Skip to content

Commit 0bcd6f6

Browse files
committed
add resources from DL4NLP
1 parent efcd94d commit 0bcd6f6

File tree

1 file changed

+87
-25
lines changed

1 file changed

+87
-25
lines changed

README.md

Lines changed: 87 additions & 25 deletions
Original file line numberDiff line numberDiff line change
@@ -30,8 +30,6 @@ Please feel free to [pull requests](https://github.com/keonkim/awesome-nlp/pulls
3030
- [Neural Network](#neural-network)
3131
- [Supplementary Materials](#supplementary-materials)
3232
- [Blogs](#blogs)
33-
- [Multilingual](#multilingual)
34-
- [Spanish](#spanish)
3533
- [Credits](#credits)
3634

3735

@@ -50,6 +48,16 @@ Please feel free to [pull requests](https://github.com/keonkim/awesome-nlp/pulls
5048
* [Statistical Machine Translation](http://mt-class.org) - a Machine Translation course with great assignments and slides.
5149
* [Natural Language Processing SFU](http://www.cs.sfu.ca/~anoop/teaching/CMPT-413-Spring-2014/) - course by [Prof Anoop Sarkar](https://www.cs.sfu.ca/~anoop/) on Natural Language Processing. Good notes and some good lectures on youtube about HMM.
5250

51+
## Deep Learning for NLP
52+
[Stanford Natural Language Processing](https://class.coursera.org/nlp/lecture/preview)
53+
Intro NLP course with videos. This has no deep learning. But it is a good primer for traditional nlp.
54+
55+
[Stanford CS 224D: Deep Learning for NLP class](http://cs224d.stanford.edu/syllabus.html)
56+
[Richard Socher](https://scholar.google.com/citations?user=FaOcyfMAAAAJ&hl=en). (2015) Class with videos, and slides.
57+
58+
[A Primer on Neural Network Models for Natural Language Processing](http://u.cs.biu.ac.il/~yogo/nnlp.pdf)
59+
Yoav Goldberg. October 2015. No new info, 75 page summary of state of the art.
60+
5361

5462
## Codes
5563

@@ -132,13 +140,88 @@ Please feel free to [pull requests](https://github.com/keonkim/awesome-nlp/pulls
132140
* [Online named entity recognition method for microtexts in social networking services: A case study of twitter](http://arxiv.org/pdf/1301.2857.pdf)
133141

134142

135-
### Word Vectors
143+
### Word Vectors (part of it from [DL4NLP](https://github.com/andrewt3000/DL4NLP))
144+
Resources about word vectors, aka word embeddings, and distributed representations for words.
145+
Word vectors are numeric representations of words that are often used as input to deep learning systems. This process is sometimes called pretraining.
146+
147+
[Efficient Estimation of Word Representations in Vector Space](http://arxiv.org/pdf/1301.3781v3.pdf)
148+
[Distributed Representations of Words and Phrases and their Compositionality]
149+
(http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf)
150+
[Mikolov](https://scholar.google.com/citations?user=oBu8kMMAAAAJ&hl=en) et al. 2013.
151+
Generate word and phrase vectors. Performs well on word similarity and analogy task and includes [Word2Vec source code](https://code.google.com/p/word2vec/) Subsamples frequent words. (i.e. frequent words like "the" are skipped periodically to speed things up and improve vector for less frequently used words)
152+
[Word2Vec tutorial](http://tensorflow.org/tutorials/word2vec/index.html) in [TensorFlow](http://tensorflow.org/)
153+
154+
[Deep Learning, NLP, and Representations](http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/)
155+
Chris Olah (2014) Blog post explaining word2vec.
156+
157+
[GloVe: Global vectors for word representation](http://nlp.stanford.edu/projects/glove/glove.pdf)
158+
Pennington, Socher, Manning. 2014. Creates word vectors and relates word2vec to matrix factorizations. [Evalutaion section led to controversy](http://rare-technologies.com/making-sense-of-word2vec/) by [Yoav Goldberg](https://plus.google.com/114479713299850783539/posts/BYvhAbgG8T2)
159+
[Glove source code and training data](http://nlp.stanford.edu/projects/glove/)
160+
136161
* [word2vec](http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf) - on creating vectors to represent language, useful for RNN inputs
137162
* [sense2vec](http://arxiv.org/abs/1511.06388) - on word sense disambiguation
138163
* [Infinite Dimensional Word Embeddings](http://arxiv.org/abs/1511.05392) - new
139164
* [Skip Thought Vectors](http://arxiv.org/abs/1506.06726) - word representation method
140165
* [Adaptive skip-gram](http://arxiv.org/abs/1502.07257) - similar approach, with adaptive properties
141166

167+
### Thought Vectors (from [DL4NLP](https://github.com/andrewt3000/DL4NLP))
168+
Thought vectors are numeric representations for sentences, paragraphs, and documents. The following papers are listed in order of date published, each one replaces the last as the state of the art in sentiment analysis.
169+
170+
[Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.383.1327&rep=rep1&type=pdf)
171+
Socher et al. 2013. Introduces Recursive Neural Tensor Network. Uses a parse tree.
172+
173+
[Distributed Representations of Sentences and Documents](http://cs.stanford.edu/~quocle/paragraph_vector.pdf)
174+
[Le](https://scholar.google.com/citations?user=vfT6-XIAAAAJ), Mikolov. 2014. Introduces Paragraph Vector. Concatenates and averages pretrained, fixed word vectors to create vectors for sentences, paragraphs and documents. Also known as paragraph2vec. Doesn't use a parse tree.
175+
Implemented in [gensim](https://github.com/piskvorky/gensim/). See [doc2vec tutorial](http://rare-technologies.com/doc2vec-tutorial/)
176+
177+
[Deep Recursive Neural Networks for Compositionality in Language](http://www.cs.cornell.edu/~oirsoy/files/nips14drsv.pdf)
178+
Irsoy & Cardie. 2014. Uses Deep Recursive Neural Networks. Uses a parse tree.
179+
180+
[Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks](https://aclweb.org/anthology/P/P15/P15-1150.pdf)
181+
Tai et al. 2015 Introduces Tree LSTM. Uses a parse tree.
182+
183+
[Semi-supervised Sequence Learning](http://arxiv.org/pdf/1511.01432.pdf)
184+
Dai, Le 2015 "With pretraining, we are able to train long short term memory recurrent networks up to a few hundred
185+
timesteps, thereby achieving strong performance in many text classification tasks, such as IMDB, DBpedia and 20 Newsgroups."
186+
##Machine Translation
187+
[Neural Machine Translation by jointly learning to align and translate](http://arxiv.org/pdf/1409.0473v6.pdf)
188+
Bahdanau, Cho 2014. "comparable to the existing state-of-the-art phrase-based system on the task of English-to-French translation." Implements attention mechanism.
189+
[English to French Demo](http://104.131.78.120/)
190+
191+
[Sequence to Sequence Learning with Neural Networks](http://arxiv.org/pdf/1409.3215v3.pdf)
192+
Sutskever, Vinyals, Le 2014. ([nips presentation](http://research.microsoft.com/apps/video/?id=239083)). Uses LSTM RNNs to generate translations. " Our main result is that on an English to French translation task from the WMT’14 dataset, the translations produced by the LSTM achieve a BLEU score of 34.8"
193+
[seq2seq tutorial](http://tensorflow.org/tutorials/seq2seq/index.html) in
194+
195+
### Single Exchange Dialogs (from [DL4NLP](https://github.com/andrewt3000/DL4NLP))
196+
[A Neural Network Approach toContext-Sensitive Generation of Conversational Responses](http://arxiv.org/pdf/1506.06714v1.pdf)
197+
Sordoni 2015. Generates responses to tweets.
198+
Uses [Recurrent Neural Network Language Model (RLM) architecture
199+
of (Mikolov et al., 2010).](http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf) source code: [RNNLM Toolkit](http://www.rnnlm.org/)
200+
201+
[Neural Responding Machine for Short-Text Conversation](http://arxiv.org/pdf/1503.02364v2.pdf)
202+
Shang et al. 2015 Uses Neural Responding Machine. Trained on Weibo dataset. Achieves one round conversations with 75% appropriate responses.
203+
204+
[A Neural Conversation Model](http://arxiv.org/pdf/1506.05869v3.pdf)
205+
Vinyals, [Le](https://scholar.google.com/citations?user=vfT6-XIAAAAJ) 2015. Uses LSTM RNNs to generate conversational responses. Uses [seq2seq framework](http://tensorflow.org/tutorials/seq2seq/index.html). Seq2Seq was originally designed for machine transation and it "translates" a single sentence, up to around 79 words, to a single sentence response, and has no memory of previous dialog exchanges. Used in Google [Smart Reply feature for Inbox](http://googleresearch.blogspot.co.uk/2015/11/computer-respond-to-this-email.html)
206+
207+
### Memory and Attention Models (from [DL4NLP](https://github.com/andrewt3000/DL4NLP))
208+
[Reasoning, Attention and Memory RAM workshop at NIPS 2015. slides included](http://www.thespermwhale.com/jaseweston/ram/)
209+
210+
[Memory Networks](http://arxiv.org/pdf/1410.3916v10.pdf) Weston et. al 2014, and
211+
[End-To-End Memory Networks](http://arxiv.org/pdf/1503.08895v4.pdf) Sukhbaatar et. al 2015.
212+
Memory networks are implemented in [MemNN](https://github.com/facebook/MemNN). Attempts to solve task of reason attention and memory.
213+
[Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks](http://arxiv.org/pdf/1502.05698v7.pdf)
214+
Weston 2015. Classifies QA tasks like single factoid, yes/no etc. Extends memory networks.
215+
[Evaluating prerequisite qualities for learning end to end dialog systems](http://arxiv.org/pdf/1511.06931.pdf)
216+
Dodge et. al 2015. Tests Memory Networks on 4 tasks including reddit dialog task.
217+
See [Jason Weston lecture on MemNN](https://www.youtube.com/watch?v=Xumy3Yjq4zk)
218+
219+
[Neural Turing Machines](http://arxiv.org/pdf/1410.5401v2.pdf)
220+
Graves et al. 2014.
221+
222+
[Inferring Algorithmic Patterns with Stack-Augmented Recurrent Nets](http://arxiv.org/pdf/1503.01007v4.pdf)
223+
Joulin, Mikolov 2015. [Stack RNN source code](https://github.com/facebook/Stack-RNN) and [blog post](https://research.facebook.com/blog/1642778845966521/inferring-algorithmic-patterns-with-stack/)
224+
142225
### General Natural Language Processing
143226
* [Neural autocoder for paragraphs and documents](http://arxiv.org/abs/1506.01057) - LTSM representation
144227
* [LTSM over tree structures](http://arxiv.org/abs/1503.04881)
@@ -192,28 +275,6 @@ Please feel free to [pull requests](https://github.com/keonkim/awesome-nlp/pulls
192275
* [Natural Language Processing Blog](http://nlpers.blogspot.ch/) by Hal Daumé III
193276
* [Machine Learning Blog](https://bmcfee.github.io/#home) by Brian McFee
194277

195-
## Multilingual
196-
197-
### Spanish
198-
199-
200-
- POS TAGGERS
201-
- [TreeTagger - POSTagger](http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/)
202-
- [Stanford - POSTagger](http://nlp.stanford.edu/software/tagger.shtml)
203-
- [Freeling](http://nlp.lsi.upc.edu/freeling/)
204-
- [ixa-pipe-pos](https://github.com/ixa-ehu/ixa-pipe-pos)
205-
- [Ruby Snowball Implementation](https://github.com/MaG21/estem)
206-
- [Spaguetti POSTagger(Based on NLTK + CESS corpus](https://code.google.com/p/spaghetti-tagger/)
207-
- NER
208-
- [OpenNLP - Person/Place/Organization models](http://opennlp.sourceforge.net/models-1.5/)
209-
- [DBPedia Spotlight](https://github.com/dbpedia-spotlight/dbpedia-spotlight/)
210-
- [CitiusTagger - Spanish NER and POSTagger](http://gramatica.usc.es/pln/tools/CitiusTools.html)
211-
- ETC
212-
- [Word2Vec vectors for Wikipedia Spanish Articles](https://github.com/idio/wiki2vec)
213-
- [DBpedia Spanish Entities Titles](http://data.dws.informatik.uni-mannheim.de/dbpedia/2014/es/labels_es.nt.bz2)
214-
- [DBpedia Spanish Abstracts](http://data.dws.informatik.uni-mannheim.de/dbpedia/2014/es/short_abstracts_es.nt.bz2)
215-
- [Conshuga - Galician Verb conjugator](http://gramatica.usc.es/pln/tools/conjugador/download.html)
216-
217278

218279
## Credits
219280
part of the lists are from
@@ -222,3 +283,4 @@ part of the lists are from
222283
* [awesome-spanish-nlp](https://github.com/dav009/awesome-spanish-nlp)
223284
* [jjangsangy's awesome-nlp](https://gist.github.com/jjangsangy/8759f163bc3558779c46)
224285
* [awesome-machine-learning](https://github.com/josephmisiti/awesome-machine-learning/edit/master/README.md)
286+
* [DL4NLP](https://github.com/andrewt3000/DL4NLP)

0 commit comments

Comments
 (0)