diff --git a/lib/node_modules/@stdlib/stats/base/dists/truncated-normal/README.md b/lib/node_modules/@stdlib/stats/base/dists/truncated-normal/README.md index 9bd3b301d1b0..fba953437732 100644 --- a/lib/node_modules/@stdlib/stats/base/dists/truncated-normal/README.md +++ b/lib/node_modules/@stdlib/stats/base/dists/truncated-normal/README.md @@ -76,10 +76,23 @@ The namespace contains a constructor function for creating a [truncated normal][ ```javascript -var objectKeys = require( '@stdlib/utils/keys' ); var truncatedNormal = require( '@stdlib/stats/base/dists/truncated-normal' ); -console.log( objectKeys( truncatedNormal ) ); +/* +* Let's consider an example where we're modeling the heights of astronauts. +* We'll use the truncated normal distribution to model this scenario, considering constraints on their minimum and maximum heights. +* The distribution has parameters: a (minimum height), b (maximum height), mu (location parameter), and sigma (scale parameter). +* In this example, we'll assume a = 150 (minimum height), b = 200 (maximum height), mu = 175 (location parameter), and sigma = 10 (scale parameter). +*/ + +var a = 150.0; +var b = 200.0; +var mu = 175.0; +var sigma = 10.0; + +// Calculate the probability density function (PDF) for a height of 180 cm: +console.log( truncatedNormal.pdf( 180, a, b, mu, sigma ) ); +// => ~0.036 ``` diff --git a/lib/node_modules/@stdlib/stats/base/dists/truncated-normal/examples/index.js b/lib/node_modules/@stdlib/stats/base/dists/truncated-normal/examples/index.js index 70bc05c62451..b7cf4c2d6b51 100644 --- a/lib/node_modules/@stdlib/stats/base/dists/truncated-normal/examples/index.js +++ b/lib/node_modules/@stdlib/stats/base/dists/truncated-normal/examples/index.js @@ -18,7 +18,20 @@ 'use strict'; -var objectKeys = require( '@stdlib/utils/keys' ); var truncatedNormal = require( './../lib' ); -console.log( objectKeys( truncatedNormal ) ); +/* +* Let's consider an example where we're modeling the heights of astronauts. +* We'll use the truncated normal distribution to model this scenario, considering constraints on their minimum and maximum heights. +* The distribution has parameters: a (minimum height), b (maximum height), mu (location parameter), and sigma (scale parameter). +* In this example, we'll assume a = 150 (minimum height), b = 200 (maximum height), mu = 175 (location parameter), and sigma = 10 (scale parameter). +*/ + +var a = 150.0; +var b = 200.0; +var mu = 175.0; +var sigma = 10.0; + +// Calculate the probability density function (PDF) for a height of 180 cm: +console.log(truncatedNormal.pdf( 180, a, b, mu, sigma ) ); +// => ~0.036