|
| 1 | +package main |
| 2 | + |
| 3 | +import ( |
| 4 | + "fmt" |
| 5 | + "math/rand" |
| 6 | + u "./utils" |
| 7 | +) |
| 8 | + |
| 9 | +type RBM struct { |
| 10 | + N int |
| 11 | + n_visible int |
| 12 | + n_hidden int |
| 13 | + W [][]float64 |
| 14 | + hbias []float64 |
| 15 | + vbias []float64 |
| 16 | +} |
| 17 | + |
| 18 | + |
| 19 | +func RBM__construct(this *RBM, N int, n_visible int, n_hidden int, W [][]float64, hbias []float64, vbias []float64) { |
| 20 | + a := 1.0 / float64(n_visible) |
| 21 | + |
| 22 | + this.N = N |
| 23 | + this.n_visible = n_visible |
| 24 | + this.n_hidden = n_hidden |
| 25 | + |
| 26 | + if W == nil { |
| 27 | + this.W = make([][]float64, n_hidden) |
| 28 | + for i := 0; i < n_hidden; i++ { this.W[i] = make([]float64, n_visible) } |
| 29 | + |
| 30 | + for i := 0; i < n_hidden; i++ { |
| 31 | + for j := 0; j < n_visible; j++ { |
| 32 | + this.W[i][j] = u.Uniform(-a, a) |
| 33 | + } |
| 34 | + } |
| 35 | + } else { |
| 36 | + this.W = W |
| 37 | + } |
| 38 | + |
| 39 | + if hbias == nil { |
| 40 | + this.hbias = make([]float64, n_hidden) |
| 41 | + } else { |
| 42 | + this.hbias = hbias |
| 43 | + } |
| 44 | + |
| 45 | + if vbias == nil { |
| 46 | + this.vbias = make([]float64, n_visible) |
| 47 | + } else { |
| 48 | + this.vbias = vbias |
| 49 | + } |
| 50 | +} |
| 51 | + |
| 52 | +func RBM_contrastive_divergence(this *RBM, input []int, lr float64, k int) { |
| 53 | + ph_mean := make([]float64, this.n_hidden) |
| 54 | + ph_sample := make([]int, this.n_hidden) |
| 55 | + nv_means := make([]float64, this.n_visible) |
| 56 | + nv_samples := make([]int, this.n_visible) |
| 57 | + nh_means := make([]float64, this.n_hidden) |
| 58 | + nh_samples := make([]int, this.n_hidden) |
| 59 | + |
| 60 | + /* CD-k */ |
| 61 | + RBM_sample_h_given_v(this, input, ph_mean, ph_sample) |
| 62 | + |
| 63 | + for step := 0; step < k; step++ { |
| 64 | + if step == 0 { |
| 65 | + RBM_gibbs_hvh(this, ph_sample, nv_means, nv_samples, nh_means, nh_samples) |
| 66 | + } else { |
| 67 | + RBM_gibbs_hvh(this, nh_samples, nv_means, nv_samples, nh_means, nh_samples) |
| 68 | + } |
| 69 | + } |
| 70 | + |
| 71 | + for i := 0; i < this.n_hidden; i++ { |
| 72 | + for j := 0; j < this.n_visible; j++ { |
| 73 | + this.W[i][j] += lr * (ph_mean[i] * float64(input[j]) - nh_means[i] * float64(nv_samples[j])) / float64(this.N) |
| 74 | + } |
| 75 | + this.hbias[i] += lr * (float64(ph_sample[i]) - nh_means[i]) / float64(this.N) |
| 76 | + } |
| 77 | + |
| 78 | + for i := 0; i < this.n_visible; i++ { |
| 79 | + this.vbias[i] += lr * float64(input[i] - nv_samples[i]) / float64(this.N) |
| 80 | + } |
| 81 | +} |
| 82 | + |
| 83 | +func RBM_sample_h_given_v(this *RBM, v0_sample []int, mean []float64, sample []int) { |
| 84 | + for i := 0; i < this.n_hidden; i++ { |
| 85 | + mean[i] = RBM_propup(this, v0_sample, this.W[i], this.hbias[i]) |
| 86 | + sample[i] = u.Binomial(1, mean[i]) |
| 87 | + } |
| 88 | +} |
| 89 | + |
| 90 | +func RBM_sample_v_given_h(this *RBM, h0_sample []int, mean []float64, sample []int) { |
| 91 | + for i := 0; i < this.n_visible; i++ { |
| 92 | + mean[i] = RBM_propdown(this, h0_sample, i, this.vbias[i]) |
| 93 | + sample[i] = u.Binomial(1, mean[i]) |
| 94 | + } |
| 95 | +} |
| 96 | + |
| 97 | +func RBM_propup(this *RBM, v []int, w []float64, b float64) float64 { |
| 98 | + pre_sigmoid_activation := 0.0 |
| 99 | + |
| 100 | + for j := 0; j < this.n_visible; j++ { |
| 101 | + pre_sigmoid_activation += w[j] * float64(v[j]) |
| 102 | + } |
| 103 | + pre_sigmoid_activation += b |
| 104 | + |
| 105 | + return u.Sigmoid(pre_sigmoid_activation) |
| 106 | +} |
| 107 | + |
| 108 | +func RBM_propdown(this *RBM, h []int, i int, b float64) float64 { |
| 109 | + pre_sigmoid_activation := 0.0 |
| 110 | + |
| 111 | + for j := 0; j < this.n_hidden; j++ { |
| 112 | + pre_sigmoid_activation += this.W[j][i] * float64(h[j]) |
| 113 | + } |
| 114 | + pre_sigmoid_activation += b |
| 115 | + |
| 116 | + return u.Sigmoid(pre_sigmoid_activation) |
| 117 | +} |
| 118 | + |
| 119 | +func RBM_gibbs_hvh(this *RBM, h0_sample []int, nv_means []float64, nv_samples []int, nh_means []float64, nh_samples []int) { |
| 120 | + RBM_sample_v_given_h(this, h0_sample, nv_means, nv_samples) |
| 121 | + RBM_sample_h_given_v(this, nv_samples, nh_means, nh_samples) |
| 122 | +} |
| 123 | + |
| 124 | +func RBM_reconstruct(this *RBM, v []int, reconstructed_v []float64) { |
| 125 | + h := make([]float64, this.n_hidden) |
| 126 | + var pre_sigmoid_activation float64 |
| 127 | + |
| 128 | + for i := 0; i < this.n_hidden; i++ { |
| 129 | + h[i] = RBM_propup(this, v, this.W[i], this.hbias[i]) |
| 130 | + } |
| 131 | + |
| 132 | + for i := 0; i < this.n_visible; i++ { |
| 133 | + pre_sigmoid_activation = 0.0 |
| 134 | + for j := 0; j < this.n_hidden; j++ { |
| 135 | + pre_sigmoid_activation += this.W[j][i] * h[j] |
| 136 | + } |
| 137 | + pre_sigmoid_activation += this.vbias[i] |
| 138 | + |
| 139 | + reconstructed_v[i] = u.Sigmoid(pre_sigmoid_activation) |
| 140 | + } |
| 141 | +} |
| 142 | + |
| 143 | + |
| 144 | +func test_rbm() { |
| 145 | + rand.Seed(0) |
| 146 | + |
| 147 | + learning_rate := 0.1 |
| 148 | + training_epochs := 1000 |
| 149 | + k := 1 |
| 150 | + |
| 151 | + train_N := 6 |
| 152 | + test_N := 2 |
| 153 | + n_visible := 6 |
| 154 | + n_hidden := 3 |
| 155 | + |
| 156 | + // training data |
| 157 | + train_X := [][]int { |
| 158 | + {1, 1, 1, 0, 0, 0}, |
| 159 | + {1, 0, 1, 0, 0, 0}, |
| 160 | + {1, 1, 1, 0, 0, 0}, |
| 161 | + {0, 0, 1, 1, 1, 0}, |
| 162 | + {0, 0, 1, 0, 1, 0}, |
| 163 | + {0, 0, 1, 1, 1, 0}, |
| 164 | + } |
| 165 | + |
| 166 | + |
| 167 | + // construct RBM |
| 168 | + var rbm RBM |
| 169 | + RBM__construct(&rbm, train_N, n_visible, n_hidden, nil, nil, nil) |
| 170 | + |
| 171 | + // train |
| 172 | + for epoch := 0; epoch < training_epochs; epoch++ { |
| 173 | + for i := 0; i < train_N; i++ { |
| 174 | + RBM_contrastive_divergence(&rbm, train_X[i], learning_rate, k) |
| 175 | + } |
| 176 | + } |
| 177 | + |
| 178 | + // test data |
| 179 | + test_X := [][]int { |
| 180 | + {1, 1, 0, 0, 0, 0}, |
| 181 | + {0, 0, 0, 1, 1, 0}, |
| 182 | + } |
| 183 | + reconstructed_X := make([][]float64, test_N) |
| 184 | + for i := 0; i < test_N; i++ { reconstructed_X[i] = make([]float64, n_visible)} |
| 185 | + |
| 186 | + |
| 187 | + // test |
| 188 | + for i := 0; i < test_N; i++ { |
| 189 | + RBM_reconstruct(&rbm, test_X[i], reconstructed_X[i]) |
| 190 | + for j := 0; j < n_visible; j++ { |
| 191 | + fmt.Printf("%.5f ", reconstructed_X[i][j]) |
| 192 | + } |
| 193 | + fmt.Printf("\n") |
| 194 | + } |
| 195 | +} |
| 196 | + |
| 197 | + |
| 198 | +func main() { |
| 199 | + test_rbm() |
| 200 | +} |
0 commit comments