diff --git a/models/common.py b/models/common.py index e375507a5a7e..346fa37ae2d0 100644 --- a/models/common.py +++ b/models/common.py @@ -374,17 +374,19 @@ def wrap_frozen_graph(gd, inputs, outputs): graph_def.ParseFromString(open(w, 'rb').read()) frozen_func = wrap_frozen_graph(gd=graph_def, inputs="x:0", outputs="Identity:0") elif tflite: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python - if 'edgetpu' in w.lower(): # Edge TPU + try: + import tflite_runtime.interpreter as tfl # prefer tflite_runtime if installed + except ImportError: + import tensorflow.lite as tfl + if 'edgetpu' in w.lower(): # Edge TPU https://coral.ai/software/#edgetpu-runtime LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...') - import tflite_runtime.interpreter as tfli # install https://coral.ai/software/#edgetpu-runtime delegate = {'Linux': 'libedgetpu.so.1', 'Darwin': 'libedgetpu.1.dylib', 'Windows': 'edgetpu.dll'}[platform.system()] - interpreter = tfli.Interpreter(model_path=w, experimental_delegates=[tfli.load_delegate(delegate)]) + interpreter = tfl.Interpreter(model_path=w, experimental_delegates=[tfl.load_delegate(delegate)]) else: # Lite LOGGER.info(f'Loading {w} for TensorFlow Lite inference...') - import tensorflow as tf - interpreter = tf.lite.Interpreter(model_path=w) # load TFLite model + interpreter = tfl.Interpreter(model_path=w) # load TFLite model interpreter.allocate_tensors() # allocate input_details = interpreter.get_input_details() # inputs output_details = interpreter.get_output_details() # outputs