|
3 | 3 | * @return {number} |
4 | 4 | */ |
5 | 5 | const maximumSafenessFactor = function (grid) { |
6 | | - let n = grid.length, |
7 | | - m = grid[0].length, |
8 | | - ans = Infinity |
9 | | - const { min, abs } = Math |
10 | | - let t = [] |
11 | | - for (let i = 0; i < n; i++) { |
12 | | - for (let j = 0; j < m; j++) { |
13 | | - if (grid[i][j] == 1) { |
14 | | - t.push([i, j]) // keeping track of each thief |
| 6 | + const n = grid.length; |
| 7 | + const isInBound = (r, c) => r >= 0 && r < n && c >= 0 && c < n; |
| 8 | + const dist = new Array(n).fill(0).map(() => new Array(n).fill(Infinity)); |
| 9 | + const queue = []; |
| 10 | + |
| 11 | + for (let r = 0; r < n; r++) { |
| 12 | + for (let c = 0; c < n; c++) { |
| 13 | + if (grid[r][c] === 1) { |
| 14 | + dist[r][c] = 0; |
| 15 | + queue.push([r, c]); |
15 | 16 | } |
16 | 17 | } |
17 | 18 | } |
18 | 19 |
|
19 | | - const vis = Array.from({ length: n }, () => Array(m).fill(0)) |
20 | | - |
21 | | - const pq = new PQ((a, b) => a[0] > b[0]) |
22 | | - let m_dist = Infinity |
23 | | - for (const thieve of t) { |
24 | | - m_dist = Math.min(m_dist, thieve[0] + thieve[1]) // Calculating Manhattan distance between current cell and all thieves |
25 | | - } |
26 | | - let dr = [0, -1, 0, 1], |
27 | | - dc = [-1, 0, 1, 0] |
28 | | - pq.push([m_dist, [0, 0]]) |
29 | | - vis[0][0] = 1 |
30 | | - // int mn_dist = 0; |
31 | | - while (!pq.isEmpty()) { |
32 | | - let temp = pq.pop() |
33 | | - |
34 | | - let dist = temp[0], |
35 | | - r = temp[1][0], |
36 | | - c = temp[1][1] |
37 | | - // mn_dist = min(dist,mn_dist); |
38 | | - if (r == n - 1 && c == m - 1) { |
39 | | - return dist // return path safety when end is reached |
40 | | - } |
41 | | - for (let i = 0; i < 4; i++) { |
42 | | - let nr = r + dr[i] |
43 | | - let nc = c + dc[i] |
44 | | - if (nr >= 0 && nc >= 0 && nr < n && nc < m && !vis[nr][nc]) { |
45 | | - //for every adjacent cell calculate the minimum mahattan distance betwwen cell and thieves. |
46 | | - vis[nr][nc] = 1 |
47 | | - let m_dist = Infinity |
48 | | - for (let thieve of t) { |
49 | | - m_dist = min(m_dist, abs(thieve[0] - nr) + abs(thieve[1] - nc)) |
50 | | - } |
| 20 | + while (queue.length) { |
| 21 | + const [r, c] = queue.shift(); |
| 22 | + const neighbors = [ |
| 23 | + [r + 1, c], |
| 24 | + [r - 1, c], |
| 25 | + [r, c + 1], |
| 26 | + [r, c - 1], |
| 27 | + ]; |
51 | 28 |
|
52 | | - // push the minimum of current distance and the minimum distance of the path till now |
53 | | - pq.push([min(m_dist, dist), [nr, nc]]) |
| 29 | + for (const [nr, nc] of neighbors) { |
| 30 | + if (isInBound(nr, nc) && dist[nr][nc] === Infinity) { |
| 31 | + dist[nr][nc] = dist[r][c] + 1; |
| 32 | + queue.push([nr, nc]); |
54 | 33 | } |
55 | 34 | } |
56 | 35 | } |
57 | | - return ans |
58 | | -} |
59 | 36 |
|
60 | | -class PQ { |
61 | | - constructor(comparator = (a, b) => a > b) { |
62 | | - this.heap = [] |
63 | | - this.top = 0 |
64 | | - this.comparator = comparator |
65 | | - } |
66 | | - size() { |
67 | | - return this.heap.length |
68 | | - } |
69 | | - isEmpty() { |
70 | | - return this.size() === 0 |
71 | | - } |
72 | | - peek() { |
73 | | - return this.heap[this.top] |
74 | | - } |
75 | | - push(...values) { |
76 | | - values.forEach((value) => { |
77 | | - this.heap.push(value) |
78 | | - this.siftUp() |
79 | | - }) |
80 | | - return this.size() |
81 | | - } |
82 | | - pop() { |
83 | | - const poppedValue = this.peek() |
84 | | - const bottom = this.size() - 1 |
85 | | - if (bottom > this.top) { |
86 | | - this.swap(this.top, bottom) |
87 | | - } |
88 | | - this.heap.pop() |
89 | | - this.siftDown() |
90 | | - return poppedValue |
91 | | - } |
92 | | - replace(value) { |
93 | | - const replacedValue = this.peek() |
94 | | - this.heap[this.top] = value |
95 | | - this.siftDown() |
96 | | - return replacedValue |
97 | | - } |
| 37 | + const maxDistance = new Array(n).fill(0).map(() => new Array(n).fill(0)); |
| 38 | + maxDistance[0][0] = dist[0][0]; |
| 39 | + queue.push([0, 0]); |
98 | 40 |
|
99 | | - parent = (i) => ((i + 1) >>> 1) - 1 |
100 | | - left = (i) => (i << 1) + 1 |
101 | | - right = (i) => (i + 1) << 1 |
102 | | - greater = (i, j) => this.comparator(this.heap[i], this.heap[j]) |
103 | | - swap = (i, j) => ([this.heap[i], this.heap[j]] = [this.heap[j], this.heap[i]]) |
104 | | - siftUp = () => { |
105 | | - let node = this.size() - 1 |
106 | | - while (node > this.top && this.greater(node, this.parent(node))) { |
107 | | - this.swap(node, this.parent(node)) |
108 | | - node = this.parent(node) |
109 | | - } |
110 | | - } |
111 | | - siftDown = () => { |
112 | | - let node = this.top |
113 | | - while ( |
114 | | - (this.left(node) < this.size() && this.greater(this.left(node), node)) || |
115 | | - (this.right(node) < this.size() && this.greater(this.right(node), node)) |
116 | | - ) { |
117 | | - let maxChild = |
118 | | - this.right(node) < this.size() && |
119 | | - this.greater(this.right(node), this.left(node)) |
120 | | - ? this.right(node) |
121 | | - : this.left(node) |
122 | | - this.swap(node, maxChild) |
123 | | - node = maxChild |
| 41 | + while (queue.length) { |
| 42 | + const [r, c] = queue.shift(); |
| 43 | + const neighbors = [ |
| 44 | + [r + 1, c], |
| 45 | + [r - 1, c], |
| 46 | + [r, c + 1], |
| 47 | + [r, c - 1], |
| 48 | + ]; |
| 49 | + |
| 50 | + for (const [nr, nc] of neighbors) { |
| 51 | + if (isInBound(nr, nc)) { |
| 52 | + const newDistance = Math.min(maxDistance[r][c], dist[nr][nc]); |
| 53 | + if (newDistance > maxDistance[nr][nc]) { |
| 54 | + maxDistance[nr][nc] = newDistance; |
| 55 | + queue.push([nr, nc]); |
| 56 | + } |
| 57 | + } |
124 | 58 | } |
125 | 59 | } |
| 60 | + |
| 61 | + return maxDistance[n - 1][n - 1]; |
126 | 62 | } |
0 commit comments