Skip to content

Commit 569afa0

Browse files
committed
Update ddasp_exercise_slides.tex
objectives added
1 parent facc5c4 commit 569afa0

File tree

1 file changed

+77
-21
lines changed

1 file changed

+77
-21
lines changed

slides/ddasp_exercise_slides.tex

Lines changed: 77 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -119,26 +119,26 @@
119119
\vspace{1cm}
120120
highly recommended textbooks / I like very much
121121
\begin{itemize}
122-
\item Kevin P. Murphy (2022): "Probabilistic Machine Learning: An Introduction", MIT Press, 1st. ed.
122+
\item K. P. Murphy (2022): "Probabilistic Machine Learning: An Introduction", MIT Press, 1st. ed.
123123
\href{https://probml.github.io/pml-book/book1.html}{current draft as free pdf}
124-
\item \href{https://math.mit.edu/~gs/}{Gilbert Strang} (2019): "Linear Algebra and Learning from Data", Wellesley, 1st ed.
124+
\item \href{https://math.mit.edu/~gs/}{G. Strang} (2019): "Linear Algebra and Learning from Data", Wellesley, 1st ed.
125125
\end{itemize}
126126
\end{frame}
127127

128128
\begin{frame}{Literature}
129129
theory textbooks that inspire me a lot (in some order of heavy usage)
130130
\begin{itemize}
131131
\item C.C. Aggarwal, Neural Networks and Deep Learning. Springer, 2018.
132-
\item Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006
132+
\item C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006
133133
\item S. Theodoridis, Machine Learning, 2nd ed. Academic Press, 2020.
134134
\href{https://www.sciencedirect.com/book/9780128188033/machine-learning}{free ebook}
135135
\item I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
136136
\item T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, 2nd ed. Springer, 2009.
137137
\href{https://hastie.su.domains/ElemStatLearn/}{free ebook}
138138
\item G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning with Applications in R, 2nd ed. Springer, 2021. \href{https://www.statlearning.com/}{free ebook}
139139
\item C.C. Aggarwal, Linear Algebra and Optimization for Machine Learning. Springer, 2020. \href{https://link.springer.com/book/10.1007/978-3-030-40344-7}{free ebook}
140-
\item Marc P. Deisenroth, A. Aldo Faisal, Cheng S. Ong, Mathematics for Machine Learning, Cambridge, 2020. \href{https://mml-book.github.io/book/mml-book.pdf}{free ebook}
141-
\item Steven L. Brunton, J. Nathan Kutz, Data Driven Science \& Engineering, Cambridge, 2019. \href{http://www.databookuw.com/databook.pdf}{free ebook draft}
140+
\item M. P. Deisenroth, A. A. Faisal, C. S. Ong, Mathematics for Machine Learning, Cambridge, 2020. \href{https://mml-book.github.io/book/mml-book.pdf}{free ebook}
141+
\item S. L. Brunton, J. N. Kutz, Data Driven Science \& Engineering, Cambridge, 2019. \href{http://www.databookuw.com/databook.pdf}{free ebook draft}
142142
\end{itemize}
143143
\end{frame}
144144

@@ -150,7 +150,7 @@
150150
\href{http://www.databookuw.com/databook.pdf}{free ebook draft},
151151
\href{http://www.databookuw.com/}{video lectures},
152152
\href{https://github.com/dylewsky/Data_Driven_Science_Python_Demos}{Python tutorials}
153-
\item A. G\'{e}ron, Hands-On Machine Learning with SciKit \& TensorFlow, 1st/2nd ed. O'Reilly, 2017/2019.
153+
\item Aur\'{e}lien G\'{e}ron, Hands-On Machine Learning with SciKit \& TensorFlow, 1st/2nd ed. O'Reilly, 2017/2019.
154154
\href{https://github.com/ageron/handson-ml2}{Python tutorials}
155155
\item \href{https://playground.tensorflow.org}{A Neural Network Playground---TensorFlow}
156156
\item courses by Andrew Ng at \url{https://www.deeplearning.ai/} and/or \url{https://www.coursera.org/}
@@ -165,7 +165,7 @@
165165

166166
textbooks that I like very much
167167
\begin{itemize}
168-
\item John F. Monahan, A Primer on Linear Models, CRC Press, 2008.
168+
\item J. F. Monahan, A Primer on Linear Models, CRC Press, 2008.
169169
\item L. Fahrmeir, A. Hamerle, and G. Tutz, Multivariate statistische Verfahren, 2nd ed. de Gruyter, 1996.
170170
\href{https://www.degruyter.com/document/doi/10.1515/9783110816020/html}{free ebook}
171171
\item L. Fahrmeir, T. Kneib, S. Lang, and B. D. Marx, Regression, 2nd ed. Springer, 2021.
@@ -271,8 +271,7 @@ \subsection{Exercise 02}
271271
\item recap important matrix factorizations
272272
\item recap eigenvalues/eigenvectors
273273
\item spectral theorem
274-
\item SVD and 4 subspaces within orthonormal bases $\bm{V}$, $\bm{U}$
275-
\item rank-1 matrix superposition
274+
\item SVD as a fundamental matrix factorization
276275
\end{itemize}
277276
\end{frame}
278277

@@ -585,7 +584,10 @@ \subsection{Exercise 03}
585584
\begin{frame}{Ex03: SVD and the 4 Matrix Subspaces}
586585
Objectives
587586
\begin{itemize}
588-
\item TBD
587+
\item matrix spans four subspaces
588+
\item the SVD explains these 4 subspaces with orthonormal bases $\bm{V}$, $\bm{U}$
589+
\item singular values tell us the 'gain' from input to output singular vectors
590+
\item rank-1 matrix superposition
589591
\end{itemize}
590592
\end{frame}
591593

@@ -1563,7 +1565,9 @@ \subsection{Exercise 04}
15631565
\begin{frame}{Ex04: Solving an Inverse Problem == Finding Model Parameters / Projection Matrices}
15641566
Objectives
15651567
\begin{itemize}
1566-
\item TBD
1568+
\item solving linear, inverse problem is actually machine learning
1569+
\item left inverse solves least squares error problem
1570+
\item projections matrices nicely explain the inverse solution
15671571
\end{itemize}
15681572
\end{frame}
15691573

@@ -2229,7 +2233,11 @@ \subsection{Exercise 05}
22292233
\begin{frame}{Ex05: Condition Number / Regularization}
22302234
Objectives
22312235
\begin{itemize}
2232-
\item TBD
2236+
\item concept of the condition number in terms of singular values
2237+
\item impact / problem of matrix with high condition number
2238+
\item how to handle small singular values
2239+
\item ridge regression as simple regularization method
2240+
\item L-curve concept to find optimum regularization amount
22332241
\end{itemize}
22342242
\end{frame}
22352243

@@ -2474,7 +2482,9 @@ \subsection{Exercise 06}
24742482
\begin{frame}{Ex06: Audio Toy Example for Linear Regression and SVD}
24752483
Objectives
24762484
\begin{itemize}
2477-
\item TBD
2485+
\item audio multitrack data (stems) arranged as data matrix
2486+
\item the SVD of this matrix allows to listen to the U space, i.e. to the orthogonal audio signals (which is some source separation approach)
2487+
\item try to find the mixing gains of a mix that is corrupted by noise
24782488
\end{itemize}
24792489
\end{frame}
24802490

@@ -2521,16 +2531,31 @@ \subsection{Exercise 06}
25212531
\section{Section III: Feature Design}
25222532

25232533
\subsection{Exercise 07}
2524-
\begin{frame}[t]{Ex07: Audio Features}
2534+
\begin{frame}{Ex07: Audio Features}
2535+
Objectives
2536+
\begin{itemize}
2537+
\item frequency / time / frequency x time based
2538+
\item histogram, PDF
2539+
\item simple technical energy/peak based measures
2540+
\item loudness: technical vs. perceptual, LUFS concept
2541+
\item STFT / periodogram
2542+
\end{itemize}
2543+
25252544
no slides so far
2545+
25262546
\end{frame}
25272547

2548+
2549+
2550+
25282551
\subsection{Exercise 08}
25292552

25302553
\begin{frame}{Ex08: Principal Component Analysis (PCA)}
25312554
Objectives
25322555
\begin{itemize}
2533-
\item TBD
2556+
\item insights to a mean-free data matrix
2557+
\item low rank approximation / linear dimensionality reduction as pre-processing steps for feature design
2558+
\item PCA creates orthogonal features which are sorted by its importance (wrt variance)
25342559
\end{itemize}
25352560
\end{frame}
25362561

@@ -2913,13 +2938,33 @@ \subsection{Exercise 08}
29132938
\section{Section IV: Train Models}
29142939

29152940
\subsection{Exercise 09}
2916-
\begin{frame}[t]{Ex 09: Bias-Variance Trade Off}
2941+
\begin{frame}{Ex 09: Bias-Variance Trade Off}
2942+
2943+
Objectives
2944+
\begin{itemize}
2945+
\item concept of total variance split into model bias$^2$ + model variance + data noise variance
2946+
\item underfitting / overfitting as extrem cases for unappropriate model architectures
2947+
\item example with Fourier series, i.e. polynomial regression
2948+
\end{itemize}
2949+
29172950
no slides so far
2951+
2952+
29182953
\end{frame}
29192954

29202955
\subsection{Exercise 10}
2921-
\begin{frame}[t]{Ex 10: Gradient Descent}
2956+
\begin{frame}{Ex 10: Gradient Descent}
2957+
2958+
Objectives
2959+
\begin{itemize}
2960+
\item least Squares: closed form vs. numerical via gradient descent (i.e. first order approach)
2961+
\item local vs. global minima, saddle points
2962+
\item crucial parameter settings for learning rate, number of iterations and init values
2963+
\item improvements of plain GD: momentum
2964+
\end{itemize}
2965+
29222966
no slides so far
2967+
29232968
\end{frame}
29242969

29252970

@@ -3080,7 +3125,10 @@ \subsection{Exercise 11}
30803125
\begin{frame}{Ex11: Non-Linear Model Introduction}
30813126
Objectives
30823127
\begin{itemize}
3083-
\item TBD
3128+
\item XOR is a classification problem, which cannot be handled by linear algebra
3129+
\item introduce two nonlinearities: add bias, non-linear activation function
3130+
\item perceptron concept
3131+
\item general architecture of non-linear models
30843132
\end{itemize}
30853133
\end{frame}
30863134

@@ -3484,7 +3532,8 @@ \subsection{Exercise 12}
34843532
\begin{frame}{Ex12: Binary Classification}
34853533
Objectives
34863534
\begin{itemize}
3487-
\item TBD
3535+
\item binary classifier as most simple non-linear model
3536+
\item check ingredients on that model: architecture, output activation function, an appropriate loss function, forward and back propagation, gradient descent
34883537
\end{itemize}
34893538
\end{frame}
34903539

@@ -3918,7 +3967,8 @@ \subsection{Exercise 13}
39183967
\begin{frame}{Ex13: Binary Classification with Hidden Layer Model / Multivariate Chain Rule / Metrics}
39193968
Objectives
39203969
\begin{itemize}
3921-
\item TBD
3970+
\item binary classification model with hidden layers means more complexity, more back prop effort
3971+
\item metrics for binary classification: 2x2 confusion matrix
39223972
\end{itemize}
39233973
\end{frame}
39243974

@@ -4290,7 +4340,13 @@ \subsection{Exercise 14}
42904340
\begin{frame}{Ex14: Multi-Class Classification with Softmax Output Layer}
42914341
Objectives
42924342
\begin{itemize}
4293-
\item TBD
4343+
\item a potential (often used) multi-class classification with hidden layers
4344+
\item check ingredients on that model: architecture, output activation function, an appropriate loss function, forward and back propagation
4345+
\item metrics: confusion matrix with different normalizations, accuracy as single number metrics
4346+
\item final toy example: simple music genre classification with 3 mutually exclusive classes
4347+
\item data preparation and feature design
4348+
\item hyper parameter tuning for DNN models
4349+
\item final training and evaluation
42944350
\end{itemize}
42954351
\end{frame}
42964352

0 commit comments

Comments
 (0)