Skip to content

Commit c4622cf

Browse files
authored
Update index.md
1 parent dec5117 commit c4622cf

File tree

1 file changed

+12
-14
lines changed

1 file changed

+12
-14
lines changed

docs/index.md

Lines changed: 12 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -4,10 +4,10 @@
44

55
# Python Machine Learning Notebooks (Tutorial style)
66

7-
### Dr. Tirthajyoti Sarkar, Fremont, CA ([Please feel free to add me on LinkedIn here](https://www.linkedin.com/in/tirthajyoti-sarkar-2127aa7))
7+
Dr. Tirthajyoti Sarkar, Fremont, CA ([Please feel free to add me on LinkedIn here](https://www.linkedin.com/in/tirthajyoti-sarkar-2127aa7))
88
---
99

10-
### Requirements
10+
## Requirements
1111
* **Python 3.5+**
1212
* **NumPy (`$ pip install numpy`)**
1313
* **Pandas (`$ pip install pandas`)**
@@ -19,7 +19,7 @@
1919
* **Sympy (`$ pip install sympy`)**
2020
---
2121
You can start with this article that I wrote in Heartbeat magazine (on Medium platform):
22-
### ["Some Essential Hacks and Tricks for Machine Learning with Python"](https://heartbeat.fritz.ai/some-essential-hacks-and-tricks-for-machine-learning-with-python-5478bc6593f2)
22+
* ["Some Essential Hacks and Tricks for Machine Learning with Python"](https://heartbeat.fritz.ai/some-essential-hacks-and-tricks-for-machine-learning-with-python-5478bc6593f2)
2323
<img src="https://cookieegroup.com/wp-content/uploads/2018/10/2-1.png" width="450" height="300"/>
2424

2525
## Essential tutorial-type notebooks on Pandas and Numpy
@@ -28,9 +28,7 @@ Jupyter notebooks covering a wide range of functions and operations on the topic
2828
* **[Basics of Pandas DataFrame](https://github.com/tirthajyoti/PythonMachineLearning/blob/master/Pandas%20and%20Numpy/Basics%20of%20Pandas%20DataFrame.ipynb)**
2929
* **[Basics of Matplotlib and Descriptive Statistics](https://github.com/tirthajyoti/PythonMachineLearning/blob/master/Pandas%20and%20Numpy/Basics%20of%20Matplotlib%20and%20Descriptive%20Statistics.ipynb)**
3030

31-
## Tutorial-type notebooks covering regression, classification, clustering, dimensionality reduction, and some basic neural network algorithms
32-
33-
### Regression
31+
## Regression
3432
* Simple linear regression with t-statistic generation
3533
<img src="https://slideplayer.com/slide/6053182/20/images/10/Simple+Linear+Regression+Model.jpg" width="400" height="300"/>
3634

@@ -44,9 +42,9 @@ Jupyter notebooks covering a wide range of functions and operations on the topic
4442

4543
* [Detailed visual analytics and goodness-of-fit diagnostic tests for a linear regression problem](https://github.com/tirthajyoti/Machine-Learning-with-Python/blob/master/Regression/Regression_Diagnostics.ipynb)
4644

47-
-----
45+
----
4846

49-
### Classification
47+
## Classification
5048
* Logistic regression/classification
5149
<img src="https://qph.fs.quoracdn.net/main-qimg-914b29e777e78b44b67246b66a4d6d71"/>
5250

@@ -60,7 +58,7 @@ Jupyter notebooks covering a wide range of functions and operations on the topic
6058

6159
---
6260

63-
### Clustering
61+
## Clustering
6462
<img src="https://i.ytimg.com/vi/IJt62uaZR-M/maxresdefault.jpg" width="450" height="300"/>
6563

6664
* _K_-means clustering
@@ -72,33 +70,33 @@ Jupyter notebooks covering a wide range of functions and operations on the topic
7270

7371
---
7472

75-
### Dimensionality reduction
73+
## Dimensionality reduction
7674
* Principal component analysis
7775

7876
<img src="https://i.ytimg.com/vi/QP43Iy-QQWY/maxresdefault.jpg" width="450" height="300"/>
7977

8078
---
8179

82-
### Deep Learning/Neural Network
80+
## Deep Learning/Neural Network
8381
* [Demo notebook to illustrate the superiority of deep neural network for complex nonlinear function approximation task](https://github.com/tirthajyoti/Machine-Learning-with-Python/blob/master/Function%20Approximation%20by%20Neural%20Network/Polynomial%20regression%20-%20linear%20and%20neural%20network.ipynb)
8482
* Step-by-step building of 1-hidden-layer and 2-hidden-layer dense network using basic TensorFlow methods
8583

8684
---
8785

88-
### Random data generation using symbolic expressions
86+
## Random data generation using symbolic expressions
8987
* How to use [Sympy package](https://www.sympy.org/en/index.html) to generate random datasets using symbolic mathematical expressions.
9088

9189
* Here is my article on Medium on this topic: [Random regression and classification problem generation with symbolic expression](https://towardsdatascience.com/random-regression-and-classification-problem-generation-with-symbolic-expression-a4e190e37b8d)
9290
---
9391

94-
### Simple deployment examples (serving ML models on web API)
92+
## Simple deployment examples (serving ML models on web API)
9593
* [Serving a linear regression model through a simple HTTP server interface](https://github.com/tirthajyoti/Machine-Learning-with-Python/tree/master/Deployment/Linear_regression). User needs to request predictions by executing a Python script. Uses `Flask` and `Gunicorn`.
9694

9795
* [Serving a recurrent neural network (RNN) through a HTTP webpage](https://github.com/tirthajyoti/Machine-Learning-with-Python/tree/master/Deployment/rnn_app), complete with a web form, where users can input parameters and click a button to generate text based on the pre-trained RNN model. Uses `Flask`, `Jinja`, `Keras`/`TensorFlow`, `WTForms`.
9896

9997
---
10098

101-
### Object-oriented programming with machine learning
99+
## Object-oriented programming with machine learning
102100
Implementing some of the core OOP principles in a machine learning context by [building your own Scikit-learn-like estimator, and making it better](https://github.com/tirthajyoti/Machine-Learning-with-Python/blob/master/OOP_in_ML/Class_MyLinearRegression.ipynb).
103101

104102
See my articles on Medium on this topic.

0 commit comments

Comments
 (0)