE1IolBod4KI4y1y2\nbCmQfzmhV6/eeHh04MGDUK5cucK9eyEkJeVPnV65cmU8PNpjY2PD48cxBAff5tGjaACsre1K9PzL\n8lxYSXwAACAASURBVOurrTJ37fqV9evXMmHCJCpVMnrhtOwKhYIzZ04jk8kYMGAgmzdvplu3npia\nmovfaTlQ5LB98OABGzZsYOLEiTg7O5OY+M+YnC1atKBGjRrMnj2bDz/8kL/++ougoCC++SZ/GLmB\nAweyZcsWNm7cSKdOnVi7di22trbqcB02bBgLFizA3t4eS0tLFi5cyODBgytUt6+CaW+MjIyIiAgn\nLOwBe/f+jp6ePjY2NtSuXYekpCQkEgl5eXkcOXIYyL+ZWKNGTezsapGWlvpMbxFBe7Kzs/n2269Z\nt24177zTh/fee/m0RV988QUqlYpRo0bz0UfTkEikrFq1TkO1FUpakcP21KlTKJVKNmzYwIYN+ZPL\nqVQqJBIJd+7cYd26dcybN4+BAwdiZ2fHunXrqF69OpA/cd+aNWtYvHgx69evx8XFhXXr/nkT9erV\ni0ePHrFgwQJyc3Pp3r07M2fOLOZTLd2++uoLIH9CSnNzc2xsbNHV1SEmJoaIiHD1k2UqlYqGDRvS\nunUbcnLk+PldJCzsAXK5XN2XU9C+wMAAJk58n6ioh0ycOJn33hv60ql6FAoFJ0+eRCaT0bdvP7Zu\n3ULPnu88M8+aUHaJ8WzfQnGOzTlq1FBCQoKxtbXlxo0A0tPTgfyWq42NDZGRkQBYW9sQE/NYHb6W\nlpa0bduOy5cv06lTZ1asWPt2J/UCFWXs0+Io8+rVKwwa1Bc7Oztmz55HrVq1X7nP4sVfcfLkCUaN\nGsO5c2eJjIzgzp0w9RxrJaGsvr5vU642ab8/hMDTp085evQQERHhWFtbs3v3Hm7dusPMmbNwcHDg\n0aNH6m3t7OxYvXo1GzduxtOzM1lZWfj4ePP48SP09Q20eBYCQGpqCmPGDKdePXtWrFhTpKBVKBSc\nOnUSqVRKv379CA8Po1evPiUatILmiQfpS4Hz532B/Fbsrl2/sWvXb+jo6GJvX48uXbqir2/I9etX\nkUql+PldVI93a21tTf/+A2je3ImZM6fTrVsPbZ6GAKxYsZy0tFTWrt2g7vr4Kt9+u+Tva7WjmD79\nY6RSKd9/v6aEaypomgjbUmD8+DEA1KpVm1q1apOenk54eBj37t0jJCREvV2lSpVwd2+JsXFlAgNv\n8uhRNDt2bGfHjvyZd11cin86HKHowsLus3HjD4wYMarI3Rbzr9WeQCqV0qdPH7Zt20b//2fvvMOa\nvNo4fCch7CnIEGWIG1HciCIOnLXVauu27lFXnbVaa9VW66571IHVuifuvbcCIi6GgAIqQ0A2md8f\nkSgfWheClfe+Li5N3vE8J5BfTs55RvuOmJubf2RvBQobQWyLGLVajY6OphdVRMR9IiLuA5pc+sqV\nqyCXKwgN1QhuRkYGJ09qMskMDQ0pV6485ctX4OrVy2Rn52BublE0gxBALpfz/ff9sba2oVOnLm99\n3ezZf6BWq+natRujRo1CIpEwd+7Cj+ipQFEhiG0Rs337FtLT0ylRwhJv78ao1Wpu3QomOvoht2/f\nynNumzZtcXR0wN//Ordu3ebOHc0PQLNmzV91e4FCQKVSMWrUMG7evMnixUvfevlAqVRy7NhRxGIx\nbdt+waZNG/n2286Ymr654afAfw9BbIuYGzcCAUhKesru3TsBTdESR0cnSpcuo53JisVi9u/fqz1e\nrlx5ateuQ3R0NMePH8Xbu2nRDKCYk5WVxZgxI9i5cxuTJk2mcuUqb33twoXzUavVdOnShXHjxqGj\no8O8ecKs9nNFENsiZvVqTTHozp27UqqUPdevX+POnduEhYUSGhqiPe+LL77E07MBly5d4MqVywQH\n3yQ4+CagSdf97rs+ReJ/cSY9PZ1OndoRHHyTSZMm07Spzztdf/SoJuW6ZcvWbN68mV69ej0vKFS8\nMquKC0Kc7QfwoTGDjx7F4u5e+f/uqUPNmrVo0+YLfH3X8vDhgzxNHI2NjalXrx6dOnUhKiqK2bNn\n4u5eg0OHTv7/7QuU4hKT+bY2lUol3bp9y5Url5g3708qVar82nNfRVhYKAMH9qN8+QpkZKQTHx/P\ns2fPyMlRf3Jj/a/bfNluUSLMbIuQo0cPI5FICA29T3DwTfr06U1ychJXr17h6tUr2vMOHTqKVCpl\nxYrlnD59khMnTnDixAltUZqpU/8owlEUT3x9V3Hq1HHmzJn/zkILMGfOLAD69OnNxIkT6dDhGwwN\nDcnJKfiCMwKfBkJSQxFy9OghPDw8MTc3p0GDhqSlpVKuXHliYp7QunUb7XmdOn3DlCmTqVevHleu\nXOfWrVsMGDBIO+OtU6duUQ2hWPLsWQozZkzjq6/aUbt2nTdf8ArCw8PQ1dVlz549APzxx+yCdFHg\nE0QQ2yIkKioSOztbVCoVu3fvRKFQ0KNHD8zNzUlOTkYslqCrq4tKpeT8+XOMGzcGFxcnfHx8CAnR\nhINt3LjtX3PuBQqezZv/ITs7m1693m+dfPv2LajVanx8muPv70/FipUoWdL6zRcK/KcRlhGKkM6d\nuzJ9+jROnjxBVpamY0WrVl/w6FEsly9fAqBLl++wtrZBLpdz+/YtQkLuEh8fx9mzZ7C0tMTHp2VR\nDqFY4ue3C0/PBpQoYfle12/atBEADw8PDh48QN++gwrSPYFPFEFsi5ARI8bg6enFiRNHWbx4AQAe\nHrUxNTVFLBajp6eHkZFmUV8qleLuXoOaNWsSE/OATZs2MX/+EmFWW8jIZDKCgm5gamrKkCGDkEql\n6OjoPP+RoqMjQUdHilSq8/zfF8elUilqtZqUlBR0dHRYvHgRIpGInj17FfWwBAoBQWyLiKioSNat\nW4OdnR3t2nVk/PhJpKencenSBc6dO0NgYADXrl1h+fIl2Nra4ujojJOTM6VKleLkyZPUrl2XVq3a\nvNmQQIEilUoZP/5ntm3bTFpaGqampsjlCgDUahUqlRoDAwN0dHRITk5CoVCgUilRKBQoFErkck2X\nBoVCQUJCAjVq1ERHR3gbFgeE0K8P4EPCWLy86hId/RC5XI5cLsfKqiSNGzfF27sJjRo1xs6uFImJ\niZw+fYKTJ49z4sQxkpOTtNfv33+YunU9C3pIr6W4hAm9rU1ra02Wl52dHTk5OchkMu2Pm1s1+vYd\nyKhRw157/b17kXmWIT7lsf7Xbb5stygRPlKLgOTkJEJC7tG5czdcXasSFRVJeHgYly5dYMeOrQA4\nODjSsmVrvL2bMHv2fAwNjbh58wY3bvjj6lqJ+vUbCsHvRYRMJkMkEjF16m98/XXHPMfGjh1FRkYm\nu3fvAMDNzQ2JRAexWIyOjoSEhARiYmIxNTUrCtcFihBBbIuAnTu3A7Bvnx9RUZHUrVuP1q2/AODw\n4QOcOXOaEiVKsHv3DlatWoGOjg61atVm6NCR9O8/SDszECgaMjLSUavVGBub5Dv29Gkijo5l8fe/\nBsCdO3dQqVR5ElPMzMyEpYNiiPAbLwJkshwA5HIZV65c4sqVS0gkEqysrEhJSQFgyJDhiMVi4uPj\nuHPnNtevX6NXr66cOnUeb+/CWz4QyE+ucL5qbzIhIZE6deoTFRWpfU5HRwexWIJEIiYnJ4dq1WoU\nlqsCnxCC2BYBCxfOA6BePQ/c3Krx8OFDAgL8tU0fAQYN6oepqRllypShalU3+vcfyNixo7h69bIg\ntkVMdrYmTO9VnTESEhKwsbHVPlarNZ1klUolcrmmQliZMmUKzVeBTwdBbIsAExMzkpOTOX/+HOfP\nn9POagGkUl3atPmCsLAQHj58yK1bwdy6FcyWLZsAKFvWpShdFwDttw8Tk7zLCJmZGWRmZmBj86Lx\npkqlzHe9kMBQPBHEtgh4+DAKfX19ZsyYxd27dzh16iSRkREAGBoa0Ldvf21NU5lMxuXLF9m8eSOh\noaHUqVOvKF0XAMLCNNXY/r+/WEJCAgBmZi+6LOjp6WljodVqyMnJpmHDRoXjqMAnhSC2hUzuGzI7\nO5vRo39AT0+PqlXdqFGjJtevX+PZs2e0a/cFenp62NraUblyZTw9G2JtbYOJiWm+2ZRA4RMeHkaJ\nEiWwsMjbGSP3d6urqwuAoaER+vp6qFRq1GoVMpkmxtbK6u1a5gh8XghiW8hcvqxp1jh79jxCQ+9x\n+PBh/P2va48PGDCIxMREgoICiYmJ4cGDKA4fPgRAu3YdisRngbw8evQIW1u7fM8nJmrENrfDRu6y\nwv/zNh13BT4/BLEtZHK/gv744xhatWrDsmUrKFvWhWrVXFGplIwZMzZPs8DHjx+zceMG/vhjBg0b\nehWV2wIvERYWgr196XzPJyQkoK9vgK2tZoOsSZOmqNWgUMhRKJTExsbw6FEsxsbGhe2ywCeAILaF\nTExMNBKJBKVSydGjhzl8+CDOzs7ajZRKlcojlUqxt7enZs3afPHFF9oSivXqCVEIRY1CoeDGjUCG\nDRue75gmEsGGCxfOAZCcnIKOjgSJRPMjFosxMRH6ixVXBLEtZIKDb1KpUmU8PDyfN268SWRkJFKp\nFLlcDkD58hWIjIxg164d7NqlyUQSiURCJMInQGCgP9nZWVSv7p7vWGKiJuwrMDAAgKCgQP4/Gz63\nsJBA8UMQ20JEoVAQFBSInV0pLCxK4OPTgoYNGxEcHIS//zWt2GZkZNCrVx+6devO5cuXWLJkEVlZ\n2dqNF4Gi48CBfVhaWuLmVi3fsYSERGxsbNDT00ckgoULl+Q5vmTJIm7dCi4sVwU+MYTi4YXI3bt3\nAHj8+BHr1q0hPT0NfX196tSpR40atRGJROjq6hIbG8uKFcto1KgBv/02jfT0DKpUcS1i7wWUSiV+\nfrto2tQHiUSS73hychKWllYkJMTni1QATcytWJz/OoHigSC2hcju3TswMDCkWjV3EhMTWLlyGRcv\nngcgLu4xarUamUxG9eru9Oz5HdWru6NWq0lKekpS0tMi9l7g0KEDxMbG0LHjt688npmZibGxCRkZ\nGRgYGOQ7rlQq0dERxLa4IiwjFBJyuZwtWzbi6dmAbt16EBp6jyVLFnHx4nn8/a+hoyMFNEHw/v7X\n8Pe/homJKTVq1CA4+CZNmrxbm2yBgkWtVrNs2SJq1qyFq+urv2VkZ2dhZGREaOg9YmONuHEjEF1d\nXfT09NDT0yM9PeOVM2KB4oEgtoVEdPRDEhMTqFrVDYAKFSrRocO3bNiwjpycHHJyNMVp7OzsaNSo\nMXfv3uHmzSDOnTsLaNZx1Wo1ly9fpHXr5kU2juLKoUMHuH79KitWrHrtOdnZ2ejp6ZOamkpqaiqj\nRo3Id46nZ8OP6abAJ4wgtoVEmTIOlCxpzYED+3B0dMLMzIydO7cBMGjQ96xcuRyABw8esH79OvT0\n9Khduw7Vq7uzbNkSypRxYNu2zQwfPphLly5RsaJbUQ6nWJGens6vv06kfn1PGjR4vViqVGokEgkx\nMYkkJiaQnZ1FdnbO83+zyc7Ooly5CoXoucCnhCC2hYRUKuXvvzfRq1c3fvttCkOHDiczMxNbW1uO\nHz+mPa9Wrdo4ODhy5swpLlw4z4UL559fr0tc3BMAYmNjBbEtRKZN+4X4+DiWLVvxr+ep1SrEYs0m\nZ6lS9oXkncB/BWGDrJDIzs7G0dGZkyfP4+TkxMyZ0wFo0MCL+/fDteddv36NXbt24OjoxJIlS/Hy\n8gZAJsvWBsQnJSXlNyDwUfDz28W6dWsYPXosDg6O/3quSqVCLBbeUgKvRvjL+MjIZDLWrVtD3brV\nqVXLlcOHD7Jr1wHMzTWVoZ48eQyAlZVVnk65AQH+DBs2lISEeEDTJkep1DQWvHfvXiGPongSEHCd\n4cO/p02btnTu3PWN55uZmfHkyZNC8Ezgv4ggtgVIblUn0CQwbNmykfr1azB+/GjEYk2V/nHjRjJr\n1u/cuHGP5s1bapcJNm/eztatO6hcuYr2HlKplHv37gIQF/eE1NRUAM6fP1+IoyqeBAYG0KlTeypV\nqsTUqb+9Vct4d/caHD16KF/WmIAACGJbIMjlcubOnUnZsqX4+ecfmTt3JrVruzFixPeIxRKMjY15\n9CgWsViMubk5K1YspU+f7vj6btTGY965c5uSJa2ZPVvTxUFHRwe5XK59k5cqVVorttevXyclJblo\nBlsMOHXqFB06fImzszPLl/+Fvn7+jgyvomvX7oSE3MPXd/VH9lDgv4ggth9IUFAQNjYWzJ49g+bN\nW7B27Spmz57Bo0exmJub8+BBFOnp6ZQt64Kuri4pKSkYGhpy7NgRVq5cSlhYNPXrN2DKlMnEx8ex\nbt1aADZt2srcufO1jQHNzMxIS0vFxMQElUrFiRPH/s0tgffkn3/W06JFC1xdq7J8+ap3qtBVq1Zt\nunTpxqRJ4/H1XY1KJXQ/FniBSP2ZfecprH70MpmMxYvnM2/ebMRiMTKZDD09PRYsWMSECeO1rVPM\nzc0RiyUkJT1FV1cXN7dqREVFaje5Jk/+jc6du9G8eSOMjIyIjY1FLBbx+LGmNqqv7xpGjBhGVNQT\nBg3qS2TkfVQqJbq6ehw7drbQurTq6Ii1XX0Lq4V6YdtMT0+jXLkyGBkZsWDBYtzcqr0yE+zfUCgU\nzJw5na1bt1C+fEXatGmLjY2Ntp15gwZelCtXPt91xeH1LSqbL9stSgSxfQ+Cg28ybNggQkLuUqdO\nHYKCgrRNAEUiEYsXL2Xx4kWEhLzYyHJxcSEl5RlPnyYCUKJECSpUqMjly5dYt24TZco40KyZJoaz\nd+8+LFmiibsdM2YUR48e4cqVG1hbm2Jra0fXrl1YtGgR7dt3ZN68RRgaGn7U8ULxeGOq1Wr69OnO\nkSOHUCqVGBgY4OXlTcuWrfDyavROwnvjRiAbN27A39+flJQU1GoVCoWCdu06sGrVunznF4fXt6hs\nvmy3KBGWEd4BmUzG7NkzaNHCm6dPE+nY8Vut0NaoURPQvGGHDRtCo0beeXLo79+/rxVagOXLVzF2\n7Hjq1/dk2LBBGBkZ0rr1FwD4+LQANGvBu3fvolmz5jx9qqmN8OTJY/bv30+HDt+wd+9uataswtSp\nvxAR8SJ8TOD9EIlE/PPPFjIzMzl37jKjR//Io0ePGDNmJN7eDRgzZhRHjhwmMzPzjfdyd6/BnDnz\nOXnyDAEBQQQGBuPp2UBYWijGCDPbtyQxMZFvvvmKkJC71K3rQdWqbqxf70tOTg5ffvkVBw7sR1dX\nFx0dKenpaYCmdmlGxou2KCNHjiYiIoK9e/fQsmUrBg0aQmZmJj/+OIaSJUty4MBxvv22HXFxj7ly\nxZ/16/9m7NhRnDlzmbNnTzFp0k9Uq1admzeD0NfXp2PHb4mKiiIwMIDMzAyqVq1GgwZeuLpWxdLS\nEiMjY8qXr5in88P7UlxmQa+yGRFxn/37/di7dzc3bwZhYGBAzZq1cXNze75EICElJYUHDx6QmZmB\nQqFAoVAikYhxcSlH+/YdKF26NAMG9MPGxlaY2RbTma0gtm/Jli0bGTHiexo3bkr58hVYt24Ncrmc\nfv36sX37dlJTU2nVqg2HDx/Md23JkiVJSEigTp26rF7tyxdftCQmJoaff55MrVq1CQsLZcKEH5k4\ncTJt2nxJkyaeNG3ajLNnz/D1198wY8YcGjasg4eHB7//Pp0KFcphaWlJcnIyXl7eeHs35sCBfXl6\nmeUikegwcuQYhgwZ/kFdAorLG/NNNiMjI9i/fy8XL54jODiIhIQE1Go1hoaGlC1bDnNzc6RSKTo6\nUuRyGYGBAaSnp9G1azeCgoIoX74CK1asfWe7H4PiYvNlu0WJILZv4PHjRxgaGqJUKunZswvXrl3R\nHuvffwDXrl0lKCiI7t17sm3bFnR1dbWzWYlEglqtpkqVKujoSLlxI5CdO/0oUcKCFi2aAbB6tS8m\nJqasXbuaU6dOcPlyIMePH+WXXyZQo0Yt1q/fzIIFc1m2bBGXLl1DoZDj4VGHvXsPcenSRebOnYm5\nuQVyuYyUlBTEYjFlyjholzACAvw5f/4sxsYmjBw5ln79BqKnp/fOr0NxeWO+q02lUtPO6HXVvDIz\nM1m9eiVz584kOzuL1q3b8vffmz7YbkFQXGy+bLcoEdZs/4VZs6ZTvXolqlWryJYtm9i9+wC9e/fT\nHr979y5BQUFUrepGXFwccrmcxo2bAmBqaoZKpcLS0op790JYvVozm/nxxzFYWZVk9ux5yOVyJk4c\nD0CnTl1QKpWsWLGU7t2/IyIilp0793L8+BEWLpzHxImTqFSpEuXKlQPg4cMHjBo1jtOnL+Hk5ExO\nTg5Xrwaxa9d+EhMTuHLlMiVLWtOyZWvGjBlPhQoVmDbtFxo3rq/t8Cvw4eT2F3sdhoaGjBgxigsX\nrtGrV1+++aZTIXon8CkhiO1rWLBgLvPmzaJNm7Z4ejZk2rRf8PKqi7d3E4KDQ/nii6+02V8DBw7i\nxIljODg4kJysCemys7N7Pqt1RaGQExUVRYsWLbl/P5xz587RrJkPHh6exMbGMm7caCZOHE92djaW\nllZaHzZv/ochQwbQuXMXxo79EdC8eR0cHAgPDwM0/cr27TvCzZshODk54+nZkG+/7cL9+2Ha+5ib\nm/P1198wfPhIlEol7dq15o8/ftO24RH4+JQp48CcOQv48sv2Re2KQBEhiO0riI5+yIwZ0wBo1+5r\nunXrQffuPYmMjKBPnx4sWvQnixcvZ+DA7zE1NWXEiGGo1WoWLlzC7du3MDQ0xNTUDICKFSsBsG7d\nWpYvX4lYLGbs2FG0bOmjnWFmZGTQvHlLVq1ax5Ahw4mJiaZv35788MMQevT4jhUrVuVJFzU3N9du\nwgGIxWLMzMy1j2vWrE1cXByPHz/KMy5bWzsGDBhM8+YtWbhwHt9+207oACEgUEgIYvt/yOVyBg7s\ng7GxCQB//aWJd/Xz24NYLKZLl25s2OBLw4Z1ady4CdHR0VhbWwPw66+/8OzZM2xt7TAz04htVlYW\nBgYGnDx5km++6YBKpUKlUtKmTVu2bNlFVNQTbt4MYdas+TRr1gJbW3Nq1nRl/34//vprNYsWLUEq\nlebxMS0tDUPD168/tW/fkcqVq/DXX8s5d+4MCoVCe0wsFtOkSTP69RtIUNANWrRoTGRkRIG+hgIC\nAvkRxPb/aNy4Pv7+15g1aw5OTs74+19n5cplpKY+o23br+jUqQsLFizG1taWbt060a9fP4KC7rJ/\n/zFt/GVExH2Cg4MAOHr0EFlZWWRmZmBmZs4//2wlMvIxf/wxl6ZNffIkJLwcJgbw888TmTp1Mg8e\nRAGaGN5du3YSGRn5ylbauejr67N372G6dfuOw4cPMmvWdHbu3J6nlGPZsi4MGTKcjIwMxo79oaBe\nPgEBgdcgRCO8xPHjR+jWTbOLX7++J8OH/0CPHl1RqVSYmpqydu16xGIxWVmZbN++lT17dgPQsmVr\nNmzYilKpZPnyJYSHh3LzZhBRURFUqVKV+vUb0Lx5S+rW9XgrP5RKJTdv3mD79i1s3bqZ9PQ0XF2r\nkpKSTExMDB06dOCvv9bxNvHxYWGhbN78DwcP7iMi4j4uLuWoWtWNkiWtsba2JigoiCNHDvLo0b/X\nyC0uO9dFvVv+uY+1qF/fokQQ2+c8ehRLkyYNqFy5CikpSdy5cwcjIyNsbGyJiLjPkCFDMTMzZ+vW\nLURGRmhjKw0MDMjMzOL+/ZiPUqcgIyMDP79d3LgRgKGhEc2bN6dduy9IScl8p3Gq1WqOHDnE/Pmz\nCA4O1tbGBXB2LsuVKzf+9fri8sYsajH43Mda1K9vUSKILZriIaVKlQDAw6M+kydP5cyZU8ydO1sb\nR6mrq4tMJkMkEuHqWpUffhhJq1atOXbsMH379uXevUhKlLAs8PH8PwXxxyqXy4mKiiQsLJSYmIe0\nbNkGR0enj273XSkuNovKbnGx+bLdokToQQbMnz8b0Ajq5cuXaNOmBQ4ODowePZY1a1aRlJSEvr4+\nvXr1YeTI0XnK7p09exZLS8s80QCfOlKplPLlK1C+vNB8UECgsCj2YqtQKFi2bDHDh//AlClTuXPn\nDpMnT+Ls2TPMmTNLe16JEpacPn2KI0cOkZOTg0wmIyMjA5lMxtSp0/81sF1AQECg2EcjqNVq5HKZ\nNryqSpUq7Nixi5iYx4wdO057XmxsDNHR0SQnJ6NQKNDX19e2wRk4cHCR+C4gIPDfodiLrVQqZeDA\n75k/fy59+vTShlnp6upiZ2cHwI8//kRychqJick8fpzAgwexHDqk6ZSwfv3696o1ICAgULwQNsjQ\nzG63b9/C779P4dmzFObMmUfXrt2wtNSsw1auXAVdXV0kEgk6OhJ0dKTcvn0bhUJOQkIC2dmqYrPB\n8Llvpgiv7+dn82W7RUmxXLMNDg7C13c1gYEBqNVqqlWrTq9efbl40Z9Jk35k2LAh+Pn5ac8PCwtF\n85GkRq1+8ePiUg4DAwOyszNea0tAQEAAiqHYLlw4jz/++A1LSysqV66MSCTi9OmTbN26iZEjxzJv\n3mJq1qyjzaoaNmzkK7urrlixRKjgJCAg8NYUK7F99CiW6dOn0qJFK775ppM2gkClUnHo0AEWLpzH\n7dvBrFmzAT+/XZw7d4YlSxYgkUgQiUSIxWLEYgkSiZiMjAzE4mK/5C0gIPCWFCuxzcrS1C5wd6+R\nJ1RLLBbzxRdf4uDgwLJlSxg8uB/bt/tRubIzycnJmJqaoaOjg0KhQKlUaBMdXi7wIiAgIPBvvPfU\nTCaT8eWXX3Lt2jXtc7///juVKlWicuXK2n83btyoPX7x4kW+/PJL3N3d6d27N9HR0XnuuW7dOho1\nakStWrX4+eefycnJeV/3XknuVuDL5Qpfxs2tOgMHfs+BA3vx9V1FQMAdnJycUSjkuLvX4OuvOzBq\n1DgmTZqCnp4e5uYWBeqfgIDA58t7zWxlMhmjR48mPDxvR9eIiAjGjh3L119/rX0uN9vq8ePHDB06\nlB9++AEvLy+WLFnC0KFD2bt3LwBHjhxh2bJlzJkzB0tLS3766SfmzJnDpEmT3nds+cjtbPo60+4p\nXQAAIABJREFUsQWoUaMmTZo0Y9q0yTRr1oKpU2fQq1dXjh07oj1HJBKhVqsJCblbYL4JCAh83rzz\nzPb+/ft06tSJmJiYVx6rUqUKlpaW2p/cGNTt27fj5uZG7969cXFx4Y8//iA2NlY7M96wYQO9evXC\n29ubqlWrMnXqVHbs2FGgs9sXYvvvw/7mm04YGxvzww9DaNmyNUOHajbLfHxa0LhxUypWrIREIhGW\nEQQEBN6adxbbq1evUr9+fbZu3crLIbrp6enExcXh5OT0yuuCgoKoU6eO9rG+vj5VqlQhMDAQlUpF\ncHAwtWvX1h53d3dHLpdz7969d3XxteT6Kxa/fmab61uvXn25dOkCvr6rmThxMtWqVefevTsMGvQ9\nM2bMwsHBMU8tWgEBAYF/453FtmvXrowfPz5f1lRERAQikYjly5fj7e1Nu3bt2LNnj/Z4fHy8tqNB\nLlZWVsTFxZGamkpOTk6e4xKJBHNzc548efKuLr4W1dsUgH1O5cpVaNy4KdOmTSY2NoZly1aTkJDA\nhg1/A2BgYEBaWtob7iIgICCgocCiESIiIhCLxbi4uNCzZ0+uXr3KL7/8grGxMT4+PmRnZ6Orq5vn\nmtyyhdnZ2drHrzr+Lkgkr//8yI3UkkjEb5zdAnTq1Jnbt4MZNWoofn4H+fXXaUycOB4jIyMePYrF\ny6vRG20WNLm2CtNmUdktLjaLym5xsVkU9l5FgYlt+/btadq0KaampgBUqFCBqKgoNm/ejI+PD3p6\nevmEUyaTYWpqqhXZVx03MDB4Jz9MTV9/vomJJjnBwEAPAwPd156Xi4GBLgMHDmT69Ols2/YP48eP\nJTw8hA0bNuDu7s7kyZPeaPNjURQ2i8pucbFZVHaLi82ipkDjbHOFNpeyZcty5coVAGxsbEhISMhz\nPDExkcqVK2NhYYGenh6JiYk4OzsDmtYwKSkplCxZ8p18SE3NQql89XLBo0fxAMyYMQMnJydEIjFi\nsfilhIXcx5qZb+5jY2MTxo4dS6NGPsydu4g5cxYiEom0n5apqVmkpaUjFotfmW1WkEgkYkxNDf51\nnJ+L3eJis6jsFhebL9stSgpMbBctWkRgYCC+vr7a5+7evasVz+rVqxMQEKA9lpWVxZ07dxgxYgQi\nkQg3Nzf8/f21m2iBgYFIpVIqVar0Tn4ola8vClOxYhUAGjRohEQiQalUolQqtR1vNQkLKpRKBXK5\nUnvcyckZPT09MjJebkXzYnNw27atDBjQB4BVq9bRrl2Hd/L5ffi3cX5udouLzaKyW1xsFjUFJrZN\nmjThr7/+wtfXFx8fH86dO8fevXvZsGEDAB07dmTt2rWsWrWKJk2asGTJEsqUKaMV127duvHrr79S\nrlw5rK2tmTp1Kp06dSrQ8oVmZubEx6fmeW769Kls27b5+UxWQk5ODvHxcZQt64JUKiU0NERbrGbw\n4L7P03UltG79BeHhYTx+HIOZ2Yvkhq1bNxWK2AoULgqFgoSEeGxt7f41TltA4HV8kNi+/Efn5ubG\nokWLWLhwIQsXLsTe3p558+ZRrVo1AOzt7Vm8eDHTp09n2bJl1KxZk6VLl2qvb9OmDbGxsfz666/I\n5XJatmzJ2LFjP8S9t+LatSuYmprSokVLVColx48fJz4+jurV3TE0NCQkRBN65ujo9Hz2q+L+/XCm\nTZuMWq3GzMxM28K8YsVKnDhxjNu3b+HqWvWj+y5QOFy9eoXvv+9HdPRDZsyYTf/+QrF4gXfng8T2\n7t28GVRNmzaladOmrz3fy8uLw4cPv/b4gAEDGDBgwIe49M4olUpcXV0ZO/ZHAFJT0wgJuceoUaOx\nsCjBjh3bsLMrxejRL4T/0KEDzJ49E4D69etz+PBhSpWyx8bGhrS0VEaMGMy+fUeFONz/OGq1mmXL\nFjNt2i/aGG0rq3fbQxAQyKXo4yGKGJVKlacoTe6bKjfLLDc1N+81Lx47OTmhoyPF1taOBw8e0L//\nIMLCQunZszMpKcmFMAKBj0FychI9e3Zh6tRJ2t//woXLaN++YxF7JvBfpdiLrVKpzJO+m5v48HL5\nxPzNLF481tXVxdHREVATHf0QO7tSjBgxisBAf7y86rFly8YCL6gj8HG5cuUK3t4NuHLlIqampkil\nUtav30LXrj2K2jWB/zDFXmxVKuX/zWzziu3rZra5x8ViMc7Ozjx58gSVSkV8fBwVK1bi11+nUbp0\naUaM+B5398rMmDGN2Nj89SQEPh3UajXLly/Fy8sLa2tr6tSpS3p6OsuXr6ZVqzZF7Z7Af5xiVc/2\nVQQH3+TGjUBKly7N33/7IpPJAWjRoqk2HTcmJpomTby08bgvp/2KRCLs7Ow4deokoKluVrp0GUqU\nsGTIkOE8fvyIU6dOsnLlUhYv/pP27TsyYsRoKleuUviDFXgtaWmpDB8+mIMH9/P9998jEolZtmwp\n8+cv5quvvn7zDQQE3kCxn9nmFgJfuXI58fHxpKQkIxKJtEJrZmaGhYUmtMvQ0JCaNWtRtqwLYrFm\nNiwSibCxsUWpVGJqasaTJ4/z3N/OrhTduvVgzpw/6dSpC6dPn8Tb24PvvuvK3bt3CnGkAq/j8eNH\nfPVVK86dO8Pq1WuRSqUsW7aUyZN/o0ePXkXtnsBnQrEX2/j4VOLjUzl69DQAnTt3Y8yY8ZiZmWNs\nbEJsbBx79uwDYNiw4Rw+fJQBAwaio6MRW7FYjI2NLQA2NrY8fvz4lXYMDAzw8WnBjBmz6NOnPwEB\n12ncuD5DhvQnOvrhxx+owCu5c+c2rVs3Izk5iZ079xAdHc2iRYv47bc/GDbsh6J2T+AzotgvI/wb\nuWHEueu4L/csy40xFolElChRAqlUiomJCQkJ8f96Tx0dHRo29MLDoz7nzp1h//697Nvnx4gRoxk2\nbOQ714L4fyIjI1i3bg3p6Wno6enh5ORM+fIVcXOrjpWV1Qfd+3Pj3Lkz9O7dDQcHB3x915ORkcGM\nGb8zatQohg4dXuwynAQ+LoLYPufVEQcaQc0N9coVWLValSc0TCwWU6KEJcBbl13U0dGhSZNm1K/f\ngP379/Lnn3PYtGkDf/3lS5069d7Z94CA66xdu4pdu7ZjZGSMlZUVOTk5JCTEI5PJ0NGRMmHCJIYP\nH/VO9/5c2bZtM6NGDcPTswHLlq3E2NiYESOGYWNjy4wZM8jKUha1iwKfGYLY/gu5M9v/7/Aglyu0\nJRpzBdjExAS1WkVq6rN3sqGvr88333SiYcNG+PqupkuXDmzbtodater863UymYyrV69y+vQJ9u3b\nS1hYCJaWVnz7bRe8vRtrK6mpVCqePHnCrFkz2LZtc7EXW7VazYIFc/njj9/o1KkLM2bMRCqVkpGR\nwaFDB5g4cTL6+vpkZWUUtasCnxmC2P4fCQkJZGdnI5PJUCpV/PjjWG23iJUrl7Nq1V/ExT2hfPkK\nhIWFakPAjIyMkMvl5OTkkJOT8841HWxtbRk5cgwLF86nffs2/P77LHr27K29f1ZWFkePHuLgwX3c\nu3eHsLBwFAo5JiYmuLq60bbtWKpUcc3XXv3JkyesXr2S7OxsfvhhTAG8Qv9t2rTxwd//GoaGhvz6\n61SkUikAAQH+yGQyWrVqXcQeCnyuCGL7HAMDTWrtyZPHtM/p6elz4sRxSpSwxMWlHPXqeWBvXwYr\nq5JUr+5Oq1ZNtTNbY2MTbVeJtLS09yqgY2BgwOjR49iyZRPjxo1k8eI/sbOzIzU1lbCwMBQKOS4u\nLri4uFC7dh0cHZ1xdHTKJ7CgmcGdOnWC7du34uDgxJEjJ3Fzq/4+L81nxfffD+PHH0eRnp6Oj08T\nVq1ag5tbNaKiIpFIJLi4lCtqFwU+UwSxfU6pUvacOXMZkUiElVVJLCwskEgkHDiwj/v3w1GrVSQl\nJREd/ZCQkHvacLAXYmtMZqbmq2dGRvp7b0bp6ury3Xe9qVfPg+vXr5GZmYGNjS01atSkShVX7O3t\nMTDQJStLlidt+GWSkp6yYcPf3LwZRN++A5k8eVqxr9OQnZ3NsWOHefLkMevXb8XGxoYBA3rTrVtn\ntmzZ/vzbiH6eBJcPQalUsmfPTtq0+fKDNz0FPg8EsX2JVyUa9OnTHdCIqaGhEYaGBjx+/JiHD6OA\nF5lmOjo6qFSaTZXc2N0PoWLFSlSs+G61fFUqFSdPHmf37l2YmZmxefMOmjVr8cG+/NcJDg5i4MA+\n3L8frm211L37d2zfvodvv21Hz57d6Ny5K5mZGWRkZGBhYfRB9pRKJd27f8vJk8fx8ztE/foNCmgk\nAv9lBLF9A/b29pQrVyFPuuaOHVu1LXxyZ7YvZ5a9S2PJgiI6+iHr168jMjKC3r378fPPv2Jqalbo\nfnxqbNu2mWHDBgGwZ88+nJ3Lsnv3TqZMmUzp0mXYvHkX7du3ZtmyJQAcP36U3r3frwaCWq3mypXL\nzJz5OxcvngPQxmALCAhi+0ZE+YpFq1TqPHG2uf/mtvkoTLHNzMxk//69HD9+lLJly7Fv31Hq1n23\n0LHPEZlMxq+//syaNSsRiUQYGBho12M7dvyW+Ph4Zs2ajqurG9u27aFt2xZERz+kT5+eqFQyatXy\nwMTEjCdPnjwvNuT0SjsqlYrg4CAOHdrPjh3bePjwAeXKlaNDh47s2rWTUqXsC3HUAp8ygti+B2q1\nWhsGlruMIJFICnVmq1QqOXPmNH5+e5DLZYwbN4Fhw0bm61BcHLlxI5AWLbyRSqX8/vsM7t8Px9d3\nLadPn6RxY0295UGDvufevXsMGdKfw4dPsXPnPpo18yItLZV+/frlu2eLFq1p2NALK6uSPHv2jOjo\nh4SG3iMgwJ+kpKeYmprSpk1b5syZR9269Vi6dDElSlh+9J50Av8dBLF9C7KyMklKSkIiESOR6KBQ\nyNHR0YQMvTyzzU2M+Jhiq1arCQwMZOPGTcTERNOpU1d+/vlX7OxKfTSb/yUuX75E166atkTt2rWn\nZ89epKens26dL4sXL9KKrVgsZsaMmXTv3oXvvuvCkSOnCAi4xfTpU1i3bi2gWYfv1asP9vb2HDx4\ngOnTp5KTk4OOjg729qVxdi5Lz57fUb++J7Vr1+Hp00ROnTrFqVMnOXfuLPb2wqxW4AWC2L4BIyMj\nrly5zJUrl/M8X7euB/BCbF+OrS3Ivmm5qNVqbt++xf79foSFheHhUR9f33+oXr1Ggdv6r7Jt22ZG\njhxK7dp1uX37Frt372LChElYWVnh7l6DwMAAkpOTsLAoAWh+t4sWLeHbbzuwdOkiJk6czPz5i5gy\nZTLLlq3Ez28Pa9aswtDQkCZNmtK795/Ur98AS0vLPEtLcXFPGDlyOAcO7EckElG6dBl0dHT4+utv\niuqlEPgEEcT2DezYsZeoqEjkcjlyuQy5XIFMJkNPT48ePTpplxFeFtuC/OqYK7L79vkRHh5GzZq1\nOHz4MHXqNECpfHXoV3FkxYolTJ48ke7dezBv3p9cvHiBDh3a06tXD1auXI2trWajasSIYSxatFQb\nuhcUdAO5XJ7nd+bo6MhPP/3M2LETCA8PY/9+P/bv92PYsCHo6enj7e1Ns2bNsbe358aNQFauXI6e\nnj6zZ//J1193FDYmBV6JILZvwNbWDltbu3zPBwcHAS9mttnZ2ejq5s5sC0Zs4+PjWL9+HXfv3qFG\njVps2bKT5s1bUKKEMcnJGbzcMaI4ExJyj8mTJwLg4VEfqVSKt3djfHyac/z4MRo0qIe+vgFSqS63\nbgXTokVTOnT4BlNTU1asWEaXLt0ZOvQHlEolGzas5dKl89jZlcbcvARdu/Zg5MixjBw5lgcPoti/\nfy/79/vx00/jUKvV6Osb0LmzZinH3NziDZ4KFGcEsX1PXtRL0IhtWloqhoaa4HUjow+L0wSIiLjP\n/PlzsLS0YuPGbfj4tEQkyh8ZIQCTJ08ANJuUw4cPZfHiRfzzzybmz19AtWquGBubkJ6ehq2tLU+e\nPMHY2IQ9e3aRmZnJyJFjmTDhFw4e3M+UKT/z4EEUAM7OzkRGRmJoaEi/fgMBTYfloUNHMHToCNLS\nUklOTsba2kbYBBN4K4p9Pdv3Jb/YpiGV6qKnp/fBb76cnBwWLfoTV1c3zp69TPPmrQSRfQ3BwTc5\ndeoEXbt2Z/Lkabi6ViU0NIR69WrTsqUPIpGI9PQ0Nm/eRnh4FGfOnKdu3bpkZmYyevSPTJjwC97e\nHvTp0x1XV1fatm0LwJw5cwEoUaLEK+2amJji4OAoCK3AWyOI7Xvy/2KbmpqKWCzG3Nz8g4UxISGe\ntLQ0pkyZjrGxyQf7+jlz8OA+DA0NcXV1Q1dXlx49ejFixCjMzS3yFHLv0aMbnp71OH/+HG5u1TAw\nMKBv34Fs3bqJe/fuAjBq1BjmzJkPwNKlSwGwtrYp/EEJfJYIYvuevNyFV6FQkJT0FIVCod3p/hAS\nExMBcHBw+OB7fe5cvHgBZ2eXPDUN7OxKMWbMj4Bm/dzOrhTm5uYEB9/k558nMG/eHLy9m2JoaMgv\nv0ygdOnSiMViWrVqTnh4GMbGxly4cAEQxFag4BDWbN+TlwuKJyYmolKpSE1NpVSpD493ffYsBZFI\nJLzR34Lo6AeULeuS7/mkpCQAsrOz8PBog4tLeVQqFdeuXeXcudO0bt2G/fv9SE19xuDBQ0hPT2fF\niqV89VVbnJ2diYiIAMDa2rpQxyPw+SKI7Xsik+UAmsD3R480LcoTEuKoXv3DyxjKZDL09Q1eWTpR\nIC/p6WmvrKqVnJyk/f+ePbvQ09NHKpVqE09at25Ls2ZeqNVqIiMjsLOzZ+jQH1i+fLFWaAEhjEug\nwBDE9j3JFVupVEpMTAwGBgakpaW9Mkzs3e8tQyrVeZ4WXHw2xtLT01iz5i8SExP48suv8fSsD8C+\nfX4kJCTy3Xd98l2jr6+vLQqUi0wm48yZ09rHlpZWKBQKZLIcMjMzATAzM6d8+QpERz9k27YtANo+\ncklJSZQp48CqVeuK1esv8HERxPY9SUlJATRhXjEx0ZQqZc/9++GUKVPmg+/t6OhEamoqZ86c0qaX\nfu7I5XK+/voLQkJCsLCwYOXKZVhYWJCYmMiCBfMJDNTUIBg5cmye68qUceTp06faxydOHOPUqRN5\nylz27z+Q8uUrAHDy5HG2btWI65YtuwDNss2dO7e5desmt28HExERzpQp06lZs/bHHrZAMUIQ2/fk\n6dNEbZhXTEwMlpZW6OnpUbLkh6/xubpWxdm5LMuWLSo2Ynvu3GmCgm6wc+ceEhISGTy4P8nJyfTv\n35/Bg4cwaFA/ZsyYhkKhYOzYn7TXVa/uzu7dO7lz5zY7d24nMzMDQ0Mjevfuy7p1axCJRCxevJBa\ntWqhUCiIjY1FoZCTlJSEpaWmSaeZmTn16zegfv0G6OiIsbAwIjk5Q+iuK1CgCGL7CtRqNRs3rn8e\nO6uDVKqLrq4uUqkUXV1d7O1LExsbi4VFCbKysoiJicbCwgIHB8cCWWcViUQ0auTN+vXrePQotliU\n6bt9+zYmJibUqFGT8uWdAc3r4Ovry7Nn6Tg6OvPgQSSzZ89ALpfz00+TEIlE+Pi0YPXqlWzYsA6J\nRMLXX3eke/eeiMVi7t27y8mTxzE2NuHChfNYWloilepSvnxFoqMfasVWQKAwEMT2FcTERDN69HD0\n9PRQq9XI5fJ8rc5r1aqDjY0N9+/fR6VSERMTQ506dQvMh9q167Jhw98cO3aEXr36Fth9P1WioiJw\ndHRi3LgxKJVKTExMtG3hd+3ajpeXN0+fJpCens6ff85BLpfxyy/T8PT00t7j77835mn/k9vp2MHB\ngTt3bhMfH0+VKq7ExMSwZMkCVq/+u3AHKVCsEba7X4FcLgfg558ns2XLDnbu9GP79t1s2bKDOXP+\nBODBgyhsbe0ICQnByMiIp08TKVeufIH5YGhoiItLOc6ePV1g9/yUiYi4j729PTt3bgfg/PmLNGny\nYgnl3LkzVKtWHRMTTZLHkiULmTx5Inp6ekye/BsSiYSEhPg894yPj0cqlbJ06Qr09fUxN7dg69Yd\n9OnTl2PHjmg3ywQECgNBbF+BWp03Oww0efe6urrExWmykhITE3B0dOT27dtakS3ozqyOjk7cunWz\nQO/5qRIVFZEngsDDoy6jRo3iq6++0j538eIFKld21YZjrVy5lIkTf2TAgME4OTmzevVfeWoJP3uW\ngrGxMQBNmzYjJSWZq1cv06JFS7KyMjlx4mjhDE5AAEFsX0luwsKr1l9DQkK0a32lSpUiNDQUsViC\ng4MjpqamBeqHnV0pHjyIKpAGkp8ycrmc2NhYsrOz0dfXZ/HiJchkMtq1+4rWrVvj7v6iZu/Vq5cp\nX74C5ubmAKxZs5JJk8Yzc+Y87ty5ja/vGq3gZmRkajP6Bg0aAsD8+fNwcHCkcuUq+PntLuSRChRn\nhDXbV5Arbq8S2zt3bmNtbYNMJiMpKQmFQkFkZAQeHvUL3A9jY+PnmWnPCiQN+FPl5a//3bp1p2PH\nb6hWrRpNmzZh6tSpxMXF5Tnf3/8a7u41ePjwAUlJSfz991oUCgUzZ85j/PjR3LlzGx+f5igUcm0G\nmJGRIU5Ozty5c5vx48dy/364kDQiUKgIf20vERcXxx9/TGPatMkA+QLaU1KSiYi4T1ZWNhUrViIg\nwB8HBwdSUpKpWtWtwP3R09P0E8vKyirwe39KxMU90f5/3Tpfnj17RvnyFShTpgxPnjxBIpGwcuUq\nOnfuoj3vxo1A7O3LYGlpBcDGjesJCLjOrl37KVeuPKtWrQQ0bXKaNfPGx6cJUVGRqNVq7t69y7hx\nE9i5c1/hDlSgWCPMbF9i795dLFgwD1fXqrRs2RoHB8c8x69fv4ZarSY6+gGenp7s2+eHm5sbSUnJ\n2qD5gkQuVwAFV4z8U+XlmatKpcLb24sbN24ilWr6vLVv3x47Ozu6d++BgYGhtkdYcHAQlSu7IhaL\nSEhIYOvWTcjlcv7+ezOpqc9Ys+Yv7O1LI5fLEYvFODo6UaFCxQLJ8hMQeFcEsX0JhUKJvr4+06ZN\nf+XxCxcuUK5cBcLDQ7XpudHR0bi7u6OjU/AvZVpaGmKxuMDXgj81Hj9+BGjqTFhYWBAfH8+QId/z\nyy+T+e67nly9epXvvusNQKNGjVi/fp12Xfbu3dtUrFgJkUhMfHwcu3ZtR6FQsHz5asaNm1BUQxIQ\nyIewjPASL7co/38SExMIDg7C0NAQZ+ey3Lt3Fzu7UkRHR1O7dsHF175MfHwcdnaltDO8z5WIiHBA\nE/ExbNhIJBIJe/bs5tkzTZzsw4cPWbjwT549e8aAAf1QqVTUqFFTu+YaEnIPU1MTbGw0fcb27t3N\nwIG989VMEBAoSgSxfYnXFX5RKpWsXbsGExMTQkLuUrWqG/7+/tjbl8bCwoKqVat+FH9iYqI/ylrw\np0ZkZCSgKSCjq6vLwIGayIHhw4cBmhnviRMn6NmzO0qlEi+vxgwb9gMTJvyirWMbHh6OoaGhtqX7\ngQP7qFLFRRszLSBQ1Ahi+xIqlQqxWCO2arWasLAwfH3XMHhwf65cuYStrR0SiQ4mJiZkZ2cRHh6G\np6dnnsLVb0NmZuYbA+rVajUPHz6gWjX39x7Pf4WUlGRAM+a5c2dhYmJMo0aNAU1EyJMnL8olenjU\np3dvTfWvsmXLMnnyVO0MNzIyAqlUir19aUCTQRYQ4F+IIxEQeD3Cmu1LqNVq0tLS2LTpHy5cOM/j\nx4+wsLDA2dmFp0+fEhJyj5Ejx3Dt2hUcHZ148CAKDw+Pt7rv/fvhXLlymfDwUKKjo1Gr1VSt6saA\nAYO1gfcvEx39kNTUVGrWrPUxhvpJkZWl+eDR1dXl6dNE5syZSZMmzShVqhQZGRlcuHAO0HRNGDBg\ncJ5rg4Nv5klkePjwAaVLl6FePQ/69RtEvXpv/v0ICBQGwsz2Jc6cOQXA4cOHsLMrhYtLOZKTk7l7\n9zag+Trr5laN0NAQbGxsMDAwoGzZsq+9n1qtJijoBtOmTeaPP37n3r27NGzozcKFy1iwYCmPHj1i\n3rzZJCcn57tu//69WFvb0KhRk4834E8EHR3NmnSpUvbMmjUHExMTTp48TkpKCmlpaWzcuAFjYxM8\nPRvkue7YsaPs2LENMzMzfH3Xa+sixMREo1Aoad++Y6GPRUDgdQgz2+c8ffoULy9voqMfEhUVQXBw\nEPXqedC9e0/c3WvQocNXuLq6kZGRQUJCAqVLl8HJyfn5EkL+DK/09HT+/tuXgIDreHo2ZN68xXh5\neecJpK9ZszadO7dnypRJNGvWHFfXqujr63P+/Dn8/a+zatW6z35zDNDO7KOiInF0dGbt2vWsXv0X\nR48eRqVSceDAPjw8PAkLC9Vec/r0SbZs2YiJiQnr12/C1NSUYcNGMHv2zOf3FBplCnxaFCuxffAg\niuPHj+Ds7EKJEiVIS0vj7t3bHD9+lPPnz6JWq6lZsxadO3emYcNGWhE4evQIANWqufPoUSygEefX\nFZ6Ji4vjzz/nIJPJWLNmA23bfvXKjbdKlSpz4sQFZs36nW3bNmvTR0UiEVOmTKdduw4f42X45Hi5\nhGS/fr2YOvU3Bg4cTI8ePZkzZyZBQUG4ulbl/Pmz5OTkcP36VTZs+BsjIyPWr9+IqakpV65cZs6c\nWejq6lKypDUXLpxl585tdOzYqQhHJiDwgmIltt9/35/r16/meU5HR4fq1d0ZMmQ4jRs3wcLCIt91\nt28HA1C9enXCwzWzq6Skp1ha5l8PTEhIYPbsGVhaWrFt2x7KlPn3DrlWVlbMmbOA33+fRWjoPbKy\nsnFwcChWgfe5H2qOjk5ERz9k3LgxdO3anU6dOjN69Gh69epFuXLlycnJYeXKZQQF3cDAwIB16/7B\n3NyCgAB/Jk4cj1Qq5dChozg5OfPTT+MYMmQAqamp9OnTv4hHKCBQzMQ2tzzfxo1byczMRF9fDxsb\n2zd+VX/48CEikQgLCwsyMjKQSCSkp6fn29jKzs5m6dJFmJmZs3fvEUqWLPnWvunp6eEWqrhIAAAg\nAElEQVTm9uHNIv+LZGRkAFCrVm0WLlxC79492bTpH65fv8aYMaMBsLa2pVevvvz9tyZ7bPXqdVhZ\nWXHr1i3GjRuNWCzGz++A9tvG7NnzMDU1Zfz40aSmPmPEiNFCPzGBIqVYiW3lyq7cvx/2zu3Gnz17\nps0QUygU6OhIUSqV+bLG9uzZSWJiAkeOnH4noS3uBARcBzSRBS4uLpw6dZbhw4dw/vw5hg4dikQi\nwdXVjQYNvNixYxsZGemMGjUcT8+G7Nvnh0gkYteuPVSpUkV7T7FYzC+/TCE+Pp7p06fSpEmzYhFG\nJ/DpUqyiEVQq1WszxP6NnJxsbSytZnakzndObGwMJ04cZ9y4iVSqVPlDXS025OTkEBoaAkBYWCgd\nO7YnMzOT5cv/YvjwH1AoFFSsWAkbGxv09PSIjHzEyZMXaNXqCw4dOohSqaRx4yZUqZI/seTkyRMc\nPnyIr75q/8rjAgKFSbESW7Va9V5fJV++Rl/fgJycHKRSqfbrL8CRI4exsbHR1k0VeDuOHj0MaFqS\nt2vXntDQEJo2bcTevX7s3etHmTJl2LnTj+vXrzJp0ng6dWrPzJm/UbKkNfv3H2HMmPGcOXOaQYP6\n50nPvX79GoMHD8DHpyXLl6/5KLUrBATehWImtq9Ox30TUqmutsatmZmmS4C5uYU2d18mk3H16mX6\n9RtcLEK1CgqVSkW/fj0BGDhwMGvXrmPtWl/UajU///wTaWmp7N+/nwkTfqRNGx8OHtyHsbExIpGm\naHiLFo0JDw9l/fotnDt3ltGjf0CpVPLoUSyDBw+gRo1axSZ8TuDTp1h93GvScd/988Xc3JwHD6IA\nsLGxAcDa2lpbhzUiIgK5XI6PT4sC87U48HJ/tcWLFxIaGsKiRYs5c+Yc9evXY/jwkVSvXh1dXV3W\nrl3HN9900v7+MjIysLGxxM9vN5aWJVm50pd+/XoilUoJDQ1BV1ePtWv/QVdXt4hGJyCQl2Intu8z\ns7W1teXGDTVpaalYWlqhr2+AkZExDx5oCqjEx2vqsRZ0D7LPnalTJwFgY2OLTJbD4cOHqFixPDVq\naNrg6OrqAZpvDiVKWOX5oOzdWzMjdnR0Yu3avyhXrhzz5i1i1ChN8ZoTJ84Jm5QCnxTCMsJbUL26\n5s1/82YQYrGYsmXLkpmZSVxcHElJSchkMqRSKXp6egXt8mfLxYvnuX37FgBt235Fv36D6NSpG+bm\n5gQEBCASibShehKJhPbt2zJ69A8AbNmyiUOHDmJvX5rBg4fi5dWISZN+wtrami1bdrFly85iG0Yn\n8OlSrMRWpXo/sc3NyQ8KCgLA1bUqoaH3EIvF+Pv7Y2BggFwuz7NhJvB6srOztTNQgFOnTnD37m1K\nly5Nv36DKF++As7OLjx4EPU86eN/7N11WFTZ/8Dx9wwdgoCIgKBioISCYK9iYoKB3a1rrl1rJ3br\nmiiouyrqrp1f2zVQkbUBKUUFpWWomd8f6OzysxUYlfN6Hh4f7r0zn3PvXD+cOffEYooUKcK6db/h\n6GjHwIH90dDQpG/fAQA0adKc8uUr0K9fL5ycnKlfv5GqTk0Q3qtANSNERIQRHPyQli2bf/C4N7N/\n6enpoaamzpv8HBBwlV9+GUJmZhbp6emoq6uzceNGZbvgqVMn8PBomden8d2bNm0Sjx6FAtlNBaGh\nIYSGhnDw4H4KFSpEZmYmzZt7snXrZmJjYwkPD2PWrHn4+W3h/PnsGcDq1q2Ptnb2ckFSqRR7ewfu\n3LlNQkICxsYmKjs3QXifApVs1dTUUFNTQ09P74PHZWZmkpSUREpKCkWLFkWhAF1dPV69SlH+B8/K\nykRLS5ukpETU1dXJysri0KG/RLL9iJ07d7Bp03oAjI2N2bDBh1evXnHy5HEuXbpIWNgjZDIZmZmZ\nxMTEALBs2RIge1ivkZERcXFxnD59iuvXA9DR0QYkJCYmUKVKNUqVev8sbJ8rLu6lsseJmpoaxYtb\niVFowhcrUMnWzKwY9vYO/PnngY8eW6ZMSSwsLDlw4PA79/v5bWXRogVoa2vTs2cv5HIFvr5bePHi\nBSYmomb1Lnfu3Gb06OHK32UyGdOnT8HaugS2traMHz/p9exdP1OsmDmtW3tx584/1K1bj6tXrxIa\nGkJcXLzy9YmJCchkqcjlcjIzM2nZsnWulfX8+bO0bdsqR9/ddes2i2kbhS9WoJLt5zwgc3Bw5MaN\n6yQmJr5zwcVWrdqwevVKypQpg5+fLzt27GTr1i0sWbKAWbPm5XbRfwiTJ4/H0tKSsLAwsrKyUCgg\nMPAmgYE32f96VfE3PQ5u3ryuHH7buXNXOnbsAmQvUXTmzCkOHz6Mubk5BgaGXLlymdjYWHr37p8r\n5QwODqZHj67UrFmL7t178PPPAyhTppzo2id8FZFs32PEiFF0796FefPmMGfO28lTX1+fLl264eOz\nCYUCfv99B3379mPVqhW0a9dB2YNByBYQcJVz587QoEEjQkJCGDt2PN269UAulxMeHs7Vq1e4ffsf\nQkODuX//PvHxcWRkZHL//n1atfIgNTWVjIwM5eCS/69GjVq5MkosMTEBT09PTEyMWbduAx07tsfI\nyJht23aKOXKFr1IAk+2nHevmVhdzc3MOHTrAxIm/vnPpmt69e7Nv3x4MDQuzbZsvmzZtoVw5WwYO\n7MORI6cwNCycy2fw/frzz72Ymppy48Z1tLS06NIlu5+sVCqlVKlSlCpVCugAgLf3XC5evKBcDw6g\nePHiGBubYGpqirm5+evJ20tiaGhI69Yt6dPn62u1WVlZ9O3bi+joaE6dOs3IkSO4f/8ef/11JMec\nu4LwJQpgsv303m6zZs2jT58eDBo0gK1bt721X09Pn8mTJzN48GDlHKoLFixmyJCf6dOnO9u27RJ9\nb1/7+++L1Knjhr//bgBq1KiChoYGGhqaaGtroa2tg46ODnp6erx8+YJHj0LZsMGHLVs24+vrR40a\n/y6Jk5aWhp/fVlasWE5Q0C0AnJ2/fq22adN+5X//O8nhw4fZssWHQ4cOsGXLDtFnV8gVX9zPNj09\nHQ8PD65evarcFhUVRa9evXB2dqZFixZcuHAhx2suXryIh4cHTk5O9OzZk8jIyBz7fXx8qFOnDi4u\nLkyaNIm0tLQvLd47fe6ghoYNG1KjRk1u3LjO1q0+7zymSZMmeHm148mTJ8hkaSxY4M2sWXO5fPkS\n3bt3FH1vXwsLC8XGprTyd0tLy9dfyxUkJCQQFRXJ3bt3uHz5bx48eIBCoeDVq1dIpVLatvXi9OlT\nTJgwHmfnSlhaFmPs2DHKlXO1tbUpXtzqq8q3bdtWfvttFfPnLyQ4OJhly5Yya9Y8Gjdu+lXvKwhv\nfFGyTU9PZ+TIkQQHB+fYPnjwYIoWLYq/vz+enp4MGTKEp0+z5w+Ijo5m8ODBeHl54e/vj5GREYMH\nD1a+9ujRo6xevZqZM2eyZcsWAgMDWbBgwVec2tu+ZASZj48vhQsXZuHC+Zw9e+adx0ycOImyZcsC\nCkJDQ9i0aQNz5nhz+fIlmjatT0jIw1wo/fdNJktDT08PqVRKnTpu3LgRxP37wYSFRREdHUNsbDzx\n8ckkJaUSHZ3d5SsiIpy9e/cilUrx8mrDunVrefLkMRYWlri7N2HEiDFUqGCHjU3pr+qSdenSBcaO\nHUGfPv0oXbo0Q4cOpX//n+nbd+DHXywIn+izk21ISAjt27cnKioqx/ZLly4RGRnJjBkzsLGxoX//\n/jg5ObF7d/bXxp07d+Lo6EjPnj0pXbo0c+fO5fHjx8qasa+vLz169MDNzQ0HBwemT5/O7t27c7V2\n+yVzI2hra3PgwCE0NDQYMuRnDh8+9M5j1qxZh7GxCVpa2oSGhrBs2RJmzJhNWpqMevV+YvnyJble\nU/+e6OrqkpSUhEQiUfZdfZ9ChQphY2NDYOBNPD096dixMwDNm3vwyy+j6dSpKxUrOiGVSomJicHa\nuuQXlyss7BG9enWhZs1a9OrVm65dO9O0aVNmzxY9SoTc9dnJ9sqVK9SoUYM//vgDheLfSbRv3bqF\nvb19jjZKFxcXbt68qdxfpUoV5T5tbW3s7Oy4ceMGcrmcoKAgXF1dlfudnJzIyMjg3r17X3Ri7/Kl\ncyNYWZXgyJETaGtrM3bsKKZOnYxcLs9xjJGREevXb8LU1JSMjAzk8iwmThyHu3sT2rTxYu7cGVSp\n4sjq1SuIjY3NrVP6btjalufevbuUK2dLYOBNFi9eyJw5sxg+fCidO3ekSZNGVK9eBXt7W0qWLE54\neDj+/jsBmDlzLoUKGfDixQsge5kif/9dLFu2iCdPHhMd/eSLypSUlEi3bh0wMjJiwYLFdOjQFhub\n0uzYsUM5Wbwg5JbPfkDWqVOnd26PiYmhaNGiObaZmJjw7Fn2jFjPnz9/a3+RIkV49uwZiYmJpKWl\n5divpqZG4cKFefr0KZUq5dYDCgXwZV83S5cuzd9/X8XTswV79uxmz57dLFu2ghYtmimPKVq0KD4+\nvowbN5ozZ07j4FCRdevWYm1dgj59+hEREc6sWVOZNWsqjRo1YdiwEbi4VPlA1B9H9eo12LRpA9u2\n/U6LFk2YMuXXHPslEinq6mqoq2ugqamBvr4+sbGxxMfHo6OjQ82aP3H69EmuXbtCZmYmAIUKGSCV\nSpWzhH2OrKwsBgzozdOn0Rw4cJj+/fsglyvYvn0X+vr6xMWJtnYhd+Vab4TU1NS35g7V1NRUjsCR\nyWTv3S+TyZS/v+/1n0pN7cOVdalUkqNL0ecwNjbm4MHDODhkL3szfPhQtm3zZenSFcpJxQsV0mfl\nytXs2LGdRYsWYGxsgp6ePuvWrUVfX5/69RtQtKgZFy6cp2nTBtStW585c7w/eSmdN+f3sfPMbV8b\nt3PnrixZspB79+5ga1ue+/fv0aVLN6pXr/HObnXPnz9n3LjRnD59mvr1G6Ovr0daWhqFCxfG0bEi\ndevWQ1+/EIsXL0BPTx919c8r1/Tpv3Lq1An8/fcyb94cgoMfcujQcaysin/VeX4pVXyuBSWmKuK9\nS64lWy0trbfa4tLT05VzCWhpab2VONPT0zEwMFAm2Xft19HR+axyGBi8/3gNDTXU1KRoa3/ZzP3x\n8fHUqZPdBalx48bcv3+fK1euULt2TQYPHszw4f8ORe3TpxeNGjVg0aJFHDhwgCJFilCmTBkCAq4R\nFxdHixYt6NKlM+vXr6dmzSpMnDiRGTNmfPLX1w+dZ1760riurpVo27YtCxZ4s3PnTho0aMC2bb5k\nZKTRpk2bt44vUaI4VlZW7N27l1atWtGunRf+/rsYN24curq6yuPkcjkGBnoYGX14vov/2rx5M6tW\nLWfZsmWcOfM/Dh8+xP79+6ld+9+l6b+36ytifvtyLdmamZm91TshNjZWOYGzmZmZcmKR/+6vUKEC\nRkZGaGlpERsb+7pze/bXvPj4+M+eADoxMZWsLPk796WlZQAgk2V81ntmv28itWvX4uXLlzRr1hw3\nt3o0aOBOcPB9fH39WL58Odu2bWf27DnUrl0HgKJFzfH2XkivXn3Zu9efAwcOkJAQj5OTM+fOnef4\n8eNYWFjy7Nkz5syZw9mz59i4cQumpkXfWw41NSkGBjofPM+8kBtxp06djZtbDbp06cLKlauZNGkC\nO3fu5ObNQMaMGZdjBFh6ejq2tuXZt28fL14kcu9eMBKJBJksA4kknefPn/Hw4UMSEhJITEz55K/9\nly5dYMCAAfTu3YesLAVLly5lwYLF1KjhRlxcynd9fUXMj8dVpVxLtpUqVWL9+vWkp6cra6oBAQHK\nh16VKlXi+vXryuNTU1O5c+cOw4YNQyKR4OjoSEBAgPIh2o0bN9DQ0KB8+fKfVY6sLDmZme/+EOXy\n7Dbb7H8/XXJyMm5uP/Hy5Qvc3ZtQu3Zd5HIFUinY29szZco09u//k7//vsTAgf2xsrJi/PhJ1Knj\nBkC5craMGzeR4cNHsnevP5s2bSAlJRkHh4rcuJHdV3TZspXMmjUdD4+m+Pvvx8ys2BefZ176mrhm\nZuYcP36Wvn17MGzYECZNmszx48c4f/4c/fr1RiKR5Hjo+saWLT5Mm5bdxjtv3uy3enU8ffr0k8oU\nHh5G9+6dqV69Bo0aNaZLl44MGDCIHj36vvX67/H6ipjftlxryKhatSrm5uaMHz+e4OBg1q1bR1BQ\nEG3btgXAy8uL69evs379eoKDg5kwYQJWVlbK5Nq5c2c2btzIiRMnuHXrFtOnT6d9+/a5OgLrS7p+\nJScnU7fuT8TGxtKwYWPq1Wvw1jFSqRQPj1ZMmjQVOzt7oqKiGDx4ID/9VJ25c2fx/PlzILsHRqdO\nXfjzz4P07NmboKBArK2t0dHRwdt7DtOmzSAxMZFWrZopHyz+aKysrNm//yjduvVi6tTJWFoWp2HD\nfyf7LlXKhnLlyuPg4IiLSxUKFSpEQMC/A2d0dHSwsSlN7dp16NatJ3p6ep/U3p2cnET37h0xNDRk\n3LgJ9OvXG3f3JkybNjtPzlMQ/r+vSrb/TVxSqZTVq1cTExODl5cX+/fvZ9WqVRQrll1Ds7S0ZMWK\nFfj7+9OuXTuSkpJYtWqV8vXNmjWjf//+TJ06lb59++Lk5MTo0aO/pnhv+dyuX69evaJevTrExMTQ\noEEjGjRo+MHjdXV16datJ1OmzMDVtSoymYzt27fRoIEbderUYsqUX0lOTkZXV5ehQ4fj67udV69e\nIZPJ0NLSYfTokQwZMpTk5GQ6dmxNYuKH+6N+rzQ1NZk7dwErVqxl587fcXaujL29AwqFAgeHinh6\ntqJJk+Y0aNCQypUrs3evP+vW+QDQuXN3+vUbSLNmHtjZ2QN89DPNyspi4MA+PH4cxbJlK+jfvw82\nNmVYs2aj6OIl5BuJ4l3f275jcXEp7/160rNnF1JSktm61e+j7/Pq1Svq1q3Ns2dPqV+/IY0aNX7r\nGKlUgra2BjJZxnubJsLCwjh37gyhocHIZDKkUik9e/ZixIjsPySjRo3g2LEjSCQS7O0defjwARMm\nTGTJksXY2zuyc+feHL001NWlGBnpffA880JexZ0xYzLr1//GkSPHcXevT0ZGxn8WdpQACuRyOf37\nD+Lgwb8oVsyctm3bK18/a9Y0Ro4cx9Chv7w3xvTpk1mzZgVbtvixYIE3L1684PDhkxQrZp5v5/kx\nqohbUGL+N64qqb4/RD761JqtTCajfv06PHv2lLp1670z0X6qkiVL0q1bD6ZOnUmPHr3R09Nj06aN\ndOjghVwuRy7PnjKwbdt23L4d9HqV2AVMmDCRq1f/ZsKE0e9sx/xRDB06Ark8i7Nnz+DsXBnIbkoo\nWbIU1tbWWFtbo6+vz9mzp+nVqy+3bt3MMd/Exz7T7dt9WbVqGbNmzWHbNl9CQ0Px89v5zkQrCHmp\nAM769eFjZDIZ9erVITo6mjp16tK4cbMPv+AzlC9fgfHjf2X7dl9u3/6H7t27YGxsDIC390IyMjI5\neHA/FhaWrFmzmgkTJjFjxjQcHSvRs2efXCvHt8TIyBgXlypcufI3GhoaSCQSJk6cDGR/c9DR0eTC\nhUusWLEMZ+fsh63Xr1+jdm03FArFB9vhz549zejRw+nVqw/h4eEcP36Mbdt2Ym/vkG/nJwhvFKhk\na2JiwrlzZ5DL5f/5qvqv9PR0GjRw48mTx9SuXYemTT+8MOSXkEqldO3ag40b1xEYeBMrq+zZqtTU\n1Jg/fyGPH0cRHBxMRkY6//wTRPfuPfn113FUruxCxYpOuV6eb0HZsuW4efM6kZGRKBQK+vTpodz3\n30S6cOEcPD1bc+bM/6hWrQb+/ruQyWTv7LFy//49evfuRt269ShXrhwTJoxj/vwlYuVdQWUKVDNC\nly7diYgI53//O/XWvvT0dOrXdyMqKopatWrTrJlHnpalW7eeaGho5JhmUktLizVr1iGVSihZ0oY9\ne/yxs7OjXDlbOnb04tatm3laJlV5M+DlzR+eqlWr4eLiSuXKlXFycsLBwYFixYoRGBhI587diI2N\nYenShTx4cJ+NG31p0CDncjXR0U/o3LktVlZWdOrUmYkTx/Pzz0N/2G8HwvehQNVsXVyqUKGCHYcO\nHcjRsyAzM5OGDesRGRlBzZq1aNHCM8/LoqmpiZdXO37/fXuO7aampnh7L6Rv3144OVVmypRfWbt2\nHcuWLaVVq+b4+m6nVasWeV6+/PT8+XOMjIxIT09HKlVj/PhJQM4HkE+ePGHQoAE8fhxFxYpOxMQ8\nZ/fuv96a2Ds2Npa2bT1RKORMnjyV3r170KRJc6ZMmaGKUxMEpQKVbCUSCT/9VIejR/9dMTc70dYl\nPDyM6tVr4uHRKt/KU6mSM8eOHeXlyxecOHGChg2z/wA0auTOoEFDWL16JWXL2jJmzCg2bvRh8eKF\ntG3binnz5tG7948x16pCoSAg4CqNGzfmxIkTyOVZTJ8+BalUilSaPTkNSJTNCUuXLuTo0f+hrq7x\n1pL0CQnxdOjQmoSEBDZv3kLfvr2wtS3PmjUbRBcvQeUKVDMCQPXqNYmICOfZs6dkZmbSqFF9Hj16\nRLVq1XN1KexPNXjwMKRSKcOGDVbOZgUwevRYGjVyJyIiDH39QvTt24sJEyYxYMBAxowZQ7dunYiL\ne5nv5c1tly9f4vHjKBo0aKTsV3zrViA3b94gIOAaly9f5vLlv/n770sAhIaG8OzZs7cSrVwup2vX\nDgQFBbJjxx+MHz8WNTV1tm79I8dcCoKgKgUu2b6Z0vDmzZs0btyQ0NAQXF2r0qqVl0rKo6urS7Nm\nHqSkJDNs2BDldjU1NVauXEPVqtVeJxd9OnRoS82atfD19eXChXPUqlWFvXt3f7ddw9LS0hgxYghl\nypSlZs1aWFoWR0NDg1OnznLq1FnOnDnPlStXOHPmPP/73zmOHj2JoaEhfn5b3nqv9PR0Ll++hK1t\neebPn0dYWBjbtu3CzMxMBWcmCG8rcMnW3NwCAwMDfvllKMHBD3FxccXLq51Ky1Sr1k+Ymhbl4MH9\n3Ljx7/wR2trarF+/iapVqxIVFUnx4lb06NGNe/fucfz4SapWrcqAAb3p1MmLu3fvqPAMPp9CoaBO\nneqEhAQTHPyQsmVLcfv2P2RkZDB+/BjWrFnFiRPHiY6OVr5GU1MTd/cm/PHH9rfmR1i+fDEAmZkZ\nnDhxnI0bt1Khgl2+npMgfEiBGkH2RsmSxXj16hXOzi60b9/xi2N9ygiyTxUfH8f8+XMxNjbm2rWb\nObqmZWRkMGXKJLZv30bFipUICrqFq2sV5syZR3h4ONOnTyUqKpLWrdsyZsx4Spcu+1VleZfcHvmz\naJE33t7/zktgYGBAYmLie4/X0tKmUKFCaGlp8fhxFL1792fevIUA7N79B4MG9cPEpAgvXsSyaNFy\nunXr+UXlUvUIpx99NJeqr68qFbiaLYCBQfZE31+TaHNb4cJGuLnV5cWLF0ybNiXHPg0NDebM8WbW\nrDk8eHAfa2trHj9+TJMmjTh37iw7d+5m1qw5XLhwjho1XOjQoTV79+5WToDzrfH19cHbezajRo1h\n8OChADkSrYWFJUOGDGXlylUMGjSI+vUbYGFhQWxsDI8fR1GtWg00NbPnJN6/fx/Dhv2MsbExL1++\nYMiQX7440QpCXiqQybZLl+4ULlxY1cV4S+PGzTAwMGTrVh9CQkJy7JNIJHTr1oODB49QuHBhnjx5\njL29I/7+u3Bz+4mgoCB++209ixcvJS7uJQMG9MbBoQzVqjnRv38vVq9ewcWL50lOTlLR2WU3HSxc\nOI9Ro4bRvXtPhg4dzi+/jMTaugQA6urqNG7chJiY56xcuYIRI34hLCyMUaNGYWhoiLa2NmvXbmT/\n/qPMmDGXvXt3079/L8qUKUtycjLNm3vy66/TVHZ+gvAhBbIZwdfXh9Gjh+PkVBktLU20tLTR1NRE\nS0sLTU2t1/9m//7vtuzj3gwphdxtRngjOvoJy5cvwcrKmvPnL721XyqVoKEhxcdnK/PnzyMxMRF7\ne0ciIyN4+fIF5crZ0qiROzY2NmRkZPLgwT1u3brFP//8g0yWikQioUyZcjg5OePk5EylSpVxcHD8\n6BP7r/369+zZM8aOHcHhwwcYM2YcgwcPJSsriyFDfubkyROMHTuJRYvmYWFhyZEjx9izx5+VK5cr\nB32YmZmxbdsuKlZ0QqFQsGnTeiZNGkvHjp0oUsSUHTu2c+1a0Gev7JHb5/k9xS0oMf8bV5UKVD/b\nN9zc6uHu3oS4uDgSExNJSYkmOTmZV69SSE1N/eBrJRLJ6ySsjbZ2djLW0NBEQ0NDmZT/f8J+83v2\nPu3Xifvf7f/tA2puboGLSxUCAq6yYsUyhg4d/lYZ1NTU6NKlKy1aeLJtmx8bNqzj5csX2NiUQUdH\nl23b/IiPj0NNTQ1Hx4pUq1adAQN+xsjIiLCwRwQGBhIUdIu//tpLWloaUqkUW9vyVKpUWZmE7ewc\nlEsafQ2ZTMaOHX7MmzcTNTU1fvttA02aNCUpKYlhwwZz9uwZNm/eRsOG7ly9epmjRw9RvnxZbt26\nQ0zMcxYuXECFCnZs3foHJUqUQCaTMXbsCH7/fRuDBg1h3LgJNGhQlzJlyn51ohWEvFQga7YfkpWV\nRWrqK5KTk0lJSX79bwrJyUmv//13e2rqKzIyZLx8GU9iYhLJyUkkJSW9TtzJJCen8OpVCllZWR+M\nqampibGxMYULG2FsbIKxsTFHjhxCoVBw8eLlHDNUvas2nZaWxokTx9mzZzenT/+PzMxMzM3NsbS0\nIisri8jICGJjY5BIJJQuXQYnJycqVXJSzgf78OEDbt0K5NatW9y7d5fMzEzU1dWpUMEOJ6fKODlV\nxsXFhRo1XElJyfik6xsaGsL+/fvYsOE3nj9/RuvWbZg8eRrGxsZERETQp09PoqOfsH79FmrW/ImB\nA/tw+PABbGxKExISrBzUMHv2bPr0+Rm5PLucgwb14/79u6xYsYq2bdvTqpUHt/pJgVoAACAASURB\nVG4FcvjwKWxsSn/x5/6GqmteP3otU9XXV5VEsv0Kn3LjKBQK0tLS3puwU1KSiY+PIyIinEePQgkL\ne0RERDgZGf+uk2ZhYYG1dQlKlChJyZIlKVPGBgsLK6ysrDA0zNn2nJiYyOXLf3Pu3FmuXbvC3bt3\nkcvl6OvrY2VVAm1tbRIS4omICCczMxOpVEqpUqWwtS1P+fIVsLGxQaGAuLg4/vkniKCgWzx4cJ+s\nrCy0tLSwt3fA0dGJUqVsMDY2Rl+/EMbGxiQlJREWFsq9e3cJCLjGvXt30NbWwcPDk0GDBmNjUxqF\nQsG+fXuZOnUyRkZG+PntxMzMjG7dOhIQcJVmzTzIysri2LEjSKUSdu7ci4dHE549i2PlyhUsWDCH\n4sWt2LLFl0qVnBg+fChbt/qwe/df1Kz5U759pnmhoCQ+VV9fVRLJ9it8zo2jUCi4cuUymZkZ6Onp\noaenj66uLnp6ehQqZJCjKUEulxMd/YS//75IQkIC0dFPePQolIiIMMLCHhEfH6881tCwMCVKlKBE\niRLKhPzmdzOz7C5ub0ZjXb9+nRs3ApSrIFtYWFKkiCkaGhq8epXCkydPSEjIfm9dXV3KlbOlVKlS\nmJtbkJr6ipSUZGJiYnny5AmRkRG8evUqxzlqaWlTtmxZKlSwo0GDhri51VW2BT99Gs2kSRM4ceI4\nrVu3Zd687Cklvbw8uH//Llpa2igUctLT0/HwaMXixcsxMTEmPT2Z2rVrExoayqBBQ5g8eSq6urqs\nWbOaMWNGsmTJSrp06Z4rnyeoPhl8q/fv9xzzv3FVqUC22arCw4cP8PBwf+9+XV1dKlZ0okSJklhZ\nWWNtXQJnZxdsbXNOH6iuLgXSuXHjH0JCQggLe6T8uX49gCdPnihHlGlpaWFlZaVMwnXr1qV79+6k\np2fw4kUsISHB3Llzh7t37yqTrIGBAZaW1ujq6pCZmUlQ0D/873//Iz4+TlkGbW0dLC0t0NLSQkdH\nFzMzM0qUKEm5cuUwNS2KiYkJJiYmaGho8PLlS9asWcWWLT4YGBjg47OdZs2yJ9LZv38fkZERODhU\nxMHBkQoV7KlYsRI1a/6kfAiZlZVFaGgoAwcOYu5cbwBOnjzOuHGjGThwSK4mWkHIS6Jm+xU+56/0\nzZvXcXevy/DhIylWrBjp6elkZGRw9OgRrl69jIaGBrVru/Hs2VOio6N5+fIFhoaGPHwYybx5s9iz\nZxcmJiZIpVLc3RuRmamgdu26FC1qhrV1CeUgCJlMRmRkBGFhocok/OjRI8LDs5sn3oy8kkgkFCtm\nrqwRa2pqkpKS3T796tUr4uJe8ujRoxy112LFimFsXAQdHW0Uiuwhsikpybx69YqEhHhkMtlb562m\npoa2tg4DBw7m55+HKPs4f4ro6CgqVcoeBebsXJlz5y5y7949GjRwo0qVavj6/pHrE8youub1rd6/\n33PM/8ZVJVGzzSfJyckALFu2+J375XI5ZcqUoUOHTpQpUwZ//11s3rwRgBs3ApDL5YSEBBMfH09g\n4E3S09Px9p4DZA960NLSxsHBEYVCjrt7M6ytrXF1rYqHRyvMzIohkUiQy+U8fRqdozb86FEoDx7c\nJzw8jLi4f2uvhoaG2NiURk9PD7lcjkKR/R8jIyOTtLQ0YmJiePbs6TvP5ciRU7x4EUtsbCypqal4\neramSJEiyv2jRw+nSZNmNGz4/uWG9u//k19+Gaz83dKyOHFxcbRv3wZzcwt++22TmMlL+K6IZJtP\natWqza+/TsfKyorMzEyysrLIysoiOvoJ8+fPISsri3Xr1gJrgZwrFGRlZeHo6Mi1a9de91gwIioq\nCl1dXZKSktDX1yc+Pp7bt4NISkrin3/+ISUlWfl6XV1dihe3xtzcnPT0dJo2bY6LSxUaNmyMlpam\n8iFbQkJ8jkT8plYcFfWIJ08eK5snNDU1MTMrhlQqRS7PWTvp1KkrlSu7fvBaODlVxtLS6p37MjIy\n8PLy4O+/LyoXujQ1NWXrVj86dWrPy5dxHD9+hkKFDD7vAxAEFRPJNp9IJBKGDRvx1vbg4IfMnz8H\nW9vyzJ49lwsXzhEYGMipUyeVx8jlctTU1EhIiKdkyZJERUWho6OLTCajUCEDsrLkFCpUCG3t7HbW\n/fsPkZSUxODBA3ny5DFubvWIi4sjIOAqycnJBARcQ1dXh5SUFDIyMjAwMKB4cSuKF89eYNHTszUt\nW7bJUc6srAwSEmIIDLxNSEgIUVFRWFlZ4+hYCTs7e/T19d953vHx2b0a/v77IvPnz6F2bTf8/fe/\n89jQ0BA6dvQiLCz0dcws1NXVOX36HIsXL+TYsaPs2LGbEiVKfuGnIAiqI5Ktir2pLUqlEurVq0e9\nevUAWLFiOUuXZjc5vOlPK5PJKFmyJPfv38fKyprIyAQsLS0JDw/H0rI4z549w8ioMBKJBAMDA5KT\nk9DV1aVOnboAPHoUSnp6Op06debUqVPEx8czcmT26r1PnjzmyZMnbNjwGw8e3Gf37r+UZUxIiMfX\ndzPnzp1GQ0MTN7cGWFhYUq6cLTJZKlevXkahkCOXyylduiylStmwceM6Vq5cyuPHUR+9BpmZmaxf\nv5a5c2cik2UPKtHW1kEmS2XXrl08fPiA2bNnMmbMBLGGmPDdEslWxQwMsr8O3717lzlzZiGRZK9K\ncOXKFeVDL4VCzrNnz4Ds7loKhQJDQ0MiIhSYmZkTEhJCsWLFiIgIp2jRf+dvjY+PRyKRcP78WWxs\nSpOUlEjhwoWJjIzA0NCQyEho164D+vr6RESEs3btagCuXr0MQEpKCps3b2DGjMnK95RIJJw8eeK9\nAzUsLYsTEPAPwcEPcyTa1q3bMnnydIoXz9l8EBh4g1GjhhEUdEv5h6dQIQOSkhLp168/rq6uuLi4\n0KBBI0aOHPtV11oQVEkkWxUzMytGmzbtOH/+LL///jsKhUL5U61aTQAuXbqgPP7q1asAyGTZvQp0\ndbOfsJqaFkWhUGBlZQ1Aenr2foVCwcGD/35tNzUtSmRkJAYGhhQubERcXBzz5s3hwIG/MDU1ZebM\nuXTt2pPQ0BCqV3cGwMrKisjISNTU1DA1LUqJEiW5fPkSPj6+aGpqIpWqIZVKuH79OvPmzebKlct0\n7doDH58NVKtWg+nTZ1OpknOO837+/DkLFszB19eHsmXL0b17T7Zs2fy6HToRBwdHvL0X0KhRfQoV\nMmDVqnXvXBFZEL4XItl+A9au3fjB/R07duHgwf0kJSUSFHQLgIcP7wNw4sRRAC5ezE7ISUmJ3Lt3\nl5cvXwDZywCZm1sSERFGQMBVypYty/nz57GzMyAlJRlPz2YYGRkzffpsunXrRUzMc2xtS5Cenq6M\nX7t2HbZv30ZWVhampqY8epTdpmpiUgR9fX3i4uLYvt2P/fv/xNCwMLq6OtjbO/DPP8EYGxvneNiX\nkpLC2rUrWblyKerq6owaNQZ398Y0aeKOmpoaqamp6Ovrc+LE/xg5cgS3b9/myJGTGBkZ59LVFgTV\nEP1sv4Iq+gxKpTBs2EB27NjxScvhlCtni6dna8LDw9i163c8PFqyf/+f1K/fkMDAmwwbNpIePXoT\nF/cSd3c3YmJilK+tWbMWly5dfG8ciURCp05d2LvXH3V1dQYOHMKAAYPe2Zc2OTkJH59NrFmzgvj4\neDp37kK/fgMwNDSkRYumhIeHoa2tjUwm49ixE4SHh9OvXx82bdpEq1btf+jPVFVxC0rM/8ZVJVGz\n/c5IpVKePn1K9eo1uHv3DnK5nCVLltOnT0+KFy8OQFRUFFpa2qSlyXj5MntRyPDwMCC7/+qbAQEA\nL1++oEmTety7d1cZo1Gjxhw/fpSsLDnq6uo55mkwNDQkLS0NmUz2eq6DPfTvP4hBg4a+s/aZkpLC\nqlXL2LBhLSkpKXh6tqRv3wHKsq5bt5bw8DD09PRJSUmmd+8+mJqa0bp1Szp16kKvXr2Ii0vJgysp\nCPlLNIJ9hx4+fIiFhQXJycmYm5tTsmRJAOrVa0CpUjZIJBK2bdsBZCfTkyePc+3aFQDGjZvEH3/s\nJT4+nr59e+DoWE6ZaIcNy57OMSQkGD09Pa5du5JjgpdZs2bx88+DlPP61qvXkKtXgzAzM+PEiWPv\nLOuBA3+ycOE8XFxcOXToGNOmzVQm2tjYGFatWom6ujopKckUL16c+fMX0bNnN4oVM8fbe1GeXD9B\nUAWRbL8zMpmMqKgoihY1IzMzE2vrkty4cQMAe3t7YmJiUFdXRyKRoKGhgVwuJzj4IWPHTiQkJIpR\no8ahra2NvX1pDh8+AICTkzOampr4+flStWo1QkNDqFevAVlZWSQmJqCllT2v7fz581m0aCFt2rTl\n2rUg/vhjD6amphgYGGJo+G/TwcWL5/Hy8mDKlIm0bNkGR8eKBAcHv9UXd8CAfsjlWcrpFA8fPs70\n6VO5e/cO69Ztfm/fXUH4Holk+5159CgUhUKhnIegfPny3LlzGwAXF1eeP39ORkYGnTt3REtLm+HD\nR3Ljxm1GjhyrHHX1ZpirkZERZmbFuHnzBu3adeDly5e4udVFIpFw40YAhoaGBAbeRF1dDR0dHdq1\na8e1a4F4ey/G3NxCWab27Tvh7t6UGzcCaNeuJa1aNSMqKoK1a1dy9Ogh1q/fwosXsUyfPkXZ/vvX\nX/t48OA+enp6pKenM2jQkNfL4Sxn4sSpODpWys/LKgh5TiTb78y1a9ldv27dCgSgXLlyhIZmr1e2\nb99eZS+EQYOGcP36P0yaNO2tB1YSiYSdO/cRFxeHvb0DkD0rmY6ODmvXrqFevfo8fvwYiSR7OG71\n6jU5ffoCGzZsUHYt+6+MjAyKFjWgceN6PH0ajZ/fDgIDb9OmTVtGjRqOpqYmS5as5MiRw+zatZPM\nzExmzZqJVCrl1atXmJiYMH36TIYMGUSlSk4MGDAoz66fIKiKeED2nXkz50FAwDUAhg79d7KWjRs3\n0K1bD/r1+5ny5e0++D5ubvVwcXHl/v17FCtmzpUrl+nTpx8bN65X1pSLF7fijz/24Ozs8npqx3dL\nS8uuZVtYWHLlSgBqampkZWVhYFCIxMQEgoMf0rJlGy5ePI+39xxOnDhOauorZe+DrVv9WL58Kffv\n3+PYsTNighnhhyRqtt+ZgQMHI5fLuX//EZs2+bFu3WZatGiJvb0D164FsWjRio8mWsiu3Y4ZM4HH\nj6NwdHQEYMeObUD2JOB//nmYU6fO4+zs8tH30tcvxJAhv5CUlEhiYiIymYzu3buydesWli5dxU8/\n1eH58+dMn5690sKlSxfQ1NREJpNRp44bZcuWY/78eQwYMBhHx4pfd4EE4RslarbfIYlEgqmpKS1a\neALQqpXXF71PvXoNcXJy5uzZMwDo6OiwYcMWGjRwzzEQ4VMMHDiEDRvWsmjRAgICrnH16hV8fLZT\nvXoNWrduTmDgDQ4fPkXNmrUIDQ15PepMio+PL1On/oquri4jR475ovMQhO+BSLYFmEQiYcaMucyY\nMYX+/X/G07P1Fw+JLVq0KJ07d2Pp0sUYGBiyc+c+rKysad68EY8fR6Gnp0/Pnp159uwpFhaWPHny\nmHbtOvD8+TP8/HyZM2fBZ00sLgjfG5FsC7jq1Wty6NCJXHmv4cNH8fTpU8aMmQBAgwa1SU19RatW\nXujq6uLntxU1NSkvXrxAQ0ODVavW0KNHV2xsStO9e69cKYMgfKtEm62Qa8zNLfDx2cbLly/w8HAn\nJSWZ1NRUdu36nYsXz1OnTl1sbcuTliajb9/+hIaGcPjwIUaMGIOGhoaqiy8IeUrUbIVc5e+/k6FD\nB2JubkFUVCQTJ05BU1MLH58NHD9+BHV1DTQ0NJg9ey4DB/bDysqa1q3bqrrYgpDnRM1WyBUKhYKF\nC+fx8899sbKypkIFOxQKBXPmzMDaugQnTpxFQ0ODzMwMvLzacejQQXbu/INBg4aJWq1QIIhkK+SK\nUaOGM39+9gKUz549w9LSCje37FUnevfuipOTHRkZGUgkEgYPHkLXrp3Q1y9E587dVFlsQcg3ItkK\nXy0oKBA/Px8ApkyZiampKXv27CQm5jmdO3ejS5fuyuG99es3YPfuXejp6REQEISOjo4KSy4I+Ue0\n2QpfbcuWTcqlbGbMmEzNmj8RHh5GUlISd+7cxtzcQrmMzty53jRp4k737r3FhOBCgSJqtsJXSU5O\nYteu31FXV8fVtSoAV678DUDnzt1Ys2YDAM+fP6NEiZIEBd3i5csXdO/eU1VFFgSVEDVb4av4++8i\nNTWVjIwMAgKuYmVlTenSpYmKisLPbwt+fluUcx0MH/4LGzduoHZtN0qXLqvikgtC/hI1W+GLKRQK\nVq1aCsD48b+yatU6IiMjOH36f7x8+ZIqVapSsWIlFAoFGhoa/PRTbS5evECPHr1VXHJByH+iZit8\nsRs3AggLCwNg1qxpVK7sCoCXVwcyM9M5cOAv1NTUkMvltGjhyaZNGzE1LUqTJs1VVmZBUBVRsxW+\n2ObNG5BKpRgYZE9Kfv169rSP4eGPWLhwGfPmLVKu0vvrr1PYsWMbnTt3Q1NTU2VlFgRVETVb4Ysk\nJiawZ88u5HI51arV4NSpExQuXBhtbR2uXbtC+fKlMDEpAoCNjQ3Xrl0hMTGRrl17qLjkgqAaomYr\nfJFdu/4gIyMDPT19Zs6ch6lpUSQSKQkJ8bi6VqVyZVeSkhIB+OWXUWzatJH69RtSokRJ1RZcEFRE\n1GyFz6ZQKNi0aT0mJia8ePGC6tWdAdDQ0MDOzp6goFuvH4qpo6WljbOzM8OGDWbr1t9VXHJBUB1R\nsxU+29WrV3j48D6pqTLs7R2ws3PA1rY8GRkZBAbexMHBEU1NTVJSUmjRogWbNm3EwsKShg3dVV10\nQVAZkWyFz7Zu3WogezXfmJgY7tz5B7lcQdWq1QEICLiq7Fs7fvwkdu78nS5duqOuLr5ICQWXSLbC\nZ4mLe8mBA38C2euhtWrlhVQq5dGjUK5c+Rtzc3Nq13YjMTGBsmXLcuHCeWQymXgwJhR4oqohfJbZ\ns2cgl8uRSCR06dJeuf2PP/aSkZHOkiULOXcue02zUaPGsmrVCtzdmyonohGEgkrUbIXPMn36bHr2\n7IOpaVEANDSy+8y2a9eSgIBr2Nk5AKCtrU2ZMmUICrolRowJAiBRKBQKVRciN8XFpZCZKc+XWOrq\nUoyM9H74mO+Km56ezl9/7WXVqmXcvv0PAGpqasrZvdq374CGhgbnz5/n8uWbX7SQZEG+viJm3sRV\nJVGzFb6IpqYmbdt24NSpC+zZc4CGDd2ViRZgzJjx+Pvvplu3nl+8Yq8g/EjE/wLhq0gkEn76qQ7b\nt+/m9OlL6OrqUq1adU6dOklWVhYdO3ZVdREF4ZsgHpAJuSYiIpxXr16xcOFi+vTpRfPmHhQtWlTV\nxRKEb4Ko2Qq5ZuvWTVSu7EJycjIPHtyne3fxYEwQ3sjVZHvixAnKly9PhQoVlP8OHz4cgKioKHr1\n6oWzszMtWrTgwoULOV578eJFPDw8cHJyomfPnkRGRuZm0YQ8FhUVycmTx+nduw8bN66ndOky1KpV\nW9XFEoRvRq4m2+DgYOrXr8+FCxe4cOEC58+fZ/bs2QAMGjSIokWL4u/vj6enJ0OGDOHp06cAREdH\nM3jwYLy8vPD398fIyIjBgwfnZtGEPObntwV9fX3q1q3Hn3/uo0eP3kgkElUXSxC+GbmabENCQihb\ntizGxsaYmJhgYmKCvr4+ly5dIioqihkzZmBjY0P//v1xcnJi9+7dAOzcuRNHR0d69uxJ6dKlmTt3\nLo8fP+bq1au5WTwhj2RmZrJ9uy/t23dk7949SKVSOnTorOpiCcI3JdeTbalSpd7afuvWLezt7dHS\n0lJuc3Fx4ebNm8r9VapUUe7T1tbGzs6OGzdu5GbxhDxy7NgRnj6Nplev3mzatAFPz9Zi5VxB+H9y\nNdk+evSIc+fO0bhxYxo1asSiRYvIyMggJibmrafSJiYmPHv2DIDnz5+/tb9IkSLK/cK3bdOm9bi6\nVuHFi1gePXpEjx59VF0kQfjm5FrXrydPniCTydDS0mLZsmVERUUxe/ZsZDIZqampby2FoqmpqVwy\nRSaTfXD/51BTy78OFm9i/egxPxT3zp1/OHv2f2zevIU1a1Zjb+9AjRrVc6W9VlxfETO346pSriVb\nCwsLLl++rFyPqnz58sjlcsaMGUObNm1ITEzMcXx6ejra2toAaGlpvZVY09PTle/1OQwMdL7wDL5c\nQYn5rrgbN/6GpaUlLi7O9OrVAx8fH4yN9fM0Zn74Vq6viPnjyNVBDf8/OZYuXZq0tDSKFClCSEhI\njn2xsbGYmpoCYGZmRkxMzFv7K1So8NllSExMJSsrf8Zcq6lJMTDQ+eFjvi9uVFQkfn5+TJ8+g2XL\nlmNmZkbjxh7ExaXkWcy89i1dXxEz9+OqUq4l2/PnzzNq1CjOnj2rfBB2584djIyMcHV1ZdOmTaSn\npyubCwICAnB1zV76ulKlSly/fl35Xqmpqdy5c4ehQ4d+djmysuT5OsFFQYr5/+MuWbKIQoUMaNWq\nDZUrV2LEiDGoqWnkerkK6vUVMX8sudaQ4ezsjI6ODpMmTeLRo0ecOXOGBQsW0K9fP6pUqYK5uTnj\nx48nODiYdevWERQURNu2bQHw8vLi+vXrrF+/nuDgYCZMmIC1tTVVq1bNreIJuSw8PIxt27YyZMhQ\nfHw2I5FIxIgxQfiAXEu2enp6bNy4kbi4ONq2bcvkyZPp2LEjvXv3RiqVsmbNGmJiYvDy8mL//v2s\nWrWKYsWKAWBpacmKFSvw9/enXbt2JCUlsXLlytwqmpAH5s6dgbGxMR06dGT16pX06TMAExMTVRdL\nEL5ZYj7br1AQ5wONi0vh2rVruLvXZeXK1dy/fx8fn81cvRqIsXHuJtuCen1/5HNV9fVVJdX3hxC+\nKwqFgmnTfqVCBTvq12/AunVr+fnnIbmeaAXhRyOmWBQ+y+HDB7l48Tz+/vuYN28Oenp6DBgwSNXF\nEoRvnki2widLSkpi7NhRNGrkjpGREVu3bmH+/CUUKvT5/aEFoaARyVb4ZBMmTCAhIZ7Fi5fStWtn\nKlVyplu3nqouliB8F0SyFT7J339fYvXq1SxYsJDjx48TGHiTw4dPoqampuqiCcJ3QSRb4aPS0tIY\nPnwwVatWxcPDk6pVXenatQcuLlU+/mJBEACRbIVPMHPmFMLDw9izx59Bgwaio6PL5MnTVV0sQfiu\niGQrfNChQwdYt24NixYt5syZM5w8eZLff98j5qsVhM8kkq3wXpGREQwfPggPj5Y0aNCQGjWq0adP\nP+rXb6jqognCd0ckW+GdMjIy6N+/F4aGBqxevZauXTuRmprKuHETVV00QfguiWQrvEUulzNy5FAC\nA29w7NhJoqIiOXPmNK6urhQubKTq4gnCd0kkWyEHuVzOqFHD2LXrdzZs2ISOjg7NmjXBycmZY8eO\nAeoFbmo8QcgNYm4EQUmhUDB27Ei2b/dl7dp1VKhgR7NmTbC2LsGePX9hZCRqtYLwpUTNVgCyE+2E\nCaPZunUTa9b8hqNjRZo3b4q1dQl27donmg8E4SuJmq2AQqFg8uTxbNq0nhUrVuHk5Ezz5k0pXtxK\nJFpByCUi2RZwb6ZMXLduDUuWLMfVtYoy0e7e/adItIKQS0QzQgGmUCiYNWsaa9asYMGCxdSoUYNm\nzZqIRCsIeUDUbAswb+9ZrFixhHnz5lO7dm1lohVNB4KQ+0SyLaAWLpzH4sULmDVrDnXr1suRaMVQ\nXEHIfSLZFkBLlixg/vw5TJs2g4YNG9G8eVMsLYuLRCsIeUgk2wJmxYqlzJ07k19/nUKTJk1p3rwp\nFhaW7N79p0i0gpCHxAOyAmTNmpXMnDmFceMm0KKFJ82bNxGJVhDyiajZFhDr169h6tSJjB49htat\nvUSiFYR8JpJtAbBx4zomTRrHL7+MpG3bDiLRCoIKiGT7g9u3z58JE0YD8Ntva6hVq5pItIKgAqLN\n9gfXoEEjWrZsQ9Wq1QBQU1OnTZu2oh+tIOQzkWx/cIUKGbB+vY+qiyEIBZ5oRhAEQcgHItkKgiDk\nA5FsBUEQ8oFItoIgCPlAJFtBEIR8IJKtIAhCPhDJVhAEIR+IZCsIgpAPRLIVBEHIByLZCoIg5AOR\nbAVBEPKBSLaCIAj5QCRbQRCEfCCSrSAIQj4QyVYQBCEfiGQrCIKQD0SyFQRByAci2QqCIOQDkWwF\nQRDygUi2giAI+UAkW0EQhHwgkq0gCEI+EMlWEAQhH4hkKwiCkA9EshUEQcgHItkKgiDkA5FsBUEQ\n8oFItoIgCPlAJFtBEIR8IJKtIAhCPhDJVhAEIR+IZCsIgpAPRLIVBEHIByLZCoIg5INvKtmmp6cz\nceJEqlSpQu3atdm8ebOqiyQIgpAr1FVdgP/y9vbmzp07+Pr6EhUVxbhx47C0tMTd3V3VRRMEQfgq\n30zNNjU1ld27d/Prr79Svnx5GjZsSN++ffHz81N10QRBEL7aN5Ns7927R1ZWFk5OTsptLi4u3Lp1\nS4WlEgRByB3fTLKNiYmhcOHCqKv/27JhYmJCWloacXFxKiyZIAjC1/tm2mxTU1PR1NTMse3N7+np\n6Z/8Pmpq+ff3402sHz2mquIWlJiqiltQYqoi3rt8M8lWS0vrraT65ncdHZ1Pfh8Dg08/NrcUlJiq\niltQYqoqbkGJqWqqT/evmZmZER8fj1wuV26LjY1FW1sbAwMDFZZMEATh630zybZChQqoq6tz8+ZN\n5bZr167h4OCgwlIJgiDkjm8m2Wpra9OyZUumTp1KUFAQJ06cYPPmzfTo0UPVRRMEQfhqEoVCoVB1\nId6QyWRMnz6do0ePUqhQIfr27Uu3bt1UXSxBEISv9k0lW0EQhB/VN9OMIAiC8CMTyVYQBCEfiGQr\nCIKQD0SyFQRByAci2QqCIOQDlSfb/v37M2HCBAAmTJhA+fLlqVChAuXL0RY3ywAADe9JREFUl1f+\n9OzZ863XBQYGYmdnx5MnT3Js9/HxoU6dOri4uDBp0iTS0tKU+95MTm5vb0+lSpXYvHnzWzFtbW2x\ntbXFycmJCxcufDRmeno63t7euLm5UbVqVYYMGcKzZ8/yNOZ/bdiwgfr16+fY9t9J2B0dHWnbtu1b\n1/dNTFtbW1q1avXJ13fbtm3Uq1cPFxcXhg8fTmJiYp5f35kzZ1KzZk1q1arFlClTkMlkXx3T09Mz\nxzEVKlQgODhY+b6fch99yfX9UNy8upc+dq6fci/ldsxPuY/y4vp+yr30vsULoqKi6NWrF87OzrRo\n0eKt+/ejFCp04MABha2trWL8+PEKhUKhSEpKUsTGxip/bt68qahYsaLi5MmTOV6XkZGhaNGihaJ8\n+fKKx48fK7cfOXJEUaVKFcXp06cVQUFBiubNmytmzpyp3D9jxgxF3bp1Fba2toru3bsrKleurPjz\nzz+V8Zo1a6bo27evwtHRUTF27FiFk5OTIjo6+oMxFyxYoHB3d1dcvXpVERwcrBgwYICibdu2eRrz\njYiICIWTk5Oifv36ObbPmDFD0bJlS8Vvv/2msLW1VdjZ2SmOHj2qvL7NmjVTDB8+XHHw4EGFnZ2d\nwsHBQRnzQ3EPHjyoqFSpkuL48eOKhw8fKtq1a6cYOXJknp7rwoULFZ6enorbt28rgoKCFM2aNVPM\nnj37q2I+fvxYUbFiRcW1a9dy3G9ZWVmffB99yfXNysr6YNy8uJc+dq6fci/ldsxPuY/y4vp+yr3U\nsmVLxd27dxXHjx9XVK5cWXH06FHlfk9PT8XYsWMVISEhit9++y3H/fspVFazTUhIYMGCBVSsWFG5\nTV9fHxMTE+XP8uXLadq06Vt/bdevX//O+RJ8fX3p0aMHbm5uODg4MH36dHbv3k1aWhqpqans2rWL\ntLQ0KlasiIWFBX379mX37t2YmJjw4MEDoqOjyczMpFmzZnh7e+Pk5MTu3bs/GHPfvn2MGDECV1dX\nSpcuzcyZMwkKCiIiIiLPYr4xbdo07Ozscmx7Mwn7iBEj2L59OxUrVqRcuXL4+fmhr6+vjOnt7Y2/\nvz8eHh64uroqY34o7oYNG+jfvz8NGzakTJkyjB07lgcPHqBQKPLsXM+ePUv79u2xs7PDwcGBTp06\ncenSJeW5fknMzZs3k5mZiaOjY477TSqVftJ99KXXNyoq6oNx8+Je+ti5fuxeyouYH7uP8ur6fuxe\n+tDiBZcuXSIyMpIZM2ZgY2ND//79c9y/n0Jlydbb25uWLVtSunTpd+6/dOkSAQEBjBgxIsf2R48e\nsWPHDsaNG4fiP+Mx5HI5QUFBuLq6Krc5OTmRkZHBvXv3uHfvHunp6Xh5eSlj/ndy8lu3blG8eHFu\n3LihjOni4sLNmzffG1OhULBgwQJq1qyZYxtAUlJSnsR8Y9++fchkMuVXrDfeTMJ+5MgR5fUtUqRI\njpj29vZcv35deX3fxPzQ9U1OTubOnTs0atRIuc3V1ZX9+/cjkUjy7FwLFy7M0aNHSUxMJCEhgWPH\njmFvbw/A3bt3vyjmtWvXKFas2FtTesKn3Udfen2Dg4PfGzev7qUPnesbH7qXcjvmp9xHeXF94eP3\n0ocWL3gTV0tLK8f+/87l8jEqSbZvEungwYPfe8z69etp06YNZmZmObZPmTKFoUOHYmJikmN7YmIi\naWlp/F975x7S1PvH8ffmZbpKbOamLjFNUocXZnkpNSokCCWwUlCcSZGlFBGVil3UwktYkBlGGYUX\nKgiC/shSwn+yC4G2kgpJrbygy03UqdPN7fn+ITu43MV02++P3/MCwe3x7L3Pm/f5nHO24/Pw+Xzm\nOQcHB7i7u2NkZATt7e1gs9k4deoUM754cvLR0VEoFAoDTQ8PD8hkMpOaLBYL27dvNzgja2hoAI/H\nQ1BQkE00AWBsbAzXr1/HlStXloyNjo6Cy+Wis7OT8ZfD4Rho8vl8A3/1mub8HRwcBIvFgkKhQHp6\nOhISElBYWAilUgkANqs1Pz8fg4ODiImJQWxsLCYnJ3H58mUAwNu3b1ek+efPHzg6OuLEiROIj4+H\nRCJhdipLOVqNv729vSZ1bZUlc7VaypItNC3lyFb+WsqSXC43u3iBXncxi/eb5WD3ZqtWq1FSUoLi\n4mKTR6CBgQF8+PABmZmZBs8/ffoUWq0WqampABYCqmd2dhYsFsvoBOQzMzN48uQJ3N3dDcYXT06u\nD85iTWdnZygUCpOaf6OfPOfs2bPQ6XQ206yoqDA421iMUqnE1NSUgb/6yyi1Wg2VSgWNRmPgr7Oz\nM9RqtVl/p6enQQjB1atXcfz4cdy6dQs/fvxAfn4+1Gq1zWr9/fs3fHx80NjYiAcPHmBubg4VFRWr\n0pydnYVSqURaWhrq6uqwefNmZGdnQyaTmc2RWq1elb99fX0mdf/GWlkyVytgOku28tdcjoDV5deS\nv6ayBFhevMDU+L8sbGD3ycNramoQGhpqcLn0N62trQgJCUFAQADznFwux82bN1FfXw8ASy43nZ2d\nQQgxOgF5W1sb/Pz80N/fv2QMWJicXCaTwc3NzUBzbGwM4+PjzFHf2OW8ntevX+PMmTPIysrCwYMH\ncePGDZtovnnzBlKpFGVlZUbH29ra4OjoaOCvfo5gV1dXcDgcfP361cBftVoNR0dHs/7qj/g5OTnY\ntWsXAKCsrAwpKSm4du2aTWqdmprChQsX0NDQgLCwMEZTIpHA2dl5RZpqtRpCoRCPHz/GmjVrACx8\nXtnZ2Ynnz5/j0KFDJnPk6uqKV69erchfFxcXlJWVQaVSGdXNyclhXs9aWbJUq0gkMpmlmpoam2jG\nxMQAMJ6j0dHRFefXkr8ZGRkms3T69GmLixdwOBxMTEwsGXdxccFysXuzbW5uhkKhgFgsBgBoNBoA\nQEtLCzo7OwEsNJTExESD7drb2zE+Po60tDQmFIQQJCUlITc3F8eOHQOHw4FcLoe/vz8AQKvVYnx8\nHFKpFBMTE5ibm4NYLGY0m5ubmcnJFQoF1q1bZ6AplUqh0+lMaup3kBcvXqCgoADp6ekoKChgXnt0\ndNTqmj9//sTIyAgTWq1WC41Gg8jISNTV1eHLly+Mpt5fnU4HnU4HNzc3CAQCDA0N4ciRI4ymXC4H\nm802629ycjIAMN7qfyeEoLW11Sb+xsbGYnZ2FkFBQcw2IpEIWq12xZpyuRx8Pp/ZIfUEBARAJpNh\n/fr1JnPk6em5Yn89PT3BZrNN6uqxZpYs1WouS1wul/lIxZqanp6eAIznaHh42Gb+9vX1mczS8PCw\nweIF+jPpxYsXCASCJbfL6XWXi92bbVNTE+bn55nHVVVVAIDz588zz3V1dSE3N9dgu71792Lr1q3M\n45GREWRlZaGurg5btmwBi8VCWFgYOjo6EBUVBQD49OkTnJyc0NTUBI1GgwMHDqC8vBwvX74EAHh5\neeH79+8AFj4rAhaOVvrLhcnJSUgkEmRlZRnVBBY+fy4oKIBEImF2Dn2d09PTVtecn59HXl4eo9PS\n0oKmpiY0NjZCIBCgsbER+/fvR3l5OUJDQ1FVVYXe3l4mhBEREZicnDS4C6SjowN79uxBbW2tSX/d\n3NzA5/PR3d3NbNvT0wM2m4179+7BycnJ6rWqVCoAQG9vL0JCQpjfWSwW7t+/DwcHh3/W7OjowMDA\nAG7fvo2TJ08CWGjw3d3dyMzMNJuj4ODgFfu7bds2ZGVlMffP/q1riyxZqnXfvn0ms6Q/u7e2po+P\nj8kcbdy40Wb+CgQCEEKMZsnX1xcuLi7M4gWRkZEADBcviIiIQF1d3ZJaF3+Ragm7N1tvb2+Dx3oT\nfX19AQBDQ0OYnp5GYGCgwd9xuVxwuVzmMZvNBiEEPj4+zJcKGRkZKC4uRmBgIPh8PkpLS5GWlgY/\nPz8AQEpKCmprayEUCqFSqfDu3TtUVlZiaGgIs7Oz8Pf3R2FhIfLy8tDW1oZv376hqqoKXl5eRjW1\nWi2KiooQHR2No0ePQi6XM+9vw4YN8Pb2tromAPB4PEbHw8MDDg4OjH+bNm1iNMvLyzExMYFfv36h\nuroaACAUCgEAjx49gkAgQFtbG7q6ulBZWclomtLNzs5GdXU1hEIheDweSktLkZiYyITX2rW6ubkh\nPj4ely5dQmlpKXQ6HUpKSpCUlMScofyrZldXFw4fPoyGhgaIRCL4+/ujvr4eSqUSKSkpZnPE4XBW\n5e/atWtRW1trVNcWWbJUK5fLNZslW/lrKkc8Hg88Hs8m/nK5XCQkJBjNkru7OwAwixeUl5dDJpPh\n4cOHqKysBABER0fD29t7Sa368WWx7DtybURhYSHzTw2EEPL582cSHBxM1Gq12e0GBweN3ux/7949\nsmPHDhIVFUUuXrxI5ubmmDGVSkUKCwuJSCQiERERpKGhwUCzr6+PZGZmkvDwcJKcnEzev39vVlMq\nlZLg4GCDn6CgIBIcHEw+fvxoE82/efbs2ZIb0fWaYrGYREREkNTU1CX+ZmRkmNQ0p3vnzh0SFxdH\nxGIxOXfuHFEqlTbzlxBCJicnSVFREYmLiyNxcXGkpKSEzMzMrFrz7t27ZPfu3SQ8PJxkZmaSnp4e\ng/eynBytxF9TurbMkqVa9ZjLkrU1l5Mja/pLyPKzJBaLyc6dO5la9fT395vNryXo5OEUCoViB/7n\ncyNQKBTK/wO02VIoFIodoM2WQqFQ7ABtthQKhWIHaLOlUCgUO0CbLYVCodgB2mwpFArFDtBmS6FQ\nKHaANlsKhUKxA7TZUigUih2gzZZCoVDswH+k83il1LXBPQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "precise_matches.plot()\n", "plt.show()" @@ -11179,7 +1418,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:14:53.620070", @@ -11212,7 +1451,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:14:54.059436", @@ -11228,7 +1467,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:14:54.157503", @@ -11236,46 +1475,14 @@ }, "collapsed": false }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "RangeIndex: 29531 entries, 0 to 29530\n", - "Data columns (total 20 columns):\n", - "analysisDate 29531 non-null datetime64[ns]\n", - "collectingOrg 29531 non-null object\n", - "comments 56 non-null object\n", - "county 29531 non-null object\n", - "gtlt 1035 non-null object\n", - "parameter 29531 non-null object\n", - "result 29443 non-null object\n", - "resultUnit 29393 non-null object\n", - "sampleDate 29531 non-null datetime64[ns]\n", - "sampleTime 29531 non-null object\n", - "sampleDepthUnit 29531 non-null object\n", - "sampleFractionType 29531 non-null object\n", - "sampleLowerDepth 2525 non-null float64\n", - "sampleType 29531 non-null object\n", - "sampleUpperDepth 29523 non-null float64\n", - "stationId 29531 non-null object\n", - "stationName 29531 non-null object\n", - "statisticType 1 non-null object\n", - "testMethodId 29531 non-null object\n", - "testMethodName 29531 non-null object\n", - "dtypes: datetime64[ns](2), float64(2), object(16)\n", - "memory usage: 4.5+ MB\n" - ] - } - ], + "outputs": [], "source": [ "lake_qual.info()" ] }, { "cell_type": "code", - "execution_count": 44, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:14:55.222287", @@ -11283,25 +1490,14 @@ }, "collapsed": false }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACBEAAAPnCAYAAABzjUYmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3WlglOXZ9vH/LNl3yEIgO2aHELZACJuAgmETraBVHxXU\nqvW1FAW1tdb6tNZWAYXggiKtta1afYCiIPsSsu8JgUDCTtghQZKQhMzM+4FmmghYa4Vgc/y+AElm\ncl/3nMxyX8d1XgabzWZDREREREREREREREREREREOj1jRx+AiIiIiIiIiIiIiIiIiIiIXB8UIhAR\nERERERERERERERERERFAIQIRERERERERERERERERERH5B4UIREREREREREREREREREREBFCIQERE\nRERERERERERERERERP5BIQIREREREREREREREREREREBFCIQERERERERERERERERERGRf1CIQERE\nRERERERERERERERERACFCEREREREREREREREREREROQfFCIQERERERERERERERERERERQCECERER\nERERERERERERERER+QeFCERERERERERERERERERERARQiEBERERERERERERERERERET+QSECERER\nERERERERERERERERARQiEBERERERERER+Y/ZbLZ/6+siIiIiIiLXK3NHH4CIiIiIiIiIiMj3mcVi\nwWQyAXD69GlOnjxJfX09QUFBeHp64uLi0sFHKCIiIiIi8s0pRCAiIiIiIiIiIvItWa1We4Dgvffe\nY9myZVRWVgLg5eVFcnIyd911F4MGDerIwxQREREREfnGDDb1VBMREREREREREfmPzJ07l3feeYfu\n3bszduxYzpw5w8GDBykqKsLBwYHf//733HLLLR19mCIiIiIiIv+SOhGIiIiIiIiIiIj8Bz777DPe\neecdhgwZwpw5c4iJiQHAZrMxdepUysrK+OSTTxg2bBju7u4dfLQiIiIiIiJfz9jRByAiIiIiIiIi\nIvJ9lpWVhYODA0888YQ9QACwaNEiysrKGDlyJC+88AJ1dXXs2rWrA49URERERETkX1OIQERERERE\nRERE5Fuw2WzU19ezbds2goKCiImJoXXn0LS0NNLS0khJSWHmzJm4ublx77338uc//5kLFy5gtVo7\n+OhFREREREQuTyECERERERERERGRb8FgMODm5kaXLl1oaGjgwoULGAyGdgGCWbNmERMTw4EDBzh0\n6BAVFRWYTCaMRl2Wa+tKoYrWUIbI9epKtaugkIiIiHyfmTv6AERERERERERERL7PgoKC2LlzJ59+\n+ilnzpxh8eLFpKSk8OSTTxIXFwdAREQELi4utLS00NzcjLOzcwcfdcezWCyYTCb7nwC5ubnU1tZy\n4sQJbr31Vtzd3Tv4KEUudbna3b59O+fOnePcuXPcfPPNCgqJiIjI95pCBCIiIiIiIiIiIl/DarV+\n7YTgPffcQ15eHgsWLKChoYGUlBSefvppoqKi7D+Tl5fH+fPn6devH87Ozv/yPv+blZeXExoairu7\nO83NzTg6OgIXt4BYsmQJ58+fB2DZsmU8/vjjDBo0CFdX1448ZBEAdu/eTWhoKE5OTu1q94033uD9\n99+ntrYWgKSkJJ577jkiIyMxGAwdecgiIiIi34rphRdeeKGjD0JEREREREREROR61HalcUZGBtu2\nbWPVqlXs3LkTf39/3N3d8fX1paamhl27dmE0Gpk4cSLjxo2z30deXh5paWmcPXuWH/3oR4SFhXXa\nicXS0lLuuOMONmzYwOTJk3FxcQHgzTffZOHChfj7+zN+/HiampqoqKigtLQUX19fgoOD7RO2Ih2h\nuLiY22+/ndLSUsaNG4eTkxNwMfyycOFCPDw8GDJkCI2NjVRUVFBSUsINN9xAt27dOu3/dxEREfn+\nMti0sZiIiIiIiIiIiMglbDabffJv4cKFLFmyhMbGRvv3/fz8uP3225k2bRpOTk688sorrF69GldX\nVxITE+nbty+nT59m2bJlnD17lueee4577rmno4ZzXaitrWXKlCkcPXqUhIQElixZgslkYuLEiYSE\nhPDMM88QHR3N6dOnWbRoEZ988gm+vr488cQT3HTTTbi5uXX0EKSTKi8v58EHH6SmpoZRo0Yxb948\nGhoamDRpEtHR0cyZM4fo6GiOHz/O888/z5YtW4iOjuYXv/gF/fr167SdR0REROT7SZ0IRERERERE\nRERELqM1QLB06VLmz59PbGwsjz/+OBMnTsTNzY3Dhw+zbds2qqurSU5OZsSIEXh6enLgwAEKCgrI\nysqirKyMbt26MXv2bO68807g4vYInXFlcnNzM25ubtx6661s2bKFnTt3UlBQQM+ePVm2bBlPPfUU\nAwYMoKWlBXd3dxISEmhqaiI3N5eysjL8/PzUkUCuqdYgkdVqJSAggCFDhpCZmUlJSQn79u3Dz8+P\nlStX8otf/ILExEQuXLiAp6cngwYNorq6mtzcXMrLy4mKilJHAhEREfleUScCERERERERERGRNtpu\nYXD+/HmeeuopKisrWbhwIdHR0faf27hxI0uXLiUvL4+pU6fyzDPP4OjoSGNjI1u3bqWxsZGQkBB8\nfX0JCwsDLgYIOtuK5JMnT+Ln5wdAU1MTTk5O1NbWcs8991BVVYWXlxeNjY189NFHxMTE0Hq50mAw\nUFtby5tvvslf//pXdSSQa+7MmTN06dIFgJaWFsxmM+Xl5fzkJz/h8OHD+Pn5cf78eVauXElgYCA2\nmw2bzYbRaOTUqVO8+OKLrF27Vh0JRERE5HtHnQhERERERERERETaaJ3kW7JkCaWlpaxZs4aRI0dy\n++23AxcnE41GI2FhYXTr1o09e/aQk5NDUlKSfaV8ZGQksbGxdO/eHW9vbwD75GJn0tTUxMMPP0xT\nUxMJCQmYzWZsNhsuLi6MHTuWjRs3cvz4cZydnUlKSqJnz572oIXVasXFxYXevXvT2NhIbm4uO3fu\nxMfHRx0J5Kqrr69n5syZGI1GoqOj7f93/f39SUxMJCMjg+PHj9tr2c/Pzx5AslqtuLm5MXDgQA4f\nPkxubi4VFRVERETQrVu3Tvc8ICIiIt8/ChGIiIiIiIiIiIjQfpuB7du3M3PmTCoqKrDZbPTp04ch\nQ4bYVyO3tjkPDAzk/PnzbN68mVOnTjFhwgSAy7Yt74ytzG02GwsWLOCLL76gW7duxMXF8fLLL3Ph\nwgXi4+NJTU1l06ZNnDhxgv3793PzzTfj5ubWbjK2NUjQ3NzM1q1byc3N5ZZbbrGvEBe5Gpqamnj9\n9df57LPPiIyMpGfPnixatAiDwUC/fv3o378/2dnZnDhxgqqqKiZOnIiDg8NlgwRHjhwhKyuLnJwc\nUlNTcXd37+jhiYiIiHwthQhERERERERERKTTa9sl4ODBg0RGRhIYGEh5eTlHjx6loaGB1NRUXFxc\n7AECm82GyWQiOjqazz//nJaWFqZNm6ZVxm2YTCYsFgtZWVls3LiRoqIiVq5cSWNjIykpKfj4+JCa\nmsqWLVvYvXs3eXl53HLLLTg7O18SJOjVqxdffvkl48ePZ+TIkR09NPkv5+TkxLFjxygpKWHdunWU\nlpby8ccf4+DgQFJSEkFBQfTr14+cnBx27tzJrl27GDNmzGWDBP3792f37t2MHz+eYcOGdfTQRERE\nRP4lg611kzEREREREREREZFO7qWXXiI9PZ2PP/4Ym83GunXrePfddzl48CCzZ89m2rRp9iABYN8D\nPTU1lQsXLvDZZ5/h6urawaO4PrSGLQCWL1/OM888g8lkIjY2ljfeeAN/f3+am5txdHSktraWe++9\nl8rKShISEnjvvfdwd3dvNxlrNBrtPw/YvyZyNS1evJh58+ZhMBjo3bs3ixYtard1QXl5OTNnzuTQ\noUOMHj2aefPm4eTkdEntNjY24uzsDLT/vyEiIiJyPdK7bBEREREREREREaC5uZkDBw5w9OhRDh06\nhKenJ2PGjOHBBx/E19eXP/7xj6xevZq6ujp7JwKj0UheXh5HjhwhKSkJV1dXtGbnIoPBgNVqBaCm\npgYAi8XC9u3byczMBMDR0ZHm5ma8vb3505/+RGRkJKWlpUyfPp26ujpMJhMtLS32sEBrgKBt5wiR\nq6mhoQG4WHM7duxg+/btwD+7bMTHx/Paa68RHBzMhg0bmDVrFk1NTfbvt9apAgQiIiLyfaLtDERE\nREREREREriOtE9Qmk6mjD6XTMZlMNDQ0sH79eo4dO8bo0aPx8PAgJCQEPz8/MjMzyc7OpqamhoiI\nCEwmE7m5uaSlpVFdXc3jjz9ORESEJgjbMBgMnD9/nt27dxMSEsLgwYMpKChg/fr1+Pr60qtXL0wm\nE83Nzbi5udm3Nti5cyd5eXmMGzcOZ2fnSyZedY7lWjh37hzZ2dmEhYWRkJBAWVkZa9asISwsjMjI\nSIxGIxaLhYCAAPr3709WVhbFxcXs3buXUaNG4eDgoNoVERGR7yVtZyAiIiIiIiIicp04ceIEixcv\nZvz48cTHx9tXXct351+tArZYLEydOpVjx47x7rvvEhsbC0B9fT1r1qwhLS2NI0eO4OXlhYuLC7W1\ntQD89Kc/5b777rsmY7jetZ7jtue6rq4OAHd3dz744AN+/etfA/CrX/2KadOmAdDU1ISTkxO1tbXc\nd9997Nq1i/DwcP7+97/j4ODQMYORTuVytXvq1CmMRiNdunRh/vz5vP3225jNZn7/+9+TmpoK0G5r\ng1mzZnHgwAEGDx7MkiVLFAgTERGR7yV1IhARERERERERuU40NTXxi1/8gh07dpCQkICfnx8rV67E\n2dkZb2/vjj6877XTp0/j6uqKwWBo1x4fwGq12r9uNpsxGAysWrUKFxcXhg4dClxsox8cHEyXLl3Y\nv38/x44dw8/Pj8cee4ynnnqKkSNHtruvzqpt+/Zz585x4sQJLly4gM1mw8vLC4CEhAS8vLxIT09n\n8+bN+Pn50atXL8xmM1arFRcXF8aOHctnn33G+PHjSUlJ6cghSSfRtnabmprsASFnZ2c8PDwAGDhw\nIBaLhby8PDZs2NCuIwGAv78/ffr0Ye3atYwfP55BgwZ1zGBERERE/kMKEYiIiIiIiIiIXAcsFgv1\n9fVkZmZSUlLCvn37SE9P54033iA4OJj4+HitaP2Wtm3bxosvvoivry+hoaH285iRkYGTk5N9grB1\nItDV1ZW1a9dSWlrK4MGDCQgIwGaz4eTkREhICF5eXuzatYvTp08TERHB0KFDcXJyoqWlpVM/Rlar\n1T7+Dz74gNdee40FCxawfPly1q1bh4uLCz169MDJyYk+ffrg7e3N1q1b2bx5s31rg4KCAvbs2UNM\nTAx33323PcShfeTlampbux999BGLFi0iLS2NFStWkJ+fj6urK2FhYRiNRpKTk2lpaSE3N7ddkKCo\nqIhTp06RkJDA7bffzvDhwwHVroiIiHw/KUQgIiIiIiIiItKBDh06hJeXF0ajETc3N1JSUjh48CAZ\nGRlUVVUxcOBA7rrrLgICAjr6UL+XsrKymDFjBjabjdTUVIKCggBYtGgRP//5z1m7di3u7u4YDAb8\n/PwA8PHxwWQysXHjRmJiYkhISLBPBLbtSFBaWkpWVhZNTU3Ex8fj5ubWqScMW8c9b9485s+fT21t\nLT179sTJyYmKigrWr1/P2bNnCQwMxNfXl4SEBHx8fOxBgurqahYvXszf/vY3brzxRrp16wZoElau\nvtb6mjt3LnPnzuXIkSN07dqV8+fPU1paymeffQZAZGQkLi4uJCUlYbVayc3NZc2aNdTV1fHWW2/x\n/vvvM378eAIDA4GL4YS2XU9ERESulrYddUS+CwoRiIiIiIiIiIh0kLy8PKZMmcK+ffsYO3YsAB4e\nHqxbt449e/YA4O3tzbhx4+xBA/nmMjMzmTFjBqGhocyePZsRI0YAUF9fz8GDB2lpaWHHjh1s2bKF\njRs3Ul9fj5+fHx4eHvj7+7N69WoKCgoYM2ZMu+0kWoMEXbt2Zfv27RQVFVFTU0Pfvn1xdnbuqOF2\nmLYXrYuKivjf//1fkpOTmTt3Lo899hh33nknQUFBHDhwgPT0dJqamoiJicHT05OEhAR8fX3ZvHkz\nu3btoqGhgaeffpqbbrrJfv8KEMjV0nb7kfT0dF566SWGDh3KK6+8wpNPPsltt92Gr68v+fn5ZGZm\nYjabGTx4MEajkYEDB2IymcjNzaW4uJhz584xe/Zs+9YmoNoVEZFro3VLrubmZtatW8fKlSvZvHkz\nZWVl+Pn54ejoiIODQ6ffdkv+PQoRiIiIiIiIiIh0kIMHD7JixQrc3NyYOHEiJpMJm83GF198gZub\nG927d6esrIyKigqio6Px8/PThb9vqLUDQXBwME899ZQ9pGGxWHBycqJ3795MnjyZG264ga5du5KV\nlUVubi6bN2+mqqqKESNGcO7cOTIyMoiMjCQ+Pr7dZHlrkMDPz48tW7Zw6NAhpk6diqura0cOu0O0\nnpMjR45QWVnJ559/zosvvkhiYqL9YnVMTAyhoaHs27ePLVu24OfnR//+/QHo1asXcXFxpKSkMHXq\nVG699VYAXeiWq8pms9lrt6Ghgd27d7Nq1Sp+85vfkJiYCICzszOJiYkEBwdTWFhIeno6PXr0IDY2\nFqPRSFJSEkFBQSQkJHD33Xdz++23A6pdERG5diwWC2azmYaGBh555BGWLFlCfn4+JSUl5OTksHXr\nVs6cOUPPnj3tW3iJfBMGm81m6+iDEBERERERERHpbFpbtO/evZuAgAC8vLzYuHEjo0aNAqCuro6m\npibmzJlDRkYG/fr145lnnqFXr17qSPAv5OTkcP/992M2m3n++ee54447gIsXWVv3PW/7d7i4gn7L\nli2sXLmS6upqgoKCGDp0KB9++CGDBw/mD3/4w2V/V11dHZs2baJ3796EhYVd7aFdt9LS0khLS2PU\nqFFUVVXxl7/8BV9fX/tkauuE6vr165k5cyYAn3zyCTExMZe9P7WBl2vld7/7HX/84x8ZPXo01dXV\nfPTRR/bVmvDPkMynn37Kz3/+c4KCgli6dClBQUGXDQqodkVE5FprbGzk/vvvp6SkhMmTJzNt2jQa\nGhrIz89nxYoVnDx5kkmTJvHss8/i7u7e0Ycr3xPqRCAiIiIiIiIi0kEMBgNdu3bF2dmZV155hV//\n+tfU1tYyfPhwHB0dcXV1JSEhgf3795Obm8uePXuIioqia9eumqS6gszMTKZPn47NZsNqtRIREUFs\nbCzOzs7tztlXz19gYCCDBw9m4sSJuLi4cPr0adavXw/A4cOHCQwMJC4u7pLf5+joSFRUFD4+Pld3\nYNe5srIy9u7dS1lZGWfPnmXYsGEEBwfbAwStoZmIiAjOnTtHYWEhQ4cOJSIi4rL3p1Xccq1s3ryZ\n8vJy9uzZw5dffsnIkSPx9/e3125rECYuLo6DBw9SXFzMuHHjCAwMtNd1W6pdERG51pYuXcqyZcu4\n++67ee655wgKCiIkJIS4uDg+/fRTmpqaSElJYciQIZcEaUWuRCECEREREREREZEO8NWJppaWFj77\n7DNKS0s5e/Ysw4cPB8DHx4fExET27dtnDxJER0cTEBDAoUOHOHbsGF26dNHEFRcDBDNmzCA0NJTU\n1FTKy8spLCykpaWFmJgY3Nzcvvb2VqsVV1dXBgwYwG233UZgYCAODg4cPnwYFxcXbrrppsverjOf\n+9YJ1n79+mE2m6murqampoYuXbqQmJiIo6MjcPEctbS0YDQaOXz4MJs3byYiIoKkpKTLTsSKXG2t\ndTd8+HDOnz9PVVUVzc3N3HDDDSQkJNh/rm3tVlRUkJ2dTa9evejVq5f9+yIiIh1p6dKl1NTU8Mor\nr+Dl5QVc7Lr1wAMPsGvXLqZPn84TTzzB2rVrqaysJCoqSu+/5F9SiEBEREREREREpAPZbDZsNhvh\n4eEMGDCA5cuXXxIk8Pb2bhck2Lt3L9XV1bz22msUFRUxYMAA+wXDziozM5OHH36YHj16MHv2bKZP\nn0737t3ZtGkTxcXF2Gw2oqOjvzZI0Lpi3mg0YjQaiY+Pp0+fPhw+fJhVq1YxePBgunfvfg1Hdf35\n6gXntn9PSEjAYrFQVVVFUVERERERRERE2Ls+tK7szsvLIysri+nTpxMWFqYL2HJNfF3tDhkyhNra\nWoqKiigpKWHgwIF069bNfjuj0Wiv3fz8fGbMmEH37t1VuyIi0uGampp45513MBqN3HXXXTg7O9PS\n0sI999xDcXExDz74ID/60Y/Ys2cPDz/8MHV1dUycOFGvYfIvKUQgIiIiIiIiInINta7cbtV2v/ig\noCD69+/PihUrrhgkOHz4MFlZWeTl5VFTU8M999zDiBEjOmQs14s9e/Ywbdo0unfvzpw5c7j55psB\niI2Nxd/fny1btlBUVPSNgwTwzwlHDw8P6urq2LRpE3Fxce1WKHc2FovFHgg4ceIE+/fvZ//+/cDF\n8+bk5ESfPn0wmUyUlJSwYcMG/Pz86Nq1K25ubhgMBoqLi1m4cCEmk4m77roLX1/fDhyRdBZta7eu\nro4jR45w+vRpzGYzJpMJo9FISkoKjY2NZGRksHnzZuLi4vD19cXBwQGDwUBRURFpaWl4enpy5513\n4u3t3cGjEhERufjZYsWKFezfv59x48bRtWtX7r77boqLi3nooYd45JFHcHd3p7a2lmXLltHS0sKE\nCRNwcXHp6EOX65xCBCIiIiIiIiIi10jbPUhbJ6oKCwv58ssvCQsLAyA4OPhrgwR9+vTBx8eHyMhI\n7rvvPqZOnQpcusq2M3Fzc8Nms5GamkpqaioAFy5cwGQyER8f/28HCeDipHhzc7P98fr444/p2rUr\nY8aMuerjuR5ZrVb7uViyZAm//e1vefvtt1m2bBn/93//R0VFBR4eHoSGhtKnTx8cHR0pKipi/fr1\n7Nixg0OHDrFhwwbeffdd9u/fz1NPPcWNN97YwaOSzqDt8+4f//hHfv/73zNv3jz+8pe/sHz5ck6c\nOIGbmxuBgYEkJydz4cIF0tPT2bRpE0ePHuXIkSNkZGSwePFi9u3bx5NPPsnQoUM7eFQiItLZfDWI\n3MpkMnH+/HnS09Npbm7mzTffpKysjIceeoiHH34YDw8PAIxGI3/9618JCQlh2rRp9nCdyJUoRCAi\nIiIiIiIicg20tsQGeP311/nlL3/J1q1bycjI4LPPPsNkMjFw4EDg64MEXl5eDBw4kOHDhxMVFQVc\nvKjYmS8Ems1mBg8eTHR0NHDxfJjNZvvF1m8bJGideHz55ZeprKxk2LBhJCcnd8qwRuuY586dy8KF\nC3Fzc2PatGmEh4fj6OjItm3bWLlyJUFBQcTExJCQkICTkxO7d+9m+/bt5ObmUl1dTe/evXnooYe4\n4447gM4dfpGrr+3z7quvvsqCBQsAuOWWWwgICKChoYEtW7aQnZ1Njx496NmzJ8nJyTQ3N1NQUEBp\naSlbt26lqqqKwMBAHnvsMQW3RETkmmtpacFkMtHc3ExZWRmVlZWcP3/e3tHJYrFQWFhIVlYWp0+f\n5v777+eRRx6xBwjgYgg0PT2dCRMmdNr3s/LvUYhAREREREREROQaaL1Q984777BgwQLCw8OZMmUK\nPXv2ZMeOHeTk5GC1Whk0aBBwaZCgrq7Ovvr1clsidHaXOx8Gg+E/DhL87W9/Y/HixXTt2pXnnnsO\nHx+fqzqO69nnn3/Ob3/7W5KTk3nppZeYNGkSo0eP5rbbbmPbtm0cO3aMc+fOMWrUKJydnUlISMBm\ns3H06FHOnj3LPffcw4MPPmiv8bYt5kWuhtbngmXLlvHKK6+QkpLCyy+/zNSpU5kwYQI33XQTGRkZ\nVFdXY7VaSU5OxsnJieTkZM6dO8f+/ftpaWlh5syZPPbYY/agl2pXRESuldZuUA0NDTz66KO88cYb\nLF++nPT0dGpraxk8eDDdu3fHxcWF3NxcmpqaiI2N5YYbbsDZ2Rmbzca7777LH/7wB7p3787PfvYz\nvLy8OnpY8j2gEIGIiIiIiIiIyFXUdrLp/PnzzJs3j4CAAF555RUmTZrEqFGjuOGGG/jiiy/Iy8u7\nbJBg5cqVFBUVcfz4cUaNGqXQwL/hPw0SxMfHExMTw+OPP05wcPA1PPLrzwcffMCuXbt4+eWX6d27\nt/3raWlp/P3vf2fkyJG88MILtLS0sH//fgICAkhMTMRqtVJRUUF+fj7Ozs6EhYXh7u6uSVi5ZhYv\nXkx1dTUvv/wy8fHx9q//4Q9/4IsvviAlJYVnnnkGgKNHj9KlSxdSUlKora2lsLCQ0tJSevToQXh4\nOA4ODqpdERG5Zlq32HrkkUfIzs4mISGBnj17smfPHrKzszl37hzDhg0jLi4OHx8fysvLycnJYdWq\nVaxfv57333+f1atX4+3tzVtvvWXfQk3kX1GIQERERERERETkO9Tc3Gxvg9+2lfaqVauoqqriww8/\n5IknniAlJQWbzYbNZiMyMpKYmBhWrVp12SBB3759WbFiBTfeeKP963LlvWG/+r2vCxIYDAYiIyMv\nGyRoDYBERES0awf736pte/av/v38+fO8/PLLeHl58eMf/xgHBwcMBgNpaWmkpaWRkpLCk08+SZcu\nXbjrrrs4c+YMKSkpODg40KdPHxwdHSkvLyc7OxsXFxeCgoI6xTmVa+PrthY4e/YsL730EjfccAM/\n/vGP7V9vW7tz5szB3d2dGTNmYDQa6devH0ajkSFDhtDc3ExWVhb5+fkEBgYSEhKCg4PDtRqaiIh0\nYq3vX4uLi3nvvff44Q9/yLx58xgzZgw33HADW7ZsoaCggC+//JJhw4YRHx9PZGQkAQEBVFVVcfr0\naby9vbnlllt48cUXCQ8P7+ghyfeIQgQiIiIiIiIiIt+R3NxcPvzwQ4KCgvD29rZPaq1du5aZM2dy\n6tQpLBYLU6dOpXv37vb9TQ0GAxEREV8bJPjBD37A6NGjAe3FDRcn+FvDGllZWWRmZlJWVkZDQwNB\nQUEYDIZ2XSAuFyTYtm0bBQUFNDQ0MHjw4EsmBjvbauPLbQlhtVoxGo04ODjw2WefUVNTw5133omL\ni0u7Sdg8iU0VAAAgAElEQVRZs2YRFxdHVVUVS5cuxWAwMG3aNPtjlJCQgIODAxUVFaxfv56uXbuS\nmJjY6c6xXB2Xez5s+zz54YcfYrFYmDJlCo6OjpfUbmxsLFlZWXzwwQcYjUZuvfVW++2Tk5Npamoi\nPz+fNWvWEBkZSVRU1LUeooiIdCKt72FbX8cKCgooKChg3rx5ODs7YzKZiI6OJiIigk2bNlFQUGDv\nSBASEsKQIUP4wQ9+wLRp07j33nsZPnw43t7eHTwq+b4xd/QBiIiIiIiIiIj8Nzh27BiPPfYYdXV1\nGI1Gpk2bZm9/37NnT6ZOncr//d//0dLSQnp6Ov3798fBwQGr1QpcnAQbM2YMaWlpPP7447zxxhtY\nLBZ++tOfAhAQEAD8c1K3M7PZbPbJ6QULFrB48WJaWloA8Pb25oEHHuBHP/oRJpOpXdjAaDTaz98d\nd9yBzWbj+eefJyQkBBcXlw4bT0c7fvw4e/fuZcOGDTg6OuLu7s7AgQPp1asXLi4u9nMWFBREWVkZ\nf/vb3/jyyy9555137B0I4uLiAAgPD8fV1RWr1UpLS4u9xo1GI3fffTdNTU18+umnjB492v64iHxb\np06dorq6mi1btuDu7o6LiwtDhgyhW7duODk5YbFY7FtoFBQUkJ6ezs6dO3n77bcvqd34+HhMJhNW\nqxWLxYLZbLbX7qxZszh//jx///vfiY2N7eBRi4jIf7OWlhbMZjNNTU188skntLS0kJubi8Vi4fz5\n83h6etrfQ918880AzJkzhz/+8Y8YDAb79jxubm7q+iT/EXUiEBERERERERH5Dri7u9v3fs/NzcVo\nNBIaGoqXlxddunQhJCQEo9FIaWkplZWVdOvWjejoaAwGAzabDeCSjgQFBQUMHTqUbt26tWvN39m1\nnoPFixezYMECevToweTJk+nWrRs7duwgKysLm83GoEGDMBqNX9uRYOzYsYwZM6Yjh9OhiouL+eUv\nf8nSpUspLCykqKiInJwc1qxZQ0ZGBr169cLLywuTyWTfBiIzM5OcnBxSUlJ4+umniYmJsd/f1q1b\nWb58OTfffLO9c0ZreMNgMNC3b18mTJhAYGBgRw1Z/kuUlpby4osvsnjxYjIzM8nIyGDLli1s2bKF\n4uJi+vfvb588MZvN9trdtm0bKSkpzJ49u10gYOvWrXzxxRdMmDDBvt1M29odPnw4t912Gz169Oio\nIYuIyH85q9WKyWSioaGBBx54gI8//pht27axb98+zGYzffv2JSwsrN1tevbsae9IkJ+fT2NjI0OG\nDNFnBvmPKUQgIiIiIiIiIvIfap1kGjBgACaTiaKiIgoLCzEajYSEhNiDBN27dwcgPz+fvXv34uPj\nQ2Rk5GWDBBERESQkJJCamtqRQ7uutA0D1NTUMH/+fHr06MGrr77KlClTGD58OOHh4WzYsIHc3Fz7\nlhBfFyTo2rUr8M/HsDPJysri0Ucf5fjx40ycOJEf/vCH3HLLLQQEBHDu3DnKy8vZuHEj3t7eBAUF\nERAQwJdffsmuXbuw2Wykpqa2q8/c3FzS0tKora3l0UcfJSwsrF34pfUcOzs7d9SQ5b9EdnY2jz76\nKAcPHmTMmDFMnDiR0aNH4+joyKlTpygqKmL9+vVERUURFBREly5dOHz4MLt378bNzY27776bG2+8\n0X5/+fn5LFy4kPr6eh566CFCQkIuW7uurq4dNWQREekEDAYDFy5cYNasWeTk5DBq1CgmTpzIoUOH\nOHXqFPv27SMpKQkfH592t2sNEqSnp5OdnY3FYmHw4MEdNAr5b6EQgYiIiIiIiIjIf6jtJFPfvn1x\ncHCgsLDwskGC4OBgrFYr6enpVFVVXTFIEBkZSb9+/YD2k+edWes52LRpE9XV1bz//vv89Kc/JSUl\nBQAHBwdiY2MJDQ1l/fr15OXlfW2QoK3OFiDIzMxkxowZ+Pv7M3v2bB577DHi4uKIjo5m2LBhTJo0\niYMHD1JSUkJBQQFeXl4kJibSs2dPampq2LNnD+Xl5eTl5XH48GHWrl3La6+9xoEDB3j22WeZNGnS\nJb+zs51juToyMzOZPn06vr6+PPXUU8ycOZP+/fuTkJDAiBEjGD16NLt372bnzp1kZmYSEhJCr169\n6NmzJ3v37qWqqopDhw6xa9cuTp06xcaNG5k7dy4HDhzgmWeeYfz48Zf8TtWuiIhcTS0tLfb3qGfP\nnuXVV19l8uTJ/Pa3v2XQoEGkpqZSVFREWVkZ5eXlJCUl4eXl1e4+evbsSffu3SkqKuLJJ5+0B2VF\nvi2FCEREREREREREvgNfDRI4OjpetiOBj48PoaGhWCyWKwYJvjphpQDBP61cuZKf/OQnHD16FIPB\nwP/8z//g5+fHhQsX7PvDRkdHf6MgQWfVGiAICgpi9uzZTJgwAfjnBWyr1YqzszOjR4+mrq6O3Nxc\nysvLCQkJITExkaioKPz9/Tl06BCFhYXk5OSwY8cOevTowVNPPcW0adOAztndQa6ur9Zua1iltXYd\nHR3x8fFh0qRJVFVVUVpaSmFhIf379yc2NpZevXphNpuprKwkOzubTZs2kZeXR5cuXZg9ezZ33nkn\noNoVEZFry2g0Ul9fz7PPPovBYCA/P58XXniBLl260NjYiJeXF8OGDaO4uJji4mLKysouGySIiopi\n6tSp2jZKvhMKEYiIiIiIiIiIfAuXm4y+XEeC1iCBg4MD4eHheHh4XBIk2LdvH15eXvYggVxZU1MT\ndXV15OXlUVNTg5+fH0lJSZhMpnYTf18NEly4cIHk5OROHyDIysriwQcfJCgoiKeffpqbb74Z+Oce\nvIA9bGE2mxkyZAgnTpygoKCA0tJSxo0bR2BgIHFxcUyZMoX4+HhuvPFG7r//fu644w5761yr1drp\nz7V8t7Kzs5kxYwbBwcHMnj2bsWPHAu1rFy4GCsxmM6NHj6asrIwdO3ZQXFzM+PHjCQwMpG/fvkya\nNImwsDBSUlK47777uPPOOxk2bJj9/lS7IiJyrb333nv86U9/Iisri9raWsaOHUuPHj0wm81YLBY8\nPDy+UZDA0dGxg0Yg/20UIhARERERERER+TcUFxdjMBjw8PD4xkGCwsJCCgoK8PHxIS4uDgcHB3x8\nfAgLCwMutucvKirixhtvxNvbuwNGdf1rPdcBAQEEBQXR0NBAVVUVx44do1u3bkRERLQ793AxSBAe\nHs7atWspKChg6NChdOvWrYNH0nFKS0u57777sFqtPPjgg9xxxx3AxUnXtpOw0D5IMGzYMHJzc9m9\nezeNjY2kpKRgMBhwcnKiZ8+eREdHExgYaL+IbbPZNAkr36n8/Hz+53/+B7PZzMyZM5k8eTJw8Xnh\nSrXr4ODAqFGj2LZtG7t27cLb25vExETMZjMeHh706tWLPn36EBISQpcuXQDVroiIdJzY2FjOnj3L\nnj17aG5uxs/Pj/j4eJycnOyvbV8NEuzYsYN+/frh4+PT0Ycv/4UUIhARERERERER+YbKy8uZOnUq\ny5cvZ9KkSXh4eLTbw7TVV4MEJpOJjIwMCgoK6NOnjz084O3tTXBwMPX19dx8882MHDny2g/qOvXV\nduJtz7G/vz/+/v7U19eTn5/P0aNH8fX1JSws7JIgQVRUFIGBgQwePNi+crmz2rlzJ3l5edTX1+Ph\n4UFwcDC+vr6YTKYrbqPRGiTo2bMn69atw2azcfvtt2M2m6/4e9RNQ75reXl5rF+/HqvVSlBQEHFx\ncTg7O18SIGjVWrvOzs64urqyceNGnJ2dmTBhwteGBFS7IiJyLXz1fZfNZsPR0ZFBgwZx9OhRdu7c\nyf79+wkNDSU0NBSTyXRJkKC8vJz8/Hz2799PamrqFV8TRb4thQhERERERERERL6hxsZGsrOzOXLk\nCOvWrWPs2LF4enr+yyBBv379qKuro6CgwN5W29XVFQAfHx+SkpIYNGgQcOlFxc6o7erinTt3UlBQ\nwNq1azly5Aj19fV0796dgIAAAgMDqa+vJz09nerq6isGCeLi4ujTpw/Qufc6DwsLIyIigrKyMgoK\nCjh9+jTBwcF069YNg8FwxSABXGyN+/nnn1NRUcGoUaPw8/PrtOdRrr2YmBjCw8PZvHkzRUVF1NfX\nExcXh7u7+xVv01q7rq6uLF++nP3793PLLbfg6emp2hURkQ7T2l3LYrFw7tw5Tp48aX9tcnBwYPDg\nwZw5c4a8vDxKS0sJDQ0lKCjokiDBkCFDqKysZPbs2QQEBHT0sOS/kEIEIiIiIiIiIiLfkJeXF8OG\nDaO0tJTKykrWr1//L4MErRcKhw4dSnZ2NgcOHGDcuHH4+fnZJ22dnJwABQig/f7mb775Ji+++CLL\nly8nJyeH9evX8/nnn3P8+HFGjBhBQEAAPXr0oL6+nm3btn1tkKBVZz2/rbUVGhpKcHAw27dvp6io\niNraWnr06PG1QQKr1Yqrqyt5eXns37+fu+++G19f3w4aiXQ2rf+Po6KiCA4OZtOmTZSWltLU1ERM\nTMzXBglsNhteXl5s3bqVmpoafvjDH16yd7SIiMi10tLSgtlsprGxkVdffZW33nqLP/3pT+Tm5jJk\nyBBcXFxwcHBg0KBB1NTUkJOTQ3FxMSEhIe2CBC0tLXh6ejJhwgT8/f07eljyX0ohAhERERERERGR\nf4OXlxeDBw+mrKyM3bt3s27dOsaNG4enp6c9MNBW64ohgKysLHbs2MHIkSMJDw/XBPdltJ6D+fPn\ns2jRIkJDQ/nxj3/MyJEjiYmJoaioiJKSEiorKxk9ejSBgYH2jgTbtm3j2LFj+Pj4XPb8dmZWq9Ve\nm2FhYcTGxlJYWEhhYSE1NTUEBQVdNkjQdo/4Dz74gPPnz/PAAw/g5ubWYWORzqVt7UZFRREVFcW6\ndesoKSmhsbHxikGCtnW8dOlSDAYD9957L87Oztf0+EVERAD7FlH19fU88MADrF27lvr6elpaWti9\nezd5eXkMGDAAHx8fe0eC2tpasrOzKSoquqQjAVx836z3u3K1KEQgIiIiIiIiIvJv8vLyYtCgQZSV\nlVFZWWkPEnh4eFwSJGidhDUYDKxZs4bq6moeeeQRvL29O3AE17cNGzbwm9/8hgEDBvDrX/+akSNH\n0rt3b5KTkxk2bBiZmZkUFRVx+PBhbr75ZntHgvPnz7Np0yZ2797N8OHD8fT07OihXBfadnd49913\nWbNmDVOnTiUsLIyysrIrBgngn6GO9evXs2TJEm666SZuueUWe02LXE1ta/f999+npKSEKVOmEBYW\nxubNm68YJGgbIFi9ejV/+ctfGD9+PDfddBOgwJaISKvjx4/j5uam58WrrPXzQGNjI9OnT6e0tJSp\nU6fy0ksvMW3aNAoLC+1dogYOHHjZIEFZWRkBAQGEhobaXxv1uMnVpBCBiHRKl7uopxdcERERERH5\nplpbZF8pSNDafrvtCtotW7aQlpbGoEGDuPXWW+1bGHRWJ06cuOJq9pUrV1JQUMAvf/lL+vXrZ5/Q\ntlqtdOvWjQEDBvD555+zfft2PD096dOnD/7+/nTv3p2TJ08yduxYhg0bdi2Hc91q20lgwYIFvP76\n6xgMBoYPH05sbCwhISFs3779skGC1s/JhYWFvPrqq9TX1/OTn/yEnj176jO0XBNtO5O89tprNDQ0\nMHbsWOLj4wkJCblikKD1dgUFBbzyyitcuHCBxx9/nNDQUNWuiMg//OY3vyEtLY0+ffrg5+en58fv\nWNtttVoDmm+99RYrV65kxowZPPXUU/j5+eHt7c2XX35JXl4ex48fv2yQ4Ny5c2RkZLB3715uu+02\nHB0dO3h00hkoRCAinVLrBZTMzEyCg4OvuO+jiIiIiIhI2wuArVr/fbkgwYgRI/Dx8Wn3cwUFBbz+\n+uucOXOGmTNnEhsbe20HcZ3Jzc1l0qRJmM1mBgwYYP+6zWbDarUyd+5campqePjhh/H29rZPhBuN\nRqxWK/7+/oSHh7NmzRpcXV0ZNWoUJpMJf39/hgwZwuDBg+3315k/57UNsVRXVzN//nyioqJ4+umn\niYiIACA0NPSSIEH37t0JDAwEoLi4mPnz51NSUsKzzz7LxIkTO2w80nm0fd49cuQIL774In379uX/\n/b//R1hYGHBxa4OvBgmioqLw8PAAoKSkhPnz51NWVsYzzzxDampqRw1HROS6U1tby9tvv82uXbvY\nt28fUVFRChJ8RyoqKujSpQtGo7Hde9HGxkYWLVqE2WxmwYIF9kDxoUOHeP7550lMTCQgIICSkhJK\nS0vp168f3t7eODo6MmDAAJqampg1axbdunXryOFJJ6IQgYh0Km1ftN944w1+9rOfceHCBZKTkxUk\nEBERERGRS1gsFnu70NYW+jk5OXh5eeHm5obJZLIHCbZv387u3btZv349fn5+GI1GHB0dWbt2LXPn\nzmXHjh3MmTOHKVOmAJ17gnvdunVs27YNV1dXbrrpJvs5houh702bNrFnzx5Gjhx5ycrh1r+bTCaW\nL1/OuXPnmDx5Mi4uLgD2Pzvz+W3VdhV3bm4uO3bs4J577mHUqFFYLBZ7OOOrQYLa2loiIyM5fPiw\n/bazZ8/mvvvuAy4frBH5LrXW1+uvv05lZSUVFRU8+uijDBs2rF3tfjVI0NTURL9+/di1axdz585V\n7YqIXIGzszPJycns27eP7OxsqqqqiImJUZDgPzRv3jx+//vfExAQQGRkpL0zmcFg4MiRI7z55psE\nBQUxbdo04OLr0kMPPURdXR1vv/02EydOZO3atVRWVlJYWEhcXBxmsxlvb2+GDh1K165dO3iE0pko\nRCAincZXtzDYu3cv+fn5ZGVlYbPZGDRokIIEIiIiIiKdXEVFBSdPnsTX1xeDwWD/DJGWlsavfvUr\n1q5dy9atWyktLcVisRAdHY3ZbMbLy4tRo0ZRUVHBzp072bx5MytWrOCjjz5i2bJlWCwWfvazn3H3\n3XcD7VeId0aJiYnEx8dz77334ubmRnFxsb2FPsDhw4fJzs6mqamJhIQEPD097bdt/czm7e3Nhx9+\niKurK9OmTbukras+11104MABXn/9dbZu3UpDQwPx8fEkJSVhNBrbtdj9apBgz549rFu3juLiYmbP\nns2MGTMA1a5cO+Xl5Tz//PNkZGRQV1fHgAEDSEhIaNeVxGAwXBIkOHjwIF988QUFBQWqXRGRK7Ba\nrXh7e9OnTx/27dtHbm4ulZWVxMTE2N8Hy7+npqaG1atXU1ZWxoEDB/Dw8OCGG26wv/aYzWZWr15N\nY2MjY8aMwd3dnV/84hdkZmbyyCOP0K9fPzw9PWlqaiInJ4eTJ0+ybNkympubGTx4MCaTSY+LXFMK\nEYhcJ5SEvrqsVqt9ZcuSJUv4zW9+Q3p6OmfOnAEgLy8Pg8FAUlKSggQiIiIiIp3Uzp07mTJlCrt2\n7aJ37974+voC8Oabb7Jw4UICAgKYNGkSLS0t7Nmzh6KiImw2G71798ZsNuPi4sLkyZMxm824urpy\n9uxZ3N3dueOOO3j44YcZO3Ys0HknspqamjCbzfaAd3h4OM7Ozvzud7/jueeew8fHh969e2MwGPDz\n86O0tJTi4mI8PT0JDQ3Fzc2t3bnbvHkzf/3rXxk3bhxjxowBFBy4HG9vb4KDg6mrq2P//v0cPHiQ\nqKgo+9Z+rdoGCSoqKigrK+PkyZM8/fTTTJ8+Hei8tSsdw9/fH19fX44fP87Jkyepq6sjNjYWPz8/\ngHarO1uDBBkZGezcuZNjx44xZ84cBQhERK6g9f1Ya5CgpKSEkpIS9u3bR3R0tDoSfAsuLi5ERUVh\nsVhIT09nz549eHl52TsSODg44OvrS0REBCkpKWzdupWFCxcyaNAgnnjiCXtotrS0lPT0dMaMGYO3\ntzePP/64Hg/pEAoRiFwH2rbH3LJlCxs3bmTp0qUUFBTQ3NyMr6+vfX8c+XbatsF7/fXX8fLy4s47\n76Rv375ERkZSVlZGbm6uOhKIiIiIiHRitbW1lJaW2lcPRUVF0dLSwuuvv054eDi/+93vuO2220hJ\nSaFLly7k5+dTXFwMYA8SAAwYMIDU1FTGjx/PnXfeyYgRIwgKCgI670TW8ePHefnll4mMjMTHx6fd\n90pKSsjNzWXr1q106dKFhIQE+57mxcXF5OTkYLVa8fPzswc78vPzeeONNzh9+jSPPvooYWFh+vzW\nxlc/z4aFheHh4UFNTQ07d+7kyy+/JDQ0lICAgMsGCQIDAykoKOCJJ57g/vvvBzpv7UrHaA0HxMXF\nYTQaOXjwILt27cJsNhMeHo6XlxdwaZAgICCA9evX88wzz/DAAw/Y70u1K1fD5a4d6nqifB9YLBbM\nZjP19fX88pe/ZPXq1RQXF2M0Gjl8+DD79+8nKipKE9ffgre3N6GhoVy4cIHMzEz27NmDp6envSNB\nYGAgAwYMAODPf/4zxcXFzJ8/3/5ZAeCtt97CZrORlpbGD37wA/z9/TtqONLJKUQg0sHarpB/7bXX\neOmll9i2bRv79++nuLiYVatWcejQIRwdHQkPD+/go/1+y8rK4le/+hWJiYn89re/ZcyYMSQlJTFi\nxAji4uLYvHkzGRkZAOpIICIiIiLSCXXt2pX+/ftTWVlJTk4Ox48fx8PDg48//phZs2aRnJyMzWbD\ny8uLsLAwPD09KSgooKioCPhnkKB1ZZerqyuOjo7tPld01s8XTU1NzJ49m+3btzN06FDc3d1ZtmwZ\nERERJCcn4+7uzrZt29i6dSve3t4kJibat4qorKxk06ZNrF69mp07d7JixQreeOMNDh48yJw5c5g8\neXJHD++60LbDocFgoKGhwT5JABeDBN7e3hw/fpzMzEzOnj1LUFDQZYME4eHhjBkzhmHDhtnvW5Ow\ncrV8tTtnc3MzNpvNfr0sPj4eR0dHqqqqyMrKwmg0Ehoa2i5I0Po8GxMTQ2pqKjfeeKP9vlW7cjW0\nvtZbLBZqa2uprKykpaWFCxcu4Orq2tGH972na7JXl9FopLGxkQceeIBt27YRFBTEHXfcQf/+/e2h\nrd27d9u7v+ix+Pd4e3sTFhZmDxLs3bvXHiRwcnLCYrFgtVp58803OX36NLfffru9y84HH3zARx99\nRFJSEuPHj9fiUulQChGIdLDWF+A333yTRYsW0adPH37+858zffp0+vTpQ1NTExs3buT48eN07969\nXSJN/j1bt25l06ZNPPvssyQlJWGxWOznPyIigtjYWFauXElubi6gIIGIiIiISGdw8uRJGhsbcXV1\nxWq10rVrV3r37k1VVRWZmZkUFBRgsVh46KGH8PX1tU8auLi4EBoaioeHR7sgQUJCAg4ODpdM6HZ2\nTU1NbNiwgYqKCsrLy8nPzyctLQ03Nzf69+9PYmJiuyCBl5cXffv2pVevXoSHh2MymSgpKaGyspLq\n6mpiY2OZNWsW06ZNA7RFYNsOhytXruRPf/oTb7/9NsuXL2ffvn00NTURERFBWFgYvr6+HDt2jPT0\ndM6ePUtwcDD+/v6XBAlaW+rabDZNwspV07Z216xZw6effsof/vAHVq1axdmzZ2lubqZHjx7Ex8fj\n7OxMZWUlGRkZGI1Ge5gL2nck8Pb2tv9btStXQ0tLC2azmfPnz/PrX/+aRYsW8e6777JixQo2b96M\nzWajV69eHX2Y31ut77UAzpw5w9GjRzl06BDOzs4YjUZMJlOnf93/d13u+vbChQv5/PPPeeCBB3jx\nxRdJSkpi4MCBjB49moaGBrZs2UJFRYWCBP/ClWrxckGC1q0NjEYjRqOR7du3U1JSgsViobGxkU8+\n+YT33nsP9//P3pnHVV2lf/x9F+Cy7/sqO7IoKqiguKW4pKWVy5hZ2To1lv7MrKZlrMwxUXHJcm9s\nstI0d1GURXaQRRQVREAQARVFlB3u7w/nfruoLTO/JuzHeb9evdR7ubd7Hs59zjnP+TzPY2TEp59+\nioWFRReMSCD4ESEiEAgeAM6ePcuHH36Ik5MTixYtIiQkBGtra/z8/MjMzKSgoAAPDw8mTpyInp6e\ndLgS/DTam822tjbkcjnbtm3j7NmzTJgwQarqoPkZTclGW1tb4uLiyMjIoKOjQ7Q2EAgEAoFAIBA8\nUPzcvlTsWf891Go1zc3NfPTRR1y7do0ePXqgr68P3KlI0KtXL4qKirh48SLNzc24uLhIlQY0tr5b\nSJCfn09LSwu9evVCR0eni0f44NDR0YGBgQFjx47l5MmTZGZmcubMGcLDw3nqqaekAKm2kOD48eOS\nkMDNzY2RI0cyYsQInnjiCZ566ikmTZpEcHCw9P7d+aJQ+5I/KiqKxYsXU1BQgI6ODpcvXyYzM5MD\nBw4gl8sJCQnB1dUVGxsbLl++fF8hwd1+pDv7Fc13XZQs/++gXZ1z2bJlLFq0iJycHOrr6ykqKuL4\n8eMkJiaiUqkICgrC398fQ0NDzp07R3JyMjKZ7B4hwf3+FAh+SzTztqGhgSeffJL4+HisrKwIDQ3F\n0NCQ3Nxc4uPjqa2tpWfPnhgaGnb1R/5DoS0s+vLLL1m2bBlr1qzhm2++4dixY5w+fVpqeyT88C9T\nWloqCau07aVWq9mwYQO3bt3ik08+wdTUVEq4MzU1JTAwkKamJmJjYykpKcHb2xsrKythby2qq6sx\nMjK67/5Aczdxt5BAu7WB5iyRlJREVlYWMTEx5OXl4ejoyPr160VVasEDgRARCAS/M/dTpuXk5LBz\n507mzJlDRESE9PiaNWvYvHkzgwcP5r333qOtrY1vvvmGPn36dOsAyS+hfQjdsWMHHR0d2NraUl1d\nTWJiIv369SMwMFDaOGlvolQqFbGxsdy+fZvMzEwMDAwIDg4WGySBQCAQCAQCQZejLZStrKykoqKC\nCxcu0NzcjIWFhdiz/pvIZDKUSiVffPEFu3fvxtbWll69erFq1SpqamoYMGAA/v7+FBYWUllZya1b\nt/Dz85MuWu8WEpiampKUlERycjLDhw/H1ta2q4f4wKDJCDYwMCAtLY1z584BYGxszJQpU9DX15fE\n37FpJvIAACAASURBVHcLCczNzQkMDEQmk2FlZYWtrS3m5ubo6+tLv4fufj7WfPe//PJLoqOjGTRo\nEIsXL2bevHk88sgj+Pj4cPToUdLT07Gzs6Nnz564uLhgaWlJVVUVqampXL16FUdHR+zs7Lp4NA8O\n2j63urqaiooKSkpKaGlpwdzcXPjc3wCNDTdu3MiqVasIDw/nww8/ZO7cuYwYMQJHR0fi4+NJTEzE\ny8sLT09P/Pz8MDAwoLCwkPT0dNra2jq1NhAI/tvIZDLa2tp4++23SUlJ4cUXX2Tp0qWMGzeOiRMn\n4ubmxuHDhykqKiIwMBB3d3fhL34l2mv60qVLWblyJR0dHYwcORIbGxtu3rxJWloa+/bto3///qJP\n/C/w6aefsnHjRhwcHHB1de20f21sbGTLli0AzJgxAz09vU5xciMjIzw9PcnMzCQvL4+SkhJ8fX1F\nRYJ/sXjxYlavXk1iYiKnT5+mpaWFGzduYGdnh0wmk+axWq3G3NwcZ2dnWltbSU5O7iQkcHZ2JiAg\nAGtra5ydnZkwYQJz587F1dW1i0coENxBiAgEgt+B8vJyvvvuO4KCgqRehBrUajVJSUkkJSXx8MMP\n4+3tDcDq1atZvXo14eHhvPbaa3h6evLSSy+xZ88ehg4dKgJSP4NmI/Ppp58SFRVFaWkpEydOpK6u\njr1795KXl8egQYOwtra+J6vAwsKCbdu24ejoyJUrV0hOTsbHxwcPD48uHpVAIBAIBALBg88vlRUV\n2UL/OdpC2S1btkhBwR07dkh7XB8fH4yMjETlsn+T6upqTp8+TVJSEmlpaezatQtjY2P69++Pg4MD\nAQEBnD9/nuzsbCoqKvDx8ZEysbSFBM7OzhgYGBAZGcmIESO6elgPHDKZjNraWuLi4jA3N8fIyIiz\nZ8+SnZ1NaGgo5ubm0qXt3a0NrKysJCGB9vtp/9mdUavVVFdXExUVhVqt5pNPPiEoKAi5XI6xsTFp\naWkkJycTHh7O9OnTUSgU6Orq4ubmho2NDaWlpaSkpDBy5Ejc3Ny6ejgPBHf73KVLl7Jhwwa2b9/O\nvn37OHnyJH5+fsLn/gaUlZWxePFiDAwMWLRoEb1790alUmFvb096ejoZGRmEh4czceJEdHV10dXV\npWfPnhgbG5OXl0dycjKRkZE4ODh09VAE3YgLFy6wZs0a/P39WbhwodSzvKOjg48++oirV68yc+ZM\npk+fTklJCebm5l38if8YaNb0H374gSVLlhAeHs4nn3zC1KlTGTNmDDNmzOCHH36gqqqK27dvM2TI\nEJRKpWhtcB9KS0tZvXo1RUVF1NbWYmlpiYuLiyTsBDh06BCFhYV4e3vj4+PTaW+lVqsxMTHBwMCA\no0ePcunSJTIyMggJCcHKyqorh9blJCcns3DhQmprayktLSU3N5cDBw6wY8cOjh49yqFDh7h8+TI3\nbtygra0NCwsLLC0tCQgIoKmpiYyMDIqLizEwMMDLywtnZ2f69etHZGQkwcHBUnUdgeBBQIgIBILf\ngdTUVL744gva2tro27cvAHl5eZIyraSkhKNHj+Ln50dISEgnAcH//M//EBAQgEwmIysri7NnzzJm\nzBicnZ27eFQPHtpZAuXl5bzxxhsMHDiQl19+GScnJ1xdXamuriY7O5tz584RGBgo9TTVHPrj4+P5\n+uuvWbJkCYMHD+bw4cMYGhoyfPhwEfQWCAQCgUAg+Bm091RnzpwhLy+P9PR0SkpKMDMzQ1dXVwT5\n/g9obBYVFcXKlSuRy+WMHj0aX19frl69Sl5eHqmpqdjZ2eHk5HSPeFlwL5r9ff/+/TEzM+P48eOU\nl5fj5+fHn//8ZykDyNLSksDAQM6fP096ejoXL178SSFBQEAAvXv3Bn5ZVNMduNsG+vr6hIWFMXXq\nVB5++GEyMjLIzc3l1KlT0u/hfkKChIQEDA0NpfYFgs7IZDIuXrzIunXrGDduHJMnT5aeW716NcuX\nLyc8PJy3336blpYW5s6di62tLa6urlJFglGjRgnxixZ3+1yAyMhIfHx8qKmpkXyug4MDjo6Owuf+\nHzh//jybN29m+vTpjB8/XnpcOzb27rvv0t7ezocffoizszO2trb4+vqir68vhFuCLiE9PZ1du3Yx\nZcoUBgwYANxZ86ZNm0Z2djbPPvssr776Kl999RXz58/H19dXZBb/CjR7qvXr11NaWsqSJUsICAgA\n7rSkXbduHTExMQwdOpT58+fT1tZGS0sLBgYGXfzJHzzMzMxwdXXl8uXLpKenc+XKFaysrCQhgUKh\nQE9Pj7i4OFpaWggICMDMzEx6vaZVVHl5OTExMfTt25fKykqefPLJbn/J7eLiQmtrKydOnJD+PWnS\nJCorK6mrq5PODAcPHpSEBbGxscjlcpqbm1Gr1eTl5VFTUyMJCcQ+QvCgImamQPA7UVVVxaZNmzAw\nMKC0tJTExEQ++OADwsLCCAoKwtramu3bt3Px4kV27dolCQh69ux5z+W1KNF2fzRB602bNtHY2IiJ\niQmvvPIKffr0obW1FR0dHebOnUtNTQ0JCQnMnj2bjz76CH9/fwwMDEhPT2fjxo0YGhqio6NDSEgI\nZmZm5Obm0tTUJKmKBQKBQCAQCASd0c7YXLNmDVu3buXGjRvS8+7u7gwbNoyXXnoJY2Pjbt+//D9l\n//79rF+/nrCwMCkgDXcCruPGjePChQskJSURFhaGSqXq4k/74COTySTxS2VlJS0tLejo6FBUVMTZ\ns2fx8PCQgqReXl689957LFy4kNTUVJYsWSL9DrSFBNpnhu4+x7WFRRrxRUlJCX5+fgQHB+Pk5MSK\nFSuYM2cOOTk5zJ8/nyVLluDs7Cy99umnn6ajo4MlS5Z08WgeLLRtq+HWrVvSuVeD9iXs3Llz8fDw\nYPXq1eTm5nLx4kXp54YNGyb9XfjnH9m3bx/r168nPDycN954Q/K5HR0djB07lgsXLpCYmMiAAQNE\nvOD/gGa/oK+vLz1299x1c3Nj4cKFHD16lPHjxxMUFATAlClTpNeIuSv4PdHM16amJgBaW1uZMWMG\neXl5PP/887z44ovo6elRUVFBfX09tbW1Xflx/1DcuHGD9PR03N3dO7Wj1fYLr7/+OkqlkkmTJjF6\n9GjefvvtTiXkuzM3btyQxACDBw9GJpOxZs0aUlNTpZ8ZNGgQAH5+foSGhnLs2DGsrKx47rnncHFx\nAei0h3NwcOCdd97B2toaS0vL33lEDw7atp0zZw4AX3zxBRcvXqRfv37MmzePy5cvk5WVxaVLlzh5\n8iRnz56lpKSEgoICjh8/Dvx4Rjh58iRr165FR0eH0aNHd82gBIJfQIgIBILfgeDgYN566y3WrFlD\nVFQUjY2NDBs2DC8vLwDc3NwYOnQo27dvZ8+ePYSGhvLWW2/h6ekJIFUhiIuLw9fXt9uXDALuaUOg\neSwpKYklS5Zgbm5Oa2srDQ0NAJKaz9zcnDfffBNdXV2OHDnCU089hbu7O0ZGRuTn59PR0cH8+fPp\n168fcMf2Dg4OIggrEAgEAoFA8DNoAiHR0dGsXbsWPz8/5syZg0qlIj8/n7i4ODZu3EhJSQmffvop\nhoaGXfyJ/1ho9rypqanIZDL+/Oc/S5dZcKeX9IULF4iIiODFF1+ksbGR+vp6HBwcRDWtX0ATIA0I\nCGDcuHFYW1vz7bffsmjRIpqbm3nssccwNjYG7hUSREVFMXfuXPz8/ISN70JbWLR69Wq2bt1KfX29\nVD73ySef5I033sDe3p4VK1bw+uuv3yMkKC4uxszMjGeffZawsLBOc767o7Ht7t27GTRoEJaWlqhU\nKpRKJSkpKbS2trJ58+ZOFQ579uwJgJGREQBFRUXAvYIEcQHT2efK5XJefvnlTvNv06ZNlJaWEhER\nwQsvvEBDQwO3b9/G1tZW+Nz/AI0AIzU1lZdeeonPP//8Z+fu+fPnATF3Bb8Pd8cd1Wq11CoG7gg8\nH374Yd577z1yc3MlAYFmvmoSwaqrq7tmAH8wZDIZxsbGmJqa0t7eLtn+7qq9vr6+5Obmcu3aNS5d\nuiTayvyLpUuXUlxczFtvvSWJATSCAW0hgVqtZvDgwXh4eDBz5kyqq6v57rvvuH79OpGRkQwZMgSZ\nTMaOHTvYs2cPHh4euLm5dev4+P1sO2fOHBQKBZ999hmvvPIKy5cvZ8yYMTg6Okpz99atW1y5coXM\nzExqampITk7mxo0b1NTUcPv2bSoqKqRqGwLBg4gQEQgEvwO2trZMnz6dmJgYsrKy0NPTw8XFBWtr\na+BOAODdd9/l/Pnz5OTkcPHiRerr67l8+TL29vYcPXqUL774grq6Ot555x1sbW27eERdz/36X8pk\nMgYPHsysWbPYuHEjACdOnGDQoEFSvye5XI67uzurVq1i3bp1pKamUlBQQH19PX379mXixIlMmjQJ\ngFWrVnH9+nV69+6NWq2+5/8nEAgEAoFAIPiR48ePs3nzZnr16sXChQvx8fEB4JFHHuHGjRtUV1fT\n3NxMfX29JCIQly2/DplMxq1bt8jLy8PBwUHKwITOQdU5c+agVquZMGECYWFhLFu2TNj3Ptxv3o0c\nOZIhQ4agq6uLlZWVJAAHJCGBWq3Gy8uLd999l0WLFpGUlMTNmzf5/PPPsbCw6IqhPLBoLvM0l4EB\nAQFMmzYNhUJBfn4+U6ZMQU9Pj46ODuzs7FixYgWvvfYaOTk5vPnmmzz00ENs27YNBwcHoqKiOmWA\ni4vCO+zZs4c333yTN998k2eeeYagoCAGDRpEfHw8kydP5syZM0RERDB79mzpEhaQLmVCQ0MBxMXL\nfdD2uY6OjvTq1Ut67n4+d/z48QwaNIioqCjhc3+Cn1vvBw4cSHBwMHl5ecycOZP09HQGDx7M66+/\n3mnuapJDAgMDATF3Bf99NEIVzdrT2tqKrq4uAH379mXkyJEcOXKEKVOmcOvWLV555RWeeuopSUAA\ncOHCBYyMjKT2toKfp6Ojg5aWFkxNTcnOzuaHH36goqLivsIizd7rypUrUjWp7uyDi4uLOXDgAJWV\nlZiZmfHyyy//opAgIiKCiIgI1Go1mzZtIi4ujiNHjkjl+i9fvoytrS0ffvhhtxYQ/JxtZ8+ejVwu\nZ/Xq1cyZMweZTCZVFWhpacHIyAgjIyN69OgBwHPPPUd7eztFRUVcunQJX19fnJycumxsAsEvofjg\ngw8+6OoPIRB0B1JSUti8eTPu7u40NDRQVFREe3s7QUFBKBQKFAoF48eP59SpUxQUFHDgwAH27t3L\njh07+Oqrr6ipqWHBggVSqbbuGnBtaGjg+vXrxMfHc/LkSTIyMqQgkmaTHh4eTltbG1lZWWRlZeHq\n6oqPj48kJIA7QYG+ffsSGRnJhAkT+NOf/sRjjz0mBWS3bt3Kli1bsLOzY8GCBRgbG3dLewsEAoFA\nIBDczU/tQ48dO0ZiYiJ//etfpcspuBOs+uqrrwgLC+ODDz6gra2N2NhYvL29xQXAv4FMJuOHH37g\n5s2bzJgxA6VSyapVq1izZk2noOq1a9f4+uuvUSgUnfqiC+7Q3t4unR/q6uq4fPkyTU1NyGQyqTRx\nnz59UCgUnDhxguTkZMzMzHB3d5eCp5aWlgQGBpKbm8vo0aMJDw/vsvE8yJw6dYpFixbh5ubGokWL\nGDx4ML6+vgwZMkQqhau5rLWwsCAsLIyCggLJ7jdv3uTJJ5/sZF9xJvuR+vp69uzZQ2lpKcHBwdja\n2mJjY0NeXh5FRUW4uroye/Zs+vXrJ/ntrKwsoqOj0dXVZcaMGVJig+D+7Nq1i1u3bjFjxgwUCsV9\nfe7Vq1f5+uuv0dXV5Yknnujqj/xA8nN+V1dXF7lcjlKpJCsri6KiIry9vXn99dcJDg6W5m5mZiYr\nV67ExMSEJ598Ugi3BP91NAKCpqYmFi9ezLZt29iyZQtWVlaYmppiYGCAp6cn+fn5VFRU4OXlxUsv\nvdTpMvCrr77iq6++IiAggD/96U+dWnZ0dzo6Ou67pstkMnR0dDAzM+Pw4cMkJyeTnJzMoEGDmD9/\nPn5+ftLPpqWlcejQISZNmiRdknfnfYKRkRFubm5cvHiRxMREbt68iY+Pj1QNw8XFBTs7O8rLy8nM\nzOTq1auYm5vj5uaGm5sbgYGBBAQEUFNTQ2trK+bm5jz00EMsXLgQNze3rh1cF/NLttWcfTMyMjh0\n6BBeXl54enqiUCjuSUyUy+Xo6elhZ2eHt7e3WM8EDzxCRCAQ/E64uLjg7OzMo48+iqenJ6mpqeTm\n5iKXyyUhgVKpZPTo0ZiYmKBUKqmurkYmkzFy5EheeeUVKUO+u2ZfFBQUEBUVxdKlS9m9ezfHjh0j\nKSmJvXv3cuDAAUxNTbGwsMDQ0JABAwbQ3t5OVlYWR44ckRbvuysXKJVKTExMMDQ0JCEhgf379/OP\nf/yDb7/9Fj09PdatW4erq2sXjlogEAgEAoHgweDcuXNcvXoVa2trWltbJQGAJgi4ZcsWSktLeeGF\nF6QLQu2MzXnz5uHk5MQLL7zAqVOnGDNmTLfOaPkp7i6bK5PJaGtrQ61Wk5eXR3Z2Ni4uLqSlpbF8\n+fJOl1lqtZrm5ma2bdsGwOTJkzv1R+/uaJfY//LLL1myZAnLly9n+/bt7N27F5VKhUqlwsLCgr59\n+3YSEpibm+Pv78+ZM2fIycmhV69ejB8/noEDBwLdV+T9c6SlpbF7927+8pe/MGTIkPtWdzt//jzf\nfvstxsbGeHh4EB4ejkwmo2fPnsyYMYOpU6cCwr738wsODg4olUpiYmJwc3OjT58+GBsbo6OjQ0lJ\nCdXV1bS3t2NnZ0ddXR0pKSksW7aMkpIS3nrrLYYOHdq1g3oA0di2vb0dtVrNiRMnyMnJwdXVldTU\n1Pv63MbGRrZt24ZMJmPy5MlStrzgDr/G75qbmxMUFMSNGze4cOECTU1NmJmZYWNjQ2trK8nJySxb\ntozS0lIWLFgghFuC3wW5XE5jYyMzZ84kNjaWqqoqqqqqiIuLQ0dHB1dXV1xdXbG0tOTChQsUFhaS\nl5dHR0cH586dY/PmzWzZsgVTU1NWrlyJg4NDVw/pgUG7FcmJEyfIyMggJSWF4uJiHBwckMvluLi4\ncPXqVU6dOoVKpeLRRx9l1KhR0ntkZGSwatUq6urqePHFF3F2du72+wSlUomjoyM2NjaUlJRIFbO8\nvLwwMzMD7hUSXLt2DQsLC1xdXbGwsMDX15dHHnmEqVOnMmXKFCIiIqTXdld+rW1/SkhwdzXl7jxP\nBX9MhIhAIPgvcLeasrm5GaVSibe3N3Z2dtjb22NiYkJmZiY5OTnIZLJOFQmCg4MZO3YsY8eO5ckn\nnyQyMhIPDw/pvbujgCAtLY2XXnqJ/Px8QkNDGT16NNOmTcPGxgYDAwNOnz5NbGwst2/fxszMDHt7\newYMGIBarSYzM/MnF2/N3/Pz83nttddISkqipqaG/v37s2zZMtzd3bty2AKBQCAQCAQPDNu3bycq\nKoqQkBCpvdbt27fR09NDrVaTmJhIQUEBffv2xdvbmzVr1txTevTatWt88803XLhwgTFjxogs2LvQ\nztZsa2vj1q1bqFQq5HK5FGw9cOAAR48eJTk5mSFDhjB37lyprKtMJiMjI4Pdu3czYcIERowY0e0v\nX7XR2GHZsmVER0fT1tZG7969MTU15dy5cxw/fpzKykqsra1xdHSkb9++KJVKTpw4QUpKCoWFhaxb\nt47Y2FgGDBggiY2Fje9PbGwsGRkZPPLII3h6ekp9pLVJTk5m0aJFVFdXM3LkSMzMzAgPD2fo0KFS\nS5TuegbWoO0XWlpaUCqVtLS0oFAosLS0JDs7m7i4OCIjI7GxscHNzQ1zc3MqKipITk5m9+7dbNu2\njZiYGBobG1mwYAHTpk0DxNy9O3ajnSWoUCiQyWQcPHiQ2NjYn/S5mZmZks8dPnx4t7fp3fwav1tS\nUoKvry8jR46USjzHxcWxZ88evvnmG6kKz5tvvinmruB3ZfXq1Rw9epRp06axaNEiDA0NOX/+PKmp\nqejo6ODt7U3Pnj3x8fGhqqqK7OxsEhISOHbsGGVlZQQGBrJq1SoRW9RCey+wevVqFi5cyMGDB0lO\nTubYsWOkpKRw8+ZNAgICpGovhYWFnDt3joqKCioqKoiPj5eERW+//Tbjxo3r4lF1PTKZTGq34eTk\nhJOTE2fOnCEvL4/a2lq8vb1/Ukhw9epVLC0tOyXRaVpDCD/779n254QEYt0S/FERIgKB4DdGW00Z\nExPD999/z9atW6mvr8fb2xulUomBgQEuLi6Ympp2EhL06tULuVxOVVWV1C9HT08P6N5qtZycHF54\n4QWMjIx4/fXXeeeddxg4cCDe3t4MGjSIRx55BAMDA4qLi0lPT+f27ds4OztjY2ND//79gV9evG1t\nbQkODmb06NHMmjWLiRMnSsFxgUAgEAgEAgEkJCQQHx9PWloaI0eO5IsvvmDVqlWMGTNG6m1+6NAh\nlEolqampbNq0iUGDBjF37lz8/f2BO6UgY2JiaGpq4umnn+7UM7a7o52t+Y9//IMVK1awYsUKqqqq\n0NfXx9HRUQpCZ2RkoFAoePjhhxk7dqz0Hunp6axcuZIbN27w8ssv4+rq2i3PD3ejfQlbWFjIX//6\nV/r378/SpUuZNWsWjz/+OG5ubty6dYuEhASuXr2Km5sbtra29OnTB319fc6cOUN+fj4NDQ3MmTNH\n6nUK3fOM9ms4e/Ysx48fx9ramv79+9+3KoaHhwe7du1CLpdLl4N327O721f7smXHjh2EhIRIvtPM\nzIza2loSExNpbm4mNDQUY2NjvL29GT16NDo6OtjY2GBoaMjUqVN57rnnJJ8hxBk/xm7S09NJSkri\n0KFDXLp0CaVSiZWVFR4eHrS2tnLixAmUSiUTJkxgzJgx0nukp6ezatUq4XPvw7/jdxMTEykvL6dv\n374MGzaM0NBQOjo6UCqVKJVKHnvsMV588UXGjx8PiLkr+O9xt7Bo3bp12NjYsHTpUiwsLBg4cCAq\nlYqCggJSUlJQKBR4eHjg6enJI488gru7OwMHDiQoKIjnn3+ep556SlQguAuNfdetW0d0dDReXl7M\nmjWLyMhI5HI5xcXFxMXFceXKFUaNGkW/fv0wNDQkPT2dnJwcEhMTycnJwczMjDfeeEOqWPRT7RG6\nC+3t7SiVSm7fvs3WrVs5cOAAFRUV1NXVcenSJa5du/aLrQ1sbGxwdnYW/vUu/l3bCiGB4P8bQkQg\nEPyGaAf+Vq5cyYcffkhubq7UL6e+vh5PT09MTEwwMDDA2dn5HiFBU1MTa9eu5cKFC9Ki050Xl+rq\nav76179SW1vLW2+9JfUYbG9v7ySsCA4OxsbGhgsXLpCZmYmJiQn9+vVDoVDcs3i7u7vj5eUlvV6z\n0XRwcJDKN2nEGwKBQCAQCASCO3h7e3Pp0iVOnDjB999/T2pqKr1796Zv376Ympqiq6tLYWEh8fHx\nnDp1igEDBjBv3jz8/f2l/VZSUhIbNmwgODiY8ePHo6ur2633utpo7LB8+XJWrFhBTU0NDQ0NnDx5\nkrKyMkxMTPDw8KBnz560tLSQk5NDRkYGV69epaCggMTERJYtW0ZZWRkLFixgwoQJXTyiBwdNMDQ/\nP59z584RExPDxx9/TFBQkNSaw9vbGzc3N65du8bx48cxNzcnJCQEuVxO7969cXd3Z9iwYUyaNIlH\nH30UEAFruH82sMYuJiYmJCQkUFpaSr9+/TqJtDs6OgBQKBR8++231NXV8cQTT0iZb4LOxMXF8f77\n71NUVERMTAwWFhbo6+tjampKSEiI5HeHDRuGpaUlarUaIyMjBg4cyKhRo5g4cSIhISFSr+7ufgmr\nnQkbHR3N+++/z7Fjx6SqDomJiZSWljJkyBD69u1LfX09ubm5pKenc/36dUkgo11iX/jczvwnfldf\nX5/Bgwdja2vLiBEjmDRpEo8//jiDBw/GxcUFEHNX8N+jra0NhUJBW1sbN27coLKykoyMDPr3709I\nSAgNDQ3o6OgQGBiInp4eBQUFUkUCJycnTExM8PLyIiAggJCQEJydndHX1+/qYT0waAuLWltbWb16\nNSqViqioKEaMGIG/vz8RERF4eXlRVFREcnIyzc3NDBs2jLCwMB566CECAgLw9/fnmWeekUrtg/AL\nmjWtsbGRGTNmsH//fgwMDBg+fDg6OjrcunWL3Nxcbt68ia+v732FBDk5ORQWFuLq6irtFQT/uW3v\nvotwdXXFx8dH7HEFf0iEiEAg+I3QPoQuW7aMzz//HC8vL15//XUGDRpEQUEB6enpNDc34+XldY+Q\nQHNYPXDgAOfPn2fMmDEEBgZ28ai6Dk0wKiMjg40bNzJlyhSef/554EexhqaskiZI5eXlhbGxMceP\nHyc9PZ1+/fpJB83Q0FDp/WJiYhg/fjympqaiNNO/0NhbKCIFAoGGuy9GhH8QCLo3arUaQ0NDxowZ\nw86dO6mrq0OlUvHqq68SHByMWq3G1NQUHR0dzp49S11dHb169SI8PBxzc3NkMhmpqamsWrWKmpoa\nXnvtNfz9/YVfuYtTp06xaNEiQkJC+Pvf/864ceNobGwkNTWVsrIyqVdpWFiYdIbIyckhPT2dvLw8\nbG1tRVbWT7BhwwbmzJmDWq3m6tWrzJo1CyMjI0kELpPJsLW1xcLCgoyMDLKzs4mMjJTKk7q5ueHl\n5YWbmxsgAtbQ+ULgypUrlJeXo1AokMvlKJVKdHV1qaioICUlRWp1ovEHmv/S09P5xz/+wcCBA3n4\n4YfF+ewnaG9vJykpibq6OhoaGjh69CglJSUYGhrSo0cPLCws2LNnD9evX5eyObV/P3fv47q7jTXj\n37RpE9HR0QQFBfH6668zatQonJycOH36NJmZmRQUFDBhwgSGDBmCoaEh2dnZZGdnk5aWRm5uLjY2\nNsybN0+qoiF8bmf+Xb+bk5MjtTXRoFAoOs1fYV/BfwNNpnFjYyPz5s3jiy++YO3atZSWlmJnailq\nRAAAIABJREFUZ8dDDz2Ejo6OJIDRCAlOnz5NSkoKKpUKV1dXUWHrZ9CsR1u2bCE3N5eYmBgef/xx\nxowZg1qtRq1Wo1KpcHZ2xtXVlZMnT1JQUEBISAj29vZYWFjg5+dHSEgIrq6uWFpaAty3VVJ3QyaT\n0d7ezieffMKxY8d44YUXWLJkCUOGDOHhhx/G29ubmpoajh49ys2bN++pSGBvb8+pU6e4fPkyL774\nIsbGxl08ogeH/4ttQ0NDkcvlpKenEx8fz1NPPSXEsoI/JEJEIBD8RmgWgL179xIVFcWgQYP44IMP\nGDJkCEFBQbS1tZGamsrp06dpbGzEx8dHEhK4uLjg7OwsBQb/8pe/SIfQ7orGnqtXr6aoqIh3330X\nW1vbTiUHtX9Wc1j38fGhsbGREydO0NraytChQ1Gr1VJFgqamJsLCwhg1apRYtPkx8CcO5AKBQBtt\nX5uUlIStrS1KpbKLP5VAIOhKNHuEAwcOsGPHDkxNTamvr+f06dOEhIRgbW0N3KlWoFKpuHDhAllZ\nWRw7doyMjAz27dvHZ599xqVLl3jzzTd5/PHHASFQuvvCKT8/nz179hAVFUVgYCDOzs54eHjQ2NhI\ncnIypaWlWFpa4uHhQa9evRgyZAgPPfQQPXv25LnnnmPq1KkMHDhQeu/uHlTV0N7eTnV1NYWFheTk\n5NDS0sL48eOxt7eXLq01c9HZ2Vkq7arJKLwf3XneQue9wldffcWnn37KqlWriI2Npba2VrrYDggI\n4Ny5c5w4cYITJ05gYmKCkZERxsbGJCcns3LlSiorK3n11Vfx9vbu9naFzn5RrVYDYGlpia2tLQcP\nHmTEiBFERESwa9cu9u/fj1qtxsPDg8rKSlJTU3FxccHLy6vT91/Y9Q7awgqAFStWoFQqWbp0KeHh\n4fj4+BAWFkZYWBiJiYnk5+dz8eJFRo0aRXBwMEOHDmX48OH4+voya9Yspk2bRlhYGCB87t38ln5X\nzF/Bfxu5XC612kpJScHAwICOjg5aW1spKSnB2dkZb29vFArFfYUEGRkZtLW14e3tjaGhYVcP54FC\ne6+blZXF3LlzqaiooLGxkb59+xISEtJpT6FQKLC2tqapqYm4uDiUSiXDhg37yfcX/uEOra2tfP75\n5+jr6xMdHY2Ojg4tLS3o6uri4uJC7969KS0t5ciRI9y8eRNvb29JsOXi4oK7uzvPP/88jo6OXTyS\nB4//i21DQkLQ09Nj3rx5ODg4iPkq+EMiRAQCwW9Ia2sr69ev5+LFi3z88cfSwae5uZl169Zx69Yt\nbGxsSE1Npbm5GU9PT0xNTdHX18fHx4cJEyYwevRoBgwYAAgVO9wJSDU1NfHKK6+gUql+8lCuUQbK\n5XLc3d05cOAAt2/fZtKkSejr60vPhYWFSSWFurt929raUCqVtLS0sH//fo4cOcK+fftwcHDAysqq\nqz+eQCDoQrQr6yxduhRTU1MCAgK6tc8UCAR3aGxsxNfXl2eeeYZbt25x4sQJkpOTCQ0NlfYP/v7+\nuLu7Y2xsTEZGBufPn+fSpUv07duXuXPnSu2puvuFi3bAtLy8nKqqKkpKSigpKWH27NlSWV1LS0tc\nXV1paGggOTmZsrIyTE1N8fT0xMrKSgpeOTk5SQErkZX1IxpbaMqzVlRUUF1dTX19Pf369cPAwAC4\nc57QXAzcunWLmJgYAgICpLOD4Ee02/gtXbqUFStWUFtbi6OjI9evX+fEiRPcvHkTLy8v7O3tGThw\nIGVlZWRnZ5OQkMDBgwfZt28fX375JZcuXWLBggWSXxDCoh/94u3bt9HV1ZXOso6Ojly6dIkjR47w\n4YcfMnz4cIqLi9m/fz9VVVUYGRlRVFSEiYkJ4eHhncTigjtobLt8+XLy8/PJyclh3LhxjBkzRrKz\nWq3GxsaGiIgIDh8+TE5ODi4uLvj4+GBlZYWrqyt9+vTB2dlZ+NyfQPhdwR8FbWHRjh072LlzJ88+\n+ywrVqzA398fXV1dTp06RVlZGba2tvTo0eMeIYG+vr7UAmX69OmihYEW2mtaXV2ddD5ISEjg1q1b\nGBsbM3bsWORyeacYrY6ODhYWFuzbt4+Ojg4mTpwofOzPoFarKSsrY8WKFTg6OjJt2jTpkhvu+Fpz\nc3NcXFw4ceIE+fn51NbWdrrs1rTkEHTmt7Bt3759RZxd8IdGiAgEgn8D7YCGpoej9qH85s2bREdH\n4+bmxquvvio9Hh0dzd69e1mzZg2DBw8mJiaGkydP0tjYiIuLCxYWFshkMnR1daXSV939ENre3k5b\nWxsbNmzg+vXrTJo0CSMjo5+1ieY5HR0d9uzZQ3l5OWPGjMHS0vK+r+vOARVNqbaGhgZeeeUVNm3a\nREZGBqdPn0ZHR4c+ffpIGyKBQNB90A6iaPqWenp6MmXKlE59jAUCQffgfoJLW1tbfH19cXR0JDQ0\nlNLSUnJzc+8REri4uBAREcGjjz7KtGnTmDlzJpMmTcLf31967+6819W+hP3ss89YtGgR69evly5f\nJ0+ejLGxMW1tbcjl8nuEBOXl5VhYWODu7i69nyhVfoefsoVSqcTOzg4rKyuKi4vJz8/HzMwMDw8P\n9PT0aGtrQ0dHB7hThSc1NZUZM2ZINhb8iMam69atY82aNYSFhfHpp5/y2muv4eDgQE5ODufOnZOC\nqA4ODoSFhWFvb097ezuXLl2isbGR8PBwXn31VakySXf3C/CjbZcuXcr69esJCgqSKr0olUrkcjmx\nsbGUlZXx3HPPMXjwYJydnTlw4ADnzp2jo6OD06dPExwcLLXeEPzoF9RqNQUFBcyfP5/Tp09TU1OD\nh4cHQ4YMAejUMtHCwgJbW1uOHTuGubk5Q4cOld5PtIfojPC7gj8imrhrc3MzZ86cISEhgaamJqKj\no9HT06NHjx64ubnR3NzM8ePHKS4uxtraGnd3905CgoCAAKytrXn11Vext7fv6mE9UGh8wbvvvsuG\nDRsYP348fn5+WFlZkZmZyblz57C2tpYSFjo6OiT/qlKp2LFjBx0dHTzxxBOiMuLPoLFXfHw8tbW1\nTJ48GX19/Xt8s7W1NXl5eRQUFEji5V69egnxwM8gbCsQCBGBQPBvcXdvaO0Ah1qt5tatW3z99dfU\n1dUxdOhQLCws2L59O0uXLuXRRx9l/Pjx+Pr6olarSU9Pp6CggHPnzlFVVXWP0rq7H0JlMhlKpZK8\nvDzOnDnDoEGD6NGjx696rVKpZN++fbS0tDBjxgzRk+wuNHO3qamJmTNnkpuby5gxY/jrX/+Kt7c3\nI0eOFOWrBIJuimZdy8/PJy4ujoqKClauXCld+gkEDwrdvZrQ78HdbU2Sk5PZv38/FhYWGBsbo6ur\ni76+PuHh4ZSVlZGTk0NSUlKn1gYtLS2YmZlhZmaGiYmJ1AOyu4tloXPrrlWrVqFUKrG2tqajo4Ob\nN29SVlbG0KFDUalUnYQEbm5uNDQ0kJaWRmFhIaampnh5eYnvw7/QnrcXL17kwoUL5ObmSnPOxMQE\nBwcHHBwcyMvLIykpCblcjpubm9T/NTs7m88++wyZTMa0adOwsbHpyiE9sOTm5rJkyRJ69OjBu+++\nS0BAAEqlkra2Ng4dOsT169cpLCykvr4eb29vbG1tCQwMZPz48UyYMIEnn3xS6iULQkCgTXFxMStW\nrODcuXPs3buXlpYW9PT0sLOzw93dnYqKCg4cOICnpyf9+vWjV69ejBkzhsrKSpqamqRs759qxdHd\n0J5b169fx9XVFVtbWw4dOoRarcbJyYnRo0d3apOofQm+Z88eamtrGT9+PCqVChDxGm20/e7p06c5\nc+YMycnJdHR0oKuri4mJCY6Ojtjb2wu/K3igkMlktLW1MXXqVHbv3s2VK1fw8PBg7NixNDU1oVQq\nsbCw6CQkuHDhwn2FBD179pSyjgWdaW9vJzo6murqasaNG4e1tTXOzs5YW1uTnp7O+fPnMTc379TS\nSCaTkZaWxnfffUdkZCQjRozo4lE82GiEF+np6Zw8eZIbN24wcOBAdHR0pHWtpaUFHR0dbty4wenT\npzE0NOTcuXPMnDlTxM1/BmFbgUCICASCX83FixfZv38/0dHRfPPNN2zfvp36+nqam5txcnJCJpNh\naGhIe3s7JiYmREZGUlJSwscff4ylpSVz586VMgEKCwtJTEzE29ubU6dOMXz4cHr37t21A3zA0Gwc\nKyoqSE5Oprq6mpCQEExNTX/yNZqFvbGxkXXr1mFgYMD06dNFRv1daFo/REVFcfjwYZ555hnmz59P\njx49CA4OxtramqtXr5KQkEBtbS0tLS2Ym5t39ccWCAS/E19++SWzZ8+moaEBBwcHXnjhhU4ZAQJB\nV5KSkoKzs3On8reC3x7tC4G1a9fy0UcfcezYMXJycsjKykKhUNCjRw/09PRQqVSEhYVRVlZGbm4u\nKSkpDB06lNLSUlasWIGHhwcWFhYAnQKD3RXtii9Xr17lb3/7G7169WL58uVMmzYNFxcXzpw5Q15e\nHjdu3GDAgAFStqZcLpeC2XV1daSkpDBq1CjpEra7o13dYcOGDSxevJgtW7Zw8OBB9uzZQ0JCAl5e\nXri4uODs7IyjoyN5eXkcOnSIhIQEqqqq2Lt3Lxs3buTixYv8z//8jwhaa3H3PiAlJYU9e/Ywd+5c\nBg0aJD2+fPlyCgsLeeONN6iuriYtLY26ujp8fHyks5yhoeE9req6s1+4G1NTU6ZPn45areby5csc\nPnyY1NRU2tvbCQ4Opnfv3qSmppKens7kyZMlgUxERATOzs6MGzeOCRMmdPUwHhg0c+v9999n9erV\nTJ48mcDAQFxcXDhy5Ih0gRUUFCSdlTWvMzc3Z+fOnSgUCqZMmSJiC3dxv6o633//PfHx8ezfv5/4\n+Hjc3d1xc3OT/G5ubi4xMTHC7woeCFpaWrh+/TpJSUlcuXIFExMTHn/8cUkUp7330hYS2NjYSK0N\nBD+PXC6nra2Nw4cP09LSwrBhw1CpVPTo0QNLS0tiYmLIzc3l9u3b9OrVC7lcTnp6Op999hmXL1/m\npZde+tVJZf/f0T5HANTX1yOXy1EoFCgUCvz9/YmNjSU3NxeZTEavXr3Q0dHpVH5/3bp13L59m9Wr\nVzNr1ixRcfJfCNsKBD+NEBEIBL+CrKws5s+fz65duygvL6ehoYGysjKSk5P54YcfkMlkeHh4YGBg\ngLe3NwMGDMDMzIyjR4+ye/du3n77bQYPHiy939GjRzl9+jRRUVG8+OKLncridXc0wSmNms/V1ZXs\n7GwKCgowMjLC09Pzvv3FtINaBw4cYNeuXTz77LMMHDiwW198NTQ0oKOjc89mqKOjg5UrV2JkZMSq\nVavQ09NDrVbT3NxMVFQUn332Gf/85z+JiYkhJycHb29v7OzsunAkAoHg90CtVnPjxg3Ky8s5c+YM\nlZWV9O/fXxLLCQRdybVr1/jggw8oLy8nNDQUpVJJc3OzKG35G6NdJUCzJzA3N2fGjBkYGhpSVFTE\n6dOnUSgUeHh4oFKpOgkJcnJy2LlzJ4cPHyY3N5egoCB8fX27eFRdh2YPpglEa2ybkJDAlStX2L17\nN++99x5BQUEYGhpKly3Z2dmkp6dz/fr1+woJnJ2dGTlypLhs0UKzTi1fvpxVq1ZhbGzM1KlT6dmz\nJ0qlkpycHPbs2YODgwM9e/bE2dkZBwcHysrKKCws5OTJk1RVVTF8+HBmzJjB5MmTgXsvz7sj2mcJ\njT12795Nbm6uJH6BO8HTzZs389prr/HYY4/R0dFBSkoKFRUVVFRU4ObmJnrC3sXdlXU0Ii6FQsGA\nAQPo168fVlZWxMfHk5SUxKlTpzAwMMDJyYm4uDiqqqqkeIKuri4eHh54eHjc9727M62traxYsYLi\n4mICAwPp0aMHPj4+9OjRQxJp2NnZ4efnh1wul+yWlJTE119/zZAhQ4iMjBT2vAuNPdauXcvKlSux\ns7Nj2rRp+Pr6olAoOHnyJDExMVhaWhIYGIijoyOOjo7C7woeGJRKJT179sTc3Jy0tDQuXbpEa2sr\nAwcO7LR/0xYSpKamcuLECdzc3ETbmH/xS99ZKysrDh48yIULFwgNDcXGxkZasywtLTl27BjJyckc\nOHCAjRs38v3333Pp0iXmz5/PxIkTf8eRPLi0tbWhVCppampiy5YtbN68mU2bNnHo0CGqq6vR09PD\n29sbExMTMjIyyMjI4MqVK4SEhEhx9H/+8598//33hISEMHHixJ9N1OtOCNsKBD+PEBEIBL9Aamoq\nL730Ei0tLcycOZP33nuPGTNm0Lt3b1xcXMjOziYjI4OamhpJWa2vr09raytLliyhsrKS559/XlKf\npaens3z5cry9vXnmmWekMm3igN+5zGB9fT16enooFAoaGhrIyMjg7NmzmJmZ4eTkJC3SHR0dnV6X\nlZVFVFQUOjo6PPfcc9jZ2XVbu2ZmZjJ37lweeughDA0NOz1XXl7OqlWrcHR0ZNSoUdTV1REbG8v7\n77/PkSNHaG1txd/fHysrK/Ly8tDV1WXIkCHiMC8Q/D9G40udnJxwdHSkpqaGiooKSkpKCAoKwtLS\nsqs/oqCbU19fz9q1a0lOTkalUuHn58crr7xCQ0MDgYGBXf3x/t+gWee/+eYbli9fztChQ/nwww+Z\nMGECAwYM4PLly5w4cYKysjIUCgWenp5SRYKIiAguXrzImTNn0NHRYf78+dKFQHckOTmZv/3tbwwZ\nMgQDAwPp8a1btzJ//nwqKyu5du0aTz/9NBYWFqjVapRKJU5OTri5uZGTk0NaWlonIYGmAoeVlZV0\ncSvOET8SExPDRx99xIABA1i0aBHjx48nIiKCRx99lPj4eKqqqpDJZISFhWFoaIi9vT02NjZcvHiR\n6upqhg8fzp///Gf69+8P3JuV1B3RFhatXr2auLg4Bg0aRHl5OcePH8fFxYXQ0FAOHTrEkiVLCAsL\n46mnnsLGxgZ7e3v27NnD9evXOX/+PN988w0TJkwQgdV/oV315dixYxw4cIBVq1YRHx9PZWWlVDK7\nf//+hIaGIpPJSEpKIiEhgRs3btDe3s6VK1dwdnbG1dUV6FzRQfiFO6jVahQKBba2thw5cgQjIyNJ\neOHt7Y2zszMxMTEcPXoUHR0d7OzsMDQ05Pjx46xfv57KykpefvllSZwh6Owba2tr+fjjj3Fzc2PJ\nkiWMHTuWiIgIJk6cSFNTE9nZ2aSkpODp6SklJ9ja2gq/K/jd+am5paurK4ncNAIBlUpFnz597isk\nuHbtGsXFxbz00kvdfj27fv06+vr6UmsIbftq7N3R0YGpqSlyuZzDhw/j5eVFr169gDu2d3d3x9bW\nlszMTK5cuYKFhQVvvfUWL7/8MiNHjgTEXre9vR2lUsnt27d59tln2blzJ5cvX6a5uZmysjJSU1OJ\njY0lICCAkSNHYm5uzsmTJ0lPT2f37t0cOHCAbdu28f3332NsbMyiRYuk9nPdHWFbgeCXESICgeBn\nSElJYdasWdjZ2TFv3jxmzpyJpaUlJiYmeHp6EhYWhqenJ3l5eWRnZ3P9+nVJRalQKDhz5gwnT56U\nNqOnTp0iOjqakpIS5syZ0yng3Z03Qxo0Nvj73//O7t27CQgIwMLCAk9PT65fv05mZianT5+mqakJ\na2trLC0tkclknTK6oqOjOXPmDAsWLOj2mVmXLl1i3bp1JCQkMHXqVORyOe+99x7Dhg3DzMyM8+fP\nk5aWRn5+Pt9++y179uzhypUr9O3bVyrz2LdvX2JjY7l69SpPPPGEyPYUCP4fcfdBXPN3uVyOnZ0d\n1tbWVFZWkpOTw7Vr1/D29pZKkgsEXYFCocDExIS8vDwSEhL47rvvuHDhAoMHD8bHx0eUE/0NuXXr\nFlFRUajVaj766CN69uwJ3LmI2bp1Kw0NDbS1tUlCQ01FAl1dXUaPHs1DDz3E1KlTiYiIALpf4E9T\n3em1114jLy8PlUpFaGio9LyZmRmZmZmcOnUKgIiICFxdXaVgq0KhuEdIUFdXR//+/aXqUeKisDMa\nm3z77becPHmSxYsXExQUJD2/bt06du/ezZAhQ3jnnXdoaWmhpqYGW1tbHBwcsLW1paioiKysLG7e\nvIm/vz/GxsadeqN3R7Tn2vLly1m7di319fVERkZK7QnGjRuHqakpS5YsoaqqinfeeYeAgADUajUd\nHR1s376doKAg+vTpw8iRI6ULge6Odhn4FStW8PHHH5ORkUFVVRXnz58nJSWF/Px82tvb8fPzw8nJ\niX79+jF06FDOnDlDcXExV65coba2Fn19fcLDw7vtOqiZpz8leNc8pqOjw/Hjx0lMTCQkJAQnJycA\nfH19cXV15ciRI6SlpREbG8uWLVvYsWMHNTU1vPHGG0yaNOl3HdODyt1VdXbu3IlKpWLnzp386U9/\nYvjw4XR0dEjrWVhYmFSRJD09nVGjRmFlZYWjo6Pwu4LfFU2mcUtLCzExMezZs4eKigrUajU2Njao\nVCrc3NywtLQkNTWVrKwsdHV1CQ4OvkdI4OPjw9NPP42Dg0NXD6tLSU1NZeHChVISgsYvZGRkdPq3\nxjfLZDIOHjxIbm4uI0aMwMzMDOgs4sjIyKChoQE/Pz8iIyOBOy0nunssUi6X09zczIsvvkhOTg5P\nPvkkn376KdOnTyciIgKZTEZOTg4//PADoaGhjBw5ksGDB1NTU0NTUxOFhYWYmpoyYMAA/v73v4v2\nEFoI2woEv4wQEQgEP0FqaiqzZs3CycmJefPmMXbsWKBzEFQmk+Hp6YmHhwe5ubnk5OTQ0dHBsGHD\ngDt9TtPT00lLS2Pnzp3s3LmTyspKFixYwJQpUwBRpg0627ShoYHly5eTk5PD7du38fDwwMbGhuDg\nYFpbWykqKuL48eMcOXKE2tpaCgoKSE1N5bvvvmPlypVcuXKF+fPnM336dKB729fS0pLY2FiKi4s5\ndOgQX3/9NUlJSTg5OeHr64tKpeLq1aukpqZSW1tL//79ef7555k9ezZ2dnbo6elhYmLC1q1bsbOz\n44knnujqIQkEgt8I7cy34uJiCgsLSU9Pp62tDbjTi9fe3l4qN5qSkiKEBIIuYfv27VRWVuLh4YGO\njo5U8v348eO0tLQQHBzMW2+9ha6u7j3ZL4L/nPLycpYuXcq4ceM6rf9Lly4lLi6Ojz/+GB8fHxIS\nEigtLaWtra1TyykrKyvMzc2BzpWmugt1dXUYGRnRu3dvVCoVs2bNQqVSSe03zMzMGDx4MCdPnpTE\nWpGRkZiYmEjzWFtIcPLkSVJSUrh06RIjRozodvb8NWiEG9HR0XR0dDB79mxUKhVwJ3s+Ojqa8PBw\nXn/9dUxNTRk7dixnz54lMjJSKg1vb2/PuXPnSE1NpaGhAS8vr26XYajtR7UzNq9cucKGDRuwt7fn\no48+wtXVFZVKRXBwMKamphQWFrJ48WImTpzIjBkzpO99XFwc27dv5+WXX2b27NmSmKa7CYvuh2b8\nn332GWvWrKFPnz68++67zJo1i0GDBtHS0kJOTg75+fno6+vj7++Pvr4+tra2jB8/HhsbGxQKBcXF\nxYwdO5aQkJAuHlHXUVdXh0qlum8mrFqtBu7Y29TUFIVCQXx8PA4ODvTv31+q7uLj44ObmxuHDx+m\nvr4eS0tLSVg/atQooPvO2/j4eFavXs2oUaM6Xabu3buXBQsWEBcXx82bN3n44Yfx9vaWKj9o7BUa\nGkp5eTk5OTk4ODjQu3dvdHR0hN8V/G5oMo0bGhqYPXs2GzduJCsri7i4OM6fP4+pqSnu7u6o/pe9\nM4+rus7+/xPuhQuX/bLJzmW7LKIiCrIqYrnvlmaNWzU1TbZMWdZMzq/HtFvqlJU1TU22OLZaSqUi\nogKXfUdE2RQBFUU2Adk+vz/83k8XRbOZDKf7ef5Tchfu+3Du+Xze7/M655iZ4ePjg52dHWlpaWRn\nZ6NQKEQhgS5e2NnZXdHt09DQarWsXLkSExMTEhMTcXNzAy6J4v785z+Tk5ODQqHA0tISa2trAEaM\nGEFTUxNZWVmEhoYSGBgoxhNTU1PUajUODg5kZGSg1WoxMjJi/Pjxg+KJIfPNN9/w0UcfMW/ePJ56\n6inRD93d3ZkyZQqdnZ0UFBSQmppKREQEQUFB3HLLLcybN48ZM2Zw9913k5iYKFXJD4FkWwmJayOJ\nCCQkhiAzM5NVq1bh6urK2rVrB20adRtSfaW7l5cX7u7u7N27l+LiYhwcHBg5ciRBQUGYmJjQ29vL\n6dOnCQ8P5+GHHxbbuhrioerl6CeyUlNT2b17N2fPnqWuro6Ghgaam5vx9/fH2dmZsLAwPD09MTY2\npri4mMLCQtLT08nOzubkyZPExsby6KOPilUChmzfvr4+TE1NWbp0KampqVRUVNDW1sY999zDqlWr\nAPD29iYuLo7JkyczZ84c/vjHPxIcHIxCoQAuHbi8//77JCcnM336dKKiogCp2k1C4n8d/cq3d999\nlxdffJGPPvqIlJQUduzYQXJyMh4eHvj6+opzS0+cOEF6erokJJD4VUlKSmLt2rU0NDQQHR2NtbU1\nAwMDbNy4kbq6OuRyOfX19cjlcvGASWqB+9+hs19rayuffPIJjo6OzJo1C7g05/GNN95gyZIl/O53\nv8PHx4f09HSqqqqor6/n6NGj+Pj4XDH6xNDuG9LT01m1ahWjRo1i9OjRxMbGYm5uzrp163j77beZ\nPn26KNScMGECpaWlVFRUkJuby6RJk7CysrpCSODu7s6BAweYNWsWY8eOHe4l3nTo7vnlcjkpKSmc\nOnWKVatWYWpqyhtvvMGbb75JTEwMjz32GCEhIXR1dbF9+3aMjY1Zvnw5gGhrFxcXampqSE1Npb+/\nn5iYGIOJKbm5uRw6dAhvb28UCoW47o0bN/L111+Tn5/P7373O7GTgH5ytqioiKSkJHx8fJgyZQrG\nxsbk5eWxadMm+vr6uPPOO3FxcRF/l6HFhatRVlbG3/72N9RqNc899xzh4eE4ODjg4+N5Tgv7AAAg\nAElEQVTDqFGjsLKyIiMjg5qaGtRqNZ6envT29mJqakpQUBDTp08nPj6e6dOnD/dShg39mOvq6ir6\nbVZWFm5ubuI4Dl3yz97enoyMDPLy8pg5c6Z4b2FkZCSONkhOTqa1tRV/f3+Dr4RtaWlh6dKllJWV\nUVdXxy233CLa2NbWloaGBqqrq+nq6mLEiBFMmDBBtJO+qMPV1ZXPPvsMR0dHMYZIcVfi10C39+3s\n7OSuu+4iNzeXsWPHMmvWLMzMzMjOzqa2thYrKyv8/f1RKBSikEB33mhubs6YMWMMttvL5ei69np5\nefHoo48yceJE4JKgq6amhrq6Og4fPsyePXvYt28f1tbWGBsbY29vj6urK3v27KG6upqFCxcil8vF\ns3V9IUFmZib5+fl0dnYSFRUl3TcA27dvp7y8nGeffRY3Nzfx2qX7b0xMjChOtra2JiIiArlcjkKh\nwN7eHlNTU0xMTIZ7GTclkm0lJK6NJCKQkLiM6upqli9fTm9vLzNmzODOO+9ELpcPmZDWFxKo1Wps\nbW05cOAAp06dIiYmBhsbG8LCwpg6dSpLlixh/vz5YjtYQ05w69Cfr/nqq6/y3HPPiRdkmUxGa2sr\nFRUVdHR0EBAQgIODA/7+/kybNo0JEyYwZcoURo8ezbx583jggQeYN28egYGBgGRf/bX/85//pLW1\nFUEQaGlpYf78+ZiYmDAwMIBSqcTV1VVs5VhdXQ2Aubk577//Pu+//z4ODg6sW7cOGxsb6cZdQuI3\ngH5b4s2bN2Nvb8/KlSsZM2YMtra25Ofns2vXLmxsbBg5ciQeHh6DhAQtLS34+flJQgKJG05HRwet\nra1MnDiR+Ph4UXjY2tpKVFQUiYmJ5Obmkp6eTl9fHxMmTMDY2FgSEvwEjY2NFBcXi+Kho0ePcvr0\nafz9/QfZLS8vDysrKxISEsjPzxfbMz744IM4Oztjbm7O0aNHKSkpQRAESktLCQoKIiQkZBhXN7xk\nZGRw7733YmNjQ1RUFN7e3hgZGdHc3MwLL7zA8ePHOXz4MAkJCaKQIDIykuLiYoqLiykoKCA+Pn5I\nIcHs2bPFQ1pD7LR1Lb/V2aKnp4fc3FwKCgoQBIH8/PxBAgL9fdjWrVsZGBhg0aJFmJiYYGRkJNra\n1taW06dP8/DDD+Pg4DCcy/7V0Gq1LF++nLa2NuLi4sRK4HPnzvHUU09RXl6OUqkkLCyMsWPHiglZ\nne1NTU35+uuvqa6upqGhgcrKSjZt2kRVVRVPPPGEKMqXGExOTg7ffvstDz/8MPHx8eIICGNjY6yt\nrUXRwP79+zE3NychIeGKJJazszNgmFXyQ8VcgOeff55nn32W3NxcTp06hZ+fn1g1bGVlJc44NjMz\nY/z48YMKRQIDA8WOBOnp6cjlcsaNG2ewlbBmZmb4+vqSlpZGcXExtbW14vfZ0tKScePGUVNTQ1VV\nFR0dHcTGxmJnZzfoOqU7N/vwww9xcnJi9uzZ4uOGGnffffdd8RomcWMxMjKip6eHtWvXkpOTw733\n3svzzz9PXFwc3t7elJSUUFFRQV1dHba2tvj5+Q0SEmRnZ5Oamoqdnd2gMUmGiq5rr6enJ4899pgo\ntBIEQexQNGfOHIKCghgYGKCgoIDk5GQyMjJobW1l9OjR1NbWotVqcXFxEe/N9O8n1Go1Tk5O7N27\nl9raWubPny92OzNkvvjiC+rr67n99tvFinfdmAjd9cne3p4ffviB5uZm5s+fj6mpqfg8iasj2VZC\n4tpIIgIJicswMTGhpqaGEydO0NjYKLZ0ViqVQz7/8o4Eubm51NTUMHPmTPHCI5fLMTc3FxXZ+slz\nQ0Z3od2+fTsbNmwgPj6eV155hdWrVzN37lw8PDxoamoiNTWVzs5ONBqN2AbL1dUVtVrN6NGjxapY\n3QGgZN8fqaqq4syZM8TFxdHT00NFRQXJyclMmzYNCwuLQe0e33vvPR5++GH27t3L9u3b2blzJ5aW\nlrz33nvigYyEhMRvg+TkZJ5//nnGjRvHCy+8IIqzpk+fTlZWFg0NDchkMmJjY7GwsBBHG9TX13Pw\n4EHq6uqYOHGi2CpaQuJG4OLiQmRkJNHR0XR2dvL//t//Q6lUMnv2bMaOHUtwcDAqlYrs7Gy0Wu0g\nIYE02mBoCgoKeOaZZ9i6dSv5+fmUlpai1WrZvXs3+fn5WFlZYWdnh52dHZGRkSQkJGBra8uOHTtI\nSUnhmWeeITIyUny/L774gu7ubj7++GMSEhIMuhpWV5Xl4eHBE088QWJioviYubk58fHx5OfnU1BQ\nQGlpKZMnTx7UkUDXZSs/P5+JEydeISTQJXUNUSh7PX5rb2+PUqnE09OTXbt2odVqyc7OJiYmhqee\negqNRiO+n1ar5YsvvmDq1Kmiz+r2JTKZDC8vL2bNmsWIESOGZb2/NhkZGdxzzz14enpy7733Mm7c\nOPExpVJJQkICeXl5NDQ0UF9fz4wZM7C0tBQFW4IgYG1tjUKhoKCggLy8PLRaLf39/axdu1YaMzcE\nugPppKQk8vLyuPXWWwkKCgIGi8EtLS1RqVTs3LmTwsJCbr311iu6vegwNNvqx9w1a9YwZcoU8bHT\np09z/vx5qqqqOHDgALt37xaFLyNGjGDkyJGkpKTQ0NDA7bffPsjmuo4EarWaPXv2kJmZSW9vr0FX\nwvr4+ODn50dKSgqHDx8eJCSwsLBg3LhxNDY2kpOTQ3l5OQkJCeL5mc5m2dnZJCUlMXv2bHGsiaHG\n3eTkZJ555hlKSkpwd3fHx8dnuD/Sb4qhrjUFBQVs2bKFuLg4/vKXv4jJv7q6Oj755BNcXV2prKyk\nuroaW1tbsSOBWq3GzMyMo0eP8tBDDxm8iD4rK4uVK1diZmbGQw89xJw5c4DB448GBgYwNzcnICCA\nGTNm4O/vj5OTE+np6WRlZXH48GFUKhXl5eWoVComT558xd/L1NQUb29vPD09eeCBB8RRCYaKzqdT\nUlIoLy/HycmJsWPHDhIV6mxobm7Orl27aG9vZ968eVhaWg7Xx/6fQLKthMT1IYkIJCT0GBgYQKFQ\nEBMTQ1NTEzk5OZSWlqJSqfD09LxqskR3QVEoFJSUlFBQUEBwcDAjR4685vMloLe3lzfeeIPm5mbW\nr19PcHAwfX19WFhY4O/vz8iRI6msrCQlJYULFy6IQoKhNgb6SndD5fLqCJVKRWhoKImJidx+++0c\nPHiQI0eOcPDgQaZOnYqlpaV4QF1ZWUlXVxfl5eXY2NgQGRnJq6++ilqtHsYVSUhI3Ai++uor8vLy\nePHFFxkzZoz483feeYcvv/ySiRMnsm7dOnp6ejh+/Diurq64uLgwYsQIysvLRdGBhMSNQnedVyqV\nCILA3//+dz799FMaGhpwdHTEy8sLIyMjvL29cXFxISsrSxQSREZGXlExKCWvLiVO77//fs6cOcO8\nefO4++67mTx5MmFhYdTW1nL48GEKCgro6enB19cXFxcXLC0taW9v57XXXsPY2Jh169aJhyparZY3\n3niDqKgoFi9ejKenJ0ZGRgbZCUI3Cs3T05M//elPYlWWvg+qVCrGjx9PTk4ORUVFVxUSFBUVUVRU\nRGxs7JD3vIbmx9frtxcvXhQPnJVKJbm5ufT29hIXF8f8+fMHvd/mzZs5e/YsDz74IGq1+gqbymQy\nMcHwW0c/EfvYY4+Jogp9v1OpVERERJCfn09VVRWFhYXccsstmJubD/q++/j4MGHCBGQyGYsWLWLZ\nsmXi+xmi+OVa6Gx78uRJ9u/fT1BQEBEREVfYSRAEnJycKCkpoaamhiVLlhhElfZPcXnMnTZtGvBj\nzA0JCSEhIYG4uDjOnTvH8ePHSUlJISkpie7ubmxsbDA1NeX777/H0tKSsLAwseJQ5/sBAQH4+Piw\ne/du8vLyWLp0KWZmZgYXg3Wo1WoCAwPZt2/fVYUEDQ0NHDp0iLy8PDw8PDA3N0epVJKVlcXbb79N\nU1MT9913Hx4eHgYdd83MzLh48SJarZbi4mJcXV0lIcEvwPr16+nr68Pb2/uKe6fvv/+e/fv38+ij\nj4rdH7q6unjggQdwdHTk+eefp7+/n7S0NOrq6lAoFAQGBmJmZkZgYCB33HEHrq6uw7W0m4KMjAxW\nrVqFIAiYmpoSHByMWq1GqVReIcSCH+Oxn58fcXFxJCQkYGNjQ0FBAdnZ2QAcPnyY0NDQIYuWdGN7\nDE24MVTHG92/ra2tSU1NpaWlhZCQEJycnK54nZGRER999BEjRozgrrvukkZw6CHZVkLiP0cSEUhI\n6KFrU6NQKIiIiKC5uZnc3FwOHz6Mra3tNYUEukRsRUUFmZmZxMfHExoa+iuv4H+P5uZmsT3uH//4\nR3p7e8U5QjKZDEdHR9zd3cnPz6e4uJiWlhY0Go1YjSXxI319fchkMnp7e2lsbOTIkSNYWFhgZ2cn\n3hjNnj0brVZLeXn5ICEBQEhICHPmzGHatGksX76cKVOmiN00JCQk/rdoaGigubkZW1vbQT8fGBgQ\nxVvt7e08+OCDYgzYvHkzr7/+OjExMWIr0RkzZlBcXMzUqVNRKpW4ubkxefJk4uLiACkxK3HjuDxp\nqlQq6e7u5uDBgzQ2NuLg4ICXlxempqZ4eXmJQoLMzEwGBgaIjIzkq6++IisrS0wOGDK6SmMnJyee\nfPJJ/vCHP+Dv709gYCBjx44lMTGRvr4+ysrKyM/Pp6enh+DgYMzNzent7eWrr76ivr4eHx8fAgIC\nyMnJYfPmzTQ2NvLQQw/h6+sr2tjQEoWZmZmsXLkSY2NjHnzwQRYsWAAgjt/QR6VSERkZeU0hge5v\ncOjQIRYsWGDQ8zV/rt/29vYSGhpKcHAwJiYmlJSUkJ+fT0lJCYcPH2bfvn1s2rSJEydOsHbtWubN\nmzfcSxxWLhcQ6ItfLv8e60Qwubm5lJaWir5rbm4u7oMVCgWurq5MnjyZ0NBQsXJQEhBcna6uLpKS\nkiguLmbSpEk4OjqKh9X691hfffUVZ8+eZeXKlVhZWQ3zpx5erjfmKpVKXFxcmD59OhMmTBArX9PT\n08nNzaWlpYWOjg4EQSA2NhaFQnGFkMDf35+AgADuv//+IRPfhoa3t/dVhQRKpVIUEqSlpZGWlkZS\nUhL79+/nH//4Bw0NDTzxxBPMmjVrmFcx/FhZWREYGEhXVxdarZaioiLc3NwkIcF/QUpKCs899xy7\ndu0iPDwcDw+PQTFUd/41YcIEQkJCEASB1atXc+TIER5//HExBug6lFRVVVFfX8+ECRMwMzMz+O57\n+vcL0dHRVFVVkZ+fj1wux9vbe8iKbP14qRPERUREiGOkLC0tqa2txdramokTJ14zwftbR7d23Zlu\nT08PhYWFFBYW0tLSgpOTEzKZDGNjY+rq6khPT6epqQkfHx9sbW0HjZfaunUrP/zwA7NnzyYmJsZg\nbHg1JNtKSPwySCICCYnL+E+EBIIgiBvWb775hpqaGh544IFByjWJoTEyMuKbb74BYPHixZiYmFwx\nP8/JyYkjR45QUlJCY2Mj7e3tBAUFSa2D9Ojv70cul9PZ2cmaNWt499132bp1K1qtlqamJrEdk1wu\nv0JIMGvWLBQKBfv27cPS0hJ3d3cUCoXBVAJISPzWEASB9evXU1BQgL+/vzgGpru7GxMTE2QyGenp\n6dTW1rJ8+XKUSiVvvPHGoLnRISEh9PX18fnnn9PX18fy5cvFzZXu8FoSEEjcKPR9S1fl6uLigqur\nK+3t7Rw8eJBTp04NKSTIzs4mPT2dAwcO8Pnnn1NaWsqCBQsMeo6m7uDP3d2dNWvWiAf4utbOAwMD\n2NjYEBoaipmZGWVlZZSVlWFlZYVGo8HCwoK2tjaysrJIT08nOTmZ9957j5MnT/LEE0+ICRxDRL8q\nS6FQYGtrS1BQEFZWVldNmv6UkCAiIoKMjAxmzJhBdHT0r7yim4f/1G8tLS0JDw8nICCA4OBgiouL\nOXz4sFhFr5vhu2TJEsAw58jDYPs+/vjjV3TP0Nmkp6dH3OfqOhJc7rv6QgK48v7AEO0L13ef5Orq\nysmTJykqKiIjI4Po6GhxXIHutbm5uWzZsoWwsDDmzp2Lqampwdr058bcgYEBZDIZzs7OREVFERUV\nRXBwMDk5OZw8eZKOjg7q6uqIiYnBw8NDfJ2+kMDX19fguj9cy3e9vb3RaDTiaIMTJ05wyy23AD8K\nCerr6zl27Bhnz57FwsKChQsXct999zF79mzAcOOuDkEQsLKyEgVvqampHD58GCcnJ3x9fYf74/1P\nolaraWlpobi4mG+++UYUEuh87dy5c5SWluLj40N4eDhbtmzhq6++YtGiRSxZsgRTU1OcnJz47rvv\naG1tpbm5mcLCQhYvXmzw545arZZ77rkHd3d3nn76ae6//376+/vJzc2lqKgIhUKBl5fXNe2k/31X\nKBRERkYyfvx4KisrSU9PZ9asWQYpkDt06BD29vYoFAp6enowMTGhs7OTP/7xj7zzzjskJSWxd+9e\nysrKmDx5MiqVChcXF6qqqtBqtVRWVtLR0YGDgwMXLlzgww8/5IMPPsDe3p5nnnnGoIvvJNtKSPyy\nSCICCYkh0LViNTMz+0khgX5lxYEDB9iwYQOjR4+W5uNcB4IgYGxszL59+ygtLcXBwYGgoCBkMpm4\nce3r6xMv9ikpKZiamlJSUoK1tTUjR45ELpcP9zJuCoyNjenq6mL58uVotVocHR1RKpU0NjaSmZlJ\nW1sbUVFRQwoJkpOTqaioYP369Zw8eZIpU6ZIbZkkJP6HMTIy4ssvv2TXrl309vaKo0nKysoICgrC\nxMSEoqIicnNzaW9vp6SkhLfeeksUEAQHB4vv89FHH9HT08Ptt99+hYDOkA//JG4cOtGA7tCvra1N\n9D1nZ2dcXV3p6OgYUkjg7e2Nt7c3qampNDY24uLiwvvvv2/QczS1Wi2///3vxZnRuorBgYEB8R5K\nlyxRKpX4+PjQ09NDbm4up06dEluP6hI0paWlNDU1oVareeKJJww6EatLwrq6ujJ9+nRaWlrIzc2l\nubmZwMDAax4uXUtIYGNjw9y5c4mNjQUMU7D13/htY2Mj8fHxODs74+vry6xZs5g0aRLjx49n1apV\nLFiwgMjISPH9DLFCXt++TzzxxCD76gsIduzYwfbt2xk/frwoLh7KdxMTEweNNjA0f9Xn2LFj1NfX\n4+zsfEU3gcvR2WvSpEmUl5dTVFTE7t278ff3RyaTYW1tzYEDB3jrrbc4ceIEjz76KCNHjjRY+/4n\nMffykUZOTk6MHDmSmTNn4uHhgUwmo7KykqamJjEGX/5aQ6GsrIzy8nK8vb1/0nf1RxuUlZXR3NzM\nxIkTgR+FBMePH6e2thaVSsWKFSsYP348MHSXHkNCvxo2JyeHhoYGjh49SnNzM4cPH2bEiBFSR4Kf\niU7EFh8fT2tr6yAhgaenJ3DJZ8PDw8XRJy+//DKmpqa8/PLLYue+7u5u3nnnHRYuXMjf/vY3li9f\njru7+7Ct62aguLiYu+66Cy8vLx5//HGmTJkCwPjx4+nr6yMvL4/CwsLrEhLAYIGWpaUl9fX1HDhw\nALVafdVxwL9V3nrrLf7yl79gZGTEqFGjMDc358KFC9x9993k5OQQEhJCQEAAHR0dFBcXk5mZycyZ\nM3F3d8fPz4+WlhYKCwvZv38/u3bt4pNPPiEtLQ0HBwfeeeedIUdEGAqSbSUkfnkkEYGEBFcefOpv\nbExNTa8pJNC9rrCwkA0bNtDU1MTjjz/O6NGjh2UtNyP6szIFQRBvGo2MjDA2Nsbe3p59+/Zx7tw5\nPD09cXNzw8jIaNBogz179lBWVsbq1aupra2lpKSEmTNnGrxQQ993//Wvf/Hdd99x99138/rrrzN9\n+nTUajWFhYVkZmbS3t5+hZAgLy+PsrIyUfn+wgsvSB00JCR+AxgZGVFRUUFaWhoHDhxg3759WFtb\nM2nSJJRKJf7+/uzevZusrCxyc3OJiYnhz3/+MwEBAeJ7aLVatm3bxuTJk5kxY8agxIKExI2gr68P\nuVxOV1cX69ev58MPP2Tz5s309PSgVCpxdHS8ppDAxMSEgIAAZsyYQWJiopgkM1QqKipYsmQJAwMD\n3HHHHdx5553AjwfY+ugO9czNzfH19aW8vJyCggI6OztJTEzE3t6eyMhI5syZw2233caCBQsYN24c\nYJiJWP22rk8//TQrVqxAoVBw7Ngx8vPzaW1t/cnxW5cnYwsLC0lMTMTMzExM2BqigOC/9dvCwkK6\nurqYPHmyKDJwdXUlKCgIZ2dn8W+iEzMbGjU1Ndx2220MDAwwZ84cVqxYAfzY4UHnb9999x1r1qyh\nra2NhISEQTOJr+a7htzxBS4lWxYtWsTp06fx8vL6SSGBTjAnk8mYOHEix48fp7S0lO+//55vv/2W\nzz//nI8//pjGxkbWrl3LbbfdBhhmXPhvY66+vQYGBrCwsCA4OJgZM2Zw9OhRioqKmDt3rti9y9A4\ncuQICxYs4MiRI7i5uV2XkMDb2xs/Pz9SUlIoKCjAwsKCsLAwBEHAwsKCcePGcfLkSbKysigqKsLH\nxwdnZ2eDLgLRfd87OztZsWIF27Zt4+jRozg5OdHX18fp06cpLi6WRhv8TIyNjcUzx6GEBLq9gG5U\nZ15eHlu2bGHWrFmiqAAuJR7T0tJYtGgREydOxM7ObljWczNhZ2dHVVUVt99+OzNnzgQudSiSy+VE\nRkbS29v7HwkJdF2OjIyM+Oqrr9BoNERFRf0aS7opuHjxIhUVFeJ9a09PD6NHjyY7O5sPP/yQVatW\nsXHjRmbPns2kSZPEAjCtVsusWbPw8PAgJCSEsLAw2traMDc3x9PTk/nz5/PUU0/h5eU13EscNiTb\nSkjcGCQRgYTBoy8Y2Lt3L9u2bePTTz8lNTWVuLg45HL5kKMNrK2t8fLywszMjKKiIjZs2EB+fj5P\nPvkkCxcuBAxzg385+vb99ttv+fTTT/n6668pKSkhIiICmUyGUqnk/PnzpKSkUF9fj5WVFb6+vuLr\n8vPzeffdd/H39+e+++7jzJkzpKenExAQQFBQ0HAub1jRHdr39PTQ1dXFRx99hJGREa+99hpyuRxL\nS0t8fHzw8vIiNzd3SCHBzJkzsbW1JT4+nsceewy1Wj3cy5KQkPgv0J/hGhwcTHJyMo2NjXh4eLB6\n9WoCAgIQBAFLS0tsbW0pKCigq6uL8PBw8XAaLgkI3njjDZqamnjooYfw8/Mz+OuZxI1FNxqqs7OT\n3/3udyQnJ3P27FlaW1vJzMykqakJBwcH3N3drykkALC1tcXDwwMLC4thXtXwcvToURoaGjhz5gw9\nPT04Ozvj5eWFsbHxkPeouoSBpaUlAQEB7Nixg7a2NmbMmIFSqcTY2BhbW1tUKtWgsSaGlog9cuQI\nK1aswNnZmTVr1nDLLbdgZGSEt7c3SqWSqqoq8vLyfpaQQKvVUlZWxujRowe1MjbEuPtL+e3MmTNR\nKpVX/T2GaFuApqYm2tvbxXnPDg4OaDQacUSEsbExu3btEjsTrV27ljFjxlzxPj/lu4ZIdnY2JSUl\nHD16lJaWFlxdXX9SSKB7TKFQMH36dMzMzFAoFJw7dw5TU1MmTZrEgw8+KI6NMUTR1i8Zc+HH774u\n6djR0cF3332HpaWl2KXE0Dh27Bh1dXVUVFRQW1uLk5PTdXcksLa2RqvV0tXVxdSpUzE1NaW/vx9L\nS0vGjx9PQ0MD2dnZHD16VCwYMTQf1qErlPnTn/5EZmYmK1eu5JVXXmHZsmWEhYVhaWlJWloahYWF\nuLu7S0KCn8H1CAl0BTgNDQ189dVXCILA2LFjUalUbN26lQ8//FDcMxt6sRIgdoWdNm0agYGBwI8d\noXS2/k+FBLqz3pdeeomqqipiYmIYN26cwdybyeVyfHx8cHBwIC8vj7y8PABKSkpobm5m8+bNyGQy\nent7cXBw4NZbb+XgwYMcOXIErVbL7NmzcXBwwNfXl7lz57Jw4ULmzZvH+PHjDXIshD6SbSUkbgyS\niEDCoNEpgQE2btzICy+8QFFREcePH6ehoYHo6GhcXFwGjTY4d+4cubm5lJeX4+zszPnz53nzzTfJ\nyspizZo1rFy5UnxvQ90c6aOzwYYNG3jppZcoKyujurqawsJCcnJyGD9+PK6urri6utLc3IxWq0Wr\n1XLkyBHa2tpIS0vj9ddfp7a2lhUrVjBhwgT6+/tJSkoiISFBbLttiOgUvPPnz+f777+ns7OTKVOm\nEBUVxcWLF5HL5cjlcjw9PfH09LyqkGDMmDGMHj1amukkIfEbQP+wb9++fezduxelUsnZs2exsrLC\nz89PrLJycnLC1taWsrIyCgoKSEtLo6SkhD179vD3v/+dkydP8tRTTzF//vxhXpWEIaAbJfXXv/6V\nrKws7rjjDtavX49Go6Gjo4O0tDTOnj2Lo6MjHh4eVwgJmpqasLa2lsRwenh4eODi4sKZM2fIycnh\n+PHjP5kY0I2SUqlUZGdnU1ZWxqxZs3B0dLxqAszQ6OnpoaOjg7vuuktsA9/X14eZmRl+fn6YmZn9\nbCFBREQEYWFhzJgx49daxk3LL+W3M2fOFKsOJX7E3t4eHx8furu7yc3NpaCgQJwrb2xszLfffsua\nNWsIDAzkscceIy4uDhhaHC/57mA0Gg2Ojo4cO3aM3Nxc2trarltIoOsEMXbsWKZOncqsWbNYunQp\nt9xyC/7+/oDhni/80jFXh86egiDw2WefERwcLPq7oeHh4YGbmxunT58mNzeXEydOXJeQwMjICFtb\nWzGBOGXKFJydncUuG7qOBKdPnyYjI4O6ujpmzZoldpv8raPfkVNHWVkZb7/9NuPGjePZZ5/F2toa\nuVyOu7s7MTExmJmZsWfPHoqKiqSOBNeJzs7GxsZXHW0wduxYcbSBk5MTZWVl5OTkkJSURFJSEl9/\n/TXm5ua88847Bt3FTB+d7+qPhdH9TF+08Z8KCT788EM+/PBDrKysWLdunUGcR8AJsMIAACAASURB\nVFZXV4sdLhQKBe7u7tjb25Ofn09OTg719fUEBAQwb948uru7USgUoihr6tSpHDhwQEx2z5kzB7lc\nTm9vr9jhxZALGSXbSkjcWCQRgYTBcLUDJ4B33nmHzZs3M2HCBP76179y//33Ex0dzZgxYzAxMRFv\nlExNTYmMjBSFBEVFRaSnp1NWVsaaNWu4++67AcPd4F+Nbdu2sWHDBsaOHcvq1auZOXMmR44cEWc/\nRkRE4Ofnh7+/PyqViiNHjpCfn09KSgparZaBgQEef/xx7rrrLuDS36uyspL777/f4Fvvnzp1itzc\nXEpLS6mvr8fU1JTp06djamoq+rxMJrtCSHDhwgUiIyMNeh6hhMRvFd21zcLCAqVSyZQpUzhx4gSH\nDh2iq6sLjUaDlZUV5ubmqNVqxowZQ0VFBUePHqW4uJi6ujp8fX157LHHWLx4MWCY884lbiy6a5Tu\nsE93MPXCCy8QHh7Os88+i0qlIjg4GA8PD5qbmzl06BBNTU04OTkNEhJ0dnayf/9+Ojo6SExMNJjD\n6Wuhs6+HhwdOTk6cPXv2uhMDxsbGyGQyMjIyOHr0KEuWLJGSsf/HwMAA1tbWREVFieNfdKJkQRAw\nMTERk1qVlZXXPdrA3t4ejUYjvp+hxlvJb28sOrupVCo8PT3p7e0V97Te3t5UVVXx6KOPotFoWLNm\nDbGxsYNeNxSS715Ct/aAgACsrKyorq6+biGBrrIToL29HTMzMywtLVEoFBgbG4vPN0Tb3qiYCz8m\nyJ599llqamoIDQ0Vfd6QbK3zSXd3958ddwFsbGwoKyujrKyMOXPm4ObmBlyyoU5IEBYWRktLC48+\n+igjRoz4tZf4q7N582ZUKhUODg5XCAkyMzNJSkpi7ty5REdHD3rc2NiY8PBwenp6SE1NpaysDGdn\nZ4Pv8qLPv/71L06fPk1TUxN2dnaDzmsBsVOnTCYjPj6elpaWQUICnUDA2dmZzs5ODh8+jJmZGWPG\njGHTpk2SaEOPy7/z+mIC3Wja/0ZI4OnpSVBQEI8++iju7u43fD3DTXl5ORs2bEClUol+aGZmRlBQ\nEJaWlhQVFdHU1MTAwAC33347ZmZm4vXu8mR3eXk5OTk5zJw5E4VCIf4OQ7p26SPZVkLixiOJCCQM\nhgsXLgxKrOrIycnh5ZdfxtfXl3Xr1hEeHo5KpcLLy4v6+nry8vL49NNPuXjxIqampjg6OhIZGUlL\nSwu5ubm0trby5JNPsmrVKsCwBQS6G8jLN0rbtm2jo6ODl19+mbi4OPz9/Zk2bRqFhYUUFRVRVFRE\nZGQkPj4+jB07lpkzZ+Ln50doaCiLFy9m6dKl4qyyjz/+mI8++oiwsDCWLFmCmZnZcC33psDa2pqQ\nkBDOnTvHyZMn6ejowNnZGbVaLR6uXC4k0Ilfenp6iImJGe4lSEhI/ALovuv61zj9CkFXV1dKS0vJ\nyMgYJCRQKBR4eHgwe/ZsEhMTiYmJYdWqVcyfP9+g551L3Djq6+vFbhi6A6gLFy6wZMkSGhoaqKmp\nYc2aNXh4eIiHgPodi4YSEjg6OiIIAqtXr8bZ2XmYV3hzoB8Pfk5CVv//v/zyS86cOcO9994rtXX9\nP3S20a9K0a/U+m+TWvq/wxCR/PbGou9b9vb2eHh4iEKC1NRUvvnmG4KDg3nyySfFPcLPqbwydN/V\nCQl091jXIyTQv8fasWMHH3zwgej7uvc1ZG5kzB0YGOD7779ny5YtKJVKXnzxRWxtbQ3O5v9N3NW9\n/vvvv6eqqop77rln0Bx53ffC0tKShIQEgxB2ff7557z88sskJSUxZcoUVCrVoPOxU6dOsWvXLvz9\n/Zk4cSJw5ffc0dGR9PR0Tp48ybFjx7C1tRU7khgy7777LuvXryc5OZkdO3aQnJzMrl27OHbsGG1t\nbXR1deHk5DSo42x8fDwXLlygsLCQb775htGjR+Pt7Y2LiwszZ84kKiqKlStXMnPmTGkPocfl+/+O\njg5MTU2Bwde7awkJzM3N8fDwGPJebGBgAKVSSUBAgLgv/K1TVVXF3//+d2prawkKCsLJyYkXX3wR\nNzc3IiIisLGx4dixY5w8eZK2tjbCw8NRKBRDJrvT0tIoLS2lpKSEuXPnDvfShh3JthISNx5JRCBh\nEGRkZLB8+XI0Go3YwkpHTk4OO3fu5MEHH2TixIkMDAwAlxLfr7zyCtu3b6egoID09HTa2toICQnB\nzs6O8ePHc+LECZYuXcqyZcsAw0201NXVYWVlJSatdTbYsmULWq2WH374gVmzZjFnzhwAent7sbKy\nIj4+XhQSFBcXExERgZ2dHZaWlgQHBzN+/Hj8/f25ePEiAG+99RZbt25FJpPx+uuv4+LiMmxrHg6u\ndoinUqlQq9WcO3eOoqIiGhoacHV1xc3NbUghgZOTE5WVlfzpT39CpVINw0okJCR+SfQPplpaWmhs\nbKStrY329nbxIM/Hx+cKIYH+pl0mkzFixAj8/PxwcHAw6HnnEjeOZ599lqeeeoqIiAjc3NzE61Ny\ncjIff/wx5eXlnD17ljFjxhASEiLO6DYyMsLFxeUKIcGIESNwd3fHxcWF2NhYgzic/jnoH/JdT2JA\n9xqAlJQU3nrrLaZMmcKcOXMwMjIyuMTK9TBUl7NfQkhgyEh+e+PRxV59IUFRUREAs2fPZsmSJQBi\ni32J6+PnCgn077GSkpJ44oknqKysZMqUKXh5eQ3zam5OfsmYq/sOTJw4kfvuu8+gW5j/nLirOy/T\nxde0tDQ2btxIbGws8+fPx8TEZMjqZUPZT6hUKo4ePUplZSXfffcdkydPxt7eXuy81dXVxQ8//MCR\nI0eYNGkSDg4OV5zzqFQq9uzZQ3NzM6dPn6ampoY5c+aISVxDpLOzk4yMDBoaGmhra8PY2Jju7m7q\n6uooKipiz549fPHFF+zZs4cffviBs2fPUl1djYWFBTNmzODcuXOUlpayc+dORo0aJY4/GzFihCis\nl7hEf3+/eO3/+uuveeedd3jppZdITU2lpqaG6OjoQf46lJCgsLCQrKwsZDKZ2OFXH0O8N+vs7KSx\nsZGsrCyOHDnCG2+8QWFhIWPHjiUwMBB3d3dsbGw4fPgwRUVF9Pf3M2rUqCGT3YmJieTn57N27VqD\n784Lkm0lJH4NJBGBxG+egYEB3n77bfLz8zExMWHSpEmDDpTS0tLIyMggMjISZ2dnDhw4wJtvvsn7\n779Pc3MzU6dOZeTIkVy4cIGSkhISEhJwdnbG1NSUxMRExowZI/4eQ9kY6VNQUMDcuXOpr68nMTFR\ntGtlZSUPPfQQ1dXVAERERBAeHk5vby8mJib09/dfISQoKSkhMjJS3Oj39vby3XffsXz5ct577z3y\n8vLw8vLinXfeMbiWbvpdHs6fP091dTVNTU1YWVlhbGyMg4MDarWa1tZW0tLSOH78OC4uLkMKCdRq\nNQsXLjSIVoISEr919Csttm7dyquvvsqmTZvYtm0bn3/+OR0dHZibm+Pi4nKFkKC7u5tRo0Zx+PBh\nDh48iFwuvyIJa4gbfIkbw7lz5/j00085efIkmZmZjBw5EldXVwD8/f2xtbUlLS2N/v5+RowYwbhx\n4zA1NR10sK0vJNBqtVRWVqJWq3F1dRWrFA2dq7UehUszjx0dHa+aGNA9Pz8/n1dffZX29nYeeeQR\nfH19pVjA1cWcQ9n8akmt9vZ2/P39JSHBZUh+e2O5ln3t7e1xdXWlv7+fw4cPU19fj52dHYGBgYOE\nXBJDcy3bajQaLCwsqKmpGVJIoHvurl27ePzxxwF4+umnReG9ofNrxFxzc3Pc3NwMphJWn58Td2tr\na7GzsxPjqu65+fn5vP766zQ1NfHII48QFBRk8PHCysqKqKgojh07xtGjRwcJCeBSl4H6+nry8/Mp\nLy8nPDwcOzs7BgYGBp0pbt26lcmTJ7NgwQJWrFhhcAU0l2NiYoJGo0Emk1FTU0NXVxe33XYbixcv\nJioqCmtray5evEhrayvV1dVkZmayf/9+Pv/8c77//nuUSiUNDQ309vby/fffExQUhFqtNnh/vRx9\ncdtrr73G+vXraWhowNramtraWk6fPs2MGTNQKpWDXne5kKCrq0tsCR8eHj4cS7npUKlUjB07llOn\nTqHVaunu7mbatGn84Q9/AC613/f09MTOzo6CggLy8vLo6+u7Itnd19eHlZUVCxYskLpn/B+SbSUk\nbjySiEDiN4+RkRETJkzA2dmZFStWoFQqB7XSFQSBjIwM0tPTSUpK4ssvv6Surg6NRsO6det44IEH\niI+P59y5c6SlpeHp6Ul4ePig2YWGWqkpCAJ5eXns2bMHDw8PEhMTRZuYm5szcuRItFotp0+fpqOj\ng3nz5mFqaioqWy8XEhQWFpKXlyd2JJDJZHR3d3P8+HEiIyNZuHAhjzzyiMFVCfT19SGXy+nq6mLd\nunVs2rSJf/7zn3z22WdotVrq6uoYM2YMI0aMQK1W09bWNqSQQHcIKJPJDFrFLiHxW0H/2vPqq6/y\n97//nf7+fhITE1Gr1TQ0NJCRkcGxY8cwMTEhMDAQHx8f3N3dRSFBXl4en3zyCXv27GHq1KkGF18l\nfj2USiWjRo2iqamJoqIi0tLSGDVqlCgkGDVqFFZWVhw8eJDS0lJsbGwYO3YsMLhCTnddq6mpoaqq\ninvvvVfsnGHo6HclaW5u5vjx45w6dYq+vj4UCgUymQwPDw/s7e05d+6cmJDVCRGNjIwoLCxkw4YN\nFBUVsXbtWjGZ9XNamv8WuZZtLSwsxMd0fjpUUqumpka8L46Li5Puxf4PyW9vLNeyr5mZGTKZDAcH\nB1xdXcXRBoWFhahUKgIDAwfFX4nBXI/vBgYGolQqBwkJRowYIYq5d+7cyZo1awD485//PKjDoSHb\nXIq5N5brjbsODg60traSk5NDQUEBRkZG+Pr60tvby969e9m4cSMlJSWsXbuW+fPnA1LcBbC0tGTC\nhAlXCAl0HeLCw8MpKysjJyeH8vJyRo8ejb29vfg32bZtG99++y2TJ09mxYoVogDB0DE3Nxev+2Vl\nZZw+fRqNRsPSpUuZPn068+bNY9GiRYSEhBAWFgZcSm7X1tZy9OhR+vr6gEtx49ChQ9x1113I5XKD\n91d9dLb497//zYYNG4iPj+fFF19k9erVzJ49m7lz5161GMnY2FiMyVFRUcTGxnLrrbf+mh//psbI\nyAgzMzPefPNNzp8/jyAImJmZ4evrK4qEFAoFnp6eqFSqaya7wXC6u1wPkm0lJG48kohAwiAwNTVl\n1KhRmJmZ8de//pUnn3ySCRMm4Orqir29PXK5nHPnztHQ0ICXlxcPP/wwy5YtY9y4cQiCgFwup6io\niNzcXFauXImnp+dVVduGhJGREZ6ensTGxrJ48WKUSiWpqal4enpiamqKq6srarWa4uJiKisrOX36\nNLGxsWIngsuFBLm5uZSVlREeHi7OfBsxYgTz589nypQpjB492uBmm+puZDo7O7nrrrs4dOgQPj4+\nzJgxAwsLC06ePMnBgwfJzMxk+vTpuLi44O/vT0tLiygk0B9tIPEj+ocnEhL/i+iuPTt27OCVV14h\nLi6OV155hTvuuINp06YxZcoUMjMzOXbsGE5OTowePRozMzPUajWenp7U1NRQXV3NxYsXefLJJ5k9\ne/Ywr0jit45KpUKj0XDq1ClKS0uHFBKoVCoOHDhARkYGFhYW4iHg5UICPz8/7r77bvG1ho7+wccH\nH3zAiy++yFtvvcVnn33G9u3bqaurw8TEBG9vbzw9PXFwcBATsnV1dXh6etLR0cH69evJzs5mzZo1\nrFixQnxvQ75e/pRtT5w4gampKV5eXoNmRl+e1DIxMaGoqIj58+czfvz4YV7VzYHktzeWn2NfBwcH\n3N3d6evrE4UEdnZ2YmWxoSe1L+d6bCuXy/H29iYwMHBQR4L29naCgoLIzMzkscceAy4JCH73u9+J\n723IvivF3BvLz427rq6uGBsbk52dTVpaGl9//TXvvfceu3btYmBggLVr17J06VLxvQ3Zd/W5lpDA\nxMSE4OBgamtrycnJISkpiXPnzlFeXs727dv5+OOPsba25qmnnjLILhnXwtzcHB8fH0xNTcnKyqKg\noAC5XI5arcbGxgYLCwsCAgIICwtjzpw5LFq0iKlTpzJu3DhCQ0MxNjbGzc2N1157DRcXF+m6BuKo\nDR2dnZ1s2rSJzs5OXn75ZUJCQjAyMsLOzm5QV5czZ84wMDAgJmB1cVh3zqYTG0j3Dz/S2NhIXl4e\n8fHxuLi4kJGRQVVVFW5ubmIxx1DJbkEQCAkJkcZuXAPJthISNxZJRCBhUPT29vL1119TXV1NWloa\nISEheHl5ERISwi233MLs2bNZvnw5YWFh4qx4IyMjcnNz2bRpE9bW1ixevNjglcBtbW3iBVYul+Pq\n6opCoWDz5s2sW7eOjo4OYmJiMDU1xcXFBS8vL/Lz88nJyeH8+fNER0cPKSSYOHEio0ePZsaMGeLv\n0leyG6Kq3cjIiL6+PtatW0daWhr33Xcff/vb30hISGDu3LmEhoayc+dOTp8+jUqlYsyYMWKrwdbW\nVjIzMykqKsLPz0+qMNZDv4K7uLgYR0dHg/Qvid8G7733HrW1tTz33HOEhoaKP9+2bRs//PAD0dHR\nPPLII8hkMhobG1GpVHh7e4vxds6cOWLclTb5EjcaXXXr1YQEoaGhopAgPT39qkICZ2dnqQOBHrrv\n7Wuvvcbrr7+OmZkZCxcuFGe+Hjx4kLS0NKytrQkJCcHT03PQzOPDhw+zd+9eiouLWbNmDXfffTcg\nJQTg+mx76NAhbG1tCQ4Ovmab7cTERCZPngwY5n3t5Uh+e2O5Xvva2NgQEhKCg4MDHh4eYkeCsrIy\nrKysrvBriZ/vu4GBgVhZWVFdXU1ubi4lJSX861//AiQBweVIMffG8nN919XVlXHjxqHRaDh79ixy\nuRxLS0sWLVrEfffdJ1YaS747GEEQriokUKlU2NnZkZCQQFtbG8eOHSM7OxutVktNTQ0BAQFs3rwZ\nb2/v4V7GTYcgCCiVSnx8fDAxMaGgoICioiLMzc3x9/cXO5/qquJNTExwcHAgICCA8PBwpk2bxsyZ\nMw1+PERGRgb/+Mc/SEhIuOJ729DQwEsvvURsbCzLli0TO6Ne/pxNmzaxc+dOZs2aNSi2Xv5+Utz9\nEWtra+Lj45k8eTJBQUE0NzeLxV9XS3aXlJSwf/9+zM3NGTdunGTPqyDZVkLiBiNISBgYFy5cEJ5+\n+mlBo9EI0dHRQnZ29hXPKSwsFCoqKoRz584JqampwqJFiwSNRiN89tlnw/CJby6am5uF1atXC+np\n6Vc89tlnnwnjx48XAgMDhZdeekno7+8XBEEQOjs7hb179woTJ04UNBqNsG7dOqG7u1sQBEHo6+sb\n9F8dutdKCEJ9fb2QkJAgLF68WOjt7RV/3t/fLyxZskQIDAwUNm7cKPT39wsFBQXCxYsXBUEQhKqq\nKuH3v/+9MH78eKGurm64Pv5Nzeuvvy4EBQUJp06dGu6PIiHxH9HS0iIkJCQICxcuHPTzN954Q9Bo\nNMKqVauEiooK4eTJk8KsWbOEN99886rvJcVdiV+TyspK4Q9/+IOg0WiEuLg4ITc3d9Djn3zyiaDR\naASNRiO8//77w/Qp/7f45ptvBI1GI6xcuVIoLy8Xf97W1ibcdtttwsiRI4U//vGPwvnz58XH0tPT\nhfvuu0+09QcffCA+JsWEH7le27a1tQ35+oGBgUH/lmz7I5Lf3liu174tLS3iY0eOHBGeeeYZQaPR\nCKGhoUJlZeVwfPSbnuu1bXNz86DXzJs3T/Tdjz76SHxM8t0fkWLujeU/iQuCIAjt7e1Cd3e30NXV\nNejnl9vb0Liaf+nOuE6dOiWsWrVK0Gg0woQJE4SqqqpBzysrKxNSUlKE7du3C/n5+YNihqFzre/u\nuXPnhLfffluIjIwUYmJihPfff19ob28XBGFonzR0P9XR2toqRERECBqNRti2bZv4c52tq6urhcDA\nQGH58uVXfY/29nZhxowZgkajEYqKim70R/6fRPf9HxgYEPr6+oSzZ8+K/qmjpKREeOSRRwSNRiMs\nXrxYyMjIGPR4d3e38K9//Uu49dZbr4gbhoxkWwmJXx+pE4HEb5arVVOamJgwYcIEmpqayM/P5+DB\ng4wePVqsgKutreWuu+7ik08+4YsvvuDzzz/nzJkzrF27ljvvvBMwbBX7+fPn2bhxI7m5uQQGBuLq\n6sq2bdtQKpXExsbi6upKVlYWmZmZdHZ2Eh0dLXYkUKvV5Ofnk5WVNWRHAn0M1b5DkZ+fz7Zt25g7\ndy4xMTHAJf9eunQphYWF3HvvvTzwwAPs3r2bp556CrVaja+vL3Z2dowaNYply5ZJ7Z6vQlJSEqWl\npSiVSsLDw6XqCYn/OTo7O/n3v/9NV1eXOOZk8+bNbN68mZiYGP70pz8RFBREdnY2H3/8Md3d3cyd\nO3fI8SZS3JX4pbh48SJyufya90uXdyTIysoiLCwMZ2dn4MqOBDKZTGpHDPT09CCTyYa8z926dSvV\n1dW88MILg7qS/OMf/2Dnzp3ExMTwl7/8hYGBAWpqanB2dsbDwwNbW1saGxtZtmyZQbeC/yVs29/f\nz/Hjx3Fychr0+svfz9DireS3N5Zf2r4ODg64ubnR2trKvHnzxEpuQ+SXsK0gCFRXV+Ps7IxGo0Gh\nUHDs2DEeeOABli1bBhim70ox98byS8UFffuamJggl8uRy+WD3tcQ7aujr68PmUxGT08PBw4coKio\niMrKSgICAsTv9LVGGwA4OjqiVqsJCQnBxcUFc3Pz4VzSTcO1bAs/jjYwMTEhPz+foqIiFAoF/v7+\nKBSKK/Yhhuyn+igUCnEkxIoVKzAzMwN+7OQik8nYuXMnJ0+eJDAw8Ipxvn19fZiZmXH+/Hmys7OZ\nPHmy2MlE4hK67g3d3d1s3ryZLVu28M9//pMdO3Zw+vRpADw8PHBycsLd3Z329naxat7Lyws3Nzf2\n7dtHf38/U6ZMYe7cueJ4CENHsq2ExPAgiQgkfpPoJ6WPHj1KSUkJFRUVGBkZoVKpMDU1JTo6mjNn\nzpCfn8+BAwdEIYFCoeDixYsolUra2tqYOHEiDz30EAsWLAAMc4OvT29vL2VlZRQUFFBWVoZWq+X9\n999HpVIRFhaGt7c37u7uZGdn/6SQ4OzZs+JjElenpaWFL774Al9fXxISEgC44447RAHBfffdh1Kp\n5NtvvyU9PZ3Q0FCx9bOtrS2WlpbD+fFvSnQbypCQEHbv3k1zczPz589HJpMZtEhI4ublan5pbm5O\nSUkJ5eXlxMbGsmPHDlFA8NhjjxESEgJcOvT74osvsLe3Z8GCBUOKCCQkfgm2bNlCXl4egYGBmJmZ\nXZeQoLGxkeLiYioqKgaNlAoNDcXBwYHU1FQKCgq44447xIMuQyQjI4MXX3yRsLAwbGxsBh3gX7hw\ngZdeegknJydWr14tfsf1RUVr1qzB1taWFStW0N3dTXR0NMbGxnh6ehIVFUVcXBxgmPe6v6Rtu7q6\niI2NBaQDa5D89kbzS9s3JiYGIyMj7O3tiYyMZMKECYBhjjv6JW178eJFoqKiMDY2JigoiOjoaHFf\nZ4i+K8XcG8uvYV/J1pfOHeVyOZ2dnTzwwANs2bKF5ORk9uzZQ01NDX5+ftjZ2WFkZHRNIUFvb6+0\nN7uM67Gtra3toNEG1yMkkLh0zdGdLSqVSp599lm++eYbpk2bhpGRkXgmfujQIXp7ewkJCcHGxgZg\n0GiD/fv3U1hYyJ133mnw4yH0GRgYQCaT0dnZybJly/juu+/o7e3F1taWM2fOkJGRQXJyMtbW1oSG\nhuLk5ISXlxft7e0cOnSI0tJS8vLy+OCDDygvLxcLRSQk20pIDCeSiEDiN4fuogLw7rvv8sILL/Dv\nf/+bH374gcrKShITE1EoFJiYmBAdHS12JDhw4AAhISGo1WoiIiKYM2cOixYtYubMmfj6+orvbWgb\n/MtRKBRERERw4cIFDh48SFVVFWFhYTz++ONYW1sjl8tFIUFOTg5arZYLFy6IYgFXV1d8fHzIzMwk\nLy+PyMhIcTaRoaO/wdH//wsXLvDll1/S1NSEn58fTzzxBIWFhdxzzz3cf//9okigoaGBlJQUwsPD\npWrNn0BfZV1VVUVqaip2dnaMHj1a2mRK3HTo5jrCJSFXT08PJiYm4uNNTU2kpKSwd+9e0tPTmTRp\nEg899BAjR44Un5OWlkZSUhKzZ88WEy4SEr80ycnJrFu3jpqaGrE66HqEBH5+ftTW1pKXl4dMJiMi\nIkKM0SNHjsTFxYWHH37YoLvqdHR08PTTT5OVlUVdXd0ViQFjY2O++OILWltbmTNnDpaWlkN2JSkq\nKuKDDz6gt7eXefPmibHEysoKuHT/YWj3ujfCtnPnzh0Upw0VyW9vLDfad3WiLUO0743yXblcLhY2\ngGRbKeb+8kj2/fUwNjbm4sWL3HPPPWRnZzNu3DgmT57M8ePHKSkpoa6ujoCAAOzt7YcUEuzevZu4\nuDgcHR2Heyk3HddjW41Gg0qlEoUEpqamopDAzMxM3IdIQEVFBZWVlbj/f/bOPDDK6mz7v5kkM5nJ\nQvaEJDPZ9wQC2chiWBICVMQNBdQK1qqtvp9YV2xrba21gqjIUvWlohXBBUsFkTUs2feVELKQEAgh\nISEBkkD25PsD52kCwfq2jkmZ8/uLLPNkzsWZ5znn3Nd9366u0tmCTCajrq6OFStWcOLECZqbmyVz\nm1KppKamhrS0NNrb29FoNNjZ2UnPq4KCAjZs2IClpSX33nuvVFVDcPWssbe3l6eeeorc3Fwefvhh\n3nzzTRYvXsw999yDXC4nJyeH3NxcIiIicHZ2xt7eHo1GQ29vLxkZGVRXV2Nubs6aNWuuq7RjyAht\nBYKxQ5gIBDcVwzfhb731FuvXr8fe3p5FixYREBDAtGnTCAwMlDZAOiOBrFPZ+QAAIABJREFUriJB\nWloakyZNwtXVVfo5/NNlLYKLSJuf1NRUysrKAKTKDroSxEZGRiOMBNnZ2ZKRwMTEBCcnJ9zc3IiN\njWXOnDljOZxxg24hPzAwQH9/P52dndKGx8bGRnJOHjx4kLNnz/Loo4/yy1/+coRr8m9/+xtVVVU8\n8sgjaLVa4br+luEBWB06bUxMTLCzs+Mf//gH3d3dzJw5E6VSKXQTjBuGG+M2b97Mxo0b+etf/8q5\nc+dQq9U4OTkREhJCZWUllZWVqFQqHn30UeLj46Vr5Ofns3btWq5cucLPf/5z3Nzcxmo4gpsctVpN\nV1cXZWVllJeXo1Qq8fLy+pdGAmtra8zNzcnKyqKxsZG7774btVot3b8DAwOlgIuhYmJigpeXFydP\nniQrK4u6ujqmTp0qBQaMjIwoKiqiuLgYDw8P9u3bx3vvvXddVRJLS0s+++wzbG1tufvuu6VsIh2G\n+Pz7sbQ1RMS81S9CX/0htNUf4p6rX4S++mf4+cKhQ4f4+OOPWbZsGa+99hqzZs0iNjaWyspKcnNz\nOXPmDH5+ftcZCU6ePMnx48fJyMhg8eLFUlDX0Pl3tL3WSFBaWsqhQ4dwcHAgJCRE6Ars3buXV155\nhcDAQOksoLW1FRcXFyZPnkxGRgb5+fk0NjaSkJCAo6Mjjo6OVFZWkpGRQUVFBefOncPY2Ji0tDTW\nrVvHqVOnePbZZw0+QWG088acnBzef/99pk+fzu9+9zvMzMwwNjbG1NSUdevW0d7ezv33388dd9xB\nc3Mz5ubm2NvbExoaiq+vL1OnTmXFihW4u7uPzaDGCUJbgWD8IEwEgpsK3eLwH//4B2vWrCEmJoZX\nXnmF+fPnEx8fT3BwMMbGxjQ1NdHc3IxSqUStVhMfH09TUxOFhYUkJycTEhKCRqNBJpOJBec1DA4O\n0tzczK5du3B3d8fNzY3S0lIKCwvx8vKSDBijGQm6urqIjo5GoVDg4eEhZckaYnnM4ejab3R1dbFq\n1So+/PBDtm/fTmdnp9SWwNTUlPr6eurq6vD29mbx4sV4enpK1/jkk0/YsmULQUFBLFu2DJVKZdCa\nwj8XnLpF544dOzAyMkKhUKBUKqV55+TkRFNTEwcPHiQmJkZUxhCMK3Sf4zVr1vD222/T0NBAS0sL\nxcXFHD9+HI1Gg0ajYe7cueTn51NXV0dRURHnz5/n1KlTpKSk8Oabb3Lq1ClWrFjB/Pnzx3hEgpuV\noaEhLCwsCAoKoqOjg6KiIioqKr6XkUAul+Ph4UFWVhbHjh0jNjYWjUZjcNmZ34XueeXr6ysdng4P\nDMBVU2d6ejrp6elkZ2dLJYkDAgKk6xw5coQdO3Ywe/ZsZs2aJQyHCG31idBWvwh99YfQVn8IbfWL\n0Ff/yOVyurq6yMzM5Pjx49TX1/POO+9gampKX18fTk5OBAcHU11dTU5OzqhGgoiICM6ePctvf/tb\nnJychLbf8u9qO9xI0NfXR1NTE0888YTIkP+WnJwcDh8+TEpKCtHR0WzevJnXX3+dpKQkgoKCCAwM\nlNrHnT17loSEBLRaLe7u7vT09FBUVER6ejp///vfOXz4MH19fTz//PMsWbIEuHHrxZuZr776Cmtr\naywsLK470967dy9paWk888wz+Pr6AlfPJ++//36Ki4tZtmwZy5cvZ9u2bbz33ntMmTJFas/h7+9P\naGiodL82RIS2AsH4Q5gIBDcl77//PmfOnOGVV14hJCREeujs37+f999/nzfeeIOtW7dy9uxZHBwc\ncHZ2JjY2lsbGRo4ePUpYWJjkwBaMDPLrNj1xcXHExcUxb948GhsbycnJ4ejRo3h7e49qJCgsLCQj\nI4Pz588zc+bMEYEBQ1tsXotuo/Tggw+SnJzMuXPnaGpqIiMjg4sXLxIbG4uLiwsqlYqmpiaOHz9O\neXk5Z8+epbq6mg8//JCPPvoIS0tLNmzYYNDlnmtqavjwww+lfrm6zcz69et57bXXSE5OpqCgAI1G\ng4WFBUqlErha9nH//v00NzczY8YMUfZOMK7Iy8tj5cqVTJkyhd///vfEx8fT19dHdnY2x48fx83N\nDa1Wy+23305LSwv19fWkpaWRkpJCbm4uNjY2PPfccyxevBgwTONWZWWldHAn+GEZru3AwAAWFhYE\nBATQ2dlJcXHx9zIS9PT0YGJiwrFjxygpKWHBggVotdoxGtH4RSaT4eDggL+//3WBAUtLS6kfZGVl\nJcbGxtx9990kJSVJr8/Ly2PdunV0dHTw2GOP4e7uLj4T3yK01R9CW/0i9NUfQlv9IbTVL0Jf/aIL\nWH344Ye0trZiZ2fHokWL6O/vl6qZ2tnZERQU9J1GgqSkJKmap+Aq/4m2OiOBn58f99xzDxMnThzj\n0Ywf/Pz86OzsJC8vjx07dpCbm8u0adOIiopiwoQJaDQagoODOXLkCMXFxZKRQKPRMHnyZBISEiSz\n+KJFi3jwwQele4Yhtv3905/+xFtvvUV9fT1RUVGYmZmNOGPJz88nOzubpKQkvL296e/v54EHHqC4\nuJhHHnmExx57DJVKxapVqygrK+PWW28dUVrfkO+3QluBYHwiTASC/3quLW9z6dIl3nnnHaytrXny\nyScZGhri2LFjbNq0iddff52qqiosLS0BKCkpkQLiJiYmxMbGEhUVxdy5c8dqOOMOXZY8XH1Yp6en\ns3v3bnp6etBqtdjY2BAYGMjFixfJzs4e1Ujg7e2Nra0tBw8eZP78+YSGho7lkMYlH3zwAQcOHODB\nBx/kd7/7HeHh4Rw6dIji4mLa2tqYPn06Pj4+uLi4YGJiQnp6OoWFhaSnp9Pc3MzkyZNZu3btiOoE\nhsjZs2dZsWIFra2tzJgxA5lMRklJCdOmTQPg4sWL5Ofns2vXLk6cOEF3dzcBAQH4+flJJR/nzJmD\nvb39qKWzBIIfg2uD/MXFxRw+fJjXX3+d8PBwvL29CQ4O5sKFC5KRwN3dHa1Wy4wZM7jlllsICwsj\nKiqKpUuX8sADDxAbGytd29DmdVNTE48//jhmZmb4+fkhk8kM0kihD67V1sjIiL6+PiwtLa8zEigU\nilGNBIODg9Kh4LvvvouJiQlPPPGEMHPdgOGBgaqqKikwEBoaiqOjIwEBATQ0NEj9dnUZRcnJybz1\n1lucPn2aFStWsGDBgrEeyrhDaKs/hLb6ReirP4S2+kNoq1+EvvpDLpdjampKWloazc3NWFpactdd\nd6FQKKQzhKGhIezt7UcEu5uamvD09MTe3h6ZTGZwe7Lvw3+qrZ2dHWq1GpVKNdZDGVcoFAqmT5/O\n7t27uXjxIsbGxixdupTo6GiGhoYYGhpCq9WOMBLoWhtYWFjg5OREXFwc06dPJzAwUDJoGOLZQmlp\nKS+99BIA586do7a2lsjISMzMzOjv70cul1NRUUFqaiqmpqaEhobyyCOPjAhym5ubA1crvlRUVBAX\nF4eXl9dYDmtcILQVCMYvwkQg+K9Ht2D529/+hpOTE3Z2dpSVlZGbm8vly5fZuXMnW7ZsISUlBbVa\nzYsvvsgzzzxDeHg4qamp1NTUMH/+fMzMzDAxMZFKmYsAw8he3OvXr+cPf/gDBw4coKioiH379iGT\nyYiIiJCMBLqAVllZmdTaoKKigu7ubqKiovjJT37CzJkzx3hU44Nr59dHH32EsbExq1evxtHREV9f\nX0JCQjhy5AiFhYW0trYSHx+PVqvllltuYfr06URGRhIVFcUvfvEL7r33XoOuQKCjra2Nzz77jLKy\nMi5fvkxGRga/+c1viI+PZ/Hixdx6662oVCp6e3tJS0vj4MGDFBUV0dvbi5+fHzk5OZw7d445c+YY\n3GZIMD4Ybtw6ffo0nZ2d7Nmzh87OTpYvXw5cPRS0srLC39//OiOBRqPBxsYGX19fJk2ahFarxcrK\nCrhaZtAQ53VnZydvv/02Bw8exM/Pj4kTJ7Js2TI0Gg0uLi5j/fb+qxlN25/97Ge4uLjg7+9PQEAA\nly9fpqioiMrKShQKBZ6enpKRYPg6Y+PGjWzfvp2EhAQSEhJE791v0RkuhhsvZDIZtra2IwIDp06d\nIjQ0FBcXF6ZMmSJVL8rJySEzM5OioiImTpxo8FVJhiO01R9CW/0i9NUfQlv9IbTVL0LfH4+hoSH8\n/f3x9vbm0KFDnDt3jtbWVmbNmoVcLh812F1bWytVmkxMTJTWv4KRCG31R3JyMlu3bsXOzo729nYK\nCwsJCgqSWvkODg6OMBIUFRXR1NTErFmzAOjr67tOW0O8LxgZGVFdXU1DQwNyuZyqqirOnDlDZGSk\nFMB2dXUlLS2N0tJSduzYQXV1NY899hg///nPsbCwkK61detW+vv7efTRR0WJfYS2AsF4RpgIBDcF\n27Zt45VXXmHixImEhobS19dHeXk5aWlpVFdXI5fLWbhwIc8++yxJSUlYWlri5ubGvn376O/v5777\n7rsu480QF0PXotPgvffeY+3atUyaNInnn3+emTNn4uXlxcKFC7G1tQXA0tKSoKAgWltbycnJoaCg\ngCtXrvD++++zdetWFixYIAW5DX0T2t/fL2VrNjU1UVVVRWlpKTNnziQsLIzu7m6MjY1xc3MjICBA\nMhK0tbURExODQqHAyckJPz8/Jk2ahIODg3Bag7SRjIuLY/v27RQVFVFcXExiYiKzZ8/G2toahUJB\nREQESUlJTJo0iUuXLlFaWsrevXspKyujr6+P8+fPExoaipOTk0H2dhOMHcMDqu+//z4rV67kk08+\n4fTp0wwMDJCYmIiFhYV0eDKakcDb21sKjF87fw11Lpubm9PV1UVRURF79+7l66+/pqqqCm9vb6ZM\nmWKwuvwQ3EhbHx8fJk2aJFUkuHz5MsXFxZSXl9PX14eHhwfm5uaSqWXLli1s3LgRR0dHXnnlFWlt\nYegMr4ijez7p2kYolUopw7CiooK8vDwpMODs7ExISAh33HEHgYGBzJo1i2XLlrFo0SKio6MBw8wc\nGo7QVn8IbfWL0Fd/CG31h9BWvwh99cdoZ1e6rz09PaVgd2lpKZ2dncTFxY0a7Pb19aWpqYmnnnpq\nRGltQ0Zo++MyODhIQEAADz/8MCYmJuTm5nLkyBGCg4O/00jQ0NAgzBnDUKvVnD9/nvT0dBITE1Eo\nFGRnZ0vBbrVajVwuZ3BwkJKSEpqbm5k+fTqPP/449vb20nU+/vhjvvjiCyIjI7n99ttRKBRjOKrx\ngdBWIBi/CBOB4KZAqVSye/duuru7WbBgAb6+vvj6+jJt2jQCAgJ48cUXSUhIGNFfNzMzk02bNhEV\nFcWcOXMwMjISgYRRKC0t5U9/+hMeHh788Y9/ZNq0afj7+0sVCHT09PRgbW1NaGgoly5dIicnh+zs\nbM6fP8/jjz9OTEyM9LuGrPPAwADGxsZcuXKFZ599lo0bN/LFF19QWVnJwMAASUlJqFQqaWM03EhQ\nUFBAe3s70dHRYgF/A2QyGU5OTpSVlXHq1CkAAgICpCyK3t5ejIyMpGzYW265hcTERNra2rhw4QJN\nTU10dHTg5uZGWFiYQc9VwY+Pbr6tXbuWdevW0d/fz4QJEzh79izt7e1YWFgQGRk54vDkWiNBSUkJ\nnp6e0kGAobJt2zbUajXW1tYAxMbG0tfXR2FhIR0dHSQlJfHcc8+JbPd/g++rrYmJCYODg1hYWBAY\nGEhPTw/l5eXk5eVRXFyMsbExx48f57333mPr1q2oVCref/99PDw8xniE44PhpqJPP/2UtWvXsnr1\nanbt2sWBAwdwdnbG2toarVZ7XWBgypQp2NraolAo8Pb2xs/PD2dnZykLw1CrkugQ2uoPoa1+Efrq\nD6Gt/hDa6hehr/4YnvxRXl5OamoqJ06c4PTp03h6eiKTyfD09MTLy4tDhw5RUFBww2C3g4MDc+bM\nEUHubxHa6pdrDRpDQ0PY2toSFBSEvb09ERERXLhwgcLCwhFGgmtbG+zfv5+jR48SFhYmVe01ZHRJ\nGqGhoWRmZlJfX8+LL77IqVOnyMzM5MyZM0RERGBpacnEiRNpb2/n1KlTtLa20tnZiVKppLm5mQ8+\n+IBNmzZhY2PDm2++KeYuQluBYLwjTASCmwK5XE5RUREZGRk4OTkRGBiIq6sr/v7+REZGYmVlRVdX\nl1RtID8/n3Xr1tHY2MiTTz6Jv7+/QQdbvou8vDx27NjB8uXLiY+PlxbrwzeTlZWVfPHFF1y5coXg\n4GCmTZuGmZkZXl5ePPTQQ9x7772AqEAAV+dqd3c3y5YtIysrC0tLSzo6OhgcHGRgYABbW1u8vLww\nMTEZ1UiQn59PU1MT8fHxwkhwDbq5VV1dzbZt23BycuL8+fNUVVXR2trKjBkzMDIyGpGpoVKppE1n\nVFQUdnZ25OXlUVlZyYwZM0YYZQQCfTH8EOTkyZO89tprhIWF8frrr/PTn/4UZ2dn0tLSyM3Nxdzc\nnNDQ0OuMBAEBATQ3N5Ofn09sbCx+fn5jPawxY+vWrfz+97+ntraWsLAw6SB07dq1NDY2AlBbW4uP\njw8+Pj5j+Vb/6/i/aqsrq2tubk5QUBC2trY0NjZSWlpKcnIyycnJ0oHAmjVr8PT0HMvhjSt0z7Q3\n33yTt956i7a2NpydnRkcHKSiooL9+/fT0dGBVqvFz88Pf39/KisrpZ7HYWFhWFhYfGeWl6EitNUf\nQlv9IvTVH0Jb/SG01S9CX/0wPPnj+eef591332XPnj0kJyezZ88eSktLUavVODk5jSi/f6NgNyDO\nb75FaKtfhrdHPHDgADt37mTTpk3U1NSg0WiwtLTExMSEmJgY2traRhgJtFotMpmMrq4uPDw88Pf3\nJzw8nHnz5o3xqMYHur0tXE2k+/rrr/H09OTuu+/m2LFj5ObmcubMGcLDw3FwcMDX1xelUkltbS1p\naWns2rWLbdu2UVpaiqenJ++++64w0H+L0FYgGN8IE4Hgv4rhpZmH/9vU1BQHBwd27NiBqakpiYmJ\nwD83PXl5eSxevJjq6mqSk5NZt24ddXV1vPDCC9x9993XXU/wz4D/F198QWlpKbNmzSIwMHBUN3pV\nVRUvvfQSSqWShIQEFAoF4eHhxMTE4O/vL13PkF3swzc4e/bs4csvv+Shhx5izZo1zJ07l4sXL3L0\n6FFOnz7NxIkTcXV1vc5IEBQUxM6dO6moqOC+++7DzMxsjEc1Prj2s6sLsj788MMkJSWxbds2jh49\nSltbG9OnT79uw6nL3rCzsyMyMhJTU1MOHjxIZGQk3t7e4t4g0Du6uXj06FFMTEz4+OOPeemllwgL\nC8Pc3JzJkyfj7OzMwYMHSU9PH9VIMGHCBPz9/Zk+fTpJSUljPKKxZWBggBMnTpCfn09tbS1Tp05l\nwoQJyOVyIiMjCQ4OJj8/n/379+Pi4kJAQMBYv+X/Gv4dbXUHAmq1moCAAGbPno2NjQ0hISFMmTKF\nJ554giVLluDk5DTWwxsXDD/ELygo4OWXXyY2NpbVq1fz5JNPcv/992NqakpjYyNpaWn09fXh7++P\nl5cXvr6+Us/j6upqpk6dipWV1RiPaPwgtNUfQlv9IvTVH0Jb/SG01S9CX/2hO/Pq6urigQceIDs7\nm9DQUO655x6ioqJoamqitLSUo0ePYmFhgaenJ35+fvj4+HDw4EGptWdsbKxBn4GNhtBWvwyvTLJm\nzRr+/Oc/U1hYSF1dHe3t7cTExODg4MDQ0BAmJiZER0ePMBKEh4dz7tw5XnvtNZycnIiJiSE4OFi6\ntiGdi+kC2qOZq2QyGa6uruzdu5cLFy6wbNkyAgICOHr0KHl5eTQ0NBAeHo6joyMBAQEkJiZiamqK\nu7s7fn5+LFu2jCeeeMJgqzsIbQWC/z6EiUAwrtEtUoaGhq4LQg83EwDY2tpSVVXFwYMHiYuLw9nZ\nWfrd7OxsUlNTKSsro7KykokTJ/LCCy+wZMkS6e+IBehIdPq2tbWRnJwstYfQZcsOf9j39/ezY8cO\n2tvbmTdvHiqVChjpBjakxea16DZK3d3dnDhxgr1799LS0sK6detQKpVSWbH29nYyMzOpqanB0dHx\nOiOBVqslLCyMxx57DFdX17Ee1rhguBkAoLOzE7VajaOjIyYmJjg4OBAZGclXX311QyOBbm7qvlar\n1Xz22WdcvnyZBQsWAIY9fwU/Dn/5y1949tlnKS4uBmD58uUolUr6+vowMjIiICDgXxoJrK2tcXNz\nAwxvkz8c3Yayurqa3NxcKWs+KiqK0NBQpk2bBkBubi6HDh0SRoL/A/+utrq1nJGREWZmZoSFhREd\nHU1MTAyurq5SpSjBP583DQ0NFBQUcPjwYVatWkVwcLBU+nXq1KnY2dlx8uRJMjMzcXd3lyo9BAYG\ncuzYMQoLC4mKihLVHYYhtNUfQlv9IvTVH0Jb/SG01S9C3x+W4WdcMpmMgYEB/vSnP3HkyBF++ctf\n8sorrxAVFUVERATTp09HoVCQn59PRUUFGo0GT09PPD098fHxITU1lZycHPr6+oiOjh7jkY09Qlv9\ncq2+AO+++y4bNmxg0qRJ/OY3v+H2229n+vTpBAQEoFAopN8zNjYeUZFg+/btHDp0iOPHjzNlyhSC\ngoKkv2NoZwu6Evk6hp+vDAwMYGZmhoWFBZs3b8bDw4PExES8vb0pKysbEey2trbGysqKmJgYZs2a\nRWJiIv7+/gadFCa0FQj++xAmAsG4pbCwkP379+Pt7Y1SqZQChevWrePAgQMEBgYik8kwMTEBQKFQ\ncOnSJVJSUujr6yM2NhZjY2NkMhmBgYHMnDmTW2+9lYULF7Jo0SJpwSkMBN9dheHy5cvs3LmT3Nxc\ngoKC8PDwkIIButdZW1vzzTffMDQ0xOLFi1EoFD/yCMY3MpmM/v5+li1bxgcffMDQ0BABAQHMnTuX\nnp4ejIyMmDBhAn5+fnR0dHynkUCj0Uh9qA2d4WXaPvvsMzZt2sTbb79NfX09AwMDUukqFxcXoqKi\nJCOBrrWBXC6nqakJc3Nz6ZoymQxjY2O+/PJL7O3tuf322w1usyQYG7q6usjMzOTs2bP09fURFBSE\np6cnRkZG0qbqWiOBhYWFZCS49j5uyPNWJpNhb2+Pn58fJ06cIDc3l5qaGilrHiAyMhKZTEZOTo4w\nEvwf+E+0Ha2S1GhfC66udV966SWGhobo6uril7/8JcbGxtIzTyaT4eXlhUKh4ODBg5SVlTF//nws\nLCywt7fH19eX2NhY5syZM8YjGX8IbfWH0Fa/CH31h9BWfwht9YvQ9z+nvr6eCRMmXLcWvXDhAhs2\nbMDW1paVK1diampKf38/MpkMKysrfH196evrIzU1lYsXL3Lbbbchk8nw9PREo9FQWFjIM888g52d\n3RiNbOwR2uqXjo4OlErldfrm5eXxxz/+kZCQEF5++WUiIyNxd3dHo9HQ1tZGUVERe/bsob+/H2dn\nZ0xMTIiLi6Ojo4Py8nLUajXPPPMMixcvHqORjT2vv/46zz33HDY2NlLV0uF7WV0MwdTUlMzMTCor\nK4mPj5da+unK7zc0NBAZGYlaraa/v196nSHvf4W2AsF/J8JEIBiXNDQ0sHTpUjIyMrCyspI2PkeO\nHOHll1+mtLSUlJQUKisrcXV1xcbGBplMxqRJk8jIyKC8vJzbbrsNS0tLKYvT1tYWZ2dnJk6cKJVq\nG600v6ExPJN7aGiIzs5Ouru7paxAZ2dnBgYGyMvL4+jRo7i7u+Pm5iaVGQLIyMjgo48+Ijw8nKSk\nJMm8IfgnXV1dtLa2UlNTQ3V1NRcuXOAnP/kJEyZMkKppjGYkmDhxIi4uLpJZRvBPdPP2rbfe4s03\n3+TkyZNcunRJyqjQlXeH640EFy5coK+vjxUrVkj9uE1MTBgaGuJXv/oVFRUVeHt7k5SUNKJagUDw\nQ6Pb5Li5uREYGEhaWhrt7e309/cTERGBWq1GJpPd0EhgYmJCeHi4mKPfotNJJpNha2tLQECAFOwe\nXn4frg92a7VavL29+cc//sHp06dxcHAY4ZA3dPSlrZi7I+nt7aWoqIijR49SVlZGb28vd9xxh7TW\n1Rk5dfeDiooKSktLmTZtGu7u7shkMiZOnIiPjw9g2FVJrkVoqz+EtvpF6Ks/hLb6Q2irX4S+/zlv\nv/0269evx8PD47rS1+Xl5XzwwQeEh4ezYMECqUy8TiMzMzO0Wi1ZWVkUFxfj5OREUFAQQ0ND+Pj4\nsGjRIiZOnDgWwxoXCG31S15eHq+++ioTJkzA3d19xM+OHDlCcnIyv/71r4mKipI+29u2bWPlypVs\n2rSJ7OxsvvrqK8zNzZkyZQpGRkbEx8czb948Fi1aRGxsLGCY94XVq1ezadMm+vr6yM7OJiMjg56e\nHjw8PFAoFMjlcilobW1tTW9vL1999RURERF4eXlJBi1dsLupqYmpU6diYWEh/Q1D01SH0FYg+O9F\nmAgE45L+/n6p725hYSGmpqb4+fnh5uZGQkICPT09NDY2kpWVxY4dO2hpaaGrqwtvb296enrYs2cP\n3d3dzJw5c0RJ/Wsx9IfL8Ezu7du3s2nTJtavX8+2bds4ceIEFy5cICAggKioKM6ePSu1hXB0dMTF\nxQWFQkFWVhYbNmzg7NmzPPHEE1KFCMFIFAoFfn5+mJiYcObMGc6ePcvAwADBwcGo1epRjQS5ubnk\n5+fj5eV13cZAcJWvv/6aVatWERkZySuvvMKsWbMwNzcnOzubwsJCbGxspOxinZFg165dFBcXc+DA\nAVpbW5k7dy7h4eEAVFRU8OmnnzI4OMiaNWtGuGIFgh+Cazfiw/+t0WgkI0FZWRkXL15k2rRpUsnB\n4UYCR0dHDh8+LJV+FPzzmdbT00N7eztmZmbSPeD7BLuTk5PJzc1l8+bN1NTUcNddd4ky+98itP3x\nMDIywt/fH5VKxZkzZ2htbUWlUjFp0iSp0pNMJqO3txcjIyPOnj1LZmYmU6ZMYdKkSdddTzzD/onQ\nVn8IbfWL0Fd/CG31h9BWvwh9/zMaGxv561//Snl5OQkJCXh5eY2wVMVJAAAgAElEQVT4+eXLl9mx\nYwe2trZSdcLhGa5DQ0NMmDABuVzOkSNHiIiIYMqUKdLPDbk6p9BWv3R2drJ69WpSUlLw8PAgLCxs\nRHJcZmYm2dnZ3HbbbXh4eLB3717ee+893n//fVpaWpg1axaBgYHU1taSlpZGYmKiVNXB2toaS0tL\nwDCT7tra2qR2DroKfM3NzVIbjfPnz4+4xwJotVrS09PJyspiwYIFqFQqHB0d8fX1pbKykszMTC5e\nvMisWbMM7j47HKGtQPDfjTARCMYlKpUKX19f5HI5BQUFlJSUoFQq8fHxQaPREB0dza233oqRkRGt\nra2kpqZKfea1Wi1Hjx6lo6OD2NhYLC0tRTmbURi+IFy9ejVvvPEGdXV12Nvb09raSklJCQcOHODs\n2bMkJCQQGRlJd3c3ubm5HDhwgG+++YbPP/+cjz76iMbGRlasWME999wjXduQ9dZVd7hWB1NTU9zd\n3TEyMqK6upry8nKMjY3x8fFBpVKNMBL4+/vT0NDAyZMneeyxx6SgjKFzbQB2y5YtNDc3s2rVKqZM\nmYK3tzfBwcEoFArS09MpLCyUMmbhqpEgMjKS+vp6tFotjz76KPfff790PTs7O+bPn8+SJUtwdXX9\n0ccnuLkZbtzKzMxk//79pKSkcPnyZakPqaurK0FBQaSlpVFYWEhbWxtRUVHXGQmCgoKYN28eSUlJ\nYzmkcYVcLqe7u5s77riDlJQUaQ3wfYLdCoWC0tJSGhsbcXZ2Zu3atTg7O4/xiMYPQlv9cKPsHqVS\nOWK9UFNTg4eHB66urhgZGdHf3y9VKEpPT6ekpIRly5aJ59YwhLb6Q2irX4S++kNoqz+EtvpF6PvD\nY2FhgaenJwkJCcyePZuenh7Ky8txdHQErga6Dxw4QFlZGZMmTZKqcerOeHRnPpWVlRw6dIhJkyYx\nbdq0MR7V+EBoq18UCgW2trZ4eXlx3333oVKppNYRAOfPn2fv3r1888037N+/n61bt1JbW4u3tzcv\nvfQSTz31FHPmzOHKlSsUFRURExNzndEDDM9YBFdjEZ6enpiYmFBaWoqPjw/x8fHExMRQUlLCwYMH\nOXDgAHK5HLVajY2NDaamprS1tbF37148PT3x9/dHLpfj5OSEm5sbp0+f5umnnzb49htCW4Hgvxth\nIhCMW1QqFV5eXpiYmFBYWEhpaSmmpqZ4e3tjYWGBubk5sbGxxMfHExISQl1dndTKoKuri/r6etzd\n3QkJCTHIxc+/QqfJJ598wpo1a7jlllt47bXX+NWvfsWcOXOIjo5m9+7dlJeXo1AoiImJIT4+HkdH\nR3p7e7l06RKDg4PExcXx5JNPcvfddwNXN7iG5lYdji5I2NXVxcqVK/n444/ZvXs3Q0NDODo6Ym1t\njbu7O6amppSWllJUVISxsTHe3t7XGQkmT57MAw88IIItw9DN29WrV5OXl0dFRQVhYWEsXLhQal1i\nZmaGv78/JiYmoxoJnJ2d+clPfsL8+fOlLIzhZbpVKhVmZmZjNkbBzYmuTCPAhg0b+OMf/0hqaioF\nBQXs3r0btVrNlClTgKtGguDgYNLS0igoKLjOSKA7WLG2th5hLBBAdXU1O3bsoKqqijNnzhAWFva9\ngt1hYWGEhYVx22238dBDD+Hm5jbGIxl/CG1/WIavl3bs2MGePXvYs2cPSqUSS0tLrKys8PDwwNTU\nlKysLAoLC7Gzs8PZ2Vmq4lBYWMj69etRq9Xce++92NjYjOWQxg1CW/0htNUvQl/9IbTVH0Jb/SL0\n/WHp7OyUMl2dnZ3x9PSkp6eHxYsXk5KSgru7O66urkyYMIHOzk5ycnIoKioiMDAQZ2dnaS9mbGwM\nXE1qOHnyJL/4xS8M3pwhtNUvuqoicPW8IDQ0FJVKxerVq9m4cSNarRaNRoO3tzdGRkYcP36cixcv\n4uLiwv/8z//w8MMPj2hvkJ+fT35+Pvfff7/BnzkOn7vW1ta4uroyMDDAgQMH6O/vZ8aMGTz33HN0\ndnZSXV3NN998w8GDB1GpVGi1WqZNm0ZycjL19fXccccdwFUTvouLC7fddptkoDFEhLYCwc2BMBEI\nxjXDjQQFBQUjjAS6h5Cu/PusWbOIi4ujurqaixcvSkaC+Ph4kcX9LdeWCLtw4QKrV6+mt7eXVatW\nERISAlzVdM+ePWRnZzN9+nQefPBB5HI5pqamBAUFkZiYyKJFi1i8eDFz5szB19cXEAYCuLqY6erq\n4qGHHmL//v00NjZSW1tLUVERly9fJiAgABsbG2mjX1JSQmFh4ahGAktLSxHMHoWamhpWrVpFSkoK\nDQ0NeHt7k5iYiJGRkbQhUqlUUvsInZHAzs4Of39/4Gr5R93m1BDLtAl+XK6t/PLee+/h4ODAokWL\nmDx5MsXFxWRkZGBkZCS1JrjWSHDx4kUpq1t3Ld39XBgI/omNjQ2hoaEcP36cnJwc6uvrCQ8P/17B\nbmdnZ1xcXDA3Nx/jUYxPhLY/LLrP7Zo1a3j99dcpKCjg2LFj5OXlcfnyZfz8/LC2tsbDwwNzc3My\nMjJISUmhuLiYjo4O9u3bx8aNG6mvr+eZZ54hPj5+jEc0fhDa6g+hrX4R+uoPoa3+ENrqF6HvD0dm\nZia7du3C19cXlUolfb++vp6UlBSOHz/OuXPnsLe3R6PREBERwalTp8jPz6egoAAPDw+0Wq20F/v0\n00/ZvHkzfn5+PPjggyOuaWgIbfVLQ0MDf//739FqtajVauDq2WNzczMffvghpaWltLa2Ymtri1ar\nJSIigpkzZ3Lvvffys5/9jPDwcMk8JJPJKCgoYP369djZ2XHfffdJLQwMkdHmrpWVFX5+fnR3d3Pk\nyBGqq6sJCAhg6dKlxMfHSzGK5ORkMjIypHvxtm3bcHJyIjAwELiqte7c0RAR2goENw/CRCAYV1wb\n5NYFA3Ulb0YzEugyMs3NzdFqtdx5551S8DAnJ4eYmBjc3d0NNlMzPz+fqqoq3N3dR5QIk8lkNDQ0\nsHbtWubMmcPixYul16xfv55169YRGxvLihUrkMvlPPXUU1hYWODt7Y1cLkelUklZsSKQdRWdtm+9\n9RaHDx/m3nvv5YUXXsDKyora2lpyc3Pp7e0lMDBQ2ugPNxIoFAo8PDxQq9UGr+VwdJ9xHTY2Nri6\nutLc3ExTUxN9fX34+flJ7vUbGQmysrKwsrIiODj4hj3pBQJ9oJtjX375JW+++SYzZszg1VdfZcGC\nBcTFxdHV1UVRURE5OTkoFArCwsKAf7Y2yMzMJDc3l4aGBhISEoTp5TuQy+U4Ojri4+PD8ePHyc3N\n/c5g96lTpwgJCcHKymqs3/q4R2j7w7Nr1y5WrVpFcHAwjz/+ODY2NtTV1Y26XlCr1VRUVHDs2DHS\n0tKorq5m0qRJPPTQQyxatAgQ7aSGI7TVH0Jb/SL01R9CW/0htNUvQt8fhr179/Lxxx8jk8mIjIwE\nYN++fYSFheHv709LSwupqam0tLTg4OCARqNh8uTJtLS0kJeXx86dOzl58iTZ2dls2bKFLVu2YG5u\nzrp163BxcRnj0Y0tQlv9kpuby3vvvUd/fz8BAQEolUqKi4vx8PDA39+fCxcukJKSQktLC3Z2dmi1\nWmxsbLCyskKpVHL06FHOnj2Lg4MDqamprFmzhhMnTvDss88afKuIa+fu0NAQ+/fvJzg4GD8/PwYG\nBsjIyKCkpAQ7OzsiIyOJi4tj6tSpODs7k5qaSkpKCqWlpRgbGyOTyYiJiZEqwRgyQluB4OZBmAgE\n44bhgcLe3l7a2towMzNjcHAQMzMzPDw8UCgU1xkJTE1Nr+udpdVqsbOzY+fOnTQ1NTF//nyp7JMh\ncerUKe666y527dpFSEjIdUaC1tZWPv30UwICAkhMTASuGgjWr19PbGwsTz/9NH5+fmzfvp3t27cT\nGBhIWFjYiACWIW4+r2W4MQNg06ZNaDQa/vSnP6HRaAgODsbe3p6jR4+Sl5c3qpHg2LFjHDhwADs7\nOyZPnix0HYZuvuXl5aFSqaQKJRYWFjQ0NFBRUUF/fz/u7u7Y2tqOaiSQy+VkZ2czc+ZMgoODx3hE\nAkNjaGiIS5cusWHDBi5dusRrr70mtde4ePEiH374Id3d3XR1dZGVlXWdkcDf359vvvmGefPmSYcy\nhk5/fz9yuZyBgQF6e3tHuNBlMhlOTk74+vp+Z7C7rq6OrKwszp07x+zZsw1ynTAaQlv9ce2h/a5d\nuzhz5gyrV69mxowZhIWF4ejoOOp6wd3dHRMTE86cOcOVK1e4//77+cUvfkF0dDRwveHO0BDa6g+h\nrX4R+uoPoa3+ENrqF6HvD4tOz8rKSrKysigrK6Ojo4Pf/OY3FBcXM2XKFIKCgnB2dubChQukpaVx\n7tw5nJ2dpaqnQ0NDnDhxguPHj1NaWkpHRwfh4eG8/fbbeHp6jvUQxwyh7Y9DbW0tO3fu5NixY6jV\nar788ks++OAD/Pz8CAsLY+LEiZK+LS0tODo64urqikwmo66ujp///Ods3ryZ3bt3s3XrVpqamlix\nYgX33XcfYJjGon81d6dOnYqXlxdubm4MDQ2RkZFBZWUlFhYW+Pv74+LiQlRUFElJSQB0dXXR2NjI\npUuXeOCBB1AqlWM8wrFDaCsQ3HwIE4FgXKDrIw+wbds2NmzYwMqVKyW3mYuLCxMmTLihkUCpVF5X\nktzGxoZDhw7R1NTEHXfcYVDlr3QPbLVaTVtbG8eOHePgwYP4+/tLRoKBgQEuXbrE559/zoULF5g7\ndy6ffPIJa9euJTY2lmeeeYagoCAATp8+TXJyMhMnTiQhIcFgqzqMRn9/P0ZGRvT399PS0iIZM+bM\nmUNkZCR9fX2o1Wo0Gg12dnY3NBIMDg7S3NzME088YdA9Cm/E2rVr+fWvf42VlRWenp6SkcDa2pq6\nujrS09Pp6elBq9WOaiTw9/cnMTFRMssYOoa4SfyxGX6flMlknDt3jrVr1xIdHc3SpUul31uzZg37\n9+/n008/JSIign379pGVlQUgGQY0Gg133nknM2fOBMT/H1w1F125coXly5fT3d0tVSzSoQt2+/j4\nUF5eTl5e3ohgt62tLd7e3jQ1NfH000/j4OAwhqMZXwht9cPwQ/vLly/T19fHxx9/jLu7Ow888ACD\ng4OoVKobrhd0rZCMjY0pLy+nsrISpVKJj48PpqamI8yMhobQVn8IbfWL0Fd/CG31h9BWvwh9f3h0\n43VxccHFxYXc3FwyMzNpb2/ntttu48477wRg4sSJI4LdTU1NODo64ubmxrRp04iLi+PWW28lNjaW\nRx99lLvuusvg+3ELbX8crK2tpcSkI0eOcPToUYKDg7nnnnswNze/Tt/m5mbJSGBkZMSlS5e4dOkS\n3d3dREdH8//+3/9j4cKFgOG2pf2+c9fKykoKdqenp1NTU8OECROktr5WVlZEREQwe/Zs5HI5zz//\nvMFXzxDaCgQ3H8JEIBhzBgcHJQPBW2+9xerVqzl16hSDg4PU1tZy/PhxTE1N8fLy+l5GArj6wDIy\nMuKLL76gtbWV22+/3aDK6XZ2dqJUKjEyMiI2NpYrV66Qn58/wkggl8uxsbHh3LlzZGdnk52dza5d\nu7jlllt4+umnpT5DcLUlQmpqKg8++CABAQEGt+m8EQMDAxgbG3PlyhVeeOEF3n33XXbu3ElLSwu+\nvr7ExMQAV+ejUqmUKmSMZiTw9fXl7rvvZuLEiWM8qvFJcXExJSUlZGdnY2lpiYeHh9TqxNbWlrq6\nOlJTU7/TSKDT1lBNMPX19RQXF0tGIoH+GG6MKykpwdLSkvb2dj755BPMzc1JSkpCqVSydetW3nnn\nHRYuXEhCQgKTJk2iqamJ8vJyqX2BTCbDw8MDMzMzaU4b4iZ/NDZv3syWLVs4efIkNjY2aDQaFAqF\n9HOZTIaDgwMuLi6UlJRQUlJCXV0dERERWFpaYmdnx09+8hMR5B4Foe0Py/C17ubNm/nf//1ftm/f\nTktLCzY2NsydO5eBgYF/uV6wsbHB3d0dtVpNUVERRUVFI1ohGSJCW/0htNUvQl/9IbTVH0Jb/SL0\n1S8qlQpbW1s+//xzrly5gqmpKREREYSGhkqVt0YLxurKw9vZ2eHs7Iyvry82NjYiG3YYQlv9MTQ0\nhEqlYtKkSRw8eJDTp0+jVCqJi4sjMTFRumfcyEjg5eVFXFwc8+fPZ8mSJcydOxd/f3/AcA0Ew/k+\nc9fKygr3b9sk69rEWFlZScFuuVyOhYUFsbGx2NnZjeVwxhVCW4Hg5kGYCARjji6YtX79et59913C\nwsL485//zM9//nPkcjlZWVnU19djbGyMt7f3dUaC8vJyjIyM8PX1RalUIpPJ6O/v57e//S2pqal4\neXmxZMkSg1mEpqWlsXTpUgICAtBoNBgZGREVFTWqkQDA1NSUqqoqKioq0Gg0PPbYY0RFRUnXy8/P\n55133kEul7N06VLhBh6GXC6nu7ubpUuXkpGRgYmJCf39/bS3t3P8+HHi4uJwcnKSzC0KhWLERr+o\nqIjW1lZCQ0OxsrISfZ1GQZdxHR4ejpmZGXl5eWRkZEj3gRsZCdzc3LCxsRk1WG5oAXSdhp9//jnf\nfPONtFEHaGxsxMLCYozf4c2HbiP+5ptvsmrVKmJiYvDw8ODcuXOYmZkxZ84ciouLWblyJRqNhuXL\nl6PRaADIzMyktLQUOzs7CgsLmT59Ov7+/iOqGgiuotVqGRoaIjs7m7KyMuzs7K4LdsvlchwcHCgv\nL6eqqoqzZ89SVlZGXFwcFhYWosz+DRDa/rDoPrdvv/02b7/9NqdPn6axsZELFy5w+vRpYmNjmThx\n4g3XC4WFhVy+fJmgoCBsbGykdl6iFZLQVp8IbfWL0Fd/CG31h9BWvwh99U9qaip79+4lKiqKjo4O\niouLGRgYwNvbW6peem0wtqWlBScnJ1xdXcf43Y9vhLb6QZdIcPToUd555x18fHwYGBiQ2np6eXlJ\n5qDRjAQODg5oNBpMTU1RKpVS8Pbaar6GzPeZuxMmTJCy5nXBbmtra3x8fISO34HQViC4ORAmAsG4\nIDU1lTfeeIPJkyfz29/+ltDQUGxsbBgaGuLw4cM0NTVRU1ODWq0eUZHA1NSUjIwMsrOzmT17Nvb2\n9sDVHtOZmZmYm5vz2muvGUx299DQEBs3bqSgoIDMzEyCgoKk8lXXGgl8fX3x8PDAxcWF/v5+6uvr\naWxslLLrL1++THp6Om+++SYnT57kxRdfZNasWWM9xHHB8BKDH3/8MXv27OGhhx7iD3/4A9HR0XR2\ndlJVVUV6ejpRUVHY29uP2OhrNBrs7e1JSUmhoaGBRYsWGXRGwHBG69GoC4JPnjwZlUpFfn7+dxoJ\nMjMz6ejokEo8Gjq6Q6IjR46wY8cOWlpa8PLyYvPmzezZs4fAwEAmTJgwxu/y5mD4/N22bRurV6/G\nzs6OWbNmodVqcXd3Z9asWVhaWrJjxw4OHTrE7373uxHGreTkZFpbW3n11VelCgWC0SuIqNVqAgIC\n6OnpITc3l2PHjl0X7O7r68PU1JS2tjZaWlqkg9SlS5dibm4+FkMZdwht9cdwbdPT01m5ciWRkZHS\nmqqnp4eamhpSUlKIjo6+br2g1Wqxt7cnPz+frKwsZs2ahbOzM0qlEm9vbwYGBjh37pxBtkIS2uoP\noa1+EfrqD6Gt/hDa6hehr/64tg2cj48Pt9xyC3feeSc2NjYUFRVRWFiIkZHRDYPdWVlZVFVV4enp\nibOz81gNZdwhtP3xkMlkODo6MnnyZG699VY8PT0pLCz8l/pmZmZy5swZHBwcpESS4dc0VEabu/Hx\n8dx+++3Y2trecO4OL7+flZVFTk4OGo0GLy+vsRrKuENoKxDcnAgTgWBcsGvXLtLT03n55ZcJCwuT\nvv/OO+/Q0NDAwoULKS0tpaqqCoVCgZeXF1ZWVmi1WmQyGfPmzRvRK1qtVjNt2jRuvfVWnJycxmpY\nPzoymYzo6GguXLhAXl4eKSkphISEjGokOHToED4+Pnh5eRESEoJKpeLSpUukpKSwe/duvvzySw4d\nOkR/fz8vvPACS5YsAUQvbp1bt7u7m+bmZrKysujo6GDlypXY2tri6upKdHQ0p0+fpqSkhPT0dCIj\nI0ds9JVKJa6urnh4ePDLX/7SYEwu/4rhTuj6+nopsC2Xy6WDldGMBO7u7pKRwM7OjsrKSjIzM0lK\nSpKyuwVgZGRET08PKSkppKenk5KSgo+PD7Nnz5YW7oL/DN38rauro66ujmPHjvHXv/6VkJAQAGxs\nbDAzM6Orq4vf//73yGQynnvuOak/aVZWFmvXrmXy5Mk88cQTUkaGobbg0KFrD9HX10djYyOlpaWS\n1tbW1gQFBV0X7HZ1dUWhUEjZ8O+88w5qtZovvviChQsXGtTa4LsQ2uqP4c+0zs5OamtrOXDgAK+/\n/jrTpk3Dx8eHmJgY6uvrKS0tJSMj47r1gkKhwNXVFWtra2bPnk1iYqJ0baVSSUBAAHfddZfBrSOE\ntvpDaKtfhL76Q2irP4S2+kXoqz90Bu/BwUF6e3tpaWnBwsICBwcH1Go1Wq0WtVpNaWnpDYOxbm5u\n1NTUUFtbyyOPPCKq+H2L0Fa/XLv/7+npwdjYGDc3NxwdHXFzc8PU1FSqQDKavhqNhrNnz5KVlcXs\n2bNFMPZbdHN3YGCAK1euUFtbi52dHba2tpiZmf3LuWtlZYW3tzdtbW3U1tby+OOPi6ScbxHaCgQ3\nL8JEIBhzBgcH2bRpE+fOneNXv/oVZmZmwNX2Blu3buWll17ijjvuoL6+nvz8fBoaGujv75cyj0ND\nQ5kyZYp0Ld0GTKFQjCi7ayiYmJgwbdo0WltbKSws/E4jweHDh/H29sbLy4uAgACioqKkMvCOjo4s\nWbKEhx56iLlz5wKiXxZcNWr09vaSlJTEZ599xsmTJ5k6dSpz586VFvoqlYqYmBhOnTpFcXHxqBt9\npVKJj48PVlZWYzyi8YNuk/T73/+eF154gYiICFxdXSXjyvCKBEqlkqysLLKzs7G1tUWr1UpGAt3h\niaFncOfk5FBQUCD1u3N1dcXf35/U1FQaGhqws7PjnnvuITw8HBAGoR+K9evX8+STT1JbW4u7uzsP\nP/wwMLJKgbGxMYcPH6auro7o6Gg0Gg3Z2dmsW7eOM2fOsHz5cry9vaVrGvL/iy7I3dXVxe9+9zv+\n8pe/sGXLFvbt24eHhwfu7u6YmZmNCHaXlZVhZWWFi4sLpqambNmyha+//ppp06Zxyy23YGZmZtCa\n6hDa6pfhz7RXXnmFmpoaHB0defzxx4Grayq1Wk10dDSnTp2iqKjohusFPz8/goODpdcNX+saYisk\noa3+ENrqF6Gv/hDa6g+hrX4R+uqH/v5+jI2N6e7u5p133mHjxo1s3bqVEydOEBMTg5GREaamplLL\nB11QSy6XExgYiEKhoKKiAl9fX6ZMmcJPf/pTkSn/LUJb/aLbowHs2bOHLVu2sG3bNqqqqoiJiQGQ\nqowM13d4QLa5uRl3d3d8fX2Jj4+XjEWGjm7udnV18cYbb/D++++zdu1acnJymDx5MlZWVqhUqu+c\nu8ePH8fV1ZWIiAiWLFki5u63CG0FgpsbYSIQjAsyMjIoKysjODgYX19fdu7cyRtvvEFCQgKLFi3C\n2dkZOzs7du7cSWtrK7m5uRw6dIgFCxagVqtFr+hrMDExITo6+nsbCXx8fPD09MTS0pJJkyaRmJjI\n/PnzCQ0NlR7awkDwT4yMjKiurqawsJArV65ga2vLrFmzUCqVUiDW1NRUMhKMttGXyWRivo5Cf38/\nO3bsoKamhvT0dIKDg3F1dZW00mkXGhpKb28vubm5ZGdnY21tLVUk8PHxwdfXFzDcDO4zZ85w1113\nkZycjJubG35+fsDVTeiOHTtwdHTk/Pnz9PT0YGdnJ1V1EUaC/5yamhqOHz9OS0sL7e3tBAUFodFo\nRtw/ZTIZtbW15Obmsm/fPvbv38/HH3/MmTNneOGFF1i4cCEgjB2Dg4MYGRlx5coVfvrTn5KWloab\nmxuBgYH4+fkRHR0tZVSpVCoCAwPp7e2VKpUkJyezd+9ePv30UywsLPjDH/7AhAkTDFpTHULbH48D\nBw5QUFBAR0cHCoWCmTNnSplW/2q9oFt76Q4Sda8RXEVoqz+EtvpF6Ks/hLb6Q2irX4S+PxzDW3T+\n7Gc/Y/fu3TQ3N3PhwgXKysqorq4mKioKtVqNQqG4Lqh1+fJlcnNz2bhxI+3t7SQlJYks+W8R2uoX\n3R4NrlZ7e/XVVykrK+PUqVMUFhZSVVVFZGTkDfWVy+W0trby4YcfUl5ezm233SZVIDDUszEdw/e/\nS5cu5cCBAxgbG2Nubo6LiwvR0dHY2tpKFVy8vLxQqVTXzd2//vWvtLe3Ex8fLyVBGjpCW4Hg5keY\nCAQ/GjdasMhkMlxcXFAqlcybN4+BgQFee+01ent7WbFihZRF297ezvbt2wkPD8fExITExESmT59u\n0Iug78LExISYmBhaW1spKCjgyJEjUkBWZyTo6uqSjAS+vr54eHgAo/elFzpfRTePExISuHLlCoWF\nhZw+fRoPDw8CAgJGBGJNTU2JjY3l9OnTFBUV8c033zBjxgzs7OzGehjjFrlczsyZM2lrayMvL4/D\nhw9LBphrjQQRERF88803DAwMcOjQIUxMTJg6dao4PAEsLS3p6emhsLCQgwcPSlUInJ2dUavVzJ8/\nH2NjYw4dOkRjY6PUI08YCf59dPfNkJAQJkyYwLFjxzh//jwKhYLAwECpR7zuHqJrPXPq1ClaW1vx\n9PTk6aefllrHCOPW1c9vX18fL7zwAgUFBTzyyCO89dZbzJs3j4SEBKlsfmNjI/39/djY2BAYGIha\nreb8+fNUVlZy+fJlfHx82LBhg/SMEwhtfwyuXS/k5ubS1taGt7c3QUFB37leOHz4MBEREaI1xA0Q\n2uoPoa1+EfrqD6Gt/hDa6heh7w/L8PaTDz30ECUlJdx551gOQrQAACAASURBVJ28+uqr3HbbbWRk\nZHD06FFqamqIjo4eEYxVq9WUl5eTmppKQUGB1NrT2tp6rIc1LhDa6h/dOczbb7/Ne++9h6+vL8uX\nL+fOO++koKCA0tJSamtriYqKwszMbIS+x44d4+DBg+zbt4+amhoWLFggtVUcfm1DRVdVdvny5RQW\nFvLwww+zfv167rrrLmbMmCG1kuzr62NgYAC1Wo2Hhwfm5ubXzd0XX3xRzN1hCG0FgpsfYSIQ/CgM\nL8dUWVlJQ0MDNTU1aLX/n707j4/p3v84/p7JHiFCgiBELCNC7ERDqLV05bbVunWplLaqbnH1Ry0t\nbdGq0tTaVtVWVG9VFb222lI7sTW4ltgTDUUlIsuc3x+aaVLLbTXHRPJ6Ph4e1Unm5HvevjlzZs7n\nfL4VJEkBAQFq1KiR/Pz8tGfPHk2dOlW9evXSI4884njDtHbtWq1YsUIjR47UoEGD1KRJE0ncqSnp\nhnbv2Y9ldyRITk7Wrl27bigkaNSokaOQYP369QoJCVFISEihv3CV0++LX3L+PTIyUlevXtWuXbu0\nevVqVa9eXSEhIbm+N/uOgR9//FFHjhxR9+7dWcLgV7ebtxEREbnmbc5Cgux/E6vVqhkzZqhevXpy\ndXVV/fr1Va9ePSfvlXPlzDK71d2WLVu0Zs0alSlTRvXr11ejRo1UrVo1lSlTRpcuXdKGDRsoJLgD\nvz825DxuhoaGqmjRotq9e7e2b98ud3d3VatWzdE5JyMjQy4uLmrevLmioqL0zDPP6LHHHlP9+vUd\n2+Y4fN3u3bsVExOjJk2aaNCgQXJ3d5fVapXFYtHnn3+ujz/+WDExMVq6dKlCQkJUrVo1hYaGqkOH\nDqpZs6a6deump59+WuXKlXP2ruQ7ZJu3/tf5QnZh1/fff3/b84UjR45o3759qlOnjkJDQ+/qPuRX\nZGsesjUX+ZqHbM1DtuYiX3Nlf17wwQcf6LvvvlOvXr306quvKjAwUGXLltXFixe1a9cuJSQk6OjR\no4qIiMh1sbt8+fKOlttjx46lUDYHsr07li9frrFjxyoyMlKvv/66mjdvrsqVK8vX11cbNmzQkSNH\ndOzYsVz5Vq5cWQEBAbp69aqKFi2qvn37qnPnzs7elXwj+/Ot7777TtOnT1f79u01cOBAeXp6ytPT\nU97e3lq+fLlmz56tTz75RHv27FHlypVVpkwZhYSEKCgoiLl7C2QLFA4UEcB0OdsxTZs2TaNGjdKc\nOXP09ddf69ixY7LZbPL19ZWrq6skafHixdqyZYsiIyNVv359WSwWbd++Xe+//768vb3VuXNnlSxZ\nUhIFBFLurgFpaWk6d+6c0tLSdPXqVRUpUkRubm5q1qyZkpKSbllIkJaWpi1btmjZsmV69NFHVaxY\nsUKfq3S9tb6Li4syMzOVlJSknTt36vz587p69aqKFy8ui8WSq5Bg2bJlqlGjxk3f6N9///36+9//\n7qjALOz+yrzNvsi1YcMGffnllxo8eLCio6MVERHh5L1yrhMnTujIkSMqVaqU4y6BRo0aSbpeSLB2\n7VqVK1fO0d2lTJkyKleuXK5CgoCAAEchwS+//CIPDw9n7lK+lbMwbtOmTVq/fr3WrFkjHx8flSpV\nStL1QgI/Pz/t3r1bGzZskJubm6OQwMXFxfE7ULJkSfn6+jratWX/2+G6vXv3asmSJXrhhRcUHh7u\nuAt+yJAhmjNnjo4fPy4XFxclJiZqzZo1atWqlUqXLi1vb29VrVpVAQEB8vLycvZu5Etkm3dyHhMO\nHTqkPXv26PTp03J1dXW0aL3vvvuUnp6uHTt23PZ8oWnTpmrQoIHat2/vlH3Jb8jWPGRrLvI1D9ma\nh2zNRb7m+P3ngpcvX9bEiRNVvHhxjRs3zvGe9ujRo3r77bdVu3Ztubu7Oy54N2jQQD4+PnJ3d1dI\nSIjatGmjFi1aOD53LMzI1ly/v6HGbrdrxowZOnjwoMaMGaOwsDBJ0rVr1xQTE6PLly+rVKlS2r17\n9w35Vq5cWY8++qhatWqlhg0bSmIJg2zZGaxatUqbN2/W0KFDValSJV26dElnzpzRkCFDNHXqVO3f\nv1+JiYmKj4/Xjz/+qKZNm6pEiRKqUqWKWrduzdy9CbIFCgeKCGC67BeUmJgYffjhh46W4z/99JN+\n/PFHJSQkyGazqWTJkrJYLEpNTdW3336r1NRU2e12HTlyRBMmTNDhw4f16quvqlmzZjdsu7DK+SZ0\n/vz5+uCDD/Tuu+9q3rx5WrBggdLT0+Xp6amyZcsqKirqtoUE58+fV9u2bdWyZctCn6t0vYDA1dVV\nV69e1fDhwzVx4kR9/vnn+uqrr/Tll1/q8uXLcnFxUVBQUK5CgqVLlzre6Oe8o9vDw8PRzrywu9N5\nu2LFClWrVk0lSpTQrl27NGnSJF25ckVPP/20goKCJBXuwqLZs2drwYIFqly5suPO4CtXrqhp06aS\nfutIkLOQoHTp0rkKCRITE1W2bFmdP39e8+bNU1ZWloKDg521S/lSzvk7ZcoUvfnmm1q9erW2b9+u\nhQsXKiQkRFWrVpX0WyFBXFzcDYUEtyoUKKzz91aOHTumZcuW6b///a88PDw0c+ZMxwcrVapU0YgR\nI9SzZ0+lpaUpLi5OFStWVJ06dZw97HsC2eaNnMeETz75RKNGjdL8+fO1bNkybdmyRTVr1nQUFzVp\n0sRxYSDn+UK27AsD2cfdwv7BH9mah2zNRb7mIVvzkK25yDdvffXVV0pKSlJwcPANy3EmJCRoypQp\nCg8P1yOPPCLpekY9e/ZUenq6PvvsMzVv3lyLFy/WoUOHdPjwYYWFhcnT01Pu7u6SlGuJxMKGbM11\n8OBBHTp0SEFBQbnytVgsunLliiZNmqTixYurf//+jufExMRo0aJFmjJliv7+97/rm2++0YEDB3T0\n6FHVrl1bXl5ecnd3l8Vi4eaE29iyZYu2bt3qyGXhwoWKiYnRnj17FBQUpFdeeUWdOnVScnKy9u/f\nr1atWikwMNDxOWNhn7u3Q7ZAwUYRAUyT82To4MGDGjlypBo0aKB3331X0dHRioyM1MGDB7Vt2zad\nOHFCNptN/v7+8vHxUVJSkjZt2qQ1a9Zo1apVunz5sgYNGqQuXbpIKtwXCrPlPCEcO3asxo8frwsX\nLqhWrVoqVaqUjh49qq1bt+rw4cMqXry4qlatqqioKJ07d85RSBAeHq5y5co52mpTrXpddveM1NRU\nPfPMM9q4caMqVqyoFi1aKDg4WKdPn9a2bdt09OhRFS9eXJUrV1ZkZKTS0tK0c+dOLV26VDVr1lRw\ncHChzvFm7nTenj9/XnFxcVq6dKm+++47zZs3T6dPn9aAAQPUqlUrx/YLc94bNmzQ0qVLdfToUdWt\nW1cTJkzQF1984WiZL92+kODy5cuKjY3V+vXrtWjRIm3ZskUtW7Z0XBBH7vn73nvvacqUKfL399cT\nTzyhChUq6ODBg1q5cmWufENDQ1WiRAlHIYG7u7uqVq0qb29vZ+5KvnOr1/WQkBAdPXpU27dv1/ff\nf6+jR48qODhYnTp10ogRIxQWFiY/Pz/5+vrqq6++Uv369R2vZbiObM3z+9e0SZMmyWq1qnHjxipa\ntKj27dunjRs3qm7duipdurSkGy8MhIWFOdo2/v7fqTC/ppGtecjWXORrHrI1D9mai3zz3rx58zRl\nyhTZbDZVqlRJqampOnv2rHx9fZWRkaHFixfLYrGoTZs28vT01JAhQ7R582a98MILql27tkqXLq0r\nV65o165dOnHihJYtW6asrCzVr1+/0F94JVtz/ec//9HIkSMVGhrqKARKTk6Wt7e30tPTtXDhQiUn\nJysqKkr+/v5auHChxo0bp0cffVQPPPCAypcvL19fX61du1bHjx/X5s2blZycrLp16zo6/EqF87hw\nK9nXJ0qVKqW4uDitW7dOy5Yt0969e1WiRAk9+OCDGjt2rBo1aqQqVaooMTFRsbGxatCggUJDQ8ny\nNsgWKBwoIoBpsk8ODxw4oPPnz+ubb77RyJEjVbt2bWVlZalMmTIKDw/XkSNHtGXLFp08eVLVq1dX\nhQoVFBISouDgYP3yyy968MEH9dxzz+nRRx+VxFrR2bJfaD///HNNmDBBLVq00NixY9WrVy916tRJ\nNWvWlGEYWr9+vU6fPq3y5curYsWKatq0qZKTk7Vz506tWLFCNWvWdLQv//22CyuLxaLMzEwNGTJE\nsbGxevHFFzV27Fi1atVK7dq1U3h4uCRp3bp1SkpKUtmyZRUUFJSr9eC3336r8PBwVaxY0cl7k7/c\n6by9//77lZWVpbNnzyo1NVXVqlXTP//5T8c6b4W98EW6vjxBYmKiNm3apFWrVmnr1q0KCgpSVFSU\nihYtmmtpg5sVEgQFBclut+vAgQNydXXVgAED9Pjjjztzl/Kd7Dm2YMECjR8/Xi1atNBbb72lxx57\nTG3atNHx48d18ODBG/LNLiTYt2+f1q1bp8zMTDVs2DDXm/zCLPuNp2EYysjIUHJystLT0x2t8tu1\naydJqlmzpiIjIzVw4EDHvM42ffp07d27V8899xzH3RzI1lzZx4RZs2YpJiZGUVFRevfdd/Xss8+q\nWbNm2rt3rw4dOqSNGzeqfv36t7wwULVqVVWpUsWZu5LvkK15yNZc5GsesjUP2ZqLfPPeDz/8oG3b\ntmn9+vUKCQnRgAEDtGzZMrVt21alS5eWj4+PQkJC1KRJE61atUqTJ09Ws2bN1KdPH0eHyM2bN2vH\njh2Ozn19+vShnbbI1mzbt2/XmjVrtG7dOjVu3Fhz5szRqFGj1Lp1a/n7+8vDw0NFihTRAw88oBMn\nTmj06NEqVqyYBgwY4Pj9P3TokFatWiWbzabjx4+rdevWql+/vpP3LH/4ffeMzMxMSdevURQtWlRh\nYWFKS0tTQECAmjdvrgEDBqhDhw4qVqyY4znz5s1TUlKSXnjhBeZtDmQLFF58eg1TTZgwQVOnTlXD\nhg3l5+fnWM8pu827zWbTsGHD9Oabb+qHH37QmDFjNHjwYNlsNlWtWlVPP/10rossFBDk9ssvv+i7\n775TsWLF9NJLL6l69eqONvwtWrRQUFCQ3N3d9fXXX+vrr79WzZo1VbRoUQ0ZMkRZWVlatGiRTp06\n5ezdyJdOnz6tzZs3q27duurVq5dcXFyUnp4ud3d3RUREKCAgQHa7XUuWLNHq1atVv359ubu7q3//\n/kpNTdWcOXMUGBjo7N3Il/7svA0LC1OxYsX0z3/+U506dZKbm5vc3NwcJ5wcF66fzIeEhOi9997T\nQw89pKSkJBUvXlwdO3bMNQ/79OkjSZo4caJee+01SdJjjz0m6fpFxLJly+rZZ5/VtWvXFBoaKol8\nf+/8+fNasmSJSpYsqT59+qh69eqy2+26cuWKTp48KV9fX126dEmvvfaarFarHnroIVmtVnXs2FFZ\nWVkaMWKEypYtK09PT2fvSr6Qc+mYmJgY7dy5U8ePH5e7u7vuv/9+RUREqH379o65my0lJcWxBufc\nuXO1ePFihYWFOeYtyPZuOXr0qBYuXKiKFSuqX79+juIhu92uy5cvy9vbW2fPnlXfvn0VExOjWrVq\nSZL69++vzMxMffrppzpz5owzdyHfIlvzkK25yNc8ZGsesjUX+eatV155Re7u7po+fbr69u0ri8Wi\nfv36OQphH3zwQccF7Y0bN8owDL366qvy9fV1bGPv3r2y2WwaM2aMvLy8HG3gCzuyNddTTz2lM2fO\naM6cOeratauuXbumdu3aKSsrS5LUpk0btW3bVsWKFdPq1auVkJCgN99803EzkyQlJibK09NTw4YN\nU0BAAIXev8p+/5uWlqZZs2Zp7969OnXqlLy8vPS3v/1N9erVU61atTR27FhduXLFMY/tdrtjG3Pn\nztXKlStVr149xxIzIFugsKMTAUx14cIFrV69WqdOnZKPj48eeughFS1a1LEenGEY8vf3V82aNXX4\n8GFt3bpVJ0+eVNWqVVWyZMkb1sQp7Hca/15SUpJiYmLUsGFD9ejRQ4Zh5MqsRIkS8vf3V1xcnDZv\n3qyIiAgFBQXJzc1NkZGRioiI0AMPPODEPci/du/erS+++EKdOnVS06ZNlZWVJTc3N8fXS5QoIV9f\nX23YsEHbtm1Ty5YtHSdBUVFR6tKli8qXL++s4edrf3be3nfffQoKCpIk+fr6ysfHx9EKnnXecq+v\nuWvXLs2aNUvFixfXzz//rJ9++kkhISEKCAhw5HS7jgReXl7y8/NTQECAJPK9mbNnz2rSpEl64IEH\nHJ0wLBaLxo0bp7Vr1+qzzz5T6dKltWXLFq1evVqlS5dWlSpV5Orqqho1aqht27Zq2bKlk/cif8i5\ndEzXrl21YsUKubu7q2LFirpy5Yo2b96sFStWyDAMNW7c2PG8Tz75RB9//LGuXr2qzz77TDNnzpSn\np6emTp3KcfdXZHv3HDhwQDNnzlS3bt3Uvn17x+Pjxo3T9u3bNXXqVGVkZGjnzp1av3696tSp4yju\nioyMVJMmTdShQwdnDT9fI1vzkK25yNc8ZGsesjUX+eYtd3d3hYaG6vPPP3d8VvP000+rSpUqstvt\njvXhU1NTNW7cOGVmZurJJ590XOieNWuWFi5cqKZNm6pDhw4UeOdAtuZyc3NTVFSUli9frp9//lku\nLi7q2rWr7rvvPkmSp6enPD09ZbfbNX78eB0/flzdu3dXuXLlJEnbtm3T+PHjVbZsWfXo0cPRuaSw\nd+fMysqSq6urUlNT1b17d3399de6cOGCDMPQoUOHtG7dOsXHx8vDw0PVqlWTu7u7JGnOnDmKjY1V\nVlaWPvvsM3366afy9vZWTEwMN4b9imwBcGUAecYwjBse69ChgyZMmCAvLy8lJiZqwoQJkiRXV1dl\nZWU5OhJUq1ZNw4YNU+PGjRUbG6sRI0bo4sWLd3sX7gmGYTgq+S5evKjU1FT9/PPPunLlyk2/v06d\nOmrXrp0Mw9CWLVsc2/Dy8lKTJk0k5a4MLIxyzt3sLDIyMiRd70hwq/WkGzVqpFatWikrK0snTpyQ\nJEf1cIkSJcwe9j3lr8zbzZs333K7hflNUrbsAoIpU6bIx8dHH330kd5++221bt1acXFxGjNmjPbu\n3Zvr97xPnz7q06eP7Ha7hg0bpkWLFt102+R7o4sXL+rq1as6ceKELl++LOl6RfWsWbPUsWNH2Ww2\n9enTR/fff7/sdrtGjhypCRMmaN26dZLkaEFY2I+70vW2d+np6Ro4cKD279+v5557Tl999ZVmzZql\nJUuWaODAgTIMQ9OmTdOGDRskSWfOnFFsbKxiY2P1xhtv6Ntvv1VoaKjmzp2rypUrO3mP8g+yvXvO\nnDmjrKwspaamOh6bMWOG5s+fry5duqhOnTrq2bOnqlWrpqSkJD3//PNasWKFzp49K0mqV6+epN/O\nH/AbsjUP2ZqLfM1DtuYhW3ORb97J/mzhyy+/lJubm6pWraq0tDQNGjRIGzZskNVqlcVikd1ul7e3\nt2rUqKFLly7pq6++0saNG/X+++/rww8/VMmSJdW7d2+WmMuBbO+OVatW6dixYypRooQyMjL03nvv\naePGjY6vZ3eDrFGjhqTrS0wcO3ZMa9as0dixY5WYmKhu3brl6v5Q2G/+yO4e26dPH+3Zs0ddu3bV\n4sWLtXDhQs2YMUOtW7fW9u3bNXv2bP3444+Srt889sknnygmJkbdu3fXnDlzVK5cOc2ZM0chISFO\n3qP8g2wB8GqOPJHzTtikpCT99NNP8vPzU/HixdW6dWuNHTtWAwcO1OLFi1WsWDENGTJELi4uuToS\nVKtWTa+99poGDRqktm3bchE2h5ztxC0Wi65duyZPT0+VL19eYWFhOnPmjH7++Wf5+Pjk+rfIyMhw\nnPhLclyw/f2FwcJ8spmdl91uV1ZWlhITExUUFKQKFSqofPnyiouL088//6wSJUrkyjZ7aQN/f39J\n19s/S7qhe0ZhltfzFrnlzHf9+vX64IMPNHPmTMcFv0qVKikjI0Pr1q3T6NGjNXjwYNWuXVsWi0UW\ni0V9+vSR1WpVTEyMBg8erPDwcC4U5nCrZRzCw8PVqlUr+fn5ycvLS9u3b9e0adMUHh6up556ylF1\nnf0aVrRoUc2YMeOGVvCF+bgryVGctWfPHm3evFlRUVHq27evIz9vb2+tXLlSnp6e+sc//qH77rtP\nZ86cUdmyZfXxxx9rxYoVunbtmkqUKKFatWpxzpAD2ZrjVseEsLAwVapUyXEesG7dOk2bNk0NGzbU\nY489Jnd3dwUFBcnLy0uSdPnyZfXt21efffaZAgMDHedkhfn8gWzNQ7bmIl/zkK15yNZc5Gue7M8M\nst/PPvTQQ6pZs6bq1Kmj999/X3PmzNGAAQM0fvx4RUZGOv4d2rZtq9WrV2vq1KmObVWoUEGTJ092\ndDws7MjWXL8/LthsNr355puqXbu25s+frzlz5qh///435Fu7dm1HV7g5c+YoNTVVdrtdgwcP1qOP\nPipJt7zpqaC72X6vXbtWP/zwgx566CENGDDA0QWjSZMmeuedd+Th4aHGjRvLZrPpl19+UY0aNfTO\nO+/ohx9+0LVr11ShQgW1atXK0d2hsCJbAL9HEQH+spwX/2bOnKlFixbpwIEDKlu2rCIjI9W3b99c\nhQSzZ8+WYRgaOnToDYUENptNn376qfz8/CQV3pOhnHLmu2zZMu3YsUP79u1TUFCQ7rvvPpUvX177\n9+/XkCFD9PHHH8vDw0OZmZlycXFxtN9PTEyUq6urGjZs6MxdyXdyrhc9ceJE7d27V4cOHVJYWJha\ntGihChUq6IcfftDAgQM1adIkeXp6Oir/sy/G/Pe//1WJEiVUt25dZ+5KvsO8NVfOfI8fPy5vb28F\nBwcrISFBXbt21dy5c1WpUiW99tprslgsWrt2rUaPHq1BgwapTp06slgsyszMVO/evZWRkSFvb28K\nCHLIme/hw4eVnJys1NRUFStWTA0aNFD//v3l5+cnNzc3xcbG6ty5cxo5cqRjWQjpeqFRqVKlNHz4\ncBUpUsTR+aWwy5mtdL21a0pKih588EHHcTUrK0t///vfFRcXp549e6pPnz5auHChvvzyS7311luq\nXr067VxvgmzNkzPbffv26dSpU0pLS1P58uXVoEEDvfrqq6pWrZokacWKFUpJSdGLL77o6Dzi7e0t\nDw8P1apVS+3bt5efn58iIiKctj/5Cdmah2zNRb7mIVvzkK25yNc82Z/dpKena8WKFdq/f7+KFi2q\nkJAQeXt761//+peysrI0b9489evXz3Ex1jAMtW/fXlarVRs2bND58+cVGhqqTp06sVTXr8jWXDmP\nC3v37tXp06dlt9sVEBCgKlWq6NVXX1VmZqbmz5+fK19JatmypUaMGKElS5bo2LFjioiIUPv27fXg\ngw9KunXRUkG2bNkyVatWTVWqVHHcgJRt7969kqTu3bs7LnJnZmbqmWee0YEDB/T888+rb9++WrJk\nifbt26ehQ4eqcePGuZb3K8zIFsAtGcBfkJWV5fj7u+++a9hsNiM8PNxo3769ERkZadhsNuPll182\nEhMTDcMwjJUrVxp16tQxbDab8dZbbzmem5mZecO27Xa7+TuQz+XM4P333zdsNpsj4+xsjx49arRv\n396w2WxGr169jJSUlFzb2LFjh9GuXTsjKirK2L9//93ehXwre+6mpKQYTz75pGGz2YyoqCijZcuW\nRnh4uDF16lTj/PnzRrt27QybzWZER0cbFy9ezLWNefPmGTVr1jR69Ohxw9cKM+atuXIed2NiYoxG\njRo5ss0+vkZGRhpHjx41DMMwEhISjOeff96w2WzGE088YezevdtYu3atMXr0aCM2NvaW2y6scmYw\nbdo0o0WLFo45bLPZjP79+xtbtmwxrl27ZmRkZBhRUVFGZGSk8csvvzieFxsba9SuXdsYMGDALbdd\nGGW/1qemphoxMTFGQkKCsXDhQsNmsxlffPGFYRiGkZGRYXTu3Nmw2WzGe++958i1V69eRlhYmLFp\n0yanjT8/I1vz5Py9nTp1quP81mazGT169DAuXLjg+HpSUpIRHh5uPPPMM4ZhXM/cMAxj7dq1hs1m\nM95///1bbrswIlvzkK25yNc8ZGsesjUX+Zon+zw3JSXF6NGjh1GjRg1HtiNGjHB8FpOWlmYMHz7c\nsNlsRsOGDY3169c7tnH16lXDMK5nyWeNvyFbc93uuBAdHe34rDwtLc14/fXXHflu2LDhhm1dvHjR\nuHbt2k23XVikpaUZL730ktGtWzfj8OHDhmFcf/+b/b42e45u3rzZMIzr8zvn+9/Lly8bycnJRvPm\nzY3w8HDjxIkTubZfmOcv2QK4HToR4C/Jrnj8+OOPNX36dEVGRuqf//ynqlevrk2bNmnEiBFas2aN\nsrKy9Prrr9/QkcBqtWrw4MGOTgQ5uw4U9g4E0m8ZzJo1S9OmTVOzZs3Uu3dvlStXTv/9738dbfcn\nTJigl19+WevWrdNTTz2lzp07KygoSKdPn9bnn3+uhIQEvfHGG471tHB97mZkZGjw4MHav3+/evXq\npT59+ig9PV2JiYmqXLmyLBaLYmJi9PLLL2vjxo166qmn1Lx5c1WoUEE7duzQ6tWrVbRoUQ0ZMiTX\nWmSFHfPWXNnH3Y8++kiTJk1S48aN1bVrVwUGBur06dNasGCBYmNj9cwzz2j27NkKCQnR4MGDJV1v\nQfbSSy/pl19+UVpamsLDw2+67cIsO4MPP/xQkyZNUrly5fT000/LarVq1apVWrp0qfbv368ePXro\n4YcfVqVKlRQfH6/Dhw8rPDxcO3fu1MSJE5WZmam2bdvedNuFlYuLi65evarOnTvr0KFDqlSpkmOd\nzDVr1igiIkKvvvqq4y75559/Xj4+PpKkUqVKKTMzU4mJic7chXyLbM2T/Xs7fvx4TZs2TcHBwfrb\n3/4mu92ukJAQeXh4OL7XYrHIarXq8uXLunbtmjw8HVIh6AAAIABJREFUPLRjxw5NmTJFXl5eatCg\nwU23XViRrXnI1lzkax6yNQ/Zmot8zWEYhlxcXJSWlqYePXooLi5OHTp0UOvWrZWSkqLKlSs7Povx\n8PDQ66+/LklasGCB+vXrp/fff18HDx7UokWL9NZbb6levXrO3J18hWzN97+OC0WLFpV0Pd9hw4bJ\nbrfriy++UP/+/TV58mRZrVZ99NFHio6OztWh0zCMQnlcsFgsSklJ0ebNm/XOO++oX79+euONN1Sp\nUiW9/fbbKlmypCTpyJEjqlmzpqKjo294/2u32xUcHKzExETH8jI5t19YkS2A23JuDQMKgri4OKNF\nixbGY489ZsTHxzsej4+PN+6//34jLCzMsNlsRp8+fYykpCTDMK53JKhfv75hs9mMIUOGOGvo94TE\nxESjY8eORrNmzW56R3Z29enu3buNhx56yJFr9p9GjRoZc+bMcXw/1X+/2bNnj1GvXj0jOjraSE1N\nveX3xcbGGp06dTKaN2/uyDUsLMzo0qWLo0ITuTFvzXX48GHj/vvvN1q3bm0cOHDghq8PHjz4ho4E\nx48fN/r372+0adPGiIiIyJUvcnfESUxMNNq1a2d07tzZOHjwoOPxkydPGmPGjDHq169vtGzZ0li8\neLExbNgww2azGS1btjSefPJJo169eobNZjNmzJjhhL3In7LvrrLb7cYnn3xihIWFGcOHDzfS0tKM\nrKwso0uXLkZ4eLjRrFkzx91Xly9fzrWN6Ohoo3HjxsahQ4ecsQv5FtneHUuWLDFq1apl9OrV64Zj\nbkZGhpGQkGBs27bN+OWXX4zHH3/csNlsRufOnY3XXnvNuO+++wybzWbMnDnTSaPP38jWPGRrLvI1\nD9mah2zNRb7myMrKMkaPHm1Ur17dGDduXK67sQ3jemeHlStXGt9++61x7do149q1a8bIkSNzfb5Q\np04dx/ti/IZszfe/jgvHjh0ztm7dahiGYaSnp+fKt0mTJobNZjMWLFjgjKHnSzt37jR69OiRqxPn\njBkzjKysLCMuLs5o0qSJ0aZNG+OBBx64oQOfYVx/39yxY0fj/vvvN86fP+/EPcl/yBbArdCJAH9Z\nQkKCkpKS9PLLL+daD3rmzJm6cuWK3n77bc2cOVMrV65UVlaWhg8frtatW2vUqFHq27evgoKCnDj6\n/O/8+fM6dOiQHn/8cdWoUeOGNa+sVquOHDmipUuXqmrVqnruued08uRJXbhwQTVr1lTVqlVVq1Yt\nSYVzvazbOXLkiFJSUtSuXTt5eXk51oLLadOmTfrkk09ks9nUsWNHJSQkyG63y2azKTg4WMWLF3fS\n6PM35q25Lly4oKSkJD333HOy2WwyDEPS9fX2XF1dNWrUKKWkpOg///nPDR0JMjIylJKS4lh7k3yv\ny16ncPXq1UpPT9eJEyfUo0cPVatWTYZhyG63q3z58oqOjpaHh4emT5+uZcuWacyYMUpJSVFsbKxO\nnz6tqlWr6tlnn1WnTp0kka8kubq6KjU1VV988YUOHz6swMBADRw4UB4eHkpPT1enTp109uxZnTlz\nRk2aNNFjjz3muCtDkmbPnq3NmzerSZMmKlOmjBP3JP8hW/NlZWXphx9+UFZWlnr27Cmbzeb42vLl\ny7VixQqtX79eKSkp6tixowYNGqQ33nhDcXFxiouLk7+/v0aMGKHOnTtL4piQE9mah2zNRb7mIVvz\nkK25yNc8qamp2rJliypUqKDnn39e7u7ukqT09HSNGzdOmzdv1sGDByVJkZGRevPNNzVs2DC5ublp\nw4YNKlmypF5//XVVqlTJmbuRL5Gtuf7McaF58+YaPHiwhg0bJovFovnz58vNzU3Dhg3Tk08+6cS9\nyF/q1q2rF198UVu3blV6erqCgoLUpEkTWa1WVaxYUc2bN9eiRYtktVrVqVMn9ejRw9GBT7p+reLH\nH3/Ugw8+KG9vbyfuSf5DtgBuhSIC/GUHDx6U3W7P9QLx0UcfadGiRerfv7/atWsnwzA0evRorV+/\nXoMGDdKwYcPUtm1brV69WuXKlZOkG5YzwHVJSUnKzMzUzz//rIyMDMeFrpwCAgK0du1aGYahoUOH\nqkSJEjd8j1FI213dTmpqqiTp5MmTkm7eXqlSpUqKi4tT9erVVa9evVwtxHBrzFtznTlzRllZWbpy\n5Yqk34oHXF1dlZWVJRcXF40YMUIJCQk6ePCgunbtqrlz5yo4ODjXdsg3tyVLlmjgwIGqVauWihcv\nrlKlSkn6LV9J8vf3V+fOnbV3716tXbtW69at0zvvvKOEhARJUrFixRzP48O/6wzD0KRJkzR9+nR5\neHjIZrM53my6u7urXbt2OnXqlBYuXKh9+/ZpypQpatu2rTw9PbVy5Up9/fXX8vPz05AhQ3JdAAfZ\n3g1ZWVlKSEiQv7+/o73wzp07tXTpUs2dO1eSFBwcLC8vLy1atEhFihTRl19+qe+++04BAQHy9/dX\ntWrVJHFM+D2yNQ/Zmot8zUO25iFbc5Gvea5evaoLFy4oMDBQRYoU0ZkzZ7Rt2zbHBStfX19FRUXp\nxIkTio2N1eTJk/XWW29p0KBBevHFF+Xu7i4vLy9n70a+RLbm+jPHhXXr1snLy0sTJkzQ0KFD9cwz\nz8jd3V1ly5aVxHEhp3//+98yDEMBAQE6efKk3n33XQ0ePFhVqlTRK6+8opMnT2r79u3avXu3Nm7c\nqJCQEPn5+enzzz/XvHnzFBgYqFdeeUWenp7O3pV8h2wB3AxFBPjLbDabihQpoqNHj0qSVqxYoWnT\npikqKsrxQXXDhg3l5uamzMxMbd68WQ8//LCWLFmiypUrS+Jk6HaqVKmiMmXK6Pjx48rIyJCbm5vj\nIqF0PTsvLy/ZbDatWLFCP/74o5o2bXpDphRo3KhGjRoqUqSIduzYIbvdLhcXlxuy9fPzU3BwsA4d\nOqSEhASFhISQ5R/AvDVXjRo15Ovrq0OHDkm6fjdydnYuLi6y2+3y8PBwrGF4/vx59e7dW59++qnK\nlCnjKNoi39waNWqkBx98UKtXr1ZaWpq2b9+uFi1a3NChJDAwUD179tQPP/ygPXv26NFHH3V0dshG\ngcZvLBaL/vGPf+jChQtavny59uzZo88++0zdu3eXJPn4+Cg6Olp+fn76+uuv9c0332jJkiWODKtX\nr66xY8feUAQDsr1bAgMDtXPnTvXp00dWq1W7d+9WUlKSihcvrgEDBqhVq1ZKTk5Wz5499e9//1s9\ne/bUo48+mmsbHBNujmzNQ7bmIl/zkK15yNZc5GsOLy8vlS9fXjt27FDXrl2VmJios2fPSpIiIiI0\ndOhQValSRceOHVOnTp20f/9+XbhwQSVKlHC8H8bNka35/sxxYePGjTp27JgqVaqU6/0Zx4XcXnzx\nRTVu3FgVK1bU+PHjFRsbq7fffltDhw5V5cqVNW7cOL399tvasGGDBg4cKDc3N1mtVl27dk3BwcGa\nOHEiXZFvgWwB3IzLG2+88YazB4F7W3bVdNu2beXr66uxY8fq9OnTGj58uMLCwiRdvxtu0aJFCgsL\nU4MGDfTwww+rVatWjm1wIevWXFxcFBcXp23btuns2bNq06aNrFarMjMzJclx0XDTpk06duyYunXr\nppIlS5LpH+Dh4aHNmzdr586dOnPmjFq3bi2r1aqsrCwZhiEXFxe5urpqwYIF8vb2Vrdu3eTh4eHs\nYd8TmLfmcnNz08aNG7Vz506lpqYqMjJSFotFmZmZslgsslqtcnNz07p161SsWDFVrFhRe/fu1aVL\nlxQZGSk3Nzdn70K+5OPjo7p16yo5OVlHjhzRlStXVKNGDZUuXdrxPXa7XRaLRSkpKZo3b558fX31\nyCOPOB7PxlzOzcfHR+Hh4UpOTtbhw4d19uxZlSpVSiEhIZKunyfUqFFDrVu3dtyJVaNGDUVHR6tX\nr14qX768k/cg/yJbc7m4uKhq1apatWqV9u7dqyNHjqho0aJ68skn1a9fP7Vs2VKenp7y9/fXhg0b\ndOHCBXXp0kVFihTJtR2OCTciW/OQrbnI1zxkax6yNRf5msfd3V116tTR+vXrdfz4cZ0/f15RUVGK\njo7Wyy+/rMDAQEnXO8LNnTtXpUuXVufOnbno+geQrbn+7HEhOTlZ3bt357jwP/j6+qp69eoKDAx0\nFLls3bpVx44dU61atRQUFKTGjRurVq1a8vb2VpEiRVStWjU99dRTGjBggCpUqODsXci3yBbAzdCJ\nAH9ZyZIl1aVLF8ca52vXrtXf/vY3NWrUyHHn8dq1a3Xs2DFFR0fr8ccfdzyXDgT/m4+PjwYOHKjt\n27frm2++kaenp0aOHJnrztht27Zp5cqVKleu3A0nm7g1Pz8/vfXWW3rqqacc6zq9/fbbuVrvz549\n27Gm081a8uPmmLfmKlasmAYPHqzu3bvrs88+k6enp/r27Zsr361bt2r9+vV69tlnHXe5xMXF6dq1\na7QcvI1SpUqpX79+ysjI0LfffqtZs2bpxRdfdHTOyZa9fEFERIQk8Vr2B2Rnm5mZqaVLl2r69Oly\ndXVVixYtJF3vqFGqVClFR0c7d6D3ILI1V0hIiObMmaNdu3bp8uXLatGihfz9/eXp6ek4l920aZN2\n7dqliIgIlob4E8jWPGRrLvI1D9mah2zNRb7mqVy5subOnatz587p0qVLN+1i+Omnnyo5OVmPP/44\n783+BLI11589LuRcYx7/W82aNTV48GCNHj1amzZt0ptvvunooNG6dWu1bNnScbMYn+n+OWQLIBud\nCJAnsqsijxw5okWLFik4OFgPPPCArFarduzYoQkTJigjI0NdunRxrOeU83m4PT8/P9WuXVurVq3S\nrl27tG/fPseJ5aZNmzRx4kQdP35c/fv3d1zQwh9TokQJhYeHa/Xq1YqLi9POnTt15coVpaSkaObM\nmZo9e7a8vb317rvvKiAgwNnDvacwb81VpkwZlSlTRhs3btSmTZt0/PhxlStXToZhaMuWLZo8ebJO\nnz6tLl26qHr16tqwYYN2796tNm3aqHTp0hx/b6NIkSKqW7eukpKStHTpUiUnJ8vLy0vBwcGyWCza\nvn27Jk6cqIsXL+q5557jTu4/ITvbc+fOaePGjTp16pT8/f0d2WZlZfHB1B0iW3P5+vrKZrMpPDxc\nxYoVU1JSkooVKyaLxaKtW7fqgw8+0KlTp9S3b1+FhoY6e7j3FLI1D9mai3zNQ7bmIVtzka95fHx8\nVLp0acedrtu3b1fp0qVlt9s1c+ZMffTRR/L399fQoUNptf8nka25OC6Yx2KxKCAgQNWrV9fRo0e1\ndetWHT16VLVr19Z3332njz/+WBEREdy4dAfIFkA2i2EYhrMHgYLj7Nmz6tChg65evarHH39cgYGB\nWrRokU6dOqXhw4erS5cuzh7iPW3Pnj3q16+fTp8+netxT09PDRgwQF27dpUkx3rn+OPi4+P16quv\n6siRI7Lb7Y7Hq1evrnHjxt1wFzL+OOateTIzM7V27VoNHz5cFy5ckMVikYuLi2PZiP/7v//Ts88+\nK0l68sknlZqaqvnz51Pd/gf99NNPGjNmjJYvXy4vLy/VqFFDLi4uio+P16VLlzRkyBDH/MWf89NP\nP+mdd97RsmXLVLt2bT3//POOu+Y5Fvw1ZGu+vXv3qk+fPrLZbCpevLjWrl2ry5cva9CgQerevbsk\nsr5TZGsesjUX+ZqHbM1DtuYiX/PMnTtXb775pmrVqqVr167p0KFDCggI0KeffqqqVas6e3j3NLI1\nF8cFcxiGofj4eI0ePVrbtm2Tr6+vLl26pCJFimjx4sXc+PEXkC0AljNAngoMDNTw4cM1cuRIffnl\nl5KuV7TmLCDgZOjOhYeHa+7cufr++++1b98+Xbx4UeHh4apbt64aNWokiSUi7lRoaKhmzJihPXv2\naP/+/bJYLKpevbrq1Kkjf39/Zw/vnsa8NY+rq6tat26t6tWr69tvv9WBAwd07tw5hYaGKjIyUi1b\ntpQkTZ8+XXv27FGnTp1yLXmA2wsICNCgQYPk6uqq5cuXa9u2bapYsaK6dOmihg0b6r777pPE/L0T\nAQEB+r//+z9J0rJlyzR9+nRlZGSoTZs2nCP8RWRrLsMwdOHCBaWmpmr9+vWSpKpVq+q1117TY489\nJoljwp0iW/OQrbnI1zxkax6yNRf5msdut6tcuXIqV66cEhISVKRIEXXo0EGvvPIK63H/RWRrLo4L\n5rFYLAoNDdXrr7+uUaNGac+ePY6bwrjI/deQLQA6EcAUe/bs0fLly1W5cmWFhISoXr16kjgZMhv5\n4l7EvM1bOdcjs9vtmj59umbMmCFPT0/NnDlTQUFBTh7hvefcuXMaP368lixZorp166pnz56KioqS\ndL0bBIUZd+6nn37Se++9p8WLF6tp06aKiYmRt7e3s4dVIJCtuc6fP6/ExEQZhqGSJUsqMDBQEq9p\neYFszUO25iJf85CtecjWXORrnuxlKF1cXOTj4yNPT09nD6nAIFtzcVwwl2EYSkhIUMmSJVWsWDFn\nD6dAIVugcKKIAHcNHQjyTnaW2b++5Jp3cs5T5mzeYt6aKzvfq1ev6ttvv9X8+fOVnp6uI0eOqGzZ\nspo6daqqVKni7GHes86dO5erRfwLL7xAi/g8kpSUpEmTJqlbt24sHZPHyPbu4lhgHrI1D9mai3zN\nQ7bmIVtzkS+A3+O4kDfI0TxkCxReFBH8BW+99ZbmzJmjMWPGONoO4Te8uADA3XflyhX961//Umxs\nrMqXL6+IiAhFR0fTZiwP5Fxrvn79+vrHP/6hNm3aOHtYBQIdHcxDtgAAAAAAAAD+LD5RvEOrVq3S\n559/zkXy2yAbALj7fHx89N577yklJUVFihSRh4eH3NzcnD2sAiF7rXkXFxctXrxYHh4eioyMpEV8\nHuAit3nIFgAAAAAAAMCfxaeKd2DNmjXq16+faOIAAMiPfHx85OPj4+xhFEgBAQHq37+/PDw81K1b\nNwoIAAAAAAAAAAAFDkUEf4JhGPrwww81depUGYZBu34AAAqh0qVLa/jw4dzhDQAAAAAAAAAokKzO\nHsC9YsOGDXrkkUc0efJkGYahsLAwZw8JAAA4CQUEAAAAAAAAAICCik/A/6CePXvKYrHIzc1NL774\noh5++GG1adPG2cMCAAAAAAAAAAAAACDPUETwB1mtVrVp00avvPKKKlWqpNOnTzt7SAAAAAAAAAAA\nAAAA5CmKCP6g5cuXq2LFis4eBgAAAAAAAAAAAAAAprE6ewD3CgoIAAAAAAAAAAAAAAAFHUUEAAAA\nAAAAAAAAAABAEkUEAAAAAAAAAAAAAADgVxQRAAAAAAAAAAAAAAAASZKrswcA6f77Wzp7CAVOaGh1\nTZ48WZLUu3dvxccfcPKICo6c2drtdiePpmCyWq/XdzF38xZz11zMW/PwmmYesjUP2ZqLfM1DtuYh\nW3NxrmsuznXNwXHBXORrHrI1D69n5uL1zDwcF8z3/fdrnD0E5LEnnnhCycnJ6ty5s1544QVnDwc3\nQRFBPmAYnBDlNcMwcv2djPNOzmwtFosTR1LwMXfzFnP37mDe5j1e08xDtuYhW3ORr3nI1jxkay7O\nde8O5m7e4rhgLvI1D9mah9ezu4N5m/c4LgAoiFjOAAAAAAAAAAAAAAAASKKIAAAAAAAAAAAAAAAA\n/IoiAgAAAAAAAAAAAAAAIIkiAgAAAAAAAAAAAAAA8CuKCAAAAAAAAAAAAAAAgCSKCP4Si8Uii8Xi\n7GEAAAAAAAAAAAAAAJAnXJ09gHtVuXLlFB8f7+xhAAAAAAAAAAAAAACQZ+hEAAAAAAAAAAAAAAAA\nJFFEAAAAAAAAAAAAAAAAfkURAQAAAAAAAAAAAAAAkEQRAQAAAAAAAAAAAAAA+BVFBAAAAAAAAAAA\nAAAAQBJFBAAAAAAAAAAAAAAA4FcUEQAAAAAAAAAAAAAAAEmSq7MHAAAAAAAAAAAAAAAoXC5cuKCD\nBw9KkqxWqywWy//84+rqqtKlS8tisTh59AUbRQQAAAAAAAAAAAAAgLsiOTlZkrRy5UqtXLnyjrax\nZs0aCglMRBEBAKDQ6d27t+Lj4509jAIjNDRUU6ZMcfYwAAAAAAAAAACFxOzZs1W0aNE/9ZwqVaqo\nVq1aJo2oYKGIAABQ6EyePNnZQwAAAAAAAAAAAHdoxowZd/S8vn37qmPHjnk8moLH6uwBAAAAAAAA\nAAAAAABgNrvd7uwh3BPoRAAAAAAAAAAAAAAAuCv8/f2VnJwsm82mVq1aOR63WCwyDCPX997ssTtV\npUoV1a1bN0+2VdBRRAAAAAAAAAAAAAAAuKvq1KmjJ554wtnDwE2wnAEAAAAAAAAAAAAAAJBEEQEA\nAAAAAAAAAAAAAPgVyxkAAAAAAAAAAAAAAO6Kq1evSpIWLFigBQsW/Onnjxo1Sk2aNMnrYSEHOhEA\nAAAAAAAAAAAAAO6KlJSUv/T81157TWlpaXk0GtwMnQgAAIVO7969FR8f7+xhFBihoaGaMmWKs4cB\nAAAAAAAAALiLrl69qnPnzv3h7zcMQ4Zh5MnPzszMzJPt4OYoIgAAAAAAAAAAAAAA/GErV67UqFGj\nnD0MmIQiAgBAoTN58mRnDwFAPsNxAQAAAAAAAPjjnF1A4OXl5dSfX9BRRAAAAIBCj2VO8hbLnAAA\nAAAAAOCPeOONNxzLHGQvdZDzv7//u6urq6KiouTi4uK0MRcGFBEAAAAAAAAAAAAAAP6w559/XtOm\nTfvL22nevHkejAZ5jSICAAAAAAAAAAAAAMAf9tRTTykiIkLbtm1zdAuw2+2OP1lZWbn+P+efL7/8\nUpLUuXNnZ+4CboMiAgAAAAAAAAAAAADAnxIcHKzg4OA//by1a9cqOTlZx44d03fffSer1SqLxSIX\nFxdZLBZZrdbbPubr66siRYrIYrFIkiwWi+NP9v/nfDz7715eXvL09MybnS/gKCIAAAAAAAAAAAAA\nANwVycnJkqStW7dq69atd/Vnh4aGavLkyXf1Z96LKCIAABQ6vXv3Vnx8vLOHUWCEhoZqypQpzh4G\nAAAAxLluXuNcFwAAAChYeL/0x1BEAAAAAAAAUEBwRw0AAAAA3FqXLl2cPYR7AkUEAAAAAAAAAAAA\nAIB7xscffyx/f39ZLJYb/litVkmS1WqVxWKRJMfjLi4uzhz2PYMiAgBAocPdWQAAAAAAAAAA3LvK\nli0rb29vZw+jwKKIAABQ6LBObN5inVgAAAAAAAAAwN1kGIazh1CgUUQAACh06EQAAAAAAAAAAMC9\ny93d3dlDKNAoIgAAFDp0IshbdCIAAAAAAAAAANxNV69elZubm7OHUWBRRAAAKHToRAAAAAAAAAAA\nwL2L5QzMRREBAKDQoRNB3qITAQAAAAAAAADgbqKIwFxWZw8AAAAAAAAAAAAAAIA/6sqVK84eQoFG\nJwIAQKEzadIkZw8BAAAAAAAAAADcIVdXLnObiXQBAIXOSy+9xHIGeYjlDAAAAAAAAAAAd5O7u7uz\nh1CgUUQAACh0Jk+e7OwhAAAAAAAAAACAO+Ti4uLsIRRoFBEAAAqd3r1704kgD9GJAAAAAAAAAACA\ngoMiAgBAoUMnAgAAAAAAAAAA7l2enp7OHkKBRhEBAAAAAAAAAAAAAOCe8cADD9zR8xYuXCh/f/88\nHk3BQxEBAKDQMQzD2UMocCwWi7OHAAAAAAAAAADAbT3xxBP6/vvvnT2MfI8iAgBAocMFbwAAABRU\nFMzmPd4/AAAAAChsKCIAAAAAAAAoILjgDQAAAAD4q6zOHgAAAAAAAAAAAAAAAGb797//7ewh3BMo\nIgAAAAAAAAAAAAAAFHgnT5509hDuCSxnAAAAAAAAUED07t1b8fHxzh5GgREaGqopU6Y4exgAAAAA\n8sjo0aM1f/58Zw8j36OIAAAAAAAAoICYNGmSs4cAAAAAAPlWYGCgs4dwT6CIAAAAAAAAoIB46aWX\n6ESQh+hEAAAAABQsCQkJzh7CPYEiAgAAAAAAgAJi8uTJzh4CAAAAAORb5cuXd/YQ7gkUEQAACh3D\nMJw9hALHYrE4ewgAAACQ1Lt3bzoR5CE6EQAAAAAFC9cH/hiKCAAAhQ4XvAEAAAAAAAAAKHxYzuCP\nsTp7AAAAAAAAAAAAAAAAmK1Zs2bOHsI9gU4EAAAAAAAABcTkyZOdPQQAAAAAyLd8fX2dPYR7AkUE\nAAAAAAAABUTv3r0VHx/v7GEUGKGhoZoyZYqzhwEAAAAgj5w8edLZQ7gnUEQAAAAAAABQQEyaNMnZ\nQwAAAACAfCs9Pd3ZQ7gnUEQAAAAAAABQQLz00kt0IshDdCIAAAAACpbKlSs7ewj3BIoIAAAAAAAA\nCojJkyc7ewgAAAAAkC81a9ZMTz/9tLOHcU+giAAAUOiwTmze4u4sAAAAAAAAAMDd5OnpKS8vr1yP\nWSyWm/43m7+/v9zd3e/OAO9xFBEAAAod7s4CAAAAAAAAAODelZaWprS0tD/1nEWLFqlIkSKKjo42\naVQFh9XZAwAAAAAAAAAAAAAAwGxhYWHOHsI9gU4EAAAAAAAAAAAAAIB7xhdffCGr9bf75X+/dIEk\nGYZx0/9PTk6+6ddv9/yAgICb/oyCiiICAAAAAAAAAAAAAMA948knn7zrP/M///mP3N3d7/rPdQaW\nMwAAAAAAAAAAAAAA4DZOnTrl7CHcNXQiAHDH/lebF9yZwtQOx1mYu3mPeQsAAJA/cK6b9zjXBQAA\nACBJHh4ezh7CXUMRAYA7xgcpuFcxdwEAAFBQca4LAAAAAOY4ceKEypUr5+xh3BUUEQC4Y9zhYg4+\n9DMfczfvMW8BAAAAAAAAAAVZmTJlnD2Eu4YiAgB37KWXXlJ8fLyzh1GghIaGasqUKc4eRoHH3M1b\nzFsAAAAAAAAAQEF36dIlZw/hrqGIAMAdmzx5srOHANwR5i4AAAAAAAAAAPgzvLy8nD2Eu4YiAgB3\nrHfv3tzNnce4o/vuYO7mLeYtAAAAAAAAAKADUAzhAAAgAElEQVSgO3bsmP6fvTsOtbMu/Dj+eW5u\nzjUVY2KKrmmauyIhRKG1hQOVVRQi6rS7UCrS7hUNNCxL12ZEUCESu7dt5R+COFuzIpRA6oINA+2P\n9I/ujKKhJK6uSYKNmt7z+6Nn+215V9vuued7zvO8XnDYvffs3OfjCDqc8z7Pc/7555ee0RMiAuCY\n+TQ3g8r/dgEAaCrBbHcJZgEAgP3aEhAkIgIAAACAxti0aVPpCQAAAI1z22235eyzzy49o2dEBAAA\nAAANUVVV6QkAAAB9bXJysvSEvjdUegAAAAAAAAAA0B+ciQCA1nGd2O5ynVgAgP7huW53ea4LAAC0\nkYgAgNYZHx8vPQEAAAAAAKAviQgAAAAAGkIwCwAAwFyJCABoHad47S6neAUA6B+e63aX57oAAEAb\niQgAaB2fzgIAoKk81wUAAGCuRAQAtI5PZ3WXT2cBAPQPz3W7y3NdAACgjUQEALSOT2cBANBUnusC\nAAAwVyICAAAAgIbodDqlJzROVVWlJwAAAF1y3XXXlZ4wEEQEALSOU7x2l1O8AgD0D294AwAAHN62\nbdty0003lZ7R94ZKDwAAAAAAAACA+bZkyZLSEwaCMxEA0DquEwsAQFM561Z3OesWAAA0yw033FB6\nwkAQEQAAAAA0hGAWAADg8LZs2ZKrr7669Iy+53IGAAAAAAAAADTevn37Sk8YCCICAAAAAAAAACCJ\nyxkAAAAANEan0yk9oXGqqio9AQAA6JKPfvSjpScMBBEBAAAAQEN4wxsAAGiDkZGRLFy48Kgec/75\n5+cDH/jAPC1qFhEBAAAAAAAAAANj7dq1OfHEE0vPaKyh0gMAAAAAAAAAgP4gIgAAAAAAAABgYHQ6\nndITGk1EAAAAAAAAAAAkEREAAAAAAAAAMEAWLFhQekKjHVd6AAAAAAAAAAAcqV//+tdZtGhRkqSq\nqkPuq6rqkJ/t//qMM87ImWee2buRA0xEAAAAANAQrgvaff/5giQAAFDevffee0yP+/CHP5wNGzZ0\neU3ziAgAAAAAGsIb3gAAAIf35JNPlp4wEEQEALTO6OhopqamSs9ojOHh4UxMTJSeAQAAAAAAdIGI\nAIDWGR8fLz0BAADmhcsZdJ+zOwAAQHOMjIyUnjAQRAQAAAAADeENbwAAgMNbtGhR6QkDYaj0AADo\ntU6n49blGwAAAAAA9LsHH3yw9ISB4EwEALSOT2cBAAAAAED77Nu3r/SEgSAiAKB1fHK++4QZAAD9\nwXPd7vNcFwAAaBsRAQCtMzY2lqmpqdIzGmN4eDgTExOlZwAAEG94AwAAMHciAgBaZ9OmTaUnAAAA\nAAAA9CURAQCt49NZAAAAAAAAsxMRANA6o6OjLmfQRS5nAAAAAAAAzSEiAKB1xsfHS08AAAAAAADo\nSyICAAAAgIbodDqlJzSOy6EBAEBzfOYznyk9YSCICAAAAAAawhveAAAAh/ehD32o9ISBICIAoHVG\nR0czNTVVekZjDA8PZ2JiovQMAADiuW63ea4LAADN8ulPfzqTk5OlZ/Q9EQEArbNp06bSEwAAYF6M\nj4+XngAAAMCAExEA0DpO8QoAAAAAAO3zne98p/SEgSAiAKB1Op1O6QmNI8wAAOgPLmfQXS5nAAAA\nzXL77be7nMEREBEA0Dre8AYAoKlczgAAAODwPvaxj5WeMBBEBAAAAAAN4UwE3eVMBAAA0Cy/+tWv\ncscdd5Se0fdEBAC0jhdWu8sLqwAA/cOZCAAAAA7vtddeKz1hIIgIAAAAABpCMNtdglkAAKCNRAQA\ntI5PZwEA0FSe6wIAAL3S6XRm/fNo/w79R0QAAAAAAAAAwBF7+umnc+edd5aecdSqqio9YSCICABo\nHaVj93niBQDQH1zOoLtczgAAAGZXOiBYvHhxFi9enOTfr0/vf416/9cHf7/fypUrc+ONN/Z86yAS\nEQDQOt7wBgCgqVzOAAAA6IX169dnw4YNxY6/bdu2nHjiicWO33QiAgAAAICGcCaC7nImAgAAmN1v\nfvObosf3YcH5JSIAoHVczqD7PGEDAAAAAGiPxx57rOjxvc4/v0QEALTO2NiYT2d1kU9n9Y5/5/nj\n1M8ANIX/TwMAANrAB9vml4gAgNbZtGlT6QlwTD7/+c8LYLro4ADGqZ+7S1wEAAAA0GynnXZa9uzZ\nU3oG82So9AAA6LWqqty6fAMAAAAAoD0uu+yyosf3uvT8EhEAAAAAAAAAcMTe9773lZ7APBIRAAAA\nAAAAAHDEXnzxxaLHf+ONN4oev+lEBAAAAAAAAAAcsampqaLHX7hwYdHjN91xpQcAQK91Op3SExrH\n9acAAAAAANqj9JkAhoZ8Vn4+iQgAaB1veAMAAAAAwLE788wzix5/zZo1x/S47du3Z+nSpV1e0zwS\nDQAAAAAAAACO2KpVq0pPOCbXXHNN6QkDwZkIAAAAAAAAADhi55xzTh5//PH85S9/SVVVqarqkEsM\nDA0NHXJW4E6nk5mZmSTJunXrer6XoyMiAKB1Op1O6QmN4xIRAAAAAADtcsIJJ+Rd73pX6RnMAxEB\nAK3jDW8AAAAAAIDZDf3vvwIAAAAAAAAAtIEzEQDQOqOjo5mamio9ozGGh4czMTFRegYAAPFct9s8\n1wUAgOZZvXr1UT/mgx/8YL7+9a+35kzHzkQAAAAAAAAAAIfx1FNP5cUXXyw9o2eciQCA1hkfHy89\nAQAAAAAAWun+++/PbbfdVnrGUTv11FNLT+gZEQEAAAAAAAAAPfHe9743k5OTR/24q6++Oq+88sqc\nj3/XXXcd9WNWrVqVRYsWzfnYg0JEAAAAAAAAAEBPPPzww9myZUux419++eXFjj0oRAQAAAAADeHS\nXQAAQL8rGRAkyZ///OcDX3c6nUO+Pvj7g+8/66yzMjQ01JuBfUBEAAAAANAQo6OjmZqaKj2jMYaH\nhzMxMVF6BgAA0EXr1q076scsW7YsW7duzcKFC+dhUf8REQDQOl5Y7S4vrAIA9A9nIgAAAOi+F154\nIXv37hURAEBTeWEVAICmEsx2l2AWAAC6b/PmzbnppptKzzhqMzMzpSf0THsu3AAAAAAAAABAUYMY\nECTJyy+/XHpCz4gIAAAAAAAAAOAwFi1alBUrVpSe0TMuZwAAAAAAAABAT5x99tn505/+VOz4k5OT\nxY49KEQEAAAAAAAAAPTE9773vfzkJz/JX//616N63M9+9rP885//nNOxv/CFL8zp8W0hIgAAAAAA\nAACgJxYuXJhrr732qB93+umn57vf/e6cjr137945Pb4thkoPAIBe63Q6bl2+AQAAAADAfNqxY8ec\nf8fmzZu7sKT5nIkAgNapqqr0BAAAAAAAaKU333wzmzdvzu7du9PpdDIzM3Pgtv/7gz/Etv/7l156\nqfT01hARAAAAAAAAANATl112WekJ/A8uZwAAAAAAAABA411wwQWlJwwEEQEAAAAAAAAAPfH444/n\nlFNOKXLs3/3ud0WOO2hEBAAAAAAAAAD0xAMPPJBXX321yLHPOOOMIscdNCICAAAAAAAAAHrij3/8\nY7FjL1++vNixB8lxpQcAAAAAAAAA0A4bN27MAw88kJdeeimdTufALcl//f65556b87GfeuqpOf+O\nNhARANA6o6OjmZqaKj2jMYaHhzMxMVF6BgAAAAAAA2DJkiW59dZbj/pxq1evnoc1zMblDAAAAAAA\nAADoa2vWrCk9oTWciQCA1hkfHy89AQAAAAAAWumXv/xl7r333p4f99xzz803vvGNnh93EIkIAAAA\nAAAAAOiJbgQEP/zhD3Pqqad2YQ2zEREAAAAANMSmTZtKTwAAAJh3CxYsKD2h0UQEAAAAAA0xNjaW\nqamp0jMaY3h4OBMTE6VnAAAA/6HT6ZSe0GhDpQcAAAAAAAAAwJGamZkpPaHRnIkAAAAAoCFczgAA\nAGiDqqpKT2g0EQEAAABAQ7icQXe5nAEAAPSnN954o/SERhMRAAAAADTE+Ph46QkAAADz7rjjvM09\nn/zrAgAAADTE6OioMxF0kTMRAABAf+p0OqUnNNpQ6QEAAAAAAAAAtMPFF188598hIphfzkQAAAAA\nAAAAQE9s2LAhP/3pTzM9PZ2qqpLkkD/3f33w91VV5dlnn81zzz2XJLnmmmuO6dibNm3KBRdcMMf/\nguYTEQAAAAAAAAAU9Oyzz+aTn/xkvv/97+eSSy455L5PfepTeeaZZ97ymKqq8uCDD+b9739/r2Z2\nxcKFC48pAli3bt2cjz02NpbJyck5/56mExEAAAAAAAAAFLJ79+6MjY1lZmZm1vt///vf56KLLsrI\nyMhb7nv3u9893/P6xpo1a/KDH/xgTr9jxYoVXVrTbCICAAAAAAAAgAKeeOKJfPWrX81rr7026/0v\nv/xy/v73v+fiiy/Oxz/+8R6v6y/vfOc75/w7vvzlL3dhSfOJCAAAAAAAAAB67HOf+1yefPLJnHfe\neVm1alUee+yxt/yd559/Pknynve8p9fz5s3zzz+fsbGxvPnmmz0/9g033HDMj/3FL36RoaGhLq7p\nX+34rwQAAAAAAADoI7t3787tt9+eRx99NMuXL5/17+zatStVVeW8885LkuzduzedTqeHK7vvvvvu\nKxIQzNUf/vCH0hN6xpkIAGid0dHRTE1NlZ7RGMPDw5mYmCg9AwAAAABgoDz22GNZsGDBf/07u3bt\nSpJs3749jz/+eKanp3PCCSfkiiuuyJ133pl3vOMdvZj6Fjt37sxDDz2U3bt3Z/ny5RkZGcnKlSuP\n6LH7z64wSM4666wDIUcbiAgAaJ3x8fHSEwAAAAAAaLn/FRAk//+G+65du3LnnXfm+OOPz86dO7N9\n+/b89re/zfbt23PSSSfN99RD7Ny5M3ffffeB73ft2pW77747q1evzrJlyzIzM5Mk6XQ6B25JMjMz\n0xdnUZicnCw9oe+JCAAAAAAaQjALAADNMjIykr179+azn/3sgZ9dccUVOeecc/LNb34zW7duze23\n397TTQ899NCsPx+EN+fvv//+0hMGgogAAAAAAAAAoA+NjIwc9uff+ta3snPnzp5HBLt37+7p8Wbz\n8MMPZ+nSpamqKkNDQ6mqqvSkRhERAAAAADREP5watGm8GAkAQD9asGBBTjrppLz++us9P/by5cuz\na9eut/z89NNPz4033pjk38+j97/Bf/D3VVXla1/72pw3XH/99cf0uPvuuy8XXXTRnI/fdCICAAAA\ngIYYGxvL1NRU6RmNMTw8nImJidIzAABoqV27duWOO+7IypUr86UvfemQ+/72t7/l1VdfzYUXXtjz\nXSMjI7nnnnsOiZirqsro6GhWrlzZ8z1H4+mnnxYRHIGh0gMAAAAAAAAAONTy5cuzZ8+e/PjHP86e\nPXsOue/b3/52qqrKVVdd1fNdK1euzMaNG7NixYosWrQoK1asyMaNG/s+IFi1alXWrl1besZAcCYC\nAAAAgIYYHx8vPQEAAOiSRYsW5Stf+UruuuuuXHvttbn++uuzZMmSPPHEE3n66afziU98Ih/5yEeK\nbFu5cmWxaODSSy/N+vXrixy7LUQEAAAAAAAAAH3oyiuvzGmnnZYtW7Zk69atefPNN3POOedk/fr1\nue6660rPOyZLly7N9PR01q5dm5tvvrn0HGYhIgAAAAAAAAAo6JZbbsktt9wy632XXHJJLrnkkh4v\nos2GSg8AAAAAAAAAAPqDiAAAAAAAAAAASOJyBgAAAAAAAAD02COPPJJHHnmk9Iwjcs8992T16tWl\nZ/SMMxEAAAAAAAAA0BPT09OlJxy1jRs35pVXXik9o2eciQAAAACgIUZHRzM1NVV6RmMMDw9nYmKi\n9AwAAKCwyy+/PKecckrpGT0jIgAAAABoiPHx8dITAAAA+trk5GTpCX1PRABA6/h0Vnf5dBYAAAAA\nADSHiAAAAACgIQSz3SWYBQAA2khEAEDrOMUrAAAAAADA7EQEAAAAAA0hmAUAAJhdVVXZsWNH6RkD\nQUQAAAAAAAAAQE8sXbo009PTWbNmTa6//vpUVZWhoaEMDQ2lqqq87W1vO/CzqqpSVdWBx1ZVlZNP\nPrng+nYQEQAAAAAAAADQE6+99lqS5Oc//3mee+65JDkQC+wPBmaLB6qqytvf/vZ88YtfzLJly3o/\nvEVEBAAAAAAAAAD0xL/+9a8DX7/00ktH/fhbbrklO3bsyIIFC7o5i4MMlR4AAAAAAAAAAEfiwgsv\nzHHH+az8fPKvCwAAAAAAAEBPLF68OP/4xz+SJMuWLTvkUgb7b0ND//4s/P4/91/aYPHixbn11lsP\nudQB3SciAAAAAAAAAKAn9gcESfLCCy8c9eNvuumm/OhHP3I5g3nkcgYAAAAAAAAADIRzzz3X5Qzm\nmX9dAAAAAAAAAHpi6dKlmZ6ezpVXXpkbb7zxkPs6nc6B22zf73+8yxnMLxEBAAAAAAAAAD11/PHH\n5+STTy49g1m4nAEAAAAAAAAAkEREAAAAAAAAAADURAQAAAAAAAAAQBIRAQAAAAAAAABQExEAAAAA\nAAAAAElEBAAAAAAAAABATUQAAAAAAAAAACQREQAAAAAAAAAANREBAAAAAAAAAJBERAAAAAAAAAAA\n1I4rPQAAAAAAAACAdtm3b19ef/31VFU1621o6N+fhz/4Z/SGiAAAAAAAAACAnpienk6SPProo3n0\n0UeP+vGXXnpp1q9f3+1ZHMTlDAAAAAAAAAAYCM8880z27dtXekajiQgAAAAAAAAAGAhXXXVVFixY\nUHpGo4kIAAAAAAAAABgI27ZtcyaCeSYiAAAAAAAAAGAgrFu3zpkI5tlxpQcAAAAAAAAA0A5Lly7N\n9PR01q5dm5tvvrn0HGbhTAQAAAAAAAAAQBIRAQAAAAAAAABQExEAAAAAAAAAAElEBAAAAAAAAABA\nTUQAAAAAAAAAACQREQAAAAAAAAAANREBAAAAAAAAAJBERAAAAAAAAAAA1EQEAAAAAAAAAEASEQEA\nAAAAAAAAUBMRAAAAAAAAAABJRAQAAAAAAAAAQE1EAAAAAAAAAAAkEREAAAAAAAAAADURAQAAAAAA\nAACQREQAAAAAAAAAANREBAAAAAAAAABAEhEBAAAAAAAAAFATEQAAAAAAAAAASUQEAAAAAAAAAEBN\nRAAAAAAAAAAAJBERAAAAAAAAAAA1EQEAAAAAAAAAkEREAAAAAAAAAADURAQAAAAAAAAAQBIRAQAA\nAAAAAABQExEAAAAAAAAAAElEBAAAAAAAAABATUQAAAAAAAAAACQREQAAAAAAAAAANREBAAAAAAAA\nAJBERAAAAAAAAAAA1EQEAAAAAAAAAEASEQEAAAAAAAAAUBMRAAAAAAAAAABJRAQAAAAAAAAAQE1E\nAAAAAAAAAAAkEREAAAAAAAAAADURAQAAAAAAAACQREQAAAAAAAAAANREBAAAAAAAAABAEhEBAAAA\nAAAAAFATEQAAAAAAAAAASUQEAAAAAAAAAEBNRAAAAAAAAAAAJBERAAAAAAAAAAA1EQEAAAAAAAAA\nkEREAAAAAAAAAADURAQAAAAAAAAAQBIRAQAAAAAAAABQExEAAAAAAAAAAElEBAAAAAAAAABATUQA\nAAAAAAAAACQREQAAAAAAAAAANREBAAAAAAAAAJBERAAAAAAAAAAA1EQEAAAAAAAAAEASEQEAAAAA\nAAAAUBMRAAAAAAAAAABJRAQAAAAAAAAAQE1EAAAAAAAAAAAkEREAAAAAAAAAADURAQAAAAAAAACQ\nREQAAAAAAAAAANREBAAAAAAAAABAEhEBAAAAAAAAAFATEQAAAAAAAAAASUQEAAAAAAAAAEBNRAAA\nAAAAAAAAJBERAAAAAAAAAAA1EQEAAAAAAAAAkEREAAAAAAAAAADURAQAAAAAAAAAQBIRAQAAAAAA\nAABQExEAAAAAAAAAAElEBAAAAAAAAABATUQAAAAAAAAAACQREQAAAAAAAAAANREBAAAAAAAAAJBE\nRAAAAAAAAAAA1EQEAAAAAAAAAEASEQEAAAAAAAAAUBMRAAAAAAAAAABJRAQAAAAAAAAAQE1EAAAA\nAAAAAAAkEREAAAAAAAAAADURAQAAAAAAAACQREQAAAAAAAAAANREBAAAAAAAAABAEhEBAAAAAAAA\nAFATEQAAAAAAAAAASUQEAAAAAAAAAEBNRAAAAAAAAAAAJBERAAAAAAAAAAA1EQEAAAAAAAAAkERE\nAAAAAAAAAADURAQAAAAAAAAAQBIRAQAAAAAAAABQExEAAAAAAAAAAElEBAAAAAAAAABATUQAAAAA\nAAAAACQREQAAAAAAAAAANREBAAAAAAAAAJBERAAAAAAAAAAA1EQEAAAAAAAAAEASEQEAAAAAAAAA\nUBMRAAAAAAAAAABJRAQAAAAAAAAAQE1EAAAAAAAAAAAkEREAAAAAAAAAADURAQAAAAAAAACQREQA\nAAAAAAAAANREBAAAAAAAAABAEhEBAAAAAAAAAFATEQAAAAAAAAAASUQEAAAAAAAAAEBNRAAAAAAA\nAAAAJBERAAAAAAAAAAA1EQEAAAAAAAAAkEREAAAAAAAAAADURAQAAAAAAAAAQBIRAQAAAAAAAABQ\nExEAAAAAAAAAAElEBAAAAAAAAABATUQAAAAAAAAAACQREQAAAAAAAAAANREBAAAAAAAAAJBERAAA\nAAAAAAAA1EQEAAAAAAAAAEASEQEAAAAAAAAAUBMRAAAAAAAAAABJRAQAAAAAAAAAQE1EAAAAAAAA\nAAAkEREAAAAAAAAAADURAQAAAAAAAACQREQAAAAAAAAAANREBAAAAAAAAABAEhEBAAAAAAAAAFAT\nEQAAAAAAAAAASUQEAAAAAAAAAEBNRAAAAAAAAAAAJBERAAAAAAAAAAA1EQEAAAAAAAAAkEREAAAA\nAAAAAADURAQAAAAAAAAAQBIRAQAAAAAAAABQExEAAAAAAAAAAElEBAAAAAAAAABATUQAAAAAAAAA\nACQREQAAAAAAAAAANREBAAAAAAAAAJBERAAAAAAAAAAA1EQEAAAAAAAAAEASEQEAAAAAAAAAUBMR\nAAAAAAAAAABJRAQAAAAAAAAAQE1EAAAAAAAAAAAkEREAAAAAAAAAADURAQAAAAAAAACQREQAAAAA\nAAAAANREBAAAAAAAAABAEhEBAAAAAAAAAFATEQAAAAAAAAAASUQEAAAAAAAAAEBNRAAAAAAAAAAA\nJBERAAAAAAAAAAA1EQEAAAAAAAAAkEREAAAAAAAAAADURAQAAAAAAAAAQBIRAQAAAAAAAABQExEA\nAAAAAAAAAElEBAAAAAAAAABATUQAAAAAAAAAACQREQAAAAAAAAAANREBAAAAAAAAAJBERAAAAAAA\nAAAA1EQEAAAAAAAAAEASEQEAAAAAAAAAUBMRAAAAAAAAAABJRAQAAAAAAAAAQE1EAAAAAAAAAAAk\nEREAAAAAAAAAADURAQAAAAAAAACQREQAAAAAAAAAANREBAAAAAAAAABAEhEBAAAAAAAAAFATEQAA\nAAAAAAAASUQEAAAAAAAAAEBNRAAAAAAAAAAAJBERAAAAAAAAAAA1EQEAAAAAAAAAkEREAAAAAAAA\nAADURAQAAAAAAAAAQBIRAQAAAAAAAABQExEAAAAAAAAAAElEBAAAAAAAAABATUQAAAAAAAAAACQR\nEQAAAAAAAAAANREBAAAAAAAAAJBERAAAAAAAAAAA1EQEAAAAAAAAAEASEQEAAAAAAAAAUBMRAAAA\nAAAAAABJRAQAAAAAAAAAQE1EAAAAAAAAAAAkEREAAAAAAAAAADURAQAAAAAAAACQREQAAAAAAAAA\nANREBAAAAAAAAABAEhEBAAAAAAAAAFATEQAAAAAAAAAASUQEAAAAAAAAAEBNRAAAAAAAAAAAJBER\nAAAAAAAAAAA1EQEAAAAAAAAAkEREAAAAAAAAAADURAQAAAAAAAAAQBIRAQAAAAAAAABQExEAAAAA\nAAAAAElEBAAAAAAAAABATUQAAAAAAAAAACQREQAAAAAAAAAANREBAAAAAAAAAJBERAAAAAAAAAAA\n1EQEAAAAAAAAAEASEQEAAAAAAAAAUBMRAAAAAAAAAABJRAQAAAAAAAAAQE1EAAAAAAAAAAAkEREA\nAAAAAAAAADURAQAAAAAAAACQREQAAAAAAAAAANREBAAAAAAAAABAEhEBAAAAAAAAAFATEQAAAAAA\nAAAASUQEAAAAAAAAAEBNRAAAAAAAAAAAJBERAAAAAAAAAAA1EQEAAAAAAAAAkEREAAAAAAAAAADU\nRAQAAAAAAAAAQBIRAQAAAAAAAABQExEAAAAAAAAAAElEBAAAAAAAAABATUQAAAAAAAAAACQREQAA\nAAAAAAAANREBAAAAAAAAAJBERAAAAAAAAAAA1EQEAAAAAAAAAEASEQEAAAAAAAAAUBMRAAAAAAAA\nAABJRAQAAAAAAAAAQE1EAAAAAAAAAAAkEREAAAAAAAAAADURAQAAAAAAAACQREQAAAAAAAAAANRE\nBAAAAAAAAABAEhEBAAAAAAAAAFATEQAAAAAAAAAASUQEAAAAAAAAAEBNRAAAAAAAAAAAJBERAAAA\nAAAAAAA1EQEAAAAAAAAAkEREAAAAAAAAAADURAQAAAAAAAAAQBIRAQAAAAAAAABQExEAAAAAAAAA\nAElEBAAAAAAAAABATUQAAAAAAAAAACQREQAAAAAAAAAANRHB/7V3/8FS1ff9x1/n/kDQ6BW40dSE\nmAgtRlMRpBoTW2Pizxg1EsuVkSINNl5EJrQ2Y7GRNBa1TWixROKPGKuYi1lb0EnQOkkdxapxUvzB\nEJXUmICkbcAVAyEUWHC/f7jeL8gFvQZY7+XxmNmZ3XvOZ/e9O/x3nnwOAAAAAAAAAJBERAAAAAAA\nAAAA1IgIAAAAAAAAAIAkIgIAAAAAAAAAoEZEAAAAAAAAAAAkEREAAAAAAAAAADUiAgAAAAAAAAAg\niYgAAAAAAAAAAKgREQAAAAAAAAAASeT1q2oAACAASURBVEQEAAAAAAAAAECNiAAAAAAAAAAASCIi\nAAAAAAAAAABqRAQAAAAAAAAAQBIRAQAAAAAAAABQIyIAAAAAAAAAAJKICAAAAAAAAACAGhEBAAAA\nAAAAAJBERAAAAAAAAAAA1IgIAAAAAAAAAIAkIgIAAAAAAAAAoEZEAAAAAAAAAAAkEREAAAAAAAAA\nADUiAgAAAAAAAAAgiYgAAAAAAAAAAKgREQAAAAAAAAAASUQEAAAAAAAAAECNiAAAAAAAAAAASCIi\nAAAAAAAAAABqRAQAAAAAAAAAQBIRAQAAAAAAAABQIyIAAAAAAAAAAJKICAAAAAAAAACAGhEBAAAA\nAAAAAJBERAAAAAAAAAAA1IgIAAAAAAAAAIAkIgIAAAAAAAAAoEZEAAAAAAAAAAAkEREAAAAAAAAA\nADUiAgAAAAAAAAAgiYgAAAAAAAAAAKgREQAAAAAAAAAASUQEAAAAAAAAAECNiAAAAAAAAAAASCIi\nAAAAAAAAAABqRAQAAAAAAAAAQBIRAQAAAAAAAABQIyIAAAAAAAAAAJKICAAAAAAAAACAGhEBAAAA\nAAAAAJBERAAAAAAAAAAA1IgIAAAAAAAAAIAkIgIAAAAAAAAAoEZEAAAAAAAAAAAkEREAAAAAAAAA\nADUiAgAAAAAAAAAgiYgAAAAAAAAAAKgREQAAAAAAAAAASUQEAAAAAAAAAECNiAAAAAAAAAAASCIi\nAAAAAAAAAABqRAQAAAAAAAAAQBIRAQAAAAAAAABQIyIAAAAAAAAAAJKICAAAAAAAAACAGhEBAAAA\nAAAAAJBERAAAAAAAAAAA1IgIAAAAAAAAAIAkIgIAAAAAAAAAoEZEAAAAAAAAAAAkEREAAAAAAAAA\nADUiAgAAAAAAAAAgiYgAAAAAAAAAAKgREQAAAAAAAAAASUQEAAAAAAAAAECNiAAAAAAAAAAASCIi\nAAAAAAAAAABqRAQAAAAAAAAAQBIRAQAAAAAAAABQIyIAAAAAAAAAAJKICAAAAAAAAACAGhEBAAAA\nAAAAAJBERAAAAAAAAAAA1IgIAAAAAAAAAIAkIgIAAAAAAAAAoEZEAAAAAAAAAAAkEREAAAAAAAAA\nADUiAgAAAAAAAAAgiYgAAAAAAAAAAKgREQAAAAAAAAAASUQEAAAAAAAAAECNiAAAAAAAAAAASCIi\nAAAAAAAAAABqRAQAAAAAAAAAQBIRAQAAAAAAAABQIyIAAAAAAAAAAJKICAAAAAAAAACAGhEBAAAA\nAAAAAJBERAAAAAAAAAAA1IgIAAAAAAAAAIAkIgIAAAAAAAAAoEZEAAAAAAAAAAAkEREAAAAAAAAA\nADUiAgAAAAAAAAAgiYgAAAAAAAAAAKgREQAAAAAAAAAASUQEAAAAAAAAAECNiAAAAAAAAAAASCIi\nAAAAAAAAAABqRAQAAAAAAAAAQBIRAQAAAAAAAABQIyIAAAAAAAAAAJKICAAAAAAAAACAGhEBAAAA\nAAAAAJBERAAAAAAAAAAA1IgIAAAAAAAAAIAkIgIAAAAAAAAAoEZEAAAAAAAAAAAkEREAAAAAAAAA\nADUiAgAAAAAAAAAgiYgAAAAAAAAAAKgREQAAAAAAAAAASUQEAAAAAAAAAECNiAAAAAAAAAAASCIi\nAAAAAAAAAABqRAQAAAAAAAAAQBIRAQAAAAAAAABQIyIAAAAAAAAAAJKICAAAAAAAAACAGhEBAAAA\nAAAAAJBERAAAAAAAAAAA1IgIAAAAAAAAAIAkIgIAAAAAAAAAoEZEAAAAAAAAAAAkEREAAAAAAAAA\nADUiAgAAAAAAAAAgiYgAAAAAAAAAAKhpqvcAAAAAAAAAAOxdFi1alJkzZ6ahoSFFUaSxsTFFUaSh\noWGHf2toaMjIkSMzdOjQeo/fq4kIAAAAAAAAANgj+vTpkyR54YUX8sILL3R7/dy5czN//vzss88+\nu3o0akQEAAAAAL3EJZdckueee67eY/QaH/rQh3LDDTfUewwAAOhV+vXr91utX79+fX7zm9+ICHYj\nEQEAAABAL/GNb3yj3iMAAADs1Lp1636r9S0tLdl///130TR0paHeAwAAAAAAAACwd1i5cuVvtX7Y\nsGFpbm7eRdPQFREBAAAAAAAAAD3Cj370o1QqlXqP0auJCAAAAAAAAADoEa6++mo7EexmTfUeAAAA\nAAAAAIC9Q2tra8rlctra2tLe3l7vceiCnQgAAAAAAAAAgCQiAgAAAAAAAACgRkQAAAAAAAAAACQR\nEQAAAAAAAAAANSICAAAAAAAAACCJiAAAAAAAAAAAqBERAAAAAAAAAABJRAQAAAAAAAAAQI2IAAAA\nAAAAAABIIiIAAAAAAAAAAGqa6j0AAAAAAAAAAHuHcrmcJCmVSimVSt1eP2rUqEyePHlXj8VW7EQA\nAAAAAAAAQI9w3333pVKp1HuMXk1EAAAAAAAAAECPMGrUqDQ3N9d7jF5NRAAAAAAAAABAjzBv3jw7\nEexmIgIAAAAAAAAAeoTTTz/dTgS7mYgAAAAAAAAAgB7hySefzJYtW+o9Rq8mIgAAAAAAAACgR9i8\neXO9R+j1muo9AAAAAAAAAAB7h9bW1pTL5QwePDif/vSnU61WkyTVarXz8bqtX1er1TQ3N+dTn/pU\nGhsb6zL73kJEAAAAAAAAAMAeNXLkyHzmM5+p9xh0we0MAAAAAAAAAIAkIgIAAAAAAAAAoEZEAAAA\nAAAAAAAkEREAAAAAAAAAADUiAgAAAAAAAAAgiYgAAAAAAAAAAKgREQAAAAAAAAAASUQEAAAAAAAA\nAECNiAAAAAAAAAAASCIiAAAAAAAAAABqRAQAAAAAAAAAQBIRAQAAAAAAAABQIyIAAAAAAAAAAJKI\nCAAAAAAAAACAGhEBAAAAAAAAAJBERAAAAAAAAAAA1DTVewAAAAAAAAAA9g7lcjlJUiqVUiqVur3+\nvPPOy6RJk3b1WGzFTgQAAAAAAAAA9AgLFixIpVKp9xi9mogAAAAAAAAAgB7h3HPPTXNzc73H6NVE\nBAAAAAAAAAD0CPPnz7cTwW4mIgAAAAAAAACgR/jYxz5mJ4LdTEQAAAAAAAAAQI/w1FNPZfPmzfUe\no1cTEQAAAAAAAADQIxxyyCFpbGys9xi9WlO9BwAAAAAAAABg79Da2ppyuZzTTz89Y8aMSZJUq9XO\nx85eNzQ0ZPDgwSmKom7z7w1EBAAAAAAAAADsUS0tLXn/+99f7zHogtsZAAAAAAAAAABJRAQAAAAA\nAAAAQI2IAAAAAAAAAABIIiIAAAAAAAAAAGpEBAAAAAAAAABAEhEBAAAAAAAAAFDTVO8BAAAAAAAA\nANi7PP744xk4cGCKokiSFEXR+dj69evPk2SfffbJSSedlD59+tRn6L2EiAAAAAAAAACAPaJcLidJ\nli9fnm984xvdXt/R0ZF//ud/TmNj464ejRq3MwAAAAAAAACgR6hUKvUeodezEwEAAAAAAAAAe0Rr\na2vK5XIOO+ywnHnmmalWq6lWq53Ht379xufNzc0588wz7UKwm4kIAAAAAAAAANijBg0alCOOOCJF\nUSRJiqLofGz9+vXnSdLU1JS+ffvWZ+C9iIgAAAAAAAAAgD2iXC4nSRYuXJiFCxd2e/1RRx2V6667\nrjMsYNdrqPcAAAAAAAAAAPBWLF++PFu2bKn3GL2aiAAAAAAAAACAHuFzn/tcmppsuL87iQgAAAAA\nAAAA6BFmz56dSqVS7zF6NREBAAAAAAAAAD3Ceeedl+bm5nqP0avZ5wEAAAAAAACAPaK1tTXlcjlt\nbW1pb2+v9zh0wU4EAAAAAAAAAEASEQEAAAAAAAAAUCMiAAAAAAAAAACSiAgAAAAAAAAAgBoRAQAA\nAAAAAACQREQAAAAAAAAAANSICAAAAAAAAACAJElTvQcAAAAAAAAAYO9QLpeTJKVSKaVSqdvrr7nm\nmhx//PG7eiy2YicCAAAAAAAAAHqEv/mbv0mlUqn3GL2aiAAAAAAAAACAHuG8885Lc3Nzvcfo1dzO\nAAAAAAAAAIA9orW1NeVyOW1tbWlvb6/3OHTBTgQAAAAAAAAAQBIRAQAAAAAAAABQIyIAAAAAAAAA\nAJKICAAAAAAAAACAGhEBAAAAAAAAAJBERAAAAAAAAAAA1IgIAAAAAAAAAIAkIgIAAAAAAAAAoEZE\nAAAAAAAAAAAkSZrqPQAAAAAAAAAAe4dyuZwkKZVKKZVK3V4/derUnHrqqbt6LLZiJwIAAAAAAAAA\neoQZM2akUqnUe4xeTUQAAAAAAAAAQI8wYcKENDc313uMXs3tDAAAAAAAAADYI1pbW1Mul9PW1pb2\n9vZ6j0MXRAQAAAAAAAAA7BHlcjlJUiqVUiqVur1+8uTJGTVq1K4ei62ICAAAAAB6iWq1Wu8Rep2i\nKOo9AgAAsJUbb7wxZ511llsa7EYiAgAAAIBewgVvAACgt/vCF74gINjNRAQAAAAAAAAA7BGtra0p\nl8tpa2tLe3t7vcehCw31HgAAAAAAAAAAeGcQEQAAAAAAAAAASUQEAAAAAAAAAECNiAAAAAAAAAAA\nSJI01XsAAAAAAAAAAPYOW7ZsSZLcc889Wbt2bYqiSFEUSdL5fOvXW/+9b9++GTNmTPbff//6DL+X\nEBEAAAAAAAAAsEe88sorSZKNGzfm3/7t37q9/gc/+EHuvPPONDW51L27uJ0BAAAAAAAAAD1CS0tL\nGhpc5t6d5BkAAAAAAAAA7BGtra0pl8v56Ec/mj/+4z9OklSr1c7Hzl43NjZmxIgRIoLdTEQAAAAA\nAAAAwB41aNCgHH300fUegy5INAAAAAAAAACAJCICAAAAAAAAAKBGRAAAAAAAAAAAJBERAAAAAAAA\nAAA1IgIAAAAAAAAAIImIAAAAAAAAAACoaar3AAAAAAAAAADsHcrlcpKkVCqlVCp1e/2ECRMyduzY\nXT0WW7ETAQAAAAAAAAA9wpw5c1KpVOo9Rq8mIgAAAAAAAACgR5g6dWqam5vrPUav5nYGAAAAAAAA\nAOwRra2tKZfLaWtrS3t7e73HoQt2IgAAAAAAAAAAkogIAAAAAAAAAIAatzMAAAAAAAAAYI8ol8tJ\nklKplFKp1O3148ePz4UXXrirx2IrdiIAAAAAAAAAoEeYO3duKpVKvcfo1UQEAAAAAAAAAPQIU6dO\nTXNzc73H6NVEBAAAAAAAAAD0CHfeeWeq1Wq9x+jVRAQAAAAAAAAA9Ajlcjlbtmyp9xi9WlO9BwAA\nAAAAAABg7zBgwICsXr06Bx54YE455ZTOXQWq1WrnY0ev99lnn4wdOzZNTS5z705+XQAAAAAAAAD2\niIaG1zbLP+2009Le3l7naeiK2xkAAAAAAAAAAEnsRAAAAAAAAADAHlIul5MkpVIppVKpW2ubmpoy\nY8aMDBs2bHeMRo2dCAAAAAAAAAB4x9u8eXP+6q/+KpVKpd6j9GoiAgAAAAAAAAB6hL59+6a5ubne\nY/RqIgIAAAAAAAAAeoT169fbiWA3ExEAAAAAAAAA0CNccMEFdiLYzZrqPQAAAAAAAAAAe4fW1taU\ny+W0tbWlvb293uPQBTsRAAAAAAAAAABJRAQAAAAAAAAAQI2IAAAAAAAAAABIkjTVewAAAAAAAAAA\n9g7lcjlJUiqVUiqVur3+qquuyh/+4R/u6rHYip0IAAAAAAAAAOgRpk+fnkqlUu8xejURAQAAAAAA\nAAA9Qv/+/dPc3FzvMXo1EQEAAAAAAAAAPcLq1avtRLCbiQgAAAAAAAAA6BE+//nP24lgN2uq9wAA\nAAAAAAAA7B1aW1tTLpfT1taW9vb2eo9DF+xEAAAAAAAAAAAkEREAAAAAAAAAADUiAgAAAAAAAAAg\niYgAAAAAAAAAAKgREQAAAAAAAAAASZKmeg8AAAAAAAAAwN6hXC4nSUqlUkqlUrfXX3nllfnEJz6x\nq8diK3YiAAAAAAAAAKBH+Lu/+7tUKpV6j9Gr/VY7ESxcuDDz5s3L4sWLs3r16vTp0yeHHnpoTjzx\nxPzJn/xJBgwY0OW6FStW5JZbbsljjz2WlStXpk+fPjn88MNzzjnnZNSoUWlsbNzhZ5599tn5r//6\nrzedbcGCBRkyZMh2f3/88cfT0dGRp556Kr/61a8yYMCAHHnkkfnsZz+bk08++a1/+ST/8z//k09/\n+tPp379/HnjggW6tBQAAAAAAAKB7xo0bl+bm5nqP0au9rYhgy5Ytufzyy7NgwYIURdH5982bN+e5\n557Ls88+m7vuuiuzZ8/O0Ucfvc3ae+65J9OmTcumTZs611YqlTzxxBNZtGhR5s2blxtuuCH9+/ff\n7nM3bdqUn/3sZ9t8Zld2dPzaa6/N7bffvs05L730Uh566KE8+OCDOemkkzJr1qy39I9u48aN+cu/\n/MusX7++y1kBAAAAAAAA2FZra2vK5XLa2trS3t5e73HowtuKCGbMmNEZEJx88smZMGFCPvjBD+al\nl17KwoULM3v27Lz88stpb2/Pd7/73Rx00EFJkkcffTRXXHFFqtVqWlpaMmXKlHziE59IU1NT/uM/\n/iMzZszI008/nXHjxmX+/PnbXcxfunRpNm/enKIosmDBghxyyCE7nLFfv37bvL7jjjty++23pyiK\nfPSjH83EiRNz2GGH5aWXXspdd92VuXPn5qGHHsrf/u3f5qqrrtrp91+/fn0uvfTSPPnkk2/n5wMA\nAAAAAACAd6SG7i5YtWpV7rjjjhRFkbPPPjtf//rXc/TRR6elpSVDhgzJhAkTMmfOnDQ1NWXNmjW5\n+eabkyTVajXTp0/Pq6++mv322y9z587NmDFjcvDBB2fgwIH5zGc+k46OjrzrXe/KT3/603zzm9/c\n7rOfeeaZJMmBBx6YwYMHp1+/fjt8bG3jxo25/vrrUxRFRo4cmVtuuSUjR47MgAEDMnTo0Fx55ZW5\n4IILUq1WM3/+/KxcuXKH3//555/PZz/72Tz22GNvuiMCAAAAAAAAAOwKixcvzpFHHpkf/vCH2x17\n4oknMn78+AwfPjzHHXdcLr744jz99NNv63O6HRH8+7//ezZv3pwkmTJlSpfnfPjDH87JJ5+carWa\nhx56KEmyZMmS/PznP09RFGlvb8/gwYO3W3fooYfmwgsvTLVaze233975Oa979tlnO9+/O/7zP/8z\na9euTZJcfPHFXV78P+ecc5K8dquG12OFra1duzbXXnttRo0alWXLlmXffffNYYcd1q05AAAAAAAA\nAKC7li1blkmTJuXVV1/d7tiDDz6YCy+8MEuWLMm4ceMyefLkrFmzJmPHjs33v//9bn/W29qJoF+/\nfmltbc3v/M7v7PC8Qw89tPP8JNtcmD/ttNN2uO6EE05I8tpF+zeWEc8880yKoshRRx3VrZlPOOGE\nPProo7n99ttz3HHHven5TU3b3+Vhzpw5nWHDEUcckVKp1O05AAAAAAAAAKA7fvCDH6StrS0vv/zy\ndscqlUqmTZuWoijS0dGRP//zP8/YsWPT0dGR3//938+0adM6/8P9W9XtiGDKlCl56qmncv/99+/0\nvOXLlydJDjjggCTJmjVrOo8dcsghO1w3YMCAzuc/+clPOp9XKpU8//zzSZJBgwZl1qxZOeusszJs\n2LAcc8wxOf/889PR0bHd7gVbv++xxx6b5ubmLo/PmTMnSbLffvtl+PDhXZ5z0EEH5ctf/nL+5V/+\nJb/7u7+7w+8AAAAAAAAAAL+tz3/+85k8eXIOOuignHnmmdsdX7x4cV566aWcddZZOfzwwzv/3tjY\nmIsuuii/+tWv3vTa/htt/1/u36L99ttvh8dWrVqVBx98MEVRZOTIkdud/5vf/KYzLnijrWODX/7y\nl53Pn3/++VQqlRRFkSuvvHKbWGDTpk1ZvHhxnn766dx999256aabMnDgwJ3Ov2nTpqxatSo//vGP\nc8cdd+SJJ55IURS54oorsv/++293/qhRo9Le3t7lLgUAAAAAAAAAsKstW7Ysl112WcaPH5+bbrpp\nu+OvX1MfOnTodsc+8IEPJEl+/OMfZ/To0W/5M3fLFfErr7wyGzduTFEUueCCC5Ikv/d7v9d5/NFH\nH80ZZ5zR5drHH3+88/m6des6n79+O4RqtZp99tknU6ZMySmnnJKWlpb87Gc/y2233Zbvf//7eeaZ\nZzJx4sTMnTt3pxf8v/SlL+W73/1u5+uWlpZ89atfzYknntjl+TvbPQEAAAAAAACA3uWRRx5JR0dH\nli1blg984AO54IILcsIJJ+zRGe69994d7rafJPvuu2+Sba+tv+6VV15J8tomAN2xyyOCa665JgsX\nLkxRFDnrrLPyB3/wB0mSESNG5KCDDsqqVasyc+bMHH/88TnwwAO3Wbty5crcdtttKYoiyWu3MHjd\nmjVr0r9//2zZsiV33nlnBg8e3Hls+PDhGT58eK6++urccccdWbJkSUqlUmfA0JX//d//7fyc19//\nmmuuSaVSycknn7xLfgsAAAAAAAAA/r9qtZokKZVKKZVK3Vrbp0+fjBs3LoMGDeq81lsURYqiSEND\nwzav3/joyhv/vvV7LlmyJLfeemvnsaVLl2batGm56qqr9mhIsLOAIEmGDRuWpqam3H///Zk4cWLn\n75Ak9913X5Jk48aN3frMXRoRXHvttZkzZ06KosjQoUPzla98pfNYc3NzLrvsslx++eV58cUXM3r0\n6EyZMiXHHXdcqtVqfvjDH2bmzJnZsGFDDjjggKxdu3abH+Siiy7KRRddlM2bN+9wh4EvfvGLuffe\ne/PKK69k3rx5O40Irr766rznPe/Jpk2b8sgjj+RrX/tali9fni984QuZOXNmTj311F33wwAAAAAA\nAACQl19++W2v3bRpU2655ZZdOE33VKvVdHR07PHdCHZm4MCBGTNmTL797W9n4sSJmTRpUg444IAs\nWLAgCxYsSHNz80538O/KLokIKpVKrrjiinzve99LURQZMmRIvvWtb6Vfv37bnHfOOefkl7/8Zf7p\nn/4pK1asyF/8xV9sc7ylpSWzZs3KtGnTsnbt2s6tF7YZeCdfsE+fPvnYxz6W733ve1m6dGkqlcoO\ny4z3v//9nWtOP/30jBgxIueee25Wr16dv//7v88nP/nJNDY2dvenAAAAAKibSy65JM8991y9x+g1\nPvShD+WGG26o9xgAAMA7yLJly+o9wnamTp2ahoaGdHR05OGHH061Ws1hhx2Wm2++OWPHjk1LS0u3\n3q+ovr5fxNu0Zs2aTJo0KYsWLUpRFPnwhz+cm2++Of3799/hmsWLF+db3/pWnnjiiaxbty4HH3xw\nTjrppHzuc5/LwQcfnOHDh2fDhg25/PLLM378+G7NM3PmzNx0000piiIPP/xw3v3ud7/ltTfeeGOu\nu+66FEWRf/3Xf82RRx650/OnTp2au+++O+9973vzwAMPdGtOAAAAAAAAAN6ZJk6cmKVLl27398MP\nP7xusfH111+f2bNn59Zbb83xxx+/3fG1a9fmpz/9aQ444IAMGTIk//3f/51PfvKTmTRpUiZPnvyW\nP+e32ongxRdfzJ/92Z9l+fLlKYoif/RHf5Trrrtuux0I3mjYsGGZNWtWl8eWL1+e//u//0tRFPng\nBz/Y7Zk2bdrU+fzN5nijraOBX/ziF28aEQAAAAAAAADQ+/SUXck2b96ce++9NwcffHA+8pGPZMSI\nEZ3HHnrooRRFkWOPPbZb79nwdod5/vnnc/7553cGBKNHj84NN9zwphfu161bl0qlssPjjzzyyGuD\nNTTkqKOOSpJs2bIlp512Wo455phMnTp1p+//wgsvJHnt3g/vete7kiTz5s3LuHHjMnr06J2u3bhx\nY+fzvn377vRcAAAAAAAAAKinpqamzJo1K1/+8pe3uQ6/atWq3HrrrTnyyCNz3HHHdes931ZEsGLF\nivzpn/5pVq9enaIoMmXKlHzlK19JQ8OO3279+vU5+uijM3LkyNxzzz07PG/evHlJkhEjRnTeEqGx\nsTHNzc1Zv359Hnvssbz66qtdri2Xy3n88cc7d0V43a9//ev86Ec/ypIlS7JkyZIdfvbDDz+cJCmK\nIkccccSOfwAAAAAAAAAAeAe49NJL8+KLL2b8+PG58847c8stt+T888/PunXrMn369G6/X7cjgs2b\nN2fKlCkpl8spiiJXXHFFLr744jddt++++2bIkCEpiiLf+c53smXLlu3Oue222/Lss8+mKIpMmDBh\nm2Nnn312qtVqVq1alZtuumm7tVu2bMlf//VfZ9OmTWlsbMyFF17YeeyMM85IU9Nrd274h3/4hy4j\nhEWLFmX+/PkpiiIf//jH8+53v/tNvxMAAAAAAAAA1NO5556bmTNnZtOmTZkxY0bmzJmTY445JqVS\nKYcffni336+oVqvV7iz49re/nenTp6coipxxxhlvqVzYd999kyT3339/pkyZkqIocuKJJ+aSSy7J\noEGDsnLlysydOzd33XVX5/v+4z/+4zbvsWHDhpxzzjmdt084//zzM3r06LznPe/JT37yk1x//fVZ\ntGhRiqLIpEmTcumll26z/utf/3pmz56d5LVdDiZPnpyhQ4dm3bp1ue+++3LjjTdmw4YNGThwYEql\nUt73vve96feaOnVq7r777rz3ve/NAw888FZ/QgAAAAAAAAB4R+p2RHDKKadkxYoV3fqQpUuXdj7/\n2te+lltvvTVJ8saPLooip512Wr761a+mT58+273PihUrcvHFF+fnP/95l2tf38Hgsssu63KO6dOn\np6OjY4ef/b73vS/XX399hg4d+pa+l4gAAAAAAAAAgN6kqTsnv/LKK/nFL36Roije8po3nvvFL34x\nH/nIR9LR0ZHFixfn17/+dVpaWjJs2LCMHj06H//4x3f4XoMGDcrdd9+d73znO7n//vvzwgsvZMOG\nDWltbc2xxx6bMWPGZNiwYTtc/6UvfSmnn356Ojo68uSTT2b16tWdt1k49dRT09bWlr59+77l7/b6\n9+vO7wEAAAAAAAAA71Td3okANIKB5gAAAKhJREFUAAAAAAAAAOidGuo9AAAAAAAAAADwziAiAAAA\nAAAAAACSiAgAAAAAAAAAgBoRAQAAAAAAAACQREQAAAAAAAAAANSICAAAAAAAAACAJCICAAAAAAAA\nAKBGRAAAAAAAAAAAJBERAAAAAAAAAAA1IgIAAAAAAAAAIImIAAAAAAAAAACoEREAAAAAAAAAAElE\nBAAAAAAAAABAjYgAAAAAAAAAAEiS/D/yz3SpHKlMAQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "msno.matrix(lake_qual)" ] }, { "cell_type": "code", - "execution_count": 45, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:15:05.027226", @@ -11310,2827 +1506,7 @@ "collapsed": false, "scrolled": false }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "
\n", - "
\n", - "

Overview

\n", - "
\n", - "
\n", - "
\n", - "

Dataset info

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Number of variables20
Number of observations29531
Total Missing (%)19.4%
Total size in memory4.5 MiB
Average record size in memory160.0 B
\n", - "
\n", - "
\n", - "

Variables types

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Numeric2
Categorical12
Date2
Text (Unique)0
Rejected4
\n", - "
\n", - "
\n", - "

Warnings

\n", - "
  • comments has 29475 / 99.8% missing values Missing
  • county has constant value Hennepin Rejected
  • gtlt has 28496 / 96.5% missing values Missing
  • parameter has a high cardinality: 56 distinct values Warning
  • result has a high cardinality: 6005 distinct values Warning
  • sampleDepthUnit has constant value m Rejected
  • sampleLowerDepth has 27006 / 91.4% missing values Missing
  • sampleTime has a high cardinality: 386 distinct values Warning
  • sampleUpperDepth has 4698 / 15.9% zeros
  • stationId has constant value 27-0039-00-202 Rejected
  • stationName has constant value CEDAR Rejected
  • statisticType has 29530 / 100.0% missing values Missing
  • testMethodId has a high cardinality: 53 distinct values Warning
  • testMethodName has a high cardinality: 53 distinct values Warning
  • Dataset has 123 duplicate rows Warning
\n", - "
\n", - "
\n", - "
\n", - "

Variables

\n", - "
\n", - "
\n", - "
\n", - "

analysisDate
\n", - " Date\n", - "

\n", - "
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count533
Unique (%)1.8%
Missing (%)0.0%
Missing (n)0
Infinite (%)0.0%
Infinite (n)0
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Minimum1901-01-01 00:00:00
Maximum2015-10-26 00:00:00
\n", - "
\n", - "
\n", - "
\n", - "
\n", - " \n", - "
\n", - "\n", - "
\n", - " \n", - "
\n", - "
\n", - "
\n", - "

collectingOrg
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count4
Unique (%)0.0%
Missing (%)0.0%
Missing (n)0
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
Minneapolis Chain of Lakes Project\n", - "
\n", - " 28233\n", - "
\n", - " \n", - "
MPCA Lake Monitoring Program Project\n", - "
\n", - "  \n", - "
\n", - " 1074\n", - "
Citizen Lake Monitoring Program\n", - "
\n", - "  \n", - "
\n", - " 216\n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
Minneapolis Chain of Lakes Project2823395.6%\n", - "
 
\n", - "
MPCA Lake Monitoring Program Project10743.6%\n", - "
 
\n", - "
Citizen Lake Monitoring Program2160.7%\n", - "
 
\n", - "
Lake Study 201380.0%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

comments
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count3
Unique (%)5.4%
Missing (%)99.8%
Missing (n)29475
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
Lab qualifier: (<)\n", - "
\n", - "  \n", - "
\n", - " 54\n", - "
Questionable result: Pheophytin-a > Chlorophyll-a\n", - "
\n", - "  \n", - "
\n", - " 2\n", - "
(Missing)\n", - "
\n", - " 29475\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
Lab qualifier: (<)540.2%\n", - "
 
\n", - "
Questionable result: Pheophytin-a > Chlorophyll-a20.0%\n", - "
 
\n", - "
(Missing)2947599.8%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

county
\n", - " Constant\n", - "

\n", - "
\n", - "

This variable is constant and should be ignored for analysis

\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Constant valueHennepin
\n", - "
\n", - "
\n", - "
\n", - "

gtlt
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count3
Unique (%)0.3%
Missing (%)96.5%
Missing (n)28496
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
< \n", - "
\n", - "  \n", - "
\n", - " 1034\n", - "
> \n", - "
\n", - "  \n", - "
\n", - " 1\n", - "
(Missing)\n", - "
\n", - " 28496\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
< 10343.5%\n", - "
 
\n", - "
> 10.0%\n", - "
 
\n", - "
(Missing)2849696.5%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

parameter
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count56
Unique (%)0.2%
Missing (%)0.0%
Missing (n)0
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
Temperature, water\n", - "
\n", - " 5000\n", - "
\n", - " \n", - "
Dissolved oxygen (DO)\n", - "
\n", - " 4964\n", - "
\n", - " \n", - "
pH\n", - "
\n", - " 4374\n", - "
\n", - " \n", - "
Other values (53)\n", - "
\n", - " 15193\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
Temperature, water500016.9%\n", - "
 
\n", - "
Dissolved oxygen (DO)496416.8%\n", - "
 
\n", - "
pH437414.8%\n", - "
 
\n", - "
Specific conductance422014.3%\n", - "
 
\n", - "
Dissolved oxygen saturation374512.7%\n", - "
 
\n", - "
Phosphorus as P17365.9%\n", - "
 
\n", - "
Orthophosphate as P16295.5%\n", - "
 
\n", - "
Turbidity6002.0%\n", - "
 
\n", - "
Depth, Secchi disk depth4971.7%\n", - "
 
\n", - "
Chlorophyll a, corrected for pheophytin3421.2%\n", - "
 
\n", - "
Other values (46)24248.2%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

result
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count6005
Unique (%)20.4%
Missing (%)0.3%
Missing (n)88
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
0.1\n", - "
\n", - "  \n", - "
\n", - " 403\n", - "
0.003\n", - "
\n", - "  \n", - "
\n", - " 373\n", - "
0.00\n", - "
\n", - "  \n", - "
\n", - " 231\n", - "
Other values (6001)\n", - "
\n", - " 28436\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
0.14031.4%\n", - "
 
\n", - "
0.0033731.3%\n", - "
 
\n", - "
0.002310.8%\n", - "
 
\n", - "
0.0022270.8%\n", - "
 
\n", - "
01540.5%\n", - "
 
\n", - "
0.011530.5%\n", - "
 
\n", - "
0.51500.5%\n", - "
 
\n", - "
0.021280.4%\n", - "
 
\n", - "
0.21070.4%\n", - "
 
\n", - "
11020.3%\n", - "
 
\n", - "
Other values (5994)2741592.8%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

resultUnit
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count14
Unique (%)0.0%
Missing (%)0.5%
Missing (n)138
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
mg/L\n", - "
\n", - " 9895\n", - "
\n", - " \n", - "
deg C\n", - "
\n", - " 5000\n", - "
\n", - " \n", - "
None\n", - "
\n", - " 4401\n", - "
\n", - " \n", - "
Other values (10)\n", - "
\n", - " 10097\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
mg/L989533.5%\n", - "
 
\n", - "
deg C500016.9%\n", - "
 
\n", - "
None440114.9%\n", - "
 
\n", - "
uS/cm422014.3%\n", - "
 
\n", - "
%374912.7%\n", - "
 
\n", - "
ug/L9643.3%\n", - "
 
\n", - "
FNU5731.9%\n", - "
 
\n", - "
m4971.7%\n", - "
 
\n", - "
mV390.1%\n", - "
 
\n", - "
PCU320.1%\n", - "
 
\n", - "
Other values (3)230.1%\n", - "
 
\n", - "
(Missing)1380.5%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

sampleDate
\n", - " Date\n", - "

\n", - "
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count544
Unique (%)1.8%
Missing (%)0.0%
Missing (n)0
Infinite (%)0.0%
Infinite (n)0
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Minimum1971-04-21 00:00:00
Maximum2015-10-26 00:00:00
\n", - "
\n", - "
\n", - "
\n", - "
\n", - " \n", - "
\n", - "\n", - "
\n", - " \n", - "
\n", - "
\n", - "
\n", - "

sampleDepthUnit
\n", - " Constant\n", - "

\n", - "
\n", - "

This variable is constant and should be ignored for analysis

\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Constant valuem
\n", - "
\n", - "
\n", - "
\n", - "

sampleFractionType
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count3
Unique (%)0.0%
Missing (%)0.0%
Missing (n)0
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
Total\n", - "
\n", - " 27685\n", - "
\n", - " \n", - "
Dissolved\n", - "
\n", - "  \n", - "
\n", - " 1831\n", - "
Non-filter\n", - "
\n", - "  \n", - "
\n", - " 15\n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
Total2768593.7%\n", - "
 
\n", - "
Dissolved18316.2%\n", - "
 
\n", - "
Non-filter150.1%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

sampleLowerDepth
\n", - " Numeric\n", - "

\n", - "
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count2
Unique (%)0.1%
Missing (%)91.4%
Missing (n)27006
Infinite (%)0.0%
Infinite (n)0
\n", - "\n", - "
\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Mean2
Minimum2
Maximum2
Zeros (%)0.0%
\n", - "
\n", - "
\n", - "
\n", - "
\n", - " \n", - "\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - "
\n", - "
\n", - "
\n", - "

Quantile statistics

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Minimum2
5-th percentile2
Q12
Median2
Q32
95-th percentile2
Maximum2
Range0
Interquartile range0
\n", - "
\n", - "
\n", - "

Descriptive statistics

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Standard deviation0
Coef of variation0
Kurtosis0
Mean2
MAD0
Skewness0
Sum5050
Variance0
Memory size230.8 KiB
\n", - "
\n", - "
\n", - "
\n", - " \n", - "
\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
2.025258.6%\n", - "
 
\n", - "
(Missing)2700691.4%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "

Minimum 5 values

\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
2.025258.6%\n", - "
 
\n", - "
\n", - "

Maximum 5 values

\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
2.025258.6%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

sampleTime
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count386
Unique (%)1.3%
Missing (%)0.0%
Missing (n)0
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
00:01:00\n", - "
\n", - " 7773\n", - "
\n", - " \n", - "
10:30:00\n", - "
\n", - "  \n", - "
\n", - " 1083\n", - "
11:00:00\n", - "
\n", - "  \n", - "
\n", - " 952\n", - "
Other values (383)\n", - "
\n", - " 19723\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
00:01:00777326.3%\n", - "
 
\n", - "
10:30:0010833.7%\n", - "
 
\n", - "
11:00:009523.2%\n", - "
 
\n", - "
10:45:008322.8%\n", - "
 
\n", - "
11:15:007472.5%\n", - "
 
\n", - "
10:00:005842.0%\n", - "
 
\n", - "
11:45:004571.5%\n", - "
 
\n", - "
11:30:003741.3%\n", - "
 
\n", - "
10:15:003071.0%\n", - "
 
\n", - "
14:00:002921.0%\n", - "
 
\n", - "
Other values (376)1613054.6%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

sampleType
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count5
Unique (%)0.0%
Missing (%)0.0%
Missing (n)0
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
FMO\n", - "
\n", - " 23403\n", - "
\n", - " \n", - "
Sample\n", - "
\n", - " 5759\n", - "
\n", - " \n", - "
QC-FR\n", - "
\n", - "  \n", - "
\n", - " 256\n", - "
Other values (2)\n", - "
\n", - "  \n", - "
\n", - " 113\n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
FMO2340379.2%\n", - "
 
\n", - "
Sample575919.5%\n", - "
 
\n", - "
QC-FR2560.9%\n", - "
 
\n", - "
QC-LD710.2%\n", - "
 
\n", - "
QC-F420.1%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

sampleUpperDepth
\n", - " Numeric\n", - "

\n", - "
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count267
Unique (%)0.9%
Missing (%)0.0%
Missing (n)8
Infinite (%)0.0%
Infinite (n)0
\n", - "\n", - "
\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Mean6.7
Minimum0
Maximum18
Zeros (%)15.9%
\n", - "
\n", - "
\n", - "
\n", - "
\n", - " \n", - "\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - "
\n", - "
\n", - "
\n", - "

Quantile statistics

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Minimum0
5-th percentile0
Q12
Median6.05
Q311
95-th percentile14.1
Maximum18
Range18
Interquartile range9
\n", - "
\n", - "
\n", - "

Descriptive statistics

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Standard deviation4.9647
Coef of variation0.741
Kurtosis-1.265
Mean6.7
MAD4.34
Skewness0.13993
Sum197810
Variance24.648
Memory size230.8 KiB
\n", - "
\n", - "
\n", - "
\n", - " \n", - "
\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
0.0469815.9%\n", - "
 
\n", - "
14.020236.9%\n", - "
 
\n", - "
5.019866.7%\n", - "
 
\n", - "
10.019846.7%\n", - "
 
\n", - "
3.015765.3%\n", - "
 
\n", - "
7.015715.3%\n", - "
 
\n", - "
2.014464.9%\n", - "
 
\n", - "
6.013044.4%\n", - "
 
\n", - "
1.013034.4%\n", - "
 
\n", - "
4.013024.4%\n", - "
 
\n", - "
Other values (256)1033035.0%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "

Minimum 5 values

\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
0.0469815.9%\n", - "
 
\n", - "
0.02190.1%\n", - "
 
\n", - "
0.0450.0%\n", - "
 
\n", - "
0.0550.0%\n", - "
 
\n", - "
0.1150.1%\n", - "
 
\n", - "
\n", - "

Maximum 5 values

\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
16.340.0%\n", - "
 
\n", - "
16.440.0%\n", - "
 
\n", - "
16.550.0%\n", - "
 
\n", - "
17.0430.1%\n", - "
 
\n", - "
18.060.0%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

stationId
\n", - " Constant\n", - "

\n", - "
\n", - "

This variable is constant and should be ignored for analysis

\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Constant value27-0039-00-202
\n", - "
\n", - "
\n", - "
\n", - "

stationName
\n", - " Constant\n", - "

\n", - "
\n", - "

This variable is constant and should be ignored for analysis

\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Constant valueCEDAR
\n", - "
\n", - "
\n", - "
\n", - "

statisticType
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count2
Unique (%)200.0%
Missing (%)100.0%
Missing (n)29530
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
Minimum\n", - "
\n", - "  \n", - "
\n", - " 1\n", - "
(Missing)\n", - "
\n", - " 29530\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
Minimum10.0%\n", - "
 
\n", - "
(Missing)29530100.0%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

testMethodId
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count53
Unique (%)0.2%
Missing (%)0.0%
Missing (n)0
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
FLD\n", - "
\n", - " 22499\n", - "
\n", - " \n", - "
4500-P-E\n", - "
\n", - "  \n", - "
\n", - " 2825\n", - "
LEG_UNKNOWN\n", - "
\n", - "  \n", - "
\n", - " 777\n", - "
Other values (50)\n", - "
\n", - "  \n", - "
\n", - " 3430\n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
FLD2249976.2%\n", - "
 
\n", - "
4500-P-E28259.6%\n", - "
 
\n", - "
LEG_UNKNOWN7772.6%\n", - "
 
\n", - "
10200-H5802.0%\n", - "
 
\n", - "
FLD TURB PROBE5731.9%\n", - "
 
\n", - "
DO WINKLER4041.4%\n", - "
 
\n", - "
4500-N-C2680.9%\n", - "
 
\n", - "
4500-CL-(B)2240.8%\n", - "
 
\n", - "
4500-SI(D)1360.5%\n", - "
 
\n", - "
3113-B1320.4%\n", - "
 
\n", - "
Other values (43)11133.8%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

testMethodName
\n", - " Categorical\n", - "

\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distinct count53
Unique (%)0.2%
Missing (%)0.0%
Missing (n)0
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - "
Field measurement/observation, generic method\n", - "
\n", - " 22499\n", - "
\n", - " \n", - "
Phosphorus in Water by Colorimetry- Ascorbic Acid Method\n", - "
\n", - "  \n", - "
\n", - " 2825\n", - "
Legacy STORET migration; analytical procedure not specified\n", - "
\n", - "  \n", - "
\n", - " 777\n", - "
Other values (50)\n", - "
\n", - "  \n", - "
\n", - " 3430\n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "
ValueCountFrequency (%) 
Field measurement/observation, generic method2249976.2%\n", - "
 
\n", - "
Phosphorus in Water by Colorimetry- Ascorbic Acid Method28259.6%\n", - "
 
\n", - "
Legacy STORET migration; analytical procedure not specified7772.6%\n", - "
 
\n", - "
Chlorophyll a-b-c Determination5802.0%\n", - "
 
\n", - "
Turbidity, Probe Method5731.9%\n", - "
 
\n", - "
Dissolved Oxygen, Iodometric Method with Azide Modification4041.4%\n", - "
 
\n", - "
Persufate Method for Total Nitrogen2680.9%\n", - "
 
\n", - "
Chloride in Water by Titration- Argentometric Method2240.8%\n", - "
 
\n", - "
Silica in Water by Spectrophotometry- Molybdosilicate Method1360.5%\n", - "
 
\n", - "
Metals in Water by GFAA1320.4%\n", - "
 
\n", - "
Other values (43)11133.8%\n", - "
 
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

Sample

\n", - "
\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
analysisDatecollectingOrgcommentscountygtltparameterresultresultUnitsampleDatesampleTimesampleDepthUnitsampleFractionTypesampleLowerDepthsampleTypesampleUpperDepthstationIdstationNamestatisticTypetestMethodIdtestMethodName
01901-01-01MPCA Lake Monitoring Program ProjectNaNHennepinNaNChlorophyll a, uncorrected for pheophytin8.79ug/L1971-06-0800:01:00mTotalNaNSample0.027-0039-00-202CEDARNaNLEG_P32210CHLOROPHYLL-A UG/L TRICHROMATIC UNCORRECTED
11901-01-01MPCA Lake Monitoring Program ProjectNaNHennepinNaNChlorophyll a, uncorrected for pheophytin3.88ug/L1972-07-1200:01:00mTotalNaNSample0.027-0039-00-202CEDARNaNLEG_P32210CHLOROPHYLL-A UG/L TRICHROMATIC UNCORRECTED
21901-01-01MPCA Lake Monitoring Program ProjectNaNHennepinNaNChlorophyll a, uncorrected for pheophytin13.7ug/L1972-07-2400:01:00mTotalNaNSample0.027-0039-00-202CEDARNaNLEG_P32210CHLOROPHYLL-A UG/L TRICHROMATIC UNCORRECTED
31901-01-01MPCA Lake Monitoring Program ProjectNaNHennepinNaNChlorophyll a, uncorrected for pheophytin18.76ug/L1972-08-0900:01:00mTotalNaNSample0.027-0039-00-202CEDARNaNLEG_P32210CHLOROPHYLL-A UG/L TRICHROMATIC UNCORRECTED
41901-01-01MPCA Lake Monitoring Program ProjectNaNHennepinNaNChlorophyll a, uncorrected for pheophytin17.16ug/L1972-08-1800:01:00mTotalNaNSample0.027-0039-00-202CEDARNaNLEG_P32210CHLOROPHYLL-A UG/L TRICHROMATIC UNCORRECTED
\n", - "
\n", - "
\n", - "
" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 45, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "pandas_profiling.ProfileReport(lake_qual)" ] @@ -14144,7 +1520,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:15:05.273333", @@ -14153,25 +1529,7 @@ "collapsed": false, "scrolled": true }, - "outputs": [ - { - "ename": "ValueError", - "evalue": "could not convert string to float: '3.MED ALGAE'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mlake_qual\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'result'\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mlake_qual\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'result'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'float'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\pandas\\core\\generic.py\u001b[0m in \u001b[0;36mastype\u001b[0;34m(self, dtype, copy, raise_on_error, **kwargs)\u001b[0m\n\u001b[1;32m 2948\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2949\u001b[0m mgr = self._data.astype(dtype=dtype, copy=copy,\n\u001b[0;32m-> 2950\u001b[0;31m raise_on_error=raise_on_error, **kwargs)\n\u001b[0m\u001b[1;32m 2951\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_constructor\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmgr\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__finalize__\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2952\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\pandas\\core\\internals.py\u001b[0m in \u001b[0;36mastype\u001b[0;34m(self, dtype, **kwargs)\u001b[0m\n\u001b[1;32m 2936\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2937\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mastype\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2938\u001b[0;31m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mapply\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'astype'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mdtype\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2939\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2940\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mconvert\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\pandas\\core\\internals.py\u001b[0m in \u001b[0;36mapply\u001b[0;34m(self, f, axes, filter, do_integrity_check, consolidate, raw, **kwargs)\u001b[0m\n\u001b[1;32m 2888\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2889\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'mgr'\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2890\u001b[0;31m \u001b[0mapplied\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mb\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2891\u001b[0m \u001b[0mresult_blocks\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0m_extend_blocks\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mapplied\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mresult_blocks\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2892\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\pandas\\core\\internals.py\u001b[0m in \u001b[0;36mastype\u001b[0;34m(self, dtype, copy, raise_on_error, values, **kwargs)\u001b[0m\n\u001b[1;32m 432\u001b[0m **kwargs):\n\u001b[1;32m 433\u001b[0m return self._astype(dtype, copy=copy, raise_on_error=raise_on_error,\n\u001b[0;32m--> 434\u001b[0;31m values=values, **kwargs)\n\u001b[0m\u001b[1;32m 435\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 436\u001b[0m def _astype(self, dtype, copy=False, raise_on_error=True, values=None,\n", - "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\pandas\\core\\internals.py\u001b[0m in \u001b[0;36m_astype\u001b[0;34m(self, dtype, copy, raise_on_error, values, klass, mgr, **kwargs)\u001b[0m\n\u001b[1;32m 475\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 476\u001b[0m \u001b[1;31m# _astype_nansafe works fine with 1-d only\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m--> 477\u001b[0;31m \u001b[0mvalues\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcom\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_astype_nansafe\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mravel\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mTrue\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 478\u001b[0m \u001b[0mvalues\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mvalues\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mreshape\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 479\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\pandas\\core\\common.py\u001b[0m in \u001b[0;36m_astype_nansafe\u001b[0;34m(arr, dtype, copy)\u001b[0m\n\u001b[1;32m 1918\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1919\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mcopy\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1920\u001b[0;31m \u001b[1;32mreturn\u001b[0m \u001b[0marr\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1921\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0marr\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mview\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1922\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[0;31mValueError\u001b[0m: could not convert string to float: '3.MED ALGAE'" - ] - } - ], + "outputs": [], "source": [ "lake_qual['result'] = lake_qual['result'].astype('float')" ] @@ -14185,7 +1543,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:15:30.745241", @@ -14208,7 +1566,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:15:30.777312", @@ -14216,18 +1574,7 @@ }, "collapsed": false }, - "outputs": [ - { - "data": { - "text/plain": [ - "(984, 20)" - ] - }, - "execution_count": 48, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "lake_qual = lake_qual[lake_qual['sampleDate'].dt.year == 2014]\n", "lake_qual.shape" @@ -14242,7 +1589,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:15:30.834207", @@ -14250,199 +1597,7 @@ }, "collapsed": false }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
analysisDatecollectingOrgcommentscountygtltparameterresultresultUnitsampleDatesampleTimesampleDepthUnitsampleFractionTypesampleLowerDepthsampleTypesampleUpperDepthstationIdstationNamestatisticTypetestMethodIdtestMethodName
28031901-01-01Minneapolis Chain of Lakes ProjectNaNHennepinNaNPhosphorus as P0.022mg/L2014-06-2512:24:00mTotalNaNSample5.027-0039-00-202CEDARNaN4500-P-EPhosphorus in Water by Colorimetry- Ascorbic A...
28041901-01-01Minneapolis Chain of Lakes ProjectLab qualifier: (<)Hennepin<Orthophosphate as P0.003mg/L2014-06-2512:24:00mDissolvedNaNSample5.027-0039-00-202CEDARNaN4500-P-EPhosphorus in Water by Colorimetry- Ascorbic A...
28051901-01-01Minneapolis Chain of Lakes ProjectNaNHennepinNaNPhosphorus as P0.058mg/L2014-06-2512:21:00mTotalNaNSample10.027-0039-00-202CEDARNaN4500-P-EPhosphorus in Water by Colorimetry- Ascorbic A...
28061901-01-01Minneapolis Chain of Lakes ProjectNaNHennepinNaNOrthophosphate as P0.024mg/L2014-06-2512:21:00mDissolvedNaNSample10.027-0039-00-202CEDARNaN4500-P-EPhosphorus in Water by Colorimetry- Ascorbic A...
28071901-01-01Minneapolis Chain of Lakes ProjectNaNHennepinNaNPhosphorus as P0.111mg/L2014-06-2512:20:00mTotalNaNSample14.027-0039-00-202CEDARNaN4500-P-EPhosphorus in Water by Colorimetry- Ascorbic A...
\n", - "
" - ], - "text/plain": [ - " analysisDate collectingOrg comments \\\n", - "2803 1901-01-01 Minneapolis Chain of Lakes Project NaN \n", - "2804 1901-01-01 Minneapolis Chain of Lakes Project Lab qualifier: (<) \n", - "2805 1901-01-01 Minneapolis Chain of Lakes Project NaN \n", - "2806 1901-01-01 Minneapolis Chain of Lakes Project NaN \n", - "2807 1901-01-01 Minneapolis Chain of Lakes Project NaN \n", - "\n", - " county gtlt parameter result resultUnit sampleDate \\\n", - "2803 Hennepin NaN Phosphorus as P 0.022 mg/L 2014-06-25 \n", - "2804 Hennepin < Orthophosphate as P 0.003 mg/L 2014-06-25 \n", - "2805 Hennepin NaN Phosphorus as P 0.058 mg/L 2014-06-25 \n", - "2806 Hennepin NaN Orthophosphate as P 0.024 mg/L 2014-06-25 \n", - "2807 Hennepin NaN Phosphorus as P 0.111 mg/L 2014-06-25 \n", - "\n", - " sampleTime sampleDepthUnit sampleFractionType sampleLowerDepth \\\n", - "2803 12:24:00 m Total NaN \n", - "2804 12:24:00 m Dissolved NaN \n", - "2805 12:21:00 m Total NaN \n", - "2806 12:21:00 m Dissolved NaN \n", - "2807 12:20:00 m Total NaN \n", - "\n", - " sampleType sampleUpperDepth stationId stationName statisticType \\\n", - "2803 Sample 5.0 27-0039-00-202 CEDAR NaN \n", - "2804 Sample 5.0 27-0039-00-202 CEDAR NaN \n", - "2805 Sample 10.0 27-0039-00-202 CEDAR NaN \n", - "2806 Sample 10.0 27-0039-00-202 CEDAR NaN \n", - "2807 Sample 14.0 27-0039-00-202 CEDAR NaN \n", - "\n", - " testMethodId testMethodName \n", - "2803 4500-P-E Phosphorus in Water by Colorimetry- Ascorbic A... \n", - "2804 4500-P-E Phosphorus in Water by Colorimetry- Ascorbic A... \n", - "2805 4500-P-E Phosphorus in Water by Colorimetry- Ascorbic A... \n", - "2806 4500-P-E Phosphorus in Water by Colorimetry- Ascorbic A... \n", - "2807 4500-P-E Phosphorus in Water by Colorimetry- Ascorbic A... " - ] - }, - "execution_count": 49, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "lake_qual.head()" ] @@ -14456,7 +1611,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:15:30.905264", @@ -14464,230 +1619,7 @@ }, "collapsed": false }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
parameterAlkalinity, total as CaCO3ChlorideChlorophyll a, corrected for pheophytinDepth, Secchi disk depthDissolved oxygen (DO)Hardness, carbonate as CaCO3Inorganic nitrogen (nitrate and nitrite) as NKjeldahl nitrogen as NNutrient-nitrogen as NOrthophosphate as PPheophytin aPhosphorus as PSilica as SiO2Specific conductanceSulfate as SO4Temperature, waterpH
sampleDate
2014-03-12134.0133.50.50NaN2.215333164.00.5771.370.7920.038500.500.171001.28750.846667NaN2.9400007.206667
2014-05-05122.0162.05.471.417.363529152.00.1441.001.1800.009505.100.057250.50691.8411768.86.5435297.844706
2014-05-20NaN140.53.301.106.518125NaNNaNNaN0.9640.005251.230.05425NaN711.987500NaN8.5700007.993125
2014-06-11NaN141.52.403.853.059412NaNNaNNaN0.8550.015000.500.052000.50717.082353NaN10.7982357.157647
2014-06-25NaN118.08.202.173.078235NaNNaNNaN0.6570.019250.830.05475NaN696.905882NaN11.9152947.592353
\n", - "
" - ], - "text/plain": [ - "parameter Alkalinity, total as CaCO3 Chloride \\\n", - "sampleDate \n", - "2014-03-12 134.0 133.5 \n", - "2014-05-05 122.0 162.0 \n", - "2014-05-20 NaN 140.5 \n", - "2014-06-11 NaN 141.5 \n", - "2014-06-25 NaN 118.0 \n", - "\n", - "parameter Chlorophyll a, corrected for pheophytin Depth, Secchi disk depth \\\n", - "sampleDate \n", - "2014-03-12 0.50 NaN \n", - "2014-05-05 5.47 1.41 \n", - "2014-05-20 3.30 1.10 \n", - "2014-06-11 2.40 3.85 \n", - "2014-06-25 8.20 2.17 \n", - "\n", - "parameter Dissolved oxygen (DO) Hardness, carbonate as CaCO3 \\\n", - "sampleDate \n", - "2014-03-12 2.215333 164.0 \n", - "2014-05-05 7.363529 152.0 \n", - "2014-05-20 6.518125 NaN \n", - "2014-06-11 3.059412 NaN \n", - "2014-06-25 3.078235 NaN \n", - "\n", - "parameter Inorganic nitrogen (nitrate and nitrite) as N \\\n", - "sampleDate \n", - "2014-03-12 0.577 \n", - "2014-05-05 0.144 \n", - "2014-05-20 NaN \n", - "2014-06-11 NaN \n", - "2014-06-25 NaN \n", - "\n", - "parameter Kjeldahl nitrogen as N Nutrient-nitrogen as N \\\n", - "sampleDate \n", - "2014-03-12 1.37 0.792 \n", - "2014-05-05 1.00 1.180 \n", - "2014-05-20 NaN 0.964 \n", - "2014-06-11 NaN 0.855 \n", - "2014-06-25 NaN 0.657 \n", - "\n", - "parameter Orthophosphate as P Pheophytin a Phosphorus as P \\\n", - "sampleDate \n", - "2014-03-12 0.03850 0.50 0.17100 \n", - "2014-05-05 0.00950 5.10 0.05725 \n", - "2014-05-20 0.00525 1.23 0.05425 \n", - "2014-06-11 0.01500 0.50 0.05200 \n", - "2014-06-25 0.01925 0.83 0.05475 \n", - "\n", - "parameter Silica as SiO2 Specific conductance Sulfate as SO4 \\\n", - "sampleDate \n", - "2014-03-12 1.28 750.846667 NaN \n", - "2014-05-05 0.50 691.841176 8.8 \n", - "2014-05-20 NaN 711.987500 NaN \n", - "2014-06-11 0.50 717.082353 NaN \n", - "2014-06-25 NaN 696.905882 NaN \n", - "\n", - "parameter Temperature, water pH \n", - "sampleDate \n", - "2014-03-12 2.940000 7.206667 \n", - "2014-05-05 6.543529 7.844706 \n", - "2014-05-20 8.570000 7.993125 \n", - "2014-06-11 10.798235 7.157647 \n", - "2014-06-25 11.915294 7.592353 " - ] - }, - "execution_count": 50, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "lake_qual_pivot = lake_qual.pivot_table(values='result', index='sampleDate', columns='parameter')\n", "lake_qual_pivot.head()" @@ -14702,7 +1634,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:15:31.867779", @@ -14725,7 +1657,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:15:31.911809", @@ -14740,7 +1672,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:15:32.008785", @@ -14748,201 +1680,7 @@ }, "collapsed": false }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
PINACRES_DEEDACRES_POLYAG_PRESERVBASEMENTBLDG_NUMBLOCKCITYCITY_USPSCOOLING...Orthophosphate as PPheophytin aPhosphorus as PSilica as SiO2Specific conductanceSulfate as SO4Temperature, waterpHlatitudelongitude
0053-29029243300110.00.15NNaN1944003MINNEAPOLISMINNEAPOLISNaN...0.038500.500.171001.28750.846667NaN2.9400007.20666744.961482-93.32013
1053-29029243300110.00.15NNaN1944003MINNEAPOLISMINNEAPOLISNaN...0.009505.100.057250.50691.8411768.86.5435297.84470644.961482-93.32013
2053-29029243300110.00.15NNaN1944003MINNEAPOLISMINNEAPOLISNaN...0.005251.230.05425NaN711.987500NaN8.5700007.99312544.961482-93.32013
3053-29029243300110.00.15NNaN1944003MINNEAPOLISMINNEAPOLISNaN...0.015000.500.052000.50717.082353NaN10.7982357.15764744.961482-93.32013
4053-29029243300110.00.15NNaN1944003MINNEAPOLISMINNEAPOLISNaN...0.019250.830.05475NaN696.905882NaN11.9152947.59235344.961482-93.32013
\n", - "

5 rows × 68 columns

\n", - "
" - ], - "text/plain": [ - " PIN ACRES_DEED ACRES_POLY AG_PRESERV BASEMENT BLDG_NUM \\\n", - "0 053-2902924330011 0.0 0.15 N NaN 1944 \n", - "1 053-2902924330011 0.0 0.15 N NaN 1944 \n", - "2 053-2902924330011 0.0 0.15 N NaN 1944 \n", - "3 053-2902924330011 0.0 0.15 N NaN 1944 \n", - "4 053-2902924330011 0.0 0.15 N NaN 1944 \n", - "\n", - " BLOCK CITY CITY_USPS COOLING ... Orthophosphate as P \\\n", - "0 003 MINNEAPOLIS MINNEAPOLIS NaN ... 0.03850 \n", - "1 003 MINNEAPOLIS MINNEAPOLIS NaN ... 0.00950 \n", - "2 003 MINNEAPOLIS MINNEAPOLIS NaN ... 0.00525 \n", - "3 003 MINNEAPOLIS MINNEAPOLIS NaN ... 0.01500 \n", - "4 003 MINNEAPOLIS MINNEAPOLIS NaN ... 0.01925 \n", - "\n", - " Pheophytin a Phosphorus as P Silica as SiO2 Specific conductance \\\n", - "0 0.50 0.17100 1.28 750.846667 \n", - "1 5.10 0.05725 0.50 691.841176 \n", - "2 1.23 0.05425 NaN 711.987500 \n", - "3 0.50 0.05200 0.50 717.082353 \n", - "4 0.83 0.05475 NaN 696.905882 \n", - "\n", - " Sulfate as SO4 Temperature, water pH latitude longitude \n", - "0 NaN 2.940000 7.206667 44.961482 -93.32013 \n", - "1 8.8 6.543529 7.844706 44.961482 -93.32013 \n", - "2 NaN 8.570000 7.993125 44.961482 -93.32013 \n", - "3 NaN 10.798235 7.157647 44.961482 -93.32013 \n", - "4 NaN 11.915294 7.592353 44.961482 -93.32013 \n", - "\n", - "[5 rows x 68 columns]" - ] - }, - "execution_count": 53, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "result = cedar_lake_parcels.reset_index().merge(lake_qual_pivot, on='LAKE_NAME')\n", "result.head()" @@ -14959,7 +1697,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:15:32.019293", @@ -14967,25 +1705,14 @@ }, "collapsed": false }, - "outputs": [ - { - "data": { - "text/plain": [ - "(2496, 68)" - ] - }, - "execution_count": 54, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "result.shape" ] }, { "cell_type": "code", - "execution_count": 55, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:15:32.073330", @@ -15000,7 +1727,7 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:15:32.104352", @@ -15008,18 +1735,7 @@ }, "collapsed": false }, - "outputs": [ - { - "data": { - "text/plain": [ - "(2496, 60)" - ] - }, - "execution_count": 56, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "result.shape" ] @@ -15042,7 +1758,7 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:15:32.492666", @@ -15050,23 +1766,7 @@ }, "collapsed": false }, - "outputs": [ - { - "data": { - "text/plain": [ - "0 POINT (474420.2918534343 4978995.538410055)\n", - "1 POINT (474420.2918534343 4978995.538410055)\n", - "2 POINT (474420.2918534343 4978995.538410055)\n", - "3 POINT (474420.2918534343 4978995.538410055)\n", - "4 POINT (474420.2918534343 4978995.538410055)\n", - "Name: Parcel_Centroid, dtype: object" - ] - }, - "execution_count": 57, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "result['Parcel_Centroid'] = result.centroid\n", "result['Parcel_Centroid'].head()" @@ -15085,7 +1785,7 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:15:32.502179", @@ -15093,18 +1793,7 @@ }, "collapsed": false }, - "outputs": [ - { - "data": { - "text/plain": [ - "{'init': 'epsg:26915'}" - ] - }, - "execution_count": 58, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# what is the starting projection\n", "result.crs" @@ -15119,7 +1808,7 @@ }, { "cell_type": "code", - "execution_count": 59, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:15:32.985098", @@ -15134,7 +1823,7 @@ }, { "cell_type": "code", - "execution_count": 60, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:15:33.031501", @@ -15142,23 +1831,7 @@ }, "collapsed": false }, - "outputs": [ - { - "data": { - "text/plain": [ - "0 POINT (-93.324349184036 44.96393792859692)\n", - "1 POINT (-93.324349184036 44.96393792859692)\n", - "2 POINT (-93.324349184036 44.96393792859692)\n", - "3 POINT (-93.324349184036 44.96393792859692)\n", - "4 POINT (-93.324349184036 44.96393792859692)\n", - "Name: Parcel_Centroid, dtype: object" - ] - }, - "execution_count": 60, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "result['Parcel_Centroid'] = result.centroid\n", "result['Parcel_Centroid'].head()" @@ -15175,7 +1848,7 @@ }, { "cell_type": "code", - "execution_count": 61, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:15:33.135459", @@ -15183,23 +1856,7 @@ }, "collapsed": false }, - "outputs": [ - { - "data": { - "text/plain": [ - "0 (44.96393792859692, -93.324349184036)\n", - "1 (44.96393792859692, -93.324349184036)\n", - "2 (44.96393792859692, -93.324349184036)\n", - "3 (44.96393792859692, -93.324349184036)\n", - "4 (44.96393792859692, -93.324349184036)\n", - "Name: Parcel_Centroid, dtype: object" - ] - }, - "execution_count": 61, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "result['Parcel_Centroid'] = result['Parcel_Centroid'].apply(lambda p: tuple([p.y, p.x]))\n", "result['Parcel_Centroid'].head()" @@ -15216,7 +1873,7 @@ }, { "cell_type": "code", - "execution_count": 62, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:15:33.158936", @@ -15224,23 +1881,7 @@ }, "collapsed": false }, - "outputs": [ - { - "data": { - "text/plain": [ - "0 (44.961482, -93.32013)\n", - "1 (44.961482, -93.32013)\n", - "2 (44.961482, -93.32013)\n", - "3 (44.961482, -93.32013)\n", - "4 (44.961482, -93.32013)\n", - "Name: station_coords, dtype: object" - ] - }, - "execution_count": 62, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "from shapely.geometry import Point\n", "\n", @@ -15263,7 +1904,7 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:15:33.829523", @@ -15271,23 +1912,7 @@ }, "collapsed": false }, - "outputs": [ - { - "data": { - "text/plain": [ - "0 0.430469\n", - "1 0.430469\n", - "2 0.430469\n", - "3 0.430469\n", - "4 0.430469\n", - "Name: dist_to_station, dtype: float64" - ] - }, - "execution_count": 63, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "from geopy.distance import vincenty\n", "\n", @@ -15309,7 +1934,7 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:15:33.847562", @@ -15317,18 +1942,7 @@ }, "collapsed": false }, - "outputs": [ - { - "data": { - "text/plain": [ - "(2496, 61)" - ] - }, - "execution_count": 64, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# group by the PIN key, which would be duplicated for each station and take the minimum\n", "def get_min_rows(df, grpby, aggcol):\n", @@ -15350,7 +1964,7 @@ }, { "cell_type": "code", - "execution_count": 65, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2017-02-08T09:15:38.922414", From 5753316c20c7efc53f58c9e7cf8e82008698cbfb Mon Sep 17 00:00:00 2001 From: John Hogue Date: Thu, 8 Jun 2017 13:04:31 -0500 Subject: [PATCH 4/4] Create README.md --- README.md | 2 ++ 1 file changed, 2 insertions(+) diff --git a/README.md b/README.md index 6aea060..5225150 100644 --- a/README.md +++ b/README.md @@ -13,3 +13,5 @@ Use this Notebook to get a basic understanding of how to read, write, query, per *Social Data Science hopes you take what you learn here and use it to improve the world around you!* ## [Open the Notebook with Jupyter to get started!](Intro%20to%20Geospatial%20Data%20with%20Python.ipynb) + +## [Watch the YouTube Talk](https://www.youtube.com/watch?v=qvHXRuGPHl0)