Skip to content

Commit 495d816

Browse files
committed
Excercise - 2
1 parent 97590ca commit 495d816

File tree

1 file changed

+192
-0
lines changed

1 file changed

+192
-0
lines changed
Lines changed: 192 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,192 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"metadata": {},
6+
"source": [
7+
"### 1.Load the dataset into the pandas data frame. To do so, you first need to import the pandas library, and then, use the function pd.read_csv(), as shown below:"
8+
]
9+
},
10+
{
11+
"cell_type": "code",
12+
"execution_count": 1,
13+
"metadata": {},
14+
"outputs": [],
15+
"source": [
16+
"import pandas as pd\n",
17+
"\n",
18+
"#reading the data into the dataframe into the object data\n",
19+
"df = pd.read_csv('../Data/Banking_Marketing.csv', header=0)"
20+
]
21+
},
22+
{
23+
"cell_type": "markdown",
24+
"metadata": {},
25+
"source": [
26+
"### 2.Print the datatype of each column. To do so, use the dtypes attribute from pandas data frame."
27+
]
28+
},
29+
{
30+
"cell_type": "code",
31+
"execution_count": 3,
32+
"metadata": {},
33+
"outputs": [
34+
{
35+
"data": {
36+
"text/plain": [
37+
"age float64\n",
38+
"job object\n",
39+
"marital object\n",
40+
"education object\n",
41+
"default object\n",
42+
"housing object\n",
43+
"loan object\n",
44+
"contact object\n",
45+
"month object\n",
46+
"day_of_week object\n",
47+
"duration float64\n",
48+
"campaign int64\n",
49+
"pdays int64\n",
50+
"previous int64\n",
51+
"poutcome object\n",
52+
"emp_var_rate float64\n",
53+
"cons_price_idx float64\n",
54+
"cons_conf_idx float64\n",
55+
"euribor3m float64\n",
56+
"nr_employed float64\n",
57+
"y int64\n",
58+
"dtype: object"
59+
]
60+
},
61+
"execution_count": 3,
62+
"metadata": {},
63+
"output_type": "execute_result"
64+
}
65+
],
66+
"source": [
67+
"#finding the data types of each column\n",
68+
"df.dtypes"
69+
]
70+
},
71+
{
72+
"cell_type": "markdown",
73+
"metadata": {},
74+
"source": [
75+
"### 3.Print how many missing values on each column. To do so, use isna() function from pandas dataframe"
76+
]
77+
},
78+
{
79+
"cell_type": "code",
80+
"execution_count": 4,
81+
"metadata": {},
82+
"outputs": [
83+
{
84+
"data": {
85+
"text/plain": [
86+
"age 2\n",
87+
"job 0\n",
88+
"marital 0\n",
89+
"education 0\n",
90+
"default 0\n",
91+
"housing 0\n",
92+
"loan 0\n",
93+
"contact 6\n",
94+
"month 0\n",
95+
"day_of_week 0\n",
96+
"duration 7\n",
97+
"campaign 0\n",
98+
"pdays 0\n",
99+
"previous 0\n",
100+
"poutcome 0\n",
101+
"emp_var_rate 0\n",
102+
"cons_price_idx 0\n",
103+
"cons_conf_idx 0\n",
104+
"euribor3m 0\n",
105+
"nr_employed 0\n",
106+
"y 0\n",
107+
"dtype: int64"
108+
]
109+
},
110+
"execution_count": 4,
111+
"metadata": {},
112+
"output_type": "execute_result"
113+
}
114+
],
115+
"source": [
116+
"df.isna().sum()"
117+
]
118+
},
119+
{
120+
"cell_type": "markdown",
121+
"metadata": {},
122+
"source": [
123+
"### 4.Remove all the missing rows from the dataframe. To do so, we make use of the function dropna()."
124+
]
125+
},
126+
{
127+
"cell_type": "code",
128+
"execution_count": 6,
129+
"metadata": {},
130+
"outputs": [
131+
{
132+
"data": {
133+
"text/plain": [
134+
"age 0\n",
135+
"job 0\n",
136+
"marital 0\n",
137+
"education 0\n",
138+
"default 0\n",
139+
"housing 0\n",
140+
"loan 0\n",
141+
"contact 0\n",
142+
"month 0\n",
143+
"day_of_week 0\n",
144+
"duration 0\n",
145+
"campaign 0\n",
146+
"pdays 0\n",
147+
"previous 0\n",
148+
"poutcome 0\n",
149+
"emp_var_rate 0\n",
150+
"cons_price_idx 0\n",
151+
"cons_conf_idx 0\n",
152+
"euribor3m 0\n",
153+
"nr_employed 0\n",
154+
"y 0\n",
155+
"dtype: int64"
156+
]
157+
},
158+
"execution_count": 6,
159+
"metadata": {},
160+
"output_type": "execute_result"
161+
}
162+
],
163+
"source": [
164+
"#removing Null values\n",
165+
"df = df.dropna()\n",
166+
"#Let us check again if NA’s still available\n",
167+
"df.isna().sum()"
168+
]
169+
}
170+
],
171+
"metadata": {
172+
"kernelspec": {
173+
"display_name": "Python 3",
174+
"language": "python",
175+
"name": "python3"
176+
},
177+
"language_info": {
178+
"codemirror_mode": {
179+
"name": "ipython",
180+
"version": 3
181+
},
182+
"file_extension": ".py",
183+
"mimetype": "text/x-python",
184+
"name": "python",
185+
"nbconvert_exporter": "python",
186+
"pygments_lexer": "ipython3",
187+
"version": "3.6.4"
188+
}
189+
},
190+
"nbformat": 4,
191+
"nbformat_minor": 2
192+
}

0 commit comments

Comments
 (0)