Skip to content

Commit a51dfaa

Browse files
authored
+20 ML Algorithms +15 Plot for Beginners
added new dataset
1 parent 6ba2ef8 commit a51dfaa

File tree

1 file changed

+23
-3
lines changed

1 file changed

+23
-3
lines changed

+20 ML Algorithms +15 Plot for Beginners/+20 ML Algorithms +15 Plot for Beginners.ipynb

Lines changed: 23 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
"_uuid": "a8f9622945156d6337ba73c481da2de7efef7384"
66
},
77
"cell_type": "markdown",
8-
"source": "## <div style=\"text-align: center\"> +20 ML Algorithms +15 Plot for Beginners</div>\n\n<div style=\"text-align: center\"><b>Quite Practical and Far from any Theoretical Concepts</b></div>\n<img src='https://image.ibb.co/gbH3ue/iris.png'>\n<div style=\"text-align:center\">last update: <b>17/12/2018</b></div>\n\n\n\n>###### you may be interested have a look at it: [**Course Home Page**](https://www.kaggle.com/mjbahmani/10-steps-to-become-a-data-scientist)\n\n\n---------------------------------------------------------------------\nyou can Fork and Run this kernel on Github:\n> ###### [ GitHub](https://github.com/mjbahmani)\n\n-------------------------------------------------------------------------------------------------------------\n\n **I hope you find this kernel helpful and some <font color=\"red\"><b>UPVOTES</b></font> would be very much appreciated**\n \n -----------"
8+
"source": "## <div style=\"text-align: center\"> +20 ML Algorithms +15 Plot for Beginners</div>\n\n<div style=\"text-align: center\"><b>Quite Practical and Far from any Theoretical Concepts</b></div>\n<img src='https://image.ibb.co/gbH3ue/iris.png'>\n<div style=\"text-align:center\">last update: <b>12/02/2019</b></div>\n\n\n\n> You are reading **10 Steps to Become a Data Scientist** and are now in the 9th step : \n\n1. [Leren Python](https://www.kaggle.com/mjbahmani/the-data-scientist-s-toolbox-tutorial-1)\n2. [Python Packages](https://www.kaggle.com/mjbahmani/the-data-scientist-s-toolbox-tutorial-2)\n3. [Mathematics and Linear Algebra](https://www.kaggle.com/mjbahmani/linear-algebra-for-data-scientists)\n4. [Programming &amp; Analysis Tools](https://www.kaggle.com/mjbahmani/20-ml-algorithms-15-plot-for-beginners)\n5. [Big Data](https://www.kaggle.com/mjbahmani/a-data-science-framework-for-quora)\n6. [Data visualization](https://www.kaggle.com/mjbahmani/top-5-data-visualization-libraries-tutorial)\n7. [Data Cleaning](https://www.kaggle.com/mjbahmani/machine-learning-workflow-for-house-prices)\n8. [How to solve a Problem?](https://www.kaggle.com/mjbahmani/the-data-scientist-s-toolbox-tutorial-2)\n9. <font color=\"red\">You are in the ninth step</font>\n10. [Deep Learning](https://www.kaggle.com/mjbahmani/top-5-deep-learning-frameworks-tutorial)\n\n\n---------------------------------------------------------------------\nyou can Fork and Run this kernel on Github:\n> ###### [ GitHub](https://github.com/mjbahmani)\n\n-------------------------------------------------------------------------------------------------------------\n\n **I hope you find this kernel helpful and some <font color=\"red\"><b>UPVOTES</b></font> would be very much appreciated**\n \n -----------"
99
},
1010
{
1111
"metadata": {
@@ -131,14 +131,24 @@
131131
"cell_type": "markdown",
132132
"source": "<a id=\"61\"></a> <br>\n## 6-1 Data Collection\n**Iris dataset** consists of 3 different types of irises’ (Setosa, Versicolour, and Virginica) petal and sepal length, stored in a 150x4 numpy.ndarray\n\nThe rows being the samples and the columns being: Sepal Length, Sepal Width, Petal Length and Petal Width.[6]\n"
133133
},
134+
{
135+
"metadata": {
136+
"trusted": true,
137+
"_uuid": "944133064c837642bf25fe32447502d55b1a0f07"
138+
},
139+
"cell_type": "code",
140+
"source": "print(os.listdir(\"../input/\"))",
141+
"execution_count": null,
142+
"outputs": []
143+
},
134144
{
135145
"metadata": {
136146
"_uuid": "9269ae851b744856bce56840637030a16a5877e1",
137147
"trusted": true,
138148
"_kg_hide-input": true
139149
},
140150
"cell_type": "code",
141-
"source": "# import Dataset to play with it\ndataset = pd.read_csv('../input/Iris.csv')",
151+
"source": "# import Dataset to play with it\ndataset = pd.read_csv('../input/iris-dataset/Iris.csv')\niris_Species = pd.read_csv('../input/iris/Iris.csv')",
142152
"execution_count": null,
143153
"outputs": []
144154
},
@@ -167,6 +177,16 @@
167177
"execution_count": null,
168178
"outputs": []
169179
},
180+
{
181+
"metadata": {
182+
"trusted": true,
183+
"_uuid": "899065374387b9676210933e83aaeaf2b1f3ab19"
184+
},
185+
"cell_type": "code",
186+
"source": "type(iris_Species)",
187+
"execution_count": null,
188+
"outputs": []
189+
},
170190
{
171191
"metadata": {
172192
"_uuid": "055772bd170aa8018aabd85106b76675802c33b3"
@@ -1857,7 +1877,7 @@
18571877
"_uuid": "8c48de6290f33a7e89956a28d05cfac79b0cb57e"
18581878
},
18591879
"cell_type": "markdown",
1860-
"source": ">If you have read the notebook, you can follow next steps: [Course Home Page](https://www.kaggle.com/mjbahmani/10-steps-to-become-a-data-scientist)"
1880+
"source": "Go to first step: [**Course Home Page**](https://www.kaggle.com/mjbahmani/10-steps-to-become-a-data-scientist)\n\nGo to next step : [**Mathematics and Linear Algebra**](https://www.kaggle.com/mjbahmani/linear-algebra-for-data-scientists)"
18611881
}
18621882
],
18631883
"metadata": {

0 commit comments

Comments
 (0)