File tree Expand file tree Collapse file tree 2 files changed +19
-0
lines changed Expand file tree Collapse file tree 2 files changed +19
-0
lines changed Original file line number Diff line number Diff line change @@ -40,3 +40,22 @@ RabbitMQ 如果丢失了数据,主要是因为你消费的时候,刚消费
4040
4141在获取到路由信息以后,会根据MessageQueueSelector实现的算法来选择一个队列,同一个订单号获取到的肯定是同一个队列。
4242
43+ ## 集群模式
44+ ### 普通集群模式
45+ 在多台机器上启动多个 RabbitMQ 实例。你创建的 queue,只会放在一个 RabbitMQ 实例上,但是每个实例都同步 queue 的元数据(元数据可以认为是 queue 的一些配置信息,通过元数据,可以找到 queue 所在实例)。你消费的时候,实际上如果连接到了另外一个实例,那么那个实例会从 queue 所在实例上拉取数据过来。
46+
47+ 缺点是不能保证高可用、还有拉去数据的开销、以及单实例的性能瓶颈,所以这个方案是为了提高吞吐量的
48+
49+ ### 镜像集群模式
50+ 每个 RabbitMQ 节点都有这个 queue 的一个完整镜像,包含 queue 的全部数据的意思。然后每次你写消息到 queue 的时候,都会自动把消息同步到多个实例的 queue 上。任何一个机器宕机了,没事儿,其它机器(节点)还包含了这个 queue 的完整数据,别的 consumer 都可以到其它节点上去消费数据。
51+
52+ 缺点是即时满足了高可用,但因为同步数据量太重导致难以扩展节点,也没有在架构上实现负载均衡,可以参考Redis的集群模式进行优化。
53+
54+ ### Kafka 的高可用性
55+ Kafka 一个最基本的架构认识:由多个 broker 组成,每个 broker 是一个节点;你创建一个 topic,这个 topic 可以划分为多个 partition,每个 partition 可以存在于不同的 broker 上,每个 partition 就放一部分数据
56+
57+ 每个 partition 的数据都会同步到其它机器上,形成自己的多个 replica 副本。所有 replica 会选举一个 leader 出来,那么生产和消费都跟这个 leader 打交道,然后其他 replica 就是 follower。写的时候,leader 会负责把数据同步到所有 follower 上去,读的时候就直接读 leader 上的数据即可。
58+
59+ 如果某个 broker 宕机了,没事儿,那个 broker上面的 partition 在其他机器上都有副本的,如果这上面有某个 partition 的 leader,那么此时会从 follower 中重新选举一个新的 leader 出来,大家继续读写那个新的 leader 即可。这就有所谓的高可用性了。
60+
61+ ![ ] ( https://github.com/xbox1994/2018-Java-Interview/raw/master/images/kafka集群.png )
You can’t perform that action at this time.
0 commit comments