|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | +""" |
| 3 | +Created on Fri Aug 26 19:38:26 2016 |
| 4 | +
|
| 5 | +@author: DIP |
| 6 | +""" |
| 7 | + |
| 8 | +from sklearn.datasets import fetch_20newsgroups |
| 9 | +from sklearn.cross_validation import train_test_split |
| 10 | + |
| 11 | +def get_data(): |
| 12 | + data = fetch_20newsgroups(subset='all', |
| 13 | + shuffle=True, |
| 14 | + remove=('headers', 'footers', 'quotes')) |
| 15 | + return data |
| 16 | + |
| 17 | +def prepare_datasets(corpus, labels, test_data_proportion=0.3): |
| 18 | + train_X, test_X, train_Y, test_Y = train_test_split(corpus, labels, |
| 19 | + test_size=0.33, random_state=42) |
| 20 | + return train_X, test_X, train_Y, test_Y |
| 21 | + |
| 22 | +def remove_empty_docs(corpus, labels): |
| 23 | + filtered_corpus = [] |
| 24 | + filtered_labels = [] |
| 25 | + for doc, label in zip(corpus, labels): |
| 26 | + if doc.strip(): |
| 27 | + filtered_corpus.append(doc) |
| 28 | + filtered_labels.append(label) |
| 29 | + |
| 30 | + return filtered_corpus, filtered_labels |
| 31 | + |
| 32 | + |
| 33 | +dataset = get_data() |
| 34 | + |
| 35 | +print dataset.target_names |
| 36 | + |
| 37 | +corpus, labels = dataset.data, dataset.target |
| 38 | +corpus, labels = remove_empty_docs(corpus, labels) |
| 39 | + |
| 40 | +print 'Sample document:', corpus[10] |
| 41 | +print 'Class label:',labels[10] |
| 42 | +print 'Actual class label:', dataset.target_names[labels[10]] |
| 43 | + |
| 44 | +train_corpus, test_corpus, train_labels, test_labels = prepare_datasets(corpus, |
| 45 | + labels, |
| 46 | + test_data_proportion=0.3) |
| 47 | + |
| 48 | +from normalization import normalize_corpus |
| 49 | + |
| 50 | +norm_train_corpus = normalize_corpus(train_corpus) |
| 51 | +norm_test_corpus = normalize_corpus(test_corpus) |
| 52 | + |
| 53 | +''.strip() |
| 54 | + |
| 55 | +from feature_extractors import bow_extractor, tfidf_extractor |
| 56 | +from feature_extractors import averaged_word_vectorizer |
| 57 | +from feature_extractors import tfidf_weighted_averaged_word_vectorizer |
| 58 | +import nltk |
| 59 | +import gensim |
| 60 | + |
| 61 | +# bag of words features |
| 62 | +bow_vectorizer, bow_train_features = bow_extractor(norm_train_corpus) |
| 63 | +bow_test_features = bow_vectorizer.transform(norm_test_corpus) |
| 64 | + |
| 65 | +# tfidf features |
| 66 | +tfidf_vectorizer, tfidf_train_features = tfidf_extractor(norm_train_corpus) |
| 67 | +tfidf_test_features = tfidf_vectorizer.transform(norm_test_corpus) |
| 68 | + |
| 69 | + |
| 70 | +# tokenize documents |
| 71 | +tokenized_train = [nltk.word_tokenize(text) |
| 72 | + for text in norm_train_corpus] |
| 73 | +tokenized_test = [nltk.word_tokenize(text) |
| 74 | + for text in norm_test_corpus] |
| 75 | +# build word2vec model |
| 76 | +model = gensim.models.Word2Vec(tokenized_train, |
| 77 | + size=500, |
| 78 | + window=100, |
| 79 | + min_count=30, |
| 80 | + sample=1e-3) |
| 81 | + |
| 82 | +# averaged word vector features |
| 83 | +avg_wv_train_features = averaged_word_vectorizer(corpus=tokenized_train, |
| 84 | + model=model, |
| 85 | + num_features=500) |
| 86 | +avg_wv_test_features = averaged_word_vectorizer(corpus=tokenized_test, |
| 87 | + model=model, |
| 88 | + num_features=500) |
| 89 | + |
| 90 | + |
| 91 | + |
| 92 | +# tfidf weighted averaged word vector features |
| 93 | +vocab = tfidf_vectorizer.vocabulary_ |
| 94 | +tfidf_wv_train_features = tfidf_weighted_averaged_word_vectorizer(corpus=tokenized_train, |
| 95 | + tfidf_vectors=tfidf_train_features, |
| 96 | + tfidf_vocabulary=vocab, |
| 97 | + model=model, |
| 98 | + num_features=500) |
| 99 | +tfidf_wv_test_features = tfidf_weighted_averaged_word_vectorizer(corpus=tokenized_test, |
| 100 | + tfidf_vectors=tfidf_test_features, |
| 101 | + tfidf_vocabulary=vocab, |
| 102 | + model=model, |
| 103 | + num_features=500) |
| 104 | + |
| 105 | + |
| 106 | +from sklearn import metrics |
| 107 | +import numpy as np |
| 108 | + |
| 109 | +def get_metrics(true_labels, predicted_labels): |
| 110 | + |
| 111 | + print 'Accuracy:', np.round( |
| 112 | + metrics.accuracy_score(true_labels, |
| 113 | + predicted_labels), |
| 114 | + 2) |
| 115 | + print 'Precision:', np.round( |
| 116 | + metrics.precision_score(true_labels, |
| 117 | + predicted_labels, |
| 118 | + average='weighted'), |
| 119 | + 2) |
| 120 | + print 'Recall:', np.round( |
| 121 | + metrics.recall_score(true_labels, |
| 122 | + predicted_labels, |
| 123 | + average='weighted'), |
| 124 | + 2) |
| 125 | + print 'F1 Score:', np.round( |
| 126 | + metrics.f1_score(true_labels, |
| 127 | + predicted_labels, |
| 128 | + average='weighted'), |
| 129 | + 2) |
| 130 | + |
| 131 | + |
| 132 | +def train_predict_evaluate_model(classifier, |
| 133 | + train_features, train_labels, |
| 134 | + test_features, test_labels): |
| 135 | + # build model |
| 136 | + classifier.fit(train_features, train_labels) |
| 137 | + # predict using model |
| 138 | + predictions = classifier.predict(test_features) |
| 139 | + # evaluate model prediction performance |
| 140 | + get_metrics(true_labels=test_labels, |
| 141 | + predicted_labels=predictions) |
| 142 | + return predictions |
| 143 | + |
| 144 | + |
| 145 | + |
| 146 | +from sklearn.naive_bayes import MultinomialNB |
| 147 | +from sklearn.linear_model import SGDClassifier |
| 148 | + |
| 149 | +mnb = MultinomialNB() |
| 150 | +svm = SGDClassifier(loss='hinge', n_iter=100) |
| 151 | + |
| 152 | +# Multinomial Naive Bayes with bag of words features |
| 153 | +mnb_bow_predictions = train_predict_evaluate_model(classifier=mnb, |
| 154 | + train_features=bow_train_features, |
| 155 | + train_labels=train_labels, |
| 156 | + test_features=bow_test_features, |
| 157 | + test_labels=test_labels) |
| 158 | + |
| 159 | +# Support Vector Machine with bag of words features |
| 160 | +svm_bow_predictions = train_predict_evaluate_model(classifier=svm, |
| 161 | + train_features=bow_train_features, |
| 162 | + train_labels=train_labels, |
| 163 | + test_features=bow_test_features, |
| 164 | + test_labels=test_labels) |
| 165 | + |
| 166 | +# Multinomial Naive Bayes with tfidf features |
| 167 | +mnb_tfidf_predictions = train_predict_evaluate_model(classifier=mnb, |
| 168 | + train_features=tfidf_train_features, |
| 169 | + train_labels=train_labels, |
| 170 | + test_features=tfidf_test_features, |
| 171 | + test_labels=test_labels) |
| 172 | + |
| 173 | +# Support Vector Machine with tfidf features |
| 174 | +svm_tfidf_predictions = train_predict_evaluate_model(classifier=svm, |
| 175 | + train_features=tfidf_train_features, |
| 176 | + train_labels=train_labels, |
| 177 | + test_features=tfidf_test_features, |
| 178 | + test_labels=test_labels) |
| 179 | + |
| 180 | +# Support Vector Machine with averaged word vector features |
| 181 | +svm_avgwv_predictions = train_predict_evaluate_model(classifier=svm, |
| 182 | + train_features=avg_wv_train_features, |
| 183 | + train_labels=train_labels, |
| 184 | + test_features=avg_wv_test_features, |
| 185 | + test_labels=test_labels) |
| 186 | + |
| 187 | +# Support Vector Machine with tfidf weighted averaged word vector features |
| 188 | +svm_tfidfwv_predictions = train_predict_evaluate_model(classifier=svm, |
| 189 | + train_features=tfidf_wv_train_features, |
| 190 | + train_labels=train_labels, |
| 191 | + test_features=tfidf_wv_test_features, |
| 192 | + test_labels=test_labels) |
| 193 | + |
| 194 | + |
| 195 | + |
| 196 | +import pandas as pd |
| 197 | +cm = metrics.confusion_matrix(test_labels, svm_tfidf_predictions) |
| 198 | +pd.DataFrame(cm, index=range(0,20), columns=range(0,20)) |
| 199 | + |
| 200 | +class_names = dataset.target_names |
| 201 | +print class_names[0], '->', class_names[15] |
| 202 | +print class_names[18], '->', class_names[16] |
| 203 | +print class_names[19], '->', class_names[15] |
| 204 | + |
| 205 | + |
| 206 | + |
| 207 | + |
| 208 | +import re |
| 209 | + |
| 210 | +num = 0 |
| 211 | +for document, label, predicted_label in zip(test_corpus, test_labels, svm_tfidf_predictions): |
| 212 | + if label == 0 and predicted_label == 15: |
| 213 | + print 'Actual Label:', class_names[label] |
| 214 | + print 'Predicted Label:', class_names[predicted_label] |
| 215 | + print 'Document:-' |
| 216 | + print re.sub('\n', ' ', document) |
| 217 | + print |
| 218 | + num += 1 |
| 219 | + if num == 4: |
| 220 | + break |
| 221 | + |
| 222 | + |
| 223 | +num = 0 |
| 224 | +for document, label, predicted_label in zip(test_corpus, test_labels, svm_tfidf_predictions): |
| 225 | + if label == 18 and predicted_label == 16: |
| 226 | + print 'Actual Label:', class_names[label] |
| 227 | + print 'Predicted Label:', class_names[predicted_label] |
| 228 | + print 'Document:-' |
| 229 | + print re.sub('\n', ' ', document) |
| 230 | + print |
| 231 | + num += 1 |
| 232 | + if num == 4: |
| 233 | + break |
0 commit comments